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Preface 

The main topic of this book is the kernel of the VAX/VMS Version 5.2 operat­
ing system: process management; memory management; the I/O subsystem; 
the mechanisms that transfer control to, from, and among these; and the 
system services that support and complement them. 

In explaining the operation of a subsystem, this book emphasizes the data 
structures manipulated by that subsystem. Most VMS operations can be 
more easily understood once the contents of the various data structures are 
known. The book also provides a detailed description of the flow of some 
major routines and annotated excerpts from certain key routines. 

The intended readers are system programmers and other users of VMS 
who wish to understand its components, mechanisms, and data structures. 
For system programmers, the book provides technical background helpful in 
activities such as writing privileged utilities and system services. Its detailed 
description of data structures should help system managers make better 
informed decisions when they configure systems for space- or time-critical 
applications. It should also help application designers appreciate the effects 
(in speed or in memory consumption) of different design and implementation 
decisions. 

In addition, this book is intended as a case study of VMS for an advanced 
undergraduate or graduate course in operating systems. 

It assumes that the reader is familiar with the VAX architecture, particu­
larly its memory management, and with the VMS operating system, partic­
ularly its system services. 

The book is divided into nine parts, each of which describes a different 
aspect of the operating system. 

• Part 1 presents an overview of the operating system and reviews the con­
cepts basic to its workings . 

• Part 2 describes the mechanisms used to pass control between user pro-
grams and the operating system, and within the system itself. 

• Part 3 describes the synchronization methods of VMS. 
• Part 4 describes scheduling, time support, and process control. 
• Part 5 discusses memory management, with emphasis on system data 

structures and their manipulation by paging and swapping routines. It also 
describes management of dynamic memory, such as nonpaged pool. 

• Part 6 contains an overview of the I/O subsystem, paying particular atten­
tion to the I/0-related system services . 

• Part 7 describes the life cycle of a process: its creation, the activation and 
termination of images within its context, and its deletion. 
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• Part 8 discusses the life of the system: its organization, initialization, error 
handling, powerfail recovery, and shutdown. It also explains symmetric 
multiprocessing support. 

• Part 9 discusses the implementation of logical names and the internals of 
several miscellaneous system services . 

• The appendixes include a summary of VMS data structures, a detailed 
layout of system and Pl virtual address spaces, information on the use 
of listing and map files, the conventions used in naming symbols, and 
information about lock and resource use by various VMS components. 

This book does not include a discussion of V AXcluster systems. 
There is no guarantee that any data structure or subroutine described here 

will remain the same from release to release. With each new version of 
the operating system, a privileged application program that relies on details 
contained in this book should be rebuilt and tested prior to production use. 

The VMS document set supplies important background information for the 
topics discussed in this book. The following provide an especially important 
foundation: VMS System Services Reference Manual, VMS Device Support 
Manual, and the chapter in the VMS Run-Time Library Routines Volume 
that describes condition handling. 

The VAX Architecture Reference Manual, Second Edition (Digital Press, 
1991), edited by Richard Brunner, documents the VAX architecture in detail. 
Computer Programming and Architecture: The VAX, by Henry M. Levy and 
Richard H. Eckhouse, Jr. (Digital Press, 1988), contains an excellent descrip­
tion of the VAX architecture as well as a discussion of some of the design 
decisions made in various implementations. It also includes a bibliography 
of the literature dealing with operating system design. VMS File System In­
ternals (Digital Press, 1990), by Kirby McCoy, provides an in-depth study of 
the internals of the file system. 

CONVENTIONS 

A number of conventions are used throughout the text and figures of this 
book. 

The term executive refers to those parts of the operating system that 
are loaded into and execute from system space. The executive includes 
the system base image, SYS.EXE; loadable executive images; other loadable 
system images such as SCSLOA; and device drivers. 

The terms system and VMS system describe the entire VMS software 
package, including privileged processes, utilities, and other support software 
as well as the executive itself. VMS consists of many different components, 
each a different file. One component is the system base image, SYS.EXE, 
Others are loadable executive images, device drivers, command language 
interpreters, and utility programs. 
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The source modules from which these components are built and their 
listings are divided into facilities. Each facility is a directory on a source or 
listing medium containing sources and command procedures to build one or 
more components. The facility [DRIVER], for example, contains sources for 
most of the device drivers. The facility [BOOTS] includes sources for the pri­
mary bootstrap program, VMB; the secondary bootstrap program, SYSBOOT; 
and the SYSGEN Utility. The facility [SYS] contains the sources that make 
up the base image and loadable executive images. 

This book identifies a [SYS] facility source module only by its file name. 
It identifies a module from any other facility by facility' directory name and 
file name. For example, [DRIVER]LPDRIVER refers to the source for the line 
printer device driver. Appendix B discusses how to locate a module in the 
VMS source listings. 

In general, the component called INIT refers to a module of that name in 
the executive and not to the volume initialization utility. When the latter 
is referenced, it is clearly specified. 

This book identifies a macro from SYS$LIBRARY:LIB.MLB by only its 
name, for instance, WFIKPCH. The macro library of all other macros i.s 
specified. 

The unmodified terms process control block and PCB refer to the software 
data structure used by the scheduler. The data .structure that contains a 
process's hardware context is always calle.d the hardware PCB. 

The term inner access modes means those access modes with more priv~ 
ilege. The term outer access modes means those with less privilege. Thus, 
the innermost access mode is kernel and the outermost mode is user. 

SYSGEN parameters include both the dynamic parameters, which can be 
changed on the running system, and the static parameters, whose changes 
do not take effect until the next system boot. These parameters are referred 
to by their parameter names rather than by the global locations where their 
values are stored. Appendix C relates parafueter names to their corresponding 
global locations. 

The terms byte index, word iildex, longword index, and quadword index 
refer to methods of VAX operand access that use context-indexed addressing 
modes. That is, the index value is multiplied by 1, 2, 4, or 8 (for bytes, 
words, long"7ords, or quadwords, respectively) as part of operand evaluation, 
to calculate the effective address of the operand. 

Except in the index, a subroutine is categorized as a routine or a procedure 
depending on its entry method. A routine is entered, or invoked, with a JSB 

instruction. A procedure is entered, or called, with a CALLG or CALLS. 

Three conventions are observed for lists: 

• In lists like this one, where no order or hierarchy exists, list elements are 
indicated by leading bullets (•). Sublists without hierarchy are indicated by 
dashes 1-J. 
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• Lists that indicate an ordered set of operations are numbered. Sublists that 
indicate an ordered set of operations are lettered. 

• Numbered lists with the numbers enclosed in circles indicate a corre­
spondence between the list elements and numbered items in a figure or 
example. 

Several conventions are observed for figures. In all diagrams of memory, 
the lowest virtual address appears at the top of the page and addresses 
increase toward the bottom of the page. Thus, the direction of stack growth 
is depicted upward from the bottom of the page. In diagrams that display 
more detail, such as bytes within longwords, addresses increase from right 
to left. That is, the lowest addressed byte (or bit) in a longword is on the 
right-hand side of a figure and the most significant byte (or bit) is on the 
left-hand side. 

Each field in a data structure layout is represented by a rectangle. In many 
figures, the rectangle contains the last part of the name of the field, excluding 
the structure name, data type designator, and leading underscore. A rectangle 
the full width of the diagram generally represents a longword regardless of 
its depth. A field smaller than a longword is represented in proportion to 
its size; for example, bytes and words are quarter- and half-width rectangles. 
A quadword is represented by a full-width rectangle with a short horizontal 
line segment midway down each side. 

For example, Figure 8.1 shows the layout of a spinlock control block. 
The rectangle labeled SPINLOCK represents the byte SPL$B_SPINLOCK; 
the rectangle labeled OWN_CPU, the longword SPL$1-0WN_CPU; and the 
rectangle labeled ACQ_COUNT, the quadword SPL$Q_ACQ_COUNT. 

In almost all data structures, the data structure's full-width rectangles rep­
resent longwords aligned on longword boundaries. In a few data structures, 
such as the logical name table header (LNMTH) shown in Figure 35.2 or the 
logical name translation block (LNMX) in Figure 35.4, a horizontal row of 
boxes represents fields whose sizes do not total a longword. Without this 
practice, most of the fields in this kind of structure would be split into two 
part-width rectangles in adjoining rows, because they are unaligned long­
words. 

A data structure field containing the address of another data structure in 
the same figure is represented by a bullet connected to an arrow pointing to 
the other structlire. Where possible, the arrow points to the rightmost end 
of the field, that is, to bit 0. A field containing a value used as an index into 
that or another data structure is represented by an x connected to an arrow 
pointing to the indexed location. 
· Two conventions indicate elisions in a data structure layout. A specific 

amount of space is shown as a rectangle whose sides contain dots. Text 
within the rectangle indicates the amount of space it represents. Field 
SPL$1-0WN_PC_ VEC in Figure 8.1, for example, represents 32 bytes. 
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An indeterminate amount of space, often unnamed, representing omitted 
and undescribed fields, is indicated by a rectangle whose sides are intersected 
by short parallel horizontal lines. For example, Figure 14.4, which identifies 
only the PCB fields related to memory management, contains four sets of 
omitted fields among the labeled fields. 

Ruth E. Goldenberg 
Lawrence J. Kenah 
December 1990 
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PART I/ Introduction 
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1.1 

System Overview 

For the fashion of Minas Tirith was such that it was built on 
seven levels, each delved into a hill, and about each was set a 
wall, and in each wall was a gate. 

J. R. R. Tolkien, The Return of the King 

This chapter introduces the basic components of the VMS operating system. 
Special attention is given to the features of the VAX architecture that are 
utilized by the operating system or that exist solely to support an operating 
system. In addition, some of the design goals that guided the implementation 
of the VMS operating system are discussed. 

PROCESS, JOB, AND IMAGE 

The fundamental unit in the implementation of scheduling on the VMS 
operating system, the entity that is selected for execution, is the process. If 
a process creates subprocesses, the collection of the creator process, all the 
subprocesses created by it, and all subprocesses created by its descendants 
is called a job. The programs executed in the context of a process are called 
images. 

1.1.1 Process 

1.1.1.1 

1.1.1.2 

A process is fully described by data structures that specify the hardware and 
software context, and by a virtual address space description. This informa­
tion is stored in several different places in the process and system address 
space. The data structures that contain the various pieces of process context 
are pictured in Figure 1.1. 

Hardware Context. The hardware context consists of copies of the general­
purpose registers, the four per-process stack pointers, the program counter 
(PC), the processor status longword (PSL), and the process-specific processor 
registers, including the memory management registers and the asynchronous 
system trap (AST) level register. The hardware context is stored in a data 
structure called the hardware process control block (hardware PCB), which 
is used primarily when a process is removed from or placed into execution. 

Another part of process context that is related to hardware is four per­
process stacks, one for each of the four access modes. Code executing in 
the context of a process uses the stack associated with the process's current 
access mode. 

Software Context. Software context consists of all the data required by 
various parts of the operating system to control that portion of common 
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resources allocated to a given process. This context includes the process 
software priority, its current scheduling state, process privileges and "iden­
tifiers," quotas and limits, process page file assignments and reservations, 
and miscellaneous data, such as process name and process identification. 

The information about a process that must be in memory at all times is 
stored in a data structure called the software process control block !PCB). 
This information includes the software priority of the process, its unique 
process identification IPID), and the particular scheduling state that the 
process is in at a given point in time. The software PCB also records some 
process quotas and limits. Other quotas and limits are recorded in the job 
information block !JIB). 

The PCB incorporates another data structure called an access rights block 
!ARB), which lists the identifiers that the process holds. Identifiers are names 
that specify to what groups a process belongs for purposes of determining 
access to files and other protected objects. Identifiers are described briefly in 
Section 1.4.1.4. 

The information about a process that does not have to be permanently res­
ident !swappable process context) is contained in a data structure called the 
process header IPHD). This information is needed when the process is resi­
dent and consists mainly of information used by memory management when 
page faults occur. The swapper uses the data in the process header when it 
removes the process from memory loutswaps) or brings the process back into 
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memory (inswaps). The hardware PCB, which contains the hardware context 
of a process, including its page tables, is a part of the process header. Some 
information in the process header is nonpageable and available to suitably 
privileged code whenever the process is resident. The process page tables, 
however, are pageable and only accessible from that process's context. 

Other process-specific information is stored in the Pl portion of the 
process virtual address space (the control region). This includes exception 
dispatching information, Record Management Services (RMS) data tables, 
and information about the image that is currently executing. Information 
that is stored in Pl space is only accessible when the process is executing 
(is the current process), because Pl space is process-specific. 

1.1.2 Image 

1.1.2.1 

1.1.2.1.1 

The programs that execute in the context of a process are called images. 
Images usually reside in files that are produced by the linker. When the user 
initiates image execution (as part of process creation or through a Digital 
command language (DCLJ command in an interactive or batch job), a com­
ponent of the executive called the image activator sets up the process page 
tables to point to the appropriate sections of the image file. VMS uses the. 
same paging mechanism that implements its virtual memory support to read 
image pages into memory as they are needed. 

Virtual Address Space Description. The virtual address space of a process is 
described by the process PO and Pl page tables, stored in the high-addres~ 
end of the process header. The process virtual address space is altered when 
an image is initially activated, during image execution through selected 
system services, and when an image terminates. The process page tables 
reside in system virtual address space and are in turn described by entries in 
the system page table. Unlike the other portions of the process header, the 
process page tables are themselves pageable, and they are faulted into the 
process working set only when they are needed. 

Control Region (Pl Space). Figure 1.2 shows the layout of Pl space. This 
figure was produced mainly from information contained in module SHELL, 
which contains a prototype of a Pl page table that is used whenever a process 
is created. A System Dump Analyzer (SDAJ Utility listing of process page 
tables was used to determine the order and size of the portions of Pl space 
not defined in SHELL. 

Some of the pieces of Pl space are created dynamically when the process 
is created. These include a Pl mapping of process header pages, a command 
language interpreter (CLIJ if one is being used, a symbol table for that CLI, 
the process allocation region, and the process I/O segment. In addition, the 
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1.1.2.1.2 

This part of 
PO space is 
defined by the 
linker and 
mapped by the 
image activator. 

This part of 
PO space is 
not defined at 
link time. 

If either of 
these pieces is 
required, it is 
mapped. Note 
that both cannot 
be mapped at 
the same time. 

1.1 Process, fob, and Image 

Files-11 Extended QIO Processor (XQP) and its data areas are mapped at 
process creation. 

The two pieces of Pl space at the lowest virtual addresses (the user stack 
and any replacement image 1/0 segment) are created dynamically each time 
an image executes and are deleted as part of image rundown. Appendix F 
contains a description of the different pieces of Pl space, including their sizes 
and details such as memory management page protection and the name of 
the system component that maps a given portion. 

Program Region (PO Space). Figure 1.3 shows a typical layout of PO space 
for both a native image (produced by the linker) and a compatibility mode 
image (produced by the RSX-llM task builder). This figure is much more 
conceptual than the previous illustration because the layout of PO space 
depends upon the image being run. 

By default, the first page of PO space (Oto 1FF16 ) is not mapped (protection 
set to No Access). This no-access page allows easy detection of two common 
programming errors, using zero or a small number as the address of a 'data 
location or using such a small number as the destination of a control transfer; 
(A link-time request or system service call can alter the protection of virtual 
page zero. Note also that page zero is accessible to compatibility mode 
images.) 

The main native image is placed into PO space, starting at address 20016• 

Any shareable images that are position-independent and shared ·(for exam­
ple, LIBRTL) are placed at the end of the main image. The order in which 
these shareable images are placed into the image is determined during image 
activation. 
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If the debugger or the traceback facility is required, these images are added 
at execution time (even if /DEBUG was selected at link time). This mapping 
is described in detail in Chapter 26. 

1.1.3 Job 

1.2 

8 

The collection of subprocesses that have a common root process is called 
a job. The concept of a job exists for the purpose of sharing resources. 
Some quotas and limits are shared among all processes in the same job. 
The current values of these quotas are contained in the JIB, which is shared 
by all processes in the same job. Figure 1.1 shows this structure. 

VMS COMPONENTS 

There are several names for different subsets of VMS. The terms system and 
VMS system describe the entire VMS software package, whose components 
include 

• Utilities 
• Program development tools 
• System processes such as the job controller 
• DCL interpreter 
•RMS 
• XQP 
• The executive 

The term executive refers to those components that reside in system space. 
During the development of VMS, it has grown to support different CPUs, 
more devices, and additional features. These have been generally supported 
by code with separate loadable images rather than by modules within one 
larger and larger image. Such loadable images include 

• CPU-specific support such as the SYSLOAxxx modules 
• System communication services support, SCSLOA 
• V AXcluster connection and distributed lock management, CLUSTRLOA 

The most recent stage in this evolution is a reorganization of the executive 
image, SYS.EXE. It has been divided into a base image and approximately 
20 loadable executive images. SYS.EXE, the base image, contains transfer 
vectors to routines in the loadable executive images and storage for widely 
referenced system variables. 

A loadable executive image consists of modules performing related func­
tions and data and initialization code specific to those functions. The im­
age PROCESS_MANAGEMENT.EXE, for example, includes the reschedul­
ing interrupt service routine, process creation and deletion system services, 
and the subroutine for reporting scheduler events. To resolve references to 
routines in other executive images, PROCESS_MANAGEMENT.EXE links 
against the base image symbol table, SYS.STB. 
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As each executive image is loaded into system space, its associated transfer 
vectors in SYS.EXE are modified to contain the addresses of its routines. One 
image can dispatch into a routine in another image using a SYS.EXE transfer 
vector as bridge. 

The address space of each loadable executive image is independent of that 
of the others. Each image is position-independent, linked to a base address of 
0, and loaded into system space allocated for that purpose. This separation 
makes it possible for one image to be replaced by a newer version containing 
enhancements or source-level corrections with no impact on other executive 
images or the base image. Furthermore, there need be no impact on other 
images linked with SYS.STB. Such flexibility was a major goal of reorganizing 
the executive. For more information, see Chapter 29. 

1.2.1 Functions Provided by VMS 

VMS provides services at many levels so that user applications may execute 
easily and effectively. Its layered structure is pictured in Figure 1.4. In gen­
eral, components in a given layer can make use of the facilities in all inner 
layers. 

1.2.2 Operating ~ystem Kernel 

1.2.2.1 

1.2.2.2 

The main topic of this book is the operating system kernel: the 1/0 subsys­
tem, memory management, the scheduling subsystem, and the VMS system 
services that support and complement these components. The discussion of 
these three components and other miscellaneous parts of the operatfog sys­
tem kernel focuses on the data structures that are manipulated by a given 
component. In describing what each major data structure represents and how 
that structure is altered by different sequences of events in the system, this 
chapter describes the detailed operations of each major piece of the kernel. 

1/0 Subsystem. The 1/0 subsystem consists of device drivers and their as­
sociated data structures; device-independent routines within the executive; 
and several system services, the most important of which is the Queue 1/0 
Request ($QIO) system service. All forms of I/O request made by outer layers 
of the system are transformed into $QIO requests. The I/O subsystem is de­
scribed in detail from the point of view of adding a VMS device driver in the · 
VMS Device Support Manual. Chapters 21 and 22 of this volume describe 
some aspects of the I/O subsystem that are not described in that manual. 

Memory Management. The main components of the memory management 
subsystem are the page fault handler, which implements VMS virtual mem­
ory support, and the working set swapper, which allows the system to utilize 
more fully the amount of physical memory that is available. The data struc­
tures used and manipulated by the page fault handler and swapper include 
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the page frame number (PFN) database and the page tables of each process. 
The PFN database describes each page of physical memory that is available 
for paging. A virtual address space description of each currently resident 
process is contained in "its page tables. The system page table describes the 
system space portion of virtual address space. 

System services enable a user (or the system on behalf of the user) to 
create or delete specific portions of virtual address space or to map a file 
into a specified virtual address range. 

Scheduling and Process Control. The third major component of the kernel 
is the scheduling subsystem. It selects processes for execution and removes 
from execution processes that can no longer execute. It also handles clock 
servicing and includes timer-related system services. System services are 
available to allow a process to create or delete other processes. Other services 



1.2.2.4 

1.2.3 

1.2 VMS Components 

provide one process the ability to obtain information about another and 
control its execution. 

Miscellaneous Services. One area of the operating system kernel that is not 
pictured in Figure 1.4 involves the many miscellaneous services that are 
available in the operating system kernel. Some of these services for such 
tasks as logical name creation or string formatting are available to the user 
in the form of system services. Others, such as pool manipulation routines 
and certain synchronization techniques, are only used by the kernel and priv­
ileged utilities. Still others, such as the lock management system services, 
are used throughout the system-by users' programs, system services, RMS, 
the file system, and privileged utilities. 

Data Management 

VMS provides data management facilities at two levels. The record structure 
that exists within a file is interpreted by RMS, which exists in a layer just 
outside the kernel. RMS exists as a series of procedures located in system 
space, so it is in some ways just like the rest of the operating system kernel. 
Most of the procedures in RMS execute in executive access mode, providing 
a thin wall of protection between RMS and the kernel itself. 

The placement of files on mass storage volumes is controlled by one of the 
disk or tape ancillary control processes (ACP) or by the Files-11 XQP. An ACP 
is implemented as a separate process because many of its operations must be 
serialized to avoid synchronous access conflicts. ACPs and the Files-11 XQP 
interact with the kernel both through the system service vector interface 
and by the use of utility routines not accessible to the general user. 

The Files-11 XQP, introduced in VMS Version 4, controls the most com­
monly used on-disk structure. (The placement of files on a block-structured 
medium, such as a disk volume or a TU58, is referred to as on-disk structure.) 
The XQP is implemented as an extension to the $QIO system service and 
runs in process context. A process's XQP file operations are serialized with 
those of other processes and processors through lock management system 
services. 

1.2.4 User Interface 

The interface that is presented to the user (as distinct from the application 
programmer who is using system services and Run-Time Library procedures) 
is a command language interpreter. The DCL CLI is available on all VMS 
systems. The monitor console routine (MCR) CLI, the command language 
used with RSX-11 M, is available as an optional software product. Some of the 
services performed by a CLI call RMS or the system services directly; others 
result in the execution of an external image. These images are generally no 
different from user-written applications because their only interface to the 
executive is through the system services and RMS calls. 

11 
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1.2.4.1 

1.2.4.2 

1.2.4.3 

1.2.5 

12 

Images Installed with Privilege. Some of the informational utilities and disk 
and tape volume manipulation utilities require that selected portions of 
protected data structures be read or written in a controlled fashion. Images 
that require privilege to perform their function can be installed (made known 
to the operating system) by the system manager so that they can perform 
their function in an ordinarily nonprivileged process environment. Images 
that fit this description include AUTHORIZE, LOGINOUT, MONITOR, 
SET, and SHOW. Appendix A lists those images that are installed with 
privilege in a typical VMS system. 

Other Privileged Images. Other images that perform privileged functions are 
not installed with privilege because their functions are inherently sensitive 
and less controlled. These images could reveal security information or de­
stroy the system if executed by naive or malicious users. They can only be 
executed by privileged users. Examples include SYSGEN, for loading device 
drivers; SDA, for examining the contents of memory; or the network con­
trol program, for network management. Other images that require privilege 
to execute but are not installed with privilege in a typical VMS system are 
listed in Appendix A. 

Images That Link with SYS$SYSTEM:SYS.STB. Appendix A lists compo­
nents that are linked with the system symbol table, SYS$SYSTEM:SYS.STB. 
These images access known locations through global cells in the system base 
image, SYS.EXE. The executive is divided into conceptual categories, each 
with its own version number. The versiori number of a category changes 
when an interface in that category changes. Each data cell or routine trans­
fer vector in the system base image specifies the categories with which it is 
associated. For example, the MEMORY_MANAGEMENT category applies 
to all memory management data cells and routine transfer vectors, and the 
FILES_ VOLUMES category applies to all RMS and file system related items. 
When a VMS release contains an incompatible change in a category, an im­
age referencing a system data cell or routine transfer vector affected by the 
change must relink. For more information, see Chapter 29. 

Interface among Kernel Subsystems 

The connection among the three major subsystems pictured in Figure 1.4 is 
somewhat misleading because there is relatively little interaction between 
the three components. In addition, each of the three components has its own 
data structures for which it is responsible. When one of the other pieces of 
the system wishes to access such data structures, it does so through some 
controlled interface. Figure 1.5 shows the small amount of interaction that 
occurs between the three major subsystems in the operating system kernel. 
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1/0 Subsystem Requests. The 1/0 subsystem makes a request to memory 
management to lock down specified pages for a direct 1/0 request. The page 
fault handler or swapper is notified directly when the 1/0 request that just 
completed was initiated by either one of them. 

1/0 requests can result in the requesting process's being placed in a wait 
state until the request completes. This change of state requires that the 
scheduling subsystem be notified. In addition, 1/0 completion can also cause 
a process to change its scheduling state. Again, the scheduler would be called. 

Memory Management Requests. Both the page fault handler and swapper 
require input and output operations to fulfill their functions. The page fault 
handler and swapper use special entry points into the 1/0 subsystem rather 
than request the $QIO system service. These entry points queue prebuilt 1/0 
packets directly to the driver, bypassing unnecessary protection checks and 
preventing an irrelevant attempt to lock pages associated with these direct 
1/0 requests. 

If a process incurs a page fault that results in a read from disk or if a process 
requires physical memory and none is available, the process is put into one 
of the memory management wait states by the scheduling subsystem. When 
the page read completes or physical memory becomes available, the process 
is made computable again. 
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Scheduler Requests. The scheduling subsystem interacts very little with 
the rest of the system. It plays a more passive role when cooperation with 
memory management or the I/O subsystem is required. One exception to this 
passive role is that the scheduling subsystem awakens the swapper when a 
process that is not currently memory-resident becomes computable. 

HARDWARE ASSISTANCE TO THE OPERATING SYSTEM KERNEL 

The method of implementing the services provided by VMS illustrates the 
close connection between the hardware design and the operating system. 
Many of the general features of the VAX architecture are used to advantage by 
the VMS operating system. Other features of the architecture exist entirely 
to support an operating system. 

1.3.1 VAX Architecture Features Utilized by VMS 

14 

Several features of the VAX architecture that are available to all users are 
used for specific purposes by the operating system: 

• The general-purpose calling mechanism is the primary path into the op­
erating system from all outer layers of the system. Because all system 
services are procedures, invoked using the standard VAX procedure calling 
conventions, they are available to all native mode languages . 

• The memory management protection scheme is used to protect code and 
data used by more privileged access modes from modification by less privi­
leged modes. Read-only portions of the executive are protected in the same 
manner. 

• Implicit protection is built into special instructions that can only be ex­
ecuted from kernel mode. Because only the executive (and suitably priv­
ileged process-based code) executes in kernel mode, such instructions as 
MTPR, LDPCTX, and HALT are protected from execution by nonprivileged users . 

• The VAX architecture provides a small number of interlocked instructions 
to help synchronize simultaneous modifications of shared memory by more 
than one processor. A memory modification is not atomic (a single indivisi­
ble act), but is, in fact, a read followed by a write. When multiple processors 
modify the same memory at the same time, it is possible for each to read 
the same initial data but for one to overwrite the other's change. When all 
processors use interlocked instructions to modify the same memory, their 
modifications are atomic. 

VMS uses these instructions in its implementation of symmetric mul­
tiprocessing (SMP). The interlocked instructions provide atomic forms of 
queue manipulation, addition, and bit manipulation. With interlocked in­
structions, VMS implements spinlocks, structures that describe the state 
of a particular set of shared data and that enable a set of processors to se­
rialize their access to the data. Chapter 8 provides more information on 
multiprocessor synchronization and spinlocks. 
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• The operating system uses interrupt priority level (IPL) for several pur­
poses. IPL is elevated so that cettain interrupts are blocked. For example, 
clock interrupts must be blocked while the system time (stored in a quad­
word) is checked because this checking takes more than one instruction. 
Clock interrupts are blocked to prevent the system time from being up­
dated while it is being checked . 

• IPL is also used as a synchronization tool. For example, any routine that ac­
cesses certain systemwide data structures, such as the scheduler database, 
must raise IPL to the level at which the data structures are synchronized. 
On a uniprocessor, this is sufficient to protect the data. On a multipro­
cessor, a routine must raise IPL and also acquire the spinlock associated 
with the data structure. The assignment of various hardware and software 
interrupts to specific IPL values establishes an order of importance to the 
hardware and software interrupt services that the VMS operating system 
performs. 

Several other features of the VAX architecture are used by specific compo­
nents of the operating system and are described in later chapters: 

• The change mode instructions (CHME and CHMK), which increase the privilege 
of the access mode (see Figure 1.6). Note that most exceptions and all 
interrupts also result in changing mode to kernel. Section 1.3.5 presents 
an introduction to exceptions and interrupts . 

• The inclusion of many protection checks and pending interrupt checks 
in the single instruction that is the common exception and interrupt exit 
path, REI. 

• Software interrupts . 
• Hardware context and the single instructions, SVPCTX and LDPCTX, that save 

and restore it . 
• The use of ASTs to obtain and pass information. 

1.3.2 VAX Instruction Set 

While the VAX instruction set, data types, and addressing modes were de­
signed to be somewhat compatible with the PDP-11, several features that 
were missing in the PDP-11 were added to the VAX architecture. True con­
text indexing allows array elements to be addressed by element number, 
with the hardware accounting for the size (byte, word, longword, or quad­
word) of each element. Short literal addressing was added in recognition of 
the fact that the majority of literals appearing in a program are small num­
bers.Variable-length bit fields and character data types were added to serve 
the needs of several classes of users, including operating system designers. 

The instruction set includes many instructions that are useful to any 
designer and occur often in the VMS executive. The queue instructions allow 
the construction of a doubly linked list as a common dynamic data structure. 
Character string instructions are useful when dealing with any data structure 
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that can be treated as an array of bytes. Bit field instructions allow efficient 
operations on flags and masks. 

One of the most important features of the VAX architecture is the VAX 
Calling Standard. Any procedure that adheres to this standard can be called 
from any native lartguage, an advantage for any large application that requires 
the use of the features of a wide range of languages. The VMS operating sys­
tem adheres to this standard in its interfaces to the outside world through the 
system service interface, RMS entry points, and the Run-Time Library proce­
dures. System services and RMS services are written as procedures that can 
be accessed by executing a CALLx instruction to absolute location SYS$ser­
vice in the process Pl virtual address space. Run-Time Library procedures 
are mapped into a process's PO space. 

1.3.3 Implementation of VMS Kernel Routines 
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In Section 1.2.2, the VMS kernel was divided into three functional pieces 
plus the system service interface to the rest of the world. Alternatively, 
the operating system kernel can be partitioned according to the method 
used to gain access to each part. The three classes of routines within the 
kernel are procedure-based code, exception service routines, and interrupt 
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service routines. Other systemwide functions, the working set swapping 
and modified page writing performed by the swapper, are implemented in 
a separate process that resides in system space. Figure 1. 7 shows the various 
entry paths into the operating system kernel. 

Process Context and System Context. The first section of this chapter dis­
cussed the pieces of the system that describe a process. Process context in­
cludes a complete address space description, quotas, privileges, scheduling 
data, and any other private data. Any portion of the system that executes in 
the context of a process has all these process attributes available. 

A portion of the kernel, however, operates outside the context of a spe­
cific process. Most routines in this category are interrupt service routines, 
invoked in response to external events, regardless of the currently execut­
ing process. Portions of the initialization sequence also execute outside of 
process context. There are no process features, such as a kernel stack or a 
page fault handler, available when these routines are executing. 

Because of the lack of a process, this system context or interrupt state can 
be characterized by the following limited context: 

• All stack operations take place on the systemwide interrupt stack. 
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• The primary indication that the CPU is in this state is contained in the 
PSL. The PSL indicates that the interrupt stack is in use, the current access 
mode is kernel mode, and the IPL is higher than 2 . 

• The system control block (SCB), the data structure that controls the dis­
patching of interrupts and exceptions, can be thought of as the secondary 
structure that describes system context. 

• Code that executes in system context can only refer to system virtual 
addresses. In particular, there is no Pl space available, so the systemwide 
interrupt stack must be located in system space . 

• No· page faults are allowed. The page fault handler generates a fatal bug­
check if a page fault occurs and the IPL is above IPL 2 or the processor is 
executing on the interrupt stack . 

• No exceptions are allowed, other than subset instruction emulation ex­
ceptions. Exceptions such as page faults are associated with a process. 
The exception dispatcher generates a fatal bugcheck if an exception occurs 
above IPL 2 or while the processor is executing on the interrupt stack . 

• ASTs, asynchronous events by which a process receives notification of ex­
ternal events, are not allowed. (The AST delivery interrupt is not requested 
when the processor is in system context and not granted until IPL drops 
below 2.) 

• System services may not be requested from system context. 

Process Context Routines. Procedure-based code (RMS services, Files-11 
XQP, and system services) and exception service routines usually execute 
in the context of the current process (on the kernel stack when in kernel 
mode). 

The system services are implemented as procedures and are available to 
all native mode languages. In addition, the fact that they are procedures 
means there is a call frame on the stack. Thus, a utility subroutine in a 
system service can signal an error simply by putting the error status into 
RO and issuing a RET instruction. All superfluous information is cleaned off 
the stack by the RET instruction. The system service dispatchers, actually 
the dispatchers for the CHMK and CHME exceptions, are exception service 
routines. 

System services must be called from process context. They are not avail­
able to system context code. One reason for requiring process context is that 
the various services assume that there is a process whose privileges can be 
checked and whose quotas can be charged as part of the normal operation of 
the service. Some system services reference locations in Pl space, a portion 
of address space only accessible from process context. 

The page fault handler is the service routine for translation-not-valid ex­
ceptions. The page fault handler resolves a page fault in the context of the 
process that incurred the fault. Because page faults are associated with a 
process, the system cannot tolerate page faults incurred by interrupt service 
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routines or other routines that execute in system context. The actual restric­
tion imposed by the page fault handler is even more stringent. Page faults 
are not allowed above IPL 2. This restriction applies to process-based code 
executing at elevated IPL as well as to system context code. 

Interrupt Service Routines. Most VMS interrupt service routines execute in 
system context on the systemwide interrupt stack . 

• I/O requests are initiated through the $QIO system service, which can be 
requested directly by the user or by some intermediary, such as RMS or 
the Files-11 XQP, on the user's behalf. Once an I/O request has been placed 
into a device queue, it remains there until the driver is triggered, usually 
by an interrupt generated in the external device. 

Two classes of software interrupt support the I/O subsystem: fork level 
interrupts and the I/O postprocessing interrupt. Fork level interrupts en­
able a device driver to stall a driver code thread and resume it at a lower 
IPL, thus lowering IPL in a controlled fashion. The I/O postprocessing in­
terrupt enters a software interrupt service routine for final processing of 
I/O requests . 

• The timer functions in the operating system require both the interval 
timer interrupt service routine and a software interrupt service routine 
that actually dispatches individual timer requests . 

• Another software interrupt performs rescheduling, by which one process is 
removed from execution and another selected and placed into execution. 

The Swapper Process. Some VMS functions are best performed from process 
context. The swapper process performs the most significant of these. As 
the inswapper of all newly created processes, the swapper process cannot 
be created in the conventional way. Its code and process data structures are 
therefore built into the executive. During system initialization, its PCB is 
inserted into the scheduler database compute queues so that it can be the 
first process selected to execute. 

Other characteristics of the swapper process include the following: 

• Its process header is static and contains no working set list and no process 
section table. It does not support page faults. All code executed by the 
swapper must be locked into memory in some way. In fact, the swapper 
code is contained in a,nonpageable section of a loadable executive image. 

• The swapper executes entirely in kernel mode, thereby eliminating the 
need for stacks for the other three access modes. 

• Its limited Pl space includes only the Pl pointer page, containing the 
location CTL$GL_PCB. Its kernel stack is located in system space. 

• The swapper process temporarily maps PO space to transform disjoint pages 
into a virtually contiguous I/O buffer, for example, to outswap a process 
working set. 
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Despite its limited context, the swapper process behaves in a normal 
fashion in every other way. It is selected for execution by the scheduling 
subsystem just like any other process in the system. It spends its idle time 
in the hibernate state until some component in the system recognizes a need 
for one of the swapper functions and awakens it. 

Prior to Version 5.0, VMS included a null process with a context similar to 
that of the swapper process. All CPU time not used by any other process in 
the system was used executing the null process. In Version 5.0, a null PCB 
and PHD are defined as placeholders, but there is no null process to schedule 
for execution. SMP support necessitated a different form of idle loop. 

Special Subroutines. There are several utility subroutines within the oper­
ating system related to scheduling and resource allocation that are called 
from both process context code, such as system services, and from software 
interrupt service routines. These subroutines are constrained to execute as 
though within system context. An example of such a routine is SCH$QAST, 
which is invoked to queue an AST to a process. It may be invoked from the 
1/0 postprocessing and software timer interrupt service routines as well as 
from various system services. 

Memory Management and Access Modes 

The VAX address translation mechanism is summarized in Chapter 14 and 
described in more detail in the VAX Architecture Reference Manual. Two 
side effects are of special interest to VMS. When a page is not valid, a 
translation-not-valid exception is generated that transfers control to an ex­
ception service routine that takes the steps required to make the page valid. 
This exception transfers control from a hardware mechanism, address trans­
lation, to a software exception service routine, the page fault handler, and 
allows the operating system to gain control on address translation failures 
to implement its dynamic mapping of pages while a program is executing. 

Before the VAX address translation mechanism checks the valid bit in the 
page table entry, it checks whether the requested access is allowable. The 
check is based on the current access mode in the PSL, a protection code 
that is defined for each virtual page, and the type of access (read, modify, or 
write). This protection check allows the operating system to make read-only 
portions of the executive write-inaccessible to any access mode, preventing 
corruption of operating system code. In addition, privileged data structures 
can be protected from even read access by nonprivileged users, preserving 
system integrity. 

1.3.5 Exceptions, Interrupts, and the REI Instruction 
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The VAX exception and interrupt mechanisms are very important to VMS. 
The following sections compare the exception and interrupt mechanisms 
and briefly describe features of the mechanisms used by VMS. 
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Comparison of Exceptions and Interrupts. Interrupts occur asynchronously 
to the currently executing instruction stream. They are actually serviced 
between individual instructions and at well-defined points within the ex­
ecution of a given instruction. Exceptions occur synchronously as a direct 
effect of the execution of the current instruction. 

Both mechanisms pass control to service routines whose addresses are 
stored in the SCB. These routines perform exception-specific or interrupt­
specific processing. 

Exceptions are generally a part of the currently executing process. Their 
servicing is an extension of the instruction stream that is currently executing 
on behalf of that process. Interrupts are generally systemwide events that 
cannot rely on support of a process in their service routines. 

Because interrupts are generally systemwide, the systemwide interrupt 
stack is usually used to store the PC and PSL of the process that was in­
terrupted. Exceptions are usually serviced on the per-process kernel stack. 
Which stack to use is usually determined by control bits in the SCB entry 
for each exception or interrupt. 

Interrupts cause a PC/PSL pair to be pushed onto the stack. Exceptions 
often cause exception-specific parameters to be stored in addition to a PC/ 
PSL pair. 

Interrupts cause the IPL to change. Most exceptions do not have an IPL 
change associated with them. 

An interrupt can be blocked by elevating IPL to a value at or above the 
IPL associated with the interrupt. Exceptions, on the other hand, cannot be 
blocked. However, some exceptions can be disabled by clearing associated 
bits in the PSL. 

When an interrupt or exception occurs, a new PSL is formed that specifies 
the new IPL, current access mode (usually kernel), and stack in use (interrupt 
or other). One difference between exceptions and interrupts, a difference that 
reflects the fact that interrupts are not related to the interrupted instruction 
stream, is that the previous access mode field in the new PSL is set to 
kernel for interrupts while the previous mode field for exceptions reflects 
the access mode in which the exception occurred. Chapter 2 describes the 
VAX architectural interrupt and exception mechanisms in more detail. 

Other Uses of Exceptions and Interrupts. In addition to the translation-not­
valid fault used by memory management software, the operating system 
also uses the CHMK and CHME exceptions as entry paths to the executive. 
System services that must execute in a more privileged access mode use 
either the CHMK or CHME instruction to increase access mode privilege (see 
Figure 1.6). The system handles most other exceptions by dispatching to 
user-defined condition handlers, as described in Chapter 5. 

Hardware interrupts temporarily suspend code that is executing so that 
an interrupt-specific routine can service the interrupt. Each interrupt has 
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a priority level, or IPL, associated with it. The CPU raises IPL when it 
grants the· interrupt. High-level interrupt service routines thus prevent the 
recognition of low-level interrupts. Low-level interrupt service routines can 
be interrupted by subsequent high-level interrupts. Kernel mode routines 
can also block interrupts at certain levels by explicitly raising the IPL. 

The VAX architecture also defines a set of software interrupt levels. VMS 
uses. them for scheduling, I/O postprocessing, and to synchronize access to 
certain classes of data structures. Chapter 4 describes the software interrupt 
mechanism and its use. 

Chapter 3 summarizes.hardware interrupts and their service routines. 

The REI Instruction. The REI instruction is the common exit path for inter­
rupt and exception service routines. Many protection and privilege checks 
are incorporated into this instruction. Because most fields in the PSL are not 
accessible to the programmer, the REI instruction provides the only means 
for changing access mode to a less privileged mode (see Figure 1.6). It is also 
the only way to reach compatibility mode. 

Although the IPL field of the PSL is accessible through the PR$_IPL pro­
cessor register, execution of an REI instruction is a common way that IPL 
is lowered during normal execution. Because a change in IPL can alter the 
deliverability of pending interrupts, many hardware and software interrupts 
are delivered after an REI instruction is executed. Chapter 2 describes this 
instruction and its checks in detail. 

Process Structure 

The. VAX architecture also defines a hardware PCB, which contains copies 
of all a process's general registers when the .process is not active. When a 
process is selected for execution, the contents of this block are copied into 
the actual registers inside the processor with a single instruction, LDPCTX. 

The corresponding instruction that saves the contents of the general registers 
when the process is removed from execution is SVPCTX. 

Chapter 12 contains a layout of the hardware PCB and detailed descriptions 
of the SVPCTX and LDPCTX instructions. 

OTHER SYSTEM CONCEPTS 

This chapter began by discussing the most important concepts in the VMS 
operating system: process and image. There l:!l'e several other fundamental 
ideas that should be mentioned before beginning a detailed description of 
VMS internals. 

1.4.1 Resource Control 
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VMS protects itself .and other processes in the system from careless or ma­
licious users, with hardware and software protection mechanisms, software 
privileges, and software quotas and limits. 
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Hardware Protection. The VAX memory management protection mechanism 
that is related to access mode prevents unauthorized users from modifying or 
even reading privileged data structures. Access mode protection also protects 
system and user code and other read-only data structures from modifications 
resulting from programming errors. 

A more subtle but perhaps more important aspect of protection provided 
by the memory management architecture is that the process address space 
of one process (PO space or Pl space) is not accessible to code running in 
the context of another process. When such accessibility is desired to share 
common routines or data, the operating system provides controlled access 
through global sections. System virtual address space is addressable by all 
processes, although page-by-page protection may deny read or write access 
to specific system virtual pages by certain access modes. 

Process Privileges. Many operations that are performed by system services 
could destroy operating system code or data or corrupt existing files if per­
formed carelessly. Other services allow a process to adversely affect other 
processes in the system. VMS requires that processes executing these po­
tentially damaging operations be suitably privileged. Process privileges are 
assigned when a process is created, either by the creator or through the user's 
entry in the authorization file. 

These privileges are described in the Guide to Setting Up a VMS System 
and in the VMS System Services Reference Manual. The privileges them­
selves are specific bits in a quadword that is stored in the process header. 
(The locations and manipulations of the several process privilege masks that 
the operating system maintains are discussed in Chapter 26.) When a VMS 
system service that requires privilege executes, it checks whether the asso­
ciated bit in the process privilege mask is set. 

Quotas and Limits. VMS also controls allocation of its systemwide resources, 
such as nonpaged dynamic memory and page file space, through the use 
of quotas and limits. Like privilege, these process attributes are assigned 
when the process is created. By restricting such items as the number of 
concurrent 1/0 requests or pending ASTs, VMS exercises control over the 
resource drain that a single process can exert on system resources, such as 
nonpaged dynamic memory. In general, a process cannot perform certain 
operations, such as queuing an AST, unless it has sufficient quota (nonzero 
PCB$W _ASTCNT in this case). The locations and values of the various 
quotas and limits are described in Chapter 25. 

User Access Control. VMS uses a user identification code (UIC) for two 
different protection purposes. To perform some control operation (Suspend, 
Wake, Delete, and so on) on any other process, a process requires WORLD 
privilege. A process with GROUP privilege can affect only other processes 
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with the same group number. A process with neither WORLD nor GROUP 
privilege can affect only other processes with the same UIC. 

VMS also uses UIC as a basis for protection of various system objects, such 
as files, global sections, logical names, and mailboxes. The owner of a file, 
for example, specifies what access to the file she grants to herself, to other 
processes in the same group, and to other processes in the system. 

VMS Version 4 introduced access control lists (ACLs), which provide more 
selective levels of sharing. An ACL lists individual users or groupings of 
users who are to be allowed or denied access to a system object. ACLs 
specify sharing on the basis of UIC, as well as other groupings, known as 
identifiers, that can be associated with a process. ACLs can be specified for 
files, directories, devices, global sections, queues, and shareable logical name 
tables. 

Other System Primitives 

Several other simple tools used by VMS are mentioned throughout this book 
and are described in Chapters 8, 19, and 35. 

Synchronization. Any multiprogramming system must take measures to pre­
vent simultaneous access to system data structures. The problem is further 
complicated by multiprocessing, where several CPUs have independent ac­
cess to shared memory. The executive uses four synchronization techniques: 
elevated IPL, spinlocks, mutexes, and locks. 

On a uniprocessor, elevating IPL is sufficient to synchronize access to 
systemwide data structures. By elevating IPL, the processor can block a 
subset of interrupts, allowing unrestricted and uncontested access to the 
data structures. The most common synchronization IPL used by VMS is 
IPL 8. 

To extend the uniprocessor synchronization provided by IPL to a multi­
processing environment, VMS uses spinlocks. A spinlock describes the state 
of a particular set of shared data and enables a set of processors to serial­
ize their access to the data. A resource synchronized by elevated IPL on a 
uniprocessor is synchronized by a combination of elevated IPL and spinlock 
on an SMP system. 

A section of code that accesses shared data in a synchronized way first 
raises IPL and, in an SMP system, acquires a spinlock. When finished, the 
code lowers IPL and, in an SMP system, releases the spinlock. VMS pro­
vides macros to implement these IPL-raising/spinlock acquisition and IPL­
lowering/spinlock release operations. The macros acquire and release spin­
locks only on SMP systems; otherwise, they only elevate and restore IPL. 
For simplicity, this volume refers to this combined type of synchronization 
as acquiring and releasing spinlocks. That the macros merely alter IPL on a 
uniprocessor is implicit; that they also alter IPL on an SMP member often 
goes without saying. 
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The use of a spinlock to synchronize access to certain types of data struc­
ttires is sometimes undesirable or even potentially harmful to system perfor­
mance. For example, a process that has acquired a spinlock must execute at 
or above IPL 3, blocking process rescheduling on that CPU until it releases 
the spinlock. In addition, because page faults are not allowed above IPL 2, 
any pageable data structure cannot be synchronized with a spinlock. 

Thus, the VMS executive requires a third synchronization tool to allow 
synchronized access to pageable data structures. This tool must also allow a 
process to be removed from execution while it maintains ownership of the 
structure in question. One synchronization tool that fulfills these require­
ments is called a mutual exclusion semaphore (mutex). 

Synchronization, including the use of mutexes, is discussed in Chapter 8. 
The VMS executive and other system components, such as the Files-11 

XQP, RMS, and the job controller, use a fourth tool, the lock management 
system services, for more flexible sharing of resources among processes. 
These services provide a waiting mechanism for processes whose desired 
access to a resource is blocked. They also provide notification to a process 
whose use of a resource blocks another process. Most important, the lock 
management system services provide sharing of clusterwide resources. Chap­
ter 10 describes the lock management system services. 

Dynamic Memory (Pool) Allocation. The system maintains several dynamic 
memory areas from which blocks of memory can be allocated and deallo­
cated. Nonpaged pool contains those systemwide structures that might be 
manipulated by (hardware or software) interrupt service routines or process 
context code executing above IPL 2. Paged pool contains systemwide struc­
tures that do not have to be kept memory-resident. The process allocation 
region and the kernel request packet (KRP) lookaside list, both in process Pl 
space, are used for pageable data structures that will not be shared by any 
other process. Dynamic memory allocation and deallocation are discussed 
in detail in Chapter 19. 

Logical Names. The system uses logical names for many purposes, including 
a transparent way of implementing a device-independent I/O system. The 
use of logical names as a programming tool is discussed in the VMS System 
Services Reference Manual. The internal operations of the logical name 
system services, as well as the internal organization of the logical name 
tables, are described in Chapter 35. 

SYSTEM VIRTUAL ADDRESS SPACE 

The layout of system virtual address space is shown in Figure 1.8. Appendix F 
gives a more complete description of system space. 
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Figure 1.8 
Layout of System Virtual Address Space 

SYS.EXE 

This figure was produced by an SDA listing of the system page table and 
the contents of all global data areas in system space and from information in 
[BOOTS]SYSBOOT. The relations between the variable-size pieces of system 
space and their associated SYSGEN parameters are given in Appendix F. 
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VAX Interrupts and Exceptions 

By indirections find directions out. 

Shakespeare, Hamlet, 2, i 

This chapter describes the VAX. architectural interrupt and exception mech­
anisms and the return from exception or interrupt (REI) instruction. It sum­
marizes VMS use of the mechanisms. 

OVERVIEW 

During system operation, events occur that require the execution of software 
other than the current thread of execution. The processor responds to such 
events by altering the control flow from the current thread of execution. 
Some of these events are unrelated to the current thread and are asynchro­
nous to it; these events are called interrupts. Other events, called exceptions, 
are triggered by the current thread and are synchronous to it. 

The processor determines where to transfer control by examining the sys­
tem control block (SCB). The SCB contains a longword vector for each inter­
rupt and exception, specifying the address where control is to be transferred. 

Most hardware interrupts are requested by signals from devices external 
to the processor when they need attention from the operating system. The 
hardware interrupt capability makes it unnecessary for the processor to 
poll the device to determine whether its state has changed. Some hardware 
interrupts are requested by signals from within processor components, such 
as the interval timer. 

To permit arbitration among concurrent interrupt requests and their ser­
vicing, each interrupt request has an associated interrupt priority level (IPL). 
When an interrupt is granted, processor IPL is raised to that of the inter­
rupt. When the processor IPL is at or above that of the interrupt request, the 
interrupt is blocked. 

A software interrupt is an interrupt requested by kernel mode code rather 
than by an external device. The VAX. architecture provides for 15 different 
software interrupts. The VMS executive is interrupt-driven and requests a 
particular software interrupt to cause the corresponding service routine to 
perform its designated function. That is, software interrupts are requested 
to schedule operating system functions, with the highest priority interrupt 
serviced first. 

VAX. microcode responds similarly to hardware and software interrupt re­
quests. The microcode tests for pending interrupts between each instruc­
tion and at well-defined points during the evaluation and execution of more 
complicated instructions. The microcode determines the IPL of the highest 
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outstanding interrupt request, whether it is requested by hardware or soft­
ware. The microcode compares that IPL to the one at which the processor is 
running and takes one of two actions based on the comparison: 

• If the processor is running at an IPL equal to or higher than that of the 
interrupt request, the interrupt request is deferred until processor IPL drops 
below the IPL level of the request . 

• If the processor is running at a lower IPL than that of the interrupt request, 
the interrupt is granted. 

To grant the interrupt, the microcode saves the processor state and dis­
patches through the SCB vector associated with the interrupt to its service 
routine. 

An exception is the processor's response to an anomaly or error it encoun­
ters while executing an instruction, for example, a divisor of zero in a DIVL 

instruction. An exception occurs in direct response to a particular instruc­
tion sequence and would occur again if the instruction were repeated under 
the same circumstances. VAX microcode responds as it does to an inter­
rupt, by saving the processor state and dispatching through the SCB vector 
associated with the exception to its service routine. 

SYSTEM CONTROL BLOCK 

The SCB may occupy multiple pages, depending on CPU type and adapter 
configuration. Its first page, however, is architecturally defined. Each ex­
ception and interrupt has a unique vector, identified by its offset from the 
beginning of the SCB. Each vector contains the address of a service routine 
for that exception or interrupt. Figure 2.1 shows the contents of a vector and 
meaning of the low-order two bits. 

Operating system software initializes the SCB, and the VAX processor uses 
it to dispatch all interrupts and exceptions. 

The SCB is page-aligned. A multiple-page SCB must be physically con­
tiguous. Its starting physical address is stored in the system control block 
base register, PR$_SCBB. The processor calculates the address of a particular 
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Address of Longword-Aligned Service Routine 

Code Meaning 
00 Service the event on the kernel stack unless currently on the interrupt stack; in that 

case, use the interrupt stack. 
01 Service the event on the interrupt stack; if the event is an exception, raise IPL to 31. 
10 Service the event in the writable control store (WCS), passing bits < 15:2> to the 

microcode; if the WCS does not exist or is not loaded, the operation is undefined. 
11 The operation is undefined. 

Figure 2..1 
System Control Block Vector Format 

2 1 0 

Code 
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vector using the contents of PR$_SCBB and the offset into the SCB of the 
vector. This design enables executive software to place the SCB in memory 
known to be good at system initialization. If the SCB were required to be 
at a fixed location, and that memory had uncorrectable errors, the system 
would be unable to run. VMS maps the SCB in system space and stores its 
starting virtual address in global location EXE$GLSCB. 

Once memory management is enabled, vectors must contain virtual ad­
dresses. Because there may be no current process at the time an interrupt 
occurs, all service routines must be in system space. Because the low-order 
two bits of the vector are not part of the service routine address, each service 
routine must begin on a longword boundary. 

The low-order two bits of a vector specify the stack on which the interrupt 
or exception should be serviced. A value of 01 means that it should be 
serviced on the interrupt stack. If the vector contains the value 00, the 
processor will not switch to the interrupt stack; if, however, it was already 
running on the interrupt stack, it will continue to do so. A value of 01 in an 
exception vector also means that IPL should be raised to 31. VMS specifies 
that machine check and kernel-stack-not-valid exceptions be serviced on the 
interrupt stack at IPL 31. 

On a CPU type that supports user-writable control store, a value of 10 
means that the interrupt or exception should be serviced by microcode in 
user-writable control store. Most CPUs that do not support user-writable 
control store halt if an interrupt or exception occurs through a vector with 
10 in the low-order two bits. A value of 11 in these bits has no defined 
meaning; most CPUs halt if they attempt to dispatch through a vector with 
these bits set. 

Figure 2.2 shows the general organization of the first page of the SCB. 
It contains vectors for exceptions, software interrupts, CPU-specific error 
interrupts, and some hardware interrupts. The VAX Architecture Reference 
Manual contains the detailed SCB layout. 

Table 5.1 lists the VAX exception vectors. The executive handles most 
exceptions in a uniform way. Some exceptions, however, result in special 
action. Chapter 5 describes VMS's handling of most exceptions and summa­
rizes its responses to special exceptions. 

Chapter 4 contains more details about the vectors used for software inter­
rupts and describes their service routines. 

The second half of the first page is reserved for adapter interrupts. As 
Figure 2.3 shows, it is divided among 16 possible adapters, each capable 
of interrupting at four possible IPL values from 20 to 23. The nature and 
type of the adapters vary on different VAX processors. Each adapter has 
an identifying number which, along with the IPL of the interrupt, selects 
a particular SCB vector. Chapter 22 describes adapter interrupts and their 
service routines. Chapter 3 summarizes other hardware interrupts and their 
service routines. 
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Figure 2.2 
System Control Block Organization 
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Figure 2.3 
System Control Block Vectors for Adapter Interrupts 

Beyond the first page, the size of the SCB varies with processor type and 
configuration. Appendix F contains further details of its sizing. 

INTERRUPT REQUESTS 

The VAX architecture provides 16 hardware IPLs, from IPL 31 down to IPL 
16. The top eight levels are primarily for CPU-specific errors and power 
failure. The lower levels are primarily for external adapters and I/O devices. 

There is no one-to-one correspondence between IPL and hardware inter­
rupt vector. The SCB contains multiple vectors whose interrupts are at the 
same hardware IPL (see Figure 2.3). An external adapter or I/O device re­
quests an interrupt at a particular hardware IPL. The SCB vector associated 
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with the interrupt is typically determined by the combination of interrupt 
IPL and adapter or device (see the VMS Device Support Manual). 

To block interrupts, kernel mode code can raise IPL to that of the highest 
interrupt to be blocked. The VAX architectural concept of an interrupt in­
cludes the idea that an interrupt request is expected to persist until serviced, 
or until the adapter or device withdraws the request. At appropriate times, 
a processor can sample outstanding interrupt requests. 

The VAX architecture provides 15 vectors in the SCB for software inter­
rupts at IPLs 1 through 15; there is a one-to-one correspondence between IPL 
and software interrupt vector. The architecture provides a means for kernel 
mode code and CPU console commands to request software interrupts. 

Kernel mode code requests a software interrupt at a particular IPL by 
writing that IPL into the software interrupt request register, PR$_SIRR. VMS 
code generally uses the SOFTINT macro to write the PR$_SIRR. This macro 
expands into the following instruction: 

MTPR ipl,S~#PR$_SIRR 

The following CPU console command can also write the PR$_SIRR: 

»>D/I 14 ipl !for ipl, substitute a hexadecimal digit 

Writing to PR$_SIRR causes the bit with the same number as the IPL to 
be set in another processor register, the software interrupt summary register 
(PR$_SISR). Figure 2.4 shows the layouts of these two registers. At any given . 
time, PR$_SISR contains a bit set for each level at which a software interrupt 
has been requested but not yet granted. The VAX processor reads PR$_SISR 
to test for pending software interrupts. When the processor grants a software 
interrupt request, it clears the corresponding bit in PR$_SISR. 

The VAX architecture provides both of these processor registers to simplify 
synchronization of access to PR$_SISR. If VMS were to modify the PR$_SISR 
directly, several instructions would be required to preserve already set bits in 
the register. VMS would have to raise IPL to block all interrupts, read PR$_ 

Software Interrupt Request Register (Write Only) 
4 3 0 

'--~~~~~~~~~~~l-gn_o_re_d~~~~~~~~~~~~-'--1 _R_e_q_ue_s__,t I PR$_SIRR 

31 
Software Interrupt Summary Register (Read/Write) 

16 15 

Must be zero Pending Software Interrupts 

1 0 

PR$_SISR 
F E D C B A 9 8 7 6 5 4 3 2 1 

Figure 2.4 
Formats of Software Interrupt Request Register and 
Software Interrupt Summary Register 

Must be zero 
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SISR, set the new bit, write PR$_SISR, and restore the previous IPL. IMTPR and 
MFPR are the only instructions that access these processor registers.) Instead, 
when kernel mode code (or CPU console command) writes PR$_SIRR, the 
processor modifies PR$_SISR with interrupts blocked. 

INTERRUPT DISPATClilNG 

VAX initiate-exception-or-interrupt (IEI) microcode takes the following steps 
when an interrupt is requested and granted: 

1. It examines the low-order bits of the SCB vector to determine on which 
stack the interrupt is to be serviced. VMS has specified that all hardware 
interrupts and most software interrupts be serviced on the interrupt 
stack. 

2. VAX IEI microcode switches stacks, if necessary, and pushes the current 
program counter !PC) and processor status longword IPSL) onto the new 
stack. Saving the PC and PSL preserves state so that the interrupted 
thread of execution can continue after the interrupt is dismissed. 

3. The microcode stores the address of the service routine in the PC and 
constructs a new PSL. Its IPL is that associated with the interrupt. Its 
compatibility mode, trace pending, first part done, decimal overflow en­
able, floating underflow enable, integer overflow enable, trace enable, 
and condition code bits are cleared. Its current mode is set to kernel, 
the mode in which the interrupt will be serviced. Its previous mode is 
expected to be irrelevant to the service routine and is set to kernel also. 
Its interrupt stack bit is set, if appropriate, to indicate that the processor 
is running on the interrupt stack. 

4. When a software interrupt is dispatched, the microcode clears the bit in 
PR$_SISR corresponding to the IPL. 

The interrupt service routine executes and eventually exits with an REI 

instruction that dismisses the interrupt. The REI instruction, described in 
Section 2.8, restores the PC and PSL, and the interrupted thread of execution 
la process or lower priority interrupt service routine) continues where it was 
interrupted. 

RESTRICTIONS IMPOSED ON INTERRUPT SERVICE ROUTINES 

Most interrupt service routines execute in the limited system context de­
scribed in Chapter 1. These routines execute at elevated IPL on the interrupt 
stack outside the context of a process. 

Several restrictions are imppsed on interrupt service routines by either the 
VAX architecture or VMS. Many of these result from the limitations of sys­
tem context. The following list indicates some of the constraints placed on 
an interrupt service routine. The description of system context in Chapter 1 
contains a more general list of these and other restrictions. Chapter 8 de­
scribes the synchronization rules applicable to an interrupt service routine. 
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• To reduce overhead, no context switch occurs with an interrupt. Therefore, 
the instructions executed and data referenced by an interrupt service rou­
tine must be in system address space. An interrupt service routine should 
not refer to per-process address space . 

• An interrupt service routine should be short and do as little processing as 
possible at elevated IPL. 

• An interrupt service routine must save any registers it uses. VMS saves 
some registers (usually RO through RS) prior to calling a device driver 
interrupt service routine (see the VMS Device Support Manual) . 

• Prior to executing an REI instruction, an interrupt service routine must 
remove anything it pushed on the stack and restore all saved registers . 

• An interrupt service routine should be conservative in its use of stack 
space. The interrupt stack is not very large on most VMS systems. Its 
size is determined by the SYSGEN parameter INTSTKPAGES, which has 
a default value of four pages . 

• VMS does not allow any interrupt service routine (other than the IPL 2 
interrupt service routine) to access pageable routines or data structures. 
The page fault exception service routine generates a fatal bugcheck if a 
page fault occurs while IPL is above 2 . 

• Although an interrupt service routine can raise IPL, it should not lower 
IPL below the level at which the original interrupt occurred. 

EXCEPTION DISPATCHING 

When an exception is detected, VAX IEI microcode takes the following steps: 

1. It determines on which stack the exception is to be serviced. Which stack 
depends on the access mode in which the exception occurred, whether 
the CPU was previously executing on the interrupt stack, and what type 
of exception occurred. 

In general, VAX microcode uses the low two bits of the SCB vector to 
determine on which stack the exception is serviced. Table 2.1 summa­
rizes the stack choices resulting from the architectural mechanisms and 
VMS SCB vector definitions. Its first column lists the exception name. 
The second column specifies the access mode in which the exception 
occurred. The third column specifies whether the interrupt stack is in 
use at the time of the exception. The fourth column shows the stack on 
which the exception is serviced. 

Machine check and kernel-stack-not-valid exceptions are serviced on 
the interrupt stack. A subset instruction emulation exception is serviced 
on the stack on which the exception occurred. Change mode exceptions 
are generally serviced on the stack of their target mode. VMS specifies 
that all other exceptions are to be serviced on the kernel stack, unless 
the processor is already running on the interrupt stack. 
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Table 2.1 Selection of Exception Stack 

PSL AT TIME OF EXCEPTION 

Previous Interrupt 
Exception Name Mode Stack 

Machine check Any 0 or 1 
Kernel stack not valid K 0 
Subset instruction emulation Any 0 or 1 
CHMx Any 0 
CHMx K 
All others U, S, E,K 0 
All others K 

Resulting 
Stack 

ISP 
ISP 
Same 
xSP 1 

Halt 2 

KSP 
ISP 

1 The stack used is the destination of the CHMx instruction. Note, however, 
that a CHMx instruction issued from an inner access mode in an attempt to 
reach a less privileged (outer) access mode will not have the desired effect. The 
mode indicated by the instruction is minimized with the current access mode to 
determine the actual access mode that will be used. The exception is generated 
through the indicated SCB vector, but the final access mode is unchanged. In 
other words, as illustrated in Figure 1.6, the CHMx instruction can only reach 
equal or more privileged access modes. 

2 Execution of a CHMx instruction while the CPU is running on the interrupt 
stack is prohibited by the VAX architecture and results in a CPU halt. 

The exception reporting mechanism assumes that the kernel stack is 
valid. The decision to use the kernel stack for most exceptions avoids the 
possibility of attempting to report an exception on, for example, the user 
stack, only to find that it is corrupted in some way (invalid or otherwise 
inaccessible), resulting in another exception. A kernel-stack-not-valid 
exception must be taken on the interrupt stack. The VMS service routine 
for this exception generates a fatal bugcheck. 

If the interrupt stack is invalid, IEI microcode halts the processor. 
2. The microcode switches stacks, if necessary, and pushes the PC and PSL 

onto the new stack. The exception PC that it pushes depends on the 
nature of the exception, that is, whether the exception is a fault, trap, or 
abort (see Table 5.1): 

-For a fault, the processor pushes the PC of the faulting instruction 
onto the stack. When a fault is dismissed with an REI instruction, the 
faulting instruction executes again from the beginning. 

-For a trap, the processor pushes the PC of the next instruction onto the 
destination stack. An instruction that causes a trap does not reexecute 
when the exception is dismissed with an REI instruction. 

-For an abort, the processor pushes the PC of the aborted instruction 
onto the stack. An abort is not restartable. Exceptions that are aborts 
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include kernel-stack-not-valid, some machine check codes, and some 
reserved operand exceptions. 

3. The microcode loads the PC with the address of the service routine 
and constructs a new PSL. Its IPL is normally unchanged. If the vec­
tor contains 01 in the low-order two bits, the service routines run on 
the interrupt stack at IPL 31. Machine check and kernel-stack-not-valid 
exception vectors specify this vallle. The PSL compatibility mode, trace 
pending, first part done, decimal overflow enable, floating underflow en­
able, integer overflow enable, trace enable, and condition code bits are 
cleared. Its current mode is set to the mode in which the interrupt will 
be serviced. Its previous mode is set to the mode in which the exception 
occurred. Its interrupt stack bit is set, if appropriate, to indicate that the 
processor is running on the interrupt stack. 

The exception service routine executes. It eventually exits by removing 
any exception-specific parameters from the stack and executing an REI in­
struction to dismiss the exception. 

The REI instruction, described in Section 2.8, restores the PC and PSL, and 
the thread of execution that incurred the exception resumes. 

COMPARISON OF EXCEPTIONS AND INTERRUPTS 

The following list summarizes some of the distinctions between exceptions 
and interrupts. 

• Interrupts occur asynchronously to the currently executing instruction 
stream. They are serviced between individual instructions or at well­
defined points in the execution of a given instruction. Exceptions occur 
synchronously as a direct effect of execution of the current instruction . 

• Interrupts are generally systemwide events that cannot rely on support 
of a process in their service routines. Exceptions are generally a part of 
the currently executing process. Their servicing is an extension of the 
instruction stream that is currently executing on behalf of that process. 

• Because interrupts are generally systemwide, they are serviced on the sys­
temwide interrupt stack. Exceptions are usually serviced on the per-process 
kernel stack. 

• To save state at interrupt initiation, the processor records the PC and PSL 
on the stack. At exception initiation, the processor often records exception­
specific parameters as well as the PC and PSL. 

• Interrupts cause the IPL to change. Exceptions other than machine check 
and kernel-stack-not-valid do not cause IPL to change. 

• An interrupt can be blocked by elevating IPL to a value at or above the IPL 
associated with the interrupt. Exceptions are not blocked by raising IPL. 
Some exceptions, however, can be disabled by clearing their enabling bits 
in the PSL. 
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• When an interrupt or exception occurs, the microcode constructs a new 
PSL. The previous mode field in the new PSL is set to kernel for an 
interrupt PSL, while the previous mode field for an exception PSL is set to 
the access mode in which the exception occurred. This difference between 
exceptions and interrupts reflects the fact that interrupts are not related 
to the interrupted instruction stream. 

THE RETURN FROM EXCEPTION OR INTERRUPT INSTRUCTION 

The REI instruction is the common exit path for interrupt and exception 
service routines. The VAX architecture limits the types of transitions from 
one access mode to another; the REI instruction is the only way to change 
access mode to a less privileged one (see Figure 1.6). This property of REI, 

and the VAX architecture constraint that an inner access mode will not be 
interrupted to deliver an asynchronous system trap (AST) to an outer mode, 
make REI the logical place to test whether an AST delivery interrupt should 
be requested. 

The REI instruction is also the only way to reach compatibility mode. 
Execution of an REI instruction is a common way for IPL to be lowered. 

Because a change in IPL can alter the deliverability of pending interrupts, 
hardware and software interrupts are often delivered after an REI instruction 
is executed. 

Protection and privilege checks are incorporated into the REI instruction 
to prevent the system from entering illegal or inconsistent states. REI is not 
a privileged instruction, and these checks prevent, for example, an attempt 
to enter a more privileged access mode. 

The REI microcode tests the following conditions to ensure that the saved 
PSL is well formed and that it is consistent with the current PSL. If any test 
fails, the microcode generates a reserved operand fault exception. 

• If the saved PSL interrupt stack bit is nonzero, then the saved PSL IPL must 
be greater than 0. This test detects an illegal state in the saved PSL-being 
on the interrupt stack at IPL 0. 

• If the saved PSL IPL is greater than 0, then its current mode must be kernel. 
This test prevents any mode other than kernel from raising IPL. 

• The saved PSL previous mode must be no more privileged thari. its current 
mode. This test detects a previous illegal transition or stack corruption. 

• The saved PSL must-be-zero bits must be 0. This test detects corruption 
of the stack. 

• If the saved PSL compatibility mode bit is 1, the CPU must be one that 
implements compatibility mode, the saved PSL current mode 'must be 
user, and the saved PSL first part done, interrupt stack, floating underflow 
enable, decimal overflow enable, and integer overflow enable bits must 
all be 0. These tests restrict compatibility mode to user access mode and 
detect stack corruption and inconsistent state. 
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• The saved PSL current mode must be no more privileged than the current 
PSL current mode. This test prevents an attempt to REI to a more privileged 
mode . 

• If the current PSL interrupt stack bit is 0, then the saved PSL interrupt 
stack bit must be 0. This test prevents an attempt to REI onto the interrupt 
stack . 

• The saved PSL IPL must be no larger than the current PSL IPL. This test 
prevents an attempt to REI to a higher IPL. An interrupt service routine 
that lowers IPL below that of its interrupt breaks synchronization and risks 
a reserved operand fault when it executes an REI instruction. 

After performing the previously listed tests, the REI microcode takes the 
following steps: 

1. It pops the saved PC and PSL from the stack into temporary registers. 
2. Depending on the current PSL interrupt stack bit and current mode, 

the microcode saves the contents of the SP register in the appropriate 
processor register (PR$_ISP, PR$_KSP, PR$_ESP, PR$_SSP, or PR$_ USP). 
This step records the pointer into the current access mode's stack. 

A VAX processor is not required to implement the per-process stack 
pointer registers. One that does not implement them instead saves SP in 
the appropriate longword in the process's hardware process control block 
(PCB). 

3. If the current PSL trace pending bit is set, the microcode sets the saved 
PSL trace pending bit. This step ensures a trace fault after the execution 
of the REI instruction. 

4. The microcode copies the temporary registers to PC and PSL. 
5. If the now-current PSL interrupt stack bit is 0, the microcode loads SP 

from the appropriate PR$JSP register. This step restores the pointer into 
the now-current stack. (A VAX CPU type that does not implement these 
processor registers instead loads SP from the appropriate longword in the 
process's hardware PCB.) 

6. If the now-current PSL interrupt stack bit is 0, the microcode compares 
the current mode to the contents of PR$_ASTLVL. If the current mode 
is less privileged, the microcode requests an IPL 2 interrupt. 

7. The microcode reinitializes any instruction lookahead in the processor, 
flushing the instruction buffer. On some VAX CPUs, instruction exe­
cution is concurrent with the fetching and evaluation of subsequent 
instructions. The REI microcode clears any such CPU state. (The REI 

instruction is the only one guaranteed to do this clearing and is thus 
required between modifying the instruction stream and executing the 
modified instruction.) 

8. Unless another interrupt occurs, execution resumes with the instruction 
being executed at the time of the interrupt or exception, at the inter­
rupted instruction or the exception PC. 
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Hardware Interrupts 

While I nodded, nearly napping, suddenly there came a tapping, 
As of someone gently rapping, rapping at my chamber door. 

Edgar Allan Poe, The Raven 

The VMS operating system is often referred to as interrupt-driven and non­
monolithic. Hardware interrupts notify VMS of such important events as 
power failure, device completion, device errors, device alerts, and work re­
quests from one processor to another in a symmetric multiprocessing (SMP) 
system. In addition, the interval timer interrupt allows VMS to keep system 
time. 

This chapter presents an overview of hardware interrupts, interrupt prior­
ity levels IIPLs), and interrupt dispatching in VMS. 

OVERVIEW 

As discussed in Chapter 2, many hardware interrupts are requested by signals 
from devices external to the processor when they need attention from the 
operating system. Hardware interrupts may be requested by devices, con­
trollers, or other processors in an SMP system. In addition, the processor 
itself may request some hardware interrupts. 

The VAX architecture provides 16 priority levels, 16 through 31, for hard­
ware interrupts and 16 priority levels, 0 through 15, for software interrupts. 
When a hardware interrupt occurs, the interrupted processor raises its pri­
ority to the IPL associated with the hardware interrupt. Table 3.1 provides a 
summary of hardware interrupts and IPLs used by VMS. Software running in 
kernel mode may raise and lower the priority of the processor by using the 
MTPR instruction to load the register PR$_IPL. Thus, software has the ability 
to block hardware interrupts as necessary. 

The response of the VAX processor to any interrupt request, hardware or 
software, is similar. If the processor priority permits the requested interrupt 
to be granted, the processor saves the current state and invokes the interrupt 
service routine for the interrupt through the interrupt vector in the system 
control block (SCB). 

Interrupt vectors for software interrupts are architecturally defined at fixed 
offsets within the SCB. Interrupt vectors for certain hardware interrupts, 
such as the interval timer interrupt, the powerfail interrupt, and console 
interrupts, are also architecturally defined at fixed offsets within the SCB. 
SCB vectors for other hardware interrupts, such as device interrupts, are 
defined in a system-dependent manner, as discussed in Section 3.2. 



3.1.1 

3.1.1.1 

3.1.1.2 

3.1 Overview 

The following sections provide brief descriptions of hardware interrupts 
on VAX systems. Chapter 4 discusses software interrupts. 

Urgent Conditions 

The VAX architecture provides for eight priority levels, 24 through 31, for 
urgent conditions such as power failure and CPU-specific bus and memory 
errors. IPL 30 is reserved for the powerfail interrupt. IPL 31 is reserved for 
those exceptions that must block all processing until the condition has been 
handled. IPL 31 is also used by device drivers to synchronize with powerfail 
recovery, as discussed in the VMS Device Support Manual. 

Powerfail Interrupt. The powerfail interrupt is requested by the CPU hard­
ware when there is a drop in operating voltage. It is vectored through the SCB 
at offset OC16, as defined by the VAX architecture, and serviced at IPL 30. 
EXE$POWERFAIL, in module POWERFAIL, is the VMS powerfail interrupt 
service routine. Chapter 33 discusses powerfail recovery in detail. 

System-Specific Errors. The VAX architecture reserves offsets 5016 through 
6016 in the first page of the SCB for system-specific memory and bus errors. 

Table 3.1 Hardware Interrupt Priority Levels and Their Use 

Level Name Use 
31 IPL$_POWER Block all interrupts 

IPL$_EMB Synchronize error logging 
IPL$_MCHECK Synchronize machine check processing 
IPL$_MEGA Synchronize miscellaneous structures 

30 Powerfail interrupt 
30-24 CPU-specific error interrupts 
24 IPL$_HWCLK Interval timer interrupt 1 

22 IPL$_HWCLKLO Interval timer interrupt 1 

23-20 Device interrupts 
22 or 20 IPL$_IPINTR Interprocessor interrupt 2 

20 or 22 IPL$_ VIRTCONS Console terminal interrupts 3 

19 or 21 IPL$_INVALIDATE Synchronize translation buffer (TB) 
invalidation 4 

18-16 Unused 

1 The interval timer IPL is system-dependent. 
2 The interprocessor IPL is 22 on VAX 6000 series and VAXstation 35x0 systems 

and 20 on all others. 
3 IPL$_ VIRTCONS has a value of 20. However, access to the virtual console database 

is synchronized at a system-dependent IPL. See Chapters 8 and 34. 
4 IPL$_INVALIDATE has a value of 19. However, synchronization of TB invalidation 

is done at a system-dependent IPL. See Chapters 8 and 34. 
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Common examples of such interrupts are corrected read data errors, vectored 
through SCB offset 5416 on some VAX systems, and system bus errors, 
vectored through SCB offset SC16 on some VAX systems. Such interrupts 
are taken at the highest interrupt levels, IPLs 24 through 30. 

The interrupt service routines for such interrupts typically raise IPL to 31 
and log the error. These routines are usually in the [SYSLOA]MCHECKxxx 
modules, where xxx designates the CPU type. Appendix G lists CPU types 
and their corresponding suffixes. Chapter 32 provides more discussion on 
the handling and logging of system-specific errors. 

3.1.2 Interval Timer Interrupt 

The manner in which the CPU hardware requests the interval timer interrupt 
is implementation-dependent. Some VAX processors, such as the MicroVAX 
II, generate timer interrupts at constant IO-millisecond intervals. Other VAX 
processors have the ability to generate timer interrupts at specified intervals. 

Interval timer interrupts are vectored to the service routine through offset 
C016 in the SCB, as defined by the VAX architecture. EXE$HWCLKINT, in 
module TIMESCHDL, is the int.erval timer interrupt service routine. The 
IPL of the interval timer interrupt is 24 on older VAX systems and 22 on the 
newer systems. Chapter 11 discusses the interval timer interrupt in detail. 

3.1.3 Interprocessor Interrupt 
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On SMP systems, VMS uses the interprocessor interrupt mechanism to in­
terrupt a specific processor for a specific task or to interrupt all processors or 
a subset of all processors to perform tasks as required. The interprocessor in­
terrupt vector, priority level, and interrupt service routine vary on different 
VAX systems. 

On all SMP systems other than VAXstation 35x0 CPUs, the interprocessor 
interrupt is vectored at SCB offset 8016· On a VAX.station 35x0 CPU, the 
interprocessor interrupt is vectored through the upper half of the first page 
of the SCB just like any other adapter interrupt. 

On all SMP systems other than VAX 6000 series and VAX.station 35x0 pro­
cessors, the interprocessor interrupt vector in the SCB contains the address 
of SMP$INTSR1, in module [SYSLOA]SMPINT. 

On VAX 6000 series and VAXstation 35x0 systems, the vector contains the 
address of SMP$IPINT _xxx, in module [SYSLOA]OPDRVxxx. After perform­
ing system-dependent actions, SMP$IPINT _xxx transfers to SMP$INTSR1. 
SMP$INTSR1 is in module [SYSLOA]SMPINT _60 for a VAX.station 35x0 
system and in module [SYSLOA]SMPINT for all other systems. 

The interprocessor interrupt priority level is IPL 20 on VAX 88x0 and VAX 
83x0 systems, and IPL 22 on VAX 6000 series and VAXstation 35x0 systems. 
Chapter 34 discusses the use of interprocessor interrupts. 
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Table 3.2 Console Interrupts 

Name 
Console storage receive 1 

Console storage transmit 1 

Console terminal receive 
Console terminal transmit 

SCB Vector 

F016 

IPL 

20 on the VAX-11/730, 
23 on the VAX-11/750 
20 on the VAX-11/730, 
23 on the VAX-11/750 
20 
20 

1 These interrupts are generated only on VAX-11/730 and VAX-11/750 
processors. 

3.1.4 Console Interrupts 

On most VAX systems, the console block storage device and the console 
terminal are treated as a single entity with regard to interrupt processing. 
On VAX-11/750 and VAX-11/730 processors, the console block storage device 
is treated as distinct from the console terminal device. 

Interrupts from the console are vectored through known offsets in the SCB. 
Table 3.2 shows the SCB vectors and IPLs of different console interrupts. 
Chapter 24 discusses console interrupts. 

3.1.5 Unexpected Interrupts and Passive Releases 

Architecturally defined SCB vectors are initialized during system initial­
ization to point to appropriate VMS routines. Other vectors in the SCB 
are initialized to the VMS unexpected interrupt service routine, ERL$UN­
EXP, in module ERRORLOG. ERL$UNEXP generates the nonfatal bugcheck 
UNXINTEXC and dismisses the interrupt. 

When a CPU grants an interrupt request, and no device vector is returned 
by the device that generated the request, a condition known as passive 
release occurs. This can happen when the device determines, after it has 
requested an interrupt, that it no longer needs to interrupt the CPU. A 
passive release is treated as though a zero interrupt vector is returned by 
the device. Passive releases are vectored to the routine ERL$VEC_RETURN, 
in module ERRORLOG, which increments the global location 10$GLSCB_ 
INTO to record the occurrence. 

Passive releases on a UNIBUS that is adapted to a VAX system bus are vec­
tored to UBA$INTO. UBA$INTO is found in module [SYSLOA]INICOMBI for 
all VAX systems that use the VAX bus interconnect (VAXBI) bus for 1/0; for 
all other systems it is found in [SYSLOA]ADPSUBxxx. UBA$1NTO incre­
ments the global location 10$GLUBA_INTO to record the passive release 
and dismisses the interrupt. 

Before adapter initialization is done and the SYSGEN utility configures 
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devices on the system, all the SCB vectors reserved for 3dapter and device 
interrupts are initialized to ERL$UNEXP. SCB vectors used for adapter and 
device interrupts are later reinitialized by the appropriate procedures. Thus, 
all unused SCB vectors on a system point to ERL$UNEXP, with the ex­
ception of unused SCB vectors for UNIBUS and Q22-bus device interrupts, 
which point to UBA$UNEXINT. UBA$UNEXINT, a base image transfer vec­
tor, actually jumps to the REI instruction in UBA$1NTO that dismisses the 
interrupt. 

DEVICE INTERRUPTS 

The VAX architecture provides eight priority levels, 16 through 23, for 1/0 
device interrupts, although all VAX implementations use only levels 20 
through 23. UNIBUS levels BR4 through BR7 correspond directly to IPLs 
20 through 23. 

When a VAX processor receives an interrupt request from an 1/0 device, it 
needs to determine which SCB vector corresponds to the interrupt. The man­
ner in which each VAX processor does this is implementation-dependent, 
even though the principles used are common to all processors. 

VAX systems are offered in a range of processor- and bus-specific config­
urations. This section provides a generic model of a VAX system and its 
interrupt handling as an aid to understanding the more specific descriptions 
in subsequent sections. 

Figure 3.1 shows a generic model of a VAX system. The system bus con­
nects the CPU, memory controllers, and 1/0 adapters. An adapter connects 
devices or another 1/0 bus to the system bus. Each slot on the system bus, 
potentially occupied by a CPU, memory controller, or adapter, is known as 
a nexus. Actually, the name for this varies from one VAX system type to 
another; for simplicity, this chapter uses the term nexus. 

CPU CPU Memory Memory 

Bus 

Adapter Adapter 

Device 
Device 

l/OBus . 
Figure 3.1 
Generic Model of a VAX System 
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The VAX architecture specifies four interrupt vectors for each of 16 nex­
uses. Each vector corresponds to a different interrupt priority level; on cur­
rent VAX system implementations, the levels are 20 through 23. 

When an I/O adapter requests an interrupt, for example, in response to a 
device attention condition, the CPU microcode determines its nexus num­
ber. This nexus number, in conjunction with the IPL of the request (20, 21, 
22, or 23), uniquely identifies an SCB vector through which the CPU dis­
patches the interrupt. The VAX architecture specifies that such vectors be 
located in the upper half of the first page of the SCB, as shown in Figure 2.3. 

Typically, a new VAX CPU is designed with I/O adapters that support the 
bus structure and I/O architecture of a previous generation. This enables 
many of the peripherals of the previous generation to run on it, preserving 
the investment in them. A prime example of this is the support of PDP-11 
UNIBUS peripherals on many VAX systems. 

Such an adapter bridges the VAX CPU's main bus and an earlier bus, 
translating protocols and transmitting interrupt requests and grants. Support 
for the interrupt vectoring of the adapted bus usually requires an extension 
to the architecturally defined page of the SCB and an additional level of 
interrupt dispatching, either in the processor or in the operating system 
software. For instance, UNIBUS devices can interrupt at one of 128 possible 
vectors. Therefore, a UNIBUS adapter requires the capability to specify up 
to 128 vectors. 

On some systems, such as the VAX-11/780 and VAX-11/785, UNIBUS in­
terrupts are indirectly vectored through a UNIBUS adapter interrupt service 
routine (ISR). This means that the UNIBUS adapter transmits the UNIBUS 
device's interrupt request to the VAX CPU. When the CPU grants the in­
terrupt, it dispatches through the SCB vector corresponding to the interrupt 
request level to a UNIBUS adapter ISR. The UNIBUS adapter ISR performs 
another level of dispatch based on the value of the UNIBUS device's interrupt 
vector. 

On most other VAX implementations that support UNIBUS peripherals, 
UNIBUS interrupts are directly vectored. This means that CPU microcode 
uses the UNIBUS device vector directly as an offset into the appropriate page 
of the SCB to enter the device ISR. Direct vectoring requires that one page 
of the SCB be dedicated to each UNIBUS adapter on the system, because 
devices on its UNIBUS may generate any one of 128 possible vectors. 

Another example is an adapter that supports the VAX.BI bus. For instance, 
on a VAX 8800 system, up to four VAX.BI buses can be connected to the 
VAX 8800 memory interconnect (NMI), the system bus. There are 16 slots 
on each VAX.BI bus, and an adapter on any of these slots may generate an 
interrupt request. Every device on the system must have a unique interrupt 
vector in the SCB. This means that the interrupt vector in the VAX 8800 
SCB must be unique with respect to the following: 
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• The number of the VAXBI bus (O, 1, 2, or 3) 
• The node number (0 through 15) on that VAXBI bus of the adapter that 

requested the interrupt 
• The IPL (20, 21, 22, or 23) of the interrupt 

Therefore, one SCB page is reserved for each V AXBI bus on the system. In 
addition, each UNIBUS adapter on the system requires an additional page of 
the SCB. 

Similarly, Q22-bus-based systems reserve the second page of the SCB for 
Q22-bus device vectors. 

3.2.1 Adapter Initialization 
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VMS uses system-dependent system initialization procedures to determine 
the system configuration, build the data structures that represent it, and 
initialize the SCB vectors appropriately. These procedures typically test for 
the presence of adapters at all the nexuses on the system, as described later 
in this section. 

There may be different numbers of nexuses on different systems. For 
example, on a VAX 8350 system, which uses the VAXBI as the system bus as 
well as the I/O bus, there are 16 nexuses. A VAX 8800 system, on the other 
hand, uses the NMI as the system bus and the V AXBI as the 1/0 bus. There 
are 16 nexuses for each VAXBI attached to the VAX 8800 system. MicroVAX 
3400/3600/3900 series systems and the MicroVAX II system have exactly 
one nexus, nexus 0. 

Nexuses are numbered starting at 0. A system with 16 nexuses has nexus 
numbers from 0 to 15. A system that has more than 16 nexuses implements 
a system-dependent numbering scheme. Subsequent sections describe the 
numbering schemes employed on different VAX systems. 

The physical address layout of the VAX system determines the location of 
the node space for a given nexus number. The node space of a nexus is defined 
as that range of physical addresses through which the registers of an adapter 
that is seated on the nexus may be accessed. System initialization code loads 
the machine check vector in the SCB with the address of a special routine. 
It then tests the first longword in every nexus's node space. If a nonexistent 
memory machine check occurs, there is no adapter at the nexus being tested. 
If there is an adapter on the nexus, then the adapter type is returned, and 
the adapter is configured. 

On some CPU types, VMB, the primary bootstrap program, determines the 
adapter configuration. On other CPU types, the configuration is determined 
at a later step of initialization. Chapters 30 and 31 give further information. 

The result of this testing is stored in several arrays in nonpaged pool. Chap­
ter 31 describes these arrays. During later stages of system initialization, this 
information is used when specific adapters are configured into the system. 
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3.2.2 VAX-11/730 Systems 

On VAX-11/730 systems, the CPU, UNIBUS adapter, and memory controller 
are connected by the array bus. In addition to the array bus, communications 
between the CPU and the integrated disk controller (IDC) are performed 
over the accelerator bus, so named because the floating-point accelerator 
communicates over it. The IDC contrqls RL02 and R80 disks~ A VAX-11/730 
system is not expandable and does not have expansion slots. 

The VAX-11/730 SCB is two pages long. The second page is used for di­
rectly vectored UNIBUS interrupts. Each vector in the second page corre-

1 sponds to a.UNIBUS vector in the range from 0 to 1FC16· 

3.2.3 VAX-11/750 Systems 

The VAX-11/750 SCB is two pages long or, if there is a second UNIBUS 
on the VAX-11/750 processor, three pages long. The second SCB page on 
VAX-11/750 processors is used for directly vectored UNIBUS device inter­
rupts. Each SCB vector corresponds to a UNIBUS vector in the range from 
0 to 1FC16. A third SCB page is used for directly vectored UNIBUS device 
interrupts on the second UNIBUS. 

The backplane interconnect on VAX-11/750 systems, called the CPU­
to-memory interconnect (CMI), connects the CPU, memory controllers, 
UNIBUS adapters, and MASSBUS adapters. Each connection to the CMI is 
identified by its slot number. 

There are a total of 16 slots that can be used to connect adapters. The 
first ten of these are reserved for a memory controller, UNIBUS adapters, 
and MASSBUS adapters. These ten slots are called fixed slots because the 
mapping of controller/adapter to slot number is fixed. That is, a particular 
slot can have only a particular adapter placed in it. Table 3.3 lists these 
adapters. 

The last six slots are reserved for adapters with configuration registers and 
are called floating slots. A CI750 port adapter or a DR750 would be connected 
to a floating slot. 

Each slot is assigned four SCB vectors in the first SCB page, one for each 
IPL value from 20 to 23, as shown in Figure 2.3. 

Table 3.3 Fixed Slots on VAX-11/750 
Processors 

Adapter Type 
Memory controller 
Up to three MASSBUS adapters 
UNIBUS adapter 
Second UNIBUS adapter 

Slot Number 
0 
4 through 6 
8 
9 
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Table 3.4 Standard SBI Adapter Assignments on VAX-ll/78x Systems 

Interface Type 

First memory controller 
Second memory controller 
First MA780 shared memory 

Second MA780 shared memory 
First UNIBUS adapter 

Second UNIBUS adapter 
Third UNIBUS adapter 
Fourth UNIBUS adapter 

First MASSBUS adapter 
Second MASSBUS adapter 
Third MASSBUS adapter 
Fourth MASSBUS adapter 
DR780 SBI interface 
CI780 

Nexus 
TRO 

TR 1 
TR2 

TR3 

TR4 
TRS 
TR6 
TR 7 
TR8 
TR9 
TR 10 
TR 11 
TR 12 
TR 14 
TR 15 

Comments 
Hold line for next cycle. TR 0 is 

the highest TR level and is not 
assigned to a device. 

If present, follows local memory 
controllers 

Follows any MA780 controllers 
present 

Reserved 

Reserved 

3.2.4 VAX-11/780 and VAX-11/785 Systems 
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The SCB for V AX-11 /780 and VAX-11 /785 systems is one page. On these pro­
cessors, the synchronous backplane interconnect (SBI) connects the CPU, 
memory controllers, DR780s, CI780s, UNIBUS adapters, and MASSBUS 
adapters. Each connection to the SBI is identified by its transfer request (TR) 
number. 

The TR number determines SBI priority. TR numbers range from 0, the 
highest priority, to 15, the lowest priority. There is a limit of 15 connections 
to the SBI, as shown in Table 3.4. TR number 0 is used for a special purpose 
on the SBI and has no corresponding external adapter. The lowest priority 
level is reserved for the CPU and requires no actual TR signal line. The TR 
number defines the physical address space through which the device's reg­
isters are accessed and the vectors through which the device will interrupt. 
The SCB has four vectors for each possible TR, one vector each for IPLs 20, 
21, 22, and 23. UNIBUS interrupts are indirectly vectored. 

An adapter is not restricted to having a specific TR number. However, the 
relative priorities of the various adapters cannot change. That is, a system 
cannot have a MASSBUS adapter with a higher priority (lower TR number) 
than a UNIBUS adapter. For instance, if a system has two local memory con­
trollers and an MA780 shared memory controller, the first UNIBUS adapter 
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on that system could have TR number 4, with the MA780 having TR number 
3, and the memory controllers having TR numbers 1 and 2. 

3.2.5 Q22-Bus-Based MicroVAX Systems 

The following systems fall into this category: 

• MicroVAX II, VAXstation II, VAXstation II/GPX 
• MicroVAX 3400, VAXstation 3400 
• MicroVAX 3500, MicroVAX 3600, MicroVAX 3800, MicroVAX 3900 
• VAXstation 3200, VAXstation 3500, MicroVAX 3800/GPX 

Other MicroVAX systems that provide support for the Q22-bus are listed in 
subsequent sections. 

The memory interconnect on these systems connects the CPU and mem­
ory modules. The CPU board contains an interface to the Q22-bus to which 
all I/O devices are connected. Interrupt requests from external I/O devices 
go directly to the CPU, which arbitrates interrupts. IPLs 20 through 23 cor­
respond to Q22-bus interrupt request lines BIRQ4 through BIRQ7. 

The SCB for these systems is two pages long. The second page is used for 
directly vectored Q22-bus device interrupts. Each vector in the second page 
corresponds to a Q22-bus vector in the range from 0 through 1FC16• 

On these systems, there is exactly one nexus, numbered 0, that interfaces 
the CPU board to the Q22-bus. 

An interrupt on these systems is arbitrated by comparing its IPL to the 
processor's IPL. However, when a Q22-bus interrupt is granted, processor 
IPL is raised to 23 by the microcode. 

With VMS Version 5.0, multilevel interrupt dispatching is available on 
these systems. After the interrupt is granted by the processor at IPL 23, the 
VMS executive, with the help of additional code in the interrupt dispatch 
area of the channel request block (CRB) of the device controller, explicitly 
lowers IPL to the interrupting device's IPL. This, however, requires that 
the MicroVAX system be properly configured. See the VMS Device Support 
Manual for additional details on multilevel interrupt dispatching. 

3.2.6 MicroVAX 2000 Family Systems 

The MicroVAX 2000 family includes MicroVAX 2000, VAXstation 2000, and 
V AXstation 2000/GPX processors. A member of this family is sometimes 
known as a busless system because the CPU, memory, and all I/O adapters 
are on a single board. 

There is exactly one nexus, 0, on this system, reserved for the CPU. All 
device and adapter registers are visible through the node space of the CPU. 

An interrupt controller collects interrupts from all I/O devices and presents 
a single interrupt request to the CPU at IPL 20. 
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Table 3.5 MicroVAX 2000 Interrupt Vectors 

SCB Vector 

24416 
24816 
25016 
25416 
2C016 
2C416 
3F816 
3FC16 

Interrupting Source 

Video end-of-frame 
Video controller secondary 
Network controller primary 
Network controller secondary 
Serial line controller receiver done or silo full 
Serial line controller transmitter done 
SCSI controller 
Disk controller 

The SCB for this system is two pages long. Device interrupts are vectored 
through the second page of the SCB at one of eight possible device vectors, 
shown in Table 3.5. 

3.2.7 MicroVAX 3100 Family Systems 

The MicroVAX 3100 family includes the MicroVAX 3100, VAXstation 3100 
(monochrome) models 30/40/38/48, and VAXstation 3100/GPX models 30/ 
40/38/48. The memory interconnect on the MicroVAX 3100 connects the 
CPU and memory modules. The CPU board interfaces to one or two small 
computer system interface (SCSI) buses, each under the control of an NCR 
5380 SCSI controller chip that supports asynchronous data transfers. Fig­
ure 3.2 shows a representative MicroVAX 3100 system configuration. 

The SCB for this system is two pages long. The second page is used to 
vector device interrupts from all I/O devices. 

3.2.8 V AXstation 3520 and 3540 Systems 
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The VAXstation 3520 system consists of two processors connected to a com­
mon backplane, the M-bus. The VAXstation 3540 system has four processors. 

CPU Memory 

SCSI SCSI 
Controller Cor.troller 

SCSI Bus SCSI Bus 

Device Device Device Device 

Figure 3.2 
MicroVAX 3100 System Configuration 
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The processors access common memory on the M-bus. Each processor is in­
terfaced to the bus through a cache that monitors the M-bus for other CPUs' 
memory references. 

There are eight nexuses on the M-bus and a CPU module, a memory mod­
ule, or an I/O adapter may be present on each nexus. Disk devices connect 
to a SCSI bus, which interfaces to the M-bus through an 1/0 adapter. An op­
tional Q22-bus adapter module allows connection of additional peripherals, 
such as magnetic tape. Chapter 34 shows a sample VAX 3520 configuration. 

The VAXstation 3520 and 3540 systems have a two-page SCB. 1/0 adapter 
interrupts are vectored through the upper half of the fust page of the SCB. 
Interrupts from devices on the Q22-bus are vectored through the second page 
of the SCB. 

3.2..9 VAX 6000 Series Systems 

3.2..10 

VAX 6000 series systems use a high-speed interconnect (XMI) as the back­
plane. There are 13 slots, or nodes, on the XMI, and each node can connect 
to a CPU module or memory module. 1/0 adapters may be connected only 
to slots 1through4 and 11through14. DWMBA adapters adapt the VAXBI 
bus to the XMI bus. The VAXBI bus connects 1/0 peripherals to the system. 
Chapter 34 shows a diagram of a VAX 6000 series system. 

The first page of the SCB is the architecturally defined page. The nexus 
vectors in the upper half of this page are used for the 1/0 adapters on the 
XMI. Each V AXBI bus on the system gets an additional page of the SCB. 
Furthermore, if a UNIBUS adapter is present on the system, an additional 
page of SCB is allocated for vectoring UNIBUS device interrupts. 

Nexus numbering of VAXBI-based adapters on VAX 6000 series systems is 
done ·according to the following formula: 

nexus= (XMI slot number of DWMBA) * 16 
+ (VAXBI node. number of adapter) 

Nexus numbering of XMI-based adapters is done according to the following 
formula: 

nexus= (XMI slot number of adapter)* 16 

VAX 82.00 Family Systems 

The VAX 8200 family consists of VAX 8200, VAX 8250, VAX 8300, VAX 
8350, and VAXstation 8000 processors. The SCB for a member of the VAX 
8200 family consists of the standard page defined by the VAX architecture, 
plus an additional page for each UNIBUS adapter present. UNIBUS interrupts 
are directly vectored. Note that the VAXstation 8000 does not' support any 
UNIBUS options. 
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The VAX 8200 family uses the VAX.BI as a system bus as well as the 1/0 
bus. This means that the VAX.BI allows CPU modules, memory modules, or 
1/0 adapters to be connected to each of its 16 slots. 

I/O adapters connect devices and controllers or other buses, such as the 
UNIBUS, to the VAX.Bl. Slots on the VAX.BI are known as nodes, and nexus 
numbers in the VAX 8200 family are the same as the VAX.BI node numbers 
of the adapters. Chapter 34 shows a diagram of a VAX 83x0 system. 

Each node has four vectors in the first SCB page, one for each level at which 
it can request an interrupt. VAX.BI interrupt levels 4 through 7 correspond 
to IPLs 20 through 23. 

VAX 8600 and VAX 8650 Systems 

VAX 8600 and VAX 8650 systems have a four-page SCB to support the the­
oretical maximum configuration of four SBI adapters (SBIAs), although only 
two are supported by VMS. On these systems, 1/0 adapters are connected 
to an SBI. Each SBI is connected through an SBIA to a bus called an adapter 
bus (A-bus). The A-bus connects the SBIAs to the memory subsystem. The 
supported 1/0 adapters are the UNIBUS, MASSBUS, and CI780 adapters sup­
ported on a VAX-l 1/78x system. Figure 3.3 shows a representative VAX 8600 
system configuration. 

Hardware interrupts for adapters on the first SBI are vectored through the 
first page of SCB. Interrupts for adapters on the second SBI use the sec­
ond page of SCB. Interrupts generated by SBIA 0 are vectored through the 
first page of the SCB, and those generated by SBIA 1 are vectored through 
the second page of the SCB. A hardware interrupt vector is determined 
by the combination of interrupt level, TR number, and SBI number. 

CPU 

Memory 

SBI 
Adapter 

Controller A-Bus 

Array Bus 
Memory 1---

SBI 

MBA UBA 

l Device _t---1-i Device J l Device _t---1-i Device J 
MASSBUS UNIBUS 

Memory t-
SBI SBI 

Adapter 

Figure 3.3 
VAX 8600 System Configuration 



3.2.12 

3.2.13 

3.2 Device Interrupts 

UNIBUS interrupts are indirectly vectored, as they are on VAX-11/78x 
systems. 

VAX 8800 Family Systems 

The VAX 8800 family includes VAX 8500, VAX 8530, VAX 8550, VAX 8700, 
and VAX 8800 processors but not the VAX 88x0 family (see Section 3.2.13). A 
synchronous backplane interconnect bus, the NMI, connects CPUs, memory, 
and one or two 1/0 adapters called NMI-to-BI (NBI) adapters. The VAX.BI is 
the VAX 8800family1/0 bus. Each NBI adapter can interface with up to 
two VAX.Bis. Each VAX.BI can have up to 15 adapters apart from the NBI. 
Chapter 34 shows a diagram of a VAX 8800 system. 

A VAX 8800 family processor has a 32-page SCB. Memory and NBI inter­
rupts vector through the architecturally defined page of the SCB. Interrupts 
from each of four possible VAX.Bis vector through pages 28 through 31. Pages 
1through27 are reserved for offsettable VAX.BI nodes, nodes that are directly 
vectored, such as the UNIBUS adapter. 

The nexus number of an adapter on such a system may be determined by 
the following formula: 

nexus= (VAX.BI number)* 16 
+(VAX.BI node number of adapter) 

where the VAX.BI buses are numbered 0 and 1 or 2 and 3 on VAX 85x0 
systems, from 0 through 3 on VAX 8700 and VAX 8800 systems, and from 0 
through 5 on VAX 88x0 systems. For example, an adapter on node number 
5 of VAX.BI number 1 has a nexus number of 21. 

VAX 88x 0 Family Systems 

The VAX 88x0 family includes VAX 8810, VAX 8820, VAX 8830, and VAX 
8840 processors but not VAX 8800 CPUs. Most of t:he information in Sec­
tion 3.2.12 applies to the VAX 88x0 family. However, the VAX 88x0 family 
reserves pages 1 through 2? for the off settable VAX.Bl nodes, such as the 
UNIBUS adapter, and uses pages 26 through 31 for each of the six VAX.BI 
buses supported. 
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Software Interrupts 

And now I see with eye serene 
The very pulse of the machine. 

William Wordsworth, She Was a Phantom of Delight 

Software interrupts are fundamental to the VMS operating system. Software 
interrupt service routines running at interrupt priority levels (IPLs) between 
2 and 15 perform many of the most important system functions of VMS. 
These include dispatching fork processes (IPLs 6 and 8 to 11 J, servicing pro­
cesses' time-dependent requests (IPL 7), I/O postprocessing (IPL 4), schedul­
ing (IPL 3), and delivering ASTs (IPL 2). This chapter describes how software 
interrupts are requested and granted and how VMS uses them. 

THE SOFTWARE INTERRUPT 

The VMS executive requests a software interrupt to cause an interrupt ser­
vice routine to execute and perform its designated function. It does this by 
writing to the software interrupt request register. When the interrupt request 
is granted, the VAX processor dispatches through the appropriate system con­
trol block (SCB) vector to an interrupt service routine. Chapter 2 describes 
the hardware mechanism of software interrupts. 

VMS uses software interrupts to schedule operating system functions. Us­
ing software interrupts is more efficient than periodically checking to see 
whether these functions need to be done. IPLs are assigned to the differ­
ent operating system functions, in part, as an indication of their relative 
importance. 

VMS also uses specific IPLs and interrupt requests at those IPLs to synchro­
nize access to shared data structures. Chapter 8 discusses synchronization 
through raising IPL. 

VMS requests the software interrupt service routines for IPLs 3, 4, 6, 7, 8, 
and 11 from within a hardware interrupt service routine or another software 
interrupt service routine. Software interrupts at 12 and 14 are requested only 
through a CPU console command. The VAX architecture specifies that the 
IPL 2 software interrupt service routine be requested by REI microcode to 
deliver asynchronous system traps (ASTsJ. Although VMS provides for fork 
dispatching at IPLs 9 and 10, VMS itself makes little or no use of them. VMS 
Version 5 does not use software interrupts at IPLs 1, 5, 13, and 15. 

The VAX architecture constrains software interrupt service routines by 
providing only one bit to indicate that a software interrupt has been re­
quested at a particular IPL. The service routine is thus unable to determine 
how many requests for it were outstanding when the interrupt request was 
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granted. As a result, either the software must supply some protocol for deter­
mining this number or it must be irrelevant to the execution of the service 
routine. 

The scheduling interrupt service routine is an example of a routine that 
has one function to do, regardless of how many times that function has 
been requested. Other interrupt service routines use queues to keep track of 
their work. Each element in the queue represents a specific item of work for 
the interrupt service routine and an instance of the interrupt's having been 
requested. 

An interrupt service routine that uses a queue generally performs all the 
work in the queue before dismissing the interrupt. It tries to remove an 
element from the queue with the REMQUE or REMQHI instruction. If an element 
was removed, the interrupt service routine processes that element and tries 
to remove another element from the queue. If the queue is empty and no item 
was removed from it, the interrupt service routine's work is complete and 
it then exits through an REI instruction. Such a software interrupt service 
routine reacts gracefully to a spurious interrupt, one granted when there is 
no work for it to do. 

SOFTWARE lNTERRUPT SERVICE ROUTINES 

There is no central monitor routine in VMS that controls the sequence of 
operating system functions. Instead, any executive thread that identifies the 
need for a particular function performed within a software interrupt ser­
vice routine can request the associated interrupt. Scheduling operating sys­
tem functions as software interrupts eliminates any requirement for pollirig 
whether these functions need to be done. It also enables more important 
functions to interrupt less· important ones. 

Table 4.1 shows the software interrupt service routine functions and their 
associated IPLs. In some cases, the assigned IPL only indicates the relative 
importance of the interrupt, and the interrupt service routine runs primarily 
at a higher IPL for synchronization. The table also shows the more common 
symbolic names for the IPLs, defined by the macro $IPLDEF. 

VMS interprets software interrupts, except the AST delivery and reschedul­
ing interrupts, as systemwide events that are serviced independently of the 
context of a specific process. The rescheduling interrupt, discussed briefly in 
this chapter and in greater detail in Chapter 12, is taken on the kernel stack 
of the current process. The interrupt service routine immediately executes a 
SVPCTX instruction, saving the process's context and switching onto the in­
terrupt stack. The AST delivery interrupt, discussed briefly at the end of this 
chapter and in greater detail in Chapter 7, is the only interrupt in use that is 
serviced in the context of a specific process. The interrupt service routines 
for unused software interrupts are serviced on the kernel stack. Each of these 
routines merely logs an error and dismisses the interrupt. 
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Table 4.1 Software Interrupt Levels Used by the Executive 

IPL IPL Names Use Stack 
15 Unused Kernel 
14 XDELTA Interrupt 
13 Unused Kernel 
12 IPC intervention Interrupt 
11 IPL$_MAILBOX, Fork dispatching Interrupt 

IPL$_IOLOCK11 
10 IPL$_IOLOCK10 Fork dispatching Interrupt 
9 IPL$_IOLOCK9 Fork dispatching Interrupt 
8 IPL$_SYNCH, Fork dispatching Interrupt 

IPL$_SCHED, IPL$_SCS, 
IPL$_ TIMER, IPL$_MMG 

7 IPL$_ TIMERFORK Software timer Interrupt 
service routine 

6 IPL$_QUEUEAST Fork dispatching Interrupt 
5 Unused Kernel 
4 IPL$_IOPOST 1/0 postprocessing Interrupt 
3 IPL$_RESCHED Rescheduling Kernel 
2 IPL$_ASTDEL AST delivery Kernel 
1 Unused Kernel 

The software interrupt service routines vary. Some perform the same func­
tions every time they execute. The rescheduling interrupt service routine, 
for example, takes the current process out of execution, selects another one 
to run, and places it into execution. The functions of other software inter­
rupt service routines are quite variable. The I/O postprocessing interrupt 
service routine has a specific function to perform but is data-driven by the 
I/O request packets (IRPs) in its work queue. A fork dispatching interrupt 
exists solely to dispatch to system routines running as fork processes. The 
routines that are dispatched vary as a result of system operation. 

The software interrupts are described briefly in the following sections. 
Some are described at more length in subsequent chapters. The following 
sections are in order by interrupt level, except that the service routines for 
interrupts requested through console command are discussed last. 

4.2.1 Fork Processing 

56 

Five software interrupts (IPLs 6 and 8 to 11) are used for dispatching to fork 
processes. Each of the interrupt service routines has its own work queue of 
fork blocks (FKBs). 

When a fork dispatching interrupt is granted, the interrupt service routine 
saves the low general registers and removes from its queue the first fork 
block and dispatches to the fork process it describes. 
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The following sections describe fork process data structures and service 
routines in more detail. 

Fork Process Data Structures. A fork block describes a routine to be called 
by a fork dispatching interrupt service routine and some context for that 
routine. The macro $FKBDEF defines symbolic names for the fields in a 
fork block. A minimal fork block, shown in Figure 4.1, includes the address, 
or saved program counter IPC), of the fork routine IFKB$LFPC) and the 
contents of two registers. The first two longwords of a fork block link it into 
a queue. The fields FKB$W _SIZE and FKB$B_ TYPE are the standard dynamic 
data structure header fields. 

The field FKB$B_FIPL specifies in which fork block queue the fork block is 
inserted and at what IPL its routine will run. With VMS Version 5, this field 
has an alternative name and meaning: FKB$B_FLCK identifies the spinlock 
associated with the fork process. It is an index into a table of static spinlocks, 
pointed to by SMP$AR_SPNLKVEC, and also into a table of spinlock IPLs, 
at SMP$AL_IPLVEC. Because spinlock indexes are numbers 32 or larger, fork 
processing routines can test bit 5 in this fork block field to distinguish be­
tween its two uses: bit 5 is 0 in an IPL and 1 in a spinlock index. On a 
uniprocessor system, either use is permitted; on a symmetric multiprocess­
ing ISMP) system, a fork block can only contain a spinlock index. Chapter 8 
describes spinlocks in detail. 

A fork block must be in nonpageable system space. Most often, it is part 
of a larger data structure, such as a unit control block or class driver request 
packet, which contains additional data. The combination of standard fork 
block fields, additional fork block data, and the routine that is to be executed 
is called a fork process. 

Figure 4.2 shows the array of fork block queue listheads. The array is 
in the per-CPU database so that each CPU in an SMP system has its own 
fork block queues. !Chapter 34 contains more information on the per-CPU 
database.) The listheads of these queues are ordered in an array that includes 
a placeholder listhead for IPL 7. Since the IPL 7 interrupt is serviced by 
the software timer routine, there is no fork process dispatching at IPL 7. 

Fork Queue Forward Link 

Fork Queue Backward Link 

Fork IPL/ 
Spin lock Type Size 

Index 

Saved PC 

Saved R3 

Saved R4 

Figure 4.1 
Layout of a Fork Block 
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SMP$GL_CPU-DATA::..__ ____ _, 

Index N 

Figure 4.2 

Table of Per-CPU 
Database Addresses 

Fork Block Queues 

Per-CPU Database for 
ProcessorN 

T 

CPU$0-SWIQFL 
IPL 6 Listhead 

(Placeholder) 

IPL 8 Listhead 

IPL 9 Listhead 

IPL 1 O Listhead 

IPL 11 Listhead 

T 

Fork 
Block 

Fork 
Block 

However, having the placeholder listhead simplifies the fork process creation 
code. 

Reasons for Creating a Fork Process. Fork processing exists, in part, so that 
device drivers do not have to execute at high IPLs for long periods of time, 
blocking other device interrupts. Device interrupt service routines run at 
device IPLs between 20 and 23. Often these routines perform lengthy process­
ing that does not require execution at high IPL. Typically, a device interrupt 
service routine runs at a lower IPL as soon as possible. However, it may not 
simply lower IPL directly; that could interfere with the synchronization of 
code already running at the lower IPL. Instead, it creates"a fork process that 
will run at the lower IPL when its turn comes. 

A driver or any high-IPL thread of execution might also create a fork 
process at a lower IPL to access a system database synchronized at that lower 
IPL, for example, if the driver needed to queue an AST to a process. Another 
example is the routine that allocates nonpaged pool. It can be invoked from 
process context code and from interrupt threads of execution at IPLs up to 
11. If the routine determines that pool must be expanded, but it is running 
at too high an IPL or holding a higher ranking spinlock than MMG, it 
creates an IPL 6 fork process to perform the expansion. Chapter 19 gives 
information on pool allocation, and Chapter 8 discusses spinlocks. 

Creating a Fork Process. To fork, a driver invokes routine EXE$10FORK 
or EXE$FORK, in module FORKCNTRL, specifying the address of the fork 
block, the fork process context, and a return address. Fork process context 
consists of the fork block, the contents of R3 and R4, and the address of the 
routine the fork process is to execute (the fork PC). EXE$IOFORK clears a 
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bit to disable an 1/0 timeout on the device and continues in the EXE$FORK 
routine. 

EXE$FORK stores the specified fork process context in the fork block. It 
tests bit 5 in FKB$B_FLCK to determine whether the field contains a fork 
IPL or a spinlock index. To convert the spinlock index to an IPL, EXE$FORK 
uses it as a longword context index into the array at SMP$AL_IPLVEC. The 
specified entry contains the IPL associated with that spinlock. EXE$FORK 
inserts the fork block at the tail of the fork block queue for that IPL and 
requests a software interrupt at that IPL if the queue was empty. 

EXE$FORK then transfers control to the return address its invoker spec­
ified, sometimes in its invoker but more often in the code that entered its 
invoker. This form of return is known as "returning to caller's caller." That 
form of return enables device driver code to appear as a sequential flow when 
in fact, for example, some of it executes as part of a device interrupt service 
routine and some of it executes as a fork process. 

The instructions in EXE$FORK that perform these functions are listed in 
Example 4.1. 

When IPL drops, the fork dispatching interrupt will be granted and serviced 
on the CPU on which it was requested. The fork process will execute on that 
CPU as well. 

Dispatching a Fork Process. When a fork interrupt is granted, the VAX pro­
cessor dispatches to its interrupt service routine. Each fork IPL has a unique 
interrupt service routine that performs setup for common fork dispatching 
code. The fork interrupt service routine saves R6 and R7. It stores the off­
set of the corresponding fork queue listhead in R6. It then branches to the 
common fork dispatching code. The interrupt service routines for IPLs 6 and 

Example 4.1 
EXE$FORK Routine Extract 

EXE$FORK:: 
MOVQ R3,FKB$L_FR3(R5) 
POPL FKB$L_FPC(R5) 
MOVZBL FKB$B_FLCK(R5),R4 
BBC #5,R4,5$ 
MOVL G-SMP$AL_IPLVEC[R4],R4 

;Create fork process 
;Save registers R3 and R4 
;Get fork process PC 
;Get fork lock/fork IPL 
;Branch if direct IPL 
;Get fork IPL from spinlock 
; database 

5$: FIND_CPU_DATA R3 ;Get base of CPU data area 
MOVAQ CPU$Q_SWIQFL-<6•8>(R3)[R4],R3 

10$: 

INSQUE (R5),G4(R3) 
BNEQ 10$ 

SOFTINT R4 
RSB 

;Get address of fork queue 
;Insert fork block in fork queue 
;If queue already populated, 
; avoid extra interrupts 
;Request software interrupt 
;And return 
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Example 4.2 
Fork Dispatching Interrupt Service Routine Extract 

.ALIGN LONG 

EXE$FRKIPL6DSP:: 
PUSHQ R6 
CLRL R6 
BRB EXE$FORKDSPTH 

.ALIGN LONG 

EXE$FRKIPL8DSP:: 
PUSHQ R6 
MOVZBL #<2•8>,R6 

Drop through to common code 

EXE$FORKDSPTH: : 
FIND_CPU_DATA R7,­

ISTACK=YES 
MOVAB CPU$Q_SWIQFL(R7)[R6],R6 
PUSHL R5 
PUSHL R4 
PUSHL R3 
PUSHL R2 
PUSHL R1 
PUSHL RO 
BRB 80$ 

;Entry point must be longword 
; aligned 
;Fork IPL 6 entry point 
;Save R6 and R7 
;Get offset to fork queue listhead 
;Branch to common code 

;Entry point must be longword 
; aligned 
;Fork IPL 8 entry point 
;Save R6 and R7 
;Get offset to fork queue listhead 

;Software interrupt fork dispatcher 
;Get base of per-CPU database 
; from SP 
;Get address of fork queue listhead 
;Save R5 
;Save R4 
;Save R3 
;Save R2 
;Save R1 
;Save RO. 

PUSHLS are fastest! 

;Branch to body of dispatcher 

Dispatch a fork block that has no fork lock index, but rather just 
an IPL (an unmodified driver fork block perhaps). 

10$: JSB 
BRB 

GFKB$L_FPC(R5) 
80$ 

;Dispatch fork 
;Branch to get next fork block 

Dispatch fork process when queue is not yet empty 
Dispatch fork process with: 

20$: 

RO through R2 = scratch registers 
R3 and R4 = restored from fork block 
R5 • address of fork block 
MOVQ FKB$L_FR3(R5),R3 
MOVZBL FKB$B_FLCK(R5),R7 

;Restore registers R3 and R4 
;Get fork lock number/FIPL 

BBC #5,R7,10$ 
FORKLOCK LOCK=R7,­

PRESERVE•NO 
JSB GFKB$L_FPC(R5) 
FORKUNLOCK LOCK•R7,­

PRESERVE=NO 

;Branch if FIPL 
;Acquire the spinlock 
;Don't preserve RO 
;Dispatch fork 
;Release the spinlock 
;Don't preserve RO 

(continued) 
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Example 4.2 (continued) 
Fork Dispatching Interrupt Service Routine Extract 

80$: REMQUE G(R6),R5 
BNEQ 20$ 

;Remove next entry from fork queue 
;Branch if queue not yet empty 

BVS 90$ 

Dispatch last entry in the queue 

90$: 

MOVQ FKB$L_FR3(R5),R3 
MOVZBL FKB$B_FLCK(R5),R7 
BBC #5,R7,100$ 
FORKLOCK LOCK=R7,-

PRESERVE=NO 
JSB GFKB$L_FPC(R5) 
FORKUNLOCK LOCK=R7,-

MOVQ 
MOVQ 
MOVQ 
MOVQ 
REI 

PRESERVE=NO 
(SP)+,RO 
(SP)+,R2 
(SP)+,R4 
(SP)+,R6 

;If VS no entry removed 
;Here when last entry dequeued 

;Restore registers R3 and R4 
;Get fork lock number 
;Branch if FIPL 
;Acquire the spinlock 
;Don't preserve RO 
;Dispatch fork 
;Release the spinlock 
;Don't preserve RO 
;Restore registers 

;Dismiss interrupt 

Dispatch a fork block that has no fork lock index, but rather just 
an IPL (an unmodified driver fork block perhaps). 

100$: JSB 
BRB 

GFKB$L_FPC(R5) 
90$ 

;Dispatch fork 
;Exit 

8 and the common fork dispatching code, EXE$FORKDSP1H, are listed in 
Example 4.2. These routines are in module FORKCNTRL. 

EXE$FORKDSP1H loads R6 with the address of the fork block queue spec­
ified by the sum of R6 and the address of the per-CPU database for this 
processor. It saves RO through RS and removes the first fork block from the 
queue. It loads R3 and R4 from the fork block. If FKB$B_FLCK contains a 
spinlock index, EXE$FORKDSPTH acquires that spinlock before dispatch­
ing to the fork process. When the fork process returns, EXE$FORKDSP1H 
releases the spinlock. !It is very important that the fork process itself not re­
lease the spinlock before returning; if it does, EXE$FORKDSP1H's attempted 
release will cause the system to crash.) EXE$FORKDSPTH then removes the 
next fork block and processes it in the same manner as the first. 

The removal and processing continue until the queue is empty, when the 
dispatcher restores the registers it saved and dismisses the interrupt with 
an REI instruction. Note that, to improve performance, EXE$FORKDSP1H 
detects removal of the last entry in the queue and avoids a subsequent 
fruitless REMQUE by dispatching the last entry in a separate code path. 

Since a fork process routine runs on the interrupt stack at an IPL higher 
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than 2, it must be in nonpageable system space; it must not incur page 
faults, execute change mode instructions, or incur any exceptions that are 
dispatched to user-defined condition handlers !see Chapter 5). While a fork 
process is executing, it may use RO through RS and, if saved and restored, 
the other general registers. A fork process may also use the interrupt stack. 
However, when a fork process returns control to the fork dispatcher, the 
stack must be in the same state as when the fork process was entered. 

Stalling a Fork Process. A fork process may be stalled for various reasons and 
may have to wait. When a fork process waits, its context is saved by storing 
R3, R4, and the PC in the FKB. The FKB is then placed in a queue of FKBs. 
One example of such a wait is a fork process waiting in the fork dispatcher 
queue while the system is running at a higher IPL. Another example is a 
driver fork process that tries to allocate unavailable system resources, such 
as UNIBUS adapter map registers. The fork process is stalled until another 
fork process using the same adapter deallocates map registers. The routine 
called to deallocate map registers restores the context of the waiting fork 
process so that it can repeat its attempt to allocate map registers. !Note that 
all fork processes that may stall waiting for a particular resource must use 
the same fork IPL. On an SMP system, they must also use the same spinlock.) 

VMS also implements a "fork and wait" wakeup mechanism so that a fork 
process can stall itself for a short while and be awakened automatically. To 
fork and wait, a fork process releases any spinlocks acquired as part of its 
execution and invokes the macro FORK_WAIT, which generates a call to 
EXE$FORIL WAIT, in module FORKCNTRL. .EXE$FORK_ WAIT saves the 
fork process's context in the fork block. Raising IPL to 31, it then acquires 
the MEGA spinlock, which serializes access to the systemwide fork and wait 
queue, and inserts the fork block at the tail of the queue. EXE$FORK_ WAIT 
then releases the MEGA spinlock, restoring the IPL at entry, and returns to 
its "caller's caller," the return PC left on the stack by the fork process or its 
invoker. 

The base image global EXE$AR_FORK_ WAIT _QUEUE contains the ad­
dress of the queue listhead, which is in the same loadable executive image 
that contains the module FORKCNTRL. 

The fork and wait queue is serviced once every second by the routine 
EXE$TIMEOUT, in module TIMESCHDL. Thus, on average, the fork process 

· waits for half a second. EXE$TIMEOUT and fork processes stalled in this way 
run on the primary processor of an SMP system. EXE$TIMEOUT acquires 
the MEGA spinlock to serialize its access to the fork and wait queue. It copies 
the queue listhead, initializes the listhead to represent an empty queue, and 
releases the MEGA spinlock. EXE$TIMEOUT removes each fork block in 
turn from its copy of the listhead and restores the fork process context. 
EXE$TIMEOUT tests FKB$B_FLCK and, if it contains a spinlock index, 
acquires that spinlock. EXE$TIMEOUT then dispatches to the fork process. 
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When the fork process returns, EXE$TIMEOUT releases the spinlock. When 
the copied listhead is empty, EXE$TIMEOUT is done servicing the queue 
and continues with other processing. 

Part of the restoration of fork process context involves changing IPL from 
IPL$_ TIMER to the IPL specified by FKB$B_FIPL/FLCK. Because lowering 
IPL would violate the interrupt nesting scheme, use of the fork and wait 
mechanism is limited to fork processes with fork IPLs at or above IPL$_ 
TIMER. 

The disk and tape class drivers use this mechanism after an unsuccessful 
attempt to allocate nonpaged pool, assuming that nonpaged pool will become 
available. When the fork process is reentered, it repeats its attempt to allocate 
nonpaged pool. In this example, the fork and wait mechanism is used in lieu 
of nonpaged pool availability reporting, the mechanism used by full processes 
(see Chapters 12 and 19). 

The fork and wait mechanism is also used by the IPL 12 interrupt service 
routine when it recomputes quorum, following an unsuccessful attempt to 
send a message to the VAXcluster connection manager (see Section 4.2.7). 

Chapter 11 contains further information about EXE$TIMEOUT. 

Use of Fork IPLs. There are five different fork IPLs; three are used by most 
device drivers supplied as part of VMS: 

• IPL 6 is used by the connect-to-interrupt driver and by drivers that support 
attention ASTs. Chapter 8 describes the reason for IPL 6 fork processing. 

• IPL 11 is used by the mailbox driver and MA780 shared multiport memory 
mailbox driver. The mailbox driver runs at the highest fork IPL so that any 
driver fork process can write mailbox messages, primarily to the OPCOM 
process's mailbox . 

• IPL 8 is the most commonly used driver fork IPL. 

The following considerations affect the choice of fork IPL for any particular 
driver: 

• Higher fork IPLs are serviced first. 
• All device drivers on a Q22-bus or UNIBUS competing for resources such 

as map registers or data paths must use the same fork IPL. In particular, 
if any such VMS drivers exist, all DMA clrivers servicing devices on that 
bus must use fork IPL 8. Moreover, with VMS Version 5, all such drivers 
on an SMP system must use a common spinlock, usually the IOLOCK8 
spinlock. 

• All SCS class and port drivers must use fork IPL 8 and, on an SMP system, 
the IOLOCK8 spinlock . 

• A disk driver must use fork IPL 8 and, on an SMP system, the IOLOCK8 
spinlock for clusterwide mount verification synchronization. 

• A driver that accesses a systemwide database synchronized at IPL$_ 
SYNCH can do so from fork level if its fork IPL is 8, the value of IPL$_ 
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SYNCH. On an SMP system, there is a further requirement that the driver's 
spinlock be the same one that synchronizes the database of interest or that 
it be of lower rank so that the fork process can acquire the needed spinlock. 

4.2.2 Software Timer 
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VMS includes both a hardware clock interrupt service routine and a soft­
ware timer interrupt service routine. Together these routines service time­
dependent requests. Chapter 11 describes these interrupt service routines in 
detail; this section summarizes some of their interaction. 

The hardware interrupt service routine is EXE$HWCLKINT, in module 
TIMESCHDL. It runs every 10 milliseconds in response to a hardware inter­
val timer interrupt, at IPL 22 or 24, depending on the CPU type. Some of its 
duties are to update the system time, perform CPU time accounting, check 
for quantum expiration of the current process, and check whether the first 
timer queue entry ITQEJ has come due. 

TQEs describe time-dependent requests usually made through the Sched­
ule Wakeup l$SCHDWKJ and Set Timer j$SETIMR) system services. The 
queue of TQEs is kept ordered by expiration time, with the most imminent 
fust. Quantum-end processing and TQE servicing require lengthier execu­
tion than is appropriate at high IPL and require modification to the scheduler 
database, which is synchronized at IPL$_SCHED. For these reasons, if the 
current process has run out of quantum or if the first TQE has come due, 
EXE$HWCLKINT requests an IPL$_ TIMERFORK IIPL 7J interrupt. 

The IPL$_ TIMERFORK interrupt service routine, EXE$SWTIMINT in 
module TIMESCHDL, checks whether the current process's quantum has 
expired. If so, EXE$SWTIMINT acquires the SCHED spinlock, raising IPL to 
IPL$_SCHED. It invokes the routine that performs quantum-end processing 
and then releases the SCHED spinlock, lowering IPL to IPL$_ TIMERFORK. 

EXE$SWTIMINT then checks whether it is running on the primary CPU 
of an SMP system lor the only CPU of a uniprocessor). If it is not, it dismisses 
the interrupt. Only the primary processor services the timer queue. 

If this is the primary processor, EXE$SWTIMINT acquires the TIMER and 
HWCLK spinlocks to synchronize its access to the queue of TQEs and, in 
particular, the first TQE. It removes the first TQE if its expiration time is the 
same as or earlier than the current system time. It releases the two spinlocks, 
lowering IPL to IPL$_TIMER IIPL 8). EXE$SWTIMINT then processes the 
TQE. 

It reacquires the two spinlocks and checks the TQE that is now first in 
the queue. EXE$SWTIMINT continues in this manner until it reaches a TQE 
that has not yet expired. It then releases the two spinlocks and executes an 
REI instruction, dismissing the interrupt and leaving unexpired TQEs in the 
queue. 
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4.2.3 1/0 Postprocessing 

When a device driver has completed an 1/0 request, it transfers to a routine 
that places the IRP associated with the request at the tail of the 1/0 post­
processing queue. If the queue was empty, it requests a software interrupt 
at IPL$_IOPOST (IPL 4). 

In earlier versions of VMS, there was one 1/0 postprocessing queue. In 
VMS Version 5, most IRPs are queued to one systemwide 1/0 postprocessing 
queue. The 1/0 postprocessing interrupt service routine, running on a unipro­
cessor or on the primary processor of an SMP system, services this queue. 
An IRP for a request completed in process context (that is, by a driver's pre­
processing function decision table action routine) is typically queued to a 
postprocessing queue in the per-CPU database. Each CPU services its own 
per-CPU queue. See Chapters 22 and 34 for further details. 

Example 4.3, a slightly simplified extract from routine IOC$REQCOM, in 
module IOSUBNPAG, shows the insertion of an IRP onto the systemwide 
queue. 

The 1/0 postprocessing interrupt software routine, IOC$10POST in mod­
ule IOCIOPOST, runs on each member of an SMP system. Running on the 
primary processor or on a uniprocessor, it removes each IRP in turn from the 
beginning of the systemwide queue and processes it. The details of the pro­
cessing vary with the type of IRP. For example, IOC$IOPOST distinguishes 
between VMS buffered and direct 1/0 requests. When a direct 1/0 request 
completes, IOC$10POST unlocks the buffer pages from memory. When a 
buffered output request completes, IOC$IOPOST deallocates the buffer to 

Example 4.3 
IOC$REQCOM Routine Extract 

IOC$REQCOM: : 

$INSQTI (R3),G-IOC$GQ_POSTIQ ;Insert !RP on IOPOST list 
BNEQ 49$ ; Branch if queue is not empty 
FIND_CPU_DATA RO ;Get address of per-CPU data 
CMPL a-sMP$GL_PRIMID,CPU$L_PHY_CPUID(RO) 

;Are we the primary? 
BNEQ 46$ ;Branch if not primary 
SOFTINT s-#IPL$_IOPOST ;Request IOPOST interrupt 
BRB 49$ ; Continue 

This is not the primary CPU on an SMP system, so request an 
interprocessor interrupt of the primary for it to request an 
IPL 4 interrupt. 

46$: IPINT_CPU IOPOST,G-SMP$GL_PRIMID ;Request interprocessor 
; interrupt 

49$: 

65 



Software Interrupts 

nonpaged pool and returns process byte count quota. Chapter 21 contains 
further information about I/O postprocessing. 

IOC$IOPOST also performs I/O postprocessing of memory management 
requests, as described in.Chapter 16. 

IOC$IOPOST, running on a uniprocessor or any member of an SMP sys­
tem, then services the per-CPU I/O postprocessing queue for that proces­
sor. After it processes all IRPs in the queue, it dismisses the interrupt with 
an REI instruction. Example 4.4, a slightly simplified extract from module 
IOCIOPOST, shows this sequence. 

4.2.4 Rescheduling Interrupt 
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The executive requests a rescheduling interrupt at IPL 3 whenever a res­
ident process that can preempt the current process becomes computable. 
(Although this statement is true for a uniprocessor system, it is a simplifica­
tion of what happens on an SMP system. See Chapter 12 for further details.) 

The IPL 3 interrupt service routine, SCH$RESCHED in module SCHED, 
removes the current process from execution. It begins execution at IPL 3 on 
the kernel stack of the current process. It immediately acquires the SCHED 
spinlock, raising IPL to IPL$_SCHED, and executes a SVPCTX instruction, 

Example 4.4 
IOC$IOPOST Interrupt Service Routine Extract 

IOC$IOPOST:: ;IOPOST interrupt 
;Save 

IOPOST: 

5$:: 

60$: 

MOVQ 
MOVQ 
MOVQ 

R4,-(SP) 
R2,-(SP) 
RO,-(SP) 

normal 
; registers (RO-RS) 

FIND_CPU_DATA R1,ISTACK=YES ;Get address of per-CPU database 
CMPL CPU$L_PHY_CPUID(R1),G-SMP$GL_PRIMID 

BNEQ 
TSTL 
BEQL 

5$ 
G·roc$GQ_POSTIQ 
5$ 

$REMQHI G.IOC$GQ_POSTIQ,R5 
BVC 60$ 
REMQUE GCPU$L_PSFL(R1),R5 
BVC 60$ 
MOVQ (SP)+,RO 
MOVQ (SP)+,R2 
MOVQ (SP)+,R4 
REI 

BRW IOPOST 

;Are we the primary? 

;Is systemwide queue empty? 
;Branch if yes, service per-CPU 
; queue 
;Remove next packet 
;Branch if got one 
;Remove next packet 
;Branch if got one 
;Restore 

registers 
; and exit 
; if queue empty 
;Postprocess this 
; I/0 request packet 
;Get next I/O request packet 
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saving the context of the current process and switching to the interrupt 
stack. 

The rescheduling interrupt service routine then selects the highest prior­
ity resident computable process and places it into execution. (On an SMP 
system, selecting the next process to execute is somewhat more complex.) 

Many of the events that make a process computable occur as part of 
servicing software interrupts between IPL 4 and IPL$_SCHED. That the 
scheduler database is modified from these software interrupts implies the 
following: 

• SCH$RESCHED must raise IPL to IPL$_SCHED and acquire the SCHED 
spinlock to block any other accesses to the scheduler database while it 
takes one process out of execution and selects another one to run . 

• The IPL 3 interrupt may be requested a number of times before it is granted. 
The number of times the interrupt has been requested is irrelevant, since 
the interrupt service routine always has the same task to do . 

• When the IPL 3 interrupt is granted, all events that might affect the choice 
of which process to run have been serviced. That is, the higher priority 
software interrupt service routines that affect the scheduler database have 
completed all their work. Thus, SCH$RESCHED can make the best possi­
ble choice at the time it blocks further alterations to the database. 

Chapter 12 discusses the scheduler database, events that affect the sched-
uler database, the rescheduling interrupt, and the additional complexities of 
scheduling in an SMP system. 

4.2.5 AST Delivery Interrupt 

The AST delivery interrupt means that there is an AST for the current 
process to execute. This interrupt is unique: it is the only software inter­
rupt requested by microcode and the only one that runs entirely in process 
context. 

An AST is a mechanism for signaling an asynchronous event to a process. 
A designated AST routine runs in the context of the process at a specified 
access mode. Some ASTs are requested by the process, for example, as no­
tification of 1/0 request completion. Some ASTs are queued to the process 
by VMS as part of normal system operations, such as automatic working set 
limit adjustment. 

Chapter 7 describes the details of AST delivery. 

4.2.6 XDELTA IPL 14 Interrupt Service Routine 

XDELTA, the executive debugger, can optionally be made memory-resident 
at system initialization. If XDELTA is resident, the SCB vectors for break-
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point and T-bit exceptions contain addresses of service routines within 
XDELTA. XDELTA remains quiescent, transferring control to the usual ex­
ception service routines for breakpoint and T-bit exceptions, until a break­
point (BPT) instruction in XDELTA's breakpoint table is executed. Initially, 
the only such breakpoint is at global location INI$BRK. 

When such a breakpoint instruction is executed, XDELTA accepts com­
mand input from the CPU console terminal. These commands can include 
setting other breakpoints, setting single-step mode, and examining system 
space. Often programmers debugging kernel mode code, such as a device 
driver, insert a JSB instruction to INI$BRK in their code to activate XDELTA. 
The VMS Delta/XDelta Utility Manual provides further information about 
XDELTA (and DELTA) commands. 

VMS provides the IPL 14 software interrupt service routine to enable 
a person to activate XDELTA at will by depositing a 14 in the software 
interrupt request register at the CPU console terminal. The interrupt service 
routine to activate XDELTA is INI$MASTERWAKE, in module SYSTEM_ 
ROUTINES. The code of this interrupt service routine follows: 

.ALIGN LONG 
INI$MASTERWAKE: 

JSB INI$BRK 
REI 

However XDELTA is activated, it raises IPL and executes at IPL 31. Chap­
ter 34 describes some of the complexities of XDELTA's operation in an SMP 
system. 

When XDELTA is not resident, the instruction at INI$BRK is a NOP rather 
than a BPT. Thus, a system without XDELTA reacts gracefully to an XDELTA 
interrupt or a JSB to INI$BRK. 

4.2.7 IPL 12 Interrupt Service Routine 
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The IPL 12 interrupt is similar to the XDELTA interrupt; it is only requested 
by a person depositing 12 into the software interrupt request register at the 
CPU console terminal. The IPL 12 interrupt service routine, EXE$IPCON­
TROL in module IPCONTROL, facilitates certain types of human interven­
tion when the system might otherwise have to be crashed. 

When the IPL 12 interrupt request is granted, the interrupt service routine 
temporarily disables SMP sanity and spinlock wait timeouts (see Chapter 34) 
so that operations below IPL 12 can be stalled on this CPU without adverse 
consequences. It then prompts on the console for human input with the 
following text: !PC>. (IPC is a shortened form of IPL C, where C16 is 12.) 
The IPL 12 interrupt service routine accepts the following commands: 



Command 

C ddcu: 
Q 
x 
CTRL/Z 

4.2 Software Interrupt Service Routines 

Meaning 

Cancel mount verification in progress 
Recalculate quorum for the V AXcluster 
Activate XDELTA (if it is resident) 
Return the system to normal operation 

The C command is issued with a device specification to cancel mount 
verification on the specified disk or tape. Mount verification is a mechanism 
that enables the system to recover gracefully from certain kinds of transient 
device failures, by stalling 1/0 requests to a device while it is offline or 
inaccessible. If the device comes back on line, the system confirms that 
this is the same device as was previously mounted an.d resumes normal 
1/0 processing on the volume. If SYSGEN parameter MVTIMEOUT seconds 
elapse before a disk comes back on line, mount verification times out and 
the system aborts 1/0 requests in progress to that disk. For a tape, the 
SYSGEN parameter TAPE_MVTIMEOUT specifies the length of the mount 
verification timeout period. 

While a device is in a state of mount verification in progress, all users' 
1/0 requests to it are stalled until the mount verification times out or the 
device comes back on line. An impatient user can type CTRL/C or CTRL/Y 
and STOP to abort the image and cancel its 1/0 requests. However, the user 
cannot cancel any 1/0 request the Files-11 XQP may have made on the user's 
behalf, and subsequent file system activity in the process will be blocked 
until mount verification times out or is canceled. 

Therefore, if the device failure is known to be permanent, it may be ap­
propriate to cancel mount verification before the mount verification timeout 
period has elapsed. In most cases, the DISMOUNT/ ABORT command is the 
preferred way to cancel mount verification. (See the VMS DCL Dictionary 
for further information on this command.) However, if the state of the sys­
tem prevents that command from being entered, the C command to the IPL 
12 interrupt service routine may be used instead. 

For additional information on mount verification, see the Guide to Main­
taining a VMS System. 

In response to a Q command, EXE$IPCONTROL requests the VAXcluster 
system connection manager to recalculate dynamic quorum based on the 
current cluster configuration. The Q command can be issued when a VAX­
cluster system hangs because of quorum loss, after a node crashes and fails 
to reboot. Running as an IPL 12 interrupt service routine, EXE$IPCONTROL 
cannot acquire the SCS spinlock to synchronize its access to the connection 
manager. The IPL associated with the SCS spinlock is IPL$_SCS, or IPL 8. 
EXE$IPCONTROL therefore creates an IPL 8 fork process whose fork lock 
is the SCS spinlock. See Section 4.2.1 for details about fork processing. 

The fork process calls a connection manager routine to recompute quorum. 
If any error occurs, the fork process issues a fork and wait request (see 
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Section 4.2.1.5), retrying its call whenever it is reentered. Once the call to 
the routine is successful, the fork process exits. 

In response to an X command, EXE$1PCONTROL invokes INI$BRK to 
activate XDELTA, as described in Section 4.2.6. Note, however, now that 
XDELTA can be activated through an IPL 14 interrupt, activation through 
the lower priority IPL 12 interrupt is less commonly used. 

In response to CTRL/Z, EXE$IPCONTROL restores the previous state of 
the SMP sanity and spinlock wait timeouts and exits, dismissing the IPL 12 
interrupt with an REI instruction. 



5 

5.1 

Condition Handling 

"Would you tell me, please, which way I ought to go from here?" 
"That depends a good deal on where you want to get to," said 
the Cat. 

Lewis Carroll, Alice's Adventures in Wonderland 

The VAX architecture defines a generalized uniform condition handling fa­
cility for two classes of conditions: 

• Conditions detected and generated by the CPU, called exceptions 
• Conditions detected and generated by software, called software conditions 

The VMS operating system provides this facility for users and also uses the 
facility for its own purposes. 

This chapter describes how VMS dispatches on exceptions and software 
conditions to user-specified procedures called condition handlers. It also 
briefly describes how VMS services exceptions that it handles itself. 

OVERVIEW 

An exception is the CPU's response to an anomaly or error it encounters 
while executing an instruction, for example, a divisor of zero in a DIVL 

instruction. In response, the CPU usually changes access mode to kernel. 
It pushes the exception program counter (PC), processor status longword 
(PSL), and any exception-specific parameters onto the stack on which the 
exception is to be serviced. It changes the flow of instruction execution to 
an exception service routine pointed to by an error-specific longword vector 
in the system control block (SCB). Chapter 2 describes the CPU exception 
mechanism in more detail. 

The VAX architecture defines approximately 20 different exceptions, each 
with its own SCB vector. The VMS executive defines a unique exception 
service routine for each. VMS distinguishes two categories of exceptions: 

• Those that the VMS executive always handles itself 
• Those that may be handled by user-specified procedures 

The VMS executive always handles 

• Inner access mode exceptions indicating fatal software or hardware errors 
(for example, machine checks or bugchecks) 

• Exceptions used in the course of normal system operations (for example, 
page faults and CHMK exceptions) 

Section 5.4.1 summarizes their servicing. 
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5.2 
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VMS allows all other exceptions to be handled by a user-specified proce­
dure called a condition handler. Section 5.4.2 summarizes their servicing. 
Section 5.3 describes how a process establishes condition handlers. 

The other type of condition is a software condition, an error or anomaly 
detected by software, typically application software rather than operating 
system software, and treated like an exception. The software converts the 
error to a software condition by calling one of two Run-Time Library pro­
cedures. It calls LIB$SIGNAL when the image can continue; if the error is 
severe and the image should be aborted, it calls LIB$STOP. Each of these 
routines initiates the same condition handler search used for exceptions. 
Section 5.5 describes software conditions in more detail. 

The primary differences between exceptions and software conditions are 
the mechanisms that generate them and the initial state of the stack that 
contains the condition parameters. 

VMS treats exceptions and software conditions uniformly by using the 
same mechanisms to locate their condition handlers and pass information 
to them. 

When a condition occurs, VMS searches for a condition handler. It calls any 
it finds with an argument list that includes a code describing the condition 
type, called a signal or signal name, and any condition-specific parameters. 
The argument list is known as a signal array. 

A condition handler is established for a specific access mode. The search 
for a condition handler encompasses only those handlers that were estab­
lished in the access mode at which the condition occurred. 

The condition handler examines its arguments to decide which of three 
actions to take. The handler can fix the condition (continuing). If the handler 
cannot fix the condition, it can pass the condition on to the next handler in 
the calling hierarchy (resignaling) or it can alter the flow of control (unwind­
ing the call stack). Section 5.8 describes these actions and the executive's 
response to them. 

VMS establishes default condition handlers for each mode. If the search 
fails to locate any user-established condition handlers, or if all such condition 
handlers resignal, it invokes the appropriate default handler. 

FEATURES OF THE CONDITION HANDLING FACILITY 

The condition handling facility encompasses the declaration of a condition 
handler, the search for a condition handler, and the responses available to 
a condition handler. The condition handling facility provides that software 
conditions be directed to the same condition handlers as exceptions. Thus, 
application software can centralize its handling of errors, both hardware and 
software. 

The Introduction to VMS System Services and the VMS Run-Time Library 
Routines Volume describe the declaration and coding of condition handlers. 
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5.3 Establishing a Condition Handler 

The major goal of the condition handiing facility is to provide an easy­
to-use, gener41.-purpose mechanism for handling errors. Application soft­
ware and layered products can use this mechanism rather than inventing 
application-specific tools. Features of the condition handling facility in sup­
port of this goal include the following: 

• The condition handling mechanism is available as part of the VAX architec­
ture; space is reserved for a condition handler address in the first longword 
of each call frame. 

• Condition handling can be an integral part of a procedure, a processwide 
facility, or both. 

Each procedure can establish its own condition handler. This enables 
condition handlers to be nested with the procedures that establish them. 
A nested inner handler can either service a detected exception or pass it 
alortg to some outer handler established by an earlier procedure. 

A condition handler is not called to service exceptions incurred by its 
own execution. Thus, a handler need not be written in a reentrant language 
and need not try to deal with its own errors. However, because a condition 
handler is itself a procedure, it can establish its own condition handler to 
field errors that it might cause. 

• There is no cost to a procedure that does not establish a handler and 
minimal cost to one that does. 

Overhead is minimized by using only a single longword per procedure 
activation for storing the address of a handler. Establishing a handler can be 
as simple as executing a single MOVAx instruction. No time is spent looking 
for a condition handler until a condition actually occurs. 

• As far as the user or application programmer is concerned, there is no 
difference in the handling of exceptions and software conditions. 

• Some languages, such as BASIC and PL/I, specify signaling and error han­
dling as part of the language. The general mechanism supports their needs. 

Because condition handling is part of a procedure, software written in 
a high-level language can establish a handler that examines its arguments 
to determine whether the signal was generated as a part of that language's 
support library. If so, the handler can attempt to fix the error in the manner 
defined by the language. If not, the handler can resignal the error. 

ESTABLISHING A CONDITION HANDLER 

There are two different methods for establishing a condition handler: 

• One method uses the stack associated with each access mode. Each pro­
cedure call frame includes a longword that contains the address of the 
condition handler associated with that procedure. 

• The other method uses software vectors in Pl space. Each access mode has 
its own software vectors. Vectored handlers do not possess the modular 
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properties associated with call frame handlers and are intended primarily 
for debuggers and performance monitors. 

5.3.1 Establishing a Call Frame Condition Handler 

A call frame handler is established by placing its address in the first longword 
of the currently active call frame. The following VAX MACRO instruction 
establishes a call frame condition handler: 

MDVAB new_handler,(FP) 

The following VAX MACRO instruction removes a condition handler by 
clearing the first longword of the current call frame: 

CLRL (FP) 

Because direct access to the call frame is usually not available from a high­
level language, VMS provides the Run-Time Library procedures LIB$ESTAB­
LISH to establish a handler and LIB$REVERT to remove one. 

5.3.2 Establishing a Software-Vectored Condition Handler 
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There are three types of software-vectored condition handlers. They differ 
primarily in the order in which they are called during the search for a 
condition handler: 

• First, the primary vector handler 
• Second, the secondary vector handler 
• Last, after all call frame condition handlers, the last chance handler 

One of each of these handlers can be established for each access mode. 
An array at CTL$AQ_EXCVEC, indexed by access mode, identifies the 

process's primary and secondary vector condition handlers. The first long­
word in each quadword contains zero or the address of a primary vector 
condition handler for that mode. The second longword contains zero or 
the address of a secondary vector condition handler. An array at CTL$AL_ 
FINALEXC, also indexed by access mode, contains the addresses of the last 
chance condition handlers. 

By default, VMS provides no primary or secondary vector handlers. It es­
tablishes the kernel, executive, and user mode last chance handlers described 
in Section 5.7. 

An image requests the Set Exception Vector ($SETEXV) system service to 
establish or remove a software-vectored condition handler. The VMS System 
Services Reference Manual provides further information. 

The system service has four arguments, all of which are optional: 

• The VECTOR argument identifies the type of handler. If omitted or if the 
value is zero, the handler is the primary vector handler . 

• The ADORES argument contains the address of a handler. If omitted or if the 
address is zero, the existing handler is to be removed. 
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5.4 Exceptions 

• The ACMODE argument specifies the access mode of the handler. If omitted, 
its default value is the mode from which the service was requested. If 
present, the less privileged of the requesting mode and ACMODE is used, 
preventing a process from declaring a handler for a more privileged mode . 

• The PRVHND argument specifies the address of a longword to receive the 
address of the previously established handler. 

The $SETEXV system service procedure, EXE$SETEXV in module SYS­
SETEXV, runs in kernel mode. It determines the access mode of the handler 
and the type of handler to be established, and sto.res the address of the 
specified handler (or a longword containing zero) in the specified software 
vector. 

User mode software-vectored condition handlers are automatically re­
moved at image rundown, when the address space that contains them is 
being deleted. All others must be explicitly removed. 

EXCEPTIONS 

Table 5.1 lists the exceptions defined by the VAX architecture. VMS ser­
vices most of them by preparing for the execution of a condition handler; 
Section 5.4.2 describes some of these preparations. 

In addition, the VMS executive signals some errors it detects while running 

Table 5.1 Exception Vectors in the System Control Block 

Vector Extra 
Offset Exception Name Parameters Type 

416 Machine check 1 0 Abort/Fault 
816 Kernel stack not valid 1 0 Abort 

1016 Reserved/privileged instruction 1 0 Fault 
1416 Customer reserved instruction 0 Fault 
1816 Reserved operand 0 Abort/Fault 
1C16 Reserved addressing mode 0 Fault 
2016 Access violation 2 Fault 
2416 Translation not valid 1 2 Fault 
2816 Trace pending 0 Fault 
2C16 BPT instruction 0 Fault 
3016 Compatibility mode 1 Abort/Fault 
3416 Arithmetic 1 Fault/Trap 
4016 CHMK 1 1 Trap 
4416 CHME 1 1 Trap 
4816 CHMS 1 Trap 
4C16 CHMU 1 Trap 
C816 Subset instruction emulation 1 10 Trap 
CC16 Suspended instruction emulation 1 0 Trap 

1 These exceptions result in special action on the part of the operating system. 
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in inner access modes through the exception mechanism so that they can be 
dispatched to outer mode condition handlers. 

Those exceptions that VMS services itself are discussed briefly in the next 
section. 

5.4.1 Exceptions Handled by the VMS Executive 
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VMS itself services the CHME and CHMK exceptions to provide controlled 
paths into inner access mode code. These exception service routines, known 
as the change mode dispatchers, transfer control to Record Management 
Services (RMS) and system services, as described in Chapter 6. 

VMS services several other exceptions for which only operating system 
action is appropriate. 

The translation-not-valid exception means that a reference was made to 
a virtual address that is not currently mapped to physical memory. This 
exception is the entry path into the VMS paging facility. Its service routine, 
the page fault handler, is described in detail in Chapter 16. 

A machine check exception is a processor-specific condition that may 
or may not be recoverable. A machine check is initially serviced on the 
interrupt stack at IPL 31. The exception service routine generates a fatal 
bugcheck in response to a nonrecoverable kernel or executive mode machine 
check. It reports a nonrecoverable machine check that occurred in supervisor 
or user mode through the normal exception dispatch method. Chapter 32 
discusses the machine check exception service routine and the bugcheck 
mechanism. 

A kernel-stack-not-valid exception indicates that the kernel stack was 
not valid when the processor tried to push information onto it during the 
initiation of an exception or interrupt. This exception is serviced on the 
interrupt stack at IPL 31. Its exception service routine generates a fatal 
KRNLSTAKNV bugcheck. 

Not all types of VAX processors implement the entire VAX instruction 
set. For example, not all processors implement all types of floating-point 
operands, and not all processors implement all string and decimal instruc­
tions. VMS provides emulation for VAX instructions not implemented in 
CPU microcode. 

VMS implements two different kinds of instruction emulation, using two 
different techniques. One, based on the reserved/privileged instruction ex­
ception, is available on all CPUs. On a CPU that requires floating-point 
instruction emulation, VMS alters the SCB vector for the reserved/privileged 
instruction vector to execute floating-point emulation code prior to the nor­
mal service routine for this exception. The floating-point emulation code 
checks the opcode of each instruction that incurs the exception, emulates 
those with appropriate opcodes, and passes all others on to the normal ser­
vice routine. 
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The other technique is available only on certain VAX processor types. 
These CPUs assist in the emulation of unimplemented string and decimal 
instructions by providing two special VAX subset instruction emulation 
exceptions. These processors include the MicroVAX II, MicroVAX 3x00, 
and VAX 6000 series systems. When the microcode of such a processor 
encounters a string or decimal opcode not present in its instruction set, 
it evaluates the operands and pushes exception parameters onto the current 
stack describing the opcode and its operands. The processor sets the first 
part done bit in the PSL. It then dispatches through SCB vector C816 to 
the service routine V AX$EMULATE, in module [EMULAT]VAXEMULAT, 
without changing access mode. 

While the emulation of the instruction is in progress, another exception, 
such as a page fault, can occur. After the page fault is satisfied and the 
exception dismissed, the emulated instruction is reexecuted. Finding the first 
part done bit set, the processor generates a "suspended" emulation exception 
through SCB vector CC16· The second emulation vector dispatches back 
into the instruction emulation code at VAX$EMULATE_FPD, in module 
[EMULAT]VAXEMULAT. 

For more details on these exceptions, see the VAX Architecture Reference 
Manual. 

5.4.2 Exceptions Passed to a Condition Handler 

Apart from the exceptions described in Section 5.4.1, VMS passes excep­
tions to condition handlers. The service routines for these exceptions are 
in module EXCEPTION. Each performs approximately the same actions in 
preparing for the execution of a condition handler. Table 5.2 lists the ex­
ceptions that VMS handles in this uniform way and the exception-specific 
information in their signal arrays. 

Figure 5.1 shows the major steps in the flow from such an exception up 
to the routine that searches for a condition handler. The column headings 
in the figure describe the environment of each step, for example, its access 
mode and interrupt priority level (IPL). The numbers in the figure correspond 
to the steps in the following list. 

Prior to the start of this flow, responding to the exception, the CPU has 
pushed onto the stack the exception PC, PSL, and any exception-specific 
parameters, and dispatched to the exception service routine. 

G) Each exception service routine pushes onto the stack a signal name, a 
status value of the form SS$_signal-name. 

G) Each pushes the total number of exception parameters (from the signal 
name to the saved PSL inclusive). The stack now contains the signal 
array (see Figure 5.2). It begins with the signal name and ends with the 
exception PC and PSL and may contain exception-specific arguments in 
between. 
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.- Value of SP before exception 

After an exception service routine has completed the signal array, it 
jumps to EXE$EXCEPTION, in module EXCEPTION. 

G) EXE$EXCEPTION builds a second argument list, called a mechanism 
array', which serves the following purposes: 

-It records the values of RO and Rl at the time of the exception (the 
procedure calling standard prohibits their being saved in a procedure 
entry mask). 

-It records the progress made in the search for a condition handler. 

Figure 5.3 shows the layout of the mechanism array. Section 5.6 de­
scribes its use during the search for a condition handler. 

G) EXE$EXCEPTION tests whether the exception should be dispatched to a 
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condition handler (see Section 5. 7.3.1 ). Ifnot, EXE$EXCEPTION generates 
a fatal INVEXCPTN bugcheck. 

G)Most exceptions that VMS passes on to a condition handler are initially 
serviced on the kernel ·stack. However, an exception must be signaled 
to the access mode in which it occurred. EXE$EXCEPTION checks that 
there is space on the stack of that mode, copies the signal and mechanism 
arrays to the target stack, and removes them from the stack on which the 
exception was serviced. 

@It constructs a PC/PSL pair and executes an REI instruction to transfer 
control to the local routine NORMAL in the access mode that incurred 
the exception. 

G)NORMAL builds the condition handler argument list (see Figure 5.3), 
which contains the addresses of the signal and mechanism arrays. 

@NORMAL examines location EXE$GL_ VAXEXCVEC. If it contains zero, 
NORMAL continues with the next step. Otherwise, NORMAL dispatches 
to the specified address. On a processor that provides assistance for in­
struction emulation, EXE$GL_ VAXEXCVEC contains the address of rou­
tine VAX$MODIFY_EXCEPTION, in module [EMULAT]VAXHANDLR. 
This routine takes special action for an exception that occurs in the course 
of instruction emulation (see Section 5.4.3). For any other type of excep­
tion, it returns to NORMAL. 

G)NORMAL then transfers control to EXE$SRCHANDLER, in module EX­
CEPTION, which locates any condition handlers that have been estab­
lished for the access mode of the exception. 

Section 5.6 describes the search for and dispatch to a condition handler. 

5.4.3 Special Cases in Condition Dispatching 
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The sequence previously described omits some special cases that occur in 
the dispatching of several conditions. Most of these special cases involve the 
conditions listed in Table 5.2. 

Several of these are detected by executive software rather than hardware. 
Rather than signal them through LIB$SIGNAL or LIB$STOP, the execu­
tive transfers control to condition-specific routines in module EXCEPTION, 
which build a signal array and dispatch .to EXE$EXCEPTION or EXE$RE­
FLECT, in module EXCEPTION. These conditions are typically detected 
in an inner mode but must be signaled to the mode associated with the 
condition. LIB$SIGNAL and LIB$STOP are unsuitable because they cannot 
perform the required access mode switch. 

The following list summarizes the flow for such an error. Parts of it are 
congruent with the flow described in more detail in Section 5.4.2. At the 
start of this flow, an executive routine has detected an error and pushed 
onto the stack an exception PC, PSL, error-specific information, and the rest 
of the signal array. 



Table 5.2 Exceptions Passed to a Condition Handler 

Exception 
Type 

Access violation 

Arithmetic 
AST delivery 

stack fault 

Breakpoint 
Change mode to 

supervisor 
Change mode to 

user 
Compatibility 

mode 
Debug signal 
Machine check 
Customer 

reserved 
instruction 

Reserved or 
privileged 
instruction 

Page fault read 
error 

Reserved address­
ing mode 

Reserved operand 
System service 

failure 
Trace pending 

Signal Name 

SS$_ACCVIO 

(See Table 5.3) 
SS$_ASTFLT 

SS$_BREAK 
SS$_CMODSUPR 

SS$_CMODUSER 

SS$_ CO MP AT 

SS$_DEBUG 
SS$_MCHECK 
SS$_0PCCUS 

SS$_0PCDEC 

SS$_PAGRDERR 

SS$_RADRMOD 

SS$_ROPRAND 
SS$_SSFA1L 

SS$_TBIT 

Notes 1 

1, 3d 

2 
3c 

4 

4 

4 

3e 

5 

3b 

3a 

1 These numbers refer to list items in Section 5.4.3. 

Signal 
Array 
Size 

5 

3 
7 

3 
4 

4 

4 

3 
3 
3 

3 

5 

3 

3 
4 

3 

5.4 Exceptions 

Extra Parameters 
in Signal Array 

Reason mask, 
Faulting virtual address 
None 2 

SP value at fault, 
AST parameter, 
PC at AST interrupt, 3 

PSL at AST interrupt, 
Address of AST procedure, 
PSL for AST procedure 
None 
Change mode operand 

Change mode operand 

Compatibility exception code 

None 
None 4 

None 

None 

Reason mask, 
Faulting virtual address 
None 

None 
System service final status 

None 

2 The arithmetic exception has no extra parameters, despite the fact that the CPU pushes an exception 
code onto the kernel stack. VMS converts this code into an exception-specific signal name (see Table 5.3) 
of the form 8 *code+ SS$_ARTRES. 

3 The AST delivery code exchanges the interrupt PC/PSL pair and the PC/PSL to which the AST would 
have been delivered. 

4 A machine check exception reported to a process does not have any extra parameters in the signal 
array. The machine check parameters have been examined, written to the error log, and discarded by the 
machine check exception service routine, as described in Chapter 32. 
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1. If the executive routine itself always runs in kernel mode, it jumps to 
EXE$EXCEPTION, which builds a mechanism array and continues with 
step 4. Otherwise, it jumps to EXE$REFLECT. 

2. EXE$REFLECT builds a mechanism array. It checks whether it is running 
in kernel mode and, if so, continues with step 4. 

3. Otherwise, EXE$REFLECT checks that there is space for the signal and 
mechanism arrays on the target stack using the Adjust Outer Mode Stack 
Pointer ($ADJSTK) system service. It merges with EXE$EXCEPTION, at 
step 5. 

4. EXE$EXCEPTION tests whether the exception should be dispatched to 
a condition handler (see Section 5.7.3.1). If not, it generates a fatal IN­
VEXCPTN bugcheck. 

5. EXE$EXCEPTION moves the signal and mechanism arrays to the target 
stack. 

6. It executes an REI instruction to transfer control to NORMAL, which 
builds the condition handler argument list. 

7. NORMAL dispatches into VAX$MODIFY_EXCEPTION if the exception 
occurred during instruction emulation. 

8. NORMAL transfers to EXE$SRCHANDLER to locate and dispatch to a 
condition handler. 

The following list describes each of the special cases in Table 5.2. Its 
numbers correspond to the notes in that table. 

1. User stack overflow is detected by the hardware as an access violation at 
the low-address end of Pl space. The access violation exception service 
routine tests whether the inaccessible virtual address is at the low end 
of Pl space. If it is, additional virtual address space is created below the 
stack and the exception dismissed. Thus, a user stack expands automat­
ically and transparently. A condition handler is notified about such an 
exception only if the stack expansion is unsuccessful. 

2. Ten types of arithmetic exceptions can occur. The CPU dispatches them 
all through the same SCB vector but uniquely identifies them through 
a code in the exception-specific parameters. The arithmetic exception 
service routine translates the code into a unique signal name. Table 5.3 
lists these signal names and their codes. 

3. The following conditions are detected by executive software: 

a. The system service failure (SS$_SSFAIL) condition is rel'orted when 
a process has enabled signaling of system service failures through the 
Set System Service Failure Mode ($SETSFM) system service and a 
system or RMS service returns unsuccessfully with an error or se­
vere error status. The change mode dispatchers detect such errors. 
They push information about the error onto the stack of the service 
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execution and transfer control to EXE$SSFAIL, in module EXCEP­
TION (see Chapter 6). EXE$SSFAIL completes the signal array and 
jumps to EXE$REFLECT. 

b. The page fault read error (SS$_PAGRDERR) condition is reported 
when a process incurs a page fault for a page on which a read er­
ror occurred during a previous fault for the same page. Information 
about the page fault that led to the condition is already on the 
stack. The translation-not-valid service routine transfers control to 
EXE$PAGRDERR, in module EXCEPTION. EXE$PAGRDERR com­
pletes the signal array and jumps to EXE$EXCEPTION. 

c. The SS$_ASTFLT condition is reported when the asynchronous sys­
tem trap (AST) delivery interrupt service routine detects an inacces­
sible stack while attempting to deliver an AST to a process. The AST 
delivery interrupt service routine pushes information about the er­
ror onto the kernel stack and transfers control to EXE$ASTFLT, in 
module EXCEPTION (see Chapter 7). 

EXE$ASTFLT completes the signal array. EXE$ASTFLT is entered 
with current and previous modes both kernel, since it runs as part 
of an interrupt service routine. The exception handling mechanism 

Table 5.3 Signal Names for Arithmetic Exceptions 

Code Pushed 
Exception Type 

Integer overflow 1 

Integer divide by zero 
Floating overflow 2 

Floating/Decimal divide by zero 2 

Floating underflow 2•3 

Decimal overflow 1 

Subscript range 

Floating overflow 
Floating divide by zero 
Floating underflow 

by CPU 

TRAPS 

1 
2 
3 
4 
5 
6 
7 

FAULTS 

8 
9 

10 

Resulting 
Signal Name 

SS$_INTOVF 
SS$_INTDIV 
SS$_FLTOVF 
SS$_FLTDIV 
SS$_FLTUND 
SS$_DECOVF 
SS$_SUBRNG 

SS$_FLTOVF _F 
SS$_FLTDIV _F 
SS$_FLTUND_F 

1 Integer overflow enable and decimal overflow enable bits in the processor · 
status word (PSW) can be altered either directly or through the procedure 
entry mask. 

2 The three floating-point traps can only occur on VAX-11/780 processors 
earlier than microcode revision (rev) level 7. 

3 The floating underflow enable bit in the PSW can only be altered directly. 
There is no corresponding bit in the procedure entry mask. 
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presumes that the previous mode is the mode of the exception. 
EXE$ASTFLT therefore executes an REI instruction with a PC and 
PSL constructed to transfer to EXE$EXCEPTION with the previous 
mode set to that of the AST. 

d. Most access violations are exceptions detected by the CPU. In addi­
tion, however, the translation-not-valid exception service routine can 
signal an access violation. If it detects a process faulting a page in the 
process header of another process, then it transfers to EXE$ACVIO­
LAT, in module EXCEPTION, the access violation exception service 
routine. Information about the error is already on the current stack. 
This is an unusual error, typically the result of a software failure in 
executive or kernel mode code. 

e. The signal SS$_DEBUG is generated by either the Digital command 
language (DCL) or monitor console routine (MCR) command language 
interpreter (CLI) in response to a DEBUG command entered while an 
image exists in an interrupted state. The DEBUG command processor 
pushes the PC and PSL of the interrupted image, the signal name SS$_ 
DEBUG, and the size of the signal array onto the supervisor stack and 
jumps to EXE$REFLECT. 

A CLI uses this mechanism for the DEBUG signal, rather than sim­
ply calling LIB$SIGNAL, because the DEBUG command is processed 
by supervisor mode code but the condition has to be reported back 
to user mode. 

4. The exception dispatching for the CHMS and CHMU exceptions and 
compatibility mode exceptions can be short-circuited by use of the De­
clare Change Mode or Compatibility Mode Handler ($DCLCMH) system 
service. The $DCLCMH system service enables a user to establish a 
per-process change-mode-to-supervisor, change-mode-to-user, or compat­
ibility mode handler. This service stores the address of the handler in 
CTL$GL_CMSUPR, CTL$GL_CMUSER, or CTL$GL_COMPAT in the 
Pl pointer page. 

The exception service routine for CHMS exceptions, EXE$CMOD­
SUPR in module EXCEPTION, pushes the signal name onto the stack 
and determines in what mode the exception occurred. If it occurred in 
kernel or executive mode, EXE$CMODSUPR completes the signal array 
and jumps to EXE$REFLECT. If the exception occurred in user or super­
visor mode but the process has declared no change-mode-to-supervisor 
handler, EXE$CMODSUPR also completes the signal array and jumps to 
EXE$REFLECT. 

Otherwise, EXE$CMODSUPR removes the signal name from the stack 
and transfers control to the declared handler with the stack in the same 
state in which it was following the exception. That is, the change mode 
operand is at the top of the stack, followed by the exception PC and PSL. 
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The exception service routine for CHMU exceptions, EXE$CMOD­
USER in module EXCEPTION, behaves similarly. For it to transfer to a 
declared change-mode-to-user handler, the exception must have occurred 
in user mode. 

The DCL CLI requests the $DCLCMH service to establish a CHMS 
handler. Its handler is briefly described in Chapter 27. The job controller 
uses a CHMU handler for its processing of error messages. The Files-11 
Extended QIO Processor (XQPJ, running in kernel mode, signals an error 
to its outermost procedure by executing a CHMU instruction from kernel 
mode. 

The exception service routine for compatibility mode exceptions trans­
fers control to the user-declared compatibility mode handler (if one was 
declared) with the user stack in the same state in which it was before the 
compatibility mode exception occurred. That is, no parameters are passed 
to the compatibility mode handler on the user stack. Instead, the service 
routine saves the compatibility mode code, exception PC and PSL, and 
contents of RO through R6 in the first ten longwords of the compatibility 
mode context page, at location CTL$ALCMCNTX. 

5. The reserved instruction fault is generated whenever an unrecognized 
opcode is detected by the instruction decoder. 

VMS uses this fault as a path into bugcheck processing. The reserved 
instruction exception service routine tests whether the reserved opcode 
is either FEFF16 or FDFF16· These two opcodes are reserved for the op­
erating system to signal that it· has detected a serious inconsistency in 
system behavior or data. If the opcode is one of these, the reserved in­
struction exception service routine jumps to the bugcheck routine, which 
is described in Chapter 32. 

Another special case in exception dispatching is the handling of an ex­
ception in the middle of instruction emulation, itself an exception. When 
an exception occurs on a processor with subset instruction emulation, rou­
tine VAX$MODIFY_EXCEPTION (see Section 5.4.2) is invoked. If the ex­
ception occurred in the course of emulating an instruction, VAX$MODIFY _ 
EXCEPTION transforms that exception into one incurred by the emulated 
instruction; it changes the exception PC to be that of the emulated instruc­
tion and rearranges the stack to remove any data pushed onto it during 
instruction emulation. It invokes EXE$EMULAT _REFLECT, in module EX­
CEPTION, to signal the exception as one incurred by the emulated instruc­
tion. Unlike EXE$REFLECT, EXE$EMULAT _REFLECT has no need to alter 
access mode; the dispatching that led to V AX$MODIFY _EXCEPTION has 
already restored the mode of the emulated instruction. 

SOFTWARE CONDITIONS 

One of the choices in the design of a modular procedure is the method for 
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reporting exceptional conditions back to the caller. There are two common 
methods: returning a status in RO, and signaling the error by calling one of 
the Run-Time Library procedures LIB$SIGNAL or LIB$STOP. 

There are two reasons why signaling may be preferable to returning status. 
In some procedures, such as the mathematics procedures in the Run-Time 
Library, RO is already used for returning a function value and is unavail­
able for error return status. The procedure must therefore use the signaling 
mechanism to indicate exceptional conditions, such as an attempt to take 
the square root of a negative number. 

A second common use of signaling occurs in an application using an 
indeterminate number of procedure calls to perform some action, such as 
a recursive procedure that parses a command line. In such a case, the use 
of a return status is often cumbersome and difficult to code. The signaling 
mechanism provides a graceful way not only to indicate that an error has 
occurred but also to return control (through the $UNWIND system service) 
to a known alternative return point in the calling hierarchy. 

A procedure calls LIB$SIGNAL cir LIB$STOP with the name o~ the COJldi­
tion to be signaled and whatever additional parameters are to be passed to a 
condition handler. LIB$STOP is an alternative entry point to LIB$SIGNAL. 

I • , . . ' 

(This chapter refers to the combined procedures as LIB$SJGNAL/STOP.) 
LIB$SIGNAL and LIB$STOP differ in whether normal. executjon i:µay be 

resumed after the condition J;iandler for the signaled error returns. µse of 
LIB$SIGNAL enables the image to continue if the condition handler returns 
the status SS$_CONTINUE. Use of LIB$STOP does not. The two entry 
points store different values in the stack flags longword, which is tested 
by the code to which a condition handler returns. 

Before LIB$SIGNAL/STOP can initiate the search for a .condition handler, 
it must transform the stack to one resembling an exception stack. LIB$SIG­
NAL/STOP constructs a signal array and removes the frame generated by the 
call to itself. If LIB$SIGNAL/STOP was entered with a CALLS instruction, it 
must also move the argument list onto the stack. It restores the saved argu­
ment pointer (AP) and frame pointer (FP). LIB$SIGNAL/STOP moves other 
information, such as the saved PC and processor status word IPSW) to a 
signal array it constructs on the stack. The signal array also incorporates 
any arguments from the call to LIB$SIGNAL/STOP. Figure 5.4 shows the 
transformed state of the stack following a call to LIB$SIGNAL/STOP. 

LIB$SIGNAL/STOP next builds a mechanism array, saving RO and Rl in 
it, and a condition handler argument list. After building the three argument 
lists, LIB$SIGNAL/STOP invokes the same condition handler search code as 
exception handling. It jumps to SYS$SRCHANDLER, a system service vector 
that contains a jump to EXE$SRCHANDLER. The indirection supplies the 
Run-Time Library with a constant address through which to dispatch to 
EXE$SRCHANDLER. 
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The search for condition handlers takes place on the stack of the caller of 
LIB$SIGNAL/STOP. 

5.6 UNIFORM CONDITION DISPATCHING 

Once information concerning the condition has been pushed onto the stack, 
there are few differences between exceptions and software conditions. The 
following sections discuss condition dispatching in general terms and ex­
plicitly mention EXE$EXCEPTION or LIB$SIGNAL/STOP only where their 
operations differ. 

5.6.1 The Search for a Condition Handler 

5.6.1.1 

5.6.1.2 
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At this point in the dispatch sequence, the signal and mechanism arrays and 
the condition handler argument list have been set up on the stack of the 
access mode to which the condition will be reported. EXE$SRCHANDLER 
uses the mechanism array longword initially containing the FP of the estab­
lisher frame (see Figure 5.3) to record the extent of the search. The depth 
argument in the mechanism array not only provides useful information to a 
condition handler that unwinds but also enables EXE$SRCHANDLER to dis­
tinguish a call frame handler (non-negative depth) from a software-vectored 
condition handler (negative depth). 

Primary ;md Secondary Exception Vectors. EXE$SRCHANDLER begins its 
search with the primary vector of the access mode in which the exception 
occurred. If the vector contains the address of a condition handler (any 
nonzero contents), EXE$SRCHANDLER sets the depth at -2 and calls the 
handler. 

The primary handler (and any other condition handler) can return sev­
eral status codes. One status code, SS$_RESIGNAL, known as a resignal, 
means that EXE$SRCHANDLER should continue its search for a condition 
handler. Resignaling and other condition handler responses are described in 
Section 5.8. 

If the primary handler resignals or if none exists, EXE$SRCHANDLER 
performs the same step for the secondary vector handler, with the depth at 
-1. If the secondary handler resignals or there is none, EXE$SRCHANDLER 
next looks for call frame condition handlers. 

Call Frame Condition Handlers. EXE$SRCHANDLER examines the contents 
of the current call frame. If the first longword in the current call frame is 
nonzero, EXE$SRCHANDLER calls that handler with the depth at 0. If the 
longword is zero or if that handler resignals, EXE$SRCHANDLER examines 
the next earlier call frame by using the saved frame pointer in the current call 
frame (see Figure 5.5). As it examines each earlier call frame, it increments 
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the depth to record the number of frames examined and places that frame's 
address in the frame pointer of the mechanism array. 

EXE$SRCHANDLER continues the search until one of the following 
occurs: 

• A handler returns a status requesting the resumption of the thread of 
execution that incurred the exception. 

• EXE$SRCHANDLER finds a saved frame pointer whose value is not within 
the bounds of that access mode's stack. 

A saved frame pointer value may be out of range as a result of stack 
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5.6.1.3 

corruption. A saved frame pointer value of zero indicates the end of the 
call frame chain . 

• EXE$SRCHANDLER reaches the end of the call frame chain. 
A saved frame pointer that points outside the stack terminates the call 

frame chain. The end of an inner access mode call frame chain can also 
be indicated by either a. change mode dispatcher call frame, described in 
Chapter 6, or an AST delivery call frame, described in Chapter 7. Either 
indicates that an access mode change occurred. 

Ha handler returns a status code with the low bit set, EXE$SRCHANDLER 
cleans off the stack, restores RO and Rl from the mechanism array, and 
executes an REI instruction using the saved PC and PSL from the signal array. 
This resumes the thread of execution that incurred the exception. Note that 
EXE$SRCHANDLER passes control back with an REI instruction, even if the 
condition was caused by a call to LIB$SIGNAL/STOP. LIB$SIGNAL/STOP 
discarded the frame resulting from its call, so that the stack resembles an 
exception stack (see Figure 5.4). 

Last Chance Condition Handler. H all handlers resignal or none is found, the 
search terminates at the end of the call frame chain. EXE$SRCHANDLER 
then calls the last chance handler with the depth at -3. (This handler is 
also called if any error occurs during the search for a condition handler.) The 
usual last chance handler is the catch-all condition handler established as 
part of image initiation. Section 5.7.2 describes this handler. 

H the last chance handler returns or there is none, and the exception 
occurred in user or supervisor mode, EXE$SRCHANDLER calls the executive 
procedure EXE$EXCMSG (see Chapter 36). Its two input parameters are an 
ASCil string containing message text and the condition handler argument 
list. Following the call to EXE$EXCMSG, EXE$SRCHANDLER requests the 
Exit ($EXIT) system service with a status indicating either that no handler 
was found or that a bad stack was detected while searching for a condition 
handler. 

H the exception occurred in executive or kernel mode, EXE$SRCHAN­
DLER generates a FATALEXCPT bugcheck, nonfatal for executive mode or 
fatal for kernel mode. 

5.6.2 Multiple Active Signals 

90 

An exception in a condition handler or in some procedure called by a con­
dition handler results in a condition called multiple active signals. To avoid 
an infinite loop of exceptions, EXE$SRCHANDLER modifies its search al­
gorithm so that when it services the second condition, it skips those frames 
it searched while servicing the first condition. 

For this skipping to work correctly, call frames of condition handlers must 
be distinguishable from other call frames. VMS arranges this by calling all 
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handlers from a known location, so that the saved PC of a condition handler 
call frame is unique. 

Common Call Site for Condition Handlers. In order to dispatch to a handler, 
EXE$SRCHANDLER stores the address of the handler in Rl and transfers to 
the common call site with the following instruction: 

JSB G#SYS$CALL_HANDL 

The code at SYS$CALLHANDL simply calls the procedure whose address 
is stored in Rl and returns to its invoker with an RSB: 

SYS$CALL_HANDL:: 
CALLG 4(SP),(R1) 
RSB 

When the CALLG instruction is executed, the address of the next .instruc­
tion, SYS$CALLHANDL + 4, is recorded in the call frame as the saved PC. 
Thus, the identifying characteristic of a condition handler call frame is the 
address SYS$CALLHANDL + 4 as the saved PC. This signature is used not 
only by the search procedure, as described in the following section, but also 
by the Unwind Call Stack !$UNWIND) system service. 

Example of Multiple Active Signals. The modified flow of control when 
the search procedure encounters a condition handler call frame can best 
be illustrated through an example. The example assumes that the primary 
and secondary condition handlers lif they exist) have already resignaled. The 
numbers in Figures 5.5 and 5.6 correspond to the following steps: 

G) Procedure A calls procedure B, which calls procedure C. 
G) Procedure C generates signal S. 
G)Handler CH resignals. The depth argument is 1, and the establisher frame 

argument points to the call frame for procedure B, when BH is called. 
Figure 5.5 shows the stack at this point. 

@The call frame for handler BH is located later in time on the stack, at 
lower virtual addresses than the signal and mechanism arrays for signal S 
!see Figure 5.6). The saved frame pointer in the call frame for BH points 
to the frame for procedure C. 

@Handler BH now calls procedure X, which calls procedure Y. 
@Procedure Y generates signal T. The desired sequence of frames to be 

examined is frame Y, frame X, frame BH, and then frame A. Frames B and 
C are skipped because they were examined while servicing condition S. 

G) EXE$SRCHANDLER proceeds in its normal fashion. The primary and 
secondary vectors are examined first lno skipping here). Then frames Y, 
X, and BH are examined, resulting in handlers YH, XH, and BHH being 
called in turn. Assume that all these handlers resignal. After handler 
BHH returns to EXE$SRCHANDLER with a status of SS$_RESIGNAL, 
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Modified Search with Multiple Active Signals 

EXE$SRCHANDLER notes that frame BH is the frame of a condition 
handler, because its saved PC is SYS$CAL1-HANDL + 4. 

G) The skipping is accomplished by locating the frame that established this 
handler. The address of that frame is located in the mechanism array for 
signal S. 



5.7 

5. 7 Default (VMS-Supplied) Condition Handlers 

To locate the mechanism array for signal S, EXE$SRCHANDLER cal­
culates the value of SP before the call to BH, using the register save mask 
and stack alignment bits in the call frame. 

G) One extra longword, the return PC from the JSB to SYS$CAL1-HANDL, 
must be skipped to locate the argument list (and thus the mechanism 
array) for signal S. 

@The frame pointed to by the establisher frame pointer in the mechanism 
array, which is the call frame for B, has already been searched. The next 
frame examined by the search procedure is the call frame of A, which is 
pointed to by the saved frame pointer in the call frame of B. The depths 
that are passed to handlers as a result of the modified search are 0 for 
YH, 1 for XH, 2 for BHH, and 3 for AH. Figure 5.6 shows the stack at the 
point where handler AH has been located. 

DEFAULT (VMS-SUPPLIED) CONDITION HANDLERS 

The use of condition handlers is general and can be specified by the user. 
However, some actions always occur as the result of default condition han­
dlers that are established by the executive as a part of process creation or 
image activation. 

The discussions of process creation in Chapter 25 and image activation in 
Chapter 26 point out exactly when and how each of the handlers described 
in this section is established. The action of each of these handlers, once they 
are invoked, is briefly described in the following sections. 

5.7.1 Traceback Handler Established by Image Startup 

When an image includes either the debugger or the traceback handler, an­
other frame is put on the user stack before the image itself is called (see 
Chapter 26). EXE$IMGSTA, in module SYSIMGSTA, the code that executes 
before the image is called, stores the address of its own condition handler in 
this frame so that it will be entered for any subsequent condition that is not 
handled by an intervening condition handler. 

This handler first checks whether the condition that occurred is SS$_ 
DEBUG. If so, it maps the debugger into PO space (if not already mapped) 
and passes control to it. The condition SS$_DEBUG is signaled by a CLI in 
response to a DEBUG command. This feature allows an image that was not 
linked or run with debugger support to be interrupted and have a debugger 
invoked. 

For all other conditions, if the severity level is warning, error, or severe 
error, the handler maps the traceback facility above the end of defined PO 
space and passes control to it. The traceback facility passes information 
about the exception to SYS$0UTPUT and terminates the image. 

If the severity level is other than the three listed, the traceback condition 
handler resignals the condition, which usually means that the condition is 
being passed on to the catch-all condition handler. 
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5.7.2 Catch-All Condition Handler 

The address of this handler, EXE$CATCH_ALL, is placed in an initial call 
frame on the user stack and in the last chance vector for user mode by either 
EXE$PROCSTRT when the process is created or by a CLI before an image is 
called. This handler is always called if no other handlers exist or if all other 
handlers resignal. Because the address of the handler is duplicated in the last 
chance vector, it is also called in the event of an error in the search through 
the user stack. 

The first step that EXE$CATCILALL takes is to call SYS$PUTMSG (see 
Chapter 36). If the handler was called through the last chance vector (the 
depth argument in the mechanism array is -3) or if the severity level of the 
condition name in the signal array indicates severe (condition-name (2:0) 
GEQU 4), then EXE$EXCMSG (see Chapter 36) is called to print a summary 
message, and the image is terminated; otherwise, the image is continued. 

5.7.3 Handlers Used by Other Access Modes 

5.7.3.1 
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In addition to the handlers that VMS supplies for user mode conditions, it 
sets up handlers for the other three access modes. 

Exceptions in Kernel or Executive Mode. When a kernel mode exception 
occurs, EXE$EXCEPTION makes special checks to determine whether it 
should dispatch the exception. It checks that 

• The processor was running on the kernel stack 
• IPL was at or below 2 
• The Pl page containing the limits of the process's stacks is accessible (in 

fact, that the process has a typical Pl space) 

If any of these is not true, the dispatcher generates a fatal INVEXCPTN bug­
check. Routines whose exceptions can cause this bugcheck include interrupt 
service routines, device drivers (except for their function decision table ac­
tion routines), process-based code executing above IPL 2 (such as portions of 
various system services), and any code running in the context of the swapper 
process. 

If all of these are true, then exception dispatching proceeds in its usual 
manner. If no primary, secondary, or call frame condition handlers service 
the exception, the dispatcher invokes the last chance condition handler. 

The last chance exception vectors for both kernel and executive modes are 
initialized at process creation in module SHELL (see Chapter 25). 

The kernel mode last chance handler, EXE$EXCPTN, in module SYSTEM_ 
ROUTINES, generates a fatal SSRVEXCEPT bugcheck. Routines whose ex-
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ceptions can result in this bugcheck include portions of many system ser­
vices, many exception service routines, device driver function decision table 
action routines, and procedures that are entered through a user-written sys­
tem service dispatcher or the Change to Kernel Mode ($CMKRNL) system 
service. 

The executive mode last chance handler, EXE$EXCPTNE, in module SYS­
TEM_ROUTINES, generates a nonfatal SSRVEXCEPT bugcheck, causing an 
error to be logged, and exits the image from executive mode, causing the 
process to be deleted. Routines that execute in executive mode include 
RMS, parts of the executive, and procedures that are entered through ei­
ther a user-written system service dispatcher or the Change to Executive 
Mode ($CMEXEC) system service. Note that if the SYSGEN parameter 
BUGCHECKFATAL is 1, a nonfatal SSRVEXCEPT bugcheck is treated as 
a fatal bugcheck and results in a crash. 

Chapter 32 describes bugcheck processing in detail. 

Condition Handler Used by DCL or MCR. The DCL and MCR CLis establish 
nearly identical condition handlers at the beginning of their command loops 
to field conditions that occur in supervisor mode. 

The LOGINOUT image activates a CLI (DCL or MCR) and calls it. The 
first step of the CLI is to establish a supervisor mode condition handler to 
handle its own internal errors. It establishes this handler as a call frame 
condition handler in the oldest call frame on the supervisor mode stack. 
The condition handler performs two tasks when it is called: 

1. It cancels any exit handlers that have been established. 
2. It resignals the error. 

There are no other condition handlers. When the search ends, the image 
is exited in supervisor mode, resulting in process deletion. 

5.8 CONDITION HANDLER ACTION 

A condition handler first determines the nature of the condition by exam­
ining the signal name argument in the signal array (see Figure 5.2). It then 
decides what action to take: 

• It can pass the condition along to another handler by resignaling . 
• It can fix the condition and allow execution to continue at the point in the 

program that incurred the exception . 
• It can also allow execution to resume at a previous place in the calling 

hierarchy by removing a number of call frames from the stack, a process 
called unwinding. 
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5.8.1 Resignal or Continue 

H a condition handler cannot deal with the type of condition signaled, it 
returns the status SS$_RESIGNAL to inform EXE$SRCHANDLER that the 
search for a handler must continue. A condition handler, like any other 
procedure, returns a status in RO. 

H, however, a condition handler can resolve the condition, it returns the 
status SS$_CONTINUE to EXE$SRCHANDLER. This status means that the 
thread of execution that incurred the condition can continue. 

When EXE$SRCHANDLER receives the status SS$_CONTINUE, it first 
checks if this was a condition signaled through LIB$STOP. H so, normal 
execution cannot continue, and EXE$SRCHANDLER calls the last chance 
handler, if it has not already been called, and proceeds with the action 
described in Section 5.6.1.3. 

H the condition was not signaled through LIB$STOP, EXE$SRCHANDLER 
removes the condition handler argument list and mechanism array from the 
stack, restoring RO and Rl in the process. It then removes from the stack 
all of the signal array except the condition PC and PSL. Finally, it removes 
these by executing an REI instruction to dismiss the exception and to return 
to the thread of execution that incurred the condition. 

Where control returns depends on what sort of condition occurred: 

• H the condition was a fault type of exception (such as an access violation), 
control returns to the instruction that caused the exception . 

• H the condition was a trap type of exception (such as integer overflow), 
control returns to the instruction following the instruction that caused 
the exception . 

• H the condition was an abort type of exception, control returns to the 
instruction that caused the exception. Because an abort represents an in­
struction that could neither be completed nor rolled back, it would be 
ill-advised for a handler to continue from one . 

• H the condition was a software condition, which is signaled by a call 
to LIB$SIGNAL, control returns to the instruction following the CALLx 

instruction. 

5.8.2 Unwinding Call Frames from the Stack 
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A condition handler's third option is to alter the flow of control by requesting 
the $UNWIND system service. Through this service, the handler returns 
control to a previous level in the calling hierarchy by throwing away, or 
unwinding, a number of call frames. 

The $UNWIND system service has two arguments, both of which are 
optional: 

• The DEPADR argument specifies the number of frames to be removed from 
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the call stack. If it is omitted, its default is for all the call frames to be 
unwound from the frame that incurred the condition up to and including 
the frame whose condition handler is executing. 

• The NEWPC argument specifies the address to which control should be 
returned after the unwind is complete. If it is omitted, its default is for 
control to return to the PC saved in the call frame next outermost to the 
unwound ones. 

The $UNWIND system service procedure, EXE$UNWIND in module SYS­
UNWIND, runs in the mode from which it is called. It uses two local 
routines, STARTUNWIND and LOOPUNWIND. EXE$UNWIND does not 
actually remove frames from the stack. Rather, it replaces the saved PC in 
the specified number of frames so that STARTUNWIND or LOOPUNWIND 
will be entered when each unwound procedure executes a RET instruction. If 
the NEWPC argument was present, EXE$UNWIND replaces the saved PC in 
the call frame just earlier than the unwound ones lat higher addresses) with 
the specified value. 

Figure 5.7 shows an example of the effects of the $UNWIND system 
service. 

As each procedure executes a RET instruction, the registers saved in its 
call frame are restored and control is passed to LOOPUNWIND. If the cur­
rent frame has an associated call frame condition handler, LOOPUNWIND 
signals it with the condition name SS$_UNWIND so that it can perform 
procedure-specific cleanup. When the condition handler returns, LOOPUN­
WIND executes a RET instruction on behalf of the procedure to discard the 
current call frame. llf a handler called in this way requests the $UNWIND 
system service rather than returning, the $UNWIND system service returns 
the error status SS$_UNWINDING to indicate that an unwind is already in 
progress.) 

This sequence continues until the specified number of call frames have 
been discarded. The technique of calling handlers as a part of the unwind 
sequence enables a handler that previously resignaled a condition to re­
gain ~ontrol and perform procedure-specific cleanup and also ensures correct 
restoration of registers saved within each call frame. 

5.8.3 Example of Unwinding the Call Stack 

Figure 5. 7 illustrates an example of an unwind sequence. The example begins 
with the sequence pictured in Figure 5.5. Procedure A calls procedure B, 
which calls procedure C. Procedure C generates signal S. The primary and 
secondary handlers lif they exist) simply resignal. Handlers CH and BH also 
resignal. 

Finally, handler AH is called. To unwind the call stack back to its estab­
lisher frame, AH requests the $UNWIND system service with the DEPADR 
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argument equal to the value contained in the mechanism array, in this ex­
ample, 2. After the call to $UNWIND, but before the frame modification 
occurs, the stack has the form pictured on the left-hand side of Figure 5.7. 

EXE$UNWIND's frame modification proceeds as follows lthe numbers in 
this list correspond to the numbers in Figure 5. 7): 

G) EXE$UNWIND scans the stack for a condition handler call frame. Re­
call that a condition handler call frame is identified by a saved PC of 
SYS$CALL_HANDL + 4. 

G)EXE$UNWIND does not modify its own frame. Later, when it executes 
a !\ET instruction, control will return to handler AH. 
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G) The first frame EXE$UNWIND modifies is that of the first condition 
handler it encounters scanning the stack, the frame for AH. EXE$UN­
WIND replaces its saved PC with the address of STARTUNWIND. 

When handler AH later executes a RET instruction, control returns 
to STARTUNWIND rather than to SYS$CALL_HANDL and EXE$SRC­
HANDLER. Consequently, control does not return to procedure C, 
which incurred the exception. Its return PC is stored in the mechanism 
array and could only be restored by an REI instruction. 

@EXE$UNWIND continues to modify the saved PC longword in successive 
frames on the call stack until the number of frames specified (or implied) 
in its DEPADR argument have been modified. In all frames except the first, 
it replaces the saved PC with the address of LOOPUNWIND. 

G) If the NEWPC argument was present, the call frame in which it would be 
inserted is the next frame beyond the last frame specified (or implied) in 
the DEPADR argument. In this example, the value of the NEWPC argument 
would be stored in the call frame for procedure B. 

Now that all the frames have been modified, the actual unwinding occurs. 
The sequence of steps is as follows: 

1. EXE$UNWIND returns control to handler AH. 
2. Handler AH does whatever else it needs to do to service the condition. 

When it is done, it executes a RET instruction, passing control to START­
UNWIND. 

3. STARTUNWIND first restores RO and Rl from the mechanism array. It 
then performs the following three steps: 

a. If a handler is established for this frame, STARTUNWIND calls it 
with the signal name SS$_UNWIND. 

b. If either RO or Rl is specified in the register save mask, STARTUN­
WIND replaces the value of that register in the register save area of 
the call frame with the current contents of the register. Note that 
this is rather an unusual case. The procedure calling standard (see 
Introduction to VMS System Routines) specifies that RO and Rl are 
to be used to return status codes and function values and that they 
should not appear in a procedure register save mask. 

c. STARTUNWIND returns control to the address specified by the saved 
PC longword of the current call frame by executing a RET instruction. 

4. The RET executed in step 3c passes control to LOOPUNWIND, which 
repeats steps 3a through 3c. 

5. The RET that discards the call frame for procedure B passes control back 
to the instruction in procedure A that follows the call to procedure 
B (assuming the NEWPC argument was omitted), where execution will 
resume. 

In effect, STARTUNWIND and LOOPUNWIND simulate returns from 
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each nested procedure that is being unwound. These procedures never receive 
control again. However, the outermost procedure receives control as if all the 
nested procedures had returned normally. 

5.8.4 Potential Infinite Loop 

There is one possible problem that can occur with this implementation. 
The previous section pointed out that EXE$SRCHANDLER takes care (when 
multiple signals are active) not to search frames for the second condition 
that were examined on the first pass. If a condition handler generates an 
exception, it is not called in response to its own signal (unless it establishes 
itself to handle its own signals! J. 

However, EXE$UNWIND cannot perform such a check. It must call each 
condition handler that it encounters as it removes frames from the stack. 
Thus, a poorly written condition handler (one that generates an exception) 
could result in an infinite loop of exceptions if a handler higher up in the 
calling hierarchy unwinds the frame in which this poorly written handler is 
declared. This loop has no effect on the system beyond that of any compute­
bound process but can ruin the process in which the handler executes. 

5.8.5 Unwinding Multiple Active Signals 
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There is a slight change in EXE$UNWIND when multiple signals are active. 
While modifying saved PCs in call frames, EXE$UNWIND counts the num­
ber of frames that have been modified until the requested number has been 
reached. The only change that occurs with multiple active signals is that the 
loop stops counting while the skipped frames are being modified. 

The example of multiple active signals pictured in Figures 5.5 and 5.6 can 
be used to illustrate the unwinding. Recall that procedure A called proce­
dure B, which called procedure C, which signaled S. Handler CH resignaled. 
Handler BH called procedure X, which called procedure Y, which signaled T. 
Handlers YH, XH, and BHH all resignaled. Finally, handler AH was called 
for signal T with a depth of 3. 

If AH requests the $UNWIND system service, the top of the stack is as 
pictured in Figure 5.8, with the continuations of this figure in Figure 5.6. 
Assume that the depth argument passed to $UNWIND is 3 (taken from the 
mechanism array and meaning unwind to the establisher of AH), and the 
alternative PC argument is not present. 

The end result of the operation of EXE$UNWIND in this case is as follows: 

1. EXE$UNWIND looks down the call stack until it locates a condition 
handler, which in this case is AH. The saved PC is modified to START­
UNWIND. 

2. The saved PC longwords in frames Y and X are altered to contain ad­
dress LOOPUNWIND. Note that EXE$UNWIND has now altered three 
frames. 
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3. Because the next frame on the stack, BH, indicates a condition handler 
(saved PC of SYS$CAL1-HANDL + 4), its associated mechanism array is 
located (by skipping saved registers, stack alignment bytes, and a saved 
PC from the JSB instruction). The saved PCs in all frames up to the 
frame pointed to by the mechanism array are modified (but not counted 
toward the number specified in the argument passed to the $UNWIND 
system service) to contain address LOOPUNWIND. This modification 
causes frames BH and C to get their saved PCs altered in the example. 

4. The saved PC in the frame for procedlire B is not altered, so that when 
the unwind takes place, control will return to the call site of procedure 
B in procedure A. 

5.8.6 Correct Use of Default Depth in $UNWIND 

A default depth argument of 0 to the $UNWIND system service specifies 
that the stack is to be unwound to the caller of the handler's establisher. In 
most cases, the caller of the handler's establisher is equivalent to the depth 
of the handler plus 1. However, because of an inherent ambiguity in counting 
the stack frames when multiple active signals are present, it is important 
that the default rather than an explicit depth be used when unwinding to 
the caller of the establisher. 
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Consider the two following cases of nested conditions. In Figure 5.9, pro­
cedure A calls procedure B. A condition causes handler BH to be called. An 
exception within BH causes handler AH to be called (because frame B is 
skipped, as described in Section 5.6.2). The depth of the mechanism vector 
in AH's argument list is 1. For AH to unwind to its establisher, it must spec­
ify an explicit depth of 1 to the $UNWIND system service. EXE$UNWIND 
removes one frame, as specified by the count. EXE$UNWIND then notices 
that the next frame is a handler frame and therefore continues to remove 
stack frames until it finds the establisher of the handler. This discovery 
completes the unwind to frame A. 
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Now consider Figure 5.10, in which procedure A incurs an exception, re­
sulting in the invoking of handler AH. Handler AH then causes an exception, 
causing its handler AHH to be invoked. The depth of AHH is 0. Suppose 
that AHH wishes to unwind to the caller of its establisher. The establisher 
of AHH is AH. Since AH is a handler, its caller is the condition dispatcher, 
not procedure A. 

Compare Figure 5.10 with Figure 5.9 and consider what happens if AHH 
requests the $UNWIND system service with an explicit depth of 1 (its depth 
plus 1). The depth of 1 causes AHH's frame to be removed. EXE$UNWIND 
then notices that the next frame is a handler frame and therefore unwinds it 
back to its establisher (frame A). Note that once AHH's frame is removed, 
the stack is indistinguishable from the stack in Figure 5.9 (down to frame B). 
Thus, requesting $UNWIND with an explicit depth of 1 results in control 
being returned to procedure A, which is incorrect. 

Therefore, for AHH to unwind to EXE$SRCHANDLER, the caller of its 
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establisher, it must specify a default depth. When this is done, EXE$UN­
WIND's behavior upon encountering a handler frame after the count has 
been exhausted is modified so that the stack is not unwound further, and 
control passes correctly back to the condition dispatcher. 

Because of the inherent ambiguity of these two cases, it is important that 
handlers always use the default depth when unwinding to the caller of their 
establisher. 

5.8.7 Unwinding ASTs 
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EXE$UNWIND must perform special processing to unwind out of ASTs. 
Simply removing the stack frames would ignore the presence of the AST 
and fail to dismiss the AST properly. 

This situation is depicted in Figure 5.11. For handler XH to unwind to the 
caller of its establisher (procedure A), it must also unwind out of the AST. 
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The problem is solved by having EXE$UNWIND recognize the return PC 
in an AST call frame, the address EXE$ASTRET. This PC in a call frame 
implies that the AST argument list immediately precedes the call frame 
on the stack; that is, the AST argument list is at higher virtual addresses. 
In this case, EXE$UNWIND stores the unwind PC (STARTUNWIND or 
LOOPUNWIND) not in the call frame but rather in the return PC of the 
AST argument list. EXE$UNWIND also stores the current RO and Rl in the 
AST argument list so that they will propagate through the unwind process. 

When the AST procedure returns during the actual unwinding of the stack, 
it returns to EXE$ASTRET, which dismisses the AST and executes an REI 

instruction, using the PC and PSL in the AST argument list. Control passes 
to STARTUNWIND or LOOPUNWIND because of the modified PC. 

While it is technically possible to unwind out of an AST, this must be 
done with some caution. If the AST procedure has any sort of side effects, 
it is essential to have a condition handler declared by the AST procedure to 
clean up the side effects when the AST is unwound. (Note that issuing an 1/0 
operation is a side effect of the highest order!) Cleaning up any procedures 
of the main line program from which an unwind was executed may be more 
difficult, because the asynchronous nature of ASTs means that unwinding 
could take place at any instant during the execution of a program. 
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6.1 

System Service Dispatching 

Between the idea 
And the reality 
Between the motion 
And the act 
Falls the Shadow. 

T. S. Eliot, The Hollow Men 

Many of the operations that the VMS operating system performs on behalf 
of the user are implemented as procedures called system services. Most of 
these procedures are contained in loadable executive images and reside in 
system space; others are contained in privileged shareable images. Applica­
tion programs request system services directly. Components such as Record 
Management Services (RMS) request system services on behalf of the user. 
System services typically execute in kernel or executive access mode so that 
they can read or write data structures protected from access by less privileged 
access modes. 

A system service is requested through a system service vector. The system 
service vector for an inner access mode system service contains either a 
CHMK or a CHME instruction whose operand identifies the system service. 
Executing a CHMK or a CHME causes an exception; the CHMK and CHME 
exception service routines are called change mode dispatchers. A change 
mode dispatcher transfers control to the actual procedure that implements 
the service. 

This chapter describes how control is passed from a user program to the 
procedures that execute service-specific code. 

SYSTEM SERVICE VECTORS 

A process requests a particular system service by CALLing a procedure whose 
name has the form SYS$service. SYS$service is a system global symbol that 
is the address of a minimal procedure called a system service vector. The 
system service vector procedure executes in the mode of the caller and serves 
as a bridge between the caller and the actual procedure(s) that implement 
the service request. The actual procedure may be part of a loadable executive 
image and may execute in an inner access mode. The usual name of the 
procedure that performs the actual work of the system service is EXE$service 
or RMS$service. 

6.1.1 Location of System Service Vectors 
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The address of a system service vector is constant for all versions of VMS so 
that existing user programs will not have to be relinked for a new version of 
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VMS. Prior to Version 3 of VMS, system service vectors were only defined in 
the lowest pages of system address space, beginning at location 8000000016. 

Iri Version 3 and subsequent versions, each system service vector can be 
accessed through t~o different addresses, a system space address and a Pl 
space address. The physical pages containing the system service vectors are 
doubly mapped, both in system space and in the Pl space of each process. 
The Pl space definitions begin at 7FFEDE0016 and enable system services 
to be intercepted on a per-process basis. The linker, by default, resolves a 
system service vector global to its Pl space value using module SYS$PL 
VECTOR in SYS$LIBRARY:STARLET.OLB. 

VMS Version 5 reserves 16 pages of virtual address space for system ser­
vice vectors. The system addresses of the vectors are defined in the base 
image SYS.EXE, from SYS$SO_ VECTOR_BASE to SYS$SO_ VECTOR_END. 
Currently, five pages of that area are occupied, to SYS$SO_ VECTOR_LAST _ 
USED. 

6.1.2 Contents of System Service Vectors 

Each system service vector consists of at least eight bytes of code and data. 
Many vectors consist solely of a global entry point named SYS$service, a 
register save mask, a single instruction that transfers control eventually to 
a service-specific procedure in the executive, and an instruction (usually a 
RET) that passes control back to the caller. Other vectors, called composite 
vectors, transfer control to multiple procedures. 

Most of the system services execute in kernel mode; their system service 
vectors contain a CHMK instruction. A few system services and all RMS sere 
vices contain a CHME instruction. Some services, such as the text formatting 
services, execute in the access mode of the caller and dispatch directly to 
the service-specific code in the executive with a JMP instruction. Follow­
ing are the three sets of instructions found in simple system service vectors. 
Table 6.1 lists the VMS system services that use each of these three methods 
of initial dispatch. 

Vectors for system services that change mode to kernel contain the fol­
lowing code: 

SYS$service: : 

.WORD entry-mask 

CHMK 1·#service-specific-code 

;Entry point for services that 
; execute in kernel mode 
;Mask at EXE$service, OR'd with 
; R2 and R4 

RET ;Return to caller 
.BLKB 1 ;Spare byte to make vector 

; eight bytes long 

Vectors for system" services that change mode to executive contain the 
following code: 

107 



System Service Dispatching 

108 

SYS$service:: 

.WORD 

CHME 
RET 
.BLKB 

;Entry point f.or services that 
; execute in executive mode 

entry-mask ;Mask at EXE$service, OR'd with 
; R2 and R4 

!~#service-specific-code 

1 
;Return to caller 
;Spare byte to make vector 
; eight bytes long 

Vectors for system services that do not change mode contain the following 
code: 

SYS$service: : 

.WORD entry-mask 

JMP G#EXE$service + 2 

;Entry point for services that 
; execute in the access mode 
; of the caller 
;This mask is identical to the 
; mask found at location 
; EXE$service 
;Transfer control to 

first instruction after the 
; entry mask at EXE$service 

Some system services perform their requested function and always return 
immediately to their caller. Others, called asynchronous system services, 
initiate some system activity on behalf of the caller and return. To synchro­
nize with completion of the initiated activity, the caller waits for an event 
flag associated with the system service request to be set. A synchronous 
service initiates the activity, just as its asynchronous counterpart does, but 
waits for completion of the activity before returning to its caller. 

A synchronous system service is generally named for the asynchronous 
system service it requests. A trailing "W" in the name of the synchronous 
service distinguishes the two: $QIO and $QIOW, for example. RMS, how­
ever, does not use service names and additional system service vectors 
to distinguish between the synchronous and asynchronous forms of a ser­
vice. For example, the RMS service $READ does not have a corresponding 
$READW form. Instead, the asynchronous or synchronous form of a particu­
lar RMS request is specified by the content of the file and record stream data 
structures. 

The mechanism used by synchronous system services to test for and await 
completion varies. Most non-RMS services use composite system service 
vectors. RMS services use a special return mechanism. 

A composite system service vector first dispatches to an asynchronous 
system service, which returns when the request is initiated. The code in the 
vector then branches to another system routine to wait for completion of 
the asynchronous request. 

To guarantee completion of this type of synchronous system service re­
quest, the caller must specify both an event flag and a status block II/O status 
block or lock status block). The asynchronous service procedure clears the 



6.1 System Service Vectors 

event flag and status block associated with the request. The synchronous 
system service vector code uses a combination of event flag and status block 
to test for request completion, placing the process into event flag wait if the 
request is not complete. 

This mechanism prevents a premature return to the synchronous service 
caller as the result of concurrent uses of the same event flag. (Note, however, 
that if the caller omits the optional status block,· the mechanism reverts to 
being a simple wait for event flag.) The mechanism is requested explicitly 
as the Synchronize ($SYNCH) system service and implicitly as part of each 
synchronous system service. Section 6.3.5.3 gives more information on this 
mechanism. 

Table 6.1 lists the synchronous system services. 
The composite system service vector for the synchronous service Queue 

1/0 Request and Wait ($QIOW) follows in a slightly simplified form. Note 
that its entry mask is the logical OR of the masks of all service procedures 
to which this composite vector dispatches. 

SYS$QIOW:: 
.WORD -M<R2,R3,R4,R5,R6,R7,R8,R9,R10,R11> 
CHMK r#QIO 
BLBC RO,ERROR_QIOW ;Don't wait if error 

; queuing request 
PUSHL QIO$_IOSB(AP) ;Fetch IOSB address 

BRW QIO_ENQ_SYNCH 

ERROR_QIOW: 
RET 

; if specified 
;Branch to QIO_ENQ_SYNCH 

located in SYNCH system 
; service 

;Return if error 

In earlier versions of VMS, RMS services were implemented with compos­
ite vectors similar to the composite vectors previously described. For Version 
5, RMS services and the Assign Channel ($ASSIGN) service use a different 
mechanism; the system service vector requests the asynchronous system 
service, but control does not return to the code in the vector. Instead, each 
service has a synchronization routine that conditionally stalls the process 
until its service request is complete. Section 6.3.5.2 describes this return 
mechanism in more detail. 

6.1.3 Initialization of System Service Vectors 

A loadable executive image containing system service procedures invokes 
the SYSTEM_SERVICE macro for each of them. This macro labels the system 
service procedure and creates a system service descriptor block that describes 
the system service: its vector, argument count, return path, synchronization 
method, access mode, and other characteristics. 

At assembly time, each system service vector contains the instruction JMP 

©#EXE$LOAD_ERROR. EXE$LOAD_ERROR contains a HALT instruction. When a 
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Table 6.1 System Services and RMS Services That Use Each Form of System Service 
Vector 

The following services execute initially in kernel mode. 

$ADJSTK 
$ADJWSL 
$ALLOC 
$ASCEFC 
$ASSIGN 1 

$BRKTHRU 
$CANCEL 
$CANEXH 
$CANTIM 
$CANWAK 
$CHKPRO 
$CLRAST 
$CLREF 
$CMKRNL 
$CNTREG 
$CRELNM 
$CRELNT 
$CREMBX 
$CREPRC 
$CRETVA 
$CRMPSC 
$DACEFC 
$DALLOC 

$DASSGN 
$DC LAST 
$DCLCMH 
$DCLEXH 
$DELLNM 
$DELMBX 
$DELPRC 
$DELTVA 
$DEQ 
$DERLMB 
$DEVICE_SCAN 
$DGBLSC 
$DLCEFC 
$ENQ 
$ERAPAT 
$EXIT 
$EXPREG 
$FORCEX 
$GETCHN 2 

$GETDEV 2 

$GETDVI 
$GETJPI 
$GETLKI 

$GETPTI 
$GETSECI 
$GETS YI 
$GETTIM 
$HIBER 
$LCKPAG 
$LKWSET 
$MGBLSC 
$MTACCESS 
$PROCESS_SCAN 
$PURGWS 
$QIO 
$READEF 
$RESCHED 
$RESUME 
$RUNDWN 
$SCHDWK 
$SETAST 
$SETEF 
$SETEXV 
$SETIME 
$SETIMR 
$SETPFM 

The following system services execute initially in executive mode. 
$ABORT _RU $COMMIT _RU $IDTOASC 
$ADD_HOLDER 3 $CREATE_RDB 3 $IMGACT 
$ADD_IDENT 3 $DISMOU 3 $MOD_HOLDER 3 

$ASCTOID $FIND_HELD 3 $MOD_IDENT 3 

$CHANGE_ACL 3 $FIND_HOLDER 3 $NUMTIM 
$CHANGE_CLASS 3 $FINISH_RDB $PREPARE_RU 
$CHECK_ACCESS3 $GETQUI $REM_HOLDER a 
$CMEXEC $GETUAI3 $REM_IDENT 3 

$SETPRA 
$SETPRI 
$SETPRN 
$SETPRT 
$SETPRV 
$SETRWM 
$SETSFM 
$SETSSF 
$SETSTK 
$SETSWM 
$SIGPRC 
$SNDERR 
$SUSPND 
$TRNLNM 
$ULKPAG 
$ULWSET 
$UPDSEC 
$WAITFR 
$WAKE 
$WFLAND 
$WFLOR 

$SETUAl 3 

$SNDACC 2 

$SNDJBC 
$SNDOPR 
$SNDSMB 2 

$START_RU 

The following system services execute initially in the mode of the caller. Several of them 
change to a more privileged mode during their execution. Unless otherwise noted, each 
service can be called from any access mode. 

$ASCTIM $FAO 
$BINTIM $FAOL 
$BRDCST 2 $FORMAT_ACL 3 

$CRELOG 2 $GRANTID 5 

$DELLOG 2 $FORMAT_CLASS 3 

$EXCMSG 5 $GETMSG 5 
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$IMGFIX 
$IMGSTA 4 

$MOUNTa,s 
$PARSE_ACL 3 

$PARSE_ CLASS a 
$PUTMSG 4 

$REVOKID 5 

$TRNLOG 2 

$UNWIND 

(continued) 
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Table 6.1 System Services and RMS Services That Use Each Form of System Service 
Vector (continued) 

The following RMS services execute in executive mode and transfer control to a 
synchronization routine before returning to the caller. All use the SYNCH$RMS_STALL 
routine except $WAIT, which uses SYNCH$RMS_WAIT. 
$CLOSE $EXTEND $PARSE 
$CONNECT $FIND $PUT 
$CREATE $FLUSH $READ 
$DELETE $FREE $RELEASE 
$DISCONNECT $GET $REMOVE 
$DISPLAY $MODIFY $RENAME 
$ENTER $NXTVOL $REWIND 
$ERASE $OPEN $SEARCH 

$SPACE 
$TRUNCATE 
$UPDATE 
$WAIT 
$WRITE 

The following RMS services execute in executive mode. They do not require an RMS 
synchronization routine. 
$FILES CAN $SE TD DIR $SETDFPROT $SSVEXC 
$RMSRUNDWN 

The following synchronous system services use composite vectors. Unless otherwise noted, 
each service executes initially in kernel mode. 

$BRKTHRUW $GETDVIW $GETQUIW 7 

$END_RU 7 $GETJPIW $GETSYIW 
. $ENQW $GETLKIW $QIOW 

1 This service executes a private synchronization routine. 
2 This service has been superseded. 
3 This service is implemented in a privileged shareable image. 

$SNDJBCW 7 

$SYNCH 6 

$UPDSECW 

4 This system service can be called only from supervisor and user modes. 
5 This system service can be called only from executive and less privileged access modes. 
6 This service executes initially in the caller's mode. 
7 This service executes initially in executive mode. 

loadable executive image containing a service is loaded, routine EXE$CON­
NECT_SERVICES, in module SYSTEM__SERVICE_LOADER, uses the system 
service descriptor block to associate the system service procedure with the 
appropriate system service vector, assign a CHMx operand, and initialize the 
vector. This process is summarized in Section 6.3.l and detailed in Chap­
ter 29. 

6.2 

Note that VMS Version 5 assigns change mode operands dynamically as 
system service procedures are loaded. 

CHANGE MODE INSTRUCTIONS 

There are four change mode instructions: CHMU, CHMS, CHME, and CHMK. Exe­
cuting any of them generates an exception. Exception-processing VAX mi­
crocode alters the access mode and pushes the processor status longword 
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(PSL), the program counter (PC) of the next instruction, and the sign-extended 
change mode operand onto the stack indicated in the instruction. The ac­
tual access mode used is the innermost of the access mode indicated by the 
instruction and the current access mode contained in the PSL. The VAX mi­
crocode then dispatches through the system control block (SCB) vector for 
that CHMx instruction to its exception service routine. 

CHME and CHMK instructions request VMS system services and RMS services. 
Their exception service routines are known as the change mode dispatchers. 

CHMS and CHMU exceptions are treated much like other exceptions that 
VMS passes to a user-declared condition handler (see Chapter 5). 

6.3 CHANGE MODE DISPATCHING IN THE VMS EXECUTIVE 

Module SYSTEM_SERVICE_DISPATCHER contains the change mode dis­
patchers: EXE$CMODKRNL for CHMK exceptions and EXE$CMODEXEC 
for CHME exceptions. Each change mode dispatcher makes essential checks 
of the argument list and transfers control to the system service procedure 
indicated by the change mode operand. Like any other procedure, a system 
service procedure assumes there is a call frame on the stack and exits with 
a RET instruction. The dispatcher must therefore construct a call frame on 
the inner mode stack. · 

Building the call frame could be accomplished by using a CALLx instruction 
and a dispatch table of service entry points. However, the call frame is 
identical for each service. In addition, the registers that the service-specific 
procedure will modify have already been saved on the caller's mode stack, 
because the system service vector register save mask (at global location 
SYS$service) incorporates the register save mask at location EXE$service. So 
the dispatcher avoids the overhead of the general-purpose CALLx instruction 
and builds a minimal call frame "by hand." 

The dispatcher achieves further speed improvement in this commonly ex­
ecuted code path by overlapping memory write operations (building the call 
frame) with register-to-register operations and instruction stream references. 

Using the CHMx operand, the change mode dispatcher indexes into a table 
of system service procedure addresses. It transfers control to the procedure 
with a JMP instruction. 

6.3.1 Change Mode Dispatcher Data Structures 
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Several data structures are internal to the change mode dispatcher. Two are 
dispatch tables: one, at CMOD$AR_KERNEL_DISPATCH_ VECTOR, is for 
kernel mode system services; the other, at CMOD$AR_EXEC_DISPATCH_ 
VECTOR, is for executive mode services. Each table contains a quadword 
entry for each system service declared in the table's access mode. The kernel 
mode dispatch table, for example, contains an entry for each loaded kernel 
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Exit Type l Argument l Argument List Size 
Code Count 

Service Routine Address 

Figure 6.1 
Change Mode Dispatch Table Entry 

mode system service. Figure 6.1 shows the format of an individual dispatch 
table entry. 

Each table entry has four fields, obtained from the system service descrip­
tor block by EXE$CONNECT _SERVICES: 

• The argument list size contains the size in bytes of the argument list 
required by this system service procedure, computed from the argument 
count in the system service descriptor block . 

• The argument count contains the minimum number of arguments required 
for this service . 

• The exit type field contains an index into the exit table, which begins at 
CMOD$AL_EXIT _TYPE. An entry in this table contains the address of a 
synchronization routine to be requested from the common return path. 

The CMOD$AL_EXIT _TYPE table entries are 

-0 lthe default, indicating no synchronization routine) 
-SYNCH$RMS_STALL 
-SYNCH$RMS_ WAIT 
-SYNCH$ASSIGN_EXIT 

• The service routine address field contains the address of the entry point 
in the service-specific procedure to which the change mode dispatcher 
transfers control. Each service-specific procedure associated with a CHMx 
operand has a name of the form EXE$service or RMS$service and begins 
with a register save mask. The service routine address points to the first 
instruction beyond the register save mask and is therefore of the form 
EXE$service + 2 or RMS$service + 2. 

EXE$CONNECT _SERVICES dynamically assigns a unique CHMx operand 
to each system service as the executive image containing the service is 
loaded. It maintains a count of loaded kernel mode and executive mode 
system services in CMOD$GW _CHMILLIMIT and CMOD$GW _CHME_ 
LIMIT. The maximum allowable CHMx value for VMS system services 
loaded in this manner is 255 for each mode. VMS reserves higher CHMx 
operands for its own system services in privileged shareable images and 
negative CHMx operands for customer-written system services. A change 
mode dispatcher compares the current CHMx operand to the value that is 
in CMOD$GW _CHMK_LIMIT or CMOD$GW _CHME_LIMIT to determine 
the dispatch method. 
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6.3.2 Operation of the Change Mod~ Dispatchers 
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The operations of the kernel and executive change mode dispatchers are 
almost identical. This section discusses their common points. Subsequent 
sections describe their differences. 

The first instruction of each dispatcher pops the change mode operand 
from the stack into RO. Each dispatcher then builds the call frame on the 
stack with the following four instructions: 

PUSHAB SERVICE_EXIT 
PUSHL FP 
PUSHL AP 

CLRQ -(SP) 

;The next RET returns here 
;Address of the CALLx call frame 
;Address of the arguments 
; to the CALLx 
;No condition handler and 
; no registers to save 

After the call frame is built, each dispatcher checks that the CHMx op­
erand corresponds to a loaded system service. If not, it checks for services 
supplied in privileged shareable images, as described in Section 6.4. Other­
wise, it uses the CHMx operand as an index into its dispatch table. From 
the dispatch table entry, it obtains the size of the service's argument list and 
the required argument count. 

The dispatcher performs two checks on the argument list: 

• It checks the read accessibility of the argument list with the PROBER in­
struction to verify that the argument list is accessible in the access mode 
of the caller. 

• It compares the number of arguments actually passed jfound in the first 
byte of the argument list) to the service-specific entry jfrom the dispatch 
table) to determine whether the required number of arguments for this 
service are present. 

If the dispatcher detects an error, it places an error status into RO: either 
SS$_ACCVIO or SS$_INSFARG, depending on the error. The dispatcher then 
executes a RET instruction, which returns control through the saved PC in 
the call frame built by the dispatcher to the common exit path SERVICE_ 
EXIT. Section 6.3.5.1 describes the actions taken by SERVICE_EXIT when it 
is entered with a severe error. 

If the argument list passes the checks, the dispatcher obtains the system 
service's exit type code from the service's dispatch table entry. The exit 
type code, if nonzero, identifies an additional synchronization routine to 
be executed at the completion of the common exit path, SERVICE_EXIT. 
The dispatcher overwrites the exception PC pushed onto the stack by the 
CHMx instruction with this address, thus altering the place to which control 
will return when SERVICE_EXIT executes an REI instruction. Section 6.3.5 
discusses this mechanism in more detail. 

The dispatcher finally transfers control to the system service procedure 
with a JMP instruction. 
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Control Flow of System Services That Change Mode 

Figure 6.2 illustrates the control flow from the user program to the service­
specific procedure. This flow is shown for both kernel and executive access 
modes. 

6.3.3 Change-Mode-to-Kernel Dispatcher 

The change-mode-to-kernel dispatcher, EXE$CMODKRNL, performs two 
steps that the change-mode-to-executive dispatcher does not. Before it trans­
fers control to those services that execute in kernel mode, the change-mode­
to-kernel dispatcher places the address of the process control block !PCB) for 
the current process !found at location CTL$GL_PCB) into R4. 

Additionally, CHMK #0 is a special entry path into kernel mode for the un­
documented $CLRAST service. If the CHMK operand was a zero, 
EXE$CMODKRNL transfers control to the routine CMOD$ASTEXIT, in 
module SYSTEM_SERVICE_DISPATCHER. Chapter 7 describes this routine 
in more detail. 

6.3.4 Change-Mode-to-Executive Dispatcher 

The change-mode-to-executive dispatcher, EXE$CMODEXEC, performs one 
step unique to executive mode. If the CHME operand was a zero, the execu­
tive dispatcher transfers control to the routine CMOD$SSVECX, in module 
SYSTEM_SERVICE_DISPATCHER. CMOD$SSVECX is entered with an er­
ror status. It transfers control to SERVICE_EXIT with the error so that a 
system service exception can be signaled or the error reported. 

RMS synchronization code uses this mechanism when it detects a severe 
error. It requires a CHME instruction to return to executive mode, since RMS 
stalls in the mode of the caller. 

Note that with VMS Version 5, RMS dispatching becomes a standard part 
of executive mode dispatching, with the exception of the return path. 
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6.3.5 Return Paths for System Services 

6.3.5.1 
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When a service-specific procedure has completed its operation, it places a 
status in RO and executes a RET instruction. In the case of an executive or 
kernel mode system service, the RET returns control to the address that the 
change mode dispatcher placed in the saved PC area of the call frame that it 
built, the common exit path SERVICE_EXIT, in module SYSTEM_SERVICE_ 
DISPATCHER. 

Change Mode Dispatcher Common Exit Path. SERVICE_EXIT is the com­
mon exit path for change mode dispatching. Its action depends on the status 
code returned in RO by the system service procedure. 

• If the status in RO is a success or warning code, SERVICE_EXIT merely 
dismisses the CHMx exception by executing an REI instruction. 

-For most RMS services and $ASSIGN, the exception PC has been altered, 
so control transfers to the synchronization routine specified by its exit 
type code, in the mode of the caller. 

-For other system services, control returns to the instruction following 
the CHMx in the system service vector, in the mode of the caller. In most 
cases, this instruction is a RET, which returns control to the caller of 
the system service or RMS service. 

However, for synchronous system services, the system service vector 
contains code that conditionally stalls the process until its request is 
complete. Section 6.3.5.3 describes this synchronization method. 

• If the status in RO is an error code, SERVICE_EXIT checks whether the 
process owns any mutexes. In general, a system service procedure should 
release any mutexes that it has acquired before returning to SERVICE_ 
EXIT. To minimize overhead, SERVICE_EXIT only performs the check for 
mutexes when a service returns an error or a severe error status. 

-If the process owns a mutex, SERVICE_EXIT tests whether the interrupt 
priority level IIPLJ is 2. If so, the assumption is that one system service 
has acquired a mutex and then called another system service, which is 
returning an error status. In this case, SERVICE_EXIT merely executes 
an REI instruction to return control to the presumed original service. 

-If the process owns a mutex but is running at IPL 0, SERVICE_EXIT 
generates a fatal MTXCNTNONZ bugcheck. 

-If the process does not own a mutex, SERVICE_EXIT continues. 

Chapter 32 describes bugcheck processing, and Chapter 8 gives informa­
tion on mutexes. 

If system service exceptions are disabled for the access mode in which 
the system service was requested, SERVICE_EXIT dismisses the CHMx 
exception by executing an REI instruction, as described previously. 
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Otherwise, the process has enabled system service exceptions for the 
access mode in which the service was requested. Since an exception rou­
tine must be entered at IPL 0, SERVICE_EXIT explicitly lowers IPL if the 
process is running in kernel mode. Executive mode services do not need a 
similar check because elevated IPL requires kernel mode operation. (Low­
ering IPL is unnecessary unless the process has enabled system service 
failure exceptions, because the REI instruction that dismisses the CHMK 
exception lowers the IPL.) 

To signal the system service exception, SERVICE_EXIT transfers control 
to EXE$SSFAIL, in module EXCEPTION. It signals an exception of type 
SS$_SSFAIL to the caller. 

Chapter 5 describes exception dispatching. 

Return Paths for ·RMS Services. The dispatch table entry of most RMS 
services contains an exit type code identifying an additional synchroniza­
tion routine to be executed at the completion of the common exit path, 
SERVICE_EXIT. The RMS synchronization routines, SYNCH$RMS_STALL 
and SYNCH$RMS_ WAIT in module SYSTEM_SERVICE_EXIT, either return 
control i.Ihmediately to the RMS service's caller or stall the process in an 
event flag wait state until some operation initiated by RMS on behalf of the 
caller has completed. 

Figure 6.3 illustrates the control flow froin the user program to the RMS 
service-specific procedure and to the synchronization routine. 
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6.3.5.2.1 
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RMS Synchronization AnRMS service procedure might temporarily stall it­
self to wait~ither for.the completion of a system service that RMS requested 
on behalf of the caller or for some internal RMS condition to be met. Though 
the RMS code thread is stalled, the process that requested the RMS service 
might be able to execute in the meantime. The process indicates its desire 
to execute even though the RMS operation is not complete by setting the 
asynchronous IASY) bit in the file access block IFAB) or record access block 
(RAB). The RMS service procedure tests the ASY bit. If it is clear, the ser­
vice procedure stores the status code RMS$_STALL ·in RO. It then returns to 
SERVICE_EXIT. 

When SERVICE_EXIT REis, it transfers control to a synchronization rou­
tine, either SYNCH$RMS_STALL, for most RMS services, or SYNCH$RMS_ 
WAIT, for the $WAIT RMS service. Section 6.3.5.2.2 describes the routine 
SYNCH$RMS_ WAIT. 

SYNCH$RMS_STALL is entered with the following register contents: 

Register 
RO 
R3 

RB 

Contents 

Status RMS$_STALL 
Number of event flag to wait for (flags 27 to 31 are reserved 

for RMS) 
Address of FAB or RAB associated with stall 

Executing in the caller's mode, SYNCH$RMS_STALL uses the status in RO 
to decide whether a stall is required. If so, it places the process into an event 
flag wait state for the event flag specified in R3. Otherwise, for all status val­
ues except RMS$_STALL, the synchronization routine immediately returns 
to the caller. 

The crucial point in· this implementation is that the caller waits at the 
access mode associated with the original RMS service request and not in 
executive mode, thus allowing AST delivery to all access modes at least as 
privileged as that of the service request. In the usual case where an RMS 
service is requested from user mode, an AST of any access mode can be 
delivered while the process. is waiting for the RMS operation to complete. 

For example,. .when RMS requests the $QIO system service on behalf of 
its caller, it specifies an event flag from the range 27 through 31 to be set 
and an executive mode AST procedure to be executed when its 1/0 operation 
completes. If the process requested.a synchronous operation, RMS returns to 
SERVICE_EXIT with the status RMS$_STALL in RO, the event flag number 
from the $QIO request in R3, and the address of the FAB or RAB in R8. 
SERVICE_EXIT REis to SYNCH$RMS_STALL, w:hich places the process into 
an. event flag wait state. 

When the 1/0 request completes, the associated event flag is set. RMS 
gains control first in the executive mode AST procedure associated with its 
$QIO request. If it determines that the $QIO request is complete, the AST 
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procedure sets final status in the data structure (FAB or RAB) associated with 
the operation. Otherwise, if the AST procedure determines that it requires 
further processing to complete the original request, it requests the next 
service. 

Control returns from the RMS AST procedure to the synchronization 
routine. SYNCH$RMS_STALL, executing in the caller's access mode, checks 
whether the RAB or FAB status field is zero. If so, it again places the caller 
into an event flag wait state. In other words, a nonzero value in the status 
field of the FAB or RAB is the actual indication that the RMS operation is 
complete. 

When the status field indicates successful completion or a warning, the 
synchronization routine executes a RET instruction, returning control to the 
instruction following the initial RMS service request. Otherwise, when the 
synchronization routine discovers an error or the status field indicates an 
error, it performs the error processing described in Section 6.3.5.2.3. 

SYNCH$RMS_ WAIT. SYNCH$RMS_ WAIT .is the synchronization routine 
for the $WAIT RMS service. It is entered from the REI in SERVICE_EXIT and 
so runs in the mode of the caller. This allows AST delivery to the caller's 
mode and inner modes while the process is waiting. 

SYNCH$RMS_ WAIT is entered with four arguments set up by the $WAIT 
service procedure: 

Register 
RO 
R3 

R4 

R8 

Contents 
Status RMS$_STALL 
Number of event flag to wait for (flags 27 to 31 are reserved 

for RMS) 
Action flag; if clear, stall on the RAB or FAB in R8. If set, wait 

for event flag in R3 
Address of FAB or RAB 

If RO contains the status RMS$_STALL, SYNCH$RMS_ WAIT stalls process 
execution until an asynchronous RMS operation completes. The action 
flag in R4 determines the method used to decide whether the operation 
is complete. If the action flag is clear, the completion of the RMS oper­
ation is indicated by the status field in the RAB, so SYNCH$RMS_ WAIT 
branches to SYNCH$RMS_STALL to stall in the normal manner. Otherwise, 
SYNCH$RMS_ WAIT alone cannot determine completion of the operation. 
It requests the Wait for Single Event Flag ($WAITFR) system service, to wait 
for the event flag specified by the $WAIT service procedure. When the event 
flag is set, SYNCH$RMS_ WAIT reexecutes the $WAIT service request to 
allow the $WAITprocedure to decide whether the operation is complete. 

RMS Error Detection. An RMS synchronization routine reports errors via 
the system service dispatcher. The synchronization routine, running in the 
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mode of the RMS service caller, executes the instruction CHME #SSVECX. In 
this manner, the routine changes the access mode to executive. In response 
to the operand SSVECX, a zero, the executive mode system service dispatcher 
transfers control to the routine CMOD$SSVECX without building the usual 
call frame. CMOD$SSVECX is an alternative entry point for SERVICE_EXIT. 
Running in executive mode, SERVICE_EXIT proceeds as described in Sec­
tion 6.3.5.1. 

Return Path for Synchronous Services. A synchronous system service vector 
requests an asynchronous service procedure and tests its return status for 
successful initiation of the request. If the asynchronous service procedure 
returns an error, that status is immediately returned to the requestor of 
the synchronous service. If the return status indicates success, the system 
service vector code branches to one of two synchronization routines. These 
routines are originally part of module EXCEPTION_INIT. During system 
initialization they are copied to the system service vector area. The routines 
differ only in minor detail and converge within the SYS$SYNCH composite 
system service vector. 

Figure 6.4 illustrates the control flow from the user program, through the 
service-specific procedure, to the synchronization code. 

SYS$SYNCH first tests whether a status block was specified by the re­
questor. For $GETLKIW and $ENQW, the lock status block serves this pur­
pose; in all other cases, the I/O status block is used. If no status block was 
specified, SYS$SYNCH executes the instruction CHMK #WAITFR to place the 
process into an event flag wait state until the specified flag is set. When the 
flag is set, the process is taken out of its wait state, and SYS$SYNCH returns 
to the requestor of the synchronous service. If a status block was specified, 
SYS$SYNCH executes the following sequence: 

P1 Space 

System Service 
Vector 

SYS$service 
Entry mask 
CHMx #code 
BLBC RO, ERROR 
BRBSYNCH 

ERROR 
RET 

Synchronization Routine 

SYNCH 

...,..--+- RET 

Figure 6.4 
Control Flow of Synchronous Services 
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1. It tests the status word of the status block. A nonzero status indicates 
that the asynchronous service has completed, and SYS$SYNCH returns 
to the requestor of the synchronous service. 

2. A zero status indicates the asynchronous service has not completed, 
and SYS$SYNCH executes the instruction CHMK #WAITFR to wait for the 
specified event flag. 

3. When the event flag is set and the process is placed into execution, 
SYS$SYNCH tests the low word of the status block. If it is nonzero, 
SYS$SYNCH returns to the requestor of the synchronous service. 

4. If the low word of the status block is zero, then the flag has been set 
spuriously, perhaps by another concurrent use. SYS$SYNCH clears the 
event flag by executing the instruction CHMK #CLREF and then proceeds 
with step 2. 

A crucial point in this implementation is that the process waits at the ac­
cess mode associated with the original synchronous system service request, 
thus allowing AST delivery to all access modes at least as privileged as that 
of the synchronous service request. In the usual case where a synchronous 
system service is requested from user mode, an AST of any access mode can 
be delivered while the process is waiting for the service to complete. 

6.3.6 System Services That Do Not Change Mode 

6.4 

Some system services do not change to a more privileged access mode and 
instead execute in the mode from which they were requested. The system 
service vector for one of these "mode of caller" services contains a JMP 
instruction instead of a CHMx instruction and transfers control directly to 
the service procedure. 

When the service-specific procedure has completed its operation, it places 
a status code in RO and executes a RET instruction. In the case of a system 
service that does not change mode, the RET returns control to the caller of 
the service. (Because a mode of caller service does not change mode, the 
stack does not contain a call frame built by the change mode dispatcher.) 

Table 6.1 lists the mode of caller VMS system services. 
Figure 6.5 shows the control flow from the user program to the service 

procedure for those services that do not change mode. 

DISPATCHING TO SYSTEM SERVICES IN PRIVILEGED 
SHAREABLE IMAGES 

VMS does not require that all system services be part of a loadable executive 
image. A user may write system services as part of a privileged shareable 
image. Moreover, VMS supplies a number of system services in privileged 
shareable images. These include 

• $MOUNT in SYS$SHARE:MOUNTSHR.EXE 
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Control Flow of System Services That Do Not Change 
Mode 

• $DISMOU in SYS$SHARE:DISMNTSHR.EXE 

System Space 

Service-Specific 
Procedure 

EXE$servlce 
Entry mask 

RET 

• Services relating to system security in SYS$SHARE:SECURESHR.EXE 

Implementing these less frequently used services as privileged shareable 
images means that they are resident only when explicitly requested and that 
they are mapped in process space. 

The manual Introduction to VMS System Services describes the require­
ments for writing privileged shareable images. This section examines the 
manner in which control is passed to a system service that is part of a priv­
ileged shareable image. 

EXE$CMODKRNL and EXE$CMODEXEC attempt to dispatch to a priv­
ileged shareable image whenever a CHMx instruction is executed with an 
operand whose value is outside the range of those for services in loadable 
executive images. 

VMS system services in privileged shareable images have large positive 
change mode operands (for example, 16,527). The VAX architecture reserves 
negative change mode operands for customer use. 

6.4.1 Per-Process System Service Dispatcher 
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For any CHMK or CHME exception, the change mode dispatcher performs 
some initial operations, such as building the call frame and, for kernel mode 
system services, storing the PCB address in R4. When it detects that the CHMx 

operand is outside the range from zero to the value in CMOD$GW_CHMx_ 
LIMIT, it tries to transfer control to a privileged shareable image dispatcher. 
The change mode dispatcher first checks a location in Pl space (CTL$GL_ 
USRCHMK or CTL$GL_USRCHME) to see whether a per-process dispatcher 
exists. 

It interprets nonzero contents of this location as an address in the Pl space 
privileged vector list, built by the image activator. The privileged vector list 
contains a JSB instruction for each per-process system service dispatcher, 
invoking the dispatcher at its entry point within a privileged shareable image. 
Figure 6.6 shows the privileged vector list. 
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A per-process dispatcher is entered with the stack in the state shown in 
Figure 6.7. If the per-process dispatcher accepts the change mode operand, 
it requests a service-specific procedure that eventually returns to SERVICE_ 
EXIT by executing a RET instruction. If the per-process dispatcher rejects the 
operand, it hands control to the next per-process dispatcher in the privileged 
vector list by executing an RSB instruction. The privileged vector list ends 
with an RSB instruction, which returns control to the change mode dispatcher 
if all per-process dispatchers reject the code. 

6.4.2 Privileged Share.able Images 

In the Pl space privileged vector list, kernel mode and executive mode 
each have one half page 1256 bytes) devoted to user-written system service 
dispatching. The first byte of each area is initialized during process creation 
to an RSB instruction. With the dispatch scheme described in the previous 
section, the RSB instruction initially prohibits per-process dispatching. 

However, for an image linked with a privileged shareable image !linked 
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with the /PROTECT and /SHAREABLE options and installed with the /PRO­
TECTED and /SHARED options), the image activator replaces the RSB in­
struction with a JSB to the per-process dispatcher specified as a part of the 
privileged shareable image (see Figure 6.6). It maintains an RSB instruction 
after the last JSB instruction in the kernel and executive portions of the 
privileged vector list. 

VMS allows multiple privileged shareable images to be linked with the 
same executable image. Each privileged image can contain multiple system 
service procedures. The example pictured in Figure 6.8 shows three privileged 
shareable images, each with a kernel mode dispatcher. 

When the image activator, described in Chapter 26, encounters a reference 
to a privileged shareable image in the image it is activating, it checks that the 
privileged image is compatible with the running operating system. It maps 
the sections containing the user-written system services using information 
stored in a protected image section (a privileged library vector, defined by the 
macro $PLVDEF and pictured in Figure 6.9) to modify the privileged vector 
list. For example, if a privileged shareable image contained a change-mode­
to-kernel dispatcher, the image activator would insert a JSB instruction in 
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Pl space that transfers control to the dispatcher specified by the PLV$1-
KERNEL longword in the privileged library vector. 

Once an image containing user-written system services is activated, ex­
ecution proceeds normally until the process requests one of the services. 
Figure 6.8 shows an example of dispatching to a user-written system ser­
vice. The numbers in the following list correspond to the numbers in the 
figure. 

G)A CALLx instruction transfers control to a user-written system service 
vector in PO space. 

G) The CHMK or CHME instruction located there transfers control to the VMS 
change mode dispatcher. 

G)Execution proceeds normally until an unsigned test of the change mode 
operand discovers that it exceeds the value found in CMOD$GW_CHMx_ 
LIMIT. The dispatcher tests the address in CTL$GL_USRCHMx. If it is 
nonzero, the dispatcher JSBs to that location. 
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@The JSB instruction transfers control to the Pl privileged vector list, 
where another JSB instruction transfers control to the first dispatcher. 

G)In this example, the first dispatcher rejects the change mode operand 
simply by executing an RSB back to the Pl privileged vector list. 

G)The second JSB in the Pl privileged vector list is executed, transferring 
control to a second dispatcher. 

G)In this example, the second dispatcher recognizes the change mode op­
erand as valid and dispatches jprobably with a CASEx instruction) to a 
service-specific procedure that is also a part of the second privileged share­
able image. 

G)When the service completes !successfully or unsuccessfully), it stores 
a final status into RO and exits with a RET, which transfers control to 
SERVICE_EXIT. 

G)A privileged shareable image system service return path merges at this 
point with the return paths described for other services. 

If each dispatcher executed an RSB to reject the change mode operand, 
control eventually would reach the RSB instruction in the Pl privileged 
vector list. This RSB instruction transfers control back to the VMS change 
mode dispatcher, which checks next for a systemwide dispatcher. 

6.4.3 Systemwide User-Written Dispatcher 

6.5 
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If no per-process dispatcher exists or if the last per-process user-written dis­
patcher returns to the system service dispatcher with an RSB, the change 
mode dispatcher checks a location in system space IEXE$GLUSRCHMK 
or EXE$GLUSRCHME) for the existence of a systemwide user-written dis­
patcher. If none exists I contents are zero, its usual contents in a VMS system), 
or if this dispatcher transfers control back with an RSB, the change mode dis­
patcher returns the error status SS$_ILLSER to the system service requestor 
in RO. 

This scheme assumes that privileged shareable image system services that 
complete successfully will exit with a RET back to SERVICE_EXIT, where an 
REI instruction will dismiss the CHMK or CHME exception. 

Note that no standard method exists to add a systemwide user-written 
dispatcher to a system. 

RELATED SYSTEM SERVICES 

VMS provides five system services that are closely related to system ser­
vice dispatching and the change mode instructions. Chapter 5 describes the 
Declare Change Mode or Compatibility Handler l$DCLCMH) system ser­
vice. This section describes the Set System Service Failure Exception Mode 
j$SETSFM) system service, the change mode system services, and the Set 
System Service Filter j$SETSSF) system service. 



6.5 Related System Services 

6.5.1 Set System Service Failure Exceptions System Service 

The $SETSFM system service either enables or disables the generation of 
exceptions when SERVICE_EXIT detects an error. The service itself simply 
sets (to enable) or clears (to disable) the bit in the process status longword 
(PCB$1-STS in the software PCB) for the access mode from which the system 
service was requested. By default the generation of an exception is disabled. 

6.5.2 Change Mode System Services 

The Change to Kernel Mode ($CMKRNL) and Change to Executive Mode 
($CMEXEC) system services provide a simple path for privileged processes 
to execute code in kernel or executive mode. The services begin execution in 
the appropriate mode. They check for the necessary privilege (CMKRNL or 
CME'XEC) and then dispatch with a CALLG instruction to the procedure whose 
address is supplied as an argument to the service. (Note that if $CMKRNL 
is requested from executive mode, no privilege check is made.) 

The procedure that executes in kernel or executive mode must store a 
returl) status code into RO. If not, the previous contents of RO are used tg, 
determine whether an error occurred. 

The service cleans the stack and REis back to the instruction following 
the CHMx if the privileged procedure returned a success status. Otherwise it 
returns to SERVICE_EXIT with the error status for further processing. 

6.5.3 System Service Filtering 

Some applications (especially user·written CLis) require that user mode pro~ 
grams have no direct access to system and RMS services. VMS provides the 
$SETSSF system service for this purpose. 

Each VMS system service in a loadable executive image specifies an inhibit 
mask at assembly time as a parameter to the SYSTEM_SERVICE macro. The 
mask is stored in the system service descriptor block for the service. As a 
service is loaded, its inhibit mask is copied from its descriptor block into 
one of two tables, depending on the mode of the service. 

CM.OD$AB_KERNEL_INHIBIT _MASK and CMOD$AB_EXEC_INHIBIT _ 
MASK are the names of the kernel and executive mode tables. The tables 
are indexed by a change mode operand; for example, the kernel mode 
system service assigned change mode operand x stores its inhibit mask at 
offset x from the address in CMOD$AB_KERNE1-INIIlBIT _MASK. The in­
hibit mask indicates whether the system service can be disabled by $SETSSF. 
If the service can be disabled by $SETSSF, the mask also indicates the system 
service filter groups for which the service is disabled. Group 0 specifies all 
services except $EXIT; group 1 specifies most services, with the exception of 
$EXIT and those services required for condition handling or image rundown. 
The VMS System Services Reference Manual lists the services that are not 
disabled by $SETSSF. 
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The byte at offset CTL$GB_SSFILTER in the per-process control region 
contains the system service filter mask for a particular process. Usually this 
mask contains the value zero. The $SETSSF service writes the mask value 
specified as its argument into this field. 

The bit EXE$V _SSINHIBIT at global location EXE$GL_DEFFLAGS corre­
sponds to the SYSGEN parameter SSINHIBIT, which, when set, enables sys­
tem service filtering. If system initialization code discovers that the inhibit 
bit is set, it loads the SCB vectors for CHME and CHMK with the addresses 
of the alternative dispatchers EXE$CMODEXECX and EXE$CMODKRNLX, 
in module SYSTEM_SERVICE_DISPATCHER. 

The processor dispatches to these alternative change mode dispatchers 
when CHME and CHMK exceptions occur. They branch to the standard 
change mode dispatchers for CHMx instructions executed in inner modes. 
However, for a CHMx instructiun executed in user mode, the alternative dis­
patcher ANDs the value in CTL$GB_SSFILTER with the value in the ap­
propriate system service filter table (CMOD$AB_EXEC_INHIBIT_MASK or 
CMOD$AB_KERNEL_INHIBIT_MASK) entry indexed by the CHMx oper­
and. If the result of the AND is zero, the dispatcher branches to the standard 
change mode dispatcher. If the result of the AND is nonzero, the dispatcher 
returns the error status SS$_INHCHME or SS$_INHCHMK, depending on 
the mode of the system service. 

If CTL$GB_SSFILTER is nonzero, the dispatcher also denies access to 
services in privileged shareable images. An attempt to request those services 
results in the error SS$_INHCHME or SS$_INHCHMK, depending on the 
mode of the service. 
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What you want, what you're hanging around in the world 
waiting for, is for something to occur to you. 

Robert Frost 

An asynchronous system trap (AST) is a mechanism that enables an asyn­
chronous event to change the flow of control in a process. Specifically, as 
soon as possible after the asynchronous event occurs, a procedure or routine 
designated by either the process or the system executes in the context of the 
process. 

A process may request an AST as notification that an asynchronous system 
service has completed. ASTs requested by the system result from operations 
such as I/O postprocessing, process suspension, and process deletion. These 
operations require that VMS executive code execute in the context of a 
specific process. ASTs fulfill this need. ·, 

To declare the asynchronous event, the executive queues an AST to the 
process. Once the AST has been queued, the process eventually becomes 
current. AST delivery, the actual dispatch into the AST procedure, occurs in 
the context of that process. This chapter discusses the queuing and delivery 
of ASTs and describes some examples of their use by VMS. 

AST HARDWARE COMPONENTS 

VAX hardware/microcode assists VMS in the queuing and delivery of ASTs. 
Three mechanisms contribute: 

• The return from exception or interrupt (REI) instruction 
• The PR$_ASTLVL processor register 
• The interrupt priority level (IPL) 2 software interrupt 

The first two features are discussed in this section. The software interrupt 
mechanism is discussed in Chapter 4. The IPL 2 interrupt service routine 
for AST delivery, SCH$ASTDEL, is discussed in Section 7.5. 

7.1.1 REI Instruction 

The REI instruction initiates the delivery of an AST to a process by request­
ing an IPL 2 interrupt if appropriate. (Note that a requested IPL 2 interrupt is 
not actually granted until IPL drops below 2.) The REI microcode performs 
the following tests to determine whether to request the interrupt: 

1. The REI microcode checks whether process context is being restored. If 
the interrupt stack bit is set in the processor status longword (PSL) to be 
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restored, the REI microcode makes no further test and does not request an 
IPL 2 interrupt. AST delivery has no meaning outside of process context. 

2. The REI microcode compares the value in PR$_ASTLVL to the access 
mode being restored. If the value in PR$_ASTLVL is less than or equal to 
the current mode field in the PSL to b.e restored (that is, if it represents 
a more or equally privileged access mode), the REI microcode requests a 
software interrupt at IPL 2. This test prevents a process running in an 
inner mode from being interrupted to deliver an AST to an outer mode. 

The IPL of the AST interrupt is architecturally defined and cannot be 
changed by operating system software. Throughout the book, therefore, this 
IPL is referred to explicitly as 2 rather than symbolically as IPL$_ASTDEL. 

7.1.2 ASTLVL Processor Register (PR$_ASTLVL) 
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The processor register PR$_ASTLVL is used in conjunction with the REI in­
struction to control IPL 2 software interrupts. This register is part of the 
hardware context of the process and has a save area in the process header 
(PHD) hardware process control block field PHD$B_ASTLVL. (Chapter 12 
contains more information on the hardware PCB.) The LDPCTX instruction 
copies PHD$B_ASTLVL to PR$_ASTLVL when a process is placed into ex­
ecution. The SVPCTX instruction does not store PR$_ASTLVL in PHD$B_ 
ASTLVL, thus avoiding an often unnecessary memory reference. Therefore, 
any code that changes PR$_ASTLVL must also make the same change to 
PHD$B_ASTLVL. 

PR$_ASTLVL normally contains the access mode of the first AST in the 
process's AST queue (see Section 7.2.1). Inner mode ASTs are more privileged 
than outer mode ASTs and are queued and delivered before them. Specifi­
cally, PR$_ASTLVL contains the mode of the first AST in the queue 

• After an AST has been queued 
• After an AST routine has completed and exited 
• After ASTs at a given mode have been enabled or disabled by the Set AST 

Enable ($SETAST) system service 
• After an AST routine has left AST level by requesting the Clear AST 

($CLRAST) system service 

While an AST routine is in progress, PR$_ASTLVL contains a value that 
is 1 greater than the current AST's mode. After an AST has been blocked 
(because an AST at that mode is active or delivery to that mode is disabled), 
PR$_ASTLVL contains a value that is 1 greater than the blocked AST's mode. 
In both cases, this helps prevent REI from requesting IPL 2 interrupts that 
cannot currently be processed. 

If no AST is queued, PR$_ASTLVL contains a value of 4, chosen so that 
the REI test previously described will fail regardless of the access mode being 
restored by the REI instruction. 



7.2 

7.2 AST Data Structures 

AST DATA STRUCTURES 

The executive queues ASTs to a process as the corresponding events (I/O 
completion, timer expiration, etc.) occur. The AST queue is maintained as a 
queue of AST control blocks (ACBs) with the listhead in the process control 
block (PCB). Section 7.4 describes AST queues in more detail. 

7.2.1 Process Control Block 

=:= 

The PCB contains several fields related to AST queuing and delivery (see 
Figure 7.1). 

The fields PCB$L_ASTQFL and PCB$L_ASTQBL are the listhead for ACBs 
queued to the process. The list is a doubly linked queue. 

The field PCB$W _ASTCNT specifies how many concurrent ASTs the 
process can request at the moment. It is initialized to the process's AST 
quota, typically from the user authorization file. When a process requests 
an asynchronous system service, requesting AST notification of comple­
tion, and when a process declares an AST by requesting the Declare AST 
($DCLASTJ system service, the system service confirms that PCB$W _AST­
CNT is greater than zero and then decrements it, to charge the process AST 
quota. 

It is the responsibility of the system service and of any code charging AST 
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quota to set the ACB$V _QUOTA bit in the ACB (see Section 7.2.2) as a 
flag that quota must be restored when this AST is delivered. When such an 
AST is delivered, the AST delivery interrupt service routine, SCH$ASTDEL, 
increments PCB$W _ASTCNT. 

The process delete pending count, PCB$B_DPC, is incremented for every 
reason the process should not be deleted or suspended. It is incremented by 
the Files-11 Extended QIO Processor (XQP) to indicate that an XQP operation 
is in progress and that the process should not be deleted or suspended until 
the operation completes. Up through VMS Version 5.2, this is its only use. 
Section 7.8 discusses the use of this field and its significance to ASTs in 
more detail. 

In both PCB$B_ASTEN and PCB$B_ASTACT, the low-order four bits con­
tain AST-related information. One bit is used for each access mode, with bit 
0 corresponding to kernel mode. 

Each PCB$B_ASTEN bit, when set, indicates that AST delivery to that 
access mode is enabled. By default, all four bits are set. Section 7.6 describes 
how a process toggles one of these bits through the $SETAST system service. 

Each PCB$B_ASTACT bit, when set, indicates that an AST is active at 
that access mode in the process. The AST delivery interrupt service routine 
sets the bit, and AST exit code clears it. The executive uses these bits to 
serialize ASTs for each access mode; that is, the executive will not inter­
rupt an AST thread to deliver another AST to the same access mode. This 
serialization limits the number of concurrent threads of execution within a 
process and helps ensure that AST procedures are not entered recursively, 
thus simplifying synchronization among the different threads in an access 
mode. It is possible, though not usual, to reset a PCB$B_ASTACT bit using 
the $CLRAST system service (see Section 7.5.3). 

7.2.2 AST Control Block 
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The ACB includes the following information: 

• The process ID (PID) of the target process 
• The AST procedure or routine address 
• The access mode 
• An optional argument to the AST procedure 

The ACB is allocated from nonpaged pool, often as part of a larger structure 
associated with the requested asynchronous event. The ACB is actually 
included as the first section of several larger data structures. The 1/0 request 
packet (IRP), lock block (LKB), and timer queue entry (TQE), for example, 
are data structures whose first section is an ACB. (Compare the ACB format 
pictured in Figure 7.1 with the TQE format shown in Figure 11.1, the LKB 
format shown in Figure 10.4, or the IRP layout shown in Figure E.11.) 

· The macro $ACBDEF defines symbolic names for the fields in the ACB. 
ACB$L_ASTQFL and ACB$LASTQBL link the ACB into the AST queue in 
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the PCB. The listhead of this queue is the pair of longwords PCB$L_ASTQFL 
and PCB$L_ASTQBL. 

The field ACB$B_RMOD contains five bit fields: 

• Bits (0:1) (ACB$V_MODE) contain the access mode in which the AST 
procedure is to execute. 

·• Bit (4) (ACB$V _PKAST), when set, indicates the presence of a "piggyback" 
special kernel mode AST {see Section 7.7.4) . 

• Bit (5) (ACB$V _NODELETE), when set, indicates that the ACB should not 
be deallocated after the AST is delivered . 

• Bit (6) (ACB$V _QUOTA), when set, indicates that the process AST quota 
has been charged for this ACB . 

• Bit (7) (ACB$V _KAST), when set, indicates the presence of a· system­
requested special kernel mode AST (see Section 7.7). If ACB$V_KAST is 
clear, this is a "normal" AST. 

The field ACB$L_PID identifies which process is to receive the AST. 
The fields ACB$L_AST and ACB$1-ASTPRM are the entry point of the 

designated AST procedure and its optional argument. 
The field ACB$L_KAST contains the entry point of a system-requested 

special kernel mode AST routine if the ACB$V _PKAST or ACB$V _KAST bit 
of ACB$B_RMOD is set. 

7.3 CREATING AN AST 

ASTs can be created by three types of actions. The first is a process request 
for AST notification of the. completion of an asynchronous system service, 
such as Queue 1/0 Request ($QIO) or Enqueue Lock Request l$ENQ). The 
arguments for these system services include an AST procedure address and 
an argument to be passed to the AST procedure. The system service charges 
the process AST quota. 

The second is the system's queuing an AST to execute code in the context 
of the selected process. An ACB used in this situation is not deducted from 
the AST quota of the target process because of its involuntary nature; the 
ACB$V _QUOTA bit is clear to indicate this. 

The system's ability to initiate the execution of code in a particular process 
context is crucial to VMS operations. Only the AST mechanism provides this 
capability. The executive employs this mechanism primarily to access the 
process's virtual address space. 

In a virtual memory operating system such as VMS, resolving a per-process 
address outside of its process context is difficult at best. The process's pages, 
as well as page table pages, may not be resident; they may be in a page 
file, swap file, or in transition. Rather than attempt to locate the relevant 
page table page(s) and process page(s), VMS resolves the address in process 
context through the AST mechanism so that standard memory management 
mechanisms can be used. 

133 



ASTs 

Examples of the system's queuing an AST include the following: 

• I/O postprocessing 
• The Force Exit ($FORCEX) system service 
• Expiration of CPU time quota 
• Working set adjustment as part of the quantum-end event (see Chapter 12) 
• The Get Job/Process Information ($GETJPI) system service 

The third way to create an AST is an explicit declaration of an AST by a 
process through the $DCLAST system service. The $DCLAST system service 
procedure, EXE$DCLAST in module SYSASTCON, runs in kernel mode. It 
simply allocates an ACB, fills in the ACB information from its argument 
list, and invokes SCH$QAST to queue the ACB. The access mode in which 
the AST is to execute can be no more privileged than the mode from which 
$DCLAST was requested. The system service charges the process AST quota. 

7.4 QUEUING AN AST TO A PROCESS 
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The routine SCH$QAST, in module ASTDEL, is invoked to queue an ACB 
to a process. It can be invoked from a thread of execution running at an IPL 
less than or equal to IPL$_SCHED and holding no spinlock of rank greater 
than SCHED. 

SCH$QAST uses the ACB$V _KAST bit and ACB$V _MODE bits of the 
ACB$B_RMOD field to decide where in the process's AST queue to insert 
the ACB. The AST queue for a process is a doubly linked list with its head 
and tail at PCB fields PCB$L_ASTQFL and PCB$L_ASTQBL. 

SCH$QAST maintains the queue as a first-in/first-out (FIFO) list for each 
access mode. ASTs of different access modes are placed into the queue in 
ascending access mode order, that is, kernel mode ASTs first and user mode 
ASTs last. Special kernel mode ASTs precede normal kernel mode ASTs. A 
piggyback special kernel mode AST is inserted in the AST queue according 
to the mode of the normal AST whose ACB it shares. 

SCH$QAST performs the following steps: 

1. SCH$QAST acquires the SCHED spinlock, raising IPL to IPL$_SCHED, 
to synchronize access to the scheduler database, the process's AST queue, 
and its PHD$B_ASTLVL. 

2. If the process is nonexistent, SCH$QAST returns the error status SS$_ 
NONEXPR. If bit ACB$V _NODELETE in ACB$B_RMOD is clear, its 
usual state, SCH$QAST deallocates the ACB before returning. 

3. If the AST queue is empty (the contents of PCB$LASTQFL are equal 
to its address), then the ACB is inserted as the first element in the AST 
queue. 

4. Otherwise, SCH$QAST scans the queue of ACBs. It inserts a normal ACB 
before the first ACB whose ACB$V _MODE bits indicate a less privileged 
access mode or, if it finds none, at the end of the queue. SCH$QAST 
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inserts a special kernel mode AST before the first normal ACB or, if it 
finds none, at the end of the queue. Figure 7.2 shows the organization of 
the AST queue. 

5. SCH$QAST calculates ASTLVL as the mode of the first (innermost mode) 
ACB in the queue and stores it as follows: 

-If the target process is currently executing on the same processor as 
SCH$QAST, SCH$QAST stores the new ASTLVL value in PHD$B_ 
ASTLVL and in the processor register, PR$_ASTLVL. If the process is 
currently executing on a different member of a symmetric multipro­
cessing system, SCH$QAST stores the new value in PHD$B_ASTLVL 
and requests an interprocessor interrupt of the other CPU to update 
its PR$_ASTLVL register. Chapter 34 gives further details. 

-If the process is memory-resident but is not currently executing, 
SCH$QAST stores the new value for ASTLVL in PHD$B_ASTLVL but 
not in the processor register. 

-If a process is outswapped, PHD$B_ASTLVL cannot be updated because 
the PHD (including the hardware PCB) is not available. When the 
process becomes resident and computable at a later time, the swapper 
calculates and stores a value for PHD$B_ASTLVL, based on the first 
AST in the queue. 

When setting ASTLVL, SCH$QAST does not check whether an AST is 
already active for this mode or whether ASTs at this mode are disabled. 
When either of these conditions is true, the next REI to drop IPL below 
2 will cause an IPL 2 interrupt, and SCH$ASTDEL will dismiss it as 
undeliverable (blocked). This event is less frequent and thus less costly 
than having SCH$QAST make the checks each time it queues an AST. 

6. Unless the process is currently executing, SCH$QAST invokes 
SCH$RSE, in module RSE, to report that an AST has been queued to 
the process. SCH$RSE makes the process computable if it is not current, 
already computable, or suspended in kernel mode. 

7. SCH$QAST releases the SCHED spinlock, restoring the previous IPL, 
and returns to its invoker. 

7.5 DELIVERING AN AST 

AST delivery is initiated when the REI microcode determines from the des­
tination access mode and the PR$_ASTLVL register that a pending AST is 
deliverable (see Sections 7.1.2 and 7.4) and requests a software interrupt at IPL 
2. The amount of time before the AST is actually delivered depends upon the 

· interrupt activity of the system. When IPL drops below 2, the AST delivery 
interrupt service routine will execute. 

Note that a rescheduling interrupt at IPL 3 may be requested and granted 
prior to the granting of the IPL 2 AST delivery interrupt request. In this 
case, the REI microcode will have set the IPL 2 bit in the software interrupt 
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service request (SISR) register PR$_SISR. Conceptually, the IPL 2 bit of the 
SISR is part of process context, but for reasons of optimization, both saving 
and restoring of process context ignore it. Thus, it is possible for a newly 
scheduled process to inherit an irrelevant IPL 2 bit in the SISR; an AST 
delivery intem1pt is then granted in the context of a different process than 
was originally requested. The AST delivery interrupt service routine detects 
and ignores such spurious AST interrupts. The AST delivery interrupt in 
question will be requested again when the process for which it is intended 
is placed back into execution by the REI from the rescheduling interrupt. 

7.5.1 AST Delivery Interrupt 

The IPL 2 software interrupt is unique. It is the only one requested by 
microcode (REI) rather than by MTPR instructions in the executive, and the 
only one whose service routine runs entirely in process context. When the 
IPL 2 interrupt occurs, control is transferred to SCH$ASTDEL, in module 
ASTDEL, the address in the IPL 2 system control block (SCB) vector. The 
interrupt service routine's functions are to remove the first pending AST 
from the queue, determine that the interrupt request is not a spurious one, 
and dispatch to the specified AST routine at the specified access mode. 

Figure 7.3 shows the major steps in SCH$ASTDEL's flow. The numbers 
in the figure correspond to the following steps. The column headings in the 
figure describe the environment of that step, for example, its access mode 
and IPL. 

1. SCH$ASTDEL acquires the SCHED spinlock, raising IPL to IPL$_SCHED, 
to synchronize access to the process's AST queue. 

G) SCH$ASTDEL tries to remove the first ACB from the process AST queue. 
If the queue is empty, the IPL 2 interrupt must have been spurious. The 
routine sets ASTLVL to 4, releases the SCHED spinlock, and exits with 
an REI instruction. 

G)Testing ACB$V_KAST in ACB$B_RMOD, SCH$ASTDEL determines if 
the ACB is a special kernel mode AST. It delivers a special kernel mode 
AST with the following steps: 

a. SCH$ASTDEL releases the SCHED spinlock, lowering IPL to 2. 
b. SCH$ASTDEL dispatches to the special kernel mode AST routine by 

executing an effective JSB instruction. (It pushes a return address onto 
the stack and executes a JMP instruction to minimize the number of 
branches taken on a common code path.) 

c. On return from the special kernel mode AST routine, SCH$ASTDEL 
returns to step 1 to check the AST queue again in case there is 
another pending AST, possibly queued by the special kernel mode AST 
routine. One common instance of this occurs in I/O postprocessing. 
The I/O postprocessing special kernel mode AST queues a normal AST 
to the process if AST notification of the I/O completion was requested. 
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This is a frequent enough occurrence that checking the queue again 
is less costly than incurring the extra interrupt. 

G) If the AST removed from the queue is a normal AST, then SCH$ASTDEL 
checks that the mode of the AST is at least as privileged as the access 
mode being restored by the REI instruction that initiated AST delivery. It 
compares the mode in the saved PSL on the kernel stack to the mode of 
the AST. If the AST mode is less privileged, SCH$ASTDEL reinserts the 
ACB at the head of the queue, releases the SCHED spinlock, and dismisses 
the interrupt with an REI instruction. This test detects a spurious AST 
delivery interrupt. 

Two other checks for spurious AST delivery interrupts are required. 
The first is that the appropriate PCB$B_ASTACT bit must be clear; this 
test prevents an AST from being interrupted by another AST at the same 
access mode. The second test is that the appropriate PCB$B_ASTEN bit 
must be set, indicating that AST delivery for that access mode is enabled. 
If either test fails, SCH$ASTDEL sets ASTLVL to the blocked access mode 
plus 1, requeues the ACB, releases the SCHED spinlock, and dismisses 
the interrupt. 

A third test is required for a user mode AST: the low bit of CTL$GB_ 
SOFT _AST _DISABLE must be clear, indicating no soft disabling of user 
mode ASTs. For further information, see Section 7.6. 

G)If the AST is deliverable, then SCH$ASTDEL performs the following 
operations before dispatching to the AST routine: 

a. SCH$ASTDEL sets the bit corresponding to the AST access mode in 
PCB$B_ASTACT to indicate that there is an active AST at this mode 
and to block concurrent delivery of another AST. 

b. If ACB$V _QUOTA is set in the ACB, SCH$ASTDEL returns process 
AST quota. 

c. SCH$ASTDEL stores a new value of ASTLVL in PR$_ASTLVL and 
PHD$B_ASTLVL. The new value of ASTLVL is the access mode of 
the AST plus 1 (the next outer mode). The access mode is calculated 
in this manner to prevent another AST interrupt when SCH$ASTDEL 
switches to the access mode in which the AST procedure is executed. 

d. Once modifications to the process's AST queue and ASTLVL are com­
plete, SCH$ASTDEL releases the SCHED spinlock and lowers IPL 
to 2. 

e. Delivery of an AST to kernel mode is simpler than to other modes 
because the process is already executing in kernel mode and on the 
appropriate stack. If the AST is for a mode other than kernel mode, 
SCH$ASTDEL obtains the stack pointer for that mode. 

f. As described in the next section, SCH$ASTDEL builds an argument 
list on the stack of the AST's access mode. 

g. If the AST is not for kernel mode, SCH$ASTDEL builds a program 
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counter (PC) and PSL on the kernel stack. The stored PC is the address 
of EXE$ASIDEL, the AST dispatcher. The stored PSL contains the 
AST access mode in both its current mode and previous mode fields. 

h. H a piggyback special kernel mode AST is associated with the current 
AST, the special kernel mode AST routine is dispatched through a JSB 

instruction. When the piggyback AST routine returns, SCH$ASIDEL 
continues with the next step. 

i. SCH$ASIDEL tests the ACB$V _NODELETE bit. H the bit is set, 
processing continues with the next step; if the bit is clear, then 
SCH$ASTDEL deallocates the ACB to nonpaged pool. 

j. The code that actually calls an AST procedure, EXE$ASIDEL, must 
execute in the access mode of the AST. 

For access modes other than kernel mode, transfer of control to 
EXE$ASIDEL and change of access mode is accomplished through an 
REI instruction, the only way to reach a less privileged access mode. 
The PC and PSL used by the REI instruction are described in step Sg. 

In order to deliver a kernel mode AST, SCH$ASIDEL merely drops 
IPL to 0 and falls through to EXE$ASIDEL. 

k. EXE$ASIDEL executes a CALLG instruction, transferring control to 
the AST procedure, with the argument pointer (AP) pointing to the 
argument list. The use of a CALLx instruction to enter ASTs enables 
them to be written in any high-level language that supports the VAX 
Calling Standard. A CALLG instruction is used, rather than a CALLS, 

so that the argument list will remain on the stack after the AST 
procedure RETs. 

7.5.2 Argument List 
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A normal AST procedure can be written in any language. By definition, a 
procedure begins with an entry mask, is passed an argument list, and returns 
control to its caller (in this case, the AST dispatcher) with a RET instruction. 

Figure 7.4 shows the argument list with which an AST procedure is called. 
SCH$ASIDEL copies the AST parameter from the ACB where it was ini­
tially stored by a system service, such as $QIO, $ENQ, or $DCLAST. The 
AST parameter was originally an argument to the system service. The inter­
pretation of the AST parameter depends on the AST procedure. 

l 5 i- AP 

ASTPRM 

Saved RO 

Saved R1 

Saved PC 

Saved PSL 

Figure 7.4 
Argument List Passed to AST by Dispatcher 
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SCH$ASTDEL saves the general registers RO and Rl in the argument 
list. The AST procedure may not save them through its register save mask, 
because the VAX Calling Standard specifies that RO and Rl be used to return 
status. The asynchronous nature of ASTs implies that the RO and Rl contents 
are unpredictable and therefore must be preserved. The registers are saved 
and restored by the AST delivery mechanism. 

The saved PC and PSL values are the register contents originally saved 
when the IPL 2 interrupt was granted. The values are normally the pair that 
was about to be used by the original REI instruction requesting the AST 
delivery. 

7.5.3 AST Exit Path 

When an AST procedure is done, its associated PCB$B_ASTACT bit must be 
cleared and ASTLVL must be recomputed. The AST procedure requests the 
$CLRAST system service to perform these steps, which can only be done 
from kernel mode. In most cases, the AST procedure indirectly requests 
$CLRAST by executing a RET instruction. Direct request of $CLRAST is 
discussed later in this section. 

When the AST procedure executes the RET instruction, its call frame is 
removed from the stack and control returns to EXE$ASTRET in the access 
mode of the AST. The AST argument list remains on the stack. The following 
steps then occur: 

1. EXE$ASTRET removes the argument count and the AST parameter from 
the stack, leaving RO, Rl, PC, and PSL from the argument list. 

2. EXE$ASTRET executes the instruction 

CHMK #ASTEXIT 

This instruction requests the $CLRAST system service (ASTEXIT is a 
synonym for CLRAST). 

3. The CHMK exception causes dispatch to the change-mode-to-kernel 
system service dispatcher, EXE$CMODKRNL, in module SYSTEM_ 
SERVICE_DISPATCHER (see Chapter 6). EXE$CMODKRNL makes a 
special test for the system service code of zero (ASTEXIT = 0) to shorten 
the dispatching to the $CLRAST system service. 

4. The $CLRAST system service procedure, CMOD$ASTEXIT in module 
SYSTEM_SERVICE_DISPATCHER, performs the following steps: 

a. It raises IPL to 2, to block AST delivery interrupts. 
b. It clears the appropriate PCB$B_ASTACT bit to indicate that no AST 

procedure is active at that mode. 
c. It invokes SCH$NEWLVL, in module ASTDEL, to recompute the 

ASTLVL value as the access mode of the first ACB in the queue. 
d. It executes an REI instruction to return to EXE$ASTRET. 

141 



AS Ts 

7.6 

142 

5. EXE$ASTRET resumes at the previous access mode, the mode of the 
AST: 

a. It restores RO and Rl from the stack. 
b. EXE$ASTRET executes another REI instruction to dismiss the in­

terrupt. The REI instruction returns control to the access mode and 
location originally interrupted by AST delivery. 

The REI instruction in the $CLRAST system service may cause another 
IPL 2 interrupt to occur, depending upon the ASTLVL value and the access 
mode transitions. 

If another IPL 2 interrupt occurs at the REI instruction from the $CLRAST 
system service, the access mode stack of the first AST still contains the saved 
RO, Rl, PC, and PSL. To prevent a stack from filling with these values as a 
result of recurring ASTs, SCH$ASTDEL checks whether an AST interrupt 
occurred at the instruction following the ASTEXIT system service. If so, 
SCH$ASTDEL checks further whether the current AST and the previous 
AST are for the same access mode. If they are, SCH$ASTDEL pops from the 
stack the newer copy of the saved values and reuses the original ones in the 
argument list it builds for the current AST. 

If an AST procedure requests the $CLRAST system service directly rather 
than returning through EXE$ASTRET, the appropriate PCB$B_ASTACT bit 
is cleared and PR$_ASTLVL is set to the mode of the new first ACB in the 
queue. This has the effect that another AST can be delivered to the same 
mode; the current procedure is now an ordinary thread interruptible by ASTs. 
The frame built on the stack by the call to the former AST procedure re­
mains on the stack. The former AST procedure is responsible for removing 
it. Furthermore, the former AST procedure is now responsible for any syn­
chronization with another AST thread of execution. 

The VAX BASIC Run-Time Library requests the $CLRAST system service 
from within CTRL/C attention AST procedures. VAX BASIC requires that 
user programs be notified of CTRL/C through an error signal rather than 
through the AST mechanism. The VAX BASIC Run-Time Library therefore 
dismisses the CTRL/C attention AST by requesting the $CLRAST system 
service and then signals the condition by calling LIB$SIGNAL (see Chap­
ter 5). 

Note that the $CLRAST system service is not supported by Digital, except 
for use within Digital software, and is not documented in the VMS System 
Services Reference Manual. 

DISABLING AST DELIVERY 

Through the $SETAST system service a process can enable or disable delivery 
of ASTs to the mode from which the process requests the system service. 
The $SETAST system service sets or clears the relevant PCB$B_ASTEN bit 
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to enable or disable AST delivery to that mode. The system service enables 
synchronization between a normal thread of execution and an AST thread. 
The concept of AST reentrancy and ways of achieving it are described in the 
Guide to Creating VMS Modular Procedures. 

The $SETAST system service procedure, EXE$SETAST in module SYS­
ASTC9N, runs in kernel mode. It determines the mode from which it 
was requested and tests the current setting of that PCB$B_ASTEN bit. It 
copies the ENBFLG argument value to the bit, setting or clearing it. It then 
invokes SCH$NEWLVL to compute a new value for ASTLVL, based on the 
current contents of the AST queue and the new state of the AST enable bit. 
EXE$SETAST then returns either the status SS$_ WASCLR or SS$_ WAS­
SET to reflect the original state of the AST enable bit. 

VMS Version 5 adds an alternative way to disable delivery to user mode. 
User mode code sets the low bit in the Pl global location CTL$GB_SOFT _ 
AST _DISABLE to communicate its intention to block user mode ASTs. The 
AST delivery interrupt service routine, SCH$ASTDEL, tests this bit when­
ever it is about to deliver a user mode AST. 

If the bit is set, SCH$ASTDEL clears the user mode PCB$B_ASTEN bit to 
effect a conventional disable and requeues the ACB. SCH$ASTDEL also sets 
the low bit of CTL$GB_REENABLE_ASTS to notify the user mode thread 
that it must request the. $SETAST system service to reenable AST delivery 
to user mode. 

Requested to reenable delivery to user mode, EXE$SETAST clears both 
CTL$GB_REENABLE_ASTS and CTL$GB_SOFT _AST _DISABLE. Invoked to 
disable delivery to user mode, EXE$SETAST sets them both to 1. 

If no user mode AST is delivered while CTL$GB_SOFT _AST _DISABLE is 
set, then PCB$B_ASTEN remains unchanged. The $SETAST system service 
requests to disable and reenable AST delivery are both saved. This mecha­
nism enables fast disabling of user mode ASTs by DECwindows. Use of this 
mechanism is reserved to Digital and not supported except for use within 
Digital software. 

7.7 SPECIAL KERNEL MODE ASTS 

Special kernel mode ASTs differ from normal ASTs in several ways: 

• A special kernel mode AST routine is dispatched at IPL 2 and executes at 
that level or higher. Synchronization is provided by the interrupt mecha­
nism itself rather than requiring additional PCB$B_ASTACT and PCB$B_ 
ASTEN bits. Only one special kernel mode AST can be active at any time 
because the AST delivery interrupt is blocked. 

• Special kernel mode ASTs cannot be disabled through $SETAST. Delivery 
of a special kernel mode AST can only be blocked by raising IPL to 2 or 
above. 

• All special kernel mode ASTs result from the operations of kernel mode 
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code. That is, a user cannot directly request special kernel mode AST 
notification of an asynchronous event. 

• A special kernel mode AST routine is invoked by a JSB instruction, which 
is a simpler and thus faster means of transferring control than a CALLG 

instruction. 
The arguments passed to a special kernel mode AST routine are the PCB 

address in R4 and the ACB address in RS. When the special kernel mode 
AST routine executes its RSB instruction, the stack must be in the same 
state as when the routine was entered. The routine may use RO through 
RS freely but must save R6 through Rl 1 before use and restore them before 
exiting. 

• A special kernel mode AST routine is responsible for the deallocation of 
the ACB to nonpaged pool. (For normal ASTs, this deallocation is done by 
the AST delivery routine.) 

The next several sections briefly describe examples of the special kernel 
mode AST mechanism. 

7.7.1 1/0 Postprocessing in Process Context 
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Completing an 1/0 request requires the delivery of a special kernel mode 
AST to the process whose 1/0 completed. 1/0 postprocessing is described in 
more detail in Chapter 21. The 1/0 postprocessing interrupt service routine 
queues a former 1/0 request packet (IRPJ as an .ACB to the process whose 1/0 
completed. The operations performed by the 1/0 completion AST routine are 
those that must execute in process context, particularly those that reference 
process virtual addresses. The special kernel mode AST routines BUFPOST 
and DIRPOST, in module IOCIOPOST, perform the following operations 
(DIRPOST is actually a subentry point of BUFPOST): 

1. For buffered read 1/0 operations only, BUFPOST copies the data from the 
system buffer to the user buffer in process address space and deallocates 
the system buffer to nonpaged pool. 

2. DIRPOST increments either PHD$L_DIOCNT or PHD$L_BIOCNT, the 
process's cumulative totals of completed direct 1/0 and buffered 1/0 
requests. 

3. If a user diagnostic buffer was associated with the 1/0 request, DIRPOST 
copies the diagnostic information from the system diagnostic buffer to 
the user's buffer and deallocates the system buffer. 

4. DIRPOST decrements the channel control block field CCB$W _IOC, the 
number of 1/0 requests in progress on this channel. Channel control 
blocks are in Pl space. 

5. If the 1/0 request specified an 1/0 status block (IOSBJ, the routine copies 
information from the IRP to the IOSB. 

6. If a common event flag is associated with the 1/0 request, it is set. (Local 
event flags are set in IOC$10POST, as described in Chapter 21.) 
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7. If ACB$V _QUOTA was set in IRP$B_RMOD (the same offset as ACB$B_ 
RMOD), AST notification of 1/0 completion was requested. The AST 
procedure address and the optional AST argument were originally stored 
in the IRP (now an ACB). DIRPOST invokes SCH$QAST to queue the 
former IRP as an ACB. This time the IRP/ACB represents a normal AST 
in the access mode at which the 1/0 request was made. 

8. Otherwise, if ACB$V _QUOTA is clear, DIRPOST deallocates the IRP/ 
ACB to nonpaged pool. 

7.7.2 $GETJPI System Service 

A process requests the $GE1JPI system service to obtain information about 
itself or another process. If the request is for information in the virtual ad­
dress space of another process on the same VAXcluster node, the $GE1JPI 
system service queues an AST to the target process. Running in the context 
of the target process, $GE1JPl's special kernel mode AST routine can easily 
examine per-process address space. Chapter 13 describes the $GE11PI sys­
tem service in detail and discusses the additional steps necessary to obtain 
information from the virtual address space of a process running on another 
V AXcluster node. 

The $GE1JPI system service procedure, EXE$GE1JPI in module SYSc 
GE1JPI, performs the following steps: 

1. It allocates and fills in an extended ACB to describe a special kernel mode 
AST and the desired items of information. The ACB includes a buffer to 
return the data. 

2. The special kernel mode AST routine, executing in the context of the 
target process, moves the requested information into the buffer. It mod­
ifies the ACB so that it can be used to queue a second special kernel 
mode AST back to the requesting process. 

3. The second special kernel mode AST routine copies data from the ex­
tended ACB buffer to buffers in the requesting process. It also sets the 
event flag associated with this request. 

4. If the process has requested AST notification of request completion, the 
extended ACB is used for the third time. The special kernel mode AST 
routine uses it to cause delivery of a normal AST in the access mode 
from which the system service was requested. 

If the process has not requested AST notification, the extended ACB 
is deallocated to nonpaged pool. 

7.7.3 Power Recovery ASTs 

The implementation of power recovery ASTs relies on special kernel mode 
ASTs. A power recovery AST enables a process to receive notification that a 
power failure and successful restart have occurred. Chapter 33 describes this 
feature in more detail. 
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When a power recovery occurs, VMS queues a special kernel mode AST 
to each process that has requested power recovery AST notification. The 
special kernel mode AST routine copies the address of the user-requested 
AST procedure, which is stored in Pl space, to ACB$1-AST and requeues 
the ACB as a normal AST. The special kernel mode AST routine is required 
to access the process's Pl space. 

7.7.4 Piggyback Special Kernel Mode ASTs 

Piggyback special kernel mode ASTs (PKASTs) enable a special kernel mode 
AST to ride piggyback in the ACB$L_KAST field of a normal AST. The 
normal access mode determines the order of enqueuing and delivery. If 
delivery to that access mode is disabled or blocked, the piggyback special 
kernel mode AST cannot be delivered. 

The AST delivery interrupt service routine JSBs to the piggyback special 
kernel mode AST routine just before calling the normal AST. When the 
special kernel mode AST returns, the normal AST is called. 

There are several reasons for using piggyback special kernel mode ASTs: 

• It is faster to deliver two ASTs together than to deliver two ASTs separately. 
• There are times when delivering an AST requires some additional work in 

kernel mode in the context of the calling process. Piggyback special kernel 
mode ASTs facilitate this work. 

The $ENQ system service uses a piggyback special kernel mode AST 
to write to the caller's lock status block and lock value block. To copy 
the information from the lock database to the caller's process space, a 
piggyback special kernel mode AST is required. 

Piggyback special kernel mode ASTs are also used in terminal out-of­
band ASTs (see Section 7.9.5.3). 

• A piggyback special kernel mode AST can be used to queue other normal 
ASTs to a process. The $ENQ system service uses this feature to deliver 
both blocking and completion ASTs to a process through one ACB. Chap­
ter 10 contains further information. 

7.8 SYSTEM USE OF NORMAL ASTS 
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Several other executive features are implemented through normal ASTs. For 
example, the automatic working set limit adjustment that takes place at 
quantum end is implemented with a normal kernel mode AST. Chapter 12 
discusses quantum-end activities, and Chapter 17 provides a detailed descrip­
tion of automatic working set limit adjustment. 

CPU time limit expiration is implemented with potentially multiple ASTs. 
Beginning in user mode, the AST procedure requests the Exit ($EXIT) system 
service. If the process is not deleted, a supervisor mode time expiration AST 
is queued. This loop continues with higher access modes until the process 
is deleted. 
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The executive also uses the AST mechanism for the $FORCEX, Suspend 
Process ($SUSPND), and Delete Process ($DELPRC) system services. With 
VMS Version 5.2, these services can affect a process running on another 
V AXcluster node. If the target process is executing on the same V AXcluster 
node as the system service requestor, the system service queues an AST 
directly to the target process. Chapter 13 discusses the additional steps 
required to affect a process running on another V AXcluster node. 

The $FORCEX system service, detailed in Chapter 13, queues a user mode 
AST that requests the $EXIT system service from the context of the target 
process. 

The $SUSPND and $DELPRC system services queue an AST to the target 
process to implement suspension or deletion through code running in the 
context of the target process. 

The $SUSPND system service queues either a supervisor or kernel mode 
AST to its target process, depending on the access mode of the suspension. 
A process suspended through a supervisor mode AST (the default) can ex­
ecute kernel and executive mode ASTs. Supervisor mode suspension, new 
with VMS Version 5, is described in greater detail in Chapter 13. A process 
suspended through a kernel mode AST can become computable only whetl 
it is resumed through another process. 

Process deletion and kernel mode suspension must take care to synchro~ 
nize their actions with the activities of the Files-11 XQP. 

The Files-11 XQP runs in process context as a kernel mode AST thread, 
taking out locks and making 1/0 requests in response to the process's file 
system requests. The XQP indicates that it is active by incrementing the 
PCB field PCB$B_DPC. When the XQP must wait for a lock to be granted 
or an 1/0 request to complete, it returns from the AST procedure so that 
the process can wait at the access mode in which the file system request 
originated. 

Waiting in the outer mode allows delivery of ASTs to that mode and 
more privileged modes. While the XQP is executing or waiting, kernel mode 
suspension of the process would risk blocking other processes with interests 
in the same locks. Deletion of the process would risk relatively minor on­
disk corruption, such as dangling directory entries and lost files. 

Therefore, the kernel mode suspension and process deletion services queue 
normal kernel mode ASTs, which cannot be delivered until the XQP AST 
completes. Furthermore, these AST procedures check that PCB$B_DPC is 
zero before proceeding with actual process suspension or deletion. 

If PCB$B_DPC is not zero, these AST procedures place the process into a 
wait. They clear bit 0 of PCB$B_ASTACT so that another kernel mode AST 
can be delivered, invoke SCH$NEWLVL to recompute ASTLVL, and place 
the process into the resource wait RSN$_ASTWAIT. The process waits in 
kernel mode at IPL 0. Thus, special and normal kernel mode ASTs can be 
delivered to it. The resource wait PC is an address within the AST procedure, 
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so aher the XQP AST completes, the suspend or delete AST procedure will 
be reentered to finish its job. 

Some time later, queuing of an AST makes the process computable, and 
delivery of an XQP completion AST causes the XQP to be reentered. When 
the XQP is done, it decrements PCB$B_DPC and returns from its AST pro­
cedure. The suspend or delete AST procedure is reentered and can proceed, 
now that PCB$B_DPC is zero. 

7.8.1 Process Suspension 
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The $SUSPND system service causes a target process to be placed into a 
suspended state. The system service procedure first checks the capability of 
the initiating process to affect the target process (see Chapter 13 for further 
details). It then checks whether a supervisor or kernel mode suspension is 
requested. Supervisor mode is the default. A kernel mode suspension request, 
specified in the optional FLAGS argument, must be made from executive or 
kernel mode. 

The system service procedure then sets PCB$V _SUSPEN in the target 
process's PCB$L_STS and, for a supervisor mode suspension, PCB$V_SOFT­
SUSP as well. It then queues either a kernel or supervisor mode AST to the 

· target process so that the suspension and waiting will occur in that process's 
context. The wait mechanism in VMS requires that a process be placed into 
a wait from its own context. 

When the kernel mode AST is delivered, the SUSPND AST procedure 
acquires the SCHED spinlock, raising IPL to IPL$_SCHED, and tests whether 
PCB$V _RESPEN in PCB$L_STS is set. The bit, when set, indicates that 
a Resume Process ($RESUME) system service has been requested for this 
process. If the bit is set, the SUSPND AST procedure clears both it and 
PCB$V _SUSPEN and RETs, leaving the process unsuspended. 

If a $RESUME has not been requested for this process, SUSPND tests 
PCB$B_DPC to determine whether an XQP operation is in progress. If 
PCB$B_DPC is greater than zero, SUSPND places the process into a resource 
wait as previously described. 

If PCB$B_DPC is zero, SUSPND places the process into a suspended wait 
state. The process waits in kernel mode at IPL 0. Its saved PC is an address 
within SUSPND, so when the process is later placed into execution, it again 
tests whether a $RESUME has been requested. 

When the supervisor mode AST is delivered to a process undergoing su­
pervisor mode suspension, the SUSPEND_SOFT AST procedure requests the 
$SUSPND system service. Running in kernel mode in the context of the 
target process, the $SUSPND system service procedure acquires the SCHED 
spinlock and tests whether PCB$V _RESPEN is set. If a $RESUME has not 
been requested for the process, the $SUSPND system service procedure 
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cleans up the kernel stack and places the process into a suspended wait 
state. These actions can only be done from kernel mode. 

The process waits in supervisor mode with the supervisor mode PCB$B_ 
ASTACT bit set. Its saved PC is an address within the SUSPEND_SOFT 
AST procedure, so when the process is placed back into execution, it again 
requests the $SUSPND system service to test whether a $RESUME has 
been requested. Waiting in this manner, the process can execute kernel and 
executive mode ASTs. For further details, see Chapter 13. 

7.8.2 Process Deletion 
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The $DELPRC system service causes a target process to be deleted. After 
checking the capability of the initiating process to affect the target process 
(see Chapter 13), the system service procedure queues a normal kernel AST 
to the target process so that the deletion will occur in the context of that 
process. Chapter 28 provides a detailed explanation of process deletion.· The 
use of the AST mechanism provides the following advantages: 

• Queuing the AST mak~s the process computable, regardless of its wait 
state, unless the process is suspended. The $DELPRC system service en-' 
sures the deletion of a suspended process by requesting the $RESUME. 
system service before queuing the AST . 

• The process must be resident for the AST to be delivered. Therefore, special 
cases, such as the deletion of a process that is outswapped, simply do not 
exist. 

• The DELETE AST procedure, running in process context, is able to request 
standard system services, such as Deassign Channel ($DASSGN), Deallo•· 
cate Device l$DALLOC), and Delete Virtual Address Space ($DELTVA), 
to implement process deietion. These system services and the AST proce­
dure reference per-process address space, and thus they must run in process 
context. 

ATTENTION AND OUT-OF-BAND ASTS 

Several VMS device drivers queue an AST to notify a process that a particular 
attention condition has occurred on a device. The terminal driver and mail­
box driver use ASTs in this way. The terminal driver, for example, queues 
an attention AST to notify an interested process that CTRL/C or CTRL/Y 
has been typed on its terminal. The terminal driver can also queue an out­
of-band AST as notification that a control character other than CTRL/C and 
CTRL/Y has been typed. The mailbox driver can queue an attention AST as 
notification that an unsolicited message has been put in a mailbox or that 
an attempt to read an empty mailbox is in progress. 

The basic sequence for both attention ASTs and out-of-band ASTs follows: 
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1. A process assigns a channel and requests the $QIO system service, spec­
ifying that it should receive AST notification of an attention condition 
on that device. 

2. The device driver builds a data structure to describe the attention AST 
request, inserts it on a list connected to the device UCB, and completes 
the I/O request. 

3. If the attention condition occurs, the device interrupt service routine 
delivers the attention AST by queuing an AST to the process. 

The major distinction between the attention AST and the out-of-band 
AST mechanisms is that out-of-band ASTs automatically repeat, whereas 
attention ASTs must be "rearmed." That is, a process must repeat its $QIO 
request for each attention notification. 

Attention ASTs are described in the following sections, and out-of-band 
ASTs are described in Section 7.9.5. 

7.9.1 Set Attention AST Mechanism 
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To establish an attention AST for a particular device whose driver supports 
this feature, the user requests the $QIO system service with the I/O function 
IO$_SETMODE or, for some devices, IO$_SETCHAR. The kind of attention 
AST requested is indicated by a function modifier. 

The relevant function decision table (FDTJ action routine for such a driver 
invokes COM$SETATTNAST, in module COMDRVSUB, which performs. 
the following actions: 

1. If the user AST procedure address (the $QIO Pl parameter) is zero, the 
request is interpreted as a flush attention AST list request (see Sec­
tion 7.9.3). 

2. Otherwise, COM$SETATTNAST allocates an expanded ACB from non­
paged pool and charges it against the process AST quota, PCB$W _AST­
CNT. The expanded ACB will be used both as a fork block (FKBJ and as 
an ACB and is referred to as a FKB/ACB. 

3. COM$SETATTNAST copies information into the FKB/ACB, such as the 
AST procedure address, AST argument, channel number, and PID. 

4. It acquires the device lock, raising IPL to UCB$B_DIPL, to synchronize 
access to the attention AST list. It then inserts the FKB/ACB into a singly 
linked, last-in/first-out (LIFO) list of FKB/ACBs connected to the UCB of 
the associated device. 

The location of the FKB/ACB listhead is device-specific; some UCBs 
have multiple listheads--one for each attention condition the driver sup­
ports. The FDT action routine passes the address of the listhead in a 
register to COM$SETATTNAST. 

5. COM$SETATTNAST then releases the device lock, restoring the previ­
ous IPL, and returns to the FDT action routine. 
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7.9.2. Delivery of Attention ASTs 

When the driver (typically the device interrupt service routine) determines 
that the attention condition has occurred, it invokes COM$DELATINAST 
with the address of the FKB/ ACB listhead. 

A driver uses an alternative entry point, COM$DELATTNASTP, to specify 
that only ASTs requested by a particular process be delivered. 

COM$DELATTNAST is entered at device IPL with the device lock held 
to synchronize access to the attention AST list. The queuing of ASTs must 
occur at IPL$_SCHED with the SCHED spinlock held to synchronize access 
to the scheduler database (see Chapter 8). Specifically, IPL must not be 
lowered to IPL$_SCHED. To accomplish correct synchronization and not 
block activities .at IPL 7 and IPL 8, COM$DELATTNAST creates an IPL$_ 
QUEUEAST (6) fork process to queue each AST. 

The following steps summarize the delivery of attention ASTs: 

1. COM$DELATTNAST scans each FKB/ ACB in the list. In the case of 
entry through COM$DELATTNASTP, the routine compares the PID in 
the FKB/ACB to the requested PID. If they are not equal, the routine 
leaves the data structure in the queue and goes on to the next entry. If 
the Pills match, the routine performs the actions described in the next 
step. 

2. The routine removes the FKB/ ACB from its list and dispatches to 
EXE$FORK, specifying the address of a fork process to be stored in 
FKB$L_FPC of the FKB/ ACB. EXE$FORK records the fork process ad­
dress, queues the fork block to the fork IPL 6 listhead, and requests an 
interrupt at that IPL. 

3. When IPL drops below 6, the fork interrupt is granted. The IPL 6 fork 
dispatcher removes the FKB/ ACB from the IPL 6 fork block queue and 
dispatches to COM$DELATTNAST's fork process. 

4. At IPL 6, COM$DELATTNAST's fork process reformats the fork control 
block into an ACB, describing the AST procedure and the access mode 
of the original attention AST request. 

5. The fork process invokes SCH$QAST, which acquires the SCHED spin­
lock and then queues the ACB to the process that requested the attention 
AST. 

7.9.3 Flushing an Attention AST List 

The list of attention ASTs is flushed as the result of an explicit user request, 
a Cancel I/O l$CANCEL), or a $DASSGN system service request for the 
associated device. 

A user explicitly requests that the attention AST list be flushed by re­
questing a $QIO set attention AST with an AST routine address of zero (see 
Section 7.9.1). When COM$SETATTNAST is invoked with an AST proce­
dure address of zero, it branches to COM$FLUSHATTNS. 
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COM$FLUSHATINS is entered with the PID and channel number of the 
attention ASTs to be deleted. COM$FLUSHATTNS performs the following 
operations: 

1. It acquires the device lock, raising IPL to UCB$B_DIPL of the device. 
2. It scans the FKB/ACB list looking for any FKB/ACBs with a PID and 

channel number that match those of the requested flush operation. 
3. If the PIDs and channel numbers match, COM$FLUSHATTNS removes 

the FKB/ ACB from the attention AST list. 
4. COM$FLUSHATTNS releases the device lock, restoring the IPL at which 

it was entered. 
5. COM$FLUSHATTNS increments the process AST quota and deallocates 

the FKB/ ACB to nonpaged pool. 
6. COM$FLUSHATTNS continues processing until it has scanned the en­

tire attention AST list. It then releases the device lock and returns to its 
invoker. 

7.9.4 Examples in the VMS Executive 

7.9.4.1 
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Users frequently request attention ASTs for terminals and mailboxes. Brief 
descriptions follow of the terminal driver's and mailbox driver's support of 
attention ASTs. 

Terminal Driver and CTRL/C-CTRL/Y Notification. A process requests 
CTRL/C notification or CTRL/Y notification by requesting the $QIO sys­
tem service, specifying 10$_SETMODE (or 10$_SETCHAR) with the func­
tion modifier 10$M_CTRLCAST or 10$M_CTRLYAST. When an interactive 
user spawns a new process, that new process may also request CTRL/C and 
CTRL/Y attention ASTs. If the user types CTRL/C or CTRL/Y, the AST 
should be delivered only to the process currently associated with the ter­
minal rather than to every process in the job. As the user spawns new 
subprocesses and attaches to already created processes, DCL tells the ter­
minal driver the PID of the process currently associated with the terminal. 
When CTRL/C is typed, the terminal driver invokes COM$DELATTNASTP 
to deliver only the ASTs that were requested by the process associated with 
the terminal. 

If no CTRL/C attention AST has been requested, then the CTRL/C is 
interpreted as a CTRL/Y, and the terminal driver searches the CTRL/Y AST 
list instead. If a CTRL/Y is typed, only the CTRL/Y attention AST list is 
searched. 

Because the FKB/ ACB data structures are not reused, CTRL/C and CTRL/Y 
attention ASTs must be reenabled each time they are delivered to a process. 

The CTRJ.../Y attention AST list is flushed by a $DASSGN request. The 
CTRL/C attention AST list is flushed by $CANCEL as well as by $DASSGN. 
Both lists can be flushed by an explicit user request. 
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Mailbox Driver. A process requests mailbox attention ASTs by requesting 
the $QIO system service with the function code 10$_SETMODE or IO$_ 
SETCHAR. The possible function modifiers are 10$M_READATTN and 
IO$M_ WRTATTN. 10$M_ WRTATTN requests notification of an unsolicited 
message written to that mailbox. An unsolicited message is one written to a 
mailbox that has no outstanding read request. 10$M_READATTN requests 
notification when any process requests a read from that mailbox and there 
is no message in it. 

Attention ASTs of each type may be declared by multiple processes for the 
same mailbox. When a condition corresponding to an attention AST occurs, 
all ASTs of the appropriate type are delivered. Only the first process to make 
a corresponding 1/0 request will be able to complete the transfer of data 
signaled by the attention ASTs. 

Read and write attention ASTs must be reenabled after delivery because 
the entire attention AST list is delivered and removed after each occurrence 
of the specified condition. 

7.9.5 Out-of-Band ASTs 

7.9.5.1 

The terminal driver uses a newer form of AST mechanism to notify a process 
that an out-of-band character has been received from its terminal. Out-of~ 
band characters ?Ie control characters, the ASCII codes 00 to 2016· (Although 
CTRL/C and CTRL/Y are in this range, the terminal driver provides the 
attention AST. mechanism described previously to notify a process of their 
receipt for compatibility with earlier versions of VMS.) Out-of-band ASTs are 
similar to attention ASTs in that the terminal driver forks down to IPL$.::. 
QUEUEAST to queue an ACB to the process. 

The most significant difference between the attention AST mechanism 
and the out-of-band AST mechanism is that out-of-band ASTs are repeating; 
that is, once declared, out-of-band ASTs are delivered to the process for the 
life of the process or until the $CANCEL system service is requested to flush 
the AST list. Another difference is that the out-of-band AST mechanism 
employs a piggyback special kernel mode AST routine. 

The Terminal AST Block. The terminal driver builds a data structure called 
a terminal AST block (TAST) to describe an out-of-band AST request. Fig­
ure 7.5 illustrates the TAST. 

The TAST can be in two lists at once because of its structure. Through 
TAST$L_FLINK, the TAST is always queued to the terminal UCB in a singly 
linked list. Through the first two longwords of the TAST, it can be inserted 
into a fork queue or a process's ACB queue. The terminal driver sets the 
bit TAST$V _BUSY in TAST$B_CTRL when the TAST is in use as a fork 
block or ACB. The TAST includes space for fork process context (that is, a 
fork PC, fork R3, and fork R4) and the AST information (address of the AST 
procedure and its argument, PID, and RMOD fields). 
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Figure 7.5 
Terminal AST Block 

Set Out-of-Band AST Mechanism. A process requests out-of-band notifica­
tion by requesting the $QIO system service, specifying 10$_SETMODE (or 
10$_SETCHARJ with the function modifier 10$M_OUTBAND. 

The terminal driver's FDT action routine invokes COM$SETCTRLAST, 
in module COMDRVSUB, which performs the following steps: 

1. If the user AST procedure address ($QIO Pl parameter) is zero or the char­
acter mask ($QIO P2 parameter) is zero, COM$SETCTRLAST interprets 
the request as a flush out-of-band AST list request (see Section 7.9.5.4). 

2. Otherwise, COM$SETCTRLAST allocates a TAST from nonpaged pool. 
3. It then acquires the device lock, raising IPL to UCB$B_DIPL, to synchro­

nize access to the TAST list. 
4. COM$SETCTRLAST next scans the list of out-of-band TASTs, searching 

for one with the same characteristics as the QIO request. The following 
items are checked: 

-The PID. Out-of-band ASTs can be requested for the same terminal 
device from a process and its subprocesses (which will have different · 
Pills). 

-The channel number 

5. If COM$SETCTRLAST finds a TAST with the same characteristics that 
is not in use, it modifies the existing TAST by replacing the AST address 
and the control mask. It then invokes COM$DRVDEALMEM, in module 
COMDRVSUB, to create an IPL 6 fork process to deallocate the just­
allocated TAST. This unusual sequence is required because COM$SET­
CTRLAST must hold the device lock while scanning the TAST list. 
During that time, it cannot allocate pool, synchronization to which is 
controlled at a lower IPL. 
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If the TAST is in use !perhaps queued as an ACB to the process), 
COM$SETCTRLAST marks it as "lost" and removes it from the list. 
COM$SETCTRLAST charges the process AST quota and initializes the 
just-allocated TAST to describe the request. It copies information from 
the IRP (the AST procedure address, channel number, and PID) and the 
$QIO character mask into the TAST. It inserts the TAST in the queue 
position of the lost TAST. 

6. If it does not find a similar TAST, it initializes the just-allocated TAST 
and charges the process AST quota. It places the TAST at the tail of the 
list. 

7. COM$SETCTRLAST ORs the $QIO character mask into the terminal's 
out-of-band AST summary mask, the field UCB$L TLOUTBAND. This 
mask represents all the control characters for which the terminal driver 
must deliver an out-of-band AST. It then releases the device lock, restor­
ing the previous IPL. 

Delivery of Out-of-Band ASTs. When a control key is typed at a terminal, the 
terminal driver checks whether that control character is represented in the' 
terminal's out-of-band AST summary mask. If the bit in the summary mask 
is set, an out-of-band AST has been requested for that control character. The 
terminal driver interrupt service routine invokes COM$DELCTRLAST, in 
module COMDRVSUB, to deliver the out-of-band AST. The terminal driver 
uses an alternative entry point, COM$DELCTRLASTP, to specify that only 
ASTs requested by a particular process be delivered. 

The following steps summarize the delivery of out-of-band ASTs: 

1. COM$DELCTRLAST is entered at device IPL with the device lock held 
to synchronize access to the TAST list. It scans the list of TASTs for one 
whose character mask contains the character typed at the terminal. 

When it finds one with a matching character mask, it checks the busy 
bit to see whether the control block is already in use. In the case of entry 
through COM$DELCTRLASTP, the routine also compares the PID in 
the TAST to the requested PID. If they are not equal, the routine goes 
on to the next TAST in the queue. 

If TAST$V_BUSY is set, COM$DELCTRLAST skips that TAST. If 
TAST$V _BUSY is clear, COM$DELCTRLAST sets it, marking the TAST 
in use, and records in TAST$LASTPRM the control character that was 
received. 

2. The synchronization considerations described for COM$DELATTNAST 
apply to COM$DELCTRLAST as well. It creates an IPL 6 fork process, 
using the TAST as an FKB, to queue each AST. The TAST also remains 
linked to the terminal UCB list of TASTs. Figure 7.6 shows the TAST in 
the terminal UCB's TAST list and in the fork block queue. 

3. When IPL drops below 6, the fork interrupt is granted. The IPL 6 fork 
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dispatcher removes the TAST from the IPL 6 fork block queue and dis­
patches to COM$DELCTRLAST's fork process. 

4. At IPL 6, COM$DELCTRLAST's fork process reformats the FKB into an 
ACB describing the AST procedure and the access mode of the original 
out-of-band AST request. The no-delete and piggyback special kernel 
mode AST flags are set in the ACB, and the special kernel mode AST field 
is loaded with the address of COM$DELCTRLAST's piggyback special 
kernel mode AST. 

5. The fork process invokes SCH$QAST, which acquires the SCHED spin­
lock and then queues the ACB to the process that requested the attention 
AST. Figure 7.7 shows the TAST in use as an ACB. 

6. When the process receives the AST, the piggyback special kernel mode 
AST routine is executed first. The piggyback special kernel mode AST 
performs two functions: 

a. It clears TAST$V _BUSY. 
b. If the TAST is marked as "lost," the piggyback special kernel mode 

AST routine deallocates it and returns AST quota to the process. A 
TAST is "lost" when COM$FLUSHCTRLS is unable to deallocate it 
because its busy bit is set jsee Section 7.9.5.4). Once the AST has 
been delivered, the TAST is no longer needed. 

Flushing an Out-of-Band AST List. The list of out-of-band ASTs is flushed 
as the result of an explicit user request, a $CANCEL, or a $DASSGN request 
for the associated device. 

A user explicitly requests that the out-of-band AST list be flushed by 
requesting a $QIO set out-of-band AST with an AST routine address of zero 
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or a character mask of zero (see Section 7.9.5.2). When COM$SETCTRLAST 
receives such a request, it branches to COM$FLUSHCTRLS. 

COM$FLUSHCTRLS is entered with the PID and channel number of the 
attention ASTs to be deleted. COM$FLUSHCTRLS performs the following 
operations: 

1. It acquires the device lock, raising IPL to UCB$B_DIPL of the device. 
2. It scans the out-of-band AST list and compares the PID and channel 

number in the TAST with those of the requested flush operation. As 
it scans the list, it builds a new out-of-band AST summary mask. If 
COM$FLUSHCTRLS finds a TAST that does not match, COM$FLUSH­
CTRLS ORs its control characters into the summary mask being built 
and goes on to the next TAST. 

3. If the Pills and channel numbers match, COM$FLUSHCTRLS removes 
the TAST from the list. It checks TAST$V _BUSY to see whether the 
TAST is in use as a FKB or ACB. If TAST$V _BUSY is set, the "lost" bit 
is set so that the TAST will be deallocated once its AST is delivered. 

4. If the TAST is not busy, COM$FLUSHCTRLS returns the process AST 
quota and deallocates the TAST to nonpaged pool. 

5. COM$FLUSHCTRLS continues processing until it has scanned the entire 
list. It then replaces the old summary mask with the one just built. 

6. COM$FLUSHCTRLS releases the device lock, restoririg the IPL at which 
it was entered. 
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8.1 

Synchronization Techniques 

"Time," said George, "why I can give you a definition of time. 
It's what keeps everything from happening at once." 

Ray Cummings, The Man Who Mastered Time 

In an operating system that allows interrupts, the interrupting code must 
coordinate, or synchronize, with the code being interrupted to ensure cor­
rect behavior. Similarly, when an operating system runs on two or more 
processors sharing the same memory, code running on one processor must 
synchronize with code running on the others. · 

VMS uses a combination of the following VAX hardware mechanisms and 
software techniques to synchronize the actions of code threads that might 
otherwise interfere with each other: 

• Atomic memory accesses 
• Uninterruptible instructions 
• Interlocked memory accesses 
• Interrupt priority level (IPL) 
• Spinlocks (new with VMS Version 5) to synchronize access to shared data 

by multiple processors 
• Queues 
• Mutual exclusion semaphores (mutexes) 
• Lock management system services 
• Event flags 

OVERVIEW 

Synchronization is a term commonly used to refer to the simultaneous 
occurrence of two or more events. In a computer context, however, the word 
is used to refer to the coordination of events. The coordination may still be 
as specific as the simultaneous occurrence of events; this use of the term 
occurs most often in descriptions of hardware mechanisms. In descriptions 
of software, synchronization usually refers to the coordination of events in 
such a way that only one event happens at a time. This specialized kind of 
synchronization is known as serialization. Serialized events are assigned an 
order and processed one at a time in that order. While a serialized event is 
being processed, no other event in the series is allowed to disrupt it. 

Atomicity and mutual exclusion are frequently described as different types 
of serialization, although the two concepts overlap. Atomicity often refers to 
the serialization of a small number of actions, such as those occurring during 
the execution of a single instruction or a small number of instructions. 
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Mutual exclusion is usually applied to the serialization of larger groups of 
instructions. 

Algorithms requiring synchronization take many forms and arise in many 
contexts. Most of them reduce to solving a small number of fundamental 
problems, for example, the requirement that a thread of execution change 
multiple storage locations as an atomic operation. When the first location is 
changed but the last is not, the storage is temporarily inconsistent. H another 
thread of execution can access the locations at that moment, that change is 
not synchronized and system disruption can occur. 

Another closely related synchronization problem is the requirement that 
a thread of execution read a storage location and, depending on its value, 
write a new value into the location. If another thread with the same intent 
toward that location can intervene after the read and before the write, then 
the change to that location is not atomic and system disruption can occur. 
Specifically, the change made by one of the threads can overlay the change 
made by the other. 

8.1.1 Synchronization at the Hardware Level 

8.1.1.1 
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VAX hardware provides several mechanisms to assist with synchronization, 
including atomic memory accesses, uninterruptible instructions, IPL, and 
interlocked memory accesses. 

Atomic Memory Accesses. VAX hardware is required to read or write the 
following memory operands atomically, in a single memory operation: 

• Byte operand 
• Aligned word operand 
• Aligned longword operand 
• Bit field contained in one byte 
• Aligned longword address used in a displacement deferred mode or autoin-

crement deferred mode operand specifier 

VAX hardware is not required to implement any other operands atomically. 
An unaligned word, for example, containing a byte on either side of a long­
word boundary, may require two separate commands to be read or written. 
Reading and writing quadword data, whether aligned or not, may require 
multiple commands. · 

A piece of data accessed nonatomically by multiple processors can become 
corrupted. Written nonatomically, it can become any bytewise combination 
of all the data concurrently being written to it. The value read from it 
can be any bytewise combination of the original value and the new values 
concurrently being written to it. This type of corruption is known as data 
incoherency and word-tearing. 

Operands that are either read atomically or written atomically are not 
necessarily modified atomically (read and written in the same instruction). 



8.1.1.2. 

8.1.1.3 

8.1.1.4 

8.1 Overview 

For example, although the CPU executes INCB X as a single instruction, it 
performs the memory read and write necessary to carry out the instruction as 
independent accesses. If another thread of execution is running concurrently, 
it may issue a command to the memory controller that reads or writes 
location X between the INCB's read and write. 

Uninterruptible Instructions. Whether an instruction's memory references 
are atomic depends on whether the CPU permits interrupts during its exe­
cution, and whether more than one thread can execute concurrently. When 
only one thread can execute at a time las in a system with only one CPU and 
no intelligent 1/0 controllers), memory references can be atomic if interrupts 
are prevented. 

The VAX. architecture allows interrupts in one category of instructions, 
called first part done or FPD instructions. FPD instructions can be inter­
rupted at well-defined points during the course of their execution; sufficient 
status is saved in general registers to permit instruction restart at the point 
of interruption. _ 

The VAX. architecture specifies that all other instructions are to be unin­
terruptible in the following sense. If an instruction is interrupted, the mi­
crocode must restore the software-visible state of the CPU to what it was at 
the start of the instruction; when the interrupt is dismissed, the instruction 
can restart from the beginning. This guarantee of restartability for non-FPD 
instructions means that their execution is effectively uninterrupted. 

For example, the absolute queue instructions INSQUE and REMQUE each make 
several memory references in manipulating a queue. The CPU allows no 
interrupts during the execution of these instructions. Thus, the insertion or 
removal of an element at the head or tail of an absolute queue is synchronized 
when only one processor can access it. 

Interrupt Priority Level. On a system with only one CPU la uniprocessor), 
VMS synchronizes access to its data structures by requiring all threads that 
access a shared data structure to run at the highest IPL at which any thread 
that accesses it can interrupt. IPL is a processor-specific mechanism; when 
more than one processor accesses the same memory, raising IPL on one 
processor has no effect on the others. Section 8.2 describes the use of IPL. 

Interlocked Memory Accesses. Many simple operations that must make 
atomic memory accesses cannot do so with a single uninterruptible in­
struction. For example, a sequence of code that scans a queue to determine 
where to insert a new element is vulnerable to interrupts. While it follows 
queue elements' forward links and examines a field in each element, an in­
terrupt could occur whose service routine changes the makeup of the queue. 
When the service routine dismisses the interrupt, the code scanning the 
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queue could have a stale forward link that no longer points to a valid queue 
element. 

On a uniprocessor, such a sequence can be protected by executing it at 
the highest IPL at which any thread that accesses the queue can interrupt. 
On a multiprocessor, this technique fails. The memory controller provides a 
mechanism called a memory interlock, which does provide synchronization 
in this situation. A memory interlock enables a processor to make an atomic 
modification to a location in memory shared by multiple processors. 

Both CPUs and intelligent 1/0 controllers can make interlocked references 
to memory. When a CPU executes an instruction that interlocks memory, 
it first issues an interlock-read command to the memory controller. The 
memory controller sets an internal flag and responds with the requested 
data. While the flag is set, the memory controller stalls any subsequent 
interlock-read commands for that same aligned longword from other pro­
cessors, although it continues to process ordinary reads and writes. When 
the CPU executing the interlocked instruction issues a write-unlock com­
mand, the memory controller writes the modified data back and clears its 
internal flag. The memory interlock persists for the duration of only one 
instruction. That is, execution of an interlocked instruction includes paired 
interlock-read and write-unlock memory controller commands. 

Synchronizing data with memory interlocks requires that all accessors of 
that data use them. In other words, the memory references of an interlocked 
instruction can be atomic only with respect to other interlocked memory 
references. 

The granularity of the interlock is VAX-implementation-dependent. For 
example, on some processors, while an interlocked access to a location is in 
progress, no interlocked access to any other location in memory is allowed. 
The VAX architecture guarantees only aligned longword granularity. 

The VAX architecture provides seven instructions that interlock memory. 
The VAX Architecture Reference Manual describes their operation in detail. 
They are 

• ADAWI-Add aligned word, interlocked 
• BBCCI-Branch on bit clear and clear, interlocked 
• BBSSI-Branch on bit set and set, interlocked 
• INSQHI-lnsert entry into queue at head, interlocked 
• INSQTI-lnsert entry into queue at tail, interlocked 
• REMQHI-Remove entry from queue at head, interlocked 
• REMQTI-Remove entry from queue at tail, interlocked 

An interlocked queue instruction does its interlocking in two stages. In 
the first stage, the processor issues an interlock-read cqmmand to read the 
forward link. It then makes a bit test and issues a write-unlock command, 
setting and checking the low-order bit of the forward link. (Self-relative 
queue elements are constrained to be quadword-aligned; the low-order three 
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address bits are thus available for other uses.) If the low-order bit was clear, 
the processor continues with the second stage of the instruction. 

During execution, the queue itself is interlocked by the low-order bit in the 
forward link, but only the queue is interlocked; the rest of the memory that 
would otherwise be interlocked is free. The use of this "secondary interlock" 
reduces memory interlock contention. 

If the low-order bit of the forward link was already set, the processor 
sets the C condition code bit and completes instruction execution without 
performing any queue manipulations. The code containing the interlocked 
queue instruction is expected to test the C bit and, if it is set, try to execute 
the instruction again. After a number of failures, the queue is presumed 
corrupt. 

Typically, the VMS executive performs interlocked queue manipulations 
through macro invocation. Each of the interlocked queue instructions has 
a corresponding macro: $INSQHI, $INSQTI, $REMQHI, and $REMQTI. A 
sample invocation of $INSQTI and its generated code follows: 

;the macro invocation 
$INSQTI (R3),G-IOC$GQ_POSTIQ 

;its generated code 
CLRL RO 

30000$: INSQTI (R3),G-IOC$GQ_POSTIQ 

30001$: 

BCC 30001$ 
AOBLSS #900000,R0,30000$ 
BUG_CHECK BADQHDR,FATAL 

;Insert packet on queue 

Interlocked queues can be shared between a CPU and an intelligent I/O 
controller: 

• The DR32 is a general-purpose, intelligent data port that connects a VAX 
internal memory bus to a bus accessible to foreign devices. An applica­
tion program accesses the DR32 through command and response queues 
in VAX memory. Synchronizing access to the queues requires that both 
the DR32 and the application program interlock the memory: the appli­
cation program uses interlocked queue instructions; the DR32 issues the 
equivalent memory controller commands . 

• The CI adapter (for example, CI780) is a microcoded intelligent controller 
that connects a VAX to a CI bus and communicates with its counterparts 
on other nodes. The CI port driver communicates with the CI adapter 
through command and response queues. Both the CI adapter and the port 
driver must make interlocked queue references, as previously described. 

8.1.2. Synchronization at the Software Level 

VMS uses the synchronization primitives provided by the hardware as the 
basis for several different synchronization techniques. The following sections 
summarize techniques used by the executive and application software. 
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Table 8.1 Characteristics. of Executive Synchronization Methods 

Characteristic IPL Spinlocks Mutexes Locks 
VAXcluster-wide No No No Yes 
SMP systemwide No Yes Yes Yes 
Available to outer modes No No No Yes 
Usable from process context Yes Yes Yes Yes 
Usable from system context Yes Yes Yes 1 No 
Kinds of sharing Exclusive Exclusive Multiple Varied modes 

readers or 
one writer 

Creation n/a Most fixed; Most fixed; Dynamic 
some some 
dynamic dynamic 2 

1 Mutexes are used almost entirely for process context synchronization. The 1/0 database mutex is the 
only one currently locked by system· threads. 

2 Most mutexes are fixed. There are several data structures, however, :with a field containing a mutex to 
synchronize access to other fields in the data structure. These mutexes are created dynamically with the 
data structures that contain them. 

8.1.2.1 

8.1.2.1.1 

8.1.2.1.2 
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Executive Synchronization Techniques. Table 8.1 contrasts the synchroniza­
tion techniques most commonly used by the VMS executive. 

Spinlocks. When running on a uniprocessor, VMS synchronizes access to 
system data structures using IPL. However, VMS cannot use IPL to control 
access to. data structures in memory shared by the multiple CPUs of a 
symmetric multiprocessing (SMP) system. To extend to an SMP environment 
the uniprocessor synchronization provided by IPL, VMS Version 5 introduces 
a mechanism called a spinlock. 

In Version 5, a thread of execution not only raises IPL to block interrupts on 
the same processor but also acquires a spinlock to block concurrent accesses 
by other processors. Section 8.3 describes spinlocks in detail. 

Each VMS Version 4 system wide. absolute queue is now a per-processor 
absolute queue}·.a: systemwide interlocked queue, or a systemwide absolute 
queue protected by a spinlock. 

Some shared system data was· accessed in previous versions by a single 
noninterruptible instruction. In VMS Version 5, such accesses have been 
converted to an interlocked instruction or are made under the protection of 
a spinlock. 

Mutexes. Accesses to shared system data structures by multiple processes 
from IPLs below 3 can be synchronized by m.utexes. Section 8.5 describes 
mutexes. 



8.1.2.1.3 

8.1.2.2 

8.1 Overview 

Lock Management System Services. The lock management system services 
(Enqueue Lock Request, $ENQ, and Dequeue Lock Request, $DEQ) provide 
synchronization .tools that can be requested from all access modes. Further­
more, lock management is the fundamental VAXcluster-wide synchroniza­
tion primitive. Lock management system services are used, for example, by 
Record Management Services (RMS), the file system, the job controller, the 
device allocation routines, and the Mount Utility to provide clusterwide 
synchronization. (See Appendix H for a description of some of these uses.) 
The lock management system services are described in the VMS System 
Services Reference Manual; Chapter 10 in this book describes their internal 
workings. 

Another important synchronization issue for VMS involves disk storage. 
Data structures on a shared disk (for example, files and records within files 
and the actual disk structure) are protected by lock management system 
services. This form of synchronization serves whether the disk is accessed 
by multiple processes on a single system or by multiple processes on multiple 
nodes of a V AXclust,er system. 

Application Synchronization Techniques. A process-private data structure 
accessed from both asynchronous system trap (AST) and non-AST threads of 
execution must ,be protected against concurrent access. Access to the data 
structure can be ·~ynchronized by blocking AST delivery, either by raising 
IPL to 2 or by requesting the Set AST Enable ($SETAST) system service. 
The concept of AST reentrancy and ways of achieving it are described in the 
Guide to Creating !VMS Modular Procedures. 

The design of a multiprocess application that runs on an SMP system must 
take into account the possibility that multiple processes may run on different 
CPUs and access shared data concurrently. User processes that share global 
sections can execute interlocked instructions to synchronize their accesses 
to data in the global sections. They can also use the lock management system 
services for synchronization. 

New with VMS Version 5, the parallel processing Run-Time Library proce­
dures provide support for a number of different synchronization techniques 
suitable for user access mode applications. These techniques include 

• Mutual exclusion implemented through an application-created semaphore 
or spinlock 

• Event synchronization, by which one or more processes can wait for the 
occurrence of a user-defined event that is triggered by another process 

• Barrier synchronization, by which multiple processes wait until a specified 
number of them have all reached a designated point in their execution .... -

The VMS RTL Parallel Processing (PPL$) Manual describes these procedures 
and their use. 
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8.2 
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VMS provides more basic event synchronization through event flags. Event 
flags are local to a process or shared among a group of cooperating processes 
running on a uniprocessor or an SMP system. An event flag can represent 
the completion of an asynchronous system or RMS service. A shared, or 
common, event flag can represent any event detectable and agreed upon by 
the cooperating processes. Chapter 9 describes the implementation of event 
flags, and Chapter 6 details their use in asynchronous services. 

ELEVATED IPL 

Raising IPL on a processor blocks all interrupts on that processor at the 
specified IPL value and all lower values of IPL. The traditional VMS method 
of synchronizing access to system data has been to raise IPL to a high enough 
level to block all interrupts whose service routines touch that data. For 
example, access to the variable-length nonpaged pool list is synchronized 
at IPL 11, the IPL of the highest interrupt thread from which nonpaged pool 
allocation is permitted. At IPL 11, all fork process interrupts are blocked, 
but higher priority software and hardware interrupts can still be granted. 

The IPL, stored in the processor status longword (PSL) register bits (20:16), 
is altered by writing the desired IPL value to the processor register PR$_IPL 
with the MTPR instruction. This change in IPL has traditionally been made by 
invoking the SETIPL or DSBINT macro. Their macro definitions, somewhat 
simplified, follow: 

.MACRO SETI PL IPL = #31 
MTPR IPL,S-#PR$_IPL 

.ENDM SETI PL 

.MACRO DSBINT IPL = #31, DST = -(SP) 
MFPR s-#PR$_IPL,DST 
MTPR IPL,S-#PR$_IPL 

.ENDM DSBINT 

The SETIPL macro changes IPL to the specified value. If no argument is 
present, IPL is elevated to 31. This macro is used when the IPL will later be 
explicitly lowered with another SETIPL or simply as a result of executing an 
REI instruction. That is, the value of the saved IPL is not important to the 
routine that is using the SETIPL macro. 

The DSBINT macro first saves the current IPL before elevating IPL to the 
specified value. If no alternative destination is specified, the old IPL is saved 
on the stack. The default IPL value is 31. This macro is usually used when 
a later sequence of code must restore the IPL to the saved value with the 
ENBINT macro. ENBINT, the counterpart to the DSBINT macro, restores 
the IPL to the value found in the designated source argument. 

The successful use of IPL as a synchronization tool requires that IPL be 
raised (not lowered) to the appropriate synchronization level. Lowering IPL 
defeats any attempt at synchronization. Moreover, a thread of execution 
entered as the result of an interrupt cannot lower IPL below its entry IPL 
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without risking a reserved operand fault. H it lowered IPL and then tried to 
REI, restoririg a PSL with a higher IPL, the REI microcode would generate a 
reserved operand fault. !However; a thread of execution may raise and then 
lower its IPL as long as it does not lower IPL below that of its entry.) 

Suppose a thread of execution modifying more than one location in a 
shared database raises IPL to x to block interrupts from other accessors of 
the database. The first thread of execution is interrupted, after partly making 
its modifications, by a second thread running in response to a higher priority 
interrupt. The shared database is now in an inconsistent state. H the second 
thread were to lower IPL to x in a mistaken attempt to synchronize access 
to the database, it could receive incorrect data or corrupt the database. 

Integrity of the database would, however, be maintained if the second 
thread of execution were to reschedule itself to run as the result of an inter­
rupt at or below x and access the database from the rescheduled thread. Fork­
ing is the primary way in which an interrupt thread of execution reschedules 
itself to run at a lower IPL. Chapter 4 describes forking in more detail. 

The sections immediately following briefly describe the synchronization 
use of various IPLs. Note, however, that most of the SETIPL, DSBINT, and 
ENBINT macro invocations in the executive have been replaced by invoca~ 
tions to macros that acquire and release spinlocks. Each of the IPLs tradi­
tionally used for synchronizing access to shared data now has one or more 
spinlocks associated with it. On a uniprocessor system, the act of acquiring 
a spinlock is transparently reduced to raising IPL to that of the spinlock. 
Section 8.3.6 describes the use of each spinlock. From the perspective of 
a uniprocessor system, those sections can be interpreted as describing the 
synchronization use of the spinlocks' IPLs. 

The macro $IPLbEF defines symbolic names for IPL values. 

8.2.1 IPL$_POWER 

Routines in the executive raise IPL to IPL$_POWER, or 31, to block all 
interrupts, including power failure, an IPL 30 interrupt. IPL is raised to this 
level only for a short period of time once the system has been initialized. 
IPL$_EMB and IPL$_MCHECK are synonyms for IPL$_POWER; they are two 
different names for the same spirilock. 

• Device drivers raise IPL to 31 to prevent a powerfail interrupt from occur­
ring, just before they invoke IOC$WFixxCH. 

• The entire bootstrap sequence operates at IPL 31 to put the system into a 
known state before allowing interrupts to occur. 

• As described in Section 8.3.6.19, error log buffer allocation and deallocation 
occur at this IPL. 

• As described in Section 8.3.6.18, machine check exception and parts of the 
CPU-specific error interrupt service routines execute at IPL 31. 

• XDELTA, the executive debugger, runs at IPL 31. 
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8.2.2 IPL$_HWCLK and IPL$_HWCLKLO 

When IPL is raised to IPL$_HWCLK, or 24, interval timer interrupts are 
blocked. On newer VAX processors, the interval timer interrupts at IPL$_ 
HWCLKLO, or 22; on older ones, it interrupts at IPL 24. Chapter 11 identifies 
the interval timer IPL associated with each processor type. Section 8.3.6.16 
describes the use of the associated spinlock. 

8.2.3 Device IPLs 

A device driver raises IPL to the level at which its associated device inter­
rupts. Raising IPL prevents the device from interrupting while its device 
registers are being read or written. 

8.2.4 Fork IPLs 

The executive uses fork IPLs to synchronize access to unit control blocks 
(UCBs). UCBs are accessed by device drivers and by process-based code, such 
as the Queue 1/0 ($QIO) and Cancel 1/0 on Channel ($CANCEL) system 
services. 

A device driver also uses its associated fork IPL as a synchronization level 
when accessing data structures that control shared resources, such as multi­
unit controllers, data path registers, or map registers. For this synchroniza­
tion to work properly, all devices sharing a given resource must use the same 
fork IPL. 

Fork processing, the technique whereby a device driver lowers IPL below 
device interrupt level in a manner consistent with the interrupt nesting 
scheme, also uses the serialization technique described in Section 8.4. 

8.2.5 IPL$_SYNCH 
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IPL$_SYNCH is the IPL at which the software timer routine executes. This 
routine services timer queue entries (TQEs) and handles quantum expiration. 
(The software timer interrupt is requested and granted at IPL 7, but the 
interrupt service routine raises IPL and runs primarily at IPL$_SYNCH. See 
Chapter 11 for further details.) 

IPL$_SYNCH is the level to which IPL must be raised for any routine 
to access several systemwide data structures, for example, the scheduler 
database. By raising IPL to IPL$_SYNCH, all other interrupt service routines 
on that processor that might access the same systemwide data structure are 
blocked from execution until IPL is lowered. 

IPL$_SYNCH is also the IPL at which most driver fork processing oc­
curs. While the processor is executing at IPL$_SYNCH, certain systemwide 
events, such as scheduling and 1/0 postprocessing, are blocked. However, 
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other more important operations, such as hardware interrupt servicing, can 
continue. 

The following are synonyms of IPL$_SYNCH with the same numeric 
value: IPL$_MMG, IPL$_SCHED, IPL$_FILSYS, IPL$_ TIMER, and IPL$_JIB. 
(Note that this is a change in the meaning of IPL$_SCHED, whose value 
was 3 in versions of VMS prior to Version 5.) Each of these synonyms 
corresponds to a spinlock. IPL$_SCS and IPL$_IOLOCK8 are also synonyms 
of IPL$_SYNCH; they are two different names for the same spinlock. 

In early versions of VMS, the value of IPL$_SYNCH was 7. In VMS Ver­
sion 4, its value was changed to 8 to enable three executive components to 
run at the same IPL: the distributed lock manager, system communication 

.services (SCS), and the CI port driver. 
On a VAXcluster system, the lock manager must communicate cluster­

wide with its counterparts on other nodes to perform locking. The lock 
managers communicate using the message services of SCS. SCS is also used 
heavily by class and port drivers and runs at the same IPL they do, IPL$_ 
SCS, or 8. The SCS port drivers must run at IPL 8 because some of them 
need to synchronize access to shared resources and data structures such as 
buffer and response descriptor tables and with mount verification activity. 

In addition to having to communicate with SCS at IPL$_SCS, the lock 
manager also requires access to the scheduler database, which is synchro­
nized at IPL$_SYNCH. To simplify the interactions among the lock manager, 
SCS, and other threads of execution modifying the scheduler database, IPL$_ 
SYNCH and IPL$_SCS were made the same value by changing the value of 
IPL$_SYNCH. 

8.2.6 IPL$_QUEUEAST 

When IPL$_SYNCH had a value of 7, device drivers and other high IPL 
threads of execution that needed to access data such as the scheduler data­
base forked to IPL 6 so that they could raise IPL to IPL$_SYNCH. 

The terminal driver, for example, might notify a requesting process of un­
solicited input or a CTRL/Y through an AST (see Chapter 7). Queuing an AST 
to a process requires scheduler database modifications, which must be made 
at IPL$_SYNCH. The IPL 7 interrupt could not have been used to achieve 
the same result because it is reserved for software timer interrupts. Thus, 
this synchronization technique used the first free IPL below 7, the IPL 6 soft­
ware interrupt. IPL 6 was named IPL$_QUEUEAST, since its primary use as 
a fork IPL was AST enqueuing. 

As a result of changing IPL$_SYNCH to 8, IPL$_QUEUEAST forking is 
generally unnecessary for serializing access to databases synchronized at 
IPL$_SYNCH. Fork processes running at IPL 8 can remain at 8; device inter­
rupt service routines and fork processes running at IPLs above 8 can fork to 8. 
However, many instances of IPL$_QUEUEAST fork processing remain in 
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VMS, unchanged from earlier versions. Executing these operations at IPL$_ 
QUEUEAST, rather than at IPL 8, results in placing a somewhat higher pri­
ority on IPL 8 fork processing, which is typically 1/0 processing. 

8.2..7 IPL$_RESCHED 

IPL$_RESCHED (3) is the IPL of the rescheduling interrupt, whose service 
routine removes the current process from execution and selects another 
process to execute. Kernel mode code runµing in process context raises 
IPL to IPL$_RESCHED to block this interrupt. For example, the System 
Generation (SYSGEN) utility raises to this IPL while performing a WRITE 
ACTIVE command or while accessing the processor's per-CPU data area. 

There are only two IPLs used for synchronization that do not have an 
associated spinlock. One is IPL$_RESCHED; the other is IPL 2. 

8.2..8 IPL 2. 

IPL 2 is used to block AST interrupts within a process. When system service 
procedures raise IPL to 2, they are blocking the delivery of all ASTs, but often 
particularly the kernel AST that causes process deletion. In other words, if 
a process is executing at IPL 2 or above, it cannot be deleted or suspended. 
As a result of a change in VMS Version 4, it is also possible to block process 
deletion and suspension by disabling AST delivery to kernel mode. 

Raising IPL to 2 is used in several places to prevent process deletion be­
tween the time that some system resource (such as system dynamic memory) 
is allocated and the time that ownership of that resource is recorded (such 
as the insertion of a data structure into a list). For example, the $QIO sys­
tem service executes at IPL 2 from the time that an 1/0 request packet is 
allocated from nonpaged dynamic memory until that packet is queued to a 
UCB or placed into the 1/0 postprocessing queue. 

IPL 2 has another significance: it is the highest IPL at which page faults are 
permitted. If a page fault occurs above IPL 2, the page fault exception service 
routine generates the fatal bugcheck PGFIPLHI. If there is any possibility 
that a page fault can occur, because either the code executing or the data 
beipg referenced is pageable, that code cannot execute above IPL 2. The 
converse of this constraint is that any code that executes above IPL 2, and 
all data referenced by such code, must be locked into memory in some way. 
Appendix B shows some of the techniques that the VMS executive uses to 
dynamically lock code or data into memory referenced from IPLs above 2. 

8.3 SPINLOCKS 
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A spinlock is acquired by a processor to synchronize access to data shared 
by members of an SMP system. The most basic form of spinlock is a bit 
that describes the state of a particular set of shared data; the bit is set to 
indicate that a processor is accessing the data. Interlocked instructions are 
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used to test and set the bit or clear it. A spinlock enables a set of processors 
to serialize their access to shared data. 

A processor needing access to some shared data tests and sets the spinlock 
associated with that data with a BBSSI instruction. If the bit was clear, the 
processor is allowed access to the data. This is known as locking or acquiring 
the spinlock. If the bit was already set, the processor must wait, because 
another processor is accessing the data. 

The waiting processor essentially spins in a tight loop, executing repeated 
bit test instructions to test the state of the spinlock. This is known as a 
busy wait. It is from this spinning that the term spinlock derives. The busy 
wait ends when the processor accessing the data clears the bit with a BBCCI 

instruction to indicate that it is done. Clearing the bit is known as unlocking 
or releasing the spinlock. 

A resource synchronized through elevated IPL on a uniprocessor is syn­
chronized through a combination of spinlock and elevated IPL on an SMP 
system. A thread of execution running on one processor acquires a spinlock 
to serialize access to the data with threads of execution running on other pro­
cessors. Before acquiring the spinlock, the thread of execution raises IPL to 
block accesses by other threads of execution running on the same processor. 
The IPL value is determined by the spinlock being locked. 

The concept of spinlock adds a dimension to the concept of raising IPL and 
extends its effect across all processors in the SMP system. Acquiring a spin­
lock, however, is different from causing IPL to be raised on all SMP members 
to block all threads running at lower IPL. Instead, only those threads of exe­
cution that try to acquire a spinlock owned by another processor are blocked. 
This provides more parallelism than simply extending an IPL raise would. 
Furthermore, since some IPLs, such as IPL$_SYNCH, are now represented 
by multiple spinlocks, the granularity of locking is finer, allowing for even 
more parallelism. 

To adapt more easily from IPL-based synchronization to the needs of sym­
metric multiprocessing, the implementation of spinlocks permits nested ac­
quisitions of a spinlock. For example, many routines that manipulate the 
scheduler database raised IPL to IPL$_SYNCH in earlier versions of VMS. 
If one routine already at IPL$_SYNCH invoked another routine that raised 
IPL to IPL$_SYNCH to access the same database, no harm was done. Un­
der VMS Version 5, this sequence results in multiple concurrent, or nested, 
acquisitions of the SCHED spinlock by the same processor. 

A bit used as a spinlock is actually part of a larger data structure called a 
spinlock control block. Some spinlock control blocks are defined in the VMS 
executive; these are called static spinlocks. Others, created during system 
operation, are called dynamic. Section 8.3.1 describes the spinlock control 
block; Section 8.3.3, static spinlocks; and Section 8.3.4, dynamic spinlocks. 

To acquire or release a spinlock, kernel mode code invokes one of several 
macros, identifying the spinlock in a macro argument. The macros generate 
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code that tests that multiprocessing has been enabled and dispatches to 
executive routines that perform the actual spinlock operations. 

The executive routines are invoked through base image transfer vectors 
(see Chapter 29). There are actually three different versions of these rou­
tines, conditionally assembled from one source module and built into three 
loadable executive images: 

• Module SPINLOCKS, in SYSTEM_SYNCHRONIZATION_MIN.EXE, is 
the default version on an SMP system. It is optimized for performance 
and is referred to as the minimum or streamlined version. 

•Module SPINLOCKS_MON, in SYSTEM_SYNCHRONIZATION.EXE, is 
the full-checking version that monitors spinlock activity. It is designed to 
facilitate troubleshooting of synchronization problems . 

• Module SPINLOCKS_UNI, in SYSTEM_SYNCHRONIZATION_UNI.EXE, 
runs on a uniprocessor, a processor that is not a member of an SMP system. 

The SYSGEN parameter MULTIPROCESSING dictates which of these is 
loaded at system initialization. Its possible values are 

• 0-Load the uniprocessor image . 
• I-Load the full-checking multiprocessing version if the CPU type is ca­

pable of symmetric multiprocessing and if there are two or more CPUs 
present or the CPU type is capable of adding CPUs dynamically after boot­
strap; otherwise, load the uniprocessing version. 

• 2-Always load the full-checking version, regardless of CPU configuration. 
• 3-Load the streamlined multiprocessing version if the CPU type is capable 

of symmetric multiprocessing and if there are two or more CPUs present 
or the CPU type is capable of adding CPUs dynamically after bootstrap; 
otherwise, load the uniprocessing version. 

The default value for this parameter is 3. 
Section 8.3.8 describes the streamlined versions of the spinlock routines. 

Section 8.3.9 describes the full-checking versions, which implement a more 
complex form of spinlock than the streamlined ones do. The routines in 
the uniprocessor version ai;e mostly null routines, each consisting of an 
RSB instruction, and are not described here. They enable code requiring 
synchronization to invoke the same macros and routines regardless of the 
CPU configur3:tion. 

8.3.1 Spinlock Control Block 
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Figure 8.1 shows the layout of a spinlock control block. The macro $SPLDEF 
defines symbolic names for its fields. 

The low bit of field SPL$B_SPINLOCK has two meanings: one for the 
streamlined spinlock routines, and one for the full-checking routines. The 
former use the basic form of spinlock; the low bit of SPL$B_SPINLOCK is 
the actual spinlock. For the full-checking routines, this bit merely serializes 
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VEC_INXI RANK IPL I SPINLOCK 

WAIT CPUS OWN CNT -
SUBTYPE I TYPE SIZE 

OWN CPU -
OWN_PC_ VEC (32 bytes) 

WAIT PC -
I- ACQ - COUNT -I 

BUSY WAITS -
I- SPINS -I 

TIMO INT -
RLS PC -

Figure 8.1 
Layout of a Spinlock Control Block 

access to the spinlock control block; the fields SPL$W _OWN_CNT and 
SPL$LOWN_CPU are the actual lock (see Section 8.3.9). 

SPL$B_IPL specifies the IPL associated with the spinlock, the value to 
which IPL is raised when a processor acquires the spinlock. 

SPL$B_RANK defines the rank of the spinlock. Spinlock rank is stored 
in an inverted form. Its possible values range from 0 to 31, with 0 being 
the highest rank. That is, rank increases from 31 to 30 to 29, and so on. 
This chapter uses the inverted form in its descriptions. Each static spinlock 
has a unique rank; all dynamic spinlocks have the same rank, which is 31. 
A thread of execution that acquires multiple static spinlocks must acquire 
them in increasing rank (see Section 8.3.5). 

SPL$W _OWN_CNT records how many concurrent and nested times a pro­
cessor has locked the spinlock. This field is initialized to -1 to indicate that 
a spinlock is unowned. With an owner count biased by -1, the acquire code 
can more easily distinguish increments that cause a transition between un­
owned and owned from those that do not. When a processor first acquires 
a spinlock, the value is incremented to 0. If a thread of execution invokes 
another routine that acquires the same spinlock, the owner count is incre­
mented to 1. 

SPL$W _SIZE and SPL$B_ TYPE contain the spinlock control block's size 
and type. SPL$B_SUBTYPE indicates the type of spinlock: static spinlock, 
fork spinlock, or device spinlock. These types are described further in the 
sections that follow. 

SPL$LOWN_CPU contains the address of the per-CPU database of the 
processor that has acquired the spinlock. The address is recorded when a 
processor acquires the spinlock. The field is cleared when a processor releases 
its last nested acquisition of the lock. 

SPL$L TIMO_INT is the maximum amount of time a processor can wait 
for the spinlock. After this interval has elapsed, the attempted spinlock 
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acquisition times out. During system initialization, the timeout value is 
initialized to one of two values: if the spinlock IPL is less than or equal 
to 8, the value of the SYSGEN parameter SMP _LNGSPINWAIT is used; 
otherwise, the value of the SYSGEN parameter SMP _SPINWAIT is used. 
There are two different values because the MMG and SCHED spinlocks are 
occasionally held longer than would be reasonable for spinlocks at higher 
IPLs. 

The spinlock control block fields that follow are used only by the full­
checking version of the spinlock routines. 

SPL$W _WAIT _CPUS contains the number of processors waiting to acquire 
the spinlock. 

The eight longwords beginning at SPL$L_OWN_PC_ VEC form a ring buffer 
that records the most recent program counters (PCs) from which an owner 
CPU acquired and released the spinlock. SPL$B_ VEC_INX contains the index 
of the next entry to be written in the ring buffer. 

SPL$L_ WAIT _PC contains the address of the most recent busy wait for 
the spinl~ck. " 

SPL$Q_ACQ_COUNT is the cumulative number of successful acquisi­
tions of the spinlock. SPL$L_BUSY_WAITS is the cumulative number of 
failed acquisitions. SPL$Q_SPINS is the cumulative number of spins. 

SPL$LRLS_PC is the most recent return PC of a thread of execution that 
releases all nested acquisitions at once. 

8.3.2 Spinlock-Related Per-CPU Database Fields 
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In an SMP system, all processors map to the same system space. Each proces-
. sor, however, has a piece of system space for its own use. The space contains, 
for example, the processor's interrupt stack and fork queues. VMS executive 
code invokes the FIND_CPU_DATA macro to determine the address ofthe 
processor's space as a function of the location of its interrupt stack. 

Each processor's private area is called its per-CPU data area. Chapter 34 
contains more information on the organization and use of the per-CPU data 
area. The macro $CPUDEF defines symbolic names for the fields in the per­
CPU database, a part of the per-CPU data area. 

There are several fields in the per-CPU database whose use is related to 
spinlocks: 

• CPU$L_PHY_CPUID-Processor physical ID number 
• CPU$LRANIL VEG-Summary of spinlocks that are currently held by the 

processor 
• CPU$L_IPL_ VEC-Summary of IPLs at which spinlocks are currently held 
• CPU$L_IPL_ARRAY-Count of spinlocks currently held at each IPL 

When a processor tries to acquire a spinlock, it tests whether it is in the 
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override set by examining the bit number of its CPU ID in the override 
set cell. It makes a similar test to determine whether it has bugchecked. 

The other three per-CPU database fields previously listed are used only by 
the full-checking spinlock routines. 

Each bit, excluding bit 31, set in the per-CPU database field CPU$L_ 
RANK_ VEC corresponds to a static spinlock held by the processor; its bit 
position identifies the spinlock rank. As a processor acquires and releases a 
spinlock, the bit corresponding to the spinlock's rank is set and cleared. Since 
each spinlock has a unique rank, the number of bits set in the longword are 
the number of different spinlocks held by the processor. Bit 31 is not used 
in this way because the rank 31 is for dynamic spinlocks, more than one of 
which can be held concurrently. 

Each bit set in the field CPU$LIPL VEC corresponds to an IPL at which 
the processor holds one or more spinlocks. The IPL representation is in­
verted. When a processor acquires a spinlock, the IPL of the spinlock is 
subtracted from 31. The bit in CPU$LIPL_ VEC corresponding to that num­
ber is set. The field thus represents the current set of (inverted) spinlock IPLs 
active on the processor. 

The inverted number is also used as an index into the 32-longword array 
at CPU$LIPLARRAY. It counts the number of different spinlocks held at 
each IPL. There is no one-to-one mapping of spinlock to IPL: each IPL does 
not have a unique spinlock associated with it; some IPLs have more than 
one associated spinlock. 

8.3.3 Static Spinlocks 

All static spinlock control blocks are defined in module LDAT, which also 
contains a table listing their addresses. The base image global SMP$AR_ 
SPNLKVEC contains the address of the table, and SMP$GW _SPNLKCNT 
contains the number of spinlocks in the table. Figure 8.2 shows this table 
and several representative spinlocks. 

A static spinlock is identified by the position of its address in the table. 
This is known as its index, and is the longword postindex offset of its address 
in the table. The macro $SPLCODDEF defines symbolic names for these 
indexes; for example, SPL$C_SCHED is the index of the SCHED spinlock. 
The lowest index used is 32. Table entries with lower indexes are empty. 
Having index values of 32 or greater makes it possible to distinguish a 
spinlock index from an IPL value by testing whether bit 5 is set. Section 8.3. 7 
describes why making this distinction is necessary. 

Table 8.2 lists the static spinlocks with a brief description of what each 
synchronizes and its associated IPL. The spinlocks are listed in order by 
rank, with lower ranking spinlocks first. Section 8.3.6 describes their use in 
somewhat more detail. 
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SMP$GW _SPNLKCNT 
longwords 

Figure 8.2 
Static Spinlock Table 

SMP$AR _SPNLKVEC:: 

l or---f I 
32 unused longwords 

1>------f-Fln2d0ex I EMB 
_ _ Spin lock 

Control Block 

l~·f .. ~F~ IPOOL _ _ Spinlock 
Control Block 

ll-----~'--lni:-x -----'I QUEUEAST 
_ _ Spin lock 

Control Block 

11-----------lJ '-----------' 

A static spinlock that synchronizes fork processing is called a fork spin­
lock, often shortened to fork lock. A device UCB and any other type of fork 
block (FKB) identify the driver's fork lock, and indirectly its fork IPL, by 
specifying the spinlock index in the field named UCB$B_FLCK or FKB$B_ 
FLCK. Some static spinlocks are never used as fork locks; their associated 
IPLs are not in the fork IPL range. Some static spinlocks are only used as 
fork locks, for example, the IOLOCK8 spinlock, and some are sometimes 
used as fork locks, for example, the MAILBOX spinlock. 

The SPL$B_SUBTYPE field of a spinlock used only as a fork lock contains 
the value SPL$C_SPL_FORKLOCK; all other static spinlocks are identified 
simply as spinlocks, with the value SPL$C_SPLSPINLOCK. The main dis­
tinction between fork locks and other static spinlocks is that fork locks are 
typically acquired and released through different macros. Kernel mode code 
acquires and releases a static spinlock by invoking the LOCK and UNLOCK 
macros; the FORKLOCK and FORKUNLOCK macros are used for fork locks. 
Section 8.3. 7 describes these macros. 

Another table with information about static spinlocks is the spinlock IPL 
table, at base image global symbol SMP$ALIPLVEC. The table is indexed 
by static spinlock index and contains the IPL corresponding to that spinlock. 
This table is referenced in the code generated by the FORKLOCK macro (see 
Section 8.3. 7) and by the routine EXE$FORK (see Chapter 4). 

8.3.4 Dynamic Spinlocks 
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A dynamic spinlock is not listed in the spinlock table and has no index. 
A dynamic spinlock control block is allocated from nonpaged pool and is 
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Table 8.2 Static Spinlocks 

Name IPL Synchronizes 

QUEUEAST 6 IPL 6 fork processing 
FILSYS 8 File system data structures such as file 

control blocks 
IOLOCK8/SCS 1 8 IPL 8 fork processing; SCS-related code 
PR_LK8 8 Primary processor's IPL 8 processing 
TIMER 8 Timer queue entries 

JIB 8 Job information block fields JIB$L_BYTCNT 
and JIB$LBYTLM 

MMG 8 Memory management data structures 
SCHED 8 Scheduler database 
IOLOCK9 9 IPL 9 fork processing 
PR_LK9 9 Primary processor's IPL 9 processing 
IOLOCKlO 10 IPL 10 fork processing 
PR_LKlO 10 Primary prqcessor's IPL 10 processing 
IOLOCKll 11 IPL 11 fork processing 
PR_LKll 11 Primary processor's IPL 11 processing 
MAILBOX 11 Writing mailbox messages 
POOL 11 Nonpaged pool lists and related data 
PERFMON 15 Performance monitoring 
INVALIDATE 19 or 21 2 Translation buffer invalidation 
VIRTCONS 20 or 22 3 Virtual console database 
HWCLK 22 or 24 4 Hardware clock database 
MEGA 31 Miscellaneous data structures such as the 

fork and wait queue 
MCHECK/EMB 1 31 Machine check serialization; error log buffers 

1 These two names are synonyms for the same spinlock. 
2 The IPL associated with this spinlock is determined at system initialization and is 1 

less than the IPL of the system's interprocessor interrupt. On VAX 88x0 and VAX 83x0 
systems, its value is 19. On VAX 6000 series systems, its value is 21. 

3 The IPL associated with this spinlock is determined at system initialization as the IPL 
of the interprocessor interrupt: for VAX 6000 series systems, its value is 22; for other SMP 
systems, its value is 20. 

4 The IPL associated with this spinlock is determined at system initialization as the IPL 
of the interval timer. 

identified by its address. Currently, the only type of dynamic spinlock VMS 
uses is a device spinlock, usually called a device lock. The SPL$B_SUBTYPE 
field of a device lock's spinlock control block contains the value SPL$C_ 
SPL_DEVlCELOCK. 

All dynamic spinlocks have the same rank, 31. However, the field SPL$B_ 
RANK in a dynamic spinlock control block is initialized to -1 for quick 
identification in the routines that acquire and release spinlocks. 

As SYSGEN identifies the 1/0 configuration and builds the 1/0 database, 
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it creates device locks. SYSGEN invokes the routine SMP$ALLOC_SPL to 
create a device lock and SMP$INIT _SPL to initialize it. (Both routines are in 
the module SPINLOCKS.) 

There is one device lock for each unique device controller. SYSGEN stores 
its address in the controller's channel request block field CRB$L_DLCK and 
in the field UCB$LDLCK for each unit on that controller. 

A device driver acquires and releases the device lock by invoking the 
DEVICELOCK and DEVICEUNLOCK macros (see Section 8.3.7). The device 
lock synchronizes access to the controller's registers and to fields in the UCB 
that describe the controller's state. 

8.3.5 Rules for Acquiring and Releasing Spinlocks 
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For synchronization with spinlocks to be successful, threads of execution 
that use spinlocks must follow certain rules. 

A thread of execution that acquires a spinlock to serialize access to some 
shared data is guaranteed exclusive access to the data while it holds the spin­
lock. Thus, all its modifications to the data can be considered atomic from 
the point of view of another thread trying to acquire the same spinlock to 
access the same data. To ensure this degree of atomicity, the implementation 
of spinlocks does not include breaking spinlock deadlocks. Rather, deadlocks 
are prevented by requiring threads of execution that use spinlocks to acquire 
spinlocks in a particular order. 

The rank values of static spinlocks were carefully selected to reflect VMS 
code paths and interdependencies among the shared data structures protected 
by spinlocks. A thread of execution that acquires multiple spinlocks must 
acquire them in order by increasing rank. This rule is designed to prevent 
a deadlock such as the following: one processor has acquired spinlock A 
and is busy waiting to acquire spinlock B to complete its task; a second 
processor has acquired spinlock B and is busy waiting to acquire spinlock A 
to complete its task. 

All device locks share the same rank, 31, which is lower than that of any 
static spinlock. However, a processor holding a static spinlock may acquire 
a device lock; the rule previously listed does not apply to acquisition of a 
device lock. The assumption is that the shared resource protected by a device 
lock is not dependent on the resources protected by the static spinlocks. 
Furthermore, each device lock is assumed to be independent of others, and a 
processor is permitted to hold more than one device lock at a time. All code 
acquiring multiple device locks concurrently must be written to prevent 
deadlocks; all threads must acquire such device locks in the same order. 

A thread of execution about to acquire a spinlock must be running at 
an IPL less than or equal to that of the spinlock. This is analogous to the 
principle of raising IPL to synchronize on a uniprocessor system. This rule 
prevents the following type of synchronization failure: 
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1. Thread A, running at IPL x, acquires a spinlock and begins to manipulate 
the database it protects. 

2. An interrupt at IPL x + 1 is requested and granted on the same processor, 
and thread B begins execution, interrupting thread A. 

3. To access the same database, thread B tries to acquire its spinlock. Be­
cause threads A and B are running on the same processor, the nested 
acquisition is successful, and thread B begins to manipulate the database 
left in an inconsistent state by the interruption to thread A. 

A thread of execution that has acquired a spinlock may raise IPL but must 
not lower it below the value associated with the spinlock. Lowering IPL 
could lead to the synchronization failure just described. 

8.3.6 Use of Static Spinlocks 

8.3.6.1 

8.3.6.2 

8.3.6.3 

The sections that follow describe the use of each of the static spinlocks. 

Use of the QUEUEAST Spinlock. The QUEUEAST spinlock synchronizes 
fork processing at IPL 6. The need for IPL 6 fork processing is largely his­
torical, based on constraints from VMS Version 3 and earlier versions, as 
described in Section 8.2.6. 

Use of the FILSYS Spinlock. The file system database consists of data struc­
tures that describe the mount state of a volume and the condition of open 
files on the volume. The FILSYS spinlock synchronizes access to pieces of the 
file system database that are accessed by routines external to the file system. 
(As described in Appendix H, lock management system services synchronize 
access to much of the file system database.) 

For example, each open file is described by one or more window con­
trol blocks (WCBs). A WCB contains retrieval pointers that map the virtual 
blocks of a file to logical blocks on a device. As part of processing an I/O re­
quest to a file, IOC$MAPVBLK, in module IOSUBRAMS, uses WCB contents 
to convert virtual block numbers to their equivalent logical block numbers. 
IOC$MAPVBLK and the file system routines that alter WCBs synchronize 
their access to WCBs by acquiring the FILSYS spinlock. 

Use of the IOLOCK8 and SCS Spinlocks. A driver can specify one of the 
IOLOCKx spinlocks as its fork lock. A device UCB, which is also used as 
a fork block, contains the fork spinlock index in the field UCB$B_FLCK. 
The fork lock synchronizes access to data structures modified by the fork 
process, in particular its UCB. 

To synchronize access to UCB fields manipulated at fork level, an execu­
tive routine or the driver fork process itself acquires the spinlock specified 
in UCB$B_FLCK. 
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8.3.6.4 

8.3.6.5 

8.3.6.6 

8.3.6.7 
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IOLOCK8 is the fork lock most commonly used by device driver fork 
processes. It is used by all standard drivers that compete for shared adapter 
resources, like UNIBUS map registers. On a V AXcluster system that supports 
remote 1/0, the MSCP server uses the IOLOCK8 spinlock. 

IOLOCK8 and SCS are actually two names for the same spinlock. 
System communication services (SCS) routines and lock manager routines 

coordinate access to VAXcluster and lock management data structures using 
the SCS spinlock. An SCS routine that executes as a fork process uses the 
SCS spinlock as its fork lock. The $ENQ and $DEQ system services acquire 
the SCS spinlock before altering the lock database. 

Use of the PR_LK8 Spinlock. The PR_LK8 spinlock is a fork lock intended 
for use only by the primary processor. Currently, it is not used. 

Use of the TIMER Spinlock. The software timer interrupt service routine, 
running on the primary processor in an SMP system, acquires the TIMER and 
HWCLT{ spinlocks while it tests whether the first entry in the time-ordered 
queue of TQEs has expired. 

The routines that insert and remove TQEs from the timer queue acquire 
the TIMER spinlock if they have to manipulate TQEs other than the first 
in the list. The $SETIME system service acquires the TIMER spinlock when 
it resets the time-of-year clock and reorders the timer queue as a result 
of recalibrating pending TQEs with d~lta times. Chapter 11 provides more 
information on these two interrupt service routines and the timer queue. 

Use of the JIB Spinlock. The JIB spinlock synchronizes access to the job in­
formation block (JIB) fields JIB$LBYTCNT and JIB$L_BYTLM. The process 
context routines EXE$DEBIT _BYTCNT and EXE$CREDIT _BYTCNT and 
their alternative entry points acquire this spinlock to debit and credit the 
job's available byte count. The intent of the spinlock is to block other pro­
cesses in the same job from simultaneously accessing these fields. Because 
there is only one systemwide JIB spinlock, however, all other processes in 
the system are blocked from accessing these fields in their own JIBs. This 
implementation, however, has the virfue of simplicity, and such a~cesses are 
believed to be sufficiently infrequent so as to present no performance issue. 

Use of the MMG Spinlock. The MMG spinlock synchronizes access to the 
memory management database. This includes the page frame number data­
base, section tables, page and swap file bitmaps, list of available system page 
table entries, and working set lists. 

Its main users are the page fault exception service routine, swapper, mem­
ory management system services, and routines that lock and unlock direct 
1/0 buffer pages into memory. 
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Use of the SCHED Spinlock. The SCHED spinlock synchronizes access to 
the scheduler database, the set of software process control blocks and their 
state queues, and mutex data structures. It also synchronizes access to a 
process's ASt d.ata: the queue of pending AST control blocks, the PCB$B_ 
ASTEN and PCB$B_ASTACT bits, and the process's ASTLVL. 

Use of the IOLOCKD Fork Spinlocks. The spinlocks IOLOCK9, IOLOCKlO, 
and IOLOCKl 1 are fork locks intended for use on any processor. Their use 
is similar to that of IOLOCK8, although they are not as commonly used. 

Use of the PR_LKn Fork Spinlocks. The spinlocks PR_LK9, PR_LKlO, and 
PR_LKl 1 are fork locks intended for use only by the primary processor. Cur­
rently, they have only one application: they are used in the logical console 
interface on a VAX 83x0 system. This interface provides console support for 
the secondary processor. VMS, running on the primary processor, emulates 
a console terminal, passing characters to and froni the console subsystem 
of the secondary processor. This interface is used only for console mode 
communication; in particular, it is used to send commands to the secondary 
processor's console subsystem to boot the processor and to restart it after 
powerfail recovery. . 

The processor console subsystem is sensitive to interrupt latency. To avoid 
contention, the primary processor-specific fork locks were used rather than 
the ordinary fork locks. 

Use of the MAILBOX Spinlock. The MAILBOX spinlock synchronizes access 
to mailboxes. It is the fork lock for the mailbox driver and the MA780 shared 
memory mailbox driver. The mailbox driver's internal routines EXE$WRT­
MAILBOX and EXE$SNDEVMSG, invoked to write messages to a mailbox 
without. going through the $QIO system serviCe, acquire this spinlock to 
synchronize access to the mailbox. 

Use of the POOL Spinlock. The POOL spinlock synchronizes access to the 
nonpaged variable-length list. Its mam users are routines such as EXE$ALO­
NONPAGED and EXE$DEANONPAGED, in module MEMORYALC. It also . 
synchronizes access to the performance monitoring statistics kept on non­
paged variable-length pool allocation failures. Note that the nonpaged looka­
side lists are accessed With interlocked queue instructions and thus do not 
need the protection of a spinlock. 

The code that implements the DC~ SHOW MEMORY command acquires 
the POOL spinlock while it scans the list to collect information for its 
display. The Monitor Utility acquires the POOL spinlock while it gathers ,r 
information on pool use. 
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Use of the PERFMON Spinlock. The PERFMON spinlock synchronizes ac­
cess to the I/O performance database. Its main users are routines such as 
PMS$START _REQ, in module IOPERFORM. It also synchronizes access to 
the system global PMS$G1-IOPFMSEQ, the counter from which the $QIO 
system service and the mass storage control protocol (MSCP) server assign 
I/O request sequence numbers. 

Use of the INVALIDATE Spinlock. To invalidate a cached system space 
address translation, a member of an SMP system acquires the INVALIDATE 
spinlock. The spinlock prevents more than one processor at a time from 
initiating the sequence required for all SMP members to invalidate the entry 
in their translation buffers (see Chapter 34). 

Use of the VIRTCONS Spinlock. On existing SMP systems, there is only 
one console terminal, which is controlled by the primary processor. The 
primary processor provides an interface for secondary processors' program 
mode console I/O. This interface is called a virtual console. 

The VIRTCONS spinlock ensures that only one secondary processor at a 
time performs I/O. through virtual console support to the physical console 
(see Chapter 34). 

Use of the HWCLK Spinlock. The HWCLK spinlock synchronizes access to 
the hardware clock database, which consists of 

• EXE$GQ_SYSTIME-System time quadword 
• EXE$GL_ABSTIM_ TICS-System tick counter 
• EXE$GQ_lST_TIME-Expiration time of the first TQE 

The interval timer interrupt service routine, when running on the primary 
processor of an SMP system, acquires the HWCLK spinlock to update the 
system time quadword and tick counter, and to test whether the first TQE 
has expired. If it has, the interrupt service routine requests an IPL 7 interrupt 
for the software timer. 

The software timer interrupt service routine, running on the primary pro­
cessor in an SMP system, acquires the TIMER and HWCLK spinlocks while 
it tests whether the first TQE has expired. 

The routines that insert and remove TQEs from the timer queue acquire 
the HWCLK spinlock if they have to manipulate the first TQE in the list. 
Chapter 11 gives more information on these two interrupt service routines 
and the timer queue. 

Any code that needs to read the system time acquires this spinlock. Gener­
ally, this is done indirectly through the macro READ_SYSTIME, which gen­
erates the following code with destination supplied by the macro 
invoker: 
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.EXTERNAL EXE$GQ_SYSTIME 
LOCK LOCKNAME•HWCLK,­

SAVIPL•-(SP) 
MOVQ G~EXE$GQ_SYSTIME,destination 

UNLOCK LOCKNAME•HWCLK,­
NEWIPL=(SP)+ 

Use of the MEGA Spinlock. The MEGA spinlock has two uses: to synchro­
nize access to the fork and wait queue, used by fork processes to stall them­
selves for approximately half a second (see Chapter 4), and to synchronize 
the entry of processors into the benign state (see Chapter 34). 

Use of the MCHECK Spinlock. The machine check exception service rou­
tines for CPUs that can be members of an SMP system acquire the MCHECK 
spinlock as needed. For example, the spinlock serializes access to VAXBI 
registers or memory controller registers. Other CPU-specific error interrupt 
service routines acquire the spinlock for similar reasons. 

Use of the EMB Spinlock. The EMB spinlock synchronizes access to the 
error log allocation buffers (see Chapter 32). The routines that reserve and 
release pieces of error log allocation buffer for error messages acquire the 
EMB spinlock. 

The ERRFMT process locks the EMB spinlock when it is altering data 
structures that describe the state of the error log allocation buffer. As Chap­
ter 32 describes, ERRFMT copies an error log allocation buffer in several 
stages. It examines the error log buffer status flags and message counts with 
the spinlock held. If it can copy the buffer, it sets a flag in the buffer to 
inhibit further allocations in it and then releases the spinlock. At IPL 0, 
ERRFMT copies the error log allocation buffer to its PO space and formats 
and writes the messages to the error log file. 

This spinlock also synchronizes access to a buffer pool used by SMP code. 
A fork block is allocated from the buffer pool to create a thread of execution 
that runs on the primary SMP processor. 

Macros for Acquiring and Releasing Spinlocks 

There are three sets of macros for acquiring and releasing spinlocks: 

• LOCK and UNLOCK for static spinlocks 
• FORKLOCK and FORKUNLOCK for static spinlocks used to synchronize 

fork processing 
• DEVICELOCK and DEVICEUNLOCK for dynamic spinlocks 

These macros hide the details of the actual synchronization method used; 
they facilitate writing code that can synchronize properly whether it exe­
cutes on a uniprocessor or a member of an SMP system. 
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Each of these macros has a number of arguments, only a few of which are 
described here. The VMS Device Support Manual describes the use of these 
macros and their arguments in more detail. 

These macros differ primarily in the way their arguments identify the 
spinlock of interest: 

• An argument to LOCK and UNLOCK specifies the symbolic index of a 
static spinlock. 

• In a typical use of FORKLOCK or FORKUNLOCK, RS contains the address 
of a UCB in which the field UCB$B_FLCK has a static spinlock index. 

• In a typical use of DEVICELOCK or DEVICEUNLOCK, RS contains the 
address of a UCB in which the field UCB$1-DLCK has the address of the 
device lock. 

The lock macros generate the following approximate sequence: 

1. Optionally (determined by macro argument SAVIPL), save the current 
IPL. 

2. If SMP is not enabled, set IPL as requested and branch around the rest 
of the instructions. The low bit of system global SMP$GL_FLAGS is set 
when SMP is enabled. 

3. Optionally (determined by macro argument PRESERVE), save RO. 
4. Store the static spinlock index or the address of a dynamic spinlock in 

RO. 
S. Execute a JSB instruction to SMP$ACQUIRE in the case of a static 

spinlock, or to SMP$ACQUIREL or SMP$ACQNOIPL in the case of a 
dynamic spinlock. 

6. If RO was saved, restore it. 

A sample invocation of LOCK with its generated code follows: 

;the macro invocation 
;locks spinlock with index SPL$C_MMG 

LOCK LOCKNAME=MMG,- ;Lock MMG database 
PRESERVE=NO ;Don't preserve RO 

;its generated code, slightly simplified 
BLBC a·sMP$GL_FLAGS,30002$ 
MOVZBL s·#sPL$C_MMG,RO 
JSB G~SMP$ACQUIRE 

BRB 30003$ 
30002$: 

MTPR s·#IPL$_MMG,S.#PR$_IPL 
30003$: 

A sample invocation of FORKLOCK with its generated code follows: 

;the macro invocation 
;locks spinlock whose index is in UCB$B_FLCK 

FORKLOCK -
UCB$B_FLCK(R5),- ;Lock fork access 
SAVIPL=-(SP) ;Save current IPL 
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;its generated code, slightly simplified 
MFPR s-#PR$_IPL,-(SP) 
PUSHL RO 
MOVZBL UCB$B_FLCK(R5),RO 
BLBC G-SMP$GL_FLAGS,30002$ 
JSB G-SMP$ACQUIRE 
BRB 30003$ 

30002$: 

30003$: 
POPL RO 

A different invocation of FORKLOCK with its generated code follows. 
This invocation specifies that the field UCB$B_FLCK may contain a fork 
IPL rather than a spinlock index. The generated code tests bit 5 of UCB$B_ 
FLCK to see which it really is: a number less than 32 is an IPL; a number 
higher than that is a spinlock index. If the number is an IPL, the generated 
code sets IPL to that value. If the number is a spinlock index, the gener­
ated code tests whether multiprocessing is enabled. If it is, the code invokes 
SMP$ACQUIRE; otherwise, it uses the spinlock index into an array contain­
ing the IPL associated with each static spinlock. 

;the macro invocation 
;specifies that UCB$B_FLCK has a fork IPL 

FORKLOCK -
FIPL•YES 

;its generated code, slightly simplified 
PUSHL RO 
MOVZBL B-FKB$B_FLCK(R5),RO 
BBC #5,R0,30001$ 
BLBC G-SMP$GL_FLAGS,30002$ 
JSB G-SMP$ACQUIRE 
BRB 30003$ 

30001$: 
MTPR Ro,s-#PR$_IPL 
BRB 30003$ 

30002$: 
MTPR G-SMP$AL_IPLVEC[RO],S-#PR$_IPL 

30003$: 
POPL RO 

A sample invocation of DEVICELOCK with its generated code follows: 
~ 

;the macro invocation 
;locks spinlock whose address is in UCB$L_DLCK 

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ;Lock device interrupts 
CONDITION=NOSETIPL ;Don't alter IPL 

;its generated code, slightly simplified 
BLBC G-SMP$GL_FLAGS,30006$ 
PUSHL RO 
MOVL UCB$L_DLCK(R5),RO 
JSB G-SMP$ACQNOIPL 

' u 
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30004$: 
30005$: 

30006$: 
POPL RO 

The unlock macros generate the following approximate code sequence: 

1. If SMP is not enabled, go to step 6. 
2. Optionally !determined by macro argument PRESERVE), save RO. 
3. Store the static spinlock index or the address of a dynamic spinlock in 

RO. 
4. If the macro argument CONDITION=RESTORE is present, execute a JSB 

instruction to SMP$RESTORE to relinquish one acquisition of a static 
spinlock or to SMP$RESTOREL for a dynamic spinlock. 

If the macro argument is not present, execute a JSB instruction to 
SMP$RELEASE to relinquish all nested acquisitions of a static spinlock 
or to SMP$RELEASEL for a dynamic spinlock. 

5. If RO was saved, restore it. 
6. Optionally !determined by macro argument NEWIPL), set IPL to the 

value requested. 

A sample invocation of the UNLOCK macro with its generated code 
follows: 

;the macro invocation 
UNLOCK LOCKNAME=INVALIDATE,­

PRESERVE=NO, -
NEWIPL=(SP)+ 

;its generated code, slightly simplified 
BLBC G-SMP$GL_FLAGS,30033$ 
MOVZBL s-#SPL$C_INVALIDATE,RO 
JSB G-SMP$RELEASE 

30033$: 
MTPR (SP)+,S-#PR$_IPL 

;Don't save RO 
;Restore IPL from stack 

A sample invocation of FORKUNLOCK with its generated code follows: 

;the macro invocation 
FORKUNLOCK -

UCB$B_FLCK(R5),­
NEWIPL=(SP)+ 

;its generated code, slightly simplified 
BLBC G-SMP$GL_FLAGS,30004$ 
PUSHL RO 
MOVZBL UCB$B_FLCK(R5),RO 
JSB G-SMP$RELEASE 
POPL RO 

30004$: 
MTPR (SP)+,S-#PR$_IPL 

;Release fork access 
;Restore IPL from stack 
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A sample invocation of DEVICEUNLOCK with its generated code fol­
lows. This example results in dispatch to SMP$RESTOREL rather than to 
SMP$RELEASEL. 

;the macro invocation 
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),-
-;Release device interrupts 

NEWIPL=(SP)+,- ;Restore IPL 
CONDITION=RESTORE ;Conditionally release spinlock 

;its generated code, slightly simplified 
BLBC GASMP$GL_FLAGS,30007$ 
PUSHL RO 
MOVL UCB$L_DLCK(R5),RO 
JSB GASMP$RESTOREL 
POPL RO 

30007$: 
MTPR (SP)+,SA#PR$_IPL 

8.3.8 Streamlined Spinlock Routines 

As described in Section 8.3, there are three versions of the spinlock routines, 
conditionally assembled from one source. This section describes the stream­
lined versions of the spinlock routines, in module SPINLOCKS. Section 8.3.9 
describes the full-checking versions of these routines. 

The spinlock routines run in kernel mode, at IPL 3 and above. They include 

• SMP$ACQUIRE-Acquire a static spinlock 
• SMP$ACQUIREL-Acquire a dynamic spinlock 
• SMP$ACQNOIPL-Acquire a dynamic spinlock without altering IPL 
• SMP$RESTORE-Relinquish one acquisition of a static spinlock 
• SMP$RESTOREL-Relinquish one acquisition of a dynamic spinlock 
• SMP$RELEASE-Relinquish all nested acquisitions of a static spinlock 
• SMP$RELEASEL-Relinquish all nested acquisitions of a dynamic spin­

lock 

The spinlock lock macros dispatch to SMP$ACQUIRE or one of its alter­
native entry points, SMP$ACQNOIPL or SMP$ACQUIREL. Following is a 
description of their actions, with some details of SMP operations omitted 
for simplicity: · 

1. At entry to SMP$ACQUIRE, RO contains the index of a static spinlock. 
Indexing into the static spinlock table, SMP$ACQUIRE obtains the ad­
dress of the spinlock and stores it in RO. (Entry points SMP$ACQUIREL 
and SMP$ACQNOIPL are entered with the address of a dynamic spinlock 
already in RO.) 

2. The routine raises IPL to that of the spinlock, SPL$B_IPL. (Entry point 
SMP$ACQNOIPL is entered with an IPL that is known to be correct and 
thus not to be altered.) 
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3. SMP$ACQUIRE obtains the address of the processor's per-CPU data­
base. 

4. It executes a BBSSI instruction, testing whether the spinlock bit is set 
and setting it. 

5. If the bit was clear, this processor now owns the spinlock. SMP$AC­
QUIRE stores the address of the processor's per-CPU database in SPL$L_ 
OWN_CPU, increments SPL$W _OWN_CNT, and returns to its invoker. 

6. If the bit was set, the spinlock has already been acquired, possibly by 
the processor trying to acquire it now. SMP$ACQUIRE compares the 
address of the processor's per-CPU database with that stored in SPL$L_ 
OWN_CPU. If the two are equal, this attempted lock is a nested acquisi­
tion. SMP$ACQUIRE increments SPL$W_OWN_CNT and returns to its 
invoker. 

7. If the two addresses are not equal, another processor has acquired the 
spinlock and this processor must wait for it to be released. 

SMP$ACQUIRE increments the field CPU$B_BUSYWAIT in the per­
CPU database as a flag to the interval timer interrupt service routine. 
When this field is nonzero, the interrupt service routine does not charge 
the tick against process quantum. Chapter 11 gives further details. 

SMP$ACQUIRE invokes the SPINWAIT macro, whose generated code 
is described in the following paragraphs, through step 11. Executing the 
generated code, SMP$ACQUIRE loops, testing the spinlock bit with a 
BLBC instruction rather than with an interlocked instruction. When the 
bit becomes clear, SMP$ACQUIRE repeats its attempt to acquire it with 
an interlocked BBSSI instruction. If the attempt is successful, SMP$AC­
QUIRE takes the actions in step 5. 

One distinction between the two forms of bit test is that an interlocked 
instruction must fetch data with an interlock operation. On a system 
with write-through cache, this means fetching the operand from memory. 
A noninterlocked instruction can fetch its operands from cache if they 
are present and valid in the cache. Thus, the noninterlocked bit test in­
struction BLBC usually accesses the spinlock bit stored in the processor's 
cache. On a system capable of SMP processing, the processor hardware 
monitors writes to memory and invalidates any cached locations that 
have been overwritten. A processor that performs these functions is said 
to have cache coherency. When the owning processor releases the spin­
lock, the stale value in the cache of the spinning processor is invalidated; 
the next BLBC instruction on the spinning processor tests the updated 
value . 
. Use of a noninterlocked bit test instruction reduces memory bus traffic 

while the.waiting processor is spinning. If the granularity of the memory 
interlock is larger than a spinlock or if there are multiple processors 
trying to acquire the same spinlock, use of the noninterlocked bit test 
also reduces memory interlock contention. 
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8. The waiting processor does more than execute repeated BLBC instruc­
tions. If the IPL at which it spins is higher than that of an interprocessor 
interrupt, the processor cannot receive interrupts requesting that it per­
form various SMP functions !see Chapter 34). Under such circumstances, 
SMP$ACQUIRE must make explicit tests for these requests and perform 
them as necessary. 

9. Also, while SMP$ACQUIRE is spinning, it performs a countdown and 
times out the attempted acquisition if its wait time exceeds the spinlock 
timeout value stored in SPL$L_ TIMO_INT. At the end of the interval, 
SMP$ACQUIRE tests whether the spinlock's current owner is the same 
as the processor that owned it at the beginning of the interval. 

10. If the owners are not the same, the original owner released the spin­
lock and some other processor. acquired it before this one was able to. 
SMP$ACQUIRE then repeats the countdown, attempting to acquire the 
spinlock. 

11. If the owners are the same, something is interfering with the proper oper­
ation of the owning processor. SMP$ACQUIRE invokes SMP$TIMEOUT, 
in module SMPROUT. If it is possible that a recoverable condition led 
to the timeout, SMP$TIMEOUT returns, and SMP$ACQUIRE repeats 
the countdown. If it is not possible, SMP$TIMEOUT generates the fatal 
bugcheck CPUSPINWAIT. 

The spinlock unlock macro invocations that request a restore !relinquish 
one.acquisition of a spinlock) dispatch to SMP$RESTORE or to its alternative 
entry point SMP$RESTOREL. Those that request a release !relinquish all 
nested acquisitions) dispatch to SMP$RELEASE or to SMP$RELEASEL. If 
SMP$RESTORE relinquishes the only acquisition of a spinlock, it branches 
to SMP$RELEASE. 

These routines run in kernel mode, at IPL 3 and above. Following is a 
description of their typical actions. These routines do not alter IPL; they run 
at the IPL at which they are entered. 

1. At entry to SMP$RESTORE, RO contains the index of a static spinlock. 
Indexing into the static spinlock table, SMP$RESTORE obtains the ad­
dress of the spinlock and stores it in RO. !Entry point SMP$RESTOREL 
is entered with the address of a dynamic spinlock already in RO.) 

2. SMP$RESTORE decrements the spinlock owner count. If the count is 
zero or positive, indicating that the spinlock is still owned, the routine 
returns to its invoker. 

3. If the spinlock is now free, SMP$RESTORE's path joins that of SMP$RE­
LEASE, at step 6, below. 

4. At entry to SMP$RELEASE, RO contains the index of a static spinlock. 
Indexing into the static spinlock table, SMP$RELEASE obtains the ad­
dress of the spinlock and stores it in RO. !Entry point SMP$RELEASEL 
is entered with the address of a dynamic spinlock in RO.) 
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5. The routine sets the spinlock owner count to -1. 
6. It clears SPL$L_OWN_CPU and executes a BBCCI instruction to clear 

the low bit of SPL$B_SPINLOCK. If the low bit was already clear, the 
routine generates the fatal bugcheck SPLRELERR on the presumption 
that a serious failure has occurred. 

7. Otherwise, the routine returns to its invoker. 

8.3.9 Full-Checking Spinlock Routines 
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The full-checking version of the spinlock routines are in module SPIN­
LOCKS_MON. This module includes the same entry points as the stream­
lined version. The entry points are invoked from the same lock and unlock 
macros. 

Following is a description of the full-checking version of the acquire rou­
tines, with some details of SMP operations omitted for simplicity: 

1. When SMP$ACQUIRE is entered, RO contains the index of a static spin­
lock. Indexing into the static spinlock table, SMP$ACQUIRE obtains 
the address of the spinlock and stores it in RO. (Entry points SMP$AC­
QUIREL and SMP$ACQNOIPL are entered with the address of a dynamic 
spinlock already in RO.) 

2. The routine tests whether the IPL at entry is higher than that of the spin­
lock, indicating a synchronization failure. If it is, the routine generates 
the fatal bugcheck SPLIPLHIGH. (The routine continues when the en­
try IPL is too high if the spinlock is a device lock; this exception exists 
for MicroVAX systems, in which the interrupt arbitration IPL and bus 
grant IPL differ.) If it is not, SMP$ACQUIRE sets the IPL to that of the 
spinlock. (Entry point SMP$ACQNOIPL is entered with an IPL already 
known to be correct.) _ 

3. SMP$ACQUIRE obtains the address of the processor's per-CPU data­
base. 

4. It tests whether the target spinlock is a device lock. If it is, SMP$AC­
QUIRE skips the next step; a processor may acquire multiple device 
locks, and the spinlock acquisition rule does not apply. 

5. If the target lock is not a device lock, SMP$ACQUIRE tests whether 
the attempted lock would violate the spinlock acquisition rule (see Sec­
tion 8.3.5). It executes an FFS instruction on CPU$1-RANIL VEC to de­
termine if the processor already holds a higher ranking spinlock. (Recall 
that spinlock ranks are inverted, with zero being the highest rank.) If the 
processor holds a higher ranking spinlock, the routine generates the fatal 
bugcheck SPLACQERR. 

6. SMP$ACQUIRE raises IPL to 31 and executes a BBSSI instruction to test 
and set the low bit of SPL$B_SPINLOCK. If the bit is already set, some 
other processor has exclusive access to the spinlock control block and 
this processor must wait. SMP$ACQUIRE restores the previous IPL and 
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spinwaits, as described in Section 8.3.8, retesting the bit with a BLBC 

instruction. 
When the bit becomes clear, the routine raises IPL to 31 and repeats its 

attempt to acquire exclusive access to the spinlock control block. The 
processor runs at IPL 31 to block all interrupts while it has exclusive 
access to the spinlock control block. This avoids potential delays and 
deadlocks that could occur if another processor, the owner of the spin­
lock, were unable to release it while the processor with exclusive access 
to the control block was executing some interrupt service routine. 

7. When the processor obtains exclusive access to the spinlock control 
block, SMP$ACQUIRE examines the spinlock owner count and, if nec­
essary, owner CPU, to determine whether this processor may acquire the 
spinlock. 

8. If some other processor owns the spinlock, SMP$ACQUIRE takes the 
following steps: 

a. It increments the field CPU$B_BUSYWAIT in the per-CPU database 
as a flag to the interval timer interrupt service routine. When this 
field is nonzero, the interrupt service routine does not charge the 
tick against process quantum (see Chapter 11). 

b. It increments SPL$W _WAIT _CPUS, the number of processors waiting 
for the spinlock, and SPL$LBUSY_WAITS, the cumulative number 
of acquisitions that had to wait. The quotient of SPL$Q_SPINS, the 
number of cumulative spins by all processors waiting for the spinlock 
during its current use, and SPL$L_BUSY_WAITS is the basis of the 
Monitor Utility statistic "spins per failed acquisition." 

c. It clears the low bit of SPL$B_SPINLOCK to release its exclusive 
access to the spinlock control block and lowers IPL to the larger of the 
invoker's IPL and IPL$_RESCHED. This prevents any rescheduling 
during the spinwait. 

d. It zeros two registers to serve as its own spin counter. 
e. It then spins, incrementing the spin counter each time and testing the 

spinlock owner count to see whether the spinlock has been released. 
While it spins, it performs a countdown and tests whether it must 
perform SMP functions, as described in Section 8.3.8. 

f. When the owner count indicates no owner, SMP$ACQUIRE raises 
IPL to 31 and executes a BBSSI instruction to acquire exclusive access 
to the spinlock control block, as described in step 6. 

g. When SMP$ACQUIRE has exclusive access to the spinlock control 
block, it adds its spin count to the total in SPL$Q_SPINS. It decre­
ments SPL$W _WAIT _CPUS to indicate one less processor waiting for 
the spinlock. It decrements CPU$B_BUSYWAIT. 

h. Reentering the main flow at step 7, SMP$ACQUIRE repeats its at­
tempt to acquire the spinlock. 
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9. If the spinlock is already owned by this processor, SMP$ACQU1RE in­
crements the owner count. It continues with step 11. 

10. If the owner count is -1, indicating no owners, SMP$ACQU1RE incre­
ments the count and stores the address of the processor's per-CPU data­
base in SPL$LOWN_CPU. It sets the bit corresponding to the spinlock's 
rank in the per-CPU database field CPU$L_RANK_ VEC. 

It inverts the IPL of the spinlock and sets the corresponding bit in 
CPU$L_IPL_ VEC. It increments the corresponding longword in CPU$L_ 
IPL_ARRAY. 

11. At each successful acquisition, it saves the invoking thread's return PC 
at the next position in the spinlock ring buffer at SPL$L_OWN_PC_ VEC 
and updates the pointer to the next entry. It increments SPL$Q_ACQ_ 
COUNT to indicate one more successful acquisition. 

12. It executes a BBCCI instruction to release its exclusive access to the 
spinlock control block, lowers IPL to that associated with the spinlock, 
and returns to its invoker with the spinlock held. 

Following is a description of the full-checking version of the restore/release 
routines, with some details of SMP operations omitted for simplicity. These 
routines do not alter IPL; they run at the IPL at which they are entered. 

1. At entry to SMP$RESTORE, RO contains the index of a static spinlock. 
Indexing into the static spinlock table, SMP$RESTORE obtains the ad­
dress of the spinlock and stores it in RO. (Entry point SMP$RESTOREL 
is entered with the address of a dynamic spinlock in RO.) 

2. SMP$RESTORE compares the IPL at entry to the spinlock IPL. If the 
IPL is lower than that of the spinlock, the routine generates the fatal 
bugcheck SPLIPLLOW. (The routine continues when the entry IPL is too 
low if the spinlock is a device lock; this exception exists for MicroVAX 
systems, in which the interrupt arbitration IPL and bus grant IPL differ.) 

3. SMP$RESTORE gets the address of the processor's per-CPU data­
base. 

4. It executes a BBSSI instruction to obtain exclusive access to the spinlock 
control block, spinwaiting (see Section 8.3.8) until the block is available. 

5. It checks whether the spinlock is indeed owned by this processor. If not, 
the rout!ne generates the fatal bugcheck SPLRSTERR. 

6. It decrements the spinlock owner count. If the count is zero or positive, 
indicating that the spinlock is owned, the routine saves the invoking 
thread's return PC at the next position in the spinlock ring buffer at 
SPL$LOWN_PC_ VEC and updates the pointer to the next entry . 
. It executes a BBCCI instruction to release its exclusive access to the 

spinlock control block and returns to its invoker. 
7. If the owner count is -1, indicating that the spinlock is now free, 

SMP$RESTORE's path joins that of SMP$RELEASE, at step 12, below. 
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8. At entry to SMP$RELEASE, RO contains the index of a static spinlock. 
Indexing into the static spinlock table, SMP$RELEASE obtains the ad­
dress of the spinlock and stores it in RO. (Entry point SMP$RELEASEL 
is entered with the address of a dynamic spinlock already in RO.) 

9. SMP$RELEASE makes the check against entry IPL (described in step 2) 
and, if it is too low, generates the fatal bugcheck SPLIPLLOW. 

10. It tests that the processor is indeed the spinlock owner and, if it is not, 
generates the fatal bugcheck SPLRELERR. 

11. It sets the spinlock owner count to -1 and records the invoking thread's 
return PC in SPL$1-RLS_PC as the most recent thread to relinquish all 
nested acquisitions of the spinlock. 

12. It inverts the IPL associated with the spinlock and decrements the corre­
sponding longword in CPU$1-IP1-ARRAY, to indicate one less spinlock 
held at that IPL. I{ the count becomes zero, SMP$RELEASE clears the 
corresponding bit in CPU$1-IP1-VEC. 

13. It clears the bit corresponding to the spinlock's rank in CPU$LRANK_ 
VEC. 

14. It clears the spinlock owner field. 
15. It saves the invoking thread's return PC at the next position in the 

spinlock ring buffer at SPL$1-0WN_PC_ VEC and updates the pointer 
to the next entry. 

16. It executes a BBCCI instruction to release its exclusive access to the 
spinlock control block and returns to its invoker. 

SERIALIZED ACCESS 

VMS uses a combination of software interrupts and queues to cause several 
requests for the same data structure or procedure to be serialized. An im­
portant example of this serialization is the use of fork processes by device 
drivers and other parts of the executive. 

Fork processing is the technique that allows a device driver to lower IPL in 
a manner consistent with the interrupt nesting scheme defined by the VAX 
architecture. When a device driver receives control in response to a device 
interrupt, it performs whatever steps are necessary to service the interrupt 
at device IPL. For example, any device registers whose contents would be 
destroyed by another interrupt must be read before dismissing the device 
interrupt. 

Usually, some processing can be deferred. For direct memory access (DMA) 
devices, an interrupt signifies either completion of the operation or an error. 
The code that distinguishes these two cases and performs error processing 
is usually lengthy. If it executed at device IPL for extended periods of time, 
it would reduce response to high-priority interrupts. 

To delay further processing until IPL drops below the fork IPL associated 
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with this driver, the device driver interrupt service code invokes an execu­
tive routine, EXE$FORK, in module FORKCNTRL. EXE$FORK saves some 
minimal context in a fork block, shown in Figure 4.1. It saves two general 
registers and the address in the driver where control should return when IPL 
drops. 

EXE$FORK examines the field FKB$B_FLCK in the fork block. The other 
name for this field is FKB$B_FIPL. This field contains either a fork IPL, in 
the range 6 to 11, or a static spinlock index. EXE$FORK tests bit 5 in the 
field to distinguish the two. If bit 5 is clear, EXE$FORK uses the fork IPL to 
select the corresponding CPU-specific fork queue. If bit 5 is set, EXE$FORK 
indexes the spinlock IPL table, at location SMP$A1-IPLVEC, to obtain the 
IPL value associated with that spinlock. EXE$FORK inserts the fork block 
at the end of the fork queue for that IPL and requests a software interrupt at 
that IPL if the queue was empty. 

A thread of execution that creates a fork process can use any appropriate 
static spinlock as its fork lock. The only requirement is that the spinlock 
IPL be one at which fork processing is performed: 6, 8, 9, 10, or 11. 

Chapter 4 describes fork processing in further detail. 

MUTUAL EXCLUSION SEMAPHORES (MUTEXES) 

The synchronization techniques described so far all execute at elevated IPL, 
thus blocking certain operations, such as a rescheduling request. However, 
in some situations requiring synchronization, elevated IPL is an unaccept­
able technique. One reason elevated IPL might be unacceptable is that the 
processor would have to remain at an elevated IPL for an indeterminately 
long time because of the structure of the data. For example, associating to a 
common event block cluster requires a search of the list of common event 
blocks (CEBs) for the specified CEB. This might be a lengthy operation on a 
system with many CEBs. 

Furthermore, elevated IPL is unacceptable for synchronizing access to 
pageable data. VMS bugchecks if a page fault occurs at an IPL above 2. Thus, 
a pageable data structure cannot be protected by elevating IPL. 

One synchronization mechanism that does not require elevated IPL is a 
mutuai exclusion semaphore, or mutex. VMS uses mutexes for synchroniz­
ing kernel mode accesses to certain shared data structures. A mutex is essen­
tially a counter that controls read or write access to a given data structure or 
database. VMS allows either multiple readers or one writer of a data structure 
or database synchronized through mutex acquisition. Typically, the threads 
of execution whose accesses are synchronized through a mutex are process 
context threads. 

Access to a mutex itself must be gained at elevated IPL with the SCHED 
spinlock held. However, once a mutex is acquired, elevated IPL is not re­
quired to access the database represented by the mutex. 
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Table 8.3 List of Data Structures Protected by Mutexes 

Data Structure 
Shared logical name data structures 
1/0 database 
Common event block list 
Paged dynamic memory list 
Global section descriptor list , 
Shared memory global section descriptor table 
Shared memory mailbox descriptor table 
Not currently used 
Line printer unit control block 
Not currently used 
System intruder lists 
Object rights block access control list 
System service database 
Terminal fallback database 
Loadable executive image data structures 

Global Name of Mutex 
LNM$AL_MUTEX 
IOC$GL_MUTEX I 
EXE$G1-CEBMTX 
EXE$GL_PGDYNMTX 
EXE$GL_GSDMTX 
EXE$GL_SHMGSMTX 
EXE$GL_SHMMBMTX 
EXE$G1-ENQMTX 
UCB$1-LP _MUTEX 2 

EXE$GL_ACLMTX 
CIA$GL_MUTEX 
ORB$1-AC1-MUTEX 3 

CHANGE_MODE_MUTEX 4 

TFF$L_ VEC_MUTEX 5 

EXE$GL_BASIMGMTX 

1 This mutex is used by the Assign Channel and Allocate Device system services 
when searching through the linked list of device data blocks and UCBs for a device. 
It is also used when UCBs are added or deleted, for example, during the creation of 
mailboxes and network devices. 

2 This mutex does not have a fixed address. As a field in a line printer UCB, its 
location depends on that of the UCB. 

3 This mutex does not have a fixed address. As a field in an object rights block (ORB), 
its location depends on that of the ORB. 

4 This mutex is local to the EXCEPTION.EXE loadable executive image and does not 
have a fixed address. 

5 This mutex does not have a fixed address. As a field in the fallback driver, its 
location depends on that of the driver. 

Table 8.3 lists the executive data structures protected by mutexes and the 
names of the corresponding mutexes. (The "CPU mutex," used in SMP code, 
is discussed in Chapter 34.) 

A mutex is a data structure consisting of a single longword. Figure 8.3 
shows its layout. The macro $MTXDEF defines symbolic names for its fields. 
Its low-order word, field MTX$W _OWNCNT, contains the number of pro­
cesses accessing the data, that is, the number of processes that have locked 
the mutex. The owner count value is initialized to -1 to indicate no owners. 
Thus, a mutex with a zero in the low-order word has one owner. Biasing the 
owner count by -1 simplifies the code that tests for the transition between 
unowned and owned. The high-order word of a mutex, field MTX$W _STS, 
contains status flags. The only flag currently implemented, MTX$V _ WRT, 
is set to indicate that a write is either in progress or pending for this mutex. 

The process control block (PCB) field PCB$W _MTXCNT contains the 
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31 0 

Status 

write-pending flag 

Figure 8.3 
Layout of a Mutex 

number of mutexes a process currently owns. This field is initialized to 
zero and incremented each time a process acquires a mutex. 

8.5.1 Locking a Mutex for Read Access 

When a process needs read access to a data structure protected by a mutex, it 
invokes routine SCH$LOCKR, in module MUTEX, with the address of the 
mutex. SCH$LOCKR takes the following steps: 

1. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED. 
2. It tests whether the mutex's write flag is set. If so, no further readers 

are allowed to acquire the mutex. SCH$LOCKR transparently stalls the 
process (see Section 8.5.3) until the mutex is available. 

3. If the write flag is clear and thus no write operation is in progress or 
pending, SCH$LOCKR grants the process read ownership of the mutex­
it increments the mutex's owner count and increments the count of 
mutexes owned by this process. 

4. If this mutex is the first that the process currently has locked and if 
the process is not a real-time process, its current and base priorities are 
saved in the PCB fields PCB$B_PRISAV and PCB$B_PRIBSAV and then 
both are elevated to 16. The process receives a priority boost to minimize 
the time during which it holds the mutex and blocks other processes that 
require the mutex. The check on the number of owned mutexes prevents 
a process that gains ownership of two or more mutexes from receiving a 
permanent priority elevation to 16. 

5. SCH$LOCKR releases the SCHED spinlock and returns control to its 
invoker with IPL at 2. 

The process is expected to remain at IPL 2 or above while it owns the mu­
tex to prevent its own deletion or suspension. Neither the Delete Process 
($DELPRC) system service nor the Suspend Process ($SUSPND) system ser­
vice checks whether the target process owns any mutexes. If the process 
deletion or suspension were to succeed, the locked mutex would no longer 
be lockable and thus the locked data structure would be inaccessible. 

8.5.2 Locking a Mutex for Write Access 

When a process needs write access to a data structure that is protected by 
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a mutex, it invokes routine SCH$LOCKW, in module MUTEX, with the 
address of the mutex. SCH$LOCKW takes the following steps: 

1. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED. 
2. It tests and sets the mutex's write flag. 
3. If the flag was set, no further readers or writers are allowed to acquire the 

mutex. SCH$LOCKW transparently stalls the process (see Section 8.5.3) 
until the mutex is available. 

4. If the write flag was clear, SCH$LOCKW tests whether there are any 
current owners of the mutex. If there are, it transparently stalls the 
process. 

5. If the write flag was clear and there were no owners of the mutex, 
SCH$LOCKW grants the process write ownership of the mutex: it in­
crements MTX$W _OWNCNT and PCB$W _MTXCNT, and it may alter 
the process's software priority, as previously described. It releases the 
SCHED spinlock and returns to its invoker at IPL 2. 

When SCH$LOCKW stalls the process, the mutex write flag is set so that 
future requests for read access will also be denied. This prevents a stream of 
read accesses from continuously locking the mutex. When the last current 
owner of the mutex releases it, the write flag is cleared. At that point, the 
highest priority process waiting for the mutex gets first access to it, whether 
the process is requesting a read or a write access. 

If a reader acquires the mutex, other previously waiting would-be readers 
whose priority is greater than that of the highest priority would-be writer 
can also acquire read access, as a result of standard scheduling operations. 
The higher priority would-be readers execute first, and their read accesses are 
granted. If readers still own the mutex when the would-be writer executes, 
its attempted write access is blocked again. 

An alternative entry point, SCH$LOCKWNOWAIT, returns control to 
the invoker with RO(O) cleared to indicate failure if the requested mutex 
is already owned. 

8.5.3 Mutex Wait State 

SCH$LOCKR and SCH$LOCKW transparently stall a process when its re­
quested mutex acquisition cannot be granted. They save the process context 
and place the process into the miscellaneous wait state (MWAIT). They store 
the address of the mutex being requested in the software PCB field PCB$L_ 
EFWM. Because the process is not waiting for an event flag, the field is 
available for this purpose. They transfer control to the routine that selects a 
new process to place into execution and that releases the SCHED spinlock. 
Chapter 12 describes miscellaneous waits and rescheduling in more detail. 

The saved PC of such a process is an address within either SCH$LOCKR or 
SCH$LOCKW, depending on whether its intended access is a read or write. 
Its saved PSL has kernel mode and IPL 2. When the mutex becomes available, 
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the process becomes computable again. When the saved process context is 
loaded, the process reattempts its mutex acquisition. 

8.5.4 Unlocking a Mutex 

A process releases a mutex by invoking routine SCH$UNLOCK, in module 
MUTEX, with the address of the mutex to be released. SCH$UNLOCK takes 
the following steps: 

1. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED. 
2. It decrements the process's PCB$W_MTXCNT. If this process does not 

own any more mutexes, SCH$UNLOCK restores the saved base and 
current priorities from PCB$B_PRIBSAV and PCB$B_PRISAV. 

If there is a computable resident process with a higher priority than 
this process's restored priority, a rescheduling interrupt is requested. This 
situation is known as delayed preemption of the current process. 

3. SCH$UNLOCK also decrements MTX$W _OWNCNT. If the mutex 
owner count is greater than -1, there are other outstanding owners of 
this mutex; SCH$UNLOCK simply releases the SCHED spinlock, restor­
ing the IPL at entry, and returns to its invoker. 

4. If the mutex count is decremented to -1, the mutex is now unowned. 
SCH$UNLOCK executes a BBCCI instruction to test and clear its write 
flag. If the bit was clear, SCH$UNLOCK releases the SCHED spinlock, 
restoring the IPL at entry, and returns to its invoker. 

5. If the bit was set, there may be processes waiting to acquire this mutex. 
(A waiting or owning writer would have set this bit, blocking any new 
potential readers and any writers.) SCH$UNLOCK scans the miscella­
neous resource wait queue to locate any process whose PCB$1-EFWM 
field contains the address of the unlocked mutex. 

For each such process, SCH$UNLOCK reports the availability of the 
mutex by invoking a scheduler routine to make the process computable. 
If the priority of any of these processes is greater than or equal to the 
priority of the current process, a rescheduling interrupt is requested. 
SCH$UNLOCK then releases the SCHED spinlock, restoring the IPL at 
entry, and returns to its invoker. 

8.5.5 Accessing a Mutex from System Context 
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Although mutexes were originally designed for use from process context, 
VMS Version 5 adds the capability for a system thread of execution to acquire 
a mutex. This enables a system thread to synchronize its access with those of 
full processes to a database protected by a mutex. In general, this capability 
is limited to nonpageable databases, since VMS bugchecks in response to 
page faults occurring above IPL 2. Currently, the capability is only used by 
fork processes to acquire the I/O database mutex. 
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The 1/0 database mutex basically synchronizes the lists of 1/0 data struc­
tures, for example, the linked list of UCBs associated with a particular device. 
A device driver that clones new device units from template devices must in­
sert new units into the UCB list and remove units being deleted. Although 
these insertions and deletions can usually be done from process context, in 
some cases they must be done from fork process context. For example, when 
the disk class driver fork process receives a message from an MSCP server 
that a new disk unit has come on line, it must clone a UCB and add it to 
the list. 

Routines have been added to module MUTEX to serve this need: 

• SCH$LOCKWEXEC-Acquire write ownership of a mutex from a system 
thread 

• SCH$LOCKREXEC-Acquire read ownership of a mutex from a system 
thread 

• SCH$UNLOCKEXEC-Release a mutex from a system thread 

The main difference between SCH$LOCKWEXEC and SCH$LOCKREXEC 
and their process context counterparts is that they return a failure status if 
the mutex is unavailable. There is no mechanism that transparently stalls 
a fork process and awakens it when the mutex becomes available. If a fork 
process receives a failure status, it must wait itself by using the fork and 
wait mechanism described in Chapter 4. 

These routines acquire the SCHED spinlock, which is held at IPL$_ 
SCHED. This mechanism is therefore restricted to threads of execution that 
run at IPL 8 or below and that hold no higher ranking spinlock. 
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Event Flags 

I claim not to have controlled events, but confess plainly that 
events have controlled me. 

Abraham Lincoln, Letter to A. G. Hodges, April 4, 1864 

Event flags are status bits maintained by the VMS operating system for 
general prograrp.ming use. Each event flag can be either set or clear, and 
its status can be tested. 

System services read, set, and clear event flags. A process can specify that 
an event flag be set at the completion of an operation such as an 1/0 request. 
When the process can proceed no further until the request is complete, the 
process can call a system service to wait for the event flag to be set. 

This chapter describes the implementation of event flags and the services 
that support them. 

EVENT FLAGS 

An event flag can be used within a single process for synchronization with 
the completion of certain system services, such as 1/0, lock, information, and 
timer requests. Each of these services includes an argument identifying the 
event flag associated with the request. When a process requests such a system 
service, that event flag is cleared. It is subsequently set when the request 
has been completed as a signal to the process that the operation is complete. 
Event flags can also be used as application-specific synchronization tools. 

Event flags can be local to one process or shared among processes in 
the same user identification code (UIC) group. Shared event flags are called 
common event flags. Processes sharing common event flags must be running 
on a single VAXcluster member; that is, common event flags are not visible 
clusterwide. 

VMS also supports common event flags in MA780 multiport memory 
shared among multiple VAX-11/78x processors. A process can use these 
flags to synchronize with other processes in the same group running on 
any of the processors connected to the shared memory. The use of such 
flags is discussed in Introduction to VMS System Services. Details on the 
implementation of MA780 common event flags are beyond the scope of this 
book. 

Each process has available to it 64 local (process-specific) event flags, in 
two clusters of 32 flags each, and can access 64 common event flags at once, 
in two clusters of 32 flags each. Before a process can refer to the flags in a 
particular common event flag cluster, it must explicitly associate with the 
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cluster (see Section 9.1.2), specifying which numbers it will use to refer to 
the flags. 

VMS assigns no inherent meaning to any particular event flag, although 
certain flags are reserved for particular uses (see Section 9.1.1). A process 
defines the meaning of a flag by the way it uses the flag. For example, when 
a process requests the Queue I/O Request ($QIO) system service, specifying 
event flag 10 as the EFN argument, the process can subsequently wait for 
completion of that I/O request by waiting for event flag 10 to be set. After 
the process's wait is satisfied, the meaning of event flag 10 is undefined. 

If the process concurrently uses event flag 10 in two different ways, the 
meaning of its being set is ambiguous. VMS provides the Run-Time Library 
procedures LIB$GET _EF and LIB$FREE_EF (see VMS RTL Library (LIB$) 
Manual) to help prevent inadvertent concurrent use of the same flags. 

The services that include an event flag argument are 

• Breakthrough (and Wait] ($BRKTHRU[W]) 
• Enqueue Lock Request [and Wait] ($ENQ(W]) 
• Get Device/Volume Information [and Wait] ($GETDVI[W]) 
• Get Job/Process Information [and Wait] ($GETJPI[W]) 
• Get Lock Information [and Wait] ($GETLKI[W]) 
• Get Queue Information [and Wait] ($GETQUI[W]) 
• Get Systemwide Information [and Wait] ($GETSYI(W]) 
• Queue I/O Request [and Wait] ($QIO[W]) 
• Send to Job Controller [and Wait] ($SNDJBC[W]) 
• Set Timer ($SETIMR) 
• Synchronize ($SYNCH) 
• Update Section File on Disk [and Wait] ($UPDSEC[W]) 

9.1.1 Local Event Flags 

The 64 local event flags are contained in each process's process control block 
(PCB), at offsets PCB$1-EFCS and PCB$L_EFCU (see Figure 9.1). All local 
event flags are initialized to zero during process creation. 

Local event flags 0 to 31 make up cluster 0 and are located in longword 
PCB$1-EFCS. Bit 0 in PCB$1-EFCS corresponds to event flag 0, bit 1 to 
event flag 1, and so on. Local event flags 32 to 63 make up cluster 1 and 
are located in longword PCB$1-EFCU. Bit 0 in PCB$1-EFCU corresponds to 
event flag 32, bit 1 to event flag 33, and so on. 

Event flag 0 is the default event flag. Whenever a process requests a system 
service with an event flag number argument, but does not specify a particular 
flag, event flag 0 is used. Consequently, it is more likely than others to be 
used incorrectly for multiple concurrent requests. 

Event flag numbers 24 through 31 are reserved for system use; this means 
they can be set and cleared at any time by VMS executive software and 
should not be used by application software. 
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Figure 9.1 
Software PCB Fields That Support Event Flags 

9.1.2 Common Event Flags 
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A process creates a common event flag cluster dynamically, by requesting 
the Associate Common Event Flag Cluster ($ASCEFC) system service (see 
Section 9.3). Each common event flag cluster is described by a nonpaged pool 
data structure called a common event block (CEBJ, shown in Figure 9.2. 

The process specifies whether it will access the flags in that cluster using 
event flag numbers 64 through 95 (cluster 2) or 96 through 127 (cluster 3). 
If the flags are associated as cluster 2, the field PCB$1-EFC2P contains the 
address of their CEB. Otherwise, PCB$L_EFC3P contains its address. 

CEB$L_CEBFL and CEB$L_CEBBL link each CEB into a systemwide list 
whose listhead is SCH$GQ_CEBHD (see Figure 9.3). The system global 
SCH$GW _CEBCNT contains the number of CEBs in the list. The mutex 
EXE$G1-CEBMTX synchronizes access to the CEB list. Chapter 8 describes 
the use of mutexes. 

A particular common event flag cluster is identified by its name, CEB$T _ 
EFCNAM, and UIC group, CEB$W_GRP. There cannot be more than one 
cluster with the same name and group. 

Two bits are defined in the status byte, CEB$B_STS: 

• CEB$V _PERM, when set, indicates that the cluster is a permanent one 
rather than a temporary one. 

• CEB$V _NOQUOTA, when set, indicates that no quota was charged for the 
creation of the cluster. 

Creation of a temporary cluster is charged against a job's timer queue entry 
(TQEJ quota. Creation of a permanent cluster uses no quota but requires the 
privilege PRMCEB. A temporary cluster exists only as long as a process is 
associated to it, while a permanent cluster must be explicitly deleted. 
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Figure 9.3 
Common Event Flag Wait Queues 

CEB$L_PID contains the internal process ID (IPID) of the master process 
in the job tree of the process that created the cluster. 

The field CEB$L_EFC contains the 32 event flags. These are all initialized 
to zero when the cluster is created. 

The fields CEB$L_ WQFL and CEB$L_ WQBL, CEB$B_ WQCNT, and 
CEB$W_STATE form a wait queue (see Chapter 12) for processes waiting 
for flags in that cluster. 

CEB$L_ UIC contains the UIC of the creating process. 
CEB$W _PROT contains the value 0 if other processes in the same UIC 

group are permitted access; otherwise, the value 1 prevents access by pro­
cesses with a different UIC. 

CEB$W_REFC contains the number of processes that are currently associ­
ated to the cluster. 
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9.2 PCB FIELDS RELATED TO EVENT FLAGS 

Figure 9.1 shows the PCB fields related to the use of event flags. 
Previous sections described the meaning of the fields PCB$L_EFCS, 

PCB$L_EFCU, PCB$L_EFC2P, and PCB$L_EFC3P. 
The other fields are significant for a process in an event flag wait. PCB$B_ 

WEFC contains the number of the cluster containing the flags for which a 
process waits. PCB$L_EFWM contains a mask that is the one's complement 
of the flags in the cluster for which the process is waiting. The PCB$L_ 
STS bit PCB$V _WALL, when set, indicates that the process is waiting for all 
those flags to be set. 

These fields are loaded only when a process initiates an event flag wait. 
Consequently, for a process in a state other than event flag wait, they may 
be stale. Furthermore, the field PCB$L_EFWM has an additional use: it 
identifies the resource waited for by a process in a miscellaneous wait state. 

9.3 ASSOCIATING TO A COMMON EVENT FLAG CLUSTER 
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A process invokes the $ASCEFC system service to create a named common 
event flag cluster if it does not already exist and to access its flags. The 
process specifies the name of the cluster and implicitly, through its PCB$L_ 
UIC field, the UIC group of the cluster. 

The $ASCEFC system service procedure, EXE$ASCEFC in module SYS­
ASCEFC, runs in kernel mode. It takes the following steps: 

1. EXE$ASCEFC confirms that the event flag number is within cluster 2 or 
3, returning the error status SS$_ILLEFC if it is not. 

2. It locks the CEB mutex for write access. 
3. It searches the CEB list for a cluster with the same name and group. 
4. If one exists, EXE$ASCEFC checks whether the process can access it. If 

the process's UIC matches that of the CEB owner or if the CEB protection 
code allows group access, the process is allowed to associate to the 
cluster. 

If the process is allowed access, EXE$ASCEFC continues with step 7. 
Otherwise, EXE$ASCEFC unlocks the mutex and returns the error status 
SS$_NOPRIV to its caller. 

5. If the common event flag cluster does not already exist, the process is 
requesting its creation. 

-If the process requests a permanent cluster, it must have the privilege 
PRMCEB. If it does not have the privilege, EXE$ASCEFC unlocks the 
mutex and returns the error status SS$_NOPRIV .. 

-If the process is not requesting a permanent cluster, EXE$ASCEFC 
charges it against the job's TQE quota. If the process has insufficient 
quota, EXE$ASCEFC unlocks the mutex and returns the error status 
SS$_EXQUOTA. 
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6. EXE$ASCEFC invokes EXE$ALLOCCEB, in module MEMORYALC, to 
allocate a CEB from nonpaged pool and initializes the CEB. EXE$ASCEFC 
sets the bit CEB$V _PERM in CEB$B_STS if the cluster is a permanent 
one. It increments SCH$GW_CEBCNT, the number of CEBs, and links 
the new CEB into the list. 

7. Whether or not the cluster existed previously, EXE$ASCEFC associates 
the process and the cluster by incrementing the cluster's reference count, 
CEB$W _REFC, and by storing the address of the CEB in either PCB$L_ 
EFC2P or PCB$1-EFC3P. 

EXE$ASCEFC first saves the old contents of PCB$1-EFC2P or PCB$L_ 
EFC3P. If they are not zero, the process has been using those event 
flag numbers to associate with another cluster. EXE$ASCEFC severs the 
connection between the process and the other cluster by taking the steps 
described in Section 9 .4. 

8. EXE$ASCEFC unlocks the mutex and returns to its caller. 

DISSOCIATING FROM A COMMON EVENT FLAG CLUSTER 

A process dissociates itself from a common event flag cluster explicitly by 
requesting the Dissociate Common Event Flag Cluster ($DACEFC) system 
service with an event flag number within that cluster. Implicitly, the service 
is requested on behalf of the process when it associates a new event flag 
cluster using a cluster number already in use. 

The $DACEFC system service procedure, EXE$DACEFC in module SYS­
ASCEFC, runs in kernel mode. It takes the following steps: 

1. EXE$DACEFC confirms that the event flag number is within cluster 2 
or 3, returning the error status SS$_ILLEFC if it is not. 

2. It locks the CEB mutex for write. 
3. It confirms that the process has an associated cluster corresponding to 

the flag number. If not, it unlocks the mutex and returns. 
4. It locates the CEB using the pointer to the cluster in the PCB and clears 

the pointer. 
5. It decrements CEB$W _REFC in the associated cluster. If there are other 

processes associated to the cluster or if the cluster is a permanent one, 
it unlocks the mutex and returns. 

6. Otherwise (the cluster is temporary and has no processes still associated 
with it), EXE$DACEFC deletes it by taking the following steps: 

a. If CEB$V _NOQUOTA is clear, EXE$DACEFC returns quota to the 
job against which it was originally charged. 

b. EXE$DACEFC removes the CEB from the CEB list, deallocates it to 
nonpaged pool, and decrements SCH$GW_CEBCNT. 

c. EXE$DACEFC unlocks the mutex and returns. 

207 



Event Flags 

During image rundown, a process is automatically dissociated from any 
common event flag clusters to which it had associated. 

9.5 DELETING AN EVENT FLAG CLUSTER 

To delete a permanent event flag cluster, a process requests the Delete 
Common Event Flag Cluster 1$DLCEFC) system service with the name of 
the cluster to be deleted. 

A cluster cannot be deleted if processes are still associated with it. In 
such a case, the $DLCEFC service transforms the permanent cluster to a 
temporary one so that it will be deleted when the last process associated 
with the cluster requests the $DACEFC service. 

The $DLCEFC system service procedure, EXE$DLCEFC in module SYS­
ASCEFC, runs in kernel mode. It takes the following steps: 

1. EXE$DLCEFC locks the CEB mutex for write. 
2. It scans the CEB list for a cluster of the specified name and a group code 

matching that of the process. If it fails to find one, it unlocks the mutex 
and simply returns. 

3. If it finds one, it tests whether the process is allowed to delete the CEB. 
If the process's UIC is not that of the CEB and if the CEB protection does 
not allow a group member to delete it, EXE$DLCEFC returns the error 
status SS$_NOPRIV. 

If the process does not have the privilege PRMCEB, EXE$DLCEFC also 
returns the error status SS$_NOPRIV. 

4. Unless the process is deleting a temporary CEB, EXE$DLCEFC clears 
CEB$V _PERM and sets CEB$V _NOQUOTA. This effectively changes the 
cluster to a temporary one for which no quota need be returned. The 
cluster's deletion is deferred until all processes have dissociated from it. 

5. EXE$DLCEFC increments CEB$W _REFC and transfers to code within 
EXE$DACEFC, described in step 5 in Section 9.4. !The increment bal­
ances a decrement in EXE$DACEFC.J 

9.6 WAITING FOR AN EVENT FLAG 
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A process can be placed into an event flag wait state to wait for the setting of 
one or more flags. When a process waits for more than one flag, all the flags 
must be in the same cluster. A process waits for event flags by performing 
any of the following actions: 

• Requesting one of the three event flag wait system services directly: 

-Wait for Single Event Flag l$WAITFR) 
-Wait for Logical OR of Event Flags l$WFLOR) 
-Wait for Logical AND of Event Flags j$WFLAND) 
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• Requesting the $SYNCH system service, which combines $WAITFR and a 
status block test to wait for service completion (thus minimizing problems 
caused by multiple concurrent uses of the same flag) 

• Requesting the synchronous version of the services listed in Section 9.1, 
each of which incorporates $SYNCH 

• Requesting Record Management Services (RMS) as a synchronous opera­
tion, which results in requesting $WAITFR 

The distinction between $WFLOR and $WFLAND lies in how many of the 
flags must be set for the wait condition to be satisfied. If any of the flags in 
the mask is set when $WFLOR is requested, the process is not placed into a 
wait state. Instead, the service immediately returns to its caller. 

Each of the flags specified in the $WFLAND system service argument must 
have been set for the wait to be satisfied. However, the flags need not be set 
simultaneously. 

However the wait-for system service is requested, it examines the current 
state of the event flag or flags. If the event flag wait condition is satisfied, it 
returns control to the process. Otherwise, it places the process into a wait 
state until the flag or flags are set. The wait-for system services are described 
in the following paragraphs. The $SYNCH system service and synchronous 
RMS completions are described in Chapter 6. 

The wait-for system service procedures, EXE$WAITFR, EXE$WFLOR, and 
EXE$WFLAND, are in module SYSWAIT and run in kernel mode. The 
three procedures converge to a common routine, EXE$WAIT, also in module 
SYSWAIT. 

EXE$WAIT is entered with a mask identifying the flags to be waited for, 
the number of a flag in that cluster, and a wait-all flag that is set if the entry 
is from $WFLAND. 

EXE$WAIT takes the following steps: 

1. EXE$WAIT raises IPL to 2 to block delivery of a kernel mode AST pro­
cedure that might request another wait-for service. 

2. It checks that the event flag number is legal, returning the error status 
SS$_ILLEFC if the number is out of range. 

3. It determines which cluster contains that event flag and records the 
cluster number in PCB$B_ WEFC. 

4. If the cluster number is 2 or 3, indicating a common event flag cluster, 
EXE$WAIT first checks that there is an associated cluster and returns 
the error status SS$_UNASCEFC if there is none. 

If there is an associated cluster, it gets the CEB address from either 
PCB$L_EFC2P or PCB$L_EFC3P, depending on the cluster number. 

5. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED, to block 
concurrent access to the event flags by SCH$POSTEF (see Section 9.7) 
and to synchronize access to the scheduler database. 
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6. It tests whether the event flag wait condition is satisfied by the current 
state of the flags. 

7. If the wait condition is satisfied, EXE$WAIT releases the spinlock and re­
turns to the caller of the system service. As an optimization, EXE$WAIT 
removes the change mode dispatcher call frame from the stack and re­
turns directly to the instruction following the CHMK that initiated it lsee 
Chapter 6). 

8. If the event flag wait condition is unsatisfied, EXE$WAIT checks whether 
the wait is wait-all. If so, it sets the PCB$V _WALL bit in PCB$1-STS. 

9. EXE$WAIT stores a mask representing the flags to be waited for in 
PCB$1-EFWM: 

-If the process requested $WFLOR, the PCB$L_EFWM mask contains 
the one's complement of the input mask passed to the system service. 

-If the process requested $WAITFR, the PCB$1-EFWM mask contains 
a 1 in every bit except the bit number corresponding to the specified 
flag. (The $WAITFR mask is thus a special case of a wait for any one 
of a group of flags to be seq 

-If the process requested $WFLAND, the system service clears any bits 
in the input mask corresponding to currently set flags, complements . 
it, and then stores it in PCB$L_EFWM. 

10. EXE$WAIT jumps to SCH$WAIT, in module RSE, to place the process 
into either a local or common event flag wait state, depending on the 
cluster number. 

There are two systemwide local event flag wait states (LEF and LEPO) 
and two corresponding wait queue listheads ISCH$GQ_LEFWQ and 
SCH$GQ_LEFOWQ). Only one common event flag wait state exists for 
both resident and outswapped processes. However, there is a separate 
common event flag wait queue listhead jsee Figure 9.2) in each common 
event flag cluster. Each has the same overall structure as any other wait 
queue listhead (see Figure 9.3). Both resident and outswapped processes 
waiting for flags in a common event flag cluster are queued to the same 
CEB wait queue. Having one queue in each CEB makes it easier to locate 
processes whose wait is satisfied by the setting of a flag in that cluster. 

The saved program counter (PC) in the waiting process's hardware PCB 
is the address of the CHMK instruction that initiated the system service, 
typically one in a system service vector. If the process becomes computable 
because its event flag wait has been satisfied and is placed into execution, 
it may reexecute the event flag wait system service, which will complete 
with EXE$WAIT's step 7. If the process becomes computable as the result of 
asynchronous system trap (AST) enqueuing, at the completion of the AST it 
will reexecute the service and be placed back into a wait. Chapter 12 gives 
additional information. 

While this technique permits ASTs to be delivered to a process waiting for 
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event flags to be set, it constrains the ways in which event flags can be used: 
flags for which a process is waiting should not be cleared by other threads 
of execution. The result of clearing an event flag might be that a process 
becomes computable as the result of the flag's having been set but reenters 
the event flag wait state indefinitely when it reexecutes the event flag wait 
service and finds the flag no longer set. This could happen, for example, if 
process A waited for a common event flag set and then cleared by process B. 

This constraint applies to all wait-for services but has particular signif­
icance for the $WFLAND system service. The $WFLAND system service 
generates a wait mask based on the input mask flags that are not already set 
at the time the service is requested. However, each time the process is placed 
back into execution as a result of AST delivery, the process reexecutes the 
$WFLAND service and, each time, the event flag wait mask is built anew. 
No record is kept that some of the flags have been set and should not be 
waited for again if the service is reexecuted. 

SETTING AN EVENT FLAG 

A process sets an event flag directly by calling the Set Event Flag ($SETEF) 
system service. A process can use this service at AST level to communicate 
with its mainline code. It can also use this service to set common event flags 
to communicate with other processes. 

The VMS executive sets event flags in response to I/O completion, timer 
expiration, the granting of a lock request, and completion of any of the 
system services listed in Section 9 .1. 

The $SETEF system service and any other executive code that sets an event 
flag invokes the routine SCH$POSTEF, in module POSTEF. SCH$POSTEF 
performs the actual event flag setting and checks whether a process's event 
flag wait is satisfied. Its arguments are the number of the flag to be set, 
the IPID of the process in whose context that flag number is defined, and a 
priority increment class number (see Chapter 12). 

SCH$POSTEF runs in kernel mode. It takes the following steps: 

1. It first acquires the SCHED spinlock, raising IPL to IPL$_SCHED, to 
block concurrent access to the flags from a wait-for service and to syn­
chronize access to the scheduler database. 

2. It then confirms that the specified process still exists. If not, it releases 
the spinlock and returns the error status SS$_NONEXPR to its invoker. 

3. It checks that the event flag number is legal, returning the error status 
SS$_ILLEFC if the number is out of range. 

4. It then determines what kind of event flag is being set. For a common 
event flag, it continues with step 8. 

5. If a local event flag is being set, SCH$POSTEF sets it and checks whether 
this flag satisfies a wait request for this process. In the case of a $WFLOR 
wait, this flag merely has to match one of the flags being waited for. For 
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a $WFLAND wait, all the flags in the mask must be set to satisfy the 
process's wait request. 

6. If the process's wait is satisfied, SCH$POSTEF reports an event-flag­
setting event for the process by invoking routine SCH$RSE, in module 
RSE. jNote that SCH$POSTEF examines PCB event-flag-related fields to 
decide if a wait is satisfied but ignores the process's scheduling state. 
Thus, SCH$POSTEF's event report may be based on stale values in these 
fields. SCH$RSE confirms that the process is in an event flag wait state 
prior to acting on the event report.) 

7. Whether or not a wait was satisfied, SCH$POSTEF then unlocks the 
SCHED spinlock and returns with the success status SS$_ WASSET or 
SS$_ WASCLR, depending on the initial state of the flag. This completes 
its processing for a local event flag. 

8. If a common event flag is being set, SCH$POSTEF first checks that there 
is an associated common event flag cluster, returning the error SS$_ 
UNASCEFC if there is none. 

9. It gets the CEB address, using the contents of either PCB$L_EFC2P or 
PCB$1-EFC3P, depending on the flag number. SCH$POSTEF must scan 
the list of PCBs in the CEB wait queue to determine which, if any, of the 
processes waiting for flags in this cluster has its wait request satisfied. 
SCH$POSTEF reports an event-flag-setting event for each such process. 

10. SCH$POSTEF releases the SCHED spinlock, restoring the previous IPL. 

SCH$RSE ignores an event-flag-setting event reported for a process not 
in an event flag wait state and simply returns. When an event-flag-setting 
event is reported for a process in an event flag wait state, SCH$RSE changes 
its state to computable resident !COM) or computable outswap !COMO) 
and, if appropriate, applies a priority boost, using the priority increment 
class number passed through from SCH$POSTEF. SCH$RSE may request 
a rescheduling interrupt on behalf of the process or awaken the swapper 
process. Chapter 12 gives more details. 

If the process is resident, SCH$RSE adds 4 to the saved PC in the hardware 
PCB so that the process does not reexecute the event flag wait service. 

9.8 READING AND CLEARING EVENT FLAGS 
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The Read Event Flag ($READEF) system service is informational. It has no 
effect on the computability of any process. The $READEF system service 
procedure, EXE$READEF in module SYSEVTSRV, runs in kernel mode. It 
determines which cluster to read from its EFN argument. It copies the flags 
from either the PCB or the CEB that contains them to the location specified 
by its caller. It returns the success status SS$_ WASSET if any flag was set; 
otherwise, it returns SS$_ WASCLR, which is equal to SS$_NORMAL. 

The Clear Event Flag l$CLREF) system service simply clears the event 
flag specified by its EFN argument. The $CLREF system service procedure, 
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EXE$CLREF in module SYSEVTSRV, runs in kernel mode. It locates the 
cluster that contains the specified flag and executes a BBCCI instruction to 
clear the flag. It returns the success status SS$_ WASCLR or SS$_ WASSET, 
depending on the initial state of the flag. It has no immediate effect on the 
scheduling state of any process. 

INTERPROCESS SYNCHRONIZATION THROUGH COMMON EVENT 
FLAGS 

The use of common event flags is one method of interprocess synchroniza­
tion. One process can reach a critical point in its execution and wait for a 
common event flag. Another process can enable this process to continue its 
execution by setting the flag. 

A common event flag can also be used as a semaphore to gain access to a 
resource shared among processes. One such application is outlined here. It 
first requires creation of a common event flag cluster with all its flags set. 
Each flag can be used as an individual lock. Each cooperating process must 
associate to the common event flag cluster. 

Before any process uses the resource represented by a particular event flag, 
it must execute the following sequence, which uses event flag number 65 as 
an example: 

5$: $CLREF_S EFN=#65 
CMPL RO,#SS$_WASSET 
BEQL 10$ 
$WAITFR_S EFN=#65 
BRB 5$ 

10$: 

$SETEF_S EFN=#65 

;Clear the event flag 
;Was its previous state = 1? 
; Branch if yes 
;Else wait for flag 

;Proceed to access resource 

;Set the event flag 

Clearing an event flag is an interlocked operation implemented by the VMS 
software (except for MA780 shared memory common event flags). Only one 
process at a time can clear the flag and cause the transition in its state from 
set to clear. That process then "owns" the flag and its associated resource. 
Any other process that clears the flag receives a was-clear status and must 
wait for the flag to be set. 

The process that owns the flag can then access the resource without 
synchronization problems. When the process's accesses to the resource are 
complete, the process sets the flag, relinquishing ownership of the flag and 
resource. The processes that were waiting for the flag are made computable 
and repeat their attempts to cause the event flag transition from set to 
clear. 
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'Tis in my memory lock'd, 
And you yourself shall keep the key of it. 

Shakespeare, Hamlet, 1, iii 

VMS lock management system services enable cooperating processes to syn­
chronize their access to shared memory, files, and other entities. Using these 
services, a process assigns a name to an entity and requests a lock on the 
name. In response to the first request to lock any given name, VMS creates 
a data structure called a resource block, commonly referred to as a resource. 
VMS lock management system services do not maintain any linkage between 
that structure and any actual VMS entity. Processes requiring synchronized 
access to an entity must explicitly cooperate by locking the resource name 
representing that entity. 

A lock is characterized by the extent to which it allows shared access with 
other locks on the same resource. Locks that permit mutual shared access 
are termed compatible. Processes holding compatible locks on a resource 
have concurrent access to it and, if they behave consistently, to the entity 
it represents. A process requesting an incompatible lock is denied access. 
Optionally, such a process can be placed into a wait state until blocking 
locks are released and the resource becomes available. 

This chapter discusses first the lock management data structures and then 
the operations of the lock management system services: 

• Enqueue Lock Request [and Wait) ($ENQ[W)J 
•Dequeue Lock Request ($DEQ) 
• Get Lock Information [and Wait] ($GETLKI[W)J 

The last section in this chapter describes deadlock detection. 
The treatment in this chapter assumes that the reader is familiar with the 

description of the VMS lock management system services found in the VMS 
System Services Reference Manual. This chapter briefly discusses VAXclus­
ter distributed lock management, the details of which are beyond the scope 
of this book. 

10.1 LOCK MANAGEMENT DATA STRUCTURES 
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The lock database consists of the following kinds of structures: 

• Resource blocks (RSBs), which represent the entities for which locks have 
been requested 

• One resource hash table, which locates. the RSBs 
• Lock blocks (LKBs), which describe locks requested by processes 
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• One lock ID table, which locates the LKBs 

Resource Blocks 

A new RSB is allocated from nonpaged pool whenever a process requests 
the $ENQ system service specifying a resource name not already in use. A 
resource can be created for any desired use but is generally used to represent 
an actual VMS entity, such as a fl.le or global section. Because the repre­
sentation is arbitrary, VMS lock management cannot maintain any linkage 
between the resource and the entity it represents. The VMS operating sys­
tem provides tools that cooperating processes can use to synchronize access 
to the resource. If the processes honor the relation of the resource to the 
entity it represents, access to that entity is synchronized as well. 

Resources can be hierarchical. For example, a resource can be defined to 
represent a particular fl.le, with subresources for particular records in the fl.le. 
The file resource :is a parent resource to the resources representing records 
in the file. A record subresource may be a parent resource to additional sub­
resources that represent fields in the record. The combination of a resource 
and all its subresources is called a resource tree. The top-level resource in 
the tree, the one with no parent, is called the root resource. The root re­
source list, whos.e listhead is the global symbol LCK$GLRRSFL, links the 
root resources known by the local system. Subresources are linked to these 
root RSBs. ' ' 

The maximum depth of a resource tree is, by default, 32. The depth value 
is related to the SYSGEN parameters INTSTKPAGES and DLCKEXTRASTK 
(see Section 10.3.2.2). 

A resource is uniquely .identified by the following combination: 

• Resource name string of 1 to 31 characters 
• User identification code (UIC) group number (or zero if the resource is 

systemwide) 
• Access mode 
• Address of parent RSB, if any 

·Therefore, two resources with identical resource name strings are completely 
different if their UIC groups, access modes, and parents are not also identical. 

Figure 10.1 shows the layout of an RSB. RSB$T_RESNAM and RSB$B_ 
RSNLEN contain the resource name string and its length. Together with 
RSB$W _GROUP, RSB$B_RMOD, and RSB$LPARENT, these fields 
uniquely identify a particular resource. 

RSB$B_DEPTH indicates the position of the resource in a resource tree; a 
root resource has a depth of zero. The depth of a subresource is set to 1 more 
than its parent'sRSB$B_DEPTH. Root resources are linked to form a queue 
through their RSB$1-RRSFL and RSB$L_RRSBL. fields. All subresources ·of 
the root resource:ate linked to form a queue through the fields RSB$L_SRSFL 
and RSB$L_SRSBL,, Each subresource contains the address of its root RSB in 
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Layout of a Resource Block 
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-

RSB$1-RTRSB; a root resource contains its own address. Figure 10.2 shows 
this linkage of root and subresources. RSB$W _ACTIVITY tracks the local 
node's use of the resource; a root resource with a low value is more likely 
to be remastered (see Section 10.1.6). 

If the resource has a parent resource, its access mode is taken from the 
parent. Otherwise, the access mode is specified by the $ENQ system service 
argument ACMODE. The argument is maximized with the mode from which 
the service was requested, which is the default if the argument is omitted. 
The resource's access mode defines the name space in which the resource 
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Figure 10.2 
Root Resources and Subresources 

exists. It specifies the least privileged mode from which locks can be queued 
to the resource and from which information about the locks can be obtained. 
In a parent RSB, RSB$W _REFCNT counts the number of its immediate 
subresources. 

An RSB contains listheads for the granted, conversion, and wait queues 
of LKBs associated with the resource. The listhead for the granted LKB 
queue is the fields RSB$L_GRQFL and RSB$L_GRQBL. The listhead for the 
conversion queue is the fields RSB$L_CVTQFL and RSB$L_CVTQBL. The 
listhead for the wait queue is the fields RSB$L_ WTQFL and RSB$1-WTQBL. 
Section 10.1.3 describes the significance of these queues. 

An RSB also contains 16 bytes that form the value block for the resource 
at the field RSB$Q_ VALBLK. RSB$L_ VALSEQNUM contains the sequence 
number associated with the contents of the value block. 

Other RSB fields are described in later sections of this chapter. 
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Resource Hash Table 

The resource hash table locates all the RSBs in use. The combination of the 
resource name string and its length, resource access mode, UIC group num­
ber, and parent RSB hash value is hashed and the result stored in RSB$W _ 
HASHVAL. The hashing algorithm is similar to the algorithm used for 
hashing logical names, described in Chapter 35. The contents of RSB$W _ 
HASHVAL index a particular entry in the resource hash table. More than 
one resource name can hash to the same value. Each longword entry in the 
hash table is either zero or a pointer to a list of RSBs with that hash value. If 
a longword entry in the resource hash table contains a zero, there is no RSB 
with that hash value. 

Because the RSBs are maintained in a list that is doubly linked but not 
circular (the resource hash table itself contains no backward pointers), the 
list of RSBs is termed a chain. The first two longwords in each RSB contain 
the forward and backward pointers for the resource hash chain. The last 
block in each chain has a zero forward pointer. 

The resource hash table is allocated from nonpaged pool. The global lo­
cation LCK$GL_HASHTBL contains its address. The number of longword 
entries in the resource hash table is determined by the SYSGEN parameter 
RESHASHTBL. Note that the parameter does not limit the number of RSBs 
that can be created. However, the combination of a small hash table and 
many RSBs can result in longer hash chains than might be desirable. 

Figure 10.3 shows the structure of the resource hash table and its relation 
to hash chains. 

Lock Blocks 

An LKB is allocated from nonpaged pool when a process requests the $ENQ 
system service. The LKB is assigned a unique lock ID used to identify the 
lock in subsequent lock conversion or dequeue requests. The LKB is owned 
only by the creator process. When a process dequeues a lock, the LKB is 
deallocated. When a process is deleted, all its locks are dequeued. Figure 10.4 
shows the layout of a lock block. 

The iock is characterized by its lock mode-one of six degrees of shareabii­
ity. Table 10.1 lists the lock modes and the other granted lock modes with 
which each lock is compatible. A lock granted at one mode can later be 
converted to another mode. LKB$B_RQMODE specifies the requested lock 
mode of the lock, and LKB$B_GRMODE, the granted lock mode. 

A lock can be granted, converting, or waiting, depending on the lock modes 
of other locks on the resource. A new lock is granted and its LKB placed on 
the RSB granted queue if its lock mode is compatible with those of locks 
already granted on the resource and if the conversion and wait queues are 
empty. Otherwise, it is placed at the end of the wait queue. A subsequent 
attempt to convert a granted lock to a more restrictive lock mode can result 
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Table 10.1 Compatibility of Lock Modes 

Mode of 
Requested Lock 1 Mode of Currently Granted Locks 

NL CR cw PR PW EX 

NL Yes Yes Yes Yes Yes Yes 
CR Yes Yes Yes Yes Yes No 
cw Yes Yes Yes No No No 
PR Yes Yes No Yes No No 
PW Yes Yes No No No No 
EX Yes No No No No No 

1 NL, null lock; CR, concurrent read; CW, concurrent write; PR, protected 
read; PW, protected write; EX, exclusive lock. 

in the insertion of its LKB at the end of the conversion queue. Conversion 
requests have precedence over all waiting requests and all new lock requests. 
Waiting requests have precedence over all new lock requests. 

LKB$B_STATE specifies the current lock condition, for example, granted, 
waiting, or in a conversion queue. LKB$L_SQFL and LKB$LSQBL link the 
LKB into the appropriate state queue in its RSB. Typically, a lock in the 
conversion or wait queue is also queued to the lock timeout queue through 
the fields LKB$L_ASTQFL and LKB$1-ASTQBL. li the lock request is not 
granted within a certain amount of time, a deadlock search is triggered (see 
Section 10.3.1). 

A lock with a parent lock and resource is termed a sublock. An LKB 
describing a sublock contains the address of the parent LKB in field LKB$1-
PARENT; the parent LKB has no corresponding pointer to the sublock. The 
RSB associated with the sublock points to the parent resource through the 
field RSB$L_PARENT; the parent resource has no corresponding pointer to 
the subresource. These relations are shown in Figure 10.5. LKB$W _REFCNT 
specifies how many sublocks have that LKB as their parent. 

The first part of an 1¥..B is an asynchronous system trap (AST) control 
block (ACB). When a lock request is granted, the LKB/ACB can be queued to 
the process's PCB through the fields LKB$L_ASTQFL and LKB$L_ASTQBL. 
Queued as an ACB, it describes a special kernel mode AST, a blocking AST, 
or a completion AST (see Section 10.2.4). LKB$L_PID contains the internal 
process ID of the process that requested the lock. 

LKB$B_RMOD specifies the access mode at which completion and block­
ing ASTs for this lock are delivered. The access mode from which the $ENQ 
system service is requested, rather than an $ENQ service argument, deter­
mines the value of LKB$B_RMOD. This field also specifies the least privi­
leged access mode from which the lock can be converted or dequeued. H a 
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Relations Between Locks and Sublocks 

lock has a parent, the lock's access mode must not be more privileged than 
that of its parent. 

LKB$L_EPID contains the extended process ID jsee Chapter 25). LKB$L_ 
CPLASTADR and LKB$LBLKASTADR contain the addresses of the com­
pletion and blocking AST procedures requested by the process. LKB$L_LKSB 
contains the address of the process's lock status block. LKB$LLKST1 con­
tains the condition value to be copied to the lock status block. The second 
longword of lock status, LKB$LLKID, contains the lock ID itself. 

Other LKB fields are described in later sections of this chapter. 

Lock ID Table 

The lock ID table locates all LKBs. A lock ID consists of an index into the 
lock ID table and a sequence number identifying this particular use of that 
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index. When a lock index is in use, its entry in the lock ID table contains 
the address of the associated LKB. 

The entry for an unused index has two pieces of information. The high­
order word contains the updated sequence number for that index. The low­
order word contains the index of the next unused entry in the lock ID table. 
The unused entries in the lock ID table are thus linked together, with the 
listhead at global location LCK$GL_NXTID. When a new lock is requested, 
its index is taken from LCK$GL_NXTID, which is updated to point to the 
next unused entry. 

A lock to be dequeued is identified by its lock ID. The lock ID locates the 
corresponding lock ID table entry. The table entry has the address of the LKB 
to be deallocated. After the LKB is deallocated, the lock ID of the dequeued 
lock is stored in LCK$GL_NXTID. 

Because it is possible that an erroneous value can be passed as a lock ID 
to a lock management system service, the system services validate the lock 
ID. They compare the caller's process identification (PID) and access mode 
with the PID and access mode stored in the LKB. The PIDs must match and 
the caller's access mode must be at least as privileged as that of the lock. If 
the comparison fails, the service exits with the error status SS$_IVLOCKID. 

The global symbol LCK$GL_IDTBL points to the lock ID table, whose 
structure is shown in Figure 10.6. The SYSGEN parameters LOCKIDTBL 
and LOCKIDTBL_MAX control the size of the lock ID table. The global 
location LCK$GL_MAXID contains the index to the last entry in the lock 
ID table. The lock ID table entry at that location always contains a zero. 

During system initialization, a table of LOCKIDTBL longwords is allocated 
from nonpaged pool. If more locks are requested than can fit in the table, 
the $ENQ system service builds a new table, which is LOCKIDTBL entries 
longer than the old one. It copies the old table's entries to the new table, 
initializes the additional entries in the new table, and deallocates the old 
table. LOCKIDTBL_MAX specifies the maximum size of the table and thus 
the maximum number of locks. 

Relations in the Lock Database 

There are three ways in which the lock database can be accessed: 

• As described in Section 10.1.2, the RSB for a given resource name can 
be located through the resource hash table. All locks associated with the 
resource can be located through the RSB state queue heads . 

• As described in Section 10.1.4, the LKB for a given lock ID can be located 
through the lock ID table. The resource address field in the LKB points to 
the resource associated with the lock . 

• All locks owned by a specific process can be located through the process 
lock queue. 
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Each process has a lock queue,. a doubly linked list of all the locks it has 
requested. The listhead is in the PCB at the fields PCB$LLOCKQFL and 
PCB$L_LOCKQBL. An LKB is linked into this list through the fields LKB$L_ 
OWNQFL and LKB$LOWNQBL. That is, PCB$LLOCKQFL points not to 
the beginning of the first LKB in the queue hut to field LKB$L_OWNQFL 
in that LKB. All granted locks are first, followed by converting and waiting 
locks. The locks are ordered this way to facilitate deadlock detection (see 
Section 10.3.2.2). 

V AXcluster Lock Database 

All resource names are clusterwide in scope, and processes running on any 
node can ~cooperate in sharing resources. Lock management is the funda­
mental VAX.cluster synchronization primitive. Lock management system 
services are used by VMS facilities and user applications to provide clus­
terwide synchronization. Appendix H describes the manner in which some 
VMS facilities use locks. 

Lock management data structures, RSBs and LKBs, are distributed among 
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the nodes of a VAXcluster system. This section provides an overview of how 
the lock management database is organized. 

A resource tree, consisting of a resource and all its subresources, is "mas­
tered" on one node at a time. The master node keeps track of all locks taken 
out on that resource tree and performs the actual locking. A resource is ini­
tially mastered on the first node to define that resource. When the $ENQ 
system service is requested for a root resource name that is not currently in 
use, a master RSB is created on the requesting node. 

There is also an RSB on each node other than the master with a lock on 
the resource. The RSB on a node not mastering the resource contains the 
cluster system ID (CSID) of the mastering node in the field RSB$L_CSID. 
The RSB on the mastering node contains zero in that field to indicate that 
it is the master RSB. The CSID field is also zero on a system that is not a 
VAXcluster member. 

When the node mastering a resource tree receives a lock request from 
another VAXcluster node, it compares its own use of the tree, from the 
field RSB$W _ACTIVITY, with that of the requesting node. If the requesting 
node would be a more efficient resource master, that is, if its RSB$W _ 
ACTIVITY value is higher than the local value, the current master node 
directs an exchange that transfers mastership of the lock to the other 
node. This procedure is called remastering. During remastering, all other 
access to the resource is denied; requests stall until remastering is complete. 

A distributed directory is maintained to enable V AXcluster members to 
track the existence of root resources and their associated master nodes. 
The directory is composed of directory entry RSBs distributed among the 
VAXcluster members. A directory entry RSB has the RSB$V _DIRENTRY bit 
set in the RSB$W _STATUS field and the CSID of the resource's master node 
in the RSB$L_CSID field. The VAXcluster member maintaining a directory 
entry for a particular resource is termed its directory node. If the directory 
node is also the resource's master node, the RSB$L_CSID field contains a 
zero, and one RSB serves both functions; if not, there are RSBs on both the 
directory and master nodes. Thus, there can potentially be an RSB on the 
directory node, an RSB on the master node, and one RSB on each node with 
a lock on the resource. 

An individual member serves as the directory node for a subset of the root 
resources. Its relative participation in directory activity is based on the value 
of its SYSGEN parameter LOCKDIRWT. All members maintain an identical 
list of CSIDs called the directory vector by exchanging LOCKDIRWT values 
during VAXcluster state transitions. A member's LOCKDIRWT value deter­
mines the number of contiguous slots in the directory vector that are filled 
with its CSID. The address of the directory vector is stored in global location 
LCK$GL_DIRVEC. 

To determine the directory node for a particular root resource, the RSB field 
RSB$W _HASHVAL is hashed and the resulting value is used as an index into 
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the directory vector. Since all members have an identical copy of the list, 
they perform the directory determination with identical results. 

In a VAXcluster system, there are three types of LKB. Under some cir­
cumstances, a process's lock is represented by two LKBs on two different 
nodes . 

• A local copy is an LKB for a lock on one node whose resource is mastered 
on that same node. This LKB is the only one representing the process's 
lock. This is similar to the nonclustered case. 

• A process copy is an LKB for a lock on one node whose resource is mastered 
on another node. The process copy describes the process's interest in the 
resource. The other node has the master copy of the lock. The field LKB$L_ 
REMLKID in the process copy identifies the lock ID of the master copy. 
(Lock IDs are specific to a single node.) RSB$L_CSID identifies the master 
node. 

• A master copy is an LKB that exists on a node mastering a resource but 
that represents the lock of a process on a different node. The field LKB$L_ 
REMLKID in the master copy identifies the lock ID of the process copy. 
The field LKB$LCSID in the master copy identifies the node of the process 
copy. A process copy and a master copy are always paired. 

The three types of LKB can be distinguished based on the setting of the 
bit LKB$V _MSTCPY in LKB$W _FLAGS and the contents of RSB$L_CSID in 
the associated resource's RSB: 

• Local copy-LKB$V _MSTCPY is zero and RSB$LCSID is zero. 
• Process copy-LKB$V _MSTCPY is zero and RSB$LCSID is nonzero . 
• Master copy-LKB$V _MSTCPY is nonzero and RSB$L_CSID is zero. 

10.2 LOCK MANAGEMENT SYSTEM SERVICES 

10.2.1 

The $ENQ system service attempts to grant a requested new lock or lock 
conversion immediately. If the new lock or conversion cannot be granted, 
the LKB is placed on the RSB's wait or conversion queue. The $DEQ sys­
tem service dequeues or cancels a lock from a resource and then searches 
the resource's state queues for locks to grant that are compatible with the 
currently granted locks. The $GETLKI system service returns information 
about a specified lock or locks. 

The following sections describe the operations of the $ENQ[W], $DEQ, 
and $GETLKI[W) system services on a single node. VAXcluster operation is 
mentioned, but the details are beyond the scope of this book. 

The $ENQ[W] System Service 

The $ENQ system service procedure, EXE$ENQ in module SYSENQDEQ, 
runs in kernel mode. EXE$ENQ first validates the event flag and lock mode 
arguments and tests accessibility of the lock status block. If any of these 
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tests fails, EXE$ENQ returns to its requestor with an error status. If the 
tests succeed, EXE$ENQ tests whether LCK$V _CONVERT is set in the FLAGS 

argument to determine whether this is a new lock request or conversion of 
an existing lock. Section 10.2.2 describes lock conversions. 

When a new lock is requested, EXE$ENQ allocates an LKB and RSB from 
nonpaged pool and initializes them. EXE$ENQ allocates the RSB on the 
assumption that the resource is being defined for the first time. EXE$ENQ 
then raises IPL to IPL$_SCS and acquires the system communication services 
(SCS) spinlock to synchronize access to the lock database. All error paths 
release the SCS spinlock and lower IPL before exiting. 

If the requestor specified the PARID argument, EXE$ENQ verifies that the 
parent lock ID is valid, that the access mode of the $ENQ requestor is not 
more privileged than that of the parent lock, and that the parent lock's PID 
matches that of the current process. If any of these tests fails, EXE$ENQ 
returns the error status SS$_IVLOCKID to its requestor. If the tests complete 
successfully but the parent lock request has not been granted, EXE$ENQ 
returns the error status SS$_PARNOTGRANT. If the parent lock request 
has been granted, EXE$ENQ increments the reference count in the parent's 
lock and stores the parent lock's address in the new lock's LKB$1-PARENT 
field. 

If the requestor requested a UIC-specific resource, EXE$ENQ stores the 
process's UIC group in the RSB. Otherwise, if the requestor requested a 
systemwide resource name by specifying the FLAGS argument bit LCK$V _ 
SYSTEM, EXE$ENQ checks that the process either has the SYSLCK privilege 
or requested the $ENQ system service from kernel or executive mode. If 
neither condition is true, EXE$ENQ returns the error status SS$_NOSYSLCK 
to its requestor. 

EXE$ENQ charges the lock against the job quota JIB$W _ENQCNT unless 
the request specified the FLAGS argument bit LCK$V _NOQUOTA, which 
requires that the request was made from executive or kernel mode. (Use 
of this flag is reserved to Digital.) If the job exceeds its ENQLM quota, 
EXE$ENQ returns the error status SS$_EXENQLM. Otherwise, EXE$ENQ 
allocates a lock ID, expanding the lock ID table if necessary, and stores the 
address of the LKB in the table entry for that lock ID. 

Next, EXE$ENQ determines whether the resource already exists on this 
node. It computes the resource hash value, indexes into the resource hash 
table, and searches the resource hash chain for the named RSB. The resource 
specified by the lock request must match an RSB with the same hash value 
in the following fields: 

• Parent RSB address 
• UIC group number (or zero for systemwide resource names) 
• Access mode 
• Resource name string 
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If the RSB for the named resource is not found, the new RSB is added 
to the end of the hash chain. EXE$ENQ initializes the rest of the RSB 
fields, including the three lock queue headers, the value block and sequence 
number, and the reference count. 

If the resource has no parent, EXE$ENQ inserts it onto the tail of the 
systemwide list of root resources whose listhead is LCK$GL_RRSFL. The 
RSB's own address is stored in its root resource field, RSB$L_RTRSB. 

If the resource has a parent, the new resource inherits its CSID from the 
parent resource. The parent RSB's reference count is incremented. Resource 
depth is initialized to 1 more than the parent resource depth. If maximum 
lock depth is exceeded, EXE$ENQ deallocates the RSB and LKB and returns 
the error status SS$_EXDEPTH. The new resource also inherits the parent's 
root resource, RSB$L_RTRSB. It is inserted onto the subresource queue of 
its parent. 

If the resource is new and mastered locally, no further checks are neces­
sary; the new lock is granted immediately (see Section 10.2.4). 

If the RSB for the named resource is found, the new RSB is superfluous and 
is deallocated. If the resource is mastered locally, the new lock is granted 
immediately when the conversion and wait queues are empty and the re­
quest mode in the LKB is compatible with the currently granted locks lsee 
Section 10.2.4). EXE$ENQ returns the success code SS$_SYNCH to its re­
questor if the FLAGS argument bit LCK$V _SYNCSTS is set. The event flag 
and completion AST are omitted in this case. Otherwise, EXE$ENQ returns 
the status SS$_NORMAL and proceeds to set the event flag and deliver the 
completion AST as requested by the user. 

If the lock cannot be granted immediately, the FLAGS argument bit LCK$V _ 
NOQUEUE determines EXE$ENQ's action. If LCK$V _NOQUEUE is set, 
EXE$ENQ deallocates the LKB and returns the failure status SS$_NOT­
QUEUED to its requestor. If LCK$V _NOQUEUE is clear, EXE$ENQ sets 
the lock state to LKB$K_ WAITING and places the LKB at the end of the 
wait queue in the RSB. The wait queue is maintained in first-in/first-out 
(FIFO) order. If the waiting LKB is not a master copy LKB, it is also queued 
onto PCB$L_LOCKQFL in the PCB of the requesting (current) process. If the 
LKB is not a process copy and has not disabled deadlock wait (LCK$V _NO­
DLCKWT is clear), and if deadlock wait is enabled on the system (LCK$GL_ 
WAITTIME nonzero), then a due time is computed and the LKB is inserted 
on the timeout queue. See Section 10.3.1 for more information on deadlock 
searches initiated by timeout. 

The asynchronous form of the system service ($ENQ) returns to its re­
questor. The requestor can either wait for the lock to be granted or continue 
processing. The synchronous form of the system service ($ENQW) waits 
both for the event flag associated with the request to be set and for status 
to be returned in the Lock Status Block (LKSB). Chapter 6 provides more 
information concerning synchronous and asynchronous system services. 
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To speed checks for compatibility with the currently granted locks, each 
RSB contains a single field indicating the highest granted lock mode of all 
locks in both the granted and conversion queues for that resource. This field 
is termed the group grant mode. Note that locks on the conversion queue 
retain their original grant mode while waiting for their conversion requests 
to complete. It is the original grant mode of these locks that is used in 
calculating the group grant mode, not their request mode. 

The value of the group grant mode is stored in the RSB at the field RSB$B_ 
GGMODE. Because this value is calculated when a lock is granted and main­
tained in the RSB, compatibility checking involves only one compare opera­
tion. Note that in a VAXcluster system, the group grant mode is maintained 
only in the master RSB. 

Lock Conversions 

When a process requests the $ENQ system service, the value of the LCK$V _ 
CONVERT bit in the FLAGS argument differentiates between a new lock 
request and a lock conversion. When LCK$V _CONVERT is set, EXE$ENQ 
performs a lock conversion. EXE$ENQ obtains the lock ID of the lock to be 
converted from the LOCKID argument and uses the LKMODE argument as the 
request mode. 

Four lock modes affect EXE$ENQ's actions: 

• The current mode of the converting lock, called its grant mode and stored 
in LKB$B_GRMODE . 

• The converting lock's desired new value, called its request mode and stored 
in LKB$B_RQMODE when the lock is on the conversion or wait queue. 

• The most restrictive grant mode found in a lock on the resource's conver­
sion or granted queues, called the group grant mode and stored in RSB$B_ 
GGMODE. 

• The blocking condition to compare against when locks are removed from 
the granted queue, called the conversion grant mode and stored in RSB$B_ 
CGMODE. 

The conversion grant mode prevents a lock from blocking its own conver­
sion and determines when an attempt to grant queued lock conversions is 
worthwhile. Most of the time, the conversion grant mode contains the same 
value as the group grant mode. The conversion grant mode differs from the 
group grant mode when both of the following are true: 

• The grant mode of the lock at the head of the conversion queue is the most 
restrictive lock mode for the resource. 

• No other locks are granted at that same lock mode. 

In this case, the resource's conversion grant mode summarizes only the 
grant modes of locks on the granted queue. It contains a less restrictive lock 
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mode than the group grant mode does, because group grant mode includes 
the grant modes of locks on the conversion queue. 

EXE$ENQ begins by removing the lock specified by LOCKID from the 
granted queue. If no locks remain on the granted or conversion queue, the 
converting lock is granted immediately and EXE$ENQ attempts to grant 
any waiting locks after clearing the group and conversion grant modes. Sec­
tion 10.2.4 describes the grant procedure. 

When additional locks exist on the conversion or grant queue, the conver­
sion grant mode and the lock's grant mode are compared: 

• If they are not equal, the compatibility of the converting lock's request 
mode and the resource's group grant mode determines whether the lock 
is granted or placed on the tail of the conversion queue. Because the 
converting lock was not the most restrictive lock on the granted queue, 
its conversion has no effect on locks in the conversion or wait queue. 
EXE$ENQ will not attempt to grant any locks except the converting lock. 

• If the lock's grant mode matches the resource's conversion grant mode, the 
converting lock was granted in the most restrictive lock mode present on 
the granted queue. The resource's group and conversion grant modes must 
be recalculated without including the grant mode of the converting lock, 
to prevent it from blocking its own conversion. 

If the recalculated grant value proves compatible with the lock's request 
mode, the value is stored in the group grant and conversion grant fields and 
the lock conversion is granted. Since the change in this lock's status may 
be significant for other locks on the conversion or wait queue, EXE$ENQ 
attempts to grant locks first from the conversion queue, then from the wait 
queue, until it reaches a lock that it cannot grant. 

In either case, if the lock's request mode is incompatible, EXE$ENQ 
tests the LCK$V _NOQUEUE bit. If LCK$V _NOQUEUE is set, EXE$ENQ 
inserts the lock back onto the granted queue and returns the status SS$_ 
NOTQUEUED to the user. Otherwise, EXE$ENQ clears the lock state and 
places the lock at the tail of the conversion queue, which is maintained 
as a FIFO queue. The group grant mode is not altered, but the conversion 
grant field is set to the recalculated value if the lock is first in the conver­
sion queue. EXE$ENQ also moves the LKB to the end of the PCB queue. 
The PCB queue has granted locks first, followed by waiting and converting 
locks. If the LKB is not a process copy, if the conversion request did not dis­
able deadlock wait, and if deadlock wait is enabled on the system (LCK$GL_ 
WAITTIME nonzero), then a due time is computed and the LKB is inserted 
on the timeout queue. Section 10.3.1 gives more information on deadlock 
searches initiated by timeouts. 

Locks on the conversion or wait queue are granted later, by· EXE$DEQ 
when blocking locks are removed from the granted or conversion queue, 
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and by EXE$ENQ when blocking locks are converted to less restrictive lock 
modes. 

The $DEQ System Service 

A process requests the $DEQ system service to dequeue locks or sublocks 
that are granted or to cancel ungranted lock requests. The $DEQ system 
service procedure, EXE$DEQ in module SYSENQDEQ, runs in kernel mode. 
EXE$DEQ examines the LOCKID argument and the FLAGS argument bit 
LCK$V _DEQALL to determine whether a specific lock or a number of locks 
are to be dequeued . 

• If the FLAGS argument has the LCK$V _DEQALL bit set, then the process is 
requesting the dequeuing of multiple locks. The locks to be dequeued are 
determined by the $DEQ access mode argument ACMODE and by the LOCKID 

argument. The ACMODE argument is maximized with the access mode from 
which the $DEQ system service was requested. If omitted, it defaults to 
the access mode from which the system service was requested. 

-If the LOCKID argument is specified, EXE$DEQ dequeues all sublocks of 
that lock whose access modes are not more privileged than the dequeue 
access mode. 

Note that if LOCKID is specified with LCK$V _DEQALL, sublocks of 
that lock are dequeued, but the lock itself is not dequeued. 

-Otherwise, if the LOCKID argument is zero, EXE$DEQ checks every lock 
held by the process and dequeues each one whose lock access mode is 
not more privileged than the dequeue access mode. 

• If the FLAGS argument has the LCK$V _DEQALL bit clear, then the process is 
requesting that one lock be dequeued or canceled. In this case, EXE$DEQ 
uses the LOCKID argument to locate the LKB and the FLAGS argument bit 
LCK$V _CANCEL to determine the operation. 

To dequeue each individual lock, EXE$DEQ acquires the SCS spinlock 
and raises IPL to IPL$_SCS. It verifies that the access mode of the $DEQ 
requestor is not less privileged than that of the lock (LKB$B_RMOD) and 
that the lock PIO matches that of the current process. If either of these tests 
fail, EXE$DEQ returns the error status SS$_IVLOCKID to its requestor. Once 
the lock is verified, EXE$DEQ checks whether the lock has sublocks. Before a 
lock is deleted, its sublocks must be dequeued. Unless the LCK$V _DEQALL 
flag is set, EXE$DEQ returns the error status SS$_SUBLOCKS. 

All error paths release the SCS spinlock and lower IPL to IPL 2 before 
exiting. When dequeuing multiple locks, EXE$DEQ releases and reacquires . 
the spinlock between individual lock requests. 

EXE$DEQ removes the LKB from whichever resource queue it is found on. 

• If the lock is dequeued from the granted queue, EXE$DEQ checks whether 
the LKB is the only lock on the resource. If so, EXE$DEQ removes the 
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RSB from its resource hash chain and deallocates it. If other locks remain, 
EXE$DEQ recomputes the resource's group grant mode and conversion 
grant mode and attempts to grant locks on the conversion and wait queues . 

• If the lock is dequeued from the conversion queue, it might have blocked 
other lock requests. If it was at the head of the queue, or if its grant mode 
is equal to the resource's conversion grant mode, EXE$DEQ recomputes 
the resource's group grant mode and conversion grant mode. EXE$DEQ 
attempts to grant locks beginning with the new first lock in the conversion 
queue. It repeats this with the conversion and wait queues until it reaches 
a lock whose lock mode is incompatible with the resource group grant 
mode. 

• If the lock is dequeued from the head of the wait queue and the conversion 
queue is empty, EXE$DEQ tries to grant the first lock in the wait queue. If 
it succeeds, EXE$DEQ continues with the next lock in the wait queue. It 
repeats this until it reaches a lock whose lock mode is incompatible with 
the resource group grant mode. 

If the lock being dequeued was a sublock, EXE$DEQ decrements its parent 
lock's reference count. It releases the lock ID and removes the LKB from the 
process's PCB lock queue. 

If the lock was waiting or in the conversion queue, EXE$DEQ sets the 
event flag associated with the lock request and queues the LKB as an ACB 
to the process to return final lock status. The LKB is deallocated when the 
AST is delivered. 

If the lock was granted, its LKB may still be queued as an ACB. If the ACB 
was merely to deliver a blocking AST, EXE$DEQ removes the LKB/ ACB 
from the ACB queue and deallocates the LKB. Otherwise, the LKB/ACB will 
be deallocated when the AST is delivered. Whenever the LKB is deallocated, 
the lock quota is returned to the process. 

Granting a Lock 

The routine LCK$GRANT _LOCK, in module SYSENQDEQ, is invoked to 
grant a lock request. LCK$GRANT _LOCK is invoked under three different 
sets of circumstances: 

• EXE$ENQ receives a request for a lock on a new resource or a resource 
with locks whose modes are compatible. The lock request can be granted 
immediately, synchronously with the original system service call. 

• EXE$ENQ converts a lock on a resource to a less restrictive lock mode. 
Another lock that was blocked can now be granted, asynchronously to its 
original lock request . 

• EXE$DEQ dequeues or cancels a lock on a resource. A lock that was 
blocked can now be granted, asynchronously to,its original lock request. 

LCK$GRANT _LOCK takes the following steps in. granting a lock: 
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1. If the mode of the lock being granted is more restrictive than the existing 
group grant mode, LCK$GRANT _LOCK copies the mode of the lock 
being granted to the group grant mode field and the conversion grant 
mode field. 

2. It places the LKB on the granted queue, changing its state to granted. 
LCK$GRANT _LOCK writes the requested lock mode in LKB$B_GR­
MODE. 

3. If the lock is being granted asynchronously, it might be on the timeout 
queue. If so, LCK$GRANT _LOCK removes it. 

4. After processing the AST delivery requirements described below, 
LCK$GRANT _LOCK invokes SCH$POSTEF to set the event flag asso­
ciated with the lock request (LKB$B_EFN). If the process was waiting 
for this event flag to be set, the process scheduling priority and state 
may be altered. Chapter 9 discusses event flags, and Chapter 12 gives 
information about process scheduling. 

LCK$GRANT _LOCK makes a series of tests to determine whether an AST 
should be queued to the process whose lock request it granted. There are 
three possible requirements for an AST: 

• A special kernel mode AST 
• A user-requested blocking AST 
• A user-requested completion AST 

The three are independent of each other. Thus, it is possible that no AST 
will be requested or as many as three ASTs will be required. 

LCK$GRANT _LOCK must queue a blocking AST to the process if it 
requested one and if the newly granted lock is blocking another lock. No 
blocking AST is necessary if none was requested or if the lock is not blocking 
another lock. 

If the process requested a completion AST, LCK$GRANT _LOCK queues 
one unless the lock request was granted synchronously and the FLAGS argu­
ment bit LCK$V _SYNCSTS was set. 

The special kernel mode AST must be queued if the lock request com­
pleted asynchronously. The special kernel mode AST routine writes the 
status to the process's lock status block and possibly a value to the lock 
value block. Even if the lock request completed synchronously, the special 
kernel mode AST routine is necessary to perform cleanup if a completion or 
blocking AST is to be queued. 

An ACB can describe one normal AST procedure or one special kernel 
mode AST routine. An ACB can also describe a special kernel mode AST 
routine piggybacked on a normal AST procedure. Chapter 7 gives a detailed 
description of ASTs. If an AST is required, LCK$GRANT _LOCK invokes 
SCH$QAST to queue an ACB to the process. The LKB is used as the ACB. 

LCK$GRANT _LOCK chooses one of the following: 
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• It does not queue an ACB if the lock request is synchronous and neither a 
blocking nor a completion AST is required . 

• It queues an ACB specifying a special kernel mode AST if the lock request 
is asynchronous and neither a blocking nor a completion AST is required. 

• It queues an ACB specifying a piggyback special kernel mode AST if either 
or both a blocking and a completion AST are required. 

Because the ACB can contain the address of only one AST procedure, spe­
cial treatment is required when both completion and blocking ASTs must be 
delivered. When the lock is granted, LCK$GRANT _LOCK writes the address 
of the completion AST procedure (stored at the field LKB$L_CPLASTADR) 
in the field LKB$LAST. It then queues the LKB as an ACB. 

Just before entering the completion AST procedure, the AST delivery ser­
vice routine dispatches to the piggyback special kernel mode AST routine. 
This routine writes the address of the blocking AST (stored at the field 
LKB$LBLKASTADR) in LKB$LAST. It then requeues the LKB as an ACB. 
When the piggyback special kernel mode AST routine exits, the completion 
AST procedure executes. When the completion AST procedure exits, the 
blocking AST is delivered. 

System-Owned Locks 

Some locks, called system-owned locks, are not associated with any process. 
A system-owned lock, its resource, and thus its value block remain in ex­
istence when no process has any interest in the resource. A system-owned 
lock has zero in its LKB$LPID field and is not queued to any PCB lock 
queue. The scope of its resource name may be systemwide or qualified by 
UIC group. Note the distinction between a system-owned lock and a resource 
that is defined systemwide. 

A system-owned lock may only be requested from kernel or executive 
mode. The special $ENQ system service FLAGS argument LCK$V _CVTSYS 
indicates that the lock should be granted as a system-owned lock or con­
verted from a process-owned lock to a system-owned lock. 

Although the service request must be made from kernel or executive mode, 
the access mode of the resource is determined by the $ENQ system service 
argument ACMODE, as it would be for any resource. One additional restriction 
applies-if a lock is system-oWI1ed, its parent lock (if any) must also be 
system-owned. A process-owned lock may have a system-owned lock as its 
parent, but a system-owned lock must not be a sublock of a process-owned 
lock. 

The only possible state of a system-owned lock is granted. That is, a lock in 
a wait or conversion queue cannot be system-owned. This restriction exists 
partly because delivery of a completion AST or special kernel mode AST 
requires a process context. Furthermore, locks in the wait and conversion 
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queues are examined during deadlock detection on the assumption that each 
lock is owned by a process. 

When the FLAGS argument bit LCK$V_CVTSYS is set in a new lock re­
quest, EXE$ENQ sets the LCK$V _SYNCSTS and LCK$V _NOQUEUE flags 
as well. When LCK$V _NOQUEUE is set, EXE$ENQ returns the error sta­
tus SS$_NOTQUEUED if it cannot grant the lock immediately. If it can 
grant the lock immediately and LCK$V _SYNCSTS is set, it does not queue 
a completion AST or set an event flag. 

By specifying the FLAGS argument bit LCK$V _CVTSYS with LCK$V _CON­
VERT, a process can request the conversion of a process-owned lock to a 
system-owned lock or a system-owned lock to a less restrictive lock mode. 

A process can request conversion of a system-owned lock to a more re­
strictive mode, but the request can succeed only if the conversion can 
complete immediately. Otherwise, the system-owned lock is converted to 
a process-owned lock, the lock remains granted at its original lock mode, 
and EXE$ENQ returns the error status SS$_BADPARAM. 

A mechanism is defined for delivery of a blocking AST for a system-owned 
lock. The field LKB$1-BLKASTADR in a system-owned lock contains the 
address of a blocking AST routine in system space. Instead of queuing a 
blocking AST to a process, the lock management services dispatch to that 
routine at IPL$_SCS holding the SCS spinlock. 

Certain VMS components, such as the Files-11 Extended QIO Processor 
(XQP), use system-owned locks. The XQP synchronizes access to the in­
dividual entries in its 1/0 buffer cache through system-owned locks. The 
XQP, running in the context of each process in the system, maintains a sys­
temwide cache of blocks read from the on-disk file structure. A process's 
XQP requests a lock on a buffer cache entry only while it is reading or writ­
ing that entry in the cache. The cache entry exists, however, even when no 
process is accessing it. The lock management data structures representing 
the cache entry must also continue to exist. 

The use of system-owned locks is reserved to Digital. Any other use is 
strongly discouraged by Digital and completely unsupported. 

The $GETLKI[W] System Service 

The $GETLKI[W] system service enables a process to obtain information 
about one or more locks that it is allowed. to interrogate. The process may 
only obtain information about locks on resources with access modes equal 
to or less privileged than the access mode at which the $GETLKI request is 
issued. For example, a process running in user mode cannot obtain informa­
tion about locks taken out on executive mode resources. The field RSB$B_ 
RMOD defines the resource access mode. 

The process can be further limited to a subset of the resource name space 
by its lac;k of privilege. Without any privilege, a process can interrogate 
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only locks on resources with the same UIC group number as its own. With 
WORLD privilege, a process can interrogate locks on resources of any UIC 
group. Obtaining information about the locks of systemwide resources re­
quires either that the process have SYSLCK privilege or that it make the 
$GETLKI request from kernel or executive mode. 

The $GETLKI system service procedure, EXE$GETLKI in module SYS­
GETLKI, runs in kernel mode. The system service is called with a LOCKID 

argument that either identifies a particular lock or specifies a wildcard oper­
ation. First, EXE$GETLKI locates the LKB associated with the specified lock 
ID and verifies that the process can interrogate it. If the process specified 
a wildcard operation, EXE$GETLKI locates the first LKB that the process 
can interrogate. EXE$GETLKI begins with lock index 1 and scans the lock 
ID table. On each successive call, it returns information about one lock, 
maintaining the lock index context for the next call. 

EXE$GETLKI is called with the address of an item list that includes, for 
each specified item, which kind of lock information is to be returned, the size 
and address of the buffer to receive the information, and a location to receive 
the size of the information returned. EXE$GETLKI checks each item in the 
item list for correctness: its item code must be valid; its buffer descriptor and 
buffer must be writable in the access mode of $GETLKI's caller. In general, 
it then copies the requested information, either from the LKB or its RSB, to 
the buffer and records the size of the returned information in the specified 
location. 

Certain types of information are not obtainable through simply copying 
data structure fields, for example, a list of all locks blocking the specified 
lock. EXE$GETLKI contains special routines for such it].formation. 

When EXE$GETLKI has either processed all items in the item list or found 
one that is incorrect or that has an inaccessible buffer, it is done. It sets 
the event flag associated with the request and queues a completion AST 
if one was requested and if the system service completed without error. 
EXE$GETLKI then returns to its requestor with completion status in RO. 

10.3 HANDLING DEADLOCKS 

A deadlock occurs when several locks are waiting for each other in a circular 
fashion. VMS resolves deadlocks by choosing a participant in the deadlock 
cycle and refusing that participant's lock request. The participant chosen 
to break the deadlock is termed the victim. The victim's lock or conversion 
request fails and the error status SS$_DEADLOCK is returned in the victim's 
lock status block . 
. None of the victim's already granted locks are affected, even when they 
are part of the deadlock. Resolution of the deadlock is the responsibility of 
the victim. 

There are three phases of deadlock handling: 
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1. A deadlock is suspected. 
2. A deadlock search proves that a deadlock actually exists. 
3. A victim is chosen. 

These three phases are described in subsequent sections. The descriptions are 
limited to handling of deadlocks within one system that is not a V AXcluster 
member. VAXcluster deadlock handling is beyond the scope of this book. 

Initiating a Deadlock Search 

Because deadlock detection is time-consuming, it is not desirable to search 
for deadlocks every time a lock or conversion request is blocked. Instead, 
the VMS software searches for a deadlock only when a lock request has 
been waiting for a resource for a specified amount of time. The SYSGEN 
parameter DEADLOCK_ WAIT specifies how many seconds a blocked lock 
request must have been waiting before a deadlock search is initiated. 

A way of restricting a particular lock's participation in deadlock searches 
is provided through the special $ENQ FLAGS arguments LCK$V _NODLCK­
WT and LCK$V _NODLCKBLK. The LCK$V _NODLCKWT flag in a lock or 
conversion request inhibits the deadlock search mechanism on a per-lock 
basis. Locks requested in this manner cannot initiate conversion deadlock 
searches because they never time out. They are disregarded in multiple 
resource deadlock searches initiated for other locks. Incorrect use of this flag 
may cause genuine deadlocks to be ignored, however. For more information, 
see the VMS System Services Reference Manual. 

When a lock request specifies a blocking AST procedure that dequeues 
the blocking lock or converts it to a less restrictive mode, that lock request 
may also specify the LCK$V _NODLCKBLK flag. This exempts the LKB from 
multiple resource deadlock searches, on the assumption that the potential 
deadlock condition will be resolved by the blocking AST procedure. Again, 
incorrect use of this flag may cause genuine deadlocks to be ignored. For 
more information, see the VMS System Services Reference Manual. 

When an LKB requested without the flag LCK$V _NODLCKWT is placed 
into a conversion or wait queue, EXE$ENQ also places the LKB on the 
lock timeout queue. The lock timeout queue listhead is at global location 
LCK$GL_ TIMOUTQ. The AST queue fields in the LKB link it into the lock 
timeout queue. Figure 10. 7 shows LKBs on the timeout queue. 

When an LKB is placed on the timeout queue, the time at which the lock 
request will time out is computed and stored in LKB$L_DUETIME. (LKB$L_ 
DUETIME is actually a double use of the special kernel mode AST routine 
address field, LKB$L_KAST.) The due time is the sum of DEADLOCK_ WAIT, 
stored in LCK$GL_ WAITTIME, and the current system time in seconds 
(EXE$GL_ABSTIM). 

Once every second, the routine EXE$TIMEOUT, in module TIMESCHDL, 
executes. EXE$TIMEOUT has various functions (see Chapter 11 ). One of 



10.3.2 

10.3.2.1 

10.3 Handling Deadlocks 

LCK$GL_ TIMOUTQ:: [ 1-. ASTQFL 

ll--------IJ~--+- ASTQBL 

DUETIME 

Figure 10.7 
Lock Timeout Queue Ordered by LKB$L_DUETIME 
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them is to check whether the first entry in the lock timeout queue has 
timed out by comparing its LKB$L_DUETIME to the contents of EXE$GL_ 
ABSTIM. Because the queue is time-ordered, checking the due time of the 
first entry is sufficient to determine whether a deadlock search is necessary. 
If the first entry has not timed out, no other entry could have. If the first 
entry has timed out, EXE$TIMEOUT initiates a deadlock search by invoking 
the routine LCK$SEARCHDLCK, in module DEADLOCK. 

Deadlock Detection 

There are two forms of deadlock, each requiring a different detection method. 
A conversion deadlock is easily detected, because it is restricted to locks for 
a single resource. A multiple resource deadlock is harder to detect, requiring 
a more complex search. 

Conversion Deadlocks. A conversion deadlock can occur when there are at 
least two LKBs in an RSB's conversion queue for a resource. If the request 
mode of one lock in the queue is incompatible with the grant mode of 
another lock in the queue, a deadlock exists. 

For example, assume there are two protected read (PR) mode locks on 
a resource. The process with one PR mode lock requests a conversion to 
EX mode. Because PR mode is incompatible with EX mode, the conversion 
request must wait. While the first conversion request is waiting, the process 
with the second PR mode lock also requests a conversion to EX mode. The 
first lock cannot be granted because its request mode (EX) is incompatible 
with the second lock's grant mode (PR). The second conversion request 
cannot be granted because it is waiting behind the first. 

The search for a conversion deadlock begins with the first LKB on the 
lock timeout queue. The LKB's state queue backward link points to the 
previous LKB in the conversion queue. The grantmode of the previous lock is 
compared with the request mode of the lock that timed out. If the modes are 
compatible, the next previous lock in the conversion queue is examined. The 
test is repeated until an incompatible lock is found or the beginning of the 
queue is reached. The flags LCK$V _NODLCKWT and LCK$V _NODLCKBLK 
are ignored. 
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If a lock with an incompatible grant mode is found, a deadlock exists. A 
victim LKB is selected (see Section 10.3.3). If the beginning of the queue is 
reached, a conversion deadlock does not exist, and a search for a multiple 
resource deadlock is initiated. 

Multiple Resource Deadlocks. A multiple resource deadlock occurs when 
a circular list of processes are each waiting for one another on two or more 
resources. 

For example, assume process A locks resource 1 and process B locks re­
source 2. Process A then requests a lock on resource 2 that is incompatible 
with B's lock on resource 2, and thus process A must wait. Note that at this 
point, a circular list does not exist. When process B then requests a lock on 
resource 1 that is incompatible with A's lock on resource 1, it must wait. 
A multiple resource deadlock now exists. Processes A and B are both wait­
ing for each other to release different resources. These steps are shown in 
Figure 10.8. In the figure, locks that are blocking a resource (incompatible 
with waiting locks) are shown beneath the RSB; locks that are waiting for a 
resource are shown above the RSB. 

This type of deadlock normally involves two or more resources, unless 
one process locks the same resource twice. (Usually a process does not 
lock the same resource twice. However, if the process is multithreaded, 
double locking can occur. Double locking can result in a multiple resource 
deadlock.) 

Figure 10.8 
Example of a Deadlock Occurring 
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Figure 10.9 
Stack Frame Built for LCK$SRCH_RESDLCK 

To verify that a multiple resource deadlock exists, LCK$SEARCHDLCK 
uses a recursive algorithm. Its approach is based upon the following: 

• A waiting lock is blocked by locks owned by other processes . 
• Any of the other processes might themselves have waiting locks. 
• Those waiting locks are blocked by locks owned by other blocking 

processes. 

LCK$SEARCHDLCK starts with the lock that timed out on the lock time­
out queue. It saves the extended process ID (EPID) of the owner process of 
the lock that timed out and invokes the multiple resource deadlock rou­
tine (LCK$SRCH_RESDLCK). If it finds a lock with the same owner EPID 
blocking a resource, a deadlock exists. 

Each time LCK$SRCH_RESDLCK is invoked, a stack frame is pushed onto 
the stack. Each stack frame contains information on the current position in 
the search. Figure 10.9 shows the contents of the stack frame. 

The recursive nature of the deadlock search algorithm limits the maxi­
mum. depth of the resource tree as a function of the SYSGEN parameters 
INTSTKPAGES and DLCKEXTRASTK. INTSTKPAGES is the size of the in­
terrupt stack, and DLCKEXTRASTK is the amount of interrupt stack space 
in bytes that should not be used for deadlock searches. The difference be­
tween them is the amount of stack available for LCK$SRCH_RESDLCK's 
stack frames. 

Each invocation of LCK$SRCH_RESDLCK specifies the address of a wait­
ing LKB. The resource associated with the LKB is located and the resource 
state queues are searched for LKBs whose granted or requested lock mode is 
incompatible with that of the waiting LKB. If an incompatible LKB is found, 
that lock is considered to be blocking the waiting LKB unless it has the 
LCK$V _NODLCKBLK bit set in the LKB flags word. 

When a blocking lock is found, its EPID is compared to that of the lock 
that initiated the deadlock search: 

• If they are the same, the list is proved to be circular and a deadlock exists. 
A victim lock is chosen (see Section 10.3.3), and deadlock detection returns 
control to EXE$TIMEOUT. 
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• If the EPID of the blocking lock is not the same as the saved EPID and the 
search bitmap does not indicate that this process has been visited already, 
the PCB lock queue of the process owning the blocking lock is searched. If 
an LKB is found in a convert or wait state with the LCK$V _NODLCKWT 
bit clear, another invocation of LCK$SRCH_RESDLCK is made, specifying 
that LKB's address. 

Each time LCK$SRCH_RESDLCK is invoked, it searches the state queues 
associated with the specified LKB to see if it is waiting for a resource. 

When all the state queues for a given resource have been searched and 
no blocking lock has been found for that LKB, the routine removes the 
stack frame and returns control to its invoker. If the invoker itself was 
LCK$SRCH_RESDLCK, the previous search for blocked locks on the re­
source can now be resumed. 

A process bitmap is maintained to reduce the number of repeated searches 
for blocking locks on a particular process. Each time a new blocking PCB is 
located, a bit corresponding to that process is set. If the bit for the PCB is 
set already, the search for locks blocking that process is terminated, because 
its locks have been searched already. 

Unsuspected Deadlocks. Note that the use of the process bitmap speeds the 
location of the suspected deadlock but prevents the accidental detection of 
unsuspected deadlocks. An unsuspected deadlock is one that exists within 
the lock management database, but that has not been detected so far, because 
none of its locks have timed out on the lock timeout queue. This behavior 
is accepted for the following reasons: 

• The lock manager design assumes that individual locking protocols are 
designed so that deadlocks are rare . 

• Finding a process a second time in a deadlock search does not necessarily 
indicate that an unsuspected deadlock exists. 

• The occurrence of unsuspected deadlocks should be rarer still. 
• Any deadlock search that does not find a deadlock is a waste of processor 

time. 
• The unsuspected deadlock will become a suspected deadlock when one of 

its own locks times out on the lock timeout queue and a deadlock search 
is initiated on its behalf. 

Figure 10.10 shows two deadlocks. In the figure, locks that are blocking 
a resource (incompatible with waiting locks) are shown beneath the RSB; 
locks that are waiting for a resource are shown above the RSB. One deadlock 
is suspected and a search is in progress for it. The heavy arrows in the figure 
show the path of that deadlock cycle. The other is unsuspected. This figure 
is an extension of the deadlock cycle shown in Figure 10.8. 

In this case, the deadlock search was initiated as a search for the locks 
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Figure 10.10 
Suspected and Unsuspected Deadlocks 

blocking process A. Because process C's lock is the first one found granted 
for resource 2, it is the first lock that is investigated for participation in the 
deadlock cycle. Process C is waiting for resource 3. The bit corresponding 
to process C is set in the process bitmap. The context of the search is saved 
on the stack, and LCK$SRCH_RESDLCK is invoked to search for processes 
blocking process C's lock. 

Process D has a blocking lock on resource 3. Process Dis also waiting for 
resource 2. The bit corresponding to process D is set in the process bitmap. 
The context of the search is saved on the stack and LCK$SRCH_RESDLCK 
is invoked to search for processes blocking process D's lock. Process C 
has a blocking lock on resource 2. This situation is a deadlock. However, 
because the bit corresponding to process C was set in the process bitmap, the 
deadlock search for process C is abandoned. One by one, the stack frames are 
removed and the search whose context was saved continues. Eventually the 
deadlock search continues with locks blocking resource 2, and the deadlock 
cycle of processes A and B is discovered. 

Eventually one of the locks requested by processes C and D will time out, 
and a deadlock search will be initiated. 

Example of a Search for a Multiple Resource Deadlock. Figure 10.11 shows a 
series of locks that result in a deadlock. In the figure, locks that are blocking 
a resource (incompatible with waiting locks) are shown beneath the RSB; 
locks that are waiting for a resource are shown above the RSB. The heavy 
arrows in the figure show the path of the deadlock cycle. 
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Resource 2 

Figure 10.11 
Example of a Multiple Resource Deadlock 

Assume that the lock owned by process A timed out. Process A is waiting 
for a lock on resource 1. The deadlock search routine saves process A's EPID 
and invokes LCK$SRCH_RESDLCK, passing the address of process A's LIIB. 

The first incompatible lock on resource 1 is owned by process C. Process C 
has no other waiting locks, so LCK$SRCH_RESDLCK moves on to the next 
incompatible lock. This lock is owned by process D. When LCK$SRCH_ 
RESDLCK follows the PCB queue for process D, it finds that this process is 
waiting for a lock on resource 3. 

LCK$SRCH_RESDLCK invokes itself, passing the address of the LKB 
owned by process D. The new invocation of LCK$SRCH_RESDLCK pushes a 
stack frame detailing the position of the search on resource 1, and 
LCK$SRCH_RESDLCK starts to search for locks on resource 3 that are in­
compatible with process D's lock. Resource 3 has two incompatible locks, 
owned by processes E and F. Neither of these processes is waiting for a lock, 
so the search on resource 3 terminates. T'ne contents of the stack frame are 
restored and LCK$SRCH_RESDLCK returns to its previous invocation. The 
search for processes blocking process A resumes. 

The next incompatible lock found on resource 1 is owned by process G. 
Process G has no waiting locks, so the search continues with process B. The 
PCB queue for process B shows that it is waiting for a lock on resource 2. 

Again, LCK$SRCH_RESDLCK invokes itself, passing the address of the 
LKB owned by process B. The new invocation of LCK$SRCH_RESDLCK 
pushes a new stack frame onto the stack, and LCK$SRCH_RESDLCK finds 
that process D owns a lock that is incompatible with the lock owned by 
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process B. However, because locks owned by process D have been searched 
already (the bit for process Dis set in the process bitmap), the search moves 
on to the next process. 

The next incompatible lock is owned by process A. Because the EPID of 
process A matches the EPID that was saved initially, the list is proved to be 
circular and a deadlock exists. Now a victim must be chosen. 

Victim Selection 

Because conversion deadlocks involve only two processes, the victim selec­
tion routine simply chooses the process with the lower deadlock priority, 
stored in the PCB at the field PCB$L_DLCKPRI. 

For a multiple resource deadlock, the victim selection routine is only 
slightly more complicated. The frames that were pushed onto the stack in 
each recursion into the deadlock location routine are searched for the lowest 
deadlock priority. Each time a lower deadlock priority value is found, the 
priority and the owner process are noted. If a deadlock priority of zero is 
found, that process is immediately chosen as the victim. When all frames 
have been searched or a deadlock priority of zero is found, the stack pointer 
is restored and the process with the lowest deadlock priority is chosen as 
the victim. 

Note that the current VMS implementation initializes the deadlock prior­
ity of all new processes to zero. Thus, it is not possible to determine which 
process will be chosen as the victim. With the current implementation, vic­
tim selection depends primarily on timing. 
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11 Time Support 

Love, all alike, no season knows, nor clime, 
Nor hours, days, months, which are the rags of time. 

John Donne, The Sun Rising 

Support for activities that require either the date and time or the measure­
ment of an interval of time is implemented in both the VAX hardware and 
the VMS operating system. 

11.1 OVERVIEW 

A hardware component called the interval timer interrupts at regular in­
tervals. VMS uses this timer to keep time and to service time-dependent 
requests. VMS keeps two different times, the current date and time (the 
system time) and the time elapsed since the system was bootstrapped (the 
system uptime). 

On most VAX systems, a processor register (PRxxx$_TODR) or a time­
of-year clock or, in some cases, both help VMS maintain the system time 
across system bootstraps, power failures, and shutdowns. Battery backup is 
usually provided to this component, generically referred to as the time-of­
year clock, so that it can maintain the time while the CPU has no power. 
Note that the time-of-year clock is a longword value and can only represent 
the time within a year. 

VMS maintains the system time in the cell EXE$GQ_SYSTIME in incre­
ments of 100 nanoseconds from a known base time. Upon bootstrapping, 
VMS determines the initial value of this cell as follows: 

• When a system is bootstrapped for the first time, VMS requests the current 
date and time from the operator and initializes the time-of-year clock. 
VMS also records the date and time on disk whenever the system time is 
initialized or changed . 

• When rebooting, VMS uses the following strategy to initialize EXE$GQ_ 
SYSTIME. 

-VMS validates the time-of-year clock by comparing its contents with the 
recorded value on disk. 

-If the time-of-year clock appears valid, the initial value of EXE$GQ_ 
SYSTIME is determined from the recorded value and the time-of-year 
clock, as explained in Section 11.3.1. 

-If the time-of-year clock is more than one day behind the recorded value, 
the time-of-year clock is invalid. VMS either asks the operator for the 
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new system time or, if human intervention is not desired, resets the 
time-of-year clock to the recorded value plus IO milliseconds . 

• A node joining a VAXcluster obtains the initial date and time from a node 
that has already joined the cluster. 

Once initialized, EXE$GQ_SYSTIME is incremented for every interval 
timer interrupt. Typically, the timer interrupts at IO-millisecond intervals 
and EXE$GQ_SYSTIME is incremented by I00,000, which is the number of 
IOO-nanosecond intervals in IO milliseconds. This is done by the interval 
timer interrupt service routine, EXE$HWCLKINT. On a symmetric multi­
processing (SMP) system, only the primary CPU is responsible for updating 
EXE$GQ_SYSTIME. 

The system manager may change the system date and time using the SET 
TIME DCL command or the Set Time ($SETIME) system service. The Get 
Time ($GETTIM) system service enables users to read the current date and 
time. VMS provides two system services, Schedule Wakeup ($SCHDWK) and 
Set Timer ($SETIMR), to support users' time-dependent requests. In addition, 
there are several other services, described briefly in Chapter 36, that convert 
the date and time between ASCII and binary formats. 

In addition to updating the system time, the interval timer interrupt 
service routine also requests a software timer interrupt when the current 
process's quantum has expired or when the most imminent timer request 
on the system is due. The software timer interrupt service routine is respon­
sible for initiating quantum-end processing and managing the timer queue 
to deliver timer requests. 

11.2 HARDWARE CLOCKS 

11.2.1 
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The two hardware clocks, the interval timer and the time-of-year clock, 
are updated regularly by timing circuitry. Initialization, calibration, and in­
terpretation of the clocks are performed by VMS routines during system 
initialization and normal operations. 

The processor registers that implement these components are summarized 
in Table 11.1, along with the memory locations that record the various 
soft'\vare time values. 

The implementations of the interval timer and time-of-year clock vary on 
the different VAX CPUs. 

Interval Timer 

All VAX CPUs implement an interval timer that can interrupt at IO-milli­
second intervals. The minimum implementation is the processor register 
PR$_ICCS, containing a single bit, Interrupt Enable (IE) which, when set, 
causes interrupts every IO milliseconds. The MicroVAX II implements the 
minimum interval timer. 



11.2 Hardware Clocks 

Table 11.1 VMS Hardware Clocks and Software Timers 

Name Use Units Frequency Updated by 
PRxxx$_ICR I Interval count 1 µs 1 µs CPU hardware 
PRxxx$_NICR I Next interval count 1 µs EXE$INIPROCREG 2 

PR$_ICCS Interval timer IO ms EXE$HWCLKINT, 
control/status EXE$INIPROCREG 

PRxxx$_ TODR I Time-of-year clock IO ms IO ms CPU hardware, 
EXE$INIT _ TODR, 
EXE$SETIME 3 

EXE$GQ_SYSTIME System date and 100 ns IO ms EXE$HWCLKINT, 
time EXE$SETIME, 

EXE$RESTART 
EXE$GLABSTIM System uptime 1 s 1 s System initialization, 

EXE$TIMEOUT 
EXE$GL_ABSTIM_ TICS System uptime IO ms IO ms EXE$HWCLKINT 
EXE$GL_ TODR Time-of-year base IO ms EXE$SETIME 

value 
EXE$GQ_ TODCBASE Time-of-year base 100 ns EXE$SETIME 

value (in system 
time form) 

1 This is a CPU-specific register that does not exist on all processors. 
2 PRxxx$_NICR is written only at system initialization and after powerfail recovery. 
3 PRxxx$_TODR is actually modified through the CPU-specific routine EXE$WRITE_TODR. 

Other VAX processors have two additional processor registers to control 
the interval timer, PRxxx$_ICR and PRxxx$_NICR. The additional proces­
sor registers are defined by the CPU-specific macros $PRxxxDEF, where xxx 
is the CPU designation. Appendix G lists the CPU designations and their 
corresponding CPU types. 

A description of the full interval timer implementation follows. It applies 
to all the VAX processors listed in Table 11.2 except the MicroVAX Il. 

The full implementation of the interval timer is the set of three processor 
registers. The clock ticks at !-microsecond intervals with an accuracy of at 
least 0.01 percent, an error of less than 9 seconds per day. The frequency at 
which the interval timer causes an interrupt is determined by the value in 
the processor register PRxxx$_NICR. 

The three interval timer registers !see Table 11.1) are used as follows: 

• The interval timer control/status register IPR$_ICCS) controls the inter­
rupt status of the interval timer. This register contains several bits, notably 
the IE and INT bits. During system initialization, VMS sets the IE bit to 
cause interval timer interrupts. The INT bit is set by the hardware when 
it generates an interrupt, and the interval timer interrupt service routine 
clears it to acknowledge that the interrupt was serviced !see Section 11. 7). 
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Table 11.2 Implementations of the Time-of-Year Clock on VAX CPUs 

Processor 
MicroVAX II 
VAX 3000 series 
VAX-11/730 
VAX-11/750 
VAX-ll/78x 
VAX 82x0/83x0 
VAX 85x0/8700/88x0 
VAX 6000 series 

PRxxx$_TODR 

y 
y 
y 
y 
y 

y 

Console 
Clock 

ya 

Watch 
Chip 
y 
y 

y 

Battery 
Backup 
y 
y 

Y' 
y 
y 
yz 
y 
y 

1 Certain VAX-11/730 configurations have battery backup for the time-of-year processor 
register. 

2 The watch chip has battery backup; the time-of-year processor register does not. 
3 VMS must communicate with the console subsystem to read the time-of-year clock . 

• The next interval count register IPRxxx$_NICRJ defines how often the in­
terval timer will cause a hardware interrupt. At system initialization, this 
processor register is initialized with a value of -10000. This value specifies 
an interval timer interrupt period of 10millisecondsI10,000 microseconds). 
PRxxx$_ICR is initialized from PRxxx$_NICR . 

• Every microsecond the hardware increments the interval count register 
IPRxxx$_ICRJ. Thus, it counts from the PRxxx$_NICR value toward zero. 
When PRxxx$_ICR becomes zero, the register overflows, with the follow­
ing results: 

a. The hardware copies the contents of PRxxx$_NICR into PRxxx$_ICR 
to define the next interval. 

b. The hardware sets the INT bit in PR$_ICCS to indicate the overflow 
condition. The setting of this bit causes an interval timer interrupt. 

The interrupt priority level IIPLJ at which the hardware interrupt occurs 
is either 22 or 24, depending on the processor type. Earlier VAX CPU 
models, namely, the VAX-11/730, VAX-11/750, VAX-11/780 and the VAX 
86x0 processors, use IPL 24. The VAX architecture now defines 22 as the 
IPL associated with the interval timer, and that value is used by all other 
processors. 

Because the interval timer implementation varies, the interval timer reg­
ister or registers are initialized by the routine EXE$INIPROCREG, in mod­
ule (SYSLOA]ERRSUBxxx, image SYSLOAxxx.EXE, the CPU-specific code 
loaded during system initialization. 
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11.2 Hardware Clocks 

Time-of· Year Clock 

A time-of-year clock is a hardware clock updated by hardware timing cir­
cuitry to maintain the date and time across system reboots and power fail­
ures. On most VAX CPUs, the time-of-year clock is powered by a battery 
when there is no power to the system so that the clock keeps correct time. 
At system initialization, the operating system uses the time-of-year clock 
and the system global locations EXE$GQ_ TODCBASE and EXE$GL_ TODR 
to determine the date and time (see Section 11.3.1). If there is no time-of­
year clock or if its battery lacks power, VMS cannot determine the correct 
date and time without human intervention. 

On many VAX CPUs, the time-of-year clock is implemented as a processor 
register, PRxxx$_ TODR. The register is an unsigned 32-bit counter, the least 
significant bit of which represents a resolution of IO milliseconds. 

The time kept by the time-of-year clock includes no year. Instead, the time 
is kept relative to 00:00:00.00 hours on January 1 of the year in which the 
clock was initialized. The value I000000016 represents this base time. The 
time-of-year clock is initialized to that number rather than zero to facilitate 
detection of loss of power to the clock, which causes a reset to zero. 

This scheme allows the time-of-year clock to represent, in IO-millisecond 
intervals, up to about 466 days: from January 1 of the base year to about 
April 11 of the next year. Once the time-of-year clock is initialized relative 
to a base year and the system time crosses from December into January of 
the ensuing year, the time-of-year clock must be reset, before April 11 of 
that year, to be relative to January 1 of the new year. 

EXE$SETIME, the system service routine for the $SETIME system service, 
automatically resets a time-of-year clock that represents a value greater 
than the number of IO-millisecond intervals in the base year. This system 
service is invoked whenever the DCL command SET TIME is issued. This 
system service is also invoked through a special entry point during system 
initialization, as discussed in Section 11.4. 

The implementation of the time-of-year clock varies on different VAX 
CPUs. Table 11.2 summarizes implementations of the time-of-year clock on 
the various VAX CPUs. 

Access to the time-of-year clock is through CPU-specific routines in the 
image SYSLOAxxx. Thus, the actual implementation of the time-of-year 
clock is transparent to the rest of VMS. 

The SYSLOAxxx routines for accessing the time-of-year clock are 

• EXE$INIT _ TODR, in module [SYSLOA]INIADPxxx, which uses the clock 
to initialize the system time 

• EXE$READ_ TODR, EXE$READ_LOCAL_ TODR, and EXE$READP _ 
LOCAL_TODR, in module [SYSLOA]ERRSUBxxx, which read the clock 

• EXE$WRITE_ TODR and EXE$WRITEP _LOCAL_ TODR, in module 
[SYSLOA]ERRSUBxxx, which write the clock 
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EXE$READ_ TODR and EXE$WRITE_ TODR are generally the routines 
used to access the time-of-year clock. These routines may be invoked from 
any processor in an SMP system. However, when invoked from a secondary 
processor on an SMP system, these routines require the services of the 
primary to access the clock. Chapter 34 describes the interprocessor dialogue 
employed for this purpose. 

EXE$READP _LOCAL_ TOOR and EXE$WRITEP _LOCAL_ TOOR are 
primary-only routines that access the physical clock register. 

EXE$READ_LOCAL_ TODR is a routine employed by EXE$POWERFAIL, 
in module POWERFAIL, to read the clock in the fastest way possible. 
EXE$POWERFAIL invokes this routine only from the primary processor. 
Thus, EXE$READ_LOCAL_ TODR does not require any multiprocessing 
synchronization. 

On systems with no time-of-year processor register, EXE$READ_LOCAL_ 
TODR and EXE$READ_ TODR simulate one, using EXE$GL TODR and the 
elapsed time since the time was last set, which is the difference between 
EXE$GQ_SYSTIME and EXE$GQ_ TODCBASE. 

11.3 TIMEKEEPING IN VMS 

11.3.1 
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During system initialization, VMS determines the date and time from the 
time-of-year clock and the system global locations EXE$GQ_ TODCBASE 
and EXE$GL_TODR. During normal system operation, VMS uses the in­
terval timer interrupts to keep time. Global location EXE$GQ_SYSTIME 
contains the system date and time. Global locations EXE$GL_ABSTIM and 
EXE$GLABSTIM_ TICS contain the system uptime, the former in units of 
seconds and the latter in IO-millisecond intervals. Table 11.1 summarizes 
these global locations. 

Initializing the Date and Time 

The contents of EXE$GQ_ TODCBASE and EXE$GL_ TODR are maintained 
both in memory and on disk in the base image file, SYS.EXE. The record 
on disk is nonvolatile and survives across system bootstraps. Both repre­
sent the same time in different formats. EXE$GQ_ TODCBASE represents 
the time of last adjustment in standard 64-bit time, the same format as 
EXE$GQ_SYSTIME. EXE$GL_ TODR represents the time of last adjustment 
in the same 32-bit format as the time-of-year clock. Whenever these cells 
are adjusted on the system, they are written back to disk as well. 

Recording up-to-date values of these variables ensures that 

• VMS can determine the current year from EXE$GQ_ TODCBASE. A 32-bit 
time-of-year clock can represent only date and time within year, but not 
year. 

• VMS can use the recorded value of EXE$GL_ TODR as a validity test for 
the time-of-year clock. 



11.3 Timekeeping in VMS 

• The date and time are as recent as possible for a system that is without 
battery backup for the time-of-year clock and is to boot unattended. 

During system initialization, SYSINIT invokes the routine EXE$1NIT _ 
TODR, in module [SYSLOA]INIADPxxx, to validate the time of year and to 
initialize EXE$GQ_SYSTIME from either the time-of-year clock and system 
global locations or from a date and time entered by the operator. For a node 
joining a VAXcluster system, SYSINIT obtains the date and time from a 
node that has already joined and invokes EXE$SETIME_INT, described in 
Section 11.4, to set the date and time. When a new VAXcluster system is 
being formed, the time from one system is sent to all other nodes, each 
of which invokes EXE$SETIME_INT. After the system disk is mounted, 
SYSINIT invokes the $SETIME service to record new values for the time-of­
year global locations in the base image on disk. 

The basic algorithm in EXE$INIT_TODR is similar for all VAX CPUs, 
although there are some CPU-specific variants: 

1. EXE$INIT _ TODR examines the SYSGEN parameter SETTIME. 
2. If SETTIME is 0, EXE$INIT _ TODR reads the time-of-year clock and com­

pares its contents with those of EXE$GL_ TODR. If EXE$GL_ TODR is 
more than one day ahead of the time-of-year clock, the time of year is 
presumed invalid. This test detects a clock that has lost power. It also 
detects cases where the clock has overflowed or is otherwise desynchro­
nized with the SYS.EXE base image being bootstrapped. 

If the time-of-year clock is within a day of EXE$GL_ TODR, then its 
contents and those of EXE$GL_ TODR and EXE$GQ_ TODCBASE are 
used to reset the system time. 

3. If SETTIME is 1, or if the time-of-year clock is invalid, EXE$INIT _ 
TODR examines the SYSGEN parameter TIMEPROMPTWAIT to deter­
mine how to reset the time of year: 

a. A TIMEPROMPTWAIT value of zero means that the routine is to 
reset the time without human intervention. EXE$INIT _ TODR com­
putes a new value for the time of year, based on the contents of 
EXE$GL_ TODR plus 10 milliseconds. 

b. A nonzero TIMEPROMPTWAIT value causes the routine to prompt 
for the date and time on the console terminal and wait until the 
operator enters valid data. If TIMEPROMPTWAIT is negative, the 
system will not proceed unless the operator enters the date and time. 
If TIMEPROMPTWAIT is positive, its value represents an upper limit 
on the amount of time EXE$INIT _ TODR waits for the operator to 
enter a new date and time. If that time elapses without the input 
of valid data, EXE$INIT _ TODR proceeds as if TIMEPROMPTWAIT 
were zero. 

4. EXE$INIT _ TODR calls EXE$SETIME_INT, an internal entry point for 
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the system service $SETIME, to initialize the system time and update 
EXE$GQ_ TODCBASE and EXE$GL_ TODR. The base image on disk can­
not be modified until the system disk is mounted. 

Maintaining the Date and Time 

The system time, EXE$GQ_SYSTIME, is the number of 100-nanosecond in-
. tervals since 00:00 hours, November 17, 1858, the base time for the Smithso­
nian Institution astronomical calendar. EXE$GQ_SYSTIME is updated every 
10 milliseconds by the interval timer interrupt service routine lsee Sec­
tion 11.7). EXE$GQ_SYSTIME is the reference for nearly all user-requested 
time-dependent software activities in the system. For example, the $GET­
TIM system service simply writes this quadword value into a user-defined 
buffer. 

EXE$GL_ABSTIM, incremented by the routine EXE$TIMEOUT (see Sec­
tion 11.8.2), contains the number of I-second intervals that have elapsed 
since the system was bootstrapped. EXE$G1-ABSTIM is the reference time 

· for a number of VMS operations. In particular, it is used to check periodically 
for I/O device, I/O controller, mount verification, and lock request timeouts. 

EXE$GL_ABSTIM_ TICS contains the number of interval timer ticks that 
have elapsed since the system was bootstrapped. It is defined as zero at 
assembly time and incremented by the interval timer interrupt service 
routine I see Section 11. 7). EXE$GL_ABSTIM_ TICS is the reference time 
for the VMS scheduling subsystem. Its contents are recorded in the field 
PCB$1-WAITIME whenever a process is placed into a wait state and in the 
field PCB$L_ONQTIME when a process incurs quantum end. A comparison 
between PCB$1-WAITIME and EXE$G1-ABSTIM_ TICS enables outswap 
scheduling code to determine if the process can be considered to be in a long 
wait, and a comparison between PCB$1-0NQTIME and EXE$GL_ABSTIM_ 
TICS to determine if the process is dormant (see Chapter 18). 

EXE$GQ_SYSTIME is adjusted at powerfail recovery by routine EXE$RE­
START, in module POWERFAIL lsee Chapter 33), and through the system 
service $SETIME. EXE$GL_ABSTIM and EXE$GL_ABSTIM_ TICS are never 
adjusted. 

11.4 SET TIME SYSTEM SERVICE 
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The $SETIME system service allows a system manager or operator to change 
the system time while the operating system is running. This may be neces­
sary because of a power failure longer than the battery backup time of the 
time-of-year clock or changes between standard and daylight saving time, for 
example. The new system time is passed as the optional single argument of 
the system service. 

The $SETIME system service is also called directly at a special entry point, 
EXE$SETIME_INT. This entry point is used during system initialization 
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11.4 Set Time System Service 

to compute the system time from the contents of the time-of-year clock 
and system variables. The difference between the two entry points is that 
EXE$SETIME_INT is called at a point in SYSINIT before the system disk is 
mounted, and hence must disable recording the values of EXE$GL_ TODR 
and EXE$GQ_ TODCBASE in the base image. 

The system service procedure EXE$SETIME, in module SYSSETIME, runs 
in kernel mode. It first validates the request. If the requesting process does 
not have the privileges OPER and LOG_IO, EXE$SETIME returns the error 
SS$_NOPRIV. If the input quadword cannot be read, the procedure returns 
the error SS$_ACCVIO. 

The procedure diverges into the two paths described in the following 
sections, based on the presence or absence of the new time argument. 

$SETIME System Time Recalibration Requests 

If no time argument, or an argument of zero, is passed to the system ser­
vice, this is considered a request to recalibrate EXE$GQ_SYSTIME from the 
time-of-year clock, EXE$GL_ TODR, and EXE$GQ_ TODCBASE. Sometimes 
recalibration is done during normal operation, because on some VAX systems 
the time-of-year clock is more accurate than the interval clock. 

EXE$SETIME performs the following actions: 

1. It calls the scheduler routine SCH$REQUIRE_CAPABILITY, in module 
SCHED, to ensure that EXE$SETIME is running on the primary processor 
in a multiprocessing system. 

2. EXE$SETIME invokes routine EXE$READP _LOCAL_ TODR, in module 
[SYSLOA]ERRSUBxxx, to read the time-of-year clock, whose contents 
are referenced in the following items and equations as TOY _CLOCK. 

3. It compares the TOY_CLOCK to EXE$GL_ TODR. If the latter repre­
sents a time more than one day later, the TOY _CLOCK is not valid and 
EXE$SETIME returns the error status SS$_IVTIME. 

4. It computes the new system time, EXE$GQ_SYSTIME, using the follow­
ing equation: 

EXE$GQ_SYSTIME = EXE$GQ_ TODCBASE 
+ ((TOY_CLOCK- EXE$GL_TODR) * 100000) 

EXE$GQ_SYSTIME and EXE$GQ_ TODCBASE contain quadword sys­
tem times in units of 100 nanoseconds. TOY _CLOCK and EXE$GL_ 
TODR contain longword time-of-year times in units of 10 milliseconds. 
The multiplier of 100,000 represents the number of 100-nanosecond in­
tervals in 10 milliseconds. 

5. It corrects the values in TOY_CLOCK, EXE$GL_ TODR, and EXE$GQ_ 
TODCBASE if TOY _CLOCK represents a value larger than one year. This 
prevents the time-of-year clock from overflowing its limit. 
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6. EXE$SETIME adjusts the expiration time of each entry in the timer 
queue that specifies a relative (or delta) time by the difference between 
the previous system time and the new system time. This modification 
preserves the correct relative time across the modification to the system 
time. EXE$SETIME does not adjust an entry containing an absolute time; 
this ensures that the event will occur at the time specified by the user. 
Section 11.5 describes the form and use of timer queue entries. 

7. EXE$SETIME writes the pages of the base image in memory that contain 
EXE$GQ_ TODCBASE and EXE$GL TODR back to the base image file 
if the procedure was entered at EXE$SETIME. 

$SETIME Time-of-Year Readjustment Requests 

If a nonzero time value is given as an argument to $SETIME, EXE$SETIME 
performs the following operations: 

1. It converts the input argument, specified in system time units of 100 
nanoseconds, into time-of-year units, the number of IO-millisecond in­
tervals after 00:00 hours on January 1 of the base year. 

2. EXE$SETIME calls the scheduler routine SCH$REQUIRE.:..CAPABILITY, 
in module SCHED, to ensure that it is running on the primary processor 
in a multiprocessing system. 

3. It writes the specified time, converted to 32-bit time-of-year format, into 
the time-of-year clock and EXE$GL TODR. 

4. It writes the specified time into EXE$GQ_ TODCBASE and EXE$GQ_ 
SYSTIME. 

5. Finally, it updates the timer queue and, if the procedure was entered at 
EXE$SETIME, writes the new values for the time-of-year clock base to 
the base image file. Steps 6 and 7 in Section 11.4.1 give details. 

11.5 TIMER QUEUE AND TIMER QUEUE ENTRIES 
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VMS describes each timer request with a data structure called a timer queue 
entry (TQEJ. It maintains an absolute queue of TQEs, ordered by their ex­
piration times, at the system global location EXE$GL_ TQFL. The TIMER 
spinlock synchronizes access to the timer queue. 

Timer requests in VMS may be characterized according to the following 
attributes: 

• What action VMS takes to satisfy the request, for example, setting an event 
flag or waking up a process 

• Whether the request is a recurring one, to be repeated at specified intervals 
• How the expiration time is determined 

A user can specify that a request come due at a particular absolute time or 
at a time relative to the time of the request. With VMS Version 5, the user 
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has the choice of specifying a due time in terms of a process's accumulated 
CPU time. 

TQEs are generally allocated from nonpaged dynamic memory and inserted 
into the timer queue as a result of $SETIMR and $SCHDWK system service 
requests (see Section 11.6). The allocation of TQEs is governed by the pooled 
job quota JIB$W_TQCNT. 

The format of a TQE is shown in Figure 11.1. The link fields TQE$L_ TQFL 
and TQE$L_ TQBL, the TQE$W _SIZE field, and the TQE$B_ TYPE field are 
characteristic of system data structures allocated from dynamic memory. 

The TQE$B_RQTYPE field describes the timer request. Its two low-order 
bits define the type of timer request: process timer request, periodic system 
routine request, or process wake request. Bit TQE$V _REPEAT is set if the 
request is a repeating request rather than a one-time request. Bit TQE$V _ 
ABSOLUTE is set if the timer event was requested at a particular absolute 
time rather than at a relative interval from the current time. Bit TQE$V _ 
CHK_CPUTIM is set if the timer event was requested based on the CPU 
time accumulated by the target process. Figure 11.1 summarizes the bits in 
TQE$B_RQTYPE. 

The interpretation of the next three longword fields depends upon the type 
of timer request. For system routine requests, these fields contain the PC, R3, 
and R4 register values to be loaded before control is passed to the routine. 
For process requests, these fields define the process ID of the process to 
which to report the event, the address of an asynchronous system trap (AST) 
procedure to execute (if requested), and an optional AST parameter. 

For both process and system routine requests, the field TQE$Q_ TIME is 
the quadword system time at which a particular timer event is to occur. 
TQE$Q_DELTA is the absolute value of the repeat interval time for repeating 
requests. 

Several fields are meaningful only for process requests. The access mode 
of the requesting process is stored in TQE$B_RMOD. Bit ACB$V_QUOTA 

TQFL RQTYPEBlts 

- TQBL Bit Value Meaning 

RQTYPE l TYPE I SIZE 

PIO/PC 

0-1 0 Process timer request 
1 System subroutine request 
2 Scheduled wake request 

AST/FR3 
2 0 One-time request 

1 Repeat request (not allowed for process 

ASTPRM/FR4 
timer requests) 

I- TIME .... 3 0 Relative time request 
1 Absolute time request 

I- DELTA -
(reserved) 1 EFN l RMOD 

4 Timer is based on CPU time accumulated 
5 (reserved) 

6 AST is associated with timer event 

RQPID 7 (reserved) 

CPUTIM 

Figure 11.1 
Layout of a Timer Queue Entry 
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of TQE$B_RMOD is set if an AST is to be delivered when the timer event 
occurs. The event flag to be set when the timer event occurs is stored in 
TQE$B_EFN. TQE$1-RQPID contains the process ID of the process that 
made the initial timer request, since the requesting process is not necessarily 
the same as the target process whose ID is stored in TQE$L_PID. 

For a request based on accumulated CPU time, TQE$1-CPUTIM contains 
the amount of CPU time, in CPU time units, that the process should accu­
mulate for the timer event to occur. 

11.6 TIMER SYSTEM SERVICES 

11.6.1 
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Two system services are used to request time-dependent services, $SCHDWK 
and $SETIMR, both in module SYSSCHEVT. Two complementary services, 
Cancel Wakeup ($CANWAKJ and Cancel Timer Request ($CANTIMJ, both 
in module SYSCANEVT, cancel time-dependent requests. 

$SETIMR System Service 

The $SETIMR system service creates TQEs for nonrecurring process timer 
requests. Its system service procedure, EXE$SETIMR, runs in kernel mode, 
performing the following steps: 

1. The event flag specified as an argument to the system service is cleared 
in preparation for a subsequent setting at expiration time. 

2. If a fifth nonzero argument is present, this timer request is based on the 
CPU time accumulated by this process; EXE$SETIMR sets the TQE$V _ 
CHK..CPUTIM bit in the TQE that it builds for this request. 

3. EXE$SETIMR checks the request to ascertain that 

-The time location is accessible to the requesting process 
-The requesting process does not exceed its PCB$W _ASTCNT if an AST 

is to be associated with this timer request 

4. EXE$SETIMR decrements JIB$W _ TQCNT to charge the allocation of the 
TQE. If the job runs out of the pooled resource JIB$W _ TQCNT, then 
EXE$SETIMR puts the process into a miscellaneous wait state with its 
PCB$L_EFWM field containing the address of the JIB, and bit JIB$V _ 
TQCNT _WAITERS set in JIB$B_FLAGS. When JIB$W _ TQCNT is re­
stored, this process will resume at the next step. 

5. EXE$SETIMR allocates a TQE from nonpaged pool and initializes it from 
the system service arguments of time, request type, and process ID. 

6. If the time argument is negative, indicating that it is a relative time, then 
EXE$SETIMR calculates the absolute expiration time of the request by 
adding the absolute value of this argument to the current system time, 
EXE$GQ_SYSTIME. Bit TQE$V _ABSOLUTE is cleared for this element 
if this was a relative time request; otherwise, the bit is set. 
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7. EXE$SETIMR stores the access mode from which the system service was 
requested in the TQE$B_RMOD field. If AST notification was requested, 
then EXE$SETIMR decrements the process PCB$W _ASTCNT to indicate 
the future AST delivery and sets bit ACB$V _QUOTA of TQE$B_RMOD 
to indicate the AST accounting. 

8. EXE$SETIMR copies the AST parameter, which is used as request iden­
tification, and event flag number, both arguments for the $SETIMR re­
quest, to the TQE. 

9. If bit TQE$V _CHK_CPUTIM is set in the TQE, the time argument rep­
resents the amount of CPU time the process must accumulate for the 
timer event to occur. EXE$SETIMR estimates the earliest absolute time 
at which this could happen and stores it in the TQE$Q_ TIME field. 

It also calculates the total number of CPU time increments the process 
must accumulate for this and stores it in TQE$1-CPUTIM. When the 
TQE expires, EXE$SWTIMINT, in module TIMESCHDL, compares this 
value with either PHD$1-CPUTIM or PCB$1-CPUTIM, depending on 
whether the process is resident, to determine if the timer event is indeed 
due (see Section 11.8.1). If it is not, EXE$SWTIMINT reestimates the 
expiration time of the TQE and requeues it. 

10. EXE$SETIMR invokes EXE$INSTIMQ, in module EXSUBROUT, to in­
sert the TQE into the right place in the timer queue and then returns. 

$CANTIM System Service 

The $CANTIM system service removes one or more TQEs before expiration. 
Two arguments, the request identification parameter and the access mode, 
control the actions taken by this service. EXE$CANTIM, the system service 
procedure, invokes EXE$RMVTIMQ, in module EXSUBROUT, to remove 
and deallocate each TQE on the timer queue that meets all of the following 
criteria: 

• The current process's ID is the same as TQE$1-PID . 
• The access mode from which the service was requested is at least as 

privileged as the access mode stored in the TQE. This ensures that no 
request can be deleted for an access mode more privileged than that of the 
requestor. 

• The request identification parameter argument is the same as that stored 
in the TQE. If the argument value is zero, then all TQEs meeting the first 
two criteria are removed. 

$SCHDWK System Service 

The logic for managing scheduled wakeup requests is similar to that of 
$SETIMR requests. Two differences are the ability to specify repeating sched­
uled wakeup requests and the ability to schedule wakeup requests for another 

259 



Time Support 

260 

process. The $SCHDWK system service procedure, EXE$SCHDWK in mod­
ule SYSSCHEVT, runs in kernel mode. It performs the following actions: 

1. EXE$SCHDWK invokes EXE$NAMPID, in module SYSPCNTRL, to lo­
cate the PCB of the process to be awakened. 

EXE$NAMPID determines whether the input arguments specify a tar­
get process on this V AXcluster node or on another node. In the former 
case, EXE$NAMPID confirms the existence of the target process and the 
ability of the current process to delete it. (Chapter 13 describes the pos­
sible relations between the two processes and the privileges required in 
each case.) If the process is identified as one on another VAXcluster node, 
EXE$NAMPID cannot make those checks; it can only confirm that the 
VAXcluster node identification is valid. 

If further action is possible, EXE$NAMPID returns at IPL$_SCHED 
with the SCHED spinlock held; otherwise it returns at IPL 0. In either 
case, it returns an appropriate status. 

2. If EXE$NAMPID returns the status SS$_REMOTE_PROC, indicating 
that the process may exist on another VAXcluster node, EXE$SCHDWK 
validates the time arguments and transfers control to a clusterwide 
process service (CWPS) routine in module SYSPCNTRL. The routine 
transmits the wake request to the appropriate VAXcluster node and 
places the requesting process into a wait state. A cooperating CWPS rou­
tine on the other node performs the request and transmits status back to 
this node. Through mechanisms described in Chapter 13, control returns 
to a CWPS routine running in the context of the $SCHDWK requestor. 
This routine exits from the $SCHDWK system service, returning the 
status transmitted from the other node. 

3. If EXE$NAMPID returns any other error status, EXE$SCHDWK simply 
exits, returning the error status to its requestor. 

4. If EXE$NAMPID returns a status indicating that the target process exists 
on this node and that the requesting process may affect it, EXE$SCHDWK 
continues. 

5. It tests the repeat time argument to determine whether the request is a 
one-time or repeating scheduled wakeup. 

6. If it is a repeating request, EXE$SCHDWK converts the requested repeat 
time into system time format. If the repeat time is less than 10 millisec­
onds, it is increased to that value (the resolution of the interval timer 
interrupt) .. 

7. It allocates a TQE from nonpaged pool and initializes its repeat time, 
request time, and target process ID fields. 

8. If the initial scheduled wakeup time was expressed as a relative time, 
then EXE$SCHDWK clears bit TQE$V _ABSOLUTE and calculates the 
expiration time as the sum of the absolute value of the initial delta time 
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and the current system time. If the initial scheduled wakeup time was 
expressed as an absolute time, it sets bit TQE$V _ABSOLUTE. 

9. It decrements the PCB$W _ASTCNT quota of the requesting process to 
account for the allocation of the TQE. 

10. It invokes EXE$INSTIMQ, in module EXSUBROUT, to insert the TQE 
into the ordered timer queue according to its expiration time. 

When the expiration time is reached, the target process is awakened (see 
Section 11.8.3). Deallocation of the TQE occurs after delivery of a one-time 
scheduled wakeup request or as a result of a $CANWAK system service call. 

$CANWAK System Service 

The $CANWAK system service cancels all one-time and repeat scheduled 
wakeup requests for a target process. EXE$CANWAK, the system service 
procedure, first tests that the requesting process has the ability to affect the 
target process. It then deallocates each canceled TQE to nonpaged pool and, if 
the initial requesting process still exists, returns its PCB$W _ASTCNT quota 
to indicate the deallocation. 

11.7 INTERVAL TIMER INTERRUPT SERVICE ROUTINE 

The interval timer interrupt service routine, EXE$HWCLKINT in module 
TIMESCHDL, services the hardware interrupt signaled by the interval timer 
every 10 milliseconds. 

On some CPUs, this is an IPL 24 interrupt; on others, it is an IPL 22 
interrupt (see Section 11.2.1 ). The interval timer interrupt service routine 
has the following major functions: 

• Updating the system time 
• Process and CPU accounting 
• Implementing the sanity timer in a multiprocessing configuration 
• Checking whether the most imminent TQE is due 

In a multiprocessing configuration, the interval timer interrupt is taken 
by all processors, and all of them execute EXE$HWCLKINT. However, only 
the primary CPU is responsible for updating the system time and checking 
the timer queue. 

EXE$HWCLKINT performs the following actions: 

1. EXE$HWCLKINT resets the PR$_ICCS register to indicate the servicing 
of the interrupt and the reenabling of the interval timer. 

2. In an SMP system, EXE$HWCLKINT performs the operations necessary 
to implement this processor's part of the sanity timer mechanism, as 
described in Chapter 34. 

3. Running on a uniprocessor or on the primary processor of an SMP system, 
EXE$HWCLKINT does the following: 
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Table 11.3 Per-CPU Statistics Counters 

Index Meaning 
O · Kernel mode on kernel stack, no spinlock 

busy wait is active 
1 Executive mode 
2 Supervisor mode 
3 User mode 
4 Kernel mode on interrupt stack 
5 Compatibility mode 
6 Kernel mode on kernel or interrupt stack, 

spinlock busy wait is active 

a. It acquires the HWCLK spinlock in a multiprocessing environment. 
b. It updates the system time quadword, EXE$GQ_SYSTIME, by adding 

to it the value in EXE$GL_ TICKLENGTH. 
EXE$GL_ TICKLENGTH is used to maintain the system time rela­

tive to an external time standard. Normally, EXE$GL_ TICKLENGTH 
is initialized to the value in EXE$GL_SYSTICK, the VMS representa­
tion of 10 milliseconds. However, in some circumstances, privileged 
VMS applications may adjust EXE$GL_ TICKLENGTH, thus speed­
ing up or slowing down the VMS clock until it is synchronized with 
the reference time. Varying the tick length guarantees a monotoni-

. cally increasing system time and avoids the pitfalls of other means 
of changing the system time. 

Use of the cells EXE$GL_SYSTICK and EXE$G1-TICKLENGTH is 
reserved to Digital and not supported except for use within Digital 
software. 

c. It increments EXE$GL_ABSTIM_ TICS. 
d. It compares the updated system. time with the quadword EXE$GQ_ 

I ST_ TIME,, which is the time. of expiration of the most imminent 
timer queue entry. H this entry' is due, then EXE$HWCLKINT re­
quests an IPL$_ Tll\iERFORK s6ftware interrupt. 

e. It releases the HWCLK spinloek in a multiprocessing environment. 

4. EXE$HWCLKINT then updates time statistics fields maintained as an 
array in the per-CPU database at CPU$L..KERNEL. (Chapter 34 describes 
the per-CPU database.) The meaning.of each counter within this array of 
seven longwords is explained in Table 11.3. 

5. EXE$HWCLKINT determines whether this interval timer tick should be 
charged to a process: 

-H CPU$B_BUSYWAIT is nonze~o, .. indicating that the processor was in 
a spinwait trying to acquire a spmlock; the tick is not charged. 
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-If the processor was running on the interrupt stack at the time of the 
. interrupt, the tick is not charged. 

If neither of those is true, EXE$HWCLKINT increments the process's 
accumulated CPU time, PHD$1-CPUTIM, and its quantum, PHD$W _ 
QUANT. If the quantum, initialized to a negative value, reaches zero, 
EXE$HWCLKINT requests an IPL$_ TIMERFORK software interrupt to 

. initiate quantum-end processing for this process. 

11.8 SOFTWARE TIMER INTERRUPT SERVICE ROUTINE 

11.8.1 

The software timer interrupt service routine, EXE$SWTIMINT in module 
TIMESCHDL, is. entered through the IPL$_ TIMERFORK (IPL 7) software 
interrupt. Note that IPL$_ TIMERFORK is the IPL at which this software 
interrupt is taken, but the interrupt service routine performs its functions 
at IPL$_ TIMER (IPL 8). The software timer interrupt is requested by the 
interval timer interrupt service routine either because the current process 
has reached quantum end or the first TQE must be serviced. 

EXE$SWTIMINT examines CPU$L_CURPCB in the processor's per-CPU 
database to get the current process's PCB and locates the process's header. 
EXE$SWTIMINT then tests PHD$W _QUANT to determine whether the 
current process on this processor has reached quantum end. This field is 
initialized to the negative value of the SYSGEN parameter QUANTUM and 
incremented by the interval timer interrupt service routine. A zero or posi­
tive quantum value indicates quantum expiration. If the process has reached 
quantum end, EXE$SWTIMINT obtains the SCHED spinlock and invokes 
routine SCH$QEND, in module RSE, to perform quantum-end processing 
(see Chapter 12). 

Running on a uniprocessor or on the primary CPU in a multiprocess­
ing system, EXE$SWTIMINT checks whether the system time, EXE$GQ_ 
SYSTIME, is greater than or equal to the expiration time of the first entry in 
the timer queue. If it is, then the timer event is due. On an SMP system, this 
multiple-instruction comparison with the system time must be performed 
while holding the TIMER and HWCLK spinlocks to synchronize with . the 
interval timer int.errupt service routine. On a uniprocessor, IPL is. raised to 
the level of the interval timer interrupt. 

If the timer request is due, then EXE$SWTIMINT removes the first.TQE 
from the timer queue, releases the HWCLK and TIMER spinlocks, lowering 
IPL to IPL$_ TIMER, and performs one of three sequences of code depend, 
ing upon the type of timer request. The following sections describe these · 
sequences. 

Process Timer Requests 

If the TQE is a process timer request1 created by a $SETIMR system service 
call, . then EXE$SWTIMINT performs the following· operations: · 
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1. If bit TQE$V _CHK_CPUTIM is set to indicate that the timer request is 
in terms of CPU time accumulated by the process, then EXE$SWTIMINT 
takes the following steps: 

a. If the requesting process is not in the system any more, it simply 
deallocates the TQE. 

b. Otherwise, it obtains the CPU time from PHD$L_CPUTIM if the 
requesting process is resident and from PCB$L_CPUTIM if it is not. 
(The swapper copies PHD$1-CPUTIM to PCB$1-CPUTIM when it 
outswaps a process.) EXE$SWTIMINT compares the process's CPU 
time to TQE$L_CPUTIM to see if the timer request has expired. 

If the timer has expired, EXE$SWTIMINT proceeds as if this were a 
normal TQE expiration. Otherwise, it converts the number of remain­
ing CPU time increments to system time format. It adds .that value 
to the expiration time, making a new estimate of when the process 
might have accumulated enough CPU time. EXE$SWTIMINT then 
reinserts the TQE in the queue. 

2. Holding the SCHED spinlock, it sets the event flag associated with 
this timer request by invoking SCH$POSTEF with the contents of the 
TQE$LPID and TQE$B_EFN fields. A software priority boost of 3 may 
be applied to the process (see Chapter 12). 

3. If the target process is no longer in the system or the event flag number 
is illegal, EXE$SWTIMINT simply deallocates the TQE. 

4. It increments the process's JIB$W _ TQCNT quota, using an interlocked 
instruction, to indicate the pending deallocation of the TQE. 

EXE$SWTIMINT tests JIB$B_FLAGS to determine if any processes in 
the same job are waiting for TQE quota. For each such process, it invokes 
SCH$CHSE, in module RSE, to make the process computable. 

5. If ACB$V _QUOTA in TQE$B_RMOD is set, the user requested AST no­
tification. EXE$SWTIMINT copies the TQE$B_RMOD field to TQE$B_ 
RQTYPE to reformat the TQE into an AST control block (ACB). EXE$SW­
TIMINT invokes SCH$QAST to queue the ACB to the process (see Chap­
ter 7). 

When the processing of this TQE has been completed, EXE$SWTIMINT 
checks whether the next TQE is due. 

Note that process timer requests are strictly one-time requests. Any repe­
tition of timer requests must be implemented by the requesting process. A 
process can request $SETIMR events only on its own behalf. 

Periodic System Routine Requests 

The second type of TQE, a system routine request, is a system-initiated time­
dependent request to execute a specified system routine. EXE$SWTIMINT 
handles this type of TQE by performing the following actions: 
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1. it loads R3 and R4 from the TQE$L_FR3 and TQE$L_FR4 fields. RS points 
to the beginning of the TQE. 

2. It executes a JSB instruction using the TQE$L_FPC field, which points 
to the system routine to be invoked. 

EXE$SWTIMINT assumes that on ·return from the system routine, RS 
points to a TQE. It tests the TQE$V _REPEAT bit for this TQE. If the bit is set, 
it reinserts the TQE into the timer queue, having computed a new expiration 
time from TQE$Q_DELTA. EXE$SWTIMINT then checks the timer queue 
for further TQEs to service. 

Note that even if the TQE is not reinserted in the queue, EXE$SWTIMINT 
does not deallocate the TQE. This type of TQE can be defined in a static 
nonpaged portion of system space or within a device driver data structure. 

One example of this type of request, a repeating system subroutine request, 
is the once-per-second execution of the routine EXE$TIMEOUT, in module 
TIMESCHDL. The TQE for EXE$TIMEOUT is permanently defined in the 
same module, and the timer queue is initialized at bootstrap time with this 
TQE as the first entry in the queue. EXE$TIMEOUT performs the following: 

1. Holding the SCHED spinlock, it invokes the routine SCH$SWPWAKE to 
awaken the swapper process, if appropriate (see Chapter 18). 

2. EXE$TIMEOUT increments the EXE$GL_ABSTIM field to indicate the 
passing of 1 second of system uptime. 

3. It invokes the routine ERL$WAKE, in module ERRORLOG, to awaken 
the ERRFMT process, if appropriate (see Chapter 32). 

4. EXE$TIMEOUT invokes ECC$REENABLE, a routine in SYSLOAxxX. 
ECC$REENABLE scans the memory controllers to log any unreported 
corrected read data (CRD) errors and possibly to reenable CRD interrupts. 

S. EXE$TIMEOUT scans the I/O database for devices that have exceeded 
their timeout intervals. Holding the appropriate fork lock and device 
lock, it invokes the driver for each such device at its timeout entry point. 

This scan also invokes the driver's timeout routine for terminal timed 
reads that have expired. 

6. EXE$TIMEOUT scans the list of channel (controller) request blocks 
(CRBs) on the list IOC$GL_CRBTMOUT for any that have timed out. 
The CRB timeout mechanism enables a driver to be entered periodi­
cally for controller-related functions. The driver stores the address of 
a timeout routine in the field CRB$L_ TOUTROUT and an expiration 
time in CRB$L_DUETIME and invokes IOC$THREADCRB, in module 
IOSUBNPAG, to thread its CRB on the list. EXE$TIMEOUT compares 
the expiration time with EXE$GL_ABSTIM and, if the CRB due time has 
arrived, invokes the timeout routine holding the appropriate fork lock. 

The system communication services (SCS) class and port drivers em­
ploy this mechanism. The disk class driver, for example; must send its 
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server periodic messages to inform the server that the host system is run­
ning. The disk class driver timeout routine also checks that the server 
has made progress on the oldest outstanding request. 

7. If a process is running the Monitor Utility to display disk and disk queue 
length information, EXE$TIMEOUT scans the 1/0 database to collect 
information about disk queue lengths. 

8. Next, EXE$TIMEOUT scans the fork and wait queue. Chapter 4 describes 
this queue and its use by fork processes. 

9. The first entry on the lock manager timeout queue is checked to see 
if it has expired. If it has, a deadlock search is initiated by invoking 
LCK$SEARCHDLCK, in module DEADLOCK (see Chapter 10). 

10. EXE$TIMEOUT invokes SCH$0NE_SEC, in module RSE. Its primary 
task is to invoke SCH$PIX_SCAN, also in module RSE. SCH$PIX_SCAN 
gives selected computable resident (COM) and computable outswapped 
(COMO) processes a priority boost, as described in Chapter 12. 

11. Invoking SCH$RAVAIL, EXE$TIMEOUT declares several system 
resources available: RSN$_NPDYNMEM, RSN$_PGDYNMEM, RSN$_ 
MAILBOX, and RSN$_ASTWAIT. This is necessary because, in certain 
rare cases, these resources are not declared available when they should 
be. 

Another example of a repeating system timer routine is one the terminal 
driver uses to implement its modem polling. The controller initialization 
routine in the terminal driver loads the expiration time field in a TQE in the 
terminal driver with the current system time, sets the repeat bit, and loads 
the repeat interval with the SYSGEN parameter TTY_SCANDELTA. When 
the timer routine expires, it polls each modem looking for state changes. 

Scheduled Wakeup Requests 

The third type of TQE is a request for a scheduled wakeup ($SCHDWK) of a 
hibernating process. This type of request may be either one-time or repeating 
and may be requested by a process other than the target process. 

EXE$SWTIMINT performs the following operations for a scheduled wake­
up TQE: 

1. EXE$SWTIMINT invokes SCH$WAKE, in module RSE, to awaken the 
target process, which is identified by TQE$1-PID. If the target process 
is no longer in the system, it deallocates the TQE to nonpaged dynamic 
memory. Otherwise, if the requesting process (TQE$L_RQPID) still ex­
ists, EXE$SWTIMINT increments its PCB$W _ASTCNT quota. 

2. If the request is a one-time request, indicated by a zero TQE$V _REPEAT 
bit in the TQE$B_RQTYPE field, then EXE$SWTIMINT performs the 
cleanup described in step 1. 

3. If the request is a repeating type, then EXE$SWTIMINT adds the re­
peat interval, TQE$Q_DELTA, to the request's expiration time, TQE$Q_ 
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TIME, computing its new expiration time. Based on this value, it rein­
serts the TQE in the appropriate position in the timer queue, by invoking 
EXE$INSTIMQ, in module EXSUBROUT. 

EXE$SWTIMINT then checks to see whether the next TQE is due. 
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It is equally bad when one speeds on the guest unwilling to 
go, and when he holds back one who is hastening. Rather one 
should befriend the guest who is there, but speed him when 
he wishes. 

Homer, The Odyssey 

Only one process can run on a processor at once. Scheduling is the mecha­
nism that selects a process to run. 

The characteristics most significant to the scheduling of a process are 

• Process priority, which determines the execution precedence of processes 
• Scheduling state, which defines the readiness of a process to be scheduled 

for execution, its computability or lack thereof 
• Processor capability or affinity requirements (new with VMS Version 5), 

which constrain the set of processors of a symmetric multiprocessing (SMP) 
system on which a process can execute 

Running on a particular processor, the scheduler identifies and selects for 
execution the highest priority process that can execute on that processor and 
places it into execution. A process currently executing enters a wait stat~ 
when it makes a direct or indirect request for a system operation that cannot 
complete immediately. A waiting process becomes computable as the result 
of system events, such as the setting of an event flag or the queuing of an 
AST, and may preempt a current process. 

This chapter first describes the data structures related to scheduling and 
the significance of process priority, scheduling state, capabilities, and affin­
ity. It then describes the dynamics of their interactions-how changes in 
one characteristic can affect the others and the mechanisms by which the 
characteristics change. Finally, it describes the rescheduling interrupt service 
routine in detail. 

12.1 SCHEDULING DATA STRUCTURES 
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Most of the system data structures relevant to scheduling are described in 
this section. 

The fundamental data structure is the software process control block 
(PCB). It specifies the scheduling state, process priority, and capability and 
affinity requirements of a process and records many other process character­
istics. Section 12.1.1 describes fields in the PCB relevant to scheduling. 

One PCB, the null PCB, is defined statically as a placeholder. In earlier 
versions of VMS, the null PCB described a process called the null process. 
This process no longer exists, but there is still a need for a placeholder PCB 
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so that each system pointer to a PCB can point to a valid PCB, even if there 
is no associated process. 

Section 12.1.2 describes the process state queues, the queues in which 
PCBs of processes in the same scheduling states are linked. 

As part of support for SMP, VMS Version 5 adds a data structure called the 
per-CPU database. The per-CPU database records processor-specific informa­
tion. Each CPU has its own per-CPU database. Section 12.1.3 describes the 
fields in this structure relevant to scheduling. 

Each CPU is identified by an ID, a number from 0 to 31. The system mask 
SCH$GLIDLE_CPUS has a bit corresponding to each CPU. When set, the 
bit indicates that the CPU is idle and has no current process. The bit is 
cleared as a signal to indicate that the CPU should repeat its attempt to 
select a process to execute. 

Several other systemwide data structures related to process priority are 
described in Section 12.2. 

The set of PCBs, process state queues, and related data structures is known 
as the scheduler database. The SCHED spinlock synchronizes access to it. 
Chapter 8 describes the implementation and use of spinlocks. The SCHED 
spinlock does not synchronize access to all PCB or per-CPU database fields, 
just those related to scheduling. 

PCB Fields Related to Scheduling 

When a process is created, a PCB is allocated for it from nonpaged pool. A 
process continues to use the same PCB until the process is deleted and its 
PCB deallocated. 

Figure 12.1 illustrates the fields of the PCB that are particularly important 
to scheduling. Others are shown in other chapters, in particular, in Chap­
ters 7, 8, and 9. 

The scheduling state of a process is specified by its PCB$W _STATE field. 
All processes in the system are in either the current (CUR) state, a wait state, 
computable resident (COM) state, or computable outswapped (COMO) state. 
Table 12.1 lists the scheduling states; Section 12.3 summarizes them and the 
transitions among them. 

The PCBs of processes in most scheduling states are queued together with 
those of other processes in the same state so that they can be located more 
easily by scheduling routines. The scheduling state queue link fields, PCB$L 
SQFL and PCB$LSQBL, link a PCB into a process scheduling state queue 
(hereafter referred to as a process state queue). The various process state 
queues are described in Section 12.1.2. 

The data structure that contains the hardware context of the process is 
called the hardware PCB. Its physical address is stored in the software PCB 
field PCB$L_PHYPCB. Section 12.6.l describes the hardware PCB. 

PCB$LSTS, the process status longword, contains various flags describing 
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SQFL 

SQBL 

l TYPE l SIZE 

PHYPCB 

STATE I 
AFFINITY _SKIP l l PRIB l PAI 

STS 

AUTHPRI I I PRIBSAV I PRISAV 

ONOTIME 

WAITIME 

I EFWM I 
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Figure 12..1 
Process Control Block Fields Used in Scheduling 

the status of the process. The bit PCB$V _RES is of particular significance to 
scheduling. When set, it indicates that the process is in memory rather than 
outswapped. Table 25.2 describes the flags in the process status longword. 

Several PCB fields are related to process priority. Section 12.2 describes 
these fields. 
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When a process is in an event flag wait (see Section 12.3.3.1) or miscel­
laneous wait (MWAIT) state (see Section 12.3.3.3), PCB$1-EFWM identifies 
the flags or resource for which the process waits. 

PCB$L_PHD contains the address of the process header (PHD). The PHD 
contains the hardware PCB and the field PHD$W _QUANT, the amount of 
quantum remaining to the process. 

PCB$L_JIB contains the address of the job information block (JIB). The 
PCBs of all processes in a job tree share the JIB, which contains information 
common to all processes in the job, notably pooled quotas. 

PCB$L_CPU_ID contains the processor ID of the CPU on which the 
process is currently executing or has last executed. 

PCB$L_ WAITIME contains the system absolute time in interval timer 
ticks at which a process was most recently placed into a wait state. 

PCB$1-0NQTIME records the system absolute time in interval timer 
ticks at which a process most recently reached quantum end. 

PCB$L_PIXHIST is described in Section 12.5.6. 
The other PCB fields shown in Figure 12.1 are described in Section 12.4. 

Process State Queues 

PCBs of processes in the same scheduling state are linked together in doubly 
linked queues. There are queues for computable processes and for processes 
in different wait states. The listheads for all these queues are defined in tlie 
module SYSTEM_DATA_CELLS. Each CPU has a pointer to the PCB of its 
current (CUR) process in the per-CPU database. 

There are 32 queues for COM processes, one for each possible process 
priority. The quadword listheads of these queues are defined as an array 
whose starting address is global location SCH$AQ_COMH. A process is 
inserted into the queue corresponding to the internal value of its current 
process priority (see Section 12.2). There is a similar array of 32 quadword 
listheads for the COMO state at global location SCH$AQ_COMOH. 

The condition (empty or not) of each computable queue is summarized by 
a bit. If the queue contains one or more PCBs, the bit is set; if the queue 
is empty, the bit is clear. The 32 bits describing the COM queues are in 
the longword at global location SCH$G1-COMQS; the COMO queues are 
summarized in the longword SCH$GL_COMOQS.- Bit 0 in each longword 
corresponds to the process priority 31 queue, bit 1 to priority 30, and so 
forth. (Section 12.2 explains the inverted order.) These summary longwords 
facilitate selection of the next process to execute and selection of the next 
process to be inswapped. Figure 12.2 shows the computable queues and their 
summary longwords. 

Figure 12.3 shows the array of scheduler wait queue headers. Each header is 
a listhead for processes in one of the wait states. The first two longwords are 
the links to the PCBs in this queue. The field WQH$W _ WQSTATE contains 
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the numerical value corresponding to the scheduling state (see Table 12.1). 
All PCBs in a process state queue have PCB$W _STATE values identical to the 
state value of the wait queue header. The field WQH$W _ WQCNT contains 
the number of PCBs currently in this state and queue . 

. The wait queue headers for all wait states except common event flag (CEF) 
wait are defined within this array ordered by increasing state number, with 
the collided page wait state first. Each wait queue header except CEF has 
its own global pointer. A scheduling routine can access a particular wait 
queue by specifying its global name or using its state number as an index 
into the wait queue header array. The global location SCH$AQ_ WQHDR is 
the address of the beginning of the array and corresponds to index number 1. 
(There is no state whose numeric value is 0.) Note that there is no actual 
header with an index value of 3, or CEF, although space is reserved. 

A process waiting for one or more common event flags is queued to a wait 
queue in the common event block (CEB) defining the common event flag 
cluster with which the process is associated. A CEB includes three longwords 
that correspond to a wait queue header. The entire format of the CEB is 
shown in Chapter 9. Having a wait queue in each CEB makes it easier to 
determine which CEF processes are computable when a common event flag 
is set. The wait queue in the CEB contains both resident and outswapped 
processes. 

Per-CPU Database Fields Related to Scheduling 

The per-CPU database records processor-specific information such as the 
address of the PCB of the process current on that processor, the address of 
the processor's interrupt stack, and the processor's fork queues. Chapter 34 
contains further information, including a detailed description of the per-CPU 
database. Figure 12.4 illustrates the fields of the per-CPU database that are 
related to scheduling. 

CPU$L_CURPCB contains the PCB address of the process currently ex­
ecuting on this processor. CPU$B_CUR..,.PRI contains the process's current 
priority. If the processor is idle, CPU$L_CURPCB contains the address of 
the null PCB, and CPU$B_CUR_PRI contains -1. 

CPU$L_PHY_CPUID contains the ID of the processor, a number from 
0 to 31. CPU$1-CPUID_MASK is a mask of all zeros with one bit set 
corresponding to the CPU ID. 

CPU$L_CAPABILITY is a bit mask with bits set to represent the capabil­
ities of this processor. The low bit, when set, means that this CPU is the 
primary processor. The macro $CPBDEF defines symbolic values for the bits 
in this field. CPU$W _HARDAFF is the number of processes that have ex­
plicit affinity for this CPU. Section 12.4 describes the meaning and use of 
these two fields. 
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Two different mechanisms whose names contain the term priority are associ­
ated with each process. Interrupt priority level (IPL) applies to process-based 
and system-based code alike. IPL governs the hardware precedence of inter­
rupts, as described in Chapter 2. 

Process priority determines the precedence of a process for execution and 
memory residence. Throughout this book, the term priority used without 
qualification refers to process priority. 

Process priorities have two different representations, an external one for 
presentation to the user and an internal one for use by most scheduling 
code. External process priorities take on values from 0 to 31; 0 is the lowest 
priority, and 31 the highest. This representation matches the tendency of 
most users to associate higher values with higher priorities. 

The range of 32 priorities is divided in half. The high-priority half, 16 to 31, 
is assigned to real-time processes; the low-priority half, 0 to 15, is assigned 
to normal processes. The scheduling of a process is significantly affected by 
its type (normal or real-time) and its assigned priority level. 

Internal process priorities are stored in an inverted order. For example, 0, 
the lowest external priority, is stored internally as 31; external priority 31 is 
stored internally as 0. Subtracting one priority form from 31 converts it to 
the other form. 

Inverting the values facilitates selection of the next process to execute and 
the next process to be inswapped; these functions use the find first set (FFS) 
instruction, which begins its search for a set bit at bit position 0. (In other 
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data structures, external priority is used instead, for convenience of the code 
referencing them.) As a result of this inversion, priority promotions or boosts 
are implemented through subtract or decrement instructions. 

System utilities, such as the System Dump Analyzer (SDA), MONITOR, 
and the code that implements the Digital command language (DCL) com­
mand SHOW SYSTEM, convert internal priorities to external ones for dis­
play. The Get Job Process Information ($GETJPI) system service returns an 
external priority when a process priority is requested. 

All discussions in this book use external priority representation unless 
otherwise noted. This convention should be taken into account when relat­
ing descriptions in this book to the actual routines in the listings, where 
internal priorities predominate. 

Several fields of the PCB describe process priority. The values in these 
fields are in internal priority representation. The field PCB$B_PRI defines the 
current process priority, which is used to make scheduling decisions. PCB$B_ 
PRIB defines the base priority of the process, from which the current priority 
is calculated. For normal or time-sharing processes, these priority values are 
sometimes different, while real-time processes always have identical current 
and base priority values. 

When a process is first created, its base priority is initialized from an 
argument to the Create Process ($CREPRC) system service. Subsequently, 
if the process executes the LOGINOUT.EXE image, it may reset the base 
priority using the value from the user's record in the system authorization 
file. 

A process with the ALTPRI privilege can raise and lower its current and 
base priorities without constraint, using the Set Priority ($SETPRI) system 
service or the DCL command SET PROCESS/PRIORITY. Chapter 13 de­
scribes the operation of the $SETPRI system service. The field PCB$B_ 
AUTHPRI contains the base priority authorized at the time the process was 
created. A process without the ALTPRI privilege may raise and lower its 
priorities only between 0 and the contents of PCB$B_AUTHPRL 

System mechanisms that adjust priority dynamically are described in Sec­
tion 12.2.3. 

The fields PCB$B_PRIBSAV and PCB$B_PRISAV record the base and cur­
rent priority values at the time a process first locks a mutex, before it receives 
a temporary elevation into the real-time range. When the process unlocks 
the mutex, its priority values are restored from these fields. 

SCH$AL_PREEMPT _MASK is a 32-longword array of constants, with one 
longword for each priority. The array is indexed by internal priority; the 
longword at SCH$A1-PREEMPT _MASK corresponds to internal priority 0. 
The longword for a priority represents the priorities that it can preempt. Each 
bit in the longword represents a priority, with bit 0 representing external 
priority 0. The bits are organized that way because they are masked against 
the data in SCH$GL_ACTIVE_PRIORITY, described later in this section. 
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When a resident process becomes computable, scheduling code must de­
cide whether the process should preempt one currently executing. In earlier 
versions. of VMS, the test for preemption was a simple comparison of prior­
ities. In VMS Version 5.2, the test, while more complex, minimizes unnec­
essary rescheduling and improves overall system performance. Scheduling 
code indexes the preemption array using the priority of the newly com­
putable process. The selected mask indicates which priorities the process 
can preempt. The values in the masks implement two preemption rules and 
thus simplify the decision code: 

• A real-time process can preempt any process of lower priority . 
• A normal process at external priority n can preempt a process at priority 

n -3. 

Preventing preemption by a newly computable process only one or two pri­
ority levels higher than a current process helps to minimize movement of a 
process from one processor to another on an SMP system. If no other schedul­
ing events intervene, such a newly computable process will be favored at 
quantum end of the current process. 

The VMS Version 5.2 change in preemption policy may require system 
management changes on systems that have classes of users with different 
base priorities. In previous versions of VMS, defining the base priority for one 
class of processes (say, batch jobs) to be 3, and the base priority for another 
class (say, interactive users) to be 4, created an environment in which the 
processes of the higher priority were assured maximum responsiveness. To 
achieve the same effect in VMS Version 5.2, the base priorities for the two 
classes must differ by 3. 

The per-CPU database field CPU$B_CUR_PRI contains the internal form 
of the current priority of the process current on that CPU. If the CPU is idle 
and has no current I?rocess, the field contains -1. 

The priorities of the processes current on each member of an SMP system 
are described by two system data structures, defined in SYSTEM_DATA_ 
CELLS: 

• SCH$ALCPU_PRIORITY is a 32-longword array, with one longword for 
each priority. The array is indexed by internal priority; the longword at 
SCH$AL_CPU_PRIORITY corresponds to internal priority 0. Each bit in 
a longword represents one SMP member, with bit 0, for example, corre­
sponding to CPU ID 0. Bit m set in longword n means that the process 
current on CPU ID m is at internal priority n. 

• SCH$GL_ACTIVE_PRIORITY, summarizing SCH$AL_CPU_PRIORITY, 
has a bit for each priority. When set, a particular bit indicates that one 
or more SMP members have a current process at that priority. Bit 0, for 
example, corresponds to external priority 0. The longword is indexed by 
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external priority so that scheduling code can execute an FFS instruction to 
locate the lowest priority current process. 

Figure 12.5 shows how these data structures might look for an SMP system 
of two members with CPU IDs 0 and 2. CPU 0 is executing a process at 
external priority 5, and CPU 2 a process at external priority 8. For simplicity, 
most of the bits are omitted. 

Real-Time Priority Range 

Processes with priority levels 16 through 31 are considered real-time pro­
cesses. There are two scheduling characteristics that distinguish real-time 
processes from normal processes: 

• The current priority of a real-time process does not change over time unless 
there is a direct program or operator request to change it. No dynamic 
priority adjustment (see Section 12.2.3) is applied by the VMS executive . 

• A real-time process executes until it is preempted by a higher priority 
process or it enters a wait state (see Section 12.3.3). A real-time process 
is not susceptible to quantum end (see Section 12.5.2); it is not removed 
from execution because some interval of execution time has expired. 
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Taken in isolation, the real-time range of VMS priorities provides a sched­
uling environment like traditional real-time systems: preemptive, priority­
driven scheduling without a time slice or quantum. 

Normal Priority Range 

Most user processes are normal processes. All system processes except the 
swapper and the Files-11 Extended QIO Processor (XQP) cache server process 
are normal processes. 

The current priority of a normal process varies over time, while its base pri­
ority remains constant unless there is a direct program or operator request to 
change it. This behavior is the result of dynamic priority adjustment applied 
by the VMS system to favor I/0-bound processes and processes performing 
terminal I/O over those performing other types of 1/0 and compute-bound 
processes. The mechanism of priority adjustment is discussed in the follow­
ing section. 

Normal processes run in a time-sharing environment that allocates time 
slices (or quanta) to processes in turn. A normal process executes until one 
of the following events occurs: 

• It is preempted by a higher priority computable process. In VMS Ver­
sion 5.2, for one normal process to preempt another, the priority of the 
preempting process must be at least 3 more than that of the preempted 
process. (In VMS Versions 5.0 and 5.1, a higher priority process can pre­
empt a lower priority one.) 

• It enters a resource or event wait state. 
• It has used its current quantum, and there is another computable process 

at the same or higher priority. 

Processes with identical current priorities are scheduled on a round-robin 
basis. That is, apart from the affinity and capability constraints described in 
Section 12.4, each process at a given priority level executes in turn before 
any other process at that level executes again. 

Most normal processes experience round-robin scheduling because, by de­
fault, the user authorization file defines the base priority for users as the 
value of SYSGEN parameter DEFPRL Its usual value is 4. 

Dynamic Priority Adjustment 

Normal processes do not generally execute at a single priority level. Rather, 
the priority of a normal process changes over time in a range of zero to six 
priority levels above the base process priority. Two mechanisms provide this 
priority adjustment: 

• As a condition for which the process has been waiting is satisfied or a 
needed resource becomes available, its current priority may be recomputed 
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as its base plus a boost or priority increment to improve the scheduling 
response for the process (see Section 12.5.5.1) . 

• Each time the process executes without further system events (see Sec­
tion 12.5.5), the current priority is moved toward the base priority (or 
demoted) by one priority level (see Section 12.6.4). 

Over time, compute-bound process priorities tend to remain at their base 
priority levels, while 1/0-bound processes tend to have average current pri­
orities somewhat higher than their base priorities. 

An example of priority adjustment that occurs over time for several pro­
cesses is described in Section 12.5.5.1 and illustrated in Figure 12.9. 

A normal process occasionally has its priority boosted by the pixscan 
mechanism, described in Section 12.5.6. 

Temporary priority adjustment can also occur as a result of locking a 
mutex and through action by the $GETJPI system service, which is described 
in Chapter 13. 

12.3 SCHEDULING STATES 

12.3.1 

This section describes the various scheduling states and some of the transi­
tions among them. Figure 12.6 shows the common transitions but omits a 
few of the less frequent ones. 

Symbolic names for scheduling states, which are defined by the macro 
$STATEDEF, have the form SCH$C_mnemonic (for example, SCH$C_ 
COM). Table 12.1 lists the scheduling state names and the corresponding 
PCB$W _STATE values. 

Certain wait conditions are represented by two different scheduling states: 
one resident and one outswapped. A process waiting for a local event flag 
is in the LEF or the LEFO state, depending on its residence. Other schedul­
ing states, such as CEF, include both resident and outswapped processes. 
The PCB$V _RES bit in PCB$1-STS always specifies whether the process is 
resident or outswapped, regardless of its scheduling state. 

Current State 

A process in the CUR state is currently being executed. Its PCB address is 
recorded in its processor's per-CPU database at CPU$1-CURPCB. 

A CUR process makes a transition to the COM state when it is preempted 
by a higher priority process. A CUR process of normal priority also makes 
this transition when it reaches quantum end and there is another computable 
process of higher or equal priority. A CUR process can make a transition to 
any of the resident wait states by directly or indirectly requesting a system 
operation that cannot complete immediately. 

Direct requests like $HIBER and $SUSPND place the process in the vol­
untary wait states HIB and SUSP. Direct requests like $QIOW, $SYNCH, 
and $WAITFR place the process in the voluntary wait states LEF or CEF. 
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Table 12.1 Scheduling States 

State Name Mnemonic Value 
Collided page wait CO LPG 1 
Miscellaneous wait MWAIT 2 

Mutex wait 
Resource wait 
Job quota wait 

Common event flag wait CEF 3 
Page fault wait PFW 4 
Local event flag wait (resident) LEF 5 
Local event flag wait (outswappedl LEFO 6 
Hibernate wait (resident) HIB 7 
Hibernate wait (outswappedl HIBO 8 
Suspend wait (resident) SUSP 9 
Suspend wait (outswappedl SUS PO 10 
Free page wait FPG 11 
Computable (resident) COM 12 
Computable (outswappedl COMO 13 
Currently executing process CUR 14 

Indirect wait requests occur as a result of paging or contention for system 
resources. A process does not request PFW, FPG, COLPG, or MWAlT transi­
tions. Rather, the transitions to these wait states occur because direct service 
requests to the system cannot be completed or satisfied at the moment. 

Deletion of a process can only occur while it is CUR. The process's ad­
dress space and PHD are accessible only while it is current. Furthermore, 
process deletion in the context of the process being deleted enables the use 
of system services, such as Deassign 1/0 Channel ($DASSGN) and Delete 
Virtual Address Space ($DELTVA). Chapter 28 describes process deletion in 
detail. 

Computable States 

A process in the COM state is not waiting for events or resources, other than 
acquiring control of the CPU for execution. A COM process enters the CUR 
state after having been selected as the next process to run by SCH$SCHED 
(see Section 12.6.4). 

A COM process enters the COMO state when it is outswapped. 
A process in the COMO state is waiting for the swapper process to bring 

it into memory. As a COM process, it can then be scheduled for execution. 
Processes are created in the COMO state. 

A COM process selected for execution can enter the RWCAP miscella­
neous wait state if its capability and affinity requirements have no match 
on any active member of an SMP system. Section 12.4 describes capability 
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and affinity requirements. (Note that this particular transition is omitted 
from Figure 12.6.J 

Wait States 

A process that is not current or computable is waiting for the availability 
of a system resource or the occurrence of an event. The process is in one of 
several distinct wait states. The wait state reflects the particular condition 
that must be satisfied for the process to become computable again. 

A process in a wait state makes the transition to COM or COMO through 
a system event such as the availability of a requested resource or the sat­
isfaction of a wait condition. For most process wait states, the queuing of 
an asynchronous system trap (AST) makes a process computable even if the 
wait condition is not satisfied. 

Voluntary Wait States. Several scheduling states are associated with event 
flag waits: LEF, LEFO, and CEF. A process enters the LEF or CEF state as 
a result of requesting the $WAITFR, $WFLOR, $WFLAND, and $SYNCH 
system services directly or indirectly (for example, with a $QIOW or $ENQW 
system service call, issued either by the process or on its behalf by some 
system component such as Record Management Services (RMSJ). A process 
enters the LEF state when it waits for local event flags or the CEF state when 
it waits for flags in a common event flag cluster. 

An LEF process enters the LEFO state when it is outswapped. The transi­
tion from the LEF, LEFO, or CEF states to the computable (COM or COMO) 
states can occur as a result of an event flag's being set that satisfies the wait 
condition, AST queuing, or process deletion (a special case of AST queuing). 
Chapter 9 describes event flag waits in more detail. 

There are separate resident and outswapped states and queues for hiber­
nating and suspended processes. The $HIBER and $SUSPND system services 
cause processes to enter the HIB and SUSP wait states. Outswapping a HIB 
or SUSP process causes it to enter the HIBO or SUSPO state. 

A process makes the transition from the HIB or HIBO state to COM or 
COMO as a result of execution of a $WAKE or $SCHDWK system service, 
AST queuing, or process deletion. 

In VMS Version 5, the SUSP and SUSPO states are categorized by the 
access mode of the suspension. A process in supervisor mode suspension, 
the default, is made computable by the queuing of an AST. (The nature 
of its wait, however, enables only executive and kernel mode ASTs to be 
delivered.) A process in kernel mode suspension is not made computable 
by the enqueuing of an AST. Prior to VMS Version 5, the only form of 
suspension was kernel mode. A process in either type of suspension is made 
computable when another process requests the $RESUME system service for 
the suspended process. Chapter 7 contains further information on ASTs, and 
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Chapter 13 further information on the implementation of the $SUSPND and 
$HIBER system services. 

Process deletion, implemented with a kernel mode AST, makes any pro­
cess that is being deleted computable, even one in the SUSP or SUSPO state, 
because the target process is resumed before the AST is queued. 

Memory Management Wait States. Three process wait states are associated 
with memory management. For each there is a single queue that includes 
resident and outswapped processes. Memory management wait states are 
discussed in more detail in Chapter 16. 

A process enters the page fault IPFW) wait state when code running in 
its context refers to a page that is not in physical memory. While the page 
read is in progress, the process is placed into the PFW state. Completion of 
the page read, AST queuing, or process deletion can cause a PFW process to 
become COM or COMO, depending upon its PCB$V _RES bit value when 
the satisfying condition occurs. 

A process enters the free page IFPG) wait state when it requests a physical 
page to be added to its working set but there are no free pages to be allocated 
from the free page list. This state is essentially a resource wait that ends 
when the supply of free pages is replenished through modi£ed page writing, 
working set trimming, process outswapping, or virtual address space dele­
tion. When a physical page becomes available, all FPG processes are made 
COM or COMO. 

A process enters the collided page ICOLPG) wait state when more than one 
process causes page faults on the same shared page at the same time. The 
initial faulting process enters the PFW state, while the second and succeeding 
processes enter the COLPG state. All COLPG processes are made COM or 
COMO when the read operation completes. 

A PFW process can also enter the COLPG state following an AST: 

1. The process faults a page, private or shared, and is placed into PFW state. 
2. An AST is queued and delivered to the process. 
3. After the AST procedure completes, an REI instruction returns control 

to the instruction that caused the initial page fault. The instruction 
reexecutes. 

4. If the page is still not valid, it is in transition from its backing store, and 
the process is placed into COLPG. 

Miscellaneous Wait State. A process in the MWAIT state waits for the 
availability of a depleted system resource or job quota or a locked mutex. 
The contents of the field PCB$L_EFWM identify the entity for which the 
process waits: 

• A small positive integer identifies a system resource. 
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• The system virtual address of the process's JIB specifies that the process is 
waiting for a job quota . 

• The system virtual address of a mutex specifies that the process is waiting 
for that mutex. 

There is a single MWAIT queue for resident and outswapped processes. 

System Resource Miscellaneous Waits. A process may enter a resource wait 
if a resource it needs is not available. Common examples are the depletion of 
nonpaged pool or an already full mailbox. The process becomes computable 
when an executive routine declares the resource available. AST enqueuing 
makes the process computable, temporarily at least (see Section 12.5.1.4). 

Table 12.2 lists the resources associated with the MWAIT state. Their 
symbolic values are defined by the $RSNDEF macro. System utilities such 
as SDA, MONITOR, and the DCL command SHOW SYSTEM display the 
state of a process in a resource wait using one of the mnemonic names in 
this table. 

The system global SCH$GL_RESMASK summarizes the system resources 
for which processes in the MWAIT state are currently waiting. For example, 
bit 3 corresponds to RSN$_NPDYNMEM. When set, it indicates that one or 
more PCBs are in the MWAIT queue waiting for nonpaged pool to become 
available. 

RWAST is a general-purpose resource used primarily when the wait is 
expected to be satisfied by the queuing or delivery of an AST to the process. 

Table 12.2 'T)rpes of Resource MWAIT State 

Resource Wait Name Mnemonic Symbolic Name Number 

AST wait (wait for AST) RWAST RSN$_ASTWAIT 1 
Mailbox full RWMBX RSN$_MAILBOX 2 
Nonpaged dynamic memory RWNPG RSN$_NPDYNMEM 3 
Page file full 1 RWPFF RSN$_PGFILE 4 
Paged dynamic memory RWPAG RSN$_PGDYNMEM 5 
Breakthrough 1 RWBRK RSN$_BRKTHRU 6 
Image activation lock 1 RWIMG RSN$_IACLOCK .., 

I 

Job pooled quota 1 RWQUO RSN$_JQUOTA 8 
Lock identifier 1 RWLCK RSN$_LOCKID 9 
Swap file space 1 RWSWP RSN$_SWPFILE 10 
Modified page list empty RWMPE RSN$_MPLEMPTY 11 
Modified page writer busy RWMPB RSN$_MPWBUSY 12 
Distributed lock manager wait RWSCS RSN$_SCS 13 
Cluster transition RWCLU RSN$_CLUSTRAN 14 
CPU capability RWCAP RSN$_CPUCAP 15 
Cluster server process RWCSV RSN$_CLUSRV 16 

1 This resource wait is not currently used. 
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There is no concrete resource corresponding to the name RSN$_ASTWAIT. 
The Queue 1/0 Request ($QIO) system service can place a process into this 
resource wait when the process is not allowed to issue another buffered or 
direct 1/0 request until one completes. Another use of RSN$_ASTWAIT is 
to wait for all the 1/0 requests on a channel to complete after the process has 
requested the $DASSGN system service. A process about to be suspended 
or deleted waits for the RSN$_ASTWAIT resource until all its Files-11 XQP 
activity completes (see Chapter 7). 

A process is placed into RWMBX wait when it has resource wait mode 
enabled and tries to write to a mailbox that is full or has insufficient buffer 
space. 

A process is placed into RWNPG wait when it is unsuccessful in allocat­
ing nonpaged pool. With the expandability of nonpaged pool, this wait is 
relatively rare. 

A process is placed into RWPAG wait when it is unsuccessful in allocating 
paged pool. 

A process in RWMPE wait is waiting for the modified page writer to signal 
that it has flushed the modified page list. With VMS Version 5.2, the only 
process placed into this wait is one running the OPCCRASH image, which 
forces a flush of the modified page list prior to stopping the system. 

A process that faults a modified page out of its working set is placed into 
RWMPB wait when either of the following is true: 

• The modified page list contains more pages than the SYSGEN parameter 
MPW _ WAITLIMIT . 

• The modified page list contains more pages than the SYSGEN parame­
ter MPW _LOWAITLIMIT and the modified page writer is active, writing 
modified pages. 

Generally, this resource wait occurs on a system whose modified page list 
has grown faster than it could be written. A process in such a wait becomes 
computable when enough modified pages have been written so that there 
are MPW_LOWAITLIMIT or fewer pages left on the list. 

The lock manager uses RWSCS to stall execution of a process on a VAX­
cluster node when the lock manager must wait for a response from a remote 
system that has information about a particular lock resource. 

A process that issues any lock requests on any node of a V AXcluster in 
transition (that is, while a node is being added or removed) is placed into 
RWCLU wait until the V AXcluster membership stabilizes. 

A computable process that requires one or more CPU capabilities that 
cannot all be satisfied by a single active member of the SMP system is placed 
into RWCAP wait (see Section 12.4). 

There is a maximum number of outstanding transfer requests from one 
VAXcluster node to a remote node's cluster server process. When this limit 
has been reached and a process requests a service that would initiate another 
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such transfer, the process is placed into RWCSV wait until transfer requests 
complete. 

The Set Resource Wait Mode ($SETRWM) system service can cause a 
subsequent system service to return an error status, rather than placing the 
process in the MWAIT state. The $SETRWM system service sets the PCB$V _ 
SSRWAIT bit in PCB$L_STS. Disabling resource wait affects many directly 
requested operations (such as 1/0 requests or timer requests) but has no 
effect on allocation requests by the system on behalf of the user. Although 
a process can respond to a depleted resource error from a system service call 
or an RMS request, it has no means of reacting to a similar error in case of 
an unexpected event such as a page fault. For example, when the page fault 
service routine is unable to allocate an 1/0 request packet for a page read, it 
places the process into an MWAIT wait regardless of the value of PCB$V _ 
SSRWAIT. 

Mutex Miscellaneous Waits. A system routine that accesses data structures 
protected by a mutex places a process in the MWAIT state if the requested 
mutex ownership cannot be granted. Thus, the mutex wait state indicates 
a locked resource and not necessarily a depleted one. When the mutex is 
unlocked, each process waiting to lock that mutex is made COM or COMO 
to repeat its attempt to lock the mutex. AST queuing makes a mutex-waiting 
process computable only temporarily; the IPL in its stored processor status 
longword (PSL) is 2, blocking the AST delivery interrupt. 

Chapter 8 lists the names of mutexes whose addresses may be stored in 
PCB$L_EFWM and describes the mutex lock and unlock routines. System 
utilities such as SDA, MONITOR, and the DCL command SHOW SYSTEM 
display the state of a process that is waiting for a mutex as MUTEX. 

fob Quota Miscellaneous Waits. VMS Version 5 adds another type of mis­
cellaneous wait, a wait for a depleted job quota. Currently, there are two job 
quotas for which a process may have to wait: 

• Buffered 1/0 byte count quota-used in a large number of ways, including _ 
1/0 requests buffered in nonpaged pool, temporary mailboxes, and window 
control blocks 

• Timer queue entry (TQE) quota-used for timer requests and common 
event flag cluster creation 

When a job has one or more processes in such a wait, the field JIB$B_ 
FLAGS has a bit set to indicate each job quota for which processes in that 
job are waiting. Bit 0, when set, means that one or more processes are waiting 
for JIB$L_BYTCNT. Bit 1, when set, means that one or more processes are 
waiting for TQE quota. 

When another process in the job returns one of these quotas, the corre­
sponding bit is checked to see if there is any waiting process. If there is, the 
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waiting process is made computable to repeat its attempt to charge against 
the job quota. 

A process in a job quota wait has the address of its JIB in PCB$L_EFWM. 
System utilities such as SDA, MONITOR, and the DCL command SHOW 
SYSTEM display the state of a process that is waiting for a jobwide resource 
as MUTEX. 

12.4 CAPABIUTIES AND AFFINITY 

A capability represents a CPU attribute that a given process requires in order 
to execute. Generally a capability is a hardware feature. In an SMP system, 
a process's requirement for a particular capability may limit its execution 
to a subset of the available processors. For example, a process might require 
the capability CPB$V _PRIMARY and thus only be able to execute on the 
primary processor. 

Affinity is the requirement that a process execute on a specific proces­
sor of an SMP system. VMS provides for both explicit and implicit affinity. 
A process must explicitly request explicit affinity and must explicitly dis­
miss it. Explicit affinity might allow processes to be segregated by CPU. 
In contrast, a process acquires implicit affinity for a processor when there 
are advantages to its continuing execution on that processor. For example, a 
process that executed on a CPU with a large physical memory cache might 
have data still cached if it were placed back into execution on that CPU. 

VMS Version 5.2 contains data structures and code to implement capa­
bilities and implicit and explicit affinity at an executive level. It makes 
limited use of them currently and contains no user-level interface to ei­
ther mechanism. However, because their implementation is closely related 
to scheduling, this chapter describes the relevant data structures and code 
where appropriate. 

Each processor's per-CPU database field CPU$L_CAJ>ABILITY describes 
its set of capabilities. When a new CPU joins the SMP system, its capability 
mask is copied from the system default one, SCH$GL_DEFAULT _CPU_CAP, 
currently defined as 0. The 32-longword array SCH$AL_CPU_CAP, indexed 
by CPU ID, collects that information for all CPUs, simplifying a search 
for a CPU with a set of particular capabilities. In VMS Version 5.2, the only 
capability in use is that of being primary, which is set at system initialization 
in the primary processor's CPU$L_CAPABILITY field and entered in the 
SCH$AL_CPU_CAP array. 

The routines SCH$ADD_CPU_CAP and SCH$REMOVE_CPU_CAP, both 
in module SCHED, provide for dynamic changes to CPU capabilities. The 
contents of SCH$GL_CAPABILITY_SEQUENCE indicate to which gener­
ation the data in SCH$ALCPU_CAP belong; whenever the data changes 
by the addition or removal of a CPU capability, SCH$GL_CAPABILITY_ 
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SEQUENCE is incremented. Keeping track of the generation enables pro­
cesses with capability constraints to detect changes in the set of processors 
available to meet those constraints. 

Fields in each process's PCB describe its current and permanent capability 
requirements and affinity. 

PCB$LCAPABILITY and PCB$LPERMANENT _CAPABILITY are the 
current and permanent capability requirements. When a process is cre­
ated, the permanent capability mask is copied from the system default 
one, SCH$GLDEFAULT _PROCESS_CAP, currently defined as 0. The rou­
tines SCH$REQUIRE_CAPABILffY and SCH$RELEASE_CAPABILITY, both 
in module SCHED, provide for dynamic changes to process requirements. 
These routines initialize the target process's PCB$L_CURRENT _AFFINITY 
as a mask with bits set to represent the CPUs that satisfy the capability 
requirements. These are the CPUs on which the process can execute. The 
routines also copy the current value of SCH$GLCAPABILITY_SEQUENCE 
to PCB$LCAPABILITY _SEQ for future use as a validity check on the current 
affinity mask. 

Two of the process capability mask bits represent affinity: 

• CPB$V _IMPLICIT _AFFINITY, when set, means that the process has ac­
quired implicit affinity for a particular CPU. 

• CPB$V _EXPLICIT _AFFINITY, when set, means that the process has ac­
quired explicit affinity for a particular CPU. 

SCH$REQUIRE_CAPABILITY can be invoked to request that a particular 
process acquire current or permanent explicit affinity for a particular CPU. 
The routine stores a new value with only one bit set in the affected process's 
PCB$LCURRENT _AFFINITY and stores the CPU ID of the processor in 
PCB$LAFFINITY. If the request was for permanent affinity, it also stores 
the CPU ID in PCB$LPERMANENT_CPU_AFFINITY and sets the capa­
bility bit in PCB$LPERMANENT _CAPABILITY. The processor's CPU$W _ 
HARDAFF is incremented as a count of processes that have explicit affinity 
for it. 

Following are examples of executive routines that employ capabilities and 
explicit affinity: 

• The Set Time ($SETIME) system service must run on the primary proces­
sor when it reads and writes the time-of-year clock. It invokes SCH$RE­
QUIRE_CAPABILITY to require the current capability of primary proces­
sor. 

• The interval timer interrupt service routine runs on each SMP member but 
performs system timekeeping functions only on the primary processor. It 
tests the low bit of the current processor's per-CPU database field CPU$L 
CAPABILITY to determine whether it is running on the primary. 
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• When SMP$SHUTDOWN_CPU, in module SMPROUT, is invoked to shut 
down a particular CPU, it establishes explicit affinity for that CPU to cause 
itself to be rescheduled on that CPU if it is not already running on it. 

The routine SCH$ACQUIRE_AFFINITY can be invoked to request that 
a target process acquire implicit affinity for a particular CPU. The routine 
stores a new value for PCB$1-CURRENT _AFFINITY with only one bit set 
and the CPU ID in PCB$1-AFFINITY. It sets CPB$V _IMPLICIT _AFFINITY 
in the target process's PCB$1-CAPABILITY. When a process with implicit 
affinity is selected for execution, if its affinity is not for the current CPU, 
the scheduler returns the process to the compute queue and attempts to 
select another process to run. A successful alternative process is one whose 
priority is high enough so that it could not be preempted by the process with 
implicit affinity. 

Potentially, the process can be skipped for execution in this manner re­
peatedly up to the number in PCB$B_AFFINITY _SKIP, which is decremented 
at each failed attempt. PCB$B_AFFINITY _SKIP is initialized from the SYS­
GEN parameter AFFINITY _SKIP, whose default value is 2. When PCB$B_ 
AFFINITY_SKIP reaches 0 or whenever the scheduler cannot find an alter­
native process that can execute on this CPU, it breaks implicit affinity. That 
is, a process's having implicit affinity for one CPU is not a compelling rea­
son to leave another CPU idle. If PCB$L_AFFINITY_CALLBACK is nonzero, 
the scheduler calls the specified procedure to perform any processor-specific 
cleanup associated with breaking affinity. The procedure is called with the 
SCHED spinlock held, at IPL$_SCHED, and with two arguments, the address 
of the PCB and the ID of the CPU. Currently, no use is made of implicit 
affinity. 

At image rundown, the capability mask is restored from the permanent ca­
pability mask and the affinity from the permanent affinity. Explicit affinity 
counts in the per-CPU database are adjusted. If any change is required in ca­
pabilities or affinity, the image rundown routine requests an IPL 3 interrupt 
for the scheduler to determine where the process should run. 

At deletion of a process with explicit affinity, the CPU$W _HARDAFF field 
of its associated processor is decremented. 

12.5 SCHEDULING DYNAMICS 

In general, on a VMS system in equilibrium, the available processors execute 
the highest priority COM processes. A number of events can alter this 
equilibrium and require that the scheduler reschedule: that is, take a current 
process out of execution, saving its context; select another process to run; 
and load its context, placing it into execution. 

The principal events that require rescheduling are 

• A current process goes into a wait state. 
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• A current process reaches the end of its quantum, and there is another 
COM process of equal or higher priority . 

• A current process changes its priority, and there is a higher priority COM 
process. 

• There is no longer a match between the capabilities required by a current 
process and the processor on which it is executing . 

• A system event alters the scheduling state of a noncurrent process to COM, 
and its priority permits it to preempt a current process. 

Figures 12.7, 12.8, and 12.12 show the relations among the routines in­
volved in these events. The sections that follow describe the events and the 
routines that handle them. Section 12.6 describes the rescheduling interrupt. 

Placing a Current Process into a Wait State 

When a process directly or indirectly requests a system operation for which 
it must wait, the process is placed into a wait state. The actions to place 
a process into a wait state are centralized in the routine SCH$WAIT, in 
module RSE. 

The routines that invoke SCH$WAIT include 

• EXE$WAITFR, EXE$WFLOR, and EXE$WFLAND, in module SYSWAIT, to 
place a process into an LEF or CEF wait (see Chapter 9) 

• EXE$HIBER, in module SYSPCNTRL, to place a process into a HIB wait 
(see Chapter 13) 

• EXE$SUSPND and SUSPND, in module SYSPCNTRL, to place a process 
into a SUSP wait (see Chapter 13) 

• EXE$JIB_WAIT, in module MUTEX, to place a process into an MWAIT for 
JIB byte count quota 

• SCH$LOCKR and SCH$LOCKW, in module MUTEX, to place a process 
into an MWAIT for a mutex (see Chapter 8) 

• SCH$RWAIT, in module MUTEX, to place a process into an MWAIT for a 
system resource 

Figure 12.7 shows the invokers of SCH$WAIT. 
SCH$WAIT is entered in process context at IPL$_SCHED and with the 

SCHED spinlock held. Register arguments specify the addresses of the soft­
ware PCB of the current process and the wait queue into which the process 
is to be inserted. 

Depending on which subentry point of SCH$WAIT is invoked, some or all 
of the following operations are performed: 

I. SCH$WAIT assumes it has been entered from a system service. It re­
moves the call frame from the kernel stack and establishes the program 
counter (PC) at which the process will wait, as described in the following 
section. 
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Figure 12.7 
Paths Leading to a Process Wait 

2. At subentry point SCH$WAITK, it changes the process state to that in 
the WQH$W _ WQSTATE field of the specified wait queue header, inserts 
the PCB into the wait queue, and increments WQH$W _ WQCNT to show 
the addition of a process to the queue. 

3. At subentry point SCH$WAITL, it executes a SVPCTX instruction to re" 
move the current process from execution. 

4. At subentry point SCH$WAITM, it charges the SYSGEN parameter IOTA 
against the process quantum, as described in Section 12.5.2. It also adjusts 
PHD$L_ TIMREF by the value of IOTA. PHD$L_ TIMREF and the process 
quantum must be adjusted together for automatic working set limit 
adjustment to be responsive (see Chapter 17). 

5. SCH$WAIT copies the contents of the system global EXE$GL_ABSTIM_ 
TICS, the system time in interval timer ticks, to PCB$L_ WAITIME, to 
record the time at which the process began its wait. If the process remains 
in a wait state for long, it becomes a candidate for working set shrinkage 
and possibly outswapping (see Chapter 18). 

6. It tests PR$_ASTLVL and the process's saved PSL to determine whether 
a deliverable AST has been queued to the process but not yet deliv­
ered. This test prevents an AST event that should take the process out 
of its wait from being ignored. If a deliverable AST has been queued, 
SCH$WAIT reports an AST queuing event to SCH$RSE (see 
Section 12.5.5), which changes the process state to COM. 

7. SCH$WAIT then branches to SCH$SCHED (see Section 12.6.4), the sec­
ond half of the rescheduling interrupt service routine, to select a new 
process to run. 

One of the responsibilities of the routines that invoke SCH$WAIT and 
its subentry points is to ensure that a process can reenter the appropriate 
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wait state, if necessary, after the process is placed back into execution as 
the result of AST delivery. (Recall that AST enqueuing makes a process in 
most wait states computable.) These routines therefore establish a carefully 
chosen PG and PSL at which the process is to wait. The PC and PSL control 
what thread of execution will run, and its access mode and IPL. Its access 
mode affects AST delivery: only ASTs equally or more privileged can be 
delivered. If the access mode is kernel, then the wait IPL is also significant: 
an IPL of 2 blocks AST delivery interrupts. Several different techniques are 
used, depending on the particular wait state being entered. 

Context for CEF, HIB, or LEF Wait States. When a process enters a CEF, 
HIB, or LEF wait state, the system service establishes the system service 
CHMK exception PSL as the wait PSL. Consequently, the process waits in 
the access mode in which the system service was issued. 

For the wait PC, the code subtracts 4 from the CHMK exception PC so that 
it is the address of the CHMx instruction in the system service vector. Chap­
ter 6 contains more information about system service vectors and change 
mode exceptions. 

If an AST is delivered to a process in such a wait state, when the AST 
exits, the AST delivery interrupt service routine's REI uses the wait PC and 
PSL. The system service executes again, typically placing the process back 
into the wait state. 

Context for Memory Management Wait States. Only the page fault exception 
service routine (see Chapter 16) places processes into the three wait states 
associated with memory management. This routine uses the page fault ex­
ception PC and PSL as the wait PC and PSL. Because the PSL reflects the 
access mode in which the page fault occurred, ASTs can be delivered for that 
and all inner access modes. The exception PC does not need to be changed; 
a page fault exception pushes the PC of the faulting instruction onto the 
exception stack. 

After an AST executes in such a process, the process executes the faulting 
instruction again. If the reason for the fault has been removed (a free page 
became available or the page read completedj while the AST was being 
delivered or was executing, the process simply continues with its execution. 
If the situation that caused the process to wait still exists, the process 
reincurs the page fault and is placed back into a memory management wait 
state. (Note that a process that was initially in a PFW state would be placed 
into a COLPG state by such a sequence of events.) 

Context for a SUSP Wait. A process is suspended as the result of executing 
an AST. In VMS Version 5, the access mode of the AST can be supervisor or 
kernel mode, depending on which form of suspend is requested. The default 
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is supervisor mode. While a process is suspended in kernel mode, the wait 
PC is an address in the kernel AST that caused the process to enter the 
suspend state. The saved PSL indicates kernel mode and IPL 0. ASTs can be 
queued to a process suspended in kernel mode but not delivered. That is, 
when an AST is queued to a kernel mode suspended process, the AST event 
is ignored. 

While a process is suspended in supervisor mode, the saved PC is an 
address in the supervisor mode AST. AST enqueuing makes the process 
computable. When the process is placed into execution, a kernel or executive 
mode AST can be executed, but a user or supervisor mode AST cannot: the 
AST control block remains queued, and the interrupt is dismissed. In either 
case, an REI instruction is executed, which causes control to return to the 
wait PC. It repeats the test that suspended the process. If the process has not 
been resumed, it is suspended again. 

Context for an MWAIT Wait. When a process is placed into a wait for a 
mutex, its saved PC is either SCH$LOCKR or SCH$LOCKW, depending on 
whether it is attempting to lock the mutex for read or write access. Its saved 
PSL indicates kernel mode and IPL 2, making it impossible for a process in 
an MWAIT state waiting for a mutex to receive ASTs. 

A process can also be placed into an MWAIT state while waiting for an 
arbitrary system resource. In this case, the invoker of routine SCH$RWAIT, 
in module MUTEX, determines the wait PC and PSL. 

A process with resource wait mode enabled can be placed into an MWAIT 
state while waiting for. a job quota, either byte count or TQE quota. The 
routines that invoke EXE$JIB_ WAIT determine the wait PC and PSL. 

In the case of byte count, the routine EXE$DEBIT _BYTCNT, in module 
EXSUBROUT, checks whether the job has sufficient byte count quota for a 
particular request. If it does not, EXE$DEBIT _BYTCNT places the process 
into a wait with kernel access mode and IPL equal to that at entry to 
EXE$DEBIT_BYTCNT. Typically, this routine and its subentry points are 
invoked from device driver preprocessing routines at IPL 2, and thus the 
process is waited at IPL 2. The wait PC is an address within EXE$DEBIT _ 
BYTCNT that repeats the test. 

In the case of TQE quota, the process is placed into a wait similar to that 
for HIB, LEF, and CEF-its wait PC is the address of the CHMK in the system 
service vector and its PSL is the change mode exception PSL, so that the 
process waits in the access mode from which it requested the service. 

Quantum Expiration 

The SYSGEN parameter QUANTUM defines the size of the tiine slice for the 
round-robin scheduling of normal processes. The quantum also determines, 
for most process states, the minimum amount of time a process remains 
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in memory after an inswap operation, but it is not an absolute guarantee of 
memory residence. The swapper's use of the initial quantum flag in selecting 
an outswap candidate is described in Chapter 18. The value of QUANTUM 
is the number of IO-millisecond intervals (interval timer ticks) in the quan­
tum. The default QUANTUM value of 20, therefore, produces a scheduling 
interval of 200 milliseconds. 

A process's quantum is expressed as a negative number of timer ticks. After 
each IO-millisecond interval, the interval timer interrupt service routine 
increments the PHD$W _QUANT field in the current process's PHD. When 
this value becomes zero or positive, the interrupt service routine requests a 
software timer interrupt. The software timer interrupt service routine signals 
a quantum-end event by invoking the subroutine SCH$QEND, in module 
RSE. 

An additional deduction from quantum is governed by the special SYS­
GEN parameter IOTA. Its default value is 2, representing two IO-millisecond 
ticks. This value is deducted from PHD$W _QUANT each time a process 
enters a wait state. This mechanism ensures that all processes experience 
quantum-end events with some regularity. Processes that are compute-bound 
experience quantum end as a result of using a certain amount of CPU time. 
Processes that are I/0-bound experience quantum end as a result of perform­
ing a reasonable number of I/O requests. 

The routine SCH$QEND is executed whenever a current process reaches 
quantum end. It runs on the same CPU as the process, but it executes in 
system context, as part of the software timer interrupt service routine. Its 
minimum actions are to reset the field PHD$W _QUANT to the full quantum 
value; clear the initial quantum flag, PCB$V _INQUAN in the field PCB$L_ 
STS; and record EXE$GL_ABSTIM_ TICS in PCB$L_ONQTIME. It performs 
those actions for both real-time and normal processes. 

For a normal process, SCH$QEND takes the following additional steps: 

1. SCH$QEND updates PCB$1-PIXHIST, the pixscan history summary 
longword (see Section 12.5.6), by shifting it left one bit. 

2. SCH$QEND tests whether a CPU time limit has been imposed and, 
if so, compares the process's limit field, PHD$1-CPULIM, against its 
accumulated CPU time, PHD$1-CPUTIM, to determine whether that 
limit has been reached. If the CPU limit has been reached, each access 
mode has an interval of time to clean up or run down before the image 
exits and the process is deleted. The size of the warning interval for each 
access mode is defined by the SYSGEN parameter EXTRACPU, which 
has a default value of IO seconds. 

3. SCH$QEND checks whether automatic working set limit adjustment 
is enabled and appropriate for this process. If both are true, the size of 
the process working set list may be expanded or contracted. Chapter 17 
describes automatic working set limit adjustment. 
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4. If there is an inswap candidate (if SCH$GL_COMOQS is nonzero, in­
dicating at least one nonempty COMO state queue), SCH$QEND sets 
the current priority of the process to its base priority. It changes, asap­
propriate, CPU$B_CUR_PRI, SCH$AL_CPU_PRIORITY, and SCH$GL_ 
ACTIVE_PRIORITY. 

Furthermore, it invokes SCH$SWPWAKE, in module RSE, to awaken 
the swapper. As a computable, resident, real-time process of software 
priority 16, the swapper is likely to be the next process scheduled. 

5. SCH$QEND checks whether there is a COM process of equal or higher 
priority. If there is none, this process will continue to execute. If its 
current priority is not equal to its base priority, SCH$QEND decrements 
its current priority, making the appropriate changes to CPU$B_CUR_ 
PRI, SCH$AL_CPU_PRIORITY, and SCH$GL_ACTIVE_PRIORITY. This 
decrement is equivalent to the one made every time a process is placed 
into execution. SCH$QEND then returns to the software timer interrupt 
service routine. 

This behavior is new with VMS Version 5.2. It saves unnecessary 
SVPCTX and LDPCTX instructions (and the associated translation buffef. 
flush) when this process continues to be the best candidate to execute. 
Earlier versions of VMS simply requested a rescheduling interrupt. 

6. If there is a COM process of equal or higher priority, SCH$QEND re­
quests an IPL 3 rescheduling interrupt and returns. When the interrupt 
is granted, the current process will be taken out of execution and another 
selected to execute. 

Figure 12.12 includes SCH$QEND as a requestor of a rescheduling interrup~. 

Changing the Priority of a Current Process 

Several routines change the priority of a current process: 

• SCH$QEND, when a normal process reaches quantum end and there is a 
COMO process 

• SCH$QEND, when a normal process not yet at its base priority will con­
tinue to execute (see Section 12.5.2 for a description of quantum-end 
processing) 

• EXE$SETPRI, in module SYSSETPRI, when a process requests the $SETPRI 
system service (see Chapter 13) 

• SCH$LOCKR and SCH$LOCKW, in module MUTEX, when a normal 
process locks a mutex and gets a temporary alteration to priority 16 

• SCH$UNLOCK, in module MUTEX, when a normal process unlocks a 
mutex and has its priority restored (see Chapter 8 for information on 
locking and unlocking mutexes) 

• EXE$GETJPI, in module SYSGETJPI, when the target process's original 
priority is restored after a boost (see Chapter 36) 
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• EXE$RESCHED, in module SYSPARPRC, when a process requests the 
Reschedule ($RESCHED) system service to lower its priority to its base 
and request a rescheduling interrupt (see Chapter 13) 

The actions to change the priority of a current process are centralized 
in the routine SCH$CHANGE_CUR_PRIORITY, in module RSE. All the 
routines in the previous list except the first invoke SCH$CHANGE_CUR_ 
PRIORITY. Figure 12.12 shows its invokers. 

SCH$CHANGE_CUR_PRIORITY is entered at IPL$_SCHED and with 
the SCHED spinlock held. It can run in system context, invoked from 
SCH$QEND; in the context of the process whose priority is changing; or 
in the context of a process requesting a $SETPRI service on behalf of an­
other process. 

Register arguments specify the address of the software PCB of the target 
process, the one whose priority is to be changed; the address of the per-CPU 
database of its CPU; and the new priority. 

SCH$CHANGE_CUR_PRIORITY takes the following steps: 

1. It clears the bit corresponding to the CPU's ID in the longword corre­
sponding to the priority in the array at SCH$AL_CPU_PRIORITY. 

2. If there are no other processes at this priority current on any CPU, 
it clears the bit corresponding to that priority in SCH$GL_ACTIVE_ 
PRIORITY. 

3. It copies the new priority to PCB$B_PRI and CPU$B_CUR_PRI. 
4. It sets the bit corresponding to the CPU's ID in the longword correspond­

ing to the priority in the array at SCH$ALCPU_PRIORITY. 
5. It sets the bit corresponding to the process's new priority in SCH$GL_ 

ACTIVE_PRIORITY. 
6. It executes an FFS instruction to locate the least significant set bit in 

the longword SCH$GL_COMQS. The located bit position indicates the 
highest priority nonempty computable resident state queue. 

7. It compares the changed priority of the target process with that of the 
highest priority COM process. If the changed priority is higher or equal, 
SCH$CHANGE_CUR_PRIORITY returns. 

8. Otherwise, it requests a rescheduling interrupt on the CPU on which the 
target process is current. 

-If SCH$CHANGE_CUR_PRIORITY and the target process are exe­
cuting on the same CPU, this is simply an IPL 3 software interrupt 
request. 

-If the CPUs are different, SCH$CHANGE_CUR_PRIORITY requests 
an interprocessor interrupt on the other CPU so that the IPL 3 interrupt 
can be requested there. Chapter 34 describes interprocessor interrupts. 

Clearly, this priority comparison can result in rescheduling when the pri­
ority of a current process is lowered. Moreover, under some circumstances, it 
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could also result in rescheduling even when the priority of a current process 
is raised a small amount. Because preemption of a current process by a 
newly computable process requires a priority difference of 3, a normal com­
putable process might continue to execute despite the existence of a slightly 
higher priority process that had just become computable. Under these cir­
cumstances, if the current process were to raise its priority to a value less 
than that of the newly computable process, the current process would be 
rescheduled. 

Capability Mismatch 

This section describes how a mismatch in capability requirements occurs 
between a current process and the processor on which it is executing and 
how the mismatch is handled. 

There are several routines that can affect process capability and affinity 
requirements and CPU capabilities so as to produce a mismatch. 

SCH$ACQUIRE_AFFINITY, in module SCHED, can be called to request 
that a current process acquire implicit affinity for a processor other than the 
one on which it is executing. If the process already has implicit affinity or 
has explicit affinity for a different CPU, the routine returns an error status. 
Otherwise, it performs the following steps: · 

1. SCH$ACQUIRE_AFFINITY initializes PCB$B_AFFINITY _SKIP and sets 
CPB$V _IMPLICIT _AFFINITY in PCB$L_CAPABILITY. It stores the ad­
dress of the routine to be called if implicit affinity is broken. 

2. It stores the intended CPU ID in PCB$L_AFFINITY and tests whether 
the process is current. 

3. If so, it compares PCB$L_AFFINITY to PCB$L_CPU_ID. If the two are 
different, SCH$ACQUIRE_AFFINITY requests a rescheduling interrupt. 
If the process is current on a different CPU than the one on which 
SCH$ACQUIRE_AFFINITY is executing, the routine requests an inter­
processor interrupt so that the rescheduling interrupt is requested on the 
right CPU. 

SCH$REMOVE_CPU_CAP, in module SCHED, is called to remove a ca­
pability from one or all CPUs. It takes the following steps, looping through 
them if all CPUs are to be affected: 

1. It increments SCH$GL_CAPABILITY_SEQUENCE to indicate a change 
in the capabilities of the active members of the SMP system. 

2. It clears the bit corresponding to the capability in the target CPU's 
per-CPU database field CPU$L_CAPABILITY and its longword in the 
SCH$AL_CPU_CAP array. 

3. It gets the address of the process current on that CPU from CPU$L_ 
CURPCB and examines its capability mask. 
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4. If this capability is not required by the process current on the target CPU, 
the routine returns. 

5. Otherwise, it requests a rescheduling interrupt, through an interprocessor 
interrupt if necessary. 

SCH$REQUIRE_CAPABILITY, in module SCHED, is called for a particular 
process to acquire a new capability. It takes the following steps: 

1. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED. 
2. It sets the capability in the target process's PCB$LCAPABILITY. 
3. If a different explicit affinity is being requested than was previously 

set, the routine decrements CPU$W _HARDAFF of the current CPU and 
increments it for the new CPU. It stores the new CPU ID in PCB$L 
AFFINITY. 

4. If this is a request to alter permanent capabilities, the routine also 
changes PCB$LPERMANENT _CAPABILITY. 

5. It invokes SCH$CALCULATE_AFFINITY to get the new current affinity 
mask. 

6. It then checks whether the process is current. 
7. If so, it compares PCB$LCURRENT_AFFINITY to PCB$LCPU_ID. If 

the two are different, the routine requests a rescheduling interrupt, 
through an interprocessor interrupt if necessary. 

8. It releases the SCHED spinlock. 

EXE$RUNDWN, in module SYSRUNDWN, implements the Image Run­
down ($RUNDWN) system service. It takes the following steps to reset the 
process's current capabilities: 

1. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED. 
2. It compares the current process's PCB$LCAPABILITY with PCB$L 

PERMANENT _CAPABILITY and PCB$LAFFINITY with PCB$L_ 
PERMANENT_CPU_AFFINITY. If neither has changed, this part of run­
down is complete. EXE$RUNDWN releases the SCHED spinlock and 
continues with other processing. 

3. If there is an affinity change, then the routine decrements CPU$W _ 
HARbAFF for the CPU to which the process currently has explicit affin­
ity, if any. It increments it for the CPU to which the process has perma­
nent affinity, if any. 

4. It resets the capabilities and clears PCB$LCURRENT _AFFINITY and 
PCB$LCAPABILITY_SEQ. It then requests a rescheduling interrupt so 
that the rescheduling interrupt service routine will determine where the 
process should continue execution. 

5. It releases the SCHED spinlock, restoring the previous IPL and permitting 
the rescheduling interrupt to be granted. 
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Event Reporting 

This section describes how a process makes a transition to a COM state and 
how it preempts a current process. 

A system event potentially changes the scheduling state of a process, 
making it computable, memory-resident, or outswapped. Examples of system 
events include the setting of an event flag for which a process is waiting, 
AST queuing, and page fault 1/0 completion. An executive routine aware 
of a system event that may take a process out of a wait state reports it on 
behalf of the affected process. 

Holding the SCHED spinlock and running at IPL$_SCHED, such a routine 
invokes the RPTEVT macro, which generates the following code: 

JSB SCH$RSE 
.BYTE EVT$_event_name 

The byte event value identifies the event being reported. The address of the 
event value is pushed onto the stack by the JSB instruction. 

SCH$RSE is responsible for making many of the process state transitions 
shown in Figure 12.6. Figure 12.8 shows the invokers of SCH$RSE and its 
entry points SCH$CHSE and SCH$CHSEP. 

SCH$RSE is passed the address of the PCB of the affected process and a 
priority increment class in registers. If the event makes the process com­
putable, the process may receive a priority boost, depending on the priority 
class, its current priority, and its base priority. 

SCH$RSE and routines it invokes, all in module RSE, perform the follow­
ing operations: 

1. SCH$RSE obtains the byte event value, which is pointed to by the return 
PC on the stack, and increments the return PC to point to the next 
instruction. 

2. It checks an internal table to determine whether the event is significant 
for the process, based on its current state. 

Each event has a bit mask defining which states this event can affect. 
The current state of the process is obtained from the PCB$W _STATE 
field. 

-A wake event is only significant for processes that are hibernating (HIB 
or HIBO states). 

-An outswap event is only significant for the four states (COM, HIB, 
LEF, and SUSP) where a wait queue change is required. 

- The queuing of an AST is significant to all process states except kernel 
mode SUSP and SUSPO, COM, COMO, and CUR, and results in a 
transition to COM or COMO. 

3. If the event is not significant for the current process state, SCH$RSE 
ignores the event and simply executes an RSB instruction. 
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~ Subroutine invocation 

~ Interrupt request 

Figure 12.8 
Paths to Event Reporting 

4. For an outswap event producing an LEF to LEPO, HIB to HIBO, or SUSP to 
SUSPO transition, SCH$RSE simply removes the PCB of the process from 
the resident wait queue and inserts it in the corresponding outswapped 
wait queue. It adjusts the corresponding wait queue header count fields 
and PCB$W _STATE. It then executes an RSB instruction to return. 

5. For an outswap event producing a COM to COMO transition, SCH$RSE 
removes the PCB from the COM priority queue corresponding to PCB$B_ 
PRI and then inserts it into the corresponding COMO priority queue. It 
changes PCB$W _STATE. It clears the SCH$GLCOMQS compute queue 
summary longword bit corresponding to PCB$B_PRI if that COM queue 
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is now empty and unconditionally sets the corresponding SCH$GL_ 
COMOQS bit. It then executes an RSB instruction to return. 

6. For transitions from the LEF or resident CEF state to the COM state, 
SCH$RSE adds 4 to the saved PC in the hardware PCB so that it points 
past the CHMx instruction. This modification to the PC value allows the 
process to begin execution immediately following the system service 
request rather than re-requesting a wait-for system service for a flag that 
is already set. The check for CEF residence is necessary because the saved 
PC of a nonresident process is usually not accessible. (The saved PC is 
stored in the hardware PCB in the PHD, which may be outswapped if the 
process is not resident.) It then executes an RSB instruction to return. 

7. For any transition that makes a process computable, SCH$RSE removes 
the process from its wait queue and decrements the wait queue header 
count. 

8. It subtracts PCB$1-WAITIME from the current time in interval timer 
ticks and adds the result to PCB$1-0NQTIME to subtract out from it 
the effect of the time spent waiting. 

9. It performs whatever priority adjustment is appropriate (see 
Section 12.5.5.1 ). 

10. If the now computable process is outswapped at present, SCH$RSE 
changes its state to COMO, inserts the process into the COMO queue 
corresponding to its priority, and unconditionally sets the SCH$GL_ 
COMOQS summary bit corresponding to the selected priority queue. It 
awakens the swapper and returns. Later, after the process is inswapped, 
it will become eligible for execution. 

11. If the now computable process is resident, SCH$RSE changes its state 
to COM, inserts the process into the COM queue corresponding to its 
priority, and unconditionally sets the SCH$GL_COMQS summary bit 
corresponding to the selected priority queue. 

It compares the process's current affinity mask with the mask of idle 
CPUs. If there are potential CPUs on which the process can execute, 
SCH$RSE clears SCH$GL_IDLE_CPUS as a signal to each of them to try 
to reschedule (see Section 12.6.4). If it appears that there are no potential 
CPUs, SCH$RSE checks that the process's PCB$L_CAPABILITY_SEQ is 
current, recalculating current affinity if it is not. If there are still no idle 
candidate CPUs and the process's priority is not high enough for it to 
preempt any active process, SCH$RSE simply executes an RSB instruction 
to return. 

If the process's priority permits it to preempt some active processes, 
SCH$RSE searches for a candidate to preempt on a CPU whose capabili­
ties fit. If it finds one, it requests either an interprocessor interrupt or an 
IPL 3 interrupt, depending on where the process to be preempted is exe­
cuting. When the interprocessor interrupt is granted, its service routine 
will request an IPL 3 interrupt to cause rescheduling. 
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On a uniprocessor system, the issue is simpler: if there is a current 
process, can it be preempted by the newly computable process? The 
preemption test is based upon the SCH$AL_PREEMPT _MASK array, 
described in Section 12.2. If there is no current process or if it can be 
preempted by the newly computable one, SCH$RSE requests an IPL 3 
software interrupt. 

SCH$RSE then executes an RSB instruction to return. 

System Events and Associated Priority Boosts. System routines that report 
events to SCH$RSE not only describe the event and the process to which it 
applies but also specify one of five classes of priority increments or boosts 
that may be applied to the base priority of the process. Table 12.3 lists the 
events, priority class, and potential amount of priority increment applied to 
the process. The table does not show AST queuing, because system routines 
queuing ASTs to a process can select any of the priority increment classes 
to be associated with the queuing of an AST. 

The actual software priority of the process is determined by the following 
steps: 

1. The priority boost for the event class (see Table 12.3) is added to the base 
priority of the process (PCB$B_PRIB). 

2. If the process has a current priority higher than the result of step 1, the 
current priority is retained (as occurs in Figure 12.9, event 13). 

3. If the higher priority of steps 1 and 2 is more than 15, then the base pri­
ority of the process is used. (Note that this test accomplishes two checks 
at the same time. First, all real-time processes fit this criterion, with the 
result that real-time processes do not have their priorities adjusted in re­
sponse to system events. Second, priority boosts cannot move a normal 
process into the real-time priority range.) 

A side effect of step 3 is that real-time processes always execute at their 
base priorities. Further, note that normal processes with base priorities from 
10 to 15 do not always receive priority increments as events occur. As the 
base priority of a normal process is moved closer to 15, the process spends 
a greater amount of time at its base priority. Priority 14 and 15 processes 
experience no priority boosts. Thus, this strategy benefits those processes 
that most need it-1/0-bound and interactive processes with base priorities 
of 4 through 9. Processes with elevated base priorities do not require this 
assistance as they are always at these levels. 

An example of priority adjustment that occurs over time for several pro­
cesses is given in Figure 12.9. The following notes relate to the event num­
bers along the time axis of the figure: 

G) Process C becomes computable. Process A is preempted. 
G) C hibernates. A executes again, one priority level lower. 
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Table 12.3 System Events and Associated Priority Boosts 

Priority 
Event Priority Class 1 Boost 

Page fault read complete 0 (PRI$_NULL) 0 
Inswap 0 0 
Outswap 0 0 
Collided page available 0 0 
Quantum end 0 02 
$GETxx I completion 3 0 0 
$SNDJBC completion 3 0 0 
Direct I/O completion 3 1 (PRI$_IOCOM) 2 
Nonterminal buffered I/O completion 3 1 2 
Update section write completion 3 1 2 
Set priority 1 2 
Event flag set through $SETEF 1 2 
Modified write of deleted page complete 1 2 
Resource available 2 (PRI$_RESAVL) 3 
Mutex available 2 3 
Job quota returned 2 3 
Free page available 2 3 
Resource lock granted 3 2 3 
Wake a process 2 3 
Resume a process 2 3 
Resume a process for deletion 2 3 
Timer request expiration 3 2 (PR!$_ TIMER) 3 
Terminal output completion 3 3 (PRI$_ TOCOM) 4 
Terminal input completion 3 4 (PRI$_ TICOM) 6 
Process creation 4 6 

1 Routines that report system events pass an increment class to the scheduler. 
The scheduler uses this class as a byte index into a table of values (local symbol 
B_PINC in module RSE) to compute the actual boost. 

2 When a normal process reaches quantum end, its priority is lowered to its base 
if there is a COMO process. Otherwise, the process's priority is decremented. 

3 This priority boost is part of reporting that the event flag associated with the 
request has been set. An AST may be queued to the process as well, with the 
same boost specified. The process priority is affected only if the process is in a 
wait. 

G) A experiences quantum end. Because there is a computable outswapped 
process (which is BJ, A is rescheduled at its base priority. 

QThe swapper process now executes to inswap B, and Bis scheduled for 
execution. 

G) B is preempted by C. 
G)B executes again, one priority level lower. . 
G) B requests an 1/0 operation to a device other than a terminal. A executes 

at its base priority. 
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G) A requests a terminal output operation and waits for its completion. There 
is no process that can be scheduled. The idle loop (see Section 12.6.4) 
executes. 

G)A executes following I/O completion at its base priority+ 3. (The applied 
boost was 4, and A's priority was subsequently decremented when it was 
rescheduled.) 

@A is preempted by C. 
@A executes again, one priority level lower. 
@A experiences quantum end and is rescheduled at one priority level lower. 

A's priority is not lowered to its base because there is no computable 
outswapped process. 

@B's output completes. A priority boost of 2 is not applied to B's base pri­
ority because the result would be less than B's current priority. Although 
B's priority is higher than that of A, it is not high enough to preempt A, 
which continues to execute until quantum end. B then executes. 

C!;}B is preempted by C. 
@B executes again, one priority level lower. 
@B requests an I/O operation. A executes again, one priority level lower. 

(A has reached its base priority.) 
@A experiences quantum end, and because there are no other computable 

processes of equal or higher priority, A continues to execute at the same 
priority (its base priority). 

@A is preempted by C. 
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PIXSCAN Priority Boosts 

The pixscan mechanism gives occasional priority boosts to normal priority 
COM and COMO processes. The SYSGEN parameter PIXSCAN specifies 
the maximum number of processes that can receive this boost each second. 
The priority boost prevents a high-priority, compute-intensive job from con­
tinuously blocking lower priority processes and causing potential deadlocks. 
A deadlock might occur, for example, if a low-priority process acquired a 
volume lock on a critical disk but could not receive enough CPU time to 
complete its use of the lock and release it. 

The mechanism is implemented in the routine SCH$PIXSCAN, in module 
RSE, invoked once a second from EXE$TIMEOUT (see Chapter 11 ). 

SCH$PIXSCAN takes the following steps: 

1. It first tests whether SGN$GW _PIXSCAN, the SYSGEN parameter, is 
0. A zero value disables this mechanism, and SCH$PIXSCAN simply 
returns to its invoker. Its default value is 1. 

2. A nonzero value in SGN$GW _PIXSCAN is the maximum number of 
processes that may be boosted. SCH$PIXSCAN acquires the SCHED 
spinlock. No IPL change is necessary because it is already executing at 
IPL 8. 

3. SCH$PIXSCAN determines whether there are any processes eligible for 
boost, that is, COM and COMO processes with external priorities 0 
through 15. If there are none, it releases the SCHED spinlock and returns. 

4. If there are eligible processes, it determines the priority of the highest 
priority normal process that is CUR, COM, or COMO. This is the value 
to which selected processes will be boosted. 

5. SCH$PIXSCAN uses the low bit of EXE$GL_ABSTIM as a "coin" to de­
termine whether to begin scanning each priority level's compute queues 
with the COM or COMO queue. In an outer loop, it scans the COM and 
COMO queues, starting with the (external) priority 0. SCH$PIXSCAN 
stops when one of the following occurs: 

-It reaches the queues with the same priority as the boost value com­
puted in step 4. 

-It has boosted the maximum number of processes. 
-It reaches a process that has reached quantum end within a time 

interval less than the SYSGEN parameter DORMANTWAIT. 

Examining the processes in a particular nonempty compute queue, 
SCH$PIXSCAN performs the following steps for each process: 

a. It compares PCB$L_ONQTIME plus the SYSGEN parameter DOR­
MANTWAIT, expressed in 10-millisecond units, to the current abso­
lute time, EXE$GLABSTIM_ TICS. If the latter is less, the process is 
not dormant and has not been waiting for the CPU long enough to get 
a boost. By implication, no other process in that or any higher priority 
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queue is likely to be dormant. The default value of DORMANTWAIT 
is 2 seconds. 

b. If the process is dormant, SCH$PIXSCAN sets the low-order bit in its 
pixscan history longword, PCB$1-PIXHIST. This longword is shifted 
left at each quantum end to record whether the process had a pixscan 
boost during its past executions. The pixscan history of a process is 
significant for quantum-end automatic working set limit reductions, 
as described in Chapter 17. It invokes SCH$CHSEP, in module RSE, 
to boost the process's priority. 

6. SCH$PIXSCAN releases the SCHED spinlock and returns. 

12.6 RESCHEDULING INTERRUPT 
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The IPL 3 interrupt service routine schedules processes for execution. The 
function of this interrupt service routine is to remove the currently executing 
process by storing the contents of the process-private processor (hardware) 
registers and to replace the register contents with those of the highest priority 
computable resident process. This operation, known as context switching, 
is accompanied by modifications to the process state, current priority, and 
state queue of the affected processes. 

The VAX architecture was designed to assist the software in perform­
ing critical, commonly performed operations. The mechanism of replacing 
the hardware context of the current process with the context of a different 
process is an example of hardware assistance to the operating system. The 
switching of hardware context is performed by two special-purpose instruc­
tions, SVPCTX and LDPCTX, which save and load the hardware context of a 
process. 

Hardware Context 

The definition of a process from the viewpoint of the hardware is known as 
the hardware context. This collection of data is the set of processor registers 
whose contents are unique to the process. These include the following: 

• General registers: RO through Rl 1, AP, FP, SP, and PC 
• Per-process stack pointers for kernel, executive, supervisor, and user mode 

stacks (some VAX CPUs implement these stack pointers only as locations 
in the hardware PCB) 

• PSL 
• AST level processor register, PR$_ASTLVL 
• Memory-mapping registers for the program and control regions: POBR, 

POLR, PlBR, and PlLR 

The current values for most registers forming the hardware context of the 
current process are maintained only in the registers themselves. When a 
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process is not executing, its hardware context is contained in the hardware 
PCB. 

The hardware PCB (see Figures 12.10 and 12.11) is a part of the fixed 
portion of the PHD for each process. It is resident in memory whenever 
the corresponding process is. The VMS executive normally accesses a PHD 
through offsets from its starting virtual address. 

However, during context switches, the CPU microcode must access the 
hardware PCB directly without address translation; it uses the value in the 
PCB base register (PR$_PCBB), the physical address of the hardware PCB for 
the currently executing process. SCH$SCHED is responsible for initializing 
PR$_PCBB. When it selects a process for execution, it copies the value in 
PCB$LPHYPCB. The swapper initializes PCB$LPHYPCB when it swaps a 
process into memory. 

Figure 12.11 illustrates access to the hardware PCB. 
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The save process context instruction, SVPCTX, performs several operations, 
assuming a special set of initial and final conditions. It assumes the following 
initial conditions: 

• The current access mode is kernel. 
• The PC and PSL to be saved for the process are on the current stack. If the 

SVPCTX instruction that executes is the one in the rescheduling interrupt 
service routine, the PC and PSL are on the kernel stack as a result of the 
IPL 3 software interrupt. If the SVPCTX instruction that executes is one in a 
routine that places a process into a wait, the PC and PSL have been chosen 
to place the process back into the wait, if necessary, after it is reexecuted. 

• The register PR$_PCBB contains the physical address of the hardware PCB 
for the current process. 

• The current values of ASTLVL, POBR, POLR, PlBR, and PlLR are already 
stored in the hardware PCB. 

When the SVPCTX instruction is executed, VAX CPU microcode performs 
the following operations: 

1. It stores the per-process stack pointers for the four access mode stacks in 
the hardware PCB, unless this is a processor type that implements only 
the hardware PCB forms of them. 

2. It copies the general registers (RO through Rl 1, AP, and FP) to the hard­
ware PCB. 

3. It pops the PC and PSL from the current stack into the hardware PCB. 

Finally, the SVPCTX instruction microcode saves the current stack pointer 
(SP) in the kernel stack field of the hardware PCB and switches to the 
interrupt stack (by setting the PSL$V _IS bit and copying the PR$_ISP register· 



12..6.3 

12.6 Rescheduling Interrupt 

contents into the SP register). Switching to the systemwide interrupt stack is 
essential because there is no current process once the instruction completes. 

The ASTLVL, POBR, POLR, PlBR, and PlLR fields of the hardware PCB 
are not changed. It is the responsibility of the various system components 
that alter these fields always to update both the hardware PCB fields and 
the per-process processor registers. ASTLVL is unusual in that it is altered 
as a result of normal system operation when the process is not current. In 
that case, only the hardware PCB field is altered. The processor register is 
not altered because the process does not own that register when it is not the 
current process. 

The memory-mapping fields do not change frequently compared to the 
frequency of context switching. The overhead of storing these fields in the 
hardware PCB. is incurred only when the field values change. 

The SVPCTX instruction occurs in several locations in the executive: 

• SCH$RESCHED, the rescheduling interrupt service routine, executes this 
instruction to remove the current (and still computable) process from 
execution . 

• SCH$WAIT, in module RSE, executes this instruction to place the current 
process into a wait state. 

• MMG$SVPCTX, in module PAGEFAULT, executes a SVPCTX instruction 
to place a process into one of the memory management wait states (PFW, 
FPG, COLPG) . 

• At the end of process deletion, the process being deleted is removed from 
execution with a SVPCTX instruction . 

• SCH$CUR_ TO_COM, in module RSE, saves the context of a process cur­
rent on a CPU about to be shut down. 

LDPCTX Instruction 

The load process context instruction, LDPCTX, performs the operations re­
quired in establishing the hardware context of the process. The instruction 
assumes the following initial conditions: 

• The processor is in kernel mode on the interrupt stack . 
• The register PR$_PCBB contains the physical address of the hardware PCB 

for the process that is to become current. 

When the LDPCTX instruction is executed, VAX CPU microcode performs 
the following operations: 

1. Per-process translation buffer entries are invalidated. A translation buffer 
caches virtual page numbers and the numbers of the physical pages to 
which they are mapped, thus speeding up address translation. All the per­
process translation buffer entries belong to the previous process. They are 
invalidated to prevent mistranslation of virtual addresses and to protect 
the data of the previous process. 
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2. It loads the per-process stack pointers (KSP, ESP, SSP, and USP) from the 
hardware PCB, unless this is a processor type that implements only the 
hardware PCB forms of them. 

3. It loads the general registers (RO through Rl 1, AP, and FP) into the 
corresponding processor registers. 

4. It checks the legality of the memory-mapping registers' values saved in 
the hardware PCB (POBR, POLR, PlBR, and PlLR) and then loads the 
values into the registers. Until they are loaded, the values in the registers 
belong to the previous process. 

5. It loads the PR$_ASTLVL register. 
6. It saves the contents of the current stack pointer register (SP) in the 

interrupt stack pointer register (ISP). 
7. It clears the PSL$V _IS bit to indicate the switch to the kernel stack. 
8. It copies the saved kernel stack pointer register (KSP) to SP. 
9. Finally, it pushes the saved PC and PSL onto the kernel stack. The next 

instruction is expected to be an REI instruction. The REI microcode pops 
the two longwords. It validates the PSL against the rules described in 
Chapter 2 and loads the PC and PSL registers. 

The only occurrence of a LDPCTX instruction in the VMS executive is the 
one shown in Example 12.1, the reschedulinginterrupt service routine. 

Rescheduling Interrupt Service Routine 

The IPL 3 interrupt service routine contains two parts: 

• SCH$RESCHED, which preserves the hardware context of the currently 
executing process and removes it from execution 

• SCH$SCHED, which selects the next process to be scheduled for execution 

As shown in Figure 12.12, SCH$RESCHED is requested as an IPL 3 soft­
ware interrupt by several different routines: 

• SCH$RSE and SCH$CHSE/SCH$CHSEP, when a resident process becomes 
computable whose priority allows it to preempt the current process 

• SCH$QEND, when a current process reaches quantum end, it is a normal 
process, and th.ere is a COM process of equal or higher priority 

• SCH$CHANGE_CUR_PRIORITY, when a current process changes its pri­
ority and there is a COM process whose priority is higher 

• SCH$ACQUIRE_AFFINITY, when a current process acquires implicit af­
finity for a processor other than the 011e on. which it is executing 

• SCH$REMOVLCPU_CAP, when a current process is executing on a CPU 
that just lost a capability required by the process 

•· SCH$REQUIRE_CAPABILITY, when a current process requires a capabil­
ity not present on the CPU on which it is executing 

• EXE$RUNDWN, when a process's just-restored permanently required ca­
pabilities do not match those of the CPU on.which it is executing 
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Note that sometimes an IPL 3 interrupt can be directly requested on the 
appropriate CPU. Other times, an interprocessor interrupt must be requested 
first so that the IPL 3 interrupt can be requested on the appropriate CPU by 
the interprocessor interrupt service routine. 

Under some circumstances, there may not be a current process to be 
saved by SCH$RESCHED. In these cases, executive routines transfer control 
directly to SCH$SCHED for process selection. 

As shown in Figure 12.12, the routines that transfer directly to 
SCH$SCHED include the following: 

• SCH$WAIT and its subentry points, when a current process has been placed 
into a wait state 

• DELETE, in module SYSDELPRC, when a current process has been deleted 
• EXE$INIT, in module INIT, leaving system context during system initial­

ization, to schedule the first process on the primary processor (or only 
processor) 

• STRVA, in module [SYSLOA]SMPSTART _xxx, the routine that performs 
secondary processor initialization, leaving system context on a secondary 
processor, to schedule its first process 

SCH$RESCHED performs the following steps. (The numbers in the fol­
lowing list correspond to numbers in Example 12.1, a slightly simplified and 
rearranged version of the code.) 

G) SCH$RESCHED first acquires the SCHED spinlock, raising IPL to IPL$_ 
SCHED to block concurrent access to and modification of the scheduler 
database. 

G)It then executes a SVPCTX instruction to saye the hardware context of 
the current process in its hardware PCB. The register PR$_PCBB contains 
the physical address of the current process's hardware PCB. The detailed 
operation of the SVPCTX instruction is described in Section 12.6.2. 

G)It gets the address of the current process's software PCB and its current 
priority from the per-CPU database. 

@It clears the bit corresponding to the CPU's ID in the longword corre­
sponding to the priority in the array at SCH$A1-CPU_PRIORITY. 

G) If there are no other processes at this priority current on any CPU, it clears 
the bit corresponding to that priority in SCH$G1-ACTIVE_PRIORITY. 

@It sets the bit corresponding to the process's priority in the compute queue 
summary longword, SCH$GL_COMQS. 

G) It changes the state of the process from CUR to COM by updating the 
PCB$W _STATE field. 

Ci) It inserts the software PCB at the tail of the COM queue corresponding 
to the process's current priority. 

G)It clears SCH$GL_IDLE_CPUS to signal any idle CPU that it should 
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attempt to reschedule. The scheduler idle loop is described later in this 
section. 

@SCH$RESCHED branches into SCH$SCHED, skipping its beginning in­
structions. SCH$SCHED is entered directly from code that places the 
current process into a wait. Under these circumstances, SCH$SCHED 
must acquire the SCHED spinlock and update priority summary data 
structures to reflect the fact that the current process has been taken out 
of execution. 

At this point, there is no current process, and SCH$SCHED searches 
for the next process to execute. It performs the following operations. (The 
numbers in the following list correspond to numbers in Example 12.1.) 

(!Yit executes an FFS instruction to locate the least significant set bit in 
the longword SCH$GLCOMQS. The located bit position indicates the 
highest priority nonempty computable resident state queue. 

@If there is no computable resident process, SCH$SCHED branches to 
SCH$IDLE, which is described later in this section. 

@It uses the bit number as an index into the COM listheads to get the 
address of the listhead of the selected computable resident queue. 

@It removes the first PCB in the selected queue. 
Note that the search for the highest priority computable resident 

process and the removal of its PCB from the COM queue are achieved 
in four instructions. The efficiency of this operation is attributable to 
the instruction set and the design of the scheduler database for the com­
putable states. 

@If the removed PCB ~as the only one in the queue, SCH$SCHED clears 
the corresponding SCH$GL_COMQS bit to indicate that the queue is 
empty. 

@SCH$SCHED tests whether the process's required capabilities, including 
explicit affinity, match those of the CPU. If they do not match, it tests 
further to see if the capabilities can be met by any active SMP member. If 
they cannot, it places the process into a RWCAP MWAIT state and selects 
another process to run. If the process has implicit affinity for a different 
CPU, SCH$SCHED tries to honor it but may not (see Section 12.4). 

@If the capabilities match, SCH$SCHED stores the address of the new 
current process PCB in the per-CPU database. 

@SCH$SCHED changes the state of the process to current by storing the 
value SCH$C_CUR into the PCB$W _STATE field. 

@It stores the CPU's ID in PCB$L_CPU_ID. 
@It examines the current process priority and potentially modifies it. If 

the process is a real-time process or a normal process already at its base 
priority, then the process is scheduled at its current or base priority (they 
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are the same). If the current process is a normal process above its base 
priority, then a decrease of one software priority level is performed before 
scheduling. Thus, priority demotions always occur before execution, and 
a process executes at the priority of the queue to which it will be returned 
(and not at the priority of the queue from which it was removed). 

@It copies the process's current priority to the per-CPU database. 
@It clears the bit corresponding to this CPU in SCH$GLIDLE_CPUS to 

indicate that the CPU is not idle. 
@It sets the bit corresponding to the CPU's ID in the longword correspond­

ing to the priority in the array at SCH$ALCPU_PRIORITY. 
@It sets the bit corresponding to the process's current priority in SCH$GL 

ACTIVE_PRIORITY. 
@It copies the physical address of the hardware PCB for the scheduled 

process from PCB$LPHYPCB to the PR$_PCBB register. 
@It executes a LDPCTX instruction (see Section 12.6.3). 
@It releases the SCHED spinlock. 
@It executes an REI instruction to pass control to the scheduled process. 

This transfer of control is possible because the LDPCTX instruction left the 
PC and PSL of the scheduled process on the kernel stack. Execution of 
the REI instruction has the following additional effects: 

-The interrupt priority level is dropped from IPL$_SCHED. 
-The access mode is typically changed from kernel to a less privileged 

one. 
-If ASTs are queued to the PCB, they are likely to be delivered at this 

time, depending on their access mode and the access mode at which 
the process is reentered (see Chapter 7). 

@SCH$SCHED makes consistency checks to ensure that the COM queue 
selected contains at least one data structure and that the data structure 
is actually a PCB. Failure of these tests results in a QUEUEMPTY fatal 
bugcheck. 

If SCH$SCHED found no computable process to execute, it executes code 
known as the idle loop. SCH$IDLE performs the following operations. (The 
numbers in the following list correspond to numbers in Example 12.1.) 

@SCH$IDLE sets the bit corresponding to the CPU in SCH$GLIDLE_ 
CPUS to indicate that the CPU is idle. 

(@It stores the address of the null PCB and a priority value of -1 in the 
CPU's per-CPU database. 

@Having made those changes, it can release the SCHED spinlock, lowering 
IPL to IPL$_RESCHED (3 ), the IPL of the rescheduling interrupt. This IPL 
permits software interrupts on this processor that can alter the scheduler 
database. 

@SCH$IDLE loops, testing whether its bit in SCH$GLIDLE_CPUS is clear. 
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The bit is cleared as a signal that there is a resident computable process 
available. The time during which the routine loops is counted as null 
time, which the Monitor Utility displays as "Idle Time." 

@When this CPU's idle bit is cleared, SCH$IDLE sets bit CPU$V _SCHED 
in its per-CPU database to indicate that it is still idle and trying to acquire 
the SCHED spinlock. If an interval timer interrupt occurs while this bit 
is set, the interval timer interrupt service routine accounts for the CPU 
time as null time rather than as busy wait (MPSYNCH) time. 

@SCH$IDLE tries to acquire the SCHED spinlock. 
@Once successful, it clears CPU$V _SCHED and branches back into 

SCH$SCHED to repeat the attempt to select a process to execute. If an­
other idle processor has already scheduled the computable process, this 
CPU may reexecute the idle loop. 

Example 12.1 
Rescheduling Interrupt Service Routine 

DECLARE_PSECT EXEC$NONPAGED_CODE ;Nonpaged exec 
.SBTTL SCH$RESCHED RESCHEDULING INTERRUPT HANDLER 

;++ 
SCH$RESCHED - RESCHEDULING INTERRUPT HANDLER 
This routine is entered via the IPL 3 rescheduling interrupt. 
The vector for this interrupt is coded to cause execution 
on the kernel stack. 

ENVIRONMENT: 
IPL = 3 Mode = kernel IS = 0 

INPUT: 
OO(SP) • PC at reschedule interrupt 
04(SP) • PSL at interrupt 

.ALIGN LONG 

.ENABL LSB 
UNIVERSAL_SYMBOL SCH$RESCHED 

; SCH$RESCHED: : 
LOCK LOCKNAME=SCHED,­

LOCKIPL=#IPL$_SCHED 

;Reschedule interrupt handler 
;Lock ached database G) 
;Raise to SCHED IPL 

SVPCTX 
FIND_CPU_DATA R3,ISTACK•YES 

;Save context of process G) 
;Get this CPU's per-CPU database 
; (We can assume we're on 
; interrupt stack) 

MOVL CPU$L_CURPCB(R3) ,R1 ;Get address of current PCB G) 
MOVZBL CPU$B_CUR_PRI(R3),RO ;Current priority 
BICL CPU$L_CPUID_MASK(R3),- ;Get mask for current CPU ID 

w-sCH$AL_CPU_PRIORITY [RO] 
;Clear CPU bit @ 

BNEQ 5$ 
SUBL3 R0,#31,R2 

;Anyone else at this priority? 
;Get priority in external format 

(continued) 
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Example 12.1 (continued) 
Rescheduling Interrupt Service Routine 

5$: 
10$: 

;+ 

BBCC 

BBSS 
MOVW 

MOVAQ 

INS QUE 
CLRL 
BRW 

R2,- ;No one else G) 
G-scH$GL_ACTIVE_PRIORITY,5$ 
RO,L-SCH$GL_COMQS,10$ ;Mark queue nonempty G) 
#SCH$C_COM,PCB$W_STATE(R1) 

SCH$AQ_COMT[RO],R2 

(R1) ,©(R2)+ 
G-scH$GL_IDLE_CPUS 
30$ 

;Set state to res compute G) 
;R2 = address of queue header 
; back link 
;Insert at tail of queue G) 
;Tell everyone else CV 
;Skip acquiring spinlock again Qg) 

SCH$SCHED - SCHEDULE NEW PROCESS FOR EXECUTION 
This routine selects the highest priority executable process 
and places it in execution . 

. ALIGN LONG 
UNIVERSAL_SYMBOL SCH$SCHED 

; SCH$SCHED: : ;Schedule for execution 
;Get base of per-CPq data 

30$: 

35$: 

40$: 

45$: 

FIND_CPU_DATA R3,ISTACK=YES 
; (We can assume int. stack here) 

LOCK LOCKNAME=SCHED,- ;Lock sched database 
LOCKIPL=#IPL$_SCHED ;Raise to SCHED IPL 

MOVZBL CPU$B_CUR_PRI(R3),RO ;Get previous CPU priority 
BICL CPU$L_CPUID_MASK(R3),- ;Get mask for current CPU ID 

w-scH$AL_CPU_PRIORITY[RO] 
;Clear CPU bit 

BNEQ 30$ ;Anyone else at this priority? 
;Get priority in external format SUBL3 R0,#31,R2 

BBCC 

CLRL 
FFS 

BEQL 
MOVAQ 
REM QUE 
BVS 
BNEQ 
BBCC 
CMPB 

BNEQ 
BICL3 

BNEQ 
MOVL 
MOVW 

R2,- ;No one else 
G-scH$GL_ACTIVE_PRIORITY,30$ 
R7 ;Clear implicit affinity state 
#0,#32,L-SCH$GL_COMQS,RO 

;Find first full state G:J) 
SCH$IDLE ; No executable process? @ 
SCH$AQ_COMH[RO],R2 ;Compute queue head address ~ 
©(R2)+,R4 ;Get head of queue @ 
QEMPTY ;Br if queue was empty (BUGCHECK) 
40$ ;Queue not empty 
RO,L-SCH$GL_COMQS,40$ ;Set queue empty ~ 
#DYN$C_PCB,PCB$B_TYPE(R4) 

QEMPTY 
CPU$L_CAPABILITY(R3),­
PCB$L_CAPABILITY(R4),R1 

;Must be a process control block 
;Otherwise fatal error 
;Do the CPU and process match? G§> 

200$ ;No 
R4,CPU$L_CURPCB(R3) ;Note current PCB location (!Z) 
#SCH$C_CUR,PCB$W_STATE(R4) 

;Set state to current ~ 

(continued) 
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Example 12.1 (continued) 
Rescheduling Interrupt Service Routine 

MOVL CPU$L_PHY_CPUID(R3),PCB$L_CPU_ID(R4) 
;Save CPU ID in PCB (!2l 

CMPB RO,PCB$B_PRIB(R4) ;Check for base priority=current 

50$: 

BGEQ 
INCB 
MOVB 
MOVB 
MOVL 
BICL2 
BISL 

; - should never be greater ~ 
50$ ;Yes, don't float priority 
RO ;Move toward base priority 
RO,PCB$B_PRI(R4) ;Reflect priority change in PCB 
RO,CPU$B_CUR_PRI(R3) ;Set global priority ~ 
CPU$L_CPUID_MASK(R3),R2 ;Get CPU mask 
R2,G-SCH$GL_IDLE_CPUS ;Show this CPU as not idle ~ 
R2,w-sCH$AL_CPU_PRIORITY[RO] 

;Set CPU bit @ 
SUBL3 
BBSS 

R0,#31,R2 ;Get priority in external format 

51$: 

R2,G-SCH$GL_ACTIVE_PRIORITY,51$ 
;Priority now active ~ 

MTPR PCB$L_PHYPCB(R4),#PR$_PCBB 
;Set PCB base phys addr G§} 

LDPCTX 
UNLOCK LOCKNAME=SCHED 

;Restore context G§> 
;Unlock SCHED database -
; no IPL change ~ 

REI 
QEMPTY: BUG_CHECK QUEUEMPTY,FATAL 

;Normal return @ 
;Scheduling queue empty ~ 

; Make assorted checks to determine the type of capability mismatch 

200$: 

SCH$IDLE: ;No active, executable process 

61$: 

65$: 

BISL2 CPU$L_CPUID_MASK(R3),- ;Show this CPU as idle Gii) 
G-scH$GL_IDLE_CPUS 

MOVL G-SCH$AR_NULLPCB,CPU$L_CURPCB(R3) 

MNEGB 

UNLOCK 

MOVL 
BBS 

BISB 

;Note null PCB as default 
#1,CPU$B_CUR_PRI(R3) ;Set priority to -1 

; to signal idle G:j) 
LOCKNAME=SCHED,- ;Unlock sched database ~ 
NEWIPL=#IPL$_RESCHED ;Drop IPL to rescheduling level 
CPU$L_PHY_CPUID(R3),R1 ;Get our CPU ID 
R1,G-SCH$GL_IDLE_CPUS,61$ 

;Loop until we aren't idle ~ 
#CPU$M_SCHED,CPU$B_FLAGS(R3) 

;Indicate idle vying for SCHED G9 
LOCK LOCKNAME=SCHED,- ;Lock sched database G§} 

LOCKIPL=#IPL$_SCHED ;Raise to SCHED IPL 
BICB #CPU$M_SCHED,CPU$B_FLAGS(R3) 

;Indicate no longer vying 
; for SCHED @ 

BRW 30$ ;Go try for process 

317 



13 Process Control and 
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I was alone and unable to communicate with anyone. I did 
not know the names of anything. I did not even know things 
had names. Then one day, after she had tried a number of 
approaches, my teacher held my hand under the water pump 
on our farm. As the cool water ran over my hand and arm, she 
spelled the word water in my other hand. She spelled it over and 
over, and suddenly I knew there was a name for things and that 
I would never be completely alone again. 

Helen Keller 

VMS provides a number of services that allow one process to control the 
execution of another. It also provides a variety of mechanisms by which 
processes can obtain information about each other and communicate with 
one another. 

VMS process control system services enable a process to affect its own 
scheduling state or that of another process, either on the local system or on 
a remote VAXcluster node. These services also enable a process to alter some 
of its own characteristics (such as name or priority). The process information 
system services allow a process to obtain detailed information about other 
processes, both on the local system and on other V AXcluster nodes. This 
chapter describes the implementation of the process control and process 
information system services. 

Communication mechanisms available to VMS processes include event 
flags, mailboxes, the lock management system services (lock manager), 
global shared data sections, and shared files. Other chapters describe the 
implementation of these mechanisms. This chapter briefly discusses the 
manner in which a process might use these mechanisms to communicate 
'\•1ith another process. 

Table 13.1 summarizes the system services related to process control and 
process information. 

13.1 REQUIREMENTS FOR AFFECTING ANOTHER PROCESS 
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Before a process can obtain information on another process or alter it in 
any way, it must have a means of uniquely identifying the process within a 
VAXcluster system. In addition, it must have appropriate privileges or user 
identification code (UIC) based access to the process. 

Process identification and privilege checking are centralized in the routine 
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Table 13.1 Summary of Process System Services 

Scope of 
Service Name Processes Affected Privileges Checked 

Hibernate ($HIBER) Issuing process 1 None 
Wake Process from Same V AXcluster GROUP or WORLD 

Hibernation ($WAKE) 
Schedule Wakeup ($SCHDWK) Same V AXcluster GROUP or WORLD 
Cancel Wakeup ($CANWAK) Same V AXcluster GROUP or WORLD 
Suspend Process ($SUSPND) Same V AXcluster GROUP or WORLD 
Resume Process ($RESUME) Same VAXcluster GROUP or WORLD 
Exit ($EXIT) Issuing process None 
Force EXit ($FORCEX) Same V AXcluster GROUP or WORLD 
Create Process ($CREPRC) Same node DETACH for different 

user identification 
codes (UICs) 

Delete Process ($DELPRC) Same V AXcluster GROUP or WORLD 
Set AST Enable ($SETAST) Issuing process Access mode check 
Set Power Recovery AST Issuing process Access mode check 

($SETPRA) 
Set Priority ($SETPRI) Same V AXcluster ALTPRI and either 

GROUP or WORLD 
Set Process Name ($SETPRN) Issuing process None 
Set Resource Wait Mode Issuing process 2 None 

($SETRWM) 
Set System Service Failure Issuing process 2 Access mode check 

Exception Mode ($SETSFM) 
Set Process Swap Mode Issuing process 2 PSWAPM 

($SETSWM) 
Reschedule Process ($RESCHED) Issuing process None 
Get Job/Process Information Same V AXcluster GROUP or WORLD 

($GETJPI) 
Process Scan Same V AXcluster GROUP or WORLD 

($PROCESS_SCAN) 

1 As part of the $CREPRC system service, a process can specify that the process being 
created hibernate before a specified image executes. 

2 Through the $CREPRC system service, a process can be created with this characteristic. 

EXE$NAMPID, in module SYSPCNTRL. Process control and process infor­
mation system services that can affect processes other than their requestor 
all invoke EXE$NAMPID; thus they all identify processes and check privi­
leges in the same manner. 

Before VMS Version 5.2, the scope of the process control and process in­
formation system services was restricted to the local node; the scope has 
become VAXcluster-wide with the addition of clusterwide process service 
(CWPS) routines. These routines provide a transparent mechanism by which 

319 



Process Control and Communication 

13.1.1 

13.1.2 

320 

a process can affect a target process on another VAXcluster member. Sec­
tion 13.1.3 contains more information on CWPS routines. 

Identifying the Target Process 

Process control and process information system services have arguments 
that specify the target process by process name and process ID (PID). The 
process requesting the service specifies one or the other of these arguments, 
or neither one to default to itself. 

Process name is always implicitly qualified by UIC group. That is, a 
process can identify by name only processes within the same UIC group 
as itself. With VMS Version 5.2, the PRCNAM argument can identify a procel>s 
on another V AXcluster node. It can include up to Six characters for the node 
name, followed by a double colon. 

Two forms of PID identify a process: an internally visible PID, called an 
IPID, and an externally visible PID, called an EPID. The IPID, stored in 
PCB$1-PID, uniquely identifies a process on a single node. The low word 
of the IPID is the index of the process control block (PCB) in the local PCB 
vector. The EPID, an extension of the IPID, uniquely identifies a process in 
a VAXcluster system by including a VAXcluster node identifier. It is stored 
in PCB$L_EPID. Chapter 25 describes the layout and creation of the IPID 
and EPID. 

Because the IPID is only relevant to kernel mode code on the local node, 
most system utilities, such as SHOW SYSTEM and the Monitor Utility, 
display EPIDs. An EPID is passed as a system service argument to identify 
a process by its PID. 

A legitimate EPID never has its high-order bit set; the Get Job/Process 
Information ($GETJPI) and Process Scan ($PROCESS_SCAN) system services 
can thus use a negative value in an EPID field as a wildcard indicator. 

Locating the Process and Checking Privileges 

Regardless of how the target of a process control or process information 
service is specified, VMS must determine whether the process exists within 
the V AXcluster system and whether the requesting process has the ability 
to affect the target. These two checks are centralized in EXE$N • .<\MPID. 

EXE$NAMPID's argument list includes the EPID of the target process 
and the process name from the process control system service's PRCNAM 

argument. When neither argument is specified, the most common case, the 
requesting process is also the target process. EXE$NAMPID is optimized for 
this case. When both arguments are present, EXE$NAMPID uses the EPID 
to identify the target. 

EXE$NAMPID performs the following: 

1. It determines whether the requesting process is also the target process. If 
so, privilege checks are unnecessary. EXE$NAMPID obtains the SCHED 
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spinlock, raising interrupt priority level (IPL) to IPL$_SCHED, and re­
turns successfully to the system service with the IPID, the PCB address, 
and optionally the EPID. It returns at IPL$_SCHED, holding the SCHED 
spinlock. 

2. Otherwise, when the requesting process is not the target, EXE$NAMPID 
attempts to locate the target process using the EPID or, if the EPID is 
not specified, the process name. 

If the EPID or process name indicates a valid local process, EXE$NAM­
PID proceeds to step 3. 

If the target process is not valid locally, the EPID or the process name 
must designate a legitimate remote VAXcluster node. Only the remote 
node can determine if the target process is valid. 

-If the EPID or process name indicates that the target process is on a 
valid VAXcluster node, EXE$NAMPID returns the error status SS$_ 
REMOTE_PROC. Section 13.1.3 describes the steps taken to locate a 
target process on a remote node. 

-If the EPID specifies an unknown VAXcluster node, EXE$NAMPID 
returns the error status SS$_NONEXPR (nonexistent process), which 
becomes the system service's return status. 

-If the process name specifies an unknown VAXcluster node, 
EXE$NAMPID returns the error status SS$_NOSUCHNODE (nonex­
istent node). 

-If the process name uses an incorrect format for the node name, 
EXE$NAMPID attempts to interpret it as a logical name and returns 
the error status SS$_IVLOGNAM. 

3. For a local target process, EXE$NAMPID invokes EXE$CHECK_PCB_ 
PRIV, in module SYSPCNTRL, to determine whether the requesting 
process has the ability to examine or modify its target. 

EXE$CHECK_PCB_PRIV makes the following tests, proceeding until 
one is successful or until there are no more: 

a. If the requesting and target processes are in the same job tree, that is, 
share a job information block (JIB), EXE$CHECK_PCB_PRIV returns 
success£ully. 

b. If the requesting process and the target process have the same UIC, 
EXE$CHECK_PCB_PRIV returns success£ully. 

c. If the requesting process has WORLD privilege, EXE$CHECK_PCB_ 
PRIV returns success£ully. 

d. If the requesting process and the target process are members of the 
same UIC group and the requesting process has GROUP privilege, 
EXE$CHECILPCB_PRIV returns successfully. 

4. If any test is successful, EXE$NAMPID returns control to the system 
service at IPL$_SCHED, holding the SCHED spinlock. It returns the 
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address of the target process PCB in R4. Note that this return alters 
the contents of R4, which formerly contained the PCB address of the 
requesting process. 

If all these tests fail, EXE$NAMPID returns the error SS$_NOPRIV, 
which becomes the system service's return status. 

Servicing a Request for a Remote Process 

An EPID identifies the VAXcluster node on which a process might exist and 
the PCB vector slot on that node that contain::. the process's PCB. Validating 
an EPID occurs in two parts; any node in the VAXcluster system can confirm 
that the node identifier is legitimate, but only the node thus identified can 
access the PCB vector slot. 

EXE$NAMPID is invoked by a process control or process information 
system service to locate its target process. If EXE$NAMPID does not locate 
the target process on the local node, it invokes a CWPS routine to verify 
that the node identified by the EPID or PRCNAM argument exists within the 
V AXcluster system. Executive code running on the identified node must 
subsequently confirm the existence of the target process. 

If the CWPS routine successfully identifies the remote VAXcluster node, 
it returns the error status SS$_REMOTE_PROC. In response to this status, 
the system service procedure routes the request to CWPS. CWPS allocates 
and initializes a structure to describe the service request and the requesting 
process and transmits it to the remote node using system communication 
services (SCS). If the system service is a synchronous one, such as $SUSPND, 
the process enters the RSN$_CLUSRV resource wait state until a response 
is received from the remote node. For a system service such as $GETJPI[W], 
the status SS$_NORMAL is returned to the caller for the asynchronous form 
or to a synchronization routine for the synchronous form. 

On the remote node, a CWPS dispatch routine executing in system context 
receives the service request. It allocates a composite structure to describe 
the request locally. It then queues a kernel mode asynchronous system trap 
(AST) to the CLUSTER_SERVER process, determining the address of the AST 
routine from the function to be performed; for instance, a process control 
function causes the CLUSTER_SERVER process to execute CWPS$SRCV _ 
PCNTRLAST, in module [SYSLOA]CWPS_SERVICE.,.RECV. 

For a typical process control function, the CLUSTER_SERVER process 
initializes a structure that mimics the PCB of the requesting process and 
invokes EXE$NAMPID. Thus, EXE$NAMPID performs privilege and access 
checks, which require a PCB, regardless of whether a request is remote or 
local. If EXE$NAMPID detects an error, the CWPS routine returns the error 
status to the requesting process on the original node. Otherwise, it requests 
the system service on behalf of the requesting process. The system service 
returns status and information to the CWPS routine, which transmits that 
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information to a CWPS receiver on the initiating node. This routine returns 
the status and data to the original requestor of the system service. (In the 
case of an asynchronous service like $GETJPI, the standard kernel mode AST 
is delivered at service completion.) 

Figure 13.1 shows this sequence of events, slightly simplified, for an asyn­
chronous process control system service such as $GETJPI. 

13.2 PROCESS INFORMATION SYSTEM SERVICES 

13.2.1 

The process information system services, $GETJPI and $PROCESS_SCAN, 
return selected information about a process or group of processes within a 
VAXcluster system. 

The $PROCESS_SCAN system service, introduced in VMS Version 5.2, 
functions as an adjunct to the $GETJPI system service. It creates and main­
tains a search context that filters the information returned by $GETJPI. In 
the traditional form of $GETJPI wildcard processing, an image requests the 
$GETJPI service from a loop, obtaining information about the next sequen­
tial process with each request. The image tests the returned information to 
decide whether the process is really of interest; for instance, an image look­
ing for all processes belonging to a particular user name obtains the user 
name field through the $GETJPI service and compares each returned user 
name with its desired user name. 

The $PROCESS_SCAN service simplifies this path; an image requests the 
service $PROCESS_SCAN to record its search criteria in a context block, 
then passes that context block address on subsequent $GETJPI requests. 
When the $GETJPI system service procedure 1s passed a context block ad­
dress, it invokes process scan subroutines for the actual processing. Its re­
questor only receives information on processes matching the search criteria 
and is no longer required to filter the data itself. 

Data Structures Related to, the $PROCESS_SCAN System Service 

The $PROCESS_SCAN system service uses fields in the process header 
(PHD), context blocks, $GETJPI buffer areas, and CWPS structures to ser­
vice requests. 

An image can request the $PROCESS_SCAN service multiple times with 
different search criteria to create multiple context blocks. For instance, to 
search a VAXcluster system, the image could either create one context block 
matching all cluster nodes, or create a separate context block for each node 
and conduct the remote scans in parallel. The PHD contains a listhead 
for a process's context blocks at offset PHD$Q_PSCANCTX_QUEUE. At 
PHD$W _PSCANCTILSEQNUM, the PHD contains a sequence number that 
matches the value in the PSCANCTX$W _SEQNUM field of valid context 
blocks. 
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The context block, pictured in Figure 13.2, is the primary data structure 
created and maintained by the $PROCESS_SCAN service. The $PSCAN­
CTXDEF macro defines its header; the size of the structure varies. The item 
list and data areas follow the header. They contain copies of the $PROCESS_ 
SCAN items comprising the process filter and the associated comparison 
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data. PSCANCTX$W _ITMLSTOFF and PSCANCTX$W _BUFFEROFF con­
tain the offsets from the PSCANCTX structure to these areas. The $PRO­
CESS_SCAN service allocates the PSCANCTX structure from the process 
allocation region. 

If a search involves VAXcluster nodes other than the local node, the con­
text block includes a cluster system ID (CSID) area. This area contains the 
CSID of each node where the search is to be conducted~ PSCANCTX$W _ 
CSIDOFF contains the offset to this area. PSCANCTX$L_CUR_CSID stores 
the CSID of the node currently being scanned, with zero indicating the lo­
cal node. The context block fields PSCANCTX$LCUR_IPID, PSCAN$L_ 
CUR_EPID, and PSCANCTX$LNEXT_IPID track local PCB vector scans 
(see Section 13.2.3). 

Only one $GETJPI request at a time can use a particular context block to 
reference other VAXcluster nodes. PSCANCTX$V _BUSY in PSCANCTX$L_ 
FLAGS locks the context block; Section 13.2.3 describes its use. 

When a remote node is scanned, the offset PSCANCTX$L_CWPSSRV 
contains the address of a structure whose symbolic offsets are defined by 
the $CWPSSRV macro. Allocated from nonpaged pool, this variable-sized 
structure contains information to be passed to the remote node by CWPS. 
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Figure 13.2 
$PROCESS_SCAN Context Block (PSCANCTX) 
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CWPSSRV$LEXT _OFFSET contains the index to a CWPSSRV extension cre­
ated for a $GETJPI request, defined by the $CWPSJPI macro. Figure 13.3 
shows this linkage. 

To execute more efficiently on a wildcard request in a VAXcluster sys­
tem, an image can request that the $PROCESS_SCAN and $GETJPI services 
bundle information about several target processes rather than return the in­
formation one process at a time. If the image requests this $GETJPI buffering, 
the $PROCESS_SCAN service allocates a buffer from the process allocation 
region and stores its address in PSCANCTX$LJPIBUFADR. This variable­
sized structure, whose header offsets are defined by the $PSCANBUFDEF 
macro, contains a copy of the requested $GETJPI item codes followed by the 
area where returned data is stored. 

The $PROCESS_SCAN System Service 

The $PROCESS_SCAN system service procedure EXE$PROCESS_SCAN, in 
module PROCESS_SCAN, executes in kernel mode. The service includes 
additional routines in modules PROCESS_SCAN_ITMLST and PROCESS_ 
SCAN_CHECK. 

The service has two arguments: PIDCTX and ITMLST • 

• PIDCTX is a longword in which the service returns the address of the context 
block. The program passes the returned PIDCTX to the $GETJPI service as 
the PID argument . 

• ITMLST is the address of an item list composed of one or more entries. Each 
entry contains the coded value of a selection criterion for $PROCESS_ 
SCAN, either the value or the address of the item, and flags controlling 
the manner in which the $PROCESS_SCAN and $GETJPI services use the 
item. 

EXE$PROCESS_SCAN performs the following: 

I. It verifies that the PIDCTX argument was supplied and that it specifies a 
location writable from the access mode of the requestor, returning the 
error status SS$_INVSRQ or SS$_ACCVIO as appropriate. 
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2. If EXE$PROCESS_SCAN discovers that the PIDCTX argument contains 
the address of a previous context block, it removes the context block 
from the process's queue of active con.text blocks and deallocates the 
block and any data structures linked to it. !Otherwise, context blocks 
are deallocated at image exit.) 

3. If no ITMLST argument is specified, EXE$PROCESS_SCAN merely returns 
a success status to its caller, accomplishing no useful work. Otherwise, 
EXE$PROCESS_SCAN checks each item in the item list for the following 
conditions: 

-The requested item code is recognized. 
-The length of the buffer is appropriate for the item code. 
-The buffer descriptor and the buffer contents are readable. 
-The flags specified for a particular item code are appropriate. 

In addition, the item list must be well formed; for example, the last 
item cannot specify the flag PSCAN$V _OR. 

4. Some item codes apply to processes; others, like PSCAN$_NODE_CSID 
and PSCAN$_HW_NAME, apply to VAXcluster nodes. If the node is 
part of a VAXcluster system and a specified item code indicates a node 
context, EXE$PROCESS_SCAN invokes a CWPS routine to create a list 
of the current VAXcluster nodes and their characteristics. From this, it 
eliminates nodes that do not meet the search criteria and constructs a 
table of the remaining CSIDs. Only processes on these nodes are scanned. 

5. EXE$PROCESS_SCAN allocates a longword-aligned piece of memory 
from the prqcess allocation region for the context block. The structure 
size is the sum of the sizes of the fixed header, the item list entries that 
apply to processes, their associated data for comparison, and the CSID 
area !see Figure 13.2). If a $GETJPI buffer was requested, its size is in­
cluded in the allocation as well. 

6. It increments the process scan sequence number in the PHD, copies that 
value to the context block, and inserts the new context block onto the 
PHD queue. 

7. It initializes the context block, including the offset to the item list 
IPSCANCTX$W _ITMLSTOFF), the offset to the data area IPSCAN­
CTX$W _BUFFEROFF),. the CSID table and the offset to the table 
IPSCANCTX$W _CSIDIDX), the item list and data areas, the address of 
the $GETJPI buffer IPSCANCTX$L_JPIBUFADR), and the flags. 

8. Finally, it negates the address of the context block. This indicates a 
wildcard context, yet also locates the context block and differentiates 
the context from the traditional $GETJPI wildcard indicator, -1 in the 
high word of the PID. EXE$PROCESS_SCAN returns this value to its 
caller in the PIDCTX location. 

The $GETJPI service can now be requested to use the context created by 
$PROCESS_SCAN. 
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The $GETJPI System Service 

The $GETJPI[W) system service provides selected information about a spec­
ified process: the process requesting the $GETJPI service lthe default), a 
process explicitly identified by EPID, or the next process located in a wild­
card scan. The service can obtain information from the PCB, JIB, PHD, and 
control region. 

$GETJPI arguments include the following: 

• The EFN argument: the number of an event flag to be set when the request 
is complete. If none is specified, event flag 0 is used . 

• The PIO argument: the EPID of one process from which to collect infor­
mation, a traditional $GETJPI wildcard indicator, or a context block from 
$PROCESS_SCAN . 

• The PRCNAM argument: the node and process name of the target process, 
used if the process ID is not specified . 

• The ITMLST argument: the address of an item list. The item list can contain 
multiple entries, each of which includes a code indicating the information 
to be returned, the size and address of a buffer to hold the information, 
and a location to contain the actual size of the returned information. The 
item list terminates with a longword of zero . 

• The IOSB argument: the address of an I/O status block where $GETJPI 
records final status information . 

• The ASTADR and ASTPRM arguments: the address and parameter of an AST 
procedure to be called when the request completes. 

The $GETJPI system service procedure, EXE$GETJPI in module SYS­
GETJPI, executes in kernel mode. It performs the following operations: 

1. EXE$GETJPI allocates ten longwords of stack space as a storage area for 
local context items, such as the PCB address and a set of control flags. 

2. EXE$GETJPI tests the first item list entry. Like all item list entries, 
it must be readable from the access mode of the requestor. The first 
item list entry is the only legal location for the item code JPI$_GETJPL 
CONTROLFLAGS, introduced in VMS Version 5.2. This item code al­
lows the caller to limit EXE$GETJPI's behavior with outswapped pro­
cesses, to restrict AST delivery, and to obtain information on processes 
that are suspended or marked for deletion. EXE$GETJPI copies the con­
trol flags, if specified, to its local context area. 

3. It checks the PIO argument; a value of zero indicates the current process, 
a positive value indicates an EPID, and a negative value indicates a 
wildcard specification. 

-For zero or a possible EPID, EXE$GETJPI continues at step 6. 
-For a negative value, EXE$GETJPI invokes the process scan routine 

EXE$PSCAN_LOCKCTX, in module PROCESS_SCAN, which negates 
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the argument and compares it to the context blocks on PHD$Q_ 
PSCANCTILQUEUE. 

If no matching context block is found, EXE$GETJPI attempts to 
process the argument as a traditional $GETJPI wildcard. It obtains the 
next EPID !see Section 13.2.6) and continues at step 6. 

If a matching context block exists, EXE$PSCAN_LOCKCTX sets 
PSCANCTX$V _BUSY in it to lock the context. Only one $GETJPI 
request at a time can use a context block to reference other VAXclus­
ter nodes. PSCANCTX$V _BUSY in PSCANCTX$L.FLAGS locks the 
context block; if the bit is set when the process attempts to acquire 
the context block, it enters the RSN$_ASTWAIT resource wait state 
until the context block is available. When the request referencing the 
context block completes, the process is reentered with an AST routine 
that clears PSCANCTX$V _BUSY. On return from the AST routine, 
the process reexecutes the test of the busy bit, acquires the context 
block, and continues from this point. 

4. EXE$GETJPI invokes the process scan routine EXE$PSCAN_NEXT _PID 
to obtain the next EPID and update the context block. 

5. EXE$PSCAN_NEXT _PID, in module PROCESS_SCAN, tries to find a 
local process that matches the search criteria in the context block and 
that the $GETJPI requestor can access. To scan the local node, it steps 
through the PCB vector one process at a time. It updates the process 
index !PIX) with each iteration, and the next request using the same 
context begins where the previous scan left off. The context block fields 
PSCANCTX$L_CUR_IPID, PSCAN$L_CUR_EPID, and PSCANCTX$L_ 
NEXT _IPID track this local scan. 

When EXE$PSCAN_NEXT _PID finds a process matching the search 
criteria, it returns the EPID of the matching process to EXE$GETJPI and 
EXE$GETJPI continues at step 6. 

If it does not find a local process, EXE$PSCAN_NEXT _PID returns 
the CSID of the next node to search and the error status SS$_REMOTE_ 
PROC. EXE$GETJPI passes control to CWPS$GETJPLPSCAN, which 
continues the $GETJPI processing !see Section 13.2.4). 

If it does not find a local process and the context block contains no 
more CSIDs to search, EXE$PSCAN_NEXT _PID returns the error status 
SS$_NOMOREPROC, which becomes the·$GETJPI status return. 

6. EXE$GETJPI invokes EXE$NAMPID to obtain the target PCB address and 
check privileges. As described in Section 13.1.2, EXE$NAMPID deter­
mines whether the current process has the ability to obtain information 
about the target. 

If the target is not on the local node, EXE$NAMPID returns the er­
ror SS$_REMOTE_PROC. EXE$GETJPI passes control to CWPS$GETJPI, 
which continues the $GETJPI processing (see Section 13.2.4). 
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If the target process is on the local node, EXE$GETJPI continues with 
the steps that follow. These steps apply only to a target process on the 
local node. 

7. EXE$GETJPI checks for write access to the I/O status block IIOSB) and 
clears the IOSB, if one was specified. 

8. It clears the specified event flag or event flag 0. 
9. If AST notification was requested, EXE$GETJPI checks that the process 

has sufficient AST quota. If so, it charges for the AST; otherwise it returns 
the error status SS$_EXASTLM. 

10. EXE$GETJPI checks each item for the following conditions: 

-The buffer descriptor must be readable and the buffer writable. 
-The requested item must be a recognized one. 

11. If these conditions are met, then the requested item can be retrieved. 
All data about the current process and PCB and JIB data about another 
process can be obtained directly without entering the context of the target 
process. (The PCB and JIB are nonpaged pool data structures allocated 
for the life of the process and job.) In addition, data from the PHD of 
another process can be obtained directly if the PHD is resident lif the 
PCB$V _PHDRES bit in PCB$L_STS is set). EXE$GETJPI moves all such 
information to the user-defined buffers for each corresponding item. 

12. If no information remains to be gathered, then EXE$GETJPI returns to 
the caller after performing the following actions: 

-Setting the specified event flag 
-'-Queuing AST notification, if it was requested 
-Writing status to an IOSB, if one was supplied 

13. Information in the target process's control region can only be retrieved 
by executing in the context of the target process. Information stored in 
the target process's process header may not be available if the process is 
outswapped. To collect information from the control region or from an 
outswapped process header, EXE$GETJPI queues a special kernel mode 
AST to the target process, enabling EXE$GETJPI code to execute in the 
target context. 

VMS Version 5.2 allows the $GETJPI requestor to control this behavior 
through two $GETJPI control flags, JPI$V _NO_ TARGET _INSWAP and 
JPI$V _NO_ TARGET _AST. 

-If the caller specifies JPI$V _NO_ TARGET _INSWAP, EXE$GETJPI does 
not queue an AST to the target unless it is resident. Thus, EXE$GETJPI 
is unable to obtain any information about an outswapped process, but 
it can obtain information from the PHD and from the control region 
of a resident process. 

-If the caller specifies JPI$V _NO_ TARGET _AST, EXE$GETJPI never 
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queues an AST to the target process. Thus, it returns data from a 
resident PHD but never from the control region. 

Depending on the control flags, EXE$GETJPI allocates nonpaged pool 
for an extended AST control block (ACB) and an information buffer. It 
charges the pool against the process's JIB$1-BYTCNT quota. EXE$GET­
JPI initializes the normal ACB fields, then stores descriptors of all the 
information that must be retrieved while executing in the context of 
the other process into the extension. It creates a buffer to receive the 
retrieved information for transmission to the requesting process. 

14. EXE$GETJPI checks the status and state of the target process. If the target 
process is in any of the following states, information from it cannot be 
obtained: 

-It no longer exists. 
-Deletion or suspension is pending. 
-The process state is suspended (SUSP), suspended outswapped 

(SUSPO), or miscellaneous wait (MWAIT) (see Chapter 12). 

If the process is in any of these states, EXE$GETJPI deallocates the non­
paged pool and restores the quota charged. If the process no longer exists, 
EXE$GETJPI returns the error status SS$_NONEXPR to its requestor. For 
the other conditions, EXE$GETJPI's behavior is based on the $GETJPI 
control flag JPI$V _IGNORE_ TARGET _STATUS. If the flag is specified, 
EXE$GETJPI returns the status SS$_NORMAL to its requestor; otherwise 
it returns the error status SS$_SUSPENDED. Even in this case, at step 11 
EXE$GETJPI has already moved data from the PCB, JIB, and possibly the 
PHD into user-defined buffers. 

Note that the completion mechanisms are all triggered if any error 
condition occurs. That is, the event flag is set, a user-requested AST is 
queued, and an IOSB is written with the failure status. 

15. EXE$GETJPI queues the ACB to the target process with a priority incre­
ment class of PRI$_ TICOM. However, if the target process is computable 
(COM) or computable outswapped (COMO), queuing the AST does not 
result in a priority boost. (See Chapter 12 for information on event re­
porting.) In that case, EXE$GETJPI boosts the target process's priority 
enough to make it equal to the priority of the requesting process (un­
less the requesting process is a real-time process or its priority is lower 
than that of the target process). The target priority boost ensures that 
even a low-priority target process will eventually retl,ll'n an answer to 
the requestor. 

16. The asynchronous form of the system service returns to the requestor. 
The requestor can either wait for the information to be returned or 
continue processing. The synchronous form of the system service waits 
for the event flag associated with the request to be set and status to be 
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returned. See Chapter 6 for more information concerning synchronous 
and asynchronous system services. 

Remote $GETJPI Support 

The CWPS routines CWPS$GETJPI and CWPS$GETJPLPSCAN, in module 
CWPS_GETJPI, dispatch $GETJPI requests to other V AXcluster nodes and re­
turn status and item list information to the original requestor. EXE$GETJPI 
passes control to CWPS$GETJPI when no context block is associated with 
the request, merely an EPID or process name identifying a remote VAX­
cluster node. It passes control to the alternative entry point CWPS$GETJPL 
PSCAN when a context block exists. 

CWPS$GETJPI does the same argument list validation as EXE$GETJPI: 
checking the IOSB for write access and clearing it, clearing the specified 
event flag, checking and charging AST quota, and validating the item list. 

If these checks succeed, CWPS$GETJPI allocates sufficient nonpaged pool 
to describe the $GETJPI request. It creates a variable-sized data structure 
with space for the context block, item list, return buffer, and an ACB. The 
$CWPSSRV macro defines the symbolic offsets for the fields in the structure 
header. The $CWPSJPI macro defines symbolic offsets for the fields in an 
extension for $GETJPI requests. 

CWPS$GETJPI initializes this structure and stores its address in the con­
text block at offset PSCANC1X$LCWPSSRV. It invokes a CWPS subroutine 
to transmit the request to the appropriate remote node using SCS. 

On the remote node, a CWPS dispatch routine executing in system context 
receives the service request. It allocates a structure to describe the request, 
including the context block. It then queues a kernel mode AST to the CLUS­
TER_SERVER process, determining the address of the ASTprocedure from 
the function to be performed; in this case, CWPS$SRCV _GETJPLAST in 
module CWPS_SERVICE_RECV. 

CWPS$SRCV _GETJPLAST, executing in the context of the CLUSTER_ 
SERVER process, builds a structure that mimics the PCB of the request­
ing process. If it did not receive a context block, it merely requests the 
$GETJPI system service on behalf of the original requestor. Otherwise, it 
inserts the context block onto the PHD queue in the CLUSTER_SERVER 
process and invokes the process scan routines EXE$PSCAN_LOCKCTX and 
EXE$PSCAN_NEXT_PID as EXE$GETJPI does. These locate the EPID of the 
next process. matching the search context. CWPS$SRCV _GETJPLAST then 
requests the $GETJPI service with the explicit EPID of a local process, spec­
ifying a completion AST procedure. EXE$GETJPI follows the steps described 
in Section 13.2.3 for a local process. 

When the $GETJPI request completes, the completion AST procedure 
passes control to another CWPS routine to return status and data to the 
originating node using SCS. 
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When the response arrives from the remote node, a cleanup routine tests 
the status returned from the remote node. On a successful return, it copies 
the returned data to the $GETJPI requestor's buffer area after suitable acces­
sibility checks, updates the context block, and clears the busy flag. It sets 
the event flag, queues the user-requested AST, and returns the status in the 
IOSB. 

$GETJPI Special Kernel Mode ASTs 

To obtain information about a target process on the local node, EXE$GETJPI 
must sometimes queue a special kernel mode AST to the target. From either 
the context of the requesting process (if the requestor is local) or the context 
of the CLUSTER_SERVER process, EXE$GETJPI queues this AST when the 
required information resides in an outswapped PHD or in the control region 
of the target process. 

The special kernel mode AST routine executes in the context of the target 
process to access the information. Once the AST has obtained the informa­
tion, it queues another special kernel mode AST to the requesting process or 
the CLUSTER_SERVER process to pass the information back to the service 
requestor. 

A summary of the operations performed by these two special kernel mode 
AST routines follows: 

1. The first special kernel mode AST routine runs when the target process 
is placed into execution. It examines the extended ACB to determine 
the information that was requested and stores that information in the 
associated system buffer. It reformats the extended ACB to deliver a 
second special kernel mode AST, this time to the requesting process 
or the CLUSTER_SERVER process. It queues the extended ACB to the 
requesting process if it still exists and is not marked for deletion. (The 
CLUSTER_SERVER process cannot be deleted or suspended.) Otherwise, 
it deallocates the nonpaged pool and returns. 

2. The second kernel mode AST routine executes in the context of the 
requesting process or CLUSTER_SERVER process. If the PHD image 
counter has changed since the service was requested, then the requesting 
image has been run down. In this case, the AST routine deallocates the 
block of nonpaged pool, restores the JIB$L_BYTCNT quota, and returns. 

3. If the image counter in the PHD agrees with the image counter in the 
extended ACB, the special kernel mode AST routine copies the retrieved 
data from the system buffer into the user-defined buffers. 

Note that the asynchronous nature of this aspect of the system service 
requires that the IOSB and all data buffers be probed again for write 
accessibility. This check ensures that the original requestor of $GET­
JPI has not altered the IOSB and data buffer protection in the interval 
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between the call to $GETJPI and the delivery of the return special kernel 
mode AST. 

4. The event flag is set and the IOSB is written if it was specified. 
5. If a completion AST was requested, the extended ACB is used for the 

third time to queue an AST to the requesting process in the access mode 
of the caller. Otherwise, the ACB is deallocated to nonpaged pool. 

The CLUSTER_SERVER process always specifies CWPS$SRCV _ 
GETJPLSRV _AST as its completion AST procedure when requesting the 
$GETJPI system service. Therefore, for a remote request, the ACB is al­
ways reused. 

Traditional Wildcard Support in $GETJPI 

In addition to the wildcard search available through the $PROCESS_SCAN 
system service, VMS preserves the traditional $GETJPI wildcard behavior. 
The $GETJPI system service provides the ability to obtain information about 
all processes on the local node. An image requests this feature by passing 
-1 as the PID argument to the $GETJPI system service. An internal routine 
in EXE$GETJPI searches the PCB vector for the first slot containing a valid 
PCB and passes information back to the caller about the associated process. 

EXE$GETJPI alters the process index field of the requestor's PID argument 
to contain the process index of the target process. When the $GETJPI service 
is requested again, the negative sequence number (in the high-order word of 
the process ID) indicates that a wildcard operation is in progress, and the 
positive process index indicates the offset in the PCB vector where the search 
should continue. 

Chapter 25 provides more information on the PCB vector. Note that the 
user image will not work correctly if it alters the value of the PID argument 
between $GETJPI requests. 

The image continues to request the $GETJPI service until a status code 
of SS$_NOMOREPROC is returned, indicating that the PCB vector search 
routine has reached the end of the PCB vector. VMS System Services Ref­
erence Manual and VMS Version 5.2 New Features Manual contain sample 
programs using $GETJPI wildcards. 
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The controlling process in a multiprocess application typically creates other 
processes to perform designated work. When these processes have completed 
their work, the controlling process may delete them or place them into 
some wait state in anticipation of additional work. Chapter 25 describes 
the detailed operation of process creation. Process deletion is described in 
Chapter 28. 

Hibernation and suspension are the two different ways in which a process 
can temporarily stall execution. The system services Hibernate ($HIBER) and 
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Suspend Process ($SUSPND) implement hibernation and suspension. The 
associated services Wake Process ($WAKE), Schedule Wakeup ($SCHDWK), 
and Resume Process ($RESUME) cause execution to recommence. 

Hibernate/Wake 

A process requests the $HIBER service to place itself into hibernation; it 
cannot put another process into the HIB state. The $HIBER system service 
procedure is EXE$HIBER, in module SYSPCNTRL. It performs the following: 

1. EXE$HIBER acquires the SCHED spinlock, raising IPL to IPL$_SCHED. 
2. It uses an interlocked instruction to test the state of the wake pending 

flag, PCB$V _ WAKEPEN in PCB$L_STS, and to clear the flag. 
3. If the flag was set, a wake request preceded the hibernate call. EXE$HI­

BER merely releases the spinlock and returns to its requestor at IPL 0. 
4. Otherwise, if the flag was clear, EXE$HIBER jumps to SCH$WAIT to 

place the process into the hibernate wait state. 

As Chapter 12 describes, SCH$WAIT alters the saved program counter 
(PC) to contain the address of the CHMK instruction in the system service 
vector. Thus, if the process receives an AST while hibernating, it reexecutes 
EXE$HIBER upon completion of the AST routine. Since EXE$HIBER tests 
the wake pending flag, a hibernating process is easily awakened if an AST 
procedure requests the $WAKE service. 

$HIBER's complementary services are $WAKE and $SCHDWK, which re­
move a process from hibernation. To awaken itself, a process can request 
$WAKE from an AST procedure or schedule a wake through $SCHDWK. 
Another process with the ability to affect the hibernating process, as deter­
mined by EXE$NAMPID, can request $WAKE or $SCHDWK on the process's 
behalf. 

The $WAKE system service procedure, EXE$WAKE in module SYS­
PCNTRL, runs in kernel mode. It invokes EXE$NAMPID, described in Sec­
tion 13.1.2. For a local process, EXE$WAKE invokes SCH$WAKE in module 
RSE. SCH$WAKE sets the wake pending flag, PCB$V _ WAKEPEN, and re­
ports the awakening event to the scheduler routine SCH$RSE, specifying 
the priority boost class PRl$_RESAVL for the awakening process. SCH$RSE 
removes the process from the HIB or HIBO queue and places it in the COM 
or COMO queue corresponding to its updated priority. 

The next time the process is scheduled at non-AST level, EXE$HIBER 
reexecutes because of the altered PC. Since SCH$WAKE set the wake pending 
flag, EXE$HIBER clears the flag and returns immediately. Note that if a 
process is awakened from any state other than HIB or HIBO, the net result 
is to leave the wake pending flag set with no other change in the process 
scheduling state. 

If the process is remote, EXE$WAKE branches to CWPS$PCNTRL, in 
module SYSPCNTRL. Section 13.1.3 summarizes the result. 
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Chapter 12 provides further details on SCH$RSE, priority boosts, and 
process state queues, and Chapter 11 describes the $SCHOWK system 
service. 

Suspend/Resume 

Because one process can suspend other processes within the V AXcluster sys­
tem, the implementation of process suspension is more complicated than 
that of hibernation. The VMS scheduling philosophy illustrated in Fig­
ure 12.6 assumes that processes enter various wait states from the state 
of being the current process and in no other way. This assumption requires 
that the process being suspended (the target) become the current process on 
some CPU, possibly replacing the requestor of the $SUSPND system service. 

To accommodate this scheduling constraint, a process is suspended as the 
result of executing a kernel or supervisor mode AST. AST execution ensures 
that the process is first made current before being placed into the SUSP 
scheduling state. 

Prior to VMS Version 5, process suspension always occurred in kernel 
mode. Only the $RESUME system service could make the suspended process 
computable; no ASTs could be delivered to the suspended process. In VMS 
Version 5, suspension can occur in supervisor or kernel mode. Executive 
and kernel mode ASTs can be delivered to a process suspended in supervisor 
mode; non-AST execution recommences after the process is the target of 
a $RESUME system service request. A process suspended in kernel mode 
maintains the pre-Version 5 behavior. ASTs cannot be delivered and the 
process only becomes computable following a $RESUME system service 
request. 

Process Suspension. Process suspension occurs in two parts, both in module 
SYSPCNTRL: the $SUSPND system service procedure, EXE$SUSPND, and 
a supervisor or kernel mode AST procedure, depending on the suspension 
request. The default is supervisor mode. 

EXE$SUSPND. EXE$SUSPND executes in kernel mode in the context of the 
requesting process. It performs the following: 

1. EXE$SUSPND checks for the presence of its FLAGS argument. If the low 
bit of the FLAGS argument is clear or the argument is not specified, the 
request is for supervisor suspension, also called soft suspension. 

2 .. Otherwise, the request is for kernel mode suspension, also called hard 
suspension. EXE$SUSPND checks that its caller was in kernel or execu­
tive mode; otherwise, it returns the error status SS$_NOPRIV. 

3. EXE$SUSPND invokes EXE$NAMPID to identify the target process and 
perform access checking. 
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4. If the target process is not local, EXE$NAMPID returns the error status 
SS$_REMOTE_PROC. EXE$SUSPND passes the request to a CWPS rou­
tine for transmission to a remote V AXcluster node. If the local process has 
appropriate access to the remote target process, a CWPS routine on the 
remote node eventually executes the $SUSPND request from the con­
text of the CLUSTEILSERVER process. It transmits status to a CWPS 
receiver on the requesting node, which reenters the context of the re­
questing process via an AST to return the status to the user image. 

5. Otherwise, if the target process is local, EXE$NAMPID returns holding 
the SCHED spinlock. EXE$SUSPND continues with the steps that fol­
low. (Exit paths from EXE$SUSPND must release this spinlock and lower 
IPL to 0.) 

6. EXE$SUSPND checks the delete pending bit PCB$V _DELPEN, in 
PCB$L_STS, in the PCB of the target process. If the process is marked 
for deletion, EXE$SUSPND returns the error status SS$_NONEXPR. 

7. EXE$SUSPND checks the bit PCB$V_NOSUSPEND in PCB$LSTS. If 
EXE$SUSPND cannot safely suspend the process, it returns the error 
status SS$_NOSUSPEND. 

8. It tests and sets PCB$V _SUSPEN, the suspend pending bit in PCB$LSTS. 
If suspension is pending, EXE$SUSPND tests the bit PCB$V _SOFTSUSP. 
If the pending suspension is supervisor mode, PCB$V _SOFTSUSP is set; 
otherwise, a kernel mode suspension is pending. 

If a kernel mode suspension is pending, EXE$SUSPND returns with. 
the status SS$_NORMAL. 

Otherwise, if a supervisor mode suspension is pending or no suspension 
is pending, EXE$SUSPND's actions depend on the mode of the new 
suspension request: 

-If the new suspension request is for kernel mode, EXE$SUSPND 
queues the kernel mode AST (the second part of suspension) to the 
target process (possibly itself). 

-If the new suspension request is for supervisor mode, EXE$SUSPND 
determines whether it is executing within the context of its supervi­
sor mode AST procedure. If not, it marks the process for soft suspen­
sion by setting PCB$V_SOFTSUSP. It then queues a supervisor mode 
AST to the target process. Otherwise, if EXE$SUSPND is executing 
within its supervisor mode AST context, it performs as described in 
Section 13.3.2.1.3. 

Through the normal scheduling selection process, the target process even­
tually executes the kernel or supervisor mode AST procedure. 

The Kernel Mode AST Procedure. The kernel mode AST procedure SUSPND, 
in module SYSPCNTRL, executes in the context of the target process. 
SUSPND obtains the current PCB address and acquires the SCHED spinlock. 
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It then tests the bit PCB$V _SOFTSUSP in PCB$L_STS. A set bit indicates 
supervisor mode suspension. Since kernel mode suspension preempts super­
visor mode suspension, SUSPND clears PCB$V _SOFTSUSP and sets PCB$V _ 
PREEMPTED. 

SUSPND checks and clears the resume pending flag PCB$V _RESPEN, in 
PCB$L_STS. This check prevents the deadlock that might otherwise occur if 
the associated call to the $RESUME system service preceded the execution 
of the AST procedure. H the resume pending flag is set, the AST procedure 
simply releases the SCHED spinlock, lowers IPL to 0, clears the suspend 
pending bit, and returns. The process continues execution. 

H the resume pending flag is clear, the kernel mode AST procedure checks 
whether there is a Files-11 Extended QIO Processor (XQP) operation in 
progress. Chapter 7 discusses this check and the action taken if an oper­
ation is in progress. 

H no .Files-11 operation is in progress, the kernel mode AST procedure 
places the process into the SUSP wait state. Its saved PC is an address in 
the AST procedure and the saved processor status longword (PSL) indicates 
kernel mode and IPL 0. ASTs can be queued to a process suspended in 
kernel mode but they cannot be delivered. When an AST is queued to a 
process suspended in kernel mode, SCH$RSE ignores the AST event. Only 
the $RESUME system service can cause a process suspended in kernel mode 
to continue with execution. At that time, the process reexecutes the check 
of the resume pending flag, which would be set, causing the process to return 
successfully from the AST. 

The Supervisor Mode AST Procedure. The supervisor mode AST procedure, 
SUSPEND_SOFT in module SYSPCNTRL, executes in the context of the 
target process. Its only action is to request the $SUSPND system service, 
thus reentering EXE$SUSPND. 

When EXE$SUSPND is reentered, it determines that it is executing within 
the context of its supervisor mode AST procedure. It tests the bit PCB$V _ 
PREEMPTED in PCB$L_STS. H it is set, the supervisor mode suspension was 
preempted by a kernel mode suspension. H PCB$V _SOFTSUSP is clear as 
well, EXE$SUSPND clears PCB$V _SUSPEN and PCB$V _PREEMPTED and 
returns successfully to the caller. 

H the supervisor mode suspension was not preempted by a kernel mode 
suspension, PCB$V _PREEMPTED is clear. H PCB$V _RESPEN is also clear, 
indicating that the process has not been resumed, EXE$SUSPND suspends 
the process. 

While a process is suspended in supervisor mode, its saved PC contains the 
address of the CHMK instruction in the SYS$SUSPND system service vector. 
Its saved PSL indicates supervisor mode. The process's supervisor mode AST 
active bit is set, blocking delivery of another supervisor mode AST. The 
enqueuing of an AST makes the process computable. When the process is 
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placed into execution, a kernel or executive mode AST can be executed, but 
a user or supervisor mode AST cannot; the AST control block is queued and 
the interrupt is dismissed. 

In either case, an REI instruction is executed, which causes the $SUSPND 
system service to be reexecuted. EXE$SUSPND repeats the test that sus­
pended the process. If PCB$V _RESPEN is not set, the process is once more 
suspended. 

Operation of the $RESUME System Service. The $RESUME system service 
is very simple. It invokes EXE$NAMPID and, for an accessible process on 
the local system, sets the resume pending flag PCB$V _RESPEN in the target 
process PCB. It then reports a resume event, invoking SCH$RSE. As with 
all other system events, this report may result in a rescheduling interrupt 
request, a request to wake the swapper process, or nothing at all. 

If the target process is not local, the $RESUME request is passed to a CWPS 
routine for transmission to a remote VAXcluster node. If the local process 
has appropriate access to the remote target process, a CWPS routine on the 
remote node eventually executes the $RESUME request from the context of 
the CLUSTER_SERVER process. It transmits status to a CWPS receiver on 
the requesting node, which reenters the context of the requesting process 
via an AST to return the status to the user image. 

Exit and Forced Exit 

The Exit ($EXIT) system service terminates the currently executing image. If 
the process is executing a single image without a command language inter.­
preter, image exit usually results in process deletion. A detailed discussion 
of the $EXIT system service is given in Chapter 26. 

The Force Exit ($FORCEX) system service enables one process to force a 
target process to request the $EXIT system service. The system service pro­
cedure EXE$FORCEX, in module SYSFORCEX, locates the process through 
EXE$NAMPID. 

If the target process is riot local, EXE$NAMPID returns the error status 
SS$_REMOTE_PROC. EXE$FORCEX passes the request to a CWPS routine 
for transmission to a remote V AXcluster node. If the local process has ap­
propriate access to the remote target process, a CWPS routine on the re­
mote node eventually executes the $FORCEX request in the context of the 
CLUSTER_SERVER process, performing the steps described in the following 
paragraphs. The remote CWPS routine transmits status to a CWPS receiver 
on the requesting node, which reenters the context of the requesting process 
via an AST to return the status to the user image. 

For a local process, EXE$FORCEX simply sets the force exit pending flag, 
PCB$V _FORCPEN in PCB$L_STS, and queues a user mode AST to the target 
process. This AST procedure, executing in user mode, requests the $EXIT 
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system service after clearing the AST active flag by executing the following 
instruction: 

CHMK #ASTEXIT 

Chapter 7 provides more information on this instruction. The call to 
$EXIT executes in the context of the target process. Execution proceeds as 
if the target process had called the system service itself. 
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Several system services allow a process to alter its characteristics, such as 
its response to resource allocation failures, its priority, and its process name. 
Some of these changes (such as priority elevation or swap disabling) require 
privilege. The Set Priority ($SETPRI) system service is the only service de­
scribed in this section that a process can issue for a target other than itself. 

Set Priority 

The $SETPRI system service allows a process to alter its own priority or 
the priority of other processes within the VAXcluster system, limited by 
the privilege checks in EXE$NAMPID (see Section 13.1.2). A process with 
the ALTPRI privilege can change priority to any value between 0 and 31. 
A process without this privilege is restricted to the range between zero and 
the authorized base priority of its target process (PCB$B_AUTHPRI) or the 
current base priority of its target process (PCB$B_PRIB), whichever is higher. 

The system service procedure EXE$SETPRI, in module SYSSETPRI, runs 
in kernel mode. It locates the target process via EXE$NAMPID. 

If the target process is not local, EXE$NAMPID returns the error status 
SS$_REMOTE_PROC. EXE$SETPRI passes the request to a CWPS routine for 
transmission to a remote VAXcluster node. If the local process has appropri­
ate access to the remote target process, a CWPS routine on the remote node 
eventually executes the $SETPRI request in the context of the CLUSTER_ 
SERVER process, performing the steps described in the following paragraphs. 
The remote CWPS routine transmits status to a CWPS receiver on the re­
questing node, which reenters the context of the requesting process via an 
AST to return the status to the user image. 

For a local process, EXE$SETPRI changes the base priority in the PCB 
at offsets PCB$B_PRIBSAV and PCB$B_PRIB and the saved base priority at 
offset PCB$B_PRISAV. (For a target process at elevated priority with a mu­
tex locked, EXE$SETPRI only alters PCB$B_PRIBSAV and PCB$B_PRISAV.) 
Chapter 12 provides further information on these PCB fields. 

If the target process is current, EXE$SETPRI invokes SCH$CHANGE_ 
CUR_PRIORITY, in module RSE, to alter its current priority, stored in offset 
PCB$B_PRI. Chapter 12 describes SCH$CHANGE_CUR_PRIORITY. 
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EXE$SETPRI reports a set-priority system event for the target process by 
invoking SCH$RSE with a priority boost class of PRl$_IOCOM. If the tar­
get process is COM or COMO, SCH$RSE removes it from its current COM 
or COMO queue and places it into the COM or COMO queue correspond­
ing to its new current priority. SCH$RSE clears and sets, as appropriate, 
the bits in SCH$GL_COMQS or SCH$GL_COMOQS. SCH$RSE requests a 
rescheduling interrupt if the target process is resident and can preempt a 
current process. If the target process is outswapped, SCH$RSE attempts to 
awaken the swapper process. 

Chapter 12 provides further details. 

Reschedule Current Process 

The Reschedule Current Process ($RESCHED) system service was introduced 
in VMS Version 5.0. $RESCHED provides run-time support for the parallel 
processing features of VAX FORTRAN and VAX C. It enables the currently 
executing process to request a reschedule, allowing other processes at the 
same base priority to run. 

The $RESCHED system service procedure, EXE$RESCHED in module 
SYSPARPRC, runs in kernel mode. It takes the following steps: 

1. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED. 
2. It records the system absolute time in interval timer ticks in PCB$L_ 

ONQTIME. 
3. It invokes SCH$CHANGE_CUR_PRIORITY, described in Chapter 12, to 

lower the process's priority to its base. 
4. It requests a rescheduling interrupt. 
5. It releases the SCHED spinlock, restoring the previous IPL (thus enabling 

the rescheduling interrupt to be granted). 
6. It returns a success status to its caller. 

Use of this undocumented system service is reserved to Digital. Any other 
use is completely unsupported. 

Set Process Name 

The Set Process Name ($SETPRN) system service allows a process to change 
or eliminate its own process name. The new name cannot contain more than 
15 characters. If no other process in the same group has the same name, 
EXE$SETPRN, in module SYSPCNTRL, places the new name into the PCB 
at offset PCB$T _LNAME. Note that this service allows more flexibility in 
establishing a process name than is available from the usual channels, such 
as the authorization file, $JOB card, or Digital command language (DCL) 
command SET PROCESS /NAME, because there are no restrictions imposed 
by the service on characters that can make up the process name. 
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The PCB contains a status longword (not to be confused with the hardware 
entity, the PSL) that records the current software status of the process. The 
lOngword is PCB$L_STS. Table 13.2 lists each of the flags in the longword 
and the direct or indirect ways to set or clear these flags. Each of these flags 
has a symbolic name of the form PCB$V _name, where name is one of those 
listed in the table. 

The module SYSSETMOD contains three miscellaneous system services 
whose only action is to set or clear a bit in PCB$L_STS. These are the Set Re­
source Wait Mode ($SETRWM), Set System Service Failure Exception Mode 
($SETSFM), and Set Swap Mode ($SETSWM) system services. To disable 
swapping, a process must possess the PSWAPM privilege. The other two 
services require no privilege. 

Several system services (such as $DELPRC, $FORCEX, $RESUME, and 
$SUSPND) set or clear bits in PCB$L_STS as an indication that the service's 
primary operation has been initiated. 

The Set AST Enable ($SETAST) system service sets or clears (enables or 
disables) delivery of ASTs to a given access mode. The offset PCB$B_ASTEN 
contains the AST enable flags (see Chapter 7). 
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In applications involving more than one process, the processes commonly 
share data or transfer information from one process to another. VMS pro­
vides various mechanisms that accomplish this information exchange. These 
mechanisms vary in the amount of information that can be transmitted, 
transparency of the transmission, and amount of synchronization provided 
by the VMS operating system. 

This section discusses event flags, lock management system services, mail­
boxes, logical names, and global sections. In addition to these, VMS provides 
file sharing and DECnet task-to-task communication. The Guide to VMS File 
Applications describes use of the former and the VMS Networking Manual 
the latter. 

Event Flags 

Common event flags can be treated as a method for several processes to share 
single bits of information. However, the typical use of common event flags 
is as a synchronization tool for other, more complicated, communication 
techniques. 

Common event flags can be shared by processes in the same UIC group 
executing on processors accessing common memory, that is, processors par­
ticipating in a symmetric multiprocessing (SMP) system or processors shar­
ing MA780 memory. However, event flags cannot be shared by processes 
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Table 13.2 Meanings of Flags in PCB$1-STS 

Flag Name Meaning if Set Set by Cleared by 
RES Process is resident Swapper Swapper 
DELPEN Process deletion is pending $DELPRC 
FORCPEN Forced exit is pending $FORCEX Image rundown, 

Process rundown 
INQUAN Process is in initial quantum Swapper SCH$QEND 

after inswap 
PSWAPM Process swapping is disabled $SETSWM, $SETSWM 

$CREPRC 
RES PEN Resume is pending (skip suspend) $RESUME Suspend AST 
SSFEXC Enable system service exceptions $SETSFM $SETSFM, 

for kernel mode Process rundown 
SSFEXCE Enable system service exceptions $SETSFM $SETSFM, 

for executive mode Process rundown 
SSFEXCS Enable system service exceptions $SETSFM $SETSFM, 

for supervisor mode Process rundown 
SSFEXCU Enable system service exceptions $SETSFM, $SETSFM, 

for user mode $CREPRC Image rundown 
SSRWAIT Disable resource wait mode $SETRWM, $SETRWM 

$CREPRC 
SUS PEN Suspend is pending $SUSPND Suspend AST 
WAKEPEN Wake is pending (skip hibernate) $WAKE, $BIBER 

$SCHDWK 
WALL Wait for all event flags in mask $WFLAND Next $WFLOR 

or $WAITFR 
BATCH Process is a batch job $CREPRC 
NOACNT No accounting records for this $CREPRC 

process 
NOSUSPEND Do not suspend this process CWPS, Audit Server 

Audit Server 
ASTPEN AST is pending (not used) 
PHDRES Process header is resident Swapper Swapper 
BIBER Hibernate after initial image $CREPRC 

activation 
LOGIN Log in without reading the $CREPRC 

authorization file 
NETWRK Process is a network job $CREPRC 
PWRAST Process has declared a power $SETPRA Queuing of 

recovery AST recovery AST, 
Image rundown, 
Process rundown 

NODELET Do not delete this process CWPS, NETACP 
NETACP 

DISAWS Disable automatic working set SET WORK SET WORK 
adjustment on this process /NOADJUST, /ADJUST 

$CREPRC 

(continued) 
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Table 13.2 Meanings of Flags in PCB$LSTS (continued) 

Flag Name 

INTER 
RECOVER 
SECAUDIT 

HARDAFF 
ERDACT 
SOFTSUSP 
PREEMPTED 

13.5.2 
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Meaning if Set Set by Cleared by 

Process is interactive job $CREPRC 
(Reserved) 
Perform mandatory process LOGINOUT, LOGINOUT 

auditing $CREPRC 
(Reserved) 
Exec mode rundown active Process rundown Process rundown 
Process is in soft suspend $SUSPND $SUSPND 
Hard suspend has preempted soft $SUSPND $SUSPND 

on different V AXcluster nodes. Chapter 9 contains more information on the 
implementation of common event flags. 

Lock Management System Services 

The lock management system services (also known as the lock manager) 
enable a process to name an arbitrary resource and share it VAXcluster­
wide. A process can request locks on the named resource in a variety of lock 
modes to control the manner in which the process shares the resource with 
other processes. In each lock request, the process can declare a blocking AST 
procedure, which is invoked by the lock manager if the process's granted lock 
blocks another request for the resource. The process can also specify the lock 
manager behavior when access to a resource cannot be immediately granted: 
either that it wait until the resource is available, or return immediately with 
notification of the failure. 

Each resource includes a 16-byte area available to store process data. The 
lock manager synchronizes access to this area, allowing cooperating pro­
cesses to read and write the area using lock value blocks. 

Chapter 10 describes the implementation of the lock management system 
services. Appendix A provides examples of VMS modules that use lock 
management system services to coordinate access to system resources. 

Mailboxes 

Mailboxes are software-implemented I/O devices that can be read and writ­
ten through Record Management Services (RMS) requests or the Queue I/O 
Request ($QIO) system service on the local node. Although process-specific 
or systemwide parameters may control the amount of data that can be writ­
ten to a mailbox in one operation, there is no limit to the total amount of 
information that can be passed through a mailbox with a series of reads and 
writes. 

Typically, one process reads messages written to a mailbox by one or more 
other processes. In the simple method of synchronizing mailbox I/O, the 
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receiving process initiates its read of the mailbox and waits until the read 
completes. The read completes when another process writes to the mailbox. 
Since the receiving process cannot do anything else while waiting for data, 
this technique is restrictive. 

In most applications, the receiving process performs other tasks in addi­
tion to servicing the mailbox. Putting such a process into a wait state for 
the mailbox prevents it from servicing any of its other tasks. In these appli­
cations, the receiving process could read the mailbox asynchronously with 
AST notification. However, even in this case, the process must have an 1/0 
request outstanding at all times to receive notification that the mailbox con­
tains a message. 

For some applications, this may not be acceptable. Thus, VMS provides a 
special $QIO request function code, set attention AST, which requests AST 
notification that a message has been written to the mailbox. This technique 
allows a process to continue its mainline processing and to handle mailbox 
requests from other processes only when such work is needed, without 
having an 1/0 request outstanding at all times. 

Chapter 23 discusses the implementation of mailboxes and Chapter 7 
describes attention ASTs. 

Logical Names 

VMS makes extensive use of logical names to provide device independence in 
the 1/0 system. However, logical names can be used for many other purposes 
as well. Specifically, one process can pass information to another process by 
creating a logical name in a shared logical name table and storing information 
in the equivalence string. The receiving process simply translates the name 
to retrieve the data. 

Although an error return (SS$_NOTRAN) from the Translate Logical 
Name ($TRNLNM) system service provides a form of synchronization, a 
well-behaved process generally synchronizes communication via logical 
name translation by using event flags or an equivalent method. An exception 
to this rule occurs when a process creates a subprocess or detached process 
and passes data to the new process in the equivalence strings for SYS$IN­
PUT, SYS$0UTPUT, or SYS$ERROR. Chapter 35 provides details on the 
implementation of logical names. 

Global Sections 

Global sections provide the fastest method for one process to pass infor­
mation to another process. Because the processes map the data area into 
their address space, no movement of data takes place; the data is shared. 
The sharing, however, is not transparent. Each process must map the global 
section and the participating processes must agree upon a synchronization 
technique to coordinate the reading and writing of the global section and 
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provide notification of new data. It can be implemented with event flags, 
lock management system services, or some similar mechanism. 

A global section implemented on a multiprocessor system or in MA780 
shared memory can be simultaneously accessed by multiple processes. Syn­
chronization in such an environment requires use of interlocked instructions 
or a protocol based on event flags or locks. Chapter 8 briefly describes syn­
chronization of shared memory. 

Chapter 15 describes the implementation of global sections. 
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14 Memory Management Overview 
and Data Structures 

... but there's one great advantage in it, that one's memory 
works both ways. 

Lewis Carroll, Through the Looking Glass 

This chapter provides an overview of VMS memory management and de­
scribes data structures used by the memory management subsystem. Virtual 
memory support for the VMS operating system is implemented partly by the 
VAX processor and partly by the VMS executive. 

The four chapters that follow this one describe different aspects of VMS 
memory management in more detail: 

• Chapter 15 describes system services that an image requests to alter the 
process's virtual address space. 

• Chapter 16 discusses the translation-not-valid (page fault) fault handler, 
the exception service routine that responds to page faults and brings virtual 
pages into memory. 

• Chapter 17 describes the working set list and the mechanisms that alter, 
shrink, and expand it. 

• Chapter 18 examines the swapper process, a system process that manages 
physical memory by writing modified pages, shrinking process working 
sets, and swapping processes. 

14.1 OVERVIEW OF MEMORY MANAGEMENT 

Physical memory is the real memory supplied by the hardware. A vir­
tual memory environment supports software that has memory requirements 
greater than the available physical memory. An individual process can re­
quire more memory than is available, or the total requirements of multiple 
processes can exceed available memory; A virtual memory system simulates 
real memory by transparently moving the contents of memory to and from 
block-addressable mass storage. 

A VAX processor and the VMS executive cooperate to support virtual mem­
ory. In normal operation, the system interprets all instruction and operand 
addresses as virtual addresses (addresses in virtual memory). A VAX proces­
sor translates virtual addresses to physical addresses (addresses in physical 
memory) as the instructions are being executed. This execution time trans­
lation capability allows the VMS executive to execute any particular image 
in whichever physical memory is available. It also allows VMS and a VAX 
processor in combination to implement memory protection. 
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The term memory management describes not only virtual memory sup­
port but also the ways in which VMS exploits this capability. Memory man­
agement is fundamentally concerned with the following issues: 

• Movement of code and data between mass storage and physical memory 
as required to simulate a virtual memory larger than the physical one 

• Support of memory areas in which individual processes can run without 
interference from others, areas in which system code can be shared but not 
modified by its users, and common memory for shared code and data 

• Arbitration among competing uses of physical memory to optimize system 
operation and equitable memory allocation 

Virtual Memory 

Support for virtual memory enables a process to execute an image that only 
partly resides in physical memory. Only the portion of virtual address space 
actually in use occupies physical memory. This enables the execution of im­
ages larger than the available physical memory. It also makes it possible for 
parts of different processes' images and address spaces to be resident simulta­
neously. Virtual memory is implemented in such a way that each process can 
access only its own address space; each process is thereby protected against 
references from other processes. Address references in an image built for a 
virtual memory system are independent of the physical memory in which 
the image actually executes. 

A physical address is one that can be transmitted by the processor over the 
system bus, typically to a memory controller. Physical memory, also known 
as physical address space, is the set of all physical addresses that identify 
unique memory locations and I/O adapter registers. 

During normal operations, an instruction accesses memory using the 32-
bit virtual address of a particular byte. A VAX processor translates the virtual 
address to a physical address using information provided by the operating 
system. 

The set of all possible 32-bit virtual addresses is called virtual memory, or 
virtual address space. The low half of the address space (addresses between 
0 and 7FFFFFFF16) is called per-process space. This space is further divided 
into two equal pieces called PO space (addresses between 0 and 3FFFFFFF16) 
and Pl space (addresses between 4000000016 and 7FFFFFFF16 ). One process 
at a time executes on a VAX processor. (On a symmetric multiprocessing 
(SMP) system, one process at a time executes on each VAX processor.) As 
a process is placed into execution, its per-process address space is mapped; 
that is, its virtual addresses are associated with physical addresses. 

The high half of the virtual address space is called system space. The lower 
half of system space (the addresses between 8000000016 and BFFFFFFF16) is 
called SO space; the upper half is undefined and reserved to Digital. Thus the 
terms system space and SO space are used synonymously. 
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Virtual address space is divided into pages. Each page is a group of 512 con­
tiguous bytes starting on a 512-byte address boundary. The first page starts at 
address 0, the second at address 20016 lor 51210), the third at address 40016 
lor 102410), and so on. The virtual page is the unit of address translation; 
the physical location of a particular virtual page is generally independent of 
those of its adjacent virtual pages. The virtual page is also the unit of mem­
ory access checking. Each virtual page has a protection code specifying from 
which access modes it can be read and written. 

When a VAX processor is initialized, memory management is disabled. All 
addresses generated by the CPU are physical addresses that do not require 
translation. Once memory management is enabled, or turned on, an instruc­
tion can no longer access memory using a physical address. The processor 
treats all instruction-generated addresses as virtual and translates them to 
physical addresses using data structures called page tables, which record the 
association of virtual to physical pages. IA physical page is the same size as 
a virtual page, 512 bytes.) Once having enabled memory management, VMS 
does not disable it. 

While memory management is enabled, translation of system space ad~ 
dresses must always be possible. Per-process addresses, however, only have 
meaning in the context of a process. If there is no current process, it is not 
meaningful to access or translate PO and Pl virtual addresses. 

A page table is associated with each region of virtual address space. The 
processor translates system space addresses with the system page table. Each 
process has its own PO and Pl page tables. 

A page table does not map the full virtual address space possible; instead, 
it maps only the part of its region that has been created. PO space starts 
at location 0 and expands toward increasing addresses; Pl space starts at 
location 7FFFFFFF16 and expands toward decreasing addresses; and SO space 
begins at 8000000016 and expands toward increasing addresses. 

In a page table, each page table entry IPTE) associates one page of virtual 
address space with its physical location, either in memory or on a mass stor­
age medium. !This description is slightly simplified; Sections 14.2 and 14.3.3 
contain more details.) 

A PTE contains a bit called the valid bit, which, when set, means that 
the virtual page is in a particular page of physical memory; in that case, the 
PTE also contains all but the low nine bits of the physical page's address. 
This part of a physical address is called the page frame number. When 
a reference is made to a virtual address whose PTE valid bit is set, the 
processor uses the page frame number to transform the virtual address into 
a physical address. This transformation is called virtual address translation. 
Section 14.2 contains more information on the VAX address translation 
algorithm. 

When a reference is made to a virtual address whose PTE valid bit is clear, 
the processor cannot perform address translation and instead generates a 
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translation-not-valid exception, also known as a page fault. The page fault 
exception service routine, called the page fault handler, runs in the context 
of the process that incurred the page fault. It examines the PTE to determine 
the physical location of the invalid page. If the invalid page is in physical 
memory, the page fault handler simply updates the PTE. Otherwise, it ob­
tains an available page of physical memory and initiates 1/0 to read the 
virtual page into it. When this occurs, the process is said to be faulting the 
page in. 

When the 1/0 completes, the page fault handler sets the PTE valid bit and 
dismisses the exception. With the virtual page now valid, control returns to 
the instruction whose previous execution triggered the page fault. Reading 
a virtual page into memory in response to an attempted access is called 
demand paging. 

VMS limits the number of pages of physical memory a process can use at 
the same time. When this limit has been reached and the process incurs a 
page fault, the page fault handler selects one of the process's virtual pages 
to remove from physical memory. When this occurs, the process is said to 
be faulting the page out. Removing one virtual page from a process to make 
room for another is called replacement paging. 

The mass storage location from which a virtual page is read is called its 
backing store. A common example of backing store is a block in an image 
file. If the virtual page is guaranteed not to change (that is, it contains pure 
code or read-only data), the page fault handler need not write the page to 
mass storage when it is faulted out (thus saving the 1/0) and can reread it 
from the image file as often as required. Thus, the backing store file remains 
the image file. If, however, the virtual page is writable data of which each 
process gets its own copy, the page is faulted in once from the image and 
later faulted out to page file backing store, from which any subsequent faults 
will be satisfied. 

Chapter 16 describes in detail how the page fault handler deals with vari­
ous types of page fault. 

VMS Address Space. VMS uses the three regions of address space differently: 

• The VMS executive occupies system space, along with systemwide data 
structures. 

• Pl space contains the process stacks and permanent process control infor­
mation maintained by the VMS executive. It also contains address space 
used on the process's behalf by inner access mode components such as 
Record Management Services (RMS), the file system, and a command lan­
guage interpreter. 

• PO space maps whatever images the user activates. 

Chapter 1, which contains layouts of Pl and system space, describes these 
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uses in more detail. Appendix F describes the layout of each address space 
in more detail. 

Different areas of virtual address space have different protections. The 
protection codes on most system space data pages prohibit access from all but 
kernel and executive mode. System space pages occupied by executive code 
allow read access from user mode. Certain parts of Pl space are protected 
against access from outer access modes. The protection on PO space pages 
usually allows read access from user mode and sometimes write access as 
well. 

Virtual address space is. created (and recreated) at different times during 
system operation. System space is formed once and always mapped. Per­
process address space is created for each process and mapped only when that 
process is current. 

During system initialization, SYSBOOT calculates system space require­
ments and allocates physical memory for the system page table. SYSBOOT 
and other initialization routines load the executive images into system space, 
form the dynamic memory pools, and initialize the other regions of system 
space. Chapters 30 and 31 describe the formation and initialization of sys­
tem space in detail. Once initialization is complete, the maximum size of 
system space is fixed, although individual system page table entries can be 
altered to create, delete, or modify particular pages of system space. 

When a process is created, its Pl space is created in several stages, as de­
scribed in Chapters 25 and 27. The global cell CTL$GL_CTLBASVA contains 
the address that is the boundary between the permanent and temporary por­
tions of Pl space. The regions of Pl space 'below this address, namely, the 
user stack and a possible replacement image 1/0 section, are recreated by the 
image activator when it activates an executable image. Pl space can expand 
toward lower addresses during image execution as a result of system services 
requested explicitly by the image or implicitly on its behalf. 

PO space and the nonpermanent part of Pl ·space are deleted at image run­
down and recreated with each new image run. The image activator creates 
address space for the image and every shareable image that it references. Dur­
ing image execution, it creates additional address space as necessary to acti­
vate images requested through the Run-Time Library procedure LIB$FIND_ 
IMAGE_SYMBOL. PO and Pl space can also change during image execution 
as a result of system services requested explicitly by an image or implicitly 
on its behalf. 

As the image activator processes images, it creates process sections for 
the image sections it encounters. (A process section can also be created 
dynamically in response to a system service request.) A process section is 
a group of contiguous virtual pages with the same characteristics, such as 
writability and shareability. 

Each per-process address region is architecturally limited to one gigabyte. 
Each per-process address space may be further constrained by the SYSGEN 
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parameter VIRTUALPAGECNT, the page fl.le quota available to the process, 
and some additional factors, as described in Chapter 15. 

Chapter 26 describes the image activator and the memory management 
system services it requests to map the sections of an image. Chapter 15 
describes those system services. 

Virtual Address Space Data Structures. The major data structures that de­
scribe virtual address space are 

• System page table (SPT) 
• Per-process page tables (POPT and PlPT) 
• Process section table (PST) 
• System section table (better known as the global section table) 

The SPT is contained in contiguous physical pages, generally at the high­
address end of physical memory. Section 14.5.1 describes it in further detail. 

When the VMS executive creates a process, it allocates a data structure 
called a process header (PHO) to record memory management data about 
the process. A process's page tables are contained in its PHO. Section 14.3.3 
describes process page tables in further detail. 

The PHO also contains the PST, which has one process section table entry 
(PSTE) to describe each process section created in that process's address 
space. A PSTE contains information necessary to resolve a page fault for 
a page in the section. The PTE for an invalid page that is part of a process 
section contains a pointer to the section's PSTE. Section 14.3.S contains 
more information on the PST. 

Sections 14.5.2 and 14.6.2 discuss systemwide structures that are analo­
gous to the process-specific PHO and PST: the system header and its section 
table, containing descriptions of system space sections and global sections. 

Physical Memory 

Physical memory is divided into 512-byte pages. Each page has an identifying 
number called a page frame number (PFN). A PFN is simply the portion of 
the physical address that specifies the physical page, namely all but the low­
order nine bits. Generally, physical memory page numbers start at 0 and 
increase toward higher numbers. The size of physical address space varies 
with VAX processor type. Generally, the low half of the physical address 
space is used for memory locations and the high half for 1/0 adapters. The 
maximum amount of memory addressable on any VAX processor is limited 
by the layout of the PTE: on processors supported by VMS Version 5.2, it 
has space for a 21-bit PFN. Thus, the maximum physical address space is 
221 pages, or one gigabyte. 

Some pages of physical memory are allocated permanently, for example, 
the pages that contain the SPT or the system base image. More typically, 
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VMS allocates a physical page of memory for a particular need, such as a 
virtual page in a process's address space, and deallocates the page when it is 
no longer needed. 

Physical Memory Data Structures. A database called the PFN database, de­
scribed in Section 14.4, records significant information about each physical 
page, such as whether it is currently in use and for what purpose. 

The pages of physical memory allocated to a process are called its working 
set. A structure within the PHD called the working set list represents just 
those pages in a compact form. (In contrast, PTEs describing valid pages are 
scattered among those describing invalid pages in a per-process page table.) 
The working set list is briefly described in Section 14.3.4 and in more detail 
in Chapter 17. A working set list within the system header describes pageable 
system pages that are valid (see Section 14.5.2). 

Physical pages available for allocation are linked together into a list called 
the free page list. A page is allocated from the front of the list and generally 
deallocated to the back of the list. At allocation a physical page is associated 
with a virtual page: the PFN of the physical page is placed in the PTE cor­
responding to the virtual page, and the virtual page is read into the physical 
page. The physical page retains its virtual contents until it is allocated for a 
new use. Even when the physical page is removed from a process's working 
set and the valid bit in the virtual page's PTE is cleared, the PTE still con­
tains the physical page's PFN. Until the physical page is reused, it is possible 
to resolve a fault for the virtual page by removing the physical page from 
the free page list and setting the PTE valid bit again. A page fault resolved 
in this manner without the need for mass storage 1/0 is sometimes called a 
soft page fault. 

When a physical page that has been modified is. removed from a process's 
working set, the page is inserted at the back of another list, called the 
modified page list. The modified page list differs from the free page list in 
that a physical page on the modified page list cannot be reused until its 
contents are written to backing store, for example, a page file or the section 
file to which the virtual page belongs. Once the swapper has written the 
contents of the modified page to backing store, the swapper moves the page 
to the back of the free page list. (Acting in this capacity, the swapper is 
referred to as the modified page writer.) 

While a physical page is on either the modified or free page list, a page 
fault for its virtual page can be resolved without 1/0. Thus these lists act as 
systemwide caches of recently used virtual pages. 

Sharing Physical Memory. Because system space addresses are mapped by the 
system page table, the physical memory occupied by system pages is shared 
by all processes. In addition, to enable process pages to share physical mem­
ory, VMS can map multiple processes' PTEs to the same physical pages. For 
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example, multiple processes using the same command language interpreter 
can share the read-only pages of the image. (However, each process needs a 
private copy of its writable data pages.) Sharing physical pages makes more 
efficient use of memory and reduces the number of page faults that require 
mass storage I/O. 

VMS implements the sharing of physical memory by multiple processes 
through a mechanism called a global section. All the pages of a global section 
have the same attributes. A global section resembles a process section and 
is dealt with similarly by the page fault handler. 

There are several data structures associated with global sections: 

• Global section table 
• Global section descriptors 
• Global page table 

The global section table (GST) is analogous to a process section table and 
contains a global section table entry (GSTE) for each global section. Like a 
PSTE, a GSTE has information necessary to resolve a page fault for a page 
in the section. Section 14.6.2 contains more details. 

A global section descriptor (GSD) identifies a particular global section by 
name and associates the name with a GSTE. A global section descriptor con­
tains information used to determine whether a particular process is allowed 
to access the global section. Section 14.6.l describes this data structure. 

The global page table (GPT), described in Section 14.6.3, contains global 
PTEs that serve as templates for the process PTEs that map global pages. 

When multiple processes are mapped to a global section, all processes can 
potentially benefit from each other's page faults. When process A incurs a 
page fault for a global page not in its working set, if the page is not valid, it 
is read in from its backing store. After the page fault completes, the global 
page table entry (GPTE) is modified to show that the global page is valid. If 
process B then incurs a page fault for that page, the page fault handler copies 
the information from the GPTE to B's PTE and resolves the fault without 
the need for I/O. 

Managing Physical Memory. Physical memory is used in the following ways: 

• Permanently, by pages occupied by the resident executive (system base 
image and the nonpageable sections of loadable executive images) and 
its systemwide nonpageable data structures (for example, the per-CPU 
interrupt stacks and nonpaged pool) 

• Dynamically, by pages on the free and modified page lists 
• Dynamically, by pages in processes' working sets 
• Dynamically, by pages in the system working set (pageable sections of 

loadable executive images and pageable system data) 
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The VMS executive must apportion physical memory among these uses 
based on 

• SYSGEN parameters that specify various minimum and maximum limits, 
such as the sizes of the free and modified page lists and the systemwide 
maximum process working set size 

• Process quotas and limits that specify process-specific minimum and max­
imum working set sizes 

• Statistics and measurements that describe the current environment, such 
as the size of the free page list and the rate at which a particular process 
has _been page faulting recently 

Memory Management Mechanisms "' 

This section provides an overview of the mechanisms by which VMS man­
ages physical and virtual memory. 

VMS memory management mechanisms are best introduced from a histor­
ical perspective. Historically, VMS has had two basic mechanisms to control 
its allocation of physical memory to processes: paging and swapping. Several 
auxiliary mechanisms, such as automatic working set limit adjustment and 
swapper trimming, supplement these fundamental ones. 

Original Design. An important goal of the initial release of the VMS operating 
system was to provide an environment for a variety of applications, including 
real-time, batch, and time-sharing, on a family of VAX processors with a wide 
range of performance and capacity. The memory management subsystem 
was designed to adjust to the changing demands of time-sharing loads and 
to meet the more predictable performance required by real-time processes. 

The major problems common to virtual memory systems that concerned 
the original designers were the following: 

• The negative effect that one heavily paging process has on the performance 
of others 

• The high cost of starting a process that has to fault all its pages into 
memory 

• The high 1/0 load imposed by paging 

VMS support of virtual memory was designed to address these problems. 
With some modifications, the original design remains intact in the current 
release. 

The VMS designers chose to implement process-local page replacement 
instead of global replacement. A process pages against itself, for the most 
part, rather than against. other processes. This minimizes the risk of page 
fault thrashing among processes and also makes possible more predictable 
performance for a real-time process. 
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A process is created with a working set quota that limits its maximum use 
of physical memory. The default and maximum sizes of each process's work­
ing set are specified at process creation. As the process executes and faults 
pages, they are read into memory from backing store and plated into the 
process's working set. When the process's working set reaches its maximum 
size, a subsequent page fault must be a replacement page fault, requiring that 
a page first be removed from the working set. In this manner, the process 
pages against itself. (Note, however, that a heavily paging process that causes 
the contents of the free and modified page lists to turn over rapidly can in­
directly affect other processes.) 

Unlike some virtual memory architectures, the VAX does not include 
a reference bit in each page table entry by means of which less recently 
referenced pages can be identified. Instead, VMS uses the order of working 
set list entries to determine length of residence. The working set list, which 
describes the pages in the process's working set, is a ring buffer with a pointer 
to the entry most recently added to the working set. In general, the page 
most likely to be removed from the working set is the one following the 
most recently added, that is, the oldest. 

Although this working set replacement algorithm is simple to implement 
and has low CPU overhead, its selection of a page to be removed is not 
optimal and may cause more page faults. For those reasons, the original 
algorithm has been enhanced. Chapter 17 describes the current algorithm. 

To minimize the performance impact of this algorithm, VMS caches pages 
removed from a working set so that they can be faulted back into it without 
the need for mass storage I/O; the executive inserts a page removed from 
a working set at the tail of the free page list or the modified page list, 
depending on whether the page had been modified. When a process needs 
a physical page of memory, for example, to fault a nonresident page, the 
executive allocates the physical page at the head of the free page list. Thus 
an unmodified page is cached for a length of time proportional to the size 
of the free page list and the frequency with which pages are allocated from 
it. When the modified page list grows beyond a certain size or the free page 
list shrinks below a certain size, the executive writes modified pages to their 
backing store, typically a page file, and then inserts them at the tail of the 
free page list. A modified page is thus cached while it is on both the modified 
and free page lists. 

Because a page faulted into the working set becomes the newest page and is 
thus less likely to be removed, the page list caches considerably improve the 
performance of the working set list replacement algorithm, bringing it close 
to that possible with a least-recently-used algorithm but with less overhead. 
(Note that a heavily paging process can affect others indirectly by causing 
the page lists to turn over more rapidly, thus reducing their effectiveness as 
caches for the other processes.) 

VMS provides services by which a process can exercise some control over 
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its working set list: it can lock and unlock selected pages into its working 
set and purge its working set of pages in a specified address range. At image 
exit, VMS deletes PO space and the nonpermanent part of Pl space, thereby 
removing these pages from the working set. Before a process executes a 
new image, VMS purges the working set of no longer needed pages, such 
as command language interpreter code and data. 

VMS was designed to manage memory by both paging and swapping. 
Paging occurs in response to process page fault exceptions and results in 
moving virtual pages into and out of physical memory. Swapping, which 
occurs in response to events detected by the executive, results in moving 
whole working sets into and out of physical memory. Swapping all of a 
process's working set minimizes the time to start up the process and the 
number of I/O operations to remove its pages from memory and to read them 
back in. Swapping makes it possible for more processes to coexist even when 
their working sets cannot all fit into memory at once. 

Processes in certain long-lasting wait states are more likely to be out­
swapped than computable processes. When an outswapped process becomes 
computable, it is eventually inswapped. Chapter 18 describes the relation 
between process scheduling states and the swapper's selection of inswap 
and outswap candidates. A privileged process can prevent itself from being 
swapped. 

To reduce thel/O overhead of paging, VMS reads and writes multiple pages 
at a time. A page fault cluster size is defined for each pageable entity, for 
example, an image section or a process page table. When a page is faulted, 
VMS tries to read a cluster's worth of pages. It writes modified pages in 
clusters also, to reduce I/O overhead. A SYSGEN parameter specifies the 
number of modified pages written to a page file at once. Within this larger 
cluster, the modified page writer groups related virtual pages so that they can 
be faulted back in as a cluster. Chapter 16 describes both types of clustering. 

Simply deferring the writing of modified pages reduces 1/0 overhead to 
some extent: some pages are deleted before they are written; some pages are 
faulted in from the modified page list and modified again before they are 
written. 

In VMS Version 1, the following parameters controlled the memory man­
agement subsystem: 

• The minimum sizes of the free and modified page lists 
• The maximum size the modified page list could grow before the system 

began to write its pages to a page file 
• The maximum number of concurrently resident processes 
• For each process, a default and maximum working set size 

As processes were created, used free pages, and faulted pages, the free page 
list would shrink and the modified page list would grow. If the free page list 
shrunk too low, the swapper would write modified pages and, if necessary, 
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outswap a process. If the modified page list grew too large, the swapper 
would write modified pages. Occasionally, the swapper would have to write 
the entire modified page list, or flush it, in order to force specific pages out 
of memory. A process could alter its working set size from its default to 
its maximum through a system service to use that many more pages. Its 
working set size would be reset to its default at image exit. 

Auxiliary Mechanisms. VMS Version 2 added a mechanism called automatic 
working set limit adjustment, by which a process's working set size was 
altered in response to its page fault rate. The working set of a heavily faulting 
process grew so as to reduce its page fault rate. The working set of a process 
that incurred very few page faults was shrunk. With expansion considered 
the more significant part of the mechanism, it was triggered at quantum end, 
based on the idea that a process that could not execute even for a quantum 
did not need its working set limit adjusted. Chapter 1 7 describes automatic 
working set limit adjustment. 

VMS Version 2 also employed an enhancement to the VAX architecture 
that made it possible to test whether a page had been referenced recently 
enough so that its page table entry was in the translation buffer cache. 

In VMS Version 3, the mechanism was enhanced to permit a heavily 
faulting process to grow beyond its normal maximum working set if the free 
page list was sufficiently large. An alternative mechanism for reclaiming 
physical pages was added, called swapper trimming. The basic idea was that 
when the swapper process detected that the free page list had shrunk too 
low, it could reclaim memory from the working sets of processes expanded 
in times of plenty. If more memory was needed, it could either outswap a 
process or shrink a process working set as low as the SYSGEN parameter 
SWPOUTPGCNT. This added considerable flexibility to the original design; 
by altering this and several other parameters, a system manager could tune 
the system to favor swapping over paging, or vice versa. 

VMS Version 4 refined swapper trimming, correcting a failure to reclaim 
memory from a low-priority compute-bound process whose working set had 
expanded when the system was lightly loaded. As a result of the pixscan 
mechanism (see Chapter 12), the refinement was not always effective. 

In VMS Version 5 there were several changes to the modified page writer, 
the most significant being that it no longer flushed the modified page list to 
force specific pages out of memory. Instead, it could be requested to search 
the list for selected pages and write them, leaving the rest of the pages as 
cache. 

Comparison of Paging and Swapping. VMS uses both paging and swapping 
to make efficient use of available physical memory. The page fault handler 
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Table 14.1 Comparison of Paging and Swapping 

DIFFERENCES 

Paging 

The page fault handler moves pages in 
and out of process working sets. 

The page fault handler is an exception 
service routine that executes in the 
context of the process incurring the 
page fault. 

The unit of paging is the page, although 
the page fault handler attempts to 
read more than one page with a 
single disk read. 

Page read requests for process pages are 
queued to the driver according to the 
base priority of the process incurring 
the page fault. 1 · 

Paging supports images with very large 
address spaces. 

Swapping 

The swapper moves entire processes in 
and out of physical memory. 

The swapper is a separate process that 
is awakened from its hibernating 
state by components that detect a 
need for swapper activity. 

The unit of swapping is the process 
or, actually, the pages of the process 
currently in its working set. 

Swapper I/O requests are queued 
according to the value of the SYSGEN 
parameter SWP _PRIO. Modified page 
write requests are queued according 
to the SYSGEN parameter MPW _ 
PRI0. 1 

Swapping supports a large number of 
concurrently active processes. 

SIMILARITIES 

The page fault handler and swapper work from a common database. The most 
important structures used for both paging and swapping are the process page tables, 
the working set list, and the PFN database. 

The page fault handler and swapper do conventional I/O. There are only slight 
differences in detail between pager and swapper I/O on the one hand and normal 
Queue 1/0 requests on the other. 

Both components attempt to maximize the number of blocks read or written with a 
given I/O request. The page fault handler accomplishes this with read clustering. 
The swapper attempts to inswap or outswap the entire working set in one (or a 
small number of) I/O request(s). The modified page writer writes clusters of pages. 

1 This consideration has meaning primarily for older, conventional mass storage device 
drivers. The priority at which an I/O request is queued to the disk class driver is largely 
irrelevant because the driver handles most requests immediately by queuing them to the 
device, which is likely to reorder them based on considerations such as disk head position. 

executes in the context of the process that incurs a page fault. It supports pro­
grams with virtual address spaces larger than physical memory. The swapper 
enables a system to support more active processes than can fit into physical 
memory at one time. The swapper's responsibilities are more global and sys­
temwide than those of the page fault hander. Table 14.1 compares the page 
fault handler and the swapper. 
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As mentioned in Section 14.1.1, virtual to physical address translation is 
supported by three page tables. Each of these page tables is described by 
processor registers that specify the table's location and size: 

• PR$_SBR and PR$_SLR, the system base and length registers 
• PR$_POBR and PR$_POLR, the PO base and length registers 
• PR$_PlBR and PR$_PlLR, the Pl base and length registers 

The registers that describe the SPT are loaded during system initialization, 
before memory management is enabled. PR$_SBR contains the physical ad­
dress of the SPT. The SPT provides the basis for all virtual addresses; thus, to 
access PTEs within the SPT, the VAX processor must use physical addresses. 

The registers that describe per-process page tables are loaded from the 
process's hardware process control block when the LDPCTX instruction is 
executed. In contrast to the SPT, which is physically located, per-process 
page tables are located in system virtual address space. PR$_POBR and PR$_ 
PlBR contain the base virtual addresses of the POPT and the PlPT. 

As shown in Figure 14.1, a virtual address has three parts. The high-order 
two bits identify the address space and select a page table: 

• The value 002 selects the PO page table. Another way of expressing this 
fact is that PO space addresses range between 0 and 3FFFFFFF16 . 

• The value Oh selects the Pl page table. Pl space addresses range between 
4000000016 and 7FFFFFFF16· 

• The value 102 selects the SPT. System space addresses range between 
. 8000000016 and BFFFFFFF16· 
• The value 112 is undefined and, when used in an address, causes an access 

violation exception. Addresses between C000000016 and FFFFFFFF16 are 
undefined. 

The low-order nine bits identify a particular byte within a page. Bits (29:9) are 
called the virtual page number. A virtual page number is used as a longword 
context index into a page table to select the PTE that contains information 
about the location of that virtual page. 

Figure 14.2 shows the VAX architectural definition of a valid PTE. Bit 
(31) in the PTE is set to indicate that the virtual page is valid and that the 
processor can use bits (20:0) as a PFN. Bit (26), when set, indicates that the 

9 8 0 

Virtual Page Number I Byte within Page I 
Region 

Figure 14.1 
Parts of a Virtual Address 
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Figure 14.2 
Valid Page Table Entry 

page has been modified. Bit (25) is reserved and must be zero. Bits (24:21) 
are reserved for software; they are explained further in Section 14.3.3. 

Bits (30:27) of the PTE are the protection code for the virtual page. When 
a reference is made to a virtual address, whether or not the page is valid, 
the processor tests the access mode and intended type of access against the 
protection code in the PTE to determine whether the access is legal. This 
enables the legality of an intended access to an invalid page to be checked 
without having to fault the page into memory. 

Table 14.2 lists the symbolic and numeric forms of possible protection 
codes. 

If the protection on the page prohibits the access, the processor generates 
an exception called an access violation. The exception-specific parameters 
it pushes onto the stack include an identification of the virtual address 
to which access was attempted. (Although the address pushed is typically 
the faulting virtual address, the VAX architecture requires only that the 
processor push a virtual address within the same page as the faulting virtual 
address.) The exception parameter information is the same for all memory 
management exceptions and is shown in Figure 16.1. 

In translating a system virtual address, the processor takes the following 
steps: 

1. It selects the SPT, based on the high-order bits of the address, and gets 
its base address from PR$_SBR. 

2. It compares the virtual page number to the contents of PR$_SLR. If the 
page number is greater, an attempt is being made to reference an address 
past the end of defined system space. The processor generates a type of 
access violation known as a length violation. 

3. If the virtual page number is less than or equal to the contents of PR$_ 
SLR, the processor computes the physical address of the PTE by multi­
plying the page number by 4 (the number of bytes in a longword) and 
adding it to the base address of the page table. 

4. It fetches the PTE. 

-If the valid bit is set, the processor merges the PFN in the PTE with 
the low nine bits of the virtual address to form the physical address. 

-If the valid bit is clear, the processor generates a page fault. The VMS 
page fault exception service routine, the page fault handler, locates 

363 



Memory Management Overview and Data Structures 

Table 14.2 Memory Access Protection Codes in Page Table Entries 

Protection 1 

No access allowed 
Reserved 
Kernel write (kernel read) 
Kernel read (no write) 
User write (user read) 
Executive write (executive read) 
Executive read, kernel write 
Executive read (no write) 
Supervisor write (supervisor read) 
Supervisor read, executive write 
Supervisor read, kernel write 
Supervisor read (no write) 
User read, supervisor write 
User read, executive write 
User read, kernel write 
User read (no write) 

Symbol 

PRT$c_NA 
PRT$C_RESERVED 
PRT$C_KW 
PRT$C_KR 
PRT$c_uw 
PRT$C_EW 
PRT$C_ERKW 
PRT$c_ER 
PRT$c_sw 
PRT$c_SREW 
PRT$C_SRKW 
PRT$C_SR 
PRT$c_URSW 
PRT$c_UREW 
PRT$C_URKW 
PRT$C_UR 

Note that the following rules govern memory access protection: 

Binary 
Value 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Protection 
Mask 
Hexadecimal 

00000000 
08000000 
10000000 
18000000 
20000000 
28000000 
30000000 
38000000 
40000000 
48000000 
50000000 
58000000 
60000000 
68000000 
70000000 
78000000 

• If a given access mode has write access to a specific page, then that access mode also has 
read access to that page. 

• If a given access mode can read a specific page, then all more privileged access modes can 
read the same page. 

• If a given access mode can write a specific page, then all more privileged access modes can 
write the same page. 

1 Access that is implied (rather than explicitly a part of the symbolic protection name) is included 
in parentheses. 
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the virtual page, reads it into memory, and changes the PTE. Subse­
quently, the instruction that triggered the page fault can be reexecuted 
successfully. Chapter 16 describes the page fault handler's operations. 

Figure 14.3 shows a simplified form of these steps. 
Translating a per-process virtual address requires additional steps. The 

processor must first calculate the system virtual address of the per-process 
PTE. Then, using steps analogous to those used for system virtual address 
translation, the processor translates the process virtual address to a physical 
address. 

That process page tables are themselves accessed via system virtual ad­
dresses rather than physical addresses means that they can be paged. Thus 
the translation of a process virtual address can conceivably incur two page 
faults, one for the appropriate page table page and one for the process page 
itself. 
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The VAX Architecture Reference Manual contains further details of the 
architecturally defined address translation mechanism. 

As a performance optimization, a VAX processor includes a cache called 
a translation buffer, which records virtual address translations. Each trans­
lation buffer entry associates a virtual address with its PTE contents. Only 
the contents of valid PTEs are cached. An attempted translation that results 
in a page fault is not cached; however, once the page is read in from backing 
store, the faulting instruction is reexecuted and the now-valid PTE is cached. 

When the LDPCTX instruction is executed to load a new process's context, 
the per-process translation buffer entries for the previous process are inval­
idated. Whenever the executive changes a valid PTE, it must write to the 
translation buffer invalidate single processor register, PR$_ TBIS, to inval­
idate any possible cached entry. Running on a symmetric multiprocessing 
(SMP) system, the executive must ensure that whenever any processor modi­
fies a valid SPTE, all processors invalidate any possible corresponding cached 
entry. Chapter 34 describes this operation in detail. 

14.3 PROCESS DATA STRUCTURES 

14.3.1 

Memory management information about the process is maintained in the 
software process control block (PCB) and in the PHD. These are described in 
the sections that follow. 

Software Process Control Block 

The software PCB is allocated from nonpaged pool at process creation and 
remains resident for the life of the process, whether the process is resident 
or outswapped. When a process is outswapped, the PCB remains as the rep­
resentation of the existence of that process and must contain all information 
that the swapper requires to inswap the process. Figure 14.4 shows the PCB 
fields related to memory management. 
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Figure 14.4 
PCB Fields Related to Memory Management 

PCB$LSTS contains several relevant status bits: 

• PCB$V_RES, when set, means that the process jthat is, its PHD and its 
working set) is resident in memory . 

• PCB$V _PSWAPM, when set, means that the process has disabled outswap­
ping of itself . 

• PCB$V _PHDRES, when set, means that the process's PHD is resident. 
jWhen a process is outswapped, its header may remain in memory.) 

• PCB$V _DISAWS, when set, means that the process has disabled automatic 
working set limit adjustment. 

PCB$L_PHD contains the address of the PHD, if PCB$V _PHDRES in 
PCB$L_STS is set. 

PCB$W _APTCNT only has meaning for an outswapped process; the swap­
per records in it the number of active and valid pages in the PHD. 

PCB$L_GPGCNT contains the number of global pages in the process's 
working set, and PCB$L_PPGCNT, the number of process-private pages. The 
sum of these two fields is the number of physically resident pages, the size 
of the process's working set. 

When a process is newly created, PCB$L_ WSSWP is cleared to signal the 
swapper that the process's initial pages come from the shell. The field has a 
different use later in the life of the process: when a process is outswapped, 
PCB$L_ WSSWP contains its mass storage location. If the process has been 
outswapped in one extent, PCB$L_ WSSWP contains a systemwide page file 
index jsee Section 14.8.2) identifying the swap file and the starting virtual 
block number. The high bit of PCB$L_SWAPSIZE is set to indicate such a 
process; the low 31 bits of PCB$L_SWAPSIZE contain its outswapped size in 
blocks. If the process is outswapped in more than one extent, PCB$L_ WSSWP 
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contains the address of a page/swap file mapping window block IPFLMAP), 
a data structure that lists the locations and sizes of the extents. Chapter 18 
describes the PFLMAP and process swapping. 

Process Header 

The most important process-specific memory management data structures 
are contained in the PHD: 

• The PO and Pl page tables are the largest contributors to the size of the PHD 
and contain the complete description of the per-process virtual address 
space currently in use by the process, including both valid and invalid 
pages. 

• The working set list describes the subset of PTEs that are currently valid. 
• The process section table contains entries that associate the process sec­

tions created in the process's address space with the corresponding sections 
in the files where the pages originate. 

• Because the sizes of the pieces of the PHD vary from system to system, 
there must be some method of determining where each piece is located. 
Pointers or indexes in the fixed portion of the PHD serve this purpose. 
Process accounting information, some of which is used by the page fault 
handler or by the swapper, is also located in this area. The hardware PCB, 
the area in which the register context of the process is saved, is also in the 
fixed part of the PHD. 

• Several arrays contain information about the pages in the PHD itself. The 
swapper uses this information when it outswaps the PHD. 

Figure 14.5 shows these parts of the PHD. The smaller figure to the right 
shows the relative sizes of the portions of the PHD on a typical system. Fig­
ure E.15 shows the detailed layout of the PHD. Specific fields in the PHD are 
described, where appropriate, in this chapter and the memory management 
chapters that follow. 

The PHD has several unusual characteristics that distinguish it from other 
data structures: 

• The PHD is swappable. 
When a process is outswapped, its PHD can be outswapped as well. 

When later inswapped, the PHD is likely to be placed in a different balance 
slot at a different system space address. !Section 14.7.l describes balance 
slots.) Consequently, accesses to the PHD that use its system space ad­
dress must be synchronized against swapper interference. Accesses from 
a current process can be made with the SCHED spinlock held to block 
any rescheduling and possible swapping of the process. Holding the MMG 
spinlock is an alternative way to block swapping. 

• The PHD is referenced using both system space addresses and Pl space 
addresses. 
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The PHD is located in system space partly so that the swapper can access 
it. Furthermore, VAX address translation requires that per-process page 
tables be in system space. 

The PHD, excluding the per-process page tables, is also mapped in Pl 
space and accessed through global pointer CTL$G1-PHD. This Pl window 
to the PHD is at a fixed virtual address range and remains the same 
across outswaps and inswaps. The exact location of the window varies 
with system version; its size varies with several SYSGEN parameters. Most 
executive code that runs in process context accesses the PHD through the 
Pl window and thus avoids the need for blocking possible movement of 
the PHD to a different balance slot. Chapter 18 contains more information 
on double mapping of the PHD. 

• The PHD has both pageable and nonpageable parts. The per-process page 
tables are pageable; the rest of the PHD is not pageable. 

The memory-resident portion of the PHD is described by the process's 
working set list, and its nonpageable portion is locked into the working 
set list. PHD pages are the only pages with system virtual addresses that 
are part of a process working set. 

An attempt by one process to fault a page in another process's PHD is 
view<..d as an error. The page fault handler simulates an access violation 
for any such attempted fault. 

• The PHD has four variable-length pieces: the two per-process page tables, 
the working set list, and the PST. The maximum sizes of these pieces are 
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fixed by SYSGEN parameters, but their actual sizes vary in response to 
process needs. 

However, the balance slots in which PHDs reside are of fixed size to 
enable VMS memory management routines to associate easily the address 
of a process PTE with the process, as described in Section 14.7.3. 

The per-process page tables are at a fixed place (for a given set of SYSGEN 
parameters) at the high-address portion of the PHD. The PO page table 
grows toward increasing addresses and the Pl page table toward decreasing 
addresses. The system virtual addresses of the page tables must remain 
stable while the process is resident or has 1/0 in progress. Every resident 
page has a back pointer to the address of the PTE that maps it in the PFN 
database for that page. Any outstanding 1/0 request refers to its buffer 
using the system virtual address of the buffer's PTEs. 

The dynamic growth area of the PHD must accommodate the growth 
of both the PST and the working set list. Expansion in either of these can 
result in moving the PST to higher addresses in the PHD. Section 14.3.5 
describes PST /working set list expansion. 

The sections that follow describe the memory management structures in 
the PHD. 

Process Page Tables 

The VAX architecture specifies that per-process page tables be virtually 
based, unlike the system page table, which is physically based. As a re­
sult, the pages of a process page table need only be virtually contiguous, not 
necessarily physically contiguous. A process page table can therefore grow 
as required to reflect expansion of the address space it maps; VMS merely 
maps additional page table pages into the virtual addresses contiguous to 
the end of the page table. Because the dynamic growth of a process page 
table can easily accommodate the dynamic expansion of a process's virtual 
address space, the size of a process's page tables can be adjusted to suit its 
needs. VMS does not need to allocate maximum-size process page tables for 
all processes. Furthermore, per-process page tables can themselves be paged. 

Figure 14.6 shows the per-process page tables in the PHD and the fields in 
the fixed portion of the PHD that locate the PO and Pl page tables. 

The PO page table contains PTEs for all pages currently defined in PO space 
(POPTEs). The starting virtual address of the PO page table is stored in offset 
PHD$1-POBR and copied to the PO base register (PR$_POBR) by LDPCTX when 
the process is placed in execution. The number of pages in PO space is stored 
in offset PHD$L_POLR and copied to the PO length register (PR$_POLR). 

PHD$1-FREPOVA contains the process virtual address corresponding to 
the first unmapped page in PO space. The PO page table maps process ad­
dresses from 0 to 1 less than the contents of PHD$L_FREPOV A. In other 
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Figure 14.6 
Process Page Tables 

words, the contents of PHD$1-FREPOVA are the product of 20016 and the 
number of POPTEs. 

In a similar manner, the Pl page table contains PTEs for the pages in Pl 
space (PlPTEsJ. Its base address and length are stored in fields PHD$1-P1BR 
and PHD$1-PlLR. The LDPCTX instruction copies these fields to the pro­
cessor registers PR$_PlBR and PR$_PlLR. Like Pl space itself, the Pl page 
table grows toward smaller addresses. To simplify VAX address translation, 
the base address of the Pl page table is the virtual address of the PlPTE 
that would map virtual address 4000000016. This allows a Pl virtual page 
number to be used as an index into the Pl page table. PHD$L_PlLR contains 
the number of PlPTEs between virtual page 0 and the first defined (that is, 
lowest) page of Pl space. 

The virtual address corresponding to the first unmapped page in Pl space is 
stored at offset PHD$L_FREP1 VA. The Pl page table maps addresses from the 
contents of PHD$L_FREP1VA plus 20016 to 7FFFFFFF16· In other words, the 
contents of PHD$1-FREP1VA are 4000000016 minus 20016, plus the product 
of 20016 and the contents of PHD$1-PlLR. 

The processor registers that describe the page tables are not stored by 
the SVPCTX instruction. These registers change relatively rarely (for example, 
as a result of address space creation or deletion). Instead, VMS explicitly 
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records such changes in the hardware PCB whenever it changes the processor 
registers. This strategy saves the memory writes that would otherwise be 
required every time the process context is saved. 

The SYSGEN parameter VIRTUALPAGECNT is the upper limit on the 
maximum combined number of PTEs in the PO and Pl page tables. Chap­
ter 15 describes additional limits to the growth of virtual address space. The 
number of PTEs available for the expansion of either PO space or Pl space 
is stored in offset PHD$LFREPTECNT. This number is the SYSGEN pa­
rameter VIRTUALPAGECNT minus the current sizes of the PO and Pl page 
tables. 

Figure 14.7 shows the various forms of valid and invalid PTE that can 
appear in a process page table. Notice that the valid bit, protection code bits, 
and owner access mode bits have the same meaning in all forms of PTE. 
Section 14.2 describes the valid and protection code bits and the use of the 
PFN. The owner access mode bits record the access mode that owns that 
page. The VMS executive allows a process to modify the characteristics of 
a virtual page or delete it from an access mode equal to or more privileged 
than the page's owner access mode. 

A PTE for an invalid page contains either the location of the page or 
a pointer to further information about the page. The page fault handler 
uses the type bits, bits (26) and (22), in the invalid PTE to distinguish 
the different forms of invalid PTE. These are described in the sections that 
follow. Chapter 16 describes the processing of page faults for various types 
of invalid PTEs. 

One form of invalid PTE not pictured in Figure 14.7 is a null page, a 
longword of zero. A PTE with a zero protection code disallows any access 
to the page by any mode. This form of PTE describes an unmapped page of 
address space. 

PTE Containing a Process Section Table Index. The PTE of each page in a 
process section contains the index of the PSTE describing that section. The 
PSTE has information about the location of the file mapped into the process 
address space and the virtual block in the file containing each section page. 

The PSTE also contains control bits that are copied to the PTE of each 
page in the section: 

• Bit (18) is set to indicate the page is writable . 
• Bit (17) is set to indicate the page is demand zero . 
• Bit (16) is set to indicate the page is copy-on-reference. 

Section 14.3.5 describes the PST organization and layout of the PSTE. 

PTE Containing a Page File Virtual Block Number. A process can page in 
up to four different page files. This behavior is new with VMS Version 5; in 
earlier versions, a process was assigned to one page file at process creation 
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Figure 14.7 
Different Forms of Page Table Entry 

and could page only in that file. Each process has a four-byte array in its 
PHD, beginning at offset PHD$B_PRCPGFL, that identifies the page files 
it can use. Each byte can contain a different systemwide page file index, 
an index into the page-and-swap-file-vector. Section 14.8.2 contains more 
information on the page-and-swap-file vector, and Chapter 16 discusses the 
assignment of a process to a page file. 

When a virtual page has been faulted out to a page file, its PTE contains the 
virtual block number of the page within the page file and a two-bit number 
in bits (21:20) indicating the page file in which the page is located. The two­
bit number, referred to as a process-local page file index, indexes the PHD 
array at PHD$B_PRCPGFL. With this extra level of indirection, there are 20 
bits available for the virtual block number. 

A process has a current page file in which pages have been reserved for 
its use as backing store. PHD$B_PRCPAGFIL contains the process-local in­
dex of the process's current page file. (Note, PHD$B_PRCPGFL and PHD$B_ 
PRCPAGFIL are different PHD fields.) PHD$B_PAGFIL contains the corre­
sponding systemwide index into the page-and-swap-file vector. 

The longword PHD$1-PAGFIL, of which PHD$B_PAGFIL is the high-order 
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byte, is a template for a virtual page that requires a page file backing store 
address. When such a page is first faulted, the template is copied to the PFN 
BAK array element (see Section 14.4.2) for the physical page. Bits (21:20) of 
the template contain the same value as PHD$B_PRCPAGFIL. Bits (19:0) are 
zero. A BAK array element containing such a template backing store address 
indicates that a block in the specified page file has been reserved for the 
virtual page but not yet allocated. 

PTE Containing a Global Page Table Index. The PTE of an invalid process 
page mapped to a global page contains an index into the global page table, 
where an associated global PTE contains the information used to locate the 
page. Section 14.6.4 describes the contents of global PTEs. 

PTE of a Page in Transition. When a physical page is removed from a process 
working set, it is not discarded but put on the free or modified page list. 
The invalid virtual page, still associated with the physical page, is called 
a transition page. Its PTE contains a PFN, but the valid bit is clear. The 
two type bits are also clear. Retaining the connecticn to a physical page 
enables VMS to fault the virtual page back into the working set with minimal 
overhead until the physical page is reallocated for another use. 

Another type of transition page is a virtual page in transit between mass 
storage and physical memory. When a process faults a page not in memory, 
the page fault handler allocates a physical page and requests an 1/0 operation 
to read the virtual page from its backing store. While the I/O request is in 
progress, the virtual page has a transition PTE. 

A transition page is described further by its physical page's entries in the 
PFN database (see Section 14.4). In particular, the PFN STATE array (see 
Section 14.4.3) identifies the state of the page and distinguishes among the 
different types of transition page. 

PTE of a Demand Zero Page. One form of transition PTE has a zero in the 
PFN field. This zero indicates a special form of page called a demand-allocate, 
zero-fill page, or demand zero page for short. When a page fault occurs for 
such a page, the page fault handler allocates a physical page, fills the page 
with zeros, inserts the PFN into the PTE, sets the valid bit, and dismisses 
the exception. 

Working Set List 

Another memory management data structure located in the PHO is the 
working set list. The working set list describes the subset of a process's 
pages that are currently valid. Pages described in a process's working set list 
are PO, Pl, or PHO pages. Its capacity to describe pages is the upper limit on 
the number of physical pages the process can occupy. 
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The page fault handler and swapper use the working set list to determine 
which virtual page to discard (to mark invalid) when it is necessary to remove 
a physical page from the process. The swapper also uses the working set list 
to determine which virtual pages need to be written to the swap file when 
the process is outswapped. 

Chapter 17 describes the organization and use of the working set list and 
the layout of a working set list entry (WSLE). 

Process Section Table 

The process section table is another memory management data structure 
located in the PHD. It contains PSTEs. A PSTE describes the association 
between a contiguous portion of virtual address space and a contiguous por­
tion of a file. Both these portions are known as sections and consist of pages 
with identical characteristics, for example, protection, owner access mode, 
writability, and file location. Much of virtual address space management is 
done in units of sections. 

When an image is activated (see Chapter 26), the file containing the image 
is opened and a process section is created for each process-private image 
section. Although each image section is mapped separately, the image file 
is opened only once, and the image's sections page using the same assigned 
channel and window control block. 

A process section is also created when 

• A process opens a file and requests the Create and Map Section ($CRMPSC) 
system service to map the file or some part of it into its address space 

• A shareable image is activated that is not shared (that is, one that has not 
been installed with the /SHARE qualifier through the Install Utility) 

• A shared image is activated that has a copy-on-reference section 

PSTEs enable the memory management subsystem to keep track of process 
pages in different sections, potentially in different files on different mass 
storage devices. 

Figure 14.8 shows the location of the PST within the PHD. PHD$L_PST­
BASOFF contains the byte offset from the beginning of the PHD to the 
high-address end of the PST. 

Each PSTE within the table is 32 bytes long and is located through a 
negative longword context index from the base of the PST. The first PSTE has 
an index of -8, the second -1016• Successive PSTEs are at lower addresses. 
Since all references to a PSTE are relative to PHD$1-PSTBASOFF, the PST 
can be moved within the PHD without requiring changes in process PTEs 
that contain process section table indexes. 

The following operations compute the address of a particular PSTE: 

1. Add the contents of PHD$1-PSTBASOFF to the address of the PHD. The 
result is the address of the base of the PST. 
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Process Section Table 

2. Multiply the negative process section table longword context index by 4. 
3. Add the (negative) result to the address of the PST. 

A PST is organized into a variable number of linked lists of PSTEs. Fig­
ure 14.8 shows a typical PST with free and allocated PSTEs; the allocated 
PSTEs are shaded. The negative index in PHD$W _PSTLAST is the largest 
index of any entry ever allocated and is thus a "high-water mark." 

All the process sections that page from the same section file using the 
same assigned channel are linked together. The entries are linked together 
through the backward and forward link index fields of each entry. 

When a section is deleted, the PSTE that mapped the section is placed on 
the list of free entries so that it can be reused. The negative index PHD$W _ 
PSTFREE points to the most recent addition to the free list. If no entry has 
been deleted, PHD$W _PSTFREE contains zero. The first longword in a PSTE 
on the free list contains the negative index to the previous element on the 
free list. When a section is created, the PSTE allocation routine first checks 
the free list. If there is no free PSTE, a new one is created from the expansion 
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region between the working set list and the PST, and PHD$W _PSTLAST is 
modified. 

VMS attempts to keep the working set list and PST virtually adjacent, 
partly to simplify and shorten manipulation of the PHD during outswap and 
inswap and partly to minimize the chances of wasting physical memory for 
partial pages of both. When VMS must expand the working set list into the 
area already occupied by the PST or expand the PST into the area already oc­
cupied by the working set list, it allocates space from the existing empty page 
area (see Figure 14.8). Then, it moves the entire PST into the allocated space 
at higher addresses and stores the new base address in PHD$LPSTBASOFF. 

The longword at PHD$L_PSTBASMAX/PHD$L_ WSLX specifies the max­
imum size of the PST. This longword points to the high-address end of the 
empty page area. It contains a longword context index from the beginning 
of the PHD. 

Room is reserved in the PHD for the maximum PST and working set list, 
specified by the SYSGEN parameters PROCSECTCNT and WSMAX. It is 
possible for the PST to grow larger than PROCSECTCNT specifies, at the 
expense of the working set list. 

Figure 14.9 shows the format of a process/global section table entry. (Sec­
tion 14.6.2 describes global section table entries.) Note that the field names 
within a section table entry are defined by the STARLET.MLB macro $SEC­
DEF and begin with SEC$. 

The first longword in the PSTE has two names: in a PSTE, SEC$L_CCB 
contains the address of the channel control block (CCB) on which the section 
file has been opened; in a GSTE, SEC$L_GSD contains the address of the 
global section descriptor for that section. 

SEC$W _SEXFL and SEC$W _SEXBL contain negative indexes from the base 
of the section table to the previous and next section table entry. These link 
an entry in use into a list of others that page using the same CCB. They also 
link all free entries together. 

The low-order 22 bits of SEC$L_ VPXPFC contain the starting virtual page 
number at which the section's pages are mapped in the address space. 

CCB/GSD 

SEX BL I SEX FL 

PFC }<res.lJ VPXPFC 

WNOCJ{I/ 

VBN' 

(reserved) I FLAGS 

REFCNT 

PAGCNT 

Figure 14.9 
Layout of Process/Global Section Table Entry 

PSTEFlags 

Bit Meaning 
O Global 
1 Copy.on-reference 
2 Demand zero 
3 Writable 
4 Shared memory global 
5 (reserved) 

6-7 Access mode for writing 
8-9 ONner access mode 

10-12 (reserved) 
13 Resident global 
14 Permanent 
15 O = Group global 

1 = System global 
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SEC$B_PFC is the number of section pages that the page fault handler will 
attempt to read in together when a page fault occurs. 

SEC$L_WINDOW is the address of the window control block (WCB) that 
describes the locations of the section file on a mass storage volume. The 
WCB points to the unit control block (UCB) for the volume. 

SEC$L_ VBN specifies the starting virtual, or file-relative, block number 
(VBN) of the section file at which the pages in this section begin. 

SEC$W _FLAGS contains flag bits that describe the section. 
SEC$L_REFCNT contains the number of PTEs that refer to the section. 
SEC$L_PAGCNT contains the number of pages in the section. 
For a process-private section, SEC$LREFCNT and SEC$L_PAGCNT are 

typically equal. For a global section, SEC$L_REFCNT is typically some mul­
tiple of SEC$L_PAGCNT, depending on how many processes have mapped 
the global section. Note, however, that if a process maps only a portion of 
a global section, the reference count reflects only those pages that it has 
mapped. For either type of section, SEC$LREFCNT is decreased if a process 
deletes pages in its address space that map the section. 

The following steps locate a virtual page in a section file through infor­
mation in the PSTE: 

1. Subtract the section's starting virtual page number from the virtual page 
number of the faulting page to get the page offset into the section. 

2. Add the contents of SEC$L_ VBN to the page offset computed in step 1 
to get the VBN of the virtual page within the file. 

3. Use the mapping information in the WCB to transform the VBN to a 
logical block number on a mass storage volume. 

Process Header Page Arrays 

When a PHD is outswapped, some information about each PHD page is 
stored in the PHD page array portion of the outswapped PHD. Figure 14.10 
shows this area. Two of the arrays, the BAK and WSLX arrays, save informa­
tion about each PHD page in the working set, copied either from the PFN 
database (see Section 14.4) or from the SPTE that maps that PHD page. 

While a PHD is resident, the backing store location of each of its valid or 
transition pages is stored in the PFN database; the backing store location of a 
PHD page in a page file is stored in the SPTE that maps the PHD page. For a 
valid page in a resident PHD, the PFN database stores information about the 
location of the page's entry in the process's working set list. When the PHD 
is outswapped, both the physical pages and the balance set slot it occupied 
are released for other uses. The PHD BAK array records the backing store 
information for each PHD page, which would otherwise be lost. 

The PHD WSLX array records the location in the working set list of each 
PHD page. Without this information, locating the PHD pages in the working 
set list at inswap would require searching the working set list. (The virtual 
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address information in each PHD page's WSLE will have to be recalculated 
when the PHD is inswapped into a different balance slot.) 

The other two arrays, locked WSLE count and valid WSLE count, contain 
a reference count for each page table page. These four arrays are described in 
greater detail in Chapter 18. 
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The memory management data structures include information about the 
available pages of physical memory. The fact that this information must be 
accessible while the page is in use means that it cannot be stored in the 
page itself. In addition, the caching strategy for the free and modified lists 
requires physical page information to be accessible, even when pages are not 
currently active and valid. The PFN database records this information. 

The PFN database consists of eight arrays (see Figure 14.11). Each array 
contains a specific item of information about physical pages of memory. 
Information about a specific page of physical memory is in the same element 
of each array. Table 14.3 lists each kind of information in the PFN database, 
including the global name of the pointer to the beginning of each array. 
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Table 14.3 PFN Database Arrays 

Array Element Contents 
System virtual address 

Name of 
Pointer to Array 
PFN$AL_PTE 

Size of 
Element 
Longword 

Comments 

of PTE 
Backing store address 
Physical page state 
Page type 

PFN$AL_BAK. 
PFN$AB_STATE 
PFN$AB_ TYPE 
PFN$AX_FLINK 

Lo~ord 
Byte 
Byte 
(Long)word 1 

Figure 14.12 
Figure 14.13 
Figure 14.14 
Figure 14.15; 
Overlays the 

Forward link 

Backward link PFN$AX_BLINK (Long]word 1 

SHRCNT 
array 

Figure 14.15; 
Overlays the 

WSLX array 
Reference count PFN$AW _REFCNT Word 
Global share count PFN$NCSHRCNT [Long]word 1 Overlays the 

FLINK array 
Overlays the 

BLINK array 
Working set list index PFN$AX_ WSLX [Long]word 1 

Swap file virtual block PFN$AW _SWPVBN Word 
number 

1 The size of this array element is a function of the amount of physical memory on the system 
(see Section 14.4.5). 
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Most of the information in the PFN database relates to the current virtual 
use of a physical page. For a physical page that is not mapped by any virtual 
page the only meaningful information is that in the FLINK and BLINK arrays. 

The PFN itself is the index to each array in the PFN database; that is, 
information about a particular page is located by indexing each PFN array 
with the PFN of that page. The global location MMG$GL_MINPFN contains 
the lowest valid subscript into the PFN database. It is currently initialized 
to zero, and thus the PFN arrays are zero-based. 

During system initialization, the highest physical pages of memory are 
allocated for permanent uses, such as the system base image, nonpaged pool, 
and SPT. To save physical memory, VMS does not include such pages in the 
PFN database because their virtual state will never change since they do not 
page. The global location MMG$GL_MAXPFN contains the highest valid 
subscript in the PFN database. That is, it contains not the highest PFN on 
the system but rather the PFN of the highest physical page for which there 
are corresponding PFN data array elements, the highest PFN that can be used 
for paging. 

VMS maintains a small list of allocatable physical pages that have no PFN 
database. In circumstances such as extending nonpaged pool or loading a 
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nonpageable section of a loadable executive image, the executive attempts 
allocation from this list first. If the list is empty, VMS simply allocates a 
page from the free page list. The global cell MMG$GLFREE_NO_PFN_DB_ 
LIST contains the PFN of the first page on the list. The first longword of 
each page contains the PFN of the next page on the list. The end of the list 
is a pointer of zero. 

At system initialization, an SPTE is reserved for temporarily mapping one 
of these PFNs to access its forward pointer. To allocate such a page, the 
routine MMG$ALLOCPFN_NO_DB, in module ALLOCPFN, maps the first 
physical page on the list using the reserved SPTE, invalidates the corre­
sponding translation buffer entry, and copies the page's forward pointer to 
MMG$GL_FREE_NO_PFN_DB_LIST. 

The sections that follow describe the arrays that make up the PFN data­
base. 

PTE Array 

Each PFN PTE array element contains the system virtual address of the PTE 
that maps that physical page. If no virtual page is mapped to a physical page, 
its PTE array element contains the value 0. A PFN PTE array element for a 
global page contains the virtual address of the global PTE. 

When assigning a physical page to a new use, the executive examines its 
PTE array element to determine whether the page is a transition page and 
still pointed to by a PTE associated with its previous use. If the array element 
value is nonzero, the executive must take steps to sever the connection 
between the physical page and its previous use. 

BAK Array 

A PFN BAK array element contains the backing store location for the virtual 
page occupying a physical page. When a physical page is assigned to another 
use, the PTE, if any, that currently maps the page must be updated. VMS 
replaces information about the location of the virtual page in memory (the 
PFN of the physical page that contains it) with information about its location 
in mass storage copied from the BAK array element. Figure 14.12 shows the 
possible contents of a PFN BAK array element. 

PFN STATE Array 

A PFN STATE array element, shown in Figure 14.13, indicates the state of 
a physical page. As shown in the figure, the low three bits contain the page 
location code, indicating, for example, whether the page is on the free list or 
valid in a working set. 

Several codes require further explanation: 

• Release pending means that the virtual page has been removed from a 
working set but still has a nonzero reference count. When the reference 
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count is decremented to zero at 1/0 completion, the physical page will be 
placed on the free or modified list. 

• Page read error means that a nonrecoverable 1/0 error occurred during an 
attempt to read the virtual page from its backing store into the physical 
page. During postprocessing of the 1/0 request, when the error is noted, 
this code is stored in the PFN STATE array element. Consequently, when 
the page is later refaulted, the page fault handler will signal a page read 
error exception. 

• Write in progress means that the modified page writer has initiated 1/0 to 
write the page to its backing store. 

• Read in progress means that the page fault handler has initiated 1/0 to read 
the page from its backing store. 

Bit 4 in a PFN STATE array element is the delete bit. When the reference 
count of a physical page whose delete bit is set becomes zero, all ties with 
its virtual page (PFN PTE array contents) are severed. The physical page is 
then put at the front of the free page list, where it will be reused before pages 
that are still associated with virtual pages. 

Bit 7 in a PFN STATE array element is the modify bit. It determines 
whether a physical page is put on the free page list or the modified page list 
when the page's reference count reaches zero. The modify bit is set under a 
number of circumstances: 
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• If a virtual page was modified while it was valid, the modify bit in its PTE 
is set. When a virtual page is removed from a working set, the modify bit 
in its PTE is logically ORed into the saved modify bit in the PFN STATE 
array element for the physical page. The modify bit must be recorded in the 
PFN STATE array element because that bit in an invalid PTE has another 
use as the TYPl bit . 

• When a page is used as a direct 1/0 read buffer, the executive routine that 
locks down pages, MMG$IOLOCK, in module IOLOCK, sets the modify 
bit in its PTE. When the page is removed from the process's working set, 
the OR operation described in the previous item sets the modify bit in the 
PFN STATE array element . 

• When a copy-on-reference page is faulted into a working set, the executive 
sets the modify bit in the PFN STATE array element of the physical page. 
Thus, even if the virtual page is not modified while it is valid, when the 
page is removed from the working set, the physical page is inserted into 
the modified list. This ensures that it will be written to page file backing 
store, from where it will be read on a subsequent page fault. 

• When a demand zero page is faulted into a process's working set, the modify 
bit in the PFN STATE array element is set. 

PFN TYPE Array 

A PFN TYPE array element specifies the type of virtual page that occupies 
the corresponding physical page, for example, whether it is a process or 
system page or page table page. Figure 14.14 shows the contents of the 
PFN TYPE array element. The page fault handler, swapper, and other parts 
of the executive take action dependent on page type. In addition to type 
information, the PFN TYPE array element has three status bits. 

The bad page bit is set when a nonrecoverable error, such as a read data 
substitute machine check, occurs trying to access the page in memory. The 
page will be put onto the bad page list when it is deallocated. 

The collided page bit is set when a page fault occurs for a virtual page 
that is already being read in from its backing store address (one whose 
corresponding PFN STATE array element shows it as read in progress). This 
can happen, for example, if multiple processes fault a shared page. It can 
also happen if a process in a page fault wait is interrupted for asynchronous 
system trap (AST) delivery and then reexecutes the instruction that triggered 
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the page fault. When 1/0 completes for a page with this TYPE bit set, 1/0 
postprocessing code clears the bit and reports the system event collided page 
available for all processes in the collided page wait state. Chapter 12 describes 
system events. Collided pages are discussed briefly in Chapter 16. 

The report event bit is set when an attempt is made to delete a virtual 
page that cannot be deleted immediately, for example, because the modified 
page writer is writing the page to its backing store. The executive places 
the process into a page fault wait. When the modified page writer's 1/0 
completes, it reports a page fault completion system event. When the process 
is placed back into execution, the page deletion proceeds. 

PFN FLINK and BLINK Arrays 

A physical page that is not mapped by a valid virtual page is in one of three 
lists: the free, modified, or bad page list. The heads of these lists are in an 
array of longwords that begins at global location PFN$ALHEAD. The list 
tails are in the array PFN$AL_ TAIL. Each array has three elements: the first 
for the free page list, the second for the modified page list, and the third for 
the bad page list. 

The three page lists must all be doubly linked lists because an arbitrary 
page is often removed from the middle of the list. The links cannot exist in 
the pages themselves because the contents of each page must be preserved. 
The PFN forward link (FLINK) and backward link (BLINK) arrays implement 
the links for each page. The PFN FLINK array element contains the PFN of 
the successor page, and the PFN BL~K array element, that of the predecessor 
page. 

A zero in one of the link fields indicates the end of the list, rather than 
being a pointer to physical page 0. This is one reason why physical page 0 
cannot be used in any dynamic function. Another reason is that the repre­
sentation of invalid demand zero PTEs assumes that a PFN of zero can never 
appear in an invalid PTE (see Figure 14.7). However, it can be used by a sys­
tem virtual page that is always resident. Physical page 0 usually contains 
the restart parameter block (see Chapter 30). 

The amount of memory present on a particular system determines the size 
of the maximum PFN. On certain VAX processor types, enough memory can 
be connected to the system that the maximum PFN cannot be expressed in 
16 bits. On such a system, the PFN FLINK and BLINK arrays are longword ar­
rays rather than word arrays. During system initialization, VMS determines 
how much memory is to be described by the PFN database. Appendix F de­
scribes how this number is calculated. If there are 32 or more megabytes to 
be described in the PFN database, the PFN FLINK and BLINK arrays must 
contain longword elements. The global location MMG$GW _BIGPFN con­
tains 0 if the element size is a word; otherwise, it contains 1. 

Any code that accesses these arrays (and the arrays that overlay them) 
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must use an instruction appropriate to the element size. Two techniques 
are employed: one, which adds no overhead, for critical code paths and one 
for less frequently used code paths. References to these arrays made within 
critical code paths in the nonpaged executive are assembled to be word con­
text instructions. If the PFN database describes 32 or more megabytes, sys­
tem initialization code alters these references to longword context instruc­
tions. Code in less frequently used code paths that depends on the size of a 
PFN tests the contents of MMG$GW _BIGPFN and executes the appropriate 
instruction. 

Figure 14.15 shows an example of pages on the free list, along with their 
corresponding PFN FLINK and BLINK array elements. The PFN STATE array 
element for each of these pages contains zero, indicating that the physical 
page is on the free page list. 

PFN REFCNT Array 

A PFN reference count (REFCNT) array element counts the number of rea­
sons a physical page should not be placed on the free or modified page list. 
One reason for incrementing the reference count is that a page is in a process 
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working set. Another reason is that a page is part of a direct 1/0 buffer with 
1/0 in progress. 

· 1/0 completion and working set replacement use the same routine to 
decrement the reference count. If the reference count goes to zero, the phys­
ical page is released to the free or modified page list, depending on the saved 
modify bit in its PFN STATE array element. Manipulations of the reference 
count are illustrated in Chapter 16. 

PFN SHRCNT Array 

A second form of reference count is kept for global pages. A PFN share 
count (SHRCNT) array element counts the number of process PTEs that are 
mapped to a particular global page. When the share count for a particular page 
goes from 0 to 1, the PFN REFCNT array element is incremented. Further 
additions to the share count do not affect the reference count. 

As the global page is removed .from the working set of each process mapped 
to the page, the share count is decremented. When the share count reaches 
zero, the PFN REFCNT array element for the page is also decremented. 

When a physical page has a nonzero share count, it cannot be on one of 
the page lists; therefore, the forward and backward links are not needed. The 
PFN SHRCNT array overlays the PFN FLINK array. (PFN$AX.FLINK and 
PFN$AX.SHRCNT are the same location in system space.) Thus, the size 
of elements in the SHRCNT array can be a word or a longword, depending 
on the size of a PFN FLINK array element. 

Process and global page table pages also use the PFN SHRCNT array. In 
either of these cases, the array element counts the number of PTEs in the 
page table page that contain a PFN, that is, the number of PTEs mapping 
valid or transition pages. When this count goes from zero to nonzero, the 
page table page is dynamically locked into a working set: a process page 
table page into a process working set, and a global page table page into the 
system working set. 

PFN WSLX Array 

A PFN working set list index IWSLXj array element for a valid page contains a 
longword context index from the beginning of the process (or system) header 
to the WSLE for that page. The WSLX element is used, for example, during 
the deallocation of a page of memory. If the virtual page is valid, the WSLE 
that describes it must be altered. Without the PFN WSLX array, it would be 
necessary to search the working set list to locate the WSLE. 

Because a physical page in a working set is not on one of the page lists, 
the PFN FLINK and BLINK array elements are not needed. The PFN WSLX 
array overlays the PFN BLINK array. (PFN$AX.BLINK and PFN$AX_ WSLX 
are the same location in system space.) The size of elements in the PFN 
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WSLX array is either a word or longword, depending on the size of a PFN 
BLINK array element. The PFN WSLX array is not used for global pages. 

PFN SWPVBN Array 

The swap virtual block number (SWPVBN) array supports the outswap of a 
process with 1/0 in progress. When outswap occurs, the virtual block number 
in the swap file where the locked down page would go is recorded in the 
PFN SWPVBN array element for that virtual page. The modified page writer 
checks this array element and, if it is nonzero, diverts a modified page from 
its normal backing store address to the designated block in the swap file. 

14.5 SYSTEM MEMORY MANAGEMENT DATA STRUCTURES 

14.5.1 

14.5.2 

There are several systemwide memory management data structures analo­
gous to process data structures. 

System Page Table 

During system initialization, SYSBOOT allocates contiguous physical pages 
for the SPT from the high-address end of physical memory. The SPT maps 
itself, so that the operating system can alter SPTEs when necessary. (Recall 
that once memory management is enabled, all addresses are translated.) The 
global cell. MMG$GL_SPTBASE contains the system virtual address of the 
system page table. MMG$G1-SPTLEN contains the number of SPTEs in it. 

The SPT is not merely a system analog to process page tables: it is the basis 
of any virtual address translation and is accessed during the translations of 
per-process address space, as described in Section 14.2. 

For the most part, SPTEs can take on the same forms as valid and invalid 
process PTEs. Figure 14. 7 shows these forms. The one exception is that an 
invalid SPTE cannot have the global page table index form. 

System Header and PCB 

The VMS executive maintains two data structures for itself that parallel 
process structures: the system PCB and system header. Using these, the page 
fault handler can treat page faults of system pages almost identically to page 
faults for process pages. 

The system PCB, whose address is in MMG$AR_SYSPCB, contains a base 
priority used for 1/0 requests for page taults of system space pages and global 
pages. It also has a pointer to the system header, parallel to the PHD pointer 
in any process PCB. 

The system header, shown in Figure 14.16, contains a working set list and 
a section table. The working set list governs page replacement for pageable 
system pages (other than those within the balance slots). Pageable system 
pages come from pageable sections in loadable executive images, paged pool, 
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and the global page table. These are all paged in the system working set list. 
Its size is determined by the SYSGEN parameter SYSMWCNT. Unlike other 
working set lists, the system working set list does not expand or contract 
in response to system page fault rate. Once the system working set fills, 
replacement paging is required. 

The backing store for pageable writable executive data and page file global 
sections is within page files. Like a PHD, the system header contains a 
four-byte array at PHD$B_PRCPGFL with systemwide indexes of the page 
files that have been assigned. PHD$B_PRCPAGFIL contains the process-local 
index of the current page file, and PHD$B_PAGFIL contains the systemwide 
index of the current page file. 

The section table in the system header contains entries for sections in files 
that contain pageable system pages and for global sections. The SYSGEN 
parameter GBLSECTIONS specifies the number of entries in the section 
table. 

14.6 DATA STRUCTURES FOR GLOBAL PAGES 

14.6.1 
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The treatment of global pages is somewhat different from that for process­
private pages; VMS must keep additional systemwide data to describe global 
pages and sections. The sections that follow describe these data structures. 

Global Section Descriptor 

All global sections are created by the Create and Map Section ($CRMPSC) 
system service, requested directly from a user image or indirectly through 
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the Install Utility. When the service creates a global section, it allocates a 
GSD, a paged pool data structure, to describe the section. Figure 14.17 shows 
the layout of a GSD. A GSD associates the global section name to its GSTE. 
The information in the GSD is only used when some process attempts to 
map to or delete the section. The page fault handler does not use this data 
structure. 

GSD$L_GSDFL and GSD$L_GSDBL link the GSD into one of several 
GSD lists maintained by the system. All system global sections are linked 
into one list, whose listhead is formed by global cells EXE$GL_GSDSYSFL 
and EXE$GL_GSDSYSBL. Group global sections (independent of group num­
ber) are linked into the other list, at EXE$GL_GSDGRPFL and EXE$GL_ 
GSDGRPBL. When a request is made to delete a global section to which 
processes are still mapped, its GSD is removed from its current list and in­
serted into a list of delete-pending GSDs, the listhead of which is at EXE$GL_ 
GSDDELFL and EXE$GL_GSDDELBL. The mutex EXE$GL_GSDMTX (see 
Chapter 8) serializes access to all three lists. 

GSD$W _SIZE and GSD$B_ TYPE are the standard dynamic data structure 
fields. 

GSD$B_HASH contains a hashed representation of the global section 
name. Comparing hash values rather than section names speeds up a search 
for a global section with a particular name. 

GSD$1-PCBUIC is the user identification code (UIC) from the software 
PCB of the creating process. GSD$1-FILUIC is the UIC of the owner of the 
section file. 

GSD$W _PROT contains the protection specified by the global section 
creator. 
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GSD$W _GSTX contains the global section table index for the section's 
GSTE. 

GSD$L_IDENT contains the version identification of the global section. 
The value is specified by the $CRMPSC system service requestor. The Install 
Utility copies it from the image header of the image being installed. 

GSD$L_ORB contains the address of the associated object rights block 
!ORB). In the case of a section that maps a file, the global section shares the 
ORB associated with the open file. 

When a process requests that a global section be deleted, its internal 
process ID is copied to GSD$L_IPID. H the global section is writable, when 
all its modified pages have been written, the modified page writer queues 
an AST to that process to perform the cleanup and deletion of the global 
section. 

GSD$T _GSDNAM contains a counted ASCII string that is the section's 
name. 

A global section created with the PFN map option of the $CRMPSC system 
service has no associated GSTE; its pages are not paged. Such a section has 
an extended GSD, as shown in Figure 14.17. In the extended GSD, GSD$L_ 
BASEPFN contains the starting PFN of the section. GSD$L_PAGES specifies 
its size in pages. GSD$LREFCNT specifies how many PTEs map to this 
section. GSD$T _PFNGSDNAM, rather than GSD$T _GSDNAM, contains 
the section name. 

Global Section Table Entries 

The section table in the system header serves a second purpose. When a 
global section is created, a section table entry that describes the global 
section file is allocated from the section table in the system header. Because 
of this use, the system header's section table is usually called the global 
section table IGST). 

The format of a GSTE is nearly identical to the format of a PSTE. Fig­
ure 14.9 illustrates both kinds of section table entry. 

GSTEs are accessed in a similar way to PSTEs, with a negative longword 
context index from the bottom of the GST jsee Section 14.3.5). The global 
section table index (GSTX) in the GSD is such an index, associating a GSD 
with a GSTE. 

Global Page Table 

Like the other page tables, the GPT describes the state of the pages it maps. 
Unlike the other page tables, the GPT is not accessed by the VAX processor 
during address translation; it is only accessed by VMS memory management 
routines. 

As shown in Figure 14.18, VMS creates the GPT as an extension to the SPT. 
This extension is virtually, but not physically, contiguous to the SPT. This 
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extension is invisible to the VAX processor; the processor register PR$_SLR 
records only the number of SPTEs. VMS uses the same base address for the 
GPT as for the SPT, though this address is stored separately in MMG$GL~ 
GPTBASE. 

VMS locates specific GPTEs in the GPT in a manner analogous to the 
way the VAX processor locates a PTE. Recall that in address translation, 
the VAX processor uses a virtual page number as a longword context index 
from the base address of the page table. In place of a virtual page number, 
VMS uses a global page table index (GPTX) as a longword context index from 
the contents of MMG$GLGPTBASE. The first GPTX is 1 greater than the 
largest system virtual page number. 

When a process maps a portion of its address space to a global section, its 
process PTEs that map the section are initialized to the GPTX form of PTE 
(see Figure 14.7). The process PTE that maps the first global section page 
contains the GPTX of the first page in the global section. Each successive 
process PTE contains the next higher GPTX, so that each PTE effectively 
points to the GPTE that maps that particular page in the global section. 

The relation between process and global GPTEs is shown in Figure 14.19. 
In the picture, the SPT maps M pages, and the global section is mapped by 
the first N GPTEs. 

When a process first accesses an invalid global section page, it incurs a 
page fault. Determining that the invalid page is a global page, the page fault 
handler indexes the GPT with the GPTX to locate the GPTE that describes 
the global page. 

The juxtaposition of the SPT and GPT is of benefit to other parts of 
the VMS memory management subsystem. For example, the GST contains 
entries for both system space sections and global sections; both types can 
use the low-order 22 bits of SEC$L_ VPXPFC to contain the index into the 
page table that maps the section's pages. , 
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Each page in a global sec;tion is described by a GPTE. GPTEs are restricted 
to the following forms of PTE. The first three are illustrated in Figure 14.7; 
the others are illustrated in Figure 14.20 . 

• The GPTE can be valid, indicating that the global page is in at least one 
process working set . 

• The GPTE can indicate a demand zero page . 
• The GPTE can indicate a page in some transition state. The corresponding 

PFN STATE array element identifies the transition state . 
• For a global page in a global section file, the GPTE contains a global section 

table index . 
• The GPTE can indicate a demand zero page in a global page-file section . 
• The GPTE can indicate a global page-file section page that has been created 

and is in use. 

When a global page is faulted in, the bits shown in Figure 14.20 labeled 
Global Bit and Global Write Bit are incorporated into the PFN TYPE array 
element for the physical page and the entry corresponding to the page in the 
working set lists of processes that have mapped to it. 

Relations among Global Section Data Structures 

Figure 14.21 shows the relations among the GSD, GSTE, and GPTEs for a 
given section. There are several relations among these three structures: 

• The central shaded structure is the GSTE (see Figure 14.9 for its layout) 
within the GST. The first longword in the GSTE points to the GSD. 

• The virtual page number field (which contains Jin Figure 14.21) contains 
the GPTX of the first GPTE that maps this section . 

• The GSD contains a GSTX that locates the GSTE. 
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• The original form of each GPTE contains the same GSTX found in the 
GSD. When any given GPTE is either valid or in transition, the GSTX is 
stored in the corresponding PFN BAK array element. Note that a GPTE for 
a global page-file section contains a page file backing store address. 

The allocation and initialization of global section data structures are de­
scribed along with the $CRMPSC and Map Global Section ($MGBLSC) sys­
tem services in Chapter 15. 

14.7 SWAPPING DATA STRUCTURES 

The following three data structures are used primarily by the swapper but 
also indirectly by the page fault handler: 

• Balance slots 
• PHD reference count array 
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• Process index array 

The SYSGEN parameter BALSETCNT specifies the number of elements 
in each array. 

Balance Slots 

A balance slot is a piece of system virtual address space reserved for a PHD. 
The number of balance slots, the SYSGEN parameter BALSETCNT, defines 
the maximum number of concurrently resident processes. 

When the system is initialized, an amount of system virtual address space 
equal to the size of a PHD times BALSETCNT is allocated. The location 
of the beginning of the balance slots is stored in global location SWP$GL_ 
BALBASE. The size of a PHD in pages is stored in global location SWP$GL_ 
BSLOTSZ. Figure 14.22 shows this area. Appendix F describes the calcula­
tions performed by SYSGEN to determine the size of the PHD. 

Balance Slot Arrays 

As shown in Figure 14.23, the system maintains two word arrays describing 
each process with a PHD stored in a balance slot. Both of the word arrays 
are indexed by the balance slot number occupied by the resident process. 
The balance slot number is stored in the fixed portion of the PHD at offset 
PHD$W _PHVINDEX. Entries in the first array contain the number of ref­
erences to each PHD. Entries in the second array contain an index into a 
longword array that points to the PCB for each PHD. 

The global location PHV$GL_REFCBAS contains the starting address of 
the reference count array. Each of its elements counts the number of reasons 
why the corresponding PHD cannot be removed from memory. Specifically, 

PFN$AL_PTE:: 

PFNPTE 
Database Array 

1 1 

Figure 14.22 

PHO . . . 

SWP$GL_BALBASE:: 

Balance Set 
Slots 

Balance Slot o 

PHVINDEX~M 
\, } SWP$GL BSLOTSZ \ Balance Slot 1 pages -

PO Page Table 

POPTE 

J ~-~·1 
. . 

i----------tI ,.·· 
Balance Slot 

BALSETCNT -1 
....._ __ P1_P_age_T_abl_e __ _.J/ 

Balance Slots Containing Process Headers 



14. 7 Swapping Data Structures 

PHV$GL_REFCBAS:: 

The contents of 
PHD$W_PHVINDEX 
are used as a 

' word index into 
each of these arrays. 

PHV$GL_PIXBAS:: 

Reference Count Process Index 

SCH $GL_PCBVEC:: 

l J_ J 
~ PCBVector 

BALSETCNT 
entries in 
each array 

~ 

PCB of Process 
Whose PHD 
Is in Balance 

SlotM 

@SCH$GL_PCBVE 
+ (4 x process index >c-C Pointer to PCB --1 f--I--' 

f--MAXPROCESSCNT 
entries 

Figure 14.23 
Process Header Vector Arrays 

an array element counts the number of page table pages that contain either 
valid or transition PTEs. A value of -1 in a reference count array element 
means that the corresponding balance slot is not in use. 

The global location PHV$GL_PIXBAS contains the starting address of the 
process index array. Each of its elements contains an index into the longword 
array, based at the global pointer SCH$GL_PCBVEC. An element in the 
longword PCB vector contains the address of the PCB of the process with 
that process index. Figure 14.23 illustrates how the address _of a PHD is 
transformed into the address of the PCB for that process, using the entry in 
the process index array. 

A zero in the process index array entry means that the corresponding 
balance slot is not in use. A -1 in a process index array entry means that 
the process whose PHD used that balance slot has been deleted and its PHD 
can be deleted to reclaim physical memory as well as the balance slot. 

If the PHD address is known, the balance slot index can be calculated 
las described in the next section). By using this as a word index into the 
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process index array, the longword index into the PCB vector is found. The 
array element in the PCB vector is the address of the PCB, whose PCB$L 
PHD entry points back to the balance slot. Chapter 25 contains a more 
detailed description of the PCB vector and its use by the Create Process 
system service. 

Comment on Equal-Size Balance Slots 

The choice of equal-size balance slots, at first sight seemingly inefficient, 
has some subtle benefits to portions of the memory management subsystem. 
There are several instances, most notably within the modified page writer, 
when it is necessary to obtain a PHD address from a physical page's PFN. 
With fixed-size balance slots, this operation is straightforward. 

As shown in Figure 14.22, a PFN PTE array element points to a PTE 
somewhere in the balance slot area. Subtracting the contents of SWP$GL_ 
BALBASE from the PFN PTE array element contents and dividing the result 
by the size of a balance slot (the size of a PHD) in bytes produces the balance 
slot index. If this index is multiplied by the size of the PHD in bytes and 
added to the contents of SWP$GL_BALBASE, the final result is the address 
of the PHD containing the PTE that maps the physical page in question. 

Furthermore, as described in the previous section, the balance slot index 
can locate the process index and its PCB address. 

14.8 DATA STRUCTURES THAT DESCRIBE THE PAGE AND SWAP FILES 

Page and swap files are used by the memory management subsystem to save 
physical page contents or process working sets. Page files are used to save 
the contents of modified pages that are not in physical memory. Both the 
swap and page files are used to save the working sets of processes that are 
not in the balance set. 

14.8.1 
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Page File Control Blocks 

Each page and swap file in use is described by a data structure called a page 
file control block (PFL). A page or swap file can be placed in use either 
automaticaiiy during system initialization or manually through SYSGEN 
commands. In either case, code in module [BOOTS]INITPGFIL allocates a 
PFL from nonpaged pool and initializes it. 

Initializing the PFL includes the following operations: 

1. The file is opened and a special window control block (WCB) is built 
to describe all the file's extents. The special WCB, called a cathedral 
window, ensures that the memory management subsystem does not have 
to take a window turn (see Chapter 21 ), which could lead to a system 
deadlock. 

2. The address of the WCB is stored in the PFL. 
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Page and Swap File Database 

3. A bitmap is allocated from nonpaged pool and initialized to all l's. Each 
bit in the map represents one block of swap or page file. A set bit indicates 
the availability of the corresponding block. 

Figure 14.24 shows the layout of a PFL. PFL$L_BITMAP is the address 
of the start of the bitmap that describes the state of the blocks in the file. 
PFL$1-BITMAPSIZ is the length of the bitmap in bytes. PFL$L_STARTBYTE 
is the address of the bitmap byte at which the next scan for free blocks should 
begin. 

PFL$W _SIZE and PFL$B_ TYPE are the standard dynamic data structure 
fields. 

PFL$B_PFC is the number of blocks to cluster together on a page read. 
PFL$1-WINDOW is the address of the WCB that describes the mapping 

extents of the file so that file-relative, or virtual, block numbers can be 
converted to volume-relative, or logical, block numbers. 

Generally, PFL$1-VBN contains the value O; in the case of a primary page 
file in use as a crash dump file, it contains the value 1, to reserve the first 
block of the page file for a dump header block. Chapter 32 discusses using 
the primary page file as a dump file. 

PFL$L_ VBN has an additional use for a page file larger than FFFFF16 blocks. 
When installing such a file, SYSGEN divides it into segments of FFFFF16 

blocks. It initializes a PFL for each segment, plus one for the last partial 
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segment. PFL$L VBN indicates the starting virtual block number of each 
segment. A block in a segment is represented by the combination of page 
file index and a block number relative to the start of the segment. The block 
number is thus small enough to fit into the page file virtual block number 
portion of a page file backing store PTE. To calculate the actual backing store 
address, the contents of the associated PFL$L VBN are added to the page file 
virtual block number. 

When installing a swap file larger than FFFFFF16 blocks, SYSGEN similarly 
divides it into segments of FFFFFF16 blocks. 

Note that the PFL contains a WCB field, virtual block number field, and 
page fault cluster factor field at the same relative offsets as they are in a 
section table entry. Because all fields are present and at the same offsets, 
page file and section file 1/0 requests can be processed by common code, 
independent of the data structure that describes the file being read or written. 

PFL$LFREPAGCNT is the number of blocks, less 1, that can be allocated. 
PFL$LMINFREPAGCNT is the "low-water mark" for the file and repre­

sents the smallest number of blocks free during the use of the file. 
PFL$LRSRVPAGCNT is the number of blocks that can be reserved with­

out overcommitting the page file. 
PFL$LREFCNT contains the number of processes using the file for paging 

or swapping. PFL$LSWPREFCNT contains the number using it only for 
swapping. 

PFL$LMAXVBN is the mask applied to a PTE with a page file backing 
store address. For a swap file, it contains the value FFFFFF16; for a page file, 
the value FFFFF16· 

PFL$B_PGFLX is the systemwide index number of the page-and-swap-file 
vector entry that contains the address of the PFL. 

PFL$B_ALLOCSIZ is the current allocation request size in the file, the 
number of contiguous blocks the modified page writer or the swapper tries 
to allocate. It is initialized to the value of the SYSGEN parameter MPW _ 
WRTCLUSTER and adjusted dynamically with available space in the file. 

PFL$B_FLAGS contains bits describing the state of the file. 
At offset PFL$LBITMAPLOC the bitmap begins. It has one bit for each 

block in the file. A value of 0 means the block is in use; a value of 1 means 
the block is free. 

Chapter 16 describes the use of page files; and Chapter 18 the use of swap 
files. 

Page-and-Swap-File Vector 

Pointers to the PFLs are stored in a nonpaged pool array called the page­
and-swap-file vector. The number of longword pointers in this array is the 
maximum number of page and swap files that can be in use on the system 
(the sum of SYSGEN parameters SWPFILCNT and PAGFILCNT) plus 1. A 
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page or swap file is identified by an index number indicating the position of 
its PFL address in this array. This is called a systemwide index to distinguish 
it from a two-bit process-local page file index (see Section 14.3.3.2). The page­
and-swap-file vector can contain up to 128 pointers. 

During system initialization, the routine EXE$1NIT in module INIT (see 
Chapter 31), allocates and initializes the page-and-swap-file vector, which 
is a standard dynamic data structure. It stores the address of the beginning 
of the actual data in global location MMG$GLPAGSWPVC. Figure 14.24 
shows the use of the page-and-swap-file vector data area to point to PFLs. 

EXE$INIT initializes each pointer with the address of the null page file 
control block, the contents of MMG$AR_NULLPFL. For the most part, this 
address serves as a zero value, indicating that no page or swap file with this 
index is in use. The null PFL, however, is also used to describe the shell 
process. 

The shell process, a module in the system image, is accessed as page file 
index zero. It is the prototype for creating a new process. The information 
in the null PFL may be used during process creation to read a copy of the 
shell process into memory. 

The SYSINIT process (see Chapter 31) places in use the primary page file, 
SYS$SPECIFIC:[SYSEXE]PAGEFILE.SYS, if it exists. (Any page file installed 
at a later stage of system initialization or operation is not considered a 
primary page file, even if it is the first page file installed.) SYSINIT builds 
a PFL and places its address in the page-and-swap-file vector. The primary 
page file has a systemwide index value equal to 1 more than the SYSGEN 
parameter SWPFILCNT. 

SYSINIT also installs SYS$SPECIFIC:(SYSEXE]SWAPFILE.SYS, if it exists, 
as the primary swap file. (A swap file installed at a later state is not a primary 
swap file, even if it is the first one.) The first swap file that is installed has 
index 1. If there is no swap file, index 1 points to the null PFL. If the value of 
the SYSGEN parameter SWPFILCNT is zero, index 1 points to the primary 
page file. 

If there are no swap files, all swap operations are performed to page files. 
Although the system can run this way, it is desirable that there be at least 
one swap file. For example, after several large processes are outswapped into 
a page file, the page file may be sufficiently full that modified page writer 
clustering is hindered. 

Any additional page and swap files are placed in use by SYSGEN in re­
sponse to the commands INSTALL/PAGEFILE and INSTALL/SWAPFILE. In­
stalling page files other than the primary one on different disks allows for 
balancing the paging load. A system with alternative swap files can support 
a greater number of processes or processes with larger worltjng sets. 

With VMS Version 5.2, it is possible to deinstall page and swap files, that 
is, to remove an inactive file from use. After a privileged user issues the 
SYSGEN command DEINSTALL to initiate the removal of a page or swap 
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file, no new allocations are made from it. However, the actual removal from 
use is deferred until the file is inactive and PFL$1-REFCNT has gone to 
zero. 

14.9 SWAPPER AND MODIFIED PAGE WRITER PAGE TABLE ARRAYS 

14.9.1 

14.9.2 
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The VMS I/O subsystem enables an image to make a direct I/O request (di­
rect memory access transfer) to a virtually contiguous buffer. There is no 
requirement that pages in a buffer be physically contiguous, only virtually 
contiguous. This capability is called scatter-read/gather-write or, more sim­
ply, scatter/gather. 

Direct 1/0 and Scatter/Gather 

A combination of VAX hardware and VMS I/O subsystem software supports 
1/0 to physically noncontiguous pages. The manner in which this is sup­
ported varies with processor type and I/O adapter type. For example, on a 
VAX processor with a UNIBUS or MASSBUS adapter, the device driver maps 
the memory buffer to I/O bus space. The result of this mapping is a set of 
contiguous addresses in the 1/0 bus space. Certain I/O adapters, such as CI 
adapters, read the relevant PTEs to determine the physical location of the 
buffer pages. On some processors, such as a MicroVAX I, there is no adapter 
hardware to support bus mapping. The device driver must transform the 
request into multiple transfers to or from physically contiguous memory. 

Regardless of the manner of the support, a direct 1/0 request results in 
locking the buffer pages into memory. The I/O locking mechanism brings 
each page into the working set of the requesting process, makes it valid, and 
increments that page's reference count (in the PFN REFCNT array element) 
to reflect the pending read or write. The buffer is generally described in the 
1/0 request packet (IRPJ through three fields: 

• IRP$L_SVAPTE contains the system virtual address of the first PTE that 
maps the buffer . 

• IRP$W _BOFF and IRP$L_BCNT are used to calculate how many PTEs are 
required to map the buffer. 

A driver processes this I/O request in a manner suitable to the processor 
and I/O adapter. For example, it may allocate adapter mapping registers and 
load them with the PFNs found in the PTEs or it may simply pass the system 
virtual address of the first PTE to an I/O adapter. 

Swapper 1/0 

The swapper is presented with a more difficult problem. It must write a 
collection of pages to disk that are not even virtually contiguous. It solves 
this problem elegantly. 
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14.9 Swapper and Modified Page Writer Page Table Arrays 

When the system is initialized, an array of WSMAX longwords is allocated 
from nonpaged pool for use as the swapper's 1/0 table. The starting address 
of this array is stored in global pointer SWP$GL_MAP. !The address is also 
stored in the saved PO base register in the swapper's PHD so the pages 
mapped by this array are effectively the swapper's PO space. This use is 
discussed in Chapter 25.) 

When the swapper scans the working set list of the process being out­
swapped, it copies the PFNs in every valid PTE to successive entries in its 
1/0 table. The swapper places the address of the base of the table into the 
field IRP$L_SVAPTE before the IRP is passed to the driver. !The swapper can 
exercise this control because it builds a portion of its own IRP.) The 1/0 table 
looks just like any other page table to the hardware/software combination 
that implements scatter/gather 1/0. 

What the swapper has succeeded in doing is making pages that were not 
virtually contiguous into pages that are virtually contiguous in the PO space 
of the swapper, the process that is actually performing the 1/0. At the same 
time that each PTE is being processed, any special actions based on the 
type of page are also taken care of. The whole operation of outswap and the 
complementary steps taken when the process is swapped back into memory 
are discussed in Chapter 18. 

The swapper map supports only one use at a time. When an inswap or 
outswap operation is in progress, the swap-in-progress flag jSCH$V _SIP), in 
location SCH$GB_SIP, is set to indicate its use. 

Modified Page Writer PTE Array 

The modified page writer, in its attempt to write many pages to backing store 
with a single write request (so-called modified page write clustering), is faced 
with a problem similar to that of the swapper. The modified page writer must 
build a table of PTEs just as the swapper does. Unlike the swapper, which 
can perform only one swap operation at a time, with VMS Version 5 the 
modified page writer can perform concurrent multiple modified page writes. 
The SYSGEN parameter MPW _IOLIMIT specifies its maximum number of 
concurrent 1/0 operations. 

When the modified page writer is building an 1/0 request, it can encounter 
three different types of page: 

• Pages that are bound for a swap file (SWPVBN nonzero) are written indi­
vidually. 

• Pages that are bound for a section file are not necessarily virtually con­
tiguous; these pages will be written as a group only if they are virtually 
contiguous . 

• Pages on the modified page list that are to be written to a particular page 
file may not only be noncontiguous within one process address space but 
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may also belong to several processes. It is these pages that the modified 
page writer must cluster so they appear virtually contiguous. 

During system initialization, the modified page writer's initialization rou­
tine, MPW$INIT in module WRTMFYPAG, allocates nonpaged pool to build 
I/O maps. It allocates MPW _IOLIMIT number of structures and links them 
into a lookaside list. Each structure is large enough for an IRP and two arrays, 
each of MPW _ WRTCLUSTER elements. One is a longword array, and the 
other a word array. 

The longword array will be filled with PTEs containing PFNs in a manner 
analogous to the way in which the swapper map is used. The word array 
contains an index into the PHD vector for each page in the map. In this 
way, each page that is put into the map and written to its backing store 
location is related to the PHD containing the PTE that maps this page. The 
operation of the modified page writer, including its clustered writes to a page 
file, is discussed in detail in Chapter 16. 



15 Memory Management System 
Services 

A place for everything and everything in its place. 

Isabella Mary Beeton, The Book of Household Management 

This chapter describes those system services that affect a process's virtual 
address space and several others: 

• Create Virtual Address Space ($CRETVA), by which a process creates de­
mand zero pages in PO or Pl space 

• Expand Region ($EXPREG), by which a process creates demand zero pages 
at the high end of PO space or the low end of Pl space 

• Create and Map Section ($CRMPSC), by which a process creates a process­
private or global section that maps the blocks of a file to a portion of 
process address space 

• Map Global Section ($MGBLSC), by which a process maps to an existing 
global section 

• Delete Virtual Address Space ($DELTVA), by which a process deletes PO or 
Pl pages 

• Contract Region ($CNTREG), by which the upper end of PO space or the 
lower end of Pl space is deleted 

• Delete Global Section ($DGBLSC), by which a global section is marked for 
deletion when no more processes are mapped to it 

• Set Process Swap Mode ($SETSWM), by which process swapping can be 
enabled or disabled 

• Set Protection on Pages ($SETPRT), by which the protection on a page of 
virtual address space can be changed 

Chapter 17 describes the system services that control a process's working 
set list. Chapter 16 describes the Update Section File on Disk ($UPDSEC) 
system service, by which the contents of all modified pages in a section are 
written to their backing store. 

15.1 COMMON CHARACTERISTICS OF MEMORY MANAGEMENT SYSTEM 
SERVICES 

A process's ability to use the services described in this chapter may be 
limited by access mode, process quotas, limits, privileges, and SYSGEN 
parameters. 

The page table entry (PTE) associated with each page of virtual address 
space contains an owner field (see Figure 14. 7). The owner field specifies 
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Figure 15.1 
Layout of Stack Scratch Space 

which access mode owns the page. The memory management system service 
checks the owner field to determine whether the requestor of the service is 
at least as privileged as the owner of the page and thus able to manipulate 
the page in the desired fashion. 

In general, a process is only permitted to affect per-process address space 
with these services. 

Almost all the memory management system services accept a desired 
virtual address range as an input argument. Many of the services can partly 
succeed, that is, affect only a portion of the specified address range. A system 
service indicates partial success by returning an error status and the address 
range for which the operation completed in the optional RETADR argument. 

Many of the memory management system services have a common se­
quence. First, each creates scratch space on the stack to record information 
about the service request. The macro $MMGDEF defines symbolic offsets 
into this scratch space, which is pointed to by the frame pointer IFP) register 
while the system service procedure is executing. Figure 15.1 shows its lay­
out. Some fields are used by only a few system services; others are common 
to all. 

MMG$L_MAXACMODE contains flag bits and the access mode associated 
with the operation, the less privileged of the mode from which the service 
was requested and the mode specified in the ACMODE argument. Bit MMG$V _ 
CHGPAGFIL in this longword, when set, means page file quota should be 
charged for the operation. Bit MMG$V _NO_OVERMAP, when set, means 
that address space to be created may not overlap existing address space. 
Bit MMG$V _NOWAIT _IPLO, when set, means that a memory managemeQ.t 
routine should return with an error status rather than waiting at interrupt 
priority level !IPL) 0 for 1/0 completion. Bit MMG$V _DELGBLDON, when 
set, means that global pages in the range have already been purged. 

MMG$L_CALLEDIPL records the IPL from which the service was re­
quested, typically 0. 
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MMG$L_SAVRETADR contains the value of the optional service RETADR 

argument, the address of a two-longword array to receive the starting and 
ending virtual addresses affected by the service. 

MMG$1-PAGESUBR contains the address of the executive routine that 
performs the requested service on a single page. 

MMG$L_SVSTARTVA saves the starting virtual address specified by the 
user. 

MMG$L_ VFYFLAGS contains the section flags passed as an argument to 
a service such as $CRMPSC and verified by the service. 

MMG$L_EFBLK contains the number of the end-of-file block for a section 
file. 

MMG$L_PGFLCNT contains the amount of page file quota that has been 
reserved against the job's quota for this request. 

After creating and initializing the stack scratch space, such a memory 
management system service takes the following steps: 

1. It raises IPL to 2 to block the delivery of an asynchronous system trap 
(AST). In addition to blocking process deletion, this prevents the execu­
tion of AST code that could cause unexpected changes to the page tables, 
working set list, and other process data structures. 

2. If appropriate, it checks page ownership to ensure that a less privileged 
access mode is not attempting to alter the properties of pages owned by 
a more privileged access mode. 

3. It invokes the routine MMG$CREDEL, in module SYSCREDEL, passing 
it the address of a per-page service-specific routine to accomplish the 
desired action of the system service. MMG$CREDEL performs general 
page processing and invokes the per-page routine for each page in the 
desired range. 

4. It returns the address range actually affected through MMG$CREDEL's 
actions in the optional RETADR argument. 

5. It restores the entry IPL and returns to its invoker. 

In some cases, step 3 in that sequence is replaced by the single invocation 
of a routine that affects all pages in the desired range. 

MMG$CREDEL takes the following steps: 

1. It tests the starting and ending addresses and, if either is in system space, 
returns the error status SS$_NOPRIV. 

2. It initializes MMG$1-PAGESUBR and MMG$L_SVSTARTVA in the 
scratch space and stores in general registers information such as process 
control block (PCB) address, process header (PHD) address, page count, 
starting virtual address, and ending virtual address. 

3. MMG$CREDEL invokes the per-page routine. Unless the routine returns 
an error status, MMG$CREDEL continues to invoke it, once per page. 
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4. When an error occurs or there are no more pages, MMG$CREDEL returns 
to its invoker with a status code and the address of the last affected page 
in registers. 

15.2 PER-PROCESS VIRTUAL ADDRESS SPACE CREATION 
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Among the most basic memory management services are those that cre­
ate per-process virtual address space: $CRETVA, $EXPREG, $CRMPSC, and 
$MGBLSC. The image activator requests these services during image activa­
tion, as described in Chapter 26. An image can request these services directly 
to alter the process address space. 

Each per-process address space is described by a page table, with a PTE 
for each page of address space. As described in Chapter 14, both page tables 
are part of the PHD. Each is described by two processor registers: a base 
address register, PR$_PxBR, and a length register, PR$_PxLR, where x is 0 
or I, depending on the per-process space. 

Four longwords in the hardware PCB save the contents of the process's four 
mapping registers when the process is not current. The PHD also contains . 
two longwords PHD$LFREPx VA, each of which contains the address just 
beyond the space mapped by the corresponding page table. Figure 14.6 shows 
the process page tables and the registers and fields that describe them. 

Creating address space typically requires expanding the appropriate page 
table and modifying the length register and PHD fields that delimit it. It 
always requires initializing PTEs. In the case of address space associated 
with a process-private section file, it also involves allocating and initializing 
a process section table entry. 

There are several limits on the amount of per-process virtual address space 
that can be created. 

The SYSGEN parameter VIRTUALPAGECNT controls the total number 
of page table entries (POPTEs plus PlPTEs) that any process can have. The 
division of these pages between PO space and Pl space is arbitrary and 
process-specific; VIRTUALPAGECNT limits only their sum. 

The size of a process working set can also constrain the size of that 
process's address space. When a process tries to expand its address space, 
the executive checks whether there is enough room in the dynamic working 
set list for the fluid working set (PHD$L_ WSFLUID, initialized from the 
SYSGEN parameter MINWSCNT), plus the worst-case number of page table 
pages required to map it, to allow the process to perform useful work. If this 
check succeeds, the virtual address space creation can proceed. Otherwise, 
if the process's working set list is smaller than its quota, the working set 
list is expanded. If the working set list is full and cannot be expanded (see 
Chapter 17), the virtual address creation fails with the error status SS$_ 
INSFWSL. 

A third constraint on the total size of the process address space is the 
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page file quota. Each demand zero page and copy-on-reference section page 
is charged against the job's page :file quota, JIB$LPGFLCNT. 

A fourth constraint on address space with page file backing store is based 
on the number of page files to which the process has been assigned. The 
form of invalid PTE that describes a page in a page file has space for a two­
bit process-local page file index and a 20-bit virtual block number. Thus, 
for each page file to which the process has been assigned, it can create a 
theoretical maximum of 220 pages of pageable address space that requires 
page file backing store (for example, demand zero or copy-on-reference sec­
tions). The current theoretical maximum is stored in PHD$L_PPGFLVA and 
decremented by each page of such address space the process creates. Each 
time a process is· assigned or deassigned to a page file, the cell is increased 
or decreased by 220• The cell is decremented for each demand zero or copy­
on-reference page the process creates and incremented when each such page 
is deleted. 

15.3 DEMAND ZERO VIRTUAL ADDRESS SPACE CREATION 

15.3.1 

The simplest form of address space creation is the creation of a series of 
demand zero pages through the $CRETVA and $EXPREG system services. 

For the $EXPREG system service, the demand zero pages are created at the 
end of the designated per-process address space. For. the $C;IlETVA system 
service, the pages are created in the specified address range. If any pages 
already exist in the requested range, they must be deleted first. On the other 
hand, if the requested range begins beyond the end of the region, the space 
between them must also be created. 

These two system services can partly succeed. That is, a number of pages 
smaller than the number originally requested may be created. After several 
pages have already been successfully created, the service can run into one of 
the limits to addfess space creation. 

$CRETVA System Service 

The $CRETVA system service procedure, EXE$CRETVA in module SYSCRE­
DEL, runs in kernel mode. It has an alternative entry point, MMG$CRETV A, 
called from code already in kernel mode, such as image activator routines 
and EXE$PROCSTRT in module PROCSTRT. The alternative entry point 
has additional arguments that enable the caller to specify what the protec­
tion of the new address space is and whether the new space may overlap 
existing space. 

EXE$CRETV A takes the following steps: 

1. It creates and initializes the stack scratch space. 
2. It constructs:template PTE contents for the new pages. 

The template PTE indicates a demand zero page, with owner access 
mode the less privileged of the requesting access mode and the ACMODE 
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argument. In the case of a normal system service request, the PTE has a 
protection granting write access to the owner mode. In the case of entry 
through MMG$CRETVA, the protection is specified by the caller. 

3. It raises IPL to 2 to block AST delivery. 
4. It tests the starting and ending addresses and, if either is a system space 

address, returns the error status SS$_NOPRIV. 
5. It checks whether the specified address range overlaps any existing space. 

If there is overlap, EXE$CRETVA continues with step 8. 
6. Typically, there is no overlap; the process is requesting the creation of 

address space just beyond the end of what has already been defined. As an 
optimization for this common case, EXE$CRETV A invokes MMG$TRY _ 
ALL, in module SYSCREDEL, to test further whether the entire space can 
be created. MMG$TRY _ALL tests whether there are enough free PTEs, 
enough room in the dynamic working set list, enough page file quota, 
and enough PHD$LPPGFLVA capacity. If all tests pass, it adjusts PR$_ 
PxLR, its copy in the PHD, PHD$L_FREPTCNT, and PHD$L_FREPxVA; 
charges against page file quota and PHD$L_PPGFLVA; and returns a 
status indicating its findings. 

If the entire address space cannot be created, EXE$CRETVA proceeds 
with step 8. 

7. If none of the limits to growth of the process's virtual address space has 
been reached, EXE$CRETVA invokes MMG$FAST_CREATE, in module 
SYSCREDEL. 

MMG$FAST _CREATE determines in which region space is being cre­
ated and with which starting PTE. It loops, initializing four PTEs in each 
iteration. Creating the address space in this manner is significantly faster 
than creating it one page at a time. 

EXE$CRETV A continues with step 9. 
8. If any of the limits to virtual address space growth described in the pre­

vious section prevent creation of the entire space, EXE$CRETV A creates 
it one page at a time, stopping when the limit is reached. Page-by­
page creation is also necessary if the specified address space overlaps 
already existing space, since the existing pages must first be deleted. In 
either of these cases, EXE$CRETVA invokes MMG$CREDEL, specifying 
MMG$CREPAG, in module SYSCREDEL, as the per-page service-specific 
routine. 

9. EXE$CRETV A returns any unused page file quota, records peak page file 
usage and virtual size statistics, and stores return information in the 
optional RETADR argument. 

10. It restores the IPL at entry and returns to its requestor. 

MMG$CREPAG is the per-page service-specific routine for the $CRETVA 
and $EXPREG system services. It is invoked with an argument specifying 
the PTE contents for the new page. It takes the following steps: 



15.3 Demand Zero Virtual Address Space Creation 

1. It tests whether the page to be created is beyond the limit of its defined 
address space and, if not, continues with step 3. 

2. If the page is outside its address space, MMG$CREPAG tests whether 
there are enough free PTEs and enough room in the dynamic working 
set list to expand the region to add all the desired pages. If there is, it 
adjusts PR$_PxLR, its copy in the PHD, PHD$L_FREPxVA, and PHD$L_ 
FREPTCNT. 

MMG$CREPAG must deal with the possibility that the requested page 
may not be adjacent to the current end of the region and that the inter­
vening pages also have to be created. 

-If there are insufficient PTEs to allow expansion up to the requested 
starting virtual address, MMG$CREPAG returns the error status SS$_ 
VASFULL to its invoker. 

-If there are insufficient PTEs to allow the full expansion, but the region 
can be expanded at least to the first requested page, the routine adjusts 
the items previously listed to show expansion of as many pages as 
there are PTEs left. 

-If there is insufficient room in the dynamic working set list for expan­
sion up to the first requested page, the routine returns the error status 
SS$_INSFWSL. 

-If there is insufficient room in the dynamic working set list for the full 
expansion but enough for at least the first requested page, the routine 
adjusts the listed items to show expansion through the first requested 
page. 

-If both tests pass, it adjusts the listed items to include the total ex­
pansion. The tests and this step will not be repeated in subsequent 
invocations of MMG$CREPAG. 

3. It tests whether the page to be created already exists, If it does and the 
service requestor specified no address overmap, MMG$CREPAG returns 
the status SS$_ VA_IN_USE to its invoker, which returns it as the system 
service status. (The image activator specifies the NO_OVERMAP flag 
when it requests the $CRETVA system service.) 

4. If the page already exists but overmap is allowed, MMG$CREPAG in­
vokes MMG$DELPAG, described in Section 15.5.2, to delete the virtual 
page. 

5. If page file quota does not need to be charged, MMG$CREPAG contin­
ues with step 6. Otherwise, it must charge the pages against MMG$L_ 
PGFLCNT and PHD$L_PPGFLVA. 

If no more reserved quota is left, MMG$CREPAG tries to reserve more 
quota from the process's job page file quota. 

If PHD$L_PPGFLVA would be exceeded, MMG$CREPAG tries to as­
sign the process to another page file. 

If either charge cannot be made, MMG$CREPAG adjusts PR$_PxVA, 
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its copy in the PHD, PHD$L_FREPxVA, and PHD$L_FREPTCNT to 
show expansion up to but not including the page that could not be cre­
ated for lack of page file quota or PHD$LPPGFLVA. MMG$CREPAG 
returns the error status SS$_EXQUOTA. 

6. It stores the requested value into the PTE. 
7. It returns to its invoker. 

$EXPREG System Service 

The $EXPREG system service is very similar to the $CRETVA system ser­
vice. Its system service procedure, EXE$EXPREG in module SYSCREDEL, 
runs in kernel mode. Depending on the region that is to be expanded, 
EXE$EXPREG uses either PHD$L_FREPOVA or PHD$L_FREP1 VA as one end 
of the address range. It adds its PAGCNT argument to that address to form the 
other end of the address region. 

It forms template PTE contents for the new page as EXE$CRETVA does. 
As an optimization, EXE$EXPREG first checks whether the entire address 

space can be created. If so, EXE$EXPREG creates it all at once rather than 
page by page, invoking the routine MMG$FAST _CREATE. Otherwise, it 
invokes the routine MMG$CREDEL, specifying MMG$CREPAG as the per­
page service-specific routine. Section 15.3.l describes these routines. 

Automatic User Stack Expansion 

A special form of Pl space expansion occurs when a request for user stack 
space exceeds the remaining size of the user stack. Such a request can 
be reported by the VAX processor as an access violation exception or by 
software. 

Several software routines detect the need to expand the user stack: 

• The AST delivery interrupt service routine (see Chapter 7), when it is 
unable to build the AST argument list on the user stack 

• The Adjust Stack ($ADJSTK) system service 
• The exception dispatching routine, EXE$EXCEPTION in module EXCEP­

TION, when it is unable to copy the signal and mechanism arrays onto 
the user stack (see Chapter 5) 

These routines invoke EXE$EXPANDSTK, in module EXCEPTION, to try 
to expand the user stack. EXE$EXPANDSTK is also invoked by the access vi­
olation exception service routine, EXE$ACVIOLAT in module EXCEPTION, 
for an access violation that occurred in user mode. EXE$EXPANDSTK checks 
that a length violation rather than a protection violation occurred and that 
the inaccessible address is in Pl space. If so, EXE$EXPANDSTK requests the 
$CRETVA system service to expand Pl space from its current low-address 
end to the specified inaccessible address. For the usual case, one in which 
a program requires more user stack space than requested at link time, the 
expansion typically occurs one page at a time. 



15.4 Process-Private and Global Sections 

Because this automatic expansion cannot be disabled on a process-specific 
or systemwide basis, a runaway program that uses stack space without 
returning it is not aborted immediately. Instead, the program runs until 
it reaches one of the limits to growth of virtual address space previously 
described. 

Another side effect of automatic expansion occurs when a program makes 
a possibly incorrect reference to an arbitrary Pl address lower than the top 
of the user stack. Rather than exiting with some error status, the program 
will probably continue to execute (after the creation of many demand zero 
pages). 

If the stack expansion fails for any reason, the process is notified in a way 
that depends on the invoker of EXE$EXPANDSTK: 

• The $ADJSTK system service can fail with several of the error codes re­
turned by $CRETVA. 

• An attempt to deliver an AST to a process with insufficient user stack 
space results in an AST delivery stack fault condition being reported to 
the process . 

• If the user stack cannot be expanded in response to a Pl space length 
violation, then an access violation fault is reported to the process . 

• If there is not enough user stack to report an exception, EXE$EXCEPTION 
first tries to reset the user stack pointer to the high-address end of the stack. 
If that fails, EXE$EXCEPTION requests the $CRETVA system service in 
an attempt to recreate the address space. If that fails, EXE$EXCEPTION 
bypasses the normal condition handler search and reports the exception 
directly to the last chance handler. Typically, this handler aborts the cur­
rently executing image. Chapter 5 contains more details. 

15.4 PROCESS-PRIVATE AND GLOBAL SECTIONS 

The $CRMPSC system service is an alternative method of creating address 
space, one that enables a process to associate a portion of its address space 
with a specified portion of a file. The section may be specific to a process 
(called a process-private section or sometimes simply a process section) or it 
may be a global section, shared among several processes. 

The $CRMPSC system service also provides special options. For example, 
a process with PFNMAP privilege can map virtual address sp~ce to specific 
physical addresses. Typically, a process uses this capability to access a phys­
ical page in 1/0 space in order to communicate with a particular 1/0 device. 

The $CRMPSC service also enables the creation of global page-file sec­
tions, demand zero global sections whose pages are backed by a page file. 

The $MGBLSC system service is another way to create address space, one 
that enables a process to map a portion of its address space to an already 
existing global section. 
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The image activator (see Chapter 26) requests these two services to map 
portions of process address space to sections in image files and to previously 
installed global sections. 

$CRMPSC System Service 

The $CRMPSC system service creates a process-private or global section 
and maps it into process address space. The particular actions it takes are 
determined by the options or flags with which the service is requested. 
The VMS System Services Reference Manual describes the system service 
arguments and shows which flags can be used together. 

Process-Private Section Creation. The $CRMPSC system service procedure, 
EXE$CRMPSC in module SYSCRMPSC, runs in kernel mode. When re­
quested to map a process-private section, it takes the following steps: 

. 1. It creates and initializes the stack scratch space. 
2. It invokes MMG$VFYSECFLG, in module SYSDGBLSC, to test the com­

patibility of the FLAGS arguments with each other and with the process's 
privileges, and then confirms that the CHAN argument was supplied. (The 
requestor must have already opened the section file on the specified chan­
nel.) If the flags are incompatible or the argument is absent, it returns 
the error status SS$_IVSECFLG to its requestor. 

3. It confirms that the specified channel has been assigned; that its associ­
ated device is directory-structured, files-oriented, and random access; and 
that a file is open on the channel. In case of error, it returns a suitable 
error status to its requestor. 

4. It checks whether the associated window control block (WCB) maps the 
entire file. (When the image activator opens a file, it does so specifying 
that all extents of the file should be mapped. However, an image may 
open a file itself and then request the $CRMPSC system service; in that 
case, the WCB might not contain a complete description of the file.) 

The memory management subsystem cannot take a window turn (see 
Chapter 21) on pages within a section. It therefore requires that the 
WCB describe all the extents of the mapped file. If the WCB does not, 
EXE$CRMPSC queues an I/O request to remap the file with a cathedral 
WCB, one that does describe all the file extents. 

Because the WCB occupies nonpaged pool, its extension is charged 
against the job's buffered I/O byte count quota (JIB$1-BYTCNT). Because 
the quota charge persists until the section is deleted, this charge is also 
made against the job's JIB$L_BYTLM, which limits the maximum charge 
against JIB$1-BYTCNT. When a job has insufficient JIB$L_BYTCNT for 
a request, VMS checks that the request is not larger than JIB$L_BYTLM 
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before placing the process in resource wait. Charging the WCB exten­
sion against JIB$L_BYTLM prevents placing the process into what might 
otherwise be a never-ending resource wait. 

5. If the section to be mapped is a copy-on-reference section, EXE$CRMPSC 
sets bit MMG$V _CHGPAGFIL in MMG$L_MAXACMODE as a signal 
that the section must be charged against the job's page file quota and 
PHD$L_PPGFLVA. 

6. It raises IPL to 2 to block AST delivery. 
7. It invokes MMG$DALCSTXSCN, in module PHDUTL, to check the 

process section table for any sections to be deallocated. A section table 
entry cannot always be deallocated synchronously on request. For exam­
ple, if direct I/O is in progress to pages in the section, those pages cannot 
be deleted and hence the section cannot be. After the I/O completes, the 
next invocation of MMG$DALCSTXSCN results in deallocation of the 
section table entry. Section 15.4.3 describes this routine. 

8. Unless the section is copy-on-reference and demand zero, EXE$CRMPSC 
allocates a process section table entry (PSTE, pictured in Figure 14.9) and 
initializes it. A demand zero section does not need a PSTE; its page faults 
require no I/O from a section file. 

When the process section is being created as a part of image activation, 
as described in Chapter 26, the original source for much of the data stored 
in the PSTE is an image section descriptor contained in the image file. 

a. EXE$CRMPSC copies the section flags to SEC$W _FLAGS. 
b. It stores in SEC$L_ WINDOW the address of the WCB from the chan­

nel control block (CCB) or from the PSTE to which the CCB points. 
Recall that if multiple sections are mapped from the same file, there 
is one PSTE for each section but only one CCB and one WCB. 

c. It checks that the file has been opened in a manner consistent with 
the section flags: if the section is writable but not copy-on-reference, 
the file must have been opened for write access. If the file was opened 
for write access, then EXE$CRMPSC sets the writable flag in SEC$W _ 
FLAGS. 

d. It copies the VBN argument to SEC$L_ VBN. If the VBN argument is 0, 
its default, EXE$CRMPSC replaces it with 1. 

e. It copies the PAGCNT argument, if present, to SEC$L_PAGCNT, af­
ter checking that the file contains at least that many blocks be­
tween SEC$L_ VBN and its end of file. If the argument is absent, 
EXE$CRMPSC initializes the page count to the difference between 
the end-of-file block and SEC$L_ VBN. 

f. If this is the first section mapped on this file, EXE$CRMPSC stores 
the section index in CCB$L_ WIND and in the PSTE forward and 
backward links. If this is not the first section, EXE$CRMPSC inserts 
the PSTE into the chain of other PSTEs paging on that channel. 
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g. It initializes SEC$1-REFCNT to 1 and sets the section table entry 
flag SEC$V _INPROG to ensure that the section is not inadvertently 
deleted before its PTEs are initialized. If the system service cannot 
complete, it may place the process into a wait state at IPL 0. If the 
process were deleted at that point, the Delete Process ($DELPRC) 
system service would be able to detect such a section by the set 
SEC$V _INPROG flag and decrement the biased reference count. 

h. It initializes the section page fault cluster, SEC$B_PFC, as the mini­
mum of the PFC argument and 127. 

9. EXE$CRMPSC forms a template PTE for the section's pages (see Fig­
ure 14. 7). The PTE has both type bits set; the section table index in the 
low 16 bits (or zero for a copy-on-reference demand zero section); and the 
WRT, CRF, and DZRO bits copied from the section flags. EXE$CRMPSC 
calculates the protection code based on MMG$LMAXACMODE, the 
writable flag in SEC$W _FLAGS, and the input section flags specifying 
the mode allowed to write the section pages. 

10. If the expand-region flag was specified in the FLAGS system service argu­
ment, EXE$CRMPSC calculates the starting and ending section address 
based on the page count and the contents of PHD$1-FREPxVA. The IN­

ADR argument identifies in which per-process region the section is to be 
created. 

If the flag is absent, the starting and ending addresses are determined· 
by the INADR argument. 

11. EXE$CRMPSC determines whether the new address space overmaps ex­
isting space. 

-If the space does not already exist and can all be created, EXE$CRMPSC 
invokes MMG$FAST _CREATE, in module SYSCREDEL, to initialize 
the section's PTEs. It then increases the section's reference count by 
the number of pages just mapped. 

-If the space to be created overmaps existing space or cannot all be 
created, EXE$CRMPSC invokes MMG$CREDEL, described in Sec­
tion 15.1, specifying MMG$MAPSECPAG as the per-page routine. 

12. EXE$CRMPSC calculates the starting virtual page number of the section 
and stores it in the low bytes of SEC$L_ VPXPFC. 

13. It decrements SEC$L_REFCNT to remove the extra reference, unneces­
sary now that the reference count reflects the mapped PTEs, and clears 
the SEC$V _INPROG flag. 

14. EXE$CRMPSC returns any unused page file .quota, records peak page 
fl.le use and virtual size statistics, and stores return information in the 
optional RETADR argument. 

15. It restores the IPL at entry and returns to its requestor. 

MMG$MAPSECPAG, in module SYSCRMPSC, is the per-page service-
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specific routine for $CRMPSC. It is invoked with a number of arguments, 
including the PTE contents for the new page, number of pages in the section, 
number of pages to be mapped, and address of the section table entry. 

For a process section, it takes the following steps: 

1. Within initialization code, executed only once, MMG$MAPSECPAG 
sets the NO_OVERMAP flag in MMG$LMAXACMODE if it is set in 
MMG$L VFYFLAGS. It minimizes the requested number of pages to be 
mapped with the number of pages in the section. It replaces its own ad­
dress in MMG$L_PAGESUBR so as to bypass the initialization code the 
next time it is entered. 

2. MMG$MAPSECPAG invokes MMG$CREPAG, described in Sec­
tion 15.3.1, which stores the template PTE contents into the next PTE 
and charges against job page file quota and PHD$L_PPGFLVA. 

3. MMG$MAPSECPAG increments the reference count in the section table 
entry to reflect that one more PTE maps a page in that section. 

4. It returns to its invoker, MMG$CREDEL, which continues to invoke it 
until there are no more pages to be mapped or until one of the limits to 
growth is reached. 

PFN-Mapped Process Section. The $CRMPSC system service enables a pro­
cess with PFNMAP privilege to map a portion of its virtual address space to 
a specific range of physical addresses. Although the primary purpose of this 
feature is to map process address space to I/O addresses, it is also used to 
map specific physical memory pages. When such a section is larger than one 
page, it maps physically contiguous pages. 

When a process section mapped by a page frame number (PFN) is created, 
the effect is to add a series of valid PTEs to the process page table. The 
PFN fields in these PTEs contain the requested physical page numbers. The 
window bit is set in each PTE to indicate that the virtual page is PFN­
mapped. These pages do not count against the process working set. They 
cannot be paged, swapped, or locked in the process working set. Moreover, no 
record is maintained in the PFN database that such pages are PFN-mapped. 

Requested to create a PFN-mapped section, EXE$CRMPSC takes the fol-
lowing steps: . 

1. It invokes MMG$VFYSECFLG to test the compatibility of the section 
flags. 

2. It raises IPL to 2 to block AST delivery. 
3. It confirms that the process has PFNMAP privilege, returning the error 

status SS$_NOPRIV if not. 
4. It invokes MMG$DALCSTXSCN, described in Section 15.4.3, to deallo­

cate ariy process section whose reference count has gone to zero. 
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5. EXE$CRMPSC forms a template PTE for pages in the section. The PTE 
has the valid and window bits set. EXE$CRMPSC calculates its pro­
tection code based on MMG$L_MAXACMODE, the writable flag in 
SEC$W _FLAGS, and the flags in the FLAGS argument specifying the mode 
allowed to write the section pages. The PFN in the first PTE is specified 
by the VBN argument (named for its more typical use). 

6. If the expand-region flag was specified in the FLAGS system service ar­
gument, EXE$CRMPSC calculates the starting and ending section ad­
dress based on the page count and contents of PHD$LFREPxVA. The 
INADR argument identifies in which per-process region the section is to be 
created. 

If the flag is absent, the starting and ending addresses are determined 
by the INADR argument. 

7. EXE$CRMPSC invokes MMG$CREDEL, described in Section 15.1, spec-. 
ifying MMG$MAPSECPAG as the per-page routine. 

8. EXE$CRMPSC records peak virtual size statistics and stores return in­
formation in the optional RETADR argument. 

9. It restores the IPL at entry and returns to its requestor. 

Invoked to create a PFN-mapped section page, MMG$MAPSECPAG takes 
the following steps: 

1. Within initialization code, executed only once, MMG$MAPSECPAG 
sets the NO_OVERMAP flag in MMG$L_MAXACMODE if it is set in 
MMG$L_ VFYFLAGS. It minimizes the number of pages requested in the 
PAGCNT argument with the number of pages in the address range spec­
ified by the INADR argument. It replaces its own address in MMG$L_ 
PAGESUBR so as to bypass the initialization code the next time it is 
entered. 

2. MMG$MAPSECPAG invokes MMG$CREPAG, described in Sec­
tion 15.3.1. MMG$CREPAG stores the template PTE contents into the 
next PTE. For a window page (or a page in shared MA780 multiport mem­
ory), MMG$CREPAG acquires the MMG spinlock, locks the page table 
page that maps the newly created page into the process's working set list, 
and releases the spinlock. 

3. MMG$MAPSECPAG calculates the contents of the next PTE by adding 
1 to the PFN in the current PTE. 

4. It returns to its invoker, MMG$CREDEL, which continues to invoke it 
until there are no more pages to be mapped or until one of the limits to 
growth is reached. 

Global Section Creation. The $CRMPSC system service enables a process 
to create a global section or, if the section already exists, to map to it. The 
Install Utility requests the $CRMPSC system service to create one or more 
global sections when an image is installed with the /SHARE qualifier. 
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The global section to be created can be a group global section to be shared 
by processes in the same user identification code (UIC) group, or a sys­
temwide global section. Creation of the latter requires the SYSGBL privilege. 
The global section can be a temporary one that is deleted as soon as no 
process is mapped to it or a permanent one that must be explicitly deleted 
through the $DGBLSC system service. Creation of the latter requires the 
PRMGBL privilege. 

The creation of a global section in local memory is similar to the creation 
of a process section except that additional data structures are involved. 
Chapter 14 shows the layouts of these data structures and describes them 
and their interrelations in more detail. 

• A global section descriptor (GSD; see Figure 14.17), which enables subse­
quent $MGBLSC system service requests to determine whether the named 
section exists and to locate its global section table entry (GSTE). 

• A GSTE (see Figure 14.9), analogous to the PSTE but part of the system 
header rather than of a PHD. 

• Global page table entries (GPTEs), each of which describes the state of 
one global page in the section. GPTEs are not used by VAX memory 
management microcode but by the page fault handler when a process incurs 
a page fault for a global page. 

When a process maps to a global section, its PTEs that describe the speci­
fied address range are initialized with global page table indexes (GPTXs; see 
Figure 14.21). 

Like a process-private section, a global section can consist of specific 
pages of memory or I/O address space. Creation of a global PFN-mapped 
section requires the PFNMAP privilege. The only data structure necessary 
to describe a global PFN-mapped section is a special form of GSD (see 
Figure 14.17). There are no GPTEs nor is there a GSTE. When a process 
maps to such a section, its PTEs are initialized with the valid and window 
bits set and PFNs based on GSD$1-BASEPFN. 

Another type of global section is a demand zero section whose pages are 
backed in a page file. This type of section is called a global page-file section. 
Record Management Services (RMS) uses this type of section to implement 
global buffers on a file. The SYSGEN parameter GBLPAGFIL specifies the 
maximum number of page file blocks that can be put to this use. 

Another type of global section is a resident section, all of whose virtual 
pages are in physical memory. This type of section can only be created dur­
ing system initialization, before the initiation of normal system operations. 
Its only current use is to create resident global sections from the read-only 
sections of the file system image, Fl lBXQP.EXE, when the SYSGEN param­
eter ACP _XQP _RES is 1. Creation of a resident section is reserved to Digital; 
any other use is unsupported. 
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Requested to create or map a global section, EXE$CRMPSC takes the 
following steps: 

1. As described in Section 15.4.1.1, it initializes stack scratch space and 
tests the compatibility of the FLAGS arguments. It examines the specified 
flags to determine what type of global section is to be created and what 
further checks are required. 

-If a PFN-mapped section or global page-file section is to be created, the 
CHAN argument should not be present. 

-If a disk-file section is to be created, the CHAN argument must be 
present, the file must have been opened, and the WCB must map the 
entire file. If the section already exists, the CHAN argument need not 
be present. 

-If the section is to be copy-on-reference, EXE$CRMPSC sets MMG$V_ 
CHGPAGFIL in MMG$L_MAXACMODE. 

2. It locks the GSD mutex for write access, raising IPL to 2 as a side effect. 
The GSD mutex synchronizes access to both the systemwide and group 
GSD lists. 

3. It invokes MMG$GSDSCN, in module SYSDGBLSC, to find the GSD, if 
any, that corresponds to the GSDNAM argument. 

MMG$GSDSCN scans the group or systemwide GSD list, depending 
on which kind of section was requested, examining each GSD to see 
if it is the requested one. If scanning the group list, it first compares 
the process's UIC group code with the high word of GSD$1-PCBUIC. 
It then compares the global section names. Because a character string 
comparison is relatively lengthy, the routine first confirms that one is 
necessary by requiring that the hash values and the character string 
lengths be the same for the target section name and the one in the 
candidate GSD. If they are not the same, the global section names cannot 
be. 

If the names match, MMG$GSDSCN checks the match control in­
formation specified in the IDENT argument against the GSD$1-IDENT. If 
there is a version incompatibility, MMG$GSDSCN continues to scan the 
list until it reaches the end or finds a match. Multiple versions of a global 
section with different version identifications and match control informa­
tion can be installed. If a newer one were installed last and had match 
control specifying upward compatibility (match less or equal), it could be 
used with executables linked against it or earlier versions. If it had match 
control specifying no upward compatibility (match equal), an executable 
linked against an earlier version would not match; EXE$CRMPSC would 
continue to scan the list and find the earlier one. 

4. If MMG$GSDSCN locates a matching GSD, EXE$CRMPSC is being 
requested to map to an existing section. It transfers control to EXE$M­
GBLSC, at step 6 in the description in Section 15.4.2. 
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5. If no match is found, EXE$CRMPSC is being requested to create a new 
section. It first checks whether the process has the required privileges 
for the requested section type. If not, EXE$CRMPSC unlocks the GSD 
mutex and returns the error status SS$_NOPRIV. 

6. It allocates paged pool for a GSD. If pool is unavailable, it unlocks the 
GSD mutex and returns the error status SS$_GSDFULL. 

7. It begins to initialize the GSD, copying the section name to GSD$T_ 
GSDNAM, storing the hash value in GSD$B_HASH, and clearing 
GSD$1-IPID. 

8. If the section is PFN-mapped, EXE$CRMPSC clears GSD fields irrele­
vant to this type of section and copies the VBN argument to GSD$L_ 
BASEPFN, the section name to GSD$T _PFNGSDNAM, and the page 
count to GSD$L_PAGES. 

9. If the section is to map a disk file, EXE$CRMPSC stores the address of 
the object rights block !ORB) associated with the open file in GSD$1-
0RB. 

If the section is a PFN-mapped or global page-file section, EXE$CRMP­
SC allocates an ORB from paged pool and initializes it, copying PCB$L_ 
UIC to ORB$L_OWNER and the PROT argument to ORB$W _PROT. If 
pool for the ORB is unavailable, it unlocks the GSD mutex and returns 
the error status SS$_GSDFULL. 

10. EXE$CRMPSC copies PCB$L_UIC to GSD$1-PCBUIC and initializes 
GSD$W _FLAGS from the section flags and access mode. It initializes 
GSD$L_IDENT from the IDENT argument. 

11. If the section is PFN-mapped, EXE$CRMPSC continues with step 22. 
12. Otherwise, it allocates a GSTE from the system header. If none is avail­

able, it deallocates the ORB and GSD, unlocks the mutex, and returns 
the error status SS$_SECTBLFUL. 

13. EXE$CRMPSC takes most of the same steps to initialize a GSTE as 
it does a PSTE for a process section (see steps Sa through Sh in Sec­
tion 15.4.1.1). One additional step required for a global section is making 
the WCB a "shared" one if it is not already. This chiefly involves return­
ing the byte count quota charged for it to the appropriate job, setting the 
bit WCB$V _SHRWCB in WCB$B_ACCESS, and incrementing WCB$W _ 
REFCNT to indicate one more reason the file should not be closed. 

14. It stores the GSTE index in GSD$W_GSTX and the PROT argument in 
GSD$W_PROT. 

15. If the section is a disk-file section rather than a global page-file section, 
EXE$CRMPSC copies the file owner to GSD$1-FILUIC. 

16. If the section is a global page-file section, EXE$CRMPSC subtracts its 
page count from MMG$G1-GBLPAGFIL, the number of bloc~s of page 
file that can be used for this purpose, which is initialized from the 
8YSGEN parameter GBLPAGFIL. It must also charge the section's pages 
against PHD$L_PPGFLVA in the system header. 
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If mapping this section would exceed the allowed global page file count 
or if it would exceed PHD$1-PPGFLVA and another page file cannot be 
assigned, EXE$CRMPSC deallocates the GSD, ORB, and GSTE, unlocks 
the mutex, and returns the error status SS$_EXGBLPAGFIL. 

17. It allocates a set of contiguous GPTEs, one for each global page plus two 
additional GPTEs, one at the beginning of the set and one at the end. 
The two additional GPTEs are cleared and serve as "stoppers," limits to 
modified page write clustering (see Chapter 16 and Figure 14.18). 

If there are insufficient GPTEs, EXE$CRMPSC deallocates the data 
structures it built, restores the page file charges, unlocks the mutex, and 
returns the error status SS$_GPTFULL. 

18. It calculates the virtual page number of the second GPTE (skipping the 
stopper GPTE) and stores that in SEC$L_ VPXPFC. 

19. It forms template PTE contents for the GPTEs. Figure 14.20 shows the 
layout of the section table index forms of GPTE. 

20. EXE$CRMPSC then loops, initializing GPTEs. Its loop includes the fol­
lowing steps: 

a. It faults the page of global page table that contains the GPTE, if it is 
not valid. 

b. It acquires the MMG spinlock, raising IPL to IPL$_MMG. 
c. It confirms that the page table page is still valid. If not, it releases 

the MMG spinlock and returns to step a. 
d. It increments the PFN SHRCNT array element corresponding to the 

physical page in which the global page table page resides. 
e. If the SHRCNT makes the transition from 0 to 1 (this is the first 

sharer), EXE$CRMPSC locks it into the system working set list; in­
crements the system header field PHD$W _PTCNTACT, the number 
of active page table pages; and increments the reference count for the 
system header. 

f. If this is a resident section, it allocates a physical page from the 
free list and stores its PFN into the CPTE along with the valid bit. 
EXE$CRMPSC intializes the PFN database to describe the page as 
active and global, with a reference count of 1, and a section backing 
store. 

g. It releases the MMG spinlock, restoring an IPL of 2. 

21. If this is a resident section, EXE$CRMPSC reads it into the allocated 
physical memory, using the swapper's interface to the Queue 1/0 Request 
($QIO) system service. 

22. It inserts the GSD at the front of the group or systemwide list. 
23. The global section has been created. EXE$CRMPSC transfers control to 

EXE$MGBLSC to map it into the process's virtual address space as an 
existing section. It transfers control to EXE$MGBLSC at step 10 in the 
description in Section 15.4.2. 
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$MGBLSC System Service 

The $MGBLSC system service can be considered a special case of the 
$CRMPSC system service, where the global section already exists. This ser­
vice maps a range of process addresses to the named global section. It usually 
has no effect on the global database other than to include the latest mapping 
in various reference counts. 

When a process maps to a global section backed by a file rather than a 
PFN-mapped section, each of its process PTEs in the designated range is 
initialized with a GPTX (see Figures 14. 7 and 14.19). A GPTX is a pointer to 
the GPTE that records the current state of the global page. 

The $MGBLSC system service procedure, EXE$MGBLSC in module SYS­
CRMPSC, runs in kernel mode. It takes the following steps: 

1. It invokes MMG$VFYSECFLG, in module SYSDGBLSC, to test the com­
patibility of the section flags with each other. If the flags are incompati­
ble, it returns the error status SS$_IVSECFLG to its requestor. 

2. It initializes stack scratch space. 
3. It locks the GSD mutex for write access to synchronize access to the 

GSD lists, raising IPL to 2. 
4. It invokes MMG$DALCSTXSCN1, in module PHDUTL, described in 

Section 15.4.3, to check the global (system) section table for any sections 
to be deleted. 

5. It invokes MMG$GSDSCN to scan the GSD list for the specified global 
section. Section 15.4.1.3 describes MMG$GSDSCN's actions. 

6. If the global section is mapped to a file, EXE$MGBLSC calculates the 
address of its GSTE from GSD$W_GSTX and the contents of PHD$L_ 
PSTBASOFF in the system header. 

7. If the section is copy-on-reference, it sets MMG$V _CHGPAGFIL in 
MMG$L_MAXACMODE so that the section pages will be charged 
against the page file quota and PHD$LPPGFLVA. 

8. It compares the section access mode with the mode bits in MMG$L_ 
MAXACMODE to determine if the system service requestor is allowed 
to map the section. If not, EXE$MGBLSC unlocks the GSD mutex and 
returns the error status SS$_NOPRIV to its requestor. 

9. If the section is not PFN-mapped, it increments SEC$L_REFCNT so that 
the section cannot inadvertently be deleted before its pages are mapped 
into the process's address space. 

If the section is PFN-mapped, EXE$MGBLSC increments GSD$L_ 
REFCNT to prevent section deletion. (Recall that a PFN-mapped global 
section has no associated GSTE.) 

10. With the section locked against deletion, EXE$MGBLSC can safely un­
lock the GSD mutex. 

11. If the expand-region flag was specified in the FLAGS system service argu­
ment, EXE$MGBLSC calculates the starting and ending section addresses 
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based on the section page count (GSD$L_PAGES for a PFN-mapped sec­
tion or SEC$LPAGES for all others) and contents of PHD$L_FREPxVA. 
The INADR argument identifies in which per-process region the section is 
to be created. 

12. EXE$MGBLSC forms a template PTE for pages in the section. If the 
section is PFN-mapped, the PTE has the valid and window bits set, and 
the PFN in the first PTE is specified by GSD$L_BASEPFN. If the section 
is backed by a section file, the PTE has the type 0 bit set and the type 1 
bit clear to indicate a global page, and the first PTE has the GPTX from 
SEC$L_ VPXPFC. 

EXE$MGBLSC calculates a PTE protection code based on MMG$L_ 
MAXACMODE, the writable flag in SEC$W _FLAGS, and the input sec­
tion flags specifying the mode allowed to write the section pages. 

13. It then tests whether the process has the necessary access (read, write, or 
execute) to the section based on the process's access rights list and the 
ORB associated with the section. 

If the process does not have the desired access, EXE$MGBLSC decre­
ments the appropriate reference count, based on the section type; invokes 
security auditing code, which may record the unsuccessful access; and 
returns an error status to its requestor. 

If the process is allowed access, EXE$MGBLSC also invokes security 
auditing code, which checks whether a successful access should be au­
dited and, if so, builds a message to be logged before the service exits. 

14. EXE$MGBLSC determines whether the address space into which the 
section will be mapped overmaps existing space. 

-If the space does not exist, the number of pages in the section is equal 
to the number of pages to be mapped, and all pages can be created, 
EXE$MGBLSC increases the section's reference count by the number 
of pages to be mapped. It initializes all the process's PTEs. In the 
case of a resident global section, it copies the PFNs from the GPTEs 
into process PTEs; for a nonresident section, it inserts GPTXs into the 
process PTEs. 

When mapping a resident global section, it must also lock each 
process page table page that maps the section into the process working 
set list. 

-If the space to be created overmaps existing space or if it cannot 
all be created, then EXE$MGBLSC invokes the routine MMG$CRE­
DEL (see Section 15.lJ, specifying that MMG$MAPSECPAG (see Sec­
tion 15.4.1.lJ is to be the per-page routine. 

15. EXE$MGBLSC returns any unused page file quota, records peak page 
file use and virtual size statistics, and stores return information in the 
optional RETADR argument. 
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16. It decrements the section reference count to remove the extra reference, 
unnecessary now that the reference count reflects the mapped PTEs. 

17. It invokes MMG$DELGBLWCB to close open files associated with tem­
porary global sections whose reference counts have gone to zero and to 
delete the WCB. Section 15.4.3 describes this routine in more detail. 

18. It invokes a security audit routine, which may log successful access to 
the section. 

19. It restores the IPL at entry and returns to its requestor. 

$DGBLSC System Service 

The operation of the $DGBLSC system service is more complex than that 
of global section creation because the section must be reduced from one 
of many states to nonexistence .. In addition, global writable pages must be 
written to their backing store before a global section can be fully deleted. 
To avoid stalling the process requesting the service until all associated 1/0 
completes, the final steps in the deletion of a global section are often deferred 
to a time after the system service request and return. 

The actual section deletion cannot occur until the reference count in 
the GSTE, the count of process PTEs mapped to the section, goes to zero. 
Although the reference count can be zero when the $DGBLSC service is 
requested, more commonly global section deletion occurs as a side effect of 
virtual address deletion, which itself might occur as a result of image exit 
or process deletion. 

The $DGBLSC system service procedure, EXE$DGBLSC in module SYS­
DGBLSC, runs in kernel mode. It takes the following steps: 

1. It confirms that the process has PRMGBL privilege and, if the section to 
be deleted is a system global section, SYSGBL privilege. If the process 
lacks a necessary privilege, EXE$DGBLSC returns the error status SS$_ 
NOPRN. 

2. It invokes MMG$VFYSECFLG to test the compatibility of the specified 
section flags. 

3. It locks the GSD mutex for write access, raising IPL to 2. 
4. It invokes MMG$GSDSCN, described in Section 15.4.1.3, to locate the 

GSD for the specified global section. If the section does not exist, it 
unlocks the mutex and returns the error status SS$_NOSUCHSEC to its 
requestor. 

5. If the global section is a PFN-mapped section, EXE$DGBLSC confirms 
that the process has PFNMAP privilege, unlocking the mutex and re­
turning the error status SS$_NOPRN if not. A PFN-mapped section is 
described solely by a GSD; there are no GSTE, no GPTEs, and no section 
reference count. The section can be deleted immediately. EXE$DGBLSC 
deallocates the ORB and GSD to paged pool. It continues with step 7. 
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6. If the global section is mapped to a file, EXE$DGBLSC removes the GSD 
from its current list and inserts it on the delete pending list, at global lo­
cation EXE$GL_GSDDELFL. It clears the global section's permanent flag, 
SEC$V _PERM in GSD$W _FLAGS and, if there is an associated GSTE, 
in SEC$W _FLAGS as well. This step changes the section to a temporary 
global section that can be deleted when its reference count becomes zero. 

If the reference count in the GSTE is zero, the section can be deleted 
now; EXE$DGBLSC sets PHD$V _DALCSTX in the system header 
PHD$W_FLAGS as a signal for MMG$DALCSTXSCN. 

7. It invokes MMG$DALCSTXSCN, described later in this section, in case 
this section or any other can be deleted now. 

8. It unlocks the GSD mutex. 
9. It invokes MMG$DELGBLWCB, described later in this section. 

10. It restores the IPL at entry and returns to its requestor. 

MMG$DALCSTXSCN, in module PHDUTL, is invoked to locate and deal 
with deletable section table entries, in both the global section and process 
section tables. Section deletion cannot occur until the section reference 
count goes to zero, generally as the result of virtual address space deletion 
or modified page writing. A scan for deletable GSTEs is initiated from the 
$MGBLSC and $DGBLSC system services, and from the $CRMPSC system 
service when it is creating a global section. 

MMG$DALCSTXSCN is entered at IPL 2 in kernel mode, with the address 
of a PHO whose section table should be scanned. In the case of deleted global 
sections, it is entered with the address of the system header and with the 
GSD mutex locked. 

At alternative entry point MMG$DALCSTXSCN1, the routine first gets 
the address of the system header and then merges with MMG$DALC­
STXSCN. 

MMG$DALCSTXSCN takes the following steps: 

1. It tests and clears PHD$V _OALCSTX, returning immediately if the bit 
was already clear. 

2. It scans the list of section table entries, returning when it reaches the 
end of the list. It examines each entry's reference count, skipping to the 
next one if the count is nonzero. 

3. If the reference count is zero, MMG$DALCSTXSCN tests whether the 
section is permanent and, if so, continues with step 2. 

4. Otherwise, it tests whether the section is a global section. If it is, it 
invokes MMG$DELGBLSEC to delete it and then continues with step 2. 

5. For a process-private section, MMG$DALCSTXSCN checks whether this 
section is the only one still mapped from its section file. 

-If so, it restores the address of the WCB to CCB$L_ WIND and inserts 
the section table entry on the free list. 
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-If there are other sections still mapped, it removes this one from the 
chain, inserts it on the free list, and, if necessary, adjusts CCB$L 
WIND to point to a section table entry other than the one being 
deleted. 

In either case, it continues with step 2. 

MMC$DELCBLSEC, in module SYSDCBLSC, is invoked to delete a tem­
porary global section whose reference count has gone to zero, that is, one 
with no pages mapped by any process. 

1. It removes the CSD from the group or systemwide list and inserts it onto 
the delete pending list so that no more processes can map to it. 

2. It gets the starting CPTX and number of pages from the CSTE. 
3. It acquires the MMC spinlock, raising IPL to IPL$_MMC. 
4. It scans the section's CPTEs. If it reaches the last CPTE, rather than 

reaching one of the end conditions in the following list, it continues 
with step 7. 

-If it finds a transition page on the free list, it invokes MMC$DELPFN­
LST, in module ALLOCPFN, to delete the page's virtual contents. The 
PFN is moved from its current position on the free list to the head 
of the list, so that it can be reallocated before pages whose contents 
might still be useful. Its PFN database entries are reinitialized. The 
reference count for the global page table page that contains the CPTE 
is decremented. When an entire page of CPTEs is freed, the global page 
table page can be unlocked from the system working set. MMC$DEL­
CBLSEC continues its scan of the section's CPTEs. 

-If it finds a global page-file section page on the modified list, it clears 
the saved modify bit in the PFN STATE array element and invokes 
MMC$DELPFNLST as described. It continues its scan of the section's 
CPTEs. 

-If it finds a transition page on the modified page list that is not part of 
a global page-file section, the page must be written to its backing store 
before the section is deleted, and MMC$DELCBLSEC goes to step 5. 

-If it finds a transition page that is not on the free or modified page 
list, the page is being read in from its backing store. That 1/0 must 
complete before the section is deleted, and MMC$DELCBLSEC goes 
to step 6. 

5. It requests the modified page writer to perform a selective purge of the 
modified page list to write this section's global pages to their backing 
store and release them. Chapter 16 describes the modified page writer. 

6. It releases the MMC spinlock, restoring IPL to 2, stores the process ID of 
the current process in CSD$LIPID as the target of an eventual cleanup 
AST, sets PHD$V _OALCSTX in the system header, and returns. 

7. If MMC$DELCBLSEC has scanned all the CPTEs for the section and 
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found none for whose 1/0 it must wait, it scans the GPTEs again, this 
time to decrement the global page table page reference count and to 
release page fl.le backing store. 

-If it finds a global page in a page file, it deallocates that block of page 
fl.le, decrements the global page table page reference count, and clears 
the GPTE. 

-If it finds a demand zero global page, it simply decrements the global 
page table reference count and clears the GPTE. 

8. It releases the MMG spinlock, setting IPL to 2. 
9. It deallocates the GPTEs. 

10. If there is a file open on the section, it decrements the reference count 
in the WCB. If the count is now zero, it inserts the WCB on a queue of 
delete pending WCBs. 

11. If this was a global page-file section, it adds its page count back to 
MMG$GL_GBLPAGFIL and to PHD$L_PPGFLVA in the system header. 

12. It removes the GSD from the delete pending list and deallocates it to 
paged pool, along with the ORB, unless the ORB is still in use for an 
open section fl.le. 

13. It inserts the GSTE onto the free list. 
14. It allocates nonpaged pool, forms it into an AST control block, queues 

a normal kernel AST to the current process, and returns to its invoker. 
The specified AST procedure is GSD_CLEAN_AST. 

GSD_CLEAN_AST executes as a normal kernel AST procedure in the 
context of the process that requested the system service that triggered 
MMG$DELGBLSEC, possibly but not necessarily the process that requested 
global section deletion. Its enqueuing can be requested from MMG$DEL­
GBLSEC or the modified page writer. Its enqueuing can also be requested by 
the routines that decrease section reference count, MMG$SUBSECREF and 
MMG$DECSECREF in module PHDUTL, when a temporary global section's 
reference count goes to zero. It takes the following steps: 

1. It tests whether the process is being deleted or already has this procedure 
active. If either is true, it returns. 

2. It requests the Clear AST ($CLRAST) system service so that a subsequent 
kernel AST can be delivered. 

3. If PHD$V _DALCSTX in the system header is set, it locks the GSD mu­
tex; invokes MMG$DALCSTXSCN, previously described; and unlocks 
the mutex. 

4. It invokes MMG$DELGBLWCB, described later in this section, to close 
the section fl.le. 

5. It returns. 

MMG$DELGBLWCB, in module SYSDGBLSC, is invoked to close an open 
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file associated with a temporary global section whose reference count has 
gone to zero and to delete the WCB. It takes the following steps: 

1. It makes several consistency checks, returning immediately if it is exe­
cuting within a process that owns any mutexes, has kernel mode AST 
delivery disabled, or has an active kernel mode AST. Its subsequent pro­
cessing requires delivery of a kernel mode AST and IPL 0 execution. 

2. It removes a WCB from the delete pending list, returning if there is none. 
3. It finds an available channel control block and stores in it the address of 

the unit control block on which the file represented by the WCB is open 
and an indication that the channel has been assigned in kernel mode. 

4. It lowers IPL to 0 and requests the Deassign Channel ($DASSGN) system 
service, the actions of which result in closing the file. 

5. It raises IPL back to 2 and continues with step 2. 

15.5 VIRTUAL ADDRESS SPACE DELETION 

15.5.1 

15.5.2 

Page deletion is generally more complicated than page creation. Creation 
involves taking the process from one known state (the address space does 
not yet exist) to another known state (for example, the PTEs contain demand 
zero PTEs). Page deletion must deal with initial conditions that include all 
possible states of a virtual page. 

Page creation may first require that the specified pages be deleted to put 
the process page tables into their known state. Thus, page deletion is often 
an integral part of page creation. 

A process deletes part of its address space by. requesting the $DELTVA 
system service. 

Page Deletion and Process Waits 

A page that has 1/0 in progress cannot be deleted until the 1/0 completes. A 
process trying to delete such a private page is placed into a page fault wait 
state (with a request that a system event be reported when 1/0 completes) 
until the page read or write completes. Deleting a page in the write-in­
progress transition state has the same effect. A page in the read-in-progress 
transition state is faulted, with the immediate result that the process is 
placed into the collided page wait state. 

Special action must be taken for a global page with 1/0 in progress be­
cause there is no way to determine if the process deleting the page is also 
responsible for the 1/0. Hence, if the process has any direct 1/0 in progress, 
the process is placed into a resource wait for the resource RSN$_ASTWAIT 
until its direct 1/0 completes. 

$DELTVA System Service 

The $DELTVA system service procedure, EXE$DELTVA in module SYSCRE­
DEL, runs in kernel mode. EXE$DELTVA takes the following steps: 
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1. It creates and initializes the stack scratch space and raises IPL to 2. 
2. It invokes MMG$CREDEL, specifying MMG$DELPAG as the per-page 

service-specific routine. 
3. It restores the IPL at entry. 
4. It records peak page file use and virtual size statistics, and stores return 

information in the optional RETADR argument. 
5. It returns to its requestor. 

When a virtual page is deleted, MMG$DELPAG (and routines it invokes) 
must return all process and system resources associated with the page. These 
can include the following: 

• A physical page of memory for a valid or transition page 
• A page file virtual block for a page whose backing store address indicates 

an already allocated block 
• A working set list entry for a page in a process working set list 
• Page file quota for a page with a page file backing store address and the 

charge against PHD$LPPGFLVA, even if the page has not yet been allo­
cated a block in a page file 

Deleting a process-private section page results in decrementing the refer­
ence count in the PSTE (see Figure 14.9). If the reference count goes to zero, 
the PSTE itself can be released. 

In addition, a valid or modified page with a section file backing store 
address rather than a page file backing store address must have its latest 
contents written back to the section file. (The contents of a page with a page 
file backing store address are unimportant after the virtual page is deleted 
and do not have to be saved before the physical page is reused. J 

Deleting a physical page means that the PFN PTE array element is cleared, 
destroying all ties between the physical page and any process virtual address. 
In addition, the page is placed at the head of the free page list, so that it can 
be reallocated before other pages whose contents might still be useful. 

MMG$DELPAG is the per-page service-specific routine for the $DELTVA 
and $CNTREG system services. It is invoked with an argument specifying 
the address to be deleted. It takes the following steps: 

l. It saves the IPL at entry and acquires the MMG spinlock, raising IPL to 
IPL$_MMG. 

2. It examines the PTE that maps the page to be deleted. 
3. If the PTE contains zero, the page has already been deleted, and the 

routine MMG$DELPAG returns to its invoker after releasing the MMG 
spinlock and restoring the previous IPL. 

4. It confirms that the access mode passed in MMG$L_MAXACMODE is 
at least as privileged as that of the page owner. If not, it returns the 
error status SS$_PAGOWNVIO to its invoker after releasing the MMG 
spinlock and restoring the previous IPL. 
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5. Otherwise, it examines the PTE type bits to determine whether the page 
is in a page file, an invalid process section page, a transition page, a valid 
page, or a section file global page. 

6. If the page is in a page file, MMG$DELPAG deallocates the occupied 
block of page file, restores job page file quota and PHD$1-PPGFLVA, 
clears the PTE, and releases the MMG spinlock. If this is the last page 
of the address region, MMG$DELPAG removes null pages from the end 
of the region. It returns to its invoker. 

7. If the page is from a demand zero process section, MMG$DELPAG re­
leases the MMG spinlock, lowers IPL, touches the page to fault it into 
the working set, and continues with step 1. Faulting it into the working 
set first ensures that an untouched demand zero page backed by a sec­
tion file will be written back to it as all zeros. Handling it in this way 
minimizes the need for complex code to handle a relatively rare case. 

8. If the page is an invalid page from any other type of process section, 
MMG$DELPAG decrements the section reference count. If the page is 
copy-on-reference, MMG$DELPAG increments the job page file quota 
and PHD$L_PPGFLVA. It clears the PTE and releases the MMG spinlock. 
If this is the last page of the address region, MMG$DELPAG removes null 
pages from the end of the region. It returns to its invoker. 

9. If the page is a demand zero page (created by the $CRETVA or $EXPREG 
system service), MMG$DELPAG restores job page file quota and PHD$L_ 
PPGFLVA, clears the PTE, and releases the MMG spinlock. If this is the 
last page of the address region, MMG$DELPAG removes null pages from 
the end of the region. It returns to its invoker. 

10. If the page is any other type of transition page, MMG$DELPAG examines 
the PFN STATE array entry to see where the page is. 

-If the page is on the free list, MMG$DELPAG invokes MMG$DELPFN­
LST, in module ALLOCPFN, to delete the page's virtual contents. The 
PFN is moved from its current position on the free list to the head of 
the list. Its PFN database entries are reinitialized. The PFN SHRCNT 
array entry for the page table page that maps it is decremented. If the 
count goes to zero, the page table page is released from the working 
set list. 

-If the page is on the modify list and has page file backing store, 
MMG$DELPAG clears the saved modify bit in the PFN STATE ar­
ray entry so that the page, when deleted, will be placed on the free 
list, and invokes MMG$DELPFNLST, as just described. 

-If the page state is read in progress or release pending, MMG$DELPAG 
releases the MMG spinlock, lowers IPL, touches the page to fault it 
into the working set, and continues with step 1. 

-If the page state is active or there was an 1/0 error reading the page in 
from mass storage, MMG$DELPAG continues with the next step. 
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11. If the page is valid, MMG$DELPAG examines its PFN TYPE array ele­
ment to determine its type. 

-If the page is a resident global section page, it decrements the section 
reference count and the PHD$L_PTWSLELCK array byte, which counts 
the number of reasons the page table page that maps the section page 
is locked in the working set list. It clears the PTE and, if it is the last 
page of the region, removes null pages from the end of the region before 
releasing the MMG spinlock and returning to its invoker. 

-If the page is a PFN-mapped section page, it invokes the INVALIDATE_ 
TB macro to invalidate any corresponding translation buffer entry. It 
tests whether the process has direct I/O in progress. If not, it decre­
ments the corresponding PHD$1-PTWSLELCK array byte and clears 
the PTE. If it is the last page of the region, MMG$DELPAG removes 
null pages from the end of the region before relea~ing the MMG spin­
lock and returning to its invoker. 

If the process has direct I/O in progress, its I/O must complete before 
this page can be deleted. When there is direct I/O in progress to a 
typical process page, its PFN REFCNT array element is incremented. 
Thus a value larger than 1 indicates I/O in progress. A PFN-mapped 
page may have other processes mapped to it, some of which could 
be doing I/O to it, so its REFCNT value is not precise enough to 
determine whether the page is in use as an I/O buffer for this process. 
Furthermore, a page mapped by PFN may be one without any PFN 
database to examine. 

If bit MMG$V _NOWAIT _IPLO in MMG$1-MAXACMODE is set (as 
it would be if the page were being deleted as a side effect of creating a 
process section that overmapped the page), the process cannot wait at 
IPL 0 for the I/Oto complete, and MMG$DELPAG returns the error 
status SS$_ABORT to its invoker. Otherwise, it releases the MMG 
spinlock and places the process into a resource wait for resource RSN$_ 
ASTWAIT (effectively, wait for an I/O completion) at IPL 0. When the 
process is placed back into execution, MMG$DELPAG raises IPL to 2 
and resumes at step 1. 

-If the page is permanently locked into the working set, MMG$DEL­
PAG releases the MMG spinlock and returns a success code. Such a 
page cannot be deleted until the process is deleted or outswapped. 

-If the process has locked the page into its working set, MMG$DELPAG 
releases the MMG spllilock; invokes MMG$LCKULKPAG, in module 
SYSLKWSET (described in Chapter 17) to unlock the page; and then 
resumes at step 1. 

-If the PFN REFCNT array element for this (process-private) page is 
larger than 1, the page is in use as an I/O buffer. MMG$DELPAG 
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tests against MMG$V _NOWAIT _IPLO as described and either returns 
an error status or places the process into a wait until the 1/0 completes. 

-If the page has been modified but it has page file backing store, 
MMG$DELPAG sets the PFN$V _DELCON bit in the PFN STATE ar­
ray element so its contents wiU be deleted when it is inserted on the 
free list; invokes INVALIDATE_ TB to clear the valid and modify bits in 
the PTE; removes the page from the working set list; and decrements 
its PFN REFCNT array element. 

If the reference count is greater than zero, the page has 1/0 in 
progress, and MMG$DELPAG must wait for 1/0 completion as pre­
viously described. 

If the reference count is zero, MMG$DELPAG deallocates the asso­
ciated physical page, as a result of which the PTE once again contains 
a backing store format, and then resumes with step 1, deleting the page 
as an invalid unmodified page-file section page. 

-If the page has been modified and is backed by a section file rather 
than a page file, it has to be written to its backing store before it can be 
deleted. MMG$DELPAG uses a routine within the $UPDSEC system 
service to write the page to its backing store, in addition to setting the 
PFN$V _ WRTINPROG bit for the page and taking the actions described 
in the previous step. 

12. If the process page is an invalid global page, MMG$DELPAG examines 
its GPTE to determine the page type and validity of the master page. 

-If the master page is a demand zero page or a page in a global page­
file section, MMG$DELPAG decrements the global section reference 
count and clears the process PTE. If the process page is the last page 
of the region, MMG$DELPAG removes null pages from the end of the 
region before releasing the MMG spinlock and returning to its invoker. 

-If the global page is in transition being faulted from its backing store, 
MMG$DELPAG tests and sets MMG$V _DELGBLDON in MMG$L_ 
MAXACMODE. If the bit was already set, it continues with the next 
step. Otherwise, MMG$DELPAG must free the process's working set 
list entry associated with the global page. It invokes a routine within 
the Purge Working Set ($PURGWS) system service to remove that page 
and any other global pages in the address range being deleted from the 
working set list and to change the PFN database accordingly. It then 
resumes with step 1. 

-If the global page is valid or in transition, has 1/0 in progress, and the 
process has outstanding direct 1/0, the direct 1/0 may be to the global 
page that the process is trying to delete. MMG$DELPAG therefore 
places the process into a resource wait, as previously described, until 
the 1/0 completes. It then resumes with step 1. 
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15.5.3 

If the process has no outstanding direct 1/0, MMG$DELPAG con­
tinues with the next step. 

-If the global page is valid with no 1/0 in progress, invalid and in a sec­
tion file, or a transition page with no 1/0 in progress, MMG$DELPAG 
examines the PFN BAK array element to determine the type of section. 
If the section is demand zero, it continues with the next step. If the 
section is copy-on-reference, it first increments the job page file quota 
and PHD$1-PPGFLVA. For any type of section that is not demand zero, 
MMG$DELPAG decrements the global section reference count, clears 
the process PTE, releases the MMG spinlock, and returns. 

-If the global page is invalid and a page from a demand zero writable 
section, MMG$DELPAG allocates a physical page, initializes its PFN 
database array entries, inserts it onto the modified list, and then clears 
the process PTE, releases the MMG spinlock, and returns. These steps 
ensure that an untouched demand zero page backed by a global section 
file will be written back to it as all zeros. This requirement is similar 
to that for a demand zero page in a writable process section. However, 
MMG$DELPAG takes these steps rather than fault the page in first as it 
does a process-private page, for better performance in a more common 
case. 

$CNTREG System Service 

The $CNTREG system service procedure, EXE$CNTREG in module SYS­
CREDEL, runs in kernel mode. The $CNTREG system service is a special 
case of the $DELTVA system service. EXE$CNTREG simply converts the 
requested number of pages into a PO or Pl page range and merges with 
EXE$DELTVA at step 2 in the description in Section 15.5.2. 

15.6 $SETSWM SYSTEM SERVICE 

A process with PSWAPM privilege can lock and unlock itself into the balance 
set by requesting the $SETSWM system service. A process locked into the 
balance set cannot be outswapped. 

The $SETSWM system service procedure, EXE$SETSWM in module SYS­
SETMOD, runs in kernel mode. EXE$SETSWM checks that the process has 
privilege and simply sets (or clears) the PCB$V_PSWAPM bit in PCB$L_STS, 
the status longword in the software PCB. 

When the swapper is searching for suitable outswap candidates, a process 
whose PCB$V _PSWAPM bit is set is passed over. 

15.7 $SETPRT SYSTEM SERVICE 
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A process can alter the protection of a set of pages in its address space by 
requesting the $SETPRT system service. 



15. 7 $SETPRT System Service 

The $SETPRT system service procedure, EXE$SETPRT in module SYS­
SETPRT, runs in kernel mode. It takes the following steps: 

1. It performs several consistency checks on the desired protection. For 
example, if the desired protection is specified as no access, EXE$SETPRT 
changes it to kernel read so that the page can be faulted and can be deleted 
later in the life of the process. 

2. EXE$SETPRT invokes MMG$CREDEL, specifying MMG$SETPRTPAG 
as the per-page service-specific routine. 

MMG$SETPRTPAG, in module SYSSETPRT, takes the following steps: 

1. It gets the address of the PTE that maps the specified virtual address and 
faults the page table page into the process's working set list. It acquires 
the MMG spinlock. 

2. It compares the requestor access mode with that of the page owner. If 
the access mode is insufficiently privileged, it releases the MMG spinlock 
and returns the error status SS$_PAGOWNVIO, which is passed back to 
the $SETPRT requestor. 

3. Otherwise, it gets the type of the virtual page. 
4. If the page is a transition page or is a demand zero page that is to become 

read-only, MMG$SETPRTPAG releases the MMG spinlock, lowers IPL, 
touches the page to make it valid, and continues at step 1. 

5. If the page is a demand zero page and will remain writable or is a page 
file page, MMG$SETPRTPAG continues with step 9. 

6. If the page is a process-private section page and the protection change 
is not from read-only to writable, MMG$SETPRTPAG continues with 
step 9. 

If the protection change would make the page writable, MMG$SET­
PRTPAG must change the page to be a copy-on-reference page: it charges 
the page against the process's job page file quota and PHD$L_PPGFLVA, 
decrements the section reference count, and changes the page's backing 
store to a page file. It continues with step 9, also setting the copy-on­
reference bit in the PTE. An inability to charge the page against quota or 
PHD$L_PPGFLVA results in an error return. 

7. If the page is valid, MMG$SETPRTPAG checks that it is not a PFN­
mapped page and that it is a process page. If either is false, it returns the 
error status SS$_NOPRIV. 

If the page is a valid process page and the protection change does 
not make it writable or if the page already has page file backing store, 
MMG$SETPRTPAG continues with step 9. Otherwise, it decrements the 
section reference count and changes the PFN BAK array for the physical 
page to a page file backing store form. It completes changing the page to 
a copy-on-reference page, as in step 6. 
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8. If the page is a global section page, MMG$SETPRTPAG determines the 
page type from the global PTE. If it contains anything but a global section 
index for a copy-on-reference page, MMG$SETPRTPAG returns the error 
status SS$_NOPRN. Otherwise, it continues. 

9. It invokes the INVALIDATE_ TB macro, described in Chapter 34, to in­
validate any cached translation buffer entry for the page and change its 
protection. 

10. It releases the MMG spinlock, restoring the previous IPL of 2, and returns 
to its invoker. 

In general, the operation of this service is straightforward. However, its 
actions have one interesting side effect. If a section page for a read-only 
section has its protection set to writable, the copy-on-reference bit is set. 
This set bit forces the page to have its backing store address changed to the 
page file when the page is faulted, preventing a later attempt to write the 
modified section pages back to a file to which the process may be denied 
write access. 

The VMS debugger uses this service to implement its watchpoint facility. 
The page containing the data element in question is set to no-write access for 
user mode. When the program being debugged attempts to access the page, an 
access violation occurs, which is fielded by the debugger's condition handler. 
This handler performs the following actions: 

1. Checks whether the inaccessible address is the one being watched and 
reports the modification if it is 

2. Sets the page protection to PRT$C_UW to allow the modification 
3. Sets the TBIT in the processor status longword to give the debugger 

control after the instruction completes 
4. Dismisses the exception 

When the instruction completes, the debugger's TBIT handler gains con­
trol, sets the page protection back to no-write access for user mode, and 
allows the program to continue execution. 



16 Paging Dynamics 

16.l 

I consider that a man's brain originally is like a little empty 
attic, and you have to stock it with such furniture as you 
choose .... Now, the skillful workman is very careful indeed as 
to what he takes into his brain-attic. He will have nothing but 
the tools which may help him in doing his work, but of these 
he has a large assortment, and all in the most perfect order. It 
is a mistake to think that that little room has elastic walls 
and can distend to any extent. Depend upon it, there comes a 
time when for every addition of knowledge you forget some­
thing that you knew before. It is of highest importance, there­
fore, not to have useless facts elbowing out the useful ones. 

Sir Arthur Conan Doyle, A Study in Scarlet 

This chapter's subject is paging dynamics, the movement of pages of code 
and data between memory and mass storage. Specifically, it describes the 
transitions a page makes as it is faulted into and out of a working set list, 
and as it moves between its backing store and memory. 

This chapter also discusses the allocation and use of page files and the 
operation of the Update Section File on Disk ($UPDSEC) system service. 

OVERVIEW 

A typical virtual page, 512 bytes of virtual address space, begins life as 
a block of an image file on a mass storage medium. A process initiates 
execution of the image by requesting the Image Activate ($IMGACT) system 
service, better known as the image activator. The image activator, described 
in detail in Chapter 26, maps the image into the process's address space, 
using the memory management system services described in Chapter 15. 
The image activator initializes data structures such as process section table 
entries (PSTEs) and page table entries (PTEs) to associate blocks of the image 
file with the process pages they are to occupy. Chapter 14 explains the 
various memory management data structures and the VAX processor's steps 
in translating virtual addresses. 

When a reference is made to an address that is not valid (one whose PTE 
valid bit is clear), the VAX processor generates a page fault. When an image 
begins to execute, none of its pages have been read into memory from the 
image file, and all of its PTEs have been initialized to be invalid. When it 
first references one of its pages, a page fault exception results. As with most 
exceptions, the processor changes access mode to kernel and switches to 
the kernel stack, unless it ·was already executing on the kernel stack. (It 
is possible, but illegal and fatal, for a thread of execution running on the 
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interrupt stack to incur a page fault.) It dispatches to the translation-not­
valid exception service routine, also known as the page fault handler. 

The page fault handler examines the memory management data structures 
to determine which mass storage block contains the virtual page that trig­
gered the fault, allocates a physical page of memory from the free page list, 
stores its page frame number (PFN) in the PTE, finds an available entry in 
the process's working set list, and requests an 1/0 operation to read that 
block into the allocated page. It places the process into a page fault wait 
state. When the 1/0 completes, the page fault handler updates the PTE so 
that its valid bit is set and makes the process computable. 

When the process is placed into execution, it reexecutes the instruction 
that incurred the page fault. This time, with the PTE valid bit set, the 
processor translates the virtual address to a physical address and execution 
continues. 

The virtual page remains valid and in the working set until one of the 
following occurs: 

• Room is required for another page. 
• The virtual page is deleted . 
• The Purge Working Set ($PURGWS) system service removes it. 
• Swapper trimming removes it (see Chapter 18) . 
• Working set limit adjustment removes it. 

Removed from the working set list, the page is inserted on the modified 
page list, if it has been modified; otherwise, it is inserted on the free. page 
list. Sometime later, the swapper, in response to insufficient free pages or 
an excess of modified pages, writes modified pages to their backing store, 
typically a page fl.le. It then inserts them on the free page list. (Acting in this 
capacity, the swapper is called the modified page writer.) While the page is on 
the free or modified page list, it is essentially cached; the page fault handler 
can resolve a fault for it by simply updating the memory management data 
structures and placing the page back in the process's working set list. 

This chapter shows how the page fault handler manipulates the various 
memory management data structures in response to faults for different types 
of pages. It presents page fault handler action in terms of modifications to 
data structures and state transitions rather than as a flowchart or series of 
decisions. It also describes the transitions that a virtual page makes when it 
is removed from a working set list. 

16.2 INITIAL PAGE FAULT HANDLING 
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The VMS page fault handler is MMG$PAGEFAULT, in module PAGEFAULT. 
Figure 16.1 shows the state of the stack when it is entered. 

Its first step is to check the interrupt priority level (IPL) at which the page 
fault occurred. If the IPL is higher than 2, MMG$PAGEFAULT generates the 
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fatal bugcheck PGFIPLHI. Page faults above IPL 2 are not allowed for the 
following reasons: 

• Code executes at an elevated IPL to perform a series of synchronized 
instructions. If a page fault occurs, the faulting process might be removed 
from execution, allowing another process to execute the same routine 
or access the same protected data structure. The alternative, looping in 
process context at elevated IPL until the page fault 1/0 completes, would 
reduce system performance and responsiveness. Moreover, any loop at 
IPL 4 or above would block the 1/0 postprocessing necessary for page 
fault resolution. On a uniprocessor system, a loop above IPL 2 blocks the 
swapper from running and would result in a deadlock if the free page list 
were empty and the page fault required allocation of a physical page of 
memory. 

• When the system is executing at an IPL higher than 2, it is often on 
the interrupt stack, running in system context. MMG$PAGEFAULT and 
routines it invokes perform operations that require process context. 

Next, MMG$PAGEFAULT acquires the MMG spinlock, raising IPL to 
IPL$_MMG, to serialize access to the memory management database. 

If the faulting virtual address is in system space, MMG$PAGEFAULT 
checks that the address is not within another process's process header (PHD). 
Unlike other system pages, PHD pages belong to the associated process; 
pageable PHD pages are part of its working set. A process is therefore not 
allowed to fault a page in another process's PHD. When MMG$PAGEFAULT 
detects this type of fault, it transforms the page fault into an access violation. 

It is possible, however, for a process to fault a page in its own PHD and im­
mediately be context-switched. If the process is outswapped and inswapped 
before its next execution, the swapper may have moved its PHD to a different 
balance set slot. At ins.wap, the swapper sets the bit PHD$V _NOACCVIO 
in PHD$W _FLAGS to signal this possibility. 

If the PHD does occupy a different balance set slot when the process 
resumes execution in MMG$PAGEFAULT, the faulting virtual address on 
its kernel stack is now an address in the balance set slots but not in the 
process's own PHD. For this reason, MMG$PAGEFAULT makes a further 
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check before simulating an access violation: it tests and clears PHD$V _ 
NOACCVIO in PHD$W _FLAGS. 

If the bit was set, MMG$PAGEFAULT dismisses the page fault, and the 
faulting instruction reexecutes with the PHD$V _NOACCVIO bit clear. If 
the instruction again faults a page in another balance set slot, MMG$PAGE­
FAULT releases the MMG spinlock and simulates an access violation, using 
the page fault exception parameters as access violation parameters. 

If the faulting virtual address is not within another process's PHD, 
MMG$PAGEFAULT continues. It locates the PTE that maps the page con­
taining the faulting virtual address by performing the same operations as the 
VAX address translation hardware/microcode: 

1. The upper two bits of the virtual address (VA(31:30)) select which page 
table to use. 

2. The virtual address field (VA(29:9)) is a longword context index into the 
page table. The low-order bits specify byte offset in the page and are 
ignored. 

Before examining the PTE, MMG$PAGEFAULT determines whether the 
system PTE (SPTE) for the page table page containing the PTE is itself valid. 
This check avoids the necessity of making the page fault handler recursive. 
Note that MMG$PAGEFAULT checks the valid bit in the SPTE for the page 
table page rather than the page table valid bit in the exception parameter. 
Between the time of the page fault and the time of the check, the SPTE could 
have been altered, invalidating the exception parameter. 

If the SPTE for the page containing the PTE is invalid, MMG$PAGEFAULT 
transforms the page fault into a fault for the page table page. Once the 
page table page is faulted in and its SPTE made valid, MMG$PAGEFAULT 
will execute an REI instruction to dismiss the page fault exception. The 
instruction that caused the original fault will reexecute and refault, and this 
time MMG$PAGEFAULT will fault in the process page. 

MMG$PAGEFAULT invokes MMG$FREWSLE, in module PAGEFAULT, 
to find room in the working set list for a new page, possibly by removing a 
page from it. Chapter 17 describes MMG$FREWSLE in detail. MMG$PAGE­
FAULT then takes different actions, depending on the nature of the invalid 
PTE. See Figure 14.7 for the different forms of invalid PTE. 

The next sections describe some of the major paths through MMG$PAGE­
FAULT. Extraordinary conditions, such as read and write errors, are only 
mentioned in passing. 

16.3 PAGE FAULTS FOR PROCESS-PRIVATE PAGES 
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This section describes page faults for process-private pages. Section 16.4 de­
scribes the paths through MMG$PAGEFAULT for global pages. Section 16.5 
describes the path for system pages. 

There are four cases of process-private page faults: 



16.3.1 

16.3.1.1 

16.3 Page Faults for Process-Private Pages 

• Two cases involve a page that is originally faulted from a section file. 
The two cases are distinguished by whether or not the section is copy-on­
reference . 

• A third case is a fault for a page in a private section of demand zero pages . 
• A fourth case is a fault for a page in a page file, which began as a copy-on­

reference page or a demand zero page. 

Page Located in a Section File 

A page that initially resides in a private section file can be characterized 
by whether it is copy-on-reference. A PTE for either type of page contains 
a process section table index jPSTX). Figure 14.7 shows this and the other 
forms of invalid PTE. 

Private Page That Is Not Copy-on-Reference. The PTE of a page that is not 
copy-on-reference initially contains a PSTX with the copy-on-reference bit 
IPTE(l6)) clear. The transitions that such a page can make are illustrated in 
Figure 16.2. The numbers in the figure are keyed to the following explana­
tions of each of the transitions. For simplicity, clustered reads and writes 
are ignored in the discussion that follows. Section 16. 7 discusses aspects of 
paging 1/0, including read/write clustering. 

G)As described in Section 16.2, MMG$PAGEFAULT first locates the PTE 
that maps .the faulting page and ensures the validity of the page table page 
containing it. MMG$PAGEFAULT invokes three other routines, all in 
module PAGEFAULT, to perform some of the related updates to memory 
management data structures: 

a. MMG$ININEWPFN allocates a physical page from the head of the 
free page list. It stores the address of the PTE in that page's PFN PTE 
array element and a type code of process page in its PFN TYPE array 
element. 

b. MMG$INCPTREF updates the data structures describing the page 
table page that maps the faulted page. It increments the PFN SHRCNT 
array element of the page table page to indicate that it maps one 
more valid page. If this is the first valid page mapped by the page 
table page lthat is, if the SHRCNT makes the transition from 0 to 
1 ), MMG$INCPTREF locks the working set list entry jWSLE) for the 
page table page into the process's working set list. It also increments 
PHD$W _PTCNTACT, the number of active page table pages for the 
process, and the PHD's entry in the array at PHV$G1-REFCBAS, the 
number of reasons the PHD should remain in memory. 

c. MMG$MAKEWSLE updates the data structures related to the working 
set list. It initializes the WSLE with the virtual address and page 
type of the page being faulted and sets its valid bit. It increments the 
PHD$L_PTWSLEVAL array element corresponding to the page table 
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page to indicate one more valid entry in the process's working set list 
mapped by the page table page. If the count makes the transition from 
0 to 1, MMG$MAKEWSLE also increments PHD$W _PTCNTVAL, the 
number of page table pages that map valid WSLEs. It increments the 
field PCB$L_PPGCNT to indicate one more process-private page in 
the working set. It stores the index of the WSLE just set up in the 
PFN working set list index (WSLX) array element for the physical 
page and also increments its PFN REFCNT array element to indicate 
that the page is in a working set list. 

MMG$PAGEFAULT itself increments the PFN REFCNT array, bringing 
the count to 2, to indicate the I/O request about to be queued for this page. 
It copies the original PTE contents to the PFN BAK array element for the 
page and initializes the PTE to have a protection code, owner field, the 
allocated PFN, and type bits indicating a transition page. It initializes the 
PFN STATE array element for the page to read in progress. 

MMG$PAGEFAULT builds an I/O request packet (see Section 16. 7) that 
describes the read to be done. From the PSTX in the original PTE contents, 
MMG$PAGEFAULT locates the corresponding PSTE in the PHD. From 
information in the PSTE, it can calculate which virtual block in the file 
contains the virtual page. It queues the request to the driver for the device 
containing the page. 

It releases the MMG spinlock and acquires the SCHED spinlock. Before 
placing the process into a page fault wait state, MMG$PAGEFAULT tests 
whether the faulted page is still invalid. On a symmetric multiprocess­
ing (SMP) system where MMG$PAGEFAULT is running on a secondary 
processor, concurrent processing of the I/O request may have already 
made the page valid. If the page is valid, MMG$PAGEFAULT releases the 
SCHED spinlock, cleans up the stack, and executes an REI instruction 
to dismiss the exception. If the page is still invalid, MMG$PAGEFAULT 
removes everything from the stack except the page fault program counter 
(PC) and processor status longword (PSL). It inserts the process's PCB 
into the page fault wait queue, executes a SVPCTX instruction to save the 
process's context, and then transfers control to the scheduler. 

G) Because most of the work was done in response to the initial fault, there 
is little left to do when the page read completes. Page read completion 
occurs as part of I/O postprocessing (see Chapter 21) and runs in system 
context. Holding the MMG spinlock, routine PAGIO, in module IOCIO­
POST, decrements the PFN REFCNT array element. In the usual case, the 
reference count remains greater than zero. In that case, PAGIO changes 
the PFN STATE array element to active and sets the valid bit in the 
process PTE. 

It is, however, possible for PAGIO to decrement the reference count 
to zero. This can happen if the page was removed from the working 
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set list, for example, through swapper trimming, automatic working set 
limit adjustment, or the $PURGWS system service, before the page read 
completes. The page would have been put in the release pending state 
with a reference count of 1. If PAGIO decrements the reference count to 
zero, then instead of setting the valid bit, it inserts the page on the free 
page list. 

PAGIO reports the scheduling event page fault completion for the 
process so that it becomes computable. Chapter 12 explains how schedul­
ing events are reported. The next time the process is selected for execu­
tion, it reexecutes the instruction that caused the page fault, this time 
with the page valid. 

G) One transition that a valid page can undergo and still remain valid occurs 
when the page is modified as a result of instruction execution. The VAX 
processor sets the modify bit in the PTE. The change is not noted at this 
time in the PFN database. 

QA valid page becomes invalid when it is removed from the working set 
list as a result of any of the conditions described in Section 16.1. Most 
of those result in the invocation of MMG$FREWSLE or its alternative 
entry point, MMG$FREWSLX, both in module PAGEFAULT. Chapter 17 
describes them in detail. Of most relevance to this chapter are the changes 
to memory management data structures when a non-copy-on-reference 
page is removed from the process working set list: 

a. The modify bit in the PTE is saved. The valid, modify, TYPO, and 
TYPl bits in the PTE are all cleared. The PFN field is unchanged. 

b. The translation buffer is invalidated to remove the cached but now 
obsolete contents of the PTE. 

c. The saved modify bit from the PTE is logically ORed into the PFN 
STATE array element, saving its value. 

d. If the page has been modified and its assigned page file backing store, 
if any, contains an obsolete copy, that storage is deallocated and the 
PFN BAK array element is cleared of its block number. The process­
local page file index remains intact. 

e. The PFN REFCNT array element is decremented. If the reference 
count goes to zero, the page is put on the free or modified page list, 
according to the setting of the saved modify bit in the PFN STATE 
array element. Since the PFN BLINK array overlays the PFN WSLX 
array, inserting the page into the free or modified page list supplants 
the PFN WSLX array contents. The new location of the page is inserted 
into the PFN STATE array. 

f. The WSLE is made available (that is, zeroed). The PHD$1-PTWSLE­
VAL array element for the page table page mapping this page is decre­
mented. If the count makes the transition to zero, the page table 
page is now "dead," that is, it maps no valid pages, and PHD$W _ 
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PTCNTVAL is also decremented. Chapter 17 contains further infor­
mation on dead page table pages. PCB$1-PPGCNT is decremented to 
indicate one less private page. 

G)If the reference count (decremented in step 4e) does not go to zero, there is 
outstanding 1/0 for this page. MMG$FREWSLX changes the PFN STATE 
array element value to release pending. It updates the modify bit in the 
PFN STATE array to record the ultimate destination for the page (the free 
or modified page list). 

@When direct 1/0 for the page completes, the 1/0 completion routine in­
vokes MMG$UNLOCK, in module IOLOCK. It acquires the MMG spin­
lock and invokes MMG$DECPTREF, in module PAGEFAULT, to update 
the data structures describing the page table page that maps the page. 

MMG$DECPTREF decrements the PFN SHRCNT array element for 
the page table page to indicate that it maps one less valid page. If this 
is the last valid or transition page mapped by the page table page (that 
is, if the SHRCNT makes the transition from 1 to 0), MMG$DECPTREF 
locates the WSLE for the page table page and unlocks it from the process's 
working set list. It also decrements PHD$W _PTCNTACT, the number of 
active page table pages for the process, and the PHD's entry in the array 
at PHV$G1-REFCBAS, the number of reasons the PHD should remain 
in memory. If that count goes to zero, MMG$DECPTREF awakens the 
swapper process to outswap the PHD. 

MMG$UNLOCK decrements the page's PFN REFCNT array element. 
If it goes to zero, MMG$UNLOCK places the page on either the free or 
the modified page list, based on the setting of the saved modify bit, and 
changes the PFN STATE array element. It releases the MMG spinlock and 
returns. 

G) If the page was placed on the modified page list, the next stages in its 
processing are performed by the modified page writer and described in 
this step and step 8. If the page was placed on the free page list, the next 
stages in its processing are described in step 9. 

The modified page writer eventually initiates a write of this physical 
page to the backing store address in the PFN BAK array. A writable page 
that is not copy-on-reference is written back to the file where it originated. 
The modified page writer then removes the page from the modified page 
list. 

It sets the PFN STATE array element for the page to write in progress 
and clears the saved modify bit. The REFCNT of 1 reflects the outstanding 
1/0 operation. 

Note that a section containing writable private pages that are not copy­
on-reference cannot be produced by the linker. Such a section must be 
created with the Create and Map Section ($CRMPSC) system service. 

G)When the modified page write completes, the page's PFN REFCNT array 
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element is decremented to zero. Because the saved modify bit is clear, the 
page is placed on the free page list. 

G) A page placed on the free page list normally remains attached to the 
process for some time; that is, the PTE contains its PFN, and the PFN 
PTE array contains the address of the process PTE. 

When the physical page is allocated for another purpose, several steps 
must be taken to break the ties between the process virtual page and 
the physical page that is about to be reused. The routine MMG$DEL­
CONPFN, in module ALLOCPFN, performs these steps: 

a. It locates the PTE from the contents of the PFN PTE array element. 
b. The process PTE must be altered to reflect the backing store address 

of the page. For a non-copy-on-reference page, it changes the PTE to 
contain a PSTX, the same contents it had before the initial page fault. 
It leaves the protection and owner fields the same. 

c. It invokes MMG$DECPTREF, described in step 6. 
d. It clears the PFN array elements for the physical page before reallo­

cating it. In particular, it clears the PFN PTE array element, the only 
connection from the PFN database to the process page table. 

Page Faults Out of Transition States. Figure 16.2 also shows some of the 
transitions that a page makes when a page fault occurs while the physical 
page is in the transition state. While the changes back to the active state are 
straightforward, there are details about each fault that should be mentioned. 
(Most of the following transitions are represented in the figure by a P within 
a circle.) 

• MMG$PAGEFAULT resolves a page fault from the free page list by first re­
moving the page from the list. It invokes MMG$MAKEWSLE, described in 
step le of Section 16.3.1.1, to update the memory management data struc­
tures to reflect the fact that the page is in the working set list (the PHD$L_ 
PTWSLEVAL array, possibly PHD$W_PTCNTVAL, the PFN WSLX and 
REFCNT array elements, and PCB$1-PPGCNT). 

MMG$PAGEFAULT changes the PFN STATE array element for the page 
to active and sets the valid bit in the PTE. (Recall that a transition PTE 
retains the PFN of the physical page in which the virtual page resides.) 
It releases the MMG spinlock, cleans up the stack, and executes an REI 

instruction to return control to the faulting instruction. 
• A page fault from the modified page list is resolved in exactly the same 

way. The figure shows that the page was previously modified but never 
written to its backing store by returning the page to its modified state. 

In fact, the modify bit in the PTE is not set by MMG$PAGEFAULT. 
Rather, the saved modify bit in the PFN STATE array records the fact that 
the page is modified but has not been backed up. 
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• A page fault from the release pending state is similar, except that the page 
does not have to be removed from a page list. MMG$PAGEFAULT changes 
the PFN STATE array element for the page to active, sets the valid bit in 
the PTE, and increments the PFN REFCNT array element .. 

Artistic license is taken in the figure to differentiate physical pages that 
were modified from pages that were not. Again, the only difference between 
the two pages is the setting of the saved modify bit in the PFN STATE array, 
not the setting of the modify bit in the PTE. 

• A transition that deserves special comment is a page fault that occurs 
while the modified page writer is writing the page to its backing store. 
The saved modify bit is cleared before the write begins so that the page 
will be placed on the free page list when the write completes. Although 
the page has not yet been completely backed up, it is assumed that the 
write will complete successfully. A page fault for the page can thus put 
it into the active but unmodified state. The only difficulty occurs in the 
event of a write error. The modified page writer's 1/0 completion routine, 
WRITEDONE in module WRTMFYPAG, detects this state of affairs and 
turns the saved modify bit back on . 

• A page fault for a page being read in response to a previous page fault results 
in placing the process into a collided page wait state lsee Section 16.10.3). 

Copy-on-Reference Page. The more common type of writable process-private 
page is a copy-on-reference page. Figure 16.3 illustrates the transitions that 
such a page makes from its initial page fault until it is written to some back­
ing store. The numbers in the figure are keyed to the following explanations 
of the transitions. 

Many of the transitions that occur here are the same as the case just 
described. This section notes each transition but elaborates only those areas 
that are different. 

G)The initial value in the PTE jSTART 1 in Figure 16.3) is a PSTX; the 
copy-on-reference bit IPTE(16)) is set. The writable bit IPTE(18)) is usually 
set. When a page fault occurs, MMG$PAGEFAULT performs the actions 
described in step 1 in Section 16.3.1.1. It also takes two additional steps: 

a. First, it updates the PFN STATE array element to the value read in 
progress, with the saved modify bit set. The page's backing store will 
be a page file, not the image file; the image page must not be modified, 
yet each of the potentially many copies of the page may be modified. 
Setting the saved modify bit guarantees that an initial copy of the page 
will be written to the page file when it is first paged out, whether or 
not it has been modified. 

b. Second, it assigns the page a backing store (namely, the process's 
current page file), decrements the reserved block count, and copies 
PHD$L_PAGFIL to the PFN BAK array element. (Section 16.6 provides 
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further details on page file assignment, reservation, and allocation.) At 
this time, all ties to the original section file have been broken. When 
the modified page writer first writes this page to its backing store (as 
it certainly will because the saved modify bit was just set), it will 
allocate an actual block in the page file. 

G)After the read completes, the 1/0 postprocessing routine PAGIO, in mod­
ule IOCIOPOST, updates the page PFN STATE array element value to 
active and sets the PTE valid bit. It also subtracts the number of pages 
read from the PSTE's reference count to show that many fewer PTEs 
mapping pages from that section file. 

G)This transition is described in Section 16.3.2. 
@When the copy-on-reference page is removed from the process working 

set and its REFCNT goes to zero, the page is placed on the modified page 
list. 

G) If the REFCNT did not go to zero when the page was removed from the 
process working set, the physical page is placed into the release pending 
state until the 1/0 completes. 

G) At that time, the page is placed on the modified page list. 
G)This transition is described as transition 3 in Section 16.4.3. 

A page fault from either the release pending state or from the modified 
page list puts the page back into the active (but effectively modified) state. 
That is, the saved modify bit in the PFN STATE array element remains set, 
causing the page to be put back on the modified page list when it is removed 
from the working set again. 

When the modified page writer writes the page to its backing store in a page 
file, the page makes a transition from the modified page list. Figure 16.4, the 
diagram for faults from the page file, shows this transition. The connection 
between Figure 16.3 and Figure 16.4 is indicated by path C in the two figures. 

Demand Zero Page 

A demand zero page is created by the Create Virtual Address ($CRETVA) and 
Expand Region ($EXPREG) system services. These services can be requested 
explicitly by an image or implicitly by the system on behalf of the process, 
for example, as part of image activation. 

When MMG$PAGEFAULT detects a page fault for a demand zero page, it 
takes the following steps. (These steps all take place beginning at the path 
labeled START 2 in Figure 16.3.) 

1. It invokes MMG$1NINEWPFN, MMG$INCPTREF, and MMG$MAKE­
WSLE, described in step 1 of Section 16.3.1.1, to allocate a physical page 
and update the relevant memory management data structures. 

2. MMG$PAGEFAULT initializes the PTE with the PFN of the allocated 
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page1 a protection allowing kernel mode write, an owner of kernel mode, 
and the valid and modify bits set. 

3. It assigns the page a backing store (namely, the process's current page 
file), decrements the reserved block count, and copies PHD$1-PAGFIL 
to the PFN BAK array element. Allocation of an actual block in the page 
file is done later by the modified page writer. 

4. It zeros the page by executing a MOVC5 instruction with a zero-length 
source string and a null fill character. 

5. It invalidates the translation buffer to remove the cached PTE contents 
and replaces owner and protection in the PTE with the original ones. 

6. Finally, MMG$PAGEFAULT releases the MMG spinlock, cleans up the 
stack, and dismisses the fault by executing an REI instruction, returning 
to the instruction that incurred the page fault. 

Global Copy-on-Reference and Page-File Section Pages 

There are two types of pages that undergo the same set of state transitions as 
private copy-on-reference section and demand zero pages. These are global 
copy-on-reference pages and global page-file section pages. The details of 
global page fault resolution are discussed in Section 16.4. 

Suffice it to say here that a global copy-on-reference page is initially faulted 
from a global file but is subsequently indistinguishable from other prbcess­
private pages. A global page-file section page is initially faulted as a demand 
zero page and from then on is indistinguishable from other global writable 
pages, except that its backing store is in a page file. 

These transitions are shown in the paths labeled STAllT 3 and START 4 
in Figure 16.3. 

Page Located in a Page File 

The transitions that a page faulted from the page file goes through (see 
Figure 16.4) are the same as the transitions described for pages that are 
not copy-on-reference (see Figure 16.2). The only difference in the PFN data 
between the two figures is that the PFN BAK array element in Figure 16.4 
indicates that the page belongs in a page file, while the PFN BAK array 
element in Figure 16.2 contains a PSTX. 

The other difference between the two figures is the entry point into the 
transition diagram. A page can start out in a section file (PTE contains PSTX) 
but a page can never start out in a page file. The entry into Figure 16.4 is 
from path C in Figure 16.3, from one of four initial states that eventually 
result in the physical page contents' being written to the page file. 

16.4 PAGE FAULTS FOR GLOBAL PAGES 

The transitions of a global page table entry (GPTE) and its associated PFN 
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database entries can be described in much the same way as those for process­
private pages. A major difference, however, is the presence of both a GPTE 
and potentially multiple process PTEs referring to the same page. This sec­
tion assumes much of the detail shown earlier in Figure 16.2 and focuses on 
an exampl~ in which two processes map to the same global page. 

Global Read-Only Page 

Figure 16.5 illustrates the transitions that occur for a global read-only page (in 
an already created section) that is mapped by two processes. The numbers in 
the figure are keyed to the explanations of the transitions that follow. The 
figure assumes the page to be read-only. The implications of a read/write 
global page are described in Section 16.4.2. 

When the global section is initially created, as described in Chapter 15, 
the data structures described in Chapter 14 are initialized. The GPTE for the 
page represented in the figure contains a global section table index (GSTX), 
which locates the global section table entry (GSTE) containing information 
about the global file. 

G) When process A maps to the section, the process PTE contains a global 
page table index (GPTX), effectively a pointer to the GPTE. 

G) When process B maps to the section, its PTE contains exactly the same 
GPTX as found in process A's PTE. 

G) Process B happens to fault this global page first. Several things happen: 

a. MMG$PAGEFAULT, noting that process B's PTE contains a GPTX, 
indexes the global page table with it to get the GPTE. 

b. The GPTE contains a GSTX, indicating that the global page resides 
on mass storage. In order to initiate the read of a global section page, 
MMG$PAGEFAULT performs many of the same steps as for a process­
private section page (see step 1 of Section 16.3.1.1). 

c. MMG$PAGEFAULT invokes MMG$ININEWPFN to allocate a physi­
cal page and MMG$INCPTREF to update the data structures describ­
ing the global page table page that maps the page. (The PHD in this 
case is the system header.) The address of the GPTE is stored in the 
PFN PTE array element, rather than the address of a process PTE, and 
a type code of global page is stored in the PFN TYPE array element. 

d. MMG$MAKEWSLE updates the data structures related to process B's 
working set list, initializing the WSLE. WSLX information is not kept 
for a global page. Instead, MMG$MAKEWSLE increments the PFN 
SHRCNT array element for the page and, because the count makes 
the transition from 0 to 1, the PFN REFCNT array element as well. 

It invokes MMG$INCPTREF, which processes B's process page table 
that maps the global page and increments the PHD$L_PTWSLEVAL 
array element corresponding to that page table page. It increments 
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PCB$L_GPGCNT to indicate that process B has one more valid global 
page. 

e. MMG$PAGEFAULT sets the PFN STATE array element for the page 
to read in progress. 

f. It stores the GSTX in the PFN BAK array element. 
g. While the read is in progress, the GPTE contains a transition PTE but 

process B's PTE still contains the GPTX. 
h. The PFN REFCNT array element indicates two references: one for the 

read in progress and one because the page is in process B's working 
set (the PFN SHRCNT array element is nonzero). 

@After the read completes, the 1/0 postprocessing routine PAGIO, in mod­
ule IOCIOPOST; takes the following steps: 

a. It acquires the MMG spinlock. 
b. It decrements the PFN REFCNT array element. (The REFCNT and 

SHRCNT are both 1 at this point.) 
c. It changes the PFN STATE array element for the page to active. 
d. It sets the valid bit in the GPTE to record the fact that this page is in 

a process working set. 
e. The process PTE, located through its address stored in the 1/0 request 

packet, is set up to contain the low-order 21 bits from the GPTE, with 
the valid bit set and the window and modify bits cleared. 

f. PAGIO reports the scheduling event page fault completion for pro­
cess B so that it becomes computable. 

g. It releases the MMG spinlock. 

G)When process A faults the same global page, MMG$PAGEFAULT's initial 
action is the same as it was in step 3, because the PTE is a GPTX. Now, 
however, MMG$PAGEFAULT finds a valid GPTE. Resolution of this page 
fault is simple. 

Through MMG$MAKEWSLE and MMG$INCPTREF, whose actions are 
described in more detail in step 3d, MMG$PAGEFAULT initializes the 
WSLE for process A, increments its PCB$L_GPGCNT, increments the 
PFN SHRCNT array element to 2, and locks process A's page table page 
that maps the global page. 

MMG$PAGEFAULT copies the low-order 21 bits of the GPTE to process 
A's PTE, sets the valid bit, and clears the window and modify bits. It 
releases the MMG spinlock, cleans up the stack, and executes an REI 

instruction to dismiss the fault. 
0 When MMG$FREWSLE removes the global page from process B's working 

set, it restores process B's PTE to its previous state (and not some tran­
sition form). Because the PFN PTE array element contains the address of 
the GPTE, MMG$FREWSLE must recalculate the GPTX. The calculation 
is straightforward. It subtracts the contents of MMG$GL_ GPTBASE from 
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the PFN PTE array element's contents, divides the result by 4 (to create 
a longword index), and stores the quotient in process B's PTE as a GPTX. 

It invokes MMG$DECPTREF, described in step 6 of Section 16.3.1.1. 
MMG$FREWSLE decrements the PFN SHRCNT array element for the 

page of memory. Because the SHRCNT is still positive, the GPTE remains 
valid. 

MMG$FREWSLE updates the data structures related to process B's 
working set list, clearing the WSLE, decrementing the PHD$L_PTWSLE­
VAL array element for the process page table page that mapped the 
page and, if appropriate, PHD$W_PTCNTVAL. It decrements process B's 
PCB$L_GPGCNT. 

G) When MMG$FREWSLE removes the global page from process A's working 
set, it restores the process PTE as described in step 6. 

It decrements the PFN SHRCNT array element, this time to zero. It 
therefore clears the valid and modify bits in the GPTE, to turn it into a 
transition PTE and decrements the PFN REFCNT array element. In the 
case of a global read-only page with a REFCNT of zero, such as this one, 
the page is placed on the free page list and the PFN STATE array element 
set to the free page list. The other PFN array elements are unchanged. 

G) When the physical page is reused, the ties must be broken between the 
physical page and, in this case, the GPTE. (None of the processes mapped 
to this page are affected in any way by this step.) 

The contents of the PFN BAK array element, a GSTX, are inserted 
into the GPTE, located by the contents of the PFN PTE array element. 
MMG$DECPTREF, described in step 6 of Section 16.3.1.1, is invoked 
to update the global page table page that contains the GPTE. The PFN 
PTE array element is then cleared, breaking the connection between the 
physical page and the global page table. 

These steps put the process and global page tables back to the state they 
were in following step 2 (although it is pictured here as a different state 
to simplify the figure.) 

Global Read/Write Page 

The transitions that occur for a global writable page are the same as those 
for a process-private page that is not copy-on-reference. The only difference 
between such transitions and those illustrated in Figure 16.2 is that the 
GPTE, not the process PTE, is affected by the transitions of the physical 
page. 

The process PTE for a global page contains a GPTX up to the time that 
the page is made valid. Only then is a PFN inserted into the process PTE. 
As soon as the page is removed from the process working set, the GPTX is 
restored to the process PTE. All ties to the PFN database are made through 
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the GPTE, which retains the PFN while the physical page is in the va.rious 
transition states. 

Global Copy-on-Reference Page 

The global pages thus far described are all shared pages. A global copy-on­
reference page, however, is shared only in its initial state. As soon as the 
fault occurs, the page is treated exactly like a process-private page. 

Figure 16.6 illustrates the transitions for a global copy-on-reference page. 
The numbers in the figure are keyed to the explanations of the transitions 
that follow. 
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G)The initial conditions are identical to those in Figure 16.5. After the 
section is created, each of its GPTEs contains a GSTX. In this case, the 
copy-on-reference bit is set in each GPTE. 

G) Process A maps the page; the GPTX is stored in its PTE. 
Process B maps the page; the same GPTX is stored in its PTE. Up to 

this point, nothing is different from Figure 16.5. 
G) When process B faults the page, MMG$PAGEFAULT locates the GPTE 

from the GPTX and notes that the page is located in a global section 
file and is copy-on-reference. MMG$PAGEFAULT, in concert with the 
routines described in step 1 of Section 16.3.1.1, allocates a page from 
the free page list and makes the following modifications to the involved 
memory management data structures: 

a. The GPTE is not altered and retains its GSTX contents. 
b. Process B's PTE is set to a transition PTE containing the PFN of the 

allocated page. 
c. The PFN SHRCNT array element for the page table page containing 

process B's PTE is incremented. If the count was zero, the page table 
page is locked in process B's working set list, PHD$W _PTCNTACT is 
incremented, and the PHD's entry in the array at PHV$G1-REFCBAS 
is incremented. 

d. The PFN TYPE array element for the physical page is set to process 
page. 

e. An entry in process B's working set list is initialized to describe the 
faulted page. 

f. The PFN WSLX array element is set to the index of the WSLE. 
g. The PHD$1-PTWSLEVAL array element corresponding to the page 

table page that maps the faulted page is incremented. If the count was 
zero, PHD$W_PTCNTVAL is incremented. 

h. PCB$1-PPGCNT is incremented. 
i. The PFN REFCNT array element is incremented twice, once for the 

page's membership in the working set and once for the 1/0 in progress. 
j. The PFN STATE array element is set to read in progress and modify. 

k. A backing store is assigned to the page, typically a reserved page from 
the process's current page file. The contents of PHD$1-PAGFIL are 
stored in the PFN BAK array element. 

Note that all ties between process Band the global section are broken. 
The page is now treated exactly like a private copy-on-reference page. 
The two boxes for process B within the dotted lines in Figure 16.6 are 
also pictured.within dotted lines in Figure 16.3. 

MMG$PAGEFAULT initiates a read of the faulted page. 
G) When process A faults the same page, exactly the same steps are taken, 

this time with. a totally different physical page. 

Thus, both process A and process B get exactly the same initial copy of 
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Figure 16.7 
Page Transitions for a Global Page-File Section Page 

the global page from the global file but, from that point on, each pro·cess has 
its own private copy of the page to modify. 

Global Page-File Section Page 

A global page-file section provides a means for processes to share global pages 
without the need of a backing store file. By its nature, such a global page has 
no initial contents and is thus initialized as a demand zero page. 

Figure 16.7 illustrates the transitions that occur for a global page-file sec­
tion page. The numbers in the figure are keyed to the explanations of the 
transitions that follow. 



16.4 Page Faults for Global Pages 

G)The initial conditions are identical to those in Figure 16.5. The section is 
created; each of its GPTEs contains a zero in the PFN field. 

G) Process A maps the page; the GPTX is stored in its PTE. Process B maps 
the page; the same GPTX is stored in its PTE. 

G)When process B faults this page, MMG$PAGEFAULT locates the GPTE 
from the GPTX and notes that the page is demand zero. MMG$PAGE­
FAULT, in concert with the routines described in step 1 of Sec­
tion 16.3.1.1, allocates a page from the free page list and makes the follow­
ing modifications to the involved memory management data structures: 
a. The PFN SHRCNT array element for the global page table page con­

taining the GPTE is incremented. If the count was zero, the page 
table page is locked in the system working set list, the system header 
PHD$W _PTCNTACT is incremented, and the system header's entry 
in the array at PHV$GL_REFCBAS is incremented. 

b. The PFN TYPE array element for the allocated page is set· to global 
page. 

c. An entry in process B's working set list is initialized to describe the 
faulted page. 

d. The PFN WSLX array element is set to the index of the WSLE. 
e. The PFN SHRCNT array element for the page table page containing 

process B's PTE is incremented. If the count was zero, the page table 
page is locked in process B's working set list, PHD$W_PTCNTACT is 
incremented, and the PHD's entry in the array at PHV$GL_REFCBAS 
is incremented. 

f. The PFN PTE array element for the allocated page points to the GPTE. 
g. The PHD$1-PTWSLEVAL array element corresponding to the page 

table page that maps the faulted page is incremented. If the count was 
zero, PHD$W _PTCNTV AL is incremented. 

h. PCB$L_GPGCNT is incremented. 
i. The PFN SHRCNT and REFCNT array elements for the allocated page 

are incremented. 
j. The PFN STATE array element is set to active. 

k. A backing store is assigned to the page, a reserved page from the cur­
rent page file in use for system working set list paging. The contents 
of field PHD$L_PAGFIL in the system header are stored in the PFN 
BAK array element. 

1. The process PTE is initialized with the PFN of the allocated page, 
a protection allowing kernel mode writes, an owner of kernel mode, 
and the valid and modify bits set. 

m. The page is zeroed. 
n. The cached PTE is invalidated in the translation buffer, and the correct 

owner mode and protection code are inserted into the PTE. The PTE 
modify bit is left set. 

o. The contents of the process PTE are copied to the GPTE. 
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@When process A faults the same page, MMG$PAGEFAULT locates the 
GPTE from the GPTX and finds that the GPTE is valid. The valid GPTE 
is copied to process A's PTE. 

Transitions for a global page-file section page are the same as those for a 
page located in a page file (see Figure 16.4). However, for a global page-file sec­
tion page, the GPTE, not the process PTE, is affected by the transitions that 
the physical page makes. Once the global page is removed from a process's 
working set, the process PTE reverts to the GPTX form. 

16.5 PAGE FAULTS FOR SYSTEM PAGES 

16.5.1 
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Four kinds of pageable system space pages occur in the system working set 
list: 

• Read-only pages from image sections in loadable executive images 
• Read/write pages from image sections in loadable executive images 
• Paged pool pages 
• Global page table pages 

This section summarizes how their page faults are handled. 
In theory, the base image, SYS.EXE, can contain pageable code and data. 

However, in VMS Version 5.2, it has no pageable sections; the only pageable 
sections in system space are from loadable executive images. When a load­
able executive image is mapped, a section table entry in the system section 
table (which also serves as the global section table) is initialized to describe 
each pageable section in the image. Each SPTE that maps a page in a page­
able section has both type bits set to indicate the process section index form 
of invalid PTE and contains the index of the section's entry in the system 
section table. 

If the section is writable, each of its SPTEs also has the copy-on-reference 
and writable bits set. Chapter 29 describes the mapping of loadable executive 
images in detail. 

The SPTEs that map both paged pool and the global page table have the 
demand zero page form of invalid PTE. 

System Page That Is Not Copy-on-Reference 

The transitions for a read-only system section page resemble those described 
in Section 16.3.1.1 and shown in Figure 16.2. This section notes only the 
transitions that differ from those for a private page that is not copy-on­
reference. 

1. MMG$PAGEFAULT locates an entry in the system working set list for 
the faulted page. It allocates a page from the free list. There is no need to 
update data structures describing the page table page that contains the 
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16.6 Use of Page Files 

SPTE. The SPT does not page; its page table pages are always valid. The 
page type stored in the PFN TYPE array element is system page. The 
system header does not have a PHD$L_PTWSLEVAL array, nor is there 
any need to record the number of page table pages with valid WSLEs; the 
system working set list is not outswapped. 

MMG$PAGEFAULT copies the original SPTE contents to the PFN BAK 
array element. It locates the system section table entry just as it would 
a PSTX and calculates the virtual block number of the faulted page. 

2. After the 1/0 completes, PAGIO, the 1/0 postprocessing routine, reports 
a page fault completion scheduling event for the process that faulted the 
page. 

3. The system working set is not subject to purging, swapper trimming, 
or working set limit adjustment. A page is removed from the system 
working set list when space is required for another page. Also, unloading 
of a loadable executive image may result in deletion of pages. 

On an SMP system, when a page is removed from the system working 
set list, the cached SPTE contents must be flushed from the translation 
buffers of all members of the system. Chapter 34 describes how the 
processors cooperate to perform the invalidation. 

System Page That Is Copy-on-Reference 

The transitions for a copy-on-reference system section page resemble those 
described in Section 16.3.1.3 and shown in Figure 16.3. 

One difference worth noting is that space is reserved in one or more page 
files for backing writable system pages. Field PHD$1-PAGFIL in the system 
header is a template backing store value for writable system pages. 

The page type stored in the PFN TYPE array element is system page. 

Demand Zero System Page 

The transitions for a demand zero system page resemble those described in 
Section 16.3.2 and shown in the path labeled START 2 in Figure 16.3. 

One difference worth noting is that the page type stored in the PFN TYPE 
array element is either global page table page or, for paged pool, system page. 

After the page is zeroed, its SPTE entry is flushed from the translation 
buffer, and each active member of an SMP system must invalidate its entry. 
The correct owner and protection are stored in the SPTE. 

16.6 USE OF PAGE FILES 

During system initialization and operation, one or more page files are placed 
into use. When a process is created, it is assigned to a page file, and space in 
that page file is reserved for it. When a process faults a COPY"On-reference or 
demand zero page, the page is charged against the reserved space. Assignment 
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to a particular block in the page file is deferred until the modified page writer 
actually prepares to write the page. During the lifetime of the process, it can 
be assigned concurrently to as many as four page files. 

This section describes the data structures and mechanisms related to 
process page file use. 

Related Data Structures 

A nonpaged pool data structure called a page file control block (PFL) describes 
each page file in use. Chapter 14 depicts the PFL (see Figure 14.24) and 
describes its fields. Those with particular importance to this discussion 
are PFL$L_FREPAGCNT, the number of blocks that can be allocated, and 
PFL$L_RSRVPAGCNT, the number of blocks that can be reserved without 
overcommitting the file. Both fields are initialized to the number of total 
blocks in the file available for use. 

PFL$L_FREPAGCNT is the actual number of blocks free in the page file. 
This field is not decremented until the modified page writer actually assigns 
a particular block to a particular page. It is incremented whenever a page file 
page is released, either because its virtual page is being deleted or its contents 
are known to be obsolete. (That is, when a page previously assigned a block 
in a page file is placed on the modified page list, its backing store copy can 
no longer be regarded as good.) 

In contrast, PFL$L_RSRVPAGCNT is charged when page file blocks are 
reserved for a process's use. Reserved space is only a logical claim on the 
page file; actual allocation of blocks is not made until the modified page 
writer is about to write a cluster of pages to the file. The executive com­
putes the ratio of reservable block count to total size for each page file to 
select the most lightly loaded one, when reserving space for a newly created 
process or one that has used its current reservation. PFL$L_RSRVPAGCNT 
can, in fact, become negative if the number of pages assigned backing store 
in the file exceeds the physical size of the file. On most systems, however, 
only a small percentage of reserved blocks are written; thus, an overcommit­
ment is viewed as benign. (The display for the Digital command language 
SHOW MEMORY /FILES command shows the overcommitment as a negative 
number.) 

A number of PHD fields describe the process's connection to page files. 
Beginning at PHD$B_PRCPGFL, there is a four-byte array representing 

the page files to which the process has been assigned. The array is indexed 
by a two-bit process-local page file number. The elements of this array are 
initialized to zero to indicate no assignment. When a process is assigned to 
a page file, that file's index (see Figure 14.24) is stored in the next available 
element of PHD$B_PRCPGFL. 

The low four bits of PHD$B_PGFLCNT contain the number of page files 
to which the process has been assigned, that is, the number of valid elements 



16.6.2 

16.6 Use of Page Files 

in the four-byte array. Each of the high four bits, when set, means that the 
corresponding page file has a pending deassign. 

PHD$B_PAGFIL contains the systemwide index of the page file in which 
the process has reserved blocks. It is part of the longword field PHD$1-
PAGFIL, which contains the corresponding process-local page file index in 
bits (21:20) and zero in the low-order bits. This field serves as template 
backing store for the construction of a PTE with a page file backing store ad­
dress. PHD$B_PRCPAGFIL contains the process-local index associated with 
that page file. 

PHD$W_PRCPGFLOPAGES contains the total reserved blocks in the cur­
rent page file, including blocks already allocated by the modified page writer. 
PHD$W _PRCPGFLPAGES contains the reserved blocks not yet allocated in 
the current page file. 

Beginning at PHD$1-PRCPGFLREFS, there is a four-longword array in­
dexed by the two-bit process-local page file index. Each of its elements rep­
resents the number of process PTEs currently associated with that page file. 
The elements count downward from 10000016, 1 larger than the maximum 
page file block number that can be accommodated in a PTE, FFFFFi6· (Count• 
ing downward simplifies the test for whether the number has reached its 
maximum.) The difference between 10000016 and an array element's con­
tents represents the total number of blocks in the page file referenced by 
that process's PTEs. The array element for the current page file is updated 
only when the currently reserved pages have been used. Thus for the current 
page file, the difference between PHD$W_PRCPGFLOPAGES and PHD$W_ 
PRCPGFLPAGES represents additional referenced blocks. 

Assignment and Deassignment to a Page File 

When a process is created, MMG$ASNPRCPGFLP, in module PAGEFILE, is 
invoked to assign to it the page file estimated to have the most available 
space, the one with the largest ratio of reservable blocks to total blocks. The 
routine stores the systemwide index of that page file in PHD$B_PAGFIL 
and in the byte at PHD$B_PRCPGFL. It stores a process-local index of 0 in 
PHD$B_PRCPAGFIL. 

MMG$RSRVPRCPGFL2, in module PAGEFILE, is invoked to reserve a 
number of blocks in the page file for the process's use. The number is 
stored in PHD$W_PRCPGFLOPAGES and PHD$W_PRCPGFLPAGES and 
subtracted from PFL$1-RSRVPAGCNT in the page file block. 

Whenever the process faults a page that requires page file backing store, 
MMG$PAGEFAULT decrements PHD$W _PRCPGFLPAGES and copies 
PHD$L_PAGFIL to the PFN BAK array element for the page. When no 
more reserved pages remain (when PHD$W _PRCPGFLPAGES becomes zero), 
MMG$PAGEFAULT invokes MMG$SWITCH_PRCPGFL, in module PAGE­
FAULT, to reserve more page file space for the process. 
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MMG$SWITCH_PRCPGFL subtracts PHD$W _PRCPGFLOPAGES from 
the PHD$L_PRCPGFLREFS element corresponding to the current page file, 
generating the fatal bugcheck BADPRCPGFLC if the result is negative. 

MMG$SWITCH_PRCPGFL invokes MMG$ASNPRCPAGFL to select the 
best page file for a new reservation. Unless the process has already been 
assigned to four page files, the best page file is the one estimated to have the 
most available space; it may be the same one the process was just using. If the 
process has been assigned to four page files, the new reservation must come 
from one of them. If the process has not been assigned space in the chosen 
page file, MMG$ASNPRCPAGFL stores its systemwide page file index in 
the next available slot in the array at PHD$B_PRCPGFL and increments 
PHD$B_PGFLCNT to point to the next slot. It initializes PHD$L_PAGFIL 
and PHD$B_PRCPAGFIL. 

MMG$SWITCH_PRCPGFL invokes MMG$RSRVPRCPGFL2 to reserve 
the SYSGEN parameter RSRVPAGCNT number of blocks in that page file. 
The default value of this parameter is 2,048. MMG$RSRVPRCPGFL2 sub­
tracts that many blocks from PFL$L_RSRVPAGCNT of the chosen page file 
and adds it to PHD$W _PRCPGFLPAGES and PHD$W _PRCPGFLOPAGES. 

Section 16.8.6 describes the allocation of actual pages in the page file. 
When a process page backed by a page file is deleted, MMG$DALCPRC­

PGFL, in module PAGEFILE, is invoked to deallocate the page file block, 
if any, and returns the reservation. It increments the appropriate PHD$L_ 
PRCPGFLREFS longword; if, as a result, there are no more references to that 
page file, the routine deassigns the process from the page file. 

When a process is deleted, it is deassigned from any remaining page file 
assignments. 

16.7 INPUT AND OUTPUT THAT SUPPORT PAGING 
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There is little special-purpose code in the 1/0 subsystem to support page 
and swap 1/0. MMG$PAGEFAULT and the swapper each build their own 
1/0 request packets IIRPs) but queue these packets to a device driver in the 
normal fashion. These are the only differences: 

• There are special Queue 1/0 Request l$QIO) entry points for page and swap 
1/0 in module SYSQIOREQ. These entry points bypass many of the usual 
$QIO checks to minimize overhead. An IRP describing a page or swap 
request is distinguished from other IRPs by a flag in the IRP status word . 

• These flags are detected by the 1/0 postprocessing routine, which dis­
patches to special completion paths for page read and other types of mem­
ory management 1/0. 

To make reading and writing as efficient as possible, MMG$PAGEFAULT 
implements a feature called clustering. It checks to see whether pages ad­
jacent to the virtual page that it is reading are located in the same file in 
adjacent virtual blocks. If so, it requests a multiple-block read, and a cluster 



16. 7 Input and Output That Support Paging 

Table 16.1 Summary of I/O Requests Issued by Memory Management-Part I 

Type of I/O Priority Process ID Priority Boost 
Request IRP$B_PRI IRP$L_PID at Completion 

Process page read Base priority of faulting PID of faulting 0 
process process 

System page read Base priority from PID of faulting 0 
system PCB---16 process 

Modified page write MPW_PRI0 1 PID of swapper 2 None 3 

$UPDSEC page write Base priority of caller PID of caller 2 
Swapper I/O SWP_PRI0 1 PID of swapper None 3 

1 This is a SYSGEN parameter. 
2 The modified page writer is a subroutine of the swapper process. 
3 The swapper is a real-time process and is therefore not subject to priority boosts. 

16.7.1 

of pages is brought into the working set at one time. One N-block request 
has less CPU and 1/0 overhead than N one-block requests. 

The modified page writer and the $UPDSEC system service also cluster 
their write operations, both to make their writes as efficient as possible and 
to allow subsequent clustered reads for the pages that are being written. 

Tables 16.1 and 16.2 summarize the 1/0 requests issued by memory man­
agement components. The first table lists the type of paging or swapping 1/0, 
the priority of each such request, the relevant process identification, and in~ 
formation about the priority boost the process receives at 1/0 completion. 
For more information on priority classes and boosts, see Chapter 12. 

Table 16.2 lists more information about each type of 1/0 request, sum­
marizing the unusual uses to which the memory management components 
put several fields in the IRP. These fields are not required for their more 
typical uses and can thus be used for storing other information needed by 
these components. 

The columns SVAPTE, AST, and ASTPRM describe the contents of the IRP 
fields for each type of 1/0 operation requested by the memory management 
subsystem. The SVAPTE column identifies the type of PTE whose address 
is in that field. For certain types of request, the ASTPRM field contains 
the address of a special kernel asynchronous system trap (KAST) routine. 
The column WCB Source specifies from which memory management data 
structure the address of the window control block (WCB) is obtained. (This 
address is stored in the field IRP$L_ WIND.) The last column indicates the 
limit to which VMS clusters the object of each type of 1/0 request. 

Page Read Clustering 

When MMG$PAGEFAULT determines that a read is required to satisfy a 
page fault, it allocates an IRP and fills it with parameters that describe the 
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Table 16.2 Summary of 1/0 Requests Issued by Memory Management-Part II 

Type of I/0 WCB Cluster 
Request SVAPTE AST ASTPRM Source Factor 

PROCESS PAGE READ 

Page in section PxPTE 0 O/PSTX 1 PSTE pfc/PFCDEFAULT 2 

file 
Page in page file PxPTE 0 0 PFL PFCDEFAULT 3 

Page table page SPTE 0 0 PFL 4 PAGTBLPFC 3 

SYSTEM PAGE READ 

System page 5 SPTE 0 0 SSTE SYSPFC 3 

Paged pool page SPTE 0 0 PFL PFCDEFAULT 3 

Global page GPTE Slave PTE 0 GSTE pfc/PFCDEFAULT 2 

address 
Global CRF page PxPTE Master GSTX GSTE pfc/PFCDEFAULT 2 

PTE 
contents 

Global page SPTE 0 0 PFL 4 1 
table page 

MODIFIED PAGE WRITE 

To page file MPW 0 MPWKAST, PFL MPW_ 
map WRITEDONE WRTCLUSTER 3 

To private MPW 0 MPWKAST, PSTE MPW_ 
section file map WRITEDONE WRTCLUSTER 3 

To global MPW 0 MPWKAST, GSTE MPW_ 
section file map WRITEDONE WRTCLUSTER 3 

To swap file MPW 0 MPWKAST, PFL 1 
(nonzero map WRITEDONE 
SWPVBN) 

$UPDSEC WRITE 

Private section PxPTE AST AST PSTE MPW_ 
address argument WRTCLUSTER 3 

Global section GPTE AST AST GSTE MPW_ 
address argument WRTCLUSTER 3 

SWAPPERI/O 

S1Napper I/O Swapper 0 Swapper KAST, PFL n/a 
map IODONE 

1 If the page is copy-on-reference, IRP$1-ASTPRM contains the PSTX. 
2 For a private or global section, at link time or when the cluster is mapped, a cluster factor (pfc) may be 

explicitly declared. If unspecified, the SYSGEN parameter PFCDEFAULT is used. 
3 This is a SYSGEN parameter. 
4 Process page and global page tables originate as demand zero pages whose backing store is a page file. 
5 Pageable executive routines originate in loadable executive images, described by section table entries 

in the system header. 
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read. Table 16.2 lists those fields that it uses for special purposes. It attempts 
to identify a cluster of pages to be read at once. The manner in which this 
cluster is formed depends on the initial state of the faulting PTE. 

Terminating Condition for Clustered Reads. Beginning with the PTE of the 
faulting page, MMG$PAGEFAULT scans adjacent PTEs in the direction of 
higher virtual addresses, checking for adjacent virtual pages that have the 
same backing store location. It continues until it reaches the desired cluster 
size or until it reaches one of the following other terminating conditions: 

• It encounters a type of PTE different from that of the original faulting PTE 
(see Section 16.7.1.2). 

• The page table page containing the next PTE is itself not valid. (Satisfying 
this fault first, to make a larger cluster, would offset the benefits gained 
by clustering.) 

• No more WSLEs are available. (Each page in the cluster must be added to 
the working set.) 

• No physical page is available. 

If MMG$PAGEFAULT has not clustered any pages after scanning the ad­
jacent PTEs toward higher virtual addresses, it scans toward lower virtual 
addresses with the same terminating conditions. The scan is made initially 
toward higher virtual addresses because programs typically execute sequen­
tially toward higher virtual addresses and these pages are more likely to be 
needed soon. If that scan fails, MMG$PAGEFAULT scans for pages at lower 
virtual addresses on the assumption that pages at lower virtual addresses but 
near the faulting page are likely to be needed soon. 

Matching Conditions During the Page Table Scan. The match criterion for 
adjacent PTEs depends on the form of the initial PTE: 

• If the original PTE contains a PSTX, successive PTEs must contain exactly 
the same PSTX. 

• If the original PTE contains a page file virtual block number, successive 
PTEs must contain PTEs with successively increasing (or decreasing) vir­
tual block numbers. 

• If the original PTE contains a GPTX, successive PTEs must contain suc­
cessively increasing (or decreasing) indexes. In addition, the GPTEs must 
all contain exactly the same GSTX. 

Maximum Cluster Size for Page Read. The maximum number of pages that 
can make up a cluster is a function of the type of page being read: 
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• Global page table pages are not clustered . 
• The cluster factor for process page table pages is taken from PHD$B_ 

PGTBPFC. The default value of this field is the special SYSGEN parameter 
PAGTBLPFC. 

The default value for this parameter is 2. This value is chosen to avoid 
an artificial end to building a cluster when the page table page also had to 
be faulted. Decreasing this value may defeat clustered reads. Increasing it 
is likely to have a negligible effect on most systems . 

• The cluster factor for pages read from a page file is taken from the PFL$B_ 
PFC field of the page file control block (see Figure 14.24). The usual con­
tents of this field are zero. In that case, the cluster factor is taken from the 
process's PHD$B_DFPFC. The default value of this field is the SYSGEN 
parameter PFCDEFAULT. 

• The cluster factor for pages read from a private or global section file is taken 
from the SEC$B_PFC field of the process or global section table entry (see 
Figure 14.9). This field usually contains zero, in which case the default 
page fault cluster is used. (Just as for clustered reads from the page file, 
this default is taken from PHD$B_DFPFC.) 

There are two methods by which the cluster factor of a process or global 
section can be controlled. At link time, the page fault cluster factor in an 
image section descriptor can be set to nonzero through the linker cluster 
option and its PFC argument: 

CLUSTER= cluster-name, [base-address] ,pfc,file-spec[, .. . J 

Second, the page fault cluster factor for a section mapped through the 
$CRMPSC system service can be specified in the optional PFC argument. 

Page Read Completion 

The I/O postprocessing routine, IOC$IOPOST in module IOCIOPOST, de­
tects page read completion, using the flag IRP$V _PAGIO in the IRP status 
word. 

Page read completion is not reported to the faulting process in the normal 
fashion with a special KAST because none of the postprocessing has to be 
performed in the context of the faulting process. Holding the MMC spinlock, 
the routine PAGIO performs the postprocessing needed. It then makes the 
process computable. 

When a page read completes successfully, PAGIO performs the following 
steps for each page: 

1. The PFN REFCNT array element is decremented, indicating that the read 
in progress has completed. 

2. The page STATE is set to active. 
3. The valid bit in the PTE is set. 
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4. If the page is a global page, the valid bit set in step 3 was in the GPTE. 
In this case, the process (slave) PTE must also be altered: PAGIO inserts 
the PFN into it and sets the valid bit. 

After tending to the individual pages, PAGIO reports the scheduling event 
page fault completion for the process so that it is made computable. The 
priority increment value is O; that is, there is no boost to the process's 
scheduling priority. If any of the pages just read were collided pages, it also 
empties the collided page wait queue. That is, it makes all processes in that 
state computable. Collided pages are discussed in Section 16.10.3. 

16.8 MODIFIED PAGE WRITING 

16.8.1 

Once a second, the executive checks whether any of the swapper's tasks 
need to be performed and wakes it if necessary; one such task is writ­
ing pages from the modified page list to mass storage. The modified page 
writer, MMG$WRTMFYPAG, in module WRTMFYPAG, is a subroutine of 
the swapper process. Within its main loop, the swapper invokes MMG$WRT­
MFYPAG to write modified pages to their backing store locations. It forms 
a cluster of pages that have the same backing store and requests a write 1/0 
operation. 

At completion of the write 1/0 request, its KAST routine is entered to place 
the pages on the free page list and, if appropriate, to initiate the writing of 
more modified pages. 

Requesting the Modified Page Writer 

During system operation, other executive routines request the writing of 
pages in the modified page list by invoking the routine MMG$PURGEMPL, 
in module WRTMFYPAG, with arguments identifying the requested opera­
tion and its scope. The possible operations are writing pages to shrink the 
modified list to a target size (called a MAINTAIN request), writing pages 
within a virtual address range (an SVAPTE request), and writing all pages 
backed by section files (an OPCCRASH request). 

Modified page writing is requested in a number of circumstances: 

• When the modified page list has exceeded its high limit, defined by the 
SYSGEN parameter MPW _HILIMIT (MAINTAIN) 

• When the free page list is below its low limit and can be replenished by 
writing modified pages (MAINTAIN) 

• When particular modified pages must be written to their backing store 
(SVAPTE) 

• When the OPCCRASH image, running during system shutdown, must 
write all pages in the list that are backed by section files to their backing 
store (OPCCRASH) 
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In earlier versions of VMS, the modified page list was sometimes emp­
tied, or flushed, during normal operations. In VMS Version 5.2, the flushing 
has been replaced by selective purging, that is, writing all modified pages 
whose PTEs fall within a specified system virtual address range (the SVAPTE 
request). 

Selective purging is requested under the following circumstances: 

• When a process body has been outswapped but its PHD, whose slot is 
needed, cannot be outswapped because some of its PTEs map transition 
pages on the modified page list (see Chapter 18) 

• When a writable global section with transition pages still on the modified 
page list is deleted (see Chapter 15) 

• When a process needs to reuse a WSLE that describes a page table page that 
is now inactive but still maps transition pages on the modified page list (a 
dead page table page, described in Chapter 17) 

The modified page writer may be requested multiple times before it is 
actually invoked by the swapper. MMG$PURGEMPL therefore records infor­
mation about the request. It stores the requested command with the highest 
rank in MPW$GB_STATE; from low to high, the ordering is MAINTAIN, 
SVAPTE, and OPCCRASH. 

For a MAINTAIN request, it typically compares the target modified page 
list size with the value of the SYSGEN parameter MPW _LOLIMIT and uses 
the larger as a target size. (If a previous MAINTAIN request has been made, 
MMG$PURGEMPL uses the lesser of its target size and the current tar­
get size.) It records the target size in SCH$GL_MFYLOLIM and SCH$GL_ 
MFYLIM. 

For an SVAPTE request, it also records the highest addressed PTE of inter­
est in MPW$GL_SVAPTEHIGH and the lowest in MPW$GL_SVAPTELOW. 
If there are multiple outstanding SVAPTE requests, the count of such re­
quests is stored in MPW$GB_REQCNT, and the low and high SVAPTE 
addresses of each request are stored in elements of a 32-quadword array 
beginning at MPW$GQ_SVAPTE. MPW$GL_SVAPTEHIGH and MPW$GL_ 
SVAPTELOW record the highest and lowest addresses of any PTE in any of 
the requests. When the modified page writer scans the list for a page that 
meets any of the SVAPTE requests, it can easily reject one whose PTE ad­
dress is outside that range without having to compare its PTE address to all 
the ranges. These cells facilitate easy rejection of any pages on the modified 
page list. 

For an OPCCRASH request, it stores 8000000016 in MPW$GL_SVAPTE­
LOW and BFFFFFFF16 in MPW$GL_SVAPTEHIGH so that all pages on the 
modified page list will match the PTE address range. 

Once modified page writing to shrink the list (MAINTAIN) is initiated, 
the modified page writer continues writing modified pages until the size 
of the list is at or below the contents of SCH$GL_MFYLOLIM. Chapter 18 
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describes the calculation of the target modified page list size for the different 
circumstances in which the swapper initiates modified page writing. 

When an SVAPTE or OPCCRASH request initiates modified page writing 
to purge or flush the list, both the lower and upper limits for the modified 
page list are set to zero. For an SVAPTE request, the modified page writer 
scans the entire list and writes all pages whose PTE addresses fall within the 
specified range. For an OPCCRASH request, the modified page writer scans 
the entire list and writes all pages not backed by a page file. 

Before the modified page writer exits, it restores its two limits to the values 
contained in the SYSGEN parameters MPW_HILIMIT and MPW_LOLIMIT. 

Operation of the Modified Page Writer 

The swapper invokes the modified page writer to initiate the writing of 
modified pages. The modified page writer forms a cluster and queues an I/O 
request. When the I/O request completes, the modified page writer's KAST 
routine is entered. After performing necessary processing on the pages that 
have been written, it checks whether more modified pages must be written 
and, if so, forms another cluster. At the completion of that request, the 
KAST routine may queue yet another request. To prevent the modified page 
writer from being incorrectly reentered by the swapper, it tests and sets the 
SCH$V _MPW bit in SCH$GB_SIP as a signal that modified page writing is 
in progress. 

In earlier versions of VMS, the modified page writer was single-streamed 
and could only write one cluster of pages at a time. In VMS Version 5, it can 
initiate up to SYSGEN parameter MPW _IOLIMIT concurrent I/O requests. 
The default value of MPW _IOLIMIT is 4. As described in Chapter 14, during 
system initialization MPW_IOLIMIT nonpaged pool data structures are al­
located. Each contains an IRP and two arrays that describe the pages in the 
cluster. These structures are queued to a listhead at MPW$GL_IRPFL and 
MPW$G1-IRPBL. Figure 16.8 shows this data structure, known as a modified 
page writer I/O request packet (MPW IRP). 

MMG$WRTMFYPAG proceeds in the following fashion: 

1. It compares the number of pages on the modified page list to SCH$GL_ 
MFYLIM. If there are fewer pages on the list, it simply exits. 

2. It sets bit SCH$V _MPW in SCH$GB_SIP to indicate that modified page 
writing is active. If the bit was already set, MMG$WRTMFYPAG exits. 

3. Otherwise, it proceeds, first acquiring the MMG spinlock. 
4. It zeros cells used to keep track of its progress. 
5. It invokes MMG$PURGEMPL, specifying the default command MAIN­

TAIN to shrink the list to MPW_LOWAITLIMIT pages. 

-If a previous SVAPTE request has been made, MMG$PURGEMPL re­
turns immediately. 
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Figure 16.8 
Modified Page Writer IRP 

-If no previous SVAPTE or other MAINTAIN requests have been made, 
MMG$PURGEMPL changes MPW$GB_STATE to MAINTAIN and 
stores the larger of MPW _LOWAITLIMIT and SCH$GL_MFYLOSV in 
SCH$GL_MFYLIM and SCH$GL_MFYLOLIM. 

-If a previous MAINTAIN request has been made, MMG$PURGE­
MPL stores the lesser of the previous and current requested limits in 
SCH$GLMFYLIM and SCH$GLMFYLOLIM. 

6. MMG$WRTMFYPAG removes an MPW IRP from the list. If none is 
available, it exits. 

7. Otherwise, it scans the modified page list, starting at the first page, to 
find a page to be the beginning of a cluster. Its actions depend on the 
type of request it is performing (the value of MPW$GB_STATE): 

-If performing a MAINTAIN request, it accepts the page. 
-If performing an SVAPTE request, it tests whether the PTE address of 

the page falls within any of the requested ranges. If not, it goes on to 
the next page in the list. 

-If performing an OPCCRASH request, it tests whether the page's back­
ing store is something other than a page file. If not, it goes on to the 
next page in the list. 

8. It determines the type of the first page in the cluster by examining the 
PTE whose address is in its PFN PTE array element. 

9. Based on the page type, it gets the address of the relevant PHD, either 
that of a process or the system. 

10. It examines the PFN BAK array element to determine the type of backing 
store: page file, section file, or swap file virtual block (see Section 16.8.5). 

11. Unless the backing store is a swap file block, MMG$WRTMFYPAG tries 
to form a cluster of pages, as described in Section 16.8.5. It scans adjacent 
PTEs (first toward lower virtual addresses and then toward higher virtual 
addresses), looking for transition PTEs that map pages on the modified 
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page list, until either the desired cluster size is reached or until one of 
the other terminating conditions described in Section 16.8.4 is reached. 

This scan begins first toward smaller virtual addresses for the same 
reason that the page read cluster routine begins toward larger addresses. 
If the program is more likely to reference higher addresses, the modified 
page writer does not want to initiate a write operation, only to have the 
page immediately faulted and likely modified again. The modified page 
writer chooses to write first those pages with a smaller likelihood of 
being referenced in the near future. 

12. When it can no longer cluster, it records the PTEs and their associated 
PHD vector indexes in the MPW IRP. 

13. If the cluster is one of page file pages, MMG$WRTMFYPAG updates the 
PFN BAK array element for each page to show the actual block allocated. 

14. It removes each page from the modified page list, decrementing SCH$GL_ 
MFYCNT to show one less modified page. 

15. It changes the PFN STATE array element for each of the pages to a 
value indicating write in progress, also clearing the saved modify bit. 
It increments the PFN REFCNT array element for each page to reflect 
the 1/0 in progress. If the page is a page table page, MMG$WRTMFYPAG 
also increments the PHV$GL_REFCBAS array element corresponding to 
the PHD. 

16. It releases the MMG spinlock, fills in the MPW IRP, and queues it to the 
backing store driver. 

17. It reacquires the MMG spinlock and goes to step 6 to try to form another 
cluster of pages to write. 

When a modified page write request completes, MMG$WRTMFYPAG's 
KAST routine is entered. Section 16.8.3 describes this routine. 

Modified Page Write Completion 

The modified page writer's KAST routine, WRITEDONE in module WRT­
MFYPAG, takes the following steps: 

1. It acquires the MMG spinlock, raising IPL to IPL$_MMG. 
2. It deallocates the MPW IRP to its own lookaside list. 
3. It examines each page in the cluster. 
4. If the page is a page table page, it decrements the PHV$GL_REFCBAS 

array element corresponding to that PHD. 
5. If the page's backing store was a swap file block, WRITEDONE clears 

the PFN SWPVBN array element. 
6. It decrements the PFN REFCNT array element for the page. If the count 

goes to zero, it places the page on the free page list. 
7. If the RPTEVT bit in the PFN TYPE array element is set, WRITEDONE 

reports an 1/0 completion scheduling event for the process that owns the 
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page. This bit is set when deletion of the page has been stalled while it 
is being written to its backing store. 

8. It releases the MMG spinlock, restoring the previous IPL, and then reac­
quires it. This lets any waiting SMP member acquire the spinlock and 
also lets any pending software interrupts between IPL 3 and 8 be serviced. 

9. It attempts to form another MPW cluster, rejoining the flow described 
in the previous section at step 6. 

Modified Page Write Clustering 

The modified page writer scans the page table, attempting to form a cluster. 
The terminating conditions for its scan include the following: 

• The page table page is not valid, implying that there are no transition pages 
in this page table page. The special check is made to avoid an unnecessary 
page fault . 

• The PTE does not indicate a transition format. 
• The PTE indicates a page in transition, but the physical page is not on the 

modified page list. 
• The physical page number is greater than the contents of global location 

MMG$GL_MAXPFN. This check avoids pages in shared memory, which 
have no PFN data associated with them. 

• The PFN SWPVBN array element must be zero. Pages with nonzero PFN 
SWPVBN array elements are treated in a special way by the modified page 
writer. 

• If the contents of the PFN BAK array indicate that the backing store 
location for the page is a private or global file, the section index must 
be the same for all pages in the cluster. 

• If the PFN BAK array element indicates that the pages are to be written 
to a page file, the contents of the virtual block number field are ignored. 
However, all pages must contain the same page file index in their PFN 
BAK array elements. 

Backing Store for Modified Pages 

The modified page writer attempts to cluster when writing modified pages 
to their backing store addresses. It encounters three different clustering sit­
uations for the three possible backing store locations. 

A nonzero PFN SWPVBN array element indicates that the process has 
been outswapped and this page remained behind, probably as the result of an 
outstanding read request. The modified page writer issues a write of a single 
page to the designated block in the swap file. It does not attempt to cluster 
because virtually contiguous pages in an I/O buffer are unlikely to be adjacent 
in the outswapped process body. The process body is outswapped with pages 
ordered as they appear in the working set list, not in virtual address order. 
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A description of how the PFN SWPVBN array element is loaded is found in 
Chapter 18, where the entire outswap operation is discussed. 

If the backing store address is in a section file, the modified page writer 
creates a cluster up to the value of the SYSGEN parameter MPW _ WRTCLUS­
TER. Any of the terminating conditions listed in the previous section can 
limit the size of the cluster. 

If the backing store address is in a page file, adjacent pages bound for the 
same page file are also written at the same time. The modified page writer 
attempts to allocate a number of blocks in the page file equal to MPW _ 
WRTCLUSTER. The desired cluster factor is reduced to the number of blocks 
actually allocated. Section 16.8.6 describes allocation of space within the 
page file. 

The actual cluster created for a write to the page file consists of several 
smaller clusters, each one representing a series of virtually contiguous pages 
(see Figure 16.9): 

1. The modified page writer creates a cluster of virtually contiguous pages, 
all bound for the same page file. 

2. If the desired cluster size has not yet been reached, the modified page 
list is searched until another physical page bound for the same page file 
is found. 

3. Pages virtually contiguous to this page form the second minicluster that 
is added to the eventual cluster to be written to the page file. 

4. The modified page writer continues in this manner until either the clus­
ter size is reached or no more pages on the modified page list have the 
designated page file as their backing store address. The modified page 
writer is building a large cluster that consists of a series of smaller clus­
ters. The large cluster terminates only when the desired size is reached 
or when the modified page list contains no more pages bound to the page 
file in question. Each smaller cluster can terminate on any of the condi­
tions listed in the previous section, or on the two terminating conditions 
for the large cluster. 

Page File Space Allocation 

Before the modified page writer searches for more pages to form a cluster, 
it must determine the maximum size of the write cluster. To do this, it 
determines the number of contiguous blocks that can be allocated in the 
page file associated with the current page. 

The modified page writer invokes MMG$ALLOCPAGFIL1, in module 
PAGEFILE, to allocate a cluster of blocks in that page file. The number of 
blocks it tries to allocate is stored in the page file control block at the off­
set PFL$B_ALLOCSIZ and is usually equal to MPW _ WRTCLUSTER. If that 
many blocks are not available, MMG$WRTMFYPAG reduces the PFL$B_ 
ALLOCSIZ size by 16 blocks, if it can, and invokes MMG$ALLOCPAGFIL1 
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again to search for contiguous blocks starting back at the beginning of the 
page file. 

The allocation size is raised sometime later when space frees up in the page 
file. When the page file deallocation routine determines that it has freed a 
large enough cluster, it increases the allocation size by 8, to a maximum of 
MPW _ WRTCLUSTER. 

When the allocation size for the page file is less than or equal to 16, the 
modified page writer invokes a special-case allocation routine, MMG$AL­
LOCPAGFIL2, in module PAGEFILE. This special-case allocation routine 
searches for and allocates the first available cluster of blocks, starting from 
the beginning of the page file. The routine can allocate between 1 and 16 
contiguous blocks. If the first available cluster of blocks is not in the first 
quarter of the page file, MMG$ALLOCPAGFIL2 issues the following message 
on the console terminal: 

Y.SYSTEM-W-PAGEFRAG, Pagefile badly fragmented, system continuing 

If the first available cluster is found in the last quarter of the page file, 
MMG$ALLOCPAGFIL2 issues the following message on the terminal: 

Y.SYSTEM-W-PAGECRIT, Pagefile space critical, system trying to continue 

Each of these messages is issued only once during a boot of the system, 
even if more than one page file becomes full. The first message is issued 
when one page file becomes fragmented or full; the second, when the same 
or a different page file becomes fragmented or full. These messages on the 
console terminal may be a good indication that the system requires an!other) 
alternative page file. However, because of the nature of the checks, it is 
possible for the system to run out of page file space without any message 
having been displayed. 

If the modified page writer is unable to allocate any blocks in a particular 
page file, it skips any pages with backing store in that page file. 

Example of Modified Page Write to a Page File 

Figure 16.9 illustrates a sample cluster for writing to a page file. The modified 
page list, pictured in the upper right-hand comer of the figure, is shown as 
a sequential array to simplify the figure. 

1. The first page on the modified page list is PFN A. By scanning backwards 
through the process's page table, first PFN F and then PFN Hare located. 
The PTE preceding the one that contains PFN H is also a transition PTE, 
but the page is on the free page list. This page terminates the backward 
search. 

2. The modified page writer's map begins with PFN H, PFN F, and PFN A. 
The search now goes in the forward direction, with each page bound for 
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the page file added to the map up to and including PFN E. The next PTE 
is valid, so the first minicluster is terminated. 

3. The next page on the modified page list, PFN B, leads to the addition of 
a second cluster to the map. This cluster begins with PFN G and ends 
with PFN J. The backward search was terminated with a PTE containing 
a section table index. The forward search terminated with a demand zero 
PTE. 
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Note that this second cluster consists of pages belonging to a different 
process than that of the first cluster. The difference is reflected in the 
process header vector index array, which contains a word element for 
each PTE in the map (see Figure 16.8). 

4. The next page on the modified page list is PFN C. This page belongs in a 
global section file and is skipped over during the current write attempt. 

5, PFN D leads to a third cluster that was terminated in the backward 
direction with a PTE that contains a GPTX. The search in the forward 
direction terminated when the desired cluster size was reached, even 
though the next PTE was bound to the same page file. The cluster size is 
either MPW _ WRTCLUSTER or the number of adjacent blocks available 
in the page file, whichever is smaller. In any case, this cluster will be 
written with a single write request. 

6. Note that reaching the desired cluster size resulted in leaving some pages 
on the modified page list bound for the same page file, such as PFN I. 
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The $UPDSEC[W] system service enables a process to write a specified range 
of pages in a process or global section to their backing store in a controlled 
fashion, without waiting for the modified page writer to do the backup. This 
system service is especially useful for frequently accessed pages that may 
never be written by the modified page writer, because they are always being 
faulted from the modified page list back into the working set before they are 
backed up. 

This system service is a cross between modified page writing and a normal 
write request. As for any I/O request, the requestor can request completion 
notification with an event flag and 1/0 status block or an AST. The num­
ber of pages written is specified by the address range that is passed as an 
input parameter to the service. The cluster factor is the minimum of MPW _ 
WRTCLUSTER and the number of pages in the input range. The direction 
of search for modified pages is determined by the order in which the address 
range is specified to the service. 

The system service procedure EXE$UPDSEC, in module SYSUPDSEC, 
runs in kernel mode. It first clears the event flag associated with the 1/0 
request, charges process direct 1/0 quota, and allocates nonpaged pool to 
serve as an extended 1/0 packet. The pool is used to queue one or more 
modified page write 1/0 requests and to keep track of how much of the 
section the service has processed. 

EXE$UPDSEC then invokes MMG$CREDEL, in module SYSCREDEL, 
specifying MMG$UPDSECPAG, in module SYSUPDSEC, as the per-page 
service-specific routine. (Chapter 15 describes the actions of MMG$CREDEL 
and its use of per-page service-specific routines.) Other routines that take part 
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in performing this service are MMG$UPDSECQWT, MMG$PTEPFNMFY, 
MMG$WRTPGSBAK, and MMG$UPDSECAST, all in SYSUPDSEC. 

MMG$UPDSECPAG invokes MMG$UPDSECQWT to form the first clus­
ter and initialize and queue the IRP to the driver for the backing store driver. 

MMG$UPDSECQWT takes the following steps: 

1. It touches the next page table page that maps pages in the specified range 
to fault it into the working set list. 

2. It acquires the MMC spinlock, raising IPL to IPL$_MMG. 
3. It scans in the specified direction of the range for the first candidate 

page: one whose owner access mode is not more privileged than that 
of the service requestor; that is a valid or transition page (or a valid or 
transition global page); that is writable but not copy-on-reference; and 
that has been modified. 

4. Having found one candidate page, it scans in the specified direction 
for adjacent pages that have similar characteristics; in particular, the 
backing store for the pages must be the same. The adjacent pages do 
not necessarily have to have been modified but they do all have to be 
valid or transition, that is, resident. 

In the case of process pages, it forms a cluster from the first modi­
fied page through the last modified page in the MPW _ WRTCLUSTER 
adjacent pages. 

In the case of global pages, determining which pages have been modi­
fied is not feasible. The system service runs in the context of one process 
and can scan its PTEs for set modify bits. However, to determine whether 
a particular page has been modified requires looking at the PFN database 
and the PTEs of all processes mapped to this global page. (The GPTE 
is not used in address translation and thus the state of its modify bit 
is not meaningful.) Because there are no back pointers for valid global 
pages, this information is unavailable. Therefore, all pages in a global 
section are written to their backing store location, regardless of whether 
the pages have been modified. 

By setting the low bit of the FLAGS parameter, the requestor can indicate 
that it is the only process whose modifed pages should be written. In 
that case, the process's PTEs and the PFN database are used to select 
candidate pages for backing up. Only pages modified by this process can 
be the beginning and end pages of a cluster. 

5. Having formed a cluster, MMG$WRTPGSBAK modifies the PFN data­
base for the pages in it. It increments the PFN REFCNT array element 
for each page. If the page is on the free or modified page list, it removes 
it from the list and changes its PFN STATE array element to write in 
progress and clears the saved modify bit. If the page was valid, it also 
clears the modify bit in the PTE. 
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6. It initializes an IRP, releases the MMC spinlock, and queues the 1/0 
request to the backing store driver. 

When the write completes, the process that requested the $UPDSEC sys­
tem service receives a KAST. The AST routine MMG$UPDSECAST first 
checks whether all the pages requested by the system service call have 
been written or whether another write is required. To perform the check, 
it invokes MMG$UPDSECQWT, which forms another cluster and queues 
another write request if necessary. If all requested pages have been written, 
MMG$UPDSECAST enters the normal 1/0 completion path involving event 
flags, 1/0 status blocks, and user-requested ASTs, thus notifying the process. 

16.10 PAGING AND SCHEDULING 

16.10.1 

16.10.2 
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Page fault handling can influence the scheduling state of processes in several 
different ways. If a read is required to satisfy a page fault, the faulting process 
is placed into a page fault wait state. If a resource such as physical memory 
is not available, the process is placed into an appropriate wait state. There 
are several other wait states that a process may be placed into as a result of 
a page fault. Chapter 12 describes process scheduling, wait states, priority 
increment classes, resource waits, and the reporting of scheduler events. 

Page Fault Wait State 

The most obvious wait state is page fault wait, in which a process is placed 
when a read is required to resolve a page fault. The 1/0 postprocessing rou­
tine, PAGIO, in module IOCIOPOST, detects that a page read has completed 
and reports the scheduling event page fault completion for the process. As 
a result, the process is removed from the page fault wait state and made 
computable. No priority boost is associated with page fault read completion. 

Free Page Wait State 

If there is not enough physical memory available to satisfy a page fault, 
the faulting process is placed in a free page wait state. Whenever a page is 
deallocated and the free page list was formerly empty, routine MMG$DAL­
LOCPFN, in module ALLOCPFN, checks for processes in this state. It reports 
the scheduling event free page available so that each process in the free page 
wait state is made computable. 

MMG$DALLOCPFN makes no scheduling decision about which process 
will get the page. There is no first-in/first-out approach to the free page 
wait state; rather, all processes waiting for the page are made computable. 
The next process to execute will be the highest priority resident computable 
process. 
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Collided Page Wait State 

It is possible for a page fault to occur for a page that is already being read 
from its backing store. Such a page is referred to as a collided page. The 
collided bit is set in the PFN TYPE array element, and the process is placed 
into the collided page (COLPG) wait state. 

One way that this can occur is when a process in a page fault wait state is 
made computable by AST enqueuing. When the AST procedure completes 
execution and returns, the process reexecutes the instruction that triggered 
the page fault. If the page is still invalid, that is, if it is still being read, the 
process is placed into a COLPG wait. 

One of the details that the page read completion routine checks is the 
collided bit in the TYPE array element for the page. If the collided bit is 
set, it reports the scheduling event collided page available for each process 
in that wait state. It does not check whether a process is waiting for the 
collided page that was faulted in. 

This lack of check has two advantages: 

• There is no special code to determine which process executes first. All pro­
cesses are made computable, and the normal scheduling algorithm selects 
the process that executes next. 

• The probability of a collided page is small. The probability of two different 
collided pages is even smaller. If a process waiting for another collided 
page is selected for execution, that process will incur a page fault and be 
placed back into the collided wait state. Nothing unusual occurs, and the 
operating system avoids a lot of special-case code to handle a situation that 
rarely, if ever, occurs. 

Resource Wait States 

There are two types of resource wait associated with memory management. 
A process waiting for one of these resources is placed in the miscellaneous 
wait state (see Chapter 12) until the resource is available. 

Earlier versions of VMS also could place a process into a wait for resource 
RSN$_SWPFILE (RWSWP). When a process was unable to increase its swap 
file allocation to accommodate a larger working set, it was placed into this 
resource wait until space became available in the swap file. The timing and 
form of swap file allocation have changed in VMS Version 5, and this resource 
wait is no longer used. 

Resource Wait for RSN$_MPWBUSY (RWMPB). A process that faults a mod­
ified page out of its working set is placed into this resource wait when either 
of the following is true: 
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• The modified page list contains more pages than the SYSGEN parameter 
MPW _ WAITLIMIT . 

• The modified page list contains more pages than the SYSGEN parame­
ter MPW _LOWAITLIMIT and the modified page writer is active, writing 
modified pages. 

The modified page writer declares the availability of the resource RSN$_ 
MPWBUSY when it writes enough modified pages so that the list has MPW:::. 
LOWAITLIMIT or fewer pages on it. 

Resource Wait for RSN$_MPLEMPTY (RWMPE). A process in RWMPE is 
waiting for the modified page writer to signal that it has flushed the modified 
page list. With VMS Version 5.2, the only process placed into this wait is 
one running the OPCCRASH image, which forces a flush of the modified 
page list prior to stopping the system. 

In earlier versions of VMS, pages on the modified page list were written in 
order, and this resource wait was more widely used to force certain modified 
pages to be written. These uses have been replaced by more selective writing 
of the modified page list. 
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"Then you keep moving round, I suppose?" said Alice. 
"Exactly so," said the Hatter: "as the things get used up." 
"But what happens when you come to the beginning again?" 

Alice ventured to ask. 
"Suppose we change the subject," the March Hare interrupted, 

yawning. "I'm getting tired of this. I vote the young lady 
tell us a story." 

Lewis Carroll, Alice's Adventures in Wonderland 

The pages of physical memory in use by a process are called its working set. 
A data structure within the process header (PHD) called the working set list 
describes just those pages in a compact form. 

This chapter describes the composition of the working set list, the ways 
in which it shrinks and expands to describe a varying number of pages, and 
the system services by which a process affects its working set and working 
set list. 

17.1 OVERVIEW 

The term working set refers to the virtual pages of a process that are cur­
rently valid and in physical memory. A valid page is one whose page table 
entry (PTE) valid bit is set. 

As a process executes an image, it faults image code and data pages into 
its working set. Chapter 16 describes the page fault mechanism in detail. Ex­
ecution of asynchronous system trap (AST) procedures, condition handlers, 
and system services that touch pageable process space can cause additional 
faults into the working set. The working set continues to grow as the process 
faults pages until the process occupies as much physical memory as it is al­
lowed. Each subsequent page fault requires that a page be removed from the 
working set. 

The VMS executive maintains a list of working set pages for each process, 
called the working set list. The list facilitates 

• Selecting a page to remove from the working set when a process needs to 
fault in a page but already occupies all the physical memory it is currently 
allowed, or when the process's working set is being shrunk 

• Determining which pages to write when a process is outswapped 
• Determining which pages to read when a process is inswapped 

Section 17.2 describes the structure and makeup of the working set list. 
Section 17.3 gives a detailed description of replacement paging, that is, re­
moving one virtual page from the working set to make room for another. 
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The size of the working set list and the number of its entries constrain 
a process's use of physical memory. The working set list size varies over 
the process's lifetime. It can be affected by the system authorization file 
entry for an interactive user, SYSGEN parameters, availability of physical 
memory, and the recent paging history of the process. Section 17.4 describes 
these effects, and Section 17.2.3 discusses the capacity of the working set 
list. 

By requesting the following system services, a process can affect its own 
working set and working set list: 

•Adjust Working Set Limit ($ADJWSL) 
• Lock Pages in Working Set ($LKWSET) 
• Lock Pages in Memory ($LCKPAG) 
• Unlock Pages from Working Set ($ULWSET) 
•Unlock Pages from Memory ($ULKPAG) 
• Purge Working Set ($PURGWS) 

These services are described in later sections of this chapter. 
Section 17.9 explains the means by which a process can prevent the re­

moval of a particular page from its working set. 
Chapter 14 describes the system working set list. This chapter is primarily 

concerned with the process working set list, although much of it is equally 
applicable to the system working set list. 

17.2 THE WORKING SET LIST 

17.2.1 
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A process working set includes the process's PO and Pl space pages and the 
system space pages that contain its PHD. The working set also includes 
global pages in use by the process. Each of these pages is described by a 
working set list entry (WSLE). Because the data structure containing the 
WSLEs, the working set list, is part of the PHD, the working set list is self­
describing, containing WSLEs that describe the working set list itself as well 
as the other PHD pages. 

Certain other types of page are valid for the entire time the process maps 
them and never appear in the working set list. These include pages mapped 
by page frame number (PFN), Pl space system service vector pages, pages 
in a resident global section (namely, those of the Files-11 Extended QIO 
Processor, XQP), and pages in MA780 shared memory sections. 

TheWSLE 

The format of a valid WSLE is shown in Figure 17.1. Note that the upper 
23 bits are the same as the upper 23 bits of a virtual address. This format 
allows the WSLE to be passed as a virtual address to several utility routines 
that ignore the byte offset bits (WSLE control bits). Table 17.1 shows the 
meanings of the WSLE control bits. 
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987 6543 1 0 
Code Page Typa 

Virtual Address Bits <31 :9> 0 Process page 

Figure 17.1 

Saved modify bit 
(reserved) 

Page locked in working set 
Page locked in memory 

Page 
type 

1 System page 
2 Global read-only page 
3 Global read/write page 
4 Process page table page 
5 Global page table page 

Working set list 
entry valid 

Format of Working Set List Entry 

Table 17.1 WSLE Control Bits 

Field Name 

VALID 
PAGTYP 

PFNLOCK 

WSLOCK 

MODIFY 

Meaning 

When set, this bit indicates that the WSLE is in use. 
This field la duplicate of the contents of the PFN TYPE array 

element) identifies the page type and specifies the action 
required when the page is removed from the working set. 

When set, this bit indicates that the page has been locked into 
physical memory with the $LCKPAG system service. 

When set, this bit indicates one of the following types of page 
locked into the working set: 
• Permanently locked page 
• Page locked with the $LKWSET system service 
• Per-process page table page that maps one or more valid or 

transition pages 
This bit, used when the process is outswapped, records the 

logical OR of the modify bit in the PTE and the saved modify 
bit in the PFN STATE array. 

Regions of the Working Set List 

The working set list is divided into three regions: one containing entries for 
pages that are permanently locked; one containing entries for pages locked 
after process creation, chiefly by user request; and one containing dynamic 
entries. These regions are described in more detail later in this section. 

Figure 17 .2 shows the fields in the fixed portion of the PHD that describe 
the working set list. Many of them locate the different regions of the working 
set list through a longword context index to a particular WSLE. For example, 
the following steps compute the address of the beginning of the working set 
list from the longword context in PHD$1-WSLIST: 

1. Multiply the contents of PHD$L_ WSLIST by 4. 
2. Add the result to the address of the PHD. 

Three of the fields shown, PHD$L_DFWSCNT, PHD$L_ WSQUOTA, and 
PHD$1-WSEXTENT, do not locate region boundaries but instead represent 

483 



Working Set List Dynamics 

484 

1-tc ....--

I 
I 
T 
l 
~ 

_"'[_ 

Figure 17.2 
Working Set List 

1 

l 
..L 
T 

WSLIST 

WSLOCK 

WSDYN 

WSNEXT 

WSLAST 

WSEXTENT 

WSQUOTA 

DFWSCNT 

WSSIZE 

EXTDYNWS 

WSL 
(4 longwords) 

Pages Permanently Locked in Working Set 

Pages Locked by User Request 
($LKWSET and $LCKPAG) 

Working Set List Dynamic Space 

Room for Expansion of Working Set List 

Rest of Process Header 

,..., I--, 

I 
I 
T 
j 
J 
1 

I--

~ 
-i 
T 

a number of WSLEs. These fields nonetheless contain longword context 
indexes, providing easier comparison with fields that do locate boundaries. 

The following steps convert such a field into the number it represents: 

1. Subtract the contents of PHD$L_ WSLIST from it. 
2. Add 1 to the result. 

This chapter refers to the converted contents of such a field using its field 
name without the PHD$L_ prefix, for example, WSQUOTA. 

Two of the fields shown, PHD$L_ WSSIZE and PHD$L_EXTDYNWS, rep­
resent a number of WSLEs. 
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The permanently locked region of the working set list describes pages 
that are forever a part of the process working set. Pages whose WSLEs are 
in this region cannot be unlocked and are not candidates for working set 
replacement. They include the following: 

• Kernel stack pages 
• Pl pointer page 
• Pl page table page that maps the kernel stack and the Pl pointer page 
• Pl page table pages that map the Pl window to the PHD 
• PHD pages that are not page table pages-the fixed portion, the PHD page 

arrays, the maximum process section table, and enough pages for a working 
set list that contains the SYSGEN parameter PQL_DWSDEFAULT number 
of entries 

The value in PHD$L_ WSLIST is a longword context index to. the first 
WSLE in this region. Its value, calculated during process creation, is the same 
for all processes running on a particular VMS version. Because WSLIST is a 
pointer to the beginning of the working set list, its value is simply a function 
of the size of the fixed PHD that precedes it. 

The offset PHD$1-WSL is at a lower address in the PHD than the WSLE 
identified by PHD$1-WSLIST. There is space for four WSLEs between them~ 
This space is available to describe kernel stack expansion pages, which, 
once created, must be represented in this region of the working set list. 
The SYSINIT process, for example, requires a considerably larger kernel 
stack than other processes. Expanding its kernel stack is an alternative to 
increasing the memory requirements for every process. 

When the kernel stack is expanded, it grows by four pages. The value 4 is 
subtracted from PHD$L_ WSLIST so that it indexes the first newly created 
WSLE. Kernel stack expansion is the only way this region of the working set 
list can grow; its size and contents are otherwise fixed at process creation. 

The second region contains WSLEs for pages that are locked by user re­
quest, specifically through the $LKWSET and $LCKPAG system services. 
Pages whose WSLEs are in this region are not candidates for working set 
replacement. Any per-process page table page that maps a PFN-mapped sec­
tion or an MA780 shared memory section is also locked in this region of the 
working set list, as are PHD expansion pages resulting from working set list 
growth. 

PHD$L_ WSLOCK contains the longword context index to the first WSLE 
in this region. PHD$L_ WSDYN points to the WSLE immediately follow­
ing the last WSLE in this region. To lock a page in the working set list, 
the executive swaps its WSLE with that pointed to by PHD$1-WSDYN and 
increments PHD$L_ WSDYN. Consequently, the user-locked region is in­
creased by one WSLE and the dynamic region decreased by one. 

The two locked regions of the working set list are completely filled with 
valid WSLEs. Rather than keep a count of locked pages, the executive can 
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simply calculate the difference between the contents of PHD$L_ WSDYN 
and PHD$L_ WSLIST. 

The dynamic region of the working set list describes per-process and global 
pages that have not been locked in the working set list and per-process 
page table pages. Per-process and global pages are candidates for working 
set replacement. A page table page that maps valid or transition pages is 
locked into this region of the working set list (through the WSLOCK bit 
in the WSLE) and is not a candidate for working set replacement while still 
locked. Page table pages locked in this manner remain in the dynamic region, 
although locked, for a number of reasons. They are considered dynamic 
because they are unlocked as the result of the release of the dynamic entries 
and transition pages. Also, leaving them in the dynamic region results in 
less CPU overhead than switching them in and out of the locked region. 

The dynamic region is treated as a ring buffer for page replacement. It 
begins at the entry identified by the contents of PHD$LWSDYN. PHD$L_ 
WSLAST contains the longword context index for the last WSLE; its contents 
identify the end of the dynamic region. The entry most recently inserted 
into the working set list is pointed to by PHD$L_ WSNEXT. This marks the 
point in the ring buffer at which page replacement typically occurs. The page 
replacement algorithm, explained in detail in Section 17.3.1, is a modified 
first-in/first-out (FIFO) scheme. 

The dynamic region of the working set list is not necessarily dense; there 
may be empty entries between those specified by PHD$L_ WSDYN and 
PHD$L WSLAST. 

Size of the Working Set List 

Three critical parameters govern the dynamics of the working set list: size, 
limit, and capacity. 

The process's working set size is the number of WSLEs currently in use. 
There is no single field that contains this value; instead, it is the sum of two 
separately maintained counts, PCB$LPPGCNT and PCB$LGPGCNT. 

The maximum number of WSLEs the process is allowed to use is known as 
its working set limit. It is maintained in a field that is somewhat confusingly 
called PHD$L_ WSSIZE. Despite its name, it contains the working set limit, 
not the size (which is the sum of the two fields previously noted). 

The maximum number of WSLEs that the current working set can poten­
tially contain (PHD$L WSLAST minus PHD$L_ WSLIST, plus 1) is referred 
to in this chapter as the working set list capacity. When the capacity in­
creases, the working set list data structure itself consumes more physical 
memory. 

Figure 17.3 contrasts these three values. 
Table 17.2 shows process-specific and systemwide working set list param­

eters, quotas, and limits. 
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PHO+ (4 x PHO$L_WSLIST) ___ ..,...--------------, 

(PCB$L_PPGCNT + PCB$L_GPGCNT) 
WSLEs are in use. 

The process may use up to 
PH0$L_WSSIZE WSLEs. 

PHO+ (4 xPH0$L_WSLAST) ---,__-----------~ 

Figure 17.3 
Working Set List Parameters 

Capacity of the 
working set list 

During system initialization, enough virtual address space is reserved in 
each PHD for the maximum-sized working set list, one with SYSGEN pa­
rameter WSMAX entries. 

Each process is created with its initial working set limit and working set 
list capacity set to the same value, the process's default working set limit, 
DFWSCNT (assuming that DFWSCNT is less than or equal to WSMAX). 
VMS thus initially allocates physical memory for only a relatively small 
working set list. 

When a process runs an image, it begins faulting pages; the working set siz.e 
increases, growing toward the working set limit. Once it reaches the limit, 
subsequent page faults require the removal of pages from the working set. 
With the working set limit, VMS governs the amount of physical memory a 
process may use. 

The process can increase the working set limit by issuing the Digital 
command language (DCL) command SET WORKING_SET or requesting the 
$ADJWSL system service. The executive can increase a process's working set 
limit through automatic working set limit adjustment. These mechanisms 
are discussed in Section 17.4. 

Whenever the working set limit would exceed the working set list ca­
pacity, the capacity must grow as well to accommodate the new limit. As 
described in Chapter 14, the working set list capacity is dynamic; it grows 
toward the process section table (PST). When the working set list must ex­
pand into the area already occupied by the PST, the PST is moved to higher 
addresses. However, there is not always room in the PHD to accommodate 
the expanded working set list. The total space available for both the working 
set list and the PST is determined by the two SYSGEN parameters WSMAX 
and PROCSECTCNT. The PST is allowed to grow beyond PROCSECTCNT 
entries, leaving less working set list area available. In that case, the working 
set list capacity can grow no further, and the process must make do with 
the memory it has already. 

Furthermore, because the working set list contains WSLEs for all the PHD 
pages in physical memory, its size and the size of the PHD are interrelated. 
As the working set grows, the working set list in the PHD grows, and more 
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Table 17.2 Working Set Lists: Limits and Quotas 

Description 

Index of first WSLE 

Working set limit 

Index of first locked WSLE 

Index of first dynamic 
WSLE 

Index of most recently 
inserted WSLE 

Index of last WSLE 

Default working set limit 

Normal maximum 
working set limit 

Extended maximum 
working set limit 

Upper limit to normal 
maximum working set 
limit 

Upper limit to extended 
maximum working set 
limit 

Minimum number of 
dynamic WSLEs for 
pages accessed in one 
instruction 

Number of dynamic WSLEs 
not counting PHD$L_ 
WSFLUID process pages 
and a reasonable number 
of page table pages 

Working set size 

Authorized default 
working set limit 

Authorized normal maxi­
mum working set limit 
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Location or Name 

PHD$L_ WSLIST 

PHD$L_WSSIZE 

PHD$L_ WSLOCK 

PHD$L_ WSDYN 

PHD$L_ WSNEXT 

PHD$L_ WSLAST 

PHD$L_DFWSCNT 

PHD$L_ WSQUOTA 

PHD$L_ WSEXTENT 

PHD$L_ WSAUTH 

PHD$L_ WSAUTHEXT 

PHD$L_WSFLUID 

PHD$L_EXTDYNWS 

PCB$L_PPGCNT 
+PCB$L_GPGCNT 

UAF$L_DFWSCNT 

UAF$L_ WSQUOTA 

Comments 

Contains 6916, unless kernel stack has 
been expanded 

Set by LOGINOUT; 
Altered by $ADJWSL; 
Altered by automatic working set limit 

adjustment, image exit, swapper 
trimming 

The same for all processes in a given 
system 

Altered by $LKWSET, $LCKPAG, 
$ULWSET, and $ULKPAG 

Updated each time an entry is added to 
or released from working set 

May be altered by $ADJWSL, page fault 
handler, image exit, or automatic 
working set limit adjustment 

Set by LOGINOUT; 
Altered by command SET WORKING_ 

SET/LIMIT 
Set by LOGINOUT; 
Altered by command SET WORKING_ 

SET/QUOTA 
Set by LOGINOUT; 
Altered by command SET WORKING_ 

SET/EXTENT 
Set by LOGINOUT; 
Cannot be altered 

Set by LOGINOUT; 
Cannot be altered 

Set by SHELL to the value of 
MINWSCNT 

Updated each time size of dynamic 
working set region is changed 

Updated each time a page is added to 
or removed from the working set 

Copied to PHD$L_DFWSCNT 

Copied to PHD$L_ WSAUTH and 
PHD$L_ WSQUOTA 

(continued) 
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Table 17.2 Working Set Lists: Limits and Quotas (continued) 

Description 
Authorized extended 

maximum working set 
limit 

Systemwide minimum 
number of fluid working 
set pages 

Systemwide maximum 
working set limit 

System working set limit 
Default value for working 

set limit default (used by 
$CREPRC) 

Minimum value for working 
set limit default (used by 
$CREPRC) 

Default value for normal 
maximum working set 
limit (used by $CREPRC) 

Minimum value for normal 
maximum working set 
limit (used by $CREPRC) 

Default value for extended 
maximum working set 
limit (used by $CREPRC) 

Minimum value for 
extended maximum 
working set limit (used 
by $CREPRC) 

Location or Name 
UAF$L_ WSEXTENT 

MINWSCNT 

WSMAX 

SYSMWCNT 
PQLDWSDEFAULT 

PQLMWSDEFAULT 

PQLDWSQUOTA 

PQLMWSQUOTA 

PQLDWSEXTENT 

PQLMWSEXTENT 

Comments 

Copied to PHD$L WSEXTENT and 
PHD$L WSAUTHEXT 

SYSGEN parameter 

SYSGEN parameter 

SYSGEN parameter 
SYSGEN parameter 

SYSGEN parameter 

SYSGEN parameter 

SYSGEN parameter 

SYSGEN parameter 

SYSGEN parameter 

WSLEs are required to describe the PHD pages in memory. The size of the 
PHD (excluding the page table pages) is constrained to be no larger in pages 
than half of the process's working set quota. This constraint preserves a 
reasonable number of WSLEs for non-PHD pages. A process with a large 
value for working set extent and a relatively small value for working set 
quota may have the expansion of its working set limited by this constraint. 

The process's working set size decreases as the result of deleting vir­
tual address space (explicitly or, for example, at image exit), requesting the 
$PURGWS system service, and as an effect of having the working set limit 
decreased below the working set size. 

The working set limit is a count of WSLEs, not the boundary of a working 
set region. When it is reduced, the working set list simply becomes more 
sparsely populated with valid WSLEs and more heavily populated with in­
valid WSLEs. 
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An image with a good understanding of its paging behavior can voluntarily 
reduce its working set limit by requesting the $ADJWSL system service. VMS 
has several mechanisms for decreasing the working set limit. Automatic 
working set limit adjustment can reduce the limit jsee Section 17.4.3). The 
swapper process can initiate a reduction of working set limit with a mecha­
nism known as swapper trimming. Chapter 18 describes the conditions that 
trigger this mechanism and the criteria by which processes are selected. The 
process working set limit is also reset at image exit to its default value, 
DFWSCNT jsee Chapter 26). 

Reducing the working set list capacity can also occur at image exit: if 
possible, VMS resets PHD$L_ WSLAST by moving it toward lower addresses 
past any invalid WSLEs. It continues until it reaches a valid WSLE or until 
the working set list capacity is just equal to the working set limit. Addition­
ally, when VMS is scanning the working set list to find an entry for a page 
being faulted, it may move PHD$L_ WSLAST in the same way, compressing 
invalid entries at the high-address end of the working set list. VMS must 
strike a balance between spending too much overhead compressing empty 
entries so that PHD$L_ WSLAST is precise and spending too much overhead 
searching for a valid replacement WSLE when the working set list is sparse 
!see Section 17.3.1). 

VMS guarantees a minimum size for the dynamic region of the working 
set list. One of its concerns is the successful execution of an instruction that 
references a large but reasonable number of pages. All the pages referenced 
in a non-first-part-done instruction must be valid for the instruction to 
complete execution. If the dynamic region of the working set is too small, an 
infinite page fault loop could occur during the attempted execution of one 
instruction. An instruction could begin to execute, incur a page fault, restart, 
incur a different page fault, replace the first faulted page in the working 
set list, restart, reincur the first page fault, and so on, unable to complete 
execution. 

During system initialization, the SYSGEN parameters that affect mini­
mum working set sizes are adjusted to allow for at least this minimum. 
That is, SYSBOOT ensures that the values of PQL_MWSDEFAULT and PQL_ 
DWSDEFAULT are at least large enough to accommodate the sum of the 
following: 

• The SYSGEN parameter MINWSCNT, the minimum number of fluid pages 
in the working set 

• The worst-case number of page table pages to map MINWSCNT pages, 
namely MINWSCNT 

• The maximum process header, not counting page table pages 
• The kernel stack pages 
• The Pl pointer page 
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• The minimum number of page tables to map the Pl space defined by the 
SHELL module 

Subsequently, the executive checks that the dynamic working set list has 
enough space whenever it adjusts the working set limit or locks pages into 
the working set list. For a typical process and address space, the executive 
checks that the number of dynamic WSLEs is at least twice MINWSCNT. In 
this check, it ignores any working set list extension above WSQUOTA, since 
any extension above quota is subject to swapper trimming. To facilitate the 
check, the executive maintains the field PHD$1-EXTDYNWS, which effec­
tively contains the number of WSLEs in the dynamic region of the working 
set list beyond the minimum number required. The calculation of PHD$1-
EXTDYNWS is based upon a working set no bigger than WSQUOTA. 

For example, whe~ a process tries to lock a page into its working set list, 
the executive checks that PHD$L_EXTDYNWS has a value of at least 2, one 
entry for the page and another for its page table page. 

The manner in which a process is created determines how values for 
WSQUOTA and WSEXTENT are defined. They are defined and potentially 
redefined several times during different steps of process creation. In the case 
of the typical interactive process, the values come from its authorization file 
record. See Chapters 25 and 2 7 for further information. 

17.3 WORKING SET REPLACEMENT 

17.3.1 

When a process references an invalid virtual page, the page fault handler must 
take whatever steps are necessary to make the page valid. It must also create 
a WSLE for the page. If there is no room in the working set list for another 
entry, one must be removed. The page fault handler uses the dynamic region 
of the working set list to decide which virtual page to discard. 

The dynamic region of the working set list can contain unused WSLEs. 
When the working set limit is reduced, the working set list capacity is 
usually left intact, resulting in a sparse working set list. This makes adding 
a page to the working set slightly more complex. That a WSLE is empty does 
not necessarily mean the process can make use of it; the size of the working 
set must be less than the working set limit. If the process is already at its 
limit, a nonempty WSLE must be found whose virtual page can be removed 
from the working set to make room for the new page. 

The VMS executive uses a modified FIFO scheme for its working set list 
replacement algorithm. The entry most likely to have been in the working 
set list for the longest time, the one following that pointed to by PHD$L_ 
WSNEXT, is the one first considered for replacement. 

Scan of the Working Set List 

When the page fault handler needs an empty WSLE, it invokes routine 
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MMG$FREWSLE, in module PAGEFAULT. The following steps summarize 
its flow. Subsequent sections describe more details of particular aspects of 
its flow. 

MMG$FREWSLE scans the working set list. It begins by checking whether 
the WSLE whose index is in PHD$L_ WSNEXT is empty. If not, it starts with 
the next WSLE. 

1. If the WSLE is empty jcontents are zero), MMG$FREWSLE checks if the 
entry can be used jsee Section 17.3.2). If it can be used, it is selected. 

2. If the WSLE is not empty lits contents are nonzero) but is an active page 
table page jone that maps valid pages), the WSLE cannot be used. 

3. If the WSLE is not empty but is a page table page that maps no valid 
pages, it may be usable. MMG$FREWSLE tak.es the steps described in 
Section 17.3.3 to determine whether the page table page can be released 
and its WSLE reused. 

4. If the WSLE is not. empty, but its virtual page has been recently enough 
accessed that it appears in the translation buffer, the WSLE is skipped 
jsee Section 17.3.4). 

5. If the WSLE is selected for reuse and is not empty, MMG$FREWSLE 
takes the actions described in Section 17.3.5. 

6. If the WSLE is not selected, the index is incremented, and the steps in 
this list are repeated until a WSLE that can be used is found. If the index 
exceeds the end of the list, it is reset to the beginning of the dynamic 
working set list. 

Once a WSLE is selected for reuse, PHD$1-WSNEXT is updated to contain 
its longword context index. 

Using an Empty Entry in the Working Set List 

If an empty WSLE is found, checks are made to see if a page can be added to 
the working set. If there are fewer pages in the working set than WSQUOTA, 
a new physical page can be added to the working set. It may also be pos­
sible to add physical pages to the working set above WSQUOTA jup to 
WSEXTENTJ, depending on the size of the free page list. 

The following checks are required for an empty WSLE to be usable: 

1. If the working set size jPCB$L_PPGCNT plus PCB$L_GPGCNT) equals 
the working set limit, the empty WSLE cannot be used, and a page in the 
working set must be replaced. 

2. If the working set size has not reached its limit, the size is compared to 
WSQUOTA. If the size is less than WSQUOTA, a new page is allowed 
in the working set. The empty WSLE is used. 

3. If the working set has WSQUOTA or more pages, the number of pages 
on the free page list is compared to the SYSGEN parameter GROWLIM. 
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If there are more than GROWLIM pages on the free page list, a new page 
is allowed in the working set. The empty WSLE is used. 

Note that to extend the working set size above WSQUOTA, the work­
ing set limit must have been extended above WSQUOTA. For the work­
ing set limit to be extended above WSQUOTA, the free page list must 
contain more than the SYSGEN parameter BORROWLIM pages. For more 
information on working set limits, BORROWLIM, and automatic work­
ing set limit adjustment, see Section 17.4. 

If an empty but unusable WSLE is found at the end of the working set list, 
the working set list capacity is reduced; PHD$1-WSLAST is reset to point 
to the last unavailable (nonzero) WSLE in the working set list. 

Releasing a Dead Page Table Page 

MMG$FREWSLE invokes SCANDEADPT, in module PAGEFAULT, to deter­
mine whether a WSLE describing a page table page can be reused to describe 
a page being faulted into the working set list. There are several possible 
outcomes: 

• The WSLE describes a page table page that maps valid pages and is therefore 
not reusable. 

• The WSLE describes a page table page that maps transition pages and can be 
released from its current use for reuse after the ties beween the transition 
pages and the page table page are severed, that is, after no virtual pages 
mapped by the page table page are cached in the free or modified page list. 

• The WSLE describes such a reusable page table page, but the working set 
list contains enough dynamic entries that this one need not be released 
now. An attempt is made to leave a page table page in the working set list 
to keep its virtual pages cached on page lists, in case the process refaults 
them. 

SCANDEADPT first determines whether the process has any dead page 
table pages. A dead page table page is one that maps no valid pages. It 
may, however, map pages on the free or modified page list. SCANDEADPT 
checks this by comparing PHD$W _PTCNTV AL, the number of page table 
pages with valid WSLEs, to PHD$W _PTCNTACT, the number of active page 
table pages. If PHD$W _PTCNTACT is larger than PHD$W _PTCNTV AL, the 
difference between them is the number of dead page table pages. If there 
are none, SCANDEADPT returns immediately. MMG$FREWSLE skips this 
WSLE and continues its scan of the working set list. 

If there are any dead page table pages, SCANDEADPT checks how full the 
working set list is. It checks whether the dynamic region of the working set 
list has at least twice MINWSCNT entries, not counting those that describe 
dead page table pages or page table pages that map pages locked in memory or 
in the working set list. If so, it has sufficient dynamic entries; the dead page 
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table page scan is postponed, and SCANDEADPT returns. MMG$FREWSLE 
skips this WSLE and continues its scan of the working set list. 

SCANDEADPT checks whether this page is a dead page table page by 
testing its element in the PHD$1-PTWSLEVAL array. If the element is 
nonzero, the page table page maps pages in the working set list and cannot 
be released. SCANDEADPT returns, and MMG$FREWSLE goes on to the 
next WSLE. 

Having determined that the WSLE describes a dead page table page, SCAN­
DEADPT must scan each PTE within the page table page to determine 
whether any are transition PTEs. If the page table page contains transition 
PTEs for pages on the free page list, SCANDEADPT must modify the PFN 
database for those pages before the WSLE can be reused. If the page table page 
contains transition PTEs for pages on the modified page list, those pages must 
be written to their backing store before the page table page can be released 
from the working set list. 

SCANDEADPT reinserts such pages at the beginning of the modified page 
list and requests a selective purge of the modified page list so that those pages 
will be written. SCANDEADPT returns to the invoker of MMG$FREWSLE. 
The process is placed into a resource wait for RSN$_MPWBUSY until the 
modified page list is selectively purged. Chapter 16 describes the selective 
purge mechanism; Chapter 18 the resource wait. 

Skipping WSLEs 

The working set replacement routine is not strictly FIFO. It uses the special 
SYSGEN parameter TBSKIPWSL to permit recently referenced pages to re­
main in the working set. This allows the operating system to modify its strict 
FIFO page replacement algorithm with some frequency of use information 
maintained by the hardware on most types of VAX processor. 

The modified algorithm works in the following manner. Before a valid 
WSLE is reused, a check is made to see if the virtual page described by that 
WSLE is in the translation buffer (TB). If the PTE for that page is cached in 
the TB, the search for an available WSLE starts again with the next WSLE. 
If the PTE for that page is not cached in the TB, the WSLE is selected for 
reuse. 

After TBSKIPWSL WSLEs have been skipped in this manner, the transla­
tion buffer checks are abandoned and the next valid WSLE is simply reused. 
If the value of TBSKIPWSL is set to zero, the mechanism is disabled and no 
entries are checked in the translation buffer. The default value of TBSKIP­
WSL is 8. 

Reusing WSLEs 

The virtual page that the WSLE represents must be removed before the WSLE 
can be reused. Typically, the virtual page is valid and must be made invalid. 
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This section confines itself to a description of valid WSLEs that map process 
and global pages. For such pages, MMG$FREWSLE takes the following steps: 

1. If the page has been modified, MMG$FREWSLE tests how full the mod­
ified page list is. 

-If it has fewer pages on it than the SYSGEN parameter MPW_WAIT­
LIMIT, or if modified page writing is in progress and the list has fewer 
pages than the SYSGEN parameter MPW _LOWAITLIMIT, MMG$FRE­
WSLE proceeds with step 2. 

-Otherwise, MMG$FREWSLE, to avoid deadlocks, checks that the pro­
cess does not hold any mutexes, that the process is not the swap­
per, and that at least one page file has been installed. If any is false, 
Mlv1G$FREWSLE proceeds with step 2. 

If all are true, it returns a status to the page fault handler indicat­
ing that the process should be placed into the resource wait RSN$_ 
MPWBUSY until the modified page list has dropped below MPW _ 
LOWAITLIMIT pages. 

2. At alternative entry point MMG$FREWSLX, the routine saves the modify 
bit from the associated PTE in the PFN STATE array element. It clears 
the valid and modify bits in the PTE and invalidates any cached copy of 
the PTE in the translation buffer. 

3. If the page has been modified and has assigned page file backing store, 
MMG$FREWSLX releases its backing store, which has a now-obsolete 
copy of the page. The PFN BAK array element is reset to a process-local 
page file index and a block number of zero. 

4. If the page is a global page, MMG$FREWSLX changes the PTE to the 
global page table index form. It invokes MMG$DECPTREF, in module 
PAGEFAULT, to update the data structures describing the process page 
table page that maps the page. 

MMG$DECPTREF decrements the PFN SHRCNT array element for 
the page table page to indicate that it maps one less valid page. If this 
is the last valid or transition page mapped by the page table page lthat 
is, if the SHRCNT makes the transition from 1 to 0), MMG$DECPTREF 
locates the WSLE for the page table page and clears its WSL$V _ WSLOCK 
bit. It also decrements PHD$W _PTCNTACT, the number of active page 
table pages for the process, and the PHD's entry in the array at PHV$GL_ 
REFCBAS, the number of reasons the PHD should remain in memory. 

MMG$FREWSLX decrements the PFN SHRCNT array element for the 
global page to indicate one less process is mapping it. If the count is 
still nonzero, MMG$FREWSLX proce1:,,ds with step 6. If the count goes 
to zero, it clears the valid and modify bits in the GPTE. 

5. For a page that is a process page or a global page with a zero SHRCNT, 
MMG$FREWSLX decrements the PFN REFCNT array element for the 
page to indicate one less reference to it. If the reference count goes to 
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zero, MMG$FREWSLX inserts the page at the end of the free or modified 
page list, depending on the state of its saved modify bit. If the reference 
count is nonzero, indicating possible direct or paging 1/0 in progress, it 
examines the PFN STATE array element and, if the page is not active, 
changes its state to release pending. 

6. MMG$FREWSLX invokes MMG$DELWSLEX, in module PAGEFAULT. 
MMG$DELWSLEX decrements the appropriate element in the PHD$1-

PTWSLEVAL array to indicate the page table page that mapped this page 
maps one less valid page. If that count goes to zero, it also decrements 
PHD$L_PTCNTV AL to indicate one less page table page mapping valid 
pages. It decrements either PCB$1-PPGCNT or PCB$1-GPGCNT, de­
pending on page type. It clears the WSLE and returns. 

17.4 WORKING SET LIMIT ADJUSTMENT 

17.4.1 
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A process's working set limit jsee Table 17.2) varies over its lifetime as a 
result of events such as image execution and exit, dynamic working set 
limit adjustment, and swapper trimming. 

The working set limit can be altered with the $ADJWSL system service. 
A process can request the service implicitly, through the DCL command 
SET WORKING_SET, or explicitly. The service can also be requested auto­
matically on behalf of the process, for example, as part of the quantum-end 
routine. 

Directly requested, the system service can alter the working set limit up 
to WSEXTENT. The service is indirectly requested by automatic working 
set limit adjustment. Through this means, the maximum size to which the 
working set limit can grow is WSQUOTA, unless there are sufficient pages 
on the free page list !more than the SYSGEN parameter BORROWLIMJ. In 
that case, automatic working set limit adjustment can enlarge the limit up 
to WSEXTENT. 

Once the working set limit is increased, if there are more than the SYSGEN 
parameter GROWLIM pages on the free page list, the executive allows the 
process to use the extended limit by adding more pages to its working set 
without removing already valid entries. Adding pages to a process's working 
set decreases the probability that the process will incur a page fault. 

Section 17.4.3 describes the automatic mechanism for working set limit 
adjustment. 

$ADJWSL System Service 

The $ADJWSL system service is requested to alter the process's working set 
limit. Its procedure, EXE$ADJWSL, in module SYSADJWSL, runs in kernel 
mode, at interrupt priority level IIPLJ 2 and above. There are two different 
paths in the procedure, one to increase the limit and the other to reduce it. 
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To increase the limit, EXE$ADJWSL first checks and possibly reduces the 
size of the increase. The new limit must be less than or equal to the SYSGEN 
parameter WSMAX, less than or equal to the process's extended maximum 
working set limit, and within the system's physical memory capacity. 

If the new working set limit is within the current capacity of the working 
set list, EXE$ADJWSL computes a new value for PHD$L_EXTDYNWS and 
returns. Otherwise, EXE$ADJWSL first invokes MMG$ALCPHD, in module 
PHOUTL, to increase the working set list capacity. 

MMG$ALCPHO tests whether there is a gap between the high-address 
end of the working set list and the low-address end of the PST that is large 
enough for the working set list expansion. If not, it tries to compress enough 
unused entries from the low-address end of the PST to accommodate the 
expansion. If that also fails, MMG$ALCPHO tries to shift the PST to higher 
addresses by .moving it to as yet unused pages of the PHO. As previously 
described, the PHO cannot be expanded in this manner if the number of 
pages in the nonpageable part of the current PHO is half the size of the 
process's WSQUOTA. If the PHO cannot be expanded, the error status SS$_ 
SECTBFUL is returned to EXE$ADJWSL. 

If expanded working set list pages are created, they must be locked into the 
working set list. It is possible that locking all the expansion pages at once 
would leave insufficient extra dynamic entries in the existing working set 
list. However, if the working set list were partially expanded, the number of 
dynamic entries would increase, allowing more expansion pages to be locked. 
Thus, expanding the working set limit may require multiple iterations. 

EXE$ADJWSL changes PHD$L_ WSNEXT to point to the first of the newly 
added WSLEs and initializes them. It adds the number of new WSLEs to both 
PHO$L_ WSLAST and PHD$L_ WSSIZE. It recalculates PHO$L_EXTDYNWS 
and returns to its requestor. 

To decrease the limit, EXE$ADJWSL first acquires the MMG spinlock, 
raising IPL to IPL$_MMG, to block swapper trimming and possible quantum­
end and working set adjustment. It invokes MMG$SHRINKWS, in module 
SYSADJWSL. 

MMG$SHRINKWS checks and possibly reduces the size of the decrease. 
The new limit must allow for at least the SYSGEN parameter MINWSCNT 
WSLEs in the dynamic portion of the working set list. In addition, PH0$1-
EXTDYNWS cannot be reduced below zero. 

MMG$SHRINKWS modifies the working set limit. If the process's work­
ing set size is already less than or equal to the new limit, it simply re­
turns to EXE$ADJWSL. Otherwise, MMG$SHRINKWS repeatedly invokes 
MMG$FREWSLE !see Section 17.3.1), in module PAGEFAULT, for each page 
to be removed from the process's working set. The reduced list can be sparse, 
that is, can contain unused and unusable WSLEs; the working set capacity 
is not necessarily decreased with the working set limit. Control returns to 
EXE$ADJWSL. 
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EXE$ADJWSL releases the spinlock, recalculates PHD$L_EXTDYNWS, 
and returns. 

SET WORKING_SET Command 

The DCL command SET WORKING_SET enables the user to alter the de­
fault working set limit IDFWSCNT), the normal maximum working set limit 
jWSQUOTA), or the extended maximum working set limit IWSEXTENT). 
None of them can be set to a value larger than the authorized extended 
maximum working set limit IWSAUTHEXT). 

Altering the normal maximum working set limit affects the maximum 
working set limit when physical memory is not plentiful. It changes the 
upper limit for future $ADJWSL system service requests. Altering the default 
limit affects the working set list reset operation performed by the routine 
MMG$IMGRESET, in module PHDUTL, which is invoked at image exit. 

With the /[NO]ADJUST qualifier to this command, a user can also disable 
or reenable automatic working set limit adjustment. Use of that qualifier 
sets or clears the process control block IPCB) status longword bit PCB$V _ 
DISAWS. 

Automatic Working Set Limit Adjustment 

In addition to adjusting working set limit through an explicit $ADJWSL re­
quest or as a side effect of image exit, VMS also provides automatic working 
set limit adjustment to keep a process's page fault rate within limits set 
by one of several SYSGEN parameters. Note that no such adjustment takes 
place for real-time processes or for a process that has disabled automatic 
working set limit adjustment through the DCL command SET WORKING_ 
SET/NOADJUST. New with VMS Version 5 is the provision that the ex­
ecutive can also use automatic working set limit adjustment to reclaim an 
extension to the working set of a low-priority process. 

Table 17.3 shows the parameters that control automatic working set limit 
adjustment. All the SYSGEN parameters listed in this table are dynamic and 
can be altered without rebooting the system. 

The automatic working set limit adjustment takes place as part of the 
quantum-end routine jsee Chapter 12). 

The quantum-end routine, SCH$QEND in module RSE, adjusts the work­
ing set limit in several steps: 

1. SCH$QEND makes the following checks. If any of these conditions is 
true, it performs no adjustment. 

-If the WSINC parameter is set to zero, the adjustment is disabled on a 
systemwide basis. 

-If the user has entered the DCL command SET WORKING_SET/NO­
ADJUST, PCB$V _DISAWS is set and automatic working set limit ad­
justment for the process has been disabled. 
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Table 17.3 Process and System Parameters Used by Automatic Working Set Limit 
Adjustment 

Description 

Total amount of CPU time 
charged to this process 

Amount of CPU time at last 
adjustment check 

Total number of page faults for 
this process 

Number of page faults at last 
adjustment check 

Most recent page fault rate for 
this process 

Process automatic working set 
limit adjustment flag 

Amount of CPU time process 
must accumulate before page 
fault rate check is made 

Lower limit page fault rate 

Amount by which to decrease 
working set limit 

Lower bound for decreasing 
working set list size 

Upper limit page fault rate 
Amount by which to increase 

working set limit 
Free page list size that allows 

growth of working set 

Free page list size that allows 
extension of working set limit 

1 This value is a SYSGEN parameter. 

Location or Name 

PHD$LCPUTIM 

PHD$L TIMREF 

PHD$L_PAGEFLTS 

PHD$LPFLREF 

PHD$LPFLTRATE 

PCB$V _DISAWS in 
PCB$L_STS 

AWSTIME 1 

PFRATL 1 

WSDEC 1 

AWSMIN 1 

PFRATH 1 

WSINC 1 

GROWLIM 1 

BORROWLIM 1 

Comments 

Updated by interval timer interrupt 
service routine 

Updated by quantum-end routine 
when adjustment check is made; 

Altered when process is placed into 
a wait 

Updated each time this process 
incurs a page fault 

Updated by quantum-end routine 
when adjustment check is made 

Recorded at each adjustment check; 
Compared to PFRATH, PFRATL 
When set, disables adjustment for 

process 

When 0, disables adjustment based 
on page fault rate for entire 
system 

Also, amount to reclaim from low­
priority process with extended 
working set 

Do not adjust if PCB$W _PPGCNT 
is less than or equal to this 

When 0, disables adjustment for 
entire system 

Do not add new page to working 
set if @SCH$GLFREECNT is 
less than or equal to this value 

Do not extend working set limit 
beyond WSQUOTA if @SCH$GL 
FREECNT is less than or equal 
to this value; 

When -1, disables working set 
limit extension for entire system 

-If PHD$V _NO_ WS_CHNG is set, the executive has temporarily 
blocked changes to the working set list of this process. 

2. If the process has not been executing long enough since the last adjust­
ment (if the difference between PHD$1-CPUTIM, the accumulated CPU 

499 



Working Set List Dynamics 

500 

time, and PHD$1-TIMREF, the time of the last adjustment attempt, is 
less than the SYSGEN parameter AWSTIME), no adjustment based on 
page fault rate is done. SCH$QEND proceeds with step 5. 

If the process has accumulated enough CPU time, the reference time 
is updated (PHD$1-CPUTIM is copied to PHD$1-TIMREF), and the rate 
checks are made. 

Between adjustment checks, PHD$L_ TIMREF is also altered when the 
process is placed in a wait. As described in Chapter 12, when a process 
goes into a wait, the SYSGEN parameter IOTA is charged against its 
quantum. To balance the quantum charge, IOTA is subtracted from 
PHD$1-TIMREF, so that the last check for adjustment appears to have 
taken place longer ago than it really did and AWSTIME is more quickly 
reached. This subtraction helps ensure the expansion of the working set 
limit of a process that is faulting heavily. Without it, a process that un­
dergoes many page fault waits could reach quantum end without having 
accumulated AWSTIME worth of CPU time and thus not be considered 
for automatic working set limit adjustment. 

3. SCH$QEND calculates the current page fault rate. The philosophy for 
automatic working set limit adjustment is based on two premises. If the 
page fault rate is low enough, the system can reclaim physical memory 
from the process, by reducing its working set limit, without harming the 
process by causing it to fault heavily. If the page fault rate is too high, 
the process can benefit from a larger working set limit because it will 
incur fewer faults without degrading the system. 

4. If the current page fault rate is too high (greater than or equal to PFRATH), 
SCH$QEND checks whether the working set limit should be increased. 

-If the working set size is less than 75 percent of the working set limit, 
the working set limit is not expanded. 

-If the working set limit is below WSQUOTA, it is expanded by WSINC. 
-If the working set limit is' greater than or equal to WSQUOTA, the 

number of pages on the free page list is compared to the SYSGEN 
parameter BORROWLIM. If there are more than BORROWLIM pages 
on the free page list, the working set limit is increased by WSINC. 
If there are fewer than BORROWLIM pages on the free page list, the 
working set limit is not increased. The working set limit can only 
be expanded up to WSEXTENT. Setting BORROWLIM to -1 disables 
working set limit expansion above WSQUOTA for the entire system. 

Once the working set limit has been expanded, newly faulted pages 
may be added to the working set. The page fault handler adds pages to the 
working set above WSQUOTA only when there are more than the SYS­
GEN parameter GROWLIM pages on the free page list (see Section 17.4). 

SCH$QEND proceeds with step 6. 
5. If WSDEC is zero, shrinking the working set by automatic working set 
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limit adjustment is disabled and no adjustment occurs. If WSDEC is 
nonzero, two types of decrease to the working set limit are possible. 
First, if the current page fault rate is low enough !less than PFRATL), 
the working set limit is shrunk by WSDEC. However, if the contents of 
PCB$L_PPGCNT are less than or equal to AWSMIN, no adjustment takes 
place. This decision is based on the assumption that many of the pages 
in the working set are global pages and therefore the system will not 
benefit land the process may suffer) if the working set limit is decreased. 

Note that PFRATL is zero by default. This default value effectively 
disables this method of working set limit reduction in favor of swapper 
working set trimming. The rationale for this change is explained at the 
end of this list. 

Alternatively, even if a meaningful interval has not elapsed for com­
puting a page fault rate, the process's working set limit will be shrunk, 
whatever its page fault rate and whatever the value of PFRATL, if all the 
following are true: 

- The process has had a pixscan priority boost in its last 32 execution 
quantums IPCB$1-PIXHIST is nonzero). Chapter 12 describes the pix­
scan mechanism. 

-The free page list contains fewer than GROWLIM pages. 
-The process's working set limit is larger than WSQUOTA. 

Its working set limit will be decreased by the smaller of WSDEC 
and the amount by which its working set limit exceeds WSQUOTA. 
This mechanism reclaims working set growth beyond WSQUOTA, which 
is regarded as temporary growth to be permitted only when sufficient 
memory is available. 

6. The actual working set limit adjustment is accomplished by a kernel 
mode AST that requests the $ADJWSL system service. The AST parame­
ter passed to this AST is the amount of previously determined increase or 
decrease. This step is required because the system service must be called 
from process context lat IPL OJ and SCH$QEND is executing in system 
context in response to the IPL$_ TIMERFORK software timer interrupt. 

Three other pieces of the executive affect the size of a process's work­
ing set: the page fault handler, the swapper, and the image reset routine, 
MMG$IMGRESET, in module PHDUTL. As described previously, the page 
fault handler can add a page to a process's working set when it is al­
ready above WSQUOTA only if the size of the free page list is. greater than 
GROWLIM. In an effort to acquire needed physical memory, the swapper 
reduces the working sets of processes in the balance set before actually re­
moving processes from the balance set. This working set reduction is known 
as swapper trimming or working set shrinking. Process selection is performed 
by a table-driven, prioritized scheme (see Chapter 18). The working set limit 
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is reset to its default value, DFWSCNT, when image exit processing invokes 
MMG$IMGRESET. 

Two problems are inherent in using the quantum-end scheme of automatic 
working set limit adjustment: processes that are compute-intensive will 
reach quantum end many times, and images that have been written to 
be efficient with respect to page faults (and incur a low page fault rate) 
will qualify for working set limit reduction, because their page fault rate 
is lower than PFRATL. In both these cases, working set limit reduction is 
not desirable. In contrast, swapper trimming selects processes starting with 
those that are less likely to need large working sets. 

In what can be seen as an evolutionary change to the operating system, 
working set limit reduction based on page fault rate at quantum end was 
disabled by default in Version 3.1 of the VMS software by setting the default 
value of PFRATL to zero. Swapper trimming and the image exit reset became 
the primary methods used to reduce working set limit. 

VMS Version 5 also uses automatic working set adjustment at quantum 
end to reclaim extensions from the working sets of low-priority processes. 

17.5 $LKWSET SYSTEM SERVICE 
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A process requests the $LKWSET system service to lock a virtual page into its 
process working set and thus prevent page faults from occurring on references 
to the page. Locking a. page into the working set guarantees that when the 
process is current, the locked page is always valid. This service has obvious 
benefit for time-critic.al applications and other situations in which a program 
must access code or data without incurring a page fault. 

The $LKWSET syst~ni service is also requested by process-based kernel 
mode routines that execute at IPLs above 2, to ensure the validity of code 
and data pages. VMS prohibits page faults at IPLs above 2; if one occurs, the 
page fault handler generates the fatal bugcheck PGFIPLIIl. 

Pages locked into a process working set do not necessarily remain resident 
in physical memory when the process is not current; the entire working set 
might be outswapped. To guarantee residency of the pages, a process must 
request either the $LCKPAG system service or both the $LKWSET and the 
Set Swap Mode ($SETSWM) system services. 

The $LKWSET system service procedure, EXE$LKWSET in module SYS­
LKWSET, executes in kernel mode; It takes the following steps: 

1. It creates and initializes scratch spac;:e on the stack and raises IPL to 2. 
2. It sets the bit PHD$V _NO_ WS_CHNG in PHD$W _FLAGS to block 

swapper trimming of the working set and automatic working set limit 
adjustment (see Section 17.9). 

3. If necessary and possible, it increases the working set limit to have 
sufficient extra dynamic entries to accommodate the pages to be locked 
and a page table page for each such' page. 
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If the process has disabled working set limit adjustment, or if its work­
ing set limit is already larger than its quota, no increase is possible. As a 
result, MMG$LCKULKPAG may be able to lock only a limited number 
of pages. 

4. EXE$LKWSET invokes MMG$CREDEL, in module SYSCREDEL, spec­
ifying MMG$LCKULKPAG, in module SYSLKWSET, as the per-page 
service-specif;l.c routine. Chapter 15 describes the memory management 
stack scratch space, the actions of MMG$CREDEL, and its invocation of 
the specified service-specific routine. 

5. When MMG$CREDEL returns, EXE$LKWSET clears PHD$V _NO_ WS_ 
CHNG. 

6. It restores the previous IPL and returns to its requestor with the status 
from MMG$CREDEL. 

To lock a page into the working set, MMG$LCKULKPAG takes the fol­
lowing steps: 

1. It tests whether the page is readable from the system service requestor's 
access mode. If the page is inaccessible, it returns the error status SS$_ 
ACCVIO, which becomes the status returned by the system service. 

2. It acquires the MMG spinlock, raising IPL to IPL$_MMG. 
3. MMG$LCKULKPAG examines the PTE that maps the page. If the page 

is not valid, it releases the MMG spinlock, faults the page, and continues 
with step 2. 

4. It compares the page owner access mode with the mode of the system 
service requestor. If the page is owned by a more privileged mode, the re­
questor is not allowed to alter its state, and MMG$LCKULKPAG releases 
the MMG spinlock and returns the error status SS$_PAGOWNVIO. 

5. It tests whether the WINDOW bit is set in the PTE and, if so, imme­
diately returns the success status SS$_ WASSET. A virtual page whose 
PTE's WINDOW bit is set is always valid and is not described by a WSLE, 
so no further action is appropriate. 

6. MMG$LCKULKPAG examines the PFN TYPE array element for the page 
to determine if the page type is process or read-only global. If neither, it 
releases the MMG spinlock and returns the error status SS$_NOPRIV; a 
process is not permitted to lock any other type of page into its working 
set. In particular, it may not lock global writable pages because when 
a process is outswapped, the swapper must be able to remove global 
writable page$ from the working set. The removal avoids any ambiguity 
at inswap concerning the location of the most recent copy of a global 
writable page. 

7. MMG$LCKULKPAG gets the working set list index jWSLX) for a process 
page from its .PFN WSLX array element. WSLX information is not kept 
for a global page; instead, MMG$LCKULKPAG must scan the process's 
working set list to locate the entry for the page. In the case of a resident 
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global section, MMG$LCKULKPAG returns immediately with the suc­
cess status SS$_ WASSET; pages from a resident global section are already 
permanently resident and valid. 

8. MMG$LCKULKPAG examines the WSLE. If the page is already locked 
in the working set, the routine releases the MMG spinlock and returns 
the success status SS$_ WASSET. 

9. Otherwise, it checks that PHD$LEXTDYNWS is at least 2 (to allow for 
the page table page as well as the page being locked). This ensures that 
the process will have enough dynamic WSLEs after the page is locked 
into its working set. If not, it releases the MMG spinlock and returns 
the error status SS$_LKWSETFUL. 

10. It sets the WSL$V _ WSLOCK bit in the WSLE of the newly locked page. 
11. It must reorganize the working set list, pictured in Figure 17 .2, so that the 

locked page is in the user-locked region of the working set list, following 
the PHD$L_ WSLOCK pointer. MMG$LCKULKPAG accomplishes this 
reorganization by exchanging the newly locked WSLE with the entry 
pointed to by PHD$L_ WSDYN and incrementing PHD$L_ WSDYN to 
point to the next entry in the list. If PHD$L_ WSDYN pointed to a valid 
WSLE, it exchanges the PFN WSLX array elements for the two valid 
pages; otherwise, it updates the PFN WSLX array element for the newly 
locked page. 

12. MMG$LCKULKPAG increments the PHD$LPTWSLELCK array ele­
ment corresponding to the page table page mapping the locked page. If 
the count was zero, it also increments PHD$W _PTCNTLCK, the number 
of page table pages mapping locked WSLEs. 

13. It checks that PHD$L_ WSNEXT is still pointing into the dynamic part 
of the working set list (and not at the former PHD$L_ WSDYN, which 
is now in the user-locked region), moving it if necessary to point to the 
same WSLE as PHD$L_ WSLAST. 

14. It recalculates PHD$L_EXTDYNWS. 
15. It releases the MMG spinlock and returns to MMG$CREDEL. 

17.6 $LCKPAG SYSTEM SERVICE 
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The $LCKPAG system service procedure, EXE$LCKPAG in module SYSLK­
WSET, is similar to that of the $LKWSET system service. However, the 
$LCKPAG service guarantees permanent residency for the specified virtual 
address range, in addition to performing an implicit working set lock of those 
pages. Because this operation permanently allocates a system resource, phys­
ical memory, it requires the privilege PSWAPM. 

Executing in kernel mode, EXE$LCKPAG tests whether the process has the 
privilege PSWAPM and, if not, returns the error status SS$_NOPRIV. It raises 
IPL to 2, sets the PHD$V _NO_ WS_CHNG flag, and increases the working 
set limit as necessary and possible. It invokes MMG$CREDEL, specifying 
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MMG$LCKULKPAG as the per-page service-specific routine. MMG$LCK­
ULKPAG is invoked with a flag that specifies the page is to be locked in 
memory rather than in the working set. ./ 

Although the results of invoking the two lock services are similar, the 
following differences exist: 

• The WSLE of a page locked in memory has the WSL$V _PFNLOCK bit set, 
rather than the WSL$V _ WSLOCK bit . 

• A PHD mapping a page locked in memory must be locked in memory itself 
to ensure residency of the page table page mapping the locked page . 

• A global writable page can be locked in memory, although it cannot be 
explicitly locked in the working set. 

17.7 $ULWSET AND $ULKPAG SYSTEM SERVICES 

These system services unlock pages from either the working set or phys­
ical memory. The two system service procedures are EXE$ULWSET and 
EXE$ULKPAG, both in SYSLKWSET. Both, executing in kernel mode, invoke 
MMG$CREDEL with MMG$LCKULKPAG as the per-page service-specific 
routine. Both execute at IPL O; working set trimming and adjustment do not 
interfere with unlocking pages. 

MMG$LCKULKPAG is invoked with one flag that specifies the operation 
is an unlock and a second flag that specifies whether the page is to be 
unlocked from the working set or from memory. It takes the following steps 
to unlock each page: 

1. Its first steps are identical to steps 1 through 7 described for MMG$LCK­
ULKPAG in Section 17.5. 

2. MMG$LCKULKPAG examines the WSLE. If the page is not locked in 
the working set, the routine releases the MMG spinlock and returns the 
success status SS$_ WASCLR. 

3. Otherwise, depending on the operation requested, it clears the appropri­
ate WSLE bit (WSL$V _ WSLOCK or WSL$V _PFNLOCKJ. 

4. If one of the lock bits is still set, it goes on to step 6. Otherwise, it 
decrements PHD$L_ WSDYN and swaps the WSLE of the page being un­
locked with the one pointed to by PHD$1-WSDYN, thus making the 
unlocked WSLE the first one in the dynamic region. If PHD$L_ WSDYN 
pointed to a valid WSLE, it exchanges the PFN WSLX array elements 
for the two valid pages; otherwise, it updates the PFN WSLX array ele­
ment for the newly unlocked page. MMG$LCKULKPAG decrements the 
PHD$1-PTWSLELCK array element corresponding to the page table page 
mapping the locked page. If the count goes to zero, it also decrements 
PHD$W _PTCNTLCK, the number of page table pages mapping locked 
WSLEs. 

5. It recalculates PHD$L_EXTDYNWS. 
6. It releases the MMG spinlock and returns to MMG$CREDEL. 
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17.8 $PURGWS SYSTEM SERVICE 

A process requests the $PURGWS system service to remove all virtual pages 
in a specified address range from its working set. A process might request 
this service if a certain set of routines or data were no longer required. By 
voluntarily removing entries from the working set, a process can exercise 
some control over the working set list replacement algorithm, increasing 
the chances for frequently used pages to remain in the working set. 

The VMS executive uses this service as part of the image startup sequence 
(see Chapter 26) to ensure that a program starts its execution without un­
necessary pages such as command language interpreter command processing 
routines in its working set. 

The $PURGWS system service procedure, EXE$PURGWS in module SYS­
PURGWS, runs in kernel mode. It takes the following steps: 

1. It creates and initializes the stack scratch space and raises IPL to 2. 
2. It invokes MMG$CREDEL, specifying MMG$PURGWSPAG, in module 

SYSPURGWS, as the per-page service-specific routine. 
3. EXE$PURGWS returns the status from MMG$CREDEL to its requestor. 

MMG$PURGWSPAG immediately invokes MMG$PURGWSSCN, in 
module SYSPURGWS, which takes the following steps: 

1. It acquires the MMG spinlock, raising IPL to IPL$_MMG. 
2. It scans the dynamic region of the working set list, examining each WSLE. 

-If the WSLE is not valid, is locked in the working set, or is that of a 
page table page, or if the address of the associated virtual page does not 
fall within the boundaries specified by the system service requestor, 
MMG$PURGWSSCN goes on to the next entry. 

-Otherwise, MMG$PURGWSSCN invokes MMG$FREWSLX, described 
in Section 17.3.5, to take whatever steps are necessary to release the 
WSLE and change the state of the page. 

3. When MMG$PURGWSSCN reaches the end of the dynamic region, it 
releases the MMG spinlock, restoring the entry IPL, and returns. 

17.9 KEEPING A PAGE IN THE WORKING SET LIST 
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Occasionally a page must be faulted into the working set list and remain 
there. The issue may be one of improved or more predictable performance 
for an application. However, code executing in kernel mode has a different 
concern. Because a page fault from IPL 3 or a,bove results in a PGFIPLHI fatal 
bugcheck, a code thread executing at elevated IPL must ensure the residency 
of all code and data pages it accesses. This section describes issues related 
to the residency of pages in the process working set lists and then to the 
system working set list. Its focus is on pages that are not page table pages. 
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A number of things can lead to replacement paging and the removal of 
pages from a process's working set list: 

• Execution in the process's context of a code thread of any access mode 
that incurs page faults, whether mainline code, procedure in a shareable 
image, inner access mode service (Record Management Services, system, or 
command language interpreter callback), AST thread, or condition handler 

• Execution of a code thread that directly locks an invalid page into memory 
or the working set list or indirectly locks buffer pages by requesting direct 
1/0 ·operations 

• Quantum-end automatic working set limit adjustment of a current process 
• Swapper trimming of a noncurrent process 

For a process to fault a page into its working set list and have it remain 
there, it must either ensure that the page is not a candidate for replacement 
paging or prevent all the items previously listed that lead to replacement 
paging. 

The most straightforward measure, available to any access mode, is to lock 
the page with the $LKWSET system service. As a result, the page's WSLE i$$ 
placed in the user-locked region of the working set list and is not a candidate. 
for replacement paging. The page remains in the working set list regardless' 
of the process's scheduling state and throughout any outswap and inswap. 
The only page type for which this mechanism fails is a global writable page. 
VMS prohibits locking global writable pages into the working set list to avoid 
ambiguity at inswap concerning the location of the most recent version of 
the page. To ensure the residency of a global writable page, a process must 
lock the page into memory. · 

Locking many pages into the working set list is not alw~ys possible. To 
minimize page faults once the desired pages are in the working set, a process 
can do the following: 

• Prevent swapper trimming by entering the DCL command SET WORK­
ING_SET/QUOTA=authquota and /EXTENT=authquota, where auth­
quota is the authorized normal maximum working set limit. This pre­
vents first-level swapper trimming by ensuring that the working set limit 
is not above the authorized maximum limit . 

• Disable automatic working set limit adjustment and second-level swap­
per trimming by entering the DCL command SET WORKING_SET/NO­
ADJUST . 

• Execute a constrained sequence of already resident code that touches al­
ready resident data. This is likely to require blocking AST delivery, causing 
no exceptions, signaling no conditions, and calling no procedures outside 
the address space already resident. 

For kernel mode code, typically, the issue is one of preventing any page 
fault during elevated IPL execution rather than one of performance. Kernel 
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mode code, whether running as part of an image or as part of the executive, 
may be able to request the $LKWSET system service but is unable to alter the 
process's working set quotas and limits through the DCL command. Other 
measures available to it include 

• "Poor man's lockdown" for pages in a process working set list and contin­
ued execution at elevated IPL to block AST delivery and remain current 

• The LOCK_SYSTEM_PAGES and UNLOCK_SYSTEM_PAGES macros for 
system working set list pages 

"Poor man's lockdown" is an instruction that both faults one or more 
pages into the working set and raises IPL, for example: 

ASSUME NEWIPL - . LE 511 

MTPR NEWIPL,#PR$_IPL 

;Check that instruction and target 
; IPL are on the same or 
; adjacent pages 
;Raise IPL to level in NEWIPL 

Code to be faulted into the working set 

NEWIPL: .LONG 8 

For the instruction to execute, the page or pages containing the instruction 
and NEWIPL must both be resident. The processor generates page faults if the 
instruction and pages it references are not resident, and VMS must page them 
in before the instruction can successfully execute. At the completion of the 
instruction, IPL is raised, after which no further page faulting is possible. 
Running at IPL 3 or above blocks the delivery of an AST that might cause 
unexpected instruction execution and potential page faults. It also blocks 
the delivery of the automatic working set limit adjustment AST and the 
rescheduling interrupt, thus also preventing swapper trimming. 

This technique is not acceptable for system working set list pages, such 
as paged pool and pageable code or data in loadable executive images. The 
technique assumes that the only thread of execution that could run (and thus 
trigger replacement paging) is the one that has just executed the instruction 
sequence. This is not necessariiy true; on a symmetric muitiprocessing sys­
tem, system working set list replacement paging could be triggered by code 
executing on any of the other processors. For kernel mode code that needs 
to fault pages into the system working set list and have them remain there, 
VMS provides the macros previously listed. Use of these macros is described 
in detail in the VMS Device Support Manual. 

The LOCK_SYSTEM_PAGES macro generates code that invokes the rou­
tine MMG$LOCK_SYSTEM_PAGES, in module LOCK_SYSTEM_PAGES. 
For each page to be locked, it takes the following steps: 
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1. It faults the page. 
2. It acquires the MMG spinlock. 
3. It tests whether the page is still valid, and if not, it releases the spinlock 

and returns to step 1. 
4. It increments the PFN SHRCNT array element for the physical page, 

gets the WSLX from the PFN WSLX array element, and sets the WSL$V _ 
WSLOCK bit in the WSLE in the system working set list. 

5. It releases the MMG spinlo~k. 
The routine returns to its invoker through a co-routine call. When the 

invoker no longer requires the residency of the pages, it invokes the macro 
UNLOCK_SYSTEM_PAGES. The code generated by the macro executes a 
co-routine return to the routine, which clears the WSL$V _ WSLOCK bit and 
decrements the PFN SHRCNT array element for each page. 

One other option available to kernel mode code involves the PHD$V _ 
NO_ WS_CHNG bit. The general sequence is to raise IPL to 2, set the bit, 
and fault the page or pages into the working set list. Setting this bit blocks 
swapper trimming and automatic working set limit adjustment. The code 
must execute a constrained instruction sequence to ensure the continued 
residency of the page, since the working set list is still subject to replacement 
paging. The memory management subsystem and other parts of the VMS 
executive employ this option, setting the bit for relatively brief periods of 
time. Use of this bit is reserved to Digital; any other use is unsupported. 
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A time to cast away stones and a time to gather stones together ... 

Ecclesiastes 3:5 

The amount of physical memory present on the system is not a hard limit to 
the number of processes in the system. The VMS operating system effectively 
extends physical memory by keeping a subset of active processes resident at 
once. It maximizes the number of such processes by limiting the number 
of pages that each process has in memory at any given time. Processes not 
resident in memory reside on mass storage in swap files; that is, they are 
outswapped. 

The swapper process is the systemwide physical memory manager. Its 
responsibilities include maintaining an adequate supply of physical memory 
and ensuring that the highest priority computable processes are resident in 
memory. 

18.1 SWAPPER OVERVIEW 

18.1.1 
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This section reviews some basic swapper concepts. 

Swapper Responsibilities 

The swapper has several main responsibilities. The first is to ensure that the 
currently resident processes are the highest priority computable processes in 
the system. When a nonresident process becomes computable, the swapper 
must bring it back into memory if its priority and the available memory 
allow. 

The swapper maintains the number of pages on the free page list above 
the threshold established by the SYSGEN parameter FREELIM. The free page 
list is depleted by requests for physical pages for resolving page faults and 
inswapping computable processes. The swapper performs four operations to 
keep the free page list above FREELIM. These are described in more detail 
in subsequent sections of this chapter. 

1. The swapper deletes process headers (PHDs) of already deleted processes. 
It outswaps any PHDs of previously outswapped process bodies that are 
eligible for outswap. 

2. It invokes the modified page writer subroutine to write modified pages. 
3. It shrinks the working sets of one or more resident processes. 
4. If necessary, the swapper selects an eligible process for outswap and 

removes that process from memory. The table that determines outswap 
selection also determines the order in which processes are selected for 
working set reduction. 
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18.1.3 

18.1 Swapper Overview 

The swapper stops reclaiming pages for the free page list when its size 
exceeds the SYSGEN parameter FREEGOAL. 

The swapper ensures that there are fewer pages on the modified page list 
than the threshold established by the SYSGEN parameter MPW _HILIMIT. 
When the modified page list grows above this limit, the modified page writer 
writes pages to their backing store and moves them to the free page list. 

System Events That Trigger Swapper Activity 

The swapper spends its idle time hibernating. Those executive components 
that detect a need for swapper activity wake the swapper by invoking routine 
SCH$SWPWAKE, in module RSE. In addition, SCH$SWPWAKE is invoked 
once a second from system timer code. SCH$SWPWAKE performs a series 
of checks to determine whether there is a real need for the swapper to run. 
If so, it awakens the swapper. If not, it simply returns. Performing these 
checks in SCH$SWPWAKE, rather than in the swapper process itself, avoids 
the overhead of two needless context switches. 

Table 18.1 lists the system events that trigger a possible need for swapper 
activity, the module containing the routine that detects each need, and the 
action the swapper takes in response. 

The swapper can be awakened in another, more indirect way: clearing 
the cell that contains the modified page list high limit so that a subse­
quent test for whether the list size exceeds its high limit will fail. The 
routine MMG$PURGEMPL, in module WRTMFYPAG, uses this method~ 
This routine, invoked to request the writing of modified pages, is described 
in Chapter 16. 

Swapper Implementation 

The swapper is implemented as a separate process with a priority of 16, the 
lowest real-time priority. It is selected for execution like any other process 
in the system. 

The swapper executes entirely in kernel mode. All swapper code resides in 
system space. The swapper uses its PO space only to swap processes. It has 
a small amount of Pl space as of VMS Version 5, namely a Pl pointer page. 
The major reason for this change was to eliminate a number of special-case 
checks in the executive for swapper process context. 

The swapper serves as a convenient process context for several system 
functions. In particular, during system initialization it performs those ini­
tialization tasks that require process context and must be performed prior 
to the creation of any other process, for example, initializing paged pool and 
creating the SYSINIT process. Chapter 31 describes these functions of the 
swapper. 
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Table 18.1 Events That May Cause the Swapper to Be Awakened 

System Event 

Process that is out­
swapped becomes 
computable 

Quantum end 

Modified page list 
exceeds upper limit 

Free page list drops 
below low limit 

Balance slot of deleted 
process becomes 
available 

PHD reference count 
goes to zero 

Powerfail recovery 

System timer subrou­
tine executes once a 
second 

Routine Name 
(Module) 

SCH$CHSE (RSE) 

SCH$QEND (RSE) 

MMG$DALLOCPFN, 
MMG$INSPFNH/T 

(ALLOCPFN) 
MMG$REMPFN 

(ALLOCPFN) 

DELETE 
(SYSDELPRC) 

MMG$DECPHDREF 
(PAGEFAULT) 

EXE$RESTART 
(POWERFAIL) 

EXE$TIMEOUT 
(TIMESCHDL) 

Swapper Action 

The swapper attempts to make 
this process resident. 

The swapper may be able 
to perform an outswap 
previously blocked by initial 
quantum flag setting or 
process priority. 

The swapper writes modified 
pages. 

The swapper increases the free 
page count, taking the steps 
summarized in Section 18 .1.1. 

The swapper can delete the PHD 
and may be able to perform a 
previously blocked inswap. 

The swapper can outswap a 
PHD to join the previously 
outswapped process body. 

The swapper queues a power 
recovery AST to any process 
that requested one. 

The swapper is awakened if 
there is any work for it. 

18.2 SWAPPER'S USE OF MEMORY MANAGEMENT DATA STRUCTURES 

Chapter 14 describes the memory management data structures used by both 
the page fault handler and the swapper. The discussion here reviews those 
structures and adds descriptions of the structures used exclusively by the 
swapper. 

18.2.1 
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Process Header 

Most of the information used by the swapper in managing the details of 
inswapping or outswapping is contained in the PHD of the process to be 
swapped. The process page tables contain a complete description of the 
address space for a given process. 

The working set list describes those page table entries (PTEs) that are valid. 
This list is crucial for the swapper because only the working set is written 
to the process's swap space when the process is outswapped. In a similar 



18.2.1.1 

18.2.1.2 

18.2.1.3 

18.2 Swapper's Use of Memory Management Data Structures 

fashion, when a process is inswapped, the working set list in the process's 
PHD describes the process pages in the swap file. 

Working Set List. The working set list describes the portion of a process 
virtual address space that must be written to the swap file or otherwise 
dealt with when the process is outswapped; the working set list is trimmed 
to a maximum of WSQUOTA pages before outswap. A page in the process 
working set can be in one of the following three states: 

• The page is valid . 
• The page is currently being read into memory. The swapper treats page 

reads like any other 1/0 in progress when swapping a process . 
• The process PTE contains a global page table index (GPTX), and the indexed 

global page table entry (GPTE) indicates a transition state. The swapper 
handles global pages in a special manner when outswapping a process. 

The swapper's scan of the process working set list at outswap is discussed 
in Section 18.5. 

Process Page Tables. The working set list does not supply the swapper with 
all the information necessary to outswap a process. Other information about 
a virtual page is contained in its PTE or in one of the page frame number 
(PFN) array elements associated with the physical page. Each working set 
list entry (WSLE) effectively points to a PTE that contains a PFN. When 
outswapping, the swapper copies the PTE to the swapper's 1/0 map (see 
Section 18.2.2). It then inserts the contents of the PFN BAK array element 
for this physical page in the PTE, disassociating it from the physical memory 
that its virtual page occupied. 

Process Header Page Arrays. PHD pages are also part of the process working 
set. These pages reside in system space; their system page table entries 
(SPTEs) map the balance set slot in which the PHD resides. As part of 
outswapping, the swapper disassociates the PHD pages from their SPTEs 
so that it can reuse the balance set slot. Thus, unlike process pages, PHD 
pages' PTEs are not available to hold these pages' backing store addresses 
while they are outswapped. 

Instead, when a process is outswapped, the contents of the PFN BAK array 
element for each PHD page currently in the working set is stored in the 
corresponding array element in the PHD page BAK array (see Figure 14.10). 
When the process is inswapped, the PHD page arrays can be scanned and the 
BAK contents copied from the array back into the PFN BAK array elements 
for the physical pages that contain the PHD. 

The swapper also records where each PHD page fits into the working set 
list. It stores the PFN WSLX array element in the corresponding PHD page 
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18.2.3 
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WSLX array element. The use of this array while the PHO is being rebuilt 
following inswap prevents a prohibitively long search of the working set list 
for each PHO page. 

Swapper 1/0 Data Structures 

Like the page fault handler, the swapper uses the conventional VMS 1/0 
subsystem. It allocates its own 1/0 request packet and fills in some of the 
fields that will be interpreted in a special manner by the 1/0 postprocessing 
routine. After these fields have been filled in, it jumps to one of the swapper 
1/0 entry points in module SYSQIOREQ (EXE$BLDPKTSWPR or EXE$BLD­
PKTSWPW) that fills in an appropriate function code and queues the packet 
to the appropriate disk driver. Tables 16.1 and 16.2 show how the 1/0 request 
packet is used by the swapper for its 1/0 activities. 

The swapper uses a private 1/0 map that allows it to read or write a 
process working set, a collection of virtually noncontiguous pages, in one or 
more 1/0 requests. The swapper 1/0 map is an array of WSMAX longwords 
whose address is stored in the global cell SWP$GL_MAP. It can describe one 
outswap or one inswap operation at a time. 

Certain swapper operations complete asynchronously. The swapper main­
tains two bits in the cell SCH$GB_SIP as signals of ongoing operation: when 
set, SCH$V _SIP means that an inswap or outswap is in progress and described 
by the swapper 1/0 map; when set, SCH$V _MPW means that modified page 
writes are in progress. 

At outswap, the PFN of each page to be written to a swap file is stored in 
an array element of the swapper 1/0 map. The address of this array is passed 
to the 1/0 system as the system virtual address of the PTE that maps the 
first page of the 1/0 buffer. At inswap, the swapper allocates physical pages 
of memory for the process working set and records their PFNs in the 1/0 
map. The swap image is read into these pages. As the swapper rebuilds the 
process's working set list and page tables, it copies the l>FN from each entry 
of its 1/0 map to the appropriate system or process PTE. 

Swap File Data Structures 

The system maintains a page file control block for each page and swap file in 
the system. Figure 14.24 shows the layout of this data structure and describes 
its fields. Both page and swap files can be used for swapping. 

During system initialization, the SYSINIT process opens the primary swap 
file SYS$SPECIFIC:[SYSEXE]SWAPFILE.SYS, if it exists, and initializes its 
page file control block. When any additional swap file is installed (with 
the SYSGEN command INSTALL), SYSGEN initializes its page file control 
block. 

In earlier versions of VMS, when a process was created, space for its work­
ing set was assigned in the first swap file with enough free space. When the 
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process's working set grew too large for the swap space, a replacement swap 
slot was allocated. VMS required that there be a swap slot large enough to 
outswap the process at its current size, up to the maximum of its authorized 
quota. When the working set limit was adjusted at image reset, a smaller 
swap slot was allocated. Each swap slot consisted of virtually contiguous 
blocks within a single swap file. 

In VMS Version 5, swap space allocation has changed considerably, reflect­
ing the fact that processes are outswapped relatively infrequently and that 
they are typically outswapped with shrunken working sets. Now swap space 
is not assigned until a process has been selected for outswap, subsequent to 
any swapper trimming. VMS attempts to allocate virtually contiguous space 
in a single swap or page file. If that fails, however, it allocates multiple 
extents in a number of swap and page files. 

This approach requires less dedicated swap file space than in earlier ver­
sions of VMS and results in less fragmentation in swap and page files. The 
overhead of allocating and deallocating seldom-used swap space has been 
eliminated. 

Two fields in the process control block (PCB) of an outswapped process 
record information about its swap space: PCB$L_ WSSWP, its location, and 
PCB$L_SWAPSIZE, its size. These two fields must be adjacent. 

The value in PCB$L_ WSSWP has several interpretations: 

• When a process is first created, its PCB$L_ WSSWP is zeroed to indicate to 
the swapper that this process requires an inswap from the shell. 

• A positive value indicates that the swap space consists of a single extent. 
The upper byte is a longword index into the page-and-swap-file vector (see 
Figure 14.24). The indexed element of the array contains the address of 
the page file control block that describes the process's swap file. The other 
three bytes specify the starting virtual block number of the swap space. 

• A negative value is the system virtual address of a new nonpaged pool 
data structure, called a page file map (PFLMAP). Whenever the swap space 
consists of more ~han one extent, the swapper allocates a PFLMAP with 
one pointer for each extent. 

Figure 18.1 shows the layout of a PFLMAP. PFLMAP$1-PAGECNT is the 
total number of pages described in all the PFLMAP's pointers. PFLMAP$W _ 
SIZE and PFLMAP$B_ TYPE are the standard dynamic data structure fields. 
The size of a PFLMAP depends on the number of pointers it contains. Its 
maximum size is 512 bytes. PFLMAP$B_ACTPTRS is the number of pointers 
in the structure. The pointers begin at offset PFLMAP$Q_PTR. 

Each pointer is a quadword. Its first longword contains a swap file index 
and starting virtual block number, just like the contents of PCB$1-WSSWP 
for a single-extent swap space. The second longword contains the number of 
blocks in the extent. Bit 31 is set in the second longword of the last pointer 
to flag it as the end. 
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(reserved) 

ACTPTRS 1 TYPE 1 SIZE 

t- PTA -
ACTPTRS mapping pointers 

T T 
Figure 18.1 
Page File Map Data Structure 

In the case of a single-extent swap space, PCB$L_SWAPSIZE contains the 
size of the slot, with bit 31 set to indicate it is the only pointer. Thus, the 
executive can treat the quadword beginning at PCB$L WSSWP as a pointer 
with the same form as one in a PFLMAP. 

Figure 18.2 shows the relations among the data structures involved in 
swap file use and also the structure of a single-extent swap space. The upper 
byte of PCB$L_ WSSWP indexes the page-and-swap-file vector array element 
that contains the address of the page file control block for that swap file. 
The page file control block field PFL$1-WINDOW contains the address of 
the window control block (WCBJ describing the location on a mass storage 
medium of the swap file. The field WCB$L_ORGUCB contains the address 
of the unit control block for that device. 

Within the swap file, the process's slot begins at the virtual block whose 
number is in the low three bytes of PCB$L_WSSWP. It must contain room 
for the PHD and the process body (the PO and Pl pages belonging to the 
process). The total size of the swap space, contained in PCB$L_SWAPSIZE, 
is the same as the process's working set size, the sum of PCB$LPPGCNT 
and PCB$LGPGCNT. The field PCB$W_APTCNT contains the size of the 
first part of the space, which is reserved for the PHD. This field has no 
meaning for a resident process; the swapper calculates its value by scanning 
the working set list of a process about to be outswapped. 

18.3 SWAPPER MAIN LOOP 
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The swapper does not determine why it was awakened. Every time it is 
awakened, it tends to all the tasks for which it is responsible. The main 
loop of the swapper consists of the following steps: 

1. It invokes local routine BALANCE, which tests the size of the free page 
list. 

-If there are sufficient free pages, BALANCE transfers to local routine 
OUTSWAP to clean up any deleted PHDs. 
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Figure 18.2 
Swap File Database 

-If there are insufficient free pages and the size of the modified page list 
is large enough, BALANCE requests the writing of modified pages to 
make up the deficit; otherwise, it transfers to OUTSWAP. 

Section 18.3.1 describes BALANCE in more detail. 
2. The swapper invokes the modified page writer routine, MMG$WRTMFY­

PAG, in module WRTMFYPAG, which initiates modified page writing 
in response to any pending requests. For example, if the size of the 
modified page list exceeds its current upper limit, modified pages are 
written until the size of the list falls below the SYSGEN parameter 
MPW_LOWAITLIMIT. Chapter 16 describes the initiation of modified 
page writing. 

3. It invokes local routine SWAPSCHED to identify the highest priority 
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computable outswapped process. If there is none, SWAPSCHED returns. 
Otherwise, it calculates the size of the process's working set and tests 
whether there are enough free pages to accommodate it. 

-If there are enough pages, SWAPSCHED transfers to local routine IN­
SWAP to initiate the inswap. 

-If there are not enough pages, SWAPSCHED enters the OUTSWAP 
routine to make up the free page deficit. 

Section 18.3.2 discusses SWAPSCHED in more detail. 
4. Because the swapper is a system process that executes fairly frequently, 

it is a convenient vehicle for testing whether a powerfail recovery has 
occurred and, if so, notifying all processes that have requested power 
recovery asynchronous system trap (AST) notification through the Set 
Powerfail Recovery AST ($SETPRA) system service. This delivery mech­
anism is described in Chapter 33. 

5. Finally, the swapper puts itself into the hibernate state, after checking 
its wake pending flag. If any thread of execution, including the swapper 
itself in one of its main routines, has requested swapper activity since 
the swapper began execution, the hibernate is skipped and the swapper 
goes back to step l. 

The BALANCE Routine 

BALANCE takes the following steps: 

1. BALANCE acquires the MMG and SCHED spinlocks, raising IPL to IPL$_ 
MMG. 

2. It compares the size of the free page list to its low limit, the SYSGEN 
parameter FREELIM. If modified page writing is in progress, BALANCE 
includes the number of pages being written in the size of the free page 
list. If the number is larger than FREELIM, BALANCE goes on to step 5. 

3. If the number is smaller than FREELIM, the free page list must be re­
plenished to a target size of SYSGEN parameter FREEGOAL pages. The 
swapper tries to free enough pages to make up the difference. BALANCE 
tests whether modified page writing is already in progress. If so, it contin­
ues with step 6. If not, it tests whether the modified page list contains as 
many pages as the SYSGEN parameter MPW _THRESH. If the threshold 
has been reached, BALANCE further tests that the difference between 
the list's current size and its low limit (the SYSGEN parameter MPW _ 
LOLIMIT) is large enough to satisfy the deficit. That is, the modified page 
list must contain enough pages to pass both tests before the swapper can 
replenish the free page list from it. If the modified page list is not large 
enough, BALANCE goes to step 6. 

4. If the modified page list is large enough, it invokes MMG$PURGEMPL, 
in routine WRTMFYPAG, to request that enough pages be written from 
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the modified page list to make up the free page deficit. (Chapter 16 
describes MMG$PURGEMPL and the modified page writer.) BALANCE 
releases the spinlocks and returns. 

5. If there are no PHDs belonging to deleted processes from which to reclaim 
memory, BALANCE releases the spinlocks and returns. 

6. Otherwise, it tests and sets SCH$V _SIP. If the swapper already has an 
1/0 operation in progress, BALANCE releases the spinlocks and returns. 
If not, it transfers to routine OUTSWAP, with the frame pointer IFP) regis­
ter and SWP$GB_ISWPRI set to zero. Section 18.3.3 discusses OUTSWAP 
and the meaning of its arguments. 

The SWAPSCHED Routine and Selection of Inswap Process 

SWAPSCHED takes the following steps: 

1. It acquires the MMG and SCHED spinlocks. 
2. It tests and sets bit SCH$V_SIP in SCH$GB_SIP. If the bit was already 

set, indicating that the swapper map is in use, SWAPSCHED releases the 
spinlocks and returns. 

Otherwise, it selects a process in the computable outswap (COMO) 
state, if one exists, to inswap. Later paragraphs in this section describe 
its selection. If there is no process in the COMO state, SWAPSCHED 
clears SCH$V _SIP, releases the spinlocks, and returns. 

3. If a COMO process exists and there are enough pages for its working set, 
SWAPSCHED transfers to INSWAP to read the process into memory, as 
described in Section 18.6. 

4. If a COMO process exists but there are insufficient pages for its working 
set, SWAPSCHED attempts an optimization aimed at minimizing swap­
ping on systems with more compute-bound processes than can fit into 
available memory. It makes two checks. One is whether the process's 
priority is no higher than the SYSGEN parameter DEFPRI, the default 
process priority. The other is whether less time than the SYSGEN pa­
rameter SWPRATE la time interval with a default value of 5 seconds) 
has elapsed since the last inswap of a process with a priority as low as 
DEFPRI. If both are true, SWAPSCHED abandons the inswap. 

Otherwise, it sets SWP$GB_ISWPRI to the priority of the inswap 
process and FP to the complement of the free page deficit and enters 
OUTSWAP to reclaim enough memory for the inswap. 

The VMS scheduling subsystem maintains 32 quadword listheads for 
COMO processes, one for each software priority (see Figure 12.2). These 
queues are identical to the 32 queues maintained for the computable res­
ident (COM) processes. The steps taken by the swapper to decide which 
process to inswap parallel the steps taken by the rescheduling interrupt ser­
vice routine (see Chapter 12) to select the next process for execution. This 
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Example 18.1 
Parallels Between lnswap Selection and Execution Selection 

Swapper's Inswap Selection Scheduler's Execution Selection 

SCH$IDLE: 
BISL2 CPU$L_CPUID_MASK(R3),-

G-SCH$GL_IDLE_CPUS 
MOVL G-scH$AR_NULLPCB,-

CPU$L_CURPCB(R3) 
MNEGB #1,CPU$B_CUR_PRI(R3) 
UNLOCK LOCKNAME=SCHED,­

NEWIPL=#IPL$_RESCHED 
61$: 

BBS R1,G-SCH$GL_IDLE_CPUS,61$ 

SWAPSCHED: 

5$: 

LOCK 
LOCK 
BBSS 
FFS 

BNEQ 
BBCC 

LOCKNAME=MMG 
LOCKNAME=SCHED 
s-#SCH$V_SIP,w-sCH$GB_SIP,5$ 
#0,#32,w-sCH$GL_COMOQS,R2 
10$ 
s-#SCH$V_SIP,w-sCH$GB_SIP,5$ 

UNLOCK LOCKNAME=MMG 
UNLOCK LOCKNAME=SCHED,­

NEWIPL=#O 
RSB 

10$: 
PUSHR 
MOVAQ 
MOVL 
CMPB 
BNEQ 

#-M<R6,R7,R8,R9,R10,R11,AP,FP> 
G-SCH$AQ_COMOH[R2] ,R3 G) 
(R3),R4 G) 
#DYN$C_PCB,PCB$B_TYPE(R4) 
QEMPTY 

LOCK LOCKNAME=SCHED,-
LOCKIPL=#IPL$_SYNCH 

BRW 30$ 

SCH$SCHED: : 
FIND_CPU_DATA R3,ISTACK=YES 
LOCK LOCKNAME•SCHED 

30$: 
FFS #0,#32,G-SCH$GL_COMQS,RO 
BEQL SCH$IDLE 

MOVAQ G-scH$AQ_COMH[RO],R2 
REMQUE G(R2)+,R4 
BVS QEMPTY 

State Change from COMO to COM State Change from COM to CUR 

SCH$CHSEP: : 
REMQUE (R4),R1 

BNEQ 10$ 
MOVZWL PCB$W_STATE(R4),R1 
BBC R1,EXESTATE,10$ 
MOVZBL PCB$B_PRI(R4),R1 
BLBC PCB$W_STATE(R4),5$ 
ADDL 

5$: 
BBCC 
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#32,R1 

R1,G-SCH$GL_COMQS,10$ 

REMQUE G(R2)+,R4 
BVS QEMPTY 
BNEQ 40$ 

BBCC RO,G-SCH$GL_COMQS,40$ 

(continued) 
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Example 18.1 (continued) 
Parallels Between Inswap Selection and Execution Selection 

10$: 
MOVB RO,PCB$B_PRI(R4) 
MOVL #SCH$C_COM,R1 

30$: 
BBSS 

35$: 
MOVW 
MOVAQ 

40$: 
INS QUE 
RSB 

40$: 
CMPB #DYN$C_PCB,PCB$B_TYPE(R4) 
BNEQ QEMPTY 

Ro,G-sCHSGL_COMQS,35$ 

R1,PCB$W_STATE(R4) 0 MOVW #SCH$C_CUR,PCB$W_STATE(R4) 
G-SCH$AQ_COMT[RO],R2 

(R4) ,Gl(R2)+ G) MOVL lt4,CPU$L_CURPCB(R3) 

parallel is shown in Example 18.1, which contains code extracts from the 
modules SWAPPER, SCHED, and RSE. 

The first half of the example shows the swapper's selection of the next 
inswap process and the nearly identical instructions in the rescheduling 
interrupt service routine, often called the scheduler. The numbers in the 
example correspond to the numbered steps in the following list: 

(!)The SCHED spinlock is acquired to synchronize access to the scheduler 
database. 

G)The highest priority nonempty (COMO/COM) queue is selected. 
G)The address of its forward pointer is loaded into a register. 
G) The address of the selected PCB is loaded into R4. 

At this point, SWAPSCHED has found a process to inswap. As previously 
described, it tests whether the free page list is large enough. If so, the inswap 
proceeds. If not, SWAPSCHED enters the OUTSWAP routine to reclaim 
memory. 

After enough pages are available, the swapper takes the steps necessary to 
bring the selected process Into memory. 

The scheduler, on the other hand, continues execution. The REMQUE in­
struction shown in the example for the scheduler is duplicated for ease of 
comparison. 

Some time later, the inswap operation completes. The swapper rebuilds 
the working set list and process page tables. The parallel resumes when the 
swapper invokes routine SCH$CHSEP, in module RSE, to change the state 
of the newly inswapped process to computable. 

@The selected PCB is removed from its former state (COMO/COM). 
G) If the removal of the PCB emptied the queue, the associated priority bit 

in the summary longword is cleared. Note that SCH$CHSEP has biased 
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Rl so that it points to SCH$GLCOMOQS, the summary longword for 
the COMO state. 

G)The STATE field in the PCB is loaded with the new state (COM/CUR) of 
the process. 

G)Finally, the address of the PCB is stored appropriately: the PCB for the 
inswapped process is inserted into a COM queue; the address of the 
current process's PCB is stored in the processor's per-CPU database. 

At this point, the parallel ends. The newly inswapped process will be 
scheduled when the processor (or a member of a symmetric multiprocess­
ing system) is available and the process is the highest priority computable 
process able to execute. 

The OUTSWAP Routine 

The swapper executes the OUTSWAP routine to perform one or more tasks 
related to memory reclamation. OUTSWAP is entered with the MMC and 
SCHED spinlocks held. It has two arguments. The first is the contents of 
FP, the desired function: 

• A value of zero means OUTSWAP is to free deleted PHDs and, if possible, 
outswap a PHD to join its outswapped process body . 

• A positive value is the size of the free page deficit that OUTSWAP must 
make up without outswapping a process . 

• A value of 8000000016 means OUTSWAP must free a balance set slot, 
either by outswapping a PHD or, less immediately, by outswapping a 
process body . 

• Any other negative value is the complement of the free page deficit that 
OUTSWAP is to make up any way possible. 

The second is SWP$GB_ISWPRI, which contains zero or the priority of the 
inswap candidate. SCH$0SWPSCHED, invoked by OUTSWAP, compares 
this priority to that of certain processes to determine if they are suitable 
candidates for shrinking or outswapping; when zero is supplied, all those 
processes are considered candidates. An internal priority of zero represents 
the highest priority. Section 18.4 provides details on the selection of shrink 
and outswap candidates. 

OUTSWAP takes the following steps: 

1. It first attempts to reclaim memory by releasing the PHD of a previously 
deleted process or by outswapping the PHD of a previously outswapped 
process. It scans the PHD reference count array for a suitable header. 

2. If OUTSWAP finds a PHD with a zero reference count, it tests the cor­
responding PHV$GLPIXBAS array element. 

-If it contains -1, the process has been deleted and the swapper can 
release its PHD slot. OUTSWAP scans the SPTEs that map the slot, 
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releases any valid pages to the free page list, and deallocates any page 
file backing store associated with any invalid pages. When done, it 
clears the PHV$GLPIXBAS array element and changes the PHD ref­
erence count array element to -1. It returns to the beginning of the 
swapper's main loop. 

-If the corresponding PHV$GL_PIXBAS array element contains a pos­
itive value, the process has been outswapped and OUTSWAP can 
outswap its PHD, as described in Section 18.5.3. 

3. If the PHD has a nonzero reference count and belongs to an outswapped 
process, OUTSWAP takes the steps described in Section 18.5.3.1 to at­
tempt to sever all the connections between the PHD and memory so it 
can be outswapped. 

4. If the reference count is still nonzero, requiring that modified pages be 
written, OUTSWAP returns to step 2, to scan for another PHD. 

5. If OUTSWAP scans all the balance set slots without finding a PHD to 
release or outswap, it tests the FP argument. 

-If the argument is positive or zero, OUTSWAP returns to BALANCE, 
the only routine that invokes it with either of these values. 

-If the argument is negative, OUTSWAP continues with the next step. 

6. OUTSWAP invokes SCH$0SWPSCHED, in module OSWPSCHED, to 
shrink working sets and possibly select a process to outswap. Section 1804 
describes these operations. 

Whenever SCH$0SWPSCHED shrinks a process working set, it checks 
whether the free page deficit has been made up. If the deficit has not yet 
been made up, it makes checks similar to those previously described 
to determine whether writing the modified page list is appropriate and 
whether it would satisfy the deficit. If it would, SCH$0SWPSCHED 
invokes MMG$PURGEMPL, in routine WRTMFYPAG, to request that 
enough modified pages be written to make up the free page deficit. 

7. If SCH$0SWPSCHED returns with an identified outswap candidate, 
OUTSWAP takes the steps described in Section 18.5 to outswap it. After 
outswapping the process and attempting to outswap its PHD, OUTSWAP 
returns to the beginning of the swapper's main loop. 

If SCH$0SWPSCHED returns without an identified outswap candi­
date, OUTSWAP simply returns to its invoker. 

18.4 SELECTION OF SHRINK AND OUTSWAP PROCESSES 

When the swapper needs physical memory or a balance set slot, it invokes 
the routine SCH$0SWPSCHED, in module OSWPSCHED. It specifies ei­
ther how many pages of memory it needs or that it needs a balance set 
slot. SCH$0SWPSCHED can shrink the working sets of selected processes, 
select a process to be outswapped, or perform both operations. SCH$0SWP­
SCHED performs two levels of shrinking: in first-level trimming, it shrinks 
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.an extended working set back to the normal maximum working set limit 
(WSQUOTA); in second-level trimming, it attempts to shrink a working set 
to the SYSGEN parameter SWPOUTPGCNT. Before performing any second­
level trimming, it shrinks all working sets that have been extended. Note 
that with VMS Version 5, SCH$0SWPSCHED stops trimming after reclaim­
ing the requested number of pages. 

SCH$0SWPSCHED scans the scheduler database looking for processes to 
be shrunk or outswapped. Whenever it gains free pages from shrinking a 
process working set, it checks whether there are enough pages on the free 
and modified page lists to satisfy the swapper's need. If enough pages are 
available, SCH$0SWPSCHED returns. It also returns if it finds a process to 
be outswapped. 

The search for a candidate process is table-driven. The following sec­
tions describe first the table and then information about the multiple passes 
through the table. 

The OSWPSCHED Table 

The OSWPSCHED table is divided into sections, each specifying one or 
more resident process scheduling states and a set of conditions associated 
with each state. Table 18.2 lists the individual entries and sections in the 
OSWPSCHED table. States in the same section are considered equivalent. 
Selection of shrink and outswap candidates depends on the factors named in 
the column heads of Table 18.2. 

SCH$0SWPSCHED scans the scheduling queues in the order shown in the 
State column. It checks whether any process in that state queue satisfies the 
conditions in the second through sixth columns. If a process satisfies those 
conditions, it is a candidate for shrinking and possibly for swapping. When 
SCH$0SWPSCHED finds such a process, its subsequent action depends on 
the flags described in the last column. 

The conditions in the table entries discriminate among processes, based 
on their likelihood of becoming computable in a short while and the effects 
of shrinking or swapping them. When the system needs to reclaim physical 
memory, process working sets extended in times of plentiful memory are 
shrunk first. In general, the intent is to prevent the outswap of a process 
that is about to become computable when the only reason for the swap 
is to bring a computable process of equal priority into memory. Overall 
system performance may be improved by shrinking processes rather than 
swapping them. However, a process in some states may be affected less by 
being swapped than by having its working set reduced. 

Descriptions of the various conditions and flags follow: 

• I/0-A table entry in this column can specify No direct, Direct, No 
buffered, Buffered, and n/ a. 
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Table 18.2 Selection of Shrink and Outswap Candidates 

Initial Long 
State 1/0 Priority Quantum Wait Dormant Flags 
SUSP No buffered n/a n/a n/a n/a Swap 

(SWAPASAPI 

SUSP Buffered n/a n/a n/a n/a Second 
(SWPOGOALI 

COM n/a n/a n/a n/a Yes First only 
(LVLLTRIMI 

lllB n/a n/a n/a Yes n/a Second 
LEF No direct n/a n/a Yes n/a Second 

CEF No direct n/a n/a n/a n/a Second 

lilB n/a n/a n/a No n/a Second 
LEF No direct n/a n/a No n/a Second 

FPG n/a Yes n/a n/a n/a n/a 
CO LPG n/a Yes n/a n/a n/a n/a 

MWAIT n/a n/a n/a n/a n/a n/a 

CEF Direct Yes Yes n/a n/a n/a 
LEF Direct Yes Yes n/a n/a n/a 

PFW n/a Yes Yes n/a n/a n/a 
COM n/a Yes 1 Yes n/a No n/a 

1 This constraint is not present in the table; however, it is present in the algorithm and thus shown here. 

When a process that is in a local event flag (LEF) or common event flag 
(CEF) scheduling state has an outstanding direct 1/0 request, there is a 
high probability that the process is waiting for the direct 1/0 to complete. 
If so, the process will soon become computable and thus be a less desirable 
shrink or outswap candidate. SCH$0SWPSCHED therefore distinguishes 
between processes with and without outstanding 1/0 requests. 

With VMS Version 5, a suspended process, by default, can receive kernel 
and executive ASTs. To prevent such a process from being outswapped and 
then becoming computable again as the result of buffered 1/0 completion, 
the table distinguishes between suspended processes with and without 
outstanding buffered 1/0 requests. 

In this column, n/a means that the existence of either type of outstanding 
1/0 request is irrelevant. No test is made for either. 

• Priority-A table entry in this column can specify Yes or n/a. 
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Yes in this column means that SCH$0SWPSCHED compares the prior­
ities of the inswap process with that of any process that may be shrunk or 
outswapped. A process that is computable or likely to be computable soon 
is not considered a candidate, unless its priority is less than or equal to that 
of the potential inswap process, stored in global location SWP$GB_ISWPRI. 
(The swapper zeros SWP$GB_ISWPRI before invoking SCH$0SWPSCHED 
to make up a free page list deficit.) 

In this column, n/a means no test is made . 
• Initial Quantum-A table entry in this column can specify Yes or n/a. 

Yes in this column means that SCH$0SWPSCHED rejects a process that 
is in its initial memory residency quantum. A process likely to become 
computable soon is not considered a candidate for second-level trimming 
or outswapping if it is within its initial memory residency quantum. If 
SWP$GB_ISWPRI is less than or equal to 15, the constraint is ignored. The 
intent is to leave the process in memory long enough to do useful work, 
after the system has expended the overhead of inswapping it. This reduces 
the possibility of swap thrashing, a condition in which the system spends 
more time swapping in and out than in process execution. 

In this column, n/a means that SCH$0SWPSCHED does not test if the 
process is in its initial quantum. 

• Long Wait-A table entry in this column can specify Yes, No, or n/a. 
Either Yes or No in this column means that SCH$0SWPSCHED deter­

mines whether a process has been waiting in an LEF or hibernate (HIB) 
state longer than the SYSGEN parameter LONGWAIT. Yes means that 
for a process to be a candidate, it must be in a long wait. A process that 
has been waiting a long time is likely to wait longer still; one that has 
been waiting a short time is more likely to become computable soon. For 
example, a process waiting for terminal input longer than a LONGWAIT 
interval is likely to remain in LEF longer still. 

No in this column means that the process must not have been waiting 
a long time; n/a means that SCH$0SWPSCHED does not test for this 
condition. 

• Dormant-A table entry in this column can specify Yes, No, or n/a. 
Either Yes or No in this column means that SCH$0SWPSCHED de­

termines whether a computable process is dormant, that is, one whose 
priority is less than or equal to the SYSGEN parameter DEFPRI and that 
has been on a COM or COMO queue for longer than the SYSGEN param­
eter DORMANTWAIT. Yes in this column means that the process must 
be dormant to be a candidate. A dormant process is considered a very good 
candidate to be shrunk. An example of such a process is a compute-bound 
process with a priority too low to get CPU time. This condition was added 
to expedite the shrinking and outswap of a process such as a low-priority 
batch job. While the process runs at night on a lightly loaded system, its 
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working set is expanded and it can acquire extensive physical memory, but 
once interactive users log in, the process cannot get CPU time. 

No in this column means the process must not be dormant to be a candi­
date; n/a means that SCH$0SWPSCHED does not test for this condition. 

This older mechanism for dealing with dormant processes persists in 
case the system manager has disabled . the newer, preferred mechanism, 
the combination of PIXSCAN priority boost and quantum-end working set 
trimming. Chapter 17 contains information on quantum-end trimming, 
and Chapter 12 describes the PIXSCAN mechanism. 

• Flags-Three flags direct SCH$0SWPSCHED to take specific action on a 
particular pass through the table. In this column, n/a means no specific 
action is indicated. 

The LVLL TRIM flag, shown in the table as First Only, means that the 
working set of a process selected by this entry should only be trimmed to 
WSQUOTA. Such a process is ignored in the second pass of the table. 

The SWAPASAP flag, shown in the table as Swap, indicates that SCH$0-
SWPSCHED should outswap a process selected by this entry after reducing 
its working set to WSQUOTA. When the outswapped process becomes 
computable again, it will not have to waste compute time rebuilding its 
working set. 

The SWPOGOAL flag, shown in the table as Second, indicates that 
SCH$0SWPSCHED must try to shrink the working set size of a process 
selected by that table entry to SWPOUTPGCNT. Shrinking the working 
set of such a process may reclaim enough memory that the process need 
not be outswapped. 

In addition to conditions imposed by the table entries, there are several 
implicit constraints on the suitability of a particular process to be shrunk 
or outswapped. A process cannot be outswapped if it has locked itself into 
the balance set. The working set of a process that has disabled automatic 
working set adjustment cannot be shrunk. The working set of a real-time 
process cannot be shrunk below WSQUOTA. If the executive has temporarily 
blocked changes to the working set list and PTEs of a process (by setting 
the bit PHD$V _NO_ WS_CHNG in PHD$W _FLAGS), the process's working 
set cannot be shrunk or outswapped. A process that is already outswapped 
cannot be shrunk or outswapped. 

Passes Through the OSWPSCHED Table 

SCH$0SWPSCHED makes two passes through the table. On its first pass, it 
potentially traverses all sections of the table, performing first-level trimming 
of any candidate processes. If it has been entered with a request to outswap 
a process to free a balance set slot, the first candidate process that is shrunk 
and that has not locked itself into the balance set is also selected as an 
outswap candidate. 
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If SCH$0SWPSCHED has been entered to satisfy a free page deficit, it 
reclaims memory from working sets that had been extended until it reaches 
the end of the table, reclaims enough free pages to satisfy the deficit, or 
finds a process to be outswapped. A suitable outswap candidate is one that 
meets the scheduling state and conditions of a table entry that includes the 
SWAPASAP flag and that has not locked itself into the balance set. 

If SCH$0SWPSCHED reaches the end of the table without satisfying the 
deficit or locating an outswap candidate, it scans the table again, starting at 
the beginning. If it has been entered to satisfy a free page deficit, it performs 
second-level trimming. If it has been entered to free a balance set slot, it 
selects for outswap with no trimming the first candidate process that has 
not locked itself into the balance set. 

In second-level swapper trimming, SCH$0SWPSCHED can scan each sec­
tion of the table twice. First, if the entry contains the SWPOGOAL flag, 
SCH$0SWPSCHED shrinks the working set of a process selected by this en­
try !unless the process has disabled automatic working set adjustment). The 
working set is reduced, if possible, to the SYSGEN parameter SWPOUTPG­
CNT. If the deficit is not satisfied, SCH$0SWPSCHED continues scanning 
through processes selected by the table section. When it gets to the end of 
the section, it restarts at the beginning of the section, looking for a process 
to outswap. When SCH$0SWPSCHED gets to the end of the section for the 
second time, it goes to the next section. The pass ends when the deficit is 
satisfied or a process is found to outswap. If outswapping a process does not 
satisfy the deficit, eventually the swapper will reexecute the OUTSWAP and 
SCH$0SWPSCHED routines. 

The swapper maintains a failure counter that records the number of times 
it has failed to locate a candidate to shrink or swap. This count is maintained 
across invocations of SCH$0SWPSCHED. It is intended to loosen the con­
straints in situations where the normal conditions have failed to produce 
candidates. When this count reaches a value equal to SWPFAIL, the swapper 
ignores certain constraints when selecting a process to shrink or outswap: it 
ignores the initial quantum condition for all processes and the priority con­
straint for all processes except COM ones. The counter is reset each time an 
outswap candidate is successfully located. 

When the swapper scans· a series of processes in a particular scheduling 
queue, the scan begins with the least recently queued entry lat the tail of 
the queue). This starting point ensures that the longer a process has been in 
a wait queue, the more chance it has of being shrunk or swapped. IA process 
is inserted into a wait queue at the front of the list, unlike most queues.) 

18.5 OUTSWAP OPERATION 
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Outswap is described before inswap because it is easier to explain inswap 
in terms of what the swapper puts into the swap file. The swapper does 
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not remove processes from the balance set indiscriminately. In practice, the 
swapper tries hard not to swap. It tries to satisfy the deficit first by shrinking 
working sets, deleting or outswapping PHDs, and writing modified pages. If 
those fail to free enough pages, if SCH$0SWPSCHED encounters a process 
that meets the constraints of a table entry with the SWAPASAP flag, or if the 
system needs a balance set slot (PHD slot), the swapper outswaps a process. 

Selection of Outswap Candidate 

As described in Section 18.4, the outswap selection is driven by an ordered 
table of scheduling states and associated conditions. The swapper selects a 
process less likely to benefit from remaining in memory. Once a candidate is 
selected, the swapper prepares the working set of that process for outswap. 

Outswap of the Process Body 

The swapper outswaps the process body (PO and Pl pages) separately from 
the PHD. There are two reasons for doing this: 

• Fields in the PHD (most notably WSLEs and process PTEs) are modified as 
the working set list is processed. 

• The PHD may not be swappable at the same time as the body because of 
outstanding I/O, pages on the modified page list, or some other reason. 

Scanning the Working Set List. To prepare the process body for outswap, the 
swapper scans the working set list. It must examine each page in the working 
set list to determine if any special action is required. The swapper looks at a 
combination of the page type (found in the WSLE as well as the PFN TYPE 
array) and the valid bit. Table 18.3 lists all combinations of page type and 
valid bit setting that the swapper encounters and the action that it takes for 
each. Several combinations are discussed further in the following sections. 
(One type of page not discussed further is a page locked into memory, one 
whose WSLE PFNLOCK bit is set. The swapper ignores such pages; they 
remain in memory, and no action is required.) 

The basic step that the swapper takes as it scans the working set list 
is to add a description of each swappable page to the swapper I/O map. 
As a result, the virtually noncontiguous pages in the process's working set 
appear virtually contiguous to the 1/0 system (see Figures 18.4 and 18.7) 
in the swapper's PO address space. For each page, the swapper performs the 
following steps: 

1. Locates the PTE from the virtual page number in the WSLE 
2. Determines any special action, based on page validity and page type 
3. Copies the PFN from the PTE to the swapper map 
4. Records the modify bit (logical OR of PTE modify bit and PFN STATE 

array element saved modify bit) in the WSLE 
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Table 18.3 Scan of Working Set List of Outswap Process 

Page Type 
WSLE(3:1} 

Process page 

Process page 

System page 

Global 
read-only 

Global 
read-only 

Global 
read/write 

Page table 
page 

Page 
Validity 
PTE 

Transition 

Valid 

Transition 

Valid 

Action of Swapper for This Page 

(STATE = Read in Progress) Treat as page with 
I/O in progress. Special action may be taken 
at inswap or by the modified page writer. 

(STATE= Read Error) Drop from working set. 
No other transition states are possible for a 
page in the working set. 

Outswap page. If there is outstanding I/O 
and the page is modified, store in its PFN 
SWPVBN array element the swap fl.le address 
where the updated page contents should be 
written when the I/O completes. 

It is impossible for a system page to be in a 
process working set. The swapper generates 
an error. 

If the process PTE still contains a PFN, this 
page is an active transition page. Outswap 
the page. If the process PTE contains a GPTX, 
then the global page table must contain a 
transition PTE. The page is dropped from the 
process working set. 

If SHRCNT = 1, then outswap. If SHRCNT > 1, 
drop from working set. It is highly likely that 
a process can fault such a page later without 
I/O. This check avoids multiple copies of 
the same page in the swap fl.le. 

Drop from working set. At inswap, it would 
be difficult to determine whether the page 
in memory is more up-to-date than the swap 
fl.le copy. 

Not part of the process body. However, while 
the swapper is scanning the process body, 
the virtual address field in the working set 
list is modified to reflect the offset from the 
beginning of the PHD because page table 
pages will probably be located at different 
virtual addresses following inswap. 

5. Sets the Delete Contents bit in the PFN STATE array element. This bit 
causes the page to be placed at the head of the free page list when its 
reference count goes to zero (normally, when the swap write completes). 

Note that the swapper does not explicitly restore each PTE to the contents 
of its PFN BAK array element. The contents will be replaced when the page 
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is released (after the swap write completes and all other references to the 
page are eliminated). 

Pages with Direct 1/0 in Progress. If, in the swapper's scan of the working 
set list, it encounters a modified page with outstanding 1/0, it stores in the 
page's PFN SWPVBN array element the location in the swap file where that 
page belongs. The page will be swapped along with the rest of the process 
body to reserve a place for it in the swap file. 

If the I/O operation is a read (or if it is a write and some other action 
has caused the page to be modified), the physical page will be placed on the 
modified page list when the I/O completes. The modified page writer takes 
special action for a modified page with nonzero contents in its PFN SWP­
VBN array element. That is, it writes the page to the designated block in the 
swap file rather than to its normal backing store address. 

If the I/O operation is a write (from memory to mass storage) and the 
page was not otherwise modified, the contents currently being written to 
the swap file are good. The page will be placed on the free list when the I/O 
operation completes. 

Global Pages. Global pages are also given special treatment at outswap. If the 
global page is writable, it is dropped from the process working set before the 
process is outswapped. The task of determining whether the contents that 
are swapped are up-to-date when the process is brought back into memory is 
more complicated than simply refaulting the page (often without I/O) when 
the process is swapped back into memory. 

A global read-only page is only swapped if its global share count (PFN 
SHRCNT array element) is 1. In all other cases, the page is dropped from 
the working set and must be refaulted (most likely without I/O) after the 
process is inswapped. (Global pages that are explicitly or implicitly locked 
into the process working set are not dropped from the working set.) Global 
transition pages are also dropped from the process working set. 

Example of Process Body Outswap. Figures 18.3 through 18.5 show some of 
the special cases the swapper encounters while it is scanning the process 
working set list. The key information about each page is a combination of 
the PTE validity and the page type. The order of the scan is defined by the 
order of the working set list. Figure 18.3 shows the process working set, 
the process page tables, and the associated PFN database entries before the 
swapper begins its working set scan. Figure 18.4 shows the modified working 
set and the swapper map after the working set list scan but before the I/O 
request is initiated. Figure 18.5 shows the state of the PTEs after the swap 
write has completed and the physical pages have been released. 

1. WSLE 1 is a global read-only page. The VPN field of the WSLE locates 
the PTE. The PFN field of the PTE locates the PFN data associated with 
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this physical page. In particular, the PFN SHRCNT array element for this 
page is 1. (This process is the only process that currently has this page 
in its working set.) The swapper writes this page out as part of the swap 
image for this process. Thus, PFN A is the first page in the swapper's 1/0 
map (see Figure 18.4). 

When the swapper's write completes, the page will be deleted; that is, 
the PTE array element will be cleared and the page will be placed at the 
head of the free page list (see Figure 18.5). 

2. WSLE 2 is a process page that also has 1/0 in progress (a REFCNT of 2). 
This page will be swapped; its PFN is shown in the swapper map. 

If the page was previously modified (if either the PTE modify bit or 
saved modify bit in the PFN STATE array element is set), the address in 
the swap file where the page belongs is stored in the PFN SWPVBN array 
element. Nonzero contents in the PFN SWPVBN array element cause 
the page to be placed on the modified page list when it is released. If the 
process is still outswapped when the modified page writer writes this 
page, the page will be written to the block reserved for it in the swap 
file. 

The page is marked for deletion. That is, when the REFCNT for the 
page reaches zero (because of completion of both the outstanding 1/0 and 
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the swapper's write), the page is placed at the head of the free page list 
and its PTE array element cleared. 

3. WSLE 3 is a global read/write page. The page is dropped from the process 
working set (see Figure 18.4); the process PTE contents are replaced with 
the GPTX of GPTE R, and the PFN SHRCNT array element for PFN B 
is decremented. Notice that PFN B is not included in the swapper map, 
which contains a list of the physical pages that will be written to the 
swap file. 

4. WSLE 4, the last WSLE in this example, is an ordinary process page. The 
page is added to the swapper map (PFN D) and it is marked for dele­
tion. The deletion will actually occur after the swapper's write operation 
completes. 

Outswap of the Process Header 

The PHD is not outswapped until after the process body has been success­
fully written to the swap file. Before the PHD can be outswapped, all ties 
between physical pages and the process page tables must be severed, includ­
ing not only those pages that were in the process working set and written to 
the swap file but also those pages that are in some transition state, notably 
pages on the free and modified page lists. 

Partial Outswap. After the process body has been outswapped, the PHD 
becomes eligible for outswap. In fact, the header of an outswapped process is 
one of the first things that the swapper looks for in an attempt to add pages 
to the free page list. 

The indication that the PHD cannot be outswapped yet is found in the 
PHD vector reference count array (see Figure 14.23). This array counts the 
number of reasons (transition pages, active page table pages, and so on) that 
prevent the PHD from being outswapped. 

Because the outswap of the header need not immediately follow the body 
outswap (a situation referred to as a partial outswap), it is possible that a 
PHD will not be swapped in the time between the outswap and subsequent 
inswap of its process body. In the corresponding partial inswap, the swapper 
need not allocate a balance set siot and bring the PHD into memory because 
it is already resident. 

If the swapper locates a PHD with a nonzero reference count belonging 
to an outswapped process, it takes whatever actions are required to remove 
the ties that bind the PHD to physical memory. The first such step is to 
eliminate any transition PTE whose physical page is on the free page list. 

It locates a transition PTE by scanning the free page list for a page whose 
PFN PTE array element contents lie within the PO or Pl page tables of the 
PHD being examined. It starts its scan at the back of the list with the most 
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recently queued entries, on the assumption that the transition pages are more 
frequently in the back half of the list. Whenever it finds such a page, it resets 
the process PTE to the contents of its PFN BAK array element. The swapper 
clears the PFN REFCNT and PTE array elements and moves the page from 
its current location to the head of the free page list. 

Because the free page list is only one of several transition states, the scan 
of the free page list may not free the PHD for removal. Pages may be in some 
other transition state. Transition states that represent some form of 1/0 in 
progress (release pending, read in progress, write in progress) are left alone 
because there is nothing that the swapper can do until the 1/0 completes. 
After the free page list is scanned, if the process still has transition pages, 
the swapper invokes MMG$PURGEMPL to request that all modified pages 
be written that are mapped by page tables in the PHD or that are in the 
PHD itself. A modified page written to its backing store is released to the 
free page list. After the pages are selectively purged from modified page list, 
the swapper scans the free list again. 

If the swapper succeeds in releasing a PHD with the previously described 
free page list scan, it can take the steps described in the next section to 
outswap the PHD. 

Outswap of the Process Header. Once the reference count for the PHD 
reaches zero, it can be outswapped and the balance slot freed. The outswap 
of the PHD is entirely analogous to the outswap of a process body. That 
is, all the header pages in the working set list are scanned and put into 
the swapper's 1/0 map to form a virtually contiguous block for the 1/0 
subsystem. 

There are several differences between the outswap of a PHD and a process 
body. When a process body is outswapped, the header that maps that body 
is still resident. When the swapper's write completes and each physical page 
is being deleted, the contents of the PFN BAK array element for each page 
are put back into the process PTE. 

PHD pages are mapped by SPTEs for that balance set slot. The SPTEs are 
not available to hold the PFN BAK array contents because they will be used 
by the next occupant of this balance set slot. Instead, the PHD page BAK 
array (see Section 18.2.1.3) serves this purpose. As the PHD is processed for 
outswap, the contents of the PFN BAK array for each active header page are 
stored in the corresponding PHD page BAK array element. 

At the same time, the location of each header page within the working 
set list is stored in the WSLX array. This array prevents a prohibitively long 
search to rebuild the PHD when the process is swapped back into memory. 

Once the header is successfully outswapped, PCB$V _PHDRES in PCB$L_ 
STS, the header-resident bit, is cleared and the balance slot is available for 
further use. 
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The inswap is exactly the opposite of the outswap operation. The swapper 
brings the PHD, including active page tables and the process body, back into 
physical memory. It then uses the contents of the working set list to rebuild 
the process page tables, an operation that primarily involves updating each 
valid PTE to reflect the new PFN used by that PTE. At the same time that 
each page is being processed, the swapper can resolve any special cases that 
existed when the process was outswapped. 

Selection of an lnswap Candidate 

As described in Section 18.3.2, the swapper sel~cts a process for inswap, 
much as the scheduler selects a candidate for execution. The following 
processes may be potential candidates for inswap: 

• Newly created processes 
• Processes in some outswapped wait state that were just made computable 
• Processes that were outswapped while in the computable state 

The highest priority COMO process is the one selected for inswap. 

Preparation for Inswap 

The swapper must ensure that there is a balance set slot for the PHD and 
allocate physical memory for the working set. 

If the PHD is resident, the number of header pages (PCB$W _APTCNT) is 
subtracted from the size of the outswap image in the swap file; even though 
the PHD is not in the swap file, space has been reserved for it there. Thus, 
whether the header is resident determines the total number of blocks that 
must be read from the swap file and the virtual block number where the 
read should begin. 

If the PHD has been outswapped, the swapper scans the PHD reference 
count array for a balance set slot with a negative reference count. If it fails 
to find one, it transfers control to the routine OUTSWAP, specifying that 
a process should be outswapped to free a balance set slot. (Section 18.3.3 
summarizes OUTSWAP's actions.j If it does find one, it increments the 
PHD reference count to zero, stores the low word of the process's ID in 
the corresponding PHV$GL_PIXBAS array, and stores the address of the slot 
in PCB$LPHD. 

It then allocates as many physical pages from the free page list as are re­
quired to accommodate the process working set. If it cannot allocate enough 
pages from the free page list, it transfers control to OUTSWAP, specifying 
the number of free pages to be reclaimed. If enough free pages are available, 
it updates the PFN database arrays for each page and builds a PTE to insert 
in the swapper I/O map. 
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lnswap of the Process Header 

If the PHD was outswapped, it must be brought back into memory before the 
process body can be reconstructed. The swapper must adjust those process 
parameters that are tied to a specific balance set slot lthat is, specific sys­
tem virtual or physical addresses) to reflect the PHD's new location. These 
include the following: 

• Each SPTE that maps a PHD page must be initialized with the appropriate 
PFN. 

• The virtual addresses of the PO and Pl page tables must be calculated and 
loaded into their locations in the hardware PCB. 

• The physical address of the hardware PCB must be calculated and loaded 
into the software PCB field PCB$L_PHYPCB. 

• Finally, the Pl PTEs that double-map the PHD pages that are not page table 
pages must be initialized with the PFNs that contain the corresponding 
pages. 

Rebuilding th:.! Process Header. When a PHD is read from the swap image 
into a new balance slot, the SPTEs that map each balance slot page must 
be loaded with the PFNs from the swapper map that contain each header 
page. In addition, the PFN database must be set up for each of these physical 
pages. The swapper does all this work in a simple loop that it executes for 
each header page. 

The simplicity land speed) of the loop results from the use of the two 
PHD page arrays in the PHD. These arrays enable the PFN BAK and WSLX 
array elements to be loaded from the information copied to the two headei: 
arrays when the process was outswapped. To access these arrays, the swapper 
temporarily maps the PHD into its PO space using the swapper 1/0 map. 

Pl Window to the Process Header. In any resident process, all the PHD pages 
except process page tables are double-mapped into the process's Pl space. 
This Pl mapping provides invariant addresses for the nonpageable part of 
the PHD. The system space mapping is subject to change with outswap 
and inswap: if the header is outswapped, it is likely to be inswapped into a 
different balance set slot. No routine can safely store a system address of a 
PHD or any part of a PHD in a register, unless it blocks swapping, because 
the address could change between the register initialization and its use. 

The executive observes the following conventions with respect to PHD 
references: 

• Any process context reference to the PHD should use the Pl address where 
possible ICTL$G1-PHD contains the Pl address of the PHD). 

• Any reference to the system space header must execute at an IPL high 
enough to block rescheduling and thus swapping. 

537 



The Swapper 

18.6.4 

18.6.4.1 

18.6.4.2 

538 

• A reference to a process page table must be made through the system space 
address because the page table pages are not doubly mapped. Because a 
process page table must be accessed with swapping blocked, at an IPL too 
high to permit page faults, the executive must first examine the SPTE that 
maps the page table to determine the validity of the page table page. 

There are two implications for the operating system: 

• These physical pages are not kept track of through reference counts. How­
ever, all these header pages are a permanent part of the process working 
set . 

• The Pl page table page that maps these pages must also be a permanent 
member of the process working set. 

Rebuilding the Process Body 

The PHD must be in a known state before the process body can be restored 
to the state it was in before the process was outswapped. If the PHD was 
never outswapped, very little need be done; otherwise, it is first inswapped 
and restored, as previously described. 

Rebuilding the Working Set List and Process Page Tables. Rebuilding the 
process body involves a scan of both the swapper map and the process 
working set list. Recall that at outswap, the processing of each page was 
determined by a combination of page type and validity. On inswap, the key 
to the processing of each page is the contents of the PTE located by the 
virtual address field in the WSLE. An approximation of swapper activity for 
each page is as follows: 

1. The PTE is located from the virtual address in the WSLE. 
2. In the usual case, the original contents of the PTE are put into the PFN 

BAK array element, and the PFN from the swapper map is loaded into 
the now valid PTE. 

3. If, for some reason, a copy of the page already exists in memory, that 
page is put into the process working set. The duplicate page from the 
swapper map is released to the front of the free page list. 

If the virtual address field represents a system space address, the WSLE 
describes a page in the PHD. The swapper must calculate the new system 
virtual address corresponding to that page and modify the WSLE. 

Table 18.4 details the different cases the swapper can encounter when 
rebuilding the process page tables. At inswap time, the swapper uses the 
contents of the PTE to determine what action to take for each particular 
page. 

Pages with I/O in Progress When Outswap Occurred. Pages that had I/O in 
progress when the process was outswapped were written to the swap file 
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Table 18.4 Rebuilding the Working Set List and the Process Page Tables 

Type of Page Table Entry 

PTE is valid. 

PTE indicates a transition page 
jprobably because of outstand­
ing 1/0 when process was 
outswapped). 

PTE contains a GPTX. jPage must 
be global read-only because global 
read/write pages were dropped 
from the working set at outswap 
time.) 

PTE contains a page file index or a 
process section table index. 

Action of Swapper for This Page 

Page is locked into memory and was never 
outswapped. No actibn is required. 

Fault transition page into process working 
set. Release duplicate page that was just 
inswapped. 

Swapper action is based on the contents 
of the GPTE: 
• If the GPTE is valid, copy the PFN 

in the GPTE to the process PTE and 
release the duplicate page. 

• If the GPTE indicates a transition 
page, make the GPTE valid, add that 
physical page to the process working 
set, and release the duplicate page. 

• If the GPTE indicates. a GSTX, then 
keep the page just inswapped and 
make that the master page in the 
GPTE as well as the slave page in the 
process PTE. 

These are the usual contents for a page that 
did not have outstanding 1/0 or other 
page references when the process was 
outswapped. The PFN in the swapper 
map is inserted into the process page 
table. The PFN arrays are initialized for 
that page. 

anyway to reserve space. If the page was previously unmodified, it would be 
put onto the free page list when both the swap write and the outstanding 
write operation completed. If the page was previously modified, it would be 
put onto the modified page list when both the swap write and the outstanding 
write operation completed !because the contents of the SWPVBN array were 
nonzero). 

In either case, it is possible for the process to be swapped back in before 
one of these physical pages was reused. The swapper uses the physical page 
that is already contained in the process PTE las a transition page) and releases 
the duplicate physical page from the swapper map to the front of the free 
page list. 

In the case of a page on the free page list, this decision is simply one of 
convenience. In the case of a page on the modified page list, the contents of 
the page in the swap image are out-of-date, and the swapper has no choice 
but to use the physical page that.is already in memory. 
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Resolution of Global Read-Only Pages. The only possible global page that 
could be in the swap file is a global read-only page that had a share count 
of 1 when the process was outswapped lor a page that was explicitly locked). 
All other global pages were dropped from the process working set before the 
process was outswapped. 

There are two cases that the swapper can find when rebuilding the process 
page tables. At inswap, the process PTE for a global read-only page always 
contains a GPTX. The swapper's treatment of the page is determined by the 
contents of the GPTE indexed by the GPTX: 

• If no other process has mapped the global page, the GPTE contains a GSTX. 
The swapper stores the PFN from the swapper map in both the process PTE 
and the GPTE. 

• If some other process referenced the global page while this process was 
outswapped, the GPTE can indicate a valid or a transition page. In either 
case, the swapper releases the duplicate page to the free page list and stores 
the PFN from the GPTE in the process PTE. If the page is in transition, 
the swapper makes it valid. 

Example of an Inswap Operation. Figures 18.6 through 18.8 show an inswap 
operation that illustrates some of the special cases that the swapper encoun­
ters when inswapping a process body. Note that this example is not related 
to the outswap example shown in Figures 18.3 to 18.5. 

Figure 18.6 shows the state of the PHD after the process has been selected 
to be inswapped. Figure 18.7 shows that four physical pages have been al­
located to contain the four working set pages that the example describes. 
Figure 18.8 shows the rebuilt process page tables and the PFN database 
changes that result from rebuilding the working set and process page tables. 

1. WSLE 1 locates virtual page number X. This PTE contains a GPTX. The 
referenced GPTE IGPTE T) contains a GSTX, indicating that the GPTE 
is not valid. 

PFN D is put into the process page table. It is also added to the global 
page database by making the GPTE valid !see Figure 18.8), putting PFN D 
into the GPTE, and updating the PFN data for physical page D to reflect 
its new state. 

2. WSLE 2 is a process page mapped by PTE W !see Figure 18.7). This PTE 
contains a process section table index. The PTE is updated to contain 
PFN C, and the PSTX is stored in the BAK array element for that page 
!see Figure 18.7). Other PFN array elements are updated accordingly. 

3. WSLE 3, which locates PTE Y, is exactly like the first, as far as the process 
data is concerned. However, the GPTE IGPTE SJ is valid, indicating that 
another copy of this page already exists. !This could occur only if another 
process faulted the page while this process was outswapped.) 
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Working Set List and Rebuilt Page Tables 

The duplicate page IPFN EJ is released to the front of the free page 
list. The process PTE is altered to contain the physical page that already 
exists IPFN B) and the share count for that page is incremented lfrom 3 
to 4). 

4. WSLE 4 resembles the second. However, the process PTE indicates a 
transition page. IThis implies that the header in this example was never 
outswapped. J 

The action taken here is similar to step 3, where a duplicate global 
page was discovered. The page just read IPFN F) is released to the head of 
the free list. The transition page IPFN Aj is faulted back into the process 
working set by removing the page from the free list, setting its state to 
active, and turning the valid bit in the PTE back on. 

Final Processing of the Inswap Operation. After the working set list has been 
scanned and the process page tables rebuilt, the process is ready to have its 
state changed from COMO to COM. Several other scheduling actions must 
be completed before the scheduler is notified: 

1. A new value of ASTLVL is calculated and stored in the hardware PCB 
in the PHD. IASTs may have been queued to the process while it was 
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outswapped. The hardware PCB, which contains a copy of the ASTLVL 
register, was not available while the header was not resident.) 

2. The resident bit and the initial quantum bit are set in PCB$1-STS. 
3. The process's swap space is deallocated. 
4. A new quantum interval is loaded into the PHD. 
5. Finally, SCH$CHSEP is invoked to make the process computable. 
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In this bright little package, now isn't it odd? 
You've a dime's worth of something known only to God! 

Edgar Albert Guest, The Package of Seeds 

The VMS operating system creates and uses many data structures in the 
course of its work. It creates some of them at system initialization; it creates 
others when they are needed and destroys them when their useful life is 
finished. VMS maintains several areas of virtual address memory, called 
pools, in which it allocates and deallocates data structures. Each such area 
has different characteristics. This chapter describes these memory areas, 
their uses, and their allocation and deallocation algorithms. 

19.1 DYNAMIC DATA STRUCTURES AND THEIR STORAGE AREAS 

19.1.1 
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Almost all the VMS data structures created after system initialization are 
volatile, allocated on demand and deallocated when no longer needed. These 
data structures have similar headers (see Section 19.1.4). Their memory 
requirements vary in a number of ways: 

• Pageability-Data structures accessed by code running at interrupt priority 
level (IPL) 2 or below can be pageable; data structures accessed at higher 
IPLs cannot. 

• Virtual location-Some data structures are local to one process, mapped 
in its per-process address space; others must be mapped in system space, 
accessible to multiple processes and to system context code. 

• Protection-Many dynamic data structures are created and modified only 
by kernel mode code, but.some data structures are accessed by outer modes. 

Storage Areas for Dynamic Data Structures 

VMS provides different storage areas to meet the memory requirements of 
dynamic data structures. There are several pools of storage for variable-length 
allocation: a nonpageable system space pool, a pageable system space pool, 
and a pageable per-process space pool. On systems with MA780 multiport 
memory, there is an additional pool of nonpageable shared memory. 

In addition, VMS provides lookaside lists of preformed, fixed-length pack­
ets; these enable faster allocation and deallocation of the most frequently 
used sizes and types of storage. Throughout this chapter, packet refers to a 
preformed, fixed-length allocation, and block refers to a variable-length al­
location. The storage areas are summarized in Table 19.l and are described 
in more detail in later sections of this chapter. 
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Table 19.1 Comparison of Different Pool Areas 

System Space 

NONPAGED POOL 

Protection 
Synchronization technique 
Type of list 
Allocation 
Minimum request size 
Characteristics 

ERKW 
Spinlock 
Variable-length 
Multiple of 16 bytes 
1 byte 
Nonpageable, expandable 

LARGE REQUEST PACKET jLRP) LOOKASIDE LIST 

Protection ERKW 
Synchronization technique Interlocked queue 
Type of list Fixed-length packets 
Allocation @IOC$GL_LRPSIZE 1 

Minimum request size @IOC$GL_LRPMIN 1 

Characteristics Nonpageable, expandable 

INTERMEDIATE REQUEST PACKET jlRP) LOOKASIDE LIST 

Protection ERKW 
Synchronization technique Interlocked queue 
Type of list Fixed-length packets 
Allocation 176 bytes 
Minimum request size 1+@IOC$GL_SRPSIZE 1 

Characteristics Nonpageable, expandable 

SMALL REQUEST PACKET jSRP) LOOKASIDE LIST 

Protection ERKW 
Synchronization technique Interlocked queue 
Type of list Fixed-length packets 
Allocation @IOC$GL_SRPSIZE 1 

Minimum request size 1 byte 
Characteristics Nonpageable, expandable 

PAGED POOL 

Protection 
Synchronization technique 
Type of list 
Allocation 
Minimum request size 
Characteristics 

ERKW 
Mutex 
Variable-length 
Multiple of 16 bytes 
1 byte 
Pageable 

Per-Process Space 

PROCESS ALLOCATION REGION 

UREW Protection 
Synchronization technique Access mode and IPL 

(continued) 
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Table 19.1 Comparison of Different Pool Areas (continued) 

Per-Process Space 

PROCESS ALLOCATION REGION 

Type of list 
Allocation 
Minimum request size 
Characteristics 

Variable-length 
Multiple of 16 bytes 
1 byte 
Pageable, expandable into PO space 

KERNEL REQUEST PACKET (KRP) LOOKASIDE LIST 

URKW Protection 
Synchronization technique 
Type of list 
Allocation 
Minimum request size 
Characteristics 

Access mode and INSQUE/REMQUE 
Fixed-length packets 
CTL$c_KRP _SIZE 
KRP$C_KRP _SIZE 
Pageable 

1 The @ symbol precedes the address of a location containing the 
specified value. 

Variable-Length Blocks 

Pools that permit allocation of variable-length blocks have a common struc­
ture. Each pool has a listhead containing the address of the first unused block 
in the pool. The first two longwords of each unused block describe the block. 
As illustrated in Figure 19.1, the first longword in a block contains the ad­
dress of the next unused block in the list. The second longword contains the 
size in bytes of the unused block. Each successive unused block is found at 
a higher address. Thus, the unused blocks in each pool area form a singly 
linked, memory-ordered list. Table 19.2 summarizes the listheads and other 
related locations. 

Each variable-length pool has its own set of allocation and deallocation 
routines. Each of the allocation routines for the variable-length pools rounds 
the requested size up to the next multiple of 16 bytes to impose a granularity 
on both the allocated and unused areas. Because all the pool areas are initially 
page-aligned, this rounding causes every structure allocated from the pool 
areas to be at least octaword-aligned. 

The various allocation and deallocation routines invoke the lower level 
routines EXE$ALLOCATE and EXE$DEALLOCATE, which support the 
structure common to the variable-length lists. Each routine has two argu­
ments: the address of the pool listhead and the size of the data structure to 
be allocated or deallocated. These general-purpose routines are also used for 
several other pools, including symbol table space of the Digital command 
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Used 

Beginning of pool area 
'---------' (filled in when system 

is initialized) 

r------"i...----H~------, Address of first free block 

T 

Size of this blbck 

First unused 
blOOk 

Used 

Figure 19.1 

J 

(modified by allocation 
.__ __ a __ _, and deallocation routines) 

(Zero in pointer 
signifies end of list) 

Layout of Unused Areas in Variable-Length Pools 

language (DCL) interpreter, the process space pool of the network ancillary 
control process (NETACP), and the global page table. 

All the allocation and deallocation routines described in this chapter are 
in module MEMORYALC. 

Variable-Length Block Allocation. When the allocation routine EXE$ALLO­
CATE is invoked, it searches from the beginning of the list until it encounters 
an unused block large enough to satisfy the request. If the fit is exact, the 
allocation routine simply adjusts the previous pointer to point to the next 
free block. If the fit is not exact, it subtracts the allocated size from the 
original size of the block, puts the new size into the remainder of the block, 
and adjusts the previous pointer to point to the remainder of the block. That 
is, if the fit is not exact, the low-address end of the block is allocated, and 
the high-address end is placed back on the list. The two possible allocation 
situations (exact and inexact fit) are illustrated in Figure 19.2. 

Variable-Length Block Allocation Examples. The first part of Figure 19.2 
(Initial Condition) shows a section of paged pool; MMG$GLPAGEDYN, 
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Table 19.2 Pool Listheads and Selected Data Cells 

Location 

EXE$GL_NONPAGED 2+4 
EXE$GL_NONPAGED 2 +8 

MMG$GL_NPAGEDYN 3 

MMG$G1-NPAGNEXT 3 

IOC$GQ_LRPIQ 4 

IOC$GQ_LRPIQ 4 +4 
IOC$GL_LRPSPLIT 4 

MMG$GL_LRPNEXT 3 

IOC$GQ_IRPIQ 4 

IOC$GQ_IRPIQ 4 +4 
EXE$GL_SPLITADR 2 

MMG$GL_IRPNEXT 3 

IOC$GQ_SRPIQ 4 

IOC$GQ_SRPIQ 4 +4 
IOC$GL_SRPSPLIT 4 

MMG$GL_SRPNEXT 3 

EXE$GL_PAGED 2 

EXE$GL_PAGED 2+4 

MMG$GL_PAGEDYN 3 

Contents 

NONPAGED POOL 

Address of first free block 
Size of zero (for dummy listhead) 

to speed allocation 
Address of beginning of nonpaged 

pool area 
Address of beginning of pool 

expansion area 

LRP LOOKASIDE LIST 

Displacement to first free block 
Displacement to last free block 
Address of beginning of LRP area 
Address of beginning of LRP 

expansion area 

IRP LOOKASIDE LIST 

Displacement to first free block 
Displacement to last free block 
Address of beginning of IRP area 
Address of beginning of IRP 

expansion area 

SRP LOOKASIDE LIST 

Displacement to first free block 
Displacement to last free block 
Address of beginning of SRP area 
Address of beginning of SRP 

expansion area 

PAGED POOL 

Address of first free block 
Size of zero (for dummy listhead) 

to speed allocation 
Address of beginning of paged 

pool area 

PROCESS QUOTA BLOCK (PQBI LOOKASIDE LIST 

EXE$GL_PQBIQ 2 

EXE$GL_PQBIQ 2 +4 
Displacement to first free block 
Displacement to last free block 

PROCESS ALLOCATION REGION 

Address of first free block CTL$GQ_ALLOCREG 5 

CTL$GQ_ALLOCREG 5+4 Size of zero (for dummy listhead) 
to speed allocation 

Static or 
Dynamic 1 

Dynamic 
Static 

Static 

Dynamic 

Dynamic 
Dynamic 
Static 
Dynamic 

Dynamic 
Dynamic 
Static 
Dynamic 

Dynamic 
Dynamic 
Static 
Dynamic 

Dynamic 
Static 

Static 

Dynamic 
Dynamic 

Dynamic 
Static 

(continued) 
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Table 19.2 Pool Listheads and Selected Data Cells (continued) 

Location 

CTL$GQ_POALLOC 5 

CTL$GQ_POALLOC 5 +4 

. CTL$GL_KRPFL 5 

CTL$GL_KRPBL 5 

CTL$GL_KRP 5 

Contents 

PROCESS ALLOCATION REGION 

Address of first free block 
Size of zero (for dummy listhead) 

to speed allocation 

KRP LOOKASIDE LIST 

Address of first free block 
Address of last free block 
Address of beginning of KRP area 

Static or 
Dynamic 1 

Dynamic 
Static 

Dynamic 
Dynamic 
Static 

1 Static locations are loaded at initialization time, and their contents do not change 
during the life of the system. The contents of dynamic locations change as pool is 
allocated, deallocated, and expanded. 

2 The module SYSTEM_DATA..CELLS (part of the base image, SYS.EXE) defines these 
symbols. 

3 The module SYSPARAM (part of the base image, SYS.EXE) defines these symbols. 
4 For improved performance, these symbols are defined as global cells in module 

MEMORYALC, part of a loadable executive image, rather than as universal symbols 
vectored through the base image. Routines in other loadable executive images refer 
to them as offsets from the contents of the universal location EXE$AILSYSTEM_ 
PRIMITIVES_DATA. For more information on loadable executive images, the base 
image, and vectored universal symbols, see Chapter 29. 

5 The module SHELL defines these Pl space symbols. 

which points to the beginning of paged pool; and EXE$GL_PAGED, which 
points to the first available block of paged pool. In this example, allocated 
blocks of memory are identified only by the total number of bytes in use, 
with no indication of the number and size of the individual data structures 
within each block. 

The second part of Figure 19.2 (80 Bytes Allocated) shows the structure of 
paged pool after the allocation of an 80-byte block. Note that the discrete 
portions of 96 bytes and 48 bytes in use and the 80 bytes that were allocated 
are now combined to show a 224-byte block of paged pool in use. 

The third part of Figure 19.2 (48 Bytes Allocated) shows an alternative 
scenario, the structure of paged pool after the allocation of a 48-byte block. 
The 48 bytes were taken from the low-address end of the first unused block 
large enough to contain it. Because this allocation was not an exact fit, an 
unused 32-byte block remains. 

Variable-Length Block Deallocation. When a block is deallocated, it must be 
inserted into the list according to its address. EXE$DEALLOCATE follows 
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EXE$GL_PAGED:: 

MMG$GL_PAGEDYN:: 

Initial Condition 

in use 

Figure 19.2 

From listhead 

80 Bytes Allocated 

l 176 bytes 1 

224 bytes in use 
(96+80+48 bytes) 

Examples of Variable-Length Block Allocation 

From listhead 

48 Bytes Allocated 

l 176 bytes 1 

the unused area pointers until it encounters a block whose address is larger 
than the address of the block to be deallocated. If the deallocated block is 
adjacent to another unused block, the two blocks are merged into a single 
unused area. 

This merging, or agglomeration, can occur at the end of the preceding 
unused block or at the beginning of the following block jar both). Because 
merging occurs automatically as a part of deallocation, there is no need for 
any externally triggered routine to consolidate pool fragmentation. 

Variable-Length Block Deallocation Examples. Figure 19.3 shows three sam­
ple deallocations, two of which illustrate merging. The first part of the fig­
ure jlnitial Condition) shows an area of paged pool containing logical name 
blocks for three logical names: ADAM, GREGORY, and ROSAMUND. These 
three logical name blocks are bracketed by two unused portions of paged 
pool, one 64 bytes long, the other 17 6 bytes long. 
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Figure 19.3 

Logical Name Block 
(80 bytes) 

Logical Name GREGORY 

Logical Name Block 
(80 bytes) 

Logical Name ROSAMUND 

Logical Name Block 
(48 bytes) 

Logical Name ADAM 

Logical Name Block 
(80 bytes) 

To next block 

Logical Name GREGORY 1 

To next block 

Examples of Variable-Length Block Deallocation 

The second part of Figure 19.3 (ADAM Deleted) shows the result of delet­
ing the logical name ADAM. Because the logical name block was adjacent 
to the high-address end of an unused block, the blocks are merged. The size 
of the deallocated block is simply added to the size of the unused block. No 
pointers need to be adjusted. 
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The structure shown in the third part of Figure 19.3 (GREGORY Deleted) 
shows an alternative scenario, the result of deleting the logical name GRE­
GORY. The pointer in the unused block of 64 bytes is altered to point to the 
deallocated block; a new pointer and size longword are created within the 
deallocated block. 

The fourth part of Figure 19.3 (ROSAMUND Deleted) shows the result of 
deleting the logical name ROSAMUND. In this case, the deallocated block 
is adjacent to the low-address end of an unused block, so the blocks are 
merged. The pointer to the next unused block that was previously in the 
adjacent block is moved to the beginning of the newly deallocated block. 
The following longword is loaded with the size of the merged block (240 
bytes). 

Fixed-Length Packets 

Fixed-length lists, also known as lookaside lists, consist of fixed-length pack­
ets available for allocation. With VMS Version 5, each (with the exception 
of the KRP lookaside list) is a doubly linked, self-relative queue with a list­
head containing the displacements to the first and last unused blocks in 
the list. Figure 19.4 (Initial Condition) shows the form of a fixed-length list. 
Table 19.2 summarizes the listheads and other related locations. 

Fixed-length lists expedite the allocation and deallocation of the most 
commonly used sizes and types of storage. In contrast to variable-length allo­
cation, fixed-length allocation is very simple. There is no overhead searching 
for a sufficiently large block of free memory to accommodate a specific re­
quest. Instead, a REMQHI instruction allocates a packet from the front of the 
appropriate list (see Figure 19.4, Packet Removed from Head). An INSQTI in­
struction deallocates a packet to the back of a list (see Figure 19.4, Packet 
Inserted at Tail). 

Interlocked queue instructions synchronize concurrent access to system 
space lookaside lists on symmetrical multiprocessor (SMP) systems. Chap­
ter 8 contains further information on interlocked queue instructions. 

A KRP lookaside list exists in each process's Pl space and is accessed 
only from the owning process's context. The list is a doubly linked, absolute 
queue, whose listhead contains the addresses of the first and last blocks in 
the list. REMQUE and INSQUE instructions remove and insert KRPs in the looka­
side list, and provide sufficient synchronization in this context. Section 19.5 
describes the use of KRPs. 

Dynamic Data Structures 

Almost all dynamic data structures have a common header format, shown in 
Figure 19.5. The header includes two structure-describing fields: the number 
of bytes allocated for the data structure in the word at offset 8 and the type 
code in a byte at offset 10. 
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The third longword of a data structure contains the size, type, and (op­
tional) subtype fields, leaving the first two longwords available to link the 
data structure l.nto a list or queue. 

The type field enables VMS to distinguish different data structures and to 
confirm that a piece of dynamic storage contains the expected data structure 
type. Data structures with a type code value equal to or larger than 96 also 
have a one-byte subtype code at offset 11. The macro $DYNDEF defines the 
possible values for the type and subtype fields. The high-order bit's being set 
in the type field indicates that a structure is allocated from MA780 multiport 
memory. 

When a dynamic data structure is deallocated to the variable-length list, 
the size field specifies how much storage is being returned. 

The System Dump Analyzer (SDA) Utility uses the type and size fields to 
produce a formatted display of a dynamic data structure and to determine 
the portions of variable-length pool that are in use. 

19.2 NONPAGED POOL REGIONS 
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Nonpaged dynamic memory contains data structures and code used by the 
portions of VMS that run in system context, such as interrupt service rou­
tines and device drivers. For these parts of the operating system, only system 
space is accessible. Furthermore, they execute at IPLs above 2, where page 
faults are not permitted. 

Nonpaged dynamic memory, more commonly known as nonpaged pool, 
also contains data structures that are shared by several processes and that 
may be accessed above IPL 2. 

The protection on nonpaged pool is ERKW, allowing it to be read from 
executive and kernel modes but written only from kernel mode. 

Nonpaged pool is the most heavily used of the storage areas. It consists of 
a variable-length list and three fixed-length lookaside lists. The three looka­
side lists are the large request packet (LRP), intermediate request packet 
(IRP), and small request packet (SRP) lists. These lists provide for the most 
frequently allocated nonpaged pool data structures. Nonpaged pool is some­
times allocated explicitly from a lookaside list and sometimes implicitly, 
as the result of general nonpaged pool allocation. Section 19.2.2 discusses 
allocation in detail. 

Early versions of VMS had only one lookaside list, whose primary use 
was for I/O request packets; it was called the I/O request packet lookaside 
list. Many other types of packets use the IRP lookaside list today, and the 
I has come to stand for intermediate. Nevertheless, I/O request packets are 
still among the most performance-critical and frequent users of this list, and 
although the intermediate packet size varies from VMS version to version, 
it is always at least the size of an I/O request packet. 
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Nonpaged Pool Initialization 

SYSGEN parameters determine the sizes of the nonpaged pool lists. Non­
paged pool is potentially expandable during normal system operation. Two 
SYSGEN parameters specify the initial size and the maximum size of each 
of the four nonpaged pool regions. 

SYSGEN parameters NPAGEDYN and NPAGEVIR control the size in 
bytes of the variable-length region of nonpaged pool. Both are rounded down 
to an integral number of pages. During system initialization, SYSBOOT 
allocates sufficient contiguous system page table entries (SPTEs) for the 
maximum size of the region, NPAGEVIR. It then allocates physical pages 
of memory for the initial size of the region, NPAGEDYN, and maps them 
using the first portion of the allocated SPTEs. To minimize overhead, the 
initial allocations of physical pages of memory come from pages whose state 
is not described by the page frame number (PFN) database. The remaining 
SPTEs remain invalid. Later pool expansions also come from such pages, as 
long as any are available. Chapter 14 describes page table entries. 

SYSBOOT allocates SPTEs and physical pages of memory for the looka­
side lists in the same manner as for the variable-length list. It allocates· 
nonpaged system space following the variable-length list for each lookaside 
list. Table 19.3 lists the SYSGEN parameters relevant to each lookaside list. 
Figure 19.6 shows the four regions of nonpaged pool. In each of the three 
lookaside lists, the elements in the initial allocation are formed and inserted 
into a list with the INSQTI instruction, resulting in a doubly linked list of 
fixed-size elements. 

During system operation, a failure to allocate from a nonpaged pool region 
results in an attempt to expand it. Section 19.2.4 describes pool expansion. 
The deallocation merge strategy described in Section 19.2.3 requires that the 
four nonpaged pool regions occupy progressively higher virtual memory ad­
dresses. That is, all the blocks on the variable-length list must have addresses 
that are less than all LRP addresses; all LRPs must have addresses that are 
less than all IRP addresses; and so on. It is because of this restriction that 

Table 19.3 SYSGEN Parameters Controlling Lookaside List Sizes 

List Type 

SRP 
IRP 
LRP 

Size of Packet 

SRPSIZE 
176 
LRPSIZE+ 140 I 

Initial Count 

SRPCOUNT 
IRPCOUNT 
LRPCOUNT 

Maximum 
Count 
SRPCOUNTV 
IRPCOUNTV 
LRPCOUNTV 

1 The actual packet size is the sum of LRPSIZE and 140, rounded up 
to a multiple of 16. 
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MMG$GL:_NPAGEDYN:: L l 1 Variable·Length List Region NPAGEDYN 

J NPAGEVIR 

MMG$GL_NPAGNEXT:: [ J Room for Expansion j 
IOC$GL_LRPSPLIT:: l J LAP List Region l 1 IOC$GQ_LRP IQ:: l -- --[ x] t--r< ~ ... LRPCOUNT 

* LRPCOUNTV 
LRPSIZE * 

J LRPSIZE 

MMG$GL_LRPNEXT:: l J Room for Expansion j 
EXE$GL_SPLITADR:: l l 1 IOC$GQ_IRP IQ:: B IRP List Region 

IRPCOUNT 

* IRPCOUNTV 
176 * 

J 176 

MMG$GL_IRPNEXT:: [ ]_ 
Room for Expansion j 

IOC$GL_SRPSPLIT:: [ ]_ l 1 IOC$GQ_SRP IQ:: B SAP List Region 
SRPCOUNT 

* SRPCOUNTV 
SRPSIZE .* 

J 
SRPSIZE 

MMG$GL_SRPNEXT:: [ r Room for Expansion j 
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Figure 19.6 
Nonpaged Pool Regions 

the maximum number of SPTEs are allocated contiguously for each region, 
even if some of them are initially unused. 

The cell IOC$GL_SRPSIZE contains the size of the elements in the SRP 
list. The SYSGEN parameter SRPSIZE determines this value. SYSBOOT 
rounds SRPSIZE up to a multiple of 16. 

The symbol IRP$C_LENGTH, rounded up to the next multiple of 16, 
determines the size of an IRP list element. In VMS Version 5.2, an IRP is 
176 bytes. 

The cell IOC$GL_LRPSIZE contains the size of the elements in the LRP 
list. SYSBOOT computes IOC$GL_LRPSIZE by adding CXB$C_OVERHEAD 
{140 in VMS Version 5.2) to the SYSGEN parameter LRPSIZE and rounding 
up the sum to a multiple of 16. The parameter LRPSIZE is intended to be 
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the DECnet buffer size, exclusive of a 140-byte internal buffer header. (Note 
that the output of SHOW MEMORY displays the inclusive packet size.) 

Nonpaged Pool Allocation 

A number of routines in module MEMORYALC allocate nonpaged pool. 
Some of these routines, such as EXE$ALLOCPCB or EXE$ALLOCTQE, al­
locate pool for a particular type of data structure, filling in its size and 
type. Some routines, intended for use only within process context, con­
ditionally place the process into a resource wait (see Chapter 12) for re­
source RSN$_NPDYNMEM if pool is unavailable. All these routines invoke 
EXE$ALONONPAGED, the general nonpaged pool allocation routine. 

In several instances, VMS routines explicitly allocate request packets from 
a lookaside list. For example, when the Queue 1/0 Request ($QIO) system 
service needs an IRP, it executes a REMQHI instruction. Several other system 
routines allocate IRPs this way. Only if the lookaside list is empty (indicated 
by the V-bit set in the processor status word (PSW) following the REMQHI) is 
the general nonpaged pool allocation routine invoked. 

Similarly, the Enqueue Lock Request ($ENQ) system service allocates pool 
for a lock block by removing an SRP from the lookaside list. The SYSGEN 
parameter SRPSIZE is constrained to be at least the size of a lock block. It 
allocates pool for a resource block by removing an IRP from the lookaside 
list. 

Because allocation from and deallocation to a lookaside list are so much 
faster than the equivalent operations involving the variable-length list, 
EXE$ALONONPAGED performs special checks to determine whether the 
requested block can be allocated from one of the lookaside lists. These checks 
compare the request size to the lists' upper and lower limits. Figure 19.7 
shows the size ranges for the looka~ide lists. The ranges are defined so that 
the majority of requests can be satisfied from one of the lookaside lists. 

Requests that must be allocated from the variable-length list are either 

• Larger than an LRP, or 
• Larger than an IRP but smaller than the SYSGEN parameter LRPMIN 

The symbolic names in Figure 19.7 are defined as follows: 

SRPSIZE IRPSIZE LRPSIZE 

~ 
~ 

t 
f i SRP 

~ 
IRP LRP 

00 

IRPMIN LRPMIN 

Figure 19.7 
Lookaside List Allocation Ranges 
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Symbol 

SRPSIZE 

IRPMIN 
IRPSIZE 

LRPMIN 
LRPSIZE 

Meaning 

IOC$GL_SRPSIZE, the SYSGEN parameter SRPSIZE 
rounded up to a multiple of 16 

IOC$GL_IRPMIN, the sum of IOC$G1-SRPSIZE plus 1 
IRP$C_LENGTH rounded up to a multiple of 16, the 

constant 176 in VMS Version 5.2 
IOC$GL_LRPMIN, the SYSGEN parameter LRPMIN 
IOC$GL_LRPSIZE, the sum of SYSGEN parameter 

LRPSIZE plus 140 in VMS Version 5.2 

EXE$ALONONPAGED allocates nonpaged pool by the following steps: 

1. It compares the requested size to the ranges just described to determine 
which, if any, lookaside list it can use. 

2. If none of the lookaside lists is appropriate, it branches to EXE$ALO­
NPAGVAR to allocate the pool from the variable-length list. 

3. If one of the lookaside lists is appropriate and the list is not empty, the 
routine removes the first packet from the list and returns its address to 
the caller. 

4. If one of the lookaside lists is appropriate but is empty, EXE$ALONON­
PAGED attempts to expand the list (see Section 19.2.4) and, if it succeeds, 
retries the allocation. If the lookaside list cannot be extended, it branches 
to EXE$ALONPAGVAR to allocate the pool from the variable-length list. 

EXE$ALONPAGVAR, an alternative entry point to EXE$ALONON­
PAGED, allocates pool only from the variable-length list. It is invoked di­
rectly whenever multiple pieces of pool are allocated as a single larger piece 
but deallocated in a piecemeal fashion. EXE$ALONPAGVAR performs the 
following steps: 

1. It rounds the allocation size up-to a multiple of 16. 
2. It acquires the POOL spinlock, raising IPL to IPL$_POOL. 
3. It invokes the lower level routine EXE$ALLOCATE, described in Sec­

tion 19.1.2. 
4. It releases the POOL spinlock, restoring the previous IPL. If EXE$AL­

LOCATE succeeded, EXE$ALONPAGVAR returns the size and address 
of the allocated block. If the allocation failed, EXE$ALONPAGVAR at­
tempts to expand the list (see Section 19.2.4). If the expansion succeeds, 
EXE$ALONPAGVAR repeats the allocation attempt. If the expansion 
fails, it returns the error status SS$_INSFMEM to its invoker. 

Nonpaged Pool Deallocation 

A consumer of nonpaged pool invokes EXE$DEANONPAGED to deallocate 
nonpaged pool back to any of the four regions. Figure 19.6 shows the four 
regions and the cells that identify their boundaries. 
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EXE$DEANONPAGED determines to which region the packet or block of 
pool is being returned, not by its size but by its address, taking the following 
steps: 

1. It compares the address of the block being deallocated to the contents of 
global location IOC$GL_SRPSPLIT. If the address is greater or equal, the 
block came from the SRP list. 

2. If the block's address is less than the contents of IOC$G1-SRPSPLIT, 
EXE$DEANONPAGED compares it to the contents of EXE$G1-SPLIT­
ADR. If the address is greater or equal, the block came from the IRP 
list. 

3. If the block's address is less than the contents of EXE$GL_SPLITADR, 
EXE$DEANONPAGED compares it to the contents of IOC$GL_LRP­
SPLIT. If the address is greater or equal, the block came from the LRP 
list. 

4. If the block's address is less than the contents of IOC$G1-LRPSPLIT, 
the block came from the variable-length list. 

EXE$DEANONPAGED returns a packet to one of the lookaside lists with 
an INSQTI instruction, as described in Section 19.1.3. By allocating pack­
ets from one end of the list and deallocating them to the other end, VMS 
maintains a transaction history as long as the list itself. 

If the block was allocated from the variable-length list, EXE$DEANON­
PAGED acquires the POOL spinlock, raising IPL to IPL$_POOL; invokes 
EXE$DEALLOCATE, the lower level routine described in Section 19.1.2; and 
then releases the POOL spinlock, restoring the previous IPL. 

When any variable-length block is returned or when a lookaside packet 
is returned to an empty list, EXE$DEANONPAGED must declare that non­
paged pool is available. It acquires the SCHED spinlock, raising IPL to IPL$_ 
SCHED; invokes SCH$RAVAIL to declare the availability of nonpaged pool 
for any process that might be waiting for resource RSN$_NPDYNMEM; and 
releases the SCHED spinlock, restoring the previous IPL. The consequences 
of this declaration are discussed briefly in Section 19.2.5 and at greater length 
in Chapter 12. 

Deallocating a block back to a list based on the address of the block has an 
important implication. Lookaside list corruption results if a nonpaged pool 
consumer deallocates part of a lookaside list packet. That is, VMS treats all 
lookaside packets as indivisible. A partial packet deallocated to a lookaside 
list is eventually allocated as a whole packet, resulting in double use of 
the same memory. The entry point EXE$ALONPAGVAR should be used 
for allocating nonpaged pool that may be deallocated in a piecemeal way. 
EXE$ALONPAGVAR always allocates from the variable-length list. 

Nonpaged Pool Expansion 

Dynamic nonpaged pool expansion creates additional nonpaged pool as it is 
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needed. At system initialization, SYSBOOT allocates enough system space 
for the maximum size of each nonpaged pool region, but it only allocates 
enough physical memory for the initial size of each region. When an attempt 
to allocate nonpaged pool fails, the pool can be expanded by allocating more 
physical memory for it and altering the system page table (SPT) accordingly. 

If EXE$ALONONPAGED or EXE$ALONPAGVAR fails to allocate non­
paged pool from any of the four regions, it attempts to expand the failing 
region by invoking the routine EXE$EXTENDPOOL with an argument indi­
cating which list is to be expanded. 

EXE$EXTENDPOOL acquires the MMG spinlock, raising IPL to IPL$_ 
MMG to synchronize access to the PFN database. It then attempts to allocate 
eight pages of physical memory if expanding one of the lookaside lists, or 
63 pages if expanding the variable-length list. First, it checks whether the 
physical pages can be allocated without reducing the number of physical 
pages available to the system below the minimum required. Pool expansion 
must leave sufficient fluid pages to accommodate the sum of the maximum 
swap image (for VMS Version 5, the lesser of WSMAX and 64K-1 pages), 
the modified list low limit, and the free page list low limit. This check may 
result in fewer pages being allocated for the expansion. 

If the memory sufficiency check fails, the routine attempts to broadcast 
a message to the operator's console and logs an expansion failure event (see 
Section 19.6). 

For each allocated page, EXE$EXTENDPOOL places its PFN in the next 
invalid SPTE for that list and sets the valid bit. If the region is a looka­
side list, the new virtual page and any fragment from the previous virtual 
page are formatted into packets of the appropriate size and placed on the 
list. EXE$EXTENDPOOL records the size and address of any fragment left 
from the last new page. If the region is the variable-length list, it invokes 
EXE$DEANONPGDSIZ to add the new virtual pages to the list. EXE$EX­
TENDPOOL then releases the MMG spinlock, restoring the previous IPL. 

If EXE$EXTENDPOOL is able to expand the failing region, it reports that 
resource RSN$_NPDYNMEM is available for any waiting processes. 

For proper synchronization of system databases, the resource availability 
report and the allocation of physical memory must not be done from a 
thread of execution running on a CPU that owns a spinlock of rank higher 
than MMG. (The SCHED spinlock is the only IPL$_SYNCH spinlock with 
a rank higher than MMG.) EXE$EXTENDPOOL examines the processor 
status longword (PSL) to determine at what IPL the system is running. If 
EXE$EXTENDPOOL was entered from an interrupt service routine running 
above IPL$_SYNCH or is running on a CPU that owns the SCHED spinlock, 
EXE$EXTENDPOOL creates an IPL$_QUEUEAST fork process to expand the 
lists at some later time and returns an allocation failure status to its caller. 

Nonpaged pool expansion provides a degree of automatic system tuning. 
The penalty for setting an inadequate initial allocation size is the increased 
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overhead in allocating requests that cause expansion. As an additional mi­
nor physical penalty, unnecessary PFN database entries are built for those 
physical pages that are subsequently added to nonpaged pool as a result of 
expansion. (Original nonpaged pool pages need no PFN database entries.) The 
cost is about 4 percent of the size of the page per added page. 

The penalty for a maximum allocation that is too large is one longword 
(for the SPTE) for each unused page. If the maximum size of a lookaside 
list is too small, system performance may be adversely affected when the 
system is prevented from using the lookaside mechanism for pool requests. 
If the maximum size of the variable-length region is too small, processes may 
be placed into a resource wait state, waiting for nonpaged pool to become 
available. 

Nonpaged pool expands, but it does not contract. No mechanism returns 
PFNs from the nonpaged pool to the free page list. The nonpaged pool regions 
return to their original sizes only at the next bootstrap, assuming that the 
SYSGEN parameters that control their sizes have not changed. 

Nonpaged Pool Synchronization 

The POOL spinlock serializes access to the nonpaged pool variable-length 
list. Acquiring the POOL spinlock raises IPL to IPL$_POOL. The allocation 
and deallocation routines for the nonpaged pool variable-length list acquire 
and release the POOL spinlock. 

Device drivers running at fork level frequently allocate dynamic storage. 
The POOL spinlock ranks higher than the IOLOCKll and MAILBOX spin­
locks. This allows a CPU executing a driver fork process to acquire the 
POOL spinlock while owning the MAILBOX or any of the IOLOCKx spin­
locks. However, a CPU executing at device IPL may not acquire the POOL 
spinlock, because device IPL is higher than IPL$_POOL. 

Each nonpaged pool allocation routine that runs in process context (for ex­
ample, EXE$ALLOCCEB) invokes EXE$ALONONPAGED without acquiring 
the SCHED spinlock. If this attempt to allocate pool is successful, the rou­
tine has avoided the overhead of spinlock acquisition and release. 

If EXE$ALONONPAGED fails to allocate the pool, the routine acquires the 
SCHED spinlock, raising IPL to IPL$_SCHED and synchronizing access to 
the scheduler database, and invokes EXE$ALONONPAGED again. If the sec­
ond allocation attempt fails, the routine tests PCB$V _SSRWAIT in PCB$L_ 
STS. If it is set, the routine invokes a scheduling routine to place the process 
into a resource wait state, waiting for RSN$_NPDYNMEM. The scheduling 
routine releases the SCHED spinlock and restores the previous IPL. The 
SCHED spinlock is held throughout this sequence to block deallocation of 
pool and the accompanying report of resource availability between the time 
of the second allocation failure and the time the process is actually placed 
into a wait state. 
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The spinlock acquisition scheme requires that spinlocks be acquired in 
increasing rank. This rule dictates that nonpaged pool be deallocated from 
a thread of execution owning spinlocks ranked no higher than SCHED. 
The interrupt nesting scheme requires that IPL never be lowered below the 
IPL value at which the current interrupt occurred. This rule dictates that 
nonpaged pool be deallocated from a thread of execution running as the 
result of an interrupt no higher than IPL$_SYNCH. 

Note the asymmetry in allocating and deallocating nonpaged pool. Al­
though threads of execution owning spinlocks ranked as high as MAILBOX 
can allocate nonpaged pool, they must not own any spinlocks ranked higher 
than SCHED when they deallocate nonpaged pool. Although code running 
at IPL levels up to IPL$_POOL can allocate nonpaged pool, code running as 
a result of an interrupt above IPL$_SYNCH must not deallocate nonpaged 
pool. 

Processes might be waiting for nonpaged pool, since it is a systemwide 
resource. When EXE$DEANONPAGED reports the availability of nonpaged 
pool, any waiting processes are made computable. These modifications to 
the scheduler database take place while the CPU owns the SCHED spinlock 
and runs at IPL$_SCHED. 

Code executing as the result of an interrupt at IPL$_SYNCH or above 
deallocates nonpaged pool through routine COM$DRVDEALMEM, in mod­
ule COMDRVSUB. If COM$DRVDEALMEM is invoked from below IPL$_ 
SYNCH, it merely deallocates the pool by jumping to EXE$DEANON­
PAGED. If, however, COM$DRVDEALMEM is invoked from IPL$_SYNCH 
or above, it transforms the block that is to be deallocated into a fork block 
(see Figure 4.1) and requests an IPL$_QUEUEAST software interrupt. (Note 
that the block to be deallocated must be at least 24 bytes, large enough for a 
fork block. If it is not, COM$DRVDEALMEM generates a nonfatal bugcheck 
and returns to its invoker. The block of pool space is lost.) 

The code that executes as the IPL$_QUEUEAST fork process (the saved 
program counter in the fork block) simply executes a JMP to EXE$DEANON­
PAGED to deallocate the block. Because EXE$DEANONPAGED is entered 
at IPL$_QUEUEAST, the synchronized access to the scheduler's database is 
preserved. This technique is similar to the one used by device drivers that 
need to interact with the scheduler by declaring asynchronous system traps 
(ASTs). The attention AST mechanism is described briefly in Chapter 8 and 
in greater detail in Chapter 7. 

By convention, process context code that allocates a nonpaged pool data 
structure executes at IPL 2 or above as long as the data structure's existence 
is recorded solely in a temporary process location, such as in a register or on 
the stack. Running at IPL 2 blocks AST delivery and prevents the possible 
loss of the pool if the process were to be deleted. 
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Uses of Nonpaged Pool 

Nonpaged pool serves many purposes. This section describes typical uses of 
the nonpaged pool lists. Note, however, that nondefault choices for SYSGEN 
parameters LRPSIZE, LRPMIN, and SRP~IZE may result in different use. 

The variable-length list is used for allocating nonpaged pool that does not 
fit the allocation constraints of the lookaside lists. Typically, device drivers 
and the larger unit control blocks describing I/O device units are allocated 
from the variable-length list. Also, process control blocks, which contain 
process-related information that must remain resident, are allocated from 
the variable-length list. 

Nonpaged pool is allocated during early stages of system initialization. 
SYSBOOT loads several images into nonpaged variable-length pool. These 
include the system disk driver, terminal driver, and CPU-dependent routines. 
The detailed use of nonpaged pool by the initialization routines is described 
in Chapter 31. 

The LRP lookaside list is typically used by DECnet for receiving messages 
from other nodes. On a system connected to a CI bus, CI datagrams (CIDGs), 
used to provide best-effort message service among the nodes on the CI, may 
be allocated from the LRP lookaside list. On a system with a relatively large 
value for LRPSIZE, many loaded images, such as device drivers, may be 
allocated from the LRP lookaside list rather than from the variable-length 
list. 

The IRP lookaside list is typically used for the following data structures: 

• I/O and class driver request packets, which describe a particular I/O request 
• Job information blocks, which contain the quotas and limits shared by 

processes in a job 
• Resource blocks, used by the lock management system services 
• Unit control blocks, which describe the state of an I/O device unit 
• Larger buffered I/O buffers 
• On a system with a CI bus, CI sequenced messages used to provide highly 

reliable communication among the nodes on the CI 
• Channel (controller) request blocks, which describe the state of a device 

controller 

The SRP lookaside list is typically used for the following data structures: 

• Lock and small resource blocks, used by the lock management system 
services 

• Window control blocks, which contain the location of a file's extents 
• Timer queue entries, which describe time-dependent requests such as 

Schedule Wakeup ($SCHDWK) system service requests 
• Smaller buffered I/O buffers 
• Interrupt dispatch blocks, which describe the state of a device controller 
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• Object rights blocks (ORBs), which describe the rights that a process must 
have in order to access the object (such as a device) with which the ORB 
is associated 

19.3 PAGED POOL 
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Paged dynamic memory contains data structures that are used by multiple 
processes but that are not required to be permanently memory-resident. Its 
protection is ERKW, allowing it to be read from executive and kernel modes 
but written only from kernel mode. 

During system initialization, SYSBOOT reserves system space for paged 
pool, placing its starting address in MMG$GL_PAGEDYN. The SYSGEN 
parameter PAGEDYN specifies the size of this area in bytes. Paged pool is 
created as a set of demand zero pages. The loadable executive image EXEC_ 
INIT places the address of the beginning of the paged pool area in EXE$GL_ 
PAGED. System initialization code running in the context of the swapper 
process initializes the pool as one data structure encompassing the entire 
pool. That initialization incurs a page fault and thus requires process context. 

Process context kernel mode code invokes the routine EXE$ALOPAGED 
to allocate paged pool and EXE$DEAPAGED to deallocate paged pool. These 
routines, both in module MEMORYALC, invoke the lower level variable­
length allocation and deallocation routines described in Section 19.1.2. 

If an allocation request cannot be satisfied, EXE$ALOPAGED returns to its 
invoker with a failure status. The invoker may return an error, for example, 
SS$_INSFMEM, to the user program, or the invoker may place the process 
into a resource wait state, waiting for resource RSN$_PGDYNMEM. 

Whenever paged pool is deallocated, EXE$DEAPAGED invokes SCH$R­
AVAIL, in module MUTEX, to declare the availability of paged pool for any 
waiting process. Chapter 12 describes process resource waits. 

Paged pool requires little system overhead: one SPTE per page of pool. 
Because paged pool is created ~s demand zero SPTEs (see Chapter 14), it 
expands on demand through page faults. 

Because this area is pageable, code that accesses it must run at IPL 2 
or below while accessing it. Elevated IPL, therefore, cannot be used for 
synchronizing access to the paged pool list or to any data structures allocated 
from it. The EXE$GLPGDYNMTX mutex serializes access to the paged pool 
list. Both EXE$ALOPAGED and EXE$DEAPAGED lock this mutex for write 
access. 

By convention, process context code that allocates a paged pool data struc­
ture executes at IPL 2 as long as the data structure's existence is recorded 
solely in a temporary process location, such as in a register or on the stack. 
Running at IPL 2 blocks AST delivery and prevents the possible loss of the 
pool if the process were to be deleted. 

The following data structures are located in the paged pool area: 
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• The shareable logical name tables and logical name blocks 
• The Files-11 Extended QIO Processor (XQP) I/O buffer cache, which is used 

for data such as file headers, index file bit map blocks, directory data file 
blocks, and quota file data blocks 

• Global section descriptors, which are used when a global section is mapped 
or unmapped 

• Mounted volume list entries, which associate a mounted volume name 
with its corresponding logical name and unit control block address 

• Access control list elements, which specify what access to an object is 
allowed for different classes of users 

• ORBs that are accessed at IPL 2 and below 
• Data structures required by the Install Utility to describe known images 

Any image that is installed has a known file entry created to describe 
it. Some frequently accessed known images also have their image headers 
permanently resident in paged pool. These data structures are described in 
more detail in Chapter 26. 

• Process quota blocks (PQBs), which are temporarily used during process 
creation to store the quotas and limits of the new process 

PQBs, initially allocated from paged pool, are not deallocated back to the 
paged pool list. Instead, they are queued to a lookaside list whose listhead 
is at global label EXE$GL_PQBIQ. Starting with VMS Version 5, this is a 
self-relative queue. Process creation code attempts to allocate a PQB by 
removing an element from this queue, as a faster alternative to general 
paged pool allocation. 

19.4 PROCESS ALLOCATION REGION 

The process allocation region contains variable-length data structures that 
are used only by a single process and are not required to be permanently 
memory-resident. (Process allocation region pages are pageable.) Its protec­
tion is set to UREW, allowing executive and kernel modes to write it and 
any access mode to read it. 

The process allocation region consists of a Pl space variable-length pool 
and may include a PO space variable-length pool as well. The PO space 
allocation pool is useful only for image-specific data structures that do not 
need to survive image exit. The Pl space pool can be used for both image­
specific data structures and data structures that must survive the rundown 
of an image, such as logical name tables. 

During process startup, EXE$PROCSTRT reserves Pl address space for 
the process allocation region. The SYSGEN parameter CTLPAGES specifies 
the number of pages in the Pl pool. Free space in the Pl process alloca­
tion region is maintained in a singly linked, memory-ordered list (see Sec­
tion 19.1.2). EXE$PROCSTRT initializes the pool and its listhead, CTL$GQ_ 
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ALLOCREG. There is no global pointer that locates the beginning of the 
process allocation region. 

Executive or kernel mode code running in process context invokes 
EXE$ALOP1PROC, EXE$ALOP1IMAG, or EXE$ALOPOIMAG to allocate 
space from the process allocation region, and EXE$DEAP1 to deallocate a 
data structure to the region. These routines are in module MEMORYALC. 
When the data structure must be allocated from the Pl pool, EXE$ALOP1-
PROC is used. When the data structure is image-specific, EXE$ALOP1IMAG 
or EXE$ALOPOIMAG is used. 

EXE$ALOP1IMAG and EXE$ALOPOIMAG differ in which region they first 
attempt the allocation. EXE$ALOP1IMAG tries the Pl region first, while 
EXE$ALOPOIMAG tries the PO region first. If EXE$ALOP1IMAG finds that 
there is insufficient space, or EXE$ALOPOIMAG finds that allocation in the 
PO region is disallowed, each attempts to allocate from the other region. Nei­
ther routine can allocate from Pl space if the Pl process allocation region 
reaches a threshold of use specified by the SYSGEN parameter CTLIMGLIM. 
The current image's being linked with the NOPOBUFS option prevents allo­
cation from PO space. If the allocation fails, these routines return the SS$_ 
INSFMEM error status. 

The CTLIMGLIM limit does not apply to EXE$ALOP1PROC. It may allo­
cate space until the Pl allocation region is exhausted. The arithmetic differ­
ence between CTLPAGES and CTLIMGLIM guarantees a minimum number 
of pages exclusively for EXE$ALOP1PROC. EXE$ALOP1PROC only allo­
cates space from the Pl region. If an allocation fails, it returns the error 
status SS$_INSFMEM. 

Free space in the PO process allocation region is maintained in a singly 
linked, memory-ordered list, as described in Section 19.1.2. SHELL initial­
izes the listhead, CTL$GQ_POALLOC, to zero. The image rundown routine 
deletes PO space and zeros the listhead. 

If not prevented by the presence of the NOPOBUFS linker option, 
EXE$ALOP1IMAG and EXE$ALOPOIMAG create and expand the PO process 
allocation region by invoking the routine MMG$EXPREG, in module SYS­
CREDEL. This routine functions much like the Expand Program/Control Re­
gion ($EXPREG) system service. EXE$ALOP1IMAG and EXE$ALOPOIMAG 
expand the PO region as needed to satisfy allocation requests, but always by 
at least 16 pages. Each time one of these routines expands the PO region, it 
invokes EXE$DEALLOCATE to link the new space into the free list. 

The current image and other VMS routines may also expand the PO vir­
tual address space for their own purposes. Depending on the sequence of 
these expansions, multiple PO allocation region expansions can result in a 
noncontiguous PO allocation region. Note that this contrasts with the paged, 
nonpaged, and Pl allocation pools, which are always contiguous. 

EXE$ALOP1PROC, EXE$ALOP1IMAG, and EXE$ALOPOIMAG each store 
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the address of the appropriate listhead in a register and invoke EXE$ALLO­
CATE to perform the variable-length allocation described in Section 19.1.2.1. 
EXE$DEAP1 determines whether the block being deallocated is from the PO 
or Pl space pool and invokes EXE$DEALLOCATE with the address of the 
appropriate listhead. 

No special synchronization mechanism is currently used for either the 
process allocation region or the process logical names found there. However, 
the allocation routines change to kernel mode and execute at IPL 2, effec­
tively blocking any other mainline or AST code from executing and perhaps 
attempting a simultaneous allocation from the process allocation region. 

The following data structures are located in the process allocation region: 

• The process-private logical name tables and logical name blocks 
• Data structures, called image control blocks, built by the image activator 

to describe what images have been activated in the process 
• Rights database identifier blocks, containing Record Management Services 

context (internal file and stream identifiers) for the rights database file 
• A context block in which the Breakthrough ($BRKTHRUJ system service 

maintains status information as the service asynchronously broadcasts 
messages to the terminals specified by the user 

• Process scan context blocks, used by the Process Scan ($PROCESS_SCANJ 
system service, described in Chapter 13 

There is enough room in the process allocation region for privileged appli­
cation software to allocate process-specific data structures of reasonable size. 

19.5 KRP LOOKASIDE LIST 

The KRP lookaside list is a Pl space list for process-private kernel mode 
data structures that are not required to be permanently memory-resident. 
The protection on this storage area is URKW, allowing it to be read from 
any mode but modified only from kernel mode. 

Address space for this list is defined at assembly time of the SHELL mod­
ule, which defines the fixed part of Pl space. Two global symbols, CTL$C_ 
KRP _COUNT and CTL$C_KRP _SIZE, control the number of KRP packets 
created and the size of each packet. Routine EXE$PROCSTRT, in module 
PROCSTRT, initializes the list, forming packets and inserting them in the 
list at CTL$GL_KRPFL and CTL$GL_KRPBL. 

A KRP is used as pageable storage, local to a kernel mode subroutine. 
KRPs should be used only for temporary storage that is deallocated before the 
subroutine returns. The most common use of KRPs is to store an equivalence 
name returned from a logical name translation. 

Allocation and deallocation to this list is through INSQUE and REMQUE in­
structions. Both allocation and deallocation are always done from the front 
of the list. There is no need for synchronization other than that provided by 
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the queue instructions. Because KRPs are used only for storage local to the 
execution of a procedure, a failure to allocate a KRP is very unexpected and 
indicates a serious error rather than a temporary resource shortage. Kernel 
mode code that is unsuccessful at allocating from this list thus generates the 
fatal bugcheck KRPEMPTY. 

19.6 COLLECTING POOL ALLOCATION STATISTICS 
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VMS requires adequate pool space to operate properly. Inadequate pool space 
can contribute to poor system performance and, in extreme cases, can cause 
the system to become totally unresponsive. VMS Version 5 adds a feedback 
mechanism to the AUTOGEN facility. Based on data gathered by various 
VMS components, this mechanism can adjust SYSGEN parameter values to 
a given system's workload. 

The pool allocation and expansion routines described in this chapter store 
pool allocation and failure statistics in data cells. IAn allocation request that 
results in a pool expansion is not classified as a failure; pool expansion is 
assumed to be a routine event.) From these statistics, AUTOGEN's feed­
back mechanism can calculate new values for the SYSGEN parameters that 
control the system paged and nonpaged pool sizes. 

The statistics measure the appropriateness of the various pool sizes. From 
the statistical point of view, a lookaside list allocation fails when the list is 
empty and cannot be expanded. Although space may be allocated from the 
variable-length pool to satisfy the request, the allocation is nonetheless clas­
sified as a failure because the lookaside list parameters (initial or maximum 
size) are inadequate. Data cells contain the number of expansion failures for 
each of the three lookaside lists. 

A variable-length list jpaged or nonpaged) allocation fails when no suffi­
ciently large free block is found and, in the case of the nonpaged pool, the 
list cannot be expanded. 

An epoch is the 10-second period starting at a variable-length pool alloca­
tion failure. The routine that detects the allocation failure keeps a total of 
the number of bytes that fail to be allocated during an epoch. At the end of 
an epoch, the routine converts that to a whole number of pages and adds it 
to the appropriate data cell. It collects four categories of statistics for paged 
pool and variable-length nonpaged pool: 

• Total number of allocation attempts 
• Number of allocation failures 
• Number of epochs during which allocation attempts failed 
• Total number of pages that could not be allocated 

Table 19.4 lists the data collected and the routines responsible for updating 
the data cells. The program AGEN$FEEDBACK.EXE (part of the MANAGE 
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Table 19.4 Pool Allocation Statistics 

Statistic Location Maintained By 

NONPAGED POOL LOOKASIDE AND VARIABLE-LENGTH LISTS 

Total number of expansion 
failures 

PMS$GLNPAGDYNEXPF EXTENDPAGE 

Number of expansion failures: 
one count for each of the 
three lists 

NONPAGED POOL LOOKASIDE LISTS 

PMS$GLXRPFAIL I EXE$ALONONPAGED 

Number of allocation 

VARIABLE-LENGTH NONPAGED POOL LIST 

PMS$GLNPAGDYNREQ 
attempts 

Number of allocation failures 
Number of allocation failure 

epochs 
Total number of pages that 

failed to be allocated 

Number of allocation 
attempts 

Number of allocation failures 
Number of allocation failure 

epochs 
Total number of pages that 

failed to be allocated 

PMS$GLNPAGDYNREQF 
PMS$GLNPAGDYNF 

PMS$GL_NPAGDYNFPAGES 

PAGED POOL 

PMS$GL_PAGDYNREQ 

PMS$GL_PAGDYNREQF 
PMS$GL_PAGDYNF 

PMS$GLPAGDYNFPAGES 

1 This symbol is the address of an array of three longwords. 

EXE$ALONPAGVAR 

EXTEND_FAIL 
EXTEND_FAIL 

EXTEND_FAIL 

EXE$ALOPAGED 

EXE$ALOPAGED 
EXE$ALOPAGED 

EXE$ALOPAGED 

facility) reads these data cells during the SAVPARAMS phase. of AUTO­
GEN.COM. See the Guide to Setting Up a VMS System for a description 
of AUTOGEN's operational phases and instructions for running it. 

19.7 DETECTING POOL CORRUPTION 

VMS Version 5 implements a mechanism to help troubleshoot pool corrup­
tion problems. Certain pool misuses lead to more obscure problems if left 
unchecked. This mechanism can detect pool misuses such as 

• Continued use of a piece of pool after it is deallocated 
• Use of uninitialized fields in a piece of allocated pool 
• Use of a piece of pool that was not allocated 

The mechanism applies to the variable-length pools (paged pool, nonpaged 
pool, and process allocation region) and to the lookaside lists (SRP, IRP, and 
LRP). It involves 
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Table 19.S POOLCHECK Parameter FLAGS Bits 

Bit 1'v1eaning 

0 Variable-length pools; fill with FREE pattern on deallocation. If bit 1 is also 
set, check for FREE pattern and fill with ALLO pattern on allocation. 

1 Pool checking "master switch". 
2 SRP; save caller's address and fill with FREE pattern on deallocation. If 

bit 1 is also set, check for FREE pattern and fill with ALLO pattern on 
allocation. 

3 IRP; same as bit 2. 
4 LRP; same as bit 2. 
5, 6 Unused. 
7 Process allocation region; fill and check as controlled by bits 0 and 1 . 

• Filling deallocated pool with a unique pattern, called the FREE or "poison" 
pattern 

• Checking that the poison pattern is intact in pool being allocated and 
generating the fatal bugcheck POOLCHECK if the pattern is not intact 

• Filling allocated pool with a second pattern, called the ALLO pattern 

This section describes the POOLCHECK SYSGEN parameter, which con­
trols the mechanism. It explains the mechanism's workings and lists some 
limits to its ability to detect corruption. Note that use of the POOLCHECK 
parameter is reserved to Digital. Any other use is completely unsupported. 

POOLCHECK Parameter 

The dynamic SYSGEN parameter POOLCHECK consists of four eight-bit 
fields, one of which must be zero (see Table 19.5 and Figure 19.8). The bits 
in the FLAGS byte enable and disable pool filling and checking and specify 
which pools are affected. The rest of this section describes the individual 
bits. The FREE and ALLO bytes specify the patterns written into pool when 
the space is deallocated and allocated. 

Bits in the FLAGS byte put the mechanism into one of three states: 

• Do not fill or check blocks 
• Fill blocks only upon deallocation 
• Fill blocks upon deallo~ation; check and fill blocks upon allocation 

Bits 0, 2, 3, 4, and 7 enable the filling of blocks during deallocation. Bit 
0 enables the filling; with the FREE pattern, of blocks deallocated to the 

31 24 23 

ALLO 

Figure 19.8 
POOLCHECK Parameter 
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Figure 19.9 
Format of Poisoned Pool Space 

paged and variable-length nonpaged pools. Bits 2, 3, and 4 enable the filling 
of deallocated SRP, IRP, and LRP lookaside packets. Bits 0 and 7 together 
enable the filling of blocks deallocated to the process allocation region. 

When set in combination with the other bits, bit 1 enables the check­
ing and filling of blocks during allocation. If set with bit 0, it enables the 
checking and filling of blocks allocated from the paged and variable-length 
nonpaged pool with the ALLO pattern. If set with bits 2, 3, or 4, it enables 
the checking and filling of allocated SRP, IRP, or LRP packets. If set with 
bit 7, it enables the checking and filling of blocks allocated from the process 
allocation region. 

Pool Poisoning 

The routine POISON_PACKET, in module MEMORYALC, fills pool space 
with a predictable pattern under several circumstances: 

•Space deallocated by EXE$DEANONPAGED, EXE$DEANONPGSIZ, or 
EXE$DEALLOCATE is filled . 

• The entire result of merging a deallocated variable-length block with free 
blocks above or below it is filled . 

• Space returned to a variable-length pool by EXE$ALLOCATE as a result of 
an inexact fit is filled . 

• Space added to variable-length nonpaged pool as a result of pool expansion 
is filled. 

If enabled by the previously described bits, POISON_PACKET fills pool 
space. The first five longwords form a header. The remainder of the space 
receives the FREE pattern. Figure 19.9 shows the format of poisoned pool 
space. 

The header is as follows: 

• The first three longwords are unchanged by the pool filling ·mechanism. 
They contain the forward pointer to the next free block; the size of the 
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block, if it is a variable-length block; and the original size, type, and subtype 
fields . 

• The fourth longword of lookaside packets contains the return address of the 
caller to the deallocation routine. It remains unchanged in variable-length 
pool pieces . 

• The fifth longword contains a checksum, which is the sum (ignoring any 
carry) of the following: 

-FREE pattern byte 
-Block address 
-Contents of the third longword 
-Contents of the fourth longword 
-Contents of the longword beginning at EXE$GQ_BOOTTIME + 1 

Under certain circumstances and for certain VAX processors, it is possible 
for the contents of memory to be preserved from one bootstrap of the operat­
ing system to the next. The last longword used in calculating the checksum 
enables the checking routine to differentiate between stale poisoned pool 
and pool space poisoned during this bootstrap of the operating system. 

Pool Checking 

The routine CHECK_P.ft.CKET, in module MEMORYALC, checks pool space. 
It is invoked by 

• EXE$ALLOCATE, when allocating variable-length pool space from paged 
pool, nonpaged pool, or the process allocation region 

• EXE$ALONONPAGED, when allocating an SRP, IRP, or LRP lookaside 
packet 

CHECILPACKET calculates the expected checksum using the same algo­
rithm described in Section 19.7.2. If the expected checksum does not match 
the checksum found in the fifth longword, CHECK_PACKET assumes that 
the block is unpoisoned and makes no further checks. (Since POOLCHECK 
is a dynamic SYSGEN parameter, it is possible that pool poisoning was dis­
abled for a time, resulting in unpoisoned blocks being put on the free list. 
Alternatively, the block may have been poisoned during a previous bootstrap 
of the operating system.) 

If the checksum matches, CHECILPACKET examines the remainder of 
the block for the FREE pattern. If the FREE pattern is not intact, it generates 
the fatal bugcheck POOLCHECK. If the FREE pattern is intact, CHECK_ 
PACKET fills the entire block (including the first five longwords) with the 
ALLO pattern. 

Constraints on the Pool-Checking Mechanism 

Some circumstances can circumvent the pool-checking mechanism: 
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• Allocation and deallocation of lookaside list packets by any routine di­
rectly via REMQHI and INSQTI instructions bypass the filling and checking 
performed by the previously described routines . 

• Any corruption of pool space that corrupts the third, fourth, or fifth (check­
sum) longword effectively disables checking for that block. 

• Checking occurs only at allocation time. Corruption that occurs after a 
block is allocated is not detected . 

• When a block being deallocated to variable-length pool is merged with a 
free block above or below it, the entire resulting free block is filled. This 
masks any corruption that may have previously occurred in an adjacent 
free block. 

• When a lookaside list is expanded, the checksum longword of each added 
packet is zeroed to prevent checking until after the packet is allocated . 

• The mechanism fills and checks a maximum of 65,516 bytes (64K bytes, 
less the five-longword header). 

Disabling and reenabling pool poisoning with the same FREE pattern can 
lead to false POOLCHECK bugchecks. If EXE$DEALLOCATE concatenates 
a variable-length block to the bottom of a poisoned free block while pool 
poisoning is disabled, only the top part of the resulting free block contains 
the FREE pattern. If pool checking is subsequently enabled with the same 
FREE pattern and this free block is allocated, CHECK_PACKET interprets it 
as being corrupt. 

Certain system initialization routines reside in pool space and deallocate 
the space they occupy before they exit. To prevent these routines from being 
overwritten with the FREE pattern, no checking or poisoning is done during 
the early stages of system initialization (while BOOSTATE$V _STARTUP is 
set in EXE$GLSTATE). See Chapter 31 for more information on system 
initialization. 

Potentially useful values for the FREE and ALLO patterns cause an access 
violation when a longword filled with either pattern is interpreted as an 
address. For example, any pattern containing l's in the two high-order bits 
results in an address beyond the end of system space. Additional suggestions 
for using pool checking and for analyzing POOLCHECK bugchecks are given 
in the VMS Device Support Manual. 
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20 Overview of the 1/0 Subsystem 

Many small make a great. 

Geoffrey Chaucer, Canterbury Tales 

The VMS 1/0 subsystem consists of device drivers and their associated data 
structures; device-independent routines within the executive; and several 
system services, the most important of which is the Queue 1/0 Request 
($QIO) system service, which handles the eventual requests issued by all 
outer layers of the system. This chapter provides an overview of the 1/0 
subsystem. Subsequent chapters provide more detail of its operation. The 
1/0 subsystem is described in detail from the point of view of adding a device 
driver to a VMS operating system in the VMS Device Support Manual. 

The 1/0 subsystem has two major functions: to provide an interface that 
is device-independent for images that perform 1/0-related operations, and to 
provide device-dependent support for hardware devices. Four major compo­
nents of the 1/0 subsystem are the 1/0 database, 1/0 system services, device 
drivers, and ancillary control processes (ACPs). 

20.1 HARDWARE OVERVIEW 

This section discusses a sample 1/0 hardware configuration, pictured in Fig­
ure 20.1, and introduces the terms used to describe such components. VAX 
1/0 configurations vary in complexity. The book Computer Programming 
and Architecture: The VAX discusses them, and the 1/0 configurations of 
specific VAX processors are described in the VMS Device Support Manual. 

The major components of an 1/0 hardware configuration are 

• CPU. There may be more than one CPU in some configurations. 
• Main memory. If there are multiple CPUs, main memory is shared by all 

of them. 
• System bus. This is the electrical connection between the CPU(s), memory, 

and the 1/0 bus adapters. The address space of this bus is the physical 
address space of the processor. 

• 1/0 bus adapters. An 1/0 bus adapter connects an 1/0 bus to the system 
bus and thus allows communication among the 1/0 bus, the CPU(s), and 
memory. Some of the adapter's resources may need to be shared, such as 
map registers for translating 1/0 bus addresses into system bus addresses. 

• 1/0 bus. The 1/0 bus connects the various device controllers and the 1/0 
bus adapter. Common VAX 1/0 buses are the UNIBUS, the MASSBUS, and 
the VAX.BI. 

• 1/0 device controllers and device units. A device controller contains the 
logic necessary to connect to the 1/0 bus and to control the specific device 
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Figure 20.1 
A Sample I/O Hardware Configuration 

units. A device unit is the individual hardware component, such as a line 
printer or a tape drive. 

In the case of single-unit devices, the distinction between device con­
troller and device unit may be artificial. In the case of some multiunit 
devices, such as a terminal controller, it may be possible to treat each unit 
as if it had a separate controller. In the case of multiunit devices such as 
tape or disk drives, an individual unit may contain some control logic ded­
icated to the unit, while the device controller contains control logic shared 
by the various units. 

20.2 1/0 DATABASE 
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Because a device driver and the VMS executive cooperate to process an 1/0 
request, they must have a common and current source of information about 
the request. This is the 1/0 database, which consists of three parts: 

• Data structures that describe every 1/0 bus adapter, device type, device 
unit, device controller, and logical path from a process to a device 

• Request packets, which define individual requests for 1/0 activity 
• Driver tables, which allow the system to load drivers, validate device 

functions, and invoke drivers at their entry points (see Section 20.3.1) 

Illustrations of I/O database structures and detailed descriptions of their 
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fields appear in the VMS Device Support Manual. Figure 20.2 illustrates 
some of the relations among VMS 1/0 routines, the 1/0 database, and a 
device driver. 

Data Structures 

1/0 database data structures describe 1/0 hardware components and syn­
chronize access to them. VMS creates these data structures either at system 
startup or when a driver is loaded into the system. Except where noted, these 
data structures are located in nonpaged pool. 

The 1/0 database is unit-oriented. The item of interest to the process that 
requests the I/O operation is the device unit involved in the operation. In 
most cases, the device controller, 1/0 bus adapter, and so on, are significant 
to the process only because they are used to communicate between the CPU 
and the device unit. 

VMS creates a unit control block (UCB) for each device unit attached to the 
system. A UCB defines the characteristics and current state of an individual 
device unit, and is the focal point for controlling access to it. In addition, 
the UCB contains the listhead for the queue of pending request packets for 
the unit. 

When a driver is stalled or interrupted, the UCB keeps the context of the 
driver in a set of fields collectively known as a fork block. Chapter 4 provides 
more detail about fork blocks and fork routines. 

VMS creates an object rights block (ORB) for each device unit when the 
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associated UCB is created. An ORB describes the rights that a process must 
have to access the object with which the ORB is associated. UCBs are not 
the only entities in VMS that have an associated ORB. Thus, ORBs are not 
unique to the I/O database but form a part of it. 

A device data block (DOB) contains information common to all devices 
of the same type that are connected to a particular controller. It records 
the generic device name concatenated with the controller designator (for 
example, LPA) and the name and location of the associated device driver. 
In addition, the DOB contains a pointer to the first UCB for the device 
units attached to the controller. The DOB is not used directly for controlling 
access to either the device controller or the associated device units. IOC$GL_ 
DEVLIST is the listhead for the DOB list. From this, any part of the I/O 
database can be found. 

VMS creates a two-part data structure to describe each device controller. 
The first part, the channel request block (CRB), is of variable length depend­
ing on the number of interrupt vectors associated with the controller. The 
second part, the interrupt dispatch block (IDB), is of variable length depend­
ing on the number of units connected to the controller. 

The CRB defines the current state of a gi,ven controller and lists the 
devices waiting for the controller's data channel. It also contains the code 
that dispatches a device interrupt to the interrupt service routine for that 
unit's driver. Chapter 3 gives more information on device interrupts. The 
CRB is the focal point for controlling access to the device controller. 

The IDB lists the device units associated with a controller and points 
to the UCB of the device unit that the controller is currently serving. The 
driver's interrupt service routine uses the IDB to dispatch an interrupt to the 
appropriate fork process. In addition, an IDB points to the device registers 
and the controller's I/O bus adapter control block. 

An adapter control block (ADP) defines the characteristics and current 
state of an I/O bus adapter, such as the VAX UNIBUS and MASSBUS adapters 
and the MicroVAX Q22-bus interface. An ADP contains the queues and 
allocation bitmaps necessary to allocate adapter resources. VMS provides 
routines that drivers can invoke to allocate these resources. 

A channel control block (CCB) describes the logical path between a process 
and the UCB of a specific device unit. Unlike the data structures mentioned 
earlier, CCBs are not located in nonpaged system space but in the Pl space 
of each process (see Chapter 21). 

VMS creates several additional data structures for a file-structured device 
(see Section 20.5.1). 

Request Packets 

The I/O database includes a set of request packets. There are two types of 
request packets, I/O request packets (IRPs) and class driver request packets 
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(CORPs). An IRP describes an 1/0 request that has been processed by the 
$QIO system service. These are the request packets most commonly handled 
by device drivers. 

When a process requests 1/0 activity via the $QIO system service, VMS 
constructs an IRP that describes the 1/0 request in a standard format. The 
packet contains fields into which system and driver 1/0 preprocessing rou­
tines can write information. For instance, the device-dependent arguments 
specified in the $QIO system service call are placed in the packet. The packet 
also includes buffer addresses, a pointer to the UCB for the target device, and 
the 1/0 function codes. 

A CORP describes a request to be handled by a system communication 
services (SCS) port driver. Such requests are generated by the disk class 
driver and the VAXcluster connection manager, for example. To economize 
on system overhead encountered by the disk and tape class drivers, all IRPs 
have space for a suitable CORP appended to them, for use by the class drivers. 
Various portions of VMS rely on the fact that each IRP has this extra space 
appended to it, although the space may not always be used to contain a 
CORP. 

Synchronizing Access to the 1/0 Database 

Four methods are used to synchronize access to the 1/0 database: mutexes, 
interrupt priority level (IPL), spinlocks, and the lock management system 
services. Chapter 8 discusses the use of IPL, spinlocks, and mutexes for 
synchronization. Chapter 10 discusses resources, locks, and the lock man­
agement system services. The VMS Device Support Manual explains the 
use of IPL and spinlocks for synchronization from the perspective of device 
drivers. 

The 1/0 database mutex, IOC$G1-MUTEX, synchronizes access to the 1/0 
database. This mutex does not synchronize access to any of the hardware 
components of the 1/0 subsystem. Its major purpose is to synchronize the 
addition or deletion of data structures with searches of the 1/0 database. 

The spinlocks of most interest to the 1/0 subsystem are fork locks and 
device locks. Fork locks synchronize fork processing. A device lock syn­
chronizes access to the device controller data structures and thus to the 
controller. 

IPL synchronization of the 1/0 database normally occurs as part of spinlock 
acquisition and release. Less frequently, IPL is used to synchronize access in a 
context where coordination with other processors is irrelevant. For example, 
a driver fork process raises IPL to IPL$_POWER (31) to block powerfail 
interrupts on the local processor just before initiating device activity. 

If the system is a V AXcluster member, lock management system ser­
vices synchronize access to the UCBs for devices that are cluster-available 
(OEV$V _CLU set in UCB$L_OEVCHAR2). Each such device is described by 
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a resource name that is the string SYS$ concatenated with the allocation 
class device name. Appendix H gives more information on specific locks. 

Spinlocks and resource locks are quite different in nature and should not 
be confused. In Part VI the terms spinlock, fork lock, and device lock are 
used to refer to the various types of spinlocks. The locks provided by the 
lock management system services are referred to as resource locks. 

2.0.3 DEVICE DRIVERS 

2.0.3.1 
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A device driver controls 1/0 operations on an 1/0 device by performing the 
following functions: 

• Defining the 1/0 device for the rest of the operating system 
• Preparing a device unit or its controller for operation at system startup, 

during connection of the device via SYSGEN, and during recovery from a 
power failure 

• Performing device-dependent 1/0 preprocessing 
• Translating requests for 1/0 operations into device-specific commands 
• Activating a device unit 
• Responding to hardware interrupts generated by a device unit 
• Responding to device timeout conditions 
• Responding to requests to cancel 1/0 on a device unit 
• Reporting device errors to an error logging program 
• Returning status from a device unit to the process that requested the 1/0 

operation 

Normally, a device driver image consists of the routine.s and tables dis­
cussed in the following sections. 

Driver Tables 

Three driver table~ver prologue table, driver dispatch table, and function 
decision table-are included in every driver. 

The driver prologue table jDPT) defines the identity and size of the driver 
to the system routine that loads the driver into memory and creates the 
associated database. With the information provided in: the DPT, the driver­
loading procedure can both load and reload the driver and perform the re­
quired 1/0 database initialization. 

The driver dispatch table jDDT) lists the addresses of the entry points of 
standard routines within the driver and records the size of the diagnostic and 
error log buffers for drivers that perform error logging. 

The function decision table IFDT) lists all valid 1/0 function codes for the 
device and associates valid codes with the addresses of 1/0 preprocessing 
routines called FDT routines. Figure 20.3 illustrates the layout of a function 
decision table. The FDT consists of a series of 64-bit masks, each of whose 
bits corresponds to an 1/0 function code. For example, bit 33 in a mask 
corresponds to 1/0 function code 33. 
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Figure 20.3 
Layout of a Function Decision Table 

The first two entries consist of just a mask. Bits set in the first mask in­
dicate which functions are legal for the associated devices. Bits set in the 
second mask indicate which functions are buffered 1/0 operations. Subse­
quent entries consist of both a mask and the address of an FDT routine. Bits 
set in this mask indicate which functions are processed by that FDT routine. 

Some FDT routines are contained within device driver images. Others, 
used by multiple drivers, are contained in loadable executive images. FDT 
routines are discussed in Chapter 21 and in more detail in the VMS Device 
Support Manual. 

Driver Routines 

In addition to any FDT routines it may contain, a device driver generally 
contains controller and unit initialization routines, a start I/O routine, an 
interrupt service routine, and a cancel 1/0 routine. A summary of these 
routines follows; more information is available in the VMS Device Support 
Manual. 

The unit and controller initialization routines prepare a device or con­
troller for operation when the driver-loaQing procedure loads the driver into 
memory and when VMS recovers from a power failure. 

The start I/O routine performs additional device-dependent tasks such as 
translating the I/O function code into a device-specific command, storing 
the details of the request in the device's UCB, and if necessary, obtaining 
access to controller and adapter resources. Whenever the start 1/0 routine 
must wait for these resources to become available, VMS stalls the routine, 
reactivating it when the resources become available. 

The start 1/0 routine ultimately activates the device by loading the de­
vice's registers. At this stage, the start 1/0 routine invokes a VMS macro 
that stalls the routine until the device completes the 1/0 operation and re­
quests an interrupt. The start 1/0 routine remains stalled until the driver's 
interrupt service routine handles the interrupt. 

When a device requests an interrupt, its driver's interrupt service routine 
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determines whether the interrupt is expected or unexpected and takes ap­
propriate action. If the interrupt is expected, the interrupt service routine 
reactivates the driver's start 1/0 routine. Generally the start 1/0 routine per­
forms device-dependent 1/0 postprocessing and transfers control to VMS for 
device-independent 1/0 postprocessing. 

The timeout handling routine retries the 1/0 operation and performs other 
error handling when a device fails to complete an operation within a reason­
able period of time. Chapter 11 discusses timeout handling in more detail. 

The cancel 1/0 routine handles requests to cancel 1/0 on a unit. It is 
invoked when an image requests the Cancel 1/0 on Channel ($CANCEL) 
system service for the unit, and when the reference count for the unit goes 
to zero. Chapter 21 discusses cancel 1/0 routines in more detail. 

20.4 1/0 SYSTEM SERVICES 

VMS provides system services to allow images to request 1/0 operatfons and 
to obtain information about the 1/0 subsystem. The 1/0 system services 
provide direct access to the device. An image can take advantage of specific 
characteristics of a given device, not just the generic device characteristics 
supported by Record Management Services (RMS). Subsequent chapters dis­
cuss the various 1/0 system services in more detail. 

20.5 ANCILLARY CONTROL PROCESSES 

20.5.1 
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An ACP is a separate process that assists device drivers in processing 1/0 
requests. ACPs perform device-independent functions, such as opening files 
and establishing a network link. Direct ACP involvement in processing an 
1/0 request is the exception rather than the rule for most ACPs. For example, 
reads and writes to a fl.le do not usually require ACP intervention. Chapter 21 
provides more details of this example in its discussion of 1/0 postprocessing. 

VMS provides the following ACPs: 

• FllAACP-Files-11 structure level 1 ACP 
• MTAAACP-Magnetic tape ACP 
• NETACP-DECnet-VAX ACP 
• REMACP-Remote terminal ACP 

In VMS Version 4, the Files-11 structure level 2 ACP, FllBACP, was 
converted to the Extended QIO Processor (XQP), FllBXQP. Unlike an ACP, 
the XQP runs in the context of the process making the 1/0 request. For 
purposes of this part of the book, there is no essential difference between 
ACPs and the XQP. Any reference to ACPs is equally applicable to the XQP 
unless stated otherwise. 

ACP Data Structures 

While not all the ACPs provided by VMS deal with true files, all use a set of 
data structures that are based on the needs of the file system ACPs. These 
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data structures are sufficiently general to make their use by the non-file 
system ACPs straightforward. Figure 20.4 illustrates the relations among 
the file system data structures common to all ACPs. 

The ACP creates a volume control block (VCB) when the volume is 
mounted. In the case of DECnet, the volume is the network as a whole. 

VMS creates an ACP queue block (AQB) as part of the creation of the 
process in which the ACP runs. The AQB contains the queue of IRPs that 
the ACP is to process. (For the XQP, there is also a per-process queue of 
IRPs. The XQP uses both queues, depending on the nature of the operation.) 
A given AQB may be associated with more than one VCB. 

The ACP creates a file control block (FCB) for each file open on the volume 
or each logical link open on the network. In the case of a file, the FCB 
contains the listhead for the queue of window control blocks (WCB) for the 
file. One WCB for each channel is associated with the file or logical link. 

A WCB describes the virtual-to-logical correspondence for the blocks in a 
file and the access characteristics of the user. The CCB points to the WCB for 
the file open on the channel. The WCB contains a base virtual block number 
and a variable number of map entries. The map entries are a subset of the file 
retrieval information for the file. An extent is a virtually contiguous series 
of blocks that are also logically contiguous on the disk. Each map entry 
represents one extent and consists of an extent size and a starting logical 
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block number. As a result, the entire file does not have to reside in one 
logically contiguous set of logical blocks. 

20.6 VMS 1/0 ROUTINES 

586 

VMS supplies routines that perform various functions common to device 
drivers. Among these routines are FDT routines and routines to manage 
adapter resources such as map registers. These routines enable common 
functions to be performed in a consistent fashion and relieve the device 
driver writer of the need to master the details of these functions. The VMS 
Device Support Manual contains descriptions of many of these routines. 
Subsequent chapters describe some of them in more detail. 



21 1/0 System Services 

Delay not Caesar! Read it instantly! 

Shakespeare, fulius Caesar, 3, i 

Here is a letter, read it at your leisure. 

Shakespeare, Merchant of Venice, 5, i 

An image performs 1/0 operations on: a device by requesting 1/0 system 
services. The 1/0 system services also are requested on behalf of a process 
by system components, for example, Record Management Services (RMS) 
and file processors, such as Files-11 Extended QIO Processor (XQP) or ancil­
lary control processes (ACPs). This chapter describes the basic 1/0 system 
services and the device-independent portions of the flow of an 1/0 request. 
Chapter 22 describes the device-dependent portion of that flow. 

21.1 OVERVIEW 

The basic 1/0 system services are 

• Allocate Device ($ALLOC), by which an image reserves a particular device 
for exclusive use 

• Deallocate Device ($DALLOC), by which an image relinquishes such a 
device 

• Assign 1/0 Channel ($ASSIGN), by which an image creates a logical link 
to a device 

• Deassign 1/0 Channel ($DASSGN), by which an image deletes the logical 
link 

• Queue 1/0 Request [and Wait] ($QIO[W]), by which an image requests an 
1/0 operation on a particular logical link to a device 

• Cancel 1/0 on Channel ($CANCEL), by which an image cancels outstand­
ing 1/0 requests on a particular logical link to a device 

VMS provides other 1/0 system services in addition to those discussed in 
this chapter. See the Introduction to VMS System Services for a discussion 
of all the 1/0 system services. 

All the system service routines discussed in this chapter that have a 
device name argument accept a logical name instead of a device name. Each 
routine uses the same criteria to process the device name argument. See 
the Introduction to VMS System Services for a discussion of these criteria. 
Logical names and logical name translation are discussed in Chapter 35. 

A typical service sequence for an image is the following: 

1. If appropriate, it requests the $ALLOC system service. 
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2. It requests the $ASSIGN system service. 
3. Either it requests the $QIO system service followed by an event flag 

wait system service (for example, Wait for Single Event Flag, $WAITFR, 
or Synchronize, $SYNCH) or it requests the $QIOW system service. This 
step is repeated for each 1/0 operation. 

4. Upon completion of its 1/0 operations, the image requests the $DASSGN 
system service (which can instead be requested implicitly as part of image 
rundown or process deletion). 

5. If necessary, it requests the $DALLOC system service (which can also 
be requested implicitly as part of image rundown or process deletion). 

An 1/0 request is processed in a number of steps and threads of execu­
tion. A typical sequence is shown in Figure 21.1; the numbers in the figure 
correspond to those in the following list: 

G) The image requests the $QIO[W] system service. 
G) EXE$QIO, the $QIO system service procedure, runs in process context. 

It validates its device-independent arguments and builds a data structure, 
called an 1/0 request packet (IRP), that describes the I/O request. 

G) It invokes one or more function decision table (FDT) action routines 
specific to the device and 1/0 function. The FDT action routines, also 
running in process context, complete argument validation and any neces­
sary I/O request preprocessing. An FDT routine may allocate a nonpaged 
pool buffer for use by the driver, and it may lock user buffer pages into 
memory so that they can be accessed by a direct memory access (DMA) 
device. 

G) The last FDT action routine invokes an executive routine to pass the IRP 
to the device driver and to return control to the user. 

G)The device driver's start I/O routine, which executes in system context, 
initiates the device activity corresponding to the I/O request and then 
waits for the device interrupt that signals completion of the activity. 

G)The device interrupt service routine (ISR), which executes at device in­
terrupt priority level (IPL), copies device status and then forks to dismiss 
the interrupt and reenter the start 1/0 routine at a lower IPL. 

G) Reentered as a fork process, the start 1/0 routine verifies that the request 
has been satisfied, copies status to the IRP, and queues the IRP for post­
processing. 

G)The 1/0 postprocessing interrupt service routine, running in system con­
text, performs some postprocessing functions, for example, unlock buffer 
pages, restore charged quota, and set the event flag associated with the 
1/0 request. It queues a special kernel mode asynchronous system trap 
(AST) to the process whose I/O completed. 

G) Running in process context, the special kernel mode AST routine can 
copy I/O status to the image's 1/0 status block (IOSB) and copy input 
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data from a nonpaged pool buffer to a user buffer. If the user requested 
AST notification of the I/O completion, the special kernel mode AST 
routine queues a normal AST. 

21.2 DEVICE DRIVERS AND FORK LOCKS 

Prior to VMS Version 5, VMS and device drivers used IPL alone to synchro­
nize access to the unit control block (UCB). To run on a VMS Version 5 
symmetric multiprocessing (SMP) system, a driver must synchronize access 
to its UCB with a type of spinlock called a fork lock. While all drivers pro­
vided with VMS Version 5 have been modified to use fork locks, VMS must 
work with drivers that use either style of synchronization. 

VMS distinguishes the two styles by the contents of UCB$B_FIPL, the 
same offset as UCB$B_FLCK. If the driver uses fork locks, this location 
contains the spinlock index for the fork lock, which is a value with bit 
5 set. If the driver uses IPL alone, this location contains the fork IPL, which 
is a value with bit 5 clear. Thus, the two styles can be distinguished by the 
state of bit 5 in UCB$B_FIPL. 

21.3 DEVICE CATEGORIES 
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Several I/O system services use the following categories to classify devices. 
A device may be in more than one category. The two categories that are 
mutually exclusive are local and remote . 

• Local devices. These are devices attached directly to the system, pseudo 
devices, and cluster-available devices . 

• Pseudo devices. These are local devices that do not correspond to a physical 
device. One example of a pseudo device is the mailbox device, described 
in Chapter 23 . 

• Template devices. These are pseudo devices that have bit UCB$V _ TEM­
PLATE in UCB$W _STS set. All cluster-available devices and most other 
local devices are not template devices. Template devices are discussed in 
more detail in Section 21.5.2.2.2 . 

• Network devices. These are pseudo devices used by network software to 
represent logical links. A network device has bit DEV$V _NET in UCB$L_ 
DEVCHAR set. 

• Cluster-available devices. These are devices that are served via the mass 
storage control protocol (MSCP) server and devices that are attached to de­
vice servers such as an HSC-50. Cluster-available devices have bit DEV$V _ 
CLU in UCB$LDEVCHAR2 set. 

Access to cluster-available devices is coordinated across the VAXcluster 
system by means of resource locks. A cluster-available device has the same 
name on each VAXcluster node on which it appears. The device name 
is prefixed with SYS$_ to form the resource name. Resource locks are 
described in Chapter 10. 



21.4 Allocating and Deallocating Devices 

• Remote devices. These are devices accessed via DECnet-VAX, specifically 
those whose device specification includes a DECnet node name, indicated 
by the presence of :: in the device specification. 

21.4 ALLOCATING AND DEALLOCATING DEVICES 

An I/O device is characterized as shareable or not, based on whether mul­
tiple independent processes are allowed to use it concurrently. A device is 
nonshareable, for example, if its I/O is inherently sequential and concurrent 
requests from independent processes would read and write indeterminate 
data. Before a process can request I/O of a nonshareable device, the device 
must be allocated for the process's exclusive use. 

A device allocated to a process can nonetheless be used by another process 
under the following two conditions: 

• The other process is a subprocess of the first. This condition provides, for 
example, flexible access to an interactive terminal among a user's process 
and its spawned subprocesses. 

• The other process has the SHARE privilege. For example, the print sym­
biont uses the SHARE privilege to access a disk mounted privately when 
the owner queues files on the disk for printing. 

In either set of circumstances, the prncesses sharing the device are respon­
sible for arbitrating their accesses to it. 

There are two forms of device allocation: explicit, requested by the process 
through the $ALLOC system service, and implicit, performed as necessary 
on behalf of the process by the $ASSIGN system service. In either form, the 
process ID (PID) of the process that allocated the device is stored in the UCB 
device owner field, UCB$1-PID. 

Explicit allocation differs from implicit allocation in several ways: 

• An implicitly allocated device is transparently deallocated when its last 
channel is deassigned; an explicitly allocated device must be explicitly 
deallocated . 

• A process can request explicit allocation of a generic device type or a 
specific device unit . 

• In the case of explicit allocation, the device allocated bit, DEV$V _ALL in 
UCB$L_DEVCHAR, is set and the device reference count, UCB$W _REFC, 
is incremented twice, once by $ALLOC and once by $ASSIGN. In the case 
of implicit device allocation, the device allocated bit is clear and the device 
reference count is incremented only once, by $ASSIGN. 

A process requests the $ALLOC system service to allocate a device explic­
itly. The device can be released only through the $DALLOC system service, 
requested by the process directly or by code running on its behalf at image 
rundown or process deletion. 
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The $ASSIGN system service, described in Section 21.5.2, performs im­
plicit allocation of a device that has not been explicitly allocated, provided 
the device is not shareable. 

Allocate Device System Service 

The $ALLOC system service has five arguments, of which only the DEVNAM 

argument is required: 

• The DEVNAM argument identifies the device to be allocated . 
• The PHYBUF argument specifies where the $ALLOC system service should 

return the name of the device . 
• The PHYLEN argument specifies where it should return the length of the 

device name . 
• The ACMODE argument identifies the access mode to be associated with the 

device. It is maximized with the mode of the caller. Once allocated, the 
device can only be deallocated from the same or a more privileged mode. 

• The FLAGS argument contains only one flag, the low bit. When set, the low 
bit indicates that any device of a particular type can be allocated, not just 
a specific device. 

The $ALLOC system service procedure, EXE$ALLOC in module SYS­
DEVALC, will not allocate the device if any one of the following conditions 
is true: 

• The device is already allocated by another process (UCB$1-PID is nonzero 
and does not match PCB$L_PID). 

• The device reference count is nonzero. 
• A volume is mounted on the device . 
• The device is spooled (DEV$V _SPL in UCB$1-DEVCHAR is set), and the 

process does not have the ALLSPOOL privilege . 
• The requesting process does not have access rights to allocate the device, 

based on the device owner's user identification code (UIC) and protection 
(fields UCB$1-UIC and UCB$W_PROT) and its access control list . 

• The device is not available (DEV$V _AVL in UCB$1-DEVCHAR is clear) 
or not online (UCB$V _ONLINE in UCB$L_STS is clear) . 

• The device is a template device . 
• The device is cluster-available and a conflicting resource lock exists. 

EXE$ALLOC runs in kernel mode. It takes the following steps to allocate 
a device: 

1. It locks the 1/0 database mutex for write access. 
2. It verifies that the DEVNAM argument's string descriptor is read-accessible. 
3. If the FLAGS argument is specified, EXE$ALLOC verifies that it is read­

accessible and does not have undefined bits set. 
4. It invokes IOC$SEARCH, in module IOSUBPAGD, to locate a suitable 

device. 
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-If the FLAGS argument is not specified or is 0, EXE$ALLOC requests a 
search for the exact device specified by the DEVNAM argument. 

-If the FLAGS argument is 1, EXE$ALLOC requests a search for the first 
available device having the type specified by the DEVNAM argument. 

IOC$SEARCH invokes IOC$TRANDEVNAM, in module IOSUB­
PAGD, to translate the DEVNAM argument. It then searches the 1/0 
database for either the specific device or one of the particular type. 
IOC$SEARCH and routines it invokes verify the suitability of the de­
vice and its accessibility to this process. 

If the appropriate device is found, IOC$SEARCH checks that the pro­
cess has access to the device. If the device is cluster-available, it invokes 
IOC$LOCILDEV, in module IOSUBPAGD. IOC$LOCILDEV requests 
the Enqueue Lock Request ($ENQ) system service to queue an exclusive 
mode resource lock on the device. IOC$LOCILDEV stores the lock ID 
in UCB$1-LOCKID. 

5. EXE$ALLOC returns the translated device name if the PHYBUF argument 
is specified, the descriptor is readable, and the buffer is writable. If the 
PHYLEN argument is also specified and is write-accessible, EXE$ALLOC 
also returns the length of the device name. 

6. It allocates the device: 

a. It sets the device allocated bit, DEV$V _ALL in UCB$L_DEVCHAR. 
b. It maximizes the ACMODE argument with the access mode of its re­

questor and stores the result in UCB$B_AMOD. 
c. It increments the device reference count, UCB$W _REFCNT. 
d. It copies the process ID, PCB$1-PID, to the UCB device owner field, 

UCB$1-PID. 

7. It jumps to IOC$UNLOCK, in module IOSUBPAGD, to unlock the 1/0 
database mutex and to return to the requestor with the success status 
SS$_NORMAL. 

Deallocate Device System Service 

An image can deallocate a single device or all devices allocated to the process 
by requesting the $DALLOC system service. The $DALLOC system service 
is also requested by the Rundown ($RUNDWN) system service during image 
rundown to deallocate all user-mode devices and during process deletion to 
deallocate all devices still allocated to the process. The $RUNDWN system 
service is discussed in Chapter 26. Process deletion is discussed in Chap­
ter 28. 

The $DALLOC system service has two optional arguments: 

• The DEVNAM argument specifies the device to be deallocated. If the DEVNAM 

argument is specified, it must translate to a physical device name. If the 
DEVNAM argument is not specified, all devices allocated by the process from 
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access modes equal to or less privileged than that specified by the DEVNAM 

argument are deallocated . 
• The ACMODE argument specifies the access mode on behalf of which the 

deallocation is to be performed. It is maximized with the mode of the 
caller. 

The $DALLOC system service procedure, EXE$DALLOC in module SYS-
DEVALC, runs in kernel mode. It performs the following steps: 

1. It maximizes the ACMODE argument with the access mode of its requestor. 
2. It locks the 1/0 database mutex for write access. 
3. It determines if the DEVNAM argument is present. 

-If the argument is present, it invokes IOC$SEARCHDEV, in module 
IOSUBPAGD, to locate the specified device. 

-If the argument is absent, it invokes IOC$SCAN_IODB, in module 
IOSUBNPAG, to find the first UCB in the 1/0 database. 

4. In either case, EXE$DALLOC makes the following checks before deallo­
cating the device. 

- The UCB$1-PID field must match the PCB$1-PID field of the process 
requesting the $DALLOC system service. 

- The access mode in UCB$B_AMOD must be greater than or equal to 
the access mode computed in step 1. 

- The device must have been explicitly allocated. 
-The device must not be mounted (DEV$V _MNT in UCB$L_DEV-

CHAR must be clear), unless the device is a terminal (DEV$V _ TRM 
in UCB$1-DEVCHAR is set). DECnet remote terminals are marked as 
mounted but need not be interlocked against deallocation. 

5. It deallocates the device by invoking IOC$DALLOC_DEV, in module 
IOSUBPAGD, which takes the following steps: 

a. It clears the device allocated bit. 
b. If the device is shareable, it clears the device owner field. 
c. It decrements the device reference count. 
d. If the reference count is now zero, IOC$DALLOC_DEV clears the 

owner field in the UCB and invokes IOC$LAST _CHAN, which per­
forms last channel processing (see Section 21.5.4). 

e. If the device is cluster-available, IOC$DALLOC_DEV invokes 
IOC$UNLOCK_DEV, in module IOSUBPAGD, to deal with the re­
source lock on the device. IOC$UNLOCK_DEV tests UCB$L_LOCK­
ID to determine whether there is a resource lock, and the device 
reference count to determine whether there are still channels as­
signed to the device. 

If there is no resource lock or if the device is still allocated, the 
routine returns. 
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If there is a resource lock and channels are still assigned to the 
device, the routine requests the $ENQ system service to convert the 
resource lock to concurrent read mode. 

If there is a resource lock and no channel still assigned, the rou­
tine requests the Dequeue Lock Request ($DEQ) system service to 
dequeue the resource lock. 

6. If the DEVNAM argument was present, EXE$DALLOC is done. It jumps 
to IOC$UNLOCK to unlock the 1/0 database mutex and to return to its 
requestor with the success status SS$_NORMAL. 

Otherwise, EXE$DALLOC goes to step 3 to get the next UCB in the 
1/0 database. When no more UCBs are found, EXE$DALLOC is done and 
exits as described. 

21.5 ASSIGNING AND DEASSIGNING CHANNELS 

21.5.1 

The software mechanism that links a process to a device is called a channel. 
To perform 1/0 on a device, an image first creates a channel to it by request­
ing the $ASSIGN system service. The image then identifies the device to the 
$QIO system service through its channel number. When the image is done 
with the device, it requests the $DASSGN system service to break the link 
between the process and the device. 

Channel Control Block 

A channel is described by a process-specific data structure called a channel 
control block (CCB). A process's CCBs are contained in a table located in 
its Pl space (see Figure 1.2 and Table F.6). The global location CTL$GL 
CCBBASE contains the address of the table's high-address end. The table 
is accessed using negative byte displacements. That is, a particular CCB 
is identified by its displacement from the contents of CTL$GLCCBBASE. 
The number of CCBs in the table is determined by the SYSGEN parameter 
CHANNELCNT. Figure 21.2 shows the layout of a CCB. 

The field CCB$B_AMOD contains 0 if the channel is unassigned. Oth­
erwise, it contains the access mode from which the channel was assigned, 
biased by 1. For example, the value 1 indicates that the channel was assigned 

UCB 

WIND 

IOC l AMOD l STS 

DIRP 

Figure 21.2 
Layout of Channel Control Block 
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from kernel mode. A $QIO system service request on a particular channel 
must be made from an access mode at least as privileged as the mode from 
which the channel was assigned. 

CCB$L_UCB contains the address of the UCB of the device to which the 
channel is assigned. 

Any comparison of CCB$B_AMOD with an access mode value must be 
a signed comparison. The Files-11 Extended QIO Processor (XQP) prevents 
deassignment of its channel when the channel is inactive by storing -1 in 
CCB$B_AMOD. Prior to using the channel, the XQP transforms the CCB 
into a normal kernel mode channel to the device of the XQP's choice. 

If a file has been opened on the channel, CCB$L_ WIND contains the 
address of its window control block (WCB). If the file is associated with a 
process section, CCB$L_ WIND contains the process section index. CCB$L_ 
WIND contains an unnamed flag in the low bit that is set to indicate either 
an access (open) request in progress or a deaccess (close) request waiting for 
all other outstanding 1/0 requests to be completed . 

• If there is an access request pending, CCB$L_ WIND contains a 1. 
• If there is a deaccess request pending, CCB$L_ WIND contains the WCB 

address or process section index ORed with 1. CCB$LDIRP contains the 
address of the IRP that describes the deaccess request. Since WCB addresses 
and process section indexes are always even, system routines can recover 
these values by masking out the low bit of CCB$L_ WIND. 

CCB$B_STS contains several status bits. 
The field CCB$W _IOC indicates how many 1/0 requests are outstanding 

on the channel. 

Assign 1/0 Channel System Service 

The $ASSIGN system service has four arguments; the first two are required 
and the last two are optional: 

• The DEVNAM argument is the name of the device to which to assign the 
channel. 

• The CHAN argument is the address of the word in which to return the 
assigned channel number. 

• The ACMODE argument, indicating the access mode to be associated with 
the channel, is maximized with the mode of the requestor. 

• The MBXNAM argument is the name of the mailbox to be associated with 
the channel. An image associates a mailbox with a nonshareable device to 
receive status information, such as the arrival of unsolicited input from 
a terminal. The device driver for the device either uses or ignores this 
associated mailbox. 
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The $ASSIGN system service procedure, EXE$ASSIGN in module SYSAS­
SIGN, runs in kernel mode. There are two major paths through EXE$AS­
SIGN. The first path handles assignment to a local device. The second han­
dles assignment to a remote device. Both have the same initial steps. They 
then diverge and do not rejoin. 

Common Initial Steps. EXE$ASSIGN performs the following steps for both 
local and remote device assignment: 

1. It verifies that the CHAN argument is write-accessible. 
2. If the MBXNAM argument was specified, EXE$ASSIGN verifies that it is 

read-accessible. 
3. It verifies that the DEVNAM argument is read-accessible. 
4. It verifies that the ACMODE argument is read-accessible and maximizes 

the argument with the access mode of its requestor. 
5. It invokes IOC$FFCHAN, in module IOSUBPAGD, to find a free CCB. 

IOC$FFCHAN begins its search for a free CCB at the high-address 
end of the CCB table. It examines offset CCB$B_AMOD to determine 
whether the CCB is free. If the CCB is in use, IOC$FFCHAN exam~ 
ines the next CCB, repeating its test. This sequence continues until 
IOC$FFCHAN locates a free CCB or reaches the end of the table. 

If IOC$FFCHAN locates a CCB, it returns the address of the free CCB 
and a positive offset into the CCB table. This offset is the channel number 
returned from the system service request. 

If no free CCB is located, IOC$FFCHAN returns the error status SS$_ 
NOIOCHN. 

6. EXE$ASSIGN locks the 1/0 database mutex for write access. 
7. If MBXNAM was specified, EXE$ASSIGN invokes IOC$SEARCHDEV to get 

the address of the specified mailbox UCB. The device must be a mailbox 
device (DEV$V _MBX in UCB$L_DEVCHAR is set) but not a network 
device. 

8. It invokes IOC$SEARCH to locate the device specified in the DEVNAM 

argument. If the device name is a logical name, IOC$SEARCH invokes 
IOC$TRANDEVNAM to perform logical name translation. 

If IOC$TRANDEVNAM returns a success status, IOC$SEARCH then 
scans the 1/0 database for a device with the resulting equivalence name. 

-If IOC$SEARCH locates the device, it returns the address of the de­
vice's UCB. EXE$ASSIGN then takes the steps discussed in Sec­
tion 21.5.2.2. 

-If IOC$SEARCH does not locate the device, EXE$ASSIGN jumps to 
IOC$UNLOCK to unlock the 1/0 database mutex and to return to the 
caller with the error status from IOC$SEARCH. 

9. If the device name contains a node delimiter (::), IOC$TRANDEVNAM 

597 



1/0 System Services 

21.5.2.2 

21.5.2.2.1 

598 

returns the error status SS$_NONLOCAL, and EXE$ASSIGN takes the 
steps described in Section 21.5.2.3 for remote device assignment. 

10. If IOC$TRANDEVNAM returns any other error status, EXE$ASSIGN 
jumps to IOC$UNLOCK to unlock the 1/0 database mutex and to return 
to the caller with that error status. 

Local Device Assignment. EXE$ASSIGN first checks for several special 
kinds of device: 

1. If the UCB is a redirected UCB (DEV$V _RED in UCB$L_DEVCHAR2 is 
set), EXE$ASSIGN replaces the original UCB address with the address of 
the logical UCB by using the value in field UCB$L_ TT _LOGUCB of the 
original UCB. This mechanism associates the assigned channel with the 
virtual terminal rather than with the physical. (The physical terminal 
may be a pseudo device such as a LAT terminal.) Only terminal UCBs 
can be redirected. 

2. If the device is set spooled, EXE$ASSIGN goes directly to local device 
final processing, described in Section 21.5.2.2.4. 

3. If the device is a shadow set member (bit DEV$V _SSM in DEV$LDEV­
CHAR2 is set), EXE$ASSIGN performs associated mailbox processing, 
described in Section 21.5.2.2.3. 

EXE$ASSIGN then determines whether the device is a template device. If 
it is, EXE$ASSIGN clones the UCB to create a. new device, as described in 
Section 21.5.2.2.2. 

Nontemplate Device Processing. Before assigning a channel to a local non­
template device, EXE$ASSIGN confirms the following: 

• If the device is allocated (UCB$LPID is nonzero) and nonshareable, one 
of the following two conditions must be true: 

- The requesting process must be the owner of the device or a descendant 
of the owner process. 

- The requesting process must have the SHARE privilege, and the volume 
protection and owner UIC must allow access . 

• If the device is not allocated, the volume protection and owner UIC must 
allow access. 

If the requestor is allowed to assign a channel. to the device, EXE$ASSIGN 
handles the associated mailbox, if any, and pe~forms final processing (see 
Section 21.5.2.2.4). 

If the requestor is not allowed to assign the channel, EXE$ASSIGN jumps 
to IOC$UNLOCK to unlock the 1/0 database mutex and to return to the 
requestor with an error status. 
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21.5.2.2.2 Template Device Processing. If the device is a template device, EXE$ASSIGN 
creates a new UCB, called the cloned UCB, by copying the template UCB, 
and assigns the channel to the cloned UCB as follows: 

1. If the template device is a network device, it verifies that the process has 
NETMBX privilege. 

2. EXE$ASSIGN invokes IOC$CHKUCBQUOTA, in module UCBCREDEL, 
to verify that the process has as much BYTLM quota as the sum of the 
size of the template UCB plus 256 additional bytes to satisfy process 
deletion needs. 

IOC$CHKUCBQUOTA invokes EXE$DEBIT _BYTCNT _BYTLIM_ 
NW, in module EXSUBROUT, to check and charge the quota. Both 
the byte count quota (JIB$LBYTCNT) and limit (JIB$LBYTLIM) are 
charged. Since the amount charged by IOC$CHKUCBQUOTA will not 
be restored until the UCB is deleted, the process has effectively had its 
byte limit reduced by the amount of the charge. EXE$DEBIT _BYTCNT _ 
BYTLIM._NW decrements the byte limit as well to reflect this fact. 

3. EXE$ASSIGN invokes IOC$CLONE_UCB, in module UCBCREDEL, to 
create the cloned UCB and an object rights block (ORB). 

IOC$CLONE_UCB copies the template UCB and then makes several 
modifications to the cloned UCB. The following are of particular interest: 

-It sets the reference count to 1. 
-It marks the unit online. 
-It clears the template bit. 
-It stores the size of the UCB in UCB$W_CHARGE. 
-It gives the UCB a unique unit number between 1and9999. 
-It links the UCB ilito the UCB chain of the related device data block 

(DDB). 

4. EXE$ASSIGN 'stores the current process's UIC in the ORB owner field 
(ORB$LOWNER). At this point, the owner field of the cloned UCB is 
still clear. 

5. It sets UCB$V _DELETEUCB in UCB$LSTS to mark the cloned UCB for 
deletion whenits reference count goes to 0. 

6. If the template UCB is a mailbox, it sets the mailbox delete bit (UCB$V _ 
DELMBX in UCB$W_DEVSTS). This is done because special steps are 
required to delete a mailbox UCB. 

7. It clears the device reference count. This is done because the device 
reference count will be incremented later and IOC$CLONE_UCB sets 
it to 1. If the reference count were not cleared here, it would never go 
to 0. 

8. EXE$ASSIGN invokes IOC$DEBIT _UCB, in module UCBCREDEL, to 
record the master PID charged for the UCB (JIB$LMPIDJ into the charge 
PID field (UCB$LCPID). 
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In earlier versions of VMS, IOC$DEBIT_UCB decremented the job in­
formation block !JIB) byte count quota and byte limit fields. In VMS Ver­
sion 5, this function has been moved to EXE$DEBIT _BYTCNT _BYTLIM_ 
NW, which now charges the quotas while holding the JIB spinlock. 

9. EXE$ASSIGN invokes the driver at the entry point specified by DDT$L_ 
CLONEUCB, passing it the addresses of the template and cloned UCBs. 
The driver can perform any additional checks necessary. If the driver 
returns any error status, the process of cloning the UCB is undone and 
the $ASSIGN completes with failure. 

The driver's cloned UCB routine runs in the context of the process 
that requested the $ASSIGN system service. It executes at IPL 2 because 
the I/O database mutex is owned by the process. 

10. If the device is not shareable, EXE$ASSIGN copies the process's PID to 
UCB$L_PID, implicitly allocating it. 

11. It takes the steps described in Section 21.5.2.2.3. 

21.5.2.2.3 Associated Mailbox Processing. If an associated mailbox was requested, 
EXE$ASSIGN stores the address of the associated mailbox UCB in the 
UCB$L_AMB field of the UCB to which the channel is being assigned. It 
increments the reference count in the associated mailbox UCB and sets 
CCB$V _AMB for later storage in CCB$B_STS to indicate that there is an 
associated mailbox. 

21.5.2.2.4 
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No association is made if either of the following is true: 

• The device is a file-oriented device (DEV$V _FOD in UCB$L_DEVCHAR is 
set) or the device is shareable. In either case, the request for an associated 
mailbox is simply ignored. 

•The device already has an associated mailbox (UCB$1-AMB is nonzero), 
and the MBXNAM argument specifies a different mailbox. In this case, 
EXE$ASSIGN unlocks the I/O database and returns the failure status SS$_ 
DEVACTIVE. 

Upon completing any steps required for the associated mailbox, EXE$AS­
SIGN proceeds to final processing (see Section 21.5.2.2.4). 

Local Device Final Processing. At this point, EXE$ASSIGN has found a free 
channel, verified the existence of the device (creating the UCB in the case of 
a template device), and verified that the process has access to the device. It 
completes the assignment of an I/O channel to a local device in the following 
steps: 

1. If appropriate, it invokes IOC$LOCILDEV, described in Section 21.4.1, 
to queue a concurrent read mode resource lock on it. The following 
conditions must all be met for EXE$ASSIGN to take this action: 
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-The device reference count is 0. 
;The system is an active member of a VAXcluster system. 
~The device is cluster-available. 

2. 1f the device is not shareable and not currently owned, EXE$ASSIGN im­
p1icitly allocates the device to the current process by storing the current 
process's PID (PCB$L_PID) in UCB$1-PID. 

3. It copies the device's UCB address to CCB$1-UCB. 
4. It increments the device reference count. 
5. It stores the access mode biased by 1 in CCB$B_AMOD. 
6. It sets CCB$B_STS appropriately. The only bit that may be set as a result 

6f this step is CCB$V _AMB. 
7. EXE$ASSIGN writes the channel number, the offset into the CCB table, 

in the word specified by the CHAN argument. 
8. It jumps to IOC$UNLOCK to unlock the I/O database mutex and to 

return the success status SS$_NORMAL to its requestor. 

Assigning a Channel to a Remote Device. If the device is a remote device, 
EXE$ASSIGN performs the first step in transparent network communica"­
tion, converting the transparent network communication into the related 
nontransparent network communication. This section assumes familiarity 
with transparent and nontransparent network communication, described in 
the VMS Networking Manual. 

The initiation of nontransparent network communication involves re­
questing the $ASSIGN system service again. Since this second request could 
take some time to complete, EXE$ASSIGN returns to the mode of its caller. 
so that any waits take place in that mode rather than in kernel mode. 

EXE$ASSIGN returns to the mode of its caller in the following manner: 

1. It enters the remote path when IOC$TRANDEVNAM returns the failure 
status SS$_NONLOCAL (see Section 21.5.2.1). EXE$ASSIGN converts 
SS$_NONLOCAL to a success status and jumps to IOC$UNLOCK to 
unlock the I/O database mutex and to return the now-modified SS$_ 
NONLOCAL status. 

2. IOC$UNLOCK exits with a RET instruction, returning control to SER­
VICE_EXIT, in module SYSTEM_SERVICE_DISPATCHER, as described 
in Chapter 6. Since the status returned in RO is a success status, SER­
VICE_EXIT takes the success path and executes.an REI instruction. Nor­
mally, this would return control to the instruction after the CHMK in­
struction in the system service vector. However, as noted in Chapter 6, 
the system service dispatcher modified the exception program counter 
(PC) pushed by the CHMK instruction to be the address of SYNCH$AS­
SIGN_EXIT, in module SYSTEM_SERVICE_EXIT. Thus, control passesc 
to SYNCH$ASSIGN_EXIT. 

601 



1/0 System Services 

602 

3. SYNCH$ASSIGN_EXIT executes in the mode from which the original 
$ASSIGN system service request was made. If the return status con­
tained in RO is not SS$_NONLOCAL modified to be a success status, 
SYNCH$ASSIGN_EXIT executes a RET instruction, returning control to 
the requestor of the $ASSIGN system service. 

4. If the return status is SS$_NONLOCAL, SYNCH$ASSIGN_EXIT trans­
fers control to EXE$NETWORK_ASSIGN, in module SYSASSIGN. 

5. Since EXE$NETWORK_ASSIGN runs in the mode from which the $AS­
SIGN system service was requested, its waits are in that mode, allowing 
ASTs to be delivered to that and more privileged access modes. In previ­
ous versions of VMS, the work done by EXE$NETWORK_ASSIGN was 
done entirely in kernel mode. This resulted in blocking delivery of all 
ASTs except special kernel ASTs during any waits. 

EXE$NETWORK_ASSIGN initiates nontransparent network communica­
tion by taking the following steps: 

1. It establishes a condition handler in case system service failure exception 
mode has been enabled. This condition handler will resignal any condi­
tions other than SS$_NOLOGNAM, which occurs normally in logical 
name translation and should not be passed back to the requestor of the 
$ASSIGN system service. 

2. It allocates a buffer on the stack for use as the data area for logical name 
translation and initializes this area to request the equivalence name and 
its attributes. 

3. It requests the Translate Logical Name ($TRNLNM) system service to 
translate the DEVNAM argument. This repetition of the logical name trans­
lation done at the beginning of EXE$ASSIGN is necessary because the 
result of the earlier translation was not saved. 

The result of this step should be a network connect block suitable for 
use in an outbound connection request operation. EXE$ASSIGN makes 
no attempt to ensure that the result of this step is in the proper format. 
If it is not, an error will be returned when the connection is attempted 
in the next step. 

4. EXE$NETWORK_ASSIGN requests the $ASSIGN system service with 
the following items in the argument list: 

-The DEVNAM a;rgument is the network device name, _NET. 
- The CHAN argument is a stack location that temporarily holds the 

assigned channel number. 
-The ACMODE argument is the ACMODE argument of the original $AS­

SIGN request, maximized with the access mode of the requestor. 
- The MBXNAM argument is the same argument passed in the original 

$ASSIGN system service request. 
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Since NETO is a template device, the unit to which the channel is 
assigned is a new unit, created as described in Section 21.5.2.2.2. 

5. It requests the $QIOW system service to establish a connection to the 
remote device: 

-The FUNC argument is 10$_ACCESS ORed with 10$M_ACCESS. 
-The event flag is EXE$C_SYSEFN. 
-The CHAN argument is the one to which the device was assigned in the 

previous step. 
-The network connect block is the one obtained in step 3. 

6. If the $QIO completes successfully, EXE$NETWORK_ASSIGN records 
the channel number from step 4 in the word specified by the CHAN 

' argument of the original $ASSIGN system service request. It then returns 
the success status SS$_REMOTE to its requestor. 

7. If the $QIO fails, EXE$NETWORK_ASSIGN requests the $DASSGN sys­
tem service to deassign the channel. It then returns the failure status 
from the $QIO system service to its requestor. 

Deassign 1/0 Channel System Service 

The $DASSGN system service deassigns a previously assigned 1/0 channel 
and clears the linkage and control information in the corresponding CCB, 
freeing the CCB for reuse. Any outstanding 1/0 request on the device is 
terminated in the process. $DASSGN has only one argument, the CHAN 

argument, which specifies the channel to be deassigned. 
The $DASSGN system service procedure, EXE$DASSGN in module SYS­

DASSGN, runs in kernel mode. It takes the following steps: 

1. It invokes IOC$VERIFYCHAN, in module IOSUBPAGD, which performs 
the following steps: 

a. It verifies that the channel is legal. 
b. It verifies that the channel was assigned from an access mode no more 

privileged than the access mode from which it is to be deassigned. 
CCB$B_AMOD must be greater than the processor status longword 
IPSLJ previous mode field. 

c. It returns the address and the index of the CCB for the channel. 

2. EXE$DASSGN calls EXE$CANCELN with a reason code of CAN$C_ 
DASSGN !channel is being deassigned) to cancel all outstanding 1/0 on 
the channel. EXE$CANCELN is an entry point in the $CANCEL system 
service, discussed in Section 21.9. 

3. It invokes IOC$VERIFYCHAN again in case the cancel 1/0 operation 
triggered a kernel mode AST routine that requested the $DASSGN sys­
tem service again. This second call to $DASSGN could have completely 
deassigned the channel. 
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4. If a file is open on the channel (CCB$L_ WIND is nonzero), EXE$DASSGN 
requests the $QIOW system service to close the file. It specifies a func­
tion code of 10$_DEACCESS and event flag number 30. Event flag 30 is 
used to avoid conflict with the use of event flag 31 by $CANCEL. 

A network logical link appears to be a file; the $QIOW system service 
dissolves the link. 

5. EXE$DASSGN examines CCB$W _IOC to determine whether there is 1/0 
outstanding on the channel. If there is, EXE$DASSGN must wait for its 
completion AST before proceeding further. EXE$DASSGN acquires the 
SCHED spinlock and tests whether the process has a pending kernel 
mode AST whose delivery has been blocked by EXE$DASSGN's execu­
tion at IPL 2 and above. 

-If there is a pending kernel mode AST, EXE$DASSGN releases the 
spinlock and executes an REI instruction that lowers IPL to 0 and 
transfers control to step 3. 

-If there is not, EXE$DASSGN invokes SCH$RWAIT, in module MU­
TEX, to place the process into a resource wait. SCH$RWAIT releases 
the SCHED spinlock and waits the process at IPL 0 and at a PC corre­
sponding to step 3. 

Chapter 7 discusses ASTs in more detail, and Chapter 12 wait states. 
6. It locks the 1/0 database mutex for write access. 
7. It clears CCB$B_AMOD. 
8. If there is an associated mailbox (CCB$V_AMB in CCB$B_STS is set), 

EXE$DASSGN dissociates the mailbox by taking the following steps: 

a. It clears UCB$1-AMB in the device UCB. 
b. It decrements the reference count in the mailbox UCB. 
c. If the mailbox reference count is now 0, it invokes IOC$LAST _ 

CHAN_AMBX, in module IOSUBNPAG, to perform last channel pro­
cessing for an associated mailbox (see Section 21.5.4). 

9. It decrements the reference count in the device UCB. 
10. If the device reference count is now 0, indicating that the device was not 

explicitly allocated, EXE$DASSGN takes the following steps: 

a. It clears the device owner field, deallocating the device. 
b. If the device is cluster-available, it invokes IOC$UNLOCK._DEV to_ 

remove the resource lock on the device (see Section 21.4.2). 
c. It invokes IOC$LAST _CHAN to perform last channel processing. 

11. If the device reference count is 1 and the device has been explicitly allo­
cated, EXE$DASSGN invokes IOC$LAST _CHAN to perform last chan­
nel processing. 

12. It invokes IOC$UNLOCK to unlock the 1/0 database mutex and returns 
the success status SS$_NORMAL to its requestor. 
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Last Channel Processing 

Last channel processing is performed when the last channel to a device is 
deassigned: 

• When the device reference count goes to 0, and the device was not explic­
itly allocated 

• When the device reference count goes to 1, and the device was explicitly 
allocated 

There are two entry points to last channel processing: IOC$LAST _CHAN 
and IOC$LAST_CHAN_AMBX. The latter routine is invoked when the de­
vice is an associated mailbox, the former routine in all other cases. They 
differ only in their initial steps: 

• IOC$LAST _CHAN is invoked with the channel number and the address 
of the UCB of the device assigned to the channel. It saves the reason code 
CAN$C_DASSGN for later use. 

• IOC$LAST _CHAN_AMBX is invoked with the address of the mailbox 
UCB, not the UCB of the device assigned to the channel. (The channel 
is not assigned to the mailbox and is not needed by the mailbox driver; 
The current IRP is also not needed by the mailbox driver.) It saves the 
reason code CAN$C_AMBXDGN for later use. 

At this point, IOC$LAST _CHAN and IOC$LAST _CHAN_AMBX converge 
in the following steps: 

1. If the UCB specifies primary affinity and the process does not already 
require primary affinity, the routine invokes SCH$REQUIRE_CAPABIL­
ITY, in module SCHED, to acquire affinity for the primary. This is done 
to handle those cases where the device registers should be accessed only 
from the primary processor in an SMP system. Chapter 12 discusses 
processor affinity. 

2. If the driver uses fork locks, IOC$LAST _CHAN acquires the fork lock, 
raising IPL to the associated fork IPL. Otherwise, it simply raises IPL to 
fork IPL. This step synchronizes access to the UCB. 

3. It invokes the device driver'.s cancel 1/0 routine, passing the reason code 
saved previously. 

4. If the driver uses a fork lock, IOC$LAST _CHAN releases it without 
changing IPL. 

5. It lowers IPL to 2, leaving it there to prevent process deletion. 
6. If primary affinity was acquired, the routine releases it. 
7. If the device is explicitly allocated, the routine returns to its invoker. 
8. If the device is a terminal or mailbox, the routine clears DEV$V _OPR in 

UCB$1-DEVCHAR, disabling the device as an operator terminal. 
9. If UCB$V_DELETEUCB in UCB$L_STS is set, the routine takes the fol­

lowing two steps: 
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a. It invokes IOC$CREDIT_UCB, in module UCBCREDEL, to return 
the quota charged against the byte count and byte limit. 

b. It invokes IOC$DELETE_UCB, in module UCBCREDEL, to delete 
the UCB and the associated ORB. 

10. The routine returns to its invoker. 
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The $QIO[W] system service performs device-independent preprocessing 
and, via FDT routines, device-dependent preprocessing. It then queues an 
1/0 request to the driver for the device associated with a channel. Any addi­
tional work to be done is performed by the device driver's start 1/0 routine. 

The $QIO system service has the following arguments: 

• The EFN argument is the number of the event flag to be associated with 
the 1/0 request. Since this argument is passed by value, omitting it is the 
same as specifying event flag 0 . 

• The CHAN argument is the number of the 1/0 channel. This is the same as 
the CHAN argument returned by the $ASSIGN system service. 

• The FUNC argument identifies what operation is to be performed by the 
device driver. It is divided into two portions, the function code proper and 
function modifiers. Throughout the chapter, the term function code means 
just the function code proper; the term FUNC means the entire argument. 

• The IOSB argument is the address of the IOSB, a quadword to receive final 
status of the 1/0 operation. See the VMS System Services Reference Manual 
for a detailed description of the format of the IOSB. 

• The ASTADR argument is the address of an AST procedure to be executed 
in the mode of the requestor when the 1/0 operation completes . 

• The ASTPRM argument is the parameter to be passed to the AST procedure. 
• There are six optional device- and function-specific parameters, Pl through 

P6. 

The CHAN and FUNC arguments must be specified. All others are optional 
and, if not specified, default to a value of zero. 

Device-Independent Preprocessing 

The $QIO[W] system service procedure, EXE$QIO in module SYSQIOREQ, 
executes in kernel mode. 

To perform device-independent preprocessing, EXE$QIO validates and pro­
cesses all its arguments except for Pl through P6. It takes the following steps: 

1. It clears the specified event flag so that the process will be placed into 
a wait state until the 1/0 operation completes, should the caller invoke 
either the $SYNCH system service or one of the event flag wait system 
services to wait for the 1/0 operation to complete. 
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2. It verifies that the channel number is valid and has been assigned from 
an access mode no more privileged than the mode of the $QIO requestor 
by performing the following checks: 

-The channel number is greater than zero and less than or equal to 
the contents of CTL$GW _CHINDX. CTL$GW _CHINDX contains the 
number of the highest assigned channel. Note that not all the channels 
whose numbers are less than the contents of CTL$GW _CHINDX are 
necessarily currently assigned. They could have been deassigned since 
the channel whose number is stored in CTL$GW_CHINDX was last 
assigned. 

-The access mode of the caller (specified by the previous mode field, 
PSL$V _PRVMOD, of the current PSLJ is less than the access mode 
specified by the CCB access mode field. This ensures that the channel 
is used only from access modes at least as privileged as the access mode 
from which the channel was assigned. 

3. If an access or deaccess request is pending on the channel (low bit in 
CCB$L_ WIND is set), the process is placed in an AST wait state, to wait 
for the access or deaccess to complete. When the AST wait is satisfied, 
EXE$QIO will restart at the beginning. 

4. It extracts the function code from the FUNC argument. 
5. If the device is spooled and the function code specifies a virtual 1/0 

function, EXE$QIO substitutes the intermediate device UCB for the UCB 
specified in the CCB. The intermediate device UCB address is stored in 
UCB$L_AMB of the UCB specified by the CCB. Virtual 1/0 to a spooled 
device is assumed to be 1/0 that should be spooled. 1/0 done by th~ 
software implementing spooling, for example, the print symbiont, would 
be logical or physical 1/0. 

6. Under some circumstances, EXE$QIO must verify the process's access 
to the device. If the device is file-oriented, then a file processor (ACP 
or Files-11 XQPJ has been or will be involved in checking the process's 
access to the device when it opens a file. If the device is neither file­
oriented nor shareable, the process's access has already been checked as 
part of implicit or explicit device allocation. 

However, when a process requests a read or write operation from a 
shareable, non-file-oriented device (for example, a real-time device or 
one mounted foreign), EXE$QIO checks whether the access is allowed. It 
invokes either EXE$CHKRDACCES or EXE$CHKWRTACCES, in mod­
ule EXSUBROUT. If the process has the needed acc~ss, the routine sets 
the appropriate bit (CCB$V _RDCHKDON or CCB$V _ WRTCHKDONJ in 
CCB$B_STS. 

Note that EXE$QIO contains two lists of functions, one for reads 
and one for writes. While the interpretation of function codes is almost 
entirely up to the device driver, EXE$QIO does know that the "correct" 
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interpretation of certain codes is a read or a write operation and performs 
access checking based on this interpretation. 

In step 16, EXE$QIO performs additional access checks based on 
whether the 1/0 function is physical, logical, or virtual. 

7. EXE$QIO verifies that the function code is a legal function by checking 
the legal function mask in the FDT (see Chapter 20). 

8. If the device is offline, EXE$QIO checks that the function code is either 
10$_DEACCESS or 10$_ACPCONTROL. If it is not, EXE$QIO returns 
the error status SS$_DEVOFFLINE. 

9. If the IOSB argument is nonzero, EXE$QIO verifies that the IOSB can be 
written by the requesting mode and then clears it. 

10. EXE$QIO uses the buffered 1/0 function mask in the FDT to determine 
whether the function code specifies a direct or buffered operation. 

11. It raises IPL to 2 to prevent process deletion. This step is necessary for 
two reasons: 

-EXE$QIO will allocate an IRP. The fact that this IRP is allocated to 
this process will not be reflected in any data structure until much later. 
If the process were to be deleted before this allocation were recorded, 
the IRP would be lost. 

-In steps 12 and 14, EXE$QIO indicates that this process has outstand­
ing 1/0. If process deletion were begun after these steps, but before the 
request was actually queued, the process would become deadlocked, 
trying to run down nonexistent 1/0. 

12. It determines whether the process has sufficient 1/0 quota (direct or 
buffered, depending upon the previous determination) and, if so, charges 
against it. 

If quota is insufficient, EXE$QIO invokes EXE$SNGLQUOTA, in mod­
ule EXSUBROUT, to place the process in an AST wait if the process has 
resource wait mode enabled. 

13. It allocates an IRP from nonpaged pool (see Chapter 19). 
14. It increments the outstanding 1/0 count in the CCB. 
15. It initializes the IRP. Most of this initialization is straightforward, for 

example, storing the EFN argument in IRP$B_EFN. There are some steps 
that deserve special comment: 

-If the ASTADR argument is nonzero, EXE$QIO charges the process AST 
quota for an AST control block (ACB). It also sets ACB$V _QUOTA in 
IRP$B_RMOD to indicate that the process has been charged for the 
ACB. 

-If the function code specifies a buffered 1/0 operation, EXE$QIO sets 
IRP$V _BUFIO in IRP$W _STS. Otherwise, it clears the bit. 

-EXE$QIO clears the fields that describe the buffer, IRP$1-SVAPTE, 
IRP$W_BOFF, and IRP$1-BCNT, the transfer parameters. 
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-If CCB$L_ WIND is nonzero, the channel is associated with either a file 
or a process section. If the channel is associated with a file, CCB$L_ 
WIND contains the system space address of a WCB, a negative number. 
EXE$QIO stores the address of this WCB in IRP$L_ WIND. 

If the channel is associated with a process section, CCB$L_ WIND 
contains the process section index, a positive number. EXE$QIO uses 
this value to index the process section table (PST) and obtain the ad­
dress of the WCB associated with the process section. (See Chapter 14 
for details on the PST.) EXE$QIO stores the address of this WCB in 
IRP$L_ WIND. 

-If the function code is a virtual read or write to a non-file-oriented 
device, EXE$QIO converts the function code into the corresponding 
logical function code. It stores the converted function code in IRP$W _ 
FUNC and uses the converted function code for all further checking it 
performs. EXE$QIO stores the function modifiers specified in the FUNC 

argument in IRP$W _FUNC without change. 

16. If the device is not spooled, shareable, or file-oriented, EXE$QIO does not 
perform any additional privilege checks. Otherwise, it verifies that the 
process has the necessary privilege to access the device based on whether 
the I/O function is physical, logical, or virtual. 

17. If the request specifies a diagnostic buffer, EXE$QIO allocates the buffer 
and stores its address in IRP$LDIAGBUF. 

The device-independent preprocessing is complete. EXE$QIO invokes FDT 
routines to perform device-dependent preprocessing. 

FDT Routines 

The primary purpose of FDT routines is to validate and process the device­
dependent $QIO parameters, Pl to P6. A device driver can include custom 
FDT routines or use some of the general-purpose routines that are part of 
the VMS executive. Regardless of the location of FDT routines, they are 
logically device-dependent extensibns of the $QIO[W] system service. 

EXE$QIO searches the FDT entries looking for a mask that specifies the 
function code. When such a mask is found, EXE$QIO invokes the associated 
FDT routine. If the FDT routine returns control to EXE$QIO, EXE$QIO 
continues its search. Successive FDT routines are invoked until an FDT 
routine invokes one of the routines that terminates FDT processing. These 
routines are described in the next section. 

Note that no FDT entry marks the end of the FDT. It is possible for the 
search of the FDT to continue past the end of the FDT. Such an occurrence 
would be an error and would cause unpredictable results. 

FDT routines execute in the context of the process that requested the 
$QIO system service. Therefore, they have access to data in the process's PO 
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and Pl address space. FDT routines communicate information about the I/O 
request to the driver through IRP fields. FDT routines may also modify I/O 
database structures associated with the device assigned to the channel. 

FDT routines for direct I/O (I/O done directly between a user buffer and the 
device) ensure that each buffer page is locked into memory by incrementing 
its reference count in the page frame number (PFN) database (see Chapter 14). 

In the case of direct I/O, these routines initialize the transfer parameters 
to describe the buffer as follows: 

• IRP$LSVAPTE contains the system virtual address of the first page table 
entry that maps the buffer. 

• IRP$W _BOFF contains the buffer's offset in bytes from the beginning of 
that page. 

• IRP$LBCNT is the number of bytes to be transferred. 

FDT routines for buffered I/O operations must allocate a buffer from non­
paged pool that will be used by the driver for the actual transfer. If the 
operation is a buffered write, the FDT routine copies data that is being writ­
ten to this buffer. 

The use of system space buffers permits the device driver to access the 
data in the buffer from system context. 

In the case of buffered I/O, these routines initialize the transfer parameters 
to describe the buffer as follows: 

• IRP$LSVAPTE is the address of the nonpaged pool buffer, which begins 
with a 12-byte header, shown in Figure 21.3 (see Section 21.7.3.1). 

• IRP$W _BOFF is the amount charged against the process's job byte count 
quota. 

• IRP$L_BCNT is the number of bytes to be transferred. 

Transfers that may take a long time to complete (such as a terminal read 
or write) are often implemented as buffered I/O operations, whereas transfers 
that should complete quickly (such as a disk read or write) are implemented 
as direct I/O operations. Direct I/O requires locking process pages and page 
tables into memory, thus tying up the process header, or balance slot, for 
the duration of the I/O request. Chapter 18 contains more information on 
the complexity of swapping a process with direct I/O in progress. 

1/0 Completion 

It is important to distinguish between completion of the $QIO[W] system 
service request, which signals either that the I/O is underway or that the 
service was requested incorrectly, and the completion of the I/O request. 

Passing a status in RO, EXE$QIO returns through the change mode dis­
patcher to the access mode from which it was requested. If the status is 
not a success, control returns to the image at a point following its service 
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request. If the status is a success and the image requested the asynchro­
nous form ($QIO) of the service, control returns to the image, which later 
will request the $SYNCH or an event flag wait service to await I/O com­
pletion. If the status is a success and the image requested the synchronous 
form ($QIOW), the executive places the process into an event flag wait until 
the I/O completes. Chapter 6 has more information on how a synchronous 
system service waits a process. 

Some I/O requests complete simultaneously with EXE$QIO. EXE$QIO 
or an FDT routine it invokes can abort or complete an 1/0 request. More 
typically, however, an FDT routine must pass a request on to a device driver 
for device operation and further processing. When the 1/0 request needs 
no further device operation or driver processing, it is placed on the I/O 
postprocessing queue. When IOC$10POST processes the request, it sets the 
associated event flag, ending the process's event flag wait. 

This section describes the various ways in which requests complete. 

$QIO Completion by EXE$QIO. The only case in which EXE$QIO itself 
completes the 1/0 request are error conditions. 

As discussed previously, EXE$QIO makes certain checks before it allocates 
an IRP; for example, the CHAN argument must specify a usable channel. If 
EXE$QIO detects an error before allocating an IRP, it takes the following 
steps: 

1. It invokes SCH$POSTEF, in module POSTEF, to set the event flag spec­
ified by the EFN argument. 

2. It returns an error status in RO to the requestor. 

If EXE$QIO detects an error after it has allocated an IRP, it aborts the I/O, 
as described in Section 21.6.3.2. 

Aborting an 1/0 Request. If EXE$QIO (after it has allocated an IRP) or an 
FDT routine detects a device-independent error (for example, insufficient 
privilege), it loads the final status of the system service in RO and invokes 
EXE$ABORTIO, in module SYSQIOREQ, to abort the 1/0. EXE$ABORTIO 
takes the following steps: 

1. If the driver uses a fork lock, EXE$ABORTIO acquires it, raising IPL to 
fork IPL at the same time. Otherwise, it simply raises IPL to fork IPL. 

2. It clears IRP$LIOSB, ·the address of the IOSB, so that no status is written 
to it. 

3. It clears ACB$V _QUOTA in IRP$B_RMOD and increments the process's 
AST quota if the bit was set. This prevents a user-specified AST procedure 
from being called. 
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4. It inserts the IRP in the current CPU's per-CPU 1/0 postprocessing queue 
and requests an IPL$_JOPOST interrupt (see Section 21.7). During post­
processing, any quotas charged will be restored and buffers deallocated 
or unlocked, if necessary. 

Use of the per-CPU 1/0 postprocessing queue ensures that 1/0 post­
processing occurs before the system service completes. If, instead, the 
systemwide 1/0 postprocessing queue were used and the process were 
not current on the primary, it is possible that the process would run be­
fore the 1/0 postprocessing occurred. See Chapter 34 for details on the 
two types of 1/0 postprocessing queues. 

5. If the driver uses a fork lock, EXE$ABORTIO releases it. 
6. It lowers IPL to 0 and returns to the system service requestor. 

The effect of these steps is to finish the system service request without 
performing any I/O operation. 

Completing the 1/0 Request in the FDT Routine. Some 1/0 requests can 
be completed by an FDT routine without the need for driver processing and 
device operation. There are two circumstances under which this can occur: 

• If the FDT routine detects a device-specific error, for example, a buffer not 
properly aligned 

• If the FDT routine can perform all requested operations, for example, an 
I0$_SENSEMODE operation that returns only fields in the UCB 

The FDT routine takes essentially the same action in both cases; the differ­
ence is the status it returns. 

The FDT routine invokes either EXE$FINISHIO or EXE$FINISHIOC, both 
in module SYSQIOREQ. These are alternative entry points to the same 
routine. 

1. EXE$FINISHIOC clears Rl and then continues like EXE$FINISHIO. 
2. EXE$FINISHIO increments the operation count in the UCB. 
3. It stores RO and Rl in IRP$L_MEDIA and IRP$L_MEDIA + 4. RO on entry 

to both routines contains the first longword to be stored in the IOSB. Rl 
on entry to EXE$FINISHIO contains the second longword to be stored in 
the IOSB. 

4. If the driver uses a fork lock, EXE$FINISHIO acquires it, raising IPL to 
fork IPL at the same time. Otherwise, it simply raises IPL to fork IPL. 

5. It loads the success status SS$_NORMAL in RO as the final status of the 
$QIO[W] system service. Note that the final status of the 1/0 operation, 
now in the low-order word of IRP$1-MEDIA, may be a failure status. 

6. It inserts the IRP in the current CPU's per-CPU 1/0 postprocessing queue 
and requests an IPL$_IOPOST interrupt. 

7. If the driver uses a fork lock, EXE$FINISHIO releases it. 
8. It lowers IPL to 0 and returns to the system service requestor. 
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Queuing the Request to the Driver. Most 1/0 requests require driver pro­
cessing and device action. An FDT routine passes the IRP to the driver by 
transferring to either EXE$QIODRVPKT or EXE$ALTQUEPKT, both in mod­
ule SYSQIOREQ. 

EXE$QIODRVPKT is used more commonly. It enters the driver only if the 
device unit is currently idle. If the device unit is busy, EXE$QIODRVPKT 
queues the request to the unit so that the driver will process it when the 
unit becomes available. 

EXE$ALTQUEPKT enters the driver without regard for the device unit's 
activity status. 

21.7 1/0 POSTPROCESSING 

21.7.1 

VMS performs 1/0 postprocessing after an 1/0 operation has been completed 
by the associated driver. The 1/0 postprocessing routine IOC$IOPOST, in 
module IOCIOPOST, is the interrupt service routine for the IPL$_IOPOST 
software interrupt. It implements the device-independent steps necessary to 
complete an 1/0 request. 

Some 1/0 postprocessing operations, for example, unlocking buffer pages 
and deallocating buffers, are performed by IOC$IOPOST. Other operations, 
such as writing the IOSB, are performed by its special kernel mode AST 
routine, discussed in Section 21.7.3. 

There is one systemwide 1/0 postprocessing queue and one per-CPU 1/0 
postprocessing queue for each CPU. IOC$IOPOST always removes entries 
from the per-CPU queue for the current CPU. It removes entries from the 
systemwide queue only when it is running on the primary. When running on 
the primary, it checks the systemwide queue and then, when the systemwide 
queue is empty, the per-CPU queue. For simplicity, the following discussion 
treats these queues as if they were one. Chapter 34 describes the need for 
both types of queue. 

IOC$IOPOST removes the first IRP in the 1/0 postprocessing queue. It 
takes one of two paths, depending upon the value in IRP$LPID. If the value 
in IRP$L_PID is negative, IOC$IOPOST performs system 1/0 completion. 
If the value in IRP$LPID is positive, IOC$IOPOST performs normal 1/0 
completion. These two paths are described in the following sections. 

System 1/0 Completion 

A negative value in IRP$LPID is the system space address of the system 
completion routine to be invoked when the 1/0 completes. IOC$IOPOST 
invokes this routine with a JSB instruction. When it returns, IOC$IOPOST 
removes the next IRP from the queue and processes it. 

Various components use system completion routines to perform special­
ized 1/0 postprocessing. For example, the V AXcluster connection manager 
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uses them for the 1/0 to the quorum disk. The connection manager, which 
runs as a fork process, creates the IRP and inserts it into the driver's re­
quest queue. Although the driver does not do anything unusual to process 
the request, IOC$IOPOST cannot perform its usual process-related 1/0 com­
pletion tasks. Instead, the specified system completion routine returns data 
and status to the connection manager and deallocates the IRP. 

Normal 1/0 Completion 

A positive value in IRP$1-PID is the process ID of the I/O requestor. IOC$IO­
POST determines the type of I/O operation by testing IRP$V _BUFIO in 
IRP$W _STS. If the bit is set, the I/O operation is buffered; otherwise, it 
is direct. IOC$IOPOST performs action appropriate to the type of 1/0 opera­
tion and then queues a special kernel mode AST to the requestor. The AST 
routine will perform the completion that must be done in the context of the 
requestor. 

Buffered 1/0 Completion. Buffered I/O involves a transfer to or from a system 
space buffer in nonpaged pool. IOC$IOPOST takes the following initial steps 
in the case of buffered I/O: 

1. It increments PCB$W _BIOCNT, the number of concurrent buffered 1/0 
requests allowed. 

2. If IRP$V _FILACP in IRP$W _STS is set, IOC$IOPOST also increments 
PCB$W _DIOCNT, the number of concurrent direct I/O requests allowed. 
This bit is set if the original I/O request involved an ACP that also 
requested direct I/O. 

3. It invokes EXE$CREDIT _BYTCNT, in module EXSUBROUT, to restore 
the byte count quota that was charged for the system buffer. Note that 
IRP$W _BOFF does not contain a buffer offset in this case; it contains a 
byte count. The FDT routine that allocated the system buffer stored the 
size of the buffer in IRP$W _BOFF and charged the JIB for the buffer. 

4. IOC$10POST stores the address of the special kernel mode AST routine 
in the IRP at offset ACB$1-KAST. The IRP will also be used as an ACB. 
ACB$1-KAST and IRP$1-WIND are the same offset. At this point, the 
WCB address is no longer needed and that location can be reused safely. 

The special kernel mode AST routine, in module IOCIOPOST, has two 
entry points: BUFPOST, for buffered read completion, and DIRPOST, for 
all others. The first case differs from the others in that data must be 
copied from the system buffer to the process buffer before the process is 
informed that the 1/0 is complete. In the case of a buffered write, there 
is no need to copy data between the process buffer and the system buffer. 
It was copied earlier from the process buffer to the system buffer by an 
FDT routine. In the case of direct 1/0, there is no system buffer. 
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It is possible that there was no need for a system buffer; an I/O request 
with no transfer of data is usually performed as a buffered I/O request. If 

, a buffer was needed, its address is in IRP$1-SVAPTE. 

--If IRP$1-SVAPTE is nonzero and IRP$V_FUNC in IRP$W_STS is set, 
the I/O function is a read requiring a buffer. In this case, IOC$IOPOST 
stores the address of BUFPOST in ACB$L_KAST. 

-Otherwise, IOC$IOPOST stores the address of DIRPOST in ACB$L_ 
KAST. If IRP$1-SVAPTE is nonzero, IOC$IOPOST deallocates the 
buffer. 

5. It performs the steps described in Section 21.7.2.3. 

Direct I/O Completion. Direct I/O requests involve the transfer of data 
directly to or from the process buffer, which can be paged. Since paging must 
not occur during the processing of the I/O request, the pages are locked in 
memory by one of the FDT routines invoked by EXE$QIO. 

IOC$IOPOST takes the following initial steps for direct I/O (other than 
paging and swapping I/O, discussed in Chapters 16 and 18): 

1. It performs the steps necessary to handle segmented transfers, if needed, 
as described in Section 21.8. 

2. It determines the number of pages the direct I/O buffer occupies from 
IRP$W _BOFF and IRP$W _BCNT. IRP$L_SVAPTE contains the address 
of the first page table entry that maps the buffer. It unlocks the pages by 
invoking MMG$UNLOCK, in module IOLOCK, which decrements the 
pages' associated reference counts in the PFN database (see Chapter 14). 
This step may result in the pages being placed on the free or modified 
page list. 

3. An IRP by itself can only describe one direct I/O buffer. If a direct I/O 
request has more than one buffer, an FDT routine allocates one or more 
IRP extensions (IRPEs) to describe them. Each IRPE can describe two 
buffers. An IRP with an extension IRPE has bit IRP$V _EXTEND set in 
IRP$W _STS and the address of the IRPE in IRP$L_EXTEND. Similarly, 
each IRPE can point to another IRPE. 

IOC$IOPOST tests whether IRPEs are present and unlocks whatever 
additional buffers are described. 

4. It increments PCB$W_DIOCNT, the number of concurrent allowed di­
rect I/O requests. 

5. It stores the address of DIRPOST in ACB$L_KAST. 
6. It performs the steps described in Section 21.7.2.3. 

Final Steps in IOC$IOPOST. IOC$IOPOST performs the same final steps 
for each buffered and direct I/O request: 
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1. If appropriate, it invokes SCH$POSTEF to set the specified event flag for 
the process whose I/O just completed. 

2. It queues a postprocessing special kernel mode AST to the process. 

Whether IOC$IOPOST or its AST routine sets the event flag is determined 
by the type of flag: if the flag is local, IOC$IOPOST sets it; otherwise, the 
AST routine sets it. 

A potential synchronization problem could occur if a process whose event 
flag wait is satisfied executes before the postprocessing AST routine copies 
possible buffered input to a process buffer and records status in the I/O status 
block. This race condition could occur in two sets of circumstances: 

• Multiple processes are waiting for a common event flag associated with an 
I/O request and one of them executes before the process that requested the 
I/O could execute the postprocessing AST routine. IOC$IOPOST avoids 
this race condition by not setting a common event flag itself; instead, its 
AST routine does . 

• IOC$IOPOST and the newly computable process execute on different pro­
cessors and the process begins to execute before the AST routine is queued. 
IOC$IOPOST avoids this race condition by acquiring the SCHED spinlock 
before setting the flag and not releasing it until the AST is queued. 

By setting the event flag before queuing the AST, IOC$IOPOST is able to 
optimize the execution of the image if the process is in a local event flag 
wait state ILEF) that is satisfied by setting the event flag. If the process is 
in LEF, the saved PC in the process's hardware process control block !PCB) 
points to the CHMK instruction in the system service vector for event flag 
wait system 'service. When the process is placed back into execution, it will 
reexecute the event flag wait system service. 

SCH$POSTEF invokes SCH$RSE if setting the event flag satisfies the 
wait. SCH$RSE modifies the saved PC in the hardware PCB to point to 
the instruction after the CHMK, since the system service does not need to be 
reexecuted. Chapter 9 gives more information on event flag waits; Chapter 12 
on SCH$RSE. 

If SCH$POSTEF were invoked after SCH$QAST, the process would be in 
the computable state, COM. Thus, SCH$RSE would not modify the saved PC 
and the event flag wait system service would be reexecuted unnecessarily. 

If the process is current !possibly on another member of an SMP system), 
IOC$IOPOST invokes SCH$QAST before it invokes SCH$POSTEF. This 
ensures that the special kernel mode AST routine runs before the event flag 
is set and thus before the image runs again. The optimization noted earlier 
has to be sacrificed to prevent this race condition. 

IOC$IOPOST sets ACB$V _KAST in IRP$B_RMOD to indicate that this is 
a special kernel mode AST and invokes SCH$QAST, in module ASTDEL, 
to queue the AST to the process identified by the IRP$LPID field. The IRP 
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is used as the ACB for SCH$QAST, as described in Chapter 7. Except for 
ACB$L_KAST, IOC$IOPOST does not change any fields in the IRP/ACB. 

IOC$IOPOST attempts to remove another IRP from the 1/0 postprocessing 
queue. If it is successful, it processes that IRP. Otherwise, it executes an REI 
instruction to exit the interrupt service routine. 

1/0 Completion Special Kernel Mode AST Routine 

The 1/0 completion special kernel mode AST routine has two entry points: 
BUFPOST and DIRPOST. BUFPOST performs certain steps unique to buf­
fered read completion and then falls into DIRPOST. 

Buffered Read Completion. BUFPOST copies data from system buffers allo­
cated by an FDT routine to user buffers in per-process address space. BUF­
POST processes three types of system buffer, identified by IRP$W _STS bits: 

• Simple buffer-IRP$V_COMPLEX clear 
• Complex buffer-IRP$V _COMPLEX set and IRP$V _CHAINED clear 
• Chained complex buffer-IRP$V _COMPLEX and IRP$V _CHAINED set 

When a simple buffer is associated with an 1/0 request, IRP$L_SVAPTE 
contains its address and IRP$L_BCNT contains the number of bytes of data 
in the buffer. Figure 21.3 shows the layout of a simple buffer. 

The first longword of the buffer points to the data, beyond the header. 
The second longword contains the address of the user buffer. The next word 
contains the size of the simple 1/0 buffer. The next byte contains the type, 
typically DYN$C_BUFIO. The next byte is spare. The rest of the buffer 
contains the data. 

BUFPOST invokes routine MOVBUF, in module IOCIOPOST, to move the 
data. MOVBUF takes the following steps: 

1. It verifies that the user buffer is still write-accessible to the access mode 
in IRP$B_RMOD. 

If it is not write-accessible, MOVBUF modifies the final status in 
IRP$L_IOST1 to be SS$_ACCVIO. 

2. Otherwise, MOVBUF moves the data from the system buffer to the user 
buffer. 

3. It deallocates the system buffer to nonpaged pool. 
4. It returns to its invoker. 

Address of Data -+--
Address of User Buffer 

l TYPE l SIZE 

Figure 21.3 
Layout of a Simple Buffer 
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,......, f-o Address of First Descriptor 

l TYPE l SIZE 

Size l Offset to Data Buffer 
First descriptor 

Address of User Buffer 

I 
Additional descriptors 

Data First data buffer 

Additional data buffers 

Figure 21.4 
Layout of a Complex Buffer 

If the I/O request is a mailbox read (IRP$V _MBXIO in IRP$W _STS is set), 
BUFPOST invokes SCH$RAVAIL, in module MUTEX, to declare the mailbox 
resource available in case a process is waiting for this resource. Resources 
are discussed in Chapter 12. 

When a complex buffer is associated with an 1/0 request, IRP$L_SVAPTE 
contains its address and IRP$L_BCNT contains the number of descriptors in 
the packet. 

The layout of a complex buffer is shown in Figure 21.4. The first longword 
points to the first descriptor. The second longword is ignored by BUFPOST. 
The third longword contains the size and type. There may be space between 
the third longword and the first descriptor. The rest of the buffer consists of 
descriptors and the associated data buffers. 

Each descriptor has the same format. The offset field contains the offset 
from the start of the descriptor to the data buffer in the packet. The size 
field contains the number of bytes in the data buffer; the size may be zero. 
The user buffer address is the address of the per-process space user buffer. 
The first byte in the data buffer is the access mode associated with the user 
buffer. 

One common instance of the complex buffer is the ACP I/O buffer (AIB) 
used by the file system ACPs and Files-11 XQP. In the AIB, the third long­
word is followed by an access rights block (ARB) copied from the requestor's 
PCB. The descriptors apply to input data as well as output data. In the case 
of input data, the size field in the descriptor is set to zero before the IRP 
is completed by the file system. The file system may also reduce the count 
of descriptors in IRP$L_BCNT; this is done when the last descriptors are 
for input data. Since the size contained in the third longword of the buffer 
reflects the entire buffer, no space is lost when the buffer is deallocated to 
nonpaged pool. 

BUFPOST processes the buffer in the following steps: 

1. It gets the address of the first descriptor. 
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2. It verifies that the user buffer is still write-accessible. (If the size field is 
zero, BUFPOST goes to step 5 without verifying the accessibility of the 
user buffer.) 

3. If the user buffer is write-accessible, BUFPOST transfers the data from 
the data buffer to the user buffer. 

4. If the user buffer is not write-accessible, BUFPOST modifies the final 
status in IRP$1-IOST1 to be SS$_ACCVIO and goes to step 6. 

5. If there are more descriptors, BUFPOST gets the address of the next 
descriptor and then goes to step 2. 

6. It deallocates the buffer to nonpaged pool. 

When a chained complex buffer is associated with an 1/0 request, IRP$L_ 
SVAPTE contains the address of the first chained complex buffer and IRP$1-
BCNT contains the size of the user buffer. 

Chained complex buffers are used by some of the communications drivers. 
They provide a mechanism for one logical buffer to be split into several 
segments that are not combined until they are transferred to the user buffer. 

The layout of a chained complex buffer is shown in Figure 21.5. The first 
longword contains the address of the data area. The second longword con­
tains the address of the user buffer; this field is valid only in the first de­
scriptor in the chain. CXB$W _SIZE contains the size of the chained complex 
buffer. CXB$B_ TYPE contains the type, DYN$C_CXB. CXB$W _LENGTH 
contains the size of the data area. CXB$L_LINK contains the address of the 
next chained complex buffer in the chain; zero indicates the end of the chain. 

BUFPOST processes the chained complex buffers in the following manner: 

1. It verifies that the user buffer is write-accessible to the access mode in 
IRP$B_RMOD. 

2. If the user buffer is not write-accessible, BUFPOST modifies the final 
status in IRP$1-IOSTI to be SS$_ACCVIO. It then goes to step 6. 

3. If the user buffer is write-accessible, BUFPOST sets CXB$L_LENGTH 

Address of Data Area -+---
Address of User Buffer 

I TYPE l SIZE 

I 
I 
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T 

Figure 21.5 
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to be the smaller of the amount of space left in the user buffer and the 
original contents of CXB$L_LENGTH. 

4. It moves that amount of data from the data area to the user buffer 
and reduces the amount of space left in the user buffer by th~ amount 
transferred. 

5. If there is space left in the user buffer, BUFPOST moves to the next 
buffer. If there is a next buffer, BUFPOST goes to step 3. 

6. BUFPOST deallocates all the buffers to nonpaged pool. 

Common Completion. DIRPOST performs the completion common to buf­
fered and direct I/O requests: 

1. It increments either PHD$L_DIOCNT or PHD$L_BIOCNT, the process's 
cumulative totals of completed direct I/O and buffered I/O requests. 

2. If a user's diagnostic buffer was associated with the I/O request, DIR­
POST invokes routine MOVBUF to copy the diagnostic information from 
the system diagnostic buffer to the user's diagnostic buffer. DIRPOST 
then deallocates the system diagnostic buffer. The system diagnostic 
buffer has the same format as a simple buffered I/O buffer. 

3. It decrements the CCB count of I/O requests in progress on this channel. 
4. If this was the last I/O for the channel and there is a deaccess request 

for the channel pending, DIRPOST queues that deaccess request to the 
ACP by invoking IOC$WAKACP, in module IOCIOPOST. 

5. If the I/O request specified an IOSB, DIRPOST copies the quadword at 
IRP$1-IOST1 to the IOSB. 

6. If a common event flag is associated with the I/O request, DIRPOST 
invokes SCH$POSTEF to set the flag. 

7. If any IRPEs were used, it deallocates them. 
8. If ACB$V _QUOTA is set in IRP$B_RMOD, then the user requested AST 

notification of I/O completion. The AST procedure address and the op­
tional AST argument were originally stored in the IRP (now used as an 
ACB). DIRPOST invokes SCH$QAST to queue the IRP as an ACB, this 
time for a normal AST in the access mode at which the I/O request was 
made. 

9. Otherwise, if ACB$V _QUOTA is clear, DIRPOST deallocates. the IRP­
/ ACB to nonpaged pool. 

10. It returns to its invoker, SCH$ASTDEL in module ASTDEL. 

2.1.8 SEGMENTED VIRTUAL AND LOGICAL 1/0 
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Under certain circumstances, the I/O subsystem must break I/O transfer 
requests involving a block-addressable mass storage device into segments 
and pass the request to the device driver segment by segment. This section 
describes the means by which such requests are segmented and successive 
segments are passed on to a device driver. 
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A file is stored on such a device in a series of blocks. There are three ways 
of referring to the blocks: file-relative (virtual), volume-relative (logical), and 
absolute (physical). An image performing 1/0 to a file describes its request 
in terms of the starting virtual block number (VBN) and the number of 
bytes to be transferred. The 1/0 subsystem must convert the VBN into its 
corresponding logical block number (LBN) for the device driver. For some 
devices, the LBN must be converted into the corresponding physical block 
number. 

A logically contiguous series of blocks in a file is called an extent. An 
extent is described by its starting LBN and the number of blocks in it. Most 
files are made up of multiple extents; a physically contiguous file has only 
one extent. Each file has an on-disk data structure called a file header that 
lists the extents that make up the file. When a file is opened, information 
about its extents is copied from the file header into the WCB. If the image's 
1/0 request crosses a file extent boundary, the 1/0 subsystem must break 
the request into segments, each of which fits within one extent. 

Certain mass storage devices and their associated drivers cannot handle 
transfers greater than 64K bytes at one time. In this case the 1/0 subsystem 
must break the transfers into segments no greater than 64K. Note that the 
request may already have been segmented to fit within file extents, which 
may be greater than 64K bytes. 

Segmentation by FDT Routines 

Usually, a mass storage device driver specifies the following FDT routines: 
ACP$READBLK for reads and ACP$WRITEBLK for writes, both in module 
SYSACPFDT. These routines store the total byte count of the request in the 
original byte count field of the IRP, IRP$LOBCNT, and clear the accumu­
lated byte count field of the IRP, IRP$LABCNT. 

Segmenting Virtual 1/0. If the transfer is a virtual 1/0 transfer, these routines 
then invoke IOC$MAPVBLK, in module IOSUBRAMS, to perform the actual 
conversion from VBNs to LBNs. IOC$MAPVBLK (see Section 21.8.2) returns 
the number of bytes not mapped. 

If the number of bytes mapped is zero, the FDT routines store the start­
ing VBN in IRP$LSEGVBN, the number of bytes not mapped (in this case, 
the total number of bytes requested) in IRP$LBCNT, and then invoke 
EXE$QIOACPPKT, in module SYSQIOREQ, to send the IRP to the ACP. 

When the file system processes this IRP, it detects that the WCB does not 
map the requested virtual range and performs a window turn. It reads the 
file header to obtain the mapping information necessary for the transfer in 
question and stores the information in the WCB, replacing other mapping 
information already contained there. The file system performs the equivalent 
steps that IOC$MAPVBLK performs and then queues the IRP to the driver. 
Note that the number of bytes mapped at this point is nonzero. 
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If the number of bytes mapped is nonzero, each FDT routine takes the 
following steps: 

1. It computes the number of bytes mapped by subtracting the number of 
bytes not mapped from IRP$L_OBCNT and stores this number in IRP$L_ 
BCNT. 

2. It stores the starting LBN in IRP$L_MEDIA. 
3. It stores the starting VBN in IRP$1-SEGVBN. 
4. It converts the 1/0 function to the equivalent physical I/O function. 
5. It takes the steps discussed in Section 21.8.1.2. 

Segmenting Logical and Physical 1/0. If the function is not a physical I/O 
function, the FDT routines convert it to the equivalent physical I/O function. 
The FDT routines then take the steps necessary to handle transfers greater 
than 64K bytes, as discussed in Section 21.8.3. Note that these steps are not 
required for all disk devices. 

The routines then queue the IRP to the driver. The driver performs the 
transfer without regard for whether the entire range is to be transferred. 
IOC$IOPOST will check whether the entire range has been transferred when 
the driver completes the I/O request and will take the necessary action, as 
described in Section 21.8.4. 

IOC$MAPVBLK 

IOC$MAPVBLK uses the information passed (via registers and the IRP) to 
convert the VBNs to LBNs. The goal is to convert the starting VBN to the 
related LBN. The gating factor is the information stored in the WCB (the 
address of the WCB is obtained from CCB$1-WIND) that was created by the 
file system when the file was opened. 

If the WCB contains enough mapping information to convert the entire 
virtual range of the transfer into corresponding LBNs on the volume, then the 
virtual I/O transfer will be handled directly by the driver and IOC$IOPOST, 
even if the transfer consists of several logically noncontiguous pieces. If the 
WCB does not contain enough information to completely map the virtual 
range of the transfer, the intervention of the file system will be required at 
some time to complete the transfer. This intervention is known as a window 
tum. 

Because a deadlock situation could occur if a file mapped by the memory 
management subsystem requires a window turn, the memory management 
subsystem must avoid window turns. To do this, each file mapped by the 
memory management subsystem must have all its mapping information in 
the WCB. A special, large variation of the WCB is used, called a cathedral 
window (see Chapter 20). 

IOC$MAPVBLK can encounter five possible cases: 
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• The virtual range is logically contiguous and the WCB contains the needed 
mapping information. In this case, all that IOC$MAPVBLK needs to do is 
convert the starting VBN into the related LBN. The driver can transfer the 
data without further conversion of VBNs into LBNs. 

• The WCB contains mapping information for the beginning of the virtual 
range, but more than two map entries are required to map the range. In 
this case, IOC$MAPVBLK converts tlie starting VBN into the related LBN. 
The driver can transfer the start of the virtual range but will need further 
conversion of VBNs into LBNs to transfer the rest of the range. 

IOC$MAPVBLK uses only the map entry that maps the starting VBN 
and the next map entry, if that map entry is logically contiguous with its 
predecessor. Since the block count field in the map entry is a word in size, 
it is possible that a logically contiguous range will require more than one 
map entry to cover the entire logical range. 

• The WCB contains mapping information for the beginning of the virtual 
range but not for the entire virtual range. In this case, IOC$MAPVBLK 
converts the starting VBN into the related LBN. The driver can transfer 
the start of the virtual range· but will need further conversion of VBNs 
into LBNs to transfer the rest of the range. 

In this case, the virtual range may be logically contiguous, but not 
enough mapping information is contained in the WCB to verify this. A 
window turn will be needed later. 

• The virtual range is not logically contiguous, but the WCB does contain 
mapping information for the beginning of the virtual range. IOC$MAPV­
BLK handles this case in the same way it handles the previous case. 

The driver can transfer the start of the virtual range but will need fur­
ther conversion of VBNs into LBNs to transfer the rest of the range. The 
WCB may or may not contain the needed information. If it does not, a 
window turn will be needed. Whether a window turn will be needed later 
is irrelevant at this point. 

• The mapping information that maps the first virtual block in the range to 
its logical counterpart is not in the WCB. A window turn is needed before 
any data can be transferred. 

In all five cases, IOC$MAPVBLK returns the number of bytes not mapped, 
which is zero in the fifth case. If the number of bytes mapped is nonzero, 
IOC$MAPVBLK also returns the starting LBN. 

Segmenting Transfers Greater Than 64K Bytes 

VMS supports I/O transfers greater than 64K bytes for mass storage devices, 
even though a device and its driver may only support transfers up to 64K 
bytes. This is done by breaking the transfer into segments no larger than the 
maximum transfer size supported by the driver. The UCB$1-MAXBCNT 
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field contains the largest transfer size supported by the driver. If it is zero, 
it is assumed to be 65,024 (64K bytes minus 512). 

If the IRP$LBCNT field is greater than the maximum transfer size speci­
fied by UCB$LMAXBCNT, the FDT routines set IRP$LBCNT to the max­
imum transfer size accepted by the driver. Otherwise, they do not modify 
IRP$LBCNT. Remember that the FDT routines store the requested size in 
IRP$L_OBCNT, as noted in Section 21.8.1. 

As a result, the first transfer will be the size specified by UCB$LMAXB­
CNT. The remainder will be transferred as a result of the steps taken by 
IOC$IOPOST, as described in Section 21.8.4. 

IOC$IOPOST Processing of Segmented Transfers 

Whenever IOC$IOPOST encounters an IRP for a direct I/O data transfer re­
quest, it determines if another segment must be transferred by comparing 
the original byte count to the number of bytes transferred thus far. If the dif­
ference is not zero, another segment must be transferred. If the two numbers 
agree, the request is completed exactly like other direct 1/0 requests. 

If the two numbers do not agree, IOC$IOPOST prepares the IRP for the 
transfer of the next segment by taking the following steps: 

1. If the transfer is a virtual I/O transfer, IOC$IOPOST invokes IOC$MAPV­
BLK. 

The same five cases exist here as when IOC$MAPVBLK is invoked by 
the FDT routines. IOC$IOPOST takes the equivalent steps in each case 
for the transfer that starts at the VBN in IRP$LSEGVBN. If there is a 
total mapping failure of the remaining transfer, IOC$IOPOST invokes 
IOC$QTOACP to pass the IRP to the ACP. Otherwise, IOC$IOPOST 
continues. 

2. It places the lesser of the remaining byte count and the maximum transfer 
size accepted by the driver in IRP$LBCNT. 

3. It updates the starting VBN in IRP$L_SEGVBN by the number of blocks 
transferred in the last transfer. 

4. It invokes EXE$INSIOQC, in module SYSQIOREQ, to queue the IRP to 
the driver. 

Thus, in a fashion transparent to the requestor, the original request is 
segmented to satisfy the limitations of the WCB or the maximum transfer 
size permitted by the device. 

21.9 CANCEL I/O ON CHANNEL SYSTEM SERVICE 
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The $CANCEL system service cancels pending I/O requests on a specified 
channel. These include queued I/O requests as well as the request in progress. 
The $CANCEL system service may be requested by an image. It is also 
requested by the $DASSGN system service, which is requested during image 
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and process rundown. The $CANCEL system service has only the CHAN 

argument, which specifies the 1/0 channel on which 1/0 is to be canceled. 
The $CANCEL system service procedure, EXE$CANCEL in module SYS­

CANCEL, executes in kernel mode. Kernel mode code can request a second 
form of the $CANCEL system service by calling the system service proce­
dure directly at an alternative entry point, EXE$CANCELN. This form of 
the system service has two arguments: 

• The CHAN argument 
• The optional CODE argument, the reason for the cancellation 

EXE$CANCELN determines if the CODE argument is present. If it is 
present, the procedure saves it for later use. Otherwise, the procedure saves 
a reason code of CAN$C_CANCEL. EXE$CANCEL, on the other hand, al­
ways saves a reason code of CAN$C_CANCEL. Once the reason code has 
been saved, EXE$CANCEL and EXE$CANCELN converge. 

1. EXE$CANCEL invokes IOC$VERIFYCHAN, as discussed in Sec­
tion 21.5.3, to verify the channel. 

2. If the driver specifies primary affinity and the process has not already 
acquired primary affinity, EXE$CANCEL calls SCH$REQUIRE_CAPA­
BILITY to acquire primary affinity. Chapter 12 gives details on processor 
affinity. 

3. It raises IPL to 2 to block process deletion. 
4. It page faults the CCB into memory and raises IPL to UCB$B_FIPL, 

effectively locking the CCB into memory. If the driver uses a fork lock, 
EXE$CANCEL also acquires the fork lock. 

5. It searches the IRPs queued to the UCB (starting at UCB$L_IOQFL), 
looking for those that meet the following criteria: 

-The requesting process ID (PCB$L_PID) matches the process ID in 
IRP$L_PID. 

-The channel number in IRP$W _CHAN matches the requested channel. 
-The request is not a virtual request (IRP$V _VIRTUAL in IRP$W _STS 

is clear). In general, I/O cannot be canceled on disk or tape devices. 
Drivers for these devices ensure that IRP$V _VIRTUAL is set on all 
requests that cannot be canceled. 

For each IRP that satisfies these criteria, EXE$CANCEL takes the 
following steps and then resumes the search: 

a. It removes the IRP from the queue. 
b. It clears the buffered read bit (IRP$V _FUNC in IRP$W _STS) for 

buffered I/O functions. Since this 1/0 operation has not been started, 
there is no data to be transferred to the user's buffers. 

c. It places the error status SS$_CANCEL in the low-order word of 
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IRP$LMEDIA and clears the high-order word. This is the final status 
of the I/O operation. 

d. It inserts the IRP at the tail of the systemwide I/O postprocessing 
queue and requests an IPL$_IOPOST interrupt jsee Section 21.7). 

6. After scanning the IRP queue, EXE$CANCEL invokes the driver cancel 
I/O routine, whose address is stored in the driver dispatch table. The 
driver is passed the cancel reason saved at the start of EXE$CANCEL or 
EXE$CANCELN. The driver should perform any actions appropriate to 
canceling I/O. 

Some driver cancel I/O routines execute a RET instruction if an error 
occurs. In such a case, control does not return to EXE$CANCEL but to 
its requestor. 

7. EXE$CANCEL tests the device type to determine whether canceling its 
active request is appropriate. If the device is a disk, it is likely that the 
request will complete quickly enough that canceling it is unnecessary. If 
canceling the active request is not appropriate, EXE$CANCEL exits, as 
described in step 8. Otherwise, EXE$CANCEL continues with step 9. 

8. If a fork lock was acquired, EXE$CANCEL releases it. If primary affinity 
was acquired, EXE$CANCEL relinquishes it. EXE$CANCEL lowers IPL 
to 0 and returns the success status SS$_NORMAL to its requestor. 

9. If there is no outstanding I/O jCCB$W_IOC is zero) and there is no file 
activity jCCB$L_ WIND is zero), EXE$CANCEL exits, as described in step 
8. llf there is file activity, then CCB$L_ WIND contains the address of 
the WCB associated with the channel or a process section index. At this 
point, the distinction is not significant.) 

10. If the device is not mounted or is mounted foreign, EXE$CANCEL exits, 
as described in step 8. 

11. If there is a process section associated with the channel, EXE$CANCEL 
exits, as described in step 8. 

12. At this point, EXE$CANCEL has determined that there is a file open on 
this channel. If WCB$V _NOTFCP in WCB$B_ACCESS is set, EXE$CAN­
CEL exits, as described in step 8. 

The WCB$V _NOTFCP bit identifies a WCB created by special routines 
that run only during system startup. These routines open files before the 
Files-11 XQP is available. When these files are opened again after the XQP 
is available, new WCBs are created. The original WCBs are not destroyed 
and are not used by the XQP. 

13. At this point, EXE$CANCEL has determined that there is a user file 
open on the channel. It attempts to allocate an IRP to request an IO$_ 
ACPCONTROL function. If it cannot allocate an IRP, it does one of two 
things: 

-If the process does not have resource wait mode enabled, EXE$CAN­
CEL exits, as described in step 8, with a status indicating the reason 
that EXE$CANCEL could not allocate an IRP. 
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-Otherwise, EXE$CANCEL invokes SCH$RWAIT to place the process 
into an RSN$_NPDYNMEM wait. H the fork lock was acquired, it 
is released prior to invoking SCH$RWAIT. H primary affinity was ac­
quired, it is relinquished prior to invoking SCH$RWAIT. When the 
wait completes, EXE$CANCEL returns to step 2. 

14. It initializes the IRP as follows: 

a. The process ID of the requestor is set to the value in PCB$LPID. 
b. The AST procedure address and parameter are cleared !no user AST). 
c. The WCB address is set to the value in CCB$1-WIND. 
d. The UCB address is stored in IRP$L_ UCB. 
e. The function code is set to 10$_ACPCONTROL. 
f. The event flag is set to EXE$C_SYSEFN. 
g. The priority is set to the process's base priority. 
h. The IOSB address is set to zero. 
i. The channel number is stored in IRP$W_CHAN. 
j. The 1/0 is marked as buffered 1/0 with no buffer. 

k. The access rights block address is set to the value in PCB$LARB. 

This ACP control function is special by virtue of there being no 1/0 
buffer. It is ignored by disk ACPs and the Files-11 XQP. It is recognized 
by the magnetic tape ACP as a special 1/0 abort function (equivalent to 
invoking the driver's cancel 1/0 routine) that causes the ACP to abort 
the mounting of a multivolume tape file. 

15. EXE$CANCEL charges the user's buffered 1/0 quota, PCB$W _BIOCNT, 
for an 1/0 request. 

16. H the fork lock was acquired, it is released. 
17. H primary affinity was acquired, it is relinquished. 
18. EXE$CANCEL invokes EXE$QIOACPPKT to queue the packet to the 

file system. EXE$QIOACPPKT will execute a RET instruction, returning 
control to the requestor of the system service. 
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"Open the pod-bay doors, HAL." 

Arthur C. Clarke, 2001: A Space Odyssey 

Once a user's 1/0 request is preprocessed and validated by the Queue 1/0 
Request ($QIO) system service and the device driver's function decision 
table (FDT) action routine, the VMS executive invokes the driver's start 
1/0 routine so that the driver may actually perform the requested function. 
Chapter 21 describes the validation of the 1/0 request. This chapter discusses 
how VMS and a driver's start 1/0 routine cooperate to perform the user­
requested function and relay the status of the 1/0 operation, as well as any 
necessary data, back to the user. 

In addition, various interrupt dispatching schemes employed by different 
types of adapters on VAX systems, as well as the connect-to-interrupt mech­
anism, are briefly described. 

22.1 DEVICE DRIVER MODELS IN VMS 
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The two categories of device driver models in VMS systems are the tradi­
tional wait-for-interrupt model and the port/class driver model. 

The former includes drivers for most devices that are not block-structured 
as well as drivers for older block-structured devices that do not conform 
to the Digital Storage Architecture. Examples of such device drivers are 
LPDRIVER, for the UNIBUS line printer controller, and DRDRIVER, for 
MASSBUS RMxx disks. 

The port/class model includes device drivers for most modern block­
structured devices and those for different types of terminal devices. Note,· 
however, that a number of differences exist between the port/class model as 
applied to block-structured devices and the port/class model as applied to 
terminal drivers in VMS. Chapter 24 briefly discusses both types of drivers. 

This chapter discusses the traditional wait-for-interrupt model of device 
drivers. In particular, the following issues are addressed: 

• How VMS invokes a driver's start 1/0 routine 
• How the start 1/0 routine initiates a transfer and waits for an interrupt 

from the device 
• How VMS dispatches an interrupt from the device to the interrupt service 

routine (ISR) of the driver 
• How the ISR resumes the start 1/0 routine 



22.2 Exiting the FDT Routine 

• How the start I/O routine resumes processing at a lower interrupt priority 
level (IPL) 

• How the start I/O routine requests I/O completion processing 
• How VMS initiates I/O postprocessing 

22.2 EXITING THE FDT ROUTINE 

22.2.1 

As described in Chapter 21, an image requests an I/O operation on a device 
through the $QIO system service. Its system service procedure, EXE$QIO 
in module SYSQIOREQ, validates the device-independent parameters of the 
request, builds an I/O request packet (IRP) describing it, and invokes one or 
more FDT action routines. 

The FDT routines validate the function-dependent parameters of the re­
quest and set up any necessary I/O buffers. Some FDT routines may complete 
an I/O request without device action or fork processing by entering EXE$FIN­
ISHIO or EXE$FINISHIOC, in module SYSQIOREQ. An FDT routine may 
abort the I/O request by entering EXE$ABORTIO, in module SYSQIOREQ. 

If the I/O operation is requested on a file-structured device, and either 
a file system function was requested or file system intervention is required 
before the driver can perform the requested I/O, then the FDT routine enters 
EXE$QIOACPPKT, in module SYSQIOREQ. 

If the I/O request is valid and device action needs to be initiated, an 
FDT routine jumps to EXE$QIODRVPKT, in module SYSQIOREQ, to en­
ter the driver's start I/O routine or invokes EXE$ALTQUEPKT, in module 
SYSQIOREQ, to enter its alternate start I/O routine. 

Entering the Driver's Start 1/0 Routine 

A traditional VMS device driver's FDT routine typically enters EXE$QIO­
DRVPKT, which initiates I/O on the device if the device is idle. If the device 
is busy, it inserts the IRP on the wait queue of the unit control block (UCB). 
It invokes EXE$INSIOQ, in module SYSQIOREQ, to perform the following 
actions: 

1. EXE$INSIOQ raises IPL to the fork IPL of the device, acquiring the fork 
lock, if any, specified in UCB$B_FLCK. 

2. If the device unit is busy, as indicated by a set UCB$V _BSY bit in UCB$L_ 
STS, EXE$INSIOQ invokes EXE$INSERTIRP, in module SYSQIOREQ, to 
insert the IRP on this unit's queue of pending I/O requests. The queue, 
whose listhead is at UCB$L_IOQFL, is ordered according to the base 
priority of the process that requested the I/O. When EXE$INSERTIRP 
returns, control is transferred to step 5. 

3. If the device unit is idle, EXE$INSIOQ marks it busy by setting bit 
UCB$V _BSY in UCB$L_STS and initiates I/O on the device by invoking 
IOC$INITIATE, in module IOSUBNPAG. 
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IOC$INITIATE determines if the device on which the 1/0 was re­
quested has affinity for the CPU that IOC$1NITIATE is running on 
by examining the device's affinity mask, UCB$L_AFFINITY. If the de­
vice does not have affinity for this CPU, then IOC$INITIATE invokes 
SMP$SWITCH_CPU, in module SMPROUT. SMP$SWITCH_CPU cre­
ates a fork process on the CPU with the lowest physical CPU identifi­
cation (ID) for which this device has affinity; this fork process invokes 
IOC$INITIATE again. 

Running on a CPU for which the device has affinity, IOC$1NITIATE 
performs the following steps: 

a. It saves the IRP address in UCB$LIRP. 
b. IOC$1NITIATE copies IRP$LSVAPTE, IRP$W_BOFF, and IRP$W_B­

CNT to UCB$LSVAPTE, UCB$W_BOFF and UCB$W_BCNT. This 
step is an optimization for direct 1/0 operations and is unnecessary 
for most buffered 1/0 operations. 

c. It clears UCB$V _ TIMOUT and UCB$V _CANCEL in UCB$LSTS. 
Table 22.1 explains the significance of these and other important flags 
in UCB$LSTS. 

d. If a diagnostic buffer is associated with the current 1/0 request, 
IOC$INITIATE obtains its address and records the current system 
time in it as the operation start time. 

e. It gets the address of the driver dispatch table (DDT) from the UCB, 
locates the driver's start 1/0 routine through DDT$L_START, and 
enters it with a JMP instruction. 

4. The driver's start 1/0 routine eventually returns control to EXE$INSIOQ, 
as discussed in Section 22.3.2. 

5. EXE$INSIOQ restores the IPL at entry, releasing any fork lock it acquired, 
and returns control to EXE$QIODRVPKT. 

6. EXE$QIODRVPKT restores IPL to 0 and returns to the image that re­
quested this 1/0. The status returned in RO indicates that the 1/0 request 
was queued to the driver successfully. The $QIO requestor cannot deter­
mine the status of the 1/0 operation until the VMS 1/0 postprocessing 
routine writes the 1/0 status block for this I/O request. 

Table 22.1 Important Flags in UCB$LSTS 

Flag 

UCB$V_INT 
UCB$V_TIM 
UCB$V _ TIMOUT 
UCB$V _CANCEL 
UCB$V _POWER 

Meaning if Set 

An interrupt is expected from this device 
This device has an I/O operation being timed 
This device has timed out 
Current I/O on the device has been canceled 
The system recovered from a power failure 



22.2.2 

22.2.3 

22.2 Exiting the PDT Routine 

Entering the Driver's Alternate Start 1/0 Routine 

EXE$ALTQUEPKT enters the driver's alternate start 1/0 routine regardless 
of the setting of the UCB$V _BSY bit, as follows: 

1. EXE$ALTQUEPKT raises IPL to the device's fork IPL, obtaining the unit's 
fork lock if appropriate. 

2. It gets this CPU's physical CPU ID from the per-CPU database field 
CPU$L_PHY _CPUID and checks the device affinity mask in UCB$L_ 
AFFINITY to determine if this device has affinity for the CPU. If it does 
not, then EXE$ALTQUEPKT invokes SMP$SWITCH_CPU, in module 
SMPROUT, to create a fork process on the CPU with the lowest physical 
CPU ID for which this device has affinity. This fork process invokes 
EXE$ALTQUEPKT again and resumes processing at step 1. 

3. If this device does have affinity for this CPU, EXE$ALTQUEPKT gets the 
address of the driver's DDT from the UCB, locates its alternate start I/O 
routine through offset DDT$L_ALTSTART, and invokes it with a JSB 

instruction. 
4. When the driver's alternate start I/O routine returns, EXE$ALTQUEPKT 

restores the IPL at entry, releasing any fork lock that was obtained earlier, 
and returns to its invoker, typically the $QIO requestor. 

Initiating File System 1/0 

Some I/O requests require the involvement of the file system. This hap­
pens, for example, when the function requested is a file system function 
request, such as IO$_ACCESS, or when a window turn is required to map 
the requested virtual block number (VBN) to a logical block number (LBN). 
A window turn updates file retrieval information in the window control 
block (WCB), as discussed in Chapter 21. The file system may transform 
the 1/0 request into one more suitable for the device driver and queue it 
to the driver. Alternatively, it may request multiple I/O operations itself. 
In any case, when the file system has performed the request, it performs or 
initiates I/O postprocessing on the original IRP. 

EXE$QIOACPPKT is entered by file system FDT routines in module 
SYSACPFDT when an I/O request requires action by a file system ancil­
lary control process (ACP) or the Files-11 Extended QIO Processor (XQP). If 
the target device for the I}O is serviced by an ACP, then EXE$QIOACPPKT 
performs the following actions: 

1. It locates the volume control block (VCB) of the device from the UCB. 
From the VCB, it locates the ACP queue block (AQB) and inserts the IRP 
into the tail of the interlocked I/O request queue at AQB$L_ACPIQ. 

2. If the queue was not empty, EXE$QIOACPPKT returns a successful 
status indicating that the I/O request is queued. Control returns to the 
image following its service request. 

631 



1/0 Device Drivers and Interrupt Service Routines 

3. If this IRP is the first to be inserted into the queue, EXE$QIOACPPKT 
gets the process ID (PID) of the ACP that services this device from 
AQB$L_ACPPID and invokes SCH$WAKE, in module SCHED, to wake 
up that ACP. If SCH$WAKE returns a success status, EXE$QIOACPPKT 
returns a success status for the $QIO request. 

Later, when the ACP is placed into execution, it removes the request 
from its queue. It performs the requested function and initiates 1/0 
postprocessing by queuing the IRP to the systemwide postprocessing 
queue. Section 22.3.4 and Chapter 21 discuss 1/0 postprocessing. 

If, on the other hand, AQB$1-ACPPID is zero, then the XQP services this 
device, and EXE$QIOACPPKT enters EXE$QXQPPKT, in module SYSQIO­
REQ. EXE$QXQPPKT generates a file system request in the context of the 
current process as follows: 

1. It gets the address of the per-process XQP data area from CTL$GL_ 
FllBXQP and inserts the IRP on the IRP queue in that area. 

2. From the per-process XQP data area, EXE$QXQPPKT gets the address 
of the XQP routine DISPATCH, in module [Fl lX)DISPATCH, which is 
the asynchronous system trap (AST) procedure that initiates an XQP 
transaction. The XQP code resides in a system global section that is 
mapped into Pl space during process startup, as discussed in Chapter 25. 

3. EXE$QXQPPKT, using the portion of the IRP that begins at offset IRP$L_ 
IOQFL as an AST control block (ACB), stores the address of DISPATCH 
in ACB$L_AST. 

4. EXE$QXQPPKT stores the address of the IRP itself in ACB$L_ASTPRM. 
5. It then enters SCH$QAST, in module SCHED, to queue the IRP as a 

kernel mode AST to the current process. 
6. When SCH$QAST returns, EXE$QXQPPKT lowers IPL to 0 and executes 

a RET instruction to return from EXE$QIO. 

Before control returns to the $QIO requestor, the kernel mode AST is 
delivered and the procedure DISPATCH is called. DISPATCH queues the 
IRP to the per-process XQP queue in the XQP's data area. If the XQP is 
not busy servicing another IRP, DISPATCH calls DISPATCHER, in module 
[Fl lX)DISPAT, to service the request. DISPATCHER determines the function 
requested and calls the appropriate XQP procedure to perform the requested 
function. 

When the XQP has serviced the request, DISPATCHER performs 1/0 post­
processing by invoking special entry points in IOC$IOPOST, in module 10-
CIOPOST, which is the VMS 1/0 postprocessing routine. 

22.3 DRIVER'S START 1/0 ROUTINE 
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The driver's start 1/0 routine must perform the user-requested function by 
interacting with the device. It typically initializes device registers, stalls 



22.3.1 

Example 22.1 
Simple Start 1/0 Routine 

STARTIO: 

WFIKPCH DEVTMO, #6 

IO FORK 

REQCOM 

22.3 Driver's Start I/O Routine 

;Set up device registers 
;Raise IPL to IPL$_POWER 
;Synchronize with powerfail recovery 
;Get transfer going by setting 
; "GO" bit 
;Wait for interrupt 
;Execution resumes here upon 
; interrupt 
;Request to lower IPL to fork IPL 

;Complete request 

until the device has performed the requested task and interrupted VMS, 
resumes the 1/0 after the device interrupts, and initiates 1/0 request com­
pletion processing. 

Example 22.1 shows the use of the three VMS-supplied macros, WFIKPCH, 
IOFORK, and REQCOM, which essentially create a framework for a simple 
driver's start 1/0 routine. These and other similar macros, documented in 
the VMS Device Support Manual, are building blocks for the driver's start 
I/O routine. The use of these macros allows the device driver writer to 
orchestrate the carefully coordinated interplay between VMS and the device 
driver. 

This chapter discusses the expansion of the preceding three macros in the 
context of this simple example and explains how and why VMS stalls and 
resumes the driver's start 1/0 routine. 

Initiating Device Action 

Typically, the start 1/0 routine is entered when an image makes an 1/0 
request and the device is idle. Figure 22.1 shows the interaction between the 
VMS executive and the appropriate device driver to initiate device action. 
Note that in Figures 22.1, 22.2, and 22.3 portions of the start 1/0 routine 
that are not relevant to the flow of control, but aid in understanding the 
flow, are shaded. 

The numbers in Figure 22.1 correspond to the numbered steps that follow: 

G) The system service routine EXE$QIO is called when the $QIO service is 
requested. 

G) EXE$QIO validates the function-independent parameters of the request, 
allocates and builds an IRP, and invokes the driver's FDT action routine 
for the requested function. 

G)The FDT routine validates the function-dependent parameters of the re­
quest, sets up the necessary 1/0 buffers, and enters EXE$QIODRVPKT. 
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Tme 
User Image VMS Executive Device Driver 

~o_u_re_r_M_od_e_(_zy_p_ica_ll_y)-1-~~~~~~~~~-K_em_e_l~M~ode~~~~~~~~~---1 
CallSYS$QIO 

L-... 

EXE$QIO 
2 Validate function-independent 

parameter of $010 request 
Allocate and build IRP 
Invoke driver's FDT routine 

EXE$QIODRVPKT 
4 Invoke EXE$1NSIOQ 

' EXE$1NSIOQ 
5 Get fork lock 

If device not busy, 
invoke IOC$1NITIATE 

' IOC$1NITIATE 
6 Locate and enter the 

start 110 routine 

IOC$WFIKPCH 
9 Save fork context in 

UCB 
RSB to caller's caller 

10 RSB.._j 

' 11 Return to $010 requestor 

FDTRoutine 
3 Perform function-dependent 

preprocessing 
JMP EXE$QIODRVPKT 

Start 110 Routine 
7 Set up device registers 

to initiate 1/0 transfer 
8 WFIKPCH 

Figure 22.1 
Entering the Start 1/0 Routine 

QEXE$QIODRVPKT invokes EXE$INSIOQ (see Section 22.2.1). 
G)EXE$INSIOQ obtains the fork lock for the UCB and tests UCB$V_BSY. If 

the device is not busy, it invokes IOC$INITIATE. 
0 IOC$INITIATE locates the start 1/0 routine and enters it. 



22.3.2 

22.3 Driver's Start 1/0 Routine 

G) The start 1/0 routine then sets up the device registers so that the de­
vice can perform the requested function. It initializes the device's con­
trol/status register (CSR), indicating to the device that it should perform 
the requested function and interrupt VMS when it is done. The start 1/0 
routine manipulates device registers while holding the device spinlock to 
synchronize with device interrupts. 

G) Once the device starts performing the requested function, the start 1/0 
routine has to stall execution until the device interrupts. It does this by 
invoking the WFIKPCH macro. 

The WFIKPCH macro has two arguments: 

• The address of the timeout routine 
• The number of seconds within which the interrupt should occur 

·If the interrupt occurs within the specified time, VMS resumes the start 
1/0 routine at the instruction following the WFIKPCH. If it does not occur, 
VMS resumes the start 1/0 routine at the timeout routine specified. 

The WFIKPCH macro invocation in the preceding example expands as 
follows: 

PUSHL #6 
JSB c-10C$WFIKPCH 
.WORD DEVTMO - . 

Note that the . WORD directive leaves a value, the offset to the timeout routine 
DEVTMO, in the instruction stream. By adding this value to its own address, 
code in the VMS executive computes the system virtual address of the device 
timeout routine when the need arises. 

Waiting for the Device Interrupt 

G)IOC$WFIKPCH, in module IOSUBNPAG, is invoked by a driver's start 
1/0 routine through the WFIKPCH macro. It performs the following steps: 

a. At entry to IOC$WFIKPCH, the return address that was left on the 
stack by the JSB instruction actually points to a value rather than 
to an instruction, as indicated previously. IOC$WFIKPCH adjusts the 
return address by adding 2 to it, in order to point past the word value. 

b. It stores the adjusted return address, after removing it from the stack, 
in UCB$1-FPC. 

c. It stores register R3 in UCB$L_FR3 and R4 in UCB$1-FR4. 
d. It sets UCB$V _INT, to indicate that this device now expects an inter­

rupt, and UCB$V _TIM, to indicate that this unit has 1/0 being timed. 
e. It obtains the timeout value from the stack, adds it to the system 

uptime, EXE$GL_ABSTIM, and stores it in UCB$L_DUETIM. This 
value is the system uptime at which this request expires. 
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f. IOC$WFIKPCH clears UCB$V _ TIMOUT. If the interrupt does not 
occur within the specified time, EXE$TIMEOUT, in module TIME­
SCHDL, will set the bit. Chapter 11 describes EXE$TIMEOUT. 

g. IOC$WFIKPCH releases the device spinlock and returns to the caller's 
caller. 

Effectively, IOC$WFIKPCH saves the context of the driver's start 1/0 
routine in the fork block contained within the UCB. It will be resumed 
when the device interrupts. IOC$WFIKPCH transfers control back to the 
VMS routine, EXE$INSIOQ. (EXE$INSIOQ used IOC$1NITIATE to locate 
and invoke the start 1/0 routine. However, IOC$INITIATE entered the 
start I/O routine with a JMP instruction and did not leave a return address 
on the stack. As a result, the RSB instruction in IOC$WFIKPCH returns 
control to EXE$INSIOQ.) 

@EXE$INSIOQ returns to EXE$QIODRVPKT. 
@EXE$QIODRVPKT returns control to the image that requested this 1/0 

operation, as discussed in Section 22.2.1. 

Servicing the Device Interrupt 

When the device has performed the requested function, it interrupts the pro­
cessor. On a symmetric multiprocessing (SMP) system, it interrupts the pri­
mary processor. The mechanism by which VMS invokes a device's ISR when 
the device interrupts is known as interrupt dispatching (see Section 22.4). 

Figure 22.2 shows the control flow when the ISR resumes the start 1/0 rou­
tine. The numbers in the figure correspond to the numbered steps outlined 
in this section. 

G) As part of VMS device interrupt dispatching, a few general registers, 
typically RO through RS, are saved on the interrupt stack. VMS then 
invokes the driver's ISR. 

G)Example 22.2 shows a simple ISR for a device driver. Typically, an ISR 
relies on the fact that when it is entered, the top of the stack has a pointer 
to the interrupt dispatch block (IDB). The first two longwords of the IDB 
contain the addresses of the device CSR and the UCB of the device that 
requested the interrupt. The UCB contains the fork block that holds the 
context of the driver's start I/O routine. 

The UCB also contains the address of the device lock. The device 
lock normally synchronizes access to controller and device registers and 
certain UCB fields. Every code thread that accesses these registers or 
UCB fields is expected to obtain that device lock first. A driver writer 
determines which registers and fields the device lock synchronizes based 
on the nature of the device and the interaction among driver routines like 
initialization, timeout, start 1/0, and interrupt service routines. 
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Tme 
VMS Executive Device Driver 

/~00·-
Save RO - RS ---~1-------~ ISR 

2 Get IDB pointer from top 
of stack 

Get device CSR and UCB 
Obtain device lock 
Restore driver fork process 

I 

f 
EXE$10FORK 
4 Save fork context in 

UCB fork block 
Queue fork block on fork 

queue and request fork 
interrupt 

-
4g RS~ to caller's caller 

Figure 22.2 
ISR Resumes the Start I/O Routine 

Example 22.2 
Simple Interrupt Service Routine 

!SR: 

10$: 

MOVQ ©(SP)+, R4 
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),-
BBCC #UCB$V_INT, -

UCB$L_STS(R5), 10$ 
MOVL UCB$L_FR3(RS), R3 
JSB ©UCB$L_FPC(R5) 
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),-
MOVQ (SP)+, RO 
MOVQ (SP)+, R2 
MOVQ (SP)+, R4 
REI 

l 
5 Release device lock 

Restore RO - RS 
REI 

;Get CSR in R4 and UCB in R5 

;Obtain device lock 

;If interrupt une~pected, go to 10$ 
;Restore fork R3 
;Resume driver's start I/0 routine 

;Release device lock 
;Restore registers saved 
; during interrupt dispatching 

;Dismiss interrupt 
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The ISR obtains the device lock and tests UCB$V _INT to determine if 
the interrupt is expected. If UCB$V _INT is clear, the ISR merely releases 
the device lock, restores RO through RS, and dismisses the interrupt. Oth­
erwise, the ISR resumes the start 1/0 routine at the instruction following 
its invocation of the WFIKPCH macro using the following instruction: 

JSB ©UCB$L_FPC(R5) 

G) When the start I/O routine determines that further processing for this 
1/0 request may be performed at an IPL lower than the device IPL, it 
invokes the IOFORK macro. Since this part of the start I/O routine has 
been resumed from the ISR at device IPL, it may not explicitly lower the 
IPL. To do so would be in violation of the VAX architecture, which states 
that an interrupt thread of execution may not lower its IPL below that at 
which it was initiated. 

The IOFORK macro is provided by VMS specifically for such purposes. 
This macro expands to the instruction JSB G~EXE$IOFORK. 

G) EXE$IOFORK, in module FORKCNTRL, assumes that the fork block 
for the fork thread that invoked it resides in the UCB. It requests the 
resumption of the fork thread at its fork IPL as follows: 

a. It clears bit UCB$V _TIM in UCB$1-STS to indicate that the device 
no longer has an I/O operation being timed. 

b. It stores registers R3 and R4 in UCB$1-FR3 and UCB$1-FR4. 
c. It gets the return address from the top of the stack and stores it 

in UCB$1-FPC. This is the address of the instruction following the 
invocation of IOFORK, the part of the start 1/0 routine that needs to 
be resumed at fork IPL. 

d. It gets the fork IPL of this fork thread as follows: 

On a uniprocessor system, from UCB$B_FIPL 

On an SMP system, from the array SMP$ALIPLVEC indexed by 
the contents of UCB$B_FLCK 

e. EXE$IOFORK locates the head of the fork queue for this fork IPL in 
the pet-CPU database for the processor on which it is running and 
inserts the fork block into this queue. 

CPU$Q_SWIQFL in the per-CPU database is the array of listheads 
for the fork queues for IPLs 6 and 8 through 11. There is an unused 
listhead for IPL 7 as well. 

f. If this fork block is the first to be inserted on this queue, EXE$IOFORK 
requests a software interrupt at the fork IPL for this queue. 

g. EXE$IOFORK then executes an RSB instruction, effectively passing 
control to the caller's caller which, in this example, is the ISR. 

G)The ISR simply releases the device lock, restores RO through RS, and 
executes an REI instruction to dismiss the interrupt. 
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Trne 
VMS Executive 

~ ;-'-
EXE$FORKDSPTH 
1 Dequeue fork block 

Obtain fork lock 
Restore driver fork 

process 

Release fork lock 

IOC$REQCOM 
3 Post IRP to systemwide 

VO postprocessing queue 
Request IPL$_10POST 

software interrupt 
31 If no pending IRPs on UCB, 

JMP IOC$RELCHAN 

J 
IOCSRELCHAN 

Release channels, if required 
RSB 

If no more fork blocks, 
REI 
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Figure 22.3 shows the flow of control when the start 1/0 routine is resumed 
by the VMS fork dispatcher. The numbers in the figure correspond to the 
numbered steps in this section. 

When processor IPL falls below the fork IPL of this device, the processor 
grants the requested software interrupt at that IPL. The software ISR is one 
of the EXE$FRKIPLxDSP routines in module FORKCNTRL, where x is 6, 
8, 9, 10, or 11, one of the fork IPL values. All these routines converge in 
EXE$FORKDSPTH, also in module FORKCNTRL. 

(!) EXE$FORKDSPTH removes one fork block at a time from the appropriate 
fork queue and performs the following steps: 
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a. Running on an SMP system, it obtains the fork lock. 
b. It restores R3 and R4 from FKB$LFR3 and FKB$LFR4 of the fork 

block. For the UCB, these are the same as offsets UCB$L_FR3 and 
UCB$LFR4. 

c. It executes a JSB instruction to FKB$LFPC, thus resuming the fork 
process. 

d. When the fork process returns, EXE$FORKDSPTH releases the fork 
lock if it is running on an SMP system. 

In Example 22.1, the JSB instruction in EXE$FORKDSPTH resumes 
the start 1/0 routine at the instruction following the invocation of the 
IOFORK macro, at the fork IPL for the device. 

G)The start 1/0 routine then checks for any errors and performs any device­
dependent postprocessing of the 1/0 request. It constructs in RO and Rl 
the 1/0 status block to be returned to the user image that requested the 
1/0. Finally, it invokes the REQCOM macro to complete the 1/0 request 
and initiate 1/0 postprocessing. VMS 1/0 postprocessing relays the final 
status of the 1/0 and the data, if any, to the $QIO requestor. 

The REQCOM macro generates the instruction JMP G-roc$REQCDM. 

G)IOC$REQCOM, in module IOSUBNPAG, queues the IRP to the sys­
temwide postprocessing queue and requests an IPL$_IOPOST software 
interrupt by performing the following steps: 

a. If there is an error log buffer (if UCB$V _ERLOGIP in UCB$W _STS is 
set), IOC$REQCOM transfers the necessary information to the error 
log buffer and invokes ERL$RELEASEMB, in module ERRORLOG, to 
complete the error log activity for this 1/0 operation. 

b. It increments the I/O operation count in the UCB. 
c. It stores the final 1/0 status in IRP$LIOST1 and IRP$LIOST2. 
d. If the device is a tape and the request completed successfully, it 

invokes EXE$MNTVER_GEN_CRC, in module [SYSLOA]MOUNT­
VER, to generate any needed cyclic redundancy check (CRC). 

e. If the 1/0 request completed with an error and the device is a disk 
or a tape, IOC$REQCOM checks if mount verification is pending 
or in progress (if UCB$V _MNTVERPND or UCB$V _MNTVERIP in 
UCB$LSTS is set). If either is true, it invokes EXE$MOUNTVER, in 
module [SYSLOA]MOUNTVER, to start mount verification. 

In the case of certain tape errors, IOC$REQCOM calls EXE$MNT­
VER_GEN_CRC, as it does in the previous step, without checking the 
mount verification bits in UCB$LSTS. 

f. IOC$REQCOM tests and saves the current IPL. If it is not at least 
IPL$_IOPOST, it raises IPL to IPL$_IOPOST. 

g. IOC$REQCOM inserts the IRP in the interlocked systemwide 1/0 
postprocessing queue, IOC$GQ_POSTIQ. 
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Running on a uniprocessor system, IOC$REQCOM simply requests 
an IPL$_IOPOST interrupt. 

If this is an SMP system, and the 1/0 postprocessing queue was 
empty prior to the insertion of the IRP, IOC$REQCOM must request 
the IPL$_IOPOST software interrupt on the primary processor. If the 
current processor is the primary, IOC$REQCOM simply writes the 
appropriate value to PR$_SIRR. Otherwise, IOC$REQCOM requests 
an interprocessor interrupt to tell the primary to request an IPL$_ 
IOPOST interrupt. Chapter 4 discusses software interrupts in more 
detail; Chapter 34 interprocessor interrupts. 

h. IOC$REQCOM restores the saved IPL. 
i. If mount verification is in progress, it tests UCB$V _MOUNTVER-

PND: 

If UCB$V _MOUNTVERPND is set and the 1/0 operation is being 
performed on a disk or a tape, then IOC$REQCOM clears UCB$V _ 
MOUNTVERPND and invokes EXE$MOUNTVER without clear­
ing the UCB$V_BSY bit. This occurs when a VAXcluster system 
has lost quorum; the result is to stall 1/0 until quorum is regained. 

If UCB$V _MOUNTVERPND is clear, IOC$REQCOM simply enters 
IOC$RELCHAN, in module IOSUBNPAG, to release any device 
controllers to which the start 1/0 routine had obtained exclusive 
access. IOC$RELCHAN returns to the caller's caller. 

j. If the unit has pending 1/0 requests, IOC$REQCOM removes the 
first one and branches to IOC$INITIATE, in module IOSUBNPAG, 
to initiate it. IOC$INITIATE, described in Section 22.2.1, enters the 
driver's start 1/0 routine. The start 1/0 routine typically invokes the 
WFIKPCH macro, resulting in the invocation of IOC$WFIKPCH, de­
scribed in Section 22.3.2. IOC$WFIKPCH returns to the caller's caller, 
which in this example is the fork dispatcher, EXE$FORKDSPTH. 

k. If there are no pending I/O requests for the unit, IOC$REQCOM 
clears the device unit busy flag (UCB$V _BSY in UCB$W _STS) and 
enters IOC$RELCHAN, in module IOSUBNPAG, to release any device 
controllers. IOC$RELCHAN returns to the caller's caller, which in 
this example is EXE$FORKDSPTH. 

22.4 VMS INTERRUPT SERVICE ROUTINES 

The following sections briefly describe how VMS dispatches some device 
and adapter interrupts to appropriate interrupt service routines and the ac­
tions typically taken by these routines. Chapter 20 presents an overview of 
the 1/0 database, the basis for interrupt dispatching. The VMS Device Sup­
port Manual describes the 1/0 database in more detail and provides a more 
complete discussion of driver interrupt service routines. 
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Servicing UNIBUS and Q22-Bus Interrupts 

Each device on a UNIBUS or Q22-bus has one or more vector numbers and a 
bus request priority. The bus request priority enables the bus to be arbitrated 
among devices when multiple interrupts are requested. 

On a UNIBUS, there are four bus request (BR) levels, called BR4, BRS, BR6, 
and BR7. BR7 is the highest priority. If interrupts are requested concurrently 
for multiple devices with the same BR level, the device electrically closest to 
the UNIBUS arbitration logic has the highest priority. On a Q22-bus, there 
are also four request levels, called bus interrupt request (BIRQ) levels. BIRQ7 
is the highest priority. 

In either case, the device IPL of the requested interrupt is the bus request 
level plus 16. For example, BR4 corresponds to IPL 20. 

Interrupts from UNIBUS adapters (UBAs) may be vectored directly or 
indirectly, as discussed in the following sections. The difference between 
the two methods of vectoring is that there is an extra level of dispatching 
for indirectly vectored interrupts. When a device on an indirectly vectored 
UNIBUS interrupts, the adapter's ISR gains control, interrogates the device 
for its vector, and uses this vector to invoke the device's ISR. 

Directly Vectored UNIBUS and Q22-Bus Interrupt Service Routines. VAX 
CPUs that implement directly vectored interrupts use additional pages of 
the system control block (SCB) for these interrupts. 

SYSGEN is responsible for building the 1/0 database for devices and their 
drivers (see Chapter 20). For a device on a bus whose interrupts are directly 
vectored, SYSGEN initializes the SCB vector with the address of code that 
dispatches the interrupt to the ISR. This dispatching code is contained in 
the interrupt dispatch area within the channel request block (CRB) for the 
controller and resembles the following: 

PUSHR #~M(RO,R1,R2,R3,R4,R5) 

JSB ©#driver_interrupLservice_routine 

The second instruction dispatches to the driver ISR (see Figure 22.4). The 
longword following the JSB instruction contains the address of the IDB. Its 
address is pushed onto the stack as the return program counter (PC) for the 
JSB instruction. Control never returns there because that address is removed 
from the stack by the driver ISR, as are the saved registers. 

After the JSB instruction in the CRB transfers control, the following events 
occur: 

1. The driver ISR removes the IDB pointer from the stack and uses it to 
obtain the address of the device controller's CSR and the address of the 
UCB for the device generating the interrupt. 

2. Having found the UCB, the ISR determines whether the interrupt is 
expected. If the interrupt is unsolicited, the interrupt service routine 
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may either take some appropriate action or simply dismiss the interrupt 
by restoring the saved registers and executing an REI. 

3. If the interrupt is expected, the ISR restores the driver context saved in 
the UCB by the driver fork process. The driver ISR then executes a JSB 

instruction to transfer control to the saved PC. 
4. The driver fork process transfers control back to the interrupt service 

routine. Most often, the driver fork process does this indirectly by forking 
or waiting for another interrupt. In either case, the fork process invokes 
a routine that saves the fork process context and returns to its caller 
by executing an RSB instruction. The driver ISR then restores the saved 
registers and dismisses the interrupt with an REI instruction. 

Indirectly Vectored UNIBUS Interrupt Service Routines. When a device on 
an indirectly vectored UNIBUS requests an interrupt, the UBA receives the 
interrupt request and requests a CPU interrupt on behalf of the interrupting 
device. It is actually the UBA interrupt that is vectored through the SCB, 
using the interrupting device's IPL and the adapter's transfer request (TR) 
number, to an adapter ISR. 
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The adapter ISR saves registers RO through RS, determines which device 
actually requested the interrupt, and then passes control to an ISR in the 
device driver for the interrupting device. The driver ISR can then respond to 
the interrupt in a device-dependent fashion. After servicing the interrupt, the 
registers saved by the adapter ISR must be restored and an REI instruction 
executed to dismiss the interrupt. 

There are four ISRs for each UBA, one for each BR level at which UNIBUS 
devices request interrupts. They differ only in which internal UBA register 
they read to determine which device requested the interrupt. These ISRs 
are found in the adapter control block (ADP) that describes the UBA. The 
UBA ADP is created during system initialization by the CPU-specific rou­
tine INl$UBADP. The CPU-specific routine and the actual UBA ISRs are 
in module [SYSLOA]INIADPxxx, where xxx is either 780 for VAX-ll/78x 
systems or 790 for VAX 86x0 systems. 

Indirectly vectored UNIBUS interrupt servicing begins in one of four 
UNIBUS adapter ISRs. Each of these routines takes the following steps: 

1. The routine saves registers RO through RS (see Figure 22.4). 
2. A UBA internal register called the bus request receive vector register 

(BRRVR) is read to determine the identity of the interrupting device. 
Each BRRVR register contains either the vector number corresponding 
to the device interrupt or an indication that the UBA is interrupting on 
behalf of itself, not for some device. (There are four BRRVRs in the UBA, 
one for each BR level.) 

3. The UBA interrupts on its own behalf to indicate an adapter error. Cer­
tain adapter errors result when a reference is made to a nonexistent ad­
dress in UNIBUS 1/0 space. They can indicate a transient hardware error 
or a bug in a device driver. These errors are logged, up to a maximum of 
three in any given IS-minute period, and the interrupt is dismissed. 

Another possible error is that power on the UNIBUS or UBA is about 
to fail. Chapter 33 describes how adapter powerfail is handled. 

4. For a device interrupt, the vector number is used as an index into a vector 
table, which is part of the ADP. The vector table contains a pointer to 
the JSB instruction in the CRB. The service routine transfers control by 
executing a JMP to the JSB instruction. 

The vector table entry pointing to the CRB and address fields in the 
CRB are initialized by SYSGEN in response to the CONNECT command. 

The JSB instruction in the CRB transfers control to the driver ISR. The 
longword following the instruction contains the address of the IDB. This 
address is pushed onto the stack as the return PC for the JSB instruction. 
However, control is never returned there, because that address is removed 
from the stack by the driver ISR. 

At this point, interrupt dispatching becomes identical to that on directly 
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vectored systems, as described in the previous section. Device driver inter­
rupt service routines are entered in the same way regardless of system type. 

MASSBUS Adapter Interrupt Service Routine 

MAS SB US adapter (MBA) interrupt dispatching is identical across all VAX 
CPUs that support an MBA. During system initialization, four SCB vec­
tors for each MBA are initialized by the CPU-specific routine INI$MBADP, 
in module [SYSLOA]INIADPxxx, where xxx designates one of the CPU 
types listed in Appendix G. The SCB vectors contain an address within 
the MBA CRB. The CRB contains a PUSHR instruction to save R2 to RS 
and a JSB instruction to transfer control to the MBA ISR, MBA$INT in 
[SYSLOA]ADPSUBxxx. 

MBA interrupts are handled differently from UNIBUS interrupts, partly be­
cause one MBA interrupt may indicate that multiple devices on the adapter 
need servicing. The MBA ISR reads an attention summary register to deter­
mine its response to an interrupt. 

If the interrupt enable bit in the MBA is set, an MBA interrupt can be 
caused by any of the following operations: 

• Completion of a data transfer 
• Assertion of an attention line while the MBA is not busy 
• Occurrence of an MBA error while the MBA is not busy 
• Power recovery on the MBA 

A device on the MASSBUS asserts its attention line under the following 
circumstances: 

• If an error occurs, whether or not a transfer is taking place 
• When a mechanical motion such as a disk seek or tape rewind completes 
• When a device changes its state 

In general, a MASSBUS device driver does not request ownership of the 
MBA channel (controller) until it is needed to perform a transfer. MBA$INT 
assumes that if the MBA owner is expecting an interrupt, then the interrupt 
currently being serviced indicates that a transfer has completed or been 
aborted. That is, when an MBA interrupt occurs and the current owner of 
the MBA is expecting an interrupt, MBA$INT dispatches immediately to the 
owner's driver. 

Because data transfer functions block the interrupts from nontransfer func­
tions until the data transfer completes, MBA$INT always checks the MBA 
attention summary register after a driver ISR returns control. It tests whether 
another device on the MASSBUS requested an interrupt either while the 
MASSBUS owner was transferring data or while the current interrupt was 
being processed. The UCB list contained in the IDB allows MBA$INT to 
associate UCB addresses with devices that are requesting service. 
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MBA$INT responds to an interrupt in one of three ways (see Figure 22.S). It 
may perform all three of these actions to service multiple attention requests 
in response to a single interrupt. 

• For an expected interrupt (bit UCB$V _INT set in UCB$W _STS) on a single­
unit device, MBA$INT restores the driver fork process context and exe­
cutes a JSB instruction to the fork PC. The driver fork process returns to 
MBA$INT when it has completed its work . 

• For an unsolicited interrupt (bit UCB$V_INT clear in UCB$W_STS) on a 
single-unit device, MBA$INT executes a JSB instruction that transfers con­
trol to a driver-supplied unexpected ISR, which will return to MBA$INT. 

• For a multidevice controller (a magnetic tape formatter), MBA$INT trans­
fers control to the CRB for the device controller. The device controller 
CRB dispatches to a controller ISR that saves R2 to RS and transfers con­
trol to the driver ISR. This service routine eventually returns control to 
MBA$INT. 

MBA$1NT uses the unit number of a device asserting attention as an index 
into the list IDB$1-UCBLIST. It identifies the type of the selected longword 
entry by checking its low-order bit. If the bit is set, then the entry is for a 
multidevice controller. If the bit is clear, the entry is the UCB address for a 
single-unit device. UCBs, like CRBs, are always longword-aligned (the low­
order two bits are clear). When a CRB is created for a multidevice controller, 
and its address stored in the MBA IDB, the address is incremented by 1 so 
the low-order bit will be set. Control is actually transferred to the PUSHR 

instruction in the CRB with the following instruction, where RS contains 
the MBA IDB entry: 

JSB -(R5) ;Autodecrement address to subtract 1 

VAXBI Adapter Interrupt Service Routines 

The dispatching of interrupts from VAX bus interconnect (VAXBI) adapters to 
the appropriate ISR varies according to the adapter type and the VAX system 
it is on. 

Each adapter on a VAXBI bus is assigned four vectors in the SCB, corre­
sponding to fomdnterrupt levels. The VAX.BI bus has 16 slots, or nodes, to 
connect adapters. Therefore, each VAX.BI bus on a VAX system requires 64 
interrupt vectors in the SCB to be reserved for adapter interrupts. Additional 
vectors are required for adapters such as the UNIBUS-to-VAXBI adapter (DW­
BUA), as discussed in Section 22.4.3.1. 

The 64 adapter interrupt vectors are organized in the appropriate page of 
the SCB as four contiguous arrays of 16 longwords each. The four arrays 
correspond to the four interrupt levels. This is similar to the organization of 
the upper half of the first page of the SCB, as discussed in Chapter 2. 
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For example, the SCB vector for the lowest interrupt level for the adapter 
at node number 0 is at offset 10016 into the SCB page assigned to the VAXBI 
bus. The next three interrupt vectors for this adapter are at offsets 14016, 
18016, and lC016, in the sam.e page of the SCB. Sections 22.4.3.2 and 22.4.3.3 
discuss the system-dependent assignment of an SCB page to a VAXBI bus. 

The four SCB vectors assigned to each V AXBI adapter are used in an 
adapter-dependent manner. Adapter initialization procedures for all VAXBI 
adapters are in module [SYSLOA]INICOMBI. 

Typically, the adapter initialization procedure connects a vector for an 1/0 
adapter to the interrupt dispatch area in the CRB for that VAXBI adapter. The 
instructions in the CRB interrupt dispatch area are a PUSHR for RO through 
RS and a JSB. The IDB address follows the JSB instruction in the CRB (see 
Figure 22.6). 

Initially, the JSB in the CRB transfers control to a skeleton ISR, such as 
CI$INT or BVP$INT, in module [SYSLOA]INICOMBI. This routine fields 
interrupts generated by the adapter prior to the loading of the device driver. 
It merely cleans off the stack and dismisses the interrupt. 

When a VAXBI device driver is loaded, the destination of the JSB instruc­
tion is modified to the address of the ISR within the driver. From this point, 
interrupt dispatching is driver-dependent but generally resembles dispatch­
ing for directly vectored interrupts, as discussed in Section 22.4.1.1. 

UNIBUS-to-VAXBI Adapters. Two adapters fit this description: the DW­
BUA, which adapts the UNIBUS to the VAXBI bus, and the KLESI-B, which 
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adapts the low-end storage interconnect (LESI) to the VAXBI bus. The KLESI­
B is actually the functional equivalent of a DWBUA connected to a KLESI-U, 
which connects the LESI to the UNIBUS. 

Each of these adapters on a VAX system is assigned a separate page of the 
SCB, because. devices on the UNIBUS may generate any of the 128 possi­
ble vectors. Interrupts from devices on the UNIBUS and LESI are directly 
vectored through that assigned page. 

An interrupt requested by the DWBUA or the KLESI-B adapter on its own 
behalf is vectored through one of the four vectors assigned for the adapter. On 
most systems, the last of these four vectors is used to service error interrupts 
requested by the adapter. The other vectors are unused and point to a routine 
that restores state and dismisses the interrupt. 

The SCB entry for adapter error interrupts at offset 1 C016 in the appropriate 
page points to a JSB instruction within the ADP at offset ADP$L_UBASCB. 
The JSB invokes the routine EXE$UBAERR_INT, in module ADPERRxxx, 
where xxx is one of the CPU designations listed in Appendix G. EXE$BUA­
ERR_INT and EXE$BLAERR_INT are synonyms for EXE$UBAERR_INT. 

VAXBI Adapters on VAX 8200 Family Systems. The VAX 8200 family 
includes the VAX 8200, VAX 8250, VAX 8300, VAX8350, and the VAXstation 
8000. On these systems, the VAXBI bus is the system bus as well as the 
primary I/O bus. This means that CPU modules and memory modules as 
well as I/O adapters connect to the VAXBI bus. 

VAXBI adapter interrupts are vectored through the first page of the SCB 
on these systems. Additional pages of SCB may be assigned to adapters of 
the kind discussed in Section 22.4.3.1, if they are present. 

Other V AXBI Adapters. This category includes all V AXBI adapters on a 
VAXBI bus that is the primary I/O bus but not the system bus on a VAX 
system. It excludes those listed in Section 22.4.3.1. The VAXBI bus serves 
as the primary I/O bus on VAX 8800 family and VAX 6000 series systems. 

These systems provide support for multiple VAXBI buses. Each VAXBI 
bus is assigned a separate page of the SCB. Additional pages of SCB may 
be assigned to adapters of the kind discussed in Section 22.4.3.1, if they are 
present. Chapter 3 explains the assignment of SCB pages for specific systems. 

CI Adapter Interrupt Service Routines 

Computer interconnect (CI) adapter interrupts are dispatched directly via 
the SCB. During system initialization, four SCB vectors for each CI port 
adapter are initialized by the CPU-specific routine INI$CIADP. INI$CIADP 
is in module [SYSLOA)INICOMBI for VAXBI-to-CI adapters and in module 
[SYSLOA]INIADPxxx for all other CI adapters. 
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Each of the four SCB vectors points to the interrupt dispatch area within 
the CI adapter's CRB. The interrupt dispatch area contains a PUSHR to save 
R2 to RS and a JSB instruction to transfer control to the ISR. 

Initially, the JSB in the CI adapter's CRB transfers control to routine 
CI$INT. CI$INT is in module [SYSLOA]ADPSUBxxx, where xxx is the 
CPU designation for VAX-11/7SO, VAX-11/78x, and VAX 86x0 systems. This 
routine simply performs the following operations: 

1. Clears the adapter power-up and power-down bits in the CI control 
register 

2. Sets the maintenance initialization bits in the CI control register 
3. Restores registers R2 to RS 
4. Executes an REI instruction to dismiss the interrupt 

Actually, VAXBI-to-CI adapter interrupts are disabled until PADRIVER, 
the CI device driver, is loaded. CI$INT, a dummy ISR for VAXBI-to-CI adapt­
ers, is in module [SYSLOA]INICOMBI. 

When PADRIVER is loaded, the destination of the JSB instruction is mod­
ified to the address of the interrupt service routine within the driver. There 
are several of these, one for each different type of CI port adapter. They 
are all in module [DRIVER]PAADP and have names such as INTERRUPT_ 
CI780. They are very similar, differing primarily in their methods of testing 
for error conditions. The following list summarizes their actions, which are 
pictured in Figure 22.7: 
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1. The ISR removes the address of the IDB pointer from the stack, retrieving 
the address of the UCB. 

2. The ISR examines various adapter registers to determine whether the 
CI port adapter interrupted because it queued a response packet to a 
formerly empty response queue or because an error occurred. 

3. If there was no error, the ISR invokes the routine INT$FORK in module 
[DRNER]PAINTR .. 

4. INT$FORK sets and tests a fork block interlock bit in the UCB. If the bit 
is already set, the UCB is already in use as a fork block and INT$FORK 
merely returns to the ISR. If the bit was not already set, INT$FORK forks, 
using the UCB. That is, a fork PC is stored in the UCB and the UCB is 
inserted on the IPL 8 fork queue. 

S. INT$FORK returns to the ISR, which restores the registers saved on the 
stack and executes an REI instruction to dismiss the interrupt. 

6. When the driver fork process is entered, it updates the maintenance timer 
on the CI port to indicate that the system is still active. 

7. It then removes a response packet from the response queue and processes 
it. It continues dequeuing response packets and processing them until 
either the queue is empty or it has handled 100 response packets. 

DR32 Interrupt Service Routine 

DR32 interrupts are dispatched directly through the SCB. During system 
initialization, entries are made in the SCB to transfer control to locations 
in the CRB for the DR32. The instructions in the CRB are a PUSHR for 
R2 through RS and a JSB instruction. The DR32 IDB address follows these 
instructions in the DR32 CRB (see Figure 22.8). 

Initially, the JSB instruction in the DR32 CRB transfers control to routine 
DR$1NT, in module [SYSLOA]ADPSUBxxx. This routine simply performs 
the following operations: 

1. Clears the adapter power-up and power-down bits in a DR32 control 
register 

2. Restores registers R2 to RS 
3. Executes an REI instruction 

When the DR32 driver, in module [DRNER]XFDRNER, is loaded by SYS­
GEN, the destination of the JSB instruction is changed to the ISR in the 
driver. This routine performs the following operations: 

1. Responds to the various types of DR32 interrupts 
2. Restores registers R2 to RS 
3. Executes an REI instruction 
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The connect-to-interrupt facility is an extension of the interrupt dispatching 
scheme. It enables a process to be notified of a UNIBUS or Q22-bus device 
interrupt by the delivery of an AST, setting of an event flag, or both. The 
process can also specify an interrupt service routine to respond to device 
interrupts. 

A process with CMKRNL and PFNMAP privileges can respond to an inter­
rupt by reading or writing device registers and possibly by initiating further 
device activity. However, to directly manipulate device registers, the process 
must first map the UNIBUS or Q22-bus space containing the registers for the 
device into its per-process space. The VMS Device Support Manual describes 
mapping UNIBUS 1/0 space and using the connect-to-interrupt capability. 
Chapter 15 of this book contains more detailed information on how the 
mapping is actually performed. 

Note that the physical address range of UNIBUS 1/0 space differs on differ­
ent types of VAX systems. The VMS Device Support Manual contains a list 
of symbols defined by the system-specific macros (for example, $10730DEF) 
that define the physical addresses symbolically. 

To use the connect-to-interrupt facility, the connect-to-interrupt driver, 
in module [DRIVER]CONINTERR, must be associated with the interrupt 
vector. The association is made using the SYSGEN command CONNECT, 
specifying all the following: 
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This portion of the interrupt 
dispatch scheme is an 
explicit example of the 
general UNIBUS interrupt 
dispatch scheme illustrated 
in Figure 22-4. 

Extending Interrupt Dispatch Mechanism with the 
Connect-to-Interrupt Facility 

This portion of 
the interrupt 
dispatch scheme 
is specific to the 
connect-to­
interrupt driver. 

• Name for the device jused by the process connecting to the interrupt) 
• CSR address of the device 
• Interrupt vector at which the device generates interrupts 
• CONINTERR driver, which initially responds to the device interrupts 

When the device generates an interrupt, the normal UNIBUS or Q22-bus 
interrupt dispatching sequence is followed, as discussed in Section 22.4.1. 
However, the CONINTERR ISR transfers control to the user-supplied ISR at 
device IPL if one was supplied, using a JSB or CALL instruction, as requested 
by the user. This transfer is illustrated in Figure 22.9. 

When the user-supplied ISR executes an RSB or RET instruction, the CON­
INTERR ISR regains control. Before restoring the registers and dismissing 
the interrupt, it creates an IPL$_QUEUEAST fork process to queue an AST, 
if requested, to the process to notify it that an interrupt has occurred. CON­
INTERR's AST routine sets an event flag, queues the user-requested AST, 
or both. 

For the process-supplied ISR to be accessible to the CONINTERR ISR, 
the CONINTERR driver must double-map the user routine into system ad­
dress space. The double mapping requires enough system page table entries 
jSPTEs) to map the user-supplied routines. These SPTEs must have been re­
served through the REALTIME_SPTS SYSGEN parameter. When the process 
disconnects from the interrupt, the SPTEs used to map its routines are made 
available for similar use by other processes. 
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Note that the connect-to-interrupt driver has no provision for direct mem­
ory access 1/0. It does not allocate map registers and data paths. Its fork IPL, 
IPL$_QUEUEAST, is lower than IPL 8, the IPL at which access to these 
adapter resources is arbitrated. Furthermore, the driver does not perform the 
tasks required to deal with VMS direct 1/0 buffers. 



23 Mailboxes 

Knowing how to answer one who speaks, 
To reply to one who sends a message. 

Amenemope, The Instruction of Amenemope 

A VMS mailbox is a virtual I/O device for interprocess communication. One 
process writes a message to a mailbox for another process to read. A process 
reads or writes mailbox messages using standard VMS I/O mechanisms. 

This chapter discusses mailboxes: the data structures that define them, the 
system services that create and delete them, and the driver that implements 
mailbox I/O. It briefly describes some examples of their use by the VMS 
executive and components. 

23.1 OVERVIEW 

VMS mailboxes are virtual I/O devices implemented in software. A mailbox 
is described by the same basic data structures as any other device. However, 
unlike those of a hardware device configured by SYSGEN, mailbox data 
structures are dynamically created in response to a process's Create Mailbox 
and Assign Channel ($CREMBX) system service request. 

Mailboxes are read and written through the standard I/O mechanisms. 
However, messages written to a mailbox device are actually stored in non­
paged pool until read. The mailbox driver, MBDRIVER, services Queue 
I/O ($QIO) system service requests to mailbox devices. Unlike most other 
drivers, the mailbox driver is implemented within a loadable executive 
image. 

Processes sharing a mailbox generally identify it by an agreed-upon logical 
name. Since a mailbox exists in memory, it can be shared by any process 
running on a processor with access to that memory-either a uniprocessor 
or any CPU in a multiprocessing system. Because processes running on 
different VAXcluster system members do not share common memory, they 
must communicate by mechanisms other than mailboxes. 

Processes typically use a mailbox as a one-way communication path be­
tween two or more processes; one process reads messages written to the 
mailbox by one or more other processes. The mailbox driver associates each 
write request with a single read request; mailbox messages are read in the 
order in which they are written. A message written to a mailbox cannot 
be broadcast; it is read by only one process. Although each mailbox read 
is paired with a mailbox write, VMS places no restrictions on the order in 
which read and write requests are issued. 
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A mailbox is created with a specified capacity to buffer messages written 
to it that have not yet been read. Thus, a process can write a message to a 
mailbox whether or not there is a pending read request. If there is a pending 
read request, the message is read immediately; otherwise, the message is 
buffered. A process can specify that its write request complete immediately. 
By default, a write request does not complete until another process reads the 
message. 

When a process issues a read request to a mailbox, a buffered message 
may or may not be present. A process can request that if there is no buffered 
message, the read complete immediately. By default, a read request does not 
complete until another process writes a message to the mailbox. The VMS 

I/O User's Reference Manual: Part I provides more information on using 
mailboxes. 

There are two kinds of mailboxes: temporary and permanent. A temporary 
mailbox is deleted automatically when no more processes have channels as­
signed to it. A permanent mailbox must be explicitly marked for deletion 
using the Delete Mailbox ($DELMBX) system service. Once marked for dele­
tion, a permanent mailbox is deleted when no more processes have channels 
assigned to it. 

A mailbox can also be created in MA780 multiport memory. This option 
loosely connects multiple VAX-11/780 processors or VAX-11/785 processors. 
Processes on all the processors sharing an MA780 memory can communicate 
through a mailbox in shared memory. At an application level, an MA780 
shared memory mailbox differs from a local memory mailbox only in its 
name. At an implementation level, however, there are significant differences. 
This chapter describes only the implementation of local memory mailboxes. 

23.2 LOGICAL NAMES OF MAILBOXES 
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Like any other 1/0 device, a mailbox has a device name specification in the 
form ddcu. The mailbox device type, dd, is MB. Its controller designation, 
c, is A. The unit number, u, is an integer from 1 to 9999. 

Unlike those for other 1/0 devices, a particular unit number is not usu­
ally associated with a particular mailbox. The only mailboxes created with 
specific unit numbers are those permanently defined in the executive (see 
Section 23.3). When a mailbox is created, it is assigned the next available 
unit number. Its unit number cannot be determined before the mailbox is 
created. 

Therefore, a process creating a mailbox usually also requests the creation 
of a logical name that translates to the mailbox device name. Other processes 
identify the mailbox by its logical name when they assign a channel to it. 
Although a user-specified logical name is not required, accessing a mailbox 
without one is difficult. 



23.3 Mailbox Data Structures 

Every logical name is associated with a logical name table. The $CREMBX 
system service creates a logical name for a mailbox in one of two tables: 

• The table LNM$TEMPORARY _MAILBOX for a temporary mailbox 
• The table LNM$PERMANENT _MAILBOX for a permanent mailbox 

LNM$TEMPORARY _MAILBOX is itself a logical name, whose default 
translation is LNM$JOB, the jobwide logical name table. The default transla­
tion of LNM$PERMANENT _MAILBOX is LNM$SYSTEM, the systemwide 
logical name table. Thus, temporary mailboxes, by default, can only be 
shared by processes in the same job tree. Processes not in the same job 
tree may share a temporary mailbox by redefining LNM$TEMPORARY _ 
MAILBOX to some shared logical name table. (For further information, see 
the VMS System Services Reference Manual.) 

In addition to automatic logical name creation for a mailbox being created, 
VMS provides automatic logical name deletion for a mailbox being deleted. 

Directed by the $CREMBX system service, the Create Logical Name 
($CRELNM) system service stores the address of the logical name data struc­
ture in the mailbox UCB field UCB$1-LOGADR and the address of the mail.­
box UCB in the logical name data structure. (However, if the mailbox logical 
name is a process-private name, $CRELNM clears UCB$1-LOGADR to pre~ 
vent possible race conditions at process deletion, when all process-private 
logical names are deleted.) 

A mailbox in MA780 multiport memory is distinguished from a local 
memory mailbox by its logical name. The VMS System Services Reference 
Manual discusses the format of logical names for shared memory objects, 
including mailboxes. 

23.3 MAILBOX DATA STRUCTURES 

A mailbox device uses many of the same basic data structures that other I/O 
devices use. These include 

• A device data block (DDB) 
• A controller request block (CRB) 
• A unit control block (UCB) for each unit 
• An object rights block (ORB) for each unit 

However, since a mailbox is not a physical device and does not service 
interrupts, it does not require an interrupt data block (IDB) or an adapter 
control block (ADP). 

Chapter 20 contains a further description of these data structures. 
Unlike those of most other devices, the mailbox DDB and CRB are assem­

bled into the loadable executive image SYSTEM_PRIMITIVES, as are three 
mailbox UCBs and ORBs. 
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The first mailbox unit, MBAO, is the template from which $CREMBX 
clones all other mailboxes. (See Chapter 21 for a description of template 
device processing and IOC$CLONE_UCB.) Section 23.6 describes the use of 
the second and third mailbox units. 

A mailbox UCB contains several device-specific fields: 

• UCB$LMB_MSGQ heads the queue of messages written to a mailbox 
device. 

The symbol UCB$LMB_MSGQ, which is local to the driver, is the same 
offset as the symbol UCB$LFQFL. 

• UCB$L_LOGADR contains the address of the mailbox device's logical 
name block (LNMB) . 

• UCB$L_MB_R_AST and UCB$L_MB_ W _AST head the read and write at­
tention asynchronous system trap (AST) lists, where AST control blocks 
(ACBs) for attention ASTs are linked. 

Section 23.5.1.1 describes the mailbox driver's use of attention ASTs. 
The symbols UCB$L_MB_R_AST and UCB$L_MB_ W _AST are local to 

the mailbox driver. They are the same offsets as UCB$LASTQFL and 
UCB$L_ASTQBL. 

• UCB$W _INIQUO contains the maximum space allocation for messages 
written to the mailbox. No message written to the mailbox can be longer 
than this value. 

UCB$W _INIQUO is set to the $CREMBX argument BUFQUO if the argu­
ment is specified. Otherwise, the SYSGEN parameter DEFMBXBUFQUO 
is used . 

• UCB$W _BUFQUO contains the space currently available for messages. Ini­
tially, UCB$W _BUFQUO contains the value stored in UCB$W _INIQUO. 
When a message is written to the mailbox, UCB$W _BUFQUO is reduced 
by the size of the message. When the message is read, its size is added to 
UCB$W _BUFQUO. 

Figure 23.l depicts a mailbox UCB. 
A message written to a mailbox is stored in a nonpaged pool data structure 

called a message block. Figure 23.2 shows the layout of a mailbox message 
block. 

23.4 MAILBOX CREATION AND DELETION 

23.4.1 
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Two system services are related specifically to mailbox use: $CREMBX and 
$DELMBX. 

$CREMBX System Service 

The $CREMBX system service procedure, EXE$CREMBX in module SYS­
MAILBX, runs in kernel mode. It creates a virtual mailbox device named 
MBAn and assigns an I/O channel to it or, if the mailbox already exists, 
merely assigns an I/O channel. $CREMBX has seven arguments: 
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Layout of Mailbox Message Block 

• PRMFLG, a flag specifying whether the mailbox is to be permanent or 
temporary 

• CHAN, the address of a word in which the channel number assigned to the 
mailbox by EXE$CREMBX is written 

• MAXMSG, the maximum size of a message that can be sent to the mailbox 
• BUFQUO, the number of bytes of nonpaged pool that can be used to buffer 

messages sent to the mailbox 
• PROMSK, the protection mask to be associated with the created mailbox 
• ACMODE, the access mode to be associated with the channel to which the 

mailbox is assigned 

659 



Mailboxes 

660 

• LOGNAM, the logical name to be assigned to a new mailbox or translated to 
locate an existing mailbox 

The CHAN argument is required; all others are optional. 
EXE$CREMBX takes the following initial steps: 

1. It verifies that the CHAN argument is write-accessible. 
2. If the LOGNAM argument is present, EXE$CREMBX invokes MMG$MBX­

TRl:'fLOG, in module SHMGSDRTN, to determine whether the mailbox 
is an MA780 shared memory mailbox. 

3. EXE$CREMBX raises IPL to 2 to prevent process deletion and invokes 
IOC$FFCHAN to find a free channel control block (CCB). IOC$FFCHAN 
is discussed in Chapter 21. 

4. It checks that the process has the necessary privilege to create the type 
of mailbox specified in the PRMFLG argument: PRMMBX for a permanent 
mailbox or TMPMBX for a temporary mailbox. 

5. It locks the 1/0 database mutex for write access. 
6. If the LOGNAM argument was omitted, EXE$CREMBX presumes that the 

mailbox does not exist and must be created. It creates the mailbox, as 
described in Section 23.4.1. It clears UCB$1-LOGADR to indicate that 
the mailbox has no associated logical name and continues with step 11. 

7. If the LOGNAM argument was specified, EXE$CREMBX requests the Trans­
late Logical Name ($TRNLNM) system service to obtain the address of 
the mailbox UCB, if one exists. It passes the following arguments to 
$TRNLNM: 

-The name of the mailbox logical name table 
-The logical name specified by the LOGNAM argument 
-The maximized access mode, that is, the less privileged of the access 

mode specified by the ACMODE argument and the access mode of the 
requestor 

-An item list element requesting the back pointer 

8. If the logical name exists, EXE$CREMBX uses its back pointer contents 
as the UCB address and continues with step 11. 

9. If the logical name does not exist, EXE$CREMBX presumes that the 
mailbox does not exist and must be created. It takes the steps described 
in Section 23:4.1. 

10. EXE$CREMBX requests the Create Logical Name ($CRELNM) system 
service to create the logical name specified by the LOGNAM argument. It 
passes the following arguments to the $CRELNM system service: 

-The name of the mailbox logical name table 
-The logical name specified by the LOGNAM argument 
-The maximized access mode 
-An item list element directing the $CRELNM system service to store 

the address of the logical name block in UCB$L_LOGADR 
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11. EXE$CREMBX increments the reference count for that mailbox and as­
signs a channel to the mailbox by taking the following steps: 

a. It stores the mailbox UCB address in CCB$1-UCB. 
b. It stores the access mode at which the channel was assigned (plus 

1) in CCB$B_AMOD. The access mode is biased by 1becausea0 in 
CCB$B_AMOD indicates an unassigned channel. As usual, the access 
mode at which the channel is assigned is the less privileged of the 
access mode specified by the ACMODE argument and the access mode 
of the requestor. 

12. EXE$CREMBX stores the channel number in the address specified by the 
CHAN argument. It unlocks the I/O database mutex, lowers IPL to 0, and 
returns the success status SS$_NORMAL to its requestor. 

EXE$CREMBX can create a temporary or a permanent mailbox depend­
ing on the value of the PRMFLG argument. To create a temporary mailbox, a 
process must have sufficient byte count quota for the mailbox messages and 
UCB. The quota is charged at mailbox creation and returned at mailbox dele­
tion. Because a permanent mailbox may survive the deletion of its creating 
process, quota is not charged for its creation. Instead, PRMMBX, a privilege less 
lightly granted than TMPMBX, is required for a process to create a permanent 
mailbox. 

For a temporary mailbox, EXE$CREMBX invokes IOC$CHKMBXQUOTA, 
in module UCBCREDEL, to determine if the process buffered I/O byte count 
quota (JIB$L_BYTCNT) can accommodate both of the following with a mar­
gin of 256 bytes left: 

• The size of a mailbox UCB. 
• The space to buffer mailbox messages, the buffer quota. (This value is the 

BUFQUO argument if the argument was specified or the SYSGEN parameter 
DEFMBXBUFQUO if the BUFQUO argument is absent.) 

IOC$CHKMBXQUOTA invokes EXE$DEBIT _BYTCNT _BYTLM_NW to 
charge the process buffered I/O byte count quota (JIB$L_BYTCNT) and byte 
limit (JIB$L_BYTLM) for the size of the mailbox UCB and the mailbox 
message buffer. If a quota is insufficient, IOC$CHKMBXQUOTA returns 
an error status to EXE$CREMBX, which returns the error to its caller. 

EXE$CREMBX invokes IOC$CLONE_UCB, in module UCBCREDEL, to 
clone a new UCB and ORB from the template mailbox unit MBAO. 
IOC$CLONE_UCB allocates sufficient nonpaged pool to create a new UCB 
and ORB. It copies the template UCB and ORB to the newly allocated mem­
ory. It increments the value found in UCB$W_UNIT_SEED in the template 
UCB and checks whether that unit number exists. If so, the next value is 
tried. This continues until an available unit number is found or a maximum 
of 9999 is reached. If that occurs, the unit number wraps to 1 and the search 
continues. 
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IOC$CLONE_UCB initializes the new UCB as follows: it links the new 
UCB into the UCB list, sets the reference count to 1, marks the device online, 
and loads the new ORB address into the UCB's ORB pointer field. 

EXE$CREMBX further initializes the cloned UCB: 

1. It stores the buffer quota in the buffer quota and initial buffer quota 
fields, UCB$W _BUFQUO and UCB$W _INIQUO. 

2. It clears the owner field, UCB$1-PID. 
3. It modifies the ORB associated with the UCB to specify the system, 

owner, group, and world format protection mask, and stores the PROMASK 

argument in ORB$W _PROT. 
4. It stores the current process's user identification code (UIC) in the ORB 

owner UIC field. 
5. It stores the maximum message size in the UCB device buffer size field. 

This value is the MAXMSG argument if the argument is specified. Other­
wise, it is the SYSGEN parameter DEFMBXMXMSG. 

6. It clears the current message count, UCB$L_DEVDEPEND. 
7. It stores the sum of the UCB size and the buffer quota in UCB$W_ 

CHARGE. 
8. If the mailbox is permanent, EXE$CREMBX sets bit UCB$V _PRMMBX 

in UCB$W _DEVSTS. 
9. If the mailbox is temporary, EXE$CREMBX takes the following steps: 

a. It sets bit UCB$V _DELMBX in UCB$W _DEVSTS. This marks the 
mailbox for deletion on the last channel deassignment. 

b. It invokes IOC$DEBIT _UCB, in module UCBCREDEL, to copy the 
master PID charged for the UCB (JIB$L_MPID) into the charge PID 
field (UCB$L_CPIDJ. 

In earlier versions of VMS, IOC$DEBIT_UCB decremented the job in­
formation block (JIB) byte count quota and byte limit fields. In VMS Ver­
sion 5, this function has been moved to EXE$DEBIT _BYTCNT _BYTLM_ 
NW, which now charges quotas while holding the JIB spinlock. 

Figure 23.3 shows the data structures associated with mailbox creation. 

$DELMBX System Service 

The $DELMBX system service marks a mailbox for deletion. Requesting 
$DELMBX to mark a temporary channel for deletion is superfluous; it can 
be deleted simply by deassigning the channel to it. The $DELMBX system 
service has only one argument: CHAN, the number of the channel assigned 
to the mailbox to be deleted. 

The $DELMBX system service procedure, EXE$DELMBX in module SYS­
MAILBX, runs in kernel mode. EXE$DELMBX .invokes IOC$VERIFYCHAN 
to verify· the channel number and get the address of the CCB. Once it has 
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Data Structures Associated with Mailbox Creation 

located the CCB, EXE$DELMBX gets the UCB address from CCB$1-UCB 
and then verifies the following: 

• That the UCB is a mailbox (DEV$V _MBX in UCB$L_DEVCHAR is set) 
• That, if the mailbox is permanent, the process has PRMMBX privilege 

If these conditions are met, EXE$DELMBX marks a permanent mail­
box for deletion by setting bit UCB$V _DELMBX in UCB$W _DEVSTS. The 
$CREMBX system service sets bit UCB$V _DELMBX for a temporary mail­
box when the mailbox UCB is created. 

The mailbox is actually deleted by IOC$DELETE_UCB, in module UCB­
CREDEL, when the reference count goes to zero (after the last channel 
assigned to it has been deassigned). Last channel processing is performed 
by IOC$LAST_CHAN, in module IOSUBNPAG. IOC$LAST _CHAN invokes 
the driver cancel 1/0 routine with an appropriate cancellation reason code. 
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The mailbox driver, MBDRIVER, in module MBDRNER, deletes the logi­
cal name, if any, as part of the last channel processing done by its cancel 
1/0 routine. !See Chapter 21 for a discussion of last channel processing and 
Section 23.5.4 for details on the mailbox driver's cancel 1/0 routine.) 

23.5 MAILBOX DRIVER 

23.5.1 

23.5.1.1 
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The following sections describe the functions of the mailbox driver, in mod­
ule MBDRNER. Note that mailboxes in MA780 multiport memory are 
supported by a separate, loadable driver, [DRIVER]MBXDRIVER, which this 
chapter does not discuss. 

MBDRIVER uses IPL$_MAILBOX, the highest fork interrupt priority level 
!IPL) as its fork IPL. It does this to prevent possible synchronization problems 
with other drivers that reference mailboxes while in their fork processes !for 
example, to send a "device is off line" message to the operator's mailbox). It 
uses the MAILBOX spinlock as both the fork lock and the device lock. 

Processing Set Mode Requests 

A process uses. the 10$_SETMODE function to request MBDRIVER to per­
form three different operations. The function modifier determines the spe­
cific operation . 

• 10$M_READATTN-Request an attention AST when a read request is 
·issued for the mailbox 

• 10$M_ WRTATTN-Request an attention AST when a write request is 
issued for the mailbox 

• 10$M_SETPROT-Set the volume protection on the mailbox 

Only one of the modifiers can be specified at one time. If no modifier is 
specified, MBDRIVER uses I0$M_ WRTATTN by default. 

AST Notification of Mailbox Read or Write Requests. When an image re­
quests a set mode function to establish either a read or a write attention AST, 
MBDRNER's set mode FDT routine, FDTSET, takes the following steps: 

1. It verifies that the process may access the mailbox. 
2. It invokes COM$SETATTNAST, in module COMDRVSUB, to allocate, 

initialize, and queue an ACB to the appropriate listhead in the mailbox 
UCB. FDTSET passes the address of the listhead, either UCB$L_MB_ W _ 
AST for write attention AST requests or UCB$1-MB_R_AST for read at­
tention AST requests. Chapter 7 provides more information on attention 
AS Ts. 

3. It acquires the MAILBOX spinlock, raising IPL to IPL$_MAILBOX, to 
synchronize access to the UCB. 

4. It determines if the notification condition is met. 



23.5.1.2 

23.5.2 

23.5 Mailbox Driver 

-If the request is for a write attention AST, there must be at least one 
message queued to the mailbox (UCB$W _MSGCNT is not equal to 
zero). 

-If the request is for a read attention AST, the UCB must be busy 
(UCB$V _BSY in UCB$W _STS is set). 

If the appropriate condition is met, FDTSET invokes COM$DELATTN­
AST, in module COMDRVSUB, to queue the attention AST to the re­
questing process. 

Otherwise, MBDRIVER later queues an attention AST to the process 
when a read or write request, as appropriate, is issued for the mailbox. 

5. FDTSET releases the MAILBOX spinlock and jumps to EXE$FINISIIlOC, 
in module SYSQIOREQ, to complete the I/O request (see Chapter 21 ). 

Specifying Access Protection of a Mailbox. When an image requests a set 
mode function to set the protection on a mailbox, FDTSET takes the follow­
ing steps: 

1. It verifies that the requesting process either has BYPASS privilege or owns 
the UCB. It examines the mailbox ORB for ownership verification. 

2. It acquires the MAILBOX spinlock, raising IPL to IPL$_MAILBOX, to 
synchronize access to the UCB. 

3. It sets the flag specifying that the standard system, owner, group, world 
protection mask is valid (ORB$M_PROT_l6 in ORB$B_FLAGS) and 
moves the P2 argument of the $QIO request to the protection mask word 
(ORB$W_PROT) of the ORB. 

4. It releases the MAILBOX spinlock and transfers control to EXE$FINISH­
IOC to complete the I/O request. 

Processing a Mailbox Write Request 

When an image requests the $QIO system service to request a mailbox write, 
MBDRIVER's write FDT routine, FDTWRITE, takes the following steps: 

1. It invokes WRITECHECKIO, in module MBDRIVER, to validate the re­
quest. The following criteria must be met: 

-The process must have write access to the mailbox as determined by 
EXE$CHKWRTACCES, in module EXSUBROUT. 

-The message size must be less than or equal to the maximum message 
size for the mailbox (UCB$W _DEVBUFSIZ). If the message size exceeds 
the maximum, the request is aborted with a completion status of SS$_ 
MBTOOSML. 

-The process must have read access to the specified buffer (from which 
the mailbox message will be read) as determined by EXE$WRITECHK, 
in module SYSQIOFDT. 
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WRITECHECKIO saves the address of the specified buffer in IRP$L_ 
MEDIA. 

2. FDTWRITE invokes EXE$ALONONPAGED, in module MEMORYALC, 
to allocate a message block from nonpaged pool. 

3. It initializes the block, as shown in Figure 23.2. 
4. It loads the message block with the data found in the specified buffer. 
5. It saves the current IPL and acquires the MAILBOX spinlock, raising IPL 

to IPL$_MAILBOX. 
6. It determines if there is enough buffer quota remaining for the message. 

If not, it releases the spinlock, restores the saved IPL, and deallocates the 
message block to nonpaged pool. It then performs one of the following 
actions: 

-If the message size is less than the total space allowed for messages 
(UCB$W _INIQUO) and resource wait mode is enabled, as it is un­
less the $QIO no-resource-wait modifier 10$M_NORSWAIT was spec­
ified, FDTWRITE transfers control to EXE$IORSNWAIT, in module 
SYSQIOFDT, to place the process into a RWMBX resource wait state. 
Chapter 12 gives details on resource waits. 

-If the message size is less than the total space allowed for messages 
and resource wait mode is disabled (the no-resource-wait modifier, 
10$M_NORSWAIT, was specified), FDTWRITE transfers control to 
EXE$ABORTIO, in module SYSQIOREQ, with a completion status of 
SS$_MBFULL. 

-If the message size is larger than UCB$W_INIQUO, FDTWRITE trans­
fers control to EXE$ABORTIO to abort the 1/0 request with a comple­
tion status of SS$_MBTOOSML. 

7. If there is enough room for the message, FDTWRITE invokes INS­
MBQUEUE, in module MBDRIVER. INSMBQUEUE takes the following 
steps: 

a. It increments the count of outstanding messages (UCB$W _MSGCNT) 
and saves a copy of the count in UCB$1-DEVDEPEND. 

b. It subtracts the size of the new message from the buffer quota field 
UCB$W _BUFQUO. 

c. If the UCB$V _BSY bit is set (if there is a read request outstanding), it 
jumps to FINISHREAD, in module MBDRIVER (see Section 23.5.3.3). 
FINISHREAD uses the message block to complete the outstanding 
read request, whose 1/0 request packet IIRPJ it locates from UCB$L_ 
IRP. 

d. If the UCB is not busy, the message block must be queued to wait for 
a read request. The message block contains the address of the write 
request IRP and the actual data. INSMBQUEUE inserts the message 
block at the tail of the message queue, as shown in Figure 23.4. 
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Queued Mailbox Messages 

e. lNSMBQUEUE transfers control to COM$DELATINAST to queue 
any write attention ASTs to the appropriate processes. 

8. FDTWRITE releases the spinlock, restoring the saved IPL. 
9. If the 10$M_NOW modifier was specified, FDTWRITE clears the saved 

lRP address field in the message block. It transfers control to EXE$FlN­
lSHIOC to record 1/0 status block (lOSB) information in the lRP and 
complete the 1/0 request through 1/0 postprocessing with a completion 
status of SS$_NORMAL. 

10. If the I0$M_NOW modifier was not specified, FDTWRITE transfers con­
trol to EXE$QIORETURN, in module SYSQIOREQ, to complete the 
$QIO system service. The processing of the write request is stalled until 
a read request is issued. 

Processing a Mailbox Read Request 

MBDRIVER processes a read request in three phases: FDT preprocessing, 
start I/O processing, and request completion. 

FDT Read Request Processing. When an image requests the $QIO system 
service to read a message from a mailbox, MBDRIVER's read FDT routine, 
FDTREAD, takes the following steps: 

1. It invokes READCHECKIO, in module MBDRIVER, to validate the re­
quest. The following criteria must be met: 
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-The process must have read access to the mailbox as determined by 
EXE$CHKRDACCES, in module EXSUBROUT. 

-The message size must be less than or equal to the maximum message 
size for the mailbox jUCB$W _DEVBUFSIZ). If the message size exceeds 
the maximum, the request is aborted with a completion status of SS$_ 
MBTOOSML. 

-The process must have write access to the specified buffer lin which the 
mailbox message will be placed) as determined by EXE$READCHK, in 
module SYSQIOFDT. 

READCHECKIO saves the address of the specified buffer in IRP$L_ 
MEDIA. 

2. FDTREAD sets the mailbox 1/0 bit in the IRP jIRP$V _MBXIO in IRP$W _ 
STS). The 1/0 postprocessing special kernel mode AST routine announces 
the availability of the mailbox resource when it processes an 1/0 request 
with the mailbox 1/0 bit set. 

3. If the 10$M_NOW modifier was not specified, FDTREAD transfers con­
trol to EXE$QIODRVPKT to queue the IRP. MBDRIVER's start 1/0 
routine does the rest of the processing of this request. 

4. If the 10$M_NOW modifier was specified, FDTREAD takes the following 
steps: 

.a. It acquires the MAILBOX spinlock, raising IPL to IPL$_MAILBOX. 
b. If any message is available jUCB$W_MSGCNT is nonzero), it trans­

fers control to EXE$QIODRVP:{{T to queue the IRP. MBDRIVER's 
start 1/0 routine does the rest of the processing of this request. 

c. If no message is available, it releases the spinlock and transfers con­
trol to EXE$FINISHIOC to complete the 1/0 operation with a final 
1/0 status of SS$_ENDOFFILE. 

Start 1/0 Read Request Processing. STARTIO, which is MBDRIVER's start 
1/0 routine, performs the following steps while holding the MAILBOX 
spinlock: 

1. It tries to dequeue a message written to the mailbox from the UCB 
listhead at UCB$L_MB_MSGQ. 

2. If the message queue is empty, it transfers control to COM$DELATTN­
AST to queue any pending read attention ASTs to the appropriate 
processes. 

The mailbox UCB busy bit remains set. As a result, subsequent read 
requests are queued to the UCB. The current read request does not com­
plete until a write request is issued. When the current read request is 
completed, STARTIO processes the next read request in the queue. 

3. If STARTIO dequeues a message, it transfers control to FINISHREAD. 
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Read Request Completion. STARTIO and INSMBQUEUE transfer control 
to FINISHREAD to complete the current read request by matching it with 
a message block built by a write request. STARTIO transfers control to 
FINISHREAD when it processes a read request and there is at least one 
message in the queue. INSMBQUEUE transfers control to FINISHREAD 
when a write request is to be queued and there is a read request waiting. 

For each request, FINISHREAD loads IOSB information into the request's 
associated IRP and passes the IRP to a routine for insertion onto the 1/0 
postprocessing queue. Since FINISHREAD matches a read request to a write 
request and each request has a unique IRP, it must handle both IRPs in this 
manner. It locates the read request's IRP from the current IRP field UCB$1-
IRP and the write request's IRP from the message block. 

FINISHREAD takes the following steps: 

1. It obtains the read request's IRP from UCB$L_IRP. 
2. It holds a message block, either a newly constructed one in the case 

of INSMBQUEUE or a dequeued one in the case of STARTIO. It stores 
the address of the message block (see Figure 23.2) in IRP$L_SVAPTE in 
the read request's IRP. The 1/0 postprocessing routine uses this field to 
determine the address of the message to be copied to the user's buffer. 
Chapter 21 provides more information on 1/0 postprocessing. 

3. FINISHREAD initializes the first two longwords in the message block 
with the values expected by the I/O postprocessing routine. The first 
longword points to the message data, stored in the message block, and 
the second longword points to the user buffer, where the data will be 
copied by the I/O completion special kernel mode AST. It obtains the 
address of the user's buffer from IRP$L_MEDIA in the read request IRP. 

4. It increases the message quota (UCB$W_BUFQUO) by the size of the 
message to reflect the delivery of this message. 

5. It creates a fork thread to declare the availability of the mailbox resource 
if bit RSN$_MAILBOX is set in SCH$1-RESMASK, indicating that a 
process is waiting for the resource, and if the mailbox fork block is 
available. 

6. It stores the final byte count in the read request IRP. 
7. It decrements the message count in UCB$W _MSGCNT and copies that 

value to UCB$1-DEVDEPEND. 
8. It obtains the write request's IRP address (or a zero) from the message 

block. If the write request specified the 10$M_NQW modifier, or if the 
message block was created by the internal routine EXE$WRTMAILBOX, 
no write request IRP exists. In these cases, FINISHREAD finds a zero in 
the message block and branches to step 11 to complete the read request 
IRP. Section 23.5.6 describes EXE$WRTMAILBOX. 

Otherwise it places the process ID (PID) of the process that issued 
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the read request in IRP$1-MEDIA + 4 so that it will become the high­
order longword of the IOSB for the write request $QIO. It stores the 
SS$_NORMAL success code in the low-order word of the IOSB IIRP$L 
MEDIA) of the write request IRP and the final byte count at IRP$L 
MEDIA+ 2. 

9. It invokes COM$POST, in module COMDRVSUB, to insert the write 
request's IRP on the I/O postprocessing queue. FINISHREAD invokes 
this routine, rather than invoking the REQCOM macro, so that another 
IRP is not dequeued !because only read request IRPs are queued to the 
UCB waiting to enter the start I/O routine). 

10. It places the PID of the process that issued the write request in Rl. If the 
internal routine EXE$WRTMAILBOX built the message block, this PID 
may be inaccurate. 

11. It stores the completion status and transfer count in RO. The completion 
status is either SS$_NORMAL or, if the message block function code is 
IO$_ WRITEOF, SS$_ENDOFFILE. 

12. To complete the read request, it invokes the REQCOM macro, which 
transfers control to IOC$REQCOM. The value in Rl becomes the high­
order longword of the read request's IOSB and the value in RO becomes 
the low-order longword. IOC$REQCOM dequeues the next request and 
the start I/O sequence is repeated. If no read request is outstanding, the 
busy bit is cleared. 

Figure 23.5 shows the data structures involved in read request completion. 

Mailbox Cancel 1/0 Routine 

The mailbox driver's cancel I/O routine, CANCELIO, performs functions 
depending on one of three cancellation reason codes: CAN$C_CANCEL, 
CAN$C_AMBXDGN, or CAN$C_DASSGN . 

• For a reason code of CAN$C_CANCEL, CANCELIO aborts the outstanding 
I/O for a particular process and channel on a mailbox unit. It then flushes 
the read and write attention AST queues (see Chapter 7) and declares the 
mailbox resource available if necessary . 

• For a reason code of CAN$C_AMBXDGN, CANCELIO tests bit UCB$V _ 
DELMBX. If it is set, CANCELIO synchronizes its access to the logical 
name table and deletes the mailbox logical name if one exists. It then 
deallocates all queued message blocks to nonpaged pool and marks the 
mailbox UCB for deletion. 

• For a reason code of CAN$C_DASSGN, CANCELIO performs all the func­
tions associated with the CAN$C_CANCEL reason code. Additionally, 
CANCELIO checks whether the mailbox's reference count has fallen to 
zero. If so, it performs all the functions associated with the CAN$C_ 
AMBXDGN reason code. 
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Mailbox Messages from Drivers 

EXE$SNDEVMSG, in module MBDRIVER, builds a device-specific mailbox 
message and inserts it onto a message queue. VMS routines like drivers 
cannot assume process context and so cannot use the $QIO system service 
to write a message to a mailbox, in particular, to the mailbox of the oper­
ator communication process (OPCOM). Such routines use EXE$SNDEVMSG 
instead. 

EXE$SNDEVMSG must be ~voked at or below mailbox fork IPL, IPL$_ 
MAILBOX. The driver provides its device UCB address, the address of a 
mailbox UCB to which to queue a message, and the type of message to 
create. 

EXE$SNDEVMSG performs the following: 

1. It acquires the MAILBOX spinlock, raising IPL to IPL$_MAILBOX. 
2. It allocates space for the message on the stack. 
3. It inserts a message code and device unit number into the message. 

System mailbox message codes are defined by the $MSGDEF macro. 
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4. It inserts the device name in the form node$controller into the message 
by invoking IOC$CVT _DEVNAM. 

5. It invokes EXE$WRTMAILBOX (see Section 23.5.6) to allocate a message 
block, complete the message, and queue it to the appropriate mailbox 
unit. 

6. EXE$SNDEVMSG cleans the stack and releases the MAILBOX spinlock 
before returning to its invoker. 

Alternative Mailbox Write Request Processing 

EXE$WRTMAILBOX performs message buffer allocation and message queu­
ing, just as FDTWRITE does. However, EXE$WRTMAILBOX executes within 
the limitations of system context. In addition, it does not reference any IRP 
fields, so it is available to driver code that bypasses the $QIO system service 
and that has no IRP to describe its mailbox 1/0 request. System routines 
such as EXE$SNDEVMSG and EXE$SNDOPR invoke EXE$WRTMAILBOX 
to complete mailbox message processing. 

EXE$WRTMAILBOX performs the following: 

1. It acquires the MAILBOX spinlock. 
2. It compares the message size to UCB$W _BUFQUO to ensure that there is 

enough remaining quota; if not, it returns the error status SS$_MBFULL. 
3. It compares the message size to UCB$W _DEVBUFSIZ to ensure that the 

message does not exceed the maximum size; if the message exceeds 
the maximum size, EXE$WRTMAILBOX returns the error status SS$_ 
MBTOOSML. 

4. It verifies that the owner protection field in the ORB allows write access 
to the mailbox; if not, EXE$WRTMAILBOX returns the error status SS$_ 
NOPRIV. 

5. EXE$WRTMAILBOX invokes EXE$ALONONPAGED to allocate a mes­
sage block from nonpaged pool. 

6. It initializes the block, as shown in Figure 23.2. However, it clears the 
message block's packet address field because no IRP is associated with the 
request. The PID is obtained from the process control block (PCB) found 
in the per-CPU database field CPU$1-CURPCB. Since EXE$WRTMAIL­
BOX might be executing in system context, this PID is not necessarily 
relevant. 

7. It copies the data to be written to the mailbox into the message block. 
8. It invokes INSMBQUEUE to insert the message onto the queue or to 

complete an outstanding read request. Section 23.5.2 describes INS­
MBQUEUE. 

9. Finally, EXE$WRTMAILBOX releases one instance of MAILBOX spin­
lock ownership and returns to its caller. 
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The VMS executive uses mailboxes in a number of different ways: 

23.6.1 

• A process establishes a termination mailbox to receive status information 
about a subprocess it creates. Chapters 25 and 28 offer more information 
on termination mailboxes . 

• A process can monitor error logging activity as it happens through the 
use of an error log mailbox. Chapter 32 describes the error log mailbox 
mechanism . 

• When a process assigns a channel to a nonshareable device, it can request 
an associated mailbox to receive device status information such as the 
arrival of unsolicited input. The description of the Assign 1/0 Channel 
($ASSIGN) system service in Chapter 21 provides more information. 

When a process spawns a subprocess through the Digital command lan-
guage (DCL), DCL establishes a termination mailbox for the spawned subpro­
cess. It also creates a mailbox to write logical names and symbol definitions 
to the subprocess and another mailbox to receive attach requests from the 
subprocess. Chapter 27 describes the use of these mailboxes in more detail. 

The sections that follow describe the use of mailboxes to communicate 
with the job controller, with OPCOM, with the audit server, and with the 
file system. 

Job Controller Mailbox Use 

Symbiont processes and the VMS executive communicate with the job con­
troller through the job controller's input mailbox, MBAl. Various modules 
in the executive pass information and requests to the job controller through 
this mailbox. System services that request information from the job con­
troller, such as Send Job Controller ($SNDJBC) and Get Queue Information 
($GETQUI), package their requests as mailbox messages. Unsolicited ter­
minal input, unsolicited card reader input, connection manager notification 
that a node has left the V AXcluster, and notification of process termination 
are all events communicated to the job controller though messages to MBAl. 

INI$DEVICE_DATABASE, in module PERMANENT _DEVICE_DATA­
BASE, stores the UCB address of MBAl into the field SYS$AR_JOBCTLMB 
during system initialization. The mailbox is defined with a reference count 
of 1, which protects it from allocation and deletion. 

The job controller's initialization routine uses the symbol SYS$C_JOB­
CTLMB, which has the value MBAl, to assign a channel to the input mail­
box. 

Before the job controller creates a symbiont process, it creates an input 
mailbox for that symbiont and obtains the new mailbox device name us­
ing the Get Device/Volume Information ($GETDVI) argument DVI$_DEVNAM. 
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Then it requests the actual Create Process ($CREPRC) system service, speci­
fying the new mailbox as the symbiont's input device and the job controller's 
input mailbox as the symbiont's output device. 

To communicate with a symbiont, the job controller routine SEND_ 
SYMBIONT _MESSAGE writes to the symbiont's mailbox. It uses the $QIO 
modifiers 10$M_NOW and 10$M_NORSWAIT so that its 1/0 operations 
complete immediately. 

Operator Communication Process Mailbox Use 

A device or process communicates with OPCOM, the operator commu­
nication process, through OPCOM's input mailbox, MBA2. INl$DEVICE_ 
DATABASE stores the address of the OPCOM mailbox's UCB in SYS$AR_ 
OPRMBX during system initialization. This mailbox is defined with a refer­
ence count of 1 and cannot be allocated or deleted. 

OPCOM's initialization routine assigns a channel to its mailbox and sets 
the mailbox protection. It posts an initial mailbox read request, specifying 
the AST procedure READ_MAILBOX, in module [OPCOM]OPCOMMAIN. 

The AST is triggered by a write to OPCOM's mailbox. The AST procedure 
allocates a work queue element, reads the OPCOM mailbox, and copies the 
data from the mailbox into the work queue element. It inserts the element 
on OPCOM's work queue, wakes the main loop, and reissues the mailbox 
read request. 

The main loop services the work queue, reading messages from it and 
servicing each based on its function code. Most messages come through 
the Send Message to Operator ($SNDOPR) system service, although device 
online/offline messages, for example, are sent through EXE$SNDEVMSG. 

Audit Server Mailbox Use 

Communication with AUDIT _SERVER, the audit server process, occurs 
via the audit server mailbox, MBA3. During system initialization, INI$DE­
VICE_DATABASE stores the UCB address of MBA3 into the field SYS$AR_ 
AUDSRVMBX. The audit server's initialization routine assigns a channel 
to this mailbox and posts an initial mailbox read request, specifying the 
AST procedure AUDSRV$QUEUE_MESSAGE, in module [AUDSRV]AUD­
SERVER. 

[CLIUTL]SETAUDIT, which implements the DCL SET AUDIT command, 
passes information and requests to the audit server through this mailbox. It 
triggers the AST by writing to the mailbox. The AST procedure allocates a 
message queue element, reads the AUDIT _SERVER mailbox, and copies the 
data from the mailbox into the message queue element. It inserts the element 
on AUDIT _SERVER's work queue, wakes the main loop, and reissues the 
mailbox read request. 
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OPCOM's initialization routine also assigns a channel to the audit server 
mailbox. While security auditing is enabled, OPCOM inserts a message 
in the audit server mailbox whenever a security alarm is generated. The 
$NSADEF macro defines the format of both the security alarm messages 
and the SET AUDIT messages. 

File System Bad Block Mailbox 

File system initialization creates a permanent mailbox named ACP$BAD­
BLOCK_MBX. This mailbox provides a path for communication with bad 
block recovery processes. 

When a driver notifies the file system (through 1/0 postprocessing) of a 
suspected bad block, the file system flags the file header. When the file 
containing the detected bad block is deleted, another file system routine 
performs further processing. It assigns a channel to the bad block mailbox, 
writes a message to the mailbox indicating the device UCB and file ID 
number, and creates a process running the image BADBLOCK. The bad 
block process assigns a channel to the mailbox and reads the message for 
instructions. See Chapter 24 for more information on bad blockprocessing. 
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Lull'd in the countless chambers of the brain, 
Our thoughts are link'd by many a hidden chain; 
Awake but one, and lo, what myriads arise! 
Each stamps its image as the other flies. 

Alexander Pope 

This chapter presents a number of miscellaneous 1/0-related topics. The first 
few sections highlight techniques used by selected device drivers, techniques 
that aid an understanding of the VMS I/O subsystem and that are not de­
scribed in the VMS Device Support Manual. No attempt is made to discuss 
each VMS device driver, nor is every feature of a particular driver described. 
For detailed descriptions of the features and capabilities provided by each 
supported device driver, see the VMS I/0 User's Reference Volume. 

Additional topics, such as bad block processing for disks, the Breakthrough 
($BRKTHRU) system service, and other informational system services, are 
covered in this chapter. 

24.1 CLASS AND PORT DRIVERS 
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VMS uses a layered approach for certain device drivers. The class driver, 
which is the functional layer, handles operations on a certain class of device, 
such as disk, tape, or terminal. The port driver, which is the communications 
layer, handles operations that depend on the protocol and hardware used to 
communicate with the actual device and controller. 

VMS class and port device drivers include the following: 

• The terminal class driver, TTDRIVER 
• Terminal port drivers, such as DZDRIVER and YIDRIVER 
• The mass storage control protocol (MSCP) disk driver, DUDRIVER 
• The tape MSCP (TMSCP) driver, TUDRIVER 
• System communication services (SCS) port drivers, such as PADRIVER and 

PUDRIVER 
• The small computer systems interface (SCSI) disk driver, DKDRIVER 
• The SCSI tape driver, MKDRIVER 
• SCSI port drivers, such as PKNDRIVER and PKSDRIVER 

In each case, the class driver is bound to a specific port driver through 
a system data structure. Through this binding, the class driver is able to 
invoke routines in the port driver in a generic fashion, and vice versa. 

For example, using the following instruction, the MSCP disk class driver 
invokes a port-specific routine to send a message over the port: 
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JMP ©PDT$L_SNDCNTMSG(R4) ;Jump to PORT routine 

In this example, the binding data structure is the port descriptor table 
(PDT), which contains pointers to port-specific routines for well-defined 
functions such as sending a message over the port. A port driver is really 
a set of port-specific subroutines for one or more class drivers. 

Both the MSCP disk class driver and the TMSCP tape class driver support 
devices that communicate using a Digital protocol known as systems com­
munication architecture (SCA). Figure 24.1 shows a conceptual diagram of 
SCA. A brief description of SCA follows in Section 24.1.1. 

SCSI disk and tape class drivers implement many of the same features as 
their MSCP counterparts; however, they use a different protocol to commu­
nicate with the controllers. SCSI drivers are not discussed in this book. 

The terminal class and port drivers differ substantially from the other 
drivers and are discussed in Section 24.2. 
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Implementation of SCA on VMS 

SCA defines a communications layer and the external interface to that layer. 
The VMS implementation of SCA is known as SCS. An SCA port driver 
implements SCS on a specific port deviCe. VMS SCA port drivers include 
the following: 

• PADRNER for the computer interconnect (CI) adapters, such as the CI780, 
CI750, BCI750, and CIBCI 

• PBDRIVER for the DEBNT, DEBNK, and TBK70 controllers 
• PUDRIVER for UNIBUS port devices, such as UDASO and TU81; Q22-bus 

port devices, such as RDS2 and TKSO; and VAXBI port devices, such as 
KDBSO 

• PEDRIVER, which implements SCA over the network interconnect (NI) 
• PIDRNER for Digital storage systems interconnect (DSSI) controllers, 

which are integrated with disks like the RF30 and RF71, and the KFQSA, 
which is the Q22-bus-to-DSSI adapter 

An SCA class driver uses SCS as a communications medium for some 
higher level functions or protocols. A class driver implements the functional 
layer and performs operations on a user-visible device without regard for the 
SCA communications tr,ansport used. 

Currently there are three protocols in the function layer that call SCS to 
communicate information: 

• DECnet-VAX, which uses SCS for communication over the CI. The CI 
driver for DECnet is CNDRIVER . 

• MSCP, a general protocol designed to describe all types of disk operation. 
It is implemented by controllers for Digital Storage Architecture (DSA) 
disks, such as the KDBSO and the HSCSO, and by the software MSCP server 
supplied with VMS. The MSCP disk class driver is DUDRIVER . 

• TMSCP, a general tape protocol designed to describe all types of tape 
operations. It is implemented by controllers for tape drives, such as the 
TA78, TU81, and TKSO. The TMS.CP class driver is TUDRNER. 

The disk class driver can communicate to an MSCP server through any 
SCA port driver. Similarly, the tape class driver can use any SCA port driver 
to communicate to a TMSCP device. The DECnet class driver uses the CI 
port driver exclusively. 

1/0 Processing 

When a user application performs I/O through a class and port driver, a 
channel must be assigned to the class driver. The application requests I/O 
operations on that channel. 

The following sequence illustrates how SCA class and port drivers com­
municate information from a process on a host system to a remote device. 
The disk class driver is used as an example. 
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1. The process on the host system requests an 1/0 operation of a class driver. 
The Queue 1/0 Request ($QIO) system service validates the 1/0 request 
·and describes it in an 1/0 request packet (lRP). The $QIO system service 
passes the IRP to the class driver. 

2. The class driver. translates portions of the IRP to an MSCP request. 
Parameters of the MSCP request include the following: 

-Unit number of the device 
-Function code, such as read or write, of the operation requested 
-Starting logical block number 
-Number of bytes to transfer 

The class driver then initializes fields in a class driver request packet 
(CDRP). A CDRP contains information necessary for SCS operations. Fig­
ure 24.2 shows the layout of a CORP. As a convenience to the $QIO/class 
driver interface, a CDRP is designed to be an extension of an IRP. 

3. The class driver then invokes SCS to transmit the MSCP request to the 
MSCP server. 

4. The SCS operations are interpreted by the port driver, which then com­
municates the 1/0 request to a remote port driver. 

5. The remote port driver communicates the request to the MSCP server. 
6. The server acts on the MSCP request and passes the 1/0 request to the 

remote application or device. 

24.2 TERMINAL DRIVER 

The VMS terminal driver is made up of one class driver and a number of 
device-specific port drivers. The terminal class driver consists of device­
independent routines for terminal 1/0 processing. A terminal port driver 
contains routines that are specific to the actual transmission and reception 
of characters on a particular type of hardware. This section presents a brief 
overview of terminal 1/0 processing. 

Note that the terminal class and port drivers do not communicate using 
the SCS protocol, nor do the terminal port devices conform to the SCA stan­
dards. The terminal class driver, TTDRIVER.EXE, contains function decision 
table (FDT) routines and other device-independent routines. The port drivers 
contain interrupt service routines and other controller-specific subroutines. 
The logical components of the terminal 1/0 subsystem are illustrated in 
Figure 24.3. 

The class and port driver images are separate, loadable images. Support for 
a new terminal controller can be added in a new port driver. The following 
port drivers are currently supplied with VMS: 

• DZDRIVER for DZl 1 and DZ32 controllers 
• YCDRIVER for DMF32 and DMZ32 controllers 
• YFDRIVER for DHUll, DHVll, DSH32, DHQll, and CX controllers 
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• YIDRIVER for DMB32 and DHB32 controllers 

Block 
transfer 
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Class 
driver 
extension 

• YEDRIVER for MicroVAX 2000 and 3100 family systems' serial lines 
• Various CPU-specific console port drivers built into SYSLOAxxx images 

(see Section 24.4) 

When the system is bootstrapped, the secondary bootstrap program, SYS­
BOOT, reads the terminal class driver image into nonpaged pool. The execu­
tive initialization routine EXE$INIT, in module INIT, creates the necessary 
linkages between the terminal class driver and the console port driver. The 
device-specific extension of a terminal unit control block (UCB) contains 
pointers to the class and port vector dispatch tables. EXE$INIT locates the 
address of the dispatch tables for the two drivers and stores them in the 
console UCB.· 
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Later in system initialization, during autoconfiguration, SYSGEN identi­
fies the terminal controllers present and loads the appropriate port drivers. 
The controller and unit initialization routines of these port drivers initialize 
the UCB extensions. 

The relations among the terminal class driver, console port driver, and the 
console UCB are shown in Figure 24.4, as an example of how the terminal 
class driver and its various port drivers are bound together. 

The SYSGEN parameter TTY_CLASSNAME is initialized with the first 
two ASCII characters of the terminal class driver name to be loaded by 
SYSBOOT. This facilitates VMS debugging of new terminal class driver 
images. If a new terminal class driver image contains errors that prevent 
the system from completing its initialization sequence, TTY_CLASSNAME 
can be set conversationally to the first two ASCII characters of an alternative 
terminal class driver image during a system reboot. 

VMS does not support user-written alternative terminal class drivers. 

Full-Duplex Operation 

The terminal driver implements partial full-duplex operation by default. 
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Full-duplex operation is based upon an alternate start 1/0 routine entry 
point to the terminal class driver. Whenever a write request is issued to 
a full-duplex terminal, the write FDT routine TTY$FDTWRITE, in mod­
ule [TTDRVR]TTYFDT, allocates and initializes a write buffer packet to 
describe the write request. It then invokes EXE$ALTQUEPKT, in module 
SYSQIOREQ, to enter the alternate start 1/0 routine of the driver. 

Normally, an FDT routine transfers to EXE$QIODRVPKT, in module 
SYSQIOREQ, to enter the driver's start 1/0 routine. EXE$QIODRVPKT tests 
whether the driver is already active for that unit. If the unit is already busy, 
EXE$QIODRVPKT queues the IRP to the UCB rather than entering the start 
1/0 routine. 

EXE$ALTQUEPKT differs from EXE$QIODRVPKT as follows: 

• It does not test the UCB busy flag. The flag may be set as the result of a 
read request in progress. Full-duplex operation means that a read request 
can be interrupted by a write request. 

• It does not clear the UCB$V _CANCEL and UCB$V _ TIMOUT bits in 
UCB$W _STS because they may be in use by the current IRP for a read 
request. 

• It does not copy the SVAPTE, BCNT, and BOFF fields from the IRP to the 
UCB because this would affect the current I/O operation. if the UCB were 
busy. 

• It enters the alternate start 1/0 routine in the driver rather than the regular 
start 1/0 routine. 

For more information on EXE$QIODRVPKT and EXE$ALTQUEPKT, see 
Chapter 22. 
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TTY$WRTSTARTIO, in module [TTDRVR]TTYSTRSTP, is the alternate 
start I/O routine entry point. It raises interrupt priority level IIPL) to device 
IPL, obtains the device spinlock to block device interrupts from the current 
I/O operation in case the device is busy, and processes the packet as follows: 

1. If a write is currently in progress, the write buffer packet is queued. 
2. If a read or a read with prompt operation is in progress but the I/O 

function modifier specifies write breakthrough IIRP$V _BREAKTHRU), 
the write is started. 

3. If a read is occurring but no read data has echoed yet, the write is started. 
4. Otherwise, the write buffer packet is queued to the UCB. 

To complete a write I/O request for full-duplex operation, the driver's 
start I/O routine exits by invoking routine COM$POST, in module COM­
DRVSUB. COM$POST places the IRP on the systemwide I/O postprocessing 
queue, requests an IPL$_IOPOST software interrupt, and returns. See Chap­
ter 4 for details on the IPL$_POST software interrupt. Note that traditional 
drivers issue the REQCOM macro to complete I/O requests. REQCOM gen­
erates a transfer to IOC$REQCOM, in module IOSUBNPAG. 

IOC$REQCOM is avoided for full-duplex write requests because it would 
attempt to initiate processing of the next IRP queued to the UCB while there 
is still an active IRP. However, all read requests and half-duplex writes are 
terminated through IOC$REQCOM, so that the next request of this type 
can be processed normally. For more information on IOC$REQCOM, see 
Chapter 22. 

In full-duplex operation, the device can expect more than one interrupt 
at a time, one for a read request and one for a write request. Therefore, 
two fork program counters IPCs) must be stored. A traditional driver expects 
only one interrupt at a time and stores the fork PC in UCB$LFPC. The 
terminal driver stores more than one fork PC by altering the value of RS, 
which normally points to the, UCB, to point to the write buffer packet or the 
IRP before invoking the FORK macro. 

A fork block is thereby formed in the write buffer packet or in the IRP. 
The fork block in the UCB is not used for read or write requests, although 
it is used at other times, for example, when a type-ahead buffer is allocated 
or when unsolicited input is being handled. 

The technique of altering RS before forking can be copied by any driver to 
allow more than one outstanding interrupt for a particular device. Any num­
ber of outstanding I/O requests could be handled by a driver entered at the 
alternate start I/O routine entry point. The driver, however, must be able to 
distinguish which interrupt is associated with which fork block and synchro­
nize I/O operations. Such a driver might maintain queues for outstanding I/O 
requests and operate almost exclusively at device IPL, as the terminal port 
drivers do, blocking out device interrupts to achieve synchronization with 
multiple I/O request processing. 
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Channels and Terminal Controllers 

The VMS terminal port drivers do not need to synchronize access to a 
terminal cpntroller using the channel mechanism. Therefore, the terminal 
driver never requests or releases a controller channel with the REQCHAN 
and RELCHAN macros. The VMS Device Support Manual documents the 
use of these macros by traditional device drivers for arbitrating access to the 
controller. The locations normally used in the channel request block (CRB) 
as the controller wait queue for arbitrating fork processes are redefined and 
contain modem control status information. 

Type-Ahead Buffer 

TTDRIVER allocates a type-ahead buffer from nonpaged pool for each termi­
nal device. Every character typed on the terminal is placed into this buffer 
whether a read request is active or not, unless the terminal is set pasthru 
and a read request is active. This ensures that characters typed at a terminal 
are not lost even if there is no application at the moment to read them. 

The size of the type-ahead buffer is usually specified by the SYSGEN 
parameter TTY_TYPAHDSZ. This is the systemwide default and applies to 
all terminals that do not have the TT2$V _ALTYPEAHD characteristic. If 
the terminal has the characteristic TT2$V _ALTYPEAHD, then the SYSGEN 
parameter TTY_ALTYPAHD specifies the type-ahead buffer size. 

If the terminal is in host-synchronous mode when the buffer is within eight 
characters of being full, the driver sends an XOFF character to the terminal 
to tell it to stop sending data. If the terminal has the alternative size type­
ahead buffer, the SYSGEN parameter TTY _ALTALARM is the threshold for 
determining when to send an XOFF. When the buffer is emptied, the driver 
sends an XON character to the terminal to tell it to start sending data. This 
technique prevents loss of characters during block 1/0 transmission from 
high-speed terminals. 

Virtual Terminal Support 

A process that is associated with a virtual terminal device rather than a phys­
ical terminal may freely break and reestablish its connection to the virtual 
terminal. A virtual terminal device is associated with a physical terminal by 
the terminal driver upon process login. The connection between a physical 
terminal and the virtual terminal may be broken by a line disconnect caused 
by modem signals or broken local area terminal (LAT) server communica­
tion, or by the Digital command language (DCL) DISCONNECT command. 
This section explains how the terminal driver implements virtual terminal 
support. 

When a terminal device that is not associated with any process receives 
unsolicited input, TTDRIVER forks to invoke the routine UNSOL, in module 
[TTDRVR]TTYSUB. UNSOL notifies the job controller of such an occurrence 
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by sending a message to the job controller's permanent mailbox. The message 
contains the unsolicited data and the name of the terminal device. The name 
of the device can be that of the physical device or that of a virtual terminal, 
which is created by UNSOL. 

If the terminal that received unsolicited data has the TT2$V_DISCON­
NECT characteristic and if the device VTAO exists on the system, UNSOL 
invokes CLONE_UCB, in module [TTDRVR]TTYSUB, to create a virtual 
device corresponding to the physical terminal. 

CLONE_UCB clones the UCB for the virtual device from the UCB for 
VTAO. The virtual device is called VTAn, where n is the unit number. 
The virtual device UCB has a pointer, UCB$L_ TLPHYUCB, to the physical 
device's UCB. Similarly, the physical device's UCB has a pointer, UCB$L_ 
TT _LOGUCB, to the virtual device's UCB. 

UNSOL then passes the terminal device UCB to the job controller along 
with the unsolicited data notification. 

When the job controller receives notification of unsolicited data on an 
unowned terminal, it creates a detached process running LOGINOUT.EXE, 
which begins a login session at the specified terminal. For more information 
on process creation by the job controller, see Chapter 25. 

FDT routines in TTDRIVER operate on the terminal UCB regardless of 
whether it is a physical terminal or a virtual terminal. For a virtual terminal 
in a disconnected state, TTDRIVER queues any 1/0 requests to the UCB. 

TTDRIVER's start 1/0 routine gets the physical device's UCB from offset 
UCB$L_ TL_PHYUCB in the device UCB on which it operates. For a physical 
terminal, UCB$L_ TLPHYUCB points to itself (that is, the physical termi­
nal's UCB). TTDRIVER's alternate start 1/0 routine operates in the same 
manner. 

Local Area Terminal Server Support 

Support fpr a LAT server such as the LATl 1 is implemented in the framework 
of the same terminal port/class driver model. The terminal driver treats 
a LAT device as a physical terminal device. A LAT device has a name of 
the form LTAn, where n is the unit number. LTDRIVER, the driver for 
LAT terminal ports, interacts with TTDRIVER through the terminal driver 
port/class interface. 

Remote Terminals 

DECnet-VAX allows users to log in on a remote VMS system and perform 
operations on that remote system just as they would at the local system. 
The communication from the remote system to the controlling terminal is 
performed through a pseudo device on the remote system called a remote 
terminal. The driver for remote terminals is CTDRIVER.EXE. 
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Note that while DECnet-VAX can communicate with other Digital operat­
ing systems running DECnet, the focus of this discussion is on DECnet com­
munication between two VAX systems running VMS Version 4 or a later ver­
sion. If the remote VAX system is running a version of VMS prior to Version 
4, a different protocol and a remote terminal driver named RITDRIVER.EXE 
are used. 

In addition to DECnet, three images are required to support remote ter­
minals: the local system uses the image RTPAD.EXE; the remote system 
uses the images REMACP.EXE and CTDRIVER.EXE. REMACP.EXE is cre­
ated from modules in facility [REM]. CTDRIVER.EXE and RTPAD.EXE are 
created from modules in facility [RTPAD]. 

The following list describes the sequence by which a user on a local system 
logs in on a remote system: 

1. When a user on a local system issues the DCL command SET HOST, 
DCL runs the image RTPAD.EXE. 

2. RTPAD uses DECnet-VAX to request a connection to a network object 
on the specified node. On a remote system running the VMS operating 
system, the object is REMACP. 

3. The image REMACP, running on the remote system, creates a UCB for 
the remote terminal device whose name is of the form RTAn, where n 
is the unit number. 

4. REMACP links the UCB into the driver tables by invoking CTDRIVER 
at its unsolicited input entry point. 

5. REMACP returns information about the remote system to RTPAD. 
6. RTPAD has routines for communicating with a number of different 

Digital operating systems, including RSTS/E, RSX-llM, TOPS-20, and 
VMS. Using the information returned from REMACP, RTPAD deter­
mines which operating system is communicating with the local system. 
On a remote system running VMS Version 4 or later, REMACP sends 
unsolicited data to CTDRIVER; sending this data to CTDRIVER is equiv­
alent to pressing the RETURN key on a terminal that is not logged in. 

7. CTDRIVER sends a message to the job controller's mailbox, located 
through the global location SYS$AR_JOBCTLMB, indicating that an un­
solicited interrupt was received from the remote terminal. 

8. The job controller creates a detached process running LOGINOUT on 
terminal RTAn. The user may now log in to the remote system. 

RTPAD converts all 1/0 requests on the user's local terminal to messages 
it sends over the DECnet link. CTDRIVER does the same for all 1/0 requests 
on the remote terminal. The protocol for the exchange of messages between 
RTPAD and CTDRIVER is proprietary to Digital. 

When the user logs off from the remote system, REMACP deletes the 
remote terminal UCB. 
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24.3.2 

VMS supports a number of virtual devices, also called pseudo devices: 

• Null device, NL: 
• Network device, NET: 
• Virtual terminal devices, VTAn: 
• Remote terminal devices, RTCn: 
• Mailboxes, MBAn: 

where C is the controller designation and n is the unit number. 
A user can assign a channel to one of these devices and issue 1/0 re­

quests just as though it were a real device. Chapter 23 discusses mailboxes. 
Section 24.2 discusses remote terminals and virtual terminals. The follow­
ing sections highlight some features of the device drivers for other pseudo 
devices. 

Null Device Driver 

The null device driver, NLDRIVER, is assembled and linked with the exec­
utive image SYSDEVICE.EXE. It is a simple driver, consisting of two FDT 
routines, one to complete read requests and one to complete write requests. 
The read FDT routine responds to read requests by returning the status SS$_ 
ENDOFFILE. The write FDT routine responds to write requests by return­
ing the status SS$_NORMAL. No data is transferred, nor are any privilege 
or quota checks made. 

Network Device Driver 

The network device (NET:) is best viewed as a mechanism for DECnet­
VAX users to access network functions. An image requests the Assign 1/0 
Channel ($ASSIGN) system service to assign a channel to the NET: device. 
EXE$ASSIGN, its system service procedure in module SYSASSIGN, clones 
a network UCB from the NETO: template device. EXE$ASSIGN gives this 
UCB a new unit number to produce a unique device name, such as NETlOO. 
The channel assigned points to the newly created UCB. This channel can 
then be used to perform access, control, and other 1/0 operations on the 
network. When the image deassigns the last channel to the network UCB, 
the UCB is deleted. Chapter 21 describes EXE$ASSIGN in more detail. 

The following images are used for network communication: 

• The network device driver, NETDRIVER 
• The network ancillary control process, NETACP 
• Network communication device drivers 

NETDRIVER creates links to other systems, performs routing and switch­
ing functions, breaks user messages into manageable pieces for transmis-
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sion, and reassembles the messages on reception. An appropriate communi­
cation device driver performs the actual 1/0 operations. Examples include 
XEDRIVER, which does network communication over the DEUNA/DELUA 
UNIBUS network adapters, and ETDRIVER, which does network communi­
cation over the DEBNT/DEBNI VAXBI network adapters. 

NETACP performs the following tasks: 

• Creates processes to accept inbound connects 
• Parses network control blocks and supplies defaults when a user issues an 

10$_ACCESS function code to create a logical link 
• Transmits and receives routing messages to maintain a picture of the 

network 
• Maintains the volatile network database 

NETDRIVER and other communication drivers support two 1/0 request 
interfaces: $QIOs and internal IRPs. 

• The $QIO interface is standard and works as it would for any VMS driver. 
• Internal IRPs are built by kernel mode modules, such as other device 

drivers, and passed to the driver's alternate start 1/0 interface. This mech­
anism avoids the overhead of the $QIO system service procedure, which 
performs a number of validation checks that are considered unnecessary 
at this interface level. 

For example, CTDRIVER, the remote terminal driver, uses the NET­
DRIVER internal IRP interface in communication across the network. 
NETDRIVER uses the internal IRP interface to pass 1/0 requests to lower 
level device drivers, such as ETDRIVER or XQDRIVER. 

Figure 24.5 illustrates some network 1/0 functions. For more information 
on DECnet, see the VMS Networking Manual and the VMS Network Control 
Program Manual. 
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The console subsystem is the portion of the processor that initiates a boot­
strap operation and permits microdiagnostics to execute. The details of the 
console subsystem are not specified by the VAX architecture, but are CPU­
specific. 

Some console features are common to most VAX systems. On these sys­
tems, there are at least four internal processor registers for communication 
with a console terminal. Table 24.1 lists these registers. On some systems, 
these registers also communicate with a console block storage device; on 
others there are additional registers. 

Chapter 30 contains more details about the console subsystem of each 
VAX system. 
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Table 24.1 VAX Console Processor Registers 

Register Name 

PR$_RXCS 
PR$_RXDB 
PR$_TXCS 
PR$_TXDB 

Use 
Console receive control and status register 
Console receive data buffer register 
Console transmit control and status register 
Console transmit data buffer register 

Data Transfer Between the VAX CPU and Console Devices 

Data is transferred to and from console devices through internal processor 
registers and, on certain systems, device registers in 1/0 space. No direct 
memory transfer is made between a VAX CPU and any console device. 

The internal processor registers PR$_ TXCS and PR$_RXCS are used for 
control and status information such as enabling interrupts and indicating 
that a device is ready. The other two internal processor registers, PR$_ 
RXDB and PR$_ TXDB, transfer data. For information about other CPU­
specific internal processor registers that communicate with console devices, 
see the CPU-specific hardware documentation. The TX.xx registers are used 
for transmit operations (with respect to the VAX CPU), while the RX.xx 
registers are used for receive operations. 

Most other device drivers treat device registers as if they were memory 
locations, using MOVB, MOVW, or MOVL instructions to read or write data in 
those registers. In the case of the console, the MTPR and MFPR instructions 
must be used to transmit and receive data, control, and status information. 

689 



Miscellaneous 1/0 Topics 

Table 24.2 Special Uses of the Console PR$_TXDB Register 

Register 
Contents 

FOl 

F02 

F03 

F04 

24.4.2 

24.4.2.1 

690 

Meaning 

Software done 

Reboot the CPU 

Clear warm-start flag 

Clear cold-start flag 

Comments 
This value notifies the console program that 

a program started by means of a console 
command file has completed successfully. 

This value is written to request a system reboot 
from the default boot device. 

This flag is maintained to prevent nested restart 
attempts. 

This flag is maintained to prevent nested 
bootstrap attempts. 

For example, the following instructions on the VAX-11/780 transmit and 
receive data: 

MTPR 
MFPR 

data,#PR$_TXDB 
#PR$_RXDB,data 

; Transmit data 
;Receive data 

The data is sent or received as a longword, with bits (7:0) containing the 
ASCII character and bits (11:8) identifying which console device (terminal 
or block storage device) is sending or receiving the data. 

On some VAX systems, the distinction between devices is made by choice 
of register instead of by including a device code in a data buffer register. Note 
that all data is passed a character at a time, even to the block storage device. 

The VAX architecture specifies that the PR$_ TXDB register is also used 
for passing a message from code executing VAX instructions to the console 
subsystem. Some special uses of this register are listed in Table 24.2. Some 
VAX systems support additional uses. 

Console Interrupt Dispatching 

As the previous discussion of processor registers indicates, the terminal 
and console block storage device are treated slightly differently. On some 
systems, the block storage device has its own control registers and interrupt 
vectors. On others, the two devices are handled more as a single entity, with 
common routines distinguishing terminal operations from console block 
storage operations. 

Console Terminal Interrupts. When the system is bootstrapped, the sys­
tem control block (SCB) is initialized from the SCB template in module 
[SYS]SCBVECTOR. The vectors at offsets F816 and FC16 dispatch to con­
sole interrupt service routines (ISRs), CON$INTDISI for console input and 
CON$INTDISO for console output, both in module [SYS]PERMANENT _ 
DEVICE_DATABASE. 
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Both routines respond to an interrupt by saving registers RO through RS 
and transferring control to a console driver routine in the CPU-specific 
image SYSLOAxxx. Appendix G contains a list of VAX systems and their 
xxx designations. CON$INTINP is the routine invoked for console input, 
and CON$INTOUT is the routine invoked for console output. For many 
systems, these routines are in module [SYSLOA]OPDRIVER; on others, the 
console driver modules have names of the form OPDRVxxx. 

Reading the data and console device identification from the PR$_RXDB 
register, CON$INTINP determines whether the interrupt was from the con­
sole terminal or block storage device. If the interrupt was from the console 
terminal, then CON$INTINP reads the character using the terminal driver's 
character buffering routine, whose address is stored in the console terminal 
UCB. CON$INTINP also echoes the character back to the console terminal 
by placing it in the PR$_ TXDB register. 

Routine CON$INTOUT transmits data to the console through the PR$_ 
TXDB register and determines whether the resulting interrupt is from the 
console terminal or the console block storage device. If the interrupt was 
caused by the terminal, then CON$INTOUT invokes the terminal driver's 
character output routine, whose address is stored in the console terminal 
UCB. 

Note that the handling of console terminal I/O is done by the normal 
terminal driver routines. Only the initial fielding of interrupts and the device 
registers that are read or written distinguish console terminal I/O from 
operations through the regular terminal subsystem. 

Figure 24.4 shows how the console terminal UCB binds the terminal class 
driver and the console port driver. 

Console Block Storage Device 1/0. The device driver and associated database 
for the console block storage device are not loaded until an explicit CON­
NECT CONSOLE command is issued to SYSGEN. At that time, the device 
driver and data structures appropriate to the specific system are loaded into 
memory and initialized. 

A SYSGEN CONNECT CONSOLE command on a VAX-11/730 or VAX-
11/750 causes DDDRIVER, the TU58 driver, to be loaded. Data structures 
for a device called CSAl are built. On the VAX-11/730, a UCB for CSA2 is 
also created. In addition, two dedicated vectors in the SCB, at offsets F016 

and F416, are loaded to point to interrupt dispatch code contained in the 
console device CRB. 

DDDRIVER responds to console TU58 interrupts in exactly the same way 
it responds to interrupts generated by a TU58 on the UNIBUS. The only 
difference between the two interrupts is the device IPL at which each is 
dispatched. On a VAX-11/750, a console TU58 interrupt occurs at IPL 23, 
while UNIBUS TU58 interrupts and VAX-11/730 console TU58 interrupts 
occur at IPL 20. 
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A SYSGEN CONNECT CONSOLE command on a VAX-11/780 causes 
DXDRIVER, the console floppy disk driver, to be loaded and data structures 
for device CSAl to be built. Because the console floppy interrupts through 
the same vectors used by the console terminal, no further SCB modification 
is required. 

When a console interrupt occurs, CON$INTINP determines whether the 
interrupt is from the console terminal or from the block storage device. If the 
interrupt is from the block storage device, the console has been connected 
(a UCB exists for device CSAl ), and the interrupt was expected, then the 
driver context is restored from the UCB and the driver process is resumed at 
the saved PC (UCB$LFPC). Otherwise, the interrupt is considered spurious 
and is simply dismissed. 

In response to the CONNECT CONSOLE command on a VAX 8600 or 
VAX 8650, SYSGEN loads the console RL02 driver, CVDRIVER, and builds 
data structures for CSAl. The SCB vector at offset F016 is initialized to point 
to interrupt dispatching code in the console CRB. 

The VAX 8800 family is similar to the VAX 8600, except that the console 
block storage driver name is CWDRIVER and there are three block storage 
units. On the VAX 8200 and VAX 8300, the console block storage device is 
an RXSO and its driver is RXDRIVER. 

Double Mapping of Buffer Pages. One notable feature of the console block 
storage device drivers is that they double-map a page in the user's data buffer 
into system address space so that data can be transferred directly to and from 
the user's buffer. Such a driver identifies its need for a reserved system page 
table entry to double-map a buffer by setting the DPT$V _SVP bit in the 
FLAGS argument of the DPTAB macro. 

A user buffer page is not normally accessible to a driver routine running 
in system context, which cannot access process address space. By double 
mapping a buffer page as a system page, the driver can access the entire user 
buffer, one page at a time. 

By making the user buffer accessible through system virtual addresses, a 
console block storage driver can implement VMS direct 1/0, even though its 
device cannot perform direct memory access (DMA). Use of VMS direct 1/0 
enables a console block storage driver to support virtual 1/0 requests, use 
VMS-supplied FDT routines, and use the virtual 1/0 postprocessing routines. 

BAD BLOCK PROCESSING ON DISKS 

Static Bad Block Handling 

A non-DSA disk is typically tested to detect bad blocks before the disk is 
put into use. The bad blocks are allocated to a special file, [OOOOOO]BAD-
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BLK.SYS, so that they cannot be allocated to user files. This is known as 
static bad block handling. As the disk is used, additional blocks may become 
bad. Dynamic bad block handling deals with those blocks. 

Dynamic Bad Block Handling 

Dynamic bad block handling is a cooperative effort among driver FDT rou­
tines, I/O postprocessing, and the Files-11 Extended QIO Processor (XQP). 
FDT routines for IO$_READVBLK and IO$_ WRITEVBLK construct an IRP 
and set the IRP$V _VIRTUAL bit in IRP$W _STS. When the I/O postprocess­
ing routine, in module IOCIOPOST, discovers a transfer error on a virtual 
I/O function, it routes the IRP to the XQP. 

The XQP, using information in the IRP, calculates the bad block address 
and stores that information in the file [OOOOOO]BADLOG.SYS. This file con­
tains a list identifying suspected bad blocks on the volume that are not 
currently contained in the volume's bad block file. In addition, the XQP sets 
a bit in the file control block to indicate the presence of a bad block. When 
the file is closed, an equivalent bit is set in the file's header on disk. 

When such a file is deleted, the XQP creates a process running the image 
BADBLOCK.EXE to diagnose the file. It writes worst-case test patterns over 
the blocks of the file and reads them back, comparing the data to the orig­
inal pattern. If a bad block is found, the image uses privileged file system 
functions to allocate the disk cluster containing the block to the bad block 
file [OOOOOO]BADBLK.SYS; 1. (The smallest unit of file system allocation is 
the disk cluster.) In addition, the entry in the [OOOOOO]BADLOG.SYS file that 
describes this bad block is removed. 

Note that a dynamic bad block is not discovered until it is already part of 
a file and is not allocated to the bad block file until that file is deleted. When 
a bad block is discovered while writing a file, the bad block information is 
recorded. A bit is set in the file control block (FCB) for the file, and an error 
indication is returned to the requesting process. 

Dynamic bad block handling is restricted to virtual I/O functions (that is, 
file I/O). Processes performing logical or physical I/O functions must provide 
their own bad block handling. 

Bad Block Replacement on DSA Disks 

Dynamic bad block handling is performed only for non-DSA disks. 
A DSA disk maintains a given set of logical block numbers (LBNs) regard­

less of bad blocks. It maintains a number of spare blocks that are used as 
replacement blocks for LBNs that are detected to be bad. If the disk controller 
detects that a given LBN has a nonrecoverable error, it initiates a procedure 
known as bad block replacement (BBR). BBR remaps the bad LBN to a good 
replacement block. 
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Some controllers, such as the UDASO and the KDBSO, require host assis­
tance for BBR. Others, such as the HSCSO, are capable of performing BBR 
without assistance. 

A forced error flag is associated with each block on a DSA disk. When 
a read operation to a DSA disk block results in a nonrecoverable error, the 
block is reassigned to a replacement block on the disk and the forced error 
flag for this block is set. The forced error flag is a signal that the data in the 
block is questionable. When a block with this flag set is read, the status SS$_ 
FORCEDERROR is returned by the driver to the image that requested the 
1/0 operation. A subsequent successful write to the block clears the forced 
error flag. 

Note that it is possible to have blocks assigned to (OOOOOO]BADBLK.SYS;l 
on a DSA disk. This happens, for example, when the disk size in blocks 
is odd, and the disk cluster size is even. (The cluster size of a disk is the 
minimum unit of allocation on a disk in blocks and is specified by the DCL 
command INITIALIZE/CLUSTER_SIZE.) In that case, one or more of the 
last blocks on the disk become unusable. 

Bad Block Replacement on SCSI Disks 

The SCSI disk class driver (DKDRIVER) performs bad block replacement for 
SCSI disks. However, there is no forced error flag associated with SCSI disk 
blocks. 

When a read operation to a SCSI disk results in a nonrecoverable error, 
the SCSI disk class driver returns the status SS$_PARITY to the requestor 
of the 1/0 operation. BBR does not occur for this block. This is because BBR 
at this point would result in undetected user data corruption, since there is 
no forced error flag associated with SCSI disk blocks. 

The file system then performs the same bad block processing discussed in 
Section 24.5.2. 
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The $BRKTHRU system service sends a specified message to one or more 
terminals. All its eleven arguments except MSGBUF are optional. 

• The number of the event flag to be set when the message has been written 
to the specified terminals, EFN 

• The message buffer containing the text to be written, MSGBUF 

• The name of the terminal or user name to which to send the text, SENDTO 

• The type of terminal to which to send the message, SNDTYP 

• The address of an 1/0 status block (IOSB) that will receive the I/O com­
pletion status of the $BRKTHRU system service, rosB 

• The carriage control to be used with the message, CARCON 

• Options for the $BRKTHRU system service, FLAGS 
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• The class requestor identification, which identifies the application or im­
age that is. requesting the $BRKTHRU system service, REQID 

• The number of seconds that must elapse before an attempted write by the 
$BRKTHRU system service is considered to have failed, TIMOUT 

• The address of the AST procedure to be executed after the message has 
been sent to the specified terminals, ASTADR 

• The AST parameter to be passed to the AST procedure specified by the 
ASTADR argument, ASTPRM 

The $BRKTHRU system service procedure, EXE$BRKTHRU in module 
SYSBRKTHR, runs in kernel mode. Its processing consists of three major 
steps: 

1. It allocates and initializes a breakthrough message,,descriptor block (BRK) 
for the request and stores the formatted message in the BRK, as discussed 
in Section 24.6.1. Figure 24.6 shows the format of a BRK. 

2. It initiates a write to a given terminal, as discussed in Section 24.6.2. 
3. It responds to the completion of a given write, as discussed in Sec­

tion 24.6.3. 

EXE$BRKTHRU sends two types of messages: the unformatted, user­
specified message and the screen message. The screen message is a formatted 
version of the user-specified message that is sent to video terminals. It con­
sists of the followingfields, which are mainly escape sequences that envelop 
the message: 

• Escape sequences tp save the cursor's position and attributes, position it 
in column 1 of the correct line, and erase to the end of the line . 

• One escape sequen<,:e for every line to be erased. The number of lines to 
be erased is specifie<,l by the low byte of the FLAGS argument . 

• The text specified bx the MSGBUF argument. 
• An escape sequence to restore the cursor position and attributes. 

Initial Processing 

EXE$BRKTHRU begili:S by clearing the event flag specified by the EFN argu­
ment. Since the EFN argument is passed by value, it defaults to zero. If an 
IOSB is specified, ExE$BRKTHRU verifies that the caller has write access 
to it and clears it. ~:. 

It verifies the acce~ibility of the message buffer specified by the MSGBUF 

argument. ;;4,•.:· 

It computes the si~:of the BRK needed for the request as the sum of the 
following items, roumled up to an integral number of longwords: 

;/:~-

• The basic size IBRK$C_LENGTH) of the BRK 
• Space for the name.~. the terminal to which to send the mailbox message 

(16 bytes) 
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t OUTCNT 

I-

SECONDS 

PRIVS 

DEVNAME 
(16 bytes) 
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TRMMSG 
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CHAN _ 

~-------~ 

Figure 24.6 
Layout of a Breakthrough Message Descriptor Block 

• The size of the unformatted message 
• Space for the screen message (208 bytes plus the size of the unformatted 

message) 
• Space for four $QIO context areas · 
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Table 24.3 Meanings of the SNDTYP and SENDTO Arguments 

SNDTYP 

BRK$C_USERNAME 
BRK$C_DEVICE 
BRK$C_ALLUSERS 
BRK$c_ALLTERMS 

SNDTO 

User name 
Device name 

Comments 
Send message to a single user 
Send message to a specific device 
Send message to all users 
Send message to all devices 

It allocates space from the process allocation region in Pl space for the 
BRK and initializes it as follows: 

1. It clears the BRK from BRK$Q_PRIVS up to BRK$T _MSGBUF. 
2. It stores the size of the BRK ih BRK$W _SIZE. 
3. It locks the entire BRK structure in the process's working set through 

the Lock Pages in Working Set ($LKWSETJ system service. 
4. It stores the address of the $QIO context area in BRK$1-QIOCTX. 
5. It stores the length of the screen message in BRK$1-SCRMSGLEN. 
6. It stores the address of the requestor's PCB in BRK$L_PCB. 
7. It stores the address of the IOSB in BRK$1-IOSB. 
8. It stores the length of the unformatted message in BRK$W _MSGLEN and 

copies the unformatted message text to the buffer starting at BRK$T _ 
MSGBUF. 

9. It stores the address of the first byte after the message in BRK$1-
SCRMSG. It will store the screen message at this address. 

10. It validates the SNDTYP argument. 
11. It sets up the BRK to reflect the SNDTYP and SENDTO arguments. Table 24.3 

explains the meanings of these arguments. 

-If the SNDTYP argument is BRK$C_USERNAME or BRK$C_DEVICE, 
EXE$BRKTHRU invokes EXE$PROBER_DSC, in module [SYS]EXSUB­
ROUT, to verify the accessibility of the user name or device specified 
by the SENDTO argument. 

-If the SNDTYP argument is BRK$C_USERNAME, it copies the SENDTO 

argument to BRK$T _SENDNAME and compares it with the current 
user name. If the two names are equal, it has completed this step. If 
they are not equal, it verifies that the process has OPER privilege. 

-If the SNDTYP argument is BRK$C_DEVICE, EXE$BRKTHRU requ~sts 
the Get Device/Volume Information ($GETDVIJ system service to get 
the physical name of the device. EXE$BRKTHRU copl.es the name 
returned to BRK$T _DEVNAM and sets BRK$V _CHKPRV in BRK$B_ 
STS to indicate that it should check the process's privilege to send to 
the specified device at a later step. 

-If the SNDTYP argument is either. BRK$C_AlLUSERS or BRK$C_ALL­
TERMS, EXE$BRKTHRU verifies that the process has OPER privilege. 
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12. If the TIMOUT argument was specified, EXE$BRKTHRU ensures that it is 
at least BRK_C_MINTIME (4 seconds). It converts the argument to clock 
ticks and stores the resulting quadword in BRK$Q_ TIMEOUT. 

13. It stores the default VAXcluster timeout value BRK_C_CLUTIMEOUT 
(15 seconds) in BRK$W_SECONDS. 

14. EXE$BRKTHRU determines if the sender has BYPASS and SHARE priv­
ileges. This is to check if the sender has access to the target terminal. 
Even if the sender does not have either of these privileges, it is suffi­
cient for the sender to have the OPER and WORLD privileges to use the 
$BRKTHRU system service. For a sender that does not have either or 
both of the BYPASS and SHARE privileges, EXE$BRKTHRU will later 
temporarily enable these privileges (see Section 24.6.2.4). 

In this step, EXE$BRKTHRU stores a privilege mask in BRK$Q_PRIVS. 
The mask has at most two bits, those corresponding to the BYPASS and 
SHARE privileges, set. The mask specifies which of the two privileges 
the process does not already have. 

15. It copies the remaining $BRKTHRU arguments to the BRK. 
16. It verifies that the REQID argument is less than or equal to 63. 
17. It stores the success status SS$_NORMAL in BRK$W_STATUS. 
18. It stores the mailbox prefix code MSG$_ TRMBRDCST in BRK$W _ TRM­

MSG. Note that the BRK contains a mailbox message in fields BRK$W _ 
TRMMSG through the end of the unformatted message stored at BRK$T _ 
MSGBUF. 

19. It stores the access mode from which the $BRKTHRU service was re­
quested in BRK$B_PRVMODE. 

20. It stores -1 in BRK$LPIDCTX. This is the wildcard PIO that will be 
passed as an argument to the Get Job/Process Information ($GETJPI) 
system service later. 

21. It requests the Formatted ASCII Output ($FAO) system service to for­
mat the message. $FAO stores the length of the screen message in 
BRK$LSCRMSGLEN and the screen message at the address in BRK$L_ 
SCRMSG. At this point, the BRK contains the unformatted message 
starting at BRK$T_MSGBUF and the screen message immediately fol­
lowing it. BRK$L_SCRMSGLEN and BRK$L_SCRMSG constitute a de­
scriptor for the screen message. 

EXE$BRKTHRU is now ready to commence sending messages. It does so 
in the following steps: 

1. It requests the Set AST Enable ($SETAST) system service to disable 
delivery of kernel mode ASTs. This is necessary to prevent image exit 
before the CCB$V _IMGTMP bit is set in the CCB of the channel through 
which EXE$BRKTHRU will write to a terminal. A channel with this bit 
set will be deassigned upon image exit, if it is not already deassigned, by 
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the image rundown procedure (see Section 24.6.2.4). 
2. It attempts to initiate BRK_C_SIMULCAST (four) message writes, as 

discussed in Section 24.6.2. 
3. If the system is a VAXcluster member and the BRK$V _CLUSTER flag was 

specified in the $BRKTHRU request, EXE$BRKTHRU invokes EXE$CSP _ 
BRKTHRU, in module [SYSLOA]CSPCLIENT, to send a clusterwide 
process services (CWPS) message to all other nodes in the VAXclus­
ter system. The CLUSTER_SERVER process on each of the other nodes 
responds to such a message by invoking CSP$BRKTHRU, in module 
[SYSLOA]CSPBRKTHR. CSP$BRKTHRU requests the $BRKTHRU sys­
tem service to broadcast the message on that system. Chapter 13 provides 
more information on this mechanism. 

4. It checks if all writes have been completed. If so, it deallocates the BRK. 
The specific steps it takes are discussed in Section 24.6.3.3. 

5. It requests the $SETAST system service to reenable kernel mode AST 
delivery. 

The asynchronous form of the system service, $BRKTHRU, returns to 
its requestor. Its requestor can either wait for 1/0 completion or continue 
processing. The synchronous form of the system service, $BRKTHRUW, 
waits for the event flag associated with the request to be set and status 
to be returned. See Chapter 6 for more information concerning synchronous 
and asynchronous system services. 

Writing the Breakthrough Message 

EXE$BRKTHRU takes two major steps when it attempts to initiate writing 
a message: selecting the next terminal to which to write, and starting the 
actual 1/0 operation. If it does not find a terminal to which to write, it 
skips the second of these. Each time it finds an acceptable terminal UCB, it 
initiates a write. 

The steps EXE$BRKTHRU takes to find the next terminal depend upon 
the SNDTYP argument. 

Finding a Specific Terminal. If the SNDTYP argument was BRK$C_DEVICE, 
EXE$BRKTHRU has already found the terminal when it requested the $GET­
DVI system service to initialize the BRK. All that it does now is set BRK$V _ 
DONE in BRK$B_STS. 

Finding All Terminals for a Specific User. If the SNDTYP argument was 
BRK$C_USERNAME, EXE$BRKTHRU must find all terminals on which the 
given user is logged in. It accomplishes this by finding all processes belonging 
to that user and the terminal, if any, associated with each of those processes. 
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EXE$BRKTHRU requests the $GETJPI system service to perform a wild­
card operation. The VMS System Services Reference Manual provides details 
on performing wildcard operations with $GETJPI. EXE$BRKTHRU stores the 
PID to be passed to $GETJPI in BRK$1-PIDCTX. The initial value of BRK$L_ 
PIDCTX is -1, the value required to initiate a wildcard operation. On each 
request of $GETJPI, EXE$BRKTHRU requests the user name and the name 
of the process's login terminal. Each time $GETJPI returns, EXE$BRKTHRU 
verifies that the process is an interactive process and belongs to the correct 
user. If the process does not meet these criteria, EXE$BRKTHRU requests 
$GETJPI to get information about the next process. 

Once EXE$BRKTHRU finds an interactive process belonging to the correct 
user, it invokes IOC$SEARCHDEV, in module IOSUBPAGD, to locate the 
UCB and the device data block (DDB) for the terminal. EXE$BRKTHRU then 
verifies that the UCB and the device it describes meet the following criteria: 

• It is a terminal UCB. 
• It is available . 
• It is not a network device, a spooled device, or a detached terminal. 
• It does not have the broadcast class specified by the REQID argument 

disabled . 
• It does not have broadcasts disabled or passall enabled unless there is a 

broadcast mailbox associated with the UCB. 

If the UCB does not meet these criteria, EXE$BRKTHRU requests the 
$GETJPI service to get information about the next process. 

If the UCB meets these criteria, EXE$BRKTHRU verifies that the requestor 
has the privilege to access the device. If BRK$V _CHKPRIV in BRK$B_STS 
is clear, no further check is necessary. Otherwise, EXE$BRKTHRU verifies 
that at least one of the following conditions is met: 

• The sender process's PID matches the owner PID, UCB$1-PID, of the 
terminal. 

• The process is a descendant of the owner of the UCB. EXE$BRKTHRU 
follows the process control block (PCB) process owner chain until it finds 
a process whose PID matches the device owner. If the end of the process 
owner chain is reached without a match, then the next condition must be 
met . 

• The process has OPER privilege. 

If the process has the necessary privilege to access the device, EXE$BRK­
THRU invokes IOC$CVT_DEVNAM, in module IOSUBNPAG, to convert 
the device name to the form ddcn and store the name starting at BRK$T _ 
DEVNAM + 1. EXE$BRKTHRU stores the length of the name in BRK$T _ 
DEVNAM, the unit number in BRK$W _ TRMUNIT, and the contents of 
DDB$T _NAME in BRK$T _ TRMNAME. 
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Finding All Terminals and All Users. If the SNDTYP argument was BRK$C_ 
ALLTERMS or BRK$C_ALLUSERS, EXE$BRKTHRU must find all terminals 
on the system. It does this by invoking IOC$SCAN_IODB, in module 10-
SUBNPAG, to find each UCB in the system. 

Any invoker of IOC$SCAN_IODB must pass a DDB and UCB address to it 
at each invocation. From this context IOC$SCAN_IODB determines where 
to start its search of the 1/0 database. If the addresses are zero, it starts at 
the beginning of the 1/0 database. 

EXE$BRKTHRU passes IOC$SCAN_IODB the addresses in BRK$L_UCB­
CTX and BRK$LDDBCTX. These fields were cleared when the BRK was 
initialized. EXE$BRKTHRU stores the results from invoking IOC$SCAN_ 
IODB in these fields. Each time IOC$SCAN_IODB finds a UCB, it returns a 
success status. When IOC$SCAN_IODB reaches the end of the 1/0 database, 
it returns a failure status. 

After each successful call to IOC$SCAN_IODB, EXE$BRKTHRU makes 
sure that the UCB is acceptable: 

• It must be a terminal UCB. 
• It must be online. 
• If the terminal is not allocated, the terminal must not be set autobaud. 

If the UCB is not acceptable, EXE$BRKTHRU invokes IOC$SCAN_IODB 
to get another UCB. If IOC$SCAN_IODB finds one, EXE$BRKTHRU checks 
that UCB. EXE$BRKTHRU continues this loop until it gets an accept­
able UCB or all UCBs have been found. When all UCBs have been found, 
EXE$BRKTHRU sets BRK$V _DONE in BRK$B_STS. 

Performing the Breakthrough 1/0. EXE$BRKTHRU now has in the BRK the 
information necessary to send the message to a specific terminal. It takes 
the following steps to send the message: 

l. If TT2$V _BRDCSTMBX in UCB$L_DEVDEPND2 is set and UCB$L_ 
AMB is nonzero, EXE$BRKTHRU invokes EXE$WRTMAILBOX, in mod­
ule MBDRIVER, to write the message to the associated mailbox. Note 
that the BRK contains the message already formatted for the mailbox 
write starting at BRK$W _ TRMMSG. 

2. It verifies that broadcasts to the terminal are not disabled and that the 
terminal is not in passall mode. There are two reasons for checking these 
bits now. If they were checked earlier, they could have changed since the 
earlier check was performed. If the terminal has an associated mailbox, 
EXE$BRKTHRU did not check these bits earlier. 

3. If BRK$Q_PRIVS is nonzero, EXE$BRKTHRU requests the Set Privilege 
($SETPRIV) system service to enable the privileges specified by BRK$Q_ 
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PRIVS. The result of this step is to give the process BYPASS and SHARE 
privileges if it does not already have them. 

4. It requests the $ASSIGN system service to assign a channel to the ter­
minal UCB, with the CHAN argument specifying BRK2$W_CHAN. If 
BRK$Q_PRIVS is nonzero, after the $ASSIGN system service completes 
EXE$BRKTHRU requests $SETPRIV to disable the privileges specified by 
BRK$Q_PRIVS. 

5. It sets CCB$V _IMGTMP in the CCB of the channel just assigned. As 
a result, SYS$RUNDWN will deassign this channel on image exit if 
the channel has not been deassigned previously. This ensures that the 
channel will be deassigned if the image exits before EXE$BRKTHRU 
completes. Image termination is discussed in Chapter 26. 

6. It requests the $QIO system service to write the message to the terminal. 
Note that each concurrent write uses a different $QIO context area. Since 
there are four such areas, only four writes can be outstanding at any one 
time. The following arguments are specified: 

-If BRK$V _SCREEN was specified in the FLAGS argument and TT2$V _ 
DECCRT in UCB$1-DEVDEPND2 is set, the screen message is writ­
ten. The message length is the value in BRK$1-SCRMSGLEN; the 
message is the one at the address stored in BRK$L_SCRMSG; the car­
riage control is a zero. 

Otherwise, the unformatted message is written. The message length 
is the value in BRK$W _MSGLEN; the message is the one stored at 
BRK$T_MSGBUF; the carriage control is in BRK$L_CARCON. 

-The channel is the one specified by BRK2$W _CHAN. 
- The IOSB is the one at BRK2$Q_IOSB. 
-The AST procedure address is QIO_DONE, in module SYSBRKTHR. 

This procedure is discussed in Section 24.6.3.2. 
-The AST parameter is the address of the $010 context area, BRK2$L_ 

COMMON. 
-The function code is write virtual block, with the refresh, cancel 

CTRL/O, and breakthrough modifiers. 
-The event flag is BRK_C_EFN (31). 

7. EXE$BRKTHRU increments BRK$W _OUTCNT to reflect another out­
standing write request. 

8. If the TIMOUT argument was specified, EXE$BRKTHRU requests the Set 
Timer ($SETIMR) system service, specifying QIO_ TIMEOUT, in module 
SYSBRKTHR, as the AST procedure to be called when the timer expires 
and the value in BRK$Q_ TIMEOUT as the time. QIO_ TIMEOUT is 
discussed in Section 24.6.3.1. 

EXE$BRKTHRU has now completed all the work necessary to initiate the 
writing of the breakthrough message to a given terminal. 
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24.6 $BRKTHRU System Service 

Completion Actions 

EXE$BRKTHRU performs three sets of actions related to completion: 

• It responds to the expiration of a timer . 
• It responds to the completion of a write to a terminal. 
• It checks for completion of the $BRKTHRU system service. 

It performs the first two within AST procedures. It performs the last in a 
subroutine. 

Timer Expiration. If the timer expires before the 1/0 completion AST is 
executed, the executive calls the AST procedure QIO_ TIMEOUT with an 
argument that is the address of the $QIO context area. QIO_ TIMEOUT 
requests the $CANCEL system service to cancel the write request. This will 
result in QIO_DONE being invoked as part of completing the 1/0 request; 
any further processing required will be performed by QIO_DONE. 

1/0 Completion AST. The 1/0 completion AST procedure, QIO_DONE, 
is called when the 1/0 operation requested via the $QIO system service 
completes. Its one argument is the address of the $QIO context area for the 
completed write. QIO_DONE takes the following steps: 

1. If BRK$Q_ TIMEOUT is nonzero, QIO_DONE requests the Cancel Timer 
($CANTIM) system service to cancel the timer requested through the 
$SETIMR system service. Note that the timer may have expired already. 

2. It requests the $DASSGN system service to deassign the channel. 
3. It decrements BRK$W _OUTCNT to reflect the completion of the write 

request. 
4. It attempts to initiate another write operation by taking the steps de­

scribed in Section 24.6.2. 
5. It then checks for completion of the $BRKTHRU request by taking the 

steps described in Section 24.6.3.3. 

Completion Checks. CHECK_COMPLETE is invoked to check for comple­
tion of the $BRKTHRU request: 

1. It checks BRK$W _OUTCNT. If it is nonzero, there is at least one write 
request outstanding, and CHECK_COMPLETE exits. 

2. It stores the final status in the IOSB if the requestor specified an IOSB. 
3. If the $BRKTHRU request specified a completion AST, CHECK_COM­

PLETE requests the Declare AST ($DCLAST) system service, specifying 
the AST procedure and parameter recorded in the BRK. 

4. It requests the Set Event Flag ($SETEF) system service to set the specified 
event flag. 

5. It requests the Unlock Pages from Working Set ($ULWSET) system ser­
vice to unlock the BRK from the working set. 
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The Broadcast ($BRDCST) system service sends messages to one or more ter­
minals, even if an 1/0 operation is currently in progress on the terminal. The 
$BRDCST system service has been superseded by the $BRKTHRUW system 
service, which should be used for future software development. $BRDCST 
has four arguments: 

• The message buffer containing the text to be written, MSGBUF 

• The device to which to send the message, DEVNAM 

• The carriage control to be used with the message, CARCON 

• Options for the $BRDCST system service, FLAGS 

The $BRDCST system service routine, EXE$BRDCST in module SYS­
BRKTHR, runs in the access mode of the caller. EXE$BRDCST requests 
the $BRKTHRUW system service to perform the breakthrough operation 
equivalent to the requested broadcast operation. EXE$BRDCST specifies the 
following arguments to the $BRKTHRUW system service: 

• The EFN argument is BRK_C_BRDCSTEFN, event flag 31. 
• The $BRKTHRUW MSGBUF argument is the same as the $BRDCST MSGBUF 

argument . 
• The SNDTYP argument is as follows: 

-If the DEVNAM argument is zero, the SNDTYP argument is BRK$C_ALL­
TERMS. 

-If the DEVNAM argument is nonzero, it is taken as the address of a de­
scriptor. If the descriptor specifies a length of zero, the SNDTYP argument 
is BRK$C_ALLUSERS. If the descriptor specifies a nonzero length, the 
SNDTYP argument is BRK$C_DEVICE. 

• If the SNDTYP argument is BRK$C_DEVICE, the SENDTO argument is the 
same as the DEVNAM argument to the $BRDCST system service.· Otherwise, 
the SENDTO argument is irrelevant. 

• The $BRKTHRUW FLAGS argument is the same as the $BRDCST FLAGS 

argument, if the latter argument is specified. Otherwise, the $BRKTHRUW 
FLAGS argument is zero. Note that the $BRDCST FLAGS argument has no 
bits equivalent to the BRK$V _ERASE_LINES and BRK$V _CLUSTER bits 
of the $BRKTHRUW FLAGS argument. 

• The $BRKTHRUW CARCON argument is the same as the $BRDCST CARCON 

argument, if the latter argument is specified. Otherwise, the $BRKTHRUW 
CARCON argument is an ASCII blank. 

• The TIMOUT argument is 10, which specifies a timeout of 10 seconds. 
• The IOSB argument specifies an IOSB allocated on the stack by EXE$BRD­

CST. 



24. 8 Informational Services 

Upon completion of the $BRKTHRUW system service, EXE$BRDCST ex­
amines the return status. If the status is an error, EXE$BRDCST returns 
that status to the caller. If the return status of the $BRKTHRUW system 
service is a success status, EXE$BRDCST returns the status in the IOSB to 
the caller. Note that if either return status is SS$_NOOPER, EXE$BRDCST 
replaces it with SS$_NOPRIV. This is done to maintain compatibility with 
previous implementations of $BRDCST. 

24.8 INFORMATIONAL SERVICES 

Images frequently require information about particular devices on the sys­
tem. VMS provides several system services to obtain specific information 
about a particular device. 

Device-independent information refers to information that is present for 
each device on the system, such as the device unit number, UCB$W~UNIT, 
device characteristics, UCB$1-DEVCHAR, and -the device type, UCB$B_ 
DEVTYPE. It is obtained by reading fields in the UCB that have the same 
interpretation for all devices on the system. · 

Device-dependent information refers to information that is present for 
each device on the system but whose interpretation is device-dependent, 
such as the device-dependent information fields UCB$L_DEVDEPEND and 
UCB$L_DEVDEPND2, or. information that is present only for certain de­
vices, such as the logical UCB address in a physical terminal UCB, UCB$L_ 
TT_LOGUCB. 

There are two sets of information, the primary and secondary device char­
acteristics, for each device. These two sets are identical unless one of the 
following conditions holds: 

• If the device has an associated mailbox, the primary characteristics are 
those of the assigned device and the secondary characteristics are those of 
the associated mailbox . 

• If the device is spooled, the primary characteristics are those of the inter­
mediate device and the secondary characteristics are those of the spooled 
device . 

• If the device represents a logical link on the network, the secondary char­
acteristics contain information about the link. 

The $GETDVI system service, in module SYSGETDVI, obtains device­
independent information about a device. See the VMS System Services Ref­
erence Manual for a listing of the fields that can be returned. $GETDVI 
uses an item list argument mechanism, which allows it to be extended in 
an upwardly compatible fashion. 

The $DEVICE_SCAN system service, in module SYSGETDVI, returns the 
names of all devices that match a set of search criteria, such as those of a cer­
tain device class or type. Both $DEVICE_SCAN and $GETDVI are described 
in Chapter 36. 
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Support still exists for the Get 1/0 Channel Information j$GETCHN) 
and Get 1/0 Device Information j$GETDEV) system services, which are 
both in module SYSGETDVI. The $GETDVI system service supersedes the 
$GETCHN and $GETDEV system services and should be used in future 
software development. 

The $QIO system service can be used to qbtilin device information. Two 
function codes, 10$_SENSEMODE and 10$..:SENSECHAR, C!Ul be used to 
request the device driver to return device-dependent infonp.~tion to the 
caller. The specific information that can be retutned depends ~:m the device. 
See the VMS I/0 User's Reference Volume mlJ.Ilual for det~il,s about what 
information is returned by specific VMS device drivers. 
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25 Process Creation 

All things in the world come from being. 
And being comes from non-being. 

Lao-tzu, Tao Te Ching 

The creation of a new process takes place in several phases: 

1. Creation begins in the context of an existing process that requests the 
Create Process ($CREPRC) system service. The $CREPRC system service 
performs the following steps: 

a. It makes privilege and quota checks. 
b. It allocates and initializes the process control block (PCB); the job 

information block (JIB), unless it is creating a subprocess; and the 
process quota block (PQB), with explicit $CREPRC arguments and 
implicit parameters taken from the context of the creator. 

c. It places the new process into the scheduler database. 

2. The initial scheduling state of the new process is computable outswapped 
(COMO). Thus, execution of the new process is suppressed until the 
swapper process moves the new process into the balance set. The follow­
ing steps are performed in the context of the swapper process: 

a. The· swapper moves the template for the new process context into 
the balance set from the shell, a module in the WORKING_SET _ 
MANAGEMENT loadable executive image. 

b. It builds the process header (PHD) according to the values of SYSGEN 
parameters for this configuration. 

c. It requests that the new process be scheduled for execution. 

3. The final steps of process initialization take place in the context of the 
new process in the routine EXE$PROCSTRT. EXE$PROCSTRT performs 
the following steps: 

a. It copies the arguments from the PQB to the PHD and various loca­
tions in Pl space. 

b. It requests the image activator to activate the image. 
c. It calls the image at its entry point. 

Figure 25.1 shows these phases of process creation and the context within 
which each phase occurs. 

25.1 CREATE PROCESS SYSTEM SERVICE 

The $CREPRC system service establishes the parameters of the new process. 
Some of these parameters are passed to the system service by the caller. The 
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system service copies others from the context of the caller: the caller's PCB, 
PHD, JIB, and control region (see Figure 25.2). 

The $CREPRC system service can copy information to the PCB or the 
JIB of the new process but cannot access its PHD or control region because 
neither exists at this stage of process creation. It stores the parameters to 
be copied to either the PHD or the control region in the PQB, a temporary 
data structure, until the new process comes into existence and has a virtual 
address space and PHD. Table 25.1 lists the contents of the PQB. 

Control Flow of the Create Process System Service 

The $CREPRC system service procedure, EXE$CREPRC in module SYSCRE­
PRC, runs in kernel mode. It performs the following steps: 
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Creator PCB New Process PCB 
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Figure 2.5.2. 
Sample Movement of Parameters in Process Creation 
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1. EXE$CREPRC verifies that the address specified in the PIDADR argument 
is accessible to the mode from which EXE$CREPRC was requested. If 
not, it returns the error status SS$_ACCVIO. 

2. EXE$CREPRC creates either a top-level process, detached from its cre­
ator, or a subprocess, attached to its creator's job tree. EXE$CREPRC's 
actions depend on the me argument and the PRC$V _DETACH bit in the 
STSFLG argument. 

-If the requestor specified a nonzero me argument, EXE$CREPRC cre­
ates a top-level process. The process is further classified as interactive, 
network, batch, or detached based on EXE$CREPRC's STSFLG argument. 

-If the me argument is zero, the default, and the requestor did not set the 
PRC$V _DETACH bit in the STSFLG argument, EXE$CREPRC creates a 
subprocess. 

-If the me argument is zero, the default, but the requestor set the 
PRC$V _DETACH bit in the STSFLG argument, EXE$CREPRC creates 
a top-level, detached process with the same user identification code 
jUIC) as that of the requestor. 
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Table 25.1 Contents of the Process Quota Block 

Size Size 
Item (bytes) Item (bytes) 
Privilege mask 8 Reserved 1 
Size of PQB 2 Authorization file flags 4 
Type code 1 Process creation flags 4 
Status 1 Minimum authorized security class 20 
AST limit 4 Maximum authorized security class 20 
Buffered 1/0 limit 4 SYS$INPUT attributes 4 
Buffered 1/0 byte limit 1 4 SYS$0UTPUT attributes 4 
CPU time limit 4 SYS$ERROR attributes 4 
Direct 1/0 limit 4 SYS$DISK attributes 4 
Open file limit 1 4 CLI image name 32 
Paging file quota 1 4 CLI command table name 256 
Subprocess limit 1 4 Spawn CLI image name 32 
Timer queue entry limit 1 4 Spawn CLI command table name 256 
Working set quota 4 Equivalence name for SYS$1NPUT 256 
Working set default 4 Equivalence name for SYS$0UTPUT 256 
Lock limit 4 Equivalence name for SYS$ERROR 256 
Working set extent 4 Equivalence name for SYS$DISK 256 
Logical name table quota 4 Default directory string 256 
Flags 2 Image name 256 
Default message flags 1 

1 This quota or limit is now pooled in the JIB; hence, the PQB is no longer used to transfer this value. 
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EXE$CREPRC tests whether the specified UIC is zero or the same 
as that of the requestor. If it is, no privilege is necessary to create a 
top-level process. Otherwise, the requestor needs either the DETACH 
or CMKRNL privilege. If the requestor requested creation of a top-level 
process without the necessary privilege, EXE$CREPRC returns the error 
status SS$_NOPRN. 

3. EXE$CREPRC allocates a PCB from nonpaged pool, raising interrupt 
priority level (IPL) to 2. It next allocates a PQB from either the PQB 
lookaside list or paged pool, and completely zeros the PCB and PQB, 
except for their headers. 

Chapter 19 describes nonpaged pool, paged pool, and the PQB lookaside 
list. 

EXE$CREPRC remains at IPL 2 or above from this point to prevent 
process deletion and the loss of allocated but unrecorded memory. If 
an error occurs, EXE$CREPRC deallocates the PCB, PQB, and JIB (if 
necessary) before returning the error status to the requestor. 

4. JIB initialization for top-level processes differs from that for subprocesses: 

-If EXE$CREPRC is creating a top-level process, it allocates a JIB from 
nonpaged pool. It initializes the JIB's jobwide list of mounted volumes 
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as an empty list, then copies the account and user name fields from 
the creating process's JIB and zero-fills the JIB to its end. 

-If EXE$CREPRC is creating a subprocess, no JIB allocation is neces­
sary; the subprocess shares the JIB of its creator. However, processes 
sharing a JIB must access its fields in an interlocked manner, since 
the processes might execute concurrently on different members of a 
symmetric multiprocessing (SMP) system. Thus, EXE$CREPRC incre­
ments JIB$W _PRCCNT, the count of subprocesses in the job tree, with 
ADAWI, an interlocked instruction. 

Before EXE$CREPRC accesses JIB$L_PGFLCNT, the process page 
file quota, it acquires the MMG spinlock, raising IPL to IPL$_MMG. It 
then charges JIB$L_PGFLCNT for the number of process page file pages 
contributed by the shell and releases the MMG spinlock, lowering IPL 
to 2. 

If the job has insufficient page file quota, EXE$CREPRC deallocates 
the newly acquired data structures and returns the error status SS$_ 
EXQUOTA to its requestor. Otherwise, it compares JIB$W _PRCCNT 
to JIB$W _PRCLIM, the maximum number of processes in the job tree. 
If JIB$W _PRCCNT exceeds JIB$W _PRCLIM, the job tree is at its max­
imum size. EXE$CREPRC deallocates the PCB and PQB and returns 
the error status SS$_EXQUOTA to its requestor. Figure 25.3 shows the 
relation between the JIB and the PCBs of several processes in the same 
job. 

Note that the process count field within a PCB (PCB$W _PRCCNT) 
tracks the number of subprocesses created by one process. JIB$W _ 
PRCCNT counts the total number of subprocesses in the entire job. 

5. For both top-level processes and subproc~sses, EXE$CREPRC stores the 
address of the JIB in PCB$L_JIB. 

6. EXE$CREPRC initializes several fields in the PCB to nonzero values: 

a. It sets up the asynchronous system trap (AST) queue as an empty 
listhead and enables AST delivery to all access modes. 

b. It sets up the lock queue in the PCB as an empty listhead. 
c. It initializes the PCB current and permanent CPU capability require­

ment fields to the system default value found in SCH$GLDEFAULT _ 
PROCESS_ CAP. 

d. It copies the. default affinity skip value from SCH$GL_AFFINITY _ 
SKIP to the PCB. 

e. If the system default capability mask enables implicit affinity, it 
copies the CPU ID of the processor for which the current process 
has affinity to the new process's PCB$L_AFFINITY field. Chapter 12 
describes process affinity. 

f. It copies the default file protection from the system default file pro­
tection or the creating process's PCB. 
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g. It copies the entire access rights block (ARB) from the creating pro­
cess's ARB. If the creator has an extended rights list, EXE$CREPRC 
allocates a nonpaged pool buffer into which it copies the extended 
rights list. · 

The ARB is currently located withih the PCB. However, VMS rou­
tines that check a: process's access rights use the ARB pointer, PCB$L_ 
ARB, to locate the privilege mask and UIC. All programs should fol­
low this convention, since the ARB may become an independent 
structure in the future. Any programs that do not use the ARB pointer 
will require modification when this occurs. 

h. EXE$CREPRC copies the unit number of the termination mailbox 
from the MBXUNIT argument. The termination mailbox number is 
not used until the process is eventually deleted. At that time, the 
process deletion routine writes a termination message to the specified 
mailbox if the unit number is nonzero. 

i. It initializes the process-private page count, PCB$W _PPGCNT, to the 
number of pages required for the new process header and the shell 
pages. 

j. EXE$CREPRC copies the process name, if one exists, into the PCB. 

7. It determines the process privileges of the new process and stores them in 
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the PQB. Table 26.2 summarizes the various privilege masks associated 
with a process. 

If no privilege argument is present, EXE$CREPRC uses the current 
privileges of the creator. 

If a privilege argument is present and the creator has SETPRV privilege, 
EXE$CREPRC uses the privilege argument with no modification. 

If a privilege argument is present and the creator does not have SETPRV 
privilege, EXE$CREPRC stores the logical AND of the privileges of the 
creator and the privileges specified in the argument. In short, a created 
process cannot receive privileges that its creator does not have. 

8. EXE$CREPRC determines the software priority of the new process and 
stores it in the PCB base priority and current priority fields. Because 
the BASPRI argument is passed by value, it is always present. The system 
service macro $CREPRC_S, used from VAX MACRO, specifies a default 
value of 2 for BASPRI. The default value for other languages is determined 
by the treatment of missing arguments by the language processor. 

If the creator has ALTPRI privilege, EXE$CREPRC uses the priority 
specified in the argument list. If the creator does not have ALTPRI priv­
ilege, EXE$CREPRC uses the smaller of the creator's base priority and 
the priority in the argument list. 

9. EXE$CREPRC determines the UIC of the new process and stores it in the 
PCB. The me argument is used if the requestor specified that argumel}t. 
Otherwise, EXE$CREPRC uses the UIC of the creator. Therefore, a sub­
process always has the same UIC as its creator-if the me argument had 
been specified, EXE$CREPRC would have created a top-level process. 

10. If the new process is a subprocess, EXE$CREPRC copies the internal 
process ID IIPID) of the creator to the PCB$LOWNER field of the new 
PCB and the extended process ID IEPID) of the creator to the field PCB$L_ 
EOWNER. Section 25.1.3.l describes internal and extended process IDs. 

If the process is a top-level process, the PCB$L_OWNER and PCB$L_ 
EOWNER fields remain zero. 

11. EXE$CREPRC tests that the process name is unique within the UIC 
group. It examines the process name fields of all PCBs in the system with 
the same group number. If the process name is not unique, EXE$CREPRC 
returns the error status SS$_DUPLNAM to its requestor. Process name 
is always qualified by UIC group number. 

12. EXE$CREPRC copies several text strings to the PQB, taking the image 
name and the equivalence names for SYS$INPUT, SYS$0UTPUT, and 
SYS$ERROR from the $CREPRC argument list. For most processes, the 
image is LOGINOUT. 

13. It translates the logical name SYS$DISK in the table LNM$FILE_DEV and 
stores its equivalence name in the PQB. For compatibility with previous 
releases, SYS$DISK is translated once. Thus, its equivalence name must 
be either a shareable logical name or a physical device name. 

715 



Process Creation 

716 

14. EXE$CREPRC copies the minimum and maximum authorized security 
clearance records from the creator's PHD to the new process's PQB. 

15. It copies the following information from the Pl space of the creator 
process: 

-Default directory string 
-Command language interpreter (CLI) name 
-Command table name 
-CLI hame for use by spawned subprocesses 
-Command table name for use by spawned subprocesses 

16. It copies the default message flags and flags from the authorization file 
record from the control region of the creator to the PQB. 

17. It extracts the status flags for the new process from the $CREPRC argu­
ment list and sets the corresponding flags in the PCB and PQB. Table 25.2 
describes the status flags. All PCB flags listed in the table are found 
in the field PCB$1-STS. The IMGDMP flag is eventually stored in the 
field PHD$W _FLAGS, but since the PHD does not exist yet, the PQB 
temporarily maintains the flag. EXE$CREPRC always propagates the 
flag PCB$V _SECAUDIT from the creator process. It checks the creator 
process's privilege mask for any flags requiring privilege. 

18. If the process being created is not a subprocess, and it is not a batch, 
network, or interactive process, then it must be a true detached process. 
In that case, EXE$CREPRC copies JIB$W _MAXJOBS and JIB$W _MAX­
DETACH from the JIB of the creator to that of the new process. If either 
count is nonzero, indicating a limit, EXE$CREPRC must check whether 
creation of this process would exceed one of those limits. 

It acquires the SCHED spinlock, raising IPL to IPL$_SCHED. Hold­
ing the spinlock, it scans all existing processes except for the swapper 
process. It looks for a process that is not a network process or a subpro­
cess and that has the same user name as the process being created. If it 
finds one, it increments the total count of jobs with that user name. If 
the process is neither interactive nor batch, it also increments the total 
count of detached processes with that user name. 

After scanning all the processes, EXE$CREPRC releases the SCHED 
spinlock and restores IPL to 2. If either job limit has been exceeded, 
EXE$CREPRC returns the error status SS$_EXPRCLM to its requestor. 

19. It determines the quotas for the new process and stores them in the PQB. 
Section 25.1.2 describes the steps taken to determine the quota list for 
the new process. 

20. EXE$CREPRC processes the ITMLST argument, if one was supplied. This 
argument is reserved for VMS software, which uses it to pass logical 
name attributes for SYS$INPUT, SYS$0UTPUT, and SYS$ERROR to 
EXE$CREPRC. It in turn copies the attributes into the PQB. 

21. EXE$CREPRC stores the address of the PQB in the field PCB$1-PQB. 
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Table 25.2 Status Flags Specified at Process Creation 

Flag Argument Meaning if Set Destination 

PRC$V _SSRWAIT Disable system service resource PCB$V _SSRWAIT 
wait mode 

PRC$V _SSFEXCU Enable system service exceptions PCB$V _SSFEXCU 
for user mode 

PRC$V _PSWAPM I Inhibit process swapping PCB$V _PSWAPM 
PRC$V _NOACNT 2 Suppress accounting PCB$V _NQACNT 
PRC$V _BATCH 3 Batch (noninteractive) process PCB$V _BATCH 
PRC$V _IDBER Hibernate process before calling PCB$V _IDBER 

image 
PRC$V _IMGDMP Enable image dump PHD$V _IMGDMP 
PRC$V _NOUAF 4 Log in without reading the PCB$V _LOGIN 

authorization file 
PRC$V _NETWRK Process is a network connect PCB$V _NETWRK 

object 
PRC$V _DISAWS Disable system initiated working PCB$V _DISAWS 

set adjustment 
PRC$V _DETACH 5 Process is detached PCB$V _DETACH 
PRC$V _INTER Process is interactive PCB$V _INTER 
PRC$V _NOPASSWORD Disable prompt for user name PCB$V _NOPASSWORD 

1 Requires PSW APM privilege 
2 Requires NOACNT privilege 
3 Requires DETACH privilege 
4 Formerly PRC$V _LOGIN 
5 Flag ignored unless same UIC 

and password 

PCB$1-PQB is the same longword as the event flag wait mask field, 
PCB$L_EFWM. The field PCB$L_PQB is available until the process exe­
cutes in its own context and is placed into a resource or event flag wait 
state. At that time, its contents are overwritten by an event flag wait 
mask. Therefore, the initial instructions of EXE$PROCSTRT, the first 
code to run in the new process's context, are nonpageable and immedi­
ately copy the PQB address elsewhere. Section 25.3 describes EXE$PROC­
STRT. 

Earlier versions of VMS allocated space in the swap file for the process 
at this point. For VMS Version 5, swap file space allocation does not occur 
unless the process must actually be swapped from memory. Chapter 18 
describes the circumstances under which this could occur. 

22. EXE$CREPRC acquires the MMG and SCHED spinlocks, raising IPL to 
IPL$_MMG. It searches the PCB vector for an empty slot. If none is 
available, it returns the error status SS$_NOSLOT to its requestor after 
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releasing the SCHED and MMG spinlocks. The PCB vector is pictured 
in Figure 25.4. Section 25.1.3.1 describes the search process. 

Otherwise, having found an available PCB vector slot, EXE$CREPRC 
tests the maximum process count. If the maximum process count has 
been exceeded (SCH$GW_PROCCNT's contents are larger than those 
of SCH$GW _PROCLIM), EXE$CREPRC returns the error status SS$_ 
NOSLOT to its requestor after releasing the SCHED and MMG spinlocks. 
EXE$CREPRC increments SCH$GW _PROCCNT regardless of process 
type. 

If the new process is an interactive one, EXE$CREPRC increments 
SYS$GW _IJOBCNT, the current interactive job count for the system. 
Since all interactive jobs begin by executing the LOGINOUT image, the 
comparison of SYS$GW _IJOBCNT to the SYSGEN parameter IJOBLIM 
is handled by LOGINOUT. 

If the new process is a batch job, EXE$CREPRC increments SYS$GW _ 
BJOBCNT, the current batch job count for the system. 

23. EXE$CREPRC stores the new PCB address in the available PCB vector 
slot. 

24. It fabricates internal and extended process IDs (see Section 25.1.3.IJ and 
stores them in the PCB of the new process. 

25. If the new process is not a subprocess, EXE$CREPRC stores its IPID in 
the master process ID field of the JIB (JIB$LMPID). 

26. EXE$CREPRC invokes the routine SCH$CHSE, in module RSE, to insert 
the process into the COMO scheduling queue. It specifies the priority 
increment class PRl$_ TICOM to boost the base priority by 6. 

27. If it is creating a subprocess, EXE$CREPRC increments the count of sub­
processes owned by the creator (PCB$W _PRCCNT in the creator's PCB). 
In addition, if a CPU time limit is in effect for the creator, EXE$CREPRC 
deducts the amount of CPU time that is passed to the new process from 
the creator. 

28. Finally, it returns the EPID of the new process to the requestor (if re­
quested), releases the SCHED and MMG spinlocks, lowers IPL to 0, and 
returns control to its requestor. 

Establishing Quotas for the New Process 

The $CREPRC system service uses two tables in the executive to set up 
quotas for the new process: a minimum quota table and a default quota table. 
Each quota or limit in the system has an entry in both tables. The contents of 
the minimum table are determined by the SYSGEN parameters whose names 
are of the form PQL_Mquota-name; the contents of the default table are of 
the form PQL_Dquota-name. Following is a list of the steps EXE$CREPRC 
takes to determine the value for each quota or limit that is passed to the 
new process: 



25.1 Create Process System Service 

1. It places the default value for each quota into the PQB as initial value. 
2. It replaces the default values in the PQB by any quotas specified in the 

argument list to the $CREPRC system service. 
3. It forces each quota to at least its minimum value. 
4. It checks to ensure that the creator possesses sufficient quota to cover 

the quota that it is giving to the new process. It performs this check as 
follows: 

a. If the creator has either DETACH or CMKRNL privilege and is cre­
ating a top-level process, quotas are unrestricted and no check is 
performed. 

b. If the creator has.neither privilege and is creating a top-level process 
with the same UIC, then the new process quotas must be less than 
or equal to those of the creator. 

c. If a subprocess is being created and the quota is neither pooled nor 
deductible lthe only deductible quota currently implemented is CPU 
time limit), then the subprocess quota must be smaller than or equal 
to the creator's quota. 

d. Pooled quotas require no special action when a subprocess is being 
created b~cause they already reside in the JIB, a structure that is 
shared by all processes in the job !see Figure 25.3). 

e. If a subprocess is being created and the quota in question is the CPU 
time limit quota, EXE$CREPRC's actions depend on how much quota 
the creator process possesses. If the creator has an infinite CPU time 
limit, then no check is performed. If the creator has a finite CPU time 
limit and specifies an infinite CPU time limit for the subprocess, half 
of the creator's CPU timt; limit is passed to the subprocess. If the 
creator has a finite CPU titne limit and specifies a finite CPU time 
limit for the subprocess, the amount passed to the subprocess must 
be less than the creator!s.original quota, or the creation is aborted. 

5. EXE$CREPRC places pooled quotas directly into the newly allocated JIB. 
It places other quotas into the PCB or stores them temporarily in the 
PQB. 

Table 25.3 lists the quotas that are passed to a new process when it is 
created, whether each quota is deeluctible or pooled, and where the limit is 
stored in the context of the new process. Further discussion of quotas can 
be found in the Gtiide to Settfug Up a VMS System and in the VMS System 
Services Reference Manual. ' 

With the exception of CPU time limit and subprocess count, all active 
counts start at their protess limit values and decrement to zero. An active 
count of zero indicates no quota remaining. An active count equal to the 
corresponding process lmiit indicates no outstanding requests. 
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Table 25.3 Storage Areas for Process Quotas 

Quota/Limit 
Name 

AST limit 
Buffered 1/0 limit 
Direct 1/0 limit 
Working set quota 
Working set default 
Working set extent 

CPU time limit 

Location of 
Active Count 

Location of 
Process Limit 

NONDEDUCTIBLE QUOTAS 

PCB$W _ASTCNT PHD$W _ASTLM 
PCB$W _BIOCNT PCB$W _BIOLM 
PCB$W _DIOCNT PCB$W _DIOLM 
n/a 2 PHD$L_ WSQUOTA 
n/a 2 PHD$LDFWSCNT 
n/a 2 PHD$L_ WSEXTENT 

DEDUCTIBLE QUOTA 

PHD$L_CPUTIM PHD$L_CPULIM 

POOLED QUOTAS (SHARED BY ALL PROCESSES IN TIIE SAME JOB) 

Buffered 1/0 byte limit JIB$L_BYTCNT JIB$L_BYTLM 
Open file limit JIB$W _FILCNT JIB$W _FILLM 
Page file page limit JIB$L_PGFLCNT JIB$L_PGFLQUOTA 
Subprocess limit JIB$W _PRCCNT JIB$W _PR CLIM 
Timer queue entry limit JIB$W _ TQCNT JIB$W _ TQLM 
Enqueue limit JIB$W _ENQCNT JIB$W _ENQLM 

Count/Limit 
Stored by 1 

C/P 
C/C 
C/C 
/P 
/P 
/P 

P/P 3 

1 The slash (/) separates the count from the limit: C/ indicates that the count value is stored 
by EXE$CREPRC; /C indicates that the limit value is stored by EXE$CREPRC; P/ indicates that 
the count value is stored by EXE$PROCSTRT; /P indicates that the limit value is stored by 
EXE$PROCSTRT. 

2 Working set list quotas are handled differently from other quotas (see Chapter 17). 
3 CPUTIM starts at zero and increments for each clock tick that the process is current. If limit 

checking is in effect (CPULIM nonzero), then CPUTIM may not exceed CPULIM. 
4 The contents of the JIB are loaded by EXE$CREPRC when a detached process is created. 

Subprocess creation uses an existing JIB. 
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Process Identification 

VMS provides two forms of process identifier (PID) for each process. The 
internal, traditional form-the IPID-identifies a process within the context 
of a single VMS system. The EPID is a compressed version of the IPID that 
additionally identifies the VAXcluster node of a process. In this book, the 
unqualified term process ID or PID refers to the internal, traditional form. 

VMS routines use the IPID or EPID to locate a process's PCB. All process 
PCB addresses are stored in the PCB vector. The IPID or EPID provides an 
index into the PCB vector and a parallel array called the sequence vector. 
The number of entries in each array (and therefore the maximum number 
of processes allowed at a given time on a VMS system) is determined by the 
SYSGEN parameter MAXPROCESSCNT. 

The VMS executive generally identifies a process internally by its IPID, 
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although code such as the lock management system services and the clus­
terwide process control system service may use both forms of PIO. System 
services accept and return EPIDs, and system utilities display EPIDs, but 
the format of the EPID is subject to change in future versions of VMS. No 
program should attempt to partition the EPID fields. Instead, VMS supplies 
the following routines (in the module SYSPCNTRL) for transformation or 
manipulation of an EPID when necessary: 

• EXE$EPID_ TO_PCB-Convert an EPID to address of corresponding PCB 
• EXE$EPID_ TO_IPID-Convert an EPID to IPID 
• EXE$IPID_ TO_EPID-Convert an IPID to EPID 
• EXE$IPID_ TO_PCB-Convert an IPID to address of corresponding PCB 

Fabricating PIDs. EXE$CREPRC fabricates a process's IPID and EPID after 
obtaining a free PCB vector slot (and implicitly the associated sequence 
vector slot). 

The PCB vector is allocated from nonpaged pool during system initializa­
tion, and its address is stored in SCH$GL_PCBVEC. It contains a longword 
slot for each possible process in the system. The first entry in the vector 
contains the address of the null PCB. The second entry contains the address 
of the swapper process PCB. All other entries in the vector initially contain 
the address of the null PCB. 

Note that in earlier versions of VMS, the null PCB was associated with an 
actual null process. In VMS Version 5, a null process became unnecessary. 
The null PCB remains, however, to serve as an indicator of an available slot 
in the PCB vector. 

When EXE$CREPRC creates a process, it searches the PCB vector for an 
empty slot into which to insert the address of the new PCB it has built. 
It considers an entry that contains the address of the null PCB to be an 
empty slot. EXE$CREPRC excludes the first two PCBs (the null PCB and 
the swapper process) from its scan of the PCB vector. It begins the scan 
with the slot most recently allocated and wraps to the slot after the swapper 
process if it exceeds the maximum entry. The index of the maximum entry 
is stored in SCH$GL_MAXPIX. 

Figure 25.4 provides an example of the contents of the PCB vector. 
As processes are created and deleted on the system over time, the slots 

in the PCB vector are reused. The sequence vector tracks the reuse of these 
PCB vector slots. 

All entries in the sequence vector are cleared during system initialization. 
Each time EXE$CREPRC uses a PCB vector slot, it increments the value 
in the corresponding sequence vector slot. This sequence number becomes 
the high-order word of the IPID. Thus, executive routines use the sequence 
number as a consistency check to determine that a number alleged to be an 
IPID corresponds to a real process in the system. 
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PCB Vector j SCH$GL_PCBVEC:: 

Free slot 

J u I 
J 

SWAPPER 

l PCB 
Free slot 

I l ERRFMT PCB J 
{CACHE_ SERVER J 

PCB 

l JOB_~~OLJ L 1 Process X PCB J Free slot 

1 l SYMBIONT_OOCll] 
PCB 

• Free SIPF ~ t Process Y PCB J 
Figure 25.4 
Sample PCB Vector 

When a process is deleted, the executive stores the address of the null 
PCB in its PCB vector slot to indicate that the slot is available. The se­
quence number, however, is not incremented until the slot is reassigned by 
EXE$CREPRC. 

The sequence number increments to 32, 767, then cycles back to 0. There­
fore, when IPIDs are interpreted as signed integers, they are never negative. 
This allows the 1/0 subsystem to treat a negative value in the IRP$L_PID 
field of an 1/0 request packet (IRP) in a special manner. The 1/0 postprocess­
ing interrupt service routine interprets a negative IRP$L_PID value as the 
(system virtual) address of an internal 1/0 completion routine. 

A PCB contains four fields related to process identification. EXE$CREPRC 
loads them all, because it has access to the PCB of the creator process and 
it fabricates the IPID and EPID of the new process. 

• PCB$L_PID-Internal process ID 
• PCB$L_EPID-Extended process ID 
• PCB$L_OWNER-Internal process ID of process's creator 
• PCB$L_EOWNER-Extended process ID of process's creator 

Internal PID. The IPID is a longword value. Its low-order word contains an 
index into the PCB vector and the sequence vector, unique across the local 
system but not across the nodes of a VAXcluster system. Its high-order word 
is the sequence number from the sequence vector. 

The executive uses the sequence number to check the validity of an IPID. 
The high-order word of the IPID must match the sequence number in the 
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sequence vector offset indexed by the low-order word of the IPID. Addition­
ally, the PCB vector slot must contain the address of a PCB other than the 
null PCB. 

To optimize the IPID validity check, the VMS routines EXE$IPID_ TO_ 
PCB and EXE$NAMPID, in module SYSPCNTRL, rely on two PCB charac­
teristics. First, a PCB contains its own IPID at offset PCB$L_PID. Second, 
the null PCB contains a zero in its PCB$1-PID field, and it is the only PCB 
whose IPID is zero. To verify that an IPID is valid, these routines index into 
the PCB vector using the low-order word of the IPID. They obtain the PCB 
and compare its PCB$1-PID to the IPID being checked. The test fails under 
two conditions: 

• If the process specified has been deleted and the slot has been reused, the 
new PCB's IPID contains an incremented sequence number and does not 
match. 

• If the process specified has been deleted but the slot has not been reused, 
the PCB vector contains the address of the null PCB. The null PCB contains 
zero in its PCB$1-PID field and can never match the IPID being checked. 

Figure 25.5 shows how an IPID is constructed. 

SCH$GL_SEQVEC:: 

Sequence Vector 

LJ 
Figure 25.5 

Sequence 
Number 

Index 

Fabrication of Internal Process IDs 

New Process PCB 

PIO 

SCH$GL_PCBVEC:: 

rE J 

PCB Vector 

~ 

Index-I 
x4 

~ 
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Extended PID. The EPID serves as a VAXcluster-wide process identifica­
tion. The EPID is currently constructed from the IPID. Figure 25.6 shows 
its format. Its low-order 21 bits contain the IPID in two fields. The widths 
of these two fields vary, depending on the value of the SYSGEN parameter 
MAXPROCESSCNT. The first field, beginning at bit 0, contains the process 
index. The size of the field is computed at system initialization and stored 
in global location SCH$G1-PIXWIDTH. The second field contains the se­
quence number. Its size is 21 minus the size of the first field. 

Bit 31 of the EPID is zero, preserving the rule that an EPID or IPID is never 
negative. The other ten high-order bits identify the VAXcluster node. The 
node identification is similar to process identification in that it consists of 
an index into a node table and a sequence number that counts how many 
times the index has been reused. On a system that is not a VAXcluster node, 
these bits are all zero. 

After a system becomes a VAXcluster member, the EPIDs of any existing 
processes must be updated with the node information, which comes from the 
node's cluster system identification (CSID). The low-order ten bits from the 
global location SCH$GW _LOCALNODE are inserted into the field PCB$L_ 
EPID of each process and, if appropriate, into the field PCB$L_EOWNER. 

25.2 SHELL LAYOUT 
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After EXE$CREPRC creates a new PCB and requests its placement in the 
scheduler's database, the skeletal process exists in the COMO scheduling 
state. When the swapper brings the new process into memory, it obtains the 
initial pages from a special template called the shell rather than from a swap 
file. The shell exists in a pageable portion of the loadable executive image 
WORKING_SET_MANAGEMENT. The swapper locates the shell through 
SWP$G1-SHELLBAS. 

The actual contents of the shell are listed in Table 25.4. As shown in the 
table, the swapper process copies eight pages from the shell when it creates 
a new process: one page of PHD, three Pl page table pages, the Pl pointer 
page, the Record Management Services (RMS) data page, and two pages that 
contain the initialization code SWP$SHELINIT. 
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Table 25.4 Contents of the Shell Pages 

Item Size Locked Page Number 
PHD (fixed) l1 Yes 1 
Pl page table pages 3 Yes 2, 3, 4 
Pl pointer page Yes 5 
RMS data area 1 No 6 
SWP$SHELINIT 2 Yes 7, 8 

1 The ultimate size of the top of the PHD depends on the values 
of several SYSGEN parameters. See Appendix F for details on how 
the size of the PHD is calculated by SYSBOOT. 

Moving the Shell into Process Context 

The swapper takes the following steps in preparation for the inswap of any 
process: 

1. It allocates physical memory for the process, the number of pages speci­
fied by PCB$1-PPGCNT plus PCB$L_GPGCNT. 

2. It records the page frame numbers (PFNs) of these pages in its 1/0 map. 
3. It allocates a balance slot, a place for the process's PHD. 

In the case of a newly created process, EXE$CREPRC has initialized 
PCB$1-PPGCNT to the value in SWP$GL_SHELLSIZ. Computed during 
system initialization as a function of SYSGEN parameters and the shell con~ 
stants, this value includes 

• The fixed portion of the PHD 
• The working set list 
• The process section table (PST) 
• The PHD page arrays and page table page arrays 
• The shell pages 

As the swapper allocates each physical page, it stores the PFN in its 1/0 
map area. (Recall from Chapter 18 that the swapper's map area is also used 
as its PO page table.) Each map entry doubles as a PO page table entry (PTE). 
The swapper initializes each PTE as active, valid, with a protection code of 
ERKW. 

After allocating a balance slot, the swapper examines PCB$1-WSSWP, the 
location of the outswapped process. A zero value in this field identifies a 
newly created process that must be initialized from the shell. 

The swapper uses SWP$GLSHELLBAS to locate the shell in system space. 
It tests whether all the pages of the shell are resident. If any page is not valid, 
the swapper reads all the pages from the image on disk rather than page fault 
several times. This optimization is effective at times when many processes 
are being created. 
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Once all the shell pages are resident, the swapper copies them into its own 
PO address space with a MOVC instruction. The first eight PTEs, therefore, map 
the eight pages of the shell. The remaining PTEs map physical pages that 
the swapper has allocated for the new process but has not yet initialized. 

The swapper then invokes a special subroutine contained within the shell, 
called SWP$SHELINIT, to configure the PHD before completing the final 
operations of inswap. 

Configuration of the Process Header 

When the loadable executive image WORKING_SET _MANAGEMENT is 
linked, the shell pages within it are constructed to resemble an outswapped 
process. However, a PHD cannot be entirely configured without taking into 
account several SYSGEN parameters, so part of the PHD configuration must 
occur dynamically (see Chapter 14). 

To complete the configuration of the PHD, the swapper invokes the rou­
tine SWP$SHELINIT, in module SHELL. Since SWP$SHELINIT executes 
only during the creation of a new process, it is pageable and resides with 
the other shell pages. As described in the previous section, the swapper maps 
the physical pages containing SWP$SHELINIT in its PO address space. It then 
invokes SWP$SHELINIT as a subroutine. 

Running in kernel mode from the process context of the swapper, 
SWP$SHELINIT performs the following actions: 

1. Since SWP$SHELINIT runs in the swapper's process context, it has ac­
cess to the swapper's virtual address space and page table. It zeros the 
pages that the swapper allocated for the new process but did not read from 
the shell. None of the information destined for these pages is assembled 
into the WORKING_SET _MANAGEMENT image; EXE$PROCSTRT dy­
namically determines and stores their contents at a later stage. 

2. SWP$SHELINIT calculates the address of the system page table entry 
(SPTE) that maps the start of the PHD. It copies the first entry in the 
swapper's PO page table into this SPTE, thereby initializing it with the 
PFN of the first page read from the shell. 

It initializes subsequent SPTEs, mapping the working set list and PST 
from the swapper's POPTEs that map pages zeroed in step 1. 

3. SWP$SHELINIT skips the SPTEs that map the empty pages of the PHD 
(used for working set list expansion), leaving them as no-access pages. 

4. It initializes the next SPTEs, which map the PHD page arrays and page 
table page arrays, from swapper POPTEs that map pages zeroed in step 1. 

5. It invalidates the translation buffer. 
6. It stores the balance slot index in the PHD. This value indexes the PHD 

reference count array and the process index array, as well as the balance 
slots. Chapter 14 describes these arrays. 
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7. It stores the SYSGEN parameters that determine the default page fault 
cluster size and the default page table page fault cluster size in the PHD. 

8. It requests the initial page file assignment for the new process and re­
serves enough pages in the page file for its PHD pages and the shell pages. 
It stores the page file and reservation count in the PHD. 

9. It calculates and stores the index to the beginning of the working set 
list (PHD$L_ WSLIST) and the pointer to the end of the PST (PHD$L_ 
PSTBASOFF). 

10. It calculates and stores PHD$L_ WSLX, PHD$L_BAK, PHD$LPTWSLE­
LCK, and PHD$LPTWSLEVAL, the pointers to the PHD page arrays and 
the page table page arrays (see Figure 14.10). 

The size of an entry in the PHD$L_ WSLX array corresponds to the size 
of an entry in the PFN database working set list index (WSLX) array. 

_The size of a WSLX entry depends on the amount of memory present 
on a particular system (see Chapter 14). On a system with more than 32 
megabytes described by the PFN database, each WSLX array entry is a 
longword. On a system with less memory, each WSLX array entry is a 
word. 

11. SWP$SHELINIT initializes the page table page arrays located by PHD$L_ 
PTWSLELCK and PHD$L_PTWSLEVAL. These count the locked and 
valid PTEs in each page table page. Initializing the entries to -1 indicates 
that no pages are locked or valid. The next to last page table page in Pl 
space has its entries corrected to reflect the fact that it contains the PTEs 
for locked pages and valid pages. 

12. The fixed portion of the PHD maintains four counters pertaining to page 
table pages: the number of page table pages with locked pages, the number 
with valid pages, the number of active page table pages, and the number 
of page table pages with nonzero entries. SWP$SHELINIT initializes the 
counters to the number of permanent Pl page table pages copied from 
the shell. For VMS Version 5, there are three permanent Pl page table 
pages. 

13. The PHD page copied from the shell contains initial values for the 
three working set list longword index values (PHD$L_ WSLOCK, PHD$L 
WSDYN, and PHD$L_ WSNEXT). SWP$SHELINIT adjusts the indexes to 
account for any additions to the permanent part of the working set. Note 
that for VMS Version 5, these fields are longwords. 

After altering the index to the dynamic portion of the working set 
(PHD$L_ WSDYNJ, SWP$SHELINIT moves any dynamic working set list 
entries from their old location to the new location. In VMS Version 5, 
this affects only the working set list entry defined in the shell for the 
RMS data page. 

14. SWP$SHELINIT updates the process working set list with the pages 
comprising the beginning of the PHD (fixed portion, working set list, 
PST, and page table page arrays). In addition, it updates the PFN database 
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arrays for the physical pages to indicate that these pages are active and 
modified (PFN STATE array) and page table pages (PFN TYPE array). It 
stores the working set list offset in the PFN WSLX array, the page file 
number in the PFN BAK array, and the PTE back pointer in the PFN PTE 
array. 

15. It initializes the SPTEs for the process page table pages as demand zero 
pages with a protection code of ERKW. 

16. It copies the swapper POPTEs that map the three Pl page table pages 
defined in the shell into SPTEs. It locks these pages into the process 
working set list and updates the PFN arrays as in step 14. 

17. SWP$SHELINIT calculates the offsets from the beginning of the PHD 
to the beginning of the PO page table and the end of the Pl page table 
to reflect the size of the beginning of the PHD (see Chapter 14 and 
Appendix F). It adjusts the address of the first free virtual address in Pl 
space (stored in the PHD at offset PHD$1-FREP1VA) and the contents 
of the copy of the Pl length register (stored in the hardware PCB in the 
PHD) to reflect the size of the PHD that is mapped into Pl space. 

18. It rearranges entries in the swapper PO page table to reflect the state of the 
newly built working set list. It calculates the address of the Pl window to 
the PHD and stores it in location CTL$G1-PHD. The swapper can access 
the Pl address space of the newly created process because its pages are 
mapped as swapper PO addresses. CTL$GL_PHD resides in the Pl pointer 
page copied from the shell. When SWP$SHELINIT returns control to the 
swapper for completion of the inswap, the swapper will complete PTE 
generation based on the working set list. 

19. SWP$SHELINIT marks the PHD resident by setting bit PCB$V _PHDRES 
in PCB$L_STS. 

20. It initializes the WSEXTENT and WSAUTHEXTENT indexes to reflect 
the value of the SYSGEN parameter WSMAX, and the WSQUOTA and 
WSAUTH indexes to reflect the value of WSMAX or 65,536 pages, 
whichever is smaller. It initializes PHD$1-WSFLUID to the value of 
the SYSGEN parameter MINWSCNT. The end of the working set list 
(WSLAST) and the default count (DFWSCNT) initially reflect the value 
of the SYSGEN parameter PQL _DWSDEFAULT. PHD$W _ WSSIZE is ini­
tialized to the value of PQL_DWSDEFAULT. 

21. The calculations in step 17 adjusted the values of the PO and Pl base 
registers relative to the beginning of the PHD. The virtual address of 
the PHD is added to these two registers so that they contain the virtual 
addresses of the beginning of the PO and Pl page tables, as required for 
address translation. 

22. SWP$SHELINIT initializes the PlPTEs that map the system service vec­
tors with the contents of the SPTEs that map the system service vectors 
in system space. The Pl mapping of the system service vectors enables 
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them to be replaced on a per-process basis, simply by modifying that 
process's PlPTEs. 

SWP$SHELINIT returns control to the swapper's main inswap rou­
tine, which completes the remaining steps of the inswap operation. It 
generates the remaining PTEs based on the working set list. The pages 
containing the shell code become part of the kernel stack for the new 
process. They are not zeroed, so the initial content of the kernel stack is 
the shell code. As the final step, the swapper invokes the scheduler rou­
tine SCH$CHSEP, in module RSE, to change the state of the new process 
to executable and possibly trigger a rescheduling interrupt. These steps 
are described in Chapter 18. 

25.3 PROCESS CREATION IN THE CONTEXT OF THE NEW PROCESS 

25.3.1 

The final steps of process creation take place in the context of the newly 
created process. The process's initial register context is contained within 
the PHD copied from the shell. When it becomes current, the process begins 
execution at the saved program counter (PC) in that PHD, the address of 
the routine EXE$PROCSTRT, in module PROCSTRT. The saved processor 
status longword (PSL) indicates kernel mode at IPL 2. Thus, the first code 
that executes in the context of a newly created process is the same for every 
process in the system. 

Operation of EXE$PROCSTRT 

When EXE$PROCSTRT begins execution, the PCB and the PHD have been 
created. In addition, information passed from the creator process has been 
copied into the PQB by EXE$CREPRC. EXE$PROCSTRT must copy the 
information from its temporary location in the PQB into the PHD and Pl 
space (see Figure 25. 7). EXE$PROCSTRT then prepares for and activates the 
image specified by the creator process. 

EXE$PROCSTRT begins execution in kernel mode at IPL 2. Later segments 
of the code execute in executive mode and user mode. Because the PCB$L_ 
PQB field is an overlay of PCB$1-EFWM, the process cannot enter a resource 
or event flag wait state until the PQB address has been copied elsewhere. 
Since a page fault might cause a process to be placed in a resource wait 
state, the process cannot page fault until EXE$PROCSTRT has copied the 
PQB address. Therefore, the first three instructions of EXE$PROCSTRT are 
located in nonpageable memory. These instructions obtain the address of 
the process's PCB and copy the PQB address from the PCB to a register. The 
remainder of EXE$PROCSTRT is pageable. 

EXE$PROCSTRT performs the following steps: 

1. It obtains the PCB address from CTL$GL_PCB and copies the PQB ad­
dress from the PCB to a register, as described previously. 
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2. It stores the addresses of the RMS dispatcher and the base of the control 
region in the Pl pointer page. The base of the control region, stored in 
CTL$GL_CTLBASVA, is the boundary between process-permanent and 
image-specific Pl space. EXE$PROCSTRT initializes CTL$GLCTLBAS­
VA to a value determined during system initialization but updates it with 
each expansion of process-permanent Pl virtual address space. 

3. EXE$PROCSTRT initializes the dispatch vectors for kernel and executive 
mode user-written system services, as well as the vectors for user-written 
rundown handlers. Each of these vectors begins with a longword pointer 
to the next available entry, followed by the actual entries. EXE$PROC­
STRT initializes each pointer with the offset to the second entry and 
stores an RSB instruction in the first entry. Each vector has an additional 
pointer to the first loaded entry, used for dispatching. EXE$PROCSTRT 
stores the address of the RSB instruction here. 

4. It initializes the first longword of the message vector with the offset to 
the first entry and the message pointer with the address of that entry. 

5. If the creator process requested an image dump, EXE$PROCSTRT prop­
agates that flag to the PHD. 

6. EXE$PROCSTRT initializes the kernel request packet (KRP) lookaside 
list (see Chapter 19), forming the space into KRPs and inserting them on 
the list. 
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7. It moves the CPU time limit and the AST limit from the PQB to the 
PHD jsee Table 25.3). 

8. EXE$PROCSTRT initializes the working set list pointers in the PHD to 
reflect the quotas passed from the creator. It minimizes the SYSGEN 
parameter WSMAX, the maximum working set size, with the number 
of potentially available physical pages. It then enforces the following 
restrictions on quotas: 

-Working set quota must be less than or equal to 64K, the maximum 
size of a swap slot. 

-Working set extent must be less than or equal to the maximum phys­
ical pages. 

-Working set quota must be less than or equal to working set extent. 
-Working set default must be less than or equal to working set quota. 

9. EXE$PROCSTRT copies the process's base priority to PHD$B_AUTHPRI 
and PCB$B_AUTHPRI. Saving the base priority enables a process without 
ALTPRI privilege to lower its base priority and later raise it as high as 
the original base priority. 

10. It copies the process privilege mask from the PQB to the first quadword of 
the PHD jPHD$Q_PRNMSK), the permanent privilege mask jCTL$GQ_ 
PROCPRN in the Pl pointer page), and the authorized privilege mask 
jPHD$Q_AUTHPRN). Chapter 26 describes the use of each of these 
privilege masks. 

11. It copies the default message flags to Pl space. 
12. It saves the login time in CTL$GQ_LOGIN. 
13. EXE$PROCSTRT copies the minimum and maximum authorized secu­

rity clearance records from the PQB to the PHD. 
14. It initializes the following listheads as empty: 

-The Get Job/Process Information j$GETJPI) system service's context 
queue 

-The three image activator listheads jsee Chapter 26): image control 
blocks jICBs) representing activated images; ICBs representing work in 
progress; and the ICB lookaside list 

-The clusterwide process services jCWPS) queue in the PCB 
In Version 5 of VMS, processes are visible and can be manipulated 

clusterwide. CWPS supports system services in implementing this fea­
ture. Chapter 13 provides details. 

-The process scan queue in. the PHD 
The $PROCESS_SCAN system service uses this queue to maintain 

its search context. Chapter 13 provides details. 

15. EXE$PROCSTRT creates Pl virtual address space for four uses: 

-Channel control block table 
-Process allocation region 
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-Process I/O segment 
-Image I/O segment 

Appendix F describes these areas and the SYSGEN parameters that 
affect their size. EXE$PROCSTRT records the address of each portion 
and updates the process-permanent boundary address in CTL$G1-CTL­
BASVA with the new, lower address. 

16. It allocates and initializes space from the Pl allocation region for the 
process logical name hash table. EXE$PROCSTRT also allocates space for 
the process-private logical names and tables that it will create. Chapter 35 
describes the logical name data structures and their use. 

17. It initializes the process directory logical name table, LNM$PROCESS_ 
DIRECTORY, and the process logical name table and inserts them into 
the hash table. 

18. EXE$PROCSTRT creates the logical name table logical names LNM$JOB, 
LNM$GROUP, and LNM$PROCESS. It inserts them into the hash table 
and into LNM$PROCESS_DIRECTORY. 

19. {Jsing the equivalence strings and logical name attributes from the PQB, 
EXE$PROCSTRT creates the logical names SYS$INPUT, SYS$0UTPUT, 
SYS$ERROR, TT, and SYS$DISK. 

20. If the process is not a subprocess, EXE$PROCSTRT creates the job and 
group logical name tables. (If the process is a subprocess, then the tables 
already exist.) Because multiple processes access the tables, they must 
be in system space. EXE$PROCSTRT allocates space for the tables from 
paged pool. It locks the logical name table mutex for write access and 
holds it while accessing the shareable logical name hash table. Chapter 8 
describes mutexes. 

EXE$PROCSTRT initializes the two tables and inserts the job table 
into the shareable logical name hash table. It attempts to do the same 
with the group table. However, the group table may have already been 
created by some other process with the same UIC group number. If this is 
the case, the new table is unnecessary and EXE$PROCSTRT deallocates 
it back to paged pool. Otherwise, EXE$PROCSTRT inserts the group 
table into the shareable logical name hash table. In either case, it unlocks 
the logical name table mutex. 

21. EXE$PROCSTRT then allocates space from the Pl allocation region for 
the process-private logical name table cache. It formats the space into a 
lookaside list of logical name cache entries. 

22. It copies the image name from the PQB to the image header buffer for 
subsequent use by the image activator. 

23. EXE$PROCSTRT copies the default directory string, if one exists, from 
the PQB to the control region. It also copies the two sets of CLI and 
command table information. 
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24. It copies the $CREPRC and user authorization file (UAF) flags from the 
PQB to control region flags. 

25. It copies the user name and account name from the JIB into the Pl pointer 
page. 

26. EXE$PROCSTRT deallocates the PQB by inserting it on the PQB looka­
side list (see Chapter 19). 

2 7. EXE$PROCSTRT invokes MMG$IMGRESET, which resets PHD$L_ 
WSLAST, the pointer to the end of the working set list. MMG$IMG­
RESET also lowers IPL to 0, making it possible for the process to be 
deleted. 

Another, more philosophical, interpretation is that at this point in the 
creation of a process, there exists something that is capable of being 
deleted, a full-fledged process. 

28. EXE$PROCSTRT initializes the shareable image list for the Address Re­
location Fixup ($IMGFIX) system service to point to a dummy element. 
This system service is described in Chapter 26. 

29. EXE$PROCSTRT merges the Files-11 Extended QIO Processor (XQP) into 
Pl space. During system initialization, a global section is created from 
the XQP image. It contains pure code and read-only data to be shared 
among all processes. EXE$PROCSTRT requests the Map Global Section 
($MGBLSC) system service to map the shareable XQP section. 

EXE$PROCSTRT writes the lowest XQP address into CTL$GL_CTL­
BASVA to record the new Pl base virtual address. It dispatches to ini­
tialization code within the XQP image. The initialization code requests 
the Expand Program/Control Region ($EXPREG) system service to cre­
ate a process-private copy of XQP impure area and space for the XQP's 
private kernel stack. The code then updates CTL$GL_CTLBASVA. After 
performing other Files-11 initialization, it returns to EXE$PROCSTRT. 

30. EXE$PROCSTRT changes access mode to executive by fabricating a PSL 
and PC on the stack and executing an REI instruction. Execution of an 
REI instruction is the only way to get to an outer (less privileged) access 
mode. 

At this point, EXE$PROCSTRT has moved all the information from 
the creator to the context of the new process and is now ready to activate 
the image that will execute in the context of the new process. It must 
change mode to executive to request the image activator, which is an 
executive mode system service. 

31. EXE$PROCSTRT requests the image activator to set up the page tables 
and perform the other steps necessary to activate the image. Image acti­
vation is described in Chapter 26. 

32. EXE$PROCSTRT declares EXE$RMSEXH, an executive mode termina­
tion handler. This handler will be called when the Exit ($EXIT) system 
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service is requested from executive access mode, which usually happens 
when the process is deleted. When called, it calls SYS$RMSRUNDWN 
for each open fl.le. 

33. The address of a dummy CLI call back routine is stored in location 
CTL$AL_CLICALBK. If an image that was activated from EXE$PROC­
STRT attempts to communicate with a nonexistent CLI, the dummy CLI 
call back routine will return the error status CLl$_INVREQTYP. 

34. EXE$PROCSTRT changes access mode to user by fabricating a PSL and 
PC on the stack and .executing an REI instruction. 

35. It clears the frame pointer IFPJ, guaranteeing that the search of the user 
mode stack for a condition handler by the exception dispatcher will 
terminate (see Chapter 5). 

36. EXE$PROCSTRT sets up an initial call frame on the user mode stack by 
executing a CALLG instruction to an inline procedure: 

CLRL FP 
CALLG (AP),B -260$ 
REI 

260$: .WORD 0 ;Entry mask 
MOVAB s-EJCE$CATCH_ALL,(FP) 

;Procedure code 

37. EXE$PROCSTRT establishes EXE$CATCH_ALL, the catch-all condition 
handler, as the condition handler for this call frame and also as the last 
chance exception vector for user mode. The purpose and action of this 
handler are discussed in the next section. 

38. EXE$PROCSTRT requests the $IMGFIX system service to perform ad­
dress relocation for the image. 

39. An argument list that is nearly identical to the one used by one of the 
CLis (see Chapter 27) is built on the stack. This argument list allows an 
image to execute with no concern over whether it was activated from 
EXE$PROCSTRT or from a CLI. 

40. EXE$PROCSTRT determines whether the process was created with the 
hibernate STSFLG. If the PCB$V _HIBER bit in PCB$L_STS is set, it requests 
the Hibernate ($HIBERJ system service. EXE$PROCSTRT will continue 
when the process is awakened. 

41. It calls the image at its initial transfer address. If the image subse­
quently terniinates with a RET instruction (instead of requesting .the 
$EXIT system service directly), control returns to EXE$PROCSTRT. If 
the process was created with the hibernate STSFLG, EXE$PROCSTRT 
places the process back into hibernation. When awakened, EXE$PROC­
STRT calls the image again. An effect of this implementation is that 
the image is not exited and no exit handlers (user-declared or system­
declared, such as EXE$RMSEXHJ are called. 
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If the process was not created with the hibernate flag, EXE$PROC­
STRT requests the $EXIT system service itself. In general, there is no 
difference between an image terminating with a RET instruction or with 
a request of the $EXIT system service. If the process was initially cre­
ated with the hibernate flag, there is a difference between executing a 
RET instruction and requesting $EXIT. If a process is to be put into hiber­
nation for future awakenings, it must use the RET instruction to return to 
EXE$PROCSTRT rather than terminate by requesting the $EXIT system 
service. 

Catch-All Condition Handler 

EXE$PROCSTRT and the CLis establish the catch-all condition handler, 
EXE$CATCH_ALL, in module PROCSTRT, in the outermost call frame be­
fore calling an ftnage. EXE$PROCSTRT also establishes it as the last chance 
exception vector for user mode through the Set Exception Vector ($SETEXV) 
system service. Any condition that is resignaled (not properly handled) by 
other handlers (or unfielded because no other handlers have been established) 
is eventually passed to this handler. The handler outputs a message using the 
Put Message j$PUTMSG) system service. Depending on the severity level of 
the condition, it may force image exit. 

EXE$CATCH_ALL's arguments are the addresses of the signal and mech­
anism arrays. It performs the following actions: 

1. It tests the condition in the signal array. If the condition is a system 
service failure, SS$_SSFAIL, EXE$CATCH_ALL disables system service 
failure mode to avoid an infinite loop. 

2. If a call to LIB$SIGNAL generated the condition, EXE$CATCH_ALL re­
moves the PC and PSL that LIB$SIGNAL fabricated from the signal array, 
leaving only those arguments passed to LIB$SIGNAL (see Chapter 5 ). 

3. Unless system services are inhibited for this process, EXE$CATCH.ALL 
requests the $PUTMSG system service to write an error message to 
SYS$0UTPUT (and to SYS$ERROR if different from SYS$0UTPUT). 
The $PUTMSG system service is discussed in Chapter 36. 

4. If EXE$CATCH_ALL was called as a last chance handler or if the error 
level is severe or greater (and if system services are not inhibited for 
this process), it calls EXE$EXCMSG to write an exception summary to 
SYS$0UTPUT. Chapter 36 describes EXE$EXCMSG. 

EXE$CATCH_ALL then dispatches to EXE$IMGDUMP _MERGE, de­
scribed in Section 25.3.3, to write the process address space to a file for 
later analysis. When it returns, EXE$CATCH_ALL requests the $EXIT 
system service. 

5. If it was not called as a last chance handler and if the error level is less 
than severe, EXE$CATCH..ALL returns the status SS$_CONTINUE to 
the exception dispatcher, which returns to the image. 

735 



Process Creation 

25.3.3 

736 

Image Dump Facility 

EXE$IMGDMP _MERGE, in module PROCSTRT, provides the capability to 
write a dump file of the process's address space in a format that can be 
mapped later for analysis by the debugger. It is invoked when the image ter­
minates as the result of an exception that it cannot handle. EXE$IMGDMP _ 
MERGE is normally invoked by the condition handler established by the 
Image Startup system service (see Chapter 26), but it can also be invoked 
from the last chance handler, EXE$CATCH_ALL. 

If the exception occurred in a mode more privileged than user, then no 
dump may be taken and EXE$IMGDMP _MERGE returns to its invoker. If the 
exception occurred in user mode, the routine requests the $GETJPI system 
service to obtain process privileges, installed image privileges, and the PHD 
flags. EXE$IMGDMP _MERGE tests whether the PHD$V _IMGDMP flag is 
set. If it is clear, the process has not requested image dump and EXE$IMG­
DMP _MERGE returns. This flag can be specified as part of the $CREPRC 
STSFLG argument and with the DCL commands SET PROCESS/DUMP and 
RUN/DUMP. 

If the flag is set, EXE$IMGDMP _MERGE checks whether the image was 
installed with more privileges than the process has. If the image was installed 
with more privileges than the process, and the process has neither CMKRNL 
nor SETPRV privilege, no dump can be taken and EXE$IMGDMP _MERGE 
returns. Otherwise, it requests the $IMGACT and $1MGFIX system services 
to activate the image SYS$LIBRARY:IMGDMP.EXE and transfers control to 
the image. 



26 Image Activation and Exit 

I would have you imagine, then, that there exists in the mind 
of man a block of wax ... and that we remember and know 
what is imprinted as long as the image lasts; but when the 
image is effaced, or cannot be taken, then we forget or do not 
know. 
Plato, Dialogs, Theaetetus 191 

Before an image can execute, the VMS operating system must take several 
steps to prepare the process. It must locate the correct image file on disk, 
set up process page tables and other data structures, and resolve address 
references among shareable images. The term image activation refers to the 
combination of these steps. In addition, if the debugger, Image Dump Utility, 
or traceback handler is expected to run when the image executes, VMS must 
incorporate the correct hooks to enable these images to be invoked. 

At image exit, VMS must call exit handlers declared by itself or by the user. 
In any process that has had a command language interpreter (CLI) mapped 
by LOGINOUT, multiple images can execute one after another. All traces 
of the current image must be eliminated so that the next image can begin 
execution with no side effects from the execution of the previous image. 
This is referred to as image rundown. 

This chapter describes the following system services related to image 
activation and exit: 

• Image Activate ($IMGACT) 
• Address Relocation Fixup ($IMGFIX) 
• Image Startup ($IMGSTA) 
• Declare Exit Handler ($DCLEXH) 
• Exit ($EXIT) 
• Rundown ($RUNDWN) 

These system services, other than $DCLEXH and $EXIT, are reserved for 
the VMS operating system. Any other use is completely unsupported. 

The chapter also describes the initialization and use of the various privilege 
masks maintained for each process. 

26.1 IMAGE INITIATION 

VMS initiates images via a private-to-Digital system se:rVice, $IMGACT, 
which is commonly known as the image activator. The image activator 
contains no special code to load images into memory for initial execution. 
Instead, it uses the page fault mechanism to bring in pages on demand from 
an image file. For this scheme to work, the process page tables must reflect 
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the state of all the pages in the main image file and its shareable images' 
files. The image activator initializes the process page tables and makes other 
necessary preparations, such as creating address space for the user stack. 

In this chapter, the term main image refers to a primary, controlling image 
that can be invoked by a user through the RUN command. A main image can 
be linked with multiple shareable images, which themselves can be linked 
with other shareable images. A shareable image is partly linked but has no 
transfer address. Thus it is not directly executable and must be linked with 
object modules or other shareable images to produce a main image. 

Before control is transferred to a main image, the image activator resolves 
.ADDRESS and GA references that point to locations within the shareable 
images that have been linked with the main image. This resolution is per­
formed at activation time rather than at link time so that shareable images 
can change in size without requiring a relink of all images that use them. 

The image activator transfers control to the main image by way of a special 
path in the executive that allows hooks to be inserted for later inclusion of a 
debugger, the Image Dump Utility, or the traceback facility. This path, called 
the debug bootstrap, always executes unless explicitly excluded at link time 
with a /NOTRACEBACK qualifier to the LINK command. 

Image Activation 

Although the concept of image activation is straightforward, there are several 
special cases of image activation. This section discusses some of these cases 
explicitly and mentions others only in passing. 

The following types of image activation are discussed explicitly: 

• Activation of a simple main image, one linked with no shareable images 
This is an artificial separation from the next case, simply to illustrate 

the difference in the image activator's actions. 
• Activation of an image linked with one or more shareable images 

Because almost every high-level language processor generates calls to 
library routines implemented as shareable images, this case includes most 
images. 

• Activation of a known image 
The activation of images that have been installed is streamlined by the 

data structures created by the Install Utility. 
• Activation of a compatibility mode image 

When the image activator is called to activate a compatibility mode 
image, it actually activates the RSX-1 lM Application Migration Executive 
(AME) and passes the compatibility mode image name to the AME for 
further processing. (The RSX-llM AME is part of the optional software 
product VAX-11 RSX.) 

There are several other special cases that the image activator must check 
for: 
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• Image activation at system initialization time 
During initialization of the system, image files must be opened without 

the support of either Record Management Services jRMS) or the file sys­
tem. The image activator calls special code in the executive that performs 
the simpler file system operations in the absence of a file system. These 
routines are briefly described with system initialization in Chapters 30 
and 31. 

• Merged image activation 
A merged image activation occurs subsequent to the activation and trans­

fer of control to a main image. This can be used for mapping a debugger, 
the Image Dump Utility, the traceback handler, a message file, or a CLI 
into an unused area of PO or Pl space. It is also used to activate a shareable 
image when an already activated image calls the Run-Time Library proce­
dure Find Universal Symbol in Shareable Image File jLIB$FIND_IMAGE_ 
SYMBOL). 

Rather than using the virtual address descriptors found in the merged 
image, the image activator simply uses the next available portion of PO 
or Pl space. The user stack and image I/O segment are not mapped for 
a merged image. The RMS initialization routines are not called either, 
because an image is already executing and has RMS context that cannot 
be destroyed. 

• Message sections 
Message sections add per-process or image-specific entries to the message 

facility . 
• PO-only images 

The VMS Linker can produce images that map all temporary structures, 
including the user stack and the image I/O segment, in PO space. The image 
activator must recognize this type of image and correctly map these two 
structures, usually located in the lowest address portion of Pl space. 

A PO-only image executes when the permanent part of the low-address 
end of Pl space must be extended without overwriting image structures. 
For example, the SET MESSAGE command causes a PO-only image called 
SETPO.EXE to execute. This image maps the indicated message section into 
the low-address end of Pl space and alters location CTL$GL_CTLBASVA 
to reflect the new boundary between the temporary and permanent parts 
of Pl space. This last step is critical if the message section is to remain 
mapped when later images terminate . 

• Privileged shareable images 
Privileged shareable images implement user-written system services and 

rundown routines. System service procedures that are not part of the exec­
utive loadable images jfor example, $MOUNT and $DISMOU) are imple­
mented as privileged shareable images. 

• Images that do not reside on a random access mass storage device 
The image activator can activate images from sequential devices !certain 
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magnetic tape devices) and images located on another node of a network. 
An address space large enough to contain the entire image is first created. 
The image is then copied into this address space, thus requiring all image 
pages, including read-only pages, to be set up as writable. 

Overview of the Image Activator. The image activator performs several steps 
to activate an image. First, it calls RMS to open the image file, which enables 
the system to perform all its file protection checks. Then it reads the image 
header (IHD). The IHD contains information about the virtual address space 
requirements of each section in the image. The image activator requests a 
memory management system service to map each image section. 

Data Structures That Describe Images. An. image consists of several variable­
sized pieces, the first of which is the IHD. The IHD is followed by the image 
body, the actual program code and data; by a fixup table with information for 
address references that must be resolved at image activation; and, optionally, 
by symbol table information. Figure 26.1 shows the organization of an image. 

The IHD itself consists of a number of variable-sized pieces. At the begin­
ning of the IHD is the fixed portion, which contains some standard informa­
tion about the image and pointers to the other parts of the IHD. Figure 26.1 
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Image Section Flags 

Bit Meaning 
o Global 
1 Copy on reference 
2 Demand zero 
3 Writable 

4-6 Match control field 
7 Last cluster in PO space 
8 Initialization code 
9 Based image 
1 0 Fixup vector 
11 Memory-resident 

12 -16 (reserved) 
17 Vector contained in image section 
18 Image section is protected 

shows the organization of the IHD and the layout of its fixed part. The 
macro $IHDDEF defines symbolic offsets for the fixed part. Offsets for the 
other parts are defined by the macros shown in Figure 26.1. 

The IHD contains image section descriptors (ISDs), one for each section 
in the image. Each ISO describes a portion of the image and its location, in 
an image file and in virtual address space. Figure 26.2 shows the layout of 
the three types of ISO. 

The three types of ISO are differentiated by flags in the field ISD$L_FLAGS 
and by the size of the data structure: 

• Demand zero ISO. Identified by the flag ISD$V _DZRO, a demand zero ISO 
describes a range of virtual address space that begins as zero-filled pages. 
The image section will be mapped in virtual address space beginning at 
the virtual page number in ISD$L_ VPNPFC. ISD$W_PAGCNT contains 
its l_ength in pages. 

• ISO for a private section. A private section ISO describes a range of virtual 
address space initially filled with code or data from the image file. This 
type of ISD may also describe a private mapping of a global section. The 
image section begins in the image file at the virtual block number in the 
field ISD$1-VBN; its length in pages is in ISD$W_PAGCNT. The image 
section will be faulted into virtual address space beginning at the virtual 
page number in ISD$L_ VPNPFC . 

• Global ISO. Identified by the flag ISD$V _GBL, a global ISO describes code 
or data stored in a shareable image. The global section name is stored 
as a counted string in the field ISD$T _GBLNAM. In the normal case, a 
nonbased shareable image, the field ISD$L_ VPNPFC is zeroed by the linker, 
and the image activator maps the shareable image into the next available 
virtual address space. 

A main image linked without any shareable images contains only the first 
two types of ISO. 
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A main image linked with a shareable image contains a global ISD that 
describes the shareable image. This type of ISD primarily serves to name 
the shareable image. The shareable image contains its own IHD and ISDs to 
describe its own virtual address space. Address space for the shareable image 
is not usually assigned when the main image is linked; that is, the shareable 
image is not normally based. Instead, the address space for the shareable 
image is assigned and allocated when it is activated. Thus, the size of the 
shareable image can change without requiring the main image to be relinked. 

A shareable image linked with another shareable image contains a global 
ISD to point to the second shareable image. If the main image refers only to 
symbols in the first shareable image but not the second, it need not contain a 
global ISD for the second shareable image. The entire collection of shareable 
images implied by a main image is not determined until image activation. 
Thus, a shareable image can be relinked to reference additional shareable 
images without requiring the relink of the main image linked with it. 

Activating a main image can result in the activation of many shareable 
images. After a main image has begun to execute, the image activator can be 
requested again to activate additional shareable images. The image activator 
keeps track of which images are activated, using a data structure called an 
image control block (ICB) to describe each image. 

The image activator keeps two ICB lists-one for images already activated 
and one for images yet to be activated. ICBs are initially allocated from the 
Pl allocation region (see Chapter 19) but are deallocated to an ICB lookaside 
list for faster subsequent allocation. These doubly linked lists are located in 
Pl space at the following global locations: 

• IAC$GL_ICBFL-Lookaside list 
• IAC$GL_IMAGE_LIST-Activated images (known as the done list) 
• IAC$GL_WORK_LIST-lmages to be activated (known as the work list) 

Figure 26.3 shows the layout of an ICB. 
ICB$B_ACT _CODE describes how the image was activated-as a main im­

age, a merged image, or a shareable image section. ICB$B_ACCESS_MODE 
contains the access mode specified in the $IMGACT request, maximized 
with the requestor's access mode. The image file is opened on a channel as­
signed in this access mode, and the pages that are mapped are owned by this 
mode. ICB$W _CHAN holds the channel number on which the image file is 
opened. The image's name is stored as a counted string in the field ICB$T _ 
IMAGE_NAME, and the address range into which it was mapped is stored 
in ICB$L_STARTING_ADDRESS and ICB$L_END_ADDRESS. ICB$L_IHD 
points to the IHD of the image file, ICB$L_KFE locates the known file entry 
(KFE) associated with the image (if any), and ICB$1-CONTEXT points to 
the image activator local context block, a temporary structure that points to 
image activator buffers. 
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FLINK 

BLINK 

(reserved) I TYPE 1 SIZE 

CHAN 1 ACT_CODE I ACCESS_MODE 

FLAGS 

IMAGE NAME (40 bytes) -

(reserved) 

(reserved) JMATCH_CONTROL 

MAJOR_ID I MINOR_ ID 

STARTING_ ADDRESS 
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IHD 

KFE 

CONTEXT 

BASE_ADDRESS 

INITIALIZE 

ACTIVE_SONS 

Figure 26.3 
Layout of an Image Control Block 

Data Structures That Describe Known Images. Several data structures de~ 
scribe known images. A known image has special properties that affect its 
activation. The Install Utility is used to specify known images and their 
properties. The VMS Install Utility Manual describes this utility and its 
commands. 

The known image mechanism has several functions. Its main purpose is 
to identify executable images installed with privileges and images installed 
to be shared in the virtual address space of multiple processes. A subsidiary 
function is faster image activation. 

An executable image that requires enhanced privileges but must execute in 
nonprivileged process context (such as MOUNT, SET, oi' SHOW) is installed 
with the /PRIVILEGE qualifier. When such an image is activated, the process 
gains enhanced privileges temporarily. The enhanced privileges are removed 
when the image is run down. 

Several different types of image are installed with the /SHARE qualifier: 

• A shareable or executable image with image sections that are to be shared 
by multiple processes 

• A shareable image containing code that executes in an inner mode, such 
as a user-written system service or rundown routine 

• A shareable or executable image whose shareable sections are to reside 
in MA780 multiport memory and be accessed by processes running on 
multiple VAX-11/780 or VAX-11/785 CPUs 
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An installed image is opened by its file ID rather than its file name, saving 
the overhead of a file lookup. Image activation can be further shortened if 
the image is installed /OPEN so that its file remains open. In this case, the 
image activator's $OPEN RMS request is essentially a null operation. If such 
an image is installed /HEADER_RESIDENT, its IHD is stored in paged pool. 
Keeping the IHD resident saves the additional read operations otherwise 
required to read it into memory every time the image is activated. 

The Install Utility creates and manages the known image database !also 
called the known file database) to describe images that have been installed. 
RMS scans the known image database whenever a file is opened with the 
known file option. !Use of this option is reserved to the VMS operating sys­
tem and unsupported for any other use. J All the known image data structures 
are in paged pool. The two major ones are the K.FE and the known file direc­
tory IKFDJ. 

The Install Utility allocates a K.FE for each known image. The KFE con­
tains information used by the image activator to locate and map the image. 
K.FE$L_FID and K.FE$1-WCB are different symbolic names for the same lo­
cation in the K.FE. If the image header is not memory-resident, three words 
beginning at K.FE$1-FID contain the full file ID of the image, thus locat­
ing the file header on the disk. Otherwise, if the file header is already in 
memory, K.FE$L_ WCB contains the address of the file's window control 
block IWCBJ, which describes the disk location of the blocks of an open 
file. K.FE$1-IMGHDR contains the address of the resident IHD. 

The field KFE$W _FLAGS contains flag bits indicating the manner in which 
the image was installed-for example, if KFE$V _PROTECT is set, the im­
age was installed /PROTECTED. An image installed with privileges has its 
privilege mask recorded in KFE$Q_PROCPRIV. 

When a shareable image is installed with the /SHARE qualifier, the num­
ber of global sections it consists of is stored in K.FE$W _GBLSECCNT. Its 
global section identifier is at K.FE$1-IDENT, and the match control informa­
tion supplied when the image was linked is stored in K.FE$B_MATCHCTL. 
The image activator maintains a count of the number of processes sharing 
the image at K.FE$L_USECNT. Figure 26.4 shows the layout of a K.FE. 

Although the file name of the installed image is stored in the K.FE, the full 
device and directory names are stored in the KFD field K.FD$T _DDTSTR. 
Typically, multiple known images are installed from the same device and 
directory combination and thus share the same K.FD. Keeping the device 
and directory information in the KFD rather than in each K.FE saves paged 
pool. The number of K.FEs sharing a K.FD is found in KFD$W_REFCNT. The 
KFEs themselves are linked together at K.FD$1-K.FELIST. Figure 26.5 shows 
the layout of a K.FD. Figure 26.6 shows a K.FD and its list of K.FEs. 

A data structure called a known file resident image header IKFRHj exists 
for each known image installed /HEADER..RESIDENT. The K.FRH immedi-
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HSHLNK KFEFlags 

KFELINK Bit Meaning 

HSHIDX I TYPE I SIZE 

KFD 

0 Installed/PROTECT 
1 Shareable image 
2 Installed/PRIVILEGE 

GBLSECCNT I FLAGS 3 Installed/OPEN 

USECNT 
4 Image header resident 
5 Shared image 

WCB 6 Shared memory image 

IMGHDR 
7 Compatibility mode image 
8 lnstalled/NOPURGE 
9 Image accounting enabled 

PROCPRIV - 1 O Has writable sections 
11 Execute access only 

AMECOD l (reserved) 1 MATCHCTL 

IDENT 

ORB 

1 FILNAMLEN I SH RC NT 

FILNAM (up to 39 bytes) 

Figure 26.4 
Layout of a Known File Entry 

(reserved) 

1 DIRLEN 

Figure 26.5 

LINK 

KFELIST 
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± DEVLEN 

DDTSTR 
(up to 255 bytes) 

Layout of a Known File Directory 

SIZE 

REFCNT 

l DDTSTRLEN 

Nexf; 
KFD 

KFE 

ately precedes the IHD, and space for the IHD is allocated with the KFRH. 
Figure 26. 7 shows the layout of a KFRH. 

A KFE hash table locates all the KFEs. A known image name is hashed 
to a number between 0 and 127, which is an index into the 128-entry hash 
table. If the table entry contains a zero, no KFE is associated with that hash 
index. Otherwise, the table entry is the address of a KFE. As a confirmation, 
the KFE contains its own hash index value at KFE$B_HSHIDX. KFEs with 
the same hash index are linked together through the field KFE$L_HSHLNK. 
The end of the list is a forward link of zero. Figure 26.8 shows the hash table 
and several KFEs linked to it. 

There is one more known image data structure, the known file pointer 
block (KFPB). The KFPB contains the hash table address at KFPB$L_KFE­
HSHTAB and the number of hash table entries at KFPB$W_HSHTABLEN. It 
also holds the head of the KFD list at KFPB$L_KFDLST and the KFD count 

745 



Image Activation and Exit 
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Figure 26.6 
Known File Directory and Known File Entries 
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IHD 
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Figure 26.7 
Layout of a Known File Resident Image Header 
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0 
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0 
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at KFPB$W _KFDLSTCNT. Figure 26.8 shows the layout of the KFPB and its 
relation to the other known image data structures. 

Implementation of the Image Activator. The image activator is implemented 
as the $IMGACT system service. Direct requests to this system service are 
reserved for the VMS operating system. Direct requests by users are com­
pletely unsupported. Instead, users can request the image activator indirectly 
through any CLI command that runs an image and through the Run-Time 
Library procedure LIB$FIND_IMAGE_SYMBOL. 

Table 26.1 shows the arguments to the $IMGACT system service. 

Activation of a Simple Main Image. Most of the common operations that 
are performed by the image activator occur during the activation of a simple 
main image, that is, one linked with no shareable images. This section, 
therefore, follows the general flow through the image activator for simple 
main images, including those installed as header resident or shareable. Other 
forms of activation, described in later sections, are mentioned briefly in this 
section when appropriate. 

The $IMGACT system service procedure, EXE$IMGACT, runs primarily 
in executive mode with some kernel mode subroutines. EXE$IMGACT is 
in the module SYSIMGACT; some of the procedures it calls are in mod­
ules IMGMAPISD, IMGDECODE, and SYSIMGFIX. EXE$IMGACT and the 
procedures it calls are known as the image activator. 

To activate a simple main image, the image activator takes the following 
steps: 
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Table 26.1 Arguments to the Image Activator System Service 

Argument 
Name 

NAME 

DFLNAM 

HDRBUF 

IMGCTL 

INADR 

RETADR 

ID ENT 

ACMODE 
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Meaning 

Descriptor of image name to be activated. 
Descriptor of default file name. 
Address of 512-byte buffer in which the HID and image file descriptor are returned. 

The first two longwords in the buffer are the addresses within the buffer of the 
HID and the image file descriptor. 

Image activation control flags. These flags control the form that the activation 
will take. The options are the following: 
• IAC$V _MERGE-If set, the image activator is directed to merge an image 

into the address space of an already activated image. When this flag is set, the 
user stack and the image 1/0 segment are to be ignored. This flag must be set 
if the image activator is requested from user mode. 

• IAC$V _EXPREG-If set, the INADR argument does not give an actual address 
range but merely indicates PO address space, which is expanded as required. 
This flag is only used during a merged image activation for a PO image . 

• IAC$V _PlMERGE-If set, the image activator is directed to merge an 
executable image into Pl space. This flag is used when mapping a CLI into 
Pl space. This merge is performed in two parts: first the image is merged into 
PO space, then into Pl space. The sole purpose of the merge into PO space is 
to determine the size of the image. Once the size is determined, the correct 
starting address in Pl space can be calculated. 

• IAC$V _SETVECTOR-If set, the image activator only initializes the Pl 
vectors that dispatch to user-written system services, rundown routines, and 
message sections. 

Address of a two-longword array containing the virtual address range into which 
the image is to be mapped. This argument is usually omitted, in which case 
the address ranges designated by the ISDs in the HID are used or the image is 
mapped at the next available location. 

Address of a two-longword array to receive the starting and ending addresses into 
which the image was actually mapped. 

Address of a quadword containing the version number and matching criteria for a 
shareable image. 

Access mode for page ownership and image channel assignment. This defaults to 
user mode. If specified, it is maximized with the access mode of the $IMGACT 
requestor. 

1. It initializes its eight-page scratch area in Pl space. 
2. It resets the Pl space vectors for user-written system services, rundown 

routines, and message sections. 
3. It checks the accessibility of the system service argument list and its 

arguments and copies them for later use. 
4. It invokes RM$RESET, in module RMSRESET, to initialize the image 

1/0 segment. 
5. It allocates and zeros an ICB. 
6. It locks the known file database by requesting the Enqueue Lock Request 
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and Wait ($ENQW) system service. It locks the systemwide resource 
INSTALL$KNOWN FILE for protected read. This blocks any attempt 
at concurrent changes to the known file database by the Install Utility. 

7. The image activator requests RMS to open the image for execute ac­
cess, specifying the user-open, process-permanent file, sequential-only, 
and known file database search options. It requests a WCB containing 
complete mapping information for the file, thus avoiding later window 
turns. 

The image activator then stores the image name and channel number 
in the ICB. If RMS discovers the image in the known file database, it 
returns the address of the KFE in the CTX field of the file access block 
(FAB). The image activator stores the KFE address in the ICB as well. 
It takes note of whether the image was installed with the /PRIVILEGE, 
/ACCOUNT, /PROTECTED, /EXECUTE_ONLY, or /SHARE qualifiers. 

8. The image activator tests whether the IHD is resident. A known image 
with its header resident in memory can be activated quickly because a 
header read operation is avoided. If the IHD is not resident, the image 
activator reads the image file and performs several consistency checks to 
determine that it has indeed found an IHD. 

9. The image activator tests whether the image is an ordinary native mode 
image. The last word in the first block of the IHD, IHD$W _ALIAS, 
indicates whether the image is a native image produced by the VMS 
Linker, an image produced by some other linker, or an image that is a 
CLI. Depending on the value in IHD$W _ALIAS, another image might be 
activated before the current one. 

The only other linker supported is the RSX-llM Task Builder. It pro­
duces a compatibility mode image with a zero in IHD$W _ALIAS. When 
the image activator finds such an image, it instead activates SYS$SYS­
TEM:RSX.EXE. Further details about the activation of a compatibility 
mode image are found in Section 26.1.1.11. 

If the IHD specifies that the image is a CLI, the image activator instead 
activates LOGINOUT. Section 26.1.1.12 contains further details about 
the activation of a CLI. 

10. The image activator copies information from the system service argu­
ment list into the ICB and inserts the ICB at the tail of its work list. 

11. The image activator enters its main loop. It begins processing the work 
list by removing an ICB from the head of the list. The first ICB removed 
from the work list is the ICB describing the main image, which was 
inserted in step 10. 

12. The image activator processes the ISDs in the image's header, which it 
locates through the ICB. Its main task is setting up the process page 
tables to reflect the address space produced by the linker. It reads each 
ISD in the IHD (see Figure 26.2) and determines the type of section 
described: private or demand zero for the simple main image in this 
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example; private, demand zero, or global for a main image linked with 
shareable images. It then requests the appropriate memory management 
system service to perform the actual mapping. 

-The most common form of ISD describes a private section. A private 
section is either read-only or read/write, depending on the attributes 
of the program sections (PSECTs) that comprise the image section. 
Initial page faults for all pages in a private section are satisfied from 
the appropriate blocks in the image file. 

To map a private section into process address space, the image activa­
tor normally requests the Create and Map Section ($CRMPSC) system 
service, using the contents of the ISD as input arguments. It always 
specifies the NO_OVERMAP flag, so that if pages exist in the desired 
virtual address range, they are not deleted. The result is a series of 
page table entries (PTEs) containing process section table indexes. Fig­
ure 26.9 shows the PTEs, the process section table entry, and the ISD. 
The number of PTEs is equal to the page count in the ISD. Notice that 
all the PTEs index the same process section. 

If an image is installed /SHARE, however, the Install Utility has 
already processed its ISDs and has created global sections wherever 
image section characteristics allowed. When a process activates an im­
age installed /SHARE, the image activator maps those existing global 
sections into process address space using the Map Global Section ($M­
GBLSC) system service and only creates private sections for those ISDs 
whose characteristics do not allow sharing. 

If the section is read-only and the image was installed /SHARE, the 
image activator requests the $MGBLSC system service. The result 
is a series of PTEs that are global page table indexes. Figure 26.10 
shows the PTEs, global page table, and ISD. 

If the section is writable and the image was installed /SHARE 
/WRITE, the image activator requests the $MGBLSC system service. 

If the section is writable and copy-on-reference, it requests the 
$CRMPSC system service to create a private copy of the section. 

If the section is read-only but not shared, it requests the $CRMPSC 
system service. An image section containing a .ASCID directive or 
.ADDRESS reference to a symbol in a shareable image cannot be 
shared except in a main image (see Section 26.1.2). 

One special kind of private section is a fixup vector table, which 
describes addresses in the image that are resolved at image activation 
rather than at link time. Fixup vector processing is described in Sec­
tion 26.1.2. When the image activator encounters an ISD describing a 
fixup vector table, it stores the base address of the current image into 
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Figure 2.6.10 
ISD and Page Table Entries for Global Section 

Global page table entries can take 
one of three forms: 
• GPTE is valid. 
• GPTE indicates a transition state. 
• GPTE contains ·a global section 

table index. 

the fixup vector table and adds it to the list of fixup vector tables to 
be processed later by the $IMGFIX system service. 

-Another form of ISD is a demand zero section. The linker produces 
such a section whenever there are five (or some user-specified default 
number) consecutive uninitialized copy-on-reference pages in the im­
age fl.le. The image file does not contain demand zero section pages but 
merely an indication in the ISD that a certain range of virtual address 
space contains all zeros. 

The image activator uses the contents of this type of ISD as input 
arguments to an internal interface to the Create Virtual Address Space 
($CRETVA) system service. The $CRETVA system service creates new· 
demand zero pages in the specified range of virtual addresses. By de­
fault, if it discovers any pages that already exist in the range, they are 
deleted. The internal interface allows the image activator to specify 
the NO_OVERMAP flag, overriding this default. The result is a series 
of demand zero page PTEs. The number of PTEs is equal to the page 
count in the ISD. Figure 26.11 shows the ISD and PTEs for the demand 
zero section. 

Note that one such section is the area in Pl space that contains the 
user stack. The linker distinguishes this special demand zero section 
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Figure 26.11 
ISD and Page Table Entries for Demand Zero Section 

from others by a special code byte in the type designator in the ISD. 
The image activator records the ISD page count and delays mapping 
the user stack until later in the activation. 

-The third type of ISD, which would not be found in the simple main 
image of this example, is a global ISD. A global ISD indicates that the 
image activator must map a shareable image into a range of virtual 
address space. When the image activator encounters a global ISD, it 
builds an ICB to describe the shareable image and inserts it in its work 
list. Section 26.1.1.6 describes ICB insertion and the activation of a 
shareable image. 

13. If the image is being activated from a sequential device (magnetic tape or 
across a network), then the address range is created and the entire image 
read from the sequential device into virtual address space. All future page 
faults are resolved from the page file. 

14. In this example of a simple image (with no references to shareable im­
ages and thus no global ISDs), the only ICB on the work list has now 
been processed. The image activator continues with its end processing, 
described in Section 26.1.1.7. 

In the case of an image linked with shareable images, the image activa­
tor would have found global ISDs while processing the main image ICB. 
Thus, additional ICBs were added to the work list. The image activator 
processes them as described in the following section. 

Activation of Shareable Images. Whenever the image activator encounters a 
global ISD in the header of an image being activated, it allocates an ICB, 
copies the image name from the ISD into the ICB, and inserts the ICB 
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onto the ICB work list. When the image activator completes the processing 
associated with, for example, the main image's ICB, it continues with the 
following steps. !In the case of a merged image activation request, perhaps 
initiated through the procedure LIB$FIND_IMAGE_SYMBOL, there would 
be no main image processing.) 

1. The image activator attempts to remove an ICB from its work list. If 
there is none, activation is complete and the image activator proceeds 
with its end processing, described in Section 26.1.1.7. 

2. It checks the done list to see whether the image named in the work list 
ICB has already been activated in the virtual address space. If so, the done 
list includes an ICB with the same name. 

Commonly referenced shareable images, such as LIBRTL, can appear 
on the work list multiple times. Activating an image linked with several 
shareable images, each linked with LIBRTL, causes multiple insertions 
of LIBRTL on the work list. No matter how many times a shareable 
image appears on the work list, it is only activated once because the 
image activator discovers it on the done list for all subsequent activation 
attempts. 

If the image activator discovers the image on the done list, it must en­
sure that the earlier activation matches current protection requirements. 
If an image is installed /PROTECTED, all shareable images with which 
it links must be installed. If several shareable images link with the same 
shareable image X, and only one of those shareable images is installed 
/PROTECTED, image X might possibly be activated before the /PRO­
TECTED image, that is, before the image activator detects that image X 
must be an installed image. The image activator checks for this condi­
tion and returns the error status SS$_PRMNSTAL if the image is not 
installed. Otherwise it deallocates the ICB and goes back to step 1 to 
process the next ICB on the work list. 

3. If the image is not already activated, the image activator places the 
ICB to the right of a stack pointer maintained on the done list. This 
mechanism ensures that ICBs appear on the list in the proper order for 
image initialization !see Section 26.1.1.8). 

4. The image activator requests RMS to open the image named by the ICB. 
It specifies a default. file type of EXE and directory of SYS$SHARE, with 
file open options of user-open, process~permanent file, sequential-only, 
and known file database search. It requests a WCB containing complete 
mapping information for the file, thus avoiding later window turns. If 
the global ISD specified a writable global section, the image activator 
requests shared write access. Otherwise, it requests execute access. 

To locate the file, RMS attempts logical name translation of the file 
name part of the image name. 

When activating one of the following image types, the image activator 
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specifies that RMS use only executive or kernel mode logical names to 
translate the image name: 

-An image installed with privileges 
-A main image installed /EXECUTE_ONLY and activated from user 

mode 
-A main image invoked by a process with execute access but not read 

access to the image file 
-An image installed as a protected image or having an ancestor installed 

as a protected image 

5. If the image or any ancestor is protected, the image activator checks 
that the image returned by RMS is a known image. If not, the activa­
tion is aborted and the image activator returns the error status SS$_ 
PRIVINSTALL. 

In addition, if a shareable image is not installed /EXECUTE_ONLY, 
and the process does not have both read and execute access to it, the 
activation is aborted and the image activator returns the error status 
SS$_ACCONFLICT. 

6. If the image is not a known image with its header resident, the image 
activator reads in its header (see step 8 in Section 26.1.1.5). 

7. It then checks that the match control information in the IHD is consis­
tent with the match requested in the global ISD whose presence caused 
the activation of this shareable image. If there is a mismatch, the im­
age activator aborts the activation and returns the error status SS$_ 
SHRIDMISMAT. 

8. If the IHD indicates that the shareable image has an initialization section, 
the image activator sets the ICB$V _INITIALIZE flag and records the 
address of the initialization section in ICB$L_INITIALIZE. 

9. If the image was not header resident, the image activator invokes 
EXE$CHECIL VERSION, in module CHECK_ VERSION, which checks 
whether an image linked against system global symbols is compatible 
with the versions of those symbols in the running system. Chapter 29 
describes the compatibility check in detail. 

Since the Install Utility performs this check as well, the image activa­
tor skips the check if the image is header resident. 

For VMS Versions 5.0 and 5.1, version incompatibility caused the image 
activator to remove CMKRNL and CMEXEC privileges from the image 
but continue the activation. Beginning with VMS Version 5.2, the image 
activator aborts the activation and returns the fatal error status SS$_ 
SYSVERDIF. 

10. If the versions are compatible, the image activator processes the ISDs for 
each section in the shareable image. 

-If the ISD is a global ISD, representing a different shareable image, 
the image activator compares the portion of its name designating the 
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image (that is, without the trailing nnn) to the name of the ICB most 
recently added to the work list. If the names are the same, the image 
activator does not add an ICB to the work list. The comparison prevents 
some ICB redundancy in the work list. An image referencing different 
image sections within a second image would have multiple global ISDs 
describing the second image. Without the comparison, multiple ICBs 
would be generated for the second image. 

If the names are different, the image activator creates an ICB to 
describe the image. Before adding it to the work list, the image acti­
vator examines all existing work list entries for an entry whose name 
matches. If there is no match, the current ICB is inserted at the head of 
the work list. Otherwise, the ICB is inserted in place of the matching 
ICB, and the matching ICB is moved to the head of the work list. This 
ensures that the earliest reference to a based shareable image controls 
the mapping of the image. 

-If the ISD is not a global ISD, the image activator maps the section 
into the process address space. Step 12 in Section 26.1.1.5 describes 
the processing of private ISDs and demand zero ISDs. 

11. When all ISDs are disposed of, processing for the ICB is complete. If this 
ICB has added more ICBs to the work list, it becomes the top of the stack 
maintained on the done list. The image activator removes the next ICB 
from its work list and repeats the steps in this section. 

After the last ICB is processed, the image activator performs the end 
processing described in Section 26.1.1.7. 

Image Activator End Processing. If a main image was activated, the image 
activator performs the complete end processing described in this section. For 
a merged activation, it performs only steps 7 and 8. 

The image activator's end processing consists of the following steps: 

1. The image activator tests if the image was linked with an image 1/0 
segment larger than the standard space allocated during process creation. 
The standard size is determined by the SYSGEN parameter IMGIOCNT, 
which has a default value of 64. However, the default can be overridden 
at link time with the following line in the linker options file: 

IOSEGMENT = n 

If an image 1/0 segment larger than the default value is requested, the 
image activator requests the $CRETVA system service to create a re­
placement image 1/0 segment. 

If a PO-only image is being activated, the image activator creates the 
image 1/0 segment at the high-address end of PO space. 

2. The address space for the user stack is created with the Expand Region 
($EXPREG) system service. The usual location of the user stack is at the 
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low-address end of Pl space, where the automatic stack expansion can 
add user stack space as needed. The location of the user stack in PO-only 
images is at the high-address end of the PO image. 

The default size of the user stack is 20 pages. The following line in the 
linker options file can override this value: 

STACK • n 

The image activator creates a user stack with two extra pages for system 
use during exception processing in case the user stack is corrupted. 

3. Running in kernel mode, the image activator stores the address of the 
high end of the user stack in the Pl pointer page, in the CTL$ALSTACK 
array. Reserving space for system use during exception processing, the 
image activator loads an address two pages below the high end of the 
stack into the processor register PR$_ USP. This is the value loaded into 
the SP register when an REI instruction returns the process to user mode, 
which usually occurs following the return from the image activator. 

4. The privileges that will be in effect while this image is executing are 
calculated. The logical AND of the privilege mask found in IHD$Q_ 
PRIVREQS (which currently enables all privileges and so is effectively un­
used) with the process-permanent privilege mask at location CTL$GQ_ 
PROCPRIV is then ORed with the privilege enhancements for a privi­
leged known image, from KFE$Q_PROCPRIV. 

The result is stored in the process privilege mask in the access rights 
block (ARB) at offset ARB$Q_PRIV (also known as PCB$Q_PRIV) and 
in the process header (PHD) at offset PHD$Q_PRIVMSK. The mask at 
KFE$Q_PROCPRIV is copied to the PHD at offset PHD$Q_IMAGPRIV. 
The uses of the various privilege masks are described in Section 26.4.1. 

5. The image activator stores the address of the IHD buffer in the global 
location CTL$GLIMGHDRBF. 

6. It checks whether image accounting was requested for this particular 
image or enabled for the system as a whole. If so, the image activator 
records various statistics, such as current CPU time, in their Pl locations. 

7. If a known image is being activated, its use count must be incremented. 
If the image was installed /OPEN, the share count in its WCB must also 
be incremented. The image activator then sets the done bit in the ICB to 
indicate that it has been activated. The actions in this step are done for 
each image being activated. 

8. At this point, the image activator has finished its work. It releases its 
lock on the' known file list, loads a final status into RO, and returns to its 
requestor to allow the image itself to be called. The caller (EXE$PROC­
STRT, LIB$FIND_IMAGE_SYMBOL, or a CLI) requests . the $1MGFIX 
system service to perform address relocation. Section 26.1.2 describes 
$IMGFIX. 
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Computing the Proper Order of Image Initialization. As a by-product of 
its normal work, the image activator computes the order of initialization 
for multiple shareable images activated by a main image. The basic rule for 
image initialization is that if shareable image A calls shareable image B, then 
the initialization routine for image B must be called before the initialization 
routine for image A. This rule enables image A to call any routine in image B 
(or in any image that B calls) during A's own initialization. 

The initialization routine for each activated image is called as part of image 
fixup (see Section 26.1.2.5). $IMGFIX first calls the initialization routine 
specified by the ICB that is at the tail of the done list. It proceeds towards 
the head of the done list. The image activator must create the correct order 
of ICBs on the done list by careful placement of ICBs on both the work and 
done list. 

If image A calls image B, then at some point during the activation of image 
A, the image activator encounters a global ISD that references image B. The 
image activator builds an ICB to insert at the head of the work list. Inserting 
these ICBs at the head of the list ensures that these called, or son, images 
will be activated· after the calling, or parent, image and generally before any 
siblings of the parent. 

Before actually inserting the ICB on the work list, the image activator 
examines existing work list entries. If it finds an entry whose name matches 
that of the ICB to be added, it inserts the ICB after the matching ICB and then 
moves the matching ICB to the head of the work list. Since an image is only 
activated once no matter how many times it is referenced, this ensures that 
its mapping is controlled by the top-level accessor. Otherwise the current 
ICB is inserted at the head of the work list. This list generates a walk of the 
image call graph known as a preorder traversal. 

A stack, implemented at the head of the done list, is used to convert the 
preorder traversal for image activation into a postorder traversal for image 
initialization. Basically, a parent node remains on the stack until its last son 
is activated. A stack pointer points to the top of this stack in the done list. 
(Initially, the stack pointer points to the queue header.) Figure 26.12 shows 
how the ICBs at the head of the done list form this stack. 

To pop this stack, the stack pointer is simply moved to the left. The next 
ICB from the work list is always inserted to the right of the top of the stack. 
It becomes the new top of the stack if it has any sons. ICBs to the right of 
the top of the stack are always in the proper initialization order. ICBs at and 
to the left of the stack pointer are parent ICBs who still have descendants 
that have not been activated. 

The stack is built to ensure that the sons and descendants of an image 
are always placed on the done list to the right of the ICB of the parent. 
Since the done list is processed in reverse order during initialization, this 
placement ensures that all images called directly or indirectly by some image 
are initialized before that image itself. 
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The manipulation of the work and done lists is controlled by the ICB$L_ 
ACTIVE_SONS count in each ICB. This field specifies how many of the 
image's sons have not yet been activated (their ICBs are still on the work 
list) and how many have been activated but still have active sons of their 
own (these ICBs are on the stack in the done list). The ICBs to the right of 
the stack in the done list have no active sons. 

The following steps describe the image activator's manipulation of ICBs 
on the done and work lists to generate the proper initialization order. The 
details of image activation are described in Sections 26.1.1.5 and 26.1.1.6 and 
are not repeated here. 

1. The image activator tries to remove an ICB from the front of the work 
list. If there is none, it goes on to end processing (see Section 26.1.1.7). 

2. If this is an image that was already activated (that is, on the done list) and 
still has active sons, then the image activator has detected a circularity. 
(The image is one of its own descendants, so no initialization order 
is possible.) In this rare case, all the images on the done list that are 
involved in the circularity must be marked. An error will be reported 
if a subsequent attempt is made to initialize one of those images. The 
images involved in the circularity are exactly those ICBs on the stack 
from the top of the stack down to and including the previously activated 
image. 

Regardless of whether there is a circularity, if the image was previously 
activated, the image activator deallocates the ICB and then continues at 
step 6. 

3. Otherwise, this is a new image needing activation. The image activator 
inserts its ICB just to the right of the top of the stack in the done list 
and zeros its ICB$1-ACTIVE_SONS count. . 

It then performs the detailed work of activation for this image (steps 4 
through 8 in Section 26.1.1.6). During those steps, each time the image 
activator creates a new global ICB (son), it places the new ICB at the front 
of the work list and increments ICB$L_ACTIVE_SONS in its parent's 
ICB. (After the parent image is activated but before its sons have been, 
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this field contains the total number of shareable images referenced by 
the image.) 

4. If the field ICB$L_ACTIVE_SONS in the ICB to the right of the top of the 
stack is nonzero after the image has been activated, the image activator 
makes that ICB the top of the stack and continues with step 1. (This 
new parent remains on the stack until all its sons, which are located at 
the front of the work list, are activated and no longer have active sons 
of their own.) 

5. Otherwise, the field ICB$L_ACTIVE_SONS in the ICB to the right of the 
top of the stack is zero, and the image activator continues with step 6. 

6. This step is called a "decrement parent" operation. ICB$L_ACTIVE_ 
SONS in the parent ICB at the top of the stack must be decremented 
to indicate that one of its sons is activated. If its count becomes zero, 
this same step must be repeated for its parent, and so on. 

If the stack is empty, there is no parent to decrement. The image 
activator continues with end processing (see Section 26.1.1. 7). Otherwise, 
it decrements ICB$L_ACTIVE_SONS in the ICB at the top of the stack. 

7. If the count is still positive (the image still has active sons), the ICB 
remains at the top of the stack and the image activator continues with 
step 1. Otherwise, if ICB$L_ACTIVE_SONS is now zero, it must decre­
ment the ICB$L_ACTIVE_SONS field in the parent of the ICB. 

8. When it reaches the ICB at the top of the stack (the ICB that initiated 
the activations, and therefore has no parent), the image activator proceeds 
to its end processing. Otherwise, the image activator pops the stack by 
moving the stack pointer to the left in the done list and repeats step 6. 

Example Activation. The details of activating an image linked with several 
shareable images can be illustrated with an example. The example main 
image references the shareable images A and LIBRTL, image A references 
the shareable images Band LIBRTL, and image B references LIBRTL. 

At the beginning of the activation, an ICB representing the main image 
is placed on the work list. This first ICB is moved from the work list to 
the done list. As its ISDs are processed, work list items are added for A and 
LIBRTL as the result of references in the main image. 

Work List 

LIBRTL (main image) 
A (main image) 

Done List 

Main image (2 sons) 
Stack Top 
¢:: 

After mapping the sections of the main image, the image activator removes 
the ICB for LIBRTL from its work list. The ISD is processed and the main 
image's son count is decremented. Since LIBRTL has no sons, the main image 
remains at the top of the stack. 
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A !main image) 
Done List 

Main image 11 son) 
LIBRTL 
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Stack Top 

<= 

The image activator removes the ICB for image A from its work list. In 
processing A, work list items are added for Band LIBRTL. Since A has sons, 
it becomes the new stack top. 

Work List 
LIBRTL IA) 
BIA) 

Done List 
Main image 11 son) 
A 12 sons) 
LIBRTL 

Stack Top 

<= 

The image activator removes the ICB for LIBRTL from the work list, dis­
covers the duplication, and discards the entry, decrementing A's son count. 

Work List 

BIA) 
Done List 

Main image 11 son) 
A 11 son) 
LIBRTL 

Stack Top 

<= 

The image activator removes the ICB for image B from its work list. In 
processing B, a work list item is added for LIBRTL. Since B has a son, it 
becomes the new stack top. 

Work List 

LIBRTL IB) 
Done List 
Main image I 1 son) 
A II son) 
B ll son) 
LIBRTL 

Stack Top 

The image activator removes the ICB for LIBRTL from the work _list, dis­
covers the duplication, and discards the entry, decrementing B's son count. 
Since this brings B's count to zero, A !B's parent) becomes the stack top and 
its son count is decremented, again to zero. Thus the main image becomes 
the stack top, its count is decremented to zero, and the image activator per­
forms its end processing. The done list is left in the correct order for image 
initialization. 

Work List Done List 
Main image 
A 
B 
LIBRTL 

Stack Top 

<= 
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Activation of a Known Image. When the image activator opens a known 
image, RMS places the address of the KFE in the CTX field of the FAB. 

The activation of a known image proceeds in the same way as that of a 
regular image, although some of the work that the image activator must 
perform in the regular case is avoided. In particular, a known image that 
has its header resident is activated more quickly, because the header read 
operation is avoided. 

In any case, the ISDs must still be processed and the PTEs set up so that 
the image can execute. In addition, the image activator must update the 
usage statistics for this known image (see Figure 26.4). 

Activation of a Compatibility Mode Image. When the image activator deter­
mines from IHD$W _ALIAS that it is attempting to activate a compatibility 
mode image, it changes its course and instead activates the RSX-llM AME 
(SYS$SYSTEM:RSX.EXE). 

An AME is itself a native mode image, responsible for mapping the com­
patibility mode image into the address range between 0 and 1000016, passing 
control to that image while turning on the compatibility mode bit (with an 
REI instruction), and fielding all compatibility mode and other exceptions 
generated by the compatibility mode image. Currently, the RSX-llM AME 
is the only supported AME. 

From the point of view of image activation, once the image activator 
determines that it is activating a compatibility mode image, it continues 
with activation, but activation of the AME and not the compatibility mode 
image. The name of the compatibility mode image is stored at location 
CTL$AG_CMEDATA, where it is retrieved by the AME. 

Activation of a Command Language Interpreter. When the image activator 
determines that it is attempting to activate a CLI and the IAC$V _MERGE 
flag is clear, it activates instead the image LOGINOUT. First, the image ac­
tivator closes the CLI image file, because LOGINOUT performs its own file 
open. Then it activates LOGINOUT and transfers control to it. LOGINOUT 
maps the CLI into Pl space and passes control to it. Chapter 27 describes 
this flow. 

$IMGFIX System Service 

The $IMGFIX system service procedure, EXE$IMGFIX in module SYSIMG­
FIX, runs in the access mode from which it is requested. In cooperation with 
$IMGACT and the linker, EXE$IMGFIX enables the postponement of address 
assignment from link time to image activation. Delaying address assignment 
permits position independence within shareable images and the images that 
link with them. Because fixups modify pointers within images themselves, 
they are performed in the access mode from which the main image will run. 
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The exceptions are .ADDRESS fixups for privileged shareable images, which 
are performed from executive mode. 

The linker creates fixup vector tables for executable images and for most 
shareable images. When EXE$IMGACT encounters an ISD describing a fixup 
vector table, it copies the base address of the current image to the fixup vec­
tor table and inserts the table at the head of the list pointed to by CTL$GL_ 
FIXUPLNK. EXE$IMGFIX processes entries from the fixup vector list, cre­
ated by EXE$IMGACT. This chapter refers to the image whose address 
EXE$IMGACT stores as the fixup image. 

EXE$IMGFIX performs modifications to several forms of addressing: 

• A GA (general) reference to an address in a shareable image 
• A .ADDRESS reference to a location within a nonbased shareable image 
• A .ASCID directive within a nonbased shareable image 

Resolution of a GA reference is deferred until image activation so that the 
relative address is not affected by a change in the size of any intervening 
shareable image. 

The .ADDRESS directive references a fixed address in virtual memory. 
Resolution of a .ADDRESS reference to a location in a shareable image 
is deferred so that the shareable image need not be loaded at a fixed base 
address. ,.ADDRESS references are fixed up after the base address of the 
shareable image is determined when it is activated. However, if the linker 
options file specifies a base address for an image, .ADDRESS references to 
locations within it are resolved at link time. 

The .ASCID directive builds an ASCII string and a descriptor for it. It 
incorporates the equivalent of an .ADDRESS directive referencing the string; 
.ASCID directives within a nonbased shareable image are fixed up after the 
base address of the shareable image is determined. In the following sections, 
text references to .ADDRESS directives include those generated by .ASCID 
directives. 

The VMS Linker Utility Manual explains in more detail the motivation 
for the $IMGFIX system service and the linker's action in preparing for image 
fixups. 

An image linked under Version 3 or later of the VMS operating system 
includes a section called the fixup vector table. The table contains data that 
describes GA references, a list of the shareable images referenced by the image, 
and data that describes .ADDRESS references. Figute 26.13 shows the layout 
of an image and its fixup vector table. 

Shareable Image List. There is one shareable image list entry (SHLJ for each 
shareable image referenced by the fixup image, plus one SHL for the fixup 
image itself. Each SHL contains the name of the associated shareable image. 
EXE$IMGFIX uses this name to match the SHL with an ICB on the done 
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list. It then copies the base virtual address of the shareable image from the 
ICB into the SHL. 

The SHL for the fixup image, which is the first shareable image list ele­
ment (index O), contains information used to resolve .ADDRESS locations. 
EXE$IMGACT stores the base virtual address of the image in this SHL. Fig­
ure 26.14 shows the layout of the shareable image list entries within the 
fixup vector table. 

Resolution of GA Locations. A section of each fixup vector table is reserved 
for GA vectors. This G' vector table is composed of multiple substructures, 
one for each shareable image containing the target of a G' reference. The 
substructure consists of an entry count, the index of the SHL associated with 
the shareable image, and a longword entry for each target label. Figure 26.15 
shows the layout of the G' vector table and substructures. 

When an image is linked, the linker tries to resolve G' references by chang­
ing them to absolute addressing mode,@#. When it encounters a G' reference 
to a location in a shareable image, however, the linker instead changes the 
addressing mode to longword relative deferred, @L'. The displacement to the 
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operand address locates a longword entry in the G' vector table substructure 
for the shareable image containing the target. The linker calculates the offset 
from the base of the shareable image to the target and stores this value in 
the substructure entry. 

If there are multiple G' references to the same target, the linker points all 
of them to the same substructure entry. 

For each substructure in the G' vector table, EXE$1MGFIX resolves G' 
references by performing the following actions: 

• It uses the index into the shareable image list to locate the SHL associated 
with the shareable image. 

• From the SHL, it obtains the base virtual address of the shareable image. 
• It adds the base address to each longword entry in the substructure. 

When the image executes, the instruction's displacement to the operand 
address locates the appropriate entry within the G' vector table substructure. 
The entry contains the corrected virtual address of the target label. 

Resolution of .ADDRESS Locations. Like the G' vector table, the .ADDRESS 
vector table is composed of multiple substructures, one for each shareable 
image referenced by a .ADDRESS directive. The .ADDRESS vector table also 
contains a substructure for the fixup image itself, if it is not a based image. 
A substructure consists of an entry count, the index of the SHL associated 
with the shareable image, and a longword entry for each .ADDRESS directive 
whose target is within the shareable image. The longword entry contains 
the offset from the base of the fixup image to the .ADDRESS directive. 
Figure 26.16 shows the layout of a .ADDRESS vector table. 

The linker takes the following actions for each .ADDRESS directive: 
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1. It determines the offset of the target location from the base of its share­
able image. It stores this offset in the longword reserved in the fixup 
image by the .ADDRESS directive. 

2. It determines the offset of the .ADDRESS directive from the base of the 
fixup image. It stores this offset in the .ADDRESS vector table substruc­
ture associated with the shareable image that contains the target. 

Figure 26.17 illustrates the resolution of the .ADDRESS directive by the 
linker. The target MTH$SQRT is within the shareable library MTHRTL. 
The .ADDRESS directive within MAIN.EXE contains the offset of the la­
bel MTH$SQRT from the base of MTHRTL.EXE. The entry in MTHRTL's 
.ADDRESS vector table substructure contains the offset of the .ADDRESS 
directive from the base of MAIN. 

When EXE$IMGFIX resolves a .ADDRESS directive, it performs the fol­
lowing steps to obtain the actual address of the location: 

1. It adds the base address of the fixup image (in the previous example, the 
image MAIN), to each entry in the .ADDRESS vector table substructure. 
Separating ·the offset and base address in this fashion allows the fixup 
image to be a position-independent shareable image. 

2. Using the substructure entry to locate the .ADDRESS cell in the fixup 
image, it adds the base address of the shareable image (MTHRTL.EXE) to 
the contents of the .ADDRESS cell (the offset to the label MTH$SQRT). 

3. It stores the resulting address in .the .ADDRESS cell. 

EXE$IMGFIX repeats this action for all .ADDRESS directives in all the 
linked images, except in images that have a specified starting base address. 
Note that an image section containing .ADDRESS or .ASCID references fixed 
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Figure 26.17 
Resolution of the .ADDRESS Directive 

up in this way cannot he shared among processes, since the resolutions of 
those directives are spe~ific to the virtual address space in each process. 

( 

Page Protection Fixup. Mter address fixup is complete, EXE$IMGFIX adjusts 
page protection as spec;ified in the page.protection data area of the fixup vec­
tor table. The mannedn which EXE$IMGFIX performs a .ADDRESS fixup 
requires that the page)~ontaining the .ADDRESS reference be writable. To 
allow a read-only imag~"section to use .ADDRESS references, the section is 
originally defined as wtj;table. The linker creates an entry in the page protec­
tion data area for each i~ction of this type, specifying a new page protection 
of UR. After address fixµp, EXE$1MGFIX requests the Set Protection on Pages 
($SETPRT) system servfoe for each entry in the page protection data area. 

The final page protection entry alters the protection of the fixup vector 
section itself to UREW. The fixup vector pages are always protected from 
user mode modification.because entries in the G' vector table are referenced 
during image execution, figure 26.18 shows the layout of the page protection 
area. 

Additional Functions Q[EXE$IMGFIX. Following address fixup and page 
protection modificatio~~;EXE$IMGFIX tests whether any privileged share­
able images have been ll:£'tjvated. If so, it requests the $IMGACT system ser­
vice, specifying the IAgv _SETVECTOR flag. Running in executive mode, 
the image activator initif]lizes the Pl space dispatch vectors for user-written 
system services, rundo~~ routines, and message sections. 

If any shareable image specified an initialization routine, EXE$IMGFIX 
scans the done list, ICBs representing activated images, from back to front. 
EXE$IMGFIX, running iii user mode, calls the initialization routine of each 
shareable image that· specified one. 
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EXE$PROCSTRT or a CLI can request image activation and fixup, as de­
scribed in Chapter 27. After successful image activation and fixup, the image 
is called at its transfer address. Depending on how the image was linked, the 
initial transfer of control may be to a debugger, a user-supplied initialization 
procedure, or the executable image itself. 

Transfer Address Array. In addition to the ISDs previously discussed, the 
linker includes in the image header a data structure called a transfer address 
array. This array contains the user-supplied transfer address. It also provides 
the means for including a debugger or a traceback handler in the user image. 

The format of the transfer address array is pictured in Figure 26.19. If a 
debugger transfer address is specified or implied, it appears first in the list. 
An image-specific initialization procedure, if specified, occurs next. The last 
entry in the list is the transfer address of the user image, either the argument 
of a .END directive for a VAX MACRO program or the first statement of a 
main program written in a high-level language. A fourth entry containing a 
zero is the end of list indication, no matter what options were passed to the 
linker. 

The initialization transfer address is described in the VMS Run-Time Li­
brary Routines Volume and is not discussed here. 

If the Digital command language IDCL) command LINK/DEBUG=file-spec 
is used to link an image, the explicit file specification is the name of a partic­
ular debugger object module. The linker places the transfer address found in 
the specified debugger file into the first element in the transfer address array. 
If the /NOTRACEBACK option is included land not overridden implicitly 
by including an explicit /DEBUG option), then there is no debug transfer ad­
dress. In all other cases !including the DCL command LINK/DEBUG, which 
does not specify an explicit debugger module), the linker places the address of 
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SYS$IMGSTA (found in the system service vector area) in the first element 
of the transfer address array. 

$IMGSTA System Service. Unless explicitly suppressed (with the /NO­
TRACEBACK qualifier), all images execute the Image Startup ($IMGSTA) 
system service, sometimes called the debugger bootstrap. The system ser­
vice procedure, EXE$IMGSTA in module SYSIMGSTA, runs in user mode: 
This procedure examines link and CLI flags to determine whether to start' 
the user image directly or to map the debugger (identified by translating the 
logical name LIB$DEBUG) into the user's PO space and transfer control to it. 

EXE$IMGSTA first tests whether it should map a debugger into PO space. 
The mapping is done if either of the following conditions is true: 

• If the program was linked with the DCL command LINK/DEBUG and 
simply run (that is, not run with a RUN/NODEBUG command) 

• If the program was run with the DCL command RUN/DEBUG, indepen­
dent of whether the debugger was requested at link time 

The debugger is not mapped if the image was run with a RUN/NODEBUG 
command or if the /DEBUG qualifier was omitted from both the LINK 
command and the RUN command. 

If a debugger is to be mapped, EXE$IMGSTA requests the Translate Logical 
Name ($TRNLOG) system service to translate the logical name LIB$DEBUG. 
If there is no translation, EXE$IMGSTA uses the string DEBUG as the de­
bugger name. EXE$IMGSTA then requests the $IMGACT system service to 
activate the debugger image. It specifies flags for a merged activation in PO 
space, so that the debugger will be mapped at addresses just higher than 
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the main image and its shareable images. EXE$IMGSTA then requests the 
$IMGFIX system service and finally transfers control to the debugger image 
through a self-relative offset at the beginning of the image. The debugger, in 
response to user commands, transfers control to the image. 

If no debugger is mapped, EXE$IMGSTA establishes a condition handler 
in the current call frame. This condition handler, BOOT _HANDLER, gains 
control on signals that the image does not handle directly. After gaining 
control, the condition handler invokes the debugger, invokes the traceback 

. handler, or resignals. 
Whether or not a debugger is mapped, EXE$IMGSTA alters the argument 

list to point to the next address in the transfer vector array and passes control 
to the next transfer address. This is either the Run-Time Library procedure 
LIB$INITIALIZE or the transfer address of the user image. 

Exception Handler for Traceback. BOOT _HANDLER, the condition handler 
established by EXE$IMGSTA before the image was called, has two functions: 

• It invokes a debugger if a DEBUG command is typed after an image is 
interrupted with a CTRL/Y . 

• If an unfielded condition occurs, it causes an image dump, if one was 
requested, and invokes the traceback handler to produce a symbolic stack 
dump. 

If a user interrupts execution of a nonprivileged image by typing CTRL/Y 
and DEBUG, the DCL or monitor console routine (MCRJ CLI generates the 
signal SS$_DEBUG. (Privileged images are simply run down in response to 
this command sequence. J If all handlers established by the image resignal the 
SS$_DEBUG exception, the debugger boot handler eventually gains control. 
Its response to an SS$_DEBUG signal is to map the debugger specified by the 
logical name LIB$DEBUG (if it is not already mapped) and transfer control to 
it. Note that an image that was neither linked nor run with the debugger can 
still be debugged, albeit without a debug symbol table, if the image reaches 
some undesirable state, such as an infinite loop. 

The second function of the condition handler is to field any error con­
ditions (where the severity level is WARNING, ERROR, or SEVERE) and 
pass them on to the traceback facility. If an image dump was requested, the 
handler dispatches to EXE$IMGDMP_MERGE (see Chapter 25) to create an 
image dump. When EXE$IMGDMP _MERGE returns, the handler maps the 
traceback facility, denoted by the logical name LIB$TRACE, into PO space. 
If the condition has a severity level of either SUCCESS or INFO, the handler 
merely resignals it. The condition is then handled by the catch-all condition 
handler established by either EXE$PROCSTRT or the CLI that called the 
image. 
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When an image has completed its work, it passes control back to VMS, either 
by requesting the $EXIT system service or by returning to its caller, which 
requests the $EXIT system service. $EXIT calls whatever exit handlers have 
been declared by the image and then requests the Delete Process ($DELPRC) 
system service. 

Exit handlers are described in the next section, which is followed by a 
description of the operations of the $EXIT system service. 

Exit Handlers and Related System Services 

An exit handler is an optional, user-declared procedure that performs im­
age cleanup. To use this option, an image running in a process builds a data 
structure called an exit control block and passes its address to the $DCLEXH 
system service. Exit handlers can be declared for user, supervisor, and exec­
utive access modes. The access mode from which the service is requested is 
the mode in which the exit handler is to execute. 

An exit control block contains the address of the exit handler and its 
arguments. The exit handler's first argument is the address of a longword to 
receive the final image status. The declarer of the exit handler defines any 
additional arguments and their use. An exit control block also contains a 
forward link field. This field contains the address of the next exit control 
block or, if there is none, zero. The $DCLEXH system service links together 
all the exit control blocks for an access mode. Each list is ordered with the 
most recently declared exit handlers' control blocks first. 

The exit handler listheads are in a three-longword array. Another three­
longword array contains the number of exit control blocks in each list. Each 
array is indexed by access mode. Figure 26.20 shows these arrays and exit 
control blocks. 

Both arrays are in Pl space and modifiable only from kernel mode. Exit 
control blocks, however, are defined by the image in the per-process address 
space that it controls. Therefore, the system services that access these lists 
must exercise particular care. An exit control block corrupted through pro­
gram error could destroy the integrity of its list. 

When inserting or removing an exit control block, for example, each sys­
tem service must test the accessibility of affected forward links. The count 
array is used to prevent infinite loops that might otherwise result from mul­
tiple declarations of the same exit control block. 

Two system services other than $DCLEXH access exit control blocks: 
Cancel Exit Handler ($CANEXH) and $EXIT (see Section 26.2.2). An image 
requests the $CANEXH system service to delete a particular exit control 
block or all those for one access mode. 

The $DCLEXH and $CANEXH system service procedures, EXE$DCLEXH 
and EXE$CANEXH, in module SYSDCLEXH, both execute in kernel mode. 
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The $EXIT system service procedure, EXE$EXIT in module SYSEXIT, runs 
in kernel mode. It also executes in outer modes, calling exit handlers. 

EXE$EXIT is called with a single argument, the final status of the im-. 
age. It stores the status in the Pl pointer page, at global location CTL$GL_ 
FINALSTS, where it can be copied for image or process accounting. It clears 
the force exit pending flag, PCB$V _FORCPEN in the processor status long­
word (PCB$LSTS). 

If EXE$EXIT was called from kernel mode, it requests the $DELPRC sys­
tem service, and the process is deleted. If EXE$EXIT was called from any 
other access mode, it examines the exit handler listheads (see Figure 26.20). 
It begins with the one for the mode from which it was called and proceeds 
to those of inner (more privileged) access modes. 

If EXE$EXIT finds a nonzero listhead, it saves the listhead contents and 
the number of exit control blocks in the list, and clears both the listhead and 
the count longwords. EXE$EXIT then empties the kernel stack and executes 
an REI instruction to enter the outer access mode from which it was invoked. 

Running in the outer mode, EXE$EXIT removes the first exit control block 
from the list; saves the address of the next handler, final image status, and 
count of remaining handlers on the stack; and zeros the list pointer. It writes 
the final image status to the address specified in the exit control block and 
calls the exit handler. When (if) that handler returns, EXE$EXIT calls the 
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next handler in the list. This continues until the list is exhausted or until 
EXE$EXIT has exhausted the count of exit handlers. 

Once all the exit handlers for a given access mode have been called, 
EXE$EXIT must return to a more privileged access mode. It changes access 
mode by requesting the $EXIT system service. If none of the exit handlers 
in the list just processed has done anything extraordinary (such as declaring 
another exit handler), then the list for that mode is still empty and EXE$EXIT 
proceeds to the next inner access mode in its search for more exit handlers. 

When EXE$EXIT reaches kernel mode, that is, when it has called all 
existing handlers, it requests $DELPRC to delete the process. 

Example of Exit Handler List Processing 

To illustrate the processing of exit handlers, suppose that a process has its 
exit handler lists set up as shown in Figure 26.20. When the image requests 
the $EXIT system service from user mode, EXE$EXIT takes the following 
steps: 

1. EXE$EXIT finds a nonzero listhead for user mode exit control blocks. 
The listhead points to the exit control block for procedure C, the most 
recently declared user mode exit handler. 

2. EXE$EXIT stores this address in RO and clears the listhead. It then ex­
ecutes an REI instruction to change access mode to user and then calls 
procedure C. When C returns, EXE$EXIT calls procedure B and finally 
procedure A. When A returns, EXE$EXIT determines that the user mode 
list is exhausted (because the forward pointer in the last exit handler 
is zero). EXE$EXIT, running in user mode, requests the $EXIT system 
service. 

3. As in step 1, the search for exit handlers begins with user mode but this 
list is now empty. EXE$EXIT continues with the supervisor mode list, 
which has the single exit control block for handler D. The supervisor 
listhead is cleared, access mode is changed to supervisor, and procedure 
D is called. When D returns, EXE$EXIT again requests the $EXIT system 
service, this time from supervisor mode. 

4. Now the search for exit handlers begins with supervisor mode, whose list 
is empty. The list for executive mode contains two exit handlers, F and 
E, which are called from executive mode. When they return, the $EXIT 
system service is again requested, this time from executive access mode. 
The search that now begins with the executive mode listhead fails and 
the process is deleted. 

The logic illustrated here shows how a process can prevent image exit 
through the use of exit handlers. Suppose EXE$EXIT called a supervisor mode 
handler that redeclared itself. When EXE$EXIT exhausted the exit handler 
list and requested the $EXIT system service again, the handler would be back 
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on the supervisor mode exit handler list and would be reentered to redeclare 
itself again. 

In fact, this use of exit handlers is just the mechanism employed by 
the DCL and MCR CLis to allow multiple images to execute, one after 
another, in the same process. This mechanism is discussed in more detail in 
Chapter 27. 

Note that an exit handler that is declared later (which implies that it will 
be called earlier) can prevent previously declared handlers for the same access 
mode from even being called by simply requesting the $EXIT system service. 
In the previous example, procedure C could prevent exit handlers B and A 
from being called by requesting $EXIT itself. 

26.3 IMAGE AND PROCESS RUNDOWN 
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In any process that has had a CLI mapped by LOGINOUT, multiple images 
can execute one after another. Several steps must be taken to prevent a 
later image from inheriting either enhancements (such as elevated privileges) 
or degradations (such as a reduced working set) from a previous image. In 
addition, when a process is deleted, all traces of it must be eliminated from 
the system data structures and all reusable resources returned to the system. 

The $RUNDWN system service serves both those needs. (Note that use 
of the $RUNDWN system service is reserved to the VMS operating system. 
Any other use is completely unsupported.) 

$RUNDWN is called with one argument, access mode. This argument 
enables $RUNDWN to distinguish between image rundown and process 
rundown. The service is requested with an argument of user mode by both 
the DCL and MCR CLis to clean up between image executions. $RUNDWN 
is also requested from the $DELPRC system service (see Chapter 28) with 
an argument of kernel mode to remove traces of a process being deleted. 

The $RUNDWN system service performs much of its work by requesting 
other system services. $RUNDWN passes its access mode argument to these 
services to allow them to determine how much work to do. For example, 
the Dequeue Lock Request ($DEQ) system service (see Chapter 10) can be 
requested with an access mode argument to release all locks for that access 
mode and all outer modes. If $RUNDWN is requested with an argument of 
user mode, its $DEQ request cancels only user mode locks. If $RUNDWN 
is requested with an argument of kernel mode, then all process locks are 
dequeued. 

The $RUNDWN system service procedure, EXE$RUNDWN in module 
SYSRUNDWN, runs in kernel mode. It first maximizes the access mode 
argument with the access mode of its caller. That is, the less privileged 
access mode is passed to other system services. Used in the following list, 
the phrase "based on access mode" means "perform this operation for this 
access mode and all outer (less privileged) access modes." 
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The following steps describe its actions: 

1. EXE$RUNDWN clears any previously requested powerfail asynchronous 
system trap (AST) and returns AST quota to the process. 

2. If any per-process or systemwide executive mode rundown routines are 
defined, EXE$RUNDWN invokes them from executive mode. 

3. It requests the Set Resource Wait Mode ($SETRWM) system service, 
enabling resource wait mode to ensure that image rundown completes 
successfully. 

4. EXE$RUNDWN invokes any per-process or systemwide kernel mode 
rundown routines. Such a routine might perform cleanup for user-written 
system services. 

5. It invokes the License Management Facility (LMF) rundown routine to 
release any license units granted to the exiting image or process. 

6. It resets the process's current CPU capability and affinity requirements 
to their permanent values. Chapter 12 explains these requirements. 

7. If image accounting is enabled, an image deletion message is written to 
the accounting log file. 

8. EXE$RUNDWN increments the image counter (PHD$1-IMGCNT). This 
counter prevents the delivery of ASTs to an image that has exited. 
The use of this synchronization technique in the operation of the Get 
Job/Process Information ($GETJPI) system service is described in Chap­
ter 13. 

9. The four Pl space vectors for user-written system services, user-written 
rundown routines, and image-specific message sections are reset to con­
tain RSB instructions. 

10. EXE$RUNDWN requests the Set Page Fault Monitoring ($SETPFM) sys­
tem service to disable any monitoring of process page faults. 

11. EXE$RUNDWN searches the channel control block table for channels to 
deassign. It compares the access mode of each assigned channel to that 
of the rundown. For each channel assigned in the same or an outer mode, 
EXE$RUNDWN requests the Deassign Channel ($DASSGN) system ser­
vice. The deassign completes unless the channel has an open file. The 
access mode comparison prevents process-permanent files from being 
closed when an image is being run down ($RUNDWN from user mode). 
Other channels that are not deassigned at this stage of image rundown 
include the image file and any other file that is mapped to a range of 
virtual addresses. 

If the channel's assigned mode is more privileged, EXE$RUNDWN 
makes an additional check of the flag CCB$V _IMGTMP to see whether 
the channel is associated with the Breakthrough ($BRKTHRU) system 
service. If it is, EXE$RUNDWN deassigns the channel so that broadcast 
operations are aborted at image exit. 
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12. The rights database identifier table is deallocated to the Pl process allo­
cation region. 

13. EXE$RUNDWN requests the Cancel Timer ($CANTIM) and the Cancel 
Wakeup ($CANWAK) system services to cancel any requests made from 
this and outer access modes. 

14. It requests the $DEQ service to release locks for this and outer access 
modes. 

15. EXE$RUNDWN invokes MMG$IMGRESET, in module PHDUTL, to 
reset the image pages. MMG$IMGRESET performs the image cleanup 
associated with memory management: 

a. MMG$IMGRESET invokes RM$RESET, in module RMSRESET, to 
reset the image I/O segment. 

b. It invokes EXE$PSCAN_IMGRESET, in module PROCESS_SCAN, to 
remove and deallocate process scan blocks, restoring the context of 
the Process Scan ($PROCESS_SCAN) system service. 

c. It returns memory management working set peak checking to its 
previous state. 

d. MMG$IMGRESET releases all ICBs that describe currently mapped 
images and places them on the ICB lookaside list. If any ICBs remain 
on the work list, it places them on the ICB lookaside list as well. 

e. All of PO space is deleted. This frees the main image file and any 
other image file currently mapped. Physical pages are released, and 
blocks in the page files assigned to the process are deallocated. 

f. The nonpermanent parts of Pl space are deleted. These are the user 
stack and an optional enlarged image I/O segment (see Figure 26.21). 
Any expansions to Pl space (at smaller virtual addresses than the user 
stack) are also deleted, as well as VAX DEBUG dynamic memory. 

g. The working set list is reset to its default value, undoing any previous 
expansion or contraction performed by the Adjust Working Set Limit 
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($ADJWSLI system service. Working set size changes are described in 
Chapter 17. 

h. MMG$IMGRESET raises IPL to 2 and invokes MMG$SECTBLRST, 
which compresses the process section table. 

i. The process privilege masks in the process header and PCB are reset to 
their permanent value, found at location CTL$GQ_PROCPRIV. This 
step eliminates any privilege enhancements to the process resulting 
from the execution of an image installed with privilege. Section 26.4 
describes the various privilege masks. 

j. The global location CTL$GL_IMGHDRBF is cleared to indicate that 
no image is active. 

k. If the process was the last accessor of a global section, releasing the 
process address space may make the global section deletable. If so, the 
global sections are deleted under the protection of the global section 
mutex. The associated WCB is released as well. 

1. The pointer to the end of the active working set list (PHD$W _ 
WSLAST) is reset to the end of the minimum working set list. 

16. The channel deassignment loop performed in step 11 is executed again. 
However, because the image file and other mapped files have now been 
dissociated from virtual address space, the channels associated with those 
files will also be deassigned. As in step 11, this deassignment is based 
on access mode, so that process-permanent files are unaffected by image 
rundown. 

17. EXE$RUNDWN requests the Deallocate Device ($DALLOC) system ser­
vice to deallocate devices allocated from this and outer access modes. 

18. It requests the Disassociate Common Event Flag Cluster ($DACEFC) 
system service to dissociate clusters 2 and 3. 

19. EXE$RUNDWN acquires the SCHED spinlock, elevating IPL to IPL$_ 
SCHED. 

20. EXE$RUNDWN checks the system error log mailbox queue EXE$AQ_ 
ERLMBX. EXE$RUNDWN deassigns each error log mailbox belonging to 
this process. The method for declaring an error log mailbox is described 
in Chapter 32. 

21. All pending AST control blocks (ACBs) are removed from the list in the 
process control block (PCB), based on access mode. If user AST quota 
was charged for the AST, the quota is returned. If the ACB is deletable, 
it is deallocated to nonpaged pool. This operation starts at the tail of the 
list and proceeds toward the head of the list until an ACB is found with a 
more privileged (smaller) access mode than the $RUNDWN access mode 
or until the AST pending queue is empty. (Recall from Chapter 7 that 
ASTs are enqueued in order of increasing access mode.) 

22. Any change mode handlers for this and outer access modes are elimi­
nated. Because change mode handlers only exist for user and supervisor 
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modes, this step results in elimination of a change-mode-to-user han­
dler every time an image exits and the elimination of a change-mode-to­
supervisor handler when the process is deleted. 

23. Any exit handlers for this and outer access modes are canceled. 
24. Exception handlers found in the primary, secondary, and last chance 

vectors are eliminated for this and outer access modes. 
25. The AST active bits for this and outer access modes are cleared. The AST 

enable bits for this and outer access modes are set. 
26. System service failure exceptions are disabled for this and outer access 

modes. 
27. Any compatibility mode handler that has been declared is canceled. 
28. A new value of ASTLVL is calculated by routine SCH$NEWLVL, in 

module ASTDEL, to reflect the change in the AST queue resulting from 
step 21. 

29. The force exit pending jPCB$V _FORCPEN) and wake pending IPCB$V _ 
WAKEPEN) flags in the PCB are cleared. After clearing these flags, 
EXE$RUNDWN releases the SCHED spinlock, lowering IPL to 2. 

30. It reenables AST delivery to user mode by clearing CTL$GB_SOFT _AST_ 
DISABLE and CTL$GB_REENABLE_ASTS. 

31. EXE$RUNDWN deletes all process logical names based on access mode. 
At image exit, all user mode logical names are deleted. At process dele­
tion, all process logical names are deleted. 

32. EXE$RUNDWN resets any PO extension made to the process allocation 
region lsee Chapter 19). 

33. Resource wait mode is returned to its previous state, normal completion 
status is set, and control is returned to the requestor. 

26.4 PROCESS PRIVILEGES 
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The VMS executive prevents unauthorized use of the system through process 
privileges. One or more of these privileges are required to perform particular 
system services, execute certain commands, or use privileged utilities. 

Process Privilege Masks 

A process has three sets of privileges available to it: privileges available while 
executing a particular image, privileges available to the current process con­
text, and privileges from which the process can selectively alter its current 
context. Each set of privileges is represented by a quadword bit mask. A set 
bit means the process has the privilege corresponding to that bit. 

VMS maintains the following privilege masks for processes and images. 
Table 26.2 summarizes the use of the masks . 

• PCB$Q_PRIV exists in the access rights block, which is currently a part of 
the software PCB. It is also referenced by the symbol ARB$Q_PRIV. 
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Table 26.2 Process Privilege Masks 

Symbolic Name Use of This Mask Modified by Referenced by 
PCB$Q_PRN, Working privilege mask EXE$PROCSTRT, Device drivers, 
ARB$Q_PRN LOGIN OUT, XQP, 

$SETPRV, ACPs, 
Image activator, System services 
MMG$IMGRESET requiring privilege 

PHD$Q_PRIVMSK Duplicate of ARB mask Same as PCB$Q_ Some system services 
PRN requiring privilege 

CTL$GQ_PROCPRN Records permanently EXE$PROCSTRT, Image activator, 
enabled privileges LOGIN OUT, SET/SHOW com-

$SETPRV mands, 
MMG$IMGRESET 

PHD$Q_AUTHPRN Records privileges from EXE$PROCSTRT, $SETPRV, 
authorization file LOGIN OUT $GETJPI 

PHD$Q_IMAGPRN Records privileges of Image activator $SETPRV, 
installed image LOGIN OUT, 

Records prlvileges in 
$GETJPI 

UAF$Q_PRN AUTHORIZE LOGIN OUT 
authorization file 

UAF$Q_DEF _PRN Records default privi- AUTHORIZE LOGIN OUT 
leges in authorization 
file 

KFE$Q_PROCPRN Records privileges with Install Utility Image activator 
which an image is 
installed 

IHD$Q_PRIVREQS Currently unused Linker Image activator 

PCB$Q_PRIV contains the working privilege mask, sometimes called 
aii image-specific privilege mask. This mask is checked by most system 
services that require privilege, and by the file system. At image activation, 
the mask is initialized to the combination of the privileges of the image 
and the privileges of the current process context. It can be altered by the 
Set Privileges j$SETPRV) system service, either during image execution 
or from DCL level. It is reset at image rundown to the current process 
privileges. 

• The other image-specific privilege mask is PHD$Q_PRIVMSK in the pro­
cess header. It is a duplicate of the privilege mask in the ARB and is altered 
in the same manner. Some older system services reference this mask rather 
than ARB$Q_PRIV. 

• Current process privileges !also called process-permanent privileges) are 
stored in the Pl pointer page at global location CTL$GQ_PROCPRIV. This 
mask is initialized at process creation from the UAF default privilege mask; 
from the privilege mask argument passed to the $CREPRC system service; 
or, for a subprocess, from the creator's current privilege mask. It can be 
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altered by the $SETPRV system service, either during image execution or 
from DCL level. Its contents are copied to the working privilege mask at 
image rundown . 

• The authorized privilege mask, PHD$Q_AUTIIPRIV, does not change over 
the life of the process. It allows a process to remove a privilege from 
its current privilege mask with the $SETPRV system service and to later 
regain that privilege. The authorized privilege mask is initialized at process 
creation from the UAF privilege mask; the privilege mask argument passed 
to the $CREPRC system service; or, for a subprocess, the creator's current 
privilege mask . 

• Each user's authorization file record contains the two privilege masks 
UAF$Q_DEF _PRIV and UAF$Q_PRIV. UAF$Q_DEF _PRIV contains the de­
fault privileges that LOGINOUT copies to CTL$GQ_PROCPRIV, PCB$Q_ 
PRIV, and PHD$Q_PRIVMSK when an interactive user logs in. UAF$Q_ 
PRIV contains the authorized privileges that LOGINOUT copies to 
PHD$Q_AUTIIPRIV . 

• KFE$Q_PROCPRIV records the privileges with which a known executable 
image has been installed. When a process runs such an image, those privi­
leges are temporarily granted to the process as part of the working privilege 
mask . 

• PHD$Q_IMAGPRIV contains a copy of the KFE$Q_PROCPRIV mask of the 
privileged known image while that image is executing in process context. 
This mask is used by the $SETPRV system service to allow an image 
installed with privilege to invoke the $SETPRV service without losing 
privileges. 

$SETPRV System Service 

The $SETPRV system service enables a process to alter its image-specific 
(PCB$Q_PRIV and PHD$Q_PRIVMSKJ privilege masks or its image-specific 
and process-permanent (CTL$GQ_PROCPRIVJ privilege masks, giii.ning or 
losing privileges as a result. In addition, the service can return the previ­
ous settings of either the image-specific or process-permanent privileges, if 
requested. 

The $SETPRV system service procedure, EXE$SETPRV in module SYS­
SETPRV, runs in kernel mode. 

The path through EXE$SETPRV that disables privileges requires no special 
privilege and clears the requested privilege bits in the image-specific and, 
optionally, the process-permanent privilege masks. 

The code path that enables privileges requires the requested privilege to 
be already included in the mask of privileges authorized for this process 
(PHD$Q_AUTHPRIVJ. If a process tries to acquire a privilege that is not in 
its authorized mask, the requested privilege is still granted if any one of the 
following three conditions holds: 
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• The process has SETPRV privilege in its authorized mask. A process with 
this privilege can acquire any other privilege with either the $SETPRV 
system service or the DCL command SET PROCESS/PRMLEGES (which 
requests the $SETPRV system service) . 

• The system service was requested from executive or kernel mode. This 
condition allows either VMS or user-written system services to acquire 
whatever privileges they need without regard for whether the current 
process has SETPRV privilege. Such procedures must disable privileges 
granted in this fashion as part of their return path . 

• The privilege is being acquired temporarily (enabled in the two image­
specific privilege masks) and is included in the mask of privileges au­
thorized for the image (PHD$Q_IMAGPRIV), or the SETPRV privilege is 
included in this mask. This allows an image to acquire a privilege without 
permanently granting the new privilege to the process. When the image 
exits, image rundown copies the process-permanent mask to the image­
specific masks, removing privileges acquired temporarily. 

Note that the implementation of the $SETPRV system service does not 
return an error if a nonprivileged process attempts to add unauthorized 
privileges. In such a case, the service clears all unauthorized bits in the 
requested privilege mask, loads the modified privilege mask, and returns the 
alternative success status SS$_NOTALLPRIV. 
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In my end is my beginning. 

Motto of Mary, Queen of Scots 

The three other chapters in Part VII, Life of a Process, describe the steps 
of process creation, image activation, and process deletion. This chapter 
describes the manner in which VMS components create processes on a user's 
behalf. It examines the circumstances under which the various components 
are invoked and the resulting process types. 

In addition, this chapter describes the VMS mechanisms supporting the 
most common situation, a process that executes several images consecu­
tively. Because this mode of operation occurs in all interactive and batch 
processes, these two process types are discussed in detail. 

27.1 PROCESS CLASSIFICATION 

A process can be classified by several characteristics: 

• It is either a subprocess and part of its creator's job tree, sharing the job 
information block (JIB), or it is detached from its creator, a top-level process 
with an independent job tree of its own. 

• It either interacts with a user and receives input from a terminal, or it is 
noninteractive and receives input from a file or device . 

• It includes a command language interpreter (CLI) and can make the tran­
sition from one image to another, or it executes only one image and exits 
when the image does. 

27.2 THE ROLE OF VMS COMPONENTS 
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Various VMS components initiate process creation by requesting the Create 
Process ($CREPRC) system service. They include 

• The job controller for interactive and batch processes 
• The Digital command language (DCL) CLI for subprocesses and noninter­

active processes 
• NETACP for network processes 

Arguments to the $CREPRC system service determine process character­
istics, particularly the arguments rnc, STSFLG, INPUT, and IMAGE. Chapter 25 
discusses this system service and its arguments in detail. Tables 27.1, 27.2, 
and 27.3 provide examples of arguments passed to the $CREPRC system 
service by VMS components. 

Some VMS components that implement portions of process startup ex­
ecute in the context of the new process. When the process is created, the 
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creator specifies an image later activated by EXE$PROCSTRT, as described in 
Chapter 25. This is generally the LOGINOUT image. One of LOGINOUT's 
functions is to map a CLI, generally DCL, into the process's Pl space. The 
CLI enables the process to execute successive images, accomplishing the 
transition from one image to the next. This mode of operation occurs in all 
interactive and batch processes, and is optional but common for detached 
and network processes. Sections 27.5 and 27.6 provide more information on 
LOGINOUT and CLis. The total operation of a CLI, however, is beyond the 
scope of this chapter. 

27.3 THE JOB CONTROLLER AND PROCESS CREATION 

27.3.1 

The job controller process manages the creation of nearly all interactive and 
batch processes. It creates an interactive process in response to unsolicited 
terminal input and a batch process as a result of the CLI response to the 
SUBMIT command. Unsolicited card reader input results in the creation of 
a batch input symbiont. 

The terminal class driver and card reader driver notify the job controller 
of unsolicited input via the job controller mailbox. The CLI, in response to a 
SUBMIT command, notifies the job controller of a batch process creation 
request. The job controller creates an appropriate process for each input 
source. The sections that follow describe these steps in more detail. 

The process created by the job controller executes the image LOGINOUT. 
The actions that LOGINOUT takes, especially mapping a CLI into Pl space, 
differentiate processes that can execute multiple images in succession, such 
as interactive and batch processes, from processes that exit after the execu­
tion of a single image. 

Unsolicited Terminal Input 

The common terminal driver character-processing routine takes special ac­
tion for unsolicited terminal input: 

• If the terminal has the characteristic NO_ TYPEAHEAD, the driver ignores 
the unsolicited input and dismisses the interrupt . 

• If the terminal is owned, the driver inserts the character into the type­
ahead buffer. If the owner process had requested notification of unsolicited 
input, the driver notifies the owner process . 

• If the terminal is unowned and has the characteristic SECURE, it is at­
tached to a secure server. The terminal driver inserts the character into 
the type-ahead buffer . 

• If the terminal is unowned and has the AUTOBAUD characteristic, the 
driver tests the incoming character. It senses the baud rate and sets it as 
appropriate. If the character is a standard terminator recognized by the 
driver, the driver sends a message to the job controller mailbox, notifying 
the job controller that an unowned terminal has received an unsolicited 
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Table 27.1 Arguments Resulting in Interactive 
Process Creation 

Argument Passed 
to $CREPRC 

Process name 
UIC 
Image name 
SYS$INPUT 
SYS$0UTPUT 
SYS$ERROR 
Base priority 
Privilege mask 
Status flags 

Value 
_ttcu: 
[1,4) 
SYS$SYSTEM:LOGINOUT.EXE 
ttcu: 
ttcu: 
ttcu: 
DEFPRI (SYSGEN parameter) 
TMPMBX, NETMBX, SETPRV 
PRC$V _INTER 

interrupt. The driver then inserts the input character into the type-ahead 
buffer. 

In a sense, the job controller is the default owner of all otherwise un­
claimed terminals. 

If the type-ahead buffer does not exist when the driver attempts to insert a 
character, the driver initiates a fork thread to create the buffer. The current 
character, however, is discarded. 

The job controller routine that responds to unsolicited terminal input sim­
ply requests the $CREPRC system service. Table 27.1 shows the arguments 
it passes to the system service. 

The string ttcu: indicates the controller and unit of the terminal where 
the unsolicited input was typed. The terminal device type can be an ac­
tual physical device; an LT device, if the terminal is connected through a 
DECserver; an RT device, if the terminal is remote; a VT device, if virtual 
terminal support is enabled; or a TW device for DECwindows. 

Note that the job controller creates each interactive process with a process 
name indicating its input device and LOGINOUT as the image to be exe­
cuted. The creation of an interactive process is pictured schematically in 
Figure 2 7 .1. 

SUBMIT Command 

When the SUBMIT command is entered, the CLI activates the SUBMIT.EXE 
image. SUBMIT sends messages to the job controller mailbox via the Send 
to Job Controller ($SNDJBC) system service. The job controller reads the 
mailbox messages and creates a job record in its data file, JBCSYSQUE.DAT. 
It inserts the job record onto an internal list of pending requests for the 
desired batch execution queue or generic queue. When the number of active 
jobs in a batch execution queue drops below its maximum value, the job 
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Job Controller 
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Figure 2.7.1 

Terminal 
Driver 
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Job 
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Creates new process 

LOGINOUT 
• Validate password, user name 
• Alter process characteristics according to 
authorization record 

• Map CU and command tables and transfer 
control to CU 

Creation of an Interactive Process 

Authorization 
File 

controller selects the queue's highest priority pending request. It requests 
the $CREPRC system service to create a process for that request, specifying 
LOGIN OUT as the image to be executed. 

The job controller specifies _NLAO: as the SYS$INPUT value and the string 
BATCH_ plus queue entry number as the process name, SYS$0UTPUT, and 
SYS$ERROR value. LOGINOUT later redefines SYS$INPUT to be the name 
of the batch command procedure, and SYS$0UTPUT and SYS$ERROR to 
be the name of a log file in an appropriate directory. Because LOGINOUT 
maps the appropriate CLI into the process Pl space, the batch input file can 
contain a series of command language statements. Figure 27.2 shows the 
processing of the SUBMIT command. Table 27.2 shows the arguments that 
the job controller passes to $CREPRC for a batch process. 

Unsolicited Card Reader Input 

An alternative method for starting a batch process uses the "hot" card reader 
feature implemented in the card reader driver interrupt service routine. Like 
the terminal driver, the card reader driver informs the job controller that 
an unsolicited interrupt has occurred on an unowned device. The job con­
troller creates a process to service the unsolicited interrupt, The process exe­
cutes an input symbiont, the image INPSMB.EXE, rather than LOGINOUT. 
Table 27.3 shows the arguments passed to the $CREPRC system service by 
the job controller. 

The letter c represents the controller number. The unit number is always 
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LOGINOUT 
• $SNDJBC to obtain information from job 

record, such as user name, log file name 
• Read user authorization record, but do not 
validate password 

• Alter process characteristics according to 
job record and authorization record 

• Map CU and command tables and 
transfer control to CU 

Figure 27.2 
Creation of a Batch Process 

Context of 
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Process 

zero because the card reader controller supports only one unit. The fact that 
this process has a card reader for its output device is irrelevant, because the 
input symbiont does not write to either SYS$0UTPUT or SYS$ERROR. 

The input symbiont reads the $JOB and $PASSWORD cards and performs 
a validation similar to the one performed by LOGINOUT. After determining 
the user's default directory from the authorization record, the input symbiont 
opens a file in that directory and reads the rest of the job cards into that file. 
By default, it names the file INPBATCH.COM. Terminating conditions of 
this read are an end of file, an $EOJ card, or another $JOB card. 

Once the input stream has been read into the user's directory, the input 
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Table 27.2 Arguments Resulting in Batch Process 
Creation 

Argument Passed 
to $CREPRC 

Process name 
UIC 
Image name 
SYS$INPUT 
SYS$0UTPUT 
SYS$ERROR 
Base priority 
Privilege mask 
Status flags 

Value 
BATCH_nnn 
[1,4] 
SYS$SYSTEM:LOGINOUT.EXE 
_NLAO: 
BATClLnnn 
BATClLnnn 
DEFPRI (SYSGEN parameter! 
All 
PRC$V _BATCH 

Table 27.3 Arguments Resulting in Input Symbiont 
Process 

Argument Passed 
to $CREPRC 

Process name 
UIC 
Image name 
SYS$INPUT 
SYS$0UTPUT 
SYS$ERROR 
Base priority 
Privilege mask 
Status flags 

Value 
_CRcO: 
[1,4] 
SYS$SYSTEM:INPSMB.EXE 
CRcO: 
CRcO: 
CRcO: 
DEFPRI (SYSGEN parameter! 
TMPMBX, NETMBX, SETPRV 
None 

symbiont sends a message to the job controller to create a job record for the 
stream. The operation proceeds from this point in exactly the same manner 
as for the SUBMIT command. That is, the job controller and LOGINOUT 
collaborate to produce a process with the card file as SYS$INPUT and a log 
file as SYS$0UTPUT and SYS$ERROR. Figure 27.2 shows this flow. 

2.7.4 SPAWN AND ATTACH 

DCL provides two commands to create and connect with interactive sub­
processes. The DCL command SPAWN creates interactive subprocesses. The 
ATTACH command transfers terminal control from one process to another 
within the same job. The module [DCL]SPAWN contains the code for both 
commands. The Run-Time Library procedures LIB$SPAWN and LIB$AT­
TACH make the SPAWN and ATTACH functions available to an image by 
passing the request back to the DCL CLI. The major difference between the 

787 



Process Dynamics 

27.4.1 

788 

two ways of requesting the function is the method of passing parameters. 
From DCL level, the command line is parsed to obtain the parameters. The 
Run-Time Library procedures use an argument list. 

SPAWN 

Spawning a subprocess primarily involves copying process context informa­
tion from the creating process to the subprocess. This information includes 
the process CLI symbols, process-private logical names, current privileges, 
out-of-band asynchronous system trap (AST) settings, verify flag settings, 
prompt string, default disk and directory, keypad definitions and states, and 
the command line that was passed to SPAWN (if one exists). 

In response to a SPAWN request, DCL performs the following operations: 

1. It parses the command line to determine what qualifiers are present. It 
validates the qualifiers and copies them to a temporary data structure. 

2. It temporarily disables the current process's out-of-band ASTs, blocking 
CTRL/Y ASTs during a critical section of code. 

3. It creates or locates a termination mailbox and requests an attention AST 
if a message is written to the mailbox. 

Termination information from the subprocess is written to the termi­
nation mailbox when the subprocess is eventually deleted. The attention 
AST is delivered to the subprocess's creator at that time. Because four 
spawned subprocesses can share the same termination mailbox, DCL 
checks for an available one that the new subprocess can share before 
creating a new mailbox. 

4. DCL records the name of the subprocess's CLI and command table files 
in Pl space locations. The $CREPRC system service later copies them 
to the process quota block (PQB). When LOGINOUT eventually runs in 
the context of the new subprocess, this is the CLI that it will invoke. 
The default, if no CLI is specified, is the creator's CLI. 

5. For CLis supplied by Digital, DCL creates a second mailbox, called the 
communication mailbox, through which further context information is 
transferred to the spawned subprocess, as described in step 10. 

6. DCL creates an attach request mailbox for the current process with a 
jobwide logical name of the form DCL$ATTACH_pid, where pid is the 
extended process ID. Other processes in the job tree can attach to this 
process by writing attach requests to this mailbox. 

7. DCL requests the Get Job/Process Information ($GETJPI) system service 
to determine the current process's nondeductible quotas. From these 
quotas, it builds a quota list to be used in the creation of the spawned 
subprocess. 

8. If the process name was not specified in the command line or argument 
list, DCL creates one by appending _n to the user name string, where n 
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is a value from 1to255. If the new name is a duplicate, DCL increments 
n and tries again .. 

9. DCL requests the $CREPRC system service to create the subprocess. It 
specifies LOGINOUT as the IMAGE argument and the name of the com­
munication mailbox from step 5 as the ERROR argument. If the creating 
process does not specify input and output files to the SPAWN com­
mand, DCL uses the creating process's SYS$INPUT and SYS$0UTPUT 
file specifications as the INPUT and OUTPUT arguments. It specifies the 
termination mailbox from step 3 to the $CREPRC service to receive a 
process deletion message from the subprocess. Because the request does 
not include a privilege mask for the subprocess, the $CREPRC system 
service creates the subprocess with the current privileges of the current 
process !see Chapter 25). 

10. When LOGINOUT runs in the context of the newly spawned subprocess, 
it maps the specified CLI, DCL in this example, and passes control to 
it. DCL determines that it is running in the context of a subprocess 
and translates the logical name SYS$ERROR. If there is a supervisor 
mode translation with a mailbox name as the equivalence string, DCL 
recognizes that a SPAWN operation is in progress and that it must read 
context information from the creating process. 

At this point, both; the creating process and the spawned subprocess are 
executing DCL routi.µes. The creating process passes context information 
to the spawned sub~rocess in the following manner: 

a. The spawned :SUbprocess assigns a channel to the communication 
mailbox and issues read requests to it. 

b. The creating process writes context information to the mailbox, one 
record at a time. Each record has a type code identifying its contents. 
When the subprocess receives the information, it adds the informa­
tion to its context. 

c. The first transferred record contains the permanently enabled priv­
ilege mask ICTL$GQ_PROCPRIV), verify flag setting, out-of-band 
AST flag settings, and prompt string. 

The spawned subprocess reads the record and initializes the process 
accordingly. It requests the Set Privilege ($SETPRV) system service 
to disable all privileges, then resets the process privileges from those 
transferred in the record. Thus, the working, permanently enabled 
!current), and authorized privilege masks of the subprocess contain 
the privileges its creator possessed when the spawn occurred. This 
enables a privileged image to tailor the environment in a spawned 
subprocess. 

d. Next, the creating process transfers the SPAWN command string (if 
one was specified). 

e. The creating process then scans the process logical name directory, 
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which contains a list of process logical name table names. It copies all 
table names that were defined in user or supervisor mode and that 
do not have the CONFINE attribute. It then copies all the logical 
names defined in those tables. The spawned subprocess creates the 
corresponding logical name tables and their logical names. 

f. The creating process then transfers the contents of the symbol table, 
one symbol at a time, followed by terminal keypad definitions. The 
spawned subprocess receives each symbol and places it into the sym­
bol table. Note that the creating process's potentially modified DCL 
command tables are not transferred to the subprocess. 

11. Once it has transferred all information to the subprocess, the creating 
process tests whether it should wait for the subprocess. If so, it requests 
a write attention AST on the attach request mailbox and hibernates. 
Otherwise it restores out-of-band ASTs and resumes normal processing. 

12. The spawned subprocess deletes the supervisor mode logical name 
SYS$ERROR, leaving the executive mode logical name. It restores out­
of-band ASTs and, if the subprocess is interactive, issues a special 1/0 
request to the terminal driver to declare the subprocess the terminal 
owner. It then continues normal DCL processing. 

When a subprocess created by the SPAWN command is deleted, a termi­
nation message is written to its creator's termination mailbox. As a result, 
a write attention AST is queued to the creator. The AST procedure simply 
performs cleanup work pertaining to the deleted subprocess. It deassigns the 
channels to the attach and termination mailboxes and deletes the mailboxes. 
If the subprocess was created by a call to LIB$SPAWN and if an event flag or 
AST procedure was specified in the call, the event flag is set or the AST is 
delivered. 

ATTACH 

The DCL ATTACH request transfers terminal control from the process that 
issues the command to a target process. The operation of the DCL ATTACH 
routine is as follows: 

1. From the context of the issuing process, DCL first disables out-of-band 
ASTs, blocking delivery of CTRL/Y ASTs. It then obtains the name or 
process identification (PID) of the target process. It verifies that the target 
process is not itself and that it is a process in the same job tree. 

2. DCL creates an attach request mailbox and logical name for the issuing 
process. Since interactive input will be detached from the issuing process 
and attached to the target process, the issuing process must have an 
attach mailbox to accept attach requests later. Otherwise, the terminal 
cannot be reattached to it. 

3. DCL locates the target process's attach mailbox and writes the name of 
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the current output stream (usually the equivalence name of SYS$INPUTJ 
to the mailbox. Since the target process had declared a write attention 
AST on its attach mailbox, it is notified of the message placed in the 
mailbox. The original process then issues a read request on the target 
process's attach mailbox in anticipation of a message from the target. 

4. The target process wakes in response to the write attention AST. The 
AST procedure determines whether the target process is already attached 
to a terminal. If not, it writes an affirmative response (a longword with 
a value of 1 J to the attach mailbox. Otherwise, it writes a zero longword 
to refuse the attach request and reenables the write attention AST for 
the attach mailbox. 

5. Once it receives the affirmation, DCL in the original process deassigns 
its channel to the target process's attach mailbox. It requests a write 
attention AST for its own attach mailbox so it can be notified of any 
incoming attach requests. It then hibernates. 

6. The AST procedure in the target process issues a wake request to return 
·control to the target process. 

27.5 THE LOGINOUT IMAGE 

27.5.1 

The LOGINOUT image provides three major functions: 

1. It validates a user's access to the system, checking password information 
in the authorization fl.le. 

2. It adjusts various process quotas and defaults based on information from 
the authorization fl.le or from the job controller. 

3. It maps a CLI into Pl space. 

LOGINOUT need not perform all these functions for every process. Its 
actions are based on the original arguments passed to the $CREPRC system 
service, stored in the process control block (PCB), process header (PHDJ, 
and Pl space. For example, it does not perform password validation if the 
$CREPRC STSFLG argument PRC$V _NOUAF was specified. 

The LOGINOUT image is installed with privileges, which it enables and 
disables based on the current function. The image executes primarily in user 
mode, with some executive and kernel mode procedures. 

Normally, the $CREPRC IMAGE argument specifies LOGINOUT and the 
image is activated by EXE$PROCSTRT. However, under certain conditions, 
the image activator independently invokes LOGINOUT. Chapter 26 contains 
further details. 

The LOGINOUT modules are located in the facility [LOGIN]. 

LOGINOUT and Interactive Processes 

When the LOGINOUT image executes in an interactive process created in 
response to unsolicited terminal input, it must verify that the user has access 
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to the system before proceeding with the rest of its operations. It performs 
the following steps: 

1. It establishes a user mode call frame condition handler to service any 
exceptions or software conditions that occur while LOGINOUT is exe­
cuting. Should this handler be called, it first requests the Put Message 
($PUTMSG) system service to write an error message. It then checks 
the type and severity of the condition. If the status code has not already 
been stored in Pl space, the handler stores it in preparation for writing 
the code to the termination mailbox. 

If the condition is a severe error, the handler requests the Exit ($EXIT) 
system service from executive mode, causing the process to be deleted. 
Otherwise, it returns, and LOGINOUT continues execution. 

LOGINOUT declares this same condition handler for many of its ex­
ecutive mode procedures. 

2. LOGINOUT requests the $GETJPI system service to obtain the user 
name, process status flags, job type, and process owner. 

3. LOGINOUT requests the Get Device Information ($GETDVI) system 
service to obtain the name and characteristics of SYS$INPUT. 

4. It translates the logical names SYS$INPUT, SYS$0UTPUT, and SYS$ER­
ROR in the LNM$PROCESS table and saves the resultant strings for later 
use. 

5. LOGINOUT initializes the process-permanent data (PPD) region in Pl 
space. This region is shared by LOGINOUT and the CLI it maps. 

6. LOGINOUT classifies the process as one of the following five mutually 
exclusive types and performs type-specific initialization: 

-Batch-The batch bit is set in CTL$GL_CREPRC_FLAGS, a copy of 
the flags specified to the $CREPRC system service. 

-Network-The network bit is set in CTL$GL_CREPRC_FLAGS. 
-Subprocess-The parent PID is nonzero. 
-Interactive-The interactive bit is set and the nopassword bit is clear 

in CTL$GL_CREPRC_FLAGS. 
A DECwindows process is an interactive process whose input device 

type is DC$_ WORKSTATION. 
-Detached-Anything not covered by the previous types. 

7. For an interactive process, typically one created in response to unsolicited 
input from a terminal, LOGINOUT performs the following steps: 

a. It initializes the user name and account name fields in the JIB and Pl 
space to the string <login>. 

b. It creates process-permanent files for the input and output devices 
through calls to Record Management Services (RMS). LOGINOUT 
redefines the logical names SYS$INPUT and SYS$0UTPUT in the 
LNM$PROCESS table. It defines the logical names SYS$ERROR and 
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SYS$COMMAND with the same equivalence strings as SYS$0UT­
PUT and SYS$INPUT. It prefixes the equivalence names for these 
logical names by four bytes: an escape l1B16), a null character 10016), 
and the two-byte internal file identifier IIFI) returned by RMS. When 
RMS receives such a string as a result of logical name translation, it 
uses the IFI as an index into one. of its internal tables. Accessing by 
IFI allows fast access to these commonly used files. 

c. In the case of an interactive login, the input device must be a terminal 
device. Otherwise, LOGINOUT exits with the errormessage "invalid 
SYS$INPUT for interactive login." 

d. If the terminal line has modem control enabled, LOGINOUT requires 
the TT$V _REMOTE bit to be set. This bit notifies the driver that 
the process must be logged off or disconnected if the modem signals 
disappear. 

e. LOGINOUT determines whether the job type is local, dialup, or 
remote, based on the characteristics of the SYS$INPUT terminal. It 
stores this status in the JIB, at offset JIB$B_JOBTYPE, and copies the 
terminal name to PCB$T _TERMINAL. 

It marks an interactive DECwindows process as local but does not 
store a terminal name for it. 

f. LOGIN OUT determines whether there is a system password and 
whether it applies to this terminal. If there is, it issues a timed, no­
echo read to the terminal and checks the password entered by the 
user. 

g. It then translates the logical name SYS$ANNOUNCE and writes the 
announcement message defined by the system manager. 

h. LOGINOUT checks whether autologins are enabled for the terminal 
that is logging in. If they are, LOGINOUT looks up the terminal 
name in SYS$SYSTEM:SYSALF.DAT to determine the user name 
associated with the terminal. It then reads the user authorization 
file IUAF) record associated with the user and stores the user name 
in the JIB and in CTL$T_USERNAME in Pl space. 

LOGINOUT prompts for, reads, and verifies the password, if one is 
required. If there is a secondary password for the account, it prompts 
for, reads, and verifies that as well. 

i. If autologins are not enabled for the SYS$INPUT terminal, LOGIN­
OUT prompts on it for the user name. It reads and parses the input, 
noting the presence of qualifiers, such as /CONNECT and /CLI. It 
opens the system authorization file and reads the record associated 
with that user, if any. LOGINOUT stores the user name in the JIB 
and in CTL$T_USERNAME. 

Whether the desired UAF record exists or not, LOGINOUT always 
prompts for the password. It reads and verifies the password and, if 
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there is a secondary password for the account, prompts for, reads, and 
verifies that as well. 

j. If the account is captive or restricted, LOGINOUT checks that the 
user did not include login qualifiers to change aspects of the process 
environment fixed for that account. 

k. LOGINOUT then performs a scan of the intrusion database in non­
paged pool. The type of scan performed depends on the success of 
user validation. 

If a user validation error (such as invalid user name or password) 
has occurred, a suspect scan is performed. If evasion is in effect, the 
user name is set and a break-in audit is performed. Otherwise, the 
failed password count is incremented in the user's UAF record, and 
a corresponding intrusion record is either created or updated. 

If the login was valid, an intruder scan is performed. If the user is 
found to be an intruder, a break-in audit is performed and the login 
terminates. 

1. If SYS$INPUT is not a remote terminal and reconnection is allowed 
for the account, LOGINOUT then checks whether the user has dis­
connected from a process that still exists. It performs a wildcard 
$GETJPI, looking for a process with the same user name and user 
identification code (UIC) and a disconnected terminal. It displays any 
matches and asks the user to which process, if any, the terminal 
should be connected. It records the answer for later use. 

m. If the user does not have OPER privilege, LOGINOUT checks that 
the interactive process count would not be exceeded by the logging 
in of this process, and that logins are not currently disabled. 

8. LOGINOUT records some of the process attributes extracted from the 
authorization file in their proper places, overwriting the attributes placed 
there when the process was created: 

-Default disk and directory string 
-User name 
-Base scheduling priority 
-UIC 

9. After the process's correct UIC has been set, LOGINOUT recreates the 
job logical name table and, possibly, the group logical name table. 

10. LOGINOUT completes the local rights list entries based on the process 
charactistics and the identifiers associated with the UIC. 

11. LOGINOUT copies the remaining attributes extracted from the autho­
rization file to their proper places. 

-It moves process quotas and limits, testing each to ensure that it is 
not less than the minimum. 
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-It copies the default privilege mask from the UAF record into PHD$Q_ 
AUTHPRN and CTL$GQ_PROCPRIV. 

-It initializes ARB$Q_PRN and PHD$Q_PRIVMSK as the default priv­
ilege mask ORed with the image privilege mask. 

-It copies information about primary and secondary day restrictions. 

12. LOGINOUT attempts to change the process name from _ttcu: to the user 
name. This attempt fails if another process in the same group already 
has the same name. (A common cause of user name duplication is a user 
logged in at more than one terminal.) In the case of failure, the process 
retains its name (_ttcu:), guaranteed to be unique for a given system. 

13. LOGINOUT checks a number of other fields in the authorization file 
record. These include the user or account job limit, the primary and 
secondary password expiration flags, the DISUSER flag, the account expi­
ration time, and the account hourly restrictions. These checks are waived 
in the case of the SYSTEM account logging in on the console terminal. 

14. LOGINOUT begins initialization for a CLI. It creates user mode logical 
names PROCO through PROC9, each equated to the file specification of a 
command procedure (or indirect command file) to be executed before the 
CLI enters its input loop. Currently, only PROCO and PROC 1 are used. 
PROCO is equated to the system name table translation of the logical 
name SYS$SYLOGIN. 

PROCl is equated to the file specified by the LGICMD field of the 
user's UAF record or the file specified by the login qualifier /COMMAND 
at login time (by an authorized user). If the contents of the LGICMD 
field are null and no /COMMAND qualifier was present on the login 
command, PROCl is equated to the string LOGIN. The LGICMD field 
should indicate the null device (using the string NL:) to provide a default 
of no login command file. 

When the CLI later executes its initialization code, it will translate 
these logical names and execute the command procedures (or indirect 
command files). 

15. LOGINOUT requests a merged image activation of the selected CLI to 
map the CLI into the low-address end of Pl space. The procedure LIB$PL 
MERGE first merges the CLI into PO space to determine its size, deletes 
the PO space, and maps the correct amount of Pl space. Next, the CLl's 
command table is mapped into Pl space, using the same procedure. 

Network and DECwindows processes always use DCL and DCL­
TABLES as the CLI name and command table name. A restricted user 
receives the CLI name and command table name specified in the UAF 
record. However, an unrestricted interactive user can specify /CLI and 
/TABLE on the login command line to choose a particular CLI and com­
mand table. If the login command line does not contain a /CLI qualifier, 
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LOGINOUT assigns the first nonzero CLI name in the following list to 
an unrestricted user: 

-CTL$AG_CMEDATA, the CLI name specified by the image activator 
-CTL$GT _SPAWNCLI, the CLI name specified by a parent process for 

a spawned subprocess 
-The default CLI specified in the UAF record 
-CTL$GT _CLINAME, the CLI name of the parent process 
-DCL and DCLTABLES 

16. LOGINOUT calls a kernel mode procedure to change the owner and 
protection of the CLI and command table pages. It changes the owner 
access mode for each page to supervisor and alters the protection on all 
writable pages to prevent writes from user mode. 

17. To accommodate the CLI symbol table, LOGINOUT requests the Expand 
Process/Control Region l$EXPREG) system service to expand Pl space 
by a number of pages equal to the SYSGEN parameter CLISYMTBL. It 
updates the global location CTL$GL_CTLBASVA to reflect the new low­
address end of Pl space. 

18. If the DISWELCOME flag is clear in the UAF record, LOGINOUT writes 
to SYS$0UTPUT, announcing successful login. It first translates the 
logical name SYS$WELCOME and writes the welcome message defined 
by the system manager. If SYS$WELCOME is not defined, LOGINOUT 
writes the following message, obtaining the version number from the 
global location SYS$GQ_ VERSION and the node name by translating 
the logical name SYS$NODE: 

Welcome to VAX/VMS version V5.2 on node FOOBAR 

19. If the DISREPORT flag is clear in the UAF record, LOGINOUT also 
writes the dates of the last interactive and noninteractive logins and the 
number of login failures since the last successful login. If the DISNEW­
MAIL flag is clear, it writes the number of new mail messages for the 
user. 

20. LOGINOUT creates the logical names SYS$LOGIN, SYS$LOGIN_DE­
VICE, and SYS$SCRATCH in the process's job logical name table. The 
equivalence name for these logical names is the default disk and direc­
tory specified by the user's UAF record. ITo override the default disk, 
follow the user name portion of the login sequence with the qualifier 
/DISK=ddcu:.J 

For a DECwindows terminal emulation window, LOGINOUT creates 
the logical name DECW$DISPLAY, with the workstation device name 
as the equivalence name. For a remote login, it creates the logical name 
SYS$REM_NODE, the remote node's name or address, and SYS$REM_ 
ID, the remote user name. 

21. LOGINOUT checks whether the primary or secondary password lifetime 
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has ended. If so, it marks the password as expired in the UAF record. If 
the DISFORCE flag is clear in the UAF record or if the user specified the 
/NEW_PASSWORD qualifier on the login command line, LOGINOUT 
forces the user to set a new password before continuing. If the DISFORCE 
flag is set, LOGINOUT informs the user that the password has expired, 
but allows the login to continue. 

If the lifetime of either the primary or secondary password has not 
ended but is due to expire within five days, LOGINOUT warns the user 
of that fact. 

22. LOGINOUT records the time of login in the UAF record. It notifies the 
security audit subsystem of the login. 

23. At this point, LOGINOUT has finished its work and must pass control 
to the CLI. To pass control to the CLI, LOGINOUT calls an executive 
mode routine that performs the following actions: 

a. It changes the protection on pages in the PPD region so that the pages 
can only be accessed from supervisor and inner access modes. 

b. It copies the transfer address of the CLI from CTL$AG_CLIMAGE 
into the program counter (PC) from the Change Mode to Executive 
(CHME) exception. 

c. It modifies the processor status longword (PSL) in the exception PSL 
so that the current and previous mode fields contain supervisor mode. 

d. It returns to the change mode dispatcher, which exits from executive 
mode by executing an REI instruction. This returns the process to 
supervisor mode with the PC pointing to the first instruction in the 
CLI, its initialization routine. 

LOGINOUT and Batch Processes 

Many of the operations performed by LOGINOUT for an interactive process 
are also necessary for a batch process. For example, LOGINOUT must open 
the input and output streams and map the CLI. However, LOGINOUT does 
not perform password verification-either the input symbiont has already 
checked it or, in the case of a SUBMIT command, it is not necessary. 

Rather than describing the steps performed by LOGINOUT again, the 
following list simply specifies those that are different for a batch process: 

1. When the batch flag is set in CTL$GL_CREPRC_FLAGS, a copy of the 
flags originally specified to the $CREPRC system service, LOGINOUT 
takes actions to create a batch process. 

2. It initializes the account name fields in the JIB and Pl space to the string 
<hatch>. 

3. LOGINOUT requests the $SNDJBC system service to obtain information 
about the batch process, for example, its user name, process priority, and 
working set information. 
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The prompted reads of user name and password, and the system an­
nouncements that occur in the login of an interactive process, are un­
necessary for a batch process. 

4. LOGINOUT opens the batch input file and log file as process-permanent 
files through calls to RMS. It defines the logical names SYS$INPUT and 
SYS$COMMAND with the batch input file name prefaced by the file IFI 
!returned by RMS) as the equivalence string. It defines the logical names 
SYS$0UTPUT and SYS$ERROR with the batch log file name prefaced 
by the file IFI !returned by RMS) as the equivalence string. 

5. LOGINOUT reads the authorization file record for this user. It ob­
tains process attributes to supplement information specified during batch 
queue creation and job submission. These values from the authorization 
file are minimized with the values returned by the job controller. 

6. The job parameters, Pl through PB, if present, are defined as user mode 
logical names, which the CLI later translates. 

The procedures of mapping the CLI and transferring control are exactly 
the same as if the process were interactive. In both cases, if SYS$SYLOGIN 
is defined as a system logical name, the first commands that execute are the 
commands in the site-specific login command file. If the UAF does not spec­
ify a user login command file, the command file SYS$LOGIN:LOGIN.COM 
is executed next jif the CLI is DCL). 

LOGINOUT and Network Processes 

The NETACP image requests the $CREPRC system service to create a net­
work process. Many of the operations performed by LOGINOUT for a net­
work process are similar to those for an interactive process. The major dif­
ference is that LOGINOUT does not necessarily map a CLI for a network 
process. 

NETACP specifies the $CREPRC INPUT, OUTPUT, and ERROR arguments as 
follows: 

• The INPUT argument is the name of a command procedure or executable 
image to be invoked by LOGINOUT. 

• The OUTPUT argument is a flag indicating whether a proxy login is allowed, 
followed by access control information. 

• The ERROR argument is the address of a network control block INCBJ for 
the connection. 

LOGINOUT obtains the network logical link number from the NCB and 
stores the remote node name, address, and ID in Pl space. It checks to see 
whether the network process should use proxy login and performs validation 
of the access control information accordingly. It creates an executive mode 
logical name SYS$NET, which locates the NCB. 
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Initial Process Context 

EXE$PROCSTRT 
• $1MGACT Image 
•$DCLEXH EXE$RMSEXH 
•$SETEXV EXE$CATCH~ALL 
• $1MGFIX 
•Call image at EXE$1MGSTA 
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debugger, or 
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depending on flags ----I~ 

~--------- RET .., _________ RET 

EXE$EXIT $EXIT ______________________ ,.._• Invoke exit handler(s) 

• $DELPRC 

Figure 27.3 
Process That Executes a Single Image 

If the INPUT argument specified a file of type EXE rather than COM, LOG­
INOUT activates the executable image from a small code segment in Pl 
space. Since no CLI is mapped, this process will be deleted when its image 
exits. This optimization decreases network process activation time. Other­
wise, if the file type is COM, LOGINOUT activates a CLI to execute the 
file's commands and creates a log file. 

27.6 CLIS AND IMAGE PROCESSING 

Digital provides four CLis that run under the VMS operating system: DCL, 
monitor console routine (MCR), DEC/Shell, and CSHELL. DCL is supplied 
with the VMS software. MCR, once a VMS component, is now part of the 
optional product VAX-11 RSX. This section describes features of DCL and 
MCR. The other CLis are beyond the scope of this book. 

After the DCL or MCR CLI gains control and performs some initialization, 
it reads and processes successive records from SYS$INPUT. This section 
describes those operations that result in image execution, to contrast in­
teractive and batch processes with processes that do not map a CLI. The 
operations that DCL and MCR perform to activate an image are nearly iden­
tical. Any differences are explicitly mentioned. 

One of the important steps that either CLI performs is the declaration of a 
supervisor mode exit handler. It is this handler that prevents process deletion 
following image exit and allows the successive execution of multiple images 
within the same process. 

Figure 2 7 .3 shows the flow of control in a process that does not map a CLI 
and thus executes only one image. Figure 27.4 shows the flow of control in 
a process that maps a CLI and thus can execute multiple images. 
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Process That Executes Multiple Images 
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CLI Initialization 

The DCL CU's initialization code is the routine DCL$STARTUP in mod­
ule [DCL]INITIAL. For the MCR CU, the initialization code is the routine 
MCR$STARTUP in module [MCR]MCRINIT. Running in supervisor mode, 
the initialization code performs the following steps before entering the main 
command processing loop: 

1. The CU clears the FP register and then calls itself, creating an initial call 
frame on the supervisor stack. This initial call frame therefore contains 
a zero in the saved FP, terminating the call frame chain. The CU calls 
itself again and establishes a call frame condition handler. 

2. The CU writes the address of its CU callback service routine in the 
global location CTL$ALCUCALBK. Callback is a mechanism an image 
uses to obtain services from the CU, such as symbol creation and lookup. 

3. The CU initializes its work area from internal variables transferred by 
LOGINOUT to the PPD region. It also initializes the CU symbol table 
data structures. 

4. For a batch proc~ss, the CU translates the logical names for parameters 
Pl through PS. It creates symbols whose values are the equivalence 
names. 

5. The CU translates PROCO through PROC9 and saves their equivalence 
names to identify the command procedures it must execute. 

6. The CU requests the Rundown ($RUNDWN) system service with an 
argument of user mode to run down the LOGINOUT image. 

7. The CU validates the structure of its command table. 
8. It issues a special 1/0 request to the terminal driver, naming the process 

as the terminal owner. 
9. DCL enables CTRL/Y and out-of-band ASTs on the terminal. MCR en­

ables CTRL/Y ASTs. (CTRL/Y ASTs are not enabled if the UAF record 
had the DISCTLY flag set.) 

10. The CU calls the Declare Change Mode Handler ($DCLCMH) system 
service to establish a change-mode-to-supervisor handler. This handler 
allows the CU to enter supervisor mode from user mode when it needs 
to access write protected data structures. One instance where this is 
required is in symbol definition, because CU symbol tables are protected 
from write access by user mode. 

11. Finally, the CU branches to the first instruction of the main command 
processing loop (routine DCL$RESTART or MCR$RESTART). 

Command Processing Loop 

In the main command processing loop, the CU reads a record from SYS$1N­
PUT and takes whatever action is dictated by the command. The CU can 
perform some actions directly. Others require the execution of a separate 
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Table 27.4 General Actions Performed by a Command Language Interpreter 

General CLI Operations 

Commands that the CLI can execute 
internally (see Table 27.5) 

Commands that require external 
images 

Commands that require internal 
processing and an external image 

Foreign command definition 

Other operations that destroy an 
image 

Other internal operations 

Sample Commands 

EXAMINE, SET DEFAULT 

COPY, LINK, some SET commands, 
some SHOW commands 

LOGOUT, MCR, RUN 

command_string :=­
$image-file-spec 

STOP, EXIT, invoking a command 
procedure 

Symbol definition 

image. Table 27.4 lists the general operations performed by the CLI and in­
dicates those actions that require an external image. 

A simplified flow of control through a CLI is pictured in Figure 27.5. 
After the CLI reads a record from the input stream and recognizes a com­

mand, it either performs the requested action itself or activates an external 
image. DCL or MCR can execute some commands without destroying a 
currently executing image. Table 27.5 lists these commands but does not in­
clude special commands used by the MCR indirect command file processor. 
Any other command either requires an image to execute lsuch as COPY or 
LINK) or directly affects the currently executing image lsuch as STOP). 

Image Initiation by a CLI 

When the CLI determines that an external image is required, it first performs 
some command-specific steps. It then enters a common routine to activate 
and call the image. The steps that it takes are nearly identical to the steps 
performed by EXE$PROCSTRT, described in Chapter 25: 

1. The CLI requests the $RUNDWN system service, which removes any 
traces of a previously executing image, if one exists. If the previous image 
terminated normally, this request is unnecessary. However, if the user 
typed CTRL/Y followed by an external command, the normal image 
termination path is bypassed; the CLI must perform this extra step to 
ensure that the previous image is eliminated before another is activated. 

2. The CLI declares an internal routine as a supervisor mode exit handler 
to regain control when the image exits. Recall from Chapter 26 that an 
exit handler must be redeclared after each use. 

3. To activate the image, the CLI requests the Image Activate ($IMGACT) 
system service; described in Chapter 26. 

4. If the activation succeeds, the CLI builds a PSL with a current mode 
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CLI initialization code From LOGINOUT 
To exception 
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handler 

DEBUG command 
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return control 

EXIT command 
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Figure 27.5 
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state 
Go back to top of main 
loop 

Simplified Control Flow Through a Command 
Language Interpreter 
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Command 

ALLOCATE 
ASSIGN 1 

ATIACH 
CALL 1 

CANCEL 
CLOSE 1 

CONNECT 1 

CONTINUE 
CREATE/NAME_ TABLE 
DEALLOCATE 
DEASSIGN 
DEBUG 
DECK 1 

DEFINE 
DEFINE/KEY 

DELETE/KEY 
DELETE/SYMBOL 1 

DEPOSIT 
DISCONNECT 1 

EOD 1 

EOJ 

EXAMINE 
EXIT 

GOSUB 1 

GOTO 
IF/THEN/ELSE/ENDIF I 
INQUIRE 1 

ON 
OPEN 1 

READ 1 

RECALL 1 

RETURN 1 

SET CONTROL 

SET DEFAULT 
SET KEY 
SET[NO)ON 

Description 
Create/modify a symbol 
Allocate a device 
Create a logical name 
Transfer control to another process in job . 
Transfer control to a labeled subroutine in a command 

procedure 
Cancel scheduled wakeups for a process 
Close a process-permanent file 
Connect the physical terminal to a virtual terminal of 

another process 
Resume interrupted image 
Create a new logical name table 
Deallocate a device 
Delete a logical name 
Invoke the symbolic debugger 
Delimit the beginning of an input stream 
Create a logical name 
Associate a character string and attributes with a 

terminal key 
Delete a key definition 
Delete a symbol definition 
Modify a memory location 
Disconnect a physical terminal from a virtual terminal 
Delimit the end of an input stream 
Delimit the end of batch job submitted through card 

reader 
Examine a memory location 
Exit a command procedure 

Run down an image after invoking exit handlers 
Transfer control to a labeled subroutine in a command 

procedure 
Transfer control within a command procedure 
Conditional command execution 
Interactively assign a value to a symbol 
Define conditional action 
Open a process-permanent file 
Read a record into a symbol 
Display previously entered commands for possible 

reissue 
Terminate a GOSUB subroutine procedure 
Determine responses to CTRL/C, CTRL/Y,and 

CTRL/T 
Define default directory string 
Change current terminal key definition state 
Determine error processing 

(continued) 
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Table 27.5 Commands Handled by CLI Internal Procedures (continued) 

Command 
SET OUTPUT _RATE 

SETPROMPT 1 

SET PROTECTION 
SETSYMBOL 1 

SETUIC 
SET [NO]VERIFY 
SHOW DEFAULT 
SHOW KEY 
SHOW PROTECTION 
SHOW QUOTA 
SHOW STATUS 
SHOW SYMBOL 
SHOW TIME 
SHOW TRANSLATION 
SPAWN 
STOP 
WAIT 1 

WRITE 1 

Description 
Set rate at which output is written to a batch job log 

file 
Change the CLl's prompt string 
Define default file protection 
Alter scope of a symbol 
Change process UIC and default directory string 
Determine echoing of command procedure commands 
Display default directory string 
Display terminal key definitions 
Display default file protection 
Display current disk file usage 
Display status of currently executing image 
Display value of symbol(s) 
Display current time 
Show translation of single logical name 
Create a subprocess and transfer control to it 
Run down an image bypassing exit handlers 
Wait for specified interval to elapse 
Write the value of a symbol to a file 

1 These commands are available in the DCL CLI but not in the MCR CLI. 

of user and pushes it onto the stack. It copies an internal CLI address 
onto the stack as a PC. It then executes an REI instruction, entering an 
internal routine with its access mode changed to user. 

5. It clears the argument pointer (AP) and frame pointer (FP) registers and 
calls another internal routine, creating an initial call frame on the user 
stack. Because the saved FP in the call frame is zero, it will act as a 
terminator for a future user mode call frame chain. 

6. It establishes the catch-all condition handler as the handler for this call 
frame and as the last chance exception handler. 

7. It requests the Address Relocation Fixup ($IMGFIX) system service to 
relocate image addresses. 

8. The CLI builds an argument list on the user stack to pass to the image 
and to any intervening procedures such as SYS$IMGSTA. Figure 27.6 
shows the argument list. 

9. The CLI calls the image at the first address in the transfer address array, 
described in Chapter 26. Unless the image was linked with the ·/NO­
TRACEBACK qualifier, the first transfer address entry is the address of 
the Image Startup ($IMGSTA) system service. This service establishes 
the traceback exception handler and maps the debugger, if requested. 

10. Later, the image terminates itself by issuing a RET instruction or by re­
questing the $EXIT system service. Since the CLI instruction stream 
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Address of Transfer Address Array 

Address of CLI Utility Dispatcher 

Address of Image Header 

Address of Image File Descriptor 

Link Flags from Image Header 

CLI Flags 

Figure 27.6 
Argument List Passed to an Image by EXE$PROCSTRT 
or a CLI 

requests the $EXIT system service anyway, the termination method cho­
sen by the image is generally irrelevant. However, for an image that might 
be called as a procedure from another image, a RET instruction is the pre­
ferred method of image termination. 

Normal Image Termination 

When an image in a process with a CLI terminates normally, the $EXIT 
system service eventually calls the supervisor mode exit handler established 
by the CLI before it called the image. DCL's exit handler DCL$EXITHAND 
or MCR's exit handler MCR$EXITHAND performs several cleanup steps: 

1. If the image exited with an error status in RO, the handler stores the error 
in the symbol $STATUS. It then writes the corresponding error message. 

2. It calls SYS$RMSRUNDWN, closing any files left open by the image and 
the image file itself. 

3. It discards any data records in the input stream (records that do not begin 
with a dollar sign for DCL or a right angle bracket for MCR) and issues 
a warning message. 

4. It runs down the terminated image by requesting the $RUNDWN system 
service with an argument of user mode. 

5. Finally, it transfers control to the beginning of the main command loop 
so that the CLI can read and process the next command. 

Abnormal Image Termination 

A user can interrupt an image by typing CTRL/Y or CTRL/C; an image can 
interrupt itself through the pause capability supplied by the VMS Run-Time 
Library procedure LIB$PAUSE. Further execution of the image depends on 
the sequence of commands issued while the image is interrupted. 

CTRL/Y Processing. When CTRL/Y is typed at the terminal, the terminal 
driver transfers control to the AST procedure established by the CLI during 
its initialization. The AST procedure first reestablishes itself, enabling future 
CTRL/Ys to be passed to the same AST procedure. It then checks whether the 
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process has disabled CTRL/Ys through the SET NOCONTROL= Y command. 
If so, the AST procedure returns, dismissing the CTRL/Y. Otherwise, its 
actions depend on the access mode interrupted by the CTRL/Y. 

If the previous mode was supervisor, the AST procedure actions depend on 
whether an ON CONTROL Y command was issued previously, specifying 
a particular command to be executed in response. If so, the AST procedure 
sets a flag to request that the command be executed and returns. If not, the 
CLI is restored to its initial state (with no nesting of indirect levels) and 
control transfers to the beginning of the main command loop. 

If the previous mode was user, then the CTRL/Y interrupted an image. 
If the image was installed with enhanced privileges, the CLI saves those 
privileges and resets the process privileges to those in use before the image 
was activated. After setting a flag, the CLI returns to command processing. 
If, at this point, the user enters the DCL commands ATTACH, CONTINUE, 
or SPAWN (or the MCR command CONTINUE), the appropriate action is 
taken and the image is not run down. Any other command causes the CLI to 
run down a privileged image before executing the command; a nonprivileged 
image may continue (see Section 27.6.5.3). Issuing a STOP command for a 
nonprivileged image causes the CLI to terminate the image without calling 
user mode exit handlers (see Section 27.6.5.7). However, because a privileged 
image is run down before the STOP command is processed, its exit handlers 
are called. 

Pause Capability. The VMS Run-Time Library procedure LIB$PAUSE pro­
vides the capability to interrupt an image under program control. An image 
executing in the context of an interactive process can invoke LIB$PAUSE to 
interrupt itself and transfer control to the CLI at the beginning of its main 
command loop. 

State of Interrupted Images. When a nonprivileged image is interrupted, 
the image context is saved and control transfers to the beginning of the 
CLl's main command loop, allowing the user to execute commands. If the 
command is one that the CLI can perform internally (see Table 27.5), the 
image context is not destroyed and the image can be continued. 

However, execution of any command that requires an external image 
destroys the context of the interrupted image. In addition, executing an 
indirect command file destroys an interrupted image, even if the commands 
in the indirect comman,d file can be performed internally by the CLI. 

Six commands that the user can enter when an image has been inter­
rupted by CTRL/Y have special importance. These commands are ATTACH, 
CONTINUE, DEBUG, EXIT, SPAWN, and STOP. ATTACH and SPAWN are 
described in Section 27.4. The other commands are described in the follow­
ing sections. 
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CONTINUE Command. If a CONTINUE command is typed and the previous 
mode was user, the CLI dismisses the AST and returns control to the image 
at the point where it was interrupted. 

DEBUG Command. As described in Chapter 26, a DEBUG command causes 
the CLI to generate an SS$_DEBUG signal, which is eventually fielded by 
the condition handler established by the $IMGACT system service. (If the 
image was linked with the /NOTRACEBACK qualifier, the handler was 
never established and the image exits.) This handler responds to the SS$_ 
DEBUG signal by mapping the debugger (if it is not already mapped) and 
transferring control to it. This technique enables the debugger to be used, 
even if the image was not linked with the /DEBUG qualifier. 

EXIT Command. The EXIT command invokes the $EXIT system service 
from user mode. Exit handlers are called and the image is run down. 

STOP Command. The STOP command performs essentially the same clean­
up operations that occur for a normally terminating image. However, STOP 
does its own work and does not call the $EXIT system service. Thus, user 
mode exit handlers are not called when an image terminates with a CTRL/Y 
STOP sequence. 

The STOP command processor first determines whether an image or a 
process is being stopped. (The various STOP commands are described in the 
VMS DCL Dictionary.) If an image is being stopped, all open files are closed 
by calling SYS$RMSRUNDWN. The image itself is then run down through 
the $RUNDWN system service. Finally, control transfers to the beginning 
of the main command loop. 

Note that STOP performs nearly identical operations to the CLI exit 
handler called· as a result of an $EXIT system service request or an EXIT 
command. The only difference between the EXIT sequences and the STOP 
command is that user mode exit handlers are not called first. Thus, in most 
cases, the STOP and EXIT commands are interchangeable. One useful aspect 
of the STOP command is .that it can eliminate an image containing a user 
mode exit handler that is preventing that image from completely going away, 
either intentionally or as a result of an error. 

LOGOUT OPERATION 

LOGINOUT, the image that performs the initialization of an interactive 
or batch process, also eventually executes to delete such a process. When 
LOGINOUT executes, it performs login, logout, or batch job step initial­
ization. (When a batch process is submitted with more than one command 
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procedure specified, each procedure is handled as a separate batch job step.) 
LOGINOUT determines whether the process is logged in already by the ex­
istence of the PPD region, used to communicate between LOGINOUT and 
the CLI. 

If the PPD region exists, LOGINOUT's actions depend on whether the 
process is interactive or batch. For an interactive process, LOGINOUT per­
forms the following steps: 

1. LOGINOUT copies the IFls for SYS$1NPUT and SYS$0UTPUT from 
PPD locations into RMS data structures. This restores definitions of 
SYS$1NPUT and SYS$0UTPUT made at login. 

2. LOGINOUT notifies the security audit subsystem of the logout. 
3. If the user specified the /[NO]HANGUP qualifier on the LOGOUT com­

mand, LOGINOUT checks whether it is appropriate to change the ter­
minal characteristics. If the process is interactive and not a subprocess, 
and the terminal is local, LOGINOUT reads the current terminal char­
acteristics and resets them, altering the hangup bit. 

4. LOGINOUT writes the logout message to the restored SYS$0UTPUT. 
(Thus, it cannot be redirected via a logical name definition.) If the user 
asked for a full logout message, LOGINOUT requests the $GETJPI sys­
tem service to get information, such as CPU time, number of page faults, 
and number of 1/0 requests. 

5. It closes SYS$1NPUT and SYS$0UTPUT. 
6. Finally, LOGINOUT requests the $EXIT system service from executive 

mode. As described in Chapter 26, this limits the search for exit handlers 
to the executive mode list, bypassing the supervisor mode exit handler 
established by the CLI to prevent process deletion following image exit. 

7. After the executive mode exit handler has performed its work, the $EXIT 
system service requests the $DELPRC system service, which removes the 
logged out process from the system. 

If the process is a batch process, LOGINOUT first closes SYS$1NPUT. It 
requests the $SNDJBC system service again to determine if there is another 
job step. If the batch process was submitted with multiple command pro­
cedures specified, LOGINOUT opens the new SYS$1NPUT, reinitializes the 
batch process environment, and reenters the CLI. 

If the previous batch job step failed, or the message that is returned from 
the job controller indicates that the process should be terminated, LOG­
INOUT terminates it through the following steps: 

1. It writes a logout message to the log file. 
2. It closes the log file. 
3. If the log file is to be printed, then LOGINOUT requests $SNDJBC again, 

this time to queue the file to a print queue. 
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4. It then requests the $EXIT system service from executive mode. After 
the executive mode exit handler has performed its work, the $EXIT 
system service requests the $DELPRC system service, which removes 
the process from the system. 



28 Process Deletion 

... for dust you are and unto dust you shall return. 

Genesis 3:19 

When a process is to be deleted, a series of cleanup actions are necessary: 

• All traces of the process must be removed from the system . 
• All resources in the process's custody must be returned to the system . 
• Accounting information must be sent to the job controller . 
• Any subprocesses of the process being deleted must be deleted. 
• If the process being deleted is a subprocess, all quotas and limits taken 

from its parent (owner) process must be returned . 
• Finally, if the owner requested notification of the subprocess's deletion 

through a termination mailbox, the deletion message must be sent. 

A process can delete itself or any other process in the VAXcluster system 
that it has the capability to affect. Process deletion occurs in two stages, the 
first in the context of the process requesting the deletion, and the second in 
the context of the process being deleted. 

28.1 PROCESS DELETION IN CONTEXT OF CALLER 

Process deletion is implemented by the Delete Process ($DELPRC) system 
service. Its initial operation occurs in the context of the process requesting 
the system service. This part of the operation performs a simple set of 
privilege checks and then queues a kernel mode asynchronous system trap 
(AST) that will cause the deletion to continue in the context of the process 
being deleted. Chapter 7 describes the queuing and delivery of ASTs. 

The $DELPRC system service procedure, EXE$DELPRC in module SYS­
DELPRC, runs in kernel mode. If the requesting process is the process to 
be deleted, no arguments are required; otherwise the requesting process can 
specify either the process name or the extended process ID (EPID) of the 
process to be deleted. 

EXE$DELPRC performs the following steps: 

1. It immediately invokes EXE$NAMPID, in module SYSPCNTRL, to lo­
cate the process control block (PCB) of the process to be deleted. 

EXE$NAMPID determines whether the input arguments specify a tar­
get process on this V AXcluster node or on another node. In the former 
case, EXE$NAMPID confirms the existence of the target process and the 
ability of the current process to delete it. (Chapter 13 describes the pos­
sible relation between the two processes and the privileges required in 
each case.) If the process is identified as one on another V AXcluster node, 
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EXE$NAMPID cannot make those checks; it can only confirm that the 
VAXcluster node identification is valid. 

If further action is possible, EXE$NAMPID returns at IPL$_SCHED 
with the SCHED spinlock held; otherwise it returns at IPL 0. In either 
case, it returns an appropriate status. 

2. If EXE$NAMPID returns the status SS$_REMOTE_PROC, indicating 
that the process may exist on another VAXcluster node, EXE$DEL­
PRC transfers control to the clusterwide process service (CWPSJ routine 
CWPS$PCNTRL, in module SYSPCNTRL. CWPS$PCNTRL transmits 
the deletion request to the appropriate V AXcluster node and places the 
process into a wait state. A cooperating CWPS routine on the other node 
processes the request and transmits status back to this node. Through 
mechanisms described in Chapter 13, control returns to a CWPS routine 
running in the context of the $DELPRC requestor. This routine exits 
from the $DELPRC system service, returning the status transmitted from 
the other node. 

3. If EXE$NAMPID returns any other error status, EXE$DELPRC simply 
exits, returning the error status to its requestor. 

4. If EXE$NAMPID returns a status indicating that the target process exists 
on this node and that the requesting process may affect it, EXE$DELPRC 
continues. 

5. EXE$DELPRC tests the flag PCB$V _NODELET in PCB$L_STS. VMS uses 
this flag to prevent deletion of system processes such as the swapper and 
NETACP. If the flag is set, EXE$DELPRC does not delete the process but 
instead releases the SCHED spinlock, lowers IPL, and returns the error 
status SS$_NODELETE. Use of the PCB$V _NODELET flag is reserved 
to Digital. Any other use is completely unsupported. 

6. EXE$DELPRC must queue a kernel mode AST to the target process. 
It allocates and initializes an AST control block (ACBJ to describe the 
kernel AST. 

7. It marks the target process for deletion by setting the flag PCB$V _ 
DELPEN .in PCB$L_STS. If the bit is found already set, deletion is under­
way for the target process. EXE$DELPRC releases the SCHED spinlock, 
lowers IPL, deallocates the ACB, and returns the success status SS$_ 
NORMAL. However, if an executive mode rundown routine is entered 
as a result of process deletion and it rerequests the $DELPRC system 
service, EXE$DELPRC ignores PCB$V _DELPEN and continues as though 
the process were not marked for deletion. 

8. EXE$DELPRC sets the target process's PCB$V _RESPEN bit and reports a 
resume event for the process. This event is significant only for a process 
in scheduling state SUSP or SUSPO and causes such a process to be 
resumed. This mechanism is necessary because no ASTs can be delivered 
. to a process suspended in kernel mode, including the delete process 
kernel mode AST. 
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9. EXE$DELPRC initializes the ACB with the process ID (PID) of the target 
process and the address of the kernel mode AST procedure that performs 
the actual process deletion, routine DELETE in module SYSDELPRC. 

10. It queues the AST to the target process, with a potential boost of PRI$_ 
RESAVL to its software priority. 

Queuing the AST to the target process makes it computable. Eventually, 
the scheduler selects that process for execution. 

28.2 PROCESS DELETION IN CONTEXT OF PROCESS BEING DELETED 

Most of process deletion occurs in the context of the process being deleted. 
If the process has no pending special kernel mode or other kernel mode 
ASTs, the process deletion AST procedure executes immediately. Note that 
a process executing or waiting at IPL 2 or above cannot be deleted because 
ASTs cannot be delivered. 

28.2.1 

Deleting a process in its context means that its address space and process 
header are readily accessible. The DELETE AST procedure is therefore able 
to request standard system services, such as Delete Virtual Address Space 
($DELTVA) and Deassign I/O Channel ($DASSGN). Special cases, such as 
the deletion of a process that is outswapped, are avoided by ensuring that 
the process is first made resident. 

DELETE Kernel Mode AST 

The DELETE AST procedure performs the following steps: 

1. DELETE first enables resource wait mode by clearing PCB$V _SSRWAIT 
in PCB$L_STS. 

2. It then searches for per-process or systemwide executive mode rundown 
routines to perform image-specific cleanup. Use of executive mode run­
down routines is reserved to Digital. Any other use is strongly discour­
aged by Digital and completely unsupported. 

If executive mode rundown is not already active and executive mode 
rundown routines exist, DELETE sets a flag indicating that executive 
mode rundown is active and queues an executive mode AST to the 
process, specifying EXEC_RUNDOWN_AST as the AST address. DE­
LETE then exits, allowing the executive mode AST to be delivered. 

EXEC_RUNDOWN_AST, in module SYSDELPRC, invokes the per­
process executive mode rundown routines and the systemwide executive 
mode rundown routines if any exist. It then requests the Change to 
Kernel Mode ($CMKRNL) system service to resume processing in the 
original DELETE code path at step 4, in kernel mode. 

3. If no executive mode rundown routines need to be invoked, DELETE 
clears the PCB$B_ASTACT bit to indicate that no kernel mode AST 
is active. It invokes SCH$NEWLVL to determine the mode of the most 
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important pending AST. Taking these steps enables another kernel mode 
AST to interrupt the DELETE AST. Although interruption of an AST by 
another at the same mode is usually prohibited, it may be necessary 
before process deletion can complete. 

4. DELETE checks whether the process has a Files-11 operation in progress. 
This must complete before DELETE can proceed. If PCB$B_DPC is non­
zero, indicating this condition, DELETE places the process into a resource 
wait state for resource RSN$_ASTWAIT. When the queuing and delivery 
of a kernel mode AST ends the resource wait, DELETE repeats its check. 
When PCB$B_DPC is zero, the DELETE procedure can continue. Chap­
ter 7 documents the field PCB$B_DPC and its use in stalling process 
deletion. 

5. If per-process or systemwide user-specified kernel mode rundown rou­
tines exist, they are invoked to perform image-specific cleanup. 

6. DELETE then reinitializes the Pl cells that control dispatching to privi­
leged shareable images and user-specified rundown routines. 

7. It calls SYS$RMSRUNDWN to perform Record Management Services 
(RMS) rundown. The service routine, RMS$RMSRUNDWN in module 
[RMS]RMSORNDWN, aborts RMS 1/0 for the process and transfers con­
trol to the routine RM$LAST _CHANCE, in module [RMS]RMSOLSTCH, 
to perform the actual rundown. 

RM$LAST _CHANCE scans the process's open disk files and detaches 
any file that uses.global buffers from the global buffer pool. No further 
rundown is performed on files that are journaled. 

For a sequential file, RM$LAST _CHANCE writes the current buffer 
operated on by the process to disk if the buffer has been modified. This 
attempt to preserve the last data records written to the file may help 
a subsequent attempt to analyze process action prior to deletion. This 
feature is intended for problem analysis rather than for minimizing data 
loss. 

RM$LAST _CHANCE deaccesses any file open for exclusive access to 
update the RMS record attributes in its file header, particularly the end­
of-file pointer. 

During RMS rundown no .attempt is made to write all modified data 
buffers to disk. User applications not using journaling must be able to 
handle potential data loss resulting from forced process deletion. 

8. If the process has any subprocesses (if its PCB$W _PRCCNT field is 
nonzero), they must be deleted before deletion of the owner process can 
continue. Section 28.2.2 contains an example of deleting a process with 
subprocesses. 

The following steps are performed to delete the subprocesses: 

a. DELETE scans the PCB vector for all PCBs whose PCB$1-0WNER 
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field specifies the PID of the process being deleted. DELETE requests 
the $DELPRC system seririce to delete each of these subprocesses. 

b. DELETE again checks the subprocess count PCB$W_PRCCNT. Hit 
is greater than zero, the process is placed into a resource wait state 
(MWAIT) for resource RSN$_ASTWAIT. This parent process becomes 
computable again when the RETQUOTA special kernel mode AST 
returns CPU time quota from one of the subprocesses (see step 17) 
and control returns to DELETE. DELETE repeats this step until the 
subprocess count is zero. At that point, all subprocesses have been 
deleted and the DELETE procedure can continue. 

9. DELETE requests the $RUNDWN system service to run down the pro­
cess from kernel mode (see Chapter 26). 

10. For each section still mapped to the process virtual address space, DE­
LETE requests the $DELTVA system service to delete those virtual pages. 
The process section table entry is checked before the deletion. H the 
SEC$V _INPROG flag is set in the process section table entry, the sec­
tion was being created when the delete process AST was delivered. In 
this case, DELETE invokes MMG$DECSECREFL to correct the section 
reference count. 

H any pages are actually deleted, the $RUNDWN system service is 
requested once again to complete the deassignment of open channels. 

11. The channef~ontrol blocks (CCBs) are scanned to ensure that all chan­
nels have been deassigned. H any is still assigned, DELETE generates a 
fatal FILCNTNONZ bugcheck. 

12. H the current process is not a subprocess (if the PCB$LOWNER field is 
zero) DELETE di~mounts each jobwide mounted volume. 

If the current process is a subprocess, DELE~ reassigns any volumes 
allocated by the subprocess to the owner process. DELETE stores the 
owner process's PID in UCB$L_PID and sets the UCB$V _DEADMO bit 
to ensure that the volume will be deallocated when it is eventually 
dismounted by the owner process. 

13. DELETE ensilres that all outstanding process 1/0 requests have com­
pleted. It compares PCB$W _DIOLM to PCB$W _DIOCNT and PCB$W _ 
BIOLM to PCB$W _BIOCNT. The difference between the first two fields 
is the number Of outstanding direct 1/0 requests; the difference between 
the latter twO i.S the number of outstanding buffered 1/0 requests. 

14. H the current process is not a subprocess, DELETE decrements otie of two 
system proc~~s counts. H the process is interactive (if PCB$V _INTER 
in PCB$LSTs is set), DELETE decrements the number of interactive 
jobs, SYS$GW.:.:.11JOBCNT. H the process is a batch job (if PCB$V _BATCH 
in PCB$LSTS is set), DELETE decrements the number of batch jobs, 
SYS$GW _BJOBCNT. 
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15. If the current process is not a subprocess, DELETE deletes the jobwide 
logical name table. 

16. DELETE resets the process name string in the PCB by zeroing the count 
byte. 

17. If the current process is a subprocess, any remaining deductible quotas 
must be returned to the owner process. The following steps are taken: 

a. An 1/0 request packet (IRP) is allocated for use as an ACB. 
b. The address of the return quota special kernel mode AST (routine 

RETQUOTA in module SYSDELPRC) and the PID of the owner 
process are stored in the ACB. 

c. The only quota that must be returned to the owner process, unused 
CPU time, is stored in the portion of the IRP immediately following 
the ACB. All other quotas are either pooled or nondeductible (see 
Chapter 25). 

d. Finally, the special kernel mode AST is queued to the owner process, 
giving it a priority boost of PRl$_RESAVL. 

18. If the current process is a subprocess and the owner process requested 
a termination mailbox message, a termination message is constructed 
on the stack. DELETE requests the Queue 1/0 Request ($QIO) system 
service to send the termination message to the mailbox unit specified 
by PCB$W_TMBU. The message contents are listed in Table 28.1. The 
message size is specified by ACC$C_ TERMLEN. 

19. EXE$PRCDELMSG, in module ACCOUNT, is invoked to send an ac­
counting message to the job controller. It sends the message unless ac­
counting is inhibited for this process (the NOACNT flag was specified 
at process creation) or process termination accounting is disabled for the 
entire system. The contents of this message are used to fill in all rel­
evant fields of the accounting identification and resource packets. The 
data structures used by the Accounting Utility are described in the VMS 
Accounting Utility Manual. 

20. After IPL is raised to 2 to prevent AST delivery, most of the remainder 
of Pl space is deleted. However, the Pl pages permanently locked into 
the working set list, the kernel stack, for example, are not deleted. Some 
of Pl space, including the user stack, may have already been deleted as 
a result of a previous image reset call. 

21. DELETE releases the process page table pages to the head of the free page 
list and deallocates the associated page file space. It acquires the MMG 
and SCHED spinlocks to synchronize access to the memory management 
and scheduler databases. 

At this point, DELETE executes a SVPCTX instruction to remove the 
process from execution. Executing this instruction switches stacks; DE­
LETE is now running on the interrupt stack. 
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Table 28.1 Contents of the Termination Mailbox 
Message Sent to the Owner Process 

Field in Message Block 

Message type 
Final exit status 
Process ID 
Job ID 
Logout time 
Account name 
User name 
CPU time 
Number of page faults 
Peak paging file usage 
Peak working set· size 
Buffered 1/0 count 
Direct 1/0 count 
Count of mounted volumes 
Login time 
EPID of owner 

Source of Information 
MSG$_DELPROC 1 

CTL$GL_FINALSTS 
PCB$LEPID 
Not currently used 
EXE$GQ_SYSTIME 
CTL$T _ACCOUNT 
CTL$T _USERNAME 
PHD$LCPUTIM 
PHD$LPAGEFLTS 
Not currently used 
CTL$GL_ WSPEAK 
PHD$L_BIOCNT 
PHD$LDIOCNT 
CTL$GL_ VOLUMES 
CTL$GQ_LOGIN 
PCB$LEOWNER 

1 MSG$_DELPROC is a constant, indicating that this is 
a process termination message. 

22. If the process capability mask indicates explicit affinity to a particular 
CPU, DELETE decrements that CPU's explicit affinity count. 

23. DELETE stores the address of the null PCB in the per-CPU database field 
CPU$L_CURPCB and in the PCB vector slot formerly occupied by the 
process being deleted, thus freeing the slot for future use. 

24. The pages in process space that were permanently locked into the work­
ing set, for example, the kernel stack and the Pl pointer page, are deleted 
and placed at the head of the free page list. The process header pages that 
are a permanent part of the working set will be deleted by the swapper 
when the process header is deleted. 

25. Each remaining ACB is removed from the PCB queue and deallocated to 
nonpaged pool unless its ACB$V _NODELETE bit is set. If the ACB$V _ 
NODELETE bit is set, the ACB is assumed to be part of another data 
structure whose deletion is not desirable. 

26. DELETE removes any pending CWPS structures from the PCB$Q_CWPS­
SRV _QUEUE queue of the process being deleted. It inserts them on the 
swapper's PCB$Q_CWPSSRV _QUEUE queue. 

These structures cannot be deleted until the stalled fork thread that 
expects to access them is resumed by the arrival of a response from 
another VAXcluster member. When the response arrives, the fork thread 
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determines that the requestor process was deleted and deallocates the 
structures. 

27. If the process had an extended rights list, it is deallocated to nonpaged 
pool. 

28. The process count field in the job information block (JIB) is decremented 
in an interlocked manner. If the process being deleted is a detached 
process (the PID of the process being deleted is equal to the master PID 
field in the JIB), the JIB is deallocated. 

29. If the process being deleted is a subprocess, its owner's subprocess count 
(PCB$W _PRCCNT) is decremented. If the owner process is also being 
deleted, the owner is currently in a wait state, waiting for the contents of 
this field to become zero. DELETE makes the owner process computable 
so that it can check the value of PCB$W _PRCCNT. If the value is now 
zero, the owner can continue with its own deletion. 

30. The PCB is deallocated to nonpaged pool. 
31. The number of processes in the balance set, SWP$GW_BALCNT, is 

decremented. 
32. The routine SCH$SWPWAKE is invoked to awaken the swapper because 

there is a process header to be removed from the balance slot area (see 
Chapter 18). 

33. The scheduler's process count, SCH$GW_PROCCNT, is decremented. 
34. Finally, the DELETE AST procedure releases the MMG spinlock and 

exits by jumping to the scheduler at entry SCH$SCHED, holding the 
SCHED spinlock. The scheduler selects the next process for execution 
and releases the SCHED spinlock (see Chapter 12). 

Deletion of a Process That Owns Subprocesses 

When a process owns subprocesses, the deletion of the owner process must 
be delayed until all its subprocesses are deleted. The prior deletion of subpro­
cesses ensures that any quotas taken from the owner process are returned. In 
early versions of VMS prior to the existence of the JIB and its jobwide pooled 
quotas (see Chapter 25 ), several quotas were charged against a process when it 
created a subprocess. At deletion of the subprocess, the subprocess returned 
those quotas. All the quotas treated in this way are now pooled except for 
CPU time limit, which is the only quota returned at subprocess deletion. 

During the execution of the DELETE AST procedure, a check is made 
to see if the process being deleted owns any subprocesses. If it does, these 
processes must be located and deleted. 

As Figure 28.1 shows, there are no forward pointers in the JIB or PCB 
of an owner process to indicate which subprocesses it has created. The 
only indication that a process has created subprocesses is a nonzero value 
in PCB$W _PRCCNT. The process's subprocesses can only be located by 
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28.2 Process Deletion in Context of Process Being Deleted 

Name OTG 

PIO 10035 

Name BERT 

PIO 10033 PR CC NT 2 

PRCCNi 0 
OWNER 0 

OWNER 10035 

Figure 28.1 
Sample Job to Illustrate Process Deletion with 
Subprocesses 

Name ERNIE 

PIO 10031 

PRCCNi .::_ 0 

OWNER 10035 

scanning all the PCBs in the system until each PCB is located whose owner 
field contains the PID of interest. 

Example of Process Deletion with Subprocesses 

The details of this situation can best be illustrated with an example. Fig­
ure 28.1 shows a process whose process ID equals 10035 and whose name is 
OTC. The process OTC owns two subprocesses: the first has a process ID 
of 10033 and the name BERT; the second has a process ID of 10031 and the 
name ERNIE. 

Neither of these subprocesses owns any further subprocesses. The follow­
ing steps occur as a result of the process OTC being deleted. Assume that 
the priorities are such that the processes execute in the order OTC, BERT, 
and ERNIE. 

1. The deletion of process OTC proceeds normally until it is determined 
that this process has created two subprocesses. The PCB vector is scanned 
until the two PCBs containing 10035 in the PCB$LOWNER field are 
located. These two processes are marked for deletion. This means that the 
DELETE kernel mode AST is queued to the two subprocesses and they 
are made computable. Process OTC. is placed into a wait state because 
its count of owned subprocesses is nonzero (actually 2, at this point). 

2. The previous assumption about priorities implies that process BERT ex­
ecutes next. Its deletion proceeds past the point where process OTC 
stopped because it owns no subprocesses. However, the next step in the 
DELETE AST procedure determines that process BERT is a subprocess 
and must return quotas to its owner. The return of quotas is accom­
plished by queuing a special kernel mode AST (RETQUOTA) to process 
OTC, changing its state back to computable. When BERT has finished 
with all actions that require the presence of the JIB, it decrements the 
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process count in OTC's PCB$W _PRCCNT and declares a resource avail­
ability event, which awakens OTG. However, the count of owned sub­
processes is still not zero (down to 1 now), so process OTG is put back 
into the resource wait state. Process BERT continues to execute until it 
disappears entirely from the system. 

3. Process ERNIE now begins execution of the DELETE AST procedure. 
Again, the check for owned subprocesses indicates none, but the check 
for being a subprocess is positive. A RETQUOTA AST is again queued to 
process OTC and the count of owned subprocesses decremented (finally 
to zero). 

4. Now process OTC resumes execution as a result of the delivery of the 
RETQUOTA AST and subsequently finds that the count of owned sub­
processes has gone to zero. In fact, process OTC continues to be deleted 
at this point, even though process ERNIE has not been entirely deleted. 
This overlapping is simply a result of the timing in this example. The 
process ERNIE is well on the way to being deleted and is no longer of any 
concern to process OTC. The important point is that the quotas given 
to process ERNIE have been returned to OTC. Once OTG's PCB$W_ 
PRCCNT is equal to zero, it is irrelevant which process executes next. 
Because ERNIE and BERT have finished work that depended on the pres­
ence of the JIB, OTC and the JIB can be deleted totally. 

In the general case of a series of subprocesses arranged in a tree structure, 
the deletion of some arbitrary process requires that each subprocess further 
down in the tree must execute the process deletion step, which returns quota 
to its owner. 
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29 The Modular Executive 

Non sunt multiplicanda entia praeter necessitatem. 
[Entities should not be multiplied beyond necessity.] 

William of Occam 

The VMS executive consists of a base image and a number of separately 
loadable images. Some of these images are loaded on all systems, while others 
support features unique to particular systein configurations. 

The base image connects requests for services with the routines that pro­
vide the services. That is, the base image consists mostly of very small 
routines whose addresses are fixed and that dispatch to service-providing 
routines in separately loadable images. It also contains data and pointers to 
data in loadable images. 

This chapter describes the organization of the base image and various types 
of loadable image, and the connections among them. It concentrates on the 
base image and loadable executive images, which are new to VMS Version 5. 
It describes more briefly the other types of loadable image, such as the CPU­
specific code supplied in the SYSLOAxxx .EXE images. 

29.1 OVERVIEW 

The VMS executive has always been partitioned into multiple images. As 
VMS has supported more features and CPU types, the number of images 
has grown. In previous versions of VMS, much of the executive was in 
SYS.EXE, the system image. Features not common to all system configu­
rations were supported in separate images, such as device drivers and the 
SYSLOAxxx .EXE images. 

In VMS Version 5, the executive has been further partitioned. There are 
two major reasons for this change: to simplify subsequent changes to the ex­
ecutive, and to reduce the number of system-dependent images that require 
relinking when some part of the executive changes. Changing SYS.EXE for­
merly meant applying complex patches to it or rebuilding it. Rebuilding has 
had the undesirable side effect of requiring a subsequent relinking of all im­
ages linked against SYS.STB, both VMS- and user-supplied. 

The concept underlying the reorganized executive is similar to that of 
a shareable image, which contains transfer vectors and routines. A transfer 
vector is a pointer or a very small number of instructions, placed at a locati?n 
that does not change when the image containihg it is modified, recompiled, 
or relinked. It serves as an indirect address, or transfer, to code or data whose 
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location may change. A transfer vector's unchanging location provides a 
stable target for references from external code and frees such code from the 
need to relink whenever the destination of the transfer vector moves. 

The system image has been split into a base image, named SYS.EXE, and a 
number of other images called loadable executive images. Unlike shareable 
image transfer vectors, executive transfer vectors are collected in an image 
of their own, the base image. The routines themselves are in other images, 
mostly in loadable executive images. The base image also contains pointers 
to systemwide data in loadable executive images. Each loadable executive 
image contains related routines and data. For example, the loadable executive 
image LOGICALNAMES.EXE contains all the routines and much of the 
data related to support for logical names. Section 29.3.1 describes extensions 
to the implementation of shareable images required for loadable executive 
images. 

The reorganization of the executive makes it less likely that SYS.EXE will 
need to be rebuilt when corrections or enhancements are made to loadable 
executive images. Under VMS Version 5, it is possible to replace a loadable 
executive image with no impact on SYS.EXE. The replacement image might 
be a corrected or enhanced one or it might be an alternative version. For ex­
ample, there are three versions of the system synchronization image. During 
system initialization, the version appropriate to the configuration is selected 
and loaded. 

The reorganization of the executive also simplifies system initialization. 
Initialization code specific to a feature is now part of the appropriate load­
able executive image. Furthermore, initialization routines can be invoked 
multiple times at different phases of system initialization. 

As part of the reorganization, all executive images have been moved from 
the directory SYS$SYSTEM to the directory SYS$LOADABLE_IMAGES. 

Several problems were addressed to reorganize the system image: 

• Creating address space for the executive with appropriate pageability and 
protection characteristics 

• Developing a mechanism to load executive images 
• Enabling one loadable executive image to call routines or access data in 

another 
• Connecting the transfer vectors in the base image to routines and data in 

loaded executive images 
• Maintaining the position independence of a loadable executive image that 

contains .ADDRESS or .ASCID directives 
• Controlling executive version identification and compatibility 
• Allocating and deallocating system address space 

The solutions to these problems are described throughout the rest of this 
chapter. 
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SYS$SO_VECTOR_BASE :: System Service Vectors 80000000 

t-----------------
SYS$SO_VECTOR_LAST_USED :: Expansion Space 

SYS$SO_VECTOR_END :: End of System Service Vectors 

EXE$VECTOR_BASE :: Executive Transfer Vectors 80002000 

t-----------------
EXE$VECTOR_LAST_USED :: Expansion Space 

EXE$VECTOR_END :: End of Vector Area 

MMG$A_NPAG_DATA :: System Data Area 80004000 

t- - - - - - - - - - - -- - - - - -
EXE$NPAG_DATA_LAST_USED :: Expansion Space 

MMG$A_NPAG_DATA_END :: End of System Data Area 

MMG$A_SYSPARAM :: SYSGEN Parameters Area 80008000 

MMG$A_SYSPARAM_END :: End of SYSGEN Parameters area 

MMG$A_BOOPARAM :: Boot Parameters Area 8000AOOO 

MMG$A_BOOPARAM_END :: End of Boot Parameters Area 

REORGANIZED_EXEC_END :: Miscellaneous Vectors Area 8000A800 

MMG$A_SYS_END :: End of Base Image 
8000AE4D 

Figure 29.1 
Layout of the Base Executive Image 

29.2 SYS.EXE, THE BASE IMAGE 

The base image, SYS.EXE, is the only executive image linked to a fixed 
address. Its base address is 8000000016, the lowest address in system space. 
It contains almost no executable code other than instructions in transfer 
vectors. 

The base image is the pathway to routines and data in loadable executive 
images and in previously existing loaded images such as SYSLOAxxx .EXE. 
The base image symbol table, SYS.STE, is linked with all images that need 
resolutions for references to its global symbols. For example, each loadable 
executive image is linked with SYS.STB to resolve references to other ex­
ecutive images' transfer vectors, to data and parameters in SYS.EXE, and to 
transfer vectors for routines in loaded images such as SYSLOAxxx .EXE. 

SYS.EXE provides a fixed address space so that the addresses of transfer 
vectors and data cells within it will be constant. Having fixed values for 
these addresses makes it unnecessary to relink an image that references 
them. Address space is reserved for expansion so that transfer vectors and 
data cells can be added without affecting the addresses of existing ones. 

Figure 29.1 shows the layout of SYS.EXE, as defined by the module EXEC_ 
LAYOUT. It contains the following areas: 
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• Transfer vectors to system service procedures 
• Transfer vectors to routines in loadable executive images 
• Commonly accessed data and pointers to data structures in executive 

images 
• SYSGEN parameters area 
• Boot parameters area 
• Transfer vectors to routines in loaded images such as SYSLOAxxx .EXE 

These areas are described separately in the sections that follow. 

System Service Vectors 

System service vectors occupy the lowest pages of system space. Their ad­
dresses are constant for all versions of VMS so that existing user programs 
will not have to be relinked for a new version of VMS. A system service vec­
tor contains a minimal procedure that executes in the mode of the caller and 
that dispatches to the actual procedures implementing the service request. 
The actual procedures are within loadable executive images and typically 
execute in an inner access mode. 

A typical system service vector is eight bytes and contains the following: 

SYS$service_name:: 
.WORD entry_mask 
CHMx I"#service_specific_code 
RET 
.BYTE 0 

An image requests a particular system service by executing a CALLx in­
struction to SYS$service_name, the global label at its system service vec­
tor. The linker resolves system service vector names using global defini­
tions from a module in the library SYS$LIBRARY:STARLET.OLB, which it 
searches by default. 

The change mode exception service routines use the operand of the CHMx 

instruction to dispatch to the requested service. The operand serves as an 
index into several tables, one of which contains the addresses of the actual 
system service procedures. 

In earlier versions of VMS, each system service vector was initialized with 
a register save mask and a CHMx instruction; a change mode operand number 
was assigned at assembly time. In VMS Version 5, each system service 
vector is initialized to JMP <O#EXE$LOAD_ERROR at assembly time. EXE$LOAD_ 
ERROR contains a HALT instruction. 

Change mode operand numbers are not assigned until executive image 
load time and can vary with the order in which system services are loaded, 
possibly from one system boot to another. This means, for example, that a 
user program using a hard-coded CHMx instruction rather than a CALLx to a 
system service vector is very unlikely to work correctly. 



29.2.2 

29.2 SYS.EXE, the Base Image 

As an executive image is loaded, each system service in it that executes in 
an inner access mode is assigned a change mode operand number. Its system 
service vector is reinitialized with the appropriate register save mask and 
change mode instruction. The table entries selected by that change mode 
operand number are reinitialized with values appropriate to that system 
service. The system service vector for a mode of caller service is reinitialized 
with the appropriate register save mask and a JMP instruction that transfers 
control to the service procedure. 

The address space reserved for system service vectors is nonpageable. 
This address space also contains the code used for testing the completion 
of synchronous services such as Queue 1/0 Request and Wait ($QIOW) and 
Enqueue Lock Request and Wait ($ENQW). It is defined in the module EXEC_ 
LAYOUT and by the macro $SYSVECTORDEF. 

Chapter 6 contains further information about system ser.vice vectors, 
change mode dispatching, and synchronous system services. Section 29.5.4.3 
describes the initialization of system service vectors. 

Executive Transfer Vectors 

An executive transfer vector is similar to a system service vector or a transfer 
vector in a shareable image. Unlike a system service vector, an executive 
transfer vector contains no instruction to change access mode. These vectors 
are used by routines already running in the appropriate mode, typically 
kernel. 

Each executive transfer vector contains a JMP instruction whose destina­
tion is in a loadable executive image. The address of a transfer vector is 
independent of the address of its destination and independent of which load­
able executive image contains the destination. 

An executive transfer vector is eight bytes long. For a called procedure, it 
takes the form 

exec_entry_point:: 
.WORD entry-mask 
JMP O#routine 

For a routine entered through a JSB instruction, it takes the form 

exec_entry_point:: 
JMP O#routine 
NOP 
NOP 

An image invokes a particular executive routine by executing a CALLx or 
JSB instruction to exec_entry_point, the global label of the routine's execu­
tive transfer vector. The image must be linked with SYS.STB for the linker 
to resolve the global executive transfer vector name. 

Executive transfer vectors are defined in module SYSTEM_ROUTINES, 
through its macros DEFINE_ROUTINE_JSB and DEFINE_ROUTINE_CALL. 
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Example 2.9.1 
Definition of Executive Transfer Vectors 

Transfer vectors from SYSTEM_ROUTINES 
DEFINE_ROUTINE_CALL -

RMS$RESTART_THREAD,­
VERSION_MASK=<VOLATILE,FILES_VOLUMES> 

.ALIGN QUAD 
RMS$RESTART_THREAD == . 
. WORD 0 
JSB O#EXE$LOAD_ERROR 

DEFINE_ROUTINE_JSB -
EXE$ALLOCIRP,­
VERSION_MASK=<MEMORY_MANAGEMENT> 

.ALIGN QUAD 
EXE$ALLOCIRP == . 
JSB O#EXE$LOAD_ERROR 

Their dispatch instructions are initialized to JSB ©#EXE$LOAD_ERROR at as­
sembly time. A transfer vector for a called routine is initialized to begin 
with a register save mask. Example 29.1 shows two such macro invocations 
and the code they generate. Section 29.6 describes the use of the VERSION_ 
MASK keyword. 

When a loadable executive image is mapped and loaded into system space, 
its base image transfer vectors are reinitialized to point to their corresponding 
routines in the loaded executive image. For a called procedure, the entry 
mask in the transfer vector is also initialized. See Section 29.4.1 for more 
information on the initialization of executive transfer vectors. 

The address space used for executive transfer vectors is nonpageable. 

System Data Area 

The system data area contains some, but not all, of the data formerly in 
SYS.EXE. Its cells are accessed by multiple loadable executive images and 
by other images linked against SYS.STB. Data cells accessed by only a limited 
set of routines typically reside in the same loadable executive image as the 
routines. A data cell in one loadable image used by another must have a 
pointer in the base image. If the data cell is small, the cell itself resides in 
the base image Ito save on overhead). 

A data cell or structure in this area must be of fixed size. A structure 
whose size may change from version to version, such as the system disk 
unit control block jUCB), is placed in a loadable executive image, where its 
variable size cannot affect fixed addresses in the base image. 

Some locations in this area are pointers to data in loaded executive images. 
Such a location is modified to contain the loaded address of the data. Its 
global symbol has a type of AR to indicate that it contains the address 
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IO_ROUTINE.EXE SYS.EXE SYSTEM_PRIMITIVES.EXE 

,__________,i---t: ._____I _;--~:I._____~ 
Extract from IO_ROUTINES.EXE 

$$SYSTEM_PRIM_DATADEF 
;Get address of SYSTEM_PRIMITIVES data area 

MOVL G'EXE$AR_SYSTEM_PRIMITIVES_DATA,R2 1-----.­
;Get IRP from lookaside list 

$REMQHI IOC_GQ_IRPIQ(R2),R2 
BVC 5$ ;If VS empty list 

;Allocate 1/0 request packet 
JSB G'EXE$ALLOCIRP 

5$: 

Extract from SYS. EXE 

- - - - - - EXE$AR_SYSTEM PRIMITIVES DATA:: 
.ADDRESS SYSTEM_PRIMITIVES + x 

- - - - - - EXE$ALLOCIRP: : 
JMP @#SYSTEM_PRIMITIVES + y 

Extract from SYSTEM_PRIMITIVES.EXE 

- - - - - - SYSTEM_PRIMITIVES + x : 

SYSTEM PRIMITIVES+ x + IOC_GQ_IRPIQ: 
IOC$GQ_IRPIQ :: 

- - - - - - SYSTEM_PRIMITIVES + y: 

Figure 29.2 

EXE$ALLOCIRP :: 

$REMQHI IOC$GQ_IRPIQ,R2 

RSB 

An Example of Loadable Executive Image Address 
Resolution 

of a record or a structure. For example, LNM$AR_SYSTEM_DIRECTORY 
contains the address of the logical name table system directory, once part of 
SYS.EXE, now part of LOGICAL_NAMES.EXE. 

In some cases, a pointer contains the address of a block of moved data 
cells whose layout is defined by a macro. For example, EXE$AR_SYSTEM_ 
PRIMITIVES_DATA contains the address of data relating to the nonpaged 
pool lookaside lists. The macro $$SYSTEM_PRIM_DATADEF defines sym­
bols for the fields in this area, such as IOC_GQ_IRPIQ, the 1/0 request 
packet lookaside listhead. Figure 29 .2 shows an example of a reference using 
EXE$AR_SYSTEM_PRIMITIVES_DATA and symbolic offsets. 
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Example 29.2 
Definition of Executive Data Cells 

SYSTEM_PRIMITIVES private data area 
DEFINE_DATA_CELL -

EXE$AR_SYSTEM_PRIMITIVES_DATA,­
VERSION_MASK=<MEMORY_MANAGEMENT> 
.LONG 0 

Head of executive loaded image data block list 
DEFINE_DATA_CELL -

LDR$GQ_IMAGE_LIST,­
VERSION_MASK•<MEMORY_MANAGEMENT> 
.LONG .,.-4 

The local macro DEFINE_DATA_CELL is invoked for each data cell or 
structure, along with a VAX MACRO directive to allocate and possibly 
initialize storage for the cell or structure. Example 29 .2 shows two examples 
of the use of this macro. Section 29.6 describes the use of the VERSION_ 
MASK keyword. 

When a loadable executive image is mapped and loaded into system space, 
the base image pointers to its universal symbols are reinitialized to point to 
their corresponding data structures in the loaded executive image. Like the 
address of a transfer vector, the location of a pointer to data in a loaded 
executive image is fixed, while the data to which it points can change 
location or even executive image. 

The system data area is defined in module SYSTEM_DATA_CELLS and is 
nonpageable. 

Section 29.3.2 describes other criteria for locating a piece of system data 
in the base image or in a particular loadable executive image. 

SYSGEN Parameters Area 

This area contains all the SYSGEN parameters. To coordinate with SYS­
BOOT, which copies the current parameters to this area during system boot, 
all SYSGEN parameters are virtually contiguous and in an area that can be 
extended to add new parameters. 

SYSGEN parameters are kept in the base image rather than in a loadable 
executive image so that they can be referenced directly. There is no one 
loadable executive image that references them most often; they are widely 
referenced from most loadable executive images and other images linked 
with SYS.STB. 

The SYSGEN parameters area is defined in module SYSPARAM and is 
nonpageable. 
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29.3 Loadable Executive Images 

Boot Parameters Area 

The boot parameters area passes information from SYSBOOT to later stages 
of system initialization. It is defined in module BOOPARAM and is non­
pageable. Chapter 30 provides further information on its contents. 

Miscellaneous Vectors Area 

The miscellaneous vectors area consists primarily of transfer vectors to 
images that are not loadable executive images, namely SYSLOAxxx .EXE, 
SCSLOA.EXE, and CLUSTRLOA.EXE. Each set of transfer vectors has its 
own expansion space. This area includes the routines that connect the trans­
fer vectors to their loaded routines and data. Section 29.7.1 contains more 
information about the form of these transfer vectors. 

The area is nonpageable and is primarily defined in the modules SYS­
LOAVEC, SCSVEC, and CLUSTRVEC, with some contributions from SYS­
TEM_ROUTINES_MASK and LINKVEC. 

29.3 LOADABLE EXECUTIVE IMAGES 

29.3.1 

The base image contains almost no executable code. Its system service vec­
tors, executive transfer vectors, and miscellaneous area vectors dispatch to 
routines in separately loadable images. Most of these images are loadable 
executive images. 

A loadable executive image is a type of shareable image. Each loadable 
executive image consists of data and routines related to each other and of ini­
tialization code specific to the image's functions and features. In most cases, 
to simplify maintenance and enhancement, routines supporting related func­
tions and features are collected into an image. In some cases, routines used 
early in system initialization are combined into a loadable executive image, 
for example, EXEC_INIT.EXE and PRIMITIVE_IO.EXE. Table 29.1 lists the 
loadable executive images and summarizes their contents. 

Structure of a Loadable Executive Image 

A loadable executive image is implemented as a form of shareable image. 
Like any other shareable image, it has a global symbol table, image section 
descriptors, and address fump section. The internal structure of a loadable 
executive image is more constrained than that of a typical shareable im­
age. Like a nonbased shareable image, a loadable executive image must be 
position-independent because its system space address range is not deter­
mined until load time. 

A loadable executive image is allowed at most one image section of each 
of the following types and no others: 

• Nonpageable read-only, for code, read-only data, and patches 
• Nonpageable read/write, for read/write data and for .ADDRESS and 

.ASCID directives 
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Table 29.1 Loadable Executive Images 

Image Name Description 

PART A-IMAGES LOADED BY SYSBOOT.EXE 

ERRORLOG.EXE 
EXEC_INIT.EXE 
PRIMITIVE_IO.EXE 
SYSTEM_DEBUG.EXE 
SYSTEM_PRIMITIVES.EXE 
One of the following: 
SYSTEM_ 

SYNCHRONIZATION.EXE 
SYSTEM..SYNCHRONIZATION_ 

MIN.EXE 
SYSTEM..SYNCHRONIZATION_ 

UNI.EXE 

Error logging routines and system services 
Routines required for executive initialization 
Primitive console 1/0 and file system routines 
XDELTA (optional) 
Basic system support routines 

Symmetric multiprocessing (SMPI synchronization 
routines with debug support 

SMP synchronization routines 

Uniprocessor synchronization routines 

CPULOA.EXE 

PART B-IMAGES LOADED BY EXEC_INIT.EXE IEXE$INIT) 

Tables of CPU data 
EVENT _FLAGS_AND_ASTS.EXE 
EXCEPTION.EXE 

IMAGE_MANAGEMENT.EXE 
IO_ROUTINES.EXE 
LMF$GROUP _TABLE.EXE 
LOCKING.EXE 
LOGICAL_NAMES.EXE 
MESSAGE_ROUTINES.EXE 
PAGE_MANAGEMENT.EXE 

PROCESS_MANAGEMENT.EXE 

SECURITY.EXE 
SYSDEVICE.EXE 
SYSGETSYI.EXE 
SYSLICENSE.EXE 
WORKING_SET _ 

MANAGEMENT.EXE 

Event flag and AST routines and system services 
Exception service routines and system services, bugcheck 

routines 
Image activation services and routines 
1/0-related routines and system services 
Tables of license data 
Lock management routines and system services 
Logical name routines and system services 
Message routines and system services 
Page fault service routine, related routines, virtual address 

space system services 
Scheduling routines and process creation and control 

system services 
Security-related routines and system services 
Pseudo device drivers and mailbox system services 
$GETSYI system service 
$LICENSE system service 
Swapper and supporting routines, related system services 

PART C-IMAGES LOADED BY SYSINIT.EXE 

DDIF$RMS_EXTENSION.EXE Support for Digital Document Interchange Format (DDIFI 
file operations 

RMS.EXE Record Management Services (RMS) 
RECOVERY_UNIT_SERVICES.EXE 
SYSMSG.EXE 
SYSLDR_DYN.EXE 
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RMS recovery services 
System message file 
Dynamic loading of loadable executive images 
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29.3 Loadable Executive Images 

• Pageable read-only, for code, read-only data, and patches 
• Pageable read/write, for read/write data and for .ADDRESS and .ASCID 

directives 
• Initialization routine section 
• Address fixup section 

The first five of these image sections are defined as program sections 
jPSECTs) within the modules of a loadable executive image, and the last 
is created by the linker. The address fixup section jsee Chapter 26) contains 
information needed to transform .ADDRESS and .ASCID references to loca­
tions within the loaded image. 

The first four sections allow for the combinations of pageability and pro­
tection required for executive code and data. Because they have different 
virtual memory characteristics, each must begin at a page boundary. On av­
erage, this results in half a page unused at the end of each image section. 
Constraining the number of image sections limits the potential unused space 
to an average of two pages per image. jThe initialization routine and address 
fixup sections are deleted during system initialization.) It also simplifies the 
loading mechanism. 

Most modules invoke the DECLARE_PSECT macro to define standard 
loadable executive PSECT names and attributes. Each image is built with a 
linker options file that collects and orders the image sections. Table 29 .2 lists 
the clusters and PSECTs that make up a typical loadable executive image. 
It shows some of the modules that make contributions to the PSECTs. This 
information is extracted from the image map of IO_ROUTINES.EXE. 

In VMS Version 5, several additions and extensions were made to the 
shareable image mechanism to support the reorganization of the executive. 

A new type of universal symbol, a vectored universal symbol, has two 
values: the relative address of the symbol in the loadable executive image, 
and the absolute value of the symbol's transfer vector in the base image. 
These are described by new global symbol table records. 

The linker VECTOR option specifies that all universal symbols in the 
loadable executive image are vectored and identifies the name of the base 
image symbol table file, SYS.STB. 

The image header now contains space for an array of version numbers, 
described in Section 29.6. 

The linker COLLECT option has a new qualifier, /ATTRIBUTES. The 
possible values for the qualifier are RESIDENT, to designate a nonpageable 
image section, and INITIALIZATION_CODE, to designate the initialization 
image section. These values initialize the new image section descriptor flags 
ISD$V _RESIDENT and ISD$V _INITIALCODE. 

Data in a Loadable Executive Image 

A data cell private to routines in a loadable executive image resides in that 
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Table 29.2 Organization of IO_ROUTINES.EXE, a Typical Loadable Executive Image 

Cluster Name 
NONPAGED_READONLY_PSECTS 

PSECT Name 

EXEC$NONPAGED_CODE 

Modules 

BUFFERCTL 

NONPAGED_READWRITE_PSECTS EXEC$NONPAGED_DATA 
PATA_NONPAGED 
MMD AT 

PAGED_READONLY _PSECTS EXEC$PAGED_CODE IOSUBPAGD 

PAGED_READWRITE_PSECTS EXEC$PAGED_DATA 
PATA_PAGED 
IOSUBPAGD 

INITIALIZATION_PSECTS EXEC$INIT ~000 
EXEC$INIT _001 

SYS$DOINIT 
SYS$DOINIT 
MMD AT 
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EXEC$INIT _002 
EXEC$INIT _CODE 

EXEC$INIT _PFNTBL_OOO 
EXEC$INIT _PFNTBL001 
EXEC$INIT _PFNTBL_002 
EXEC$INIT _SSTBLOOO 
EXEC$INIT _SSTBL_OO 1 

EXEC$INIT _SSTBL_002 
[Fixup vectors) 

SYS$DOINIT 
SYS$DOINIT 
MMD AT 

PATA_NONPAGED 
PATA_PAGED 
SYS$DOINIT 
SYS$DOINIT 
SYS$DOINIT 
SYS$DOINIT 
SYS$DOINIT 
SYSASSIGN 

SYS$DOINIT 

image. A data cell accessed by routines in multiple loadable executive images 
may be placed in the base image or in one of the loadable executive images. If 
the data itself is not in the base image, the base image must contain a pointer 
to it for use by the other loadable executive images. That is, a routine in one 
loadable executive image cannot directly reference data in another and must 
make an indirect reference through a base image pointer. 

Certain data cells reside in loadable executive images even though they 
are small and unlikely to change size. A data cell that is referenced primarily 
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by routines within the image is typically in the image itself, to reduce the 
access overhead for the most frequent references. 

A data structure whose size is likely to vary from version to version is 
stored in a loadable executive image, where its varying size and movement 
cannot affect the location of base image transfer vectors and pointers. A 
cell in the base image points to the structure if it is referenced from other 
loadable executive images. 

Writable data cells referenced by commonly executed code paths are stored 
in the image with the most time-critical accesses. 

Read-only data cells referenced by commonly executed code paths in mul­
tiple loadable executive images are defined in the module MMDAT. Several 
different loadable executive images include MMDAT by linking with it to 
reference these cells locally. The local reference often saves an instruction 
that would otherwise be needed for using a postindex operand specifier with 
these cells. MMDAT defines, for example, the cells MMG$GL_SPTBASE, 
which contains the base address of the system page table, and SCH$GL_ 
PCBVEC, which contains the address of the software process control block 
vector. MMDAT includes an initialization routine; each image that includes 
MMDAT initializes these cells from the values computed earlier in system 
initialization. 

Symbol Resolution in a Loadable Executive Image 

A vectored universal symbol has two definitions. Each vectored universal 
symbol must be defined as a global in the base image, where its value is 
a system space address. It must also be defined as a universal symbol in 
a loadable executive image. This definition has two values-the absolute 
system space address of the base image global and the relative offset of 
the symbol within the loadable executive image. The procedure that loads 
loadable executive images (see Section 29.4.1) uses the relative offset in 
calculating the loaded address of the symbol; it stores this loaded address 
at the base image global address. 

A universal symbol in a loadable executive image is defined through one 
of several macros: 

• For a system service, the macro SYSTEM_SERVICE, which generates a 
.ENTRY directive and other code, described in Section 29.5.4.3 

• For a routine entered through a CALLx instruction, the macro UNIVERSAL_ 
ENTRY, which generates a .ENTRY directive 

• For a routine entered through a JSB instruction, the macro UNIVERSAL_ 
SYMBOL, which generates a .TRANSFER directive 

• For a data structure whose address is stored in a base image global, the 
macro UNIVERSAL_SYMBOL, which generates a .TRANSFER directive 

Figure 29 .2 shows how references from one loadable executive image to 
another are resolved at run time through SYS.EXE. 
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The code extracted from the image IO_ROUTINES.EXE is part of the 
Queue 1/0 ($010) system service. It tries to allocate an 1/0 request packet 
(IRP) from the IRP lookaside list. If the list is empty, the $QIO system service 
procedure invokes EXE$ALLOCIRP either to expand the lookaside list or to 
allocate one from the nonpaged variable-length list. 

Both the IRP lookaside list and the routine EXE$ALLQCIRP. are in the 
image SYSTEM_PRIMITIVES.EXE. The IRP lookaside list is part of a larger 
structure whose fields are defined symbolically by the macro $$SYSTEM_ 
PRIM_DATADEF. The base image global EXE$AR_SYSTEM_PRIMITIVES_ 
DATA points to this larger structure. Example 29.2 shows its <;lefihition. The 
base image contains an executive transfer vector for the routine EXE$AL­
LOCIRP. Example 29 .1 shows its definition. 

The image SYSTEM._PRIMITIVES.EXE defines the vectored universal sym­
bols EXE$AR_SYSTEM_PRIMITIVES_DATA and EXE$ALLOCIRP, as shown 
in Example 29.3. When the image is loaded, the executive image loader re­
locates their base image globals. 

Thus, at run time, the instruction MOVL GAEXE$AR_SYSTEM_PRIMITIVES_ 

DATA,R.2 stores the effective address of the loaded SYSTEM_PRIMITIVES.EXE 
data structure in R2. The instruction JSB GAEXE$ALLOCIRP transfers control 
to the base image transfer vector, which then transfers control t9 the rou­
tine in the loaded SYSTEM._PRIMITIVES.EXE. Note that EXE$ALLOCIRP 
itself can refer directly to IOC$GQ_IRPIQ, the IRP lookaside listhead, with­
out referring to the base image pointer, since they are in the same loadable 
executive image. 

29.4 EXECUTIVE IMAGE LOADING 
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Loadable executive images are loaded or initialized at several well-defined 
stages in system initialization. An image is loaded at only one particular 
stage. However, it may potentially execute initialization code at that and 
succeeding stages of initialization. In general, loading of executive images is 
deferred to the later stages of system initialization, if possible, for simplicity. 

The major stages of system initialization at which im~es are loaded or 
initialized are 

1. SYSBOOT.EXE 
2. EXEC_INIT.EXE (routine EXE$INIT) 
3. The swapper process 
4. The SYSINIT process 

Chapters 30 and 31 describe these anq other stages of system initialization 
in detail. This section is concerned only With their role in the loading and 
initialization of loadable executive images. 

These stages are more finely subdivided, primarily for initialization of 
loadable images. The system global EXE$GL_STATE describes these finer 
divisions with a bit set to represent each substage that has been reached. The 
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Example 29.3 
Definition of Vectored Universal Symbols 

UNIVERSAL_SYMBOL -
EXE$AR_SYSTEM_PRIMITIVES_DATA 

;Make pointer to lookaside lists 
; universal 

; I/O packet lookaside listhead 
.ALIGN QUAD 

IOC_BASE: 
ASSUME 

IOC$GQ_IRPIQ: : 
.QUAD 
ASSUME 

IOC$GL_IRPREM: : 

IOC_GQ_IRPIQ EQ 0 

0 
IOC_GL_IRPREM EQ .-IOC_BASE 

.LONG 0 ;Address of partial packet 
ASSUME IOC_GL_IRPCNT EQ .-IOC_BASE 

IOC$GL_IRPCNT: : 
.LONG 0 ;Current count of allocated 

; packets 
ASSUME IOC_GL_IRPMIN EQ .-IOC_BASE 

IOC$GL_IRPMIN:: ;Minimum size to take from list 
.LONG <<IRP$C_LENGTH•2>/3> 

UNIVERSAL_SYMBOL EXE$ALLOCIRP 
;EXE$ALLOCIRP:: ;Allocate I/O packet -

; conditional wait 
ASSUME IRP$B_TYPE EQ IRP$W_SIZE+2 
PUSHL <DYN$C_IRP©16>!- ;Set data structure type 

<IRP$C_LENGTH+EXE$C_ALCGRNMSK>&<~C<EXEC$C_ALCGRNMSK>> 

;Set size of buffer required 
BRB 20$ 

macro $BOOSTATEDEF defines symbolic values for these bits. Table 29.3 
lists them in the order in which their states occur. 

Loadable executive images are mapped and loaded at several different 
stages of system initialization by LDR$LOAD_IMAGE, in module SYSLDR. 
LDR$LOAD_IMAGE executes as part of the following images and stages: 

1. SYSBOOT.EXE, the secondary bootstrap program, which initializes sys­
tem space and loads the base image, the minimal set of executive images 
listed in part A of Table 29.1, and various other images (see Chapter 30) 

2. EXEC_INIT.EXE, the loadable executive image that performs initializa­
tion after memory management has been enabled and that loads most of 
the rest of the executive images, as shown in Table 29.1, part B 

3. SYSINIT.EXE, which runs in the SYSINIT process and loads the images 
listed in Table 29.1, part C 
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Table 29.3 States in System Initialization 

Bit Name Set By Meaning 

BOOSTATE$V _SYSBOOT (Unused) 
BOOSTATE$V JNIT EXE$INIT EXE$INIT has begun 
BOOSTATE$V _MAPPED EXE$INIT Memory management has 

been enabled 
BOOSTATE$V _CONSOLE EXE$INIT Console 1/0 routines are 

available 
BOOSTATE$V _PFN_INIT EXE$INIT Page frame number (PFN) 

database is initialized 
BOOSTATE$V _POOL_INIT EXE$INIT Nonpaged pool allocation is 

possible 
BOOSTATE$V _SWAPPER EXE$SWAPINIT Swapper process has begun 
BOOSTATE$V _SYSINIT SYSINIT SYSINIT process has begun 
BOOSTATE$V _RMS SYSINIT RMS has been loaded 
BOOSTATE$V _XQP SYSINIT File system has been mapped 
BOOSTATE$V _STARTUP SYSINIT Startup process has been 

created 

The loading and initialization of loadable executive images are described in 
the sections that follow. 

In addition, after system initialization is complete, a loadable executive 
image can be loaded through the LDR$LOAD_IMAGE procedure built as 
part of SYSLDR_DYN.EXE, a loadable executive image. 

Actions of LDR$LOAD_IMAGE 

LDR$LOAD_IMAGE must effectively activate an executive image and es­
tablish connections between the transfer vectors and pointers in the base 
image and their targets in the loaded image. This section describes the ba­
sic operations of LDR$LOAD_IMAGE, with some details of the differences 
that arise from its execution in different initialization stages. !Note that 
SYSBOOT.EXE is linked with module SYSLDR_SYSBOOT, and SYSLDR_ 
DYN.EXE with module SYSLDR_DYN. These modules contain slightly dif­
ferent versions of LDR$LOAD_IMAGE.) 

LDR$LOAD_IMAGE is called with the name of a loadable executive image 
and a flag indicating whether the image should be loaded with its pageable 
sections resident. The flag is based on the value of bit SOPAGING$V _EXEC 
lbit OJ of the SYSGEN parameter SO_PAGING. 

LDR$LOAD_IMAGE takes the following steps: 

1. It opens the image file using whatever mechanism is available at this 
stage, either minimal file system routines or the full file system. A 
window control block IWCB) is created for a file opened with the minimal 
file system routines. Later, after SYSINIT has mapped the file system 
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and loaded RMS, SYSINIT opens the file and leaves it open so that, for 
example, normal file system checks will prevent the file's deletion. 

Running in process context and after system initialization is complete, 
LDR$LOAD_IMAGE in module SYSLDR_DYN is entered in executive 
mode and uses RMS to open the image. It then requests the Change to 
Kernel Mode ($CMKRNL) system service and performs the rest of its 
processing in kernel mode. 

2. LDR$LOAD_IMAGE reads the first block of the file, its image header, 
and checks that the executive versions with which the file was linked 
are compatible with the current system. 

3. If the versions are incompatible, LDR$LOAD_IMAGE does not load the 
executive image and returns the severe error status SS$_SYSVERDIF. 

If the versions are compatible, LDR$LOAD_IMAGE allocates a load­
able image data block (LDRIMG) from nonpaged pool. (Running with 
SYSBOOT, LDR$LOAD_IMAGE builds the LDRIMG in local storage and 
subsequently copies it to pool.) It initializes the LDRIMG, copying infor­
mation from the image header, such as image file name, link time, and 
address of the initialization routine. Figure 29.3 shows the layout of the 
LDRIMG. 

4. LDR$LOAD_IMAGE in module SYSLDR_DYN locks the base image 
mutex, EXE$GL_BASIMGMTX, for write access. It searches the LDRIMG 
list to see if a loadable executive image with the same name has already 
been loaded. 

-If one exists, LDR$LOAD_IMAGE deallocates the LDRIMG, unlocks 
the mutex, and returns the error status SS$_DUPLNAM to its caller. 

-If one does not, LDR$LOAD_IMAGE sets LDRIMG$V _PART _LOAD 
to indicate that image loading is not complete, inserts the LDRIMG at 
the front of the list, and unlocks the mutex. 

5. Scanning the image section descriptors (ISDs), LDR$LOAD_IMAGE ini­
tializes the appropriate LDRIMG fields to describe the location and size 
in bytes of each section. For example, it initializes the fields LDRIMG$1-
NONPAG_ W _BASE and LDRIMG$1-NONPAG_ W _LEN to describe the 
resident writable section. 

6. LDR$LOAD_IMAGE allocates contiguous system page table entries 
(SPTEs) for the pages of all the image sections (see Section 29.8.1). It 
computes the system address represented by the lowest SPTE as the base 
address of the image, stores it in the LDRIMG, and relocates the initial­
ization routine address by the base address. 

7. It invokes LDR$LOAD_NONPAGED, in module SYSLDR, twice-once 
to map and load the nonpaged read-only code section and once for the 
writable one. Section 29.4.2 describes LDR$LOAD_NONPAGED. 

8. It invokes a local routine, LOAD_PAGED, to map pageable read-only 
and then pageable writable sections. (The images loaded by SYSBOOT 
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LDR$GQ_IMAGE_LIST:: 

Figure 29.3 

LORI MG 

FLINK 

BLINK 

TYPE LENGTH 

I MG NAM 
(40 byt ) es 

BASE 

PAGE_COUNT 

FLAGS 

LINKTIME 

VERSION 

NONPAG _R_ BASE 

NONPAG_R_ LEN 

NONPAG_W_ BASE 

NONPAG _W_LEN 

PAG _R_BASE 

PAG _R_ LEN 

PAG_W_ BASE 

PAG _w_ LEN 

FIXUP _ BASE 

FIXUP LEN -
INIT_ BASE 

INIT_ LEN 

PAG_W_STX I PAG_R_STX 

WCB 

INIT_ RTN 

PID 

CHAN 

(reserved, 16 bytes) 

Layout of a Loadable Image Data Block (LDRIMG) 

NextLDRIMG 

LDRIMG Flags 

Bit Meaning 
0 NOT XQP 
1 DELAY INIT 
2 NO PFN DB 
3 FIX-UPS-DONE 
4 NONPAGED FIXUP 
5 PART_LOAD 

have no pageable code or data, so this routine is never invoked during 
SYSBOOT.) Section 29.4.3 describes LOAD_PAGED. 

9. LDR$LOAD_IMAGE invokes LDR$LOAD_NONPAGED twice more­
once to map and load the fixup section and once for the initialization 
section. 

10. LDR$LOAD_IMAGE in module SYSLDR_DYN changes the protection 
on the pages containing the system service vectors to permit writes from 
kernel mode. 

11. It scans the image's global symbol table for vectored universal symbol 
and entry point records. Each of these records contains the symbol's two 
values and, for a universal entry point, the procedure register save mask. 
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LDR$LOAD_IMAGE adds the loaded image base address to the symbol's 
relative offset to form its effective address. 

If the symbol is an entry point, it could be a system service vector or an 
executive transfer vector for a routine entered through a CALLx instruc­
tion. LDR$LOAD_IMAGE stores in the loaded base image the symbol's 
register save mask and a JMP to the effective address in the loaded image. 
!Section 29.5.4.3 describes how the JMP instruction is overwritten with 
instructions for inner mode system services.) Otherwise, it examines the 
word at the symbol's system space address to determine whether the 
symbol is a transfer vector or a pointer to data. IA transfer vector th~t 
is not an entry point starts with a JSB or JMP instruction.) LDR$LOAD_ 
IMAGE stores the effective address of the symbol as the destination of a 
transfer instruction or as the pointer value. 

12. LDR$LOAD_IMAGE in module SYSLDR_DYN restores the original pro­
tection on the pages containing the system service vectors. 

13. If LDR$LOAD_IMAGE is not running as part of SYSBOOT, it invokes 
LDR$INIT _SINGLE to call the image's initialization routine, if there is 
one lsee Section 29.5.1). Otherwise, if it is running as part of SYSBOOT 
and there is an initialization routine, it sets the flag LDRIMG$V _DELAY_ 
INIT in LDRIMG$L_FLAGS so that the routine will be invoked at a later 
stage of initialization. 

14. If LDR$LOAD_IMAGE is running as part of SYSBOOT, it allocates 
nonpaged pool and copies the local storage LDRIMG to the pool. If 
LDR$LOAD_IMAGE is running as part of SYSBOOT, EXE$INIT, or 
SYSINIT, it inserts the LDRIMG at the head of the list of LDRIMGs, 
LDR$GQ_IMAGE_LIST. 

If LDR$LOAD_IMAGE is running after system initialization is com­
plete, as part of SYSLDR_DYN, it locks the base image mutex, clears 
LDRIMG$V _PART _LOAD to indicate that loading is complete, unlocks 
the base image mutex, and returns from the kernel mode procedure. 

15. LDR$LOAD_IMAGE returns to its caller. 

Actions of LDR$LOAD_NONPAGED 

LDR$LOAD_NONPAGED is invoked with arguments specifying the address 
of the LDRIMG, base and length of the section, and protection for the sec­
tion's pages. LDR$LOAD_NONPAGED performs the following steps: 

1. For each page of the section, it does the following: 

a. Unless it is running as part of SYSBOOT, it acquires the MMC 
spinlock. 

b. It allocates a page of physical memory. 
c. It initializes the SPTE for that section page with the allocated PFN, 

owner mode of kernel, valid bit set, and a protection of KW. KW is 
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required so that the page can be overwritten with the contents of the 
image file. Its protection is changed later. 

d. If the physical page is described by the PFN database, LDR$LOAD_ 
NONPAGED records information about the page, such as the address 
of the page table entry jPTE) that contains it, and its state and type. 

e. If it has acquired the MMG spinlock, it now releases the spinlock. 

2. It reads the image section into the allocated space. 
3. It changes the protection in the section's SPTEs to the appropriate value. 

If LDR$LOAD_NONPAGED is not executing as part of SYSBOOT, this 
operation requires that the MMG spinlock be held and that any entries 
in the translation buffer for these SPTEs be invalidated. 

4. It returns to LDR$LOAD_IMAGE. 

Actions of LOAD_PAGED 

LOAD_PAGED is invoked with the same arguments as is LDR$LOAD_ 
NONPAGED. Its arguments include a flag that indicates whether the im­
age should be loaded with its pageable sections resident. It performs the 
following steps: 

1. If pageable sections are to be made resident, LOAD_PAGED invokes 
LDR$LOAD_NONPAGED to load the section and returns. 

2. Otherwise, LOAD_PAGED first forms prototype PTE contents suitable 
for mapping each page of the section. The protection, passed as an argu­
ment, is eith.er UR for a read-only or URKW for a writable section. The 
page owner is kernel mode. The type bits in the PTE are set to indicate 
that the page is part of a section and currently in the image file. 

3. LOAD_PAGED tests and sets the shared bit in the image's WCB. If the bit 
was clear jif the file had been opened with primitive file routines), LOAD_ 
PAGED initializes its reference count to 2. If the bit was set, LOAD_ 
PAGED increments its reference count. These steps make the WCB look 
like any other WCB describing a section file, even if it had been created 
by primitive file routines, and ensure that the file is permanently open. 

4. LOAD_PAGED, running as part of SYSLDR_DYN, locks the global sec­
tion mutex for write access. 

5. It allocates and initializes a section table entry from the system header. 
6. LOAD_PAGED, running as part of SYSLDR_DYN, unlocks the global 

section mutex. 
7. LOAD_PAGED stores the index number of the section table entry in the 

prototype PTE contents. It records information such as the WCB address, 
number of section pages, section base system virtual page number, and 
a flag indicating whether the section is writable. 

8. LOAD_PAGED writes the prototype PTE to the SPTEs previously allo­
cated for the section by LDR$LOAD_IMAGE. The section's pages will 
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be read in later from the loadable executive image in response to page 
faults, possibly during image initialization when address fixups are done 
or later during image execution. 

9. It triggers invalidation of its own processor's translation buffer and that 
of any other SMP members. 

10. It returns to LDR$LOAD_IMAGE. 

Loading of Optional Images 

If the value of the special SYSGEN parameter LOAD_SYS_IMAGES is 1, its 
default, the loading of optional images is enabled. The images to be loaded are 
listed in SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA. Each 
entry specifies the name of a loadable executive image and in which phase, 
EXE$INIT or SYSINIT, the image should be loaded. 

This mechanism provides for the loading of 

• Optional VMS-supplied executive images 
• Executive images that are part of optional software products 
• Site-specific images containing custom versions of the Magnetic Tape Ac­

cessibility ($MTACCESS) and Get Security Erase Pattern ($ERAPAT) sys­
tem services 

Both EXE$INIT and SYSINIT call LDR$ALTERNATE_LOAD, in module 
ALTERNATE_LOAD. LDR$ALTERNATE_LOAD takes the following steps: 

1. It tests the value of LOAD_SYS_IMAGES. 
2. If the value is zero, the procedure returns. Otherwise, it opens and reads 

SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA. 
3. For each record in the file, LDR$ALTERNATE_LOAD tests whether it is 

running during the specified initialization phase. If it is not, LDR$AL­
TERNATE_LOAD reads the next record. 

4. If the current initialization phase matches that in the record, LDR$AL­
TERNATE_LOAD opens the specified image and reads its image header. 
It then invokes LDR$LOAD_IMAGE to map the image. 

5. When LDR$ALTERNATE_LOAD reaches the end of the file, it closes the 
file and returns to its caller. 

Introduction to VMS System Services documents the procedure for build­
ing a site-specific version of the $MTACCESS system service. Apart from 
replacements for the $ERAPAT and $MTACCESS system services, use of 
this mechanism is reserved to Digital and completely unsupported. 

29.5 INITIALIZATION OF A LOADABLE EXECUTIVE IMAGE 

Each loadable executive image contains its own initialization routines that 
perform a variety of functions. Some are specific to the features and functions 
supported by the image; others are required by all loadable executive images. 
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An initialization routine may need to execute in an environment that 
does not exist when the routine's executive image is first loaded. There is 
a mechanism, therefore, to provide for delayed and multiple invocations of 
initialization routines. Initialization routines can be invoked, for example, 
after the PFN database has been created or once paging is possible. The space 
occupied by these routines is deallocated when initialization is complete. 

Initialization routines are described by an initialization routine table in 
each loadable executive image. Each table entry is a quadword. The first 
longword specifies the location of an initialization routine, containing either 
the system space address of a routine in the base image or a self-relative 
offset to a routine within the loadable executive image. The second longword 
contains flags that describe the initialization routine and its state. 

Each loadable executive image jexcept SYSMSG.EXE) is linked with the 
module DOINIT, which includes an initialization routine dispatcher, 
INI$DOINIT. Each image linked with DOINIT specifies INI$DOINIT as its 
transfer address. LDR$LOAD_IMAGE copies the transfer address from the 
image header to the field LDRIMG$L_INIT _RTN. INI$DOINIT is invoked 
multiple times during system initialization. It scans the initialization rou­
tine table and invokes the specified routines. Each routine can examine the 
flags in EXE$G1-STATE to identify the current phase of system initialization 
and determine whether its execution is appropriate. 

The DOINIT module defines a number of PSECTs, all of which are clus­
tered into the initialization image section. Three of the PSECTs build the 
initialization routine table: EXEC$INIT _000 defines its start and names it 
IN1$A_ VECTOR_ TABLE; EXEC$INIT _001 defines its body; EXEC$INIT _002 
defines its end with an entry of zero. Modules in the loadable executive 
image, including DOINIT itself, make entries in the body of the table by 
invoking the macro INITIALIZATION_ROUTINE. The other PSECTs and 
their uses are described in subsequent sections. 

The macro $INIRTNDEF defines symbolic values for the flags in the ini­
tialization table. INIRTN$V _SYSRTN, when set by the INITIALIZATION_ 
ROUTINE macro, means that the routine address is within the base image. 
INIRTN$V _CALLED, when set, means that INI$DOINIT has invoked the 
initialization routine. INIRTN$V _NO_RECALL, when set, means that the 
initialization routine should not be invoked again. The use of these flags is 
described in Section 29.5.3. 

The module DOINIT itself contains INITIALIZATION_ROUTINE macros 
that create table entries for three common initialization routines used by 
most loadable executive images: 

• LOADER$FIXUP _DOT _ADDRESS, which performs address fumps for the 
image 

• INI$PFN_FIXUP, which alters the image's instructions that reference the 
PFN database 
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• INI$SYSTEM_SERVICE, which performs initialization for any system ser­
vices in the image 

These initialization routines are described in later sections. 

Initialization Sequence 

LDR$INIT _SINGLE and LDR$INIT _ALL are the routines that trigger load­
able executive image initialization. LDR$INIT _SINGLE initializes a single 
loadable executive image. LDR$INIT _ALL scans the LDRIMG list, which 
contains image data blocks for the images loaded thus far, and invokes 
LDR$INIT _SINGLE for each of them. Both these routines are in the SYSLDR, 
SYSLDR_SYSBOOT, and SYSLDR_DYN modules and are linked with SYS­
BOOT.EXE, EXEC_INIT.EXE, SYSINIT.EXE, and SYSLDR_DYN.EXE. 

These routines can be invoked multiple times during system initialization: 

1. In the case of an image loaded by SYSBOOT, LDR$LOAD_IMAGE sets 
the flag LDRIMG$V _DELAY _INIT so that the routine will be reinvoked 
at a later stage. At this stage, memory management is off. 

2. After memory management has been enabled and the system control 
block (SCB) has been established, EXE$INIT invokes LDR$INIT _ALL to 
perform further initialization of those images loaded by SYSBOOT. 

3. After nonpaged pool and the PFN database are initialized, EXE$INIT 
sets flags in EXE$GL_STATE to indicate their initialization and invokes 
LDR$INIT _ALL again to perform further initialization of the images 
loaded by SYSBOOT. 

4. EXE$INIT loads the set of loadable executive images listed in Table 29.1, 
part B. For each, EXE$INIT invokes LDR$LOAD_IMAGE, which invokes 
LDR$INIT _SINGLE. 

5. EXE$INIT then invokes LDR$INIT_ALL to perform further initialization 
of all the images loaded thus far. This additional initialization is done 
in case actions in one image's initialization routine depend on actions 
taken in another image's initialization routine. 

6. The swapper process sets a flag in EXE$GL_STATE, to indicate that the 
swapper is running, and initializes paged pool. It invokes LDR$INIT _ 
ALL. Now that paging is possible, address fixups in pageable sections 
of loadable executive images can be done and system services can be 
connected. 

7. The SYSINIT process loads several loadable executive images through 
LDR$LOAD_IMAGE, which invokes LDR$INIT _SINGLE for each of 
them. 

In addition, LDR$INIT _SINGLE can be invoked to initialize a loadable 
executive image that is loaded dynamically after system initialization is 
complete. 
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Actions of LDR$INIT_SINGLE 

LDR$INIT _SINGLE performs the following steps: 

1. It tests whether the value of LDRIMG$L_INIT _RTN is zero. If it is, the 
routine returns. 

2. Otherwise, it calls the routine whose address is in LDRIMG$1-INIT _ 
RTN. It passes one argument, the address of the LDRIMG. Although 
this mechanism allows for other possibilities, LDRIMG$L_INIT _RTN 
currently always contains the address of INI$DOINIT. 

3. If INI$DOINIT returns an error status, LDR$INIT _SINGLE returns to its 
invoker. 

4. Otherwise, it tests the flag LDRIMG$V_FIX_UPS_DONE, which is set 
by LOADER$FIXUP _DOT _ADDRESS when all address fixups have been 
done. If the flag is set, LDR$INIT _SINGLE deallocates the address space 
occupied by the image fixup section, unless the space has already been 
deallocated. Section 29.8.2 gives information on the deallocation of sys­
tem space. 

5. LDR$INIT _SINGLE tests the flag LDRIMG$V _DELAY _!NIT, which is 
set by INI$DOINIT when an initialization routine specifies that it must 
be reinvoked. If the flag is clear, LDR$INIT _SINGLE deallocates the 
address space occupied by the initialization section, unless it has already 
been deallocated. 

6. It returns to its invoker. 

Actions of INI$DOINIT 

INI$DOINIT is the initialization routine dispatcher. It performs the follow­
ing steps: 

1. It clears the LDRIMG flag LDRIMG$V _DELAY _!NIT to implement its 
default of not scanning the initialization table again. 

2. It scans the table. 
3. For each entry, it tests and sets the INIRTN$V _NO_RECALL flag to 

implement the default of invoking a routine only once. If the flag was 
already set, it goes on to the next entry. 

4. If the flag was clear, it invokes the routine with a JSB instruction. 
5. If the routine determines that it should be reentered at a later state of 

system initialization, it clears the INIRTN$V _NO_RECALL flag. 
6. When the routine returns, INI$DOINIT sets INIRTN$V _CALLED to 

record that the routine was invoked and tests INIRTN$V _NO_RECALL. 
If the flag is clear, INI$DOINIT sets LDRIMG$V_DELAY_INIT to en­
sure that LDR$INIT _SINGLE does not deallocate the initialization sec­
tion and that INI$DOINIT will be recalled at a later point in system 
initialization. 
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Initialization Routines 

An image-specific initialization routine might do a number of things, includ­
ing, but not limited to, the following: 

• Store the absolute address of an interrupt or exception service routine in 
an appropriate SCB vector 

• Initialize base image (SYS.EXE) globals 
• Initialize data in a loadable executive image 
• Allocate pool for a data structure 

For the details of what happens in the initialization of a particular loadable 
executive image, see Chapters 30 and 31 and any chapters that describe that 
specific image. 

The following sections describe the three common initialization routines 
that are part of most loadable executive images. 

Address Relocation Fixups. LOADER$FIXUP _DOT _ADDRESS relocates the 
addresses in any .ADDRESS and .ASCID directives within the loadable exec­
utive image. These references from the image to locations within itself can­
not be position-independent unless they are relocated after the load address 
of the image is determined. Chapter 26 gives a more detailed description of 
address fixups. 

LOADER$FIXUP _DOT _ADDRESS uses a table in the address fixup image 
section. It takes the following steps: 

1. As a sanity check, it tests that the address fixup section in the loadable 
executive image represents only one image and that it contains no G' 
reference fixups, that is, it contains no outbound calls other than through 
the base image. If either test fails, the routine returns with an error status 
and without having relocated address fixups. 

2. It examines the fixup section to see if there are any address fixups 
required. If not, it sets LDRIMG$V _FIX_UPS_DONE in LDRIMG$L_ 
FLAGS and returns. 

3. It tests a flag in EXE$GLSTATE to determine whether paging is possible 
yet. 

4. If paging is not possible, the routine tests further to see whether memory 
management has been enabled. 

If memory management has not been enabled, the routine clears the 
flag INIRTN$V _NO_RECALL, so that the routine will be entered in a 
later initialization stage, and returns. 

If memory management is enabled, LOADER$FIXUP _OOT_ADDRESS 
performs address fixups in the nonpageable section, unless it already has, 
and sets the flag LDRIMG$V _NONPAGED_FIXUP to indicate that they 
are done. If there are pageable fixups yet to be done, the routine clears 
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INIRTN$V _NO_RECALL before returning, so that the routine will be 
entered in a later initialization stage. 

5. If paging is possible, all address fixups can be done. LOADER$FIXUP _ 
DOT _ADDRESS performs both paged and nonpaged fixups, unless it 
already has, and sets the flags LDRIMG$V _NONPAGED_FIXUP and 
LDRIMG$V _FIX_UPS_DONE. It returns without clearing INIRTN$V _ 
NO_RECALL. When control returns to LDR$INIT _SINGLE with the 
flag LDRIMG$V _FIX_UPS_DONE set, LDR$INIT _SINGLE deallocates 
the fixup section. 

For each address fixup (each .ADDRESS or .ASCID directive), the linker 
has created a table entry in the fixup section. In that entry, it has placed the 
offset into the image of the location whose address must be made absolute. 
In the location itself, the linker has placed the offset into the image of 
the target address. To perform an address fixup, LOADER$FIXUP _DOT_ 
ADDRESS first adds the image's base address to the offset in the fixup table 
entry, thus calculating the address of the location to be fixed. It then adds the 
image's base address to the contents of that location. If LOADER$FIXUP _ 
DOT _ADDRESS is only performing nonpaged or paged fixups, it must first 
determine that the longword is located in a nonpageable or pageable part of 
the image. 

PFN Fixups. On a CPU with more than 32 MB of memory described in the 
PFN database (see Chapter 14), the forward and back link arrays in the data­
base must have longword, rather than word, elements. Many of the instruc­
tions that reference these arrays use context indexing. Thus, their opcodes 
are sensitive to the array element size and cannot be determined at assembly 
time. INI$PFN_FIXUP replaces word context opcodes with longword context 
opcodes in these instructions. 

INI$PFN_FIXUP is table-driven, using a PFN opcode replacement table 
within each loadable executive image. The module DOINIT defines three 
PSECTs that build the table: EXEC$INIT _PFNTBL_OOO defines its start and 
names it MMG$AL_FIXUPTBL; EXEC$INIT _PFNTBL001 defines its body; 
and EXEC$INIT _PFNTBL_002 defines its end with an entry of zero. Modules 
in the loadable executive image make entries in the body of the table by 
invoking the macro PFN_REFERENCE. 

PFN_REFERENCE only makes entries for instructions within nonpageable 
PSECTs. (For instructions in pageable PSECTs, it generates in-line alternative 
code paths and a branch selecting the appropriate one.) Each entry consists 
of the following three fields: 

• A longword containing the self-relative offset into the image of the instruc­
tion that may need modification 

• A byte containing the word context opcode 
• A byte containing the longword context opcode 
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INI$PFN_FIXUP tests MMG$GW _BIGPFN to determine if fixup is neces­
sary. By default, the instructions are assembled with word context opcodes. 
H MMG$GW _BIGPFN is zero, fixups are not necessary and INI$PFN_FIXUP 
returns. Otherwise, it scans the table. 

For each entry, it calculates the effective address of the instruction. As 
a sanity check, it tests that the byte at that address is the word context 
opcode in the table entry. Hnot, it generates a fatal PFNFIXUP bugcheck. 
Otherwise, it replaces the opcode with the longword context opcode in the 
table entry. When INI$PFN_FIXUP reaches the end of the table, it constructs 
a program counter/processor status longword IPC/PSL) pair and executes an 

·REI instruction to flush the processor's instruction lookahead buffer. It then 
returns. 

System Service Initialization. INI$SYSTEM_SERVICE connects any system 
services in the loadable executive image to their system service vectors and 
assigns change mode codes for inner access mode services. It is table-driven, 
using INI$A_BUILD_ TABLE, a table of system service descriptor blocks 
within the image. The module DOINIT defines three PSECTs that build 
the table: EXEC$INIT _SSTBLOOO defines its start; EXEC$INIT _SSTBLOO i · 
defines its body; and EXEC$INIT _SSTBL_002 defines its end with an entry 
of zero. Modules in the loadable executive image make entries in the body of 
the table by invoking the macro SYSTEM_SERVICE. The macro initializes 
the fields in a system service descriptor block. 

Each system service descriptor block contains the following fields: 

• The absolute address of the system service vector 
• The self-relative offset to the system service procedure in the loadable 

executive image 
• The number of arguments to the system service 
• The minimum number of arguments required 
• The system service filter group jsee Chapter 6) 
• A code indicating the access mode in which the system service procedure 

executes 
• A value indicating what wait routine, if any, is required for synchronous 

system services 
• A value indicating what kind of additional exit processing, if any, is re­

quired after the system service returns 

The macro $SSDESCRDEF defines symbolic offsets for these fields. 
INI$SYSTEM_SERVICE takes the following steps: 

1. Because INI$SYSTEM_SERVICE requires process context to execute, it 
first tests a flag in EXE$GL_STATE to determine whether the swap­
per process has executed yet. H not, the routine clears INIRTN$V _NO_ 
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RECALL so that the routine will be entered in process context, when pag­
ing is possible, and returns. If the swapper process has begun to execute, 
INI$SYSTEM_SERVICE proceeds. 

2. It changes the protection on the pages containing the system service 
vectors, making them writable so that it can modify vectors. 

3. It scans the system service initialization table. For each entry it finds, 
it calls EXE$CONNECT _SERVICES, in module SYSTEM_SERVICE_ 
LOADER, passing it the address of the system ser\Tice descriptor block. 

4. When INI$SYSTEM_SERVICE reaches the end of the table, it makes the 
system service vector pages read-only again and returns. 

EXE$CONNECT _SERVICES takes the following steps: 

1. It determines whether the service is kernel mode, executive mode, or 
mode of caller. 

2. For a mode-of-caller service, it checks that the information in the system 
service vector, already initialized by the loading of the loadable execu­
tive image, matches the information in the system service descriptor 
block. If the information does not match, it generates the fatal bugcheck 
BADVECTOR. 

3. For an inner access mode service, EXE$CONNECT _SERVICES does the 
following: 

a. It acquires write ownership of a mutex called the change mode mu­
tex, which prevents multiple processes from adding system services 
concurrently. 

b. It tests whether the instruction in the system service vector is a JMP or 
a change mode instruction. If it is already a change mode instruction, 
the service is being reloaded; EXE$CONNECT _SERVICES takes the 
actions described in steps 3e, 3f, and 3g. (Reloading is only used and 
supported for $MTACCESS and $ERAPAT.J 

c. If the instruction is a JMP, the service is being loaded for the first time. 
EXE$CONNECT _SERVICES checks that the register save mask and 
JMP destination in the vector match the information in the descriptor 
block and generates the fatal bugcheck BADVECTOR if they do not 
match. (LDR$LOAD_IMAGE stored the register save mask as part of 
processing the system service procedure's .ENTRY universal symbol.) 

d. If they match, EXE$CONNECT _SERVICES gets the change mode op­
erand number to be assigned to this service (contents of CMOD$GW _ 
CHMK_LIMIT for kernel mode, CMOD$GW _CHME_LIMIT for ex­
ecutive) and tests that the number is less than or equal to 255, the 
maximum operand number. If itis not, EXE$CONNECT_SERVICES 
generates the fatal bugcheck SSVECFULL. 

e. If it is less than or equal to 255, EXE$CONNECT _SERVICES con­
structs the system service vector contents as the concatenation of 
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the register save mask, the appropriate change mode instruction, a 
RET, and a byte of 0. It ORs R2 and R4 into the register save mask to 
reflect their use by the change mode dispatcher. 

f. It builds a PC/PSL pair and executes an REI instruction to flush the 
processor's instruction lookahead buffer in case any of the altered 
instructions were in a CPU instruction pipeline. 

g. EXE$CONNECLSERVICES records information from the system 
service descriptor block in arrays used by the change mode dispatch­
ers. One set of arrays describes kernel mode system services; another 
set decribes executive mode services. Each array is indexed by the 
change mode operand number of the service. Chapter 6 describes 
these arrays and their uses. 

h. EXE$CONNECT_SERVICES increments CMOD$GW_CHMx_LIM­
IT. The change mode dispatcher compares the contents of that cell 
against the operand of a change mode instruction to test its validity. 
A valid operand must be less than the contents. It then releases the 
change mode mutex. 

4. For either type of service, EXE$CONNECT _SERVICES tests whether the 
service has a synchronous form (for example, $QIOW is the synchronous 
form of $QIO). If so, it initializes the system service vector (and following 
bytes, if necessary) for its synchronous form, copying the wait code for 
the service as well. 

5. It returns to its caller. 

29.6 VERSION NUMBERS 

Versions of VMS have always been identifl.ed externally by a two-part num­
ber of the form M.N, for example, Version 4.6. M represents the major 
version and N represents the minor version. The major version identified a 
linked version of the system image, SYS.EXE, and its symbol table, SYS.STB, 
and changed only when SYS.EXE was relinked. The minor version identified 
a patch revision level of SYS.EXE. 

An image linked with SYS.STB to resolve references to system globals 
contained an internal form of the major system version number in its image 
header, at field IlID$L_SYSVER. 

The image activator compared the version in the image header to the run­
ning system's value. If the two were different, the image activator inhibited 
kernel and executive mode execution in the image. To run under a version of 
VMS with a new SYS.EXE, the image minimally had to be relinked to resolve 
global references with the new SYS.EXE's addresses and to alter the system 
version number in its image header. Algorithmic changes and reassembly 
might also be required as the result of system data structure or routine in­
terface changes. The system version number, however, did not convey that 
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Table 29.4 Executive Version Categories 

Category Name 

BASE_IMAGE 
MEMORY_MANAGEMENT 
IO 

Number 

0 
1 
2 

Description 

Base image transfer vectors 
Memory management and dynamic pools 
1/0 data structures and routines 

FILES_ VOLUMES 
PROCESS_SCHED 

3 
4 

RMS and file system 
Process control, scheduling, and structure; 

layout of Pl space; timer events, ASTs, and 
event flags 

SYSGEN 5 SYSGEN parameters 
CLUSTERS_LOCKMGR 6 VAXcluster connection manager, lock 

LOGICALNAMES 7 
manager, and other clusterwide facilities 

Logical names 
SECURITY 8 Security subsystem 
IMAGE_ACTIVATOR 9 Image activation and image file interpretation 

DECnet and support for datalink drivers 
Cells that are interpreted as counts 

NETWORKS 
COUNTERS 
STABLE 

MISC 
CPU 
VOLATILE 

SHELL 

852 

10 
11 
12 

13 
14 
15 

16 

Routines and data structures expected to be 
stable 

Miscellaneous 
CPU-specific support 
Routines and data structures expected to 

change in the next release 
The layout of the SHELL module and Pl 

space 

type of information, and care was required to ensure that the image was still 
compatible with the system routines and data structures it referenced. 

The intent of the Version 5 executive reorganization is to minimize the 
frequency with which images linked with SYS.STB must relink. A change 
to a loadable executive image does not alter the addresses of its vectored 
universal symbols in SYS.EXE. However, data structure and routine interface 
changes within it may require algorithmic changes and reassembly of any 
images using its routines and data. 

VMS Version 5 implements a more detailed form of internal system 
version identifier, which can denote data structure and routine interface 
changes. This number is independent of the external VMS version number. 
The executive reorganization does not tie a routine to a particular loadable 
executive image. Therefore, a version number for each loadable executive 
image is not a good solution. Instead, the executive has been divided into 
conceptual categories, such as 1/0 or memory management, each with its 
own version number. Table 29.4 lists these conceptual categories, each of 
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which is identified by a number. The $SYSVERSIONDEF macro defines sym­
bols for these numbers. 

Each base image global symbol specifies the conceptual categories with 
which it is associated, using the VERSION_MASK keyword in the macro that 
defines it. Each bit in the mask corresponds to the number of a conceptual 
category. The macros that define base image data cell and transfer vector 
globals can also generate a mask global for each global. A module such 
as SYSTEM_DATA_CELLS is conditionally assembled to generate its mask 
globals and linked with the system image. 

For example, the routine EXE$ALLOCIRP, invoked to allocate an IRP, 
is associated with the category MEMORY_MANAGEMENT. The symbol 
EXE$AR_SYSTEM_PRIMITIVES_DATA is also associated with the category 
MEMORY_MANAGEMENT. Extracts from SYSTEM_ROUTINES and SYS­
TEM_DAT.A__CELLS that define those symbols and their masks are shown 
in Examples 29.1and29.2. 

Each category version number is a longword, with major ID in the high­
order word and minor ID in the low-order word. Each is defined by a symbol 
named SYS$K_category-name. The category version numbers are defined in 
SYS.STB. 

The version number for a category changes when an interface in that cat­
egory changes. The minor ID changes for an upwardly compatible change; 
the major ID changes for an incompatible change. For example, if a rou­
tine's input arguments or a data structure's fields are redefined, then images 
referencing that routine or data structure will not execute properly unless 
they are changed. In such a case, the major ID is incremented. Examples of 
an upwardly compatible change are the addition of optional arguments to a 
routine and the use of data structure fields that had previously been defined 
as spare. 

The format of an image header has been expanded in VMS Version 5 to 
include an array for category version numbers. The first longword of the array 
contains a mask identifying which categories are relevant to the image. The 
image header field IHD$L_SYSVER still contains the overall system version 
number, with the major version number in the high-order byte and the minor 
version number in the low-order three bytes. When an image referencing an 
executive global is linked, the linker ORs the value of the corresponding 
mask global into the image's category mask longword. When all globals are 
resolved, the mask has a bit set for each conceptual category relevant to the 
image. Starting from bit 0, the linker stores the relevant category version 
numbers from SYS.STB into the subsequent longwords of the version array. 
There are no entries in the version array for categories not relevant to that 
image. 

The following is extracted from the output of the command. ANALyzE 
/IMAGE SYS$SYSTEM:SDA.EXE. 
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SYS$COMMON:[SYSEXE]SDA.EXE;1 
IMAGE HEADER 

Fixed Header Information 

image format major id: 02, minor id: 05 
header block count: 2 
image type: executable (IHD$K_EXE) 
I/0 channel count: default 
I/0 page count: default 
linker flags: 

(0) IHD$V_LNKDEBUG 0 
(1) IHD$V_LNKNOTFR 0 
(2) IHD$V_NOPOBUFS 0 
(3) IHD$V_PICIMG 1 
(4) IHD$V_POIMAGE 0 
(5) IHD$V_DBGDMT 1 

system version (major/minor): 1.0 
system version array information: 

SYS$K_MEMORY_MANAGEMENT : (1.1 I 1.1) 
SYS$K_PROCESS_SCHED : (1.1 I 1.1) 
SYS$K_SYSGEN : (1.1 I 1.1) 
SYS$K_STABLE : (1.1 I 1.2) 
SYS$K_VOLATILE : (1.1 / 1.1) 

The BASE_IMAGE category describes the layout of SYS.EXE rather than 
any particular conceptual category. The BASE_IMAGE minor ID is altered 
when a new transfer vector or data cell is added so that an image using 
the new symbol cannot run on an older version. Altering the BASE_IMAGE 
major ID forces a relink of all images linked with SYS.STB. Required when 
the layout of the base image changes, this is expected to be rare. 

The overall system version, SYS$K_ VERSION, has for its major ID the 
major ID of the BASE_IMAGE category. Its minor ID represents the particular 
release or build; its use is reserved to VMS. 

Base image global SYS$GL VERSION begins a 32-longword array of ver­
sion numbers generated from the assembly of module VERSION_NUMBERS. 
When an image linked with SYS.STB is activated, the routine EXE$CHECK_ 
VERSION, in module CHECK_ VERSION, is invoked to compare the array 
of version numbers in its image header with the versions of the running 
executive. All of the following must be true: 

• The major ID of the image must match the major ID of the running system . 
• The minor ID must be less than or equal to that of the running system . 
• The first longword of the IHD version array contains a mask of conceptual 

executive categories relevant to the image. For each bit set in the mask, 
the major ID of the executive category at the time the image was linked 
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must be equal to that of the category in the running system. The minor ID 
must be less than or equal to that of the category in the running system. 

In VMS Versions 5.0 through 5.1, if the versions are incompatible, the 
image activator inhibits kernel and executive mode execution in the image 
by removing CMEXEC and CMKRNL privileges. In VMS Version 5.2, the 
image activator aborts the activation and returns the fatal error status SS$_ 
SYSVERDIF. 

2.9.7 OTHER KINDS OF LOADABLE EXECUTIVE IMAGE 

During the evolution of VMS, the number of executive images grew. Several 
different loading mechanisms were implemented to deal with different types 
of executive image. · 

VMS Version 1 supported one CPU type, the VAX-11/780, and a number of 
1/0 devices. Most of the executive was in the system image, SYS.EXE, which 
contained CPU-specific support. Separate device driver images loaded into 
nonpaged pool provided most 1/0 device support. The device driver structure 
and loading mechanism were designed to be extensible to user-written device 
drivers. The SYSGEN utility was designed to build 1/0 data structures and 
load both VMS and user-written device drivers. 

VMS Version 2 supported a second CPU type, the VAX-11/750. Requir­
ing all systems to load code required for both CPU types was not desirable. 
Instead, the CPU-specific routines were moved into separately loadable im­
ages named SYSLOAxxx .EXE, where xxx designates the CPU type. VMS 
Version 2 included a mechanism for loading SYSLOAxxx .EXE into nonpaged 
pool and a method of dispatching into its routines. 

VMS Version 3 added support for a new storage system protocol, system 
communication services (SCS). Support for it and its first devices required a 
disk class device driver, two different port drivers, and SCS support routines 
that provided an interface between a class and port driver. The SYSLOA 
loading and dispatching mechanism was extended to SCS support routines, 
which were built in the SCSLOA.EXE image. 

VMS Version 4 added support for VAXcluster systems and for MicroVAX 
processors. VAXcluster-specific routines were built in the CLUSTRLOA.EXE 
image, which used the SYSLOA loading and dispatching mechanism. Two 
images that contained instruction emulation routines were added: VAX­
EMUL.EXE contained support for emulating VAX instructions not imple­
mented in MicroVAX microcode; FPEMUL.EXE contained support for 
floating-point data types not supported by microcode on all CPU types. The 
instruction emulation images were loaded into nonpaged pool. 

The rest of this section briefly describes some of the loading mechanisms 
used for these executive images that existed prior to VMS Version 5. The 
VMS Device Support Manual describes the driver loading mechanism. 
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CPU-Dependent and Other Loadable Routines 

The CPU-specific images have names of the form SYSLOAxxx.EXE. jAppen­
dix G lists SYSLOA images.I SYSBOOT uses the CPU type, CPU subtype, 
and, in some cases, type of console device, to select the SYSLOA image appro­
priate to the configuration. The SYSLOA images are in directory SYS$LOAD­
ABLE_IMAGES. 

SYSBOOT opens the image and reads the image header and the first block 
of the image body. It invokes EXE$CHECK_ VERSION to check that the run­
ning system has compatible software for all conceptual executive categories 
relevant to the SYSLOA image. If the versions are incompatible, SYSBOOT 
writes an error message on the console terminal and halts. 

Otherwise, SYSBOOT allocates nonpaged pool from the high end of the 
variable-length region for the image. The first block of the image body begins 
with a dynamic data structure header; the longword at offset 0 and the word 
at offset 8 both specify the size of the image to be loaded into nonpaged pool. 
Offset 4 in the data structure header contains the offset from the beginning 
of the image to a routine within the image that performs image-specific 
initialization. SYSBOOT loads the image into nonpaged pool and records 
its starting address and size for EXE$INIT. The image must be position­
independent code, since its location in pool is indeterminate at link time. 

The miscellaneous vectors area of the base image includes vectored entry 
points to routines in a SYSLOA image. These entry points are defined as 
base image globals in the module SYSLOAVEC. A typical entry point is a 
JMP instruction whose initial target is EXE$LOAD_ERROR, the address of a 
HALT instruction. 

The source for this module is conditionally assembled to build the mod­
ule LOAVEC, a table containing a self-relative offset into the image for each 
CPU-dependent transfer vector. LOAVEC is linked into each SYSLOAxxx 
image. During system initialization, the LOAVEC table in the loaded SYS­
LOAxxx image is used to relocate the targets of the SYSLOA transfer vectors 
in the base image. 

Each element in the table is five bytes long: the first byte identifies its 
type; the next longword is a self-relative offset into the image of the transfer 
vector's target. A type code of 1 identifies a longword-aligned transfer vector, 
which is a simple pointer to data in the loaded image. A type code of 2 
identifies a transfer vector that must be longword-aligned because it is an 
interrupt or exception service routine. A type code of 3 identifies a simple 
JMP instruction transfer vector. 

EXE$INIT invokes EXE$LINK_ VEC, in module LINKVEC, to perform this 
relocation. EXE$LINK_ VEC scans the table twice. The first time, it checks 
that the table is well formed and has no inconsistent data. The second time, 
it calculates the effective destination of each transfer vector in the loaded 
image and stores it in the transfer vector. Each destination is the sum of the 
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base address of the loaded SYSLOA image, the offset of its table entry, and 
the offset of the corresponding routine or data. Figure 29 .4 illustrates this 
linkage. 

EXE$INIT subsequently invokes the initialization routine in the loaded 
SYSLOAxxx image. 

SCSLOA is loaded on every system with any disk or magnetic tape con­
trollers that use mass storage control protocol (MSCP). If the system has a 
computer interconnect (CI) adapter, if its system disk is an MSCP device, 
or if the SYSGEN parameter VAXCLUSTER is nonzero, SYSBOOT loads 
SCSLOA in the same manner as it does SYSLOA. SYSBOOT records its 
starting address and size for EXE$INIT. 

SCSLOA' s transfer vectors are defined in the base image module SCS­
VEC. The source for this module is conditionally assembled to build the 
module (SYSLOA]SCSVEC, which contains the table of self-relative offsets 
into SCSLOA. During system initialization, the SCSVEC table in the loaded 
SCSLOA image is used to relocate the SCSLOA transfer vectors in the base 
image. 

If EXE$INIT finds that SCSLOA has been loaded, it invokes EXE$LINIL 
VEC to relocate the SCSLOA transfer vectors. It then invokes the SCSLOA 
initialization routine. 

It is possible for SCSLOA to be loaded after system initialization by the 
SYSGEN utility. If SYSGEN configures an MSCP disk and tape and finds that 
SCSLOA has not been loaded yet, SYSGEN loads it. It invokes EXE$LINK_ 
VEC to relocate the SCSLOA transfer vectors and then invokes the SCSLOA 
initialization routine. 

The transfer vectors for CLUSTRLOA are defined in the base image mod­
ule CLUSTRVEC. The source for this module is conditionally assembled to 
build the module [SYSLOA]CLUSTRLOA, which contains the table of self-. 
relative offsets into CLUSTRLOA. During system initialization, the table in 
the loaded CLUSTRLOA image is used to relocate the transfer vectors in the 
base image. 

SYSBOOT loads CLUSTRLOA into nonpaged pool on every node of a VAX­
cluster system. SYSBOOT records its address and size. EXE$INIT invokes 
EXE$LINK_ VEC to relocate the CLUSTRLOA transfer vectors and then in­
vokes the initialization routine within CLUSTRLOA. 

Instruction Emulators 

SYSBOOT determines whether either or both types of instruction emulation 
are required on a particular ·system. The VAXEMUL.EXE and FPEMUL.EXE 
images are in directory SYS$LOADABLE_IMAGES. 

If either is needed, SYSBOOT opens the image file and reads its image 
header and the first block of the image body, just as it does for SYSLOA. It 
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00 
CJl 
00 

System Control Block 

.LONG EXE$MCHK!1 ;mach. check vector 

... 
.LONG EXE$1NT54!1 ;CPU error vector ...... 

... 

.LONG EXE$1NT58!1 ;CPU error vector 

... 

Figure 29.4 

Base Image Miscellaneous 
Data Area 
... 

EXE$AL_LOAVEC :: 
EXE$MCHK :: 

JMP @#EXE$LOAD_ERROR 
.BLKB 1 

EXE$1NT54 :: 
JMP @#EXE$LOAD_ERROR 
.BLKB 1 

EXE$1NT58 :: 
JMP @#EXE$LOAD_ERROR 
.BLKB 1 ... 

CON$1NTINP :: 
JMP @#EXE$LOAD_ERROR 

CON$1NTOUT :: 
JMP@#EXE$LOAD_ERROR ... 

Linkage and Control Flow Example for CPU-Dependent 
Routines 

I-

SYSLOAxxx.EXE in Nonpaged Pool 

IMAGE SIZE 

Offset to Initialization Routine 

-, SUBTYPE 1 TYPE l SIZE 

I (reserved) 

SYSLOAVEC Counted ASCII String 

Offset to EXE$MCHK Routine 2 

I 
I 
I 
I Offset to EXE$1NT54 Routine 2 

Offset to EXE$1NT58 Routine 2 I 
I 
I ... 

Offset to CON$1NTINP Routine 
I 
I 3 

I Offset to CON$1NTOUT Routine 3 

(end of list) -1 

Initialization Routine 

I 
I 
I 
L ---i EXE$MCHK Routine 
Afte r loading ... 
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checks that the running system has compatible software for all conceptual 
executive categories relevant to the emulation image. 

The first block of the image body begins with a dynamic data structure 
header; the longword at offset 0 and the word at offset 8 both specify the size 
of the image to be loaded into nonpaged pool. Offset 4 in the data structure 
header contains the offset from the beginning of the image to a routine 
within the image that performs image-specific initialization. SYSBOOT loads 
the image into nonpaged pool and records its starting address and size for 
EXE$INIT. The image must be position-independent code, since its location 
in pool is indeterminate at link time. 

EXE$INIT tests whether SYSBOOT has loaded the emulation images. If an 
emulation image has been loaded, EXE$INIT invokes its initialization rou­
tine. The initialization routine stores the addresses of the image's exception 
service routines in the appropriate SCB vectors. 

29.8 DYNAMIC ALLOCATION AND DEALLOCATION OF SPTES 

VMS Version 5 implements dynamic allocation and deallocation of SPTEs. 
This enables space to be allocated for a loadable executive image when 
it is loaded and for its initialization and fixup sections to be deallocated 
after they are no longer needed. The address space thus freed can be reused. 
This replaces a simpler mechanism used in earlier versions of VMS, which 
permitted only the allocation of free SPTEs. 

As described in Chapter 30 and Appendix F, SYSBOOT defines the layout 
of system space, based largely on SYSGEN parameter values. SYSBOOT 
defines the high end of system space for areas such as the system page 
table and nonpaged pool. Its layout is fixed. SYSBOOT reserves the lowest 
pages of system space for the base image. The area dynamically allocated 
and deallocated begins immediately above the base image. 

Two routines in module PTALLOC maintain a list of available pages in 
this area: 

• LDR$ALLOC_PT, which allocates SPTEs 
• LDR$DEALLOC_PT, which deallocates SPTEs 

Their actions are described in Sections 29.8.l and 29.8.2. 
The list of available pages of system space is kept within the available 

SPTEs themselves. Figure 29.5 shows the form of the list. Each element on 
the list is a group of adjacent available SPTEs. The smallest group is one 
SPTE. 

The listhead is at global cell LDR$GL_FREE_PT, which points to the first 
element on the list. A list element is typically two longwords: the first points 
to the next set of free SPTEs; the second is the number of SPTEs in this group. 
A group of free SPTEs is identified by its byte offset from the beginning of 
the system page table. For example, if LDR$G1-FREE_PT contained 3BC016, 
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LDR$GL_FREE_PT :: 
'-----~ 

System Page Table 

SPTEs in use 

SPTEs in use 

Figure 29.5 
List of Available SPTEs 

/ 
/ 

N Free SPTEs 
Bit 
21 

J 0 l Offset of Next Element ' 

N 

or 

1 FreeSPTE 

I 1 I Offset of Next Element I 

the next SPTE available for allocation would be at offset 3BC016 from the 
base of the system page table. The number of SPTEs in that group would be 
at offset 3BC416· 

The offset is stored in the low-order 21 bits of the SPTE. The high-order 
11 bits are zero. Thus, to memory management microcode, such an SPTE 
has no read or write access and an owner mode of kernel. 

Two SPTEs are required to describe a group of two adjacent available 
SPTEs. A single available SPTE contains, in its low-order 21 bits, the offset 
of the next group. Bit 21 is set to identify the SPTE as the sole member of 
its group. 

The SPTE allocation algorithm is first-fit and takes the higher end of a 
group of SPTEs if the group is larger than needed. SPTE deallocation keeps 
the list ordered from larger offset to smaller, that is, from higher system 
virtual page number to lower. 

Much SPTE allocation occurs during system initialization, in EXE$INIT 
and SYSBOOT.EXE. These only execute on the primary CPU of an SMP 
system and at interrupt priority level (IPL) 31. When LDR$ALLOC_PT and 
LDR$DEALLOC_PT are invoked at later stages of initialization, they syn­
chronize their accesses to the SPTE list by acquiring the MMG spinlock. 
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Actions of LDR$ALLOC_PT 

LDR$ALLOC_PT is invoked with the number of SPTEs to be allocated. It 
takes the following steps: 

1. If it is running after the swapper process has begun, it acquires the MMG 
spinlock, raising IPL to IPL$_MMG. 

2. It scans the list of available SPTEs, starting with the group whose offset 
is stored in LDR$G1-FREE_PT, looking for a large enough group. 

3. If it finds a grbup exactly the right size, it removes that group from the 
list by changing the forward pointer of the predecessor group to point to 
the next group. 

4. If it finds a group larger than needed, it subtracts the number of SPTEs 
needed from the count longword. If the count is reduced to 1, LDR$AL­
LOC_PT sets bit 21 in the single available SPTE. It allocates the SPTEs 
at the high end of the group, so that it does not have to copy the pointer 
and count longwords and to alter the longword pointing to the beginning 
of the group. 

5. It zeros the allocated SPTEs and returns to its invoker the address of the 
lowest SPTE in the allocated group and a status of SS$_NORMAL. 

6. If it cannot make the allocation, it returns the error status SS$_INSFSPTS 
to its invoker. 

7. In either case, it releases the MMG spinlock and lowers IPL. 

Actions of LDR$DEALLOC_PT 

LDR$DEALLOC_PT is invoked with the address of the lowest SPTE in the 
group to be deallocated and the number of SPTEs. The invoker must have 
already deallocated any physical memory associated with the SPTEs and 
zeroed the SPTEs. It takes the following steps: 

1. If it is running after the swapper process has begun, it acquires the MMG 
spinlock, raising IPL to IPL$_MMG. 

2. It first checks that the SPTEs are all zero. If they are not, it releases 
the spinlock, lowering IPL, and returns the error status LOADER$_PTE_ 
NOT _EMPTY to its invoker. 

3. Otherwise, it scans the list of available SPTEs, looking for the first group 
whose address is less than that of the group being deallocated. 

4. It inserts the group being deallocated at that point and checks whether 
it can be merged with the group on either side of it. It makes whatever 
merges are possible, altering pointers and count longwords as appropriate. 

5. It releases the spinlock, lowering IPL, and returns the status SS$_NOR­
MAL to its invoker. 
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30 Bootstrap Procedures 

Ante mare et terras et quod tegit omnia caelum unus erat toto 
. naturae vultus in orbe, quern dixere chaos: rudis indigestaque 
moles. 
[Before the sea was, and the lands, and the sky that hangs 
·over all, the face of Nature showed all alike, which state has 
been called chaos: a rough unordered mass of thirtgs.J 

Ovid, Metamorphoses I, 5-7 

Before the VMS operating system can assume control of a VAX system, some 
initialization or bootstrap programs must execute to configure the system 
and read the executive into memory. Parts of the bootstrap operation are 
specific to the type of VAX processor. Others are common across all VAX 
family members. 

This chapter first summarizes all phases of system initialization and then 
describes those that occur before the system base image (SYS.EXE) and load­
able executive images execute. Chapter 31 describes the later phases of 
system initialization, .and Chapter 34 describes the portions of system ini­
tialization specific to multiprocessors. 

30.1 OVERVIEW OF SYSTEM INITIAUZATION 

862 

VMS system initialization requires a number of programs. Some of them run 
prior to an operating system environment; others execute in system context 
with memory management enabled; others execute in process context. In 

. general, VMS postpones an initialization task to as late a stage of initial­
ization as. possible. The following list summarizes the system initialization 

' programs: 

• The console subsystem is CPU-specific. Regardless of its implementation, 
the subsystem must illitialize the CPU, locate physically contiguous good 
memory, and load a VMB image into that memory. 

• VMB, the primary bootstrap program, runs stand-alone on a VAX processor 
with memory management disabled. In a symmetric multiprocessing (SMP) 
system, VMB runs on the processor selected to be primary by the console 
subsystem. It provides a bootstrap that is independent of the operating 
system. It· sizes memory, initializes context for the adapter and device 
unit containing the secondary bootstrap program, and loads the secondary 
bootstrap. 

• SYSBOOT, the secondary bootstrap program for the VMS software, also 
runs stand-alone with memory management disabled. It reads SYSGEN 
parameters and lays out system virtual address space based on their values. 
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SYSBOOT loads the system base image, SYS.EXE, and several loadable 
executive images into memory. It also loads the system device driver, the 
port driver, auxiliary drivers, the SYSLOA image, and VAXcluster code, as 
needed. SYSBOOT transfers control to EXE$INIT, in the loadable executive 
image EXEC_INIT . 

• After turning on memory management, EXE$INIT runs at interrupt prior­
ity level (IPL) 31 on the interrupt stack. It performs initialization tasks 
that require memory management but must occur before process con­
text is available. EXE$INIT invokes the initialization routines of the im­
ages loaded by SYSBOOT, including the SYSLOA routines that perform 
processor-specific initialization. It loads most of the remaining loadable 
executive images and invokes their initialization routines. The loadable 
executive images initialize the scheduler, memory management, spinlock, 
and 1/0 databases, among other operations. EXE$INIT then configures and 
starts secondary CPUs. It REis to the scheduling routine SCH$SCHED, 
described in Chapter 12, which places the swapper process into execution. 

• EXE$SWAPINIT, the swapper initialization routine, performs the mini­
mum tasks that must complete in process context before any other pro­
cesses can be created. Because it is pageable code, it eventually disappears 
from the system working set and thus occupies no physical space. Its tasks 
include initializing paged pool . and the pageable logical name database, 
and invoking loadable executive image initialization routines that require 
process context in order to execute. EXE$SWAPINIT creates the SYSINIT 
process. 

• The SYSINIT process performs initialization tasks that must be done in 
process context and that do not lend themselves to Digital command 
language (DCL) commands. These include initializing the swap and page 
files and opening the Files-11 Extended QIO processor (XQP) as a global 
section. The SYSINIT process creates the startup process . 

• The startup process has a full process context; it maps DCL and can thus 
execute a series of DCL commands. It executes the command procedure 
SYS$SYSTEM:STARTUP.COM, which processes other command proce­
dures and data files in the SYS$STARTUP directory. The various command 
procedures create system processes, such as OPCOM, the job controller, 
and the SMISERVER. They create systemwide logical names, run SYS­
GEN to autoconfigure the 1/0 database, and install images specified by 
the VMSIMAGES.DAT data file. The startup process executes a series of 
site-specific command procedures and finally enables interactive logins. 

From SYSBOOT onward, the files and programs used in bootstrap op­
erations are primarily independent of processor type. Table 30.l lists the 
processor-independent bootstrap programs and processes, the files they ac­
cess, and the reason for the access. Subsequent sections list processor­
dependent bootstrap files. 
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Table 30. l Processor-Independent Bootstrap Files 

Files Accessed 

VAXVMSSYS.PAR and other 
parameter files 

SYSDUMP.DMP 
PAGEFILE.SYS 
SYS.EXE 
TTDRIVER.EXE 
xx DRIVER.EXE 
yyDRIVER.EXE 
zzDRIVER.EXE 

SYSLOAxxx .EXE 
SCSLOA.EXE 

CLUSTRLOA.EXE 

FPEMUL.EXE 

VAXEMUL.EXE 

SYSTEM_SYNCHRONIZATION_ 
xxx.EXE 

SYSTEM_PRIMITIVES.EXE 
PRIMITIVE_IO.EXE 
ERRORLOG.EXE 
SYSTEM_DEBUG.EXE 
EXEc_INIT.EXE 

CPULOA.EXE 
EVENT _FLAGS_AND_ASTS.EXE 
EXCEPTION.EXE 

IMAGE_MANAGEMENT.EXE 
IO_ROUTINES.EXE 
LMF$GROUP _TABLE.EXE 
LOCKING.EXE 
LOGICALNAMES.EXE 
MESSAGE_ROUTINES.EXE 
PAGE_MANAGEMENT.EXE 

PROCESS_MANAGEMENT.EXE 

SECURITY.EXE 
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Reason for Access 

SYS BOOT 

Configure system 

System dump file, located and sized for later use 
Primary page file, located and sized if dump file not found 
System base image, loaded into memory 
Terminal class driver, loaded into nonpaged pool 
System device driver, loaded into nonpaged pool 
Port driver, conditionally loaded into nonpaged pool 
Auxiliary device driver, conditionally loaded into nonpaged 

pool 
CPU-specific routines, loaded into nonpaged pool 
System communication services, conditionally loaded into 

nonpaged pool 
VAXcluster support, conditionally loaded into nonpaged 

pool 
Floating-point emulation code, conditionally loaded into 

nonpaged pool 
String and other emulated instruction code, conditionally 

loaded into nonpaged pool 
SMP synchronization image, one of three 

Basic system support routines 
Primitive console 1/0 and file system routines 
Error logging routines and system services 
System debugger (XDELTA), conditionally loaded 
Next image in bootstrap sequence 

EXEC_INIT 

Tables of CPU data 
Event flag and AST routines and system services 
Exception service routines and system services, bugcheck 

routines 
Image activation services and routines 
1/0-related routines and system services 
Tables of license data 
Lock management routines and system services 
Logical name routines and system services 
Message routines and system services 
Page fault service routine, related routines, virtual address 

space system services 
Scheduling routines and process creation and control 

system services 
Security-related routines and system services 

(continued) 
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Table 30.1 Processor-Independent Bootstrap Files (continued) 

Files Accessed 

SYSDEVICE.EXE 
SYSGETSYI.EXE 
SYSLICENSE.EXE 
WORKING_SET _ 

MANAGEMENT.EXE 

SYSMSG.EXE 
RMS.EXE 
Fl lBXQP.EXE 
QUORUM.DAT 
RECOVERY _UNIT _SERVICES.EXE 
DDIF$RMS_EXTENSION.EXE 

SYSLDR_DYN.EXE 

STARTUP.COM 
LOGIN OUT.EXE 
DCL.EXE 

DCLTABLES.EXE 

VMS$PHASES.DAT 
VMS$VMS.DAT 
VMS$LAYERED.DAT 
Various 
SWAPFILE.SYS 
PAGEFILE.SYS 
SATELLITLPAGE.COM 
SYPAGSWPFILES.COM 
SYLOGICALS.COM 
SYCONFIG.COM 
SYSTARTUP _VS.COM 

Reason for. Access 

EXECINIT 

Pseudo device drivers and mailbox system services 
$GETSYI system service 
$LICENSE system service 
Swapper and supporting routines, related system services 

SYSINIT PROCESS 

System message file 
Record Management Services (RMS) 
File system, mapped as global section 
VAXcluster system quorum file 
RMS recovery services 
Support for Digital Document Interchange Format (DDIF) 

file operations 
Dynamic loading of loadable executive images 

STARWP PROCESS 

SYS$INPUT for startup process 
First image that runs in startup process 
CLI, mapped into Pl space to interpret and execute 

commands 
Command tables, mapped into Pl space and used by 

DCL.EXE 
Startup phase definition data file 
Procedure definition data file for VMS 
Procedure definition data file for layered products 
Procedures and images defined by previous two data files 
System swap file opened and initialized 
System page file opened and initialized 
VAXcluster satellite page file installation 
Site-specific page and swap files 
Site-specific logical names 
Site-specific device configuration command procedure 
Site-specific startup command procedure 

VMSIMAGES.DAT 
All installed images 

INSTALL UTILITY, IN CONTEXT OF STARWP PROCESS 

List of images to be installed 

VAXVMSSYS.PAR 
Various device drivers 

Set up as known images 

SYSGEN, IN CONTEXT OF STARWP PROCESS 

Written to record SYSGEN parameters 
Loaded into nonpaged pool, they perform 1/0 database and 

device initialization 
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30.2 PROCESSOR-SPECIFIC INITIALIZATION 

30.2.1 
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The preliminary steps in the initialization of a VMS system depend on 
the particular VAX processor being booted. The console subsystem is the 
portion of the processor that initiates a bootstrap operation and permits 
microdiagnostics and macrodiagnostics to execute. Not all details of the 
console subsystem are specified by the VAX architecture; some are CPU­
specific. The installation and technical guides for a particular VAX processor 
contain a detailed description of its console subsystem, and Chapter 24 
describes console registers and communication. 

The next sections describe the various VAX systems and the processor­
specific steps that occur before VMB gains control and begins execution. In 
all processors, the following steps occur: 

1. An error-free, page-aligned, and contiguous block of physical memory is 
located. 

2. VMB is loaded into the second page of the memory. 
3. The bootstrap device code, other bootstrap flags, and additional infor­

mation are passed to VMB using registers RO through RS, R7, and RlO 
through AP. 

4. VMB executes. 

The main differences in the initiation of VMB on various VAX processors 
are the following: 

• Location of VMB-console block storage device, system device, or read-
only memory (ROM) 

• Method for determining system device 
• Contents of RO through RS and R7 
• Program that loads and passes control to VMB 

The amount of error-free memory located by the console subsystem is 
specified by the VAX architecture, which was amended in 1987. VAX pro­
cessors announced after 1987 locate a 2S6K-byte block of memory; earlier 
VAX processors locate a 64K-byte or 128K-byte block. The manner in which 
error-free memory is located is CPU-dependent. The register contents are 
also somewhat CPU-dependent, but the most obvious processor-specific item 
that affects the bootstrap operation is the console configuration. Figure 30.1 
summarizes the bootstrap sequence, and the following sections describe the 
various consoles. 

Note that all descriptions assume the console terminal is in local enable 
mode, able to receive command input. 

MicroVAX CPUs with ROM-based VMB 

The MicroVAX processors implement a subset VMB in ROM. The actual 
VMB code differs only slightly from one MicroVAX to another and evolved 
from the MicroVAX II VMB. The following sections describe the console 
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MicroVAX CPUs 
(ROM-based VMB) 

VAX 8200, 8300 Family 
VAX-11/750 VAX 6000 Serles 

VAX 88x0, 8800 Family 
VAX86x0 

VAX-11/78x 
VAX-11/730 

Console Program 

' VMBin ROM 

30.2.1.1 

Console Program 

' Boot Block Program 

Figure 30.1 

SYS BOOT 

' Loads executive images 

EXE$1NIT 

' Starts other CPUs 

EXE$SWAPINIT (Swapper Process) 

SYSINIT Process 

' Startup Process 

Sequence of Initialization Events 

Console Microprocessor 

I 
Discussed 
in this 
chapter 

Discussed 
in the next 
chapter 

subsystems and bootstrap operations of the various MicroVAX CPUs. Note 
that most of the MicroVAX CPUs are also available in VAXstation configura­
tions. The description of MicroVAX initialization applies to its VAXstation 
configuration as well. 

MicroVAX II Console Subsystem and Initial Bootstrap Operation. The con­
sole subsystem on the MicroVAX II consists of a console program and a con­
sole terminal. The MicroVAX II console program is written in VAX MACRO 
instruction code. Because the Micro VAX II has no console block storage de­
vice, the console program is stored in ROM in the processor's local 1/0 space. 
A subset version of VMB.EXE, specific to the MicroVAX II, is also stored in 
ROM, along with the power-up diagnostics. 

When the console program has control, the MicroVAX II processor exe­
cutes the console program's VAX instructions rather than user or system 
instructions. The console program gains control of the processor whenever 
any halt condition occurs, such as execution of a HALT instruction. 

The MicroVAX II has four internal processor registers for communication 
with the console terminal. 

There are several circumstances in which a bootstrap sequence is initiated: 

867 



Bootstrap Procedures 

868 

Table 30.2 Processor-Dependent Programs Used to Bootstrap the MicroVAX II 

Program Executing 

CPU initialization 
microcode 

Console program 

VMS.EXE 

Location of Program 

Micro VAX II CPU 

1/0 address space 
ROM in MicroVAX 
II CPU 

1/0 address space 
ROM in MicroVAX 
II CPU 

Purpose of Program 

Pass control to the console 
program 

Size physical memory, locate 
block of good memory, 
load VMB from ROM into 
memory, and pass control 
to it 

Locate secondary bootstrap, 
load it into memory, and 
pass control to it 

• The system is powered on, and halts are disabled through the Halt Enable 
switch on the CPU patch panel insert, mounted inside the rear of the CPU 
cabinet. Chapter 33 describes the significance of this switch in more detail. 

• The B(oot) command is entered while the system is in console mode . 
• The halt action field in the console program mailbox (CPMBX) is set to 2 

by the operating system . 
• An attempt to restart the system after an error halt fails, and the console 

program mailbox has its default contents. 

When a MicroVAX II system is initialized, several programs execute before 
VMB. These are summarized in Table 30.2. 

The steps of initial bootstrap are as follows: 

1. Following power recovery, the processor performs hardware initializa­
tion, writes a power-up code into the AP register, and passes control to 
the console program in ROM. 

2. On power-up, the console program checks its own integrity by comput­
ing the checksum of its own code and comparing it to the expected value 
stored within ROM. The console then looks for a small piece of con­
tiguous good physical memory. It scans from high memory addresses 
downward. It requires two pages for use as a stack and writable data area 
and the rest for a bitmap of available memory. 

3. The console program performs some additional checks, including de­
termination of the console terminal type. It then executes diagnostics, 
which are also located in ROM, to test the processor and memory. The 
memory test diagnostic records the memory it finds in the bitmap. A set 
bit indicates a present page of memory. The first bit in the map corre­
sponds to the first page of memory. The bitmap does not map itself or 
the other pages of memory reserved for the console program's use. The 
address of the bitmap and its size will be passed to VMB. 

4. To perform a bootstrap, the console program searches for a 64K-byte 



30.2 Processor-Specific Initialization 

block of good memory. It initializes the Q22-bus I/O map registers to 
map to the first four megabytes of MicroVAX II memory. 

5. The console does not process command files. It must construct the con­
tents of RO through RS from the combination of boot device and bootstrap 
command. Table 30.3 shows the register arguments. 

6. The console program copies VMB from the console program ROM into 
the piece of good memory, starting at the second page, and passes control 
to it. 

The MicroVAX II VMB is based upon the full VMB that runs on other 
VAX processors. There are, however, a number of significant differences 
between the two, which are summarized in the following list. For a detailed 
description of the MicroVAX II VMB, see the MicroVAX 630 CPU Module 
User's Guide. Section 30.3 gives a detailed description of the full VMB . 

• The register arguments are different; contrast Table 30.20 with Table 30.3 . 
• Full VMB sizes memory itself if necessary. The MicroVAX II VMB requires 

an available memory bitmap built by the memory diagnostic . 
• Full VMB.EXE tries to boot a system from the system device specified by 

its register arguments. MicroVAX II VMB has several possibilities: 

-In response to a B(oot) command with no device specification, MicroVAX 
II VMB searches for a bootable disk. In searching for a bootable disk, 
VMB tries each disk drive of all possible mass storage control proto­
col (MSCP) controllers. Furthermore, if it does not locate SYSBOOT, it 
checks whether the first logical block of the disk (LBN 0) is a boot block. 
It then searches for a TKSO magnetic tape to boot. If that fails, it scans 
memory for the signature of programmable read-only memory (PROM). 
Last, it looks for a DEQNA or DELQA controller to request a down-line 

Table 30.3 Register Input to MicroVAX II VMB 

Register 

RO 
Rl 
R2 
R3 
R4 
RS 
RlQI 

Rll 1 

API 

SP 

Contents 
Zero or ASCII name of bootstrap device 
Contents of MicroVAX II boot and diagnostic register 
Memory bitmap size in bytes 
Address of memory bitmap 
Unused 
Software boot control flags 
Halt program counter (PC) 
Halt processor status longword (PSL) 
Halt code 
Address of 64K bytes of good memory plus 20016 

1 The console program sets up these registers after a halt condition. 
VMB does not use these values. 
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bootstrap. If there is no response in 30 seconds, VMB retransmits its re­
quest every 30 seconds. If no response is received after 12 retransmits, 
VMB doubles the timeout interval. It retransmits 12 times with a 60-
second timeout. It continues in this manner, up to a maximum delay of 
60 minutes. 

-In response to a boot command with a device specification, it searches 
the specified device for the secondary bootstrap. 

MicroVAX 2000 Console Subsystem and Initial Bootstrap Operation. The 
console subsystem on the Micro VAX 2000 consists of a console program and 
a console terminal port. The MicroVAX 2000 console program is written in 
VAX MACRO instruction code and resides on the system module ROM. A 
subset version of VMB.EXE, specific to the MicroVAX 2000, is also stored in 
ROM, along with the diagnostic code. 

When the console program has control, the MicroVAX 2000 processor ex­
ecutes the console program's VAX instructions. The console program gains 
control of the processor whenever any halt condition occurs, such as execu­
tion of a HALT instruction. 

The console program's actions are determined in part by the current con­
tents of the following three areas of nonvolatile random access memory 
(NVR): 

• The console program mailbox contains the default recovery setting (halt 
action), the restart-in-progress flag, and the boot-in-progress flag . 

• The boot device (BOOT _DEV) area stores the name of the default boot 
device. 

• The boot flag (BOOT _FLG) area contains the default boot flags, passed to 
VMB in RS. 

The console utility programs TEST 51 and TEST 52 load the boot device 
and boot flag areas, respectively. The console utility program TEST 53 alters 
the default recovery setting in the console program mailbox. The recovery 
setting determines the console action when the processor halts, as follows: 

• If the setting is 0 or 1, restart. If that fails, boot. If boot fails, halt. 
• If the setting is 2, boot. If that fails, halt . 
• If the setting is 3, halt at the console prompt. 

Note that if the halt button is pressed, the console halts at the console 
prompt and ignores the recovery setting. 

A bootstrap sequence is initiated for the MicroVAX 2000 under the fol­
lowing conditions: 

• The system is powered on, and the recovery setting is 0, 1, or 2 . 
• The B(oot) command is entered while the system is in console mode. 
• The operating system sets the halt action field in the console program 

mailbox to 2. 
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The MicroVAX 2000 bootstrap proceeds in the following manner: 

1. When the processor recovers power, it performs hardware initialization, 
saves a restart code that is later passed to VMB, and transfers control to 
the console program in ROM. 

2. The console program performs some checks, including determination of 
the console terminal type. It then executes diagnostics, which are also 
located in ROM, to test the processor and memory. The memory test 
diagnostic records the memory it finds in a bitmap. The first bit in the 
map corresponds to the first page of memory. A set bit indicates that the 
page of memory is present and usable. The bitmap itself and the pages 
reserved for the console program's use are marked as bad in the bitmap. 
The address of the bitmap and its size are later passed to VMB. 

3. The console does not process command procedures. To perform a boot­
strap, the console program constructs the contents of RO through RS as 
shown in Table 30.4. If a boot device is specified on the command line 
or in the boot device area, the console loads RO from that information. 

4. The console program then searches for a 128K-byte block of good mem­
ory. Reserving the first page of good memory for the restart parameter 
block (RPB), it copies VMB into the memory starting at the second page. 
The console program transfers control to VMB. 

MicroVAX 2000 VMB evolved from MicroVAX Il VMB. It differs from full 
VMB, used by larger VAX CPUs that do not store VMB in ROM, in the 
following ways: 

• MicroVAX 2000 VMB uses different register arguments and only recognizes 
a subset of the RS boot flags. 

Table 30.4 Register Input to MicroVAX 2000 VMB 

Register 

RO 
Rl 
R2 
R3 
R4 
RS 
RlQI 

Rll 1 

API 

SP 

Contents 
Zero or ASCil name of bootstrap device 
Address of configuration table 
Memory bitmap size in bytes 
Address of memory bitmap 
Unused 
Software boot control flags 
Halt PC 
Halt PSL 
Halt code 
Address of 128K bytes of good memory plus 20016 

1 The console program sets up these registers after a halt 
condition. VMB does not use these values. 
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Bit 
Position 

0 

3 

4 

5 

6 

8 

9 

(31:28) 
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Symbolic Name 
RPB$V_CONV 

RPB$V _BBLOCK 

RPB$V_DIAG 

RPB$V _BOOBPT 

RPB$V _HEADER 

RPB$V _SOLICT 

RPB$V_HALT 

RPB$V _ TOPSYS 

Meaning 
Conversational boot. If set, SYSBOOT solicits 

parameters from the console terminal. 
Secondary boot from boot block. If set, VMB reads 

LBN 0 of the boot device. If it is a boot block, 
the block is executed. VMB makes no search for 
a Files-11 secondary bootstrap file. 

Diagnostic boot. If set, secondary bootstrap is image 
[SYSn.SYSMAINT)DIAGBOOT.EXE. 

Bootstrap breakpoint. If set, VMB and SYSBOOT _ 
XDELTA execute BPT instructions to transfer 
control to XDELTA. 

Image header. If set, VMB transfers control to an 
address specified in the secondary bootstrap's file 
image header. If clear, VMB transfers control to 
the first byte of the secondary boot file. 

Solicit file name. If set, VMB prompts for the 
name of a secondary bootstrap file. Used to load 
SYSBOOT _XDELTA. 

Halt before transfer. If set, VMB executes a HALT 
instruction before transferring control to the 
secondary bootstrap. 

Specifies the top-level directory number for a 
system disk with multiple system roots. 

Table 30.5 describes the VMB boot flags used by MicroVAX CPUs and the 
manner in which the flags influence the search for a secondary bootstrap 
image . 

• Rather than size memory itself, VMB initializes the RPB page frame num­
ber (PFN) bitmap pointer to point to the bitmap built by the console mem­
ory diagnostic routine . 

• If a boot device is not specified as an input argument, either from the 
command line or from the default boot device area, MicroVAX 2000 VMB's 
"sniffer boot" searches a priority ordered sequence of potential boot devices 
until it discovers one from which it can boot. 

The sniffer boot mechanism exists because the MicroVAX I and 
MicroVAX II did not have NVR available in which to save a default boot­
strap device. All MicroVAX CPUs from the MicroVAX 2000 onward con­
tain NVR, preserved by battery backup across power outages, and thus can 
maintain a default bootstrap device. 

The sniffer boot search for a secondary bootstrap image begins with disk 
drives. If no disk provides a bootstrap, VMB searches for a TKSO magnetic 
tape drive. Finally, it looks for a network device to request a down-line load 



30.2.1.3 

30.2 Processor-Specific Initialization 

of the secondary boot image. H none of these devices provide a bootstrap, 
VMB displays a message and retries the last entry, the network device. 

Note that the MicroVAX 2000 supports one PROM bootstrap, the system 
exerciser. 

MicroVAX 3100 Console Subsystem and Initial Bootstrap Operation. The 
console subsystem on the MicroVAX 3100 consists of a console program and 
a console terminal port. The MicroVAX 3100 console program is written in 
VAX MACRO instruction code and resides on the system module ROM. A 
subset version of VMB.EXE, specific to the MicroVAX 3100, is also stored in 
ROM, along with the diagnostic code and drivers. 

When the console program has control, the MicroVAX 3100 processor 
executes the console program's VAX instructions. The console program gains 
control of the processor when a halt condition occurs, such as execution of 
a HALT instruction. 

The console program's actions are determined in part by the current con­
tents of the following areas of NVR: 

• The console program mailbox contains the default recovery setting (halt 
action), the restart-in-progress flag, and the boot-in-progress flag. 

• The boot device area stores the name of the default boot device. 
• The boot flag area contains the default boot flags. 

The console command SET BOOT stores a default boot device in the boot 
device area. The SHOW DEVICE command displays the known devices, and. 
the SHOW BOOT command displays the current default boot device. 

The console command SET BFLG loads the boot flag area, passed to VMB 
in RS. 

The console command SET HALT sets the default recovery setting in 
the console program mailbox. The recovery setting determines the console 
action when the processor halts, as follows: 

• H the setting is 0 or 1, restart. H that fails, boot. H boot fails, halt. 
• H the setting is 2, boot. H that fails, halt. 
• If the setting is 3, halt at the console prompt. 

Note that if the halt button is pressed, the console halts at the console 
prompt and ignores the recovery setting. 

A bootstrap sequence is initiated for the MicroVAX 3100 in the following 
circumstances: 

• The system is powered on, and the power-on action is not defined as "halt." 
• The B(oot) command is entered while the system is in console mode . 
• The operating system sets the halt action field in the console program 

mailbox to 2. 

The MicroVAX 3100 bootstrap proceeds in the following manner: 
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Table 30.6 Register Input to MicroVAX 3100 VMB 

Register 

RO 
Rl 
R2 
R3 
R4 
RS 
Rl02 
Rll2 
AP 2 

SP 

Contents 
Address of descriptor specifying boot device name 1 

Reserved 
Memory bitmap size in bytes 
Address of memory bitmap 
Unused 
Software boot control flags 
Halt PC 
Halt PSL 
Halt code 
Address of 256K bytes of good memory plus 20016 

1 Thus, the boot device name may contain more than four 
characters. 

2 The console program sets up these registers after a halt condition. 
VMB does not use these values. 

1. When the processor recovers power, it performs hardware initialization, 
saves a restart code that is later passed to VMB, and transfers control to 
the console program in ROM. 

2. The console program performs some checks, including determination of 
the console terminal type. It then executes diagnostics, which are also 
located in ROM, to test the processor and memory. The memory test 
diagnostic records the memory it finds in a bitmap. The first bit in the 
map corresponds to the first page of memory. A set bit indicates that 
the page of memory is present and usable. The bitmap itself and the two 
pages reserved for the console program's use are marked as bad in the 
bitmap. The address of the bitmap and its size are passed to VMB. The 
MicroVAX maintains a checksum on the bitmap. For subsequent reboots, 
it does not execute the memory test diagnostic or rebuild the bitmap 
unless a checksum mismatch indicates that a new bitmap is needed. 

3. The console does not process command procedures. To perform a boot­
strap, the console program constructs the contents of RO through RS as 
shown in Table 30.6. If a boot device is specified on the command line 
or in the boot device area, it loads RO from that information. Otherwise 
it loads RO with a value identifying its default boot device, the network 
device. 

4. The console program then searches for a 256K-byte block of good mem­
ory. Reserving the first page of good memory for the RPB, it copies VMB 
into the memory starting at the second page. The console program trans­
fers control to VMB. 

MicroVAX 3100 VMB is based upon MicroVAX 2000 VMB. It differs from 
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full VMB, used by larger VAX CPUs that do not store VMB in ROM, in the 
following ways: 

• MicroVAX 3100 VMB uses different register arguments and only recognizes 
a subset of the RS boot flags, described in Table 30.5 . 

• Rather than size memory itself, VMB initializes the RPB PFN bitmap 
pointer to point to the bitmap built by the console memory diagnostic 
routine. 

The MicroVAX 3100 supports one PROM bootstrap, the system exerciser. 

MicroVAX 3200/3500/3600 Console Subsystem and Initial Bootstrap Opera­
tion. The console subsystem on MicroVAX 3200, 3SOO, and 3600 processors 
consists of a console program and a console terminal port. The console pro­
gram is written in VAX MACRO instruction code and resides on the system 
module erasable programmable read-only memory (EPROM). A subset ver­
sion of VMB.EXE is also stored in ROM, along with the diagnostic code and 
drivers. 

When the console program has control, the processor executes the console 
program's VAX instructions. The console program gains control of the pro­
cessor when a halt condition occurs, such as execution of a HALT instruction. 

The console program's actions are determined in part by the current con­
tents of the following three areas of NVR: 

• The console program mailbox contains the halt action setting, the restart­
in-progress flag, and the boot-in-progress flag . 

• The boot device area stores the name of the default boot device . 
• The boot flag area contains the default boot flags. 

The halt action setting determines the console action when the processor 
halts. It is used by the operating system to force a particular console ac­
tion, regardless of the setting of the Halt Enable switch. Its values are the 
following: 

• If the setting is 0, restart. If that fails, boot. If boot fails, halt . 
• If the setting is 1, restart. If that fails, halt. 
• If the setting is 2, boot. If that fails, halt . 
• If the setting is 3, halt at the console prompt. 

The console command SET BOOT sets an alternative boot device in the 
boot device area. The SHOW DEVICE command displays the known devices. 

The console command SET BFLG loads the boot flag area, passed to VMB 
in RS. 

A bootstrap sequence is initiated in the following circumstances: 

• The system is powered on, and the power-on action is not defined as "halt." 
• The B(oot) command is entered while the system is in console mode. 
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• The operating system sets the halt action field in the console program 
mailbox to 2. 

The MicroVAX 3200/3500/3600 bootstrap proceeds as follows: 

1. When the processor recovers power, it performs hardware initialization, 
saves a restart code that is later passed to VMB, and transfers control to 
the console program in ROM. 

2. The console program performs some checks, including determination of 
the console terminal type. It then executes diagnostics, which are also 
located in ROM, to test the processor and memory. The memory test 
diagnostic records the memory it finds in a bitmap. The first bit in the 
map corresponds to the first page of memory. A set bit indicates that the 
page of memory is present and usable. The bitmap itself and the pages 
reserved for the console program's use are marked as bad in the bitmap. 
The address of the bitmap and its size are passed to VMB. 

Note that the MicroVAX maintains a checksum on the bitmap. For 
subsequent reboots, it does not execute the memory test diagnostic or 
rebuild the bitmap unless a checksum mismatch indicates that a new 
bitmap is needed. 

3. The console does not process command procedures. To perform a boot­
strap, the console program constructs the contents of RO through RS as 
shown in Table 30.7. If a boot device is specified on the command line 
or in the boot device area, it loads RO from that information. 

In later versions of the console, if no boot device is specified on the 
command line and no default boot device exists, the MicroVAX displays 
the names of available boot devices and prompts for input. If it does not 
receive a boot device name within its timeout period, it attempts to boot 
from the network device. 

Table 30.7 Register Input to MicroVAX 3200/3500/3600 VMB 

Register 
RO, Rl 
R2 
R3 
R4 
RS 
Rl0 1 

Rll 1 

AP' 
SP 

Contents 
Boot device name 
Memory bitmap size in bytes 
Address of memory bitmap 
Unused 
Software boot control flags 
Halt PC 
Halt PSL 
Halt code 
Address of 128K bytes of good memory plus 20016 

1 The console program sets up these registers after a halt 
condition. VMB does not use these values. 
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4. The console program then searches for a 128K-byte block of good mem­
ory. Reserving the first page of good memory for the RPB, it copies VMB 
into the memory starting at the second page. The console program trans­
fers control to VMB. 

MicroVAX 3200/3500/3600 VMB is based on MicroVAX II VMB. In early 
versions of this console subsystem, if no boot device is specified on the 
command line or in the boot device area, MicroVAX 3200/3500/3600 VMB 
uses a sniffer boot mechanism, which searches a priority ordered sequence of 
potential boot devices until it discovers one from which it can boot. If none of 
these devices provide a bootstrap, VMB displays a message and retries the last 
entry, the network device. Later versions omit the sniffer boot mechanism. 

MicroVAX 3300/3400 and 3800/3900 Console Subsystem and Initial Boot­
strap Operation. Although the console subsystem and VMB for MicroVAX 
3300/3400 processors differ slightly from those of MicroVAX 3800/3900 
CPUs, they are alike in the details presented in this section. 

The console subsystem on these processors consists of a console program 
and a console terminal port. The console program is written in VAX MACRO 
instruction code and resides on the system module ROM. A subset version of 
VMB.EXE is also stored in ROM, along with the diagnostic code and drivers. 

When the console program has control, the processor executes the console 
program's VAX instructions. The console program gains control of the pro­
cessor when a halt condition occurs, such as execution of a HALT instruction. 

The console program's actions are determined in part by the current con­
tents of the following three areas of NVR: 

• The console program mailbox contains the halt action setting, the restart­
in-progress flag, and the boot-in-progress flag . 

• The boot device area stores the name of the default boot device . 
• The boot flag area contains the default boot flags, passed to VMB in RS. 

The halt action setting determines the console action when the proces­
sor halts. It is used by the operating system to force a particular console 
action regardless of the setting of the Halt Enable switch. Its values are the 
following: 

• If the setting is 0, restart. If that fails, boot. If boot fails, halt . 
• If the setting is 1, restart. If that fails, halt . 
• If the setting is 2, boot. If that fails, halt . 
• If the setting is 3, halt at the console prompt. 

The console command SET BOOT sets an alternative boot device in the 
boot device area. The SHOW DEVICE command displays the known devices. 

The console command SET BFLG loads the boot flag area. The console 
also supports the SHOW VERSION command, which displays the console 
and VMB version numbers. 
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A bootstrap sequence is initiated in the following circumstances: 

• The system is powered on, and the power-on action is not defined as "halt." 
• The B(oot) command is entered while the system is in console mode . 
• The operating system sets the halt action field in the console program 

mailbox to 2. 

The bootstrap for these processors proceeds in the following manner: 

1. When the processor recovers power, it performs hardware initialization, 
saves a restart code that is later passed to VMB, and transfers control to 
the console program in ROM. 

2. The console program performs some checks, including determination of 
the console terminal type. It then executes diagnostics, which are also 
located in ROM, to test the processor and memory. The memory test 
diagnostic records the memory it finds in a bitmap. The first bit in the 
map corresponds to the first page of memory. A set bit indicates that the 
page of memory is present and usable. The bitmap itself and the pages 
reserved for the console program's use are marked as bad in the bitmap. 
The address of the bitmap and its size are passed to VMB. 

Note that the MicroVAX maintains a checksum on the bitmap. For 
subsequent reboots, it does not execute the memory test diagnostic or 
rebuild the bitmap unless a checksum mismatch indicates that a new 
bitmap is needed. 

3. The console does not process command procedures. To perform a boot­
strap, the console program constructs the contents of RO through RS as 
shown in Table 30.8. If a boot device is specified on the command line 

Table 30.8 Register Input to MicroVAX 3300/3400 
and 3800/3900 VMB 

Register 

RO 
Rl 
R2 
R3 
R4 
RS 
Rl02 
Rll 2 

AP 2 

SP 

Contents 
Address of descriptor specifying boot device name 1 

Reserved 
Memory bitmap size in bytes 
Address of memory bitmap 
Value of PR$_ TODR 
Software boot control flags 
Halt PC 
Halt PSL 
Halt code 
Address of 128K bytes of good memory plus 20016 

1 Thus, the boot device name may contain more than four 
characters. 

2 The console program sets up these registers after a halt condition. 
VMB does not use these values. 
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or in the boot device area, it loads RO from that information. Otherwise 
it loads RO with a value identifying its default boot device, the network 
device. 

4. The console program searches for a 128K-byte block of good memory. 
Reserving the first page of good memory for the RPB, it copies VMB into 
the memory starting at the second page. The console program transfers 
control to VMB. 

VMBs for these processors evolved from MicroVAX 3200/3500/3600 VMB. 

VAXstation 35x0 Console Subsystem and Initial Bootstrap Operation. VAX­
station 35x0 systems support multiple CPUs per system, currently two or 
four. One CPU acts as the primary and performs the main work of booting 
VMS. VMS directs the initialization of the remaining secondary CPUs, as 
described in Chapter 34. 

The console subsystem of VAXstation 35x0 processors consists of a con­
sole program and a console terminal port. The console program, imple­
mented in BLISS-32 and VAX MACRO code, resides in ROM on the CPU 
module. Each CPU has a private EPROM. 

The console program runs on the VAX processor rather than on a separate 
console processor. It can read and interpret commands typed on the console 
terminal, allowing an operator to examine or modify the state of the machine 
and boot the operating system. In a multiprocessor system, each CPU runs 
the console program, although only the primary processor is allowed to 
perform I/O directly to the console terminal. These multiple instances of the 
console program communicate with the primary processor and cooperate to 
control the system. The console program reserves a segment of main memory 
called the console communications area (CCA) for communication among 
the processors while they are in console mode. This area is also visible to 
VMS and may contain items such as hardware revision levels, machine check 
functions, and CPU model information. 

The console program initiates the boot sequence under the following 
conditions: 

• The console command B(oot) is entered on the console terminal while it 
is in console mode and the control panel is enabled. 

• The control panel is locked into secure mode or is enabled with auto start 
selected, and one of the following occurs: 

-Power is restored to the system. 
- The primary processor attempts to restart and fails. 
-A secondary processor attempts to restart, fails, and the bit CCA$Q_ 

SECSTART pertaining to that secondary is clear. 

• The Restart switch is pressed and the console is enabled. 
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• Kernel mode code requests a reboot by setting the bit CCA$V _REBOOT 
in the CCA$B_HFLAGS byte and halting the primary node. 

VAXstation 35x0 systems execute the following in response to a power-up 
or system reset: 

1. Each CPU initializes itself to a known state and transfers control to the 
console program. 

2. The console program directs a self-test and participates in the selection 
of a primary processor. The CPU that has passed self-test and has the 
lowest node ID becomes the primary processor unless it has been disabled 
through the SET CPU/NOPRIMARY console command. 

3. Each CPU performs an extended self-test. In addition, the primary config­
ures the CCA, tests main memory, and prints the results of the various 
tests on the console terminal. 

4. The primary processor's console program configures memory, determin­
ing how much is present and which pages have uncorrectable errors. It 
allocates pages from the high end of physical memory for the CCA and 
for a bitmap that will inform VMS which physical pages are usable and 
which are not. In the bitmap, the console program marks as unusable 
any pages found bad. In addition, it marks as unusable those pages that 
CCA and the bitmap itself occupy to prevent VMS from attempting to 
put them to a second concurrent use. 

The console program locates 256K bytes of good physical memory and 
copies VMB from ROM into the second page of good memory, reserving 
the first for the RPB. 

5. The console does not process command procedures. To perform a boot­
strap, the console program constructs the contents of RO through RS as 
shown in Table 30.9. If a boot device is specified on the command line 
or in the boot device area, it loads RO from that information. 

6. The primary processor transfers control to VMB. 

The VAXstation 35x0 VMB is similar to that of the MicroVAX 3100. 

VAX CPUs with Console Microprocessors 

Some VAX processors communicate with an external console microproces­
sor system by means of a special interconnect, or incorporate an internal 
microprocessor. On these VAX CPUs, the console program executes on the 
console microprocessor, which has independent access to VAX memory. Be­
cause the console program executes on a separate processor, the console 
subsystem can perform a number of functions while the VAX CPU is exe­
cuting instructions, without halting the VAX CPU. The console processor 
can also monitor the running VAX and perform diagnostic tests. 

The console subsystem includes a block storage device, which the console 
processor can access. In particular, it reads a bootstrap command procedure 
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Table 30.9 Register Input to VAXstation 35x0 VMB 

Register 

RO 
Rl 
R2 
R3 
R4 
RS 
Rl02 
Rll 2 

AP 2 

SP 

Contents 
Address of descriptor specifying boot device name 1 

Reserved 
Memory bitmap size in bytes 
Address of memory bitmap 
Address of CCA 
Software boot control flags 
Halt PC 
Halt PSL 
Halt code 
Address of 256K bytes of good memory plus 20016 

1 Thus, the boot device name may contain more than four 
characters. 

2 The console program sets up these registers after a halt condition. 
VMB does not use these values. 

and executes its commands to boot the system. A bootstrap command pro­
cedure identifies the system device and other characteristics of the bootstrap 
operation by loading general registers RO through RS with parameters that 
will be interpreted by the primary bootstrap program, VMB. 

VAX processors with console microprocessors include the VAX 86x0, the 
VAX 88x0, the VAX 8800 family, the VAX-11/780 and VAX-11/785, and the 
VAX-11/730. 

VAX 86x0 Console Subsystem and Initial Bootstrap Operation. The console 
subsystem on VAX 8600 and VAX 8650 processors consists of a separate 
PDP-11 (T-11) microcomputer, an RL02 disk console block storage device, 
the console terminal, and a remote diagnosis port. The T-11 runs a modified 
version of the RT-11 operating system; VAX console support is provided 
by the console program, EDOAA. The console disk is an RT-11 directory­
structured device. 

The VAX 8600 or VAX 8650 CPU has six internal processor registers to 
communicate with the two console devices, four for the console terminal 
and two for the disk. 

There are several circumstances in which a bootstrap sequence is initiated: 

• The VAX processor is powered on, and the system control panel Restart 
Control switch is in the BOOT position . 

• The console command B(oot) is typed while the console terminal is in 
console mode and the VAX processor is halted . 

• A bootstrap command procedure is invoked while the console terminal is 
in console mode and the VAX processor is halted . 

• The following instruction is executed in kernel mode: 
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MTPR #AXF02,#PR$_TXDB 

• While the Restart Control switch is in the RESTART/BOOT position, a 
CPU halt condition occurs and auto restart fails . 

• While the Restart Control switch is in the BOOT position, a powerfail or 
error halt condition occurs. 

In the bootstrap sequence, the console subsystem must execute a series of 
programs to load and execute VMB. Table 30.10 lists these programs. 

The initial bootstrap programs are console microprocessor programs. The 
bootstrap steps are as follows: 

1. When the console is powered on, code in the console PROM executes. It 
initializes the console microprocessor and performs self-tests. At success­
ful completion of its self-tests, the PROM code performs some diagnosis 
of the path to the RL02 and reads the boot block. 

2. The boot block program boots the modified RT-11 monitor. 
3. The monitor automatically locates and loads the console program. It 

turns on the power for the VAX CPU. 
4. The console program executes the command procedure LOAD.COM, 

initializes the CPU, I/O adapters, and physical memory map, and invokes 
the execution of ULOAD.COM. 

5. The console program executes the command procedure ULOAD.COM, 
which loads microcode from the RL02 into the various CPU microstores. 

6. The console program then clears the system cache. The console tests 
the Restart Control switch. If it is in the RESTART/BOOT position, the 
console attempts a warm restart. If that fails, the console then initiates 
a boot. 

7. The three console commands that bootstrap a VMS system cause the exe­
cution of command procedures located on the console RL02. Table 30.16 
shows the commands and their command procedure file names. A boot 
initiated other than through console command uses the default bootstrap 
command procedure DEFBOO.COM. 

8. Each bootstrap command procedure contains the following command to 
initiate a search for a 64K-byte block of good VAX memory: 

FIND/MEMORY 

9. Each contains the following three commands. These ·commands cause 
the primary bootstrap program, VMB, to be loaded from the RL02 into 
the good block of VAX memory, leaving the first page free for the RPB. 
The START command transfers control to VMB at its first location. 

EXAMINE SP 
LOAD/START:© VMB 
START © 

VMB is described in Section 30.3. 
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Table 30.10 Processor-Dependent Programs Used to Bootstrap VAX 86x0 Processors 

Program Executing Location of Program Purpose of Program 

EXECUTES ON CONSOLE MICROPROCESSOR 

Console microprocessor 
PROM bootstrap 

PROM in console Read RL02 boot block into 
subsystem memory and execute code 

contained there 
RL02 boot block 

program 
LBN 0 on console RL02 Locate monitor program, read it 

into memory, and pass control 
to it 

RT-11-based monitor 
program 

Console RL02 Locate EDOAA, read it into 
memory, and pass control to it 

Initialize VAX CPU, load general 
registers, and execute the next 
several command procedures 

Initialize VAX CPU, start execu­
tion of ULOAD.COM 

EDOAA 

LOAD.COM 

ULOAD.COM 

VMB.EXE 

30.2.2.2 

Console RL02 

Console RL02 

Console RL02 Load VAX CPU microcode from 
RL02 

EXECUTES ON VAX 86x0 PROCESSOR 

Console RL02 Size physical memory, locate 
secondary bootstrap, load it into 
memory, and pass control to it 

VAX 88x 0 Console Subsystem and Initial Bootstrap Operation. The VAX 
88x0 processors are multiprocessing members of the VAX 8800 family. The 
dual, triple, and quad CPU systems are composed of VAX 8700 CPUs and a 
special bus configuration. In these systems, CPUs connect to one VAX 88x0 
memory interconnect (NMI) bus, memory modules connect to a second NMI 
bus, and the two NMI buses communicate via an interconnect called the 
NMI bus window. 

The console subsystem for the VAX 88x0 systems consists of a MicroVAX 
II processor with a TKSO tape drive, an RD53 fixed disk, a console terminal, 
and an LA75 printer. The MicroVAX II communicates with the VAX 88x0 
CPUs via a Q22-bus module that connects to the console interface module 
ICIM) in the VAX 88x0 backplane. Through the CIM, the console subsystem 
controls the VAX 88x0 processor. It can load system microcode, access 
system registers, transfer files, and control the system clock. It also monitors 
environmental conditions and can shut down the system if tolerances are 
exceeded. 

The MicroVAX II console processor runs a modified version of VMS, with 
a dedicated process running a console program. Its subprocesses perform 
environmental monitoring and control the printer. 

There are several circumstances in which a bootstrap sequence is initiated: 
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• The console processor is powered on, and the software key switches 
AUTO_POWERON and AUTO_BOOT are both enabled . 

• The console command B(oot) is typed while the console terminal is in 
console mode and the larger VAX processor is halted . 

• A bootstrap command procedure is invoked while the console terminal is 
in console mode and the larger VAX processor is halted . 

• The following instruction is executed in kernel mode: 

MTPR #-XF02,#PR$_TXDB 

• While the software key switches AUTO_RESTART and AUTO_BOOT are 
enabled, a CPU halt condition occurs and restart fails. 

In the bootstrap sequence, the console subsystem must execute a series of 
programs to load and execute VMB. Table 30.11 lists these programs. Note 
that the foregoing description of the bootstrap sequence does not include 
booting the secondary processors of an SMP system; see Chapter 34. 

The initial bootstrap programs are console programs. The steps of initial 
bootstrap are as follows: 

1. The system power-up sequence causes the console MicroVAX and the 
environmental monitoring modules (EMMs) to perform self-test. 

Table 30.11 Processor-Dependent Programs Used to Bootstrap VAX 88x0 Systems 

Program Executing 

Console processor 
microcode 

Console VMS 

POLARIS.EXE 

Console support 
microcode 

VMB.EXE 

Location of Program Purpose of Program 

EXECUTES ON CONSOLE PROCESSOR 

ROM in console 
subsystem 

Console fixed disk 

Console fixed disk 

Perform self-test, read VMS into 
memory, and pass control to it 

Locate console program, PO­
LARIS, read it into memory, 
and transfer control to it 

Initialize console database, 
open log file, and execute 
SYSINIT.COM and bootstrap 
command procedures 

EXECUTES ON VAX 88x0 PROCESSOR 

Console fixed disk Initialize VAX CPUs, NMI, 
NMI-to-VAXBI adapter (NBI), 
and memory; locate 256K-byte 
block of good memory 

Console fixed disk Size physical memory, locate 
secondary bootstrap, load it 
into memory, and pass control 
to it 
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2. The MicroVAX boots console VMS from its fixed disk, then executes the 
console program. 

3. The console program, POLARIS, optionally opens a log file to record all 
console input and output (the terminal is a video monitor). It starts up 
the subprocess that controls communication with the VAX CPU. It then 
reads the command procedure SYSINIT.COM (not to be confused with 
the SYSINIT process) from the console fixed disk and executes it. 

4. The SYSINIT.COM command procedure turns on the VAX processor's 
power if AUTO_POWERON is enabled and checks that hardware mod­
ules are correctly placed. It loads VAX CPU microcode from the fixed disk 
into the control store of each enabled CPU and checks hardware and mi­
crocode revisions. It checks that the revisions are at least the minimum 
supported and also compatible with one another. 

5. Each CPU starts, controlled by its CPU microcode. The SYSINIT.COM 
command procedure initializes the CPUs and the NMis to a known state. 

6. SYSINIT.COM then tests the software key switches AUTO_RESTART 
and AUTO_BOOT, both of which are most likely on. SYSINIT.COM 
thus tries auto restart first. If restart fails, it initiates a boot. 

7. The three console commands that bootstrap a VMS system cause the 
execution of command procedures located on the fixed disk. Table 30.16 
shows the commands and their command procedure file names. A boot 
initiated other than through console command uses the default bootstrap 
command procedure DEFBOO.COM. 

8. Each bootstrap command procedure contains the following three com­
mands. They cause VMB to be loaded from the fixed disk into the good 
block of VAX memory located by the console, leaving the first page free 
for the RPB. The START command transfers control to VMB at its first 
location. 

EXAMINE SP 
LOAD /MAINMEMORY /START:© VMB.EXE 
START © 

Section 30.3 describes VMB. 

VAX 8800 Family Console Subsystem and Initial Bootstrap Operation. The 
VAX 8800 family includes the VAX 8500, VAX 8530, VAX 8550, VAX 8700, 
and VAX 8800. The console subsystem on a VAX 8800 family member 
consists of a separate PDP-11 microprocessor, three block-addressable storage 
devices (two floppy RX50 diskettes and a fixed head disk), a console terminal, 
and a remote diagnosis port. The microprocessor runs the P /OS operating 
system; VAX console support is provided by an application task under P /OS. 
The fixed head disk is an ODS-1 directory-structured device. The floppies 
are either ODS-1 or ODS-2, depending on their use. 
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Table 30.12 Processor-Dependent Programs Used to Bootstrap VAX 8800 Family 
Processors 

Program Executing 

Console micropro­
cessor microcode 

Console P/OS 

CONSOL.TSK 

Console support 
microcode 

VMB.EXE 

Location of Program Purpose of Program 

EXECUTES ON CONSOLE MICROPROCESSOR 

ROM in console 
subsystem 

Console fixed disk 

Console fixed disk 

Perform self-test, read P/OS into 
memory, and pass control to it 

Locate console program, CON­
SOL.TSK (formerly called 
Nl6PRO.TSK), read it into 
memory, and transfer control 
to it 

Initialize console database, 
open log file, and execute 
SYSINIT.COM and bootstrap 
command procedures 

EXECUTES ON VAX 8800 FAMILY PROCESSOR 

Console fixed disk 

Console fixed disk 

Initialize VAX CPUs, NMI, NBI, 
and memory; locate 64K-byte 
block of good memory 

Size physical memory, locate 
secondary bootstrap, load it 
into memory, and pass control 
to it 

Each VAX 8800 family member has four internal processor registers to 
communicate with all the console devices. The device ID is encoded into 
control bits to distinguish among the devices. 

There are several circumstances in which a bootstrap sequence is initiated: 

• The console is powered on, and the software key switches AUTO_POWER­
ON and AUTO_BOOT are both enabled. 

• The console command B(oot) is typed while the console terminal is in 
console mode and the VAX processor is halted. 

• A bootstrap command procedure is invoked while the console terminal is 
in console mode and the VAX processor is halted. 

• The following instruction is executed in kernel mode: 

MTPR #~XF02,#PR$_TXDB 

• While the software key switches AUTO_RESTART and AUTO_BOOT are 
enabled, a CPU halt condition occurs and restart fails. 

In the bootstrap sequence, the console subsystem must execute a series of 
programs to load and execute VMB. Table 30.12 lists these programs. Note 
that the foregoing description of the bootstrap sequence does not include 
booting the secondary processors of an SMP system; see Chapter 34. 
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The initial bootstrap programs are console microprocessor programs. The 
steps of initial bootstrap are as follows: 

1. When the console microprocessor is turned on, it performs a self-test, 
loads P/OS from the fixed disk, and starts it. 

2. P/OS loads the console program from the fixed disk and transfers control 
to it. 

3. The console program opens a log file to record all console input and 
output lthe terminal is a video monitor) and starts up the real-time in­
terface IRTIJ driver, which controls communication with the VAX CPU. 
It reads the command procedure SYSINIT.COM (not to be confused with 
the SYSINIT process) from the console fixed disk and executes it. 

4 .. The SYSINIT.COM command procedure turns on the VAX CPU's power 
if AUTO_POWERON is enabled and checks that hardware modules are 
correctly placed. It loads VAX CPU microcode lincluding console sup­
port microcode) from the fixed disk, and checks hardware and microcode 
revisions. It checks that the revisions are at least the minimum sup­
ported and also compatible with one another. The command procedure 
initializes the NMI, NBis, and the memory. 

5. SYSINIT.COM then tests the software key switches AUTO_RESTART 
and AUTO_BOOT, both of which are most likely on. SYSINIT.COM 
thus tries auto restart first. If that fails, it initiates a boot. 

6. The three console commands that bootstrap a VMS system cause the 
execution of bootstrap command procedures located on the fixed disk. 
Table 30.16 shows the commands and their associated command pro­
cedure file names. A boot initiated other than through console com­
mand procedures uses the default bootstrap command procedure DEF­
BOO.COM. 

7. Each bootstrap command procedure contains the following three com­
mands. They cause VMB to be loaded from the fixed disk into the good 
64K-byte block of VAX memory, leaving the first page free for the RPB. 
The START command transfers control to VMB at its first location. 

EXAMINE SP 
LOAD /MAINMEMORY /START:G VMB.EXE 
START G 

Section 30.3 describes VMB. 

VAX-11/78x Console Subsystem and Initial Bootstrap Operation. The con­
sole subsystem on VAX-11/780 and VAX-11/785 processors consists of a 
separate LSI-11 microcomputer, a block-addressable RXOl floppy diskette,­
a console terminal, and an optional remote diagnosis port. The console pro­
gram executes on the LSI-11, and the console devices are on the LSI-11 bus. 

A VAX-11/780 or VAX-11/785 CPU has four internal processor registers 
for communication with both console devices. The device ID is encoded 
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into control bits to distinguish between the two devices. In fact, the console 
program reads the registers and performs the appropriate 1/0 function to the 
appropriate device. 

There are several circumstances in which a bootstrap sequence is initiated: 

• The Bjoot) command is entered while the system is in console mode, or 
the Boot switch is pressed . 

• A bootstrap command procedure is invoked while the system is in console 
mode. 

• The following instruction is executed in kernel mode: 

MTPR #-XF02,#PR$_TXDB 

• An attempt to restart the system after a power failure recovery or any other 
halt condition does not succeed, and the Auto Restart switch is in the ON 
position. 

In the bootstrap sequence, the console subsystem must execute a series 
of programs to load and execute VMB on a VAX-ll/78x processor. The 
initial bootstrap programs run on the LSI-11 and execute PDP-11 instructions 
without VAX instructions. Table 30.13 lists these programs and those that 
run on the VAX processor. 

Table 30.13 Processor-Dependent Programs Used to Bootstrap VAX-11/780 and 
VAX-11/785 Processors 

Program Executing 

LSI-11 ROM 
bootstrap 

Floppy boot block 
program 

CONSOL SYS 

ISP ROM 

VMB.EXE 

Location of Program Purpose of Program 

EXECUTES ON LSI-11 MICROCOMPUTER 

LSI-111/0 space Read floppy boot block into 

LBN 0 on console 
floppy 

Console floppy 

memory and execute code 
contained there 

Locate CONSOL.SYS, read it 
into memory, and pass control 
to it 

Initialize VAX-ll/78x CPU, load 
general registers, illld invoke 
memory locator program; load 
VMB into VAX memory and 
transfer control to it 

EXECUTES ON VAX-11/78x PROCESSOR 

ROM in memory Locate 64K-byte block of error-
controller free memory 

Console floppy Size physical memory, locate 
secondary bootstrap, load it 
into memory, and pass control 
to it 
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The steps of initial bootstrap are as follows: 

1. The first program that executes in the LSI-11 after self-test is a bootstrap 
program located in ROM. It loads the boot block program located on 
LBN 0 of the console floppy !sectors 1, 3, 5, and 7) into LSI memory. 

2. The boot block program at LBN 0 is a copy of the bootstrap program used 
by the RT-11 operating system. The RT-11 bootstrap, which understands 
the RT-11 file system, looks for a specific file !the monitor), loads it into 
memory, and transfers control to it. 

The boot block program found on the console floppy diskette looks for 
a program called CONSOL.SYS. 

3. On the VAX 11/780, CONSOL.SYS loads the file WCSxxx.PAT from the 
floppy diskette into the VAX writable control store. The VAX 11/785 
loads the file SSUxxx .WCS. CONSOL.SYS then prompts »> on the con­
sole terminal. It verifies that the versions of the microcode are consistent 
with one another. If there is a version mismatch between the writable 
control store IWCS) and either the PROM control store !PCS) or the field 
programmable logic array IFPLA), an error message is displayed on the 
console terminal. 

4. The three console commands that bootstrap a VMS system cause the exe­
cution of command procedures located on the console floppy. Table 30.16 
shows the commands and their command procedure file names. A boot 
initiated other than through a console command uses the default boot­
strap command procedure DEFBOO.CMD. 

5. Each bootstrap command procedure contains the following commands: 

START 20003000 
WAIT DONE 

These two commands cause a program located in ROM in the first 
memory controller on the synchronous backplane interface ISBI) to ex­
ecute. The command procedure waits until the memory ROM program 
completes before executing its next command. The memory ROM pro­
gram signals the console program that it is done by writing the "software 
done" signal with the following instruction: 

MTPR #-XF01,#PR$_TXDB 

The program in the memory controller ROM performs a primitive 
memory sizing operation in an effort to locate 64K bytes of error-free, 
page-aligned, contiguous physical memory that can be used by the re­
maining bootstrap programs. The output of this program is an address 
20016 bytes beyond the beginning of the first good page. This address is 
loaded into SP. In a typical system with no errors in the first 64K bytes, 
the contents of SP are 20016. 

6. Each bootstrap command procedure contains the following three com­
mands. They cause VMB to be loaded from the floppy diskette into the 

889 



Bootstrap Procedures 

30.2.2.5 

890 

good 64K-byte block of VAX memory, leaving the first page free for the 
RPB. The START command transfers control to the first byte of VMB. 

EXAMINE SP 
LOAD VMB.EXE/START:ID 
START ID 

Section 30.3 describes VMB. 

VAX-11/730 Console Subsystem and Initial Bootstrap Operation. The con­
sole subsystem on the VAX-11/730 consists of a console microprocessor, a 
terminal, two block-addressable storage devices (TUS8 cartridge devices), and 
an optional remote diagnosis port. The console TU58 is an RT-11 directory­
structured device. The console program executes on the console microproces­
sor. When the console program has control, the VAX-11/730 cannot execute 
VAX instructions. 

A VAX-11/730 CPU has eight internal processor registers for communica­
tion with the console devices: four for the console terminal and four for the 
TU58s. 

There are several circumstances in which a bootstrap sequence is initiated: 

• A power-on occurs (the Boot switch is pressed or the processor is turned 
on) . 

• The console command B(oot) is typed while the processor is in console 
mode. 

• A bootstrap command procedure is invoked while the system is in console 
mode. 

• The following instruction is executed in kernel mode: 

MTPR #~XF02,#PR$_TXDB 

• While the Auto Restart switch is in the ON position, a CPU halt condition 
occurs and auto restart fails. 

In the bootstrap sequence, the console subsystem must execute a series of 
programs to load and execute VMB. Table 30.14 lists these programs. 

The initial bootstrap programs are console microprocessor programs. The 
steps of initial bootstrap are as follows: 

1. After performing a self-test, the microprocessor locates the TU58 that 
contains the boot block (trying DDl first and, if that fails, then DDO) 
and loads blocks 0 through 5 from the tape into microprocessor memory. 
The code in the boot block locates the main console microcode program 
CONSOL.EXE on the console TU58. 

2. CONSOL.EXE executes two command procedure files, POWER.CMD 
and CODEOn.CMD. POWER.CMD loads several microcode files into the 
CPU, including one called POWER.CPU. POWER.CPU initializes the 
machine, searches for a page-aligned 64K-byte block of good memory, 
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Table 30.14 Processor-Dependent Programs Used to Bootstrap a VAX-11/730 
Processor 

Program Executing 

Console micro­
processor ROM 
bootstrap 

TU58 boot block 
program 

CONSOL.EXE 

VMB.EXE 

Location of Program Purpose of Program 

EXECUTES ON CONSOLE MICROPROCESSOR 

ROM in console Read TU58 boot block into 
subsystem 

LBN 0 on console 
TU58 

Console TU58 

memory and execute code 
contained there 

Locate CONSOL.EXE, read it 
into memory, and pass control 
to it 

Initialize VAX-11/730 CPU, load 
general registers, and execute 
command procedures 

EXECUTES ON VAX-11/730 PROCESSOR 

Console TU58 Size physical memory, locate 
secondary bootstrap, load it 
into memory, and pass control 
to it 

Table 30.15 VAX-11/730 Bootstrap Command Procedures 

Command File 

CODEOO.CMD 

CODEOl.CMD 
CODE02.CMD 
CODE03.CMD 

Hardware Configuration 

No floating-point accelerator (FPA), no integrated disk 
controller (IDC) 

No FPA, with IDC 
With FPA, no IDC 
With FPA, with IDC 

and checks the configuration of the machine. When POWER.CPU exits, 
it returns an address 20016 bytes beyond the beginning of the first good 
page. This address is loaded into SP. In a typical system with no errors 
in the first 64K bytes, the contents of SP are 20016 . 

Each possible configuration of the VAX-11/730 is assigned a value. 
Whichever value POWER.CPU returns is substituted into the file name 
CODEOn.CMD. The CODEOn.CMD command procedures load the nor­
mal run-time microcode for the appropriate processor configuration. 
Table 30.15 lists the command procedures used with specific processor 
configurations. 

3. The Auto Restart switch is checked. If it is in the OFF position, the 
processor enters console mode and prints the console command prompt 
>>>. 
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4. If the Auto Restart switch is in the ON position, the console executes the 
commands in the default bootstrap command procedure DEFBOO.CMD. 

5. The three console commands that bootstrap a VMS system cause the exe­
cution of command procedures located on the console TU58. Table 30.16 
shows the commands and their command procedure file names. A boot 
initiated other than through a console command uses the default boot­
strap command procedure DEFBOO.CMD. 

6. Each bootstrap command procedure contains the following three com­
mands. They display the contents of SP (to identify the starting address 
in physical memory). They then load the primary bootstrap program, 
VMB, from the TU58 into the good 64K-byte block of VAX memory, 
leaving the first page available for the RPB. The S command transfers 
control to the first byte of VMB. 

E SP 
L/P/S:© VMB.EXE 
s © 

Section 30.3 describes VMB. 

VAX CPUs Without Console Microprocessors 

VAX CPUs without console microprocessors include the VAX 6000 series, 
the VAX 8200 family, and the VAX-11/750. On these types of VAX CPU, 
the console program is implemented either in CPU microcode or in VAX 
MACRO instructions and executes on the VAX processor itself. When the 
CPU is in console mode, the console program (and nothing else, such as a 
user program or VMS itself) executes. 

VAX 6000 Series Console Subsystem and Initial Bootstrap Operation. The 
VAX 6000 model 200, 300, and 400 systems are collectively referred to as 
the VAX 6000 series. 

Table 30.16 Commands to Boot VAX Processors 

Command 

B 
B dev 
@filespec 

Command Procedure 1 

DEFBOO.CMD or DEFBOO.COM 
devBOO.CMD or devBOO.COM 
filespec.CMD or filespec.COM 

1 The file type of a console bootstrap command 
procedure depends on the particular processor and 
console subsystem. CMD is used by the VAX-11/730 
and VAX-11/78~ processors and by BOOT58.EXE. 
COM is used by VAX 8800 family, VAX 88x0, and 
VAX 86x0 processors. 
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The VAX 6000 series machines support multiple CPUs per system. One 
CPU acts as the primary and performs the main work of booting VMS. VMS 
directs the initialization of the remaining secondary CPUs, as described in 
Chapter 34. 

The console subsystem for a VAX 6000 series system consists of a.console 
program, a console terminal port, and a block storage device (a TKSO or 
TK70 tape drive) to which the console state can be saved. Each CPU has a 
console ROM and an electrically erasable programmable read-only memory 
(EEPROM) as dedicated console memory. 

The console program, written in VAX MACRO and Bliss-32, resides in 
ROM. For each possible boot device, the ROM also contains a routine that 
can read the boot block of its associated boot device and use information in 
the boot block to locate VMB. This routine is known as a boot primitive. 
Console patches, parameters, and bootstrap information are stored in the 
EEPROM. 

The console program runs on the VAX processor rather than on a separate 
console processor. It can read and interpret commands typed on the console 
terminal, allowing an operator to examine or modify the state of the machine 
and boot the operating system. In a multiprocessor system, each CPU runs 
the console program, although only the primary processor is allowed to 
perform 1/0 directly to the console terminal. These multiple instances of the 
console program communicate with the primary processor and cooperate .to 
control the system. The console program reserves a segment of main memory 
called the CCA for communication among the processors while they are 
in console mode. This area is also visible to VMS and may contain items 
such as hardware revision levels, machine check functions, and CPU model 
information. 

The console program initiates the boot sequence under the following 
conditions: 

• The console command B(oot) is entered on the console terminal while it 
is in console mode and the control panel is enabled . 

• The control panel is locked into secure mode or is enabled with auto start 
selected, and one of the following occurs: 

-Power is restored to the system. 
-The primary processor attempts to restart and fails. 
-A secondary processor attempts to restart, fails, and the bit CCA$Q_ 

SECSTART pertaining to that secondary is clear. 

• The Restart switch is pressed and the console is enabled. 
• Kernel mode code requests a reboot by setting the bit CCA$V _REBOOT 

in the CCA$B_HFLAGS byte and halting the primary node. 

The console subsystem uses a series of programs to load and execute VMB. 
Table 30.17 lists these programs. 
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Table 30.17 Processor-Dependent Programs Used to Bootstrap VAX 6000 Series 
Processors 

Program Executing 

Console program 

Boot primitive 

Boot block code 

VMB.EXE 

Location of Program 

ROM in VAX CPU 

ROM 

LBN 0 of boot device 

Specific LBN on 
system device 

Purpose of Program 

Initialize CPU, load boot 
parameters from EEPROM, 
load boot primitive from ROM, 
locate block of good memory, 
determine action to take, and 
pass control to boot primitive 

Load LBN 0 of boot device into 
memory and pass control to it 

Load primary bootstrap program 
from system device and pass 
control to it 

Size physical memory, locate 
secondary bootstrap, load it 
into memory, and pass control 
to it 

VAX 6000 series systems execute the following in response to power-up 
or system reset: 

1. Each CPU begins execution of console code. It initializes itself to a 
known state and performs appropriate actions based on the control panel 
setting. Assuming that auto start is selected, it performs the steps that 
follow. 

2. The console program directs a self-test and participates in the selection 
of a primary processor. The CPU that has passed self-test and has the 
lowest VAX 6000 series memory interconnect bus (XMI) node ID be­
comes the primary processor unless it has been disabled through the 
SET CPU/NOPRIMARY console command. 

3. The primary prints the results of the self-test on the console terminal. 
4. The CPUs perform an extended self-test, specifically verifying their abil­

ity to access main memory. 
5. In case the CPU originally chosen as the primary fails the extended self­

test, the primary selection process occurs again. The CPU that passes all 
self-tests and has the lowest XMI node ID becomes the primary processor 
unless disabled through the SET CPU /NO PRIMARY console command. 
The console program, executing on the CPU selected as the primary, 
performs the remaining bootstrap operations, while the secondary CPUs 
wait for permission to proceed. 

6. The primary performs further testing and prints results on the console. 
The primary processor's console program configures memory, determin­
ing how much is present and which pages have uncorrectable errors. It 
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allocates pages from the high end of physical memory for the CCA and 
for a bitmap that will inform VMS which physical pages are usable and 
which are not. In the bitmap, the console program marks as unusable 
any pages found bad. In addition, it marks as unusable those pages that 
CCA and the bitmap itself occupy to prevent VMS from attempting to 
put them to a second concurrent use. 

The console program also locates 256K bytes of good physical memory 
for VMB. 

7. The console program running on the primary searches the EEPROM and 
ROM for parameters describing the boot device and bootstrap options. 
It locates a matching boot primitive, loads the processor registers as 
required by the boot parameters and the boot device, and transfers control 
to the boot primitive. 

8. The action of the boot primitive depends upon the type of boot device:. 

-For a disk device, the boot primitive reads the first logical block of 
the disk (the boot block, LBN OJ into the first good page of memory. 
The boot block contains the size and location of the VMB image on 
the disk. Code in the boot block and in the boot primitive load VMB 
into memory, as described in Section 30.2.3.3.1. Note that a VAX 6000 
series system never uses the BOOT58 program. 

-For a tape device, the boot primitive rewinds the tape and reads the 
first block into the first good page of memory. If the block size is 80 
bytes, the tape is assumed to be a standard ANSI labeled tape. The 
first file after the tape label is assumed to be VMB; the boot primitive 
copies it into memory starting at the second good page and transfers 
control. Otherwise, the boot primitive reads the remaining blocks until 
it encounters a tapemark, then transfers control to the loaded image 
at offset 12 from the base of good memory. 

-For an Ethernet device, the boot primitive causes the adapter to request 
a tertiary load, similar to the method described in Section 30.3.4. 

9. Through one of these methods, the primary processor transfers control 
to VMB. 

VAX 8200 Family Console Subsystem and Initial Bootstrap Operation. The 
VAX 8200 family consists of the VAX 8200, VAX 8250, VAX 8300, and 
VAX 8350. The VAX 8200 family console subsystem includes two block­
addressable storage devices (RX50 floppy diskettes), an optional remote diag­
nosis port, and the console program. The console program is implemented as 
microcode in the VAX CPU. When the CPU is in console mode, the console 
program (and nothing else, such as a user program or VMS itself) executes. 
The console program gains control of the processor whenever any halt con­
dition occurs, such as execution of a HALT instruction. 

The VAX 8200 and VAX 8250 CPUs have four internal processor registers 
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to communicate with the console terminal. Communication with the disk 
drives is through device registers in 1/0 space. 

On the multiprocessor members of the family, the VAX 8300 and VAX 
8350, only the primary CPU can communicate with the console terminal 
(using the same four internal processor registers as a VAX 8200 CPU). The 
secondary CPU communicates with the console terminal via the primary 
CPU. The primary and secondary CPUs use the internal processor register 
PR8SS$_RXCD to transfer console data to each other. The primary CPU uses 
the previously mentioned four internal processor registers to communicate 
with the console terminal on behalf of the secondary CPU. 

There are several circumstances in which a bootstrap sequence is initiated: 

• The system is powered on or the RESTART button on the control panel 
is pressed, and the lower key switch on the CPU control panel is in the 
AUTO START position. 

• The B(oot) command is typed while the system is in console mode. 
• The following instruction is executed in kernel mode: 

MTPR #~XF02,#PR$_TXDB 

• An attempt to restart the system after a power failure recovery or some 
other halt condition does not succeed, and the lower key switch is in the 
AUTO START position. 

When a VAX 8200 family member is initialized, the console program is 
the first in a series of programs that execute before VMB executes. These 
programs are summarized in Table 30.18. Note that this description does not 
include booting the attached processor of an SMP system; see Chapter 34. 

The steps of initial bootstrap are as follows: 

1. The console program initializes the CPU. It locates 64K bytes of contigu­
ous, error-free, page-aligned memory and loads the bootstrap code from 
the EEPROM into a boot random access memory (RAM). 

2. The console program does not process command procedures. Instead, it 
must construct the contents for RO through RS from the combination of 
default boot device and the bootstrap command itself. The system man­
ager identifies the default boot device by running a stand-alone diagnostic 
to load its name into the EEPROM. 

3. The console program passes control to the bootstrap code loaded from 
the EEPROM. 

4. The bootstrap code consists of two main pieces, a dispatch routine and 
device-specific routines. The dispatch routine parses the boot device 
name passed from the console microcode and selects the corresponding 
device-specific routine. The device-specific routine simply reads LBN 0 of 
the selected device into the first page of good memory and passes control 
to it (at an address 12 bytes past the beginning of the program). 
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Table 30.18 Processor-Dependent Programs Used to Bootstrap VAX 8200 Family 
Processors 

Program Executing 

Console program 

Bootstrap code 

Boot block code 

VMB.EXE 

BOOTS8.EXE 

Location of Program 

ROM in VAX CPU 

EEPROM 

LBN 0 of boot device 

Specific LBN on 
system device 

Specific LBN on 
console RXSO 

Purpose of Program 

Initialize CPU, load bootstrap 
code from EEPROM into boot 
RAM, locate block of good 
memory, determine action 
to take, and pass control to 
bootstrap code 

Load LBN 0 of boot device into 
memory and pass control to it 

Load primary bootstrap program 
from system device or BOOTS8 
from console RXSO and pass 
control to it 

Size physical memory, locate 
secondary bootstrap, load it 
into memory, and pass control 
to it 

Process command procedures or 
enhanced console commands, 
boot from a hierarchical storage 
controller (HSC) system device 

5. The boot block program reads VMB or BOOT58 from the boot device 
into memory. Section 30.2.3.3.l describes the boot block program, Sec­
tion 30.2.3.3.2 describes BOOT58, and Section 30,3 describes VMB. 

VAX-11/750 Console Subsystem and Initial Bootstrap Operation. The con­
sole subsystem on the VAX-11/750 consists of a terminal, a TU58 cartridge 
device, an optional remote diagnosis port, and console microcode in the VAX-
11/750 processor. The console program is implemented in CPU microcode 
and stored in ROM within the CPU. When the console program has con­
trol, that is, when the CPU is in console mode, the VAX-11/750 processor 
executes console microcode rather than user or system instructions. 

A VAX-11/750 processor has eight internal processor registers for com­
munication with the console devices: four for the terminal and four for the 
TU58 console block storage device. 

There are several circumstances in which a bootstrap sequence is initiated: 

• The system is powered on or the RESET front panel button is pressed, and 
the Power-on Action switch is in the BOOT position . 

• The B(oot) command is entered while the system is in console mode. 
• A HALT instruction is executed or some other halt condition occurs, and 

the Power-on Action switch is in the BOOT position. 
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Table 30.19 Processor-Dependent Programs Used to Bootstrap a VAX-11/750 
Processor 

Program Executing 

Console program 

Device-specific 
ROM code 

Boot block code 

VMB.EXE 

BOOT58.EXE 

Location of Program 

ROM in VAX-11/750 
CPU 

1/0 address space of 
VAX-11/750 CPU 

LBN 0 of boot device 

Specific LBN on 
system device 

Specific LBN on 
console TU58 

Purpose of Program 

Initialize CPU, locate block of 
good memory, determine boot 
device, and. pass control to 
device-specific ROM 

Load LBN 0 of boot device into 
memory and pass control to it 

Load primary bootstrap program 
from system device or BOOT58 
from console TU58 and pass 
control to it 

Size physical memory, locate 
secondary bootstrap, load it 
into memory, and pass control 
to it 

Process indirect command files or 
enhanced console commands, 
boot from an HSC system 
device 

• The following instruction is executed in kernel mode: 

MTPR #-XF02,#PR$_TXDB 

• An attempt to restart the system after a power failure recovery or some 
other halt condition does not succeed, and the Power-on Action switch is 
in the RESTART/ BOOT position. 

In the bootstrap sequence, the console subsystem must execute a series of 
programs to load and execute VMB. Table 30.19 lists these programs. 

The steps of initial bootstrap are as follows: 

1. The console program initializes the CPU and locates a page-aligned 64K­
byte block of good memory. It loads the first 128 map registers in the 
UNIBUS adapter to address this block of memory (a step not taken when 
the TU58 is used as a bootstrap device). The console program on the VAX-
11/750 does not process command procedures. Instead, it must construct 
the contents for RO through RS from the device selected by the Boot 
Device switch and the bootstrap command itself. It then passes control to 
the device-specific ROM selected either by the bootstrap device selector 
switch on the CPU cabinet front panel or by the B(oot) command. 

2. The device-specific ROM program is a VAX MACRO instruction pro­
gram. It consists of two main pieces, a control routine and a device­
specific subroutine. This program simply reads the boot block, LBN 0, of 
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the selected device into the first page of good memory and passes control 
to it (at an address 12 bytes past the beginning of the program). 

3. The code in the boot block reads VMB or BOOT58 from the console 
device into memory. The boot block program is described in more detail 
in Section 30.2.3.3.1. Section 30.3 describes VMB. 

4. BOOT58 executes a command procedure that reads VMB from the sys­
tem device into memory. BOOT58 is described in more detail in Sec­
tion 30.2.3.3.2. 

Boot Block Program. The boot block program loads a single program into 
memory and passes control to it. The boot block program does not contain 
any I/O support. It uses the driver subroutine (or boot primitive) from the 
device ROM program. The boot block program on a system device loads 
VMB. The boot block program on a console device can load an enhanced 
command processor program, called BOOT58, for some CPUs. The boot 
block program on a stand-alone Backup console device loads VMB. 

The boot block program resides in the first logical block (LBN O) of the 
boot device. Three longwords of header information precede the body of the 
boot block program. These longwords contain the following: 

• The size of the bootstrap program to be loaded by the boot block program 
• The starting LBN of the bootstrap program to be loaded 
• A relative offset into the block of good memory where this program is to 

be loaded 

The boot block is written during normal VMS system operation by the 
Writeboot Utility. It uses the file system to look up a user-specified file 
(VMB.EXE or BOOT58.EXE) on a user-specified device. WRITEBOOT de­
termines values for the three header longwords and writes the boot block 
program into LBN 0. Note that the boot block program has the LBN of the 
bootstrap program hard coded into the block. If the position of the bootstrap 
program on the volume changes, the Writeboot Utility must be run again to 
rewrite the boot block with new information. 

Note that the location of VMB by the boot block program is one of the 
few cases in the VMS system of a file being located by an LBN coded into 
another program. Thus, VMB on the system device of a VAX CPU without 
a console microprocessor is one of the few files that is not free to move or 
be superseded by a newer version without some external intervention such 
as running WRITEBOOT. 

BOOT58. The block-addressable storage device on a VAX CPU without a 
console processor is not necessarily used during a normal bootstrap opera­
tion. However, an alternative bootstrap path uses the device to provide the 
following: 

• Command procedure capability 
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• An enhanced console command language 
• The ability to bootstrap a system if the boot block on the system device 

is corrupted 
• The ability to bootstrap a system from an HSC disk 

The stand-alone program BOOT58 is an e:p.hanced console command pro­
cessor loaded from the block-addressable storage device that provides the 
features previously listed. BOOT58 is loaded by selecting the console block 
storage device (DDAO:J as the bootstrap device, either by the device selector 
switch or with the following command: 

>»B DDAO: 

Note that the drive DDAO: must contain an RT-11 structured medium 
with console command files and BOOT58.EXE. 

The boot block on the device boots BOOT58. Once BOOT58 prompts, 
commands or command procedure file specifications can be entered at the 
console terminal. BOOT58 accepts the commands shown in Table 30.16. 

There is no device-specific ROM on a VAX-11/750 processor or VAX 8200 
family member that supports loading LBN 0 from an HSC disk through a 
computer interconnect (CI) adapter and then loading VMB. BOOT58 makes 
it possible to load VMB from the console. VMB does contain device support 
for the CI and HSC disks. It first loads volatile CI microcode from the console 
device into the CI device and volatile CPU microcode into the processor. 

30.3 PRIMARY BOOTSTRAP PROGRAM (VMB) 

900 

The first program that is common to VAX systems, generally independent 
of CPU type, is the primary bootstrap program, VMB. VMB exists in two 
forms: 

• Full VMB is located on the system device or console medium and is used by 
systems such as VAX 6000 series, VAX-11/750, and VAX 86x0 processors. 
Section 30.3.1 describes the operation of full VMB. 

• ROM-based VMB is a VMB subset stored in processor ROM. All MicroVAX 
processors boot via this general method, with the actual VMB code differ­
ing slightly between MicroVAX implementations. ROM-based VMB links 
with a processor-specific subset of the normal boot drivers, includes a min­
imal version of the XDELTA debugger, and interprets register contents 
differently than does full VMB. Section 30.2.1.2 provides an example of 
ROM-based VMB. 

VMB performs the following two major steps: 

1. It locates and determines the size of physical memory on the system 
unless the console subsystem has previously sized memory, as is the 
case with all MicroVAX processors. 
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2. It locates a secondary bootstrap program, loads it into memory, and 
transfers control to it. 

VMB and the secondary bootstrap program, SYSBOOT, are conceptually 
one program. The VAX-11/780 initialization (initially implemented for Ver­
sion 1.0 of the VMS operating system) required that the initial bootstrap 
program reside on the console floppy diskette, whose capacity of 512 blocks 
was also used for microcode, the console program, and command procedures. 
Rather than impose artificial restrictions on the size of the bootstrap pro­
gram, the designers divided the program into two pieces: 

• A primary piece that resides on the floppy diskette or in ROM, one of 
whose major purposes is to locate the secondary piece 

• A secondary piece that resides on the system device (with no real limits 
on its size) that performs the bulk of the bootstrap operation 

Once this division was achieved, VMB became a more flexible tool that 
could be used to' load programs other than VMS. To preserve this flexibility, 
the division of the bootstrap into primary and secondary pieces was contin­
ued in subsequent versions of the VMS operating system. 

VMB is a general-purpose bootstrap program. In addition to loading SYS­
BOOT to initialize a VMS system, the default, VMB can perform the follow­
ing three options: 

• VMB can load the diagnostic bootstrap [SYSMAINT]DIAGBOOT.EXE in­
stead of SYSBOOT . 

• VMB can prompt for the name of any stand-alone program to be loaded into 
VAX memory. This program might be a stand-alone diagnostic program, 
an alternative secondary bootstrap, or another operating system. The file 
system routines and control transfer mechanism used by VMB place some 
restrictions on this file: 

-The system device containing the file to be loaded by VMB must be an 
ODS-2 Files-11 volume. 

-The file must be contiguous. 
-The code in the program must be position-independent. 

• VMB can load the contents of a bootstrap block from the system disk and 
execute the program that it finds there. In general, this boot block is LBN 0 
on the volume. The VAX-ll/78x bootstrap sequences allow an alternative 

. boot block number to be passed to VMB in R4. VMS only supports an 
alternative boot block number for a VAX-ll/78x system. 

The ability to pass control to a boot block program makes VMB a flexible 
tool. One possible use for such a program is support for a file system other 
than Files-11, such as that of ULTRIX-32. 

If none of these listed options is selected through the co~esponding flags 
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in RS, VMB enters its default path, which loads SYSBOOT into memory and 
transfers control to it. 

VMB is enhanced in each version of the VMS software. These enhance­
ments include support for new processor types, support for new devices, and 
changes to the argument list passed to SYSBOOT. Because a user might at­
tempt to bootstrap a VMS system with an old version of VMB, it is desirable 
to maintain forward and backward compatibility between versions of VMB 
and SYSBOOT. SYSBOOT checks the version of VMB that loaded it and 
takes appropriate action, depending on the relative versions. Compatibility 
is maintained by not removing functionality from VMB that is required by 
older versions of SYSBOOT. 

Operation of VMB 

VMB receives control running in the following environment: 

• In kernel mode 
• On the boot stack ISP = RPB base plus 20016) 

• With memory management disabled 
•At IPL 31 

Most modules that make up full VMB.EXE are from facility [BOOTS]. 
VMB modules include minimal drivers for boot devices, VAX instruction 
emulation routines, test routines for various types of memory, primitive file 
access routines, and the XDELTA debugger. 

VMB interprets the contents of registers RO through RS and R7 to deter­
mine the type of bootstrap being performed and the identity of the boot 
device. 

Tables 30.20 and 30.21 summarize the input parameters passed to VMB. 
VMB saves these parameters in the RPB lsee Table 30.22) for use by later 
steps in system initialization. 

The steps that VMB takes to load SYSBOOT into memory follow. Note 
that this list describes full VMB rather than ROM-based VMB and does not 
include error paths. It focuses on booting VMS from a system device and 
does not discuss booting stand-alone Backup. 

1. VMB creates a one-page system control block (SCB) with most interrupt 
and exception vectors pointing to a single service routine, a fault handler 
lsee Figure 30.2). It loads the vectors for TBIT and BPT exceptions with 
the addresses of exception service routines in XDELTA, linked as a part 
of the VMB image. It loads the vectors for OPCDEC and OPCDEC_FPD 
exceptions with the addresses of minimal character string instruction 
emulation routines for processors that require emulation. 

2. VMB reads the processor ID register IPR$_SID) to determine the CPU 
type. It uses the CPU type in several places to choose the appropriate 
section of CPU-dependent code to execute. SYSBOOT later performs 
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a similar step for the use of both SYSBOOT and the executive. If the 
processor type is unknown, VMB prints an error message and halts. 

3. If the RS bootstrap breakpoint flag, RPB$V _BOOBPT, is set, VMB exe­
cutes a BPT instruction, which transfers control to XDELTA, linked as a 
part of the VMB image. This breakpoint is useful in debugging problems 
that prevent a system from booting. 

4. VMB stores some of its input parameters and the physical addresses of 
the boot device driver in the RPB (see Table 30.22). 

5. VMB switches to a three-page stack, either in the physical pages imme­
diately following the SCB or four pages beyond the SCB, depending on 
the location of the bitmap described in the next step. 

6. SYSBOOT requires a bitmap describing all physical memory that is to 
be used as main memory. Each possible page is represented by one bit. If 
the page is free from error, the bit representing it is set. If the page does 
not exist or has errors, its bit is clear. SYSBOOT uses the bitmap as the 
basis for the creation of the PFN database. 

Memory test and bitmap construction is performed by VMB or, on 
many VAX systems, by the VAX console. Either the console reserves 
pages of memory in high physical address space for the bitmap (and for 
additional CPU-specific structures such as the CCA), or VMB reserves the 
four pages immediately beyond the SCB to describe up to eight megabytes 
of physical memory, and allocates further pages as more memory is 
discovered. 

If the console tests memory and loads the bitmap, it marks the pages 
containing the bitmap (and CPU-specific structures) as unavailable in 
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Table 30.20 Register Input to VMB 

Register 

RO 

Rl 

904 

Contents 
Bootstrap device type code 

Bit Field 

(31: 16) 

(15:8) 
(7:0) 

Meaning 

MASSBUS-mbz 1 

UNIBUS-Optional vector address; if zero, use default vector 
mbz 
Bootstrap device code (decimal) from $BTDDEF 

Value 
0 
1 
2 
3 
4-16 
17 
18 
19-31 
32 
33 
34 
35 
36-42 
43-63 
64 
65-95 
96 
97 
98 
99 
100-103 
104 
105-127 
128 

Meaning 
MASSBUS device (RM03/5, RP04/5/6/7, RM80) 
RK06/7 
RLOl/2 
IDC on VAX-11/730 
Reserved for UNIBUS devices 
UDA 
TK50 
Reserved 
HSC on CI 
KDB50 
KRBTA 
DEBNK (tape) 
VAXstation 2000 and 3100 DSSI and SCSI devices 
Reserved 
Console block storage device 
Reserved 
DEQNA 
DEUNA 
DEBNK (Ethernet) 
VAXstation 2000 and 3100 Ethernet 
Reserved 
DEBNI 
Reserved for network boot devices 
Disk served by an LAVc host 

Bootstrap device bus address 

CPU 

VAX-11/730, 
VAX-ll/78x 
VAX-11/750 

VAX 86x0 

VAX 8200 
family 

Bit Field 
(31:4) 
(3:0) 
(31:24) 
(23:0) 
(31:6) 
(5:4) 
(3:0) 
(31:4) 
(3:0) 

Meaning 

mbz 
TR number of adapter 
mbz 
Address of I/O page for boot device's UNIBUS 
mbz 
A-bus adapter number 
TR number of adapter 
mbz 
VAXBI node number of adapter 

(continued) 
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Table 30.20 Register Input to VMB (continued) 

Register 

Rl 

R2 

Contents 

Bootstrap device bus address 

CPU Bit Field Meaning 

VAX 8800, (31:6) mbz 
88x0 (5:4) V AXBI bus number 

family (3:0) V AXBI node number of adapter 
VAX 6000 (31:8) mbz 

series (7:4) XMI or DWMBA TR number 
(3:0) VAXBI node number of adapter 

Bootstrap device controller information 

Bus Type 
Other buses 
UNIBUS 

MASSBUS 

CI 

Bit Field 
(31:24) 
(31:18) 
(17:0) 
(31:4) 
(3:0) 
(31:16) 
(15:8) 
(7:0) 

Meaning 
Bus type 
mbz 
UNIBUS address of the device's CSR 
mbz 
Adapter's controller/formatter number 
mbz 
HSC port number 
Alternative HSC port number 

R3 Boot device unit number 
R4 LBN of boot block (VAX-11/780 and VAX-11/785 only) 
RS Software boot control flags (see Table 30.211 
R7 CCA address 
Rl0 2 Halt PC 
Rll 2 Halt PSL 
AP 2 Halt code 
SP Address of 64K bytes of good memory plus 20016 

1 mbz stands for "must be zero." 
2 The console subsystem sets up these registers after a halt condition. VMB does not use these values. 

the bitmap itself so that VMS does not overwrite them. However, they 
are not counted as bad pages. If VMB tests memory and loads the bitmap 
with a CPU-specific routine, it marks the bitmap pages available to VMS, 
and they are eventually reused. 

If the memory test fails on 10 percent or more of the physical pages, 
VMB writes a message to that effect on the console terminal and halts. 

Figure 30.2 illustrates the layout of physical memory after VMB begins 
execution. Note that the RPB resides at the lowest physical address 
available. 

905. 



Bootstrap Procedures 

Table 30.21 VMB Boot Control Flags (Contents of RS) 

Bit 
Position 

0 

2 

3 

4 

5 

6 

7 

8 

9 

10 
11 
12 

13 

14 

906 

Symbolic Name 
RPB$V_CONV 

RPB$V _DEBUG 

RPB$V _INIBPT 

RPB$V _BBLOCK 

RPB$V_DIAG 

RPB$V _BOOBPT 

RPB$V _HEADER 

RPB$V _NOTEST 

RPB$V _SOLICT 

RPB$V_HALT 

RPB$V _NOPFND 
RPB$V_MPM 
RPB$V _USEMPM 

RPB$V _MEMTEST 

RPB$V _FINDMEM 

Meaning 

Conversational boot. If set, SYSBOOT solicits 
parameters from the console terminal. On a 
VAX-11/730, if this and RPB$V_DIAG are set, 
the diagnostic supervisor enters MENUTEST mode. 

Debug. If set, SYSBOOT loads the SYSTEM_DEBUG 
loadable executive image. 

Initial breakpoint. If it and RPB$V _DEBUG are 
set, EXE$1NIT executes one BPT instruction after 
turning on memory management. It enables other 
breakpoints specified in the SYSGEN BREAKPOINT 
parameter. 

Secondary boot from boot block. If set, secondary 
bootstrap is a single 512-byte block. On a VAX­
ll/78x, its LBN can be specified in R4. On other 
processors, the boot block is LBN 0. On MicroVAX 
CPUs, this bit causes VMB to bypass its search for a 
Files-11 secondary bootstrap file. 

Diagnostic boot. If set, secondary bootstrap is image 
[SYSn.SYSMAINT]DIAGBOOT.EXE. 

Bootstrap breakpoint. If set, VMB and SYSBOOT _ 
XDELTA execute BPT instructions to transfer control 
toXDELTA. 

Image header. If set, VMB takes the transfer address of 
the secondary bootstrap image from that file's image 
header. If clear, VMB transfers control to the first 
byte of the secondary boot file. 

Memory test inhibit. If set, VMB does not test memory 
pages. 

Solicit file name. If set, VMB prompts for the name of 
a secondary bootstrap file. Used to load SYSBOOT _ 
XDELTA. 

Halt before transfer. If set, VMB executes a HALT 
instruction before transferring control to the 
secondary bootstrap. 

No PFN deletion (not currently used). 
Multiport memory (not currently used). 
If set, specifies that the memory bitmap is to include 

both multiport memory and local memory for later 
use by VMS, as though both were one single pool of 
pages (not used by VMS). 

If set, specifies that a more extensive algorithm is to be 
used when testing main memory for uncorrectable 
hardware errors. 

Reserved. 

(continued) 
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Table 30.21 VMB Boot Control Flags (Contents of RS) (continued) 

Bit 
Position 
lS 

16 

17 

18 
(31:28} 

Symbolic Name 
RPB$V _AUTOTEST 

RPB$V _CRDTEST 

RPB$V _DIFSYSDEV 

RPB$V _BOOTLOG 
RPB$V _ TOPSYS 

Meaning 
On a VAX-11/730, if this and RPB$V_DIAG are set, 

the diagnostic supervisor enters AUTOTEST mode. 
If set, specifies that memory pages with correctable 

errors are not to be used by VMS. 
If set, indicates that the system device is different 

from the boot device, which is magnetic tape. Used 
for booting stand-alone Backup from magnetic tape. 

Reserved. 
Specifies the top-level directory number for a system 

disk with multiple system roots. 

Table 30.22 Contents of the Restart Parameter Block 

Size 
in 

Field Name Contents Bytes Loaded by Special Uses 
RPB$1-BASE Physical base address 4 VMB Identifies RPB 

of block· 
RPB$L_ Physical address of 4 EXE$INIT Locates restart 

RESTART EXE$RESTART routine 
RPB$L_ Checksum of first 4 EXE$INIT Consistency check 

CHKSUM 31 longwords of on RPB and 
EXE$RESTART EXE$RESTART 

RPB$L_ Restart in progress 4 Console, Prevents nested 
RSTSTFLG flag EXE$INIT, restarts 

EXE$RESTART 
RPB$L_ PC at HALT/restart 4 VMB 

HALTPC 
RPB$L_ PSL at HALT /restart 4 VMB 

HALTPSL 
RPB$1- R,eason for restart 4 VMB 

HALTCODE 
RPB$1- Saved bootstrap 24 VMB 

BOOTRx parameters (RO 
through RS) 

RPB$L_IOVEC Address of bootstrap 4 VMB, Loads system 
driver EXE$INIT images, writes 

crash dump 
RPB$L_ Size (in bytes) of 4 VMB 

IOVECSZ bootstrap driver 
RPB$L_FILLBN LBN of secondary 4 VMB 

bootstrap file 

(continued) 
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Table 30.22 Contents of the Restart Parameter Block (continued) 

Size 
in 

Field Name Contents Bytes Loaded by Special Uses 

RPB$L_FILSIZ Size in blocks 4 VMB 
of secondary 
bootstrap file 

RPB$Q_ Descriptor of PFN 8 VMB Used by SYSBOOT 
PFNMAP bitmap to locate bitmap 

RPB$L_ Count of physical 4 VMB, 
PFNCNT pages SYSBOOT 

RPB$L_SVASPT System virtual 4 EXE$INIT Used by 
address of system EXE$RESTART 
page table 

RPB$L_ Physical address of 4 VMB Locates boot device 
CSRPHY UBA device CSR 

RPB$L_CSRVIR Virtual address of 4 INIADPxxx Locates boot device 
UBA device CSR 

RPB$L_ Physical address of 4 VMB Locates boot device 
ADPPHY adapter configura-

tion register 
RPB$L_ADPVIR Virtual address of 4 INIADPxxx Locates boot device 

adapter configura-
tion register 

RPB$W_UNIT Bootstrap device unit 2 VMB 
number 

RPB$B_ Bootstrap device type VMB 
DEVTYP code 

RPB$B_SLAVE Bootstrap device VMB 
slave unit number 

RPB$T_FILE Secondary bootstrap 40 VMB 
file name (counted 
ASCII string) 

RPB$B_ Byte array of adapter 16 VMB 1 

CONFREG types 
RPB$B_ Count of header 1 VMB 

HDRPGCNT pages in secondary 
bootstrap image 

RPB$W_ 'fype of boot adapter 2 VMB Used by boot driver 
BOOTNDT 

RPB$B_FLAGS Miscellaneous flag 
bits 

RPB$L_MAX_ Absolute highest 4 VMB Formerly RPB$L_ISP 
PFN PFN 

RPB$L_SPTEP System space PTE 4 Formerly RPB$L_ 
prototype register PCBB 

(continued) 
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Table 30.22 Contents of the Restart Parameter Block (continued) 

Size 
in 

Field Name Contents Bytes Loaded by Special Uses 

RPB$1-SBR Saved system base 4 EXE$INIT, Restored by 
register EXE$POWERFAIL EXE$RESTART 

RPB$L_ Physical address of 4 EXE$INIT Formerly RPB$L_ 
CPUDBVEC per-CPU database SCBB 

vector or primary's 
per-CPU database 

RPB$L_CCA. Physical address of 4 VMB Formerly RPB$1-
ADDR CCA SISR 

RPB$L_SLR Saved system length 4 EXE$INIT, Restored by 
register EXE$POWERFAIL EXE$RESTART 

RPB$L_ Longword array 64 VMB Used by BUG-
MEMDSC of memory CHECK to dump 

descriptors physical memory 
RPB$L_SMP _PC SMP boot page 4 EXE$INIT Formerly RPB$L_ 

physical address BUGCHK 
RPB$B_WAIT Bugcheck loop 4 VMB, VAX 8800 or 

code for attached SMP initialization 88x0 secondary 
processor processor started 

at this location 
RPB$L_ Number of bad pages 4 VMB 

BADPGS found in memory 
scan 

RPB$B_ Controller letter VMB 
CTRLLTR designation 

RPB$B_ SCB page count 1 SYSBOOT 
SCBPAGCT 

Reserved 6 
RPB$L_VMB_ VMB revision level 4 MicroVAX VMBs Format varies 

REVISION 

1 The byte array of adapter types is loaded by VMB only on VAX-11/750 and VAX-ll/78x processors. 
The system configuration is determined at a later stage of system initialization on other processors. 

7. If VMB finds a CI port adapter that requires loadable microcode, such 
as the CIBCA-A, it looks up and reads the microcode from the console 
block storage device. The microcode file for a CI780, CI750, or BCI750 
adapter is called CI780.BIN; the file for a CIBCA is called CIBCA.BIN. 

If the system is a VAX 8800 processor or VAX 88x0 family member, 
the microcode is on CSA3. For a VAX 6000 series system, VMB reads the 
CIBCA-A microcode from the TKS0/70 tape drive. 

If VMB finds a CI750 on a VAX-11/750 CPU, VMB must check that 
the CPU revision level is at or above the minimum level required for 
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CI support. It also tests whether the level is high enough to require 
the loading of volatile CPU microcode. If it is, VMB locates the file 
PCS7SO.BIN on the console TUS8, reads it into memory, and loads it 
into the CPU microstore. 

VMB sets the flag VMB$V _LOAD_SCS in the SYSBOOT argument list 
to indicate that SYSGEN must load the system communication services 
(SCS) code. 

8. VMB relocates the boot driver (see Section 30.3.2). 
9. Depending on processor a:nd bus type, VMB initializes the bus and the 

bus adapter for the system device. If necessary, it initializes the bootstrap 
device. The CI port adapter initialization routine loads the CI microcode. 

10. VMB identifies the secondary bootstrap image by flags and values in RS 
and, optionally, information solicited from the console terminal. The 
following order holds in choosing a secondary bootstrap image: 

a. If the RS flag RPB$V _BBLOCK is set, VMB reads the boot block 
program from the system device. On VAX-11/780 or VAX-11/78S 
processors, R4 contains the logical number of the disk block that 
contains the secondary bootstrap image. 

b. If the RS flag RPB$V _SOLICT is set, VMB prompts for the name of 
the secondary bootstrap image on the console terminal. 

c. If the RS flag RPB$V _DIAG is set, VMB loads the diagnostic bootstrap 
image, the file [SYSMAINT]DIAGBOOT.EXE, which activates the 
diagnostic supervisor. 

d. SYSBOOT.EXE is used as the secondary bootstrap image in the ab­
sence of any other option. To locate SYSBOOT, VMB first checks 
the system root directory, specified in the high four bits of RS. VMB 
searches [SYSn.SYSEXE] and [SYSn.SYSCOMMON.SYSEXE], where 
n is the root number. For example, using the default root of 0, VMB 
would search [SYSO.SYSEXE], then [SYSO.SYSCOMMON.SYSEXE], 
for SYSBOOT. If it does not find SYSBOOT and the root directory 
is 0, VMB searches [SYSEXE] for compatibility with older versions of 
VMS. 

11. VMB records the file name of the secondary bootstrap image in the field 
RPB$T _FILE. 

12. It disables XDELTA exceptions and moves the SCB, bitmap, and current 
stack. 

13. VMB opens the file and reads the secondary bootstrap image into mem­
ory. SYSBOOT overlays much of VMB, to fit into known good memory. 

14. If the RS flag RPB$V _HALT is set, VMB executes a HALT instruction before 
passing control to the secondary bootstrap image. This feature enables 
use of the console subsystem to debug the secondary bootstrap. 

lS. VMB passes control to the secondary bootstrap image at its transfer 
address, normally the first byte in SYSBOOT. However, if an image 
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other than SYSBOOT is being loaded and the flag RPB$V _HEADER in 
RS is set, VMB uses the transfer address stored in the image header of 
the secondary bootstrap program jprovided that the secondary bootstrap 
image was produced by the VMS Linker). 

Bootstrap Driver and 1/0 Subroutines 

VMB contains a skeleton Queue 1/0 Request ($QIO) procedure and device 
driver to perform its 1/0. SYSBOOT later copies this driver and routine 
into nonpaged pool for possible later use by the bugcheck code, described 
in Chapter 32. 

The VMB image actually includes simple drivers for all boot devices. Once 
it has determined the name of the bootstrap device from register contents, 
VMB moves the driver code for the. selected device so that it is adjacent to 
the $QIO procedure, thus allowing the entire bootstrap 1/0 system to be 
moved with a single MOVC3 instruction. 

This simple operation by VMB prevents nonpaged pool from being loaded 
with a set of bootstrap device drivers that are never used. That is, the only 
bootstrap driver preserved for the life of a VMS system is the bootstrap device 
driver for the system device, which is selected through input to VMB. All 
other bootstrap drivers are linked into the VMB image but disappear along 
with the rest of VMB when VMS is completely initialized. By locating the 
$QIO procedure and driver in the low-address end of VMB, much of VMB 
can be overlaid by SYSBOOT code. Thus, more efficient use is made of the 
pretested block of memory into which SYSBOOT must fit. 

The combined $QIO procedure and .bootstrap device driver begin with 
a boot driver dispatch vector area (BQO), offsets in which are defined by 
the macro $BQODEF. VMB records the location of the BQO in the RPB at 
the offset RPB$L_IOVEC. It records the size of the $QIO procedure plus 
the driver at the offset RPB$1-IOVECSZ. SYSBOOT and EXE$INIT locate 
through the RPB pointer to the BQO. 

File Operations 

The bootstrap operation must locate files before the file system itself is in full 
operation. Many files must be looked up before the Files-11 Extended QIO 
Processor (XQP) has been loaded into memory and initiafued by SYSINIT. 
Two special object modules, FILEREAD and FILERWIO, exist for this pur­
pose. The modu)~s contain subroutines that can perform some primitive 
file operations oiJ:.a Files-11 ODS-2 volume. VMS links these modules in the 
loadable executive image PRIMITIVE_IO. One of these modules, FILEREAD, 
is also part of th~JMB, SYSBOOT, NISCS_LOAD, and EXEC_INIT images. 

VMB and SYS~OOT citlI FIL$0PENFILE in FILEREAD, a file open pro­
cedure, to look,:UP file~ such as SYS.EXE. To improve its performance, 
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FIL$0PENFILE caches information about directories used in file lookup. For 
example, to locate SYS.EXE might require looking up and reading the master 
file directory, SYSn .DIR, and SYSEXE.DIR. 

In order to avoid repeated lookups and directory and subdirectory reads, 
FIL$0PENFILE records directory file IDs, size in blocks, starting LBN, and 
also caches blocks. from directory files. While VMB and SYSBOOT run, the 
cache is physically based. SYSBOOT copies the cache to nonpaged pool for 
use by EXE$INIT and the SYSINIT process until the XQP is operational. 

Booting a V AXcluster Member over the Ethernet 

Digital's Maintenance Operations Protocol (MOP) allows a processor to re­
quest the down-line loading of a program from an Ethernet service node into 
the requestor's memory. VMS uses this mechanism to allow a processor to 
boot over the Ethernet and join a VAXcluster system. Note that to boot in 
this manner, both VMS systems must be members of the same V AXcluster; 
booting an independent VMS system over the Ethernet is not implemented. 

A servicing processor, called a host, identifies a requesting processor, called 
a satellite, by the satellite's unique Ethernet address. A network database on 
the host, SYS$SYSTEM:NETNODE_REMOTE.DAT, contains an entry for 
each valid satellite. The satellite's database entry includes the name of the 
VAXcluster system disk and root directory in which its files reside. 

A satellite can request a specific program from the host, accept a default 
program defined in the host's database, or request the activation of the load 
assist agent defined in the host's database. In this case, the host transfers 
control to the load assist agent, a program which directs further communi­
cation with the satellite. 

The ability to boot over the Ethernet must exist in the satellite's console 
program or its ROM-based VMB, and its Ethernet device. When a satellite 
executes local ROM-based VMB, VMB performs the steps described in Sec­
tion 30.3.4.1 if it discovers that the boot device is an Ethernet adapter. 

Obtaining the Secondary Bootstrap. ROM-based VMB on the satellite must 
obtain the secondary boot file over the network. It therefore issues a mul­
ticast MOP message requesting that an operating system be loaded into its 
memory. The MOP message includes the satellite's Ethernet address. 

Ethernet hosts receive the message and check their network databases for 
an entry whose Ethernet address matches that of the incoming message. If a 
host finds a match, it activates the load assist agent defined in the database 
entry, SYS$SYSTEM:NISCS_LAA.EXE. 

NISCS_LAA receives one value from the network database entry. This 
load assist parameter defines the system disk and V AXcluster root direc­
tory from which the satellite should boot. If NISCS_LAA does not find a 
SYSGEN parameter file, VAXVMSSYS.PAR, in the specified root directory, 
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or if the parameter file indicates that the node will not attempt to become 
a member of the VAX.cluster, the boot aborts. Otherwise, NISCS_LAA ob­
tains the cluster group authorization number and password from the cluster 
authorization file, CLUSTER_AUTHORIZE.DAT. It constructs a parameter 
block containing the password, the cluster group number, and information 
from the parameter file such as SCSNODENAME. NISCS_LAA appends the 
parameter block to the image SYS$SYSTEM:NISCS_LOAD and down-line 
loads both to the satellite. 

The image and parameter block are stored in a known location in satellite 
memory. Once the satellite recognizes that the down-line load is complete, 
it transfers control to the loaded image, NISCS_LOAD. NISCS_LOAD can 
be thought of as a VMB extension. It contains a minimal class driver and 
several Ethernet datalink drivers. Using the class driver and the appropriate 
datalink driver, the satellite can access the secondary bootstrap file, normally 
SYSBOOT, on the system disk served by the host. The minimal class driver 
and Ethernet datalink driver present a standard disk interface, allowing SYS­
BOOT and the rest of the boot procedure to execute as though performing a 
normal disk boot. 

30.4 SECONDARY BOOTSTRAP PROGRAM (SYSBOOT) 

The secondary bootstrap program, SYSBOOT, executes when VMB is di­
rected to load a VMS system. VMB, having already tested main memory, 
reads SYSBOOT into memory and transfers control. (When booting over the 
Ethernet, VMB loads NISCS_LOAD and NISCS_LOAD loads SYSBOOT.) 

Most of the modules that make up SYSBOOT are from facility [BOOTS]. 
There is little CPU-dependent code in SYSBOOT, as most of the CPU­
dependent requirements have already been taken care of by VMB. However, 
SYSBOOT does load the CPU-dependent code that is used during normal 
VMS system execution. 

When SYSBOOT gains control, Rl 1 points to the beginning of the RPB. 
VMB passes an argument list to SYSBOOT using the AP. The count and 
defiriition of arguments depends upon the VMB version number. The BQO, 
located through RPB$L_IOVEC, contains the VMB version number at the 
offset BQO$W_VERSION. 

Table 30.23 lists the arguments that VMB Version 15, for VMS Version 5.2, 
passes to SYSBOOT. 

SYSBOOT performs three major functions: 

1. It configures the system by loading a set of adjustable SYSGEN parame­
ters. By default, it uses the parameters stored in the file [SYSn.SYSEXE] 
VAXVMSSYS.PAR, managed by the SYSGEN utility. In a conversational 
bootstrap, SYSBOOT prompts on the console terminal. The person boot­
ing the system can change the value of specific parameters, select a whole 
different set of parameters from a different file, or use a set of default 
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Table 30.23 Argument List Passed from VMB to SYSBOOT 

Argument Name 
VMB$Q_FILECACHE 
VMB$L_LO_PFN 
VMB$1-HLPFN 
VMB$Q_PFNMAP 
VMB$Q_UCODE 
VMB$B_SYSTEMID 
Reserved 
VMB$L_FLAGS 

VMB$L_CLHIPFN 
VMB$Q_NODENAME 
VMB$Q_HOSTADDR 
VMB$Q_HOSTNAME 
VMB$Q_TOD 
VMB$L_XPARAM 
VMB$L_BVP _PGTBL 

Size 

Quadword 
Longword 
Longword 
Quadword 
Quadword 
6 bytes 
2 bytes 
Longword 

Longword 
Quadword 
Quadword 
Quadword 
Quadword 
Longword 
Longword 

Description 

FILEREAD cache descriptor 
Lowest PFN found by VMB 
Highest PFN exclusive 
PFN bitmap descriptor 
Loaded microcode descriptor 
SCS system ID 

VMB$V _LOAD_SCS, VMB$V _TAPE, and 
VMB$V _ VOLSWIT flags 

Highest PFN used by CI code 
Booting node name 
Host node address 
Host node name 
Time of day in MOP format 
Address of extra MOP parameters 
Address of port page table 

values built into SYSBOOT and SYSGEN. SYSBOOT calculates other 
system parameters whose values depend on the values of the adjustable 
parameters. 

2. SYSBOOT maps system virtual address space. The sizes of many of the 
pieces of system address space depend on the values of one or more 
SYSGEN parameters. The calculations that SYSBOOT performs and the 
results of these calculations are detailed in Appendix F. In addition to 
sizing the pieces of system space, SYSBOOT also sets up the system 
page table (SPT) to map many of the pieces of the nonpaged and paged 
executive. In a related step, SYSBOOT prepares a PO page table that 
allows memory management to be turned on (see Chapter 31). 

3. The last major SYSBOOT step is to allocate physical memory and read 
the various portions of SYS.EXE into those pages. SYSBOOT also locates 
a number of other files (see Table 30.1) and reads them into nonpaged 
pool. Their locations in pool are passed on to EXE$INIT in a bootstrap 
parameter block, defined by module BOOPARAM (see Table 30.24). 

Operation of SYSBOOT 

SYSBOOT runs in the environment established by the console subsystem 
and VMB: 

• In kernel mode 
• On the boot stack 
• With memory management disabled 
• At IPL 31 
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Table 30.24 Information Passed from SYSBOOT to INIT 

Global Location Size Description 
BOO$GL_DSKDRV Longword Address of bootstrap device driver in 

nonpaged pool 
BOO$GL_SYSLOA Longword Address of CPU-dependent image in nonpaged 

pool 
BOO$GL_ TRMDRV Longword Address of terminal class driver in nonpaged 

pool 
BOO$GL_NPAGEDYN Longword Size of nonpaged pool remaining (in bytes) 
BOO$GL_SPLITADR Longword Base address of 1/0 request packet (IRPI 

lookaside list 
BOO$GL_IRPCNT Longword Number of IRPs to be initialized 
BOO$GL_LRPSIZE Longword Size of large request packets (LRPsl in bytes 
BOO$GL_LRPMIN Longword Minimum size of request that can be allocated 

anLRP 
BOO$GL_LRPSPLIT Longword Base address of LRP lookaside list 
BOO$GL_LRPCNT Longword Number of LRPs to be initialized 
BOO$GL_SRPSPLIT Longword Base address of small request packet (SRPI 

lookaside list 
BOO$GL_SRPCNT Longword Number of SRPs to be initialized 
BOO$GQ_FILCACHE Quadword Pool descriptor for FIL$0PENFILE cache 
BOO$GL_BOOTCB Longword Address of boot control block in pool 
BOO$GT _ TOPSYS 40 bytes Top-level system directory (ASCIC string) 
BOO$GB_SYSTEMID 6 bytes 48-bit SCS system ID of boot device port 
BOO$GL_PRTDRV Longword Address of port driver in pool 
B00$GL_SUBPRTDRV Longword Address of subport driver in pool 
BOO$GL_UCODE Longword Address of port microcode in pool 
BOO$GL_SCSLOA Longword Address of SCS loadable code in pool 
BOO$GL_CLSLOA Longword Address of cluster loadable code in pool 
BOO$GB_NODENAME 8 bytes ASCII name of the node containing boot 

device 
B00$GL_ VAXEMUL Longword Address of instruction emulation loadable 

code in pool 
BOO$GL_FPEMUL Longword Address of floating-point emulation loadable 

code in pool 
BOO$GL_DEVNAME Longword ASCII boot device name 
B00$GL_ VMB_FLAGS Longword Boot flags from VMB 
BOO$GL_BOOPTE Longword SVAPTE of page table entries (PTEsl 

temporarily allocated for BOO$MAP 
BOO$GL_BOOPTECNT Longword Count of PTEs temporarily allocated for 

BOO$MAP 
B00$GL_PDDATAPTR Longword Pointer to address and size of loaded 

PSEUDO LOA.EXE 
BOO$GL_SPARE1 Longword Reserved 
BOO$GL_SPARE2 Longword Reserved 
BOO$GL_SPARE3 Longword Reserved 
BOO$GL_SPARE4 Longword Reserved 
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Beginning with VMS Version S.O, SYSBOOT no longer links with XDELTA. 
With XDELTA, SYSBOOT would have been too large to fit into the guaran­
teed 64K-byte block of good memory available on older systems. Instead, 
VMS provides a separate image, SYSBOOT _XDELTA.EXE, which is loaded 
by booting with the RPB$V _SOLICT flag set in RS and specifying SYSBOOT _ 
XDELTA at the prompt. 

SYSBOOT _XDELTA performs the same functions as SYSBOOT, except for 
the following: 

• It alters the SCB vectors for the TBIT and BPT exceptions to dispatch to 
exception service routines in the XDELTA code. 

• If the bootstrap breakpoint flag, RPB$V _BOOBPT in RS, is set, SYSBOOT _ 
XDELTA executes a BPT instruction. The exception transfers control to the 
XDELTA code. 

Note that the flag RPB$V _BOOBPT controls breakpoint execution in 
both VMB and SYSBOOT _XDELTA. The flag can be used to locate a hard­
ware problem or other problem that prevents system initialization. 

The following steps describe the operation of SYSBOOT: 

1. SYSBOOT reinitializes the SCB created by VMB so that most vectors con­
tain the address of a service routine in SYSBOOT. It modifies the machine 
check vector to point to a customized exception service routine. Some 
VAX processors emulate certain instructions rather than supporting them 
in CPU microcode. For these processors, execution of an instruction such 
as MOVTC causes an exception. SYSBOOT initializes subset instruction 
emulation vectors in the SCB to dispatch to service routines within SYS­
BOOT, until the appropriate software emulation routines are loaded. 

2. SYSBOOT reads the system identification processor register, PR$_SID, to 
determine the CPU type. It stores this information in the field EXE$GB_ 
CPUTYPE. On some processors, such as the MicroVAX II and the VAX 
6000 series machines, SYSBOOT reads an additional register called the 
extended system ID or system type register to determine the CPU sub­
type. SYSBOOT copies this information to the 16 bytes beginning at 
EXE$GB_CPUDATA. Code whose execution depends on a specific CPU 
type can check EXE$GB_CPUTYPE and EXE$GB_CPUDATA to deter­
mine the environment. The CPUDISP macro, described in the VMS De­
vice Support Manual, selects portions of CPU-specific code at execution 
time (with suitable test-and-branch instructions). 

SYSBOOT employs the CPU type and subtype to determine the fol­
lowing items: 

-Pieces of CPU-dependent code within SYSBOOT that execute; for ex­
ample, SYSBOOT must check whether the hardware revision level is 
at least the minimum required to support the VMS software. Its test 
is processor-specific. 
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-Name of the file containing CPU-specific support, SYSLOAxxx.EXE, 
where xxx designates the CPU type. Appendix G lists CPU types and 
their corresponding SYSLOAxxx image names. 

-Size of the SCB. Appendix F lists the sizes required by various VAX 
processors. 

3. For certain processors whose console, rather than VMB, creates the PFN 
bitmap, SYSBOOT moves a copy of the bitmap to the area of mem­
ory immediately following SYSBOOT's location, if sufficient error-free 
contiguous memory exists. SYSBOOT alters the bitmap as it allocates 
physical memory. If SYSBOOT works from a copy of the bitmap, pre­
serving the original, the MicroVAX console subsystems that maintain a 
checksum on the original bitmap need not execute memory test diagnos­
tics and rebuild the bitmap on subsequent reboots. 

4. SYSBOOT checks the BQO field BQO$W _VERSION to determine which 
version of VMB executed. Older versions of VMB do not perform many of 
the operations that newer versions incorporate. SYSBOOT compensates 
for these older versions by performing the operations missing from the 
older VMB version or by performing its own operations in alternative 
ways. This step allows backward compatibility for earlier versions of 
VMB. The following items are checked at this point: 

-Bootstrap adapter device type 
-Support for more than eight megabytes of memory 
-Presence and contents of the SYSBOOT argument list 
-Presence of the FIL$0PENFILE cache 
-Presence of memory descriptors in the RPB 
-Presence of CI microcode read into memory 
-Presence of a system root directory name 

5. SYSBOOT allocates memory for a boot control block and a buffer to 
contain retrieval pointers for special files that it opens, such as the system 
dump file. 

The boot control block, offsets in which are defined by the macro 
$BOODEF, ultimately resides in nonpaged pool and is pointed to by 
EXE$GL_BOOTCB. It contains information that must be available in 
the event of a fatal bugcheck, such as the mapping information for SYS­
DUMP .DMP. SYSBOOT loads all fields in the boot control block except 
for B00$1-BUG_WCB and B00$1-BUG_LBN. The initialization rou­
tine for the loadable executive image EXCEPTION, which contains the 
bugcheck code, stores the window control block (WCB) mapping the non­
resident bugcheck code and the first LBN of the code into these fields. 

Figure 30.3 shows the structure of the boot control block. 
6. For each loadable executive image to be opened, SYSBOOT allocates a 

block of memory for file mapping information. SYSBOOT maintains a 
statistics block for each file that it must potentially load. A statistics 
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Figure 30.3 
Boot Control Block 

block contains the file name and context information required by the 
routines that open and read the file, LDR$0PEN_FILE and LDR$READ_ 
FILE. The statistics block also contains a pointer to the file mapping 
information. Chapter 29 describes loadable executive images and the 
manner in which they are loaded. 

When SYSBOOT discovers that a file for which it has a statistics block 
is not, in fact, to be loaded, it clears the file name field in the statistics 
block. 

7. When the STABACKIT.COM file creates a bootable VMS tape, it copies 
a file called OPEN_INDEX.DAT onto the tape following SYSBOOT. For 
each file on the tape, OPEN_INDEX.DAT contains the file name, file 
size, and tape position. If SYSBOOT determines that the boot device was 
a tape, it allocates memory, reads this file, and uses the information to 
optimize tape access. 

8. SYSBOOT checks whether NISCS_LOAD determined that an auxiliary 
device driver is needed; if so, it creates a statistics block for the driver. 

9. Based on the CPU type and subtype, SYSBOOT performs the following: 

-It checks that the hardware and microcode revisions are appropriate 
for the VMS version being loaded and issues a warning message if not. 
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-It determines the name of the SYSLOAxxx image containing CPU­
specific code to be loaded. Appendix G lists CPU types and their 
corresponding SYSLOAxxx image names. 

-It determines the number of pages in the SCB. 
-For an SMP system, SYSBOOT records the ID of the CPU on which it 

is executing, the primary CPU. 

10. For console devices and small disk devices, the boot files may require 
more space than is available. For these devices, SYSBOOT sets the bit 
VMB$V _ VOLSWIT in BOO$GL_ VMB_FLAGS. If this bit is set, SYS­
BOOT and EXE$INIT allow the boot medium to be removed and another 
volume substituted. 

11. SYSBOOT locates the system base image, SYS.EXE. It first checks the 
specified root directory (defaulting to root OJ. If it does not find SYS.EXE 
and the root directory was 0, SYSBOOT also checks [SYSEXE]. This 
maintains compatibility with earlier versions of VMS. 

During this check, SYSBOOT switches volumes if it is both necessary 
and allowed. 

12. If the system device is a disk, SYSBOOT records the LBN of the first block 
of the storage bitmap file, BITMAP.SYS, in the boot control block at offset 
B00$1-SCB_LBN. This block, which is called the storage control block, 
contains shadow set generation information for shadow set members. ·· 

13. SYSBOOT reads VAXVMSSYS.PAR, the file containing the current SYS­
GEN parameters. Chapter 31 describes in detail the movement of param­
eter information during the initialization sequence. 

14. SYSBOOT tests whether the operator requested a conversational boot­
strap by setting the RS flag RPB$V _CONV. If so, SYSBOOT prompts to 
allow interactive alteration of the parameter values. In any case, SYS­
BOOT enters the next step with a set of adjustable parameters. 

15. If the system device is a disk, SYSBOOT opens the system dump file, 
[SYSn.SYSEXE]SYSDUMP.DMP, and records the file mapping informa­
tion for use in the event of a bugcheck. 

If SYSBOOT does not find the dump file, it opens and maps the pri- . 
mary page file, [SYSn.SYSEXE]PAGEFILE.SYS, and sets the flag EXE$V_ 
PAGFILDMP in EXE$GL_DEFFLAGS. The first blocks of the page file, 
if one exists, are used as an alternative dump file when the system 
bugchecks. When the SYSINIT process runs (see Chapter 31), it will look 
in the page file instead of the dump file for saved error log messages to 
restore. 

SYSBOOT saves the size of the dump or page file in the boot control 
block at the offset BOO$L_DMP _SIZE. In BOO$L_DMP _MAP, it stores 
a pointer to the area of the boot control block that contains the file map 
information. 
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16. Using the system device information saved in the RPB, SYSBOOT deter­
mines the name of the full driver for the system device. It looks in the 
boot driver data structure to determine the name of any auxiliary driver 
needed, for example, a CI port driver. 

17. SYSBOOT determines whether SCSLOA.EXE and CLUSTRLOA.EXE 
must be loaded, based on the SYSGEN parameters VAXCLUSTER and 
NISCS_LOAD_PEAO and on the boot device. 

18. SYSBOOT then tests which types of instructions, if any, must be em­
ulated in software. Not all VAX processors implement all types of in­
structions. In particular, certain types of floating-point instructions may 
not be present. For example, the MicroVAX II does not implement many 
string and decimal instructions. SYSBOOT must decide whether the im­
ages VAXEMUL.EXE, FPEMUL.EXE, or both must be loaded for string 
and decimal instruction emulation and floating-point instruction emula­
tion. Bits in EXE$GL_ARCHFLAG record the various types of emulation 
required. 

19. SYSBOOT tests the boot parameters to determine if XDELTA, in the im­
age SYSTEM_DEBUG.EXE, is to be loaded. If not, it clears the statistics 
block for the image. 

20. SYSBOOT then constructs the name of the terminal class driver, prefix­
ing the value of the parameter TTY_CLASSNAME to the string DRIVER. 

21. SYSBOOT determines the PFN of the highest usable page of memory, 
taking into account the value of the SYSGEN parameter PHYSICAL­
PAGES, and stores it in MMG$GL_MAXMEM. If the parameter is set 
artificially low, specifying only partial use of the memory, the lower 
physical pages are used. 

22. SYSBOOT calculates the size of a process header and the sizes of the 
other pieces of system address space, including the SCB. In particular, it 
calculates the size of the SPT. Appendix F describes the details of these 
calculations. 

23. SYSBOOT allocates and zero-fills pages of contiguous physical memory 
at the highest physical addresses for the SCB, SPT, and system header. 

24. It loads the first page of the SCB with the contents of module SCBVEC­
TOR, which contains the entry points for the architecturally defined 
interrupt and exception service routines. Vectors in additional pages of 
the SCB, if present, are loaded with the address of ERL$UNEXP, an unex­
pected interrupt handler. For some processors, interrupt vectors used for 
passive releases are initialized with the address of ERL$VEC_RETURN. 

25. SYSBOOT configures the system header. At this time, it fills in all entries 
in the system header whose contents depend on configuration parame­
ters. This step is analogous to the process header configuration performed 
by code in the shell as a part of process creation jsee Chapter 25). 

26. It initializes system page table entries (SPTEs) to map the pages of the 
SPT and system header. 



30.4 Secondary Bootstrap Program (SYSBOOT) 

2 7. It initializes demand zero SPTEs for the global page table. 
28. It initializes SPTEs for the SCB. 
29. It allocates physical memory and initializes SPTEs for the primary's per­

CPU data area, which includes the interrupt stack and the boot stack. 
30. It allocates physical memory for the initial sizes of the three nonpaged 

pool lookaside lists, loads the corresponding SPTEs, and records the size 
and address of each list. 

31. It allocates nonpaged pool for the device drivers listed in step 37 and the 
FIL$0PENFILE cache. 

32. It allocates physical memory and initializes SPTEs to map the system 
base image. 

33. SYSBOOT determines the size of the PFN database, which must map 
any remaining unassigned physical pages. It allocates and zero-fills phys­
ical memory for the PFN database and initializes the SPTEs that map 
it. The physical pages allocated for the nonpaged portions of the execu­
tive are not accounted for in the PFN database, because their state will 
never change. The pages occupied by the PFN database itself are also not 
accounted for in the PFN database. 

34. SYSBOOT initializes an SPTE for the RPB. Since the RPB is already 
present in a physical page, SYSBOOT merely stores its page number in 
the new SPTE and the virtual address in EXE$G1-RPB. 

35. SYSBOOT reads the system base image, SYS.EXE, into memory. From 
the base image, it obtains a private copy of the system version array. 
These version numbers are used in step 3 7 to check that the loadable 
images are compatible with the system base image. 

36. SYSBOOT determines which synchronization image to use, as described 
in Chapter 8. 

37. SYSBOOT invokes the boot driver with a list of loadable images to read 
into nonpaged pool or system virtual address space. These files include 
the following: 

-EXEC_INIT.EXE, the next piece of initialization code 
-SYSTEM_DEBUG.EXE, the XDELTA image, if requested 
-SYSTEM_PRIMITIVES.EXE, containing primitive system routines 
-SYSTEM_SYNCHRONIZATION_xxx .EXE, as determined by step 36 
-PRIMITIVE_IO.EXE, the primitive file system routines 
-ERRORLOG.EXE, the error logging routines and system services 
-The system device driver and, if applicable, its port driver 
- Terminal class driver 
-SCSLOA.EXE, if needed 
-SYSLOAxxx .EXE 
-CLUSTRLOA.EXE, if needed 
-FPEMUL.EXE, if needed 
-VAXEMUL.EXE, if needed 
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38. SYSBOOT copies the contents of its internal parameter table to the 
portion of the memory image of SYS.EXE that contains the adjustable 
parameters. This step makes the current parameter settings available for 
the remaining system initialization routines and preserves them (because 
SYSBOOT is exiting) until SYSINIT writes them back to the disk (see 
Chapter 31). 

39. SYSBOOT copies the FIL$0PENFILE cache into nonpaged pool, where 
it will facilitate file lookups until the file system is initialized. (If the 
boot was from tape, SYSBOOT copies the cached OPEN_INDEX.DAT file 
instead. OPEN_INDEX.DAT contains the name, size, and tape position 
of every file on the tape and thus optimizes tape access.) 

40. It copies the boot control block, boot driver, and any microcode associ­
ated with the boot device to nonpaged pool, and modifies RPB$L_IOVEC 
to reflect the virtual address of the boot driver. 

41. SYSBOOT copies the argument list it built for EXE$INIT into the boot­
. strap parameter block in the memory image of SYS.EXE (see Table 30.24). 

42. SYSBOOT loads the base and length registers for the PO and system 
page tables so that EXE$INIT can turn on memory management (see 
Chapter 31). 

43. Finally, SYSBOOT transfers control to module EXE$INIT. This transfer 
must be done to a physical location, because memory management is 
not yet enabled. 



31 Operating System Initialization 
and Shutdown 

Had I been present at the creation, I would have given some 
useful hints for the better ordering of the universe. 

Alfonso the Wise 

Several components contribute to the second phase of system initialization: 

• Routine EXE$INIT in module INIT, in the EXEC_INIT image 
• The initialization routines of loadable executive images 
• A special process, SYSINIT, created to complete those pieces of initializa­

tion that require process context to execute 

EXE$INIT turns on memory management, configures the I/O adapters, 
and initializes scheduling and memory management data structures. It maps 
loadable executive images and invokes their initialization routines. 

The initialization routines of loadable executive images execute in various 
phases of system initialization, and an initialization routine may be invoked 
several times. These routines perform initialization that logically relates to 
the function of the associated image. 

SYSINIT opens system files, creates system processes, loads the Record 
Management Services (RMS) and system message loadable executive im­
ages, among others, and creates a process to execute the startup command 
procedure. 

31.1 INITIAL EXECUTION OF THE EXECUTIVE 

31.1.1 

The final instruction in SYSBOOT transfers control to the physical address 
of EXE$INIT. EXE$INIT begins execution in an environment set up by SYS­
BOOT. It executes on the interrupt stack at interrupt priority level (IPL) 31. It 
immediately modifies its environment by turning on memory management. 

In a symmetric multiprocessing (SMP) system, SYSBOOT and EXE$INIT 
execute on the BOOT CPU, a CPU with full access to the console subsystem. 
In VMS Version 5.2, the BOOT CPU is the primary processor; the other CPUs 
are called secondary processors. 

Turning on Memory Management 

The first and perhaps most important step that EXE$INIT takes is to turn 
on memory management. Actions previously taken by SYSBOOT make this 
possible. SYSBOOT allocates physical memory and system page table entries 
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(SPTEs) for the EXEC_INIT image, initializes the SPTEs, and reads EXEC_ 
INIT into memory. 

Before SYSBOOT transfers control to EXE$INIT, it constructs a PO page 
table that has only one valid page table entry (PTE). The PTE maps the first 
physical page of EXE$INIT to a PO virtual address with a virtual page number 
identical to its physical page number. Thus, EXE$INIT can be referenced by 
its physical address before memory management is turned on, by a PO virtual 
address that translates to the identical physical address, and by its system 
virtual address. 

Mapping of EXE$INIT by SYSBOOT. PO space is used for the double map­
ping of EXE$INIT because the PO address range (O to 3FFFFFFF16) is the 
maximum physical address range permitted by the VAX architecture. That 
is, even on a VAX processor with the maximum possible physical memory, 
a PO address range with identical addresses exists. 

SYSBOOT must be able to account for the placement of EXE$INIT any­
where in physical memory, that is, it must be able to map every PO address. 
A page table page can map 128 pages of virtual address space. Construct­
ing a page table large enough to map all 2,097,152 pages of PO space would 
be rather inefficient, particularly since SYSBOOT only needs to create one 
valid PTE. Instead, SYSBOOT constructs a one-page PO page table and loads 
the PO base register, PR$_POBR, which normally contains the system virtual 
address of the first page in the PO page table, with a computed value derived 
as follows: 

1. SYSBOOT computes the offset within a complete PO page table that 
would contain the PTE mapping EXE$1NIT's address. It determines the 
required number of PTEs (the last PTE maps the first page of EXE$INIT) 
and the offset of the desired PTE from the start of the last page table 
page. 

2. In its one-page PO page table, at the latter offset, it stores a valid PTE 
mapping EXE$INIT. 

3. Since it will reference only the last page table page, SYSBOOT subtracts 
the amount of virtual address space that would be occupied by the miss­
ing PTEs from the system virtual address of its one-page PO page table. It 
stores the resulting value in PR$_POBR. Thus, to the address translation 
hardware/microcode, EXE$INIT's page table appears to be complete. 

As an example, suppose EXE$INIT begins at physical address 20BA0016. 
In a complete PO page table, its PO address (also 20BA0016) would be mapped 
by PTE 4189, or the ninety-third PTE of the thirty-third PO page table page. 
At the ninety-third PTE in its one-page PO page table, SYSBOOT constructs 
a valid PTE containing EXE$1NIT's page frame number (PFN). SYSBOOT 
subtracts (4096 * 4) from the system virtual address of its PO page table to 
account for the missing PTEs and stores the result in PR$_POBR. 
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Figure 31.1 
Mapping EXE$INIT 

Accessing EXE$INIT. The net result of SYSBOOT's mapping is that the phys­
ical page containing EXE$INIT can and will be accessed in three different 
ways. These different mappings are listed here in order of mapping compli­
cation, not in the order in which they are used. EXE$INIT can be accessed 
in the following ways: 

• As a physical address 
• As a system virtual address mapped by the system page table (SPT) 
• As a PO virtual address translated by the combination of computed POBR 

and one-page PO page table 

Figure 31.1 shows the mapping set up by SYSBOOT. 

Instructions That Turn On Memory Management. When EXE$INIT begins 
execution, memory management is disabled. The program counter (PC) con­
tains the physical address of EXE$INIT. In the following example, the in­
struction sequence executes in three different address contexts. The numbers 
in the example correspond to numbers in the list that follows. 
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EXE$INIT: 
MOVL RPB$L_BOOTR5(R11),FP G) 
MTPR #1,S.#PR$_MAPEN G) 
JMP FIRST_SYS_VA(R1) G) 
FIRST_SYS_VA = . - EXE$INIT 

10$: INVALIDATE_TB ENVIRONMENT=UNMAPPED G) 

(!)The first instruction executes in physical space. Its effect is not related 
to enabling memory management. 

G)This instruction actually enables memory management. All address refer­
ences from this point are translated. Note that the MTPR instruction does 
not cause a transfer of control to an instruction stream at a different phys­
ical location. The PC is simply incremented by 3, the number of bytes 
in the instruction. However, the next PC reference will be translated, 
because memory management is enabled. 

The incremented (physical) PC, the address of the JMP instruction, is 
seen as a PO virtual address by the address translation hardware/micro­
code. Because of the mapping set up by SYSBOOT, translating it as a PO 
address results in the correct physical address. 

G)This instruction is the only instruction that executes with a PO PC. Rl 
contains the system virtual address of the base of EXE$INIT, passed to 
EXE$INIT by SYSBOOT. 

FIRST _SYS_ VA is the offset from the base of EXE$INIT to the instruc­
tion following the JMP instruction, calculated at assembly time. When 
this offset is added to the system virtual address in Rl, it results in the 
system virtual address of the next instruction in EXE$INIT. Translating 
this address using the SPT results in the physical address of the next 
instruction, which is the first instruction to execute with a system PC. 

@With the INVALIDATE_ TB macro, EXE$INIT flushes stale virtual address 
translations from the translation buffer. Chapter 14 describes the transla­
tion buffer. 

Thus, these instructions execute in three different mapping contexts. The 
mapping set up by SYSBOOT results in the selection of successive instruc­
tions from the same physical page. 

Secondary Processors and Memory Management. Each secondary CPU in an 
SMP system must also turn on memory management using the same basic 
sequence as the primary processor. To make this possible, SYSBOOT reserves 
the highest 32 SPTEs, one for each potential CPU in the SMP system. A 
CPU uses the SPTE indexed by its CPU ID number to map its one-page 
PO page table. SYSBOOT reserves the highest system virtual address space 
for the page tables to guarantee that the PR$_POBR values resulting from 
the subtraction described in Section 31.1.1.1 are always virtual addresses in 
system space. 
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A secondary processor uses the same physical page for both its PO page 
table and its boot stack. Figure 31. l shows the mapping. Chapter 34 describes 
secondary processor initialization. 

31.1.2 Initialization of the Executive 

Once EXE$INIT has turned on memory management, it can refer to system 
addresses. In particular, it can now initialize dynamic data structures whose 
listheads are in global locations in system space. Some of these steps involve 
allocation from nonpaged pool. Table 31.1 lists some of the nonpaged pool 
space allocated by EXE$INIT, and the SYSGEN parameters that control 
allocation size. 

EXE$INIT takes the following steps once memory management has been 
turned on: 

1. It sets the INIT and MAPPED flags in EXE$GL_STATE, indicating that 
memory management is enabled and EXE$1NIT is running. 

2. It switches to the primary CPU's interrupt stack by storing its address 
in the stack pointer (SP) register. 

3. EXE$INIT tests flags in EXE$G1-ARCHFLAG, initialized by SYSBOOT, 

Table 31.1 Allocation of Nonpaged Pool by EXE$INIT 

Global Name 
Item 

Real-time bitmap 
Lock ID table 
Resource hash table 
Deadlock detection 

process bitmap 
Process control 

block (PCB) and 
sequence number 
vectors 

Process header 
vectors 

Network window 
control block 
(WCB) 

Page-and-swap-file 
vector 

of Pointer 
EXE$GL_RTBITMAP 
LCK$GL_IDTBL 
LCK$GL_HASHTBL 
LCK$GL_PRCMAP 

SCH$GL_PCBVEC, 
SCH$GL_SEQVEC 

PHV$GL_PIXBAS, 
PHV$GL_REFCBAS 
NET$AR_WCB 

MMG$GL_PAGSWPVC 

Factors That Affect Size 

RBM$K_LENGTH+(4*REALTIME_SPTS) 
12 + (4 * LOCKlDTBL) 
12 + (4 * RESHASHTBL) 
13 + (MAXPROCESSCNT /8) 

12 + (6 * (MAXPROCESSCNT + 1)) 1 

12 + (4 * (BALSETCNT + 1)) 2 

WCB$K_LENGTH 

4 * (PAGFILCT + SWPFILCT + 1) + 16 

1 Each array contains one extra slot for the system process, which has a process index of MAX­
PROCESSCNT. 

2 Each array contains one extra slot for the system header, which has a balance slot index of 
BALSETCNT. 
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to determine whether the processor needs subset instruction or floating­
point emulation. If so, SYSBOOT has already loaded VAXEMUL.EXE or 
FPEMUL.EXE (or both) into nonpaged pool, and EXE$INIT invokes the 
initialization routine of either or both emulators. 

4. EXE$INIT stores the physical address of the system control block (SCB) 
into the SCB base register (PR$_SCBB). 

5. EXE$INIT allocates an SPTE and stores its virtual page number and cor­
responding virtual address in MMG$GL_FREE_NO_PFN_DB_PTE and 
in MMG$GL_FREE_NO_PFN_DB_ VA. The SPTE temporarily maps an 
available physical page to manipulate a list of pages not described in the 
PFN database. 

6. EXE$INIT calls LDR$1NIT _ALL, in module SYSLDR, to invoke the ini­
tialization routines for the loadable executive images loaded by SYS­
BOOT. The routines for SYSTEM_PRIMITIVES, SYSTEM_SYNCHRON­
IZATION, ERRORLOG, and, if requested, SYSTEM_DEBUG, execute 
(see Section 31.2). ' 

7. EXE$INIT performs its SMP-related initialization, which is described in 
Chapter 34. 

8. SYSBOOT determined which SYSLOAxxx .EXE image was appropriate 
for the processor type and loaded the image into nonpaged pool (xxx is 
one of the CPU designations listed in Appendix G). 

EXE$INIT invokes EXE$LINK_ VEC, in module LINKVEC, to connect 
the routines in the SYSLOA image to vectors in the system base im­
age, SYS.EXE. Chapter 29 describes EXE$LINK_ VEC, the system images 
loaded into nonpaged pool, and the system base image. 

CPU-specific support for the console terminal, which is part of SYS­
LOA, is needed to print the announcement message (and any other 
messages). 

9. EXE$INIT initializes the console terminal and prints the announcement 
message and system version number. Note that this important milestone, 
while not very far into EXE$INIT, indicates that the base image and sev­
eral loadable executive. images have been read into memory and that 
memory management has been turned on, both significant steps in ini­
tializing the executive. 

10. It initializes the nonpaged pool variable list, described in Chapter 19. 
11. The restart parameter block (RPB J contains the boot flags passed to VMB 

in RS. If the boot flag RPB$V _DEBUG was specified, SYSBOOT loaded 
the optional loadable executive image SYSTEM_DEBUG, the XDELTA 
debugger. If the initial breakpoint flag, RPB$V _INIBPT, was specified, 
EXE$INIT executes a JSB instruction to the location INI$BRK, a BPT 

instruction that causes entry into XDELTA. 
XDELTA prompts on the console terminal and responds to any com­

mands entered. In response to a continue command, XDELTA returns to 
INI$BRK, which returns to EXE$INIT. 
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EXE$1NIT also copies the BREAKPOINT SYSGEN parameter to the 
global location EXE$GLBRKMSK. This parameter controls other break­
points later in EXE$1NIT. 

If the boot flag RPB$V _DEBUG was not specified, EXE$1NIT replaces 
the BPT instruction at INI$BRK with a NOP instruction. 

12. EXE$1NIT establishes a tentative value for the maximum number of 
processes. 

13. It sets the values for the high and low thresholds of the modified page 
list. 

14. It places the remaining physical pages represented in the PFN bitmap on 
the free page list. Each page of the PFN bitmap must be virtually mapped 
before it can be accessed; one SPTE is used for this purpose. 

15. EXE$1NIT initializes the SPTEs for paged pool. By default, this pool 
will page (if the POOLPAGING SYSGEN parameter is set); EXE$1NIT 
initializes the SPTEs as demand zero format PTEs with a protection code 
of ERKW. If pool paging is disabled, EXE$INIT allocates a physical page 
for each page of pool; it stores a PFN in each SPTE, sets the protection 
code to ERKW, sets the valid bit, and initializes the PFN database entry 
for the page. 

EXE$1NIT flushes the translation buffer to remove obsolete transla­
tions based on the earlier contents of altered PTEs. 

16. EXE$1NIT sets the POOL_INIT bit in EXE$GL_STATE, indicating that 
nonpaged pool allocation is enabled. (Paged pool must be initialized in 
process context.) Once again, EXE$INIT invokes the initialization rou­
tines of the loadable executive images loaded by SYSBOOT. 

17. EXE$INIT sets up the FIL$0PENFILE cache pointers and the top-level 
system directory name string for FILEREAD. SYSBOOT initialized these 
global parameters. 

18. EXE$INIT initializes the permanent local system block. The SYSGEN 
parameters SCSSYSTEMID, SCSSYSTEMIDH, and SCSNODE determine 
the system ID and VAXcluster node name. 

19. EXE$INIT flushes the temporary boot device mapping from the buffer. 
20. EXE$INIT invokes a SYSLOAxxx initialization routine from module 

[SYSLOA]INIADPxxx. This processor-specific routine determines which 
adapters are present on the system and initializes the adapters and their 
data structures. Section 31.1.3 describes adapter initialization. 

21. SYSBOOT may have loaded one or both of the following images into 
nonpaged pool: 

-SCSLOA.EXE, if the system has a computer interconnect (CI) adapter 
or system communication services (SCS) type system device 

-CLUSTRLOA.EXE, if the system is to participate in a V AXcluster 
system 

EXE$1NIT invokes EXE$LINK_ VEC for the images, to connect their 
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vectors in the system base image to the actual code in nonpaged pool. It 
then executes each image's initialization routine. Chapter 29 describes 
this process in detail. 

22. EXE$INIT invokes LDR$DEALLOC_PT, in module PTALLOC, to deal­
locate the SPTEs that mapped 1/0 space for the temporary use of the boot 
driver. 

23. EXE$INIT reserves a page of physical memory (the "black hole" page) 
for adapter powerfail. It stores the PFN in global location EXE$GL_ 
BLAKHOLE. When power failure occurs, for example, on a UNIBUS, all 
virtual pages mapped to UNIBUS adapter (UBA) registers or UNIBUS 1/0 
space (24 pages in all) are remapped to this physical page. This remapping 
prevents drivers for UNIBUS devices from generating multiple machine 
checks while the power is off for the UBA. Powerfail operations are dis­
cussed in more detail in Chapter 33. 

24. EXE$INIT invokes LDR$LOAD_IMAGE, in module SYSLDR, for each 
loadable executive image in its list, to load the image into memory and 
invoke its initialization routine. If the value of SYSGEN parameter SO_ 
PAGING disables paging of the executive images, LDR$LOAD_IMAGE 
maps all image sections as nonpageable. Chapter 29 describes its actions 
in detail. 

25. EXE$INIT calls LDR$ALTERNATE_LOAD, also described in Chapter 29, 
to load optional images, for example, site-specific images containing cus­
tom versions of the Magnetic Tape Accessibility ($MTACCESS) and Get 
Security Erase Pattern ($ERAPAT) system services. LDR$ALTERNATE_ 
LOAD opens [SYSx .SYS$LDR]VMS$SYSTEM_IMAGES.DATA and loads 
any images flagged for the current boot phase. (LDR$ALTERNATE_ 
LOAD executes later during the SYSINIT phase as well.) 

26. EXE$INIT initalizes the first page file control block (PFL), called the null 
page file block, to access the shell process. Since the shell is part of the 
loaded executive image WORKING_SET _MANAGEMENT, EXE$INIT 
locates the address of the WCB mapping WORKING_SET _MANAGE­
MENT and stores it in the PFL. It also stores the virtual block number 
(VBN) of the shell within the image file. 

27. EXE$INIT invokes the CPU-specific routine SMP$SETUP _SMP (see 
Chapter 34) to initialize the multiprocessing environment if the con­
figuration is a suitable one. 

28. If the SYSGEN parameter REALTIME.:.SPTS is nonzero, EXE$INIT al­
locates the number of SPTEs that it specifies. It calculates the size of 
the real-time bitmap control block, allocates it from nonpaged pool, 
and stores its address in the global location EXE$GL_RTBITMAP. The 
connect-to-interrupt driver, described in Chapter 22, uses these SPTEs 
and the bitmap. 

29. EXE$INIT allocates three lock management data structures from non­
paged pool: the lock ID table, the resource hash table, and a process 
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bitmap used for deadlock detection. The map has one bit for each possi­
ble process. 

30. It allocates the PCB and sequence number vectors from nonpaged pool. 
Chapter 25 describes these structures. 

The initialization routine for the PROCESS_MANAGEMENT loadable 
executive image, module SYSTEM_PCBS_AND_PHDS, initialized three 
PCBs: a system PCB used by the page fault handler to read faulted pages 
into the system working set, the swapper PCB for the swapper process, 
and a null PCB used as a placeholder. 

EXE$INIT stores the address of the swapper PCB in the second slot 
of the PCB vector. It initializes all other PCB vector slots to contain 
the address of the null PCB. The PCB. vector has one extra entry, where 
EXE$INIT stores the address of the system PCB. It initializes all entries 
in the sequence number vector to zero. 

31. EXE$INIT calculates an extended process ID for the swapper process and 
the null PCB, then invokes SCH$CHSE, in module RSE (see Chapter 12), 
to make the swapper process computable. 

32. From nonpaged pool, it allocates the process header (PHD) vectors. These 
are the reference count array and the process index array, which contain 
an entry for each balance slot. Chapter 14 describes these vectors. 

Each element in the reference count array is initialized to contain -1. 
The null PCB (with a process index of zero) does not require a balance 

slot. An index of zero can thus be used for another purpose, namely 
to indicate a free balance slot. Thus, to indicate free balance slots, the 
process index array is zeroed. 

As Appendix F illustrates, the system header and SPT immediately 
follow the balance slot area in system address space. In fact, portions 
of the memory management subsystem treat the system header as the 
occupant of an additional balance slot, one with a slot number equal to 
the SYSGEN parameter BALSETCNT. The two PHD vector arrays have 
one extra entry at the end to reflect this feature. 

33. The entries in the PFN database arrays for the page occupied by the RPB 
are initialized. 

34. EXE$INIT allocates a WCB from nonpaged pool and initializes its header. 
Despite its name, NET$AR_ WCB, the structure serves as a header for a 
kernel mode work queue used by the network logging monitor. 

35. It initializes the page-and-swap-file vector. Each array element is the 
address of a PFL for a page or swap file recognized by the system. It 
stores the address of the null page file block, initialized in step 26, in the 
first array element. 

36. The maximum depth of the lock manager resource name tree is calcu­
lated. The size of the tree is based on the size of the interrupt stack. 

37. It stores the boot time in the primary's per-CPU database. 
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38. EXE$INIT stores the process index and the address of the system header 
in the system PCB. 

39. EXE$INIT calls LDR$1NIT _ALL to invoke any remaining loadable exec­
utive image initialization routines. 

40. It invokes EXE$INL TIMWAIT, in module [SYSLOA)ERRSUBxxx. This 
initializes CPU$1-TENUSEC and CPU$L_UBDELAY, the timed wait 
count variables used in timed wait loops generated by the TIMEWAIT 
and TIMEDWAIT macros. These variables count iterations of instruction 
loops that are executed, in part, to wait for a minimum amount of time 
to elapse. These counts are used, for example, during powerfail recovery, 
to wait for disk drives to come back online. These counts also control 
the length of time a processor spins waiting to acquire a spinlock. They 
are not constants because they vary with CPU type. and therefore are 
calibrated during system initialization by EXE$INLTIMWAIT. In earlier 
versions of VMS, these counts were systemwide globals. SMP support 
requires that they be CPU-specific and thus capable of being changed, for 
example, to reflect cache disabling on one CPU. Therefore, the counts 
now reside in the per-CPU databases. 

CPU$1-TENUSEC is the number of times a prototype loop executes 
in 10 microseconds. The prototype loop includes an inner loop that is 
simply a SOBGTR instruction. CPU$L_UBDELAY is the number of times 
the SOBGTR instruction executes in 3 microseconds. In actual use, the 
prototype loop is likely to be replaced by code that polls a device register. 
The delay represented by the inner SOBGTR loop is incorporated so as 
to introduce a 3-microsecond gap between successive references to the 
UNIBUS or other I/O bus that contains the device register. 

41. EXE$INIT inserts the driver prolog table IDPTJ for the console terminal 
in the driver list at the listhead IOC$G1-DPTLIST. 

42. From nonpaged pool, it allocates Create Logical Name l$CRELNMJ ar­
gument lists for SYS$DISK and SYS$SYSDEVICE. The swapper process 
accesses this area in nonpaged pool and creates the logical names after it 
initializes paged pool and the logical name database. 

43. SYSBOOT loaded the terminal class driver into nonpaged pool. EXE$INIT 
invokes IOC$INITDRV, in module RELOCDRV, to initialize its data 
structures as directed by the DPT !defined by the driver's invocations 
of the DPT_STORE macro). Then EXE$INIT inserts the DPT into the 
list at IOC$G1-DPTLIST, relocates the terminal class vector table, and 
connects it to the console port driver data structures. SYSGEN estab­
lishes data structures for additional terminals later. 

44. EXE$INIT completes the configuration of the I/O database for the system 
device. Based on information in the driver or drivers' DPTs, EXE$INIT 
allocates and initializes driver data structures if necessary and links the 
drivers into the I/O database. It scans the list of adapter control blocks 
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(ADPs) to locate the boot adapter and obtains the boot device controller 
letter and the device unit number from the RPB. 

EXE$INIT processes the subpart driver, if one exists; proceeds to the 
port driver, if one exists; and finally processes the system device driver. 
For each driver, it performs the following actions: 

a. EXE$INIT inserts the driver's DPT into the driver list. 
b. It then allocates a complete set of driver data structures from non­

paged pool, including a device data block (DDB), a unit control block 
(UCB), an object rights block (ORB), a channel request block (CRB), an 
interrupt data block (IDB), and a device spinlock. It initializes these 
structures and connects them to each other and the rest of the I/O 
database. (The system device driver data structures, within the load­
able executive image SYSTEM_PRIMIUVES, are initialized by the 
SYSTEM_PRIMITIVES initialization routine.) 

c. EXE$INIT invokes IOC$INITDRV to initialize the data structures as 
directed by the DPT. 

d. For a MicroVAX with Q22-bus multilevel interrupts enabled and a 
system device on a Q22-bus adapter, EXE$INIT inserts instructions 
into the CRB to ensure that the system operates only with a correct 
bus configuration, and to adjust the IPL at each device interrupt. 

e. It invokes SMP$INIT _SPL, in module SPINLOCKS, with the address 
of the device spinlock allocated in step b. SMP$INIT _SPL stores the 
appropriate IPL, rank, and timeout interval, among other items, in 
the new device spinlock. 

f. If the driver specifies a fork IPL rather than a fork spinlock, EXE$INIT 
sets a flag indicating the presence of a device driver unable to func­
tion correctly in an SMP environment. VMS will not enable SMP 
operation while a driver of this type is loaded. 

45. If the device is a subpart, EXE$INIT marks its UCB as a template and 
sets its status to online. Otherwise, the UCB is marked valid. 

46. EXE$INIT constructs a name for the system device unit using informa­
tion passed from VMB and the driver name, then stores the device and 
driver names in the system DDB, SYS$AR_BOOTDDB. 

47. It stores the system device UCB address in EXE$G1-SYSUCB. 
48. Loadable executive images reside on the system device. EXE$INIT scans 

the list of loadable images at LDR$GQ_IMAGE_LIST. If a loadable ex­
ecutive image contains a pageable image section, EXE$INIT stores the 
system device UCB address in the image's associated WCB. 

49. It allocates an SPTE, if requested, for the system device and stores its 
number in UCB$L_SVPN. 

50. Once the system device name is determined, the equivalence names for 
SYS$DISK and SYS$SYSDEVICE are stored in the $CRELNM argument 
lists allocated in step 42 for later use by the swapper process. 
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51. If the system is a VAXcluster member and requested a remote bootstrap 
over its network device, BOO$GB_NODENAME contains the node name 
of the remote system serving the system disk. EXE$INIT creates a system 
block for this node. 

52. All loaded drivers are then invoked at their controller and unit initial­
ization entry points. 

53. EXE$INIT invokes EXE$INIPROCREG, a CPU-specific routine within 
the SYSLOA image, to initialize processor registers, for example, to en­
able interval timer interrupts. 

54. It allocates two SPTEs for tape mount verification and stores the virtual 
address of the first SPTE at EXE$GL_TMV_SVAPTE. 

55. It allocates a page of physical memory and an SPTE to map it for 
mount verification. The virtual address of the SPTE is stored in EXE$GL_ 
SVAPTE. 

56. It allocates an SPTE, computes the associated system virtual address, and 
stores that address in MMG$G1-DZRO_ VA. This is used to optimize 
global demand zero page deletion. 

57. It allocates two pages of physical memory and two SPTEs to map them. 
These become the system erase pattern buffer and a pseudo page table 
mapping the buffer. The virtual addresses are stored in EXE$G1-ERASE­
PB and EXE$G1-ERASEPPT. These optimize erasure of disk blocks dur­
ing the deletion of an erase-on-delete file. 

58. EXE$INIT adjusts the maximum allowable working set (if necessary) to 
reflect the amount of available physical memory. It subtracts the number 
of physical pages used by the executive from the amount of available 
physical memory. 

59. It clears the warm start inhibit and cold start inhibit flags, which are 
used by the restart mechanism. Chapter 33 describes these flags. 

60. It allocates a page of physical memory and an SPTE to map it to use as 
an executive mode data page. It clears the page and stores its address in 
EXE$AR_EWDATA. 

61. It allocates two pages of physical memory and two SPTEs to map them. 
The first page becomes the swapper's only Pl page, the Pl pointer page, 
described in Appendix C. EXE$INIT stores the address of the swapper 
PCB in that page at the offset CTL$GL_PCB. 

The second page becomes the swapper Pl page table page, required to 
map the Pl pointer page. 

62. EXE$INIT removes itself from the override set and determines SMP 
status (enabled or disabled) from the SYSGEN parameter MULTIPRO­
CESSING and the information described in step 44f. If SMP is enabled, 
EXE$INIT sets the start flag, indicating that secondary CPU initialization 
may proceed. Chapter 34 describes these flags and SMP initialization. 

63. Finally, EXE$INIT builds a PC/processor status longword (PSLJ pair on 
the stack and REis, passing control to the scheduler routine SCH$SCHED 
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at IPL$_SCHED, on the interrupt stack. The memory that EXE$INIT 
occupies is deallocated later by the SYSINIT process. 

I/O Adapter Initialization 

A CPU-specific routine in module [SYSLOA]INIADP.xxx determines the lo­
cation of external adapters and initializes the adapters for later use by SYS­
GEN. 

Although some of the initialization that INIADP.xxx performs depends on 
the nature of the external I/O adapter, there are several general steps that 
are taken for each adapter: 

1. INIADPxxx allocates an ADP from nonpaged pool and initializes it. 
The ADP identifies the adapter and contains information about how the 
adapter's internal registers are mapped. 

2. It allocates SPTEs to map to the I/O space addresses for internal adapter 
registers and other I/O space assignments. 

3. It initializes the adapter hardware. 

INIADP.xxx records information about the hardware configuration in three 
parallel arrays in nonpaged pool, which are indexed by nexus number (the 
contents of EXE$GL_NUMNEXUS specify the number of elements in each 
array): 

• MMG$GL_SBICONF contains the address of a longword array. Each ele­
ment contains the starting virtual address to which its adapter registers 
are mapped . 

• EXE$GL_CONFREG contains the address of a byte array that specifies the 
type code of each adapter, as defined by the $NDTDEF macro in LIB.MLB. 
Processors such as VAX-ll/78x and VAX 86x0 CPUs, whose adapter type 
codes are one byte long, use this format. 

• EXE$GL_CONFREGL contains the address of a longword array that also 
specifies the type code of each adapter. Processors such as VAX 8200 family 
systems, whose type codes are a longword in length and include a bus code, 
use this format. 

Table 31.2 lists the differences in ADP size and mapping requirements for 
many of the possible external adapters. 

INIADPxxx also checks for the presence of UNIBUS or Q22-bus memory. 
If this memory exists, INIADPxxx disables the associated map registers. 

31.2 LOADABLE EXECUTIVE IMAGE INITIALIZATION ROUTINES 

Chapter 29 describes the general mechanism by which loadable executive 
image initialization routines are invoked. The actions of these routines are 
constrained by the current phase of system initialization, represented by 
the flags in EXE$GL_STATE. For instance, a routine that needs to allocate 
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Table 31.2 External Adapter Initialization 

Size of ADP Number of System Virtual 
Adapter Type {in bytes) Pages Mapped for Adapter 

Local memory None exists 1 (or 0 on some CPUs) 
MA780 shared memory 132 1 
UNIBUS adapter 608 or 1248 1 24 2 

Q22-bus adapter 1128 24 2 

MASSBUS adapter 56 8 
DR32 interface 56 4 
CI interface 66 16 
KDB50 600 8 
KLESI-B 600 8 
DMB32 interface 56 2 
DRB32 56 16 
DEBNI 152 16 
Generic VAXBI device 56 16 
Unoccupied slot None exists 1 to allow access 
DWMBA 88 1 

1 An ADP for a UBA with indirect vectors also contains the interrupt service 
routines for the UBA and 128 longword vectors, corresponding to UNIBUS 
vectors from 0 to 77 48 • 

2 Eight pages map the UBA internal registers, such as mapping registers and 
data path registers. Sixteen pages map the UNIBUS 1/0 page to allow virtual 
access to device control/status registers, data registers, and so on. 

nonpaged pool cannot do so before EXE$INIT sets the POOL_INIT flag. An 
initialization routine unable to perform its tasks in the current phase returns 
a status to its invoker indicating that it should be reinvoked at a later phase. 
When the initialization routine completes all its tasks, it is deallocated. 

Each initialization routine performs initialization that logically relates to 
the function of its associated image. For instance, the SYSTEM_PRIMITIVES 
image contains the interrupt service routines (ISRs) that handle fork dis­
patching. The SYSTEM_PRIMITIVES initialization routine stores the address 
of these ISRs in the appropriate SCB vectors. 

The following paragraphs describe some of the actions of the loadable 
executive image initialization routines invoked from EXE$INIT, the swapper 
process, and the SYSINIT process. Note that these routines can be invoked 
multiple times and thus may not perform all listed functions in the same 
system initialization phase. 

The SYSTEM_PRIMITIVES initialization routine formats and links the 
nonpaged pool lookaside list packets, as described in Chapter 19. It builds 
the 1/0 database structures for the system, console, and mailbox devices 
and stores the addresses of the fork ISRs into the appropriate SCB vectors. 
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It inserts two permanent system timer queue entries into the timer queue 
and stores the addresses of the interval timer and software timer ISRs in the 
appropriate SCB vectors. 

The SYSTEM_DEBUG initialization routine stores the address of the X­
DELTA ISR in its SCB vector. 

The SYSTEM_SYNCHRONIZATION initialization routine initializes the 
static spinlock vector area. It initializes spinwait timeout values; assigns 
device spinlocks to the null device, console device, and permanent mailbox 
devices; and initializes the buffer pool used by SMP$FORILTO_PRIMARY. 

The ERRORLOG initialization routine allocates and initializes error log 
allocation buffers and initializes the global cells that describe them. 

The EVENT _FLAGS_AND_ASTS initialization routine copies the con­
tents of frequently referenced data cells such as SCH$G1-PCBVEC from 
the system base image into cells local to itself to improve access time. It 
initializes the IPL 2 SCB vector with the address of its ISR, SCH$ASTDEL. 
It connects system services, including the Set Event Flag ($SETEF) and Clear 
Event Flag ($CLREF) system services to their system service vectors. 

The PROCESS_MANAGEMENT initialization routine similarly copies 
the contents of frequently referenced data cells from the system base im­
age into local cells. It stores the address of the system logical name table 
in the group and job templates used for process creation. It initializes the 
swapper PCB and PHD, the system PCB, and the null PCB. It stores the ad­
dress of SCH$RESCHED, the IPL 3 ISR, in the SCB vector. It connects the 
process control system services, including the Create Process ($CREPRC), 
Delete Process ($DELPRC), Get Job/Process Information ($GETJPI), and Set 
Process Priority ($SETPRI) system services. 

The IO_ROUTINES initialization routine similarly copies the contents of 
frequently referenced data cells from the system base image into local cells. 
It stores the address of the IPL 4 ISR, IOC$IOPOST, in the SCB vector. It 
enables system restart by storing the physical address of the system restart 
routine, EXE$RESTART, in the RPB at RPB$1-RESTART and the checksum 
of the first 31 longwords of the restart routine at RPB$L_CHKSUM. It stores 
the address of the powerfail ISR, EXE$POWERFAIL, in the SCB vector. 

The WORKING_SET _MANAGEMENT initialization routine creates the 
swapper process's PO page table. It similarly copies the contents of frequently 
referenced data cells from the system base image into local cells. It connects 
the working set control system services, including the Adjust Working Set 
Limit ($ADJWSL) and Lock Working Set ($LKWSET) system services. 

The PAGE_MANAGEMENT initialization routine stores the address of 
the page fault exception service routine (ESR) in the SCB vector. It ensures 
that modified page writer SYSGEN parameters are sensible; for instance, it 
checks that MPW _ WAITLIMIT is not less than MPW _HILIMIT and adjusts 
it if necessary. MPW _IOLIMIT specifies the number of concurrent I/O oper­
ations that the modified page writer can have in progress. The initialization 
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routine allocates that many I/O request packets (IRPs) and inserts them on 
a private lookaside list. 

The EXCEPTION initialization routine stores the addresses of its ESRs, 
such as the reserved operand ESR, EXE$ROPRAND, and the access violation 
ESR, EXE$ACVIOLAT, in the SCB. It stores the addresses of the change 
mode to kernel (CHMK) and change mode to executive (CHME) ESRs in the 
SCB. It saves the address of the EXCEPTION image's loadable image data 
block (LDRIMG) and WCB in the boot control block for use during bugcheck 
processing. If the SYSGEN parameter DUMPSTYLE is 1, it allocates 127 
SPTEs used to write a selective dump. 

The IMAGE_MANAGEMENT initialization routine stores the address of 
the known file entry resource name string and its size in the global location 
EXE$GQ_KFE_LCKNAM. 

31.3 INITIALIZATION IN PROCESS CONTEXT 

31.3.1 
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The remaining steps in system initialization must be performed by a process. 
For instance, system services can only be called from process context and a 
command language interpreter (CLI) can only be mapped into Pl space by 
code executing in process context. 

The process phase of system initialization is divided into several parts: the 
swapper initialization routine EXE$SWAPINIT, in swapper process context; 
the SYSINIT process; and the startup process. 

Swapper Process 

EXE$INIT transfers control to SCH$SCHED, in module SCHED, which se­
lects the highest priority computable process for execution. Since only one 
process is computable at this time, the choice is easy: the scheduler selects 
the swapper process. 

Several routines cooperate to initialize the swapper's process context. An 
initialization routine in the PROCESS_MANAGEMENT loadable executive 
image initializes the swapper PCB, PHD, and kernel stack. An initialization 
routine in the WORKING_SET _MANAGEMENT loadable executive image 
allocates nonpaged pool to use as the swapper's PO page table, described 
in Chapter 14. (The page table's address is stored in the global location 
SWP$GL_MAP, and pages mapped in the swapper map are accessible as PO 
virtual pages when the swapper is the current process.) EXE$INIT allocates 
a Pl page table page and the Pl pointer page. 

The swapper PHD contains the address of EXE$SWAPINIT as the saved PC, 
so the swapper executes EXE$SWAPINIT when it is placed into execution 
for the first time. The saved PSL contains zeros, causing the swapper process 
to run in kernel mode at IPL 0. 

EXE$SWAPINIT contains system initialization code, executed only once 
during the life of the system. It performs the minimum initialization that 
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requires process context. In particular, it initializes paged pool, invokes load­
able executive image initialization routines once again, and initializes the 
logical name database. 

EXE$SWAPINIT begins by setting the swapper bit in EXE$GLSTATE 
to indicate that process context is available. EXE$1NIT already initialized 
demand zero PTEs for all of paged pool. EXE$SWAPINIT now initializes 
the paged pool forward link and count fields in the first page of the pool. 
The resulting page fault requires process context. EXE$SWAPINIT invokes 
LDR$INIT _ALL to invoke loadable executive image initialization routines 
and to perform address fixups for pageable image sections in loadable execu­
tive images. The loadable executive image initialization routines execute in 
the context of the swapper process with paged pool available for allocation. 

EXE$SWAPINIT then performs the following steps to initialize the logical 
name database, described in Chapter 35: 

1. It allocates paged pool for the shareable logical name hash table. 
2. It zeros the allocated area, initializes its header, and stores its address in 

the longword pointed to by LNM$ALHASHTBL. 
3. It initializes the logical name table header (LNMTH) of the system di­

rectory. It records the hash table address in the LNMTH. It then hashes 
the system directory name and inserts it into the appropriate hash chain 
of the shareable hash table. 

4. EXE$SWAPINIT initializes the system logical name table, recording the 
hash table address in its LNMTH. It invokes LNM$INSLOGTAB, in 
module LNMSUB, to insert the system table into the database. 

5. The swapper requests the $CRELNM system service to create the fol­
lowing logical names: 

-LNM$DIRECTORIES, whose equivalence names are the shareable and 
per-process shareable directories 

-The executive mode table name LNM$FILLDEV 
- The supervisor mode table name LNM$FILE_DEV 
-The table names that provide upward compatibility from VMS Ver-

sion 3: LOG$PROCESS, LOG$GROUP, LOG$SYSTEM, TRNLOG$_ 
GROUP _SYSTEM, TRNLOG$_PROCESS_GROUP, TRNLOG$_PRO­
CESS_SYSTEM, and TRNLOG$_PROCESS_GROUP _SYSTEM 

-The table names LNM$PERMANENT _MAILBOX and LNM$TEMPO­
RARY _MAILBOX 

-The table name LNM$SYSTEM 
-The executive mode names SYS$DISK and SYS$SYSDEVICE in the 

LNM$SYSTEM table 

6. It deallocates the nonpaged pool used by EXE$1NIT to pass information 
needed for the creation of SYS$DISK and SYS$SYSDEVICE. 

EXE$SWAPINIT creates the SYSINIT process, which performs more of 
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the system initialization requiring process context. EXE$SWAPINIT exits 
by jumping to the swapper niain loop. 

SYSINIT Process 

In one sense, SYSINIT is an extension of the swapper process. However, 
the initialization code is isolated to prevent encumbering the swapper with 
more code that only executes once during the life of a system. This isolation 
is one of several techniques used during system initialization and process 
creation to cause seldom-used code to disappear after it executes. A list of 
such techniques appears in Appendix B. 

SYSINIT performs the following major functions: 

• It loads RMS and other loadable executive images . 
• It initializes VAXcluster software for a VAXcluster node. 
• It opens the swap and page files and records their extents. 
•It activates FllBXQP.EXE, the Files-11 Extended QIO Processor IXQP) 

image, as a system global section. 
• It loads the system message file . 
• It creates the startup process. 

Pool Allocation by SYSINIT. SYSINIT, like EXE$INIT, allocates nonpaged 
pool. It also allocates some paged pool. However, the sizes of various blocks 
are not directly related to SYSGEN parameters. Structures that are allocated 
from nonpaged pool as a result of the execution of SYSINIT include the 
following: 

• Four security audit structures 
• PFL structures and bitmaps for the page and swap files 
• Lock and resource blocks 
• File control blocks IFCBs) and WCBs for all opened files 
• Space to copy the contents of the error log allocation buffers from the crash 

dump file 

Detailed Operation of SYSINIT. SYSINIT is a normal process, scheduled and 
placed into execution in the ordinary way. Its main module is [SYSINI]SYS­
INIT. SYSINIT begins execution in user mode but performs much of its work 
in kernel and executive modes. 

SYSINIT takes the following steps: 

1. It changes mode to kernel and sets the SYSINIT bit in EXE$G1-STATE 
to indicate that the SYSINIT process context is available. 

2. It expands the kernel stack and invokes LDR$UNLOAD_IMAGE, in 
module SYSLDR, to release the physical pages and address space occupied 
by EXE$INIT. 
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3. SYSINIT allocates four security audit vectors from nonpaged pool. It 
initializes the structure headers and the pointers to these structures: 
NSA$AR_ALARM_ VECTOR, NSA$AR_AUDIT _VECTOR, NSA$.AR_ 
ALARM_FAILURE, and NSA$AILAUDIT _FAILURE. 

4. SYSINIT invokes the loader to activate the following loadable executive 
images and execute their initialization routines: 

RMS.EXE 
RECOVERY _UNIT _SERVICES.EXE 
DDIF$RMS_EXTENSION.EXE 
SYSLDR_DYN.EXE 

If paging of RMS and related images is disabled, LDR$LOAD_IMAGE 
places them in nonpaged pool. 

SYSINIT sets the RMS bit in EXE$GL_STATE to indicate that RMS is 
loaded. RMS cannot be used, however, until the XQP is mapped. 

5. From user mode, SYSINIT invokes LDR$ALTERNATE_LOAD, previ­
ously invoked by EXE$INIT, to load optional images. LDR$AL TER­
NATE_LOAD opens the file [SYSx.SYS$LDR]VMS$SYSTEM_IMAGES. 
DATA and loads those images requesting to be loaded during the current 
boot phase. 

6. SYSINIT changes mode to kernel to create a system-specific root re­
source. It requests the Enqueue Lock Request ($ENQ) system service to 
create an executive mode system resource and acquire an exclusive lock 
on it. The resource name is the string SYS$SYS_ID concatenated with 
the system's SCS system ID (SYSGEN parameters SCSSYSTEMID and 
SCSSYSTEMIDH). The name is therefore unique within the VAXcluster 
system. 

SYSINIT locks the root resource with a system-owned lock so that the 
lock survives the deletion of SYSINIT. SYSINIT stores the lock ID in 
EXE$GL_SYSID_LOCK. The lock is always mastered on the local VAX­
cluster system, since each VAXcluster node locks its own unique name. 
Any sublocks of this lock are guaranteed to be mastered locally. Thus, 
VMS components use this lock as a parent for locks whose scope is lim­
ited to the local V AXcluster node. Appendix H provides more information 
on the system ID lock, and Chapter 10 describes lock management in 
general. 

7. SYSINIT changes mode to kernel to set the system time. It invokes the 
routine ExE$INIT _ TODR in the SYSLOA image. Chapter 11 describes 
EXE$INIT _ TODR and altering the system time. 

8. SYSINIT changes mode to kernel to initialize cluster connection man­
agement. If this system expects to participate in a VAXcluster sys­
tem, SYSINIT locates the incarnation file, SYS$SYSTEM:SYS$INCAR­
NATION.DAT. It opens the file, reads the first block, and stores the 
WCB address and the data in the cluster incarnation block (CLUICB). 
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SYSINIT creates the stand-alone configure process, STACONFIG. This 
process autoconfigures disks and SCS communication ports. If the SYS­
GEN parameter DISK_QUORUM indicates there is to be a quorum disk, 
STACONFIG starts SCS polling to discover remote mass storage control 
protocol (MSCP) disk servers. Connection to the quorum disk may be 
necessary for the node to join the V AXcluster system. SYSINIT sets a 
flag to tell the V AXcluster connection manager to proceed with cluster 
formation and prints the following message on the console terminal: 

Waiting to foI'lll or join VAXcluster 

It waits for 100 milliseconds, during which time the STACONFIG 
process and the VAXcluster connection manager run, and then tests 
whether the quorum disk has been found. 

If it has, SYSINIT assigns a channel to it, opens the quorum file, and 
starts the quorum disk polling routine to run every QDISKINTERVAL 
seconds. It then checks whether the system is a member of a VAXcluster 
system yet. If not, SYSINIT waits again. 

When the system is a member, SYSINIT takes out a concurrent read 
lock on the system device and resets the time to correspond to the 
clusterwide time. 

9. If the system disk is to be a member of a disk shadow set, SYSINIT 
changes mode to kernel and establishes the shadow set. 

10. Back in user mode, SYSINIT recreates executive mode logical names for 
SYS$SYSDEVICE and SYS$DISK in the system logical name table. (In 
the case of an MSCP system disk, their equivalence names are not quite 
right. At the time EXE$INIT created them, the allocation class of the 
system disk was not yet known. When SYSINIT runs, the MSCP server 
for the system disk has communicated its allocation class and SYSINIT 
can form an equivalence name that contains the allocation class.) 

SYSINIT also creates the following logical names: 

SYS$SYSROOT 
SYS$COMMON 
SYS$SHARE 
SYS$MESSAGE 
SYS$SYSTEM 
SYS$LOADABLE_IMAGES 

The creation of these names occurs here because they are needed 
as a part of the creation of the startup process. The name of the im­
age that STARTUP initially executes is SYS$SYSTEM:LOGINOUT, and 
SYS$SYSTEM is defined in terms of SYS$SYSROOT and SYS$COM­
MON. LOGINOUT performs a merged image activation to map the 
Digital command language (DCL) CLI into Pl space. The image acti-
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vator uses logical name SYS$SHARE to locate the shareable image DCL­
TABLES.EXE, which contains the command database for the DCL CLI. 

11. If the SYSGEN parameter UAFALTERNATE is set, SYSINIT creates the 
executive mode logical name SYSUAF in the system table. Its equiva­
lence name is SYS$SYSTEM:SYSUAFALT.DAT. This feature allows an 
alternative authorization file to be used. If the alternative authorization 
file does not exist, logins are enabled only from the console terminal. 

12. In kernel mode, SYSINIT uses the primitive file I/O routines to open the 
following files on the system disk: 

-[SYSn.SYSEXE]PAGEFILE.SYS, if not already open 
-[SYSn.SYSEXE]SWAPFILE.SYS, if SYSGEN parameter SWPFILCNT is 

nonzero 
-[SYSn.SYSEXE]SYSDUMP.DMP 

It ensures that the file highwater mark is set to the end of each of 
these files. A highwater mark prevents access to file blocks that are 
allocated but not yet written. These blocks may have previously belonged 
to another file, now deleted, and may still contain data from the other 
file. A high water mark is one way to prevent access to this data. However, 
SYSINIT adjusts the highwater mark to the end of the file for the page file, 
swap file, and system dump file, since the mechanism is not appropriate 
for these special-purpose files. 

13. SYSINIT changes mode to kernel and invokes LDR$LOAD_IMAGE to 
open the loadable executive image SYS$MESSAGE:SYSMSG.EXE, the 
system message file. 

14. It calls a kernel mode procedure that performs the following functions: 

a. It initializes the global page table entry (GPTE) list. 
b. The dump file (or the page file if no dump file exists) contains the 

contents of the error log allocation buffers at the time of the crash 
or shutdown. These buffers were written by the bugcheck code, de­
scribed in Chapter 32, so their contents would not be lost. SYSINIT 
attempts to locate saved error log buffers and record their contents. 

It multiplies the number of buffers by the number of pages per 
buffer, adds sufficient space for a header and an extra buffer for the 
bugcheck error log entry, and allocates this amount of nonpaged pool. 
It stores the address of this area in EXE$GLSAVED_EMBS. It copies 
the error log buffers from the dump or page file to the area and 
records the number of buffers copied in EXE$GW_SAVED_EMBS_ 
COUNT. Eventually, the messages will be written to SYS$ERROR­
LOG:ERRLOG.SYS. 

c. The kernel routine initializes the page file data structures; it allocates 
a PFL and a bitmap from nonpaged pool to describe the page file and 
the availability of each block in the file. The bitmap is initialized 
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to all l's to indicate that all blocks are available. If the page file 
contains a valid dump and the SYSGEN parameter SAVEDUMP is 
set to 1, the blocks in the page file that contain the dump are marked 
unavailable. The address of the page file WCB, the page file size, the 
bitmap address, the free page count, and other items are stored in the 
PFL, whose address is then stored in the page-and-swap-file vector. 

Note that page file blocks marked unavailable because they contain 
a crash dump may be reclaimed by copying them to another file 
using the System Dump Analyzer (SDA) command COPY, or released 
with the command ANALYZE/CRASH_DUMP/RELEASE. However, 
releasing the blocks deletes the crash dump. 

d. If present, the swap file is initialized. The routine allocates a PFL 
and a bitmap from nonpaged pool to describe the swap file and the 
availability of each block in the file. It initializes the bitmap to all 
l's, indicating that all blocks are available. The address of the swap 
file WCB, the swap file size, the bitmap address, the free page count, 
and other items are stored in the PFL, whose address is then stored 
in the page-and-swap-file vector. 

Chapter 14 describes the page-and-swap-file vector. 
e. The kernel mode routine stores the address of RMS in the Pl pointer 

page at the location CTL$G1-RMSBASE. 
f. So that the error log entry describing a bugcheck is not lost if the error 

log buffers are full at the time of the crash, the VMS bugcheck code 
writes it in the first block of the dump file. After a crash, SYSINIT 
copies this error log entry from the dump file into the last error log 
buffer in the area pointed to by EXE$G1-SAVED_EMBS. It logs a cold 
start in the system error log. 

15. SYSINIT exits the kernel mode procedure, returning to user mode, and 
changes mode to executive. It requests the Image Activate ($IMGACT) 
and Image Fixup ($IMGFIX) system services to activate the XQP in 
SYSINIT's Pl space. After setting the XQP flag in EXE$GL_STATE, it 
transfers control to kernel mode initialization routine in the XQP. From 
this point on, the file system is available for SYSINIT's file operations. 

16. In user mode, SYSINIT assigns a channel to the system disk. In executive 
mode, it calls a procedure to mount the system disk. 

17. SYSINIT requests the Set Time ($SETIME) system service to record the 
system time in the system image. 

18. SYSINIT disables the FIL$0PENFILE cache and deallocates its pages to 
nonpaged pool. 

19. It creates the logical name SYS$TOPSYS. 
20. SYSINIT reads the XQP's image header, changes mode to kernel, and 

calls a procedure to create global sections for the XQP's image sections. 
If the SYSGEN parameter ACP _XQP _RES is set, SYSINIT creates resident 
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global sections so that the pages of the XQP are always ill physical 
memory. 

21. SYSINIT opens the page file, swap file, dump file, and all loadable execu­
tive image files. From kernel mode, each WCB is converted into a shared 
window by clearing the WCB$L_PID field, setting the WCB$V _SHRWCB 
flag, and incrementing its reference count to 2. Thus, an attempt to delete 
one of these files will only mark the file for deletion. 

22. Finally, SYSINIT creates the startup process, specifying that it execute 
the LOGINOUT image, which maps the DCL CLI into Pl space. Chap­
ter 27 describes LOGINOUT. 

Startup Process 

The startup process created by SYSINIT completes system initialization. 
This process is the first in the system to include a CLI. The inclusion of 
DCL allows the operation of this process to be directed by a DCL command 
procedure, SYS$SYSTEM:STARTUP.COM. 

STARTUP.COM. For VMS Version 5.0, the STARTUP command procedure 
was reorganized. It now directs the execution of other command proce­
dures that perform the actual work, using input from three data files in 
the SYS$STARTUP directory. 

• VMS$PHASES lists eight startup phases from INITIAL to END. It se­
quences the invocation of the command procedures and executable images 
defined in the other two data files . 

• VMS$VMS is reserved for use by the operating system. Each record con­
tains the name of a VMS-supplied command procedure or executable im­
age, the startup phase in which it executes, a flag through which execution 
is enabled or disabled, and a mode field defining the manner in which the 
file executes (for instance, mode "b" signifies that the file should be sub­
mitted as a batch job). 

By convention, the file name in each VMS$VMS record begins with the 
string VMS$, followed by the name of the phase in which the image or 
procedure executes. For instance, the command procedure VMS$INITIAL-
050_ VMS.COM executes in the INITIAL phase. 

• VMS$LAYERED is reserved for the use of customers and layered products. 
A customer or layered product installation procedure uses SYSMAN to 
insert the name of the layered product startup file, its execution phase, and 
the flag, mode, and other fields, as in VMS$VMS, into a VMS$LAYERED 
record. STARTUP executes the command procedure in the specified phase 
and manner. 

VMS$VMS, VMS$LAYERED, and all files that they specify reside in the 
SYS$STARTUP directory. STARTUP processes them as follows: 
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1. It reads the first phase defined in VMS$PHASES and stores it as the 
current phase. 

2. For records in VMS$VMS whose phase matches the current phase, it 
executes the associated image or command procedure if it is enabled. 
When no more records in VMS$VMS match the current phase, STARTUP 
executes each image or command procedure defined in VMS$LAYERED 
whose phase matches the current phase. 

3. STARTUP waits for all batch processes and subprocesses to complete. 
4. When no more records exist for the current phase, STARTUP reads the 

next phase from VMS$PHASES and processes records from VMS$VMS 
and VMS$LAYERED that match the new phase. 

5. Finally, when no more phases remain, STARTUP exits. 

Some of the more important command files and their actions follow. Note 
that this section describes the full set of STARTUP actions, some of which 
are disabled when the SYSGEN parameter STARTUP _Pl has the value MIN. 

VMS$INITIAL-050_ VMS.COM, the first command procedure invoked by 
STARTUP, performs these actions: 

1. It creates the following system logical names: 

SYS$SPECIFIC 
SYS$SYSDISK 
SYS$ERRORLOG 
SYS$EXAMPLES 
SYS$HELP 
SYS$INSTRUCTION 
SYS$LIBRARY 
SYS$MAINTENANCE 
SYS$MANAGER 
SYS$UPDATE 
SYS$TEST 

2. It preserves SYSGEN parameters. If the SYSGEN parameter WRITESYS­
PARAMS is set, it runs SYSGEN to execute WRITE CURRENT, which 
records the parameters in SYS$SYSTEM:VAXVMSSYS.PAR. 

3. It installs MTHRTL.EXE or UVMTHRTL.EXE, whichever is the appro­
priate math library. 

4. It makes privileged and shareable images known to the system by running 
the Install Utility with input taken from the file SYS$MANAGER:VMS­
IMAGES.DAT. 

5. VMS$INITIAL-050_ VMS.COM creates the CONFIGURE process for 
VAXcluster members, so that page and swap files on disks other than 
the system disk can be located and installed. 

6. It installs the page file and swap file if they exist, either from the node's 
root directory or, for satellite VAXcluster nodes, from local disks. 
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7. It invokes SYPAGSWPFILES.COM to install secondary page and swap 
files. 

VMS$INITIAL-OSO_LIB.COM defines logical names and name tables for 
the Text Processing Utility (TPU), the debugger (DBG), and RMS. It also 
invokes SYLOGICALS.COM for site-specific logical name creation. 

VMS$CONFIG-050_ VMS.COM invokes the DECwindows startup proce­
dure, which in this initial invocation performs the subset of its operations 
that are appropriate for all nodes. 

VMS$CONFIG-OSO_ERRFMT.COM creates the error logger (ERRFMT) 
process. 

VMS$CONFIG-OSO_CACHE_SERVER.COM creates the Files-11 XQP 
cache server (CACHE_SERVER) process for VAXcluster nodes. 

VMS$CONFIG-050_CSP.COM creates the cluster server (CLUSTER_ 
SERVER) process for V AXcluster nodes. 

VMS$CONFIG-OSO_OPCOM.COM creates the operator communication 
(OPCOM) process. 

VMS$CONFIG-OSO_AUDIT _SERVER.COM executes the site-specific se­
curity procedure, SYSECURITY.COM, if it exists. It then creates the audit 
server (AUDIT _SERVER) process. 

VMS$CONFIG-OSO_JOBCTL.COM creates the job controller (JOB_CON­
TROL) process. 

VMS$CONFIG-OSO_LMF.COM loads software licenses from the license 
database. 

VMS$SYSFILES-050_ VMS.COM directs device configuration: 

1. It stops the CONFIGURE process, created earlier to locate page and swap 
files. 

2. It invokes the site-specific command procedure if it exists. This com­
mand procedure, SYS$MANAGER:SYCONFIG.COM, can configure 
user-written device drivers prior to VMS autoconfiguration or disable 
autoconfiguration by clearing the DCL symbol STARTUP$AUTOCON­
FIGURE. 

3. Unless disabled by the the SYSGEN parameter NOAUTOCONFIG or the 
STARTUP$AUTOCONFIGURE symbol, the command procedure runs 
SYSGEN to configure external I/O devices. 

4. Unless disabled by the SYSGEN parameter NOAUTOCONFIG or the 
STARTUP$AUTOCONFIGURE symbol, the command procedure creates 
the CONFIGURE process for VAXcluster nodes with paging enabled. 

VMS$BASEENVIRON-050_ VMS.COM configures the operator's console 
as appropriate for the system and determines the message classes that will 
be logged to the console and the operator log file. 
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VMS$BASEENVIRON-OSO_SMISERVER.COM creates the system manage­
ment server ISMISERVER) process for VAXcluster members and larger stand­
alone systems. 

VMS$LPBEGIN-050_ VMS.COM performs miscellaneous tasks: 

1. It invokes the site-specific command procedure SYS$MANAGER:SY­
STARTUP _VS.COM if it exists. 

2. If the SCSNODE SYSGEN parameter is not blank and the rights database 
is in use, the command procedure creates the node-specific identifier (the 
string SYS$NODE_ concatenated with the node name). 

3. It enables interactive logins. 

VMS$LPBEGIN-OSO_STARTUP.COM invokes the DECwindows startup 
procedure, which in this invocation starts the windowing software. 

Site-Specific Startup Command Procedure. The site-specific command pro­
cedure SYS$MANAGER:SYSTARTUP _VS.COM is typically edited by the 
system manager to do the following: 

• Start batch and print queues 
• Set terminal speeds and other device characteristics 
• Create site-specific system logical names 
• Install additional privileged and shareable images 
• Load use,-written device drivers 
• Mount volumes other than the system disk 
• Load the console block storage driver lif desired) with a CONNECT CON-

SOLE command to SYSGEN and mount the console medium 
• Start DECnet lif present on the system) 
• Produce an error log report 
• Announce system availability 

31.4 SYSTEM GENERATION UTILITY (SYSGEN) 
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SYSGEN fits into the initialization sequence in two unrelated ways: SYS­
BOOT may use parameter files produced by SYSGEN to define system char­
acteristics, and STARTUP.COM invokes SYSGEN directly to autoconfigure 
the external 1/0 devices. 

SYSGEN's role in autoconfiguring the 1/0 system is described in the VMS 
Device Support Manual. Table 31.3 briefly compares the operations that 
SYSGEN and SYSBOOT perform on parameter files. 

SYSGEN Parameters 

SYSGEN parameters are defined in the source module SYSPARAM.MAR. 
Through different settings of conditional assembly parameters, this source 
module produces two object modules: SYSPARAM, which links into the 
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Table 31.3 Comparison of SYSGEN and SYSBOOT 

SYS GEN 

PURPOSE 

SYSGEN has four unrelated purposes: 
• It creates parameter files for use in future 

bootstrap operations. 
• It modifies dynamic parameters in the 

running system with the WRITE AC­
TIVE command. 

• It loads device drivers and builds their 
associated data structures. 

• It creates and installs additional page and 
swap files. 

SYSBOOT 

SYSBOOT configures the sys­
tem using parameters from 
VAXVMSSYS.PAR or another 
parameter file. 

USE IN SYSTEM INITIALIZATION 

During initialization, SYSGEN can SYSBOOT is the secondary boot-
be invoked to autoconfigure all 1/0 strap program that executes after 
devices and record the current SYSGEN VMB and before control is passed 
parameters. to the executive. 

ENVIRONMENT 

SYSGEN executes in the normal en­
vironment of a utility program. The 
driver and swap/page functions require 
CMKRNL privilege. A WRITE ACTIVE 
command also requires CMKRNL priv­
ilege. The parameter file operations are 
protected through the file system. 

SYSBOOT runs in a stand-alone 
environment with no file system, 
memory management, process 
context, or any otherenvironment 
provided by VMS. 

USE 
VALID COMMANDS 

USE 
USE FILE-SPEC 

USE CURRENT 
USE DEFAULT 
USE ACTIVE 
SET 
SHOW 
EXIT (CONTINUE) 
WRITE 
Commands associated with device drivers 
Commands associated with additional 

page and swap files 

USE FILE-SPEC 

USE CURRENT 
USE DEFAULT 
No equivalent command 
SET 
SHOW 
EXIT (CONTINUE) 
No equivalent command 
No equivalent commands 
No equivalent commands 

INITIAL CONDffiONS 

Implied USE ACTIVE Implied USE CURRENT 
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system base image, and PARAMETER, which links into both SYSGEN and 
SYSBOOT. 

The SYSPARAM source module invokes a macro named PARAMETER to 
define each adjustable parameter. The macro $PRMDEF, in LIB.MLB, defines 
the fields of the data structures created by PARAMETER. Table 31.4 lists 
these fields and flags. For each parameter, the macro also creates a Get 
System Information ($GETSYI) item code in the form SYI$_ followed by 
parameter name. The following code demonstrates the PARAMETER macro 
invocation that defines the SYSGEN parameter GBLPAGES. 

PARAMETER ADDRESS=SGN$GL_MAXGPGCT,­
DEFAULT=10000,-
MIN=512,-
NAME=GBLPAGES,­
SIZE=LONG,­
TYPE=<SYSGEN,SYS,MAJOR>,­
UNIT=Pages,­
VERSION_MASK=[SYSGEN] 

In an initialized system, each parameter occupies a cell in a table of active 
values stored within the address space reserved for the system base image. 
A parameter's virtual address within the base image does not change across 
minor version releases of VMS, although new parameters may be added to 
reserved address space at the end of the parameter area. Appendix C lists the 
contents of this area. 

When SYSBOOT or SYSGEN executes, it maintains a private table of 
working parameters. It is manipulated by the following SYSGEN and SYS­
BOOT commands: 

• Displayed by SHOW parameter-name commands 
• Altered by SET parameter-name value commands 
• Overwritten in memory by a USE command 
•Written to the file VAXVMSSYS.PAR by the SYSGEN WRITE CURRENT 

command 
• Written to a selected file by the SYSGEN WRITE file-spec command 
• Dynamic parameters are written to the executive's memory image by the 

SYSGEN WRITE ACTIVE command 

Use of Parameter Files by SYSBOOT 

Figure 31.2 shows the flow of parameter value data during a bootstrap oper­
ation. The numbers in the figure correspond to the following steps: 

G)SYSBOOT first locates the file VAXVMSSYS.PAR in SYS$SYSROOT: 
[SYSEXE] and reads its parameter settings into SYSBOOT's working table. 
In the language of SYSBOOT and SYSGEN commands, this step is an im­
plied command: 

USE CURRENT 
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This initializes the system with the parameter settings saved in VAX­
VMSSYS.PAR, either during the last boot of the system as shown in 
step 5, through the AUTOGEN command procedure, or from an explicit 
SYSGEN command, WRITE CURRENT. 

Prior to VMS Version 4, the current parameters were stored in SYS.EXE. 
However, to support sharing of SYS.EXE by multiple members of a VAX­
cluster system, the parameters were moved into a separate file, VAXVMS­
SYS.PAR. Each member has its own version of this file. 

Table 31.4 Information Stored for Each Adjustable Parameter by 
SYSGEN and SYSBOOT 

Item 

Parameter address in base image 1 

Parameter default value 
Minimum value that the parameter can assume 
Maximum value that the parameter can assume 
Parameter type flags 

Parameter Type 

DYNAMIC 
STATIC 
SYSGEN 
ACP 
JBC 
RMS 
SYS 
SPECIAL 
DISPLAY 
CONTROL 
MAJOR 
PQL 
NEG 
TTY 
scs 
CLUSTER 
ASCII 
LGI 
MULTIPROCESSING 

Parameter size 

Display Command 

SHOW /DYN 

SHOW /GEN 
SHOW /ACP 
SHOW /JOB 
SHOW /RMS 
SHOW /SYS 
SHOW /SPECIAL 

SHOW /MAJOR 
SHOW /PQL 

SHOW /TTY 
SHOW /SCS 
SHOW /CLUSTER 

SHOW /LGI 
SHOW /MULTIPROCESSING 

Bit position (if parameter is a flag) 
Parameter's SYSGEN name (counted ASCII string) 
Units of allocation (counted ASCII string) 

Size of Item 

Longword 
Longword 
Longword 
Longword 
Longword 

Byte 
Byte 
16 bytes 
12 bytes 

1 The working value of each parameter is found not only in internal tables in 
SYSBOOT and SYSGEN but also in the executive itself. In fact, the parameter 
address (first item) stored for each parameter symbolically locates the working 
value of each parameter in the memory image of the system base image. 
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Default 

Implied 
USE 

CURRENT 

VAXVMSSYS.PAR 

Parameter __ __. Parameter 
Settings .....,.....,....,.. 

SYSBOOT 
Table '="=~ Settings USE 

of 
Working 
Values 

in Memory Internal DEFAULT Image of 1-CIWIM:U...... 
to 

SYSBOOT 

952 

USE Filespec 

Figure 31.2 

3 
USE, SET, 
CONTINUE (EXIT) 

Executive 

User-created parameter files 

Movement of Parameter Data by SYSBOOT and 
STARTUP 

G)When a conversational bootstrap is selected (R5(0) is set as input to VMB), 
SYSBOOT prompts for commands to alter current parameter settings. A 
USE command at the SYSBOOT prompt results in the working table's 
being overwritten with an entire set of parameter values. There are three 
possible sources of these values: 

-USE file-spec directs SYSBOOT to the indicated parameter file for a 
new set of values. 

-USE DEFAULT causes the working table in SYSBOOT to be filled with 
the default values for each parameter. 

-USE CURRENT causes the parameter values in VAXVMSSYS.PAR to 
be loaded into SYSBOOT's working table. A USE CURRENT command 
is redundant if it is the first command issued to SYSBOOT. 

G)Once the initial conditions are established, individual parameters can be 
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altered with SET commands. The conversational phase of SYSBOOT ends 
with a CONTINUE (or EXIT) command. 

G) After SYSBOOT calculates the sizes of the various pieces of system space 
but before it transfers control to EXE$INIT, it copies the contents of its 
working table to the corresponding table in the memory image of the 
executive. 

G) One of the steps performed by the startup process copies the parameter 
table from the memory image of the executive to SYS$SYSTEM:VAX­
VMSSYS.PAR if the WRITESYSPARAMS parameter is set. SYSBOOT sets 
this parameter automatically when another parameter is altered in a con­
versational boot. Since SYSBOOT always uses VAXVMSSYS.PAR unless 
directed otherwise, subsequent bootstraps will use the latest parameter 
settings even if no conversational bootstrap is selected. 

Use of Parameter Files by SYSGEN 

SYSGEN's actions, pictured in Figure 31.3, closely correspond to those of 
SYSBOOT. The numbers in the figure correspond to the following steps: 

(!)The initial contents of SYSGEN's working table are the values taken 
from the memory image of the executive. The data movement pictured 
in Figure 31.3 is a movement from one memory area to another rather 
than the result of an 1/0 operation. In any event, SYSGEN begins its 
execution with an implied command: 

USE ACTIVE 

This copies the parameter table from the memory image of the execu­
tive into SYSGEN's working table. 

The ACTIVE parameters in the base image in memory do not dif­
fer from the CURRENT parameters in VAXVMSSYS.PAR on disk un­
less SYSGEN is run and parameters are written to either CURRENT 
(VAXVMSSYS.PAR) or ACTIVE (memory). 

G) Alternatively, SYSGEN can load its working table from the same sources 
available to SYSBOOT. 

G) SET commands alter individual parameter values. SET only alters the 
parameter in SYSGEN's working table; the setting disappears on exit from 
SYSGEN unless preserved with a WRITE command. 

G)The WRITE command preserves the contents of SYSGEN's working table 
in the following way: 

-WRITE file-spec creates a new parameter file that contains the contents 
of SYSGEN's working table. 

-WRITE CURRENT alters the copy of SYS$SYSTEM:VAXVMSSYS.PAR. 
The next bootstrap operation uses the updated values automatically. 

-Several parameters determine the size of portions of system address 
space. Other parameters determine the size of blocks of pool space al­
located by EXE$INIT. These parameters cannot be changed in a running 
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VAXVMSSYS.PAR Parameter 
Settings 
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Settings 

in Memory 
Parameter 
Settings 
Internal 

to 
SYSGEN 

Figure 31.3 

User­
defined 
parameter 
files 

Movement of Parameter Data by SYSGEN 

Image of 
Executive 

system. However, many parameters are not used in configuring the sys­
tem. These parameters are designated DYNAMIC (see Table 31.4). 

A WRITE ACTIVE command to SYSGEN alters the settings only of 
dynamic parameters, and only in the memory image of the executive. 

A word of caution is in order here. Before experimenting with a new 
configuration, save the parameters from a working system in a parameter 
file. If the new configuration creates an unusable system, the system can be 
restored to its previous state by rebooting with the saved parameters. 

31.5 SYSTEM SHUTDOWN 

954 

VMS provides two mechanisms to shut down a system in a controlled 
fashion. The preferred method, SYS$SYSTEM:SHUTDOWN.COM, provides 
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a warning of the shutdown to system users and performs extensive house­
keeping. The alternative method, SYS$SYSTEM:OPCCRASH.EXE, performs 
minimal cleanup. 

SHUTDOWN.COM 

SHUTDOWN.COM is a VMS-supplied command procedure that performs 
extensive cleanup and shuts down a VMS system in a controlled fashion. It 
requires the privileges CMKRNL, EXQUOTA, LOG_IO, NETMBX, OPER, 
SECURITY, SYSNAM, SYSPRV, TMPMBX, and WORLD to execute suc­
cessfully, and will enable them automatically for a user with the SETPRV 
privilege. SHUTDOWN's tasks include the following: 

• Optionally saving AUTOGEN feedback information to SYS$SYSTEM: 
AGEN$FEEDBACK.DAT 

• Disabling interactive logins 
• Shutting down DECnet 
• Stopping the job controller's queue operations 
• Stopping user processes 
• Dismounting mounted volumes 
• Stopping secondary processors on a multiprocessing system 
• Removing installed images 
• Invoking the site-specific shutdown procedure SYSHUTDWN.COM 
• Closing the operator's log file 
• Stopping the AUDIT _SERVER and ERRFMT processes 
• Recalibrating the system time from the time-of-year clock and recording 

the change in the base image 

If a shutdown is requested in an AUTOGEN command procedure pa­
rameter, AUTOGEN defines the logical name SHUTDOWN$AUTOGEN_ 
SHUTDOWN before executing the SHUTDOWN command procedure. This 
notifies SHUTDOWN that the shutdown is coordinated from AUTOGEN 
and the standard shutdown questions need not be asked. 

In addition, SHUTDOWN allows a reboot consistency check to be per­
formed without actually shutting down the system. If a translation exists 
for the logical name SHUTDOWN$LOG_REBOOT _CHECK, SHUTDOWN 
creates the file REBOOT_CHECK_nodename.LOG, where nodename is the 
name of the system on which SHUTDOWN is executing. The following 
factors determine the files required to reboot: 

• VAXcluster membership 
• MSCP requirements 
• Processor type 
• Multiprocessing versus single-CPU system 
• System boot device !remote boot over the network) 
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SHUTDOWN's reboot consistency check verifies the existence of files 
required to reboot. Defining SHUTDOWN$LOG_REBOOT _CHECK causes 
SHUTDOWN to write the verified file names to the log file and discontinue 
the shutdown. 

SHUTDOWN runs the OPCCRASH program to actually shut down the 
system. It passes parameters to OPCCRASH via logical names. 

The Guide to Setting Up a VMS System describes other actions of SHUT-
DOWN and its use of the following logical names: 

SHUTDOWN$MINIMUM_MINUTES 
SHUTDOWN$TIME 
SHUTDOWN$INFORM_NODES 

OPCCRASH 

OPCCRASH.EXE, in module [OPCOM]OPCCRASH, performs the minimal 
tasks required to shut down a VMS system. Typically it is invoked as the 
final step of the SHUTDOWN.COM procedure, described in the previous 
section, but it can be executed directly in an emergency. 

OPCCRASH performs the following: 

1. It flushes the file system caches for the system disk (or multiple disks 
for a volume set) by marking the UCB for dismount and requesting a dis­
mount Queue 1/0 ($QIO) system service. If the logical name OPC$UN­
LOAD evaluates as true, OPCCRASH also marks the UCB for unload. 
When OPCCRASH is executed from SHUTDOWN, SHUTDOWN sets 
this parameter based on the user's answer to the question, Do you want 
to spin down the disk volumes? 

2. If the logical name OPC$REBOOT evaluates as true, OPCCRASH sets 
the EXE$V _REBOOT flag in EXE$GL_FLAGS. This determines whether 
EXE$BUG_CHECK, in modules BUGCHECKBT and BUGCHECKLD, 
halts the system or invokes a processor-dependent routine that directs 
the console to attempt a reboot. When OPCCRASH is executed from 
SHUTDOWN, SHUTDOWN sets this parameter based on the user's an­
swer to the question, Should an automatic system reboot be performed? 

3. If the logical name OPC$NODUMP evaluates as true, OPCCRASH sets 
the low-order bit in EXE$GLDUMPMASK. This determines whether 
EXE$BUG_CHECK writes the contents of memory to the dump file. 
When OPCCRASH is executed from SHUTDOWN, SHUTDOWN passes 
this parameter as true. Thus, although EXE$BUG_CHECK writes the 
error log buffers and header, no memory dump occurs for an operator­
requested shutdown. 

4. OPCCRASH raises IPL to IPL$_SYNCH, acquires the MMG and SCHED 
spinlocks, forces the modified page list to be written, and releases the 
MMG spinlock. It places the process into the resource wait state RSN$_ 
MPLEMPTY, where it remains until the modified page list is completely 
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empty. When the process is taken out of the wait state, it resumes 
execution at IPL 0 with no spinlocks held. 

5. If the system is a VAX.cluster node, OPCCRASH translates the logi­
cal name OPC$CLUSTER_SHUTDOWN. When OPCCRASH is executed 
from SHUTDOWN, SHUTDOWN sets this parameter based on the shut­
down option CLUSTER_SHUTDOWN. If the logical name evaluates as 
true, OPCCRASH raises IPL to IPL$_SYNCH, acquires the SCS spin­
lock, and invokes the connection manager routine CNX$SHUTDOWN, 
in module [SYSLOA]CONMAN. This routine coordinates a clusterwide 
shutdown. OPCCRASH lowers IPL to 0 and hibernates; the connection 
manager ultimately crashes the system with a bugcheck. 

6. If the system is a VAX.cluster node, OPCCRASH translates the logi­
cal name OPC$REMOVE_NODE. When OPCCRASH is executed from 
SHUTDOWN, SHUTDOWN sets this parameter based on the shutdown 
option REMOVE_NODE. If the logical name evaluates as true, OPC­
CRASH raises IPL to IPL$_SYNCH, acquires the SCS spinlock, and in­
vokes CNX$SHUTDOWN to communicate the shutdown to the VAX.­
cluster connection manager on this and the other nodes. It computes 
a new value for expected votes by subtracting this node's votes from 
the current expected votes and invokes the connection manager routine 
CNX$ADJ_EXPT_VOTES, in module [SYSLOA]CONMAN, to commu­
nicate the new value to the remaining VAX.cluster nodes. It releases the 
SCS spinlock and waits until quorum is adjusted. 

7. Finally, OPCCRASH crashes the system by issuing the BUG_CHECK 
macro, specifying a bugcheck type of OPERATOR and the keyword FA­
TAL. Chapter 32 describes this macro, bugcheck processing, and the ac­
tions of EXE$BUG_CHECK. 
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There is always something to upset the most careful of 
human calculations. 

Ihara Saikaku, The fapanese Family Storehouse 

This chapter discusses the mechanisms used for reporting systemwide er­
rors in VMS. Process-specific and image-specific errors are handled by the 
exception mechanism described in Chapter 5. 

Systemwide error-reporting mechanisms include 

• The error logging subsystem, by which device drivers and other system 
components record errors and other events for later inclusion in an error 
log report 

• The bugcheck mechanism, by which VMS shuts down the system and 
records its state when internal inconsistencies or other unrecoverable er­
rors are detected 

• Machine checks and error interrupts, by which the processor indicates that 
it has detected CPU-specific errors 

32.1 ERROR LOGGING 

32.1.1 
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The error logging subsystem records device errors, CPU-detected errors, and 
other noteworthy events, such as volume mounts, system startups, system 
shutdowns, and bugchecks. 

Overview of the Error Logging Subsystem 

The error logging subsystem uses a set of buffers called error log allocation 
buffers, created at system initialization. Logging an error occurs in the fol­
lowing steps: 

1. A thread of execution, such as a device driver, invokes an executive 
routine to reserve a portion of an error log allocation buffer. The reserved 
portion is called an error message buffer. 

2. The thread of execution writes information into the error message buffer 
and then invokes another.executive routine to indicate that the buffer is 
valid, containing a completed message. 

3. The ERRFMT process is awakened to copy the contents of error log 
allocation buffers to the error log file, SYS$ERRORLOG:ERRLOG.SYS. 

Subsequently, the system manager can run the Error Log Utility to analyze 
the contents of the error log file and produce a formatted report. 

If the system is shut down or crashes, the error log allocation buffers are 
copied to the dump file to prevent the loss of error log messages. On the 
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next system boot, the SYSINIT process copies the error log allocation buffers 
saved in the dump file to nonpaged pool. When ERRFMT runs, it scans them 
for valid messages to write to the error log file. In this way, no error log 
information is lost across a system crash or shutdown. 

Error Log Data Stmcttlres 

During system initialization, a group of buffers is allocated in contiguous 
nonpageable system address space. The number of buffers allocated is spec­
ified by the SYSGEN parameter ERRORLOGBUFFERS. Their starting ad­
dress is recorded in global location EXE$ALERLBUFADR. Prior to VMS 
Version 5.0, the number of error log allocation .buffers was fixed at two. 

The number of pages in each error log allocation buffer is specified by the 
SYSGEN parameter ERLBUFFERPAGES, whose default value is two pages. 
Prior to VMS Version 5.2, each error log allocation buffer was one page. 

The group of buffers is treated as a ring. Initially; error message buffers are 
reserved in the first allocation buffer. When it fills, error message buffers are 
reserved in the second allocation buffer. After an allocation buffer fills, the 
ERRFMT process is awakened to copy the buffer's contents to the error log 
file so that the buffer can be reused. By the time the last allocation buffer 
becomes full, the first .allocation buffer should be reusable. 

The global location EXE$GW _ERLBUFTAIL contains the number of the 
allocation buffer in which error message buffers are currently being reserved . 
. EXE$GW _ERLBUFHEAD contains the number of the allocation buffer whose 
contents should <be written to the error log file next. These pointers replace 

. ERL$GB_BUFIND used in earlier versions of VMS. 
The address of a particular error log allocation buffer is computed as 

.follows: 

address = @EXE$AL_ERLBUFADR 
+ j@EXE$GB..:ERLBUFPAGES * 512 * buffer_number) 

A header at the beginning of each error log allocation buffer describes its 
state. The macro· $ERLDEF defines symbolic names for fields in the buffer 
header. The following fields are of particular interest: 

.. • ERL$B_BUSY ·contains the number of pending messages in the buffer, 
messages for which space has been reserved but which have not been 
completely .written. 

• ERL$B_MSGCNT contains the number of completed messages. 
• ERL$B_FLAG$,has ot1.e defined flag, ERL$V _LOCK, set to inhibit further 

allocation in the buffer while ERRFMT is copying. the buffer contents. 
• ERL$L_NEXT.:.points to the first available space in the buffer. 
• ERL$L_END Jioints to the first byte past the end of the buffer and is used 

to test whether the buffer is full. 
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Figure 32.1 
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Figure 32.1 shows these data structures and globals. In this figure, buffer 0 
has been filled. Error message buffers will be allocated from buffer 1 next. 

The format and length of an error message buffer vary with its type. Each 
error message buffer has a header that contains type identification and infor­
mation common to all types of message. The macro $EMBHDDEF defines 
fields in the header. The macro $EMBETDEF defines the error message types. 
Most of the common information in the header is written by the routine that 
reserves the error message buffer. Information specific to the error type is 
written by the component logging the error. 

Each message is uniquely identified by a systemwide error sequence num­
ber, the contents of global location ERL$GL_SEQUENCE. The number is 
incremented on each attempt to reserve an error message buffer, whether or 
not it is successful. Sequence number gaps in an error log file may indicate 
the loss of error messages. (However, they may also indicate deleted time 
stamp messages; see Section 32.1.6). 

Operation of the Error Logger Routines 

The routines that manage the error log allocation buffers are 

• ERL$ALLOCEMB-Invoked to reserve an error message buffer 
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• ERL$RELEASEMB-lnvoked to release a completed error message buffer 

Both are in module ERRORLOG. 
ERL$ALLOCEMB is invoked with the size of the requested error message 

buffer. It takes the following steps: 

1. It first acquires the EMB spinlock, raising interrupt priority level (IPL) to 
31, to synchronize access to the allocation buffer data structures. 

2. It tests whether the message is larger than will fit into an empty alloca­
tion buffer and, if so, returns an error status. 

3. ERL$ALLOCEMB calculates the address of the allocation buffer indicated 
by EXE$GW _ERLBUFTAIL. 

4. It tests whether the lock flag of that allocation buffer is clear (the usual 
state). If it is, ERL$ALLOCEMB tests whether the message fits into the 
unused space in the buffer. 

5. If the lock flag is set or if the message does not fit, ERL$ALLOCEMB 
forces a wakeup of the ERRFMT process. It switches to the next alloca­
tion buffer, incrementing EXE$GW _ERLBUFTAIL. 

If the next available allocation buffer is still full of error messages not 
yet written to the error log file, ERL$ALLOCEMB advances to the next 
allocation buffer, wrapping back to the beginning of the buffer ring if 
necessary. If it fails to find room for the message buffer, ERL$ALLOC­
EMB continues in this way until it reaches its starting point, the buffer 
whose number is in EXE$GW _ERLBUFHEAD. ERL$ALLOCEMB then 
increments ERL$GL_ALLOCFAILS; releases the EMB spinlock, restor­
ing IPL; and returns an error status. Incrementing ERL$GL_ ALLOC­
FAILS for each unsuccessful attempt to log an error facilitates the 
detection of messages lost in this way. 

6. If the message fits into an allocation buffer, ERL$ALLOCEMB reserves 
an error message buffer of the requested size, advances the ERL$L_NEXT 
pointer, and increments the pending message count. 

In the error message buffer, it records information such as CPU ID, 
SCS node name, the size of the message buffer, number of its allocation 
buffer, contents of ERL$GL_SEQUENCE, and system time. It then incre­
ments the sequence number; releases the EMB spinlock, restoring IPL; 
and returns a success status, the error sequence number, and the address 
of the reserved message buffer. 

When the component logging the error has written its information in the 
message buffer, it invokes ERL$RELEASEMB. 

ERL$RELEASEMB takes the following steps: 

1. It first acquires the EMB spinlock, raising IPL to 31, to synchronize access 
to the allocation buffer data structures. 

2. It sets a flag in the error message buffer to indicate that this buffer is 
valid. 
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3. It extracts the number of the allocation buffer in which the message 
buffer was reserved and computes its address. 

4. It subtracts 1 from the allocation buffer pending message count and adds 1 
to the completed message count. 

5. If the ERRFMT process ·is hibernating and there are ten or more com­
pleted messages in the allocation buffer, ERL$RELEASEMB forces a 
wakeup of the ERRFMT process. 

6. It releases the EMB spinlock, restoring the previous IPL, and returns. 

The routine ERL$WAKE, in module ERRORLOG, is invoked to wake the 
ERRFMT process. It is invoked once a second from EXE$TIMEOUT !see 
Chapter 11). ERL$WAKE does not necessarily wake the ERRFMT process. 
Rather, it decrements a counter at global location ERL$GB_BUFTIM and 
only wakes ERRFMT when the counter reaches zero. 

When the counter reaches zero, it is reset to its starting value of 30. 
This value is an assembly time parameter, not a SYSGEN parameter. Thus, 
a maximum of 30 seconds can elapse before ERRFMT is awakened. This 
ensures that error messages are written to the error log file at reasonable 
intervals, even on systems with very few errors. 

Both ERL$ALLOCEMB and ERL$RELEASEMB exploit this timing mech­
anism to force a wakeup of ERRFMT. These routines simply set ERL$GB_ 
BUFTIM to 1 so that the next invocation of ERL$WAKE will wake ERRFMT. 
ERL$WAKE must acquire the SCHED spinlock to synchronize access to the 
scheduler database (see Chapters 8 and 12). Thus, it cannot be invoked with 
a higher ranking spinlock held or from an IPL higher than IPL$_SCHED. 
ERL$ALLOCEMB and ERL$RELEASEMB run at higher IPLs, holding the 
EMB spinlock, and are thus unable to invoke ERL$WAKE directly. 

ERL$ALLOCEMB forces a wakeup whenever the current error log alloca­
tion buffer fills and it must switch to the next one. ERL$RELEASEMB forces 
a wakeup if the current message buffer contains ten or more messages. 

If the ERRFMT process is not running, there is no way for error log 
messages to be written to the error log file. Initially, attempts to log errors 
by reserving error message buffers would be successful. However, once the 
error log allocation buffers fill with messages, any subsequent attempt to 
reserve an error message buffer fails. System operation is otherwise normal. 

Device Driver Error Logging 

It is not mandatory for device drivers to log errors, although, under most 
circumstances, it is good practice. To facilitate driver error logging, VMS 
provides several routines in module ERRORLOG that a driver can invoke to 
log errors. To use these routines, the driver and its tables must satisfy certain 
prerequisites, which are described in the VMS Device Support Manual. 

Two commonly used routines are ERL$DEVICERR and ERL$DEVICTMO. 
Each of these logs an error associated with a particular 1/0 request. A 
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driver invokes ERL$DEVICERR to report a device-specific error and ERL$DE­
VICTMO to report a device timeout. 

Each routine executes the following sequence: 

1. The routine determines whether an error should be logged by testing that 
error logging is enabled on the device (bit DEV$V _ELG set in unit control 
block field UCB$LDEVCHAR) and that error logging is not inhibited for 
this 1/0 request (bit I0$V _INHERLOG clear in UCB$W _FUNC). If either 
of these tests fails, the routine returns. 

2. The routine increments UCB$W _ERRCNT, the cumulative number of 
errors that have occurred on the unit. 

3. The routine then tests whether an error message is already in progress 
on the device (bit UCB$V_ERLOGIP set in UCB$W_STS) and returns if 
one is. 

4. The routine invokes ERL$ALLOCEMB to reserve a message buffer. The 
size of the message buffer is device driver-specific and defined in the 
driver dispatch table field DDT$W _ERRORBUF. If the reservation fails, 
the routine returns. Otherwise, it records the address of the message 
buffer in UCB$L_EMB and sets bit UCB$V _ERLOGIP to indicate that an 
error message is in progress. 

5. The routine records information common to all devices in the error mes­
sage buffer, for example, unit number, device name, count of completed 
operations, error count, and 1/0 function. 

6. The routine then invokes the device driver's register dump routine to 
write device-specific information in the error message buffer. Typically, 
this information consists of device register contents at the time of the 
error. 

7. When the driver register dump routine returns, the error logging rou­
tine returns control to the device driver. When the devi(ie driver finishes 
processing the 1/0 request, it invokes IOC$REQCOM, in module IOSUB­
NPAG. 

8. IOC$REQCOM, finding that there is an error log message in progress, 
records the final 1/0 request status, device status, and error retry counters 
in the error log buffer. It then invokes ERL$RELEASEMB to indicate that 
the error message buffer has been completely written. 

Some device drivers report conditions that are not associated with a par­
ticular 1/0 request; such conditions are called device attention errors. The 
CI port driver (PADRIVER), for example, reports an error if the port's mi­
crocode is not at the required revision level. To log such an error, a driver 
invokes ERL$DEVICEATTN. This routine is similar to ERL$DEVICERR and 
ERL$DEVICTMO in that it reserves and fills in an error message buffer. 
However, the routine itself, rather than IOC$REQCOM, invokes ERL$RE­
LEASEMB to indicate that the message buffer is completely written. 
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In addition to ERL$DEVICEATTN, the system communication services 
(SCS) port and class drivers use several other error log routines: 

• ERL$LOGSTATUS-Used by the disk and tape class drivers to log an error 
status code returned in a mass storage control protocol (MSCP) end packet. 
The end packet itself is written to the error log buffer with ERL$LOGMES­
SAGE . 

• ERL$LOGMESSAGE-Used by the port and class drivers to log an error 
condition associated with a command packet, for example, a packet that 
contains invalid data or a hierarchical storage controller (HSC) error log 
datagram. 

• ERL$LOG_DMSCP-Used by the disk class drivers (DUDRIVER and DS­
DRIVER) to log controller errors and resets. 

• ERL$LOG_ TMSCP-Similar to ERL$LOG_DMSCP, this is used by the 
tape class driver (TUDRIVER) to log controller errors and resets. 

Other Error Log Messages 

VMS uses the error log subsystem to record events other than device errors. 
Other kinds of entries written to the error log include the following: 

• Warm start, a successful recovery from a power failure 
• Cold start, a successful system bootstrap 
• Fatal and nonfatal bugchecks (see Section 32.2) 
• Machine check 
• Memory and other CPU-specific errors 
• Volume mount and dismount 
• A user-requested message written by the Send Message to Error Logger 

($SNDERR) system service (see Chapter 36) 
• Time stamp (see Section 32.1.6) 

The ERRFMT Process 

During system initialization, the detached ERRFMT process is created with 
user identification code [1,6] and several privileges, including CMKRNL. 
ERRFMT runs in kernel and user mode. In kernel mode, it can access the 
error log allocation buffers and copy their contents to its own process space. 
In user mode, it scans the copied buffer contents for valid messages and 
writes them to the error log file SYS$ERRORLOG:ERRLOG.SYS. 

When ERRFMT is first started, it enters kernel mode, using the Change to 
Kernel Mode ($CMKRNL) system service. It tests whether there are any error 
log allocation buffers restored from the dump file to be processed. If global 
location EXE$G1-SAVED_EMBS has nonzero contents, ERRFMT initializes 
several variables to indicate that there are saved error buffers that require 
processing in a later step. 

It requests the Set Timer ($SETIMR) system service to request an asyn­
chronous system trap (AST) notification in ten minutes. Its AST procedure 
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invokes ERL$ALLOCEMB, writes a time stamp message containing the time 
of day, invokes ERL$RELEASEMB, and requests the $SETIMR system ser­
vice again. Thus, every ten minutes, ERRFMT's kernel mode AST procedure 
writes a time stamp message to indicate that ERRFMT is executing and that 
the system is operational. 

After kernel mode initialization is complete, ERRFMT returns to user 
mode and executes the following loop to process an error log allocation 
buffer: 

1. ERRFMT changes mode to kernel and, in its kernel mode procedure, tries 
to select an error log allocation buffer to process: 

a. If there are multiple buffers restored from the dump file to be pro­
cessed, it selects the first one in the buffer ring, advances the ring 
pointer, copies the buffer contents to PO space, decrements the count 
of restored unprocessed buffers, and returns. 

b. If there is only one restored buffer left to be processed, ERRFMT 
copies its contents, deallocates the nonpaged pool occupied by the 
restored buffers, clears EXE$GLSAVED_EMBS, and returns. 

c. If there are no restored buffers to be processed, ERRFMT acquires 
the EMB spinlock, raising IPL to 31. It determines the next.error log 
allocation buffer to be processed and sets the lock flag in it to prevent 
any further reservations. 

d. It tests the pending message counter in the allocation buffer to de­
termine whether there are error messages for which space has been 
reserved and not yet released. 

If there are pending messages, ERRFMT releases the EMB spinlock, 
lowering IPL to 0. It sets a timer and waits for half a second before 
testing the counter again. ERRFMT repeats its wait and test sequence 
until there are no more pending messages or until it has waited 255 
times. It then reacquires the EMB spinlock. 

e. ERRFMT then copies the error log allocation buffer contents to its 
own PO space and compares the copy to the original to detect any 
changes that might have occurred during the copy. If the two are 
not equal, ERRFMT repeats the copy, trying to get a consistent copy 
of the buffer contents. If necessary, it repeats the copy and compare 
sequence 255 times. This sequence is an alternative to copying the 
buffer contents with the EMB spinlock held and at IPL 31. If 255 
attempts fail to get a consistent copy, ERRFMT uses the copy it has. 

f. Once ERRFMT has copied the allocation buffer contents, it reacquires 
the EMB spinlock, clears the pending and completed message counts 
in the copied buffer, and clears its lock flag. It updates EXE$GW _ 
ERLBUFHEAD to point to the next allocation buffer, advancing it to 
the beginning of the ring if necessary. It releases the EMB spinlock, 
restoring the previous IPL. 
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g. ERRFMT then returns to user mode with a status indicating whether 
there are any completed messages in the copied buffer. 

2. In user mode, ERRFMT checks whether there are any completed mes­
sages to process. If there are none, ERRFMT hibernates until it is awak­
ened through ERL$WAKE and then returns to the first step to select an 
error log allocation buffer. 

3. If there are messages, ERRFMT processes the messages in the buffer, 
writing valid ones to the error log file. Whenever ERRFMT finds one of 
its time stamp messages, it checks whether the previous message written 
to the error log file is also a time stamp. If so, ERRFMT updates the 
record containing the older time stamp with the newer one. This avoids 
filling the error log file with time stamps and ensures that the newest 
time stamp is recorded. Note, however, that this can cause a sequence 
number gap in the error log file messages. 

4. If ERRFMT detects a volume mounted or dismounted message in the 
error log buffer, it checks the SYSGEN parameter MOUNTMSG or DIS­
MOUMSG. If the appropriate parameter is set, ERRFMT sends a volume 
mounted or dismounted message to terminals enabled as disk or tape 
operators. By default, the SYSGEN parameters are zero, disabling the 
sending of these messages to operator terminals. 

5. If any process has declared an error log mailbox (see Section 32.1.7), 
ERRFMT writes every message in the error log buffer to that mailbox. 

6. ERRFMT proceeds to the first step to select an error log allocation buffer. 

Error Log Mailbox 

The error logging subsystem provides the capability for up to five processes 
to monitor error logging activity as it happens, rather than wait for offline 
processing with the Error Log Utility. This capability is provided through the 
undocumented Declare Error Log Mailbox ($DERLMB) system service. This 
system service is provided for use only by Digital's software, such as the 
optional software products VAXsim and VAXsimPLUS, and is unsupported 
for any other use. 

To assign an error log mailbox, a process with DIAGNOSE privilege re­
quests the $DERLMB system service with the unit number of a mailbox 
to receive error log messages. A process requests this service with a unit 
number of zero to cancel its use of an error log mailbox. 

The $DERLMB system service procedure, EXE$DERLMB in module SYS­
DERLMB, runs in kernel mode. It first tests whether the process has DIAG­
NOSE privilege; if it does not, the system service returns the error status 
SS$_NOPRIV. If it does, EXE$DERLMB scans the array of error log mailbox 
descriptors, which begins at EXE$AQ_ERLMBX. It synchronizes access to 
the array by acquiring the SCHED spinlock, raising IPL to IPL$_SCHED. 

If the process is trying to assign an error log mailbox, EXE$DERLMB tries 
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to find a free descriptor. If it finds one, it stores the unit number in the 
first word of the mailbox descriptor and the internal process ID (IPID) of the 
requesting process in the second longword. It releases the SCHED spinlock 
and returns the status SS$_NORMAL. Otherwise, if no descriptor is free, 
EXE$DERLMB releases the SCHED spinlock and returns the error status 
SS$_DEVALLOC. 

If the process is trying to cancel use of an error log mailbox, EXE$DERLMB 
scans the descriptor array for the one associated with this process's IPID. If 
it finds one, it clears it. The Image Rundown ($RUNDWN) system service 
(see Chapter 26) performs a similar scan to ensure that error log mailbox use 
is canceled at image rundown. 

32.2 SYSTEM CRASHES (FATAL BUGCHECKS) 

32.2.1 

When VMS detects an internal inconsistency, such as a corrupted data struc­
ture or an unexpected exception, it generates a bugcheck. If the inconsistency 
is not severe enough to prevent continued system operation, the bugcheck 
generated is nonfatal and merely results in an error log entry. 

If the error is serious enough to jeopardize system operation and data 
integrity, a fatal bugcheck is generated. This generally results in aborting 
normal system operation, recording the contents of memory to a dump file 
for later analysis, and rebooting the system. 

Bugcheck Mechanism 

Source code generates a bugcheck by invoking the BUG_CHECK macro. The 
macro has one required argument, the bugcheck type, and one optional ar­
gument, the keyword FATAL. This macro expands into the two-byte opcode 
FEFF16 and a one-word operand that identifies the bugcheck type and, in bits 
(2:0), its severity. If the keyword FATAL is present, the severity is set to the 
value STS$K_SEVERE; otherwise, it is zero. 

This fatal bugcheck example is extracted from SCH$SCHED, in module 
SCHED: 

QEMPTY: BUG_CHECK QUEUEMPTY,FATAL 

Its invocation generates the following code: 

.WORD AXFEFF 

.WORD BUG$_QUEUEMPTY!4 

The execution of the bugcheck opcode results in a reserved instruction 
exception (SS$_0PCDEC, opcode reserved to Digital), causing control to be 
transferred through the system control block (SCB) to the service routine for 
that exception, EXE$0PCDEC in module EXCEPTION. 

EXE$0PCDEC checks whether the reserved opcode is either FEFF16 or 
FDFF16. The two-byte opcode FEFF16 indicates that the bugcheck operand is 

967 



Error Handling 

32.2.2 

968 

a word. The two-byte opcode FDFF16 indicates that the bugcheck operand is 
a longword. VMS does not currently use longword bugcheck operands. 

If either opcode is present, EXE$0PC0EC interprets this exception as a 
bugcheck and transfers control to routine EXE$BUG_CHECK, in module 
BUGCHECKBT. Otherwise, the illegal opcode exception is treated in the 
usual manner, described in Chapter 5. 

The actions of EXE$BUG_CHECK vary, depending on the access mode in 
which the bugcheck occurred and the severity of the bugcheck. EXE$BUG_ 
CHECK first saves all the general registers on the stack. It then confirms 
the read accessibility of the bugcheck operand from the mode that generated 
the bugcheck and advances the exception program counter (PC) saved on 
the stack to point to the instruction following the bugcheck. (As a result, 
the bugcheck PC shown in a dump is an address four bytes higher than the 
actual bugcheck.) EXE$BUG_CHECK then determines in which access mode 
the bugcheck occurred. 

Bugchecks from User and Supervisor Modes 

VMS itself generates few bugchecks from user or supervisor mode. It provides 
the mechanism for use by other software. When a bugcheck is generated 
from either user or supervisor mode code running in a process with BUG­
CHK privilege, EXE$BUG_CHECK writes an error log message, invoking 
ERL$ALLOCEMB and ERL$RELEASEMB. The error message resembles that 
shown in Table 32.2 but has an entry type of user-generated bugcheck and 
lacks the contents of CPU-specific registers. 

If the bugcheck is fatal, EXE$BUG_CHECK restores the saved registers, 
executes an REI instruction to return to the access mode of the bugcheck, and 
requests the Exit ($EXIT) system service. The value SS$_BUGCHECK is the 
final image status. What happens as a result of this service request depends 
on whether the process is executing a single image (without a command 
language interpreter, CLI, to establish a supervisor mode exit handler) or is 
an interactive or batch job. 

• If the process i.s executing a single image, a fatal bugcheck from user or 
supervisor mode typically results in process deletion. 

• With the current use of supervisor mode exit handlers, a fatal bugcheck 
generated from an interactive or batch job causes the currently executing 
image to exit and control to be passed to the CLI to read the next command. 

In either case, the only difference between user and supervisor mode is 
that user mode exit handlers are not called if a fatal bugcheck is generated 
from supervisor mode. 

If the bugcheck is not fatal, EXE$BUG_CHECK restores the saved registers 
and executes an REI instruction. Execution continues with the instruction 
following the BUG_CHECK macro. 
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The SYSGEN parameter BUGCHECKFATAL has no effect on bugchecks 
generated from user or supervisor mode. The severity field in the bugcheck 
operand determines whether a given bugcheck is fatal. User and supervisor 
mode bugchecks affect only the current process. 

Bugchecks from Executive and Kernel Modes 

Various VMS components generate bugchecks from executive and kernel 
modes. 

If an executive or kernel mode bugcheck operand is not fatal and the SYS­
GEN parameter BUGCHECKFATAL is zero, EXE$BUG_CHECK proceeds as 
it does for nonfatal bugchecks for the outer two access modes. It writes an 
error log entry, restores the general registers, and dismisses the exception, 
passing control back to the instruction following the BUG_CHECK macro. 

The error log entry for a nonfatal bugcheck is identical to that for a fatal 
bugcheck (see Table 32.2) except that it has an entry type of system-generated 
bugcheck and lacks the contents of CPU-specific registers. 

Typically, execution continues with no further effects. However, the rou­
tine that detects the error and generates the bugcheck can take further action. 
One example of such a routine is the last chance handler for executive mode 
exceptions. It generates the nonfatal bugcheck SSRVEXCEPT (unexpected 
system service exception). On the presumption that process data structures 
are inconsistent, it then requests the $EXIT system service. Exiting from 
executive mode results in process deletion. 

In the case of a fatal bugcheck, EXE$BUG_CHECK's most important func­
tion is to record the contents of the error log allocation buffers and memory 
in the dump file. Later, during system initialization, error log messages in the 
dump file are copied to nonpaged pool for processing by the ERRFMT process. 
The dump file can be examined subsequently with the System Dump An­
alyzer (SDA) to determine the cause of the crash. EXE$BUG_CHECK also 
prevents any further system operations in case they might lead to data cor­
ruption. It halts the system and initiates a reboot. 

If BUGCHECKFATAL is 1, any executive or kernel mode bugcheck is 
treated as fatal, independent of the severity bits in the bugcheck operand. By 
default, BUGCHECKFATAL is 0, which means that a nonfatal inner access 
mode bugcheck does not cause the system to crash. If either BUGCHECK­
FATAL is 1 or the bugcheck is fatal, EXE$BUG_CHECK performs fatal bug­
check processing. 

Section 32.2.4 describes the contents of the dump file, and Section 32.2.5 
provides details about fatal bugcheck processing. 

System Dump File 

Syste~ initialization code locates and opens the dump file. The dump file 
must be in directory SYS$SPECIFIC:[SYSEXE] on the system disk so that 
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each member of a VAXcluster system has a unique dump file. By default, the 
dump file is SYSDUMP.DMP. In its absence, VMS instead writes a dump to 
PAGEFILE.SYS, if it exists. !Subsequent analysis of a dump written to the 
page file requires that the SYSGEN parameter SAVEDUMP be 1.) 

The dump file is divided into several distinct pieces: 

1. The dump header is written to the first block of the file, virtual block 
number IVBN) 1. The dump header includes information that enables 
SDA to determine the state of the dump file and locate key information 
in it. The contents of this data structure are shown in Table 32.1. Sym­
bolic offsets for the dump header field names are defined by the macro 
$DMPDEF in SYS$LIBRARY:STARLET.MLB. 

2. The error log allocation buffers are written to the next blocks. The SYS­
GEN parameter ERLBUFFERPAGES specifies the number of blocks in 
each buffer. The SYSGEN parameter ERRORLOGBUFFERS specifies how 
many buffers there are. 

3. The rest of the dump file is filled with memory contents. 

Note that the dump header includes an error log entry. The entry as­
sociated with a fatal bugcheck is recorded in the header to avoid loss of 
information in case the error log allocation buffers are full when the bug­
check occurs. 

Table 32.2 shows the contents of an error log entry for a fatal bugcheck. 
The macros $EMBHDDEF and $EMBCRDEF define symbolic offsets for 
fields in this error log entry. 

After the system reboots, SYSINIT !see Chapter 31) copies the fatal bug­
check error log entry to nonpaged pool, along with the error log allocation 
buffers saved in the dump file. It stores their starting address in global loca­
tion EXE$G1-SAVED_EMBS. Later, the ERRFMT process will record them 
in the error log file. 

In earlier versions of VMS, a dump was always a dump of physical memory. 
A physical dump generally requires that all physical memory be written to 
the dump file to ensure the presence of the system page table ISPT). In a 
typical VMS configuration, the SPT, required for virtual address translation, 
is allocated in high physical memory (see Chapter 30). Since a dump of 
physical memory is written in order by memory addresses, with lowest first, 
an undersized dump file is likely to lack the SPT. 

A partial dump without the SPT is useless and cannot be analyzed by SDA. 
The size of the file required for a complete dump of physical memory is the 
sum of one block for the header, ERRORLOGBUFFERS times ERLBUFFER­
PAGES blocks for the error log buffers, and as many blocks as there are 
physical pages of memory being used. If MA780 shared memory is present 
on the system, the dump file must be large enough to include its contents 
as well. 

VMS Version 5.0 introduces an alternative form of crash dump-a dump 
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Table 32. l Contents of the Dump Header 

Description 
Last error log sequence number 
Dump file flags 

Meaning if Set 

Dump file has been analyzed 
Dump has no valid data 
Error occurred writing header 
Error occurred writing error log 

buffers 
Error occurred writing memory 
Error occurred writing system 

page table 
Dump completely written 
Header and error log buffers com­

pletely written 
Dump style 

0 = full physical memory dump 
1 =selective memory dump 

Unused 

Unused 
Number of pages in each error log buffer 

Bit 
Position 

0 
1 
2 
3 

4 
5 

6 
7 

8-11 

12-15 

Contents of SBR, SLR, KSP, ESP, SSP, USP, ISP 
Quadword descriptors for eight memory controllers 
• Page count 
• Transfer request number for this controller 
• Base page frame number (PFN) for this controller 
System version number 
One's complement of previous longword 
Dump file version (contains 052016 for VMS Version 5.2) 
Number of error log allocation buffers 
Index of error log buffer ring head 
Index of error log buffer ring tail 
Last I/O status from writing the dump 
Number of errors that occurred writing the dump 
Number of pages of memory in the dump 
Number of processes written in selective dump 
Error log entry for fatal bugcheck (see Table 32.2) 

Size 

Longword 
Word 

Byte 
Byte 
7 longwords 
8 quadwords 
3 bytes 
Byte 
Longword 
Longword 
Longword 
Word 
Word 
Word 
Word 
Longword 
Longword 
Longword 
Longword 
78 longwords 

of selected virtual address space. This alternative makes possible a dump of 
a system with more physical memory than dump file space. 

In a selective dump, related pages of virtual address space are written to 
the dump file as a unit called a logical memory block (LMB). For example, 
one logical memory block consists of the system and global page tables; 
another is the address space of a particular process. Those logical memory 
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Table 32.2 Contents of Error Log Entry for Fatal Bugcheck (CRASH CPU) 

Description 

Error message buffer header 
• Size in bytes of buffer 
• Allocation buffer number 
• Error message valid indicator 
System ID of CRASH CPU 
Error message header revision level (contains FFFC16 ) 

Extended system ID information from CRASH CPU 
ID of CRASH CPU 
Device class (unused) 
Device type (unused) 
SCS node name 
Flags 
Operating system ID 
Header size 
Entry type (contains EMB$ILCR = 2516 ) 

System time when crash occurred (from EXE$GQ_SYSTIME) 
Error log sequence number (low-order word of ERL$GL_ 

SEQUENCE) 
Software version 
Error type mask 
Contents of KSP, ESP, SSP, USP, ISP from CRASH CPU 
Contents of RO to RI I, AP, FP, SP, PC, PSL from CRASH CPU 
Contents of POBR, POLR, PIBR, PILR, SBR, SLR, PCBB, SCBB, 

ASTLVL, SISR, ICCS from CRASH CPU 
Contents of CPU-specific registers from CRASH CPU 
Bugcheck operand on CRASH CPU 
ID of process current on CRASH CPU 
Name of process current on CRASH CPU 

Size 

5 bytes 
Word 
Word 
Byte 
Longword 
Word 
Longword 
Longword 
Byte 
Byte 
16 bytes 
Word 
Byte 
Byte 
Word 
Quadword 
Word 

Quadword 
Longword 
5 longwords 
I 7 longwords 
11 longwords 

24 longwords 
Longword 
Longword 
16 bytes 

blocks likely to be most useful in crash dump analysis are written first. 
Section 32.2.5.2 describes logical memory blocks in more detail. , 

A value of 1 for the SYSGEN parameter DUMPSTYLE specifies a selective 
crash dump; the parameter's default value is 0. If DUMPSTYLE is 1, 127 
system page table entries jSPTEs) are allocated during system initialization 
for later use in writing a selective dump. If these SPTEs cannot be allocated, 
DUMPSTYLE is zeroed to specify that a physical dump be taken. 

Fatal Bugcheck Processing 

The code that performs fatal bugcheck processing and its data are not resi­
dent and are not referenced during normal system operation. They are within 
the pageable part of the executive image EXCEPTION.EXE. When needed, 
they are read into memory, overlaying nonpaged read-only executive code. 

The decision that fatal bugcheck code be nonresident saves a considerable 
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amount of memory during normal operations. It results, however, in some 
added complexity during the infrequent occurrence of a fatal bugcheck. An­
other implication is that the executive code overlaid by the fatal bugcheck 
code cannot subsequently be examined in the dump. It is thus possible that 
some part of the causal sequence that led to the crash may be unavailable. 
However, this is judged to be a low-probability event relative to the frequency 
with which the extra memory is useful. 

The fatal bugcheck overlay includes the nonresident portion of EXE$BUG_ 
CHECK, in module BUGCHECKLD; a table of all bugcheck codes; and two 
pages containing the bugcheck message text associated with the fatal bug­
check. One additional page of executive is used as a data buffer. The bug­
check overlay and its data buffers are shown in Figure 32.2. 

EXE$BUG_CHECK does not use standard 1/0 mechanisms to read the 
fatal bugcheck overlay or write the dump because they may be affected 
by the system inconsistency that triggered the fatal bugcheck. Instead, it 
calls the bootstrap system device driver for all its 1/0. The bootstrap system 
device driver is the one used during system initialization jsee Chapter 30). 
Furthermore, EXE$BUG_CHECK cannot request the file system to look up 
the image containing the fatal bugcheck code or the dump file. Instead, it 
uses information about their locations that was recorded and checksummed 
at system initialization. 

Before reading the fatal bugcheck overlay, EXE$BUG_CHECK takes the 
following steps: 

1. It validates the checksum of the boot control block, the data struc­
ture containing the locations of the bugcheck overlay and dump file. If 
the boot control block checksum is no longer valid, EXE$BUG_CHECK 
clears a flag tested in a later step. 

2. On a symmetric multiprocessing jSMP) system, the first CPU to execute 
EXE$BUG_CHECK is called the CRASH CPU. It informs the other CPUs 

System Disk 

----------
----

Figure 32.2 
Fatal Bugcheck Overlay 

l Virtual Address Space 1 
}1------------1Isooooooo 

Buffer for Dump Header 

l Approximately 
110,500 bytes 

•. _J 
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that a fatal bugcheck is in progress and takes a number of steps to 
ensure that a consistent system state can be saved. After these steps, 
the primary CPU in the system assumes the context of the CRASH CPU 
and completes fatal bugcheck processing. Chapter 34 contains further 
details on fatal bugcheck processing in an SMP system. 

3. EXE$BUG_CHECK invokes SCS$SHUTDOWN, in moduie [SYSLOA] 
SCSLOA, to shut down any SCS circuits. 

4. It invokes EXE$SHUTDWNADP to shut down all adapters and invokes 
EXE$INIBOOTADP to initialize the adapter containing the system de­
vice. These routines are in the CPU-specific module [SYSLOA]ERR­
SUBxxx, where xxx identifies the CPU type (see Appendix G). 

5. It invokes INI$WRITABLE to change the protection of the pages contain­
ing nonpaged read-only sections of loaded executive images so that they 
can be overwritten by the bugcheck overlay. 

6. It calls the device initialization routine in the bootstrap driver. 
7. EXE$BUG_CHECK scans the list of loaded executive images for one 

containing a nonpaged code section large enough for the bugcheck overlay 
and its data buffers. It skips over those executive images that contain 
routines used by the bugcheck overlay. 

8. EXE$BUG_CHECK then tests whether the boot control block was found 
to be valid. If not, it reboots the system. 

EXE$BUG_CHECK calls the bootstrap driver to read the first page of the 
nonresident bugcheck code and transfers control to a routine within it which 
reads the rest of the overlay. (For simplicity, the name EXE$BUG_CHECK 
is used here to refer to both the resident and nonresident bugcheck code.) 
If an 1/0 error occurs while the nonresident bugcheck code is being read, 
EXE$BUG_CHECK writes an error message on the console terminal and 
reboots the system. 

Before writing to the dump file, the routine takes the following steps: 

1. It determines the block number in EXCEPTION.EXE that contains the 
start of the bugcheck message associated with the bugcheck type. It reads 
that block and, in case the message spans blocks, the next block. 

2. It builds the error log message in the dump header buffer, invoking 
the CPU-specific routine EXE$DUMPCPUREG, in module [SYSLOA] 
ERRSUBxxx, to copy CPU-specific processor registers to the error log 
message. 

3. If this is an operator-requested shutdown bugcheck, EXE$BUG_CHECK 
skips the next step. 

4. EXE$BUG_CHECK writes information about the bugcheck to the con­
sole terminal. This information includes the bugcheck message, ad­
dresses of the loaded executive images, current process name, and con­
tents of general registers and stacks relevant to the crash. On an SMP 
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system, EXE$BUG_CHECK writes additional information, such as which 
CPUs are active and which CPU incurred the fatal bugcheck. 

The console output is written before the dump file and should not 
be interrupted by halting the VAX processor from the console terminal. 
Such an interruption prevents the dump file from being written. 

5. Next, EXE$BUG_CHECK determines whether a dump is to be written 
and, if so, what kind of dump: 

-If the SYSGEN parameter DUMPBUG is 0, no dump is written. (Its 
default value is 1.) 

-If the boot control block was found to be invalid, no dump is written. 
-If neither SYSDUMP.DMP nor PAGEFILE.SYS existed in the directory 

SYS$SPECIFIC:[SYSEXE] at boot time, no dump is written. 
-If this is an operator-requested shutdown generated through the system 

shutdown command procedure, only the dump header and error log 
allocation buffers are written to the dump file. (This behavior is new 
with VMS Version 5.0.) 

-If the parameter DUMPSTYLE is 1, memory is dumped selectively; 
otherwise, a full memory dump is written. (The default value of this 
parameter is 0.) 

6. If no dump is to be written, EXE$BUG_CHECK concludes with the steps 
described in Section 32.2.5.3. 

7. If any type of dump is to be written, EXE$BUG_CHECK next writes the 
dump header and the contents of the error log allocation buffers to the 
dump file. After successfully writing the error log buffers, it rewrites the 
dump header with a status indicating that the dump contains them. 

8. If the system is being shut down and no further dump is necessary, 
EXE$BUG_CHECK concludes with the steps in Section 32.2.5.3. Other­
wise, it determines whether a physical or selective dump is to be written. 
The following two sections describe its actions in writing these different 
types of memory dumps. 

Physical Memory Dump. EXE$BUG_CHECK uses the memory descriptors 
in the restart parameter block constructed by VMB (see Chapter 30) to pro­
vide an accurate description of physical address space. It uses the contents of 
the global MMG$GLMAXMEM as the largest PFN that should be written 
to the dump file. This global is initialized as the highest page in use by VMS. 
If the SYSGEN parameter PHYSICALPAGES has been set to fewer pages of 
memory than are available, VMS only uses the lowest PHYSICALPAGES of 
memory. 

Writing 127 physical pages at a time, EXE$BUG_CHECK writes memory 
contents to the dump file. It begins writing to the block following the dump 
header and error log allocation buffers and continues until it gets to the end 
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Error Log Allocation Buffers through 
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Figure 32.3 
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Layout of a Physical Memory Dump 

of the dump file or until it has written all of the physical memory in use by 
VMS. Figure 32.3 shows the layout of a physical memory dump. 

Selective Memory Dump. In a selective dump, related pages of virtual 
address space are written to the dump file as a unit called a logical memory 
block. A list in EXE$BUG_CHECK explicitly specifies the order in which 
logical memory blocks are written to the dump file, as follows: 

1. The system and global page tables. 
2. System space. This excludes the system and global page tables and those 

pages overwritten by the bugcheck overlay and its data. It includes any 
system transition pages, pages that are invalid but on the free or modified 
list. 

3. Global pages in use at the time of the crash. 
4. The per-process address space of the process current at the time of the 

crash, excluding global pages and including any of its pages on the free 
and modifed lists. (On an SMP system, the address space of the process 
current on the CRASH CPU is written in this step.) 

5. The per-process address spaces of the following processes, in the order 
specified: 

a. MSCPmount 
b. NETACP 
c. REMACP 
d. LES$ACP 
e. On an SMP system, processes current on other active CPUs 
f. Other resident processes, in order by process index 

Following the dump header and error log allocation buffers, EXE$BUG_ 
CHECK writes logical memory blocks to the dump file until it is full or the 
end of the list is reached. 

Each logical memory block in a dump begins with a descriptor that iden­
tifies the block and gives its size. The range of addresses to be included in a 
block is determined by the particular address space being dumped. 
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Not all virtual addresses in the range spanned by a logical memory block 
are necessarily included in it. Because nonresident pages (those not currently 
in memory) are not dumpable, a nonresident page is a hole in the address 
space. In the case of a process logical memory block, a global page is also a 
hole, because global pages are all dumped together in the global page logical 
memory block. 

A logical memory block with holes in its address space contains a hole 
table, which lists the pages of address space not present in the dump. The 
rest of the block consists of pages of address space in order by ascending 
address. Figure 32.4 shows the organization of a logical memory block and 
the layout of a typical selective dump. 

EXE$BUG_CHECK's general sequence in writing a logical memory block 
is the following: 

1. It writes a logical memory block descriptor in the next block of the dump. 
2. It scans the page tables that describe the address space to be dumped, 

looking for invalid pages that are not transition pages. It writes an entry 
in a hole table for each such sequence of pages found. It writes the hole 
table to the next block (or blocks) of the dump. (Chapter 14 describes the 
different PTE forms.) 

3. EXE$BUG_CHECK scans the page tables again, filling in its 127 SPTEs 
with information from each valid or transition PTE found. That is, it 
double-maps those pages so that it can write 127 virtually noncontiguous 
pages in one 1/0 request. 

4. When EXE$BUG_CHECK has written all the valid and transition pages in 
a particular logical memory block to the dump file, it rewrites the block 
containing the descriptor with correct information about the number 
of holes in the address space and the number of data blocks (valid and 
transition pages) in the logical memory block. 

Generally, EXE$BUG_CHECK reaches the end of a file sized for selective 
dumps before it reaches the end of the logical memory block list. When it 
does, it rewrites the descriptor of the current logical memory block with 
the hole count and actual number of data blocks written. It then rewrites 
the dump header, filling in status information such as number of 1/0 errors 
encountered writing the dump file, whether the SPT was dumped, how many 
process logical memory blocks were written, and so on. 

Note that a selective dump to the page file is not likely to survive system 
initialization. For a dump in a page file to remain intact until it can be copied, 
there must be 452 additional blocks in the page file available for paging. If 
there are not, SYSINIT releases for paging the blocks occupied by the dump. 
Because EXE$BUG_CHECK typically continues to write a selective dump 
until there is no more room, there is no way for the system manager to 
ensure that 452 blocks of page file will remain unoccupied by the dump. 

In writing a selective dump, EXE$BUG_CHECK must defend against the 
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possibility that whatever error led to the bugcheck corrupted the data struc­
tures necessary to write virtual address space. It replaces the page fault and 
access violation exception service routines with its own routines to prevent 
recursive bugchecks if either of those errors occur. It also performs consis­
tency checks on certain key data structures. For example, it checks that an 
address presumed to be that of a process header is "syntactically" correct; 
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that is, it must be within known address boundaries and at an integral num­
ber of process headers from the beginning of the address range. 

Final Fatal Bugcheck Processing. The last step in EXE$BUG_CHECK either 
loops or reboots the system. If the SYSGEN parameter BUGREBOOT is 0, 
EXE$BUG_CHECK writes a message on the console terminal and loops at 
IPL 31, waiting for a command to be entered at the console terminal. If 
BUGREBOOT is 1, its default value, EXE$BUG_CHECK reboots the system 
by invoking the routine CON$SENDCONSCMD, in module OPDRIVER, 
to send a special boot command to the console and halt. When the HALT 

instruction is executed, the console subsystem gains control and processes 
the boot command. 

MACHINE CHECK MECHANISM 

A machine check is an exception that is reported when CPU microcode 
detects an internal error during the attempted execution of an instruction. 
Machine check errors are CPU~specific; possible types of machine checks 
include memory cache parity error, translation buffer parity error, and CPU 
timeout. Many, but not all, machine checks are caused by some sort of 
hardware condition. Some hardware conditions are transient; others are 
persistent. 

During a machine check exception, CPU microcode logs information, 
called the machine check frame, on the interrupt stack. The machine check 
frame identifies the type of machine check and includes the contents of 
relevant CPU registers. Its exact form varies on each type of CPU. Consult 
CPU-specific literature for information on the form of the machine check 
frame and the layout of the associated CPU registers. 

A machine check exception is dispatched through the SCB to a machine 
check exception service routine. The exception is serviced on the interrupt 
stack at IPL 31. On an SMP system, the machine check exception service 
routine acquires the MCHECK spinlock as needed, for example, to serialize 
access to VAX bus interconnect (VAXBI) or memory controller registers. 

The actual exception service routine is contained in the CPU-specific 
image SYSLOAxxx and is loaded during system initialization. The module 
name has the form MCHECKyyy. Appendix G describes the possible values 
for these CPU- and system-specific suffixes. 

The actual processing of a machine check exception is CPU-specific. This 
section contains only an overview of machine check handling common to 
all CPU types. 

VMS determines from the machine check frame what type of machine 
check occurred. Although VMS treats each type of machine check somewhat 
differently, its general response is to log an error and increment the global 
counter EXE$GL_MCHKERRS. The Digital command language command 
SHOW ERROR displays the contents of this counter as CPU errors. 
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VMS then determines whether the error is recoverable. Recoverability 
depends on whether the machine check exception was a fault or an abort. 
In the case of a fault, register and memory operands have been restored to 
their state prior to the attempted execution of the instruction. In the case 
of an abort, they cannot be restored, and it is therefore impossible to restart 
the instruction. Recoverability also depends on whether the instruction is a 
resumable one. The details of recoverability are CPU-specific. 

The basic philosophy of the machine check service routine is to keep 
the system running if possible. How serious a particular machine check is 
depends upon whether it is recoverable and the access mode in which the 
machine check occurred. If the machine check is recoverable, the service 
routine takes any needed recovery action, removes the machine check frame 
from the interrupt stack, and executes an REI to dismiss the exception and 
return control to the instruction that incurred the exception. 

If the machine check is not recoverable, the action taken by the machine 
check handler depends on the access mode in which the machine check 
occurred. If the previous mode was supervisor or user, a machine check 
exception is reported to that access mode. (Unless the process has declared a 
condition handler for this type of exception, this step results in image exit.) 
If the previous mode was executive or kernel, the machine check service 
routine generates the· fatal bugcheck MACHINECHK. 

On some CPUs, some machine checks are asynchronous, such that the 
actual PC and access mode at the time of the ~rror cannot be determined. 
In such a case, VMS, acting to protect the integrity of the system, makes 
the conservative assumption that the access mode was kernel or executive 
and bugchecks. One example of such an error is a memory parity error on a 
MicroVAX II processor. 

Machine Check Protection Mechanism 

VMS provides the capability for a block of kernel mode code to protect itself 
from machine checks while executing and to discover whether a machine 
check occurred during the protected sequence of code. For example, this 
feature is used if an interrupt is generated from a previously unconfigured 
adapter. The code that services the interrupt must access the adapter's regis­
ters. If the interrupt is spurious, this may mean referencing nonexistent I/O 
space. In this context, a machine check caused by such a reference must not 
result in a system crash. 

The code to be protected is called a machine check recovery block. There 
are several restrictions on such a block: 

•· It must be executing in kernel mode. 
• The stack cannot be used across the entry into or the exit out of the 

recovery block. This restriction exists because a co-routine mechanism 
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is used to pass control between the recovery block and the VMS routines 
that establish it . 

• Because VMS elevates IPL to 31, only a limited number of instructions 
should be included in the block. Note that no spinlock acquisition is 
required; the code is protecting against a possible machine check on the 
same CPU on which it executes . 

• The contents of RO are overwritten by the mechanism. 

The basis for the machine check protection mechanism is several routines 
in the module EXCEPTION_PRIMITIVES and two data cells in the per-CPU 
database. The kernel mode code to be protected must invoke the two macros 
described in the following paragraphs. 

The first macro generates code that dispatches to EXE$MCHK_PRTCT to 
define the beginning of the block: 

$PRTCTINI LABEL,MASK 

The label argument is identical to the label argument associated with the 
second macro that defines the end of the block. This macro generates code 
that returns to EXE$MCHK_PRTCT to define the end of the block: 

$PRTCTEND LABEL 

If no error occurred while the protected code was executing, RO contains the 
success status SS$_NORMAL. Otherwise, RO contains the error status SS$_ 
MCHECK. 

The mask argument allows the block of code to protect itself from different 
classes of errors. The $MCHKDEF macro defines the following specific types 
of protection: 

Protection Name 

MCHK$M_LOG 
MCHK$M_MCK 
MCHK$M_NEXM 
MCHK$M_UBA 

Description 

Inhibit error logging for the error 
Protect against machine checks 
Protect against nonexistent memory 
Protect against UNIBUS adapter error 

interrupts 

Invoking the following macro enables kernel mode code to determine 
whether a recovery block is in effect and to take action accordingly: 

$PRTCTEST ADDRESS,MASK 

This macro invokes the routine EXE$MCHK_ TEST, which returns status in 
RO. The low bit set in RO indicates that a recovery block is in effect and that 
the specified mask is being used. This routine is typically used to determine 
whether a machine check should be logged in the error log. 

Another related routine, EXE$MCHK_BUGCHK, is invoked from a ma­
chine check exception service routine to determine whether a recovery block 
is in effect. If no block is in effect, the routine returns, usually to code that 
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generates a bugcheck. If a block is in effect, the routine returns control to 
the end of the protected block, with RO containing an error code of SS$_ 
MCHECK. 

32.4 CPU-SPECIFIC ERROR INTERRUPTS 
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Five vectors in the SCB, at offsets 5016 through 6016, are reserved for CPU­
specific system bus and memory errors. These interrupts occur at CPU­
specific IPLs within the range 1816 through 1D16• Not all processors im­
plement all five interrupts. 

VMS services these interrupts in the CPU-specific image SYSLOAxxx. The 
actual interrupt service routines are contained in the CPU-specific module 
MCHECKyyy. Appendix G describes the possible values for these CPU- and 
system-specific suffixes. 

In general, VMS servicing of these interrupts is done at IPL 31 and in­
cludes logging an error to the error log. On an SMP system, a CPU-specific 
error interrupt service routine acquires the MCHECK spinlock as needed, for 
example, to serialize access to VAX.BI or memory controller registers. This 
serializes access among a CPU-specific error interrupt service routine run­
ning on one CPU and both CPU-specific error interrupt and machine check 
exception service routines running on other CPUs. 
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For there are moments when one can neither think nor feel. 
And if one can neither think nor feel, she thought, where 
is one? 

Virginia Woolf, To the Lighthouse 

Powerfail recovery support enables a suitably equipped VMS system to sur­
vive power fluctuations and power outages of short duration with no loss 
of operation. The support is provided by hardware features (battery backup) 
and VMS software routines. 

VMS support includes a powerfail service routine that saves the volatile 
state of the machine when the power fails, a restart routine that restores 
that state when the power is restored, CPU-specific initialization code, and 
device-specific code within many VMS device drivers. The VMS software 
also provides process notification by means of power recovery asynchronous 
system traps (ASTs). 

33.1 POWERFAIL SEQUENCE 

When the CPU hardware detects a drop in operating voltage, it requests a 
powerfail interrupt at interrupt priority level (IPL) 30. The VAX architec­
ture specifies that this interrupt dispatch through the vector at offset OC16 
in the system control block (SCB). This vector contains the address of the 
VMS powerfail interrupt service routine, EXE$POWERFAIL in module POW­
ERFAIL. Because powerfail is an interrupt rather than an exception, code 
executing at IPL 30 or 31 can block powerfail notification. Some VMS rou­
tines deliberately execute at IPL 31 for short instruction sequences to avoid 
potential synchronization problems. 

Main memory is preserved by battery backup. EXE$POWERFAIL saves 
the volatile machine state, those registers whose contents are not preserved 
by some sort of battery backup, in main memory. EXE'.$POWERFAIL it­
self saves registers common to all types of VAX processors. To save CPU­
specific registers, it invokes the routine EXE$REGSAVE, in module [SYS­
LOA]ERRSUBxxx, part of the CPU-specific image SYSLOAxxx. Appendix G 
contains the SYSLOA image names for particular processors. 

Some of a CPU's registers are saved on its interrupt stack, some in its per­
CPU database, and some in the restart parameter block (RPB). The CPU's 
interrupt stack pointer (ISP) is the last value saved. Checking the value of 
the saved ISP in the per-CPU database, the restart routine can determine 
whether the interrupt service routine preserved all the required registers. 
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Once the registers have been saved, EXE$POWERFAIL waits at IPL 31 in 
the following tight loop until the CPU ceases all operations: 

10$: BRB 10$ 

The BRB instruction was chosen over an explicit HALT to avoid triggering a 
restart before the CPU stops. 

Tables 33.l and 33.2 list the registers preserved by EXE$POWERFAIL and 
restored at powerfail recovery. 

33.2 POWER RECOVERY 

33.2.1 
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The console subsystem power recovery logic performs validity checks in a 
CPU-dependent fashion and then passes control to the VMS restart routine 
on the primary CPU. This routine restores the saved state of the machine, 
restarts the secondary CPUs that were active prior to the power failure, 
and notifies each device driver in the system that power has failed and 
been restored, so that the drivers can take device-specific action to restore 
interrupted I/O requests. 

Initial Step in Power Recovery 

The initial step in recovery from a power failure is performed by the CPU­
specific console subsystem. It performs the following tasks: 

1. Initializes the CPU 
2. Verifies that the contents of memory survived the power outage 
3. Locates the restart routine through the RPB 
4. Passes control to that routine 

The RPB is a page of physical memory whose first four longwords contain 
the physical address of the RPB, the physical address of the restart routine, 
the checksum of the first 31 longwords in the restart routine, and a warm 
restart inhibit flag. On most systems, the RPB is located at physical address 0. 

When searching for the RPB, the console subsystem looks for a longword 
on a page boundary that contains its own address. The console subsystem 
examines the second longword to determine that it contains a valid physical 
address (and not zero, in case a page of zeros passes the first test). If the 
address is acceptable, the checksum of the first 31 longwords of the restart 
routine is calculated. The checksum is then compared to the checksum in 
the RPB. If the two checksums are equal, the page contains an RPB and the 
restart routine is intact. 

The sections that follow contain further information about power recovery 
on each type of VAX processor. Many VAX processors have two control panel 
switches whose settings affect powerfail recovery: a Console Enable switch 
and a Restart Action switch. The Console Enable switch allows or inhibits 
command entry on the local console terminal. The descriptions that follow 
assume that the local console terminal is enabled. 
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Table 33.l Data Saved by EXE$POWERFAIL and Restored During 
Power Recovery 

The elements in Group A are restored before memory management is 
reenabled. The RPB is accessed through its physical address. 

Element 
System base register (SBR) 
System length register (SLR) 
System control block base 

register (SCBB) 

GROUP A 

Where Stored 

RPB 
RPB 
Per-CPU database 

The elements in Group B are restored after memory management has been 
reenabled, which allows the RPB, interrupt stack, and per-CPU database to 
be accessed through system virtual addresses. 

Element 
Interrupt stack pointer 
Process control block base 

register (PCBB) 
Software interrupt summary 

register (SISR) 
Pl length register (PlLR) 
Pl base register (PlBR) 
PO length register (POLR) 
PO base register (POBR) 
AST level register (ASTLR) 
Four per-process stack pointers 
CPU-specific processor registers 

(see Table 33.2) 

GROUPB 

Where Stored 

Per-CPU database 
Per-CPU database 

Per-CPU database 

Interrupt stack 
Interrupt stack 
Interrupt stack 
Interrupt stack 
Interrupt stack 
Interrupt stack 
Interrupt stack 

The elements in Group C are not restored until the other power recovery 
steps described in the text are performed and the powerfail interrupt is 
dismissed. The program counter (PC) and processor status longword (PSL) 
are restored by the REI instruction that dismisses the interrupt. 

Element 
General registers (RO through FP) 
Interrupt PC 
Interrupt PSL 

GROUPC 

Where Stored 

Interrupt stack 
Interrupt stack 
Interrupt stack 
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Table 33.2 CPU-Specific Registers Saved at Powerfail 

Register 1 

Performance monitor enable register 
Performance monitor enable register 
Translation buffer disable register 
Memory cache disable register 
Performance monitor enable register 
Synchronous backplane interconnect (SBI) 

maintenance register 
Performance monitor enable register 
Translation buffer disable register 
Memory cache disable register 
Performance monitor enable register 
Cache state register 
Fbox state register 
Performance monitor enable register 
Cache on register 
Cache disable register 
None 2 

None 
None 3 

CPU 

VAX-11/730 
VAX-11/750 
VAX-11/750 
VAX-11/750 
VAX-ll/78x 
VAX-ll/78x 

VAX 8200 family 
VAX 8200 family 
VAX 8200 family 
VAX 86x0 
VAX 86x0 
VAX 86x0 
VAX 8800 family, VAX 88x0 
VAX 8800 family, VAX 88x0 
VAX 6000 model 200/300 
VAX 6000 model 400 
VAXstation 3520/40 
MicroVAX processors 

1 These CPU-specific processor registers are saved on and restored from the 
per-CPU interrupt stack. 

2 In VMS Version 5.2, the register save routine for a VAX 6000 model 400 CPU 
clears the bit corresponding to its CPU ID in CCA$Q_RESTARTIP. 

3 Power failure recovery is not implemented on MicroVAX processors. 

Chapter 30 provides more detail on the various implementations of the 
console subsystem. 

Power Recovery on a VAX-11/730 Processor. When power is restored on 
a VAX-11/730 processor, the console subsystem tests whether the Auto 
Restart/Boot switch on the front of the processor cabinet is in the OFF 
position. If it is, the console subsystem simply prompts on the console 
terminal and waits for input. (Note that the Auto Restart/Boot switch on 
the front panel should be switched off when first turning on a VAX-11/730 
system to avoid an unnecessary restart attempt.) 

If the Auto Restart/Boot switch is in the ON position, the console subsys­
tem searches through physical memory for a valid RPB. In searching for the 
RPB, it tests whether the contents of memory survived the power outage. 
Memory contents can fail to be backed up for two reasons: 

• Because the system does not have battery backup, the contents of memory 
are lost when the power fails. 
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• Because the power is off for longer than the battery backup could pre­
serve memory contents, the contents of memory are lost when the battery 
backup fails. (This time depends on the amount of memory present but is 
generally not shorter than ten minutes.) 

If the RPB is not located, the restart fails and the console subsystem at­
tempts to bootstrap the system by executing the command procedure DEF­
BOO.CMD. 

If the RPB is located, the warm restart inhibit flag (bit (0) in the fourth 
longword of the RPB) is checked. If set, it indicates that a warm restart was 
attempted and failed. In that case, the console subsystem then executes the 
command procedure DEFBOO.CMD to bootstrap the system. 

If the warm restart inhibit flag is clear, the console subsystem performs 
the following steps: 

1. Sets the warm restart inhibit flag to prevent a second restart attempt 
before the first has succeeded 

2. Loads the stack pointer (SP) register with the address of the RPB plus 
20016 

3. Loads the argument pointer (AP) register with a value indicating the cause 
of the halt 

4. Loads RlO and Rl 1 with the PC and PSL at the time of the halt for use 
in servicing error halt conditions other than powerfail 

5. Transfers control to the restart routine whose address is in the second 
longword of the RPB 

Power Recovery on a VAX-11/750 Processor. When power is restored on a 
VAX-11/750 processor, the console subsystem tests the setting of the Power­
on Action switch on the front of the processor cabinet. If the switch is 
in either the HALT or BOOT position, the console subsystem performs 
the designated action. If the switch is in either the RESTART/BOOT or 
RESTART/HALT position, the console subsystem attempts a restart. The 
second option (BOOT or HALT) is used only if the restart fails. 

For a restart, the console subsystem first tries to locate the RPB. In search­
ing for the RPB, it tests whether the contents of memory survived the power 
outage. 

If a valid RPB cannot be located or if the warm restart inhibit flag is 
set, the restart attempt fails and the console subsystem takes its alternative 
option. For the BOOT alternative, the console subsystem executes bootstrap 
read-only memory (ROM) code for unit 0 of the device identified by the 
device switch on the cabinet. The ROM code reads the boot block, block 0, 
from that device and then transfers control to it. Chapter 30 provides more 
information. 

If a valid RPB is located, the console subsystem transfers control to the 
restart routine, as described in Section 33.2.1.1. 
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Power Recovery on VAX-11/780 and VAX-11/785 Processors. When power is 
restored on a VAX-11/780 or VAX-11/785 processor, the console subsystem 
(LSI-11) performs the same sequence as when a system is being initialized 
(see Chapter 30). If power is also being restored on the LSI-11, CONSOL.SYS 
is loaded from the console floppy into the LSI-11 memory. No state for the 
LSI-11 is preserved across a power failure. 

The console subsystem then tests the Auto Restart switch on the front 
of the processor cabinet. If it is in the OFF position or if the warm restart 
inhibit flag is set, the console subsystem simply prompts on the console 
terminal and waits for input. 

If the Auto Restart switch is in the ON position and the warm restart 
inhibit flag is clear, the console subsystem executes the command pro­
cedure RESTAR.CMD, located on the console floppy. Before it executes 
RESTAR.CMD, it reloads the CPU microcode writable control store (WCSJ 
contents from the console floppy (from file WCSxxx.PATJ. WCS is not pre­
served by memory battery backup. 

The standard RESTAR.CMD command procedure contains commands de­
signed to restart a running VMS system. RESTAR.CMD generally contains 
the following lines: 

HALT 
!NIT 
DEPOSIT/I 11 20003800 
DEPOSIT RO 0 
DEPOSIT R1 3 
DEPOSIT R2 0 
DEPOSIT R3 0 
DEPOSIT R4 0 
DEPOSIT R5 0 
DEPOSIT FP 0 
START 20003004 

Halt processor 
Initialize processor 
Set address of SCB base 
Clear unused register 
TR number for UNIBUS adapter 
Clear unused register 
Clear unused register 
Clear unused register 
Clear unused register 
No machine check expected 
Start restart referee 

On systems with more than two memory controllers, the UNIBUS adapter 
(UBAJ is not located at TR 3. For such a system, RESTAR.CMD must be 
altered so that Rl is loaded with the TR number of the UBA. This step is 
necessary because the UBA map registers are used by ROM restart code as 
temporary storage. 

The START command passes control to the same ROM program that is 
used during system initialization except that the program is entered at its 
restart entry point. The ROM program determines whether the contents of · 
main memory are valid. If they are, the ROM program attempts to locate 
the RPB. 

If a valid RPB cannot be found or if the warm restart inhibit flag in the RPB 
is set, the ROM program sends a Boot (cold start) command to the console 
subsystem by executing the following instruction: 

MTPR #-XF02,#PR$_TXDB 
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The special uses of the PR$_ TXDB register for communication from the 
VAX CPU to the console program are described in Chapter 24. 

If a valid RPB is found, the ROM program passes control to the restart 
routine as described in Section 33.2.1.1. 

Power Recovery on VAX 8200 Family Processors. When power is restored on 
a VAX 8200 family member, the console subsystem tests the settings of the 
upper and lower key switches on the front of the processor cabinet. If the 
upper switch is in either the ENABLE or SECURE position and the lower 
switch is in the AUTO START position, the console subsystem attempts a 
restart. 

The console microcode tests and sets its restart-in-progress flag. It also 
tests its bootstrap-in-progress flag. If either flag is already set, the restart 
attempt is aborted. If the bootstrap-in-progress flag is clear, the console 
subsystem initiates a boot; otherwise, it halts. Chapter 30 provides more 
information. 

The console subsystem next tries to locate the RPB. In searching for the 
RPB, it tests whether the contents of memory survived the power outage. 
If a valid RPB cannot be located or if the RPB warm restart inhibit flag 
is set, the restart attempt fails and the console subsystem initiates a boot. 
If a valid RPB is located, the console subsystem initiates execution of the 
restart routine, described in Section 33.2.1.1, on the primary processor. The 
secondary processor, if present, remains in console mode and is restarted by 
software, as described in Chapter 34. 

Power Recovery on VAX 8600 and VAX 8650 Processors. When power is 
restored to the console microprocessor of a VAX 86x0 processor, the console 
microprocessor initializes itself and the VAX CPU as described in Chapter 30. 

In the case of a warm restart, the console program tests the Restart Control 
switch, which has four positions: 

BOOT 
HALT 
RESTART/BOOT 
RESTART/HALT 

If the switch is in the BOOT position, the console program invokes the 
DEFBOO.COM command procedure. If it is in the HALT position, the con­
sole program halts. 

If it is in one of the two RESTART positions, the console program con­
firms that the battery backup unit was still operational when the power was 
restored. It tests its warm-start-in-progress flag. A set flag indicates a previ­
ously unsuccessful attempt at warm restart. If the flag is clear, the console 
commands the VAX 86x0 console suppott microcode to locate the RPB. 
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If the RPB is located, the console program sets the warm-start-in-progress 
flag and transfers control to the restart routine (see Section 33.2.1.1). 

If restart cannot be attempted and the Restart Control switch is in the 
RESTART/BOOT position, the console program invokes the DEFBOO.COM 
command procedure. If the switch is in the RESTART/HALT position, the 
console program halts the processor. 

Power Recovery on VAX 8800 Fam~y Processors. The VAX 8800 family 
consists of VAX 8500, VAX 8530, VAX 8550, VAX 8700, and VAX 8800 
CPUs. This family's console program executes on a separate console mi­
croprocessor, as an application task under the P/OS operating system. One 
family member, the VAX 8800, is a multiprocessor. It supports two CPUs 
per system, one of which acts as the primary and performs the main work 
of booting VMS. VMS directs the initialization of the other, secondary CPU, 
as described in Chapter 34. 

When power is restored to the console microprocessor of a VAX 8800 fam­
ily member, its P/OS operating system boots and runs the console program. 
The console program restores its own state, which was saved in a_ log file. 
It determines whether the power failure included the VAX CPUs. If so, the 
console program executes SYSINIT.COM, described in Chapter 30. If the 
AUTO_RESTART software key switch is set, SYSINIT.COM invokes the 
command procedure RESTAR~COM. If it is clear but the AUTO_BOOT soft­
ware key switch is set, SYSINIT.COM invokes DEFBOO.COM. 

After an error halt, the console program executes the command proce­
dure RESTAR.COM. If the AUTO_RESTART switch is set, RESTAR.COM 
deposits the halt code, PC, and PSL into AP, RlO, and RU, initializes the 
CPU, clears RO through RS, and searches for an RPB. If it locates a valid RPB, 
RESTAR.COM initiates execution of the restart routine, described in Sec­
tion 33.2.1.1, on the primary processor. The secondary processor, if present, 
remains in console mode and is restarted by software, as described in Chap­
ter 34. 

If the AUTO_RESTART switch is clear or a valid RPB is not found, 
RESTAR.COM tests the setting of the AUTO_BOOT switch. If it is set, 
the procedure DEFBOO.COM is executed. 

Power Recovery on VAX 88x0 Processors. VAX 88x0 processors are multipro­
cessing members of the VAX 8800 family. The VAX 88x0 console program 
executes on a separate MicroVAX II processor, which communicates with 
the VAX 88x0 CPUs via a console interface module (CIM). 

One CPU acts as the primary and performs the main work of booting VMS. 
VMS directs the initialization of the remaining secondary CPUs, as described 
in Chapter 34. 

The MicroVAX II console runs console VMS; the console program is an 
application running from a dedicated process. When power is restored to the 
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console microprocessor of a VAX 88x0 family member, console VMS boots 
and executes the console program. The console program restores its own 
state, which was saved in a data file. It determines whether the power failure 
included the VAX CPUs. If so, the console program executes SYSINIT.COM, 
described in Chapter 30. 

SYSINIT.COM tests the software key switch AUTO_RESTART. If it is set, 
SYSINIT.COM invokes the command procedure RESTAR.COM. If it is clear 
but the AUTO_BOOT switch is set, SYSINIT.COM invokes DEFBOO.COM. 

After an error halt, the console program executes the command proce­
dure RESTAR.COM. If the AUTO_RESTART switch is set, RESTAR.COM 
deposits the halt code, PC, and PSL into AP, RlO, and R11, initializes the 
CPU, clears RO through RS, and searches for an RPB. If it locates a valid RPB, 
RESTAR.COM initiates execution of the restart routine, described in Sec­
tion 33.2.1.1, on the primary processor. The secondary processors, if present, 
remain in console mode and are restarted by software, as described in Chap­
ter 34. 

If the AUTO_RESTART switch is clear or a valid RPB is not found, 
RESTAR.COM tests the setting of the AUTO_BOOT switch. If it is set, 
the procedure DEFBOO.COM is executed; otherwise, RESTAR.COM exits 
and leaves the system halted. 

Power Recovery on VAX 6000 Series Systems. The VAX 6000 model 200, 300, 
and 400 systems are collectively referred to as the VAX 6000 series. Some 
models support multiple CPUs per system. One CPU acts as the primary 
and performs the main work of booting VMS. VMS directs the initialization 
of the remaining secondary CPUs, as described in Chapter 34. 

When power is restored on a VAX 6000 series system, the console sub­
system, executing on each CPU, directs that CPU to perform a series of 
self-tests. The CPUs select" a primary processor, as described in Chapter 30. 

The console program, executing on the primary processor, tests the set­
tings of the upper and lower key switches on the front of the processor 
cabinet. These recovery settings determine the action of the primary pro­
cessor. Unless the upper switch is in the ENABLE position and the lower 
switch is in the AUTO START position, or unless the upper key switch is 
in the SECURE position, the system halts at the console prompt. 

Otherwise, the actions of the console depend upon the field CCA$Q_ 
RESTARTIP in the console communications area jCCA). CCA$Q_RESTART­
IP contains a restart-in-progress flag for each potential processor. 

To restart, the console program tests and sets the restart-in-progress flag 
corresponding to the processor's CPU ID. If the flag is already set, the restart 
fails. Otherwise, the console program tries to locate the RPB. If it succeeds, 
the console subsystem initiates execution of the restart routine, described 
in Section 33.2.1.1, on the primary processor. 
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If the console cannot locate a valid RPB, the restart attempt fails and the 
primary processor initiates a boot. 

A secondary processor can attempt a restart only following an error halt. 
For all other halt conditions, including power failure, the primary processor 
and operating system are responsible for restarting the secondary. Chapter 34 
describes restart of secondary processors. 

Following an error halt, a. secondary processor tests and sets the bit corre­
sponding to its CPU ID in CCA$Q_RESTARTIP. It searches for the RPB and 
transfers control to the restart routine if a valid RPB is located. 

If a valid RPB is not located, the console program examines the bit 
corresponding to the secondary processor's CPU ID in the field CCA$Q_ 
SECSTART. If the bit is clear, the console forces a reboot. Otherwise, the 
processor enters console mode. CCA$Q_SECSTART is set and cleared by 
the operating system, which uses it to avoid repeatedly forcing the boot of 
a secondary processor. 

If a different processor is selected as the primary following a power failure, 
the VMS powerfail recovery routine detects the difference and forces a boot 
rather than a restart. 

Power Recovery on a MicroVAX II Processor. A MicroVAX II processor has 
no battery backup for memory. Therefore, when the power recovers, it is not 
possible to resume normal system operation. Instead, the console program 
tests the setting of the Halt Enable switch. The Halt Enable switch is on the 
CPU patch panel insert, mounted inside the rear of the CPU cabinet. If the 
switch is down, the normal setting, halts are disabled. Otherwise, they are 
enabled. 

Following power recovery, the console tests the Halt Enable switch. If 
halts are enabled, the console performs a diagnostic self-test and halts the 
processor. Otherwise, after the self-test, it boots the processor. If the boot 
attempt fails, the console halts the processor. 

Following an error halt, the console tests the Halt Enable switch and halt 
action bits in the console program mailbox (CPMBX) register. VMS does not 
set the bits (except when it initiates a boot directly), so the bits remain 
at their initialized value of zero. If halts are enabled, the console halts the 
processor. Otherwise, it tests and sets the console program mailbox restart­
in-progress flag. If the flag was already set, the restart fails. If the flag was 
clear, the console tries a restart, followed by a boot; if both fail, it halts the 
processor. 

For a restart, the console first tries to locate the RPB. If a valid RPB 
is located, the console subsystem transfers control to the restart routine, 
described in Section 33.2.1.1. 

Power Recovery on MicroVAX 2000 and 3100 Processors. MicroVAX 2000 
and 3100 processors have no battery backup for memory. Therefore, when 
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the power recovers, it is not possible to resume normal system operation, 
and the system performs its normal boot actions, described in Chapter 30. 

Following an error halt rather than a power failure, the actions of the 
console depend upon the default recovery setting (halt action) and the restart­
in-progress flag, both in the console program mailbox area of nonvolatile 
random access memory (NVR). 

The recovery settings affect the console actions as follows: 

• If the setting is 0 or 1, restart. If that fails, boot. If the boot fails, halt . 
• If the setting is 2, boot. If that fails, halt. 
• If the setting is 3, halt at the console prompt. 

A restart attempt succeeds if the console finds the restart-in-progress flag 
clear and is able to set it, and if the console locates a valid RPB. The 
console subsystem transfers control to the restart routine, described in Sec­
tion 33.2.1.1. 

The recovery setting is specified as follows: 

• On the MicroVAX 2000, the console utility program TEST53 alters the 
default recovery setting in the console program mailbox . 

• On the MicroVAX 3100, the console command SET HALT sets the default 
recovery setting. 

Power Recovery on VAXstation 35x0 Systems. VAxstation 35x0 systems 
have no battery backup for memory. Therefore, when the power recovers, 
they cannot resume normal system operation. Instead, the console program 
initiates a boot sequence, described in Chapter 30. 

Following an error halt rather than a power failure, the actions of the 
console depend upon several fields, including the halt code, the default 
recovery setting in the console program mailbox area of NVR, and the flag 
CCA$V _REBOOT in CCA$B_HFLAGS. 

If CCA$V _REBOOT is set, the primary processor attempts to boot the 
operating system using the default boot device. On failure, it enters console 
mode. 

Otherwise, if CCA$V _REBOOT is clear, the primary processor's actions 
are controlled by the recovery setting: 

• If the setting is 0, restart. If that fails, boot. If the boot fails, halt. 
• If the setting is 1, restart. If that fails, halt. 
• If the setting is 2, boot. If that fails, halt . 
• If the setting is 3, halt at the console prompt. 

The primary processor tests and sets the bit corresponding to its CPU ID 
in CCA$Q_RESTARTIP. If it locates a valid RPB, it transfers control to the 
restart routine. 

A secondary processor halts at the console prompt if the recovery setting 
is 3; otherwise it attempts to restart. It tests and sets the bit corresponding 
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to its CPU ID in CCA$Q_RESTARTIP. If it locates a valid RPB, it transfers 
control to the restart routine. Otherwise, if the bit corresponding to the 
secondary processor's CPU ID in the field CCA$Q_SECSTART is clear, the 
console forces a boot. If the bit is set, the processor enters console mode. VMS 
controls the setting of CCA$Q_SECSTART and uses it to avoid repeatedly 
forcing the boot of a secondary processor. 

Power Recovery on Other MicroVAX Processors. This section describes 
the operations of MicroVAX 3200, 3300, 3400, 3500, 3600, 3800, and 3900 
processors. 

These MicroVAX processors have no battery backup for memory. There­
fore, when the power recovers, it is not possible to resume normal system 
operation. Instead, the console program tests the setting of the Break En­
able/Disable switch (sometimes referred to as the Halt Enable switch). If the 
switch is set to ENABLE, the system performs a self-test and halts. Other­
wise, if the switch is set to DISABLE, the system performs a self-test and 
automatically reboots the processor. Note that a restart is not possible. 

Following an error halt the actions of the console depend upon the default 
recovery setting and the restart-in-progress flag, both in the console program 
mailbox in NVR. 

The recovery settings determine the console action when the processor 
halts: 

• If the setting is 0, restart. If that fails, boot. If the boot fails, halt . 
• If the setting is 1, restart. If that fails, halt . 
• If the setting is 2, boot. If that fails, halt . 
• If the setting is 3, halt at the console prompt. 

A restart attempt succeeds if the console finds the restart-in-progress flag 
clear and is able to set it, and if the console locates a valid RPB. The 
console subsystem transfers control to the restart routine, described in Sec­
tion 33.2.1.1. 

Operations of the Restart Routine 

'In a symmetric multiprocessing (SMP) system, the console subsystem re­
starts the primary processor. The secondary processors remain halted until 
restarted by software. This section describes the general powerfail recovery 
sequence. Chapter 34 describes in detail the steps taken by the VMS restart 
routine, EXE$RESTART in module POWERFAIL, that are specific to restart­
ing a primary processor. It also describes the steps by which a secondary 
processor is restarted. 

The VMS restart routine, EXE$RESTART, receives control with the fol­
lowing environment: 

• In kernel mode 
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• On the boot-time interrupt stack (SP = RPB base plus 20016 ) 

• With memory management disabled 
• At IPL 31 

These initial conditions are similar to the entry to VMB, except that the 
RPB has already been initialized. Another similarity is that the SP register 
contains the high-address end of the RPB, which serves two purposes. First, 
the SP specifies the location of the RPB. Second, the last several longwords 
in the page containing the RPB are used as stack space by EXE$RESTART 
until the per-CPU boot stack pointer is restored. 

EXE$RESTART branches to EXE$RESTART _ATT, also in POWERFAIL, 
which first restores information saved in the RPB and per-CPU database by 
EXE$POWERFAIL (see Table 33.1, Group A). Most of this information is 
necessary to turn memory management back on. A dummy PO page table is 
created (just like the one set up by SYSBOOT) so that the page containing 
the restart routine is mapped as a PO virtual address that, when translated, 
yields the identical physical address. 

After the PO page table is set up, EXE$RESTART _ATT enables memory 
management in the same manner as EXE$INIT: 

MTPR #1,#PR$_MAPEN 
JMP FIRST_SYSTEM_VA(R2) 

FIRST_SYSTEM_VA = . - EXE$RESTART 
10$: 

Chapter 31 shows how the contents of PR$_POBR are determined to pro­
duce the identity mapping and describes in detail the instruction sequence 
that enables memory management. 

Once memory management has been enabled, EXE$RESTART _ATT 
checks whether the restart was initiated as part of powerfail recovery or in 
response to another error halt condition detected by the console subsystem. 

If an error halt caused the restart, EXE$RESTART _ATT generates a reason­
specific fatal bugcheck. This will result in a cold start, a bootstrap, if the 
SYSBOOT flag BUGREBOOT is set. By causing a crash, EXE$RESTART _ 
ATT preserves information about the error condition in the crash dump file. 
One example of such an error halt is an invalid interrupt stack. The CPU 
microcode causes this halt if the interrupt stack pointer points to a page 
which is not valid or to which kernel mode does not have write access when 
an interrupt or exception must be serviced. 

If this is a power recovery, EXE$RESTART _ATT clears two warm restart 
inhibit flags, the use of which is discussed in Section 33.3.2. 

Each processor in an SMP system saves its own state and can detect the 
success or failure of the endeavor by the condition of its saved ISP. However, 
a mechanism is required to detect the failure of any processor to save state, 
because an SMP system must boot rather than restart in that case. The field 
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POWERDWN_L_DONE, defined in module POWERFAIL, serves this pur­
pose. Each CPU sets a bit corresponding to its CPU ID in POWERDWN_L_ 
DONE upon completion of the powerfail sequence. When power returns and 
EXE$RESTART _ATT executes on the primary CPU, it compares SMP$GL_ 
ACTIVE_CPUS, the CPUs active at the time of the powerfail, to the mask 
in POWERDWN_L_DONE. Unless all processors saved their state, EXE$RE­
START _ATT generates the fatal bugcheck STATENTSVD, software state not 
saved during powerfail. It also generates this bugcheck if EXE$POWERFAIL 
does not save the ISP in the per-CPU database. Otherwise, it copies the saved 
ISP value to R6 and to the SP register. 

EXE$RESTART_ATT restores the registers listed in Table 33.1, Group B. 
It does not use the SP register to restore this data from the stack. Instead, it 
uses a scratch register (R6J to reference the stack. Because the SP register is 
left pointing to the end of the saved information, the data on the stack will 
not be overwritten if another power failure occurs while the data is being 
restored. Using a scratch register allows the restart routine to be repeated as 
many times as necessary without special action. 

The restoration of the SISR is also affected by the possibility of another 
power failure. If an interrupt is requested during powerfail recovery, and 
another power failure occurs before the recovery is complete, the interrupt 
would be lost. Thus, EXE$RESTART _ATT sets all fork level interrupt bits 
(IPL 6 and IPL 8 through 11 J in the restored SISR to guarantee that no 
interrupts are lost. As each request is granted, the fork interrupt service 
routine merely dismisses the interrupt if no packet exists on its work queue. 

EXE$RESTART _ATT invokes the routine EXE$REGRESTOR to restore 
the CPU-specific registers saved by EXE$REGSAVE. EXE$REGRESTOR re­
sides in module (SYSLOA]ERRSUBxxx, part of the CPU-specific image SYS­
LOAxxx. 

It initializes processor registers by invoking the CPU-specific routine 
EXE$INIPROCREG, also in module (SYSLOA]ERRSUBxxx. 

At this point, only the general registers remain to be restored. Each pro­
cessor sets the bit corresponding to its CPU ID in POWERUP _L_DONE, 
defined in module POWERFAIL. A secondary processor pauses here until 
the primary directs it to continue. It then restores its general registers and 
returns control to the instruction sequence interrupted by the power failure. 

The primary processor takes the following steps: 

1. It reads the battery backed up time-of-year clock by invoking the CPU­
specific routine EXE$READP _LOCAL_ TODR, in module (SYSLOA]ERR­
SUBxxx. 

2. It computes the restart time plus three minutes and stores the value 
in the global location EXE$GL_PWRDONE. This value represents the 
time it may take all hardware components to become fully operational 
again. Device drivers can use the routine EXE$PWRTIMCHK, in module 
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POWERFAIL, to make sure that these three minutes have passed before 
restarting I/O operations. Devices such as disks may take as long as three 
minutes to become operational. 

3. It computes the duration of the powerfail and stores the result in global 
location EXE$GLPFATIM. 

4. It corrects the system time, at global location EXE$GQ_SYSTIME, by 
adding to it the duration of the powerfail. 

5. It clears the timestamp validating the lock manager's process bitmap, 
used to detect multiple resource deadlocks. Clearing the timestamp has 
the effect of discarding the deadlock search in progress. 

6. It scans the timer queue for timer queue entries (TQEs) that have ex­
pired. For each expired TQE, it changes the absolute due time to the 
corrected system time. This substitution allows periodic timer requests 
to reestablish internal synchronization. 

For example, suppose that a periodic timer request is declared with a 
period of one minute and the power is off for three minutes. With no 
adjustment of the absolute due time, the request would expire immedi­
ately three times following power recovery. The readjustment causes one 
request to come due immediately, with the next request not occurring 
until one minute later. 

Note that relative synchronization between several requests may be 
lost as a result of a power failure. For example, if one request is due to 
expire in two minutes, a second is due to expire in five minutes (or three 
minutes after the first), and the power is off for more than five minutes, 
then both requests will be delivered at the same time. A power recovery 
AST might be used to allow multiple requests to reestablish their relative 
synchronization. 

7. A power recovery entry is made in the error log. 
8. EXE$RESTART _ATT invokes CNX$POWER_FAIL. If the system is a 

VAXcluster member, this notifies the VAXcluster connection manager 
of power recovery. 

9. EXE$RESTART_ATT initializes external adapters by invoking the CPU­
specific routine EXE$STARTUPADP in [SYSLOA]ERRSUBxxx. 

10. Device drivers are notified that a power failure and recovery sequence 
have occurred. This step is detailed in Section 33.2.3. 

11. The console device unit initialization routine causes the console subsys­
tem to initialize and restart secondary CPUs. Chapter 34 describes this 
process. 

EXE$RESTART _ATT waits for the secondary CPUs active at the time 
of the power failure to restart. The secondary CPUs are restarted here, 
rather than later at a lower IPL, to avoid the possibility of deadlock. If a 
secondary CPU holds a spinlock for which the primary CPU is waiting 
at the time of the power failure, the primary CPU executes EXE$RE­
START _ATT and returns to the spinwait loop when power is recovered. 
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Thus, the secondary CPUs must be restarted before the primary exits 
EXE$RESTART _ATT. 

12. EXE$RESTART lowers IPL to 29 to allow any pending powerfail interrupt 
to occur, then raises IPL back to 31. Section 33.3.1 explains the reason 
for this step. 

13. EXE$RESTART _ATT clears POWERDWN_L_DONE. 
14. On a system with multiprocessing enabled, EXE$RESTART_ATT sets 

the start flag to notify secondary CPUs that they may proceed. 
15. EXE$RESTART then clears EXE$GL_PFAILTIM. 
16. Each CPU modifies its SP to point to the saved general registers on the 

interrupt stack and restores them. 
17. Each clears its last sanity check flag, the saved interrupt stack pointer, 

CPU$L_SAVED_ISP. EXE$RESTART_ATT will find the pointer zero if 
the state is incompletely saved in a subsequent power failure (see Sec­
tion 33.3.1). 

18. EXE$RESTART_ATT dismisses the powerfail interrupt by executing an 
REI instruction. Control returns to the code that was interrupted by the 
power loss notification. 

Device Notification 

EXE$RESTART _ATT invokes the routine EXE$INIT _DEVICE, also in mod­
ule POWERFAIL, to initialize devices and device drivers after a powerfail 
recovery. 

While IPL is still at 31 to block all interrupts, EXE$INIT_DEVICE scans 
the 1/0 database. It sets the powerfail bit, UCB$V _POWER, in the status 
word of each unit control block (UCB) it finds, except for mailbox UCBs. 

For each controller it finds, EXE$INIT_DEVICE invokes the controller ini­
tialization routine. If that routine returns successfully, EXE$INIT _DEVICE 
invokes the unit initialization routine for each unit of that controller. The 
powerfail bit enables these initialization routines to differentiate between 
power recovery and ordinary initialization. 

EXE$INIT _DEVICE checks each unit to see whether its driver fork process 
is expecting an interrupt or has 1/0 being timed. If either is true, EXE$INIT _ 
DEVICE clears its interrupt-expected bit, sets its timeout-expected bit, and 
sets its due time to zero. These actions cause each such device to time out. 
Later, when the driver's timeout routine runs, it can differentiate between 
ordinary timeout and power failure by checking the powerfail bit. 

The check for device timeout occurs within EXE$TIMEOUT, the system 
subroutine that executes once a second (see Chapter 11). EXE$TIMEOUT 
cannot execute until later, after both of the following occur: 

• The interval timer interrupts (which means that IPL has dropped below 22 
or 24, depending on CPU type). 
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• The software timer interrupt service routine executes. (This will not hap­
pen until IPL drops below 7.) 

In VMS, most of the work done to recover from a power failure occurs in 
drivers. VMS disk drivers and magnetic tape drivers are capable of restarting 
whatever request they were processing when the power failed in such a way 
that the power failure is totally transparent to them. (If a magnetic tape unit 
lost vacuum, operator intervention is required to reestablish the vacuum and 
rewind the tape. Once that is done, the driver automatically restarts the I/O 
request that was in progress when the power failed.) 

Process Notification 

If so requested, VMS will notify a process of powerfail recovery by queuing 
an AST to it. A process requests this notification by requesting the Set Power 
Recovery AST ($SETPRA) system service. 

$SETPRA System Service. The $SETPRA system service procedure, 
EXE$SETPRA in module SYSSETPRA, runs in kernel mode. It performs two 
steps: 

1. Stores the address of the AST in global location CTL$GL_POWERAST 
and the access mode in which the AST is to be delivered in location 
CTL$GB_PWRMODE 

2. Sets the power AST flag (PCB$V _PWRAST) in the process control block 
(PCB) status longword 

The effect of this system service is canceled by the delivery of the power 
recovery AST or by image rundown (see Chapter 26). 

Delivery of Power Recovery ASTs. The delivery of a power recovery AST 
occurs in several distinct steps: 

1. EXE$RESTART _ATT stores the duration of the power failure in location 
EXE$GL_PFATIM. (This value is simply the current contents of the time­
of-year clock minus EXE$GL_PFAILTIM, the time at which the power 
failed.) Nonzero contents in this location act as a trigger to the swapper 
the next time that it runs. 

Note that no special action is taken at this point to wake up the 
swapper. In fact, because this routine is running at IPL 31, the swapper 
scheduling state could not be changed without potential synchronization 
problems. 

2. The swapper's main loop (see Chapter 18) invokes routine EXE$POW­
ERAST, in module SYSSETPRA, if location EXE$G1-PFATIM contains 
a nonzero value. 
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3. EXE$POWERAST scans the PCB vector and queues a special kernel mode 
AST to each process that has the PCB$V _PWRAST flag set. It then 
clears the flag, disabling further power recovery ASTs to the process, 
to prevent multiple ASTs in case another powerfail occurs before the 
process executes. A special kernel mode AST is required because the 
address and access mode of the recovery AST are stored in the Pl space 
of the requesting process. When EXE$POWERAST completes its scan of 
the PCB vector, it clears EXE$GLPFATIM. 

4. The special kernel mode AST copies the address and access mode from 
their Pl space locations into the AST control block and queues the 
recovery AST to the requesting process. 

5. Finally, the recovery AST itself is delivered to the requesting process. 
The AST parameter is the duration of the power failure in IO-millisecond 
units. 

To receive notification of a subsequent powerfail recovery, a process must 
"rearm" the AST by requesting the $SETPRA system service again. 

33.3 MULTIPLE POWER FAILURES 

33.3.1 
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Hardware and software flags exist in combination to prevent infinite looping 
or related problems in response to a power failure that occurs while either 
the powerfail service routine or the restart routine is executing. 

Nested Powerfail Interrupts 

Caution is necessary where power failure is concerned. Fluctuating voltages 
can cause the power to repeatedly fail and be restored. VMS must provide 
for the possibility of a second powerfail interrupt before an earlier one is 
dismissed. 

The powerfail interrupt code is only guaranteed a brief interval between 
the powerfaii interrupt request and the total loss of power. If the powerfail 
interrupt is blocked while the CPU is running at IPL 30 or 31, EXE$POW­
ERFAIL will have that much less time to save the volatile machine state. 

A second powerfail interrupt can be blocked for a considerable time while 
EXE$RESTART restores state from a previous interrupt. If the second in­
terrupt were not granted until EXE$RESTART completed restoration and 
dismissed the first powerfail interrupt, there could be insufficient time to 
save the processor state. An additional consideration for an SMP system is 
that the state of all CPUs active at the time of power loss must be saved for 
a recovery to succeed. 

VMS uses a combination of three things to defend against nested powerfail 
interrupts: CPU$L_SAVED_ISP; preserving the processor state saved on the 
stack; and temporarily lowering IPL in EXE$RESTART. 

One of the first steps EXE$POWERFAIL takes is to check the contents of 
CPU$L_SAVED_ISP, the saved interrupt stack field in the per-CPU database. 
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This location retains nonzero contents until just before EXE$RESTART ex­
ecutes its REI instruction, dismissing the powerfail interrupt. If a powerfail 
interrupt occurs while this location contains a nonzero value (indicating that 
another failure/recovery is already in progress), EXE$POWERFAIL does not 
save the processor state. 

Volatile machine state has already been saved as a result of the first pow­
erfail interrupt. That state will be restored eventually by EXE$RESTART. 
Any state saved at the time of the second interrrupt would merely reflect 
the interruption of EXE$RESTART's attempts to restore state after the first 
interrupt. This check prevents nested powerfail interrupts on a system expe­
riencing some obscure behavior that would otherwise be extremely difficult 
to diagnose. 

One more bit of caution is evident in the manner in which EXE$RESTART 
restores data from the interrupt stack. A scratch register rather than the SP 
register is used to traverse the stack. If another powerfail interrupt were to 
occur while data was being restored, the saved PC and PSL would not overlay 
the previously saved data. 

When EXE$RESTART is nearly done but CPU$L_SAVED_ISP is still non­
zero and the stack is still intact, it deliberately lowers IPL to 29 to allow any 
pending powerfail interrupt to be granted. If one is pending and granted, 
EXE$POWERFAIL sees that CPU$L_SAVED_ISP is nonzero and saves no 
state. It branches to itself, awaiting the power failure. When the power 
recovers and EXE$RESTART is reentered, it again restores machine state 
from the RPB and the state saved on the stack. 

If there is no pending powerfail interrupt, EXE$RESTART raises IPL back 
to 31, clears POWERDWN_L_DONE and EXE$GL_PFAILTIM, and notifies 
secondary CPUs that they may proceed. Each CPU modifies its SP to point to 
the saved general registers on the interrupt stack and restores the registers. 
Each clears its last sanity check flag, the saved interrupt stack pointer, 
CPU$L_SAVED_ISP. Each then executes an REI instruction to dismiss the 
interrupt. 

Prevention of Infinite Restart Loop 

There are two flags whose purpose is tq prevent an infinite restart loop such 
as the following: 

1. An error halt condition occurs. 
2. The console subsystem locates the RPB and transfers control to EXE$RE­

START. 
3. Prior to restoring or crashing the system, EXE$RESTART incurs an error 

halt condition. 
4. The console subsystem locates the RPB and transfers control to EXE$RE­

START. 
5. EXE$RESTART incurs the same error halt condition .... 
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The first flag is the low bit of RPB$1-RSTRTFLG, located in the RPB. 
During system initialization, the initialization routine for the loadable ex­
ecutive image IO_ROUTINES, invoked from EXE$INIT, clears the flag after 
there is enough of VMS to restart. 

The flag is tested and set by the console subsystem during restart after 
it finds a valid RPB. If it locates an otherwise valid RPB with this flag set, 
it aborts the restart attempt. Either the RPB is in error or an earlier restart 
attempt has incurred an error halt. 

A second flag, called the warm start inhibit flag or the restart-in-progress 
flag, is maintained by the console subsystem on some types of VAX CPU. It 
functions in a similar manner to RPB$1-RSTRTFLG. The console sets the 
flag at the beginning of the restart. EXE$RESTART initiates the clearing of 
it by sending a command to the console subsystem. On some CPUs, the 
following instruction sends the command: 

MTPR #~XF03,#PR$_TXDB 

If the console subsystem detects that this flag is set while attempting a 
restart, it aborts the restart and takes the same processor-specific action it 
would if the RPB flag were set. 

Multiprocessing systems must implement a flag of this type for each 
potential CPU. Some do this by designating a bit per CPU in the CCA 
field CCA$Q_RESTARTIP. This bit is cleared by EXE$REGRESTOR after 
it restores any saved processor-specific registers. 

Device Driver Action 

Drivers do not have to concern themselves directly with the multiple restart 
problem. Even though the bulk of driver recovery is done in response to an 
IPL 7 software timer interrupt, when a second power failure is possible, 
drivers are protected by one of the following situations: 

• The driver controller and unit initialization routines are invoked at IPL 31 
before CPU$L_SAVED_ISP is cleared. Drivers are protected here by the 
same sanity checks that VMS uses for itself . 

• If the driver does not get invoked at its timeout entry point before the 
power fails again, the preserved driver state indicates a unit that has already 
timed out. When power is :finally restored permanently, the driver will be 
invoked at its timeout entry point. 

• If the driver is in the middle of its timeout routine, it still appears to the 
system as a unit that has timed out. It will be invoked at its timeout entry 
point again when the machine finally stabilizes . 

• The driver may succeed in returning control to the operating system with, 
for example, one of the following macro invocations: WFixxCH, IOFORK, or 
REQCOM. 
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If the operating system has received control, the request has either been 
completed or the driver is back into a state (such as expecting an interrupt) 
where the power recovery logic will cause the driver to be invoked at its 
timeout entry point when the power is finally restored. 

33.4 FAILURE OF EXTERNAL ADAPTER POWER 

33.4.1 

Certain adapters can experience a power failure independently of the proces­
sor. These adapters are the following: 

• UNIBUS adapter on VAX-l l/78x, VAX 86x0 processors 
• Second UNIBUS adapter on a VAX-11/750 processor 
• MASSBUS adapter on VAX-11/78x, VAX 86x0 processors 
• CI780, CI750, and CIBCI port adapters 

These adapters notify VMS of power loss or power restoration by inter­
rupting. VMS provides service routines for their interrupts. 

A key problem is that a reference to the registers or 1/0 space of a pow­
erfailed adapter causes a machine check. If the reference is made in kernel 
mode, for example, by a device driver trying to access device registers, the 
machine check would result in a fatal bugcheck. 

One method that VMS uses to prevent such machine checks is to remap 
the system virtual address space reserved for the adapter to point· to the 
"black hole" page, EXE$GL_BLAKHOLE. This page is a physical page of 
memory allocated at system initialization for this purpose. This mapping 
technique prevents subsequent machine checks or related errors from device 
drivers that reference a powerfailed adapter. 

An adapter on an SMP system, however, requires a different method. 
Remapping to the black hole page requires that the translation buffer (TB) 
entry for the former adapter virtual address be invalidated on all CPUs. 
TB invalidation involves an interprocessor interrupt, which is serviced at 
a lower priority than the power failure processing. Thus, beginning with 
VMS Version 5.0, adapters available for systems that support SMP use an 
alternative technique, described in Section 33.4.3. 

UNIBUS Power Failure 

A UNIBUS failure on a VAX-11/780, VAX-11/785, VAX 8600, or VAX 8650 
processor does not necessarily indicate that the entire system is in error. VMS 
allows UNIBUS errors, including UNIBUS power failure caused by turning 
off the power to the UBA or the BA-1 lK, to occur without crashing the entire 
system. 

When such an error occurs, the UBA interrupts on its own behalf. The 
interrupt service routine for the affected UBA detects that a UBA interrupt 
(rather than a UNIBUS device interrupt) has occurred and transfers control 
to an error routine that does the following: 
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1. Checks that the interrupt is a result of the power failure of the UBA or 
UNIBUS 

2. Writes an error log entry 
3. Remaps the system virtual addresses that previously mapped the UBA 

itself and the UNIBUS I/O page (24 pages in all) so that these pages now 
point to the black hok page reserved at initialization time 

4. Modifies the interrupt vector to point to a power-up routine 

If the UNIBUS is not responding, either because the power was turned 
off or for some other reason, devices that were waiting for I/O completion 
will time out. The program that issued the initial I/O request will receive 
an appropriate error notification, assuming that no driver is in a tight loop 
at device IPL waiting for a status bit to change state. 

When the power is restored, the system virtual pages are remapped to point 
to the UBA registers and UNIBUS I/O space. EXE$INIT _DEVICE is invoked 
to reinitialize all devices on the recovered UBA. Its actions in reinitializing 
devices are described in Section 33.2.3. If any devices were removed while 
the power was turned off, they will be marked offline as part of the power 
recovery operation. The interrupt vector is restored to its usual contents. 

It is also possible for power to fail on the second UNIBUS interface of a 
VAX-11/750 processor without failing on the entire system. VMS responds as 
it does on the systems previously described. The UBA interrupts to indicate 
powerfail through the vector at SCB offset 1E416• 

Support for Power Failure of MASSBUS Adapters 

A MASSBUS adapter (MBA) power failure on a VAX-11/78x or VAX 86x0 
processor does not necessarily indicate that power is being lost for the entire 
system. VMS services MBA powerfail on those processors as it does UBA 
powerfail. It maps the system virtual address space corresponding to the 
MBA registers to the black hole page. When the power is restored, the address 
space is mapped back to the MBA registers, the MBA is initialized, and 
EXE$INIT _DEVICE is invoked to reinitialize the devices on the adapter. 

Support for Power Failure of Computer Interconnect Adapters 

Certain computer interconnect (Cl) adapters (CI780, CI750, and CIBCI) can 
lose power independently of the rest of the system. Before VMS Version 5.0, 
the CI device driver, PADRIVER, mapped the system virtual address space 
corresponding to the CI registers to the black hole page. Since the CIBCI 
adapter is supported on some VAX multiprocessor models, PADRIVER was 
changed to access all CI registers through pointers in the port definition table 
(PDT). 

If a power failure occurs, the CI adapter interrupts on its own behalf. 
The interrupt service routine transfers control to a power-down routine that 
stores the virtual address of a private black hole location within the driver 
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into the PDT pointers. Thus, any subsequent register access references a 
different virtual address. This alternative to remapping the same virtual 
address to a different physical address does not require TB invalidation. 

When power returns to the CI adapter, the driver again loads each PDT 
pointer with the virtual address of a device register; reloads the volatile CI 
microcode, and reinitializes the CI. 
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34 Symmetric Multiprocessing 

Virtue can only flourish amongst equals. 

Mary Wollstonecraft, A Vindication of the Rights of Men 

Version 5 of the VMS operating system adds support for tightly coupled 
symmetric multiprocessing (SMP). This chapter describes 

• Communication and cooperation among the members of an SMP system 
• Initialization of the SMP environment 
• Addition and removal of a member 

34.1 OVERVIEW 

1006 

A VMS multiprocessing system consists of two or more CPUs that address 
common memory and that can execute instructions simultaneously. If all 
CPUs in the system execute the same copy of the operating system, the 
multiprocessing system is said to be tightly coupled. If all CPUs have equal 
access to operating system functions, the system is said to be symmetric. 

In most respects the members of a VMS.SMP system are symmetric. Each 
member can perform the following tasks: 

• Initiate an I/O request 
• Service exceptions 
• Service software interrupts 
• Service hardware interrupts (other than from I/O devices), such as inter-

processor, interval timer, and powerfail interrupts 
• Execute process context code in any access mode 

One CPU can be executing process context code while ~other services a 
software interrupt. Section 34.4 describes the changes in VMS Version 5 
that enable this cc:mcurrency. 

VMS characterizes the various members of an SMP system in several 
ways. One important characteristic is that of primary-CPU. During system 
operation, the primary CPU has severlill unique responsibilities: 

• System timekeeping 
• Servicing 1/0 device interrupts and their concomitant software interrupts 
• Writing messages to the console terminal and accessing other I/O devices 

that are not accessible to all members 

All device interrupts are serviced on the primary CPU. Section 34.6.2 
describes . this division of labor. An SMP configuration. may include some 
devices that are not accessible from all SMP ·members. The console ter-
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minal, for example, may be accessible only from the primary processor. 
Section 34.6.3 describes a mechanism called device affinity by which VMS 
supports such devices. 

Booting. the system is initiated on a CPU with full access to the console 
subsystem, called the BOOT CPU. The BOOT CPU controls the bootstrap 
sequence and boots the other available CPUs. In VMS Version 5.2, the BOOT 
CPU and the primary CPU are always the same; the others are called sec­
ondary or attached processors. !The terms CPU and processor are used in­
terchangeably in tlµs chapter and throughout the book.) 

The booted primary and all currently booted secondary processors are 
called the active set. These processors actively participate in system opera­
tions and respond to interprocessor interrupts, which coordinate systemwide 
events. Section 34.5.2 contains more information on the use of interproces­
sor interrupts. 

VMS imposes little binding between a process and a particular CPU. That 
is, in general, each CPU is equally able to execute any process. However, a 
process may need capabilities possessed only by certain CPUs or may have 
populated the meinory and translation buffer caches of a specific CPU. For 
those cases, VMS implements a mechanism by which ·a process may be 
bound to one or more CPUs. Chapter 12 describes the implementation of 
process affinity and processor capabilities. 

As described in Chapter 4, VMS performs many key system functions 
through software interrupts. On an SMP system, each processor services 
its own software interrupt requests, of which the most significant are the 
following: 

• When a process receives an interrupt priority level jIPL) 2 interrupt because 
of a pending asynchronous system trap jAST), the AST delivery interrupt 
service routine runs on the same processor as the process. Chapter 7 de­
scribes IPL 2 interrupts and their servicing. 

• When a current process is preempted by a higher priority computable 
resident process, the IPL 3 rescheduling interrupt service routine, running 
on that processor, takes the current process out of execution and switches 
to the higher priori~y process. Chapter 12 describes scheduling in more 
detail and the circumstances under which the rescheduling interrupt is 
requested. . 

• When a device Clriver completes an 1/0 request, an IPL 4 1/0 postpro­
cessing interrupt is requested: some completed requests are queued to a 
CPU-specific postprocessillg queue and are serviced on that CPU; others 
are queued to a.'.fiystemwide queue and serviced on the primary CPU. Sec­
tion 34:6.4 describes the ·.different postprocessing queues and their uses. 
Chapter 21 describes the I/O postprocessing interrupt service routine. 

• When the curr~nt process/has used its quantum of CPU time, the IPL 7 
software timer interrupt service routine, running on that CPU, performs 
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quantum-end processing. Another function of this interrupt service rou­
tine, servicing the timer queue, is only performed on the primary CPU. 
Chapter 11 describes software timer interrupts and their servicing. 

• Software interrupts at IPLs 6 and 8 through 11 are requested to execute 
fork processes. Each processor services its own set of fork queues. A fork 
process generally executes on the same CPU from which it was requested. 
However, since many fork processes are requested from device interrupt 
service routines, which currently execute only on the primary CPU, more 
fork processes execute on the primary than on other processors. Chapter 4 
describes fork interrupts and their servicing. 

SMP support was added to VMS Version 5 with the following goals: 

• One version of VMS. As part of the standard VMS product, SMP support 
does not require its own version of VMS. The enhanced version of VMS 
runs on all VAX processors. The synchronization methodology and the 
interface to synchronization routines are the same on all systems. How­
ever, as described in Chapter 8, there are different versions of the synchro­
nization routines themselves. Partly for that reason, SMP support imposes 
relatively little additional overhead on a uniprocessor system. 

• Parallelism in kernel mode. SMP support might have been implemented 
such that any single processor could execute kernel mode code, but not 
more than one at a time. However, more parallelism was required for a 
solution that would support configurations with more CPUs. The members 
of an SMP system can be executing different portions of the executive 
concurrently. The executive has been divided into different critical regions, 
each with its own lock, called a spinlock. 

• Flexibility in the granularity of the locking mechanisms. The spinlock 
mechanism allows for the creation of additional static spinlocks in future 
versions of the VMS operating system. The IOLOCK8 spinlock, for exam­
ple, could be subdivided to allow increased parallelism. 

34.2 SMP HARDWARE CONFIGURATIONS 
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SMP supports a theoretical maximum of 32 CPUs, each of which has a 
unique ID between 0 to 31. For any particular processor type, the actual 
maximum is likely to be smaller. The manner in which the CPU ID is 
determined also varies with processor type: 

• On a VAX 83x0 system, the CPU ID is taken from the system ID processor 
register. It is the CPU's VAXBI bus node ID, which is determined by a plug 
on the V AXBI backplane slot where the node is inserted. 

• On a VAX 88x0 or VAX 8800 system, the CPU ID is taken from the system 
ID processor register. 

• On a VAX 6000 series processor, the CPU ID is taken from a location in 
XMI bus node-private space. 
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• On a VAXstation 3520 or VAXstation 3540 system, the CPU ID is taken 
from a CPU-specific processor register. 

Some SMP support is processor-type-specific, for example, CPU initializa­
tion routines and the routines that request interprocessor interrupts. These 
routines are implemented in CPU-specific modules in the [SYSLOA] facility 
that are linked into the various SYSLOAxxx images. The xxx varies with 
CPU type; for example, SYSLOA8NN supports VAX 8800 systems. Appen­
dix G contains a list of CPU types and their corresponding SYSLOAxxx 
names. 

VMS SMP requires a hardware configuration of multiple CPUs of the same 
model type. Each processor can execute an instruction stream independently 
of the others. An interprocessor interrupt mechanism enables kernel mode 
software running on one processor to interrupt one or more of the others. 

The CPUs access common physical memory through the same physical 
addresses. The CPUs' memory caches are invalidated as needed by the hard­
ware without software involvement. This feature is called cache coherency. 
As required for any VAX processor, the memory supports interlocked access. 
That is, if one CPU accesses memory with an interlocked instruction, for ex­
ample, BBSSI, the memory controller must block any attempt at interlocked 
access to that location by another CPU. 

In addition, the CPUs must be at the same hardware and microcode revi­
sion levels. If one has a floating-point accelerator or optional microcode, such 
as G-floating-point and H-floating-point support, all must have it. These re­
quirements exist because a process running on one CPU can be taken out 
of execution in the middle of certain instructions and resumed on another 
processor. 

The primary processor must be able to access all 1/0 peripherals. All CPUs 
must be able to access most I/O peripherals. On many types of configura­
tion, the console devices may not be accessible other than to the primary 
processor. 

The following sections describe the systems on which VMS Version 5.2 
supports SMP. 

VAX 8300 and VAX 8350 Systems 

The VAX 8300 system consists of two VAX 8200 processors on a common 
backplane interconnect, the VAXBI bus. The VAX 8350 system has two VAX 
8250 processors. The processor in the second physical VAXBI backplane slot 
is connected to the console. It is booted as the primary processor; the other 
CPU is booted as the secondary processor. The processors access common 
memory on the VAXBI bus. The VAXBI bus provides an interprocessor inter­
rupt capability. Both processors are physically capable of accessing any 1/0 
adapters connected to the VAXBI bus. 
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Console 

VAXBI 

Figure 34.1 
Hardware Layout of a VAX 83x0 System 

Secondary 
Processor 

Any VAXBI node that implements a cache, such as a CPU, must monitor 
the bus for writes to locations whose contents are in its cache and invalidate 
them as required. Because both processors and the memory are on the same 
bus, this mechanism is sufficient to maintain the validity of both processors' 
caches. The cache implements a write-through policy; that is, when a CPU 
modifies a cached location, the new contents are immediately written to 
memory.~ 

Figure 34.1 shows the hardware configuration of an example VAX 83x0 
system with two 1/0 adapters: a VAXBI-to-UNIBUS adapter (DWBUA), and 
a VAXBI-to-CI adapter (CIBCA). 

A VAX 83x0 system has one physical console terminal. By default, console 
commands are intended for the primary processor. CPU console microcode 
can pass commands and messages between the physical console and the 
logical console of the secondary processor. Commands and messages can 
also be passed to and from the logical console of the secondary processor 
through processor registers accessed with MTPR and MFPR instructions. 

VAX 8800 and VAX 88x0 Family 

The VAX 8800 system consists of two \{AX 8 700 processors on a common 
backplane, the VAX 8800 memory interconnect (NMI). The processors access 
common memory on the NMI. The NMI provides an interprocessor interrupt 
capability. A processor is either the LEFT or the RIGHT processor, depending 
on its physical position in the CPU cabinet. A console command allows 
either processor to be selected as the primary processor. By default, the LEFT 
processor is the BOOT CPU and primary processor. 

Both CPUs and the memory are on the NMI. Each CPU has its own cache 
of recently referenced locations and their contents. Logic in the cache mon­
itors the bus for modifications to memory whose contents are cached. The 
cache is a write-through cache and invalidates itself whenever appropriate. 
This, however, is not sufficient to ensure the validity of the data in another 
processor's cache or in memory, since each processor's writes to memory 
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locations are buffered temporarily in a "write buffer." The write buffer can 
combine several CPU writes into a single bus transaction, reducing bus traf­
fic. Execution of an interlocked instruction, however, forces the write buffer 
to be emptied, completing writes to memory. Other instructions, such as 
REI and SVPCTX, and interrupt or exception initiation also force emptying of 
the write buffer. As the other processor's cache monitors the NMI, it sees 
the memory writes and invalidates itself as appropriate. 

A VAX 8800 NMI-to-VAXBI adapter INBIAJ connects one or two VAXBI 
buses to the NMI. Both processors are physically capable of accessing any 
I/O adapters connected to the NMI or VAXBI bus. 

Figure 34.2 shows a possible VAX 8800 hardware configuration: a VAX 
8800 system with one NBIA connecting one VAXBI bus. 

The VAX 8Sx0 family is a follow-on to the VAX 8800 system. Its mul­
tiprocessor members, the VAX 8820, VAX 8830, and VAX 8840 systems, 
consist of two, three, or four VAX 8700 processors on an NMI backplane. 
In a dual-CPU configuration, processors and memory are on the same NMI. 
In a configuration with more processors, the memory controllers are on a 
second NMI. 

Each processor is identified by a number from 0 to 3. A console conimand 
allows any processor to be selected as the primary processor. By default, the 
processor with the lowest number is the BOOT CPU and primary processor. 

VAX 6000 Series Systems 

VAX 6000 series systems support different processor types in otherwise simi­
lar configurations. Processors, memories, and DWMBA I/O adapters connect 
as nodes to a backplane called the XMI bus. There can be up to 14 nodes on 
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Hardware Layout of a VAX 8800 System 
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Figure 34.3 
Hardware Layout of a VAX 6000 Series System 

the XMI bus. The DWMBA is an XMl-to-VAXBI adapter. All 1/0 peripherals 
except for the console terminal are on a VAXBI bus. Figure 34.3 shows the 
configuration of an example VAX 6000 series system. 

By default, the processor with the lowest CPU ID that passes self-test is 
the primary processor. 

Each CPU has its own write-through cache that monitors the XMI for 
memory writes to locations it has cached. Each CPU has a write buffer 
similar to that on a VAX 8700 processor. 

Each processor runs its own console program. That is, the console sub­
system is implemented in VAX instructions that execute on the CPU itself 
rather than on a separate console processor. The consoles communicate with 
each other through an area in memory called the console communications 
area (CCA). Each processor has a buffer of its own in the CCA. The exec­
utive, running on the primary processor, communicates with a secondary 
processor's console program by testing status bits in and writing messages 
to the secondary processor's CCA buffer. 

VAXstation 3520 and 3540 Systems 

The VAXstation 3520 system consists of two CVAX processors connected 
through a cache and bus interface to a common backplane, the M-bus. The 
VAXstation 3540 system has four processors. The processors access common 
memory on the M-bus. Each processor is interfaced to the bus through a 
cache that monitors the M-bus for other CPUs' memory references. Disk 
devices connect to a small computer system interface (SCSI) bus, which 
interfaces to the M-bus through the 1/0 adapter. An optional Q22-bus adapter 
module allows connection of additional peripherals, such as magnetic tape. 
Figure 34.4 shows a sample V AXstation 3520 configuration. 

Each cache can determine whether a particular memory location is cached 
exclusively in itself or shared in at least one other cache. This makes possible 
a write-back policy for unshared locations and a write-through policy for 
shared locations. That is, when a CPU modifies a memory location cached 
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Figure 34.4 
Hardware Layout of a VAXstation 3520 System 

only in its own cache, only the cache is changed. The memory location is 
not modified until that cache entry must be reused for a different memory 
location not currently cached or until some other CPU reads the memory 
location. When a CPU modifies a shared location, the cache initiates a "Write 
on the M-bus to update the memory; monitoring the bus and seeing the 
write,_ the other CPUs' caches update their own entries if necessary. 

An interprocessor interrupt capability is provided. The console capability 
is identical to that described in Section 34.2.3. 

34.3 DATA STRUCTURES RELATED TO SMP SUPPORT 

Two longwords, SMP$GL_FLAGS and EXE$GL_ TIME_CONTROL, contain 
flags controlling SMP operations. These flags are accessed with interlocked 
instructions. Symbolic names for the bits in SMP$GLFLAGS are defined by -
the $SPLCODDEF macro. These bits are 

• SMP$V _ENABLED-When set, indicates that SMP operation is enabled 
• SMP$V _START _CPU-When set, indicates that the primary CPU has fin­

ished initialization 
• SMP$V _CRASH_CPU-When set, indicates that a member has initiated a 

fatal bugcheck 
• SMP$V _ TODR-When set, indicates that SMP$GLPROPOSED_ TODR, 

described in Section 34.5.2, is in use 
• SMP$V_UNMOD_DRNER-When set, indicates that a driver has been 

loaded that has not been modified for SMP operation 
• SMP$V _ TODILACK-When set, indicates that the primary CPU has com­

pleted its part in an SMP time-of-year clock access 
• SMP$V _SYNCH-When set, indicates that an SMP synchronization image 

has been loaded 
• SMP$V _BENIGN-When set, indicates that a benign state, describe~ in 

Section 34.5.4, has been requested 
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Symbolic names for the bits in EXE$GL_ TIME_CONTROL are defined in 
module SYSPARAM. Those relevant for SMP are 

• EXE$V_NOSMPSANITY-When set, disables SMP sanity timeouts 
• EXE$V_NOSPINWAIT-When set, disables SMP spinwait timeouts 

SMP supports a maximum of 32 CPUs, each of which has a unique ID 
between 0 to 31. Kernel mode code running at an IPL above 2 can identify the 
CPU on which it is executing by examining its per-CPU database, described 
later in this section. 

The global cell SMP$GL_PRIMID contains the ID of the primary processor. 
When the system crashes, the ID of the CPU that initiates the bugcheck, the 
CRASH CPU, is recorded in the global cell SMP$GL_BUGCHKCP. 

A number of global cells describe the various members of the SMP system. 
Each is a longword with one bit for each CPU; when set, bit 0, for example, 
indicates that the CPU whose ID is 0 has the characteristic described by the 
cell. 

• SMP$GL_CPUCONF identifies the available set, those physically present 
processors that have passed the power-on hardware diagnostics and are 
available for booting into the SMP system. 

• SMP$GL_ACTIVE_CPUS identifies the active set, those CPUs that are 
participating in the SMP system and responding to interprocessor interrupt 
requests . 

• Generally, SCH$G1-IDLE_CPUS identifies the idle set, those CPUs with­
out a process to execute. (However, whenever a resident computable 
process becomes available, the bits representing idle CPUs on which the 
process can run are cleared as a signal that those CPUs should reschedule.) 

• XDT$G1-BENIGN_CPUS identifies those CPUs in the benign state (see 
Section 34.5.4). 

• SMP$GL_OVERRIDE identifies the override set (see Section 34.5.5) . 
• SMP$GL_ACK_MASK identifies those CPUs that have responded to a 

translation buffer invalidate request (see Section 34.5.3). 
• EXE$GL_AFFINITY contains the default device affinity mask, which is 

normally all l's to specify that a device ci:tn be accessed from all SMP 
members. This mask is copied to the unit control block field UCB$L_ 
AFFINITY of each device unit when it is created . 

• SMP$GL_BUG_DONE identifies those CPUs that have completed fatal 
bugcheck processing (see Section 34.10). 

The spinlock-related data structures are described in Chapter 8. The CPU 
mutex is described in Section 34.5. 

XDT$GW _INTERLOCK and XDT$GW _OWNER_ID, cells related to the 
use of XDELTA, are described in Section 34.5.4. 

The use of cell SMP$G1-INV ALID is related to invalidation of a single 
translation buffer entry, described in Section 34.5.3. 
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Each member of an SMP system has memory for data that describes the 
state of that CPU. Referred to as the per-CPU data area, this memory consists 
of the following adjacent pieces: 

• The per-CPU database 
• A one-page stack, called the boot stack 
• An interrupt stack 
• No-access guard pages at each end of both stacks to detect stack overflow 

and underflow 

The VAX architecture defines five stacks: four per-process stacks for the 
different access modes and one systemwide interrupt stack. Executing in 
process context, a processor runs on an access mode stack private to that 
process. Executing in system context in earlier versions of VMS, a processor 
used the systemwide interrupt stack. On an SMP system, more than one 
processor can execute in system context at the same time. Simultaneous 
use of a stack by more than one processor is clearly not viable; VMS there­
fore provides system-context interrupt and boot stacks for each processor's 
exclusive use. 

Each processor executes on its own boot stack during bootstrap and halt­
restarts, including powerfail recovery. Under some circumstances, the pro­
cessor accesses the stack physically with memory management disabled and, 
under others, virtually. In earlier versions of VMS, the space at the high end 
of the page containing the restart parameter block (RPB) served this purpose. 

Each processor has its own interrupt stack for use when memory manage­
ment is enabled; the SYSGEN parameter INTSTKPAGES specifies the stack 
size in pages. The processor runs on this stack while executing in system 
context, servicing interrupts. 

SYSBOOT sums the sizes of the per-CPU database, the boot and interrupt 
stacks, and the guard pages to determine how many pages are actually re­
quired for the per-CPU data area. It rounds up that page count to the next 
power of 2. Each per-CPU data area begins on a virtual page boundary aligned 
to that power of 2. Later in system initialization, the rounded size in bytes 
minus 1 will be stored in global SMP$G1-BASE_MSK. 

Locating the Per-CPU Data Area 

Because of the alignment of each per-CPU data area, any virtual address 
within it can be transformed to the base address of the area. The low-order 
bits of the address are simply cleared against the mask in SMP$G1-BASE_ 
MSK. Thus it is possible to locate the per-CPU data area for a processor based 
on the contents of its interrupt stack pointer. 

The FIND_CPU_DATA macro serves this function. An example invocation 
and expansion follow: 
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Macro invocation 

FIND_CPU_DATA R4 ;Get per-CPU database address 

Macro expansion 

MFPR s-#PR$_ISP,R4 
BICL2 G-SMP$GL_BASE_MSK,R4 

Note that use of this macro is restricted to code that executes in kernel 
mode with memory management enabled. Furthermore, the code must run at 
an IPL above 2 between invoking the macro and using the returned address. 
Code running in process context at IPL 2 or below is subject to rescheduling 
and subsequent execution on another processor whose per-CPU data area is 
at a different address. 

The array called the CPU data vector begins at global SMP$GL_CPU_ 
DATA. This 32-longword array contains the addresses of the per-CPU data 
areas. It is indexed by CPU ID number to get the address of the area for a 
particular processor. Figure 34.5 shows the organization of a per-CPU data 
area and its relation to the CPU data vector. 

Fields in the first page of the per-CPU database and the boot stack may 
be accessed using physical addresses during bootstrap and halt-restarts. Sec­
tion 34.8.3 describes these accesses. 

The Per-CPU Database 

The per-CPU database contains processor-specific information such as the 
process control block (PCB) address of its current process, the address of its 
interrupt stack, and its fork queues. Figure 34.6 shows the layout of the 
per-CPU database, which is currently two pages long. 

CPU$1-CURPCB contains the PCB address of the process currently ex­
ecuting on this processor. CPU$B_CUR_PRI contains the process's current 
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priority. When the CPU is idle, CPU$LCURPCB contains the address of the 
null PCB, and CPU$B_CUR_PRI contains -1. 

CPU$L_REALSTACK contains the physical address of the high end of the 
boot stack, and CPU$LINTSTK contains the virtual address of the high end 
of the interrupt stack. CPU$L_PERCPUVA contains the virtual address of 
the per-CPU data area. 
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CPU$W _SIZE, CPU$B_ TYPE, and CPU$B_SUBTYPE contain the standard 
dynamic data structure header fields. 

CPU$B_BUSYWAIT is nonzero while the processor is spinning, trying to 
acquire a spinlock, as described in Chapter 8. While this field is nonzero, the 
interval timer interrupt service routine does not charge a timer tick against 
the quantum of the current process (see Chapter 11). 

CPU$B_STATE identifies the processor's current state (as distinct from 
process state). Section 34.7 describes the different states and the transitions 
among them. 

CPU$B_CPUMTX is the number of nested times the CPU mutex has been 
acquired by the processor. 

CPU$L_ WORILREQ is a bitmask describing outstanding work requests 
made by other processors of this processor. Section 34.5.2 describes these 
requests and their handling. 

The per-CPU database contains several fields used in halt-restarts. CPU$L_ 
SAVED_AP, CPU$L_HALTPC, and CPU$L_HALTPSL record information 
passed from the console subsystem after a halt. 

CPU$L_SAVED_ISP records the value of the stack pointer after registers 
have been saved on the stack during a powerfail or fatal bugcheck. 

During a powerfail, the current contents of various volatile processor reg­
isters are stored in the per-CPU database so that they can be restored during 
restart. Section 34.9 describes their use. These fields and their contents are 

• CPU$L_PCBB--The physical address of the current process's hardware PCB 
• CPU$L_SCBB--The physical address of the system control block (SCBJ 
• CPU$L_SISR-The software interrupt summary register 
• CPU$1-POBR-The base address of the current process's PO page table 
• CPU$L_POLR-The length of the current process's PO page table 
• CPU$L_PlBR-The base address of the current process's Pl page table 
• CPU$L_PlLR-The length of the current process's Pl page table 

These fields also record information about the context at the time of a 
fatal bugcheck. The bugcheck code for the processor is stored in CPU$L_ 
BUGCODE. Section 34.10 describes the use of these fields. 

CPU$L_PHY _CPUID contains the ID of the processor, a number from 0 
to 31. CPU$L_CPUID_MASK is a mask of 31 zeros with a single bit set in 
the bit position corresponding to the CPU ID number. 

The eight longwords beginning at CPU$B_CPUDATA contain CPU-type­
specific hardware data. The first longword is the contents of the system ID 
register; the rest of this area varies with each CPU type. 

CPU$L_MCHICMASK and CPU$L_MCHICSP help implement machine 
check recovery blocks, described in Chapter 32. 

CPU$L_POPT_PAGE contains the system virtual address of the page re­
served to this processor for use as a PO page table when memory management 
is being enabled. Its use is described in Section 34.8.1. 



34.3 Data Structures Related to SMP Support 

The rest of the first page of the per-CPU database is reserved for future 
additional fields that might be referenced with physical addresses. 

The processor's fork dispatching queues begin at CPU$Q_SWIQFL. Chap­
ter 4 describes fork dispatching and the use of fork queues. The per-processor 
1/0 postprocessing queue is at CPU$1-PSFL and CPU$L_PSBL. Its use is de­
scribed in Section 34.6.4. 

CPU$Q_ WORK_FQFL is a work queue for switching fork processes from 
other processors to this one. Section 34.5.2 describes the use of this field. 

Beginning at CPU$L_QLOST _FQFL is a data structure used to stall the 
CPU when quorum is lost. Section 34.5.2 describes its use. 

CPU$Q_BOOT _TIME contains the system time at which the CPU was 
booted. 

CPU$L_CAPABILITY is a bit mask with bits set to represent the capabil­
ities of this processor. The low bit, when set, means that this CPU is the 
primary processor. The macro $CPBDEF defines symbolic values for the bits 
in this field. CPU$W _HARDAFF is the number of processes that have ex­
plicit affinity for this CPU. Chapter 12 describes processor capabilities and 
process affinity. 

The per-CPU database contains two CPU-specific counts, referred to as. 
the timed wait counts. These count iterations of instruction loops that are 
executed, in part, to wait for a minimum amount of time to elapse. These 
counts are used, for example, during powerfail recovery, to wait for disk 
drives to come back online. These counts also control the length of time a 
processor spins waiting to acquire a spinlock, as described in Section 34.5.6. 
They are not constants because they vary with CPU type and therefore are 
calibrated during system initialization. In earlier versions of VMS, these 
counts were systemwide globals. SMP support requires that they be CPU­
specific and thus capable of being changed, for example, to reflect cache 
disabling on one CPU. 

CPU$1-TENUSEC is the number of times a prototype loop executes in 
10 microseconds. The prototype loop includes an inner loop that is sim­
ply a SOBGTR instruction. CPU$1-UBDELAY is the number of times the 
SOBGTR instruction executes in 3 microseconds. In actual use, the prototype 
loop is likely to be replaced by code that polls a device register. The delay 
represented by the inner SOBGTR loop is incorporated so as to introduce a 
3-microsecond gap between successive references to the UNIBUS or other 
1/0 bus that contains the device register. 

Beginning at field CPU$L_KERNEL is a seven-longword array that records 
the amount of time the processor executes in each mode. CPU$1-NULLCPU 
records the amount of time spent in the scheduler idle loop. These counts 
are maintained by the interval timer interrupt service routine, described in 
Chapter 11. 

Each bit, excluding bit 31, set in the field CPU$1-RANK_ VEC corresponds 
to a static spinlock held by the processor; its position identifies the rank of 
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the spinlock. Each bit set in the .field CPU$L_IPL_ VEC corresponds to an IPL 
at which the processor holds one or more spinlocks. The IPL representation 
is inverted. When a processor acquires a spinlock, the IPL of the spinlock 
is subtracted from 31. The bit in CPU$L_IPL VEC corresponding to that 
number is set. The field thus represents the current set of !inverted) spin­
lock IPLs active on the processor. The inverted number is also used as an 
index into the 32-longword array at CPU$L_IPL_ARRAY, which records the 
number of different spinlocks held at each IPL. These fields are used only 
with the full-checking version of the spinlock routines, described in detail 
in Chapter 8. 

The fields CPU$1-TPOINTER, CPU$W _SANITY_ TIMER, and CPU$W _ 
SANITY_ TICKS are part of the SMP sanity timeout mechanism, which is 
described in Section 34.5.7. 

The remainder of the second page of the per-CPU database is reserved for 
future use. 

34.4 THE IMPLICATIONS OF SHARING MEMORY 
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All memory is physically accessible to all members of an SMP system. Be­
cause a process executes on only one CPU at a time, its per-process space is 
mapped on only that CPU and is not accessed concurrently from multiple 
processors. Thus, SMP support generally requires no additional synchroniza­
tion of access to per-process space. !Note, however, that multiprocessing 
applications sharing a writable global section must synchronize possible con­
current accesses to the global section from processes running on different 
processors.) 

However, all processors use the same system page table ISPT) and thus 
share system space. This has several important implications for system op­
eration. First, because multiple processors can execute kernel mode threads 
and make concurrent access to system space data, SMP requires additional 
synchronization beyond that available with earlier versions of VMS. This 
section summarizes these changes. 

Second, if code running on one processor changes a valid system page table 
entry ISPTE), it must inform all the other active SMP members, so that they 
will flush the cached contents of that SPTE, now stale, from their translation 
buffers. This mechanism is described in more detail in Section 34.5.3. 

Third, multiple processors concurrently accessing pageable system space 
affect the movement of pages into and out of the system working set list. 
As a result, the "poor man's lockdown" technique used in earlier versions of 
VMS no longer works to force pages into the system working set list. This 
technique writes an IPL from the page to be locked into the PR$_IPL register. 
For the instruction to complete, the pages containing it and the IPL source 
must be faulted into memory and made valid. On a uniprocessor system 
with IPL raised high enough to block rescheduling, no further changes in 
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the system working set list due to paging are possible. On an SMP system, 
however, the system working set list can change as the result of other 
processors' paging. Appendix B describes the method used to lock pages in 
VMS Version 5. 

Earlier versions of the VMS executive used two different synchronization 
methods: IPL and mutual exclusion (mutex) semaphores. Since many impor­
tant system functions are performed by software interrupt service routines, 
it was possible to synchronize access to shared system data by raising IPL 
to block the highest priority interrupt whose service routine accessed that 
data. In cases where raising IPL would be inappropriate (for example, ac­
cess to pageable shared data), the need to acquire a mutex prevented access 
by more than one process at a time. No synchronization was required for 
shared system data accessed only by single uninterruptible instructions. For 
example, a processor executing an INSQUE instruction to insert an element at 
the tail of a lookaside list makes the multiple memory references required 
without allowing interrupts. 

In an SMP system, processors execute concurrently; raising IPL on one 
processor blocks interrupts only on that processor and has no effect on the 
others. At an architectural or hardware level, the basic multiprocessing syn­
chronization primitive is accessing shared memory with an interlocked in­
struction that reads and writes a location while blocking interlocked access 
to it from other processors. Using this primitive, VMS has implemented spin­
locks, an extension to the IPL-based synchronization of previous versions. 
In its simplest form, a spinlock is a bit that describes the state of a set of 
shared data; the bit is set to indicate that a processor is accessing the data. 
The state of the bit is tested and changed with interlocked instructions. 

In VMS Version 5, shared system data has been divided into a number of 
subsets, each with an associated IPL and spinlock. To access one of these sub­
sets, a thread of execution raises IPL to the associated level and acquires the 
spinlock. The acquired spinlock synchronizes access from threads of execu­
tion on other processors. It could also synchronize the access of other threads 
of execution on the same processor, except that VMS allows any processor 
to reacquire a spinlock that it already holds. For that reason, elevated IPL is 
used, as in previous releases, to synchronize the access of threads of execu­
tion on the same processor. When done, the thread of execution releases the 
spinlock and typically restores the previous IPL. 

During the development of VMS Version 5, each shared piece of data or 
resource needing synchronization was identified and an appropriate synchro­
nization method determined. 

• To certain synchronization IPLs, a corresponding spinlock was added; for 
example, use of IPL 6 now also requires that the QUEUEAST spinlock 
be owned. In contrast, the use of IPL$_SYNCH was subdivided into six 
different spinlocks, increasing the amount of parallelism possible. 
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• Single noninterruptible instructions of a read-modify-write type (for exam­
ple, INCL or BBSS) that access shared data were converted to interlocked 
instructions, or the shared data was protected by a spinlock . 

• A shared queue was either converted to an interlocked (self-relative) queue 
or accessed under protection of a spinlock. Accesses to the head or tail of 
a shared queue can be synchronized with interlocked queue instructions. 
A spinlock is required to synchronize access to a queue whose elements 
can be inserted or removed anywhere in the queue. 

Some queues, such as fork queues, are local to a CPU and accessed only 
by threads of execution running on that CPU. For these, synchronization 
is achieved by accessing the head or tail of the queue with noninterlocked 
queue instructions or raising IPL to scan the queue. 

Chapter 8 describes the use and implementation of synchronization mech­
anisms in more detail. 

34.5 INTERPROCESSOR COOPERATION 
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The members of an SMP system that are participating in system operation 
make up the active set. The cell SMP$GL_ACTIVE_CPUS identifies these 
members with a bit set corresponding to the CPU ID of each. The primary, 
by definition, is a member of the active set. A secondary processor becomes 
a member during its initialization (see Section 34.8.4) and leaves when it is 
shut down (see Section 34.8.5). 

A semaphore called the CPU mutex controls entry into the active set. 
Despite its name, the CPU mutex is a simplified form of spinlock, not an 
ordinary VMS mutex. An executive routine acquires and releases the CPU 
mutex semaphore using the LOCK and UNLOCK macros, as it would a 
spinlock. 

A member of the active set must be responsive to interprocessor interrupts. 
VMS may interrupt a particular CPU to request a specific task, or it may 
interrupt all active set members to coordinate a systemwide action that 
requires all to cooperate. The following sections describe the interprocessor 
interrupt mechanism and the different work requests and their handling. 

Some of the work requests are not urgent and are not acknowledged, for 
example, reschedule, 1/0 post, and quorum-lost work requests. In fact, a 
member typically responds to them by requesting a software interrupt at a 
priority lower than that of the interprocessor interrupt. 

Several work requests, however, require timely response to prevent pro­
cessor hangs and system deadlocks or crashes. These are a request to enter 
the benign state, a request to bugcheck, a request forthe primary to serve the 
console terminal to a secondary, a request to invalidate a single translation 
buffer entry, and a request for the primary to access its time-of-year clock. 
Some of these requests involve a timed interprocessor dialogue to complete. 
Some require all members to respond. A processor executing for an extended 
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period at an IPL at or above that of the interprocessor interrupt must check 
for and service certain of the requests. 

A member of the active set must also release held spinlocks in a timely 
fashion. When a processor loops, using the SPINWAIT macro (described in 
Section 34.5.6) to wait for a spinlock to be released, it loops a finite number of 
times. Typically, the loop count is based on the timed wait counts from the 
per-CPU database and one of the two SYSGEN parameters SMP_SPINWAIT 
or SMP _LNGSPINWAIT. If the loop count is exhausted before the other 
member releases the spinlock, the waiting processor may presume the other 
member is hung and crash the system. 

Sanity, spinlock wait, and busy wait timeouts exist to prevent the entire 
system, and the VAXcluster system of which it may be a part, from hanging 
when one member of the active set becomes unresponsive. Section 34.5. 7 
describes the sanity timer mechanism. Section 34.5.6 describes the need for 
processor responsiveness to certain interprocessor interrupt requests. 

Requesting Interprocessor Interrupts 

VMS provides several macros that request an interprocessor interrupt. The 
most commonly used are 

• IPINT _ALL, to interrupt all other members of the active set 
• IPINT _CPU, to interrupt a particular CPU 

Each of these macros is typically invoked with an argument identifying the 
reason for the interrupt request. The macro generates code that sets the 
corresponding bit in CPU$1-WORILREQ in the per-CPU databases of the 
processors to be interrupted. A work request bit is set, tested, and cleared 
with an interlocked instruction to serialize access to it. Some interproces­
sor interrupt requests, however, are identified by means other than a work 
request bit. 

Table 34.1 lists the possible work request bits. Prefaced by CPU$V _ or 
CPU$M_, these symbols are defined by the macro $CPUDEF. The function­
ing of these bits is discussed in further detail in the following sections. 

The following is an example of the invocation and expansion of the IPINT _ 
CPU macro: 

Macro invocation 

IPINT_CPU IOPOST,G-SMP$GL_PRIMID ;Tell the primary to request 
; a software interrupt 

Macro expansion 

PUSHL RO 
MOVL a-sMP$GL_PRIMID,RO 
PUSHL R1 
MOVAL a-sMP$GL_CPU_DATA,R1 
MOVL (Rl)[RO] ,R1 
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BBSSI s-#CPU$V_IOPOST,CPU$L_WOR!C_REQ(R1),30010$ 
30010$: 

POPL Rl 
JSB G-SMP$INTPROC 
POPL RO 

The generated code invokes SMP$INTPROC, in module [SYSLOA]SMPINT _ 
xxx. (For the VAXstation 3520 and VAXstation 3540 systems, the module 
name is SMPINT_60; the module SMPINT supports all other processors.) 

SMP$INTPROC requests an interprocessor interrupt on the CPU whose ID 
is in RO and returns. The method for requesting an interprocessor interrupt 
is CPU-dependent and generally requires writing to a processor register or a 
location in node private address space. For example, the following instruction 
interrupts the other processor of a VAX 8800 system: 

MTPR #1,#PR8NN$_INOP ;Write to interprocessor 
; interrupt register 

There are actually four slightly different routines, all of them in module 
[SYSLOA]SMPINT_xxx, for requesting interprocessor interrupts of all active 
set members. The IPINT _CPU macro selects one of the following routines 
based on its arguments: 

• SMP$INTALL-lnterrupt each other active set member 
• SMP$INTALLBIT-Set the specified work request bit in each other active 

set member's per-CPU database and interrupt it 
• SMP$INTALL_ACQ-Acquire the CPU mutex, interrupt all other active 

set members, and release the CPU mutex 
• SMP$INTAL1-BIT _ACQ (the default)-Acquire the CPU mutex, set the 

specified work request bit in each other active set member's per-CPU 
database and interrupt it, and release the CPU mutex 

Table 34.1 Interrupt Work Request Bits 

Name 

INV_TBS 
INV_TBA 
TBA CK 
BUGCHK 
BUGCHKACK 
RECALSCH 
UPDASTLVL 
UPTODR 
WORILFQP 
QLOST 
RESCHED 
VIRTCONS 
IO POST 

Meaning 

Invalidate a specific translation buffer entry 
Invalidate all translation buffer entries 
Acknowledge a translation buffer invalidate request 
Generate a fatal bugcheck 
Unused 
Unused 
Update current process's PR$_ASTLVL 
Access the primary's time-of-year clock 
Service requests on the interprocessor fork queue 
Stall until VAXcluster quorum is regained 
Request an IPL 3 reschedule interrupt 
Unused 
Request an IPL 4 1/0 postprocessing interrupt 
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Servicing Interprocessor Interrupts and Work Requests 

SMP$INTSR, in module [SYSLOA]SMPINT _xxx, is the interprocessor inter­
rupt service routine. It runs at IPL 20 or 22, depending on the CPU type: 
on VAX 88x0 and VAX 83x0 systems, the IPL is 20; on VAX 6000 series, 
VAXstation 3520, and VAXstation 3540 systems, the value is IPL 22. 

After saving registers, SMP$INTSR tests system global cells and the pro­
cessor's work request bits to determine what actions are appropriate re­
sponses to the interrupt request. Note that the service routine may have 
to respond to multiple requests. It tests and clears each work request bit 
with a BBCCI instruction. 

It tests XDT$GW _OWNER_ID to 'see if a processor executing XDELTA has 
requested the other processors to stall. If so, it raises IPL to 31 and enters a 
benign state, as described in Section 34.5.4. Afterward, SMP$INTSR restores 
the previous IPL, that of the interprocessor interrupt. 

SMP$INTSR checks whether it is running on the primary processor. If so, 
it invokes SMP$VIRTCONS_SERVER, in module [SYSLOA]SMPINT_xxx, in 
case there is a virtual console request to be serviced. The need to service one 
is indicated by a secondary's having acquired the VIRTCONS spinlock. 

A secondary processor performing 1/0 to the console terminal requires 
the assistance of the primary. User-level I/O requests are queued through 
a driver to a device that has affinity for the primary. However, requests 
made from system context do not go through a device driver; instead, they 
are performed by direct manipulation of the processor registers that inter­
face to the console subsystem. Only the primary processor can access these 
registers. SMP$VIRTCONS_SERVER serves the console terminal to the sec­
ondary processors. When the secondary processor releases the spinlock, the 
routine returns to SMP$INTSR. (More typically, during normal operations, 
a secondary invokes SMP$WRITE_OPAO, in module SMPROUT, to perform 
console output.) 

The previous two tasks, entry into the benign state and serving the console 
terminal, are not requested through work request bits. Each of them is a 
request for the processor to continue to perform an action until told to stop. 
The signal to stop is a change in value in the relevant system global cell. 

SMP$INTSR tests CPU$L_ WORK_REQ to see if another processor has 
incurred a fatal bugcheck and is requesting this processor to bugcheck. If 
so, it restores the registers, returning the stack to its state at the start of 
the interrupt service routine, and generates the fatal bugcheck CPUEXIT. 
Section 34.10 describes how fatal bugchecks are processed on an SMP system. 

If a single translation buffer entry invalidation was requested, SMP$INTSR 
invokes SMP$INVALID_SINGLE, in module [SYSLOA]SMPINT_xxx. Sec­
tion 34.5.3 describes this routine and its requests in more detail. 

If an 1/0 postprocessing interrupt was requested, SMP$INTSR requests an 
IPL 4 software interrupt. Executive code running on a secondary that queues 
an 1/0 request packet to the systemwide 1/0 postprocessing queue makes 
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this work request of the primary. Later, when IPL drops, IOC$IOPOST, 
running on the primary processor, will service its queue. Section 34.6.4 
discusses the need for systemwide and per-CPU I/O postprocessing queues. 

If there is a work request to invalidate the entire translation buffer, 
SMP$INTSR takes that action by writing to the PR$_ TBIA register. The 
work request is made through the INVALIDATE_TB macro. This macro is 
invoked, for example, when the swapper process deletes or fills a process 
header slot, or when the protection is changed on the nonpaged pool pages 
occupied by floating-point or character string emulation images. 

If there is a work request to update the AST level for this processor's cur­
rent process, SMP$INTSR clears PR$_ASTLVL and its copy in the hardware 
PCB. Clearing them sets the AST level to kernel mode and catalyzes an AST 
delivery interrupt request when control returns to the process. Although 
there may be no AST deliverable to the process's current mode, its AST level 
will still be recomputed. This work request is made when SCH$QAST, in 
module ASTDEL, running on another processor, queues an AST to a process 
current on this processor. 

SCH$QAST has no direct way to update another processor's PR$_ASTLVL 
register. Furthermore, there is a potential synchronization problem in the 
update of PHD$B_ASTLVL, which is the high byte of PHD$L_POLRASTL, 
the hardware PCB copy of PR$_POLR. PHD$1-POLRASTL is updated from 
process context by memory management code that alters the size of PO 
space. If such a routine's update were concurrent with SCH$QAST's alter­
ing PHD$B_ASTLVL, the update to PHD$B_ASTLVL would be lost. There­
fore, SCH$QAST makes an interprocessor interrupt request. SMP$INTSR is 
running at too high an IPL to synchronize access to the AST queue, so it 
merely forces the AST interrupt by clearing both PR$_ASTLVL and PHD$B_ 
ASTLVL. 

If there is a work request indicating a fork process to be moved from 
another processor to this one, SMP$1NTSR executes a REMQHI instruction 
to remove the first fork block from the queue at CPU$Q_ WORK_FQFL. It 
invokes EXE$FORK, in module FORKCNTRL. EXE$FORK inserts the fork 
block in the fork queue on this processor corresponding to the appropriate 
IPL. (FKB$B_FIPL contains either an IPL or the index of a spinlock from 
which the IPL is taken.) SMP$INTSR repeats this for each fork block in the 
per-CPU database fork work queue. 

Two routines in module SMPROUT make interprocessor fork work re­
quests: SMP$FORK_ TO_PRIMARY and SMP$SWITCH_CPU. The first is 
typically invoked from SMP$WRITE_OPAO, running on a secondary proces­
sor, to broadcast a message to the console terminal. The second is invoked 
to queue an I/O request to a device with affinity for a CPU other than the 
current processor. Section 34.6.3 describes device affinity. 

If there is a work request to access the time-of-year clock, SMP$INTSR 
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checks whether it is running on the primary. If not, it ignores the request. 
With guaranteed access to the console subsystem, which is the location 
of the time-of-year clock on some processors, the primary has the role of 
timekeeper. The value in its time-of-year clock is the basis for initializing 
system time after a boot or power failure. The clocks on secondary processors 
are set to the same value as the primary's clock, because, on some systems, 
the role of primary can shift to a different CPU after a reboot. During normal 
system operation, secondary processors' clocks are used only for measuring 
rates of certain CPU errors. 

Associated with this work request are two bits in SMP$GL_FLAGS: 

• SMP$V _ TODR, which a secondary tests and sets to ensure that only one 
secondary at a time engages in this dialogue 

• SMP$V _ TODR_ACK, for whose setting a secondary waits as a signal that 
the cell SMP$G1-NEW _ TODR contains valid data 

SMP$GL_PROPOSED_ TODR describes the type of clock access desired: 

• On a VAX 83x0 system, -1 forces a read of the console watch chip. On 
other processors, it has the same effect as a value of 0 . 

• In response to a value of 0, the primary reads the time of year, typically 
from the clock processor register . 

• In response to any other value, the primary writes this value to the clock. 

The primary writes the new value of the time-of-year clock into SMP$GL_ 
NEW_TODR. 

The software interrupt request to access the clock is made from a sec­
ondary executing one of the following routines: 

• EXE$INIT_TODR, in module [SYSLOA]INIADPxxx, which is invoked by 
the SYSINIT process 

• EXE$READ_ TODR or EXE$WRITE_ TODR, in module [SYSLOA]ERR­
SUBxxx 

Accessing the primary's time-of-year clock from a secondary processor 
requires an interprocessor dialogue, whose general sequence is as follows: 

1. Prior to requesting the interprocessor interrupt, each of the previously 
listed routines tests and sets bit SMP$V _ TODR, writes SMP$G1-PRO­
POSED_ TODR, requests an interprocessor interrupt of the primary, and 
waits for bit SMP$V _ TODR_ACK to be set. 

2. Depending on the value in SMP$GL_PROPOSED_ TODR, SMP$INTSR 
invokes EXE$READP _LOCAL_ TODR or EXE$WRITEP _LOCAL_ TODR 
in module [SYSLOA]ERRSUBxxx. EXE$WRITEP_LOCA1-TODR, on 
some processor types, broadcasts the new time to all secondary processors 
by requesting on each an interprocessor interrupt with a processor-type­
specific work request. 
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3. SMP$INTSR then writes the time value to SMP$GL_NEW _ TODR and 
sets SMP$V _ TODR_ACK. 

4. Once SMP$V _ TODR_ACK has been set, the requesting secondary clears 
SMP$V _ TODR_ACK, copies the time from SMP$GL_NEW _ TODR, and 
clears SMP$V _ TODR. 

For further information on timekeeping and the role of the time-of-year 
clock, see Chapter 11. 

If there is a work request indicating that VAXcluster quorum has been 
lost, SMP$INTSR stalls system operations on this processor until quo­
rum has been regained. This work request is made by the VAXcluster 
connection manager, from routine CNX$CHECK_QUORUM, in module 
[SYSLOA]CONUTIL. The stall is implemented by the continuous requeuing 
of a packet onto the per-CPU 1/0 postprocessing queue. The packet, which 
begins at field CPU$1-QLOSLFQFL in the per-CPU database, contains the 
address of a system routine (called an end action routine) at offset IRP$L_ 
PID rather than a process ID. IOC$IOPOST distinguishes the two by the sign 
of the value: an end action routine address is in system space; a process ID 
is always a positive number. 

When IOC$IOPOST removes a packet specifying an end actionroutine, it 
invokes the end action routine. The quorum-lost end action routine, which 
is in module [SYSLOA]SMPINT_xxx, tests whether there is quorum. If there 
is, it merely returns to IOC$IOPOST. If not, the routine requeues its packet 
onto the per-CPU 1/0 postprocessing queue and requests another 1/0 post­
processing interrupt. 

If there is a work request for a rescheduling interrupt, SMP$INTSR re­
quests an IPL 3 interrupt. Chapter 12 describes the circumstances under 
which this interrupt is requested. Briefly, they are 

• When a resident process becomes computable whose priority allows it to 
preempt a process current on another CPU 

• When a current process's priority is changed by a thread of'execution 
running on a different CPU and there is a computable resident process 
of higher priority 

• When a current process acquires explicit affinity for a different'CPU 
• When a capability has been removed from a CPU that is needed by its 

current process 

Four bits are reserved for processor-type-specific requests. After servic­
ing all other work requests, SMP$1NTSR tests whether any work request 
bits are still set. If so, SMP$INTSR invokes SMP$SPEC_IPINT, in module 
[SYSLOA]MCHECKxxx, to handle them. On a VAX 8800, for example, the 
primary processor interrupts the secondary when an NMI bus fault machine 
check occurs. Each processor logs an error with the contents of various pro­
cessor registers and its NMI silo. On a VAX 6000 series processor, the primary 
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processor makes a CPU-specific work request of a secondary processor that 
the secondary processor disable a part of its cache that has received a certain 
number of errors. On a VAX 6000 model 400 processor, one CPU-specific 
work request is for a secondary processor to reset its time-of-year clock. 

When no more work request bits are set, SMP$INTSR restores saved reg­
isters and dismisses the interrupt. 

Translation Buffer Invalidation 

A translation buffer (TB) is a CPU component that caches the result of re­
cent successful virtual address translations of valid pages: the virtual page 
numbers and their corresponding page table entries (PTEs). Subsequent trans­
lations of cached addresses are quicker. On VAX processors supported by 
VMS Version 5.2, VAX microcode automatically removes, or flushes, cached 
per-process entries whenever a process is placed into execution with a LDPCTX 

instruction. 
Kernel mode software can invalidate either a single TB entry by writing its 

virtual address to the processor register PR$_ TBIS or all entries by writing 
a zero to the processor register PR$_ TBIA. An attempt to invalidate an 
entry that is not cached is simply ignored. The VMS executive ensures the 
consistency of the TB by invalidating the TB entry corresponding to a valid 
PTE that it is changing, for example, during virtual address space deletion. 
Since the PTEs of invalid pages are not cached, the VMS executive does not 
invalidate TB entries when it alters a PTE for an invalid page. 

On an SMP system, each processor has its own TB, which is filled with 
entries as the result of instruction stream execution on that processor. Since 
all members share the SPT, if one member is to change a valid SPTE, it must 
ensure that no other member is attempting to change the same SPTE and that 
all other members invalidate their TB entries for it. Another complication 
is a requirement for synchronization with VAX microcode, which sets the 
modify bit in a PTE when it writes to a page. To meet these requirements, 
an active set member changing a valid SPTE must request interprocessor 
interrupts of the others to put them into a quiescent state in which they 
cannot execute instructions that write the page in question. The possibility 
also exists that at the time of the interprocessor interrupt request a member 
might be executing a relatively lengthy sequence, at an IPL higher than that 
of the interprocessor interrupt, during which it could not tolerate any asyn­
chronous PTE changes. Consequently, VMS has a multistep interprocessor 
dialogue for changing SPTEs. 

A kernel mode routine changes a PTE using the macro INVALIDATE_ TB, 
one of whose arguments is the address mapped by the PTE. (Another of its 
arguments identifies the environment in which the system is running. The 
description that follows assumes a full VMS environment with multipro­
cessing enabled.) If the address argument is omitted, the macro flushes the 
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entire translation buffer and requests an interprocessor interrupt to do the 
same on each active member, as described in Section 34.5.2. Flushing the 
entire translation buffer is a preferred alternative to· flushing a number of 
pages within a loop that includes the interprocessor dialogue described in 
the following paragraphs. 

If the address argument is present on the macro invocation, the macro 
generates code to test in which address space the address argument lies. In 
the case of a process space address, the macro generates instructions from its 
arguments that actually change the PTE and then generates a simple write 
to the PR$_ TBIS register. Since the same per-process space is not accessed 
concurrently by multiple processors, nothing further is necessary. In the case 
of a system space address, the macro generates instructions to implement 
the TB invalidation in three phases: 

1. Invoke SMP$INVALID, in module SMPROUT. SMP$INVALID requests 
interprocessor interrupts to quiet all active members and executes a co­
routine return to its invoker to change the SPTE. 

2. Change the SPTE through instructions supplied as macro arguments. 
3. Co-routine return to SMP$INVALID, which sets a bit in the per-CPU 

database of each active member to tell it to remove the SPTE from its 
TB. 

INVALIDATE_ TB invokes SMP$INVALID in the following circumstances: 

• When MMG$FREWSLX, in module PAGEFAULT, removes a previously 
valid page from the system working set list 

• When adapter configuration code, for example, in module [SYSLOA]INI­
ADP8PS, clears an SPTE that was in use to map a potential page of adapter 
registers 

• When a device driver clears an SPTE that was double-mapping a page of a 
direct I/O buffer 

The following steps describe the sequence of a system space TB invalida­
tion as it might occur concurrently on the CPU requesting the invalidation 
and the active set members. The numbers in Figure 34. 7 correspond to the 
following steps, not all of which are represented in the figure. 

The sequence begins with SMP$INVALID, in module SMPROUT, which 
runs on the processor changing the SPTE: 

G)It acquires the INVALIDATE spinlock, raising IPL to 1 less than the 
interprocessor interrupt IPL. 

@It acquires the CPU mutex to block entry of new members into the active 
set. 

G)It stores the address to be invalidated in SMP$GL_INVALID. 
@It stores a mask with only its CPU ID bit set in SMP$GL_ACK..MASK. 
G)It requests· an interprocessor interrupt of all other active set members 

with a work request type of INV_ TBS. In response, each member should 



Tme 

~ 
Initiating Processor 

Invoke SMP$1NVALID 

SMP$1NVALID 
1 Acquire INVALIDATE spinlock 
2 Acquire CPU mutex 
3 Store address in 

SMP$GL_INVALID 
4 Set own CPU ID bit in 

SMP$GL_ACK_MASK 
5 Interrupt other members with 

INV_ TBS work request 

s------

8 Co-routine return to invoker to 
change SPTE, write to PR$_TBIS, 
and return 

9 Set TBACK work request for each 
active set member 

10 Release CPU mutex 
11 Release INVALIDATE spinlock 
12 Return 

Figure 34.7 
Invalidation of a Single TB Entry 

34.5 Interprocessor Cooperation 

All Other Active Set Members 

~ 
SMP$1NTSR 

Invoke SMP$1NVALID_SINGLE 

SMP$1NVALID_SING~E 

1 Copy SMP$GL_INVALID 
2 Set CPU ID bit in 

SMP$GL_ACK_MASK 

3 

4 Write copy of SMP$GL_INVALID 
to PR$_TBIS 

5 Return 

copy SMP$GLINVALID and set its own CPU ID bit in SMP$GL_ACK_ 
MASK. 

G)Within a loop, SMP$INVALID compares SMP$GLACK_MASK to the 
active set mask and checks for a request to bugcheck. When all active set 
members have responded, it goes on to step 8. 

7. If SMP$INVALID exceeds the loop count before all active members have 
responded, SMP$INVALID invokes SMP$TIMEOUT, described in Sec­
tion 34.5. 7, to determine whether the lack of response is serious enough 
to warrant crashing the system. If that routine returns, SMP$INVALID 
resets the loop count and continues with step 6. The loop count is the 
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product of the two per-CPU database timed wait counts and the SYSGEN 
parameter SMP _SPINWAIT. 

G) All other active members are now in a quiescent state, waiting for the 
signal to invalidate their TB entries. SMP$1NVALID executes a co-routine 
return to allow its invoker to execute instructions that alter the PTE, do 
a local TB invalidate, and perform a co-routine return to SMP$1NVALID. 

G)SMP$1NVALID sets the bit CPU$V_TBACK in each active member's 
work request longword as the signal for which they have been waiting. In 
response, each should write its copy of SMP$GLINVALID to PR$_TBIS. 

@SMP$INVALID releases the CPU mutex. 
@It releases the INVALIDATE spinlock, restoring the previous IPL. 
@It returns to its invoker. 

In response to the INV_ TBS interprocessor interrupt described in step 5, 
the routine SMP$INTSR, in module [SYSLOA]SMPINT_xxx, runs on each 
other active set member and invokes the routine SMP$INVALID_SINGLE, 
in the same module. 

SMP$1NVALID_SINGLE takes the following steps: 

G)It copies SMP$GLINVALID. 
G)It sets the processor's CPU ID bit in SMP$GL_ACILMASK. 
G)Within a loop, it waits for its work request TBACK to be set. When the 

bit is set, it goes on to step 4. Within the loop, it also checks for requests 
to enter the benign state and to bugcheck. The timed loop is generated 
by the BUSYWAIT macro, described in Section 34.5.6. 

G)It writes its copy of SMP$GLJNVALID to PR$_TBIS. 
G)It returns to SMP$INTSR, which checks for other work requests and 

finally executes an REI instruction to dismiss the interrupt. 

Benign State and XDELTA 

When one member of the active set requires that all other members tem­
porarily cease their normal operations, it initiates the benign state. All the 
other members are quiescent until the initiating member terminates the be­
nign state. While in a benign state, a processor loops at IPL 31, checking 
whether the state has been terminated. The benign state is currently used 
only when one processor executes XDELTA code; the other CPUs effectively 
pause rather than continue with operations that might disrupt or confuse 
the debugging session. 

When a processor enters XDELTA, through a breakpoint or T-bit exception, 
the processor executes code within XDELTA that makes it the sole user of 
XDELTA: 

1. It raises IPL to 31. 
2. It repeatedly tests the low bit of XDT$GW _INTERLOCK, the XDELTA 

interlock bit, until it finds the bit clear. 
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3. It executes a BBSSI instruction to test and set the bit. If the bit was set, 
the processor returns to step 2. Otherwise, its exclusive access to the 
XDELTA owner cell, XDT$GW _OWNER_ID, is now guaranteed. 

4. It tests the high bit of that cell to see whether any processor owns 
XDELTA. 

-If the bit is set, this processor writes its own CPU ID into the cell, 
clears the interlock bit, and proceeds with XDELTA. 

-If the bit is clear, indicating that some processor owns XDELTA, and 
the owner ID is that of this processor, it clears the interlock bit and 
proceeds with XDELTA. 

-If the bit is clear and the owner ID is that of another processor, the 
processor clears the interlock bit and invokes the benign state routine. 

5. Proceeding with XDELTA, the processor requests an interprocessor in­
terrupt of all the other members of the active set. As they execute 
SMP$INTSR, each finds XDELTA owned and enters the benign state by 
invoking the benign state routine. 

6. When XDELTA is done, before it restores the thread of execution that 
incurred the exception, it acquires the XDELTA owner interlock bit, 
writes -1 to XDT$GW _OWNER_ID, and releases the owner interlock 
bit. 

The benign state routine, XDT$CPU_ WAIT in module [DELTA]XDELTA, 
takes the following steps: 

1. To record its entry into the benign state, the processor sets the bit cor­
responding to its ID in XDT$GL_BENIGN_CPUS. 

2. The processor tests whether it is the primary processor. 
3. If it is not the primary processor, it continually tests the high bit of 

XDT$GW _OWNER_ID, waiting for the bit to be clear. When the bit 
is clear, the processor clears its bit in XDT$GLBENIGN_CPUS. It in­
validates the entire TB. It pushes a program counter/processor status 
longword (PC/PSL) pair so that it can return control with an REI instruc­
tion, flushing any prefetch of instructions that might have been altered 
by XDELTA commands or actions. 

4. The primary processor is responsible for performing XDELTA console 
terminal 1/0 on behalf of a secondary processor. This mechanism is sim­
ilar to the one described in Section 34.5.2, but not identical; the primary 
assumes the need to serve the console and does not check the state of the 
VIRTCONS spinlock. The primary saves the state of the physical con­
sole interface. It then communicates to the secondary processor through 
memory locations that look like a console port to the secondary. The pri­
mary serves the console by relaying data between the real console port 
and the virtual console port. 

When the secondary processor leaves XDELTA, the primary processor 

1033 



Symmetric Multiprocessing 

34.5.5 

1034 

restores the saved state of the physical console interface. It then leaves 
the benign state in the same manner as the other processors. 

There is provision for an alternative entry into and exit from the benign 
state, through routines SMP$INITIATE_BENIGN and SMP$TERMINATE_ 
BENIGN, in module SMPROUT. SMP$INTSR tests for this form of the 
benign state and loops, checking for concurrent bugcheck and translation 
buffer invalidate requests. No current use is made of this form of benign 
state. 

The Override Set 

The override set consists of all processors currently in the override state. 
The override state allows a thread of execution to inhibit any change in its 
IPL when that change would be awkward for the algorithm and when its 
synchronization is not in doubt. The processor may be executing a code se­
quence beyond question, such as initialization code, or the processor may be 
executing code that confirms that local synchronization is not at issue. The 
machine check exception service routine is an example of a code thread that 
temporarily joins the override set to acquire a spinlock from high IPL, after 
checking that the code that incurred the exception was executing at IPL 2 
or below, that is, that no lower IPL code thread would be desynchronized by 
this action. 

A processor enters the override set when it must perform a synchroniza­
tion operation that otherwise might be considered illegal. It sets its CPU ID 
bit in SMP$GL_OVERRIDE and leaves the override set when it clears the 
bit. While in the override set, a processor's IPL is not changed when the 
processor acquires a spinlock. Furthermore, the spinlock acquisitions and 
releases of a member of the override set are not subject to the IPL checks 
in the full-checking SMP synchronization image, which test that local CPU 
synchronization is not being violated. 

Some examples of circumstances under which a processor joins the over­
ride set are 

• During bootstrap and initialization, while the processor is executing at IPL 
31 

• During IPL 31 servicing of read data substitute machine checks, when the 
MMG spinlock must be acquired 

• During fatal bugcheck processing 

Note that widespread use of this mechanism is not supported or recom­
mended. In many cases where it might seem like a good solution, a better 
structured alternative usually exists, for example, creating a lower IPL fork 
process. 
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Spinwaits and Busy Waits 

The SPINWAIT and BUSYWAIT macros enable a processor to wait a finite 
length of time for another processor to take some action. Both generate loops 
with an iteration count based on the per-CPU database timed wait counts. 
The SPINWAIT macro generates a test for the availability of a spinlock 
within the loop, while the BUSYWAIT macro allows the user to specify 
the test to be made. If the loop count is exhausted before the test succeeds, 
the code generated by both macros invokes SMP$TIMEOUT to determine 
whether the system should be crashed. 

The SPINWAIT macro is defined in the SPINLOCKS_xxx module and 
only used from within that module. It generates the following instruction 
sequence: 

1. Establish a loop count based on the spinlock's timeout count and the 
per-CPU database timed wait counts. 

2. Use instructions specified by the macro invoker to test whether the 
spinlock is available. If so, leave this loop. 

3. If the current IPL is not blocking interprocessor interrupts, go to step 9. 
4. If another processor has begun to execute XDELTA (if the high bit of 

XDT$GW _OWNER_ID is zero), invoke XDT$CPU_ WAIT to enter the 
benign state, as described in Section 34.5.4. 

5. If a bugcheck work request has been made, generate a fatal CPUEXIT 
bugcheck. 

6. If the processor is not a member of the override set (described in Sec­
tion 34.5.5), go to step 9. 

7. If the processor is the primary, invoke SMP$VIRTCONS_SERVER to 
check whether there is a secondary that needs virtual console service. 

8. If a work request to invalidate a single translation buffer entry has been 
made, invoke SMP$INVALID_SINGLE. 

9. If the spinlock does not become available within retry count iterations 
and the spinlock owner has not changed, invoke SMP$TIMEOUT to 
determine whether to generate a SPINWAIT fatal bugcheck. 

10. If SMP$TIMEOUT returns, continue with step 1. 

SMP$TIMEOUT, in module SMPROUT, invokes SMP$CONTROLP _ 
CPUS (see Section 34.5. 7) to determine if any active set member has been 
halted through the console. If an active set member is halted, SMP$TIME­
OUT returns. If no active set member is halted, SMP$TIMEOUT tests bit 
EXE$V _NOSPINWAIT in EXE$GL_ TIME_CONTROL. This bit is set on a 
system booted with XDELTA and also set during the execution of certain 
CPU error routines and the IPL 12 interrupt service routine. If the bit is 
clear, SMP$TIMEOUT generates the fatal bugcheck CPUSPINWAIT. If the 
bit is set, SMP$TIMEOUT returns. 

Even while spinwaiting, a processor must be responsive to certain inter­
processor work requests to prevent deadlocks. If the processor is looping at 
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an IPL below that of the interprocessor interrupt, its loop can be interrupted 
to service a work request. However, if it is looping at a higher IPL, it cannot 
be interrupted and must minimally check for work requests to bugcheck or 
to enter the benign state. 

An incomplete dump or deadlock would result if such a spinwaiting pro­
cessor were unresponsive to a bugcheck request and if, when its spinwait 
count was exhausted, SMP$TIMEOUT returned rather than crashing. If a 
fatal bugcheck were initiated in these circumstances, regardless of which ac­
tive set member owned the spinlock of interest, it is likely that the spinlock 
would not be released and that the spinwaiting processor would simply con­
tinue to spinwait and fail to save its context in the dump. If the spinwaiting 
processor were the primary processor and failed to respond to the bugcheck 
request, the system would hang, deadlocked. Section 34.10 describes how 
fatal bugchecks are handled on an SMP system. 

A deadlock could result if a primary processor spinwaiting at an IPL equal 
to or above that of the interprocessor interrupt were unresponsive to a re­
quest to enter the benign state. Once the benign state is initiated, whether 
the initiator or a processor already in the benign state owns the spinlock, it is 
likely that the spinlock would not be released and that the spinwait would 
continue. (Because the system has been booted with XDELTA, a spinwait 
crash would not result at the end of the spinwait loop.) The system would 
deadlock as soon as the benign state initiator required the primary proces­
sor to service secondary processor console I/O. Section 34.5.4 describes the 
benign state in more detail. 

A processor that spinwaits at an IPL above that of the interprocessor 
interrupt and that is not in the override set is trying to acquire a spinlock 
whose IPL is above that of any associated with an urgent interprocessor 
request. In other words, the processor cannot be waiting for the INVALIDATE 
or VIRTCONS spinlocks. (The INVALIDATE spinlock's IPL is defined to be 1 
less than that of the interprocessor interrupt; the VIRTCONS spinlock's 
IPL is equal to that of the interrupt.) Thus, for example, even if there is 
an active set member initiating an interprocessor dialogue for translation 
buffer invalidation, that processor cannot also be holding the higher ranked 
spinlock that the spinwaiting processor is trying to acquire. Thus there can 
be no deadlock between that processor and the spinwaiting one. 

If, on the other hand, the processor is in the override set, the value of 
its IPL is not necessarily the IPL of the spinlock for which it is waiting. 
The SPINWAIT macro, therefore, also generates explicit tests for whether a 
processor in the override set should service requests to invalidate a single 
translation buffer entry or, as the primary, serve the console terminal to 
a secondary. Additionally, for a processor that is primary, the SPINWAIT 
macro should check whether there is an UPTODR request to service. This 
last test, however, is absent in VMS Version 5.2. 
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By default, the BUSYWAIT macro does not generate any tests for out­
standing work requests that should be serviced. Any code that invokes the 
BUSYWAIT macro from IPLs at or above that of the interprocessor interrupt 
service routine should include the same tests as the SPINWAIT macro. 

Sanity Timer Mechanism 

The sanity timer mechanism enables detection of a member of the SMP 
system that is hung or otherwise nonfunctional. It acts as a check that each 
member is responding to interval timer interrupts. Each of the members of 
the active set monitors one other member, creating a sanity timer chain. A 
member monitors the one with the next lower ID than its own. The CPU 
with the lowest ID monitors the one with the highest ID, forming a circular 
list. When a CPU is booted and joins the active set, it inserts itself into the 
sanity timer chain. 

The following fields in the per-CPU database are related to the sanity timer 
mechanism: 

• CPU$W _SANITY_ TIMER, initialized to the value of the SYSGEN param­
eter SMP_SANITY_CNT, is the number of interval timer ticks until this 
CPU times out. Its default value is 300. 

• CPU$W _SANITY_ TICKS, initialized to the value of the SYSGEN parame­
ter SMP _ TICILCNT, is the number of interval timer ticks until the next 
time the processor monitors its neighbor in the sanity timer chain. Its 
default value is 30. 

• CPU$L_ TPOINTER contains the address of CPU$W _SANITY_ TIMER in 
the per-CPU database of the active set member with the next lower ID. ,, 

The sanity timer mechanism is implemented as part of the interval timer 
interrupt service routine. Each processor resets its own sanity timer and 
monitors one other member's sanity timer, periodically decrementing it. If 
a processor decrements the watched CPU's sanity timer to zero, that means 
the watched CPU has not reset its sanity timer. 

The interval timer interrupt service routine, EXE$HWCLKINT in mod­
ule TIMESCHDL, running on each member of an SMP system, takes the 
following steps to implement the sanity timer mechanism: 

1. It tests the low bit of SMP$G1-FLAGS to determine whether the system 
is multiprocessing. If the bit is clear, EXE$HWCLKINT bypasses all the 
sanity timer related code. 

2. It resets the current processor's sanity timer in such a way as not to lose 
the refresh in case there is a concurrent decrement from the next CPU 
in the sanity timer chain. 

3. It decrements CPU$W_SANITY_TICKS, the number of ticks until the 
next time it should check its neighbor's sanity timer. If the number has 

1037 



Symmetric Multiprocessing 

reached zero, it resets CPU$W_SANITY_TICKS from SMP_TICILCNT 
and subtracts the value of the SYSGEN parameter from its neighbor's 
sanity timer. 

Note that EXE$HWCLKINT resets its own sanity timer at each in­
terval timer interrupt but decrements its neighbor's sanity timer less 
frequently, giving its neighbor ample opportunity to reset its own sanity 
timer. 

4. If its neighbor's timer is now less than or equal to zero, the routine makes 
several tests to determine how serious the situation is: 

-If bit EXE$V _NOSMPSANITY in EXE$GL_ TIME_CONTROL is set to 
indicate that sanity timeout is disabled, then the routine merely resets 
its neighbor's sanity timer and continues. 

On a system booted with XDELTA, sanity timeouts are disabled in 
this way. During extended execution at high IPL in certain machine 
checks and the IPL 12 IIPCJ interrupt service routine !see Chapter 4), 
the service routine sets EXE$V _NOSMPSANITY and then clears it 
when done. 

-It checks the timer again and if the timer is now positive, indicating 
that its neighbor has resumed normal operations, it continues. 

-It invokes SMP$CONTROLP _CPUS, in module [SYSLOA)ERR­
SUB.xxx, to see whether any active set members are at present halted 
via the console. On a CPU type whose console is unable to identify 
which processors are halted, this routine returns the entire active set. 
On other CPUs (VAX 6000 series and VAXstation 3520 or 3540 sys­
tems), it returns just those active CPUs that are halted. 

If SMP$CONTROLP_CPUS returns any nonzero value, EXE$HW­
CLKINT merely resets its neighbor's sanity timer and continues, since 
the halted CPU could have triggered the timeout. For example, if the 
halted CPU holds a high-IPL spinlock for which another CPU is spin­
waiting at an IPL high enough to block interval timer interrupts, the 
first CPU's being halted too long can trigger sanity timeout of the sec­
ond CPU. EXE$HWCLKINT therefore resets the sanity timer. If the 
second CPU's timeout was merely coincident with the first CPU's 
halt, the second CPU is likely to time out again. 

5. If all the tests fail, EXE$HWCLKINT generates the fatal bugcheck CPU­
SANITY. 

34.6 I/O CONSIDERATIONS 

1038 

A number of issues specific to 1/0 support arise under SMP, some of them 
software and some hardware: 

• Synchronizing access to the device controller and device data structures 
from the asynchronous threads of execution that make up a device driver 
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• Impact of devices' interrupting all SMP members 
• Access to a device by a subset of SMP members 
• Order in which I/O requests complete 

These issues are described further in the following sections. 

Synchronizing Driver Routines 

The various routines that comprise a driver are essentially independently 
activated threads of execution: 

• Function decision table (FDT) action routines and cancel routines are en­
tered in response to processes' system service requests. 

• Some routines trigger others; for example, an FDT routine that jumps to 
EXE$QIODRVPKT eventually causes entry to the driver's start I/O routine . 

• Device interrupt service routines are entered in response to various device 
interrupts . 

• Some routines are entered by the executive in response to events such as 
powerfail recovery and expected interrupt timeout. 

On a uniprocessor system, some of these routines can interrupt others. 
The device unit control block (UCB) has state bits that specify, for example, 
whether a fork process is active on that device unit (UCB$V _BSY in UCB$W _ 
STS), whether an interrupt is expected (UCB$V_INT in UCB$W_STS), and 
whether there is a time limit for the interrupt's arrival (UCB$V _TIM in 
UCB$W _STS). The state bits help control the activation of driver threads. 
An important additional synchronization technique is raising IPL to block 
interrupts, either to fork level (UCB$B_FIPL) or to device level (UCB$B_ 
DIPL). These techniques continue to be used, but they are not sufficient for 
the concurrency possible on an SMP system and have been augmented by 
spinlocks. 

Each device controller has its own dynamic spinlock, called a device lock, 
that synchronizes access to the controller's registers and extends the concept 
of raising IPL to UCB$B_DIPL. Each device UCB identifies a static spinlock, 
called a fork lock, that synchronizes access to the UCB and extends the syn­
chronization formerly achieved by raising IPL to UCB$B_FIPL. VMS enters a 
driver's start I/O and cancel I/O routines with the appropriate fork lock held. 
It enters the timeout routine holding both the fork lock and the device lock. 
The start I/O routine acquires the device lock as necessary. The interrupt 
service routine, to which the hardware may dispatch directly, must acquire 
the device lock immediately. (See Chapter 8 for a detailed description of 
spinlocks and the VMS Device Support Manual for a detailed description of 
when each is used.) On an SMP system, multiple processes can be executing 
FDT action routines or canceling I/O requests concurrently with interrupt 
service routine and fork process execution. 
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Device· Interrupts 

VMS and current processors that support SMP have mechanisms to pass 
device interrupts on to every system member. If these mechanisms were 
enabled, the first member to respond to the interrupt would service it, and 
the others would dismiss the interrupt. Currently, however, interrupts are 
not distributed; device interrupts are delivered to and serviced by only the 
primary processor. 

Performance studies have shown no improvement from distributing in­
terrupts and, in some cases, significantly increased overhead, as a result of 
several factors. If interrupt requests are distributed, on some current pro­
cessor types, each member must interrupt what it is currently doing and 
perform bus transactions to determine the source of the interrupt. The first 
member to respond to the device would continue with interrupt processing; 
the others would receive passive releases and dismiss their interrupts. On 
some systems, the superfluous bus transactions would make a noticeable 
difference in bus throughput. On all such systems, all but the first member 
would have interrupted what they were doing to execute an unproductive 
thread of execution, with potential losses from their memory caches and 
TBs. 

A further issue is that a typical device interrupt service routine requests a 
fork interrupt on the current processor. Distributing device interrupts thus 
requires distributing fork interrupts and fork processing. Time spent in the 
device interrupt service routine is small compared to fork processing time. 
Although a number of spinlocks are used as fork locks, the IOLOCK8 spin­
lock is used more heavily and would become a bottleneck if fork interrupts 
were distributed as a result of distributing device interrupts. As a result, pro­
cessors that could otherwise have executed applications while the primary 
processor serviced device and fork interrupts would spend time spinwaiting 
for IOLOCK8. 

While splitting IOLOCK8 into several spinlocks to enable more parallelism 
is possible in a future release of VMS, thus far the current scheme has not 
been a problem. 

Device Affinity 

Many devices can be accessed equally by every processor of an SMP system, 
but some can be accessed by only a subset of the processors. The SMP design 
for device support must take that into account. 

• The console terminal and block storage device are typically accessible only 
from the primary . 

• An application design might require that a particular device be accessed 
from a subset of available processors. 

Software-implemented device affinity supports these hardware limitations 
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by providing a mechanism to restrict device access to a subset of the system's 
processors. 

Each device UCB has a longword mask in field UCB$LAFFINITY that 
specifies a device affinity set, those processors from which its device registers 
may be accessed. By default, the mask is all l's, enabling access from all 
processors. For console devices, the mask is zero, a value that means only 
the primary processor can access the device registers. In theory, the device 
affinity mask can express the idea that access from the primary is prohibited. 
However, in practice, under the current version, the primary processor is 
always presumed to be a member of every device's affinity set. 

Before VMS enters any driver routine, it must ensure that the routine will 
run on a processor that is part of the device's affinity set. The major driver 
entry points are 

• FDT action routines 
• Start 1/0 and alternate start 1/0 routines 
• Interrupt service routine 
• Register dumping routine 
• Device timeout routine 
• Unit and controller initialization routines 
• Cancel 1/0 routine 

FDT action routines preprocess an I/O request and are expected not to 
access device registers. Thus, they can execute on any processor regardless 
of device affinity. 

Before entering a device driver at either its start 1/0 or alternate start 1/0 
routine, the executive tests whether it is running on a processor for which 
the device has affinity. If not, the executive invokes routine SMP$SWITCH_ 
CPU, in module SMPROUT, which stores fork process context in reserved 
fields in the 1/0 request packet (IRP). It identifies the processor with the 
lowest CPU ID for which the device has affinity, queues the IRP to that pro­
cessor's per-CPU database, and requests an interprocessor interrupt of work 
request type WORK_FQP (see Sections 34.5.1and34.5.2). The interprocessor 
interrupt service routine queues the IRP /fork block to the appropriate fork 
queue and requests a fork interrupt. When the fork interrupt is granted, the 
fork dispatcher acquires the appropriate fork lock and then enters the driver 
start 1/0 or alternate start 1/0 routine. 

As previously described, device interrupt service routines always run on 
the primary processor. After the interrupt service routine forks, the fork 
process (generally, the reentered start 1/0 routine) executes on the primary 
processor. At that point, to run on a different processor in its affinity set, 
the fork process could itself invoke SMP$SWITCH_CPU. 

A register dumping routine is entered indirectly by the start 1/0 routine 
when it invokes IOC$DIAGBUFILL or logs an error and thus runs on the 
same processor as the start 1/0 routine. 
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A device timeout routine is entered at device IPL from EXE$TIMEOUT, 
which runs on the primary as part of the IPL 7 software timer interrupt 
service routine. To run on another processor in its affinity set, the timeout 
routine must invoke SMP$SWITCH_CPU. 

Unit and controller initialization routines run when a device is config­
ured by SYSGEN and during powerfail recovery. Running in process context 
in kernel mode, SYSGEN calls SCH$REQUIRE_CAPABILITY, in module 
SCHED, to ensure that SYSGEN executes only on the primary processor 
during device configuration and similar operations. Power recovery code ex­
ecutes on the primary processor as part of system restart following system 
powerfail and recovery or as part of an adapter interrupt service routine fol­
lowing adapter powerfail and recovery. 

A driver cancel routine is entered from process context code, either 
EXE$CANCEL, in module SYSCANCEL, the Cancel 1/0 on Channel ($CAN­
CEL) system service procedure, or IOC$LAST _CHAN, in module IOSUB­
NPAG. Both check whether the device's affinity mask is the same as the 
default mask. If not, these routines call SCH$REQUIRE_CAPABILITY to 
ensure execution on the primary before invoking the cancel routine. 

1/0 Postprocessing 

An SMP system has one systemwide I/O postprocessing queue and one in 
each CPU's per-CPU database. Most IRPs are queued to the systemwide 
queue. Since only the primary processor services this queue, the sequence 
in which requests complete is preserved, even if they complete on different 
processors, and a process receives AST notification of I/O completion in the 
order in which the requests complete. 

Without the systemwide queue, AST notifications of the completion of 
asynchronous I/O requests could occur out of order. This might happen to 
requests made of a driver able to complete I/O requests on a secondary. To 
complete an I/O request on a secondary processor, a driver would need to 
have unrestricted device affinity and be able to complete a request in the 
start I/O routine without the need for a device interrupt. Synchronous I/O 
requests, made through the Queue I/O Request and Wait ($QIOW) system 
service are processed one at a time and cannot complete out of order. 

With multiple processor-specific I/O postprocessing queues rather than a 
single systemwide one, problems such as the following can occur. A process 
requests several small asynchronous reads to a communications driver. The 
first read causes a device operation, whose interrupt service routine runs on 
the primary. The driver, in fact, receives a large transmission of data, suffi­
cient to satisfy several small reads. The IRP of the first read is queued to the 
primary's I/O postprocessing queue. Before IPL drops low enough on the pri­
mary for the I/O postprocessing interrupt to be granted, several subsequent 
read requests from the process could complete on a secondary and their IRPs 
could be queued to its I/O postprocessing queue. If the secondary's I/O post-
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processing interrupt is serviced first, the process receives AST notification 
of the later requests before the first one. 

VMS provides several routines that are commonly invoked from device 
drivers. Each routine queues an IRP to the systemwide queue. If the rou­
tine is running on the primary, it requests an 1/0 postprocessing interrupt. 
Otherwise, it sets the primary's 1/0 postprocessing work bit and requests an 
interprocessor interrupt. These routines are 

• COM$POST and COM$POST _NCNT, in module COMDRVSUB, for com­
pleted and canceled requests 

• IOC$REQCOM, in module IOSUBNPAG, for completed requests 

EXE$ABORTIO and EXE$FINISHIO[C] are routines invoked from device 
driver FDT action routines to complete an 1/0 request at FDT level. Each 
queues the IRP to the per-CPU 1/0 postprocessing queue and, running at 
IPL 2, requests an I/O postprocessing interrupt, which typically is granted 
immediately. Postprocessing such a request on the same processor enables 
it to complete immediately, synchronously with the system service, as it 
would have with earlier versions of VMS. 

As described in Section 34.5.2, a special IRP is queued to each processor's 
per-CPU 1/0 postprocessing queue to stall during loss of V AXcluster quorum. 

34.7 PROCESSOR STATES 

A secondary SMP member can be characterized by its state, stored in the per­
CPU database field CPU$B_STATE. Prefaced by CPU$C_, the state symbols 
are defined by the macro $CPUDEF. Table 34.2 lists the possible state values 
and a brief description of each. 

The primary processor itself is always in the RUN state. A secondary 
processor participating in the SMP system is in the RUN state. Most of the 
other states are stages through which a secondary passes on its way to or 
from the RUN state. Figure 34.8 shows the transitions among them. These 
are summarized here and described in detail in subsequent sections. 

When SMP$SETUP _CPU, described in Section 34.8.3, first initializes the 
environment for each secondary processor, it sets each CPU's state to INIT. 

Table 34.2 Processor States 

Name 

INIT 
RUN 
BOOTED 
STOPPED 
TIMOUT 
BOOT _REJECTED 

Meaning 

CPU is initializing 
CPU is running 
CPU is booted and waiting for go bit 
CPU has stopped 
CPU has timed out during boot 
CPU was booted but refused to join the active set 
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SMP$SETUP _CPU makes three attempts to boot a secondary by sending 
a message to the console subsystem. If all fail, it sets the CPU's state to 
TIM OUT. 

Routine CPU_START, described in Section 34.8.4, running on each sec­
ondary, makes the other transitions from the INIT state . 

• It changes the CPU's state to BOOT_REJECTED if the CPU's revision or 
type is inconsistent with those of the BOOT CPU . 

• It changes the CPU's state to BOOTED when it begins to loop, waiting 
for the BOOT CPU to set the go bit. Once the go bit is set, it changes the 
CPU's state to RUN. 

SMP$SHUTDOWN_CPU, described in Section 34.8.5, makes the transi­
tions to the STOPPED state. 

34.8 INITIALIZATION 
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An SMP system initially boots as a uniprocessor. Based on hardware-specific 
criteria, the console subsystem selects a processor to be _the BOOT CPU. 
The BOOT CPU does most of the work of system initialization, loading the 
executive into memory and performing the tasks involved in bootstrapping 
a single-processor system. 

The exact initialization sequence varies from system to system. In par­
ticular, the ways in which the BOOT CPU is initialized and the primary 
!initial) bootstrap program, VMB.EXE, is loaded into it differ on each CPU 
type. However, the steps from the beginning of the execution of VMB are 
basically the same on all systems. 

SMP-related initialization is performed in several phases of bootstrap: 

1. SYSBOOT, the secondary bootstrap, runs on the BOOT CPU. It sizes the 
SPT to accommodate the per-CPU data areas and allocates that of the 
BOOT CPU. 
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2. EXE$INIT, running on the BOOT CPU, turns on memory management 
and performs CPU-independent SMP initialization. 

3. The CPU-dependent routines SMP$SETUP _SMP and SMP$SETUP _CPU 
run on the BOOT CPU to perform further SMP initialization and boot 
the secondary processors. 

4. Bootstrap code, running on each secondary, initializes processor registers, 
enables memory management, and adds the processor to the active set. 

Chapter 30 provides a detailed description of CPU initialization, loading 
and execution of VMB, and the execution of SYSBOOT. Chapter 31 provides 
a detailed description of EXE$INIT and further steps in system initialization. 

The following sections describe those parts of each bootstrap phase specif­
ically related to SMP and the operations of the Digital command language 
(DCL) commands START/CPU and STOP/CPU. Figure 34.9 shows the major 
steps in these phases. 

Initialization by SYSBOOT 

SYSBOOT runs on the BOOT CPU in kernel mode at IPL 31 with memory 
management disabled. 

SYSBOOT tests whether the CPU type supports SMP. On one that does, 
SYSBOOT includes SMP-related needs in its sizing of system space. First, it 
calculates the required size of the per-CPU data area and rounds that number 
up to the next power of 2. It multiplies the rounded size by 1 plus the number 
of CPUs in the SMP system. For some CPU types, it uses the maximum 
number of CPUs possible in an SMP configuration of that type. For others, 
it uses the number actually present in the hardware configuration. SYSBOOT 
adds the result to the total number of pages of system space. Adding pages 
equal to the size of one more per-CPU data area ensures that the areas needed 
can be allocated starting with a system space address aligned to the same 
power of 2 as the size of the area. 

In addition, SYSBOOT adds 32 pages to the total number of system pages, 
one for each of the maximum possible number of CPUs, to double-map 
the per-CPU boot stack. Recall that to enable memory management it is 
necessary to execute code on a page whose physical and virtual addresses are 
the same (see Chapter 30). On current VAX processors, any physical address 
has the form of a PO virtual address. Thus the virtual address required for 
the transition is a PO address. The boot stack page will form one page of a 
temporary PO page table. The PO base register contents will be calculated 
such that the boot stack page is the page of the page table that contains the 
PTE of the page with the code that enables memory management. 

The virtual address of the per-CPU data area, of which the boot stack is 
a part, is so low in system space that the calculated base address of the 
temporary PO page table could fall below the start of system space (an illegal 
value). Therefore the boot stack page must be given a second (that is, doubly 
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mapped) system space virtual address. SYSBOOT allocates the 32 SPTEs 
from the high end of system space for this double mapping and stores the 
system virtual address mapped by the first SPTE in SMP$GL_POPT _MAP. 
It allocates a separate SPTE for each CPU to allow for the possibility that 
multiple secondary processors are concurrently using their boot stack pages. 

SYSBOOT allocates physical pages of memory for all of the BOOT CPU's 
per-CPU data area except the guard pages. It allocates and initializes SPTEs 
for the entire area. It also initializes the SPTE that double-maps the per-CPU 
boot stack. 
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SYSBOOT determines which version to load of the executive image that 
supports synchronization by testing the SYSGEN parameter MULTIPRO­
CESSING in combination with the number of CPUs that are present in the 
configuration: 

• If MULTIPROCESSING is 0, it selects the uniprocessor version, SYSTEM_ 
SYNCHRONIZATION_UNl.EXE . 

• If MULTIPROCESSING is 1 and multiple CPUs are present, SYSBOOT 
selects the full-checking multiprocessing version, SYSTEM_SYNCHRO­
NIZATION.EXE. If only one CPU is present, it selects the uniprocessor 
version . 

• If MULTIPROCESSING is 2, it selects the full-checking multiprocessing 
version . 

• If MULTIPROCESSING is 3 and there are multiple CPUs present, it se­
lects the streamlined multiprocessing version, SYSTEM_SYNCHRONIZA­
TION_MIN.EXE. If only one CPU is present, it selects the uniprocessor 
version. 

If SYSBOOT loads a multiprocessing version, it sets bit SMP$V _SYNCH 
in SMP$G1-FLAGS to indicate that SMP synchronization is required. 

SYSBOOT stores the ID number of the BOOT CPU in SMP$GL_PRIMID. 
It calculates the system virtual address corresponding to the alternative 
mapping of the CPU's boot stack. Using this address, it builds a PO page 
table that maps the beginning of EXE$INIT at a virtual address equal to its 
physical address. Chapter 31 explains the purpose of this page table in more 
detail. 

SYSBOOT loads the PO base and length registers to describe the page table 
and invalidates the translation buffer. It then jumps to EXE$INIT. 

Initialization by EXE$INIT 

This section describes SMP-related initialization in EXE$INIT. Unless oth­
erwise noted, all of it takes place on each CPU type. EXE$INIT runs on 
the BOOT CPU in kernel mode at IPL 31. Its first actions include enabling 
memory management. 

1. If the BOOT CPU is a VAX 6000 series processor, EXE$INIT maps the 
first page of its node-private space, which contains the CPU ID. 

2. It initializes SMP$GL_BASE_MSK for subsequent use ~ith the FIND_ 
CPU_DATA macro and invokes the macro to get the address of the BOOT 
CPU's per-CPU data area. 

3. EXE$INIT initializes the BOOT CPU's per-CPU data area: 

a. It zeros the per-CPU database. 
b. It saves the CPU ID in CPU$L_PHY_CPUID .. 
c. It stores the address of the per-CPU data area in the CPU data vector 

entry for this CPU and in the field CPU$L_PERCPUVA. 
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d. It stores the system virtual address of this CPU's PO page table page 
in CPU$LPOPT _PAGE. 

e. It stores a mask with a single bit set to represent the BOOT CPU in 
CPU$LCPUID_MASK. 

f. It copies 16 bytes of CPU-specific hardware data obtained by SYS­
BOOT to the per-CPU database and initializes CPU$LCURPCB to 
the address of the null PCB. 

g. It stores the value BUG$_CPUCEASED in CPU$L_BUGCODE. 
h. It initializes the per-CPU 1/0 postprocessing queue and fork queues 

as empty lists. 
i. It copies the SYSGEN parameter SMP _SANITY _CNT, the number of 

interval timer ticks until SMP sanity timeout, to CPU$W _SANITY_ 
TIMER, the BOOT CPU's sanity timer. It stores the address of the 
BOOT CPU's sanity timer in CPU$L_ TPOINTER. When a secondary 
processor boots and inserts itself into the sanity timer chain, the 
BOOT CPU's CPU$L TPOINTER will be altered to point to the 
secondary's sanity timer. For further details, see Section 34.5.7. 

j. It initializes CPU$LINTSTK to the virtual address of the high end of 
the CPU's interrupt stack and CPU$LREALSTACK to the physical 
address of the high end of the boot stack. 

k. It copies the physical address of the SCB to CPU$L_SCBB. 
1. It initializes CPU$L TENUSEC and CPU$L_UBDELAY from the sys­

tem global values so that any necessary busy, spin, or timed wait 
durations can be calculated on a CPU-specific basis. 

4. It initializes the available set mask to the same value as CPU$L_CPUID_ 
MASK, that is, a configuration with the BOOT CPU available, and copies 
it to the active, idle, and override set masks. 

5. EXE$INIT initializes EXE$GLAFFINITY, the default device affinity 
mask, to all l's, so that, by default, device access is not limited to a 
subset of the SMP members. 

6. It sets the processor's CPU$B_STATE field to RUN. 
7. EXE$INIT stores the physical address of the BOOT CPU's per-CPU data 

area in the restart parameter block field RPB$L_CPUDBVEC and clears 
the bit RPB$V _PERCPU_ VEC in RPB$B_FLAGS to describe the field's 
use. Later in initialization, after the system has been found to be capable 
of a multiprocessing configuration, the field will be reinitialized to its 
other use. 

8. It defines .the BOOT CPU's capabilities to be the capability PRIMARY 
plus the default ones in SCH$GLDEFAULT _CPU_CAP, currently zero. 

9. After initializing the SYSLOAxxx image and invoking its initialization 
routine, EXE$INIT invokes the CPU-specific routine SMP$SETUP _SMP, 
in module [SYSLOA]SMPSTART _xxx. The actions of SMP$SETUP _SMP 
are described in the next section. 
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10. EXE$INIT stores the time at which the system booted in CPU$Q_BOOT _ 
TIME. 

11. It invokes EXE$INLTIMWAIT, in module [SYSLOA]ERRSUBxxx, to cal­
ibrate the timed wait counts in the processor's per-CPU database. 

12. It clears the BOOT CPU ID bit in SMP$GL_OVERRIDE, leaving the 
override set. After this, to acquire a spinlock, the processor must first 
lower IPL. 

13. EXE$INIT tests a combination of the MULTIPROCESSING SYSGEN 
parameter and the available set as described by SMP$GL_CPUCONF 
(reinitialized within SMP$SETUP _SMP) to determine whether to enable 
multiprocessing. If any of the following combinations is true, EXE$INIT 
does not enable multiprocessing: 

-MULTIPROCESSING is 0 
-MULTIPROCESSING is either 1 or 3 and SMP$GL_CPUCONF indi-

cates no other CPUs present 

14. If other CPUs are present or if MULTIPROCESSING is 2, EXE$INIT sets 
SMP$V_ENABLED and SMP$V_START_CPU in SMP$GL_FLAGS. The 
latter is known as the go bit, for whose setting the secondary processors 
wait, as described in Section 34.8.4. 

Initialization by CPU-Dependent Routines 

SMP$SETUP _SMP runs on the BOOT CPU in kernel mode at IPL 31 with 
memory management enabled. For a CPU type incapable of multiprocessing, 
this routine consists merely of an RSB instruction. For a CPU type that can be 
configured as a multiprocessor, the CPU-specific routine SMP$SETUP _SMP, 
in module [SYSLOA]SMPSTART _xxx, initializes the SMP environment. The 
following description is based upon the routine in SMPSTART _8NN for a 
VAX 8800 system; the routines for other CPU types execute similar steps. 

1. SMP$SETUP _SMP first establishes device affinity to the primary for 
the console terminal by clearing its unit control block field UCB$L_ 
AFFINITY. 

2. It initializes the global EXE$GL_IPINT _IPL to the priority level of the in­
terprocessor interrupt on this CPU type. It invokes the routine SMP$AD­
JUST _IPL, in module SPINLOCKS, to modify the spinlock database ac­
cordingly. That routine establishes the IPL for the INVALIDATE spinlock 
as 1 less than that of the interprocessor interrupt and the IPL for the HW­
CLK spinlock as the IPL of the interval timer interrupt. (On processors 
whose interprocessor interrupt IPL is 22, SMP$SETUP _SMP adjusts the 
IPL of the VIRTCONS spinlock to 22 from its default value of 20.) It 
adjusts spinlocks' ranks as required to ensure that rank and IPL ordering 
result in the same sequence. Chapter 8 contains more information on 
the spinlock database. 
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3. SMP$SETUP _SMP then checks whether to establish an SMP environ­
ment. If the BOOT CPU is a uniprocessor or if there are no other CPUs 
available, the routine returns. 

4. To establish an SMP environment, the routine first initializes the global 
SMP$GL_CPUCONF, the CPU configuration bitmask, using information 
from the console about what CPUs are actually present. 

5. It initializes the interprocessor interrupt vector in the SCB with the 
address of the routine SMP$INTSR, in module [SYSLOA]SMPINT _xxx. 

6. It allocates a page of physical memory, called the boot page, for CPU 
initialization code and data accessed by a secondary processor prior to 
its enabling memory management. If there is space las there is, in VMS 
Version 5.2), the boot page also contains a physically based version of the 
CPU data vector. Otherwise, the vector is in a second physical page of 
memory. It updates the corresponding page frame number IPFN) database 
to describe the new state of the page or pages of memory and initializes 
SPTEs to map the memory while it is being initialized. 

SMP$SETUP _SMP copies the CPU initialization code into the boot 
page. It initializes the physical CPU data vector, stores its physical 
address in RPB$1-CPUDBVEC, and sets bit RPB$V _PERCPU_ VEC in 
RPB$B_FLAGS. SMP$SETUP _SMP also initializes several other pointers 
for secondary processors' booting and restart: 

-The field RPB$1-SMP _PC, to the physical address of the routine CPU_ 
START in the boot page code 

-In the boot page, at OFF_STRTVA, the system virtual address of the 
routine SMP$STRTVA in the boot page code 

-In the boot page, at OFF _RPBBASE, the physical address of the RPB 
-In the boot page, at OFF _RESTART, the physical address of the restart 

routine for secondary processors, EXE$RESTART _ATT 

Figure 34.10 shows the relations among the RPB, the physical CPU 
data vector, and the boot page. Section 34.8.4 describes how VMS uses 
these structures. 

7. Systemwide SMP initialization is complete. SMP$SETUP _SMP compares 
the available set mask and the SYSGEN parameter SMP _CPUS to deter­
mine which CPUs are to be booted. The default value of the parameter is 
-1, a mask with all bits set, indicating that all available CPUs should be 
booted. It can be modified to block the automatic booting of particular 
CPUs. An available CPU not booted automatically can be brought online 
later with the DCL command START/CPU. 

For each secondary processor in the available set whose bit in SMP _ 
CPUS is set, SMP$SETUP _SMP invokes SMP$SETUP _CPU to perform 
CPU-specific initialization. It then returns to its invoker. 

SMP$SETUP _CPU is invoked with a register argument containing the 
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CPU ID of the processor to be booted. Typically, it is invoked from SMP$SET­
UP _SMP but can also be invoked with the DCL START/CPU command. The 
following description is based on the routine in SMPSTART_8NN for a VAX 
8800 system; the routines for other CPU types perform much the same. 

1. SMP$SETUP _CPU acquires the MMG spinlock. (This step is not neces­
sary in the environment in which EXE$INIT runs, that of a uniprocessor, 
but is needed when SMP$SETUP _CPU is invoked in response to a later 
START/CPU command.) 

2. It tests whether a per-CPU database area already exists for this processor. 
If this routine is running as part of EXE$INIT, there is none, and control 
proceeds to step 3. 

If this routine is running later, it is possible that the CPU has been 
booted once and is being restarted or that there are multiple concurrent 
attempts to start it. If the processor has a per-CPU data area and is in 
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the INIT state, SMP$SETUP _CPU clears the processor's bug done bit in 
SMP$GLBUG_DONE and transfers control to step 10. 

Otherwise, the processor is being started by another process. The rou­
tine releases the MMG spinlock and returns to its invoker. 

3. It clears the processor's bug done bit in SMP$GLBUG_DONE. 
4. SMP$SETUP _CPU calculates the number of pages required for the per­

CPU data area, rounds that to the next power of 2, and invokes LDR$AL­
LOC_PT to allocate one fewer than twice that many SPTEs. This many 
SPTEs ensures that the per-CPU data area can be aligned at an address 
boundary somewhere within the allocation that is suitable for the FIND_ 
CPU_DATA calculation described in Section 34.3.1. 

If the allocation is unsuccessful, SMP$SETUP _CPU releases the MMG 
spinlock and returns the error status to its caller. 

Otherwise, it calculates the placement of the per-CPU data area and 
deallocates the unneeded SPTEs on either or both sides of it. 

5. It then allocates physical pages of memory for the interrupt stack, boot 
stack, and per-CPU database. If there is not enough physical memory 
available and the routine is running as part of EXE$INIT, it generates 
the fatal bugcheck INCONSTATE; when running in process context, it 
places the process into a free page wait. 

If the pages allocated are described in the PFN database (see Chap­
ter 14), it modifies the PFN database arrays to reflect the new state of 
the pages. 

6. SMP$SETUP _CPU stores the physical address of the per-CPU data area 
in the physical CPU data vector entry for the processor. Bit 0 is set in 
the address as a flag indicating that the area is not fully initialized. 

7. It initializes the SPTEs that map these pages as valid, owned by kernel 
mode, and writable only by kernel mode. The per-CPU database pages 
allow user mode read access, and the interrupt and boot stack pages 
allow executive mode read access. It initializes the guard pages' SPTEs 
as invalid no-access pages. 

It also initializes the SPTE reserved for this processor's use as a PO page 
table page. The SPTE double-maps the boot stack page; it will be used 
when the processor first enables memory management. 

8. As described in Section 34.8.2, SMP$SETUP _CPU clears the per-CPU 
database pages and initializes many of the database fields. It initializes 
the processor's state to INIT. Initialization of some per-CPU database 
fields is deferred until step 10. 

9. It stores the virtual address of the per-CPU data area in the CPU data 
vector. 

10. Beginning at local routine RESTART, SMP$SETUP _CPU stores the phys­
ical address of the SCB in CPU$LSCBB. 

11. It clears bit 0 in the physical CPU data vector entry for the processor to 
indicate that the per-CPU data area is initialized. 
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12. It invokes the local routine BOOT_TIMER, part of SMPSTART_xxx. 
BOOT_ TIMER sends a command to the console subsystem to boot a 
particular secondary CPU. 

For example, the primary processor of a VAX 8800 system writes the 
value F0516 to the console transmit data processor register. In response to 
that particular command, the console subsystem executes the command 
procedure SECBOO.COM, which starts the secondary executing at the 
instruction RPB$B_ WAIT, a JMP whose destination is the CPU_START 
routine in the boot page. 

The primary processor of a VAX 6000 series model 400 system invokes 
routine CON$BOOT _CPU, in module [SYSLOA]OPDRV9RR, to commu­
nicate with the console subsystem through the console communications 
area of the CPU to be booted. 

Booting another CPU is not instantaneous and may not be successful 
the first time. To permit a retry, BOOT_ TIMER initializes a timer queue 
entry (TQE) specific to that secondary CPU to describe a system sub­
routine with a due time of 30 seconds from the current time. Because 
the routine is running with a higher ranking spinlock than the TIMER 
spinlock and at too high an IPL, it first forks, using the TQE as a fork 
block and the TIMER spinlock as fork lock. The fork routine queues the 
TQE. (Chapter 11 describes TQEs and timer system subroutines.) 

When the TQE comes due, its system subroutine, the routine TIMER_ 
WAKE, local to SMPSTART_xxx, checks whether that secondary is still 
in the INIT state. If not, it exits. If it is, the routine invokes BOOT_ 
TIMER again. If, after three attempts, the secondary has failed to boot, 
its state is changed to TIMOUT and a failure message is written to the 
console terminal. 

13. SMP$SETUP _CPU releases the MMG spinlock and returns to its invoker. 

Secondary Bootstrap Code 

Each secondary processor begins executing in kernel mode at IPL 31 and with 
memory management disabled. The PC and stack pointer (SP) are established 
in a console-specific way. A secondary processor may begin executing in the 
boot page; at EXE$RESTART, the VMS halt-restart routine; or at the JMP 

instruction in the RPB. Its SP may initially be at the high end of the page 
containing the RPB or the boot stack page. Several examples follow: 

• On a VAX 6000 series system, SMP$SETUP _CPU sends commands, byte 
by byte, to the console subsystem of a secondary processor being booted: 
it establishes the SP as the high-address end of the boot stack page and the 
PC as the physical address of EXE$RESTART, described in Section 34.9. 
EXE$RESTART transfers control to CPU_START. 

• On a VAX 83x0 system, SMP$SETUP _CPU sends commands, byte by byte, 
to the secondary processor's logical console: it establishes the SP as the 
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high-address end of the boot stack page and the PC as the physical address 
of the beginning. of the boot page, the copy of the routine CPU_START . 

• On a VAX 88x0 or VAX 8800 system, SMP$SETUP _CPU's boot timer rou­
tine. issues a console command, in response to which the console executes 
the command procedure SECBOO.COM. The command procedure estab­
lishes the SP as the high-address end of the RPB page. It establishes the PC 
as the address of the RPB JMP instruction, whose destination is the copy of 
CPU_START in the boot page. 

A secondary of any CPU type eventually executes the boot page copy 
of local routine CPU_START, in module [SYSLOA]SMPSTART _xxx. The 
description that follows is based upon the routine in SMPSTART _8NN for 
a VAX 8800 system; the routines for other CPU types execute similar steps. 

1. CPU_START first sends a message to the console subsystem to enable 
restart, in case of an error halt. 

2. It determines its own CPU ID and, through RPB$L_CPUDBVEC, the 
physical address of the first page of its per-CPU database, as shown in 
Figure 34.10. 

3. If the address is 0 (a pathological condition), the CPU loops rather than 
halt and interfere with potential normal operations. 

4. Under normal circumstances, it switches to its own boot stack. 
5. If the CPU's state is RUN, this is a restart rather than a boot. With mem­

ory management still disabled, CPU_START dispatches through OFF_ 
RESTART to EXE$RESTART _ATT + 2, described in Section 34.9. 

6. If the CPU's state is not RUN, this is a boot. CPU_START loads its PR$_ 
SBR, PR$_SLR, and PR$_SCBB from the contents of the RPB, preparatory 
to enabling memory management. 

7. Enabling memory management, CPU_START goes through the same 
basic sequence as that of EXE$INIT, described in Chapter 31. 

a. It initializes its PO mapping registers to describe a mostly nonexistent 
PO page table with one real PTE, whose virtual address is the same 
as the physical address of the boot page. 

b. It invalidates its translation buffer (whose contents are indeterminate 
on some VAX CPU types while memory management is disabled) and 
then enables memory management. 

c. The updated PC, translated as a PO space address, is the same as 
its physical address. It is the address of a JMP instruction. The in­
struction's destination is the system virtual address corresponding to 
the next physical instruction. Executing this JMP instruction, CPU_ 
START moves the PC to system space, to the loaded SYSLOAxxx 
image. 

d. The next instruction is also a JMP. Its destination is the continuation 
of CPU_START elsewhere in the loaded SYSLOAxxx image. (Recall 
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that the physically accessed part of CPU_START must fit within the 
single boot page.) 

8. At local label STRVA, the routine switches to the processor's interrupt 
stack and invalidates the TB to remove the cached POPTEs. 

9. It joins the ov.erride set by setting its CPU bit in SMP$GL_OVERRIDE. 
10. It acquires and stores CPU-specific revision information in the per-CPU 

database. It checks that the CPU type is a known one, that its subtype 
is the same as that of the boot CPU, that the CPU and microcode are at 
or above the minimium required revision level, and at the same level as 
the primary. 

11. If any check fails, it writes an error message on the console terminal 
and changes the CPU state to BOOT_REJECTED. It raises IPL to 31 and 
loops. 

12. If the checks pass, it records the current system time in CPU$Q_BOOT _ 
TIME. 

13. It invokes EXE$1NLTIMWAIT and EXE$INIPROCREG, routines in 
[SYSLOA]ERRSUBxxx, to reinitialize the timed wait counts and to ini­
tialize processor registers, for example, the interval timer. 

14. It sets the CPU's state to BOOTED. 
15. CPU_START then loops, testing the "go" bit, SMP$V_START_CPU in 

SMP$GL_FLAGS, set by the primary at the end of EXE$INIT. 
16. When the bit is set, it writes a message to the console terminal indicating 

that it has joined the primary in multiprocessor operation. 
17. It lowers IPL to 29 to permit any pending powerfail interrupt to be 

granted. Such an interrupt might have been blocked for a sufficiently 
long time by the continuous IPL 31 execution that there is not enough 
time to save software state before the power fails altogether. Rather than 
risk the powerfail after joining the active state, when a failure to save 
state would prevent the system's powerfail recovery, this routine lowers 
IPL now. If a powerfail were to occur, when the primary restarts, its boot 
timer will time out, causing it to reboot this secondary. 

18. It raises IPL back to 31 and acquires the CPU mutex. 
19. It changes the processor's state to RUN and sets the bit corresponding 

to its ID in SMP$GL_ACTIVE_CPUS, joining the active set. 
20. It invokes SMP$INIT _SANITY, in module SMPROUT, to initialize the 

processor's sanity timer. Section 34.5.7 gives a description of the sanity 
timer mechanism. 

21. CPU_STARTreleases the CPU mutex. 
22. It acquires the SCHEDspinlock; calls SCH$ADD_CPU_CAP, in module 

SCHED, to initialize the processor's entry in the capabilities array; and 
releases the SCHED spinlock. 

23. Clearing its CPU ID bit in SMP$GL_OVERRIDE, it leaves the override 
set. 
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24. It sets its CPU ID bit in SCH$GL_IDLE_CPUS to indicate that the pro­
cessor needs a process to run. 

25. CPU_START constructs a PC/PSL pair and executes an REI instruc­
tion that transfers control to SCH$SCHED, in module SCHED, at IPL$_ 
SCHED. SCH$SCHED tries to schedule a process on this CPU. 

Operation of START/CPU and STOP/CPU Commands 

Several DCL commands support SMP: 

• START/CPU [/ALL] [cpu-id, ... ] 
• STOP/CPU [/ALL/OVERRIDE_CHECKS] [cpu-id, ... ] 
• SHOW CPU [/ALL] [cpu-id, ... ] 

For a complete description of the commands and their qualifiers, not all 
of which are listed here, see the VMS DCL Dictionary. All three commands 
are implemented by the single-module image [MP]SMPUTIL. This section 
describes the implementation of the first two commands. 

In response to a START/CPU command, the SMPUTIL image checks that 
each specified CPU is available and not already a member of the active set. 
It then checks each CPU's state to see if it can be started: the CPU must 
have never been started or it must be in either the TIMOUT or STOPPED 
state. 

In kernel mode, the image confirms that SMP is enabled, exiting if not. If 
a CPU has been started and thus has a per-CPU database, the image changes 
the CPU's state to INIT. It calls SCH$REQUIRE_CAPABILITY, in module 
SCHED, to ensure that the process in which it is running is executing 
on the primary processor. As a result, the process may be taken out of 
execution and then rescheduled on the primary. Running in kernel mode 
on the primary, it invokes SMP$SETUP _CPU, described in Section 34.8.3, 
to initialize each specified secondary CPU. It then calls SCH$RELEASE_ 
CAPABILITY to remove the requirement that the process execute on the 
primary and returns. 

In response to a STOP/CPU command, the SMPUTIL image checks that 
each specified CPU is available and a member of the active set. Running in 
kernel mode, it invokes SMP$SHUTDOWN_CPU, in module SMPROUT, 
once for each CPU. It passes a register argument based on the presence 
or absence of the /OVERRIDE_CHECKS qualifier, which specifies whether 
checks for loss of CPUs required for process affinity needs should be made. 

SMP$SHUTDOWN_CPU takes the following steps: 

1. It invokes the CPU-specific routine SMP$STOP _CPU, in module 
[SYSLOA]SMPSTART_xxx, passing it the address of the per-CPU data­
base of the target CPU. SMP$STOP _CPU checks the CPU's state. 

-If it is BOOT_REJECTED, the routine sets the state to STOPPED and 
returns. If the secondary did not boot, nothing further needs to be done. 
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-Otherwise, in the case of a VAX 6000 series CPU, the routine disables 
XMI bus interrupts directed at the CPU and then returns. In the case 
of other SMP CPU types, the routine simply returns. 

2. SMP$SHUTDOWN_CPU checks the CPU state: 

-If the CPU has just been put into the STOPPED state, it simply returns. 
-If the CPU is in the BOOT _REJECTED state, the routine changes its 

state to STOPPED. 
-If the CPU is in any other state than RUN, or if it is in RUN but 

not a member of the active set, SMP$SHUTDOWN_CPU returns to 
its invoker with the error status SS$_DEVOFFLINE; only a running 
active set member can be stopped. 

3. It calls SCH$REQUIRE_CAPABILITY, in module SCHED, to ensure that 
the process in which it is running is executing on the processor to be 
stopped. As a result, the process may be taken out of execution and then 
rescheduled on the target processor. 

4. Running on the target processor, SMP$SHUTDOWN_CPU raises IPL 
to IPL$_SCHED to block rescheduling. It then calls SCH$RELEASE_ ·. 
CAPABILITY to remove the explicit affinity requirement. 

5. It acquires the SCHED spinlock to serialize access to the data structures 
describing processor capabilities and process affinities. 

6. If affinity checks are required (that is, if they are not to be overridden), 
SMP$SHUTDOWN_CPU checks whether any process has explicit affin­
ity for this processor. If any does, it cannot continue the shutdown. 
Instead, it releases the SCHED spinlock and returns an error status to 
its invoker. 

7. If affinity checks are overridden or if no process has explicit affinity, 
SMP$SHUTDOWN_CPU calls SCH$REMOVE_CPU_CAP, in module 
SCHED, to remove the CPU from the capability database. 

8. It then invokes SCH$CUR_ TO_COM, in module RSE, to take the current 
process out of execution. Its context is saved such that when it is placed 
into execution on another processor, it will return a success status to the 
invoker of SMP$SHUTDOWN_COM. That is, two threads of execution 
diverge from this point: one continues in process context on another 
CPU, and one continues on the interrupt stack of the CPU to be shut 
down. 

9. Running on the interrupt stack of the CPU to be shut down, SMP$SHUT­
DOWN_COM releases the SCHED spinlock. 

10. It creates a fork process to execute on the primary processor and write 
to the console terminal a message about this CPU's being shut down. 

11. It raises IPL to 31 and sets its CPU ID bit in SMP$GL_OVERRIDE, joining 
the override set. 

12. It clears its CPU ID bit in SMP$GLACTIVE_CPUS, leaving the active 
set. 
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13. It acquires the CPU mutex, removes itself from the sanity timer chain, 
and releases the CPU mutex. 

14. It sets the CPU state to STOPPED. 
15. It leaves the override set and invokes the routine SMP$HALT _CPU, in 

module [SYSLOA]SMPSTART _xxx. 
16. SMP$HALT _CPU resets the stack pointer to the high end of the interrupt 

stack. 
17. It cannot execute a HALT instruction, since that would trigger halt­

restart processing and a system crash. Instead, it loops at IPL 31 with 
memory management still enabled, continually testing whether CPU$B_ 
STATE has changed to the INIT state as the result of the DCL command 
START/CPU. 

If the state changes to INIT, SMP$HALT _CPU transfers control to 
STRVA, described in Section 34.8.4, to effect a reboot. 

SMP$SHUTDOWN_CPU can also be invoked from interrupt service rou­
tines in modules [SYSLOA]MCHECK.9CC and MCHECK9RR in response to 
certain types of CPU errors, such as correctable main memory errors and bus 
or cache parity errors. When either the cumulative number of such errors or 
the error rate exceeds a given threshold and the most recent error occurred 
in process context, the service routine fabricates a PC/PSL pair and executes 
an REI instruction to return to process context. Running in process context 
at IPL 3 to block rescheduling, it invokes SMP$SHUTDOWN_CPU. 

34.9 POWERFAIL AND RECOVERY 
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When the power fails, each CPU is interrupted and executes EXE$POWER­
FAIL, the interrupt service routine in module POWERFAIL. As described in 
Chapter 33, each CPU saves general and processor registers in memory, some 
in the per-CPU database and some on the interrupt stack. (Battery backup 
only protects the contents of memory; it has no effect on the contents of 
volatile CPU registers and temporaries.) It then saves the SP in CPU$1-
SAVED_ISP and executes a BBSSI instruction to set its CPU ID bit in the 
local cell POWERDWN_L_DONE. The interlocked instruction has the side 
effect of forcing any pending writes to memory to complete. The CPU then 
loops, waiting for the power to cease. 

When the power is restored, the console subsystem restarts the primary 
processor, using methods specific to that console subsystem. The console 
initializes the processor to be at IPL 31, with memory management disabled, 
the interrupt stack bit in the PSL set, and the SP pointing to the high-address 
end of the RPB page. Its PC contains the physical address of EXE$RESTART, 
obtained from the field RPB$1-RESTART. The secondary processors remain 
halted. 

Chapter 33 describes the general powerfail recovery sequence. This section 
describes the steps that EXE$RESTART, in module POWERFAIL, takes that 
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are specific to restarting a primary processor; it also describes the steps by 
which a secondary is restarted. 

1. EXE$RESTART tests RPB$LCPUDBVEC. If it contains a zero, the pro­
cessor is being restarted prior to the creation of its per-CPU database, 
and EXE$RESTART executes a HALT instruction. 

2. Otherwise, it determines the CPU type and ID of the processor and gets 
the address of its per-CPU database. 

If none has been created (a pathological case), EXE$RESTART loops 
endlessly rather than halt and confuse the restart sequence on other 
processors presumed to exist. 

3. On a VAX 6000 series processor, EXE$RESTART tests that this CPU was 
the primary prior to the powerfail. If not, EXE$RESTART sends a message 
to the console to. force a reboot and issues a node reset to trigger a halt, 
since VMS Version 5.2 does not support dynamic switching of primaries. 

4. It switches to the boot stack and branches to EXE$RESTART_ATT, also 
in POWERFAIL. 

5. EXE$RESTART_ATT enables memory management in much the same .. 
way as done by EXE$INIT, described in Section 34.8.4. -

6. In the case of a halt-restart resulting from a powerfail, it compare~· 
SMP$GL_ACTIVE_CPUS to the mask in POWERDWN_L_DONE to see 
if all members saved their state. If not, it generates the fatal bugcheck. 
STATENTSVD. 

7. It tests CPU$LSAVED_ISP as a further check that it has saved its own 
state and, if zero, generates the fatal bugcheck STATENTSVD. 

8. After restoring various registers, EXE$RESTART _ATT sets the bit corre-c; 
sponding to its CPU ID in POWERUP _L_DONE. 

9. It performs the standard powerfail recovery sequence, calculating the sys­
tem time, recalibrating timer queue entry expiration times, and logging 
powerfail recovery. 

10. It clears SMP$V _START _CPU in SMP$GL_FLAGS to block any sec­
ondary processors from execution until all of them are restarted. 

11. It invokes EXE$INIT _DEVICE, in module POWERFAIL, which initializes 
devices, among them the console. 

CON$INITLINE, in [SYSLOA]OPDRVxxx, the console unit initializa­
tion routine, scans the CPU data vector for secondary processors that 
were in the RUN state when the power failed. In a console-specific way, 
it sends a message· to the console subsystem to initialize and then re­
start each of them. The primary processor of a VAX 8800, for example, 
writes the message F0716 to the console data transmit processor register. 
In response to that particular command, the console subsystem executes 
a command procedure directed at the secondary. 

12. EXE$RESTART_ATT then executes a BUSYWAIT loop, waiting up to 30 
seconds for the masks in POWERUP _L_DONE and SMP$GL_ACTIVE_ 
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CPUS to be equal. If the masks still differ, it invokes SMP$TIMEOUT 
to determine whether to generate a fatal bugcheck. 

13. After all the secondary processors have restarted, EXE$RESTART _ATT 
clears the mask in POWERDWN_L_DONE and sets bit SMP$V _START_ 
CPU, for whose setting the secondary processors have been waiting. 

14. It completes the last steps of powerfail recovery and executes an REI 

instruction to resume system operations. 

To restart a secondary, EXE$RESTART takes the following steps: 

1. As previously described, it locates the processor's physical per-CPU data­
base and switches to the boot stack. 

2. At label EXE$RESTART _ATT, it tests whether the processor was in the 
RUN state and, if not, dispatches through RPB$1-SMP _PC to boot page 
code, described in Section 34.8.4. (This is the path by which secondary 
processors of some CPU types boot.) 

3. It enables memory management and tests CPU$1-SAVED_ISP to see if 
this processor has saved its state, generating the fatal bugcheck 
STATENTSVD if not. 

4. Otherwise, it restores various processor registers and sets its bit in 
POWERUP _L_DONE. 

5. EXE$RESTART _ATT loops, waiting for the primary to set bit SMP$V _ 
START_CPU. 

6. It completes the last steps of powerfail recovery and executes an REI 

instruction to resume system operations. 

FATAL BUGCHECK PROCESSING 

When one member of an SMP system incurs a fatal bugcheck, all members 
crash; the VMS executive takes the conservative approach that an inconsis­
tency severe enough that operations on one CPU should cease is likely to 
be systemwide. All members of the active set participate in fatal bugcheck 
processing. 

The CRASH CPU, the CPU that first incurs a fatal bugcheck, drives the 
crash, informing the other active CPUs that a bugcheck sequence has been 
initiated. In response, the other active CPUs crash with the fatal bugcheck 
CPUEXIT. The primary CPU performs most of the rest of fatal bugcheck 
processing. 

Chapter 32 describes in detail the uniprocessor bugcheck sequence; this 
section describes the steps in fatal bugcheck processing specific to an SMP 
system. 

Figure 34.11 shows the sequence of some of the steps in fatal bugcheck 
processing as they might occur concurrently on the CRASH CPU (which, as 
pictured, is not the primary processor), the primary processor, and the other 
active set members. Note that steps shown in different columns but on the 
same line do not necessarily execute at the same time on all CPUs. The 
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Tme Primary CPU CRASH CPU All Other Active Set Members 
i-----i-----....--

SMP$1NTSR 
BUG_CHECK CPUEXIT, 

FATAL ~ 

EXE$BUG_CHECK 
1 Save general registers 
2 Save bugcheck code 
4 Test CRASH_ CPU bit 
8 Save processor registers 
9 Set bug done bit 

11 

13, 14 Wa~ for all active CPUs 
to set bug done bit 

16 

Figure 34.11 

Mimic context of 
CRASH CPU 

Continue fatal 
bugcheck 
processing 

EXE$BUG_CHECK 
1 Save general registers 
2 Save bugcheck code 
4 Set CRASH_CPU bit 
6 Request interprocessor 

interrupt 
7 Record CRASH CPU ID 
8 Save processor registers 
9 Set bug done bit 

11 

Fatal Bugcheck Processing on an SMP System 

SMP$1NTSR 
BUG CHECK CPUEXIT, 

FATAL ~ 

EXE$BUG_CHECK 
1 ·Save general registers 
2 Save bugcheck code 
4 Test CRASH_ CPU bit 
8 Save processor registers 
9 Set bug done bit 

11 

numbers in the figure correspond to the following steps, not all of which are 
represented in the figure. 

EXE$BUG_CHECK, in module BUGCHECKBT, initially runs on the 
CRASH CPU and subsequently on other SMP members. It takes the fol­
lowing steps: 

(!)As described in Chapter 32, it saves the general registers on the current 
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stack, either the interrupt stack or the kernel stack of the current process. 
It then determines whether the bugcheck is fatal. For a fatal bugcheck, it 
performs several sanity checks to confirm that fatal bugcheck processing 
is possible. 

G)It raises IPL to 31 and stores the bugcheck code in the per-CPU database 
field CPU$L_BUGCODE. 

3. It tests whether it is a member of the active set. If not (a pathological 
and unlikely case), it proceeds to step 8 rather than taking any steps that 
might interfere with SMP operations. 

@If it is a member of the active set, it then tests and sets the bit SMP$V _ 
CRASH_CPU in SMP$G1-FLAGS. Only the first CPU to crash actually 
sets this bit and thus becomes the CRASH CPU. 

If the bit is already set, EXE$BUG_CHECK continues with step 8. Use 
of the bit prevents confusion during concurrent independent crashes. 

5. It acquires the CPU mutex to prevent any other processors from joining 
the active set. 

@It requests an interprocessor interrupt of each member of the active set, 
specifying bugcheck as the work request type (see Section 34.5.2). 

G)It records its own ID in SMP$GL_BUGCHKCP as the CRASH CPU. 
G)It invokes EXE$SAVE_CONTEXT, in module [SYSLOA]ERRSUBxxx, to 

save volatile processor registers on the current stack. After saving the con­
tents of CPU-specific processor registers, the number of registers saved, 
the interval timer control register, the five stack pointers, and the AST 
level register, it records the current stack pointer in CPU$1-SAVED_ 
ISP. EXE$SAVE_CONTEXT stores the contents of PR$_PCBB, PR$_SCBB, 
PR$_SISR, and the per-process mapping registers in the per-CPU database, 
and returns. 

G)EXE$BUG_CHECK then sets its ID bit in SMP$GL_BUG_DONE to indi­
cate that it has saved its context. 

10. If it owns the XDELTA lock (if its ID is in XDT$GW _OWNER_ID), it 
breaks the lock, releasing other active set members from the benign state 
so that each can respond to the interprocessor interrupt and save its own 
context. Section 34.5.4 describes XDELTA processing and the benign state. 

@EXE$BUG_CHECK compares its CPU ID to that in SMP$GL_PRIMID to 
determine whether it is executing on the primary. If it is not, it loads 
the address of its per-CPU boot stack into the SP and loops, awaiting 
a later reboot. All members of the active set except the primary should 
eventually execute this loop. A crashing CPU that is not a member of the 
active set also executes this loop. 

12. This and later steps execute only on the primary processor because it is 
the only member guaranteed access to the console terminal. 

EXE$BUG_CHECK sets its CPU ID in SMP$GL_OVERRIDE, adding 
itself to the override set. As a member of the override set, its spinlock 
acquisitions and releases are not subject to the normal IPL checks. 
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@EXE$BUG_CHECK waits, up to a maximum of 30 seconds, for all active 
members to save their context. Under normal circumstances, much of 
this wait does not occur. However, if one member is restarting following 
a halt, it could take the member a significant time to complete that and 
respond to the interprocessor interrupt requesting bugcheck processing. 
If the time passes before all are done, EXE$BUG_CHECK proceeds. 

It continues with steps common to fatal bugcheck processing on a 
uniprocessor system, reading the fatal bugcheck overlay into memory. 
The steps that follow are from the overlay, which is module BUGCHECK­
LD. For simplicity, this chapter uses the name EXE$BUG_CHECK to refer 
to that code. 

@Still running on the primary, EXE$BUG_CHECK tests if the CRASH CPU 
has saved its register context, waiting for up to 1 second beyond the earlier 
wait. 

15. It uses the bugcheck code in the CRASH CPU's per-CPU database to 
select the bugcheck message text. This field is initialized to BUG$_ 
CPUCEASED, in case a problem on the CRASH CPU prevents it from 
recording the real bugcheck code. 

@The primary checks whether it is the CRASH CPU. If not, it checks 
whether the CRASH CPU completed saving its context. If it has, the 
primary tnimics the CRASH CPU's context, enabling the use of the stan" 
dard fatal bugcheck routine. It adopts the CRASH CPU's processor regis~ 
ters, copying them from its per-CPU database and stack. These registers 
include PR$_SCBB, PR$_PCBB, PR$_SISR, the per-process mapping reg­
isters, the stack pointers, PR$_ASTLVL, and the interval timer control 
register. (The translation buffer invalidation necessary for the primary tO 

reference possible per-process addresses on the CRASH CPU is done in an 
earlier step by a routine invoked to make system space writable so that 
the bugcheck overlay can be loaded.) 

This switch simplifies writing crash information to the console ter­
minal, which may be accessible only from the primary processor. It also 
simplifies the sequence in which registers are written to the dump header 
block. 

Running on the primary, EXE$BUG_CHECK continues with steps common 
to fatal bugcheck processing on a uniprocessor. 
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35 Logical Names 

Call things by their right names .... Glass of brandy and 
water! That is the current but not the appropriate name: ask 
for a glass of liquid fire and distilled damnation. 

Robert Hall, Olinthus Gregory, Brief Memoir of the Life of Hall 

A logical name definition is a mapping of a string to zero or more replace­
ment strings. A replacement string is called an equivalence name. A logical 
name can represent a node name, file specification, device name, application­
specific information, or another logical name. Replacing an occurrence of the 
logical name with an equivalence string is called logical name translation. 

VMS provides automatic logical name translation for a name used in a file 
specification or device name. A logical name that refers to a device or file 
enables transparent device independence and I/O redirection. For example, a 
program or command procedure can refer to a disk volume by logical name 
rather than by the name of the specific drive on which the disk volume is 
mounted. 

A user can define a logical name as a shorthand way to refer to a file or 
directory that is referenced frequently. 

This chapter first summarizes the characteristics of logical names. It then 
describes the data structures that implement logical names and internal 
operation of the system services related to logical names: 

• Create Logical Name ($CRELNM) 
• Create Logical Name Table ($CRELNT) 
•Delete Logical Name ($DELLNM) 
•Translate Logical Name ($TRNLNM) 

Logical name concepts are described in the VMS DCL Concepts Manual. 
The Introduction to VMS System Services manual and VMS System Services 
Reference Manual document the use of the logical name system services. 

35.1 GOALS OF LOGICAL NAME SUPPORT 

The goals of VMS support for logical names are as follows: 

• Independent name spaces for logical names. A logical name of a given 
access mode must be unique in any given table. VMS allows for creation of 
an arbitrarily large number of logical name tables, reducing the likelihood 
of logical name collisions. 
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• User control over the order in which logical name tables are searched. Each 
request to translate a logical name can determine which tables are to be 
searched by specifying a logical name whose multiple translations are the 
tables to be searched. 

• Provision of a basis for Record Management Services (RMS) search lists. A 
multivalued logical name enables an ordered list of equivalence names to 
be associated with a single logical name. An RMS search list is a multi­
valued logical name, supplied as part or all of a file specification. Through 
its multiple equivalence names, a logical name can refer to multiple file 
specifications. 

• Control over sharing of logical names. VMS provides a number of possi­
bilities, ranging from no sharing to sharing based on access control lists 
(ACLs). Degree of shareability is specified when a shareable table is cre­
ated. A process can control its sharing by partitioning its logical names 
into different tables. 

• Upward compatibility for VMS Version 3 and earlier logical names and 
their system services. VMS provides the superseded system services as 
jacket routines for calls to the newer services. It automatically defines 
system, group, and process logical name tables whose properties are similar 
to those of older tables. 

35.2 CHARACTERISTICS OF LOGICAL NAMES 
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A logical name is uniquely identified by the combination of the logical name 
string, the logical name table that contains its definition, and its access 
mode. That is, two otherwise identical name strings that have different 
access modes or that are defined in different logical name tables are different 
logical names. 

A logical name string is from 1 to 255 bytes long. 
The scope of a logical name varies. A logical name definition can be any 

of the following: 

• Private to one process 
• Handed down from a process to its spawned subprocesses 
• Shared among a detached process and all its subprocesses (job tree) 
• Shared among all the processes with the same user identification code 

(UIC) group code 
• Shared among all the processes on the system 
• Shared among a subset of processes on the system as specified by an ACL 

A logical name definition cannot be shared among processes on different 
nodes of a V AXcluster system. 

The scope of a logical name is determined primarily by the logical name 
table in which it is defined. By default, a name in a shareable table is share­
able. A logical name in a process-private table can only be used by the process 
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and, by default, handed down to any subprocess it spawns through the Dig­
ital command language (DCLj. When a subprocess is spawned, each logical 
name created without the CONFINE attribute is copied to the spawned sub­
process. That is, the logical name definitions current at the time of the spawn 
are copied; any subsequent changes to the definitions are not shared. 

The access mode of a logical name can be specified when it is defined. If 
not specified, access mode defaults to that of the requestor of the $CRELNM 
system service. If the ACMODE argument is specified and if the process has 
the privilege SYSNAM, the logical name is created with the specified access 
mode. If a name of the same mode already exists, it is superseded. Otherwise, 
if the process lacks the privilege, the argument is maximized with (made no 
more privileged than) the mode of the system service requestor. 

A logical name table can contain multiple definitions of the same logical 
name with different access modes. These are called aliases. When a request to 
translate such a logical name specifies the ACMODE argument, any definition 
made at a less privileged mode is ignored. 

The access mode of a logical name specifies an integrity level. Because 
kernel and executive access mode logical names can only be created by the 
system manager or someone of equivalent privilege, they are used where 
the security of the system is at stake. For example, during certain system 
operations, such as the activation of an image installed with privilege, only 
executive and kernel mode logical names are used. 

A process-private user mode logical name is deleted at the next image 
rundown. Shareable user mode names, however, survive image exit and 
process deletion. 

A logical name can be created with several attributes: 

• The CONFINE attribute indicates that DCL should not propagate the 
logical name to a spawned subprocess. Logical names of files created with 
the DCL OPEN command have the CONFINE attribute . 

• The NO_ALIAS attribute indicates that the existence of this logical name 
precludes another definition for that name in the same logical name table 
and with an outer access mode. When a NO_ALIAS logical name is created, 
any definition for the name made in an outer mode is deleted, as well as 
any definition in the same mode . 

• The CRELOG attribute indicates that the logical name was defined through 
the superseded $CRELOG system service. RMS uses this attribute to en­
sure translation compatible with VMS Version 3 and earlier versions. Use 
of this attribute is reserved to VMS. Section 35.9 briefly describes support 
for the superseded logical name system services. 

Two other attributes, TABLE and NODELETE, are described in later sections. 
A logical name can have more than one equivalence name. In that case, it 

is called a multivalued logical name, and its equivalence names are treated 
as an ordered list. 
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A logical name table is a container for logical names. Each table defines an 
independent name space. The characteristics of a logical name table are the 
following: 

• Scope-Whether it is shareable or process-private 
• Access mode 
• Name 
• Parent logical name table 
• Access control in the case of a shareable logical name table 
• Quota to limit the amount of pool occupied by its logical names 

During system initialization, several shareable logical name tables are cre­
ated. During the creation of each process, several other tables, shareable and 
process-private, are created. Section 35.3.1 documents these default tables. 
The $CRELNT system service enables a process to create additional tables 
at will. Process-private name tables are created in Pl space. Shareable tables 
are created in system space. 

The access mode of a logical name table can be specified when it is created. 
If not specified, the mode defaults to that of the requestor of the $CRELNT 
system service. If the ACMODE argument is specified and if the process has 
the privilege SYSNAM, the logical name table is created with the specified 
access mode. Otherwise,· the argument is maximized with the mode of the 
system service requestor. 

A logical name table can contain logical names of its own and less priv­
ileged access modes. A logical name table can be a parent table to another 
table of the same or a less privileged access mode. 

A logical name table is identified by its name, which is itself a logical 
name. The name of a logical name table has the logical name attribute 
TABLE. In fact, the name table data structure is a special form of equivalence 
name. As a logical name, each logical name table name must be contained 
within a logical name table. Two special logical name tables called directories 
exist as containers for logical name table names. A logical name that is to 
translate directly or iteratively to the name of a logical name table must be 
contained in a directory table. That is, there are only two name spaces for 
the names of logical name tables. 

The system directory, LNM$SYSTEM_DIRECTORY, contains the names 
of all shareable tables. The process directory, LNM$PROCESS_DIRECTORY, 
contains the names of all process-private tables for that process. Each direc­
tory contains its own table name. Each directory table name has the logical 
name attributes TABLE, NO_ALIAS, and NODELETE. The NODELETE at­
tribute prevents the deletion of a directory table name. 

The address of either directory table can be determined, indirectly, through 
the two-longword array at LNM$ALDIRTBL. Its first longword points to a 
longword containing the address of the system directory. Its second longword 
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points to CTL$GL_LNMDIRECT, which contains the address of the process 
directory. Each process has its own process directory. 

Any logical name in a directory table, including a logical name table name, 
is restricted to a length no longer than 31 characters. It can only consist of 
the characters $, _, the digits, and uppercase alphabet. The bytes of a logical 
name string in any other table can have any value. 

All logical name tables are in one of two hierarchies. The system directory 
is the ancestor of the tables in one hierarchy. For each process, its process 
directory is the ancestor of the other. That is, each logical name table, except 
for the directory tables, has a parent logical name table. A directory anchors 
the quota and access hierarchy for its name space. The hierarchical structure 
enables finer control over quota allocation and access to logical name tables. 
When a logical name table is deleted, all its descendant tables are deleted. 

The parent of a logical name table is not necessarily a directory table. That 
is, this hierarchical structure is distinct from the location of logical name 
table names. Consider the logical name table A, created by the following 
DCL command: 

$ CREATE/NAME_TABLE/PARENT=LNM$PROCESS A 

The parent table of logical name table A is the process-private logical 
name table LNM$PROCESS. A's table name, however, like all table names, 
is contained in a directory; in this case, it is contained in LNM$PROCESS_ 
DIRECTORY, the same directory that contains the name of its parent table. 

There is a quota on how much memory the names in a logical name 
table may occupy. The quota is managed in a hierarchical fashion; a newly 
created name table inherits quota through its parent. At the top of the 
inheritance tree are the two logical name directories. Each of them has 
"infinite" memory quota, the largest possible positive longword number. 

A table that manages or holds its own quota is called a quota holder table. 
The two directories are the quota holder tables at the top of the hierarchy. 

When a new name table is created, its memory quota can be specified as 
limited or pooled. A nonzero $CRELNT QUOTA value indicates that the quota 
is limited; a zero value indicates that it is pooled. 

When a name table is created with limited quota, it subtracts its quota 
from the quota of its parent or of the most recent ancestor that is a quota 
holder table. It then becomes a quota holder table itself. 

If the quota is specified as pooled, the name table does not hold its own 
quota but shares quota with its parent. If its parent was created with pooled 
quota, the new table and its parent share quota with the grandparent table. 
Sharing continues upward in the hierarchy to the most recent ancestor to 
hold its own quota. 

A shareable logical name table has UIC-based protection. Each class of 
user (system, owner, group, and world) can be granted four types of access: 
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• Read (RJ access allows the user to read the contents of the logical name 
table, that is, to translate logical names . 

• Write (W) access allows the user to modify the contents of the table, 
for example, delete or alter logical name translations. Write access to a 
directory table enables the user to delete the logical name table names in 
the directory . 

• Enable (E) access allows the user to withdraw quota from the table when 
creating a descendant logical name table . 

• Delete (D) access allows the user to delete the table itself, including all its 
logical names and descendant tables and their names. A logical name table 
is deleted when it or its parent table is deleted. 

The default protection mask for a table created through the $CRELNT 
system service allows RWED access to system and owner users and no access 
to group or world users. 

A logical name table can also be given ACL-based protection. An ACL for 
a logical name table enables fine-tuning of UIC-based protection. The DCL 
command SET ACL/OBJECT =LOGICALNAME_ TABLE creates or modifies 
access control entries. The VMS DCL Concepts Manual provides further 
information. 

To provide compatibility with earlier versions of VMS, a suitably privileged 
process can read and write certain logical name tables even if UIC- and ACL­
based mechanisms would otherwise prohibit access. That is, a process with 
GRPNAM privilege can access its group table, LNM$GROUP _gggggg, to 
translate, create, or delete logical names, regardless of UIC- and ACL-based 
protection. A process with SYSNAM can similarly access the system table, 
LNM$SYSTEM_ TABLE. 

Default Logical Name Tables 

Table 35.1 lists the default tables created by VMS. All names of logical name 
tables must be in one of the two directories. A directory table can contain 
other types of logical names as well. 

The system directory and table are created during system initialization 
by initialization code running in the swapper process. The process directory 
and table are created during process creation by code in EXE$PROCSTRT, 
in module PROCSTRT. When creating a top-level process, EXE$PROCSTRT 
invokes EXE$CRE_JGTABLE, also in module PROCSTRT, to create the job 
table and, if it does not already exist, the group table. LOGINOUT, the first 
image to run in many processes, also invokes EXE$CRE_JGTABLE so that 
any changes in the process's UIC are reflected in its tables. 

A number of predefined logical names for logical name tables are used 
in particular VMS contexts for translating and creating logical names. By 
convention, these names have the prefix LNM$. For example, RMS and other 
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Table 35.1 Default Logical Name Tables 

Table Name Directory Use 

LNM$PROCESS_ Process Contains definitions of process-private 
DIRECTORY logical name table names and names that 

translate iteratively to these table names 
LNM$PROCESS_ Process Contains process-private logical names, 

TABLE such as SYS$DISK and SYS$1NPUT 
LNM$SYSTEM_ System Contains definitions of shareable logical 

DIRECTORY name table names and names that 
translate iteratively to these table names 

LNM$SYSTEM_ System Contains names shared by all processes in 
TABLE the system, for example, SYS$LIBRARY 

and SYS$SYSTEM 
LNM$JOB_ System Contains names shared by all processes in 

xxxxxxxxi the job tree, for example, SYS$LOGIN 
and SYS$SCRATCH 

LNM$GROUP_ System Contains names shared by all processes 
gggggg 2 with that UIC group 

1 The string xxxxxxxx represents an eight-digit hexadecimal number that is the address 
of the job information block. 

2 The string gggggg represents a six-digit octal number containing the process's UIC 
group number. 

VMS components specify the table LNM$FILE_DEV for file specification and 
device name translations. Table 35.2 lists some of the default logical names 
that translate to table names. 

Some of these table names are normally referenced indirectly, through pre­
defined logical names. Typically, for example, LNM$JOB is specified as a log­
ical name for the table, rather than the actual name, LNM$JOB_xxxxxxxx. 
The indirection enables a generic and transparent reference to a process's 
job table rather than to the very specific and transient name LNM$JOB_ 
xxxxxxxx. In addition, indirections make it possible for users to redefine 
some of the predefined names to modify the search order or the tables to 
be used. LNM$PROCESS, for example, can be redefined as a multivalued 
logical name to subsume other tables into the process table. 

Some table names exist to allow for user redefinition. For example, the 
table name LNM$DCL_LOGICAL is used for the SHOW LOGICAL and 
SHOW TRANSLATION DCL commands and for the logical name lexical 
functions. By default, as defined in LNM$SYSTEM_DIRECTORY, the name 
LNM$DCL_LOGICAL translates to LNM$FILE_DEV. However, a user inter­
ested in displaying names and translations in the directory tables themselves 
might define a new translation for LNM$DCL_LOGICAL, as shown in the 
following example: 
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$ SHOW LOGICAL TRNLOG$_PROCESS_GROUP 
XSHOW-S-NOTRAN, no translation for logical name TRNLOG$_PROCESS_GROUP 
$ 
$ Since LNM$DCL_LOGICAL is to be a name that translates to a 
$ ! table name, it must be defined in a directory. 
$ ! 
$ DEFINE/SUPERVISOR/TABLE=LNM$PROCESS_DIRECTORY LNM$DCL_LOGICAL -
_$ LNM$FILE_DEV,LNM$PROCESS_DIRECTORY,LNM$SYSTEM_DIRECTORY 
$ ! 
$ SHOW LOGICAL TRNLOG$_PROCESS_GROUP 

"TRNLOG$_PROCESS_GROUP" = "LOG$PROCESS" (LNM$SYSTEM_DIRECTORY) 
= "LOG$GROUP" 

Table 35.2 Default Logical Names That Translate to Logical Name 
Table Names 

Logical Name 
LNM$PROCESS 
LNM$JOB 
LNM$GROUP 
LNM$SYSTEM 
LNM$DCL_LOGICAL 
LNM$FILE_DEV (supervisor mode) 

LNM$FILE_DEV (executive mode) 
LNM$PERMANENT _MAILBOX 
LNM$TEMPORARY _MAILBOX 
LOG$PROCESS 3 

LOG$GROUP 3 

LOG$SYSTEM 3 

TRNLOG$_GROUP _SYSTEM 3 

TRNLOG$_PROCESS_GROUP 3 

TRNLOG$_PROCESS_SYSTEM 3 

TRNLOG$_PROCESS_GROUP _SYSTEM 3 

Equivalence Name 
LNM$PROCESS_ TABLE 
LNM$JOB..xxxxxxxx I 
LNM$GROUP _gggggg 2 

LNM$SYSTEM_ TABLE 
LNM$FILE_DEV 
LNM$PROCESS, 
LNM$JOB, 
LNM$GROUP, 
LNM$SYSTEM 
LNM$SYSTEM 
LNM$SYSTEM 
LNM$JOB 
LNM$PROCESS, 
LNM$JOB 
LNM$GROUP 
LNM$SYSTEM 
LOG$GROUP, 
LOG$SYSTEM 
LOG$PROCESS, 
LOG$GROUP 
LOG$PROCESS, 
LOG$SYSTEM 
LOG$PROCESS, 
LOG$GROUP, 
LOG$SYSTEM 

1 The string xxxxxxxx represents an eight-digit hexadecimal number that 
is the address of the job information block. 

2 The string gggggg represents a six-digit octal number containing the 
process's UIC group number. 

3 This table provides upward compatibility for tables used by the superseded 
logical name services. 
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1 "LOG$PROCESS" = "LNM$PROCESS" (LNM$SYSTEM_DIRECTORY) 
= "LNM$JOB" 

2 "LNM$PROCESS" = "LNM$PROCESS_TABLE" (LNM$PROCESS_DIRECTORY) 
2 "LNM$JOB" = "LNM$JOB_80471670" (LNM$PROCESS_DIRECTORY) 
1 "LOG$GROUP" = "LNM$GROUP" (LNM$SYSTEM_DIRECTORY) 
2 "LNM$GROUP" = "LNM$GROUP_000100" (LNM$PROCESS_DIRECTORY) 

Because TRNLOG$_PROCESS_GROUP is defined in LNM$SYSTEM_ 
DIRECTORY, the first SHOW LOGICAL command fails to find it. After 
the new definition of LNM$DCL_LOGICAL to include both directory ta­
bles, SHOW LOGICAL can translate TRNLOG$_PROCESS_GROUP. It can 
translate iteratively all its equivalence names as well, because they are de­
fined in one of the two directory tables. For a description of the SHOW 
LOGICAL and DEFINE commands, see the VMS DCL Dictionary. 

35.4 CHARACTERISTICS OF LOGICAL NAME TRANSLATION 

A logical name with only one equivalence name has only one translation. A 
multivalued logical name has multiple equivalence names, up to a maximum 
of 128. An equivalence name is from 1 to 255 bytes long. Each byte can have 
any value. Each equivalence name is uniquely identified by a number called 
an index number. 

An equivalence name can be defined with several attributes. Each equiv­
alence name of a multivalued logical name can have different attributes. 

• The CONCEALED attribute means that the equivalence name should not 
be displayed in system output. Typically, this is used to foster device 
independence by displaying logical names rather than the names of spe­
cific devices. It is also used in the creation of logical names for rooted 
directories . 

• The TERMINAL attribute means that the equivalence name should not 
itself be treated as a logical name and translated further. 

When a logical name is translated, the translation attribute CASE_BLIND 
can be specified. This attribute means that the search for that logical name is 
independent of the case (uppercase or lowercase) in which the logical name 
was originally defined and the case in which the logical name was specified 
to the $TRNLNM system service. 

When access mode is specified for a logical name translation, it applies 
to both the translation of the name and of the name tables involved. For 
example, if executive access mode translation is requested, then all outer 
mode logical names and table names are ignored. 

Logical name translation has two dimensions: 

• Breadth. A logical name can have multiple equivalence strings . 
• Depth. One logical name can translate to another logical name, which, in 

turn, translates to another logical name, and so on. 
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These dimensions apply to the name of a logical name table as well as 
to a logical name. To translate a logical name, VMS must also translate the 
name of the tables in which to look for the logical name. The translation 
for a logical name table name, done implicitly as part of translating a logical 
name, is different from that for a logical name. 

Dimensions of Logical Name Translation 

Logical name translation, as performed by the logical name system services, 
deals with the breadth of a name, but not its depth. That is, if requested by 
the user, the $TRNLNM system service returns multiple equivalence strings 
when it translates a logical name. One of the $TRNLNM arguments is an 
item list through which multiple equivalence names can be returned. For 
the user to receive multiple equivalence names, the item list must include 
entries and buffer addresses for them. 

However, when the $TRNLNM system service translates a logical name, 
it does not translate iteratively. That is, it does not check whether an equiv­
alence name is itself a logical name. Further translation must be requested 
explicitly; the equivalence name returned must be supplied as the logical 
name argument in another $TRNLNM request. Certain system services, 
such as Assign Channel ($ASSIGN), make iterative $TRNLNM requests to 
translate a logical name as deeply as possible, up to a maximum iteration 
count, typically of nine translations. 

RMS has a more complex form of iteration. It parses a file specification 
and requests the $TRNLNM system service iteratively to translate certain 
components of it. For more details, see the Guide to VMS File Applications. 

Dimensions of Logical Name Table Name Translation 

Each of the logical name system services must translate a logical name table 
name to perform its main function. A table name can be one of the following: 

• A logical name whose single translation is the table data structure itself 
rather than an equivalence name (see Section 35.5.2) 

• A name whose equivalence name is itself a logical name that translates to 
the table data structure after one or more iterations 

• A multivalued logical name, each of whose equivalence names is a logical 
name that translates iteratively to a table data structure 

Unlike logical name translation, table name translation must deal with 
both the depth and the breadth of the name. To locate a particular logical 
name, for example, a table name and all its equivalence names might have 
to be translated iteratively. In the $TRNLNM system service, and some­
times the $DELLNM system service as well, translation of a table name 
continues until one is found that contains the target logical name. In the 
system services $CRELNT, $CRELNM, and under some circumstances (see 
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Section 35.8.5) $DELLNM, translation of a table name only goes as far as 
finding the first table. 

The table name translation sequence is depth-first. That is, the first equiv­
alence name is translated until it translates to a table data structure or can 
be translated no further. If the table name found does not contain the logical 
name of interest, the next equivalence name is translated, and so on. This is 
a simplified description of the algorithm, which is described in more detail 
in Section 35. 7. 

35.5 LOGICAL NAME DATA STRUCTURES 

35.5.1 

The logical name database consists of the following kinds of structures: 

• Logical name blocks (LNMBs), describing the logical names that are defined 
• Logical name translation blocks (LNMXs), which contain equivalence 

names 
• Logical name table headers (LNMTHs), which describe logical name tables 
• Hash tables that locate the LNMBs (LNMHSHs) 
• Table name cache blocks (LNMCs) 

The macro $LNMSTRDEF defines symbolic offsets for all these data.struc­
tures. The data structures are described in the sections that follow. 

Logical Name Blocks and Logical Name Translation Blocks 

Each defined logical name is described by an LNMB. An LNMB contains the 
logical name counted string in field LNMB$T _NAME, its access mode in 
LNMB$B_ACMODE, and its attributes in LNMB$B_FLAGS. 

The LNMB field LNMB$L_TABLE specifies the address of the header of 
the logical name table in which the logical name is defined. An LNMB also 
has two longwords, LNMB$L_FLINK and LNMB$L_BLINK, which link it 
into a hash chain of LNMBs whose logical names have the same hash value. 

Each LNMB is immediately followed by at least one LNMX. An LNMX 
contains flags for the equivalence name attributes in LNMX$B_FLAGS, an 
index identifying the equivalence name in LNMX$B_INDEX, and a counted 
string equivalence name, LNMX$T _XLATION. LNMX$W _HASH contains 
the result of hashing the logical name. It is used only for table names. There 
is one LNMX for each equivalence name defined for the logical name. The 
series of LNMXs associated with a given LNMB concludes with a one-byte 
LNMX containing only the FLAGS byte with the bit LNMX$V _XEND set. 

Figure 35.1 shows the layouts of the LNMB and LNMX data structures. 
The field LNMB$W _SIZE contains the size of the LNMB, including the sizes 
of the LNMXs that follow it. Before the memory for the LNMB and the 
LNMXs is allocated, the size required for the sum of all the strings plus 
the fixed size is rounded up to the next quadword. As a result, although an 

1077 



Logical Names 

LNMB 

FLINK 

BLINK 

ACMODEl TYPE l SIZE 

TABLE 

NAME 
[ FLAGS 

(counted string up to 255 bytes) LNMX 

LNMX for First Equivalence Name HASH I INDEX FLAGS 

LNMX for Second Equivalence Name XLATION 

1078 

- ______ _,_j ___ (c_ou_n_te_d_s1_rin_g_u_p_10_2_5_5_b_yt_es_J __ _, 

LNMX for Last Equivalence Name 
Logical Name Flags Equivalence Name Flags 

Bit Name 

0 NO_ALIAS 

Bit Name 

0 CONCEALED 
04 

1 CONFINE 1 TERMINAL 
2 CRELOG 2 XEND 
3 TABLE 
4 NO_DELETE 

Figure 35.1 
Layouts of Logical Name Blocks and Logical Name 
Translation Blocks 

LNMB and its LNMXs are of variable length, the combined data structure is 
always an integral number of quadwords. 

Translation to a particular equivalence name can be requested by specify­
ing its index. The index of an equivalence name is a one-byte signed number. 
By default, the first equivalence name is assigned an index value of 0, the 
second a value of 1, and so forth. 

The positive values 0 to 127 are available for users. The negative values 
-1 to -128 are reserved for system use. Currently, VMS uses two special 
index values. The value 8216, or -126, indicates that the equivalence string 
is a logical name table header. The value 81 16, or -127, indicates that the 
equivalence string is a back pointer, the address of another data structure. 
A back pointer can be used to link a mailbox unit control block (UCB) with 
the LNMB that contains its logical name. It can also be used to connect a 
mounted volume list entry and its LNMB. Only shareable logical names can 
have back pointers. 

It is possible for the creator of a logical name explicitly to assign an 
index value to each equivalence name. Translation indexes can be sparse. For 
example, a particular logical name might have translations 1, 3, 5, and 10. 
VMS uses this feature itself to create back pointer logical names. Any general 
use of this feature is discouraged, however, because RMS and other VMS 
components assume that equivalence names have dense ascending indexes. 

A process-private LNMB is allocated from the process allocation region. An 
LNMB for a shareable logical name must be accessible by multiple processes 
and is allocated from paged pool. 
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Layout of Logical Name Table Header 

Logical Name Table Headers 

The data structure describing a logical name table is an LNMB whose first 
LNMX has the index value 8216 to indicate that it contains an LNMTH 
instead of an equivalence name. The second LNMX merely flags the end of 
the data structure. 

An LNMTH describes a logical name table. Figure 35.2 shows its layout. 
The field LNMTH$L_HASH contains the address of either the shareable hash 
table or the process-private hash table, depending on whether the logical 
name table is shareable or process-private. Section 35.5.3 describes the use 
of logical name hash tables. 

For a shareable table, LNMTH$1-0RB contains the address of the object 
rights block (ORB) associated with the table. The ORB defines the protec­
tion information for the logical name table: its system-owner-group-world 
protection mask and any access control entries that have been defined. For 
a process-private table, the field is unused. LNMTH$1-NAME contains the 
address of the beginning of the LNMB that contains this header; that is, it 
points back to the beginning of the data structure, an address impossible to 
compute from the LNMTH address, given the counted logical name string 
between them. 

The fields LNMTH$L_PARENT, LNMTH$1-CIIlLD, and LNMTH$L_ 
SIBLING contain addresses of other LNMTHs and link logical name tables 
into a quota and access hierarchy. The hierarchy consists of singly linked 
lists. A zero value in a pointer indicates the end of the list. 

Figure 35.3 shows the hierarchical relations between several logical name 
tables: tables A and B are siblings whose parent is table R; R's parent is 
LNM$PROCESS_ TABLE. For simplicity, the figure shows only LNMTHs and 
omits LNMBs. LNMTH$1-CHILD in table R contains the address of table 
A's header. Table A's LNMTH$L_PARENT field contains the address of table 
R's LNMTH. Because table R has another child table, A's field LNMTH$L_ 
SIBLING contains the address of R's next child, table B. 

LNMTH$L_QTABLE contains the LNMTH address of the table's quota 
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holder table. In the case of a table with limited quota, the table is its own 
quota holder, and the field contains the address of the start of the table's 
own header. For a table with limited quota, LNMTH$L_BYTESLM and 
LNMTH$L_BYTES contain the initial quota given to the table at its cre­
ation and the amount left. These fields are unused for a table whose quota 
is pooled. Figure 35.3 shows table R as its own quota holder and also the 
holder for tables A and B. 

Note that an LNMTH contains no listhead for LNMBs. The intuitive view 
of the relation between a logical name and its containing table is different 
from the implementation. A logical name table contains logical names in 
an abstract sense, but it is not possible to examine a table header to locate 
logical names in that table. The only connection between a logical name 
and its containing table is from the LNMB to the table header; the field 
LNMB$1-TABLE contains the address of the LNMTH. Every LNMB of the 
appropriate hash table must be examined to determine which ones are in the 
table of interest. 

A logical name directory is described by an LNMTH whose LNMTH$V _ 
DIRECTORY flag is set and whose LNMTH$1-PARENT field is zero. 

In a logical name table name, the field LNMB$L_ TABLE always contains 
the address of its directory table's LNMTH. The directory's LNMB$L_ TABLE 
also points to the directory's LNMTH. 

Figure 35.4 shows the relations between the process directory; a particular 
logical name table, LNM$PROCESS_TABLE; and a particular logical name, 
SYS$LOGIN. For simplicity, Figure 35.4 omits hash table links, which are 
pictured in Figure 35.5. 

Logical Name Hash Tables 

Locating a translation for a particular logical name requires first hashing the 
logical name in the appropriate hash table and then determining whether 
the name found matches the name of interest. 

Each process has its own hash table to locate all process-private logical 
names. All shareable logical names are hashed in the shareable hash table. 

A hash table consists of a 12-byte header and a number of longword entries. 
Each entry in the hash table is either zero or a pointer to a hash chain of 
LNMBs with the same hash value. The chain is doubly linked through the 
fields LNMB$L_FLINK and LNMB$L_BLINK. The last LNMB in a chain has 
a forward pointer of zero. 

The order of LNMBs in a hash chain is determined by the following 
criteria: 

1. Length of the logical name, with shorter strings first 
2. Alphabetical order, according to the ASCII collating sequence, of the 

logical name string for LNMBs that have logical names of the same length 
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3. Address of the containing table address, with lowest address first, for 
LNMBs with the same logical name 

4. Access mode of the logical name, with outermost access mode first, for 
LNMBs with the same logical name string in the same table 

Recall that a logical name can be defined in different name tables and at 
different access modes. Translating a logical name means locating the first 
definition that satisfies containing table and access mode constraints. The 
last criterion supplies the mechanism by which an outer mode definition for 
a name can override an inner mode definition. 

The SYSGEN parameter LNMPHASHTBL specifies the number of long­
word entries in the process-private hash table. During process creation, 
EXE$PROCSTRT allocates it from the process allocation region and initial­
izes its header. Because the process allocation region consists of demand zero 
pages, the table's longword entries are zeroed as a side effect of allocating 
space from the region for the first time. 

The SYSGEN parameter LNMSHASHTBL specifies the number of long­
word entries in the shareable hash table. The shareable hash table is allocated 
from paged pool, its header built, and longword entries cleared by the swap­
per process during system initialization. 

The address of either hash table can be determined indirectly through the 
two-longword array at global location LNM$A1-HASHTBL. Its first long­
word points to a longword containing the address of the shareable hash table. 
Its second longword points to CTL$GL_LNMHASH, which contains the ad­
dress of the process hash table. The field LNMTH$L_HASH in each logical 
name table contains the address of the hash table for its logical names. 

Figure 35.5 shows this array, the two hash tables, and two hash chains. '" 
The algorithm used to hash the logical names was chosen to be relatively 

fast and provide a good distribution within the hash table. It is implemented 
by the routine LNM$HASH, in module LNMSUB. 

The hashing algorithm is as follows: 

1. The size of the logical name string is moved to a longword. This is the 
base hash value. 

2. Starting at the beginning of the string, four bytes are converted to up­
percase and XORed into the hash longword. The hash is then rotated by 
nine bits to the left. 

3. Step 2 is repeated with the next four bytes until there are fewer than four 
bytes remaining in the string. 

4. The remaining bytes are XORed into the hash longword, one byte at a 
time. After each XOR, the hash is rotated by 13 bits. 

5. The hash longword is then multiplied by an eight-digit hexadecimal 
number 171279461161· 

6. A number of high-order bytes in the hash longword are cleared against 
the mask in LNMHSH$L_MASK. 
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Logical Name Hash Tables and Logical Name Blocks 

The result is a number no larger than the number of entries in the hash 
table minus 1. It is used as a longword index into the hash table. The 
hash value for a logical name table name is stored in its field LNMX$W _ 
HASHVAL and used to speed up translation of table names. 

Logical Name Table Name Cache Blocks 

To speed up logical name translation, information about logical name tables 
is cached. Every logical name translation entails translating a table name. If 
the table name translates to another logical name or is a multivalued logical 
name, iterative translation of multiple names may be required, as described 
in Section 35.7. 

A cache block records the result of a particular table name translation for 
subsequent use. Figure 35.6 shows the layout of the logical name table cache 
block. 

A cache block contains the address of the LNMB of the table name in 
field LNMC$L_ TBLADDR and addresses of up to 25 LNMTHs obtained from 
translating that table name. As a fixed-size data structure, a cache block can 
hold the addresses of only 25 LNMTHs. A table name that resolves to more 
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than 25 table headers cannot be cached. As a table name is translated, table 
header addresses are stored in its cache block. 

If a particular logical name is located in a table whose name requir~s 
iterative translation and the name's table is found before the table name 
is exhaustively translated, the cache block contains valid but incomplete 
data. The valid entries are followed by a zero longword. If the cache block 
describes the complete translation of the table name, the valid entries are 
followed by a longword containing -1. An incomplete list of table headers 
can be extended during later resolutions of the logical table name that require 
more translations. LNMC$B_CACHEINDX contains the index of the current 
entry, the one most recently entered or examined. 

Each time the contents of a logical name table directory change, the 
sequence number associated with it is incremented. For example, when 
a process-private logical name table is created or deleted, global location 
CTL$GL_LNMDIRSEQ is incremented. It is also incremented if a logical 
name in the process directory is changed, for example, through the definition 
of an outer mode alias or the definition of a name that supersedes the old one. 
The sequence number for the shareable directory, LNM$GL_SYSDIRSEQ, is 
similarly incremented whenever the system directory is altered. 

The cache block fields LNMC$L_PROCDIRSEQ and LNMC$L_SYSDIR­
SEQ record the sequence numbers of the process and system directories 
current when a table name translation is cached. The fields are used as a 
validity check on the cached LNMTH addresses. During translation: of that 
table name, the cached sequence numbers are checked against the current 
ones. The data cached in the block is valid only if both its sequence numbers 
are current. If one of the sequence numbers is out-of-date, it is possible that 
there have been changes in the directory contents that affect the cached 
translations. , 
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Each process has its own cache with blocks for the most recently refer­
enced logical name table names. During process startup, EXE$PROCSTRT, 
in module PROCSTRT, allocates cache blocks from the process allocation 
region. It initializes and inserts them in a doubly linked list whose head is at 
CTL$GQ_LNMTBLCACHE. The amount of space used for cache blocks is 
approximately twice that used for the process hash table. Each cache block is 
128 bytes. The number of cache blocks is related to the SYSGEN parameter 
LNMPHASHTBL in the following way: 

LNMPHASHTBL * 8 
number_oLcache_blocks = 128 

Synchronization of Access to the Logical Name Database 

A single mutex named LNM$ALMUTEX provides synchronization to the 
shareable logical name database. Chapter 8 describes the use of mutexes. 

The $TRNLNM system service locks the mutex for read access. Multiple 
processes can lock the mutex for concurrent read access and logical name 
translation. The other logical name system services all modify the database 
and therefore lock the mutex for write access, blocking any concurrent access 
by another process. 

35.6 SEARCHING FOR A LOGICAL NAME 
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To search for a logical name, the $TRNLNM and $DELLNM logical name 
system services invoke the routine LNM$SEARCHLOG, in module LNM­
SUB. LNM$SEARCHLOG invokes a number of other routines, some of 
which are invoked directly from the $CRELNM system service. 

LNM$SEARCHLOG must first hash the name in both logical name hash 
tables to find out whether it exists. These hashes are independent of the 
containing table and are performed to find out whether the logical name 
has been defined at all. Because many file specifications are translated to 
check whether they are logical names, attempted logical name translation is 
most frequent. That is, most translations fail. The data structures and search 
algorithm were designed to optimize the determination that a particular 
string is not a logical name. 

If LNM$SEARCHLOG determines that one or more names with a match­
ing logical name string exist, it must locate the first one whose containing 
table and access mode match the routine's input arguments. This requires 
that LNM$SEARCHLOG translate its input table name to one or more name 
table header addresses. 

LNM$SEARCHLOG takes the following steps: 

1. It initializes a stack local data structure called a name translation block 
(NT) to describe the state of the name translation. 
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2. It then invokes LNM$PRESEARCH, in module LNMSUB, with the ad­
dress of the process-private hash table. If the current process is the swap­
per, which has no process-private logical names, LNM$SEARCHLOG 
begins with the shareable logical name hash table. 

LNM$PRESEARCH and its associated routines, all in module LNM­
SUB, take the following steps: 

a. LNM$PRESEARCH invokes LNM$HASH to hash the logical name. 
The resulting value is used as an index into the hash table. The hash 
table entry located by the index is a listhead of LNMBs with that 
hash value, a hash chain. 

b. LNM$PRESEARCH invokes LNM$CONTSEARCH to search the 
hash chain for one with a matching logical name. 

c. Beginning with the first LNMB in the chain, LNM$CONTSEARCH 
compares the length of the logical name with the length of the tar­
get logical name. Comparing logical name lengths eliminates the 
overhead of a string comparison instruction that is bound to fail 
if the lengths differ. If the logical name in the LNMB is shorter, 
LNM$CONTSEARCH skips that LNMB and goes on to the next. M 
the name in the LNMB is longer, the search has passed the possible 
LNMBs, and the routine returns the error status SS$_NOLOGNAM. 
If the names are the same length, the routine compares them. 

d. If the names are identical, LNM$CONTSEARCH returns a success 
status and the address of the LNMB with the matching name. 

e. If the names differ, but the search is case-blind, one in which the 
uppercase version of both names must be compared, LNM$CONT­
SEARCH converts the names one character at a time and compares 
them. It continues converting and comparing until it reaches the end 
of the names or a character comparison fails. 

If it reaches the end of the names, the names are identical. It returns 
a success status and the address of the LNMB with the matching 
name. 

f. If the search is not case-blind or the converted names differ, it tests 
whether the name in the LNMB is alphabetically lower than the 
target logical name. If it is higher, the search has passed the last 
possible LNMB. LNM$CONTSEARCH returns the error status SS$_ 
NOLOGNAM to its invoker. 

g. If the name is alphabetically lower, the routine continues the search 
until it reaches the end of the hash chain, an LNMB containing a 
name of a different length, an LNMB containing a name higher in 
the sort sequence, or an LNMB with a matching name. In the first 
three circumstances, LNM$CONTSEARCH returns the error status 
SS$_NOLOGNAM to its invoker. 

3. Regardless of the outcome, LNM$SEARCHLOG initializes a second data 

1087 



Logical Names 

1088 

structure and invokes LNM$PRESEARCH again, this time with the ad­
dress of the shareable hash table. 

4. If there was no match in either hash table, LNM$SEARCHLOG returns 
the error status SS$_NOLOGNAM to its invoker. 

5. If at least one logical name matched in either hash table, LNM$SEARCH­
LOG must check whether the containing table and access mode also 
match. 

LNM$SEARCHLOG invokes LNM$SETUP to confirm that the target 
logical name's table name exists and to initialize logical name table 
processing. Section 35. 7 describes table name resolution in detail. 

-If the table name does not exist, LNM$SETUP returns the error status 
SS$_NOLOGNAM, which LNM$SEARCHLOG returns to its invoker. 

-If the table name does exist, LNM$SETUP returns the address of the 
first LNMTH to which the table name resolves. Recall that a table 
name can be a multivalued logical name with equivalence names that 
are themselves logical names. 

6. LNM$SEARCHLOG invokes LNM$CONTSEARCH, this time with the 
address of the containing table header. 

7. Beginning at a point determined by the previous searches, LNM$CONT­
SEARCH scans the hash chain for a matching logical name. If the table is 
shareable, LNM$CONTSEARCH looks in the shareable hash table chain; 
otherwise, it checks the process-private one. 

This time, however, when it finds a match, it also compares containing 
table name addresses. 

-If the LNMTH address in the hash chain LNMB is higher, the search 
has failed, since LNMBs with the same logical name are ordered by 
LNMTH address. 

-If the LNMTH address is lower, LNM$CONTSEARCH goes on to the 
next LNMB. 

-If the LNMTH addresses match, the routine must also check the access 
mode. If the LNMB access mode is greater (less privileged) than the 
requested mode, it goes on to the next LNMB. If the LNMB mode is 
equal to or less than the requested mode, the LNMB matches, and 
LNM$CONTSEARCH returns a success status and the address of the 
LNMB to LNM$SEARCHLOG. 

8. If there is a matching logical name, LNM$SEARCHLOG returns the 
success status SS$_NORMAL and the address of the target LNMB. 

9. If there is no matching name in the first table, the next table to which 
the table name resolves must be checked. LNM$SEARCHLOG invokes 
LNM$TABLE to continue the table processing begun with the invocation 
of LNM$SETUP. LNM$TABLE returns the address of the next LNMTH. 
LNM$SEARCHLOG invokes LNM$CONTSEARCH again, as in step 6, 
with that address. 
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This sequence continues until the first matching logical name is found 
or there are no more tables to check. If no match is found in any table, 
LNM$SEARCHLOG returns the failure status SS$_NOLOGNAM to its 
invoker. 

System services other than logical name services, such as the $ASSIGN 
system service, invoke the routine LNM$SEARCH_ONE. LNM$SEARCH_ 
ONE locks the logical name database mutex for read access. It invokes 
LNM$SEARCHLOG to find the LNMB and extracts the translation with 
index zero. It unlocks the mutex and returns to its invoker. 

The SHOW LOGICAL utility builds an NT structure and invokes the 
routines LNM$PRESEARCH and LNM$CONTSEARCH directly. In contrast 
to the use of LNM$SEARCHLOG, where locating the first matching logical 
name is sufficient, the utility must be able to generate every possible match. 

35.7 LOGICAL NAME TABLE NAME RESOLUTION 

To resolve a logical name table name, the logical name system services and 
routines and the DCL SHOW LOGICAL command invoke either the routine 
LNM$FIRSTTAB or the combination of LNM$SETUP and LNM$TABLEt 
These three routines are all in module LNMSUB. 

LNM$FIRSTTAB is called to return only the first table in the translation 
of a table name. A typical use of it is to identify the table in which to create 
a new logical name. LNM$FIRSTTAB itself invokes LNM$SETUP. 

LNM$SETUP and LNM$TABLE perform iterative and potentially exhaus­
tive translations of a table name. LNM$SETUP is invoked first to initializ~ 
the search context and return the address of the first table header. Subse­
quently, LNM$TABLE is invoked again and again, to return the next table 
header address, potentially until the table name has been exhaustively trans­
lated in a depth-first sequence. 

When LNM$SETUP is entered, its invoker has allocated and partially 
initialized a stack local data structure called a recursive table . translation 
block (RT). Its fields include recursion depth, recursion tries, access mode 
of the request, address of the associated table name cache block, and ten 
longwords in which to maintain search context. The recursion depth is an 
index into these ten longwords. 

LNM$SETUP takes the following steps: 

1. It initializes the recursion depth to zero and the number of remaining 
recursion tries to 255. 

2. It invokes LNM$LOOKUP to confirm that the table exists. 
Invoking LNM$PRESEARCH, LNM$LOOKUP checks the process di­

rectory and, if that fails, the system directory for the starting table name. 
Recall that all logical names involved in the translation of table names 
must be contained in one of the two directories. 
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-If the table name does not exist, LNM$LOOKUP returns the error 
status SS$_NOLOGNAM, which LNM$SETUP returns to its invoker. 

-If the table name exists, LNM$LOOKUP returns the address of the 
LNMB that defines it. 

3. If the name exists, LNM$SETUP saves the address of its LNMB$T _ 
NAME field in the RT's top search context longword as the starting 
point of the translation. 

4. It then scans for a valid table name cache block describing this table 
name. 

-If one is found, its cache entries contain the addresses of some jpossibly 
all) of the table headers to which the table name resolves. 

-If a valid table name cache block is not found, the least recently used 
one is selected for reuse and initialized. Its first cache entry is cleared 
to .indicate that it contains no valid entries. 

5. LNM$SETUP saves the address of the cache block in the RT structure. It 
initializes the cache block index to -1 to indicate no cache entries have 
been examined yet and enters the routine LNM$TABLE. 

Each time LNM$TABLE is entered to resolve the table name, it increments 
the cache index. It then checks whether the index selects a valid entry, one 
whose value is nonzero. 

• If the longword is nonzero, LNM$TABLE returns it as the address of the 
next table header to its invoker. 

• If the longword is zero, the valid cached data has been exhausted. In that 
case, LNM$TABLE invokes LNM$TABLE_SRCH to expand the resolution 
of the table name and add entries to the end of the cache block. 

LNM$TABLE_SRCH contains the fundamental recursion loop in resolving 
a table name. It uses the RT data structure to keep track of the breadth and 
depth of its position in resolving the table name. 

At the beginning of the loop, it decrements the number of remaining 
recursion tries. If none is left, LNM$TABLE_SRCH returns the error status 
SS$_ TOOMANYLNAM to its invoker. This check prevents the code, for 
example, from looping endlessly trying to resolve a circular logical name 
table definition. 

LNM$TABLE_SRCH examines the next equivalence name at the current 
recursion depth to determine what to do. There are several possibilities: 

a. If the equivalence name is an ordinary string, LNM$TABLE_SRCH up­
dates the contents in the stack longword to point to the equivalence 
name following it. 

b. It tests that the maximum recursion depth ( 10) has not been exceeded. If 
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Figure 35.7 
Example Resolution of a Logical Name Table Name 

the depth has been exceeded, LNM$TABLE_SRCH returns the error SS$_ 
TOOMANYLNAM. 

Otherwise, it increments the recursion depth and invokes the routine 
LNM$LOOKUP to find the LNMB associated with the string. It positions 
to the name string in the LNMX and examines its equivalence name, 
beginning the loop again. 

c. If there are no more equivalence names, LNM$TABLE_SRCH decrements 
the recursion depth and selects the corresponding RT search longword. 
It begins the loop again. 

d. If the equivalence name is a table header (desired result), LNM$TABLE_ 
SRCH decrements the recursion depth and returns the address of the 
table header to its invoker. 

Figure 35. 7 is an example showing complete resolution of the logical name 
LNM$FILE_DEV. The first step is translating LNM$FILE_DEV, a shareable 
name found in the system directory with four equivalence names. The sec­
ond step is translating the "leftmost" equivalence name, LNM$PROCESS. 
It is a process-private name whose equivalence name is LNM$PROCESS_ 
TABLE. The third step translates LNM$PROCESS_ TABLE to its equivalence 
name, the first table header for LNM$FILE_OEV. 

In the figure, the numbers indicate the sequence of translations. The let­
ters on each step correspond to the possible actions in the recursion loop 
previously listed. 

In this example, each equivalence name of LNM$FILE_DEV is translated 
as deeply as required to reach a table header. In practice, during logical 
name translation or deletion, table name resolution stops as soon as the first 
table that contains the logical name is found. During logical name creation, 
table resolution stops with the first table, in this example, LNM$PROCESS_ 
TABLE. 
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The logical name system service procedures all run in kernel mode. The pro­
cedures themselves are in the module SYSLNM. Logical name subroutines 
that they use are in module LNMSUB. 

Before describing the specific system service procedures, this section de­
scribes some checks common to the services. 

Privilege and Protection Checks 

Each of the system services has an access mode argument. If the requestor 
explicitly specifies it and has the privilege SYSNAM, the desired access mode 
is used with no further check. If the requestor specifies it but does not have 
the privilege, the access mode is maximized with the mode from which the 
system service was requested. That is, the less privileged of the two is used. 

Any string argument passed to the services must be probed to test acces­
sibility from the mode of the system service requestor. An input string is 
tested for read accessibility and an output string for write accessibility. An 
item list must be probed for read accessibility and each buffer in it must also 
be probed. 

The logical name system services must check a process's access to a 
shareable table. IA process always has access to a process-private table, al­
though it may be constrained by access mode considerations.) The system 
services use standard VMS protection checks. That is, they invoke the rou­
tine LNM$CHECK_PROT, which calls an internal entry point of the Check 
Access Protection ($CHKPROJ system service. 

The $CHKPRO system service determines whether the process, given 
its rights and privileges, can access the table. The system service's checks 
encompass the process UIC, the protection mask of the table, any ACLs 
defined for the table, and whether the process has any of the following 
privileges: 

SYSPRV 
GRPPRV 
BYPASS 
READ ALL 

If the $CHKPRO system service returns a failure status, LNM$CHECK_ 
PROT makes two checks of its own to provide compatibility with earlier 
versions of VMS. If the intended access is read or write, LNM$CHECIL 
PROT tests whether the table of interest is either a group table or the system 
table. If this is the group table and the process has the privilege GRPNAM, its 
access is allowed. If this is the system table and the process has the privilege 
SYSNAM, its access is allowed. 
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Logical Name Translation 

The $TRNLNM system service procedure, EXE$TRNLNM, takes the fol­
lowing steps to translate a logical name: 

1. It first confirms the presence and accessibility of its required arguments: 
descriptors for the logical name string and name of its containing table. 

2. It locks the logical name database mutex for read access. 
3. It invokes LNM$SEARCHLOG to locate the first logical name that meets 

the table name and access mode constraints, as described in Section 35.6. 
If LNM$SEARCHLOG returns the error status SS$_NOLOGNAM, in­

dicating that the logical name does not exist, EXE$TRNLNM unlocks 
the logical name database mutex and passes the error status back to its 
requestor. 

4. If the logical name exists, LNM$SEARCHLOG returns the address of the 
LNMB of the first matching logical name. 

EXE$TRNLNM examines its address to determine whether it is a 
process-private or a shareable name. 

5. If the name is shareable (a system space LNMB), EXE$TRNLNM in­
vokes LNM$CHECK_PROT to determine whether the process has read 
access to the containing table. If the process does not have access, 
EXE$TRNLNM unlocks the logical name database. mutex and returns 
the error status SS$_NOPRIV to its requestor. 

6. If the name is a process-private one or a shareable one to whose table 
the process has access, EXE$TRNLNM processes the item list, which 
contains the list of specific information to be returned. EXE$TRNLNM 
probes any specified output buffers for write access and copies informa­
tion from the LNMB, its LNMXs, and the LNMTH of its containing table, 
as requested. 

7. EXE$TRNLNM then unlocks the logical name database mutex and re­
turns to its requestor. 

If there was insufficient space in the output buffers for all requested in­
formation, EXE$TRNLNM returns the success status SS$_BUFFEROVF. 
Otherwise, it returns the success status SS$_NORMAL. 

Logical Name Creation 

The $CRELNM system service procedure, EXE$CRELNM, takes the follow­
ing steps to create a logical name: 

1. It confirms the presence of its required arguments: the descriptors for the 
logical name string and the name of its containing table. 

2. If the requestor specified the address of an item list containing equiva­
lence strings and their attributes, EXE$CRELNM scans the list to deter­
mine their cumulative size. The item list is not a required argument, but 
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there is little purpose served in creating a logical name with no transla­
tions, other than perhaps the creation of a logical name whose existence 
or nonexistence serves as an on-off flag. 

3. EXE$CRELNM raises interrupt priority level (IPL) to 2 and allocates 
enough paged pool for the LNMB and all its LNMXs. The assumption is 
that the logical name is shareable and will thus require paged pool rather 
than space in the process allocation region. Until the containing table is 
located, EXE$CRELNM cannot determine whether the name is process­
private or shareable. If there is insufficient paged pool, EXE$CRELNM 
returns the error status SS$_INSFMEM to its caller. 

4. EXE$CRELNM then locks the logical name database mutex for write 
access and invokes LNM$FIRSTTAB (see Section 35.7) to translate the 
name of the containing logical name table. A new logical name is always 
created in the first table of a table name search list. 

If LNM$FIRSTTAB returns the error status SS$_NOLOGTAB to indi­
cate that the containing table name did not translate to any existing table, 
EXE$CRELNM unlocks the logical name database mutex and deallocates 
the paged pool. It returns the error status to its requestor. 

5. If the search is successful, LNM$FIRSTTAB returns the address of the 
containing table's LNMTH. EXE$CRELNM examines a flag in the 
LNMTH to determine whether it is a shareable table. 

-If the table is process-private, EXE$CRELNM deallocates the paged 
pool and allocates the same amount from the process allocation re­
gion. If there is insufficient process allocation region, EXE$CRELNM 
unlocks the mutex and returns the error status SS$_INSFMEM to its 
requestor. 

-If the table is shareable, EXE$CRELNM invokes LNM$CHECILPROT 
to determine whether the process has write access to the containing 
table (see Section 35.3). If the process does not have access, EXE$CRE­
LNM unlocks the mutex, deallocates the pool, and returns the error 
status SS$_NOPRN to its requestor. 

6. If the table is process-private or a shareable one to which the process 
has access, EXE$CRELNM then checks that there is sufficient quota for 
the LNMB in the table that holds the quota for the. containing table 
(LNMTH$L_QTABLE). If there is not, EXE$CRELNM deallocates the 
pool, unlocks the mutex, and returns the error status SS$_EXLNM­
QUOTA to its requestor. 

7. EXE$CRELNM then begins to fill in the LNMB. If the containing table 
is one of the directories, EXE$CRELNM tests that the length of the 
logical name string is less than 32 characters and that it contains no 
characters other than those allowed for logical names contained in a 
directory. (Note that if a logical name is being created that is not a table 
name but whose containing table is one of the directories, it must meet 
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those same requirements.) If the logical name string does not meet those 
requirements, EXE$CRELNM deallocates the pool, unlocks the mutex, 
and returns the error status SS$_IVLOGNAM to its requestor. 

8. EXE$CRELNM copies the logical' name string to the LNMB. It then 
begins processing the item list, building LNMXs as specified by the 
requestor. 

9. EXE$CRELNM invokes LNM$INSLOGTAB to insert the LNMB into the 
logical name database. 

LNM$INSLOGTAB scans any LNMBs with the same name and con­
taining table until there are no more or it encounters one with a more 
privileged access mode. It compares their access modes to that of the 
logical name being created and examines the NO_ALIAS attribute of the 
new name to determine what to do: 

-If an LNMB has the same access mode, the old LNMB is deleted and 
superseded by the new one. 

-If one has a more privileged mode and the NO_ALIAS attribute, the 
new logical name cannot be inserted. LNM$INSLOGTAB returns the 
error status SS$_DUPLNAM to EXE$CRELNM. EXE$CRELNM deal­
locates the LNMB to pool, unlocks the mutex, and returns the error 
status to its requestor. 

-If there is one with a more privileged mode and without the NO_ALIAS 
attribute, the new logical name can be created. 

-If one or more is found with a less privileged mode and the new name 
has the NO_ALIAS attribute, the outer mode logical names are deleted 
and the new one is inserted. Section 35.8.5 describes the possible side 
effects of logical name deletion. 

LNM$INSLOGTAB charges the size of the LNMB against the contain­
ing table's quota holder. If the containing table is a directory, 
LNM$INSLOGTAB increments the appropriate directory sequence num­
ber as part of the cache invalidation mechanism. Section 35.5.4 describes 
the use of logical name caches. 

10. If the containing table is a directory, EXE$CRELNM computes and stores 
a hash value for each of the equivalence names of the newly created logi­
cal name. The assumption behind this is that the logical name translates 
to one or more name table names, whose hash values will be needed 
whenever a table search involving this name is performed. 

11. EXE$CRELNM unlocks the mutex and returns to its requestor. 

Logical Name Table Creation 

The $CRELNT system service procedure, EXE$CRELNT, takes the following 
steps to create a logical name table: 
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1. It confirms the presence and accessibility of the descriptor for the name 
of the parent table, its one required argument. 

2. If the requestor omits the name of the table to be created, EXE$CRELNT 
supplies a default name. The form of default name is LNM$xxxxxxxx­
eeeeeeee, where xxxxxxxx is the address of the LNMB of the table and 
eeeeeeee is the process's extended process ID (EPIDJ. Using a default table 
name ensures that the name of a table does not conflict with any other 
defined table. 

3. EXE$CRELNT raises IPL to 2 and allocates enough paged pool for the 
LNMB, its single LNMX and LNMTH, the trailer byte flagging the end of 
translations, and an ORB. The assumption is that the logical name table 
is shareable and thus requires paged pool rather than process allocation 
region space. Until the parent table is located, EXE$CRELNT cannot 
determine whether the new table is process-private or shareable. 

4. EXE$CRELNT then locks the logical name database for write access and 
invokes LNM$FIRSTTAB (see Section 35.7) to translate the name of the 
parent logical name table. If the parent table is a table name search list, 
its first table name becomes the parent of the new table. 

If LNM$FIRSTTAB returns the error status SS$_NOLOGTAB to indi­
cate that the parent table name does not translate to any existing table, 
EXE$CRELNT unlocks the logical name database mutex and deallocates 
the paged pool. It returns the error status to its requestor. 

5. If the parent table name does translate, LNM$FIRSTTAB returns the 
address of the parent table's LNMTH. 

-If the parent table is process-private, EXE$CRELNT deallocates the 
paged pool and allocates space from the process allocation region. 
The process allocation does not include 'space for the ORB, because 
a process-private table does not need an ORB. 

-If the parent table is shareable, EXE$CRELNT calls LNM$CHECK_ 
PROT to determine whether the process has enable access to the parent 
table and can thus withdraw quota from it. If the process does not have 
access, EXE$CRELNT deallocates the pool, unlocks the mutex, and 
returns the error status SS$_NOPRN to its requestor. 

If the parent table is shareable and the process specified the name 
of the table to be created, EXE$CRELNT checks whether the process 
has write access to the system directory. If a default table name was 
constructed, the process does not need write access to the system 
directory. On error, EXE$CRELNT deallocates the pool, unlocks the 
mutex, and returns the error status SS$_NOPRN to its requestor. 

6. EXE$CRELNT checks that there is sufficient quota for the table name 
(its LNMB, LNMX, and LNMTHJ in the directory table. If a quota for the 
new table was specified, then it also checks that the parent table's quota 
holder has sufficient quota for the names that will be contained in the 
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new table. If it does not, EXE$CRELNT deallocates the pool, unlocks the 
mutex, and returns the error status SS$_EXLNMQUOTA to its requestor. 

7. If there is sufficient quota, EXE$CRELNT fills in the LNMB and transla­
tion blocks. If the requestor specified the name of the table to be created, 
EXE$CRELNT tests that it is a legal table name. If the table is shareable, 
EXE$CRELNT initializes its ORB. 

8. EXE$CRELNT then invokes LNM$INSLOGTAB to insert the LNMB into 
the logical name database. 

LNM$INSLOGTAB scans all LNMBs with the same name and con­
taining table until there are no more or it encounters one with a more 
privileged access mode. Its actions depend on the NO_ALIAS attribute 
of the new name and any old ones, the access modes of the new and old 
names, and the presence or. absence of the CREATE_IF ATIR argument. 
The CREATE_IF attribute means that the table should be created only if 
there is not already one with the same name and access mode. 

-If there is an LNMB with the same access mode and CREATE_IF was 
not specified, the old LNMB is deleted and superseded by the new one. 
Deleting an LNMB whose equivalence name is an LNMTH means 
that all the logical names contained in that table must be deleted. Any 
descendant tables and their logical names must also be deleted. 

-If there is an LNMB with the same access mode and CREATE_IF 
was specified, LNM$INSLOGTAB. returns the status SS$_NORMAL 
and the address of the old LNMB. EXE$CRELNT deallocates the new 
LNMB to pool. 

-If there is an LNMB with a more privileged mode and the NO_ALIAS 
attribute, the new LNMB cannot be inserted. LNM$INSLOGTAB re­
turns the error status SS$_DUPLNAM to EXE$CRELNT, which deal­
locates the new LNMB to pool. 

-If there is an LNMB with a more privileged mode and without the 
NO_ALIAS attribute, LNM$INSLOGTAB can insert the new LNMB. 
It returns the status SS$_LNMCREATED. 

-If one or more LNMBs are found with a less privileged mode and the 
new name has the NO_ALIAS attribute, the outer mode LNMBs are 
deleted. The new LNMB is inserted. LNM$1NSLOGTAB returns the 
status SS$_SUPERSEDE. 

To insert the new LNMB (and its table), LNM$INSLOGTAB inserts 
the LNMB into the hash chain and the LNMTH into the name table 
hierarchy as the first child of its parent table. If there already was one, 
LNM$INSLOGTAB stores the address of its LNMTH in the new table's 
LNMTH$1-SIBLING. If this table is to be its own quota holder, quota 
is withdrawn from the parent's quota holder and allocated to the new 
table. Otherwise, the table's LNMTH$L_QTABLE is set to the same value 
as that of its parent table. Quota for the table's LNMB is withdrawn 
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from the appropriate directory table. LNM$INSLOGTAB increments the 
appropriate directory sequence number. 

9. EXE$CRELNT unlocks the logical name database mutex and returns to 
its requestor, passing back the status from LNM$INSLOGTAB, and, if 
requested, the name of the newly created table. 

Logical Name Deletion 

The $DELLNM system service procedure, EXE$DELLNM, takes the follow­
ing steps to delete ~ logical name: 

1. It confirms the presence of the descriptor for the name of the table 
containing the names to be deleted, its one required argument. 

The LOGNAM argument is the logical name to be deleted; it can be a 
logical name table name. The absence of the logical name argument is a 
request to delete all the table's logical names with access mode equally 
or less privileged than that of the request. 

2. EXE$DELLNM raises IPL to 2 and locks the logical name database mutex 
for write access. 

3. If the requestor requested deletion of a particular logical name, EXE$DEL­
LNM invokes LNM$SEARCHLOG, described in Section 35.6, to deter­
mine whether the name exists. If the name is not found or if its access 
mode is more privileged than that of the service request, EXE$DELLNM 
unlocks the mutex and returns the error status SS$_NOLOGNAM to its 
requestor. 

4. If the name found is shareable, EXE$DELLNM invokes LNM$CHECK_ 
PROT to ensure that the requestor has write access to the containing 
logical name table. If the requestor does not, but the name being deleted 
is a table name, delete access to the table being deleted is sufficient. 

If the requestor does not have access, EXE$DELLNM unlocks the mu­
tex and returns the error status SS$_NOPRN to its requestor. 

5. EXE$DELLNM invokes LNM$DELETE_LNMB to remove the logical 
name and any of i~s outer access mode aliases from the database. If the 
name is not the name of a table, deleting it is straightforward and consists 
of the following steps for each alias: 

a. Remove the LNMB and those of any outer mode aliases from the 
hash chain. 

b. Return the quota charged for them. 
c. Deallocate them to the process allocation region or paged pool. 

If, however, the LNMB is a table name, deleting it also requires deleting 
each LNMB contained within it, and any descendant tables and their 
logical names. LNM$DELETE_LNMB removes the LNMB from its hash 
chain and inserts it into a holding list. It then invokes a routine called 
DELETE_ TABLE to delete the table. 
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DELETE_ TABLE examines the table header to determine whether this 
table has any descendants. If it does, DELETE_ TABLE finds the first 
one, removes it from its hash chain, inserts it into the holding list, and 
branches back to itself. DELETE_ TABLE is now one level lower in the 
logical name table hierarchy. It continues recursively, until it reaches a 
childless level. 

It then invokes DELETE_NAMES to delete all the logical names in that 
table. This requires scanning the appropriate hash table and examining 
each LNMB to see whether it is contained within the table. Each such 
LNMB is removed from its hash chain and deallocated to its pool, with 
quota returned to the containing table. If the table is shareable, the LNMB 
is deallocated to paged pool. Otherwise, it is deallocated to the process 
allocation region. DELETE_NAMES checks that the NODELETE flag is 
clear in each LNMB before deleting it, to ensure that it does not delete 
either directory table. 

After all its names are deleted, the table is then removed from the table 
hierarchy, its table quota is returned to its quota holder, and the LNMB 
quota is returned to the appropriate directory. The appropriate directory 
sequence number is incremented and the LNMB deallocated to its pool. 

DELETE_ TABLE then processes the first LNMB in the holding list, the 
parent of the one just deleted. DELETE_ TABLE examines the table header 
of that LNMB to see whether it still has descendants. If it does not, then 
all the logical names in that table and the table itself are deleted. If it still 
has descendants, DELETE_ TABLE places the LNMB for the first child 
into the holding list and branches back to itself. Eventually, DELETE_ 
TABLE empties the holding list and returns. 

6. EXE$DELLNM unlocks the mutex and returns to its requestor. 

If EXE$DELLNM is called without the logical name argument, it invokes 
LNM$FIRSTTAB to find the first table header to which the table name 
resolves. If the table is shareable, it invokes LNM$CHECK_PROT to confirm 
that the process has delete access to the table or write access to the directory. 
DELETE_NAMES is invoked to delete all the names in that table. 

As described previously, it scans the appropriate hash table, looking for 
LNMBs with a matching table header address and an access mode equally or 
less privileged than that of the delete request. Each such LNMB is removed 
from the hash chain, its quota is returned, and it is deallocated to pool. 

When all the names of suitable access mode in that table are deleted, 
EXE$DELLNM unlocks the mutex and returns to its requestor. 

When an image exits, the Rundown Image ($RUNDWN) system service 
must delete all process-private logical names with an access mode less or 
equally privileged to the exit mode. 

The $RUNDWN system service invokes the routine LNM$DELETE_ 
HASH, specifying the exit access mode and the address of the process-private 
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hash table. LNM$DELETE_HASH locks the logical name table mutex and 
invokes DELETE_NAMES with the address of the hash table. Many of its 
logical names, of course, are names of tables. Deleting each of them requires 
the steps previously described to delete a table, its descendant tables, and 
its logical names. When all the names are deleted, LNM$DELETE_HASH 
unlocks the mutex and returns to the $RUNDWN system service, whose 
details are described in Chapter 26. 

35.9 SUPERSEDED LOGICAL NAME SYSTEM SERVICES 
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The current logical name system services supersede several system services 
from VMS Version 3 and earlier versions: 

• Create logical name ($CRELOG) 
•Delete logical name ($DELLOG) 
• Translate logical name ($TRNLOG) 

VMS supports these services to provide upward compatibility for software 
written for earlier versions. Table 35.3 shows the correspondence between 
the table numbers used in earlier versions and the table names that currently 
implement them. Table 35.2 shows the translation of those table names. 

It is possible for users of the superseded logical name system services 
to make some use of current features without reprogramming. By defining 
aliases to the table names used by these system services, a process can access 
tables other than the standard process, group, and system logical name tables. 
In fact, VMS defines the name LOG$PROCESS to equate to both the process 
and jobwide logical name tables. This enables translation of logical names 
within the jobwide logical name table by default. 

The superseded system service procedures are in module SYSLOGNAM 
and are mode-of-caller services. Each service confirms that the minimum 
number of arguments expected is present and that the argument list is 
accessible. Each service then transforms its argument list and invokes the 
equivalent replacement system service. 

The arguments for each superseded service include access mode and table 
number. Each service checks that its table number argument is valid and 
converts it to the corresponding logical name table name. Table 35.3 shows 
this correspondence and also the access mode associated with each table. 

For the process table, any access mode specified by the requestor is used. 
If the argument is omitted, the requestor's access mode is used. The access 
mode is passed as an argument to the replacement logical name system 
service, which checks that the process has suitable privileges. 

The following paragraphs supply a few specific additional details about the 
implementation of the $CRELOG and $TRNLOG system services. 

A name created with the $CRELOG system service has only one transla­
tion, the equivalence name supplied to $CRELOG. The logical name has the 
CRELOG attribute. The equivalence name is assigned translation index 0. 
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Table 35.3 Correspondence Between Table Numbers 
and Logical Name Table Names 

Table Number 
0 
1 
2 

Table Name 
LOG$SYSTEM 
LOG$GROUP 
LOG$PROCESS 

Access Mode 

Executive 
User 
Mode of caller 

If the equivalence name begins with a leading underscore, the underscore is 
removed and the equivalence name has the TERMINAL attribute. 

The $TRNLOG system service returns translation number 0 of the speci­
fied logical name. If the translation has the TERMINAL attribute, $TRNLOG 
prefixes an underscore to the equivalence name. This manipulation enables 
most logical names, including file names, to be created and used through 
either the old or new system services. 

Two arguments to the $TRNLOG system service control its actions: the 
TABLE and DSBMSK arguments. The TABLE argument is the address to receive 
the translation table number. The DSBMSK argument specifies which subset 
of the process, group, and system tables is to be searched. (The mask is a 
disable mask; by identifying which tables to omit, it indirectly identifies 
those to be searched.) 

If the TABLE argument is zero, EXE$TRNLOG transforms the DSBMSK ar­
gument into a table name search list with the names of the tables to be 
searched. It selects one of the logical name table names whose name begins 
with the string TRNLOG$. It requests the $TRNLNM system service and 
transforms its return arguments into forms compatible with the Version 3 
interface. 

A nonzero TABLE argument means that EXE$TRNLOG must return the 
number of the containing table. To determine the table, EXE$TRNLOG 
requests the $TRNLNM system service once for each table to be searched, 
until the logical name is found or the end of the table subset is reached. 
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... Of shoes-and ships-and sealing wax-
0£ cabbages-and kings-
And why the sea is boiling hot­
And whether pigs have wings. 

Lewis Carroll, Through the Looking Glass 

This chapter briefly discusses a number of system services not mentioned in 
the previous chapters. Although these services do not generally make exten­
sive use of the internal structures and mechanisms of the VMS executive, 
some of their descriptions are provided as an informational aid to users of the 
services and for completeness. The VMS System Services Reference Manual 
contains detailed discussions of these services and their arguments, return 
status codes, required process privileges, and options. 

36.1 COMMUNICATION WITH SYSTEM PROCESSES 
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VMS performs some of the operations often associated with an operating 
system from independent processes rather than from code in the system 
base image or loadable .executive images. Examples of this type of system 
activity include the following: 

• Managing print and batch jobs and queues 
• Gathering accounting information about utilization of system resources 
• Communicating with one or more system operators 
• Reporting device errors 

Services Supported by the Job Controller 

The job controller is a system process named JOB_CONTROL, which ex­
ecutes the image JOBCTL.EXE. The job controller supports several system 
services. It performs many different functions, including the following: 

• As the queue manager of the batch/print subsystem, the job controller 
is responsible for all transactions to and from the queue file, typically 
SYS$SYSTEM:JBCSYSQUE.DAT. On a VAXcluster system, the job con­
trollers running on every node can access a single, common queue file. 
These transactions include the creation and deletion of queues, and the 
creation, modification, and dispatching of batch and print jobs. 

To manage print jobs, the job controller directs the activity of one or 
more print sym}:,iont processes. A print symbiont process executes a stan­
dard image supplied with VMS, such as PRTSMB.EXE or LATSMB.EXE, an 
image supplied with a VMS layered product, or a user-written image that 
links with SMBSRVSHR.EXE. 
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• As the system accounting manager, the job controller records the use 
of system resources in the file SYS$SYSTEM:ACCOUNTNG.DAT. On a 
VAXcluster system, each job controller accesses anode-specific accounting 
file . 

• As the job manager, the job controller directs the creation of interactive 
and batch processes. 

-To create an interactive process, the job controller initiates a detached 
process running the image LOGINOUT.EXE in response to unsolicited 
terminal input. 

-To schedule a batch job to run from an execution queue, it creates a 
process runp.ing the image LOGINOUT.EXE. The new process makes a 
special job controller request to receive its job parameters. 

-In response to unsolicited card reader input, the job controller creates 
an input symbiont process, 'running the image INPSMB.EXE. The input 
symbiont reads the card deck and submits a batch job. 

Chapter 13 describes the job controller's actions as the job manager. 

The job controller communicates with other processes on the system 
through mailbox ~messages. It receives messages as the result of system ser­
vice requests, notification of process deletion, and messages from print sym­
bionts, the terminal driver, and the card reader driver. The job controller 
sends messages to print symbionts and batch processes during login. Chap­
ter 23 provides more details about the job controller's mailbox. 

Several VMS system services, described in the following sections, enable 
processes to communicate with the job controller in its roles as queue man­
ager and accounting manager: 

• Send Message to Job Controller ($SNDJBC[W]) 
• Get Queue Information ($GETQUI[W]) . 
• Send Message to Acc<>unt Manager .($SNDACC, obsolete since VMS Ver­

sion 4) 
• Send Message to ·Symbiont Manager ($SNDSMB, obsolete since VMS Ver­

sion 4) 

$SNDJBC Systen:iService. The $SNDJBC[W} system service requests that 
the job controller create, stop, or manage queues and· the batch and print 
jobs in those queues. In addition, it issues requests to turn accounting on 
and off. 

The $SNDJBC system servfoe makes requests of the job controlle:r by 
'Writing messages into its mailbox. A user typically requests the $SNDJBC 
system service mdirectly :thnlugh Digital command language (DCLJ com­
mands, for example, PRINT,'StmMIT, INITIALIZE/QUEUE, STOP/QUEUE, 
and DELETE/QUEUE.'The arguments to the $SNDJBC system service in­
clude the following: 
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• The event flag number to set when the request completes 
• The function code specifying which function $SNDJBC is to perform 
• A place-holding null argument 
• The address of an item list, each entry of which includes an item code 

appropriate for the function code, the size and address of a buffer to re­
ceive information from $SNDJBC or pass information to $SNDJBC, and a 
location to store the size of information returned from $SNDJBC 

• An 1/0 status block (IOSB) to receive final status information 
• The entry point and parameter for an asynchronous system trap (AST) 

procedure to call when the request completes 

The $SNDJBC system service procedure, EXE$SNDJBC in module SYS­
SNDJBC, executes in executive mode. It performs the following operations: 

1. EXE$SNDJBC checks the IOSB, if specified, for write access. It clears the 
IOSB. 

2. It validates the function code specified in the $SNDJBC argument list. 
3. It allocates a message buffer on the current stack, the executive mode 

stack. 
4. EXE$SNDJBC checks each item in the item list for correctness: its item 

code must be valid; its buffer descriptor and buffer must be readable 
or writable as appropriate. It checks each specified file for appropriate 
protection. It stores the following information in the message buffer, 
using code common to the $GETQUI system service: 

-Items in the item list 
-Function code 
-Address of the AST procedure and parameter 
-IOSB address 
-Event flag number 
-Image counter (PHD$L_IMGCNT) 
-System time (EXE$GQ_SYSTIME) 
-Terminal name of the requesting process (PCB$T _TERMINAL) 
-Extended owner process ID (PCB$1-EOWNER) 
-Process status longword (PCB$1-STS) 
-Extended process ID (PCB$L_EPID) 
-Access mode of system service requestor 
-Process base priority (PCB$B_PRIB) 
-Process user name and account name (CTL$T_USERNAME, CTL$T_ 

ACCOUNT) 
-Longword reserved for the access rights block (ARB) address 
-Message type, in this case MSG$_SNDJBC 

5. This common code requests the Change to Kernel Mode ($CMKRNL) 
system service. The kernel mode procedure called performs the following 
operations: 
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a. It clears the specified eveht flag. 
b. The procedure checks arid charges the process's AST quota if AST no­

tification is requested. If the AST quota is insufficient, EXE$SNDJBC 
returns the status SS$_EXASTLM and does not queue the message to 
the job controller. 

c. After raising interrupt priority level (IPL) ico 2, the procedure invokes 
EXE$COPY _ARB, in module IMPERSONATE, to create a private 
copy of the ARB. It stores the address of this ARB in the longword 
reserved in step 4. 

d. The procedure invokes EXE$SENDMSG, in module SYSSNDMSG, 
which writes the message buffer to the job controller mailbox, whose 
address is in SYS$AR_JOBCTLMB. 

Many system services that communicate with system processes in­
voke EXE$SENDMSG. EXE$SENDMSG verifies that the target mail­
box has a process reading messages written to the mailbox. It raises 
IPL to 2 and sets a flag in the process header (PHD) to block swap­
per trimming and automatic working set limit adjustment that could 
perturb the working set. It faults the message, still on the execu­
tive stack, into the process's working set. It then invokes EXE$WRT­
MAILBOX, part of the mailbox device driver, to perform the I/O oper­
ation. Because EXE$WRTMAl1LBOX runs at IPL$_MAILBOX, IPL 11, 
the pages containing the mr.::ssage must be valid; page faults are 
not allowed at IPLs above 2. When EXE$WRTMAILBOX returns, 
EXE$SENDMSG clears the J?HD flag. 

Chapter 23 describes the operation of EXE$WRTMAILBOX. 

6. The asynchronous form of the. system service, $SNDJBC, returns to the 
requestor. The requestor can .either wait for the information to be re­
turned or continue processing,. The synchronous form of the system ser­
vice, $SNDJBCW, waits for the event flag associated with the request 
to be set and status to be returned. See Chapter 6 for more information 
concerning synchronous and ,asynchronous system services. 

Section 36.1.1.4 describes how information is returned to the user. 

$GETQUI System Service. The $GETQUI[W] system service obtains infor­
mation about the queues and jobs initiated and managed by the job con­
troller. The $GETQUI system service shares common code with the $SND­
JBC system service, described in Section 36.1.1.1, and thus performs the 
same operations. The minor difference is that $GETQUI messages have a 
message type of MSG$_GETQUI. DCL commands such as SHOW QUEUE 
and SHOW ENTRY request the $GETQUI service to obtain information for 
the user. 

Section 36.1.1.4 describes how the $SNDJBC and $GETQUI system ser­
vices return information to the user. 
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$GETQUI Wildcard Support. A $GETQUI request causes the job controller 
to create a $GETQUI context block (GQC) in which it stores the requestor's 
context information. The job controller maintains a linked list of GQCs in 
its process space. Unless the $GETQUI request specifies wildcard mode, the 
job controller deallocates the GQC when the service completes. 

The job controller maintains a linked list of GQCs, and locates a process's 
GQC by an offset containing the requestor process ID (PID). The GQC 
describes the current wildcard context. The VMS System Services Reference 
Manual describes wildc.ard mode and its use. 

$SNOJBC and $GETQUI Special Kernel AST. The job controller queues a 
special kernel AST to the process when its request completes. An extended 
AST control block (ACB) describes the AST. The ACB contains any data re­
quested by the process, plus information about the amount of data to return 
and where to store the data. The special kernel AST routine, EXE$JBCRSP 
in module SYSSNDJBC, uses this information to return status and any re­
quested data from the $SNDJBC and $GETQUI services to the process. Chap­
ter 7 describes the implementation of special kernel ASTs. 

EXE$JBCRSP first tests that the process is still executing the image that 
requested the system service. It compares the process's current PHD$L_ 
IMGCNT against its value at the time of the service request. At each image 
rundown, PHD$L_IMGCNT is incremented, as described in Chapter 26. If 
the two values are different, the process is executing a different image. Thus, 
addresses from the previous image,, such as that of the AST procedure or 
IOSB, are no longer valid. In this case, EXE$JBCRSP deallocates the extended 
ACB, returning AST quota to the process, if appropriate, and returns. 

If the process is still executing the image that requested the system service, 
EXE$JBCRSP completes the request through the following actions: 

1. It sets the specified event flag by invoking routine SCH$POSTEF with a 
null priority class increment (see Chapters 12 and 13). 

2. It stores a status value in the IOSB. if specified. 
3. It stores data in any output buffer items from the original request. 
4. If the user did not request AST notification, EXE$JBCRSP deallocates the 

ACB and returns. 
5. If the user requested AST notification, EXE$JBCRSP invokes SCH$QAST 

to queue the ACB as a completion AST and returns. 

Superseded System Services 

The $SNDJBC system service supersedes two system services from versions 
of VMS prior to Version 4: 

• Send Message to Accounting Manager ($SNDACC) 
• Send Message to Symbiont Manager ($SNDSMB) 
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All functions provided by these services are available through $SNDJBC, 
which is the recommended interface. VMS Version 5.2 supports these ser­
vices only for compatibility with earlier versions. 

$SNDACC System Service. The $SNDACC system service sends requests to 
the accounting manager through the job controller's mailbox. A user requests 
the $SNDACC service to request actions normally available through the 
DCL command SET ACCOUNTING and to send messages directly to the 
accounting manager. 

The $SNDACC system service procedure, EXE$SNDACC in module SYS­
SNDMSG, runs in executive and kernel modes. It performs the following 
operations: 

1. It defines the mailbox message type as MSG$_SNDACC and the target 
mailbox as the job controller's mailbox, whose address is in SYS$AR_ 
JOBCTLMB. 

2. It checks the request for possible errors, such as too large a message or 
inaccessible data references. The user privilege OPER is required to create 
a new log file or enable or disable accounting. 

3. It allocates the message buffer on. the current stack, which is the exec­
utive mode stack, and places the following information in the message 
buffer: 

-Mailbox message type 
-Reply mailbox channel, if specified as an optional argument 
-Privilege mask, user identification code (UICJ, user name, and account 

name 
-Process base priority 
-Extended process ID {PCB$L_EPID) 
-Process status (PCB$L_STS) 
-Extended owner PID (PCB$1-EOWNER) 
-Terminal iiame (PCB$T _TERMINAL) 
-Current system time (EXE$GQ_SYSTIME) 
-User-supplied accounting message type that specifies which function 

is to be performed 
-User-defined message text 

4. EXE$SNDACC requests the $CMKRNL system service to call the local 
procedure SENDMSG. 

5. SENDMSG performs the following operations: 

a. It validates the process's reply channel, if one was specified as an 
optional argument. 

b. It verifies that the target mailbox has read/write access. 
c. It invokes routine EXE$SENDMSG. Section 36.1.1.1 describes the 

actions of EXE$SENDMSG. 
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$SNDSMB System Service. The $SNDSMB system service sends requests 
to the symbiont manager via the job controller's mailbox. A user requests 
the $SNDSMB service to request actions normally available through DCL 
commands, such as PRINT, SUBMIT, and DELETE/ENTRY. 

The $SNDSMB and $SNDACC system services share common code. Thus, 
$SNDSMB performs exactly the same operations as $SNDACC, described 
in Section 36.1.2.1, except that the message type is defined to be MSG$_ 
SNDSMB and a $SNDSMB message buffer includes a copy of the ARB. 

Operator Communications 

The system process OPCOM handles operator communications. OPCOM 
executes the image OPCOM.EXE, and performs the following functions: 

• It selects the terminals used as operator terminals and the class of activity, 
such as disk or tape operations, for which the operator terminals receive 
messages . 

• It replies to or cancels a user request to an operator . 
• It manages the operator log file. 

The Send Message to Operator ($SNDOPR) system service sends a request 
to OPCOM through OPCOM's mailbox. A user requests the $SNDOPR 
service to request actions normally available through the DCL command 
REQUEST and the operator command REPLY. 

The $SNDOPR system service requires that a user have the OPER privilege 
to enable a terminal as an operator's terminal, reply to or cancel a user's 
request, or initialize the operator log file. 

The $SNDOPR system service shares common code with the $SNDACC 
and $SNDSMB system services, described in Section 36.1.2. However, it 
uses a different mailbox, the one whose address is in SYS$AR_OPRMBX, 
and a different message type, MSG$_0PRQST, and it does not include the 
extended process ID, process status, extended owner PID, terminal name, 
and current system time fields in the message buffer. 

Chapter 23 describes the OPCOM mailbox. 

Error Logger 

As described in Chapter 32, the error logging subsystem contains three 
pieces: 

• The executive contains routines that maintain a set of error message 
buffers. These routines are called by device drivers and other components 
that log errors so that error messages can be written to some available 
space in one of these buffers . 

• The error formatting process, process ERRFMT running the image ERR­
FMT.EXE, is awakened to copy the contents of these error message buffers 
to the error log file for subsequent analysis. 
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• The Error Log Utility reads the error messages in the error log file and 
produces an error log report, based on the contents of the error log file and 
the options selected when the utility executes. 

A user can request the Send Message to Error Logger l$SNDERRJ system 
service to send messages to the error logger jput messages into one of the 
error message buffers for later transmission to the error log file). Using this 
system service requires the BUGCHK privilege. 

Unlike the $SNDJBC and $SNDOPR system services, the $SNDERR sys­
tem service has the following characteristics: 

• It executes entirely in kernel mode rather than in executive and kernel 
mode . 

• It writes a message to an error message buffer rather than sending a mailbox 
message. 

The $SNDERR system service procedure, EXE$SNDERR in module SYS­
SNDMSG, performs the following actions: 

1. It checks the request for access and privilege violations. 
2. It invokes ERL$ALLOCEMB, in module ERRORLOG, to allocate an error. 

message buffer. 
3. It fills the message buffer with the message type IEMB$C_SS), the mes­

sage size, and the message text. An error log sequence number and the 
current time are also a part of every error message. 

4. It invokes ERL$RELEASEMB, also in ERRORLOG, to release the buffer 
to the error logging routines for subsequent output to the error log file. 

Chapter 32 contains a discussion of the error log routines and a brief 
description of the ERRFMT process. 

36.2 SYSTEM MESSAGE FILE SERVICES 

VMS provides three levels of message file capability: image-specific message 
files, a process-permanent message file, and a system message file. 

The creation and declaration of image-specific and process-permanent mes­
sage files is discussed in the VMS Message Utility Manual and the VMS DCL 
Dictionary. The following list provides a brief overview: 

• The Message Utility compiles a message source file, producing an object 
file that can be linked with a main program. When the resulting executable 
image is activated, the image activator maps the image-specific message 
file, which remains available until image rundown . 

• In response to the command SET MESSAGE, DCL maps a process-specific 
message file, available for the life of the process or until the command is 
reissued specifying a different message file name. 
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• During system initialization, SYSINIT maps the system message file, 
SYS$MESSAGE:SYSMSG.EXE, into system address space as a pageable sec­
tion. Chapter 31 describes SYSINIT actions. 

Two system services allow a user to locate and display messages from the 
various message files: 

• The Get Message ($GETMSG) system service searches for a message text 
corresponding to a given message code . 

• The Put Message ($PUTMSG) system service writes one or more message 
texts to SYS$0UTPUT. 

VMS uses a third procedure, EXE$EXCMSG in module EXCEPTMSG, as 
part of condition handling. It does not use the various message files but 
formats and displays a process's signal arguments and general registers. 

Data Structures Related to Message Files 

When it compiles a message file, the Message Utility produces an object 
module that contains a message section header and as many message sections 
as necessary. 

The $PLVDEF macro defines a message section header. The Message Util­
ity creates a message section header for the message file and sets its type 
code to PLV$C_ TYP _MSG. At the offset PLV$L_MSGDSP + 6, it stores the 
instruction JSB (RS). The instruction merely identifies the section header; 
it is not executed. The offset to the first message section follows this in­
struction, then offsets to other message sections, if any. A longword of zero 
determines the end of the message section offsets. 

The $MSCDEF macro defines a message section. The first byte of this 
structure, MSC$B_ TYPE, contains either a 0, indicating a normal message 
section, or a 1, indicating an indirect message section. 

Linking a normal message file, which includes text, with user object mod­
ules generates a normal message section within the executable image. 

In a normal message section, the field MSC$LINDEX_OFF contains an 
offset to an index structure defined by the $MIDXDEF macro and MSC$1-
FAC_OFF is an offset to the table of facility codes. 

Rather than incorporate a message file within an executable image, a 
user image can establish a pointer to a nonexecutable message file. The 
message file can then be changed without recompiling and relinking the 
image. Compiling an indirect message file with the Message Utility produces 
a pointer object module to link with user modules and a nonexecutable 
message file that contains the message data. 

In an indirect message section, the MSG$B_ TYPE field contains a 1. The 
field MSC$T _INDNAME contains the name of the associated message file, 
for example, PRGDEVMSG. At runtime, the $GETMSG system service uses 
the flag MSC$V _MAPPED to indicate whether the message file has been 
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mapped into virtual memory. The VMS Message Utility Manual describes 
normal and indirect message files. 

Three global symbols locate message section headers: 

• CTL$GL_GETMSG locates image-specific message section headers 
• CTL$GL_PPMSG locates a process-permanent message section header 
• EXE$GL_SYSMSG locates the system message section header 

CTL$GL_GETMSG contains the address of a message dispatch vector in Pl 
space, which follows the dispatch vectors for user-written system services 
and rundown routines. When the image activator activates an image that 
includes a message section, it loads the next available entry in this dispatch 
vector with the address of an offset in the message section header. 

CTL$GL_PPMSG and EXE$GL_SYSMSG each contain the address of a 
message section header, or zero if no process-permanent or system message 
section is defined. 

Figure 36.l shows the layout of the message dispatch vector, message 
section headers, and message sections. 

$GETMSG System Service 

The $GETMSG system service procedure, EXE$GETMSG in module SYS­
GETMSG, executes in its requestor's access mode. It is requested with the 
following arguments: 

• The numeric identification of the desired message, called the message code 
• A location in which EXE$GETMSG stores the length of the returned 

message 
• A buffer in which EXE$GETMSG stores the returned message 
• A FLAGS argument defining the message components to return 
• An optional array containing, among other items, the Formatted ASCII 

Output ($FAO) argument count for the returned message 

EXE$GETMSG searches each message section until it locates one contain­
ing a matching message code, at which point its search terminates, or until 
it processes all message sections. It begins with in1age-specific message sec­
tions, then process-permanent message sections, and finally system message 
sections. 

The following list describes EXE$GETMSG's message search. If a matching 
message is found at any time, this search terminates. 

1. From the process's message dispatch vector, whose address is found in 
CTL$GL_GETMSG, EXE$GETMSG obtains the first entry, the address 
of an image-specific message section header. 

2. The header contains a list of message sections. EXE$GETMSG searches 
each section in order until it either encounters a matching message or 
processes all sections. r 
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Message Vector, Section Headers, and Sections 

For each normal message section, EXE$GETMSG calculates the start­
ing address and length of the message section index. It then performs a 
binary search of the message section index to determine if it contains 
the specified message code. 

For an indirect message section, one with the MSG$B_ TYPE field con­
taining a 1, EXE$GETMSG tests the flag MSC$V _MAPPED. If the flag 
is clear, the file is not yet mapped. EXE$GETMSG sets the flag and in­
vokes the image activator to perform a merged activation of the indirect 
message section. 

The image activator maps the nonexecutable image named in the file 
specification into the user's virtual address space. It adds the address of 
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the new message section header to the end of the message dispatch vec­
tor; thus, all sections located by the message section header are processed 
later in the search. The search for the message code continues normally. 

3. If no matching message is found, EXE$GETMSG locates the next image­
specific message section header from the next entry in the process's 
message dispatch vector and searches its message sections as in step 2. 

4. When all image-specific message section headers in the message dis­
patch vector have been processed and the search has not been success­
ful, EXE$GETMSG proceeds to the process-permanent message section 
header. If one exists, CTL$G1-PPMSG contains its address; otherwise, 
CTL$GL_PPMSG contains a zero. 

5. EXE$GETMSG searches each process-permanent message section located 
by the message section header until it finds a matching message or has 
no more process-permanent message sections. 

6. If the search is not successful, EXE$GETMSG proceeds to the system 
message section header. If one exists, EXE$GL_SYSMSG contains its 
address; otherwise, EXE$GL_SYSMSG contains a zero. 

7. EXE$GETMSG searches each system message section located by the 
message section header until it finds a matching message or has no more 
system message sections. 

8. If no message section exists or no matching message code is found, 
the service returns the status code SS$_MSGNOTFND and a message 
declaring that the message file does not contain the desired code. 

Otherwise, if it discovers a matching message code, EXE$GETMSG 
copies selected information into the user-defineq buffer. 

-If the FLAGS argument is not specified, $GETMSG uses the process 
default message flags (CTL$GB_MSGMASK) to select the information. 

-If the combine bit is set in the FLAGS argument (bit 4), EXE$GETMSG 
returns only the information selected by both the FLAGS argument and 
by CTL$GB_MSGMASK. 

-Otherwise, EXE$GETMSG returns the information selected by the 
FLAGS argument. 

9. Control returns to the requestor of the $GETMSG system service. 

$PUTMSG System Service 

The $PUTMSG system service provides the· ability to write one or more 
error messages to SYS$ERROR (and SYS$0UTPUT if it is different from 
SYS$ERROR). It executes in the access mode of its requestor and requests 
the $GETMSG system service to retrieve the associated text for a particular 
message code. 

The $PUTMSG system service is requested with four arguments: 

• A message argument vector describing the messages in terms of message 
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codes, message field selection flag bits, and $FAO arguments (see Sec­
tion 36.5.2) . 

• An optional action routine to call before writing the message texts . 
• An optional facility name to associate with the first message written. If 

not specified, the $PUTMSG system service uses the default facility name 
associated with the message . 

• An optional parameter to pass to the requestor's action routine. If not 
specified, it defaults to zero. 

The VMS System Services Reference Manual discusses the construction of 
the message argument vector. The VMS Run-Time Library Routines Volume 
describes other uses of the $PUTMSG service. 

The $PUTMSG system service procedure, EXE$PUTMSG in module 
SYSPUTMSG, processes each argument of the message argument vector as 
follows: 

1. It determines whether the facility code of the request is a system, Record 
Management Services (RMS), or standard facility code. Standard facility 
codes can require $FAO arguments. System messages (facility code 0) and 
RMS messages (facility code 1) do not use associated $FAQ arguments in 
the message argument vector. System exception messages require $FAO 
arguments to follow immediately after the message identification in the 
message vector. 

2. It requests the $GETMSG system service with the message code and field 
selections based upon the selection bits and $FAO arguments. 

3. If the message flags indicate at least one $FAO argument, EXE$PUTMSG 
requests the $FAOL system service (see Section 36.5.2) to assemble all 
the portions of the message (supplied facility code, optionally specified 
delimiters, output from $GETMSG). 

4. EXE$PUTMSG invokes the user's action routine, if one was specified. 
5. If the action routine returns an error status, EXE$PUTMSG does not 

write the message. Otherwise, it uses an RMS $PUT request to write 
the formatted message to SYS$0UTPUT, if it is informational, or to 
SYS$ERROR, if it is an error. In the latter case, it also writes the for­
matted error message to SYS$0UTPUT if SYS$ERROR is different from 
SYS$0UTPUT. 

When all the arguments in the message argument vector have been pro­
cessed, the $PUTMSG system service returns to its requestor. 

Procedure EXE$EXCMSG 

The catch-all condition handler uses EXE$EXCMSG, in module EXCEPT­
MSG, internally to report a condition that has not been properly handled by 
any condition handlers further up the call stack. EXE$EXCEPTION also calls 
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EXE$EXCMSG to write the contents of the general registers to SYS$0UT­
PUT if a condition is not handled in any other way. See Chapter 5 for infor­
mation on condition handling. 

EXE$EXCMSG requires two input arguments: the address of an ASCII 
string, and the address of the exception argument list passed to the condition 
handlers (see Chapter 5). 

The procedure writes a formatted dump of the general registers, signal 
array, and stack, as well as the caller's message text, to SYS$0UTPUT (and 
to SYS$ERROR if different from SYS$0UTPUT). This message appears for 
all fatal errors that occur in images that were linked without th.e traceback 
handler. Note that most images shipped with VMS are linked without the 
traceback handler. 

Although this procedure has an associated entry point in the system ser­
vice vector area, it cannot be conveniently called from any languages except 
VAX MACRO and VAX BLISS-32. The specification of the second argument 
requires access to the argument pointer (AP), a capability denied to most 
high-level languages. 

36.3 SYSTEM INFORMATION SYSTEM SERVICES 

36.3.1 

The Get System Information ($GETSYI[W]) system service provides selected 
information about the running system or about a target node in the V AXclus­
ter system. Although VMS provides synchronous and asynchronous forms 
of the service, both forms complete synchronously under VMS Version 5.2. 
Currently, the only information available for other VAXduster members is 
the information that already resides in the nonpaged pool data structures on 
the local system. 

$GETSYI arguments include the following: 

• An event flag to set when the request completes 
• The address of the Cluster System Identification (CSID) of the target 

system 
• The node name of the target system 
• The address of an item list that includ ~s (for each requested item) the type 

of information to return (item code), the size and address of a buffer to hold 
the information, and a location to receive the actual size of the returned 
information 

• The address of an IOSB to receive the final request status 
• An entry point and parameter for an AST procedure to call when the 

request completes 

Operation of the $GETSYI System Service 

The $GETSYI system service procedure, EXE$GETSYI in module SYSGET­
SYI, executes in kernel mode and performs the following actions: 
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1. It invokes its local routine NAMCSID to validate the node name/CSID 
pair. NAMCSID tests CLU$GL_CLUB to determine whether the running 
system is a VAXcluster member. 

-If the system is a VAXcluster member, NAMCSID !after resolving a 
wildcard reference) invokes another local routine, EXE$NAMCSID, to 
obtain the address of the cluster system block jCSB) specified by CSID 
or node name. EXE$NAMCSID returns the address of the CSB or, if 
no CSB is located, the error status SS$_NOSUCHNODE. EXE$GETSYI 
returns this status to its requestor. 

-If the system is not a VAXcluster member and the user specified 
a CSID, NAMCSID returns the error SS$_NOMORENODE, which 
EXE$GETSYI returns as system service status. 

-If the system is not a VAXcluster member and the user specified a node 
name, NAMCSID checks that the node name is that of the running 
system. If it is, NAMCSID returns successfully with the address of the 
system block jSB). If the node name is not that of the running sys­
tem, NAMCSID returns the error status SS$_NOSUCHNODE, which 
EXE$GETSYI returns as system service status. 

2. If an IOSB is specified, EXE$GETSYI checks it for write access and clears 
it. 

3. It clears the event flag. 
4. If AST notification is requested, EXE$GETSYI checks that the process 

has sufficient AST quota and charges the quota. 
5. EXE$GETSYI checks each item in the list for the following conditions: 

-The buffer descriptor is readable and the buffer writable. 
-The requested item is a recognized one. 

6. If these conditions ate met, EXE$GETSYI retrieves the requested infor­
mation and copies it to the user-defined buffer. Under VMS Version 5.2, 
all available information can be obtained immediately in the context of 
the requesting process. If the target is not the local system, EXE$GET­
SYI only returns information contained in the CSB or SB for that target. 
For the local system, EXE$GETSYI obtains additional information from 
various system global locations. 

7. When no information remains to be gathered, the system service returns 
to its requestor after performing the following actions: 

a. Setting the specified event flag 
b. Queuing requested AST notification to the process 
c. Writing status information to an IOSB, if one was specified 

$GETSYI Wildcard Support 

The $GETSYI system service provides the ability to obtain information 
about all members of a VAXcluster system, that is, to perform a wildcard 
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search of the cluster vector table. The cluster vector table is a table of 
CSB addresses, indexed by the low word of the CSID. The global location 
CLU$GL_CLUSVEC contains its address. 

A negative CSID argument to the $GETSYI system service indicates a 
wildcard request. EXE$GETSYI recognizes a wildcard request and passes 
information back to the requestor about the first system described in the 
cluster vector table. 

In addition, it alters the cluster system identification field of the re­
questor's CSID argument to contain the target system's node index. When 
the service requestor requests $GETSYI again, the negative sequence num­
ber lin the high-order word of the CSID) indicates that a wildcard operation 
is in progress. The positive node index lin the low-order word of the cluster 
system ID) indicates the cluster vector table offset where the search resumes. 
Note that the user program will not work correctly if it alters the value of 
the CSID argument between requests to $GETSYI. 

The user program repeatedly requests the $GETSYI system service until it 
receives the status SS$_NOMORENODE, indicating that the cluster vector 
table has been completely searched. 

36.4 DEVICE INFORMATION SYSTEM SERVICES 

36.4.1 

Images frequently require information about particular devices on the sys­
tem. VMS provides several system services to identify and obtain specific 
information about a particular device. Two important device information 
services are the Get Device/Volume Information l$GETDVI[W]) system ser­
vice and the Scan for Devices l$DEVICE_SCAN) system service. 

Support still exists for two obsolete services, Get 1/0 Channel Information 
j$GETCHN) and Get 1/0 Device Information l$GETDEV), both in module 
SYSGETDVI, but the $GETDVI system service supersedes both and should 
be used in future software development. 

$DEVICE_SCAN System Service 

Introduced in VMS Version 5.2, the $DEVICE_SCAN system service searches 
for devices that match user-specified search criteria. The search criteria, spec­
ified in an item list, include the device type, the device class, and the wild­
carded device name. The VMS Version 5.2 New Features Manual describes 
this service. 

In response to an initial request, the $DEVICE_SCAN system ~ervice 
searches for the first occurrence of a device that matches the search cri­
teria. It maintains context information so that on subsequent $DEVICE_ 
SCAN requests, it can return other matching device names, until no more 
matching devices exist. At that time, the service returns the error status 
SS$_NOMOREDEV. 

$DEVICE_SCAN arguments include the following: 
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• The address of a buffer in which $DEVICE_SCAN returns the name of a 
matching device 

• A location to contain the length of the returned device name 
• The name of a device for which to search, which can include the standard 

wildcard characters 
• The address of an item list, in which each entry includes an item code, an 

input buffer address and length, and a reserved field 
• The address of a context quadword, initially zeroed, where $DEVICE_ 

SCAN maintains search context information across service requests 

The $DEVICE_SCAN system service procedure, EXE$DEVICE_SCAN in 
module SYSGETDVI, executes in kernel mode. It performs the following 
operations: 

1. It checks each item in the item list for correctness: its item code must 
be valid; its buffer descriptor and buffer must be readable. The $DVS­
DEF macro defines two legal item codes, one indicating that the buffer 
contains a device class (defined by the $DCDEF macro) and one indicat­
ing that the buffer contains a device type (also defined by $DCDEF) for 
which to search. 

2. It restores the search context information, either zeros on the first service 
request or the unit number and the device data block (DDB) of the 
matching device located in the previous search. 

3. It invokes SCH$IOLOCKR, in module MUTEX, which raises IPL to 2 to 
prevent process deletion and obtains the I/O database mutex. Thus, the 
I/O database does not change until $DEVICE_SCAN releases the mutex. 
Chapter 20 describes the I/O database. 

4. EXE$DEVICE_SCAN invokes IOC$SCAN_IODB_USRCTX, in module 
IOSUBNPAG, which sequentially scans the I/O database. EXE$DEVICE_ 
SCAN tests each returned device and reinvokes IOC$SCAN_IODB_USR­
CTX if the device type and class do not match the search criteria. 

5. Otherwise, it invokes IOC$CVT _DEVNAM, in module IOSUBNPAG, to 
convert the matching device's name and unit number to a physical device 
name string. If the device allocation class is nonzero and the device is file­
oriented, it returns a string of the form $device_allocation_class$ddCn, 
where dd is the device name, C is the controller designation, and n is 
the unit number. Otherwise, it returns a string in the form VA.Xcluster_ 
nodename$ddCn. 

6. If the user specified a device name in the search criteria, EXE$DEVICE_ 
SCAN invokes EXE$MATCH_NAME, also in module IOSUBNPAG, to 
perform the wildcard comparison. 

7. When it locates a device that matches all criteria, EXE$DEVICE_SCAN 
returns its device name and length to the requestor after storing the unit 
number and DDB address in the context block and unlocking the I/O 
database mutex, lowering IPL to 0. 



36.4.2 

36.4 Device Information System Services 

$GETDVI System Service 

The $GETDVI system service and its synchronous counterpart $GETDVIW 
obtain device-independent information about a device. Device-independent 
information refers to information that is present for each device on the sys­
tem, such as the device unit number, UCB$W _UNIT, device characteristics, 
UCB$L_DEVCHAR, and the device type, UCB$B_DEVTYPE. It is obtained 
by reading fields in the unit control block (UCB) that have the same inter­
pretation for all devices on the system. The VMS System Services Reference 
Manual contains a complete description of the values that the service can 
return. 

The $GETDVI system service is requested with the following arguments: 

• The event flag number to set when the request completes 
• The number of an 1/0 channel assigned to the device 
• The device name (possibly obtained via the $DEVICE_SCAN system ser­

vice), used if no channel number is specified 
• The address of an item list, each entry of which includes an item code, the 

size and address of a buffer to receive information, and a location to store 
the size of the information returned 

• An IOSB to receive final status information 
• The entry point and parameter for an AST procedure to call when the 

request completes 
• A place-holding null argument 

The $GETDVI system service returns information about primary and sec­
ondary device characteristics. These two sets of characteristics are identical 
unless one of the following conditions holds: 

• If the device has an associated mailbox, the primary characteristics are 
those of the assigned device and the secondary characteristics are those of 
the associated mailbox . 

• If the device is spooled, the primary characteristics are those of the inter­
mediate device and the secondary characteristics are those of the spooled 
device . 

• If the device represents a logical link on the network, the secondary char­
acteristics contain information about the link. 

The $GETDVI system service procedure, EXE$GETDVI in module SYS­
GETDVI, executes in kernel mode. It performs the following operations: 

1. EXE$GETDVI clears the specified event flag. 
2. It checks the IOSB, if specified, for write access and clears the IOSB. 
3. It checks and charges the process's AST quota if AST notification is 

requested. If the AST quota is insufficient, it returns the status SS$_ 
EXASTLM. 
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4. If a channel number is specified, EXE$GETDVI verifies the channel 
and obtains the UCB of the device accessed on the channel. It invokes 
SCH$IOLOCKR to lock the 1/0 database mutex for read access. 

5. Otherwise, if a device name is specified, EXE$GETDVI invokes SCH$10-
LOCKR to lock the 1/0 database mutex for read access and then invokes 
IOC$SEARCHDEV, in module IOSUBPAGD, to search the 1/0 database 
for the specified device and return the device UCB and DDB. 

If the request is for secondary device characteristics, EXE$GETDVI 
locates the appropriate structures at this point. 

6. For each item, EXE$GETDVI performs the following: 

a. It checks each item in the item list for correctness: its item code must 
be valid; its buffer size, buffer, and return length must be readable or 
writable as appropriate. 

b. It processes the item code, locating the appropriate structure and 
offset and copying the desired information into the user buffer. 

7. EXE$GETDVI unlocks the 1/0 database mutex. 
8. It sets the specified event flag by invoking routine SCH$POSTEF, in 

module POSTEF. 
9. It stores a status value in the IOSB, if specified. 

10. If the user requested AST notification, EXE$GETDVI requests the De­
clare AST l$DCLAST) system service to queue the ACB as a completion 
AST and returns. 

11. If the user did not request AST notification, EXE$GETDVI returns. 

36.5 FORMATTING SUPPORT 

36.5.1 
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The final group of system services described in this chapter provides conver­
sion support for time-related requests and formatted 1/0 of ASCII character 
strings. 

Time Conversion Services 

Module SYSCVRTIM contains the time conversion system services. The 
Convert Binary Time to Numeric Time l$NUMTIM) system service executes 
in executive mode and converts a binary quadword time value in system 
time format !described in Chapter 11) into the following seven numerical 
word-length fields: 

•Year IAD) 
• Month of year 
• Day of month 
•Hour of day 
• Minute of hour 
• Second of minute 
• Hundredths of seconds 



36.5.2 

36.5 Formatting Support 

The $NUMTIM system service converts a positive time argument into the 
corresponding absolute system time. It interprets a negative time argument 
as a delta time, the current system time plus a time interval. A zero-valued 
time argument requests the conversion of the current system time. 

The Convert Binary Time to ASCII String ($ASCTIM) system service ex­
ecutes in the access mode of its requestor. It converts a system time format 
quadword into an ASCII character string. It passes the input binary time 
argument to the $NUMTIM system service and converts the seven fields re­
turned into ASCII character fields. The input time format (absolute or delta) 
and the conversion flag determine the field selection. The conversion flag 
can be set to request conversion of day and time or only the time portion. 

The $ASCTIM system service uses the $FAO system service (described 
in Section 36.5.2) to concatenate and format the string components before 
returning the string to the caller. 

The Convert ASCII String to Binary Time ($BINTIM) system service exe­
cutes in the access mode of its requestor. It converts an ASCII time string 
into a quadword absolute or delta time. If the input string expresses an abso­
lute time, the service requests the $NUMTIM system service to convert the 
current system time to supply any fields omitted in the ASCII string. The 
$BINTIM system service converts each ASCII field to numerical values and 
stores the values in the seven-word $NUMTIM format. It then combines 
the seven word fields into a binary quadword value. It negates the resulting 
value if the ASCII string specifies a delta time. 

Formatted ASCII Output System Services 

The $FAO and $FAOL system services format and convert binary and ASCII 
input parameters into a single ASCII output string. The two system services, 
in module SYSFAO, execute in the access mode of the requestor and use 
common code. The only difference between them is whether the parameters 
are passed individually ($FAO) or as the address of the first parameter in a 
list ($FAOL). 

The common routine, FAO, parses the control string character by charac­
ter. It copies information not preceded by the control character ! into the 
output string without further action. When it encounters a control char­
acter and operation code in the control string, it executes the appropriate 
conversion routine to process zero, one, or two of the system service input 
parameters. When the control string is completely and correctly parsed, the 
service returns to the requestor with a normal status code. It returns a buffer 
overflow error if the output string length is exceeded. 

The description of the $FAO system service in the VMS System Services 
Reference Manual describes the proper manner in which to specify $FAO 
requests. 
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A System Processes and Privileged 
Images 

While this book describes much of the VMS executive in detail, it omits 
most of the components that make up a full VMS system. This appendix 
identifies those components that are most closely related to the executive, 
either because they link against SYS.STB or perform privileged operations. 

Table A.I System Processes 

Linked with 
Image Name SYS.STE 

Fl lAACP.EXE Yes 

MTAAACP.EXE Yes 
REMACP.EXE Yes 
NETACP.EXE Yes 
MAIL_ SERVER.EXE No 
ERRFMT.EXE Yes 
INPSMB.EXE Yes 
JOBCTL.EXE Yes 
OPCOM.EXE Yes 
PRTSMB.EXE No 
FILESERV.EXE Yes 

CSP.EXE Yes 
CONFIGURE.EXE Yes 
SMISERVER.EXE Yes 
AUDIT _SERVER.EXE Yes 

Description 

Files-11 ODS-1 ancillary control 
process (ACP) 

Magnetic tape ACP 
Remote terminal ACP 
Network ACP 
Network Mail Utility server 
Error log buffer format process 
Card reader input symbiont 
Job controller/queue manager 
Operator communication facility 
Print symbiont 
VAXcluster Files-11 XQP cache server 

process 
VAXcluster server process 
Configure VAXcluster devices 
VMS system management facility 
Security audit server process 
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Table A.2 Images Installed with Privilege on a Standard VMS System 

Linked with 
Image Name SYS.STB Description 

ANALIMDMP.EXE Yes Image Dump Analyzer Utility 
AUTHORIZE.EXE Yes Authorize Utility 
CDU.EXE Yes Command Definition Utility 
!NIT.EXE Yes Volume Initialization Utility 
INSTALL.EXE Yes Known Image Installation Utility 
LOGINOUT.EXE Yes Login/logout image 
MAIL.EXE No Mail Utility 
MAIL SERVER.EXE No Network Mail Utility server 
MONITOR.EXE Yes System Statistics Utility 
PHONE.EXE No Phone Utility 
REQUEST.EXE No Operator request facility 
RTPAD.EXE No Remote Terminal Utility 
SET.EXE Yes SET command processor 
SETPO.EXE Yes SET command processor 
SETRIGHTS.EXE No SET RIGHTS_LIST command 

processor 
SHOW.EXE Yes SHOW command processor 
SHWCLSTR.EXE Yes SHOW CLUSTER command 

processor 
SUBMIT.EXE No Batch and print job submission 

facility 
SYSMAN.EXE Yes VMS system management facility 

command interface 
VPM.EXE Yes Remote performance data collector 

server 
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Table A.3 Images Requiring Privilege That Are Typically Not Installed 

Linked with 
Image Name SYS.STE Description 

CIA.EXE Yes Show Intrusion Utility 
LALO ADER.EXE Yes LPA-1 lK microcode loader 
LATCP.EXE Yes Local area transport control program 
MSCP.EXE Yes V AXcluster disk server 
NCP.EXE No Network control program 
OPCCRASH.EXE Yes System shutdown facility 
QUEMAN.EXE 1 No Queue manipulation command 

processor 
REPLY.EXE No Message broadcasting facility 
RUND ET.EXE No RUN [process] command processor 
SD A.EXE Yes System Dump Analyzer Utility 
SETAUDIT.EXE Yes SET AUDIT command processor 
SMPUTIL.EXE Yes Multiprocessing Utility 
STOPREM.EXE Yes Stop REMACP Process Utility 
SYSGEN.EXE Yes System Generation and Configura-

tion Utility 
XFLOADER.EXE Yes DR32 microcode loader 

1 Although this image is installed, it is not installed with privilege. 

Table A.4 Images Whose Operations Are Protected by System User 
Identification Code or Volume Ownership 

Linked with 
Image Name SYS.STE Description 

AUTHORIZE.EXE Yes Authorize Utility 
BACKUP.EXE Yes Backup Utility 
BAD BLOCK.EXE Yes Bad block locator 
DISKQUOTA.EXE Yes Disk Quota Utility 
DISMOUNT.EXE No Volume Dismount Utility 
ERF*.EXE No Error Log Formatting Utility and 

CPU-specific extensions 
!NIT.EXE Yes Volume Initialization Utility 
VERIFY.EXE No File Structure Verification Utility 
VMOUNT.EXE No Volume Mount Utility 
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Table A.5 Miscellaneous Other Images Linked with SYS$SYSTEM:SYS.STB 

ImageName 1 

AGEN$FEEDBACK.EXE 
ANALAUDIT.EXE 
ANALyzOBJ.EXE 
CHECKSUM.EXE 
CLUSTRLOA.EXE 
DBGSSISHR.EXE 

DCL.EXE 
DELTA.EXE 
DISMNTSHR.EXE 
DUMP.EXE 
DYNSWITCH.EXE 

ERRSNAP.EXE 
FIIBXQP.EXE 
FORRTL2.EXE 
FPEMUL.EXE 
IMGDMP.EXE 
MAILSHR.EXE 
MAILSHRP.EXE 
MOM.EXE 
MOUNTSHR.EXE 
MSCP.EXE 
NISCS_LAA.EXE 
NISCS_LOAD.EXE 
PATCH.EXE 
PFMFILWRT.EXE 
RECOVER.EXE 
SODELTA.EXE 
SCSLOA.EXE 
SECURESHR.EXE 
SECURESHRP.EXE 
SETSHOACL.EXE 
SMBSRVSHR.EXE 
SPISHR.EXE 

SYSLOAxxx .EXE 
TFFSHR.EXE 
VAXEMUL.EXE 
xx DRIVER.EXE 

Description 

AUTOGEN feedback data reader 
Security Auditing Analysis Utility 
Analyze Object Module Utility 
Checksum File or Image Utility 
VAXcluster support 
System service interceptor shareable image for VAX 

DEBUG and VAX PCA 
Digital command language interpreter 
Executive debugger 
Dismount system service shareable image 
File Dump Utility 
Switch terminal port to asynchronous Digital Data 

Communications Message Protocol (DDCMP) 
VAX 86x0 error log copy program 
ODS-2 fl.le system 
FORTRAN parallel processing support run-time library 
Floating-point instruction emulation 
Write Image Dump Utility 
Callable Mail Utility shareable image 
Callable Mail Utility protected shareable image 
Network management maintenance operations process 
Mount system service shareable image 
Mass storage control protocol server 
Local area VAXcluster system downline load assist agent 
Local area VAXcluster downline load secondary bootstrap 
Patch Utility 
Page Fault Monitor Utility 
RECOVER/RMS_FILE command processor 
Executive debugger 
System communication services 
Security system services shareable image 
Security system services protected shareable image 
SET/SHOW access control list (ACL) Utility 
Print symbiont shareable image 
Get System Performance Information system service 

(undocumented) shareable image; used by MONITOR 
CPU-specific support (see Appendix G) 
Terminal fallback facility shareable image 
Subset instruction emulation 
All device drivers 

1 The loadable executive images are also linked with SYS.STB but not listed in this table. 
They are described in Chapter 29. 



B Use of Listing and Map Files 

This book presents a detailed overview of the VMS executive. However, 
the ultimate authority on how the executive or any other component of 
the system works is the source code for that component. This appendix 
shows how you can use the listing and map files produced by the language 
processors and the linker with other tools to investigate further how a given 
component works. The appendix assumes that you are familiar with the VAX 
instruction set, the VAX MACRO assembler, and the linker. 

B.1 READING THE EXECUTIVE LISTINGS 

Digital provides listing kits on magnetic tape, compact disk read-only mem­
ory (CD-ROM), and microfiche to customers who purchase and sign a source 
license agreement. The kits include listings and maps for most components 
but exclude certain proprietary modules, such as the License Management 
Facility. In addition, the microfiche listings include some source files: 

• Macro and constant definition files written in VAX MACRO and VAX 
BLISS-32 

• Command definition language ICLD) files 
• Structure definition language ISDL) files 

Most of the modules described in this book, those that make up the 
executive and initialization routines, are written in VAX MACRO. This 
appendix suggests how to read these modules as well as modules written 
in VAX BLISS-32, VAX C, VAX PL/I, VAX Pascal, and other languages. 

B.1.1 VMS Listing Structure 

B.1.1.1 

Building a VMS system from source also produces the VMS listings. A di­
rectory structure divides and organizes the more than. 4,000 VMS modules 
into more than 100 facilities. A facility consists of related modules and has 
a directory. Examples of facility directories include [SYS], [RMS], [JOBCTL], 
[DCL], and [COPY). Each directory consists of a set of subdirectories, most 
of which are used only when a VMS system is built from source. 

The system build procedure places the listing and map files into the appro­
priate [facility .LIS] subdirectory of the result disk volume. The result disk 
is often referenced by a logical name like RESD. 

VMS Online Listing Structure. An online listing kit contains only the listing 
subdirectories created by the system build procedure. A listing kit CD-ROM 
contains all the distributed files for a given version of VMS (such as Version 

1129 



Use of Listing and Map Files 

B.1.1.2 

B.1.1.3 
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5.0) and those files that have been changed or added since that version was 
released (such as Versions 5.0-1, 5.0-2, and 5.1). A top-level directory for each 
version contains subdirectories for each facility. The listing kit magnetic tape 
is a BACKUP saveset of such a disk. 

VMS Microfiche Listing Structure. The microfiche listings are similar in 
organization and content to the online listings except that they also include 
some source files. 

The last microfiche sheet in the set contains an index. The index is or­
ganized by facility, and within each facility by file name. For each file, the 
index identifies the microfiche sheet number and frame coordinates of the 
beginning of the file. In addition, each microfiche sheet contains its own 
table of contents in its last frame. A complete set of microfiche, including 
index, is distributed after each major VMS release. 

Digital updates the microfiche listings for minor VMS releases by dis­
tributing update sets. Each update set replaces the old index sheet. Each 
update set begins with the sheet number of the old index sheet and contains 
a new index sheet at its end. The remaining new sheets contain new and 
replaced listings. Note that the out-of-date listings remain in the resulting 
set of sheets but are simply not referenced by the new index. Microfiche 
users may wish to retain the old index sheets to facilitate locating previous 
versions' listings. 

Locating a Listing File. Locating an address or symbol involves identifying 
both the facility and the file name. First, you must narrow the search to 
one or a few facilities. Next, since each facility contains a small number 
of map files, you can search each map file for the address or global symbol 
of interest. Once you find the address or symbol in a map file, you can see 
which module defines it and read the corresponding listing file. 

You should become somewhat familiar with the facilities that contain 
the listings read most often. The [SYS] facility contains the system services 
and most of the other executive routines described in this book. Most of 
the system service listing file names are in the form SYSservicename.LIS. 
The [BOOTS] facility contains most of the initialization listings and maps, 
including VMB, SYSBOOT, and SYSGEN. 

Many utilities have their own facilities, such as [MOUNT] and [OPCOM]. 
Some facility names are abbreviations of their associated facilities, such as 
[Fl IX] for the Files-11 Extended $QIO Processor (XQP) and [PRTSMB] for the 
print symbiont. 

If online listings are available, VMS utilities can help locate the modules of 
interest. For example, to search for a particular module without knowing the 
facility or exact file name, use wild card directory searches. The following 
Digital command language (DCL) command helps locate event-flag-related 
files: 



B.1.1.4 

B.1 Reading the Executive Listings 

$DIRECTORY RESD: [V50.•.LIS]•EVENT•.•,•EVT*·* 

Use the DCL SEARCH command to search several listing or map files for a 
particular routine, data cell, or comment. The following example locates the 
module that defines EXE$ALLOCIRP, the routine that allocates 1/0 request 
packets from the lookaside list: 

$SEARCH RESD:[V50.SYS.LIS]•.MAP EXE$ALLOCIRP 

Use an editor to peruse the file: 

$ EDIT/READ_ONLY RESD:[V50.SYS.LIS]MEMORYALC.LIS 

Locating a DCL Command Routine. Some DCL commands are implemented 
by routines within DCL and others are implemented by external images or 
routines. When you need to identify the module that implements a particular 
DCL command, first determine whether it is an internal routine (sometimes 
also called an internal image) by examining the second and third tables 
built by the INTIMAGES macro in [DCL]COMMAND.LIS. (The first table 
contains the first eight characters of each command.) The second table is 
a CASE table, and the third is a list of the internal routine names. (Internal 
routines have names of the form DCL$command .) Examine [DCL]DCL.MAP 
to identify the module that contains the internal routine of interest. 

If the command is not implemented within DCL itself, find the command 
definition file that defines the command. Many command definition file 
listings are combined in [CLD]DCLTABLEx.LIS; others reside in the same 
facility as their related listings and maps. A command definition file as­
sociates one or more commands with either the image or the routine that 
implements each command. Locate the DEFINE VERB or DEFINE SYNTAX state­
ment for the command of interest. 

A command definition file either modifies the system or process command 
table or is linked with a related program. The presence of a ROUTINE statement 
indicates that the file is linked with a related program. The MODULE statement 
assigns a name to the object module that contains the command table, and 
the ROUTINE statement specifies the routine in the related program that im­
plements the command. The following example from [INSTAL]INSCMD.LIS 
defines two of the commands for the Install Utility: 

module INSCMD 

define verb CREATE 
routine INS$CREATE_VERB 

define verb LIST 
routine INS$LIST_VERB 
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Look for a map file that contains the object module named by the MODULE 

statement, and in it find the module that defines the symbol named by the 
ROUTINE statement. Read the routine in the module's listing. The following 
example is part of [INSTAL)INSTALL.MAP: 

+------------------------+ 
! Object Module Synopsis ! 

+------------------------+ 
Module Name !dent Creator 

INS MAIN X-9 ... VAX Bliss-32 V4.5-862 

INSCMD 0-0 ... VAX/VMS Command Definition Utility 
+------------------------+ 
! Symbol Cross Reference ! 

+------------------------+ 
Symbol Value Defined By Referenced By ... 

INS$CREATE_VERB OOOOOB18-R INSMAIN INSCMD 

INS$LIST_VERB 0000113D-R INS MAIN INSCMD 

If a command definition file does not contain a ROUTINE statement, then it 
modifies a command table and uses the IMAGE statement to specify the name 
of the image that implements the command. (Most command definition 
files explicitly specify the image name. If it is missing, it defaults to the 
command verb.) Look in the image's map file to identify the modules to 
read. The following example from [CLD)DCLTABLEl.LIS defines three of 
the DCL ANALYZE commands: 

define syntax ANALYZE_CRASH_DUMP 
image SDA 
qualifier CRASH_DUMP,default 
qualifier SYSTEM 

define syntax ANALYZE_DISK_STRUCTURE 
image VERIFY 
qualifier DISK_STRUCTURE,default 
qualifier REPAIR 

define verb ANALYZE 
image ANALYZOBJ 
qualifier CRASH_DUMP,nonnegatable,syntax=ANALYZE_CRASH_DUMP 
qualifier DISK_STRUCTURE,nonnegatable,syntax=ANALYZE_DISK_STRUCTURE 
qualifier OBJECT,default,nonnegatable 



B.1 Reading the Executive Listings 

The VMS Command Definition Utility Manual gives more information 
on command definition files. 

B.1.2 Data Structure Offset, Constant, and Macro Definitions 

B.1.2.1 

Some data structure offset, constant, and macro definitions are contained in 
facility source modules. Others reside in several libraries in SYS$LIBRARY:. 
These libraries are supplied as part of the VMS binary distribution and 
are used by the operating system as well as privileged and nonprivileged 
applications. There are separate VAX MACRO and VAX BLISS-32 libraries. 
Several SDL source files contribute definitions to each library file. This 
section discusses these and other libraries and the source files that contribute 
to them. 

SYS$LIBRARY:STARLET.MLB, the default macro library that is automat­
ically searched by the assembler, defines offsets, constants, and macros that 
are used in system services and other public interfaces. SYS$LIBRARY: 
STARLET.REQ defines these in VAX BLISS-32. The STARLET definitions 
are primarily intended for use in nonprivileged applications. 

Most of the offsets, constants, and macros used by the executive are not 
public, that is, they are subject to change. These are defined in VAX MACRO 
in a special library called SYS$LIBRARY:LIB.MLB, and in VAX BLISS-32 
in SYS$LIBRARY:LIB.REQ. Applications such as user-written device drivers 
and user-written system services using this library must be reassembled or 
recompiled with each new release of LIB, which usually occurs with each 
major release of the VMS operating system. 

Locating Data Structure Offset and Constant Definitions. One set of SDL 
files contributes data structure offset and constant definitions to the STAR­
LET libraries. These files are in the [VMSLIB] facility and have names of the 
form STARDEFxx.SDL, where xx is AE, FL, MP, or QZ. Another set con­
tributes to the LIB libraries. These are in the [SYS] facility and have names 
of the form SYSDEFxx.SDL. In addition, various VAX MACRO source files 
contribute definitions to these libraries. An SDL source file can yield defi­
nitions in both VAX MACRO and VAX BLISS-32. However, only the VAX 
BLISS-32 files retain the comments from the SDL statements. 

Section B.4 briefly discusses SDL files. Appendix E lists many of the data 
structures described in this book. It also describes some of the SDL files that 
contribute to the LIB and STARLET libraries. 

Since the VAX BLISS-32 versions of the LIB and STARLET REQUIRE files 
retain the comments, they are particularly helpful. Even readers unfamiliar 
with VAX BLISS-32 can read the comments about the data structures, fields, 
and constants. Use an editor to search for the section of interest: 

$ EDIT/READ_ONLY SYS$LIBRARY:LIB.REQ 
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. The VMS Librarian Utility can extract modules from SYS$LIBRARY: 
STARLET.MLB or SYS$LIBRARY:LIB.MLB but not from the VAX BLISS-32 
REQUIRE files. An editor or the VAX BLISS-32 compiler can extract modules 
from the VAX BLISS-32 REQUIRE files. The following example illustrates 
extracting the macro that defines the unit control block (UCB) offset defini­
tions from LIB.MLB: 

$ LIBRARY/MACRO/EXTRACT•$UCBDEF/OUTPUT=SYS$0UTPUT: -
_$ SYS$LIBRARY:LIB.MLB 

The $xyzDEF Macros. Most executive modules begin by invoking a series 
of macros that define symbolic offsets into data structures referenced by the 
module. The general form of these macros is $xyzDEF, where xyz represents 
the data structure whose offsets are required. 

For example, a module that deals with the 1/0 subsystem probably invokes 
the $1RPDEF and $UCBDEF macros to define offsets into 1/0 request packets 
(IRPs) and UCBs. Some of the $xyzDEF macros, such as $SSDEF, $10DEF, 
and $PRDEF, define constants (system service status returns, 1/0 function 
codes and modifiers, and processor register definitions) rather than offsets 
into data structures. 

The symbol table at the end of an assembly listing lists the symbol defi­
nitions resulting from these macros. However, the assembly listing includes 
only those symbols referenced by the module and not necessarily all the 
symbols defined by a $xyzDEF macro. The following sequence of DCL com­
mands produces a complete list of symbols: 

$ CREATE xyzDEF .MAR 

- z 

. TITLE xyzDEF 
$xyz DEF GLOBAL 
.END 

$ MACRO xyzDEF+SYS$LIBRARY:LIB.MLB/LIBRARY 
$ LINK/NOEXECUTABLE/MAP/FULL xyzDEF 
$ PRINT xyzDEF.MAP 

This command sequence produces a single object module that contains all 
the symbols produced by the $xyzDEF macro. The argument GLOBAL makes 
all the symbols produced by the macro global. (This argument must appear 
in uppercase to be properly interpreted by the assembler's macro processor.) 
That is, the assembler passes the symbol names and values to the linker so 
that they appear on whatever map the linker produces. The full map contains 
two lists of symbol definitions, one in alphabetical order and one in numeric 
order. 

The System Dump Analyzer (SDA) Utility can read the resulting object 
file to add symbols to its symbol table. 
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Instructions That Reference Data Structures. Data structure referenc,es are 
usually made using displacement mo~e addressing. For example, the follow­
ing instruction loads the contents of,1 R3 (presumably the address of ;an IRPJ 
into the IRP pointer field la longwor~J in a UCB pointed to by RS: 

MOVL R3,UCB$L_IRP(R5) 

Such instructions are practically/ self-documenting. You do not need to 
know the overall arrangement of data in a particular structure to understand 
such instruction references. 1 

Locating Macro Definitions. Coinbonly used instruction sequences are 
often coded as macros. Other instf4'.ction sequences, particulrirly those that 
read or write internal processor registers, are more readable. if hidden in a 
macro. However, because macros, ate rarely expanded as a part of the assem­
bler listing, you must sometimes ~e able to locate the macro definitions to 
understand the invoking code. Matros fall into three classes: 

• Macros that are local to a module are defined in the module. Such macros 
are often used to generate data fables used by a single module . 

• Macros that are part of a spe9ific facility are defined in. a separate file 
and appear with the listings fcir that facility. For example, the DCL list­
ings include the macros that.: are used to assemble the 'DCL images in 
[DCL]CLIMAC.MAR. Someti~es there are related facilities, such as [CLI­
UTL], that contain related listings and macro definitions . 

• Macros that are used by many components of the oper~ting system are 
defined in the LIB or STARLET libraries. · 

Many macro definition files reside in the [SYS] and [VMSLIB] facilities. 
For example, the [SYS] facility contains SYSMAR.MAR., EXEC_REORG_ 
MACROS.MAR, and LOADER_MACROS.MAR. SYSMAR.MAR defines 
macros for many cotrimon instruction sequences that appear in several com­
ponents. [VMSLIB]UTLDEFM.MAR defines macros commonly used in struc­
ture and constant definitions. [VMSLIB]STARMISC.MAR defines macros for 
common instructioh sequences. Other facilities also contain macro source 
definition files. / 

Code written m languages other than VAX MACRO may have associated 
macro definition; files. These appear in the same fa¢ility as the associated 
code. For example, the volume initialization utility, which is written in 
VAX BLISS-32, /has a common definitions file, [INIT]INIDEF.B32. Use the 
techniques des~ribed in Section B.1.2.1 to search for a particular macro. 

The ASSUME .: Macro. The ASSUME macro checks assumed relations and 
issues an ass~m.bly time error if an assumption is not true. Sometimes 
assumptions are made about the relative location of fields within a data 
structure. 
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• A single instruction could move two or more adjacent fields. For example, 
a single MOVQ instruction could move two adjacent longword fields . 

• Autoincrement or autodecrement addressing could be used to traverse a 
s1tructure. 

Changes in the data structure could cause these instructions to fail. For 
example, to clear three adjacent fields in a UCB, a device driver uses the 
following instruction and macro i~equence to prevent subtle errors if the 
layout of the UCB changes in the future: 

CLRQ UCB$L_SVAPTE(R5) 
ASSUME UCB$W_BOFF EQ (UCB$L~SVAPTE + 4) 
ASSUME UCB$W_BCNT EQ (UCB$.L_SVAPTE + 6) 

Sometimes assumptions are made about the arithmetic relation between 
various quantities, for example, interrupt priority levels (IPLs) or spinlock 
ranks. The ASSUME macro can also check these relations. For example, the 
nonpaged pool expansion routine, EXE$EXTENDPOOL in module MEM­
ORYALC, assumes that the MMC spinlock's rank is 1 higher than the rank 
of the SCHED spinlock: 

ASSUME SPL$C_MMG EQ SPL$C_SCHED+1 

SYS$LIBRARY:STARLET.MLB definies the ASSUME macro; its source, in­
cluding comments, is contained in [VMSLIB]UTLDEFM.MAR. Examine the 
definition of the ASSUME macro to determine what options are available 
with it. The VAX BLISS-32 macro $ASSUME plays a similar role and is defined 
in SYS$LIBRARY:STARLET.REQ. 

The ASSUME and $ASSUME macros produce no executable code. Since they 
perform their checks at assembly or compile time, there is no execution 
performance penalty for using them. 

Executive Assembler Listings 

The modules that make up the base image and the loadable executive images 
are all written from a common template that includes a module header 
describing each routine in the module. The VAX MACRO and Instruction 
Set Ref ere nee Manual describes the general format of a VAX MACRO listing 
file. The comments in this section should aid you in reading the executive 
assembler listings. 

In general, the routines that make up the executive alt'e coded according to 
standards resulting in more easily maintained code. For someone attempting 
to learn how the VMS operating system works, this also produces code that 
is easier to read. 

Register Conventions. Each of the major subsystems of the executive uses a 
set of register conventions in its main routines. That is, the same registers 
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are used to hold the same contents from routine to routine. Some of the 
more common conventions are listed here . 

• R4 usually contains the address of the process control block jPCB) of 
the current process. Nearly all system service procedures and scheduling 
routines use this convention. In fact, the change-mode-to-kernel system 
service dispatcher loads the address of the PCB of the caller into R4 before 
passing control to the service-specific procedure. 

• When it is necessary to store a process header jPHD) address, RS is usually 
chosen. RS usually contains the address of the Pl window to the PHD. 
However, during the execution of the swapper and certain memory man­
agement code that executes at IPL$_SYNCH, RS contains the system space 
address of the PHD. 

• The memory management subsystem uses R2 to contain an address on an 
invalid page and R3 to contain the system virtual address of the page table 
entry jSVAPTE) that maps the page. After a physical page is associated with 
the page, its page frame number jPFN) is stored in RO. 

• The 1/0 subsystem uses two nearly identical conventions, depending on 
whether it is executing in process context (in the Queue 1/0 Request, $QIO, 
system service and in device driver function decision table, FDT, routines) 
or in response to an interrupt. The most common register contents are the 
current IRP address stored in R3 and the UCB address in RS. In process 
context, R4 contains the address of the PCB of the requesting process. 
Within interrupt service routines, R4 contains the virtual address that 
maps one of the command and status registers jCSRs) of the interrupting 
device. The VMS Device Support Manual provides a more complete list of 
register use by device drivers and the 1/0 subsystem. 

• The synchronization routines generally store a spinlock structure address 
or a spinlock index in RO. Many invocations of these routines are enveloped 
in macros, some of which set up RO before passing control to the synchro­
nization routine. For the convenience of the invoking code, these macros 
optionally preserve and restore the previous value of RO with the PRESERVE= 

argument. 

CPU-Dependent Routines. The VMS executive uses two different methods 
for incorporating CPU-dependent code. When there are only a few instruc­
tions or data references that depend on the specific CPU type, the code in­
cludes the instruction or data sequences for all CPUs. The CPUDISP macro 
uses the contents of global location EXE$GB_CPUTYPE to select the ap­
propriate instructions or data. SYSBOOT initializes this location with the 
contents of the PR$_SID register. On some processor types, the CPUDISP 
macro uses an additional level of dispatch based on the CPU subtype stored 
in global location EXE$GB_CPUDATA + lS. The CPUDISP macro is de­
scribed in the VMS Device Support Manual and is defined in SYSMAR.MAR. 
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When many instructions or data references depend on the specific CPU 
type, they are linked together into a set of CPU-dependent images (see 
Section B.2.3). 

VAX Instruction Set and Addressing Mode Use 

The VAX instruction set contains instructions with a natural number of 
operands. Thus, there are two- and three-operand forms of the arithmetic 
instructions ADD, SUB, MUL, and DIV. There are also bit manipulation instruc­
tions, a calling standard, character string instructions, and so on. All of these 
allow the assembly language programmer to produce code that is not only 
efficient but also readable. 

However, there are certain places in the executive where the most obvi­
ous choice of instruction or addressing mode is not used because a shorter or 
faster alternative is available. Interrupt service routines, routines that exe­
cute at elevated IPL, and commonly executed code paths, such as the system 
service dispatcher and the main paths in the pager, are all examples where 
clarity of the source code is sacrificed for execution speed. 

There are at least two reasons for concern over instruction length, even 
though the VAX architecture supports a very large virtual address space. Most 
areas where instruction size is an issue are within the nonpaged executive. 
This portion of the system consumes a fixed amount of physical memory. 
Keeping instruction size small is one way to keep this real memory cost to 
a minimum. 

More important, VAX processors make use of an instruction lookahead 
buffer that contains the next few bytes in the instruction stream. Its size 
varies on different processors but is at least eight bytes on all current pro­
cessor types. If the buffer empties, the next instruction or operand cannot be 
evaluated until the buffer is replenished. Keeping instructions small in key 
areas avoids this wait. The instruction buffer is filled in parallel with other 
CPU operations. 

Techniques for Increasing Instruction Speed. This section lists some of the 
techniques employed to reduce instruction size or increase execution speed. 
The list is hardly exhaustive, but a pattern emerges here that can be applied 
to other modules in the executive that are not explicitly mentioned. Each 
list element describes a general technique and may also contain a specific 
example, including the name of the module that employs the technique: 

• Aligning data on "natural" boundaries is the most universally applied tech­
nique to reduce access time. Naturally aligned data begins at certain ad­
dress boundaries, for example, aligned longwords begin at addresses that 
are multiples of four. Aligned reads and writes to memory are faster than 
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unaligned transfers because of the way memory controllers are organized 
and the way processors access memory controllers. There are several man­
ifestations of this technique: 

-The VAX MACRO .PSECT directive and the DECLARE_PSECT macro, 
and the VAX BLISS-32 PSECT statement specify code and data program 
section (PSECT) alignments. (EXEC_REORG_MACROS.MAR defines 
the DECLARE_PSECT macro.) 

-The VAX MACRO .ALIGN directive aligns data and code. 
-Fields within data structures are ordered so that they begin on natural 

boundaries. Every structure allocated from pool is at least quadword­
aligned. Sometimes dummy fields are included to force subsequent fields 
to natural boundaries. 

-Many frequently invoked routines are aligned because longword-aligned 
branch targets increase transfer speed. For example, system service vec­
tors and executive transfer vectors are all longword-aligned. Each set of 
vectors begins on a page boundary, and each vector is padded with NOP 

instructions or . BYTE o directives to make it a multiple of four bytes 
long. In addition, the beginnings of some loops are aligned . 

• When two successive writes to memory occur, on many types of VAX pro­
cessors the second write must wait for the first to complete. If successive 
write operations can be overlapped with register-to-register operations, in­
struction stream references, or other operations that do not generate writes 
to memory, then some other instruction can begin execution while the 
memory write completes. 

Several executive routines use this technique. The three examples that 
follow are among the most commonly executed code paths in the system: 

-The page fault handler saves RO through RS with PUSHL instructions 
interspersed among instructions that do not write to memory. 

-The $QIO system service procedure intersperses writes to memory (ini­
tializing an IRP) with reads from its argument list and register operations. 

- The change mode dispatchers for executive and kernel modes build 
customized call frames on their stacks. The writes to memory (the stack 
operations) are overlapped with register and instruction stream refer­
ences . 

• A pipeline design processor, such as the VAX 86x0 CPU, can have several 
instructions at varying stages of completion at any point in time. The 
overlapped instruction execution has several implications for coding style. 

-The most common code path is in line. Code is arranged to minimize 
branching and maximize "falling through" to the next instruction or 
routine. Linear code executes faster than code that branches because 
after a branch the pipe is empty, losing the advantages of overlapped 
execution. 
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-Unrelated instructions are inserted between two instructions if the sec­
ond instruction depends on the result of the first. If the first instruction 
has not completed, the dependent instruction stalls. Inserting unrelated 
instructions allows the first instruction to complete before the depen­
dent instruction begins. 

• There are three ways to push registers onto the stack: a PUSHR mask instruc­
tion, a series of MOVQ instructions to -(SP), or a series of PUSHL instructions. 
Instruction implementation is sufficiently different on various VAX pro­
cessors to make generalization about performance of these instructions 
difficult. However, the PUSHR instruction is seldom used in time-critical 
places because it is slower than either MOVQ or PUSHL unless there are four 
or more registers to save. PUSHR must interpret its bit mask operand and 
then push the registers accordingly. PUSHR, however, does not alter condi­
tion codes and is used when their settings must be retained across saving 
registers . 

• When it is necessary to include a test-and-branch operation, a decision 
as to which sense of the test to branch on and which sense to allow to 
continue in line is required. One basis for this decision is to allow the 
common (usually error-free) case to continue in line, only requiring the 
(slower) branch operation in unusual cases. 

Unusual Instruction and Addressing Mode Use. There are several instances 
in the executive where the purpose of an instruction is not at all obvious. 
This list includes some of the common occurrences of unusual instruction 
set and addressing mode use. 

• There are many instances of the following instruction sequence where the 
initial setting of the bit has no effect on the flow of control: 

BBSS bit arguments, 10$ 
10$: 

This sequence sets the bit identified by a bit number or bit position. An 
equivalent instruction sequence using BBCC clears the specified bit. 

In some cases the BBxx instructions are preferred to the BISx or BICx 

instructions. The Bixx instructions require a mask with a 1 in the desig­
nated position. Creating such a mask requires either two instructions or 
an immediate mask that might occupy a longword. The only exception to 
this involves a bit in the first six positions, where a short literal constant 
can contain the mask. 

Note that a BBCS instruction is equivalent to a BBSS instruction when 
the branch destination is the next instruction. There are some occurrences 
of BBCS where a BBSS would seem to accomplish the same purpose. The 
usual sense of the bit in question influences the instruction choice so as 
to avoid the branch in the usual case. 
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• There are several instances of autoincrement deferred addressing where the 
need for the increment of the register is not apparent. For example, both 
of the following instructions occur in the rescheduling interrupt service 
routine in module SCHED: 

INSQUE (R1),G(R2)+ 

REMQUE G(R2)+,R4 

In both cases, before the instruction executes, R2 contains the address 
of the listhead of a doubly linked list. Its contents after the instruction 
executes are irrelevant. 

In fact, the increment is totally unnecessary; only double deferral from 
a register is needed. In other words, the addressing mode ©O (R2) would 
be equally appropriate, since the final contents of R2 are not important. 
(The VAX architecture defines no ©(Rx) double deferral addressing mode 
without a displacement.) However, deferred byte displacement addressing 
costs an extra byte to hold the displacement. In this commonly executed 
code path, saving one byte is extremely important. 

It is worth noting that there i,s no similar problem when a single level of 
deferral from a register is required. The assembler generates simple register 
deferred mode (code 6) when it encounters byte displacement mode with 
a displacement of zero (O(Rn) I in the source code . 

• The MOVAx and PUSHAx instructions combined with displacement mode ad­
dressing are equivalent to an ADDLx instruction. For example, the following 
two instructions are equivalent: 

PUSHAB 12(R3) 

ADDL3 #12,R3,-(SP) 

However, the PUSHAB instruction is one byte shorter and executes faster 
than the ADDL3 instruction . 

• The use of MOVAx and PUSHAx described in the previous item can be com­
bined with indexed mode addressing to accomplish a multiply by 2, 4, or 
8. For example, the following instruction multiplies the contents of Rl by 
4, adds the value of the symbol LNMHSH$K_BUCKET to the product, and 
places the result back into Rl: 

MOVAL G#LNMHSH$K_BUCKET[R1],R1 

EXE$PROCSTRT, in module PROCSTRT, uses this instruction during 
process creation to calculate the size of a logical name hash table from the 
number of entries . 

• The following instruction, found in routine EXE$ALLOCATE in module 
MEMORYALC, serves two purposes: 

MOVAB (RO)+,R2 
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POPL des!= MOVL (SP) + ,des! 

Before POPL (SP) After POPL (SP) 

X: X: 

X+4: X+4: t 
X+8: c 1--4 SP X+8: 

X+12: B X+12: 

X+16: A X+16: 

Figure B.1 
Stack Modification due to POPL (SP) Pseudo 
Instruction 

(indeterminate) Direction of 
..._.SP stack growth 

A 

Its ostensible purpose is to place the address of the allocated block of 
memory into R2, where it is later picked up by the invoker. However, 
because the allocated block is always at least quadword-aligned, the byte 
context of the instruction forces an increment of RO by 1, setting the low 
bit of RO. The invoker interprets this set bit as a success indicator . 

• The permanent symbol table of the VAX MACRO assembler recognizes 
the mnemonic POPL, even though there is no POPL instruction in the 
VAX instruction set. The code generated for the following instructions 
is identical: 

POPL dst 

MOVL (SP)+,dst 

The mnemonic generates two bytes (one for the instruction opcode and 
the other for the source operand specifier) plus whatever is required to 
specify the destination operand. 

For example, the following pseudo instruction (the first instruction in 
the change-mode-to-kernel dispatcher in the module SYSTEM_SERVICE_ 
DISPATCHER) removes the change mode code from the stack (so that a 
subsequent REI will work correctly) and loads it into RO: 

POPL RO 

A combination of the POPL instruction with an unusual addressing mode 
occurs in the exception dispatcher for change-mode-to-supervisor and 
change-mode-to-user exceptions where it is necessary to remove the sec­
ond longword from the stack. The following instruction has the effect of 
removing the next-to-last item from the stack and discarding it, leaving 
the stack in the state pictured in Figure B. l: 

POPL (SP) 

• The VAX instruction set does not include a TSTQ instruction. However, the 
following instruction sets the condition codes as a TSTQ instruction would: 

MOVQ RO,RO 
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The Set Timer ($SETIMR) and Schedule Wakeup ($SCHDWK) system 
services, in module SYSSCHEVT, use this instruction. 

REI Instruction Use. The REI instruction most commonly dismisses an 
interrupt or exception at the end of an interrupt or exception service routine. 
However, other routines also use it. It is the only means of reaching a less 
privileged access mode from a more privileged mode. Two slightly different 
techniques accomplish this mode change. The most general technique of 
going to a less privileged access mode alters the flow of execution at the 
same time. The RSX-11 Application Migration Executive (AME), part of the 
optional product VAX-11 RSX, uses this technique to get into compatibility 
mode and transfer control to the PDP-11 code. The following instruction 
sequence accomplishes the desired result: 

PUSHL new-PSL 
PUSHL new-PC 
REI 

Note that the many protection checks b.uilt into the REI instruction (see 
Chapter 2) prevent the REI instruction from being used by a nonprivileged 
user to get into a more privileged access mode or to elevate IPL, two opera­
tions that would allow such a user to damage the system. 

A second technique changes the access mode but not the flow of con­
trol. The instruction sequence listed here (patterned after code contained in 
module PROCSTRT) shows this second technique: 

PUSHL 
BSBB 

PUSHL 
BSBB 

BRB 
DORE!: REI 

executive-mode-PSL 
DORE! 

user-mode-PSL 
DORE! 

somewhere_else 

;Do processing in 
; executive access mode 

;Do processing in 
; user access mode 

;REI uses pushed PSL, and the PC 
; that BSBB put on the stack 

B.1.5 Elimination of Seldom-Used Code 

Several different techniques are used to eliminate code and data that are 
not used very often. For example, none of the programs used during the 
initialization of a VMS system remains after its work is accomplished. The 
VMS executive uses several techniques that allow these routines to do their 
work as efficiently as possible and yet eliminate them after they have done 
their work. 
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Bootstrap Programs. The following list illustrates some of the techniques 
used to remove system initialization code from memory after it has done its 
work: 

• Both VMB and SYSBOOT execute in physical pages whose use is not 
recorded anywhere. When module EXEC_INIT places all physical pages 
except those occupied by the permanently resident executive on the free 
page list, it includes the pages used by VMB and SYSBOOT. Their contents 
are overwritten the first time that each physical page is used. 

• After the initialization of a loadable executive image is complete, the ad­
dress space occupied by its fixup and initialization sections is deallocated . 

• The SYSINIT process deallocates to the free page list the physical pages 
occupied by EXEC_INIT (see Chapter 31). As part of this deallocation, the 
system page table entries (SPTEs) mapping EXEC_INIT are also deallocated . 

• Part of system initialization takes place in process context. The swapper 
creates the SYSINIT process, which in turn creates the startup process. 
Because both SYSINIT and startup are separate processes, they disappear 
when they are deleted, that is, after they have completed their work. 

Infrequently Used System Routines. The simplest and most common tech­
nique used to prevent infrequently used code and data from permanently 
occupying memory is to put them into one of the pageable image sections 
of a loadable executive image. Chapter 29 describes loadable executive im­
ages, their image sections, and their loading. The normal operation of system 
working set replacement eventually forces infrequently referenced pages out 
of the system working set. 

Process creation employs an additional technique to eliminate code from 
the system after a process is created. The swapper invokes a special subrou­
tine when it brings a process into memory from SHELL. This subroutine is 
located in several of the SHELL pages that the swapper brings into memory. 
These pages become the kernel stack of the new process, once the swapper 
changes the process state to computable and resident. Because of the way 
that the swapper does its I/O, these pages are mapped as PO pages in the 
swapper's address space. 

Locking Code or Data into Memory 

While infrequent use may lead to a routine's being placed in a pageable image 
section, other considerations may require that the code be nonpageable. For 
example, the page fault handler assumes that page faults do not occur above 
IPL 2; it enforces this assumption by generating a fatal bugcheck if it is 
violated. 

Several infrequently used and thus pageable system services (including the 
Create Process, $CREPRC, system service) elevate IPL to IPL$_SYNCH (for 
example, as a result of acquiring a spinlock while synchronizing access to 
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the scheduler database) and thus need to lock some code pages into memory. 
Several different techniques are used to lock pages into memory. 

Placing Code into the Nonpaged Executive. Code and data in the executive 
images reside in pageable and nonpageable image sections. The minimum 
amount possible is placed into the PSECTs that comprise the nonpageable 
image sections. A branch or subroutine call transfers control from the paged 
to the nonpaged code. The following variation on a routine within the Get 
Job/Process Information ($GETJPI) system service illustrates the technique. 
The entire routine cannot exist in a pageable image section because the 
routine EXE$NAMPID returns at IPL$_SYNCH and thus may not incur a 
page fault . 

25$: 

. PSECT EXEC$PAGED_CODE 

.ENABLE LOCAL_BLOCK 

JSB 25$ 

.SAVE_PSECT 

.PSECT EXEC$NONPAGED_CODE 
JSB G- EXE$NAMPID 

SETIPL #0 
RSB 
.RESTORE_PSECT 

;Processing begins 
; in paged code 

;This is the only 
; nonpaged piece 

;Processing continues 
; in paged code 

Dynamically Locking Pages into the System Working Set. The preceding 
piece of code only contributes seven bytes to the nonpaged executive. The 
$CREPRC system service must execute many more instructions at IPL$_ 
SYNCH. It employs a technique that dynamically locks pages into the sys­
tem working set. (The Lock Pages in Working Set, $LKWSET, system service 
cannot lock pages into the system working set.) 

The PMLREQ and PMLEND macros, new with VMS Version 5, expand 
into code that dynamically locks and unlocks a set of pages in the system 
working set and optionally changes the IPL. Typically the macros appear at 
the beginning and end of a code sequence that may not incur a page fault. 
However, a larger range of pages may be specified with macro arguments. 
This range may include data as well as code. 

The instructions generated by the PMLREQ macro push the size and 
starting address of the group of pages to be locked. If not el.."Jllicitly specified, 
the starting addre.ss is a location within the macro. The ending address 
must be specified. An instruction generated by the macro transfers control 
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to MMG$LOCK_SYSTEM_PAGES, in module LOCK_SYSTEM_PAGES, as a 
co-routine. 

MMG$LOCK_SYSTEM_PAGES performs several functions for each page 
to be locked: 

1. It checks that the page is in system space. If it is not, the routine generates 
the NOTSYSVA bugcheck. 

2. It faults the page into the system working set, if it is not already in the 
system working set. 

3. If the page's PFN is described in the PFN database, the routine increments 
. the share count (PFN$Ax_SHRCNT) in the PFN database and sets the 
locked in working set flag (WSL$V _ WSLOCK) in the page's working set 
list entry (WSLE). These steps ensure that the page remains locked in 
memory. 

MMG$LOCK_SYSTEM_PAGES then returns to instructions generated by 
the PMLREQ macro as a co-routine. The size and starting address of the 
locked pages remain on the stack. If a new IPL was specified in the macro 
invocation, PMLREQ now sets the IPL. The pages in the specified range 
are now valid and will remain so until the instructions generated by the 
PMLEND macro are invoked. 

The PMLEND macro generates instructions that optionally change the IPL 
and then transfer to MMG$UNLOCK_SYSTEM_ENTRY, in module LOCK_ 
SYSTEM_PAGES, as a co-routine. MMG$UNLOCK.__SYSTEM_ENTRY uses 
the size and starting address information left on the stack. It decrements the 
share count in the PFN database and clears WSL$V _ WSLOCK for each locked 
page. After cleaning up the stack, MMG$UNLOCK_SYSTEM_ENTRY re­
turns. The following example illustrates the use of these macros: 

PMLREQ END=2300$ ;Lock pages between here and 2300$ 
;++ 

; NB: Co-routine address + 2 LWs have been placed on top of stack 
;--

;This code incurs no page faults 

PMLEND ;Through with locked pages 
;++ 

; NB: Co-routine address + 2 LWs have been removed from top of stack 

2300$: 

Dynamically Locking Pages into the Process Working Set. Privileged utilities 
and other code that executes in process context may need to lock pages into 
the process working set when running at elevated IPL. Two techniques are 
available, depending on the number of pages to be locked. The $LKWSET 
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system service can lock any number of pages into the process working set, 
limited only by the process quotas and the amount of free memory. 

A process can lock one or two pages into its working set with a simple 
technique known as "poor man's lock down." Once the desired pages are 
in the working set, the process raises the IPL to IPL$_SYNCH or higher, 
blocking quantum-end processing and, in particular, the working set limit 
adjustment. 

BEGIN_LOCK: 
DSBINT LOCK_IPL 

ENBINT 

BRB END_LOCK 
LOCK_IPL: 

.LONG IPL$_SYNCH 
END_LOCK: 

;Processing begins in paged code 

;No page faults will occur here 

;Page faults can occur again 

ASSUME (END_LOCK-BEGIN_LOCK) LE 512 

The DSBINT macro expands to the following instructions: 

MFPR #PR$_IPL,-(SP) 
MTPR src,#PR$_IPL 

The key to this technique is that the second instruction generated by the 
DSBINT macro cannot successfully complete until both the page containing 
the instruction and the page containing the source operand are valid. (The 
instruction faults these pages into the working set if they are not already 
valid.) Once the instruction completes, implying that both pages are valid, 
IPL is set at IPL$_SYNCH, preventing quantum end and further working set 
list manipulation until the IPL is lowered (with the ENBINT macro). 

The ASSUME macro ensures that the DSBINT macro and source operand 
are not more than one page apart. This prevents the possibility of an invalid 
page existing between the two valid pages, an occurrence that would not only 
subvert this technique but might also lead to a PGFIPLHI fatal bugcheck. 

Several processes, such as the error formatter process (ERRFMT), use this 
technique. 

B.2 MAP FILES 

The map files produced when a VMS system is built from source are in­
dispensable, to readers of listing files. The listing kit contains map files for 
many imag~s, including the base image, loadable images, device drivers, and 
utilities. (Chapter 29 describes the base image and loadable executive im­
ages.) Most tnap files reside in the same facility as their related listing files. 
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Table B. l Selected Map File Locations 

Map File 

Base image (SYS.MAP) 
Most loadable executive images 
CPU-specific loadable images 

(SYSLOAxxx .MAP) 
CLUSTRLOA.MAP and CSP.MAP 
SCSLOA.MAP 
CPULOA.MAP 
SYSTEM_DEBUG.MAP 
DDIF$RMS_EXTENSION.MAP 
RECOVERY _UNIT _SERVICES.MAP 
RMS.MAP 
SYSMSG.MAP 
VMB.MAP, SYSGEN.MAP, and 

SYSBOOT.MAP 
Most device drivers 

Other device drivers 

DCL.MAP 

Facility 

[SYS] 
[SYS] 
[SYSLOA] 

[SYSLOA] 
[SYSLOA] 
[CPULOA] 
[DELTA] 
[RMS EXT] 
[RUF] 
[RMS] 
[MSGFIL] 
[BOOTS] 

[DRIVER], [COMM_DRIVER], 
or [TTDRVR] 

[RTPAD], [LAT], [NETACP], 
[DUP], or [TFF] 

[DCL] 

For example, the base image and most loadable executive image map files 
reside in the [SYS] facility. Table B.l lists the location of selected map files. 

Map files list the value of each global symbol. These symbols include 
routine and data cell locations as well as some data structure offset, bit 
field, and other constant definitions. The base image map file lists the system 
virtual addresses of the executive transfer vectors, data cell pointers, and data 
cells in SYS.EXE. The loadable image map files list the locations of routines 
and data cells as offsets from the beginning of the image. The system virtual 
addresses of locations within loadable images are not determined .until the 
images are loaded. The utility map files list the virtual addresses of routines 
and data cells. 

It is often necessary to identify which module defines a given symbol. 
Because of the modular construction of VMS, many symbols referenced by 
one routine are defined in some other module. Many images are built from a 
large number of modules, so the map file alphabetical cross-reference listing 
is particularly valuable. It identifies the modules that define and reference 
each global symbol. 

The techniques described for using the executive image map files are also 
applicable to other map files. Map files for device drivers are necessary for 
debugging a new device driver. This section also describes map files for DCL 
and certain other loadable images because these images are not activated in 
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the usual way but rather are mapped into process or system virtual address 
space. 

B.2.1 VMS Executive Map Files 

B.2.1.1 

Fundamentally, the map files enable you to correlate system virtual ad­
dresses and their locations in listing files. For example, when the system 
crashes, the addresses that are reported on either the console terminal or in 
the system dump file must be related to actual routines and data cells in 
system address space. 

Locating a System Address in the Listings. The list of loadable executive 
images and their addresses reported on the console terminal and in the 
system dump file help identify which executive image contains the offending 
reference. Compare the address in question with the base and end addresses 
for each loadable image to find the correct range. (System addresses less than 
MMG$A_SYS_END are in the base image.) 

In the following example, output from the System Dump Analyzer, the 
location 80132F2016 is in the loadable executive image EXCEPTION.EXE: 

Image 
SYSMSG 

SYSDEVICE 
MESSAGE_ROUTINES 
EXCEPTION 
LOGICAL_NAMES 
SECURITY 

Base End Length 
800C9COO 800F2AOO 00028EOO 

8011E600 8011FCOO 00001600 
80120200 80122800 00002600 
80132COO 8013B200 00008600 
8013BCOO 80130600 00001AOO 
8013DCOO 8013F400 00001800 

Subtract the image's base address from the address in question to get its 
offset within the loadable image. Continuing the previous example, calculate 
the offset of the location in question: 

80132F20 
-80132COO 

Location in question 
Base address of loadable executive image EXCEPTION 

320 Location's offset within EXCEPTION 

The identified image's map file then helps correlate addresses to PSECTs. 
In its program section synopsis, a map file lists the PSECTs that contribute 
to an image and lists each PSECT's address range. A loadable image's base 
address is not determined until the image is loaded, so addresses in its map 
file are offsets from the beginning of the image. 

Compare the offset in question with each PSECT address range until you 
find the PSECT that contains the offset. Note the PSECT's name, since it is 
required later. From the following fragment of EXCEPTION.MAP, you can 
see that offset 32016 is in PSECT EXEC$NONPAGED_CODE: 
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+--------------------------+ 
! Program Section Synopsis ! 

+--------------------------+ 
Psect Name Module Name Base End 

EXEC$NONPAGED_CODE 
BUGCHECKBT 

00000000 000004FF 
00000000 00000039 

EXCEPTION 0000003C 0000021A 
SYSTEM_SERVICE_DISPATCHER 

00000220 000003F6 
SYSTEM_SERVICE_EXIT 

PATA_NONPAGED 
EXEC$NONPAGED_DATA 

000003F8 0000047E 
00000480 000004FF 
00000600 00001FE7 

Often, several modules contribute to a given PSECT. The map file's 
program· section synopsis lists the beginning and ending address of each 
module's contribution to the PSECT. Compare the offset in question with 
each module's contribution to the identified PSECT to find the module 
that defines the location. In this example, the module SYSTEM_SERVICE_ 
DISPATCHER contributes offset 32016· 

Subtract the beginning address of the identified module's contribution to 
the PSECT from the offset of interest to produce an offset into the correct 
module and PSECT: 

00000320 
-00000220 

Location's offset within EXCEPTION 
Base of EXEC$NONPAGED_CODE in SYSTEM_SERVICE_DISPATCHER 

100 PSECT offset within module SYSTEM_SERVICE_DISPATCHER 

This is the offset, within module SYSTEM_SERVICE_DISPATCHER's con­
tribution to PSECT EXEC$NONPAGED_CODE, of the instruction or data 
reference in question. You must ensure that you locate the correct PSECT 
within the listing, since there may be several PSECTs. The following frag­
ment is from SYSTEM_SERVICE_DISPATCHER.LIS: 

0000 163 DECLARE_PSECT EXEC$NONPAGED_CODE,ALIGNMENT•QUAD 

0100 573'EXE$CMODKRNL:: 
0100 574 POPL.RO ;Retrieve CHMK code from stack 

If the address in question is within the base image, the calculations are 
somewhat simpler. The addresses in SYS.MAP are system addresses, so com­
pare the address in question directly with the address ranges in the program 
section synopsis to identify the PSF.CT and contributing module. Subtract 
the beginning.address of the identified module's contribution to the PSECT 
from the address in. question to produce an offset within the assembler list­
ing. Exercise care to read the correct PSECT in the listing. 
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In general, this technique, transforming an address into an offset within 
a module's contribution to a PSECT, can be applied to any type of image. 
However, associating a system space address with a particular image may be 
more difficult for images other than the base image and loadable executive 
images. Other system space images include dynamically loaded images like 
device drivers, or one of the other loadable images like the CPU-d!!pendent 
images. Global pointers identify most dynamically mapped portions of sys­
tem address space. Examine the contents of these locations to determine 
the component that contains the offending address. Chapter 29 contains. a 
description of some of these loadable routines and the loading mechanism. 

Relocatable and Vectored Symbols. A symbol whose ·value must be adjusted 
to account for an image's base address is identified as a relocatable symbol 
in a map file, indicated by R after the symbol's value: 

+------------------------+ 
! Symbol Cross Reference ! 

+------------------------+ 
Symbol Value 

EXE$GL_FKWAITFL 00003098-R 

Key for special characters above·: 
+------------------+ 
! * - Undefined ~:· 

U - Universal 
R - Relocatable 
X - External 
WK - Weak 
V - Vectored 
M - Mask value 

+------------------+ 

Defined By 

FORKCNTRL 

Referenced By ... 

TIMESCHD 

Executive code refers to routines and data cells in other loadable images 
through executive transfer vectors and data cell pointers in the base image. 
The vectors and pointers are filled in with the correct addresses when the 
corresponding im:ages are loaded. A map file identifies the symbols for these 
routines and data cells :as vectored universal symbols, indicated by V after 
the symbol's value. A universal symbol is one that can be interpreted outside 
the image that defined it. 

Vectored universal symbols appear twice in a map file.· In the first occur­
rence, the symbol's val,il:l;e equals its offset from the beginning of the image 
that defines the symboLThe linker creates a second symbol, indicated by 
(V) after the symbol's 'name in the map file. The second symbol's value 
equals the execlitive trallsfer vector's or data cell pointer's address in the base 
image. 

1151 



Use of Listing and Map Files 

1152 

For example, the routine EXE$DEANONPAGED resides in module MEM­
ORYALC, part of the loadable executive image SYSTEM_PRIMITIVES.EXE. 
(Module EXSUBROUT invokes this routine directly, since EXSUBROUT is 
also part of SYSTEM_PRIMITIVES.EXE.) The following fragment is from 
SYSTEM_PRIMITIVES.MAP: 

Symbol 

EXE$DEANONPAGED 
EXE$DEANONPAGED (V) 

Value Defined By Referenced By ... 

0000051A-RV MEMORYALC EXSUBROUT 
80002338 

Each loadable executive image is linked with the base image's symbol 
table (SYS.STB) to resolve references to externally defined vectored universal 
symbols, such as routines in other images. These universal symbols appear 
twice in the resulting map file. In the first occurrence, the symbol's value 
equals its location within the image that defines the symbol, in this case, 
its address in the base image (the same address as its vector or pointer). As 
previously described, the linker creates a second symbol whose value equals 
the vector's or pointer's address in the base image. 

Continuing the previous example, module ASTDEL (part of the load­
able executive image EVENT _FLAGS_AND_ASTS.EXE) invokes EXE$DEA­
NONPAGED. The following fragment is from EVENT_FLAGS_AND_ 
ASTS.MAP: 

Symbol Value 

EXE$DEANONPAGED 80002338 

EXE$DEANONPAGED (V) 80002338 

Defined By Referenced By ... 

SYS AS TD EL 
POSTEF 
SYSASCEFC 

A relocatable symbol that is referenced by other loadable images is gen­
erally a vectored universal symbol. Relocatable symbols that are referenced 
only by modules within the same loadable image are not vectored universal 
symbols. 

Symbols for constants like data structure offsets, IPLs, and the sizes of 
preallocated buffers are not affected by the ultimate location of a loadable 
image. These symbols are therefore not relocatable: 

Symbol Value Defined By Referenced By 

PQL$C_SYSPQLLEN 00000046 SWAPPER SWAPPER_INIT 

Some base image global symbols have an associated version mask. The 
map file identifies these mask value symbols with M after the symbol values. 
The map file lists the symbol values, not the mask values: 



Symbol 

EXE$DUMPCPUREG 
EXE$V_BUGREBOOT 

B.2.2 DCL.MAP 

Value Defined By 

8000A868-RM SYSLOAVEC 
OOOOOOOB-M SYSPARAM 

B.2 Map Files 

Referenced By ... 

SYSLOAVEC_MASK 
SYSPARAM_MASK 

A command language interpreter (CLI) is mapped into a virtual address 
range that is not known until the mapping occurs. The first longword at 
global location CTL$AG_CLIMAGE in the Pl pointer page contains the base 
address of any CLI. Because DCL is linked with a base address of zero, the 
contents of this location can be used to relate an address extracted from the 
map with a virtual address in a running system. 

For example, if the location of interest is 7FF720CC16 in Pl space and the 
contents of the first longword at CTL$AG_CLIMAGE is 7FF7120016, then 
the difference between these two numbers equals the offset into the DCL 
image. Obviously, if this difference is larger than the size of the DCL image, 
then the address is not in DCL: 

7FF720CC 
-7FF71200 

Location of interest 
Base address of DCL 

ECC Location's offset within DCL image 

Compare the location's offset within DCL to the address ranges listed 
in [DCL]DCL.MAP to determine which PSECT and module contain the 
location of interest. Subtract the beginning address of the identified module's 
contribution to the PSECT from the offset within DCL to produce an offset 
into the correct module and PSECT. This offset then locates in the listing 
file the routine or data cell of interest. 

To calculate the Pl space address of a data cell or instruction in a DCL 
module, start with the location as shown in the module's listing. Add to it 
the base address of the module's contribution to the correct PSECT (taken 
from [DCL]DCL.MAP) to form the offset into the DCL image. Add this sum 
to the contents of global location CTL$AG_CLIMAGE to form the Pl address 
of the location in question. 

B.2.3 CPU-Dependent Routines 

Entire routines or modules that are CPU-dependent, such as the machine 
check service routine, are linked together into a set of CPU-dependent im­
ages. The images have names of the form SYSLOAxxx.EXE, where xxx iden­
tifies the CPU type (see Appendix G). SYSBOOT uses the CPU type and 
subtype to determine which SYSLOA image to load into nonpaged pool. 
Segregating CPU-dependent routines into separate images minimizes the 
number of CPU-dependent decisions that are made at execution time and 
reduces the size of the executive. 
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SYSBOOT stores the base address of the CPU-dependent code in the global 
location MMG$GL_SYSLOA_BASE jsee Chapter 31). The map files for the 
CPU-dependent images have names of the form [SYSLOA]SYSLOAxxx .MAP. 
Perform address calculations using the techniques described in Sec­
tion B.2.1.1. 

B.2..4 Device Driver Map Files 

SYSGEN loads device drivers into nonpaged pool. The SYSGEN command 
SHOW /DEVICE displays the address range into which the driver images 
are loaded. Each driver is linked with a base address of 0. The starting 
address displayed by SDA corresponds to offset 0 in the image. The address 
of the driver dispatch table !DDT) displayed by SDA usually corresponds to 
PSECT $$$1 lS_DRIVER in the driver map. The VMS Device Support Manual 
discusses debugging device drivers in more detail. 

B.2..5 Other Map Files 

You can use other map files for the cross-reference capabilities already men­
tioned. In addition, many other components of the operating system execute 
as regular images, so no base addresses have to be used to locate addresses 
in virtual address space. The addresses on the map correspond to the vir­
tual addresses that are used for an executable image. However, the map file 
does not include the base address of nonbased, position-independent code 
shareable images; their base addresses are determined at image activation 
time. 

As the image activator processes an image and its references to other im­
ages, the image activator builds image control blocks jICBs) jsee Chapter 26). 
An ICB includes the image name and the starting and ending addresses of the 
image. The ICBs for activated images form a doubly linked list starting at 
the listhead IAC$GL_IMAGE_LIST. You may be able to examine this list of 
ICBs with SDA (in conjunction with the map file's image section synopsis) 
to determine what images are mapped into PO space. The listhead and the 
ICBs are pageable, so they may not be present in a system dump file. 

B.3 SYSTEM DUMP ANALYZER 
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SDA allows you to analyze a running system or examine the contents of a 
dump file. Map files can only supply addresses of static data storage areas 
in the system, not their contents. In addition, many data structures are 
dynamically constructed. With SDA you can examine these data structures, 
other memory locations, and the hardware context of each processor. 

The VMS System Dump Analyzer Utility Manual describes how to use 
SDA. This section mentions several of the many SDA commands that are 
especially useful when studying how the operating system works. 
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B.3.1 Symbols 

SDA maintains a symbol table that it uses to interpret memory addresses 
and contents. SDA reads certain symbols, including SYS$SYSTEM:SYS.STB 
and a small subset of SYS$SYSTEM:SYSDEF.STB, into its symbol table when 
it first executes. You can add symbols to SDA's table with the DEFINE and 
READ commands. Since SYS$SYSTEM:SYSDEF.STB contains many com­
mon data structure definitions, reading it into SDA's symbol table is fre­
quently useful. Use the following command: 

SDA> READ SYS$SYSTEM:SYSDEF.STB 

Many of the dynamic data structures are located through global pointers in 
the base image. These static locations are loaded when these structures are 
created or modified, either as a part of system initialization or some other 
loading mechanism. 

The SDA command SHOW SYMBOLS/ALL is one way to display these 
global pointers. It shows both the addresses and the contents of all locations 
for which SDA has symbols in its symbol table. This list, together with the 
map files, enables you to locate any data structure in system address space if 
you know the global name that locates the structure. Alternatively, use the 
EXAMINE command to determine the contents of particular global pointers. 
The SHOW SYMBOLS/ALL command produces a very long list. The SHOW 
SYMBOLS/ ALL xyz command lists only those symbols that begin with xyz. 

The READ/EXECUTIVE command reads the definitions of universal sym­
bols from the loadable executive images and adds the appropriate image's 
base address to each relocatable symbol. Before such a command is issued, 
SDA interprets references to vectored universal symbols as their base image 
executive transfer vectors or data cell pointers. In the example, note that 
SDA has defined the symbol SYSTEM_PRIMITIVES to be the base address 
of the loadable image: 

SDA> SHOW SYMBOL EXE$ALLOCIRP 
EXE$ALLOCIRP = 80002160 : A4109F17 
SDA> EXAMINE/INSTRUCTION EXE$ALLOCIRP !Executive transfer vector 
EXE$ALLOCIRP: JMP ©#SYSTEM_PRIMITIVES+00010 

After reading a loadable executive image's symbol table, SDA interprets 
references to vectored universal symbols as their locations within the load­
able executive image. SDA creates new symbols (prefixed with V _) for the 
vectors or pointers in the base image. In the example, note that SDA now 
displays the JMP instruction destination as EXE$ALLOCIRP: 

SDA> READ/EXECUTIVE 
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Y.SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]RMS.EXE;7 
Y.SDA-I-READSYM, reading symbol table SYS$COMMON: [SYS$LDR]CPULOA.EXE;4 

SDA> SHOW SYMBOL EXE$ALLOCIRP 
EXE$ALLOCIRP = 8018!410 : OOB08FDD 
SDA> SHOW SYMBOL V_EXE$ALLOCIRP 
V_EXE$ALLOCIRP = 80002160 : A4109F17 
SDA> EXAMINE/INSTRUCTION EXE$ALLOCIRP !Location in loadable image 
EXE$ALLOCIRP: PUSHL #OOOAOOBO 
SDA> EXAMINE/INSTRUCTION V_EXE$ALLOCIRP !Executive transfer vector 
V_EXE$ALLOCIRP: JMP Cl#EXE$ALLOCIRP 

The SDA command SHOW EXECUTIVE produces a list of the loadable 
executive images, their starting and ending addresses, and their sizes. Sec­
tion B.2.1.1 describes the use of this list in conjunction with the executive 
map files. SDA defines symbols for the base addresses of the loadable execu­
tive images and a number of other loadable images. These symbols include 
the following: 

• CLUSTRLOA-Base address of V AXcluster system support 
• xxDRIVER (xx is typically a device name)-Base address of device driver 
• FPEMUL-Base address of floating-point emulation code 
• MSCP-Base address of the mass storage control protocol (MSCP) server 
• SCSLOA-Base address of system communication services (SCS) image 
• SYSLOA-Base address of CPU-specific code 
• V AXEMUL-Base address of string emulation code 

With these symbols you can form simple address expressions to specify a 
particular location in any of these images. For example, the following SDA 
command examines offset 10016 in PAGE_MANAGEMENT: 

EXAMINE PAGE_MANAGEMENT + 100 

The symbol table files read by SDA contain only global symbols. (In the 
case of loadable executive images, they contain only universal symbols.) 
Sometimes it is helpful to add some of a module's local symbols to SDA's 
symbol table. You can create a local symbol definition file for SDA. Start 
with the map file that includes the module in question. For example, SYS­
TEM_PRIMITIVES.MAP reveals that module TIMESCHDL's contribution to 
PSECT EXEC$NONPAGED_CODE begins at offset 10B016 from the begin­
ning of the loadable image: 

+--------------------------+ 
! Program Section Synopsis ! 

+--------------------------+ 
Psect Name Module Name Base End 

EXEC$NONPAGED_CODE 
MEMORYALC 
INIRDWRT 

00000000 00001F5F 
00000000 OOOOOBC5 
OOOOOBC8 OOOOOC58 
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MUTEX 
FORKCNTRL 
TIMESCHDL 

OOOOOC5C OOOOOF5E 
OOOOOF60 000010AE 
000010BO 000017C1 

Next, examine the list of symbols and their values located at end of the 
module's listing file. The following fragment is from TIMESCHDL.LIS: 

CHECK_SANITY_TIMER 
CHKTMQ 

PSECT name 

EXEC$NONPAGED_CODE 

00000000 R 
000001BC R 

+----------------+ 
! Psect synopsis ! 
+----------------+ 
Allocation 

05 
05 

PSECT No. Attributes 

00000712 ( 1810.) 05 ( 5.) 

If an online listing is. available, use an editor to manipulate a copy of it 
into a local symbol definition file. If only a microfiche listing is available, 
manually create a local symbol definition file. In either case, phrase each 
definition as an SDA DEFINE command. Begin by defining a symbol whose 
value equals the starting address of the PSECT that contains the code or data 
of interest. The following fragment is from a user-created symbol definition 
file called TIMESCHDLLOCALS.COM: 

DEFINE PSECT_BASE = SYSTEM_PRIMITIVES + 10BO 
DEFINE CHECK_SANITY_TIMER = PSECT_BASE + 00000000 
DEFINE CHKTMQ = PSECT_BASE + 000001BC 

Invoke the local symbol definition file from SDA. Notice that SDA then 
uses the local symbol CHKTMQ: 

SDA> EXAMINE/INSTRUCTION SYSTEM_PRIMITIVES + 10BO + 275 
SYSTEM_PRIMITIVES+01325: BRW SYSTEM_PRIMITIVES+0126C 

SDA> ©TIMESCHDL_LOCALS.COM 

SDA> EXAMINE/INSTRUCTION SYSTEM_PRIMITIVES + 10BO + 275 
CHKTMQ+OOOB9 : BRW CHKTMQ 

SDA> EXAMINE/INSTRUCTION CHKTMQ 
CHKTMQ: BLBC ©#SMP$GL_FLAGS,CHKTMQ+00012 

Section B.1.2.2 describes a technique for adding data structure offset and 
other symbols to SDA's symbol table. 

B.3.2 Address Space Layout 

You can also use SDA to create a picture of Pl and system address space. 
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As Figure 1.8 shows, many of the pieces of system address space are con­
structed at initialization time. SYSGEN parameters determine the sizes of 
the various pieces (see Appendix F). In response to the command SHOW 
PAGE_ TABLE/SYSTEM, SDA lists the contents of the entire system page 
table. This listing, the symbol table, the list of loadable executive images 
and their starting addresses, and the system map files allow you to draw a 
sketch of system virtual address space. 

The output from the SDA SHOW PAGE_ TABLE/Pl command, together 
with the information in Figure 1.2 and Table F.6, allows you to draw a layout 
of Pl address space. 

B.4 INTERPRETING SDL FILES 

Most data structures and other systemwide constants used by the executive 
and other system components are defined with SOL files. SOL enables data 
structures to be defined in a language-independent way. SOL can generate 
language-specific versions of the same structure in any of several languages. 

When a VMS system is built from source, the SOL preprocessor reads and 
processes system data structure definitions written in SOL. It produces a set 
of macro definitions for use by the VAX MACRO assembler and another set 
for the VAX BLISS-32 compiler. 

In particular, there are SOL files that generate the macros that define 
data structures and constants in the VAX MACRO libraries SYS$LIBRARY: 
LIB.MLB and STARLET.MLB and the VAX BLISS-32 files SYS$LIBRARY: 
LIB.REQ and STARLET.REQ. The VMS listing kit includes these SOL files. 
The SOL definition of a data structure typically includes comments describ­
ing the fields of the structure. The SOL definition can thus be a source of 
information about the meaning of system data structure fields. These com­
ments are not propagated to LIB.MLB and STARLET.MLB, although they do 
appear in LIB.REQ and STARLET.REQ. 

This section shows how the SOL description of a data structure relates to 
both the resulting VAX MACRO definition and a picture of the structure. Its 
sole purpose is to assist in the interpretation of SOL files supplied with the 
VMS listing kit. Note that SOL is an internal Digital tool. Any other use is 
completely unsupported. 

B.4.1 A Sample Structure Definition 
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To see how a structure is defined, look at the resultant symbol definitions 
and compare the SOL definition of a given structure with the resultant VAX 
MACRO or VAX BLISS-32 symbols. Any listing that uses the structure in 
question includes these symbols. Alternatively, use the command procedure 
listed in Section B.1.2.2. 

Example B.l shows the SOL definition of the AST control block (ACB) 
and the comments that accompany each field definition. Figure 7 .1 shows the 



B.4.2 

Example B.1 
SDL Definition of AST Control Block 

module $ACBDEF; 
I• + 
/• AST CONTROL BLOCK DEFINITIONS 

B.4 Interpreting SDL Files 

I• AST control blocks exist as separate structures and as 
I• substructures within larger control blocks such as I/O 
I• request packets and timer queue entries. 
I• 
/•-
aggregate ACBDEF structure prefix ACB$; 

ASTQFL longword unsigned; /•AST queue forward link 
/•AST queue backward link 
/•Structure size in bytes 
/•Structure type code 

ASTQBL longword unsigned; 
SIZE word unsigned; 
TYPE byte unsigned; 
RMOD_OVERLAY union fill; 

RMOD byte unsigned; 
RMOD_BITS structure fill; 

/•Request access mode 

/•Mode for final delivery MODE bitfield length 2; 
FILL_1 bitfield length 2 
PKAST bitfield mask; 

fill prefix ACBDEF tag $$; /•Spare 
/•Piggyback 

NODELETE bitfield mask; 

QUOTA bitfield mask; 
KAST bitfield mask; 

end RMOD_BITS; 
end RMOD_OVERLAY; 
PID longword unsigned; 
AST longword unsigned; 
ASTPRM longword unsigned; 
KAST longword unsigned; 

constant <quote>(LENGTH) equals 
constant <quote>(LENGTH) equals 

end ACBDEF; 
end_module $ACBDEF; 

I• special kernel AST 
/•Don't delete ACB on 
I• delivery 
/•Account for quota 
/•Special kernel AST 

/•Process ID of request 
/•AST routine address 
/•AST parameter 
/•Internal kernel mode 
I• transfer address 

prefix ACB$ tag K; /•Length of block 
prefix ACB$ tag C; /•Length of block 

layout of an ACB. Table B.2 lists each SDL directive in the ACB definition, its 
meaning, the symbol it creates, and the value of that symbol. The following 
sections briefly describe the individual SDL directives. 

Commonly Used SDL Statements 

An SDL statement consists of SDL keywords, user-specified names, and 
expressions. A semicolon terminates an SDL statement. It can be followed 
by a comment to be included in the output macro. The comment must begin 
with the character pair/*. 

Valid SDL expressions can contain any of the following: 

• Numeric constants 
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Table B.2 SDL Directives and Resultant VAX MACRO Symbol Definitions for AST 
Control Block 

Directive Resultant Symbol 
SDL Directive Meaning Symbol Value 

module $ACBDEF Begin $ACBDEF 
macro 

aggregate ACBDEF structure Begin ACB 
prefix ACB$ structure 

ASTQFL longword unsigned Longword field ACB$L_ASTQFL 0 
ASTQBL longword unsigned Longword field ACB$L_ASTQBL 4 
SIZE word unsigned Word field ACB$W_SIZE 8 
TYPE byte unsigned Byte field ACB$B_TYPE 10 
RMOD_OVERLAY union fill Begin overlay 

structure 
RMOD byte unsigned Byte field ACB$B_RMOD 11 
RMOD_BITS structure fill Begin RMOD_ 

BITS structure 
MODE bitfield length 2 Bit field of ACB$V_MODE 0 

length 2 ACB$_MODE 2 
FILL_l bitfield length 2 fill Skip two spare 

prefix ACBDEF tag $$ bits 
PKAST bitfield mask Single bit field ACB$V _PKAST 4 

ACB$M_PKAST 1016 
NODELETE bitfield mask Single bit field ACB$V _NODELETE 5 

ACB$M_NODELETE 2016 
QUOTA bitfield mask Single bit field ACB$V _QUOTA 6 

ACB$M_QUOTA 4016 
KAST bitfield mask Single bit field ACB$V_KAST 7 

ACB$M_KAST 8016 
end RMOD_BITS End RMOD_BITS 

structure 
end RMOD_OVERLAY End the overlay 

structure 
PID longword unsigned Longword field ACB$L_PID 12 
AST longword unsigned Longword field ACB$L_AST 16 
ASTPRM longword unsigned Longword field ACB$L_ASTPRM 20 
KAST longword unsigned Longword field ACB$L_KAST 24 
constant "LENGTH" equals . Define a constant ACB$K_LENGTH 28 

prefix ACB$tag K 
constant "LENGTH" equals. Define a constant ACB$C_LENGTH 28 

prefix ACB$tag C 
endACBDEF End ACB 

structure 
end_module $ACBDEF End $ACBDEF 

macro 

1160 



B.4.2.1 

B.4.2.2 

B.4.2.3 

B.4 Interpreting SDL Files 

• Local symbols 
• Special offset location symbols: period j.J, colon (:J, and circumflex(') 
• Arithmetic, shift, and logical operators 
• Parentheses to define the order of evaluation 

The next sections describe the SDL statements commonly employed to 
define structures used by VMS. They emphasize the SDL files used to build 
the system. A complete syntax of each statement is not given. 

MODULE Statement. A MODULE statement groups related symbols and 
data structures. It defines a collection of SDL statements to be processed. 
Typically, each VMS data structure is defined within its own module. The 
name of the module is the ~ame of the generated macro. For example, the 
following statement from Example B. l defines the beginning of the module 
that defines the ACB data structure: 

module $ACBDEF; 

AGGREGATE Statement. An AGGREGATE declaration defines a single data 
structure within a module. There are two types of AGGREGATE declaration:' 

•STRUCTURE 
•UNION 

The fields in a STRUCTURE occupy consecutive storage locations; the 
fields in a UNION reuse the same storage location. 

The period character symbolizes the current byte offset within an AG­
GREGATE declaration. 

Each VMS data structure definition begins with an AGGREGATE STRUC­
TURE statement. This statement includes a PREFIX keyword that specifies 
the prefix characters in each symbol definition. For example, the following 
statement from Example B. l defines the beginning of the ACB structure, 
each of whose symbol definitions begins with the characters ACB$: 

aggregate ACBDEF structure prefix ACB$; 

Data Structure Fields. Each field in a data structure is defined in a statement 
consisting of a name and one or more keywords. A keyword can identify the 
type of data or its size. For example, the keywords BYTE, WORD, LONG­
WORD, QUADWORD, and OCTAWORD specify integer fields of those 
sizes. A keyword can specify some attribute of a field. For example, the 
keyword SIGNED specifies that an integer field is signed. The default is 
unsigned. Many other keywords are used to define VMS data structures. Ex­
amples are F _FLOATING, BITFIELD, and CHARACTER. 

The value of the symbol name is set equal to the current value of an 
internal offset counter. In general, as each field definition is processed, the 
internal counter value is increased by the size of the field jl, 2, 4, or 8). 
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B.4.2.4 

B.4.2.5 

B.4.2.6 

B.4.2.7 
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Symbol Names. The naming conventions that apply to VMS symbols defined 
through SDL are listed in Appendix D. In general, a data structure symbol has 
the form structure$type_field-name. Structure identifies its data structure. 
Type identifies the type of data. Field-name names the field. 

A data structure symbol name is formed from a combination of the fol­
lowing elements: 

• PREFIX keyword value, which includes a dollar sign ($) to indicate a 
Digital-defined symbol 

• Letter indicating type. Data type keywords of BYTE, WORD, LONG­
WORD, QUADWORD, or OCTAWORD generate characters B, W, L, Q, 
or 0. A CONSTANT statement usually specifies a TAG value of C or K. 

• Underscore (_) 
• Field name from the data type statement 

Symbol Values. It is possible for the user to assign values directly to a 
symbol defined as part of an SDL structure (for example, with the DEFAULT 
keyword). Normally, however, SDL assumes that a symbol will be used as 
an offset from the beginning of its data structure. SDL keeps track of the 
current offset from the start of the structure, and SDL assigns that value to 
the symbol. 

UNION Statement. It is often desirable to give a field multiple names. 
In addition, subfields within a field often exist. The UNION statement 
defines the beginning of a substructure whose members reuse the same 
storage locations. The following extract from Example .B.1 shows a UNION 
substructure: 

RMOD_OVERLAY union fill; 
RMOD byte unsigned; 
RMOD_BITS structure fill; 

end RMOD_BITS; 
end RMOD_OVERLAY; 

This extract defines both the symbol ACB$B_RMOD and the structure 
ACB$R_RMOD_BITS to be the value of the current byte offset. The FILL 
qualifier indicates that no symbol is to be generated in the VAX MACRO 
and VAX BLISS-32 expansions of the structure definition. 

CONSTANT Statement. The CONSTANT statement defines a constant. De­
pending on what TAG argument is supplied, the CONSTANT statement 
produces symbols of the form xyz$C_name, xyz$K__name, or xyz$_name. 
By convention, symbols with C in the type field of the symbol name de­
fine ASCII character constants, while symbols with K in the type field de­
fine other constants. Early versions of VMS used only the C type for both 



B.4.2.8 

B.4.2.9 

B.4 Interpreting SDL Files 

character and other constants, and these symbols are still in use. Table B.2 
illustrates one use of the CONSTANT statement: 

constant "LENGTH" equals . prefix ACB$ tag K; 

This statement defines the symbol ACB$K_LENGTH equal to the value of 
the period character, the current byte offset in the ACB structure. 

There are several other examples of constant definitions in both the SYS­
DEF and STARDEF SDL files. The definitions of the DYN$ symbols describe 
dynamically allocated structures. The JPI$ symbols describe an information 
list to the $GETJPI system service. 

BITFIELD Statement. Bit fields require two numbers to completely describe 
them, a bit position and a size. SDL always defines a bit position (indicated 
by Vin the type field of the symbol name). The bit position is specified by 
the current bit offset. The circumflex character n symbolizes the current bit 
offset within the current subaggregate. 

The size of a field (indicated by S in the type field of the symbol name) 
is defined when the field size is specified explicitly with the LENGTH, 
keyword. It is often useful to define a mask symbol (indicated by Min the· 
type field of the symbol name) that has l's in each bit position defined by 
the bit field and zeros elsewhere. SDL defines such a symbol if the MASK 
keyword is present in the BITFIELD statement. 

Because this section merely tries to show what symbols result from a given 
SDL definition, the simplest way to describe the bit field syntax is with some 
examples. Table B.2 includes SDL BITFIELD statements extracted from the 
definition of the ACB. 

END and END_MODULE Statements. The structure definition is terminated 
with an END statement. The module is terminated with an END_MODULE 
statement. 

1163 



C Executive Data Areas 

The writable executive consists of various dynamically allocated tables as 
well as statically allocated data structures that are a part of the base system 
image SYS.EXE. This appendix summarizes the major dynamic data areas 
and emphasizes the static base image data. 

Most of the information presented in this appendix is from the specific 
source modules that comprise SYS.EXE. In general, it does not include data 
areas private to any loadable executive images. Names that appear in the 
Global Symbol column in lowercase type represent local symbols, which are 
only used within the module in which they are defined. 

C.1 THE BASE IMAGE 

This section describes the global cells that make up the base image. Its or­
ganization, defined by the module EXEC_LAYOUT, is shown in Figure 29.1. 
Each subsection describes a different area in the base image and lists the 
source modules that contribute to that area. Program section names (PSECT 
names) are included in each section title. 

C.1.1 System Service Vector Area ($$$000_SYSTEM_SERVICE_ VECTORS) 

The first 16 pages of system virtual address space are reserved for system 
service vectors. These pages are read-only except when system services are 
being loaded. The global label SYS$SO_ VECTOR_END, defined in module 
EXEC_LAYOUT, represents the high-address end of the system service vector 
pages. Chapter 6 gives more information on this section. 

C.1.2 Nonpaged Executive Transfer Vectors ($$$$$NONPAGED_CODE) 
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Most of this area consists of transfer vectors to routines in loadable executive 
images. Each vector is a quadword. Most vectors contain a JMP instruction 
whose target is within a loadable executive image. In a few cases, a routine 
itself is in this area. The table that follows identifies these cases as "routine 
body." Module SYSTEM_ROUTINES defines this area. Chapter 29 gives 
more information on this section. 



Global Symbol 

ACP$ACCESS 

ACP$ACCESSNET 
ACP$DEACCESS 

ACP$MODIFY 

ACP$MOUNT 

ACP$READBLK 

ACP$WRITEBLK 

BUG$BUILD_HEADER 

BUG$DUMP _REGISTERS 
BUG$FATAL 
BUG$READ_ERR_RETRY 
BUG$REBOOT 
COM$DELATTNAST 
COM$DELATTNASTP 

COM$DELCTRLAST 
COM$DELCTRLASTP 

COM$DRVDEALMEM 
COM$FLUSHATTNS 
COM$FLUSHCTRLS 
COM$POST 

COM$POST_NOCNT 

COM$SETATTNAST 
COM$SETCTRLAST 
DTSS$TIMESERVICE_ 

HOOK 
ERL$ALLOCEMB 
ERL$COLDSTART 

ERL$DEVICEATTN 

ERL$DEVICERR 

ERL$DEVICTMO 

ERL$GETFULLNAME 

ERL$LOGMESSAGE 

Size 

Quadword 

Quadword 
Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 
Quadword 
Quadword 
Quadword 
Quadword 
Quadword 

Quadword 
Quadword 

Quadword 
Quadword 
Quadword 
Quadword 

Quadword 

Quadword 
Quadword 
Quadword 

Quadword 
Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

C.1 The Base Image 

Description of Routine 
Function decision table (FDT) routine for IO$_ 

ACCESS and IO$_CREATE to files-oriented 
device 

FDT routine for 10$_ACCESS to network device 
FDT routine for 10$J)EACCESS to files-oriented 

device 
FDT routine for IO$_ACPCONTROL, 10$_ 

DELETE, IO$_MQDIFY to files-oriented device 
FDT routine for 10$_MOUNT to files-oriented 

device 
FDT routine for 10$_READxBLK to files-oriented 

device 
FDT routine for 10$_ WRITEx BLK to files-oriented 

device 
Write bugcheck information into error log message 

buffer 
Store processor register contents in a buffer 
Reserved 
Reserved 
Reboot after bugcheck processing 
Deliver attention ASTs from specified list 
Deliver attention ASTs from specified list to a 

specific process 
Deliver out-of-band ASTs from specified list 
Deliver out-of-band ASTs from specified list to a 

specific process 
Deallocate nonpaged pool 
Flush specified attention AST list 
Flush specified out-of-band AST list 
Queue an IRP to systemwide 1/0 postprocessing 

queue 
Queue an IRP to systemwide 1/0 postprocessing 

queue without incrementing UCB$LOPNT 
Enable or disable attention ASTs 
Enable or disable out-of-band ASTs 
Hook for distributed time service optional 

software 
Allocate and initialize an error message buffer 
Allocate and initialize an error message buffer for 

a boot message 
Allocate and initialize an error message buffer for 

a device attention condition 
Allocate and initialize an error message buffer for 

a device error 
Allocate and initialize an error message buffer for 

a device timeout 
Copy device name including system communica­

tion services node name to a buffer 
Allocate and initialize an error message buffer for 

an error associated with a command packet 
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Global Symbol 

ERL$LOGSTATUS 

ERL$LOG_DMSCP 

ERL$LOG_ TMSCP 

ERL$RELEASEMB 
ERL$UNEXP 

ERL$VEC_RETURN 

ERL$WAKE 
ERL$WARMSTART 

EXE$ABORTIO 

EXE$ACVIOLAT 
EXE$ALLOCATE 

EXE$ALLOCBUF 
EXE$ALLOCCEB 

EXE$ALLOCIRP 
EXE$ALLOCJIB 

EXE$ALLOCPCB 
EXE$ALLOCTQE 

EXE$ALONONPAGED 
EXE$ALONPAGVAR 

EXE$ALONPAGWAIT 

EXE$ALONPAGWAITS 
EXE$ALOP1IMAG 

EXE$ALOP1 PROC 
EXE$ALOPAGED 
EXE$ALOPHYCNTG 
EXE$ALOSHARED 
EXE$ALTQUEPKT 

EXE$ARITH 
EXE$ASTDEL 
EXE$ASTFLT 
EXE$BLDPKTGSR 

EXE$BLDPKTGSW 
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Size 

Quadword 

Quadword 

Quadword 

Quadword 
Quadword 

Quadword 

Quadword 
Quadword 

Quadword 

Quadword 
Quadword 

Quadword 
Quadword 

Quadword 
Quadword 

Quadword 
Quadword 

Quadword 
Quadword 

Quadword 

Quadword 
Quadword 

Quadword 
Quadword 
Quadword 
Quadword 
Quadword 

Quadword 
Quadword 
Quadword 
Quadword 

Quadword 

Description of Routine 

Allocate and initialize an error message buffer 
for an error returned in a mass storage control 
protocol (MSCP) end packet 

Allocate and initialize an error message buffer for 
a disk MSCP controller error 

Allocate and initialize an error message buffer for 
a tape MSCP controller error 

Release a filled-in error log message buffer 
Unexpected interrupt service routine that 

generates a nonfatal bugcheck 
Unexpected interrupt service routine that 

increments counter 
Conditionally wake ERRFMT process 
Allocate and initialize an error message buffer for 

a restart 
Abort an 1/0 request from function decision table 

action routine 
Access violation exception service routine 
Allocate dynamic memory from specified variable­

length list 
Allocate and initialize nonpaged pool for a buffer 
Allocate and initialize nonpaged pool for a 

common event block 
Allocate and initialize nonpaged pool for an IRP 
Allocate and initialize nonpaged pool for a job 

information block 
Allocate and initialize nonpaged pool for a PCB 
Allocate and initialize nonpaged pool for a timer 

queue entry 
Allocate nonpaged pool 
Allocate nonpaged pool from the variable-length 

list 
Allocate nonpaged pool and conditionally wait if 

pool not available 
Alternative entry point to EXE$ALONPAGWAIT 
Allocate memory from process allocation region 

for duration of image 
Allocate memory from process allocation region 
Allocate paged pool 
Allocate and map physically contiguous memory 
Allocate a block of MA780 shared memory 
Queue an IRP to a driver's alternate start 1/0 

entry point 
Arithmetic error exception service routine 
Call AST procedure 
Signal stack access failure during AST delivery 
Build 1/0 packet for shared memory global section 

read 
Build 1/0 packet for shared memory global section 

write 



C.1 The Base Image 

Global Symbol Size Description of Routine 

EXE$BLDPKTMPW Quadword Build 1/0 packet for modified page writer 
EXE$BLDPKTSWPR Quadword Build 1/0 packet for swap read 
EXE$BLDPKTSWPW Quadword Build 1/0 packet for swap write 
EXE$BOOTCB_CHK Quadword Check validity of boot control block 
EXE$BREAK Quadword Breakpoint exception service routine 
EXE$BUG_CHECK Quadword Process a bugcheck 
EXE$BUILDPKTR Quadword Build 1/0 packet for page read 
EXE$BUILDPKTW Quadword Build 1/0 packet for page write 
EXE$CANCELN Quadword Internal entry point for $CANCEL system service 
EXE$CARRIAGE Quadword Interpret 1/0 carriage control specifier 
EXE$CATCH_ALL Quadword Catch-all condition handler procedure 
EXE$CEBREFLCK Quadword Acquire SHMCEB reference count lock 
EXE$CHECKACL Quadword Search an access control list for an entry granting 

requested rights 
EXE$CHECKACMODE Quadword Perform access mode protection check 
EXE$CHECKCLASS Quadword Perform nondiscretionary security check 
EXE$CHECKPROT Quadword Perform system-owner-group-world protection 

check using expanded protection mask 
EXE$CHECKPROT_l6 Quadword Perform system-owner-group-world protection 

check using 16-bit mask 
EXE$CHECK_BYPASS Quadword Check for either BYPASS privilege or READALL 

privilege and read access 
EXE$CHKCREACCES Quadword Check that process has create access to an object 
EXE$CHKDELACCES Quadword Check that process has delete access to an object 
EXE$CHKEXEACCES Quadword Check that process has execute access to an object 
EXE$CHKIMAGNAME Quadword Check access to image name in image header 

buffer 
EXE$CHKLOGACCES Quadword Check that process has logical 1/0 function access 

to an object 
EXE$CHKPHYACCES Quadword Check that process has physical 1/0 function 

access to an object 
EXE$CHKPRO_INT Quadword Internal entry point to the $CHKPRO system 

service 
EXE$CHKRDACCES Quadword Check that process has read access to an object 
EXE$CHKWAIT2 Quadword Check whether event flag wait condition is 

satisfied 
EXE$CHKWRTACCES Quadword Check that process has write access to an object 
EXE$CLEANUP_ORB Quadword Delete all structures referenced by an object rights 

block 
EXE$CLLUTILSRV Quadword Dummy command language interpreter callback 

procedure 
EXE$CLOSE_MSG Quadword Close files opened by EXE$0PEN_MSG for 

SYS$0UTPUT and SYS$ERROR 
EXE$CLOSE_RDB Quadword Close the rights database file and zero the rights 

identifier table 
EXE$CMODSUPR Quadword Change mode to supervisor exception service 

routine 
EXE$CMODUSER Quadword Change mode to user exception service routine 
EXE$COMPAT Quadword Exception service routine for compatibility mode 

faults 
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Global Symbol Size Description of Routine 
EXE$CONNECT _ Quadword Initialize system service vector and array entries 

SERVICES for a newly loaded system service 
EXE$CONTSIGNAL Quadword Continue from exception 
EXE$CRE_GTABLE Quadword Create group logical name table 
EXE$CRE_JGTABLE Quadword Create job and group logical name tables 
EXE$DEALLOCATE Quadword Deallocate dynamic memory to specified variable-

length list 
EXE$DEANONPAGED Quadword Deallocate nonpaged pool 
EXE$DEANONPGDSIZ Quadword Deallocate nonpaged pool block whose size is in 

Rl 
EXE$DEAP1 Quadword Deallocate memory to Pl allocation region 
EXE$DEAPAGED Quadword Deallocate paged pool 
EXE$DEAPGDSIZ Quadword Deallocate paged pool block whose size is in Rl 
EXE$DEASHARED Quadword Deallocate a block of MA780 shared memory 
EXE$EPID_ TO_IPID Quadword Convert extended process ID to internal process 

ID 
EXE$EPID_ TO_PCB Quadword Convert extended process ID to PCB address 
EXE$EXCEPTION Quadword Common exception servicing routine 
EXE$EXCPTNE 20 bytes Routine body-executive mode last chance 

exception handler 
EXE$EXCPTN 6 bytes Routine body-kernel mode last chance exception 

handler 
EXE$EXIT _IMAGE Quadword Procedure to invoke $EXIT at end of image 

execution 
EXE$EXPANDSTK Quadword Expand user stack 
EXE$EXTENDPOOL Quadword Extend nonpaged pool areas 
EXE$FINDACL Quadword Search specified access control list segment for an 

entry of specified type 
EXE$FINISHIO Quadword Complete an 1/0 operation at function decision 

table level 
EXE$FINISHIOC Quadword Complete an 1/0 operation at function decision 

table level, zeroing second longword of status 
EXE$FORK Quadword Insert fork process on specified queue 
EXE$FORKDSPTH Quadword Dispatch fork processes from a given queue 
EXE$FORIL WAIT Quadword Insert fork process on fork and wait queue 
EXE$FRKIPL10DSP Quadword IPL 10 interrupt service routine, fork dispatching 
EXE$FRKIPL11DSP Quadword IPL 11 interrupt service routine, fork dispatching 
EXE$FRKIPL6DSP Quadword IPL 6 interrupt service routine, fork dispatching 
EXE$FRKIPL8DSP Quadword IPL 8 interrupt service routine, fork dispatching 
EXE$FRKIPL9DSP Quadword IPL 9 interrupt service routine, fork dispatching 
EXE$HWCLKINT Quadword Interval timer interrupt service routine 
EXE$IMGDELMSG Quadword Send image purge message to job controller 
EXE$IMGDMP _EXEC Quadword Merge image dump facility after executive, 

supervisor, or user mode error and call it 
EXE$IMGDMP _MERGE Quadword Merge image dump facility after user mode error 

and call it 
EXE$IMGPURMSG Quadword Send image termination message to job controller 
EXE$INILDEVICE Quadword Call device drivers' controller and unit initializa-

tion routines 
EXE$INSERTIRP Quadword Insert IRP by priority order in unit control block 

queue 
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EXE$INSIOQ 

EXE$INSTIMQ 

EXE$IOFORK 

EXE$IORSNWAIT 

EXE$IPAPBKAST 
EXE$IPCONTROL 

EXE$IPID_ TO_EPID 

EXE$IPID_ TQ_PCB 
EXE$JBCRSP 

EXE$KERSTKNV 
EXE$LCLDSKVALID 

EXE$LDB_SYNCH 
EXE$LOAD_ERROR 
EXE$MAXACMODE 

EXE$MCHECK 

EXE$MCHK_BUGCHK 

EXE$MCHK_PRTCT 

EXE$MCHK_ TEST 

EXE$MODIFY 

EXE$MODIFYLOCK 

EXE$MODIFYLOCKR 

EXE$MULTIQUOTA 

EXE$NAMPID 
EXE$NETSNDERL 
EXE$NULLPROC 
EXE$0NEPARM 

EXE$0PCCUS 

EXE$0PCDEC 
EXE$0PEN_MSG 
EXE$0PEN_RDB 
EXE$0PRSNDERL 
EXE$0UTBLANK 

Size 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 
Quadword 

Quadword 

Quadword 
Quadword 

Quadword 
Quadword 

Quadword 
1 byte 
Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 
Quadword 
Quadword 
Quadword 

Quadword 

Quadword 
Quadword 
Quadword 
Quadword 
Quadword 

C.1 The Base Image 

Description of Routine 

Insert IRP in unit control block pending-I/O queue 
or invoke IOC$INITIATE 

Insert entry in time-ordered timer queue entry 
list 

Insert fork process on specified queue, disabling 
timeouts from the device 

Place process in resource wait, backing out $QIO 
request 

Reserved 
IPL 12 interrupt service routine, console 

intervention 
Convert internal process ID to extended process 

ID 
Convert internal process ID to PCB address 
Special kernel mode AST routine for receiving 

response from $SNDJBC system service 
Invalid kernel stack exception service routine 
Function decision table routine for local disk valid 

function 
Reserved 
Routine body-HALT routine 
Maximize a specified access mode with previous 

mode in processor status longword 
Signal unrecoverable machine check to outer 

mode 
Handle machine checks for which protection is 

desired 
Enable recovery block for machine check 

exceptions 
Test machine check recovery block for mask 

match 
Function decision table routine for direct I/O 

modify functions 
Check I/O buffer for write accessibility and lock 

in memory 
Check I/O buffer for read accessibility and lock in 

memory, returning via co-routine on error 
Check multiunit resource request and condition-

ally wait the process 
Translate process name to internal process ID 
Send a network message to the error logger 
Reserved 
Function decision table routine for I/O request 

with one parameter 
Opcode reserved to customer exception service 

routine 
Reserved instruction exception service routine 
Open files for SYS$0UTPUT and SYS$ERROR 
Open the rights database as necessary 
Send an operator message to the error logger 
Write blank to specified device 
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Global Symbol Size Description of Routine 

EXE$0UTCHAR Quadword Write character to specified device 
EXE$0UTCRLF Quadword· Write carriage return and line feed to specified 

device 
EXE$0UTCSTRING Quadword Write counted string to specified device 
EXE$0UTHEX Quadword Convert longword to hexadecimal digits and write 

to specified device 
EXE$0UTBYTE Quadword Convert byte to hexadecimal digits and write to 

specified device 
EXE$0UTZSTRING Quadword Write zero-terminated string to specified device 
EXE$PAGRDERR Quadword Signal page read error fault 
EXE$POWERAST Quadword Queue a special kernel mode AST to each process 

that requested notification of power recovery 
EXE$POWERFAIL Quadword Powerfail interrupt service routine 
EXE$PRCDELMSG Quadword Send process termination message to job controller 
EXE$PRCPURMSG Quadword Send process purge message to job controller 
EXE$PROBER Quadword Check read accessibility of user buffer 
EXE$PROBER_DSC Quadword Check read accessibility of user buffer specified 

by descriptor 
EXE$PROBEW Quadword Check write accessibility of user buffer 
EXE$PROBEW _DSC Quadword Check write accessibility of user buffer specified 

by descriptor 
EXE$PROCIMGACT Quadword Startup code for processes such as stand-alone 

SYSGEN 
EXE$PROCSTRT Quadword Standard process startup code 
EXE$PWRTIMCHK Quadword Check for reasonable interval since power 

recovery 
EXE$QIOACPPKT Quadword Queue an IRP to an ancillary control process or 

the Files-11 Extended QIO Processor (XQP) 
EXE$QIODRVPKT Quadword Queue an IRP to a driver's start 1/0 entry point 
EXE$QIORETURN Quadword Return from $QIO system service with success 

status 
EXE$QXQPPKT Quadword Insert an IRP in the XQP queue and conditionally 

enter the XQP dispatcher 
EXE$RADRMOD Quadword Reserved addressing mode exception service 

. routine 
EXE$READ Quadword Function decision table routine for direct 1/0 read 

functions 
EXE$READCHK Quadword Check buffer for write access and abort 1/0 on 

error 
EXE$READCHKR Quadword Check buffer for write access 
EXE$READLOCK Quadword Check 1/0 buffer for write access and lock in 

memory 
EXE$READLOCKR Quadword Check 1/0 buffer for write access and lock in 

memory, returning via co-routine on error 
EXE$REFLECT Quadword Reflect an exception from a mode other than 

kernel 
EXE$RESETVEC Quadword Reset privileged library vectors 
EXE$RESTART Quadword Warm restart following power recovery and error 

halts 
EXE$RESTART _ATT Quadword Warm restart a secondary processor following 

power recovery and error halts 
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Global Symbol 

EXE$RMSEXH 
EXE$RMVTIMQ 
EXE$ROPRAND 
EXE$SEARCH_RIGHT 

EXE$SENDMSG 
EXE$SENSEMODE 

EXE$SETCHAR 

EXE$SETIME_INT 
EXE$SETMODE 

EXE$SETOPR 
EXE$SET _RDIPTR 

EXE$SET _PAGES_READ_ 
ONLY 

EXE$SET _PAGES_ 
WRITABLE 

EXE$SHMCEBDEL 

EXE$SIGTORET 

EXE$SNDEVMSG 
EXE$SNGLEQUOTA 

EXE$SSFAIL 
EXE$SWAPINIT 
EXE$SWTIMINT 
EXE$TBIT 
EXE$TIMEOUT 

EXE$UBCLKINT 
EXE$VALIDNAME 
EXE$WRITE 

EXE$WRITECHK 

EXE$WRITECHKR 
EXE$WRITELOCK 

EXE$WRITELOCKR 

EXE$WRTMAILBOX 
EXE$ZEROPARM 

FIL$CVT _DTB 
FIL$CVT _HTB 
FIL$CVT _OTB 
FIL$CVTFILNAM 

Size 

Quadword 
Quadword 
Quadword 
Quadword 

Quadword 
Quadword 

Quadword 

Quadword 
Quadword 

Quadword 
Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 
Quadword 

Quadword 
Quadword 
Quadword 
Quadword 
Quadword 

Quadword 
Quadword 
Quadword 

Quadword 

Quadword 
Quadword 

Quadword 

Quadword 
Quadword 

Quadword 
Quadword 
Quadword 
Quadword 

C.1 The Base Image 

Description of Routine 

Executive mode exit handler procedure 
Remove entry from timer queue entry list 
Reserved operand exception service routine 
Search specified rights segment for a given 

identifier 
Write a message to specified mailbox 
Function decision table (FDT) routine for 10$_ 

SENSEMODE and I0$_SENSECHAR functions 
FDT routine for IO$_SETCHAR and 10$_ 

SETMODE functions 
Internal entry point to $SETIME system service 
FDT routine for IO$_SETCHAR and 10$_ 

SETMODE functions queued to a driver 
Enable specified device as an operator terminal 
Store the address of the rights identifier block in 

Pl space 
Set protection on system service vector pages to 

read-only 
Set protection on system service vector pages to 

kernel-write 
Delete (release) master common event block in 

MA780 shared memory 
Condition handler procedure that turns an 

exception into an error return 
Send device-specific message to specified mailbox 
Check single-unit resource request and condition-

ally wait the process 
Signal system service failure exception 
Initialization code that runs in swapper process 
IPL 7 interrupt service routine, software timer 
Trace fault exception service routine 
Perform periodic functions, including scan for 

device timeouts 
Clock interrupt service routine 
Validate identifier name 
Function decision table routine for direct 1/0 

write functions 
Check buffer for read access and abort 1/0 on 

error 
Check buffer for read access 
Check I/O buffer for read access and lock in 

memory 
Check I/O buffer for read access and lock in 

memory, returning via co-routine on error 
Write specified message to mailbox 
Function decision table routine for I/O request 

with no parameters 
Convert decimal to binary 
Convert hexadecimal to binary 
Convert octal to binary 
Convert file name from ASCII to RADSO 
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Executive Data Areas 

Global Symbol Size Description of Routine 

FIL$1NIWCB Quadword Allocate and initialize window control block 
FIL$0PENFILE Quadword Open file using primitive 1/0 
FIL$0PENFILE_l Quadword Assign device and open file using primitive 1/0 
FIL$RDWRTLBN Quadword Read or write specified logical block from device 
IMG$DECODE_IHD Quadword Read and decode image header 
IMG$GET _NEXT _ISD Quadword Get next image section descriptor 
IN1$ALLOC_CRB Quadword Allocate and partly fill a controller request block 

and spinlock 
INl$ALONONPAGED Quadword Allocate nonpaged pool; used by EXE$1NIT 
INl$ALONPAGVAR Quadword Allocate nonpaged pool from the variable-length 

list; used by EXE$1NIT 
IN1$BRK 2 bytes Routine body-has BPT known to XDELTA 
INl$MASTERWAKE 4 bytes Routine body-awakens XDELTA 
INl$RDONLY Quadword Change protection on read-only sections of 

loadable executive images to read-only 
INl$WRITABLE Quadword Change protection on read-only sections of 

loadable executive images to kernel-write 
IOC$ALOUBAMAP Quadword Allocate map registers for transfer described in 

unit control block fields 
IOC$ALOUBAMAPN Quadword Allocate specified number of map registers 
IOC$ALOUBAMAPSP Quadword Allocate a specific set of map registers 
IOC$ALOUBMAPRM Quadword Permanently allocate map registers 
IOC$ALOUBMAPRMN Quadword Permanently allocate specified number of map 

registers 
IOC$ALTREQCOM Quadword Alternative entry to 1/0 request complete 
IOC$APPLYECC Quadword Apply error correction code correction to data 

read from a disk 
IOC$BROADCAST Quadword Broadcast to a single local terminal 
IOC$BUFPOST Quadword Files-11 XQP buffered 1/0 completion routine 
IOC$CANCELIO Quadword Cancel I/O on channel 
IOC$CHKMBXQUOTA Quadword Check quota for creating mailbox 
IOC$CHKUCBQUOTA Quadword Check quota for creating a unit control block 
IOC$CLONE_UCB Quadword Copy a template to create a new unit control 

block and connect it 
IOC$CONBRDCST Quadword Broadcast emergency message to console 
IOC$COPLUCB Quadword Copy a given unit control block 
IOC$CREATE_UCB Quadword Create a mailbox or network unit control block 

and link it into the 1/0 database 
IOC$CREDIT _UCB Quadword Return quota charged for deleted unit control 

block 
IOC$CTRLINIT Quadword Call driver controller initialization routine 
IOC$CVTLOGPHY Quadword Conditionally convert logical block to physical 

address 
IOC$CVTLOGPHYU Quadword Unconditionally convert logical block to physical 

address 
IOC$CVT _DEVNAM Quadword Convert a device name and unit number to a 

physical device name string 
IOC$DALLoc_DEV Quadword Deallocate device clusterwide 
IOC$DALLOC_DMT Quadword Deallocate device on dismount 
IOC$DEBIT _UCB Quadword Record master process ID charged for created unit 

control block 
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C.1 The Base Image 

Global Symbol Size Description of Routine 

IOC$DELETE_UCB Quadword Delete unit control block if its reference count is 
zero 

IOC$DIAGBUFILL Quadword Write final device information into diagnostic 
buffer 

IOC$DIRPOST1 Quadword Alternative entry point to direct 1/0 special kernel 
mode AST 

IOC$DISMOUNT Quadword Dismount a mounted mass storage volume 
IOC$FFCHAN Quadword Search the 1/0 channel table for a free channel 
IOC$FILSPT Quadword Fill system page table entry with page table entry 

mapping user buffer 
IOC$FREE_UCB Quadword Deallocate nonpaged pool for a unit control block 

being deleted and its associated object rights 
block 

IOC$GETBYTE Quadword Get one byte of data from user buffer 
IOC$INITBUFWIND Quadword Initialize one-page window into user buffer 
IOC$INITDRV Quadword Initialize database for a specific device driver 
IOC$INITIATE Quadword Initiate next 1/0 request on device 
IOC$IOPOST Quadword IPL 4 interrupt service routine, 1/0 postprocessing 
IOC$LAST_CHAN Quadword Handle deassignment of last channel to a device 
IOC$LAST _CHAN_AMBX Quadword Handle deassignment of last channel to a mailbox 

associated with a device 
IOC$LINK_UCB Quadword Link a new unit control block to device data block 

chain 
IOC$LOADMBAMAP Quadword Load MASSBUS adapter map registers to describe 

1/0 buffer 
IOC$LOADUBAMAP Quadword Load UNIBUS adapter map registers to describe 

1/0 buffer 
IOC$LOADUBAMAPA Quadword Alternative entry point to IOC$LOADUBAMAP 
IOC$LOADUBAMAPN Quadword Load UNIBUS adapter map registers specified by 

register input 
IOC$LOCK_DEV Quadword Take out clusterwide device lock 
IOC$LUBAUDAMAP Quadword Load UNIBUS adapter map registers for UDA port 
IOC$MAPVBLK Quadword Map virtual block number to logical block number 
IOC$MNTVER Quadword Assist driver with mount verification 
IOC$MOVFRUSER Quadword Move data from user buffer 
IOC$MOVFRUSER1 Quadword Internal entry point to IOC$MOVFRUSER 
IOC$MOVFRUSER2 Quadword Internal entry point to IOC$MOVFRUSER 
IOC$MOVTOUSER Quadword Move data to user buffer 
IOC$MOVTOUSER1 Quadword Internal entry point to IOC$MOVTOUSER 
IOC$MOVTOUSER2 Quadword Internal entry point to IOC$MOVTOUSER 
IOC$PARSDEVNAM Quadword Parse device name string 
IOC$PTETOPFN Quadword Get page frame number associated with invalid 

page table entry 
IOC$PUTBYTE Quadword Write one byte of data to user buffer 
IOC$QNXTSEG Quadword Queue next segment of virtual 1/0 request 
IOC$QNXTSEG1 Quadword Alternative entry point to IOC$QNXTSEG 
IOC$REINITDRV Quadword Reinitialize driver database after reloading a 

device driver 
IOC$RELCHAN Quadword Release device's controller 
IOC$RELDATAP Quadword Release buffered data path 
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Executive Data Areas 

Global Symbol 

IOC$RELDATAPUDA 

IOC$RELMAPREG 
IOC$RELMAPUDA 

IOC$RELOC_DDT 
IOC$RELSCHAN 
IOC$REQCOM 
IOC$REQDATAP 
IOC$REQDATAPNW 

IOC$REQDATAPUDA 

IOC$REQMAPREG 

IOC$REQMAPUDA 

IOC$REQPCHANH 

IOC$REQPCHANL 

IOC$REQSCHANH 

IOC$REQSCHANL 

IOC$RETURN 
IOC$SCAN_IODB 
IOC$SCAN_IODB_2P 

IOC$SEARCH 
IOC$SEARCHALL 

IOC$SEARCHCONT 

IOC$SEARCHDEV 

IOC$SEARCHINT 
IOC$SENSEDISK 

IOC$SEVER_UCB 

IOC$TESTUNIT 
IOC$THREADCRB 

IOC$TRANDEVNAM 
IOC$UNffiNIT 
IOC$UNLOCK 
IOC$UNLOCK_DEV 
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Size 

Quadword 

Quadword 
Quadword 

Quadword 
Quadword 
Quadword 
Quadword 
Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 
Quadword 
Quadword 

Quadword 
Quadword 

Quadword 

Quadword 

Quadword 
Quadword 

Quadword 

Quadword 
Quadword 

Quadword 
Quadword 
Quadword 
Quadword 

Description of Routine 

Release buffered data path specified by class driver 
request packet 

Release map registers 
Release map registers described by class driver 

request packet 
Relocate the driver dispatch table 
Release device's secondary controller 
Complete a device's 1/0 request and start the next 
Request buffered data path 
Request buffered data path and return if 

unavailable 
Request buffered data path using information 

in class driver request packet and return if 
unavailable 

Request map registers for transfer described by 
unit control block fields 

Request map registers for transfer described by 
class driver request packet fields 

Allocate device's primary controller with high 
priority 

Allocate device's primary controller with low 
priority 

Allocate device's secondary controller with high 
priority 

Allocate device's secondary controller with low 
priority 

Null routine consisting of RSB 

Scan the 1/0 database and return next block 
Scan the 1/0 database, including dual-path 

information, and return next block 
Search the 1/0 database for specified device 
Do a generic search of the 1/0 database for a local 

device 
Continue a device search started by 

IOC$SEARCHINT 
Search the 1/0 database for a specific physical 

device 
Search the 1/0 database for specified device 
Function decision table routine for 10$_ 

SENSECHAR and I0$_SENSEMODE to a 
disk 

Unlink a unit control block from its device data 
block and controller request block 

Check unit control block against search rules 
Insert controller request block into controller 

request block timeout list 
Translate logical device name 
Call driver unit initialization routine 
Unlock the 1/0 database mutex 
Release the clusterwide device lock 



C.1 The Base Image 

Global Symbol Size Description of Routine 

IOC$UPDATRANSP Quadword Update transfer parameters after a partly 
successful 1/0 transfer 

IOC$VERIFYCHAN Quadword Verify an 1/0 channel number 
IOC$WAKACP Quadword Queue an IRP to an ancillary control process or 

the Files-11 XQP and wake it if the queue was 
empty 

IOC$WFIKPCH Quadword Wait for interrupt, not releasing the device 
controller 

IOC$WFIRLCH Quadword Wait for interrupt, releasing the device controller 
LCK$BREAILDEADLOCK Quadword Break a lock deadlock 
LCK$CHECK_RSB Quadword Deallocate a resource block if necessary 
LCK$COMP _GGMODE Quadword Compute lock group grant mode 
LCK$CVTNOTQED Quadword Requeue a granted lock whose convert request 

cannot be granted 
LCK$CVT_GRANTED Quadword Grant a lock conversion 
LCK$DEALLoc_RsB Quadword Deallocate a resource block with no locks 
LCK$DEQLOCK Quadword Dequeue a lock 
LCK$DLCKEXIT Quadword Return from lock deadlock detection 
LCK$EXTEND_IDTBLW Quadword Extend the lock ID table, waiting if there is 

insufficient nonpaged pool 
LCK$GRANTCVTS Quadword Try to grant locks in the wait or conversion queue 
LCK$GRANTWTRS Quadword Try to grant waiting locks 
LCK$GRANT _LOCK Quadword Grant a lock request 
LCK$GRANT_LOCILALT Quadword Alternative entry point to LCK$GRANT _LOCK 
LCK$GRANT _REM Quadword Grant a remote lock request 
LCK$LOCAL_CVT Quadword Convert a local lock that is the only one in 

granted or conversion queue 
LCK$LOCAL_LOCK Quadword Handle local lock requests 
LCK$NOT _QUEUED Quadword Deallocate lock ID and return 
LCK$QUEUECVT Quadword Insert a lock on the conversion queue 
LCK$QUEUED_EXIT Quadword Return after successfully queuing a lock request 
LCK$QUEUEWAIT Quadword Insert a lock on the wait queue 
LCK$QUEUE_BLKAST Quadword Queue local blocking ASTs 
LCK$QUEUE_BLOCKAST Quadword Queue local blocking ASTs or send message to 

other system 
LCK$QUEUE_REM Quadword Insert a remote lock request on a wait queue 
LCK$SEARCHDLCK Quadword Search and break lock deadlocks 
LCK$SRCH_HSHTBL Quadword Search hash table for matching resource name 
LCK$SRCH_RESDLCK Quadword Search for resource deadlocks 
LCK$SYNC_EXIT Quadword Complete a synchronously granted lock request 
LKl$SEARCH_ Quadword Search for locks blocked by the current lock 

BLOCKED BY 
LKI$SEARCH_BLOCKING Quadword Search for locks blocking the current lock 
LNM$CHECK_PROT Quadword Check access to a logical name table 
LNM$CONTSEARCH Quadword Find the next logical name that might match 
LNM$DELETE..HASH Quadword Delete all logical names in a hash table 
LNM$DELETE_LNMB Quadword Delete a logical name block 
LNM$FIRSTTAB Quadword Search for the first logical name table name that 

matches 
LNM$HASH Quadword Hash a logical name 
LNM$INSLOGTAB Quadword Insert a logical name in a logical name table 
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Executive Data Areas 

Global Symbol Size Description of Routine 

LNM$LOCKR Quadword Lock the logical name table mutex for read access 
LNM$LOCKW Quadword Lock the logical name table mutex for write 

access 
LNM$PRESEARCH Quadword Find the first logical name that might match 
LNM$SEARCILONE Quadword Search for a specified logical name and return 

translation 
LNM$SETUP Quadword Initialize recursive logical name table name 

processing 
LNM$TABLE Quadword Translate a logical name table name 
LNM$UNLOCK Quadword Unlock the logical name table mutex 
MMG$ALCPHD Quadword Allocate space in the process header for a section 

table entry or working set list entries 
MMG$ALCSTX Quadword Allocate a section table index from specified 

section table 
MMG$ALc_PGFLVBN Quadword Allocate a specific set of blocks in a page file 
MMG$ALLOCONTIG Quadword Allocate physically contiguous pages 
MMG$ALLOCPAGFIL1 Quadword Allocate a cluster of pages from specified file, 

maintaining the reserved page count . 
MMG$ALLOCPAGFIL2 Quadword Allocate the first contiguous set of blocks from 

specified page file, maintaining the reserved 
page count 

MMG$ALLOCPFN Quadword Allocate a page from the free page list 
MMG$ALLOCSWPAREA Quadword Allocate a swap area in a swap or page file 
MMG$ALOSHMGSD Quadword Allocate an MA780 shared memory global section 

descriptor 
MMG$ALOSHMPAG Quadword Allocate MA780 shared memory pages for a global 

section 
MMG$CALCSWAPSIZE Quadword Calculate process swap size 
MMG$CEFTRNLOG Quadword Translate a logical name for a common event 

cluster 
MMG$CLILBITMAP Quadword Clear bits in the MA780 shared memory global 

page bitmap 
MMG$CREDEL Quadword Common per-page loop for creation/deletion 

/lock/unlock 
MMG$CREPAG Quadword Create a page of process address space 
MMG$CRETVA Quadword Internal entry point to $CRETV A system service 
MMG$DALCBAKSTORE Quadword Free a page's backing store 
MMG$DALCPAGFIL Quadword Deallocate specified page in specified page file 
MMG$DALCSTX Quadword Deallocate a section table entry 
MMG$DALCSTXSCN Quadword Scan a given process header for section table 

entries that can be deallocated 
MMG$DALCSTXSCN1 Quadword Scan the system header for section table entries 

that can be deallocated 
MMG$DALLOCPFN Quadword Deallocate a page of physical memory 
MMG$DEALLOCPAGFIL Quadword Deallocate specified blocks in a page file, 

maintaining the reserved page count 
MMG$DECPHDREF Quadword Decrement the process header reference count 
MMG$DECPHDREF1 Quadword Subentry point to MMG$DECPHDREF 
MMG$DECPTREF Quadword Decrement the reference count for specified page 

table entry 
MMG$DECSECREF Quadword Decrement a section table reference count 
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Global Symbol 
MMG$DECSHMREF 

MMG$DELCONPFN 

MMG$DELGBLSEC 
MMG$DELGBLWCB 

MMG$DELPAG 
MMG$DELPFNLST 

MMG$DELSHMGS 
MMG$DELWSLEPPG 

MMG$DELWSLEX 
MMG$QUEUE_GSD_ 

CLEAN 
MMG$EXPKSTK 
MMG$EXPREG 
MMG$EXTRADYNWS 
MMG$FASLCREATE 

MMG$FINDISTGSD 

MMG$FINDGSDPFN 

MMG$FINDGSNOTRN 

MMG$FINDSHB 

MMG$FINDSHD 

MMG$FREEGSD 

MMG$FREWSLE 

MMG$FREWSLX 
MMG$FRE_ TRYSKIP 
MMG$GETGSNAM 

MMG$GETNXTGSD 
MMG$GETPTIPAG 
MMG$GSDMTXULK 
MMG$GSDSCN 

MMG$GSDTRNLOG 
MMG$IMGRESET 

Size 

Quadword 

Quadword 

Quadword 
Quadword 

Quadword 
Quadword 

Quadword 
Quadword 

Quadword 
Quadword 

Quadword 
Quadword 
Quadword 
Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword 

Quadword· 

Quadword 
Quadword 
Quadword 

Quadword 
Quadword 
Quadword 
Quadword 

Quadword 
Quadword 

C.1 The Base Image 

Description of Routine 
Decrement an MA780 shared memory global 

section descriptor page table entry reference 
count 

Delete former virtual contents of a page of 
physical memory 

Delete a global section 
Deaccess section files on the deleted section 

window control block list 
Delete a page of process address space 
Remove a page frame number from page list and 

delete its former virtual contents 
Delete an MA780 shared memory global section 
Delete specified process page working set list 

entry 
Delete specified working set list entry 
Queue an AST to a process to clean up delete-

pending global section descriptor queue 
Expand the kernel stack 
Internal entry point to $EXPREG system service 
Calculate extra dynamic working set count 
Expand the process or control region by the 

requested size, all at once 
Find first MA780 shared memory global section 

based on translating the shared memory logical 
name 

Find the global section descriptor (GSD) that maps 
a specific MA780 shared memory page frame 
number 

Find the GSD when the normal search path has 
failed 

Find the MA780 shared memory block for a 
specific MA780 shared memory 

Find the MA780 shared memory containing a 
particular GSD 

Release any MA780 shared memory GSDs no 
longer in use 

Select a working set list entry and release the 
page that occupied it 

Free specified working set list entry 
Subentry point to MMG$FREWSLX 
Get a global section name and MA780 shared 

memory name 
Get the next GSD in the search sequence 
Get page table information for specified page 
Unlock the GSD mutex 
Scan the GSD queue for a section with specified 

name 
Translate a global section logical name 
Reset the process section table and working set 

list and invoke RM$RESET after deleting image 
pages 
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Executive Data Areas 

Global Symbol Size Description of Routine 

MMG$INADRINI Quadword Get the input address range and initialize the 
return address range argument 

MMG$1NCPTREF Quadwo:{d Increment the reference count for specified page 
table entry 

MMG$INCSHMREF Quadword Increment an MA780 shared memory global 
section descriptor page table entry reference 
count 

MMG$1NIBLDPKT Quadword Perform initialization for EXE$BLDPKTxx 
routines 

MMG$1NINEWPFN Quadword Allocate a page of physical memory and initialize 
its page frame number (PFN) database fields 

MMG$INSPFNH Quadword Insert a PFN at head of specified list 
MMG$INSPFNT Quadword Insert a PFN at tail of specified list 
MMG$IN_REGION Quadword Test whether address space overlaps existing space 
MMG$IOLOCK Quadword Lock an 1/0 buffer into memory 
MMG$IOLOCKPAG Quadword Lock a page of an 1/0 buffer into memory 
MMG$LCKULKPAG Quadword Lock/unlock single page in working set or memory 
MMG$LOCKPGTB Quadword Lock a page table page by incrementing its 

reference count 
MMG$MAKEWSLE Quadword Make a working set list entry for specified virtual 

page 
MMG$MBXTRNLOG Quadword Translate a logical name for a mailbox 
MMG$MOVPTLOCK Quadword Lock into the working set list a page table page 

with window page table entry 
MMG$MOVPTLOCK1 Quadword Alternative entry point to MMG$MOVPTLOCK 
MMG$MPWCHECK Quadword Test whether modified page writing should start 
MMG$PAGEFAULT Quadword Translation-not-valid exception service routine 
MMG$PAGETYPE Quadword Determine page type from page table entry bits 
MMG$PGFLTWAIT Quadword Insert the PCB into specified wait queue following 

a page fault 
MMG$PTEADRCHK Quadword Return the system virtual address of the page 

table entry corresponding to a given address 
MMG$PTEINDX Quadword Return the longword postindex into the process 

header corresponding to a given virtual address 
MMG$PTEINDXCHK Quadword Alternative entry to MMG$PTEINDX that 

bugchecks if address is not mapped 
MMG$PTEREF Quadword Return the system virtual address of the page 

table entry corresponding to a given address, 
faulting the page table page if necessary 

MMG$PURGWSSCN Quadword Scan the working set list for pages in specified 
address range to be deleted 

MMG$READ_GSD Quadword Read from disk the pages of a newly created 
MA780 shared memory global section 

MMG$REFCNTNEG Quadword Generate REFCNTNEG fatal bugcheck 
MMG$RELPFN Quadword Release a page frame number (PFN) to the 

modified or free page list 
MMG$REMPFN Quadword Remove a specific PFN from specified page list 
MMG$REMPFNH Quadword Remove a PFN from head of specified page list 
MMG$RESRCWAIT Quadword Place the process into a wait for a resource needed 

for its faulted page to become valid 
MMG$RETADRINI Quadword Initialize a return address range argument 
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C.1 The Base Image 

Global Symbol Size Description of Routine 

MMG$RETRANGE Quadword Return address range information and perform 
common exit processing 

MMG$RET _BYLQUOTA Quadword Return byte count quota to file owner for a 
window control block converted to a shared 
one 

MMG$RLPFNSAVPTE Quadword Release the page frame number from a global 
demand zero page 

MMG$SCNWSLX Quadword Scan working set list for specified virtual address 
MMG$SETPRTPAG Quadword Set protection on specified page 
MMG$SET _BITMAP Quadword Set bits in the MA780 shared memory global page 

bitmap 
MMG$SHMTXLK Quadword Lock the MA780 shared memory mutex for write 

access and acquire shared memory bit lock 
MMG$SHMTXULK Quadword Unlock the MA780 shared memory mutex access 

and release shared memory bit lock 
MMG$SHRCNTNEG Quadword Generate a SHRCNTNEG fatal bugcheck 
MMG$SHRINKWS Quadword Shrink specified working set list 
MMG$SUBSECREF Quadword Subtract a given number from section table 

reference count 
MMG$SVAPTECHK Quadword Return system virtual address of page table entry 

corresponding to specified virtual address 
MMG$SVPCTX Quadword Save process context following an unsatisfied pa~ 

fault 
MMG$SWAPWSLE Quadword Swap working set list entries 
MMG$TRY_ALL Quadword Test whether region can be expanded to requested 

size and adjust page file quota 
MMG$ULKGBLWSLE Quadword Unlock a global page from working set 
MMG$UNIQUEGSD Quadword Check that an MA780 shared memory global 

section descriptor is unique 
MMG$UNLOCK Quadword Unlock 1/0 buffer pages 
MMG$UPDSECAST Quadword $UPDSEC system service 1/0 completion special 

kernel mode AST 
MMG$VALIDATEGSD Quadword Validate an MA780 shared memory global section 

descriptor 
MMG$VFYSECFLG Quadword Verify that section flags contain only user-

definable flags 
MMG$WRITE_GSD Quadword Write to disk the pages of an MA780 shared 

memory global section 
MMG$WRTMFYPAG Quadword Write pages from the modified page list 
MMG$WRTPGSBAK Quadword Write section pages to disk, part of $UPDSEC 

system service 
MMG$WSLEPFN Quadword Get page frame number from working set list 

entry 
MMG$WSPEAKCHK Quadword Enable or disable working set peak checking 
MT$CHECK_ACCESS Quadword Check for write access to a magtape 
NSA$ARGLSLIMGNAM Quadword Insert the image name packet entry in caller's 

argument list 
NSA$EVENT _AUDIT Quadword Write a journal record for an auditable system 

event 
PFM$GETBUF Quadword Return a buffer of page fault monitoring 

information to caller 
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PFM$MON Quadword Record information about a page fault being 
monitored 

PFM$PURGE Quadword Deallocate to nonpaged pool process page fault 
monitoring buffers 

PMS$ABORT _RQ Quadword Record aborting of 1/0 request in performance 
data buffer 

PMS$END_IO Quadword Record end of 1/0 transaction in performance data 
buffer 

PMS$END_RQ Quadword Record end of 1/0 request in performance data 
buffer 

PMS$START _IO Quadword Record start of 1/0 transaction in performance 
data buffer 

PMS$START _RQ Quadword Record start of 1/0 request in performance data 
buffer 

RM$DIRCACHE_BLKAST Quadword System blocking AST routine for RMS directory 
cache 

RM$RESET Quadword Reset process's image 1/0 segment 
RM$SET Quadword Initialize process's image 1/0 segment 
SCH$ASTDEL Quadword IPL 2 interrupt service routine, AST delivery 
SCH$CHSE Quadword Change process scheduling state to computable 
SCH$CHSEP Quadword Change process scheduling state to computable 

and set priority as specified 
SCH$CLREF Quadword Clear specified event flag 
SCH$CLREFR Quadword Clear specified event flag and return via RSB 
SCH$FORCEDEXIT Quadword Queue $FORCEX AST to process 
SCH$GETEFC Quadword Compute address of event flag cluster 
SCH$IOLOCKR Quadword Lock the 1/0 database mutex for read access 
SCH$10LOCKW Quadword Lock the 1/0 database mutex for write access 
SCH$IOUNLOCK Quadword Unlock the 1/0 database mutex 
SCH$LOCKR Quadword Lock a specified mutex for read access 
SCH$LOCKW Quadword Lock a specified mutex for write access 
SCH$LOCKWNOWAIT Quadword Lock a mutex for write access; do not wait if it is 

not free 
SCH$NEWLVL Quadword Compute AST level for the current process 
SCH$0SWPSCHED Quadword Select processes to shrink or outswap 
SCH$PIXSCAN Quadword Give selected computable processes a priority 

boost 
SCH$POSTEF Quadword Set specified event flag 
SCH$QAST Quadword Queue an AST to a process 
SCH$QEND Quadword Perform quantum-end processing for the current 

process 
SCH$RAVAIL Quadword Declare scheduling resource available for waiting 

processes 
SCH$REMOVACB Quadword Remove an AST control block queued to a process 
SCH$RESCHED Quadword IPL 3 interrupt service routine, rescheduling 
SCH$RSE Quadword Report scheduling event for a process 
SCH$RWAIT Quadword Place a process into resource wait 
SCH$SCHED Quadword Schedule new process for execution 
SCH$SWAPACBS Quadword Replace one enqueued AST control block with 

another 
SCH$SWPWAKE Quadword Conditionally wake the swapper process 
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SCH$UNLOCK Quadword Unlock specified mutex 
SCH$UNWAIT Quadword Remove a PCB from a scheduling wait queue 
SCH$WAIT Quadword Clean kernel stack, insert PCB in wait queue, and 

place process into a wait state 
SCH$WAITK Quadword Subentry point of SCH$WAIT 
SCH$WAITL Quadword Subentry point of SCH$WAIT 
SCH$WAITM Quadword Subentry point of SCH$WAIT 
SCH$WAKE Quadword Wake specified process 
XDT$BPT Quadword XDELTA breakpoint fault handler entry 
XDT$IBRK Quadword Address of initial breakpoint 
XDT$TBIT Quadword XDELTA TBIT handler 
XDT$LOADBASE Quadword Base of loadable CPU-dependent code 
XQP$BLOCK_ROUTINE Quadword Block further XQP activity 
XQP$DEQBLOCKER Quadword Dequeue blocking lock 
XQP$FCBSTALE Quadword Blocking routine to mark file control block as 

stale 
XQP$REL_QUOTA Quadword Release quota cache entry 
XQP$UNLOCK_CACHE Quadword Release cache contents and unlock 
XQP$UNLOCK_QUOTA Quadword Release lock on quota cache entry 
LDR$ALLOC_PT Quadword Allocate system page table entries 
LDR$DEALLQc_PT Quadword Deallocate system page table entries 
LDR$LOAD_NONPAGED Quadword Load nonpaged section of loadable executive 

image 
LDR$LOAD_IMAGE Quadword Map and load a loadable executive image 
LDR$INIT _ALL Quadword Invoke initialization routines of all loaded 

executive images 
MMG$INCSECREFL Quadword Acquire MMG spinlock and increment section 

reference count 
MMG$ADDSECREFL Quadword Acquire MMG spinlock and add to section 

reference count 
MMG$DECSECREFL Quadword Acquire MMG spinlock and decrement section 

reference count 
MMG$SUBSECREFL Quadword Acquire MMG spinlock and subtract from section 

reference count 
SMP$ACQUIRE Quadword Acquire a spinlock or fork lock and force 

synchronization 
SMP$ACQUIREL Quadword Acquire a device lock and force synchronization 
SMP$RESTORE Quadword Conditionally release a spinlock or fork lock 
SMP$RESTOREL Quadword Conditionally release a device lock 
SMP$RELEASE Quadword Release a spinlock or fork lock 
SMP$RELEASEL Quadword Release a device lock 
SMP$RELCHECK Quadword Check spinlock database consistency 
SMP$NOLOCKS Quadword Make sure no spinlocks are held 
SMP$CHKLOCK Quadword Make sure spinlock is owned before proceeding 
SMP$ALLoc_sPL Quadword Allocate a spinlock 
SMP$INIT _SPL Quadword Initialize a spinlock 
SMP$GET _CURPCB Quadword Return current PCB address 
SMP$SWITCH_CPU Quadword Switch to another CPU based on device affinity 
SMP$IOPOST _IRP Quadword Place IRP on per-processor I/O postprocessing 

queue 
SMP$INVALID Quadword Invalidate a single translation buffer entry 
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EXE$INSIOQC Quadword Insert IRP in unit control block pending-1/0 queue 
or invoke IOC$INITIATE and release fork lock 

SMP$ACQNOIPL Quadword Acquire a device lock and assume IPL is already 
at the correct level 

LCK$EXTEND_IDTBL Quadword Extend the lock ID table 
SMP$ADJUST _IPL Quadword Adjust the IPL of a lock 
XDT$CPU_ WAIT Quadword Wait for release of XDELTA interlock 
MMG$LOCK_SYSTEM_ Quadword Dynamically lock pages into system working set 

PAGES for a bounded code segment 
SCH$LOCKWEXEC Quadword From system context, lock the specified mutex 

for write access 
SCH$LOCKREXEC Quadword From system context, lock the specified mutex 

for read access 
SCH$UNLOCKEXEC Quadword From system context, unlock the specified mutex 
SMP$CALCAFF Quadword Calculate process affinity mask 
SMP$CALCAFF _ Quadword Calculate process affinity mask, including PCB$L_ 

INCLUSIVE CPU_ID in calculation if PCB$V_HARDAFF is 
set 

SMP$SETAFF Quadword Set/clear hard affinity for process 
SMP$SETCAP Quadword Set/clear capability-based affinity for process 
EXE$CHECK_ VERSION Quadword Check for mismatch of image linked with 

SYS.STB against current running system 
IOC$CHECK_HWM Quadword Do highwater mark processing for a write request 
EXE$DVLFREEBLOCKS Quadword Fetch device free block count from volume lock 

block 
MMG$ALLOCPFN_NQ_ Quadword Allocate a page frame number from the list of 

DB pages not described in the page frame number 
database 

LMF$RUNDOWN Quadword Reserved 
MMG$DALCPAGFIL- Quadword Deallocate page file pages formerly occupied by a 

DUMP crash dump 
MPW$ALLOCPAGFIL1 Quadword Allocate a cluster of pages from specified page file 
MPW$ALLOCPAGFIL2 Quadword Allocate the first contiguous set of blocks from 

specified page file 
MPW$DEALLOCPAGFIL Quadword Deallocate specified blocks in a page or swap file 
MMG$ASNPRCPGFL Quadword Assign an additional page file to a process 
MMG$ASNPRCPGFLP Quadword Assign the first page file to a process 
MMG$RASNPRCPGFL Quadword Reassign a process to other page files 
MMG$RSRVPRCPGFL Quadword Reserve pages from the process's current page file 

unless it is overcommitted 
MMG$RSRVPRCPGFL2 Quadword Reserve pages from the process's current page file 
MMG$DASNPRCPGFL Quadword Deassign specified process page file 
MMG$DASNPRCPGFLS Quadword Deassign all process page files 
MMG$DALCPRCPGFL Quadword Deallocate specified page to specified page file, 

updating page file accounting information 
ARCH$PTOLEMY_HOOK Quadword Reserved 
LKI$SEARCH_LOCKS Quadword Search for all locks on a given resource 
LKI$STANDARD_INFO Quadword Collect standard information on a lock 
SCH$0NE_SEC Quadword Perform periodic scheduling functions 
MMG$SWITCH_ Quadword Select process page file and reserve space after a 

PRCPGFL failure to assign backing store 
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LDR$ALTERNATIVE_ Quadword Conditionally load executive images listed in 
LOAD VMS$SYSTEM_IMAGES.DATA file 

WP$CREATE_ Quadword Create specified watchpoint 
WATCHPOINT 

WP$DELETE_ Quadword Delete an existing watchpoint 
WATCHPOINT 

SMP$INIT _SANITY Quadword Initialize symmetric multiprocessing sanity timer 
pointer in CPU database 

EXE$JIB_ WAIT Quadword Place a process into wait for job information block 
resource 

EXE$JIB_AV AIL Quadword Declare job information block resource available 
for waiting processes 

EXE$DEBIT _BYTCNT _ Quadword Debit JIB$LBYTCNT, waiting if insufficient 
ALO quota, and allocate pool 

EXE$DEBIT _BYTCNT _ Quadword Debit JIB$L_BYTCNT and JIB$L_BYTLM, waiting 
BYTLM_ALO if insufficient quota, and allocate pool 

EXE$DEBIT _BYTCNT Quadword Debit JIB$LBYTCNT, waiting if insufficient 
quota 

EXE$DEBIT _BYTCNT _ Quadword Debit JIB$LBYTCNT and JIB$LBYTLM, waiting 
BYTLM if insufficient quota 

EXE$CREDIT _BYTCNT Quadword Return JIB$LBYTCNT quota charge 
EXE$CREDIT _BYTCNT _ Quadword Return quota charged to JIB$L_BYTCNT and 

BYTLM JIB$L_BYTLM 
SMP$TIMEOUT Quadword SMP timeout processing routine 
EXE$DEBIT _BYTCNT _ Quadword Debit JIB$LBYTCNT, returning error if insuffi-

NW cient quota 
EXE$DEBIT _BYTCNT _ Quadword Debit JIB$LBYTCNT and JIB$LBYTLM, 

BYTLM_NW returning error if insufficient quota 
MMG$ADDPRCPGFL Quadword Assign a process to an additional page file 
MMG$LOCK_SYSTEM_ Quadword Dynamically lock pages into the system working 

PAGES_ CALL set for a bounded code sequence, using call 
interface 

MMG$UNLOCK_ Quadword Unlock pages from the system working set, using 
SYSTEM_PAGES_CALL call interface 

SMP$SHUTDOWN_CPU Quadword Final actions associated with stopping a CPU 
MMG$DEALLOCSWP- Quadword Deallocate a process's swap space 

AREA 
SMP$INITIATE_BENIGN Quadword Initiate a benign state 
SMP$TERMINATE_ Quadword Leave a benign state 

BENIGN 
SMP$ENTER_BENIGN Quadword Reserved 
MMG$ALLOCSWPAREA2 Quadword Allocate swap space using free space description 

built by MMG$ALLOCPFLMAP 
MMG$ALLOCPFLMAP Quadword Allocate and initialize a page and swap file 

mapping window that describes free space 
MMG$DEALLOCSWP- Quadword Deallocate swap space using free space description 

AREA2 built by MMG$ALLOCPFLMAP 
EXE$RESETVEC 1 Quadword Reset privileged library vectors 
IOC$POST _IRP Quadword Insert IRP on I/O postprocessing queue and 

request interrupt 
RMS$GET _SPACE Quadword Get virtual memory for an RMS extension 
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RMS$RETURN_SPACE Quadword Return virtual memory from an RMS extension 
RMS$GET_EF Quadword Get the synchronization event flag 
RMS$STALL_ THREAD Quadword Stall current execution thread 
RMS$RESTART _THREAD Quadword Reserved 
RMS$LOCK_RECORD Quadword Lock designated record 
RMS$UNLOCK_RECORD Quadword Unlock designated record 
RMS$IS_RECORD_ Quadword Check for conflicting lock 

LOCKED 
RMS$IS_RECORD_ Quadword Check for conflicting lock 

WRITELOCKED 
RMS$GET _BUFFER Quadword Get a data buffer 
RMS$RELEASE_BUFFER Quadword Release a previously obtained buffer 
RMS$0PEN_JOURNAL Quadword Open a journal file 
RMS$CLOSE_JOURNAL Quadword Close a journal file 
RMS$WRITE_JOURNAL_ Quadword Write a journal entry 

ENTRY 
RMS$FLUSH_JOURNAL_ Quadword Flush stacked journal data 

ENTRIES 
RMS$INIT _EXTENSION Quadword Register an RMS extension with the base RMS 
RMS$DELETE_RECAT _ Quadword Delete current record 

RP 
RMS$FIND_RECAT _NRP Quadword Find next record 
RMS$GET _RECAT _NRP Quadword Get next record 
RMS$PUT _RECAT _NRP Quadword Insert next record 
RMS$SCAN_XAB_CHAIN Quadword Scan extended attribute blocks 
RMS$UPDATE_RECAT _ Quadword Update current record 

RP 
RMS$UNSUPPORTED Quadword Declare operation unsupported 
EXE$PROCADP _ Quadword Reserved 

INTVEC 
EXE$PROCADP _CRB Quadword Reserved 
EXE$PROCLOAD_ Quadword Reserved 

VOLUME 
ACF$PROC_ADP Quadword Reserved 
EXE$NETWORK_ASSIGN Quadword Assign channel to network device 
MMG$INIT _PGFLQUOTA Quadword Charge page count against job information block 

page file quota 
MMG$MORE_PGFL- Quadword Alternative entry point to MMG$INIT _ 

QUOTA PGFLQUOTA 
MMG$RET _PGFLQUOTA Quadword Return charged page file quota to job information 

block 
EXE$READ_SYSTIME Quadword Reserved 
EXE$WRITE_SYSTIME Quadword Reserved 
SMP$SETUP _PFORK Quadword Set up for fork to primary 
SMP$FORK_ TO_ Quadword Migrate work packet to primary CPU 

PRIMARY 
EXE$COPY _ARB Quadword Create a copy of an access rights block (ARB) 
EXE$CLEANUP_ARB Quadword Deallocate any external structures from an ARB 
EXE$DELETE_ARB Quadword Delete an ARB 
EXE$HOOKUP _ARB Quadword Connect an ARB to a PCB 
SMP$WRITE_OPAO Quadword Fork routine to broadcast message to console 
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8 reserved vectors Quadword Reserved 
SCH$REQUIRE_ Quadword Add a capability to a process's required list 

CAPABILITY 
SCH$RELEASE_ Quadword Remove a capability from a process's required list 

CAPABILITY 
SCH$ADD_CPU_CAP Quadword Add a capability to a CPU's capability list 
SCH$REMOVE_CPU_CAP Quadword Remove a capability from a CPU's capability list 
SCH$ACQUIRE_ Quadword Acquire implicit affinity for a specific CPU 

AFFINITY 
SCH$REMOVE_AFFINITY Quadword Remove a process's implicit affinity for a specific 

CPU 
SCH$CHANGE_CUR_ Quadword Modify the priority of the current process 

PRIORITY 
SCH$CUR_ TO_COM Quadword Make the current process computable 
CWPS$PARSE_PRCNAM Quadword Separate a process name into its component parts 
EXE$ALOPOIMAG Quadword Allocate memory from process allocation region 
EXE$CHECILPCB_PRN Quadword Check the ability of one process to affect another 
EXE$PSCAN_CHECKCTX Quadword Validate process scan context block 
EXE$PSCAN_DEALCTX Quadword Deallocate process scan context block 
EXE$PSCAN_IMGRESET Quadword Reset process scan context block 
EXE$PSCAN_LOCKCTX Quadword Lock process scan context block 
EXE$PSCAN_NEXT _PID Quadword Scan for next proGess 
IOC$SCAN_IODB_ Quadword Scan I/O database for next device 

USRCTX 
EXE$MATCILNAME Quadword Wildcard string match 
DDTM$GET _CURRENT_ Quadword Reserved 

TID 
DDTM$SET _CURRENT_ Quadword Reserved 

TID 
IMG$ADD_PRIVILEGED_ Quadword Install a change mode, rundown, or message 

VECTOR vector 
NET$VEc_RESERVEl Quadword First of 32 quadwords reserved for DECnet/VAX 
LDR$UNLOAD_IMAGE Quadword Remove executive image from memory 
LDR$FINAL_UNLOAD Quadword Reserved 
MMG$DINSPAGSWPFIL Quadword Deinstall a page or swap file 
EXE$PROc_IDLE Quadword Reserved 
ERL$DEVINFO Quadword Log an error message without updating unit 

control block error count 
LNM$SEARCHLOG Quadword Search for a logical name 
2 reserved vectors Quadword Reserved 
EXE$EMULAT _REFLECT Quadword Reflect an exception from a mode other than 

kernel 
exe_success_rsb 8 bytes Local routine body-to return success status 
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C.1.3 Nonpaged System Data Area ($$$$$NONPAGED_DATA) 

Module SYSTEM_DATA_CELLS defines this area. 

Global Symbol Size Description of Data 
PFN$AL_HEAD 3 longwords Pointers to the heads of the free, modified, and 

bad page lists 
PFN$AL_ TAIL 3 longwords Pointers to the tails of the free, modified, and 

bad page lists 
SCH$GL_FREECNT Longword Free page count 
SCH$GL_MFYCNT Longword Modified page count 
PFN$AL_COUNT +8 Longword Bad page count 
PFN$GL_PHYPGCNT Longword Number of available physical pages 
SCH$GL_FREEREQ Longword Free pages required by the swapper 
SCH$GL_MFYLIM Longword Modified page list high limit 
PFN$AL_IIlLIMIT +8 Longword Bad page list high limit 
SCH$GL_FREELIM Longword Free page list low limit 
SCH$GL_MFYLOLIM Longword Modified page list low limit 
PFN$AL_LOLIMIT +8 Longword Bad page list low limit 
PHV$GL_PIXBAS Longword Address of process index array 
PHV$GL_REFCBAS Longword Address of process header reference count· array 
MMG$GL_PAGSWPVC Longword Address of vector of page/swap file control 

blocks 
SCH$GL_PCBVEC Longword Address of PCB vector of longwords 
SCH$GL_SEQVEC Longword Address of sequence vector of words 
MPW$GL_BADPAG- Longword Number of pages on the bad page list 

TOTAL 
MMG$GL_MAXPFIDX Longword Maximum page file index currently in use 
MMG$GW _MINPFIDX} Word Minimum page file index in use 
SGN$GW _SWPFILCT Number of swap file slots 
MB$AR_DPT Longword Address of mailbox driver 
MB$AR..DDT Longword Address of mailbox driver dispatch table 
NL$AR_DPT Longword Address of null device driver 
NL$ARJ)DT Longword Address of null driver dispatch table 
SCH$GL_MFYLIMSV Longword Saved high-limit threshold of modified page 

list 
SCH$GL_MFYLOSV Longword Saved low-limit threshold of modified page list 
PMS$GL_FAULTS Longword Number of page faults 
PMS$GL_PREADS Longword Number of page reads 
PMS$GL_PREADIO Longword Number of 1/0 requests to read pages 
PMS$GL_PWRITES Longword Number of modified pages written 
PMS$GL_PWRITIO Longword Number of 1/0 requests to write modified 

pages 
PMS$GL_DZROFLTS Longword Number of demand zero page faults 
PMS$GLDPTSCN Longword Number of dead page table scans 
PMS$GL_GVALID Longword Number of global valid page faults 
MPW$GL_IOPAGCNT Longword Modified pages in transit to disk 
MPW$L_COUNT Longword Reserved 
EXE$GQ_SYSDISK Quadword Descriptor for SYS$DISK 
LDR$GQ_IMAGE_LIST Quadword Listhead of loaded image data blocks 
MMG$GL_PFNLOCK Longword Countdown counter of pages remaining that 

may be locked in memory 
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SWP$GL_SWTIME Longword Earliest time for next exchange swap 
EXE$GL_PWRDONE Longword End time for power recovery interval 
EXE$GL_PWRINTVL Longword Allowable recovery interval in IO-millisecond 

units 
SWP$GW _BALCNT Word Number of processes in balance set excluding 

swapper and process 
SCH$GW _SWPFCNT Word Number of successive outswap schedule 

failures 
LNM$AR_SYSTEM_ Longword Address of system logical name directory 

DIRECTORY 
LNM_AR_SYSTEM_DIR_ Longword Address of system directory table header 

LNMTH 
PQL$AR_SYSPQL Longword Address of system process quota list 
PQL$GL_SYSPQLLEN Longword Length of system process quota list 
ERL$GB_BUFFLAG Byte Buffer status flags 

Byte Spare for alignment 
ERL$GB_BUFTIM Byte Format process wakeup timer 
ERL$GLERLPID Longword Process ID of error format process 
ERL$GLSEQUENCE Longword Systemwide error sequence number 
EXE$AR_SYSTEM_ Longword Address of SYSTEM_PRIMITIVES private data 

PRIMITIVES_DATA area; offsets defined by $$SYSTEM_PRIM_ 
DATADEF macro 

EXE$AR_IO_ROUTINES_ Longword Address of IO_ROUTINES private data 
DATA area; offsets defined by $$IO_ROUTINES_ 

DATADEF macro 
EXE$AR_FQRK_ WAIT_ Longword Address of fork and wait queue 

QUEUE 
EXE$AB_HEXTAB 16 bytes Hexadecimal conversion table 
BUG$L_BUGCHK_FLAGS Longword Flags used by bugcheck code 
BUG$LFATAL_SPSAV Longword Fatal bugcheck in progress stack pointer 
EXE$A_ID_ UPCASE Longword Address of table to translate lowercase to 

uppercase 
IOC$GL_ADPLIST Longword Listhead of adapter control blocks 
IOC$GL_DPTLIST Quadword Listhead of driver prolog tables (DPTs) 
TTY$GLDPT Longword Address of terminal class driver DPT 
NO$GL_DPT Longword Address of asynchronous class driver DPT 
TTY$GL_JOBCTLMB Longword Address of job controller mailbox 
SYS$GLUIS Longword Address of loaded UIS code 
UIS$GLUSB Longword Address of UIS context block 
SYS$GLFALLBACK Longword Reserved 
EXE$GL_CPUNODSP Longword Virtual address that maps CPU node private 

space 
EXE$GL_CONFREGL Longword Address of nexus device type longword array 
EXE$GLCONFREG Longword Address of nexus device type byte array 
MMG$GLSBICONF Longword Address of a longword array containing nexus 

slot virtual addresses 
EXE$GLNUMNEXUS Longword Maximum nexus number possible 
MMG$GL_RMSBASE Longword Base address of RMS image 
MMG$GLFPEMULBASE Longword Base address of floating-point instruction 

emulator 
MMG$GL_SYSLOA_BASE Longword Base address of SYSLOAxxx .EXE 
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MMG$GL VAXEMUL_ 
BASE 

MMG$GLGBLSECFND 

MMG$GLGBLPAGFIL 

SCH$GL_MAXPIX 
SCH$GLPIXLAST 
SCH$GLPIXWIDTH 

SCH$GW _LOCALNODE 

PMS$GLDIRIO 
PMS$GL_BUFIO 
PMS$GL_SPLIT 
PMS$GL_HIT 

PMS$GLLOGNAM 
PMS$GLMBREADS 
PMS$GL_MBWRITES 
PMS$GL TREADS 
PMS$GL_TWRITES 
PMS$GL_IOPFMPDB 
PMS$GL_IOPFMSEQ 
PMS$GLARRLOCPK 
PMS$GLDEPLOCPK 
PMS$GL_ARRTRAPK 
PMS$GL_ TRCNGLOS 
PMS$GLRCVBUFFL 
PMS$GL_ENQNEW _LOC 
PMS$GL_ENQNEW _IN 
PMS$GL_ENQNEW _OUT 
PMS$GLENQCVLLOC 
PMS$GLENQCVT _IN 
PMS$GL_ENQCVT _OUT 
PMS$GLDEQ_LQC 
PMS$GL_DEQ_IN 
PMS$GLDEQ_OUT 
PMS$GLENQWAIT 
PMS$GL_ENQNOTQD 
PMS$GL_BLILLOC 
PMS$GLBLILIN 
PMS$GL_BLK_OUT 
PMS$GL_DIR_IN 
PMS$GLJ)IR_OUT 
PMS$GL_DLCKMSGS_IN 

PMS$GL_DLCKMSGS_ 
OUT 

PMS$GLDLCKSRCH 
PMS$GL_DLCKFND 
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Size 
Longword 

Longword 

Longword 

Longword 
Longword 
Longword 

Word 
Word 
Longword 
Longword 
Longword 
Longword 

Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 

Longword 

Longword 
Longword 

Description of Data 

Base address of decimal/string instruction 
emulator 

Last global section table entry found when 
deleting page file backing store addresses 

Remaining page file available for global 
sections 

Maximum process index for this system 
Last process index created 
Width of process index field determined by 

MAXPROCESSCNT parameter 
ID for local VAXcluster node 
Spare for alignment 
Number of direct 1/0 operations 
Number of buffered 1/0 operations 
Number of split 1/0 transfers 
Number of disk transfers not requiring window 

turns 
Number of logical name translations 
Number of mailbox read operations 
Number of mailbox write operations 
Number of terminal read operations 
Number of terminal write operations 
Address of performance data block 
Master 1/0 packet sequence number 
Number of local packets arriving 
Number of local packets departing 
Number of arriving packets 
Cumulative transit congestion loss 
Number of receiver buffer failures 
Number of local new lock requests 
Number of incoming new lock requests 
Number of outgoing new lock requests 
Number of local conversion requests 
Number of incoming conversion requests 
Number of outgoing conversion requests 
Number of local dequeues 
Number of incoming dequeues 
Number of outgoing dequeues 
Number of $ENQ requests waiting 
Number of $ENQ requests not queued 
Number of local blocking ASTs queued 
Number of incoming blocking ASTs queued 
Number of outgoing blocking ASTs queued 
Number of incoming directory operations 
Number of outgoing directory operations 
Number of incoming deadlock detection 

messages 
Number of outgoing deadlock detection 

messages 
Number of deadlock searches performed 
Number of deadlocks found 



C.1 The Base Image 

Global Symbol Size Description of Data 

PMS$GL_FLAGS Longword Flags used in disk queue length monitoring 
PMS$GL_QLEN_SCANS Longword Number of 1/0 database scans for monitoring 

queue length 
PMS$GL_QLEN_ TQINT Longword Timeout interval for disk queue monitoring 
PMS$GL_QLEN_ TQCTR Longword Timeout down counter for disk queue 

monitoring 
PMS$GL_RESERVED1 18 longwords Reserved 
PMS$GL_CHMK. Longword Number of CHMK exceptions 
PMS$GL_CHME Longword Number of CHME exceptions 
PMS$GL_PAGES Longword Number of physical pages of memory in 

configuration 
PMS$GW _BATCH Word Number of current batch jobs 

Word Spare for alignment 
PMS$GW _INTJOBS Longword Number of interactive users 
PMS$GL_READCNT Longword Total number of terminal characters read since 

bootstrap 
PMS$GL_ WRTCNT Longword Total number of terminal characters written 

since bootstrap 
PMS$GL_PASSALL Longword Number of reads in PASSALL mode 
PMS$GL_RWP Longword Number of read-with-prompt reads 
PMS$GL_LRGRWP Longword Number of read-with-prompt reads of more 

than 12 characters 
PMS$GL_RWPSUM Longword Total number of characters read in prompt 

mode 
PMS$GL_NOSTDTRM Longword Number of reads not using standard 

terminators 
PMS$GL_RWPNOSTD Longword Number of read-with-prompt reads not using 

standard terminators 
PMS$GL_ TTY_CODE1 Longword Performance code vector 1 
PMS$GL_ TTY _CODE2 Longword Performance code vector 2 
PMS$GL_LDPCTX Longword Reserved 
PMS$GL_SWITCH Longword Number of switches from the current process 
PMS$GB_PROMPT 4 bytes RTE input prompt 
EXE$AILEWDATA Longword Address of the exec-writable file system 

measurement data 
PMS$GL_DOSTATS Longword Flags to turn statistics code on and off 
SCH$GL_COMQS Longword Queue summary longword for computable 

state 
SCH$GL_COMOQS Longword Queue summary longword for computable 

outswapped state 
SCH$GB_SIP Byte Swapper flags 
.SCH$V_MPW Bit Modified page writer active 
• SCH$V_SIP Bit Swap in progress 
SCH$GB_RESCAN Byte Queue reordering notification flags 
• SCH$V _REORD Bit RELPFN has reordered the queue 
MMG$GB_FREWFLGS Byte Swapper/MMG$FREWSLE communication 

flags 
• MMG$V _NOWAIT Bit MMG$FREWSLE may not enter resource wait 

for pages from the modified list 
• MMG$V _NOLASTUPD Bit MMG$FREWSLE may not update WSLAST 

3 bytes Spare for alignment 
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Executive Data Areas 

Global Symbol 

SCH$GW _PROCCNT 
SCH$GW _PROCLIM 
SWP$GL_SLOTCNT 
SCH$GQ_CEBHD 
SCH$GW _CEBCNT 
SCH$GW _DELPHDCT 

SWP$GLSHELL 
SWP$GLINPCB 

SWP$GL_ISPAGCNT 
SWP$GW _IBALSETX 
SWP$GB_ISWPRI 

SWP$GLISWPPAGES 
SWP$GL_ISWPCNT 
SWP$GLOSWPCNT 
SWP$GL_HQSWPCNT 
SWP$GL_HISWPCNT 
SWP$GL_MAP 
SCH$GL_RESMASK 
EXE$GL_FLAGS 

EXE$GL_STATE_FLAGS 
EXE$AQ_ERLMBX 
EXE$GL_VAXEXCVEC 

EXE$GLFPEXCVEC 

EXE$GLUSRCHMK 

EXE$GLUSRCHME 

SWI$GL_FQFL 

LNM$ALMUTEX 
LNM$GLSYSDIRSEQ 

EXE$GLSYSUCB 
FIL$GT_DDDEV 

FIL$GT_ TOPSYS 

FIL$GQ_CACHE 
EXE$GQ_BOOTCB_D 
EXE$GLSAVEDUMP 

EXE$GLERASEPB 

EXE$GLERASEPPT 
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Size 

Word 
Word 
Longword 
Quadword 
Word 
Word 

Longword 
Longword 

Longword 
Word 
Byte 
3 bytes 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 

Longword 
5 quadwords 
Longword 

Longword 

Longword 

Longword 

6 quadwords 

Longword 
Longword 

Longword 
16 bytes 

40 bytes 

Quadword 
Quadword 
Longword 

Longword 

Longword 

Description of Data 

Process count excluding the swapper process 
Maximum number of processes on the system 
Obsolete 
Listhead for common event blocks 
Number of common event blocks 
Number of process headers of already deleted 

processes 
Shell process swap address 
PCB address of process being swapped into 

memory 
lnswap page count 
Balance set slot index for inswap process 
Priority of inswap process 
Spare for alignment 
Number of inswapped pages 
Number of inswaps performed 
Number of outswaps performed 
Number of header outswaps 
Number of header inswaps 
Address of swapper's 1/0 page table 
Resource wait mask vector 
System flags longword loaded from EXE$GL 

DEFFLAGS (see Section C.1.4) 
State of system control flags 
Descriptors of error log mailboxes 
Address for intercept VAX CPU exception 

dispatching, used by instruction emulation 
Address for intercept of floating exception 

dispatching 
Address of systemwide user-written change­

mode-to-kernel dispatcher 
Address of systemwide user-written change­

mode-to-executive dispatcher 
Fork queue listheads for IPLs 6 through 11; IPL 

7 used only as a place holder 
Mutex for shareable logical names 
Sequence number for cache of system logical 

name table translations 
Address of system disk unit control block 
Counted ASCII string of default device 

(SYS$SYSDEVICE) 
Counted ASCII string of top-level system 

directory on default device 
File read cache descriptor 
Descriptor for boot control block 
Number of page file blocks to release when 

dump is copied from page file 
Address of an erase pattern buffer containing 

zeros 
Address of a pseudo page table that maps the 

erase pattern buffer filled in by !NIT 



C.1 The Base Image 

Global Symbol Size Description of Data 
NET$GL_DIAG_BUF Longword Address of network diagnostic tool common 

buffer 
EXE$GQ_PQBIQ Quadword Listhead for process quota block lookaside list 
IOC$GL_AQBLIST Longword Ancillary control process queue block listhead 
IOC$GQ_MOUNTLST Quadword Systemwide mounted volume list 
IOC$GQ_BRDCST Quadword Reserved 
IOC$GL_CRBTMOUT Longword List of controller request blocks to scan for 

timeouts 
IOC$GL_DU_CDDB Longword Listhead of class driver data blocks for disk 

class driver connections 
IOC$GL_ TU_CDDB Longword Listhead of class driver data blocks for tape 

class driver connections 
IOC$GL_ffiRT Longword Address of host-initiated replacement table 

(used by mass storage control protocol disks) 
IOC$GL_SHDW _ WRK Longword Address of area used for processing shadow set 

generation number comparisons 
EXE$GL_GSDGRPFL 2 longwords Listhead for group global section descriptor 
EXE$GL_GSDGRPBL (GSD) list 
EXE$GL_GSDSYSFL 2 longwords Listhead for system GSD list 
EXE$GL_GSDSYSBL 
EXE$GL_GSDDELFL 2 longwords Listhead for GSD block delete pending list 
EXE$GL_GSDDELBL 
EXE$GQ_ WCBDELIQ Quadword Listhead for window control block delete 

queue for GSD windows 
EXE$GQ_SYSWCBIQ Quadword Listhead for system window control blocks 
IOC$GQ_POSTIQ Quadword Systemwide sequential 1/0 postprocessing 

queue 
EXE$GQ_RIGHTSLIST Quadword Systemwide rights list descriptor 
PMS$GL_KERNEL 6 longwords Reserved 
EXE$GL_ABSTIM Longword Seconds elapsed since system booted 

Longword Spare for alignment 
EXE$GQ_SYSTIME Quadword System time in units of 100 nanoseconds 
EXE$GQ_SYSTIME2 Quadword Number of 100-nanosecond units elapsed since 

system boot 
EXE$GQ_BOOTTIME Quadword Base time of last boot 
EXE$GL_SYSTICK Longword Amount to be added to EXE$GQ_SYSTIME 
EXE$GL_ TIMEADJUST Longword Number of ticks necessary to adjust time 
EXE$GL_ TICKADJUST Longword Tick adjustment 
EXE$GL_ TICKLENGTH Longword Total length of a tick 
EXE$GL_DTSFLAG Longword Time service flags 
EXE$GL_PFAILTIM Longword Contents of time-of-year clock at last power 

failure 
EXE$GL_PFATIM Longword Duration of most recent power failure in 

IO-millisecond units 
IOC$GL_MUTEX 2 words 1/0 database mutex 
EXE$GL_CEBMTX 2 words Common event block list mutex 
SMP$GL_CPU_MUTEX Longword Special mutex to freeze active CPU set 
EXE$GL_PGDYNMTX 2 words Paged dynamic memory mutex 
EXE$GL_GSDMTX 2 words Global section descriptor list mutex 
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Executive Data Areas 

Global Symbol 

EXE$GL_SHMGSMTX 

EXE$GLSHMMBMTX 
EXE$GLENQMTX 
EXE$GL_ACLMTX 
EXE$GLSYSID_LOCK 
EXE$GLKNOWN_FILES 
EXE$GL_GPT 

SYS$GQ_ VERSION 

SYS$GW _IJOBCNT 
SYS$GW _BJOBCNT 
SYS$GW _NJOBCNT 

EXE$GLSYSMSG 
EXE$GL_USRUNDWN 

EXE$GL_NONPAGED 

EXE$GL_SPLITADR 

EXE$GL_PAGED 

EXE$GL_SHBLIST 

EXE$GL_RTBITMAP 

EXE$GL_MCHKERRS 
EXE$GL_MEMERRS 
10$GL_ UBA_INTO 

EXE$GL_BLAKHOLE 

IO$GL_SCB_INTO 

EXE$GL_ TENUSEC 

EXE$GL_UBDELAY 

EXE$GL_MP 
EXE$GL_SITESPEC 

EXE$GL_INTSTKLM 
LCK$AR_COMPAT _ TBL 
LCK$GL_IDTBL 
LCK$GL_NXTID 
LCK$GL_MAXID 
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Size 

2 words 

2 words 
2 words 
2 words 
Longword 
Longword 
Longword 
Longword 

Quadword 
Longword 
Word 
Word 
Word 
2 bytes 
Longword 
Longword 

Longword 
Longword 
Longword 
Longword 

Longword 
Longword 
Longword 

Longword 

Longword 
Longword 
Longword 

Longword 

Longword 

Longword 

Longword 

Longword 
Longword 

Longword 
Longword 
Longword 
Longword 
Longword 

Description of Data 

MA780 shared memory global section 
descriptor list mutex 

MA780 shared memory mailbox list mutex 
Reserved 
Reserved 
System parent lock ID 
Address of hash table for known file entries 
Address of first free global page table entry 
Dummy count of number of global page table 

entries in listhead 
ASCII string containing system version number 
Reserved 
Current count of interactive logins 
Current count of batch logins 
Current count of network logins 
Spare for alignment 
Address of systemwide message section 
Address of systemwide user rundown service 

vector 
IPL at which nonpaged pool allocation occurs 
Address of first free block of nonpaged pool 
Dummy size of zero for listhead 
Address of boundary between large request 

packet and intermediate request packet 
lookaside lists 

Address of first free block of paged pool 
Dummy size of zero for listhead 
Address of MA780 shared memory control 

block list 
Address of real-time system page table entry 

bitmap 
Number of machine checks since bootstrap 
Number of memory errors since bootstrap 
Number of UNIBUS adapter interrupts through 

vector 0 
Physical page used to remap addresses of 

adapters that have lost power 
Number of unexpected system control block 

interrupts 
Number of times loop executed in 10 

microseconds in TIMEDWAIT macro 
Number of times to execute a 3-microsecond 

loop delay in TIMEDWAIT macro 
Obsolete 
Longword available to privileged users for 

site-specific purposes 
Top of primary CPU's interrupt stack 
Address of lock mode compatibility table 
Address of lock ID table 
Address of next lock ID to use 
Maximum lock ID 



C.1 The Base Image 

Global Symbol Size Description of Data 

LCK$GL_HASHTBL Longword Address of resource hash table 
LCK$GL_HTBLCNT Longword Number of entries in resource hash table 

!expressed as a power of 2) 
LCK$GL_ TIMOUTQ Quadword Listhead for lock timeout queue 
LCK$GL_DIRVEC Longword Address of directory vector 
LCK$GL_PRCMAP Longword Address of process bitmap 
LCK$GQ_BITMAP _EXP Quadword Process bitmap expiration timestamp jexact 

time) 
LCK$GQ_BITMAP _ Quadword Process bitmap expiration timestamp japproxi-

EXPLCL mate local time) 
LCK$GB_HTBLSHFT Byte Number of entries in hash table !expressed as 

a shift count) 
LCK$GB_MAXDEPTH Byte Maximum number of sublocks allowed 
LCK$GB_STALLREQS Byte Stall lock request flag 
LCK$GB_REBLD_STATE Byte Lock rebuild state flag 
EXE$GL_ACMFLAGS Longword Accounting manager control flags 
EXE$GL_SVAPTE Longword System virtual address of page table entry that 

maps the black hole page 
XQP$GL_SECTIONS Longword Number of Files-11 XQP global sections 
XQP$GL_DZRO Longword Size of XQP demand zero section 
XQP$GL_FILESERVER Longword Process ID of CACHE_SERVER 
XQP$GL_FILESERV _ Longword AST entry point of CACHE_SERVER process 

ENTRY 
SYS$GQ_PWD Quadword Encrypted system password 
CIA$GL_MUTEX 2 words Mutex for system intruder lists 
CIA$GQ_INTRUDER 2 longwords Listhead of known and suspected intruders 
EXE$GL_BADACV _ T Longword Time of the last spurious access violation 
EXE$GL_BADACV _C Longword Number of spurious access violations 
EXE$EXCEPTABLE Longword Address of exception table 
SMP$AR_SPNLKVEC Longword Address of spinlock vector 
SMP$GW _SPNLKCNT Word Number of entries in spinlock vector 
SMP$GW _MIN_INDEX Word Value of first spinlock index 
EXE$GQ_lST _TIME Quadword Expiration time for first timer queue entry 
SMP$GL_BASE_MSK Longword Per-CPU data area access mask 
SMP$GL_CPUCONF Longword Bit mask of available CPUs 
SMP$GL_ACTIVE_CPUS Longword Bit mask of members of active set 
SMP$GL_OVERRIDE Longword Bit mask of members of override set 
SMP$GL_ACILMASK Longword Bit mask of CPUs to wait for acknowledgment 
SMP$GL_BUG_DQNE Longword Bit mask of CPUs that have completed state 

saving during bugcheck 
SMP$GL_INVALID Longword Contains system virtual address to invalidate 

in the translation buffer 
SMP$GL_FLAGS Longword Symmetric multiprocessing control flags 
SMP$GL_BUGCHKCP Longword CPU ID of bugcheck initiator (CRASH CPU) 
SMP$GL_ TODR Longword TODR value for EXE$WRITE_ TODR 
SMP$GL_PRIMID Longword Primary CPU ID 
SMP$GL_CPU_DATA 64 longwords Per-CPU data area pointer array 
SMP$GL_PROPOSED_ Longword Proposed new value for TODRs 

TODR 
SMP$GL_NEW _ TODR Longword Most recent contents of primary's TODR 
XDT$GW _INTERLOCK Word XDELTA entry interlock (low bit) 
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Executive Data Areas 

Global Symbol 
XDT$GW _OWNER_ID 
XDT$GLBENIGN_CPUS 

CLU$GB_CLUVER 

MMG$GLDZRO_PTE 

MMG$GLDZRO_ VA 

EXE$GLABSTIM_ TICS 

PMS$GL_NPAGDYNEXPS 
PMS$GL_NPAGDYNEXPF 

PMS$GLPAGDYNF 
PMS$GL_PROCCNTMAX 
SMP$GL_CAPABILITIES 
SMP$GW _AFFINITY_ 

COUNT 
EXE$GA_LES_ TABLE 
EXE$GLAFFINITY 
EXE$GLTMV _SVAPTE 

EXE$GLTMV _SVABUF 
EXE$GLIPINT _IPL 
EXE$GA_ WP _CRE 
EXE$GA_ WP _DEL 
EXE$GA. WP_ WPRE 

EXE$GA.HWNAME 
EXE$GA_HWTYPE 
EXE$GLUSRUNDWN_ 

EXEC 
SYS$GL VERSION 
MMG$GLFREE_NO_ 

PFN_DB_LIST 
MMG$GLFREE_NO_ 

PFN_DB_VA 
MMG$GLFREE_NO_ 

PFN_DB_PTE 
LMF$GLRESERVED 
CLU$GW _QUORUM 
SYS$GLSO_ VECTOR_ 

LAST_USED 
EXE$GL_ VECTOR_LAST_ 

USED 
EXE$GLNPAG_DATA_ 

LAST_USED 
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Size 

Word 
Longword 

Byte 
3 bytes 
Longword 

Longword 

Longword 

Longword 
Longword 

Longword 
Longword 
32 quadwords 
32 words 

Longword 
Longword 
Longword 

Longword 
Longword 
Longword 
Longword 
Longword 

Longword 
Longword 
Longword 

33 longwords 
Longword 

Longword 

Longword 

Longword 
Word 
Longword 

Longword 

Longword 

2 bytes 

Description of Data 

CPU ID of XDELTA owner 
Mask of CPUs in XDELTA-controlled benign 

state 
VAXcluster version number for rolling upgrade 
Spare for alignment 
Address of system page table entry for zeroing 

demand zero global pages during address 
space deletion 

Address corresponding to system page table 
entry for zeroing demand zero global pages 
during address space deletion 

Number of IO-millisecond ticks elapsed since 
boot 

Number of successful attempts to expand pool 
Number of unsuccessful attempts to expand 

pool 
Number of paged pool allocation failures 
Maximum number of concurrent processes 
Per-capability bit mask of CPUs 
Per-capability count of users of capability 

Address of main low-end system data structure 
Default device affinity value 
Address of first page table entry used to map 

tape mount verify buffer 
Address of 1024-byte area for tape mount verify 
IPL of interprocessor interrupts 
Address of create watchpoint routine 
Address of delete watchpoint routine 
Address of start of watchpoint restore entries 

array 
Address of start of hardware name table 
Address of start of hardware type table 
Vector for systemwide executive mode 

rundown 
Array of system version numbers 
Address of list of free pages not described in 

the page frame number (PFN) database 
Address to map free page not described in the 

PFN database 
System page table entry to map free page not 

described in the PFN database 
Reserved 
Contains quorum for use by $GETSYI 
End of system service vector area 

End of system routine area 

End of nonpageable data area 

Spare for alignment 



C.1 The Base Image 

Global Symbol Size Description of Data 
PMS$GL_NPAGDYNF Longword Count of nonpaged pool allocation failure 

epochs 
PMS$GL_NPAGDYNF- Longword Failed nonpaged pool pages accumulator 

PAGES 
PMS$GL_PAGDYNF- Longword Failed paged pool pages accumulator 

PAGES 
PMS$GL_NPAGDYNREQ Longword Number of nonpaged pool allocation requests 
PMS$GL_NPAGDYN- Longword Number of failed nonpaged pool allocation 

REQF requests 
PMS$GL_PAGDYNREQF Longword Number of failed paged pool allocation requests 
PMS$GL_XRPFAIL 3 longwords Number of request packet lookaside list 

allocation failures 
3 longwords Reserved 

SYS$GL_UIS_FLAGS Longword Address of UIS flags field 
SYS$GL_UISBG_EPID Longword Address of UIS background process ID 
UIS$GL_LTRc_BUF Longword Address of UIS lock event trace buffer 
UIS$G1-LTRC_END Longword Address of UIS lock event trace buffer end 
UIS$GL_LTRC_PTR Longword Position in UIS lock event trace buffer 
UIS$GL_LTRC_SPARE Longword Reserved for UIS 

Quadword Terminates outswap scheduling scan 
SCH$AQ_COMH 32 quadwords Listheads for computable processes at all 

software priority levels 
SCH$AQ_COMOH 32 quadwords Listheads for computable outswapped processes 

at all software priority levels 
SCH$AQ_ WQHDR 176 bytes Wait queue headers for 11 wait states with 

176 - 16*12 headers reserved 
PMS$AL_ TRANSFLT 60 longwords Array for recording page faults out of transition 

states 
NSA$AILALARM_ Longword Address of security alarm event vector 

VECTOR 
NSA$AR_AUDIT _ Longword Address of security audit event vector 

VECTOR 
NSA$AR_ALARM_ Longword Address of security alarm failure vector 

FAILURE 
NSA$AILAUDIT _ Longword Address of security audit failure vector 

FAILURE 
SCS$AR_LOCALSB Longword Address of the local system block 
NET$AILWCB Longword Address of window control block for network 

pseudo device 
MMG$AR_NULLPFL Longword Address of the null page file structure 
SCH$AR_NULLPCB Longword Address of the null PCB 
SCH$AR_SWPPCB Longword Address of the swapper PCB 
MMG$AILSYSPCB Longword Address of the system PCB, used for system 

paging 
EXE$AR_UPCASE_DAT Longword Address of the DEC multinational upcase table 
IOC$GL_DEVLIST Longword Listhead of device data blocks of all devices 

(part of system block) 
MB$AR_DDB Longword Address of mailbox device data block 
MB$AILORB1 Longword Address of object rights block (ORB) for MBAl 
MB$AILORB2 Longword Address of ORB for MBA2 
MB$AILUCB1 Longword Address of unit control block (UCB) for MBAl 
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Executive Data Areas 

Global Symbol 
SYS$AR_JOBCTLMB 

MB$AR_UCB2 
SYS$AILOPRMBX 
MB$AR_ORBO 
MB$AR_UCBO 
NL$AR_DDB 
NL$AR_ORBO 
NL$AR_UCBO 
OPA$AILDDB 
OPA$AILORBO 
OPA$AILUCBO 
OPA$AILCRB 

OP$AR_DPT 
OPA$AR_SPL 
OPA$AILIDB 

ARCH$GQ_PTOLEMY_ 
CELL 

SWP$GL_SHELLBAS 
LNM$AL_HASHTBL 

LNM$AL_DIRTBL 

SCH$GL_SWPPID 
SWP$AL_SWAPPEIL 

STACK 
SWP$GL_SWAPPER_ 

STACILSIZE 
SYS$AILBOOTUCB 
SYS$AR_BOOTORB 
SYS$AR_BOOTDDB 
EXE$AR_UAFC_HASH_ 

TABLE 
EXE$AILARBc_HAsIL 

TABLE 
EXE$GL_HWNAME_ 

LENGTH 
EXE$GL_HWTYPE_ 

LENGTH 
SMP$AL_IPLVEC 

EXE$AR_ TQENOREPT 
EXE$GL_SAVED_EMBS 
EXE$GW_SAVED_EMBS_ 

COUNT 
OPA$AIL VECTOR 
SYS$GW _MBXUCBSIZ 
EXE$ALERLBUFADR 
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Size 
Longword 

Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Lqngword 
Longword 
Longword 

Longword 
Longword 
Longword 

Quadword 

Longword 
3 longwords 
2 longwords 
2 longwords 
I longword 
Longword 
Longword 

Longword 

Longword 
Longword 
Longword 
Longword 

Longword 

Longword 

Longword 

31 longwords 

Longword 
Longword 
Word 

Longword 
Word 
Longword 

Description of Data 

Address of job controller mailbox UCB for 
MBAl 

Address of UCB for MBA2 
Address of OPCOM mailbox UCB for MBA2 
Address of ORB for template mailbox UCB 
Address of template mailbox UCB 
Address of null device data block 
Address of null device ORB 
Address of null device UCB 
Address of console terminal device data block 
Address of console terminal device ORB 
Address of console terminal device UCB 
Address of console terminal device controller 

request block 
Address of console terminal device driver 
Address of console terminal spinlock 
Address of console device interrupt dispatch 

block 
Reserved 

Address of beginning of SHELL 
Addresses of logical name hash tables 
Reserved 
Addresses of logical name directories 
Reserved 
Process ID of swapper 
Address of the swapper's stack 

Size of swapper's stack 

Address of system device unit control block 
Address of system device object rights block 
Address of system device data block 
Reserved 

Reserved 

Length of hardware name table 

Length of hardware type table 

Spinlock IPL vector postindexed with negative 
numbers 

Address of permanent timer queue entry 
Address of saved error message buffer pointers 
Saved error message buffer count 

Address of console port driver dispatch vector 
Size of mailbox template unit control block 
Address of array of error log allocation buffers 



C.1 The Base Image 

Global Symbol Size Description of Data 
EXE$GW _ERLBUFHEAD Word Number of next error log allocation buffer to 

copy to file 
EXE$GW _ERLBUFTAIL Word Number of current error log allocation buffer 

6 bytes Spare for alignment 
EXE$GL_ TQFL Quadword Timer queue listhead 
EXE$GQ_KFE_LCKNAM Quadword String descriptor of known file entry lock name 
EXE$GL_BRKMSK Longword Mask of INI$BRK invokers that cause XDELTA 

breakpoint 
CLU$GB_QUORUM_ Byte Cluster quorum lost flag 

LOST 
3 bytes Spare for alignment 

SMP$AR_PRIMID_COPY Longword Address of copy of primary CPU ID 
EXE$GLXPCA Longword Reserved 
MMG$GL_FPEMULEND Longword End address of floating-point emulator 
MMG$GL_ VAXEMUL_ Longword End address of decimal/string emulator 

END 
PAT$A_NONPAGED Longword Dummy cell for the system loader 
PAT$A_PAGED Longword Dummy cell for the system loader 
SCH$GL_IDLE_CPUS Longword Bit mask of idle CPUs 

Longword Reserved 
DECW$GL VECTOR Longword Address of array used by DECwindows device 

drivers 
EXE$GW _CLKUTICS Word Reserved 
EXE$GW _CLKUTICR Word Reserved 
EXE$GL_ABSTIM_UTICS Longword Reserved 
LMF$AR_GROUPTBL Longword Reserved 
EXE$AR_DUMP _PTES Longword Address of system page table entries allocated 

for selective dump 
EXE$GL_DUMPMASK Longword Dump type flags 
VMS$GL_LICENSE_ Longword Reserved 

VERSION 
VMS$GQ_LICENSE_ Quadword Reserved 

DATE 
MMG$GL_ VVIEF _BASE Longword Reserved 
MMG$GL_ VVIEF _END Longword Reserved 
MMG$GL_ VVIEF _ADDR Longword Reserved 
MMG$GL_ VAXEMUL_ Longword Address of character instruction emulation 

EXIT exit 
SMP$GLPOPT _MAP Longword Address of array of virtual pages used to 

double-map CPUs' boot stack pages 
EXE$GL_NS_FLAGS Longword Vector processing flags 
EXE$GL_MMG_FLAGS Longword Reserved 
NET$GLATM_RCVPKT Longword Reserved 
NET$GL_ATM_XMTPKT Longword Reserved 
NET$GLATM_FWDPKT Longword Reserved 
SMP$GLPFORILPOOL Longword Address of pool for forking to primary 
SMP$GB_PFORK_POOL_ Byte Size in pages of PFORK_POOL 

SIZE 
SCH$GLDEFAULT _ Longword Default capabilities required by newly created 

PROCESS_ CAP processes 
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Executive Data Areas 

Global Symbol 

SCH$GLDEFAULT _CPU_ 
CAP 

SCH$AR_CAP _PRIV 
SCH$GLACTIVE_ 

PRIORITY 
SCH$GLCPU_CAP _SUM 
DDTM$AR_PERFOR-

MANCE_ CELLS 
NET$GQ_CTF _ WRK_Q 
NET$GQ_CTF _REG_Q 
PMS$GL_GBLSECTCNT 
PMS$GLGBLSECTMAX 
PMS$GLGBLPAGCNT 
PMS$GLGBLPAGMAX 
SYS$GL_EXITRET 
PMS$GLCWPS_MSGS_ 

IN 
PMS$GLCWPS_MSGS_ 

OUT 
PMS$GLCWPS_BYTES_ 

IN 
PMS$GLCWPS_BYTES_ 

OUT 
PMS$GLCWPS_GETJPL 

IN 
PMS$GLCWPS_GETJPL 

OUT 
PMS$GLCWPS_ 

PCNTRLIN 
PMS$GLCWPS_ 

PCNTRLOUT 
PMS$GL_CWPS_RSRC_ 

SEND 
PMS$GLCWPS_RSRC_ 

RECV 
. MB$AILUCB3 

MB$AR_ORB3 

SYS$AR_AUDSRVMBX 

EXE$GLXMLNEXUS_ 
ARRAY 

EXE$GLXMLCSR_ 
ARRAY 

EXE$GLXML 
STRUCTURE_ARRAY 

PSX$GL_STATE 
SMP$GQ_PRIMARY _ 

WORKQ 
LCK$GLRRSFL 
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Size 

Longword 

Longword 
Longword 

Longword 
Longword 

Quadword 
Quadword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 
Quadword 

Quadword 

Description of Data 

Default capabilities granted to every CPU 

Reserved 
Mask of current CPU priorities 

Summary of all capabilities on all CPUs 
Reserved 

Reserved 
Reserved 
Current number of mapped global sections 
Maximum number of mapped global sections 
Current number of mapped global pages 
Maximum number of mapped global pages 
Return address of $EXIT system service 
Count of inbound Clusterwide Process Server 

(CWPS) messages 
Count of outbound CWPS messages 

Count of inbound CWPS bytes 

Count of outbound CWPS bytes 

Count of inbound CWPS $GETJPI requests 

Count of outbound CWPS $GETJPI requests 

Count of inbound process control requests 

Count of outbount process control requests 

Count of resource failure messages sent 

Count of resource failure messages received 

Address of audit server mailbox unit control 
block 

Address of audit server mailbox object rights 
block 

Address of audit server mailbox unit control 
block 

Address of XMI device type array 

Address of XMI node space pointer array 

Address of XMI primary data structure pointer 
array 

Reserved 
Primary CPU's work queue 

Listhead of all root resource blocks 



Global Symbol 
PMS$GL_RM_QUOTA_ 

WAIT 
. PMS$GL_RM_UNLOAD 

PMS$GL_RM_ACQUIRE 
PMS$GL_RM_FINISH 
PMS$GL_RM_REQ_NAK 
PMS$GL_RM_MSG_SENT 
PMS$GL_RM_MSG_RCV 
PMS$GL_RM_RBLD_ 

SENT 
PMS$GL_RM_RBLD_ 

RCVD 
LCK$GB_DLCK_ 

INCMPLT 
NET$GQ_CTF_TB_Q 
EXE$GL_BASIMGMTX 
EXE$GL_LDR..SEQ 
EXE$GLLDR_CNT 
IOC$GL_INTERRUPTS 
EXE$GL_NUM_XML 

NEXUS 
NET$GL_RESERVED1 
NET$GL_NSA_FWDPKT 
EXE$GL_FT _FLAGS 
EXE$GL_SYS_SPECIFIC 

Size 

Longword 

Longword 

Longword 
Longword 
10ngword 
Longword 
Longword 
Longword 

Longword 

Byte 

Quadword 
Longword 
Longword 
Longword 
Longword 
Longword 

7 longwords 
Longword 
Longword 
16 longwords 

C.1 The Base Image 

Description of Data 

Number of lock remaster quota waits 

Number of resource trees moved to another 
node 

Number of resource trees moved to this node 
Number of remaster operations completed 
Number of proposed new mastership declines 
Number of remaster messages sent 
Number of remaster messages received 
Number of remaster rebuild messages sent 

Number of remaster rebuild messages received 

Number of incomplete deadlock searches 

Reserved 
Loadable executive image mutex 
Loaded image queue sequence number 
Number of loadable executive images 
Number of CPUs that accept I/O interrupts 
Number of active array elements in EXE$GL_ 

XMLNEXUS_ARRAY 
Reserved 
Reserved 
Reserved 
Reserved 

C.1.4 Table of Adjustable SYSGEN Parameters ($$$$$SYSPARAM_DATA) 

As described in Chapter 31, the system image contains a copy of the working 
value of each SYSGEN parameter. This table of values is written into the 
loaded base image of the executive by SYSBOOT. Global label MMG$A_ 
SYSPARAM, defirted in module EXEC_LAYOUT, locate~ the beginning of 
the parameters area. Global label EXE$A_SYSPARAM, defined in module 
SYSPARAM, has the same value. 

The following. table lists all the global symbols that make up this area. 
The name of each parameter is included as a part of its description. 

Global Symbol 

EXE$GQ_ TODCBASE 

.EXE$GL_ TODR 

SGN$GW _DFPFC 
SGN$GB_PGTBPFC 

SGN$GB_SYSPFC 

Size 
Quadword 

Longword 

Word 
Byte 

··.: 

Byte 

Description of Data 

Base value in time-of-day clock in system time 
format (not a parameter) 

Base value in time-of-year clock (not a 
~ parameter) 

Default page fault cluster size (PFCDEFAULT) 
Default page table page fault cluster size 

(PAGTBLPFC) 
Page fault cluster factor for system paging 

(SYSPFC) 
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Executive Data Areas 

Global Symbol 

SGN$GB_KFILSTCT 

SGN$GW _GBLSECNT 
SGN$GL_MAXGPGCT 
SGN$GL_GBLPAGFIL 
SGN$GW _MAXPRCCT 
SGN$GW _PIXSCAN 

SGN$GL_SMP _CPUS 

SGN$GL_SMP _CPUSH 
SGN$GB_MULTI-

PROCESSING 
SGN$GW _SMP _SANITY_ 

CNT 

SGN$GW _SMP _TICK_ 
CNT 

SGN$GL_SMP _SPINWAIT 

SGN$GL_SMP _LNG-
SPINWAIT 

SGN$GW _MAXPSTCT 
SGN$GL_MINWSCNT 
SGN$GW _PAGFILCT 
SGN$GW _SWPFILES 
SGN$GL_SYSDWSCT 

SGN$GW _ISPPGCT 

LCK$GL_EXTRASTK 

SGN$GL_BALSETCT 
SGN$GL_IRPCNT 

SGN$GL_IRPCNTV 

SGN$GL_MAXWSCNT 
SGN$GL_NPAGEDYN 

SGN$GL_NPAGEVIR 
SGN$GL_PAGEDYN 
SGN$GL_MAXVPGCT 

SGN$GL_SPTREQ 

SGN$GL_EXUSRSTK 
SGN$GL_LRPCNT 
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Size 

Byte 
Byte 
Word 
Longword 
Longword 
Word 
Word 

Longword 

Longword 
Byte 

Word 

Word 

Longword 

Longword 

Word 
Longword 
Word 
Word 
Longword 

Word 

Longword 

Longword 
Longword 

Longword 

. Longword 
Longword 

Longword 
Longword 
Longword 

Longword 

Longword 
Longword 

Description of Data 

Reserved 
Spare for alignment 
Global section count (GBLSECTIONSI 
Global page count (GBLPAGES) 
Global page file page limit (GBLPAGFILI 
Maximum process count (MAXPROCESSCNTI 
Maximum number of processes to scan for 

priority boosting (PIXSCANI 
Mask of CPUs to boot automatically during 

system initialization; defaults to any that 
exist (SMP _CPUSI 

Reserved 
Controls loading of system synchronization 

image (MULTIPROCESSING! 
Number of symmetric multiprocessing sanity 

timer cycles before timeout (SMP_SANITY_ 
CNTI 

Number of clock ticks between SMP sanity 
timer cycles (SMP _ TICK_CNTI 

Normal SMP busy wait timeout interval (SMP _ 
SPINWAITI 

Long SMP busy wait timeout interval (SMP _ 
LNGSPINWAITI 

Process section count (PROCSECTCNTI 
Minimum working set size (MINWSCNTI 
Number of page files (PAGFILCNTI 
Number of swap files (SWPFILCNTI 
Maximum size of system working set 

(SYSMWCNTI 
Size in pages of interrupt stack 

(INTSTKPAGESI 
Amount of interrupt stack that must remain 

free when performing deadlock searches 
(DLCKEXTRASTKI 

Balance set count (BALSETCNT) 
Initial number of preallocated intermediate 

request packets (IRPCOUNT) 
Maximum number of intermediate request 

packets (IRPCOUNTV) 
Maximum process working set size (WSMAX) 
Initial number of bytes of nonpaged pool 

(NPAGEDYN) 
Maximum size of nonpaged pool (NPAGEVIR) 
Number of bytes of paged pool (PAGEDYN) 
Maximum per-process virtual page count 

(VIRTUALPAGECNT) 
Number of additional system page table enties 

to reserve (SPTREQ) 
Reserved (EXUSRSTK) 
Initial number of large request packets (LRPs) 

in lookaside list (LRPCOUNT) 



Global Symbol 

SGN$GLLRPCNTV 
SGN$GLLRPSIZE 
SGN$GLLRPMIN 

SGN$GLSRPCNT 

SGN$GL_SRPCNTV 
SGN$GLSRPSIZE 
SGN$GLSRPMIN 

SGN$GW _PCHANCNT 

SGN$GW _PIOPAGES 

SGN$GW _CTLPAGES 

SGN$GW _CTLIMGLIM 

SGN$GW _IMGIOCNT 

SCH$GW _QUAN 

MPW$GW _MPWPFC 

MPW$GW _HILIM 

MPW$GW _LOLIM 

MPW$GB_IOLIM 

MPW$GB_PRIO 

SWP$GB_PRIO 

MPW$GL THRESH 

MPW$GL WAITLIM 

MPW$GLLOWAITLIM 

SGN$GW _ WSLMXSKP 

MMG$GLPHYPGCNT 

SCH$GLPFRATL 
SCH$GLPFRATH 

Size 

Longword 
Longword 
Longword 

Longword 

Longword 
Longword 
Longword 

Word 

Word 

Word 

Word 

Word 

Word 

Word 

Word 

Word 

Byte 

Byte 

Byte 

Longword 

Longword 

Longword 

Word 

Longword 

Longword 
Longword 

C.1 The Base Image 

Description of Data 

Maximum number of LRPs (LRPCOUNTV) 
Size of an LRP (LRPSIZE) 
Minimum request that can be allocated an 

LRP (LRPMIN) 
Initial number of small request packets (SRPs) 

in lookaside list (SRPCOUNT) 
Maximum number of SRPs (SRPCOUNTV) 
Size of an SRP (SRPSIZE) 
Minimum request that can be allocated an SRP 

(SRPMIN) 
Permanent I/O channel count 

(CHANNELCNT) 
Size of process I/O segment in pages 

(PIOPAGES) 
Size of process allocation region in pages 

(CTLPAGES) 
Limit on use of the process allocation region 

by image requests (CTLIMGLIM) 
Default number of pages mapped for image I/O 

segment (IMGIOCNT) 
Length in IO-millisecond units of quantum 

(QUANTUM) 
Modified page writer cluster factor (MPW _ 

WRTCLUSTER) 
High-limit threshold of modified page list 

(MPW _HILIMIT) 
Low-limit threshold of modified page list 

(MPW _LOLIMIT) 
Maximum number of concurrent I/O transfers 

initiated by the modified page writer (MPW _ 
IO LIMIT) 

Priority at which modified page writes are 
queued(MPW_PRIO) 

Priority at which swapper I/O requests are 
queued(SWP_PRIO) 

Limit below which modified page writer does 
not reclaim pages (MPW _THRESH) 

Limit above which processes creating modified 
pages must wait until pages have been 
released from modified page list (MPW _ 
WAITLIMIT) 

Modified page writer busy wait low limit 
(MPW _LOWAITLIMIT) 

Number of working set list entries to skip 
in modified scan of working set list 
(TBSKIPWSL) 

Maximum number of physical pages to use 
(PHYSICALPAGES) 

Low-limit page fault rate threshold (PFRATL) 
High-limit page fault rate threshold (PFRATH) 
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Global Symbol 

SCH$GL_PFRATS 

SCH$GL WSINC 
SCH$GL WSDEC 
SCH$GLAWSMIN 

SCH$GLAWSTIME 

SCH$GL_SWPRATE 
SWP$GL_SWPPGCNT 

SWP$GW _SWPINC 

SCH$GW _IOTA 

SCH$GW _LONGWAIT 

SCH$GW _DORMANT-
WAIT 

SCH$GW _SWPFAIL 

SGN$GL VMSDl 
SGN$GL VMSD2 
SGN$GL VMSD3 
SGN$GL VMSD4 
SGN$GL_ VMSS 
SGN$GLVMS6 
SGN$GLVMS7 
SGN$GLVMS8 
SGN$GLJOBCTLD 

SGN$GLPU_OPTIONS 

SGN$GL WPTTE_SIZE 

SGN$GW _ WPRE_SIZE 

SGN$GB_QBUS_MULT _ 
INTR 

SGN$GW _ERLBUFCNT 

SGN$GLDUMP _STYLE 

SGN$GLUSERD1 
SGN$GLUSERD2 
SGN$GL_USER3 
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Size 
Longword 

Longword 
Longword 
Longword 

Longword 

Longword 
Longword 

Word 

Word 

Word 

Word 

Word 

Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 

Longword 

Longword 

Word 

Word 

Word 

Longword 

Longword 
Longword 
Longword 

Description of Data 

Page fault rate threshold for system paging 
(PFRATS) 

Working set list increment (WSINC) 
Working set list decrement (WSDEC) 
Minimum value of automatic working set 

limit adjustment (AWSMIN) 
Working set measurement interval in 10-

millisecond units (AWSTIME) 
Swap rate for compute-bound jobs (SWPRATE) 
Target number of pages for a working set about 

to be outswapped (SWPOUTPGCNT) 
Swap file allocation increment value 

(SWPALLOCINC) 
Amount of time in 10-millisecond units 

charged against quantum when process goes 
into wait state (IOTA) 

Amount of elapsed time for a LEF or HIB 
process to be scheduled as a long wait 
process (LONGWAIT) 

Number of seconds to wait before marking 
computable process dormant 
(DORMANTWAIT) 

Number of outswap failures to happen before 
modifying selection algorithm (SWPFAIL) 

Reserved (VMSD 1) 
Reserved (VMSD2) 
Reserved (VMSD3) 
Reserved (VMSD4) 
Reserved (VMSS) 
Reserved (VMS6) 
Reserved (VMS7) 
Reserved (VMS8) 
Job controller error processing control flags 

(JOBCTLD) 
PUDRIVER trace enable options (PU_ 

OPTIONS) 
Number of trace table entries that WPDRIVER 

allocates from nonpaged pool (WPTTE_SIZE) 
Number of pages that WPDRIVER allocates 

from nonpaged pool for watchpoint restore 
entries (WPRE_SIZE) 

Q22-bus Multilevel interrupt control (QBUS_ 
MULT_INTR) 

Number of error log allocation buffers 
(ERRORLOGBUFFERS) 

Bit mask specifying the crash dump style 
option, either full physical memory or a 
selective dump (DUMPSTYLE) 

Parameter reserved for users (USERD 1) 
Parameter reserved for users (USERD2) 
Parameter reserved for users (USER3) 



Global Symbol 

SGN$GLUSER4 
SGN$GLEXTRACPU 

EXE$GL_SYSUIC 

IOC$GW _MVTIMEOUT 

IOC$GW _TAPE_ 
MVTIMEOUT 

IOC$GW _MAXBUF 
IOC$GW _MBXBFQUO 

IOC$GW _MBXMXMSG 

SGN$GL_FREELIM 
SGN$GL_FREEGOAL 

SCH$GLGROWLIM 

SCH$GLBORROWLIM 

EXE$GL_LOCKRTRY 

IOC$GW _XFMXRATE 
IOC$GW _LAMAPREG 

EXE$GL_RTIMESPT 

EXE$GL_CLITABL 

LCK$GLIDTBLSIZ 
LCK$GLIDTBLMAX 

LCK$GLHTBLSIZ 
LCK$GL WAITTIME 

SCS$GW _BDTCNT 

SCS$GW _CDTCNT 

SCS$GW _RDTCNT 

SCS$GW _MAXDG 
SCS$GW _MAXMSG 

SCS$GW _FLOWCUSH 

Size 

Longword 
Longword 

Longword 

Word 

Word 

Word 
Word 

Word 

Longword 
Longword 

Longword 

Longword 

Longword 

Word 
Word 

Longword 

Longword 

Longword 
Longword 

Longword 
Longword 

Word 

Word 

Word 

Word 
Word 

Word 

C.1 The Base Image 

Description of Data 

Parameter reserved for users (USER4) 
Extra CPU time given a process after CPU 

time expiration (EXTRACPU) 
Maximum group code for system user 

identification code (MAXSYSGROUP) 
Time before abandoning mount verification 

attempt (MVTIMEOUT) 
Maximum time for a tape device to wait in 

mount verification (TAPE_MVTIMEOUT) 
Maximum buffered 1/0 request size (MAXBUF) 
Default buffer quota for mailbox creation 

(DEFMBXBUFQUO) 
Default maximum message size for mailbox 

creation (DEFMBXMXMSG) 
Low-limit threshold of free page iist (FREELIM) 
Target free page list size when memory is 

reclaimed (FREEGOAL) 
Minimum number of pages on the free page 

list for a process to expand its working set 
above WSQUOTA (GROWLIM) 

Minimum number of pages on the free page 
list for a process to extend its working set 
list above WSQUOTA (BORROWLIM) 

Number of retries allowed to lock a multipro­
cessor data structure (LOCKRETRY) 

Maximum DR780 data rate (XFMAXRATE) 
Number of UNIBUS map registers to 

preallocate for LPAll (LAMAPREGS) 
Number of preallocated system page table 

entries for connect-to-interrupt driver 
(REALTIME_SPTS) 

Number of pages for command language 
interpreter symbol table (CLISYMTBL) 

Size of the lock ID table (LOCKIDTBL) 
Maximum size of lock ID table (LOCKIDTBL 

MAX) 
Size of the resource hash table (RESHASHTBL) 
Deadlock detection timeout period (DEAD­

LOCK_ WAIT) 
Number of buffer descriptor table entries 

allocated for system communication services 
(SCS) (SCSBUFFCNT) 

Number of connection descriptor table entries 
allocated for SCS (SCSCONNCNT) 

Number of response descriptor table entries 
allocated for SCS (SCSRESPCNT) 

Maximum SCS datagram size (SCSMAXDG) 
Maximum SCS sequenced message size 

(SCSMAXMSG) 
SCS flow control cushion (SCSFLOWCUSH) 
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Global Symbol Size Description of Data 

SCS$GB_SYSTEMID Quadword 48-bit SCS system ID (SCSSYSTEMID and 
SCS$GB_SYSTEMIDH SCSSYSTEMIDH) 

SCS$GB_NODENAME Quadword SCS system node name (SCSNODE) 
SCS$GW _PRCPOLINT Word SCA process poller - polling interval 

(PRCPOLINTERVAL) 
SCS$GW _PASTMOUT Word Wakeup interval for computer interconnect 

(CI) port driver (PASTIMOUT) 
SCS$GW _PAPPDDG Word Number of datagram buffers to queue for 

START (PASTDGBUF) 
SCS$GB_PANPOLL Byte Number of CI ports to poll each interval 

(PANUMPOLL) 
SCS$GB_PAMXPORT Byte Maximum port number to poll each interval 

(PAMAXPORT) 
SCS$GW _PAPOLINT Word Time between polls (PAPOLLINTERVAL) 
SCS$GW _PAPOOLIN Word Time between checks for SCS applications 

waiting for pool (PAPOOLINTERVAL) 
SCS$GB_PASANITY Byte CI port flags including sanity timer en-

able/disable (PASANITY) 
SCS$GB_PANOPOLL Byte CI remote port polling enable/disable flags 

(PANO POLL) 
SGN$GL_PE1 Longword Reserved (PEI) 
SGN$GL_PE2 Longword Reserved (PE2) 
SGN$GL_PE3 Longword Reserved (PE3) 
SGN$GL_PE4 Longword Reserved (PE4) 
SGN$GL_PES Longword Reserved (PES) 
SGN$GL_PE6 Longword Reserved (PE6) 
SGN$GW _ TPWAIT Word Amount of time to wait for the time of day to be 

entered when booting (TIMEPROMPTWAIT) 
EXE$GW _CLKINT Word Reserved 
SCS$GB_UDABURST Byte Maximum number of longwords that the 

host is willing to accept per transfer 
(UDABURSTRATE) 

LNM$GLHTBLSIZS Longword Size of shareable logical name hash table 
(LNMSHASHTBL) 

LNM$GL_HTBLSIZP Longword Size of process logical name hash table 
(LNMPHASHTBL) 

EXE$GL_DEFFLAGS Longword System flags longword (copied to EXE$GL 
FLAGS; not a parameter itself) 

• EXE$V _BUGREBOOT Bit Automatic reboot on bugcheck (BUGREBOOT) 
• EXE$V _CRDENABL Bit Corrected read data error enable (CRDENABLE) 
• EXE$V _BUGDUMP Bit Write system dump on bugcheck (DUMPBUG) 
• EXE$V _FATAL_BUG Bit Make all bugchecks fatal (BUGCHECKFATAL) 
• EXE$V _MULTACP Bit Create separate ancillary control process for 

each volume (ACP _MULTIPLE) 
• EXE$V _NOAUTOCNF Bit Inhibit autoconfiguration of I/O devices 

(NOAUTOCONFIG) 
• EXE$V _NOCLUSTER Bit Inhibit page read clustering (NOCLUSTER) 
• EXE$V _POOLPGING Bit Enable paging of paged pool (POOLPAGING) 
• EXE$V _SBIERR Bit Enable detection of synchronous backplane 

interconnect errors (SBIERRENABLE) 
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Global Symbol 
• EXE$V _SETIIME 

• EXE$V _SHRF11ACP 

• EXE$V_SAVEDUMP 
• EXE$V _SSINHIBIT 

• EXE$V _SYSUAFALT 

• EXE$V _SYSWRTABL 

• EXE$V _RESALLOC 

• EXE$V _CONCEALED 

EXE$GL_ TIME_ 
CONTROL 

• EXE$V _NOCLOCK 
• EXE$V _NOSMPSANITY 

• EXE$V _NOSPINWAIT 

SGN$GL_BRKMSK 

EXE$GLDYNAMIC_ 
FLAGS 

• EXE$V _CLASS_PROT 

• EXE$V _WRITE-
SYSPARAMS 

• EXE$V _BRK_ TERM 

• EXE$V _BRK_DISUSER 

• EXE$V _NOPGFLSWP 

EXE$GLMSGFLAGS 
• EXE$V _DISMOUMSG 

• EXE$V _MOUNTMSG 

SGN$GLLOADFLAGS 
• SGN$V _LOAD_SYS_ 

IMAGES 
TTY$GLDELTA 

Size 

Bit 

Bit 

Bit 
Bit 

Bit 

Bit 

Bit 

Bit 

Longword 

Bit 
Bit 

Bit 

Longword 

Longword 

Bit 

Bit 

Bit 

Bit 

Bit 

Longword 
Bit 

Bit 

Longword 
Bit 

Longword 

C.1 The Base Image 

Description of Data 

Prompt for system time in SYSBOOT 
(SETTIME) 

Enable sharing of file ancillary control process 
(ACP _SHARE) 

Save dump from page file (SAVEDUMP) 
Inhibit system services on a per-process basis 

(SSINHIBIT) 
Select alternative authorization file 

(UAFALTERNATE) 
Leave executive images in memory writable 

(WRITABLESYS) 
Enable resource allocation checking 

(RESALLOC) 
Enable use of concealed devices (CONCEAL_ 

DEVICES) 
Time control flag (TIME_CONTROL) 

Do not turn on clock 
Disable symmetric multiprocessing sanity 

timer timeouts 
Disable symmetric multiprocessing spin/busy 

wait timeouts 
Determines initial breakpoint callers 

(BREAKPOINTS) 
Dynamic system flags (not a parameter itself) 

Perform mandatory access control protection 
check (CLASS_PROT) 

Set by SYSBOOT if a USE DEFAULT, USE 
"file," or a SET command is executed 
(WRITESYSPARAMS) 

Use the terminal name in the association 
string used in LOGIN's break-in detection 
(LGLBRK_ TERM) 

If enabled, set the DISUSER flag in the user 
authorization file record if a break-in attempt 
is detected (LGLBRK_DISUSER) 

Disallow swapping into page files 
(NOPGFLSWP) 

Mount message flags (not a parameter itself) 
Inform operator console of dismounts 

(DISMOUMSG) 
Inform operator console of mounts 

(MOUNTMSG) 
System load flags (not a parameter itself) 
Enables loading of optional loadable executive 

images (LOAD_SYS_IMAGES) 
Delta time for dialup line timer scan (TTY_ 

SCANDELTA) 
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Global Symbol Size 

TTY$GB_DIALTYP Byte 
• Bit 

• Bit 

• Bit 

• 2 bits 
• Bit 

• Bit 
• Bit 

TTY$GB_DEFSPEED Byte 
TTY$GB_RSPEED Byte 
TTY$GB_PARITY Byte 
TTY$GW _DEFBUF Word 
TTY$GLDEFCHAR Longword 

TTY$GLDEFCHAR2 Longword 

TTY$GW _ TYPAHDSZ Word 
TTY$GW_ALTYPAHD Word 

TTY$GW_ALTALARM Word 

TTY$GW _DMASIZE Word 
TTY$GW _PROT Word 

TTY$GLOWNUIC Longword 

TTY$GW _CLASSNAM Word 

TTY$GB_SILOTIME Byte 

TTY$GL TIMEOUT Longword 

TTY$GB_AUTOCHAR Byte 

TTY$GLDEFPORT Longword 
SYS$GB_DFMBC Byte 
SYS$GB_DFMBFSDK Byte 

SYS$GB_DFMBFSMT Byte 

SYS$GB_DFMBFSUR Byte 

SYS$GB_DFMBFREL Byte 
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Description of Data 

Dialup flag bits (TTY _DIALTYPE) 
0 = Bell standard protocol 
1 = CCITT standard protocol 
0 = disable use of RING signal 
1 = require RING signal before setting DTR 
0 = enable 30-second timeout for channel 

assignment 
1 = disable timeout 
Reserved 
0 = VWS 77 dots per inch monitor 
1 = VWS 100 dots per inch monitor 
Reserved for DECwindows 
0 = VWS disable square pixel monitor 
1 = VWS enable square pixel monitor 
Default speed for terminals (TTY _SPEED) 
Default receive speed (TTY _RSPEED) 
Default parity (TTLPARITY) 
Default terminal line width (TTY _BUF) 
Default terminal characteristics (TTY_ 

DEFCHAR) 
Default terminal characteristics (second 

longword) (TTY_DEFCHAR2) 
Size of type-ahead buffer (TTY_TYPAHDSZ) 
Alternative type-ahead buffer size (TTY_ 

ALTYPAHD) 
Alternative type-ahead buffer alarm size (TTY_ 

ALT ALARM) 
Pirect memory access size (TTY_DMASIZE) 
Default terminal allocation protection (TTY_ 

PROT) 
Default device owner user identification code 

(TTL OWNER) 
Default terminal class driver name prefix 

(TTY_CLASSNAME) 
Default silo timeout value for DMF-32 (TTY_ 

SILOTIME) 
Default disconnected terminal timeout value 

(TTY_ TIMEOUT) 
Autobaud rate recognition character (TTY_ 

AUTOCHAR) 
Default port characteristics (TTY _DEFPORT) 
Default multiblock count (RMS_DFMBC) 
Default multibuffer count for sequential disk 

1/0 (RMS_DFMBFSDK) 
Default multibuffer count for magtape 1/0 

(RMS_DFMBFSMT) 
Default multibuffer count for unit record 

devices (RMS_DFMBFSUR) 
Default multibuffer count for relative files 

(RMS_DFMBFREL) 



Global Symbol Size 

SYS$GB_DFMBFIDX Byte 

SYS$GB_DFMBFHSH Byte 
SYS$GB_RMSPROLOG Byte 

SYS$GW _RMSEXTEND Word 

SYS$GW _FILEPROT Word 

SYS$GW _GBLBUFQUO Word 

SYS$GB_DFNBC Byte 

PQL$AL_DEFAULT +4 12 longwords 

PQL$AL_MIN+4 12 longwords 

PQL$AB_FLAG+ 1 12 bytes 
ACP$GW _MAPCACHE Word 

ACP$GW _HDRCACHE Word 

ACP$GW _DIRCACHE Word 

ACP$GW _DINDXCACHE Word 

ACP$GW _ WORKSET Word 

ACP$GW _FIDCACHE Word 

ACP$GW _EXTCACHE Word 

ACP$GW _EXTLIMIT Word 
ACP$GW _QUOCACHE Word 

ACP$GW _SYSACC Word 

ACP$GB_MAXREAD Byte 

ACP$GB_ WINDOW Byte 

ACP$GB_ WRITBACK Byte 

ACP$GB_DATACHK Byte 

• ACP$V _READCHK Bit 
• ACP$V _ WRITECHK Bit 
ACP$GB_BASEPRIO Byte 
ACP$GB_SWAPFLGS Byte 

C.1 The Base Image 

Description of Data 

Default multibuffer count for indexed files 
(RMS_DFMBFIDX) 

Reserved (RMS_DFMBFHSH) 
Default structure level for indexed files (RMS_ 

PROLOGUE) 
Default extend quantity for RMS files (RMS_ 

EXTEND_SIZE) 
Default system-owner-group-world file 

protection (RMS_FILEPROT) 
Maximum number of global buffers that may 

be in concurrent use (RMS_GBLBUFQUO) 
Default number of blocks for RMS OAP 

network record-mode transfers; defines 
maximum network record size (RMS_ 
DFNBC) 

Table of process quota list default values (see 
Table 25.3) 

Table of process quota list minimum values 
(see Table 25.3) 

Table of process quota flags 
Number of blocks in bitmap cache (ACP _ 

MAPCACHE) 
Number of blocks in file header cache (ACP _ 

HOR CACHE) 
Number of blocks in file directory cache (ACP _ 

DIRCACHE) 
Number of pages in file system directory index 

cache (ACP _DINDXCACHE) 
Ancillary control process working set size 

(ACP _ WORKSET) 
Number of cached index file slots (ACP _ 

FIDCACHE) 
Number of cached disk extents (ACP _ 

EXTCACHE) 
Fraction of disk to cache (ACP _EXTLIMIT) 
Number of quota file entries to cache (ACP _ 

QUOCACHE) 
Default directory access. Not used on disks 

managed by Files-llXQP (ACP_SYSACC) 
Maximum number of blocks to read at once 

for directories (ACP _MAXREAD) 
Default window size for system volumes 

(ACP _WINDOW) 
Enable deferred cache write back (ACP _ 

WRITEBACK) 
Ancillary control process (ACP) data check 

enable flags (ACP _DATACHECK) 
Do data check on reads 
Do data check on writes 
ACP base software priority (ACP _BASEPRIO) 
ACP swap flags (ACP _SWAPFLGS) 
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Global Symbol 

• ACP$V _SWAPSYS 
• ACP$V _SWAPGRP 
• ACP$V _SWAPPRV 
• ACP$V _SWAPMAG 
EXE$GL_STATIC_FLAGS 

• EXE$V _XQP _RESIOENT 

• EXE$V _REBLDSYSD 
• EXE$V _SHADOWING 

SYS$GB_DEFPRI 
SYS$GW _IJOBLIM 
SYS$GW _BJOBLIM 
SYS$GW _NJOBLIM 
SYS$GW _RJOBLIM 
SYS$GB_DEFQUEPRI 
SYS$GB_MAXQUEPRI 
SYS$GB_PWD_ TMO 

SYS$GB_RETRY _LIM 

SYS$GB_RETRY _ TMO 

SYS$GB_BRK_LIM 

SYS$GL_BRK_ TMO 

SYS$GLHID_ TIM 

CLU$GB_VAXCLUSTER 

CLU$GW _EXP_ VOTES 

CLU$GW _VOTES 

CLU$GW _RECNXINT 

CLU$GB_QDISK 

1208 

Size 

Bit 
Bit 
Bit 
Bit 
Longword 

Bit 

Bit 
Bit 

Byte 
Word 
Word 
Word 
Word 
Byte 
Byte 
Byte 

Byte 

Byte 

Byte 

Longword 

Longword 

Byte 

Word 

Word 

Word 

Octa word 

Description of Data 

Swap ACPs for /SYSTEM volumes 
Swap ACPs for /GROUP volumes 
Swap ACPs for private volumes 
Swap magnetic tape ACPs 
Static system control flags (not a parameter 

itself) 
Files-11 XQP memory resident (ACP _XQP _ 

RES) 
System disk rebuild flag (ACP _REBLDSYSD) 
Load the volume shadowing driver 

(SHADOWING) 
Default priority for job initiations (DEFPRI) 
Limit for interactive jobs (IJOBLIM) 
Limit for batch jobs (BJOBLIM) 
Limit for network jobs (NJOBLIM) 
Limit for remote terminal jobs (RJOBLIM) 
Default queue priority (DEFQUEPRI) 
Maximum queue priority (MAXQUEPRI) 
Number of seconds that a dialup user has to 

enter system password before LOGINOUT 
exits (LGLPWD_ TMO) 

Number of retries an interactive user has 
before the process is deleted (LGLRETRY_ 
LIM) 

Number of seconds user has to attempt another 
login before process is deleted (LGLRETRY _ 
TMO) 

Number of consecutive login failures before 
LOGINOUT begins evasive action (LGL 
BRK_LIM) 

Number of seconds that a suspect must be free 
of login failures before it is taken off the 
suspect list (LGLBRK_ TMO) 

Number of seconds that LOGINOUT should 
practice evasive action on an intruder (LGL 
HID_ TIM) 

Controls loading of VAXcluster code; node 
cannot participate in a VAXcluster unless 
code is loaded (VAXCLUSTER) 
0 = never load 
1 = load if SCSLOA is being loaded 
2 = always load and also load SCSLOA 

Maximum number of votes that are expected 
to be in the cluster (EXPECTED_ VOTES) 

Number of votes this system contributes to 
quorum (VOTES) 

Interval during which to attempt re­
connection to a VAXcluster member 
(RECNXINTERVAL) 

VAXcluster quorum disk name (DISK_ 
QUORUM) 



Global Symbol 
CLU$GW _QDSKVOTES 

CLU$GW _QDSK-
INTERVAL 

CLU$GL_ALLOCLS 

CLU$GW _LCKDIRWT 

CLU$GL_SGN_FLAGS 
• CLU$V _NISCS_CONV _ 

BOOT 
• CLU$V _NISCS_LOAD_ 

PEAO 
CLU$GL_NISCS_PORT _ 

SERV 
CLU$GL_MSCP _LOAD 

CLU$GL_MSCP _SERVE_ 
ALL 

CLU$GL_MSCP _BUFFER 

CLU$GL_MSCP _CREDITS 

SGN$GB_ TAILORED 
EXE$GL_ WSFLAGS 

• EXE$V _OPAO 

SGN$GB_STARTUP _Pl 

SGN$GB_STARTUP _P2 

SGN$GB_STARTUP _P3 

SGN$GB_STARTUP _P4 

SGN$GB_STARTUP _P5 

SGN$GB_STARTUP _P6 

SGN$GB_STARTUP _P7 

SGN$GB_STARTUP _pg 

EXE$GL_SO_PAGING 

Size 
Word 

Word 

Longword 

Word 

Longword 
Bit 

Bit 

Longword 

Longword 

Longword 

Longword 

Longword 

Byte 
Longword 

Bit 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

C.1 The Base Image 

Description of Data 
Number of votes contributed by quorum disk 

(QDSKVOTES) 
Disk quorum interval (QDSKINTERVAL) 

Device allocation class for system 
(ALLOCLASSI 

Determines portion of lock manager directory 
entries that will be handled by this system 
(LOCKDIRWT) 

Static cluster flags (not a parameter itselfl 
Allow remote conversational boot (NISCS_ 

CONV_BOOTI 
Load the NISCS module PEDRIVER (NISCS_ 

LOAD_PEAOI 
Flags for port service (NISCS_PORT _SERVI 

Load mass storage control protocol (MSCPI 
server (MSCP _LOADI 

Controls MSCP server defaults (MSCP _SERVE_ 
ALLI 
0 = do not serve any disks 
1 = serve all available disks 
2 = serve only locally attached (not 

hierarchical storage controller! disks 
Amount of nonpaged pool to allocate for the 

MSCP server (MSCP _BUFFERI 
Number of MSCP send credits for each granted 

connection (MSCP _CREDITS I 
Indicates if system is tailored (TAILORED! 
Workstation SYSGEN flags (not a parameter 

itselfl 
If set, reserve the first 23 scan lines for an 

OPAO window (WS_OPAOI 
Passes information to the system startup 

procedure (STARTUP_Pll 
Passes information to the system startup 

procedure (STARTUP _P21 
Passes information to the system startup 

procedure (STARTUP_P31 
Passes information to the system startup 

procedure (STARTUP _P4) 
Passes information to the system startup 

procedure (STARTUP_PS) 
Passes information to the system startup 

procedure (STARTUP_P6) 
Passes information to the system startup 

procedure (STARTUP _P7) 
Passes information to the system startup 

procedure (STARTUP_P8) 
Bit mask enabling paging of system code (SO_ 

PAGING) 
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Global Symbol 
SGN$GL_PSEUDOLOA 
EXE$GL_POOLCHECK 

SCH$GL_CTLFLAGS 
SCH$GB_MINCLASSPRI 
SCH$GB_MAXCLASSPRI 
SCH$GB_MINPRPRI 
MMG$GL_RSRVPAGCNT 

EXE$GL_ WINDOW_ 
SYSTEM 

SCH$GL_AFFINITY _SKIP 

SCH$GL_AFFINITY _ 
TIME 

EXE$GB_ERLBUFPAGES 

CLU$GL_ TAPE_ALLOCLS 

Size 
Longword 
Longword 

Longword 
Byte 
Byte 
Byte 
Longword 

Longword 

Lorigword 

Longword 

Byte 

Longword 

Description of Data 

Size of pseudo device (PSEUDOLOAJ 
Control flags for poolcheck code 

(POOLCHECKJ 
Reserved 
Reserved 
Reserved 
Reserved 
Number of pages to reserve/escrow in process 

page file (RSRVPAGCNT) 
Default windowing system for a workstation 

(WINDOW _SYSTEM) 
0 - no windowing system defined 
1 = use DECwindows 
2 =use VWS 

Number of times that a computable process 
waits for CPU for which it has implicit 
affinity (AFFINITY _SKIP) 

Reserved (AFFINITY_ TIMEI 

Number of pages per error log buffer 
(ERLBUFFERPAGESJ 

Tape device allocation class (TAPE_ 
ALLOCLASSI 

The rest of module SYSPARAM consists of other systemwide parameters, 
the values of which are not directly adjustable with SYSBOOT or SYSGEN. 
Rather, their values depend directly on the values of one or more adjustable 
parameters. 

Global Symbol 
SWP$Gt_SHELLSIZ 
SWP$GW _BAKPTE 

SWP$GW _EMPTPTE 

SWP$GW _ WSLPTE 

SWP$GB_SHLP1PT 

SWP$GL_BSLOTSZ 
SWP$GL_MAP 
SWP$GL_PHDBASVA 
SGN$GL_PHDAPCNT 
SGN$GL_PHDLWCNT 
SGN$GL_PlLWCNT 
SGN$GL_PHDPAGCT 
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Size 
Longword 
Word 

Word 

Word 

Byte 

Byte 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 

Description of Data 
Pages· required for shell process 
Number of process header (PHD) pages for 

process header page arrays 
Number of empty PHD pages for working set 

list expansion · 
Number of PHD pages for fixed area, working 

set list, and process section table 
Number of Pl page table pages required for 

SHELL 
Spare for alignment 
Size in pages of balance slot 
Address of swapper's 1/0 page table 
Base address of PHD window 
Number of SHELL header pages 
Number of longwords in PHD 
Number of longwords to end of Pl page table 
Number of all PHD pages excluding page table 

pages 



Global Symbol 
SGN$GL_PTPAGCNT 
MMG$GLCTLBASVA 
EXE$GLINTSTK 

MMG$GLGPTBASE 
MMG$GL_GPTE 

MMG$GL_MAXGPTE 
MMG$GL_MAXSYSVA} 
MMG$GL_FRESVA 
MMG$GLSPTBASE 
LDR$GLSPTBASE 

MMG$GL_SPTLEN 
MMG$GL_SYSPHD 
MMG$GL_SYSPHDLN 
SWP$GL_BALBASE 
SWP$GLBALSPT 

MMG$GLSBR 
MMG$GL_NPAGEDYN 
MMG$GL_NPAGNEXT 

MMG$GL_IRPNEXT 

MMG$GLLRPNEXT 

MMG$GL_SRPNEXT 

MMG$GLPAGEDYN 
MMG$GL_MAXPFN 

MMG$GL_MINPFN 
MMG$GL_MAXMEM 

EXE$GLRPB 
EXE$GLSCB 
EXE$GL_ARCHFLAG 
EXE$GLSTATE 
LDR$GLFREE_PT 

EXE$GB_CPUDATA 
EXE$GB_CPUTYPE 
EXE$GW _CPUMODEL 
CLU$GB_NISCS_COMM > 
CLU$GQ_NISCS_AUTH 

CLU$GLNISCS_GROUP 

PFN$GB_LENGTH 

Size 
Longword 
Longword 
Longword 

Longword 
Longword 

Longword 
Longword 

Longword 
Longword 

Longword 
Longword 
Longword 
Longword 
Longword 

Longword 
Longword 
Longword 

Longword 

Longword 

Longword 

Longword 
Longword 

Longword 
Longword 

Longword 
Longword 
Longword 
Longword 
Quadword 

16 bytes 
Byte 
Word 
Quadword 

Longword 

12 bytes 
Byte 

C.1 The Base Image 

Description of Data 

Number of page table pages 
Initial low-address end of Pl space 
Address of primary processor's interrupt stack 

base 
Base address of global page table 
Address of first global page table entry at end 

of system page table (SPT) 
Highest global·page table entry address 
Highest system virtual address (plus 1) 

Base virtual address of SPT 
Base address of SPT-physical or virtual as 

required by SYSLDR 
Length of SPT 
Virtual address of system header 
Size in bytes of system header 
Base virtual address of balance set slots 
Base virtual address in SPT for mapping balance 

slots 
Physical address of SPT 
Virtual address of beginning of nonpaged pool 
Next virtual address for nonpaged pool variable-

length list extension 
Next virtual address for intermediate request 

packet list extension 
Next virtual address for large request packet 

list extension 
Next virtual address for small request packet 

list extension 
Virtual address of beginning of paged pool 
Maximum page frame number (PFN) accounted 

for in PFN database 
Minimum PFN in PFN database 
Highest PFN mapped by SYSBOOT (includes 

pages not in PFN database) 
Virtual address of restart parameter block 
Virtual address of system control block 
Architectural flags (bits defined by $ARCDEF) 
Flags describing bootstrap progression 
Listhead of free system page table entry 

database 
System-specific information 
CPU type read from PR$_SID 
CPU model number 
NISCS communications region 
NISCS authorization quadword from 

CLUSTER_AUTHORIZE.DAT 
NISCS group code from CLUSTER_ 

AUTHORIZE.DAT 
Spare for NISCS extensions 
Number of bytes per page in PFN database 
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Size 

Word 
3 words 

Description of Data 

Flag to indicate size of PFN FLINK, BLINK 
File ID of PAGEFILE.SYS 

Global Symbol 

MMG$GW _BIGPFN 
EXE$GW _PGFLFID 
PFN$A_BASE 8 longwords Base address of eight PFN database array 

pointers 
• PFN$AL_PTE 
• PFN$AL_BAK 
• PFN$AW _REFCNT 
• PFN$AX_FLINK } 

Longword 
Longword 
Longword 
Longword 

Address of page table entry array 
Address of backing store address array 
Address of reference count array of words 
Address of combined forward link 

• PFN$AX_SHRCNT 
• PFN$AX_BLINK} Longword 

Global share count array of words 
Address of combined backward link 
Working set list index array of words • PFN$AX_ WSLX 

• PFN$AW _SWPVBN Longword Address of swap image virtual block number 
array of words 

• PFN$AB_STATE Longword 
Longword 
33 bytes 

Address of STATE array of bytes 
Address of TYPE array of bytes • PFN$AB_ TYPE 

EXE$GT _STARTUP Counted ASCII string of name of startup 
command procedure file 

The following table lists the SYSGEN parameters alphabetically and indi­
cates the names of the cells where each parameter is stored. 
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SYSGEN Parameter 

ACP _BASEPRIO 
ACP _DATACHECK 
ACP _DINDXCACHE 
ACP _DIRCACHE 
ACP _EXTCACHE 
ACP _EXTLIMIT 
ACP _FIDCACHE 
ACP _HDRCACHE 
ACP _MAPCACHE 
ACP _MAXREAD 
ACP _MULTIPLE 
ACP _QUOCACHE 
ACP _REBLDSYSD 
ACP_SHARE 
ACP _SWAPFLGS 
ACP_SYSACC 
ACP_WINDOW 
ACP _ WORKSET 
ACP _ WRITEBACK 
ACP _XQP _RES 
AFFINITY _SKIP 
AFFINITY_ TIME 
ALLOCLASS 
AWSMIN 
AWSTIME 
BALSETCNT 
BJOBLIM 

Cell Name 

ACP$GB_BASEPRIO 
ACP$GB_DATACHK 
ACP$GW _DINDXCACHE 
ACP$GW _DIRCACHE 
ACP$GW _EXTCACHE 
ACP$GW _EXTLIMIT 
ACP$GW _FIDCACHE 
ACP$GW _HDRCACHE 
ACP$GW _MAPCACHE 
ACP$GB_MAXREAD 
EXE$V_MULTACP (EXE$GLDEFFLAGS) 
ACP$GW _QUOCACHE 
EXE$V _REBLDSYSD (EXE$GL_STATic_FLAGS) 
EXE$V _SHRF l lACP (EXE$GLDEFFLAGS) 
ACP$GB_SWAPFLGS 
ACP$GW _SYSACC 
ACP$GB_ WINDOW 
ACP$GW _ WORKSET 
ACP$GB_ WRITBACK 
EXE$V _XQP _RESIDENT (EXE$GLSTATic_FLAGS) 
SCH$GLAFFINITY _SK1P 
SCH$GLAFFINITY _TIME 
CLU$GLALLOCLS 
SCH$GLAWSMIN 
SCH$GLAWSTIME 
SGN$GL_BALSETCT 
SYS$GW _BJOBLIM 



SYSGEN Parameter 

BORROWLIM 
BREAKPOINTS 
BUGCHECKFATAL 
BUGREBOOT 
CHANNELCNT 
CLASS_PROT 
CLISYMTBL 
CLOCK_INTERVAL 
CONCEAL_DEVICES 
CRDENABLE 
CTLIMGLIM 
CTLPAGES 
DEADLOCK_ WAIT 
DEFMBXBUFQUO 
DEFMBXMXMSG 
DEFPRI 
DEFQUEPRI 
DISK_ QUORUM 
DISMOUMSG 
DLCKEXTRASTK 
DORMANTWAIT 
DUMPBUG 
DUMPSTYLE 
ERLBUFFERPAGES 
ERRORLOGBUFFERS 
EXPECTED_ VOTES 
EXTRA CPU 
EXUSRSTK 
FREEGOAL 
FREE LIM 
GBLPAGES 
GBLPAGFIL 
GBLSECTIONS 
GROWLIM 
IJOBLIM 
IMGIOCNT 
INTSTKPAGES 
IOTA 
IRPCOUNT 
IRPCOUNTV 
JOBCTLD 
KFILSTCNT 
LAMAPREGS 
LGLBRK_DISUSER 
LGLBRK_LIM . 
LGLBRK_ TERM 
LGLBRK_TMO 
LGLHID_TIM 
LGLPWD_TMO 
LGLRETRY _LIM 
LGLRETRY _ TMO 

C.1 The Base Image 

Cell Name 

SCH$GL_BORROWLIM 
SGN$GL_BRKMSK 
EXE$V _FATAL_BUG (EXE$GL_DEFFLAGS) 
EXE$V _BUGREBOOT (EXE$GL_DEFFLAGS) 
SGN$GW _PCHANCNT 
EXE$V _CLASS_PROT (EXE$GL_DYNAMic_FLAGS) 
EXE$GL_CLITABL 
EXE$GW _CLKINT 
EXE$V _CONCEALED (EXE$GL_DEFFLAGS) 
EXE$V _CRDENABL (EXE$GL_DEFFLAGS) 
SGN$GW _CTLIMGLIM 
SGN$GW _CTLPAGES 
LCK$GL_ WAITTIME 
IOC$GW _MBXBFQUO 
IOC$GW _MBXMXMSG 
SYS$GB_DEFPRI 
SYS$GB_DEFQUEPRI 
CLU$GB_QDISK 
EXE$V _DISMOUMSG (EXE$GL_MSGFLAGS) 
LCK$GL_EXTRASTK 
SCH$GW _DORMANTWAIT 
EXE$V _BUGDUMP (EXE$GL_DEFFLAGS) 
SGN$GL_DUMP _STYLE 
EXE$GB_ERLBUFPAGES 
SGN$GW _ERLBUFCNT 
CLU$GW _EXP_ VOTES 
SGN$G1-EXTRACPU 
SGN$GL_EXUSRSTK 
SGN$GL_FREEGOAL 
SGN$GL_FREELIM 
SGN$GL_MAXGPGCT 
SGN$GL_GBLPAGFIL 
SGN$GW _GBLSECNT 
SCH$GL_GROWLIM 
SYS$GW _IJOBLIM 
SGN$GW _IMGIOCNT 
SGN$GW _ISPPGCT 
SCH$GW _IOTA 
SGN$G1-IRPCNT 
SGN$G1-IRPCNTV 
SGN$GL_JOBCTLD 
SGN$GB_KFILSTCT 
IOC$GW _LAMAPREG 
EXE$V _BRK_DISUSER (EXE$GL_DYNAMIC_FLAGS) 
SYS$GB_BRK_LIM 
EXE$V _BRK_ TERM (EXE$GL_DYNAMIC_FLAGS) 
SYS$GL_BRK_ TMO 
SYS$GL_HID_ TIM 
SYS$GB_PWD_ TMO 
SYS$GB_RETRY _LIM 
SYS$GB_RETRY _ TMO 
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SYSGEN Parameter 

LNMPHASHTBL 
LNMSHASHTBL 
LOAD_SYS_IMAGES 
LOCKDIRWT 
LOCKIDTBL 
LOCKIDTBL_MAX 
LOCKRETRY 
LONGWAIT 
LRPCOUNT 
LRPCOUNTV 
LRPMIN 
LRPSIZE 
MAXBUF 
MAXCLASSPRI 
MAXPROCESSCNT 
MAXQUEPRI 
MAXSYSGROUP 
MINCLASSPRI 
MINPRPRI 
MINWSCNT 
MOUNTMSG 
MPW _HILIMIT 
MPW _IOLIMIT 
MPW _LOLIMIT 
MPW _LOWAITLIMIT 
MPW_PRIO 
MPW_THRESH 
MPW _ WAITLIMIT 
MPW _ WRTCLUSTER 
MSCP _BUFFER 
MSCP _CREDITS 
MSCP_LOAD 
MSCP _SERVE_ALL 
MULTIPROCESSING 
MVTIMEOUT 
NISCS_CQNV _BOOT 
NISCS_LOAD_PEAO 
NISCS_PORLSERV 
NJOBLIM 
NOAUTOCONFIG 
NOC LOCK 
NOCLUSTER 
NOPGFLSWP 
NOSMPSANITY 
NOSPINWAIT 
NPAGEDYN 
NPAGEVIR 
PAGEDYN 
PAGFILCNT 
PAGTBLPFC 
PAMAXPORT 

Cell Name 

LNM$GL_HTBLSIZP 
LNM$GL_HTBLSIZS 
SGN$V _LQAD_SYS_IMAGES (SGN$GL_LOADFLAGS) 
CLU$GW_LCKDffiWT 
LCK$GL_IDTBLSIZ 
LCK$GL_IDTBLMAX 
EXE$GL_LOCKRTRY 
SCH$GW _LONGWAIT 
SGN$GL_LRPCNT 
SGN$GL_LRPCNTV 
SGN$GL_LRPMIN 
SGN$GL_LRPSIZE 
IOC$GW _MAXBUF 
SCH$GB_MAXCLASSPRI 
SGN$GW _MAXPRCCT 
SYS$GB_MAXQUEPRI 
EXE$GL_SYSUIC 
SCH$GB_MINCLASSPRI 
SCH$GB_MINPRPRI 
SGN$GL_MINWSCNT 
EXE$V _MOUNTMSG (EXE$GL_MSGFLAGS) 
MPW$GW _HILIM 
MPW$GB_IOLIM 
MPW$GW _LOLIM 
MPW$GL_LOWAITLIM 
MPW$GB_PRIO 
MPW$GL_ THRESH 
MPW$GL_ WAITLIM 
MPW$GW_MPWPFC 
CLU$GL_MSCP _BUFFER 
CLU$GL_MSCP _CREDITS 
CLU$GL_MSCP _LQAD 
CLU$GL_MSCP _SERVE_ALL 
SGN$GB_MULTIPROCESSING 
IOC$GW _MVTIMEOUT 
CLU$V _NISCS_CQNV _BOOT (CLU$GL_SGN_FLAGS) 
CLU$V _NISCS_LQAD_PEAO (CLU$GL_SGN_FLAGS) 
CLU$GL_NISCS_PORT _SERV 
SYS$GW _NJOBLIM 
EXE$V _NOAUTOCNF (EXE$GL_DEFFLAGS) 
EXE$V _NOCLOCK (EXE$GL_ TIME_CONTROL) 
EXE$V _NOCLUSTER (EXE$GL_DEFFLAGS) 
EXE$V _NOPGFLSWP (EXE$GL_DYNAMIC_FLAGS) 
EXE$V _NOSMPSANITY (EXE$GL_ TIME_CONTROL) 
EXE$V _NOSPINWAIT (EXE$GL_ TIME_ CONTROL) 
SGN$GL_NPAGEDYN 
SGN$GL_NPAGEVIR 
SGN$GL_PAGEDYN 
SGN$GW _PAGFILCT 
SGN$GB_PGTBPFC 
SCS$GB_PAMXPORT 



SYSGEN Parameter 

PANO POLL 
PANUMPOLL 
PAPOLLINTERVAL 
PAPOOLINTERVAL 
PASANITY 
PASTDGBUF 
PASTIMOUT 
PEI 
PE2 
PE3 
PE4 
PES 
PE6 
PFCDEFAULT 
PFRATH 
PFRATL 
PFRATS 
PHYSICALPAGES 
PIO PAGES 
PIX SCAN 
POOLCHECK 
POOLPAGING 
PQL_DASTLM 
PQL_DBIOLM 
PQL_DBYTLM 
PQL_DCPULM 
PQL_DDIOLM 
PQL_DENQLM 
PQL_DFILLM 
PQL_DJTQUOTA 
PQL_DPGFLQUOTA 
PQL_DPRCLM 
PQL_DTQELM 
PQL_DWSDEFAULT 
PQL_DWSEXTENT 
PQL_DWSQUOTA 
PQL_MASTLM 
PQL_MBIOLM 
PQL_MBYTLM 
PQL_MCPULM 
PQL_MDIOLM 
PQL_MENQLM 
PQL_MFILLM 

. PQL_MJTQUOTA 
PQL_MPGFLQUOTA 
PQL_MPRCLM 
PQL_MTQELM 
PQL_MWSDEFAULT 
PQL_MWSEXTENT 
PQL_MWSQUOTA 
PRCPOLINTERVAL 

C.1 The Base Image 

Cell Name 
SCS$GB_PANOPOLL 
SCS$GB_PANPOLL 
SCS$GW _PAPOLINT 
SCS$GW_PAPOOLIN 
SCS$GB_PASANITY 
SCS$GW _PAPPDDG 
SCS$GW_PASTMOUT 
SGN$GL_PE1 
SGN$GL_PE2 
SGN$GL_PE3 
SGN$GL_PE4 
SGN$GL_PE5 
SGN$GLPE6 
SGN$GW _DFPFC 
SCH$GL_PFRATH 
SCH$GL_PFRATL 
SCH$GL_PFRATS 
MMG$GL_PHYPGCNT 
SGN$GW _PIOPAGES 
SGN$GW _PIXSCAN 
EXE$GL_POOLCHECK 
EXE$V _POOLPGING (EXE$GL_DEFFLAGS) 
PQL$GDASTLM 
PQL$GDBIOLM 
PQL$GDBYTLM 
PQL$GDCPULM 
PQL$GDDIOLM 
PQL$GDENQLM 
PQL$GDFILLM 
PQL$GDJTQUOTA 
PQL$GDPGFLQUOTA 
PQL$GDPRCLM 
PQL$GDTQELM 
PQL$GDWSDEFAULT 
PQL$GDWSEXTENT 
PQL$GDWSQUOTA 
PQL$GMASTLM 
PQL$GMBIOLM 
PQL$GMBYTLM 
PQL$GMCPULM 
PQL$GMDIOLM 
PQL$GMENQLM 
PQL$GMFILLM 
PQL$GMJTQUOTA 
PQL$GMPGFLQUOTA 
PQL$GMPRCLM 
PQL$GMTQELM 
PQL$GMWSDEFAULT 
PQL$GMWSEXTENT 
PQL$GMWSQUOTA 
SCS$GW _PRCPOLINT 
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SYSGEN Parameter 

PROCSECTCNT 
PSEUDO LOA 
PU_OPTIONS 
QBUS_MULT _INTR 
QDSKINTERVAL 
QDSKVOTES 
QUANTUM 
REALTIME_SPTS 
RECNXINTERVAL 
RESALLOC 
RESHASHTBL 
RJOBLIM 
RMS_DFMBC 
RMS_DFMBFHSH 
RMS_DFMBFIDX 
RMS_DFMBFREL 
RMS_DFMBFSDK 
RMS_DFMBFSMT 
RMS_DFMBFSUR 
RMS_DFNBC 
RMS_EXTEND_SIZE 
RMS_FILEPROT 
RMS_GBLBUFQUO 
RMS_PROLOGUE 
RSRVPAGCNT 
SO_PAGING 
SAVEDUMP 
SBIERRENABLE 
SCH_CTLFLAGS 
SCSBUFFCNT 
SCSCONNCNT 
SCSFLOWCUSH 
SCSMAXDG 
SCSMAXMSG 
SCSNODE 
SCSRESPCNT 
SCSSYSTEMID 
SCSSYSTEMIDH 
SETTIME 
SHADOWING 
SMP_CPUS 
SMP_CPUSH 
SMP _LNGSPINWAIT 
SMP _SANITY_CNT 
SMP _SPINWAIT 
SMP _ TICILCNT 
SPTREQ 
SRPCOUNT 
SRPCOUNTV 
SRPMIN 
SRPSIZE 

Cell Name 
SGN$GW _MAXPSTCT 
SGN$GL_PSEUDOLOA 
SGN$GL_PU_OPTIONS 
SGN$GB_QBUS_MULT _INTR 
CLU$GW _QDSKINTERVAL 
CLU$GW _QDSKVOTES 
SCH$GW_QUAN 
EXE$GL_RTIMESPT 
CLU$GW _RECNXINT 
EXE$V _RESALLOC (EXE$GL_DEFFLAGS) 
LCK$GL_HTBLSIZ 
SYS$GW _RJOBLIM 
SYS$GB_DFMBC 
SYS$GB_DFMBFHSH 
SYS$GB_DFMBFIDX 
SYS$GB..DFMBFREL 
SYS$GB_DFMBFSDK 
SYS$GB_DFMBFSMT 
SYS$GB_DFMBFSUR 
SYS$GB_DFNBC 
SYS$GW _RMSEXTEND 
SYS$GW _FILEPROT 
SYS$GW _GBLBUFQUO 
SYS$GB_RMSPROLOG 
MMG$GL_RSRVPAGCNT 
EXE$GL_SQ_PAGING 
EXE$V _SAVEDUMP (EXE$GL_DEFFLAGS) 
EXE$V_SBIERR (EXE$GL_DEFFLAGS) 
SCH$GL_CTLFLAGS 
SCS$GW _BDTCNT 
SCS$GW _CDTCNT 
SCS$GW _FLOWCUSH 
SCS$GW _MAXDG 
SCS$GW _MAXMSG 
SCS$GB_NODENAME 
SCS$GW _RDTCNT 
SCS$GB_SYSTEMID 
SCS$GB_SYSTEMIDH 
EXE$V _SETTIME (EXE$GL_DEFFLAGS) 
EXE$V _SHADOWING (EXE$GL_STATIC_FLAGS) 
SGN$GL_SMP _CPUS 
SGN$GL_SMP _CPUSH 
SGN$GL_SMP _LNGSPINWAIT 
SGN$GW _SMP _SANITY _CNT 
SGN$GL_SMP _SPINWAIT 
SGN$GW _SMP _ TICILCNT 
SGN$GL_SPTREQ 
SGN$GL_SRPCNT 
SGN$GL_SRPCNTV 
SGN$GL_SRPMIN 
SGN$GL_SRPSIZE 



SYSGEN Parameter 

SS INHIBIT 
STARTUP_Pl 
STARTUP_P2 
STARTUP_P3 
STARTUP_P4 
STARTUP_PS 
STARTUP_P6 
STARTUP_P7 
STARTUP_P8 
SWPALLOCINC 
SWPFAIL 
SWPFILCNT 
SWPOUTPGCNT 
SWPRATE 
SWP_PRIO 
SYSMWCNT 
SYS PFC 
TAILORED 
TAPE_ALLOCLASS 
TAPE_MVTIMEOUT 
TBSKIPWSL 
TIMEPROMPTWAIT 
TTY _ALTALARM 
TTY _ALTYPAHD 
TTY _AUTOCHAR 
TTY_BUF 
TTY _CLASSNAME 
TTY_DEFCHAR 
TTY _DEFCHAR2 
TTY _DEFPORT 
TTY _DIALTYPE 
TTY_DMASIZE 
TTY_OWNER 
TTY_PARITY 
TTY_PROT 
TTY_RSPEED 
TTY_SCANDELTA 
TTY _SILOTIME 
TTY_SPEED 
TTY_ TIMEOUT 
TTY_TYPAHDSZ 
UAFALTERNATE 
UDABURSTRATE 
USER3 
USER4 
USERDl 
USERD2 
VAX CLUSTER 
VIRTUALPAGECNT 
VMSS 
VMS6 

C.1 The Base Image 

Cell Name 

EXE$V _SSINHIBIT jEXE$GL_DEFFLAGS) 
SGN$GB_STARTUP _Pl 
SGN$GB_STARTUP _P2 
SGN$GB_STARTUP _P3 
SGN$GB_STARTUP _P4 
SGN$GB_STARTUP _PS 
SGN$GB_STARTUP _P6 
SGN$GB_STARTUP _p7 
SGN$GB_STARTUP _pg 
SWP$GW _SWPINC 
SCH$GW _SWPFAIL 
SGN$GW _SWPFILES 
SWP$GL_SWPPGCNT 
SCH$GLSWPRATE 
SWP$GB_PRIO 
SGN$GLSYSDWSCT 
SGN$GB_SYSPFC 
SGN$GB_ TAILORED 
CLU$GL_ TAPE_ALLOCLS 
IOC$GW _ TAPE_MVTIMEOUT 
SGN$GW _ WSLMXSKP 
SGN$GW_TPWAIT 
TTY$GW_ALTALARM 
TTY$GW_ALTYPAHD 
TTY$GB_AUTOCHAR 
TTY$GW _DEFBUF 
TTY$GW _CLASSNAM 
TTY$GLDEFCHAR 
TTY$GLDEFCHAR2 
TTY$GLDEFPORT 
TTY$GB_DIALTYP 
TTY$GW _DMASIZE 
TTY$GLOWNUIC 
TTY$GB_PARITY 
TTY$GW _PROT 
TTY$GB_RSPEED 
TTY$GLDELTA 
TTY$GB_SILOTIME 
TTY$GB_DEFSPEED 
TTY$GL TIMEOUT 
TTY$GW _ TYPAHDSZ 
EXE$V _SYSUAFALT IEXE$GLDEFFLAGS) 
SCS$GB_UDABURST 
SGN$GLUSER3 
SGN$GLUSER4 
SGN$GLUSERD1 
SGN$GLUSERD2 
CLU$GB_VAXCLUSTER 
SGN$GL_MAXVPGCT 
SGN$GL_ VMSS 
SGN$GLVMS6 
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SYSGEN Parameter 

VMS7 
VMS8 
VMSDl 
VMSD2 
VMSD3 
VMSD4 
VOTES 
WINDOW _SYSTEM 
WPRE_SIZE 
WPTIE_SIZE 
WRITABLESYS 
WRITESYSPARAMS 
WSDEC 
WSINC 
WSMAX 
WS_OPAO 
XFMAXRATE 

Cell Name 

SGN$GLVMS7 
SGN$GL_ VMS8 
SGN$GL VMSDI 
SGN$GL_ VMSD2 
SGN$GL_ VMSD3 
SGN$GL VMSD4 
CLU$GW _VOTES 
EXE$GL_ WINDOW _SYSTEM 
SGN$GW _ WPRE_SIZE 
SGN$GL_ WPTIE_SIZE 
EXE$V _SYSWRTABL (EXE$GL_DEFFLAGS) 
EXE$V _ WRITESYSPARAMS (EXE$GL_DYNAMILFLAGS) 
SCH$GL_ WSDEC 
SCH$GL WSINC 
SGN$GLMAXWSCNT 
EXE$V _OPAO (EXE$GL_ WSFLAGS) 
IOC$GW _XFMXRATE 

C.1.5 Boot Parameters Area ($$$$$Z_BOOPARAM) 

The boot parameters area passes information from SYSBOOT to later stages 
of system initialization. The global label MMG$.A_BOOPARAM, pefined 
in module EXEC_LAYOUT, locates the beginning of the boot parameters 
area. Global label B00$.A_BOOPARAM, defined in module BOOPARAM, 
has the same value. These labels mark the beginning of nonpageable storage 
reserved for boot parameters. The actual parameters are defined in module 
BOOPARAM. Chapter 30 gives further information on its contents. 

C.1.6 Entry Points for CPU-Dependent Routines ($$$500) 
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Module SYSLOAVEC contains an entry point for each CPU-dependent rou­
tine. Each entry point is a JMP instruction with absolute addressing. The 
destination of each JMP is changed to a routine in the CPU-dependent image 
SYSLOAxxx .EXE, loaded into nonpaged pool during system initialization. 
Chapter 29 gives further information. 

There are two types of routines in this area. Those routines that are entered 
through the SCB must have their entry points longword-aligned. Each of 
these routines has two spare bytes to preserve longword alignment. Other 
routines can have the six-byte JMP instructions packed together. The area 
also contains several pointers to CPU-specific data cells. 

This program section also has contributions from modules SCSVEC and 
CLUSTRVEC. Module SCSVEC contains entry points for the loadable system 
communication services (SCS) code (see Chapter 22). Module CLUSTRVEC 
describes the entry points for the VAXcluster connection manager and dis­
tributed lock manager. 



Global Symbol 

EXE$ALLOAVEC > 
EXE$MCHK 
EXE$INT54 

EXE$INT58 
EXE$INT5C 
EXE$INT60 
UBA$UNEXINT 

EXE$EXTRA1 

EXE$EXTRA2 

EXE$EXTRA3 

EXE$EXTRA4 

EXE$EXTRA5 

ECC$REENABLE 
EXE$INIBOOTADP 
EXE$SAVE_CONTEXT 
EXE$DUMPCPUREG 
EXE$REGRESTOR 
EXE$REGSAVE 
EXE$INIPROCREG 
EXE$TEST_CSR 
IOC$PURGDATAP 
INI$MPMADP 
EXE$STARTUPADP 
EXE$SHUTDWNADP 
MA$RAVAIL 
MA$REQUEST 
MA$INITIAL 
CON$STARTIO 
CON$SET _LINE 
CON$DS_SET 
CON$XON 
CON$XOFF 
CON$STOP 
CON$STOP2 
CON$ABORT 
CON$RESUME 
CON$SET _MODEM 
CON$NULL 
CON$DISCONNECT 
CON$INITIAL 
CON$INITLINE 
CON$1NTINP 

C.1 The Base Image 

Size Description of Routine 

MODULE SYSLOAVEC 

8 bytes Address of start of vectors 

8 bytes 

8 bytes 
8 bytes 
8 bytes 
8 bytes 

8 bytes 

8 bytes 

8 bytes 

8 bytes 

8 bytes 

6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 

Machine check exception service routine 
Interrupt service routine for system control block 

jSCB) vector 5416 
Interrupt service routine for SCB vector 5816 
Interrupt service routine for SCB vector 5C16 
Interrupt service routine for SCB vector 6016 
Interrupt service routine for unexpected UNIBUS 

interrupts 
Extra jump vector; currently targeted to halt in 

ERR SUB 
Extra jump vector; currently targeted to halt in 

ERR SUB 
Extra jump vector; currently targeted to halt in 

ERR SUB 
Extra jump vector; currently targeted to halt in 

ERRSUB 
Extra jump vector; currently targeted to halt in 

ERR SUB 
Reenable memory error timers 
Initialize boot device adapter 
Save processor's context in BUGCHECK 
Write CPU-specific registers in error log buffer 
Restore CPU-specific registers on power recovery 
Save CPU-specific registers at power failure 
Initialize processor registers 
Test UNIBUS console/status register for existence 
Purge UNIBUS buffered data path 
Initialize MA780 shared memory 
Start up any adapters 
Shut down any jall) adapters 
MA780 shared memory resource available 
MA780 shared memory request 
MA780 shared memory initialization 
Console start 1/0 
Set console line 
Console data set 
Send XON to console 
Send XOFF to console 
Stop console output 
Stop console output for 2 seconds 
Abort console 1/0 
Resume console output 
Set console modem 
Null routine 
Console disconnect routine 
Initialize console controller 
Initialize console line 
Console input interrupt 
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Global Symbol 

CON$INTOUT 
CON$SENDCONSCMD 
SYSL$CLRSBIA 

CON$0WNCTY 
CON$RELEASECTY 
CON$GETCHAR 
CON$PUTCHAR 
CON$1NIT _CTY 
EXE$READ_ TODR 
EXE$WRITE_ TODR 
EXE$INIT _ TODR 
INI$CONSOLE 
EXE$INL TIMWAIT 
EXE$READP _LOCAL 

TODR 
EXE$WRITEP _LOCAL 

TODR 
EXE$MOUNTVER 
EXE$MNTVERSIO 
EXE$MNTVERSHDOL 
EXE$CLUTRANIO 

EXE$UPDGNERNUM 

EXE$MNTVER_GEN_ 
CRC 

EXE$MNTVERSP 1 
EXE$MNTVERSP2 
EXE$GL_MVMSLBAS 
SMP$INTPROC 
SMP$INTALL 
SMP$INTALLBIT 
SMP$INTALLACQ 
SMP$INTALLBIT _ACQ 

SMP$SETUP _CPU 

SMP$SETUP _SMP 

CON$SAVE_CTY 
CON$RESTORE_CTY 
IOC$ALOALTMAP 

IOC$ALOALTMAPN 

IOC$ALOALTMAPSP 
IOC$REQALTMAP 
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Size Description of Routine 

MODULE SYSLOAVEC 

6 bytes Console output interrupt 
6 bytes Send CPU-dependent command to console 
6 bytes Clear synchronous backplane interconnect adapter 

6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 

6 bytes 

6 bytes 
6 bytes 
6 bytes 
6 bytes 

6 bytes 

6 bytes 

6 bytes 
6 bytes 
Longword 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 

6 bytes 

6 bytes 

6 bytes 
6 bytes 
6 bytes 

6 bytes 

6 bytes 
6 bytes 

error bits 
Set up to talk directly to console 
Restore normal console interface 
Get a character from the console 
Put a character out to the console 
Initialization routine for the console 
Read time-of-year clock 
Write time-of-year clock 
Initialize system time-of-year clock 
Initialize console device data structures 
Initialize TIMEDWAIT macro loop data cells 
Read physical time-of-year clock 

Write physical time-of-year clock 

Mount verification main entry point 
Mount verification start 1/0 request 
Mount verification online shadow unit 
Mount verification VAXcluster state transition 

block 1/0 
Mount verification update shadow set generation 

number 
Mount verification generate cyclical redundancy 

checks for magtape devices 
Mount verification spare transfer vector 
Mount verification spare transfer vector 
Mount verification message list base address 
Interrupt specified CPU 
Interrupt all CPUs 
Interrupt all CPUs and set work bit 
Acquire CPU mutex and interrupt all CPUs 
Acquire CPU mutex, set work bit, and interrupt 

all CPUs 
Initialize symmetric multiprocessing environment 

for an individual CPU 
Initialize systemwide symmetric multiprocessing 

context before any individual secondary 
processor boots 

Save console terminal context 
Restore console terminal context 
Allocate alternative map registers (unit control 

block specified) 
Allocate alternative map registers (argument 

specified) 
Allocate a specific set of alternative map registers 
Request a set of alternative map registers 



Global Symbol 

IOC$LOADALTMAP 
IOC$RELALTMAP 
EXE$READ_LOCAL_ 

TODR 
SMP$START _CPU 
SMP$STOP _CPU 
SMP$SHOW_CPU 
SMP$HALT_CPU 
SMP$CONTROLP _CPUS 

SMP$INV ALID_SINGLE 
SMP$VIRTCONS_SERVER 
EXE$SNAPSHOT _BI 
EXE$LOGMEM 

EXE$ISSUE_ADP _STOP 
CON$VCINP 

EXE$EXTRA7 

EXE$EXTRA8 

EXE$EXTRA9 

EXE$EXTRA10 

EXE$MCHK_ERRCNT 

EXE$FRAME_BLOX 
EXE$LOAD_NOP 

EXE$LOAD_KDISP \ 
EXE$LOAD_KCJF I 
EXE$LOAD_KRUF 
EXE$LOAD_KSPR1 
EXE$LOAD_KSPR2 

EXE$LOAD_EDISP 
EXE$LOAD_ESPR1 
EXE$LOAD_ESPR2 

SCS$GQ_CONFIG 
SCS$GQ_DIRECT 

SCS$GQ_POLL 

C.1 The Base Image 

Size Description of Routine 

MODULE SYSLOAVEC 

6 bytes Load alternative map registers 
6 bytes Release alternative map registers 
6 bytes Read time-of-year clock 

6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 

6 bytes 
6 bytes 
6 bytes 
6 bytes 

6 bytes 
6 bytes 

6 bytes 

6 bytes 

6 bytes 

8 bytes 

Longword 

Longword 
Byte 

6 bytes 

6 bytes 
6 bytes 
6 bytes 
Byte 
6 bytes 
6 bytes 
6 bytes 
Byte 

CPU-specific kernel mode code for $START/CPU 
CPU-specific kernel mode code for $STOP/CPU 
CPU-specific kernel mode code for $SHOW/CPU 
CPU-specific code for completely halting a CPU 
Return a bit mask of CPUs halted by explicit 

console command 
Invalidate translation buffer entry 
Serve virtual console request from secondary CPU 
Log V AXBI errors 
Log memory control and status registers to error 

log buffer 
Issue a VAXBI stop to KRBTA adapters 
Workstation keyboard driver entry point to OPAO 

input routines 
Extra jump vector; currently targeted to halt in 

ERRSUB 
Extra jump vector; currently targeted to halt in 

ERR SUB 
Extra jump vector; currently targeted to halt in 

ERRSUB 
Extra jump vector; currently targeted to halt in 

ERR SUB 
Address of error counters in machine check 

routine 
Address of local copies of machine check frames 
RSB instruction (initial destination of JMP 

instructions in vectors) 
Reserved; currently targeted to EXE$LOAD_NOP 

Reserved; currently targeted to EXE$LOAD_NOP 
Reserved; currently targeted to EXE$LOAD_NOP 
Reserved; currently targeted to EXE$LOAD_NOP 
RSB instruction 
Reserved; currently targeted to EXE$LOAD_NOP 
Reserved; currently targeted to EXE$LOAD_NOP 
Reserved; currently targeted to EXE$LOAD_NOP 
RSB instruction 

MODULE SCSVEC 

Quadword 
Quadword 

Quadword 

Listhead for system descriptor blocks 
Listhead for directory of processes in V AXcluster 

system 
Listhead of system communication architecture 

poller process blocks giving process names 
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Global Symbol 

SCS$GLBDT 

SCS$GLCDL 

SCS$GLRDT 
SCS$GL_MCLEN 
SCS$GL_MCADR 

SCS$GL_MSCP 

SCS$GLMSCP _MV 
SCS$GLMSCP _NEWDEV 
SCS$GL_PDT 
SCS$GA_DFLTMSK 

SCS$GW _NEXTBIT 
SCS$GA_EXISTS 
SCS$ALLOAVEC} 
SCS$ACCEPT 
SCS$ALLOC_CDT 
SCS$ALLOCRSPID 
SCS$CONFIG_PTH 
SCS$CONFIG_SYS 
SCS$CONNECT 
SCS$DEALLCDT 
SCS$DEALLRSPID 
SCS$DISCONNECT 
SCS$ENTER 
SCS$LISTEN 
SCS$LOCLOOKUP 
SCS$REMOVE 
SCS$RESUMEWAITR 
SCS$UNSTALLUCB 
SCS$LKP _RDTCDRP 

SCS$LKP _RDTWAIT 
SCS$RECYLRSPID 
SCS$FIND_RDTE 

SCS$LKP _MSGWAIT 

SCS$DIR_LOOKUP 
SCS$NEW_SB 
SCS$POLLPROC 
SCS$POLL_MQDE 
SCS$POLLMBX 
SCS$CANCELMBX 
SCS$SHUTDOWN 
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Size Description of Routine 

MODULE SCSVEC 

Longword 

Longword 

Longword 
Longword 
Longword 

Longword 

Longword 
Longword 
Longword 
Word 

Word 
Longword 
6 bytes 

6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 

6 bytes 
6 bytes 
6 bytes 

6 bytes 

6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 

Buffer descriptor table for system communication 
services (SCSI block transmissions 

Connection descriptor table pointing to list of 
SCS connections 

Response descriptor table 
Reserved 
Address of computer interconnect port microcode 

in nonpaged pool 
Address of mass storage control protocol (MSCPl 

server 
MSCP server mount verification routine 
MSCP server new device handling 
Listhead of port descriptor blocks 
Mask of SCS system applications to enable when 

new systems appear 
Next bit available for assignment 
Address of SCSLOA 
Address of start of SCS vectors 
Perform SCS accept 
Allocate a connection descriptor table 
Allocate a response ID 
Configure with path to remote system 
Configure with system ID 
Perform SCS connect 
Deallocate a connection descriptor table 
Deallocate a response ID 
Perform SCS disconnect 
Insert an entry in SCS directory 
Perform an SCS listen operation 
Look up a path block 
Remove an entry in SCS directory 
Resume when controller request block is dequeued 
Resume when unit control block is dequeued 
Search a response descriptor table for a class driver 

request packet (CDRPl 
Search a response ID wait queue for a CDRP 
Recycle a response ID 
Locate and validate the response descriptor table 

entry for a given response ID 
Send credit wait queues for CDRP with given 

connection descriptor table 
Search for processes on remote node 
Called when a system block is created or reused 
Declare a process name to the poller 
Enable/disable polling of a process 
Declare a mailbox to receive poll notifications 
Cancel notifications to a mailbox 
Shut down all SCS virtual circuits 



Global Symbol 

CLU$GL_CLUB 
CLU$GL_CLUSVEC 
CLU$GW _MAXINDEX 
clu_rsb 

CLU$AL_LOAVEC } 
CLS$AL_LOAVEC 
CLU$GL_LO.A_ADDR 
LCK$SND_CVTREQ 
LCK$SND_LOCKREQ 
LCK$SND_GRANTED 
LCK$SND_DEQGR 

:i,CK$SND_DEQCV 

LCK$SND_DEQWT 

LCK$SND_BLKING 
LCK$SND_RMVDIR 
LCK$SND_ TIMESTAMP _ 

RQST 
LCK$SND_SRCHDLCK 
LCK$SND_DLCKFND 
LCK$SND_REDO-SRCH 
LCK$CVT _ID_ TO_LKB 
CNX$ALLOC_CDRP 

CNX$ALLOC_CDRP _ 
ONLY 

CNX$ALLOC_ 
WARMCDRP 

CNX$ALLOC_ 
WARMCDRP _CSB 

CNX$DEALL_ 
MSG_BUF _CSB 

CNX$DEALL_ 
WARMCDRP _CSB 

CNX$INIT _CDRP 
CNX$SEND_MNY_MSGS 
CNX$SEND_MSG 
CNX$SEND_MSG_CSB 
CNX$SEND_MSG_RESP 
CNX$SEND_MSG_RSPID 
CNX$BLOCK_XFER 
CNX$BLOCK_XFEIURP 
CNX$PARTNEILINI'L 

CSB 
CNX$BLOCILREAD 
CNX$BLOCILREAD_IRP 

C.1 The Base Image 

Size Description of Routine 

MODULE CLUSTRVEC 

Longword Address of cluster block 
Longword Address of cluster system vector 
Word Maximum index+ I in cluster system vector 
Byte Local RSB instruction used to make unloaded 

entry a NOP 
Longword Contains cluster code load address 

6 bytes 
6 bytes 
6 bytes 
6 bytes 

6 bytes 

6 bytes 

6 bytes 
6 bytes 
6 bytes 

6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 

6 bytes 
6 bytes 

Send a conversion request to remote system 
Send a lock request to remote system 
Send a lock granted message 
Send a dequeue lock message to master system 

(lock is in granted state) 
Send a dequeue lock message to master system 

(lock is in conversion wait state) 
Send a dequeue lock message to master system 

(lock is in wait state) 
Send a blocking message 
Send a remove directory entry message 
Send a timestamp request 

Send a deadlock search message 
Send a deadlock found message 
Send a redo deadlock search message 
Convert a lock ID to lock block address 
Allocate a class driver request packet (CDRP) and 

convert cluster system ID 
. Allocate a CDRP 

Allocate a CDRP with response ID and message 
buffer 

Allocate a warm CDRP using cluster system 
block (CSB) 

Deallocate a message buffer using a CSB 

Deallocate a warm CDRP using a CSB 

Initialize a CDRP 
Send acknowledged messages to all nodes 
Send an acknowledged message 
Send a message using a CSB 
Send a message and recycle message buffer 
Send a message with a response ID 
Initiate a block transfer request 
Initiate a block transfer request with an IRP 
Initialize partner portion of a block transfer 

Partner block read 
Partner block read with an IRP 
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Global Symbol 

CNX$BLOCK_ WRITE 
CNX$BLOCK_ WRITE_IRP 
CNX$PARTNER_FINISH 
CNX$PARTNER_ 

RESPOND 
CNX$ADJ_EXPT _VOTES 
CNX$SHUTDOWN 
CNX$POWER_FAIL 
CNX$DISK_CHANGE 
CNX$BUGCHECK_ 

CLUSTER 
EXE$A11oc_csD 
EXE$DEALLoc_csD 

EXE$CSP _BRDCST 
EXE$CSP _CALL 

EXE$CSP _COMMAND 
EXE$CSP _BRKTHRU 
LKI$SND_STDREQ 
LKI$SND_BLKING 
LKI$SND_BLKBY 
LKI$SND_LOCKS 
CNX$CREATED_INCRNF 
CWPS$ALLOCATE_SRV 

CWPS$COPY_NODE_ 
INFO 

CWPS$SSND_CREPRC_ 
RQST 

CWPS$SSND_GETJPL 
RQST 

CWPS$SSND_PCNTRL_ 
RQST 

CWPS$SSND_GETSYL 
RQST 

CWPS$SSND_GETDVL 
RQST 

1224 

Size Description of Routine 

MODULE CLUSTRVEC 

6 bytes Partner block write 
6 bytes Partner block write with an IRP 
6 bytes Complete partner's end of a block transfer 
6 bytes Send a block transfer completed response 

6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 

6 bytes 
6 bytes 

6 bytes 
6 bytes 

6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 
6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

Adjust expected votes 
Request a cluster shutdown 
Powerfail recovery entry 
Quorum disk connection state change 
Bugcheck local cluster 

Allocate and initialize a cluster server data block 
Deallocate cluster server data block or mark it for 

deletion 
Send a cluster server process request to all nodes 
Send a request message to local or remote cluster 

server process 
Receive command from cluster server process 
Send a breakthrough message throughout cluster 
Send a standard information request message 
Send a request for list of blocking locks 
Send a request for list of blocked locks 
Send a request for list of all locks 
Incarnation file creation 
Allocate a clusterwide process service (CWPS) 

block 
Obtain information about all current VAXcluster 

nodes 
Send CWPS $CREPRC request to partner node 

Send CWPS $GETJPI request to partner node 

Send CWPS process control request to partner 
node 

Send CWPS $GETSYI request to partner node 

Send CWPS $GETDVI request to partner node 



C.2 Dynamically Allocated Executive Data 

C.2 DYNAMICALLY ALLOCATED EXECUTIVE DATA 

Many of the data structures and areas of system address space are not part 
of the base image but instead are constructed when the system is initialized. 
The sizes of some of these areas depend on the values of SYSGEN parameters; 
those of others, on the particular physical configuration. 

C.2.1 Restart Parameter Block 

The restart parameter block (RPB) is filled in at initialization time with 
bootstrap parameters. The power failure interrupt service routine loads the 
volatile machine state into the RPB before the system halts. During power 
recovery, the console subsystem examines the RPB to determine whether 
memory contents survived the power outage. The use of the RPB is discussed 
in Chapters 30 and 33. 

C.2.2 Page Frame Number Database 

The page frame number (PFN) database consists of several arrays, the con­
tents of which describe the state of pages of physical memory. The PFN 
arrays are described in Chapter 14. Their use during page fault resolution is 
discussed in Chapter 16. PFN array manipulation during swapper operations 
is discussed in Chapter 18. 

C.2.3 Paged Pool 

Paged pool contains systemwide dynamically allocated structures that do 
not have to be permanently resident. Typical structures allocated from paged 
pool are listed in Chapter 19. 

C.2.4 Nonpaged Pool 

Nonpaged pool contains dynamically allocated structures and loaded code 
modules that must not page. There are several nonpaged pool areas: 

• A variable-length list area that can accommodate blocks of any size 
• Three lookaside lists containing preformed fixed-length blocks, which can 

be quickly allocated or deallocated 

The organization and uses of the areas of nonpaged pool are described in 
Chapter 19. 

C.2.5 Interrupt Stack 

The interrupt stack is used to service all hardware interrupts and all software 
interrupts except asynchronous system trap (AST) delivery. Each CPU has 
its own interrupt stack, located within the CPU's per-CPU data area. 
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C.2.6 System Control Block 

The system control block (SCB) contains vectors through which the proces­
sor dispatches exceptions and interrupts to the appropriate service routines. 
SCB size varies with processor type and configuration. All processors have 
at least one page, which is defined by the VAX architecture. EXE$G1-SCB 
contains the starting virtual address of the SCB. Chapter 2 contains infor­
mation on the architecturally defined page, and Chapter 3, information on 
the use of any additional pages. 

C.2.7 Balance Set Slot Area 

The balance set slot area is an array of process headers (PHDsJ. Each resident 
process has its PHD in one of the balance set slots. Balance set slots are 
described in Chapter 14. Their use by the swapper is discussed in Chapter 18. 

C.2.8 System Header 

The system header is a system analog to PHDs. It is used in the paging of 
system code. The major structures within the system header are the system 
working set list and the system section table, which describes mapped global 
sections. 

C.2.9 System Page Table 

C.2.10 

The system page table (SPT) maps system space. It is sized and initialized 
by SYSBOOT to reflect system needs and SYSGEN parameters. It is altered 
during system operation to reflect changes in system space caused by the 
following events, among others: 

• Loading of executive images 
• Process creation, outswap, and inswap 
• Use of paged pool 
• System space paging 

Global Page Table 

The global page table is a pseudo extension of the SPT that allows global 
page table entries (GPTEs) to be accessed with system virtual page numbers 
(SVPNs). The global page table is alteted when global sections are created 
and deleted. In addition, GPTEs can change as a result of page faults. The 
global page table is described in Chapter 14. 

C.3 PROCESS-SPECIFIC EXECUTIVE DATA 
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Some process-specific data is stored in the PHD. That data is accessible 
(subject to synchronization considerations) whenever the process is resident. 
Most other process-specific data is kept in Pl space. Pl space is only acces­
sible when the process is current. The executive queues an AST to execute 
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in process context when it is necessary to acquire or modify such data from 
a process that is not current. 

This section lists the contents of Pl space. 

C.3.1 Pl Pointer Page 

The Pl pointer page is a permanent member of the process working set and 
is defined in executive module SHELL. 

Global Symbol 
CTL$GW _NMIOCH 
CTL$GW _CHINDX 
CTL$GLLNMHASH 
CTL$GLLNMDIRECT 

CTL$ALSTACK 

CTL$GQ_LNMTBL-
CACHE 

CTL$GLCMSUPR 
CTL$GLCMUSER 
CTL$GLCMHANDLR 
CTL$AQ_EXCVEC 

CTL$GL THEXEC 
CTL$GL THSUPR 
CTL$GQ_COMMON 

CTL$GLGETMSG 
CTL$ALSTACKLIM 
CTL$GLCTLBASVA 
CTL$GLIMGHDRBF 
CTL$GLIMGLSTPTR 

CTL$GLPHD 

CTL$GQ_ALLOCREG 
CTL$GQ_MOUNTLST 

CTL$T _USERNAME 

CTL$T _ACCOUNT 

CTL$GQ_LOGIN 
CTL$GLFINALSTS 
CTL$GL WSPEAK 

Size 

Word 
Word 
Longword 
Longword 
Longword 

4 longwords 
• Longword 
• Longword 
• Longword 
• Longword 
2 longwords 

Longword 
Longword 
Longword 
8 longwords 

Longword 
Longword 
Quadword 

Longword 
4 longwords 
Longword 
Longword 
Longword 

- Longword 

2 longwords 
Quadword 

12 bytes 

8 bytes 

Quadword 
Longword 
Longword 

Description of Data 

Number of 1/0 channels 
Maximum channel index 
Process logical name hash table pointer 
Process logical name directory pointer 
Maximum extent (low-address limit) of kernel 

stack 
Array of stack pointer values 
Initial value of kernel stack pointer 
Initial value of executive stack pointer 
Initial value of supervisor stack pointer 
Initial value of user stack pointer 
Listhead for logical name translation cache 

Address of change mode to supervisor handler 
Address of change mode to user handler 
Address of compatibility mode handler 
Addresses of primary and secondary exception 

handlers for each of the four access modes 
Executive mode exit handler listhead 
Supervisor mode exit handler listhead 
Descriptor (size and address) of per-process 

common area 
Address of per-process message dispatcher 
Lowest stack value for each access mode 
Low-address end of permanent part of Pl space 
Address of image header buffer 
Address of image control block list (for 

debugger) 
Address of Pl window that double-maps the 

process header 
Address of process allocation region and size 
Listhead for the process-private mounted 

volume list 
User name for process (blank-filled ASCII 

string) 
Account name for process (blank-filled ASCII 

string) 
System time at process creation 
Exit status of latest image to execute 
Peak working set size for process 
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Global Symbol 

CTL$GL_ VIRTPEAK 
CTL$GL_ VOLUMES 
CTL$GQ_ISTART 
CTL$GL_ICPUTIM 
CTL$GL_IFAULTS 
CTL$GL_IFAULTIO 
CTL$GL_IWSPEAK 
CTL$GL_IPAGEFL 
CTL$GL_IDIOCNT 
CTL$GL_IBIOCNT 
CTL$GL_IVOLUMES 
CTL$T _NODEADDR 
CTL$T _NQDENAME 
CTL$T _REMOTEID 

CTL$GQ_PROCPRIV 
CTL$GL_USRCHMK 

CTL$GL_USRCHME 

CTL$GL_POWERAST 
CTL$GB_PWRMODE 
CTL$GB_SSFILTER 
CTL$GB_REENABLE_ 

ASTS 

CTL$AL_FINALEXC 

CTL$GL_CCBBASE 
CTL$GQ_DBGAREA 

CTL$GL_RMSBASE 
CTL$GL_PPMSG 
CTL$GB_MSGMASK 
CTL$GB_DEFLANG 
CTL$GW _PPMSGCHN 
CTL$GL_USRUNDWN 
CTL$GL_PCB 
CTL$GL_RUF 
CTL$GL_SITESPEC 
CTL$GL_KNOWNFIL 
CTL$AL_IPASTVEC 
CTL$GL_CMCNTX 
CTL$GL_IAFLNKPTR 

CTL$GL_Fl lBXQP 
CTL$GQ_POALLOC 

CTL$GL_PRCALLCNT 
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Size 

Longword 
Longword 
Quadword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
7 bytes 
7 bytes 
17 bytes 
Byte 
Quadword 
Longword 

Longword 

Longword 
Byte 
Byte 
Byte 

Byte 
4 longwords 

Longword 
Quadword 

Longword 
2 longwords 
Byte 
Byte 
Word 
Longword 
Longword 
Longword 
Longword 
Longword 
8 longwords 
Longword 
Longword 

Longword 
Quadword 

Longword 

Description of Data 

Peak page file used 
Number of mounted volumes 
Image activation time 
Initial image CPU time 
Initial image page fault count 
Initial image page fault 1/0 count 
Image working set peak 
Image page file peak usage 
Initial image direct 1/0 count 
Initial image buffered 1/0 count 
Initial image volume' mount count 
Remote node address 
Remote node name 
Remote node ID 
Spare for alignment 
Permanent process privilege mask 
Address of per-process change mode to kernel 

dispatcher 
Address of per-process change mode to 

executive dispatcher 
Address of power recovery AST for process 
Access mode for power recovery AST 
System services inhibit filter mask 
Low bit set by SCH$ASTDEL to notify user 

mode code that it must request $SETAST to 
reenable user mode ASTs 

Spare for alignment 
Address of last chance exception handlers for 

each of the four access modes 
Address of base of 1/0 channel area 
Descriptor (size and address) of debug symbol 

table 
Address of base of RMS image 
Address of process-permanent message section 
Default message display flags 
Default message language 
Channel to process-permanent message section 
Per-process vector to user rundown service 
Address of process control block 
Address of recovery unit process block 
Site-specific per-process cell 
Process known file list pointer 
Reserved 
Address of the AME context page 
Address of image activator furup list (used by 

the debugger) 
Address of Files-11 XQP data area 
Header of PO extension to process allocation 

region 
Number of bytes of process allocation region 

usable by image requests 
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CTL$GL_RDIPTR 
CTL$GL_LNMDIRSEQ 

CTL$GQ_HELPFLAGS 
CTL$GQ_ TERMCHAR 
CTL$GL_KRPFL 
CTL$GL_KRPBL 
CTL$GL_CREPRCFLAGS 
CTL$GL_ THCOUNT 

CTL$GQ_CWPS_Q 1 
CTL$GQ_CWPS_Q2 
CTL$GL_CWPS_Ll 
CTL$GL_CWPS_L2 
CTL$GL_CWPS_L3 
CTL$G1-CWPS_L4 

CTL$GL_PRCPRM_ 
KDATA2 

CTL$GL_USRUNDWN_ 
EXEC 

Size 

Longword 
Longword 

Quadword 
Quadword 
Quadword 

Longword 
3 longwords 

Quadword 
Quadword 
Longword 
Longword 
Longword 
Longword 
Quadword 
Longword 

Longword 

C.3.2 Other Pl Space Data Areas 

C.3 Process-Specific Executive Data 

Description of Data 

Address of rights database identifier 
Sequence number for cache of process logical 

name table translations 
Help flags 
Reserved 
Listhead for kernel request packet lookaside 

list 
$CREPRC flags used to create this process 
Number of exit handlers for executive, 

supervisor, and user modes 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Spare for alignment 
Address of kernel mode data extension area 

Address of executive mode user rundown 
service 

The layout of Pl space is described in Appendix F. Table F.6 lists the global 
labels that delimit each area in Pl space. The remainder of this section lists 
data locations in specific Pl areas that are defined in module SHELL. The 
areas are presented in order of decreasing Pl virtual addresses. That is, the 
command language interpreter (CLI) data pages, presented first, occupy the 
highest Pl address range. The RMS data area, listed last, occupies the lowest 
Pl address range of the areas presented here. 

C.3.2.1 Data Pages for Command Language Interpreter. Module SHELL sets aside an 
area for the generic CLI data pages. 

Global Symbol 

CTL$AL_CLICALBK 

CTL$AG_CLIMAGE 
CTL$G1-UAF _FLAGS 
CTL$GT _CLINAME 
CTL$GT _ TABLENAME 

CTL$GT _SPAWNCLI 

CTL$GT_SPAWNTABLE 

CTL$AG_CLIDATA 

Size 

2 longwords 

2 longwords 
Longword 
32 bytes 
256 bytes 

32 bytes 

256 bytes 

Description of Data 

Call back vector for command 
language interpreter (CLI) 

Virtual address range of CLI 
Flags from authorization record 
CLI name (file name only) 
CLI table name (full file 

specification) 
Spawn CLI name (file name 

only) 
Spawn CLI table name (full file 

specification) 
Rest of CLI data area 
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C.3.2.2 

C.3.2.3 

C.3.2.4 
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Process Allocation Region. The process allocation area is a per-process pool 
area constructed exactly like paged and nonpaged dynamic memory. Chap­
ter 19 gives further information. 

Global Symbol 

CTL$GQ_ALLOCREG 
Size 

Longword 

Longword 

Description of Data 

Process allocation region 
pointer 

Initial size of region 

Compatibility Mode Context Page. Another Pl data area for which module 

SHELL defines symbols is the page used by the compatibility mode exception 
service routine. 

Global Symbol 

CTL$AL_CMCNTX 
Size 

10 longwords 

• 7 longwords 
• 1 longword 

• 2 longwords 

Rest of page 

Description of Data 

General register contents 
stored by exception service 
routine 

Saved RO through R6 
Saved compatibility mode 

exception code 
Saved exception program 

counter and processor status 
longword 

Used by compatibility mode 
emulator 

RMS Data Area. This area contains the RMS context that exists for the life 
of the process. It includes impure areas to describe process-permanent and 
image 1/0 files. 

Global Symbol Size Description of Data 

PIO$GLFMLH 2 longwords Free memory listhead for 
process 1/0 segment 

PIO$GL_IIOFSPLH 2 longwords Free memory listhead for 
image 1/0 segment 

PIO$GW _STATUS Word RMS overall status 
PIO$GT _ENDSTR 16 bytes End-of-data string 
PIO$GW _DFPROT Word Default file protection 
PIO$GB_DFMBC Byte Default multiblock count 
PIO$GB_DFMBFSDK Byte Default multibuffer count for 

sequential disk 1/0 
Pl0$GB_DFMBFSMT Byte Default multibuffer count for 

magnetic tape 1/0 
PIO$GB_DFMBFSUR Byte Default multibuffer count for 

unit record devices 
PIO$GB_DFMBFREL Byte Default multibuffer count for 

relative files 



Global Symbol 

PIO$GB_DFMBFIDX 

PIO$GB_DFMBFHSH 
PIO$GB_DFNBC 
PIO$GB_RMSPROLOG 

PIO$GW _RMSEXTEND 

PIO$GB_JNL_STALL_ 
CNT 

PIO$GL_DIRCACHE 
PIO$GLDIRCFRLH 

PIO$GL_RUB_FLINK 
PIO$GL_RUB_BLINK 
PIO$GL_NXTIRBSEQ 

PIO$GW _PIOIMPA 

PIO$GW_IIOIMPA 

PIO$ALRMSEXH 
PIO$GQ_IIODEFAULT 
PIO$GLLNKCSHADR 

PIO$GL_RU_HANDLER_ 
ID 

PIO$GL_RU_FAILURE_ 
COUNT 

PIO$GL_RU_ WAIT _Q_ 
FLINK 

PIO$GL_RU_ WAIT _Q_ 
BLINK 

PIO$GQ_NTRUB_LH 
PIO$GL_NTO_RM_ID 
PIO$GL_RESERVEDO 
PIO$GQ_RUF _ TSB_LH 
PIO$GL_RESERVED 1 
PIO$GL_RESERVED2 
PIO$GL_RESERVED3 
PIO$GL_RESERVED4 
PIO$GL_RESERVEDS 
PIO$GL_RESERVED6 
PIO$GT _DDSTRING 

C.3 Process-Specific Executive Data 

Size 
Byte 

Byte 
Byte 
Byte 

Word 

Byte 

2 longwords 
Longword 

2 longwords 

Longword 

9 longwords 

4 bytes 
41 longwords 

4 longwords 
Quadword 
Longword 

Longword 

Longword 

2 longwords 

Quadword 
Longword 
Longword 
Quadword 
Longword 
Longword 
Longword 
Longword 
Longword 
Longword 
256 bytes 

Description of Data 

Default multibuffer count for 
indexed files 

Reserved 
Default network block count 
Default structure level for 

indexed files 
Default extend quantity for 

RMS files 
Count of stalled journal 

threads 
Directory cache listhead 
Free list for directory cache 

nodes 
RMS Recovery Unit Block 

listhead 
Next sequence number for 

IRB$L_IDENT 
Impure area descriptor for 

process 1/0 segment 
Spare for alignment 
Impure area descriptor for 

image I/O segment 
RMS exit handler control block 
Default image 1/0 area 
Logical link cache entry 

listhead 
Default recovery unit handler 

ID 
Recovery unit failure count 

Recovery unit wait queue 
listhead 

Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Default directory string 
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The conventions described in this appendix were adopted to aid implemen­
tors in producing meaningful public names. Public names are names that are 
global (known to the linker) or that appear in parameter or macro definition 
files. Public names follow these conventions for the following reasons: 

• Using reserved names ensures that customer-written software will not 
be invalidated by subsequent releases of Digital products that add new 
symbols . 

• Using definite patterns for different uses tells someone reading the source 
code what type of object is being referenced. For example, the form of a 
macro name is different from that of an offset, which is different from that 
of a status code. 

• Using length codes within a pattern associates the size of an object with 
its name, increasing the likelihood that reference to this object will use 
the correct instructions . 

• Using a facility code in symbol definitions gives the reader an indication 
of where the symbol is defined. Separate groups of implementors choose 
facility code names that will not conflict with one another. 

To fully conform with these standards, local synonyms should never be 
defined for public symbols. The full public symbol should be used in every 
reference to give maximum clarity to the reader. 

D.1 PUBLIC SYMBOL PATTERNS 

1232 

All Digital symbols contain a dollar sign. Thus, customers and applications 
developers are strongly advised to use underscores instead of dollar signs to 
avoid future conflicts. 

Public symbols should be constructed to convey as much information as 
possible about the entities they name. Frequently, private names follow a 
similar convention. The private name convention is then the same as the 
public one, with the underscore replacing the dollar sign in symbol names. 
Private names are used both within a module and globally between modules 
of a facility that is never in a library. All names that might ever be bound 
into a user's program must follow the rules for public names. In the case of 
internal names, a double dollar sign convention can be used, as shown in 
item 4 in the following list of formats: 

1. System service and Record Management Services (RMS) VAX MACRO 
names are of the form 

$service-name 
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In a system service VAX MACRO name, a trailing _Sor _G distinguishes 
the stack form from the separate argument list form. Details about the 
names of system service macros can be found in the Introduction to VMS 
System Services. 

These names appear in the system macro library STARLET.MLB and 
represent a call to one of the VMS system services or RMS services. The 
following examples show this form of symbol name: 

$ASCEFC_S 
$CLOSE 
$TRNLNM_G 

Associate common event flag cluster 
Close a file 
Translate logical name 

2. Facility-specific public macro names are of the form 

$facility _macro-name 

The executive does not use any symbol names of this form. 
3. System macros using local symbols or macros always use names of the 

form 

$facility$macro-name 

This is the form to be used both for symbols generated by a macro and 
included in calls to it, and for internal macros that are not documented. 
The executive does not use any symbol names of this form. 

4. Global entry point names are of the form 

facility$entry-name 

The following examples show this form of symbol name: 

EXE$ALOPAGED 
IOC$WFIKPCH 
MMG$PAGEFAOLT 

Allocate paged dynamic memory 
Wait for interrupt and keep channel 
Page fault exception handler 

Global entry point names that are intended for use only within a set of 
related procedures but not by any calling programs outside the set are of 
the form 

facility$$entry-name 

The executive contains few symbol names of this form. However, the 
Run-Time Library contains several examples of symbol names that fol­
low this convention, for example: 

BAS$$NUM.JNIT 
FOR$$SIGNAL_STO 

OTS$$GET _LUN 

Initialize the BASIC NUM function 
Signal a FORTRAN error and call 

LIB$STOP 
Get logical unit number 
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5. Global entry point names that have nonstandard invocations (JSB entry 
point names) are of the following form, where _Rn indicates that RO 
through Rn are not preserved by the routine: 

facility$entry-name_Rn 

Note that the invoker of such an entry point must include at least 
registers R2 through Rn in its own entry mask so that a stack unwind 
will restore all registers properly. 

The executive does not use this convention for its JSB entry points, but 
the Run-Time Library contains several examples of its use, for example: 

COB$CVTFP _R9 
MTH$SIN_R4 
STR$COPY _DX_R8 

Convert floating to packed 
Single precision sine function 
JSB entry to general string copying routine 

6. Status codes and condition values are of the form 

facility$_status 

The following examples show this form of symbol name: 

RMS$_FNF 
SS$_ILLEFC 
SS$_WASCLR 

File not found 
Illegal event flag cluster 
Flag was previously clear 

7. Global variable names are of the form 

facility$Gt _variable-name 

The letter G indicates a global variable. The letter t represents the type 
of variable (see Section D.2). The following examples show this form of 
symbol name: 

CTL$GQ_PROCPRIV 
EXE$GL_NONPAGED 
SCH$GL_FREECNT 

Process privilege mask 
First free block in nonpaged pool 
Number of pages on the free page list 

8. Addressable global arrays use the letter A (instead of the letter G) and 
are of the form 

facility$At_array-name 

The letter A indicates a global array. The letter t indicates the type of 
array element (see Section D.2). In some uses, the symbol's value is the 
address of the beginning of the array; in other uses, the symbol is the 
name of a variable that contains the address of the beginning of the array. 
The following examples show both uses of this form of symbol name: 



CTL$AQ_EXCVEC 

CTL$AL_STACK 
PFN$AX_FLINK 

EXE$AL_ERLBUFADR 

D.1 Public Symbol Patterns 

Array of primary and secondary exception 
vectors 

Array of stack limits 
Address of array of forward links for page 

frame number lists 
Address of array of error log allocation 

buffers 

9. The letter A, along with the letter R, indicates a pointer to a structure. 
This use, new with VMS Version 5, describes a vectored universal symbol 
in the base image that contains the address of a structure in a loadable 
executive image. Chapter 29 describes the modular organization of the 
VMS executive in detail. The following examples show this form of 
symbol name: 

EXE$AR_SYSTEM_ 
PRIMITIVES_OATA 

SMP$AR_SPNLKVEC 
SYS$AR_JOBCTLMB 

Address of data related to nonpaged pool 
allocation 

Address of table of spinlock control blocks 
Address of job controller's mailbox unit 

control block 

10. Public structure definition macro names are of the form 

$facility _structureDEF 

Invoking this macro defines all symbols of the form structure$xxxxxx. 
Most of the public structure definitions used by the VMS operating 

system do not include the string "facility_" in the macros that define 
structure offsets. Rather, macros of the following form are used to define 
structure$xxxxxx symbols: 

$structureDEF 

The following examples show the $structureDEF form of the macro: 

$ACBDEF 

$PCBDEF 
$PHDDEF 

Offsets into asynchronous system trap 
(AST) control block 

Offsets into software process control block 
Offsets into process header 

Many of the macros of this form are contained in the macro libraries 
LIB.MLB or STARLET.MLB. These macros are initially defined in a 
language-independent structure definition language (see Appendix B). 

11. VAX MACRO public structure offset names are of the form 

structure$ t _field-name 

The letter t indicates the data type of the field (see Section 0.2). The 
value of the public symbol is the byte offset to the start of the data 
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element in the structure. The following examples show this form of 
symbol name: 

CEB$1-EFC 
GSD$W_GSTX 

PCB$B_PRI 

Event flag cluster (in common event block) 
Global section table index (in global section 

descriptor) 
Current process priority (in software 

process control block) 

12. VAX MACRO public structure bit field offsets and single bit names are 
of the form 

structure$V _field-name 

The value of the public symbol is the bit offset from the start of the 
field that contains the data, not from the start of the control block. The 
following examples show this form of symbol name: 

ACB$V _QUOTA 
PSL$V _CURMOD 
UCB$V _CANCEL 

Charge AST to process AST quota 
Current access mode 
Cancel 1/0 on this unit 

13. VAX MACRO public structure bit field size names are of the form 

structure$S_field-name 

The value of the public symbol is the number of bits in the field. The 
following examples show this form of symbol name: 

ACB$S_MODE 
PSL$S_CURMOD 
PTE$S_PROT 

Access mode of requestor (2 bits) 
Current access mode (2 bits) 
Memory protection on page (4 bits) 

14. For BLISS, the functions of the symbols in the previous three items are 
combined into a single name used to reference an arbitrary datum. Names 
are of the following form, where x is the same as t for standard-sized data 
(B, W, L, and Q) and x stands for V for arbitrary and bit fields: 

structure$x _field-name 

The macro includes the offset, position, size, and sign extension suitable 
for use in a BLISS field selector. Most typically, this name is defined by 
the following BLISS statement: 

MACRO 
structure$V_field-name= 

structure$t_field-name, 
structure$V_field-name, 

structure$S_field-name, 
(sign extension) X; 

!VAX MACRO V 
! bit field definition 
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15. Public structure mask names are of the form 

structure$M_field-name 

The value of the public symbol is a mask with bits set for each bit in the 
field. This mask is not right-justified. Rather, it has structure$V _field­
name zero bits on the right. The following examples show this form of 
symbol name: 

PCB$M_RES 
PSL$M_CURMOD 
PTE$M_PROT 

Bit set to indicate process residency 
Current access mode 
Memory protection on page 

16. Public structure constant names are of the form 

structure$K_constant-name 

The following examples show this form of symbol name: 

PCB$K_LENGTH 

SRM$K_FLT _OVF _F 
STS$K_SEVERE 

Length (in bytes) of software process control 
block 

Code for floating overflow fault 
Fatal error code 

For historical reasons, many of the constants used by the executive have 
the letter C instead of K to indicate that the object data type is a constant. 
Examples of this form of symbol name are 

DYN$C_PCB 

EXE$C_CMSTKSZ 

PTE$C_URKW 

Structure type is software process control 
block 

Size of stack space added by change mode 
handler 

Protection code of user read, kernel write 

17. PSECT names are of the form 

facility$mnemonic 

When these names are put into,a library, they have the form 

_facility$mnemonic 

The following examples show symbols of the form facility$mnemonic: 

COPY$COPY _FILE 
DCL$ZCODE 

DBG$CODE 

File copying main routine program section 
Program section that contains most code 

for the Digital command language 
interpreter 

Program section containing VAX debugger 
routines 
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This convention is not adhered to as strictly as the other naming con­
ventions because PSECT names control the way that the linker allocates 
virtual address space. Names are often chosen to affect the relative loca­
tions of routines and the data they reference. 

Some sample PSECT names from the Run-Time Library show exam­
ples of the form _facility$mnemonic: 

_LIB$CODE 
_MTH$DATA 
_OTS$CODE 

General library (read-only) code section 
Data section in mathematics library 
Code portion of language-independent 

support library 

The VMS base image, SYS.EXE, does not use this convention in its 
PSECT names. Rather, it uses names that cause the desired sections to be 
placed in a particular order. The following examples show PSECT names 
that are used in the base image: 

$$$$$000_SYSTEM. 
SERVICE_ VECTORS 

$$$$$NONPAGED_ 
CODE 

_Z_SYS$END 

The first program section in the base image 

Program section containing transfer vectors 
to loadable executive images 

Last program section 

D.2 OBJECT DATA TYPES 

Table D.l shows some of the letters used to indicate data types or reserved 
for various other purposes. N, P, and T strings are typically variable-length. 
In structures or 1/0 records, they frequently contain a byte-sized digit or 
character count preceding the string. If so, the location or offset is to the 
count. Counted strings cannot be passed in procedure calls. Instead, a string 
descriptor must be generated. 

D.3 FACILITY PREFIX TABLE 
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Table D.2 lists some of the facility prefixes used by Digital-supplied software. 
This list is not inclusive and is intended to show examples of several facility 
prefixes. Each facility name has a unique facility code. 

Note that bit (27), the customer facility bit, is clear in all the facility codes 
listed here. Customets are free to use any of the facility codes listed here, 
provided that they set bit (27). The default action of the message compiler 
is to set this bit. 

The location of the facility code within a status code and the meaning of 
the other fields in the status code are described in the VMS Utility Routines 
Manual. 

Individual products such as compilers also have unique facility codes 
formed from the product name. 
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Table D. l Letters and the Data Types They Indicate 

Letter 

A 
B 
c 
D 
E 
F 
G 
H 
I 

J 
K 
L 
M 
N 
0 
p 

Q 
R 
s 
T 
u 
v 

w 
x 
y 

z 

Data Type or Use 

Address 
Byte integer 
Character 1 

Double precision floating 
Reserved to Digital 
Single precision floating 
G_floating-point values 
H_floating-point values 
Reserved for integer extensions 
Reserved to customers for escape to other codes 
Constant 
Longword integer 
Field mask 
Numeric string (all byte forms) 
Reserved to Digital as an escape to other codes 
Packed string 
Quadword integer 
Reserved for records (structure) 
Field size 
Text (character) string 
Smallest unit of addressable storage 
Field position (VAX MACRO) 
Field reference (BLISS) 
Word integer 
Context-dependent (generic) 
Context-dependent (generic) 
Unspecified or nonstandard 

1 In many of the symbols used by VMS, C is used as a 
synonym for K. Although K is the preferred indicator for 
constants, many constants used by VMS are indicated by a 
C in their name. Some constants, such as lengths of data 
structures, have both a C form and a K form. 

Structure name prefixes are typically local to a facility. Refer to the in­
dividual facility documentation for its structure name prefixes. Individual 
facility structure names do not cause problems, because these names are not 
global and are therefore not known to the linker. They become known at 
assembly or compile time only by explicit invocation of the macro defining 
the facility structure. 

For example, the macro $FORDEF defines all the status codes that can be 
returned from the VAX FORTRAN support library. The facility code of 24 
is included in the upper 16 bits of each of the status codes defined with this 
macro. 
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Table D.2 Facility Names and Their Prefixes 

Condition 
Prefix Description (27:16) 

EXECUTIVE AND SYSTEM PROCESSES 

SS System service status codes 0 
CLI Command language interpreters 3 
JBC Job controller 4 
OPC Operator communication 5 
ERF Error logger format process 8 

RUN-TIME LIBRARY COMPONENTS 

SMG Screen management routines 18 
LIB General-Purpose Library 21 
MTH Mathematics Library 22 
OTS Language-independent object time system 23 
FOR VAX FORTRAN Run-Time Library 24 
SORT VAX SORT 28 
STR String manipulation procedures 36 

UTILITIES AND COMPILERS 

DBG Symbolic debugger 2 
LIN VMS Linker 100 
DIF File Differences Utility 108 
PAT VAX Image File Patch Utility 109 
LAT Local area terminal 374 

Digital provides a registration service for customer facility names. For 
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Digital Equipment Corporation 
VMS Product Registrar-ZK02-1/N20 
110 Spit Brook Road 
Nashua, New Hampshire 03062-2698 



E 

E.1 

E.2 

Data Structure Definitions 

This book has described the VMS operating system in terms of the data 
structures used by various components of the executive. This appendix sum­
marizes those data structures. 

LOCATION OF DATA STRUCTURE DEFINITIONS 

The data structures used by VMS are defined in a language called structure 
definition language (SDL), which is briefly described in Appendix B. Two sets 
of four files each contain most SDL definitions. 

Four files contain most structure and constant definitions used internally 
by the VMS executive. They have names of the form [SYS]SYSDEFxx .SDL, 
where xx represents the letters AE, FL, MP, or QZ. The two letters indicate 
the range of initial letters of all the data structures contained in that file. The 
VAX MACRO definitions based on these files are stored in the file LIB.MLB. 
The BLISS-32 definitions based on these files are stored in the file LIB.REQ. 
Many components of VMS are built with the definitions in these files. They 
are also available to users for special applications such as user-written device 
drivers and system services. 

Four files named [VMSLIB]STARDEFxx.SDL contain all structure and con­
stant definitions available for general applications, such as system service 
calls. Again, xx represents the letters AE, FL, MP, or QZ. The defini­
tions based on these files are stored in the files STARLET.MLB and STAR­
LET.REQ. 

The distinction between the files in SYSDEFxx .SDL and STARDEFxx .SDL 
is that a structure or constant defined in STARDEF is considered an external 
interface and usually does not change from release to release. A, structure 
or constant defined in SYSDEF is considered an internal interface and is 
subject to change. Consequently, VAX MACRO programs that use LIB.MLB 
or BLISS-32 programs that use LIB.REQ (or LIB.L32) must be reassembled 
and relinked with each major release of the VMS operating system. 

OVERVIEW 

Table E.1 lists the data structures and constants summarized in this appen­
dix. The majority of them are defined in the SYSDEFxx modules. The fol­
lowing classes of structures are in the table: 

• Data structures used by memory management, the scheduler, and other 
components of the system image. At least one figure or table in this book 
describes each of these structures. 
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E.3 

Table E.1 Summary of Data Structures in 
Appendix E 

ACB 
CPU 
JIB 
KFRH 
LNMHSH 
ORB 
RPB 

SYSTEMWIDE DATA STRUCTURES 

ACL' ARB 
FKB GSD 
KFD KFE 
LKB 
LNMTH 
PCB 
RSB 

LNMB 
LNMX 
PHD 
SPL 

CEB 
ISD 
KFPB 
LNMC 
MTX 
PQB 
TQE 

STRUCTURES USED BY THE 1/0 AND FILE SUBSYSTEMS 

ADP BRK CCB CDDB 
CDRP CRB DDB DDT 
DPT FCB IDB IRP 
TAST UCB WCB 

SYMBOLIC CONSTANTS 

BTD CA DYN IOxxx 
IPL NDT PR SPL 

1 This structure is defined in module STARDEFxx. 

• Data structures used by the 1/0 and file subsystems. 
• Constants such as data structure types, interrupt priority levels (IPLs), and 

processor register definitions. 

EXECUTIVE DATA STRUCTURES 

This section contains a brief summary of each of the data structures de­
scribed in this book. Three data structures, the software process control 
block (PCB), the process header (PHD), and the job information block (JIB), 
are partly described in several places throughout the book. They are illus­
trated here in their entirety, with references to other partial descriptions. 

E.3.1 ACB-Asynchronous System Trap (AST) Control Block 
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Purpose 
Usual location 
Allocated from 
Reference 
Special notes 

Describes a pending AST for a process. 
AST queue with listhead in software PCB. 
Nonpaged pool. 
Figure 7.1. 
ACBs are usually a part of a larger structure, such as 

an 1/0 request packet (IRP) or timer queue entry 
(TQE). 



E.3 Executive Data Structures 

FLINK 

BLINK 

(reserved) J TYPE l SIZE 

LIST 

Figure E.1 
Layout of an Access Control List 

E.3.2 ACL-Access Control List 

Purpose 

Usual location 

Allocated from 
Reference 
Special notes 

List of entries that grant or deny access to a particular 
system resource. 

ACL queue with listhead in resource's object rights 
block (ORB$1-ACLFL). 

Paged pool. 
Figure E.l. 
An ACL contains access control entries (ACEs) 

beginning at offset ACL$1-LIST. 

E.3.3 ADP-Adapter Control Block 

Purpose 

Location 
Allocated from 
Reference 

Defines characteristics and current state of an 1/0 
adapter. 

Pointed to by CRB (CRB$L_INTD + VEC$L_ADP). 
N onpaged pool. 
Figure E.2. 

E.3.4 ARB-Access Rights Block 

The ARB is currently a part of the software PCB. The ARB pointer (PCB$L_ 
ARB) points to this overlaid data structure. Figure E.14 shows an ARB within 
a software PCB. Program references that use the ARB pointer in the software 
PCB to locate the ARB or any fields within the ARB (such as the privilege 
mask) will continue to work without modification should the ARB become 
an independent data structure in a future release of the VMS operating 
system. 

Purpose 
Location 
References 

Defines process access rights and privileges. 
Currently a part of the software PCB. 
Table 26.2, Figures E.3, E.14. 

E.3.5 BRK-Breakthrough Message Descriptor Block 

Purpose Used to send asynchronous messages to one or more 
terminals. 
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CSR 

LINK I-

NUMBER l TYPE SIZE 

ADPTYPE lR 

VECTOR 

DPQFL 

DPQBL 

AVECTOR 

Bl_IDR 

(reserved) 

Bl_ VECTOR Bl_FLAGS 

SCB_PAGE 

Bl MASTER 

ADDR_BITS J (reserved) ADPDISP _FLAGS 

1244 

(reserved) 

MRQFL 

MRQBL 

INTO 
(12 bytes) 

Figure E.2 

(continued) 

Layout of an Adapter Control Block 

PRIV 

(reserved) l TYPE l SIZE 

t 
Figure E.3 

CLASS 
(20 bytes) 

RIGlfTSLIST 
(20 bytes) 

RIGHTSDESC 

UIC 

(remainder of local rights list) 
(60bytes). 

Layout of an Access Rights Block 

MRNFENCE 

UBASCB 
116 l>Yl!!!lt 
UBASPTE 

MRACTMDRS 

I DPBITMAP 

MRNREGARY 
(248by!es) 

I MRFFENCE 

MRFREGARY (248 bytes) 

UMR_DIS 

MR2NFENCE 

1 
MR2QFL 

MR2QBL 

MR2ACTMDR 

l (reserved) 

MR2NREGAR 
(248 bytes) 

I MR2FFENCE 

MR2FREGAR (248 bytes) 

UMR2_DIS 

MR2ADDR 

-

J 

. 
...... 



Allocated from 
Reference 

Nonpaged pool. 
Figure 24.6. 

E.3 Executive Data Structures 

E.3.6 CCB-Channel Control Block 

Purpose 

Location 

Reference 

Describes the logical path between the process and 
the UCB of the specific device. 

Within per-process space table, pointed to by CTL$GL_ 
CCBBASE. 

Figure 21.2. 

E.3.7 CDDB-Class Driver Data Block 

Purpose 

Usual location 
Allocated from 
Reference 
Special notes 

Auxiliary data structure for each system communi­
cation services (SCS) connection between a disk or 
tape class driver and a remote mass storage control 
protocol (MSCP) server. 

Pointed to by CRB$LAUXSTRUC. 
Nonpaged pool. 
Figure E.4. 
There is one CDDB per MSCP controller; 

E.3.8 CDRP-Class Driver Request Packet 

Purpose 

Usual location 
Allocated from 
Reference 
Special notes 

Data structure used to communicate between SCS 
and a class driver. 

Linked into CDDB listhead (CDDB$L_CDRPQFL). 
Nonpaged pool. 
Figure 24.2. 
Contains within it, at negative offsets, a full IRP. 

E.3.9 CEB-Common Event Block 

E.3.10 

Purpose 

Location 

Allocated from 

References 

Contains description and wait queue for common 
event flag cluster. 

In list whose head is at SCH$GQ_CEBHD. (Master 
CEBs are located in shared memory and pointed to 
by a field in the slave CEB located in the CEB list 
on each processor.) 

Nonpaged pool. (Master CEBs are allocated from a 
CEB table located in shared memory.) 

Figures 9.1, 9.2, 9.3. 

CPU-Per-CPU Database 

Purpose Records processor-specific information. There is one 
CPU structure for every CPU in the system. 
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CDRPQFL 

CDRPQBL 

SUBTYPE l TYPE SIZE 

SYSTEMID (6 bytes) 

STATUS 

PDT 

CRB 

DOB 

I- CNTRLID -
CNTRLTMO CNTRLFLGS 

OLDRSPID 

OLDCMDSTS 

RSTRTCDRP 

RSTRTCNT DAPCOUNT RETRYCNT 

RSTRTQFL 

RSTRTQBL 

SAVED_PC 

UC BC HAIN 

ORIGUCB 

ALLOCLS 

DAPCDRP 

CDDBLINK 

WTUCBCTR RSVDB FOVER_CTR 

CPYSEQNUM CHVRSN CSVRSN 

MAXBCNT 

CTRLTR_MASK 

RSVD4 

PERMCDRP 

Fignre E.4 
Layout of a Class Driver Data Block 
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E.3.11 

E.3.12 

E.3.13 

E.3.14 

E.3.15 

Usual location 

Allocated from 
References 

E.3 Executive Data Structures 

At a known offset from the interrupt stack pointer for 
the CPU. The FIND_CPU_DATA macro should be 
used. 

Statically allocated pages of system space. 
Figures 34.5, 34.6. 

CRB-Channel Request Block 

Purpose 

Location 
Allocated from 
Reference 

There is one CRB for each set of devices whose access 
to a controller must be synchronized. 

Pointed to by the unit control block (UCB$L_CRB). 
Nonpaged pool. 
Figure E.5. 

DDB-Device Data Block 

Purpose 
Location 
Allocated from 
Reference 

There is one DDB for each controller in a system. 
Linked into device listhead (IOC$GL_DEVLIST). 
Nonpaged pool. 
Figure E.6. 

DDT-Driver Dispatch Table 

Purpose Specifies driver entry points for various 1/0 functions. 
Location Pointed to by DDB$L_DDT and UCB$L_DDT . 

. Allocated from Nonpaged pool. 
Reference Figure E. 7. 

DPT-Driver Prolog Table 

Purpose 

Location 

Allocated from 
Reference 
Special notes 

Defines the identity and the size of the driver to the 
system routine that loads the driver into virtual 
memory. 

Beginning of the driver image. All DPTs on the 
system are linked in a list. Listhead is in IOC$GL_ 
DPTLIST. 

Nonpaged pool. 
Figure E.8. 
The size of the DPT is the size of the entire driver, 

including the DPT itself. 

FCB-File Control Block 

Purpose Describes a uniquely accessed file on a volume; 
provides a means for controlling shared access to a 
file. 
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FLCK l 

UNIT_BRK I 

Figure E.5 

FOFL 

FQBL 

TYPE l 
FPC 

FR3 

FR4 

WQFL 

WOBL 

(reserved) 

MASK I 
AUXSTRUC 

TIMELINK 

DUETIME 

TOUTROUT 

LINK 

DLCK 

BUGCHECK 

RTINTD 
(12 bytes) 

INTO 
(40 bytes) 

BUGCHECK2 

RTINTD2 
(12 bytes) 

INTD2 
(40 bytes) 

SIZE 

I TT_TYPE 

REFC 

Layout of a Channel Request Block 

(reserved) J 

Figure E.6 

LINK 

UCB 

TYPE I 
DDT 

ACPD 

NAME 
(16 bytes) 

DRVNAME 
(16 bytes) 

SB 

CONLINK 

ALLOCLS 

2P_UCB 

Layout of a Device Data Block 

SIZE 



E.3 Executive Data Structures 

START 

UNSOLINT 

FDT 

CANCEL 

REGDUMP 

ERRORBUF I DIAGBUF 

UNITINIT 

ALTSTART 

MNTVER 

CLONED UCB 

(reserved) I __:_ 
FDTSIZE 

MNTV_SSSC 

MNTV_FOR 

MNTV_SQD 

AUX_STORAGE 

AUX_ROUTINE 

Figure E.7 
Layout of a Driver Dispatch Table 

FLINK 

BLINK 

REFC I TYPE SIZE 

UCBSIZE (reserved) J ADPTYPE 

FLAGS 

REINITTAB INITTAB 

MAXUNITS UNLOAD 

DEFUNITS VERSION 

VECTOR DELIVER 

NAME 
J12~efil_ 

t- LINKTIME --i 

ECOLEVEL 

UCO DE 

DECW_SNAME 

Figure E.8 
Layout of a Driver Prolog Table 
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FCBFL LOCKBASIS 

FCBBL TRUNCVBN 

ACCLKMODaj_ TYPE SIZE CACHELKID 

EXFCB HIGHWATER 

WLFL NEWHIGHWATER 

WLBL HWM_ERASE HWM_UPDATE 

ACNT REFCNT (reserved) HWM_PARTIAL 

LCNT WCNT HWM_WAITFL 

STATUS TCNT HWM_WAITBL 

SEGN 

E.3.16 

E.3.17 

1250 

FID 

STVBN 

STLBN 

HDLBN 

FILESIZE 

EFBLK 

VERSIONS 

DIRINDX 

DIRSEQ 

ACCLKID 

FILEOWNER 

(reserved) 
12 b es 

ACMODE 

SYS_PROT 

OWN_PROT 

GRP_PROT 

WOR_pROT 

ACLFL 

ACLBL 

(reserved) 
(40 bytes) 

This part is structured like an ORB. 
(continued) 

Figure E.9 
Layout of a File Control Block 

Usual location 

Allocated from 
Reference 

FKB-ForkBlock 

Purpose 
Usual location 

Allocated from 
References 

Linked into the volume control block listhead 
(VCB$1-FCBFL). 

Nonpaged pool. 
Figure E.9. 

Stores minimum context for a fork process. 
First six longwords of unit control block (UCB) and 

CDRP. 
Nonpaged pool. 
Figures 4.1, 4.2. 

GSD-Global Section Descriptor 

Purpose Contains identifying information about a global 
section. 



E.3.18 

E.3.19 

E.3.20 

VECTOR 

COMBO CSR 
OFFSET -

SPARE1 

Figure E.10 

CSR 

OWNER 

TYPE 

TT_ENABLE 

SPL 

ADP 

UCBLST 
(32 bytes) 

E.3 Executive Data Structures 

SIZE 

UNITS 

FLAGS I COMBO_ VECTOR_ 
OFFSET 

Layout of an Interrupt Dispatch Block 

Location 
Allocated from 
Reference 
Special notes 

Group or system GSD list. 
Paged pool. 
Figure 14.17. 
There are two types of GSD: a normal GSD and a 

GSD for page frame number (PFN) mapped section. 

IDB-Interrupt Dispatch Block 

Purpose 

Location 
Allocated from 
Reference 

Provides the information for a controller-specific 
interrupt dispatcher to dispatch an interrupt to the 
appropriate driver for that device unit. 

Pointed to by CRB$1-INTD + VEC$L_IDB. 
N onpaged pool. 
Figure E.10. 

IRP-I/O Request Packet 

Purpose 

Usual location 

Allocated from 
Reference 

Constructed by the Queue 1/0 Request ($QIO) system 
service to describe an 1/0 function to be performed 
on a device unit. 

All IRPs pending for a particular device unit are linked 
together, typically at UCB$1-IOQFL. 

Nonpaged pool. 
Figure E.11. 

ISD-Image Section Descriptor 

Purpose 

Location 
References 

Describes virtual address range and corresponding 
information (virtual block range, global section 
name) to the image activator. 

Image header. 
Figures 26.2, 26.9, 26.10, 26.11. 
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E.3.21 

1252 

IOOFL 

IOOBL 

RMOD 1 TYPE ] SIZE 

PAI ] EFN 

STS 

Figure E.11 

PIO 

AST 

ASTPRM 

WIND 

UCB 

] 
IOSB 

T 
SVAPTE 

l 
BCNT 

I 
IOST1 

IOST2 

ABC NT 

OBCNT 

SEGVBN 

DIAGBUF 

SEQNUM 

EXTEND 

ARB 

KEYDESC 
CORP 

(72 bytes) 

FUNC 

CHAN 

BOFF 

STS2 

Layout of an I/O Request Packet 

JIB-Job Information Block 

The JIB appears in several figures in this book. Figure E.12 shows all the 
fields currently defined in this structure. 

Purpose 

Location 

Allocated from 
Reference 

Contains quotas pooled by all processes in the same 
job. 

Pointed to by PCB$L_JIB field of all PCBs in the same 
job. 

Nonpaged pool. 
Figure E.12. 



DAYTYPES l 

I-

FILLM 

TQLM 

PRCLIM 

MTLFL 

MTLBL 

TYPE 1 
USERNAME 
(12 bytes) 

ACCOUNT 

BYTCNT 

BYTLM 

PBYTCNT 

PBYTLIM 

PGFLQUOTA 

PGFLCNT 

CPULIM 

SIZE 

FILCNT 

TQCNT 

PRCCNT 

E.3 Executive Data Structures 

MAXDETACH I MAXJOBS 

MPID 

JLNAMFL 

JLNAMBL 

- PDAYHOURS 

ODAYHOURS 

(reserved) I FLAGS I JOBTYPE 

ORG_BYTLM 

ORG_PBYTLM 

SPARE 

CWPS_TIME 

CWPS_COUNT 

I- CWPS_Q1 -
CWPS_L1 

CWPS_L2 

SHRFLIM SHRFCNT JTQUOTA 

EN OLM 

E.3.22 

E.3.23 

ENQCNT 

(continued) 

Figure E.12 
Layout of a Job Information Block 

KFD-Known File Device and Directory Block 

Purpose 

Location 

Allocated from 
Reference 

Contains the file device and directory names 
associated with an image. Multiple known images 
share the same KFD. 

Pointed to by the known file pointer block (KFPB$L_ 
KFDLST). 

Paged pool. 
Figure 26.5. 

KFE-Known File Entry Block 

Purpose 
Location 

Allocated from 
References 

Identifies the file name of the image and its properties. 
Pointed to by the KFPE hash table, whose address is 

contained in the known file pointer block (KFPB$L_ 
KFEHSHTAB). 

Paged pool. 
Figures 26.4, 26.6. 
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E.3.24 

E.3.25 

E.3.26 

E.3.27 

E.3.28 

E.3.29 

1254 

KFPB-Known File Pointer Block 

Purpose 

Location 
Allocated from 
Reference 

Contains the address of KFE hash table and the 
listhead for the KFDs. 

Pointed to by EXE$GL_KNOWN_FILES. 
Paged pool. 
Figure 26.8. 

KFRH-Known File Resident Image Header 

Purpose 

Location 

Allocated from 
Reference 

LKB-Lock Block 

Purpose 

Location 

Allocated from 
Reference 

Exists for each known image installed /HEADER_ 
RESIDENT. 

Immediately precedes the IHD and specifies its size 
and version number. 

Paged pool. 
Figure 26.7. 

Contains information about a request to the Enqueue 
Lo~k l$ENQ) system service. 

All lock blocks may be located through the lock ID 
table, whose address is found in global location 
LCK$GL_IDTBL. 

Nonpaged pool. 
Figure 10.4. 

LNMB-Logical Name Block 

Purpose 

Location 

Allocated from 

References 

Contains the logical name string, its access mode, and 
attributes. 

Chained from the shared logical name hash table or a 
process-private hash table. 

Paged pool for shared logical names or process 
allocation region for process logical names. 

Figures 35.1, 35.5. 

LNMC-Logical Name Table Name Cache Block 

Purpose 
Location 

Allocated from 
Reference 

Facilitates logical name translation. 
Doubly linked from a Pl space listhead ICTL$GQ_ 

LNMTBLCACHE). 
Process allocation region. 
Figure 35.6. 

LNMHSH-Logical Name Hash Table 

Purpose Locates all logical names. 



E.3.30 

E.3.31 

E.3.32 

E.3.33 

E.3.34 

E.3.34.1 

Location 

Allocated from 
Reference 

E.3 Executive Data Structures 

Indirectly pointed to by the array of addresses at 
LNM$AL_HASHTBL. 

Paged pool and process allocation region. 
Figure 35.5. 

LNMTH-Logical Name Table Header 

Purpose 
Allocated from 

Reference 

Describes a logical name table. 
Paged pool for the shared table or process allocation 

region for process tables. 
Figure 35.2. 

LNMX-Logical Name Translation Block 

Purpose 
Location 
Allocated from 

Reference 

Describes an equivalence name for a logical name. 
Follows an LNMB. 
Paged pool for shared names or process allocation 

region for process names. 
Figure 35.1. 

MTX-Mutex (Mutual Exclusion Semaphore) 

Purpose 
Usual location 
Reference 

Controls process access to protected data structures. 
Statically allocated longwords in system space. 
Figure 8.3. 

ORB-Object Rights Block 

Purpose 

Usual location 

Allocated from 
Reference 

Defines the protection information for various objects 
within the system. 

Linked to a data structure, such as a UCB, via offset 
xxx$L_ORB. 

Paged pool. 
Figure E.13. 

PCB-Process Control Block 

The term process control block can refer to two different structures in the 
VAX literature. All software documentation, including this book, refers to 
the software process control block as simply the PCB and always prefixes a 
reference to the hardware process control block with "hardware." 

Software Process Control Block 

Purpose Contains the permanently resident information about 
a process. 
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E.3.34.2 

E.3.35 
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UICGROUP UICMEMBER 

ACL_MUTEX 

FLAGS l TYPE SIZE 

REFCOUNT (reserved) 

Figure E.13 

MODE_PROTUMODE 

MODE_PROTH 

SYS_PROT/PROT 

OWN_PROT 

GRP_PROT 

WOR_PROT 

ACLFUACL_COUNT 

ACLBUACL_DESC 

MIN CLAS 
(20 bytes) 

MAX CLAS 
(20 bytes) 

Layout of an Object Rights Block 

Location 

Allocated from 
Reference 

Linked into a scheduling state queue; also pointed to 
by one of the PCB vector elements. 

Nonpaged pool. 
Figure E.14. 

Hardware Process Control Block 

Purpose 

Location 
References 

Contains hardware context of a process while it is not 
executing. 

Part of the fixed portion of the process header. 
Figures 12.10, 12.11. 

PHD-Process Header 

Purpose 

Location 

References 
Special notes 

Contains process context data that must reside in 
system space but can be outswapped. 

Balance slot area in system space. (PHD pages that are 
not page table pages are double-mapped by a range 
of Pl space addresses.) 

Figures E.15, 14.5, 14.6, 14.8, 14.10, 14.22. 
The process's hardware PCB is contained in the PHD, 

beginning at field PHD$1-PCB and ending just 
before PHD$L_ WSEXTENT. 



SQFL 

SQBL 

WEFC I TYPE 

PHYPCB 

ASTQFL 

ASTQBL 

STATE ASTEN 

AFFINITY _SKIPlRESERVEO_B1 PRIB 

BIOCNT 

OIOCNT 

PRCCNT 

OWNER 

STS 

STS2 

wnME 

ONQTIME 

WAITIME 

TERMINAL 
(8 bytes) 

PQB/EFWM 

EFCS 

EFCU 

EFC2P 

E.3 Executive Data Structures 

SIZE 

AST ACT 

PRI 

ASTCNT 

BIOLM 

OIOLM 

---------r---------1-------------------~ 
(reserved) PGFLINOEX PGFLCHAR 

EFC3P 

PIO 

EPIO 

EOWNER 

PHO 

MTXCNT I APTCNT 

GPGCNT 

PPGCNT 

JIB 

WSSWP 

SWAPSIZE 

(continued) 

Figure E.14 
Layout of a Software Process Control Block 
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t 

t-

TMBU 

PRIV 

ARB 

(reserved) 
(48 bytes) 

UIC 

(reserved) 
l60 IW_e~ 

ORB 

I 
LOCKQFL 

LOCKQBL 

DLCKPRI 

IPAST 

DEFPROT 

PMS 

AFFINITY 

SCHED_SPARE 

CAPABILITY 

CPU_ID 

CPUTIM 

LNAME 
(16 bytes) 

PRCPDB 

PIXHIST 

(reserved) 

NS_RESERVED_Q1 

AFFINITY _CALLBACK 

PERMANENT_ CAPABILITY 

PERMANENT_ CPU_AFFINITY 

CWPSSRV _QUEUE 

CURRENT_AFFINITY 

CAPABILITY _SEQ 

SPARE_W2 l SPARE_W1 

Figure E.14 (continued) 
Layout of a Software Process Control Block 

j 

-1 

This part is 
an ARB. 



r-
SPARE_1 I 

E.3.36 

E.3.37 

E.3 Executive Data Structures 

PRIVMSK ....., R11 

TYPE I SIZE R12 

WSLIST R13 

WSLOCK PC 

WSDYN PSL 

WSNEXT POBR 

WSLAST ASTLVL l POLA 

PCB/KSP P1BR 

ESP P1LR 

SSP ASN I PRVCPU 

USP WSEXTENT 

RO WSOUOTA 

R1 DFWSCNT 

R2 PAGFIL 

R3 PSTBASOFF 

R4 PSTFREE I PSTLAST 

RS FREPOVA 

RS FREPTECNT 

R7 FREP1VA 

RS FLAGS l PGTBPFC l DFPFC 

R9 CPUTIM 

R10 PRCLM l QUANT 

(continued) (continued) 

Figure E.15 
Layout of a Process Header 

PQB-Process Quota Block 

Purpose 

Location 
Allocated from 
Reference 

Used during process creation to store new process 
parameters that are copied to the PHD and Pl space 
after those areas are accessible. 

Pointed to by PCB$L_EFWM. 
Paged pool. 
Figure E.16. 

RPB-Restart Parameter Block 

Purpose Contains volatile processor state during power failure; 
locates the bootstrap 1/0 driver and associated 
subroutines. 
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PHVINDEX ASTLM t- IMAGPRIV -
BAK RESLSTH 

WSLX/PSTBASMAX IMGCNT 

PAGEFLTS PFLTRATE 

WSSIZE PFLREF 

(reserved) UCPUTIM TIM REF 

DIOCNT PGFLTIO 

BIOCNT (reserved) l (reserved) l AUTHPRI 

CPULIM 
EXTRACPU 

PGFLCNT l PRCPAGFIL AWSMODE I CPUMODE (reserved) 
(40 bytes) 

PTWSLELCK PRCPGFLREFS 
(16 bytes) 

PTWSLEVAL 
PPGFLVA 

PTCNTVAL PTCNTLCK 
I- PSCANCTX_QUEUE -I 

PTCNTMAX PTCNTACT 
SPARE_L1 

WSFLUID 
SPARE_L2 

(reserved) EMPTPG 

EXTDYNWS 
SPARE_W2 I PSCANCTX_SEQNUM 

UCPUTIM 
PRCPGFLOPAGES PRCPGFLPAGES 

I-

E.3.38 
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PRCPGFL 
NS_SPARE 

(reserved) 
WSAUTH 

WSL 
WSAUTHEXT 

AUTHPRIV -
(continued) 

Figure E.15 (continued) 
Layout of a Process Header 

Usual location 

Reference 

Physical page zero on system with no bad memory in 
the first 64K bytes. 

Table 30.22. 

RSB-Resource Block 

Purpose 

Location 

Allocated from 
References 

Contains information about a resource defined to the 
lock management system services. 

All resource blocks can be located through the resource 
hash table, pointed to by LCK$GL_HASHTBL. 

Nonpaged pool. 
Figures 10.1, 10.3. 



I- PRVMSK 

STS l TYPE 1 
ASTLM 

BIOLM 

BYTLM 

CPULM 

DIOLM 

FILLM 

PGFLQUOTA 

PRCLM 

TQELM 

WSQUOTA 

WSDEFAULT 

ENQLM 

WSEXTENT 

JTQUOTA 

-I 

SIZE 

E.3 Executive Data Structures 

CREPRC_FLAGS 

MIN CLASS 
(20-bytes) 

MAX_ CLASS 
_1_20 tm_efil_ 

INPUT_ATT 

OUTPUT_ATT 

ERROR_ATT 

DISK_ATT 

CU NAME 
(32-bytes) 
CU TABLE 
(25Sbytes) 

SPAWN CU 
(32 bytes) 

SPAWN TABLE 
(256 bytes) 

INPUT 
(256 bytes) 

OUTPUT 
(256 bytes) 

ERROR 
(256 bytes) 

DISK 
(256 bvtes) 

. 

(reserved) l MSGMASK 1 FLAGS IMAGE 
(256 bytes) 

E.3.39 

E.3.40 

UAF_FLAGS 

(continued) 

Figure E.16 
Layout of a Process Quota Block 

SPL-Spinlock Control Block 

Purpose 
Usual location 

Allocated from 

References 

Synchronization tool for multiprocessing. 
A static spinlock is identified by the position of its 

address in SMP$AR_SPNLKVEC, a table of static 
spinlock addresses. 

A dynamic (device) spinlock is pointed to by the 
field CRB$L_DLCK in the CRB that describes the 
device's controller, and by the field UCB$LDLCK 
in the device's UCB. 

Static spinlocks are allocated statically. Dynamic 
spinlocks are allocated from nonpaged pool. 

Figures 8.1, 8.2. 

TAST-Terminal AST Block 

Purpose 

Usual location 

Contains information for delivery of out-of-band 
character ASTs. 

Queued to the terminal UCB via TAST$L .... LINK. 
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E.3.41 

E.3.42 

E.3.43 

E.4 

Allocated from 
References 

Nonpaged pool. 
Figures 7.5, 7.6, 7.7. 

TQE-Timer Queue Entry 

Purpose 

Location 
Allocated from 
Reference 

Describes pending timer or scheduled wakeup 
request. 

Linked to the timer queue at EXE$GL_ TQFL. 
Nonpaged pool. 
Figure 11.1. 

UCB-Unit Control Block 

Purpose 

Location 
Allocated from 
Reference 
Special notes 

Describes the status, characteristics, and current state 
of a device unit. 

Linked from DDB$L_UCB. 
Nonpaged pool. 
Figure E.17. 
Figure E.17 shows the part of the UCB common to all 

device units. See the VMS Device Support Manual 
for information on extensions to the common part 
of the UCB. 

WCB-Window Control Block 

Purpose 

Location 
Allocated from 
Reference 

Describes the virtual to logical correspondence for the 
blocks of a file. 

Contained in FCB list at FCB$L_ WLFL. 
Nonpaged pool. 
Figure E.18. 

SYMBOLIC CONSTANTS 

The files [SYS]SYSDEFxx.SDL and [VMSLIB]STARDEFxx.SDL define many 
systemwide symbolic codes that identify structures, resources, quotas, pri­
orities, and so on. Many of these constants are listed in the VMS System Ser­
vices Reference Manual and the VMS I/0 User's Reference Volume. Those 
that are most closely tied to the material in this book but not listed in those 
manuals are listed here. 

E.4.1 BTD-Bootstrap Device Codes 
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The bootstrap device codes (see Table E.2) are used by VMB, the primary 
bootstrap program, and by SYSBOOT, the secondary bootstrap program, to 
interpret the contents of the RPB$B_DEVTYP field, which specify the boot 
device. 
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FQFL t- DEVDEPEND -
FQBL I- DEVDEPND2 -

FLCK I TYPE I SIZE 
IOOFL 

FPC 
IOQBL 

FR3 
CHARGE UNIT 

FR4 
IRP 

INIQUO l BUFQUO 

ORB 
AMOD I DIPL REFC 

AMB 

LOCKID 
STS 

CAB 
QLEN DEVSTS 

DLCK 
DUETIM 

DOB 
OPCNT 

PIO SVPN 

LINK 
SVAPTE 

VCB 
BCNT BOFF 

DEVCHAR 

DEVCHAR2 
ER RC NT ERTMAX I ERTCNT 

PDT 
AFFINITY DDT 
(reserved) 

MEDIA_ID 
DEVBUFSIZ I DEVTYPE I DEVCLASS 

(continued) 

Figure E.17 
Layout of a Unit Control Block 

E.4.2 CA-Conditional Assembly Parameters 

The conditional assembly parameters jsee Table E.3) control whether cer­
tain code is included when components of VMS are assembled. The first 
parameter was important during the initial development of VMS but is no 
longer used. All measurement code (used by the Monitor Utility) is always 
included. 

E.4.3 DYN-Data Structure Type Definitions 

Most structures allocated from nonpaged and paged pool have a unique code 
in the type field, at offset xxx$B_ TYPE lsee Table E.4). The System Dump 
Analyzer (SDA) uses the contents of this field when formatting dumps of 
pool and in automatic formatting of a data structure with the FORMAT 
command. 

Codes that have numeric values greater than or equal to DYN$C_SUB­
TYPE are subtypable codes. Each subtypable code refers to a generic function. 
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WLFL 

WLBL 

ACCESS I TYPE I SIZE 

PIO 

ORGUCB 

NMAP l ACON 

FCB 

RVT 

LINK 

READS 

WRITES 

STVBN 

l P1_COUNT 

P1_LBN 

I P2_COUNT 

P2_LBN 

Figure E.18 
Layout of a Window Control Block 

Different data structures related to the same generic function have the same 
value in the type field but different values in the subtype field. The subtype 
field is at offset xxx$B_SUBTYPE within a subtypable data structure. For 
example, the system block (SB) and the path block (PB) are data structures 
used by SCS. Both structures have the value DYN$C_SCS in their type field; 
the SB has the value DYN$C_SCS_SB in its subtype field, whereas the PB 
has the value DYN$C_SCS_PB in its subtype field. SDA can interpret the 
subtype fields of standard system data structures. 

E.4.4 IOxxx-1/0 Address Space Definitions 

The LIB.MLB $10xxxDEF macros define the layout of 1/0 space for each 
CPU. Appendix G lists the values of xxx. 

E.4.5 IPL-Interrupt Priority Level Definitions 

IPLs that are used by VMS for synchronization and other purposes are given 
the symbolic names listed in Tables 3.1 and 4.1. 

E.4.6 NDT-Nexus Device Type 

Each external adapter has an associated code that is used by VMB, INIT, 
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Table E.2 Bootstrap Device Codes 

Symbolic Name 
BID$ILMB 
BID$ILDM 
BID$ILDL 
BID$ILDQ 
BID$ILPROM 
BID$K_PROM_COPY 
BID$K_UDA 
BID$K_TK50 
BID$K_KFQSA 
BID$K_HSCCI 
BID$1LBDA 
BID$ILBVPSSP 
BID$ILAIE_ TK50 
BID$ILKA410_DISK 
BID$ILKA420_DISK 
BID$ILST506_DISK 
BID$1LKA410_TAPE 
BID$ILKA420_TAPE 
BID$ILSCSL5380_ TAPE 
BID$ILSII 
BID$ILSHAC 
BID$ILSCSL5380_DISK 
BID$ILCONSOLE 
BID$K_NET_DLL 
BID$ILQNA 
BID$ILUNA 
BID$ILAIE_NI 
BID$ILKA410_NI 
BID$ILKA420_NI 
BID$ILLANCE 

BID$ILDEBNI 

BID$ILNISCS 

Code 
0 
1 
2 
3 
8 
9 
17 
18 
19 
32 
33 
34 
35 
36 
36 
36 
37 
37 
37 
39 
41 
42 
64 
96 
96 
97 
98 
99 
99 
99 
100-103 
104 
105-127 
128 

Device 
MASSBUS device 
RK06/7 
RL02 
RB02/RB80 
PROM (not copied) 
PROM (copied) 
UDA 
TK50 
KFQSA adapter 
HSC on a CI 
KDB50, VAXBI disk adapter 
KRBTA 
DEBNK (tape) 
VAXstation 2000 ST506 disk 
VAXstation 3100 ST506 disk 
VAXstation 3100 ST506 disk 
V AXstation 2000 SCSI tape 
VAXstation 3100 SCSI tape 
VAXstation 3100 SCSI tape 
Embedded DSSI controller 
Single chip DSSI adapter 
VAXstation 3100 SCSI disk 
Console block storage device 
Start of network boot devices 
DEQNA 
DEUNA 
DEBNK (Ethernet) 
VAXstation 2000 Ethernet 
VAXstation 3100 Ethernet 
LANCE NI chip 
Reserved 
DEBNI 
Reserved for network boot devices 
Disk served by a local area 

VAXcluster host 

Table E.3 Conditional Assembly Parameters 

Symbolic Name 
CA$_SIMULATOR 
CA$_MEASURE 
CA$_MEASURE_IOT 

Code 
1 
2 
4 

Feature 
VMS running on simulator 
Accumulate statistics for Monitor Utility 
Accumulate I/O statistics for Monitor Utility 
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Table E.4 Data Structure Type Definitions 

Symbolic Name Code Structure Type 
DYN$C_ADP 1 Adapter control block 
DYN$C_ACB 2 AST control block 
DYN$c_AQB 3 ACP queue block 
DYN$C_CEB 4 Common event block 
DYN$c_CRB 5 Channel request block 
DYN$c_DDB 6 Device data block 
DYN$c_FCB 7 File control block 
DYN$C_FRK 8 Fork block 
DYN$C_IDB 9 Interrupt dispatch block 
DYN$c_IRP 10 1/0 request packet 
DYN$c_LoG 11 Logical name block 
DYN$c_PCB 12 Software process control block 
DYN$C_PQB 13 Process quota block 
DYN$c_RVT 14 Relative volume table 
DYN$C_TQE 15 Timer queue entry 
DYN$c_ucB 16 Unit control block 
DYN$C_VCB 17 Volume control block 
DYN$C_WCB 18 Window control block 
DYN$c_BUFIO 19 Buffered 1/0 buffer 
DYN$C_ TYPAHD 20 Terminal type-ahead buffer 
DYN$C_GSD 21 Global section descriptor 
DYN$C_MVL 22 Magnetic tape volume list 
DYN$C_NET 23 Network message block 
DYN$C_KFE 24 Known file entry 
DYN$C_MTL 25 Mounted volume list entry 
DYN$C_BRDCST 26 Broadcast message block 
DYN$C_CXB 27 Complex chained buffer 
DYN$C_NDB 28 Network node descriptor block 
DYN$C_SSB 29 Logical link subchannel status block 
DYN$c_DPT 30 Driver prolog table 
DYN$C_JPB 31 Job parameter block 
DYN$c_PBH 32 Performance buffer header 
DYN$c_PDB 33 Performance data block 
DYN$c_Prn 34 Performance information block 
DYN$c_PFL 35 Page file control block 
DYN$c_PFLMAP 36 Page file mapping window 
DYN$C_PTR 37 Pointer control block 
DYN$C_KFRH 38 Known file image header 
DYN$c_DcCB 39 Data cache control block 
DYN$C_EXTGSD 40 Extended global section descriptor 
DYN$c_SHMGSD 41 Shared memory global section descriptor 
DYN$c_SHB 42 Shared memory control block 
DYN$c_MBX 43 Mailbox control block 
DYN$C_IRPE 44 Extended 1/0 request packet 
DYN$c_SLAVCEB 45 Slave common event block 

(continued) 
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Table E.4 Data Structure Type Definitions (continued) 

Symbolic Name Code Structure Type 
DYN$C_SHMCEB 46 Shared memory master common event 

block 
DYN$C_JIB 47 Job information block 
DYN$C_TWP 48 Terminal driver write packet ($TTYDEF) 
DYN$c_RBM 49 Real-time system page table entry bitmap 
DYN$C_VCA 50 Disk volume cache block 
DYN$C_CDB 51 X25 low-end system (LES) channel data 

block 
DYN$c_LPD 52 X25 LES process descriptor 
DYN$c_LKB 53 Lock block 
DYN$c_RsB 54 Resource block 
DYN$C_LKID 55 Lock ID table 
DYN$C_RSHT 56 Resource hash table 
DYN$C_CDRP 57 Class driver request packet 
DYN$C_ERP 58 Error log packet 
DYN$c_CIDG 59 CI datagram buffer 
DYN$C_CIMSG 60 CI message buffer 
DYN$C_XWB 61 DECnet logical link context block 
DYN$C_WQE 62 DECnet work queue block 
DYN$C_ACL 63 Access control list queue entry 
DYN$C_LNM 64 Logical name block 
DYN$C_FLK 65 Fork lock request block 
DYN$C_RIGHTSLIST 66 Rights list 
DYN$C_KFD 67 Known file device directory block 
DYN$C_KFPB 68 Known file list pointer block 
DYN$C_CIA 69 Compound intrusion analysis block 
DYN$C_PMB 70 Page fault monitor control block 
DYN$c_PFB 71 Page fault monitor buffer 
DYN$c_CHIP 72 Internal check protection block 
DYN$c_QRB 73 Object rights block 
DYN$C_QVAST 74 QVSS AST block 
DYN$C_MVWB 75 Mount verification work buffer 
DYN$C_UNC 76 Universal context block 
DYN$c_DcB 77 DECnet control block for chained I/O 
DYN$c_DLL 78 General DECnet datalink block 
DYN$c_SPL 79 Spinlock control block 
DYN$C_ARB 80 Access rights block 
DYN$C_SUBTYPE 96 Beginning of subtypable codes 
DYN$c_scs 96 SCS control block 
DYN$C_CI 97 CI port structure 
DYN$C_LOADCODE 98 Loadable code 
DYN$C_INIT 99 Structure set up by INIT 
DYN$c_CLASSDRV 100 Class driver structure 
DYN$C_CLU 101 V AXcluster structure 
DYN$C_PGD 102 Paged pool structure 

(continued) 
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Table E.4 Data Structure Type Definitions (continued) 

Symbolic Name 

DYN$c_DECW 
DYN$C_VWS 
DYN$c_DSRV 
DYN$C_MP 
DYN$C_NSA 
DYN$c_cwPs 
DYN$C_SPECIAL 

DYN$c_SHRBUFIO 

Code 

103 
104 
105 
106 
107 
108 
128 

128 

Structure Type 

DECwindows structure 
VAX Workstation Software structure 
Disk server structure 
Multiprocessing-related struct~e 
Nondiscretionary security audit structure 
Clusterwide process services 
Code that defines beginning of special 

dynamic memory types 
Shared memory buffered 1/0 buffer 

and the power recovery routine to determine which adapter-specific action 
should be taken to (re)initialize each adapter (see Table E.S). 

E.4.7 PR-Processor Register Definitions 

The macro $PRDEF, in LIB.MLB, defines symbolic names for the· processor 
registers that are common to all types of VAX processor. For each CPU type, a 
second LIB.MLB macro, $PRxxxDEF, defines symbolic names for the CPU's 
additional processor registers. Appendix G lists the values of xxx. 

E.4.8 SPL-Static Spinlock Definitions 
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Symbolic names such as SPL$C_SCHED for the static spinlocks used by 
VMS are listed in Table 8.2. 

Table E.5 Nexus Device Types 

Symbolic Name Code Adapter 
NDT$_MEM4NI 8 Memory, 4K, not interleaved 
NDT$_MEM41 9 Memory, 4K, interleaved 
NDT$_MEM16NI 16 Memory, 16K, not interleaved 
NDT$_MEM161 17 Memory, 16K, interleaved 
NDT$_MEM1664NI 18 Memory, 16K and 64K mixed 
NDT$_MB 32 MBA 0, 1, 2, or 3 
NDT$_UBO 40 UNIBUS adapter or interconnect 0 
NDT$_UB1 41 UNIBUS adapter 1 
NDT$_UB2 42 UNIBUS adapter 2 
NDT$_UB3 43 UNIBUS adapter 3 
NDT$_DR32 48 DR32 
NDT$_CI 56 CI750, CI780 
NDT$_MPMO 64 Multiport memory 0 

(continued) 
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Table E.5 Nexus Device Types (continued) 

Symbolic Name Code Adapter 
NDT$_MPM1 65 Multiport memory 1 
NDT$_MPM2 66 Multiport memory 2 
NDT$_MPM3 67 Multiport memory 3 
NDT$_MEM64NIL 104 64K memory, not interleaved, lower 

controller 
NDT$_MEM64EIL 105 64K memory, externally interleaved, 

lower controller 
NDT$_MEM64NIU 106 64K memory, not interleaved, upper 

controller 
NDT$_MEM64EIU 107 64K memory, externally interleaved, 

upper controller 
NDT$_MEM641 108 64K memory, internally interleaved 
NDT$_MEM256NIL 112 256K memory, not interleaved, lower 

controller 
NDT$_MEM256EIL 113 256K memory, externally inter-

leaved, lower controller 
NDT$_MEM256NIU 114 256K memory, not interleaved, upper 

controller 
NDT$_MEM256EIU 115 256K memory, externally inter-

leaved, upper controller 
NDT$_MEM2561 116 256K memory, internally interleaved 
NDT$_KA410 128 V AXstation 2000 processor 
NDT$_KA420 128 V AXstation 3100 processor 
NDT$_KA640 129 MicroVAX 3300/3400 processor 
NDT$_SCORMEM 8000000116 VAX 8200 memory 
NDT$_BIMFA 8000010116 DRB32 adapter 
NDT$_BUA 8000010216 V AXBI UNIBUS adapter 
NDT$_BLA 8000010316 KLESI-B 
NDT$_KA810 8000010516 KA810 processor 
NDT$_NBI 8000010616 VAX 8800 VAXBI adapter 
NDT$_XBIB 8000210716 VAXBl-to-XMI adapter 
NDT$_BCA 8000010816 CIBCA adapter 
NDT$_BICOMBO 8000010916 DMB32 adapter 
NDT$_DSB32 8000010A16 DSB32 adapter 
NDT$_BCI750 8000010B16 CIBCI adapter 
NDT$_BDA 8000010£16 V AXBI disk adapter 
NDT$_DEBNT 8000410F16 DEBNT adapter 
NDT$_DEMNA OOOOOC0316 DEMNA adapter 
NDT$_CIXCD OOOOOC0516 CIXCD adapter 
NDT$_XCP 0000800116 VAX 6000 models 200/300 processor 
NDT$_XRP 0000808216 VAX 6000 model 400 processor 
NDT$_XMA 0000400116 XMimemory 
NDT$_XBI 0000200116 XMI-to-VAXBI adapter 
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Size of System and Pl Virtual 
Address Spaces 

Many of the VMS data structures are not created until the system is boot­
strapped, so that the structure sizes can be determined from the appropriate 
SYSGEN parameters. This appendix describes the relations among these pa­
rameters and the resulting use of virtual address space. 

In the equations that appear in this appendix, two common features domi­
nate. The first is division by 512, the number of bytes in a page. This division, 
actually an arithmetic shift by -9, converts an input parameter expressed 
as a number of bytes, such as the SYSGEN parameter NPAGEDYN, into a 
page count. Adding 511 to a byte expression before the integer division takes 
place rounds up to the next highest page boundary. 

The second feature is the number 128, which appears in expressions that 
convert a page count into the number of page table pages required to map that 
page count. Since a page table entry (PTE) is four bytes long, each page table 
page can contain 128 PTEs, mapping 128 pages. Division by 128, actually an 
arithmetic shift by - 7, converts an input parameter expressed as a number 
of pages (and therefore the same number of PTEs) into a count of page table 
pages. In this case, 127 is added as the rounding factor. 

PROCESS HEADER 

The SYSBOOT image, executing in the early stages of system initialization, 
reads SYSGEN parameters and sizes the various portions of address space. 
SYSBOOT's first calculation of this type determines the size of the process 
header (PHD) from related SYSGEN parameters. Six segments compose the 
PHD: 

• Fixed portion, including the register save area and offsets to the other 
segments 

• Working set list (WSL) 
• Process section table (PST) 
• Empty pages reserved for WSL expansion 
• Two PHD page arrays and two page table page arrays, each containing one 

entry per page of the PHD 
• PO and Pl page tables 

Most of the calculations in this appendix treat the PHD fixed portion, 
working set list, and the PST as a unit. 

Table F.1 lists the PHD segments, the global locations where segment sizes 



Table F.l Discrete Portions of the Process Header 

PHD 
Segment 

Fixed portion, WSL, 
PST 

Empty pages for WSL 
expansion 

PHD and page table 
page arrays 

PO and Pl page tables 

Symbolic Name 
Used in 
Calculations 

PHD(Fixed, WSL, PST) 

PHD(Expansion_Pages) 

PHD(Page_Arrays) 

PHD(Page_ Tables) 

Parameters 
Affecting 

Size 

Global 
Location 
Containing 
Segment Size 

SWP$GW_ 
WSLPTE 

SWP$GW_ 
EMPTPTE 

SWP$GW_ 
BAKPTE 

SGN$GL 
PTPAGCNT 

Process Header 

PHD$C_LENGTH 

PQL_DWSDEFAUL T 

Fixed Portion of Process Header 

PROCSECTCNT 

WSMAX, PQL_DWSDEFAUL T 

Size of entire PHD 

VIRTUALPAGECNT 

Figure F.1 

I 

Working Set List 

j 
t 

Process Section Table 

Empty Pages 

Four Arrays for Process Header Pages 

PO Page Table 

J 

1 
P1 P!!!!e Table 

Process Header and SYSGEN Parameters 

F.1 Process Header 

Parameters 
Affecting Size 

PHD$C_LENGTH, 
PROCSECTCNT, 
PQLDWSDEFAULT 
WSMAX, 
PQLDWSDEFAULT 
Number of PHD 

pages 
VIRTUALPAGECNT 

Size Stored 
(In pages) 

1-

t- SWP$GW_WSLPTE 

1-

SW 

SW 
1...., 

P$GW_EMPTPTE 

P$GW_BAKPTE 

J_ 

t- SGN$GL_PTPAGCNT 

are stored, and the SYSGEN parameters that affect segment sizes. The table 
also introduces the notation used in this section to describe the segments of 
the PHD. Figure F.l shows the layout of the PHD and the relations among 
the segments described in Table F.l. 
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The following global locations contain the sums of various segments listed 
in Table F.l: 

SGN$GL_PHDAPCNT = PHO(Fixed, WSL, PST) + PHD(Page_Arrays) 

SGN$GL_PHDPAGCT = PHO(Fixed, WSL, PST) 
+ PHD(Expansion_Pages) + PHD(Page_Arrays) 

SWP$GL_BSLOTSZ = PHD(Fixed, WSL, PST)+ PHD(Expansion_Pages) 
+ PHD(Page_Arrays) + PHD(Page_ Tables) 

F.1.1 Process Page Tables 

The PO and Pl page tables compose most of the PHO. The total number 
of pages allocated for the process page tables depends on the parameter 
VIRTUALPAGECNT: 

PHD(p T bl ) = VIRTUALPAGECNT+ 127 age_ a es 128 (Fl) 

F.1.2 Working Set List and Process Section Table 
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The PHO begins with the fixed portion. Immediately following the fixed 
portion are the WSL and PST, which grow toward each other. The SYSGEN 
parameter PROCSECTCNT determines the PST size. The WSL size depends 
on the WSMAX parameter. In most systems, however, the working set of 
an average process is much smaller than the allowed maximum. Therefore, 
the parameter PQL_DWSDEFAULT determines the initial WSL size, and the 
difference between WSMAX and PQLDWSDEFAULT is reserved for WSL 
expansion. 

To determine the initial size of the PHO fixed portion, WSL, and PST, 
SYSBOOT first uses WSMAX to establish the maximum number of pages for 
that area, and then it determines the extra space reserved for WSL expansion. 
The difference between these two numbers is the number of pages initially 
available for the fixed portion, WSL, and PST. In the following, 4 is the size 
in bytes of a working set list entry, and 32 is the size in bytes of a process 
section table entry. 

[PH0$C_LENGTH + (4 * WSMAX)] 
+ (32 * PROCSECTCNT) + 511 

Temp= 512 

PHD(E . p ) _ WSMAX - PQL_DWSDEFAULT xpans1on_ ages - 128 

PHD(Fixed, WSL, PST)= Temp- PHD(Expansion_Pages) (F2) 



F.1 Process Header 

F.1.3 Process Header and Page Table Page Arrays 

The PHD contains two PHD page arrays, the working set list index (WSLX) 
array, and the backing store (BAK) array. The swapper stores information 
about PHD pages in these arrays while the header is outswapped. The BAK 
array entries are longwords. The size of an entry in the WSLX array varies: 
if 32 or more megabytes of memory are described by the page frame number 
(PFN) database, each WSLX array entry is one longword in length; otherwise, 
each entry is one word. 

The PHD also contains two arrays of one-byte entries that describe each 
page table page. However, to simplify the calculation of the memory required 
for these arrays, each array contains an entry for each page in the PHD, as 
the WSLX and BAK arrays do. Since the page tables constitute approximately 
90 percent of the PHD in a typical system, this algorithm results in a good 
approximation. 

Thus, each page of the PHD requires an entry in each of four parallel 
arrays. This requires ten bytes of memory per PHD page on a system with 
32 or more megabytes of memory described by the PFN database, eight bytes 
per page otherwise. 

Because the page arrays reside within the PHD, their size must be included 
in the PHD page count. That is, each page array must contain an entry for 
each page in the PHD, including the pages within which the page arrays 
themselves reside. Thus, the space allocated for this area depends on its own 
size. SYSBOOT's calculation of this portion of the PHD proceeds iteratively. 

1. SYSBOOT computes the size of the PHD in bytes, excluding the page 
arrays and page tables, and adds 511. 

PHD_Byte_Count = 512 * PHD(Fixed, WSL, PST) 
+ 512 * PHD(Expansion_Pages) 
+ 5ll (F3) 

2. It calculates the number of PHD pages except for the page arrays them­
selves. This is the approximate number of entries needed in each page 
array. SYSBOOT multiplies this count by eight or ten bytes, producing 
the approximate size of the page arrays in bytes. 

Page_Array_Byte_Count = Entry_Size * PHD(Fixed, WSL, PST) 
+ Entry_Size * PHD(Expansion_Pages) 
+ Entry _Size * PHD(Page_ Tables) 

(F4) 

3. SYSBOOT adds the approximate size of the page arrays to the PHD size 
calculated in step 1. 

PHD_Byte_Count = PHD_Byte_Count 
+ Page_Array_Byte_Count (F5) 
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4. It converts the approximate page array size from step 2 into a page count. 
This is the estimated number of additional page array entries required 
for the page arrays themselves. 

p Ar p C _ Page_Array_Byte_Count age_ ray_ age_ ount - 512 IF6) 

Note that SYSBOOT converts bytes to pages by integer division. There­
fore, the resulting page count is zero if the byte count is less than 512 
lone page). 

If the page count is nonzero, SYSBOOT multiplies the page count by 
eight or ten, depending on system memory configuration. This produces 
the number of additional bytes required in the page array to describe its 
own pages. SYSBOOT adds this number to the approximate PHD size 
calculated in step 3. It converts these additional bytes to a page count 
and repeats this step until the page count falls to zero. 

5. Once the page count falls to zero, SYSBOOT converts the accumulated 
size of the PHD from bytes to pages. It stores the result in SGN$GL_ 
PHDPAGCT. 

SGN$GL PHDPAGCT = PHD_Byte_Count 
- 51~ 

IF7) 

Thus, SGN$GL_PHDPAGCT contains the number of pages in the PHD 
fixed portion, WSL, PST, expansion pages, and page arrays. SGN$GLPT­
PAGCNT, initialized from VIRTUALPAGECNT, determines the page table 
size. SYSBOOT adds SGN$GLPHDPAGCT and SGN$GL_PTPAGCNT to 
obtain the total size of the PHD in pages, which it stores in SWP$GL_ 
BSLOTSZ. 

F.2 SYSTEM VIRTUAL ADDRESS SPACE 
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Once SYSBOOT has calculated the size of the PHD, it computes the size 
of system virtual address space. System virtual address space must be large 
enough to include the system base image and loadable executive images, 
the variable-size pieces primarily defined by SYSGEN parameters, and other 
variable-size pieces based on CPU and 1/0 space configuration. 

Figure F .2 shows system virtual address space prior to the loading of 
loadable executive images. Much of this address space is not cataloged in 
the PFN database; instead, SYSBOOT itself permanently allocates physical 
memory and initializes system page table entries ISPTEs) for these pages. 
The section labeled Available System Pages is the area of virtual address 
space available for mapping 1/0 space, loading executive images, loading 
EXE$INIT, and similar functions. The global location LDR$GL_FREE_PT 
contains the offset from the base of the system page table ISPT) to the 
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System Service Vectors 

Executive Transfer Vectors 

System Data Area __, SYS.EXE No PFN data 
SYSGEN Parameters Area 

Boot Parameters Area 

Miscellaneous 
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SMP Boot PO Page Tables ]-- No PFN data 

Figure F.2 
Initial Layout of System Virtual Address Space 

first available SPTE in this address range; the actual contents are system­
dependent. 

Many pieces of system address space vary in size, depending on one or 
more SYSGEN parameters or on a particular CPU configuration. Table F.2 
lists the pieces of system space in the order in which they are configured 
(mapped from high to low virtual addres~ by SYSBOOT), the global location 
of the pointer to the start of each piece, and the factors that affect the size. 
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Table F.2 Layout of System Virtual Address Space 

Factors That 
Item Global Location 1 Affect Size Protection Pageable 

High end of system @MMG$GL_MAXSYSVA 
space 

Reserved for 32 pages ERKW No 
symmetric 
multiprocessing 
(SMP) boot PO 
page tables 

Global page table @MMG$GL_GPTE GBLPAGES URKW Yes 2 

System page table @MMG$GL_SPTBASE Everything ERKW No 
System PHD @MMG$GL_SYSPHD SYSMWCNT, ERKW No 

GBLSECTIONS 
Balance slot area @SWP$G1-BALBASE BALSETCNT, ERKW Yes, no 3 

Size of a PHD 
System control @EXE$GL_SCB CPU configuration ERKW No 

block 
No access guard @EXE$GL_INTSTK 1 page No access No 

page 
Interrupt stack @EXE$G1-INTSTKLM INTSTKPAGES ERKW No 
No access guard 1 page No access No 

page 
Boot stack 1 page ERKW No 
No access guard 1 page No access No 

page 
Per-CPU database @SMP$GL_CPU _ 2 pages URKW No 

DATA(cpu_id] 
Small request @IOC$GL_SRPSPLIT SRPCOUNT, ERKW No 

packet (SRP) SRPCOUNTV, 
lookaside list SRPSIZE 

Intermediate @EXE$GL_SPLITADR IRPCOUNT, ERKW No 
request packet IRPCOUNTV 
(IRP) lookaside 
list 

Large request @IOC$GL_LRPSPLIT LRPCOUNT, ERKW No 
packet (LRP) LRPCOUNTV, 
lookaside list LRPSIZE 

Nonpaged pool @MMG$GL_NPAGEDYN NPAGEDYN, ERKW No 
variable-length NPAGEVIR 
list 

Paged pool @MMG$GL_PAGEDYN PAGEDYN ERKW Yes 
PFN database @PFN$.A__BASE Everything ERKW No 
Restart parameter @EXE$GL_RPB 1 page URKW No 

block (RPB) 

(continued) 
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Table F.2 Layout of System Virtual Address Space (continued) 

Factors That 
Item Global Location 1 Affect Size Protection Pageable 

Available system LDR$GLFREE_PT 5 Everything No access 
virtual address 
space 4 

System base image SYS$SO_ VECTOR_BASE 88 pages 7 UR and No 
(SYS.EXE) 6 URKW 8 

1 If the symbol @ does Qot precede the global location name, the name's value is the starting address of 
the area in question. If the symbol @ precedes the global location name, the global location contains the 
address of the area. 

2 Global page table pages are initially configured as demand zero pages and are pageable. However, every 
global page table page containing at least one valid global PTE is locked into the system working set. 

3 Each PHD in the balance slot area is part of a process working set. Some portions of the PHD do not 
page, but those physical pages are accounted for in a process working set and do not count toward the 
executive's use of memory. 

4 All loadable executive images eventually reside in this area. 
5 This location contains the offset from MMG$GLSPTBASE to the first available SPTE. 
6 See Chapter 29 for a detailed picture of the system base image layout. 
7 This includes virtual address space reserved for expansion. 
8 Four system service vector pages are protected UR; the remaining pages, including one modifiable 

vector page, are protected URKW. 

It also shows the protection and pageability of each piece; the owner access 
mode of all system space pages is kernel. 

Except for the system base image, the sizes of most pieces of system 
address space listed in Table F.2 are simply based on one or two SYSGEN 
parameters. SYSBOOT computes their sizes in a straightforward manner. 
The system page table and the PFN database are more complicated. The 
next sections discuss their sizes. 

F.2.1 System Page Table 

The SPT contains an SPTE for each page of system virtual address space, 
including the SPT pages themselves. Thus, the space allocated for this area 
depends in part on its own size. To calculate the size of the SPT, SYSBOOT 
determines the actual sizes of some segments of system virtual address space 
from SYSGEN parameters, estimates the size of the PFN database, and adds 
1,024 SPTEs. 

SYSBOOT performs the following calculations and sums the resulting 
values to arrive at the SPTE count: 

1. It determines the size of the area devoted to balance slots by multiplying 
the size of a PHD in pages, described in Section F.l, by the SYSGEN 
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parameter BALSETCNT. The area devoted to balance slots constitutes 
more than half of system virtual address space in a typical configuration. 

2. The SYSGEN parameter PAGEDYN is the number of bytes reserved for 
paged pool. SYSBOOT converts PAGEDYN to a page count, rounding 
downward, to get the number of SPTEs required to map paged pool. 

3. Two SYSGEN parameters exist for each lookaside list and the nonpaged 
variable-length list; one defines the initial size of the list and one defines 
the maximum size to which the list can expand. SYSBOOT reserves 
enough virtual address space for the maximum list size. 

For each lookaside. list, SYSBOOT performs the following: 

a. It determines the size of a request packet in the list, specified as a 
SYSGEN parameter for SRPs and LRPs and as a constant, IRP$C_ 
LENGTH, for IRPs. It rounds the size upward to a 16-byte boundary, 
the granularity of pool allocation. (For simplicity, Equation F8 does 
not show this rounding.) 

b. It multiplies the larger of the initial and maximum list size param­
eters by the size of a request packet. It converts the result to a page 
count, rounding upward, to get the lookaside list size in pages. For 
example, for the IRP lookaside list, 

Temp= max(IRPCOUNT, IRPCOUNTV) 

IRP 1 . = (IRP$C_LENGTH *Temp)+ 511 
- IBt 512 (F8) 

SYSBOOT converts the larger of the SYSGEN parameters NPAGEDYN 
and NPAGEVIR to a page count, rounding downward, to get the size of 
the nonpaged variable-length list. Note that SYSBOOT rounds the size 
of the nonpaged variable-length list downward to an integral number of 
pages whereas it rounds the size of each lookaside list upward. 

Although SYSBOOT reserves enough virtual address space for the max­
imum size of each list, it allocates only as much physical memory as the 
initial list size. This initial physical memory is not cataloged in the PFN 
database. During system operations, each list can expand to its maxi­
mum size, but the physical pages allocated for expansion are generally 
pages with PFN database entries. 

4. SYSBOOT uses a simple estimate for the number of SPTEs to reserve for 
the PFN database. It ignores the fact that some system pages will not 
have entries in the PFN database and calculates the virtual address space 
reserved for the PFN database as though every available page of memory 
will have an entry. 

This estimate errs on the high side in allocating SPTEs for the PFN 
database. However, physical page allocation for the PFN database is not 
based on this computation but on the more accurate computation de­
scribed in Section F.2.2. Thus, there is no large waste of physical memory. 
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5. The SYSGEN parameter SPTREQ includes sufficient additional SPTEs to 
map all loadable executive images and the system base image. SYSBOOT 
adds this value to its tally. 

6. SYSBOOT also adds the value specified by the parameter REALTIME_ 
SPTS, a count of pages used by the connect-to-interrupt driver. 

7. It adds 1,024 to its tally as an estimated I/O space requirement. 
8. If the SYSGEN parameter DUMPSTYLE is set to 1 la selective dump 

is enabled), SYSBOOT allocates 127 extra SPTEs. EXE$BUG_CHECK 
uses these SPTEs to double-map noncontiguous pages of memory so that 
they can be transferred to the crash dump file in a single I/O request. 
Chapter 32 describes this process. 

9. The system header calculation is similar to the calculation of PHO size, 
described in Section F.l. However, since the size of the system working 
set should not vary dramatically, the optimization technique for empty 
working set expansion pages is not used. Also, since the system header 
will never swap, it need not contain page arrays. The size of the SPT is 
calculated separately, so the system header contains only a fixed portion, 
a WSL, and a PST. Two SYSGEN parameters, SYSMWCNT and GBLSEC" 
TIONS, control the size of these areas. In the following equation, 4 is the 
size in bytes of a working set list entry, and 32 is the size in bytes of a 
section table entry. 

[PHD$C_LENGTH + j4 * SYSMWCNT)] 
SYSPHD = + j32 * GBLSECTIONS) + 511 

512 
IF9) 

10. SYSBOOT adds the size of the interrupt stack in pages, the SYSGEN 
parameter INTSTKPAGES, to the number of pages required for the per­
CPU database, currently two. It adds one page for the CPU boot stack 
and three pages for guard pages, and rounds the result to the next highest 
power of 2. 

The page protection code of guard pages is set to permit no access. 
These pages cause an "interrupt stack not valid" processor halt on either 
stack overflow or stack underflow. 

On nonmultiprocessing systems, SYSBOOT adds the computed value 
to its tally. 

On an SMP system, SYSBOOT multiplies this value by the number of 
actual or potential CPUs. 

-For VAX 8200 family processors, the value is multiplied by 16 .. 
-For VAX 8800 family processors, the value is multiplied by 2. 
-For VAX 88x0 processors, SYSBOOT multiplies the value by 4. 
-For the VAX 6000 series processors, SYSBOOT multiplies the value by 

the actual number of CPUs available. It adds 80 additional SPTEs for 
CPU-specific space requirements. 
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-For VAXstation 3520 and 3540 processors, SYSBOOT multiplies the 
value by 6. It adds 2,664 additional SPTEs for CPU-specific space 
requirements. 

11. On an SMP system, SYSBOOT allocates 3.2 additional SPTEs, one per 
potential CPU. A CPU uses the SPTE indexed by its CPU ID to double­
map its boot stack. The same page serves as a PO page table page mapping 
EXE$INIT, allowing EXE$INIT to be referenced by a PO address in the 
process of turning on memory management. Chapter 34 describes the 
boot stack. Chapter 31 describes turning on memory management. 

12. SYSBOOT calculates the amount of system virtual address space to re­
serve for the global page table based on SYSGEN parameter GBLPAGES: 

GBLPAGES + 127 
GlobaLPage_ Table = 128 (FlO) 

13. SYSBOOT adds the size of the system control block (SCB), a number 
between 1and32, to its tally. The size of the SCB is CPU-dependent. All 
processors have at least a one-page architecturally defined SCB, but the 
bus and device configuration of a particular processor may require more 
SCB pages. 

-VAX-11/780 and VAX-11/785 processors use only one page of architec­
turally defined SCB. 

-VAX-11/730 and MicroVAX II processors use a second page for dis­
patching UNIBUS or Q22-bus interrupts. 

-VAX-11/750 processors use one additional page for each UNIBUS in­
terface on the system. This results in either a two-page or a three-page 
SCB. 

-VAX 8200 family processors use an additional page for each VAXBI-to­
UNIBUS adapter (DWBUA). 

-VAX 8800 family and VAX 88x0 processors use a 32-page SCB to sup­
port the theoretical maximum number of directly vectored adapters. 

-VAX 8600 and VAX 8650 processors use a four-page SCB to support 
the maximum configuration of four synchronous backplane interface 
(SBI) adapters. 

-VAX 6000 series processors use an additional SCB page for each XMl-to­
V AXBI bus adapter (XBI) found on the XMI bus. The processors search 
each VAXBI and use an additional page for each DWBUA on the VAXBI. 

-MicroVAX 2000 processors use a two-page SCB. 
-MicroVAX 3100 processors use a two-page SCB for dispatching small 

computer system interface (SCSI) bus interrupts. 
-MicroVAX 3300, 3400, and 3800 processors use a two-page SCB for 

dispatching DSSI and Q22-bus interrupts. 
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-MicroVAX 3200, 3500, and 3600 processors use a two-page SCB for 
dispatching Q22-bus interrupts. 

-MicroVAX 3900 processors use a two-page SCB for dispatching Q22-
bus interrupts. 

-VAXstation 3520 and 3540 processors use a two-page SCB for dispatch­
ing SCSI and Q22-bus interrupts. 

The sum of items 1 through 13 represents the approximate number of 
SPTEs needed, except those for the SPT pages themselves. SYSBOOT rounds 
the SPTE count upward and divides it by 128, obtaining the number of SPT 
pages that will themselves need SPTEs. It adds that number to the original 
SPTE count and divides by 128, obtaining the number of SPT pages required . 

...,.. _ SPTE_Count + 127 
.iemp- 128 

SPT P SPTE_Count +Temp 
- ages= 128 (Fll) 

SYSBOOT does not count the single page required for the RPB when 
determining the initial size of the SPT. It assumes that page rounding or 
one of the approximations will add the single SPTE required to map the 
RPB. 

F.2.2 PFN Database 

The PFN database describes each page of physical memory except for certain 
nonpaged portions of system space. This nonpaged area includes the area 
where the PFN database itself resides. Thus, the size of the PFN database 
depends in part on itself. · 

The PFN database includes either 18 or 22 bytes of information for each 
page of physical memory it describes. If 32 or more megabytes of -memory 
require PFN database entries, the global variable MMG$GW _BIGPFN con­
tains the value 1 and the PFN database contains 22 bytes of information 
per page. Otherwise, MMG$GW _BIGPFN contains the value 0, and the PFN 
database contains 18 bytes of information per page. Chapter 14 describes the 
PFN database and the reason for the differing amounts of information. 

In Equation Fl2, PFN_Entry_Size represents either 18 or 22. Available_ 
Pages represents the number of pages of available physical memory, the 
lesser of actual physical memory and the SYSGEN parameter PHYSICAL­
PAGES. No_PFN_Entries represents the nonpaged portions of system space 
not accounted for in the PFN database, listed in Equation Fl3. 

[ PFN_Entry_Size * ] 
(Available_Pages - No_PFN_Entries) + 511 

PFN_DB_Size = (Fl2) 
512 
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No_PFN_Entries =System base image 
+ PFN database 
+Initial allocation, nonpaged variable-length list 
+ Initial allocation, lookaside lists 
+ Interrupt stack 
+Per-CPU database and boot stack 
+SCB 
+ System header 
+ System page table IF13) 

F.2.3 Available System Virtual Address Space 
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After SYSBOOT calculates the size of system virtual -address space, it allo­
cates physical memory and initializes SPTEs for the portions of system space 
not cataloged in the PFN database. It maps the SPT at the high end of virtual 
address space, allocating its pages from the high end of physical memory. It 
then assigns the system header, SCB, and so on at decreasing addresses, as 
in Figure F.2. Finally, at the low end of system address space, it maps the 
system base image, SYS.EXE. 

The remaining SPTEs jthe section labeled Available System Pages in Fig­
ure F.2) represent a contiguous area of system virtual address space. This area 
initially includes the entire region between the RPB and the system base im­
age. SYSBOOT loads the global location LDR$GL_FREE_PT with the offset 
from the base of the SPT to the first available SPTE. At the next higher 
SPTE, it places the count of available SPTEs. The routine LDR$ALLOC_PT, 
described in Chapter 29, allocates virtual address space from this area, from 
high to low virtual addresses. SYSBOOT, EXE$INIT, and SYSINIT use this 
space to map I/O space, load executive images, and for similar functions. 

This address space is reusable; for instance, SYSBOOT maps EXE$INIT 
into this region. When EXE$INIT completes, its address space is deallocated 
and becomes available to the next invoker of LDR$ALLOC_PT. Loadable 
executive images, also described in Chapter 29, can contain paged and non­
paged image sections as well as image sections that are deallocated after 
use. In addition, a system might not include every loadable executive image. 
Thus, the contents as well as the size of this area are system-dependent, and 
part of the address space may be pageable. 

Table F.3 lists the items allocated from this area, the order in which they 
are allocated, and the page protection. The owner access mode of all these 
pages is kernel. Note that the loadable executive images loaded by SYSBOOT 
contain no pageable sections. The System Dump Analyzer (SDA) command 
SHOW EXECUTIVE displays the location and size of every image currently 
loaded and thus provides a fairly complete picture of this area. 

Figure F .3 shows the address space on a typical system after the comple­
tion of system initialization. For the sake of simplicity, the figure does not 
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Table F .3 System Virtual Address Area 

Item Global Location 1 

MAPPED FROM IBGH TO LOW VIRTUAL ADDRESS 

FROM AVAILABLE SYSTEM SPACE AREA BY SYSBOOT 

Temporary 1/0 space for boot driver 
EXEC_INIT.EXE 
SYSTEM_DEBUG.EXE 2 

SYSTEM_PRIMITIVES.EXE 
SYSTEM_SYNCHRONIZATION.EXE 3 

PRIMITIVE_IO.EXE 
ERRORLOG.EXE 

MAPPED FROM AVAILABLE SYSTEM SPACE AREA BY EXE$INIT 

Page to map pages without PFN database @MMG$GL_FREE_NO_ 
entry PFN_DB_vA 

Temporary page (VAX 6000 series) @EXE$GL_CPUNODSP 
Mapping for 1/0 adapters @(®MMG$GL_SBICONF) 4 

PROCESS_MANAGEMENT.EXE 
IO_ROUTINES.EXE 
EVENT _FLAGS_AND_ASTS.EXE 
IMAGE_MANAGEMENT.EXE 
WORKING_SET _MANAGEMENT.EXE 
PAGE_MANAGEMENT.EXE 
LOCKING.EXE 
SECURITY.EXE 
LOGICAL_NAMES.EXE 
EXCEPTION.EXE 
MESSAGE_ROUTINES.EXE 
SYSDEVICE.EXE 
SYSGETSYI.EXE 
SYSLICENSE.EXE 
LMF$GROUP _TABLE.EXE 
CPULOA.EXE 
Connect-to-interrupt pages 
Tape mount verification buffer 

(two pages) 
Mount verification buffer 
Demand zero optimization page 
Erase pattern buffer page 
Erase pattern page table page 
Executive data page 
Swapper page table page 
Swapper Pl vector page 

@(@EXE$GL_RTBITMAP) 5 

@EXE$GL_ TMV _SVABUF 

EXE$GL_SV APTE 7 

@MMG$GL_DZRO_ VA 
@EXE$GL_ERASEPB 
@EXE$GL_ERASEPPT 
@EXE$AR_EWDATA 
@SWP$GL_MAP 

Protection 

(deallocated) 
(deallocated) 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 

KW 

KW 
KW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
No access 6 

KR 

KW 
KW 
KW 
UR 
UREW 
ERKW 
KW 

(continued) 

1283 



Size of System and Pl Virtual Address Spaces 

Table F.3 System Virtual Address Area (continued) 

Item Global Location 1 Protection 

MAPPED FROM AVAILABLE SYSTEM SPACE AREA BY THE SYSINIT PROCESS 

DDIF$RMS_EXTENSION.EXE UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 
UR/URKW 

SYSLDILDYN.EXE 
RECOVERY_UNIT _SERVICES.EXE 
RMS.EXE @MMG$GL_RMSBASE 

@EXE$GL_SYSMSG SYSMSG.EXE 

1 If the symbol @ does not precede the global location name, the name's value is the starting address of 
the area in question. If the symbol @ precedes the global location name, the global location contains the 
address of the area. 

2 Optionally loaded based on boot parameters. 
3 One of three possible synchronization images loaded. 
4 An element in the longword array @MMG$GLSBICONF contains the system virtual address of the 

first page of an adapter's 1/0 space. The number and type of adapters present determine the size of this 
area. The global EXE$GLNUMNEXUS contains the number of adapters. 

5 This location contains a system virtual page number, not a system virtual address. REALTIME_SPTES 
determines the number of pages allocated. 

6 Initialization maps the connect-to-interrupt pages as "no access." Allocation alters the protection. 
7 This location contains the system virtual address of a PTE, not a system virtual address. 

show the areas of available virtual address space between loadable executive 
images. These areas originally contained the image initialization and fixup 
routines, deallocated by the time system initialization is complete. The Mis­
cellaneous sections represent pages allocated individually by EXE$INIT and 
loadable executive images. 

F.2.4 Nonpaged Pool 

F.3 
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SYSBOOT loads the boot driver and boot control block into nonpaged pool. 
Some executive images such as SYSLOAxxx .EXE, whose format differs from 
that of loadable executive images like SYSTEM_PRIMITIVES.EXE, are loaded 
into nonpaged pool by SYSBOOT and later initialized by EXE$INIT. SYS­
BOOT also loads any necessary device drivers and any emulation images. 
Table F.4 shows the initial use of nonpaged pool. 

VMS PHYSICAL MEMORY REQUIREMENTS 

The physical memory requirement of the VMS executive, that is, the number 
of pages not available for user processes, is the sum of the nonpaged areas, 
the system working set, the low-limit thresholds for the free and modi£ed 
page lists, the Files-11 Extended QIO Processor (XQP), and the working sets 
of memory-resident system processes: 
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Table F.4 Loaded into Nonpaged Pool by SYSBOOT 

Item 

Boot driver 
Boot control block 

System disk driver 
Port driver 
Terminal driver 
SCSLOA.EXE 

SYSLOAxxx .EXE 
CLUSTRLOA.EXE 
VAXEMUL.EXE 
FPEMUL.EXE 

Description 

Primitive system disk driver 
Information for use during initial­

ization and crashing 

Optional 

Optional system communication 
services ( SCS J image 

CPU-dependent image 
Optional VAXcluster image 
Optional instruction emulation 
Optional instruction emulation 

System_Memory = Nonpaged + SYSMWCNT + FREELIM 
+ MPW _LOLIMIT + XQP + System_Processes 

Available_Memory = TotaLPhysicaLMemory - System_Memory 

IF14) 

IF15) 

F.3.1 Nonpaged Areas 
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The nonpaged areas on a given system include the physical pages not cat­
aloged in the PFN database jsee Equation F12), the permanently mapped 
pages for mount verification and similar items, and the nonpageable image 
sections of the loadable images selected by local SYSGEN parameters: 

Nonpaged = No_PFN_Entries pages+ Miscellaneous pages 
+ Nonpageable image sections 

of loadable executive images (F16) 

As shown in this appendix, much depends on SYSGEN parameters. They 
determine the size of executive data areas and whether the normally pageable 
portions of the executive are made nonpageable. They influence the choice 
of loadable executive images, which contribute to both paged and nonpaged 
memory use. 

Table F.5 lists the paged and nonpaged portions of the executive. Where 
possible, the table includes either the size in pages or a reference to the 
section of this appendix that describes the size computation. However, the 
table does not include the sizes of the loadable executive image sections. 
Chapter 29 describes the loadable executive image structure in detail; note 
that each image is allowed two pageable and two nonpageable image sections. 



F.3 VMS Physical Memory Requirements 

(This appendix ignores the initialization section and fixup section, since they 
are deallocated by the time system initialization completes.) The amount of 
physical memory used by a loadable image is the sum of the sizes of its two 
nonpageable image sections. The Analyze/Image Utility displays each image 
section, its characteristics, and its size. 

Paged pool, the paged portions of the loadable executive images, and the 
global page table pages also require physical memory. However, it is rea­
sonable to assume that the system working set is full at all times, so 
that the physical memory requirements of the paged portions are simply 
SYSMWCNT pages. 

Two other items must be taken into account when calculating the number 
of physical pages used by the executive: the SYSGEN parameters FREELIM 
and MPW _LOLIMIT set, which set low-limit thresholds on the number of 
pages on the free and modified page lists; and the Files-11 XQP, which is 
mapped in the Pl space of each process. When the SYSGEN parameter ACP _ 
XQP _RES is 1 (its default value), SYSINIT maps the XQP as a resident global 
section, which means that all its shareable pages are permanently resident. 
For VMS Version 5.2, a resident XQP contributes approximately 131 pages 
to the total memory requirements. 

F.3.2 System Processes 

The working sets of memory-resident system processes can also be included 
in the total memory requirements of VMS. Some of the following processes 
are not required; however, all are considered to be system processes: 

• Job controller 
• Print symbionts 
• Error logger format process (ERRFMT) 
• Operator communication process (OPCOM) 
• Magnetic tape ancillary control processes (ACPs) 
• Network ACP (NETACP) 
• Remote terminal ACP (REMACP) 
• Audit collection process (AUDIT _SERVER) 
• System Management Utility process (SMISERVER) 
• Network event logger (EVL) 

Several other system processes exist on a VAXcluster node: 

• Cluster cache server process (CACHE_SERVER) 
• Cluster server process (CLUSTER_SERVER) 
• Cluster device configuration process (CONFIGURE) 

The Digital command language (DCL) command SHOW SYSTEM lists the 
physical memory in use by each of these processes at a given time. However, 
the amount of memory varies over time for these reasons: 
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Table F.5 Division of System Virtual Address Space into Nonpaged and 
Paged Pieces 

Item Size 

SYSBOOT permanently maps the following portions of system address space. The 
PFN database does not contain entries for the physical pages that these portions 
occupy. 

System base image 

PFN database 
Initial portion of nonpaged 

pool 
Initial portion of lookaside 

lists 
Interrupt stack 
Per-CPU database and boot 

stack 
System control block 
System header 
System page table 

34 physical pages, from MMG$A_SYS_END to 
SYS$SO_ VECTOR_SPACE 

Equation Fl3 
Item 3 in Section F.2.1 

Item 3 in Section F.2.1 

Item 10 in Section F.2.1 
3 pages 

Item 13 in Section F.2.1 
Equation F9 
Equation Fll 

Other nonpageable system virtual address space. 

RPB 1 page 
All nonpaged image sections 

in loadable executive 
images 1•2 

Page to map pages without 
PFN database entry 

Temporary page (VAX 6000 
series) 

Tape mount verification buffer 
Mount verification buffer 
Demand zero optimization 

page 
Erase pattern buffer 
Erase pattern page table 
Executive data page 
Swapper page table page 
Swapper Pl vector page 

1 page 

1 page 

2 pages 
1 page 
1 page 

1 page 
1 page 
1 page 
1 page 
1 page 

This system address space is pageable. A maximum of SYSMWCNT pages of this 
area can be resident at a given time. 

Pageable image sections of 
loadable executive images 1 

Paged executive data 
Paged pool 
Global page table pages 

1 page 
Item 2 in Section F.2.1 
Equation FlO 

(continued) 



F.4 

F.4 Size of Pl Space 

Table F.5 Division of System Virtual Address Space into Nonpaged and 
Paged Pieces (continued) 

Item Size 

This system address space does not require physical memory. 

1/0 space mapping 1/0 addresses 
Balance slot area PHD pages and page table pages are charged to 

process working sets 

1 Not all loadable executive images are required. 
2 The SDA command SHOW EXECUTIVE displays loadable images. 

' • The memory the process consumes is its working set. Automatic working 
set limit adjustment changes the size of the process working set over time. 
(This assumes that the process reaches its working set limit, a reasonable 
assumption for a system process.) 

• A system process can be outswapped, temporarily reducing its physical 
memory requirement to zero. 

Because many system processes are optional and because their physical 
memory requirements vary over time, this appendix cannot describe their 
memory use. Use the Monitor Utility and the DCL command SHOW SYS­
TEM to obtain the process working set size and other characteristics. Use 
the DCL command SHOW MEMORY /PHYSICAL to obtain the number of 
pages allocated to VMS and not cataloged in the PFN database. 

SIZE OF Pl SPACE 

Pl space includes both fixed and dynamically configured areas. The SHELL 
module defines the fixed-size area. The many dynamic areas are configured 
by other modules based on SYSGEN parameters, image sizes, and other 
variables. Table F.6 describes the fixed and dynamic areas of Pl space and 
the size of each. Note that the first module maps the low-address end of 
Pl space and subsequent modules describe Pl space toward higher virtual 
addresses. The highest Pl address range is the fixed-size portion defined in 
SHELL, which is the initial Pl mapping for every process. 

1. The SHELL module initially defines Pl space. It constructs a skeleton Pl 
page table, mapping a predetermined virtual address range. It also creates 
the Pl window to the PHD, which maps all PHD virtual pages except 
the page table pages. Section F.l shows each segment of the PHD and 
the SYSGEN parameter that controls its size. 

2. Following SHELL, EXE$PROCSTRT dynamically configures more of Pl 
space. It primarily determines the sizes from SYSGEN parameters. It 
also expands Pl space to map the Files-11 XQP into the Pl space of each 
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Table F.6 Layout of Pl Space 

Factors That Protec- Page-
Item Global Location 1 Affect Size 2 tion Owner able 

MAPPED BY THE IMAGE ACTIVATOR 

Low-address end @((®CTL$GL_PHD) 
of Pl space +PHD$LFREP1 VA) 

User stack @(CTL$ALSTACK+OC) 3 ISD$K_ uw u Yes 
USRSTACK 
(20-page 
default) 

Extra user stack 2 pages uw u Yes 
pages 

Extra image 1/0 IOSEGMENT UREW E Yes 
segment link option 

Boundary be- @CTL$GLCTLBASVA 4 

tween process-
permanent and 
image-specific 
Pl space 

MAPPED BY THE DCL COMMAND SET MESSAGE 

Per-process mes- @CTL$GL_PPMSG Size of section UR E Yes 
sage section 

MAPPED BY LOGINOUT 

CLI symbol table @(CTL$AG_CLIDATA+ 10) CLISYMTBL SW s Yes 
CLI command @CTL$AG_CLITABLE Size of com- UR s Yes 

tables mand tables 
CLI image @CTL$AG_CLIMAGE Size of CLI UR s Yes 

image 

MAPPED BY EXE$PROCSTRT 

Files-11 XQP data @(@CTL$GLF11BXQP+l8) KW K Yes, 
and stack nos 

Files-11 XQP @(@CTL$GLF1 lBXQP+lO) Size of ER E Yes, 
image FllBXQP nos 

Image 1/0 segment @(PIO$GQ_IIODEFAULT +4) IMGIOCNT UREW K Yes 
Process I/O PIO PAGES UREW K Yes 

segment 
Process allocation CTLPAGES UREW K Yes 

region 
Channel control @CTL$GLCCBBASE 6 CHANNEL- UREW K Yes 

block table CNT 
Initial end of Pl @MMG$GLCTLBASVA 7 

space for each 
process 

(continued) 
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Table F.6 Layout of Pl Space (continued) 

Factors That Protec- Page-
Item Global Location 1 Affect Size 2 ti on Owner able 

FIXED SIZE PORTION - DEFINED IN SHELL 

Pl window to @CTL$GL_PHD Size of the URKW, K No 
PHD PHD ERKW 

VWS area CTL$A_VWS 2 pages uw K Yes 
RMS pointer page PIO$GL_FMLH 1 page UREW E No 
RMS pointer page 1 page UREW E Yes 

extension 
RMS directory PIO$A_DIRCACHE 4 pages UREW E Yes 

cache 
RMS internal 1 page UREW E Yes 

structures 
Per-process com- PIO$A_RMS_PIOEND 4 pages uw K Yes 

mon for users 
Per-process com- CTL$A_COMMON 4 pages uw K Yes 

mon for Digital 
Compatibility CTL$AG_CMEDATA 2 pages uw K Yes 

mode data pages 
Security audit data NSA$T_IDT 3 pages KW K Yes 

pages 
Image activator CTL$GL_IAFLINK 1 page UREW E Yes 

context page 
Generic CLI data CTL$AL_CLICALBK 12 pages URSW s Yes 

pages 
Image activator IAC$AL_IMGACTBUF 8 pages UREW E Yes 

scratch pages 
Debugger context 4 pages uw u Yes 

pages 
Vectors for user- CTL$A_DISPVEC 3 pages UREW K Yes 

written system 
services and 
messages 

Image header MMG$IMGHDRBUF 1 page URSW E Yes 
buffer 

Kernel request CTL$GL_KRP 4 pages URKW K Yes 
packet lookaside 
list 

No access guard 1 page No K 
page access 

Kernel stack CTL$GL_KSTKBASEXP 4 pages No K 
expansion pages access 

Kernel stack CTL$GL_KSTKBAS 3 pages SRKW K No 
Executive stack CTL$AL_STACK+4 3 16 pages SREW E Yes 
Supervisor stack ®(CTL$AL_STACK+8) 3 32 pages URSW s Yes 

(continued) 
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Table F.6 Layout of Pl Space (continued) 

Factors That Protec- Page-
Item Global Location 1 Affect Size 2 tion Owner able 

FIXED SIZE PORTION - DEFINED IN SHELL 

VMS kernel mode CTL$A_PRCPRM_DATA 2 pages URKW K Yes 
data pages 

VMS user mode CTL$GL_DCLPRSOWN l page uw K Yes 
data page 

System service PlSYSVECTORS 5 pages UR K No 
vectors 

Reserved for 11 pages No K 
system service access 
vector expansion 

Pl pointer page CTL$GL_ VECTORS 1 page URKW K No 
VAX DEBUG dy- @(CTL$GQ_DBGAREA+4) 128 pages uw u Yes 

namic memory 

1 Numbers in address expressions are hexadecimal. If the symbol @ precedes the global location name, 
the global location contains the address of the area. If the symbol @ does not precede the global location 
name, the name's value is the starting address of the area. 

2 These sizes are in decimal. 
3 Global location CTL$A1-STACK is the address of a four-longword array whose elements contain the 

initial values of the four per-process stack pointers. An array element is indexed by access mode. 
4 Global location CTL$G1-CTLBASVA contains the address of the boundary between the image-specific 

portion of Pl space (deleted at image exit by routine MMG$IMGRESET) and the process-permanent portion 
of Pl space. 

5 The XQP stack and some of its data pages are accessed at elevated interrupt priority levels (IPLs). 
Therefore, they are locked into the process's working set list and are not pageable. If the SYSGEN 
parameter ACP_XQP_RES is 1, the default, the XQP is mapped as a resident global section. 

6 CTL$GL_CCBBASE points to the high-address end of the channel control block table. 
7 SYSBOOT sizes the PHD (and thus the Pl window to the PHD) and initializes global location 

MMG$GL_CTLBASVA to the next available Pl space virtual address. Each time the process-permanent 
portion of Pl space expands, to map the CCBs or the XQP for instance, CTL$G1-CTLBASVA is updated 
to reflect the changes. 
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process. It then calls initialization code within the XQP, which creates 
additional Pl space to use as the XQP impure area and private kernel 
stack. The size of the image Fl lBXQP.EXE and its data area determine 
the space required for the file system. 

3. A process typically executes LOGINOUT next. LOGINOUT maps a se­
lected command language interpreter (CLIJ, expanding Pl space to in­
clude the CLI, CLI command tables, and CLI symbol table. The size of 
these images and the SYSGEN parameter CLISYMTBL determine the Pl 
virtual address space requirements. 

4. The DCL command SET MESSAGE maps a message file into Pl space 
as a process-permanent message section. 



F.4 Size of Pl Space 

5. The mapping and configuration of the remaining Pl space alters with the 
activation of each new image. This area is bounded by PHD$L_FREP1 VA, 
the next available Pl space virtual address, and CTL$GL_CTLBASVA, 
which divides the area from permanently allocated Pl space. The image 
size and link options determine the size of this area. • 

F.4.1 Selected Dynamic Pl Areas 

The following list expands the description of selected dynamic portions of 
Pl space: 

• The channel control block (CCB) table has SYSGEN parameter CHAN­
NELCNT elements, each 16 bytes long. CTL$G1-CCBBASE points to the 
high-address end of the table. A particular CCB is identified by its negative 
byte displacement from the contents of CTL$G1-CCBBASE . 

• The process allocation region is a Pl space dynamic memory pool (see 
Chapter 19). The SYSGEN parameter CTLPAGES determines its size in 
pages . 

• The process 1/0 segment contains Record Management System (RMS) data 
structures describing process-permanent files, those which can and usu­
ally do remain open across image activations. The SYSGEN parameter 
PIOPAGES determines its size . 

• The SYSGEN parameter IMGIOCNT specifies the default number of pages 
created by EXE$PROCSTRT for the image 1/0 segment, the RMS impure 
area for files opened during the execution of a specific image. 

The following line in the link time option file overrides the default 
number of image 1/0 segment pages for a specific image: 

IOSEGMENT = n 

If the IOSEGMENT option specifies more pages than the IMGIOCNT 
parameter, the image activator allocates an alternative image 1/0 segment 
of size IOSEGMENT . 

• The image activator allocates two extra pages adjacent to the user stack. 
These pages allow the operating system to recover if the user stack is 
corrupted. 

• The default user stack size is 20 pages. The following option in the link. 
options file overrides the default user stack size at link time: 

STACK = n 

Because the system's access violation handler automatically expands the 
user stack on overflow, the link option is generally unnecessary. One 
possible exception might be an image that requires a large amount of stack 
space but cannot afford the overhead required for automatic run-time stack 
expansion. 

1293 



G VAX CPU Designations 

1294 

Most parts of VMS are independent of CPU type. There are, however, certain 
CPU-specific components. The names of these components contain CPU 
designations in the positions shown as xxx or yyy. Table G.l lists the CPU 
designation for each CPU type. 

The CPU-specific components include the following: 

• The set of macros $PRyyyDEF 
•The set of macros $IOyyyDEF 
• The set of macros $KAyyyDEF 
• The loadable images SYSLOAxxx .EXE 

The macro $PRDEF, in STARLET.MLB, defines symbolic names for the 
processor registers that are common to all types of VAX processors. For most 
CPU types, a second LIB.MLB macro, $PRyyyDEF, defines symbolic names 
for the CPU's additional processor registers. 

The LIB.MLB $I0yyy DEF macros define symbolic names for the physical 
addresses of CPU-specific registers. 

The LIB.MLB $KAyyyDEF macros define symbolic names for the offsets 
from the address stored in EXE$GL_CPUNODSP to CPU-specific registers, 
as defined in $IOyyyDEF. There is not necessarily a $KAyyyDEF macro for 
each CPU type. 

The loadable SYSLOAxxx images contain support for CPU-specific im­
plementation details, such as machine check exceptions, memory and bus 
error interrupts, I/O adapter initialization, and console terminal support. 
The SYSLOAxxx image names and the names of their CPU-specific source 
modules contain a CPU designation. Certain VAX processors, such as the 
MicroVAX II, support sufficiently different console terminals that a different 
SYSLOAxxx image is required for each type of console terminal. Table G.1 
lists the names of the SYSLOAxxx images. Chapters 30 and 31 describe the 
manner in which the SYSLOAxxx images are loaded and used. 



VAX CPU Designations 

Table G.l VAX CPU Designations 

yyy SYSLOAxxx System Types 

UV2 SYSLOAUV2.EXE MicroVAX IT 
UV2 SYSLOAWS2.EXE V Ax.station II 
UV2 SYSLOAWSD.EXE VAXstation 11/GPX 
410 SYSLOA4 l O.EXE MicroVAX 2000 
410 SYSLOA41 W.EXE VAXstation 2000 (monochrome) 
410 SYSLOA41D.EXE VAXstation 2000/GPX 
420 SYSLOA420.EXE MicroVAX 3100 
420 SYSLOA42W.EXE VAXstation 3100 (monochrome) models. 30/40/38/48 
420 SYSLOA42D.EXE VAXstation 3100/GPX models 30/40/38/48 
60 SYSLOA60.EXE VAXstation 3520/3540 
640 SYSLOA640.EXE MicroVAX 3300, MicroVAX 3400 
650 SYSLOA650.EXE MicroVAX 3200, MicroVAX 3500, MicroVAX 3600, 

MicroVAX 3800, MicroVAX 3900 
650 SYSLOA65D.EXE VAXstation 3200, VAXstation 3500 
730 SYSLOA730.EXE VAX-11/730 
750 SYSLOA750.EXE VAX-11/750 
780 SYSLOA780.EXE VAX-11/780, VAX-11/785 
790 SYSLOA790.EXE VAX 8600, VAX 8650 
BSS SYSLOA8SS.EXE VAX 8200, VAX 8250, VAX 8300, VAX 8350 
8NN SYSLOA8NN.EXE VAX 8500, VAX 8530, VAX 8550, VAX 8700, VAX 

8800 
BPS SYSLOABPS.EXE VAX 8810, VAX 8820, VAX 8830, VAX 8840 
9CC SYSLOA9CC.EXE VAX 6000 series model 200, model 300 
9RR SYSLOA9RR.EXE VAX 6000 series model 400 
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H Lock and Resource Use by VMS 
Components 

Many VMS facilities use lock management system services to coordinate 
their own activities, both locally and within a VAX.cluster system. This 
appendix examines a number of those facilities and describes their lock use. 
The aim is to demonstrate a variety of locking techniques and to provide 
examples of situations where specific techniques are beneficial. 

This appendix is by no means a complete description of VMS lock use 
or of the various facilities mentioned. It assumes that the reader is familiar 
with Chapter 10 of this book and with the description of the VMS lock 
management system services found in the VMS System Services Reference 
Manual. 

H.1 ASPECTS OF RESOURCE AND LOCK USE 
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The data structure that represents the entity being locked is a resource block, 
commonly referred to as a resource. A resource is uniquely identified by the 
combination of its resource name string, scope, access mode, and parent 
resource, if any. 

A lock on a resource is characterized by its lock mode, the extent to which 
it allows shared access with other locks on the same resource. Chapter 10 
lists the different lock modes: concurrent read/write (CR, CW), protected 
read/write (PR, PW), null (NL), and exclusive (EX). The context of a lock 
is also relevant: locks on some resources are owned by the system rather 
than by a particular process. For convenience in describing resources and 
their associated locks, the discussion often mentions only the lock; in these 
cases, the resource is implied. 

The resource name string of a resource created by VMS for its own use 
typically begins with a facility code. The remainder of the string further 
identifies the specific resource, for example, SCSNODE, device name, or file 
ID. 

Table H.l lists some VMS facilities, their associated facility codes, and the 
sections in this appendix that further describe the facility's lock use. 

The scope of a resource, and of its locks, is the extent to which the 
resource name is available to processes sharing the resource. By default, VMS 
includes as part of a resource name the user identification code (UIC) group 
of the process creating the resource. Processes belonging to other UIC groups 
cannot share such a resource. 

To share resources throughout a VAX.cluster system independent of UIC, 



H.1 Aspects of Resource and Lock Use 

Table H.1 VMS Facility Codes 

Facility Code Section 

VMS executive SYS$ Section H.2 
$MOUNT system service MOU$ Section H.3 
$DISMOU system service DMT$ Section H.4 
Volume shadowing SHAD$ Section H.5 
File system (Files-11 XQPJ F11B$ Section H.6 
Record Management Services (RMS) RMS$ Section H.7 
Image activator and Install Utility INSTALL$ Section H.8 
DECnet-VAXcluster alias CLU$ Section H.9.1 
DECnet-proxy NET$ Section H.9.2 
Job controller JBC$ Section H.10 
System Generation (SYSGEN) Utility SYSGEN$ Section H.11 
System Management (SYSMAN) Utility SMISERVER$ Section H.12 

many VMS facilities specify the Enqueue Lock Request ($ENQJ system ser­
vice flag LCK$V _SYSTEM. (A process not in kernel or executive mode re­
quires the SYSLCK privilege to specify this flag.) The flag causes VMS to 
omit the UIC group from the resource name. Thus, a process belonging to 
any UIC group can share the resource if it specifies the LCK$V _SYSTEM 
flag in its lock request. Such a resource is usually characterized as being 
systemwide. To avoid confusion with the characteristic system-owned, this 
chapter refers to the scope of these resources and locks as UIC-independent. 

Other VMS facilities, such as the job controller, require a process on 
each VAXcluster node. The processes are created in a controlled· fashion 
and belong to the same UIC group. Each process synchronizes access to 
private structures and files using a protocol shared by its counterparts on 
other nodes. These processes do not use the LCK$V _SYSTEM flag in their 
lock requests; thus, their resources and locks are available only to members 
of the same UIC group. This chapter refers to the scope of these resources 
and locks as UIC-specific. 

The lock manager deallocates a resource block (RSB) when its last lock 
is dequeued. Locks are dequeued and lock blocks deallocated when their 
creating process is deleted. To guarantee the survival of an important lock 
so that its resource block and especially its value block remain available, a 
VMS facility enqueuing a lock can declare its context to be system-owned 
rather than process-owned. The use of system-owned locks is reserved to 
Digital. Any other use is strongly discouraged by Digital and completely 
unsupported. 

A parent resource is used to create a logical lock grouping or, in the case 
of the System ID lock, to restrict resource mastership to a particular node 
(see Section H.2.1). 
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Other significant aspects of VMS lock use include a lock's value block; 
the presence or absence of a blocking asynchronous system trap (AST) and 
the trigger for delivery of a blocking AST; and the name of any symbol used 
to locate the lock or define the resource name. Blocking ASTs are described 
in Chapter 10. 

Every lock description in this appendix begins with a table of the lock's 
significant attributes. 

H.2 VMS EXECUTIVE LOCK USE 

H.2.1 System ID Lock 

Resource name string 
Symbol 

"SYS$SYS_ID" + SCSSYSTEMID 
EXE$GL_SYSID_LOCK 

H.2.2 
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Mode of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

EX 
UIC-independent 
Executive 
None 
None 
None 
System-owned 

The System ID lock guarantees a unique identity for each VAXcluster node 
by enforcing the requirement that the SYSGEN parameter SCSSYSTEMID 
be unique within the VAXcluster system. 

During system initialization, every VMS system requests an EX lock on 
a resource whose name is based on its own SCSSYSTEMID. Since SCSSYS­
TEMID is required to be unique in a V AXcluster system, the lock should 
be granted immediately. If the lock request is successful, the numeric lock 
ID is stored in the cell EXE$GL_SYSID_LOCK. If the lock request fails, an 
identical SCSSYSTEMID exists in the VAXcluster system. An error message 
is generated and further system initialization is prevented. 

Since each V AXcluster node builds and locks a unique resource, the System 
ID lock is always mastered on the local system. Therefore, any sublock of 
the System ID lock is mastered on the local system. Many VMS facilities 
take advantage of this feature and use the lock ID in EXE$G1-SYSID_LOCK 
as a parent for locks to be mastered locally and for locks whose range is 
limited to a specific VAXcluster node rather than to the entire VAXcluster 
system. 

Set Time Lock 

Resource name string 
Symbol 
Mode of acquisition 

"SYS$CWSETIME" 
None 
EX 



Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

H.2 VMS Executive Lock Use 

UIC-independent 
Kernel 
None 
None 
None 
Process-owned 

The Set Time lock serializes concurrent SET TIME/CLUSTER operations. 
The image that runs in response to this Digital command language (DCL) 
command acquires an EX mode lock on the resource SYS$CWSETIME. Even 
if more than one process enters the SET TIME/CLUSTER command simulta­
neously, only one process acquires the lock while the others wait. Therefore, 
the same time value is broadcast to all VAXcluster nodes during this interval. 
When the owning process releases the lock, a waiting process may acquire 
it and broadcast its own time value. This mechanism ensures that time is 
broadcast consistently across all VAXcluster nodes. 

H.2.3 Device Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"SYS$" + allocation class device name 
UCB$LLOCKID 
CR, PW, EX 
UIC-independent 
Kernel 
None 
Yes 
None 
System-owned 

Device locks propagate the standard VMS properties for device allocation 
throughout a V AXcluster system. They manage the availability of devices 
visible clusterwide. The Deallocate Device ($DALLOC), Assign I/O Channel 
($ASSIGN), Mount Volume ($MOUNT), Dismount Volume ($DISMOU), and 
Deassign I/O Channel ($DASSGN) system services, among others, acquire 
and release Device locks either directly or using the routines IOC$LOCK_ 
DEV and IOC$UNLOCK_DEV in module IOSUBPAGD. 

A VAXcluster node actually has at most one Device lock enqueued per 
device, with a resource name based on the allocation class device name as 
returned by the Get Device/Volume Information ($GETDVI) system service 
argument DVI$_ALLDEVNAM. Its lock ID is stored in the device's unit control 
block (UCB) at UCB$LLOCKID. 

A Device lock is enqueued or converted for a device visible to the VAX­
cluster system when the device is explicitly allocated, when the $MOUNT 
system service implicitly allocates the device for a private mount request, 
when the $MOUNT system service must ensure that the device is available 
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and not allocated for a shareable request, when the $ASSIGN system ser­
vice creates the first channel to a device that is available clusterwide, and 
through other code paths as well. 

The lock mode varies depending on the operation and its arguments: 

• At device allocation, an EX mode lock is requested . 
• For a private mount, the $MOUNT system service requests an EX mode 

lock. 
• For a system or group mount, the $MOUNT system service initially re­

quests a PW mode lock with the LCK$V _NOQUEUE flag. If the device is 
already allocated or mounted privately, an EX mode lock exists, the PW re­
quest fails, and the $MOUNT system service returns an error. If the device 
is already mounted in a shareable fashion by any other V AXcluster nodes, 
only CR mode locks exist. The PW mode lock is granted and eventually 
converted to CR mode . 

• The $ASSIGN system service requests a CR mode lock. 

The value block of a Device lock contains such information as a device's 
mount state, protection, ownership, shadow set membership, and write lock 
state. It coordinates these attributes across the cluster. 

System services like $DALLOC, $DASSGN, and $DISMOU invoke the 
routine IOC$UNLOCK_DEV to dispose of the Device lock correctly: 

• If the device remains allocated by a process, the lock is not dequeued until 
device deallocation. 

• If channels remain open to a dismounted device, the lock is converted to 
CR mode and eventually dequeued during the closing of the last channel. 

• Otherwise, the lock is dequeued. 

H.3 $MOUNT LOCK USE 

The $MOUNT system service establishes a lock to guard against concurrent 
mount requests for a particular device or volume from the local node or from 
other VAXcluster nodes. In addition, it acquires the system-owned Device 
lock (see Section H.2.3) to synchronize clusterwide device access with the 
$DISMOU, $DALLOC, and $ASSIGN system services, among others. The 
$MOUNT system service uses the file system's Volume Allocation lock (see 
Section H.6.1) to synchronize its accesses to mounted volumes with those 
of the file system. It compares the mount context information in the value 
blocks of the Device lock and the Volume Allocation lock to ensure that 
volume labels are unique within a VAXcluster system. 

H.3.1 Label Lock 

Resource name string 
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"MOU$" + CSID or zero + volume label as 
specified in $MOUNT argument 
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Symbol 
Mode of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

None 
EX 
UIC-independent 
Executive 
None 
None 
None 
Process-owned 

H.3 $MOUNT Lock Use 

The Label lock serializes shareable mount requests for the same volume 
from multiple processes on the same system. In response to a request to 
mount a volume to be shared, for example, among all UIC-group members, 
the $MOUNT system service requests this lock in EX mode. It includes the 
VAXcluster system ID (CSID) to make the Label lock node-specific. If the 
system is not a VAXcluster node, a CSID of zero is used. 

For a shareable mount request, the $MOUNT system service searches the 
local I/O database to ensure that no other volume has been mounted with the 
same volume label and shareability. It holds the Label lock for the duration 
of local mount processing to prevent other processes running on the sam~ 
node from trying to mount the same volume on other devices. 

The $MOUNT system service cannot use either of the other two lock& 
involved in mount processing to accomplish that purpose. The Mount Device 
lock (see Section H.3.2) is based on device name, not volume label, so its 
use would not detect simultaneous attempts to mount a volume with the 
same label on different devices. Neither would the use of the system-owned 
Device lock, which is only acquired for devices available clusterwide. 

The $MOUNT system service does not acquire the Label lock for a private 
mount request, because process-private use of a particular volume name 
cannot conflict with that of any other use. 

Mount Device Lock 

Resource name string 
Symbol 
Mode of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"MOU$"+ allocation class device name 
None 
EX 
UIC-independent 
Executive 
None 
None 
None 
Process-owned 

The Mount Device lock synchronizes simultaneous mount requests for the 
same device. The $MOUNT system service first locates the device to be 
mounted and reserves it with the system-owned Device lock. It then at-
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H.4 

H.4.1 

tempts to acquire the Mount Device lock in EX mode. If the Mount Device 
lock cannot be immediately acquired, because another $MOUNT request is 
proceeding concurrently on the same device, the $MOUNT system service 
releases the system-owned Device lock and queues for the Mount Device 
lock in EX mode. When the Mount Device lock is granted, the $MOUNT 
system service releases it and repeats its attempt to acquire the system­
owned Device lock. 

Thus, mount attempts in a VAXcluster wait for the Mount Device lock 
rather than the system-owned Device lock when the system-owned Device 
lock is not immediately available. A process cannot wait for a system-owned 
lock. 

The Mount Device lock's resource name is based on the allocation class 
device name as returned in the $GETDVI system service argument DVI$_ 

ALLDEVNAM. 

$DISMOU LOCK USE 

Dismount Lock 

Resource name string 
Symbol 
Mode of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"DMT$" +allocation class device name 
None 
EX 
UIC-independent 
Executive 
None 
None 
None 
Process-owned 

The $DISMOU system service acquires an EX mode Dismount lock to syn­
chronize simultaneous dismount requests for the same volume from pro­
cesses on the local system and on other V AXcluster nodes. The Dismount 
lock's resource name is based on the allocation class device name returned 
in the $GETDVI system service argument DVI$_ALLDEVNAM. 

In addition to the Dismount lock, the $DISMOU system service acquires, 
converts, and releases the system Device lock to update the value block. 
The $DISMOU system service also dequeues file system locks for Files-11 
volumes and the Shadow lock for shadow sets. 

H.5 VOLUME SHADOWING LOCK USE 

H.5.1 Shadow Lock 

Resource name string 
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"SHAD$" + allocation class device name of 
virtual unit 
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Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

VCB$L_SHAD_LKID 
NL, CR, PW, EX 
UIC-independent 
Kernel 
None 
Yes 
Yes 
System-owned and process-owned 

The Shadow lock manages clusterwide consistency of shadow set member­
ship knowledge using the following lock modes: 

Lock Mode 

EX 
Meaning 

Holder is rebuilding the shadow set 
CR Holder has current access to the shadow set and believes that its 

knowledge of the membership is accurate 
NL Holder does not have access to the shadow set 

This arrangement ensures that only one VAXcluster node can rebuild the 
shadow set at any given time and that no other node can access the shadow 
set while it is being rebuilt. 

The Shadow lock has two ancillary purposes: 

• It manages updates to the shadow generation information . 
• It provides a doorbell mechanism by which a VAXcluster node can cause 

all other nodes to check their knowledge of shadow set membership. 

To alter shadow set membership generation information, a VAXcluster 
node acquires the Shadow lock in PW mode. 

To initiate a clusterwide review of shadow set membership, a VAXcluster 
node raises its CR mode lock to EX mode temporarily, causing delivery of a 
blocking AST to each other V AXcluster node holding the Shadow lock. The 
blocking AST procedure verifies shadow set membership by invoking mount 
verification. 

The Shadow lock is initially acquired when a shadow set is mounted. 
The $MOUNT system service enqueues a process-owned lock on a resource 
whose name is based on the allocation class device name of the virtual 
unit returned in the $GETDVI system service argument DVI$_ALLDEVNAM. 

Before exiting, it converts the lock to a CR mode system-owned lock with 
a blocking AST enabled. The $MOUNT system service loads the lock ID 
into the volume control block (VCB) of the virtual unit at the field VCB$1-
SHAD_LKID. Normally, all VAXcluster nodes that mount the shadow set 
hold a CR mode lock on the resource. 

The $DISMOU system service dequeues the Shadow lock. 
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The file system uses locks to arbitrate access to volumes and files as well as 
access to local cache structures and their contents. In a VAXcluster system, 
all locks described in this section are necessary for proper synchronization. 
In a stand-alone system, the volume locks and File Serialization lock are re­
quired for synchronization of local processes, but the File Access Arbitration 
and Cache locks are unnecessary. 

Volume Allocation Lock 

Resource name string 

Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"F11B$v" + VCB$T_VOLCKNAM or RVT$T_ 
VLSLCKNAM 

VCB$L_ VOLLKID or RVT$L_STRUCLKID 
CR,PW 
UIC-independent 
Kernel 
EXE$GL_SYSID_LOCK if private mount 
Yes 
Yes 
System-owned 

The Volume Allocation lock synchronizes volume space allocation by coor­
dinating access to the storage and file header bitmaps. Each volume has a 
unique volume allocation resource name. Every V AXcluster node acquires 
a PW mode lock on that resource when it mounts the volume through the 
$MOUNT system service. The resource name string is based on the contents 
of VCB$T _ VOLCKNAM or, for volume sets, the volume set name contained 
in relative volume table (RVT) field RVT$T _ VLSLCKNAM: 

• For a privately mounted volume, the resource name string is based on the 
name of the system issuing the $MOUNT request and that system's UCB 
address for the device. The Volume Allocation lock is a sublock of the lock 
ID stored in EXE$GL_SYSID_LOCK. 

• For a shareable native volume, the resource name string is based on the 
volume label. 

• For a shareable volume set, the resource name string is the volume set 
name. 

The naming convention for shareable volumes guarantees that volume labels 
are unique in a VAXcluster system. 

The Volume Allocation lock is converted to CR mode by each VAXcluster 
node when the $MOUNT system service completes. The lock ID is stored in 
VCB$L_ VOLLKID (or, for volume sets, RVT$L_STRUCLKID). This lock is 
held in CR mode for as long as the volume remains mounted. The $DISMOU 
system service dequeues it. In addition, any code path that allocates or 
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deallocates space on the volume (that is, accesses the index file bitmap or the 
storage bitmap) acquires an additional lock in PW mode. This is compatible 
with the CR mode locks but would block another PW mode lock; thus, it 
allows multiple readers but only one writer. 

H.6.2 Volume Blocking Lock 

Resource name string 

Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"Fl 1B$b" + VCB$T _ VOLCKNAM or RVT$T _ 
VLSLCKNAM 

VCB$1-BLOCKID or RVT$L_BLOCKID 
CR, PW, EX 
VIC-independent 
Kernel 
None 
None 
Yes 
System-owned and process-owned 

The Volume Blocking lock enables exclusive access to a volume by utilities 
such as the Analyze/Disk Structure Utility. Its lock ID is stored in VCB$1-
BLOCKID or RVT$1-BLOCKID as appropriate. 

The Volume Blocking lock is normally held by all nodes in CR mode. To 
lock the volume, a utility requests an EX mode process-owned lock on the 
resource. This causes a blocking AST to be delivered to each V AXcluster node 
holding a Volume Blocking lock, including the node on which the utility is 
executing. The lock manager dispatches to the blocking AST procedure at 
IPL$_SCS while holding the SCS spinlock. 

The blocking AST procedure clears VCB$1-BLOCKID. The field VCB$W _ 
ACTIVITY reflects the state of the Volume Blocking lock. The field is initial­
ized to 1, and the volume remains usable as long as the field is odd. Normal 
file system activity on the volume increments the VCB$W _ACTIVITY count 
by 2, and decrements it by 2 on completion. The blocking AST procedure 
decrements VCB$W _ACTIVITY by 1, making its value even, and thus blocks 
further file system requests for the volume. If this decrement of VCB$W _ 
ACTIVITY brings its value to zero, the routine requests a kernel AST to 
dequeue the Volume Blocking lock from the context of the swapper process. 
Otherwise, as each outstanding file system request completes, it decrements 
VCB$W _ACTIVITY by 2. When VCB$W _ACTIVITY eventually falls to zero, 
the completing file system request dequeues the CR mode lock. This allows 
the EX mode lock to be granted so that the operation requiring exclusive 
access can proceed. 

After the EX mode lock is released, the next file system request reacquires 
the Volume Blocking lock before accessing the volume. 
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File Access Arbitration Lock 

Resource name string "Fl 1B$a" + volume lock name + FCB$L_ 

Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

LOCKBASIS 
FCB$LACCLKID 
All 
UIC-independent 
Kernel 
None 
Yes 
Yes 
System-owned 

The file system provides access arbitration for files; users can open files for 
read or write operations and specify whether others may open the file con­
currently. The Access Arbitration lock extends the scope of file arbitration to 
be clusterwide. Its resource name string uniquely identifies a particular file 
by including the volume lock name from VCB$T _ VOLCKNAM or RVT$T _ 
VLSLCKNAM, and the file's ID number and relative volume number from 
the file control block (FCB) field FCB$LLOCKBASIS. Each VAXcluster node 
on which at least one process has that file open holds one system-owned Ac­
cess Arbitration lock. Each lock represents the state of all accesses to the file 
from a given node. Thus, a V AXcluster node acquires the lock in the most 
restrictive mode in which any of its local processes have opened the file. 

The Access Arbitration lock's blocking AST synchronizes access to its 
associated FCB, which contains information from the file header, such as 
protection and size. Each V AXcluster node accessing the file has an FCB and 
an Access Arbitration lock for the file. When a node alters an FCB in its 
memory, it also requests an EX mode Access Arbitration lock. This causes 
execution of the blocking AST procedure on every node accessing the file, 
causing each to mark its FCB as stale. Each node rebuilds its FCB on the 
next local access. 

File Serialization Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"Fl 1B$s" + FCB$LLOCKBASIS 
None 
NL,PW 
UIC-independent 
Kernel 
VCB$L_ VOLLKID or RVT$LSTRUCLKID 
Yes 
None 
System-owned when NL, process-owned when 

PW 
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A File Serialization lock synchronizes access to a file on a particular volume. 
The file's ID number and relative volume number from FCB$1-LOCKBASIS 
make up the resource name string; its parent is a Volume Allocation lock. 
The file system, running in local process context, requests a File Serializa­
tion lock in PW mode for the duration of a single file operation, such as 
create, extend, or truncate. A process must hold the lock before accessing a 
file header or associated data in a file system cache. The lock value block 
contains two sequence numbers, one for the file header and one for associ­
ated data. 

Upon completion of the file operation, the file system converts the lock 
to a NL mode system-owned lock, rewrites the sequence numbers into the 
value block, and records them in a cache descriptor. The system-owned lock 
is maintained until the cache entry is removed from cache or reused as 
described in the following paragraph. 

If a process on this VAXcluster node requests a subsequent access to the 
file, the file system acquires the File Serialization lock in PW mode and 
obtains the sequence numbers in its value block. It compares the sequence 
numbers to the stored values in the cache descriptor. If the values match, 
the cached information is still accurate. Otherwise, another VAXcluster 
node acquired a PW mode lock while this node held a NL mode lock, and 
performed a file operation that updated a sequence number. The information 
in the local cache is no longer accurate and must be reread. 

Cache Locks 

Cache locks synchronize access to the per-volume caches that exist on each 
VAXcluster node for each mounted volume: the file ID cache, extent cache, 
and disk quota cache. This section describes the general mechanism used to 
cause each VAXcluster node in turn to flush a particular cache's contents to 
disk. Sections H.6.5.1, H.6.5.2, and H.6.5.3 describe the individual locks. The 
file system flushes all per-volume caches when a volume is dismounted. It 
flushes an individual cache when the cache becomes full, when a privileged 
user attempts to access the associated cache disk file directly, when one 
VAXcluster node's cache is empty, and on similar occasions. 

Each cache type has a defined cache flush resource name. Each VAXcluster 
node that mounts a volume acquires a lock on each of the three cache flush 
resources for the volume. These locks are normally system-owned and held 
in PR mode. 

To flush cache entries back to disk, a V AXcluster node writes its own 
cache back under the protection of a PW mode Volume Allocation lock. It 
then marks the particular cache invalid, lowers the system-owned PR mode 
Cache lock to NL mode, and lowers the Volume Allocation lock back to 
CR mode, rewriting the value block. The node then requests an additional 
process-owned CW mode lock on the cache flush resource. 
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This causes blocking AST delivery to all other VAXcluster nodes holding 
PR mode Cache locks. Since these are system-owned locks, the lock manager 
dispatches to the blocking AST routine at IPL$_SCS while holding the SCS 
spinlock. The AST parameter identifies which volume and cache to flush. 
Each blocking AST routine uses an AST control block (ACB) built into the 
cache data structure to deliver an AST to the CACHE_SERVER process. 
The CACHE_SERVER process requests the Queue I/O ($QIO) system service 
with the function code IO$_ACPCONTROL and a parameter identifying the 
device and cache. 

The fl.le system, running in the context of the CACHE_SERVER process, 
requests a PW mode Volume Allocation lock on the appropriate volume. 
Only one VAXcluster node's request for this lock is granted; the other nodes 
wait. The node that successfully acquires the Volume Allocation lock flushes 
its cache, marks the cache invalid, and lowers its PR mode Cache lock to 
NL mode. Next it converts the Volume Allocation lock back to CR mode, 
rewriting the value block. One waiting Volume Allocation lock request from 
another node is granted, and that node flushes its cache. This sequence is 
repeated until each node in turn has flushed its cache. 

While the cache flush is in progress, the cache is marked invalid. If the fl.le 
system accesses it and finds it invalid, the file system requests conversion 
of the NL mode Cache lock back to PR mode. 

When the last VAXcluster node completes and converts its PR mode Cache 
lock to NL mode, the original CW mode request is granted and immediately 
dequeued, and the cache flush is complete. 

File ID Cache Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"Fl 1B$c" + lock basis of INDEXF.SYS 
VCA$L_FIDCLKID 
NL, CW, PR 
UIC-independent 
Kernel 
VCB$L_ VOLLKID or RVT$L_STRUCLKID 
Yes 
Yes 
System-owned 

Each VAXcluster node maintains its own cache of available fl.le headers for 
each mounted volume. This cache is filled primarily by fl.le deletion on the 
local node. Any fl.le identification numbers (Fills) held in the cache are still 
marked "in-use" in the disk file number bitmap. A cache flush requires each 
V AXcluster node to write all entries in its local cache back to the fl.le number 
bitmap on disk. The File ID Cache lock arbitrates this cache flush across the 
VAXcluster system, as described in Section H.6.5. 
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Extent Cache Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

H.6 File System Lock Use 

"F11B$c" + lock basis of BITMAP.SYS 
VCA$1-EXTCLKID 
NL, CW, PR 
VIC-independent 
Kernel 
VCB$L_ VOLLKID or RVT$L_STRUCLKID 
Yes 
Yes 
System-owned 

Each VAXcluster node maintains its own cache of available disk space for 
each mounted volume. Any disk blocks held in this cache are still marked 
"in-use" in the disk storage allocation bitmap. A cache flush requires each 
VAXcluster node to write all entries in its local cache back to the storage 
allocation bitmap on disk. The Extent Cache lock arbitrates this cache flush 
across the VAXcluster system, as described in Section H.6.5. 

Disk Quota Cache Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"Fl 1B$c" + lock basis of QUOTA.SYS 
VCA$L_QUOCLKID 
NL, CW, PR 
VIC-independent 
Kernel 
VCB$L_ VOLLKID or RVT$1-STRUCLKID 
Yes 
Yes 
System-owned 

If disk quotas are enabled for a volume, a disk quota cache and Disk Quota 
Cache lock are created when the volume is mounted. 

Each VAXcluster node maintains its own cache of quota entries. It must 
sometimes flush all valid entries back to disk, for example, before dismount­
ing the device. The Disk Quota Cache lock arbitrates this cache flush across 
the VAXcluster system, as described in Section H.6.5. 

Quota Cache Entry Lock 

Resource name string 

Symbol 
Modes of acquisition 
Scope 
Access mode 

"Fl 1B$q" + VCB$T _ VOLCKNAM or RVT$T _ 
VLSLCKNAM + quota record VIC 

VCA$L_QUOLKID 
CR, PW, EX 
VIC-independent 
Kernel 
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Parent 
Value block 
Blocking AST 
Context 

None 
Yes 
Yes 
System-owned 

To acquire a user's quota information, a VAXcluster node enqueues a PW 
mode system-owned Quota Cache Entry lock. On the first access to a specific 
quota cache entry, the user's quota information is read from disk into a cache 
block. The dynamic portion of the user's quota information is shared among 
V AXcluster nodes through the value blocks of the Quota Cache Entry locks 
for that user. 

When another VAXcluster node needs the same user's quota information, 
it requests its own PW mode system-owned Quota Cache Entry lock. This 
request causes a blocking AST to be delivered to the original lock owner. The 
blocking AST procedure, running in the swapper's process context, marks the 
local cache entry invalid. It converts the PW mode lock to CR mode, updating 
the value block with the shared quota information. The other node's PW 
mode lock request is granted, and it receives this quota information from 
the value block. 

An EX mode lock on a quota cache entry causes VAXcluster nodes to 
remove the entry from the quota cache. This is used when a quota record is 
deleted. 

H.7 RMS LOCK USE 
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RMS uses lock management system services to protect files and records. 
When a file is accessed in a shareable fashion with write access allowed, 
RMS uses locks to coordinate the actions of the file sharers. The locks that 
it requests depend on a file's organization, the presence of global buffers, 
and numerous file-sharing and record-locking options specified by the user 
application. This section describes some of the more common RMS locks, 
sometimes in a simplified manner. It does not include locks used for RMS 
journaling. 

RMS runs in a process's context and maintains private data structures in 
process space. It requires a file access block (FAB) for each initial access 
(open) of a file and a record access block (RAB) for each stream connected to 
a FAB. It creates internal copies of FABs and RABs called IFABs and IRABs 
(in data structures named IFB$ and IRB$) as well as many internal structures 
mentioned briefly in this appendix. 

A process can optionally open a file multiple times (with multiple FABs). 
The term accessor, as used in this appendix, indicates an entity in process 
context that has opened the file; for example, a file opened twice by process A 
and once by process B would have three accessors. Additionally, each acces­
sor can optionally connect multiple record streams to the file (multiple RABs 
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to each FAB). RMS therefore must synchronize file access among accessors 
and record streams from the same process through a variety of mechanisms. 
The focus of this appendix, however, is primarily on the synchronization 
that RMS provides among independent processes sharing a file on a local 
system or in a VAXcluster. 

RMS transfers a bucket of data on a process's behalf from a file into a buffer 
in memory. An RMS local buffer is mapped in process space and is available 
to only one process. A global buffer is mapped in system space within a VMS 
global section and can be shared by any process on the system. Global buffers, 
however, cannot be shared by processes on different VAXcluster nodes. 

RMS performs some functions that affect the internal file structure, such 
as altering the end-of-file marker; some functions that affect internal bucket 
or buffer structure or contents; and some functions that affect only record 
contents. It uses locks of different scope to protect these different functions. 
RMS enforces a strict hierarchy in the acquisition of locks to ensure that 
deadlocks do not occur. Thus, for locks other than Record locks, RMS can 
safely specify the LCK$V _NODLCKWT and LCK$V _NQDLCKBLK flags in 
its $ENQ system service requests. Chapter 10 gives more information on 
these flags. 

A user application has no direct control over most RMS locks. However, it 
can directly control record locking. Therefore, RMS does not use the $ENQ 
flags mentioned above when requesting Record locks. 

With the exception of Record locks, RMS holds locks in restrictive lock 
modes only for the duration of an RMS service request. To operate more effi­
ciently and to preserve lock value block information, especially the sequence 
number, RMS typically converts a lock to NL mode rather than releasing it 
altogether. 

H.7.1 File Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"RMS$" + file ID + device name 
SFSB$L_LOCILID, IFB$L_PAR_LOCK_ID 
NL,PW 
UIC-independent 
Executive 
None 
Yes 
Yes 
Process-owned 

A File lock's resource name identifies one specific file. Locks on that resource 
serialize access to the file-clusterwide, interprocess, and intraprocess. When 
an accessor opens a file, it tells RMS how it wishes to access the file and 
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the type of access that it will allow to other accessors. RMS creates a File 
lock for a file opened in a shareable fashion where the opener either specifies 
write access for itself or allows write access from others. 

The File lock provides a consistent view of the file through the information 
in its value block, which includes the current end-of-file marker and the 
length of the longest record. RMS always uses the File lock as the parent 
lock of a file's Record locks (see Section H.7.4). It stores the lock ID of the 
File lock in IFB$L_PAR_LOCILID when global buffers are not present, so 
the File lock sometimes serves as the parent lock of Bucket locks as well 
(see Section H.7.2). 

RMS builds the File lock resource name string from the six-byte file iden­
tifier plus the device identifier returned in the $GEIDVI argument DVI$_ 

DEVLOCKNAM. The device identifier is normally the mount type code followed 
by the volume name from VCB$T _ VOLCKNAM or RVT$T _ VLSLCKNAM. 
The mount type code is 1 for a privately mounted device or 2 for a device 
mounted in a shareable fashion. 

When an accessor uses RMS to open a shareable, writable file, RMS ac­
quires a File lock in PW mode and declares an RMS procedure as the asso­
ciated blocking AST procedure. The accessor retains the lock in PW mode 
until another accessor requires an RMS file-level service on the same file 
and requests the File lock in PW mode. 

The lock request causes the blocking AST to be delivered to the accessor 
holding the PW mode lock. The blocking AST procedure converts the PW 
mode File lock to NL mode. This allows RMS to acquire the lock in PW mode 
for the new accessor, again declaring an RMS procedure as the associated 
blocking .AST procedure. 

Therefore, only one accessor of the file holds the File lock in PW mode. 
Every other accessor either holds a NL mode File lock, is waiting for a new 
PW mode lock, or is waiting for its NL mode lock to be converted to PW 
mode. 

When a file accessor requests the File lock in PW mode and cannot obtain 
it immediately, it stalls. When an accessor closes a file, RMS dequeues its 
File lock. 

RMS creates a shared file synchronization block (SFSB) in process space 
for each accessor using a File lock. The SFSB describes the accessor's File 
lock: its resource name, lock ID, lock value block contents, and other items. 
An SFSB also contains three status bits identifying the lock state: 

Bit Field Name 
SFSB$V _TAKEN 
SFSB$V _INUSE 
SFSB$V _WANTED 

Meaning if Set 

File lock is held in PW mode 
File lock is currently in use by a record stream 
File lock is wanted by another accessor 
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RMS uses these status bits to support file sharing by multiple record 
streams associated with one accessor (when multistreaming is selected) as 
well as among multiple accessors. 

For example, when RMS acquires the File lock in PW mode for a record 
stream, it sets the SFSB$V_TAKEN and SFSB$V_INUSE bits in the process's 
SFSB. When the record stream finishes the operation requiring the File lock, 
RMS clears the SFSB$V _JNUSE bit. The accessor still holds the File lock in 
PW mode. 

If a record stream from a different accessor now requires the PW mode 
lock, RMS requests the $ENQ system service and stalls the stream awaiting 
$ENQ completion. 

The accessor holding the PW mode lock must lower the lock to NL mode 
before the stalled stream can proceed. It receives blocking AST notification 
that another accessor has requested the lock. The blocking AST procedure 
tests the SFSB$V _INUSE bit. If the File lock is not in use, it lowers the lock 
to NL mode and clears the SFSB$V _TAKEN bit. 

Otherwise, the blocking AST procedure sets the SFSB$V _WANTED bit 
and exits. When the current operation completes, RMS will discover that 
the SFSB$V_WANTED bit is set, convert the File lock to NL mode, and 
clear the SFSB$V_TAKEN bit. 

In either case, the lock is eventually converted to NL mode and the 
stalled stream's outstanding PW mode request is granted. RMS now sets 
the SFSB$V _TAKEN and SFSB$V _INUSE bits in this accessor's SFSB. 

When the RMS multistreaming option is selected, there may be more than 
one record stream for a given file access (an accessor may have multiple 
RABs for one FAB). If a record stream needs a File lock that is already held 
by another record stream sharing its FAB, the requesting stream stalls by 
inserting its context on a wait queue without requesting the $ENQ system 
service. When the other record stream finishes with the File lock, it checks 
this wait queue and resumes the stalled stream through the Declare AST 
($DCLAST) system service. There is no need to convert the File lock unless 
a record stream from a different FAB requests it. 

Bucket Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

Bucket virtual block number 
BLB$LLOCK_ID 
NL, PW, EX 
UIC-independent 
Executive 
IFB$L_PAR_LOCK_ID 
Yes 
Sometimes 
System-owned, process-owned 
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RMS Bucket locks ensure the integrity of buckets held in local or global 
buffers. The resource name string of the Bucket lock identifies the first 
virtual block number of the bucket data within the file. Because RMS must 
acquire an EX mode process-owned Bucket lock for an accessor before it can 
read or write the bucket, it can maintain a consistent picture of the bucket 
contents clusterwide. 

RMS reads a bucket into either an I/O buffer in a process's address space or 
an RMS global I/O buffer in a VMS global section in system space. It protects 
buckets in both locations through Bucket locks. One difference between 
Bucket locks for buckets in local and in global buffers is the parent lock. 
The IFB$1-PAILLOCILID cell identifies the Bucket lock's parent: the File 
lock for a local buffer, or the Global Buffer Master lock (see Section H.7.3.1) 
if global buffers are being used. 

RMS I/O buffers are a limited commodity; both local and global buffers are 
used and reused under the control of an RMS cache replacement algorithm. 
RMS maintains information about local buffer entries that are in use through 
buffer descriptor blocks (BDBs) and buffer lock blocks (BLBs). Before a process 
fills a local buffer from a bucket, it obtains a BDB and, if RMS locking is 
being performed, a BLB. It then acquires an EX mode, process-owned Bucket 
lock. 

RMS stores information regarding the Bucket lock in the BLB, including 
the lock ID, an identifier for the record stream that owns the lock, the lock 
status block, the lock value block, the lock resource name, and the associated 
BDB address. The BDB contains, among other items, the actual address of 
the buffer and a saved clusterwide sequence number for the bucket that 
currently resides in the buffer. 

The Bucket lock value block contains a sequence number for the bucket. A 
process must own the Bucket lock in EX mode before modifying the bucket, 
so that it can increment the sequence number in the lock. This invalidates 
any buffer containing an earlier version of the bucket. For example, an 
accessor might have a version (possibly an outdated version) of a bucket 
in a local buffer, with an associated NL mode Bucket lock, BLB, and BDB. 
To reaccess the bucket, RMS converts the NL mode Bucket lock to EX mode, 
rereading the value block. RMS compares the new sequence number from 
the lock value block with the buffer's saved sequence number, stored in the 
BDB. If the sequence numbers do not match, this buffer contains an outdated 
copy of the bucket and RMS rereads the bucket from disk. If the accessor 
subsequently modifies the bucket, it increments the sequence number. When 
it completes its bucket access, it converts the lock from EX to NL mode, 
rewriting the value block with the updated sequence number. 

RMS maintains a NL mode Bucket lock on a bucket as long as that bucket 
is in a local or global buffer cache. This preserves the bucket's lock value 
block and thus its sequence number. One NL mode lock is required per 
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copy of the bucket. Thus, each process that has a copy of a bucket in a local 
RMS I/O buffer maintains its own NL mode Bucket lock until it reuses that 
local buffer for a different bucket. For a bucket in a global buffer, however, 
one copy of the bucket in memory is shared by any interested process on 
the system. In this case, only one NL mode lock is required per VAXcluster 
node to preserve the bucket's sequence number. 

The first accessor of a bucket in a global buffer converts its Bucket lock to 
a NL mode system-owned Global Buffer Backing lock (see Section H.7.3.3) 
when it completes its operation on the bucket. Subsequent accessors merely 
dequeue their Bucket locks. 

An exception to this local conversion to NL mode is the case of a deferred 
write of modified buckets. For a deferred write, RMS converts the lock to 
a PW mode lock with an associated blocking AST. When another accessor 
of the file wants to use the modified bucket, its lock request triggers the 
execution of the blocking AST procedure, which writes the modified bucket. 
If no other accessor requests the modified bucket, RMS eventually writes the 
bucket and dequeues the Bucket lock when cache replacement dictates that 
the buffer should be reused for another bucket. 

H.7.3 Locks Associated with Global Buffers 

To minimize I/O operations, RMS can share buffers among multiple acces­
sors of the same file. It maintains these global buffers in system space, within 
a VMS global section. A file using global buffers has one such global section 
on each V AXcluster node from which a process accesses the file. When the 
first process on a VAXcluster node opens a file that uses global buffers, RMS 
creates the file's global section in that node's memory. 

RMS constructs the name of the file's global section by appending the 
hexadecimal address of the file's FCB to the string "RMS$". Any accessor 
subsequently opening the file in the same memory space shares the same 
FCB and thus constructs the same global section name and maps to the 
existing global section. 

Each global buffer global section contains a global buffer header (GBH), a 
global buffer descriptor (GBD) for each global I/O buffer within the section, 
and the global buffers themselves. The actual data resides in buckets within 
the global buffers. 

The GBH describes the global section and its locks. It contains the size of 
the global section, the access count, and the Global Buffer Master lock ID 
at offset GBH$L_LOCK_ID, among other information. 

One GBD exists for each global buffer in the global section. A global 
buffer's GBD contains the lock ID of the buffer's Global. Buffer Backing lock 
in the field GBD$LLOCK_ID, the lock sequence number, the offset to the 
buffer within the global section, and similar information. 
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RMS maintains a section's GBDs in an interlocked queue ordered by the 
virtual block number (VBN) of the bucket currently residing in the GBD's 
associated buffer. The head of the GBD queue is in the GBH, at offset 
GBH$L_GBD_FLINK. 

The Global Buffer Section (GBS) lock serializes access to the global buffer 
header and thus to the GBD queue and the global buffer pool (see Sec­
tion H.7.3.2). 

RMS deletes a file's global section when the last accessor of the file on a 
VAX.cluster node closes the file. 

Global Buffer Master Lock 

Resource name string 
Symbol 
Mode of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"RMS$" +file ID+ device name 
GBH$1-LOCK_ID, IFB$1-PAR_LOCK_ID 
NL 
VIC-independent 
Executive 
None 
None 
None 
System-owned 

RMS creates a Global Buffer Master lock only for a file that uses global 
buffers. The Global Buffer Master lock is a system-owned NL mode version 
of the File lock (see Section H.7.1). 

When an accessor requests shareable write access to a file, RMS creates 
a File lock. If the file uses global buffers, RMS converts that File lock to a 
system-owned NL mode Global Buffer Master lock on the connect of the 
first record stream. It copies the lock ID of the Global Buffer Master lock 
to IFB$1-PAR_LOCK_ID, overriding the accessor's File lock as parent of its 
Bucket locks. RMS then creates a new File lock. 

The Global Buffer Master lock's sole purpose is to serve as the parent 
lock for an accessor's Bucket locks on global buffers. Since a global buffer 
survives the deletion of processes that use it, the Bucket lock on a global 
buffer must be backed up with a system-owned lock so that the value block, 
which maintains the integrity of the bucket, survives. Since a system-owned 
lock cannot be a sublock of a process-owned lock such as the File lock, a 
Bucket lock needs a system-owned version of the File lock to act as parent. 

RMS dequeues the Global Buffer Master lock when it deletes the global 
section. 

Global Buffer Section Lock 

Resource name string 
Symbol 

"RMS$" +file ID+ device name 
GBSB$1-LOCK_ID 



Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

NL, EX 
UIC-independent 
Executive 
EXE$GL_SYSID_LOCK 
Yes 
Yes 
Process-owned 

H. 7 RMS Lock Use 

The Global Buffer Section (GBS) lock synchronizes access to a file's global 
buffer header, the global buffer descriptor queue in the GBH, and thus the 
global buffer pool. Each VAXcluster node accessing the file has a separate 
global buffer global section for the file. Therefore, a lock guaranteed to be 
mastered on the local VAXcluster node is a more efficient way to serialize 
global section access, so RMS creates the GBS lock as a sublock of EXE$GL_ 
SYSID_LOCK. 

The GBS lock resource name string matches that of the file's corresponding 
File lock, thus uniquely identifying a device and file in a VAXcluster system 
(see Section H.7.1). 

When an accessor connects a record stream to a file that uses global buffers, 
RMS requests an EX mode GBS lock. The GBS lock remains in EX mode until 
another accessor sharing the file on the same VAXcluster node requests a 
GBS lock in EX mode, to search the GBD list, for example. 

The request triggers blocking AST notification, and the lock holder con­
verts the initial GBS lock to NL mode, allowing the requestor to acquire its 
own lock. 

Before the original lock holder accesses the global section again, it requests 
the conversion of its NL mode lock back to EX mode. 

Therefore, the accessor that most recently examined the global buffer 
header or searched the global buffer descriptor queue holds the only granted 
EX mode lock. Every other accessor sharing the globally buffered file on this 
VAXcluster node holds a NL mode lock or is waiting for a new or converted 
EX mode lock. 

When an accessor closes the file, RMS dequeues its GBS lock. 
RMS creates a global buffer synchronization block (GBSB) in the Pl space 

of each accessor holding a NL mode or EX mode GBS lock. The GBSB is 
similar to the SFSB for the File lock. It maintains information about the 
lock and the associated global section, including the lock ID at GBSB$L_ 
LOCK_ID. The GBSB also contains the lock value block, the resource name 
copied from the SFSB, and three status bits: 

Bit Field Name 

GBSB$V _TAKEN 
GBSB$V _INUSE 
GBSB$V _WANTED 

Meaning if Set 

GBS lock is held in EX mode 
GBS lock is in use by a record stream 
GBS lock is wanted by another accessor 
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These status bits describe the state of the GBS lock and are treated like 
the corresponding status bits in the SFSB (see Section H.7.1). 

Global Buffer Backing Lock 

Resource name string 
Symbol 
Mode of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

Bucket virtual block number 
GBD$L_LOCK_ID 
NL 
UIC-independent 
Executive 
IFB$L_PAR_LOCK_ID 
Yes 
None 
System-owned 

The Global Buffer Backing lock ensures the integrity of buckets contained 
in global buffers. To guard the integrity of a bucket, its sequence number 
must be preserved in the lock value block of a Bucket lock. However, a 
global buffer can contain a bucket that no longer has any current accessors 
and therefore would have no Bucket locks. Therefore, a system-owned lock 
must be used to prevent the loss of the bucket's sequence number. 

Before reading a bucket from a file into a buffer, an accessor acquires a 
process-owned Bucket lock. For each global buffer within the global sec­
tion, the original accessor that stores a bucket in a global buffer converts 
its process-owned Bucket lock to a NL mode system-owned Global Buffer 
Backing lock when it completes its access to the bucket. It saves the lock 
ID in the buffer's GBD at the offset GBD$L_LOCK_ID. 

A subsequent accessor of the bucket in this global buffer acquires its own 
Bucket lock. When it completes its access, it can safely dequeue its Bucket 
lock, since a Global Buffer Backing lock already exists for the bucket. 

RMS also stores the sequence number of a bucket in a global buffer in 
the buffer's associated GBD. RMS copies the sequence number from the 
Bucket lock value block of the first accessor of the bucket and updates it 
for each subsequent accessor. When each accessor obtains its Bucket lock, 
RMS compares the sequence number in the Bucket lock value block with 
the saved sequence number in the GBD. If they do not match, RMS rereads 
the bucket from disk into the global buffer. 

RMS dequeues the Global Buffer Backing lock when cache replacement 
policy dictates that the global buffer should be reused for another bucket or 
when the global section is deleted. 

Since the Global Buffer Backing lock must be system-owned, and system­
owned locks cannot be sublocks of process-owned locks, the Global Buffer 
Master lock was instituted (see Section H.7.3.1). 
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Record Lock 

Resource name string Record file address 
Symbol RLB$1-LOCK_ID 
Modes of acquisition CR, PR, PW, EX 
Scope UIC-independent 
Access mode Executive 
Parent SFSB$L_LOCK_ID 
Value block None 
Blocking AST None 
Context Process-owned 

A Record lock coordinates access to a record in a bucket. It is always process­
owned and always a sublock of the File lock. RMS builds the Record lock 
resource name string from the three-word record file address (RFA), which 
locates the record within the file. The resource name string consists of RFA4, 
the last of the three words, followed by two bytes of zeros, followed by RFAO, 
the first word (see the VMS Record Management Services Manual). 

If a file is opened in a shareable manner with record locking enabled, the 
following locking options in the user-specified RAB at field RAB$1-ROP 
determine the RMS lock mode: 

Bit Field State 

RAB$V _REA clear and RAB$V _RLK clear 
RAB$V _RLK set 
RAB$V _REA set and RAB$V _RLK clear 
RAB$V _NLK set 

• EX mode is the default. 

Lock Mode 

EX 
PW 
PR 
CR 

• PW mode locks the record for write access, allowing readers at CR mode 
but no other writers. 

• PR mode locks the record for read access, allowing other readers at CR or 
PR mode but no writers. 

• The RAB$V _NLK option temporarily takes a CR mode lock to verify that 
the record is not locked against reading (in EX mode). These CR mode 
locks are never returned to the application. 

A record stream associates each of its Record locks with a record lock 
block (RLB). An RLB contains the resource name, an identifier for the owning 
stream, and the lock status block, including the lock ID. RLBs are linked to 
the stream's IRAB at the IRB$1-RLB_FLINK/IRB$1-RLB_BLINK queue. 

Application record deadlocks are possible because of the control that an 
application has over its record locking, especially when it selects the manual 
unlocking (RAB$V _ULK) option. 
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IMAGE ACTIVATOR AND INSTALL UTILITY LOCK USE 

KFE Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"INSTALL$KNOWN FILE" 
EXE$GQ_KFE_LCKNAM 
PR,EX 
UIC-independent 
Executive 
EXE$GL_SYSID_LOCK 
None 
None 
Process-owned 

Section H.8.2 describes the use of the KFE lock. 

Install Lock 

Resource name string 
Symbol 
Mode of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"INSTALL$INSLOCK" 
None 
PW 
UIC-independent 
Executive 
EXE$GL_SYSID_LOCK 
None 
None 
Process-owned 

The Install Utility manages the known file entry (KFEJ list and requires read 
and write access to it. The image activator system service requires protected 
read access to the KFE list before opening images. The Install Utility and the 
image activator coordinate access to the KFE list through the KFE lock and 
use the Install lock to provide priority access to image activation. 

Each VAXcluster node maintains a private KFE list. KFE locks are re­
quested as sublocks of the lock ID stored in EXE$GL_SYSID_LOCK to guar­
antee that they will be unique to the local node and mastered there. The 
resource is declared to be systemwide because the activation of images and 
use of the Install Utility is not restricted to a single UIC group. Multiple 
processes running from different UIC groups are synchronized. 

All code paths in the image activator and the Install Utility that read the 
KFE list acquire PR mode locks on the KFE resource. In addition, the Install 
Utility ensures that readers of the KFE list (particularly the image activator) 
are not blocked too long by multiple writers of the KFE (for example, several 
INSTALL ADD commands). Code paths that write the KFE must acquire the 
Install lock in PW mode before acquiring the KFE lock in EX mode. Since 
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only one writer at a time can acquire the Install lock, other writers queue 
for the Install lock rather than for the KFE lock. 

When a writing process completes, it first converts the EX mode lock on 
the KFE to a PR mode lock. The only possible waiting requests are PR mode 
requests, and these are granted. The writer next dequeues the Install lock, 
allowing another writer to acquire it. This new writer requests an EX mode 
lock on the KFE. The request is granted when the readers complete and 
release their PR mode locks. 

The combination of these two locks guarantees that writers cannot block 
readers for extended time periods. 

H.9 DECNET LOCK USE 

H.9.1 

H.9.1.1 

In VAXcluster configurations, the network ancillary control process INET­
ACPJ uses two categories of locks: locks to implement VAXcluster alias 
functions and locks to implement network proxy access functions. 

V AXcluster Alias Locks 

Master Registration Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"CLU$NETACP -" + alias node address 
None 
NL, CR, PW, EX 
VIC-specific 
Kernel 
None 
Yes 
Yes 
Owned by NETACP process 

The NETACP process on each VAXcluster node that participates in the Alias 
Node service enqueues a lock on a resource whose name contains the alias 
node address. This lock is called the Master Registration lock IMRL) and is 
normally held at CR mode. The MRL is used as the parent lock for all other 
VAXcluster alias locks. 

The value block in the MRL contains a quadword bit mask, with a bit 
set for each VAXcluster node participating in the VAXcluster alias. A new 
node enqueues the MRL in PW mode, uses the value block to determine 
the first free alias index number from this bit mask, allocates that index 
number for its own use, updates the value block, and stores its alias index 
at NET$GW _CLUSTER_INDEX. The MRL is then converted to a NL mode 
lock, updating the value block. The new participant next converts the lock 
to EX mode. This forces delivery of blocking ASTs to the current members, 
notifying them of the new VAXcluster alias member. 
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Individual Index Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"IXL_" + alias index number 
None 
NL, EX 
VIC-specific 
Kernel 
Master Registration lock 
Yes 
None 
Owned by NETACP process 

Each participant in the VAXcluster alias scheme requires an Individual In­
dex lock (IXL). An IXL is a sublock of the MRL and has a resource name 
formed from "IXL_" +alias index number. Its value block contains registra­
tion data for the participating member, such as DECnet node address, alias 
maximum links, and routing/nonrouting status. Each new member enqueues 
an EX mode lock on its own IXL resource name. The member updates the 
value block with information about itself by lowering the lock to NL mode. 
Other participating members cycle through a set of lock states to allow each 
member to read the updated value block. 

Individual Departure Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"IDL_" + alias index number 
None 
CR, EX 
VIC-specific 
Kernel 
Master Registration lock 
None 
None 
Owned by NETACP process 

Each participating VAXcluster member enqueues an EX mode lock on its 
own Individual Departure lock (IDL) resource. All other members request 
a CR mode lock on that resource, with deadlock search disabled. If a CR 
request is ever granted, the other member knows that the original member 
that held the EX mode lock is no longer participating. 

Individual Link Registration Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 

"ILR_" +alias index number 
None 
NL, CR, EX 
VIC-specific 
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Access mode 
Parent 
Value block 
Blocking AST 
Context 

H.9 DECnet Lock Use 

Kernel 
Master Registration lock 
Yes 
Yes 
Owned by NETACP process 

An Individual Link Registration (ILR) lock is a sublock of the MRL. Each alias 
member has an associated resource, of the form "ILR_" +alias index number. 
A member always holds an ILR lock for itself in NL mode. In addition, a 
member that is a router holds a CR mode lock for itself and every other 
member. Each CR mode lock has an associated blocking AST. 

An ILR lock is used for flow control, to send XOFF/XON signals to the 
router (or routers). When a member can accept no more links, it raises its NL 
mode lock to EX mode. This triggers the blocking AST on each router's CR 
mode lock for that member. The router converts the CR mode lock to NL 
immediately. This allows the EX mode lock to be granted on the initiator. 

The EX mode lock is lowered back to NL, updating the value block with 
current and maximum links for this member. The router requests an EX 
mode lock, which will be granted when the initiating member lowers back 
to NL. The router updates its tables based on the new value block, lowers 
to NL to allow another router to obtain the lock, then finally returns to CR 
mode. 

Network Proxy Access Locks 

The NETACP process uses standard RMS locks to synchronize access to 
the proxy file, NETPROXY.DAT. In addition, it uses the following locks to 
propagate the volatile proxy database changes to other V AXcluster nodes. 

Modified Proxy Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

· "NET$NETPROXY _MODIFIED" 
None 
PR, PW 
UIC-independent 
Kernel 
None 
None 
Yes 
Owned by NETACP process 

This is the main proxy lock, typically granted to all VAXcluster nodes in 
PR mode with an associated blocking AST. If proxy information is modified 
on a participating node, the Authorize Utility or the network management 
listener (NML) requests that NETACP obtain a new lock on this resource in 
PW mode. This triggers blocking AST delivery to the NETACP process on 
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all V AXcluster nodes, including the one that queues the PW lock, as notice 
of proxy modification. 

Proxy Function Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"NET$NETPROXY _FNCT" 
None 
NL,EX 
UIC-independent 
Kernel 
None 
Yes 
None 
Owned by NETACP process 

The Proxy Function lock is used to transmit the function to be performed 
on the NETPROXY.DAT file, for example, Rebuild_Proxy, Add_Proxy, and 
Delete_Proxy. The function code is transmitted in the value block. Holding 
this lock in EX mode also serializes NETACP's use of the Proxy Key locks. 

Proxy Key Locks 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"NET$NETPROXY_KEY" +key number 
None 
NL,EX 
UIC-independent 
Kernel 
None 
Yes 
None 
Owned by NETACP process 

NETACP uses this key value to determine whether a record with the speci­
fied key exists in the NETPROXY.DAT database used by the local node. The 
value blocks of these four key locks pass the RMS key values desired for the 
NETPROXY.DAT indexed file. 

The four key numbers allow a total of 64 bytes of key information: 

• NET$NETPROXY_KEY1: first 16 bytes of the key 
• NET$NETPROXY_KEY2: second 16 bytes of the key 
• NET$NETPROXY_KEY3: third 16 bytes of the key 
• NET$NETPROXY_KEY4: fourth 16 bytes of the key 

H.10 JOB CONTROLLER LOCK USE 
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The job controller processes running on multiple VAXcluster nodes use a 
variety of locks to synchronize their activities. Many of these locks coordi­
nate access to records within the queue file. Since the queue file is accessed 
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through RMS, standard RMS locking activity occurs as well (see Section H. 7). 
This, however, is transparent to the job controller. 

Remote Request Lock (or Doorbell Lock) 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"JBC$" + SCSNODE 
None 
NL,EX 
DIC-specific 
User 
None 
None 
Yes 
Owned by job controller process 

During queue file initialization, the job controller uses the SCS node name of 
the system on which it executes to build a resource name. It requests an EX 
mode lock on that resource, specifying a blocking AST address. This doorbell 
lock is used by other V AXcluster nodes to determine if the node is available 
and has completed job controller initialization and to notify the node of an 
incoming work request. When a job controller receives a user request for a 
queue managed on another node, it uses that node name to build a resource 
name and requests an EX mode lock on that resource, specifying the LCK$V _ 
NOQUEUE flag. If the desired VAXcluster node exists and has performed job 
controller initialization, it already has an EX mode lock on its own name. 
The new request fails immediately in this case. If the request completes 
successfully, the remote node either does not exist or has not performed job 
controller initialization. 

Queue File Master Lock 

Resource name string 

Symbol 
Mode of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"JBC$" + queue file device name + queue file 
ID 

None 
EX 
DIC-specific 
User 
None 
None 
None 
Owned by job controller process 

During queue file initialization, the job controller requests an EX mode 
lock on the Queue File Master resource, setting the LCK$V _NODLCKWT 
flag so deadlock searches are never performed. The lock is granted to the 
first requestor, which becomes the queue file master. All other requests are 
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placed on the wait queue. If the queue file master ever leaves the VAX.cluster 
system, the next request on the wait queue is granted and a job controller 
running on another node becomes the new queue file master. 

Queue File Lock 

Resource name string 

Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"JBC$" + queue file device name + queue file 
ID+ "LOCK" 

None 
NL,EX 
VIC-specific 
User 
None 
Yes 
None 
Owned by job controller process 

The Queue File lock acts as a transaction-level lock on the queue file. 
Normally, all VAX.cluster nodes hold the lock in NL mode. Before initiating 
a transaction, the job controller converts the NL mode lock to EX mode, 
reading the value block. On completion of a transaction, the job controller 
converts the EX mode lock to NL mode, writing the value block. 

The va1ue block of this lock coordinates the cleanup of the queue file 
when a job controller process or a VAX.cluster node exits unexpectedly. It 
contains the SCS node name of the last node to leave the VAX.cluster system 
or experience job controller failure. 

Queue cleanup consists of reinitializing all executor queues that were 
assigned to the failing node and requeuing or deleting all jobs that were 
executing on those queues. When a node or job controller process fails, the 
remaining job controller processes are notified. All try to convert the Queue 
File lock to EX mode. The first to acquire the Queue File lock in EX mode 
performs the necessary cleanup, then loads the name of the failed node into 
the value block and lowers the lock to NL. Each remaining job controller 
process acquires the lock in turn, discovers that the value block contains the 
name of the failed node, and merely releases the lock. When the failed node 
reenters the VAX.cluster system, it acquires the Queue File lock in EX mode 
and checks the lock value block. If it finds its own name in the lock value 
block, it zeros the first word. This way, if the same node should leave the 
VAX.cluster system again, the other nodes will not mistakenly believe that 
cleanup has been performed. 

Queue File Initialization Lock 

Resource name string "JBC$INITIALIZE" 
Symbol None 
Mode of acquisition EX 



H.10.5 

H.10.6 

Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

VIC-specific 
User 
None 
None 
None 

H.10 fob Controller Lock Use 

Owned by job controller process 

In response to a command to start its queue management function, the job 
controller requests an EX mode lock on the Queue File Initialization re­
source. Holding this lock, the job controller creates and initializes or locates 
and reconstructs the queue file. It then dequeues the lock. 

GETQUI Locks 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

Record number + byte offset within record 
None 
PR,PW 
VIC-specific 
User 
Queue File lock 
None 
Yes 
Owned by job controller process 

The job controller's support routines for the Get Queue Information l$GET­
QUIJ system service maintain a list of descriptors for active queue context 
information across a user's $GETQUI requests. These descriptors exist as 
records within the queue file. Each descriptor is associated with a lock and 
contains the lock ID and reference count. These locks are normally held 
in PR mode. When information within a descriptor must be modified, the 
modifying node converts its lock to PW mode. This initiates blocking AST 
delivery to any processes holding PR locks, causing them to dequeue their 
locks so the PW lock can be granted. 

Master ORB Lock 

Resource name string 
Symbol 
Mode of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"ORB$LOCK" 
None 
NL 
UIC-independent 
User 
None 
None 
None 
Owned by job controller process 
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H.10.7 

H.11 

H.11.1 

1328 

The Master ORB lock and its sublocks are used to synchronize clusterwide 
access to an object rights block (ORB) and the protection information it 
contains. 

Each job controller normally maintains a NL mode lock on this resource, 
requested during queue file initialization. The lock is used as the parent 
lock for individual job controller ORB locks describing access control lists 
(ACLs) on queues. The resource tree is also referenced by the Change Access 
Control List ($CHANGE_ACL) system service. 

Job Controller ORB Locks 

Resource name string 
Symbol 
Mode of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"ORB$JBC_" + ORB record number 
None 
EX 
DIC-independent 
User 
ORB Master lock 
None 
None 
Owned by job controller process 

These sublocks of the Master ORB lock are associated with ORB records in 
the queue file that describe ACLs on queues. 

SYSGEN LOCK USE 

SYSGEN Database Lock 

Resource name string 
Symbol 
Mode of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

''SYSGEN$_DATABASE" 
None 
EX 
DIC-independent 
Executive 
EXE$GL_SYSID_LOCK 
None 
None 
Process-owned 

The SYSGEN commands LOAD, RELOAD, AUTOCONFIGURE, and CON­
NECT require exclusive access to a system's SYSGEN database. SYSGEN 
protects its database from concurrent access by SYSGEN executing in mul­
tiple processes through an EX mode lock on the systemwide resource "SYS­
GEN$_DATABASE". SYSGEN uses the lock ID stored in EXE$GL_SYSID_ 
LOCK as the parent lock to restrict the resource scope to the local system. 



H.12 

H.12.1 

H.12.2 

SYSMAN LOCK USE 

SMISERVER Main Lock 

Resource name string 
Symbol 
Mode of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

H.12 SYSMAN Lock Use 

"SMISERVER$" + SCSNODE 
None 
EX 
VIC-independent 
Executive 
None 
None 
None 
Owned by SMISERVER process 

The SMISERVER process uses the Main lock to ensure that only one SMI­
SERVER process at a time exists on a system. It requests an EX mode lock on 
the resource using the LCK$V _NOQUEUE flag. If the request is not granted 
immediately, another SMISERVER process is already running; the current 
one is redundant and deletes itself. 

When SMISERVER performs a clusterwide Set Time ($SETIME) system 
service, it synchronizes using the Set Time lock (see Section H.2.2). 

Parameter Lock 

Resource name string 
Symbol 
Modes of acquisition 
Scope 
Access mode 
Parent 
Value block 
Blocking AST 
Context 

"SYSPARMS_LOCK" 
None 
NL, PR, EX 
VIC-independent 
Executive 
EXE$GL_SYSID_LOCK 
Yes 
None 
Process-owned 

SYSMAN uses the Parameter lock to synchronize access to the current and 
active SYSGEN parameters on a system. It obtains the Parameter lock in PR 
mode before reading the current or active SYSGEN parameters. When the 
read completes, it converts the lock to NL mode. SYSMAN enqueues the 
Parameter lock in EX mode before writing the current or active SYSGEN pa­
rameters. When the write completes, it again converts the lock to NL mode. 
The Parameter lock is dequeued when this SYSMAN session completes. 
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$$$$$000_SYSTEM_SERVICE_ VECTORS PSECT 
global cells that compose, (table) 1164 

$$$$$NONPAGED_CODE PSECT 
global cells that compose, (table) 1164 

$$$$$NONPAGED_DATA PSECT 
global cells that compose, (table) 1186 

$$$$$SYSPARAM_DATA PSECT 
names and descriptions, (table) 1199 

$$$$$Z_BOOPARAM PSECT 
description, 1218 

$$$500 PSECT 
global cells that compose, (table) 1218 

$ (dollar sign) 
Digital symbol use of, 1232 

_ (underscore) 
Digital symbol use of, 1232 

A-bus (adapter bus). See also buses; device drivers 
VAX 86x0 system, SBI connection through, 52 

abort exceptions. See also bugchecks; condition 
handlers; errors 

continue signal actions when condition is an, 96 
SCB vectors for, (table) 75 

absolute addressing mode (®#) 
c· references changed to during image activation, 

764 
absolute queue instructions. See also instructions 

noninterruptibility, 163 
ACB (AST control block). See also IRP; LKB 

ACB$V _QUOTA bit, flag that quota must be restored 
when AST is delivered, 132 

deallocating controlled by ACB$V _NODELETE flag, 
133 

definition and use, 132 
IRP use as, 144 
LKB component, LKB fields that specify, 220 
LKB use as, 232 
SDL definition, (example) 1159 
summary, 1242 
TAST use as, 153 
TQE use as, 264 

ACB$B_RMOD field 
definition and use, 133 

ACB$L_AST field 
definition and use, 133 

ACB$L_ASTPRM field 
definition and use, 133 

ACB$L_ASTQBL field 
definition and use, 132 

ACB$L_ASTQFL field 
definition and use, 132 

ACB$L KAST field 
definition and use, 133 

ACB$L_PID field 
definition and use, 133 

ACB$V _KAST bit (ACB$8_RMOD field) 
definition and use, 133 

setting, 133 
ACB$V _MODE bits (ACB$B_RMOD field) 

definition and use, 133 
ACB$V _NODELETE bit (ACB$B_RMOD field) 

deallocating controlled by, 133 
definition and use, 133 

ACB$V _PKAST bit (ACB$B_RMOD field) 
definition and use, 133 

ACB$V_QUOTA bit (ACB$B_RMOD field) 
clear when system queues an involuntary AST, 133 
definition and use, 133 
flag that quota must be restored when AST is 

delivered, 132 
set to indicate AST notification of 

I/O completion, 620 
timer event, 257 

$ACBDEF macro 
ACB symbolic names defined by, 132 

accelerator bus. See also buses 
VAX-11/730 system, 47 

access control. See access protection 
access control list. See ACL 
access modes. See also protection 

AST delivery 
ACB location of, 133 
controlling through PCB$B_ASTEN and PCB$B_ 

ASTACT, 132 
synchronizing with PCB$B_ASTACT, 132 

AST queue entries, PR$_ASTLVL contains first 
entry, 130 

AST queue ordering by, 134 
change mode instruction operation, 111 
changing to less privileged, 38 
condition handling and, 72 
$EXIT operations, effect on, 772 
images, ICB field that specifies, 742 
logical name tables, how specified, 1070 
logical names 

how specified, 1069 
identification, 1068 
translation checking, 1092 

memory management and, overview, 20 
methods for altering, (figure) 15 
PSL previous mode field, interrupts compared with 

exceptions, 38 
REI tests 

before IPL 2 interrupt request, 130 
that prevent changing to more privileged modes, 

39 
resources 

how obtained, 216 
identifier component, 215 
lock information access restricted by, 234 

$RUNDWN operations, effect on, 774 
suspended process, SUSP and SUSPO categorized by, 

282 
system services that change to executive mode 

control flow, (figure) 115 
list of names, (table) 107 

system services that change to kernel mode 
control flow, (figure) 115 
list of names, (table) 107 

system services that do not change mode 
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access modes (continued) 
system services that do not change mode (continued) 

control flow, (figure) 121 
list of names, (table) 121 

system-owned locks, how determined, 233 
TQE field that specifies, 257 
use to index software-vectored condition handler 

address arrays, 74 
virtual page accessing by, protection code specifies 

which, 351 
access protection 

common event flag clusters, CEB field that specifies, 
205 

mailbox, setting, 665 
user access control, overview, 23 
VAX memory access checking, characteristics and 

mechanisms, 362 
access rights block. See ARB 
access violations 

characteristics and use, 363 
Pl space low end, user stack overflow detected as, 

82 
page fault handler emulation of, 84, 437 

accounting manager 
job controller responsibilities as, 1103 
sending requests to, 1107 

ACL (access control list). See also ORB 
ACL-based protection, logical name tables, 

characteristics, 1072 
layout and summary, 1243 
term definition, 24 

ACNT (suppress accounting messages privilege) 
use by $CREPRC, 716 

ACP (ancillary control process). See also AIB; AQB; 
device, drivers; file system; 1/0; XQP 

characteristics and use, 584 
data structures, overview, (figure) 585 
term definition, 11 

ACP queue block. See AQB 
ACP$BADBLOCK_MBX mailbox. See also mailboxes 

file system use for bad block recovery, 675 
ACP$READBLK routine (SYSACPFDT module) 

operations, 621 
ACP$WRITEBLK routine (SYSACPFDT module) 

operations, 621 
ACP_XQP_RES parameter (SYSGEN} 

effect on VMS memory use, 1287 
residency of Files-11 XQP global sections, 417, 944 

activating 
command language interpreters, 762 
compatibility mode images, 762 
images, term definition, 737 
known images, 762 
shareable images, 753, (example) 760 

active set 
SMP term definition, 1007 
term definition, 1022 

adapter bus. See A-bus 
adapter control block. See ADP 
adapters. See also buses; hardware; 1/0 

ADP size and mapping requirements, (table) 935 
capable of independent power failure, 1003 
CI, powerfail and recovery handling by, 1004 
com_patibility role of, 45 
configuration, 935 
function of, VAX system generic model, (figure) 44 
initialization, 46, 935 
interrupts 

SCB locations, (figure) 31 
service routine operations, 641 
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MASSBUS, powerfail and recovery operations, 1004 
NBI, VAX 8800 family, configuration, 53 
powerfail recovery, 1003 
Q22-bus 

interrupt vectors in the SCB, 46 
VAXstation 3520 system, configuration, 51 

SBIA, VAX 86x0 system, configuration, 52 
type codes 

arrays that specify, 935 
defined by $NDTDEF macro, 935 

UNIBUS, vectoring interrupts through ISR, 45 
VAX 8800 family, nexus numbering, 53 
VAX-11/750 system, slots used to connect, (table) 47 
VAX-11/78x system, standard nexus assignments, 

(table) 48 
VAXBI bus, interrupt vectors in the SCB, 45 
XMI, nexus numbering, 51 

ADAWI instruction. See also instructions 
interlocked memory instruction, synchronizing data 

with, 164 
.ADDRESS directive. See also .ASCID directive 

characteristics and modification during image 
activation, 763 

resolution of, 765, (figure) 766 
vector table, layout, (figure) 765 

address relocation 
fixup during loadable executive image initialization, 

847 
image activation, $IMGFIX operations, 762 

Address Relocation Fixup system service. See $IMGFIX 
address resolution 

loadable executive images, (figure) 829, 835 
address space. See also memory management; pages; 

protection; virtual memory; virtual pages 
PO. See also PO space 

layout, (figure) 7 
overview, 7 

Pl. See also Pl space 
layout, (figure) 5 
layout, analyzing with SDA, 1157 
overview, 5 
size and contents, (chapter) 1270 

physical, characteristics, 350 
process 

constraints on, 353 
creating, 406 
limit on creating, 403 
mapping, 350, 353 

system. See also system space 
initial layout, (figure) 1274 
layout, analyzing with SDA, 1157 
overview, 25 
size and contents, (chapter) 1270 
size calculations, 1274 
virtual. See virtual address space 

address translation. Consult VAX Architecture 
Reference Manual 

characteristics, and mechanisms, 362 
mechanism, overview, 20 
operations, 363 
virtual page as unit of, 351 

addressable global arrays 
names format, 1234 

addresses 
loadable executive images, locating, 1149 
process space, locating, 1154 
system S:E>ace, locating, 1149 

$ADJSTK !Adjust Outer Mode Stack system service) 
detecting need for user stack expansion, 82, 410 
reflecting a condition, 82 



Adjust Outer Mode Stack system service. See $ADJSTK 
Adjust Working Set Limit system service. See 

$ADJWSL 
$ADJWSL (Adjust Working Set Limit system service) 

operations, 496 
ADP (adapter control block). See also adapters 

characteristics and use, 580 
initializ' 935 
layout a:f'summary, 1243 
size, (table) 935 

affinity. See also capabilities; scheduler; SMP systems 
characteristics and use, 287 
device. See device affinity 
explicit 

acquired through SCH$REQUIRE_CAPABILITY, 
288 

characteristics and use, 28 7 
examples of use, 288 
released through SCH$RELEASE_CAPABILITY, 

288 
implicit 

acquiring, 297 
characteristics and use, 287 
mechanism, 289 

mismatch handling, 297 
primary processor. See primary processors - affinity 
requirements 

significant scheduling process characteristic, 268 
transition to RWCAP resulting from, 281 

AFFINITY_SKIP parameter (SYSGEN} 
initializing PCB$B_AFFINITY_SKIP field with, 289 

AGENSFEEDBACK.EXE 
reading pool allocation statistics, 568 

AGGREGATE statement (SDL) 
characteristics and use, 1161 

AIB (ACP 1/0 buffer). See also 1/0 
complex buffer 

example, 617 
used by file system, 618 

aliases 
logical name tables, term definition, 1069 

alWunent 
data, importance for performance, 1138 

SALLOC (Allocate Device system service) 
control flow, 592 

Allocate Device system service. See $ALLOC 
ALLOCPFN module 

MMG$ALLOCPFN_NO_DB, operations, 381 
MMG$DALLOCPFN, deallocating physical pages, 

478 
MMG$DELCONPFN, page fault handling, private 

page not copy-on-reference, 444 
ALLSPOOL (allocate spooled device privilege) 

use by $ALLOC, 592 
alternate start 1/0 entry 

use by communication drivers, 688 
ALTERNATE_LOAD module 

LDR$ALTERNATE_LOAD, control flow, 843 
ALTPRI (set any priority value privilege). See also 

privileges 
required for unconstrained process priority 

modification, 275 
use by SCREPRC, 715, 731 

AME (Application Migration Executive) 
activation, 762 
characteristics, 762 
definition, 762 
dispatch into for compatibility mode exception, 85 

ancillary control process. See ACP 
AQB (ACP queue block). See also ACP1 1/0 

ACP creation of, 585 
queuing of IRP to, 631 

AR (global symbols type) 
use, 828 

ARB (access rights block). See also protection 
layout and summary, 1243 
term definition, 4 

ARBSQ...PRIV &eld. See also privileges 

Index 

process privilege mask, use and routines that 
manipulate, (table) 778 

argument lists 
AST procedures, field definition and use, (figure) 140 

arithmetic exceptions. See also condition handling 
types and signal names, (tablel 82 

array bus. See also buses 
VAX-11/730 system, 47 

$ASCEFC (Associate Common Event Flag Cluster 
system service) 

creating common event flags, 204, 206 
.ASCID directive. See also .ADDRESS directive 

characteristics and modification during image 
activation, 763 

ASCII 
character strings, conversion support for, 1120 
codes 00 to 20, control characters handled by 

out-of-band ASTs, 153 
SASCTIM (Convert Binary 1ime to ASCII String 

system service) 
operations, 1121 

assembler listings 
characteristics and use, 1136 

$ASSIGN (Assign Channel system service) 
control flow, common initial steps, 597 
operations, 596 
return mechanism characteristics, overview, 109 

Assign Channel system service. See $ASSIGN 
assignment 

remote device, triggered by device name with node 
delimiter, 598 

Associate Common Event Flag Cluster system service. 
See $ASCEFC 

associated mailboxes. See also mailboxes 
assigning channels to, 600 

ASSUME macro 
characteristics and use, 1135 

$ASSUME macro (VAX BLISS-32) 
characteristics and use, 1135 

AST (asynchronous system trap). See also attention 
ASTs; interrupts· resource wait - RSNS_ 
ASTWAIT; SCHSASIDEL routine; SCH$QAST 
routine; SSETAST; special kernel mode ASTs1 
synchronization 

accessing process virtual address space with, 133 
addresses of completion and blocking procedures, 

LICB field that contains, 221 
advantages for process deletion mechanism, 149 
argument list meaning of 

PC, 141 
RO, 140 
Rl, 141 

blocking 
deadlock handling by, dangers associated with, 236 
delivery for a system-owned lock, mechanism, 234 
effect of lock dequeuing on, 231 
queuing after granting a lock, reasons for, 232 

$CLRAST 
effect on PR$_ASTLVL, 130 
resetting PCB$B_ASTACT bit with, 132 

CMOD$ASTEXIT, entering SCLRAST system 
service, 115 
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AST (asynchronous system trap) (continued) 
completion 

queuing after granting a lock, reasons for, 232 
queuing at 1/0 completion, 620 
queuing by $GETLKI, 235 
queuing when a lock is granted, 227 

concepts and mechanisms, (chapter) 129 
creating 

actions that trigger, 133 
examples of system queuing, 134 
with $DCLAST, 134 

CTL$GB_REENABLE_ASTS, notifying user process 
to request AST reenable, 143 

CTL$GB_SOFr_AST_DISABLE, blocking user mode 
ASTs by setting low bit in, 143 

CWPS$SRCV _GETJPl_AST, operations, 332 
data, synchronizing access to with SCHED spinlock, 

183 
data structures, field definitions and use, 131 
$DCLAST 

creating ASTs with, 134 
PCB$W_ASTCNT decremented by, 131 

DELETE AST procedure, system services invoked 
by, 149 

DELETE kernel mode AST, control flow, 813 
enabling AST delivery to access modes with PCB$B_ 

ASTEN, 132 
examples, 143 
EXE$ASTFLT, handling AST faults, 83 
EXE$ASTRET, AST exit operations, 141 
exit path operations, 141 
$FORCEX use of, 147, 339 
GSD_CLEAN_AST, operations, 426 
hardware components, 129 
1/0 completion, EXE$BRKTHRU, 703 
JP1$V_NO_TARGET_AST, flag definition and use, 

330 
kernel mode 

Files-11 XQP use of, 147 
process deletion use of, 149, 813 
process suspension use of, 148, 336 
queuing to CLUSTER_SERVER process, 322 

level 
calculated after process inswap, 542 
update, SMP work requests, handling, 1026 

LKB$L_ASTQBL, field definition and use, 220 
LKB$L_ASTQFL, field definition and use, 220 
mailbox read or write requests, 664 
normal, system use of, 146 
out-of-band 

basic operations, 149 
characteristics and use, 153 
compared with attention AST mechanism, 150 
delivering, 155 
flushing list of, 156 
setting, 154 

parameter 
ACB location, 133 
as argument to system service that queues an 

AST, 141 
PCB$B_ASTACT 

clearing during AST exit path operations, 141 
field definition and use, 132 
synchronizing AST delivery to access modes with, 

132 
PCB$B_ASTEN 

enablitut AST delivery to access modes with, 132 
field definition and use, 132 

PCB$L_ASTQBL, field definition and use, 131 
PCB$L_ASTQFL, field definition and use, 131 
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PCB$W _ASTCNT, maximum concurrent ASTs 
process can request, 131 

PHD$B_ASTLVL, software responsibilities for 
managing PR$_ASTLVL save area, 130 

PKAST 
ACB location of flag, 133 
characteristics and use, 146 
out-of-band AST use of, 153 
use by lock granting routine when two ASTs must 

be delivered, 233 
powerfail recovery 

delivery operations, 999 
notification through, 518 
request operations, 999 
special kernel mode AST use by, 145 

PR$_ASTLVL. See PR$_ASTLVL 
procedure 

argument list characteristics, (figure) 140 
entry point, ACB location, 133 
zero address, as flag for flushing attention AST 

list, 151 
process context required, 129 
process deletion use of, 149, 813 
process suspension use of, 336 
queuing 

access mode of first AST in, PR$_ASTLVL 
contains, 130 

after granting a lock, requirements for, 232 
as event causing process state change, 299 
at timer request expiration, 264 
by EXE$GETJPI, 331 
effect on processes in event flag wait state, 210 
effect on wait states, 282 
in remote $GETJPI request, 333 
inserting, in SCH$QAST control flow, 134 
IPL requirements for, 171 
linking ACB into PCB queue, 132 
linking LKB into lock timeout queue with LKB 

AST queue field, (figure) 236 
makes the process computable; 284 
mutex-waiting process, blocking the AST delivery 

interrupt, 286 
scheduler database synchronizing, 151 
SUSP and SUSPO state effect dependent on access 

mode, 282 
to a target process during process deletion, 813 
to processes, 134 
transitions caused by, 282, 283 

quota 
charged, ACB location of flag, 133 
charged by decrementing PCB$W_ASTCNT, 131 
PCB$W_ASTCNT initialized from, 131 

reentrancy. Consult Guide to Creating VMS Modular 
Procedures 

routine, ACB as location of address, 132 
$SETPRA, operations, 999 
SS$_ASTFLT, inaccessible stack handling, 83 
termination procedure, activation by CTRL/Y 

processing, 806 
TQE$L_AST, field definition and use, 25 7 
TQE$L_ASTPRM, field definition and use, 257 
transition to COLPG triggered by, 283 
UCB$L_MB_R_AST, field definition and use, 658 
UCB$L_MB_ W _AST, field definition and use, 658 
unwinding, example, (figure) 104 
user mode, disabling AST delivery to, 143 
VAX architecture feature used by VMS, 15 
wait state, characteristics and use, 285 
working set limit adjustment use of, 501 
XQP as kernel mode AST thread, 147 



AST conuol block. See ACB 
AST delivery 

blocking, as synchronization technique for process 
data structures, 167 

coordinating with event flag wait, 118, 119 
disabling, 142 
during process wait, mechanism that permits, 121 
enabling to access modes with PCB$B_ASTEN, 132 
indicating during $SETIMR request handling, 259 
kernel mode, blocking process deletion by disabling, 

172 
operations and control flow, 135 
process deletion use of, 8 ll 
REI instruction testing for, 38, 129 
synchronizing to access modes with PCB$B_ 

ASTACT, 132 
system-owned lock queue restrictions resulting 

from, 233 
to process 

in CEF, HIB, or LEF, 292 
in MWAIT, 293 
in PFW, PPG, or COLPG, 292 
in SUSP, 292 

AST delivery interrupt (IPL 2). See also SCH$ASTDEL 
routine 

architecturally defined, 130 
catalyzed by SMP$INTSR, 1026 
characteristics 

and control flow, 137 
and use, overview, 67 

disabled by $BRKTHRU, 698 
interrupt service routine, control flow, 137 
only software interrupt serviced in context of a 

specific process, 55 
overview, 1007 
PR$_ASTLVL use in controlling, 130 
REI instruction 

requests, 39 
tests before requesting, 129 

ASTDEL module 
SCH$ASTDEL, delivering AST interrupts, 137 
SCH$QAST, queuing ASTs, control flow, 134 

ASTEXIT. See $CLRAST 
ASTLVL register. See PR$_ASTLVL 
ASTWAIT resource. See resource wait - RSN$_ 

ASTWAIT 
asynchronous lock request completion 

queuing a special kernel AST as result of, 232 
asynchronous system services 

characteristics, 108, 227 
asynchronous system uap. See AST 
atomic memory accesses 

characteristics, 162 
atomicity 

use, 161 
ATTACH command 

operations, 790 
attached processor 

term definition, 1007 
attention ASTs. See also AST 

basic operations, 149 
compared with out-of-band AST, 150, 153 
CTRL/C and CTRL/Y 

must be reenabled after each use, 152 
notification use of, 152 

delivering, 151 
establishing for a particular device, 150 
flushing list of, 151 
mailbox driver use of, 153 
mailbox must be reenabled after each use, 153 

Index 

setting, 150 
terminal driver use by, 152 
VMS executive, examples of use, 152 

AUDIT SERVER process 
command file that creates, 947 
communication with through mailboxes, 674 
mailbox use by, 674 

automatic working set limit adjustment. See also 
working set list 

affected by DCL command SET WORKING_SET, 
498 

decreasing working set limit with, 490 
disabling 

conditions, 498 
PCB$L_STS bit that specifies, 366 

normal AST use by, 146, 501 
operations, 498 
parameters that control, (tablel 498 
quantum-end scheme, problems with, 502 
SCH$QEND control flow, 498 
working set size altered by, 360 

AWSTIME parameter (SYSGEN) 
use in automatic working set limit adjustment, 500 

backing store. See also memory management 
address, page file, PHD field that specifies, 373 
characteristics and use, 352 
for modified pages, types of, 401 
for page file global sections, 388 
for pageable writable executive data, 388 
information for PHD pages, 377 
information in PFN BAK array, 381 
modified page writing to, clustering situations for, 

472 
modified page written to its, 355 
page file, as constraint on address creation, 407 
transitions between memory and, (chapter! 435 
when allocated for a page, 473 
when reserved for a page, 461 

bad blocks. See also disks; errors; I/O 
BADBLK.SYS file 

bad block handling use of, 692 
use on DSA disks, 694 

BADBLOCK.EXE image, operations, 693 
BADLOG.SYS file, bad block handling use of, 693 
handling, 692 

dynamic, 693 
mailbox use by, 675 
static, 692 

replacing 
on DSA disks, 693 
on SCSI disks, 694 

bad page list 
location, 384 

BADBLK.SYS file. See bad blocks 
BADBLOCK.EXE image. See bad blocks 
BADLOG.SYS file. See bad blocks 
BADVECTOR bugcheck. See also bugchecks 

generated by EXE$CONNECT_SERVICES, 850 
BALANCE routine (SWAPPER module) 

control flow, 518 
balance set. See also memory management 

locking into, privilege enabling, 432 
balance set slots. See also memory management 

area, summary, 1226 
arrays, characteristics and use, (figurel 394 
characteristics and use, 394 
equal-size, 396 
identifying occupant of, 395 
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balance set slots (continued) 
obtaining for PHD of inswap process, 536 
page fault handler testing for PHD and process body 

differences, 437 
BALSETCNT parameter (SYSGEN) 

effect on size of system space, 1278 
number of 

balance set slots, 931 
entries in swapping data structures, 394 

base image. See also SYS.STB 
boot parameters area, 831 
characteristics and use, 825 
EXE$GQ_TODCBASE and EXE$GL_TODR 

maintained in, 252 
executive transfer vectors, 827 
global cells that compose, !table) 1164 
fayout, (figure) 825 
loaded by SYSBOOT, 914 
miscellaneous vectors area, 831 
overview, 8 
SYS.EXE characteristics and use, 825 
SYSGEN parameters area, 830 
system data area, 828 
system service vectors, 826 

system addresses located in, 107 
term definition, 823 

base priority. See also priorities 
changed by SCH$CHANGE_CUR._PRIORITY, 296 
current reset by SCH$QEND, 295 
1/0 requests queued by, 629 
initializ' , 275 
routinesu:tt request change in, 295 

batch processes. See also job controller 
creation, !figure) 785 

as result of SUBMIT command, 784 
as result of unsolicited card reader input, 

arguments passed to $CREPRC, !table) 785 
by job controller process, 783 

job controller responsibilities 
as queue manager, 1102 
in the creation of, 1103 

jobstep initialization, LOGINOUT control flow, 809 
LOGINOUT image operations, control flow, 797 

BBCCI instruction. See also instructions 
interlocked memory instruction, synchronizing data 

with, 164 
BBR (bad block replacement) routine 

DSA disk bad block handling, 693 
BBSSI instruction. See also instructions 

interlocked memory instruction, synchronizing data 
with, 164 

benign state 
processors, synchronizing entry into with MEGA 

spinlock, 185 
term definition, 1032 
XDELTA use of, operations, 1032 

$BINTIM (Convert ASCII String to Binary Time 
system service) 

operations, 1121 
bit testing 

comparison of methods, in spinlock routine control 
flow description, 190 

BITFIELD statement (SDL) 
characteristics and use, 1163 

"black hole" page 
adapter powerfail handling use of, 1003 
EXE$INIT initialization, 930 

BLISS·32.. See VAX BLISS-32 language 
blocking ASTs. See also AST 

deadlock handling by, dangers associated with, 236 
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delivery for a system-owned lock, mechanism, 234 
effect of lock dequeuing on, 231 
queuing, after granting a lock, reasons for, 232 

blocking condition 
locks, lock conversion use of, 228 

blocks. See also bad blocks 
1/0, ways of referring to, 621 
term definition, 544 

BOO$A_BOOPARAM cell 
location of boot parameters area, 1218 

$BOODEF macro 
defining offsets in boot driver dispatch area, 911 

BOOPARAM module 
boot parameters area defined in, 831 

$BOOSTATEDEF macro 
system initialization state symbol values, 836 

boot block program 
VAX processors without consoles, operations, 899 

boot command 
form on different VAX consoles, 892 

boot control block 
layout, !figure) 917 

BOOT CPU 
characteristics, 923 
primary CPU same as, 1007 

boot driver. See bootstrap - driver 
boot page 

contents, 1050 
execution of code, 1054 
SMP systems, relations with RPB and physical CPU 

data vector, (figure) 1050 
boot parameters 

area, description, 1218 
system data area that contains, 831 

boot stack 
SMP systems, 1015 

BOOT_HANDLER condition handler 
functions, 770 

BOOT_REJECTED state 
reasons for changing SMP member state to, 1044 

BOOT58 program 
operations, 899 

BOOTED state 
reasons for changing SMP member state to, 1044 

[BOOTS) facility 
contents, 1130 

(BOOTS)INITPGFIL module 
allocating PFL, operations, 396 

bootstrap. See also SYSBOOT; system initialization; 
VMB 

device codes, (table) 1262 
driver 

fatal bugcheck 1/0 handled by, 973 
operations, 911 

file lookup cache, 912 
file operations, 911 
files, processor-independent, (table) 863 
1/0 subroutines, operations, 911 
procedures, concepts and mechanisms, 

(chapter) 862 
programs 

eliminating code from memory after task 
completion, techniques for, 1144 

secondary processors, 1053 
sequence 

MicroVAX II processor, 870 
MicroVAX 3100 system, 873 
MicroVAX 3200/3500/3600 system, 875 
MicroVAX 3300/3800/3900 system, 878 
VAX 6000 series, 893 



bootstrap (continued) 
sequence (continued) 

VAX 8200 family, 896 
VAX 86x0 system, 881 
VAX 8800 family, 886 
VAX 88x0 system, 883 
VAX-11/730 system, 890 
VAX-11/750 system, 897 
VAX-11/78x system, 888 

SMP operations, 1044 
VAX.cluster bootstrapping over Ethernet, 912 

BORROWLIM parameter (SYSGEN) 
automatic working set limit adjustment use of, 496, 

500 
effect on working set limit growth, 493 

branches 
minimizing for performance, 1139 

SBROCST (Broadcast system service) 
operations, 704 

BREAKPOINT parameter (SYSGEN) 
breakpoints taken during system initialization, 929 

breakthrough message. See also OPCOM process 
locked in workina set, 697 
writing, control ffow, 694 _ 

breakthrough message descriptor block. See BRK 
Breakthrough system service. See $BRKTHRU 
BRK (breakthrough message descriptor block) 

layout, (figure! 6$15 
summary, 1243 

BRK$B_PRVMODE field 
definition and use, 698 

BRKSB_STS field 
definition and use, 697 

BRKSC_ALLTERMSfield 
definition and use, 697 

BRKSC_ALLUSERSfield 
definition and use, 697 

BRKSC_DEVICE field 
definition and use, 697 

BRKSC_USERNAME field 
definition and use, 697 

BRKSL_IOSB field 
definition and use, 697 

BRKSL_PCB field 
definition and use, 697 

BRKSL_PIDCTX field 
definition and use, 698 

BRKSL_QIOCTX field 
definition and use, 697 

BRKSL_SCRMSG field 
definition and use, 697, 698 

BRKSL_SCRMSGLEN field 
definition and use, 697, 698 

BRKSQ...PRIVS field 
definition and use, 698 

BRK$Q_TIMEOUT field 
definition and us12 698 

BRKST_DEVNAM neld 
definition and use, 697 

BRKST_MSGBUF field 
definition and use, 697, 698 

BRKST_SENDNAME field 
definition and use, 697 

BRKSW _MSGLEN field 
definition and use, 697 

BRKSW _SECONDS field 
definition and use, 698 

BRKSW _SIZE field 
definition and use, 697 

BRK$W_STATUS field 

Index 

definition and use, 698 
BRK$W_TRMMSG fl.eld 

definition and use, 698 
$BRKTHRU (Breakthrough system service) 

control fl.ow, 694 
Broadcast system service. See SBRDCST 
$BIDEFmacro 

symbols and values, (tablel 1262 
Bucket lock. See also locks 

characteristics and use, 1313 
buffer pages 

user, double mapping by console block storage device 
drivers, 692 

buffered 1/0. See also l/01 1/0 buffers 
buffers, transfer parameters that describe, 610 
byte count quota, transition states triggered by, 286 
PDT routines, characteristics, 610 
1/0 postprocessing 

BUFPOST actions, 144, 617 
IOC$IOPOST actions, 65, 614 

buffers 
error, characteristics and use, 959 

BUFPOST routine (IOCIOPOST module) 
buffered read completion, control flow, 617 
1/0 postprocessing, operations, 144 

BUG_CHECK macro 
generating bugchecks by invoking, 967 

BUGCHECKBT module 
EXE$BUG_CHECK 

control fl.ow, 968, 969, 973 
operations, 968 
SMP operations, 1061 

BUGCHECKFATAL parameter (SYSGEN). See also 
bugchecks 

effect on kernel and executive mode nonfatal 
bugchecks, 969 

effect on user mode nonfatal bugchecks, 95 
user and supervisor mode fatal bugchecks not 

affected by, 969 
BUGCHECKLD module. See EXESBUG_CHECK 

routine 
bugchecks. See also errors 

BADVECTOR, generated by EXE$CONNECT_ 
SERVICES, 850 

CPUEXIT, generated by SMP$INTSR, 1025 
CPUSANITY, generated by EXE$HWCLKINT, 1038 
CPUSPINWAIT, generated by SMP$TIMEOUT, 1035 
error halt, generated by EXE$RESTART_ATT, 995 
executive mode, handling operations, 969 
fatal 

error log ·messages format and description, 
(table) 968 

executive and kernel mode operations, 969 
~G::essing operations, 979 
han . 967 
handling in SMP systems, (figure) 1060 
overlay and data buffers, (figure) 973 
processing operations, 972 

FATALEXCPT, generated during condition handler 
search, 90 

FILCNTNONZ 
generated by DELETE, 815 
handling, 967 

INCONSTATE, generated by SMP$SETUP_CPU, 
1052 

INVEXCPTN, generated during kernel or executive 
mode exception processing, 94 

kernel mode, handling operations, 969 
KRNLSTAKNV, generated by kernel-stack-not-valid 

exception, 76 
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bugchecks (continued) 
KRPEMPTY, generated by failure to allocate a KRP, 

568 
MACHINECHK, generated by machine check 

exception service routine, 980 
mechanism, characteristics and use, 967 
MTXCNTNONZ, SERVICE_EXIT generation for 

mutex error, 116 
nonfatal 

executive and kernel mode operations, 969 
user and supervisor mode operations, 968 

NOTSYSVA, generated by MMG$LOCK_SYSTEM_ 
PAGES, 1146 

OPERATOR, generated by OPCCRASH, 957 
PGFIPLHI, caused by page fault at IPL above 2, 437 
POOL CHECK 

generated when pool is poisoned, 5 70 
generated when pool's FREE pattern not intact, 

572 
processing, reserved instruction fault as path into, 

85 
SPLIPLHIGH, synchronization failure indication, 

192 
SPLIPLLOW 

generated during spinlock release, 195 
reason for, 194 

SPLRELERR 
generated during spinlock release, 195 
release failure indication, 192 

SPLRSTERR, generated during spinlock restore, 194 
SSRVEXCEPT 

fatal, generated during kernel mode last chance 
handling, 94 

nonfatal, generated during executive mode last 
chance handling, 95 

SSVECFULL, generated by EXE$CONNECT _ 
SERVICES, 850 

STATENTSVD, generated by EXE$RESTART_ATT, 
996 

supervisor mode, handling operations, 968 
user mode, handling operations, 968 

BUGCHK (make bugcheck log entries privilege). See 
also bugchecks; privileges 

use 
by $SNDERR, 1109 
to generate bugchecks in user and supervisor 

mode, 968 
BUGREBOOTJarameter (SYSGEN) 

effect on fat bugcheck processing, 979 
buses. See also adapters; hardware; I/O 

A-bus, VAX 86x0 system, 52 
accelerator, VAX-11/730 system, 47 
array, VAX-11/730 system, 47 
M-bus, VAXstation 3520 system, 50 
NMI bus, VAX 8800 family, 53 
Q22-bus 

adapter, interrupt vectors in the SCB, 46 
adapter, VAXstation 3520 system, 51 

SBI, VAX 8800 family, 53 
SCSI 

MicroVAX 3100 system, 50 
VAXstation 3520 system, 51 

VAXBI 
adapter, interrupt vectors in the SCB, 45 
VAX 6000 series, 51 
VAX 8200 family, use as system bus, 52 

busy waits. See also wait states 
address of most recent, 176 
operations, 1035 
timeout, purpose of, 1023 
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wait type for processor waiting for spinlock, 173 
BUSYWAIT macro 

operations, 1035 
BYPASS (bypass all object access controls privilege). 

See also privileges 
use 

by $BRKTHRU, 698, 702 
by logical name system services, 1092 
to specify access protection of a mailbox, 665 

byte count quota 
charged 

by EXE$GETJPI, 331 
for assigning a channel to a template device, 599 
for section window control block, 412 
for temporary mailbox creation, 661 

waiting for, context, 293 
BYTLM (Authorize Utility quota). See byte count 

quota 

C language 
parallel processing features, run-time support for, 

341 
CA (conditional assembly parameters) 

name, code, and features, jtable) 1263 
cache. See also memory management 

translation buffer, performance optimization use of, 
365 

virtual pages, 436 
cache coherency 

characteristics and use, 190 
term definition, 1009 

Cache lock. See also locks 
characteristics and use, 1307 

CACHE_SERVER process 
creation of, 947 

call frame condition handlers. See also condition 
handlers 

distinguished from other call frames, 90 
searching for, 88 

call frames 
first 

set up on supervisor mode stack by CLI, 801 
set up on user mode stack by EXE$PROCSTRT, 

734 
minimal, 112, 114 
modified by EXE$UNWIND, 98 
removed by SCH$WAIT, 290 
traversed by EXE$SRCHANDLER, 88 
unwound by $UNWIND, 98 

from the stack, 96, jfigure) 97 
from the stack, potential infinite loop problem, 

100 
CAN$C_AMBXDGN cancel code 

MBDRIVER operations, 670 
CAN$C_CANCEL cancel code 

MBDRIVER operations, 670 
CAN$C_DASSGN cancel code 

MBDRIVER operations, 670 
$CANCEL (Cancel 1/0 system service) 

control flow, 624 
flushing 

attention AST list requested by, 151 
CTRL/C attention AST list, 152 
out-of-band AST list requested by, 156 
out-of-band AST list, 153 

requested during channel deassignment, 603 
cancel 1/0 driver routines 

characteristics and use, 584 
testing device affinity in, 1042 



Cancel 1/0 system service. See $CANCEL 
Cancel 1imer system service. See $CANTIM 
Cancel Wakeup system service. See $CANWAK 
CANCELIO routine (MBDRIVER module) 

mailbox cancel 1/0, operations, 670 
$CANEXH (Cancel Exit Handler system service) 

operations, 771 
$CANTIM (Cancel 1imer system service) 

operations, 259 
$CANWAK (Cancel Wakeup system service) 

operations, 261 
capabilities. See also affinity; scheduler; SMP systems 

acquiring, 298 
changing, 287 
characteristics and use, 287 
defined by $CPBDEF macro, 1019 
described in per-CPU database, 28 7 
mismatch handling, 297 
removing, 297 
required by a process, 288 
requirements 

as significant scheduling process characteristic, 
268 

transition to RWCAP resulting from, 281 
reset at image rundown, 289 
resetting, 298 
term definition, 1007 
transitions triggered by, 285 
uses, 287 

card reader 
driver, job controller notified of unsolicited input by, 

785 
driver interrupt service routine, "hot" card reader 

feature description, 785 
unsolicited input, batch process creation as result of, 

785 
CASE_BLIND logical name translation attribute 

characteristics, 1075 
catch-all condition handler 

establishing for a new process, 735 
EXE$EXCMSG use by, 1114 
mechanism, 94 

CCA (console communications area) 
VAX 6000 series, 893 
VAXstation 35x0, 879 

CCB (channel control block). See also adapters; 1/0 
characteristics and field definitions, 595 
characteristics and use, 580 
CTL$GL_CCBBASE, address of CCB table, 595 
layout, {figure) 595 
locating a free, 597 
summary, 1245 

CCB$B_AMOD field 
definition and use, 595 
negative access mode used by Files-11 XQP, 596 

CCB$B_STS field 
definition and use, 596 

CCB$L_UCB field 
definition and use, 596 

CCB$L_ WIND field 
definition and use, 596 

CCB$V _IMGTMP bit (CCB$B_STS field) 
set by EXE$BRK1HRU, 702 
tested by EXE$RUNDWN, 775 

CCB$W _IOC field 
definition and use, 596 

CDDB (class driver data block) 
summary, 1245 

CDRP (class driver request packet) 
characteristics and use, 580 

FKB as {>art of, 5 7 
layout, (figure) 679 
summary, 1245 

CEB (common event block} 
address for clusters 2 and 3, 204 
CEF wait queue use, {figure) 204, 273 

Index 

common event flag cluster data .structure, field 
definitions and use, {figure) 203 

layout, {figure) 204 
linking into systemwide list, 204 
naming, 204 
status byte definition and use, 204 
summary, 1245 

CEB$B_STS field 
definition and use, 204 

CEB$B_ WQCNT field 
definition and use, 205 

CEB$L_ CEBBL field 
definition and use, 204 

CEB$L_ CEBFL field 
definition and use, 204 

CEB$L_EFC field 
definition and use, 205 

CEB$L_PID field 
definition and use, 205 

CEB$L_UIC field 
definition and use, 205 

CEB$L_ WQBL field 
definition and use, 205 

CEB$L_ WQFL field 
definition and use, 205 

CEB$T_EFCNAM field 
definition and use, 204 

CEB$V_NOQUOTA bit (CEB$B_STS field) 
definition and use, 204 

CEB$V _PERM bit (CEB$B_STS field) 
definition and use, 204 

CEB$W _ GRP field 
definition and use, 204 

CEB$W _PROT field 
definition and use, 205 

CEB$W _REFC field 
definition and use, 205 

CEB$W _STATE field 
definition and use, 205 

CEF (common event flag wait state). See also ~ent 
flag wait state; event flags; process states; wait 
states 

characteristics and use, 210 
context for, 292 
processes 

queue listheads, {figure) 204 
queue listheads, locati6n, 205, 273 

transitions 
from CEF to COM or COMO, 282 
to CEF from CUR, 282 

change mode. See also exceptions; system services 
dispatch tables 

entry format, {figure) 112 
field definition and use, 112 

dispatcher 
change-mode-to-executive operations, 115 
change-mode-to-kernel operations, 115 
control flow, 115 
data structures, field definitions and use, 112 
exitlaths, common operations, 116 
han -built call frame, 112 
operations common to both kernel and executive 

dispatchers, 114 
process, operations, 122 
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change mode (continued) 
exceptions 

CHME, 76, 111 
CHMK, 76, 111 
CHMS, 77, 111 
CHMU, 77, 111 
selecting stack for servicing, 35 

instructions. See also instructions 
implementation description, 111 
VAX architecture feature used by VMS, 15 

system services, operations, 127 
change mode mutex 

locked by EXE$CONNECT_SERVICES, 850 
change mode operands 

assigned as system services are loaded, 826 
values for 

loaded system services, 113 
services in privileged shareable image, 113 

Change to Executive Mode system service. See 
$CMEXEC 

Change to Kernel Mode system service. See $CMKRNL 
change-mode-to-executive dispatcher 

operations, 115 
change-mode-to-kernel dispatcher 

operations, 115 
change-mode-to-supervisor handler 

declared by CLI, 801 
declared through $DCLCMH, 84 

change-mode-to-user handler 
declared through $DCLCMH, 85 
use 

by Files-11 XQP, 85 
by job controller, 85 

channel control block. See CCB 
channel (controller) request block. See CRB 
CHANNELCNT parameter (SYSGEN) 

effect on Pl space,· 1293 
channels. See also CCB; device drivers; I/O 

access, 595 
assigning 

operations, 595 
to local devices, 598 
to remote devices, 601 
to shadow set member, 598 
to virtual terminal, 598 

deassigning 
last channel processing, 605 
operations, 595 

terminal controllers and, 684 
Check Protection system service. See $CHKPRO 
CHECK_PACKET routine (MEMORYALC module) 

pool poisoning operations, 572 
CHECK_ VERSION module 

EXE$CHECK_ VERSION, operations, 854 
checking 

pools, 572 
$CHKPRO (Check Protection system service) 

logical name table access checking, 1092 
CHME exception. See also change mode 

why VMS handles, 76 
CHMK exception. See also change mode 

why VMS handles, 76 
CHMS exception. See also change mode; change-mode­

to-supervisor handler 
establishing a handler, 84 

CHMU exception. See also change mode; change­
mode-to-user handler 

establishing a handler, 84 
CI (computer interconnect). See also I/O 

adapter 
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communication through interlocked queues, 165 
interrupt service routines operations, 649 
powerfail and recovery handling by, 1004 

microcode files, location on various VAX processors, 
909 

class driver data block. See CDDB 
class driver request packet. See CDRP 
class drivers. See also device drivers; I/O; port drivers; 

SCS; SCSI 
list of, 676 
operations, 676 
port driver binding, 676 

(CLD)DCLTABLEx.LIS 
locating command definition file listings in, 1131 

cleanup operations. See also condition handlers 
image termination, normal, 806 
procedure-specific, performing during call frame 

unwinding operations, 97 
Clear AST system service. See $CLRAST 
Clear Event Flag system service. See $CLREF 
clearing 

instruction lookahead, by REI instruction, 39 
CLI (command language interpreter). See also DCL 

CLI, MCRCLI 
callback mechanism, address of service routine, 801 
command processing loop 

commands handled by internal procedures, 
(table) 802 

control flow, (figure) 802 
operations, jtable) 802 

data pages, contents, names and descriptions, 
(table) 1229 

exit handler, operations, 806 
image activation of, 762 
image initiation 

argument list passed to image, jfigure) 805 
operations, 802 

image processing and, 799 
initialization, operations, 801 
processes that map, control flow, (figure) 799 
STARTUP process the first to include, 945 
term definition, 11 

CLISYMTBL parameter (SYSGEN) 
effect on Pl space, 1292 
size of CLI symbol table, use by LOGINOUT, 796 

clocks. See also timers 
hardware 

characteristics and use, 248 
synchronizing access to database for, 184 

time-of-year 
characteristics and use, 251 
resetting by $SETIME, 251 

CLONE_UCB routine ((TTDRVR)TTYSUB module) 
operations, 685 

$CLRAST (Clear AST system service) 
AST exit operations, 141 
effect on PR$_ASTLVL, 130 
resetting PCB$B_ASTACT bits with, 132 

$CLREF (Clear Event Flag system service) 
clearing event flag in a synchronous system service, 

121 
clearing event flags, operations, 212 

cluster. See common event flags - clusters; page 
cluster; VAXcluster systems 

cluster system ID. See CSID 
cluster-available devices 

characteristics and use, 590 
CLUSTER_SERVER process 

creation of, 947 
$GETJPI 



CLUSTER_SERVER process (continued) 
$GETJPI (continued) 

special kernel mode AST operations in, 333 
use by, 332 

participant in clusterwide process services, 322 
queuing kernel mode AST to, 322 
use by $BRKTHRU, 699 

clusterwide process services. See CWPS 
CLUSTRLOA image 

loading, operations, 857 
transfer vectors area location, 831 
vector, table, 85 7 

CLUSTRVEC module 
connection manager and distributed lock manager 

code, entry point names and descriptions, 
(table) 1218 

miscellaneous transfer vector areas defined in, 831 
CMEXEC (change mode to executive privilege). See 

also privileges 
activation of shareable images, 755 
system service dispatching, 127 

$CMEXEC (Change to Executive Mode system service) 
control fl.ow, 127 

CMI (CPU-to-memory interconnect) 
VAX-11/750 system, 47 

CMKRNL (change mode to kernel privilege). See also 
privileges 

activation of shareable images, 755 
connect-to-interrupt driver, 652 
system service dispatching, 127 
use 

by $CREPRC, 712, 719 
by image dump facility, 736 
by SYSGEN, 948 

$CMKRNL (Change to Kernel Mode system service) 
control flow, 127 

CMOD$AB_EXEC_INHIBIT_MASK 
executive mode inhibit mask table, system service 

filtering use of, 127 
CMOD$AB_KERNEL_INHIBIT_MASK 

kernel mode inhibit mask table, system service 
filtering use of, 127 

CMOD$AL EXIT TYPE table 
definition-and use, 113 

CMOD$AR EXEC DISPATCH VECTOR 
dispatch table for executive mode system services, 

112 
CMOD$AR KERNEL DISPATCH VECTOR 

dispatch table for kernel mode system services, 
112 

CMOD$ASTEXIT routine (SYSTEM_SERVICE_ 
DISPATCHER module) 

entering $CLRAST, 115 
CMOD$GW CHMx LIMIT 

change mode dispatcher use of, 113 
controlling dispatching to privileged shareable 

images, 122 
CMOD$SSVECX routine (SYSTEM_SERVICE_ 

DISPATCHER module) 
change-mode-to-executive error handling, ll5 
RMS error detection use, 120 

$CNTREG (Contract Region system service) 
operations, 432 

CNX$CHECK_QUORUM routine 
((SYSLOA)CONUTIL module) 

operations, 1028 
cold-start flag 

clearing, PR$_ TXDB use for, 690 
COLLECT/ATTRIBUTES linker option 

use, 833 

Index 

collided page wait state. See COLPG 
COLPG (collided page wait state). See also page faults; 

process states; wait states 
characteristics and use, 4 79 
context for, 292 
page fault that results in, 445 
transitions 

from COLPG to COM or COMO, 283 
to COLPG from CUR, 283 

COM (computable state). See also COMO; process 
states; wait states 

characteristics, 281 
processes, queue listheads, location, (figure) 271 
transitions 

from COM to other states, 281 
to COM from CUR, 279 
to COM from other states, 282 

COM$DELATTNAST routine (COMDRVSUB module) 
delivering attention ASTs, 151 

COM$DELATTNASTP routine (COMDRVSUB 
module) 

CTRL/C notification use of, 152 
delivering attention ASTs to a particular process, 

151 
COM$DELCTRLAST routine (COMDRVSUB module) 

delivering out-of-band ASTs, 155 
COM$DELCTRLASTP routine (COMDRVSUB 

module) 
delivering out-of-band ASTs to a particular process, 

155 
COM$DRVDEALMEM routine (COMDRVSUB 

module) 
deallocating pool, synchronization issues, 562 

COM$FLUSHATTNS routine (COMDRVSUB module) 
flushing attention AST list, control flow, 151 

COM$FLUSHCTRLS routine (COMDRVSUB module) 
flushing out-of-band ASTs, control flow, 157 

COM$POST routine (COMDRVSUB module) 
operations, 683 

COM$SETATTNAST routine (COMDRVSUB module) 
setting attention ASTs with, 150 

COM$SETCTRLAST routine (COMDRVSUB module) 
setting out-of-band ASTs with, control flow, 154 

COMDRVSUB module 
COM$DELATTNAST, delivering attention ASTs, 

151 
COM$DELATTNASTP 

CTRL/C notification use of, 152 
delivering attention ASTs to a particular process, 

151 
COM$DELCTRLAST, delivering out-of-band ASTs, 

155 
COM$DELCTRLASTP, delivering out-of-band ASTs 

to a particular process, 155 
COM$DRVDEALMEM, deallocating pool, 

synchronization issues, 562 
COM$FLUSHATTNS, flushing attention AST list, 

control flow, 151 
COM$FLUSHCTRLS, flushing out-of-band ASTs, 

control flow, 157 
COM$POST, operations, 683 
COM$SETATTNAST, setting attention ASTs with, 

150 
COM$SETCTRLAST, setting out-of-band ASTs 

with, control flow, 154 
command definition files 

locating DCL command routines in, 1131 
command language interpreter. See CLI 
common event block. See CEB 
common event flag wait state. See CEF 

1341 



Index 

common event flags. See also CEB; CEF 
characteristics and use, 204 
clusters 

2 and 3, location, 204 
associating to, 206 
characteristics, 202 
deleting permanent, 208 
dissociating, 207, 208 
identifying, 204 
processes currently associated to, 205 
wait queues, 205 

interprocess communication mechanism, 342 
interprocess synchronization through, 213 
location, 205 
number available to processes, 202 
set by DIRPOST, 616 
wait queues, (figure) 204 
waiting for, 208 

communications. See also common event flags; global 
sections; locks; logical names; mailboxes 

interprocess, mechanisms, overview, 342 
network, images used with, 687 
OPCOM process 

command file that creates, 947 
description, 1108 
mailbox use by, 674 

processes, list of available mechanisms, 318 
with system processes. See ERRFMT process; job 

controller; OPCOM process 
COMO (computable outswapped state). See also COM; 

process states; wait states 
characteristics, 281 
processes, queue listheads, location, (figure) 271 
transitions 

from COMO to other states, 281 
to COMO from COM, 281 
to COMO from wait states, 282 

compatibility 
adapter role in supporting, 45 

compatibility mode 
accessing through REI instruction, 38 
context page, description, I table) 1230 
exceptions 

establishing a process handler, 84 
handling, 85 

images, image activator operations, 762 
REI tests to enter compatibility mode, 38 

compatible locks. See also locks 
characteristics and use, 214 

completion AST. See also AST 
queuing 

after granting a lock, reasons for, 232 
by $GETLKI, 235 

computability. See also COM; COMO; scheduler 
system services affecting, 334 

computable outswapped state. See COMO 
computable state. See COM 
computer interconnect. See CI 
CON$INTDISI routine ([SYS)PERMANENT_DEVICE_ 

DATABASE module) 
operations, 690 

CON$INTDISO routine ([SYS)PERMANENT_ 
DEVICE_DATABASE module) 

operations, 690 
CON$INTINP routine ([SYSLOA]OPDRIVER 

module) 
operations, 691 

CON$INTOUT routine ([SYSLOA]OPDRIVER 
module) 

operations, 691 
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CONCEALED equivalence name attribute 
characteristics, 1075 

concurrency. See locks; SMP systems; VAXcluster 
systems 

condition handlers. See also AST; bugchecks; 
conditions; exceptions; image activation; 
mechanism array; process creation; signal array; 
software conditions 

actions performed by, 95 
actions with respect to a particular access mode, 72 
call frame 

compared with software-vectored condition 
handler, 73 

distinguished from other call frames, 90 
distinguished from software-vectored handlers, 88 
establishing, 7 4 
searching for, 88 

catch-all condition handler 
establishing for a new process, 735 
EXE$EXCMSG use by, 1114 
mechanism, 94 

common call site for, 91 
concepts and mechanisms, !chapter) 71 
continuing, passing conditions on by, mechanism, 

96 
DCL use of, 95 
declaration and coding. Consult Introduction to 

VMS System Services; VMS Run-Time Library 
Routines Volume 

default !VMS-supplied), mechanism, 93 
dispatching to 

common call site for, 91 
common procedures for, 88 

establishing, 73 
exceptions passed to, !table) 77, !table) 82 

control flow, (figure) 77 
facility 

features, 72 
major goal, 73 

last chance 
calling, 90 
catch-all condition handler use for, 94 

MCR use of, 95 
mechanism array 

building, 79 
layout, (figure) 79 . 

message formatting for, 1110 
overview, 71 
searching for, (figure) 88 

with multiple active signals, (figure) 91 
setting up for non-user access modes, 94 
signal array 

building, 77 
layout, (figure) 77 

software-vectored 
compared with call frame condition handler, 773 
distinguished from call frame handlers, 88 
establishing, 7 4 
searching for, 88 
types of, 74 

supervisor mode, establishing, 95 
traceback handler, 770 

established by image startup, mechanism, 93 
conditional assembly parameters (CA) 

name, code, and features, !table) 1263 
conditions 

nested, handling example, (figure) 102 
passing on by resignaling or continuing, 96 
software, continue signal actions, 96 
type code, signal as name for, 72 



conditions (continued) 
values, names format, 1234 

CONFIGURE process 
creation of, 946 

CONFINE logical name attribute 
characteristics, 1069 

connect-to-interrupt mechanism. See also I/O 
characteristics and use, 652 

connection manager. See also VAXcluster systems 
entry point names and descriptions, (table) 1218 

console block storage device 
1/0, operations, 691 

console command 
software interrupts requested by, 54 

console communications area. See CCA 
console devices 

data transfer between VAX CPU and, 689 
served by primary processor in benign state, 1033 
served by primary processors to secondary, 1025 

console drivers. See also device drivers 
block storage devices, 691 

console interrupts 
dispatching, 690 
terminal, operations, 690 
VAX architecture mechanisms, 43 

console microprocessors 
configuration, 880 
functions, 880 

console port driver 
relation with terminal drivers and console UCB, 

(figure) 681 
terminal class driver binding to, (figure) 691 

console subsystem 
initialization functions, overview, 862 
operations, 688 
power recovery 

logic, 984 
operations, 984 

VAX 6000 series components, 893 
VAX 8200 family components, 895 
VAX 86x0 configuration, 881 
VAX 8800 family configuration, 885 
VAX 88x0 configuration, 883 
VAX-11/730 configuration, 890 
VAX-11/750 components, 897 
VAX-ll/78x configuration, 887 

console terminal 
entering XDELTA commands from, 68 
requesting IPL 12 interrupt from, 68 

CONSTANT statement (SDL) 
characteristics and use, 1162 

constants. Consult VMS 1/0 User's Reference Volume 
and VMS System Services Reference Manualfor 
systemwide constants not listed in Appendix E 

definitions, locating, 1133 
symbolic names and meanings, (tables) 1262 

context. See also process context; system context 
hardware. See also hardware PCB 

loading process, LDPCTX instruction control flow, 
309 

saving process, SVPCTX instruction control flow, 
308 

process blocks, location of, 323 
software interrupts, interrupt service routine 

handling of, 55 
switching. See also scheduler 

accessing hardware PCB during, 307 
process, characteristics and operations, 306 

CONTINUE command 
operations, 808 

Index 

Contract Region system service. See $CNTREG 
control characters 

handled by out-of-band ASTs, 153 
out-of-band AST use for notification of, 149 

control Hags 
$GETJPI, AST queuing control provided by, 330 

control How. See also exceptions; interrupts; scheduler; 
wait states 

methods for altering, overview, 29 
control mechanisms. See AST; change mode -

dispatcher; condition handlers; exceptions; 
interrupts; software interrupts 

control region. See also address space - Pl 
copying from during process creation, (figure) 710 
overview, 5 
process, returning information from, 330 
term definition, 5 

conversion deadlocks 
detecting, method, 237 
searching for, preventing locks from participating, 

236 
victim selection in, 243 

conversion grant mode (locks). See also locks 
characteristics and use, 228 
grant mode and, 229 
group grant mode and, 228 

conversion queue 
removing LKBs from, 231 
resource, listhead location in RSB, 217 

conversion support 
system services that provide, 1120 

Convert ASCII String to Binary Time system service. 
See $BINTIM 

Convert Binary Time to ASCII String system service. 
See $ASCTIM 

Convert Binary Time to Numeric Time system service. 
See $NUMTIM 

copy-on-reference page 
global 

page fault, control flow, 454 
page fault, overview, 448 

page fault 
when page is, control flow, 445 
when page is not, control flow, 439 

system 
page fault when page is, control flow, 459 
page fault when page is not, control flow, 458 

transitions 
when page is, (figure) 445 
when page is not, (figure) 439 

corrected read data errors 
SCB reserved offsets, 42 

CPB$V _EXPLICIT_AFFINITY capability 
use when set, 288 

. CPBSV _IMPLICIT_AFFINITY capability 
implicit affinity use of, 289 
use when set, 288 

CPBSV _PRIMARY capability 
use, 287 

$CPBDEF macro 
capabilities symbolic values, 273 
definitions of processor capabilities, 1019 

CPU. See also CPU$ prefix entries; per-CPU database; 
processors; SMP systems; VAXcluster systems 

as 1/0 hardware configuration component, 577 
capabilities. See capabilities 
data transfer between console devices and, 689 
data vector 

characteristics and use, 1016 
per-CPU data area relation to, (figure) 1016 
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CPU (continued) 
state. See processors - states 

CPUID 
capabilities use of, 287 
determining in SMP systems, 1008 
system mask use of, 269 

CPU mutex 
held by 

SMP$INVALID, 1030 
SMP$SHUTDOWN_CPU, 1058 

operations, 1022 
CPU time 

incremented by EXE$HWCLKINT, 262 
CPU time limit expiration 

normal AST handling of, 146 
CPU$B_BUSYWAIT field 

definition and use, 1018 
CPU$B_CPUDATA field 

definition and use, 1018 
CPU$B_CPUMTX field 

definition and use, 1018 
CPU$B_CUR_PRI field 

definition and use, 273, 1016 
priority use of, 276 

CPU$B_STATE field 
definition and use, 1018, 1043 

CPU$B_SUBTYPE field 
definition and use, 1018 

CPU$B_TYPE field 
definition and use, 1018 

CPU$L_BUGCODE field 
definition and use, 1018 

CPU$L_ CAPABILITY field 
capabilities use of, 287 
definition and use, 273, 1019 

CPU$L_CPUID_MASK field 
definition and use, 273, 1018 

CPU$L_CURPCB field 
address for process in CUR state, 279 
definition and use, 273, 1016 

CPU$L_HALTPC field 
definition and use, 1018 

CPU$L_HALTPSL field 
definition and use, 1018 

CPU$L_INTSTK field 
definition and use, 1017 

CPU$L_IPL_ARRAY field 
definition and use, 1020 
spinlock use of, 177 

CPU$L_IPL_ VEC field 
definition and use, 1020 
spinlock use of, 177 

CPU$L_KERNEL field 
definition and use, 1019 

CPU$L_MCHK_MASK field 
definition and use, 1018 

CPU$L_MCHK_SP field 
definition and use, 1018 

CPU$L_NULLCPU field 
definition and use, 1019 

CPU$L_POBR field 
definition and use, 1018 

CPU$L_POLR field 
definition and use, 1018 

CPU$L_POPT_PAGE field 
definition and use, 1018 

CPU$L_PlBR field 
definition and use, 1018 

CPU$L_PlLR field 
definition and use, 1018 
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CPU$L_PCBB field 
definition and use, 1018 

CPU$L_PERCPUVA field 
definition and use, 1017 

CPU$L_PHY_CPUID field 
definition and use, 273, 1018 
spinlock use of, 176 

CPU$L_PSBL field 
definition and use, 1019 

CPU$L_PSFL field 
definition and use, 1019 

CPU$L_QLOST_FQFL field 
definition and use, 1019 

CPU$L_RANK_ VEC field 
definition and use, 1019 
spinlock use of, 177 

CPU$L_REALSTACK field 
definition and use, 1017 

CPU$L_SAVED_AP field 
definition and use, 1018 

CPU$L_SAVED_ISP field 
definition and use, 1018 

CPU$L_SCBB field 
definition and use, 1018 

CPU$L_SISR field 
definition and use, 1018 

CPU$L_TENUSEC field 
characteristics and use, 932 
definition and use, 1019 

CPU$L_TPOINTER field 
definition and use, 1020 
sanity timer mechanism use of, 1037 

CPU$L_UBDELAY field 
characteristics and use, 932 
definition and use, 1019 

CPU$L_ WORK_REQ field 
definition and use, 1018 
interprocessor interrupt request use of, 1023 

CPU$Q_BOOT_TIME field 
definition and use, 1019 

CPU$Q_SWIQFL field 
definition and use, 1019 

CPU$Q_ WORK_FQFL field 
definition and use, 1019 

CPU$W _HARDAFF field 
count of processes with explicit affinity, 288 
definition and use, 273, 1019 
image rundown effect on, 289 
process deletion effect on, 289 

CPU$W_SANITY_TICKS field 
definition and use, 1020 
sanity timer mechanism use of, 1037 

CPU$W_SANITY_TIMER field 
definition and use, 1020 
sanity timer mechanism use of, 1037 

CPU$W _SIZE field 
definition and use, 1018 

CPU-dependent images 
loading, 856 

CPU-dependent routines 
entry points, names and descriptions, jtable) 1218 
locating, 1153 

CPU-specific processor registers 
saving during powerfail handling, 983, jtable) 984 

CPU_START routine ((SYSLOA)SMPSTART_xxx 
module) 

operations, 1054 
CPU-to-memory interconnect. See CMI 
$CPUDEF macro 

per-CPU database symbolic values, 1016 



SCPUDEF macro (continued) 
processor state symbols defined by, 1043 
work request bits defined by, 1023 

CPUDISP macro 
description, location of, 1137 

CPUEXIT bugcheck. See also bugchecks 
generated by SMP$INTSR, 1025 

CPUSANITY bugcheck. See also bugchecks 
generated by EXE$HWCLKINT, 1038 

CPUSPINWAIT bugcheck. See also bugchecks 
generated by SMP$TIMEOUT, 1035 

crash. See bugchecks 
CRASH CPU 

fatal bugcheck operations by, 1060 
term definition, 1060 

crash dumps. See also bugchecks; errors 
characteristics and use, 970 
physical memory dump 

characteristics and limitations, 970 
operations, 975 

selective memory dump 
characteristics, 971 
incompatible with dump to PAGEFILE.SYS, 977 
layout, (figure) 977 
operations, 976 

CRB (channel request block). See also 1/0 
characteristics and use, 580 
layout and summary, 1247 
mailbox, assembled into SYSTEM_PRIMITIVES 

loadable executive image, 657 . 
Q22-bus-based MicroVAX system, conflguration, 49 
timeout mechanism, EXE$TIMEOUT handling of, 

265 
CRBSL_DLCK field 

definition and use as pointer to spinlock, 180 
Create and Map Section system service. See $CRMPSC 
Create Logical Name system service. See $CRELNM; 

$CRELOG 
Create Logical Name Table system service. See 

$CRELNT 
Create Mailbox and Assign Channel system service. 

See $CREMBX 
Create Process system service. See $CREPRC 
Create Vutual Address Space system service. See 

$CRETVA 
SCRELNM (Create Logical Name system service) 

operations, 1093 
$CRELNT (Create Logical Name Table system service) 

operations, 1095 
$CRELOG (Create Logical Name system service) 

superseded in VMS Version 5, 1100 
CRELOG logical name attribute 

characteristics, 1069 
SCREMBX (Create Mailbox and Assign Channel 

system service) 
control flow, 658 

$CREPRC (Create Process system service). See also 
process creation 

arguments passed to 
byDCL, 789 
by job controller process, (table) 784 

base priority initialization by, 275 
characteristics, 709 
control flow, 710 

SCRETVA (Create Virtual Address Space system 
service). See also address space; virtual address 
space; virtual pages 

control flow, 407 
SCRMPSC (Create and Map Section system service). 

See also global sections; process sections 

control flow, 412 
creating 

global sections, 416 
PFN-mapped process sections, 415 
process sections, 374 
process-private sections, 412 

CSID (cluster system ID) 

Index 

location for node not mastering a resource, RSB field 
that contains, 224 

VAXcluster node search use of, 325 
CTDRIVER. See also device drivers 

remote terminal driver, operations, 685 
CTL.$AL_FINALEXC array 

condition handler search use of, 74 
CTL$AQ_EXCVEC array 

condition handler search use of, 74 
CTL$C_KRP_COUNT symbol 

KRP packet control, 567 
CTLSC_KRP_SIZE symbol 

KRP packet control, 567 
CTL$GB_REENABLE_ASTS cell 

notifying user process to request AST reenable, 143 
CTL$GB_SOFT_AST_DISABLE cell 

blocking user mode ASTs by setting low bit in, 143 
CTL$GB_SSFILTER cell 

system service filtering use of, 128 
CTL$GL_CCBBASE cell 

CCB table location, 595 
CTL$GL_CMSUPR cell 

storing process change-mode-to-supervisor handler 
in, 84 

CTLSGL_CMUSER cell 
storing process change-mode-to-user handler in, 84 

CTLSGL_COMPAT cell 
storing process compatibility mode handler in, 84 

CTL$GL_CTLBASVA cell . 
. Pl space boundary address, 353 

CTL$GL_FIXUPLNK cell 
· definition and use, 763 

CTL$GL_GETMSG cell 
. characteristics and use, 1111 

CTLSGL_KRPFL cell 
KRP looka:side listhead, 567 

CTL$GL_LNMDIRECT cell 
meaning, 1071 

CTL$GL_LNMDIRSEQ cell 
meaning, 1085 

CTL$GL_LNMHASH cell 
meaning, 1083 

CTLSGL_PHD cell 
accessing PHD through, 368, 537 

CTL$GL_PPMSG cell 
characteristics and use, 1111 

CTL$GL_USRCHME cell 
address of process system service dispatcher, 122 

CTLSGL_USRCHMKcell 
address of process system service dispatcher, 122 

CTL$GQ_ALLOCREG cell 
. process allocation region listhead, 565 
CTL$GQ_LNMTBLCACHE cell 

meaning, 1086 
CTL$GQ_POALLOC cell 

PO process allocation region listhead, 566 
CTL$GQ_PROCPRIV cell 

process privilege mask, use and routines that 
manipulate it, (table) 778 

CTLSGW_CHINDX cell 
number of highest assi.S!led channel, 607 

CTLIMGLIM parameter (SYSGEN) 
process allocation region allocation limit, 566 
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CTLPAGES parameter (SYSGEN) 
effect on Pl space, 1293 
number of pages in Pl pool, 565 

CTRL/C 
attention AST list, flushing, 152 
attention AST use for notification of, overview, 149 

CTRL/Y 
attention AST list, flushing, 152 
attention AST use for notification of, 149, 152 
handling during image execution, 770 
processing, image termination operations, 806 

CUR (current state). See also process states; wait states 
characteristics and transitions, 2 79 
placing into a wait state, 290 
preemption mechanism, 299 
process, pointer to in per-CPU database, 271 
transitions, from CUR to other states, 279 

current priority. See priorities 
current state. See CUR 
CWPS (clusterwide process services) 

creation of CLUSTER_SERVER process for, 947 
extending process control and information system 

services with, 319 
locating processes on VAXcluster nodes, 322 
queue, created in PCB by EXE$PROCSTRT, 322 
remote request processing, 322 
servicing requests for, (figure) 323 
use by 

EXE$BRKTHRU, 698, 699 
EXE$DELPRC, 812 
EXE$FORCEX, 339 
EXE$GETJPI, 332 
EXE$NAMPID, 322 
EXE$SETPRI, 340 
EXE$SUSPND, 337 
EXE$WAKE, 335 
$RESUME, 339 
$SCHDWK, 260 

CWPS$GETJPI routine (CWPS_GETJPI module) 
dispatching $GETJPI requests to other VAXcluster 

nodes, 332 
CWPS$GETJPI_PSCAN routine (CWPS_GETJPI 

module) 
dispatching $GETJPI requests to other VAXcluster 

nodes, 332 
CWPS$SRCV_GETJPI_AST routine (CWPS_SERVICE_ 

RECV module) 
operations, 332 

CWPS_GETJPI module 
CWPS$GETJPI, dispatching $GETJPI requests to 

other VAXcluster nodes, 332 
CWPS$GETJPl_PSCAN, dispatching $GETJPI 

requests to other VAXcluster nodes, 332 
CWPS_SERVICE_RECV module 

CWPS$SRCV_GETJPl_AST, operations, 332 
$CWPSJPI macro 

$GETJPI requests defined by, 326 
$CWPSSRV macro 

defining information to be passed to a remote 
VAXcluster node, 325 

CWPSSRV$L_EXT_OFFSET 
offset to a CWPSSRV extension, 326 

$DACEFC (Disassociate Common Event Flag Cluster 
system service) 

control flow, 207 
$DALLOC (Deallocate Device system service) 

control flow, 593 
requested by DELETE AST procedure, 149 
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$DASSGN (Deassign Channel system service) 
control flow, 603 
flushing 

attention AST list requested by, 151 
CTRL/C and CTRL/Y attention AST list, 152 
out-of-band AST list requested by, 156 

requested by DELETE AST procedure, 149 
data cells 

in loadable executive images, 833 
pointers, locating symbols with, 1151 
system data area, characteristics and use, 828 

data incoherency. See also synchronization 
characteristics, 162 

data management 
overview, 11 

data structure type definitions (DYN) 
name, code, and structure type, ltable) 1263 

data structures 
ASTs, field definitions and use, 131 
dynamic 

header format, (figure) 552 
storage areas for, 544 

executive, summary, 1242 
for global pages, characteristics and field definitions, 

388 
fork processes, 5 7 
global sections, relations among, (figure) 392 
1/0, overview, 579 
1/0 devices, as component of 1/0 database, 578 
images, 740 
in loadable executive images, 835 
known images, 743 
lock management, characteristics and use, 214 
logical names, 1077 
mailboxes associated with creation, jfigure) 662 
memory management 

characteristics and field definitions, 38 7 
concepts and mechanisms, !chapter) 349 

offset definitions, locating, 1133 
page files, characteristics and field definitions, 396 
physical memory, overview, 355 
private, protecting against concurrent access, 167 
related to $PROCESS_SCAN, 323 
scheduler, characteristics and field definitions, 268 
SDL definitions, (example) 1159 

interpreting field meanings with, 1158 
SMP support, 1013 
SMP systems, synchronizing access with spinlocks, 

166 
summarized in Appendix E, {table) 1242 
swapping, characteristics and use, 393 
system, descriptions, (chapter) 1241 
that describe process context, (figure) 3 
virtual address space, overview, 354 

database. See also per-CPU database; scheduler -
database 

1/0, components, 578 
date. See also time 

initializing, operations, 252 
maintaining, 254 

across system reboots and power failures, hardware 
support, 251 

DCL (Digital Command Language) CU. See also CLI, 
MCRCLI 

command module, identifying DCL command 
internal routines with, 1131 

command processing loop 
commands handled by internal procedures, 

{table) 802 
control flow, (figure) 802 



DCL (Digital Command Language) CLI (continued) 
command processing loop (continued) 

operations, (table) 802 
commands 

interactive subprocess creation and connection, 
787 

locating listing file for, 1131 
that request $SNDJBC, 1103 

condition handlers used by, 95 
exit handler, operations, 806 
image initiation 

argument list passed to image, (figure) 805 
operations, 802 

image processing and, 799 
initialization, operations, 801 
term definition, 11 

DCL$EXITHAND (DCL exit handler) 
control flow, 806 

DCL$STARTUP routine ([DCL]INITIAL module) 
operations, 801 

$DCLAST (Declare AST system service) 
creating ASTs with, 134 
PCB$W_ASTCNT decremented by, 131 

$DCLCMH (Declare Change Mode Handler system 
service) 

operations, 84 
[DCL]DCL.MAP map file 

locating DCL command internal routines with, 1131 
locating routines in DCL, using for, 1153 

$DCLEXH (Declare Exit Handler system service) 
operations, 771 

[DCL]INITIAL module 
DCL$STARTUP, operations, 801 

DDB (device data block) 
characteristics and use, 580 
layout and summary, 1247 
mailbox, assembled into SYSTEM_PRIMITIVES 

loadable executive image, 657 
DDT (driver dispatch table) 

characteristics and use, 582 
layout and summary, 1247 

DEADLOCK module 
LCK$SEARCHDLCK, operations, 237 
LCK$SRCH_RESDLCK, operations, 239 

DEADLOCK_ WAIT parameter (SYSGEN) 
deadlock search initiation controlled by, 236 

deadlocks. See also locks; resources; synchronization 
avoiding 

during spinlock acquisition, 193 
during VBN to LBN conversion, 622 

conversion 
detecting, method, 237 
preventing locks from participating in search, 236 
victim selection, 243 

detecting 
method, 237 
system-owned lock queue restrictions resulting 

from, 234 
$ENQ argument restricting lock participation in 

search, dangers of, 236 
handling, 235 
multiple resource 

detecting, (figure) 238 
preventing locks from participating in search, 236 
recursive algorithm for verifying, (figure) 239 
search for, example, (figure) 241 
victim selection, 243 

preventing 
during spinwait, 1035 
spinlock use rules for, 180 

Index 

reasons for, 235 
search for 

criteria for initiating, 236 
initiating from EXE$TIMEOUT, 266 
triggering for lock requests, lock timeout queue 

role in, 236 
unsuspected, preventing accidental detection of, 

(figure) 240 
Deallocate Device system service. See $DALLOC 
Deassign Channel system service. See $DASSGN 
DEBUG command 

operations, 808 
debugger 

bootstrap, name for $IMGSTA system service, 769 
calling, during image execution, 770 
condition handling in images that contain, 93 
mapped by $IMGSTA, 769 

debugging. See also bugchecks; crash dumps; errors; 
SS$_ prefix entries; SS$_DEBUG signal; XDELTA 

synchronization problems, spinlock routine 
optimized for, 174 

decimal instructions. See also instructions 
unimplemented, emulation support for, 77 

Declare AST system service. See $DCLAST 
Declare Change Mode Handler system service. See 

$DCLCMH 
Declare Error Log Mailbox system service. See 

$DERLMB 
Declare Exit Handler system service. See $DCLEXH 
DECLARE_PSECT macro 

defining loadable PSECTs with, 833 
DECnet. See also SMP systems; VAXcluster systems. 

Consult VMS Network Control Program 
Manual; VMS Networking Manual 

buffer size, LRP list element size same as, 55 7 
lock use by, characteristics and use of each lock, 
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SCA protocol description, 678 
DEFINE DATA CELL macro 

defining data cells, (example) 830 
DEFINE ROUTINE CALL macro 

executive transfer-vectors defined by, 827 
DEFINE_ROUTINE_JSB macro 

executive transfer vectors defined by, 82 7 
DEFPRI rarameter (SYSGEN) 

norma process priority defined from, 2 78 
SWAPSCHED use of, 519 

DELETE AST procedure 
system services requested by, 149 

Delete Common Event Flag Cluster system service. 
See $DLCEFC 

Delete Global Section system service. See $DGBLSC 
DELETE kernel mode AST 

control flow, 813 
Delete Logical Name system service. See $DELLNM; 

$DELLOG 
Delete Mailbox system service. See $DELMBX 
Delete Process system service. See $DELPRC 
Delete Virtual Address Space system service. See 

$DELTVA 
$DELLNM (Delete Logical Name system service) 

operations, 1098 
$DELLOG (Delete Logical Name system service) 

superseded in VMS Version 5, 1100 
$DELMBX (Delete Mailbox system service) 

control flow, 662 
$DELPRC (Delete Process system service). See also 

process deletion 
kernel mode AST use by, 149 
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SDELPRC (Delete Process system service) (continued) 
normal AST use by, 147 
operations, 811 

(DELTA)XDELTA module 
XDT$CPU_WA1T, operations, 1033 

SDELTVA (Delete Virtual Address Space system 
service) 

control flow, 427 
requested by DELETE AST procedure, 149 

demand paging 
characteristics, 352 

demand zero 
global section, 417 
page 

backed by page file, 407 
private page faults, control flow, 447 
PTE characteristics, 3 73 
system page faults, control flow, 459 
transitions, (figure) 447 

sections, activation of, ISD and PTEs for, (figure) 752 
virtual address space, creating, 407 

SDEQ (Dequeue Lock Request system service) 
operations, 230 

Dequeue Lock Request system service. See SDEQ 
SDERLMB (Declare Error Log Mailbox system service) 

operations, 966 
DETACH (create detached processes privilege). See 

also privileges 
use by EXE$CREPRC, 712, 719 
use in process creation, 712, 716 

DEVSV _ALL bit (UCBSL_DEVCHAR field) 
set to indicate explicit allocation, 591 

DEV$V_CLU bit (UCB$L_DEVCHAR2 field) 
cluster-available devices identified by, 590 

DEVSV _NET bit (UCB$L_DEVCHAR2 field) 
network devices identified by, 590 

device affinity. See also affinity; capabilities; SMP 
systems 

SMP systems, operations, 1040 
term definition, 1007 
testing for 

at device timeout, 1042 
in EXESALTQUEPKT, 631 
in EXE$CANCEL, 625 
in IOC$INITIATE, 630 

device attention errors 
characteristics and handling, 963 

device controllers 
CRB, characteristics and use, 580 
device lock address location, 180 
initialization routine, purpose, 583 

device data block. See DDB 
device drivers. See also connect-to-interrupt mecha­

nism; device affinity; device timeout; FDT; I/O; 
interrupts; ISR 

class 
list of, 676 
operations, 676 

concepts and mechanisms, (chapter) 628 
console block storage device, operations, 691 
console terminal, operations, 690 
context, fork block in UCB used to contain, 579 
driver tables, overview, 582 
error logging, 962 

participation by IOC$REQCOM, 963 
fork IPL choice, considerations affecting, 63 
fork lock use by, 182, 590 
fork process importance to, 58 
initiating device action, (figure) 633 
local area terminals, characteristics, 685 
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mailboxes 
attention AST use by, 153 
control flow, 664 
writing to, 672 

major entry point list, 1041 
map files, use, 1154 
network, characteristics and operations, 687 
nonpaged pool synchronization, 561 
overview, 582 
port 

list of, 676 
operations, 676 

port/class model, characteristics, 628 
powerfail 

multiple, handling, 1002 
notifying about, 998 
recovery responsibilities, 999 

pseudo devices, characteristics and list, 687 
queuing 

I/O requests to, 613, 629, 631 
messages to mailboxes, control flow, 671 

register dump routine, 963 
remote terminals, characteristics, 685 
routines, overview, 583 
start I/O routine 

characteristics and use, 632 
entering, 629 
entering alternate, 631 

synchronizing 
in SMP systems, 1039 
shared resources, fork IPL use, 170 

terminal 
attention AST use by, 152 
operations, 679 

virtual terminals, characteristics, 684 
wait-for-interrupt model, characteristics and use, 

628 
device failure. See device timeout; mount verification 
device independence 

logical names role in, 1067 
device interrupts. See also ISR 

blocking, IPL use, 170 
driver actions 

servicing, 636 
waiting for, 635 

I/O, concepts and mechanisms, (chapter) 628 
operations, 641 
SMP systems, 1040 

serviced by primary processor, 1039 
timing out, 265 
VAX architecture mechanism, 44 

Device lock (lock manager) 
characteristics and use, 1299 

device lock (spinlock). See also locks; spinlocks 
characteristics and use, 179 
held 

at entry to timeout routine, 1039 
by TTYSWRTSTARTIO, 683 
in start I/O routine, 635, 638 

I/O subsystem importance, 581, 636 
must be acquired by interrupt service routines, 1039 
testing for, 192 

Device Scan system service. See SDEVICE_SCAN 
device timeout. See also timeouts 

EXE$TIMEOUT, 265 
initializing related UCB fields, 635 
routines, testing device affinity in, 1042 

device units 
fundamental component for I/O database, 5 79 
IDB, characteristics and use, 580 



device units (continued) 
initialization routines, purpose, 583 

device-dependent information 
characteristics, 705 

device-independent information 
characteristics, 705 

$DEVICE_SCAN (Device Scan systelh service) 
arguments, 1117 
operations, 1117 
use, 705 

DEVICELOCK macro 
generated code example, 187 

devices. See also device drivers; 1/0; interrupts 
allocated, accessible by subprocess of allocating 

process, 591 
allocating, 591 

explicit compared with implicit, 591 
autoconfiguring, SYSGEN operations, 948 
categories, characteristics and use, 590 
command file that directs configuration, 947 
controllers, as 1/0 hardware configuration compo-

nent, 577 
deallocating, 591 

conditions that prevent, 594 
deassigning channel to, 603 
drivers, concepts and mechanisms, (chapter) 628 
information system services, operations, 1117 
local, assigning channels to, 598, 600 
nontemplate, assigning channels to, 598 
remote, assigning channels to, 601 
SMP systems, restricting access to, 1040 
template, assigning channels to, 599 
units, as 1/0 hardware configuration component, 577 
virtual 1/0, mailboxes as, 655 

DEVICEUNLOCK macro 
generated code example, 189 

SDGBLSC (Delete Global Section system service) 
control flow, 423 

DIAGNOSE (diagnose devices privilege). See also 
privileges 

use to assign an error log mailbox, 966 
diagnostic bootstrap 

loaded by VMB, 901 
Digital Command Language. See DCL CLI 
Digital symbols 

dollarsign($)use, 1232 
underscore(_) use, 1232 

direct 1/0 
buffers, transfer parameters that describe, 610 
device driver implementation, through buffer 

mapping, 692 
FDT routines, characteristics, 610 
1/0 postprocessing request 

DIRPOST actions, 620 
IOC$IOPOST actions, 65, 144, 614 

operations, 400 
outswapping pages with direct 1/0 in progress, 531 

directory (lock manager) 
distributed, VAXcluster root resources, characteris­

tics and use, 224 
directory name tables 

logical name table relation with, (table) 1070 
directory node (lock manager) 

resource tree, characteristics and use, 224 
directory vector (lock manager) 

resource tree, characteristics and use, 224 
DIRPOST routine (IOCIOPOST module) 

common completion for direct and buffered 1/0, 
control flow, 620 

1/0 postprocessing, operations, 144 

Index 

Disassociate Common Event Flag Cluster system 
service. See $DACEFC 

Disk Quota Cache lock 
characteristics and use, 1309 

disks. See also bad blocks; virtual 1/0 
bad blocks, handling of, 692 
device drivers, fork IPL and spinlock considerations, 

63 
lock management system use to synchronize, 167 

SDISMOU (Dismount Volume system service) 
lock use by, characteristics and use of each lock, 

1302 
DISMOUMSG parameter (SYSGEN) 

enabling logging of volume dismount messages, 966 
Dismount lock 

characteristics and use, 1302 
Dismount Volume s:rstem service. See $DISMOU 
DISPATCH routine l(FllX)DISPATCH module) 

initiating XQP request, 632 
DISPATCHER routine ((FllX)DISPAT module) 

servicing XQP request, 632 
distributed lock manager 

entry point names and descriptions, (table) 1218 
DKDRIVER driver 

SCSI disk bad block handling by, 694 
$DLCEFC (Delete Common Event Flag Cluster system 

service) 
control flow, 208 

DLCKEXTRASTK parameter (SYSGEN) 
limiting resource tree maximum depth with, 239 

DMA (direct memory access) 
device driver implementation, through buffer 

mapping, 692 
device drivers, fork IPL considerations, 63 

$DMPDEF macro 
system dump file header, field definitions, 970 

DOINIT module 
INl$DOINIT, control flow, 846 
INl$PFN_FIXUP 

operations, 848 
use by loadable executive images, 844 

INl$SYSTEM_SERVICE 
control flow, 849 
operations, 849 
use by loadable executive images, 845 

initializing loadable executive images, 844 
LOADER$FIXUP _DOT_ADDRESS 

control flow, 847 
use by loadable executive images, 844 

Doorbell lock 
characteristics and use, 1325 

dormancy 
as a condition for outswap and swapper trimming 

selection, 526 
methods for handling, 526 

DORMANTWAIT parameter (SYSGEN) 
use in outswap and swapper trimming selection, 526 

DPT (driver prologue table) 
characteristics and use, 582 
layout and summary, 1247 

DR32 data port 
communication through interlocked queues, 165 
interrupt service routine, operations, 651 

driver dispatch table. See DDT 
driver prologue table. See DPT 
driver tables 

as component of 1/0 database, 578 
overview, 582 

[DRIVER]MBXDRIVER module 
MA780 mailbox driver location, 664 
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drivers. See class drivers; console drivers; device 
drivers; port drivers; terminal drivers 

DSA disks 
bad blocks, replacing, 693 

DSBINT macro 
changing IPL with, 168 
locking pages into the process working set with, 

1147 
dump. See crash dumps 
dump file 

analyzing contents of, 1154 
characteristics and handling, 969 
organization, 970 
recording information in during fatal bugcheck 

handling, 969 
dump header. See also debugging 

dump file, characteristics and layout, (table) 970 
DUMPSTYLE parameter (SYSGEN} 

effect on size of system space, 1279 
selective crash dump controlled by, 972 

DWMBA adapters 
VAX 6000 series, 51 

DYN (data structure type definitions) 
name, code, and structure type, (table) 1263 

dynamic data structures 
header format, (figure) 552 
storage areas for, 544 

dynamic spinlocks. See also device lock; spinlocks 
characteristics and use, 178 
rank, characteristics and use, 179 

SDYNDEF macro 
defining dynamic data structure type and subfype 

field values, 554 
symbols and values, (table) 1263 

EMB spinlock 
characteristics and use, 185 
held by 

ERL$ALLOCEMB, 961 
ERL$RELEASEMB, 961 
ERRFMT process, 965 

SEMBETDEF macro 
error message types defined by, 960 

$EMBHDDEF macro 
error message buffer header fields defined by, 960 

emulation. See instruction emulation 
[EMULAT)VAXEMULAT module 

VAXSEMULATE, unimplemented instruction 
emulation provided by, 77 

[EMULAT)VAXHANDLR module 
VAX$MODIFY_EXCEPTION, instruction emulation 

use of, 80 
ENBINT macro 

restoring IPL with, 168 
END statement (SDL) 

characteristics and use, 1163 
END_MODULE statement (SDL) 

characteristics and use, 1163 
$ENQ (Enqueue Lock Request system service) 

ASTs created for process notification when SENQ 
completes, 133 

control flow, 225 
PKAST use by, 146 
process state change actions, 282 

Enqueue Lock Request system service. See $ENQ 
EPID (extended process identi&er) 

characteristics and use, 320, 720 
construction, 724 
IPID use compared with, 320 
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layout, (figure) 724 
negative, as wildcard indicator, 320 
obtaining, 329 
routines that transform and manipulate, 721 

epoch 
pool allocation failure term definition, 568 

equivalence names. See also logical names 
attributes, 1075 
characteristics, 1075 
index, translation use of, 1078 
logical name table data structure as an, 1070 
term definition, 1067 

ERL$ALLOCEMB routine (ERRORLOG module) 
control flow, 961 

ERL$B_BUSY field 
definition and use, 959 

ERL$B_FLAGS field 
definition and use, 959 

ERLSB_MSGCNT field 
definition and use, 959 

ERLSDEVICEATTN routine (ERRORLOG module) 
operations, 963 

ERL$DEVICERR routine (ERRORLOG module) 
operations, 963 

ERL$DEVICTMO routine (ERRORLOG module) 
operations, 963 

ERL$GB_BUFTIM cell 
maximum time between ERRFMT awakenings, 962 

ERL$GL_BUFINDcell 
pointers that replace in Version 5, 959 

ERL$GL_SEQUENCE cell 
error message sequence numbers identified by, 960 

ERLSL_END field 
definition and use, 959 

ERL$L_NEXT field 
definition and use, 959 

ERL$LOG_DMSCP routine (ERRORLOG module) 
operations, 964 

ERL$LOG_TMSCP routine (ERRORLOG module) 
operations, 964 

ERL$LOGMESSAGE routine (ERRORLOG module) 
operations, 964 

ERL$LOGSTATUS routine (ERRORLOG module) 
operations, 964 

ERL$RELEASEMB routine (ERRORLOG module) 
control flow, 961 

ERLSWAI<E routine (ERRORLOG module) 
operations, 962 

ERLBUFFERPAGES parameter (SYSGEN} 
number of pages in each error log allocation buffer, 

959 
ERRFMT (error logger) process 

awakening, 962 
by ERL$ALLOCEMB, 961 
by ERL$RELEASEMB, 962 
by EXESTIMEOUT, 265 

creating, 947 
error log subsystem use of, 958 
operations, 964 
sending messages to, 1109 

error log 
allocation buffers 

characteristics and use, 959 
data structures, (figure) 960 
ERRFMT operations to process, 965 
error log subsystem use of, 958 
error message buffers and, 958 
field definitions and use, header, 959 
formula for computation of address, 959 
saved in dump file, 958 



error log (continued) 
allocation buffers (continued) 

synchronizing access to with EMB spinlock, 185 
data structures, characteristics and use, 959 
entry 

fatal bugcheck, contents, (table) 970 
user-generated bugcheck, format and description, 

(table) 968 
mailbox 

characteristics and use, 966 
VMS executive mailbox use, 673 

message buffers 
characteristics and use, 959 
error log allocation buffers and, 958 
format and length, 960 

non-device error entries, list of types, 964 
error log subsystem 

characteristics and use, 958 
components of, ll08 
device driver operations, 962 
operations, 958, 960 
overview, 958 

error logger. See ERRFMT process 
error-free memory 

located by console subsystem, amount is CPU­
dependent, 866 

ERRORLOG initialization routine 
operations, 937 

ERRORLOG module 
ERL$ALLOCEMB, control flow, 961 
ERL$DEVICEATTN, operations, 963 
ERL$DEVICERR, operations, 963 
ERL$DEVICTMO, operations, 963 
ERL$LOG_DMSCP, operations, 964 
ERL$LOG_TMSCP, operations, 964 
ERL$LOGMESSAGE, operations, 964 
ERL$LOGSTATUS, operations, 964 
ERL$RELEASEMB, control flow, 961 
ERL$WAKE, operations, 962 

ERRORLOGBUFFERS parameter (SYSGEN) 
number of error buffers specified by, 959 

errors. See also bugchecks;conditions; deadlocks; error 
log; exceptions; halts; interrupts; IPL; machine 
checks; SS$_ prefix entries; traps 

change mode dispatcher handling 
argument list errors, 114 
RMS errors, 115 

conditions, signaled during image execution, 770 
corrected read data errors, SCB reserved offsets, 42 
detection, RMS, ll9 
device attention, characteristics and handling, 963 
fatal bugchecks, handling, 967 

- handling, concepts and mechanisms, jchapter) 958 
interrupts 

CPU-specific, 982 
system-specific, hardware, 41 

page read error page location code, meaning, 382 
reporting mechanisms, components of systemwide, 

958 
synchronization failure, characteristics and means of 

preventing, 180 
system bus, SCB reserved offsets, 42 
system service, enabling and disabling exception 

generation on, 127 
event fiag wait state. See also CEF; LEF; LEFO 

coordinating with AST delivery, 118 
PCB field that identifies flags waited for, 271 
PCB fields that relate to, 206 
$WAITFR handling requested by 

$SYNCH, 121 

Index 

SYNCH$RMS_WAIT, ll9 
event Hags. See also CEF; common event flags; event 

flag wait state; 1/0; LEF; LEFO; local event flags; 
synchronization 

assigning meaning to, 203 
AST queuing constraints on use of, 211 
avoiding ambiguous use of, 203 
characteristics and use, 202 
clearing, 212 
clusters 0 and 1, location, 203 
clusters 2 and 3, location, 204 
common, set by DIRPOST, 616 
concepts and mechanisms, (chapter) 202 
event synchronization technique, overview, 168 
1/0 and lock status block synchronization use with, 

108 
local. See local event flags 
PCB fields related to, (figure) 206 
reading, 212 
setting, 2ll, 333 

as event causing process state change, 299 
at timer request expiration, 264 
by EXE$GETJPI, 331 
by EXE$QIO, 6ll 
by $GETLKI, 235 
when a lock is dequeued, 231 
when a lock is granted, 227, 232 

event reporting 
during process state change, control flow, 299 
paths to, (figure) 299 
SCH$RSE, control flow, 299 

EVENT_FLAGS_AND_ASTS initialization routine 
operations, 937 

events 
that require rescheduling, (figure) 290 

exception handlers. See condition handlers 
EXCEPTION initialization routine 

operations, 938 
EXCEPTION module 

exception service routines located in, 71 
EXE$ASTFLT, handling AST faults, 83 
EXE$CMODSUPR, CHMS exception handling 

operations, 84 
EXE$CMODUSER, CHMU exception handling 

operations, 85 
EXE$EMULAT_REFLECT, signaling exceptions 

during instruction emulation, 85 
EXE$EXCEPTION, building mechanism arrays, 

control flow, 79 
EXE$EXPANDSTK, operations, 409 
EXE$0PCDEC, operations, 967 
EXE$PAGRDERR, page fault read error handling, 83 
EXE$REFLECT, exception dispatching through, 

control flow, 80 
EXE$SRCHANDLER, searching for condition 

handlers, 88 
EXE$SSFAIL, system service failure handling, 83 

exception vectors 
in SCB, (table) 75 

EXCEPTION_PRIMITIVES module 
EXE$MCHK_BUGCHK, operations, 981 
EXE$MCHK_PRTCT, operations, 981 
EXE$MCHK_TEST, operations, 981 

exceptions. See also condition handlers; conditions 
abort 

continue signal actions for, 96 
SCB vectors for, (table) 75 

arithmetic, types and signal names, jtable) 82 
categories, 71 
change mode, selecting stack for servicing, 35 

1351 



Index 

exceptions (continued) 
CHME, why VMS handles, 76 
CHMK, why VMS handles, 76 
CHMS, establishing a process handler, 84 
CHMU, establishing a process handler, 84 
compatibility mode 

establishing a process handler, 84 
handling, 85 

concepts and mechanisms, (chapterl 29 
CPU response to, 71 
descriptions and handling mechanisms, 75 
dispatching 

special cases, 80 
VAX architecture mechanism, 35 

fault, SCB vectors for, (tablel 75 
handling 

by condition handlers, (tablel 77, (figurel 77 
by VMS executive, 76. Consult VAX Architecture 

Reference Manual 
concepts and mechanisms, (chapterl 71 
on kernel stack, reasons for, 36 

initiation. See IEI 
interrupts compared with, 21, 37 
kernel or executive mode, handling, 94 
kernel-stack-not-valid 

meaning and use, 76 
selecting stack for servicing, 35 

machine check 
meaning and use, 76 
mechanism characteristics and operations, 979 
selecting stack for servicing, 35 

overview, 29 
reserved operand fault, causes for, 38 
reserved/privileged instruction 

instruction emulation use of, 76 
operations, 967 

SCB use by, 30 
software conditions, compared with, 72 
stack for servicing, selecting, (tablel 35 
subset instruction emulation, selecting stack for 

servicing, 35 
term definition, 21 
translation-not-valid, meaning and use, 76 
trap 

continue signal actions for, 96 
SCB vectors for, (tablel 75 

urgent, IPL reserved for, 41 
user-writable control store, exception handling with, 

31 
uses, overview, 21 
VAX microcode response to, 30 
vectors 

01 low-order bits value, meaning, 31 
format and use, 30 

EXCEPTMSG module 
EXE$EXCMSG 

catch-all condition handler use of, 1114 
formatting signal arguments with, 1110 
operations, 1114 

EXE$A_SYSPARAM cell 
adjustable SYSGEN parameter area location, 1199 

EXE$ABORTIO routine (SYSQIOREQ module) 
control flow, 611 

EXE$ADJWSL routine (SYSADJWSL module) 
control flow, 496 

EXE$AL_ERLBUFADR cell 
error buffer starting address, 959 

EXE$ALLOC routine (SYSDEVALC module) 
control flow, 592 

EXE$ALLOCATE routine (MEMORYALC module) 
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allocating variable-length pool, 546, 547 
EXE$ALLOCPCB routine (MEMORYALC module) 

allocating nonpaged pool, 557 
EXE$ALLOCTQE routine (MEMORYALC module) 

allocating nonpaged pool, 557 
EXE$ALONONPAGED routine (MEMORYALC 

module) 
allocating mailbox memory block, control flow, 666 
control flow, 558 

EXE$ALONPAGVAR routine (MEMORYALC module) 
control flow, 558 

EXE$ALOPOIMAG routine (MEMORYALC module) 
allocating space from process allocation region, 566 

EXE$ALOP11MAG routine (MEMORYALC module) 
allocating space from process allocation region, 566 

EXE$ALOP1PROC routine (MEMORYALC module) 
allocating space from process allocation region, 566 

EXE$ALOPAGED routine (MEMORYALC module) 
allocating paged pool, 564 

EXE$ALTQUEPKT routine (SYSQIOREQ module) 
control flow, 631 
device driver start 1/0 initiation, 629 
EXE$QIODRVPKT distinguished from, 682 
full-duplex terminal operations, 682 
operations, 613 

EXE$AR_FORK_WAIT_QUEUE cell 
fork and wait queue listhead address contained in, 

62 
EXE$ASCEFC routine (SYSASCEFC module) 

creating common event flag clusters, control flow, 
206 

EXE$ASSIGN routine (SYSASSIGN module) 
control flow 

associated mailbox processing, 600 
common initial steps, 597 
local device assignment, 598 
local device fund processing, 600 
nontemplate device processing, 598 
remote device assignment, 601 
template device processing, 599 

operations, 597 
EXE$ASTFLT routine (EXCEPTION module) 

handling AST faults, 83 
EXE$ASTRET routine (ASTDEL module) 

AST exit operations, control flow, 141 
EXE$8RDCST routine (SYSBRKTHR module) 

operations, 704 
EXE$8RKTHRU routine (SYSBRKTHR module) 

CHECK_COMPLETE routine, operations, 703 
control flow 

finding all terminals, 700, 701 
1/0 completion, 703 
1/0 completion AST, 701 
initial processing, 695 
sending message, 701 
writing breakthrough message, 699 

operations, 695 
response to timeout, 703 

EXE$8UG_CHECK routine (BUGCHECKBT and 
BUGCHECKLD modules). See also bugchecks 

control flow, 968, 969, 973 
logical memory block writing, order, 976 
operations, 968 
selective memory dump operations, 977 
SMP operations, 1061 

EXE$CANCEL routine (SYSCANCEL module) 
control flow, 625 

EXE$CANTIM routine (SYSCANEVT module) 
operations, 259 

EXE$CANWAK routine (SYSCANEVT module) 



EXESCANWAK routine (SYSCANEVT module) 
(continued) 

operations, 261 
EXESCATCH_ALL routine (PROCSTRT module) 

control flow, 735 
last chance condition handling, 94 

EXE$CHECK_PCB_PRIV routine (SYSPCNTRL 
module) 

operations, 321 
EXESCHECK_ VERSION routine (CHECK_ VERSION 

module) 
operations, 854 

EXE$CLREF routine (SYSEVTSRV module) 
clearing event flags, operations, 213 

EXE$CMODEXEC routine (SYSTEM_SERVICE_ 
DISPATCHER module) 

change mode to executive dispatching operations, 
112 

control flow, 114 
dispatching to privileged shareable images, 122 
operations compared with EXESCMODKRNL, 115 

EXESCMODEXECX routine (SYSTEM_SERVICE_ 
DISPATCHER module) 

system service filtering, 128 
EXESCMODKRNL routine (SYSTEM_SERVICE_ 

DISPATCHER module) 
change mode to kernel dispatching operations, 112 
control flow, 114 
dispatching to privileged shareable images, 122 
operations compared with EXE$CMODEXEC, 115 

EXESCMODKRNLX routine (SYSTEM_SERVICE_ 
DISPATCHER module) 

system service filtering, 128 
EXESCMODSUPR routine (EXCEPTION module) 

CHMS exception handling operations, 84 
EXE$CMODUSER routine (EXCEPTION module) 

CHMU exception handling operations, 85 
EXE$CNTREG routine (SYSCREDEL module) 

operations, 432 
EXESCONNECT_SERVICES routine (SYSTEM_ 

SERVICE_LOADER module) 
change mode operations, 113 
control flow, 850 
initializing system service vectors with, 111 
setting up change mode dispatch table entries, 113 

EXE$CRELNM routine (SYSLNM module) 
control flow, 1093 

EXESCRELNT routine (SYSLNM module) 
control flow, 1095 

EXESCREMBX routine (SYSMAILBX module) 
control flow, 660 
initializing cloned UCB, control flow, 662 

EXE$CREPRC routine (SYSCREPRC module) 
control flow, 710 

EXESCRETVA routine (SYSCREDEL module) 
control flow, 407 

EXESCRMPSC routine (SYSCRMPSC module) 
global sections, control flow, 418 1 

PFN-mapped sections, control flow, 415 
process-private sections, control flow, 412 

EXE$DACEFC routine (SYSASCEFC module) 
dissociating from an event flag cluster, control flow, 

207 
EXESDALLOC routine (SYSDEVALC module) 

control flow, 594 
EXE$DASSGN routine (SYSDASSGN module) 

control flow, 603 
EXESDCLAST routine (SYSASTCON module) 

creating ASTs with, 134 
EXE$DEALLOCATE routine (MEMORYALC module) 
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deallocating variable-length pool, 546 
variable-length pool operations, 549 

EXESDEANONPAGED routine (MEMORYALC 
module) 

control flow, 559 
EXESDEAPl routine (MEMORYALC module) 

allocating space from process allocation region, 566 
EXE$DEAPAGED routine (MEMORYALC module) 

allocating paged pool, 564 
EXESDEBIT_BYTCNT routine (EXSUBROUT module) 

use in byte count quota wait handling, 293 
EXESDELLNM routine (SYSLNM module) 

control flow, 1098 
EXE$DELMBX routine (SYSMAILBX module) 

control flow, 662 ' 
EXE$DELPRC routine (SYSDELPRC module) 

control flow, 811 
EXE$DELTVA routine (SYSCREDEL module) 

control flow, 427 
EXE$DEQ routine (SYSENQDEQ module) 

control flow, 230 
EXE$DERLMB routine (SYSDERLMB module) 

operations, 966 
EXESDEVICE_SCAN routine (SYSGETDVI module) 

control flow, 1118 
EXE$DGBLSC routine (SYSDGBLSC module) 

control flow, 423 
EXE$DLCEFC routine (SYSASCEFC module) 

deleting permanent event flag clusters, control flow, 
208 

EXESEMULAT_REFLECT routine (EXCEPTION 
module) 

signaling exceptions during instruction emulation, 
85 

EXE$ENQ routine (SYSENQDEQ module) 
control flow, 225 
lock request handling, operations, 225 

EXESEPID_TO_IPID routine (SYSPCNTRL module) 
purpose, 721 

EXESEPID_TO_PCB routine (SYSPCNTRL module) 
purpose, 721 

EXESEXCEPTION routine (EXCEPTION module) 
· building mechanism arrays, 79 ' 

EXE$EXCEPTN routine (SYSTEM_ROUTINES 
module) 

kernel mode last chance handler operations, 94 
EXE$EXCEPTNE routine (SYSTEM_ROUTINES 

module) . 
executive mode last chance handler operations, 95 

EXESEXCMSG routine (EXCEPTMSG module) 
catch-all condition handler use of, 1114 
formatting signal arguments with, 1110 
operations, 1114 

EXE$EXIT routine (SYSEXIT module) 
control flow, 772 

EXESEXPANDSTK routine (EXCEPTION module) 
operations, 409 

EXE$EXPREG routine (SYSCREDEL module) 
operations, 409 

EXE$EXTENDPOOL routine (MEMORYALC module) 
operations, 560 

EXESFINISHIO routine (SYSQIOREQ module) 
control flow, 612 

EXESFINISHIOC routine (SYSQIOREQ module) 
control flow, 612 

EXE$FORK routine (FORKCNTRL module) 
creating fork processes, 58 
fork processing operations, 196 

EXE$FORK_WAIT routine (FORKCNTRL module) 
stalling a fork process with, 62 
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EXE$FORKDSPTH routine (FORKCNTRL module) 
common fork dispatching code listing, (example) 59 
control flow, 639 

EXE$FRKIPL6DSP routine (FORKCNTRL module) 
IPL 6 interrupt service routine listing, (example) 59 

EXE$FRKIPL8DSP routine (FORKCNTRL module) 
IPL 8 interrupt service routine listing, (example) 59 

EXE$GETDVI routine (SYSGETDVI module) 
control flow, 1119 

EXE$GETJPI routine (SYSGETJPI module) 
AST use in obtaining information about a process, 

145 
control flow, 328 

EXE$GETLKI routine (SYSGETLKI module) 
operations, 235 

EXE$GETMSG routine (SYSGETMSG module) 
arguments, 1111 
control flow, 1111 
operations, 1111 

EXE$GETSYI routine (SYSGETSYI module) 
control flow, 1115 

EXE$GL_ABSTIM system time 
characteristics and use, 254 
incremented by EXE$TIMEOUT, 265 

EXE$GL_ABSTIM_TICS cell 
characteristics and use, 254 
deducted from PHD$W_QUANT, 294 
synchronizing access to, with HWCLK spinlock, 184 

EXE$GL_AFFINITY cell 
meaning, 1014 

EXE$GL BLAKHOLE cell 
adapter powerfail use, 930, 1003 

EXE$GL CEBMTX cell 
synchronizing CEB list access, 204 

EXE$GL CONFREG cell 
adapter type codes, byte length, 935 

EXE$GL_CONFREGL cell 
adapter type codes, longword length, 935 

EXE$GL_GSDGRPBL cell 
group global section list listhead, 389 

EXE$GL_GSDGRPFL cell 
group global section list listhead, 389 

EXE$GL_GSDMTX cell 
serializing access to GSD lists, 389 

EXE$GL_GSDSYSBL cell 
system global section list listhead, 389 

EXE$GL_GSDSYSFL cell 
system global section list listhead, 389 

EXE$GL MCHKERRS cell 
machine check exception handler use of, 979 

EXE$GL NUMNEXUS cell 
hardware configuration array size, 935 

EXE$GL_PGDYNMTX cell 
paged pool mutex, 564 

EXE$GL_PQBIQ cell 
process quota block lookaside listhead, 565 

EXE$GL_SCB cell 
SCB starting virtual address, 31 

EXE$GL_SPLITADR cell 
IRP pool region starting address, 559 

EXE$GL STATE cell 
loadable executive image initialization constrained 

by, 935 
system initialization states, (table) 836 

EXE$GL SYSMSG cell 
characteristics and use, 1111 

EXE$GL_TIME_CONTROL cell 
bits defined in SYSPARAM, 1014 
meaning, 1013 

EXE$GL_TODR cell 

1354 

chatacteristics and use, 252 
recalibrating time from, 255 
system initialization use to determine date and time, 

251 
EXE$GL_TQFL cell 

TQE listhead, 256 
EXE$GL VAXEXCVEC cell 

instruction emulation use of, 80 
EXE$GQ_1ST_TIME cell 

synchronizing access to, with HWCLK spinlock, 184 
EXE$GQ_SYSTIME cell 

characteristics and use, 254 
EXE$GQ_ TODCBASE distinguished from, 252 
incremented by EXE$HWCLKINT, 262 
initialization and use, 247 
synchronizing access to, with HWCLK spinlock, 184 

EXE$GQ_TODCBASE cell 
characteristics and use, 252 
EXE$GQ_SYSTIME distinguished from, 252 
recalibrating time from, 255 
system initialization use to determine date and time, 

251 
EXE$GW_ERLBUFHEAD cell 

number of buffers to be written to error log file, 959 
EXE$GW ERLBUFTAIL cell 

current-buffer for error messages, 959 
EXE$HIBER routine (SYSPCNTRL module) 

control flow, 335 
EXE$HWCLKINT routine (TIMESCHDL module) 

control flow, 261 
interactions with software timer interrupt service 

routine, 64 
sanity timer mechanism operations, 1037 

EXE$IMGACT routine (SYSIMGACT module) 
control flow, 747 
shareable images, control flow, 753 

EXE$IMGDMP_MERGE routine (PROCSTRT module) 
characteristics and use, 736 

EXE$IMGFIX routine (SYSIMGFIX module) 
calling shareable images' initialization routines, 767 
operations, 762 
testing for privileged shareable images' activation, 

767 
EXE$IMGSTA routine (SYSIMGSTA module) 

operations, 769 
EXE$INIPROCREG routine ([SYSLOA)ERRSUBxxx 

module) 
initializing processor registers, 934 
interval timer registers initialized by, 250 
operations, 996 

EXE$1NIT routine (INIT module). See also system 
initialization 

accessing, methods for, 925 
control flow, 927 
environment, 923 
executive initializing, control flow, 92 7 
items allocated in system virtual address area, name 

and protection, (table) 1282 
loadable executive images loaded by, (table) 831 
mapping, (figure) 925 

by SYSBOOT, 924 
memory management, turning on, 925 
nonpaged pool allocation, (table) 927 
operations, overview, 862 
page-and-swap-file vector initializing, 399 
SMP-specific operations, 1047 

EXE$INIT_DEVICE routine (POWERFAIL module) 
operation, 998 

EXE$INIT_TODR routine ([SYSLOA)INIADPxxx 
module) 



EXE$INIT_TODR routine ((SYSLOA)INIADPxxx 
module) (continued) 

control flow, 253 
initializing time of year, control flow, 253 
time-of-year clock access request, 1027 

EXE$INSERTIRP routine (SYSQIOREQ module) 
queuing a pending 1/0 request, 629 

EXE$INSIOQ routine (SYSQIOREQ module) 
control flow, 629 

EXE$IOFORK routine (FORKCNTRL module) 
control flow, 638 
creating fork processes, 58 

EXE$IPCONTROL routine (IPCONTROL module) 
IPL 12 interrupt service routine, commands and 

mechanism, 68 
EXE$IPID_TO_EPID routine (SYSPCNTRL module) 

purpose, 721 
EXE$IPID_TO_PCB routine (SYSPCNTRL module) 

IPID validity checking with, 723 
purpose, 721 

EXE$JBCRSP routine (SYSSNDJBC module) 
job controller special kernel AST, control flow, 1106 

EXE$JIB_ WAIT routine (MUTEX module) 
use in resource wait handling, 293 

EXE$LKWSET routine (SYSLKWSET module) 
control flow, 502 

EXE$LCKPAG routine (SYSLCKWSET) 
control flow, 504 

EXE$LINK_ VEC routine (LINKVEC module) 
relocating executive transfer vectors to SYSLOAxxx, 

SCSLOA, and CLUSTRLOA, routines, 856, 857 
EXE$LOAD_ERROR routine (SYSTEM_ROUTINES 

module) 
initializing system service vectors with, 109 

EXE$MCHK_BUGCHK routine (EXCEPTION_ 
PRIMITIVES module) 

operations, 981 
EXE$MCHK_PRTCT routine (EXCEPTION_ 

PRIMITIVES module) 
operations, 981 

EXE$MCHK_TEST routine (EXCEPTION_ 
PRIMITIVES module) 

operations, 981 
EXE$MGBLSC routine (SYSCRMPSC module) 

control flow, 421 
EXE$NAMPID routine (SYSPCNTRL module) 

control flow, 320 
IPID validity checking with, 723 
process ID and privilege checking with, 319 

EXE$NETWORK_ASSIGN routine (SYSASSIGN 
module) 

operations, 602 
EXE$0PCDEC routine (EXCEPTION module) 

operations, 967 
EXE$PAGRDERR routine (EXCEPTION module) 

page fault read error handling, 83 
EXE$POWERAST routine (SYSSETPRA module) 

control flow, 999 
EXE$POWERFAIL routine (POWERFAIL module) 

accessing time-of-year clock, 252 
operations, 983 

EXE$PROCESS_SCAN routine (PROCESS_SCAN 
module) 

control flow, 326 
EXE$PROCSTRT routine (PROCSTRT module) 

control flow, 729 
environment, 729 
image initiation, argument list passed to image, 

(figure) 805 
KRP lookaside list initialization, 567 

Index 

logical name tables created by, 1072 
process allocation region address space reserved by, 

565 
EXE$PSCAN_NEXT_PID routine (PROCESS_SCAN 

module) 
control flow, 329 

EXE$PURGWS routine (SYSPURGWS module) 
control flow, 506 

EXE$PUTMSG routine (SYSPUTMSG module) 
operations, 1114 

EXE$QIO routine (SYSQIOREQ module) 
control flow, 606 
1/0 completion, control flow, 611 

EXE$QIOACPPKT routine (SYSQIOREQ module) 
control flow, 631 
queuing a request to file system, 629 

EXE$QIODRVPKT routine (SYSQIOREQ module) 
control flow, 629 
device driver start 1/0 initiation, 629 
EXE$ALTQUEPKT distinguished from, 682 
operations, 613 

EXE$QXQPPKT routine (SYSQIOREQ module) 
control flow, 632 

EXE$READ_LOCAL_TODR routine 
([SYSLOA)ERRSUBxxx module) 

accessing time-of-year clock by powerfail routine, 
252 

EXE$READ_TODR routine ([SYSLOA)ERRSUBxxx 
module) 

accessing time-of-year clock, 252 
time-of-year clock access request, 1027 

EXE$READEF routine (SYSEVTSRV module) 
reading event flags, operations, 212 

EXE$READP_LOCAL_TODR routine ([SYS­
LOA)ERRSUBxxx module) 

accessing time-of-year clock on primary CPU, 252 
EXE$REFLECT routine (EXCEPTION module) 

exception dispatching through, control flow, 80 
EXE$REGRESTOR routine ([SYSLOA)ERRSUBxxx 

module) 
operations, 996 

EXE$REGSAVE routine ([SYSLOA)ERRSUBxxx 
module) 

operations, 983 
EXE$RESCHED routine (SYSPARPRC module) 

control flow, 341 
EXE$RESTART routine (POWERFAIL module) 

environment, 994 
VMB environment compared with, 994 

operations, 994 
SMP operations 

primary processor, .1058 
secondary processor, 1060 

EXE$RESTART_ATT routine (POWERFAIL module) 
control flow, 995 

EXE$RMVTIMQ routine (EXSUBROUT module) 
removing TQE entries from timer queue, 259 

EXE$RUNDWN routine (SYSRUNDWN module) 
control flow, 774 
resetting capabilities, 298 

EXE$SCHDWK routine (SYSSCHEVT module) 
control flow, 260 

EXE$SENDMSG routine (SYSSNDMSG module) 
operations, ll05 

EXE$service 
system service routine, characteristics, 106 

EXE$SETAST routine (SYSASTCON module) 
control flow, 143 

EXE$SETIME routine (SYSSETIME module) 
operations, 255 
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EXE$SETIME routine (SYSSETIME module) 
(continued) 

readjusting time-of year control flow, 256 
time recalibration control flow, 255 

EXE$SETIME_INT routine (SYSSETIME module) 
computing system time during system initialization, 

254 
EXE$SETIMR routine (SYSSCHEVT module) 

control flow, 258 
EXE$SETPRA routine (SYSSETPRA module) 

control flow, 999 
EXE$SETPRI routine (SYSSETPRI module) 

control flow, 340 
EXE$SETPRN routine (SYSPCNTRL module) 

operations, 341 
EXE$SETPRT routine (SYSSETPRT module) 

control flow, 433 
EXE$SETPRV routine (SYSSETPRV module) 

operations, 780 
EXE$SETSWM routine (SYSSETMOD module) 

operations, 432 
EXE$SNDACC routine (SYSSNDMSG module) 

control flow, 1107 
EXE$SNDERR routine (SYSSNDMSG module) 

control flow, 1109 
EXE$SNDEVMSG routine (MBDRIVER module) 

control flow, 671 
EXE$SNDJBC routine (SYSSNDJBC module) 

control flow, 1104 
EXE$SRCHANDLER routine (EXCEPTION module) 

searching for condition handlers, 88 
EXE$SSFAIL routine (EXCEPTION module) 

system service failure handling, 83 
EXE$SUSPND routine (SYSPCNTRL module) 

control flow, 336 
EXE$SWAPINIT routine (SWAPPER module) 

control flow, 939 
operations, 938 

overview, 862 
EXE$SWTIMINT routine (TIMESCHDL module) 

control flow, 263 
operations, 64 
periodic system routine requests, control flow, 264 
process timer requests, control flow, 263 
scheduled wakeup requests, control flow, 266 

EXE$TIMEOUT routine (TIMESCHDL module) 
control flow, 265 
deadlock search initiation by, 236 
fork and wait queue servicing by, 62 
I/O timeout search, 265 
pixscan mechanism invoked by, 305 

EXE$TRNLNM routine (SYSLNM module) 
control flow, 1093 

EXE$ULKPAG routine (SYSLKWSET module) 
operations, 505 

EXE$ULWSET routine (SYSLKWSET module) 
operations, 505 

EXE$UNWIND routine (SYSUNWIND module) 
condition handler call frame unwinding operations, 

97 
EXE$UPDSEC routine (SYSUPDSEC module) 

control flow, 476 
EXE$V_NOSMPSANITY bit (EXE$GL_TIME_ 

CONTROL cell) 
meaning, 1014 
tested by EXE$HWCLKINT, 1038 

EXE$V_NOSPINWAIT bit (EXE$GL_TIME_ 
CONTROL cell) 

meaning, 1014 
tested by SMP$TIMEOUT, 1035 
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EXE$V _SSINHIBIT bit (EXESGL_DEFFLAGS cell) 
enabling system service filtering, 128 

EXE$WAIT routine (SYSWAIT module) 
common event flag wait code, control flow, 209 

EXE$WAKE routine (SYSPCNTRL module) 
control flow, 335 

EXE$WRITE_TODR routine ([SYSLOA)ERRSUBxxx 
module) 

accessing time-of-year clock, 252 
time-of-year clock access request, 1027 

EXESWRITEP_LOCAL_TODR routine 
([SYSLOA)ERRSUBxxx module) 

accessing time-of-year clock on primary CPU, 252 
EXE$WRTMAILBOX routine (MBDRIVER module) 

control flow, 672 
EXEC_INIT.EXE (EXE$INIT) 

files accessed by, jtable) 863 
loadable executive images loaded by, 831 
operations, 923 

EXEC_LAYOUT module 
SYS.EXE layout defined by, 825 

EXEC_RUNDOWN_AST routine (SYSDELPRC 
module) 

operations, 813 
execution 

preemption rules for choosing a process for, 276 
process priorities, concepts and mechanisms, 274 

executive. See also executive transfer vectors 
accessing process address space, AST as mechanism 

for, 133 
conceptual categories and version numbers, 

jtable) 852 
characteristics and use, 852 

conditions detected by, jtable) 82 
exceptions handled by, 71, 76. Consult VAX 

Architecture Reference Manual 
initialization, EXE$INIT operations, 927 
interface among components, 12 
listings 

assembler, characteristics and use, 1136 
reading, 1129 
using, jchapter) 1129 

loaded by SYSBOOT, 914 
lock use by, characteristics and use of each lock, 

1298 
mailboxes, use by, 673 
map files use, (chapter) 1129 
modular, concepts and mechanisms, jchapter) 823 
paged and nonpaged portions, (table) 1286 
synchronization techniques, (table) 166 
term definition, 8 

executive data areas 
description and component name tables, (chapter) 

1164 
dynamically allocated, 1225 
process-specific, 1226 

executive images 
loading, history of mechanisms for, 855 
map files, characteristics and use, 1149 

executive mode 
bugchecks, handling operations, 969 
change mode dispatch table, field definitions and 

use, 112 
exceptions, handling, 94 
stack pointer, as part of process hardware context, 

306 
executive transfer vectors 

characteristics and use, 824, 82 7 
contents, 827 
defining, (example) 828 



executive transfer vectors (continued) 
locating symbols with, 1151 
nonpaged, list of names, (table) 1164 
overwritten with correct target addresses, 839 
system service vectors, compared with, 827 

$EXIT (Exit system service) 
AST use by, 146 
controlling processes with, 339 
operations, 771 
supervisor mode exit handler called by, 806 

EXIT command 
operations, 808 

exit control block 
characteristics, 771 
layout, (figure) 771 

exit handlers 
images, characteristics and operations, 771 
list processing, (example) 773 
listhead, array layout, (figure) 771 
supervisor mode, declared by CLI, 802 
user mode, not entered after STOP command, 808 

Exit system service. See $EXIT 
Expand Region system service. See $EXPREG 
explicit affinity. See also affinity 

acquired through SCH$REQUIRE_CAPABILITY, 288 
characteristics and use, 28 7 
examples of use, 288 
released through SCH$RELEASE_CAPABILITY, 288 

$EXPREG (Expand Region system service) 
operations, 409 

EXSUBROUT module 
EXE$DEBIT_BYTCNT, use in byte count quota wait 

handling, 293 
EXE$RMVTIMQ, removing TQE entries from timer 

queue, 259 
extended processor identifier. See EPID 
extent (file) 

characteristics and use, 621 
Extent Cache lock 

characteristics and use, 1309 
EXTRACPU parameter (SYSGEN) 

quantum expiration use of, 294 

[FllX] facility 
contents, 1130 

FAB (file access block) 
ASY bit, testing by RMS, 118 

facilities 
codes, (table) 1296 
format 

facility$_status, 1234 
facility$At_array-name, 1234 
facility$entry-name, 1233 
facility$entry-name_Rn, 1234 
facility$Gt_ variable-name, 1234 
$facility$macro-name, 1233 
facility$mnemonic, 1237 
facility$$entry-name, 1233 
_facility$mnemonic, 1237 
$facility _macro-name, 1233 
$facility _structureDEF, 1235 
public macro names, 1233 

naming conventions, (table) 1238 
term definition, 1129 

$FAO (Formatted ASCII Output system service). 
Consult VMS System Services Reference 
Manual 

operations, 1121 
$FAOL (Formatted ASCII Output List system service) 

Index 

operations, 1121 
FATALEXCPT bugcheck. See also bugchecks 

generating during condition handler search, 90 
faults. See also abort exceptions; debugging; errors; 

interrupts; page faults; traps 
continue signal actions for, 96 
fault exceptions, SCB vectors for, (table) 75 
reserved instruction, handling, 85 

FCB (file control block) 
ACP creation of, 585 
layout and summary, 1247 

FDT (function decision table). See also I/O 
action routines 

buffered I/O, characteristics, 610 
characteristics and use, 582, 609 
direct I/O, characteristics, 610 
exiting, 629 
I/O requests, completing in, 612. Consult VMS 

Device Support Manual 
segmenting I/Oby, 621 
setting attention ASTs with, 150 
setting out-of-band ASTs with, 154 

characteristics and use, 582 
layout, (figure) 582 

FDTREAD routine (MBDRIVER module) 
reading mailboxes, control flow, 667 

FDTSET routine (MBDRIVER module) 
establishing mailbox attention ASTs, control flow, 

664 
FDTWRITE routine (MBDRIVER module) 

writing to mailboxes, control flow, 665 
FILCNTNONZ bugcheck. See also bugchecks 

generated by DELETE, 815 
File Access Arbitration lock 

characteristics and use, 1306 
file access block. See FAB 
file control block. See PCB 
File ID Cache lock 

characteristics and use, 1308 
File lock 

characteristics and use, 1311 
File Serialization lock 

characteristics and use, 1306 
file system. See also device drivers; I/O; interrupts; 

logical names; RMS; XQP 
bad block handling, mailbox use by, 675 
data structures, ACP relations, (figure) 585 
database, synchronizing with FILSYS spinlock, 181 
I/O, initiating, 631 
lock use by, characteristics and use of each lock, 

1304 
FILEREAD module 

primitive file routines, 911 
FILERWIO module 

primitive file routines, 911 
files 

closing during process deletion, 814 
open, KFE field that specifies WCB for, 7 44 

Files-11 Extended QIO Processor. See XQP 
FILSYS spinlock 

characteristics and use, 181 
FIND CPU DATA macro 

locating per-CPU data area with, 1015 
FINISHREAD routine (MBDRIVER module) 

mailbox read request 
I/O completion, control flow, 669 
I/O completion, data structures, 670 

first-part-done. See FPD instructions 
fixed-length lists. See also IRP; KRP; LRP; PQB; SRP 

areas, structure and operations, 552 
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fixed-length lists (continued) 
pool, compared with variable-length lists, 552 

fixup vector table 
characteristics, 763 
layout, jfigure) 763 

~B (fork block). See also fork processes; fork queues 
definition and use, 57 
fork block identification in, 178 
in TAST, 153 
in terminal driver IRP, 683 
in terminal driver write buffer packet, 683 
larger data structures containing, 57 
summary, 1250 

FKB$B_FIPL field 
field definition and compared with FKB$B_FLCK, 57 

FKB$B_FLCK field 
field definition and compared with FKB$B_FIPL, 57 
fork block identification in, 178 

FKB$B_TYPE field 
definition and use, 57 

FKB$L_FPC field 
definition and use, 57 

FKB$W _SIZE field 
definition and use, 57 

$FKBDEF macro 
fork block fields defined in, 5 7 

Force Exit system service. See $FORCEX 
forced error 

from replaced block on DSA disks, 694 
$FORCEX (Force Exit system service) 

controlling processes with, 339 
normal AST use by, 147 

fork and wait queue 
stalling a fork process with, 62 
synchronizing access to, with MEGA spinlock, 185 

fork block. See FKB 
fork interrupts (IPL 6 and 8-11). See also fork processes 

characteristics and use, 63 
interrupt service routine 

listing, !example) 59 
operations, 639 

IPLs not used by VMS, 54 
overview, 19, 1008 
requested 

by EXE$FORK, 196 
by SMP$INTSR, 1041 

synchronization use of, 170 
fork locks 

characteristics and use, 178 
distinguished from other static spinlocks, 178 
driver use of, 590 
fork process, specifying in FKB, 57 
held at entry to driver start 1/0, cancel 1/0, and 

timeout routines, 1039 
held by 

EXE$ABORTIO, 611 
EXE$ALTQUEPKT, 631 
EXE$CANCEL, 625 
EXE$FINISHIO, 612 
EXE$FORKDSPTH, 640 
EXE$INSIOQ, 629 
IOC$LAST_CHAN, 605 

held during 
1/0 subsystem importance, 581 
IOLOCK8, use as, 63, 181 
IOLOCKn, characteristics and use, 183 
MAILBOX, characteristics and use, 183 
PR_LKS, characteristics and use, 182 
PR_LKn, characteristics and use, 183 

fork processes. See also fork interrupts; IPL; 
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synchronization 
characteristics, 5 7 

as serialized access technique, 195 
context 

components of, 58 
IPL restored by fork and wait mechanism, 63 

creating 
as safe method of lowering IPL, 169, 638 
mechanisms, 58 
reasons for, 58 
recalculating VAXcluster quorum, 69 

data structures, 5 7 
device driver use, 170, 636 
dispatching, 59 
fork, concepts and mechanisms, 56 
fork routine address, location in FKB, 57 
handling mechanisms, 56 
IPL$_QUEUEAST 

created to expand nonpaged pool, 560 
use for, 171, 653 

movement between SMP members, 1026 
restrictions on, 62 
spinlocks, specifying in FKB, 57 
stalling, reasons for, 62 
synchronizing 

at IPL 6, 181 
through spinlocks, 178 

fork queues 
fork process interrupt service routine use of, 56 
listheads array, location and characteristics, 

jfigure) 57 
per-CPU database work queue, 1019 
specifying in FKB, 57 

FORK_ WAIT macro 
stalling a fork process with, 62 

FORKCNTRL module 
EXE$FORK 

creating fork processes, 58 
fork processing operations, 196 

EXE$FORK_ WAIT, stalling a fork process with, 62 
EXE$FORKDSPTH 

common fork dispatching code listing, (example) 59 
control flow, 639 

EXE$FRKIPL6DSP, IPL 6 interrupt service routine 
listing, (example) 59 

EXE$FRKIPL8DSP, IPL 8 interrupt service routine 
listing, (example) 59 

EXE$10FORK 
control flow, 638 
creating fork processes, 58 

forking. See fork processes 
FORKLOCK macro 

generated code example 
using fork IPL, 187 
using spinlock index, 186 

FORKUNLOCK macro 
generated code example, 188 

Formatted ASCII Output List system service. See 
$FAOL 

Formatted ASCil Output system service. See $FAO 
formatting. See also $FAO; $FAOL 

message, condition handlers, 1110 
support, 1110. See also ASCII; time 

FORTRAN 
parallel processing features, run-time support for, 

341 
FPD (first-part-done) instructions. See also instructions 

characteristics and use, 163 
FPEMUL image 

loading, operations, 857 



FPG (free page wait state). See also free page list; 
process states; wait states 

characteristics and use, 478 
context for, 292 
transitions 

from FPG to COM or COMO, 283 
to FPG from CUR, 283 

&ee page list. See also FPG; FREEGOAL; FREELIM 
characteristics and use, 355 
location, 384 
location of unmodified available pages, 436 
maintained by swapper, 510 
movement of modified page to, 447 
page fault from, 444 
PFN of first page on, global cell that contains, 381 
use as cache, (figurel 385 

&ee page wait state. See FPG 
&ee pages 

allocated for inswap of process working set, 536 
allocated for page fault, 439, 447, 450 

FREEGOAL parameter (SYSGEN) 
BALANCE routine use of, 518 
swapper use of, 511 

FREEUM parameter (SYSGEN) 
BALANCE routine use of, 518 
effect on 

nonpaged pool expansion, 560 
VMS memory use, 1287 

swapper use of, 510 
full-duplex operation 

terminal drivers, characteristics, 681 
function decision table. See FDT 
function modifiers. See also 1/0; 10$M_ prefix entries 

mailbox driver use, 153 
mailbox read request, 153 

G. (general reference) 
modifying during image activation, 763 
resolution of, 764 
vector table 

layout, (figurel 764 
page protection area, (figurel 767 

GBLPAGES parameter (SYSGEN) 
global page table size calculation, 1280 

GBLPAGFIL parameter (SYSGEN) 
maximum page file blocks available for global 

buffers, 417 
GBLSECTIONS parameter (SYSGEN) 

effect on size of system space, 1279 
number of entries in system header section table, 

388 
general reference. See c· 
general registers 

as part of process hardware context, 306 
Get Device/Volume Information system service. See 

$GEIDVI 
Get I/O Channel Information system service. See 

$GETCHN 
Get I/O Device Information system servi~e. See 

$GEIDEV 
Get Job Process Information system service. See 

$GETJPI 
Get Lock Information system service. See $GETLKI 
Get Message system service. See $GETMSG 
Get Queue Information system service. See $GETQUI 
Get System Information system service. See $GETSYI 
$GETCHN (Get I/O Channel Information system 

service) 
characteristics and use, 706 
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$GETDEV (Get I/O Device Information system 
service) 

characteristics and use, 706 
$GETDVI (Get Device/Volume Information system 

service) 
operations, 1119 

$GETJPI (Get Job Process Information system service) 
arguments, 328 
control flow, 328 
priority representation in, 275 
remote nodes support, 332 
search context filtering information, 323 
special kernel mode ASTs 

operations, 333 
use, 145 

traditional wildcard support in, 334 
wildcard requests 

buffer use, 326 
VAXcluster system handling, 326 

$GETLKI (Get Lock Information system service) 
characteristics and use, 234 

$GETMSG (Get Message system service) 
operations, 1111 

$GETQUI (Get Queue Information system service) 
operations, 1105 
special kernel mode ASTs, operations, 1106 

GETQUI lock 
characteristics and use, 1327 

$GETSYI (Get System Information system service) 
arguments, 1115 
operations, 1115 

global arrays 
addressable, names format, 1234 

global buffer 
maximum page file blocks available for, 417 

Global Buffer Backing lock 
characteristics and use, 1318 

global buffer locks 
characteristics and use of each lock, 1315 

Global Buffer Master lock 
characteristics and use, 1316 

Global Buffer Section lock 
characteristics and use, 1316 

global entry point names 
general use, format, 1233 
nonstandard invocations, format, 1234 
restricted use, format, 1233 

global page table. See GPT 
global page table entry. See GPTE 
global page-file sections. See also global sections 

creating, 417 
pages 

page faults, control flow, 456 
page faults, overview, 448 
transitions, (figurel 456 

global pages. See also global sections 
count of process PTEs that map to a particular, PFN 

SHRCNT array use, 386 
data structures, characteristics and field definitions, 

388 
outswapping, 531 
page faults 

control flow, 448 
copy-on-reference page, control flow, 448, 454 
page-file section page, control flow, 456 
read-only page, control flow, 450 
read/write page, control flow, 453 

protection change prohibited, 434 
read-only 

resolution during inswap rebuild, 540 
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global pages (continued) 
read-only (continued) 

whether outswapped, (table) 529 
read/write, action at outswap, (table) 529 

global section descriptor. See GSD 
global section table. See GST 
global section table entry. See GSTE 
global sections. See also global page-file sections; 

global pages; memory management; sections 
activation of ISD and PTEs for, (figure) 750 
application synchronization techniques, 167 
as interprocess communication mechanism, 345 
characteristics and use, 356 
creating 

by Install Utility, 750 
concepts and control flow, 416 
group, 417 
overview, 411 
PFN-mapped, 417 
resident, 417 
system, 417 

data structures 
associated with, 356 
relations among, (figure) 392 

deleting 
control flow, 423 
temporary, 425 

version compatibility checks, 418 
writable, sharing implications, 1020 

global symbols 
naming conventions, (chapter) 1232 
SDA use with, 1155 
type meaning, AR, 828 
value found in map files, 1148 

global variable names 
format, 1234 

GPT (global page table). See also global pages 
characteristics and organization, (figure) 390 
index 

PTE containing, characteristics, 373 
use, 391, 450 

overview, 356 
size calculation, 1280 
summary, 1226 

GPTE (global page table entry). See also global pages 
allocated at global section creation, 420 
characteristics and field definitions, (figure) 392 
forms of PTE, 392 
GSD and GSTE relations with, (figure) 392 
how located, 391 
initialized at global section creation, 420 

grant mode (locks). See also group grant mode; locks 
characteristics and use, 228 
compared with conversion grant mode, 229 

granted queue 
removing LKBs from, 230 
resource, listhead location in RSB, 217 

GROUP (affect other processes in same group privilege). 
See also privileges 

required by EXE$NAMPID, 321 
use of, 23 

group grant mode (locks). See also grant mode; locks 
characteristics and use, 228 
conversion request use of, 228 
distinguished from conversion grant mode, 228 

GROWLIM parameter (SYSGEN) 
effect on working set growth, 492 
working set limit adjustment use, 496, 500, 501 

GRPNAM (insert in group logical name table privilege). 
See also privileges 

1360 

use by logical name system services, 1092 
use to access logical name table, 1072 

GRPPRV (access group objects via system protection 
privilege). See also privileges 

use by logical name system services, 1092 
GSD (global section descriptor) 

characteristics and field definitions, (figure) 388 
GSTE and GPTE relations with, (figure) 392 
overview, 356 
summary, 1250 

GSD$B HASH field 
definition and use, 389 

GSD$B_TYPE field 
definition and use, 389 

GSD$L_BASEPFN extended GSD field 
definition and use, 390 

GSD$L_FILUIC field 
definition and use, 389 

GSD$L_GSDBL field 
definition and use, 389 

GSD$L GSDFL field 
definition and use, 389 

GSD$L IDENT field 
definition and use, 390 

GSD$L_IPID field 
definition and use, 390 

GSD$L ORB field 
definition and use, 390 

GSD$L_PAGES extended GSD field 
definition and use, 390 

GSD$L_PCBUIC field 
definition and use, 389 

GSD$L_REFCNT extended GSD field 
definition and use, 390 

GSD$T_GSDNAM field 
definition and use, 390 

GSD$T_PFNGSDNAM extended GSD field 
definition and use, 390 

GSD$W_GSTX field 
definition and use, 390 

GSD$W _PROT field 
definition and use, 389 

GSD$W SIZE field 
definition and use, 389 

GSD mutex 
owned during 

global section creation, 418 
global section deletion, 423 
global section mapping, 421 

GSD_CLEAN_AST routine (SYSDGBLSEC module) 
operations, 426 

GST (global section table). See also global sections 
characteristics and use, 356 

GSTE (global section table entry). See also global 
sections 

characteristics and use, 356, 390 
definition and use, layout, (figure) 376 
GSD and GPTE relations with, (figure) 392 

halts. See also bugchecks; errors; machine checks 
caused by invalid bits in interrupt vector, 31 
handling by EXE$RESTART_ATT, 995 
power failure, 984 
processor, interrupt stack invalid, 36 

hard snspension 
characteristics, 336 

hardware. See also VAX hardware. Consult Computer 
Programming and Architecture: The VAX; VMS 
Device Support Manual 



hardware (continued) 
1/0, overview, 577 

hardware context. See also context - switching; 
hardware PCB 

characteristics and use, 306 
loading, 309 
overview, 3 
physical address of hardware PCB that contains, 269 
saving, SVPCTX instruction, .308 

hardware interrupts. See interrupts 
hardware PCB. See also PCB; PHD 

accessing, lfigurel 307 
during context switches, 307 

context switching use of, 22 
hardware context component, 3 
hardware context saved in, 307 
layout, lfigurel 307 
located in PHD, 271 
page table registers loaded from, 362 
PHD component, 271, 367 
physical address, 269 
software responsibilities for managing PHD$B_ 

ASTLVL, 130 
summary, 1256 

/HEADER_RESIDENT quali&er 
known image installation, 7 44 

BIB (hibernate wait state). See also hibernation; HIBO; 
process states; wait states 

context for, 292 
ended by $WAKE and $SCHDWK, 335 
transitions 

from HIB to COM, 282 
to HIB from CUR, 282 

$BIBER {ffibernate system service) 
control flow, 335 
process state change actions, 279, 282 

hibernate outswapped wait state. See HIBO 
ffibernate system service. See $HIBER 
hibernate wait state. See HIB 
hibernation. See also process suspension; scheduler 

placing processes in, 335 
removing processes from, 335 
suspension compared with, 336 
waking up processes, 266 

HIBO (hibernate outswapped wait state). See also HIB; 
hibernation; process states; wait states 

transitions 
from HIBO to COMO, 282 
to HIBO from HIB, 282 

hole table 
logical memory block, characteristics, 977 

HWCLK spinlock 
characteristics and use, 184 
held by 

EXE$HWCLKINT, 262 
EXE$SWTIMINT, 64, 263 

1/0. See also ACP; adapters; AST; buses; device drivers; 
disks; 1/0 buffers; $QIO; resources; start 1/0 
routines; wait states 

buffered. See buffered 1/0 , 
canceling mailboxes, operations, 670 
completing by EXE$QIO, 611 
direct 1/0. See direct 1/0 
file system, initiating, 631 
formatted, conversion support for, 1120 
logical. See logical 1/0 
miscellaneous topics, concepts and mechanisms, 

(chapterl 676 

paging, mechanisms, 462 
SCA port drivers, operations, 678 
scatter/gather operations, 400 
segmenting, by FDT routines, 621 
SMP systems, operations, 1038 
swapper 

Index 

handling pages with 1/0 in progress when outswap 
occurred, 538 

overview, 400 
virtual. See virtual 1/0 

1/0 adapters. See adapters 
1/0 buffers 

BUFPOST handling, 617 
chained complex, layout and handling, lfigurel 619 
complex, layout and handling, lfigurel 618 
simple, layout and handling, lfigurel 617 

1/0 bus. See also adapters; buses 
as ~~0::ardware configuration component, 577 

1/0 els 
assigning, 595 

to mailboxes, 658 
deassigning, 595 

from mailboxes, 662 
images, ICB field that specifies, 742 

1/0 completion. See also 1/0 postprocessing 
AST, EXE$BRKTHRU actions in response to, 703 
buffered 1/0 

control flow, 614 
read, control flow, 617 

by EXE$QIO, 611 
by FDT routine, 612 
characteristics and operations, 610 
common completion for direct and buffered 1/0, 

control flow, 620 
determining by SYNCH$RMS_WAIT, 119 
direct 1/0, control flow, 615 
full-duplex operation, 683 
KAST routine, 617 
normal, operations, 614 
read request, mailbox, control flow, 669 
requesting processing, 639 
required for process deletion, 815 
special kernel mode AST routine, operations, 617 
system, operations, 613 

1/0 database. Consult VMS Device Support Manual 
components, 578 
data structures 

overview, 579 
swapper use of, 514 

device driver and 1/0 routine relations with, 
(figurel 579 

mutex, characteristics and use, 200 
synchronizing access to, 581 

with 1/0 database mutex, 201. See also IOC$GL_ 
MUTEX cell 

1/0 device timeout. See device timeout 
1/0 devices. See devices 
1/0 hardware. Consult Computer Programming and 

Architecture: The VAX; VMS Device Support 
Manual 

overview, 577 
1/0 interrupt service routines 

concepts and mechanisms, (chapter! 628 
1/0 map 

swapper, characteristics and use, 514 
1/0 performance database 

synchronizing access, with PERFMON spinlock, 184 
1/0 postprocessing. See also 1/0 completion; 

IOC$IOPOST 
interrupt (IPL 4) 
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1/0 postprocessing (continued) 
interrupt llPL 4) (continued) 

EXE$ABORTIO use of, 612 
EXE$CANCEL use of, 626 
EXE$FINISHIO use of, 612 
IOC$REQCOM use of, 641 
SMP$INTSR use of, 1026 

interrupt service routine, 65, 613 
operations, 613 
per-CPU queues 

database, 1042 
during VAXcluster quorum loss stall, 1043 
for aborted I/O request, 612 
for 1/0 requests completed by FDT routines, 612 
used by EXE$ABORTIO and EXE$FINISHIO[C], 

1043 
queues 

placing IRP in, 65 
reasons for multiple, 1042 
use in stalling while VAXcluster quorum is lost, 

1028 
SMP systems, operations, 1042 
special kernel mode AST use in, 144 
systemwide queues, 1042 

for canceled I/O requests, 626 
for completed I/O requests, 641 
for IRPs completed through COM$POST, 683 
serviced only on primary, 613 
used by COM$POST and IOC$REQCOM, 1043 

I/ 0 redirection 
logical names role in, 1067 

1/0 request packet. See IRP 
1/0 requests 

aborting, 611 
ACP characteristics and use, 584 
canceling, 624 
completing, 610 

by EXE$QIO, 612 
by driver, 640 
in FDT routine, 612. See also 1/0 completion 

control flow, jfigure) 588 
memory management ltable), 463 
number of, CCB field that specifies, 596 
outstanding, as a condition for outswap and swapper 

trimming selection, 524 
queuing, 606 

device-dependent preprocessing, 609 
device-independent preprocessing, 606 
to driver, 613 
to file system, 631 

1/0 routines 
VMS, overview, 586 

1/0 status block. See IOSB 
1/0 subsystem 

overview, 9, !chapter) 577 
requests, overview, 13 

1/0 system services. Consult Introduction to VMS 
System Services 

concepts and mechanisms, !chapter) 587 
operations, overview, 587 
overview, 584 

1/0 timeout 
detected by EXE$TIMEOUT, 265 
disabling, by EXE$IOFORK, 58 
handling routine, characteristics and use, 584 
measurement initiated by WFIKPCH macro, 635 

1/0 transfers 
IOC$IOPOST processing of segmented, 624 
segmenting transfers greater than 64K bytes, 623 

1/0-bound processes 
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quantum-end mechanism for, 294 
IACSGL_ICBFL cell 

ICB lookaside list location, 7 42 
IACSGL_IMAGE_LIST cell 

ICB done list, 742 
IAC$GL_ WORK_LIST cell 

ICB work list, 742 
ICB (image control block) 

characteristics and use, 7 42 
done list, location of, 742 
layout, !figure) 742 
locating code with, 1154 
lookaside list, location of, 7 42 
manipulating, example, 760 
work list, location of, 742 

ICB$B_ACCESS_MODE field 
definition and use, 7 42 

ICB$B_ACT_CODE field 
definition and use, 7 42 

ICBSL_CONTEXT field 
definition and use, 742 

ICB$L_END_ADDRESS field 
definition and use, 7 42 

ICB$L_IHD field 
definition and use, 742 

ICB$L KFE field 
definition and use, 7 42 

ICBSL_STARTING_ADDRESS field 
definition and use, 742 

ICB$T_IMAGE_NAME field 
definition and use, 7 42 

ICBSW_CHAN field 
definition and use, 742 

IDB (interrupt dispatch block) 
characteristics and use, 580 
layout and summary, 1251 

me (integrated disk controller) 
VAX-11/730 system, 47 

idle set 
SMP, term definition, 1014 

IEI (initiate-exception-or-interrupt) microcode 
exception dispatching, control flow, 35 
handling 

aborts, 36 
faults, 36 
interrupt stack invalid, 36 
traps, 36 

interrupt dispatching, control flow, 34 
IHD (image header) 

images, ICB field that specifies, 7 42 
KFE field that specifies address of resident, 7 44 
layout and characteristics, I figure) 7 40 
macros that define, jfigure) 740 

IHD$L SYSVER field 
definition and use, 853 

$IHDDEF macro 
IHD fixed part definition, 741 

image activation. See also $IMGACT 
CLI, special considerations, 749, 762 
compatibility mode image, special considerations, 

738, 749, 762 
concepts and mechanisms, !chapter) 737 
from sequential devices, special considerations, 739 
known image, special considerations, 738, 762 
merged, special considerations, 739 
PO-only images, special considerations, 739 
privileged shareable images, special considerations, 

739 
special cases, 738 
term definition, 737 



image activation (continued) 
types of, 738 
with message sections, special considerations, 739 

Image Activator system service. See $IMGACT 
image control block. See ICB 
image dump facility 

characteristics and use, 736 
image header. See IHD 
image reset. See MMG$IMGRESET 
Image Rundown system service. See $RUNDWN 
image rundown. See also image activation; $IMGACT; 

$RUNDWN 
common event flag clusters, processes automatically 

dissociated from, 208 
deleting process-private logical names, 1099 
distinguished from process rundown, 774 
effect on condition handlers, 75 
operations, 774 
PO space deletion at, 353 
term definition, 73 7 

image section descriptor. See ISD 
image sections 

creating, 374 
mapping, 374. See also image activation; $1MGACT 
process sections created by image activator, 353 

image startup sequence 
purging working set pages as component of, 506 

Image Startup system service. See $1MGSTA 
IMAGE MANAGEMENT initialization routine 

operations, 938 
image-specific message files 

characteristics and use, 1109 
images. See also image activation; $IMGACT; loadable 

executive images 
concepts, overview, 5 
data structures, 740 
executing, CLI commands that are handled without 

destroying, (table) 802 
exiting, 771 

concepts and mechanisms, (chapter) 737 
from executive mode at logout, 809 

initiation, 73 7 
by CLI, 802 

installed with privilege, overview, 12 
interrupted, state of, 807 
interrupting, with LIB$PAUSE, 807 
known, data structures, 743 
layout, (figure) 763 
linked with SYS.STB, overview, 12 
list, (chapter) 1126 
main, term definition, 738 
optional loadable executive, loading, 843 
privileged 

installed on a standard VMS system, (table) 1126 
known, name and description tables, (chapter) 

1126 
linked with SYS$SYSTEM:SYS.STB, miscellaneous 

list, (table) 1128 
protected by system UIC or volume ownership, 

(table) 1127 
rundown after CTRL/Y, 807 
shareable, dispatching control flow, (figure) 123 
shareable, dispatching to system services in, 121 
shareable, protected image section structure, 

(figure) 124 
shareable, system service operations in, 123 
typically not installed on a standard VMS system, 

(table) 1127 
restricted to privileged users, overview, 12, 

(table) 1126 

Index 

rundown by CLI at initiation of new image, 802 
shareable 

image activator control flow, 753 
term definition, 738 

simple main, image activator control flow, 747 
starting up, 768, 769. See also $IMGSTA 
term definition, 3 
terminating 

abnormally, 806 
normally, 806 

$IMGACT (Image Activator system service). See also 
image activation; image rundown; $RUNDWN 

arguments, (table) 747 
buffers, ICB field that points to, 742 
control flow, (table) 747 

end processing, 756 
shareable images, 753 
simple main images, 747 

initialization order computation, 758 
lock use by, characteristics and use of each lock, 

1320 
operations 

CLI, 762 
compatibility mode images, 762 
known images, 762 

overview, 737, 740 
Pl space management by, 353 
shareable image initialization, example, 760 
term definition, 5 

$IMGFIX (Addtess Relocation Fixup system service). 
See also .ADDRESS directive; address 
relocation. Consult VMS Linker Utility Manual 

concepts and operations, 762 
IMGIOCNT parameter (SYSGEN) 

effect on Pl space, 1293 
size of image 1/0 segment, 756 

$IMGSTA (Image Startup system service) 
operations, 769 

implicit affinity. See also affinity 
acquiring, 297 
characteristics and use, 28 7 
mechanism, 289 

INCONSTATE bugcheck. See also bugchecks 
generated by SMP$SETUP_CPU, 1052 

Individual Departure lock 
characteristics and use, 1322 

Individual Index lock 
characteristics and use, 1322 

Individual Link Registration lock 
characteristics and use, 1322 

information system services 
overview, 705 

INI$BRK routine (SYSTEM_ROUTINES module) 
actions when XDELTA is not resident, 68 

INI$DOINIT routine (DOINIT module) 
control flow, 846 
initializing loadable executive images, 844 

INI$MASTERWAKE routine (SYSTEM_ROUTINES 
module) 

XDELTA interrupt service routine, entering, 68 
INI$PFN_FIXUP routine (DOINIT module) 

operations, 848 
use by loadable executive images, 844 

INI$SYSTEM_SERVICE routine (DOINIT module) 
control flow, 849 
operations, 849 
use by loadable executive images, 845 

$INIRTNDEF macro 
initialization table flags defined by, 844 

INIT module. See EXE$INIT 
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INIT processor state 
secondary processors initialized to, 1043 
transitions out of, by CPU_START routine, 1044 

initialization. See system initialization 
initialization routines 

loadable executive image-specific, possible opera­
tions, 847 

INITIALIZATION_ROUTINE macro 
creating entries in initialization routine table, 844 

initiate-exception-or-interrupt. See IEI microcode 
input symbiont 

batch process creation role, 786 
INSMBQUEUE routine (MBDRIVER module) 

control flow, 666 
INSQHI instruction. See also instructions 

interlocked memory instruction, synchronizing data 
with, 164 

INSQTI instruction. See also instructions 
interlocked memory instruction, synchronizing data 

with, 164 
Install lock 

characteristics and use, 1320 
Install Utility 

in context of startup process, files accessed by, 
(table) 863 

known image database creation and management by, 
744 

lock use by, characteristics and use of each lock, 
1320 

instruction emulation. See also FPEMUL; instructions; 
VAXEMUL 

emulator loading, operations, 857 
exceptions, handling, 85 
VMS techniques for handling, 76 

instruction lookahead. See also instructions 
clearing, by REI instruction, 39 

instruction prefetch. See instruction lookahead 
instructions. See also hardware 

absolute queue, noninterruptibility, 163 
change mode, VAX architecture feature used by 

VMS, 15 
data structure referencing, reading, 1135 
decimal, unimplemented, emulation support for, 77 
FPD, characteristics and use, 163 
interlocked 

characteristics, 163 
list of, 164 
shared system data protected by, 166 
VAX architecture feature used by VMS, 14 

interlocked queue 
characteristics and use, 164 
macros that use, 165 
synchronizing access to system space lookaside 

lists with, 552 
kernel mode, VAX architecture feature used by VMS, 

14 
LDPCTX, VAX architecture feature used by VMS, 15 
overview, 1138 
REI 

overview, 22 
VAX architecture feature used by VMS, 15 

string, unimplemented, emulation support for, 77 
SVPCTX, VAX architecture feature used by VMS, 15 
techniques for increasing instruction speed, 1138 
uninterruptible, characteristics, 163 
unusual instruction and addressing mode use, 1140 
VAX instruction set, overview, 15 

inswaf. See also swapper 
fina processing, 542 
operations, example, (figures) 540 
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PHD, 537 
preparing for, 536 
processes 

operations, 536 
selecting, 519, 536 

term definition, 4 
integrated disk controller. See IDC 
integrity level 

logical names, term definition, 1069 
interactive processes. See also processes 

creating, (figure) 784 
by job controller, 783 

DCL spawning of, 788 
LOGINOUT image operations, control flow, 791 
logout, LOGINOUT, control flow, 809 
subprocesses, DCL commands that create and 

connect with, 787 
interlocked instructions. See also instructions; 

interlocked queue instructions 
characteristics, 163 
list of, 164 
multiprocessing synchronization primitive, 1021 
shared system data protected by, 166 

interlocked queue instructions. See also instructions; 
interlocked instructions 

characteristics and use, 164 
macros that use, 165 
synchronizing access to system space lookaside lists 

with, 552 
intermediate request packet. See IRP 
internal process identifier. See IPID 
interprocess communication 

global sections, 345 
logical names, 345 
mailbox use for, 344, 655 
mechanisms 

list of available, 318 
overview, 342 

synchronization 
through common event flags, 213 
through lock management system services, 344 

interprocessor cooperation. See also SMP systems 
changing valid SPTEs, 1029 
concepts and mechanisms, 1022 
time-of-year clock access, 1027 

interprocessor interrupt work requests 
AST level update, handling, 1026 
benign state entry, 1025 
bits, names and meaning, (table) 1023 
bugcheck, 1025 
console terminal serving, 1025 
fork process move, handling, 1026 
I/O postprocessing, 1026 
processor-specific, 1028 
rescheduling interrupt, handling, 1028 
servicing, 1025 
time-of-year clock access, handling, 1027 
translation buffer invalidation, 1029 
VAXcluster quorum lost, handling, 1028 

interprocessor interrupts 
requesting, 1023 
servicing, 1025 
VAX architecture mechanisms, 42 

interprocessor timeouts. See also timeouts 
busywait, 1035 
sanity timer, 1035 
spinwait, 1035 

interrupt dispatch block. See IDB 
interrupt initiation. See IEI microcode 
interrupt priority level. See IPL 



interrupt service routine. See ISR 
interrupt stack 

bit, PSL, AST delivery prevented by, 129 
exceptions serviced on, 35 
invalid, IEI microcode action, 36 
pointer, locating per-CPU data area with, 1015 
REI tests that prevent attempt to REI onto, 39 
selecting, 34 
servicing interrupts on, 31 
size, 35 
SMP systems, 1015 
summary, 1225 

interrupt state 
concept overview, 17 

interrupts. See also device drivers; exceptions; ISR; 
software interrupts 

adapter 
SCB locations, (figure) 31 
VMS service routine operations, 641 

blocking 
all, system facilities that synchronize by, 169 
by raising IPL, 44, 168 
IPL reserved for, 41 

concepts and mechanisms, (chapter) 29 
connect-to-interrupt mechanism, characteristics and 

use, 652 
console 

dispatching, 690 
VAX architecture mechanisms, 43 

device 
blocking, 1 70 
in SMP systems, 1040 
operations, 641 
servicing, driver actions, 636 
VAX architecture mechanisms, 44 
waiting for, driver actions, 635 

dispatching, VAX architecture mechanism, 34 
errors, CPU-specific, handling, 982 
exceptions compared with, 21, 37 
fork processes, handling mechanisms, 56 
granting, microcode actions, 30 
hardware 

concepts and mechanisms, (chapter) 40 
overview, 40 
software interrupts requested from hardware 

interrupt service routines, 54 
urgent conditions, VAX architecture mechanisms, 

41 
I/O postprocessing. See I/O postprocessing 
initiation. See IEI microcode 
interprocessor. See interprocessor interrupt work 

requests 
interval timer 

blocking, 170 
IPL for, 250 
VAX architecture mechanisms, 42 

multilevel dispatching 
Q22-bus-based MicroVAX systems, 49. Consult 

VMS Device Support Manual 
overview, 29 
REI instruction, control flow, 38 
requests for, queues as mechanism for keeping track 

of number, 55 
SCB use by, 30 
term definition, 21 
unexpected, VAX architecture mechanisms, 43 
UNIBUS adapter, vectoring interrupts through, 45 
urgent conditions, VAX architecture mechanisms, 41 
user-writable control store, exception handling, 31 
uses for, overview, 21 
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VAX microcode response to, 29 
vectors, (figure) 29, (figure) 30, (figure) 32 

format and use, (figure) 30 
hardware IPL and, 32 
how defined, 30 
IEI microcode testing to determine stack for, 

interrupt servicing, 34 
MicroVAX 2000 system, (table) 50 
nexus number use in identifying, 45 
unused, meaning of contents, 44 

interval timer 
characteristics and use, 248 
full implementation description, 249 
interrupt (IPL 22, 24) 

blocking, 1 70 
VAX architecture mechanisms, 42 

interrupt service routine 
control flow, 261 
interaction with software timer interrupt service 

routine, 64 
sanity timer mechanism operations, 103 7 

INTSTKPAGES parameter (SYSGEN) 
default value, 35 
effect on size of system space, 1279 
limiting resource tree maximum depth with, 

239 
size of interrupt stack, 1015 

INVALIDATE spinlock 
characteristics and use, 184 
held by SMP$INVALID, 1030 

INVALIDATE_TB macro 
invalidating TB with, 1026, 1029 

INVEXCPTN bugcheck. See also bugchecks 
generated during kernel or executive·mode exception 

processing, 94 
IO$_SETCHAR function code 

CTRL/C and CTRL/Y notification use of, 152 
mailbox driver use of, 153 
setting 

attention AST, 150 
out-of-band AST, 154 

I0$_SETMODE function code 
CTRL/C and CTRL/Y notification use of, 152 
mailbox driver use of, 153 
setting 

attention AST, 150 
mailbox driver mode, 664 
out-of-band AST, 154 

IO$M_CTRLCAST function modifier (IOS_SETMODE) 
CTRL/C notification use of, 152 

IO$M_CTRLYAST function modifier (IO$_SETMODE) 
CTRL/Y notification use of, 152 

IO$M_OUTBAND function modifier (IO$_SETMODE) 
setting out-of-band AST, 154 

IO$M_READATTN function modifier (IO$_ 
SETMODE) 

mailbox 
driver use of, 153 
read request, operations, 664 

IO$M_SETPROT function modifier (IO$_SETMODE) 
mailbox read request, operations, 664 

IO$M_ WRTATTN function modifier (IO$_SETMODE) 
mailbox 

driver use of, 153 
read request, operations, 664 

IO _ROUTINES initialization routine 
operations, 93 7 

IOC$CHKMBXQUOTA routine (UCBCREDEL 
module) 

operations, 661 
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IOCSCHKUCBQUOTA routine (UCBCREDEL 
module) 

operations, 599 
IOC$CLONE_UCB routine (UCBCREDEL modqle) 

cloning a mailbox UCB and ORB, operatiop.s, 661 
operations, 599 

IOCSDALLOC_DEV routine (IOSUBPAGD module) 
control flow, 594 

IOCSDEBIT_UCB routine (UCBCREDEL module) 
operations, 599 

IOCSDELETE_UCB routine (UCBCREDEL module) 
operations, 663 

IOCSFFCHAN routine (IOSUBPAGD module) 
operations, 597 

IOCSGL_DEVUST cell 
DDB list listhead, 580 

IOC$GL_LRPSIZE cell 
LRP list element size, 556 

IOCSGL_LRPSPLIT cell 
address of start of LRP pool region, 559 

IOCSGL_MUTEX cell 
locked by 

EXE$ALLOC, 592 
EXE$ASSIGN, 597 
EXE$CREMBX, 660 
EXE$DALLOC, 594 
EXE$DASSIGN, 604 
EXE$DEVICE_SCAN, 1118 
EXE$GE1DVI, 1120 

synchronizing access to 1/0 database, 201, 581 
IOCSGL_SRPSIZE cell 

meaning, 556 
IOC$GL_SRPSPLIT cell 

address of start of SRP pool region, 559 
IOCSINITDRV routine (RELOCDRV module) 

initializing terminal class driver data structures, 932 
IOC$INITIATE routine (IOSUBNPAG module) 

control flow, 630 
IOCSIOPOST routine (IOCIOPOST module). See also 

1/0 postprocessing 
buffered 1/0 completion, control flow, 614 
control flow, final steps, 615 
direct I/O completion, control flow, 615 
I/O postprocessing interrupt software routine, 

(example) 65 
operations, 613 
page read completion detection by, 466 
segmented transfer processing, control flow, 624 

IOC$LAST_CHAN routine (IOSUBPAGD module) 
control flow, 605 

IOCSLAST_CHAN_AMBX routine (IOSUBPAGD 
module) 

control flow, 605 
IOC$MAPVBLK routine (IOSUBRAMS module) 

operations, 622 
IOCSREQCOM routine (IOSUBNPAG module) 

control flow, 640 
inserting IRP onto systemwide queue, (example) 65 
completing device driver error log message, 963 

IOCSSEARCH routine (IOSUBPAGD module) 
operations, 592 

IOCSUNLOCK_DEV routine (IOSUBPAGD module) 
control flow, 594 

IOCSVERIFYCHAN routine (IOSUBPAGD module) 
control flow, 603 

IOCSWFIKPCH routine (IOSUBNPAG module) 
control flow, 635 

IOCIOPOST module 
BUFPOST, I/O postprocessing, 144 
DIRPOST, I/O postprocessing, 144 
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IOCSIOPOST 
buffered I/O completion, control flow, 614 
control flow, final steps, 615 
direct I/O completion, control flow, 615 
I/O postprocessing interrupt software routine, 

operations overview, (example) 65 
operations, 613 
page read completion detection by, 466 
segmented transfer processing, control flow, 624 

IOFORK macro 
I/O fork processing, 638 

IOLOCK module 
MMG$10LOCK, 383 
MMG$UNLOCK, page fault handling, private page 

not copy-on-reference, 443 
IOLOCK8 spinlock 

characteristics and use, 181 
device driver use of, 63 

IOLOCKn spiulocks 
characteristics and use, 183 

IOSB (I/O status block) 
event flags synchronization use with, 108 
synchronous system services return path handling 

of, 120 
IOSEGMENT linker option 

effect on Pl space, 1293 
IOSUBNPAG module 

IOC$INITIATE, control flow, 630 
IOC$REQCOM 

control flow, 640 
inserting IRP onto systemwide queue, (example) 65 

IOC$WFIKPCH, control flow, 635 
IOSUBPAGD module 

IOC$DALLOC_DEV, control flow, 594 
IOC$FFCHAN, operations, 597 
IOC$LAST_CHAN, control flow, 605 
IOC$LAST_CHAN_AMBX, control flow, 605 
IOC$SEARCH, operations, 592 
IOC$UNLOCK_DEV, operations, 594 
IOC$VERIFYCHAN, control flow, 603 

IOSUBRAMS module 
IOC$MAPVBLK, operations, 622 

IOTA parameter (SYSGEN) 
automatic working set limit adjustment use, 500 
deducted from PHD$W_QUANT, 294 
SCH$WAIT use, control flow, 291 

, SIOxxxDEF macro 
layout of CPU I/O space, 1264 
variant forms for different CPUs, (table) 1294 

SIOmDEF macro 
symbolic names for physical addresses of CPl.J­

specific processor registers, 1294 
IPC (console prompt). See also IPL 12 interrupt service 

routine 
meaning, 68 

IPCONTROL module 
EXE$IPCONTROL, IPL 12 interrupt service routine, 

commands and mechanism, 68 
IPID (internal process identifier) 

characteristics and use, 320, 720 
EPID use compared with, 320 
for global section to be deleted, GSD location, 390 
for master process in job tree of process that created 

a cluster, 205 
formation, 722, (figure) 723 
routines that transform and manipulate, 721 
sequence number always positive, 722 

IPINT_ALL macro 
requesting interprocessor interrupts with, 1023 

IPINT_CPU macro 



IPINT_CPU macro (continued) 
invocation and expansion, example, 1023 
requesting interprocessor interrupts with, 1023 

IPL (interrupt priority level) 
associated with a spinlock, specifying, 175 
blocking interrupts with, compared with exception 

handling, 37 
changing with 

DSBINT macro, 168 
ENBINT macro, 168 
SETIPL macro, 168 

checking during page fault handling, 436 
console interrupt, (table) 43 
converting a spinlock index to, 59 
corresponding to static spinlocks, table that 

identifies, 178 
device, device driver use of, 170 
distinguished from spinlock index, 177 
elevating, overview, 24 
exceptions, effect on, 37 
fork 

characteristics and use, 63 
synchronization use of, 170 

hardware, symbolic name and purpose, (table) 40 
hardware clock interrupt, CPU-dependent level 

definition, 250 
interrupt service routines restricted from lowering, 

35 
interrupts 

blocking, 44 
effect on, 3 7 

levels 16-31, meaning, 40 
lowering 

by REI instruction, 38 
by SERVICE_EXIT, 117 
forking as safe method for, 169 
why dangerous, 58, 168 

raising 
as hardware synchronization technique, 163 
distinguished from spinlock use, 173 
memory interlocked, synchronization advantage 

over, 164 
mutexes as an alternative to, 196 
synchronization use of different IPL levels, 168 

REI tests preventing 
attempts to REI to a higher, 39 
non-kernel modes from raising, 38 

role in arbitrating interrupts, overview, 29 
software, symbolic name, stack and purpose, 

(table) 55 
software interrupt, who requests, 54 
software interrupt vector and, 44 
spinlocks 

acquiring, rules for, 180 
held at, recording in per-CPU database, 177 

synchronization, spinlocks added for SMP support, 
1021 

values defined in $IPLDEF macro, 169 
VAX architecture feature used by VMS, 15 

IPL 2 
blocking, 172 

AST delivery interrupt, 286 
synchronization 

of private data structure access, 167 
use of, 172 

IPL 2 interrupt. See AST delivery interrupt 
IPL 3 interrupt. See rescheduling interrupt 
IPL 4 interrupt. See 1/0 postprocessing - interrupt 
IPL 6 

fork IPL of connect-to-interrupt driver, 654 

Index 

fork IPL used by attention AST drivers, 63 
fork process 

creating, reasons for, 151 
deallocating pool, synchronization issues, 562 

out-of-band AST use of, 153 
synchronization use of, 171 

IPL 6 interrupt. See fork interrupts 
IPL 7 

avoiding blocking activities at, 151 
fork block queue listhead placeholder, reasons for, 

57 
IPL 7 interrupt. See software timers - interrupt 
IPL 8 

accessing systemwide databases synchronized at, 
63 

avoiding blocking of activities at, 151 
fork IPL used by most drivers, 63 
IPL$_SYNCH synonyms, 171 
performing software timer interrupt service routine 

at, 263 
reasons for not lowering IPL to, 151 
SCS spinlock associated with, 69 
synchronization use of, 170 
value change from IPL 7 to IPL 8, reasons for, 171 

IPL 8 interrupt. See fork interrupts 
IPL 9 interrupt. See fork interrupts 
IPL 10 interrupt. See fork interrupts 
IPL 11 

mailbox driver fork IPL, 664 
IPL 11 interrupt. See fork interrupts 
IPL 12 interrupt service routine. See also IPC 

C command, canceling mount verification, 69 
commands, (table) 68 
CTRL/Z command, exiting routine, 70 
Q command, recalculating quorum for VAXcluster, 

69 
X command, activating XDELTA, 70 

IPL 14 interrupt service routine. See also XDELTA 
operations, 67 

IPL 19 
meaning, (table) 40 

IPL 20 
meaning, (table) 40 

IPL21 
meaning, (table) 40 

IPL22 
interval timer interrupt, VAX architecture current 

use, 250 
meaning, (table) 40 
synchronization use of, 170, 184 

IPL 22 interrupt. See interval timer 
IPL24 

interval timer interrupt, VAX architecture older use, 
250 

meaning, (table) 40 
synchronization use of, 170, 184 

IPL 24 interrupt. See interval timer 
IPL 30 interrupt. See powerfail 
IPL31 

exceptions serviced at, 31 
kernel-stack-not-valid, 76 
machine check, 76 

EXE$FORICWAIT use when stalling a fork process, 
62 

meaning, (table) 40 
powerfail recovery use, 995 
raising IPL to during spinlock acquisition, 192 
synchronization use of, 169 
use, 41 
XDELTA execution at, 68 
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IPL$_ASTDEL. See IPL 2 
IPL$_EMB. See IPL 31 
IPL$_FILSYS. See IPL 8 
IPL$_HWCLK. See IPL 24 
IPL$_HWCLKLO. See IPL 22 
IPL$_INVALIDATE. See IPL 19; IPL 21 
IPL$_IOLOCK8. See IPL 8 
IPL$_IOPOST (IPL 4). See 1/0 postprocessing -

interrupt 
IPL$_IPINTR. See IPL 20; IPL 22 
IPL$_JIB. See IPL 8 
IPL$_MAILBOX. See IPL 11 
IPL$_MCHECK. See IPL 31 
IPL$_MEGA. See IPL 31 
IPL$_MMG. See IPL 8 
IPL$_POWER. See IPL 31 
IPLS_QUEUEAST. See IPL 6 
IPL$_RESCHED. See IPL 3 
IPL$_SCHED. See IPL 8 
IPL$_SCS. See IPL 8 
IPL$_SYNCH. See IPL 8 
IPLS_TIMER. See IPL 8 
IPL$_TIMERFORK. See IPL 7 
IPL$_ VIRTCONS. See IPL 20; IPL 22 
$IPLDEF macro 

IPL values defined in, 169 
software IPL symbolic names defined in, (table) 55 

IRP (I/O request packet). See also ACB; device drivers; 
1/0 postprocessing; $QIO 

ACB included in, 132 
CORP as extension to, 679 
characteristics and use, 580 
1/0 postprocessing use as an ACB, 144 
layout and summary, 1251 
lookaside list 

characteristics, (table) 544 
element size, 556 
listhead location and allocation type, (table) 546 
queuing to driver, 629, 631 
queuing to file system, 631 
size calculation, 1278 
uses of, 563 

placing in 1/0 postprocessing queue, 65 
IRP$C_LENGTH global symbol 

IRP list element size, 556 
IRP$L_BCNT field 

characteristics, 610 
use in direct 1/0 buffer mapping, 400 

IRP$L_PID field 
negative value indicates system 1/0 completion, 613 

IRP$L_SVAPTE field 
characteristics, 610 
use in direct 1/0 buffer mapping, 400 

IRP$V _BUFIO bit (ffiP$W _STS field) 
distinguishes buffered and direct 1/0, 614 

IRP$V_FUNC bit (IRP$W_STS field) 
distinguishes input from output, 615 

IRP$V _PAGIO bit (IRP$W _STS field) 
detecting page read completion with, 466 

mPSW _BOFF field 
characteristics, 610 
use in direct 1/0 buffer mapping, 400 

IRPE (IRP extensions) 
describing multiple direct 1/0 buffers, 615 

ISD (image section descriptor) 
demand zero, characteristics, 741 
global, characteristics, 7 41 
layout and characteristics, (figure) 7 41 
private section, characteristics, 7 41 
summary, 1251 
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types, description and use, 741 
ISD$L_ VBN field 

definition and use, 741 
ISD$L VBNPFC field 

defillition and use, 7 41 
ISD$T_GBLNAM field 

definition and use, 741 
ISD$V _DZRO bit (ISD$L_FLAGS field) 

definition and use, 741 
ISD$V_GBL bit (ISD$L_FLAGS field) 

definition and use, 741 
ISD$W _PAGCNT field 

definition and use, 741 
ISR (interrupt service routine). See also device drivers; 

interrupts; software interrupts 
driver, overview, 584 
1/0, concepts and mechanisms, (chapter) 628 
overview, 19 
restrictions imposed on, 34 

JIB (job information block) 
copying during process creation, (figure) 710 
JIB$L_BYTCNT field, synchronizing access to with 

JIB spinlock, 182 
JIB$L_BYTLYM field, synchronizing access to with 

JIB spinlock, 182 
layout and summary, 1252 
obtaining information from, $GETJPI operations, 

328 
PCB address of, 271 
PCB relation with, for several processes in same job, 

(figure) 713 
process software context contained in, 4 

JIB spinlock 
characteristics and use, 182 

JIB$B_FLAGS field 
job quota wait use of, 286 

JIB$L_BYTCNT field 
job quota wait use of, 286 
synchronizing access to, with JIB spinlock, 182 

JIB$L_BYTLYM field 
synchronizing access to, with JIB spinlock, 182 

JIB$W_TQCNT pooled job quota 
TQE allocation controlled by, 257 

job 
concepts, overview, 8 
term definition, 3 

job controller 
batch/print subsystem queue manager, 1102 
creating, 947 
functions of, 1102 
lock use by, characteristics and use of each lock, 

1324 
mailboxes 

sending messages to accounting manager, 1107 
sending messages to symbiont manager, 1108 
SUBMIT command use of, 784 
use by, 673 

process 
command file that creates, 947 
process creation by, 783 

system services supported by, 1102 
Job Controller ORB lock 

characteristics and use, 1328 
job information block. See JIB 
job quota 

charging locks against, 226 
depleted 

miscellaneous wait triggered by, 286 



job quota (continued) 
depleted (continued) 

transition states triggered by, 286 
waiting for, context, 293. See also JIB$B_FLAGS field 

JOB_CONTROL process. See job controller 

KAST. See special kernel mode AST 
$KAyyyDEF macro 

symbolic names for offsets in CPU node-private 
space, 1294 

kernel See also I/O subsystem; memory management; 
scheduler 

entry paths into, (figure) 16 
hardware assistance to, overview, 14 
routines, implementation, overview, (figure) 16 
subsystems, interface among, (figure) 12 

kernel mode 
bugchecks, handling operations, 969 
change mode dispatch table, field definitions and 

use, 112 
last chance handlers, mechanism, 94 
REI tests for, 38 
stack pointer, as part of process hardware context, 

306 
suspension 

AST use in, 148 
synchronizing with Files-11 XQP, 147 

kernel request packet. See KRP 
kernel stack 

exception handling on, reasons for, 36 
exception handling use of, 80 
expansion, new pages locked in working set list, 485 

kernel-stack-not-valid exception 
meaning and use, 76 
selecting stack for servicing, 35 

KFD (known file device and directory block) 
layout, (figure) 744 
summary, 1253 

KFD$L KFELIST field 
definition and use, 7 44 

KFD$T_DDTSTR field 
definition and use, 744 

KFD$W REFCNT field 
definition and use, 744 

KFE (known file entry block) 
hash table, locating KFEs, 745 
images, ICB field that specifies, 742 
layout, (figure) 744 
lock, characteristics and use, 1320 
summary, 1253 

KFE$B_HSHIDX field 
definition and use, 745 

KFE$B MATCHCTL field 
definition and use, 744 

KFE$L FID field 
definition and use, 744 

KFE$L HSHLNK field 
definition and use, 745 

KFE$L IDENT field 
defilli.tion and use, 7 44 

KFE$L IMGHDR field 
defilli.tion and use, 744 

KFE$L_USECNT field 
definition and use, 744 

KFE$L WCB field 
defilli.tion and use, 744 

KFE$Q_PROCPRIV field 
definition and use, 744 
process privilege mask, use and routines that 

Index 

manipulate, (table) 778 
KFE$W FLAGS field 

definition and use, 744 
KFE$W _GBLSECCNT field 

definition and use, 744 
KFPB (known file pointer block) 

layout, (figure) 745 
summary, 1254 

KFPB$L KFDLST field 
definition and use, 745 

KFPB$L KFEHSHTAB field 
definition and use, 745 

KFPB$W _HSHTABLEN field 
definition and use, 745 

KFPB$W_KFDLSTCNT field 
definition and use, 747 

KFRH (known file resident image header) 
layout, (figure J 7 45 
summary, 1254 

known file database. See known image database 
known file device and directory block. See KFD 
known file entry block. See KFE 
known file resident image header. See KFRH 
known image database 

characteristics, 744 
known image installation 

/HEADER_RESIDENT qualifier, 744 
/PRIVILEGE qualifier, 7 43 
/SHARE qualifier, 743 

known images 
characteristics and use, 7 43 
image activator operations, 762 

KRNLSTAKNV bugcheck. See also bugchecks 
generated by kernel-stack-not-valid exception, 76 

KRP (kernel request packet) 
lookaside list 

allocating, 56 7 
characteristics, (table) 544, 552 
characteristics and use, 567 
deallocating, 567 
listhead location and allocation type, (table) 546 
process, (table) 544 

packet control 
CTL$C_KRP_COUNT symbol, 567 
CTL$C_KRP _SIZE symbol, 567 

KRPEMPTY bugcheck. See also bugchecks 
generated by failure to allocate a KRP, 568 

Label lock 
characteristics and use, 1300 

large request packet. See LRP 
last chance condition handlers 

calling, 90 
catch-all condition handler use for, 94 
established by $SETEXV, 74 
kernel mode, mechanism, 94 
location of, 7 4 

last channel processing 
control flow, 605 

LAT (local area terminal) 
server support, characteristics, 685 
server, operations, 685 

LBN (logical block number) 
converting VBN to, 622 
DSA disks, bad block handling, 693 
term definition, 621 

LCK$GL_DIRVEC cell 
resource directory address located in, 224 

LCK$GL_HASHTBL cell 
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LCK$GL_HASBTBL cell (continued) 
resource hash table address located in, 218 

LCK$GL_IDTBL cell 
definition and use, 222 

LCK$GL_MAXID cell 
lock ID table last entry index, 222 

LCK$GL_RRSFL cell 
listhead for root resource list for local system, 215 

LCK$GL_TIMOUTQ cell 
lock timeout queue listhead, deadlock handling use 

of, 236 
LCK$GRANT_LOCK routine (SYSENQDEQ module) 

control flow, 231 
LCK$SEARCBDLCK routine (DEADLOCK module) 

operations, 237 
LCK$SRCH_RESDLCK routine (DEADLOCK module) 

operations, 239 
$LCICPAG (Lock Pages in Memory system service) 

operations, 504 
LDATmodule 

static spinlock control blocks defined in, 177 
LDPCTX instruction. See also instructions 

control flow, 309 
use, 310 
VAX architecture feature used by VMS, 15 

LDR$ALLOC_PT routine (PTALLOC module) 
control flow, 861 

LDR$ALTERNATE_LOAD routine (ALTERNATE_ 
LOAD module) 

control flow, 843 
LDR$DEALLOC_PT routine (PTALLOC module) 

control flow, 861 
LDR$GL_FREE_PT cell 

listhead of available SPTEs, 859 
LDR$1NIT_ALL routine (SYSLDR module) 

list of options, 845 
LDR$1NIT_SINGLE routine (SYSLDR module) 

control flow, 846 
list of options, 845 

LDR$LOAD_IMAGE routine (SYSLDR module) 
loading loadable executive images 

control flow, 838 
operations, 837 

LDR$LOAD_NONPAGED routine (SYSLDR module) 
mapping nonpaged read-only code section of loadable 

executive image, control flow, 841 
LDRIMG (loadable image data block) 

layout, (figure) 839 
LEF (local event 8ag wait state). See also event flag 

wait state; event flags; LEFO; local event flags; 
process states1 wait states 

characteristics and use, 210 
context for, 292 
transitions 

from LEF to COM, 282 
to LEF from CUR, 282 

LEFO (local event flag outswapped wait state). See also 
event flag wait state; event flags; LEF; local 
event flags; process states; wait states 

characteristics and use, 210 
transitions 

from LEFO to COMO, 282 
to LEFO from LEF, 282 

LIB.MLB macro library 
locating non-public data structure offsets, constants, 

and macro definitions in, 1133 
VAX MACRO external interface data structure 

definitions stored in, 1241 
LIB.REQ macro library 

BLISS-32 external interface data structure definitions 
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stored in, 1241 
locating non-public data structure offsets, constants, 

and macro definitions in, 1133 
LIB$ATrACB routine (Run-Time Library) 

ATrACH command functions available to images 
through, 787 

LIB$FIND_IMAGE_SYMBOL routine (Run-Time 
Library) 

effect on PO and Pl space, 353 
procedure that initiates merged image activation, 

739 
LIB$PAUSE routine (Run-Time Library) 

interrupting images, program control of, 807 
LIB$SIGNAL routine ( Run-Time Library) 

building mechanism arrays, 88 
compared with LIB$STOP, 86 
conditions not signaled through, 80 
reasons not used for DEBUG signal, 84 
software condition handling, operations, 86 

LIB$SPAWN routine (Run-Time Library) 
SPAWN command functions available to images 

through, 787 
LIB$STOP routine ( Run-Time Library) 

building mechanism arrays, 88 
compared with LIB$SIGNAL, 86 
conditions not signaled through, 80 
signaling through, condition handler actions, 96 
software condition handling, operations, 86 

limits 
overview, 23 

linker options 
COLLECT/ATTRIBUTES, use, 833 
IOSEGMENT, effect on Pl space, 1293 
NOPOBUFS, use, 566 
STACK, effect on Pl space, 1293 
VECTOR, use, 833 

LINKVEC module 
miscellaneous transfer vector area defined in, 831 

listing files. See VMS listing files 
LKB (lock block) 

ACB included in, 132 
allocating pool for, 557 
characteristics and use, 218 
in a V Ax.cluster system, distribution of, 223 
layout, (figure) 218 
linking into lock timeout queue, (figurel 236 
local copy, characteristics and use, 225 
locating, 221, 222 
master copy, characteristics and use, 225 
process copy, characteristics and use, 225 
removing from resource queue during dequeuing 

operations, 230 
summary, 1254 
types 

characteristics and use, 225 
distinguished by LKB and RSB contents, 225 

LKB$B_GRMODE field 
definition and use, 218 
lock conversion use of, 228 

LKB$B_RMOD field 
definition and use, 220 

LKB$B_RQMODE field 
definition and use, 218 
lock conversion use of, 228 

LKB$B_STATE field 
definition and use, 220 

LKB$GL_NXTID cell 
definition and use, 222 

LKB$L_ASTQBL field 
definition and use, 220 



LKB$L_ASTQFL field 
definition and use, 220 

LKB$L BLKASTADR field 
definition and use, 221 

LKB$L CPLASTADR field 
definition and use, 221 

LKB$L CSID field 
definition and use, 225 

LKB$L_DUETIME field 
synonym for LKB$L_KAST, storing lock request 

timeout time in, 236 
LKB$L_EPID field 

definition and use, 221 
LKB$L KAST field 

synoiiym for LKB$L_DUETIME, storing lock request 
timeout time in, 236 

LKB$L LKID field 
definition and use, 221 

LKB$L LKSB field 
definition and use, 221 

LKB$L LKSTl field 
definition and use, 221 

LKB$L_OWNQBL field 
definition and use, 223 

LKB$L_OWNQFL field 
definition and use, 223 

LKB$L PARENT field 
definition and use, 220 

LKB$L PID field 
definition and use, 220 

LKB$L_REMLKID field 
definition and use, 225 

LKB$L_SQBL field 
definition and use, 220 

LKB$L_SQFL field 
definition and use, 220 

LKB$V _MSTCPY bit (LKB$W _FLAGS field) 
definition and use, 225 

LKB$W REFCNT field 
definition and use, 220 

$LKWSET (Lock Pages in Working Set system service) 
control flow, 502 
locking pages into process working set with, 1147 

LNM$ prefix 
predefined logical names, (table) 1072 

LNM$AL_DIRTBL cell 
meaning, 1070 

LNM$AL_HASHTBL cell 
meaning, 1083 

LNM$AL MUTEX cell 
locked by 

EXE$CRELNM, 1094 
EXE$DELLNM, 1098 
EXE$TRNLNM, 1093 

shareable logical name database synchronized by, 
1086 

LNM$CHECK_PROT routine (LNMSUB module) 
checking logical name access with, 1092 

LNM$CONTSEARCH routine (LNMSUB module) 
control flow, 1087 

LNM$DELETE_LNMB routine (LNMSUB module) 
control flow, 1098 

LNM$FIRSTTAB routine (LNMSUB module) 
operations, 1089 

LNM$GL_SYSDIRSEQ cell 
meaning, 1085 

LNM$HASH routine (LNMSUB module) 
control flow, 1083 

LNM$INSLOGTAB routine (LNMSUB module) 
operations, 1095 
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LNM$PERMANENT MAILBOX 
logical name table for permanent mailboxes, 657 

LNM$PRESEARCH routine (LNMSUB module) 
control flow, 1087 

LNM$PROCESS_DIRECTORY directory 
process-private logical name tables named in, 1070 

LNM$SEARCH_ONE routine (LNMSUB module) 
operations, 1089 

LNM$SEARCHLOG routine (LNMSUB module) 
control flow, 1086 
operations, 1086 

LNM$SETUP routine (LNMSUB module) 
control flow, 1089 
operations, 1089 

LNM$SYSTEM_DIRECTORY directory 
shareable logical name tables named in, 1070 

LNM$TABLE routine (LNMSUB module) 
control flow, 1090 
operations, 1089 

LNM$TABLE_SRCH routine (LNMSUB module) 
control flow, 1090 

LNM$TEMPORARY MAILBOX 
logical name table for temporary mailboxes, 657 

LNMB (logical name block) 
back pointers, use of, 1078 
definition and use, 1077 
inserting into logical name database 

during logical name creation, 1095 
during logical name table creation, 1097 

layout, (figure) 1077 
removing from logical name database, 1098 
summary, 1254 

LNMB$B_ACMODE field 
definition and use, 1077 

LNMB$B_FLAGS field 
definition and use, 1077 

LNMB$L_BLINK field 
definition and use, 1077 

LNMB$L FLINK field 
definition and use, 1077 

LNMB$L_TABLE field 
definition and use, 1077 

LNMB$T NAME field 
definition and use, 1077 

LNMB$W _SIZE field 
definition and use, 1077 

LNMC (logical name table name cache block) 
characteristics and use, 1084 
layout, (figure) 1084 
summary, 1254 

LNMC$B CACHEINDX field 
definition and use, 1085 

LNMC$L_PROCDIRSEQ field 
definition and use, 1085 

LNMC$L_SYSDIRSEQ field 
definition and use, 1085 

LNMC$L_TBLADDR field 
definition and use, 1084 

LNMHSH (logical name hash table) 
characteristics and use, 1081 
hash chain, characteristics and use, 1081 
summary, 1254 

LNMPHASHTBL parameter (SYSGEN) 
number of name table cache blocks related to, 1086 
process-private hash table size specified by, 1083 

LNMSHASHTBL parameter (SYSGEN) 
shareable hash table size specified by, 1083 

LNMSUB module 
LNM$CHECK_PROT, checking logical name access 

with, 1092 
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LNMSUB module (continued) 
LNM$CONTSEARCH, control flow, 1087 
LNM$DELETE_LNMB, control flow, 1098 
LNM$FIRS1TAB, operations, 1089 
LNM$HASH, control flow, 1083 
LNM$INSLOGTAB, operations, 1095 
LNM$PRESEARCH, control flow, 1087 
LNM$SEARCH_ONE, operations, 1089 
LNM$SEARCHLOG 

control flow, 1086 
operations, 1086 

LNM$SETUP 
control flow, 1089 
operations, 1089 

LNM$TABLE 
control flow, 1090 
operations, 1089 

LNMSTABLE_SRCH, control flow, 1090 
LNMTH (logical name table header) 

characteristics, 1079 
layout, lftgurel 1079 
summary, 1255 

LNMTHSL_BYTES field 
definition and use, 1081 

LNMTH$L_BYTESLM field 
, definition and use, 1081 
LNMTHSL_CHILD field 

definition and use, 1079 
LNMTHSL_HASH field 

definition and use, 1079 
LNMTHSL_NAME field 

definition and use, 1079 
LNMTH$L_ORB field 

definition and use, 1079 
LNMTHSL_lARENT field 

definition and use, 1079 
LNMTHSL_QTABLE field 

definition and use, 1081 
LNMTHSL_SmLING field 

definition and use, 1079 
LNMTHSV _DIRECTORY bit (LNMTH$B_FLAGS 

field) 
meaning, 1081 

LNMX (logical name translation block) 
definition and use, 1077 
layout, (figurel 1077 
summary, 1255 

LNMXSB_FLAGS field 
definition and use, 1077 

LNMXSB_INDEX field 
definition and use, 1077 

LNMXST_XLATION field 
definition and use, 1077 

LNMX$W_HASH field 
definition and use, 1077 

LOAD_PAGED routine (SYSLDR module) 
mapping paged read-only code section of loadable 

executive image, control flow, 842 
LOAD_SYS_IMAGES parameter (SYSGEN) 

enabling loading of optional loadable executive 
images, 843 

loadable executive images 
address relocation B.xup, 847 
addresses, locating, 1149 
characteristics and use, 831 
constraints on, 831 
data in, characteristics, 833 
image sections 

list, 831 
nonpageable, placing code in, 1145 
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initialization. See also DOINIT module 
description of routine, 935 
image section, OOINIT clustering of PSECTs into, 

844 
operations, 843, 846 
possible times, 845 
routine table, structure, 844 

loading, operations, 836 
mapping of, 458 
names and descriptions, (tablet 831 
optional, loading, 843 
organization, ltablel 833 
page faults for 

copy-on-reference pages in, 459 
read-only pages in, 458 

PPN database reference B.xups, 848 
structure, 831 
symbol resolution in, 835 
term definition, 8, 823 

loadable image data block. See LDRIMG 
LOADERSFIXUP_DOT_ADDRESS routine (DOINIT 

module) 
control flow, 847 . 
use by loadable executive images, 844 

LOADER_PTE_NOT_EMPTY error status 
returned by LDRSDEALLOC_PT, 861 

local area terminal. See LAT 
local devices 

assigning channels to, 598 
final processing, 600 

characteristics and use, 590 
local event flag outswappecl wait state. See LEFO 
local event flag wait state. See LEF 
local event flags. See also event flags; LEF; LEFO 

characteristics and use, 203 
numbers 

available to processes, 202 
reserved for system use, 203 

set by IOC$IOPOST at 1/0 completion, 616 
systemwide wait states, characteristics and use, 210 

lock access mode 
how determined, 220 

lock block. See LKB 
lock ID table 

characteristics and use, 221 
location, 222 
structure, (figurel 222 

LOCK macro 
generated code example, 186 

lock. managem~t ~ystem. See also deadlocks; 
synchroruzatton 

concepts and mechanisms, lchapterl 214 
data structures 

characteristics and use, 214 
synchronizing access to with SCS spinlock, 182 

lock database. See also LKB1 lock ID table; RSB 
accessing, 222 
relations in the, 222 
VAXcluster, characteristics and use, 223 

overview, 25 
system services. Consult VMS System Services 

Reference Manual 
interprocess communication mechanism, 344 
operations, 225 
VMS use of, overview, 167 

lock modes 
characteristics and use, ltablel 218 
effect on lock requests, 218 
term definition, 1296 

Lock Pages in Memory system service. See $LCKPAG 



Lock Pages in Working Set system service. See 
$LKWSET 

lock requests 
effect of lock modes on, 218 
for new locks, 225 
queuing, 225 
VAXcluster handling, by resource tree master, 224 

lock status block 
address and condition value, LKB field that contains, 

221 
event flags synchronization use with, 108 
synchronous system services return path handling 

of, 120 
lock timeout queue 

deadlock handling use of, 236 
location, 236 

LOCK_SYSTEM_PAGES macro 
operations, 508 

LOCK_SYSTEM_PAGES module 
~G$UNLOCK_SYSTEM_ENTRY, operations, 

1146 
MMG$LOCK_SYSTEM_PAGES, operations, 508, 

1146 
LOCKDIRWT parameter (SYSGEN) 

effect on resource directory participation, 224 
locked mutex 

MWAIT triggered by, 283 
LOCKIDTBL parameter (SYSGEN) 

lock ID table size controlled by, 222 
LOCKIDTBL_MAX parameter (SYSGEN) 

lock ID table size controlled by, 222 
locking pages 

into memory 
compared with locking pages into working set, 

505 
operations, 1144 

SMP issues, 1020 
virtual, into working set, operations, 502 
why not always possible, 507 

locks (lock management). See also LKB; locks used by 
VMS components; protection; resources1 RSB; 
synchronization; SYSENQDEQ module 

blocking a specific lock, 235 
characteristics and use, 214 
condition of current, LKB that specifies, 220 
conversion grant mode, characteristics and use, 228 
conversion request, handling incompatible, 229 
converting 

determining when it should be system-owned, 233 
process-owned to system-owned, 234 
to other modes, 228 

dequeuing 
$DEQ operations, 230 
lock ID role, 222 

distributed lock manager, entry point names and 
- descriptions, (table! 1218 

grant mode, characteristics and use, 228 
granting 

circumstances under which routines request, 231 
determining when it should be system-owned, 233 

group grant mode, characteristics and use, 228 
ID 

ID table, characteristics and use, 221 
LKB field that contains, 221 
validating, 222 

index, characteristics and use, 222 
information about obtaining 

$GETLKI operations, 235 
restrictions on, 234 

locating, 222 
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maximum number allowed, SYSGEN parameter that 
specifies, 222 

multiple, dequeuing, 230 
reference count, decrementing when sublock is 

dequeued,231 
request mode, characteristics and use, 228 
requests for 

canceling ungranted, 230 
precedence handling, 220 

restricting participation in deadlock searches, 
methods for, 236 

sublock relations, (figure! 220 
system-owned 

characteristics and use, 233 
how access modes determined, 233 
VMS components that use, 234 

timeout queue, linking locks into, 220 
wait queue, placing into, 227 

locks used by VMS components 
Bucket, 1313 
Cache, 1307 · 
characteristics and use, (chapter! 1296 
Device, 1299 
Disk Quota Cache, 1309 
Dismount, 1302 
Doorbell, 1325 
Extent Cache, 1309 
File, 1311 
File Access Arbitration, 1306 
File ID Cache, 1308 
File Serialization, 1306 
GETQUI, 1327 
Global Buffer Backing, 1318 
Global Buffer Master, 1316 
Global Buffer Section, 1316 
Individual Departure, 1322 

·Individual Index, 1322 
Individual Link Registration, 1322 
Install, 1320 
Job Controller ORB, 1328 
KFE, 1320 
Label, 1300 
Master ORB, 1327 
Master Registration, 1321 
Modified Proxy, 1323 
Mount Device, 1301 
Parameter, 1329 
Proxy Function, 1324 
Proxy Key, 1324 
Queue File, 1326 
Queue File Initialization, 1326 
Queue File Master, 1325 
Quota Cache Entry, 1309 
Record, 1319 
Remote Request, 1325 
Set Time, 1298 
Shadow, 1302 
SMISERVER Main, 1329 
SYSGEN Database, 1328 
Volume Allocation, 1304 
Volume Blocking, 1305 

LOG_IO (do logical 1/0 privilege). See also privileges 
use by $SETIME, 255 

logical block number. See LBN 
logical 1/0 segmenting 

by FDT routines, 622 
concepts and control flow, 620 

logical memory block 
characteristics and use, 976 
organization, (figure! 977 
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logical name block. See LNMB 
logical name directory 

specification, 1081 
logical name hash table. See LNMHSH 
logical name string 

characteristics, 1068 
logical name identification includes, 1068 

logical name table header. See LNMTH 
logical name table name cache block. See LNMC 
logical name tables 

access mode, how specified, 1070 
address, stored in mailbox UCB, 657 
aliases in, 1069 
characteristics, 1070 
creating, 1095 
default, names, directory, and use, (table) 1072 
deleting, 1098 
directory name table and, (table) 1070 
group, when created, 1072 
hash table address array 

characteristics, 1083 
layout, (figure) 1083 

hierarchical relations, (figurel 1079 
hierarchies, characteristics, 1071 
identification of, 1070 
job, when created, 1072 
jobwide, 657 
limited quota, implications, 1071 
logical name identification includes, 1068 
name resolution, operations, 1089 
parent, characteristics, 1071 
process-private, LNM$PROCESS_DIRECTORY, 

1070 
protection, characteristics, 1071 
quota, 1071 
shareable 

created during system initialization, 1070 
LNM$SYSTEM_DIRECTORY, 1070 

system, when created, 1072 
systemwide, 657 
translation, dimensions, 1076 

logical name translation block. See LNMX 
logical names. See also 1/0; LNMB; LNMC; LNMHSH; 

LNMSUB module; LNMTH; LNMX; SYSLNM 
module. Consult Introduction to VMS System 
Services; VMS DCL Concepts Manual; VMS 
System Services Reference Manual 

access mode 
how specified, 1069 
logical name identification includes, 1068 

attributes, list and description, 1069 
back pointers, 1078 
characteristics, 1068 
concepts and mechanisms, (chapter) 1067 
creating, operations, 1093 
data structures, 1077 
database, synchronization of access to, 1086 
deleting, 1098 
goals of VMS support, 1067 
hashing algorithm, 1083 
interprocess communication mechanism, 345 
length restrictions for, in a logical name table, 1071 
logical name database, initializing, 939 
mailboxes, characteristics and use, 656 
multivalued, term definition, 1069 
overview, 25 
resolution example, (figurel 1091 
scope, how determined, 1068 
searching for, operations, 1086 
system services 
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operations, 1092 
superseded, names and descriptions, 1100 

term definition, 1067 
translation 

attributes, 1075 
characteristics, 1075 
dimensions, 1075, 1076 
LNMC use by, 1084 
operations, 1093 
term definition, 1067 

login 
operations, LOGINOUT control flow, 791 
remote, operations, 686 

LOGINOUT.EXE image 
base priority resetting by, 275 
effect on process capabilities, 783 
logout, control flow, 808 
operations 

in batch processes, control flow, 797 
in context of newly spawned subprocess, 789 
in interactive processes, control flow, 791 
in network processes, control flow, 798 
overview, 791 

rundown by CLI, 801 
logout 

operations, 808 
LONGWAIT parameter (SYSGEN) 

use in outswap and swapper trimming selection, 526 
longword relative deferred addressing mode (@L·) 

G. references to shareable images changed to during 
image activation, 764 

lookaside lists. See also ICB; IRP; KRP; LRP; memory 
management; pool - nonpaged; SRP 

allocating request packets directly from, 557 
allocation size ranges for, (figurel 557 
changes from earler VMS versions, 554 
characteristics, (tablel 544 
corruption, potential for during deallocation, 559 
deallocation address ranges for, 559 
initializing, (tablel 555 
listhead location and allocation type, (tablel 546 
nonpaged, why spinlock not needed for access 

synchronization, 183 
pools, structure and operations, 552 
size calculation, 12 78 
uses of, 563 

loop 
infinite, unwinding call stack possibility of, 100 

LRP (large request packet) 
lookaside list 

characteristics, (tablel 544 
element size, 556 
listhead location and allocation type, (tablel 546 
uses of, 563 

LRPSIZE parameter (SYSGEN) 
LRP list element size, 556 

M-bus 
VAXstation 3520 system, configuration, 50 

MA780 multiport memory 
common event flags supported for, 202 
mailbox driver 

IPL 11 use by, 63 
locations for, 664 
MAILBOX spinlock use by, 183 

mailbox use with, 656 
machine checks 

caused by adapter powerfail, handling, 1003 
exception 



machine checks (continued) 
exception (continued) 

meaning and use, 76 
selecting stack for servicing, 35 

exception routine, MCHECK spinlock use, 185 
frame, characteristics and use, 979 
mechanism, characteristics and operations, 979 
protection mechanism, characteristics, 980 
recoverability, 980 
recovery block 

defining, 981 
restrictions on, 980 

types of, 979 
MACHINECHK bugcheck. See also bugchecks 

generated by machine check exception service 
routine, 980 

macros 
classes of, characteristics and use, 1135 
definitions, locating, 1133, 1135 
system, using local macros, names format, 1233 

mailbox driver. See also MBDRIVER module 
attention AST use by, 149, 153 
canceling 1/0, operations, 670 
concepts and mechanisms, (chapter) 655 
device driver, control flow, 664 
driver, setting operation mode of, 664 
IPL 11 use by, 63 
operations, 664 
read attention AST, setting, 664 
reading 

control flow, 667 
requirements, 667 

writing 
control flow, 665 
from drivers, control flow, 672 
requirements, 665, 666 

MAILBOX spinlock 
characteristics and use, 183 
held by 

EXE$SNDEVMSG, 671 
FDTREAD, 668 
FDTSET, 664 
FDTWRITE, 666 

mailboxes. See also I/O; logical names 
access protection, setting, 665 
associated, assigning channels to, 600 
associated with device, 673 
attach request, for returning interactive control to a 

DCL process, 790 
communication, for transmitting process context 

information to spawned subprocess, 788, 789 
concepts and mechanisms, (chapter) 655 
connection to logical name, 1078 
creating 

operations, 658 
permanent, 661 
temporary, 661 

data structures 
associated with creation, (figure) 662 
used with, 657 

DCL spawned subprocess, 673 
deleting, 662 

operations, 658 
error log, 6 73 

characteristics and use, 966 
full, state transition triggered by, 284 
interprocess communication, 344, 655 
job controller 

sending messages to accounting manager, 1107 
sending messages to symbiont manager, 1108 
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SUBMIT command use of, 784 
use for communicating with other processes, 1103 

kinds of, 656 
message block, layout, (figure) 658 
OPCOM use for communicating with other 

processes, 1108 
overview, 655 
queuing messages from drivers, control flow, 671 
synchronizing access to with MAILBOX spinlock, 

183 
termination, 673 

message sent to owner process during process 
deletion, (table) 816 

shared by up to four spawned subprocesses, 788 
UCB, linking LNMB with, 1078 
using 

AUDIT_SERVER, 674 
file system bad block handling, 675 
job controller, 673 
OPCOM, 674 
VMS executive, 673 

wait state, characteristics and use, 285 
write attention AST, setting, 664 

main image 
term definition, 738 

MAINTAIN request (modified page writer) 
operations, 468 

Maintenance Operations Protocol. See MOP 
map files 

characteristics and use, 114 7 
locations, (table) 1148 
using VMS, (chapter) 1129 

Map Global Section system service. See $MGBLSC 
mapping. See also address space 

PHD into Pl space, swapper implications, 537 
virtual address space, differences among different 

areas, 353 
mass storage control protocol. See MSCP 
MASSBUS adapter. See MBA 
Master ORB lock. See also job controller; ORB 

characteristics and use, 1327 
Master Registration lock 

characteristics and use, 1321 
MAXPROCESSCNT parameter (SYSGEN) 

maximum number of processes permitted, 720 
MBA (MASSBUS adapter) 

interrupt service routine, operations, 645 
powerfail and recovery operations, 1004 

MBA$INT routine ([SYSLOA)ADDSUBxxx module) 
control flow, 645 

MBAO mailbox unit 
mailbox template, 658 

MBDRIVER module. See also mailbox driver 
CANCELIO, mailbox cancel 1/0, 670 
EXE$SNDEVMSG, control flow, 671 
EXE$WRTMAILBOX, control flow, 672 
FDTREAD, reading a mailbox, 667 
FDTSET, establishing mailbox attention AST, 664 
FINISHREAD 

mailbox read request 1/0 completion, control flow, 
669, 670 

INSMBQUEUE, control flow, 666 
READCHECKIO, reading a mailbox, validation 

control flow, 667 
STARTIO, start 1/0 mailbox read, 668 
WRITECHECKIO, writing to a mailbox, validation 

control flow, 665 
MCHECK spinlock 

characteristics and use, 185 
held by 
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MCHECK spinlock (continued) 
held by (continued) 

CPU-specific error interrupt service routines, 982 
machine check exception service routine, 979 

$MCHKDEF macro 
types of machine check protection defined by, 981 

MCR (monitor console routine) CLI. See also CLI, 
DCL CLI 

command processing loop 
commands handled by internal procedures, 

(table) 802 
control flow, (figure) 802 
operations, (table) 802 

condition handlers used by, 95 
exit handler, control flow, 806 
image initiation 

argument list passed to image, (figure) 805 
operations, 802 

image processing and, 799 
initialization, operations, 801 
term definition, 11 

MCR$EXITHAND routine ([MCR)MCRIMGEXE 
module) 

operations, 806 
MCRSSTARTUP routine ([MCR)MCRINIT module) 

operations, 801 
mechanism array. See also condition handlers 

building, 79 
LIBSSIGNAL/STOP, 88 

layout, (fWue) 79 
MEGA spinfock 

characteristics and use, 185 
held by 

EXE$FORK_ WAIT when stalling a fork process, 62 
EXESTIMEOUT to serialize access to fork and 

wait queue, 62 
memory 

access 
atomic, characteristics, 162 
checking, virtual page as unit of, 351 
interlocked, characteristics, 163 

address translation, VAX characteristics and 
mechanisms, 362 

bus traffic, reducing with noninterlocked bit testing, 
190 

cache policy, VAXstation 35x0, 1012 
interlocked 

characteristics, 163 
instructions, list of, 164 

1/0 hardware configuration component, 577 
logical name table size quota, 1071 
mapping registers, 306 
physical 

characteristics and mechanisms, overview, 354 
data structures, overview, 355 
parameters that control management of, 357 
sharing,overview,355 
uses of, overview, 356 

process priorities for residence, concepts and 
mechanisms, 274. See also priorities 

protection 
mechanism, VAX architecture feature used by 

VMS, 14 
VAX access checking, characteristics and 

mechanisms, 362 
virtual memory role in, 349 

reclaiming, OUTSWAP routine, 522 
requirements, dynamic data structures, differences 

among, 544 
separating writes to, for performance, 1139 
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sharing, implications of, 1020 
system 

available, size calculation, 1286 
nonpaged, size calculation, 1286 

validity checked at power recovery, 984 
virtual. See also address space 

address space, data structures, overview, 354 
characteristics and mechanisms, overview, 350 
original design, characteristics and motivation, 

357 
overview, 349 

memory management. See also address space; global 
sections; page faults; PFN - database; pool; 
swapper; virtual memory; working set list 

access modes and, overview, 20 
auxiliary mechanisms, overview, 360 
data structures 

concepts and mechanisms, (chapter) 349 
page fault handling, 439 

database, synchronizing access to with MMG 
spinlock, 182 

mechanisms, overview, 357 
original design, characteristics and motivation, 357 
overview, 9, 349 

concepts and mechanisms, (chapter) 349 
parameters that control 

VMS Version 1, 359 
VMS Version 2, 360 
VMS Version 3, 360 
VMS Version 4, 360 
VMS Version 5, 360 

pool, concepts and mechanisms, (chapter) 544 
protection mechanism, VAX architecture feature 

used by VMS, 14 
requests, overview, 13 
SMP systems, CPU mapping, 926 
system data structures, characteristics and field 

definitions, 387 
system services 

common characteristics, 403 
common control flow, 405 
concepts and mechanisms, (chapter) 403 
restrictions on use, 403 
stack scratch space layout, (figure) 404 

turning on, 923 
after powerfail, 995 
instructions for, 925 
mapping contexts, 925 

wait states 
characteristics and transitions, 283 
context for, 292 

memory write buffer 
VAX 6000 series, 1012 

MEMORYALC module 
CHECK_PACKET, pool poisoning operations, 572 
EXE$ALLOCATE, arguments, 546 
EXE$ALLOCPCB, allocating nonpaged pool, 557 
EXE$ALLOCTQE, allocating nonpaged pool, 557 
EXE$ALONONPAGED 

allocating mailbox memory block, 666 
control flow, 558 

EXE$ALONPAGVAR, control flow, 558 
EXE$ALOPOIMAG, allocating space from process 

allocation region, 566 
EXE$ALOP1IMAG, allocating space from process 

allocation region, 566 
EXESALOPlPROC, allocating space from process 

allocation region, 566 
EXE$ALOPAGED, allocating paged pool, 564 
EXE$DEALLOCATE, arguments, 546 



MEMORYALC module (continued) 
EXE$DEANONPAGED, control flow, 559 
EXE$DEAP1, allocating space from process allocation 

region, 566 
EXE$DEAPAGED, allocating paged pool, 564 
EXE$EXTENDPOOL, operations, 560 
POISON_PACKET, pool poisoning operations, 571 

message argument vector 
constructing. Consult VMS System Services 

Reference Manual 
message files. Consult VMS DCL Dictionary; VMS 

Message Utility Manual 
data structures related to, 1110 
system, characteristics and use, 1109 

message formatting 
condition handlers, 1110 

message sections 
characteristics and use, 1110 
dispatch vector, 1110, (figure) 1111 
header, locating, 1111 
layout, (figure) 1111 
process, mapped by image activator, 1111 

Message Utility 
message file operations, 1109 

$MGBLSC (Map Global Section system service) 
control flow, 421 
creating address space with, 411 

microfiche. See VMS listings 
Micro VAX II processor 

console subsystem, bootstrap operations, 867 
IE bit interval timer used by, 248 
power recovery operations, 992 
pre-VMB bootstrap programs, operations, (table) 868 
unimplemented instruction emulation support, 77 
VMB 

operations, 867 
register input, (table) 869 

MicroVAX 2000 system 
configuration, 49 
console subsystem, operations, 871 
power recovery operations, 992 
VMB 

boot flags, (table) 872 
operations, 870 
register input, (table) 871 

MicroVAX 3100 system 
configuration, (figure) 50 
console subsystem, operations, 873 
power recovery operations, 992 
VMB 

operations, 873 
register input, (table) 874 

MicroVAX 3200 system 
console subsystem, operations, 875 
power recovery operations, 994 
VMB 

operations, 875 
register input, (table) 876 

Micro VAX 3300 system 
console subsystem, operations, 877 
power recovery operations, 994 
VMB 

operations, 877 
register input, (table) 879 

MicroVAX 3400 system 
console subsystem, operations, 877 
power recovery operations, 994 
VMB 

operations, 877 
register input, (table) 879 

MicroVAX 3500 system 
console subsystem, operations, 875 
power recovery operations, 994 
VMB 

operations, 875 
register input, (table) 876 

MicroVAX 3600 system 
console subsystem, operations, 875 
power recovery operations, 994 
VMB 

operations, 875 
register input, (table) 876 

MicroVAX 3800 system 
console subsystem, operations, 877 
power recovery operations, 994 
VMB 

operations, 877 
register input, (table) 879 

MicroVAX 3900 system 
console subsystem, operations, 877 
power recovery operations, 994 
VMB 

operations, 877 
register input, (table) 879 

Micro VAX 3x00 system 
power recovery operations, 994 
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unimplemented instruction emulation support, 77 
Micro VAX processors 

with ROM-based VMB, system initialization, 866 
MINWSCNT parameter (SYSGEN) 

fluid working set initialized from, 406 
use in process creation, 728 

miscellaneous vectors area. See also base image; 
vectors 

characteristics and use, 831 
miscellaneous wait state. See MWAIT 
MMG spinlock 

characteristics and use, 182 
held during 

global section creation, 420 
global section deletion, 425 
locking of pages into working set, 503 
lowering of working set limit, 497 
MMG$WRTMFYPAG's scan of modified page list, 

469 
modified page write I/O completion, 471 
nonpaged pool expansion, 560 
page 1/0 completion, 441, 466 
page protection changes, 433 
purging of pages from working set, 506 
swapping, 518, 519 
$UPDSEC processing, 477 
virtual page deletion, 428 

synchronizing PHD access, 367 
use by 

EXE$CREPRC, 713, 716 
LDR$ALLOC_FT, 861 
LDR$DEALLOC_FT, 861 
LOCK_SYSTEM_FAGES macro, 509 
OPCCRASH, 956 
page fault handler, 437 

MMG$A BOOPARAM cell 
location of boot parameters area, 1218 

MMG$A SYSPARAM cell 
location of adjustable SYSGEN parameters area, 

1199 
MMG$ALCPHD routine (PHDUTL module) 

operations, 497 
MMG$ALLOCPAGFIL1 routine (PAGEFILE module) 

operations, 473 
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MMG$ALLOCPAGFIL2 routine (PAGEFILE module) 
operations, 474 

MMGSALLOCPFN_NO_DB routine (ALLOCPFN 
module) 

operations, 381 
MMGSAR_NULLPFL cell 

null page file control block address, 399 
MMGSAR_SYSPCB cell 

address of system PCB, 387 
MMGSASNPRCPGFLP routine (PAGEFILE module) 

characteristics and operations, 461 
MMGSCREDEL routine (SYSCREDEL module) 

operations, 405 
MMG$CREPAG routine (SYSCREDEL module) 

control flow, 408 
MMG$CRETVA routine (SYSCREDEL module) 

alternative entry point for SCRETVA, 407 
MMGSDALCPRCPGFL routine (PAGEFILE module) 

operations, 462 
MMGSDALCSTXSCN routine (PHDUTL module) 

control flow, 424 
· operations, 413 
MMG$DALCSTXSCN1 routine (PHDUTL module) 

alternative entry point to MMG$DALCSTXSCN, 
424 

MMG$DALLOCPFN routine (ALLOCPFN module) 
deallocating physical pages, 478 
operations, 478 

MMGSDECPTREF routine (PAGEFAULT module) 
operations, 495 
page fault handling, private page not copy-on­

reference, 443 
MMG$DELCONPFN routine (ALLOCPFN module) 

page fault handling, private page not copy-on­
reference, 444 

MMG$DELGBLSEC routine (SYSDGBLSC module) 
control flow, 425 

MMG$DELGBLWCB routine (SYSDGBLSC module) 
control flow, 426 

MMGSDELPAG routine (SYSCREDEL module) 
control flow, 428 

MMG$DELWSLEX routine (PAGEFAULT module) 
operations, 496 

MMGSFAST_CREATE routine (SYSCREDEL module) 
operations, 408 

MMGSFREWSLE routine (PAGEFAULT module) 
control flow, 492, 495 
operations, global page, 452 

MMGSFREWSLX routine (PAGEFAULT module) 
alternative entry point to MMG$FREWSLE, 495 

MMG$GL_FREE_NO_PFN_DB_LIST cell 
PFN of first page on list of pages with no PFN 

database, 381 
MMG$GL_GPTBASE cell 

GPT address location, 391 
MMGSGL_MAXMEM cell 

largest PFN to be written to the physical memory 
dump file, 975 

MMGSGL_MAXPFN cell 
highest valid subscript into PFN database, 380 

MMG$GL_MINPFN cell 
lowest valid subscript into PFN database, 380 

MMGSGL_PAGEDYN cell 
paged pool system space starting address, 564 

MMGSGL_PAGSWPVC cell 
page-and-swap-file vector array address, 399 

MMGSGL_SBICONF cell 
mapping adapter register, 935 

MMG$GL_SPTBASE cell 
SPT system virtual address contained in, 387 
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MMGSGL_SPTLEN cell 
number of SPTEs in SPT, 387 

MMG$GL_SYSLOA_BASE cell 
locating CPU-dependent routine code, 1154 

MMG$GSDSCN routine (SYSDGBLSC module) 
operations, 418 

MMGSGW_BIGPFN cell 
determining opcodes for referencing PFN database, 

849 
PFN FLINK and BLINK array use, 384 

MMG$IMGRESET routine (PHDUTL module) 
control flow, 776 
working set limit reset by, 501 

MMG$INCPTREF routine (PAGEFAULT module) 
characteristics and operations, 439 
operations, global page, 450 

MMGSININEWPFN routine (PAGEFAULT module) 
characteristics and operations, 439 

MMG$IOLOCK routine (IOLOCK module) 
PFN STATE element modify bit set by, 383 

MMGSL_CALLEDIPL field (stack scratch space) 
definition and use, 404 

MMGSL_EFBLK 6eld 
definition and use, 405 

MMG$L_MAXACMODE field 
definition and use, 404 

MMG$L_PAGESUBR field 
definition and use, 405 

MMG$L_PGFLCNT field 
definition and use, 405 

MMG$L_SAVRETADR field 
definition and use, 405 

MMG$L_SVSTARTVA field 
definition and use, 405 

MMG$L_ VFYFLAGS field 
definition and use, 405 

MMG$LCKULKPAG routine 
(SYSLKWSET module) 

control flow, 503 
unlocking pages from memory, 505 

MMGSLOCK_SYSTEM_PAGES routine (LOCK_ 
SYSTEM_PAGES module) 

operations, 508, 1146 
MMG$MAKEWSLE routine (PAGEFAULT module) 

characteristics and operations, 439 
operations, global page, 450 

MMGSMAPSECPAG routine (SYSCRMPSC module) 
control flow, 414 

MMG$PAGEFAULT routine (PAGEFAULT module) 
operations, 436, 455, 457 
page fault handling 

clustered read, 463 
demand zero page, 447 
global read-only page, 450 
private page copy-on-reference, 445 
private page in transition state, 444 
private page not copy-on-reference, 439 
system page not copy-on-reference, 458 

MMGSPURGEMPL routine (WRTMFYPAG module) 
operations, 467 

MMG$PURGWSPAG routine (SYSPURGWS module) 
control flow, 506 

MMG$PURGWSSCN routine (SYSPURGWS module) 
control flow, 506 

MMG$RSRVPRCPGFL2 routine (PAGEFILE module) 
characteristics and operations, 461 

MMGSSETPRTPAG routine (SYSSETPRT module) 
control flow, 433 

MMG$SHRINKWS routine (SYSADJWSL module) 
operations, 497 



MMGSSWITCH_PRCPGFL routine (PAGEFAULT 
module) 

characteristics and operations, 461 
MMG$TRY_ALL routine (SYSCREDEL module) 

operations, 408 
MMG$UNLOCK routine (IOLOCK module) 

page fault handling, private page not copy-on­
reference, 443 

MMGSUNLOCK_SYSTEM_ENTRY routine (LOCK_ 
SYSTEM_PAGES module) 

operations, 1146 
MMG$UPDSECAST routine (SYSUPDSEC module) 

operations, 478 
MMGSUPDSECPAG routine (SYSUPDSEC module) 

operations, 477 
MMGSUPDSECQWT routine (SYSUPDSEC module) 

control flow, 477 
MMG$V _CHGPAGFIL bit (MMG$L_ 

MAXACMODE field) 
definition and use, 404 

MMGSV _DELGBLDON bit (MMGSL_ 
MAXACMODE field) 

definition and use, 404 
MMGSV _NO_OVERMAP bit (MMGSL_ 

MAXACMODE field) 
definition and use, 404 

MMG$V _NOWAIT_IPLO bit (MMG$L_ 
MAXACMODE field) 

definition and use, 404 
MMGSWRTMFYPAG routine (WRTMFYPAG module) 

control flow, 469 
operations, 467 

MMGSWRTPGSBAK routine (SYSUPDSEC module) 
operations, 477 

SMMGDEF macro 
stack scratch space offsets defined by, 404 

mode of caller system services. See also access modes; 
system services 

control flow, (figure! 121 
list of names, (table! 121 

modem polling 
operations, 266 

modes. See absolute addressing mode; access modes; 
change mode; compatibility mode; conversion 
grant mode; executive mode; grant mode; group 
grant mode; kernel mode; lock modes; PKAST; 
special kernel mode AST; supervisor mode; user 
mode 

moclifl.ed page list 
cache, characteristics and use, 358 
characteristics and use, 355 
high limit, clearing to wake swapper, 511 
location, 384 
location of modified available pages, 436 
maintained by swapper, 511 
page fault from, 444 447 
selective purging, when requested, 468 
wait state, characteristics and use, 284 

moclifl.ed page write 
clustering, 472 
completion, control flow, 471 
I/O request descriptions, (table! 463 
selective purge requested to free dead page table 

page, 494 
to a page file, example, (figure! 474 
transitions triggered by, 283 
$UPDSEC compared with; 476 
writing to backing store, 472 

moclifl.ed page writer 
control flow, 469 

Index 

MAINTAIN request, 468 
OPCCRASH request, 468 
operations, 467 
page table arrays, characteristics and use, 400 
requesting, 467 
SVAPTE request, 468 
swapper name when writing out modified pages, 

355, 436 
wait state, characteristics and use, 285 

Moclifl.ed Proxy lock 
characteristics and use, 1323 

modular executive. See also executive 
concepts and mechanisms, (chapter! 823 

MODULE statement (SDL) 
characteristics and use, 1161 

MONITOR Utility 
priority representation in, 275 
process state displayed by, 284 

MOP (Maintenance Operations Protocol) 
bootstrap, booting over Ethernet, 912 

Mount Device lock (spinlock) 
characteristics and use, 1301 

$MOUNT system service 
lock use by, characteristics and use of each lock, 

1300 
mount verification 

canceling, with IPL 12 C command, 69 
mounted volume list entry 

connection to logical name, 1078 ;' '. 
MOUNTMSG parameter (SYSGEN) 

enabling the logging of volume mount messages, 966 
MPW IRP (moclifl.ed page writer IRP) 

layout, (figure! 469 
MPW$GB_STATE cell 

highest pending modified page write request, 468 
MPWSGL_IRPBL cell 

MPW IRP listhead, 469 
MPW$GL_IRPFL cell 

MPW IRP listhead, 469 
MPW$GL_SVAPTEHIGH cell 

address of highest PTE for modified page list purge, , 
468 

MPWSGL_SVAPTELOW cell 
address of lowest PTE for modified page list purge, 

470 
MPWSINIT routine (WRTMFYPAG module) 

operations, 402 
MPW _HILIMIT parameter (SYSGEN) 

modified page list high limit, 467 
swapper use of, 511 

MPW _IOLIMIT parameter (SYSGEN) 
maximum number of concurrent I/O operations, 

401, 469 
MPW _LOLIMIT parameter (SYSGEN) 

effect on 
nonpaged pool expansion, 560 
VMS memory use, 1287 

modified page list low limit, 468 
MPW _LOWAITLIMIT parameter (SYSGEN) 

effect on removing a modified page from working 
set, 495 

swapper use of, 517 
transitions triggered by, 285 

MPW _THRESH parameterJSYSGEN) 
BALANCE routine use o, 518 

MPW _ WAITLIMIT parameter (SYSGEN) 
effect on removing a modified page from working 

set, 495 
transitions triggered by, 285 

MPW _ WRTCLUSTER parameter (SYSGEN) 
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MPW _ WRTCLUSTER parameter (SYSGEN) 
(continued) 

page file allocation request size initial value, 398 
target size for 

modified page write cluster, 473 
$UPDSEC cluster, 476 

MSC$B_TYPE field 
definition and use, 1110 

MSC$L_FAC_OFF field 
definition and use, 1110 

MSC$L_INDEX_OFF field 
definition and use, 1110 

MSC$T_INDNAME field 
definition and use, 1110 

MSC$V _MAPPED bit (MSCSB_FLAGS field) 
definition and use, 1110 

$MSCDEF macro 
message sections defined by, 1110 

MSCP (mass storage control protocol) 
disk class driver, SCA port driver devices supported 

by, 677 
end packet, logging error status codes returned in, 

964 . 
SCA protocol description, 678 

MTPR instruction. See also instructions 
changingIPLlevel'With,40, 168 

MTX$V _ WRT bit (MTX$W _STS field) 
definition and use, 197 

MTXSW_OWNCNT field 
definition and use, 197 

MTX$W _STS field 
definition and use, 197 

MTXCNTNONZ bugcheck. See also bugchecks 
SERVICE_EXIT generation for mutex error, 116 

$MTXDEF macro 
mutex field name definitions, 197 

multiple active signals. See also condition handlers; 
EXCEPTION module 

handling, 90 
example, (figure) 91 

unwinding, example, (figure) 100 
MULTIPROCESSING parameter (SYSGEN) 

enabling SMP, 934 
EXE$INIT use during SMP-specific operations, 1049 
selecting spinlock routine, 17 4 
SYSBOOT use during SMP-specific operations, 1047 

multiprocessor systems. See also SMP systems 
synchronization techniques for, 164 

multivalued logical names 
term definition, 1069 

MUTEX module 
EXE$JIB_ WAIT, use in resource wait handling, 293 
SCH$LOCKR 

locking a mutex for read access, control flow, 198 
saved PC for MUTEX wait state, 293 

SCH$LOCKREXEC, accessing mutexes from system 
context, 201 

SCH$LOCKW 
locking a mutex for write access, control flow, 199 
saved PC for MUTEX wait state, 293 

SCH$LOCKWEXEC, accessing mutexes from system 
context, 201 

SCH$LOCKWNOWAIT, locking a mutex for write 
access 'With no waiting, 199 

SCH$RWAIT, saved PC for mutex RWAIT, 293 
SCH$UNLOCK, unlocking mutexes, control flow, 

200 
SCH$UNLOCKEXEC, accessing mutexes from 

system context, 201 
MUTEX wait state 
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characteristics, 199 
meaning, 284 
transition descriptions, 286 

mutexes (mutual exclusion semaphores). See also 
CPU mutex; deadlocks; EXE$GL_CEBMTX; 
EXE$GL_PGDYNMTX1 IOC$GL_MUTEX; 
LNM$AL_MUTEX; MUTEX module; resources; 
scheduler; spinlocks; synchronization 

accessing from system context, 200 
characteristics and use, 196 
checking for, on system service error exit, 116 
data structures, synchronizing access to 'With SCHED 

spinlock, 183 
layout, (figure) 197 
locked, MWAIT triggered by, 283, 286 
locking 

for read access, 198 
for write access, 198 
saving process priorities during, 275 

names and executive data structures protected by, 
(table) 197 

summary, 1255 
synchronization technique, compared 'With raising 

IPL, 196 
term definition, 25 
unlocking, 200 
waiting for. See MUTEX wait state; MWAIT 

multilevel interrupt dispatching. Consult VMS Device 
Support Manual 

Q22-bus-based MicroVAX systems, characteristics, 
49 

mutual exclusion 
meaning, 162 

mutual exclusion semaphores. See mutexes 
MWAIT (miscellaneous wait state). See also job quota; 

process states; resource wait; wait states 
characteristics and transitions, 283 
context for, 293 
job quota, transition descriptions, 286 
mutex 

characteristics and use, 199 
transition descriptions, 286 

PCB field that identifies resource waited for, 271 
system resource miscellaneous, transition descrip­

tions, 284 
transitions, to MWAIT from other states, 283 

name 
process, changing, 341 

name translation block. See NT 
naming conventions, (chapter) 1232 

facilities, names and prefixes, (table) 1238 
formats 

facility$_status, 1234 
facility$At_array-name, 1234 
facility$entry-name, 1233 
facility$entry-name_Rn, 1234 
facility$Gt_ variable-name, 1234 
$facility$macro-name, 1233 
facility$mnemonic, 1237 
facility$$entry-name, 1233 
_facility$mnemonic, 1237 
$facility_macro-name, 1233 
$facility _structureDEF, 1235 
$service-name, 1232 
structure$K_constant-name, 1237 
structure$M_field-name, 1237 
structure$S_field-name, 1236 
structure$t_field-name, 1235 



naming conventions (continued) 
formats (continued) 

structure$V _field-name, 1236 
structure$x_field-name, 1236 
$structureDEF, 1135 

object data types, letters and meanings, (table) 1238 
NBI (NMI-to-BI) adapters 

VAX 8800 family, configuration, 53 
NDT (nexus device type) 

name, code, and adapter, (table) 1264 
$NDTDEF macro 

symbols and values, (table) 1264 
nested conditions. See conditions 
NET: device 

channel assignment to, 687 
NETACP image 

creating network processes, operations, 798 
NETACP network ancillary control process 

operations, 688 
NETDRIVER driver 

operations, 687 
NETMBX (create network device privilege). See also 

privileges 
required for assigning a channel to a network device, 

599 
use by $ASSIGN, 599 

networks 
communications, images used with, 687 
device driver, characteristics and operations, 687 
devices, characteristics and use, 590 
1/0 functions, (figure) 688 
processes, LOGINOUT image operations, control 

flow, 798 
proxy access locks, characteristics and use of each 

lock, 1323 
nexus 

function of, VAX system generic model, (figure) 44 
interrupt vectors for, use in identifying SCB vector, 

45 
MicroVAX 2000 system, configuration, 49 
node space for a given, 46 
number on a system, 46 
numbering schemes, 46 
Q22-bus-based MicroVAX systems, 49 
VAX 6000 series, configuration, 51 
VAX 8800 family, configuration, 53 
VAXstation 3520 system, configuration, 51 

nexus device type. See NOT 
NLDRIVER device driver 

operations, 687 
NMI bus. See also buses 

VAX 8800 family, configuration, 53 
no-access page 

term definition, 7 
NO_ALIAS logical name attribute 

characteristics, 1069 
NOACNT (suppress accounting messages privilege) 

use by $CREPRC, 716 
NOAUTOCONFIG parameter (SYSGEN) 

disabling 1/0 autoconfiguration, 947 
node space 

of a given nexus, 46 
NODELETE logical name attribute 

characteristics, 1070 
nodes 

VAX 8200 family, configuration, 52 
nonpageable image sections 

placing code in, 1145 
nonpaged dynamic memory. See pool - nonpaged 
nonpaged executive transfer vectors 

Index 

list of names, (table) 1164 
nonpaged pool. See pool - nonpaged 
nonpaged system data area 

global cells that compose, (table) 1186 
nonpaged system space 

size calculation, 1286 
without PFN database, size calculation, 1281 

nontemplate devices 
assigning channels to, 598 

NOPOBUFS linker option 
constraint on expansion of process allocation region 

to PO space, 566 
normal processes 

priority range, 2 78 
scheduling 

characteristics, 2 78 
distinguished from real-time processes, 277 

NOTSYSVA bugcheck. See also bugchecks 
generated by MMG$LOCK_SYSTEM_PAGES, 1146 

NPAGEDYN parameter (SYSGEN) 
controlling nonpaged pool, 555 

NPAGEVIR parameter (SYSGEN) 
controlling nonpaged pool, 555 
effect on size of system space, 1278 

NT (name translation block) 
characteristics and use, 1086 

null device pseudo device 
driver operations, 68 7 

. null page file control block 
address of, 399 

null PCB 
characteristics and use, 268 

null process 
no longer present in VMS, 20 

$NUMTIM (Convert Binary Time to Numeric Time 
system service) 

operations, 1121 

object data types 
naming conventions, letters and meanings, 

(table) 1238 
object rights block. See ORB 
on-disk structure 

term definition, 11 
OPCCRASH request 

operations, 468 
OPCOM (operator communication) process. See also 

bootstrap; communications; mailboxes 
command file that creates, 947 
description, 1108 
mailbox use by, 674, 1108 
operations, 1108 

[OPCOM)OPCCRASH module 
operations, 956 
RWMPE wait state use by, 285 

OPER (perform operator functions privilege). See also 
privileges 

use by 
$BRKTHRU, 698, 700 
$SETIME, 255 
$SNDACC, 1107 
$SNDOPR, 1108 
LOGINOUT, 794 

operating system 
initialization, concepts and mechanisms, (chapter) 

923 
scheduling, software interrupts, concepts and 

mechanisms, 54 
shutdown, concepts and mechanisms, (chapter) 923 
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OPERATOR bugcheck. See also bugchecks 
generated by OPCCRASH, 957 

operator communication process. See OPCOM process 
ORB (object rights block) 

allocated from 
nonpaged pool, 564 
paged pool, 565 

characteristics and use, 579 
creating, for cloned device, 599 
deleting, for cloned device, 606 
GSD field containing address of, 390 
layout and summary, 1255 
mailbox, assembled into SYSTEM_PRIMITIVES 

loadable executive image, 657 
OSWPSCHED module 

SCH$0SWPSCHED, operations, 523 
OSWPSCHED table 

characteristics and definitions, !table) 524 
out-of-band ASTs. See also AST; attention ASTs 

basic operations, 149 
characteristics and use, 153 
compared with attention ASTs, 150, 153 
delivering, 155 
flushing list of, 156 
repeating, 153 
setting, 154 
terminal AST block. See TAST 

output 
paging, mechanisms, 462, 467 

outswap. See also swapper 
disabling, PCB$L_STS bit that specifies, 366 
global pages, 531 
pages with direct 1/0 in progress, 531 
PHO, partial, 534 
process body, 529 

example, (figures) 531 
processes 

operations, 528 
selecting, 523 
transitions triggered by, 283 

term definition, 4 
OUTSWAP routine (SWAPPER module) 

control flow, 522 
override set 

circumstances under which processor joins, 1034 
operations, 1034 
term definition, 1034 

PO base register. See PR$_POBR 
PO page tables 

PHO component, 367 
PHO fields that specify, 369 
size calculations, 1272 

PO space 
created by image activator, 353 
layout, (figure) 7 
overview, 7 
protections on, 353 
term definition, 351 
VMS use of, 352 

POBR register. See PR$_POBR 
POLR register. See PR$_POLR 
Pl base register. See PR$_P1BR 
Pl page tables 

PHO component, 367 
PHO fields that specify, 370 
size calculations, 1272 

Pl pointer page 
contents of, names and descriptions, (table) 1227 
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Pl space 
contents of, names and descriptions, !table) 1226 
data areas, names and descriptions, (tables) 1229 
image exit, low-address end that is deleted at, 

(figure) 776 
layout, (figure) 5, (table) 1289 

analyzing with SDA, 1157 
management by image activator, 353 
mapping PHO into, swapper implications, 537 
overview, 5 
protections on, 353 
selected dynamic portions, description, 1293 
size, (chapter) 1270 
size calculations, 1289 
system service vector locations, 107 
term definition, 351 
user stack overflow detection in, 82 
VMS use of, 352 

PlBR register. See PR$_P1BR 
PlLR register. See PR$_PlLR 
packet 

term definition, 544 
page arrays (PHD) 

size calculations, 1273 
page cluster 

characteristics and use, 462 
formation, page table scan, 465 
modified pages 

components of, 473 
formation, 472 

read 
formation of, 465 
operations, 463 

size 
factor for $UPDSEC, 476 
reducing paging 1/0 overhead with, 359 

writing modified pages to backing store, 472 
page fault handler. See also page faults; PAGEFAULT 

module 
overview, 18 
term definition, 9, 436 
working set size affected by, 501 

page fault rate 
effect on working set size, 360 

page fault wait state. See PFW 
page faults. See also memory management; page 

fault handler; PAGEFAULT module; swapper; 
working set list 

characteristics, 352 
faulting 

modified page out of working set, 285 
page in, characteristics, 352 
page out, characteristics, 352 

global page-file section pages, overview, 448 
global pages 

control flow, 448 
copy-on-reference, control flow, 448, 454 
page-file section, control flow, 448, 456 
read-only, control flow, 450 
read/write, control flow, 453 

handling, initial, 436 
1/0 completion, as event causing process state 

change, 299 
1/0 request, description, (table) 463 
IPL 2 highest permitted 

implications, 172 
reasons for, 436 

page located in a page file, control fl.ow, 448 
page read completion 

operations, 466 



page faults (continued) 
page read completion (continued) 

transitions triggered by, 283 
private pages 

characteristics and use, 438 
copy-on-reference, control flow, 445 
demand zero, control flow, 447 
in transition state, control flow, 444 
located in a section file, control flow, 439 
not copy-on-reference, control flow, 439 

soft page fault, characteristics and use, 355 
system pages 

characteristics and use, 458 
copy-on-reference, control flow, 459 
demand zero, control flow, 459 
not copy-on-reference, control flow, 458 

transitions triggered by, 283 
page file control block. See PFL 
page file map. See PFLMAP 
page file quota 

changed at virtual address space creation, 409 
constraint on process address space size, 354, 407 

page files 
assigning processes to, 461 
available to a process, PHD field that specifies, 3 71 
backing store, constraint on process address space, 

407 
blocks free, PFL field that specifies, 460 
blocks reservable for process use, PFL field that 

specifies, 460 
cluster factor, 466 
data structures and mechanisms, 459 
deassigning processes from, 461 
deinstallation, 399 
modified page write to, example, (figure) 474 
null page file control block, address of, 399 
number to which process has been assigned, PHO 

field that specifies, 460 
page, transitions, (figure) 448 
page faults for page located in, control flow, 448 
primary page file, SYSINIT use, 399 
process-local index for reserved blocks, PHD field 

that specifies, 461 
PTEs containing a page file virtual block number, 

371 
reserved blocks not yet allocated, PHD field that 

specifies, 461 
space allocation, 473 
systemwide index for reserved blocks, PHD field 

that specifies, 461 
to which process has been assigned, PHD field that 

specifies, 460 
total reserved blocks, PHD field that specifies, 461 
writing modified pages to, 473 

page frame number. See PFN 
page lists. See also free page list; modified page list 

caches, characteristics and use, 358 
locations, 384 

page location code 
PFN STATE array, meaning, (figure) 381 

page replacement 
process-local, virtual memory design component, 

reasons for, 357 
page table entry. See PTE 
page tables. See also GPT; PO page tables; Pl page 

tables; SPT 
arrays 

modified page writer, characteristics and use, 400 
size calculations, 12 73 
swapper, characteristics and use, 400 

characteristics and use, 351 
creating address space, effect on, 406 
pages 

cluster factor, 466 
dead, releasing, 493 
faults, 438 
updating, page fault handling, 439 

PHD component, 367 
process 

characteristics and field definitions, 369 
registers loaded from hardware PCB, 362 

Index 

processor registers that specify size and location, 362 
rebuilding, after inswap, (table) 538 
swapper use of, 513 

page transitions. See also page faults 
copy-on-reference, (figure) 445 
demand zero, (figure) 447 
global page-file section, (figure) 456 
not copy-on-reference, (figure) 439 
pages located in a page file, (figure) 448 

page-and-swap-file vector. See also PFL 
array, index into, 516 
characteristics and use, 398 

page-file section pages 
global. See global page-file sections 

PAGE_MANAGEMENT initialization routine 
operations, 937 

PAGECRIT 
console error message, page fault allocation, 474 

paged dynamic memory. See pool - paged 
paged pool. See pool - paged 
PAGEDYN parameter (SYSGEN) 

effect on size of system space, 1278 
paged pool size specified by, 564 

PAGEFAULT module 
MMG$DECPTREF 

operations, 495 
page fault handling, private page not copy-on­

reference, 443 
MMG$DELWSLEX, operations, 496 
MMG$FREWSLE 

control flow, 492, 495 
operations, global page, 452 

MMG$FREWSLX 
alternative entry point to MMG$FREWSLE, 

495 
MMG$INCPTREF 

characteristics and operations, 439 
operations, global page, 450 

MMG$ININEWPFN, characteristics and operations, 
439 

MMG$MAKEWSLE 
characteristics and operations, 439 
operations, global page, 450 

MMG$PAGEFAULT 
clustered read, 463 
demand zero page, 447 
global read-only page, 450 
operations, 436, 455, 457 
private page copy-on-reference, 445 
private page in transition state, 444 
private page not copy-on-reference, 439 
system page not copy-on-reference, 458 

MMG$SWITCH_PRCPGFL, characteristics and 
operations, 461 

SCANDEADPT, operations, 493 
PAGEFILE module 

MMG$ALLOCPAGFIL1, operations, 473 
MMG$ALLOCPAGFIL2, operations, 474 
MMG$ASNPRCPGFLP, characteristics and 
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PAGEFILE module (continued) 
operations, 461 

MMG$RSRVPRCPGFL2, characteristics and 
operations, 461 

PAGEFILE.SYS file 
See SYS$SPECIFIC:[SYSEXE]PAGEFILE.SYS 

PAGEFRAG 
console error message, page fault allocation, 4 7 4 

pages. See also address space; page faults; physical 
pages 

characteristics, 351 
free page list. See free page list 
global. See global pages 
locking, SMP issues, 1020 
modified, writing. See modified page write 
modified page list. See modified page list 
modified page writer. See modified page writer 
outswapping with direct I/O in progress, 531 
page protection fixup, 767 
physical 

allocating, 354 
deleting, 428 
state indicated by PFN STATE array, 381 

process-private section, deleting, 428 
reading, clustering of, 463 
systemwide cache of recently used virtual pages, 

modified and free page lists used as, 355 
virtual 

purging from a working set, 506 
returning resources associated with, 428 
specifying type with PFN TYPE array, 383 
valid, conditions that invalidate, 436 

PAGFILCNT parameter (SYSGENJ 
maximum number of swap files, 398 

paging 
demand, characteristics, 352 
dynamics, concepts and mechanisms, (chapter) 435 
I/O, mechanisms, 462 
modified page writer PTE array operations, 401 
PFL use by, 460 
PHD fields used by, 460, 461 
reducing I/O overhead, mechanism for, 359 
replacement, characteristics, 352 
scheduling influenced by, 478 
swapping compared with, 359, (table) 361 
working set replacement algorithm, compared with 

other virtual memory architectures, 358 
PAGIO routine (IOCIOPOST module) 

I/O completion for global page, 452 
1/0 completion for private copy-on-reference-page, 

447 
operations, 441 
page read, 1/0 postprocessing, control flow, 466 

PAGTBLPFC parameter (SYSGENJ 
default cluster factor for process page table pages, 

466 
parallel processing 

run-time support, 341 
parallelism 

spinlocks compared with IPL-based synchronization, 
173 

Parameter lock 
characteristics and use, 1329 

PARAMETER macro 
defining adjustable SYSGEN parameters, 950 

PARAMETER module 
SYSGEN parameters defined in, 950 

parent resource 
term definition, 1297 

passive releases 
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UNIBUS, VAX architecture mechanisms, 43 
pause capability 

image interruption operations, 807 
PC (program counter) 

description, 3 
from which a spinlock was acquired, recording in 

spinlock control block, 17 6 
IEI microcode saving during 

exception dispatching, 36 
interrupt dispatching, 34 

PCB (process control block) 
ACB- and AST-related fields, field definitions and 

use, (figure) 131 
copying during process creation, (figure) 710 
creating PIDs from, 721 
event flags, fields, (figure) 206 
hardware. See hardware PCB 
initialization during process creation, 713 
JIB and, for several processes in same job, (figure) 713 
layout and summary, 1255 
locating with PID, 720 
memory management, field definitions, (figure) 365 
null 

characteristics and use, 268 
used as placeholder, 721 

obtaining information from, $GETJPI operations, 
328 

placeholder, characteristics and use, 268 
process identification, fields, 722 
process state queue fields, 269 
scheduler database component, 268 
scheduling-related fields, names and values, 

(figure) 269 
software context contained in, overview, 4 
status flags specified at process creation, meaning 

and PCB field name, (table) 716 
synchronizing access to, with SCHED spinlock, 183 
system, characteristics and use, 38 7 
vector scans, context block fields that track local, 

325 
vector table, contents, (figure) 721 

PCB vector 
scanned by EXE$PSCAN_NEXT_IPID, 329 

PCB$B AFFINITY SKIP field 
definition and use, 289 

PCB$B_ASTACT (AST active) 
clearing during AST exit path operations, 141 
synchronizing AST delivery to access modes with, 

132 
PCB$B_ASTEN (AST enable) 

enabling AST delivery to access modes with, 132 
PCB$B_AUTHPRI field 

process priority use of, 275 
PCB$B DPC field 

controlling AST procedure execution with, 148 
definition and use, 132 
XQP use of, 146 

PCB$B_PRI field 
contents stored in PCB$_PRISAV during mutex lock, 

198 
process priority use of, 275 

PCB$B_PRIB field 
contents stored in PCB$_PRIBSAV during mutex 

lock, 198 
determining priority with, 302 
process priority use of, 275 

PCB$B_PRIBSAV field 
process priority use of, 275 

PCB$B PRISAV field 
process priority use of, 2 75 



PCB$B_ WEFC field 
definition and use, 206 

PCB$L_AFFINITY field 
definition and use, 288, 289 
use in capability handling, 298 

PCBSL_AFFINITY_CALLBACK field 
definition and use, 289 

PCB$L_ASTQBL field 
definition and use, 131 

PCBSL_ASTQFL field 
definition and use, 131 

PCB$L_CAPABILITY field 
definition and use, 288, 289 

PCB$L_CAPABILITY_SEQ field 
definition and use, 288 

PCB$L_CPU_ID field 
definition and use, 271 

PCB$L_CPUTIM field 
definition and use, 264 

PCB$L_CURRENT_AFFINITY field 
definition and use, 288, 289 
reset at image rundown, 289 
use in SCHSRSE, control flow, 301 

PCBSL_EFC2P field 
definition and use, 204 

PCB$L_EFC3P field 
definition and use, 204 

PCB$L_EFCS field 
local event flags contained in, (figure) 203 

PCB$L_EFCU field 
local event flags contained in, (figure) 203 

PCBSL_EFWM field 
contents for a process in event flag wait state, 210 
definition and use, 206, 271 
identifies MWAIT entity, 283 
JIB address for process in job quota wait, 287 
mutex address for process in mutex wait, 199, 286 
resource number for process in resource wait, 206 

PCBSL_EOWNER field 
definition and use, 722 

PCBSL_EPID field 
definition and use, 722 
EPID location, 320 

PCBSL_GPGCNT field 
definition and use, 366 
working set size calculated from, 486 

PCBSLJIB field 
definition and use, 271 

PCB$L_LOCKQBL field 
definition and use, 223 

PCBSL_LOCKQFL field 
definition and use, 223 

PCB$L_ONQTIME field 
definition and use, 271 
EXE$GL_ABSTIM._TICS recorded in when process is 

at quantum end, 254 
quantum expiration use of, 294 

PCB$L_OWNER field 
definition and use, 722 

PCB$L_PERMANENT_CAPABWTY field 
definition and use, 288 

PCB$L_PERMANENT_CPU_AFFINITY field 
definition and use, 288 

PCB$L_PHD field 
definition and use, 271, 366 

PCB$L_PHYPCB field 
definition and use, 269 
use during context switching, 307 

PCB$L_PID field 
definition and use, 722 

IPID location, 320 
PCBSL_PIXHIST field 

definition and use, 271 
PCB$L_PPGCNT field 

definition and use, 366 
working set size calculated from, 486 

PCBSL_PQB field 
definition and use, 716 

PCBSL_SQBL field 
definition and use, 269 

PCB$L_SQFL field 
definition and use, 269 

Index 

PCBSL_STS field. See also PCB$V prefix entries 
definition and use, 206, 366 
flags, 269, (table) 342 
quantum expiration use of, 294 

PCB$L_SWAPSIZE field 
definition and use, 366 
swap space size, 515 

PCBSL_ WAITIME field 
definition and use, 271 
EXE$GL_ABSTIM_TICS recorded in when process is 

in wait state, 254 
PCBSL_ WSSWP field 

definition and use, 366, 516 
identifying a new process with, 725 
swap space location, 515 

PCB$Q_PRIV &eld 
process privilege mask, use and routines that 

manipulate it, (table) 778 
PCBSV _DISAWS bit (PCB$L_STS field) 

definition and use, 366 
PCBSV _INQUAN bit (PCB$L_STS field) 

quantum expiration use of, 294 
PCB$V _NODELET bit (PCB$L_STS field) 

set to prevent process deletion, 812 
PCB$V _PHDRES bit (PCBSL_STS field) 

definition and use, 366 
PCB$V _PSWAPM bit (PCB$L_STS field) 

definition and use, 366 
PCBSV _RES bit (PCB$L_STS field) 

definition and use, 366 
flag for process residency state, 279 
scheduling significance of, 270 

PCBSV _SSRWAIT bit (PCBSL_STS field) 
disabling resource waits with, 286 

PCBSV _WALL bit (PCB$L_STS field) 
definition and use, 206 

PCBSW _APTCNT field 
definition and use, 366, 516 

PCBSW _ASTCNT field 
maximum number of concurrent ASTs, 131 

PCBSW _MTXCNT field 
mutex use, 197 

PCB$W _STATE field 
definition and use, 269 
wait queue values, 273 

PDT (port descriptor table) 
MSCP disk class driver binding to pon driver, 677 

pa-CPU data area 
boot CPU's allocated by SYSBOOT, 1046 
components, 1015 
locating on SMP systems, 1015 
orgsnization, (figure) 1016 
secondary processors' allocated by SMP$SETUP _ 

CPU, 1052 
pa-CPU database. See also CPUS pre&x entries 

definition and use, 1016 
fork block queue listheads array located in, (figure) 58 
layout, (figure) 1016 
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per-CPU database (continued) 
pointer to current process in, 2 71 
processor state stored in, 1043 
queuing IRPs for requests completed in 

process context to a postprocessing queue in, 65 
sanity timer mechanism fields, 1037 
scheduler database component, 269 
scheduling-related fields, 273 
spinlock-related fields, characteristics and 

definitions, 176 
statistics counters, meaning, (table) 262 
summary, 1245 

PERFMON spinlock 
characteristics and use, 184 

performance 
data alignment, 1138 
minimizing branches, 1139 
monitoring 

1/0, PERFMON spinlock use, 184 
nonpaged pool, POOL spinlock use, 183 

separating memory writes, 1139 
PERMANENT_DEVICE_DATABASE module 

CON$INIDISI, operations, 690 
CON$INIDISO, operations, 690 

PFCDEFAULT parameter (SYSGEN) 
default cluster factor for page files, 466 

PFL (page file control block) 
characteristics and field definitions, 396 
layout, jfigure) 397 
paging use of, 460 

PFL$B_ALLOCSIZ :6.eld 
definition and use, 398 

PFL$B_FLAGS field 
definition and use, 398 

PFL$B~PFC :6.eld 
cluster factor for page files, 466 
definition and use, 397 

PFL$B_PGFLX :6.eld 
definition and use, 398 

PFL$B_TYPE field 
definition and use, 397 

PFL$L_BITMAP field 
definition and use, 397 

PFL$L_BITMAPLOC field 
definition and use, 398 

PFL$L_BITMAPSIZfield 
definition and use, 397 

PFL$L_FREPAGCNT :6.eld 
definition and use, 398, 460 

PFL$L_MAXVBN field 
definition and use, 398 

PFL$L_MINFREPAGCNT field 
definition and use, 398 

PFL$L_REFCNT field 
definition and use, 398 

PFL$L_RSRVPAGCNT field 
definition and use, 398, 460 

PFL$L_STARTBYTE field 
definition and use, 397 

PFL$L_SWPREFCNT :6.eld 
definition and use, 398 

PFL$L_ VBN field 
definition and use, 397 

PFL$L_ WINDOW field 
definition and use, 397, 516 

PFL$W _SIZE field 
definition and use, 397 

PFLMAP (page file map) 
layout and field definitions, (figure) 515 
swapper use of, 515 
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PFLMAP$B_ACTPTRS field 
definition and use, 515 

PFLMAP$B_TYPE field 
definition and use, 515 

PFLMAP$L_PAGECNT field 
definition and use, 515 

PFLMAP$Q_PTR field 
definition and use, 515 

PFLMAP$W _SIZE :6.eld 
definition and use, 515 

PFN (page frame number) 
characteristics and use, 351, 354 
database 

arrays that compose, (figure) 378 
as a physical memory data structure, 355 
characteristics and components, 378 
references fixed up during loadable executive 

image initialization, 848. See also memory 
management 

size calculation, 1281 
summary description, 1225 
swapper use of, 513 
term definiton, 10 

mapped global section, creating, 417 
mapped process section, creating, 415 

PFN BAK (backing store) array 
characteristics and use, (figure) 381 
element containing template backing store address, 

meaning of, 373 
PFN BLINK (backward link) array 

characteristics and use, 384 
free page list, example, (figure) 385 
use of, 380 

PFN FLINK (forward link) array 
characteristics and use, 384 
free page list, example, (figure) 385 
use of, 380 

PFN PTE (page table entry) array 
characteristics and use, 381 
modified page writer operations, 401 

PFN REFCNT (reference count) array 
actions triggered by decrementing to zero, 

442 
characteristics and use, 385 

PFN SHRCNT (share count) array 
characteristics and use, 386 

PFN STATE array 
characteristics and use, (figure) 381 
delete bit meaning, 382 
element, transition page types distinguished by, 

373 
modify bit meaning, 382 
page read error page, meaning, 382 
read in progress page, meaning, 382 
release pending page, meaning, 381 
write in progress page, meaning, 382 

PFN SWPVBN (swap virtual block number) 
array 

characteristics and use, 387 
PFN TYPE array 

bad page status bit, meaning, 383 
characteristics and use, (figure) 383 
collided page status bit, meaning, 383 
report event status bit, meaning, 384 

PFN WSLX (working set list index) array 
characteristics and use, 386 

PFN$AL_HEAD array 
page list listhead locations, 384 

PFN$AL_ TAIL array 
page list tail locations, 384 



PFNMAP (map to specific physical pages privilege). See 
also privileges 

accessing physical pages in 1/0 space enabled by, 
411 

required to create PFN-mapped global section, 417 
required to delete PFN-mapped global section, 423 
use by $CRMPSC to create PFN-mapped 

global section, 417 
process section, 411, 415 

use by $DGBLSC, 423 
use with connect-to-interrupt driver, 652 

PFRATH parameter (SYSGEN) 
use in automatic working set limit adjustment, 500 

PFRATL parameter (SYSGEN) 
use in automatic working set limit adjustment, 501 

PFW (page fault wait state). See also page faults; 
process states; wait states 

AST implications for, 292 
characteristics and use, 4 78 
context for, 292 
placing a process into, 441 
transitions 

from PFW to COLPG, 283 
from PFW to COM or COMO, 283 
to PFW from CUR, 283 

wait for 1/0 completion on page to be deleted, 427 
PGFIPLHI bugcheck. See also bugchecks 

caused by page fault at IPL above 2, 437 
PHD (process header) 

address of, PCB field that specifies, 366 
balance slot use with, (figure) 394 
characteristics and field definitions, overview, 367 
compared with other data structures, 367 
configuring, control flow, 726 
copying from during process creation, (figure) 710 
deleted process, reclaiming memory from, 522 
freeing for outswap, 534 
hardware PCB as part of, 307 
in discussion of scheduling-related PCB fields, 271 
inswapping, 537 
layout and summary, 1256 
mapping into Pl space, swapper implications, 537 
memory residence, PCB$L_STS bit that specifies, 

366 
number of active and valid pages in, PCB field that 

specifies, 366 
obtaining information from, $GETJPI operations, 

328 
outswapped process, reclaiming memory from, 522 
outswapping, 534 

distinguished from process body outswapping, 535 
page arrays 

characteristics, overview, 377 
size calculations, 1273 
swapper use of, 513 

page file related fields, 460, 461 
page table page arrays, size calculations, 1273 
process page tables, (figure) 369 
process-specific memory management data 

structures, (figure) 367 
PST as component of, 367 

characteristics and field definitions, 3 7 4 
dynamic growth area effect on, 369 
location, (figure) 374 

rebuilding, after inswap, 537 
segments 

description, 1270 
location containing size, (table) 1270 
SYSGEN parameters that affect, (figure) 1270, 

!table) 1270 

size calculation, 1270 
size, relation to working set list, 487 
swapper use of, 512 
term definition, 4 
working set list 

contained in, 482 
physical memory pages described by, 355 

PHD BAK array 
characteristics, overview, 377 

PHD WSLX array 
characteristics, overview, 377 

PHD$B_ASTLVL field 

Index 

PR$_ASTLVL save area, software responsibilities for 
managing, 130 

SMP considerations for updating, 1026 
PHD$B_DFPFC field 

default cluster factor for page files, 466 
PHD$B_PAGFIL field 

definition and use, 372, 461 
systemwide index of current page file, 388 

PHD$B_PGFLCNT field 
definition and use, 460 

PHD$B_PGTBPFC field 
cluster factor for process page table pages, 466 

PHD$B_PRCPAGFIL field 
definition and use, 372, 461 
process-local index of current page file, 388 

PHD$B_PRCPGFL field 
definition and use, 372, 460 
system header page file indexes, 388 

PHD$L_CPUTIM field 
incremented by EXE$HWCLKINT, 263 
quantum expiration use of, 294 

PHD$L_DFWSCNT field 
working set list use of, 483 

PHD$L_EXTDYNWS field 
working set list use of, 484 

PHD$L_FREPOVA field 
virtual address of first unmapped page in PO space, 

369 
PHD$L_FREP1VA field 

virtual address of first unmapped page in Pl space, 
370 

PHD$L_FREPTECNT field 
number of PTEs available for expansion, 371 

PHD$L_IMGCNT field 
definition and use, 775 

PHD$L_POBR field 
copying starting virtual address of PO page table to, 

369 
PHD$L_POLR field 

copying number of pages in PO space to, 369 
PHD$L_PlBR field 

copying starting virtual address of Pl page table to, 
370 

PHD$L_PlLR field 
copying number of pages not in Pl space to, 370 

PHD$L_PAGFIL field 
definition and use, 372, 461 
system header, as template backing store value for 

writable system pages, 459 
PHDSL_PC field 

adjustment by SCH$RSE, control flow, 301 
PHD$L_PRCPGFLREFS field 

definition and use, 461 
PHD$L_PSTBASMAX field 

maximum size of PST, 376 
PHD$L_PSTBASOFF field 

PST location, (figure) 374 
PHDSL_ WSDYN field 
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PHD$L_WSDYN field (continued) 
dynamic region ring buffer start, 486 

PHD$L WSEXTENT field 
working set list use of, 483 

PHD$L_ WSL field 
working set list use of, 485 

PHD$L_WSLAST field 
index to last WSLE, 486 
working set list capacity calculated from, 486 

PHD$L WSLIST field 
permanently locked region index, 485 
working set list address computed from, 483 
working set list capacity calculated from, 486 

PHD$L WSLOCK field 
locked by user request region index, 485 

PHD$L_ WSLX field 
maximum size of PST, 376 

PHD$L_ WSNEXT field 
index to most recently inserted WSLE, 486 

PHD$L_ WSQUOTA field 
working set list use of, 483 

PHD$L_ WSSIZE field 
working set limit calculated from, 486 
working set list use of, 484 

PHD$Q_AUTHPRIV field 
process privilege mask, use and routines that 

manipulate it, !table) 778 
PHD$Q_IMAGPRIV field 

process privilege mask, use and routines that 
manipulate it, !table) 778 

PHD$Q_PRIVMSK field 
process privilege mask, use and routines that 

manipulate it, !table) 778 
PHD$Q_PSCANCTX_QUEUE field 

definition and use, 323 
PHD$V_NO_WS_CHNG bit (PHD$W_FLAGS field) 

locking system pages using, 509 
PHD$V _NOACCVIO bit (PHD$W _FLAGS field) 

swapper setting of, 43 7 
PHD$W PHVINDEX field 

balance slot number, 394 
PHD$W _PRCPGFLOPAGES field 

definition and use, 461 
PHD$W _PRCPGFLPAGES field 

definition and use, 461 
PHD$W _PSCANCTX_SEQNUM field 

definition and use, 323 
PHD$W_PSTFREE field 

most recent addition to PSTE free list, 3 75 
PHD$W _PSTLAST field 

largest index of a PSTE, !figure) 375 
PHD$W_QUANT field 

charged by EXE$HWCLKINT, 263 
interval timer interrupt service routine use of, 294 
quantum expiration use of, 294 
scheduling-related PHD field, 271 

PHDUTL module 
MMG$ALCPHD, operations, 497 
MMG$DALCSTXSCN 

control flow, 424 
operations, 413 

MMG$IMGRESET, working set size reset by, 501 
PHV$GL PIXBAS cell 

starting address of process index array, 395 
PHV$GL REFCBAS cell 

startini address of reference count array, 394 
physical address 

characteristics, 350 
space, characteristics, 350 

physical CPU data vector 
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SMP systems, relations with RPB and boot page, 
!figure) 1050 

physical 1/0 
segmenting, by FDT routines, 622 

physical memory. See also memory; pages; physical 
pages 

characteristics and mechanisms, overview, 354 
data structures, overview, 355 
dump 

characteristics and limitations, 970 
layout, !figure) 975 
operations, 975 

pages. See physical pages 
parameters that control management of, 357 
sharing, overview, 355 
uses of, overview, 356 

physical pages 
allocating, 354 

page fault handling, 439 
characteristics, 351 
deleting, 428 
state indicated by PFN STATE array, 381 

PHYSICALPAGES parameter (SYSGEN) 
physical memory dump size controlled by, 975 

PIC (position-independent code) shareable images 
addresses not found in map files, 1154 
aided by $IMGFIX, 762 

PID (process identifier) 
characteristics and use, 320 
creating from PCB, 721 
extended. See EPID 
internal. See IPID 
term definition, 4 

piggyback special kernel mode AST. See PKAST 
PIOPAGES parameter (SYSGEN) 

effect on Pl space, 1293 
pixscan mechanism 

initiated from EXE$TIMEOUT, 266 
priority boosts handled by, 305 
swapper trimming affected by, 360 

PIXSCAN parameter (SYSGEN) 
pixscan mechanism use of, 305 

PKAST (piggyback special kernel mode AST). See also 
AST 

characteristics and use, 146 
flag, ACB location of, 133 
routine, out-of-band AST use of, 153 

placeholder PCB. See also PCB 
characteristics and use, 268 

PLV$L EXEC field 
privileged shareable image dispatcher address, 

transferring control to, 124 
PLV$L KERNEL field 

privileged shareable image dispatcher address, 
transferring control to, 124 

$PLVDEF macro 
message section headers defined by, ll 10 
privileged library vector defined by, !figure) 124 

PMLEND macro 
locking pages into system working set with, 1145 

PMLREQ macro 
locking pages into system working set with, 1145 

PMS$GL_IOPFMSEQ cell 
synchronizing access, with PERFMON spinlock, 184 

POISON_PACKET routine (MEMORYALC module) 
pool poisoning operations, 571 

pool. See also lookaside lists; memory management; 
process allocation region; system initialization 

allocation statistics, collecting, !table) 568 
areas, comparison of different, !table) 544 



pool (continued) 
checking mechanism, 5 72 
corruption of, detecting, 569 
fixed-length packets, structure and operations, 552 
management 

concepts and mechanisms, (chapter) 544 
overview, 25 

non paged 
allocating, 557 
allocating, initial, (table) 1284 
allocating, wait state characteristics and use, 285 
characteristics, (table) 544 
components of, 554 
contraction only after bootstrapping, 561 
deallocating, (figure) 558 
deallocating, synchronization issues, 562 
depletion causes process resource wait, 284 
EXE$INIT use of, (table) 927 
expanding, 559 
expansion, constraint on layout of pool regions, 

555 
initializing, 555 
layout, (figure) 555 
listhead location and allocation type, (table) 546 
protection on, 554 
structure and operations, 554 
summary, 1225 
synchronization, 183, 561 
SYSINIT allocation, 940 
uses of, 563 
VMS requirements, 1286 

paged 
allocating, 564 
allocating, wait state characteristics and use, 285 
characteristics, !table) 544 
data structures located in, 564 
deallocating, 564 
expanding, 564 
initializing, 939 ' 
listhead location and·allocation type, (table) 546 
protection, 564 
shareable LNMBs allocated from, 1078 
structure and operations, 564 
summary, 1225 
synchronization, 564 

poisoning, 5 71 
operations, 572 

term definition, 544 
variable-length blocks 

allocating, (example) 547 
deallocating, 549, (example) 550 
layout, (figure) 546 
listhead locations and allocation type, (table) 546 
structure and operations, 546 

POOL spinlock 
characteristics and use, 183 
serializing access to nonpaged pool variable-length 

list, 558, 559 
POOLCHECK bugcheck. See also bugchecks 

generated when pool's FREE pattern is not intact, 
572 

POOLCHECK parameter (SYSGEN) 
field and flag definitions, (figure) 570, (table) 570 

POOLPAGING parameter (SYSGEN) 
residency of paged pool, 929 

"poor man's lockdown" 
characteristics and use, 508 
locking pages into process working set with, 1147 
not usable by SMP systems, 1020 
reasons not to use, 508 

Index 

'port descriptor table. See PDT 
port drivers. See also class drivers; device drivers; I/01 

SCS1 SCSI 
class driver binding, 676 
list of, 676 
operations, 676 
SCA, list of, 678 

POSTEF module 
SCH$POSTEF 

setting event flags, control flow, 211 
post processing 

I/O. See 1/0 postprocessing 
powerfail. See also adapters; debugging; errors; I/O 

adapter, reserving memory for, 930 
interrupt (IPL 30) 

interrupt service routine, operations, 983 
nested, problems and operations, 1000 
VAX architecture mechanisms, 41 

recovery 
adapter, 1003 
adjusting system time at, 254 
AST delivery operations, 145, 999 
AST request operations, 999 
concepts and mechanisms, (chapter) 983 
console subsystem logic, 984 
console subsystem operations, 984 
console switches that affect, 984 
IPL 31 use by device driver for synchronizing with, 

41 
multiple power failures, problems and operations, 

1000 
notifying devices about, 998 
notifying processes about, 999 
preventing an infinite restart loop, 1001 
SMP systems, EXE$RESTART operations, 1058 
testing for, in swapper routine, 518 

POWERFAIL module 
EXE$INIT_DEVICE operations, 998 
EXE$POWERFAIL 

accessing time-of-year clock, 252 
operations, 983 

EXE$RESTART 
environment, 994 
operations, 994 
SMP operations, primary processor, 1058 
SMP operations, secondary processor, 1060 

EXE$RESTART_ATT, control flow, 995 
POWERUP _L_DONE cell 

powerfail recovery use of, 996 
PQB (process quota block) 

deallocated to lookaside list, 565 
layout and field contents, (table) 710 
layout and summary, 1259 
lookaside list, listhead location and allocation type, 

(table) 546 
removing process parameters from, (figure) 729 

PQL_DWSDEFAULT parameter (SYSGEN) 
adjusted at system initialization, 490 
initial working set list size, 1272 
use in process creation, 728 

PQL_MWSDEFAULT parameter (SYSGEN) 
adjusted at system initialization, 490 

PR$_ASTLVL (ASTLVL register) 
as part of process hardware context, 306 
characteristics and use, 130 
description, 3 
distinguished from other register fields in hardware 

PCB, 309 
loading, 310 
recomputing 
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PR$_ASTLVL (ASTLVL register) (continued) 
recoID.puting (continued) 

at process inswap, 542 
during AST exit path operations, 141 
when disabling AST delivery, 143 

REI use in IPL 2 interrupt decision, 39, 130 
PR$_ICCS (interval timer control/status register) 

characteristics and use, 249 
IE bit, ID.iniID.UID. interval tilller used by MicroVAX 

II, 248 
PR$_IPL (IPL register). See also IPL 

changing IPL 
by writing to, 40, 168 
with SETIPL ID.aero, 168 

PR$_POBR (PO base register) 
as part of process hardware context, 306 
loading by SYSBOOT, 924 
PO page table base register use, 362 

PR$_POLR (PO length register) 
as part of process hardware context, 306 
PO page table length register use, 362 

PR$_PlBR (Pl base register) 
as part of process hardware context, 306 
Pl page table base register use, 362 

PR$_PlLR (Pl length register) 
as part of process hardware context, 306 
Pl page table length register use, 362 

PR$_PCBB (PCB base register) 
use during context switching, 307 

PR$_RXCS (console receiver status register) 
operations, 689 

PR$_RXDB (console receiver data buffer register) 
operations,. 689 

PR$_SBR (system base register) 
systeID. page table base register use, 362 

PR$_SCBB (system control block base register) 
SCB starting physical address in, 30 

PR$_SIRR (software interrupt request register) 
forID.at, (figure) 33 
requesting IPL 12 interrupt service routine, 68 
requesting software interrupts by writing to, 33, 54 

PR$_SISR (software interrupt summary register) 
characteristics and use, 33 
clearing by IEI ID.icrocode during interrupt 

dispatching, 34 
forID.at, (figure) 33 
IPL 2 bit, possible irrelevance of, 13 7 
restoration and initialization at power recovery, 996 
synchronizing, 33 

PR$_SLR (system length register) 
systeID. page table length register use, 362 

PR$_TBIA (translation buffer invalidate all register) 
invalidating TB by writing to, 1029 

PR$_TBIS (translation buffer invalidate single register) 
invalidating . 

cached entries by writing to, 365 
TB by writing to, 1029 

PR$_TXCS (transmit status register) 
operations, 689 

PR$_TXDB (transmit data buffer register) 
operations, 689 
special uses, (table! 690 

PR$_xSP (stack pointer register) 
restoring stack pointer froID., 39 

PR .. LKS spinlock 
characteristics and use, 182 

PR~LKn spinlocks 
characteristics and use, 183 

$PRDEF macro 
syID.bolic names for VAX processor 
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registers, 1268, 1294 
preemption of current process 

control flow, 299 
delayed, 200, 340 
rules 

for choosing a new CUR process, 276 
Version 5 changes, 276 

primary bootstrap program. See VMB 
priID.ary device characteristics 

distinguished froID. secondary, 705 
primary exception vector 

searching for condition handlers with, 88 
primary page file. See also ID.eID.ory ID.anageID.ent; page 

faults; paging 
SYSINIT use, 399 

primary processors 
affinity 

EXE$ALTQUEPKT, 631 
EXE$CANCEL, 625 
EXE$SETIME, 255 
IOC$INITIATE, 630 
last channel deassignID.ent processing, 605 
SMP$SHUTDOWN_CPU, 1057 

required for systeID. tiID.e, 256 
responsibilities, 1006 

primary swap file. See also inswap; ID.emery 
management; outswap; swapper 

SYSINIT use, 399 
print subsystem 

job controller responsibilities as queue manager, 
1102 

priorities. See also base priority; normal processes; 
PCB$B_PRI; PCB$8_PRIB; PCB$B_PRIBSAV; 
PCB$8_PRISAV; preemption of current process; 
real-tiID.e processes; $SETPRI 

as a condition for outswap and swapper triID.ID.ing 
selection, 525 

as significant scheduling process characteristic, 268 
base priority, initializing, 275 
boosts 

associated with system events, 302 
example, (figure) 302 
pixscan mechanism, 305 

changing for current process, 295 
COM and COMO process queues, 271 
data structures, scheduler database component, 269 
process 

altering, 340 
characteristics and use, 274 
dynamic adjustment of, 278 
external, representation characteristics, 274 
internal, representation characteristics, 274 

range 
high-priority half use, 274 
low-priority half use, 274 

/PRIVILEGE qualifier. See also privileges 
known image installation, 7 43 

privileged known images 
name and description tables, (chapter! 1126 

privileged library vector 
structure, (figure) 124 

privileged shareable images 
dispatching 

control flow, (figure) 123 
to system services in, 121 

protected iID.age section structure, (figure) 124. 
Consult Introduction to VMS System Services 

system service operations in, 123 
privileges. See also access modes; ACL; protection; , 

$SETPRV; synchronization 



privileges (continued) 
ACNT, use by $CREPRC, 716 
ALLSPOOL, use by $ALLOC, 592 
ALTPRl 

required for unconstrained process priority 
modification, 275 

use by $CREPRC, 715, 731 
BUGCHK 

required for use of $SNDERR system service, 
1109 

use to generate bugchecks in user and supervisor 
mode, 968 

BYPASS 
use by $BRKTHRU, 698, 702 
use by logical name system services, 1092 
use to specify access protection of a mailbox, 665 

characteristics and use, 778 
checking, 318, 320 
CMEXEC 

use in activation of shareable images, 755 
use in system service dispatching, 12 7 

CMKRNL 
use by SYSGEN, 948 
use by image dump facility, 736 
use by $CREPRC, 712 
use in activation of shareable images, 755 
use in system service dispatching, 127 
use with connect-to-interrupt driver, 652 

DETACH 
use by $CREPRC, 712, 719 
use in process creation, 716 

DIAGNOSE, use to assign an error log mailbox, 966 
GROUP, 23 

required by EXE$NAMPID, 321 
GRPNAM, allows access to group logical name 

table, 1072 
GRPPRV, use by logical name system services, 1092 
image, KFE field that specifies, 744 
lock information access restricted by, 235 
LOG_IO, use by $SETIME, 255 
logical name table access, checking, 1092 
masks, characteristics and use, (table) 778 
NETMBX 

required for assigning a channel to a network 
device, 599 

use by $ASSIGN, 599 
OPER 

use by $BRKTHRU, 698, 700 
use by $SETIME, 255 
use by $SNDACC, 1107 
use by LOGINOUT, 794 

overview, 23 
PFNMAP 

accessing physical pages in 1/0 space enabled by, 
411 

required for deleting a PFN-mapped global section, 
423 

required for global PFN-mapped section creation, 
417 

use by $CRMPSC, 411, 415, 417 
use by $DGBLSC, 423 
use with connect-to-interrupt driver, 652 

PRMCEB 
required to create permanent clusters, 204 
required to delete permanent clusters, 204 
use by $ASCEFC, 206 
use by $DLCEFC, 208 

PRMGBL 
required for permanent global section creation, 

417 

Index 

required for permanent global section deletion, 
423 

use by $CRMPSC, 417 
use by $DGBLSC, 423 

PRMMBX 
required to create a permanent mailbox, 660 
required to delete a permanent mailbox, 663 
use by $CREMBX, 660 

PSWAPM 
locking into balance set enabled by, 432 
requested to lock pages in memory, 504 
required to disable swapping, 342 
use by $CREPRC, 716 
use by $LCKPAG, 504 
use by $SETSWM, 342, 432 

READALL, use by logical name system services, 
1092 

SETPRV 
use by $CREPRC, 715 
use by $SETPRV, 780, 781 
use by image dump facility, 736 

SHARE 
enables access to device allocated by another 

process, 591 
use by $ASSIGN, 598 
use by $BRKTHRU, 698, 702 

SHUTDOWN.COM, requirements, 955 
SYSGBL 

required for systemwide global section creation, 
417 

use by $CRMPSC, 417 
use by $DGBLSC, 423 

SYSLCK 
lock information access permitted by, 235 
required for systemwide resource creation, 226 
use by $ENQ, 226 
use by $GETLKI, 235 

SYS NAM 
allows access to system logical name, 1072 
logical name translation affected by, 1092 
use by $CRELNM, 1069 
use by $CRELNT, 1070 

SYSPRV, use by logical name system services, 1092 
TMPMBX 

required to create a temporary mailbox, 660 
use by $CREMBX, 660 

WORLD, 23 
lock information access permitted by, 235 
required by EXE$NAMPID, 321 
use by $BRKTHRU, 698, 700 
use by $GETLKI, 235 

PRMCEB (create permanent common event Rag 
clusters privilege). See also privileges 

required to 
create permanent clusters, 204 
delete permanent clusters, 204 

use by 
$ASCEFC, 206 
$DLCEFC, 208 

$PRMDEF macro 
SYSGEN parameter data structure fields defined by, 

950 
PRMGBL (create permanent global sections privilege). 

See also privileges 
required for 

permanent global section creation, 417 
permanent global section deletion, 423 

use by 
$CRMPSC, 417 
$DGBLSC, 423 
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PRMMBX (create permanent mailbox privilege). See 
also privileges 

required to 
create a permanent mailbox, 660 
delete a permanent mailbox, 663 

use by $CREMBX, 660 
PROBER instruction. See also instructions 

change mode dispatcher use to check argument list, 
114 

procedure calling mechanism. See also call frames; 
VAX Calling Standard 

VAX architecture feature used by VMS, 14 
procedure-based code 

VMS, overview, 18 
process accounting information 

PHD component, 367 
process address space. See address space - process 
process affinity. See affinity 
process allocation region 

allocating, 566 
characteristics, (table) 544 
data structures located in, 567 
deallocating, 566 
description, (table) 1230 
expanding, 566 
listhead location and allocation type, (table) 546 
memory management, characteristics and use, 565 
process-private LNMBs allocated from, 1078 
structure and operations, 565 

process bitmap 
limiting repeated deadlock searches for a particular 

process, 240 
process body 

outswapping, 529 
distinguished from PHD outswapping, 535 
example, (figures) 531 

rebuilding, operations after inswap, 538 
process computability 

system services affecting, 334 
process context. See also hardware context 

AST delivery interrupt executed in, control flow, 
137 

AST delivery requires, 129 
AST interrupt as only software interrupt serviced in, 

55 
blocks, location of, 323 
concept, overview, 17 
context block, definition and use, 324 
data structures that describe, (figure) 3 
moving shell into, 725 
queuing IRPs for requests completed in, 65 
routines, overview, 18 
special kernel mode AST use for 1/0 postprocessing, 

144 
swapper use, 511 
switching, characteristics and operations, 306 

process control block. See PCB 
process creation. See also shell template 

concepts and mechanisms, (chapter) 709 
EXE$PROCSTRT, control flow, 729 
phases, overview, (figure) 709 
VMS components requested by, list, 782 

process delete pending count. See PCB$B_DPC 
process deletion 

blocking, 172 
by nonzero PCB$B_DPC, 814 

concepts and mechanisms, (chapter) 811 
1/0 completion required for, 815 
in context of 

caller, 811 
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process being deleted, 813 
kernel mode AST use in, 149 
open files closed during, 814 
PCB$B_DPC use in preventing, 132 
PCB$V _NODELET set to prevent, 812 
processes that own subprocesses 

example, (figure) 818, 819 
operations, 818 

resulting from image exit, 772, 773 
with explicit affinity, 289 

process directories 
LNM$PROCESS_DIRECTORY, process-private 

logical name tables named in, 1070 
process header. See PHD 
process header page arrays. See PHD - page arrays 
process identifier. See PID 
process lock queue 

locating locks owned by a process, 222 
process page tables. See page tables 
process priorities. See priorities 
process quota block. See PQB 
process residency state 

flag for, 279 
process scheduler. See scheduler 
process section table. See PST 
process section table entry. See PSTE 
process sections. See also global sections; sections 

activation of, ISD and PTEs for, (figure) 750 
characteristics and use, 353, 374 
creating, 3 7 4 

control flow, 412 
overview, 411 

deleting, section page, 428 
PTEs, characteristics and use, 371 

process states. See also COM; COMO; CUR; wait 
states 

as significant scheduling process characteristic, 268 
characteristics and transitions, (figure) 279 
collided page wait. See COLPG 
common event flag wait. See CEF 
computable outswapped. See COMO 
computable resident. See COM 
currently executing. See CUR 
,displaying, with SHOW SYSTEM command, 284 
free page wait. See FPG 
hibernate outswapped wait. See·HIBO 
hibernate wait. See HIB 
local event flag outswapped wait. See LEFO 
local event flag wait. See LEF 
miscellaneous wait. See MWAIT 
page fault wait. See PFW 
queues , 

CEF wait, characteristics and use, 273 
characteristics and use, 271 
computable, (figure) 271 
PCB fields that link, 269 
scheduler database component, 269 
wait, characteristics and use, 271 

state transition, (figure) 279 
suspended outswapped wait. See SUSPO 
suspended wait. See SUSP 
swapper driven by table of, 524 
symbolic names and values, (table) 279 
transition to COM state, control flow, 299 
transitions, control flow, 299 

process suspension. See also hibernation , 
access mode used to categorize SUSP and SUSPO 

states, 282 
blocking, 172 
hard, characteristics, 336 



process suspension (continued) 
hibernation compared with, 336 
kernel mode AST use in, 148 
PCB$B_DPC use in preventing, 132 
soft, characteristics, 33 7 

process virtual address. See address translation 
process virtual address space. See address space - PO; 

address space - Pl 
PROCESS_MANAGEMENT initialization routip.e 

operations, 937 
process-permanent message file 

characteristics and use, 1109 
process-private logical name tables 

LNM$PROCESS_DIRECTORY, named in, 1070 
process-private pages 

page faults, characteristics and use, 438 
process-private user mode logical name 

when deleted, 1069 
PROCESS_SCAN module 

EXE$PROCESS_SCAN, control flow, 326 
EXE$PSCAN_NEXT_PID, control flow, 329 

$PR,OCESS_SCAN system service 
$GETJPI use in conjunction with, 323 
control flow, 326 
data structures related to, 323 
operations, 323 

PROCESS_SCAN_CHECK module 
$PROCESS_SCAN subroutines found in, 326 

PROCESS_SCANJTMLST module 
$PROCESS_SCAN subroutines found in, 326 

processes. See also fork processes; PCB; process states; 
system processes; wait states 

affecting other, 318 
assigning, to page files, 461 
batch. See batch processes 
catch-all condition handler, establishing for a new, 

735 
checking privileges of, 320 
classification, 782 

by LOGINOUT, list of types, 792 
context. See process context 
control and communication 

concepts and mechanisms, (chapter) 318 
system services available for, (table) 318 

control region, returning information from, 330 
creating. See process creation 
deassigning, from page files, 461 
definition, 720 
deleting. See process deletion 
determining 

if dormant, PCB fields used for, 254 
if in a long wait, PCB fields used for, 254 

dynamics of handling, concepts and mechanisms, 
(chapter) 782 

EPID, LKB field that contains, 221 
hardware context. See hardware context 
identifying, 318, 720 

target, 320 
implicit constraints on swapper action, 527 
information system services, characteristics and 

operations, 323 
inswapping. See inswap 
interactive. See interactive processes 
interprocess communications 

mailbox use for, 655 
mechanisms, overview, 342 

IPID, LKB field that contains, 220 
limiting deadlock searches for particular, 240 
locating, 320 

locks owned by, 222 

Index 

subprocesses owned by, 818 
logout, LOGINOUT control flow, 808 
memory management data structures specific to, 

367 
memory residence, PCB$L_STS bit that specifies, 

366 
multiple image execution, control flow, (figure) 799 
name, changing, 341 
network, LOGINOUT image operations, 798 
normal. See normal processes 
notifying about powerfail recovery, 999 
null process, characteristics and use, 268 
obtaining information from, $GETJPI operations, 

328 
outswapping. See outswap 
page files available to, PHD field that specifies, 371 
page tables. See page tables 
particular, delivering out-of-band ASTs to, 155 
placing 

in hibernation, 335 
into event flag wait state, 208 

preemption. See preemption of current process 
priorities. See priorities 
privileges. See privileges 
queuing ASTs to, 134 
quotas 

establishing for new, 718 
storage areas for, (table) 719 

real-time. See real-time processes 
remote, servicing requests for, (figure) 323 
removing from hibernation, 335 
rescheduling current, 341 
resuming, 339 
rundown operations, 774 
scheduling 

concepts and mechanisms, (chapter) 268. See also 
scheduler 

wakeup requests for another, 259 
scheduling states. See process states 
servicing, requests for remote, 322 
shrink, selecting, 523 
single image execution, control flow, (figure) 799 
status flags, specified at process creation, (table) 716 
structure of, overview, 22 
suspending. See process suspension 
synchronizing with system services, event flag use 

for, 202 
system. See system processes 
term definition, 3 
terminating, 339 
transferring control to, with ATTACH command, 

790 
virtual address space, accessing, 133 

processor status longword. See PSL 
processors 

attached, term definition, 1007 
capabilities. See capabilities 
halts, interrupt stack invalid, 36 
primary. See primary processors 
registers. See also PR$_ and PRxxx$_ prefix entries 

console terminal communication, (table/ 688 
hardware clocks implemented by, (table 248 
initializing, 934 . 
macros that define, 249, 1268, 1294 

secondary. See secondary processors 
spinwaits, 190, 1035 
states 

name and meaning, (table) 1043 
SMP systems operations, 1043 
transitions, (figure) 1043 
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PROCSECTCNT parameter (SYSGEN) 
maximum PST size, 376, 487, 1272 
working set list capacity affected by, 487 

PROCSTRT module 
EXE$CATCH_ALL, control flow, 735 
EXE$IMGDMP _MERGE, characteristics and use, 

736 
EXE$PROCSTRT 

environment, 729 
KRP lookaside list initialization, 567 
logical name tables created by, 1072 

program counter. See PC 
program region 

term definition, 7 
program sections. See PSECTs 
protection. See also access modes; ACL; locks; 

privileges; spinlocks 
check, overview, 20 
logical name tables 

characteristics, 1071 
default protection mask, 1072 

logical name translation, checking, 1092 
memory 

names and values, (table) 363 
PTE bits that contain, 363 
VAX access checking, characteristics and 

mechanisms,362 
VAX architecture feature used by VMS, 14 
virtual memory role in, 349 

nonpaged pool, 554 
ORB, characteristics and use, 579 
paged pool, 564 
process allocation region, 565 
virtual address space, different areas distinguished, 

353 
virtual page 

access controlled by, 351 
changing, 432 

protection codes. See protection - memory 
Proxy Function lock 

characteristics and use, 1324 
Proxy Key locks 

characteristics and use, 1324 
$PRTCTEND macro 

end of machine check recovery block, 981 
$PRTCTEST macro 

test for machine check recovery block, 981 
$PRTCTINI macro 

start of machine check recovery block, 981 
PRxxx$_ICR (interval count register) 

characteristics and use, 250 
PRxxx$_NICR (next interval count register) 

characteristics and use, 250 
interval timer use in full implementation, 249 

PRxxx$_TODR (time of day register) 
maintaining system time with, 247 
time-of-year clock, characteristics and use, 251 

$PRxxxDEF macro 
symbolic names for VAX CPU-specific processor 

registers, 249, 1268 
$PSCANBUFDEF macro 

$GETJPI buffer header defined by, 326 
PSCANCTX$L_CUR_CSID field 

definition and use, 325. 
PSCANCTX$L_CUR_EPID field 

definition and use, 325 
PSCANCTX$L_CUR_IPID field 

definition and use, 325 
PSCANCTX$L_CWPSSRV field 

definition and use, 325 
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PSCANCTX$L_FLAGS field 
definition and use, 325 

PSCANCTX$L_JPIBUFADR 
address of $GETJPI buffer, 326 

PSCANCTX$L_NEXT_IPID field 
definition and use, 325 

PSCANCTX$V _BUSY bit (PSCANCTX$L_FLAGS 
field) 

definition and use, 325 
PSCANCTX$W _CSIDOFF field 

definition and use, 325 
PSCANCTX$W _SEQNUM field 

definition and use, 323 
$PSCANCTXDEF macro 

context block header defined by, 324 
PSECTs (program sections) 

names format, 1238 
pseudo devices. See also mailboxes; remote terminals; 

virtual terminals 
characteristics and use, 590 
drivers, characteristics and list, 68 7 
network device driver, 687 
null device driver operations, 687 

PSL (processor status longword) 
as component of process hardware context, 3, 306 
first-part-done bit, instruction emulation use of, 77 
for interrupt service routine, 34 
IEI microcode saving during 

exception dispatching, 36 
interrupt dispatching, 34 

interrupt stack bit, AST delivery prevented by, 129 
IPL stored in, 168 
IS bit clearing, 310 
IS bit set by SVPCTX instruction, 308 
location of, 269 
previous mode field, access modes, interrupts 

compared with exceptions, 38 
testing by REI instruction, 38 

PST (process section table) 
maximum size of, PHD field that specifies, 376 
PHD component, 367 

characteristics and field definitions, 3 7 4 
dynamic growth area effect on, 369 
location, (figure) 374 

size calculation, 1272 
working set list increase effect on, 487 

PSTE (process section table entry). See also SEC$ prefix 
entries; $SECDEF macro; sections 

address computation, 3 7 4 
definition and use, layout, (figure) 376 
overview, 354 
PHD component, characteristics and field 

definitions, 374 
PTE relation to, 371 
size and location, 374 

PSWAPM (change process swap mode privilege). See 
also privileges 

locking into balance set enabled by, 432 
requested to lock pages in memory, 504 
required to disable swapping, 342 
use by 

$CREPRC, 716 
$LCKPAG, 504 
$SETSWM, 342, 432 

PTALLOC module 
LDR$ALLOC_PT, control flow, 861 
LDR$DEALLOC_PT, control flow, 861 

PTE (page table entry). See also address space; page 
tables; pages 

array. See PFN PTE array 



PTE (page table entry) (continued) 
characteristics and use, overview, 351 
containing 

global page table index, characteristics, 373 
page file virtual block number, characteristics, 372 
PST index, characteristics, 371 

demand zero page, characteristics, 373 
initial state of faulting, page read clustering 

dependence on, 465 
owner field, memory management system service 

checking, 403 
page in transition, characteristics, 3 73 
valid 

and invalid forms, (figure! 371 
described in working set list, 367 
VAX architectural definition of, (figure! 362 

valid bit, meaning, 351 
public names 

conventions for, (chapter! 1232 
public structures 

constants, names format, 1237 
definition macros, names format, 1235 
masks, names format, 1237 

Purge Working Set system service. See $PURGWS 
$PURGWS (Purge Working Set system service) 

operations, 506 
Put Message system service. See $PUTMSG 
$PUTMSG (Put Message system service) 

arguments, 1113 
operations, 1113 
uses for. Consult VMS Run-Time Library Routines 

Volume 

Q22-bus 
adapter 

interrupt vectors in SCB, 46 
VAXstation 3520 system, 51 

device drivers, fork IPL considerations, 63 
directly vectored interrupt service routines, 

operations, 642 
interrupts, servicing, 642 
MicroVAX systems, configuration, 49 

QDISKINTERVAL parameter (SYSGEN) 
polling interval for quorum disk, 942 

$QIO (Queue 1/0 Request system service). See also 
$QIOW 

arguments, 606 
AST creation by, 133 
attention AST use, 150 
control flow, 606 
CTRL/C and CTRL/Y notification use of, 152 
flushing 

attention AST list with, 151 
out-of-band AST list, 156 

1/0 request 
completion by, 611 
flow, (figure! 588 

invoking FDT action routines, 609 
mailbox driver use of, 153 
setting 

attention AST with, 150 
out-of-band AST with, 154 

special entry points for memory management 
requests, 462 

start 1/0 routine, entering, (figure! 633 
system service completion, 611 

$QIOW (Queue 1/0 Request and Wait system service). 
See also $QIO 

composite system service vector, 109 

Index 

process state change actions, 279, 282 
quantum 

charged by EXE$HWCLKINT; 263 
expiration, operations, 293 
initial, as a condition for outswap and swapper 

trimming selection, 526 
QUANTUM parameter (SYSGEN) 

initial value for process quantum, 263 
rescheduling use of, 293 

Queue File Initialiiation lock 
characteristics and use, 1326 

Queue File lock 
characteristics and use, 1326 

Queue File Master lock 
characteristics and use, 1325 

Queue 1/0 Request and Wait system service. See 
$QIOW 

Queue 1/0 Request system service. See $QIO 
queue manager. See job controller 
QUEUEAST spinlock 

characteristics and use, 181 
queues 

absolute, spinlock protection of, 166 
absolute queue instructions, noninterruptibility, 163 
fork, synchronization of, 1022 
fork and wait 

stalling a fork process with, 62 
synchronizing access to with MEGA spinlock, 185 

fork block, specifying in FKB, 57 
interlocked, sharing between CPU and intelligent 

1/0 control, 165 
interlocked queue instructions 

characteristics and use, 164 
macros that use, 165 

interrupt service routine use to keep track of number 
of requests, 55 

lock timeout, deadlock handling use of, 236 
message, inserting message block at tail of, 

(figure! 666 
per-CPU 1/0 postprocessing, IOC$10POST handling, 

613 
process state. See process states - queues 
resource 

listhead locations in RSB, 217 
RSB fields that form, 215 

resource wait, placing locks in, operations, 227 
shared, SMP changes to handling of, 1022 
systemwide 1/0 postprocessing, IOC$IOPOST 

handling, 613 
timer, characteristics and TQE field definitions, 256 

Quota Cache Entry lock 
characteristics and use, 1309 

quota holder table 
term definition, 1071 

quotas 
logical name table size, characteristics, 1071 
overview, 23 
page file, process address space constrained by, 354 
process 

deductible, 719 
establishing for new, 718 
pooled, 719 
storage areas for, {table! 719 

RO register 
conventions for use, executive, 1137 
saving in 

AST procedure argument list by SCH$ASTDEL 
routine, 141 
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RO register (continued) 
saving in (continued) 

mechanism array by EXE$EXCEPTION, 79 
Rl register 

saving in 
AST procedure argument list by SCH$ASTDEL 

routine, 141 
mechanism array by EXE$EXCEPTION, 79 

R2 register 
conventions for use, executive, 1137 

R3 register 
conventions for use 

executive, 1137 
1/0 subsystem, 1137 

fork context process includes, 58 
R4 register 

conventions for use 
executive, 1137 
1/0 subsystem, 1137 

fork context process includes, 58 
RS register 

conventions for use 
executive, 1137 
1/0 subsystem, 1137 

RAB (record access block) 
ASY bit, testing by RMS, 118 

race condition 
1/0 completion potential for, 616 

Read Event Flag system service. See $READEF 
read in progress page location code. See also PFN 

STATE array 
meaning, 382 

read-only data cells 
defined in module MMDAT, 835 

read-only global pages. See also global pages; global 
sections 

p~ faults, control flow, 450 
read/write global pages. See also global pages; global 

sections 
page faults, control flow, 453 

READALL (read anything as owner privilege). See also 
privileges 

use by logical name system services, 1092 
READCHECKIO routine (MBDRIVER module) 

reading a mailbox, validation control flow, 667 
$READEF (Read Event Flag system service) 

operations, 212 
real-time processes 

priority handling, 302 
priority range, 277 
scheduling differences between normal processes 

and,277 
REALn:M,E_SPTS parameter (SYSGEN) 

SPTEs reserved for use by connect-to-interrupt 
driver, 653, 930 

reboot consistency check 
operations, 955 

rebooting 
CPU, PR$_TXDB use for, 690 

record access block. See RAB 
Record lock 

characteristics and use, 1319 
Record Management Services. See RMS 
recursion 

logical name table name resolution 
basic loop, 1090 
controlling depth, 1089 

recursive procedures, signaling use with, 86 
recursive table translation block. See RT 

registers 
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conventions for use, 1136. Consult VMS Device 
Support Manual 

CPU-specific processor, saving during powerfail 
handling, 983, (table) 984 

dumping routines, testing device affinity in, 1041 
general, as part of process hardware context, 306 
macros that define, 249, 1268, 1294 
memory-mapping, as part of process hardware 

context, 306 
POBR. See PR$_POBR 
POLR. See PR$_POLR 
PlBR. See PR$_PlBR 
PlLR. See PR$_PlLR 
PR$_ASTLVL. See PR$_ASTLVL 
PR$_1CCS. See PR$_1CCS 
PR$_IPL. See PR$_1PL 
PR$_POBR. See PR$_POBR 
PR$_POLR. See PR$_POLR 
PR$_PlBR. See PR$_PlBR 
PR$_PlLR. See PR$_PlLR 
PR$_PCBB. See PR$_PCBB 
PR$_RXCS. See PR$_RXCS 
PR$_RXDB. See PR$_RXDB 
PR$_SBR. See PR$_SBR 
PR$_SCBB. See PR$_SCBB 
PR$_SIRR. See PR$_SIRR 
PR$_SISR. See PR$_SISR 
PR$_SLR. See PR$_SLR 
PR$_TBIA. See PR$_TBIA 
PR$_TBIS. See PR$_TBIS 
PR$_TXCS. See PR$_TXCS 
PR$_TXDB. See PR$_~B 
PR$_xSP. See PR$_xSP 
processor 

console terminal communication, (table) 688 
hardware clocks implemented by, (table) 248 
initializing, 934 

PRxxx$_1CR. See PRxxx$JCR 
PRxxx$_NICR. See PRxxx$_NICR 
PRxxx$_TODR. See PRxxx$_TODR 
RO. See RO register 
Rl. See Rl register 
R2. See R2 register 
R3. See R3 register 
R4. See R4 register 
RS. See RS register 
saved during powerfail handling, names and where 

stored, (table) 984 
registration service 

for customer facility names, 1238 
REI (return from exception or interrupt) instruction. 

See also instructions 
AST delivery, tests before requesting IPL 2 interrupt, 

129 
control flow, 38 
following LDPCTX instruction, 310 
overview, 22 
use, 1143 
VAX architecture feature used by VMS, 15 

release pending page location code. See also PFN 
STATE array 

m · 381 
p~t from, 445, 447 

relocatable symbols 
locating, 1151 

RELOCDRV module 
IOC$1NITDRV, initializing terminal class driver 

data structures, 932 
REMACP 

remote system terminal ACP, operations, 686 



remastering. See resource trees 
remote devices. See also communications; networks; 

VAXcluster systems 
assigning channels to, 601 
characteristics and use, 591 
communication with host system via SCS operations, 

678 
remote login 

operations, 686 
remote processes 

servicing requests for, 322 
Remote Request lock 

characteristics and use, 1325 
remote terminals 

server support, characteristics, 685 
REMQID instruction. See also instructions 

interlocked memory instruction, synchronizing data 
with, 164 

REMQTI instruction. See also instructions 
interlocked memory instruction, synchronizing data 

with, 164 
replacement paging. See also page faults 

characteristics, 352 
preventing, 506 
triggered by, 507 

REQCOM macro 
completing an 1/0 request, 640 

request mode 
locks, characteristics and use, 228 

$RESCHED (Reschedule Current Process system 
service) 

control flow, 341 
Reschedule Current Process system service. See 

$RESCHED 
rescheduling interrupt (IPL 3) 

AST delivery impact, 135 
characteristics and operations, 306 
interprocessor interrupt work requests, handling, 

1028 
interrupt service routine 

characteristics and operations, 306 
control flow, 310 

operations, overview, 66 
overview1 1007 
requeste<1 by 

EXE$RUNDWN, 298 
SCH$REMOVE_CPU_CAP, 298 
SMP$INTSR, 1028 

service routine 
code example, 313 
control flow, 310 

synchronization use of, 172 
reserved instruction fault. See also instructions 

handling, 85 
reserved operand fault exception 

causes for, 38 
reserved/privileged instruction exception. See also 

instructions 
bugcheck use of, 968 
instruction emulation use of, 76 

RESHASHTBL parameter (SYSGEN) 
determining number of resource hash table entries, 

218 
residency state 

PHD, flag for, 366 
process, flag for, 2 79 

resident global sections 
creating, 417 

resignaling 
passing conditions by, mechanism, 96 

Index 

status code for, 88 
resource availability. See resource wait 
resource block. See RSB 
resource hash chains 

characteristics and use, 218 
resource hash table relations, (figure) 218 

resource hash table 
characteristics and use, 218 
location and size, 218 
resource hash chain relations, (figure) 218 
structure, (figure) 218 

resource name string 
characteristics, 1296 

resource trees 
characteristics and use, 215 . 
mastering, in a VAXcluster system, 224 
maximum depth, 215, 239 
remastering, characteristics and use, 224 

resource wait 
list of names and their meaning, (table) 284 
miscellaneous wait states, transition descriptions, 

284 
mode, enabling and disabling 

PCB flag for, 716 
use of $SETRWM, 342 

process context during, 293 
RSN$_ASTWAIT 

channel deassignment, 604 
declared available, 266 
$GETJPI use of, 329 
meaning,284, 285 
process deletion, 147, 814, 815 
$QIO processing, 607, 608 
$SUSPND use of, 147 
uses of, 285 
waiting for global page 1/0 completion, 427 
waiting for subprocess deletion, 815 

RSN$_BRKTHRU, obsolete, 284 
RSN$_CLUSRV 

meaning, 284 
placing a process in, 322 

RSN$_CLUSTRAN, meaning, 284 
RSN$_CPUCAP 

meaning, 284 
placing a process in, 281, 285 

RSN$_IACLOCK, obsolete, 284 
RSN$JQUOTA, obsolete, 284 
RSN$_LOCKID, obsolete, 284 
RSN$_MAILBOX 

declared available, 266, 669 
meaning, 284 
placing a process in, 285 

RSN$_MPLEMP1Y 
meaning, 284 
placing a process in, 285, 480, 956 

RSN$_MPWBUSY 
declared available, 480 
meaning, 284 
placing a process in, 479, 494, 495 

RSN$_NPDYNMEM 
declared available, 266, 559, 560 
meaning, 284 
placing a process in, 285, 557, 561, 627 

RSN$_PGDYNMEM 
declared available, 266 
meaning, 284 
placing a process in, 285, 564 

RSN$_PGFILE, obsolete, 284 
RSN$_SCS, meaning, 284 
RSN$_SWPFILE, obsolete, 284, 479 
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resource wait (continued) 
states, 284 

use of PCB$L_EFWM to identify, 206, 271 
use of SCH$RWAIT to place process in, 

604 
resources. See also locks; protection; RSB; 

synchronization 
access modes, how obtained, 216 
accessing through common event flags, 213 
characteristics 

system-owned, meaning, 1296 
systemwide, meaning, 1297 

characteristics and use, 215 
controlling, overview, 22 
deadlock searches, preventing locks from 

participating in, 236 
deallocating RSBs, 1297 
depleted, MWAIT triggered by, 283 
existence on a particular node, determining, 226 
locating, 222 
name and length, 215 
position in resource tree, 215 
queues 

listhead locations in RSB, 217 
LKB fields that link into RSB queue, 220 

root 
characteristics and use, 215 
distributed directory characteristics and use, 224 

scope, term definition, 1296 
sharing 

in VAXcluster systems, 1296 
locks as mechanism for managing, 214 

system wide 
distinguished from system-owned locks, 233 
privilege required for accessing, 235 

term definition, 1296 
value block, location, 217 
VAXcluster local node use, RSB field that tracks, 216 
VMS components use of, (chapter) 1296 

restart parameter block. See RPB 
restart routine 

powerfail recovery, operations, 994 
$RESUME (Resume Process system service) 

characteristics and use, 336 
operations, 339 
process state change actions, 282 
requested by $DELPRC, 149 

Resume Process system service. See $RESUME 
return from exception or interrupt instruction. See REI 

instruction 
returning to caller's caller 

fork process used as form of return, reasons for, 59 
RM$LAST_CHANCE routine ((RMS)RMSOLSTCH 

module) 
operations, 814 

RMS (Record Management Services). See also system 
services 

data area, global cells, names and descriptions, 
(table) 1230 

error detection, 119 
lock use by, characteristics and use of each lock, 

1310 
names format, 1232 
requesting event flag wait, 209 
return mechanism characteristics, overview, 109 
services 

return paths, control flow, (figure) 117 
synchronizing, 118 

synchronization code, error handling mechanism, 
115 
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term definition, 11 
RMS$ STALL status 

stalling for RMS service completion, 118, 119 
RMS$RMSRUNDWN routine ([RMS)RMSORNDWN 

module) 
operations, 814 

RMS$service 
system service routine, characteristics, 106 

root resources 
linking subresources with, (figure) 215 

round-robin scheduling 
operations, 293 
when used, 278 

RPB (restart parameter block) 
boot page and, (figure) 1050 
definition and use, 902 
memory descriptors used during physical memory 

dump operations, 975 
summary, 1225, 1259 
validity checked at power recovery, 984 

RPB$L_RSTRTFLG field 
infinite restart loop prevention use of, 1002 

RPTEVT macro 
invoking SCH$RSE routine with, 299 

RSB (resource block) 
characteristics and use, 215 
creating for new resource, operations, 227 
directory entry, characteristics and use, 224 
in a VAXcluster system, distribution of, 223 
layout, (figure) 215 
locating, 222 
master, creating on a VAXcluster node, 224 
parent, address as resource identifier component, 215 
summary, 1260 

RSB$B DEPTH field 
definition and use, 215 

RSB$B GGMODE field 
definition and use, 228 
lock conversion use of, 228 

RSB$B_RMOD field 
definition and use, 215 

RSB$B RSNLEN field 
definition and use, 215 

RSB$L CSID field 
definition and use, 224 
distinguishing LKB type with, 225 

RSB$L_CVTQBL field 
definition and use, 217 

RSB$L_ CVTQFL field 
definition and use, 217 

RSB$L_GRQBL field 
definition and use, 217 

RSB$L_GRQFL field 
definition and use, 217 

RSB$L PARENT field 
definition and use, 215, 220 

RSB$L_RRSBL field 
definition and use, 215 

RSB$L_RRSFL field 
definition and use, 215 

RSB$L RTRSB field 
definition and use, 216 

RSB$L SRSBL field 
definition and use, 215 

RSB$L SRSFL field 
definition and use, 215 

RSB$L_ WTQBL field 
definition and use, 217 

RSB$L_ WTQFL field 
definition and use, 217 



RSB$Q_ VALBLK field 
definition and use, 217 

RSB$Q_ VALSEQNUM field 
definition and use, 217 

RSB$T_RESNAM field 
definition and use, 215 

RSBSV _DIRENTRY bit (RSB$W _STATUS field) 
definition and use, 224 

RSBSW _ACTIVITY field 
definition and use, 216, 224 

RSB$W_GROUP field 
definition and use, 215 

RSB$W _HASHVAL field 
definition and use, 218 
resource directory lookup use of, 224 

RSBSW_REFCNT field 
definition and use, 217 

RSB$W_STATUS field 
definition and use, 224 

RSE module 
SCH$CHANGE_CUR_PRIORITY, control flow, 296 
SCH$CHSE, control flow, 299 
SCH$CHSEP, control flow, 299 
SCH$PIXSCAN, control flow, 305 
SCH$QEND 

control flow, 294, 498 
quantum end signaled by invoking, 294 

SCH$RSE, control flow, 299 
SCH$SCHED, control flow, 313 
SCH$SWPWAKE, invoked to awaken swapper, 511 
SCH$WAIT 

control flow, 290 
entered in process context, 290 
routines that invoke, 290 

SCHSWAITK, operations, 291 
SCH$WAITL, operations, 291 
SCH$WAITM, operations, 291 
SCH$WAKE, control flow, 335 

RSNS_ prefix. See resource wait 
$RSNDEF macro. See also resource wait 

system resource symbolic names defined in, 284 
RSX-UM AME 

activation of, 762 
only supported AME, 762 

RT (recursive table translation block) 
characteristics and use, 1089 

RTPAD 
local system remote terminal driver, operations, 686 

RTTDRIVER 
remote terminal driver, pre-Version 4 support, 686 

rundown routine 
executive mode 

invoked by DELETE, 813 
invoked by EXESRUNDWN, 775 

kernel mode 
invoked by DELETE, 814 
invoked by EXE$RUNDWN, 775 

SRUNJ?WN (Image Rundown system service). See also 
rmage rundown 

control flow, 774 
image, term definition, 737 
operations, 774 
resetting capabilities, 298 
rundown routines, invoked by EXE$RUNDWN, 775 

RWAST (AST :wait). See resource wait - RSN$_ 
ASTWAIT 

RWBRK (breakthrough). See resource wait - RSNS_ 
BRKTHRU 

RWCAP (CPU capability). See resource wait - RSN$_ 
CPU CAP 

Index 

RWCLU (cluster transition). See resource wait - RSN$_ 
CLUSTRAN 

RWCSV (cluster server process). See resource wait -
RSN$_CLUSRV 

RWIMG (image activation lock). See resource wait -
RSN$_IACLOCK 

RWLCK (lock identifier). See resource wait - RSNS_ 
LOCKID 

RWMBX (mailbox full). See resource wait - RSN$_ 
MAILBOX 

RWMPB (modified page writer busy). See resource wait 
- RSN$_MPWBUSY 

RWMPE (modified page list empty). See resource wait 
- RSN$_MPLEMPTY 

RWNPG (nonpaged pool). See resource wait - RSN$_ 
NPDYNMEM 

RWPAG (paged pool). See resource wait - RSN$_ 
PGDYNMEM 

RWPFF (page file space). See resource wait - RSN$_ 
PG FILE 

RWSCS (distributed lock manager wait). See resource 
wait - RSN$_SCS 

RWSWP (swap file space). See resource wait - RSN$_ 
SWPFILE. 

SO space 
term definition, 350 

SO_PAGING parameter (SYSGEN) 
residency of pageable executive, 930 

sanity timer mechanism 
disabled by IPL 12 interrupt service routine, 68 
disabling circumstances, 1038 
operations, 1037 
purpose of, 1023 

SAVEDUMP parameter (SYSGEN) 
saving a dump in page file, 944, 970 

SBI (synchronous backplane interconnect) 
bus, VAX 8800 family, configuration, 53 
VAX-ll/78x system 

configuration, 48 
standard adapter assignments, (table) 48 

SBIA (SBI adapter) 
VAX 86x0 system, configuration, 52 

SCA (systems communication architecture) 
conceptual diagram, (figure) 677 
function layer, protocols that call SCS, 678 
port drivers, VMS operations, 678 
terminal drivers do not conform to, 679 

SCANDEADPT routine (PAGEFAULT module) 
operations, 493 

scatter/gather 
1/0 operations, 400 

SCB (system control block). See also exceptions; 
interrupts; ISR; software interrupts 

adapter interrupt locations in, (6.gurel 31 
console interrupt vectors, (table) 43 
description, 1226 
detailed layout. Consult VAX Architecture Reference 

Manual 
first page, organization, (figure) 31 
interrupt and exception use of, 30 
MicroVAX 2000 system, 50 
MicroVAX 3100 system, 50 
Q22-bus-based MicroVAX systems, 49 
reserved offsets for system-specific errors, 41 
size, 1280 
term definition, 18 
VAX 6000 series, 51 
VAX 8200 family, 52 
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SCB (system control block) (continued) 
VAX 86x0 system, 52 
VAX 8800 family, 53 
VAX 88x0 system, 53 
VAX-11/730 system, 47 
VAX-11/750 system, 47 
VAX-11/78x system, 48 
VAXstation 35x0 system, 51 
vectors 

exception, (table) 75 
format, (figure) 30 
hardware IPL and, 32 
IEI microcode testing to determine stack for, 34, 

35 
nexus number use in identifying, 45 
unused, meaning of contents, 44 

SCH$ACQUIRE_AFFINITY routine (SCHED module) 
acquiring implicit affinity with, 289, 297 

SCH$ADD_CPU_CAP routine (SCHED module) 
changing capabilities with, 287 

SCH$AL_CPU_CAP array 
capabilities use of, 287 

SCH$AL_CPU_PRIORITY array 
process priority use of, 276 

SCH$AL_PREEMPT_MASK array 
process priority use of, 275, 276 

SCH$AQ_COMH array 
array of computable queue listheads, 271 

SCH$AQ_COMOH array 
array of computable and outswapped queue listheads, 

271 
SCH$AQ_ WQHDR array 

array of wait queue listheads, 273 
SCH$ASTDEL routine (ASTDEL module). See also 

AST delivery interrupt 
control flow, !figure) 137 
delivering AST interrupts, 137 
PCB$W _ASTCNT incremented by, 132 
RO and Rl saving in AST procedure argument list 

by, 141 
SCH$C_mnemonic (scheduling state symbolic name) 

list of names, their meaning and value, (table) 279 
SCH$CHANGE_CUR_PRIORITY routine (RSE 

module) 
changing priority of current process, control flow, 

296 
invoked by SCH$QEND, 296 
routines that invoke, 296 

SCH$CHSE routine (RSE module) 
control flow, 299 

SCH$CHSEP routine (RSE module) 
control flow, 299 

SCH$GB_SIP field 
SCH$V _MPW bit set while modified page writing is 

in progress, 469 
swapper use of, 514 

SCH$GL_ACTIVE_PRIORITY cell 
process priority use of, 276 

SCH$GL_CAPABILITY_SEQUENCE cell 
capabilities use of, 28 7 
copying into PCB$L_CAPABILITY_SEQ field, 288 

SCH$GL_COMOQS cell 
SCH$PIXSCAN use, control flow, 305 
summary of computable outswapped queues, 271 

SCH$GL_COMQS cell 
SCH$PIXSCAN use, control flow, 305 
summary of computable queues, 271 

SCH$GL_DEFAULT_CPU_CAP cell 
capabilities use of, 28 7 

SCH$GL_DEFAULT_PROCESS_CAP cell 
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copying into PCB$L_PERMANENT_CAPABILITY 
field, 288 

SCH$GL_IDLE_CPUS cell 
meaning, 1014 
scheduler database component, 269 

SCH$GL_MFYLIM cell 
target size of modified page list, 468, 469 

SCH$GL_MFYLOLIM cell 
target size of modified page list, 4 70 

SCH$GL PCBVEC cell 
address-of PCB vector, 721 
process index array use, 395 

SCH$GL PIXWIDTH cell 
definiti:On and use, 724 

SCH$GL_RESMASK cell 
system resources for which processes are waiting, 

284 
SCH$GQ_ CEBHD cell 

listhead for systemwide CEB list, (figure) 204 
SCH$GQ_LEFOWQ cell 

characteristics and use, 210 
SCH$GW CEBCNT cell 

number-of CEBs in systemwide list, 204 
SCH$GW _LOCALNODE cell 

use in constructing EPIDs, 724 
SCH$LOCKR routine (MUTEX module) 

locking a mutex for read access, control flow, 198 
saved PC for mutex RWAIT, 293 

SCH$LOCKREXEC routine (MUTEX module) 
accessing mutexes from system context, 201 

SCH$LOCKW routine (MUTEX module) 
locking a mutex for write access, control flow, 199 
saved PC for mutex RWAIT, 293 

SCH$LOCKWEXEC routine (MUTEX module) 
accessing mutexes from system context, 201 

SCH$LOCKWNOWAIT routine (MUTEX module) 
locking mutexes for write access, with no waiting, 

199 
SCH$NEWLVL routine (ASTDEL module) 

process deletion and suspension use of, 147 
SCH$0SWPSCHED routine (OSWPSCHED module) 

control flow, 527 
operations, 523 

SCH$PIXSCAN routine (RSE module) 
pixscan mechanism, control flow, 305 

SCH$POSTEF routine (POSTEF module) 
setting event flags, control flow, 211 

SCH$QAST routine (ASTDEL module) 
queuing ASTs, control flow, 134 

SCH$QEND routine (RSE module) 
control flow, 294, 498 
quantum end signaled by invoking, 294 

SCH$RELEASE_CAPABILITY routine (SCHED 
module) 

changing process capabilities with, 288 
SCH$REMOVE_CPU_CAP routine (SCHED module) 

changing capabilities with, 287 
removing capabilities, control flow, 297 

SCH$REQUIRE_CAPABILITY routine (SCHED 
module) 

acquiring new capabilities, control flow, 298 
changing process capabilities with, 288 

SCH$RESCHED routine (SCHED module) 
rescheduling interrupt service routine 

control flow, 312 
operations, overview, 66 
routines that invoke, 310 

SCH$RSE routine (RSE module) 
control flow, 299 

SCH$RWAIT routine (MUTEX module) 



SCH$RWAIT routine (MUTEX module) (continued) 
saved PC for mutex RWAIT, 293 

SCH$SCHED routine (RSE module) 
process scheduling interrupt service routine, control 

flow, 313 
selecting next process to run, routines that invoke, 

312 
SCH$SWPWAKE routine (RSE module) 

invoked to awaken swapper, 511 
SCH$UNLOCK routine {MUTEX module) 

unlocking mutexes, control flow, 200 
SCH$UNLOCKEXEC routine {MUTEX module) 

accessing mutexes from system context, 201 
SCH$V _MPW bit (SCH$GB_SIP field) 

set while modified page writing is in progress, 469 
swapper use of, 514 

SCH$V _SIP bit (SCH$GB_SIP field) 
swapper use of, 514 

SCH$WAIT routine (RSE module) 
control flow, 290 
entered in process context, 290 
routines that invoke, 290 

SCH$WAITK routine (RSE module) 
operations, 291 

SCH$WAITL routine (RSE module) 
operations, 291 

SCH$WAITM routine (RSE module) 
operations, 291 

SCH$WAKE routine (RSE module) 
control flow, 335 

$SCHDWK (Schedule Wakeup system service) 
control flow, 260, 335 
process state change actions, 282 

SCHED module 
SCH$ACQUIRE_AFFINITY 

acquiring implicit affinity with, 289, 297 
SCH$ADD_CPU_CAP, changing capabilities with, 

287 
SCH$RELEASE_CAPABILITY, changing process 

capabilities with, 288 
SCH$REMOVE_CPU_CAP 

changing capabilities with, 287 
removing capabilities, control flow, 297 

SCH$REQUIRE_CAPABILITY 
acquiring new capabilities, control flow, 298 
changing process capabilities with, 288 

SCH$RESCHED 
control flow, 312 
operations, overview, 66 
routines that invoke, 310 

SCHED spinlock 
AST queuing concerns, 151 
characteristics and use, 183 
held during 

channel deassignment, 604 
declaration of nonpaged pool resource, 559 
page fault, 441 
scheduling, 312 
swapping, 518, 519, 521 
system event reporting, 299 

invoking SCH$QAST routine from processes holding 
spinlocks no greater than, 134 

mutex use of, 196 
synchronizing 

access to mutexes, 183 
PHD access, 367 
scheduler database access, 269 

use by 
EXE$CREPRC, 716, 717 
EXE$DELPRC, 812 

EXE$DERLMB, 966 
EXE$HIBER, 335 
EXE$NAMPID, 321 
EXE$RESCHED, 341 
EXE$RUNDWN, 777 
EXE$SWTIMINT, 64, 263, 264 
EXE$TIMEOUT, 265 
IOC$IOPOST, 616 
OPCCRASH, 956 
SCH$WAIT, 290 
SMP$SHUTDOWN_CPU, 1057 
SUSPND, 337 
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Schedule Wakeup system service. See $SCHDWK 
scheduler. See also affinity; capabilities; priorities; 

rescheduling interrupt; RSE module; SCHED 
module; swapper; synchronization; SYSWAIT 
module; time - support; wait states 

concepts and mechanisms, (chapter) 268 
data structures, characteristics and field definitions, 

268 
database 

components, 269 
implications of modifying during IPL 3 through 

IPL 7 processing, 67 
synchronizing access to at IPL$_SYNCH, 170 
synchronizing access to with SCHED spinlock, 

183, 269 
interrupt service routine, interrupt requests, number 

is unimportant to function, 55 
page fault handling influence on, 478 
PCB fields related to, 269 
preemption. See preemption of current process 
preventing scheduling by raising IPL, 170 
priorities. See priorities 
process characteristics most important to, 268 
reference time for, 254 
requests, overview, 14 
rescheduling interrupt, blocking, 172 
round-robin scheduling 

operations, 293 
when used, 278 

scheduling dynamics, characteristics and operations, 
289 

scheduling event reporting, paths leading to, 
(figure) 290. See also RSE module 

scheduling queues, swapper scan of, 524 
scheduling-related fields, per-CPU database, 273 
swapper inswap compared with, (example) 519 
term definition, 10 
wait queues, header array, (figure) 271 

scheduling. See scheduler 
scope 

logical names, 1068 
how determined, 1068 

resource, term definition, 1296 
SCS (system communication services). See also 

SCSLOA image 
class and port drivers, fork IPL and spinlock 

considerations; 63 
class drivers, error log routines used by, 964 
loadable code entry point names and descriptions, 

(table) 1218 
port drivers 

CDRP characteristics and use, 581 
error log routines used by, 964 

VMS implementation of SCA, description, 678 
SCS spinlock 

characteristics and use, 181 
held during dispatch to system-owned locks blocking 

AST routine, 234 
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SCS spinlock (continued) 
IPL 12 interrupt service routine actions to acquire, 

69 
use by 

EXE$DEQ, 230 
EXE$ENQ, 226 

SCSI (small computer system interface) 
bus 

MicroVAX 3100 system, configuration, 50 
VAXstation 3520 system, configuration, 51 

class drivers, MSCP compared with, 677 
disks, bad blocks, replacing, 694 

SCSLOA image 
loading, operations, 857 
transfer vectors area location, 831 
vector table, 857 

SCSNODE parameter (SYSGEN) 
VAXcluster node name, 929 

SCSSYSTEMID parameter (SYSGEN) 
system ID, 929 
system ID.lock naming, 1298 

SCSSYSTEMIDH parameter (SYSGEN) 
system ID, 929 

SCSVEC module 
loadable SCS code, entry point names and 

descriptions, (table) 1218 
miscellaneous transfer vectors area defined in, 831 

SDA (System Dump Analyzer). Consult VMS System 
Dump Analyzer Utility Manual 

address space layout analysis with, 1157 
characteristics and operations, 1154 
priority representation in, 275 
process state displayed by, 284 
symbols, characteristics and use, 1155 

SDL (structure definition language) 
data structures defined in, files that contain, 1241 
directives, meaning and resultant symbol for ACB 

definition, (table) 1160 
files 

interpreting, 1158 
libraries that contain, 1133 

statements 
data structure fields, 1161 
descriptions of commonly used, 1159 
symbol names and values, 1162 

SEC$B_PFC field 
cluster factor for section file, 466 
definition and use, 377 

SEC$L_ CCB field 
definition and use, 376 

SECSL_GSD field 
definition and use, 376 

SEC$L_PAGCNT field 
definition and use, 377 

SEC$L_REFCNT field 
definition and use, 377 

SEC$L_ VBN field 
definition and use, 377 

SEC$L_ VPXPFC field 
definition and use, 376 
page table index for system and global section pages, 

391 
SECSL_ WINDOW field 

definition and use, 377 
SEC$W _FLAGS field 

definition and use, 377 
SEC$W _SEXBL field 

definition and use, 376 
SEC$W _SEXFL field 

definition and use, 376 
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$SECDEF macro 
section table entry field names defined by, 376 

secondary bootstnp program. See SYSBOOT 
secondary device characteristics 

distinguished from primary, 705 
secondary exception vector. See also condition 

handlers; exceptions 
searching for condition handlers with, 88 

secondary processors. See also primary processors; 
SMP systems 

bootstrap code, 1053 
memory mapping, 926 
power failure; 996, 1058 
power recovery, 996, 1058 
state transitions, (figure) 1043 
turning on, 926 

section files. See also sections 
cluster factor, link option, 466 
page faults for process-private pages located in, 

control flow, 439 . 
VBN, PSTE field that specifies, 377 
writing modified pages to, 473 

section table entries. See also GST, GSTE, PST, PSTE 
deletable, locating, 424 

sections 
global page-fl.le. See global page-file sections 
global. See global sections 
image. See image sections 
message. See message sections 
PFN-rnapped, creating, 415 
process. See process sections 
writing to backing store, $UPDSEC use, 476 

selective memory dump 
characteristics, 971 
incompatible with dump to PAGEFILE.SYS, 977 
layout, (figure) 977 
operations, 976 

semaphores. See also mutexes 
common event flags as, 213 

Send Message to Accounting Manager system service. 
See $SNDACC 

Send Message to Error Logger system service. See 
$SNDERR 

Send Message to Job Controller system service. See 
$SNDJBC 

Send Message to Operator system service. See 
$SNDOPR 

Send Message to Symbiont Manager system service. 
See SSNDSMB 

serialization 
characteristics as a synchronization technique, 161 

serialized access 
VMS features that support, 195 

service routines 
interrupts, restrictions imposed on, 34 

SERVICE_EXIT routine (SYSTEM_SERVICE_ 
DISPATCHER module) 

change mode dispatcher common exit path, control 
flow, 116 

$service-name format 
meaning, 1232 

Set AST Enable system service. See $SETAST 
Set Event Flag system service. See $SETEF 
Set Exception Vector system service. See $SETEXV 
set host 

processing for remote login, 686 
Set Power Recovery AST system service. See $SETPRA 
Set Priority system service. See $SETPRI 
Set Privileges system service. See $SETPRV 
Set Process Name system service. See $SETPRN 



SET PROCESS/PRIORITY command 
process priority changing by, 275 

Set Protection on Page system service. See $SETPRT 
Set Resource Wait Mode system service. See $SETRWM 
Set Swap Mode system service. See $SETSWM 
Set System Service Failure Exception Mode system 

service. See $SETSFM 
Set System Service Filter system service. See $SETSSF 
Set Time lock 

characteristics and use, 1298 
Set Time system service. See $SETIME 
Set Timer system service. See $SETIMR 
SET WORKING_SET command. See also working set 

characteristics and use, 498 
SSETAST (Set AST Enable system service). See also 

AST 
disabling AST delivery with, 142 
effect on PR$_ASTLVL, 130 
enabling or disabling AST delivery to a given access 

mode, 342 
synchronizing private data structure access with, 

167 
$SETEF (Set Event Flag system service). See also event 

flags 
setting event flags, control flow, 211 

SSETEXV (Set Exception Vector system service). See 
also condition handlers 

software-vectored condition handler establishing and 
removal, control flow, 74 

SSETIME (Set Time system service). See also time 
capabilities, 288 
operations, 254 
system time recalibration requests, control flow, 255 
time-of-year readjustment requests, operations, 256 

SSETIMR (Set Timer system service). See also timers 
-requests 

control flow, 258 
SETIPL macro. See also IPL 

changing IPL with, 168 
$SETPRA (Set Power Recovery AST system service). 

See also powerfail 
functions, 999 

SSETPRI (Set Priority system service). See also 
priorities 

operations, 340 
process priority changing by, 275 

$SETPRN (Set Process Name system service) 
operations, 341 

$SETPRT (Set Protection on Page system service). See 
also protection - memory 

control flow, 432 
SETPRV (set any privilege bit privilege). See also 

privileges 
use by 

$CREPRC, 715 
image dump facility, 736 
$SETPRV, 781 

$SETPRV (Set Privileges system service). See also 
privileges 

operations, 780 
$SETRWM (Set Resource Wait Mode system service) 

disabling resource waits, 286 
operations, 342 

$SETSFM (Set System Service Failure Exception Mode 
system service) 

control flow, 127 
operations, 342 
system service failure handling, 82 

$SETSSF (Set System Service Filter system service) 
control flow, 127 

Index 

SSETSWM (Set Swap Mode system service) 
operations, 342, 432 

SETTIME parameter (SYSGEN) 
initializing time and date, 253 

SGNSGL_PHDAPCNT cell 
meaning, 1272 

SGN$GL_PHDPAGCT cell 
meaning, 1272 

SGN$GW _PIXSCAN cell. See PIXSCAN parameter 
Shadow lock 

characteristics and use, 1302 
SHARE (assign channels to nonshared devices 

privilege). See also privileges 
enables access to device allocated by another process, 

591 
use by 

$ASSIGN, 598 
$BRKTHRU, 698, 702 

share count. See PFN SHRCNT array 
/SHARE qualifier 

known image installation, 743 
shareable devices 

nonshareable devices compared with, 591 
shareable images 

initializing, computing proper order of, 758 
list, 763, (figure) 764 
list entry. See SHL 
privileged. See privileged shareable images 
term definition, 738 

shareable logical names 
tables 

created during system initialization, 1070 
LNM$SYSTEM_DIRECTORY, named in, 1070 

user mode, when deleted, 1069 
SHELL module. See also processes 

items allocated in Pl space, names and protection, 
(table) 1289 

KRP lookaside list address space defined in, 567 
layout, characteristics and use, 724 
moving, into process context, 725 
Pl data areas, names and descriptions, (tables) 1229 
page contents, (table) 724 
SWP$SHELINIT, control flow, 726 

SHL (shareable image list entry) 
characteristics and use, 763 

SHOW CPU command 
SMP supported by, 1056 

SHOW LOGICAL Utility 
logical name search operations, 1089 

SHOW SYSTEM command 
priority representation in, 275 
process state displayed by, 284 

shrink process 
selecting, 523 

SHUTDOWN.COM command file. Consult Guide to 
Setting Up a VMS System 

operations, 955 
signal array 

building, 77 
condition handler, built by LIB$SIGNAL/STOP, 86 
layout, (figure) 77 
name for argument list passed to condition handler, 

72 
signals 

advantages of reporting software conditions as, 86 
multiple active 

handling, 90, (figure) 91 
unwinding, example, (figure) 100 

name for condition type code, 72 
site-specific startup command fl.le 
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site-speciftc startup command file (continued)· 
operations, 948 

small computer system interface. See SCSI 
small request packet. See SRP 
SMISERVER (system management server) process 

command fl.le that creates, 948 
SMISERVER Main lock 

characteristics and use, 1329 
SMP (symmetric multiprocessing) systems. See also 

interprocessor communication; per-CPU data 
area; per-CPU database; primary processors; 
secondary processors; synchronization 

accessing time-of-year clock, 252 · 
adapter powerfail handling, "black hole" page 

problems for, 1003 
affinity. See affinity 
benign state operations, 1032 
BOOT CPU, characteristics, 923 
buffer pool, synchronizing access to with EMB 

spinlock, 185 
busy wait operations, 1035 
capabilities. See capabilities 
characteristics, overview, 1006 
concepts and mechanisms, (chapter) 1006 
CPU ID determination in, 1008 
data structures, 1013 
DCL commands that support, 1056 
device affinity. See device affinity 
device drivers 

spinlock choice considerations, 63 
synchronization in, 1039 

device interrupts, 1040 
fatal bugcheck handling, (figure) 1060 
goals of VMS support, 1008 
hardware configurations 

model type requirements, 1009 
overview, 1008 
revision level requirements, 1009 

I/O considerations, 1038 
I/O postprocessing operations, 1042 
initialization 

bootstrap operations, (figure) 1045 
bootstrap code for secondary processors, 1053 
CPU-dependent, 1049 
EXE$INIT operations specific to, 1047 
overview, 1044 
SYSBOOT operations specific to, 1045 

interlocked instruction use in support of, 14 
interprocessor cooperation, concepts and mecha­

nisms, 1022 
interprocessor interrupt vectors, VAX architecture 

mechanism, 42 
interval timer interrupt routine operations, 

261 
locking pages, issues, 508 
memory management, CPU mapping, 926 
memory sharing, implications, 1020 
override set operations, 1034 
per-CPU data area, locating, 1015 
powerfail recovery, 1058 

EXE$RESTART operations, 1058 
process priority data structures, 276, (figure) 277 
processor states, 1043 
RPB, boot page, and physical CPU data vector 

relations, (figure) 1050 
scheduler considerations, 276 
scheduling constraints, 268 
shared system data, handling, 1021 
shutting down CPUs, affinity use during, 289 
software timer interrupt handling, 263 
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spinlock use to synchronize access to, 172 
spinwait operations, 1035 
stacks, 1015 
supported by per-CPU database, 269 
synchronizing 

access to system data structures, with spinlocks, 
166 

process data structure access on, 167 
system space lookaside lists, 552 

translation buffer 
use, 1029 
validation on, 365 

updating EXE$GQ_SYSTIME on, 248 
SMPSACQNOIPL routine (SPINLOCKS module) 

characteristics and control flow, 189 
SMP$ACQUIRE routine (SPINLOCKS module) 

characteristics and control flow, 189 
SMPSACQUIREL routine (SPINLOCKS module) 

characteristics and control flow, 189 
SMPSAL_IPLVEC cell 

spinlock IPL vector table pointed to by, 57 
SMPSALLOC_SPL routine (SPINLOCKS module) 

creating device locks, 180 
SMPSAR_SPNLKVEC cell 

spinlock use of, 177 
static spinlock vector table pointed to by, 57 

SMP$GL_ACK_MASK cell 
meaning, 1014 

SMP$GL_ACTIVE_CPUS cell 
meaning, 1014, 1022 

SMP$GL_BASE_MSK cell 
meaning, 1015 

SMP$GL_BUG_DONE cell 
meaning, 1014 

SMP$GL_BUGCHKCP cell 
meaning, 1014 

SMP$GL_CPU_DATA cell 
meaning,1016 

SMP$GL_CPUCONF cell 
meaning, 1014 

SMP$GL_FLAGS cell 
meaning, 1013 
time-of-year clock access, work request use of, 1027 

SMP$GL_INVALID cell 
meaning, 1014 

SMPSGL_OVERRIDE cell 
meaning, 1014 

SMPSGL_PRIMID cell 
meaning, 1014 
SYSBOOT use of, 1047 

SMPSGL_PROPOSED_TODR cell 
meaning, 1027 

SMPSGW _SPNLKCNT cell 
spinlock use of, 177 

SMPSINIT_SPL routine (SPINLOCKS module) 
initializing device locks, 180 

SMP$INITIATE_BENIGN routine (SMPROUT module) 
alternative entry into benign state, 1034 

SMP$INTALL routine ((SYSLOA]SMPINT_xxx 
module) 

operations, 1024 
SMP$INTALL_ACQ routine ((SYSLOA]SMPINT_xxx 

module) 
operations, 1024 

SMP$INTALL_BIT routine ((SYSLOA]SMPINT_xxx 
module) 

operations, 1024 
SMP$INTALL_BIT_ACQ routine ((SYSLOA]SMPINT_ 

xxx module) 
operations, 1024 



SMP$INTPROC routine ([SYSLOA)SMPINT_xxx 
module) 

operations, 1024 
SMP$INTSR routine ([SYSLOA)SMPINT_xxx module) 

operations, 1025, 1032 
SMP$INVALID routine (SMPROUT module) 

control flow, 1030 
SMP$INVALID_SINGLE routine ([SYSLOA)SMPINT_ 

xxx module) 
control flow, 1032 

SMP$RELEASE routine (SPINLOCKS module) 
characteristics and control flow, 189 

SMP$RELEASEL routine (SPINLOCKS module) 
characteristics and control flow, 189 

SMP$RESTORE routine (SPINLOCKS module) 
characteristics and control flow, 189 

SMP$RESTOREL routine (SPINLOCKS module) 
characteristics and control flow, 189 

SMP$SETUP _SMP routine ([SYSLOA)SMPSTART_xxx 
module) 

control flow, 1049 
SMP$SHUTDOWN_CPU routine (SMPROUT module) 

affinity use by, 289 
control flow, 1056 

SMP$SWITCH_CPU routine (SMPROUT module) 
creating fork process on another CPU, 630 

SMP$TERMINATE_BENIGN routine (SMPROUT 
module) 

alternative exit from benign state, 1034 
SMP$TIMEOUT routine (SMPROUT module) 

operations, 1035 
SMP$V _BENIGN bit (SMP$GL_FLAGS cell) 

meaning, 1013 
SMP$V_CRASH_CPU bit (SMP$GL_FLAGS cell) 

meaning, 1013 
SMP$V _ENABLED bit (SMP$GL_FLAGS cell) 

meaning, 1013 
SMP$V _START_CPU bit (SMP$GL_FLAGS cell) 

meaning, 1013 
SMP$V _SYNCH bit (SMP$GL_FLAGS cell) 

meaning, 1013 
SMP$V_TODR bit (SMP$GL_FLAGS cell) 

meaning, 1013, 1027 
SMP$V_TODR_ACK bit (SMP$GL_FLAGS cell) 

meaning, 1013, 1027 
SMP$V _UNMOD_DRIVER bit (SMP$GL_FLAGS cell) 

meaning, 1013 
SMP_LNGSPINWAIT parameter (SYSGEN) 

specifying spinwait timeout value, 176 
spinlock loop count use of, 1023 

SMP_SPINWAIT parameter (SYSGEN) 
specifying spinwait timeout value, 176 
spinlock loop count use of, 1023 

SMP_TICK_CNT parameter (SYSGEN) 
number of ticks between sanity timer checks, 103 7 

SMPROUT module 
SMP$INITIATE_BENIGN, alternative entry into 

benign state, 1034 
SMP$1NVALID, control flow, 1030 
SMP$SHUTDOWN CPU 

affinity use, 289 -
control flow, 1056 

SMP$SWITCH_CPU, operations, 630 
SMP$TERMINATE_BENIGN, alternative exit from 

benign state, 1034 
SMP$TIMEOUT, operations, 1035 

$SNDACC (Send Message to Accounting Manager 
system service) 

operations, 1107 
$SNDSMB compared with, 1108 

Index 

superseded by $SNDJBC, 1106 
$SNDERR (Send Message to Error Logger system 

service). See also ERRFMT; error logging 
subsystem 

operations, 1109 
$SNDJBC and $SNDOPR compared with, 1109 

SSNDJBC (Send Message to Job Controller system 
service). See also batch processes; job controller 

arguments to, 1103 
DCL commands that request, 1103 
operations, 1103 
special kernel AST, operations, 1106 

$SNDOPR (Send Message to Operator system service). 
See also OPCOM process 

operations, 1108 
$SNDACC and $SNDSMB compared with, 1108 

$SNDSMB (Send Message to Symbiont Manager system 
service). See also batch processes; job controller 

operations, 1108 
$SNDACC compared with, 1108 
superseded by $SNDJBC, 1106 

sniffer boot 
MicroVAX II VMB, 872 
MicroVAX 2000 VMB, 872 

soft suspension. See also process suspension 
characteristics, 33 7 

software conditions. See also condition handlers; 
exceptions 

concepts and system procedures for handling, 86 
continue signal actions when condition is a, 96 
converting errors to, 72 
distinguished from exceptions, 72 
handling, concepts and mechanisms, !chapter) 71 

software context 
overview, 3 

software interrupt request register. See PR$_SIRR 
software interrupt requests 

SMP handling, 1007 
software interrupt summary register. See PR$_SISR 
software interrupts. See also AST delivery interrupt; 

fork interrupts; I/O postprocessing1 IPL 12 
interrupt service routine; IPL 14 interrupt 
service routine; rescheduling interrupt; software 
timers; XDELTA 

AST, blocking, 172 
AST delivery, characteristics and use, overview, 67 
characteristics and use, 44, 54 
concepts and mechanisms, !chapter) 54 
1/0 subsystem support, overview, 19 
requesting, 44, 54 
requests for, determining how many, 54 
rescheduling 

blocking, 172 
operations, overview, 66 

service routines 
concepts and mechanisms, 55 
distinguished from each other, 56 

software timer, interrupt service routine, overview, 
64, 1007 

term definition, 29 
unused IPLs, 54 
VAX architecture feature used by VMS, 15 

software IPLs. See also IPL 
symbolic name, stack and purpose, (table) 55 

software licenses 
command file that loads, 947 

software PCB. See PCB 
software timers 

interrupt (IPL 7) 
blocking execution of, 170 

1405 



Index 

software timers (continued) 
interrupt (IPL 7) (continued) 

requested by EXE$HWCLKINT, 54, 262 
interrupt service routine 

control flow, 263 
overview, 64, 1007 
TIMER spinlock use by, 182 

summary, (table! 248 
software-vectored condition handlers. See also 

condition handlers 
location of, 7 4 
searching for condition handlers with, 88 
types of, 74 

SP (stack pointer) register 
process, as part of process hardware context, 306 
saving during REI instruction, 39 

SPAWN command. See also ATTACH command; 
processes 

operations, 788 
special kernel mode AST 

compared with normal ASTs, 143 
examples, 143 
flag, ACB location of, 133 
$GETJPI use of, 145, 333 
I/O postprocessing use of, 144 
job controller, operations, II 06 
obtaining information about an outswapped process 

with, 330 
PKASTs, characteristics and use, 146 
power recovery AST use of, 145, 999 
queuing, after granting a lock, reasons for, 232 
routine 

address, ACB location of, 133 
I/O completion, 617 

spinlock control block. See SPL 
spinlocks. See also device locks; fork locks; IPL; locks; 

synchronization 
acquiring, 173 

macros for, 185 
nested, 173 
recording number of successful and failed, 176 
rules for, 180 
streamlined routines, control flow, 189 

characteristics and use, 172 
clearing, 173 
compared with raising IPL, 173 
CPU mutex as a simplified form of, 1022 
device. See device lock 
dynamic 

characteristics and use, 178 
compared with static spinlocks, 173 

EMB. See EMB spinlock 
EXE$FORKDSPTH handling, 61 
FILSYS, characteristics and use, 181 
fork. See fork locks 
form, 172 
HWCLK. See HWCLK spinlock 
index 

characteristics and use, 1 77 
converting to an IPL, 59 

INVALIDATE 
characteristics and use, 184 
SMP$INVALID use of, 1030 

IOLOCK8 
characteristics and use, 181 
device driver use of, 63 

IOLOCKn, characteristics and use, 183 
IPL table, characteristics and use, 178 
JIB, characteristics and use, 182 
location in SPL, 174 
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locked, tracking how often a processor has, 175 
locking, 173 
macros for acquiring and releasing 

common operations, 186, 188 
differences among, 186. Consult VMS Device 

Support Manual 
MAILBOX, characteristics and use, 183 
MCHECK. See MCHECK spinlock 
MEGA. See MEGA spinlock 
MMG. See MMG spinlock 
owner, specifying, 175 
per-CPU database fields, characteristics and field 

definitions, 176 
PERFMON, characteristics and use, 184 
POOL 

characteristics and use, 183 
serializing access to nonpaged pool variable-length 

list, 558, 561 
PR_LK8, characteristics and use, 182 
PR_LKn, characteristics and use, 183 
processors waiting for, number of, 176 
QUEUEAST, characteristics and use, 181 
rank, defining, 175 
releasing, 173 

compared with restoring, 191 
macros for, 185 
rules for, 180 

relinquishing 
full-checking routines, control flow, 194 
streamlined routines, control flow, 189 

routines 
full-checking, control flow, 192 
full-checking, per-CPU database fields used by, 

177 
streamlined, control flow, 189 

SCHED. See SCHED spinlock 
SCS. See SCS spinlock 
shared system data protected by, 166 
SMP handling, 1023 
SMP synchronization use of, 1021 
static 

characteristics and use, 177 
compared with dynamic spinlocks, 178 
list of names, IPL, and meaning, (table! 177 
recording in per-CPU database, 177 
using, descriptions of each, 181 

systemwide absolute queue protection by, 166 
term definition and mechanism overview, 24 
timeout value, 176 
TIMER 

characteristics and use, 182 
held by EXE$SWTIMINT, 64, 263 
synchronizing timer queue access with, 256 

unlocking, 173 
VIRTCONS, characteristics and use, 184 
VMS use of, overview, 166 
wait timeout 

disabled by IPL 12 interrupt service routine, 68 
purpose of, 1023 

waiting processor action, 173 
SPINLOCKS module 

SMP default spinlock routine, 174 
SMP$ACQNOIPL, characteristics and control flow, 

189 
SMP$ACQUIRE, characteristics and control flow, 

189 
SMP$ACQUIREL, characteristics and control flow, 

189 
SMP$ALLOC_SPL, creating device locks, 180 
SMP$INIT_SPL, initializing device locks, 180 



SPINLOCKS module (continued) 
SMP$RELEASE, characteristics and control flow, 

189 
SMP$RELEASEL, characteristics and control flow, 

189 
SMP$RESTORE, characteristics and control flow, 

189 
SMP$RESTOREL, characteristics and control flow, 

189 
SPINLOCKS_MON module 

full-checking spinlock routine, 174 
SPINLOCKS_UNI module 

uniprocessor spinlock routine, 174 
SPINWAIT macro 

characteristics and use, control flow, 190 
operations, 1035 

spinwaits 
operations, 1035 
processor actions, 190 

SPL (spinlock control block) 
characteristics and field definitions, (figure) 174 
serializing access to by full-checking routines, 17 4 
size, specifying, 175 
static, address table, (figure) 177 
summary, 1261 
type, specifying, 175 

SPLSB_IPL field 
definition and use, 175 

SPLSB_RANK field 
definition and use, 175 

SPL$B_SPINLOCK field 
definition and use, 174 

SPLSB SUBTYPE field 
definition and use, 175 
device lock value, 179 

SPLSB_TYPE field 
definition and use, 175 

SPLSB_ VEC_INX field 
definition and use, 176 

SPLSC_SPL_DEVICELOCK value 
device lock use of, 179 

SPLSC_SPL_FORKLOCK value 
identifying fork locks with, 178 

SPLSC_SPL_SPINLOCK value 
identifying static spinlocks with, 178 

SPLSL_BUSY_WAITS field 
definition and use, 176 

SPLSL_OWN_CPU field 
definition and use, 175 

SPLSL_OWN_PC_ VEC field 
definition and use, 176 

SPLSL_RLS_PC field 
definition and use, 176 

SPL$L_TIMO_INT field 
definition and use, 175 

SPL$L_ WAIT_PC field 
definition and use, 176 

SPL$Q_ACQ_COUNT field 
definition and use, 176 

SPL$Q_SPINS field 
definition and use, 176 

SPLSW_OWN_CNT field 
definition and use, 175 

SPLSW _SIZE field 
definition and use, 175 

SPLSW_WAIT_CPUS field 
definition and use, 176 

$SPLCODDEF macro 
SMP$GL_FLAGS bits defined in, 1013 

SSPLDEF macro 

spinlock control block fields defined in, 17 4 
SPLIPLHIGH bugcheck. See also bugchecks 

synchronization failure indication, 192 
SPLIPLLOW bugcheck. See also bugchecks 

reason for, 194, 195 
SPLRELERR bugcheck. See also bugchecks 

generated during spinlock release, 195 
SPLRSTERR bugcheck. See also bugchecks 

generated during spinlock restore, 194, 195 

Index 

SPT (system page table). See also address space; page 
tables; system space 

characteristics and use, 38 7 
description, 1226 
GPT as extension to, 390 
processor registers that describe, 362 
sharing of system space enabled by, 355 
size calculation, 1277 
SMP sharing, implications for system operation, 

1020 
SYSBOOT creating of, 353 

SPTE (system page table entry). See also PTE 
available, linked list of, (figure) 859 
dynamic allocation and deallocation of, operations, 

859 
reserved for secondary processor's boot PO page table, 

926 
SPTREQ parameter (SYSGEN) 

effect on size of system space, 1279 
SRP (small request packet) 

lookaside list 
characteristics, (table) 544 
element size, SYSGEN parameter that determines, 

556 
listhead location and allocation type, (table) 546 
uses of, 563 

SRPSIZE parameter (SYSGEN) 
lock block size as constraining factor, 55 7 
SRP list element size, 556 

SS$_ACCONFLICT error status 
returned by EXE$IMGACT, 755 

SS$_ACCVIO error status 
change mode dispatcher use, 114 
returned by 

EXE$CREPRC, 710 
EXE$PROCESS_SCAN, 326 
MMG$LCKVLKPAG, 503 
$SETIME, 255 

SS$_ASTFLT (AST delivery stack fault) 
inaccessible stack handling, 83 

SS$_ASTLM error status 
returned by EXE$GETJPI, 330 

SS$_BADPARAM error status 
returned by $ENQ, 234 

SS$_BUFFEROVF error status 
returned by EXE$TRNLNM, 1093 

SS$_BUGCHECK error status. See also bugchecks 
at exit of an image that incurred fatal outer mode 

bugcheck, 968 
SS$_CONTINUE status 

effect on condition handler searching, 96 
SS$_DEADLOCK error status 

returned by $ENQ, 235 
SS$_DEBUG signal 

generated by CLI in response to DEBUG command, 
808 

handling, 84 
mapping debugger in response to, 93 

SS$_DEVACTIVE error status 
returned by EXE$ASSIGN, 600 

SS$_DEVALLOC error status 
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SS$_DEVALLOC error status (continued) 
returned by EXE$DERLMB, 967 

SS$_DEVOFFLINE error status 
returned by EXE$QIO, 608 

SS$_DUPLNAM error status 
returned by 

EXE$CREPRC, 715 
LOG$INSLOGTAB, 1095 

SS$_EXDEPTH error status 
returned by $ENQ, 227 

SS$_EXENQLM error status 
returned by $ENQ, 226 

SS$_EXGBLPAGFIL error status 
returned by EXE$CRMPSC, 420 

SS$_EXLNMQUOTA error status 
returned by EXE$CRELNM, 1094 

SS$_EXPRCLM error status 
returned by EXE$CREPRC, 716 

SS$_EXQUOTA error status 
returned by 

EXE$ASCEFC, 206 
EXE$CREPRC, 713 
MMG$CREPAG, 410 

SS$_FORCEDERROR error status 
from reading a replaced bad block, 694 

SS$_GPTFULL error status 
returned by EXE$CRMPSC, 420 

SS$_GSDFULL error status 
returned by EXE$CRMPSC, 419 

SS$_ILLEFC error status 
returned by 

EXE$ASCEFC, 206 
EXE$DACEFC, 207 
EXE$WAIT, 209 
SCH$POSTEF, 211 

SS$_INHCHME error status 
system service filtering error return, 128 

SS$_INHCHMK error status 
system service filtering error return, 128 

SS$_INSFARG error status 
change mode dispatcher use, 114 

SS$ INSFMEM error status 
returned by 

EXE$ALONONPAGED, 558 
EXE$ALOPAGED, 564 
EXE$CRELNM, 1094 

SS$_INSFSPTS error status 
returned by LDR$ALLOC_PT, 861 

SS$ INSFWSL error status 
returned by 

failed address space creation, 406 
MMG$CREPAG, 409 

SS$_INVSRQ error status 
returned by EXE$PROCESS_SCAN, 326 

SS$_IVLOCKID error status 
returned by 

$DEQ, 222, 230 
$ENQ, 222, 226 

SS$ IVLOGNAM error status 
returned by 

EXE$CRELNM, 1095 
EXE$NAMPID, 321 

SS$_IVSECFLG error status 
returned by 

EXE$CRMPSC, 412 
EXE$MGBLSC, 421 

SS$_LKWSETFUL error status 
returned by MMG$LCKULKPAG, 503 

SS$_MBFULL error status 
returned by MBDRIVER, 666 
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SS$_MBTOOSMAL error status 
returned by MBDRIVER, 666, 668 

SS$_MCHECK error status 
returned at machine check recovery block exit, 981 

SS$ NODELETE error status 
returned by EXE$DELPROC, 812 

SS$_NOIOCHN error status 
returned by IOC$FFCHAN, 597 

SS$_NOLOGNAM error status 
returned by EXE$DELLNM, 1098 

SS$ NOLOGTAB error status 
returned by EXE$CRELNM, 1094 

SS$_NOMORENODE error status 
returned by EXE$GETSYI, 1116 

SS$_NOMOREPROC error status 
returned by EXE$PSCAN_NEXT_PID, 329 

SS$_NONEXPR error status 
returned by 

EXE$GETJPI, 331 
EXE$NAMPID, 321 
EXE$SUSPND, 337 
SCH$POSTEF, 211 

SS$_NONLOCAL error status 
returned by 

EXE$ASSIGN, 598 
IOC$TRANDEVNAM, 601 

SS$_NOPRIV error status 
returned by 

$SCHDWK, 260 
$SETIME, 255 
EXE$ASCEFC, 206 
EXE$CRELNM, 1094 
EXE$CREPRC, 712 
EXE$CRETVA, 408 
EXE$CRMPSC, 415, 418 
EXE$DELLNM, 1098 
EXE$DERLMB, 966 
EXE$DGBLSC, 423 
EXE$DLCEFC, 208 
EXE$LCKPAG, 504 
EXE$MGBLSC, 421 
EXE$NAMPID, 322 
EXE$SUSPND, 336 
EXE$TRNLNM, 1093 
MMG$LCKULKPAG, 503 
MMG$SETPRTPAG, 434 

SS$_NOSLOT error status 
returned by EXE$CREPRC, 717 

SS$_NOSUCHNODE error status 
returned by 

EXE$GETSYI, 1116 
EXE$NAMPID, 321 

SS$_NOSUCHSEC error status 
returned by EXE$DGBLSC, 423 

SS$ NOSUSPEND error status 
returned by EXE$SUSPND, 337 

SS$_NOSYSLCK error status 
returned by $ENQ, 226 

SS$ NOTALLPRIV status 
returned by EXE$SETPRIV, 781 

SS$_NOTQUEUED error status 
returned by $ENQ, 227, 234 

SS$_PAGOWNVIO error status 
returned by 

MMG$DELPAG, 428 
MMG$LCKULKPAG, 503 
MMG$SETPRTPAG, 433 

SS$_PAGRDERR (page fault read error condition) 
handling, 83 

SS$_PARITY error status 



SS$_PARITY error status (continued) 
returned by SCSI disk class driver, 694 

SS$_PARNOTGRANT error status 
returned by $ENQ, 226 

SS$_PRIVINSTAL error status 
returned by EXE$IMGACT, 754, 755 

SS$_REMOTE_PROC error status 
returned by 

EXE$NAMPID, 260, 321, 329, 337 
EXE$PSCAN_NEXT_PID, 329 

SS$_RESIGNAL error status 
resignaling condition with, 88 

SS$_SECTBLFUL error status 
returned by 

EXE$CRMPSC, 419 
MMG$ALCPHD, 497 

SS$_SHRIDMISMAT error status 
returned by EXE$IMGACT, 755 

SS$_signal-name 
names and exception type, (table) 77 

SS$_SSFAIL error status 
condition signaled at system service exit, 117 
handling, 82 

SS$_SUBLOCKS error status 
returned by $DEQ, 230 

SS$_SUSPENDED error status 
returned by $GETJPI, 331 

SS$_SYNCH status 
returned by $ENQ, 227 

SS$_SYSVERDIF error status 
returned by 

EXE$IMGACT, 755 
image activator, 855 
LDR$LOAD_IMAGE, 839 

SS$_UNASCEF error status 
returned by SCH$POSTEF, 212 

SS$_ VA_IN_USE error status 
returned by MMG$CREPAG, 409 

SS$_ VASFULL error status 
returned by MMG$CREPAG, 409 

SS$_ WASCLR status 
returned by 

EXE$SETAST, 143 
MMG$LCKULKPAG, 505 
SCH$POSTEF, 212 

SS$_WASSET status 
returned by 

EXE$SETAST, 143 
MMG$LCKULKPAG, 503 
SCH$POSTEF, 212 

$SSDESCRDEF macro 
system service descriptor block symbolic offsets 

defined by, 849 
SSINffiBIT parameter (SYSGEN) 

enabling system service filtering, 128 
SSRVEXCEPT bugcheck. See also bugchecks 

fatal, generated during kernel mode last chance 
handling, 94 

nonfatal, generated during executive mode last 
chance handling, 95 

SSVECFULL bugcheck. See also bugchecks 
generated by EXE$CONNECT_SERVICES, 850 

stack. See also call frames; PR$_xSP processor register 
corrupted, REI tests for, 38 
exception servicing, selecting, (table) 35 
initial state, distinguishing exceptions and software 

conditions, 72 
interrupt, REI illegal condition testing, 38 
interrupt servicing, selecting, 34 
process, one per access mode, 3 

Index 

selected, interrupts compared with exceptions, 37 
SMP system handling, 1015 
software IPL use, (table) 55 
SP register, saved during REI instruction, 39 
state following a page fault, (figure) 436 
transforming into an exception stack by 

LIB$SIGNAL/STOP, (figure) 86 
unwinding call frames from, 96, (figure) 97, 100 
user, expanding automatically, 409 

STACK linker option 
effect on Pl space, 1293 

stack pointer. See SP register 
STACONFIG process 

autoconfiguration of disks and SCS ports, 942 
STARDEFxx.SDL file 

files, location of, 1133 
SDL external interface data structure files named by, 

1241 
SYSDEFxx.SDL compared with, 1241 

STARLET.MLB macro library 
locating public data structure offsets, constants, and 

macro definitions in, 1133 
VAX MACRO internal interface data structure 

definitions stored in, 1241 
STARLET.REQ file 

BLISS-32 internal interface data structure definitions 
stored in, 1241 

start 1/0 routines. See also device drivers 
alternate, entering, 631 
characteristics and use, 583 
device drivers, characteristics and use, 632 
driver actions, (example) 633, (figure) 633 
entering, (figure) 633 

device driver's, 629 
from IOC$REQCOM to initiate a pending request, 

641 
read request, mailbox, control flow, 668 
reentering 

after expected interrupt occurs, operations, 638 
from fork dispatcher, 639 

testing device affinity in, 1041 
START/CPU command 

SMP operations, 1056 
STARTIO routine (MBDRIVER module) 

start I/O mailbox read, control flow, 668 
STARTUP process 

files accessed by, (table) 863 
operations, overview, 862 
processing of SYS$STARTUP data files, 945 
SYSGEN parameter file use, operations, (figure) 950 
system initialization operations, 945 

STARTUP.COM command file 
operations, 945 
startup process directed from, 945 

$STATEDEF macro 
symbolic scheduling names defined in, 2 79 

STATENTSVD bugcheck. See also bugchecks 
generated by EXE$RESTART_ATT, 996 

states. See also benign state; CEF; COLPG; COM; 
COMO; CUR; FPG; HIB; HIBO; INIT; LEF; 
LEFO; MWAIT; PFN STATE array; PFW; process 
states; STOPPED state; SUSP; SUSPO; wait 
states 

process CEF wait queue, characteristics and use, 273 
process state queues, characteristics and use, 2 71 
process wait queues, characteristics and use, 271 
saved, interrupts, 34 
scheduling 

characteristics and transitions, (figure) 279 
symbolic names and values, (table) 279 
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static spinlocks. See also spinlocks 
characteristics and use, 177 
rank, 180 
using, descriptions of each, 181 

statistics (pool allocation) 
collecting, ltable) 568 

status block 
synchronous system services, return path handling 

of, 120 
status codes. See also SS$_ prefix entries 

names format, 1234 
STOP command 

operations, 808 
STOP/CPU command 

SMP operations, 1056 
STOPPED state 

reasons for changing CPU state to, 1044 
storage areas 

dynamic data structures, 544 
string instructions. See also instructions 

unimplemented, emulation support for, 77 
structure definition language. See SDL 
structure$K_constant-name format 

meaning, 1237 
structure$M_field-name format 

meaning, 1237 
structure$S field-name format 

meaning, l236 
structure$t_field-name format 

meaning, 1235 
structure$V _field-name format 

meaning, 1236 
structure$x_field-name format 

meaning, 1236 
$structureDEF macro 

meaning, 1235 
sublocks. See also locks 

characteristics and use, lfigure) 220 
dequeuing, 230 

SUBMIT command 
creating batch processes 

arguments passed to $CREPRC, ltable) 785 
operations, 784, lfigure) 785 

job controller process creation of batch processes in 
response to, 783 

subprocesses 
deleting a process that owns 

example, lfigure) 818, 819 
operations, 818 

interactive, DCL commands that create and connect 
with, 787 

locating, 818 
spawning, with SPAWN command, 788 

subresources. See also resources 
characteristics and use, 215 
linking root resources with, lfigure) 215 

subset instruction emulation exception. See also 
instructions 

selecting stack for servicing, 35 
supervisor mode. See also access modes 

bugchecks, operations, 968 
condition handlers, establishing, 95 
exit handler, CLI declaration of, 799 
stack pointer, as part of process hardware context, 

306 
SUSP (suspended wait state). See also process states; 

process suspension; SUSPO; wait states 
context for, 292 
transitions 

from SUSP to COM or COMO, 282 

1410 

to SUSP from other states, 282 
Suspend Process system service. See $SUSPND 
SUSPEND_SOFT routine (SYSPCNTRL module) 

supervisor mode AST procedure, operations, 338 
suspended outswapped wait state. See SUSPO 
suspended processes. See process suspension 
suspended wait state. See SUSP 
$SUSPND (Suspend Process system service) 

control flow, 148, 336 
kernel mode AST use by, 148 
normal AST use by, 147 
process state change actions, 279, 282 

SUSPND routine (SYSPCNTRL module) 
kernel mode AST procedure, operations, 148, 337 

SUSPO (suspended outswapped wait state). See also 
process states; process suspension; SUSP; wait 
states 

transitions 
from SUSPO to COM or COMO, 282 
to SUSPO from other states, 282 

SVAPTE request 
operations, 468 

SVPCTX instruction. See also instructions 
control flow, 308 
list of routines that use, 309 
VAX architecture feature used by VMS, 15 

swap files 
bitmaps. See memory management 
data structures 

characteristics and field definitions, 396, 514 
relations among, (figure) 516 

deinstallation, 399 
primary swap file, SYSINIT use, 399 
space deallocated after process inswap, 543 
Version 5 approach to space allocation, 515 
writing modified pages to, 472 

swap virtual block number 
PFN SWPVBN array use, 387 

SWAPFILE.SYS. See 
SYS$SPECIFIC:[SYSEXE]SWAPFILE.SYS 

swappable process context 
term definition, 4 

swapper. See also balance set; balance set slots; inswap; 
memory management; outswap; page faults; 
scheduler; swapper trimming; wait states 

awakened by 
EXE$TIMEOUT, 265 
SCH$RSE, 301 

concepts, overview, 510 
concepts and mechanisms, (chapter) 510 
disabling for a process, privilege required, 342 
1/0, overview, 400 
1/0 data structures, 514 
1/0 request descriptions, (table) 463 
implementation, 511 
initiation of modified page writing, 517 
main loop, control flow, 516 
memory management data structures used by, 512 
modified page writer role, 355 
overview, 19 
page table arrays, characteristics and use, 400 
preparing for process inswap, 725 
responsibilities, 510 
system events that trigger activities by, (table) 511 
term definition, 9 
working set size affected by, 501 

swapper 1/0 map 
outswapping use of, 529 
overview, 514 

SWAPPER module 



SWAPPER module (continued) 
BALANCE, control flow, 518 
EXE$SWAPINIT 

control flow, 939 
operations, 862, 938 

OUTSWAP, control flow, 522 
SWAPSCHED, control flow, 519 

swapper trimming 
operations, 523 
OSWPSCHED table processing to find an outswap 

candidate, 527 
reclaiming physical pages by, 360 
reducing working set limit with, 490 
term definition, 501 

swapping. See also inswap; outswap 
data structures, characteristics and use, 393 
paging compared with, 359, (table) 361 
preventing, privilege that allows a process to, 432 

SWAPSCHED routine (SWAPPER module) 
control flow, 519 

SWP$GB_ISWPRI cell 
priority of inswap process candidate, 519 

SWP$GL_BALBASE cell 
address of balance slots, 394 

SWP$GL_BSLOTSZ cell 
meaning, 1272 
size of balance slot, 394 

SWP$GL_MAP cell 
swapper 1/0 map address contained in, 401, 514 

SWP$GL_SHELLBAS cell 
definition and use, 724, 725 

SWP$GL_SHELLSIZ cell 
definition and use, 725 

SWP$SHELINIT routine (SHELL module) 
control flow, 726 

SWPFAIL parameter (SYSGEN) 
effect on outswap and swapper trimming selection, 

528 
SWPFILCNT parameter (SYSGEN) 

effect on primary page file index value, 399 
maximum number of swap files, 398 

SWPOUTPGCNT parameter (SYSGEN) 
target size to shrink working set, 524, 527, 528 
working set size affected by, 360 

SWPRATE parameter (SYSGEN) 
SWAPSCHED routine use of, 519 

symbiont processes. See also job controller 
communication with job controller through 

mailboxes, 673 
symbols. See also Digital symbols; global symbols; map 

files, relocatable symbols; vectored universal 
symbols 

resolving, in loadable executive images, 835 
symmetric 

term definition, 1006 
symmetric multiprocessing. See SMP systems 
$SYNCH (Synchronize system service) 

control flow, 120 
process state change actions, 279, 282 
requesting event flag wait, 209 
synchronizing system service completion with, 109 

SYNCH$RMS_STALL routine (SYSTEM_SERVICE_ 
EXIT module) 

stalling RMS service procedures, control flow, 118 
SYNCH$RMS_WAIT routine (SYSTEM_SERVICE_ 

EXIT module) 
RMS synchronization routine, control flow, 119 

synchronization. See also event flags; fork processes; 
interlocked instructions; locks; mutexes; SMP 
systems; spinlocks 

Index 

AST delivery to access modes with 
PCB$B_ASTACT, 132 

AST thread and normal threads of execution, 
$SETASTuse, 143 

attention AST list access, 151 
CEB list access, with EXE$GL_CEBMTX mutex, 204 
concepts and techniques, (chapter) 161 
debugging problems, spinlock routine optimized for, 

174 
device drivers, SMP systems, 1039 
event flags, characteristics and use, (chapter) 202 
failure, characteristics and means of preventing, 180 
fork process importance to, 58 
hardware support, 162 
1/0 

completion problems, 616 
database access, 581 

interprocess, through common event flags, 213 
KRP lookaside list, 567 
logical name database access, 1086 
lowering IPL dangerous for, 168 
methods for obtaining, 151 
mutexes, characteristics and use, 196 
overview, 24 
pool 

lookaside lists, 552 
nonpaged, 561 
paged, 564 

process allocation region, 567 
process use of common event flags for, 213 
RMS services, 118 
scheduler database access, 151 

SCHED spinlock use for, 269 
serialized access, VMS features that support, 195 
shared data structure access, with software 

interrupts, 54 
SMP issues, 1021 
software support, 165 
software techniques 

application use of, 167 
VMS use, comparison, (table) 166 

SPL access by full-checking routines, 174 
system databases, nonpaged pool expansion 

considerations, 560 
techniques for· 

multiprocessor systems, 164 
user mode applications, 167 

terms and concepts overview, 161 
TQE queue access, 64 
VAXcluster resources, lock management as 

fundamental technique, 167, 223 
Synchronize system service. See $SYNCH 
synchronous backplane interconnect. See SBI 
synchronous system services 

guaranteeing completion, requirements for, 108 
return path, control flow, (figure) 120 
that use composite vectors, list, (table) 109 

[SYS) facility 
contents, 1130 
SDL files in, 1133 

SYS.EXE (base image file). See base image 
SYS.STB (base image symbol table) 

images that link with, overview, 12 
privileged images linked with, (table) 1128 
read by SDA, 1155 
system processes linked with, (table) 1128 
term definition, 8 

SYS$CALL_HANDL routine (SYSVECTOR module) 
command call site for condition handlers, 91 

SYS$GL_ VERSION array 
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SYS$GL_ VERSION array (continued) 
conceptual category version numbers, 854 

SYS$INPUT logical name 
CLI processing use of, 799 

SYS$LOADABLE_IMAGES directory 
executive images moved into, 824 

SYS$LOADABLE_IMAGES:VMS$SYSTEM_ 
IMAGES.DATA file 

optional executive images listed in, 843 
SYS$PUTMSG routine (SYSPUTMSG module) 

called by catch-all condition handler, 94 
SYS$SO_ VECTOR_BASE symbol 

start of system service vector system addresses, 
107 

SYS$SO_ VECTOR_END symbol 
end of system service vector area high end, 1164 
system service vector system addresses, 107 

SYS$SO_ VECTOR_LAST_USED symbol 
system service vector system addresses, 107 

SYS$service 
address of system service vector, characteristics, 

106 
SYS$service_name 

system service name template, 826 
SYS$SPECIFIC:[SYSEXE] directory 

system dump file location, 969 
SYS$SPECIFIC:[SYSEXE]PAGEFILE.SYS file 

alternative system dump file name, 970 
primary page file, SYSINIT use, 399 

SYS$SPECIFIC:[SYSEXE]SWAPFILE.SYS file 
primary swap file 

opened by SYSINIT process, 514 
SYSINIT use, 399 

SYS$STARTUP directory 
data files for startup process contained in, 945 

SYS$SYNCH system service vector 
synchronous service return path, control flow, 120 

SYS$SYSTEM directory 
executive images moved out of, 824 

SYS$SYSTEM:OPCCRASH.EXE. See 
[OPCOM]OPCCRASH module 

SYS$SYSTEM:SHUTDOWN.COM. See SHUT­
DOWN.COM command file 

SYS$SYSTEM:STARTUP.COM. See STARTUP.COM 
command file 

SYS$SYSTEM:SYS$INCARNATION.DAT file 
VAXcluster system initialization from, 941 

SYS$SYSTEM:SYS.STB. See SYS.STB 
SYSADJWSL module 

EXE$ADJWSL, control flow, 496 
MMG$SHRINKWS, operations, 497 

SYSASCEFC module 
EXE$ASCEFC, creating named common event flag 

clusters, control flow, 206 
EXE$DACEFC, dissociating from an event flag 

cluster, control flow, 207 
EXE$DLCEFC, deleting permanent event flag 

clusters, control flow, 208 
SYSASSIGN module 

EXE$ASSIGN 
associated mailbox processing, control flow, 600 
common initial steps, control flow, 597 
local device assignment, control flow, 598 
nontemplate device processing, control flow, 598 
operations, 597 
remote device assignment, control flow, 601 
template device processing, control flow, 599 

EXE$NETWORK_ASSIGN, control flow, 602 
SYSASTCON module 

EXE$DCLAST, creating ASTs with, 134 
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EXE$SETAST, disabling AST delivery, 143 
SYSBOOT (secondary bootstrap program) 

concepts and mechanisms, 913 
argument list from VMB to SYSBOOT, (table) 913 
information passed from SYSBOOT to INIT, 

(table) 914 
control flow, 914 
environment, 914, (table) 948 
files accessed by, (table) 863 
initial conditions, (table) 948 
items allocated in system virtual address area, name 

and protection, (table) 1282 
loadable executive images loaded by, (table) 831 
major functions, 913 
mapping of EXE$INIT, 924 
nonpaged pool allocation, (table) 1284 
operations, overview, 862 
physical memory layouts, (figure) 902 
purpose, (table) 948 
SMP-specific operations, 1045 
SPT created by, 353 
SYSGEN parameter file use, operations, (figure) 950 
SYSGEN compared with, (table) 948 
system initialization use, (table) 948 
valid commands, (table) 948 

SYSBOOT XDELTA 
operations, 916 

SYSBRKTHR module 
EXE$BRDCST, operations, 704 
EXE$BRKTHRU 

finding all terminals, control flow, 700, 701 
I/O completion, control flow, 699, 701 
initial processing, control flow, 695 
response to timeout, 703 
screen message fields, control flow, 695 
sending message, control flow, 701 
writing breakthrough message, control flow, 703 

SYSCANCEL module 
EXE$CANCEL, control flow, 625 

SYSCANEVT module 
EXE$CANTIM, operations, 259 
EXE$CANWAK, operations, 261 

SYSCREDEL module 
EXE$CNTREG, operations, 432 
EXE$CRETVA, control flow, 407 
EXE$DELTVA, control flow, 427 
EXE$EXPREG, operations, 409 
MMG$CREDEL, operations, 405 
MMG$CREPAG, control flow, 408 
MMG$CRETVA, alternative entry point for 

$CRETVA, 407 
MMG$DELPAG, control flow, 428 
MMG$FAST_CREATE, operations, 408 
MMG$TRY_ALL, operations, 408 

SYSCREPRC module 
EXE$CREPRC, control flow, 710 

SYSCRMPSC module 
EXE$CRMPSC 

global sections, control flow, 418 
PFN-mapped sections, control flow, 415 
process-private sections, control flow, 412 

EXE$MGBLSC, control flow, 421 
MMG$MAPSECPAG, control flow, 414 

SYSDASSGN module 
EXE$DASSGN, control flow, 603 

SYSDEF.STB file 
definitions of data structure symbols, 1155 

SYSDEFxx.SDL file 
location of, 1133 
SDL internal interface data structure files 



SYSDEFxx.SDL file (continued) 
named by, 1241 

STARDEFxx.SDL compared with, 1241 
SYSDELPRC module 

EXE$DELPRC, control flow, 811 
EXEC_RUNDOWN_AST, operations, 813 

SYSDERLMB module 
EXE$DERLMB, operations, 966 

SYSDEVALC module 
EXE$ALLOC 

conditions under which it will not allocate devices, 
592 

control flow, 592 
EXE$DALLOC, control flow, 594 

SYSDGBLSC module 
EXE$DGBLSC, control flow, 423 
GSD_CLEAN_AST, operations, 426 
MMG$DELGBLSEC, control flow, 425 
MMG$DELGBLWCB, control flow, 426 
MMG$GSDSCN operations, 418 

SYSDUMP.DMP file. See also SYS$SPECIFIC:[SYSEXE] 
directory 

default system dump file ruime, 970 
SYSENQDEQ module 

EXE$DEQ, control flow, 230 
EXE$ENQ 

control flow, 225 
lock request handling, operations, 225 

LCK$GRANT_LOCK, control flow, 231 
SYSEVTSRV module 
~· EXE$CLREF, clearing event flags, operations, 213 

EXE$READEF, reading event flags, operations, 212 
SYSEXIT module 

EXE$EXIT, control flow, 772 
SYSGBL (create systemwide global sections privilege). 

See also privileges 
required for 

creating a system global section, 417 
deleting a system global section, 423 

use by 
$CRMPSC, 417 
$DGBLSC, 423 

SYSGEN. Consult VMS Device Support Manual 
environment, (table) 948 
in context of startup process, files accessed by, 

(table) 863 
initial conditions, (table) 948 
lock use by, 1328 
operations, 948 
purpose, (table) 948 
SYSBOOT compared with, (table) 948 
SYSGEN parameter file use, operations, (figure) 953 
system initialization use, (table) 948 
valid commands, (table) 948 

SYSGEN Database lock 
characteristics and use, 1328 

SYSGEN parameters. See also bootstrap; SYSBOOT; 
system initialization 

ACP _xQP _RES 
effect on VMS memory use, 1287 
residency of Files-11 XQP global sections, 417, 944 

active, 953 
adjustable, names and descriptions, (table) 1199 
AFFlNITY_SKIP, initializing PCB$B_AFFINITY_ 

SKIP field with, 289 
alphabetical list of names and related global cell 

names, (table) 1212 
AWSTIME, use in automatic working set limit 

adjustment, 500 
BALSETCNT 

Index 

effect on size of system space, 1278 
number of balance set slots, 931 
number of entries in swapping data structures, 394 

BORROWLIM 
automatic working set limit adjustment use, 496, 

500 
effect on working set limit growth, 493 

BREAKPOINT, breakpoints taken during system 
initialization, 929 ' 

BUGCHECKFATAL 
effect on kernel and executive mode nonfatal 

bugchecks, 969 
effect on user mode nonfatal bugchecks, 95 
user and supervisor mode fatal bugchecks not 

affected by, 969 
BUGREBOOT, effect on fatal bugcheck processing, 

979 
CHANNELCNT, effect on Pl space, 1293 
CLISYMTBL 

effect on Pl space, 1292 
size of CLI symbol table, LOGINOUT, 796 

CTLIMGLIM, process allocation region allocation 
limit, 566 

CTLPAGES 
effect on Pl space, 1293 
number of pages in Pl pool, 565 

current, 950 
DEADLOCK_WAIT, deadlock search initiation 

controlled by, 236 
definition location, 948 
DEFPRI 

normal process priority defined from, 278 
SWAPSCHED routine use of, 519 

DISMOUMSG, enabling logging of volume dismount 
messages, 966 

DLCKEXTRASTK, limiting resource tree maximum 
depth with, 239 

DORMANTWAlT, use in outswap and swapper 
trimming selection, 526 

DUMPSTYLE 
effect on size of system space, 1279 
selective crash dump controlled by, 972 

ERLBUFFERPAGES, number of pages in each error 
log allocation buffer, 959 

ERRORLOGBUFFERS, number of error buffers 
specified by, 959 

EXTRACPU, quantum expiration use of, 294 
fields and flags, (table) 950 
FREEGOAL 

BALANCE routine use of, 518 
swapper use of, 511 

FREELIM 
BALANCE routine use of, 518 
effect on nonpaged pool expansion, 554, 560 
effect on VMS memory use, 1287 
swapper use of, 510 

GBLPAGES, global page table size calculation, 1280 
GBLPAGFIL, maximum page file blocks available for 

global buffers, 417 
GBLSECTIONS 

effect on size of system space, 1279 
number of entries in system header section table, 

388 
GROWLIM 

effect on working set growth, 492 
working set limit adjustment use, 496, 500, 501 

IMGIOCNT 
effect on Pl space, 1293 
size of image 1/0 segment, 756 

information stored for, (table) 950 
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SYSGEN parameters (continued) 
INTSTKPAGES 

default value, 35 
effect on size of system space, 12 79 
limiting resource tree maximum depth with, 239 
size of interrupt stack, 1015 

IOTA 
automatic working set limit adjustment use of, 

500 
deducted from PHD$W _QUANT, 294 
use in SCH$WAIT, control flow, 291 

LNMPHASHTBL 
number of name table cache blocks related to, 

1086 
process-private hash table size specified by, 1083 

LNMSHASHTBL, shareable hash table size specified 
by, 1083 

LOAD_SYS_IMAGES, enabling loading of optional 
loadable executive images, 843 

loaded and manipulated by SYSBOOT, 913 
LOCKDIRWT, effect on resource directory 

participation, 224 
LOCKIDTBL, lock ID table size controlled by, 222 
LOCKIDTBL_MAX, lock ID table size controlled by, 

222 
LONGWAIT, use in outswap and swapper trimming 

selection, 526 
LRPSIZE, LRP list element size, 556 
MAXPROCESSCNT, maximum number of processes 

permitted, 720 
MINWSCNT 

fluid working set initialized from, 406 
use in process creation, 728 

MOUNTMSG, enabling logging of volume mount 
messages, 966 

MPW _HILIMIT 
modified page list high limit, 467 
swapper use of, 511 

MPW _IOLIMIT, maximum number of concurrent 
I/O operations, 401, 469 

MPW _LOLIMIT 
effect on VMS memory use, 1287 
modified page list low limit, 468 
nonpaged pool expansion affected by, 560 

MPW LOWAITLIMIT 
effect on removing a modified page from working 

set, 495 
swapper use of, 517 
transitions triggered by, 285 

MPW_THRESH, use by BALANCE, 518 
MPW _ WAITLIMIT 

effect on removing a modified page from working 
set, 495 

transitions triggered by, 285 
MPW _ WRTCLUSTER 

modified page write cluster target size, 473 
page file allocation request size initial value, 398 
$UPDSEC cluster target size, 476 

MULTIPROCESSING 
enabling SMP, 934 
EXE$INIT use during SMP-specific operations, 

1049 
selecting spinlock routine, 174 
SYSBOOT use during SMP-specific operations, 

1047 
NOAUTOCONFIG, disabling I/O autoconfiguration, 

947 
NPAGEDYN, controlling nonpaged pool, 555 
NPAGEVIR 

controlling nonpaged pool, 555 
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effect on size of system space, 12 78 
PAGEDYN 

effect on size of system space, 1278 
paged pool size specified by, 564 

PAGFILCNT, maximum number of swap files, 398 
PAGTBLPFC, default cluster factor for process page 

table pages, 466 
PFCDEFAULT, default cluster factor for page files, 

466 
PFRATH, use in automatic working set limit 

adjustment, 500 
PFRATL, use in automatic working set limit 

adjustment, 501 
PHYSICALPAGES, physical memory dump size 

controlled by, 975 
PIOPAGES, effect on Pl space, 1293 
PIXSCAN, pixscan mechanism use of, 305 
POOLCHECK 

field and flag definitions, (figure) 5 70, (table) 570 
POOLPAGING, residency of paged pool, 929 
PQL_DWSDEFAULT 

adjusted at system initialization, 490 
initial working set list size, 1272 
use in process creation, 728 

PQL_MWSDEFAULT, adjusted at system initializa­
tion, 490 

PROCSECTCNT 
maximum PST size, 376, 487, 1272 
working set list capacity affected by, 487 

QDISKINTERVAL, polling interval for quorum disk, 
942 

QUANTUM 
initial value for process quantum, 263 
rescheduling use of, 293 

REALTIME_SPTS, SPTEs reserved for use by 
connect-to-interrupt driver, 653, 930 

RESHASHTBL, determining number of resource 
hash table entries, 218 

SO_PAGING, residency of pageable executive, 930 
SAVEDUMP, saving a dump in page file, 944, 970 
SCSNODE, VAXcluster node name, 929 
SCSSYSTEMID 

system ID, 929 
system ID lock naming, 1298 

SCSSYSTEMIDH, system ID, 929 
SETTIME, initializing time and date, 253 
SMP _LNGSPINWAIT 

specifying timeout value, 176 
spinlock loop count use of, 1023 

SMP SPINWAIT 
specifying timeout value, 176 
spinlock loop count use of, 1023 

SMP_TICK_CNT, number of ticks between sanity 
timer checks, 1037 

SPTREQ, effect on size of system space, 1279 
SRPSIZE 

lock block size as constraining factor, 55 7 
SRP list element size, 556 

SSINHIBIT, enabling system service filtering, 128 
SWPFAIL, effect on outswap and swapper trimming 

selection, 528 
SWPFILCNT 

effect on primary page file index value, 399 
maximum number of swap files, 398 

SWPOUTPGCNT 
target size to shrink working set, 524, 527, 528 
working set size affected by, 360 

SWPRATE, use by SWAPSCHED routine, 519 
SYSMWCNT 

effect on size of system space, 12 79 



SYSGEN parameters (continued) 
SYSMWCNT (continued) 

system working set list size determined by, 388 
system data area that contains, 830 
system virtual address space components affected 

by, names and system mapping information, 
(table) 1275 

TBSKIPWSL, effect on working set replacement 
algorithm, 494 

TIMEPROMPTWAIT, initializing time and date, 253 
TTY_ALTALARM, specifying when to send XOFF, 

684 
TTY_ALTYPAHD, type-ahead buffer size for 

terminals with TT2$V _ALTYPEAHD 
characteristics, 684 

TTY_CLASSNAME, terminal class driver use, 681 
TTY_SCANDELTA, modem polling use of, 266 
TTY_TYPAHDSZ, type-ahead buffer size, system 

default, 684 
UAFALTERNATE, creation of logical name SYSUAF, 

943 
virtual address space size relation, 1270 
VIRTUALPAGECNT 

maximum number of PTEs, 371, 406 
process address space constrained by, 354 
size of process page tables, 1272 

WRITESYSPARAMS 
recording SYSGEN parameters, 946, 953 

WSDEC, use in automatic working set limit 
adjustment,· 50 l 

WSINC, use in automatic working set limit 
adjustment, 500 

WSMAX 
constraint on nonpaged pool expansion, 560 
PST use affected by, 487 
swapper I/O map size, 514 
use in process creation, 728 
working set list size, 376, 487, 1272 

SYSGETDVI module 
EXE$DEVICE_SCAN, control flow, 1118 
EXE$GETDVI, control flow, 1119 

SYSGETJPI module 
EXE$GETJPI 

AST use in obtaining information about a process, 
145 

control flow, 328 
SYSGETLKI module 

EXE$GETLKI, operations, 235 
SYSGETMSG module 

EXE$GETMSG 
arguments, ll ll 
control flow, llll 
operations, 1111 

SYSGETSYI module 
EXE$GETSYI, control flow, ll 15 

SYSIMGACT module 
EXE$IMGACT 

control flow, 747 
shareable images, 753 

SYSIMGFIX module 
EXE$IMGFIX, operations, 762 

SYSIMGSTA module 
EXE$IMGSTA, operations, 769 

[SYSINI)SYSINIT module 
system initialization operations, 940 

SYSINIT process 
computing system time during system initialization, 

255 
control flow, 940 
creating, 939 

Index 

files accessed by, (table) 863 
functions, 940 
items allocated in system virtual address area, name 

and protection, (table) 1282 
loadable executive images loaded by, (table) 831 
nonpaged pool allocation, 940 
operations, 862, 940 
primary swap file opened by, 514 

SYSLCK (lock systemwide resources privilege). See 
also privileges 

lock information access permitted by, 235 
required for systemwide resource creation, 226 
use by 

$ENQ, 226, 1297 
$GETLKI, 235 

SYSLDR module 
LDR$1NIT_SINGLE, control flow, 846 
LDR$LOAD_IMAGE . 

image of which it is a part, 837 
loading loadable executive images, control flow, 

838 
LDR$LOAD_NONPAGED, control flow, 842 
LOAD_PAGED, control flow, 842 

SYSLKWSET module 
EXE$LKWSET, control flow, 502 
EXE$ULKPAG, operations, 505 
EXE$ULWSET, operations, 505 
MMG$LCKULKPAG, control flow, 503, 505 

SYSLNM module 
EXE$CRELNM, control flow, 1093 
EXE$CRELNT, control flow, 1095 
EXE$DELLNM, control flow, 1098 

[SYSLOA)CONUTIL module 
CNX$CHECK_QUORUM, operations, 1028 

[SYSLOA)ERRSUBxxx module 
EXE$INIPROCREG, operations, 250, 996 
EXE$READ _LOCAL_ TODR, accessing time-of-year 

clock by powerfail routine, 252 
EXE$READ_TODR, accessing time-of-year clock, 

252, 1027 
EXE$READP _LOCAL_TODR, accessing time-of-year 

clock on primary CPU, 252 
EXE$REGRESTOR, operations, 996 
EXE$REGSAVE, operations, 983 
EXE$WRITE_TODR, accessing time-of-year clock, 

252, 1027 
EXE$WRITEP_LOCAL_TODR, accessing time-of­

year clock on primary CPU, 252 
(SYSLOA]INIADPxxx module 

EXE$INIT_TODR 
control flow, 253 
initializing time of year, control flow, 253 
time-of-year clock access request, 1027 

initializing adapters, operations, 935 
(SYSLOA]MCHECKxxx module 

system error interrupt service routines found in, 42 
[SYSLOA)OPDRIVER module 

CON$INTINP, operations, 691 
CON$INTOUT, operations, 691 

[SYSLOA]SMPINT_xxx module 
SMP$INTALL, operations, 1024 
SMP$INTALL_ACQ, operations, 1024 
SMP$INTALL_BIT, operations, 1024 
SMP$INTALL_BIT_ACQ, operations, 1024 
SMP$INTPROC, operations, 1024 
SMP$INTSR, operations, 1025, 1032 
SMP$INVALID_SINGLE, control flow, 1032 

[SYSLOA]SMPSTART_xxx module 
CPU_START, operations, 1054 
SMP$SETUP _SMP, control flow, 1049 
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Index 

SYSLOAVEC module 
CPU-dependent routines, entry point names and 

descriptions, (table) 1218 
miscellaneous transfer vectors area defined in, 831 

SYSLOAxxx image 
accessing time-of-year clock, 251 
loading 

example of linkage and control flow, (figure) 856 
operations, 856 

locating code for, 1153 
names of images, (table) 1294 
SYSLOAVEC entry point destinations, 1218 
transfer vectors area location, 831 
vector table, 856 

SYSMAILBX module 
EXE$CREMBX, control flow, 660 
EXE$DELMBX, control flow, 662 

SYSMAN (System Management Utility) 
lock use by, 1329 

SYSMAR.MAR file 
contents, description, 1135 

SYSMWCNT parameter (SYSGEN) 
effect on size of system space, 1279 
system working set list size determined by, 388 

SYSNAM (insert in system logical name table 
privilege). See also privileges 

accessing logical name tables, 1072 
logical name translation affected by, 1092 
use by 

$CRELNM, 1069 
$CRELNT, 1070 

SYSPARAM module 
EXE$GL_TIME_CONTROL bits defined in, 1014 
SYSGEN parameters defined in, 948 

SYSPARPRC module 
EXE$RESCHED, control flow, 341 

SYSPCNTRL module 
EXE$CHECK_PCB_PRIV, operations, 321 
EXE$EPID_TO_IPID, purpose, 721 
EXE$EPID_TO_PCB, purpose, 721 
EXE$HIBER, control flow, 335 
EXE$IPID_TO_EPID, purpose, 721 
EXE$1PID TO PCB 

IPID validity checking with, 723 
purpose, 721 

EXE$NAMPID 
control flow, 320 
IPID validity checking with, 723 
process ID and privilege checking with, 319 

EXE$SETPRN, operations, 341 
EXE$SUSPND, control flow, 336 
EXE$WAKE, control flow, 335 
SUSPEND_SOFT, supervisor mode AST procedure 

operations, 338 
SUSPND, kernel mode AST procedure, operations, 

148, 337 
SYSPRV (access objects via system protection 

privilege). See also privileges 
use by logical name system services, 1092 

SYSPURGWS module 
EXE$PURGWS, control flow, 506 
MMG$PURGWSPAG, control flow, 506 
MMG$PURGWSSCN, control flow, 506 

SYSPUTMSG module 
EXE$PUTMSG, operations, 1114 
SYS$PUTMSG, 94 

SYSQIOREQ module 
EXE$ABORTIO, control flow, 611 
EXE$ALTQUEPKT 

control flow, 631 
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device driver start I/O initiation, 629 
EXE$QIODRVPKT differences, 682 
full-duplex terminal operations, 682 
operations, 613 

EXE$FINISHIO, control flow, 612 
EXE$FINISHIOC, control flow, 612 
EXE$1NSIOQ, control flow, 629 
EXE$QIO, control flow, 606 
EXE$QIOACPPKT, control flow, 631 
EXE$QIODRVPKT 

device driver start 1/0 initiation, 629 
driver start 1/0 operations, 682 
EXE$ALTQUEPKT differences, 682 
operations, 613 

EXE$QXQPPKT, control flow, 632 
special $QIO entry points, 462 

SYSRUNDWN module 
EXE$RUNDWN 

control flow, 774 
resetting capabilities, 298 

SYSSCHEVT module 
EXE$SCHDWK, control flow, 260 
EXE$SETIMR, control flow, 258 

SYSSETEXV module 
EXE$SETEXV, operations, 75 

SYSSETIME module 
EXE$SETIME 

operations, 255 
readjusting time-of year, control flow, 256 
time recalibration, control flow, 255 

EXE$SETIME_INT, computing system time during 
system initialization, 254 

SYSSETMOD module 
EXE$SETSWM, operations, 432 
system service routines for changing process 

characteristics, 342 
SYSSETPRA module 

EXE$POWERAST, control flow, 999 
EXE$SETPRA, control flow, 999 

SYSSETPRI module 
EXE$SETPRI, operations, 340 

SYSSETPRT module 
EXE$SETPRT, control flow, 433 
MMG$SETPRTPAG, control flow, 433 

SYSSETPRV module 
EXE$SETPRV, operations, 780 

SYSSNDJBC module 
EXE$JBCRSP, job controller special kernel AST, 

operations, 1106 
EXE$SNDJBC, control flow, 1104 

SYSSNDMSG module 
EXE$SENDMSG, operations, 1105 
EXE$SNDACC, control flow, 1107 
EXE$SNDERR, control flow, 1109 

SYSTARTUP _VS.COM command file 
operations, 948 

system build procedure 
listing and map file handling, 1129 

system bus. See also buses 
errors, SCB reserved offsets, 41 
function of, VAX system generic model, (figure) 44 
1/0 hardware configuration component, 577 
VAX 8200 family, VAXBI used as, 52 

system communication services. See SCS 
system context 

accessing mutexes from, 200 
concepts, overview, 17 
constraints and characteristics, 17 

system control block. See SCB 
system control block base register. See PR$_SCBB 



system crashes. See bugchecks; crash dumps 
system data area 

characteristics and use, 828 
system data structures 

descriptions, (chapter) 1241 
memory management characteristics and field 

definitions, 387 
size, (chapter) 1270 

system directories 
LNM$SYSTEM_DIRECTORY, shareable logical 

name tables named in, 1070 
System Dump Analyzer. See SDA 
system dump file. See dump file 
system events. See also rescheduling interrupt; 

scheduler 
examples, 299 

System Generation Utility. See SYSGEN 
system header 

characteristics and use, 387 
description, 1226 
layout, (figure) 387 
section table, number of entries in, SYSGEN 

parameter that specifies, 388 
working set list, pageable system pages described by, 

355 
System ID lock 

characteristics and use, 1298 
system initialization. See also executive; SYSBOOT; 

SYSGEN parameters; VMB 
adapter initialization as part of, 46 
eliminating code from memory after task completion, 

techniques for, 1144 
image activation at, special considerations, 739 
logical name tables created during, 1070 
overview, 862 
process context phases, 938 
processor-specific 

common steps, 866 
differences, 866 

sequence of events, (figure) 866 
stages when loadable executive images are loaded, 

836 
swapper process operations, 938. See also 

EXE$SWAPINIT 
swapper use for its process context, 511 
system 1/0, completing, 613 
system space initialization during, 353 

system macros 
using local macros, names format, 1233 

system management server process. See SMISERVER 
process 

System Management Utility. See SYSMAN 
system memory 

available, size calculation, (example) 1286 
management, data structures characteristics and 

field definitions, 387 
system process use, reasons for variation, 1287 

system message file 
characteristics and use, 1109 

system page read 
1/0 request descriptions, (table) 463 

system page table. See SPT 
system pages. See also address space; pages; PTE; 

SPTE; system space 
copy-on-reference 

page fault when page is, control flow, 459 
page fault when page is not, control flow, 458 

demand zero page, page fault, control flow, 459 
locking into system working set list, 508 
page faults, characteristics and use, 458 

Index 

pageable, working set list in system header describes, 
355 

system parameters 
non-SYSGEN, names and descriptions, (table) 1210 

system PCB 
characteristics and use, 387 

system processes 
ACP, characteristics and use, 584 
AUDIT_SERVER, command file that creates, 947 
CLUSTER_SERVER, command file that creates, 947 
communicating with, system service descriptions, 

1102 
CONFIGURE, creation of, 946 
ERRFMT 

error logging subsystem use of, 958 
operations, 964 
waking, 962 

Files-11 XQP cache server, command file that 
creates, 94 7 

included in total memory requirements of VMS, list 
of, 1287 

job controller, command file that creates, 947 
JOB_ CONTROL 

creation of, 947 
functions of, 1102 

name and description tables, (chapter) 1125 
OPCOM 

command file that creates, 94 7 
operations, 1108 

SMISERVER, command file that creates, 948 
STARTUP, system initialization operations, 945 

system resources. See resources 
system routine requests 

periodic, EXE$SWTIMINT operations, 264 
system scheduling events. See system events 
system service descriptor block 

creation and characteristics, 109 
field characteristics, 849 

system service dispatcher. ·See change mode -
dispatcher 

system service vectors 
area, global cells that compose, (table) 1164 
change mode operand, assigned at system loading, 

113 
characteristics and use, 106, 826 
composite 

characteristics and use, 108 
$QIOW code for, 109 

' contents, description, 107 
executive transfer vectors compared with, 827 
initializing, 109 
location, 106 
names, resolution at link time, 826 
that change mode to executive, code for, 107 
that change mode to kernel, code for, 107 
that do not change mode, code for, 108 

system services. See also change mode - dispatcher; 
RMS 

asynchronous, characteristics, 108 
change mode operations, 127 
errors, enabling and disabling exception generation 

on, 127 
event flag argument, list of those that include, 203 
exiting from, 116 
filtering, 12 7 
1/0 

concepts and mechanisms, (chapter) 587 
operations, overview, 587 
overview, 584 

in privileged shareable images, dispatching to, 121 
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system services (continued) 
information, overview, 705 
inhibiting access to, 127 
initializing, 849 
list organized by mode initially executed in, 

(table) 107 
memory management, concepts and mechanisms, 

(chapter) 403 
miscellaneous, (chapter) 1102 
names format, 1232 
naming, 108 
operations, 1115 
overview, 18 
process computability, characteristics and 

operations, 334 
process information, characteristics and operations, 

323 
related to system service and change mode 

dispatching, 126 
return paths, 116 
setting process. software status, 342 
synchronous 

requirements for guaranteeing completion, 108 
return path, control flow, (figure) 120 

that do not change mode 
control flow, (figure) 121 
list of names, (table) 121 

user-written. See also images - privileged 
checking for dispatcher systemwide, 126 
dispatching, control flow, (figure) 123 
dispatching operations, 123 

system shutdown 
operations, 954 

system space 
available, size calculation, 1282 
checking page fault address in, 43 7 
code pages, protections on, 353 
components and factors that affect size, (table) 1275 
data pages, protections on, 353 
division into nonpaged and paged portions, 

(table) 1286 
initial layout, (figure) 1274 
IRP lookaside list, characteristics, (table) 544 
items allocated in, name and protection, (table) 1282 
layout, (figure) 25 

analyzing with SDA, 1157 
LRP lookaside list, characteristics, (table) 544 
mapping of, 353 
nonpaged pool, characteristics, (table) 544 
overview, 25 
paged pool, characteristics, (table) 544 
size, (chapter) 1270 

calculations, 1274 
sized and laid out by SYSBOOT, 914 
SRP lookaside list, characteristics, (table) 544 
system service vector locations, 106 
term definition, 350 
translating, (figure) 364 

operations, 363 
VMS use of, 352 

system startup 
site-specific startup command file, operations, 

948 
system time. See time 
system tuning 

automatic, nonpaged pool expansion role in, 560 
system working set 

distinguished from process working set, 388 
locking pages into, operations, 1145 
SMP issues, 1020 
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SYSGEN parameter that determines size, 388 
system header component, 387 
types of pages described in, 38 7 

SYSTEM_DATA_CELLS module 
global cells that compose, (table) 1186 
process state queue listheads defined in, 2 71 
system data area defined in, 830 

SYSTEM DEBUG initialization routine 
operations, 937 

SYSTEM PRIMITIVES initialization routine 
operations, 936 

SYSTEM ROUTINES module 
EXE$EXCEPTN, kernel mode last chance handler 

vperations, 94 
EXE$EXCEPTNE, executive mode last chance 

handler operations, 95 
EXE$LOAD_ERROR, initializing system service 

vectors with, 109 
executive transfer vectors defined in, 82 7 
INI$MASTERWAKE, XDELTA interrupt service 

routine, activating, 68 
nonpaged executive transfer vectors defined in, 1164 

SYSTEM ROUTINES MASK module 
miscellaneous transfer vectors area defined in, 831 

SYSTEM_SERVICE macro 
defining a vectored universal symbol, 835 
inhibit mask parameter use for system service 

filtering, 12 7 
system service initialization use, 849 

SYSTEM SERVICE DISPATCHER module 
CMOD$ASTEXIT, entering $CLRAST system 

service, 115 
CMOD$SSVECX, change-mode-to-executive error 

handling, 115 
EXE$CMODEXEC, change-mode-to-executive 

dispatching operations, 112 
EXE$CMODEXECX, system service filtering, 128 
EXE$CMODKRNL 

change-mode-to-kernel dispatching operations, 
112 

EXE$CMODKRNLX, system service filtering, 128 
SERVICE_EXIT, change mode dispatcher common 

exit path, control flow, 116 
SYSTEM SERVICE EXIT module 

SYNCH$RMS_STALL, stalling RMS service 
procedures, control flow, 118 

SYNCH$RMS_ WAIT, RMS synchronization routine, 
control flow, 119 

SYSTEM_SERVICE_LOADER module 
EXE$CONNECT _SERVICES 

control flow, 850 
initializing sys tern service vectors with, 111 

SYSTEM SYNCHRONIZATION initialization routine 
operations, 937 

systems communication architecture. See SCA 
SYSUNWIND module 

EXE$UNWIND, condition handler call frame 
unwinding operations, 97 

SYSUPDSEC module 
EXE$UPDSEC, control flow, 476 
MMG$UPDSECAST, operations, 478 
MMG$UPDSECQWT, control flow, 477 
MMG$WRTPGSBAK, operations, 477 

$SYSVECTORDEF macro 
layout of system service vector space, 827 

$SYSVERSIONDEF macro 
definitions of executive conceptual categories, 853 

SYSWAIT module 
EXE$WAIT, common event flag wait code, control 

flow, 209 



(SYSx.SYS$LDR)VMS$SYSTEM_IMAGES.DATA file 
loading images from during system initialization, 

941 

TABLE logical name attribute 
characteristics, 1070 

TAST (terminal AST block) 
characteristics and use, (figure) 153 
summary, 1261 

TAST$L_FLINK field 
queuing TAST to terminal UCB with, 153 

TAST$V_BUSY bit (TAST$B_CTRL field) 
terminal driver setting to indicate FKB/ACB use, 153 

TB (translation buffer). See also PR$_TBIA; PR$_TBIS 
invalidating 

during interprocessor interrupt handling, 1026 
operations, 1029 
single entry, (figure) 1030 

-performance optimization use of, 365 
presence of page, effect on working set replacement, 

494 
SPT sharing implications, 1020 
synchronizing invalidation, with INVALIDATE 

spinlock, 184 
term definition, 1029 

TBSKIPWSL parameter (SYSGEN) 
effect on working set replacement algorithm, 494 

template devices 
assigning channels to, 599 
characteristics and use, 590 

terminal AST block. See TAST 
terminal drivers. See also device drivers 

attention AST use by, 152 
character processing routine, unsolicited terminal 

input handling, 783 
checking for out-of-band ASTs, 155 
class driver, relation with console port driver and 

.J:Onsole UCB, (figure) 681 
console port driver binding to, (figure) 691 
full-duplex operation, characteristics, 681 
job controller notified of unsolicited terminal input 

by, 783 
operations, 679 
port drivers supplied with system, list of, 679 

TERMINAL equivalence name attribute 
characteristics, 1075 

terminals 
1/0 subsystem, logical components of, (figure) 679 
local area, server support characteristics, 685 
physical, pointer to virtual terminal UCB, 685 
remote, server support characteristics, 685 
unsolicited input from, interactive processes created 

as a result of, 783 
virtual, support characteristics, 684 
writing breakthrough messages 

all terminals and all users, 701 
all terminals of a user, 699 
sending message, control flow, 701 
to specific terminals, 699 

termination mailbox 
message sent to owner process during process 

deletion, (table) 816 
VMS executive mailbox use, 673 

thread of execution 
interrupts and exceptions effect on, 29 

tightly coupled 
term definition, 1006 

time. See also date; scheduler; $SETIME; time-of-year 
clock; timers; wait states 

Index 

conversion, system services operations, 1120 
initializing, operations, 252 
maintaining, 251, 254 
quantum expiration, operations, 293 
readjusting time-of-year, 256 
recalibrating, 255 
representation, time-of-year clock, 251 
requests, conversion support for, 1120 
setting, 254 
support 

concepts and mechanisms, (chapter) 247 
data structures and mechanisms, 247 
hardware mechanisms, 247 
overview, 247 
system data used in, (table) 248 

system, synchronizing access to with HWCLK 
spinlock, 184 

timekeeping operations, 252 
time-dependent system requests 

EXE$SWTIMINT, operations, 264 
time-of-year clock 

access, handling interprocessor interrupt work 
requests, 1027 

accessing on an SMP system, 1027 
characteristics and use, 251 
resetting by EXE$SETIME, 251 
setting and reading, capabilities use during, 288 
validating contents, 253 

TIMEDWAIT macro 
calibration of variables used with, 932 
CPU-specific variables, 1019 

timeouts. See also timers - requests 
CRB timeout mechanism, EXE$TIMEOUT handling 

of, 265 
deadlock search initiation controlled by, 236 
handling routine, characteristics and use, 584 
1/0 

detected by EXE$TIMEOUT, 265 
measurement initiated by WFIKPCH macro, 635 

queue 
deadlock handling use of lock, 236 
linking locks into, 220 

SMP sanity, disabled by IPL 12 interrupt service 
routine, 68 

spinlock wait, disabled by IPL 12 interrupt service 
routine, 68 

TIMEPROMPTWAIT!arameter (SYSGEN) 
initializing time an date, 253 

timer queue entry. See TQE 
TIMER spinlock 

characteristics and use, 182 
held by EXE$SWTIMINT, 64, 263 
synchronizing timer queue access with, 256 

timers. See also sanity timer mechanism 
functions, overview, 19 
interval 

characteristics and use, 248 
full implementation, description, 249 
interrupt service routine, control flow, 261 
interrupt service routine, interaction with software 

timer interrupt service routine, 64 
interrupt service routine, use of capabilities, 288 

queue, characteristics and TQE field definitions, 256 
requests 

canceling, 259 
distinguishing absolute and relative, 258 
scheduling, 258, 259 
TQE bits that describe, 257 
transition states triggered by, 286 

software 
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timers (continued) 
software (continued) 

interrupt service routine, control flow, 263 
interrupt service routine, overview, 64 
summary, (tablel 248 

system services, control flow, 258 
TIMESCHDL module 

EXE$HWCLKINT 
control flow, 261 
interactions with software timer interrupt service 

routine, 64 
sanity timer mechanism, operations, 1037 

EXE$SWTIMINT 
control flow, 263 
operations, 64 
periodic system routine requests, control flow, 264 
process timer requests, control flow, 263 
scheduled wakeup requests, control flow, 266 

EXE$TIMEOUT 
control flow, 265 
deadlock search initiation by, 236 
fork and wait queue servicing by, 62 
timeoutsearch,265 

TIMEWAIT macro 
calibration of variables used with, 932 
CPU-specific variables, 1019 

TMPMBX (create temporary mailbox privilege). See 
also privileges 

required to create a temporary mailbox, 660 
use by $CREMBX, 660 

TMSCP tape protocol 
SCA protocol, description, 678 

TQCNTJ"ob quota 
charge by $SETIMR, 258 
waiting for, context, 293 

TQE (timer queue entry). See also time; timers -
requests 

ACB included in, 132 
characteristics and use, 64 
definition and use, 256 
due time altered at powerfail recovery, 997 
expiration time 

adjusted by $SETIME, 256 
compared with EXE$GQ_SYSTIME, 263 

handling, TIMER spinlock use in, 182 
hibernating process wakeup, EXE$SWTIMINT, 

control flow, 266 
layout, (figurel 257 
process timer request, EXE$SWTIMINT, control 

flow, 263 
quota 

charged for common event flag cluster creation, 
204 

transition states triggered by, 286 
waiting for, context, 293 

removing before expiration, 259 
summary, 1262 
synchronizing access to queue with HWCLK 

spinlock, 184 
system routine request, EXE$SWTIMINT, 

operations, 264 
TQE$B_EFN field 

definition and use, 258 
TQESB_RMOD field 

definition and use, 257 
TQESB_RQTYPE field 

definition and use, 257 
TQESL_AST field 

definition and use, 257 
TQESL_ASTPRM field 
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definition and use, 257 
TQE$L_ CPUTIM field 

definition and use, 257 
TQESL_PID field 

definition and use, 257 
TQESL_RQPID field 

definition and use, 258 
TQE$L_TQBL field 

definition and use, 257 
TQESL_TQFL field 

definition and use, 257 
TQESQDELTA field 

definition and use, 257 
TQESQTIME field 

definition and use, 257 
TQE$V _ABSOLUTE bit (TQE$B_RQTYPE field) 

definition and use, 257 
TQESV_CHI<_CPUTIM bit (TQESB_RQTYPE field) 

definition and use, 257 
TQESV _REPEAT bit (TQE$B_RQTYPE field) 

definition and use, 257 
TR (transfer request number) 

VAX-11/78x system, 48 
trace fault 

generating, REI actions, 39 
traceback condition handler. S~ also condition 

handlers 
established by image startup, mechanism, 93 

transfer address array 
characteristics, 768 
layout, (figure) 768 

transfer request number. See TR 
transfer vectors 

characteristics and use, 823 
executive 

characteristics and use, 824, 827 
defining, (examplel 828 
nonpaged, list of names, (table) 1164 

miscellaneous vectors area, characteristics and use, 
831 

transitions 
illegal, REI test for, 38 
page, PTE characteristics, 373 
state, private page fault when page is in, 444 

Translate Logical Name system service. See 
$TRNLNM1 $TRNLOG 

translation buffer. See TB 
translation-not-valid exception. See page faults 
traps 

continue signal actions for, 96 
exceptions, SCB vectors for, (tablel 75 

STRNLNM (Translate Logical Name system service) 
operations, 1093 

STRNLOG (Translate Logical Name system service) 
superseded in VMS Version 5, 1100 

TT2$V _ALTYPEAHD characteristic 
specifying type-ahead buffer size for terminals with, 

684 
TT2$V _DISCONNECT characteristic 

virtual terminal handling, 685 
[TTDRVR]TTYFDT module 

TTYSFDTWRITE, operations, 682 
[TTDRVR]TTYSTRSTP module 

TTYSWRTSTARTIO, operations, 683 
[TTDRVR]TTYSUB module 

CLONE_UCB, operations, 685 
UNSOL, operations, 684 

TTY$FDTWRITE routine ([TTDRVR]TTYFDT 
module) 

operations, 682 



TTY$WRTSTARTIO routine ([TTDRVR]TTYSTRSTP 
module) 

operations, 683 
TTY_ALTALARM parameter (SYSGEN) 

specifying when to send XOFF, 684 
TTY_ALTYPAHD parameter (SYSGEN) 

type-ahead buffer size for terminals with TI2$V _ 
ALTYPEAHD characteristics, 684 

TTY_CLASSNAME parameter (SYSGEN) 
terminal class driver use, 681 

TTY_SCANDELTA parameter (SYSGEN) 
modem polling use of, 266 

TTY_TYPAHDSZ parameter (SYSGEN) 
type-ahead buffer size, system default, 684 

type-ahead buffer 
terminal drivers, characteristics, 684 

UAF$Q_DEF_PRIV field 
process privilege mask, use and routines that 

manipulate, (table) 778 
UAF$Q_PRIV field 

process privilege mask, use and routines that 
manipulate, (table) 778 

UAFALTERNATE parameter (SYSGEN) 
creation of logical name SYSUAF, 943 

UCB (unit control block) 
address, CCB field that specifies, 596 
characteristics and use, 579 
cloned, creating, 599 
console 

binding terminal class driver and console port 
. driver, (figure) 691 . 
relation with terminal drivers and console port 

driver, (figure) 681 
FKB as part of, 5 7 
fork lock identification in, 178 
layout and summary, 1262 
location, WCB field that specifies, 516 
mailbox, (figure) 658 

assembled into SYSTEM_PRIMITIVES loadable 
executive image, 657 

linking LNMB with, 1078 
synchronizing access to, 181, 590 

fork IPLs used for, 170 
terminals, queuing TAST to, 153 

UCB$B_FIPL field 
fork IPL or spinlock index, 590 

UCB$B_FLCK field 
fork IPL or spinlock index, 590 
fork lock identification in, 178 

UCB$L_AFFINITY field 
device affinity use of, 1041 

UCB$L_DLCK field 
definition and use, 180 

UCB$L_DUETIM field 
cleared at power recovery, 998 
initialized by IOC$WFIKPCH, 635 

UCB$L_LOGADR field 
definition and use, 658 
logical name data structure address, 657 

UCB$L_MB_MSGQ field 
definition and use, 658 

UCB$L_MB_R_AST field 
definition and use, 658 

UCB$L_MB_ W _AST field 
definition and use, 658 

UCB$L_PID field 
device owner PIO saved in, 591 

UCB$L_STS field 

flag names and meaning, (table) 630 
UCB$L_TL_PHYUCB field 

definition and use, 685 
UCB$L_TT_LOGUCB field 

definition and use, 685 
UCB$V JNT bit (UCB$L_STS field) 

cleared by driver ISR, (example) 638 
power recovery use of, 998 
set by IOC$WFIKPCH, 635 

UCB$V _POWER bit (UCB$L_STS field) 
set at power recovery, 998 

UCB$V _TEMPLATE bit (UCB$L_STS field) 
template devices identified by, 590 

UCB$V _TIM bit (UCB$L_STS field) 
cleared by EXE$IOFORK, 638 
power recovery use of, 998 
set by IOC$WFIKPCH, 635 

UCB$W _BUFQUO field 
definition and use, 658 

UCB$W _INIQUO field 
definition and use, 658 

UCB$W _REFC field 
decremented by 

$DALLOC, 594 
$DASSGN, 604 

· incremented by 
$ALLOC, 591 
$ASSIGN, 591 

UCB$W _STS field. See UCB$L_STS field 
UCBCREDEL module 

IOC$CHKMBXQUOTA, operations, 661 
IOC$CHKUCBQUOTA, operations, 599 
IOC$CLONE_UCB, operations, 599 
IOC$DEBIT_UCB, operations, 599 
IOC$DELETE_UCB, operations, 663 

UIC (user identification code) 
term definition, 23 
UIC-based protection, logical name tables, 

characteristics, 1071 
DIC-specific resources, requesting, 226 

Index 

UIC group number , . 
identifying common event flag cluster with, 204 
lock information access restricted by, 235 
process name qualified by, 320 
resource identifier component, 215 
sharing event flags among processes in a, 202 

$ULKPAG (Uulock Pages &om Memory system service) 
control flow, 505 . 

$ULWSET (Unlock Pages &om Working Set system 
service) 

control flow, 505 
UNIBUS 

adapter, vectoring interrupts through ISR, 45 
device drivers, fork IPL considerations, 63 
directly vectored interrupt service routines, 642 
indirectly vectored interrupt service routines, 643 
interrupts, servicing, 642 
passive releases, VAX architecture mechanism, 43 
powerfail and recovery operations, 1003 

UNIBUS-to-VAXBI adapters 
interrupt servicing, 648 

unintermptible instructions. See also instructions 
characteristics, 163 

UNION statement (SDL) 
characteristics and use, 1162 

uniprocessors 
raising IPL as spinlock action, 169 

unit control block. See UCB 
unit initialization routine 

device driver, invoked by power recovery, 998 

1421 



Index 

UNIVERSAL_ENTRY macro 
defining a vectored universal symbol, 835 

UNIVERSAL SYMBOL macro 
defining a vectored universal symbol, 835 

UNLOCK macro 
generated code example, 188 

Unlock Pages from Memory system service. See 
$ULKPAG 

Unlock Pages from Working Set system service. See 
$ULWSET 

UNSOL routine ([TTDRVR)TTYSUB module) 
operations, 684 

unsolicited input 
job controller notified of, 783 

$UNWIND (Unwind Stack system service) 
condition handler call frame unwinding, operations, 

96, (figure) 97 
default depth, correct use in, 101 

Unwind Stack system service. See $UNWIND 
Update Section system service. See $UPDSEC 
$UPDSEC (Update Section system service) 

control flow, 476 
I/O request descriptions, (table) 463 

user authorization file 
AST quota, PCB$W_ASTCNT initialized from, 131 

user interface 
overview, 11 

user mode. See also access modes 
application synchronization techniques. Consult 

VMS RTL Parallel Processing (PPL$) Manual 
bugchecks, handling operations, 968 
stack pointer, as part of process hardware context, 

306 
user stack. See also stack 

expanding automatically, 409 
overflow, hardware detection mechanism, 82 

user-writable control store 
exception handling with, 31 
interrupt handling with, 31 

user-written system services. See also privileged 
shareable images 

checking for dispatcher systemwide, 126 
process, dispatching, (figure) 123 

valid page. See also memory management; pages; PTE 
term definition, 481 

variable-length lists 
compared with fixed-length lists, 552 
pool 

allocating, (example) 547 
deallocating, 549, (example) 550 
layout, (figure) 546 
listhead locations and allocation type, (table) 546 
nonpaged, initializing, 555 
structure and operations, 546 

uses of, 563 
VAX 6000 series 

configuration, 51 
console subsystem, operations, 892 
hardware layout, (figure) 1012 
initial bootstrap sequence, operations, 892 
interprocessor interrupt vectors, VAX architecture 

mechanisms, 42 
power recovery operations, 991 
SMP support, 1011 
unimplemented instruction emulation support, 77 

VAX 8200 family 
configuration, 51 
console subsystem, operations, 895 
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initial bootstrap sequence 
operations, 895 
programs, (table) 896 

power recovery operations, 989 
VAX 83x0 system 

hardware layout, (figure) 1010 
logical console interface, fork lock use on, 183 
SMP support, 1009 

VAX 86x0 system 
configuration, (figure) 52 
console subsystem, operations, 881 
initial bootstrap sequence 

operations, 881 
programs, (table) 882 

power recovery operations, 989 
VAX 8800 family 

configuration, 53 
console subsystem, operations, 885 
hardware layout, (figure) 1011 
initial bootstrap sequence 

operations, 885 
programs, (table) 886 

power recovery operations, 990 
SMP support, 1010 

VAX 88x0 system 
console subsystem, operations, 883 
initial bootstrap sequence 

operations, 883 
programs, (table) 884 

power recovery operations, 990 
SMP support, 1010 
VMB, operations, 885 

VAX architecture. See also instructions; interrupts; 
PTE 

exceptions defined by, (table) 75 
features used by VMS, overview, 14 

VAX BLISS-32 language 
$ASSUME macro, 1135 
definitions, data structure libraries, 1241 
locating non-public data structure offsets, constants, 

and macro definitions, 1133 
public structures, names format, 1236 

VAX C language 
parallel processing features, run-time support for, 

341 
VAX Calling Standard 

overview, 16 
VAX FORTRAN language 

parallel processing features, run-time support for, 
341 

VAX hardware 
access checking, characteristics and mechanisms, 

362 
address translation, characteristics and mechanisms, 

362 
AST support, 129 
clocks 

characteristics and use, 248 
database, synchronizing access to with HWCLK 

spinlock, 184 
interrupt, IPL level for, 250 
summary, (table) 248 

interval timer, capabilities use of interrupt service 
routine, 288 

protection, overview, 23 
synchronization support, 162 
time support data structures and mechanisms, 247 

VAX MACRO language 
definitions, data structure libraries, 1241 
listings 



VAX MACRO language (continued) 
listings (continued) 

characteristics and use, 1136 
CPU-dependent routines, 1136 

locating non-public data structure offsets, constants, 
and macro definitions, 1133 

public structures 
names format, bit field offsets, 1236 
names format, single bit, 1236 

RMS names format, 1232 
system service names format, 1232 

VAX processors 
designations, (chapter) 1294 
time-of-year clock implementation on, (table) 251 
transferring data between console devices and, 689 
with console microprocessors, system initialization, 

880 
with consoles, boot console commands and 

associated command files, (table) 892 
without console microprocessors, system 

initialization, 892 
without consoles, boot block program operations, 

899 
VAX system 

generic model, (figure) 44 
VAX$EMULATE routine ((EMULAT)VAXEMULAT 

module) 
unimplemented instruction emulation provided by, 

77 
VAX$MODIFY_EXCEPTION routine ([EMU· 

LAT)VAXHANDLR module) 
handling exceptions during instruction emulation, 

85 
instruction emulation use of, 80 

VAX-11/730 system 
configuration, 47 
console subsystem, operations, 890 
initial bootstrap sequence 

bootstrap command files, (table) 891 
operations, 890 
programs, (table) 890 

power recovery operations, 986 
VAX-11/750 system 

configuration, 47 
console subsystem, operations, 897 
initial bootstrap sequence 

operations, 897 
programs, (table) 898 

power recovery operations, 987 
VAX·ll/78x system 

configuration, 48 
console subsystem, operations, 887 
initial bootstrap sequence 

operations, 887 
programs, (table) 888 

power recovery operations, 988 
VAXBI bus. See also buses 

adapters 
interrupt service routines, 646 
interrupt servicing, VAX 8200 family, 649 
interrupt vectors in SCB, 45 

VAX 6000 series, 51 
VAX 8200 family, used as system bus and 1/0 bus, 

52 
VAXcluster systems. See also locks; resources; 

synchronization 
Alias locks, characteristics and use of each, 1321 
booting a member over Ethernet 

obtaining secondary bootstrap, 912 
operations, 912 

Index 

CLUSTER_SERVER process, command file that 
creates, 947 

clusterwide broadcast, 699 
conducting parallel remote process scans on, 323 
connection manager, notification of 

power recovery, 997 
CWPS routine 

extending process control and information system 
services with, 319 

locating processes on VAXcluster nodes, 322 
data structures, synchronizing access to with SCS 

spinlock, 182 
distributed lock manager, IPL$_SYNCH use for 

VAXcluster communication and management, 
171 

EPID use with, 720 
event flags not visible clusterwide, 202 
Files-11 XQP cache server process, command file 

that creates, 947 
$GETJPI support, 332 
identifying a process within, 318 
LKB distribution in, 223 
local node, resource use by, 216 
lock database, characteristics and use, 223 
lock request handling, by resource tree master, 224 
logical name definitions not shared across nodes, 

1068 
mailboxes not suitable for communication across, 

655 
membership, stabilization, RWCLU wait state use 

with, 285 
node search use of CSID, 325 
nodes 

$GETJPI handling, 145 
initializing EXE$GQ_SYSTIME system time, 248 
queuing system-generated ASTs to, 147 
stalling execution on, wait state, 285 

obtaining information about members of a, 1115 
processes included in total memory requirements, 

list of, 1287 
quorum 

adjustment when node is shut down, 95 7 
lost, interprocessor interrupt work request 

handling, 1028 
recalculating with IPL 12 Q command, 63, 69 

resources 
lock management as fundamental synchronization 

technique, 167 
root resources directory, characteristics and use, 

224 
sharing in, 1296 

RSB distribution in, 223 
shutdown, initiated from OPCCRASH, 957 
synchronizing 

access to cluster-available devices, 581, 590 
resources, lock management role in, 223 

system management server process, command file 
that creates, 948 

time 
and date initializing, 253 
setting coordination, 1298 

wildcard request handling, 326 
VAXEMUL image 

loading, operations, 85 7 
VAXstation 35x0 system 

configuration, 50 
console subsystem, operations, 879 
hardware layout, (figure) 1012 
interprocessor interrupt vectors, VAX architecture 

mechanisms, 42 
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VAXstation 35x0 system (continued) 
power recovery operations, 993 
SMP support, 1012 
VMB 

operations, 879 
register input, (table) 880 

VAXVMSSYS.PAR file 
default source of SYSGEN parameters, 950 

VBN (virtual block number) 
converting to LBN, 622 
section file, PSTE field that specifies, 3 77 
term definition, 621 

VCB (volume control block) 
ACP creation of, 585 

VECTOR linker option 
use, 833 

vectored universal symbols 
definition, 835, (example) 836, 1235 
locating, 1151 
values, 833 
ways to create, 835 

vectors. See also base image; condition handling; 
executive transfer vectors; interrupts - vectors; 
SCB; transfer vectors 

base image transfer, spinlock routines invoked 
through, 17 4 

exception 
01 low-order bits value, meaning, 31 
format and use, 30 

interrupt 
format and use, 30 
how defined, 40 

miscellaneous vectors area, base·image, 831 
primary exception, searching for condition handlers 

with, 88 
privileged library, structure, (figure) 124 
SCB 

exception, (table) 75 
format, (figure) 30 
IEI microcode testing to determine stack for, 

interrupt servicing, 34 
nexus number use in identifying, 45 
unused, meaning of contents, 44 

secondary exception, searching for condition handlers 
with, 88 

system service. See system service vectors 
version numbers 

executive, characteristics and use, 851 
victim selection 

in deadlock handling operations, conversion 
deadlocks, 243 

VIRTCONS spinlock 
characteristics and use, 184 

virtual address 
components, description, (figure) 362 
process, translating operations, 364 
system, translating, 363, (figure) 364 
translation 

caching, 1029 
PFN use by, 351 

virtual address space 
characteristics and use, 352 
creating, 353 
data structures, overview, 354 
deleting, 427 
demand zero, creating, 407 
overview, 5 
PO layout, (figure) 7 
Pl layout, (figure) 5 
process 
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AST as mechanism for accessing by executive, 133 
creating, 406 
limit on creating, 403 

system 
components and factors that affect size, (table) 1275 
initial layout, (figure) 1274 
size calculations, 1274 

term definition, 350 
virtual block number. See VBN 
virtual console 

synchronizing access to with VIRTCONS spinlock, 
184 

virtual 1/0 
devices, mailboxes as, 655 
segmenting 

by FDT routines, 621 
concepts and control flow, 620 

virtual memory. See also address space; memory 
management; pages; PTE; virtual pages 

address space, data structures, overview, 354 
characteristics and mechanisms, overview, 350 
original design, characteristics and motivation, 357 
overview, 349 
term definition, 350 

virtual pages 
associated with a page file, PHD field that specifies, 

461 
characteristics, 351 
deleting, 427 

resources associated with, 428 
locking into memory, operations, 504 
protection code for, PTE bits that specify, 363 
protection of, changing, 432 
purging from working set, operations, 506 
specifying type with PFN TYPE array, 383 
systemwide cache of recently used, modified and 

free page lists used as, 355 
valid, conditions that invalidate, 436 

virtual terminals 
pointer to physical terminal UCB, 685 
support, characteristics, 684 

VIRTUALPAGECNT parameter (SYSGEN) 
maximum number of PTEs, 371 
process address space constrained by, 354 
size of process page tables, 12 72 

VMB (primary bootstrap program) 
bootstrap, control flow, 902 
concepts and mechanisms, overview, 900 
environment, 902 

powerfail restart environment compared with, 995 
forward and backward compatibility with VMS, 902 
functions for VMS bootstrap, 900 
maintaining compatibility with by SYSBOOT, 917 
MicroVAX II operations, 869 
MicroVAX 2000 and full VMBs compared, 871 
MicroVAX 3100 and full VMBs compared, 874 
MicroVAX 3200/3500/3600 and full VMBs compared, 

877 
operations, 902 

bootstrap control flags, (table) 902 
overview, 862 
register input, (table) 902 

physical memory layouts, (figure) 902 
VMS executive. See executive 
VMS Librarian Utility 

locating data structure offset and constant definitions 
with, 1134 

VMS listings 
CD-ROM, 1129 
DCL commands, locating, 1131 



VMS listings (continued) 
files, locating, 1130 
kits, components, 1129 
magnetic tape, 1129 
microfiche listing structure, 1130 
online listing structure, 1129 
structure, 1129 

VMS naming conventions, (chapter) 1232 
VMS operating system 

address space, characteristics and use, 352 
components 

overview, 8 
that handle process creation and startup, 782 

functions provided by, overview, 9 
initialization, concepts and mechanisms, (chapter) 

923 
kernel functions, overview, 9 
layered design, (figure) 9 
listing files, using, (chapter) 1129 
map files, using, (chapter) 1129 
physical memory requirements, 1284 
shutdown, concepts and mechanisms, (chapter) 923 
system overview, concepts and mechanisms, 

(chapter) 3 
VAX architecture features used by, 14 

VMS$BASEENVIRON-050_SMISERVER.COM 
command file 

operations, 948 
VMSSBASEENVIRON-050_ VMS.COM command file 

operations, 947 
VMS$CONFIG-050_AUDIT_SERVER.COM command 

file 
operations, 947 

VMS$CONFIG-050_CACHE_SERVER.COM command 
file 

operations, 947 
VMS$CONFIG-050_CSP.COM command file 

operations, 947 
VMS$CONFIG-050_ERRFMT.COM command file 

operations, 947 
VMS$CONFIG-050JOBCTL.COM command file 

operations, 947 
VMS$CONFIG-050_LMF.COM command file 

operations, 947 
VMS$CONFIG-050_0PCOM.COM command file 

operations, 947 
VMSSCONFIG-050_ VMS.COM command file 

operations, 947 
VMS$INITIAL-050_LIB.COM command fl.le 

operations, 947 
VMS$INITIAL-050_ VMS.COM command file 

operations, 946 
VMSSLAYERED file 

contents, 945 
VMS$LPBEGIN-050_STARTUP.COM command file 

operations, 948 
VMSSLPBEGIN-050_ VMS.COM command file 

operations, 948 
VMS$PHASES file 

contents, 945 
VMSSSYSFILES-050_ VMS.COM command fl.le 

operations, 947 
VMS$VMS file 

contents, 945 
(VMSLIB] facility 

SDL files in, 1133 
(VMSLIB]STARDEFxx.SDL file. See STARDEFxx.SDL 

file 
(VMSLIB)STARMISC.MAR file 

contents, 1135 

(VMSLIB)UTLDEFM.MAR file 
contents, 1135 

Volume Allocation lock 
characteristics and use, 1304 

Volume Blocking lock 
characteristics and use, 1305 

volume control block. See VCB 
volume shadowing 

Index 

lock use by, characteristics and use of each lock, 
1302 

$WAIT (Wait RMS service) 
SYNCH$RMS_ WAIT synchronization routine, 

control flow, 119 
wait duration 

as a condition for outswap and swapper trimming 
selection, 526 

Wait for Logical AND of Event Flags system service. 
See $WFLAND 

Wait for Logical OR of Event Flags system service. See 
$WFLOR 

Wait for Single Event Flag system service. See 
$WAITFR 

wait queue header. See WQH 
wait queues 

common event flags, (figure) 204 
event flag cluster, CEB fields that define, 205 
lock, removing LKBs from, 231 
process state 

CEF, characteristics and use, 273 
characteristics and use, 271 

resource, listhead location in RSB, 217 
Wait RMS service. See $WAIT 
wait states. See also event flags; 1/0; scheduler; 

swapper; synchronization 
characteristics and transitions, 282 
collided page wait. See COLPG 
common event flag wait. See CEF 
context for, 292 
event flag wait 

coordinating with AST delivery, 118 
PCB fields that relate to, 206 
placing processes into, 208 
$WAITFR handling requested by SYNCH$RMS_ 

WAIT, 119 
free page wait. See FPB 
hibernate outswapped wait. See HIBO 
hibernate wait. See HIB 
job quota miscellaneous. See job quota; MWAIT 
local event flag outswapped wait. See LEFO 
local event flag wait. See LEF 
memory management 

characteristics and transitions, 283 
context for, 292 

miscellaneous wait. See MWAIT 
mutex wait. See MUTEX wait state 
page fault wait. See PFW 
process 

characteristics during page deletion, 427 
paths leading to, (figure) 290 
placing a current into, 290 

system. See resource wait 
transition to COM state, control flow, 299 
volunt~, transition descriptions, 282 

$WAITFR (Wait for Single Event Flag system 
service) 

process state change actions, 279, 282 
requesting event flag wait, control flow, 209 
waiting for event flag during RMS processing, 119 
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$WAITFR (Wait for Single Event Flag system 
service) (continued) 

waiting for event flag in a synchronous system 
service, 121 

$WAKE (Wake system service) 
control flow, 335 
process state change actions, 282 

wakeup mechanisms 
fork and wait, characteristics and use, 62 

wakeup requests 
canceling, 261 
scheduled, control flow, 266 
sched~, distinguished from timer requests, 259 

warm-start 
clearing, PR _TXDB use for, 690 

WCB (window control block) 
address 

CCB field that specifies, 596 
PSTE field that specifies, 377 

characteristics and use, 585 
KFE field that specifies, 7 44 
layout and summary, 1262 
location, PFL field that specifies, 516 
synchronizing, with FILSYS spinlock, 181 
VBN to LBN conversion, use of information in, 622 

WCB$L_ORGUCB field 
definition and use, 516 

WFIKPCH macro 
waiting for device interrupt, 635 

$WFLAND (Wait for Logical AND of Event Flags 
system service) 

AST queuing constraints on use of, 211 
compared with $WFLOR, 209 
process state change actions, 282 
requesting event flag wait, control flow, 209 

$WFLOR (Wait for Logical OR of Event Flags system 
service) 

compared with $WFLAND, 209 
process state change actions, 282 
requesting event flag wait, control flow, 209 

wildcards 
$GETJPI support of, 334 
$GETSYI support for, 1116 
indicator, EPID field negative value used as, 320 
processing 

$GETQUI support for, 1106 
$PROCESS_SCAN distinguished from $GETJPI, 

323 
requests, VAXcluster system handling, 326 

window control block. See WCB 
window tum 

performed by file system to obtain mapping 
information, 621 

word tearing 
characteristics, 162 

work requests 
bits, use with interprocessor interrupts, 1023 
SMP 

nonurgent, 1022 
urgent, 1022 

working set. See also memory management 
breakthrough message locked into, 697 
components of, 482 
conditions that remove a page from, 436 
limit. See working set limit 
locking virtual pages into, operations, 502 
number of global pages in, PCB field that specifies, 

366 
number of process-private pages in, PCB field that 

specifies, 366 
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process, locking pages into, operations, 1146 
purging virtual pages from, operations, 506 
quota 

virtual memory design component, operations 
using, 358 

replacement algorithm 
compared with other virtual memory architectures, 

358 
limitations of, 358 

shrinking 
term definition, 501 

size 
affected by image reset routine, 501 
automatic working set limit adjustment altering 

of, 360 
growth above working set quota, 492 

swapper. See swapper 
system, locking pages into, operations, 1145 
term definition, 481 
trimming, transitions triggered by, 283 

working set limit 
adjusting 

$ADJWSL operations, 496 
automatic, operations, 498 
upper limit, 496 

decreasing, 489 
MMG$SHRINKWS, operations, 497 

disabling automatic adjustment, 498 
growth above working set quota, 492 
increasing, 48 7 
initial, 48 7 

working set list. See also memory management; page 
faults; swapper; system working set; working 
set; working set limit; WSLE 

capacity 
decreasing, 490 
increasing, 487, 497 
initial, 487 
parameters used to calculate, 486 

data structure, characteristics and field definitions, 
482 

dynamic region, 486, 490 
dynamics, concepts and mechanisms, (chapter) 481 
empty WSLE usability checking, 492 
entry size calculation, 12.79 
expansion, constrained by working set quota, 487 
index, PFN WSLX array use, 386 
keeping a page in, 506 
limit, value stored in PHD$L_ WSSIZE, 486 
limits, quotas description, (table) 486 
maximum size, SYSGEN parameter that specifies, 

376 
pages not appearing in, 482 
parameter comparison, (figure) 486 
PHD component, 367 

overview, 373 
PHD fields that describe, (figure) 483 
physical memory pages described by, 355 
process control capabilities, 359 
PST kept adjacent to, reasons for, 376 
purpose, 481 
rebuilding, after inswap, 538 
regions 

description, 483 
dynamic region, description, 486, 487 
locked by user request region, description, 485 
permanently locked region, description, 485 

removing a non-copy-on-reference page from, 442 
replacement algorithm, concepts and operations, 491 
scanning 



working set list (continued) 
scanning (continued) 

during process body outswap, (table) 529 
for empty WSLE, control flow, 491 

size 
calculation, 1272 
constraint on process address space size, 406 
decreasing, 489 
parameters and dynamics, 486 

swapper use of, 513 
SYSGEN parameters that affect, (table) 486 
updating data structures related to, page fault 

handling, 439 
working set list entry. See WSLE 
WORKING_SET_MANAGEMENT initialization 

routine 
operations, 937 

WORLD (affect other processes in world privilege). See 
also privileges 

$BRKTHRU use of, 698, 700 
$GETLKI use of, 235 
lock information access permitted by, 235 
required by EXE$NAMPID, 321 
use, 23 

WQH (wait queue header) 
definition and use, 271 
layout, (figure) 271 

WQH$W _WQCNT field 
process state wait queue use of, 273 
use in SCH$RSE, control flow, 299, 301 

WQH$W _ WQSTATE field 
process state wait queue use of, 271 

writable data cells 
in loadable executive images, 835 

write buffer 
VAX 8800 and VAX 88x0 systems, 1010 

write in progress page location code 
meaning, 382 

write-through cache 
effect of interlocked bit testing on systems with, 190 

Writeboot Utility 
writing boot block of system disk, 899 

WRITECHECKIO routine (MBDRIVER module) 
writing to mailboxes( validation, control flow, 665 

WRITEDONE routine WRTMFYPAG module) 
modified page write completion KAST, control flow, 

471 
WRITESYSPARAMS parameter (SYSGEN) 

recording SYSGEN parameters, 946, 953 
WRTMFYPAG module 

MMG$PURGEMPL, operations, 467 
MMG$WRTMFYPAG 

control flow, 469 
operations, 467 

MPW$INIT, operations, 402 
WRITEDONE, control flow, 471 

WSDEC parameter (SYSGEN) 
use in automatic working set limit adjustment, 500 

WSINC parameter (SYSGEN) 
use in automatic working set limit adjustment, 500 

WSLE (working set list entry) 
characteristics and field definitions, (figure) 482 
control bits, meaning, (table) 482 
empty 

checking usability, 492 
scanning for, control flow, 491 

locked, count array characteristics, 378 
reusing, control flow, 494 
skipping, replacement candidates, 494 
valid, count array characteristics, 378 

Index 

WSMAX parameter (SYSGEN) 
constraint on nonpaged pool expansion, 560 
PST use affected by, 487 
swapper 1/0 map size, 514 
use in process creation, 728 
working set list size, 376, 487, 1272 

XDELTA. Consult VMS Delta/XDelta Utility Manual 
benign state use, operations, 1032 
entering 

through IPL 12 interrupt service routine X 
command, 70 

through known breakpoint, 67 
EXE$INIT use of, 928 
IPL 14 interrupt service routine, overview, 67 
linked with SYSBOOT_XDELTA, 916 
linked with VMB, 902 
not linked with SYSBOOT, 916 

XDT$CPU_WAIT routine ([DELTA]XDELTA module) 
operations, 1033 

XDT$GL_BENIGN_CPUS cell 
meaning, 1014 

XDT$GW_INTERLOCK cell 
use by XDELTA, 1032 

XDT$GW_OWNER_ID cell 
use by XDELTA, 1033 

XMI (high-speed interconnect) 
VAX 6000 series, configuration, 51 

XQP (Files-11 Extended QIO Processor). See also ACP; 
file system 

kernel mode AST thread, 147 
lock use by, characteristics and use, 1304 
passing a request to, 632 
PCB$B_DPC incremented by, 132 
synchronizing with kernel mode process suspension, 

147 
system-owned locks, characteristics and use, 234 
term definition, 11 

$xyzDEF macros 
data structure offsets defined by, 1134 
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Books from Digital Press 

These books may be purchased from technical reference bookstores or by calling 
1-800-DIGITAL. For a copy of the latest catalog, contact Digital Press, 12 Crosby 
Drive, Bedford, Massachusetts 01730 (617-276-1536). 

VAX/VMS: Writing Real Programs in DCL 

PAUL C. ANAGNOSTOPOULOS 

Taking up where the VAX/VMS documentation leaves off, this book describes how 
to write applications using Digital Command Language as a general purpose program­
ming language. EY-Cl68E-DP. 

X Window System Toolkit 

The Complete Programmer's Guide and Specification 

PAUL J. ASENTE AND RALPH R. SWICK 

Written by the X Toolkit's leading designers and reflecting the MIT X Consortium 
toolkit standard, this book includes both a programmer's guide with extensive 
examples and the detailed specification. EY-E757E-DP. 

UNIX for VMS Users 

PHILIP E. BOURNE 

The only book on UNIX for VMS users, this volume is invaluable for those making 
the transition between the two operating systems. It does not assume too high or low 
a level of knowledge and uses prior experience as a teaching tool. EY-Cl 77E-DP. 

VAX Architecture Reference Manual, Second Edition 

EDITED BY RICHARD A. BRUNNER 

Covering every VAX instruction addressing mode, instruction, and register, this 
reference is essential for the computer professional using any VAX from the 
MicroVAX II to the VAX 9000. EY-F576E-DP. 

Software Design Techniques for Large Ada Systems 

WILLIAM E. BYRNE 

Drawing on the author's practical experience, this book introduces design strategies 
for controlling the complexity of large computer programs. EY-E761E-DP. 



Information Technology Standardization 

Theory, Organizations and Processes 

CARL F. CARGILL 

Explaining the need for and the philosophy behind standards in the telecommunica­
tions industry, Cargill covers existing international, national, and regional standards, 
the organizations and processes that set them, and future developments. EY-Cl67E­
DP. 

Digital Guide to Developing International Software 

CORPORATE USER PUBLICATIONS GROUP 

An approach to simplifying the adaptation of software for local markets, this book 
introduces the packaging and design guidelines recommended by Digital for products 
developed for overseas markets. EY-F577E-DP. 

The Digital Guide to Software Development 

CORPORATE USER PuBLICATIONS GROUP 

The first published description of the methodology and tools used by Digital to 
develop software products, this guide offers an inside look at practices based on 
Digital's phase-review process. EY-Cl 78E-DP. 

Kermit: A File Transfer Protocol 

FRANK DA CRUZ 

From instructions for basic use to a detailed description of the Kermit protocol, this 
book demonstrates how to transfer information between diverse computer systems 
and data communications environments. EY-6705E-DP. 

Writing VAX/VMS Applications Using Pascal 

THEO DE KLERK 

Programmers will appreciate this book's methodology for producing high-quality 
applications by focusing on the most important aspects of VMS. It provides numerous 
working program examples and coverage of the VAX calling standard, System 
Services and Run Time Library routines and their implementations. Available in 
May 1991. EY-F592E-DP. 

Using MS-DOS Kermit 

Connecting Your PC to the Electronic World 

CHRISTINE M. GIANONE 

This clearly written book describes how to use Kermit, the popular communications 
protocol and terminal emulator. It includes a 5.25-inch diskette with MS-DOS 
Kermit, Version 3. EY-C204E-DP. 



RDb/VMS: A Comprehensive Guide 

LILIAN HOBBS AND KEN ENGLAND 

The authors have drawn on their extensive experience to introduce and discuss the 
functionality of this relational database product. Available in May 1991. 
EY-H873E-DP. 

The User's Directory of Computer Networks 

EDITED BY TRACY L. LAQUEY 

This comprehensive guide to academic and research networks offers descriptions, 
user information, maps, site contact names and addresses, host lists and member 
organizations for more than 50 national and international networks. EY-C200E-DP. 

Computer Programming and Architecture 

The VAX, Second Edition 

HENRY M. LEVY AND RICHARD H. EcKHousE, JR. 

The authors' unique systems approach uses the VAX to teach assembly language 
programming and computer architecture. They cover higher-level concepts and other 
architectures such as RISC and the Intel 80386 for comparison. EY-6740E-DP. 

VMS File System Internals 

KIRBY McCoY 

This comprehensive study of the VMS file system examines the components, 
interfaces, and basic synchronization mechanisms needed to store and manage files 
and information. EY-F575E-DP. 

Technical Aspects of Data Communication, Third Edition 

JoHN E. McNAMARA 

This standard reference effectively covers the spectrum of data communication 
technology, from a simple UART asynchronous interface through more intricate 
system design problems. EY-8262E-DP. 

Operating Systems Concepts 

A Practical Approach Using VAX/VMS 

DAVID DONALD MILLER 

Using a hands-on approach, this practical reference illustrates general principles with 
the VAX/VMS operating system. Numerous diagrams, exercises, and other learning 
aids make this volume ideal for both professional and classroom use. Available in 
May 1991. EY-F590E-DP. 



The VMS User's Guide 

JAMES F. PETERS AND PATRICK HoLMAY 

Up to date with VMS Version 5.0, this volume provides hands-on experience in 
customizing a working environment through step-by-step instructions, exercises, and 
review questions. EY-6739E-DP. 

The Matrix' 

Computer Networks and Conferencing Systems Worldwide 

JOHN S. QUARTERMAN 

Even its users do not know how far the matrix of society and technology extends. 
This exhaustive survey of computer networking in the U.S. and worldwide maps the 
limits today. EY-Cl 76E-DP. 

X and Motif Quick Reference Guide 

RANDI ROST 

Based on the latest versions of the X Window System and OSF/Motif software, this 
convenient one-volume reference combines all the most pertinent information on 
Xlib, X Toolkit Intrinsics, and the Motif programming libraries. EY-E758E-DP. 

X Window System 

The Complete Reference to Xlib, Protocol, ICCCM, XLFD: Second Edition 

ROBERT w. SCHEIFLER AND JAMES GETTYS 

Written by the major developers of the X Window System and updated to Version 11, 
Release 4, the four parts of this comprehensive volume conform to the standard 
specifications produced by the MIT Consortium. EY-E755E-DP. 

Common Lisp 

The Language: Second Edition 

GUY 1. STEELE JR. 

Reflecting the latest changes to the Common Lisp programming language, this 
edition of a definitive reference bridges the gap between the new ANSI standards and 
the language described in the first edition. EY-Cl87E-DP. 

Working with WPS-PLUS 

CHARLOTTE TEMPLE AND DOLORES CORDEIRO 

A how-to manual for readers with an understanding of word processing, this book 
offers helpful hints and advice on advanced techniques. EY-Cl98E-DP. 



Digital Technical Journal 

This topical quarterly ;ournal is devoted to the technologies used in the design, 
manufacture, and maintenance of Digital's products. Individual copies may be 
purchased by calling 1-800-DIGITAL. Subscription information may be obtained 
from: Digital Technical f ournal, Digital Equipment Corporation, 146 Main Street, 
Maynard, MA 01754-2571. Telephone: (508) 493-2894. FAX: (508) 493-3253. 
NEARNET: DTf@CRL.DEC.COM. 

Fiber Distributed Data Interface. Vol. 3, No. 2. Available April 1991. EY-H876E­
DP. 

Transaction Processing, Databases, and Fault-tolerant Systems. Vol. 3, No. 1. 

1991. EY-F588E-DP. 

VAX 9000 System. Vol. 2, No. 4. 1990. EY-E762E-DP. 

DECwindows Program. Vol. 2, No. 3. 1990. EY-E756E-DP. 

VAX 6000 Model 400 System. Vol. 2, No. 2. 1990. EY-C197E-DP. 

Compound Document Architecture. Vol. 2, No. 1. 1990. EY-C196E-DP. 

Distributed Systems. Vol. 1, No. 9. 1989. EY-C179E-DP. 

Storage Technology. Vol. 1, No. 8. 1989. EY-C166E-DP. 

CVAX-based Systems. Vol. 1, No. 7. 1988. EY-6742E-DP. 

Software Productivity Tools. Vol. 1, No. 6. 1988. EY-8259E-DP. 

VAXcluster Systems. Vol. 1, No. 5. 1987. EY-8258E-DP. 
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MicroVAX II System. Vol. 1, No. 2. 1986. EY-3474E-DP. 

VAX 8600 Processor. Vol. 1, No. 1. 1985. EY-3435E-DP. 




	000000
	000001
	000001
	000002
	000003
	000004
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	000015
	000016
	000017
	000018
	000019
	000020
	000021
	000022
	000023
	000024
	000025
	000026
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0203
	0204
	0205
	0206
	0207
	0208
	0209
	0210
	0211
	0212
	0213
	0214
	0215
	0216
	0217
	0218
	0219
	0220
	0221
	0222
	0223
	0224
	0225
	0226
	0227
	0228
	0229
	0230
	0231
	0232
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0240
	0241
	0242
	0243
	0244
	0245
	0246
	0247
	0248
	0249
	0250
	0251
	0252
	0253
	0254
	0255
	0256
	0257
	0258
	0259
	0260
	0261
	0262
	0263
	0264
	0265
	0266
	0267
	0268
	0269
	0270
	0271
	0272
	0273
	0274
	0275
	0276
	0277
	0278
	0279
	0280
	0281
	0282
	0283
	0284
	0285
	0286
	0287
	0288
	0289
	0290
	0291
	0292
	0293
	0294
	0295
	0296
	0297
	0298
	0299
	0300
	0301
	0302
	0303
	0304
	0305
	0306
	0307
	0308
	0309
	0310
	0311
	0312
	0313
	0314
	0315
	0316
	0317
	0318
	0319
	0320
	0321
	0322
	0323
	0324
	0325
	0326
	0327
	0328
	0329
	0330
	0331
	0332
	0333
	0334
	0335
	0336
	0337
	0338
	0339
	0340
	0341
	0342
	0343
	0344
	0345
	0346
	0347
	0348
	0349
	0350
	0351
	0352
	0353
	0354
	0355
	0356
	0357
	0358
	0359
	0360
	0361
	0362
	0363
	0364
	0365
	0366
	0367
	0368
	0369
	0370
	0371
	0372
	0373
	0374
	0375
	0376
	0377
	0378
	0379
	0380
	0381
	0382
	0383
	0384
	0385
	0386
	0387
	0388
	0389
	0390
	0391
	0392
	0393
	0394
	0395
	0396
	0397
	0398
	0399
	0400
	0401
	0402
	0403
	0404
	0405
	0406
	0407
	0408
	0409
	0410
	0411
	0412
	0413
	0414
	0415
	0416
	0417
	0418
	0419
	0420
	0421
	0422
	0423
	0424
	0425
	0426
	0427
	0428
	0429
	0430
	0431
	0432
	0433
	0434
	0435
	0436
	0437
	0438
	0439
	0440
	0441
	0442
	0443
	0444
	0445
	0446
	0447
	0448
	0449
	0450
	0451
	0452
	0453
	0454
	0455
	0456
	0457
	0458
	0459
	0460
	0461
	0462
	0463
	0464
	0465
	0466
	0467
	0468
	0469
	0470
	0471
	0472
	0473
	0474
	0475
	0476
	0477
	0478
	0479
	0480
	0481
	0482
	0483
	0484
	0485
	0486
	0487
	0488
	0489
	0490
	0491
	0492
	0493
	0494
	0495
	0496
	0497
	0498
	0499
	0500
	0501
	0502
	0503
	0504
	0505
	0506
	0507
	0508
	0509
	0510
	0511
	0512
	0513
	0514
	0515
	0516
	0517
	0518
	0519
	0520
	0521
	0522
	0523
	0524
	0525
	0526
	0527
	0528
	0529
	0530
	0531
	0532
	0533
	0534
	0535
	0536
	0537
	0538
	0539
	0540
	0541
	0542
	0543
	0544
	0545
	0546
	0547
	0548
	0549
	0550
	0551
	0552
	0553
	0554
	0555
	0556
	0557
	0558
	0559
	0560
	0561
	0562
	0563
	0564
	0565
	0566
	0567
	0568
	0569
	0570
	0571
	0572
	0573
	0574
	0575
	0576
	0577
	0578
	0579
	0580
	0581
	0582
	0583
	0584
	0585
	0586
	0587
	0588
	0589
	0590
	0591
	0592
	0593
	0594
	0595
	0596
	0597
	0598
	0599
	0600
	0601
	0602
	0603
	0604
	0605
	0606
	0607
	0608
	0609
	0610
	0611
	0612
	0613
	0614
	0615
	0616
	0617
	0618
	0619
	0620
	0621
	0622
	0623
	0624
	0625
	0626
	0627
	0628
	0629
	0630
	0631
	0632
	0633
	0634
	0635
	0636
	0637
	0638
	0639
	0640
	0641
	0642
	0643
	0644
	0645
	0646
	0647
	0648
	0649
	0650
	0651
	0652
	0653
	0654
	0655
	0656
	0657
	0658
	0659
	0660
	0661
	0662
	0663
	0664
	0665
	0666
	0667
	0668
	0669
	0670
	0671
	0672
	0673
	0674
	0675
	0676
	0677
	0678
	0679
	0680
	0681
	0682
	0683
	0684
	0685
	0686
	0687
	0688
	0689
	0690
	0691
	0692
	0693
	0694
	0695
	0696
	0697
	0698
	0699
	0700
	0701
	0702
	0703
	0704
	0705
	0706
	0707
	0708
	0709
	0710
	0711
	0712
	0713
	0714
	0715
	0716
	0717
	0718
	0719
	0720
	0721
	0722
	0723
	0724
	0725
	0726
	0727
	0728
	0729
	0730
	0731
	0732
	0733
	0734
	0735
	0736
	0737
	0738
	0739
	0740
	0741
	0742
	0743
	0744
	0745
	0746
	0747
	0748
	0749
	0750
	0751
	0752
	0753
	0754
	0755
	0756
	0757
	0758
	0759
	0760
	0761
	0762
	0763
	0764
	0765
	0766
	0767
	0768
	0769
	0770
	0771
	0772
	0773
	0774
	0775
	0776
	0777
	0778
	0779
	0780
	0781
	0782
	0783
	0784
	0785
	0786
	0787
	0788
	0789
	0790
	0791
	0792
	0793
	0794
	0795
	0796
	0797
	0798
	0799
	0800
	0801
	0802
	0803
	0804
	0805
	0806
	0807
	0808
	0809
	0810
	0811
	0812
	0813
	0814
	0815
	0816
	0817
	0818
	0819
	0820
	0821
	0822
	0823
	0824
	0825
	0826
	0827
	0828
	0829
	0830
	0831
	0832
	0833
	0834
	0835
	0836
	0837
	0838
	0839
	0840
	0841
	0842
	0843
	0844
	0845
	0846
	0847
	0848
	0849
	0850
	0851
	0852
	0853
	0854
	0855
	0856
	0857
	0858
	0859
	0860
	0861
	0862
	0863
	0864
	0865
	0866
	0867
	0868
	0869
	0870
	0871
	0872
	0873
	0874
	0875
	0876
	0877
	0878
	0879
	0880
	0881
	0882
	0883
	0884
	0885
	0886
	0887
	0888
	0889
	0890
	0891
	0892
	0893
	0894
	0895
	0896
	0897
	0898
	0899
	0900
	0901
	0902
	0903
	0904
	0905
	0906
	0907
	0908
	0909
	0910
	0911
	0912
	0913
	0914
	0915
	0916
	0917
	0918
	0919
	0920
	0921
	0922
	0923
	0924
	0925
	0926
	0927
	0928
	0929
	0930
	0931
	0932
	0933
	0934
	0935
	0936
	0937
	0938
	0939
	0940
	0941
	0942
	0943
	0944
	0945
	0946
	0947
	0948
	0949
	0950
	0951
	0952
	0953
	0954
	0955
	0956
	0957
	0958
	0959
	0960
	0961
	0962
	0963
	0964
	0965
	0966
	0967
	0968
	0969
	0970
	0971
	0972
	0973
	0974
	0975
	0976
	0977
	0978
	0979
	0980
	0981
	0982
	0983
	0984
	0985
	0986
	0987
	0988
	0989
	0990
	0991
	0992
	0993
	0994
	0995
	0996
	0997
	0998
	0999
	1000
	1001
	1002
	1003
	1004
	1005
	1006
	1007
	1008
	1009
	1010
	1011
	1012
	1013
	1014
	1015
	1016
	1017
	1018
	1019
	1020
	1021
	1022
	1023
	1024
	1025
	1026
	1027
	1028
	1029
	1030
	1031
	1032
	1033
	1034
	1035
	1036
	1037
	1038
	1039
	1040
	1041
	1042
	1043
	1044
	1045
	1046
	1047
	1048
	1049
	1050
	1051
	1052
	1053
	1054
	1055
	1056
	1057
	1058
	1059
	1060
	1061
	1062
	1063
	1064
	1065
	1066
	1067
	1068
	1069
	1070
	1071
	1072
	1073
	1074
	1075
	1076
	1077
	1078
	1079
	1080
	1081
	1082
	1083
	1084
	1085
	1086
	1087
	1088
	1089
	1090
	1091
	1092
	1093
	1094
	1095
	1096
	1097
	1098
	1099
	1100
	1101
	1102
	1103
	1104
	1105
	1106
	1107
	1108
	1109
	1110
	1111
	1112
	1113
	1114
	1115
	1116
	1117
	1118
	1119
	1120
	1121
	1122
	1123
	1124
	1125
	1126
	1127
	1128
	1129
	1130
	1131
	1132
	1133
	1134
	1135
	1136
	1137
	1138
	1139
	1140
	1141
	1142
	1143
	1144
	1145
	1146
	1147
	1148
	1149
	1150
	1151
	1152
	1153
	1154
	1155
	1156
	1157
	1158
	1159
	1160
	1161
	1162
	1163
	1164
	1165
	1166
	1167
	1168
	1169
	1170
	1171
	1172
	1173
	1174
	1175
	1176
	1177
	1178
	1179
	1180
	1181
	1182
	1183
	1184
	1185
	1186
	1187
	1188
	1189
	1190
	1191
	1192
	1193
	1194
	1195
	1196
	1197
	1198
	1199
	1200
	1201
	1202
	1203
	1204
	1205
	1206
	1207
	1208
	1209
	1210
	1211
	1212
	1213
	1214
	1215
	1216
	1217
	1218
	1219
	1220
	1221
	1222
	1223
	1224
	1225
	1226
	1227
	1228
	1229
	1230
	1231
	1232
	1233
	1234
	1235
	1236
	1237
	1238
	1239
	1240
	1241
	1242
	1243
	1244
	1245
	1246
	1247
	1248
	1249
	1250
	1251
	1252
	1253
	1254
	1255
	1256
	1257
	1258
	1259
	1260
	1261
	1262
	1263
	1264
	1265
	1266
	1267
	1268
	1269
	1270
	1271
	1272
	1273
	1274
	1275
	1276
	1277
	1278
	1279
	1280
	1281
	1282
	1283
	1284
	1285
	1286
	1287
	1288
	1289
	1290
	1291
	1292
	1293
	1294
	1295
	1296
	1297
	1298
	1299
	1300
	1301
	1302
	1303
	1304
	1305
	1306
	1307
	1308
	1309
	1310
	1311
	1312
	1313
	1314
	1315
	1316
	1317
	1318
	1319
	1320
	1321
	1322
	1323
	1324
	1325
	1326
	1327
	1328
	1329
	1330
	1331
	1332
	1333
	1334
	1335
	1336
	1337
	1338
	1339
	1340
	1341
	1342
	1343
	1344
	1345
	1346
	1347
	1348
	1349
	1350
	1351
	1352
	1353
	1354
	1355
	1356
	1357
	1358
	1359
	1360
	1361
	1362
	1363
	1364
	1365
	1366
	1367
	1368
	1369
	1370
	1371
	1372
	1373
	1374
	1375
	1376
	1377
	1378
	1379
	1380
	1381
	1382
	1383
	1384
	1385
	1386
	1387
	1388
	1389
	1390
	1391
	1392
	1393
	1394
	1395
	1396
	1397
	1398
	1399
	1400
	1401
	1402
	1403
	1404
	1405
	1406
	1407
	1408
	1409
	1410
	1411
	1412
	1413
	1414
	1415
	1416
	1417
	1418
	1419
	1420
	1421
	1422
	1423
	1424
	1425
	1426
	1427
	1428
	1429
	1430
	1431
	1432
	1433
	xBack

