

Here is a thoroughly revised edition of the most

authoritative description of Digital's VAX/VMS

operating system available to computer profes­

sionals today.

Written by the Digital engineers who develop and

maintain the VMS Version 5 operating system,

VAX/ VMS Internals and Data Structures: Ver­

sion 5.2 features new chapters on symmetric

multiprocessing, the reorganized executive, VAX

interrupts and exceptions, and the 1/0 subsystem,

including device drivers and interrupt service

routines .

The arrival of symmetric multiprocessing has

also prompted extensive revisions to chapters

that pertain to hardware and software interrupts,

memory management, and synchronization.

All material has been revised to reflect changes

to the operating system through Version 5.2, and

an extensive all-new index improves its accessi­

bility. The authors have also taken every oppor­

tunity to clarify difficult concepts, to consolidate

related material, and to simplify and standardize

the hundreds of illustrations found throughout

this landmark reference.

Ruth E. Goldenberg is a member of the VMS

Operating System Development Group at Digital

Equipment Corporation and is principal author of

both the Version 4.4 and Version 5.2 editions of

this book.

Lawrence J. Kenah is a Senior Consulting Engi­

neer at Digital Equipment Corporation. He is the

principal author of the original Version 2.2 and

Version 3 .3 editions.

Denise E. Dumas is an Engineer in the Digital

Software Services Group.

The painting reproduced on the front is "Schwankendes
Gleichgewicht" ("Activity in the Balance") by Paul
Klee, 1922.159/F32, 34.5 x 7.8 cm, FOUNDATION
PAUL KLEE. Copyright © 1990 by COSMOPRESS, Ge­
neva, and ARS, New York.

VAX/VMS Internals and Data Structures

VERSION 5.2

VERSION 5.2

VAX/VMS Internals
· and Data Structures

Ruth E. Goldenberg and Lawrence J. Kenah

With the assistance of Denise E. Dumas

mnmnama
Digital Press

Copyright © 1991 by Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior written permission of the publisher.

9876543

Order number EY-Cl 71E-DP.

Printed in the United States of America by Hamilton Printing Company.

Design: David Ford
Copy editor: Alice Cheyer
Art editor: Carol Keller
Composition: Paul C. Anagnostopoulos and Alicia Quintano using ~TF/{
Index: Rosemary Simpson and John Mann
PostScript output: Chiron, Inc.

Quotations from the following works appear as epigraphs in this book: Ray Cummings,
The Man Who Mastered Time, copyright© 1957 by Gabrielle Cummings, reprinted
by courtesy of Forrest J. Ackerman, 2495 Glendower Avenue, Hollywood, California
90027; Edgar A. Guest, "The Package of Seeds," Collected Verse of Edgar A. Guest,
copyright 1934 by Contemporary Books, Chicago, Illinois 60601, reprinted by permission
of Contemporary Books; excerpt from "The Hollow Men," in Collected Poems 1909-1962
by T. S. Eliot, copyright 1936 by Harcourt Brace Jovanovich, Inc., copyright © 1964,
1963 by T. S. Eliot, reprinted by permission· of Harcourt Brace Jovanovich and Faber and
Faber Ltd.

PostScript is a trademark of Adobe Systems Incorporated; TEX is a trademark of the
American Mathematical Society; CI, CMI, DDCMP, DDIF, DEC, DECnet, DECserver,
DECwindows, Digital, Digital logo, DSSI, LSI-11, MASSBUS, MicroVAX, MicroVAX II,
MSCP, NMI, PDP-11, Q22-bus, RSTS/E, RSX, RSX-llM, RT-11, SBI, TOPS-20, UDA,
UNIBUS, VAX, VAX MACRO, VAX RMS, VAXBI, VAXcluster, VAXsim, VAXsimPLUS,
VAXstation, VAXstation II/GPX, VMS, and XMI are trademarks of Digital Equipment
Corporation.

Library of Congress Cataloging-in-Publication Data

Goldenberg, Ruth E.
VAX/VMS internals and data structures: version 5.2
Ruth E. Goldenberg, Lawrence J. Kenah,
with the assistance of Denise E. Dumas.

p. cm. includes index.
ISBN 1-55558-059-9

1. VMS (Computer operating system) 2. VAX computers
-Programming. 3. Data structures (Computer science) I. Kenah,
Lawrence J., 1946- II. Dumas, Denise E., 1956- ill. Title.
QA76.76.063G638 1991 005.4'449-dc20 90-23081 CIP

In memory of
Lillian Davis, my grandmother,
some of whose
strength and stubbornness
I was lucky to inherit.

R.E.G.

We would also like to dedicate
this book to Dick Hustvedt,
a very dear friend. His inspiration
created this book.
His example ensured its completion.
We learned more from him
than we can ever thank him for.

L.J.K. and R.E.G.

Preface

The main topic of this book is the kernel of the VAX/VMS Version 5.2 operat­
ing system: process management; memory management; the I/O subsystem;
the mechanisms that transfer control to, from, and among these; and the
system services that support and complement them.

In explaining the operation of a subsystem, this book emphasizes the data
structures manipulated by that subsystem. Most VMS operations can be
more easily understood once the contents of the various data structures are
known. The book also provides a detailed description of the flow of some
major routines and annotated excerpts from certain key routines.

The intended readers are system programmers and other users of VMS
who wish to understand its components, mechanisms, and data structures.
For system programmers, the book provides technical background helpful in
activities such as writing privileged utilities and system services. Its detailed
description of data structures should help system managers make better
informed decisions when they configure systems for space- or time-critical
applications. It should also help application designers appreciate the effects
(in speed or in memory consumption) of different design and implementation
decisions.

In addition, this book is intended as a case study of VMS for an advanced
undergraduate or graduate course in operating systems.

It assumes that the reader is familiar with the VAX architecture, particu­
larly its memory management, and with the VMS operating system, partic­
ularly its system services.

The book is divided into nine parts, each of which describes a different
aspect of the operating system.

• Part 1 presents an overview of the operating system and reviews the con­
cepts basic to its workings .

• Part 2 describes the mechanisms used to pass control between user pro-
grams and the operating system, and within the system itself.

• Part 3 describes the synchronization methods of VMS.
• Part 4 describes scheduling, time support, and process control.
• Part 5 discusses memory management, with emphasis on system data

structures and their manipulation by paging and swapping routines. It also
describes management of dynamic memory, such as nonpaged pool.

• Part 6 contains an overview of the I/O subsystem, paying particular atten­
tion to the I/0-related system services .

• Part 7 describes the life cycle of a process: its creation, the activation and
termination of images within its context, and its deletion.

vii

Preface

viii

• Part 8 discusses the life of the system: its organization, initialization, error
handling, powerfail recovery, and shutdown. It also explains symmetric
multiprocessing support.

• Part 9 discusses the implementation of logical names and the internals of
several miscellaneous system services .

• The appendixes include a summary of VMS data structures, a detailed
layout of system and Pl virtual address spaces, information on the use
of listing and map files, the conventions used in naming symbols, and
information about lock and resource use by various VMS components.

This book does not include a discussion of V AXcluster systems.
There is no guarantee that any data structure or subroutine described here

will remain the same from release to release. With each new version of
the operating system, a privileged application program that relies on details
contained in this book should be rebuilt and tested prior to production use.

The VMS document set supplies important background information for the
topics discussed in this book. The following provide an especially important
foundation: VMS System Services Reference Manual, VMS Device Support
Manual, and the chapter in the VMS Run-Time Library Routines Volume
that describes condition handling.

The VAX Architecture Reference Manual, Second Edition (Digital Press,
1991), edited by Richard Brunner, documents the VAX architecture in detail.
Computer Programming and Architecture: The VAX, by Henry M. Levy and
Richard H. Eckhouse, Jr. (Digital Press, 1988), contains an excellent descrip­
tion of the VAX architecture as well as a discussion of some of the design
decisions made in various implementations. It also includes a bibliography
of the literature dealing with operating system design. VMS File System In­
ternals (Digital Press, 1990), by Kirby McCoy, provides an in-depth study of
the internals of the file system.

CONVENTIONS

A number of conventions are used throughout the text and figures of this
book.

The term executive refers to those parts of the operating system that
are loaded into and execute from system space. The executive includes
the system base image, SYS.EXE; loadable executive images; other loadable
system images such as SCSLOA; and device drivers.

The terms system and VMS system describe the entire VMS software
package, including privileged processes, utilities, and other support software
as well as the executive itself. VMS consists of many different components,
each a different file. One component is the system base image, SYS.EXE,
Others are loadable executive images, device drivers, command language
interpreters, and utility programs.

Preface

The source modules from which these components are built and their
listings are divided into facilities. Each facility is a directory on a source or
listing medium containing sources and command procedures to build one or
more components. The facility [DRIVER], for example, contains sources for
most of the device drivers. The facility [BOOTS] includes sources for the pri­
mary bootstrap program, VMB; the secondary bootstrap program, SYSBOOT;
and the SYSGEN Utility. The facility [SYS] contains the sources that make
up the base image and loadable executive images.

This book identifies a [SYS] facility source module only by its file name.
It identifies a module from any other facility by facility' directory name and
file name. For example, [DRIVER]LPDRIVER refers to the source for the line
printer device driver. Appendix B discusses how to locate a module in the
VMS source listings.

In general, the component called INIT refers to a module of that name in
the executive and not to the volume initialization utility. When the latter
is referenced, it is clearly specified.

This book identifies a macro from SYS$LIBRARY:LIB.MLB by only its
name, for instance, WFIKPCH. The macro library of all other macros i.s
specified.

The unmodified terms process control block and PCB refer to the software
data structure used by the scheduler. The data .structure that contains a
process's hardware context is always calle.d the hardware PCB.

The term inner access modes means those access modes with more priv~
ilege. The term outer access modes means those with less privilege. Thus,
the innermost access mode is kernel and the outermost mode is user.

SYSGEN parameters include both the dynamic parameters, which can be
changed on the running system, and the static parameters, whose changes
do not take effect until the next system boot. These parameters are referred
to by their parameter names rather than by the global locations where their
values are stored. Appendix C relates parafueter names to their corresponding
global locations.

The terms byte index, word iildex, longword index, and quadword index
refer to methods of VAX operand access that use context-indexed addressing
modes. That is, the index value is multiplied by 1, 2, 4, or 8 (for bytes,
words, long"7ords, or quadwords, respectively) as part of operand evaluation,
to calculate the effective address of the operand.

Except in the index, a subroutine is categorized as a routine or a procedure
depending on its entry method. A routine is entered, or invoked, with a JSB

instruction. A procedure is entered, or called, with a CALLG or CALLS.

Three conventions are observed for lists:

• In lists like this one, where no order or hierarchy exists, list elements are
indicated by leading bullets (•). Sublists without hierarchy are indicated by
dashes 1-J.

ix

Preface

x

• Lists that indicate an ordered set of operations are numbered. Sublists that
indicate an ordered set of operations are lettered.

• Numbered lists with the numbers enclosed in circles indicate a corre­
spondence between the list elements and numbered items in a figure or
example.

Several conventions are observed for figures. In all diagrams of memory,
the lowest virtual address appears at the top of the page and addresses
increase toward the bottom of the page. Thus, the direction of stack growth
is depicted upward from the bottom of the page. In diagrams that display
more detail, such as bytes within longwords, addresses increase from right
to left. That is, the lowest addressed byte (or bit) in a longword is on the
right-hand side of a figure and the most significant byte (or bit) is on the
left-hand side.

Each field in a data structure layout is represented by a rectangle. In many
figures, the rectangle contains the last part of the name of the field, excluding
the structure name, data type designator, and leading underscore. A rectangle
the full width of the diagram generally represents a longword regardless of
its depth. A field smaller than a longword is represented in proportion to
its size; for example, bytes and words are quarter- and half-width rectangles.
A quadword is represented by a full-width rectangle with a short horizontal
line segment midway down each side.

For example, Figure 8.1 shows the layout of a spinlock control block.
The rectangle labeled SPINLOCK represents the byte SPL$B_SPINLOCK;
the rectangle labeled OWN_CPU, the longword SPL$1-0WN_CPU; and the
rectangle labeled ACQ_COUNT, the quadword SPL$Q_ACQ_COUNT.

In almost all data structures, the data structure's full-width rectangles rep­
resent longwords aligned on longword boundaries. In a few data structures,
such as the logical name table header (LNMTH) shown in Figure 35.2 or the
logical name translation block (LNMX) in Figure 35.4, a horizontal row of
boxes represents fields whose sizes do not total a longword. Without this
practice, most of the fields in this kind of structure would be split into two
part-width rectangles in adjoining rows, because they are unaligned long­
words.

A data structure field containing the address of another data structure in
the same figure is represented by a bullet connected to an arrow pointing to
the other structlire. Where possible, the arrow points to the rightmost end
of the field, that is, to bit 0. A field containing a value used as an index into
that or another data structure is represented by an x connected to an arrow
pointing to the indexed location.
· Two conventions indicate elisions in a data structure layout. A specific

amount of space is shown as a rectangle whose sides contain dots. Text
within the rectangle indicates the amount of space it represents. Field
SPL$1-0WN_PC_ VEC in Figure 8.1, for example, represents 32 bytes.

Preface

An indeterminate amount of space, often unnamed, representing omitted
and undescribed fields, is indicated by a rectangle whose sides are intersected
by short parallel horizontal lines. For example, Figure 14.4, which identifies
only the PCB fields related to memory management, contains four sets of
omitted fields among the labeled fields.

Ruth E. Goldenberg
Lawrence J. Kenah
December 1990

xi

Acknowledgments

VERSION 3.3 EDITION

Our first thanks must go to Joe Carchidi for suggesting that this book be
written, and to Dick Hustvedt, for his help and enlightening conversations.

We would like to thank John Lucas for putting together the initial versions
of Chapters 7, 11, 12, and 36 and Vik Muiznieks for writing the initial
versions of Chapters 3, 21, and 24.

Appreciation goes to all those who reviewed the drafts for the VAX/VMS
Version 2.2 and the VAX/VMS Version 3.3 editions of this book. We would
particularly like to thank Kathy Morse for reviewing the V2.2 volume in
its entirety and Wayne Cardoza for reviewing this entire V3.3 edition. Our
special thanks go to Ruth Goldenberg for reviewing both in their entirety,
and for her many corrections, comments, and suggestions. [The V2.2 book
was published in 1981. Digital Press published the first edition of the present
volume, for V3.3, in 1984.]

We owe a lot of thanks to our editing staff, especially to Jonathan Os­
trowsky for his labors in preparing the V2.2 book, and Betty Steinfeld for her
help and suggestions. Many thanks go to Jonathan Parsons for reviewing and
editing the present edition, and for all his help, patience, and suggestions.

We would like to thank the Graphic Services department at Spitbrook,
particularly Pat Walker for her help in paging and production of the V2.2
book and Paul King for his help in transforming innumerable slides and rough
sketches into figures. Thanks go to Kathy Greenleaf and Jackie Markow for
converting the files to our generic markup language.

Thanks go to Larry Bohn, Sue Gault, Bill Heffner, Kathleen Jensen, and
Judy Jurgens for their support and interest in this project.

Finally, we would like to thank all those who originally designed and
implemented the VAX/VMS operating system, and all those who have con­
tributed to later releases.

VERSION 4.4 EDITION

Lawrence J. Kenah
Simon F. Bate
August 1983

First, I thank Larry Kenah for suggesting that I do this edition of the book, for
providing such an excellent foundation to update, and for his astute review
and responsive answers to my innumerable questions.

I was blessed with many dedicated reviewers, four of whom reviewed the

xiii

Acknowledgments

xiv

entire book: Dick Buttlar, Wayne Cardoza, Kathy Morse, and Rod Shepard­
son. Rod Shepardson, moreover, revised Chapter 24, Appendixes D and E and
provided considerable update and enhancement to Chapter 21. Dick Buttlar
also aided me in my struggles to format tables and tactfully suggested im­
provements to the book. Wayne Cardoza and Kathy Morse, who had critiqued
earlier versions of the book, provided continuity, insight, and technical as­
sistance and support.

A number of other people reviewed large portions of the book, significantly
improving its quality: Stan Amway, Richard Bishop, George Claborn, Dan
Doherty, Joy Dorman, Rod Gamache, and John Hallyburton. I also thank the
many other reviewers and early readers who helped find errors and omissions.

Carl Rehbein helped update Chapters 3, 21, 24, and Appendixes C, D,
andE.

Bob Kadlec, my manager, encouraged and supported me throughout this
endeavor and intercepted many potential interrupts.

Joy Lanza edited the initial version of this edition and carefully, patiently
shepherded the copy and artwork through its preliminary publication.

George Jakobsche acted as negotiator and facilitator and played an impor­
tant part in catalyzing this edition of the book.

I thank all the people who produced this book. Alice Cheyer's metic­
ulous editing corrected numerous errors that had escaped the rest of us.
Carol Keller edited the artwork, polishing it and removing inconsistencies.
Jonathan Weinert diligently orchestrated the entire production.

I would like to thank John Osborn and Mike Meehan of Digital Press for
their strong support.

I am especially grateful to Chase Duffy of Digital Press for her compre­
hensive publishing experience and ready wit, which lightened the work.

My deepest thanks are to Jim Fraser, who wrote the final draft of several
important sections, contributed much technical and editorial review, helped
me through the gnarly bits, and, most important, supplied much gumption.

Finally, I, also, thank the original designers and implementers of VAX/VMS
and the contributors to subsequent releases, those past and those to come.

VERSION 5.2 EDITION

Ruth E. Goldenberg
August 1987

I would especially like to acknowledge the work of Denise Dumas, the other
major writer of this edition. She assembled Chapter 23, adding a considerable
amount of new material. She researched and wrote Appendix H, a labor
worthy of Hercules. She updated and enhanced Chapters 1, 6, 10, 13, 25,
26, 27, 28, 30, 31, 33, 36, and Appendixes C, F, and G. Denise's technical
competence, unflagging energy, and hard work were critical to the successful
completion of this book.

Acknowledgments

We were fortunate when, late in the project, Saro Saravanan joined us.
Adding much new material, he assembled Chapters 3 and 22 and updated
Chapters 11 and 24 and Appendix E. He also provided diligent assistance
during the final production phase of the book, checking art edits and page
proofs.

Two other people updated chapters in this edition. Rod Shepardson assem­
bled Chapter 20 and updated and enhanced Chapter 21. He also reviewed
most of the book. George Jakobsche updated and enhanced Chapter 19 and
Appendixes A and B.

Joy Lanza was an important contributor to the creation of this book. She
coordinated the production of the Update Xpress volumes on which this
book is based and performed a variety of tasks from copy editing to preparing
repro. She also created many of the figures in this book. Her persistence and
extraordinary patience are much appreciated.

A number of people reviewed the book, contributing greatly to its qual­
ity: Stan Amway, Dick Buttlar, Wayne Cardoza, Jim Fraser, Mike Harvey,
and Richie Holstein. Stan Amway was especially helpful in reviewing the
memory management chapters. Dick Buttlar made many suggestions that
improved the writing and advised us on YAX DOCUMENT. Wayne Cardoza
caught many errors, could always be counted on to answer questions, and
was our technical court of last resort. Jim Fraser wrote a great many key para­
graphs and sentences, reviewed multiple drafts of many chapters, and was
especially good at identifying areas needing more explanation. Mike Harvey
provided many detailed explanations for omitted or unclear areas. A careful,
thoughtful reviewer, Richie Holstein found errors that had escaped everyone
else.

Other engineers reviewed substantial portions of the book, improving its
quality: Richard Bishop, George Claborn, Stu Farnham, John Hallyburton,
Forrest Kenney, and Ben Thomas. Bob Harris graciously allowed himself to
be persuaded to review the index.

John Osborn, Director of Digital Press, initiated the program by which we
published new and revised chapters of this book as Update Xpress volumes.
His decision to fund the project made the book possible.

Chase Duffy of Digital Press astutely managed the production of the Up­
date Xpress and the book. Her good humor, good advice, and great interper­
sonal skills kept the project going. Chase was ably supported by Beth French.
Together they oversaw all aspects of the production and manufacture of the
book.

David Ford created the book design for this and previous editions. For this
edition, he designed an exceptionally elegant jacket that incorporates one of
my favorite paintings.

I was delighted to work again with Alice Cheyer, who edited the Update
Xpress and the book. With her lively intelligence and meticulous editing, she
brought consistency to a collection of chapters written in different voices. I

xv

Acknowledgments

xvi

was also delighted to have Carol Keller as art editor again. She helped create
and painstakingly incorporated visual conventions that improved the clarity
of the art. She is responsible for the graceful appearance of the figures and
the book pages.

Paul Anagnostopoulos wrote macros to convert our VAX DOCUMENT
chapter files to T£X. His ingenuity, skill, and willingness to learn the book­
making trade brought about the successful production of this unusually large
book. Alicia Quintano ably assisted him.

Rosemary Simpson and John Mann created a totally new, exceptionally
detailed index, one strengthened and enriched by their technical expertise.

Bob Kadlec, my previous manager, and Howard Hayakawa, my current
manager, gave encouragement and support.

In addition to being one of the book's most helpful reviewers, Jim Fraser
could always find a way to verbalize a complex idea with clarity and grace,
to polish awkward writing, and to provide gumption when necessary.

Ruth E. Goldenberg
December 1990

Contents

I/ Introduction 1

1 System Overview 3
1.1 Process, Job, and Image 3

1.2 VMS Components 8

1.3 Hardware Assistance to the Operating System Kernel 14

1.4 Other System Concepts 22

1.5 System Virtual Address Space 25

II/ Control Mechanisms 27

2 VAX Interrupts and Exceptions 29
2.1 Overview 29

2.2 System Control Block 30

2.3 Interrupt Requests 32

2.4 Interrupt Dispatching 34

2.5 Restrictions Imposed on Interrupt Service Routines 34

2.6 Exception Dispatching 35

2. 7 Comparison of Exceptions and Interrupts 3 7

2.8 The Return from Exception or Interrupt Instruction 38

3 Hardware Interrupts 40
3.1 Overview 40

3.2 Device Interrupts 44

4 Software Interrupts 54
4.1 The Software Interrupt 54

4.2 Software Interrupt Service Routines 55

5 Condition Handling 71
5.1 Overview 71

5.2 Features of the Condition Handling Facility 72

5.3 Establishing a Condition Handler 73

5.4 Exceptions 75

5.5 Software Conditions 85

5.6 Uniform Condition Dispatching 88

xvii

Contents

xviii

5.7

5.8

6
6.1

6.2

6.3

6.4

6.5

7
7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

Default (VMS-Supplied) Condition Handlers 93

Condition Handler Action 95

System Service Dispatching 106
System Service Vectors 106

Change Mode Instructions 111

Change Mode Dispatching in the VMS Executive 112

Dispatching to System Services in Privileged Shareable Images 121

Related System Services 126

ASTs 129
AST Hardware Components 129

AST Data Structures 131

Creating an AST 133

Queuing an AST to a Process 134

Delivering an AST 135

Disabling AST Delivery 142

Special Kernel Mode ASTs 143

System Use of Normal ASTs 146

Attention and Out-of-Band ASTs 149

III/ Synchronization 159

8 Synchronization Techniques 161
8.1 Overview 161

8.2 Elevated IPL 168

8.3 Spinlocks 172

8.4 Serialized Access 195

8.5 Mutual Exclusion Semaphores (Mutexes) 196

9 Event Flags 202
9.1 Event Flags 202

9 .2 PCB Fields Related to Event Flags 206

9 .3 Associating to a Common Event Flag Cluster 206

9.4 Dissociating from a Common Event Flag Cluster 207

9 .5 Deleting an Event Flag Cluster 208

9.6 Waiting for an Event Flag 208

9.7 Setting an Event Flag 211

9.8 Reading and Clearing Event Flags 212

Contents

9.9 Interprocess Synchronization Through Common Event Flags 213

10 Lock Management 214
10.1 Lock Management Data Structures 214

10.2 Lock Management System Services 225

10.3 Handling Deadlocks 235

IV/ Scheduling and Time Support 245

11 Time Support 24 7
11. l Overview 24 7

11.2 Hardware Clocks 248

11.3 Timekeeping in VMS 252

11.4 Set Time System Service 254

11.5 Timer Queue and Timer Queue Entries 256

11.6 Timer System Services 258

11. 7 Interval Timer Interrupt Service Routine 261

11.8 Software Timer Interrupt Service Routine 263

12 Scheduling 268
12.1 Scheduling Data Structures 268

12.2 Process Priority 274

12.3 Scheduling States 279

12.4 Capabilities and Affinity 287

12.5 Scheduling Dynamics 289

12.6 Rescheduling Interrupt 306

13 Process Control and Communication 318
13.1 Requirements for Affecting Another Process 318

13.2 Process Information System Services 323

13.3 System Services Affecting Process Computability 334

13.4 Miscellaneous Process Attribute Changes 340

13.5 Interprocess Communication 342

V /Memory Management 347

14 Memory Management Overview and
Data Structures 349

14.l Overview of Memory Management 349

14.2 VAX Address Translation and Access Checking 362

xix

Contents

14.3

14.4

14.5

14.6

14.7

14.8

14.9

15
15.1

15.2

15.3

15.4

15.5

15.6

15.7

16
16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

16.9

16.10

17
17.l

17.2

17.3

17.4

17.5

17.6

17.7

17.8

xx

Process Data Structures 365

PFN Database 378

System Memory Management Data Structures 387

Data Structures for Global Pages 388

Swapping Data Structures 393

Data Structures That Describe the Page and Swap Files 396

Swapper and Modified Page Writer Page Table Arrays 400

Memory Management System Services 403
Common Characteristics of Memory Management

System Services 403

Per-Process Virtual Address Space Creation 406

Demand Zero Virtual Address Space Creation 407

Process-Private and Global Sections 411

Virtual Address Space Deletion 42 7

$SETSWM System Service 432

$SETPRT System Service 432

Paging Dynamics 435
Overview 435

Initial Page Fault Handling 436

Page Faults for Process-Private Pages 438

Page Faults for Global Pages 448

Page Faults for System Pages 458

Use of Page Files 459

Input and Output That Support Paging 462

Modified Page Writing 467

$UPDSEC System Service 4 7 6

Paging and Scheduling 478

Working Set List Dynamics 481
Overview 481

The Working Set List 482

Working Set Replacement 491

Working Set Limit Adjustment 496

$LKWSET System Service 502

$LCKPAG System Service 504

$ULWSET and $ULKPAG System Services 505

$PURGWS System Service 506

Contents

17.9 Keeping a Page in the Working Set List 506

18 The Swapper 510
18.1 Swapper Overview 510

18.2 Swapper's Use of Memory Management Data Structures 512

18.3 Swapper Main Loop 516

18.4 Selection of Shrink and Outswap Processes 523

18.5 Outswap Operation 528

18.6 Inswap Operation 536

19 Pool Management 544
19.1 Dynamic Data Structures and Their Storage Areas 544

19.2 Nonpaged Pool Regions 554

19.3 Paged Pool 564

19.4 Process Allocation Region 565

19.5 KRP Lookaside List 567

19.6 Collecting Pool Allocation Statistics 568

19.7 Detecting Pool Corruption 569

VI/ Input/Output 575

20 Overview of the 1/0 Subsystem 5 77
20.1 Hardware Overview 5 77

20.2 1/0 Database 578

20.3 Device Drivers 582

20.4 1/0 System Services 584.

20.5 Ancillary Control Processes 584

20.6 VMS 1/0 Routines 586

21 1/0 System Services 587
21.1 Overview 587

21.2 Device Drivers and Fork Locks 590

21.3 Device Categories 590

21.4 Allocating and Deallocating Devices 591

21.5 Assigning and Deassigning Channels 595

21.6 Queuing an 1/0 Request 606

21.7 1/0 Postprocessing 613

21.S Segmented Virtual and Logical 1/0 620

21.9 Cancel 1/0 on Channel System Service 624

xxi

Contents

xxii

22
22.1

22.2

22.3

22.4

22.5

23
23.1

23.2

23.3

23.4

23.5

23.6

24
24.l

24.2

24.3

24.4

24.5

24.6

24.7

24.8

I/O Device Drivers and Interrupt Service Routines 628
Device Driver Models in VMS 628

Exiting the FDT Routine 629

Driver's Start 1/0 Routine 632

VMS Interrupt Service Routines 641

Connect-to-Interrupt Mechanism 652

Mailboxes 655
Overview 655

Logical Names of Mailboxes 656

Mailbox Data Structures 657

Mailbox Creation and Deletion 658

Mailbox Driver 664

Mailbox Use by the VMS Executive and Components 673

Miscellaneous I/O Topics 676
Class and Port Drivers 676

Terminal Driver 679

Pseudo Devices 68 7

Console Subsystem 688

Bad Block Processing on Disks 692

$BRKTHRU System Service 694

Broadcast System Service 704

Informational Services 705

VII/ Life of a Process 707

25 Process Creation 709
25.l Create Process System Service 709

25.2 Shell Layout 724

25.3 Process Creation in the Context of the New Process 729

26 Image Activation and Exit 737
26.1 Image Initiation 737

26.2 Image Exit 771

26.3 Image and Process Rundown 77 4

26.4 Process Privileges 778

2 7 Process Dynamics 782
27.l Process Classification 782

Contents

27.2 The Role of VMS Components 782

27.3 The Job Controller and Process Creation 783

27.4 SPAWN and ATTACH 787

27.5 The LOGINOUT Image 791

27.6 CLis and Image Processing 799

27.7 Logout Operation 808

28 Process Deletion 811
28.l Process Deletion in Context of Caller 811

28.2 Process Deletion in Context of Process Being Deleted 813

VIII/ Life of the System 821

29 The Modular Executive 823
29 .1 Overview 823

29.2 SYS.EXE, the Base Image 825

29.3 Loadable Executive Images 831

29.4 Executive Image Loading 836

29.5 Initialization of a Loadable Executive Image 843

29.6 Version Numbers 851

29.7 Other Kinds of Loadable Executive Image 855

29.8 Dynamic Allocation and Deallocation of SPTEs 859

30 Bootstrap Procedures 862
30.1 Overview of System Initialization 862

30.2 Processor-Specific Initialization 866

30.3 Primary Bootstrap Program (VMB) 900

30.4 Secondary Bootstrap Program (SYSBOOT) 913

31 Operating System Initialization and Shutdown 923
31.1 Initial Execution of the Executive 923

31.2 Loadable Executive Image Initialization Routines 935

31.3 Initialization in Process Context 938

31.4 System Generation Utility (SYSGEN) 948

31.5 System Shutdown 954

32 Error Handling 958
32.1 Error Logging 958

32.2 System Crashes (Fatal Bugchecks) 967

32.3 Machine Check Mechanism 979

xxiii

Contents

xxiv

32.4

33
33.1

33.2

33.3

33.4

34
34.l

34.2

34.3

34.4

34.5

34.6

34.7

34.8

34.9

34.10

CPU-Specific Error Interrupts 982

Power Failure and Recovery 983
Powerfail Sequence 983

Power Recovery 984

Multiple Power Failures 1000

Failure of External Adapter Power 1003

Symmetric Multiprocessing 1006
Overview 1006

SMP Hardware Configurations 1008

Data Structures Related to SMP Support 1013

The Implications of Sharing Memory 1020

Interprocessor Cooperation 1022

1/0 Considerations 1038

Processor States 1043

Initialization 1044

Powerfail and Recovery 1058

Fatal Bugcheck Processing 1060

IX /Miscellaneous Topics 1065

35 Logical Nam es 106 7
35.1 Goals of Logical Name Support 1067

35.2 Characteristics of Logical Names 1068

35.3 Characteristics of Logical Name Tables 1070

35.4 Characteristics of Logical Name Translation 1075

35.5 Logical Name Data Structures 1077

35.6 Searching for a Logical Name 1086

35.7 Logical Name Table Name Resolution 1089

35.8 Logical Name System Services 1092

35.9 Superseded Logical Name System Services 1100

36 Miscellaneous System Services 1102
36.1 Communication with System Processes 1102

36.2 System Message File Services 1109

36.3 System Information System Services 1115

36.4 Device Information System Services 1117

36.5 Formatting Support 1120

Contents

Appendixes 1123

A System Processes and Privileged Images 1125

B Use of Listing and Map Files ·· 1129
B.l Reading the Executive Listings 1129

B.2 Map Files 1147

B.3 System Dump Analyzer 1154

B.4 Interpreting SOL Files 1158

C Executive Data Areas 1164
C.l The Base Image 1164

C.2 Dynamically Allocated Executive Data 1225

C.3 Process-Specific Executive Data 1226

D Naming Conventions 1232
D.l Public Symbol Patterns 1232 ·

D.2 Object Data Types 1238

D.3 Facility Prefix Table 1238

E Data Structure Definitions 1241
E.l Location of Data Structure Definitions 1241

E.2 Overview 1241

E.3 Executive Data Structures 1242

E.4 Symbolic Constants 1262

F Size of System and Pl Virtual Address Spaces 1270
F.l Process Header 1270

F.2 System Virtual Address Space 1274

F.3 VMS Physical Memory Requirements 1284

F.4 Size of Pl Space 1289

G VAX CPU Designations 1294

H Lock and Resource Use by VMS Components 1296
H.l Aspects of Resource and Lock Use 1296

H.2 VMS Executive Lock Use 1298

H.3 $MOUNT Lock Use 1300

H.4 $DISMOU Lock Use 1302

H.S Volume Shadowing Lock Use 1302

H.6 File System Lock Use 1304

H.7 RMS Lock Use 1310

xxv

Contents

H.8 Image Activator and Install Utility Lock Use 1320

H.9 DECnet Lock Use 1321

H.10 Job Controller Lock Use 1324

H.11 SYSGEN Lock Use 1328

H.12 SYSMAN Lock Use 1329

Index 1331

xxvi

PART I/ Introduction

1

1.1

System Overview

For the fashion of Minas Tirith was such that it was built on
seven levels, each delved into a hill, and about each was set a
wall, and in each wall was a gate.

J. R. R. Tolkien, The Return of the King

This chapter introduces the basic components of the VMS operating system.
Special attention is given to the features of the VAX architecture that are
utilized by the operating system or that exist solely to support an operating
system. In addition, some of the design goals that guided the implementation
of the VMS operating system are discussed.

PROCESS, JOB, AND IMAGE

The fundamental unit in the implementation of scheduling on the VMS
operating system, the entity that is selected for execution, is the process. If
a process creates subprocesses, the collection of the creator process, all the
subprocesses created by it, and all subprocesses created by its descendants
is called a job. The programs executed in the context of a process are called
images.

1.1.1 Process

1.1.1.1

1.1.1.2

A process is fully described by data structures that specify the hardware and
software context, and by a virtual address space description. This informa­
tion is stored in several different places in the process and system address
space. The data structures that contain the various pieces of process context
are pictured in Figure 1.1.

Hardware Context. The hardware context consists of copies of the general­
purpose registers, the four per-process stack pointers, the program counter
(PC), the processor status longword (PSL), and the process-specific processor
registers, including the memory management registers and the asynchronous
system trap (AST) level register. The hardware context is stored in a data
structure called the hardware process control block (hardware PCB), which
is used primarily when a process is removed from or placed into execution.

Another part of process context that is related to hardware is four per­
process stacks, one for each of the four access modes. Code executing in
the context of a process uses the stack associated with the process's current
access mode.

Software Context. Software context consists of all the data required by
various parts of the operating system to control that portion of common

3

System Overview

4

Hardware context is stored
in hardware PCB.
Software context is spread
around in PCB, PHO, JIB,
and in P1 space.
Virtual address space
description is stored in
PO and P1 page tables

JIB

(Control Region)
P1 Space

System Space

Software PCB

Pooled Quotas Process Name
Master Process ID 1---1 1-- Scheduling
Count of Information

Processes in Job Process ID
Pointers to Other

This JIB is pointed Structures
to by all other UIC and Other
processes (if any) Identifiers
in the same job.

Figure 1.1

,..

......

Process-Private
Logical Names

Per-Process
Stacks

RMSData
Image Data

80000000

,.. PHO
......

,

, , , ,

Working Set List '
Process Section

Table
Accounting

Information

PO Page Table
(Virtual

Address Space
Description)

P1 Page Table

......

' ' ' ' '

Hardware PCB

General Registers
PC,PSL
Per-Process

Stack Pointers
Memory

Management
Registers ·

ASTLVL

(Hardware Context)

Data Structures That Describe Process Context

resources allocated to a given process. This context includes the process
software priority, its current scheduling state, process privileges and "iden­
tifiers," quotas and limits, process page file assignments and reservations,
and miscellaneous data, such as process name and process identification.

The information about a process that must be in memory at all times is
stored in a data structure called the software process control block !PCB).
This information includes the software priority of the process, its unique
process identification IPID), and the particular scheduling state that the
process is in at a given point in time. The software PCB also records some
process quotas and limits. Other quotas and limits are recorded in the job
information block !JIB).

The PCB incorporates another data structure called an access rights block
!ARB), which lists the identifiers that the process holds. Identifiers are names
that specify to what groups a process belongs for purposes of determining
access to files and other protected objects. Identifiers are described briefly in
Section 1.4.1.4.

The information about a process that does not have to be permanently res­
ident !swappable process context) is contained in a data structure called the
process header IPHD). This information is needed when the process is resi­
dent and consists mainly of information used by memory management when
page faults occur. The swapper uses the data in the process header when it
removes the process from memory loutswaps) or brings the process back into

1.1 Process, fob, and Image

memory (inswaps). The hardware PCB, which contains the hardware context
of a process, including its page tables, is a part of the process header. Some
information in the process header is nonpageable and available to suitably
privileged code whenever the process is resident. The process page tables,
however, are pageable and only accessible from that process's context.

Other process-specific information is stored in the Pl portion of the
process virtual address space (the control region). This includes exception
dispatching information, Record Management Services (RMS) data tables,
and information about the image that is currently executing. Information
that is stored in Pl space is only accessible when the process is executing
(is the current process), because Pl space is process-specific.

1.1.2 Image

1.1.2.1

1.1.2.1.1

The programs that execute in the context of a process are called images.
Images usually reside in files that are produced by the linker. When the user
initiates image execution (as part of process creation or through a Digital
command language (DCLJ command in an interactive or batch job), a com­
ponent of the executive called the image activator sets up the process page
tables to point to the appropriate sections of the image file. VMS uses the.
same paging mechanism that implements its virtual memory support to read
image pages into memory as they are needed.

Virtual Address Space Description. The virtual address space of a process is
described by the process PO and Pl page tables, stored in the high-addres~
end of the process header. The process virtual address space is altered when
an image is initially activated, during image execution through selected
system services, and when an image terminates. The process page tables
reside in system virtual address space and are in turn described by entries in
the system page table. Unlike the other portions of the process header, the
process page tables are themselves pageable, and they are faulted into the
process working set only when they are needed.

Control Region (Pl Space). Figure 1.2 shows the layout of Pl space. This
figure was produced mainly from information contained in module SHELL,
which contains a prototype of a Pl page table that is used whenever a process
is created. A System Dump Analyzer (SDAJ Utility listing of process page
tables was used to determine the order and size of the portions of Pl space
not defined in SHELL.

Some of the pieces of Pl space are created dynamically when the process
is created. These include a Pl mapping of process header pages, a command
language interpreter (CLIJ if one is being used, a symbol table for that CLI,
the process allocation region, and the process I/O segment. In addition, the

5

System Overview

Image-Specific
Portion of P1 Space
(Deleted at image exit
by MMG$1MGRESET)

Dynamic Permanent
Portion of P1 Space

Static Permanent
Portion of P1 Space

I ' Direction of Growth

User Stack

Extra Image VO Segment

Per-Process Message Sections

CLI Symbol Table

CU Command Table

CU Image

Files-11 XQP Data

Files-11 XQP Image

Image VO Segment

Process VO Segment

Process Allocation Region

Channel Control Block Table

P1 Window to Process Header

VMS Reserved Area

RMS Data Pages

Per-Process Common Area for Users

Per-Process Common Area Reserved to Digital

Compatibility Mode Data Page

Security Audit Data Pages

Image Activator Context Page

Generic CU Data Pages

Image Activator Scratch Pages

Debugger Context

Vectors for Messages and User-Written System Services

Image Header Buffer

KAP Lookaside List

Kernel Stack

Executive Stack

Supervisor Stack

VMS Kernel Mode Data Page

VMS User Mode Data Page

System Service Vectors

P1 Pointer Page

Debuprcr Symbol Table
(not mapped i debugger not present)

Figure 1.2
Layout of Pl Space

6

140000000

CTL$GL_CTLBASV

L J
(Locates border betwe en
image-specific and
process;>ermanent
pieces of P1 space}

MMG$GL_CTLBASV

~]

(Locates initial low-
address end of P1
space for each process
as it is created)

7FFFFFFF

1.1.2.1.2

This part of
PO space is
defined by the
linker and
mapped by the
image activator.

This part of
PO space is
not defined at
link time.

If either of
these pieces is
required, it is
mapped. Note
that both cannot
be mapped at
the same time.

1.1 Process, fob, and Image

Files-11 Extended QIO Processor (XQP) and its data areas are mapped at
process creation.

The two pieces of Pl space at the lowest virtual addresses (the user stack
and any replacement image 1/0 segment) are created dynamically each time
an image executes and are deleted as part of image rundown. Appendix F
contains a description of the different pieces of Pl space, including their sizes
and details such as memory management page protection and the name of
the system component that maps a given portion.

Program Region (PO Space). Figure 1.3 shows a typical layout of PO space
for both a native image (produced by the linker) and a compatibility mode
image (produced by the RSX-llM task builder). This figure is much more
conceptual than the previous illustration because the layout of PO space
depends upon the image being run.

By default, the first page of PO space (Oto 1FF16) is not mapped (protection
set to No Access). This no-access page allows easy detection of two common
programming errors, using zero or a small number as the address of a 'data
location or using such a small number as the destination of a control transfer;
(A link-time request or system service call can alter the protection of virtual
page zero. Note also that page zero is accessible to compatibility mode
images.)

The main native image is placed into PO space, starting at address 20016•

Any shareable images that are position-independent and shared ·(for exam­
ple, LIBRTL) are placed at the end of the main image. The order in which
these shareable images are placed into the image is determined during image
activation.

Native Mode Image

Not mapped

Executive
Image

LIBRTL

LBRSHR

Other shareable images

Debugger (LIB$DEBUG)
(if requested at link,

run, or execution time)

Ti'aceback (LIB$TRACE)
(if not overridden at link

time and needed)

0
This portion of PO Compatibility Mode Image
space is defined by 0
the RSX-11M {
task builder and End of Compatibility
mapped by the Mode Image

Compatibility
Mode Image

Application
Migration
Executive (AME). {
The AME is
mapped by the
image activator
when it detects
that it is activating
a compatibility
mode image.

Not mapped

RSX-11M AME
177777 8 =FFFF16

(RSX.EXE)
(BACKTRANS.EXE)
Native Mode ~e POLA Pages

T._ __ Not __ m_appec1 __ __,T 3FFFFFFF

POLA

T._ __ N_ot_m_apped __ __,T 3FFFFFFF

Figure 1.3
PO Space Allocation

7

System Overview

If the debugger or the traceback facility is required, these images are added
at execution time (even if /DEBUG was selected at link time). This mapping
is described in detail in Chapter 26.

1.1.3 Job

1.2

8

The collection of subprocesses that have a common root process is called
a job. The concept of a job exists for the purpose of sharing resources.
Some quotas and limits are shared among all processes in the same job.
The current values of these quotas are contained in the JIB, which is shared
by all processes in the same job. Figure 1.1 shows this structure.

VMS COMPONENTS

There are several names for different subsets of VMS. The terms system and
VMS system describe the entire VMS software package, whose components
include

• Utilities
• Program development tools
• System processes such as the job controller
• DCL interpreter
•RMS
• XQP
• The executive

The term executive refers to those components that reside in system space.
During the development of VMS, it has grown to support different CPUs,
more devices, and additional features. These have been generally supported
by code with separate loadable images rather than by modules within one
larger and larger image. Such loadable images include

• CPU-specific support such as the SYSLOAxxx modules
• System communication services support, SCSLOA
• V AXcluster connection and distributed lock management, CLUSTRLOA

The most recent stage in this evolution is a reorganization of the executive
image, SYS.EXE. It has been divided into a base image and approximately
20 loadable executive images. SYS.EXE, the base image, contains transfer
vectors to routines in the loadable executive images and storage for widely
referenced system variables.

A loadable executive image consists of modules performing related func­
tions and data and initialization code specific to those functions. The im­
age PROCESS_MANAGEMENT.EXE, for example, includes the reschedul­
ing interrupt service routine, process creation and deletion system services,
and the subroutine for reporting scheduler events. To resolve references to
routines in other executive images, PROCESS_MANAGEMENT.EXE links
against the base image symbol table, SYS.STB.

1.2 VMS Components

As each executive image is loaded into system space, its associated transfer
vectors in SYS.EXE are modified to contain the addresses of its routines. One
image can dispatch into a routine in another image using a SYS.EXE transfer
vector as bridge.

The address space of each loadable executive image is independent of that
of the others. Each image is position-independent, linked to a base address of
0, and loaded into system space allocated for that purpose. This separation
makes it possible for one image to be replaced by a newer version containing
enhancements or source-level corrections with no impact on other executive
images or the base image. Furthermore, there need be no impact on other
images linked with SYS.STB. Such flexibility was a major goal of reorganizing
the executive. For more information, see Chapter 29.

1.2.1 Functions Provided by VMS

VMS provides services at many levels so that user applications may execute
easily and effectively. Its layered structure is pictured in Figure 1.4. In gen­
eral, components in a given layer can make use of the facilities in all inner
layers.

1.2.2 Operating ~ystem Kernel

1.2.2.1

1.2.2.2

The main topic of this book is the operating system kernel: the 1/0 subsys­
tem, memory management, the scheduling subsystem, and the VMS system
services that support and complement these components. The discussion of
these three components and other miscellaneous parts of the operatfog sys­
tem kernel focuses on the data structures that are manipulated by a given
component. In describing what each major data structure represents and how
that structure is altered by different sequences of events in the system, this
chapter describes the detailed operations of each major piece of the kernel.

1/0 Subsystem. The 1/0 subsystem consists of device drivers and their as­
sociated data structures; device-independent routines within the executive;
and several system services, the most important of which is the Queue 1/0
Request ($QIO) system service. All forms of I/O request made by outer layers
of the system are transformed into $QIO requests. The I/O subsystem is de­
scribed in detail from the point of view of adding a VMS device driver in the ·
VMS Device Support Manual. Chapters 21 and 22 of this volume describe
some aspects of the I/O subsystem that are not described in that manual.

Memory Management. The main components of the memory management
subsystem are the page fault handler, which implements VMS virtual mem­
ory support, and the working set swapper, which allows the system to utilize
more fully the amount of physical memory that is available. The data struc­
tures used and manipulated by the page fault handler and swapper include

9

System Overview

Privileged Images
Program Development
Tools

Images installed with privilege
Other privileged images
Images linked with the

Text editors
Linker
MACRO assembler
System message compiler system symbol table

File system
Informational utilities

System Services

$CANCEL

u

Run-Time Library
(Specific)

Run-Time Library
(General)

FORTRAN
PASCAL
PUI

1.2.2.3

10

Layered Products
Language compilers
DATATRIEVE
Forms utilities

Figure 1.4
Layered Design of the VMS Operating System

Math library
String manipulation
Screen formatting

Assorted Utllltles
SORT
File manipulation
HELP
DIRECTORY

the page frame number (PFN) database and the page tables of each process.
The PFN database describes each page of physical memory that is available
for paging. A virtual address space description of each currently resident
process is contained in "its page tables. The system page table describes the
system space portion of virtual address space.

System services enable a user (or the system on behalf of the user) to
create or delete specific portions of virtual address space or to map a file
into a specified virtual address range.

Scheduling and Process Control. The third major component of the kernel
is the scheduling subsystem. It selects processes for execution and removes
from execution processes that can no longer execute. It also handles clock
servicing and includes timer-related system services. System services are
available to allow a process to create or delete other processes. Other services

1.2.2.4

1.2.3

1.2 VMS Components

provide one process the ability to obtain information about another and
control its execution.

Miscellaneous Services. One area of the operating system kernel that is not
pictured in Figure 1.4 involves the many miscellaneous services that are
available in the operating system kernel. Some of these services for such
tasks as logical name creation or string formatting are available to the user
in the form of system services. Others, such as pool manipulation routines
and certain synchronization techniques, are only used by the kernel and priv­
ileged utilities. Still others, such as the lock management system services,
are used throughout the system-by users' programs, system services, RMS,
the file system, and privileged utilities.

Data Management

VMS provides data management facilities at two levels. The record structure
that exists within a file is interpreted by RMS, which exists in a layer just
outside the kernel. RMS exists as a series of procedures located in system
space, so it is in some ways just like the rest of the operating system kernel.
Most of the procedures in RMS execute in executive access mode, providing
a thin wall of protection between RMS and the kernel itself.

The placement of files on mass storage volumes is controlled by one of the
disk or tape ancillary control processes (ACP) or by the Files-11 XQP. An ACP
is implemented as a separate process because many of its operations must be
serialized to avoid synchronous access conflicts. ACPs and the Files-11 XQP
interact with the kernel both through the system service vector interface
and by the use of utility routines not accessible to the general user.

The Files-11 XQP, introduced in VMS Version 4, controls the most com­
monly used on-disk structure. (The placement of files on a block-structured
medium, such as a disk volume or a TU58, is referred to as on-disk structure.)
The XQP is implemented as an extension to the $QIO system service and
runs in process context. A process's XQP file operations are serialized with
those of other processes and processors through lock management system
services.

1.2.4 User Interface

The interface that is presented to the user (as distinct from the application
programmer who is using system services and Run-Time Library procedures)
is a command language interpreter. The DCL CLI is available on all VMS
systems. The monitor console routine (MCR) CLI, the command language
used with RSX-11 M, is available as an optional software product. Some of the
services performed by a CLI call RMS or the system services directly; others
result in the execution of an external image. These images are generally no
different from user-written applications because their only interface to the
executive is through the system services and RMS calls.

11

System Overview

1.2.4.1

1.2.4.2

1.2.4.3

1.2.5

12

Images Installed with Privilege. Some of the informational utilities and disk
and tape volume manipulation utilities require that selected portions of
protected data structures be read or written in a controlled fashion. Images
that require privilege to perform their function can be installed (made known
to the operating system) by the system manager so that they can perform
their function in an ordinarily nonprivileged process environment. Images
that fit this description include AUTHORIZE, LOGINOUT, MONITOR,
SET, and SHOW. Appendix A lists those images that are installed with
privilege in a typical VMS system.

Other Privileged Images. Other images that perform privileged functions are
not installed with privilege because their functions are inherently sensitive
and less controlled. These images could reveal security information or de­
stroy the system if executed by naive or malicious users. They can only be
executed by privileged users. Examples include SYSGEN, for loading device
drivers; SDA, for examining the contents of memory; or the network con­
trol program, for network management. Other images that require privilege
to execute but are not installed with privilege in a typical VMS system are
listed in Appendix A.

Images That Link with SYS$SYSTEM:SYS.STB. Appendix A lists compo­
nents that are linked with the system symbol table, SYS$SYSTEM:SYS.STB.
These images access known locations through global cells in the system base
image, SYS.EXE. The executive is divided into conceptual categories, each
with its own version number. The versiori number of a category changes
when an interface in that category changes. Each data cell or routine trans­
fer vector in the system base image specifies the categories with which it is
associated. For example, the MEMORY_MANAGEMENT category applies
to all memory management data cells and routine transfer vectors, and the
FILES_ VOLUMES category applies to all RMS and file system related items.
When a VMS release contains an incompatible change in a category, an im­
age referencing a system data cell or routine transfer vector affected by the
change must relink. For more information, see Chapter 29.

Interface among Kernel Subsystems

The connection among the three major subsystems pictured in Figure 1.4 is
somewhat misleading because there is relatively little interaction between
the three components. In addition, each of the three components has its own
data structures for which it is responsible. When one of the other pieces of
the system wishes to access such data structures, it does so through some
controlled interface. Figure 1.5 shows the small amount of interaction that
occurs between the three major subsystems in the operating system kernel.

1.2.5.1

1.2.5.2

Pagefaultw~"'
Page fault~ "' complete
Free~wait
Physical page

available
lnswap complete
Outswap complete

Figure 1.5

Lock/unlock physical
pages for direct 1/0

Page fault read
lnswap/outswap

Modified page write

Interaction Between Components of VMS Kernel

1.2 VMS Components

1/0 Subsystem

Wait for 1/0 request

VO request complete /

1/0 Subsystem Requests. The 1/0 subsystem makes a request to memory
management to lock down specified pages for a direct 1/0 request. The page
fault handler or swapper is notified directly when the 1/0 request that just
completed was initiated by either one of them.

1/0 requests can result in the requesting process's being placed in a wait
state until the request completes. This change of state requires that the
scheduling subsystem be notified. In addition, 1/0 completion can also cause
a process to change its scheduling state. Again, the scheduler would be called.

Memory Management Requests. Both the page fault handler and swapper
require input and output operations to fulfill their functions. The page fault
handler and swapper use special entry points into the 1/0 subsystem rather
than request the $QIO system service. These entry points queue prebuilt 1/0
packets directly to the driver, bypassing unnecessary protection checks and
preventing an irrelevant attempt to lock pages associated with these direct
1/0 requests.

If a process incurs a page fault that results in a read from disk or if a process
requires physical memory and none is available, the process is put into one
of the memory management wait states by the scheduling subsystem. When
the page read completes or physical memory becomes available, the process
is made computable again.

13

System Overview

1.2.5.3

1.3

Scheduler Requests. The scheduling subsystem interacts very little with
the rest of the system. It plays a more passive role when cooperation with
memory management or the I/O subsystem is required. One exception to this
passive role is that the scheduling subsystem awakens the swapper when a
process that is not currently memory-resident becomes computable.

HARDWARE ASSISTANCE TO THE OPERATING SYSTEM KERNEL

The method of implementing the services provided by VMS illustrates the
close connection between the hardware design and the operating system.
Many of the general features of the VAX architecture are used to advantage by
the VMS operating system. Other features of the architecture exist entirely
to support an operating system.

1.3.1 VAX Architecture Features Utilized by VMS

14

Several features of the VAX architecture that are available to all users are
used for specific purposes by the operating system:

• The general-purpose calling mechanism is the primary path into the op­
erating system from all outer layers of the system. Because all system
services are procedures, invoked using the standard VAX procedure calling
conventions, they are available to all native mode languages .

• The memory management protection scheme is used to protect code and
data used by more privileged access modes from modification by less privi­
leged modes. Read-only portions of the executive are protected in the same
manner.

• Implicit protection is built into special instructions that can only be ex­
ecuted from kernel mode. Because only the executive (and suitably priv­
ileged process-based code) executes in kernel mode, such instructions as
MTPR, LDPCTX, and HALT are protected from execution by nonprivileged users .

• The VAX architecture provides a small number of interlocked instructions
to help synchronize simultaneous modifications of shared memory by more
than one processor. A memory modification is not atomic (a single indivisi­
ble act), but is, in fact, a read followed by a write. When multiple processors
modify the same memory at the same time, it is possible for each to read
the same initial data but for one to overwrite the other's change. When all
processors use interlocked instructions to modify the same memory, their
modifications are atomic.

VMS uses these instructions in its implementation of symmetric mul­
tiprocessing (SMP). The interlocked instructions provide atomic forms of
queue manipulation, addition, and bit manipulation. With interlocked in­
structions, VMS implements spinlocks, structures that describe the state
of a particular set of shared data and that enable a set of processors to se­
rialize their access to the data. Chapter 8 provides more information on
multiprocessor synchronization and spinlocks.

1.3 Hardware Assistance to the Operating System Kernel

• The operating system uses interrupt priority level (IPL) for several pur­
poses. IPL is elevated so that cettain interrupts are blocked. For example,
clock interrupts must be blocked while the system time (stored in a quad­
word) is checked because this checking takes more than one instruction.
Clock interrupts are blocked to prevent the system time from being up­
dated while it is being checked .

• IPL is also used as a synchronization tool. For example, any routine that ac­
cesses certain systemwide data structures, such as the scheduler database,
must raise IPL to the level at which the data structures are synchronized.
On a uniprocessor, this is sufficient to protect the data. On a multipro­
cessor, a routine must raise IPL and also acquire the spinlock associated
with the data structure. The assignment of various hardware and software
interrupts to specific IPL values establishes an order of importance to the
hardware and software interrupt services that the VMS operating system
performs.

Several other features of the VAX architecture are used by specific compo­
nents of the operating system and are described in later chapters:

• The change mode instructions (CHME and CHMK), which increase the privilege
of the access mode (see Figure 1.6). Note that most exceptions and all
interrupts also result in changing mode to kernel. Section 1.3.5 presents
an introduction to exceptions and interrupts .

• The inclusion of many protection checks and pending interrupt checks
in the single instruction that is the common exception and interrupt exit
path, REI.

• Software interrupts .
• Hardware context and the single instructions, SVPCTX and LDPCTX, that save

and restore it .
• The use of ASTs to obtain and pass information.

1.3.2 VAX Instruction Set

While the VAX instruction set, data types, and addressing modes were de­
signed to be somewhat compatible with the PDP-11, several features that
were missing in the PDP-11 were added to the VAX architecture. True con­
text indexing allows array elements to be addressed by element number,
with the hardware accounting for the size (byte, word, longword, or quad­
word) of each element. Short literal addressing was added in recognition of
the fact that the majority of literals appearing in a program are small num­
bers.Variable-length bit fields and character data types were added to serve
the needs of several classes of users, including operating system designers.

The instruction set includes many instructions that are useful to any
designer and occur often in the VMS executive. The queue instructions allow
the construction of a doubly linked list as a common dynamic data structure.
Character string instructions are useful when dealing with any data structure

15

System Overview

Access mode fields in the PSL are not directly accessible
to the programmer or to the operating system.

A process can reach a
MORE privileged
access mode through
a CHMx instruction.
In addition, most other
exceptions and all
interrupts cause access
mode change to kernel.

The boundaries between the access modes are nearly
identical to the layer boundaries pictured in
Figure 1-4.

Nearly all system services execute in kernel mode.
RMS and some system services execute in

executive mode.

Figure 1.6
Methods for Altering Access Mode

The only way to reach a
LESS privileged access
mode is through the REI
instruction.

Command language iilterpreters normally execute in
supervisor mode.

Utilities, application programs, Run-Time Library
procedures, and so on normally execute in user mode.

Privileged utilities sometimes execute in kernel or
executive mode.

that can be treated as an array of bytes. Bit field instructions allow efficient
operations on flags and masks.

One of the most important features of the VAX architecture is the VAX
Calling Standard. Any procedure that adheres to this standard can be called
from any native lartguage, an advantage for any large application that requires
the use of the features of a wide range of languages. The VMS operating sys­
tem adheres to this standard in its interfaces to the outside world through the
system service interface, RMS entry points, and the Run-Time Library proce­
dures. System services and RMS services are written as procedures that can
be accessed by executing a CALLx instruction to absolute location SYS$ser­
vice in the process Pl virtual address space. Run-Time Library procedures
are mapped into a process's PO space.

1.3.3 Implementation of VMS Kernel Routines

16

In Section 1.2.2, the VMS kernel was divided into three functional pieces
plus the system service interface to the rest of the world. Alternatively,
the operating system kernel can be partitioned according to the method
used to gain access to each part. The three classes of routines within the
kernel are procedure-based code, exception service routines, and interrupt

1.3.3.1

1.3 Hardware Assistance to the Operating System Kernel

Translation-not-valid
fault (page fault)
(exception, not interrupt)

Memory
Management

Page fault
handler

I
Rescheduling I
software interrupt
(IPL=3)

Figure 1.7

Hardware clock
interrupt
(IPL= 22 or 24)

110 Subsystem

External device
hardware interrupts
(IPL= 20 - 23)

j Device driver < fork processing
~· (IPL=S-11)

Device drivers
Postprocessing

routines

110 postprocessing
......---- software interrupt
~ (IPL=4)

Software timer
interrupt
(IPL=?)

AST delivery
software interrupt
(IPL= 2)

Paths into Components of VMS Kernel

service routines. Other systemwide functions, the working set swapping
and modified page writing performed by the swapper, are implemented in
a separate process that resides in system space. Figure 1. 7 shows the various
entry paths into the operating system kernel.

Process Context and System Context. The first section of this chapter dis­
cussed the pieces of the system that describe a process. Process context in­
cludes a complete address space description, quotas, privileges, scheduling
data, and any other private data. Any portion of the system that executes in
the context of a process has all these process attributes available.

A portion of the kernel, however, operates outside the context of a spe­
cific process. Most routines in this category are interrupt service routines,
invoked in response to external events, regardless of the currently execut­
ing process. Portions of the initialization sequence also execute outside of
process context. There are no process features, such as a kernel stack or a
page fault handler, available when these routines are executing.

Because of the lack of a process, this system context or interrupt state can
be characterized by the following limited context:

• All stack operations take place on the systemwide interrupt stack.

17

System Overview

1.3.3.2

18

• The primary indication that the CPU is in this state is contained in the
PSL. The PSL indicates that the interrupt stack is in use, the current access
mode is kernel mode, and the IPL is higher than 2 .

• The system control block (SCB), the data structure that controls the dis­
patching of interrupts and exceptions, can be thought of as the secondary
structure that describes system context.

• Code that executes in system context can only refer to system virtual
addresses. In particular, there is no Pl space available, so the systemwide
interrupt stack must be located in system space .

• No· page faults are allowed. The page fault handler generates a fatal bug­
check if a page fault occurs and the IPL is above IPL 2 or the processor is
executing on the interrupt stack .

• No exceptions are allowed, other than subset instruction emulation ex­
ceptions. Exceptions such as page faults are associated with a process.
The exception dispatcher generates a fatal bugcheck if an exception occurs
above IPL 2 or while the processor is executing on the interrupt stack .

• ASTs, asynchronous events by which a process receives notification of ex­
ternal events, are not allowed. (The AST delivery interrupt is not requested
when the processor is in system context and not granted until IPL drops
below 2.)

• System services may not be requested from system context.

Process Context Routines. Procedure-based code (RMS services, Files-11
XQP, and system services) and exception service routines usually execute
in the context of the current process (on the kernel stack when in kernel
mode).

The system services are implemented as procedures and are available to
all native mode languages. In addition, the fact that they are procedures
means there is a call frame on the stack. Thus, a utility subroutine in a
system service can signal an error simply by putting the error status into
RO and issuing a RET instruction. All superfluous information is cleaned off
the stack by the RET instruction. The system service dispatchers, actually
the dispatchers for the CHMK and CHME exceptions, are exception service
routines.

System services must be called from process context. They are not avail­
able to system context code. One reason for requiring process context is that
the various services assume that there is a process whose privileges can be
checked and whose quotas can be charged as part of the normal operation of
the service. Some system services reference locations in Pl space, a portion
of address space only accessible from process context.

The page fault handler is the service routine for translation-not-valid ex­
ceptions. The page fault handler resolves a page fault in the context of the
process that incurred the fault. Because page faults are associated with a
process, the system cannot tolerate page faults incurred by interrupt service

1.3.3.3

1.3.3.4

1.3 Hardware Assistance to the Operating System Kernel

routines or other routines that execute in system context. The actual restric­
tion imposed by the page fault handler is even more stringent. Page faults
are not allowed above IPL 2. This restriction applies to process-based code
executing at elevated IPL as well as to system context code.

Interrupt Service Routines. Most VMS interrupt service routines execute in
system context on the systemwide interrupt stack .

• I/O requests are initiated through the $QIO system service, which can be
requested directly by the user or by some intermediary, such as RMS or
the Files-11 XQP, on the user's behalf. Once an I/O request has been placed
into a device queue, it remains there until the driver is triggered, usually
by an interrupt generated in the external device.

Two classes of software interrupt support the I/O subsystem: fork level
interrupts and the I/O postprocessing interrupt. Fork level interrupts en­
able a device driver to stall a driver code thread and resume it at a lower
IPL, thus lowering IPL in a controlled fashion. The I/O postprocessing in­
terrupt enters a software interrupt service routine for final processing of
I/O requests .

• The timer functions in the operating system require both the interval
timer interrupt service routine and a software interrupt service routine
that actually dispatches individual timer requests .

• Another software interrupt performs rescheduling, by which one process is
removed from execution and another selected and placed into execution.

The Swapper Process. Some VMS functions are best performed from process
context. The swapper process performs the most significant of these. As
the inswapper of all newly created processes, the swapper process cannot
be created in the conventional way. Its code and process data structures are
therefore built into the executive. During system initialization, its PCB is
inserted into the scheduler database compute queues so that it can be the
first process selected to execute.

Other characteristics of the swapper process include the following:

• Its process header is static and contains no working set list and no process
section table. It does not support page faults. All code executed by the
swapper must be locked into memory in some way. In fact, the swapper
code is contained in a,nonpageable section of a loadable executive image.

• The swapper executes entirely in kernel mode, thereby eliminating the
need for stacks for the other three access modes.

• Its limited Pl space includes only the Pl pointer page, containing the
location CTL$GL_PCB. Its kernel stack is located in system space.

• The swapper process temporarily maps PO space to transform disjoint pages
into a virtually contiguous I/O buffer, for example, to outswap a process
working set.

19

System Overview

1.3.3.5

1.3.4

Despite its limited context, the swapper process behaves in a normal
fashion in every other way. It is selected for execution by the scheduling
subsystem just like any other process in the system. It spends its idle time
in the hibernate state until some component in the system recognizes a need
for one of the swapper functions and awakens it.

Prior to Version 5.0, VMS included a null process with a context similar to
that of the swapper process. All CPU time not used by any other process in
the system was used executing the null process. In Version 5.0, a null PCB
and PHD are defined as placeholders, but there is no null process to schedule
for execution. SMP support necessitated a different form of idle loop.

Special Subroutines. There are several utility subroutines within the oper­
ating system related to scheduling and resource allocation that are called
from both process context code, such as system services, and from software
interrupt service routines. These subroutines are constrained to execute as
though within system context. An example of such a routine is SCH$QAST,
which is invoked to queue an AST to a process. It may be invoked from the
1/0 postprocessing and software timer interrupt service routines as well as
from various system services.

Memory Management and Access Modes

The VAX address translation mechanism is summarized in Chapter 14 and
described in more detail in the VAX Architecture Reference Manual. Two
side effects are of special interest to VMS. When a page is not valid, a
translation-not-valid exception is generated that transfers control to an ex­
ception service routine that takes the steps required to make the page valid.
This exception transfers control from a hardware mechanism, address trans­
lation, to a software exception service routine, the page fault handler, and
allows the operating system to gain control on address translation failures
to implement its dynamic mapping of pages while a program is executing.

Before the VAX address translation mechanism checks the valid bit in the
page table entry, it checks whether the requested access is allowable. The
check is based on the current access mode in the PSL, a protection code
that is defined for each virtual page, and the type of access (read, modify, or
write). This protection check allows the operating system to make read-only
portions of the executive write-inaccessible to any access mode, preventing
corruption of operating system code. In addition, privileged data structures
can be protected from even read access by nonprivileged users, preserving
system integrity.

1.3.5 Exceptions, Interrupts, and the REI Instruction

20

The VAX exception and interrupt mechanisms are very important to VMS.
The following sections compare the exception and interrupt mechanisms
and briefly describe features of the mechanisms used by VMS.

1.3.5.1

1.3.5.2

1.3 Hardware Assistance to the Operating System Kernel

Comparison of Exceptions and Interrupts. Interrupts occur asynchronously
to the currently executing instruction stream. They are actually serviced
between individual instructions and at well-defined points within the ex­
ecution of a given instruction. Exceptions occur synchronously as a direct
effect of the execution of the current instruction.

Both mechanisms pass control to service routines whose addresses are
stored in the SCB. These routines perform exception-specific or interrupt­
specific processing.

Exceptions are generally a part of the currently executing process. Their
servicing is an extension of the instruction stream that is currently executing
on behalf of that process. Interrupts are generally systemwide events that
cannot rely on support of a process in their service routines.

Because interrupts are generally systemwide, the systemwide interrupt
stack is usually used to store the PC and PSL of the process that was in­
terrupted. Exceptions are usually serviced on the per-process kernel stack.
Which stack to use is usually determined by control bits in the SCB entry
for each exception or interrupt.

Interrupts cause a PC/PSL pair to be pushed onto the stack. Exceptions
often cause exception-specific parameters to be stored in addition to a PC/
PSL pair.

Interrupts cause the IPL to change. Most exceptions do not have an IPL
change associated with them.

An interrupt can be blocked by elevating IPL to a value at or above the
IPL associated with the interrupt. Exceptions, on the other hand, cannot be
blocked. However, some exceptions can be disabled by clearing associated
bits in the PSL.

When an interrupt or exception occurs, a new PSL is formed that specifies
the new IPL, current access mode (usually kernel), and stack in use (interrupt
or other). One difference between exceptions and interrupts, a difference that
reflects the fact that interrupts are not related to the interrupted instruction
stream, is that the previous access mode field in the new PSL is set to
kernel for interrupts while the previous mode field for exceptions reflects
the access mode in which the exception occurred. Chapter 2 describes the
VAX architectural interrupt and exception mechanisms in more detail.

Other Uses of Exceptions and Interrupts. In addition to the translation-not­
valid fault used by memory management software, the operating system
also uses the CHMK and CHME exceptions as entry paths to the executive.
System services that must execute in a more privileged access mode use
either the CHMK or CHME instruction to increase access mode privilege (see
Figure 1.6). The system handles most other exceptions by dispatching to
user-defined condition handlers, as described in Chapter 5.

Hardware interrupts temporarily suspend code that is executing so that
an interrupt-specific routine can service the interrupt. Each interrupt has

21

System Overview

1.3.5.3

1.3.6

1.4

a priority level, or IPL, associated with it. The CPU raises IPL when it
grants the· interrupt. High-level interrupt service routines thus prevent the
recognition of low-level interrupts. Low-level interrupt service routines can
be interrupted by subsequent high-level interrupts. Kernel mode routines
can also block interrupts at certain levels by explicitly raising the IPL.

The VAX architecture also defines a set of software interrupt levels. VMS
uses. them for scheduling, I/O postprocessing, and to synchronize access to
certain classes of data structures. Chapter 4 describes the software interrupt
mechanism and its use.

Chapter 3 summarizes.hardware interrupts and their service routines.

The REI Instruction. The REI instruction is the common exit path for inter­
rupt and exception service routines. Many protection and privilege checks
are incorporated into this instruction. Because most fields in the PSL are not
accessible to the programmer, the REI instruction provides the only means
for changing access mode to a less privileged mode (see Figure 1.6). It is also
the only way to reach compatibility mode.

Although the IPL field of the PSL is accessible through the PR$_IPL pro­
cessor register, execution of an REI instruction is a common way that IPL
is lowered during normal execution. Because a change in IPL can alter the
deliverability of pending interrupts, many hardware and software interrupts
are delivered after an REI instruction is executed. Chapter 2 describes this
instruction and its checks in detail.

Process Structure

The. VAX architecture also defines a hardware PCB, which contains copies
of all a process's general registers when the .process is not active. When a
process is selected for execution, the contents of this block are copied into
the actual registers inside the processor with a single instruction, LDPCTX.

The corresponding instruction that saves the contents of the general registers
when the process is removed from execution is SVPCTX.

Chapter 12 contains a layout of the hardware PCB and detailed descriptions
of the SVPCTX and LDPCTX instructions.

OTHER SYSTEM CONCEPTS

This chapter began by discussing the most important concepts in the VMS
operating system: process and image. There l:!l'e several other fundamental
ideas that should be mentioned before beginning a detailed description of
VMS internals.

1.4.1 Resource Control

22

VMS protects itself .and other processes in the system from careless or ma­
licious users, with hardware and software protection mechanisms, software
privileges, and software quotas and limits.

1.4.1.1

1.4.1.2

1.4.1.3

1.4.1.4

1.4 Other System Concepts

Hardware Protection. The VAX memory management protection mechanism
that is related to access mode prevents unauthorized users from modifying or
even reading privileged data structures. Access mode protection also protects
system and user code and other read-only data structures from modifications
resulting from programming errors.

A more subtle but perhaps more important aspect of protection provided
by the memory management architecture is that the process address space
of one process (PO space or Pl space) is not accessible to code running in
the context of another process. When such accessibility is desired to share
common routines or data, the operating system provides controlled access
through global sections. System virtual address space is addressable by all
processes, although page-by-page protection may deny read or write access
to specific system virtual pages by certain access modes.

Process Privileges. Many operations that are performed by system services
could destroy operating system code or data or corrupt existing files if per­
formed carelessly. Other services allow a process to adversely affect other
processes in the system. VMS requires that processes executing these po­
tentially damaging operations be suitably privileged. Process privileges are
assigned when a process is created, either by the creator or through the user's
entry in the authorization file.

These privileges are described in the Guide to Setting Up a VMS System
and in the VMS System Services Reference Manual. The privileges them­
selves are specific bits in a quadword that is stored in the process header.
(The locations and manipulations of the several process privilege masks that
the operating system maintains are discussed in Chapter 26.) When a VMS
system service that requires privilege executes, it checks whether the asso­
ciated bit in the process privilege mask is set.

Quotas and Limits. VMS also controls allocation of its systemwide resources,
such as nonpaged dynamic memory and page file space, through the use
of quotas and limits. Like privilege, these process attributes are assigned
when the process is created. By restricting such items as the number of
concurrent 1/0 requests or pending ASTs, VMS exercises control over the
resource drain that a single process can exert on system resources, such as
nonpaged dynamic memory. In general, a process cannot perform certain
operations, such as queuing an AST, unless it has sufficient quota (nonzero
PCB$W _ASTCNT in this case). The locations and values of the various
quotas and limits are described in Chapter 25.

User Access Control. VMS uses a user identification code (UIC) for two
different protection purposes. To perform some control operation (Suspend,
Wake, Delete, and so on) on any other process, a process requires WORLD
privilege. A process with GROUP privilege can affect only other processes

23

System Overview

1.4.2

1.4.2.1

24

with the same group number. A process with neither WORLD nor GROUP
privilege can affect only other processes with the same UIC.

VMS also uses UIC as a basis for protection of various system objects, such
as files, global sections, logical names, and mailboxes. The owner of a file,
for example, specifies what access to the file she grants to herself, to other
processes in the same group, and to other processes in the system.

VMS Version 4 introduced access control lists (ACLs), which provide more
selective levels of sharing. An ACL lists individual users or groupings of
users who are to be allowed or denied access to a system object. ACLs
specify sharing on the basis of UIC, as well as other groupings, known as
identifiers, that can be associated with a process. ACLs can be specified for
files, directories, devices, global sections, queues, and shareable logical name
tables.

Other System Primitives

Several other simple tools used by VMS are mentioned throughout this book
and are described in Chapters 8, 19, and 35.

Synchronization. Any multiprogramming system must take measures to pre­
vent simultaneous access to system data structures. The problem is further
complicated by multiprocessing, where several CPUs have independent ac­
cess to shared memory. The executive uses four synchronization techniques:
elevated IPL, spinlocks, mutexes, and locks.

On a uniprocessor, elevating IPL is sufficient to synchronize access to
systemwide data structures. By elevating IPL, the processor can block a
subset of interrupts, allowing unrestricted and uncontested access to the
data structures. The most common synchronization IPL used by VMS is
IPL 8.

To extend the uniprocessor synchronization provided by IPL to a multi­
processing environment, VMS uses spinlocks. A spinlock describes the state
of a particular set of shared data and enables a set of processors to serial­
ize their access to the data. A resource synchronized by elevated IPL on a
uniprocessor is synchronized by a combination of elevated IPL and spinlock
on an SMP system.

A section of code that accesses shared data in a synchronized way first
raises IPL and, in an SMP system, acquires a spinlock. When finished, the
code lowers IPL and, in an SMP system, releases the spinlock. VMS pro­
vides macros to implement these IPL-raising/spinlock acquisition and IPL­
lowering/spinlock release operations. The macros acquire and release spin­
locks only on SMP systems; otherwise, they only elevate and restore IPL.
For simplicity, this volume refers to this combined type of synchronization
as acquiring and releasing spinlocks. That the macros merely alter IPL on a
uniprocessor is implicit; that they also alter IPL on an SMP member often
goes without saying.

1.4.2.2

1.4.2.3

1.5

1.5 System Virtual Address Space

The use of a spinlock to synchronize access to certain types of data struc­
ttires is sometimes undesirable or even potentially harmful to system perfor­
mance. For example, a process that has acquired a spinlock must execute at
or above IPL 3, blocking process rescheduling on that CPU until it releases
the spinlock. In addition, because page faults are not allowed above IPL 2,
any pageable data structure cannot be synchronized with a spinlock.

Thus, the VMS executive requires a third synchronization tool to allow
synchronized access to pageable data structures. This tool must also allow a
process to be removed from execution while it maintains ownership of the
structure in question. One synchronization tool that fulfills these require­
ments is called a mutual exclusion semaphore (mutex).

Synchronization, including the use of mutexes, is discussed in Chapter 8.
The VMS executive and other system components, such as the Files-11

XQP, RMS, and the job controller, use a fourth tool, the lock management
system services, for more flexible sharing of resources among processes.
These services provide a waiting mechanism for processes whose desired
access to a resource is blocked. They also provide notification to a process
whose use of a resource blocks another process. Most important, the lock
management system services provide sharing of clusterwide resources. Chap­
ter 10 describes the lock management system services.

Dynamic Memory (Pool) Allocation. The system maintains several dynamic
memory areas from which blocks of memory can be allocated and deallo­
cated. Nonpaged pool contains those systemwide structures that might be
manipulated by (hardware or software) interrupt service routines or process
context code executing above IPL 2. Paged pool contains systemwide struc­
tures that do not have to be kept memory-resident. The process allocation
region and the kernel request packet (KRP) lookaside list, both in process Pl
space, are used for pageable data structures that will not be shared by any
other process. Dynamic memory allocation and deallocation are discussed
in detail in Chapter 19.

Logical Names. The system uses logical names for many purposes, including
a transparent way of implementing a device-independent I/O system. The
use of logical names as a programming tool is discussed in the VMS System
Services Reference Manual. The internal operations of the logical name
system services, as well as the internal organization of the logical name
tables, are described in Chapter 35.

SYSTEM VIRTUAL ADDRESS SPACE

The layout of system virtual address space is shown in Figure 1.8. Appendix F
gives a more complete description of system space.

25

System Overview

26

80000000
System Service Vectors

Executive Transfer Vectors

System Data Area

SYSGEN Parameters Area

Boot Parameters Area

Miscellaneous

I Loadable Executive Images I
Available System Pages

Restart Parameter Block

PFN Database

Paged Pool

Nonpaged Pool

LRP Lookaside List

IRP Lookaside List

SRP Lookaside List

Per-CPU Database

Guard Page

Boot Page

Guard Page

Interrupt Stack

Guard Page

System Control Block

* Balance Slots *
System Header

System Page Table

Global Page Table

Boot PO Page Tables

Figure 1.8
Layout of System Virtual Address Space

SYS.EXE

This figure was produced by an SDA listing of the system page table and
the contents of all global data areas in system space and from information in
[BOOTS]SYSBOOT. The relations between the variable-size pieces of system
space and their associated SYSGEN parameters are given in Appendix F.

PART II / Control Mechanisms

2

2.1

VAX Interrupts and Exceptions

By indirections find directions out.

Shakespeare, Hamlet, 2, i

This chapter describes the VAX. architectural interrupt and exception mech­
anisms and the return from exception or interrupt (REI) instruction. It sum­
marizes VMS use of the mechanisms.

OVERVIEW

During system operation, events occur that require the execution of software
other than the current thread of execution. The processor responds to such
events by altering the control flow from the current thread of execution.
Some of these events are unrelated to the current thread and are asynchro­
nous to it; these events are called interrupts. Other events, called exceptions,
are triggered by the current thread and are synchronous to it.

The processor determines where to transfer control by examining the sys­
tem control block (SCB). The SCB contains a longword vector for each inter­
rupt and exception, specifying the address where control is to be transferred.

Most hardware interrupts are requested by signals from devices external
to the processor when they need attention from the operating system. The
hardware interrupt capability makes it unnecessary for the processor to
poll the device to determine whether its state has changed. Some hardware
interrupts are requested by signals from within processor components, such
as the interval timer.

To permit arbitration among concurrent interrupt requests and their ser­
vicing, each interrupt request has an associated interrupt priority level (IPL).
When an interrupt is granted, processor IPL is raised to that of the inter­
rupt. When the processor IPL is at or above that of the interrupt request, the
interrupt is blocked.

A software interrupt is an interrupt requested by kernel mode code rather
than by an external device. The VAX. architecture provides for 15 different
software interrupts. The VMS executive is interrupt-driven and requests a
particular software interrupt to cause the corresponding service routine to
perform its designated function. That is, software interrupts are requested
to schedule operating system functions, with the highest priority interrupt
serviced first.

VAX. microcode responds similarly to hardware and software interrupt re­
quests. The microcode tests for pending interrupts between each instruc­
tion and at well-defined points during the evaluation and execution of more
complicated instructions. The microcode determines the IPL of the highest

29

VAX Interrupts and Exceptions

2.2

30

outstanding interrupt request, whether it is requested by hardware or soft­
ware. The microcode compares that IPL to the one at which the processor is
running and takes one of two actions based on the comparison:

• If the processor is running at an IPL equal to or higher than that of the
interrupt request, the interrupt request is deferred until processor IPL drops
below the IPL level of the request .

• If the processor is running at a lower IPL than that of the interrupt request,
the interrupt is granted.

To grant the interrupt, the microcode saves the processor state and dis­
patches through the SCB vector associated with the interrupt to its service
routine.

An exception is the processor's response to an anomaly or error it encoun­
ters while executing an instruction, for example, a divisor of zero in a DIVL

instruction. An exception occurs in direct response to a particular instruc­
tion sequence and would occur again if the instruction were repeated under
the same circumstances. VAX microcode responds as it does to an inter­
rupt, by saving the processor state and dispatching through the SCB vector
associated with the exception to its service routine.

SYSTEM CONTROL BLOCK

The SCB may occupy multiple pages, depending on CPU type and adapter
configuration. Its first page, however, is architecturally defined. Each ex­
ception and interrupt has a unique vector, identified by its offset from the
beginning of the SCB. Each vector contains the address of a service routine
for that exception or interrupt. Figure 2.1 shows the contents of a vector and
meaning of the low-order two bits.

Operating system software initializes the SCB, and the VAX processor uses
it to dispatch all interrupts and exceptions.

The SCB is page-aligned. A multiple-page SCB must be physically con­
tiguous. Its starting physical address is stored in the system control block
base register, PR$_SCBB. The processor calculates the address of a particular

31

Address of Longword-Aligned Service Routine

Code Meaning
00 Service the event on the kernel stack unless currently on the interrupt stack; in that

case, use the interrupt stack.
01 Service the event on the interrupt stack; if the event is an exception, raise IPL to 31.
10 Service the event in the writable control store (WCS), passing bits < 15:2> to the

microcode; if the WCS does not exist or is not loaded, the operation is undefined.
11 The operation is undefined.

Figure 2..1
System Control Block Vector Format

2 1 0

Code

2.2 System Control Block

vector using the contents of PR$_SCBB and the offset into the SCB of the
vector. This design enables executive software to place the SCB in memory
known to be good at system initialization. If the SCB were required to be
at a fixed location, and that memory had uncorrectable errors, the system
would be unable to run. VMS maps the SCB in system space and stores its
starting virtual address in global location EXE$GLSCB.

Once memory management is enabled, vectors must contain virtual ad­
dresses. Because there may be no current process at the time an interrupt
occurs, all service routines must be in system space. Because the low-order
two bits of the vector are not part of the service routine address, each service
routine must begin on a longword boundary.

The low-order two bits of a vector specify the stack on which the interrupt
or exception should be serviced. A value of 01 means that it should be
serviced on the interrupt stack. If the vector contains the value 00, the
processor will not switch to the interrupt stack; if, however, it was already
running on the interrupt stack, it will continue to do so. A value of 01 in an
exception vector also means that IPL should be raised to 31. VMS specifies
that machine check and kernel-stack-not-valid exceptions be serviced on the
interrupt stack at IPL 31.

On a CPU type that supports user-writable control store, a value of 10
means that the interrupt or exception should be serviced by microcode in
user-writable control store. Most CPUs that do not support user-writable
control store halt if an interrupt or exception occurs through a vector with
10 in the low-order two bits. A value of 11 in these bits has no defined
meaning; most CPUs halt if they attempt to dispatch through a vector with
these bits set.

Figure 2.2 shows the general organization of the first page of the SCB.
It contains vectors for exceptions, software interrupts, CPU-specific error
interrupts, and some hardware interrupts. The VAX Architecture Reference
Manual contains the detailed SCB layout.

Table 5.1 lists the VAX exception vectors. The executive handles most
exceptions in a uniform way. Some exceptions, however, result in special
action. Chapter 5 describes VMS's handling of most exceptions and summa­
rizes its responses to special exceptions.

Chapter 4 contains more details about the vectors used for software inter­
rupts and describes their service routines.

The second half of the first page is reserved for adapter interrupts. As
Figure 2.3 shows, it is divided among 16 possible adapters, each capable
of interrupting at four possible IPL values from 20 to 23. The nature and
type of the adapters vary on different VAX processors. Each adapter has
an identifying number which, along with the IPL of the interrupt, selects
a particular SCB vector. Chapter 22 describes adapter interrupts and their
service routines. Chapter 3 summarizes other hardware interrupts and their
service routines.

31

VAX Interrupts and Exceptions

2.3

32

Exception Vectors f+
Processor Fault Vectors

Software Interrupt Vectors

r----f 1 PR$_SCBB

~----~1,---~1 EXE$GL_SCB::

Clock and Console Vectors

CPU-Specific
Adapter and

Device Interrupts -Virtual address pointer ----Physical address pointer

I I
I I
I Optional I

=J= CPU-Specific =J=
1 Extension 1

I I
I I L ___________ _J

Figure 2.2
System Control Block Organization

-(Physic;~ f I PR$_SCBB

Various Exceptions and address
Software Interrupts pointer)

10015 } 16 vectors, one for
IPL 20 Interrupts each adapter number

Offsets 14016
} 16vectors in IPL 21 Interrupts see

18015
} 16vectors IPL 22 Interrupts

1co,6
} 16vectors IPL 23 Interrupts

Figure 2.3
System Control Block Vectors for Adapter Interrupts

Beyond the first page, the size of the SCB varies with processor type and
configuration. Appendix F contains further details of its sizing.

INTERRUPT REQUESTS

The VAX architecture provides 16 hardware IPLs, from IPL 31 down to IPL
16. The top eight levels are primarily for CPU-specific errors and power
failure. The lower levels are primarily for external adapters and I/O devices.

There is no one-to-one correspondence between IPL and hardware inter­
rupt vector. The SCB contains multiple vectors whose interrupts are at the
same hardware IPL (see Figure 2.3). An external adapter or I/O device re­
quests an interrupt at a particular hardware IPL. The SCB vector associated

31

2.3 Interrupt Requests

with the interrupt is typically determined by the combination of interrupt
IPL and adapter or device (see the VMS Device Support Manual).

To block interrupts, kernel mode code can raise IPL to that of the highest
interrupt to be blocked. The VAX architectural concept of an interrupt in­
cludes the idea that an interrupt request is expected to persist until serviced,
or until the adapter or device withdraws the request. At appropriate times,
a processor can sample outstanding interrupt requests.

The VAX architecture provides 15 vectors in the SCB for software inter­
rupts at IPLs 1 through 15; there is a one-to-one correspondence between IPL
and software interrupt vector. The architecture provides a means for kernel
mode code and CPU console commands to request software interrupts.

Kernel mode code requests a software interrupt at a particular IPL by
writing that IPL into the software interrupt request register, PR$_SIRR. VMS
code generally uses the SOFTINT macro to write the PR$_SIRR. This macro
expands into the following instruction:

MTPR ipl,S~#PR$_SIRR

The following CPU console command can also write the PR$_SIRR:

»>D/I 14 ipl !for ipl, substitute a hexadecimal digit

Writing to PR$_SIRR causes the bit with the same number as the IPL to
be set in another processor register, the software interrupt summary register
(PR$_SISR). Figure 2.4 shows the layouts of these two registers. At any given .
time, PR$_SISR contains a bit set for each level at which a software interrupt
has been requested but not yet granted. The VAX processor reads PR$_SISR
to test for pending software interrupts. When the processor grants a software
interrupt request, it clears the corresponding bit in PR$_SISR.

The VAX architecture provides both of these processor registers to simplify
synchronization of access to PR$_SISR. If VMS were to modify the PR$_SISR
directly, several instructions would be required to preserve already set bits in
the register. VMS would have to raise IPL to block all interrupts, read PR$_

Software Interrupt Request Register (Write Only)
4 3 0

'--~~~~~~~~~~~l-gn_o_re_d~~~~~~~~~~~~-'--1 _R_e_q_ue_s__,t I PR$_SIRR

31
Software Interrupt Summary Register (Read/Write)

16 15

Must be zero Pending Software Interrupts

1 0

PR$_SISR
F E D C B A 9 8 7 6 5 4 3 2 1

Figure 2.4
Formats of Software Interrupt Request Register and
Software Interrupt Summary Register

Must be zero

33

VAX Interrupts and Exceptions

2..4

2..5

34

SISR, set the new bit, write PR$_SISR, and restore the previous IPL. IMTPR and
MFPR are the only instructions that access these processor registers.) Instead,
when kernel mode code (or CPU console command) writes PR$_SIRR, the
processor modifies PR$_SISR with interrupts blocked.

INTERRUPT DISPATClilNG

VAX initiate-exception-or-interrupt (IEI) microcode takes the following steps
when an interrupt is requested and granted:

1. It examines the low-order bits of the SCB vector to determine on which
stack the interrupt is to be serviced. VMS has specified that all hardware
interrupts and most software interrupts be serviced on the interrupt
stack.

2. VAX IEI microcode switches stacks, if necessary, and pushes the current
program counter !PC) and processor status longword IPSL) onto the new
stack. Saving the PC and PSL preserves state so that the interrupted
thread of execution can continue after the interrupt is dismissed.

3. The microcode stores the address of the service routine in the PC and
constructs a new PSL. Its IPL is that associated with the interrupt. Its
compatibility mode, trace pending, first part done, decimal overflow en­
able, floating underflow enable, integer overflow enable, trace enable,
and condition code bits are cleared. Its current mode is set to kernel,
the mode in which the interrupt will be serviced. Its previous mode is
expected to be irrelevant to the service routine and is set to kernel also.
Its interrupt stack bit is set, if appropriate, to indicate that the processor
is running on the interrupt stack.

4. When a software interrupt is dispatched, the microcode clears the bit in
PR$_SISR corresponding to the IPL.

The interrupt service routine executes and eventually exits with an REI

instruction that dismisses the interrupt. The REI instruction, described in
Section 2.8, restores the PC and PSL, and the interrupted thread of execution
la process or lower priority interrupt service routine) continues where it was
interrupted.

RESTRICTIONS IMPOSED ON INTERRUPT SERVICE ROUTINES

Most interrupt service routines execute in the limited system context de­
scribed in Chapter 1. These routines execute at elevated IPL on the interrupt
stack outside the context of a process.

Several restrictions are imppsed on interrupt service routines by either the
VAX architecture or VMS. Many of these result from the limitations of sys­
tem context. The following list indicates some of the constraints placed on
an interrupt service routine. The description of system context in Chapter 1
contains a more general list of these and other restrictions. Chapter 8 de­
scribes the synchronization rules applicable to an interrupt service routine.

2.6

2.6 Exception Dispatching

• To reduce overhead, no context switch occurs with an interrupt. Therefore,
the instructions executed and data referenced by an interrupt service rou­
tine must be in system address space. An interrupt service routine should
not refer to per-process address space .

• An interrupt service routine should be short and do as little processing as
possible at elevated IPL.

• An interrupt service routine must save any registers it uses. VMS saves
some registers (usually RO through RS) prior to calling a device driver
interrupt service routine (see the VMS Device Support Manual) .

• Prior to executing an REI instruction, an interrupt service routine must
remove anything it pushed on the stack and restore all saved registers .

• An interrupt service routine should be conservative in its use of stack
space. The interrupt stack is not very large on most VMS systems. Its
size is determined by the SYSGEN parameter INTSTKPAGES, which has
a default value of four pages .

• VMS does not allow any interrupt service routine (other than the IPL 2
interrupt service routine) to access pageable routines or data structures.
The page fault exception service routine generates a fatal bugcheck if a
page fault occurs while IPL is above 2 .

• Although an interrupt service routine can raise IPL, it should not lower
IPL below the level at which the original interrupt occurred.

EXCEPTION DISPATCHING

When an exception is detected, VAX IEI microcode takes the following steps:

1. It determines on which stack the exception is to be serviced. Which stack
depends on the access mode in which the exception occurred, whether
the CPU was previously executing on the interrupt stack, and what type
of exception occurred.

In general, VAX microcode uses the low two bits of the SCB vector to
determine on which stack the exception is serviced. Table 2.1 summa­
rizes the stack choices resulting from the architectural mechanisms and
VMS SCB vector definitions. Its first column lists the exception name.
The second column specifies the access mode in which the exception
occurred. The third column specifies whether the interrupt stack is in
use at the time of the exception. The fourth column shows the stack on
which the exception is serviced.

Machine check and kernel-stack-not-valid exceptions are serviced on
the interrupt stack. A subset instruction emulation exception is serviced
on the stack on which the exception occurred. Change mode exceptions
are generally serviced on the stack of their target mode. VMS specifies
that all other exceptions are to be serviced on the kernel stack, unless
the processor is already running on the interrupt stack.

35

VAX Interrupts and Exceptions

36

Table 2.1 Selection of Exception Stack

PSL AT TIME OF EXCEPTION

Previous Interrupt
Exception Name Mode Stack

Machine check Any 0 or 1
Kernel stack not valid K 0
Subset instruction emulation Any 0 or 1
CHMx Any 0
CHMx K
All others U, S, E,K 0
All others K

Resulting
Stack

ISP
ISP
Same
xSP 1

Halt 2

KSP
ISP

1 The stack used is the destination of the CHMx instruction. Note, however,
that a CHMx instruction issued from an inner access mode in an attempt to
reach a less privileged (outer) access mode will not have the desired effect. The
mode indicated by the instruction is minimized with the current access mode to
determine the actual access mode that will be used. The exception is generated
through the indicated SCB vector, but the final access mode is unchanged. In
other words, as illustrated in Figure 1.6, the CHMx instruction can only reach
equal or more privileged access modes.

2 Execution of a CHMx instruction while the CPU is running on the interrupt
stack is prohibited by the VAX architecture and results in a CPU halt.

The exception reporting mechanism assumes that the kernel stack is
valid. The decision to use the kernel stack for most exceptions avoids the
possibility of attempting to report an exception on, for example, the user
stack, only to find that it is corrupted in some way (invalid or otherwise
inaccessible), resulting in another exception. A kernel-stack-not-valid
exception must be taken on the interrupt stack. The VMS service routine
for this exception generates a fatal bugcheck.

If the interrupt stack is invalid, IEI microcode halts the processor.
2. The microcode switches stacks, if necessary, and pushes the PC and PSL

onto the new stack. The exception PC that it pushes depends on the
nature of the exception, that is, whether the exception is a fault, trap, or
abort (see Table 5.1):

-For a fault, the processor pushes the PC of the faulting instruction
onto the stack. When a fault is dismissed with an REI instruction, the
faulting instruction executes again from the beginning.

-For a trap, the processor pushes the PC of the next instruction onto the
destination stack. An instruction that causes a trap does not reexecute
when the exception is dismissed with an REI instruction.

-For an abort, the processor pushes the PC of the aborted instruction
onto the stack. An abort is not restartable. Exceptions that are aborts

2.7

2. 7 Comparison of Exceptions and Interrupts

include kernel-stack-not-valid, some machine check codes, and some
reserved operand exceptions.

3. The microcode loads the PC with the address of the service routine
and constructs a new PSL. Its IPL is normally unchanged. If the vec­
tor contains 01 in the low-order two bits, the service routines run on
the interrupt stack at IPL 31. Machine check and kernel-stack-not-valid
exception vectors specify this vallle. The PSL compatibility mode, trace
pending, first part done, decimal overflow enable, floating underflow en­
able, integer overflow enable, trace enable, and condition code bits are
cleared. Its current mode is set to the mode in which the interrupt will
be serviced. Its previous mode is set to the mode in which the exception
occurred. Its interrupt stack bit is set, if appropriate, to indicate that the
processor is running on the interrupt stack.

The exception service routine executes. It eventually exits by removing
any exception-specific parameters from the stack and executing an REI in­
struction to dismiss the exception.

The REI instruction, described in Section 2.8, restores the PC and PSL, and
the thread of execution that incurred the exception resumes.

COMPARISON OF EXCEPTIONS AND INTERRUPTS

The following list summarizes some of the distinctions between exceptions
and interrupts.

• Interrupts occur asynchronously to the currently executing instruction
stream. They are serviced between individual instructions or at well­
defined points in the execution of a given instruction. Exceptions occur
synchronously as a direct effect of execution of the current instruction .

• Interrupts are generally systemwide events that cannot rely on support
of a process in their service routines. Exceptions are generally a part of
the currently executing process. Their servicing is an extension of the
instruction stream that is currently executing on behalf of that process.

• Because interrupts are generally systemwide, they are serviced on the sys­
temwide interrupt stack. Exceptions are usually serviced on the per-process
kernel stack.

• To save state at interrupt initiation, the processor records the PC and PSL
on the stack. At exception initiation, the processor often records exception­
specific parameters as well as the PC and PSL.

• Interrupts cause the IPL to change. Exceptions other than machine check
and kernel-stack-not-valid do not cause IPL to change.

• An interrupt can be blocked by elevating IPL to a value at or above the IPL
associated with the interrupt. Exceptions are not blocked by raising IPL.
Some exceptions, however, can be disabled by clearing their enabling bits
in the PSL.

37

VAX Interrupts and Exceptions

2.8

38

• When an interrupt or exception occurs, the microcode constructs a new
PSL. The previous mode field in the new PSL is set to kernel for an
interrupt PSL, while the previous mode field for an exception PSL is set to
the access mode in which the exception occurred. This difference between
exceptions and interrupts reflects the fact that interrupts are not related
to the interrupted instruction stream.

THE RETURN FROM EXCEPTION OR INTERRUPT INSTRUCTION

The REI instruction is the common exit path for interrupt and exception
service routines. The VAX architecture limits the types of transitions from
one access mode to another; the REI instruction is the only way to change
access mode to a less privileged one (see Figure 1.6). This property of REI,

and the VAX architecture constraint that an inner access mode will not be
interrupted to deliver an asynchronous system trap (AST) to an outer mode,
make REI the logical place to test whether an AST delivery interrupt should
be requested.

The REI instruction is also the only way to reach compatibility mode.
Execution of an REI instruction is a common way for IPL to be lowered.

Because a change in IPL can alter the deliverability of pending interrupts,
hardware and software interrupts are often delivered after an REI instruction
is executed.

Protection and privilege checks are incorporated into the REI instruction
to prevent the system from entering illegal or inconsistent states. REI is not
a privileged instruction, and these checks prevent, for example, an attempt
to enter a more privileged access mode.

The REI microcode tests the following conditions to ensure that the saved
PSL is well formed and that it is consistent with the current PSL. If any test
fails, the microcode generates a reserved operand fault exception.

• If the saved PSL interrupt stack bit is nonzero, then the saved PSL IPL must
be greater than 0. This test detects an illegal state in the saved PSL-being
on the interrupt stack at IPL 0.

• If the saved PSL IPL is greater than 0, then its current mode must be kernel.
This test prevents any mode other than kernel from raising IPL.

• The saved PSL previous mode must be no more privileged thari. its current
mode. This test detects a previous illegal transition or stack corruption.

• The saved PSL must-be-zero bits must be 0. This test detects corruption
of the stack.

• If the saved PSL compatibility mode bit is 1, the CPU must be one that
implements compatibility mode, the saved PSL current mode 'must be
user, and the saved PSL first part done, interrupt stack, floating underflow
enable, decimal overflow enable, and integer overflow enable bits must
all be 0. These tests restrict compatibility mode to user access mode and
detect stack corruption and inconsistent state.

2.8 The Return from Exception or Interrupt Instruction

• The saved PSL current mode must be no more privileged than the current
PSL current mode. This test prevents an attempt to REI to a more privileged
mode .

• If the current PSL interrupt stack bit is 0, then the saved PSL interrupt
stack bit must be 0. This test prevents an attempt to REI onto the interrupt
stack .

• The saved PSL IPL must be no larger than the current PSL IPL. This test
prevents an attempt to REI to a higher IPL. An interrupt service routine
that lowers IPL below that of its interrupt breaks synchronization and risks
a reserved operand fault when it executes an REI instruction.

After performing the previously listed tests, the REI microcode takes the
following steps:

1. It pops the saved PC and PSL from the stack into temporary registers.
2. Depending on the current PSL interrupt stack bit and current mode,

the microcode saves the contents of the SP register in the appropriate
processor register (PR$_ISP, PR$_KSP, PR$_ESP, PR$_SSP, or PR$_ USP).
This step records the pointer into the current access mode's stack.

A VAX processor is not required to implement the per-process stack
pointer registers. One that does not implement them instead saves SP in
the appropriate longword in the process's hardware process control block
(PCB).

3. If the current PSL trace pending bit is set, the microcode sets the saved
PSL trace pending bit. This step ensures a trace fault after the execution
of the REI instruction.

4. The microcode copies the temporary registers to PC and PSL.
5. If the now-current PSL interrupt stack bit is 0, the microcode loads SP

from the appropriate PR$JSP register. This step restores the pointer into
the now-current stack. (A VAX CPU type that does not implement these
processor registers instead loads SP from the appropriate longword in the
process's hardware PCB.)

6. If the now-current PSL interrupt stack bit is 0, the microcode compares
the current mode to the contents of PR$_ASTLVL. If the current mode
is less privileged, the microcode requests an IPL 2 interrupt.

7. The microcode reinitializes any instruction lookahead in the processor,
flushing the instruction buffer. On some VAX CPUs, instruction exe­
cution is concurrent with the fetching and evaluation of subsequent
instructions. The REI microcode clears any such CPU state. (The REI

instruction is the only one guaranteed to do this clearing and is thus
required between modifying the instruction stream and executing the
modified instruction.)

8. Unless another interrupt occurs, execution resumes with the instruction
being executed at the time of the interrupt or exception, at the inter­
rupted instruction or the exception PC.

39

3

3.1

40

Hardware Interrupts

While I nodded, nearly napping, suddenly there came a tapping,
As of someone gently rapping, rapping at my chamber door.

Edgar Allan Poe, The Raven

The VMS operating system is often referred to as interrupt-driven and non­
monolithic. Hardware interrupts notify VMS of such important events as
power failure, device completion, device errors, device alerts, and work re­
quests from one processor to another in a symmetric multiprocessing (SMP)
system. In addition, the interval timer interrupt allows VMS to keep system
time.

This chapter presents an overview of hardware interrupts, interrupt prior­
ity levels IIPLs), and interrupt dispatching in VMS.

OVERVIEW

As discussed in Chapter 2, many hardware interrupts are requested by signals
from devices external to the processor when they need attention from the
operating system. Hardware interrupts may be requested by devices, con­
trollers, or other processors in an SMP system. In addition, the processor
itself may request some hardware interrupts.

The VAX architecture provides 16 priority levels, 16 through 31, for hard­
ware interrupts and 16 priority levels, 0 through 15, for software interrupts.
When a hardware interrupt occurs, the interrupted processor raises its pri­
ority to the IPL associated with the hardware interrupt. Table 3.1 provides a
summary of hardware interrupts and IPLs used by VMS. Software running in
kernel mode may raise and lower the priority of the processor by using the
MTPR instruction to load the register PR$_IPL. Thus, software has the ability
to block hardware interrupts as necessary.

The response of the VAX processor to any interrupt request, hardware or
software, is similar. If the processor priority permits the requested interrupt
to be granted, the processor saves the current state and invokes the interrupt
service routine for the interrupt through the interrupt vector in the system
control block (SCB).

Interrupt vectors for software interrupts are architecturally defined at fixed
offsets within the SCB. Interrupt vectors for certain hardware interrupts,
such as the interval timer interrupt, the powerfail interrupt, and console
interrupts, are also architecturally defined at fixed offsets within the SCB.
SCB vectors for other hardware interrupts, such as device interrupts, are
defined in a system-dependent manner, as discussed in Section 3.2.

3.1.1

3.1.1.1

3.1.1.2

3.1 Overview

The following sections provide brief descriptions of hardware interrupts
on VAX systems. Chapter 4 discusses software interrupts.

Urgent Conditions

The VAX architecture provides for eight priority levels, 24 through 31, for
urgent conditions such as power failure and CPU-specific bus and memory
errors. IPL 30 is reserved for the powerfail interrupt. IPL 31 is reserved for
those exceptions that must block all processing until the condition has been
handled. IPL 31 is also used by device drivers to synchronize with powerfail
recovery, as discussed in the VMS Device Support Manual.

Powerfail Interrupt. The powerfail interrupt is requested by the CPU hard­
ware when there is a drop in operating voltage. It is vectored through the SCB
at offset OC16, as defined by the VAX architecture, and serviced at IPL 30.
EXE$POWERFAIL, in module POWERFAIL, is the VMS powerfail interrupt
service routine. Chapter 33 discusses powerfail recovery in detail.

System-Specific Errors. The VAX architecture reserves offsets 5016 through
6016 in the first page of the SCB for system-specific memory and bus errors.

Table 3.1 Hardware Interrupt Priority Levels and Their Use

Level Name Use
31 IPL$_POWER Block all interrupts

IPL$_EMB Synchronize error logging
IPL$_MCHECK Synchronize machine check processing
IPL$_MEGA Synchronize miscellaneous structures

30 Powerfail interrupt
30-24 CPU-specific error interrupts
24 IPL$_HWCLK Interval timer interrupt 1

22 IPL$_HWCLKLO Interval timer interrupt 1

23-20 Device interrupts
22 or 20 IPL$_IPINTR Interprocessor interrupt 2

20 or 22 IPL$_ VIRTCONS Console terminal interrupts 3

19 or 21 IPL$_INVALIDATE Synchronize translation buffer (TB)
invalidation 4

18-16 Unused

1 The interval timer IPL is system-dependent.
2 The interprocessor IPL is 22 on VAX 6000 series and VAXstation 35x0 systems

and 20 on all others.
3 IPL$_ VIRTCONS has a value of 20. However, access to the virtual console database

is synchronized at a system-dependent IPL. See Chapters 8 and 34.
4 IPL$_INVALIDATE has a value of 19. However, synchronization of TB invalidation

is done at a system-dependent IPL. See Chapters 8 and 34.

41

Hardware Interrupts

Common examples of such interrupts are corrected read data errors, vectored
through SCB offset 5416 on some VAX systems, and system bus errors,
vectored through SCB offset SC16 on some VAX systems. Such interrupts
are taken at the highest interrupt levels, IPLs 24 through 30.

The interrupt service routines for such interrupts typically raise IPL to 31
and log the error. These routines are usually in the [SYSLOA]MCHECKxxx
modules, where xxx designates the CPU type. Appendix G lists CPU types
and their corresponding suffixes. Chapter 32 provides more discussion on
the handling and logging of system-specific errors.

3.1.2 Interval Timer Interrupt

The manner in which the CPU hardware requests the interval timer interrupt
is implementation-dependent. Some VAX processors, such as the MicroVAX
II, generate timer interrupts at constant IO-millisecond intervals. Other VAX
processors have the ability to generate timer interrupts at specified intervals.

Interval timer interrupts are vectored to the service routine through offset
C016 in the SCB, as defined by the VAX architecture. EXE$HWCLKINT, in
module TIMESCHDL, is the int.erval timer interrupt service routine. The
IPL of the interval timer interrupt is 24 on older VAX systems and 22 on the
newer systems. Chapter 11 discusses the interval timer interrupt in detail.

3.1.3 Interprocessor Interrupt

42

On SMP systems, VMS uses the interprocessor interrupt mechanism to in­
terrupt a specific processor for a specific task or to interrupt all processors or
a subset of all processors to perform tasks as required. The interprocessor in­
terrupt vector, priority level, and interrupt service routine vary on different
VAX systems.

On all SMP systems other than VAXstation 35x0 CPUs, the interprocessor
interrupt is vectored at SCB offset 8016· On a VAX.station 35x0 CPU, the
interprocessor interrupt is vectored through the upper half of the first page
of the SCB just like any other adapter interrupt.

On all SMP systems other than VAX 6000 series and VAX.station 35x0 pro­
cessors, the interprocessor interrupt vector in the SCB contains the address
of SMP$INTSR1, in module [SYSLOA]SMPINT.

On VAX 6000 series and VAXstation 35x0 systems, the vector contains the
address of SMP$IPINT _xxx, in module [SYSLOA]OPDRVxxx. After perform­
ing system-dependent actions, SMP$IPINT _xxx transfers to SMP$INTSR1.
SMP$INTSR1 is in module [SYSLOA]SMPINT _60 for a VAX.station 35x0
system and in module [SYSLOA]SMPINT for all other systems.

The interprocessor interrupt priority level is IPL 20 on VAX 88x0 and VAX
83x0 systems, and IPL 22 on VAX 6000 series and VAXstation 35x0 systems.
Chapter 34 discusses the use of interprocessor interrupts.

3.1 Overview

Table 3.2 Console Interrupts

Name
Console storage receive 1

Console storage transmit 1

Console terminal receive
Console terminal transmit

SCB Vector

F016

IPL

20 on the VAX-11/730,
23 on the VAX-11/750
20 on the VAX-11/730,
23 on the VAX-11/750
20
20

1 These interrupts are generated only on VAX-11/730 and VAX-11/750
processors.

3.1.4 Console Interrupts

On most VAX systems, the console block storage device and the console
terminal are treated as a single entity with regard to interrupt processing.
On VAX-11/750 and VAX-11/730 processors, the console block storage device
is treated as distinct from the console terminal device.

Interrupts from the console are vectored through known offsets in the SCB.
Table 3.2 shows the SCB vectors and IPLs of different console interrupts.
Chapter 24 discusses console interrupts.

3.1.5 Unexpected Interrupts and Passive Releases

Architecturally defined SCB vectors are initialized during system initial­
ization to point to appropriate VMS routines. Other vectors in the SCB
are initialized to the VMS unexpected interrupt service routine, ERL$UN­
EXP, in module ERRORLOG. ERL$UNEXP generates the nonfatal bugcheck
UNXINTEXC and dismisses the interrupt.

When a CPU grants an interrupt request, and no device vector is returned
by the device that generated the request, a condition known as passive
release occurs. This can happen when the device determines, after it has
requested an interrupt, that it no longer needs to interrupt the CPU. A
passive release is treated as though a zero interrupt vector is returned by
the device. Passive releases are vectored to the routine ERL$VEC_RETURN,
in module ERRORLOG, which increments the global location 10$GLSCB_
INTO to record the occurrence.

Passive releases on a UNIBUS that is adapted to a VAX system bus are vec­
tored to UBA$INTO. UBA$INTO is found in module [SYSLOA]INICOMBI for
all VAX systems that use the VAX bus interconnect (VAXBI) bus for 1/0; for
all other systems it is found in [SYSLOA]ADPSUBxxx. UBA$1NTO incre­
ments the global location 10$GLUBA_INTO to record the passive release
and dismisses the interrupt.

Before adapter initialization is done and the SYSGEN utility configures

43

Hardware Interrupts

3.2

44

devices on the system, all the SCB vectors reserved for 3dapter and device
interrupts are initialized to ERL$UNEXP. SCB vectors used for adapter and
device interrupts are later reinitialized by the appropriate procedures. Thus,
all unused SCB vectors on a system point to ERL$UNEXP, with the ex­
ception of unused SCB vectors for UNIBUS and Q22-bus device interrupts,
which point to UBA$UNEXINT. UBA$UNEXINT, a base image transfer vec­
tor, actually jumps to the REI instruction in UBA$1NTO that dismisses the
interrupt.

DEVICE INTERRUPTS

The VAX architecture provides eight priority levels, 16 through 23, for 1/0
device interrupts, although all VAX implementations use only levels 20
through 23. UNIBUS levels BR4 through BR7 correspond directly to IPLs
20 through 23.

When a VAX processor receives an interrupt request from an 1/0 device, it
needs to determine which SCB vector corresponds to the interrupt. The man­
ner in which each VAX processor does this is implementation-dependent,
even though the principles used are common to all processors.

VAX systems are offered in a range of processor- and bus-specific config­
urations. This section provides a generic model of a VAX system and its
interrupt handling as an aid to understanding the more specific descriptions
in subsequent sections.

Figure 3.1 shows a generic model of a VAX system. The system bus con­
nects the CPU, memory controllers, and 1/0 adapters. An adapter connects
devices or another 1/0 bus to the system bus. Each slot on the system bus,
potentially occupied by a CPU, memory controller, or adapter, is known as
a nexus. Actually, the name for this varies from one VAX system type to
another; for simplicity, this chapter uses the term nexus.

CPU CPU Memory Memory

Bus

Adapter Adapter

Device
Device

l/OBus .
Figure 3.1
Generic Model of a VAX System

3.2 Device Interrupts

The VAX architecture specifies four interrupt vectors for each of 16 nex­
uses. Each vector corresponds to a different interrupt priority level; on cur­
rent VAX system implementations, the levels are 20 through 23.

When an I/O adapter requests an interrupt, for example, in response to a
device attention condition, the CPU microcode determines its nexus num­
ber. This nexus number, in conjunction with the IPL of the request (20, 21,
22, or 23), uniquely identifies an SCB vector through which the CPU dis­
patches the interrupt. The VAX architecture specifies that such vectors be
located in the upper half of the first page of the SCB, as shown in Figure 2.3.

Typically, a new VAX CPU is designed with I/O adapters that support the
bus structure and I/O architecture of a previous generation. This enables
many of the peripherals of the previous generation to run on it, preserving
the investment in them. A prime example of this is the support of PDP-11
UNIBUS peripherals on many VAX systems.

Such an adapter bridges the VAX CPU's main bus and an earlier bus,
translating protocols and transmitting interrupt requests and grants. Support
for the interrupt vectoring of the adapted bus usually requires an extension
to the architecturally defined page of the SCB and an additional level of
interrupt dispatching, either in the processor or in the operating system
software. For instance, UNIBUS devices can interrupt at one of 128 possible
vectors. Therefore, a UNIBUS adapter requires the capability to specify up
to 128 vectors.

On some systems, such as the VAX-11/780 and VAX-11/785, UNIBUS in­
terrupts are indirectly vectored through a UNIBUS adapter interrupt service
routine (ISR). This means that the UNIBUS adapter transmits the UNIBUS
device's interrupt request to the VAX CPU. When the CPU grants the in­
terrupt, it dispatches through the SCB vector corresponding to the interrupt
request level to a UNIBUS adapter ISR. The UNIBUS adapter ISR performs
another level of dispatch based on the value of the UNIBUS device's interrupt
vector.

On most other VAX implementations that support UNIBUS peripherals,
UNIBUS interrupts are directly vectored. This means that CPU microcode
uses the UNIBUS device vector directly as an offset into the appropriate page
of the SCB to enter the device ISR. Direct vectoring requires that one page
of the SCB be dedicated to each UNIBUS adapter on the system, because
devices on its UNIBUS may generate any one of 128 possible vectors.

Another example is an adapter that supports the VAX.BI bus. For instance,
on a VAX 8800 system, up to four VAX.BI buses can be connected to the
VAX 8800 memory interconnect (NMI), the system bus. There are 16 slots
on each VAX.BI bus, and an adapter on any of these slots may generate an
interrupt request. Every device on the system must have a unique interrupt
vector in the SCB. This means that the interrupt vector in the VAX 8800
SCB must be unique with respect to the following:

45

Hardware Interrupts

• The number of the VAXBI bus (O, 1, 2, or 3)
• The node number (0 through 15) on that VAXBI bus of the adapter that

requested the interrupt
• The IPL (20, 21, 22, or 23) of the interrupt

Therefore, one SCB page is reserved for each V AXBI bus on the system. In
addition, each UNIBUS adapter on the system requires an additional page of
the SCB.

Similarly, Q22-bus-based systems reserve the second page of the SCB for
Q22-bus device vectors.

3.2.1 Adapter Initialization

46

VMS uses system-dependent system initialization procedures to determine
the system configuration, build the data structures that represent it, and
initialize the SCB vectors appropriately. These procedures typically test for
the presence of adapters at all the nexuses on the system, as described later
in this section.

There may be different numbers of nexuses on different systems. For
example, on a VAX 8350 system, which uses the VAXBI as the system bus as
well as the I/O bus, there are 16 nexuses. A VAX 8800 system, on the other
hand, uses the NMI as the system bus and the V AXBI as the 1/0 bus. There
are 16 nexuses for each VAXBI attached to the VAX 8800 system. MicroVAX
3400/3600/3900 series systems and the MicroVAX II system have exactly
one nexus, nexus 0.

Nexuses are numbered starting at 0. A system with 16 nexuses has nexus
numbers from 0 to 15. A system that has more than 16 nexuses implements
a system-dependent numbering scheme. Subsequent sections describe the
numbering schemes employed on different VAX systems.

The physical address layout of the VAX system determines the location of
the node space for a given nexus number. The node space of a nexus is defined
as that range of physical addresses through which the registers of an adapter
that is seated on the nexus may be accessed. System initialization code loads
the machine check vector in the SCB with the address of a special routine.
It then tests the first longword in every nexus's node space. If a nonexistent
memory machine check occurs, there is no adapter at the nexus being tested.
If there is an adapter on the nexus, then the adapter type is returned, and
the adapter is configured.

On some CPU types, VMB, the primary bootstrap program, determines the
adapter configuration. On other CPU types, the configuration is determined
at a later step of initialization. Chapters 30 and 31 give further information.

The result of this testing is stored in several arrays in nonpaged pool. Chap­
ter 31 describes these arrays. During later stages of system initialization, this
information is used when specific adapters are configured into the system.

3.2 Device Interrupts

3.2.2 VAX-11/730 Systems

On VAX-11/730 systems, the CPU, UNIBUS adapter, and memory controller
are connected by the array bus. In addition to the array bus, communications
between the CPU and the integrated disk controller (IDC) are performed
over the accelerator bus, so named because the floating-point accelerator
communicates over it. The IDC contrqls RL02 and R80 disks~ A VAX-11/730
system is not expandable and does not have expansion slots.

The VAX-11/730 SCB is two pages long. The second page is used for di­
rectly vectored UNIBUS interrupts. Each vector in the second page corre-

1 sponds to a.UNIBUS vector in the range from 0 to 1FC16·

3.2.3 VAX-11/750 Systems

The VAX-11/750 SCB is two pages long or, if there is a second UNIBUS
on the VAX-11/750 processor, three pages long. The second SCB page on
VAX-11/750 processors is used for directly vectored UNIBUS device inter­
rupts. Each SCB vector corresponds to a UNIBUS vector in the range from
0 to 1FC16. A third SCB page is used for directly vectored UNIBUS device
interrupts on the second UNIBUS.

The backplane interconnect on VAX-11/750 systems, called the CPU­
to-memory interconnect (CMI), connects the CPU, memory controllers,
UNIBUS adapters, and MASSBUS adapters. Each connection to the CMI is
identified by its slot number.

There are a total of 16 slots that can be used to connect adapters. The
first ten of these are reserved for a memory controller, UNIBUS adapters,
and MASSBUS adapters. These ten slots are called fixed slots because the
mapping of controller/adapter to slot number is fixed. That is, a particular
slot can have only a particular adapter placed in it. Table 3.3 lists these
adapters.

The last six slots are reserved for adapters with configuration registers and
are called floating slots. A CI750 port adapter or a DR750 would be connected
to a floating slot.

Each slot is assigned four SCB vectors in the first SCB page, one for each
IPL value from 20 to 23, as shown in Figure 2.3.

Table 3.3 Fixed Slots on VAX-11/750
Processors

Adapter Type
Memory controller
Up to three MASSBUS adapters
UNIBUS adapter
Second UNIBUS adapter

Slot Number
0
4 through 6
8
9

47

Hardware Interrupts

Table 3.4 Standard SBI Adapter Assignments on VAX-ll/78x Systems

Interface Type

First memory controller
Second memory controller
First MA780 shared memory

Second MA780 shared memory
First UNIBUS adapter

Second UNIBUS adapter
Third UNIBUS adapter
Fourth UNIBUS adapter

First MASSBUS adapter
Second MASSBUS adapter
Third MASSBUS adapter
Fourth MASSBUS adapter
DR780 SBI interface
CI780

Nexus
TRO

TR 1
TR2

TR3

TR4
TRS
TR6
TR 7
TR8
TR9
TR 10
TR 11
TR 12
TR 14
TR 15

Comments
Hold line for next cycle. TR 0 is

the highest TR level and is not
assigned to a device.

If present, follows local memory
controllers

Follows any MA780 controllers
present

Reserved

Reserved

3.2.4 VAX-11/780 and VAX-11/785 Systems

48

The SCB for V AX-11 /780 and VAX-11 /785 systems is one page. On these pro­
cessors, the synchronous backplane interconnect (SBI) connects the CPU,
memory controllers, DR780s, CI780s, UNIBUS adapters, and MASSBUS
adapters. Each connection to the SBI is identified by its transfer request (TR)
number.

The TR number determines SBI priority. TR numbers range from 0, the
highest priority, to 15, the lowest priority. There is a limit of 15 connections
to the SBI, as shown in Table 3.4. TR number 0 is used for a special purpose
on the SBI and has no corresponding external adapter. The lowest priority
level is reserved for the CPU and requires no actual TR signal line. The TR
number defines the physical address space through which the device's reg­
isters are accessed and the vectors through which the device will interrupt.
The SCB has four vectors for each possible TR, one vector each for IPLs 20,
21, 22, and 23. UNIBUS interrupts are indirectly vectored.

An adapter is not restricted to having a specific TR number. However, the
relative priorities of the various adapters cannot change. That is, a system
cannot have a MASSBUS adapter with a higher priority (lower TR number)
than a UNIBUS adapter. For instance, if a system has two local memory con­
trollers and an MA780 shared memory controller, the first UNIBUS adapter

3.2 Device Interrupts

on that system could have TR number 4, with the MA780 having TR number
3, and the memory controllers having TR numbers 1 and 2.

3.2.5 Q22-Bus-Based MicroVAX Systems

The following systems fall into this category:

• MicroVAX II, VAXstation II, VAXstation II/GPX
• MicroVAX 3400, VAXstation 3400
• MicroVAX 3500, MicroVAX 3600, MicroVAX 3800, MicroVAX 3900
• VAXstation 3200, VAXstation 3500, MicroVAX 3800/GPX

Other MicroVAX systems that provide support for the Q22-bus are listed in
subsequent sections.

The memory interconnect on these systems connects the CPU and mem­
ory modules. The CPU board contains an interface to the Q22-bus to which
all I/O devices are connected. Interrupt requests from external I/O devices
go directly to the CPU, which arbitrates interrupts. IPLs 20 through 23 cor­
respond to Q22-bus interrupt request lines BIRQ4 through BIRQ7.

The SCB for these systems is two pages long. The second page is used for
directly vectored Q22-bus device interrupts. Each vector in the second page
corresponds to a Q22-bus vector in the range from 0 through 1FC16•

On these systems, there is exactly one nexus, numbered 0, that interfaces
the CPU board to the Q22-bus.

An interrupt on these systems is arbitrated by comparing its IPL to the
processor's IPL. However, when a Q22-bus interrupt is granted, processor
IPL is raised to 23 by the microcode.

With VMS Version 5.0, multilevel interrupt dispatching is available on
these systems. After the interrupt is granted by the processor at IPL 23, the
VMS executive, with the help of additional code in the interrupt dispatch
area of the channel request block (CRB) of the device controller, explicitly
lowers IPL to the interrupting device's IPL. This, however, requires that
the MicroVAX system be properly configured. See the VMS Device Support
Manual for additional details on multilevel interrupt dispatching.

3.2.6 MicroVAX 2000 Family Systems

The MicroVAX 2000 family includes MicroVAX 2000, VAXstation 2000, and
V AXstation 2000/GPX processors. A member of this family is sometimes
known as a busless system because the CPU, memory, and all I/O adapters
are on a single board.

There is exactly one nexus, 0, on this system, reserved for the CPU. All
device and adapter registers are visible through the node space of the CPU.

An interrupt controller collects interrupts from all I/O devices and presents
a single interrupt request to the CPU at IPL 20.

49

Hardware Interrupts

Table 3.5 MicroVAX 2000 Interrupt Vectors

SCB Vector

24416
24816
25016
25416
2C016
2C416
3F816
3FC16

Interrupting Source

Video end-of-frame
Video controller secondary
Network controller primary
Network controller secondary
Serial line controller receiver done or silo full
Serial line controller transmitter done
SCSI controller
Disk controller

The SCB for this system is two pages long. Device interrupts are vectored
through the second page of the SCB at one of eight possible device vectors,
shown in Table 3.5.

3.2.7 MicroVAX 3100 Family Systems

The MicroVAX 3100 family includes the MicroVAX 3100, VAXstation 3100
(monochrome) models 30/40/38/48, and VAXstation 3100/GPX models 30/
40/38/48. The memory interconnect on the MicroVAX 3100 connects the
CPU and memory modules. The CPU board interfaces to one or two small
computer system interface (SCSI) buses, each under the control of an NCR
5380 SCSI controller chip that supports asynchronous data transfers. Fig­
ure 3.2 shows a representative MicroVAX 3100 system configuration.

The SCB for this system is two pages long. The second page is used to
vector device interrupts from all I/O devices.

3.2.8 V AXstation 3520 and 3540 Systems

50

The VAXstation 3520 system consists of two processors connected to a com­
mon backplane, the M-bus. The VAXstation 3540 system has four processors.

CPU Memory

SCSI SCSI
Controller Cor.troller

SCSI Bus SCSI Bus

Device Device Device Device

Figure 3.2
MicroVAX 3100 System Configuration

3.2 Device Interrupts

The processors access common memory on the M-bus. Each processor is in­
terfaced to the bus through a cache that monitors the M-bus for other CPUs'
memory references.

There are eight nexuses on the M-bus and a CPU module, a memory mod­
ule, or an I/O adapter may be present on each nexus. Disk devices connect
to a SCSI bus, which interfaces to the M-bus through an 1/0 adapter. An op­
tional Q22-bus adapter module allows connection of additional peripherals,
such as magnetic tape. Chapter 34 shows a sample VAX 3520 configuration.

The VAXstation 3520 and 3540 systems have a two-page SCB. 1/0 adapter
interrupts are vectored through the upper half of the fust page of the SCB.
Interrupts from devices on the Q22-bus are vectored through the second page
of the SCB.

3.2..9 VAX 6000 Series Systems

3.2..10

VAX 6000 series systems use a high-speed interconnect (XMI) as the back­
plane. There are 13 slots, or nodes, on the XMI, and each node can connect
to a CPU module or memory module. 1/0 adapters may be connected only
to slots 1through4 and 11through14. DWMBA adapters adapt the VAXBI
bus to the XMI bus. The VAXBI bus connects 1/0 peripherals to the system.
Chapter 34 shows a diagram of a VAX 6000 series system.

The first page of the SCB is the architecturally defined page. The nexus
vectors in the upper half of this page are used for the 1/0 adapters on the
XMI. Each V AXBI bus on the system gets an additional page of the SCB.
Furthermore, if a UNIBUS adapter is present on the system, an additional
page of SCB is allocated for vectoring UNIBUS device interrupts.

Nexus numbering of VAXBI-based adapters on VAX 6000 series systems is
done ·according to the following formula:

nexus= (XMI slot number of DWMBA) * 16
+ (VAXBI node. number of adapter)

Nexus numbering of XMI-based adapters is done according to the following
formula:

nexus= (XMI slot number of adapter)* 16

VAX 82.00 Family Systems

The VAX 8200 family consists of VAX 8200, VAX 8250, VAX 8300, VAX
8350, and VAXstation 8000 processors. The SCB for a member of the VAX
8200 family consists of the standard page defined by the VAX architecture,
plus an additional page for each UNIBUS adapter present. UNIBUS interrupts
are directly vectored. Note that the VAXstation 8000 does not' support any
UNIBUS options.

51

Hardware Interrupts

3.2.11

52

The VAX 8200 family uses the VAX.BI as a system bus as well as the 1/0
bus. This means that the VAX.BI allows CPU modules, memory modules, or
1/0 adapters to be connected to each of its 16 slots.

I/O adapters connect devices and controllers or other buses, such as the
UNIBUS, to the VAX.Bl. Slots on the VAX.BI are known as nodes, and nexus
numbers in the VAX 8200 family are the same as the VAX.BI node numbers
of the adapters. Chapter 34 shows a diagram of a VAX 83x0 system.

Each node has four vectors in the first SCB page, one for each level at which
it can request an interrupt. VAX.BI interrupt levels 4 through 7 correspond
to IPLs 20 through 23.

VAX 8600 and VAX 8650 Systems

VAX 8600 and VAX 8650 systems have a four-page SCB to support the the­
oretical maximum configuration of four SBI adapters (SBIAs), although only
two are supported by VMS. On these systems, 1/0 adapters are connected
to an SBI. Each SBI is connected through an SBIA to a bus called an adapter
bus (A-bus). The A-bus connects the SBIAs to the memory subsystem. The
supported 1/0 adapters are the UNIBUS, MASSBUS, and CI780 adapters sup­
ported on a VAX-l 1/78x system. Figure 3.3 shows a representative VAX 8600
system configuration.

Hardware interrupts for adapters on the first SBI are vectored through the
first page of SCB. Interrupts for adapters on the second SBI use the sec­
ond page of SCB. Interrupts generated by SBIA 0 are vectored through the
first page of the SCB, and those generated by SBIA 1 are vectored through
the second page of the SCB. A hardware interrupt vector is determined
by the combination of interrupt level, TR number, and SBI number.

CPU

Memory

SBI
Adapter

Controller A-Bus

Array Bus
Memory 1---

SBI

MBA UBA

l Device _t---1-i Device J l Device _t---1-i Device J
MASSBUS UNIBUS

Memory t-
SBI SBI

Adapter

Figure 3.3
VAX 8600 System Configuration

3.2.12

3.2.13

3.2 Device Interrupts

UNIBUS interrupts are indirectly vectored, as they are on VAX-11/78x
systems.

VAX 8800 Family Systems

The VAX 8800 family includes VAX 8500, VAX 8530, VAX 8550, VAX 8700,
and VAX 8800 processors but not the VAX 88x0 family (see Section 3.2.13). A
synchronous backplane interconnect bus, the NMI, connects CPUs, memory,
and one or two 1/0 adapters called NMI-to-BI (NBI) adapters. The VAX.BI is
the VAX 8800family1/0 bus. Each NBI adapter can interface with up to
two VAX.Bis. Each VAX.BI can have up to 15 adapters apart from the NBI.
Chapter 34 shows a diagram of a VAX 8800 system.

A VAX 8800 family processor has a 32-page SCB. Memory and NBI inter­
rupts vector through the architecturally defined page of the SCB. Interrupts
from each of four possible VAX.Bis vector through pages 28 through 31. Pages
1through27 are reserved for offsettable VAX.BI nodes, nodes that are directly
vectored, such as the UNIBUS adapter.

The nexus number of an adapter on such a system may be determined by
the following formula:

nexus= (VAX.BI number)* 16
+(VAX.BI node number of adapter)

where the VAX.BI buses are numbered 0 and 1 or 2 and 3 on VAX 85x0
systems, from 0 through 3 on VAX 8700 and VAX 8800 systems, and from 0
through 5 on VAX 88x0 systems. For example, an adapter on node number
5 of VAX.BI number 1 has a nexus number of 21.

VAX 88x 0 Family Systems

The VAX 88x0 family includes VAX 8810, VAX 8820, VAX 8830, and VAX
8840 processors but not VAX 8800 CPUs. Most of t:he information in Sec­
tion 3.2.12 applies to the VAX 88x0 family. However, the VAX 88x0 family
reserves pages 1 through 2? for the off settable VAX.Bl nodes, such as the
UNIBUS adapter, and uses pages 26 through 31 for each of the six VAX.BI
buses supported.

53

4

4.1

54

Software Interrupts

And now I see with eye serene
The very pulse of the machine.

William Wordsworth, She Was a Phantom of Delight

Software interrupts are fundamental to the VMS operating system. Software
interrupt service routines running at interrupt priority levels (IPLs) between
2 and 15 perform many of the most important system functions of VMS.
These include dispatching fork processes (IPLs 6 and 8 to 11 J, servicing pro­
cesses' time-dependent requests (IPL 7), I/O postprocessing (IPL 4), schedul­
ing (IPL 3), and delivering ASTs (IPL 2). This chapter describes how software
interrupts are requested and granted and how VMS uses them.

THE SOFTWARE INTERRUPT

The VMS executive requests a software interrupt to cause an interrupt ser­
vice routine to execute and perform its designated function. It does this by
writing to the software interrupt request register. When the interrupt request
is granted, the VAX processor dispatches through the appropriate system con­
trol block (SCB) vector to an interrupt service routine. Chapter 2 describes
the hardware mechanism of software interrupts.

VMS uses software interrupts to schedule operating system functions. Us­
ing software interrupts is more efficient than periodically checking to see
whether these functions need to be done. IPLs are assigned to the differ­
ent operating system functions, in part, as an indication of their relative
importance.

VMS also uses specific IPLs and interrupt requests at those IPLs to synchro­
nize access to shared data structures. Chapter 8 discusses synchronization
through raising IPL.

VMS requests the software interrupt service routines for IPLs 3, 4, 6, 7, 8,
and 11 from within a hardware interrupt service routine or another software
interrupt service routine. Software interrupts at 12 and 14 are requested only
through a CPU console command. The VAX architecture specifies that the
IPL 2 software interrupt service routine be requested by REI microcode to
deliver asynchronous system traps (ASTsJ. Although VMS provides for fork
dispatching at IPLs 9 and 10, VMS itself makes little or no use of them. VMS
Version 5 does not use software interrupts at IPLs 1, 5, 13, and 15.

The VAX architecture constrains software interrupt service routines by
providing only one bit to indicate that a software interrupt has been re­
quested at a particular IPL. The service routine is thus unable to determine
how many requests for it were outstanding when the interrupt request was

4.2

4.2 Software Interrupt Service Routines

granted. As a result, either the software must supply some protocol for deter­
mining this number or it must be irrelevant to the execution of the service
routine.

The scheduling interrupt service routine is an example of a routine that
has one function to do, regardless of how many times that function has
been requested. Other interrupt service routines use queues to keep track of
their work. Each element in the queue represents a specific item of work for
the interrupt service routine and an instance of the interrupt's having been
requested.

An interrupt service routine that uses a queue generally performs all the
work in the queue before dismissing the interrupt. It tries to remove an
element from the queue with the REMQUE or REMQHI instruction. If an element
was removed, the interrupt service routine processes that element and tries
to remove another element from the queue. If the queue is empty and no item
was removed from it, the interrupt service routine's work is complete and
it then exits through an REI instruction. Such a software interrupt service
routine reacts gracefully to a spurious interrupt, one granted when there is
no work for it to do.

SOFTWARE lNTERRUPT SERVICE ROUTINES

There is no central monitor routine in VMS that controls the sequence of
operating system functions. Instead, any executive thread that identifies the
need for a particular function performed within a software interrupt ser­
vice routine can request the associated interrupt. Scheduling operating sys­
tem functions as software interrupts eliminates any requirement for pollirig
whether these functions need to be done. It also enables more important
functions to interrupt less· important ones.

Table 4.1 shows the software interrupt service routine functions and their
associated IPLs. In some cases, the assigned IPL only indicates the relative
importance of the interrupt, and the interrupt service routine runs primarily
at a higher IPL for synchronization. The table also shows the more common
symbolic names for the IPLs, defined by the macro $IPLDEF.

VMS interprets software interrupts, except the AST delivery and reschedul­
ing interrupts, as systemwide events that are serviced independently of the
context of a specific process. The rescheduling interrupt, discussed briefly in
this chapter and in greater detail in Chapter 12, is taken on the kernel stack
of the current process. The interrupt service routine immediately executes a
SVPCTX instruction, saving the process's context and switching onto the in­
terrupt stack. The AST delivery interrupt, discussed briefly at the end of this
chapter and in greater detail in Chapter 7, is the only interrupt in use that is
serviced in the context of a specific process. The interrupt service routines
for unused software interrupts are serviced on the kernel stack. Each of these
routines merely logs an error and dismisses the interrupt.

55

Software Interrupts

Table 4.1 Software Interrupt Levels Used by the Executive

IPL IPL Names Use Stack
15 Unused Kernel
14 XDELTA Interrupt
13 Unused Kernel
12 IPC intervention Interrupt
11 IPL$_MAILBOX, Fork dispatching Interrupt

IPL$_IOLOCK11
10 IPL$_IOLOCK10 Fork dispatching Interrupt
9 IPL$_IOLOCK9 Fork dispatching Interrupt
8 IPL$_SYNCH, Fork dispatching Interrupt

IPL$_SCHED, IPL$_SCS,
IPL$_ TIMER, IPL$_MMG

7 IPL$_ TIMERFORK Software timer Interrupt
service routine

6 IPL$_QUEUEAST Fork dispatching Interrupt
5 Unused Kernel
4 IPL$_IOPOST 1/0 postprocessing Interrupt
3 IPL$_RESCHED Rescheduling Kernel
2 IPL$_ASTDEL AST delivery Kernel
1 Unused Kernel

The software interrupt service routines vary. Some perform the same func­
tions every time they execute. The rescheduling interrupt service routine,
for example, takes the current process out of execution, selects another one
to run, and places it into execution. The functions of other software inter­
rupt service routines are quite variable. The I/O postprocessing interrupt
service routine has a specific function to perform but is data-driven by the
I/O request packets (IRPs) in its work queue. A fork dispatching interrupt
exists solely to dispatch to system routines running as fork processes. The
routines that are dispatched vary as a result of system operation.

The software interrupts are described briefly in the following sections.
Some are described at more length in subsequent chapters. The following
sections are in order by interrupt level, except that the service routines for
interrupts requested through console command are discussed last.

4.2.1 Fork Processing

56

Five software interrupts (IPLs 6 and 8 to 11) are used for dispatching to fork
processes. Each of the interrupt service routines has its own work queue of
fork blocks (FKBs).

When a fork dispatching interrupt is granted, the interrupt service routine
saves the low general registers and removes from its queue the first fork
block and dispatches to the fork process it describes.

4.2.1.1

4.2 Software Interrupt Service Routines

The following sections describe fork process data structures and service
routines in more detail.

Fork Process Data Structures. A fork block describes a routine to be called
by a fork dispatching interrupt service routine and some context for that
routine. The macro $FKBDEF defines symbolic names for the fields in a
fork block. A minimal fork block, shown in Figure 4.1, includes the address,
or saved program counter IPC), of the fork routine IFKB$LFPC) and the
contents of two registers. The first two longwords of a fork block link it into
a queue. The fields FKB$W _SIZE and FKB$B_ TYPE are the standard dynamic
data structure header fields.

The field FKB$B_FIPL specifies in which fork block queue the fork block is
inserted and at what IPL its routine will run. With VMS Version 5, this field
has an alternative name and meaning: FKB$B_FLCK identifies the spinlock
associated with the fork process. It is an index into a table of static spinlocks,
pointed to by SMP$AR_SPNLKVEC, and also into a table of spinlock IPLs,
at SMP$AL_IPLVEC. Because spinlock indexes are numbers 32 or larger, fork
processing routines can test bit 5 in this fork block field to distinguish be­
tween its two uses: bit 5 is 0 in an IPL and 1 in a spinlock index. On a
uniprocessor system, either use is permitted; on a symmetric multiprocess­
ing ISMP) system, a fork block can only contain a spinlock index. Chapter 8
describes spinlocks in detail.

A fork block must be in nonpageable system space. Most often, it is part
of a larger data structure, such as a unit control block or class driver request
packet, which contains additional data. The combination of standard fork
block fields, additional fork block data, and the routine that is to be executed
is called a fork process.

Figure 4.2 shows the array of fork block queue listheads. The array is
in the per-CPU database so that each CPU in an SMP system has its own
fork block queues. !Chapter 34 contains more information on the per-CPU
database.) The listheads of these queues are ordered in an array that includes
a placeholder listhead for IPL 7. Since the IPL 7 interrupt is serviced by
the software timer routine, there is no fork process dispatching at IPL 7.

Fork Queue Forward Link

Fork Queue Backward Link

Fork IPL/
Spin lock Type Size

Index

Saved PC

Saved R3

Saved R4

Figure 4.1
Layout of a Fork Block

57

Software Interrupts

4.2.1.2

4.2.1.3

58

SMP$GL_CPU-DATA::..__ ____ _,

Index N

Figure 4.2

Table of Per-CPU
Database Addresses

Fork Block Queues

Per-CPU Database for
ProcessorN

T

CPU$0-SWIQFL
IPL 6 Listhead

(Placeholder)

IPL 8 Listhead

IPL 9 Listhead

IPL 1 O Listhead

IPL 11 Listhead

T

Fork
Block

Fork
Block

However, having the placeholder listhead simplifies the fork process creation
code.

Reasons for Creating a Fork Process. Fork processing exists, in part, so that
device drivers do not have to execute at high IPLs for long periods of time,
blocking other device interrupts. Device interrupt service routines run at
device IPLs between 20 and 23. Often these routines perform lengthy process­
ing that does not require execution at high IPL. Typically, a device interrupt
service routine runs at a lower IPL as soon as possible. However, it may not
simply lower IPL directly; that could interfere with the synchronization of
code already running at the lower IPL. Instead, it creates"a fork process that
will run at the lower IPL when its turn comes.

A driver or any high-IPL thread of execution might also create a fork
process at a lower IPL to access a system database synchronized at that lower
IPL, for example, if the driver needed to queue an AST to a process. Another
example is the routine that allocates nonpaged pool. It can be invoked from
process context code and from interrupt threads of execution at IPLs up to
11. If the routine determines that pool must be expanded, but it is running
at too high an IPL or holding a higher ranking spinlock than MMG, it
creates an IPL 6 fork process to perform the expansion. Chapter 19 gives
information on pool allocation, and Chapter 8 discusses spinlocks.

Creating a Fork Process. To fork, a driver invokes routine EXE$10FORK
or EXE$FORK, in module FORKCNTRL, specifying the address of the fork
block, the fork process context, and a return address. Fork process context
consists of the fork block, the contents of R3 and R4, and the address of the
routine the fork process is to execute (the fork PC). EXE$IOFORK clears a

4.2.1.4

4.2 Software Interrupt Service Routines

bit to disable an 1/0 timeout on the device and continues in the EXE$FORK
routine.

EXE$FORK stores the specified fork process context in the fork block. It
tests bit 5 in FKB$B_FLCK to determine whether the field contains a fork
IPL or a spinlock index. To convert the spinlock index to an IPL, EXE$FORK
uses it as a longword context index into the array at SMP$AL_IPLVEC. The
specified entry contains the IPL associated with that spinlock. EXE$FORK
inserts the fork block at the tail of the fork block queue for that IPL and
requests a software interrupt at that IPL if the queue was empty.

EXE$FORK then transfers control to the return address its invoker spec­
ified, sometimes in its invoker but more often in the code that entered its
invoker. This form of return is known as "returning to caller's caller." That
form of return enables device driver code to appear as a sequential flow when
in fact, for example, some of it executes as part of a device interrupt service
routine and some of it executes as a fork process.

The instructions in EXE$FORK that perform these functions are listed in
Example 4.1.

When IPL drops, the fork dispatching interrupt will be granted and serviced
on the CPU on which it was requested. The fork process will execute on that
CPU as well.

Dispatching a Fork Process. When a fork interrupt is granted, the VAX pro­
cessor dispatches to its interrupt service routine. Each fork IPL has a unique
interrupt service routine that performs setup for common fork dispatching
code. The fork interrupt service routine saves R6 and R7. It stores the off­
set of the corresponding fork queue listhead in R6. It then branches to the
common fork dispatching code. The interrupt service routines for IPLs 6 and

Example 4.1
EXE$FORK Routine Extract

EXE$FORK::
MOVQ R3,FKB$L_FR3(R5)
POPL FKB$L_FPC(R5)
MOVZBL FKB$B_FLCK(R5),R4
BBC #5,R4,5$
MOVL G-SMP$AL_IPLVEC[R4],R4

;Create fork process
;Save registers R3 and R4
;Get fork process PC
;Get fork lock/fork IPL
;Branch if direct IPL
;Get fork IPL from spinlock
; database

5$: FIND_CPU_DATA R3 ;Get base of CPU data area
MOVAQ CPU$Q_SWIQFL-<6•8>(R3)[R4],R3

10$:

INSQUE (R5),G4(R3)
BNEQ 10$

SOFTINT R4
RSB

;Get address of fork queue
;Insert fork block in fork queue
;If queue already populated,
; avoid extra interrupts
;Request software interrupt
;And return

59

Software Interrupts

60

Example 4.2
Fork Dispatching Interrupt Service Routine Extract

.ALIGN LONG

EXE$FRKIPL6DSP::
PUSHQ R6
CLRL R6
BRB EXE$FORKDSPTH

.ALIGN LONG

EXE$FRKIPL8DSP::
PUSHQ R6
MOVZBL #<2•8>,R6

Drop through to common code

EXE$FORKDSPTH: :
FIND_CPU_DATA R7,­

ISTACK=YES
MOVAB CPU$Q_SWIQFL(R7)[R6],R6
PUSHL R5
PUSHL R4
PUSHL R3
PUSHL R2
PUSHL R1
PUSHL RO
BRB 80$

;Entry point must be longword
; aligned
;Fork IPL 6 entry point
;Save R6 and R7
;Get offset to fork queue listhead
;Branch to common code

;Entry point must be longword
; aligned
;Fork IPL 8 entry point
;Save R6 and R7
;Get offset to fork queue listhead

;Software interrupt fork dispatcher
;Get base of per-CPU database
; from SP
;Get address of fork queue listhead
;Save R5
;Save R4
;Save R3
;Save R2
;Save R1
;Save RO.

PUSHLS are fastest!

;Branch to body of dispatcher

Dispatch a fork block that has no fork lock index, but rather just
an IPL (an unmodified driver fork block perhaps).

10$: JSB
BRB

GFKB$L_FPC(R5)
80$

;Dispatch fork
;Branch to get next fork block

Dispatch fork process when queue is not yet empty
Dispatch fork process with:

20$:

RO through R2 = scratch registers
R3 and R4 = restored from fork block
R5 • address of fork block
MOVQ FKB$L_FR3(R5),R3
MOVZBL FKB$B_FLCK(R5),R7

;Restore registers R3 and R4
;Get fork lock number/FIPL

BBC #5,R7,10$
FORKLOCK LOCK=R7,­

PRESERVE•NO
JSB GFKB$L_FPC(R5)
FORKUNLOCK LOCK•R7,­

PRESERVE=NO

;Branch if FIPL
;Acquire the spinlock
;Don't preserve RO
;Dispatch fork
;Release the spinlock
;Don't preserve RO

(continued)

4.2 Software Interrupt Service Routines

Example 4.2 (continued)
Fork Dispatching Interrupt Service Routine Extract

80$: REMQUE G(R6),R5
BNEQ 20$

;Remove next entry from fork queue
;Branch if queue not yet empty

BVS 90$

Dispatch last entry in the queue

90$:

MOVQ FKB$L_FR3(R5),R3
MOVZBL FKB$B_FLCK(R5),R7
BBC #5,R7,100$
FORKLOCK LOCK=R7,-

PRESERVE=NO
JSB GFKB$L_FPC(R5)
FORKUNLOCK LOCK=R7,-

MOVQ
MOVQ
MOVQ
MOVQ
REI

PRESERVE=NO
(SP)+,RO
(SP)+,R2
(SP)+,R4
(SP)+,R6

;If VS no entry removed
;Here when last entry dequeued

;Restore registers R3 and R4
;Get fork lock number
;Branch if FIPL
;Acquire the spinlock
;Don't preserve RO
;Dispatch fork
;Release the spinlock
;Don't preserve RO
;Restore registers

;Dismiss interrupt

Dispatch a fork block that has no fork lock index, but rather just
an IPL (an unmodified driver fork block perhaps).

100$: JSB
BRB

GFKB$L_FPC(R5)
90$

;Dispatch fork
;Exit

8 and the common fork dispatching code, EXE$FORKDSP1H, are listed in
Example 4.2. These routines are in module FORKCNTRL.

EXE$FORKDSP1H loads R6 with the address of the fork block queue spec­
ified by the sum of R6 and the address of the per-CPU database for this
processor. It saves RO through RS and removes the first fork block from the
queue. It loads R3 and R4 from the fork block. If FKB$B_FLCK contains a
spinlock index, EXE$FORKDSPTH acquires that spinlock before dispatch­
ing to the fork process. When the fork process returns, EXE$FORKDSP1H
releases the spinlock. !It is very important that the fork process itself not re­
lease the spinlock before returning; if it does, EXE$FORKDSP1H's attempted
release will cause the system to crash.) EXE$FORKDSPTH then removes the
next fork block and processes it in the same manner as the first.

The removal and processing continue until the queue is empty, when the
dispatcher restores the registers it saved and dismisses the interrupt with
an REI instruction. Note that, to improve performance, EXE$FORKDSP1H
detects removal of the last entry in the queue and avoids a subsequent
fruitless REMQUE by dispatching the last entry in a separate code path.

Since a fork process routine runs on the interrupt stack at an IPL higher

61

Software Interrupts

4.2.1.5

62

than 2, it must be in nonpageable system space; it must not incur page
faults, execute change mode instructions, or incur any exceptions that are
dispatched to user-defined condition handlers !see Chapter 5). While a fork
process is executing, it may use RO through RS and, if saved and restored,
the other general registers. A fork process may also use the interrupt stack.
However, when a fork process returns control to the fork dispatcher, the
stack must be in the same state as when the fork process was entered.

Stalling a Fork Process. A fork process may be stalled for various reasons and
may have to wait. When a fork process waits, its context is saved by storing
R3, R4, and the PC in the FKB. The FKB is then placed in a queue of FKBs.
One example of such a wait is a fork process waiting in the fork dispatcher
queue while the system is running at a higher IPL. Another example is a
driver fork process that tries to allocate unavailable system resources, such
as UNIBUS adapter map registers. The fork process is stalled until another
fork process using the same adapter deallocates map registers. The routine
called to deallocate map registers restores the context of the waiting fork
process so that it can repeat its attempt to allocate map registers. !Note that
all fork processes that may stall waiting for a particular resource must use
the same fork IPL. On an SMP system, they must also use the same spinlock.)

VMS also implements a "fork and wait" wakeup mechanism so that a fork
process can stall itself for a short while and be awakened automatically. To
fork and wait, a fork process releases any spinlocks acquired as part of its
execution and invokes the macro FORK_WAIT, which generates a call to
EXE$FORIL WAIT, in module FORKCNTRL. .EXE$FORK_ WAIT saves the
fork process's context in the fork block. Raising IPL to 31, it then acquires
the MEGA spinlock, which serializes access to the systemwide fork and wait
queue, and inserts the fork block at the tail of the queue. EXE$FORK_ WAIT
then releases the MEGA spinlock, restoring the IPL at entry, and returns to
its "caller's caller," the return PC left on the stack by the fork process or its
invoker.

The base image global EXE$AR_FORK_ WAIT _QUEUE contains the ad­
dress of the queue listhead, which is in the same loadable executive image
that contains the module FORKCNTRL.

The fork and wait queue is serviced once every second by the routine
EXE$TIMEOUT, in module TIMESCHDL. Thus, on average, the fork process

· waits for half a second. EXE$TIMEOUT and fork processes stalled in this way
run on the primary processor of an SMP system. EXE$TIMEOUT acquires
the MEGA spinlock to serialize its access to the fork and wait queue. It copies
the queue listhead, initializes the listhead to represent an empty queue, and
releases the MEGA spinlock. EXE$TIMEOUT removes each fork block in
turn from its copy of the listhead and restores the fork process context.
EXE$TIMEOUT tests FKB$B_FLCK and, if it contains a spinlock index,
acquires that spinlock. EXE$TIMEOUT then dispatches to the fork process.

4.2.1.6

4.2 Software Interrupt Service Routines

When the fork process returns, EXE$TIMEOUT releases the spinlock. When
the copied listhead is empty, EXE$TIMEOUT is done servicing the queue
and continues with other processing.

Part of the restoration of fork process context involves changing IPL from
IPL$_ TIMER to the IPL specified by FKB$B_FIPL/FLCK. Because lowering
IPL would violate the interrupt nesting scheme, use of the fork and wait
mechanism is limited to fork processes with fork IPLs at or above IPL$_
TIMER.

The disk and tape class drivers use this mechanism after an unsuccessful
attempt to allocate nonpaged pool, assuming that nonpaged pool will become
available. When the fork process is reentered, it repeats its attempt to allocate
nonpaged pool. In this example, the fork and wait mechanism is used in lieu
of nonpaged pool availability reporting, the mechanism used by full processes
(see Chapters 12 and 19).

The fork and wait mechanism is also used by the IPL 12 interrupt service
routine when it recomputes quorum, following an unsuccessful attempt to
send a message to the VAXcluster connection manager (see Section 4.2.7).

Chapter 11 contains further information about EXE$TIMEOUT.

Use of Fork IPLs. There are five different fork IPLs; three are used by most
device drivers supplied as part of VMS:

• IPL 6 is used by the connect-to-interrupt driver and by drivers that support
attention ASTs. Chapter 8 describes the reason for IPL 6 fork processing.

• IPL 11 is used by the mailbox driver and MA780 shared multiport memory
mailbox driver. The mailbox driver runs at the highest fork IPL so that any
driver fork process can write mailbox messages, primarily to the OPCOM
process's mailbox .

• IPL 8 is the most commonly used driver fork IPL.

The following considerations affect the choice of fork IPL for any particular
driver:

• Higher fork IPLs are serviced first.
• All device drivers on a Q22-bus or UNIBUS competing for resources such

as map registers or data paths must use the same fork IPL. In particular,
if any such VMS drivers exist, all DMA clrivers servicing devices on that
bus must use fork IPL 8. Moreover, with VMS Version 5, all such drivers
on an SMP system must use a common spinlock, usually the IOLOCK8
spinlock.

• All SCS class and port drivers must use fork IPL 8 and, on an SMP system,
the IOLOCK8 spinlock .

• A disk driver must use fork IPL 8 and, on an SMP system, the IOLOCK8
spinlock for clusterwide mount verification synchronization.

• A driver that accesses a systemwide database synchronized at IPL$_
SYNCH can do so from fork level if its fork IPL is 8, the value of IPL$_

63

Software Interrupts

SYNCH. On an SMP system, there is a further requirement that the driver's
spinlock be the same one that synchronizes the database of interest or that
it be of lower rank so that the fork process can acquire the needed spinlock.

4.2.2 Software Timer

64

VMS includes both a hardware clock interrupt service routine and a soft­
ware timer interrupt service routine. Together these routines service time­
dependent requests. Chapter 11 describes these interrupt service routines in
detail; this section summarizes some of their interaction.

The hardware interrupt service routine is EXE$HWCLKINT, in module
TIMESCHDL. It runs every 10 milliseconds in response to a hardware inter­
val timer interrupt, at IPL 22 or 24, depending on the CPU type. Some of its
duties are to update the system time, perform CPU time accounting, check
for quantum expiration of the current process, and check whether the first
timer queue entry ITQEJ has come due.

TQEs describe time-dependent requests usually made through the Sched­
ule Wakeup l$SCHDWKJ and Set Timer j$SETIMR) system services. The
queue of TQEs is kept ordered by expiration time, with the most imminent
fust. Quantum-end processing and TQE servicing require lengthier execu­
tion than is appropriate at high IPL and require modification to the scheduler
database, which is synchronized at IPL$_SCHED. For these reasons, if the
current process has run out of quantum or if the first TQE has come due,
EXE$HWCLKINT requests an IPL$_ TIMERFORK IIPL 7J interrupt.

The IPL$_ TIMERFORK interrupt service routine, EXE$SWTIMINT in
module TIMESCHDL, checks whether the current process's quantum has
expired. If so, EXE$SWTIMINT acquires the SCHED spinlock, raising IPL to
IPL$_SCHED. It invokes the routine that performs quantum-end processing
and then releases the SCHED spinlock, lowering IPL to IPL$_ TIMERFORK.

EXE$SWTIMINT then checks whether it is running on the primary CPU
of an SMP system lor the only CPU of a uniprocessor). If it is not, it dismisses
the interrupt. Only the primary processor services the timer queue.

If this is the primary processor, EXE$SWTIMINT acquires the TIMER and
HWCLK spinlocks to synchronize its access to the queue of TQEs and, in
particular, the first TQE. It removes the first TQE if its expiration time is the
same as or earlier than the current system time. It releases the two spinlocks,
lowering IPL to IPL$_TIMER IIPL 8). EXE$SWTIMINT then processes the
TQE.

It reacquires the two spinlocks and checks the TQE that is now first in
the queue. EXE$SWTIMINT continues in this manner until it reaches a TQE
that has not yet expired. It then releases the two spinlocks and executes an
REI instruction, dismissing the interrupt and leaving unexpired TQEs in the
queue.

4.2 Softwaw Interrupt Service Routines

4.2.3 1/0 Postprocessing

When a device driver has completed an 1/0 request, it transfers to a routine
that places the IRP associated with the request at the tail of the 1/0 post­
processing queue. If the queue was empty, it requests a software interrupt
at IPL$_IOPOST (IPL 4).

In earlier versions of VMS, there was one 1/0 postprocessing queue. In
VMS Version 5, most IRPs are queued to one systemwide 1/0 postprocessing
queue. The 1/0 postprocessing interrupt service routine, running on a unipro­
cessor or on the primary processor of an SMP system, services this queue.
An IRP for a request completed in process context (that is, by a driver's pre­
processing function decision table action routine) is typically queued to a
postprocessing queue in the per-CPU database. Each CPU services its own
per-CPU queue. See Chapters 22 and 34 for further details.

Example 4.3, a slightly simplified extract from routine IOC$REQCOM, in
module IOSUBNPAG, shows the insertion of an IRP onto the systemwide
queue.

The 1/0 postprocessing interrupt software routine, IOC$10POST in mod­
ule IOCIOPOST, runs on each member of an SMP system. Running on the
primary processor or on a uniprocessor, it removes each IRP in turn from the
beginning of the systemwide queue and processes it. The details of the pro­
cessing vary with the type of IRP. For example, IOC$IOPOST distinguishes
between VMS buffered and direct 1/0 requests. When a direct 1/0 request
completes, IOC$10POST unlocks the buffer pages from memory. When a
buffered output request completes, IOC$IOPOST deallocates the buffer to

Example 4.3
IOC$REQCOM Routine Extract

IOC$REQCOM: :

$INSQTI (R3),G-IOC$GQ_POSTIQ ;Insert !RP on IOPOST list
BNEQ 49$; Branch if queue is not empty
FIND_CPU_DATA RO ;Get address of per-CPU data
CMPL a-sMPGL_PRIMID,CPUL_PHY_CPUID(RO)

;Are we the primary?
BNEQ 46$;Branch if not primary
SOFTINT s-#IPL$_IOPOST ;Request IOPOST interrupt
BRB 49$; Continue

This is not the primary CPU on an SMP system, so request an
interprocessor interrupt of the primary for it to request an
IPL 4 interrupt.

46$: IPINT_CPU IOPOST,G-SMP$GL_PRIMID ;Request interprocessor
; interrupt

49$:

65

Software Interrupts

nonpaged pool and returns process byte count quota. Chapter 21 contains
further information about I/O postprocessing.

IOC$IOPOST also performs I/O postprocessing of memory management
requests, as described in.Chapter 16.

IOC$IOPOST, running on a uniprocessor or any member of an SMP sys­
tem, then services the per-CPU I/O postprocessing queue for that proces­
sor. After it processes all IRPs in the queue, it dismisses the interrupt with
an REI instruction. Example 4.4, a slightly simplified extract from module
IOCIOPOST, shows this sequence.

4.2.4 Rescheduling Interrupt

66

The executive requests a rescheduling interrupt at IPL 3 whenever a res­
ident process that can preempt the current process becomes computable.
(Although this statement is true for a uniprocessor system, it is a simplifica­
tion of what happens on an SMP system. See Chapter 12 for further details.)

The IPL 3 interrupt service routine, SCH$RESCHED in module SCHED,
removes the current process from execution. It begins execution at IPL 3 on
the kernel stack of the current process. It immediately acquires the SCHED
spinlock, raising IPL to IPL$_SCHED, and executes a SVPCTX instruction,

Example 4.4
IOC$IOPOST Interrupt Service Routine Extract

IOC$IOPOST:: ;IOPOST interrupt
;Save

IOPOST:

5$::

60$:

MOVQ
MOVQ
MOVQ

R4,-(SP)
R2,-(SP)
RO,-(SP)

normal
; registers (RO-RS)

FIND_CPU_DATA R1,ISTACK=YES ;Get address of per-CPU database
CMPL CPU$L_PHY_CPUID(R1),G-SMP$GL_PRIMID

BNEQ
TSTL
BEQL

5$
G·roc$GQ_POSTIQ
5$

$REMQHI G.IOC$GQ_POSTIQ,R5
BVC 60$
REMQUE GCPU$L_PSFL(R1),R5
BVC 60$
MOVQ (SP)+,RO
MOVQ (SP)+,R2
MOVQ (SP)+,R4
REI

BRW IOPOST

;Are we the primary?

;Is systemwide queue empty?
;Branch if yes, service per-CPU
; queue
;Remove next packet
;Branch if got one
;Remove next packet
;Branch if got one
;Restore

registers
; and exit
; if queue empty
;Postprocess this
; I/0 request packet
;Get next I/O request packet

4.2 Software Interrupt Service Routines

saving the context of the current process and switching to the interrupt
stack.

The rescheduling interrupt service routine then selects the highest prior­
ity resident computable process and places it into execution. (On an SMP
system, selecting the next process to execute is somewhat more complex.)

Many of the events that make a process computable occur as part of
servicing software interrupts between IPL 4 and IPL$_SCHED. That the
scheduler database is modified from these software interrupts implies the
following:

• SCH$RESCHED must raise IPL to IPL$_SCHED and acquire the SCHED
spinlock to block any other accesses to the scheduler database while it
takes one process out of execution and selects another one to run .

• The IPL 3 interrupt may be requested a number of times before it is granted.
The number of times the interrupt has been requested is irrelevant, since
the interrupt service routine always has the same task to do .

• When the IPL 3 interrupt is granted, all events that might affect the choice
of which process to run have been serviced. That is, the higher priority
software interrupt service routines that affect the scheduler database have
completed all their work. Thus, SCH$RESCHED can make the best possi­
ble choice at the time it blocks further alterations to the database.

Chapter 12 discusses the scheduler database, events that affect the sched-
uler database, the rescheduling interrupt, and the additional complexities of
scheduling in an SMP system.

4.2.5 AST Delivery Interrupt

The AST delivery interrupt means that there is an AST for the current
process to execute. This interrupt is unique: it is the only software inter­
rupt requested by microcode and the only one that runs entirely in process
context.

An AST is a mechanism for signaling an asynchronous event to a process.
A designated AST routine runs in the context of the process at a specified
access mode. Some ASTs are requested by the process, for example, as no­
tification of 1/0 request completion. Some ASTs are queued to the process
by VMS as part of normal system operations, such as automatic working set
limit adjustment.

Chapter 7 describes the details of AST delivery.

4.2.6 XDELTA IPL 14 Interrupt Service Routine

XDELTA, the executive debugger, can optionally be made memory-resident
at system initialization. If XDELTA is resident, the SCB vectors for break-

67

Software Interrupts

point and T-bit exceptions contain addresses of service routines within
XDELTA. XDELTA remains quiescent, transferring control to the usual ex­
ception service routines for breakpoint and T-bit exceptions, until a break­
point (BPT) instruction in XDELTA's breakpoint table is executed. Initially,
the only such breakpoint is at global location INI$BRK.

When such a breakpoint instruction is executed, XDELTA accepts com­
mand input from the CPU console terminal. These commands can include
setting other breakpoints, setting single-step mode, and examining system
space. Often programmers debugging kernel mode code, such as a device
driver, insert a JSB instruction to INI$BRK in their code to activate XDELTA.
The VMS Delta/XDelta Utility Manual provides further information about
XDELTA (and DELTA) commands.

VMS provides the IPL 14 software interrupt service routine to enable
a person to activate XDELTA at will by depositing a 14 in the software
interrupt request register at the CPU console terminal. The interrupt service
routine to activate XDELTA is INI$MASTERWAKE, in module SYSTEM_
ROUTINES. The code of this interrupt service routine follows:

.ALIGN LONG
INI$MASTERWAKE:

JSB INI$BRK
REI

However XDELTA is activated, it raises IPL and executes at IPL 31. Chap­
ter 34 describes some of the complexities of XDELTA's operation in an SMP
system.

When XDELTA is not resident, the instruction at INI$BRK is a NOP rather
than a BPT. Thus, a system without XDELTA reacts gracefully to an XDELTA
interrupt or a JSB to INI$BRK.

4.2.7 IPL 12 Interrupt Service Routine

68

The IPL 12 interrupt is similar to the XDELTA interrupt; it is only requested
by a person depositing 12 into the software interrupt request register at the
CPU console terminal. The IPL 12 interrupt service routine, EXE$IPCON­
TROL in module IPCONTROL, facilitates certain types of human interven­
tion when the system might otherwise have to be crashed.

When the IPL 12 interrupt request is granted, the interrupt service routine
temporarily disables SMP sanity and spinlock wait timeouts (see Chapter 34)
so that operations below IPL 12 can be stalled on this CPU without adverse
consequences. It then prompts on the console for human input with the
following text: !PC>. (IPC is a shortened form of IPL C, where C16 is 12.)
The IPL 12 interrupt service routine accepts the following commands:

Command

C ddcu:
Q
x
CTRL/Z

4.2 Software Interrupt Service Routines

Meaning

Cancel mount verification in progress
Recalculate quorum for the V AXcluster
Activate XDELTA (if it is resident)
Return the system to normal operation

The C command is issued with a device specification to cancel mount
verification on the specified disk or tape. Mount verification is a mechanism
that enables the system to recover gracefully from certain kinds of transient
device failures, by stalling 1/0 requests to a device while it is offline or
inaccessible. If the device comes back on line, the system confirms that
this is the same device as was previously mounted an.d resumes normal
1/0 processing on the volume. If SYSGEN parameter MVTIMEOUT seconds
elapse before a disk comes back on line, mount verification times out and
the system aborts 1/0 requests in progress to that disk. For a tape, the
SYSGEN parameter TAPE_MVTIMEOUT specifies the length of the mount
verification timeout period.

While a device is in a state of mount verification in progress, all users'
1/0 requests to it are stalled until the mount verification times out or the
device comes back on line. An impatient user can type CTRL/C or CTRL/Y
and STOP to abort the image and cancel its 1/0 requests. However, the user
cannot cancel any 1/0 request the Files-11 XQP may have made on the user's
behalf, and subsequent file system activity in the process will be blocked
until mount verification times out or is canceled.

Therefore, if the device failure is known to be permanent, it may be ap­
propriate to cancel mount verification before the mount verification timeout
period has elapsed. In most cases, the DISMOUNT/ ABORT command is the
preferred way to cancel mount verification. (See the VMS DCL Dictionary
for further information on this command.) However, if the state of the sys­
tem prevents that command from being entered, the C command to the IPL
12 interrupt service routine may be used instead.

For additional information on mount verification, see the Guide to Main­
taining a VMS System.

In response to a Q command, EXE$IPCONTROL requests the VAXcluster
system connection manager to recalculate dynamic quorum based on the
current cluster configuration. The Q command can be issued when a VAX­
cluster system hangs because of quorum loss, after a node crashes and fails
to reboot. Running as an IPL 12 interrupt service routine, EXE$IPCONTROL
cannot acquire the SCS spinlock to synchronize its access to the connection
manager. The IPL associated with the SCS spinlock is IPL$_SCS, or IPL 8.
EXE$IPCONTROL therefore creates an IPL 8 fork process whose fork lock
is the SCS spinlock. See Section 4.2.1 for details about fork processing.

The fork process calls a connection manager routine to recompute quorum.
If any error occurs, the fork process issues a fork and wait request (see

69

Software Interrupts

70

Section 4.2.1.5), retrying its call whenever it is reentered. Once the call to
the routine is successful, the fork process exits.

In response to an X command, EXE$1PCONTROL invokes INI$BRK to
activate XDELTA, as described in Section 4.2.6. Note, however, now that
XDELTA can be activated through an IPL 14 interrupt, activation through
the lower priority IPL 12 interrupt is less commonly used.

In response to CTRL/Z, EXE$IPCONTROL restores the previous state of
the SMP sanity and spinlock wait timeouts and exits, dismissing the IPL 12
interrupt with an REI instruction.

5

5.1

Condition Handling

"Would you tell me, please, which way I ought to go from here?"
"That depends a good deal on where you want to get to," said
the Cat.

Lewis Carroll, Alice's Adventures in Wonderland

The VAX architecture defines a generalized uniform condition handling fa­
cility for two classes of conditions:

• Conditions detected and generated by the CPU, called exceptions
• Conditions detected and generated by software, called software conditions

The VMS operating system provides this facility for users and also uses the
facility for its own purposes.

This chapter describes how VMS dispatches on exceptions and software
conditions to user-specified procedures called condition handlers. It also
briefly describes how VMS services exceptions that it handles itself.

OVERVIEW

An exception is the CPU's response to an anomaly or error it encounters
while executing an instruction, for example, a divisor of zero in a DIVL

instruction. In response, the CPU usually changes access mode to kernel.
It pushes the exception program counter (PC), processor status longword
(PSL), and any exception-specific parameters onto the stack on which the
exception is to be serviced. It changes the flow of instruction execution to
an exception service routine pointed to by an error-specific longword vector
in the system control block (SCB). Chapter 2 describes the CPU exception
mechanism in more detail.

The VAX architecture defines approximately 20 different exceptions, each
with its own SCB vector. The VMS executive defines a unique exception
service routine for each. VMS distinguishes two categories of exceptions:

• Those that the VMS executive always handles itself
• Those that may be handled by user-specified procedures

The VMS executive always handles

• Inner access mode exceptions indicating fatal software or hardware errors
(for example, machine checks or bugchecks)

• Exceptions used in the course of normal system operations (for example,
page faults and CHMK exceptions)

Section 5.4.1 summarizes their servicing.

71

Condition Handling

5.2

72

VMS allows all other exceptions to be handled by a user-specified proce­
dure called a condition handler. Section 5.4.2 summarizes their servicing.
Section 5.3 describes how a process establishes condition handlers.

The other type of condition is a software condition, an error or anomaly
detected by software, typically application software rather than operating
system software, and treated like an exception. The software converts the
error to a software condition by calling one of two Run-Time Library pro­
cedures. It calls LIB$SIGNAL when the image can continue; if the error is
severe and the image should be aborted, it calls LIB$STOP. Each of these
routines initiates the same condition handler search used for exceptions.
Section 5.5 describes software conditions in more detail.

The primary differences between exceptions and software conditions are
the mechanisms that generate them and the initial state of the stack that
contains the condition parameters.

VMS treats exceptions and software conditions uniformly by using the
same mechanisms to locate their condition handlers and pass information
to them.

When a condition occurs, VMS searches for a condition handler. It calls any
it finds with an argument list that includes a code describing the condition
type, called a signal or signal name, and any condition-specific parameters.
The argument list is known as a signal array.

A condition handler is established for a specific access mode. The search
for a condition handler encompasses only those handlers that were estab­
lished in the access mode at which the condition occurred.

The condition handler examines its arguments to decide which of three
actions to take. The handler can fix the condition (continuing). If the handler
cannot fix the condition, it can pass the condition on to the next handler in
the calling hierarchy (resignaling) or it can alter the flow of control (unwind­
ing the call stack). Section 5.8 describes these actions and the executive's
response to them.

VMS establishes default condition handlers for each mode. If the search
fails to locate any user-established condition handlers, or if all such condition
handlers resignal, it invokes the appropriate default handler.

FEATURES OF THE CONDITION HANDLING FACILITY

The condition handling facility encompasses the declaration of a condition
handler, the search for a condition handler, and the responses available to
a condition handler. The condition handling facility provides that software
conditions be directed to the same condition handlers as exceptions. Thus,
application software can centralize its handling of errors, both hardware and
software.

The Introduction to VMS System Services and the VMS Run-Time Library
Routines Volume describe the declaration and coding of condition handlers.

5.3

5.3 Establishing a Condition Handler

The major goal of the condition handiing facility is to provide an easy­
to-use, gener41.-purpose mechanism for handling errors. Application soft­
ware and layered products can use this mechanism rather than inventing
application-specific tools. Features of the condition handling facility in sup­
port of this goal include the following:

• The condition handling mechanism is available as part of the VAX architec­
ture; space is reserved for a condition handler address in the first longword
of each call frame.

• Condition handling can be an integral part of a procedure, a processwide
facility, or both.

Each procedure can establish its own condition handler. This enables
condition handlers to be nested with the procedures that establish them.
A nested inner handler can either service a detected exception or pass it
alortg to some outer handler established by an earlier procedure.

A condition handler is not called to service exceptions incurred by its
own execution. Thus, a handler need not be written in a reentrant language
and need not try to deal with its own errors. However, because a condition
handler is itself a procedure, it can establish its own condition handler to
field errors that it might cause.

• There is no cost to a procedure that does not establish a handler and
minimal cost to one that does.

Overhead is minimized by using only a single longword per procedure
activation for storing the address of a handler. Establishing a handler can be
as simple as executing a single MOVAx instruction. No time is spent looking
for a condition handler until a condition actually occurs.

• As far as the user or application programmer is concerned, there is no
difference in the handling of exceptions and software conditions.

• Some languages, such as BASIC and PL/I, specify signaling and error han­
dling as part of the language. The general mechanism supports their needs.

Because condition handling is part of a procedure, software written in
a high-level language can establish a handler that examines its arguments
to determine whether the signal was generated as a part of that language's
support library. If so, the handler can attempt to fix the error in the manner
defined by the language. If not, the handler can resignal the error.

ESTABLISHING A CONDITION HANDLER

There are two different methods for establishing a condition handler:

• One method uses the stack associated with each access mode. Each pro­
cedure call frame includes a longword that contains the address of the
condition handler associated with that procedure.

• The other method uses software vectors in Pl space. Each access mode has
its own software vectors. Vectored handlers do not possess the modular

73

Condition Handling

properties associated with call frame handlers and are intended primarily
for debuggers and performance monitors.

5.3.1 Establishing a Call Frame Condition Handler

A call frame handler is established by placing its address in the first longword
of the currently active call frame. The following VAX MACRO instruction
establishes a call frame condition handler:

MDVAB new_handler,(FP)

The following VAX MACRO instruction removes a condition handler by
clearing the first longword of the current call frame:

CLRL (FP)

Because direct access to the call frame is usually not available from a high­
level language, VMS provides the Run-Time Library procedures LIB$ESTAB­
LISH to establish a handler and LIB$REVERT to remove one.

5.3.2 Establishing a Software-Vectored Condition Handler

74

There are three types of software-vectored condition handlers. They differ
primarily in the order in which they are called during the search for a
condition handler:

• First, the primary vector handler
• Second, the secondary vector handler
• Last, after all call frame condition handlers, the last chance handler

One of each of these handlers can be established for each access mode.
An array at CTL$AQ_EXCVEC, indexed by access mode, identifies the

process's primary and secondary vector condition handlers. The first long­
word in each quadword contains zero or the address of a primary vector
condition handler for that mode. The second longword contains zero or
the address of a secondary vector condition handler. An array at CTL$AL_
FINALEXC, also indexed by access mode, contains the addresses of the last
chance condition handlers.

By default, VMS provides no primary or secondary vector handlers. It es­
tablishes the kernel, executive, and user mode last chance handlers described
in Section 5.7.

An image requests the Set Exception Vector ($SETEXV) system service to
establish or remove a software-vectored condition handler. The VMS System
Services Reference Manual provides further information.

The system service has four arguments, all of which are optional:

• The VECTOR argument identifies the type of handler. If omitted or if the
value is zero, the handler is the primary vector handler .

• The ADORES argument contains the address of a handler. If omitted or if the
address is zero, the existing handler is to be removed.

5.4

5.4 Exceptions

• The ACMODE argument specifies the access mode of the handler. If omitted,
its default value is the mode from which the service was requested. If
present, the less privileged of the requesting mode and ACMODE is used,
preventing a process from declaring a handler for a more privileged mode .

• The PRVHND argument specifies the address of a longword to receive the
address of the previously established handler.

The $SETEXV system service procedure, EXE$SETEXV in module SYS­
SETEXV, runs in kernel mode. It determines the access mode of the handler
and the type of handler to be established, and sto.res the address of the
specified handler (or a longword containing zero) in the specified software
vector.

User mode software-vectored condition handlers are automatically re­
moved at image rundown, when the address space that contains them is
being deleted. All others must be explicitly removed.

EXCEPTIONS

Table 5.1 lists the exceptions defined by the VAX architecture. VMS ser­
vices most of them by preparing for the execution of a condition handler;
Section 5.4.2 describes some of these preparations.

In addition, the VMS executive signals some errors it detects while running

Table 5.1 Exception Vectors in the System Control Block

Vector Extra
Offset Exception Name Parameters Type

416 Machine check 1 0 Abort/Fault
816 Kernel stack not valid 1 0 Abort

1016 Reserved/privileged instruction 1 0 Fault
1416 Customer reserved instruction 0 Fault
1816 Reserved operand 0 Abort/Fault
1C16 Reserved addressing mode 0 Fault
2016 Access violation 2 Fault
2416 Translation not valid 1 2 Fault
2816 Trace pending 0 Fault
2C16 BPT instruction 0 Fault
3016 Compatibility mode 1 Abort/Fault
3416 Arithmetic 1 Fault/Trap
4016 CHMK 1 1 Trap
4416 CHME 1 1 Trap
4816 CHMS 1 Trap
4C16 CHMU 1 Trap
C816 Subset instruction emulation 1 10 Trap
CC16 Suspended instruction emulation 1 0 Trap

1 These exceptions result in special action on the part of the operating system.

75

Condition Handling

in inner access modes through the exception mechanism so that they can be
dispatched to outer mode condition handlers.

Those exceptions that VMS services itself are discussed briefly in the next
section.

5.4.1 Exceptions Handled by the VMS Executive

76

VMS itself services the CHME and CHMK exceptions to provide controlled
paths into inner access mode code. These exception service routines, known
as the change mode dispatchers, transfer control to Record Management
Services (RMS) and system services, as described in Chapter 6.

VMS services several other exceptions for which only operating system
action is appropriate.

The translation-not-valid exception means that a reference was made to
a virtual address that is not currently mapped to physical memory. This
exception is the entry path into the VMS paging facility. Its service routine,
the page fault handler, is described in detail in Chapter 16.

A machine check exception is a processor-specific condition that may
or may not be recoverable. A machine check is initially serviced on the
interrupt stack at IPL 31. The exception service routine generates a fatal
bugcheck in response to a nonrecoverable kernel or executive mode machine
check. It reports a nonrecoverable machine check that occurred in supervisor
or user mode through the normal exception dispatch method. Chapter 32
discusses the machine check exception service routine and the bugcheck
mechanism.

A kernel-stack-not-valid exception indicates that the kernel stack was
not valid when the processor tried to push information onto it during the
initiation of an exception or interrupt. This exception is serviced on the
interrupt stack at IPL 31. Its exception service routine generates a fatal
KRNLSTAKNV bugcheck.

Not all types of VAX processors implement the entire VAX instruction
set. For example, not all processors implement all types of floating-point
operands, and not all processors implement all string and decimal instruc­
tions. VMS provides emulation for VAX instructions not implemented in
CPU microcode.

VMS implements two different kinds of instruction emulation, using two
different techniques. One, based on the reserved/privileged instruction ex­
ception, is available on all CPUs. On a CPU that requires floating-point
instruction emulation, VMS alters the SCB vector for the reserved/privileged
instruction vector to execute floating-point emulation code prior to the nor­
mal service routine for this exception. The floating-point emulation code
checks the opcode of each instruction that incurs the exception, emulates
those with appropriate opcodes, and passes all others on to the normal ser­
vice routine.

5.4 Exceptions

The other technique is available only on certain VAX processor types.
These CPUs assist in the emulation of unimplemented string and decimal
instructions by providing two special VAX subset instruction emulation
exceptions. These processors include the MicroVAX II, MicroVAX 3x00,
and VAX 6000 series systems. When the microcode of such a processor
encounters a string or decimal opcode not present in its instruction set,
it evaluates the operands and pushes exception parameters onto the current
stack describing the opcode and its operands. The processor sets the first
part done bit in the PSL. It then dispatches through SCB vector C816 to
the service routine V AX$EMULATE, in module [EMULAT]VAXEMULAT,
without changing access mode.

While the emulation of the instruction is in progress, another exception,
such as a page fault, can occur. After the page fault is satisfied and the
exception dismissed, the emulated instruction is reexecuted. Finding the first
part done bit set, the processor generates a "suspended" emulation exception
through SCB vector CC16· The second emulation vector dispatches back
into the instruction emulation code at VAX$EMULATE_FPD, in module
[EMULAT]VAXEMULAT.

For more details on these exceptions, see the VAX Architecture Reference
Manual.

5.4.2 Exceptions Passed to a Condition Handler

Apart from the exceptions described in Section 5.4.1, VMS passes excep­
tions to condition handlers. The service routines for these exceptions are
in module EXCEPTION. Each performs approximately the same actions in
preparing for the execution of a condition handler. Table 5.2 lists the ex­
ceptions that VMS handles in this uniform way and the exception-specific
information in their signal arrays.

Figure 5.1 shows the major steps in the flow from such an exception up
to the routine that searches for a condition handler. The column headings
in the figure describe the environment of each step, for example, its access
mode and interrupt priority level (IPL). The numbers in the figure correspond
to the steps in the following list.

Prior to the start of this flow, responding to the exception, the CPU has
pushed onto the stack the exception PC, PSL, and any exception-specific
parameters, and dispatched to the exception service routine.

G) Each exception service routine pushes onto the stack a signal name, a
status value of the form SS$_signal-name.

G) Each pushes the total number of exception parameters (from the signal
name to the saved PSL inclusive). The stack now contains the signal
array (see Figure 5.2). It begins with the signal name and ends with the
exception PC and PSL and may contain exception-specific arguments in
between.

77

Condition Handling

Time

D

78

Process Context (typically)

IPL 0 (typically)

Outer Mode (typically) Kernel Mode

User Image VMS Executive

Exception
occurs

Figure 5.1

NORMAL
7 Build condition

handler argument
list

8

N

9 EXE$SRCHANDLER

Flow from an Exception to EXE$SRCHANDLER

Exception Service Routine
1 Push signal name
2 Push number of signal arguments

~
EXE$EXCEPTION
3 Build mechanism array

4

5 Move signal and mechanism
arrays to outer mode stack

6 Construct PC, PSL
REI

I N

SS$_signal-name
}

Pushed by
software

5.4 Exceptions

N is the number of longwords from
SS$_signal-name to the exception
PSL. It ranges from 3 to 5.

*
From Oto 2 Exception-Specific

:

}
Pushed by

Parameters (Table 5-1)

Exception PC
hardware

Arguments are pushed onto the
kernel stack except for CHMS and
CHMU exceptions.

Exception PSL

Figure 5.2
Signal Array Built by CPU and Exception Service
Routine

Software condition
generated by call to
LIB$SIGNAUSTOP.
The argument list is
passed by call to
LIB$SIGNAUSTOP.
The PC and PSL are
added before handlers
are called. See
Figure5-4.

Figure 5.3

-

*
~

I 2

Address of Signal Array

Address of Mechanism Array

I 4

FP of Establisher Frame

Depth Argument

Saved RO

Saved R1

Flags Longword

I N

Exception or Signal Name

Additional exception parameters
pushed by hardware or

additional arguments passed to
LIB$SIGNAUSTOP

Exception PC or PC following
call to LIB$SIGNAUSTOP

Exception PSL

Signal and Mechanism Arrays

P These two longwords are
} used and modified by

handler search procedure.

} Condition handlers can
pass status back to mainline
code by modifying
saved RO (and R1).

'"'--.... Argument count (N) is the num ber
of longwords in a signal array
(N~3).

*
Hardware exception parameters
are pushed initially onto the
kernel stack by hardware and

I- copied to the exception stack by
software.The exception name
and argument count are added
by software before handlers are
called.

.- Value of SP before exception

After an exception service routine has completed the signal array, it
jumps to EXE$EXCEPTION, in module EXCEPTION.

G) EXE$EXCEPTION builds a second argument list, called a mechanism
array', which serves the following purposes:

-It records the values of RO and Rl at the time of the exception (the
procedure calling standard prohibits their being saved in a procedure
entry mask).

-It records the progress made in the search for a condition handler.

Figure 5.3 shows the layout of the mechanism array. Section 5.6 de­
scribes its use during the search for a condition handler.

G) EXE$EXCEPTION tests whether the exception should be dispatched to a

79

Condition Handling

condition handler (see Section 5. 7.3.1). Ifnot, EXE$EXCEPTION generates
a fatal INVEXCPTN bugcheck.

G)Most exceptions that VMS passes on to a condition handler are initially
serviced on the kernel ·stack. However, an exception must be signaled
to the access mode in which it occurred. EXE$EXCEPTION checks that
there is space on the stack of that mode, copies the signal and mechanism
arrays to the target stack, and removes them from the stack on which the
exception was serviced.

@It constructs a PC/PSL pair and executes an REI instruction to transfer
control to the local routine NORMAL in the access mode that incurred
the exception.

G)NORMAL builds the condition handler argument list (see Figure 5.3),
which contains the addresses of the signal and mechanism arrays.

@NORMAL examines location EXE$GL_ VAXEXCVEC. If it contains zero,
NORMAL continues with the next step. Otherwise, NORMAL dispatches
to the specified address. On a processor that provides assistance for in­
struction emulation, EXE$GL_ VAXEXCVEC contains the address of rou­
tine VAX$MODIFY_EXCEPTION, in module [EMULAT]VAXHANDLR.
This routine takes special action for an exception that occurs in the course
of instruction emulation (see Section 5.4.3). For any other type of excep­
tion, it returns to NORMAL.

G)NORMAL then transfers control to EXE$SRCHANDLER, in module EX­
CEPTION, which locates any condition handlers that have been estab­
lished for the access mode of the exception.

Section 5.6 describes the search for and dispatch to a condition handler.

5.4.3 Special Cases in Condition Dispatching

80

The sequence previously described omits some special cases that occur in
the dispatching of several conditions. Most of these special cases involve the
conditions listed in Table 5.2.

Several of these are detected by executive software rather than hardware.
Rather than signal them through LIB$SIGNAL or LIB$STOP, the execu­
tive transfers control to condition-specific routines in module EXCEPTION,
which build a signal array and dispatch .to EXE$EXCEPTION or EXE$RE­
FLECT, in module EXCEPTION. These conditions are typically detected
in an inner mode but must be signaled to the mode associated with the
condition. LIB$SIGNAL and LIB$STOP are unsuitable because they cannot
perform the required access mode switch.

The following list summarizes the flow for such an error. Parts of it are
congruent with the flow described in more detail in Section 5.4.2. At the
start of this flow, an executive routine has detected an error and pushed
onto the stack an exception PC, PSL, error-specific information, and the rest
of the signal array.

Table 5.2 Exceptions Passed to a Condition Handler

Exception
Type

Access violation

Arithmetic
AST delivery

stack fault

Breakpoint
Change mode to

supervisor
Change mode to

user
Compatibility

mode
Debug signal
Machine check
Customer

reserved
instruction

Reserved or
privileged
instruction

Page fault read
error

Reserved address­
ing mode

Reserved operand
System service

failure
Trace pending

Signal Name

SS$_ACCVIO

(See Table 5.3)
SS$_ASTFLT

SS$_BREAK
SS$_CMODSUPR

SS$_CMODUSER

SS$_ CO MP AT

SS$_DEBUG
SS$_MCHECK
SS$_0PCCUS

SS$_0PCDEC

SS$_PAGRDERR

SS$_RADRMOD

SS$_ROPRAND
SS$_SSFA1L

SS$_TBIT

Notes 1

1, 3d

2
3c

4

4

4

3e

5

3b

3a

1 These numbers refer to list items in Section 5.4.3.

Signal
Array
Size

5

3
7

3
4

4

4

3
3
3

3

5

3

3
4

3

5.4 Exceptions

Extra Parameters
in Signal Array

Reason mask,
Faulting virtual address
None 2

SP value at fault,
AST parameter,
PC at AST interrupt, 3

PSL at AST interrupt,
Address of AST procedure,
PSL for AST procedure
None
Change mode operand

Change mode operand

Compatibility exception code

None
None 4

None

None

Reason mask,
Faulting virtual address
None

None
System service final status

None

2 The arithmetic exception has no extra parameters, despite the fact that the CPU pushes an exception
code onto the kernel stack. VMS converts this code into an exception-specific signal name (see Table 5.3)
of the form 8 *code+ SS$_ARTRES.

3 The AST delivery code exchanges the interrupt PC/PSL pair and the PC/PSL to which the AST would
have been delivered.

4 A machine check exception reported to a process does not have any extra parameters in the signal
array. The machine check parameters have been examined, written to the error log, and discarded by the
machine check exception service routine, as described in Chapter 32.

81

Condition Handling

82

1. If the executive routine itself always runs in kernel mode, it jumps to
EXE$EXCEPTION, which builds a mechanism array and continues with
step 4. Otherwise, it jumps to EXE$REFLECT.

2. EXE$REFLECT builds a mechanism array. It checks whether it is running
in kernel mode and, if so, continues with step 4.

3. Otherwise, EXE$REFLECT checks that there is space for the signal and
mechanism arrays on the target stack using the Adjust Outer Mode Stack
Pointer ($ADJSTK) system service. It merges with EXE$EXCEPTION, at
step 5.

4. EXE$EXCEPTION tests whether the exception should be dispatched to
a condition handler (see Section 5.7.3.1). If not, it generates a fatal IN­
VEXCPTN bugcheck.

5. EXE$EXCEPTION moves the signal and mechanism arrays to the target
stack.

6. It executes an REI instruction to transfer control to NORMAL, which
builds the condition handler argument list.

7. NORMAL dispatches into VAX$MODIFY_EXCEPTION if the exception
occurred during instruction emulation.

8. NORMAL transfers to EXE$SRCHANDLER to locate and dispatch to a
condition handler.

The following list describes each of the special cases in Table 5.2. Its
numbers correspond to the notes in that table.

1. User stack overflow is detected by the hardware as an access violation at
the low-address end of Pl space. The access violation exception service
routine tests whether the inaccessible virtual address is at the low end
of Pl space. If it is, additional virtual address space is created below the
stack and the exception dismissed. Thus, a user stack expands automat­
ically and transparently. A condition handler is notified about such an
exception only if the stack expansion is unsuccessful.

2. Ten types of arithmetic exceptions can occur. The CPU dispatches them
all through the same SCB vector but uniquely identifies them through
a code in the exception-specific parameters. The arithmetic exception
service routine translates the code into a unique signal name. Table 5.3
lists these signal names and their codes.

3. The following conditions are detected by executive software:

a. The system service failure (SS$_SSFAIL) condition is rel'orted when
a process has enabled signaling of system service failures through the
Set System Service Failure Mode ($SETSFM) system service and a
system or RMS service returns unsuccessfully with an error or se­
vere error status. The change mode dispatchers detect such errors.
They push information about the error onto the stack of the service

5.4 Exceptions

execution and transfer control to EXE$SSFAIL, in module EXCEP­
TION (see Chapter 6). EXE$SSFAIL completes the signal array and
jumps to EXE$REFLECT.

b. The page fault read error (SS$_PAGRDERR) condition is reported
when a process incurs a page fault for a page on which a read er­
ror occurred during a previous fault for the same page. Information
about the page fault that led to the condition is already on the
stack. The translation-not-valid service routine transfers control to
EXE$PAGRDERR, in module EXCEPTION. EXE$PAGRDERR com­
pletes the signal array and jumps to EXE$EXCEPTION.

c. The SS$_ASTFLT condition is reported when the asynchronous sys­
tem trap (AST) delivery interrupt service routine detects an inacces­
sible stack while attempting to deliver an AST to a process. The AST
delivery interrupt service routine pushes information about the er­
ror onto the kernel stack and transfers control to EXE$ASTFLT, in
module EXCEPTION (see Chapter 7).

EXE$ASTFLT completes the signal array. EXE$ASTFLT is entered
with current and previous modes both kernel, since it runs as part
of an interrupt service routine. The exception handling mechanism

Table 5.3 Signal Names for Arithmetic Exceptions

Code Pushed
Exception Type

Integer overflow 1

Integer divide by zero
Floating overflow 2

Floating/Decimal divide by zero 2

Floating underflow 2•3

Decimal overflow 1

Subscript range

Floating overflow
Floating divide by zero
Floating underflow

by CPU

TRAPS

1
2
3
4
5
6
7

FAULTS

8
9

10

Resulting
Signal Name

SS$_INTOVF
SS$_INTDIV
SS$_FLTOVF
SS$_FLTDIV
SS$_FLTUND
SS$_DECOVF
SS$_SUBRNG

SS$_FLTOVF _F
SS$_FLTDIV _F
SS$_FLTUND_F

1 Integer overflow enable and decimal overflow enable bits in the processor ·
status word (PSW) can be altered either directly or through the procedure
entry mask.

2 The three floating-point traps can only occur on VAX-11/780 processors
earlier than microcode revision (rev) level 7.

3 The floating underflow enable bit in the PSW can only be altered directly.
There is no corresponding bit in the procedure entry mask.

83

Condition Handling

84

presumes that the previous mode is the mode of the exception.
EXE$ASTFLT therefore executes an REI instruction with a PC and
PSL constructed to transfer to EXE$EXCEPTION with the previous
mode set to that of the AST.

d. Most access violations are exceptions detected by the CPU. In addi­
tion, however, the translation-not-valid exception service routine can
signal an access violation. If it detects a process faulting a page in the
process header of another process, then it transfers to EXE$ACVIO­
LAT, in module EXCEPTION, the access violation exception service
routine. Information about the error is already on the current stack.
This is an unusual error, typically the result of a software failure in
executive or kernel mode code.

e. The signal SS$_DEBUG is generated by either the Digital command
language (DCL) or monitor console routine (MCR) command language
interpreter (CLI) in response to a DEBUG command entered while an
image exists in an interrupted state. The DEBUG command processor
pushes the PC and PSL of the interrupted image, the signal name SS$_
DEBUG, and the size of the signal array onto the supervisor stack and
jumps to EXE$REFLECT.

A CLI uses this mechanism for the DEBUG signal, rather than sim­
ply calling LIB$SIGNAL, because the DEBUG command is processed
by supervisor mode code but the condition has to be reported back
to user mode.

4. The exception dispatching for the CHMS and CHMU exceptions and
compatibility mode exceptions can be short-circuited by use of the De­
clare Change Mode or Compatibility Mode Handler ($DCLCMH) system
service. The $DCLCMH system service enables a user to establish a
per-process change-mode-to-supervisor, change-mode-to-user, or compat­
ibility mode handler. This service stores the address of the handler in
CTLGL_CMSUPR, CTLGL_CMUSER, or CTL$GL_COMPAT in the
Pl pointer page.

The exception service routine for CHMS exceptions, EXE$CMOD­
SUPR in module EXCEPTION, pushes the signal name onto the stack
and determines in what mode the exception occurred. If it occurred in
kernel or executive mode, EXE$CMODSUPR completes the signal array
and jumps to EXE$REFLECT. If the exception occurred in user or super­
visor mode but the process has declared no change-mode-to-supervisor
handler, EXE$CMODSUPR also completes the signal array and jumps to
EXE$REFLECT.

Otherwise, EXE$CMODSUPR removes the signal name from the stack
and transfers control to the declared handler with the stack in the same
state in which it was following the exception. That is, the change mode
operand is at the top of the stack, followed by the exception PC and PSL.

5.5

5.5 Software Conditions

The exception service routine for CHMU exceptions, EXE$CMOD­
USER in module EXCEPTION, behaves similarly. For it to transfer to a
declared change-mode-to-user handler, the exception must have occurred
in user mode.

The DCL CLI requests the $DCLCMH service to establish a CHMS
handler. Its handler is briefly described in Chapter 27. The job controller
uses a CHMU handler for its processing of error messages. The Files-11
Extended QIO Processor (XQPJ, running in kernel mode, signals an error
to its outermost procedure by executing a CHMU instruction from kernel
mode.

The exception service routine for compatibility mode exceptions trans­
fers control to the user-declared compatibility mode handler (if one was
declared) with the user stack in the same state in which it was before the
compatibility mode exception occurred. That is, no parameters are passed
to the compatibility mode handler on the user stack. Instead, the service
routine saves the compatibility mode code, exception PC and PSL, and
contents of RO through R6 in the first ten longwords of the compatibility
mode context page, at location CTL$ALCMCNTX.

5. The reserved instruction fault is generated whenever an unrecognized
opcode is detected by the instruction decoder.

VMS uses this fault as a path into bugcheck processing. The reserved
instruction exception service routine tests whether the reserved opcode
is either FEFF16 or FDFF16· These two opcodes are reserved for the op­
erating system to signal that it· has detected a serious inconsistency in
system behavior or data. If the opcode is one of these, the reserved in­
struction exception service routine jumps to the bugcheck routine, which
is described in Chapter 32.

Another special case in exception dispatching is the handling of an ex­
ception in the middle of instruction emulation, itself an exception. When
an exception occurs on a processor with subset instruction emulation, rou­
tine VAX$MODIFY_EXCEPTION (see Section 5.4.2) is invoked. If the ex­
ception occurred in the course of emulating an instruction, VAX$MODIFY _
EXCEPTION transforms that exception into one incurred by the emulated
instruction; it changes the exception PC to be that of the emulated instruc­
tion and rearranges the stack to remove any data pushed onto it during
instruction emulation. It invokes EXE$EMULAT _REFLECT, in module EX­
CEPTION, to signal the exception as one incurred by the emulated instruc­
tion. Unlike EXE$REFLECT, EXE$EMULAT _REFLECT has no need to alter
access mode; the dispatching that led to V AX$MODIFY _EXCEPTION has
already restored the mode of the emulated instruction.

SOFTWARE CONDITIONS

One of the choices in the design of a modular procedure is the method for

85

Condition Handling

86

reporting exceptional conditions back to the caller. There are two common
methods: returning a status in RO, and signaling the error by calling one of
the Run-Time Library procedures LIB$SIGNAL or LIB$STOP.

There are two reasons why signaling may be preferable to returning status.
In some procedures, such as the mathematics procedures in the Run-Time
Library, RO is already used for returning a function value and is unavail­
able for error return status. The procedure must therefore use the signaling
mechanism to indicate exceptional conditions, such as an attempt to take
the square root of a negative number.

A second common use of signaling occurs in an application using an
indeterminate number of procedure calls to perform some action, such as
a recursive procedure that parses a command line. In such a case, the use
of a return status is often cumbersome and difficult to code. The signaling
mechanism provides a graceful way not only to indicate that an error has
occurred but also to return control (through the $UNWIND system service)
to a known alternative return point in the calling hierarchy.

A procedure calls LIB$SIGNAL cir LIB$STOP with the name o~ the COJldi­
tion to be signaled and whatever additional parameters are to be passed to a
condition handler. LIB$STOP is an alternative entry point to LIB$SIGNAL.

I • , . . '

(This chapter refers to the combined procedures as LIB$SJGNAL/STOP.)
LIB$SIGNAL and LIB$STOP differ in whether normal. executjon i:µay be

resumed after the condition J;iandler for the signaled error returns. µse of
LIB$SIGNAL enables the image to continue if the condition handler returns
the status SS$_CONTINUE. Use of LIB$STOP does not. The two entry
points store different values in the stack flags longword, which is tested
by the code to which a condition handler returns.

Before LIB$SIGNAL/STOP can initiate the search for a .condition handler,
it must transform the stack to one resembling an exception stack. LIB$SIG­
NAL/STOP constructs a signal array and removes the frame generated by the
call to itself. If LIB$SIGNAL/STOP was entered with a CALLS instruction, it
must also move the argument list onto the stack. It restores the saved argu­
ment pointer (AP) and frame pointer (FP). LIB$SIGNAL/STOP moves other
information, such as the saved PC and processor status word IPSW) to a
signal array it constructs on the stack. The signal array also incorporates
any arguments from the call to LIB$SIGNAL/STOP. Figure 5.4 shows the
transformed state of the stack following a call to LIB$SIGNAL/STOP.

LIB$SIGNAL/STOP next builds a mechanism array, saving RO and Rl in
it, and a condition handler argument list. After building the three argument
lists, LIB$SIGNAL/STOP invokes the same condition handler search code as
exception handling. It jumps to SYS$SRCHANDLER, a system service vector
that contains a jump to EXE$SRCHANDLER. The indirection supplies the
Run-Time Library with a constant address through which to dispatch to
EXE$SRCHANDLER.

Call frame for
LIB$SIGNAUSTOP

Argument list
passed to
LIB$SIGNAUSTOP

,---,

-

-

State of the Stack Immediately After
the CALLS to LIB$SIGNAUSTOP

0 : No Condition Handler

0: Register I 1
Save Mask Saved PSW

2 Saved AP

3 Saved FP

4 Saved PC

0 ... 3 Stack Alignment Bytes

I 5 M

32-bit Status Code (Signal Name)

Additional arguments

~T
(if any) passed to

I LIB$SIGNAUSTOP

(If CALLG instead of CALLS, then
the argument list is copied from
elsewhere to the signal array.
The rest of the call frame is
discarded in the same fashion.)

The call frame is discarded before handlers are called.

1 Saved PSW: low 16 bits of PSL 4 Saved PC- PC in signal array

The argument list is shifted
up 8 bytes to make room for
the PC/PSL pair so that
hardware and software
signal arrays look the same.

Value of SP before call and
push of argument list

in signal array 5 M is the size of the argument list.
2 Saved AP-AP 6 N is the size of the signal array
3 Saved FP-FP (N: M + 2).

Figure 5.4
Transformation of Stack by LIB$SIGNAL/STOP

State of the Stack After
LIB$SIGNAL/STOP Has Removed

the Call Frame

r-- Co;;ditic;"nH;;d;r ArQ;;"~ntL; 1
' will go here '
1--------------l

=:= Mechanism Array will go here =:=
r---------------1

Signal/Stop Code
1 : LIB$SIGNAL; 2 : LIB$STOP

Is t-
N

32-bit Status Code (Signal Name)

Additional arguments
(if any) passed to

LIB$SIGNAUSTOP r-

4 PC of Instruction
Following CALLx

1 PSL That Existed
Before CALLx ,_

Signal array
passed to
condition handlers

Condition Handling

The search for condition handlers takes place on the stack of the caller of
LIB$SIGNAL/STOP.

5.6 UNIFORM CONDITION DISPATCHING

Once information concerning the condition has been pushed onto the stack,
there are few differences between exceptions and software conditions. The
following sections discuss condition dispatching in general terms and ex­
plicitly mention EXE$EXCEPTION or LIB$SIGNAL/STOP only where their
operations differ.

5.6.1 The Search for a Condition Handler

5.6.1.1

5.6.1.2

88

At this point in the dispatch sequence, the signal and mechanism arrays and
the condition handler argument list have been set up on the stack of the
access mode to which the condition will be reported. EXE$SRCHANDLER
uses the mechanism array longword initially containing the FP of the estab­
lisher frame (see Figure 5.3) to record the extent of the search. The depth
argument in the mechanism array not only provides useful information to a
condition handler that unwinds but also enables EXE$SRCHANDLER to dis­
tinguish a call frame handler (non-negative depth) from a software-vectored
condition handler (negative depth).

Primary ;md Secondary Exception Vectors. EXE$SRCHANDLER begins its
search with the primary vector of the access mode in which the exception
occurred. If the vector contains the address of a condition handler (any
nonzero contents), EXE$SRCHANDLER sets the depth at -2 and calls the
handler.

The primary handler (and any other condition handler) can return sev­
eral status codes. One status code, SS$_RESIGNAL, known as a resignal,
means that EXE$SRCHANDLER should continue its search for a condition
handler. Resignaling and other condition handler responses are described in
Section 5.8.

If the primary handler resignals or if none exists, EXE$SRCHANDLER
performs the same step for the secondary vector handler, with the depth at
-1. If the secondary handler resignals or there is none, EXE$SRCHANDLER
next looks for call frame condition handlers.

Call Frame Condition Handlers. EXE$SRCHANDLER examines the contents
of the current call frame. If the first longword in the current call frame is
nonzero, EXE$SRCHANDLER calls that handler with the depth at 0. If the
longword is zero or if that handler resignals, EXE$SRCHANDLER examines
the next earlier call frame by using the saved frame pointer in the current call
frame (see Figure 5.5). As it examines each earlier call frame, it increments

5.6 Uniform Condition Dispatching

2
Signal and
mechanism
arrays for
signal S
generated by
procedure C

1
Call frame,for
procedure C

1
Call frame for
procedure B

1
Call frame for
procedure A

Figure 5.5

~

See Figure 5-6

l
Signal Array

Mechanism Array

I
Establisher FP

Depth =1

RO

R1

Signal/Stop Code

l
Name of Signal S

Other Parameters

Exception PC in C

Exception PSL

CH

Saved FP

Saved PC in B

BH

Saved FP

Saved PC in A

AH

Saved FP

Saved PC

Order of Search for Condition Handler

.
2 . .

r--_!: .. p 4

3

N ~

=r

TI
.. t-
~

To previ!us

t
Direction of

stack growth

frame

the depth to record the number of frames examined and places that frame's
address in the frame pointer of the mechanism array.

EXE$SRCHANDLER continues the search until one of the following
occurs:

• A handler returns a status requesting the resumption of the thread of
execution that incurred the exception.

• EXE$SRCHANDLER finds a saved frame pointer whose value is not within
the bounds of that access mode's stack.

A saved frame pointer value may be out of range as a result of stack

89

Condition Handling

5.6.1.3

corruption. A saved frame pointer value of zero indicates the end of the
call frame chain .

• EXE$SRCHANDLER reaches the end of the call frame chain.
A saved frame pointer that points outside the stack terminates the call

frame chain. The end of an inner access mode call frame chain can also
be indicated by either a. change mode dispatcher call frame, described in
Chapter 6, or an AST delivery call frame, described in Chapter 7. Either
indicates that an access mode change occurred.

Ha handler returns a status code with the low bit set, EXE$SRCHANDLER
cleans off the stack, restores RO and Rl from the mechanism array, and
executes an REI instruction using the saved PC and PSL from the signal array.
This resumes the thread of execution that incurred the exception. Note that
EXE$SRCHANDLER passes control back with an REI instruction, even if the
condition was caused by a call to LIB$SIGNAL/STOP. LIB$SIGNAL/STOP
discarded the frame resulting from its call, so that the stack resembles an
exception stack (see Figure 5.4).

Last Chance Condition Handler. H all handlers resignal or none is found, the
search terminates at the end of the call frame chain. EXE$SRCHANDLER
then calls the last chance handler with the depth at -3. (This handler is
also called if any error occurs during the search for a condition handler.) The
usual last chance handler is the catch-all condition handler established as
part of image initiation. Section 5.7.2 describes this handler.

H the last chance handler returns or there is none, and the exception
occurred in user or supervisor mode, EXE$SRCHANDLER calls the executive
procedure EXE$EXCMSG (see Chapter 36). Its two input parameters are an
ASCil string containing message text and the condition handler argument
list. Following the call to EXE$EXCMSG, EXE$SRCHANDLER requests the
Exit ($EXIT) system service with a status indicating either that no handler
was found or that a bad stack was detected while searching for a condition
handler.

H the exception occurred in executive or kernel mode, EXE$SRCHAN­
DLER generates a FATALEXCPT bugcheck, nonfatal for executive mode or
fatal for kernel mode.

5.6.2 Multiple Active Signals

90

An exception in a condition handler or in some procedure called by a con­
dition handler results in a condition called multiple active signals. To avoid
an infinite loop of exceptions, EXE$SRCHANDLER modifies its search al­
gorithm so that when it services the second condition, it skips those frames
it searched while servicing the first condition.

For this skipping to work correctly, call frames of condition handlers must
be distinguishable from other call frames. VMS arranges this by calling all

5.6.2.1

5.6.2.2

5.6 Uniform Condition Dispatching

handlers from a known location, so that the saved PC of a condition handler
call frame is unique.

Common Call Site for Condition Handlers. In order to dispatch to a handler,
EXE$SRCHANDLER stores the address of the handler in Rl and transfers to
the common call site with the following instruction:

JSB G#SYS$CALL_HANDL

The code at SYS$CALLHANDL simply calls the procedure whose address
is stored in Rl and returns to its invoker with an RSB:

SYS$CALL_HANDL::
CALLG 4(SP),(R1)
RSB

When the CALLG instruction is executed, the address of the next .instruc­
tion, SYS$CALLHANDL + 4, is recorded in the call frame as the saved PC.
Thus, the identifying characteristic of a condition handler call frame is the
address SYS$CALLHANDL + 4 as the saved PC. This signature is used not
only by the search procedure, as described in the following section, but also
by the Unwind Call Stack !$UNWIND) system service.

Example of Multiple Active Signals. The modified flow of control when
the search procedure encounters a condition handler call frame can best
be illustrated through an example. The example assumes that the primary
and secondary condition handlers lif they exist) have already resignaled. The
numbers in Figures 5.5 and 5.6 correspond to the following steps:

G) Procedure A calls procedure B, which calls procedure C.
G) Procedure C generates signal S.
G)Handler CH resignals. The depth argument is 1, and the establisher frame

argument points to the call frame for procedure B, when BH is called.
Figure 5.5 shows the stack at this point.

@The call frame for handler BH is located later in time on the stack, at
lower virtual addresses than the signal and mechanism arrays for signal S
!see Figure 5.6). The saved frame pointer in the call frame for BH points
to the frame for procedure C.

@Handler BH now calls procedure X, which calls procedure Y.
@Procedure Y generates signal T. The desired sequence of frames to be

examined is frame Y, frame X, frame BH, and then frame A. Frames B and
C are skipped because they were examined while servicing condition S.

G) EXE$SRCHANDLER proceeds in its normal fashion. The primary and
secondary vectors are examined first lno skipping here). Then frames Y,
X, and BH are examined, resulting in handlers YH, XH, and BHH being
called in turn. Assume that all these handlers resignal. After handler
BHH returns to EXE$SRCHANDLER with a status of SS$_RESIGNAL,

91

Condition Handling

92

6
Signal and
mechanism
arrays for
signal T
generated by
procedure Y

5
Gall frame for
procedure Y

5
Gall frame for
procedure X

4
Call frame for
handlerBH

Figure 5.6

• l 2 •
1--~~~~~ ~~~L_____ •

Signal Array --.,-----

*

Mechanism Array

l
Establisher FP

Depth= 3 10

RO
R1

SignaVStop Code

j N 1--
Name of Signal T

Other Parameters

Exception PC in Y

Exception PSL

YH

Saved FP

Return PCinX

Saved FP

Return PC in BH

Saved FP

Dispatcher Call Site

Saved registers and stack
alignment bytes indicated
by register save mask in

callframeBH

-+-

7

8
~

Return PC from JSB 9

See Figure 5·5

t
Direction of

stack growth

To call frame for
procedure A in
Figure 5-5

1
To call frame for
procedure C in
Figure 5-5

Modified Search with Multiple Active Signals

EXE$SRCHANDLER notes that frame BH is the frame of a condition
handler, because its saved PC is SYS$CAL1-HANDL + 4.

G) The skipping is accomplished by locating the frame that established this
handler. The address of that frame is located in the mechanism array for
signal S.

5.7

5. 7 Default (VMS-Supplied) Condition Handlers

To locate the mechanism array for signal S, EXE$SRCHANDLER cal­
culates the value of SP before the call to BH, using the register save mask
and stack alignment bits in the call frame.

G) One extra longword, the return PC from the JSB to SYS$CAL1-HANDL,
must be skipped to locate the argument list (and thus the mechanism
array) for signal S.

@The frame pointed to by the establisher frame pointer in the mechanism
array, which is the call frame for B, has already been searched. The next
frame examined by the search procedure is the call frame of A, which is
pointed to by the saved frame pointer in the call frame of B. The depths
that are passed to handlers as a result of the modified search are 0 for
YH, 1 for XH, 2 for BHH, and 3 for AH. Figure 5.6 shows the stack at the
point where handler AH has been located.

DEFAULT (VMS-SUPPLIED) CONDITION HANDLERS

The use of condition handlers is general and can be specified by the user.
However, some actions always occur as the result of default condition han­
dlers that are established by the executive as a part of process creation or
image activation.

The discussions of process creation in Chapter 25 and image activation in
Chapter 26 point out exactly when and how each of the handlers described
in this section is established. The action of each of these handlers, once they
are invoked, is briefly described in the following sections.

5.7.1 Traceback Handler Established by Image Startup

When an image includes either the debugger or the traceback handler, an­
other frame is put on the user stack before the image itself is called (see
Chapter 26). EXE$IMGSTA, in module SYSIMGSTA, the code that executes
before the image is called, stores the address of its own condition handler in
this frame so that it will be entered for any subsequent condition that is not
handled by an intervening condition handler.

This handler first checks whether the condition that occurred is SS$_
DEBUG. If so, it maps the debugger into PO space (if not already mapped)
and passes control to it. The condition SS$_DEBUG is signaled by a CLI in
response to a DEBUG command. This feature allows an image that was not
linked or run with debugger support to be interrupted and have a debugger
invoked.

For all other conditions, if the severity level is warning, error, or severe
error, the handler maps the traceback facility above the end of defined PO
space and passes control to it. The traceback facility passes information
about the exception to SYS$0UTPUT and terminates the image.

If the severity level is other than the three listed, the traceback condition
handler resignals the condition, which usually means that the condition is
being passed on to the catch-all condition handler.

93

Condition Handling

5.7.2 Catch-All Condition Handler

The address of this handler, EXE$CATCH_ALL, is placed in an initial call
frame on the user stack and in the last chance vector for user mode by either
EXE$PROCSTRT when the process is created or by a CLI before an image is
called. This handler is always called if no other handlers exist or if all other
handlers resignal. Because the address of the handler is duplicated in the last
chance vector, it is also called in the event of an error in the search through
the user stack.

The first step that EXE$CATCILALL takes is to call SYS$PUTMSG (see
Chapter 36). If the handler was called through the last chance vector (the
depth argument in the mechanism array is -3) or if the severity level of the
condition name in the signal array indicates severe (condition-name (2:0)
GEQU 4), then EXE$EXCMSG (see Chapter 36) is called to print a summary
message, and the image is terminated; otherwise, the image is continued.

5.7.3 Handlers Used by Other Access Modes

5.7.3.1

94

In addition to the handlers that VMS supplies for user mode conditions, it
sets up handlers for the other three access modes.

Exceptions in Kernel or Executive Mode. When a kernel mode exception
occurs, EXE$EXCEPTION makes special checks to determine whether it
should dispatch the exception. It checks that

• The processor was running on the kernel stack
• IPL was at or below 2
• The Pl page containing the limits of the process's stacks is accessible (in

fact, that the process has a typical Pl space)

If any of these is not true, the dispatcher generates a fatal INVEXCPTN bug­
check. Routines whose exceptions can cause this bugcheck include interrupt
service routines, device drivers (except for their function decision table ac­
tion routines), process-based code executing above IPL 2 (such as portions of
various system services), and any code running in the context of the swapper
process.

If all of these are true, then exception dispatching proceeds in its usual
manner. If no primary, secondary, or call frame condition handlers service
the exception, the dispatcher invokes the last chance condition handler.

The last chance exception vectors for both kernel and executive modes are
initialized at process creation in module SHELL (see Chapter 25).

The kernel mode last chance handler, EXE$EXCPTN, in module SYSTEM_
ROUTINES, generates a fatal SSRVEXCEPT bugcheck. Routines whose ex-

5.7.3.2

5.8 Condition Handler Action

ceptions can result in this bugcheck include portions of many system ser­
vices, many exception service routines, device driver function decision table
action routines, and procedures that are entered through a user-written sys­
tem service dispatcher or the Change to Kernel Mode ($CMKRNL) system
service.

The executive mode last chance handler, EXE$EXCPTNE, in module SYS­
TEM_ROUTINES, generates a nonfatal SSRVEXCEPT bugcheck, causing an
error to be logged, and exits the image from executive mode, causing the
process to be deleted. Routines that execute in executive mode include
RMS, parts of the executive, and procedures that are entered through ei­
ther a user-written system service dispatcher or the Change to Executive
Mode ($CMEXEC) system service. Note that if the SYSGEN parameter
BUGCHECKFATAL is 1, a nonfatal SSRVEXCEPT bugcheck is treated as
a fatal bugcheck and results in a crash.

Chapter 32 describes bugcheck processing in detail.

Condition Handler Used by DCL or MCR. The DCL and MCR CLis establish
nearly identical condition handlers at the beginning of their command loops
to field conditions that occur in supervisor mode.

The LOGINOUT image activates a CLI (DCL or MCR) and calls it. The
first step of the CLI is to establish a supervisor mode condition handler to
handle its own internal errors. It establishes this handler as a call frame
condition handler in the oldest call frame on the supervisor mode stack.
The condition handler performs two tasks when it is called:

1. It cancels any exit handlers that have been established.
2. It resignals the error.

There are no other condition handlers. When the search ends, the image
is exited in supervisor mode, resulting in process deletion.

5.8 CONDITION HANDLER ACTION

A condition handler first determines the nature of the condition by exam­
ining the signal name argument in the signal array (see Figure 5.2). It then
decides what action to take:

• It can pass the condition along to another handler by resignaling .
• It can fix the condition and allow execution to continue at the point in the

program that incurred the exception .
• It can also allow execution to resume at a previous place in the calling

hierarchy by removing a number of call frames from the stack, a process
called unwinding.

95

Condition Handling

5.8.1 Resignal or Continue

H a condition handler cannot deal with the type of condition signaled, it
returns the status SS$_RESIGNAL to inform EXE$SRCHANDLER that the
search for a handler must continue. A condition handler, like any other
procedure, returns a status in RO.

H, however, a condition handler can resolve the condition, it returns the
status SS$_CONTINUE to EXE$SRCHANDLER. This status means that the
thread of execution that incurred the condition can continue.

When EXE$SRCHANDLER receives the status SS$_CONTINUE, it first
checks if this was a condition signaled through LIB$STOP. H so, normal
execution cannot continue, and EXE$SRCHANDLER calls the last chance
handler, if it has not already been called, and proceeds with the action
described in Section 5.6.1.3.

H the condition was not signaled through LIB$STOP, EXE$SRCHANDLER
removes the condition handler argument list and mechanism array from the
stack, restoring RO and Rl in the process. It then removes from the stack
all of the signal array except the condition PC and PSL. Finally, it removes
these by executing an REI instruction to dismiss the exception and to return
to the thread of execution that incurred the condition.

Where control returns depends on what sort of condition occurred:

• H the condition was a fault type of exception (such as an access violation),
control returns to the instruction that caused the exception .

• H the condition was a trap type of exception (such as integer overflow),
control returns to the instruction following the instruction that caused
the exception .

• H the condition was an abort type of exception, control returns to the
instruction that caused the exception. Because an abort represents an in­
struction that could neither be completed nor rolled back, it would be
ill-advised for a handler to continue from one .

• H the condition was a software condition, which is signaled by a call
to LIB$SIGNAL, control returns to the instruction following the CALLx

instruction.

5.8.2 Unwinding Call Frames from the Stack

96

A condition handler's third option is to alter the flow of control by requesting
the $UNWIND system service. Through this service, the handler returns
control to a previous level in the calling hierarchy by throwing away, or
unwinding, a number of call frames.

The $UNWIND system service has two arguments, both of which are
optional:

• The DEPADR argument specifies the number of frames to be removed from

5.8 Condition Handler Action

the call stack. If it is omitted, its default is for all the call frames to be
unwound from the frame that incurred the condition up to and including
the frame whose condition handler is executing.

• The NEWPC argument specifies the address to which control should be
returned after the unwind is complete. If it is omitted, its default is for
control to return to the PC saved in the call frame next outermost to the
unwound ones.

The $UNWIND system service procedure, EXE$UNWIND in module SYS­
UNWIND, runs in the mode from which it is called. It uses two local
routines, STARTUNWIND and LOOPUNWIND. EXE$UNWIND does not
actually remove frames from the stack. Rather, it replaces the saved PC in
the specified number of frames so that STARTUNWIND or LOOPUNWIND
will be entered when each unwound procedure executes a RET instruction. If
the NEWPC argument was present, EXE$UNWIND replaces the saved PC in
the call frame just earlier than the unwound ones lat higher addresses) with
the specified value.

Figure 5.7 shows an example of the effects of the $UNWIND system
service.

As each procedure executes a RET instruction, the registers saved in its
call frame are restored and control is passed to LOOPUNWIND. If the cur­
rent frame has an associated call frame condition handler, LOOPUNWIND
signals it with the condition name SS$_UNWIND so that it can perform
procedure-specific cleanup. When the condition handler returns, LOOPUN­
WIND executes a RET instruction on behalf of the procedure to discard the
current call frame. llf a handler called in this way requests the $UNWIND
system service rather than returning, the $UNWIND system service returns
the error status SS$_UNWINDING to indicate that an unwind is already in
progress.)

This sequence continues until the specified number of call frames have
been discarded. The technique of calling handlers as a part of the unwind
sequence enables a handler that previously resignaled a condition to re­
gain ~ontrol and perform procedure-specific cleanup and also ensures correct
restoration of registers saved within each call frame.

5.8.3 Example of Unwinding the Call Stack

Figure 5. 7 illustrates an example of an unwind sequence. The example begins
with the sequence pictured in Figure 5.5. Procedure A calls procedure B,
which calls procedure C. Procedure C generates signal S. The primary and
secondary handlers lif they exist) simply resignal. Handlers CH and BH also
resignal.

Finally, handler AH is called. To unwind the call stack back to its estab­
lisher frame, AH requests the $UNWIND system service with the DEPADR

97

Condition Handling

Call frame for
system service
$UNWIND

Call frame
for condition
handler AH

Call frame for
procedure C

Call frame for
procedure B

Call frame for
procedure A

98

1

Call Frames on Entry
to EXESUNWIND

SYSSUNWIND's Handler

Saved AP

Saved FP

Return PC in AH

AHH (if established)

Saved FP

f--FP

... t----,

f4.J
This AP
the sign
mechan 1-- arrays p

Return PC in Exception.Dispatcher

locates
&land
ism
assed
er AH. to handl

(SYS$CALLHANDL+4)

Signal and mechanism arrays for
initial condition located here -.
(Figure 5-5)

CH (if established) ~

Saved FP t-
Return PC in B

BH (if established) i.-

Saved FP t-
Return PC in A

AH 14

Saved FP _t
Return PC in Caller of A To previous Ira me

Figure 5.7
Call Frame Modification by EXE$UNWIND

Return PCs In These Frames
after They Have Been Modified

by EXESUNWIND

Return PC in AH 2

STARTUNWIND

The signal array contains return PC
in procedure C, which is bypassed
if unwinding any frames.

3

LOOPUNWIND 4

(Alternative Return PC) 5

argument equal to the value contained in the mechanism array, in this ex­
ample, 2. After the call to $UNWIND, but before the frame modification
occurs, the stack has the form pictured on the left-hand side of Figure 5.7.

EXE$UNWIND's frame modification proceeds as follows lthe numbers in
this list correspond to the numbers in Figure 5. 7):

G) EXE$UNWIND scans the stack for a condition handler call frame. Re­
call that a condition handler call frame is identified by a saved PC of
SYS$CALL_HANDL + 4.

G)EXE$UNWIND does not modify its own frame. Later, when it executes
a !\ET instruction, control will return to handler AH.

5.8 Condition Handler Action

G) The first frame EXE$UNWIND modifies is that of the first condition
handler it encounters scanning the stack, the frame for AH. EXE$UN­
WIND replaces its saved PC with the address of STARTUNWIND.

When handler AH later executes a RET instruction, control returns
to STARTUNWIND rather than to SYS$CALL_HANDL and EXE$SRC­
HANDLER. Consequently, control does not return to procedure C,
which incurred the exception. Its return PC is stored in the mechanism
array and could only be restored by an REI instruction.

@EXE$UNWIND continues to modify the saved PC longword in successive
frames on the call stack until the number of frames specified (or implied)
in its DEPADR argument have been modified. In all frames except the first,
it replaces the saved PC with the address of LOOPUNWIND.

G) If the NEWPC argument was present, the call frame in which it would be
inserted is the next frame beyond the last frame specified (or implied) in
the DEPADR argument. In this example, the value of the NEWPC argument
would be stored in the call frame for procedure B.

Now that all the frames have been modified, the actual unwinding occurs.
The sequence of steps is as follows:

1. EXE$UNWIND returns control to handler AH.
2. Handler AH does whatever else it needs to do to service the condition.

When it is done, it executes a RET instruction, passing control to START­
UNWIND.

3. STARTUNWIND first restores RO and Rl from the mechanism array. It
then performs the following three steps:

a. If a handler is established for this frame, STARTUNWIND calls it
with the signal name SS$_UNWIND.

b. If either RO or Rl is specified in the register save mask, STARTUN­
WIND replaces the value of that register in the register save area of
the call frame with the current contents of the register. Note that
this is rather an unusual case. The procedure calling standard (see
Introduction to VMS System Routines) specifies that RO and Rl are
to be used to return status codes and function values and that they
should not appear in a procedure register save mask.

c. STARTUNWIND returns control to the address specified by the saved
PC longword of the current call frame by executing a RET instruction.

4. The RET executed in step 3c passes control to LOOPUNWIND, which
repeats steps 3a through 3c.

5. The RET that discards the call frame for procedure B passes control back
to the instruction in procedure A that follows the call to procedure
B (assuming the NEWPC argument was omitted), where execution will
resume.

In effect, STARTUNWIND and LOOPUNWIND simulate returns from

99

Condition Handling

each nested procedure that is being unwound. These procedures never receive
control again. However, the outermost procedure receives control as if all the
nested procedures had returned normally.

5.8.4 Potential Infinite Loop

There is one possible problem that can occur with this implementation.
The previous section pointed out that EXE$SRCHANDLER takes care (when
multiple signals are active) not to search frames for the second condition
that were examined on the first pass. If a condition handler generates an
exception, it is not called in response to its own signal (unless it establishes
itself to handle its own signals! J.

However, EXE$UNWIND cannot perform such a check. It must call each
condition handler that it encounters as it removes frames from the stack.
Thus, a poorly written condition handler (one that generates an exception)
could result in an infinite loop of exceptions if a handler higher up in the
calling hierarchy unwinds the frame in which this poorly written handler is
declared. This loop has no effect on the system beyond that of any compute­
bound process but can ruin the process in which the handler executes.

5.8.5 Unwinding Multiple Active Signals

100

There is a slight change in EXE$UNWIND when multiple signals are active.
While modifying saved PCs in call frames, EXE$UNWIND counts the num­
ber of frames that have been modified until the requested number has been
reached. The only change that occurs with multiple active signals is that the
loop stops counting while the skipped frames are being modified.

The example of multiple active signals pictured in Figures 5.5 and 5.6 can
be used to illustrate the unwinding. Recall that procedure A called proce­
dure B, which called procedure C, which signaled S. Handler CH resignaled.
Handler BH called procedure X, which called procedure Y, which signaled T.
Handlers YH, XH, and BHH all resignaled. Finally, handler AH was called
for signal T with a depth of 3.

If AH requests the $UNWIND system service, the top of the stack is as
pictured in Figure 5.8, with the continuations of this figure in Figure 5.6.
Assume that the depth argument passed to $UNWIND is 3 (taken from the
mechanism array and meaning unwind to the establisher of AH), and the
alternative PC argument is not present.

The end result of the operation of EXE$UNWIND in this case is as follows:

1. EXE$UNWIND looks down the call stack until it locates a condition
handler, which in this case is AH. The saved PC is modified to START­
UNWIND.

2. The saved PC longwords in frames Y and X are altered to contain ad­
dress LOOPUNWIND. Note that EXE$UNWIND has now altered three
frames.

5.8 Condition Handler Action

Call frame for
system service
$UNWIND

Call frame
for condition
handler AH

Signal and
mechanism
arrays for
signalT

Figure 5.8

SYS$UNWIND's Handler

Saved AP

Saved FP

Return PC in AH

AHH (if established) ~
t--~~~~--.-~~~~--t

Reg. Save Mask j

Saved FP

Return PC in
Exception Dispatcher

Saved registers and stack
alignment bytes indicated
by register save mask in

call frame AH

Return PC from JSB

Signal Array

Mechanism Array

2

Modified Unwind with Multiple Active Signals

t
Direction of

stack growth

1
To frame for
procedure Yin
F1gure5-6

To signal array
in Figure 5-6

3. Because the next frame on the stack, BH, indicates a condition handler
(saved PC of SYS$CAL1-HANDL + 4), its associated mechanism array is
located (by skipping saved registers, stack alignment bytes, and a saved
PC from the JSB instruction). The saved PCs in all frames up to the
frame pointed to by the mechanism array are modified (but not counted
toward the number specified in the argument passed to the $UNWIND
system service) to contain address LOOPUNWIND. This modification
causes frames BH and C to get their saved PCs altered in the example.

4. The saved PC in the frame for procedlire B is not altered, so that when
the unwind takes place, control will return to the call site of procedure
B in procedure A.

5.8.6 Correct Use of Default Depth in $UNWIND

A default depth argument of 0 to the $UNWIND system service specifies
that the stack is to be unwound to the caller of the handler's establisher. In
most cases, the caller of the handler's establisher is equivalent to the depth
of the handler plus 1. However, because of an inherent ambiguity in counting
the stack frames when multiple active signals are present, it is important
that the default rather than an explicit depth be used when unwinding to
the caller of the establisher.

101

Condition Handling

102

Call frame
for condition
handler AH

Signal and
mechanism
arrays generated
by procedure A

Call frame for
condition
handlerBH

Signal and
mechanism
·arrays generated
by procedure B

Call frame for
procedure B

Call frame for
procedure A

Figure 5.9

0

Saved FP

Establisher FP

Depth= 1

0

Saved FP

Establisher FP

Depth =0

BH

Saved FP

AH

Saved FP

Nested Exception, Type 1

... t-

~

.. t---

.. t--

!:'"

TI
~

t
Direction of

stack growth

To previ! us frame

Consider the two following cases of nested conditions. In Figure 5.9, pro­
cedure A calls procedure B. A condition causes handler BH to be called. An
exception within BH causes handler AH to be called (because frame B is
skipped, as described in Section 5.6.2). The depth of the mechanism vector
in AH's argument list is 1. For AH to unwind to its establisher, it must spec­
ify an explicit depth of 1 to the $UNWIND system service. EXE$UNWIND
removes one frame, as specified by the count. EXE$UNWIND then notices
that the next frame is a handler frame and therefore continues to remove
stack frames until it finds the establisher of the handler. This discovery
completes the unwind to frame A.

Call frame for
condition handler
AHH

Signal and
mechanism
arrays generated
by handler AH

Call frame for
condition
handler AH

Signal and
mechanism
arrays generated
by procedure A

Call frame for
procedure A

Figure 5.10

Saved FP

Establisher FP

Depth= 0

AHH

Saved FP

Establisher FP

Depth= 0

AH

Nested Exception, Type 2

5.8 Condition Handler Action

~ t--

-1 t--

.....
!:".-

-1 t--

-1 h

r+
I--

t
Direction of

stack growth

...
ToprevJ us frame

Now consider Figure 5.10, in which procedure A incurs an exception, re­
sulting in the invoking of handler AH. Handler AH then causes an exception,
causing its handler AHH to be invoked. The depth of AHH is 0. Suppose
that AHH wishes to unwind to the caller of its establisher. The establisher
of AHH is AH. Since AH is a handler, its caller is the condition dispatcher,
not procedure A.

Compare Figure 5.10 with Figure 5.9 and consider what happens if AHH
requests the $UNWIND system service with an explicit depth of 1 (its depth
plus 1). The depth of 1 causes AHH's frame to be removed. EXE$UNWIND
then notices that the next frame is a handler frame and therefore unwinds it
back to its establisher (frame A). Note that once AHH's frame is removed,
the stack is indistinguishable from the stack in Figure 5.9 (down to frame B).
Thus, requesting $UNWIND with an explicit depth of 1 results in control
being returned to procedure A, which is incorrect.

Therefore, for AHH to unwind to EXE$SRCHANDLER, the caller of its

103

Condition Handling

establisher, it must specify a default depth. When this is done, EXE$UN­
WIND's behavior upon encountering a handler frame after the count has
been exhausted is modified so that the stack is not unwound further, and
control passes correctly back to the condition dispatcher.

Because of the inherent ambiguity of these two cases, it is important that
handlers always use the default depth when unwinding to the caller of their
establisher.

5.8.7 Unwinding ASTs

104

EXE$UNWIND must perform special processing to unwind out of ASTs.
Simply removing the stack frames would ignore the presence of the AST
and fail to dismiss the AST properly.

This situation is depicted in Figure 5.11. For handler XH to unwind to the
caller of its establisher (procedure A), it must also unwind out of the AST.

Call frame for
condition
handlerXH

Signal and
mechanism array
generated by
AST procedure X

Call frame for
AST procedure X

AST argument
list

Call frame for
procedure A

Figure 5.11

Saved FP

Establisher FP

XH

Saved FP --+-
EXE$ASTRET

I N
AST Parameter

RO
R1

PC

PSL

Exception During an AST

Direction of
stack growth

5.8 Condition Handler Action

The problem is solved by having EXE$UNWIND recognize the return PC
in an AST call frame, the address EXE$ASTRET. This PC in a call frame
implies that the AST argument list immediately precedes the call frame
on the stack; that is, the AST argument list is at higher virtual addresses.
In this case, EXE$UNWIND stores the unwind PC (STARTUNWIND or
LOOPUNWIND) not in the call frame but rather in the return PC of the
AST argument list. EXE$UNWIND also stores the current RO and Rl in the
AST argument list so that they will propagate through the unwind process.

When the AST procedure returns during the actual unwinding of the stack,
it returns to EXE$ASTRET, which dismisses the AST and executes an REI

instruction, using the PC and PSL in the AST argument list. Control passes
to STARTUNWIND or LOOPUNWIND because of the modified PC.

While it is technically possible to unwind out of an AST, this must be
done with some caution. If the AST procedure has any sort of side effects,
it is essential to have a condition handler declared by the AST procedure to
clean up the side effects when the AST is unwound. (Note that issuing an 1/0
operation is a side effect of the highest order!) Cleaning up any procedures
of the main line program from which an unwind was executed may be more
difficult, because the asynchronous nature of ASTs means that unwinding
could take place at any instant during the execution of a program.

105

6

6.1

System Service Dispatching

Between the idea
And the reality
Between the motion
And the act
Falls the Shadow.

T. S. Eliot, The Hollow Men

Many of the operations that the VMS operating system performs on behalf
of the user are implemented as procedures called system services. Most of
these procedures are contained in loadable executive images and reside in
system space; others are contained in privileged shareable images. Applica­
tion programs request system services directly. Components such as Record
Management Services (RMS) request system services on behalf of the user.
System services typically execute in kernel or executive access mode so that
they can read or write data structures protected from access by less privileged
access modes.

A system service is requested through a system service vector. The system
service vector for an inner access mode system service contains either a
CHMK or a CHME instruction whose operand identifies the system service.
Executing a CHMK or a CHME causes an exception; the CHMK and CHME
exception service routines are called change mode dispatchers. A change
mode dispatcher transfers control to the actual procedure that implements
the service.

This chapter describes how control is passed from a user program to the
procedures that execute service-specific code.

SYSTEM SERVICE VECTORS

A process requests a particular system service by CALLing a procedure whose
name has the form SYS$service. SYS$service is a system global symbol that
is the address of a minimal procedure called a system service vector. The
system service vector procedure executes in the mode of the caller and serves
as a bridge between the caller and the actual procedure(s) that implement
the service request. The actual procedure may be part of a loadable executive
image and may execute in an inner access mode. The usual name of the
procedure that performs the actual work of the system service is EXE$service
or RMS$service.

6.1.1 Location of System Service Vectors

106

The address of a system service vector is constant for all versions of VMS so
that existing user programs will not have to be relinked for a new version of

6.1 System Service Vectors

VMS. Prior to Version 3 of VMS, system service vectors were only defined in
the lowest pages of system address space, beginning at location 8000000016.

Iri Version 3 and subsequent versions, each system service vector can be
accessed through t~o different addresses, a system space address and a Pl
space address. The physical pages containing the system service vectors are
doubly mapped, both in system space and in the Pl space of each process.
The Pl space definitions begin at 7FFEDE0016 and enable system services
to be intercepted on a per-process basis. The linker, by default, resolves a
system service vector global to its Pl space value using module SYS$PL
VECTOR in SYS$LIBRARY:STARLET.OLB.

VMS Version 5 reserves 16 pages of virtual address space for system ser­
vice vectors. The system addresses of the vectors are defined in the base
image SYS.EXE, from SYS$SO_ VECTOR_BASE to SYS$SO_ VECTOR_END.
Currently, five pages of that area are occupied, to SYS$SO_ VECTOR_LAST _
USED.

6.1.2 Contents of System Service Vectors

Each system service vector consists of at least eight bytes of code and data.
Many vectors consist solely of a global entry point named SYS$service, a
register save mask, a single instruction that transfers control eventually to
a service-specific procedure in the executive, and an instruction (usually a
RET) that passes control back to the caller. Other vectors, called composite
vectors, transfer control to multiple procedures.

Most of the system services execute in kernel mode; their system service
vectors contain a CHMK instruction. A few system services and all RMS sere
vices contain a CHME instruction. Some services, such as the text formatting
services, execute in the access mode of the caller and dispatch directly to
the service-specific code in the executive with a JMP instruction. Follow­
ing are the three sets of instructions found in simple system service vectors.
Table 6.1 lists the VMS system services that use each of these three methods
of initial dispatch.

Vectors for system services that change mode to kernel contain the fol­
lowing code:

SYS$service: :

.WORD entry-mask

CHMK 1·#service-specific-code

;Entry point for services that
; execute in kernel mode
;Mask at EXE$service, OR'd with
; R2 and R4

RET ;Return to caller
.BLKB 1 ;Spare byte to make vector

; eight bytes long

Vectors for system" services that change mode to executive contain the
following code:

107

System Service Dispatching

108

SYS$service::

.WORD

CHME
RET
.BLKB

;Entry point f.or services that
; execute in executive mode

entry-mask ;Mask at EXE$service, OR'd with
; R2 and R4

!~#service-specific-code

1
;Return to caller
;Spare byte to make vector
; eight bytes long

Vectors for system services that do not change mode contain the following
code:

SYS$service: :

.WORD entry-mask

JMP G#EXE$service + 2

;Entry point for services that
; execute in the access mode
; of the caller
;This mask is identical to the
; mask found at location
; EXE$service
;Transfer control to

first instruction after the
; entry mask at EXE$service

Some system services perform their requested function and always return
immediately to their caller. Others, called asynchronous system services,
initiate some system activity on behalf of the caller and return. To synchro­
nize with completion of the initiated activity, the caller waits for an event
flag associated with the system service request to be set. A synchronous
service initiates the activity, just as its asynchronous counterpart does, but
waits for completion of the activity before returning to its caller.

A synchronous system service is generally named for the asynchronous
system service it requests. A trailing "W" in the name of the synchronous
service distinguishes the two: $QIO and $QIOW, for example. RMS, how­
ever, does not use service names and additional system service vectors
to distinguish between the synchronous and asynchronous forms of a ser­
vice. For example, the RMS service $READ does not have a corresponding
$READW form. Instead, the asynchronous or synchronous form of a particu­
lar RMS request is specified by the content of the file and record stream data
structures.

The mechanism used by synchronous system services to test for and await
completion varies. Most non-RMS services use composite system service
vectors. RMS services use a special return mechanism.

A composite system service vector first dispatches to an asynchronous
system service, which returns when the request is initiated. The code in the
vector then branches to another system routine to wait for completion of
the asynchronous request.

To guarantee completion of this type of synchronous system service re­
quest, the caller must specify both an event flag and a status block II/O status
block or lock status block). The asynchronous service procedure clears the

6.1 System Service Vectors

event flag and status block associated with the request. The synchronous
system service vector code uses a combination of event flag and status block
to test for request completion, placing the process into event flag wait if the
request is not complete.

This mechanism prevents a premature return to the synchronous service
caller as the result of concurrent uses of the same event flag. (Note, however,
that if the caller omits the optional status block,· the mechanism reverts to
being a simple wait for event flag.) The mechanism is requested explicitly
as the Synchronize ($SYNCH) system service and implicitly as part of each
synchronous system service. Section 6.3.5.3 gives more information on this
mechanism.

Table 6.1 lists the synchronous system services.
The composite system service vector for the synchronous service Queue

1/0 Request and Wait ($QIOW) follows in a slightly simplified form. Note
that its entry mask is the logical OR of the masks of all service procedures
to which this composite vector dispatches.

SYS$QIOW::
.WORD -M<R2,R3,R4,R5,R6,R7,R8,R9,R10,R11>
CHMK r#QIO
BLBC RO,ERROR_QIOW ;Don't wait if error

; queuing request
PUSHL QIO$_IOSB(AP) ;Fetch IOSB address

BRW QIO_ENQ_SYNCH

ERROR_QIOW:
RET

; if specified
;Branch to QIO_ENQ_SYNCH

located in SYNCH system
; service

;Return if error

In earlier versions of VMS, RMS services were implemented with compos­
ite vectors similar to the composite vectors previously described. For Version
5, RMS services and the Assign Channel ($ASSIGN) service use a different
mechanism; the system service vector requests the asynchronous system
service, but control does not return to the code in the vector. Instead, each
service has a synchronization routine that conditionally stalls the process
until its service request is complete. Section 6.3.5.2 describes this return
mechanism in more detail.

6.1.3 Initialization of System Service Vectors

A loadable executive image containing system service procedures invokes
the SYSTEM_SERVICE macro for each of them. This macro labels the system
service procedure and creates a system service descriptor block that describes
the system service: its vector, argument count, return path, synchronization
method, access mode, and other characteristics.

At assembly time, each system service vector contains the instruction JMP

©#EXE$LOAD_ERROR. EXE$LOAD_ERROR contains a HALT instruction. When a

109

System Service Dispatching

Table 6.1 System Services and RMS Services That Use Each Form of System Service
Vector

The following services execute initially in kernel mode.

$ADJSTK
$ADJWSL
$ALLOC
$ASCEFC
$ASSIGN 1

$BRKTHRU
$CANCEL
$CANEXH
$CANTIM
$CANWAK
$CHKPRO
$CLRAST
$CLREF
$CMKRNL
$CNTREG
$CRELNM
$CRELNT
$CREMBX
$CREPRC
$CRETVA
$CRMPSC
$DACEFC
$DALLOC

$DASSGN
$DC LAST
$DCLCMH
$DCLEXH
$DELLNM
$DELMBX
$DELPRC
$DELTVA
$DEQ
$DERLMB
$DEVICE_SCAN
$DGBLSC
$DLCEFC
$ENQ
$ERAPAT
$EXIT
$EXPREG
$FORCEX
$GETCHN 2

$GETDEV 2

$GETDVI
$GETJPI
$GETLKI

$GETPTI
$GETSECI
$GETS YI
$GETTIM
$HIBER
$LCKPAG
$LKWSET
$MGBLSC
$MTACCESS
$PROCESS_SCAN
$PURGWS
$QIO
$READEF
$RESCHED
$RESUME
$RUNDWN
$SCHDWK
$SETAST
$SETEF
$SETEXV
$SETIME
$SETIMR
$SETPFM

The following system services execute initially in executive mode.
$ABORT _RU $COMMIT _RU $IDTOASC
$ADD_HOLDER 3 $CREATE_RDB 3 $IMGACT
$ADD_IDENT 3 $DISMOU 3 $MOD_HOLDER 3

$ASCTOID $FIND_HELD 3 $MOD_IDENT 3

$CHANGE_ACL 3 $FIND_HOLDER 3 $NUMTIM
$CHANGE_CLASS 3 $FINISH_RDB $PREPARE_RU
$CHECK_ACCESS3 $GETQUI $REM_HOLDER a
$CMEXEC $GETUAI3 $REM_IDENT 3

$SETPRA
$SETPRI
$SETPRN
$SETPRT
$SETPRV
$SETRWM
$SETSFM
$SETSSF
$SETSTK
$SETSWM
$SIGPRC
$SNDERR
$SUSPND
$TRNLNM
$ULKPAG
$ULWSET
$UPDSEC
$WAITFR
$WAKE
$WFLAND
$WFLOR

$SETUAl 3

$SNDACC 2

$SNDJBC
$SNDOPR
$SNDSMB 2

$START_RU

The following system services execute initially in the mode of the caller. Several of them
change to a more privileged mode during their execution. Unless otherwise noted, each
service can be called from any access mode.

$ASCTIM $FAO
$BINTIM $FAOL
$BRDCST 2 $FORMAT_ACL 3

$CRELOG 2 $GRANTID 5

$DELLOG 2 $FORMAT_CLASS 3

$EXCMSG 5 $GETMSG 5

110

$IMGFIX
$IMGSTA 4

$MOUNTa,s
$PARSE_ACL 3

$PARSE_ CLASS a
$PUTMSG 4

$REVOKID 5

$TRNLOG 2

$UNWIND

(continued)

6.2 Change Mode Instructions

Table 6.1 System Services and RMS Services That Use Each Form of System Service
Vector (continued)

The following RMS services execute in executive mode and transfer control to a
synchronization routine before returning to the caller. All use the SYNCH$RMS_STALL
routine except $WAIT, which uses SYNCH$RMS_WAIT.
$CLOSE $EXTEND $PARSE
$CONNECT $FIND $PUT
$CREATE $FLUSH $READ
$DELETE $FREE $RELEASE
$DISCONNECT $GET $REMOVE
$DISPLAY $MODIFY $RENAME
$ENTER $NXTVOL $REWIND
$ERASE $OPEN $SEARCH

$SPACE
$TRUNCATE
$UPDATE
$WAIT
$WRITE

The following RMS services execute in executive mode. They do not require an RMS
synchronization routine.
$FILES CAN $SE TD DIR $SETDFPROT $SSVEXC
$RMSRUNDWN

The following synchronous system services use composite vectors. Unless otherwise noted,
each service executes initially in kernel mode.

$BRKTHRUW $GETDVIW $GETQUIW 7

$END_RU 7 $GETJPIW $GETSYIW
. $ENQW $GETLKIW $QIOW

1 This service executes a private synchronization routine.
2 This service has been superseded.
3 This service is implemented in a privileged shareable image.

$SNDJBCW 7

$SYNCH 6

$UPDSECW

4 This system service can be called only from supervisor and user modes.
5 This system service can be called only from executive and less privileged access modes.
6 This service executes initially in the caller's mode.
7 This service executes initially in executive mode.

loadable executive image containing a service is loaded, routine EXE$CON­
NECT_SERVICES, in module SYSTEM__SERVICE_LOADER, uses the system
service descriptor block to associate the system service procedure with the
appropriate system service vector, assign a CHMx operand, and initialize the
vector. This process is summarized in Section 6.3.l and detailed in Chap­
ter 29.

6.2

Note that VMS Version 5 assigns change mode operands dynamically as
system service procedures are loaded.

CHANGE MODE INSTRUCTIONS

There are four change mode instructions: CHMU, CHMS, CHME, and CHMK. Exe­
cuting any of them generates an exception. Exception-processing VAX mi­
crocode alters the access mode and pushes the processor status longword

111

System Service Dispatching

(PSL), the program counter (PC) of the next instruction, and the sign-extended
change mode operand onto the stack indicated in the instruction. The ac­
tual access mode used is the innermost of the access mode indicated by the
instruction and the current access mode contained in the PSL. The VAX mi­
crocode then dispatches through the system control block (SCB) vector for
that CHMx instruction to its exception service routine.

CHME and CHMK instructions request VMS system services and RMS services.
Their exception service routines are known as the change mode dispatchers.

CHMS and CHMU exceptions are treated much like other exceptions that
VMS passes to a user-declared condition handler (see Chapter 5).

6.3 CHANGE MODE DISPATCHING IN THE VMS EXECUTIVE

Module SYSTEM_SERVICE_DISPATCHER contains the change mode dis­
patchers: EXE$CMODKRNL for CHMK exceptions and EXE$CMODEXEC
for CHME exceptions. Each change mode dispatcher makes essential checks
of the argument list and transfers control to the system service procedure
indicated by the change mode operand. Like any other procedure, a system
service procedure assumes there is a call frame on the stack and exits with
a RET instruction. The dispatcher must therefore construct a call frame on
the inner mode stack. ·

Building the call frame could be accomplished by using a CALLx instruction
and a dispatch table of service entry points. However, the call frame is
identical for each service. In addition, the registers that the service-specific
procedure will modify have already been saved on the caller's mode stack,
because the system service vector register save mask (at global location
SYS$service) incorporates the register save mask at location EXE$service. So
the dispatcher avoids the overhead of the general-purpose CALLx instruction
and builds a minimal call frame "by hand."

The dispatcher achieves further speed improvement in this commonly ex­
ecuted code path by overlapping memory write operations (building the call
frame) with register-to-register operations and instruction stream references.

Using the CHMx operand, the change mode dispatcher indexes into a table
of system service procedure addresses. It transfers control to the procedure
with a JMP instruction.

6.3.1 Change Mode Dispatcher Data Structures

112

Several data structures are internal to the change mode dispatcher. Two are
dispatch tables: one, at CMOD$AR_KERNEL_DISPATCH_ VECTOR, is for
kernel mode system services; the other, at CMOD$AR_EXEC_DISPATCH_
VECTOR, is for executive mode services. Each table contains a quadword
entry for each system service declared in the table's access mode. The kernel
mode dispatch table, for example, contains an entry for each loaded kernel

6.3 Change Mode Dispatching in the VMS Executive

Exit Type l Argument l Argument List Size
Code Count

Service Routine Address

Figure 6.1
Change Mode Dispatch Table Entry

mode system service. Figure 6.1 shows the format of an individual dispatch
table entry.

Each table entry has four fields, obtained from the system service descrip­
tor block by EXE$CONNECT _SERVICES:

• The argument list size contains the size in bytes of the argument list
required by this system service procedure, computed from the argument
count in the system service descriptor block .

• The argument count contains the minimum number of arguments required
for this service .

• The exit type field contains an index into the exit table, which begins at
CMOD$AL_EXIT _TYPE. An entry in this table contains the address of a
synchronization routine to be requested from the common return path.

The CMOD$AL_EXIT _TYPE table entries are

-0 lthe default, indicating no synchronization routine)
-SYNCH$RMS_STALL
-SYNCH$RMS_ WAIT
-SYNCH$ASSIGN_EXIT

• The service routine address field contains the address of the entry point
in the service-specific procedure to which the change mode dispatcher
transfers control. Each service-specific procedure associated with a CHMx
operand has a name of the form EXE$service or RMS$service and begins
with a register save mask. The service routine address points to the first
instruction beyond the register save mask and is therefore of the form
EXE$service + 2 or RMS$service + 2.

EXE$CONNECT _SERVICES dynamically assigns a unique CHMx operand
to each system service as the executive image containing the service is
loaded. It maintains a count of loaded kernel mode and executive mode
system services in CMOD$GW _CHMILLIMIT and CMOD$GW _CHME_
LIMIT. The maximum allowable CHMx value for VMS system services
loaded in this manner is 255 for each mode. VMS reserves higher CHMx
operands for its own system services in privileged shareable images and
negative CHMx operands for customer-written system services. A change
mode dispatcher compares the current CHMx operand to the value that is
in CMOD$GW _CHMK_LIMIT or CMOD$GW _CHME_LIMIT to determine
the dispatch method.

113

System Service Dispatching

6.3.2 Operation of the Change Mod~ Dispatchers

114

The operations of the kernel and executive change mode dispatchers are
almost identical. This section discusses their common points. Subsequent
sections describe their differences.

The first instruction of each dispatcher pops the change mode operand
from the stack into RO. Each dispatcher then builds the call frame on the
stack with the following four instructions:

PUSHAB SERVICE_EXIT
PUSHL FP
PUSHL AP

CLRQ -(SP)

;The next RET returns here
;Address of the CALLx call frame
;Address of the arguments
; to the CALLx
;No condition handler and
; no registers to save

After the call frame is built, each dispatcher checks that the CHMx op­
erand corresponds to a loaded system service. If not, it checks for services
supplied in privileged shareable images, as described in Section 6.4. Other­
wise, it uses the CHMx operand as an index into its dispatch table. From
the dispatch table entry, it obtains the size of the service's argument list and
the required argument count.

The dispatcher performs two checks on the argument list:

• It checks the read accessibility of the argument list with the PROBER in­
struction to verify that the argument list is accessible in the access mode
of the caller.

• It compares the number of arguments actually passed jfound in the first
byte of the argument list) to the service-specific entry jfrom the dispatch
table) to determine whether the required number of arguments for this
service are present.

If the dispatcher detects an error, it places an error status into RO: either
SS$_ACCVIO or SS$_INSFARG, depending on the error. The dispatcher then
executes a RET instruction, which returns control through the saved PC in
the call frame built by the dispatcher to the common exit path SERVICE_
EXIT. Section 6.3.5.1 describes the actions taken by SERVICE_EXIT when it
is entered with a severe error.

If the argument list passes the checks, the dispatcher obtains the system
service's exit type code from the service's dispatch table entry. The exit
type code, if nonzero, identifies an additional synchronization routine to
be executed at the completion of the common exit path, SERVICE_EXIT.
The dispatcher overwrites the exception PC pushed onto the stack by the
CHMx instruction with this address, thus altering the place to which control
will return when SERVICE_EXIT executes an REI instruction. Section 6.3.5
discusses this mechanism in more detail.

The dispatcher finally transfers control to the system service procedure
with a JMP instruction.

PO Space

User Program

6.3 Change Mode Dispatching in the VMS Executive

P1 Space

System Service
Vector

System Space

Change Mode
Dispatcher

Service-Specific
Procedure

SYS$servlce
CALLx --+--1--1~ Entry mask

CHMx#code
11---1- RET

EXE$CMODx11xx
Build call frame
Check argument
list

JMP----+__.

EXE$servlce
Entry mask

RET

Figure 6.2

Common Exit Path

SERVICE_EXIT

REI

Control Flow of System Services That Change Mode

Figure 6.2 illustrates the control flow from the user program to the service­
specific procedure. This flow is shown for both kernel and executive access
modes.

6.3.3 Change-Mode-to-Kernel Dispatcher

The change-mode-to-kernel dispatcher, EXE$CMODKRNL, performs two
steps that the change-mode-to-executive dispatcher does not. Before it trans­
fers control to those services that execute in kernel mode, the change-mode­
to-kernel dispatcher places the address of the process control block !PCB) for
the current process !found at location CTL$GL_PCB) into R4.

Additionally, CHMK #0 is a special entry path into kernel mode for the un­
documented $CLRAST service. If the CHMK operand was a zero,
EXE$CMODKRNL transfers control to the routine CMOD$ASTEXIT, in
module SYSTEM_SERVICE_DISPATCHER. Chapter 7 describes this routine
in more detail.

6.3.4 Change-Mode-to-Executive Dispatcher

The change-mode-to-executive dispatcher, EXE$CMODEXEC, performs one
step unique to executive mode. If the CHME operand was a zero, the execu­
tive dispatcher transfers control to the routine CMOD$SSVECX, in module
SYSTEM_SERVICE_DISPATCHER. CMOD$SSVECX is entered with an er­
ror status. It transfers control to SERVICE_EXIT with the error so that a
system service exception can be signaled or the error reported.

RMS synchronization code uses this mechanism when it detects a severe
error. It requires a CHME instruction to return to executive mode, since RMS
stalls in the mode of the caller.

Note that with VMS Version 5, RMS dispatching becomes a standard part
of executive mode dispatching, with the exception of the return path.

115

System Service Dispatching

6.3.5 Return Paths for System Services

6.3.5.1

116

When a service-specific procedure has completed its operation, it places a
status in RO and executes a RET instruction. In the case of an executive or
kernel mode system service, the RET returns control to the address that the
change mode dispatcher placed in the saved PC area of the call frame that it
built, the common exit path SERVICE_EXIT, in module SYSTEM_SERVICE_
DISPATCHER.

Change Mode Dispatcher Common Exit Path. SERVICE_EXIT is the com­
mon exit path for change mode dispatching. Its action depends on the status
code returned in RO by the system service procedure.

• If the status in RO is a success or warning code, SERVICE_EXIT merely
dismisses the CHMx exception by executing an REI instruction.

-For most RMS services and $ASSIGN, the exception PC has been altered,
so control transfers to the synchronization routine specified by its exit
type code, in the mode of the caller.

-For other system services, control returns to the instruction following
the CHMx in the system service vector, in the mode of the caller. In most
cases, this instruction is a RET, which returns control to the caller of
the system service or RMS service.

However, for synchronous system services, the system service vector
contains code that conditionally stalls the process until its request is
complete. Section 6.3.5.3 describes this synchronization method.

• If the status in RO is an error code, SERVICE_EXIT checks whether the
process owns any mutexes. In general, a system service procedure should
release any mutexes that it has acquired before returning to SERVICE_
EXIT. To minimize overhead, SERVICE_EXIT only performs the check for
mutexes when a service returns an error or a severe error status.

-If the process owns a mutex, SERVICE_EXIT tests whether the interrupt
priority level IIPLJ is 2. If so, the assumption is that one system service
has acquired a mutex and then called another system service, which is
returning an error status. In this case, SERVICE_EXIT merely executes
an REI instruction to return control to the presumed original service.

-If the process owns a mutex but is running at IPL 0, SERVICE_EXIT
generates a fatal MTXCNTNONZ bugcheck.

-If the process does not own a mutex, SERVICE_EXIT continues.

Chapter 32 describes bugcheck processing, and Chapter 8 gives informa­
tion on mutexes.

If system service exceptions are disabled for the access mode in which
the system service was requested, SERVICE_EXIT dismisses the CHMx
exception by executing an REI instruction, as described previously.

6.3.5.2

PO Space

User Program

6.3 Change Mode Dispatching in the VMS Executive

Otherwise, the process has enabled system service exceptions for the
access mode in which the service was requested. Since an exception rou­
tine must be entered at IPL 0, SERVICE_EXIT explicitly lowers IPL if the
process is running in kernel mode. Executive mode services do not need a
similar check because elevated IPL requires kernel mode operation. (Low­
ering IPL is unnecessary unless the process has enabled system service
failure exceptions, because the REI instruction that dismisses the CHMK
exception lowers the IPL.)

To signal the system service exception, SERVICE_EXIT transfers control
to EXE$SSFAIL, in module EXCEPTION. It signals an exception of type
SS$_SSFAIL to the caller.

Chapter 5 describes exception dispatching.

Return Paths for ·RMS Services. The dispatch table entry of most RMS
services contains an exit type code identifying an additional synchroniza­
tion routine to be executed at the completion of the common exit path,
SERVICE_EXIT. The RMS synchronization routines, SYNCH$RMS_STALL
and SYNCH$RMS_ WAIT in module SYSTEM_SERVICE_EXIT, either return
control i.Ihmediately to the RMS service's caller or stall the process in an
event flag wait state until some operation initiated by RMS on behalf of the
caller has completed.

Figure 6.3 illustrates the control flow froin the user program to the RMS
service-specific procedure and to the synchronization routine.

P1 Space

System Service
Vector

System Space

Change Mode
Dispatcher

Service-Specific
Procedure

SYS$servlce
CALLx --+-~"""""~ Entry mask

EXE$CMODEXEC
Build call frame
Check argument
list

RMS$service
Entry mask

CHME#code
RET Replace CHME PC

JMP-----+-

Common Exit Path

SERVICE_EXIT

REI

Synchronization Routine

SYNCH$RMS_xxxxx

. I
I
I
"--------.....,-+- RET

Figure 6.3
Control Flow of RMS Services

RET

117

System Service Dispatching

6.3.5.2.1

118

RMS Synchronization AnRMS service procedure might temporarily stall it­
self to wait~ither for.the completion of a system service that RMS requested
on behalf of the caller or for some internal RMS condition to be met. Though
the RMS code thread is stalled, the process that requested the RMS service
might be able to execute in the meantime. The process indicates its desire
to execute even though the RMS operation is not complete by setting the
asynchronous IASY) bit in the file access block IFAB) or record access block
(RAB). The RMS service procedure tests the ASY bit. If it is clear, the ser­
vice procedure stores the status code RMS$_STALL ·in RO. It then returns to
SERVICE_EXIT.

When SERVICE_EXIT REis, it transfers control to a synchronization rou­
tine, either SYNCH$RMS_STALL, for most RMS services, or SYNCH$RMS_
WAIT, for the $WAIT RMS service. Section 6.3.5.2.2 describes the routine
SYNCH$RMS_ WAIT.

SYNCH$RMS_STALL is entered with the following register contents:

Register
RO
R3

RB

Contents

Status RMS$_STALL
Number of event flag to wait for (flags 27 to 31 are reserved

for RMS)
Address of FAB or RAB associated with stall

Executing in the caller's mode, SYNCH$RMS_STALL uses the status in RO
to decide whether a stall is required. If so, it places the process into an event
flag wait state for the event flag specified in R3. Otherwise, for all status val­
ues except RMS$_STALL, the synchronization routine immediately returns
to the caller.

The crucial point in· this implementation is that the caller waits at the
access mode associated with the original RMS service request and not in
executive mode, thus allowing AST delivery to all access modes at least as
privileged as that of the service request. In the usual case where an RMS
service is requested from user mode, an AST of any access mode can be
delivered while the process. is waiting for the RMS operation to complete.

For example,. .when RMS requests the $QIO system service on behalf of
its caller, it specifies an event flag from the range 27 through 31 to be set
and an executive mode AST procedure to be executed when its 1/0 operation
completes. If the process requested.a synchronous operation, RMS returns to
SERVICE_EXIT with the status RMS$_STALL in RO, the event flag number
from the $QIO request in R3, and the address of the FAB or RAB in R8.
SERVICE_EXIT REis to SYNCH$RMS_STALL, w:hich places the process into
an. event flag wait state.

When the 1/0 request completes, the associated event flag is set. RMS
gains control first in the executive mode AST procedure associated with its
$QIO request. If it determines that the $QIO request is complete, the AST

6.3.5.2.2

6.3.5.2.3

6.3 Change Mode Dispatching in the VMS Executive

procedure sets final status in the data structure (FAB or RAB) associated with
the operation. Otherwise, if the AST procedure determines that it requires
further processing to complete the original request, it requests the next
service.

Control returns from the RMS AST procedure to the synchronization
routine. SYNCH$RMS_STALL, executing in the caller's access mode, checks
whether the RAB or FAB status field is zero. If so, it again places the caller
into an event flag wait state. In other words, a nonzero value in the status
field of the FAB or RAB is the actual indication that the RMS operation is
complete.

When the status field indicates successful completion or a warning, the
synchronization routine executes a RET instruction, returning control to the
instruction following the initial RMS service request. Otherwise, when the
synchronization routine discovers an error or the status field indicates an
error, it performs the error processing described in Section 6.3.5.2.3.

SYNCH$RMS_ WAIT. SYNCH$RMS_ WAIT .is the synchronization routine
for the $WAIT RMS service. It is entered from the REI in SERVICE_EXIT and
so runs in the mode of the caller. This allows AST delivery to the caller's
mode and inner modes while the process is waiting.

SYNCH$RMS_ WAIT is entered with four arguments set up by the $WAIT
service procedure:

Register
RO
R3

R4

R8

Contents
Status RMS$_STALL
Number of event flag to wait for (flags 27 to 31 are reserved

for RMS)
Action flag; if clear, stall on the RAB or FAB in R8. If set, wait

for event flag in R3
Address of FAB or RAB

If RO contains the status RMS$_STALL, SYNCH$RMS_ WAIT stalls process
execution until an asynchronous RMS operation completes. The action
flag in R4 determines the method used to decide whether the operation
is complete. If the action flag is clear, the completion of the RMS oper­
ation is indicated by the status field in the RAB, so SYNCH$RMS_ WAIT
branches to SYNCH$RMS_STALL to stall in the normal manner. Otherwise,
SYNCH$RMS_ WAIT alone cannot determine completion of the operation.
It requests the Wait for Single Event Flag ($WAITFR) system service, to wait
for the event flag specified by the $WAIT service procedure. When the event
flag is set, SYNCH$RMS_ WAIT reexecutes the $WAIT service request to
allow the $WAITprocedure to decide whether the operation is complete.

RMS Error Detection. An RMS synchronization routine reports errors via
the system service dispatcher. The synchronization routine, running in the

119

System Service Dispatching

6.3.5.3

PO Space

User Program

120

mode of the RMS service caller, executes the instruction CHME #SSVECX. In
this manner, the routine changes the access mode to executive. In response
to the operand SSVECX, a zero, the executive mode system service dispatcher
transfers control to the routine CMOD$SSVECX without building the usual
call frame. CMOD$SSVECX is an alternative entry point for SERVICE_EXIT.
Running in executive mode, SERVICE_EXIT proceeds as described in Sec­
tion 6.3.5.1.

Return Path for Synchronous Services. A synchronous system service vector
requests an asynchronous service procedure and tests its return status for
successful initiation of the request. If the asynchronous service procedure
returns an error, that status is immediately returned to the requestor of
the synchronous service. If the return status indicates success, the system
service vector code branches to one of two synchronization routines. These
routines are originally part of module EXCEPTION_INIT. During system
initialization they are copied to the system service vector area. The routines
differ only in minor detail and converge within the SYS$SYNCH composite
system service vector.

Figure 6.4 illustrates the control flow from the user program, through the
service-specific procedure, to the synchronization code.

SYS$SYNCH first tests whether a status block was specified by the re­
questor. For $GETLKIW and $ENQW, the lock status block serves this pur­
pose; in all other cases, the I/O status block is used. If no status block was
specified, SYS$SYNCH executes the instruction CHMK #WAITFR to place the
process into an event flag wait state until the specified flag is set. When the
flag is set, the process is taken out of its wait state, and SYS$SYNCH returns
to the requestor of the synchronous service. If a status block was specified,
SYS$SYNCH executes the following sequence:

P1 Space

System Service
Vector

SYS$service
Entry mask
CHMx #code
BLBC RO, ERROR
BRBSYNCH

ERROR
RET

Synchronization Routine

SYNCH

...,..--+- RET

Figure 6.4
Control Flow of Synchronous Services

System Space

Change Mode
Dispatcher

EXE$CMODxxxx
Build call frame
Check argument

list
JMP ----+--'

Common Exit Path

SERVICE_EXIT

REI

Service-Specific
Procedure

EXE$service
Entry mask

RET

6.4 Dispatching to System Services in Privileged Shareable Images

1. It tests the status word of the status block. A nonzero status indicates
that the asynchronous service has completed, and SYS$SYNCH returns
to the requestor of the synchronous service.

2. A zero status indicates the asynchronous service has not completed,
and SYS$SYNCH executes the instruction CHMK #WAITFR to wait for the
specified event flag.

3. When the event flag is set and the process is placed into execution,
SYS$SYNCH tests the low word of the status block. If it is nonzero,
SYS$SYNCH returns to the requestor of the synchronous service.

4. If the low word of the status block is zero, then the flag has been set
spuriously, perhaps by another concurrent use. SYS$SYNCH clears the
event flag by executing the instruction CHMK #CLREF and then proceeds
with step 2.

A crucial point in this implementation is that the process waits at the ac­
cess mode associated with the original synchronous system service request,
thus allowing AST delivery to all access modes at least as privileged as that
of the synchronous service request. In the usual case where a synchronous
system service is requested from user mode, an AST of any access mode can
be delivered while the process is waiting for the service to complete.

6.3.6 System Services That Do Not Change Mode

6.4

Some system services do not change to a more privileged access mode and
instead execute in the mode from which they were requested. The system
service vector for one of these "mode of caller" services contains a JMP
instruction instead of a CHMx instruction and transfers control directly to
the service procedure.

When the service-specific procedure has completed its operation, it places
a status code in RO and executes a RET instruction. In the case of a system
service that does not change mode, the RET returns control to the caller of
the service. (Because a mode of caller service does not change mode, the
stack does not contain a call frame built by the change mode dispatcher.)

Table 6.1 lists the mode of caller VMS system services.
Figure 6.5 shows the control flow from the user program to the service

procedure for those services that do not change mode.

DISPATCHING TO SYSTEM SERVICES IN PRIVILEGED
SHAREABLE IMAGES

VMS does not require that all system services be part of a loadable executive
image. A user may write system services as part of a privileged shareable
image. Moreover, VMS supplies a number of system services in privileged
shareable images. These include

• $MOUNT in SYS$SHARE:MOUNTSHR.EXE

121

System Service Dispatching

PO Space

User Program

P1 Space

System Service
Vector

SYS$servlce
CALLx ____ ._. Entry mask

JMP-----

Figure 6.5
Control Flow of System Services That Do Not Change
Mode

• $DISMOU in SYS$SHARE:DISMNTSHR.EXE

System Space

Service-Specific
Procedure

EXE$servlce
Entry mask

RET

• Services relating to system security in SYS$SHARE:SECURESHR.EXE

Implementing these less frequently used services as privileged shareable
images means that they are resident only when explicitly requested and that
they are mapped in process space.

The manual Introduction to VMS System Services describes the require­
ments for writing privileged shareable images. This section examines the
manner in which control is passed to a system service that is part of a priv­
ileged shareable image.

EXE$CMODKRNL and EXE$CMODEXEC attempt to dispatch to a priv­
ileged shareable image whenever a CHMx instruction is executed with an
operand whose value is outside the range of those for services in loadable
executive images.

VMS system services in privileged shareable images have large positive
change mode operands (for example, 16,527). The VAX architecture reserves
negative change mode operands for customer use.

6.4.1 Per-Process System Service Dispatcher

122

For any CHMK or CHME exception, the change mode dispatcher performs
some initial operations, such as building the call frame and, for kernel mode
system services, storing the PCB address in R4. When it detects that the CHMx

operand is outside the range from zero to the value in CMOD$GW_CHMx_
LIMIT, it tries to transfer control to a privileged shareable image dispatcher.
The change mode dispatcher first checks a location in Pl space (CTL$GL_
USRCHMK or CTL$GL_USRCHME) to see whether a per-process dispatcher
exists.

It interprets nonzero contents of this location as an address in the Pl space
privileged vector list, built by the image activator. The privileged vector list
contains a JSB instruction for each per-process system service dispatcher,
invoking the dispatcher at its entry point within a privileged shareable image.
Figure 6.6 shows the privileged vector list.

6.4 Dispatching to System Services in Privileged Shareable Images

P1 Space

CTL$GL_USRCHMK:: -f J
CTL$GL_USRCHME:: rE J

Privileged Vector List

CTL$A_DISPVEC:: Offset to Next Free Kernel Vector
,__ 1-1 JSB Dispatcher A

JSB Dispatcher B
JSB Dispatcher C
RSB

CTL$A_DISPVEC + 25 s·· Offset to ,Next Free Exec Vector

~ RSB

Figure 6.6
Privileged Vector List

t
Direction of

stack growth

Figure 6.7

Return PC in P1 Dispatch Vector

Return PC in Change Mode Dispatcher

Condition Handler Address = O

PSW /Register Save Mask= O

Saved AP

Saved FP

Return PC= SERVICE_ EXIT

PC Following CHMx Instruction

PSL from CHMx Instruction

~

i--

State of the Stack on Entry to a Per-Process Dispatcher

SP

FP

A per-process dispatcher is entered with the stack in the state shown in
Figure 6.7. If the per-process dispatcher accepts the change mode operand,
it requests a service-specific procedure that eventually returns to SERVICE_
EXIT by executing a RET instruction. If the per-process dispatcher rejects the
operand, it hands control to the next per-process dispatcher in the privileged
vector list by executing an RSB instruction. The privileged vector list ends
with an RSB instruction, which returns control to the change mode dispatcher
if all per-process dispatchers reject the code.

6.4.2 Privileged Share.able Images

In the Pl space privileged vector list, kernel mode and executive mode
each have one half page 1256 bytes) devoted to user-written system service
dispatching. The first byte of each area is initialized during process creation
to an RSB instruction. With the dispatch scheme described in the previous
section, the RSB instruction initially prohibits per-process dispatching.

However, for an image linked with a privileged shareable image !linked

123

System Service Dispatching

124

with the /PROTECT and /SHAREABLE options and installed with the /PRO­
TECTED and /SHARED options), the image activator replaces the RSB in­
struction with a JSB to the per-process dispatcher specified as a part of the
privileged shareable image (see Figure 6.6). It maintains an RSB instruction
after the last JSB instruction in the kernel and executive portions of the
privileged vector list.

VMS allows multiple privileged shareable images to be linked with the
same executable image. Each privileged image can contain multiple system
service procedures. The example pictured in Figure 6.8 shows three privileged
shareable images, each with a kernel mode dispatcher.

When the image activator, described in Chapter 26, encounters a reference
to a privileged shareable image in the image it is activating, it checks that the
privileged image is compatible with the running operating system. It maps
the sections containing the user-written system services using information
stored in a protected image section (a privileged library vector, defined by the
macro $PLVDEF and pictured in Figure 6.9) to modify the privileged vector
list. For example, if a privileged shareable image contained a change-mode­
to-kernel dispatcher, the image activator would insert a JSB instruction in

PO Space

User Program

1 CALLx

Dispatcher A
5 RSB

Dispatcher B ---------
Entry mask

P1 Space

Simplified
Privileged Vector List

4 JSB Dispatcher A
6 JSB Dispatcher B

JSB Dispatcher C
RSB

2 CHMK --+---'--ti----------;~
,__-+--RET

7 CASEx

Entry mask

RO+--status
8 RET --t---t----+------+-'

System Space

Change Mode Dispatcher

EXE$CMODxxxx
Build call frame

3 MOVL G'CTL$GL USRCHMx, R1
JSB (R1) -

Common Exit Path

SERVICE_EXIT

Dispatcher C
RSB -----..;..--19 REI

Figure 6.8
Dispatching to System Services in a Privileged
Shareable Image

6.4 Dispatching to System Services in Privileged Shareable Images

l {.ENTRY
CHMx
RET

maskl_ 1
#codT

Vector Type

System Version

Kernel Dispatcher

.--f-e Executive Dispatcher

Figure 6.9

Entry Vectors
(1 per service)

Privileged
Library Vector
(1 per image)

Executive Dispatcher

Kernel Dispatcher

Functional Routines
(1 per service)

Structure of a Privileged Shareable Image

Pl space that transfers control to the dispatcher specified by the PLV$1-
KERNEL longword in the privileged library vector.

Once an image containing user-written system services is activated, ex­
ecution proceeds normally until the process requests one of the services.
Figure 6.8 shows an example of dispatching to a user-written system ser­
vice. The numbers in the following list correspond to the numbers in the
figure.

G)A CALLx instruction transfers control to a user-written system service
vector in PO space.

G) The CHMK or CHME instruction located there transfers control to the VMS
change mode dispatcher.

G)Execution proceeds normally until an unsigned test of the change mode
operand discovers that it exceeds the value found in CMOD$GW_CHMx_
LIMIT. The dispatcher tests the address in CTL$GL_USRCHMx. If it is
nonzero, the dispatcher JSBs to that location.

125

System Service Dispatching

@The JSB instruction transfers control to the Pl privileged vector list,
where another JSB instruction transfers control to the first dispatcher.

G)In this example, the first dispatcher rejects the change mode operand
simply by executing an RSB back to the Pl privileged vector list.

G)The second JSB in the Pl privileged vector list is executed, transferring
control to a second dispatcher.

G)In this example, the second dispatcher recognizes the change mode op­
erand as valid and dispatches jprobably with a CASEx instruction) to a
service-specific procedure that is also a part of the second privileged share­
able image.

G)When the service completes !successfully or unsuccessfully), it stores
a final status into RO and exits with a RET, which transfers control to
SERVICE_EXIT.

G)A privileged shareable image system service return path merges at this
point with the return paths described for other services.

If each dispatcher executed an RSB to reject the change mode operand,
control eventually would reach the RSB instruction in the Pl privileged
vector list. This RSB instruction transfers control back to the VMS change
mode dispatcher, which checks next for a systemwide dispatcher.

6.4.3 Systemwide User-Written Dispatcher

6.5

126

If no per-process dispatcher exists or if the last per-process user-written dis­
patcher returns to the system service dispatcher with an RSB, the change
mode dispatcher checks a location in system space IEXE$GLUSRCHMK
or EXE$GLUSRCHME) for the existence of a systemwide user-written dis­
patcher. If none exists I contents are zero, its usual contents in a VMS system),
or if this dispatcher transfers control back with an RSB, the change mode dis­
patcher returns the error status SS$_ILLSER to the system service requestor
in RO.

This scheme assumes that privileged shareable image system services that
complete successfully will exit with a RET back to SERVICE_EXIT, where an
REI instruction will dismiss the CHMK or CHME exception.

Note that no standard method exists to add a systemwide user-written
dispatcher to a system.

RELATED SYSTEM SERVICES

VMS provides five system services that are closely related to system ser­
vice dispatching and the change mode instructions. Chapter 5 describes the
Declare Change Mode or Compatibility Handler l$DCLCMH) system ser­
vice. This section describes the Set System Service Failure Exception Mode
j$SETSFM) system service, the change mode system services, and the Set
System Service Filter j$SETSSF) system service.

6.5 Related System Services

6.5.1 Set System Service Failure Exceptions System Service

The $SETSFM system service either enables or disables the generation of
exceptions when SERVICE_EXIT detects an error. The service itself simply
sets (to enable) or clears (to disable) the bit in the process status longword
(PCB$1-STS in the software PCB) for the access mode from which the system
service was requested. By default the generation of an exception is disabled.

6.5.2 Change Mode System Services

The Change to Kernel Mode ($CMKRNL) and Change to Executive Mode
($CMEXEC) system services provide a simple path for privileged processes
to execute code in kernel or executive mode. The services begin execution in
the appropriate mode. They check for the necessary privilege (CMKRNL or
CME'XEC) and then dispatch with a CALLG instruction to the procedure whose
address is supplied as an argument to the service. (Note that if $CMKRNL
is requested from executive mode, no privilege check is made.)

The procedure that executes in kernel or executive mode must store a
returl) status code into RO. If not, the previous contents of RO are used tg,
determine whether an error occurred.

The service cleans the stack and REis back to the instruction following
the CHMx if the privileged procedure returned a success status. Otherwise it
returns to SERVICE_EXIT with the error status for further processing.

6.5.3 System Service Filtering

Some applications (especially user·written CLis) require that user mode pro~
grams have no direct access to system and RMS services. VMS provides the
$SETSSF system service for this purpose.

Each VMS system service in a loadable executive image specifies an inhibit
mask at assembly time as a parameter to the SYSTEM_SERVICE macro. The
mask is stored in the system service descriptor block for the service. As a
service is loaded, its inhibit mask is copied from its descriptor block into
one of two tables, depending on the mode of the service.

CM.OD$AB_KERNEL_INHIBIT _MASK and CMOD$AB_EXEC_INHIBIT _
MASK are the names of the kernel and executive mode tables. The tables
are indexed by a change mode operand; for example, the kernel mode
system service assigned change mode operand x stores its inhibit mask at
offset x from the address in CMOD$AB_KERNE1-INIIlBIT _MASK. The in­
hibit mask indicates whether the system service can be disabled by $SETSSF.
If the service can be disabled by $SETSSF, the mask also indicates the system
service filter groups for which the service is disabled. Group 0 specifies all
services except $EXIT; group 1 specifies most services, with the exception of
$EXIT and those services required for condition handling or image rundown.
The VMS System Services Reference Manual lists the services that are not
disabled by $SETSSF.

127

System Service Dispatching

128

The byte at offset CTL$GB_SSFILTER in the per-process control region
contains the system service filter mask for a particular process. Usually this
mask contains the value zero. The $SETSSF service writes the mask value
specified as its argument into this field.

The bit EXE$V _SSINHIBIT at global location EXE$GL_DEFFLAGS corre­
sponds to the SYSGEN parameter SSINHIBIT, which, when set, enables sys­
tem service filtering. If system initialization code discovers that the inhibit
bit is set, it loads the SCB vectors for CHME and CHMK with the addresses
of the alternative dispatchers EXE$CMODEXECX and EXE$CMODKRNLX,
in module SYSTEM_SERVICE_DISPATCHER.

The processor dispatches to these alternative change mode dispatchers
when CHME and CHMK exceptions occur. They branch to the standard
change mode dispatchers for CHMx instructions executed in inner modes.
However, for a CHMx instructiun executed in user mode, the alternative dis­
patcher ANDs the value in CTL$GB_SSFILTER with the value in the ap­
propriate system service filter table (CMOD$AB_EXEC_INHIBIT_MASK or
CMOD$AB_KERNEL_INHIBIT_MASK) entry indexed by the CHMx oper­
and. If the result of the AND is zero, the dispatcher branches to the standard
change mode dispatcher. If the result of the AND is nonzero, the dispatcher
returns the error status SS$_INHCHME or SS$_INHCHMK, depending on
the mode of the system service.

If CTL$GB_SSFILTER is nonzero, the dispatcher also denies access to
services in privileged shareable images. An attempt to request those services
results in the error SS$_INHCHME or SS$_INHCHMK, depending on the
mode of the service.

7

7.1

AS Ts

What you want, what you're hanging around in the world
waiting for, is for something to occur to you.

Robert Frost

An asynchronous system trap (AST) is a mechanism that enables an asyn­
chronous event to change the flow of control in a process. Specifically, as
soon as possible after the asynchronous event occurs, a procedure or routine
designated by either the process or the system executes in the context of the
process.

A process may request an AST as notification that an asynchronous system
service has completed. ASTs requested by the system result from operations
such as I/O postprocessing, process suspension, and process deletion. These
operations require that VMS executive code execute in the context of a
specific process. ASTs fulfill this need. ·,

To declare the asynchronous event, the executive queues an AST to the
process. Once the AST has been queued, the process eventually becomes
current. AST delivery, the actual dispatch into the AST procedure, occurs in
the context of that process. This chapter discusses the queuing and delivery
of ASTs and describes some examples of their use by VMS.

AST HARDWARE COMPONENTS

VAX hardware/microcode assists VMS in the queuing and delivery of ASTs.
Three mechanisms contribute:

• The return from exception or interrupt (REI) instruction
• The PR$_ASTLVL processor register
• The interrupt priority level (IPL) 2 software interrupt

The first two features are discussed in this section. The software interrupt
mechanism is discussed in Chapter 4. The IPL 2 interrupt service routine
for AST delivery, SCH$ASTDEL, is discussed in Section 7.5.

7.1.1 REI Instruction

The REI instruction initiates the delivery of an AST to a process by request­
ing an IPL 2 interrupt if appropriate. (Note that a requested IPL 2 interrupt is
not actually granted until IPL drops below 2.) The REI microcode performs
the following tests to determine whether to request the interrupt:

1. The REI microcode checks whether process context is being restored. If
the interrupt stack bit is set in the processor status longword (PSL) to be

129

AS Ts

restored, the REI microcode makes no further test and does not request an
IPL 2 interrupt. AST delivery has no meaning outside of process context.

2. The REI microcode compares the value in PR$_ASTLVL to the access
mode being restored. If the value in PR$_ASTLVL is less than or equal to
the current mode field in the PSL to b.e restored (that is, if it represents
a more or equally privileged access mode), the REI microcode requests a
software interrupt at IPL 2. This test prevents a process running in an
inner mode from being interrupted to deliver an AST to an outer mode.

The IPL of the AST interrupt is architecturally defined and cannot be
changed by operating system software. Throughout the book, therefore, this
IPL is referred to explicitly as 2 rather than symbolically as IPL$_ASTDEL.

7.1.2 ASTLVL Processor Register (PR$_ASTLVL)

130

The processor register PR$_ASTLVL is used in conjunction with the REI in­
struction to control IPL 2 software interrupts. This register is part of the
hardware context of the process and has a save area in the process header
(PHD) hardware process control block field PHD$B_ASTLVL. (Chapter 12
contains more information on the hardware PCB.) The LDPCTX instruction
copies PHD$B_ASTLVL to PR$_ASTLVL when a process is placed into ex­
ecution. The SVPCTX instruction does not store PR$_ASTLVL in PHD$B_
ASTLVL, thus avoiding an often unnecessary memory reference. Therefore,
any code that changes PR$_ASTLVL must also make the same change to
PHD$B_ASTLVL.

PR$_ASTLVL normally contains the access mode of the first AST in the
process's AST queue (see Section 7.2.1). Inner mode ASTs are more privileged
than outer mode ASTs and are queued and delivered before them. Specifi­
cally, PR$_ASTLVL contains the mode of the first AST in the queue

• After an AST has been queued
• After an AST routine has completed and exited
• After ASTs at a given mode have been enabled or disabled by the Set AST

Enable ($SETAST) system service
• After an AST routine has left AST level by requesting the Clear AST

($CLRAST) system service

While an AST routine is in progress, PR$_ASTLVL contains a value that
is 1 greater than the current AST's mode. After an AST has been blocked
(because an AST at that mode is active or delivery to that mode is disabled),
PR$_ASTLVL contains a value that is 1 greater than the blocked AST's mode.
In both cases, this helps prevent REI from requesting IPL 2 interrupts that
cannot currently be processed.

If no AST is queued, PR$_ASTLVL contains a value of 4, chosen so that
the REI test previously described will fail regardless of the access mode being
restored by the REI instruction.

7.2

7.2 AST Data Structures

AST DATA STRUCTURES

The executive queues ASTs to a process as the corresponding events (I/O
completion, timer expiration, etc.) occur. The AST queue is maintained as a
queue of AST control blocks (ACBs) with the listhead in the process control
block (PCB). Section 7.4 describes AST queues in more detail.

7.2.1 Process Control Block

=:=

The PCB contains several fields related to AST queuing and delivery (see
Figure 7.1).

The fields PCB$L_ASTQFL and PCB$L_ASTQBL are the listhead for ACBs
queued to the process. The list is a doubly linked queue.

The field PCB$W _ASTCNT specifies how many concurrent ASTs the
process can request at the moment. It is initialized to the process's AST
quota, typically from the user authorization file. When a process requests
an asynchronous system service, requesting AST notification of comple­
tion, and when a process declares an AST by requesting the Declare AST
($DCLASTJ system service, the system service confirms that PCB$W _AST­
CNT is greater than zero and then decrements it, to charge the process AST
quota.

It is the responsibility of the system service and of any code charging AST

Software Process Control Block (PCB)

l

DPC I

l
ASTQFL
ASTQBL l'\j_ AST Control Block (ACB)

l ASTEN l AST ACT AS TO FL
ASTOBL

RMOD l TYPE l SIZE
PID
AST

ASTPRM
KAST

I ASTCNT RMOD Bits

Bit Name
0-1 MODE
2-3 (reserved)

4 PKAST

J 5 NODELETE
6 QUOTA
7 KAST

Figure 7.1
AST Control Block and AST-Related Fields in Software
PCB

----. Links to other
ACBs in queue
(See Figure 7-2.)

131

AS Ts

quota to set the ACB$V _QUOTA bit in the ACB (see Section 7.2.2) as a
flag that quota must be restored when this AST is delivered. When such an
AST is delivered, the AST delivery interrupt service routine, SCH$ASTDEL,
increments PCB$W _ASTCNT.

The process delete pending count, PCB$B_DPC, is incremented for every
reason the process should not be deleted or suspended. It is incremented by
the Files-11 Extended QIO Processor (XQP) to indicate that an XQP operation
is in progress and that the process should not be deleted or suspended until
the operation completes. Up through VMS Version 5.2, this is its only use.
Section 7.8 discusses the use of this field and its significance to ASTs in
more detail.

In both PCB$B_ASTEN and PCB$B_ASTACT, the low-order four bits con­
tain AST-related information. One bit is used for each access mode, with bit
0 corresponding to kernel mode.

Each PCB$B_ASTEN bit, when set, indicates that AST delivery to that
access mode is enabled. By default, all four bits are set. Section 7.6 describes
how a process toggles one of these bits through the $SETAST system service.

Each PCB$B_ASTACT bit, when set, indicates that an AST is active at
that access mode in the process. The AST delivery interrupt service routine
sets the bit, and AST exit code clears it. The executive uses these bits to
serialize ASTs for each access mode; that is, the executive will not inter­
rupt an AST thread to deliver another AST to the same access mode. This
serialization limits the number of concurrent threads of execution within a
process and helps ensure that AST procedures are not entered recursively,
thus simplifying synchronization among the different threads in an access
mode. It is possible, though not usual, to reset a PCB$B_ASTACT bit using
the $CLRAST system service (see Section 7.5.3).

7.2.2 AST Control Block

132

The ACB includes the following information:

• The process ID (PID) of the target process
• The AST procedure or routine address
• The access mode
• An optional argument to the AST procedure

The ACB is allocated from nonpaged pool, often as part of a larger structure
associated with the requested asynchronous event. The ACB is actually
included as the first section of several larger data structures. The 1/0 request
packet (IRP), lock block (LKB), and timer queue entry (TQE), for example,
are data structures whose first section is an ACB. (Compare the ACB format
pictured in Figure 7.1 with the TQE format shown in Figure 11.1, the LKB
format shown in Figure 10.4, or the IRP layout shown in Figure E.11.)

· The macro $ACBDEF defines symbolic names for the fields in the ACB.
ACB$L_ASTQFL and ACB$LASTQBL link the ACB into the AST queue in

7.3 Creating an AST

the PCB. The listhead of this queue is the pair of longwords PCB$L_ASTQFL
and PCB$L_ASTQBL.

The field ACB$B_RMOD contains five bit fields:

• Bits (0:1) (ACB$V_MODE) contain the access mode in which the AST
procedure is to execute.

·• Bit (4) (ACB$V _PKAST), when set, indicates the presence of a "piggyback"
special kernel mode AST {see Section 7.7.4) .

• Bit (5) (ACB$V _NODELETE), when set, indicates that the ACB should not
be deallocated after the AST is delivered .

• Bit (6) (ACB$V _QUOTA), when set, indicates that the process AST quota
has been charged for this ACB .

• Bit (7) (ACB$V _KAST), when set, indicates the presence of a· system­
requested special kernel mode AST (see Section 7.7). If ACB$V_KAST is
clear, this is a "normal" AST.

The field ACB$L_PID identifies which process is to receive the AST.
The fields ACB$L_AST and ACB$1-ASTPRM are the entry point of the

designated AST procedure and its optional argument.
The field ACB$L_KAST contains the entry point of a system-requested

special kernel mode AST routine if the ACB$V _PKAST or ACB$V _KAST bit
of ACB$B_RMOD is set.

7.3 CREATING AN AST

ASTs can be created by three types of actions. The first is a process request
for AST notification of the. completion of an asynchronous system service,
such as Queue 1/0 Request ($QIO) or Enqueue Lock Request l$ENQ). The
arguments for these system services include an AST procedure address and
an argument to be passed to the AST procedure. The system service charges
the process AST quota.

The second is the system's queuing an AST to execute code in the context
of the selected process. An ACB used in this situation is not deducted from
the AST quota of the target process because of its involuntary nature; the
ACB$V _QUOTA bit is clear to indicate this.

The system's ability to initiate the execution of code in a particular process
context is crucial to VMS operations. Only the AST mechanism provides this
capability. The executive employs this mechanism primarily to access the
process's virtual address space.

In a virtual memory operating system such as VMS, resolving a per-process
address outside of its process context is difficult at best. The process's pages,
as well as page table pages, may not be resident; they may be in a page
file, swap file, or in transition. Rather than attempt to locate the relevant
page table page(s) and process page(s), VMS resolves the address in process
context through the AST mechanism so that standard memory management
mechanisms can be used.

133

ASTs

Examples of the system's queuing an AST include the following:

• I/O postprocessing
• The Force Exit ($FORCEX) system service
• Expiration of CPU time quota
• Working set adjustment as part of the quantum-end event (see Chapter 12)
• The Get Job/Process Information ($GETJPI) system service

The third way to create an AST is an explicit declaration of an AST by a
process through the $DCLAST system service. The $DCLAST system service
procedure, EXE$DCLAST in module SYSASTCON, runs in kernel mode. It
simply allocates an ACB, fills in the ACB information from its argument
list, and invokes SCH$QAST to queue the ACB. The access mode in which
the AST is to execute can be no more privileged than the mode from which
$DCLAST was requested. The system service charges the process AST quota.

7.4 QUEUING AN AST TO A PROCESS

134

The routine SCH$QAST, in module ASTDEL, is invoked to queue an ACB
to a process. It can be invoked from a thread of execution running at an IPL
less than or equal to IPL$_SCHED and holding no spinlock of rank greater
than SCHED.

SCH$QAST uses the ACB$V _KAST bit and ACB$V _MODE bits of the
ACB$B_RMOD field to decide where in the process's AST queue to insert
the ACB. The AST queue for a process is a doubly linked list with its head
and tail at PCB fields PCB$L_ASTQFL and PCB$L_ASTQBL.

SCH$QAST maintains the queue as a first-in/first-out (FIFO) list for each
access mode. ASTs of different access modes are placed into the queue in
ascending access mode order, that is, kernel mode ASTs first and user mode
ASTs last. Special kernel mode ASTs precede normal kernel mode ASTs. A
piggyback special kernel mode AST is inserted in the AST queue according
to the mode of the normal AST whose ACB it shares.

SCH$QAST performs the following steps:

1. SCH$QAST acquires the SCHED spinlock, raising IPL to IPL$_SCHED,
to synchronize access to the scheduler database, the process's AST queue,
and its PHD$B_ASTLVL.

2. If the process is nonexistent, SCH$QAST returns the error status SS$_
NONEXPR. If bit ACB$V _NODELETE in ACB$B_RMOD is clear, its
usual state, SCH$QAST deallocates the ACB before returning.

3. If the AST queue is empty (the contents of PCB$LASTQFL are equal
to its address), then the ACB is inserted as the first element in the AST
queue.

4. Otherwise, SCH$QAST scans the queue of ACBs. It inserts a normal ACB
before the first ACB whose ACB$V _MODE bits indicate a less privileged
access mode or, if it finds none, at the end of the queue. SCH$QAST

7.5 Delivering an AST

inserts a special kernel mode AST before the first normal ACB or, if it
finds none, at the end of the queue. Figure 7.2 shows the organization of
the AST queue.

5. SCH$QAST calculates ASTLVL as the mode of the first (innermost mode)
ACB in the queue and stores it as follows:

-If the target process is currently executing on the same processor as
SCH$QAST, SCH$QAST stores the new ASTLVL value in PHD$B_
ASTLVL and in the processor register, PR$_ASTLVL. If the process is
currently executing on a different member of a symmetric multipro­
cessing system, SCH$QAST stores the new value in PHD$B_ASTLVL
and requests an interprocessor interrupt of the other CPU to update
its PR$_ASTLVL register. Chapter 34 gives further details.

-If the process is memory-resident but is not currently executing,
SCH$QAST stores the new value for ASTLVL in PHD$B_ASTLVL but
not in the processor register.

-If a process is outswapped, PHD$B_ASTLVL cannot be updated because
the PHD (including the hardware PCB) is not available. When the
process becomes resident and computable at a later time, the swapper
calculates and stores a value for PHD$B_ASTLVL, based on the first
AST in the queue.

When setting ASTLVL, SCH$QAST does not check whether an AST is
already active for this mode or whether ASTs at this mode are disabled.
When either of these conditions is true, the next REI to drop IPL below
2 will cause an IPL 2 interrupt, and SCH$ASTDEL will dismiss it as
undeliverable (blocked). This event is less frequent and thus less costly
than having SCH$QAST make the checks each time it queues an AST.

6. Unless the process is currently executing, SCH$QAST invokes
SCH$RSE, in module RSE, to report that an AST has been queued to
the process. SCH$RSE makes the process computable if it is not current,
already computable, or suspended in kernel mode.

7. SCH$QAST releases the SCHED spinlock, restoring the previous IPL,
and returns to its invoker.

7.5 DELIVERING AN AST

AST delivery is initiated when the REI microcode determines from the des­
tination access mode and the PR$_ASTLVL register that a pending AST is
deliverable (see Sections 7.1.2 and 7.4) and requests a software interrupt at IPL
2. The amount of time before the AST is actually delivered depends upon the

· interrupt activity of the system. When IPL drops below 2, the AST delivery
interrupt service routine will execute.

Note that a rescheduling interrupt at IPL 3 may be requested and granted
prior to the granting of the IPL 2 AST delivery interrupt request. In this
case, the REI microcode will have set the IPL 2 bit in the software interrupt

135

PCB

Special Kernel Normal Kernel Executive Supervisor User

AST Queue
Listhead

Figure 7.2

ACB

J
Organization of the AST Queue

···-{]-[]-·· ·-{]-[]-·· ·-{]-[]-·· ·-{]-[]-·· ·-D

7.5 Delivering an AST

service request (SISR) register PR$_SISR. Conceptually, the IPL 2 bit of the
SISR is part of process context, but for reasons of optimization, both saving
and restoring of process context ignore it. Thus, it is possible for a newly
scheduled process to inherit an irrelevant IPL 2 bit in the SISR; an AST
delivery intem1pt is then granted in the context of a different process than
was originally requested. The AST delivery interrupt service routine detects
and ignores such spurious AST interrupts. The AST delivery interrupt in
question will be requested again when the process for which it is intended
is placed back into execution by the REI from the rescheduling interrupt.

7.5.1 AST Delivery Interrupt

The IPL 2 software interrupt is unique. It is the only one requested by
microcode (REI) rather than by MTPR instructions in the executive, and the
only one whose service routine runs entirely in process context. When the
IPL 2 interrupt occurs, control is transferred to SCH$ASTDEL, in module
ASTDEL, the address in the IPL 2 system control block (SCB) vector. The
interrupt service routine's functions are to remove the first pending AST
from the queue, determine that the interrupt request is not a spurious one,
and dispatch to the specified AST routine at the specified access mode.

Figure 7.3 shows the major steps in SCH$ASTDEL's flow. The numbers
in the figure correspond to the following steps. The column headings in the
figure describe the environment of that step, for example, its access mode
and IPL.

1. SCH$ASTDEL acquires the SCHED spinlock, raising IPL to IPL$_SCHED,
to synchronize access to the process's AST queue.

G) SCH$ASTDEL tries to remove the first ACB from the process AST queue.
If the queue is empty, the IPL 2 interrupt must have been spurious. The
routine sets ASTLVL to 4, releases the SCHED spinlock, and exits with
an REI instruction.

G)Testing ACB$V_KAST in ACB$B_RMOD, SCH$ASTDEL determines if
the ACB is a special kernel mode AST. It delivers a special kernel mode
AST with the following steps:

a. SCH$ASTDEL releases the SCHED spinlock, lowering IPL to 2.
b. SCH$ASTDEL dispatches to the special kernel mode AST routine by

executing an effective JSB instruction. (It pushes a return address onto
the stack and executes a JMP instruction to minimize the number of
branches taken on a common code path.)

c. On return from the special kernel mode AST routine, SCH$ASTDEL
returns to step 1 to check the AST queue again in case there is
another pending AST, possibly queued by the special kernel mode AST
routine. One common instance of this occurs in I/O postprocessing.
The I/O postprocessing special kernel mode AST queues a normal AST
to the process if AST notification of the I/O completion was requested.

137

AS Ts

138

Time

0
Outer Mode

EXE$ASTDEL
5kCALLG

AST Procedure

RET

CHMK #ASTEXIT

Figure 7.3
AST Delivery Flow

IPL 0

Process Context

IPL 2

Kernel Mode

IPL2
interrupt

SCH$ASTDEL

Special
kernel AST

RSB

5a Set PCB$B_ASTACT

5c Calculate ASTL VL

5g

.------1'-- Set IPL= 0

EXE$ASTDEL
5kCALLG

!
AST Procedure

RET

CHMK #ASTEXIT

CMOD$ASTEXIT
Set IPL =-2 -~i------..

Clear PCB$B_ASTACT
Calculate ASTL VL
REI

7.5 Delivering an AST

This is a frequent enough occurrence that checking the queue again
is less costly than incurring the extra interrupt.

G) If the AST removed from the queue is a normal AST, then SCH$ASTDEL
checks that the mode of the AST is at least as privileged as the access
mode being restored by the REI instruction that initiated AST delivery. It
compares the mode in the saved PSL on the kernel stack to the mode of
the AST. If the AST mode is less privileged, SCH$ASTDEL reinserts the
ACB at the head of the queue, releases the SCHED spinlock, and dismisses
the interrupt with an REI instruction. This test detects a spurious AST
delivery interrupt.

Two other checks for spurious AST delivery interrupts are required.
The first is that the appropriate PCB$B_ASTACT bit must be clear; this
test prevents an AST from being interrupted by another AST at the same
access mode. The second test is that the appropriate PCB$B_ASTEN bit
must be set, indicating that AST delivery for that access mode is enabled.
If either test fails, SCH$ASTDEL sets ASTLVL to the blocked access mode
plus 1, requeues the ACB, releases the SCHED spinlock, and dismisses
the interrupt.

A third test is required for a user mode AST: the low bit of CTL$GB_
SOFT _AST _DISABLE must be clear, indicating no soft disabling of user
mode ASTs. For further information, see Section 7.6.

G)If the AST is deliverable, then SCH$ASTDEL performs the following
operations before dispatching to the AST routine:

a. SCH$ASTDEL sets the bit corresponding to the AST access mode in
PCB$B_ASTACT to indicate that there is an active AST at this mode
and to block concurrent delivery of another AST.

b. If ACB$V _QUOTA is set in the ACB, SCH$ASTDEL returns process
AST quota.

c. SCH$ASTDEL stores a new value of ASTLVL in PR$_ASTLVL and
PHD$B_ASTLVL. The new value of ASTLVL is the access mode of
the AST plus 1 (the next outer mode). The access mode is calculated
in this manner to prevent another AST interrupt when SCH$ASTDEL
switches to the access mode in which the AST procedure is executed.

d. Once modifications to the process's AST queue and ASTLVL are com­
plete, SCH$ASTDEL releases the SCHED spinlock and lowers IPL
to 2.

e. Delivery of an AST to kernel mode is simpler than to other modes
because the process is already executing in kernel mode and on the
appropriate stack. If the AST is for a mode other than kernel mode,
SCH$ASTDEL obtains the stack pointer for that mode.

f. As described in the next section, SCH$ASTDEL builds an argument
list on the stack of the AST's access mode.

g. If the AST is not for kernel mode, SCH$ASTDEL builds a program

139

ASTh

counter (PC) and PSL on the kernel stack. The stored PC is the address
of EXE$ASIDEL, the AST dispatcher. The stored PSL contains the
AST access mode in both its current mode and previous mode fields.

h. H a piggyback special kernel mode AST is associated with the current
AST, the special kernel mode AST routine is dispatched through a JSB

instruction. When the piggyback AST routine returns, SCH$ASIDEL
continues with the next step.

i. SCH$ASIDEL tests the ACB$V _NODELETE bit. H the bit is set,
processing continues with the next step; if the bit is clear, then
SCH$ASTDEL deallocates the ACB to nonpaged pool.

j. The code that actually calls an AST procedure, EXE$ASIDEL, must
execute in the access mode of the AST.

For access modes other than kernel mode, transfer of control to
EXE$ASIDEL and change of access mode is accomplished through an
REI instruction, the only way to reach a less privileged access mode.
The PC and PSL used by the REI instruction are described in step Sg.

In order to deliver a kernel mode AST, SCH$ASIDEL merely drops
IPL to 0 and falls through to EXE$ASIDEL.

k. EXE$ASIDEL executes a CALLG instruction, transferring control to
the AST procedure, with the argument pointer (AP) pointing to the
argument list. The use of a CALLx instruction to enter ASTs enables
them to be written in any high-level language that supports the VAX
Calling Standard. A CALLG instruction is used, rather than a CALLS,

so that the argument list will remain on the stack after the AST
procedure RETs.

7.5.2 Argument List

140

A normal AST procedure can be written in any language. By definition, a
procedure begins with an entry mask, is passed an argument list, and returns
control to its caller (in this case, the AST dispatcher) with a RET instruction.

Figure 7.4 shows the argument list with which an AST procedure is called.
SCH$ASIDEL copies the AST parameter from the ACB where it was ini­
tially stored by a system service, such as $QIO, $ENQ, or $DCLAST. The
AST parameter was originally an argument to the system service. The inter­
pretation of the AST parameter depends on the AST procedure.

l 5 i- AP

ASTPRM

Saved RO

Saved R1

Saved PC

Saved PSL

Figure 7.4
Argument List Passed to AST by Dispatcher

7.5 Delivering an AST

SCH$ASTDEL saves the general registers RO and Rl in the argument
list. The AST procedure may not save them through its register save mask,
because the VAX Calling Standard specifies that RO and Rl be used to return
status. The asynchronous nature of ASTs implies that the RO and Rl contents
are unpredictable and therefore must be preserved. The registers are saved
and restored by the AST delivery mechanism.

The saved PC and PSL values are the register contents originally saved
when the IPL 2 interrupt was granted. The values are normally the pair that
was about to be used by the original REI instruction requesting the AST
delivery.

7.5.3 AST Exit Path

When an AST procedure is done, its associated PCB$B_ASTACT bit must be
cleared and ASTLVL must be recomputed. The AST procedure requests the
$CLRAST system service to perform these steps, which can only be done
from kernel mode. In most cases, the AST procedure indirectly requests
$CLRAST by executing a RET instruction. Direct request of $CLRAST is
discussed later in this section.

When the AST procedure executes the RET instruction, its call frame is
removed from the stack and control returns to EXE$ASTRET in the access
mode of the AST. The AST argument list remains on the stack. The following
steps then occur:

1. EXE$ASTRET removes the argument count and the AST parameter from
the stack, leaving RO, Rl, PC, and PSL from the argument list.

2. EXE$ASTRET executes the instruction

CHMK #ASTEXIT

This instruction requests the $CLRAST system service (ASTEXIT is a
synonym for CLRAST).

3. The CHMK exception causes dispatch to the change-mode-to-kernel
system service dispatcher, EXE$CMODKRNL, in module SYSTEM_
SERVICE_DISPATCHER (see Chapter 6). EXE$CMODKRNL makes a
special test for the system service code of zero (ASTEXIT = 0) to shorten
the dispatching to the $CLRAST system service.

4. The $CLRAST system service procedure, CMOD$ASTEXIT in module
SYSTEM_SERVICE_DISPATCHER, performs the following steps:

a. It raises IPL to 2, to block AST delivery interrupts.
b. It clears the appropriate PCB$B_ASTACT bit to indicate that no AST

procedure is active at that mode.
c. It invokes SCH$NEWLVL, in module ASTDEL, to recompute the

ASTLVL value as the access mode of the first ACB in the queue.
d. It executes an REI instruction to return to EXE$ASTRET.

141

AS Ts

7.6

142

5. EXE$ASTRET resumes at the previous access mode, the mode of the
AST:

a. It restores RO and Rl from the stack.
b. EXE$ASTRET executes another REI instruction to dismiss the in­

terrupt. The REI instruction returns control to the access mode and
location originally interrupted by AST delivery.

The REI instruction in the $CLRAST system service may cause another
IPL 2 interrupt to occur, depending upon the ASTLVL value and the access
mode transitions.

If another IPL 2 interrupt occurs at the REI instruction from the $CLRAST
system service, the access mode stack of the first AST still contains the saved
RO, Rl, PC, and PSL. To prevent a stack from filling with these values as a
result of recurring ASTs, SCH$ASTDEL checks whether an AST interrupt
occurred at the instruction following the ASTEXIT system service. If so,
SCH$ASTDEL checks further whether the current AST and the previous
AST are for the same access mode. If they are, SCH$ASTDEL pops from the
stack the newer copy of the saved values and reuses the original ones in the
argument list it builds for the current AST.

If an AST procedure requests the $CLRAST system service directly rather
than returning through EXE$ASTRET, the appropriate PCB$B_ASTACT bit
is cleared and PR$_ASTLVL is set to the mode of the new first ACB in the
queue. This has the effect that another AST can be delivered to the same
mode; the current procedure is now an ordinary thread interruptible by ASTs.
The frame built on the stack by the call to the former AST procedure re­
mains on the stack. The former AST procedure is responsible for removing
it. Furthermore, the former AST procedure is now responsible for any syn­
chronization with another AST thread of execution.

The VAX BASIC Run-Time Library requests the $CLRAST system service
from within CTRL/C attention AST procedures. VAX BASIC requires that
user programs be notified of CTRL/C through an error signal rather than
through the AST mechanism. The VAX BASIC Run-Time Library therefore
dismisses the CTRL/C attention AST by requesting the $CLRAST system
service and then signals the condition by calling LIB$SIGNAL (see Chap­
ter 5).

Note that the $CLRAST system service is not supported by Digital, except
for use within Digital software, and is not documented in the VMS System
Services Reference Manual.

DISABLING AST DELIVERY

Through the $SETAST system service a process can enable or disable delivery
of ASTs to the mode from which the process requests the system service.
The $SETAST system service sets or clears the relevant PCB$B_ASTEN bit

7. 7 Special Kernel Mode AST.s

to enable or disable AST delivery to that mode. The system service enables
synchronization between a normal thread of execution and an AST thread.
The concept of AST reentrancy and ways of achieving it are described in the
Guide to Creating VMS Modular Procedures.

The $SETAST system service procedure, EXE$SETAST in module SYS­
ASTC9N, runs in kernel mode. It determines the mode from which it
was requested and tests the current setting of that PCB$B_ASTEN bit. It
copies the ENBFLG argument value to the bit, setting or clearing it. It then
invokes SCH$NEWLVL to compute a new value for ASTLVL, based on the
current contents of the AST queue and the new state of the AST enable bit.
EXE$SETAST then returns either the status SS$_ WASCLR or SS$_ WAS­
SET to reflect the original state of the AST enable bit.

VMS Version 5 adds an alternative way to disable delivery to user mode.
User mode code sets the low bit in the Pl global location CTL$GB_SOFT _
AST _DISABLE to communicate its intention to block user mode ASTs. The
AST delivery interrupt service routine, SCH$ASTDEL, tests this bit when­
ever it is about to deliver a user mode AST.

If the bit is set, SCH$ASTDEL clears the user mode PCB$B_ASTEN bit to
effect a conventional disable and requeues the ACB. SCH$ASTDEL also sets
the low bit of CTL$GB_REENABLE_ASTS to notify the user mode thread
that it must request the. $SETAST system service to reenable AST delivery
to user mode.

Requested to reenable delivery to user mode, EXE$SETAST clears both
CTL$GB_REENABLE_ASTS and CTL$GB_SOFT _AST _DISABLE. Invoked to
disable delivery to user mode, EXE$SETAST sets them both to 1.

If no user mode AST is delivered while CTL$GB_SOFT _AST _DISABLE is
set, then PCB$B_ASTEN remains unchanged. The $SETAST system service
requests to disable and reenable AST delivery are both saved. This mecha­
nism enables fast disabling of user mode ASTs by DECwindows. Use of this
mechanism is reserved to Digital and not supported except for use within
Digital software.

7.7 SPECIAL KERNEL MODE ASTS

Special kernel mode ASTs differ from normal ASTs in several ways:

• A special kernel mode AST routine is dispatched at IPL 2 and executes at
that level or higher. Synchronization is provided by the interrupt mecha­
nism itself rather than requiring additional PCB$B_ASTACT and PCB$B_
ASTEN bits. Only one special kernel mode AST can be active at any time
because the AST delivery interrupt is blocked.

• Special kernel mode ASTs cannot be disabled through $SETAST. Delivery
of a special kernel mode AST can only be blocked by raising IPL to 2 or
above.

• All special kernel mode ASTs result from the operations of kernel mode

143

AS Ts

code. That is, a user cannot directly request special kernel mode AST
notification of an asynchronous event.

• A special kernel mode AST routine is invoked by a JSB instruction, which
is a simpler and thus faster means of transferring control than a CALLG

instruction.
The arguments passed to a special kernel mode AST routine are the PCB

address in R4 and the ACB address in RS. When the special kernel mode
AST routine executes its RSB instruction, the stack must be in the same
state as when the routine was entered. The routine may use RO through
RS freely but must save R6 through Rl 1 before use and restore them before
exiting.

• A special kernel mode AST routine is responsible for the deallocation of
the ACB to nonpaged pool. (For normal ASTs, this deallocation is done by
the AST delivery routine.)

The next several sections briefly describe examples of the special kernel
mode AST mechanism.

7.7.1 1/0 Postprocessing in Process Context

144

Completing an 1/0 request requires the delivery of a special kernel mode
AST to the process whose 1/0 completed. 1/0 postprocessing is described in
more detail in Chapter 21. The 1/0 postprocessing interrupt service routine
queues a former 1/0 request packet (IRPJ as an .ACB to the process whose 1/0
completed. The operations performed by the 1/0 completion AST routine are
those that must execute in process context, particularly those that reference
process virtual addresses. The special kernel mode AST routines BUFPOST
and DIRPOST, in module IOCIOPOST, perform the following operations
(DIRPOST is actually a subentry point of BUFPOST):

1. For buffered read 1/0 operations only, BUFPOST copies the data from the
system buffer to the user buffer in process address space and deallocates
the system buffer to nonpaged pool.

2. DIRPOST increments either PHD$L_DIOCNT or PHD$L_BIOCNT, the
process's cumulative totals of completed direct 1/0 and buffered 1/0
requests.

3. If a user diagnostic buffer was associated with the 1/0 request, DIRPOST
copies the diagnostic information from the system diagnostic buffer to
the user's buffer and deallocates the system buffer.

4. DIRPOST decrements the channel control block field CCB$W _IOC, the
number of 1/0 requests in progress on this channel. Channel control
blocks are in Pl space.

5. If the 1/0 request specified an 1/0 status block (IOSBJ, the routine copies
information from the IRP to the IOSB.

6. If a common event flag is associated with the 1/0 request, it is set. (Local
event flags are set in IOC$10POST, as described in Chapter 21.)

7. 7 Special Kernel Mode ASTs

7. If ACB$V _QUOTA was set in IRP$B_RMOD (the same offset as ACB$B_
RMOD), AST notification of 1/0 completion was requested. The AST
procedure address and the optional AST argument were originally stored
in the IRP (now an ACB). DIRPOST invokes SCH$QAST to queue the
former IRP as an ACB. This time the IRP/ACB represents a normal AST
in the access mode at which the 1/0 request was made.

8. Otherwise, if ACB$V _QUOTA is clear, DIRPOST deallocates the IRP/
ACB to nonpaged pool.

7.7.2 $GETJPI System Service

A process requests the $GE1JPI system service to obtain information about
itself or another process. If the request is for information in the virtual ad­
dress space of another process on the same VAXcluster node, the $GE1JPI
system service queues an AST to the target process. Running in the context
of the target process, $GE1JPl's special kernel mode AST routine can easily
examine per-process address space. Chapter 13 describes the $GE11PI sys­
tem service in detail and discusses the additional steps necessary to obtain
information from the virtual address space of a process running on another
V AXcluster node.

The $GE1JPI system service procedure, EXE$GE1JPI in module SYSc
GE1JPI, performs the following steps:

1. It allocates and fills in an extended ACB to describe a special kernel mode
AST and the desired items of information. The ACB includes a buffer to
return the data.

2. The special kernel mode AST routine, executing in the context of the
target process, moves the requested information into the buffer. It mod­
ifies the ACB so that it can be used to queue a second special kernel
mode AST back to the requesting process.

3. The second special kernel mode AST routine copies data from the ex­
tended ACB buffer to buffers in the requesting process. It also sets the
event flag associated with this request.

4. If the process has requested AST notification of request completion, the
extended ACB is used for the third time. The special kernel mode AST
routine uses it to cause delivery of a normal AST in the access mode
from which the system service was requested.

If the process has not requested AST notification, the extended ACB
is deallocated to nonpaged pool.

7.7.3 Power Recovery ASTs

The implementation of power recovery ASTs relies on special kernel mode
ASTs. A power recovery AST enables a process to receive notification that a
power failure and successful restart have occurred. Chapter 33 describes this
feature in more detail.

145

AS Ts

When a power recovery occurs, VMS queues a special kernel mode AST
to each process that has requested power recovery AST notification. The
special kernel mode AST routine copies the address of the user-requested
AST procedure, which is stored in Pl space, to ACB$1-AST and requeues
the ACB as a normal AST. The special kernel mode AST routine is required
to access the process's Pl space.

7.7.4 Piggyback Special Kernel Mode ASTs

Piggyback special kernel mode ASTs (PKASTs) enable a special kernel mode
AST to ride piggyback in the ACB$L_KAST field of a normal AST. The
normal access mode determines the order of enqueuing and delivery. If
delivery to that access mode is disabled or blocked, the piggyback special
kernel mode AST cannot be delivered.

The AST delivery interrupt service routine JSBs to the piggyback special
kernel mode AST routine just before calling the normal AST. When the
special kernel mode AST returns, the normal AST is called.

There are several reasons for using piggyback special kernel mode ASTs:

• It is faster to deliver two ASTs together than to deliver two ASTs separately.
• There are times when delivering an AST requires some additional work in

kernel mode in the context of the calling process. Piggyback special kernel
mode ASTs facilitate this work.

The $ENQ system service uses a piggyback special kernel mode AST
to write to the caller's lock status block and lock value block. To copy
the information from the lock database to the caller's process space, a
piggyback special kernel mode AST is required.

Piggyback special kernel mode ASTs are also used in terminal out-of­
band ASTs (see Section 7.9.5.3).

• A piggyback special kernel mode AST can be used to queue other normal
ASTs to a process. The $ENQ system service uses this feature to deliver
both blocking and completion ASTs to a process through one ACB. Chap­
ter 10 contains further information.

7.8 SYSTEM USE OF NORMAL ASTS

146

Several other executive features are implemented through normal ASTs. For
example, the automatic working set limit adjustment that takes place at
quantum end is implemented with a normal kernel mode AST. Chapter 12
discusses quantum-end activities, and Chapter 17 provides a detailed descrip­
tion of automatic working set limit adjustment.

CPU time limit expiration is implemented with potentially multiple ASTs.
Beginning in user mode, the AST procedure requests the Exit ($EXIT) system
service. If the process is not deleted, a supervisor mode time expiration AST
is queued. This loop continues with higher access modes until the process
is deleted.

7.8 System Use of Normal ASTs

The executive also uses the AST mechanism for the $FORCEX, Suspend
Process ($SUSPND), and Delete Process ($DELPRC) system services. With
VMS Version 5.2, these services can affect a process running on another
V AXcluster node. If the target process is executing on the same V AXcluster
node as the system service requestor, the system service queues an AST
directly to the target process. Chapter 13 discusses the additional steps
required to affect a process running on another V AXcluster node.

The $FORCEX system service, detailed in Chapter 13, queues a user mode
AST that requests the $EXIT system service from the context of the target
process.

The $SUSPND and $DELPRC system services queue an AST to the target
process to implement suspension or deletion through code running in the
context of the target process.

The $SUSPND system service queues either a supervisor or kernel mode
AST to its target process, depending on the access mode of the suspension.
A process suspended through a supervisor mode AST (the default) can ex­
ecute kernel and executive mode ASTs. Supervisor mode suspension, new
with VMS Version 5, is described in greater detail in Chapter 13. A process
suspended through a kernel mode AST can become computable only whetl
it is resumed through another process.

Process deletion and kernel mode suspension must take care to synchro~
nize their actions with the activities of the Files-11 XQP.

The Files-11 XQP runs in process context as a kernel mode AST thread,
taking out locks and making 1/0 requests in response to the process's file
system requests. The XQP indicates that it is active by incrementing the
PCB field PCB$B_DPC. When the XQP must wait for a lock to be granted
or an 1/0 request to complete, it returns from the AST procedure so that
the process can wait at the access mode in which the file system request
originated.

Waiting in the outer mode allows delivery of ASTs to that mode and
more privileged modes. While the XQP is executing or waiting, kernel mode
suspension of the process would risk blocking other processes with interests
in the same locks. Deletion of the process would risk relatively minor on­
disk corruption, such as dangling directory entries and lost files.

Therefore, the kernel mode suspension and process deletion services queue
normal kernel mode ASTs, which cannot be delivered until the XQP AST
completes. Furthermore, these AST procedures check that PCB$B_DPC is
zero before proceeding with actual process suspension or deletion.

If PCB$B_DPC is not zero, these AST procedures place the process into a
wait. They clear bit 0 of PCB$B_ASTACT so that another kernel mode AST
can be delivered, invoke SCH$NEWLVL to recompute ASTLVL, and place
the process into the resource wait RSN$_ASTWAIT. The process waits in
kernel mode at IPL 0. Thus, special and normal kernel mode ASTs can be
delivered to it. The resource wait PC is an address within the AST procedure,

147

ASTs

so aher the XQP AST completes, the suspend or delete AST procedure will
be reentered to finish its job.

Some time later, queuing of an AST makes the process computable, and
delivery of an XQP completion AST causes the XQP to be reentered. When
the XQP is done, it decrements PCB$B_DPC and returns from its AST pro­
cedure. The suspend or delete AST procedure is reentered and can proceed,
now that PCB$B_DPC is zero.

7.8.1 Process Suspension

148

The $SUSPND system service causes a target process to be placed into a
suspended state. The system service procedure first checks the capability of
the initiating process to affect the target process (see Chapter 13 for further
details). It then checks whether a supervisor or kernel mode suspension is
requested. Supervisor mode is the default. A kernel mode suspension request,
specified in the optional FLAGS argument, must be made from executive or
kernel mode.

The system service procedure then sets PCB$V _SUSPEN in the target
process's PCB$L_STS and, for a supervisor mode suspension, PCB$V_SOFT­
SUSP as well. It then queues either a kernel or supervisor mode AST to the

· target process so that the suspension and waiting will occur in that process's
context. The wait mechanism in VMS requires that a process be placed into
a wait from its own context.

When the kernel mode AST is delivered, the SUSPND AST procedure
acquires the SCHED spinlock, raising IPL to IPL$_SCHED, and tests whether
PCB$V _RESPEN in PCB$L_STS is set. The bit, when set, indicates that
a Resume Process ($RESUME) system service has been requested for this
process. If the bit is set, the SUSPND AST procedure clears both it and
PCB$V _SUSPEN and RETs, leaving the process unsuspended.

If a $RESUME has not been requested for this process, SUSPND tests
PCB$B_DPC to determine whether an XQP operation is in progress. If
PCB$B_DPC is greater than zero, SUSPND places the process into a resource
wait as previously described.

If PCB$B_DPC is zero, SUSPND places the process into a suspended wait
state. The process waits in kernel mode at IPL 0. Its saved PC is an address
within SUSPND, so when the process is later placed into execution, it again
tests whether a $RESUME has been requested.

When the supervisor mode AST is delivered to a process undergoing su­
pervisor mode suspension, the SUSPEND_SOFT AST procedure requests the
$SUSPND system service. Running in kernel mode in the context of the
target process, the $SUSPND system service procedure acquires the SCHED
spinlock and tests whether PCB$V _RESPEN is set. If a $RESUME has not
been requested for the process, the $SUSPND system service procedure

7.9 Attention and Out-of-Band ASTs

cleans up the kernel stack and places the process into a suspended wait
state. These actions can only be done from kernel mode.

The process waits in supervisor mode with the supervisor mode PCB$B_
ASTACT bit set. Its saved PC is an address within the SUSPEND_SOFT
AST procedure, so when the process is placed back into execution, it again
requests the $SUSPND system service to test whether a $RESUME has
been requested. Waiting in this manner, the process can execute kernel and
executive mode ASTs. For further details, see Chapter 13.

7.8.2 Process Deletion

7.9

The $DELPRC system service causes a target process to be deleted. After
checking the capability of the initiating process to affect the target process
(see Chapter 13), the system service procedure queues a normal kernel AST
to the target process so that the deletion will occur in the context of that
process. Chapter 28 provides a detailed explanation of process deletion.· The
use of the AST mechanism provides the following advantages:

• Queuing the AST mak~s the process computable, regardless of its wait
state, unless the process is suspended. The $DELPRC system service en-'
sures the deletion of a suspended process by requesting the $RESUME.
system service before queuing the AST .

• The process must be resident for the AST to be delivered. Therefore, special
cases, such as the deletion of a process that is outswapped, simply do not
exist.

• The DELETE AST procedure, running in process context, is able to request
standard system services, such as Deassign Channel ($DASSGN), Deallo•·
cate Device l$DALLOC), and Delete Virtual Address Space ($DELTVA),
to implement process deietion. These system services and the AST proce­
dure reference per-process address space, and thus they must run in process
context.

ATTENTION AND OUT-OF-BAND ASTS

Several VMS device drivers queue an AST to notify a process that a particular
attention condition has occurred on a device. The terminal driver and mail­
box driver use ASTs in this way. The terminal driver, for example, queues
an attention AST to notify an interested process that CTRL/C or CTRL/Y
has been typed on its terminal. The terminal driver can also queue an out­
of-band AST as notification that a control character other than CTRL/C and
CTRL/Y has been typed. The mailbox driver can queue an attention AST as
notification that an unsolicited message has been put in a mailbox or that
an attempt to read an empty mailbox is in progress.

The basic sequence for both attention ASTs and out-of-band ASTs follows:

149

ASTh

1. A process assigns a channel and requests the $QIO system service, spec­
ifying that it should receive AST notification of an attention condition
on that device.

2. The device driver builds a data structure to describe the attention AST
request, inserts it on a list connected to the device UCB, and completes
the I/O request.

3. If the attention condition occurs, the device interrupt service routine
delivers the attention AST by queuing an AST to the process.

The major distinction between the attention AST and the out-of-band
AST mechanisms is that out-of-band ASTs automatically repeat, whereas
attention ASTs must be "rearmed." That is, a process must repeat its $QIO
request for each attention notification.

Attention ASTs are described in the following sections, and out-of-band
ASTs are described in Section 7.9.5.

7.9.1 Set Attention AST Mechanism

150

To establish an attention AST for a particular device whose driver supports
this feature, the user requests the $QIO system service with the I/O function
IO$_SETMODE or, for some devices, IO$_SETCHAR. The kind of attention
AST requested is indicated by a function modifier.

The relevant function decision table (FDTJ action routine for such a driver
invokes COM$SETATTNAST, in module COMDRVSUB, which performs.
the following actions:

1. If the user AST procedure address (the $QIO Pl parameter) is zero, the
request is interpreted as a flush attention AST list request (see Sec­
tion 7.9.3).

2. Otherwise, COM$SETATTNAST allocates an expanded ACB from non­
paged pool and charges it against the process AST quota, PCB$W _AST­
CNT. The expanded ACB will be used both as a fork block (FKBJ and as
an ACB and is referred to as a FKB/ACB.

3. COM$SETATTNAST copies information into the FKB/ACB, such as the
AST procedure address, AST argument, channel number, and PID.

4. It acquires the device lock, raising IPL to UCB$B_DIPL, to synchronize
access to the attention AST list. It then inserts the FKB/ACB into a singly
linked, last-in/first-out (LIFO) list of FKB/ACBs connected to the UCB of
the associated device.

The location of the FKB/ACB listhead is device-specific; some UCBs
have multiple listheads--one for each attention condition the driver sup­
ports. The FDT action routine passes the address of the listhead in a
register to COM$SETATTNAST.

5. COM$SETATTNAST then releases the device lock, restoring the previ­
ous IPL, and returns to the FDT action routine.

7.9 Attention and Out-of-Band ASTs

7.9.2. Delivery of Attention ASTs

When the driver (typically the device interrupt service routine) determines
that the attention condition has occurred, it invokes COM$DELATINAST
with the address of the FKB/ ACB listhead.

A driver uses an alternative entry point, COM$DELATTNASTP, to specify
that only ASTs requested by a particular process be delivered.

COM$DELATTNAST is entered at device IPL with the device lock held
to synchronize access to the attention AST list. The queuing of ASTs must
occur at IPL$_SCHED with the SCHED spinlock held to synchronize access
to the scheduler database (see Chapter 8). Specifically, IPL must not be
lowered to IPL$_SCHED. To accomplish correct synchronization and not
block activities .at IPL 7 and IPL 8, COM$DELATTNAST creates an IPL$_
QUEUEAST (6) fork process to queue each AST.

The following steps summarize the delivery of attention ASTs:

1. COM$DELATTNAST scans each FKB/ ACB in the list. In the case of
entry through COM$DELATTNASTP, the routine compares the PID in
the FKB/ACB to the requested PID. If they are not equal, the routine
leaves the data structure in the queue and goes on to the next entry. If
the Pills match, the routine performs the actions described in the next
step.

2. The routine removes the FKB/ ACB from its list and dispatches to
EXE$FORK, specifying the address of a fork process to be stored in
FKB$L_FPC of the FKB/ ACB. EXE$FORK records the fork process ad­
dress, queues the fork block to the fork IPL 6 listhead, and requests an
interrupt at that IPL.

3. When IPL drops below 6, the fork interrupt is granted. The IPL 6 fork
dispatcher removes the FKB/ ACB from the IPL 6 fork block queue and
dispatches to COM$DELATTNAST's fork process.

4. At IPL 6, COM$DELATTNAST's fork process reformats the fork control
block into an ACB, describing the AST procedure and the access mode
of the original attention AST request.

5. The fork process invokes SCH$QAST, which acquires the SCHED spin­
lock and then queues the ACB to the process that requested the attention
AST.

7.9.3 Flushing an Attention AST List

The list of attention ASTs is flushed as the result of an explicit user request,
a Cancel I/O l$CANCEL), or a $DASSGN system service request for the
associated device.

A user explicitly requests that the attention AST list be flushed by re­
questing a $QIO set attention AST with an AST routine address of zero (see
Section 7.9.1). When COM$SETATTNAST is invoked with an AST proce­
dure address of zero, it branches to COM$FLUSHATTNS.

151

ASTs

COM$FLUSHATINS is entered with the PID and channel number of the
attention ASTs to be deleted. COM$FLUSHATTNS performs the following
operations:

1. It acquires the device lock, raising IPL to UCB$B_DIPL of the device.
2. It scans the FKB/ACB list looking for any FKB/ACBs with a PID and

channel number that match those of the requested flush operation.
3. If the PIDs and channel numbers match, COM$FLUSHATTNS removes

the FKB/ ACB from the attention AST list.
4. COM$FLUSHATTNS releases the device lock, restoring the IPL at which

it was entered.
5. COM$FLUSHATTNS increments the process AST quota and deallocates

the FKB/ ACB to nonpaged pool.
6. COM$FLUSHATTNS continues processing until it has scanned the en­

tire attention AST list. It then releases the device lock and returns to its
invoker.

7.9.4 Examples in the VMS Executive

7.9.4.1

152

Users frequently request attention ASTs for terminals and mailboxes. Brief
descriptions follow of the terminal driver's and mailbox driver's support of
attention ASTs.

Terminal Driver and CTRL/C-CTRL/Y Notification. A process requests
CTRL/C notification or CTRL/Y notification by requesting the $QIO sys­
tem service, specifying 10$_SETMODE (or 10$_SETCHAR) with the func­
tion modifier 10$M_CTRLCAST or 10$M_CTRLYAST. When an interactive
user spawns a new process, that new process may also request CTRL/C and
CTRL/Y attention ASTs. If the user types CTRL/C or CTRL/Y, the AST
should be delivered only to the process currently associated with the ter­
minal rather than to every process in the job. As the user spawns new
subprocesses and attaches to already created processes, DCL tells the ter­
minal driver the PID of the process currently associated with the terminal.
When CTRL/C is typed, the terminal driver invokes COM$DELATTNASTP
to deliver only the ASTs that were requested by the process associated with
the terminal.

If no CTRL/C attention AST has been requested, then the CTRL/C is
interpreted as a CTRL/Y, and the terminal driver searches the CTRL/Y AST
list instead. If a CTRL/Y is typed, only the CTRL/Y attention AST list is
searched.

Because the FKB/ ACB data structures are not reused, CTRL/C and CTRL/Y
attention ASTs must be reenabled each time they are delivered to a process.

The CTRJ.../Y attention AST list is flushed by a $DASSGN request. The
CTRL/C attention AST list is flushed by $CANCEL as well as by $DASSGN.
Both lists can be flushed by an explicit user request.

7.9.4.2

7.9 Attention and Out-of-Band AS'JS

Mailbox Driver. A process requests mailbox attention ASTs by requesting
the $QIO system service with the function code 10$_SETMODE or IO$_
SETCHAR. The possible function modifiers are 10$M_READATTN and
IO$M_ WRTATTN. 10$M_ WRTATTN requests notification of an unsolicited
message written to that mailbox. An unsolicited message is one written to a
mailbox that has no outstanding read request. 10$M_READATTN requests
notification when any process requests a read from that mailbox and there
is no message in it.

Attention ASTs of each type may be declared by multiple processes for the
same mailbox. When a condition corresponding to an attention AST occurs,
all ASTs of the appropriate type are delivered. Only the first process to make
a corresponding 1/0 request will be able to complete the transfer of data
signaled by the attention ASTs.

Read and write attention ASTs must be reenabled after delivery because
the entire attention AST list is delivered and removed after each occurrence
of the specified condition.

7.9.5 Out-of-Band ASTs

7.9.5.1

The terminal driver uses a newer form of AST mechanism to notify a process
that an out-of-band character has been received from its terminal. Out-of~
band characters ?Ie control characters, the ASCII codes 00 to 2016· (Although
CTRL/C and CTRL/Y are in this range, the terminal driver provides the
attention AST. mechanism described previously to notify a process of their
receipt for compatibility with earlier versions of VMS.) Out-of-band ASTs are
similar to attention ASTs in that the terminal driver forks down to IPL$.::.
QUEUEAST to queue an ACB to the process.

The most significant difference between the attention AST mechanism
and the out-of-band AST mechanism is that out-of-band ASTs are repeating;
that is, once declared, out-of-band ASTs are delivered to the process for the
life of the process or until the $CANCEL system service is requested to flush
the AST list. Another difference is that the out-of-band AST mechanism
employs a piggyback special kernel mode AST routine.

The Terminal AST Block. The terminal driver builds a data structure called
a terminal AST block (TAST) to describe an out-of-band AST request. Fig­
ure 7.5 illustrates the TAST.

The TAST can be in two lists at once because of its structure. Through
TAST$L_FLINK, the TAST is always queued to the terminal UCB in a singly
linked list. Through the first two longwords of the TAST, it can be inserted
into a fork queue or a process's ACB queue. The terminal driver sets the
bit TAST$V _BUSY in TAST$B_CTRL when the TAST is in use as a fork
block or ACB. The TAST includes space for fork process context (that is, a
fork PC, fork R3, and fork R4) and the AST information (address of the AST
procedure and its argument, PID, and RMOD fields).

153

AS Ts

7.9.5.2

154

[FOFL)

[FQBL)

[FIPL) l [TYPE) l [SIZE)

[FPC)

[FR3]

[FR4J

[KAST]

FLINK

AST

ASTPRM

PIO

CHAN l CTRL l RMOD

MASK

Figure 7.5
Terminal AST Block

Set Out-of-Band AST Mechanism. A process requests out-of-band notifica­
tion by requesting the $QIO system service, specifying 10$_SETMODE (or
10$_SETCHARJ with the function modifier 10$M_OUTBAND.

The terminal driver's FDT action routine invokes COM$SETCTRLAST,
in module COMDRVSUB, which performs the following steps:

1. If the user AST procedure address ($QIO Pl parameter) is zero or the char­
acter mask ($QIO P2 parameter) is zero, COM$SETCTRLAST interprets
the request as a flush out-of-band AST list request (see Section 7.9.5.4).

2. Otherwise, COM$SETCTRLAST allocates a TAST from nonpaged pool.
3. It then acquires the device lock, raising IPL to UCB$B_DIPL, to synchro­

nize access to the TAST list.
4. COM$SETCTRLAST next scans the list of out-of-band TASTs, searching

for one with the same characteristics as the QIO request. The following
items are checked:

-The PID. Out-of-band ASTs can be requested for the same terminal
device from a process and its subprocesses (which will have different ·
Pills).

-The channel number

5. If COM$SETCTRLAST finds a TAST with the same characteristics that
is not in use, it modifies the existing TAST by replacing the AST address
and the control mask. It then invokes COM$DRVDEALMEM, in module
COMDRVSUB, to create an IPL 6 fork process to deallocate the just­
allocated TAST. This unusual sequence is required because COM$SET­
CTRLAST must hold the device lock while scanning the TAST list.
During that time, it cannot allocate pool, synchronization to which is
controlled at a lower IPL.

7.9.5.3

7.9 Attention and Out-of-Band ASTs

If the TAST is in use !perhaps queued as an ACB to the process),
COM$SETCTRLAST marks it as "lost" and removes it from the list.
COM$SETCTRLAST charges the process AST quota and initializes the
just-allocated TAST to describe the request. It copies information from
the IRP (the AST procedure address, channel number, and PID) and the
$QIO character mask into the TAST. It inserts the TAST in the queue
position of the lost TAST.

6. If it does not find a similar TAST, it initializes the just-allocated TAST
and charges the process AST quota. It places the TAST at the tail of the
list.

7. COM$SETCTRLAST ORs the $QIO character mask into the terminal's
out-of-band AST summary mask, the field UCB$L TLOUTBAND. This
mask represents all the control characters for which the terminal driver
must deliver an out-of-band AST. It then releases the device lock, restor­
ing the previous IPL.

Delivery of Out-of-Band ASTs. When a control key is typed at a terminal, the
terminal driver checks whether that control character is represented in the'
terminal's out-of-band AST summary mask. If the bit in the summary mask
is set, an out-of-band AST has been requested for that control character. The
terminal driver interrupt service routine invokes COM$DELCTRLAST, in
module COMDRVSUB, to deliver the out-of-band AST. The terminal driver
uses an alternative entry point, COM$DELCTRLASTP, to specify that only
ASTs requested by a particular process be delivered.

The following steps summarize the delivery of out-of-band ASTs:

1. COM$DELCTRLAST is entered at device IPL with the device lock held
to synchronize access to the TAST list. It scans the list of TASTs for one
whose character mask contains the character typed at the terminal.

When it finds one with a matching character mask, it checks the busy
bit to see whether the control block is already in use. In the case of entry
through COM$DELCTRLASTP, the routine also compares the PID in
the TAST to the requested PID. If they are not equal, the routine goes
on to the next TAST in the queue.

If TAST$V_BUSY is set, COM$DELCTRLAST skips that TAST. If
TAST$V _BUSY is clear, COM$DELCTRLAST sets it, marking the TAST
in use, and records in TAST$LASTPRM the control character that was
received.

2. The synchronization considerations described for COM$DELATTNAST
apply to COM$DELCTRLAST as well. It creates an IPL 6 fork process,
using the TAST as an FKB, to queue each AST. The TAST also remains
linked to the terminal UCB list of TASTs. Figure 7.6 shows the TAST in
the terminal UCB's TAST list and in the fork block queue.

3. When IPL drops below 6, the fork interrupt is granted. The IPL 6 fork

155

ASTs

CHAN

7.9.5.4

156

IPL 6 Fork Queue
List head

s--: r-
TT UCB

J 1
TLOUTBAND

TLBANDQUE --
t J

I I ---
8 03

I I ----0

_BUSY TAST$V

Figure 7.6

User access mode

TAST Used as a Fork Block

FOFL

FQBL

FIPL l TYPE 1 SIZE

FPC

FR3

FR4

(reserved)

FLINK ,,.

AST NextTAST
or O

ASTPRM

PIO

CHAN I CTRL I RMOD

MASK

dispatcher removes the TAST from the IPL 6 fork block queue and dis­
patches to COM$DELCTRLAST's fork process.

4. At IPL 6, COM$DELCTRLAST's fork process reformats the FKB into an
ACB describing the AST procedure and the access mode of the original
out-of-band AST request. The no-delete and piggyback special kernel
mode AST flags are set in the ACB, and the special kernel mode AST field
is loaded with the address of COM$DELCTRLAST's piggyback special
kernel mode AST.

5. The fork process invokes SCH$QAST, which acquires the SCHED spin­
lock and then queues the ACB to the process that requested the attention
AST. Figure 7.7 shows the TAST in use as an ACB.

6. When the process receives the AST, the piggyback special kernel mode
AST routine is executed first. The piggyback special kernel mode AST
performs two functions:

a. It clears TAST$V _BUSY.
b. If the TAST is marked as "lost," the piggyback special kernel mode

AST routine deallocates it and returns AST quota to the process. A
TAST is "lost" when COM$FLUSHCTRLS is unable to deallocate it
because its busy bit is set jsee Section 7.9.5.4). Once the AST has
been delivered, the TAST is no longer needed.

Flushing an Out-of-Band AST List. The list of out-of-band ASTs is flushed
as the result of an explicit user request, a $CANCEL, or a $DASSGN request
for the associated device.

A user explicitly requests that the out-of-band AST list be flushed by
requesting a $QIO set out-of-band AST with an AST routine address of zero

CHAN

7.9 Attention and Out-of-Band ASTs

PCB
ASTQFL

1-.

ASTQBL

PIO ~ ASTOFL 1 J ._____ t-4 ASTQBL

TT UCB

J 1
TLOUTBANO

TLBANOOUE

1 T

8 I 33 I
I I ----0

TAST$V_B USY ACB V NOOELETE $_
ACB$V_PKAST
User access mode

Figure 7.7
TAST Used as an ACB

RMOO j TYPE j SIZE

PIO

AST

ASTPRM

KAST

FLINK

AST

ASTPRM

PIO

CHAN I CTRL I RMOO

MASK

NextTAST
or O

or a character mask of zero (see Section 7.9.5.2). When COM$SETCTRLAST
receives such a request, it branches to COM$FLUSHCTRLS.

COM$FLUSHCTRLS is entered with the PID and channel number of the
attention ASTs to be deleted. COM$FLUSHCTRLS performs the following
operations:

1. It acquires the device lock, raising IPL to UCB$B_DIPL of the device.
2. It scans the out-of-band AST list and compares the PID and channel

number in the TAST with those of the requested flush operation. As
it scans the list, it builds a new out-of-band AST summary mask. If
COM$FLUSHCTRLS finds a TAST that does not match, COM$FLUSH­
CTRLS ORs its control characters into the summary mask being built
and goes on to the next TAST.

3. If the Pills and channel numbers match, COM$FLUSHCTRLS removes
the TAST from the list. It checks TAST$V _BUSY to see whether the
TAST is in use as a FKB or ACB. If TAST$V _BUSY is set, the "lost" bit
is set so that the TAST will be deallocated once its AST is delivered.

4. If the TAST is not busy, COM$FLUSHCTRLS returns the process AST
quota and deallocates the TAST to nonpaged pool.

5. COM$FLUSHCTRLS continues processing until it has scanned the entire
list. It then replaces the old summary mask with the one just built.

6. COM$FLUSHCTRLS releases the device lock, restoririg the IPL at which
it was entered.

157

PART III/ Synchronization

8

8.1

Synchronization Techniques

"Time," said George, "why I can give you a definition of time.
It's what keeps everything from happening at once."

Ray Cummings, The Man Who Mastered Time

In an operating system that allows interrupts, the interrupting code must
coordinate, or synchronize, with the code being interrupted to ensure cor­
rect behavior. Similarly, when an operating system runs on two or more
processors sharing the same memory, code running on one processor must
synchronize with code running on the others. ·

VMS uses a combination of the following VAX hardware mechanisms and
software techniques to synchronize the actions of code threads that might
otherwise interfere with each other:

• Atomic memory accesses
• Uninterruptible instructions
• Interlocked memory accesses
• Interrupt priority level (IPL)
• Spinlocks (new with VMS Version 5) to synchronize access to shared data

by multiple processors
• Queues
• Mutual exclusion semaphores (mutexes)
• Lock management system services
• Event flags

OVERVIEW

Synchronization is a term commonly used to refer to the simultaneous
occurrence of two or more events. In a computer context, however, the word
is used to refer to the coordination of events. The coordination may still be
as specific as the simultaneous occurrence of events; this use of the term
occurs most often in descriptions of hardware mechanisms. In descriptions
of software, synchronization usually refers to the coordination of events in
such a way that only one event happens at a time. This specialized kind of
synchronization is known as serialization. Serialized events are assigned an
order and processed one at a time in that order. While a serialized event is
being processed, no other event in the series is allowed to disrupt it.

Atomicity and mutual exclusion are frequently described as different types
of serialization, although the two concepts overlap. Atomicity often refers to
the serialization of a small number of actions, such as those occurring during
the execution of a single instruction or a small number of instructions.

161

Synchronization Techniques

Mutual exclusion is usually applied to the serialization of larger groups of
instructions.

Algorithms requiring synchronization take many forms and arise in many
contexts. Most of them reduce to solving a small number of fundamental
problems, for example, the requirement that a thread of execution change
multiple storage locations as an atomic operation. When the first location is
changed but the last is not, the storage is temporarily inconsistent. H another
thread of execution can access the locations at that moment, that change is
not synchronized and system disruption can occur.

Another closely related synchronization problem is the requirement that
a thread of execution read a storage location and, depending on its value,
write a new value into the location. If another thread with the same intent
toward that location can intervene after the read and before the write, then
the change to that location is not atomic and system disruption can occur.
Specifically, the change made by one of the threads can overlay the change
made by the other.

8.1.1 Synchronization at the Hardware Level

8.1.1.1

162

VAX hardware provides several mechanisms to assist with synchronization,
including atomic memory accesses, uninterruptible instructions, IPL, and
interlocked memory accesses.

Atomic Memory Accesses. VAX hardware is required to read or write the
following memory operands atomically, in a single memory operation:

• Byte operand
• Aligned word operand
• Aligned longword operand
• Bit field contained in one byte
• Aligned longword address used in a displacement deferred mode or autoin-

crement deferred mode operand specifier

VAX hardware is not required to implement any other operands atomically.
An unaligned word, for example, containing a byte on either side of a long­
word boundary, may require two separate commands to be read or written.
Reading and writing quadword data, whether aligned or not, may require
multiple commands. ·

A piece of data accessed nonatomically by multiple processors can become
corrupted. Written nonatomically, it can become any bytewise combination
of all the data concurrently being written to it. The value read from it
can be any bytewise combination of the original value and the new values
concurrently being written to it. This type of corruption is known as data
incoherency and word-tearing.

Operands that are either read atomically or written atomically are not
necessarily modified atomically (read and written in the same instruction).

8.1.1.2.

8.1.1.3

8.1.1.4

8.1 Overview

For example, although the CPU executes INCB X as a single instruction, it
performs the memory read and write necessary to carry out the instruction as
independent accesses. If another thread of execution is running concurrently,
it may issue a command to the memory controller that reads or writes
location X between the INCB's read and write.

Uninterruptible Instructions. Whether an instruction's memory references
are atomic depends on whether the CPU permits interrupts during its exe­
cution, and whether more than one thread can execute concurrently. When
only one thread can execute at a time las in a system with only one CPU and
no intelligent 1/0 controllers), memory references can be atomic if interrupts
are prevented.

The VAX. architecture allows interrupts in one category of instructions,
called first part done or FPD instructions. FPD instructions can be inter­
rupted at well-defined points during the course of their execution; sufficient
status is saved in general registers to permit instruction restart at the point
of interruption. _

The VAX. architecture specifies that all other instructions are to be unin­
terruptible in the following sense. If an instruction is interrupted, the mi­
crocode must restore the software-visible state of the CPU to what it was at
the start of the instruction; when the interrupt is dismissed, the instruction
can restart from the beginning. This guarantee of restartability for non-FPD
instructions means that their execution is effectively uninterrupted.

For example, the absolute queue instructions INSQUE and REMQUE each make
several memory references in manipulating a queue. The CPU allows no
interrupts during the execution of these instructions. Thus, the insertion or
removal of an element at the head or tail of an absolute queue is synchronized
when only one processor can access it.

Interrupt Priority Level. On a system with only one CPU la uniprocessor),
VMS synchronizes access to its data structures by requiring all threads that
access a shared data structure to run at the highest IPL at which any thread
that accesses it can interrupt. IPL is a processor-specific mechanism; when
more than one processor accesses the same memory, raising IPL on one
processor has no effect on the others. Section 8.2 describes the use of IPL.

Interlocked Memory Accesses. Many simple operations that must make
atomic memory accesses cannot do so with a single uninterruptible in­
struction. For example, a sequence of code that scans a queue to determine
where to insert a new element is vulnerable to interrupts. While it follows
queue elements' forward links and examines a field in each element, an in­
terrupt could occur whose service routine changes the makeup of the queue.
When the service routine dismisses the interrupt, the code scanning the

163

Synchronization Techniques

164

queue could have a stale forward link that no longer points to a valid queue
element.

On a uniprocessor, such a sequence can be protected by executing it at
the highest IPL at which any thread that accesses the queue can interrupt.
On a multiprocessor, this technique fails. The memory controller provides a
mechanism called a memory interlock, which does provide synchronization
in this situation. A memory interlock enables a processor to make an atomic
modification to a location in memory shared by multiple processors.

Both CPUs and intelligent 1/0 controllers can make interlocked references
to memory. When a CPU executes an instruction that interlocks memory,
it first issues an interlock-read command to the memory controller. The
memory controller sets an internal flag and responds with the requested
data. While the flag is set, the memory controller stalls any subsequent
interlock-read commands for that same aligned longword from other pro­
cessors, although it continues to process ordinary reads and writes. When
the CPU executing the interlocked instruction issues a write-unlock com­
mand, the memory controller writes the modified data back and clears its
internal flag. The memory interlock persists for the duration of only one
instruction. That is, execution of an interlocked instruction includes paired
interlock-read and write-unlock memory controller commands.

Synchronizing data with memory interlocks requires that all accessors of
that data use them. In other words, the memory references of an interlocked
instruction can be atomic only with respect to other interlocked memory
references.

The granularity of the interlock is VAX-implementation-dependent. For
example, on some processors, while an interlocked access to a location is in
progress, no interlocked access to any other location in memory is allowed.
The VAX architecture guarantees only aligned longword granularity.

The VAX architecture provides seven instructions that interlock memory.
The VAX Architecture Reference Manual describes their operation in detail.
They are

• ADAWI-Add aligned word, interlocked
• BBCCI-Branch on bit clear and clear, interlocked
• BBSSI-Branch on bit set and set, interlocked
• INSQHI-lnsert entry into queue at head, interlocked
• INSQTI-lnsert entry into queue at tail, interlocked
• REMQHI-Remove entry from queue at head, interlocked
• REMQTI-Remove entry from queue at tail, interlocked

An interlocked queue instruction does its interlocking in two stages. In
the first stage, the processor issues an interlock-read cqmmand to read the
forward link. It then makes a bit test and issues a write-unlock command,
setting and checking the low-order bit of the forward link. (Self-relative
queue elements are constrained to be quadword-aligned; the low-order three

8.1 Overview

address bits are thus available for other uses.) If the low-order bit was clear,
the processor continues with the second stage of the instruction.

During execution, the queue itself is interlocked by the low-order bit in the
forward link, but only the queue is interlocked; the rest of the memory that
would otherwise be interlocked is free. The use of this "secondary interlock"
reduces memory interlock contention.

If the low-order bit of the forward link was already set, the processor
sets the C condition code bit and completes instruction execution without
performing any queue manipulations. The code containing the interlocked
queue instruction is expected to test the C bit and, if it is set, try to execute
the instruction again. After a number of failures, the queue is presumed
corrupt.

Typically, the VMS executive performs interlocked queue manipulations
through macro invocation. Each of the interlocked queue instructions has
a corresponding macro: $INSQHI, $INSQTI, $REMQHI, and $REMQTI. A
sample invocation of $INSQTI and its generated code follows:

;the macro invocation
$INSQTI (R3),G-IOC$GQ_POSTIQ

;its generated code
CLRL RO

30000$: INSQTI (R3),G-IOC$GQ_POSTIQ

30001$:

BCC 30001$
AOBLSS #900000,R0,30000$
BUG_CHECK BADQHDR,FATAL

;Insert packet on queue

Interlocked queues can be shared between a CPU and an intelligent I/O
controller:

• The DR32 is a general-purpose, intelligent data port that connects a VAX
internal memory bus to a bus accessible to foreign devices. An applica­
tion program accesses the DR32 through command and response queues
in VAX memory. Synchronizing access to the queues requires that both
the DR32 and the application program interlock the memory: the appli­
cation program uses interlocked queue instructions; the DR32 issues the
equivalent memory controller commands .

• The CI adapter (for example, CI780) is a microcoded intelligent controller
that connects a VAX to a CI bus and communicates with its counterparts
on other nodes. The CI port driver communicates with the CI adapter
through command and response queues. Both the CI adapter and the port
driver must make interlocked queue references, as previously described.

8.1.2. Synchronization at the Software Level

VMS uses the synchronization primitives provided by the hardware as the
basis for several different synchronization techniques. The following sections
summarize techniques used by the executive and application software.

165

Synchronization Techniques

Table 8.1 Characteristics. of Executive Synchronization Methods

Characteristic IPL Spinlocks Mutexes Locks
VAXcluster-wide No No No Yes
SMP systemwide No Yes Yes Yes
Available to outer modes No No No Yes
Usable from process context Yes Yes Yes Yes
Usable from system context Yes Yes Yes 1 No
Kinds of sharing Exclusive Exclusive Multiple Varied modes

readers or
one writer

Creation n/a Most fixed; Most fixed; Dynamic
some some
dynamic dynamic 2

1 Mutexes are used almost entirely for process context synchronization. The 1/0 database mutex is the
only one currently locked by system· threads.

2 Most mutexes are fixed. There are several data structures, however, :with a field containing a mutex to
synchronize access to other fields in the data structure. These mutexes are created dynamically with the
data structures that contain them.

8.1.2.1

8.1.2.1.1

8.1.2.1.2

166

Executive Synchronization Techniques. Table 8.1 contrasts the synchroniza­
tion techniques most commonly used by the VMS executive.

Spinlocks. When running on a uniprocessor, VMS synchronizes access to
system data structures using IPL. However, VMS cannot use IPL to control
access to. data structures in memory shared by the multiple CPUs of a
symmetric multiprocessing (SMP) system. To extend to an SMP environment
the uniprocessor synchronization provided by IPL, VMS Version 5 introduces
a mechanism called a spinlock.

In Version 5, a thread of execution not only raises IPL to block interrupts on
the same processor but also acquires a spinlock to block concurrent accesses
by other processors. Section 8.3 describes spinlocks in detail.

Each VMS Version 4 system wide. absolute queue is now a per-processor
absolute queue}·.a: systemwide interlocked queue, or a systemwide absolute
queue protected by a spinlock.

Some shared system data was· accessed in previous versions by a single
noninterruptible instruction. In VMS Version 5, such accesses have been
converted to an interlocked instruction or are made under the protection of
a spinlock.

Mutexes. Accesses to shared system data structures by multiple processes
from IPLs below 3 can be synchronized by m.utexes. Section 8.5 describes
mutexes.

8.1.2.1.3

8.1.2.2

8.1 Overview

Lock Management System Services. The lock management system services
(Enqueue Lock Request, $ENQ, and Dequeue Lock Request, $DEQ) provide
synchronization .tools that can be requested from all access modes. Further­
more, lock management is the fundamental VAXcluster-wide synchroniza­
tion primitive. Lock management system services are used, for example, by
Record Management Services (RMS), the file system, the job controller, the
device allocation routines, and the Mount Utility to provide clusterwide
synchronization. (See Appendix H for a description of some of these uses.)
The lock management system services are described in the VMS System
Services Reference Manual; Chapter 10 in this book describes their internal
workings.

Another important synchronization issue for VMS involves disk storage.
Data structures on a shared disk (for example, files and records within files
and the actual disk structure) are protected by lock management system
services. This form of synchronization serves whether the disk is accessed
by multiple processes on a single system or by multiple processes on multiple
nodes of a V AXclust,er system.

Application Synchronization Techniques. A process-private data structure
accessed from both asynchronous system trap (AST) and non-AST threads of
execution must ,be protected against concurrent access. Access to the data
structure can be ·~ynchronized by blocking AST delivery, either by raising
IPL to 2 or by requesting the Set AST Enable ($SETAST) system service.
The concept of AST reentrancy and ways of achieving it are described in the
Guide to Creating !VMS Modular Procedures.

The design of a multiprocess application that runs on an SMP system must
take into account the possibility that multiple processes may run on different
CPUs and access shared data concurrently. User processes that share global
sections can execute interlocked instructions to synchronize their accesses
to data in the global sections. They can also use the lock management system
services for synchronization.

New with VMS Version 5, the parallel processing Run-Time Library proce­
dures provide support for a number of different synchronization techniques
suitable for user access mode applications. These techniques include

• Mutual exclusion implemented through an application-created semaphore
or spinlock

• Event synchronization, by which one or more processes can wait for the
occurrence of a user-defined event that is triggered by another process

• Barrier synchronization, by which multiple processes wait until a specified
number of them have all reached a designated point in their execution -

The VMS RTL Parallel Processing (PPL$) Manual describes these procedures
and their use.

167

Synchronization Techniques

8.2

168

VMS provides more basic event synchronization through event flags. Event
flags are local to a process or shared among a group of cooperating processes
running on a uniprocessor or an SMP system. An event flag can represent
the completion of an asynchronous system or RMS service. A shared, or
common, event flag can represent any event detectable and agreed upon by
the cooperating processes. Chapter 9 describes the implementation of event
flags, and Chapter 6 details their use in asynchronous services.

ELEVATED IPL

Raising IPL on a processor blocks all interrupts on that processor at the
specified IPL value and all lower values of IPL. The traditional VMS method
of synchronizing access to system data has been to raise IPL to a high enough
level to block all interrupts whose service routines touch that data. For
example, access to the variable-length nonpaged pool list is synchronized
at IPL 11, the IPL of the highest interrupt thread from which nonpaged pool
allocation is permitted. At IPL 11, all fork process interrupts are blocked,
but higher priority software and hardware interrupts can still be granted.

The IPL, stored in the processor status longword (PSL) register bits (20:16),
is altered by writing the desired IPL value to the processor register PR$_IPL
with the MTPR instruction. This change in IPL has traditionally been made by
invoking the SETIPL or DSBINT macro. Their macro definitions, somewhat
simplified, follow:

.MACRO SETI PL IPL = #31
MTPR IPL,S-#PR$_IPL

.ENDM SETI PL

.MACRO DSBINT IPL = #31, DST = -(SP)
MFPR s-#PR$_IPL,DST
MTPR IPL,S-#PR$_IPL

.ENDM DSBINT

The SETIPL macro changes IPL to the specified value. If no argument is
present, IPL is elevated to 31. This macro is used when the IPL will later be
explicitly lowered with another SETIPL or simply as a result of executing an
REI instruction. That is, the value of the saved IPL is not important to the
routine that is using the SETIPL macro.

The DSBINT macro first saves the current IPL before elevating IPL to the
specified value. If no alternative destination is specified, the old IPL is saved
on the stack. The default IPL value is 31. This macro is usually used when
a later sequence of code must restore the IPL to the saved value with the
ENBINT macro. ENBINT, the counterpart to the DSBINT macro, restores
the IPL to the value found in the designated source argument.

The successful use of IPL as a synchronization tool requires that IPL be
raised (not lowered) to the appropriate synchronization level. Lowering IPL
defeats any attempt at synchronization. Moreover, a thread of execution
entered as the result of an interrupt cannot lower IPL below its entry IPL

8.2 Elevated IPL

without risking a reserved operand fault. H it lowered IPL and then tried to
REI, restoririg a PSL with a higher IPL, the REI microcode would generate a
reserved operand fault. !However; a thread of execution may raise and then
lower its IPL as long as it does not lower IPL below that of its entry.)

Suppose a thread of execution modifying more than one location in a
shared database raises IPL to x to block interrupts from other accessors of
the database. The first thread of execution is interrupted, after partly making
its modifications, by a second thread running in response to a higher priority
interrupt. The shared database is now in an inconsistent state. H the second
thread were to lower IPL to x in a mistaken attempt to synchronize access
to the database, it could receive incorrect data or corrupt the database.

Integrity of the database would, however, be maintained if the second
thread of execution were to reschedule itself to run as the result of an inter­
rupt at or below x and access the database from the rescheduled thread. Fork­
ing is the primary way in which an interrupt thread of execution reschedules
itself to run at a lower IPL. Chapter 4 describes forking in more detail.

The sections immediately following briefly describe the synchronization
use of various IPLs. Note, however, that most of the SETIPL, DSBINT, and
ENBINT macro invocations in the executive have been replaced by invoca~
tions to macros that acquire and release spinlocks. Each of the IPLs tradi­
tionally used for synchronizing access to shared data now has one or more
spinlocks associated with it. On a uniprocessor system, the act of acquiring
a spinlock is transparently reduced to raising IPL to that of the spinlock.
Section 8.3.6 describes the use of each spinlock. From the perspective of
a uniprocessor system, those sections can be interpreted as describing the
synchronization use of the spinlocks' IPLs.

The macro $IPLbEF defines symbolic names for IPL values.

8.2.1 IPL$_POWER

Routines in the executive raise IPL to IPL$_POWER, or 31, to block all
interrupts, including power failure, an IPL 30 interrupt. IPL is raised to this
level only for a short period of time once the system has been initialized.
IPL$_EMB and IPL$_MCHECK are synonyms for IPL$_POWER; they are two
different names for the same spirilock.

• Device drivers raise IPL to 31 to prevent a powerfail interrupt from occur­
ring, just before they invoke IOC$WFixxCH.

• The entire bootstrap sequence operates at IPL 31 to put the system into a
known state before allowing interrupts to occur.

• As described in Section 8.3.6.19, error log buffer allocation and deallocation
occur at this IPL.

• As described in Section 8.3.6.18, machine check exception and parts of the
CPU-specific error interrupt service routines execute at IPL 31.

• XDELTA, the executive debugger, runs at IPL 31.

169

Synchronization Techniques

8.2.2 IPL$_HWCLK and IPL$_HWCLKLO

When IPL is raised to IPL$_HWCLK, or 24, interval timer interrupts are
blocked. On newer VAX processors, the interval timer interrupts at IPL$_
HWCLKLO, or 22; on older ones, it interrupts at IPL 24. Chapter 11 identifies
the interval timer IPL associated with each processor type. Section 8.3.6.16
describes the use of the associated spinlock.

8.2.3 Device IPLs

A device driver raises IPL to the level at which its associated device inter­
rupts. Raising IPL prevents the device from interrupting while its device
registers are being read or written.

8.2.4 Fork IPLs

The executive uses fork IPLs to synchronize access to unit control blocks
(UCBs). UCBs are accessed by device drivers and by process-based code, such
as the Queue 1/0 ($QIO) and Cancel 1/0 on Channel ($CANCEL) system
services.

A device driver also uses its associated fork IPL as a synchronization level
when accessing data structures that control shared resources, such as multi­
unit controllers, data path registers, or map registers. For this synchroniza­
tion to work properly, all devices sharing a given resource must use the same
fork IPL.

Fork processing, the technique whereby a device driver lowers IPL below
device interrupt level in a manner consistent with the interrupt nesting
scheme, also uses the serialization technique described in Section 8.4.

8.2.5 IPL$_SYNCH

170

IPL$_SYNCH is the IPL at which the software timer routine executes. This
routine services timer queue entries (TQEs) and handles quantum expiration.
(The software timer interrupt is requested and granted at IPL 7, but the
interrupt service routine raises IPL and runs primarily at IPL$_SYNCH. See
Chapter 11 for further details.)

IPL$_SYNCH is the level to which IPL must be raised for any routine
to access several systemwide data structures, for example, the scheduler
database. By raising IPL to IPL$_SYNCH, all other interrupt service routines
on that processor that might access the same systemwide data structure are
blocked from execution until IPL is lowered.

IPL$_SYNCH is also the IPL at which most driver fork processing oc­
curs. While the processor is executing at IPL$_SYNCH, certain systemwide
events, such as scheduling and 1/0 postprocessing, are blocked. However,

8.2 Elevated IPL

other more important operations, such as hardware interrupt servicing, can
continue.

The following are synonyms of IPL$_SYNCH with the same numeric
value: IPL$_MMG, IPL$_SCHED, IPL$_FILSYS, IPL$_ TIMER, and IPL$_JIB.
(Note that this is a change in the meaning of IPL$_SCHED, whose value
was 3 in versions of VMS prior to Version 5.) Each of these synonyms
corresponds to a spinlock. IPL$_SCS and IPL$_IOLOCK8 are also synonyms
of IPL$_SYNCH; they are two different names for the same spinlock.

In early versions of VMS, the value of IPL$_SYNCH was 7. In VMS Ver­
sion 4, its value was changed to 8 to enable three executive components to
run at the same IPL: the distributed lock manager, system communication

.services (SCS), and the CI port driver.
On a VAXcluster system, the lock manager must communicate cluster­

wide with its counterparts on other nodes to perform locking. The lock
managers communicate using the message services of SCS. SCS is also used
heavily by class and port drivers and runs at the same IPL they do, IPL$_
SCS, or 8. The SCS port drivers must run at IPL 8 because some of them
need to synchronize access to shared resources and data structures such as
buffer and response descriptor tables and with mount verification activity.

In addition to having to communicate with SCS at IPL$_SCS, the lock
manager also requires access to the scheduler database, which is synchro­
nized at IPL$_SYNCH. To simplify the interactions among the lock manager,
SCS, and other threads of execution modifying the scheduler database, IPL$_
SYNCH and IPL$_SCS were made the same value by changing the value of
IPL$_SYNCH.

8.2.6 IPL$_QUEUEAST

When IPL$_SYNCH had a value of 7, device drivers and other high IPL
threads of execution that needed to access data such as the scheduler data­
base forked to IPL 6 so that they could raise IPL to IPL$_SYNCH.

The terminal driver, for example, might notify a requesting process of un­
solicited input or a CTRL/Y through an AST (see Chapter 7). Queuing an AST
to a process requires scheduler database modifications, which must be made
at IPL$_SYNCH. The IPL 7 interrupt could not have been used to achieve
the same result because it is reserved for software timer interrupts. Thus,
this synchronization technique used the first free IPL below 7, the IPL 6 soft­
ware interrupt. IPL 6 was named IPL$_QUEUEAST, since its primary use as
a fork IPL was AST enqueuing.

As a result of changing IPL$_SYNCH to 8, IPL$_QUEUEAST forking is
generally unnecessary for serializing access to databases synchronized at
IPL$_SYNCH. Fork processes running at IPL 8 can remain at 8; device inter­
rupt service routines and fork processes running at IPLs above 8 can fork to 8.
However, many instances of IPL$_QUEUEAST fork processing remain in

171

Synchronization Techniques

VMS, unchanged from earlier versions. Executing these operations at IPL$_
QUEUEAST, rather than at IPL 8, results in placing a somewhat higher pri­
ority on IPL 8 fork processing, which is typically 1/0 processing.

8.2..7 IPL$_RESCHED

IPL$_RESCHED (3) is the IPL of the rescheduling interrupt, whose service
routine removes the current process from execution and selects another
process to execute. Kernel mode code runµing in process context raises
IPL to IPL$_RESCHED to block this interrupt. For example, the System
Generation (SYSGEN) utility raises to this IPL while performing a WRITE
ACTIVE command or while accessing the processor's per-CPU data area.

There are only two IPLs used for synchronization that do not have an
associated spinlock. One is IPL$_RESCHED; the other is IPL 2.

8.2..8 IPL 2.

IPL 2 is used to block AST interrupts within a process. When system service
procedures raise IPL to 2, they are blocking the delivery of all ASTs, but often
particularly the kernel AST that causes process deletion. In other words, if
a process is executing at IPL 2 or above, it cannot be deleted or suspended.
As a result of a change in VMS Version 4, it is also possible to block process
deletion and suspension by disabling AST delivery to kernel mode.

Raising IPL to 2 is used in several places to prevent process deletion be­
tween the time that some system resource (such as system dynamic memory)
is allocated and the time that ownership of that resource is recorded (such
as the insertion of a data structure into a list). For example, the $QIO sys­
tem service executes at IPL 2 from the time that an 1/0 request packet is
allocated from nonpaged dynamic memory until that packet is queued to a
UCB or placed into the 1/0 postprocessing queue.

IPL 2 has another significance: it is the highest IPL at which page faults are
permitted. If a page fault occurs above IPL 2, the page fault exception service
routine generates the fatal bugcheck PGFIPLHI. If there is any possibility
that a page fault can occur, because either the code executing or the data
beipg referenced is pageable, that code cannot execute above IPL 2. The
converse of this constraint is that any code that executes above IPL 2, and
all data referenced by such code, must be locked into memory in some way.
Appendix B shows some of the techniques that the VMS executive uses to
dynamically lock code or data into memory referenced from IPLs above 2.

8.3 SPINLOCKS

172

A spinlock is acquired by a processor to synchronize access to data shared
by members of an SMP system. The most basic form of spinlock is a bit
that describes the state of a particular set of shared data; the bit is set to
indicate that a processor is accessing the data. Interlocked instructions are

8.3 Spinlocks

used to test and set the bit or clear it. A spinlock enables a set of processors
to serialize their access to shared data.

A processor needing access to some shared data tests and sets the spinlock
associated with that data with a BBSSI instruction. If the bit was clear, the
processor is allowed access to the data. This is known as locking or acquiring
the spinlock. If the bit was already set, the processor must wait, because
another processor is accessing the data.

The waiting processor essentially spins in a tight loop, executing repeated
bit test instructions to test the state of the spinlock. This is known as a
busy wait. It is from this spinning that the term spinlock derives. The busy
wait ends when the processor accessing the data clears the bit with a BBCCI

instruction to indicate that it is done. Clearing the bit is known as unlocking
or releasing the spinlock.

A resource synchronized through elevated IPL on a uniprocessor is syn­
chronized through a combination of spinlock and elevated IPL on an SMP
system. A thread of execution running on one processor acquires a spinlock
to serialize access to the data with threads of execution running on other pro­
cessors. Before acquiring the spinlock, the thread of execution raises IPL to
block accesses by other threads of execution running on the same processor.
The IPL value is determined by the spinlock being locked.

The concept of spinlock adds a dimension to the concept of raising IPL and
extends its effect across all processors in the SMP system. Acquiring a spin­
lock, however, is different from causing IPL to be raised on all SMP members
to block all threads running at lower IPL. Instead, only those threads of exe­
cution that try to acquire a spinlock owned by another processor are blocked.
This provides more parallelism than simply extending an IPL raise would.
Furthermore, since some IPLs, such as IPL$_SYNCH, are now represented
by multiple spinlocks, the granularity of locking is finer, allowing for even
more parallelism.

To adapt more easily from IPL-based synchronization to the needs of sym­
metric multiprocessing, the implementation of spinlocks permits nested ac­
quisitions of a spinlock. For example, many routines that manipulate the
scheduler database raised IPL to IPL$_SYNCH in earlier versions of VMS.
If one routine already at IPL$_SYNCH invoked another routine that raised
IPL to IPL$_SYNCH to access the same database, no harm was done. Un­
der VMS Version 5, this sequence results in multiple concurrent, or nested,
acquisitions of the SCHED spinlock by the same processor.

A bit used as a spinlock is actually part of a larger data structure called a
spinlock control block. Some spinlock control blocks are defined in the VMS
executive; these are called static spinlocks. Others, created during system
operation, are called dynamic. Section 8.3.1 describes the spinlock control
block; Section 8.3.3, static spinlocks; and Section 8.3.4, dynamic spinlocks.

To acquire or release a spinlock, kernel mode code invokes one of several
macros, identifying the spinlock in a macro argument. The macros generate

173

Synchronization Techniques

code that tests that multiprocessing has been enabled and dispatches to
executive routines that perform the actual spinlock operations.

The executive routines are invoked through base image transfer vectors
(see Chapter 29). There are actually three different versions of these rou­
tines, conditionally assembled from one source module and built into three
loadable executive images:

• Module SPINLOCKS, in SYSTEM_SYNCHRONIZATION_MIN.EXE, is
the default version on an SMP system. It is optimized for performance
and is referred to as the minimum or streamlined version.

•Module SPINLOCKS_MON, in SYSTEM_SYNCHRONIZATION.EXE, is
the full-checking version that monitors spinlock activity. It is designed to
facilitate troubleshooting of synchronization problems .

• Module SPINLOCKS_UNI, in SYSTEM_SYNCHRONIZATION_UNI.EXE,
runs on a uniprocessor, a processor that is not a member of an SMP system.

The SYSGEN parameter MULTIPROCESSING dictates which of these is
loaded at system initialization. Its possible values are

• 0-Load the uniprocessor image .
• I-Load the full-checking multiprocessing version if the CPU type is ca­

pable of symmetric multiprocessing and if there are two or more CPUs
present or the CPU type is capable of adding CPUs dynamically after boot­
strap; otherwise, load the uniprocessing version.

• 2-Always load the full-checking version, regardless of CPU configuration.
• 3-Load the streamlined multiprocessing version if the CPU type is capable

of symmetric multiprocessing and if there are two or more CPUs present
or the CPU type is capable of adding CPUs dynamically after bootstrap;
otherwise, load the uniprocessing version.

The default value for this parameter is 3.
Section 8.3.8 describes the streamlined versions of the spinlock routines.

Section 8.3.9 describes the full-checking versions, which implement a more
complex form of spinlock than the streamlined ones do. The routines in
the uniprocessor version ai;e mostly null routines, each consisting of an
RSB instruction, and are not described here. They enable code requiring
synchronization to invoke the same macros and routines regardless of the
CPU configur3:tion.

8.3.1 Spinlock Control Block

174

Figure 8.1 shows the layout of a spinlock control block. The macro $SPLDEF
defines symbolic names for its fields.

The low bit of field SPL$B_SPINLOCK has two meanings: one for the
streamlined spinlock routines, and one for the full-checking routines. The
former use the basic form of spinlock; the low bit of SPL$B_SPINLOCK is
the actual spinlock. For the full-checking routines, this bit merely serializes

8.3 Spinlocks

VEC_INXI RANK IPL I SPINLOCK

WAIT CPUS OWN CNT -
SUBTYPE I TYPE SIZE

OWN CPU -
OWN_PC_ VEC (32 bytes)

WAIT PC -
I- ACQ - COUNT -I

BUSY WAITS -
I- SPINS -I

TIMO INT -
RLS PC -

Figure 8.1
Layout of a Spinlock Control Block

access to the spinlock control block; the fields SPL$W _OWN_CNT and
SPL$LOWN_CPU are the actual lock (see Section 8.3.9).

SPL$B_IPL specifies the IPL associated with the spinlock, the value to
which IPL is raised when a processor acquires the spinlock.

SPL$B_RANK defines the rank of the spinlock. Spinlock rank is stored
in an inverted form. Its possible values range from 0 to 31, with 0 being
the highest rank. That is, rank increases from 31 to 30 to 29, and so on.
This chapter uses the inverted form in its descriptions. Each static spinlock
has a unique rank; all dynamic spinlocks have the same rank, which is 31.
A thread of execution that acquires multiple static spinlocks must acquire
them in increasing rank (see Section 8.3.5).

SPL$W _OWN_CNT records how many concurrent and nested times a pro­
cessor has locked the spinlock. This field is initialized to -1 to indicate that
a spinlock is unowned. With an owner count biased by -1, the acquire code
can more easily distinguish increments that cause a transition between un­
owned and owned from those that do not. When a processor first acquires
a spinlock, the value is incremented to 0. If a thread of execution invokes
another routine that acquires the same spinlock, the owner count is incre­
mented to 1.

SPL$W _SIZE and SPL$B_ TYPE contain the spinlock control block's size
and type. SPL$B_SUBTYPE indicates the type of spinlock: static spinlock,
fork spinlock, or device spinlock. These types are described further in the
sections that follow.

SPL$LOWN_CPU contains the address of the per-CPU database of the
processor that has acquired the spinlock. The address is recorded when a
processor acquires the spinlock. The field is cleared when a processor releases
its last nested acquisition of the lock.

SPL$L TIMO_INT is the maximum amount of time a processor can wait
for the spinlock. After this interval has elapsed, the attempted spinlock

175

Synchronization Techniques

acquisition times out. During system initialization, the timeout value is
initialized to one of two values: if the spinlock IPL is less than or equal
to 8, the value of the SYSGEN parameter SMP _LNGSPINWAIT is used;
otherwise, the value of the SYSGEN parameter SMP _SPINWAIT is used.
There are two different values because the MMG and SCHED spinlocks are
occasionally held longer than would be reasonable for spinlocks at higher
IPLs.

The spinlock control block fields that follow are used only by the full­
checking version of the spinlock routines.

SPL$W _WAIT _CPUS contains the number of processors waiting to acquire
the spinlock.

The eight longwords beginning at SPL$L_OWN_PC_ VEC form a ring buffer
that records the most recent program counters (PCs) from which an owner
CPU acquired and released the spinlock. SPL$B_ VEC_INX contains the index
of the next entry to be written in the ring buffer.

SPL$L_ WAIT _PC contains the address of the most recent busy wait for
the spinl~ck. "

SPL$Q_ACQ_COUNT is the cumulative number of successful acquisi­
tions of the spinlock. SPL$L_BUSY_WAITS is the cumulative number of
failed acquisitions. SPL$Q_SPINS is the cumulative number of spins.

SPL$LRLS_PC is the most recent return PC of a thread of execution that
releases all nested acquisitions at once.

8.3.2 Spinlock-Related Per-CPU Database Fields

176

In an SMP system, all processors map to the same system space. Each proces-
. sor, however, has a piece of system space for its own use. The space contains,
for example, the processor's interrupt stack and fork queues. VMS executive
code invokes the FIND_CPU_DATA macro to determine the address ofthe
processor's space as a function of the location of its interrupt stack.

Each processor's private area is called its per-CPU data area. Chapter 34
contains more information on the organization and use of the per-CPU data
area. The macro $CPUDEF defines symbolic names for the fields in the per­
CPU database, a part of the per-CPU data area.

There are several fields in the per-CPU database whose use is related to
spinlocks:

• CPU$L_PHY_CPUID-Processor physical ID number
• CPU$LRANIL VEG-Summary of spinlocks that are currently held by the

processor
• CPU$L_IPL_ VEC-Summary of IPLs at which spinlocks are currently held
• CPU$L_IPL_ARRAY-Count of spinlocks currently held at each IPL

When a processor tries to acquire a spinlock, it tests whether it is in the

8.3 Spinlocks

override set by examining the bit number of its CPU ID in the override
set cell. It makes a similar test to determine whether it has bugchecked.

The other three per-CPU database fields previously listed are used only by
the full-checking spinlock routines.

Each bit, excluding bit 31, set in the per-CPU database field CPU$L_
RANK_ VEC corresponds to a static spinlock held by the processor; its bit
position identifies the spinlock rank. As a processor acquires and releases a
spinlock, the bit corresponding to the spinlock's rank is set and cleared. Since
each spinlock has a unique rank, the number of bits set in the longword are
the number of different spinlocks held by the processor. Bit 31 is not used
in this way because the rank 31 is for dynamic spinlocks, more than one of
which can be held concurrently.

Each bit set in the field CPU$LIPL VEC corresponds to an IPL at which
the processor holds one or more spinlocks. The IPL representation is in­
verted. When a processor acquires a spinlock, the IPL of the spinlock is
subtracted from 31. The bit in CPU$LIPL_ VEC corresponding to that num­
ber is set. The field thus represents the current set of (inverted) spinlock IPLs
active on the processor.

The inverted number is also used as an index into the 32-longword array
at CPU$LIPLARRAY. It counts the number of different spinlocks held at
each IPL. There is no one-to-one mapping of spinlock to IPL: each IPL does
not have a unique spinlock associated with it; some IPLs have more than
one associated spinlock.

8.3.3 Static Spinlocks

All static spinlock control blocks are defined in module LDAT, which also
contains a table listing their addresses. The base image global SMP$AR_
SPNLKVEC contains the address of the table, and SMP$GW _SPNLKCNT
contains the number of spinlocks in the table. Figure 8.2 shows this table
and several representative spinlocks.

A static spinlock is identified by the position of its address in the table.
This is known as its index, and is the longword postindex offset of its address
in the table. The macro $SPLCODDEF defines symbolic names for these
indexes; for example, SPL$C_SCHED is the index of the SCHED spinlock.
The lowest index used is 32. Table entries with lower indexes are empty.
Having index values of 32 or greater makes it possible to distinguish a
spinlock index from an IPL value by testing whether bit 5 is set. Section 8.3. 7
describes why making this distinction is necessary.

Table 8.2 lists the static spinlocks with a brief description of what each
synchronizes and its associated IPL. The spinlocks are listed in order by
rank, with lower ranking spinlocks first. Section 8.3.6 describes their use in
somewhat more detail.

177

Synchronization Techniques

SMP$GW _SPNLKCNT
longwords

Figure 8.2
Static Spinlock Table

SMP$AR _SPNLKVEC::

l or---f I
32 unused longwords

1>------f-Fln2d0ex I EMB
_ _ Spin lock

Control Block

l~·f .. ~F~ IPOOL _ _ Spinlock
Control Block

ll-----~'--lni:-x -----'I QUEUEAST
_ _ Spin lock

Control Block

11-----------lJ '-----------'

A static spinlock that synchronizes fork processing is called a fork spin­
lock, often shortened to fork lock. A device UCB and any other type of fork
block (FKB) identify the driver's fork lock, and indirectly its fork IPL, by
specifying the spinlock index in the field named UCB$B_FLCK or FKB$B_
FLCK. Some static spinlocks are never used as fork locks; their associated
IPLs are not in the fork IPL range. Some static spinlocks are only used as
fork locks, for example, the IOLOCK8 spinlock, and some are sometimes
used as fork locks, for example, the MAILBOX spinlock.

The SPL$B_SUBTYPE field of a spinlock used only as a fork lock contains
the value SPL$C_SPL_FORKLOCK; all other static spinlocks are identified
simply as spinlocks, with the value SPL$C_SPLSPINLOCK. The main dis­
tinction between fork locks and other static spinlocks is that fork locks are
typically acquired and released through different macros. Kernel mode code
acquires and releases a static spinlock by invoking the LOCK and UNLOCK
macros; the FORKLOCK and FORKUNLOCK macros are used for fork locks.
Section 8.3. 7 describes these macros.

Another table with information about static spinlocks is the spinlock IPL
table, at base image global symbol SMP$ALIPLVEC. The table is indexed
by static spinlock index and contains the IPL corresponding to that spinlock.
This table is referenced in the code generated by the FORKLOCK macro (see
Section 8.3. 7) and by the routine EXE$FORK (see Chapter 4).

8.3.4 Dynamic Spinlocks

178

A dynamic spinlock is not listed in the spinlock table and has no index.
A dynamic spinlock control block is allocated from nonpaged pool and is

8.3 Spinlocks

Table 8.2 Static Spinlocks

Name IPL Synchronizes

QUEUEAST 6 IPL 6 fork processing
FILSYS 8 File system data structures such as file

control blocks
IOLOCK8/SCS 1 8 IPL 8 fork processing; SCS-related code
PR_LK8 8 Primary processor's IPL 8 processing
TIMER 8 Timer queue entries

JIB 8 Job information block fields JIB$L_BYTCNT
and JIB$LBYTLM

MMG 8 Memory management data structures
SCHED 8 Scheduler database
IOLOCK9 9 IPL 9 fork processing
PR_LK9 9 Primary processor's IPL 9 processing
IOLOCKlO 10 IPL 10 fork processing
PR_LKlO 10 Primary prqcessor's IPL 10 processing
IOLOCKll 11 IPL 11 fork processing
PR_LKll 11 Primary processor's IPL 11 processing
MAILBOX 11 Writing mailbox messages
POOL 11 Nonpaged pool lists and related data
PERFMON 15 Performance monitoring
INVALIDATE 19 or 21 2 Translation buffer invalidation
VIRTCONS 20 or 22 3 Virtual console database
HWCLK 22 or 24 4 Hardware clock database
MEGA 31 Miscellaneous data structures such as the

fork and wait queue
MCHECK/EMB 1 31 Machine check serialization; error log buffers

1 These two names are synonyms for the same spinlock.
2 The IPL associated with this spinlock is determined at system initialization and is 1

less than the IPL of the system's interprocessor interrupt. On VAX 88x0 and VAX 83x0
systems, its value is 19. On VAX 6000 series systems, its value is 21.

3 The IPL associated with this spinlock is determined at system initialization as the IPL
of the interprocessor interrupt: for VAX 6000 series systems, its value is 22; for other SMP
systems, its value is 20.

4 The IPL associated with this spinlock is determined at system initialization as the IPL
of the interval timer.

identified by its address. Currently, the only type of dynamic spinlock VMS
uses is a device spinlock, usually called a device lock. The SPL$B_SUBTYPE
field of a device lock's spinlock control block contains the value SPL$C_
SPL_DEVlCELOCK.

All dynamic spinlocks have the same rank, 31. However, the field SPL$B_
RANK in a dynamic spinlock control block is initialized to -1 for quick
identification in the routines that acquire and release spinlocks.

As SYSGEN identifies the 1/0 configuration and builds the 1/0 database,

179

Synchronization Techniques

it creates device locks. SYSGEN invokes the routine SMP$ALLOC_SPL to
create a device lock and SMP$INIT _SPL to initialize it. (Both routines are in
the module SPINLOCKS.)

There is one device lock for each unique device controller. SYSGEN stores
its address in the controller's channel request block field CRB$L_DLCK and
in the field UCB$LDLCK for each unit on that controller.

A device driver acquires and releases the device lock by invoking the
DEVICELOCK and DEVICEUNLOCK macros (see Section 8.3.7). The device
lock synchronizes access to the controller's registers and to fields in the UCB
that describe the controller's state.

8.3.5 Rules for Acquiring and Releasing Spinlocks

180

For synchronization with spinlocks to be successful, threads of execution
that use spinlocks must follow certain rules.

A thread of execution that acquires a spinlock to serialize access to some
shared data is guaranteed exclusive access to the data while it holds the spin­
lock. Thus, all its modifications to the data can be considered atomic from
the point of view of another thread trying to acquire the same spinlock to
access the same data. To ensure this degree of atomicity, the implementation
of spinlocks does not include breaking spinlock deadlocks. Rather, deadlocks
are prevented by requiring threads of execution that use spinlocks to acquire
spinlocks in a particular order.

The rank values of static spinlocks were carefully selected to reflect VMS
code paths and interdependencies among the shared data structures protected
by spinlocks. A thread of execution that acquires multiple spinlocks must
acquire them in order by increasing rank. This rule is designed to prevent
a deadlock such as the following: one processor has acquired spinlock A
and is busy waiting to acquire spinlock B to complete its task; a second
processor has acquired spinlock B and is busy waiting to acquire spinlock A
to complete its task.

All device locks share the same rank, 31, which is lower than that of any
static spinlock. However, a processor holding a static spinlock may acquire
a device lock; the rule previously listed does not apply to acquisition of a
device lock. The assumption is that the shared resource protected by a device
lock is not dependent on the resources protected by the static spinlocks.
Furthermore, each device lock is assumed to be independent of others, and a
processor is permitted to hold more than one device lock at a time. All code
acquiring multiple device locks concurrently must be written to prevent
deadlocks; all threads must acquire such device locks in the same order.

A thread of execution about to acquire a spinlock must be running at
an IPL less than or equal to that of the spinlock. This is analogous to the
principle of raising IPL to synchronize on a uniprocessor system. This rule
prevents the following type of synchronization failure:

8.3 Spinlocks

1. Thread A, running at IPL x, acquires a spinlock and begins to manipulate
the database it protects.

2. An interrupt at IPL x + 1 is requested and granted on the same processor,
and thread B begins execution, interrupting thread A.

3. To access the same database, thread B tries to acquire its spinlock. Be­
cause threads A and B are running on the same processor, the nested
acquisition is successful, and thread B begins to manipulate the database
left in an inconsistent state by the interruption to thread A.

A thread of execution that has acquired a spinlock may raise IPL but must
not lower it below the value associated with the spinlock. Lowering IPL
could lead to the synchronization failure just described.

8.3.6 Use of Static Spinlocks

8.3.6.1

8.3.6.2

8.3.6.3

The sections that follow describe the use of each of the static spinlocks.

Use of the QUEUEAST Spinlock. The QUEUEAST spinlock synchronizes
fork processing at IPL 6. The need for IPL 6 fork processing is largely his­
torical, based on constraints from VMS Version 3 and earlier versions, as
described in Section 8.2.6.

Use of the FILSYS Spinlock. The file system database consists of data struc­
tures that describe the mount state of a volume and the condition of open
files on the volume. The FILSYS spinlock synchronizes access to pieces of the
file system database that are accessed by routines external to the file system.
(As described in Appendix H, lock management system services synchronize
access to much of the file system database.)

For example, each open file is described by one or more window con­
trol blocks (WCBs). A WCB contains retrieval pointers that map the virtual
blocks of a file to logical blocks on a device. As part of processing an I/O re­
quest to a file, IOC$MAPVBLK, in module IOSUBRAMS, uses WCB contents
to convert virtual block numbers to their equivalent logical block numbers.
IOC$MAPVBLK and the file system routines that alter WCBs synchronize
their access to WCBs by acquiring the FILSYS spinlock.

Use of the IOLOCK8 and SCS Spinlocks. A driver can specify one of the
IOLOCKx spinlocks as its fork lock. A device UCB, which is also used as
a fork block, contains the fork spinlock index in the field UCB$B_FLCK.
The fork lock synchronizes access to data structures modified by the fork
process, in particular its UCB.

To synchronize access to UCB fields manipulated at fork level, an execu­
tive routine or the driver fork process itself acquires the spinlock specified
in UCB$B_FLCK.

181

Synchronization Techniques

8.3.6.4

8.3.6.5

8.3.6.6

8.3.6.7

182

IOLOCK8 is the fork lock most commonly used by device driver fork
processes. It is used by all standard drivers that compete for shared adapter
resources, like UNIBUS map registers. On a V AXcluster system that supports
remote 1/0, the MSCP server uses the IOLOCK8 spinlock.

IOLOCK8 and SCS are actually two names for the same spinlock.
System communication services (SCS) routines and lock manager routines

coordinate access to VAXcluster and lock management data structures using
the SCS spinlock. An SCS routine that executes as a fork process uses the
SCS spinlock as its fork lock. The $ENQ and $DEQ system services acquire
the SCS spinlock before altering the lock database.

Use of the PR_LK8 Spinlock. The PR_LK8 spinlock is a fork lock intended
for use only by the primary processor. Currently, it is not used.

Use of the TIMER Spinlock. The software timer interrupt service routine,
running on the primary processor in an SMP system, acquires the TIMER and
HWCLT{ spinlocks while it tests whether the first entry in the time-ordered
queue of TQEs has expired.

The routines that insert and remove TQEs from the timer queue acquire
the TIMER spinlock if they have to manipulate TQEs other than the first
in the list. The $SETIME system service acquires the TIMER spinlock when
it resets the time-of-year clock and reorders the timer queue as a result
of recalibrating pending TQEs with d~lta times. Chapter 11 provides more
information on these two interrupt service routines and the timer queue.

Use of the JIB Spinlock. The JIB spinlock synchronizes access to the job in­
formation block (JIB) fields JIB$LBYTCNT and JIB$L_BYTLM. The process
context routines EXE$DEBIT _BYTCNT and EXE$CREDIT _BYTCNT and
their alternative entry points acquire this spinlock to debit and credit the
job's available byte count. The intent of the spinlock is to block other pro­
cesses in the same job from simultaneously accessing these fields. Because
there is only one systemwide JIB spinlock, however, all other processes in
the system are blocked from accessing these fields in their own JIBs. This
implementation, however, has the virfue of simplicity, and such a~cesses are
believed to be sufficiently infrequent so as to present no performance issue.

Use of the MMG Spinlock. The MMG spinlock synchronizes access to the
memory management database. This includes the page frame number data­
base, section tables, page and swap file bitmaps, list of available system page
table entries, and working set lists.

Its main users are the page fault exception service routine, swapper, mem­
ory management system services, and routines that lock and unlock direct
1/0 buffer pages into memory.

8.3.6.8

8.3.6.9

8.3.6.10

8.3.6.11

8.3.6.12

8.3 Spinlocks

Use of the SCHED Spinlock. The SCHED spinlock synchronizes access to
the scheduler database, the set of software process control blocks and their
state queues, and mutex data structures. It also synchronizes access to a
process's ASt d.ata: the queue of pending AST control blocks, the PCB$B_
ASTEN and PCB$B_ASTACT bits, and the process's ASTLVL.

Use of the IOLOCKD Fork Spinlocks. The spinlocks IOLOCK9, IOLOCKlO,
and IOLOCKl 1 are fork locks intended for use on any processor. Their use
is similar to that of IOLOCK8, although they are not as commonly used.

Use of the PR_LKn Fork Spinlocks. The spinlocks PR_LK9, PR_LKlO, and
PR_LKl 1 are fork locks intended for use only by the primary processor. Cur­
rently, they have only one application: they are used in the logical console
interface on a VAX 83x0 system. This interface provides console support for
the secondary processor. VMS, running on the primary processor, emulates
a console terminal, passing characters to and froni the console subsystem
of the secondary processor. This interface is used only for console mode
communication; in particular, it is used to send commands to the secondary
processor's console subsystem to boot the processor and to restart it after
powerfail recovery. .

The processor console subsystem is sensitive to interrupt latency. To avoid
contention, the primary processor-specific fork locks were used rather than
the ordinary fork locks.

Use of the MAILBOX Spinlock. The MAILBOX spinlock synchronizes access
to mailboxes. It is the fork lock for the mailbox driver and the MA780 shared
memory mailbox driver. The mailbox driver's internal routines EXE$WRT­
MAILBOX and EXE$SNDEVMSG, invoked to write messages to a mailbox
without. going through the $QIO system serviCe, acquire this spinlock to
synchronize access to the mailbox.

Use of the POOL Spinlock. The POOL spinlock synchronizes access to the
nonpaged variable-length list. Its mam users are routines such as EXE$ALO­
NONPAGED and EXE$DEANONPAGED, in module MEMORYALC. It also .
synchronizes access to the performance monitoring statistics kept on non­
paged variable-length pool allocation failures. Note that the nonpaged looka­
side lists are accessed With interlocked queue instructions and thus do not
need the protection of a spinlock.

The code that implements the DC~ SHOW MEMORY command acquires
the POOL spinlock while it scans the list to collect information for its
display. The Monitor Utility acquires the POOL spinlock while it gathers ,r
information on pool use.

183

Synchronization Techniques

8.3.6.13

8.3.6.14

8.3.6.15

8.3.6.16

184

Use of the PERFMON Spinlock. The PERFMON spinlock synchronizes ac­
cess to the I/O performance database. Its main users are routines such as
PMS$START _REQ, in module IOPERFORM. It also synchronizes access to
the system global PMS$G1-IOPFMSEQ, the counter from which the $QIO
system service and the mass storage control protocol (MSCP) server assign
I/O request sequence numbers.

Use of the INVALIDATE Spinlock. To invalidate a cached system space
address translation, a member of an SMP system acquires the INVALIDATE
spinlock. The spinlock prevents more than one processor at a time from
initiating the sequence required for all SMP members to invalidate the entry
in their translation buffers (see Chapter 34).

Use of the VIRTCONS Spinlock. On existing SMP systems, there is only
one console terminal, which is controlled by the primary processor. The
primary processor provides an interface for secondary processors' program
mode console I/O. This interface is called a virtual console.

The VIRTCONS spinlock ensures that only one secondary processor at a
time performs I/O. through virtual console support to the physical console
(see Chapter 34).

Use of the HWCLK Spinlock. The HWCLK spinlock synchronizes access to
the hardware clock database, which consists of

• EXE$GQ_SYSTIME-System time quadword
• EXE$GL_ABSTIM_ TICS-System tick counter
• EXE$GQ_lST_TIME-Expiration time of the first TQE

The interval timer interrupt service routine, when running on the primary
processor of an SMP system, acquires the HWCLK spinlock to update the
system time quadword and tick counter, and to test whether the first TQE
has expired. If it has, the interrupt service routine requests an IPL 7 interrupt
for the software timer.

The software timer interrupt service routine, running on the primary pro­
cessor in an SMP system, acquires the TIMER and HWCLK spinlocks while
it tests whether the first TQE has expired.

The routines that insert and remove TQEs from the timer queue acquire
the HWCLK spinlock if they have to manipulate the first TQE in the list.
Chapter 11 gives more information on these two interrupt service routines
and the timer queue.

Any code that needs to read the system time acquires this spinlock. Gener­
ally, this is done indirectly through the macro READ_SYSTIME, which gen­
erates the following code with destination supplied by the macro
invoker:

8.3.6.17

8.3.6.18

8.3.6.19

8.3.7

8.3 Spinlocks

.EXTERNAL EXE$GQ_SYSTIME
LOCK LOCKNAME•HWCLK,­

SAVIPL•-(SP)
MOVQ G~EXE$GQ_SYSTIME,destination

UNLOCK LOCKNAME•HWCLK,­
NEWIPL=(SP)+

Use of the MEGA Spinlock. The MEGA spinlock has two uses: to synchro­
nize access to the fork and wait queue, used by fork processes to stall them­
selves for approximately half a second (see Chapter 4), and to synchronize
the entry of processors into the benign state (see Chapter 34).

Use of the MCHECK Spinlock. The machine check exception service rou­
tines for CPUs that can be members of an SMP system acquire the MCHECK
spinlock as needed. For example, the spinlock serializes access to VAXBI
registers or memory controller registers. Other CPU-specific error interrupt
service routines acquire the spinlock for similar reasons.

Use of the EMB Spinlock. The EMB spinlock synchronizes access to the
error log allocation buffers (see Chapter 32). The routines that reserve and
release pieces of error log allocation buffer for error messages acquire the
EMB spinlock.

The ERRFMT process locks the EMB spinlock when it is altering data
structures that describe the state of the error log allocation buffer. As Chap­
ter 32 describes, ERRFMT copies an error log allocation buffer in several
stages. It examines the error log buffer status flags and message counts with
the spinlock held. If it can copy the buffer, it sets a flag in the buffer to
inhibit further allocations in it and then releases the spinlock. At IPL 0,
ERRFMT copies the error log allocation buffer to its PO space and formats
and writes the messages to the error log file.

This spinlock also synchronizes access to a buffer pool used by SMP code.
A fork block is allocated from the buffer pool to create a thread of execution
that runs on the primary SMP processor.

Macros for Acquiring and Releasing Spinlocks

There are three sets of macros for acquiring and releasing spinlocks:

• LOCK and UNLOCK for static spinlocks
• FORKLOCK and FORKUNLOCK for static spinlocks used to synchronize

fork processing
• DEVICELOCK and DEVICEUNLOCK for dynamic spinlocks

These macros hide the details of the actual synchronization method used;
they facilitate writing code that can synchronize properly whether it exe­
cutes on a uniprocessor or a member of an SMP system.

185

Synchronization Techniques

186

Each of these macros has a number of arguments, only a few of which are
described here. The VMS Device Support Manual describes the use of these
macros and their arguments in more detail.

These macros differ primarily in the way their arguments identify the
spinlock of interest:

• An argument to LOCK and UNLOCK specifies the symbolic index of a
static spinlock.

• In a typical use of FORKLOCK or FORKUNLOCK, RS contains the address
of a UCB in which the field UCB$B_FLCK has a static spinlock index.

• In a typical use of DEVICELOCK or DEVICEUNLOCK, RS contains the
address of a UCB in which the field UCB$1-DLCK has the address of the
device lock.

The lock macros generate the following approximate sequence:

1. Optionally (determined by macro argument SAVIPL), save the current
IPL.

2. If SMP is not enabled, set IPL as requested and branch around the rest
of the instructions. The low bit of system global SMP$GL_FLAGS is set
when SMP is enabled.

3. Optionally (determined by macro argument PRESERVE), save RO.
4. Store the static spinlock index or the address of a dynamic spinlock in

RO.
S. Execute a JSB instruction to SMP$ACQUIRE in the case of a static

spinlock, or to SMP$ACQUIREL or SMP$ACQNOIPL in the case of a
dynamic spinlock.

6. If RO was saved, restore it.

A sample invocation of LOCK with its generated code follows:

;the macro invocation
;locks spinlock with index SPL$C_MMG

LOCK LOCKNAME=MMG,- ;Lock MMG database
PRESERVE=NO ;Don't preserve RO

;its generated code, slightly simplified
BLBC a·sMP$GL_FLAGS,30002$
MOVZBL s·#sPL$C_MMG,RO
JSB G~SMP$ACQUIRE

BRB 30003$
30002$:

MTPR s·#IPL$_MMG,S.#PR$_IPL
30003$:

A sample invocation of FORKLOCK with its generated code follows:

;the macro invocation
;locks spinlock whose index is in UCB$B_FLCK

FORKLOCK -
UCB$B_FLCK(R5),- ;Lock fork access
SAVIPL=-(SP) ;Save current IPL

8.3 Spinlocks

;its generated code, slightly simplified
MFPR s-#PR$_IPL,-(SP)
PUSHL RO
MOVZBL UCB$B_FLCK(R5),RO
BLBC G-SMP$GL_FLAGS,30002$
JSB G-SMP$ACQUIRE
BRB 30003$

30002$:

30003$:
POPL RO

A different invocation of FORKLOCK with its generated code follows.
This invocation specifies that the field UCB$B_FLCK may contain a fork
IPL rather than a spinlock index. The generated code tests bit 5 of UCB$B_
FLCK to see which it really is: a number less than 32 is an IPL; a number
higher than that is a spinlock index. If the number is an IPL, the generated
code sets IPL to that value. If the number is a spinlock index, the gener­
ated code tests whether multiprocessing is enabled. If it is, the code invokes
SMP$ACQUIRE; otherwise, it uses the spinlock index into an array contain­
ing the IPL associated with each static spinlock.

;the macro invocation
;specifies that UCB$B_FLCK has a fork IPL

FORKLOCK -
FIPL•YES

;its generated code, slightly simplified
PUSHL RO
MOVZBL B-FKB$B_FLCK(R5),RO
BBC #5,R0,30001$
BLBC G-SMP$GL_FLAGS,30002$
JSB G-SMP$ACQUIRE
BRB 30003$

30001$:
MTPR Ro,s-#PR$_IPL
BRB 30003$

30002$:
MTPR G-SMP$AL_IPLVEC[RO],S-#PR$_IPL

30003$:
POPL RO

A sample invocation of DEVICELOCK with its generated code follows:
~

;the macro invocation
;locks spinlock whose address is in UCB$L_DLCK

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ;Lock device interrupts
CONDITION=NOSETIPL ;Don't alter IPL

;its generated code, slightly simplified
BLBC G-SMP$GL_FLAGS,30006$
PUSHL RO
MOVL UCB$L_DLCK(R5),RO
JSB G-SMP$ACQNOIPL

' u

187

Synchronization Techniques

188

30004$:
30005$:

30006$:
POPL RO

The unlock macros generate the following approximate code sequence:

1. If SMP is not enabled, go to step 6.
2. Optionally !determined by macro argument PRESERVE), save RO.
3. Store the static spinlock index or the address of a dynamic spinlock in

RO.
4. If the macro argument CONDITION=RESTORE is present, execute a JSB

instruction to SMP$RESTORE to relinquish one acquisition of a static
spinlock or to SMP$RESTOREL for a dynamic spinlock.

If the macro argument is not present, execute a JSB instruction to
SMP$RELEASE to relinquish all nested acquisitions of a static spinlock
or to SMP$RELEASEL for a dynamic spinlock.

5. If RO was saved, restore it.
6. Optionally !determined by macro argument NEWIPL), set IPL to the

value requested.

A sample invocation of the UNLOCK macro with its generated code
follows:

;the macro invocation
UNLOCK LOCKNAME=INVALIDATE,­

PRESERVE=NO, -
NEWIPL=(SP)+

;its generated code, slightly simplified
BLBC G-SMP$GL_FLAGS,30033$
MOVZBL s-#SPL$C_INVALIDATE,RO
JSB G-SMP$RELEASE

30033$:
MTPR (SP)+,S-#PR$_IPL

;Don't save RO
;Restore IPL from stack

A sample invocation of FORKUNLOCK with its generated code follows:

;the macro invocation
FORKUNLOCK -

UCB$B_FLCK(R5),­
NEWIPL=(SP)+

;its generated code, slightly simplified
BLBC G-SMP$GL_FLAGS,30004$
PUSHL RO
MOVZBL UCB$B_FLCK(R5),RO
JSB G-SMP$RELEASE
POPL RO

30004$:
MTPR (SP)+,S-#PR$_IPL

;Release fork access
;Restore IPL from stack

8.3 Spinlocks

A sample invocation of DEVICEUNLOCK with its generated code fol­
lows. This example results in dispatch to SMP$RESTOREL rather than to
SMP$RELEASEL.

;the macro invocation
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),-
-;Release device interrupts

NEWIPL=(SP)+,- ;Restore IPL
CONDITION=RESTORE ;Conditionally release spinlock

;its generated code, slightly simplified
BLBC GASMP$GL_FLAGS,30007$
PUSHL RO
MOVL UCB$L_DLCK(R5),RO
JSB GASMP$RESTOREL
POPL RO

30007$:
MTPR (SP)+,SA#PR$_IPL

8.3.8 Streamlined Spinlock Routines

As described in Section 8.3, there are three versions of the spinlock routines,
conditionally assembled from one source. This section describes the stream­
lined versions of the spinlock routines, in module SPINLOCKS. Section 8.3.9
describes the full-checking versions of these routines.

The spinlock routines run in kernel mode, at IPL 3 and above. They include

• SMP$ACQUIRE-Acquire a static spinlock
• SMP$ACQUIREL-Acquire a dynamic spinlock
• SMP$ACQNOIPL-Acquire a dynamic spinlock without altering IPL
• SMP$RESTORE-Relinquish one acquisition of a static spinlock
• SMP$RESTOREL-Relinquish one acquisition of a dynamic spinlock
• SMP$RELEASE-Relinquish all nested acquisitions of a static spinlock
• SMP$RELEASEL-Relinquish all nested acquisitions of a dynamic spin­

lock

The spinlock lock macros dispatch to SMP$ACQUIRE or one of its alter­
native entry points, SMP$ACQNOIPL or SMP$ACQUIREL. Following is a
description of their actions, with some details of SMP operations omitted
for simplicity: ·

1. At entry to SMP$ACQUIRE, RO contains the index of a static spinlock.
Indexing into the static spinlock table, SMP$ACQUIRE obtains the ad­
dress of the spinlock and stores it in RO. (Entry points SMP$ACQUIREL
and SMP$ACQNOIPL are entered with the address of a dynamic spinlock
already in RO.)

2. The routine raises IPL to that of the spinlock, SPL$B_IPL. (Entry point
SMP$ACQNOIPL is entered with an IPL that is known to be correct and
thus not to be altered.)

189

Synchronization Techniques

190

3. SMP$ACQUIRE obtains the address of the processor's per-CPU data­
base.

4. It executes a BBSSI instruction, testing whether the spinlock bit is set
and setting it.

5. If the bit was clear, this processor now owns the spinlock. SMP$AC­
QUIRE stores the address of the processor's per-CPU database in SPL$L_
OWN_CPU, increments SPL$W _OWN_CNT, and returns to its invoker.

6. If the bit was set, the spinlock has already been acquired, possibly by
the processor trying to acquire it now. SMP$ACQUIRE compares the
address of the processor's per-CPU database with that stored in SPL$L_
OWN_CPU. If the two are equal, this attempted lock is a nested acquisi­
tion. SMP$ACQUIRE increments SPL$W_OWN_CNT and returns to its
invoker.

7. If the two addresses are not equal, another processor has acquired the
spinlock and this processor must wait for it to be released.

SMP$ACQUIRE increments the field CPU$B_BUSYWAIT in the per­
CPU database as a flag to the interval timer interrupt service routine.
When this field is nonzero, the interrupt service routine does not charge
the tick against process quantum. Chapter 11 gives further details.

SMP$ACQUIRE invokes the SPINWAIT macro, whose generated code
is described in the following paragraphs, through step 11. Executing the
generated code, SMP$ACQUIRE loops, testing the spinlock bit with a
BLBC instruction rather than with an interlocked instruction. When the
bit becomes clear, SMP$ACQUIRE repeats its attempt to acquire it with
an interlocked BBSSI instruction. If the attempt is successful, SMP$AC­
QUIRE takes the actions in step 5.

One distinction between the two forms of bit test is that an interlocked
instruction must fetch data with an interlock operation. On a system
with write-through cache, this means fetching the operand from memory.
A noninterlocked instruction can fetch its operands from cache if they
are present and valid in the cache. Thus, the noninterlocked bit test in­
struction BLBC usually accesses the spinlock bit stored in the processor's
cache. On a system capable of SMP processing, the processor hardware
monitors writes to memory and invalidates any cached locations that
have been overwritten. A processor that performs these functions is said
to have cache coherency. When the owning processor releases the spin­
lock, the stale value in the cache of the spinning processor is invalidated;
the next BLBC instruction on the spinning processor tests the updated
value .
. Use of a noninterlocked bit test instruction reduces memory bus traffic

while the.waiting processor is spinning. If the granularity of the memory
interlock is larger than a spinlock or if there are multiple processors
trying to acquire the same spinlock, use of the noninterlocked bit test
also reduces memory interlock contention.

8.3 Spinlocks

8. The waiting processor does more than execute repeated BLBC instruc­
tions. If the IPL at which it spins is higher than that of an interprocessor
interrupt, the processor cannot receive interrupts requesting that it per­
form various SMP functions !see Chapter 34). Under such circumstances,
SMP$ACQUIRE must make explicit tests for these requests and perform
them as necessary.

9. Also, while SMP$ACQUIRE is spinning, it performs a countdown and
times out the attempted acquisition if its wait time exceeds the spinlock
timeout value stored in SPL$L_ TIMO_INT. At the end of the interval,
SMP$ACQUIRE tests whether the spinlock's current owner is the same
as the processor that owned it at the beginning of the interval.

10. If the owners are not the same, the original owner released the spin­
lock and some other processor. acquired it before this one was able to.
SMP$ACQUIRE then repeats the countdown, attempting to acquire the
spinlock.

11. If the owners are the same, something is interfering with the proper oper­
ation of the owning processor. SMP$ACQUIRE invokes SMP$TIMEOUT,
in module SMPROUT. If it is possible that a recoverable condition led
to the timeout, SMP$TIMEOUT returns, and SMP$ACQUIRE repeats
the countdown. If it is not possible, SMP$TIMEOUT generates the fatal
bugcheck CPUSPINWAIT.

The spinlock unlock macro invocations that request a restore !relinquish
one.acquisition of a spinlock) dispatch to SMP$RESTORE or to its alternative
entry point SMP$RESTOREL. Those that request a release !relinquish all
nested acquisitions) dispatch to SMP$RELEASE or to SMP$RELEASEL. If
SMP$RESTORE relinquishes the only acquisition of a spinlock, it branches
to SMP$RELEASE.

These routines run in kernel mode, at IPL 3 and above. Following is a
description of their typical actions. These routines do not alter IPL; they run
at the IPL at which they are entered.

1. At entry to SMP$RESTORE, RO contains the index of a static spinlock.
Indexing into the static spinlock table, SMP$RESTORE obtains the ad­
dress of the spinlock and stores it in RO. !Entry point SMP$RESTOREL
is entered with the address of a dynamic spinlock already in RO.)

2. SMP$RESTORE decrements the spinlock owner count. If the count is
zero or positive, indicating that the spinlock is still owned, the routine
returns to its invoker.

3. If the spinlock is now free, SMP$RESTORE's path joins that of SMP$RE­
LEASE, at step 6, below.

4. At entry to SMP$RELEASE, RO contains the index of a static spinlock.
Indexing into the static spinlock table, SMP$RELEASE obtains the ad­
dress of the spinlock and stores it in RO. !Entry point SMP$RELEASEL
is entered with the address of a dynamic spinlock in RO.)

191

Synchronization Techniques

5. The routine sets the spinlock owner count to -1.
6. It clears SPL$L_OWN_CPU and executes a BBCCI instruction to clear

the low bit of SPL$B_SPINLOCK. If the low bit was already clear, the
routine generates the fatal bugcheck SPLRELERR on the presumption
that a serious failure has occurred.

7. Otherwise, the routine returns to its invoker.

8.3.9 Full-Checking Spinlock Routines

192

The full-checking version of the spinlock routines are in module SPIN­
LOCKS_MON. This module includes the same entry points as the stream­
lined version. The entry points are invoked from the same lock and unlock
macros.

Following is a description of the full-checking version of the acquire rou­
tines, with some details of SMP operations omitted for simplicity:

1. When SMP$ACQUIRE is entered, RO contains the index of a static spin­
lock. Indexing into the static spinlock table, SMP$ACQUIRE obtains
the address of the spinlock and stores it in RO. (Entry points SMP$AC­
QUIREL and SMP$ACQNOIPL are entered with the address of a dynamic
spinlock already in RO.)

2. The routine tests whether the IPL at entry is higher than that of the spin­
lock, indicating a synchronization failure. If it is, the routine generates
the fatal bugcheck SPLIPLHIGH. (The routine continues when the en­
try IPL is too high if the spinlock is a device lock; this exception exists
for MicroVAX systems, in which the interrupt arbitration IPL and bus
grant IPL differ.) If it is not, SMP$ACQUIRE sets the IPL to that of the
spinlock. (Entry point SMP$ACQNOIPL is entered with an IPL already
known to be correct.) _

3. SMP$ACQUIRE obtains the address of the processor's per-CPU data­
base.

4. It tests whether the target spinlock is a device lock. If it is, SMP$AC­
QUIRE skips the next step; a processor may acquire multiple device
locks, and the spinlock acquisition rule does not apply.

5. If the target lock is not a device lock, SMP$ACQUIRE tests whether
the attempted lock would violate the spinlock acquisition rule (see Sec­
tion 8.3.5). It executes an FFS instruction on CPU$1-RANIL VEC to de­
termine if the processor already holds a higher ranking spinlock. (Recall
that spinlock ranks are inverted, with zero being the highest rank.) If the
processor holds a higher ranking spinlock, the routine generates the fatal
bugcheck SPLACQERR.

6. SMP$ACQUIRE raises IPL to 31 and executes a BBSSI instruction to test
and set the low bit of SPL$B_SPINLOCK. If the bit is already set, some
other processor has exclusive access to the spinlock control block and
this processor must wait. SMP$ACQUIRE restores the previous IPL and

8.3 Spinlocks

spinwaits, as described in Section 8.3.8, retesting the bit with a BLBC

instruction.
When the bit becomes clear, the routine raises IPL to 31 and repeats its

attempt to acquire exclusive access to the spinlock control block. The
processor runs at IPL 31 to block all interrupts while it has exclusive
access to the spinlock control block. This avoids potential delays and
deadlocks that could occur if another processor, the owner of the spin­
lock, were unable to release it while the processor with exclusive access
to the control block was executing some interrupt service routine.

7. When the processor obtains exclusive access to the spinlock control
block, SMP$ACQUIRE examines the spinlock owner count and, if nec­
essary, owner CPU, to determine whether this processor may acquire the
spinlock.

8. If some other processor owns the spinlock, SMP$ACQUIRE takes the
following steps:

a. It increments the field CPU$B_BUSYWAIT in the per-CPU database
as a flag to the interval timer interrupt service routine. When this
field is nonzero, the interrupt service routine does not charge the
tick against process quantum (see Chapter 11).

b. It increments SPL$W _WAIT _CPUS, the number of processors waiting
for the spinlock, and SPL$LBUSY_WAITS, the cumulative number
of acquisitions that had to wait. The quotient of SPL$Q_SPINS, the
number of cumulative spins by all processors waiting for the spinlock
during its current use, and SPL$L_BUSY_WAITS is the basis of the
Monitor Utility statistic "spins per failed acquisition."

c. It clears the low bit of SPL$B_SPINLOCK to release its exclusive
access to the spinlock control block and lowers IPL to the larger of the
invoker's IPL and IPL$_RESCHED. This prevents any rescheduling
during the spinwait.

d. It zeros two registers to serve as its own spin counter.
e. It then spins, incrementing the spin counter each time and testing the

spinlock owner count to see whether the spinlock has been released.
While it spins, it performs a countdown and tests whether it must
perform SMP functions, as described in Section 8.3.8.

f. When the owner count indicates no owner, SMP$ACQUIRE raises
IPL to 31 and executes a BBSSI instruction to acquire exclusive access
to the spinlock control block, as described in step 6.

g. When SMP$ACQUIRE has exclusive access to the spinlock control
block, it adds its spin count to the total in SPL$Q_SPINS. It decre­
ments SPL$W _WAIT _CPUS to indicate one less processor waiting for
the spinlock. It decrements CPU$B_BUSYWAIT.

h. Reentering the main flow at step 7, SMP$ACQUIRE repeats its at­
tempt to acquire the spinlock.

193

Synchronization Techniques

194

9. If the spinlock is already owned by this processor, SMP$ACQU1RE in­
crements the owner count. It continues with step 11.

10. If the owner count is -1, indicating no owners, SMP$ACQU1RE incre­
ments the count and stores the address of the processor's per-CPU data­
base in SPL$LOWN_CPU. It sets the bit corresponding to the spinlock's
rank in the per-CPU database field CPU$L_RANK_ VEC.

It inverts the IPL of the spinlock and sets the corresponding bit in
CPU$L_IPL_ VEC. It increments the corresponding longword in CPU$L_
IPL_ARRAY.

11. At each successful acquisition, it saves the invoking thread's return PC
at the next position in the spinlock ring buffer at SPL$L_OWN_PC_ VEC
and updates the pointer to the next entry. It increments SPL$Q_ACQ_
COUNT to indicate one more successful acquisition.

12. It executes a BBCCI instruction to release its exclusive access to the
spinlock control block, lowers IPL to that associated with the spinlock,
and returns to its invoker with the spinlock held.

Following is a description of the full-checking version of the restore/release
routines, with some details of SMP operations omitted for simplicity. These
routines do not alter IPL; they run at the IPL at which they are entered.

1. At entry to SMP$RESTORE, RO contains the index of a static spinlock.
Indexing into the static spinlock table, SMP$RESTORE obtains the ad­
dress of the spinlock and stores it in RO. (Entry point SMP$RESTOREL
is entered with the address of a dynamic spinlock in RO.)

2. SMP$RESTORE compares the IPL at entry to the spinlock IPL. If the
IPL is lower than that of the spinlock, the routine generates the fatal
bugcheck SPLIPLLOW. (The routine continues when the entry IPL is too
low if the spinlock is a device lock; this exception exists for MicroVAX
systems, in which the interrupt arbitration IPL and bus grant IPL differ.)

3. SMP$RESTORE gets the address of the processor's per-CPU data­
base.

4. It executes a BBSSI instruction to obtain exclusive access to the spinlock
control block, spinwaiting (see Section 8.3.8) until the block is available.

5. It checks whether the spinlock is indeed owned by this processor. If not,
the rout!ne generates the fatal bugcheck SPLRSTERR.

6. It decrements the spinlock owner count. If the count is zero or positive,
indicating that the spinlock is owned, the routine saves the invoking
thread's return PC at the next position in the spinlock ring buffer at
SPL$LOWN_PC_ VEC and updates the pointer to the next entry .
. It executes a BBCCI instruction to release its exclusive access to the

spinlock control block and returns to its invoker.
7. If the owner count is -1, indicating that the spinlock is now free,

SMP$RESTORE's path joins that of SMP$RELEASE, at step 12, below.

8.4

8.4 Serialized Access

8. At entry to SMP$RELEASE, RO contains the index of a static spinlock.
Indexing into the static spinlock table, SMP$RELEASE obtains the ad­
dress of the spinlock and stores it in RO. (Entry point SMP$RELEASEL
is entered with the address of a dynamic spinlock already in RO.)

9. SMP$RELEASE makes the check against entry IPL (described in step 2)
and, if it is too low, generates the fatal bugcheck SPLIPLLOW.

10. It tests that the processor is indeed the spinlock owner and, if it is not,
generates the fatal bugcheck SPLRELERR.

11. It sets the spinlock owner count to -1 and records the invoking thread's
return PC in SPL$1-RLS_PC as the most recent thread to relinquish all
nested acquisitions of the spinlock.

12. It inverts the IPL associated with the spinlock and decrements the corre­
sponding longword in CPU$1-IP1-ARRAY, to indicate one less spinlock
held at that IPL. I{ the count becomes zero, SMP$RELEASE clears the
corresponding bit in CPU$1-IP1-VEC.

13. It clears the bit corresponding to the spinlock's rank in CPU$LRANK_
VEC.

14. It clears the spinlock owner field.
15. It saves the invoking thread's return PC at the next position in the

spinlock ring buffer at SPL$1-0WN_PC_ VEC and updates the pointer
to the next entry.

16. It executes a BBCCI instruction to release its exclusive access to the
spinlock control block and returns to its invoker.

SERIALIZED ACCESS

VMS uses a combination of software interrupts and queues to cause several
requests for the same data structure or procedure to be serialized. An im­
portant example of this serialization is the use of fork processes by device
drivers and other parts of the executive.

Fork processing is the technique that allows a device driver to lower IPL in
a manner consistent with the interrupt nesting scheme defined by the VAX
architecture. When a device driver receives control in response to a device
interrupt, it performs whatever steps are necessary to service the interrupt
at device IPL. For example, any device registers whose contents would be
destroyed by another interrupt must be read before dismissing the device
interrupt.

Usually, some processing can be deferred. For direct memory access (DMA)
devices, an interrupt signifies either completion of the operation or an error.
The code that distinguishes these two cases and performs error processing
is usually lengthy. If it executed at device IPL for extended periods of time,
it would reduce response to high-priority interrupts.

To delay further processing until IPL drops below the fork IPL associated

195

Synchronization Techniques

8.5

196

with this driver, the device driver interrupt service code invokes an execu­
tive routine, EXE$FORK, in module FORKCNTRL. EXE$FORK saves some
minimal context in a fork block, shown in Figure 4.1. It saves two general
registers and the address in the driver where control should return when IPL
drops.

EXE$FORK examines the field FKB$B_FLCK in the fork block. The other
name for this field is FKB$B_FIPL. This field contains either a fork IPL, in
the range 6 to 11, or a static spinlock index. EXE$FORK tests bit 5 in the
field to distinguish the two. If bit 5 is clear, EXE$FORK uses the fork IPL to
select the corresponding CPU-specific fork queue. If bit 5 is set, EXE$FORK
indexes the spinlock IPL table, at location SMP$A1-IPLVEC, to obtain the
IPL value associated with that spinlock. EXE$FORK inserts the fork block
at the end of the fork queue for that IPL and requests a software interrupt at
that IPL if the queue was empty.

A thread of execution that creates a fork process can use any appropriate
static spinlock as its fork lock. The only requirement is that the spinlock
IPL be one at which fork processing is performed: 6, 8, 9, 10, or 11.

Chapter 4 describes fork processing in further detail.

MUTUAL EXCLUSION SEMAPHORES (MUTEXES)

The synchronization techniques described so far all execute at elevated IPL,
thus blocking certain operations, such as a rescheduling request. However,
in some situations requiring synchronization, elevated IPL is an unaccept­
able technique. One reason elevated IPL might be unacceptable is that the
processor would have to remain at an elevated IPL for an indeterminately
long time because of the structure of the data. For example, associating to a
common event block cluster requires a search of the list of common event
blocks (CEBs) for the specified CEB. This might be a lengthy operation on a
system with many CEBs.

Furthermore, elevated IPL is unacceptable for synchronizing access to
pageable data. VMS bugchecks if a page fault occurs at an IPL above 2. Thus,
a pageable data structure cannot be protected by elevating IPL.

One synchronization mechanism that does not require elevated IPL is a
mutuai exclusion semaphore, or mutex. VMS uses mutexes for synchroniz­
ing kernel mode accesses to certain shared data structures. A mutex is essen­
tially a counter that controls read or write access to a given data structure or
database. VMS allows either multiple readers or one writer of a data structure
or database synchronized through mutex acquisition. Typically, the threads
of execution whose accesses are synchronized through a mutex are process
context threads.

Access to a mutex itself must be gained at elevated IPL with the SCHED
spinlock held. However, once a mutex is acquired, elevated IPL is not re­
quired to access the database represented by the mutex.

8.5 Mutual Exclusion Semaphores (Mutexes)

Table 8.3 List of Data Structures Protected by Mutexes

Data Structure
Shared logical name data structures
1/0 database
Common event block list
Paged dynamic memory list
Global section descriptor list ,
Shared memory global section descriptor table
Shared memory mailbox descriptor table
Not currently used
Line printer unit control block
Not currently used
System intruder lists
Object rights block access control list
System service database
Terminal fallback database
Loadable executive image data structures

Global Name of Mutex
LNM$AL_MUTEX
IOC$GL_MUTEX I
EXE$G1-CEBMTX
EXE$GL_PGDYNMTX
EXE$GL_GSDMTX
EXE$GL_SHMGSMTX
EXE$GL_SHMMBMTX
EXE$G1-ENQMTX
UCB$1-LP _MUTEX 2

EXE$GL_ACLMTX
CIA$GL_MUTEX
ORB$1-AC1-MUTEX 3

CHANGE_MODE_MUTEX 4

TFF$L_ VEC_MUTEX 5

EXE$GL_BASIMGMTX

1 This mutex is used by the Assign Channel and Allocate Device system services
when searching through the linked list of device data blocks and UCBs for a device.
It is also used when UCBs are added or deleted, for example, during the creation of
mailboxes and network devices.

2 This mutex does not have a fixed address. As a field in a line printer UCB, its
location depends on that of the UCB.

3 This mutex does not have a fixed address. As a field in an object rights block (ORB),
its location depends on that of the ORB.

4 This mutex is local to the EXCEPTION.EXE loadable executive image and does not
have a fixed address.

5 This mutex does not have a fixed address. As a field in the fallback driver, its
location depends on that of the driver.

Table 8.3 lists the executive data structures protected by mutexes and the
names of the corresponding mutexes. (The "CPU mutex," used in SMP code,
is discussed in Chapter 34.)

A mutex is a data structure consisting of a single longword. Figure 8.3
shows its layout. The macro $MTXDEF defines symbolic names for its fields.
Its low-order word, field MTX$W _OWNCNT, contains the number of pro­
cesses accessing the data, that is, the number of processes that have locked
the mutex. The owner count value is initialized to -1 to indicate no owners.
Thus, a mutex with a zero in the low-order word has one owner. Biasing the
owner count by -1 simplifies the code that tests for the transition between
unowned and owned. The high-order word of a mutex, field MTX$W _STS,
contains status flags. The only flag currently implemented, MTX$V _ WRT,
is set to indicate that a write is either in progress or pending for this mutex.

The process control block (PCB) field PCB$W _MTXCNT contains the

197

Synchronization Techniques

31 0

Status

write-pending flag

Figure 8.3
Layout of a Mutex

number of mutexes a process currently owns. This field is initialized to
zero and incremented each time a process acquires a mutex.

8.5.1 Locking a Mutex for Read Access

When a process needs read access to a data structure protected by a mutex, it
invokes routine SCH$LOCKR, in module MUTEX, with the address of the
mutex. SCH$LOCKR takes the following steps:

1. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED.
2. It tests whether the mutex's write flag is set. If so, no further readers

are allowed to acquire the mutex. SCH$LOCKR transparently stalls the
process (see Section 8.5.3) until the mutex is available.

3. If the write flag is clear and thus no write operation is in progress or
pending, SCH$LOCKR grants the process read ownership of the mutex­
it increments the mutex's owner count and increments the count of
mutexes owned by this process.

4. If this mutex is the first that the process currently has locked and if
the process is not a real-time process, its current and base priorities are
saved in the PCB fields PCB$B_PRISAV and PCB$B_PRIBSAV and then
both are elevated to 16. The process receives a priority boost to minimize
the time during which it holds the mutex and blocks other processes that
require the mutex. The check on the number of owned mutexes prevents
a process that gains ownership of two or more mutexes from receiving a
permanent priority elevation to 16.

5. SCH$LOCKR releases the SCHED spinlock and returns control to its
invoker with IPL at 2.

The process is expected to remain at IPL 2 or above while it owns the mu­
tex to prevent its own deletion or suspension. Neither the Delete Process
($DELPRC) system service nor the Suspend Process ($SUSPND) system ser­
vice checks whether the target process owns any mutexes. If the process
deletion or suspension were to succeed, the locked mutex would no longer
be lockable and thus the locked data structure would be inaccessible.

8.5.2 Locking a Mutex for Write Access

When a process needs write access to a data structure that is protected by

198

8.5 Mutual Exclusion Semaphores (Mutexes)

a mutex, it invokes routine SCH$LOCKW, in module MUTEX, with the
address of the mutex. SCH$LOCKW takes the following steps:

1. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED.
2. It tests and sets the mutex's write flag.
3. If the flag was set, no further readers or writers are allowed to acquire the

mutex. SCH$LOCKW transparently stalls the process (see Section 8.5.3)
until the mutex is available.

4. If the write flag was clear, SCH$LOCKW tests whether there are any
current owners of the mutex. If there are, it transparently stalls the
process.

5. If the write flag was clear and there were no owners of the mutex,
SCH$LOCKW grants the process write ownership of the mutex: it in­
crements MTX$W _OWNCNT and PCB$W _MTXCNT, and it may alter
the process's software priority, as previously described. It releases the
SCHED spinlock and returns to its invoker at IPL 2.

When SCH$LOCKW stalls the process, the mutex write flag is set so that
future requests for read access will also be denied. This prevents a stream of
read accesses from continuously locking the mutex. When the last current
owner of the mutex releases it, the write flag is cleared. At that point, the
highest priority process waiting for the mutex gets first access to it, whether
the process is requesting a read or a write access.

If a reader acquires the mutex, other previously waiting would-be readers
whose priority is greater than that of the highest priority would-be writer
can also acquire read access, as a result of standard scheduling operations.
The higher priority would-be readers execute first, and their read accesses are
granted. If readers still own the mutex when the would-be writer executes,
its attempted write access is blocked again.

An alternative entry point, SCH$LOCKWNOWAIT, returns control to
the invoker with RO(O) cleared to indicate failure if the requested mutex
is already owned.

8.5.3 Mutex Wait State

SCH$LOCKR and SCH$LOCKW transparently stall a process when its re­
quested mutex acquisition cannot be granted. They save the process context
and place the process into the miscellaneous wait state (MWAIT). They store
the address of the mutex being requested in the software PCB field PCB$L_
EFWM. Because the process is not waiting for an event flag, the field is
available for this purpose. They transfer control to the routine that selects a
new process to place into execution and that releases the SCHED spinlock.
Chapter 12 describes miscellaneous waits and rescheduling in more detail.

The saved PC of such a process is an address within either SCH$LOCKR or
SCH$LOCKW, depending on whether its intended access is a read or write.
Its saved PSL has kernel mode and IPL 2. When the mutex becomes available,

199

Synchronization Techniques

the process becomes computable again. When the saved process context is
loaded, the process reattempts its mutex acquisition.

8.5.4 Unlocking a Mutex

A process releases a mutex by invoking routine SCH$UNLOCK, in module
MUTEX, with the address of the mutex to be released. SCH$UNLOCK takes
the following steps:

1. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED.
2. It decrements the process's PCB$W_MTXCNT. If this process does not

own any more mutexes, SCH$UNLOCK restores the saved base and
current priorities from PCB$B_PRIBSAV and PCB$B_PRISAV.

If there is a computable resident process with a higher priority than
this process's restored priority, a rescheduling interrupt is requested. This
situation is known as delayed preemption of the current process.

3. SCH$UNLOCK also decrements MTX$W _OWNCNT. If the mutex
owner count is greater than -1, there are other outstanding owners of
this mutex; SCH$UNLOCK simply releases the SCHED spinlock, restor­
ing the IPL at entry, and returns to its invoker.

4. If the mutex count is decremented to -1, the mutex is now unowned.
SCH$UNLOCK executes a BBCCI instruction to test and clear its write
flag. If the bit was clear, SCH$UNLOCK releases the SCHED spinlock,
restoring the IPL at entry, and returns to its invoker.

5. If the bit was set, there may be processes waiting to acquire this mutex.
(A waiting or owning writer would have set this bit, blocking any new
potential readers and any writers.) SCH$UNLOCK scans the miscella­
neous resource wait queue to locate any process whose PCB$1-EFWM
field contains the address of the unlocked mutex.

For each such process, SCH$UNLOCK reports the availability of the
mutex by invoking a scheduler routine to make the process computable.
If the priority of any of these processes is greater than or equal to the
priority of the current process, a rescheduling interrupt is requested.
SCH$UNLOCK then releases the SCHED spinlock, restoring the IPL at
entry, and returns to its invoker.

8.5.5 Accessing a Mutex from System Context

200

Although mutexes were originally designed for use from process context,
VMS Version 5 adds the capability for a system thread of execution to acquire
a mutex. This enables a system thread to synchronize its access with those of
full processes to a database protected by a mutex. In general, this capability
is limited to nonpageable databases, since VMS bugchecks in response to
page faults occurring above IPL 2. Currently, the capability is only used by
fork processes to acquire the I/O database mutex.

8.5 Mutual Exclusion Semaphores (Mutexes)

The 1/0 database mutex basically synchronizes the lists of 1/0 data struc­
tures, for example, the linked list of UCBs associated with a particular device.
A device driver that clones new device units from template devices must in­
sert new units into the UCB list and remove units being deleted. Although
these insertions and deletions can usually be done from process context, in
some cases they must be done from fork process context. For example, when
the disk class driver fork process receives a message from an MSCP server
that a new disk unit has come on line, it must clone a UCB and add it to
the list.

Routines have been added to module MUTEX to serve this need:

• SCH$LOCKWEXEC-Acquire write ownership of a mutex from a system
thread

• SCH$LOCKREXEC-Acquire read ownership of a mutex from a system
thread

• SCH$UNLOCKEXEC-Release a mutex from a system thread

The main difference between SCH$LOCKWEXEC and SCH$LOCKREXEC
and their process context counterparts is that they return a failure status if
the mutex is unavailable. There is no mechanism that transparently stalls
a fork process and awakens it when the mutex becomes available. If a fork
process receives a failure status, it must wait itself by using the fork and
wait mechanism described in Chapter 4.

These routines acquire the SCHED spinlock, which is held at IPL$_
SCHED. This mechanism is therefore restricted to threads of execution that
run at IPL 8 or below and that hold no higher ranking spinlock.

201

9

9.1

202

Event Flags

I claim not to have controlled events, but confess plainly that
events have controlled me.

Abraham Lincoln, Letter to A. G. Hodges, April 4, 1864

Event flags are status bits maintained by the VMS operating system for
general prograrp.ming use. Each event flag can be either set or clear, and
its status can be tested.

System services read, set, and clear event flags. A process can specify that
an event flag be set at the completion of an operation such as an 1/0 request.
When the process can proceed no further until the request is complete, the
process can call a system service to wait for the event flag to be set.

This chapter describes the implementation of event flags and the services
that support them.

EVENT FLAGS

An event flag can be used within a single process for synchronization with
the completion of certain system services, such as 1/0, lock, information, and
timer requests. Each of these services includes an argument identifying the
event flag associated with the request. When a process requests such a system
service, that event flag is cleared. It is subsequently set when the request
has been completed as a signal to the process that the operation is complete.
Event flags can also be used as application-specific synchronization tools.

Event flags can be local to one process or shared among processes in
the same user identification code (UIC) group. Shared event flags are called
common event flags. Processes sharing common event flags must be running
on a single VAXcluster member; that is, common event flags are not visible
clusterwide.

VMS also supports common event flags in MA780 multiport memory
shared among multiple VAX-11/78x processors. A process can use these
flags to synchronize with other processes in the same group running on
any of the processors connected to the shared memory. The use of such
flags is discussed in Introduction to VMS System Services. Details on the
implementation of MA780 common event flags are beyond the scope of this
book.

Each process has available to it 64 local (process-specific) event flags, in
two clusters of 32 flags each, and can access 64 common event flags at once,
in two clusters of 32 flags each. Before a process can refer to the flags in a
particular common event flag cluster, it must explicitly associate with the

9.1 Event Flags

cluster (see Section 9.1.2), specifying which numbers it will use to refer to
the flags.

VMS assigns no inherent meaning to any particular event flag, although
certain flags are reserved for particular uses (see Section 9.1.1). A process
defines the meaning of a flag by the way it uses the flag. For example, when
a process requests the Queue I/O Request ($QIO) system service, specifying
event flag 10 as the EFN argument, the process can subsequently wait for
completion of that I/O request by waiting for event flag 10 to be set. After
the process's wait is satisfied, the meaning of event flag 10 is undefined.

If the process concurrently uses event flag 10 in two different ways, the
meaning of its being set is ambiguous. VMS provides the Run-Time Library
procedures LIB$GET _EF and LIB$FREE_EF (see VMS RTL Library (LIB$)
Manual) to help prevent inadvertent concurrent use of the same flags.

The services that include an event flag argument are

• Breakthrough (and Wait] ($BRKTHRU[W])
• Enqueue Lock Request [and Wait] ($ENQ(W])
• Get Device/Volume Information [and Wait] ($GETDVI[W])
• Get Job/Process Information [and Wait] ($GETJPI[W])
• Get Lock Information [and Wait] ($GETLKI[W])
• Get Queue Information [and Wait] ($GETQUI[W])
• Get Systemwide Information [and Wait] ($GETSYI(W])
• Queue I/O Request [and Wait] ($QIO[W])
• Send to Job Controller [and Wait] ($SNDJBC[W])
• Set Timer ($SETIMR)
• Synchronize ($SYNCH)
• Update Section File on Disk [and Wait] ($UPDSEC[W])

9.1.1 Local Event Flags

The 64 local event flags are contained in each process's process control block
(PCB), at offsets PCB$1-EFCS and PCB$L_EFCU (see Figure 9.1). All local
event flags are initialized to zero during process creation.

Local event flags 0 to 31 make up cluster 0 and are located in longword
PCB$1-EFCS. Bit 0 in PCB$1-EFCS corresponds to event flag 0, bit 1 to
event flag 1, and so on. Local event flags 32 to 63 make up cluster 1 and
are located in longword PCB$1-EFCU. Bit 0 in PCB$1-EFCU corresponds to
event flag 32, bit 1 to event flag 33, and so on.

Event flag 0 is the default event flag. Whenever a process requests a system
service with an event flag number argument, but does not specify a particular
flag, event flag 0 is used. Consequently, it is more likely than others to be
used incorrectly for multiple concurrent requests.

Event flag numbers 24 through 31 are reserved for system use; this means
they can be set and cleared at any time by VMS executive software and
should not be used by application software.

203

Event Flags

SQFL

SQBL

WEFC I TYPE I SIZE

I STATE I
EFWM
EFCS

EFCU

EFC2P

EFC3P

Figure 9.1
Software PCB Fields That Support Event Flags

9.1.2 Common Event Flags

204

A process creates a common event flag cluster dynamically, by requesting
the Associate Common Event Flag Cluster ($ASCEFC) system service (see
Section 9.3). Each common event flag cluster is described by a nonpaged pool
data structure called a common event block (CEBJ, shown in Figure 9.2.

The process specifies whether it will access the flags in that cluster using
event flag numbers 64 through 95 (cluster 2) or 96 through 127 (cluster 3).
If the flags are associated as cluster 2, the field PCB$1-EFC2P contains the
address of their CEB. Otherwise, PCB$L_EFC3P contains its address.

CEB$L_CEBFL and CEB$L_CEBBL link each CEB into a systemwide list
whose listhead is SCH$GQ_CEBHD (see Figure 9.3). The system global
SCH$GW _CEBCNT contains the number of CEBs in the list. The mutex
EXE$G1-CEBMTX synchronizes access to the CEB list. Chapter 8 describes
the use of mutexes.

A particular common event flag cluster is identified by its name, CEB$T _
EFCNAM, and UIC group, CEB$W_GRP. There cannot be more than one
cluster with the same name and group.

Two bits are defined in the status byte, CEB$B_STS:

• CEB$V _PERM, when set, indicates that the cluster is a permanent one
rather than a temporary one.

• CEB$V _NOQUOTA, when set, indicates that no quota was charged for the
creation of the cluster.

Creation of a temporary cluster is charged against a job's timer queue entry
(TQEJ quota. Creation of a permanent cluster uses no quota but requires the
privilege PRMCEB. A temporary cluster exists only as long as a process is
associated to it, while a permanent cluster must be explicitly deleted.

... i

1

9.1 Event Flags

CEBFL

CEBBL

STS I TYPE I SIZE

PIO

EFC

WQFL

WQBL

STATE I WQCNT

(reserved)

UIC

REFC I PROT

EFCNAM
(up to 15 characters)

Figure 9.2
Layout of Common Event Block

CEB CEB

A M r~Q_CEBHD"
PCB PCB

WQFL WQFL

WQBL WOBL

lwacNT=o WQCNT=2

EFC2P= EFC3P=

J
Address of Address of

CEBALPHA CEBALPHA

EFCNAM =BETA EFCNAM = ALPHA

Figure 9.3
Common Event Flag Wait Queues

CEB$L_PID contains the internal process ID (IPID) of the master process
in the job tree of the process that created the cluster.

The field CEB$L_EFC contains the 32 event flags. These are all initialized
to zero when the cluster is created.

The fields CEB$L_ WQFL and CEB$L_ WQBL, CEB$B_ WQCNT, and
CEB$W_STATE form a wait queue (see Chapter 12) for processes waiting
for flags in that cluster.

CEB$L_ UIC contains the UIC of the creating process.
CEB$W _PROT contains the value 0 if other processes in the same UIC

group are permitted access; otherwise, the value 1 prevents access by pro­
cesses with a different UIC.

CEB$W_REFC contains the number of processes that are currently associ­
ated to the cluster.

205

Event Flags

9.2 PCB FIELDS RELATED TO EVENT FLAGS

Figure 9.1 shows the PCB fields related to the use of event flags.
Previous sections described the meaning of the fields PCB$L_EFCS,

PCBL_EFCU, PCBL_EFC2P, and PCB$L_EFC3P.
The other fields are significant for a process in an event flag wait. PCB$B_

WEFC contains the number of the cluster containing the flags for which a
process waits. PCB$L_EFWM contains a mask that is the one's complement
of the flags in the cluster for which the process is waiting. The PCB$L_
STS bit PCB$V _WALL, when set, indicates that the process is waiting for all
those flags to be set.

These fields are loaded only when a process initiates an event flag wait.
Consequently, for a process in a state other than event flag wait, they may
be stale. Furthermore, the field PCB$L_EFWM has an additional use: it
identifies the resource waited for by a process in a miscellaneous wait state.

9.3 ASSOCIATING TO A COMMON EVENT FLAG CLUSTER

206

A process invokes the $ASCEFC system service to create a named common
event flag cluster if it does not already exist and to access its flags. The
process specifies the name of the cluster and implicitly, through its PCB$L_
UIC field, the UIC group of the cluster.

The $ASCEFC system service procedure, EXE$ASCEFC in module SYS­
ASCEFC, runs in kernel mode. It takes the following steps:

1. EXE$ASCEFC confirms that the event flag number is within cluster 2 or
3, returning the error status SS$_ILLEFC if it is not.

2. It locks the CEB mutex for write access.
3. It searches the CEB list for a cluster with the same name and group.
4. If one exists, EXE$ASCEFC checks whether the process can access it. If

the process's UIC matches that of the CEB owner or if the CEB protection
code allows group access, the process is allowed to associate to the
cluster.

If the process is allowed access, EXE$ASCEFC continues with step 7.
Otherwise, EXE$ASCEFC unlocks the mutex and returns the error status
SS$_NOPRIV to its caller.

5. If the common event flag cluster does not already exist, the process is
requesting its creation.

-If the process requests a permanent cluster, it must have the privilege
PRMCEB. If it does not have the privilege, EXE$ASCEFC unlocks the
mutex and returns the error status SS$_NOPRIV ..

-If the process is not requesting a permanent cluster, EXE$ASCEFC
charges it against the job's TQE quota. If the process has insufficient
quota, EXE$ASCEFC unlocks the mutex and returns the error status
SS$_EXQUOTA.

9.4

9.4 Dissociating from a Common Event Flag Cluster

6. EXE$ASCEFC invokes EXE$ALLOCCEB, in module MEMORYALC, to
allocate a CEB from nonpaged pool and initializes the CEB. EXE$ASCEFC
sets the bit CEB$V _PERM in CEB$B_STS if the cluster is a permanent
one. It increments SCH$GW_CEBCNT, the number of CEBs, and links
the new CEB into the list.

7. Whether or not the cluster existed previously, EXE$ASCEFC associates
the process and the cluster by incrementing the cluster's reference count,
CEB$W _REFC, and by storing the address of the CEB in either PCB$L_
EFC2P or PCB$1-EFC3P.

EXE$ASCEFC first saves the old contents of PCB$1-EFC2P or PCB$L_
EFC3P. If they are not zero, the process has been using those event
flag numbers to associate with another cluster. EXE$ASCEFC severs the
connection between the process and the other cluster by taking the steps
described in Section 9 .4.

8. EXE$ASCEFC unlocks the mutex and returns to its caller.

DISSOCIATING FROM A COMMON EVENT FLAG CLUSTER

A process dissociates itself from a common event flag cluster explicitly by
requesting the Dissociate Common Event Flag Cluster ($DACEFC) system
service with an event flag number within that cluster. Implicitly, the service
is requested on behalf of the process when it associates a new event flag
cluster using a cluster number already in use.

The $DACEFC system service procedure, EXE$DACEFC in module SYS­
ASCEFC, runs in kernel mode. It takes the following steps:

1. EXE$DACEFC confirms that the event flag number is within cluster 2
or 3, returning the error status SS$_ILLEFC if it is not.

2. It locks the CEB mutex for write.
3. It confirms that the process has an associated cluster corresponding to

the flag number. If not, it unlocks the mutex and returns.
4. It locates the CEB using the pointer to the cluster in the PCB and clears

the pointer.
5. It decrements CEB$W _REFC in the associated cluster. If there are other

processes associated to the cluster or if the cluster is a permanent one,
it unlocks the mutex and returns.

6. Otherwise (the cluster is temporary and has no processes still associated
with it), EXE$DACEFC deletes it by taking the following steps:

a. If CEB$V _NOQUOTA is clear, EXE$DACEFC returns quota to the
job against which it was originally charged.

b. EXE$DACEFC removes the CEB from the CEB list, deallocates it to
nonpaged pool, and decrements SCH$GW_CEBCNT.

c. EXE$DACEFC unlocks the mutex and returns.

207

Event Flags

During image rundown, a process is automatically dissociated from any
common event flag clusters to which it had associated.

9.5 DELETING AN EVENT FLAG CLUSTER

To delete a permanent event flag cluster, a process requests the Delete
Common Event Flag Cluster 1$DLCEFC) system service with the name of
the cluster to be deleted.

A cluster cannot be deleted if processes are still associated with it. In
such a case, the $DLCEFC service transforms the permanent cluster to a
temporary one so that it will be deleted when the last process associated
with the cluster requests the $DACEFC service.

The $DLCEFC system service procedure, EXE$DLCEFC in module SYS­
ASCEFC, runs in kernel mode. It takes the following steps:

1. EXE$DLCEFC locks the CEB mutex for write.
2. It scans the CEB list for a cluster of the specified name and a group code

matching that of the process. If it fails to find one, it unlocks the mutex
and simply returns.

3. If it finds one, it tests whether the process is allowed to delete the CEB.
If the process's UIC is not that of the CEB and if the CEB protection does
not allow a group member to delete it, EXE$DLCEFC returns the error
status SS$_NOPRIV.

If the process does not have the privilege PRMCEB, EXE$DLCEFC also
returns the error status SS$_NOPRIV.

4. Unless the process is deleting a temporary CEB, EXE$DLCEFC clears
CEB$V _PERM and sets CEB$V _NOQUOTA. This effectively changes the
cluster to a temporary one for which no quota need be returned. The
cluster's deletion is deferred until all processes have dissociated from it.

5. EXE$DLCEFC increments CEB$W _REFC and transfers to code within
EXE$DACEFC, described in step 5 in Section 9.4. !The increment bal­
ances a decrement in EXE$DACEFC.J

9.6 WAITING FOR AN EVENT FLAG

208

A process can be placed into an event flag wait state to wait for the setting of
one or more flags. When a process waits for more than one flag, all the flags
must be in the same cluster. A process waits for event flags by performing
any of the following actions:

• Requesting one of the three event flag wait system services directly:

-Wait for Single Event Flag l$WAITFR)
-Wait for Logical OR of Event Flags l$WFLOR)
-Wait for Logical AND of Event Flags j$WFLAND)

9.6 Waiting for an Event Flag

• Requesting the $SYNCH system service, which combines $WAITFR and a
status block test to wait for service completion (thus minimizing problems
caused by multiple concurrent uses of the same flag)

• Requesting the synchronous version of the services listed in Section 9.1,
each of which incorporates $SYNCH

• Requesting Record Management Services (RMS) as a synchronous opera­
tion, which results in requesting $WAITFR

The distinction between $WFLOR and $WFLAND lies in how many of the
flags must be set for the wait condition to be satisfied. If any of the flags in
the mask is set when $WFLOR is requested, the process is not placed into a
wait state. Instead, the service immediately returns to its caller.

Each of the flags specified in the $WFLAND system service argument must
have been set for the wait to be satisfied. However, the flags need not be set
simultaneously.

However the wait-for system service is requested, it examines the current
state of the event flag or flags. If the event flag wait condition is satisfied, it
returns control to the process. Otherwise, it places the process into a wait
state until the flag or flags are set. The wait-for system services are described
in the following paragraphs. The $SYNCH system service and synchronous
RMS completions are described in Chapter 6.

The wait-for system service procedures, EXE$WAITFR, EXE$WFLOR, and
EXE$WFLAND, are in module SYSWAIT and run in kernel mode. The
three procedures converge to a common routine, EXE$WAIT, also in module
SYSWAIT.

EXE$WAIT is entered with a mask identifying the flags to be waited for,
the number of a flag in that cluster, and a wait-all flag that is set if the entry
is from $WFLAND.

EXE$WAIT takes the following steps:

1. EXE$WAIT raises IPL to 2 to block delivery of a kernel mode AST pro­
cedure that might request another wait-for service.

2. It checks that the event flag number is legal, returning the error status
SS$_ILLEFC if the number is out of range.

3. It determines which cluster contains that event flag and records the
cluster number in PCB$B_ WEFC.

4. If the cluster number is 2 or 3, indicating a common event flag cluster,
EXE$WAIT first checks that there is an associated cluster and returns
the error status SS$_UNASCEFC if there is none.

If there is an associated cluster, it gets the CEB address from either
PCB$L_EFC2P or PCB$L_EFC3P, depending on the cluster number.

5. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED, to block
concurrent access to the event flags by SCH$POSTEF (see Section 9.7)
and to synchronize access to the scheduler database.

209

Event Flags

210

6. It tests whether the event flag wait condition is satisfied by the current
state of the flags.

7. If the wait condition is satisfied, EXE$WAIT releases the spinlock and re­
turns to the caller of the system service. As an optimization, EXE$WAIT
removes the change mode dispatcher call frame from the stack and re­
turns directly to the instruction following the CHMK that initiated it lsee
Chapter 6).

8. If the event flag wait condition is unsatisfied, EXE$WAIT checks whether
the wait is wait-all. If so, it sets the PCB$V _WALL bit in PCB$1-STS.

9. EXE$WAIT stores a mask representing the flags to be waited for in
PCB$1-EFWM:

-If the process requested $WFLOR, the PCB$L_EFWM mask contains
the one's complement of the input mask passed to the system service.

-If the process requested $WAITFR, the PCB$1-EFWM mask contains
a 1 in every bit except the bit number corresponding to the specified
flag. (The $WAITFR mask is thus a special case of a wait for any one
of a group of flags to be seq

-If the process requested $WFLAND, the system service clears any bits
in the input mask corresponding to currently set flags, complements .
it, and then stores it in PCB$L_EFWM.

10. EXE$WAIT jumps to SCH$WAIT, in module RSE, to place the process
into either a local or common event flag wait state, depending on the
cluster number.

There are two systemwide local event flag wait states (LEF and LEPO)
and two corresponding wait queue listheads ISCH$GQ_LEFWQ and
SCH$GQ_LEFOWQ). Only one common event flag wait state exists for
both resident and outswapped processes. However, there is a separate
common event flag wait queue listhead jsee Figure 9.2) in each common
event flag cluster. Each has the same overall structure as any other wait
queue listhead (see Figure 9.3). Both resident and outswapped processes
waiting for flags in a common event flag cluster are queued to the same
CEB wait queue. Having one queue in each CEB makes it easier to locate
processes whose wait is satisfied by the setting of a flag in that cluster.

The saved program counter (PC) in the waiting process's hardware PCB
is the address of the CHMK instruction that initiated the system service,
typically one in a system service vector. If the process becomes computable
because its event flag wait has been satisfied and is placed into execution,
it may reexecute the event flag wait system service, which will complete
with EXE$WAIT's step 7. If the process becomes computable as the result of
asynchronous system trap (AST) enqueuing, at the completion of the AST it
will reexecute the service and be placed back into a wait. Chapter 12 gives
additional information.

While this technique permits ASTs to be delivered to a process waiting for

9.7

9. 7 Setting an Event Flag

event flags to be set, it constrains the ways in which event flags can be used:
flags for which a process is waiting should not be cleared by other threads
of execution. The result of clearing an event flag might be that a process
becomes computable as the result of the flag's having been set but reenters
the event flag wait state indefinitely when it reexecutes the event flag wait
service and finds the flag no longer set. This could happen, for example, if
process A waited for a common event flag set and then cleared by process B.

This constraint applies to all wait-for services but has particular signif­
icance for the $WFLAND system service. The $WFLAND system service
generates a wait mask based on the input mask flags that are not already set
at the time the service is requested. However, each time the process is placed
back into execution as a result of AST delivery, the process reexecutes the
$WFLAND service and, each time, the event flag wait mask is built anew.
No record is kept that some of the flags have been set and should not be
waited for again if the service is reexecuted.

SETTING AN EVENT FLAG

A process sets an event flag directly by calling the Set Event Flag ($SETEF)
system service. A process can use this service at AST level to communicate
with its mainline code. It can also use this service to set common event flags
to communicate with other processes.

The VMS executive sets event flags in response to I/O completion, timer
expiration, the granting of a lock request, and completion of any of the
system services listed in Section 9 .1.

The $SETEF system service and any other executive code that sets an event
flag invokes the routine SCH$POSTEF, in module POSTEF. SCH$POSTEF
performs the actual event flag setting and checks whether a process's event
flag wait is satisfied. Its arguments are the number of the flag to be set,
the IPID of the process in whose context that flag number is defined, and a
priority increment class number (see Chapter 12).

SCH$POSTEF runs in kernel mode. It takes the following steps:

1. It first acquires the SCHED spinlock, raising IPL to IPL$_SCHED, to
block concurrent access to the flags from a wait-for service and to syn­
chronize access to the scheduler database.

2. It then confirms that the specified process still exists. If not, it releases
the spinlock and returns the error status SS$_NONEXPR to its invoker.

3. It checks that the event flag number is legal, returning the error status
SS$_ILLEFC if the number is out of range.

4. It then determines what kind of event flag is being set. For a common
event flag, it continues with step 8.

5. If a local event flag is being set, SCH$POSTEF sets it and checks whether
this flag satisfies a wait request for this process. In the case of a $WFLOR
wait, this flag merely has to match one of the flags being waited for. For

211

Event Flags

a $WFLAND wait, all the flags in the mask must be set to satisfy the
process's wait request.

6. If the process's wait is satisfied, SCH$POSTEF reports an event-flag­
setting event for the process by invoking routine SCH$RSE, in module
RSE. jNote that SCH$POSTEF examines PCB event-flag-related fields to
decide if a wait is satisfied but ignores the process's scheduling state.
Thus, SCH$POSTEF's event report may be based on stale values in these
fields. SCH$RSE confirms that the process is in an event flag wait state
prior to acting on the event report.)

7. Whether or not a wait was satisfied, SCH$POSTEF then unlocks the
SCHED spinlock and returns with the success status SS$_ WASSET or
SS$_ WASCLR, depending on the initial state of the flag. This completes
its processing for a local event flag.

8. If a common event flag is being set, SCH$POSTEF first checks that there
is an associated common event flag cluster, returning the error SS$_
UNASCEFC if there is none.

9. It gets the CEB address, using the contents of either PCB$L_EFC2P or
PCB$1-EFC3P, depending on the flag number. SCH$POSTEF must scan
the list of PCBs in the CEB wait queue to determine which, if any, of the
processes waiting for flags in this cluster has its wait request satisfied.
SCH$POSTEF reports an event-flag-setting event for each such process.

10. SCH$POSTEF releases the SCHED spinlock, restoring the previous IPL.

SCH$RSE ignores an event-flag-setting event reported for a process not
in an event flag wait state and simply returns. When an event-flag-setting
event is reported for a process in an event flag wait state, SCH$RSE changes
its state to computable resident !COM) or computable outswap !COMO)
and, if appropriate, applies a priority boost, using the priority increment
class number passed through from SCH$POSTEF. SCH$RSE may request
a rescheduling interrupt on behalf of the process or awaken the swapper
process. Chapter 12 gives more details.

If the process is resident, SCH$RSE adds 4 to the saved PC in the hardware
PCB so that the process does not reexecute the event flag wait service.

9.8 READING AND CLEARING EVENT FLAGS

212

The Read Event Flag ($READEF) system service is informational. It has no
effect on the computability of any process. The $READEF system service
procedure, EXE$READEF in module SYSEVTSRV, runs in kernel mode. It
determines which cluster to read from its EFN argument. It copies the flags
from either the PCB or the CEB that contains them to the location specified
by its caller. It returns the success status SS$_ WASSET if any flag was set;
otherwise, it returns SS$_ WASCLR, which is equal to SS$_NORMAL.

The Clear Event Flag l$CLREF) system service simply clears the event
flag specified by its EFN argument. The $CLREF system service procedure,

9.9

9. 9 Interprocess Synchronization Through Common Event Flags

EXE$CLREF in module SYSEVTSRV, runs in kernel mode. It locates the
cluster that contains the specified flag and executes a BBCCI instruction to
clear the flag. It returns the success status SS$_ WASCLR or SS$_ WASSET,
depending on the initial state of the flag. It has no immediate effect on the
scheduling state of any process.

INTERPROCESS SYNCHRONIZATION THROUGH COMMON EVENT
FLAGS

The use of common event flags is one method of interprocess synchroniza­
tion. One process can reach a critical point in its execution and wait for a
common event flag. Another process can enable this process to continue its
execution by setting the flag.

A common event flag can also be used as a semaphore to gain access to a
resource shared among processes. One such application is outlined here. It
first requires creation of a common event flag cluster with all its flags set.
Each flag can be used as an individual lock. Each cooperating process must
associate to the common event flag cluster.

Before any process uses the resource represented by a particular event flag,
it must execute the following sequence, which uses event flag number 65 as
an example:

5$: $CLREF_S EFN=#65
CMPL RO,#SS$_WASSET
BEQL 10$
$WAITFR_S EFN=#65
BRB 5$

10$:

$SETEF_S EFN=#65

;Clear the event flag
;Was its previous state = 1?
; Branch if yes
;Else wait for flag

;Proceed to access resource

;Set the event flag

Clearing an event flag is an interlocked operation implemented by the VMS
software (except for MA780 shared memory common event flags). Only one
process at a time can clear the flag and cause the transition in its state from
set to clear. That process then "owns" the flag and its associated resource.
Any other process that clears the flag receives a was-clear status and must
wait for the flag to be set.

The process that owns the flag can then access the resource without
synchronization problems. When the process's accesses to the resource are
complete, the process sets the flag, relinquishing ownership of the flag and
resource. The processes that were waiting for the flag are made computable
and repeat their attempts to cause the event flag transition from set to
clear.

213

10 Lock Management

'Tis in my memory lock'd,
And you yourself shall keep the key of it.

Shakespeare, Hamlet, 1, iii

VMS lock management system services enable cooperating processes to syn­
chronize their access to shared memory, files, and other entities. Using these
services, a process assigns a name to an entity and requests a lock on the
name. In response to the first request to lock any given name, VMS creates
a data structure called a resource block, commonly referred to as a resource.
VMS lock management system services do not maintain any linkage between
that structure and any actual VMS entity. Processes requiring synchronized
access to an entity must explicitly cooperate by locking the resource name
representing that entity.

A lock is characterized by the extent to which it allows shared access with
other locks on the same resource. Locks that permit mutual shared access
are termed compatible. Processes holding compatible locks on a resource
have concurrent access to it and, if they behave consistently, to the entity
it represents. A process requesting an incompatible lock is denied access.
Optionally, such a process can be placed into a wait state until blocking
locks are released and the resource becomes available.

This chapter discusses first the lock management data structures and then
the operations of the lock management system services:

• Enqueue Lock Request [and Wait) ($ENQ[W)J
•Dequeue Lock Request ($DEQ)
• Get Lock Information [and Wait] ($GETLKI[W)J

The last section in this chapter describes deadlock detection.
The treatment in this chapter assumes that the reader is familiar with the

description of the VMS lock management system services found in the VMS
System Services Reference Manual. This chapter briefly discusses VAXclus­
ter distributed lock management, the details of which are beyond the scope
of this book.

10.1 LOCK MANAGEMENT DATA STRUCTURES

214

The lock database consists of the following kinds of structures:

• Resource blocks (RSBs), which represent the entities for which locks have
been requested

• One resource hash table, which locates. the RSBs
• Lock blocks (LKBs), which describe locks requested by processes

10.1.1

10.1 Lock Management Data Structures

• One lock ID table, which locates the LKBs

Resource Blocks

A new RSB is allocated from nonpaged pool whenever a process requests
the $ENQ system service specifying a resource name not already in use. A
resource can be created for any desired use but is generally used to represent
an actual VMS entity, such as a fl.le or global section. Because the repre­
sentation is arbitrary, VMS lock management cannot maintain any linkage
between the resource and the entity it represents. The VMS operating sys­
tem provides tools that cooperating processes can use to synchronize access
to the resource. If the processes honor the relation of the resource to the
entity it represents, access to that entity is synchronized as well.

Resources can be hierarchical. For example, a resource can be defined to
represent a particular fl.le, with subresources for particular records in the fl.le.
The file resource :is a parent resource to the resources representing records
in the file. A record subresource may be a parent resource to additional sub­
resources that represent fields in the record. The combination of a resource
and all its subresources is called a resource tree. The top-level resource in
the tree, the one with no parent, is called the root resource. The root re­
source list, whos.e listhead is the global symbol LCK$GLRRSFL, links the
root resources known by the local system. Subresources are linked to these
root RSBs. ' '

The maximum depth of a resource tree is, by default, 32. The depth value
is related to the SYSGEN parameters INTSTKPAGES and DLCKEXTRASTK
(see Section 10.3.2.2).

A resource is uniquely .identified by the following combination:

• Resource name string of 1 to 31 characters
• User identification code (UIC) group number (or zero if the resource is

systemwide)
• Access mode
• Address of parent RSB, if any

·Therefore, two resources with identical resource name strings are completely
different if their UIC groups, access modes, and parents are not also identical.

Figure 10.1 shows the layout of an RSB. RSB$T_RESNAM and RSB$B_
RSNLEN contain the resource name string and its length. Together with
RSB$W _GROUP, RSB$B_RMOD, and RSB$LPARENT, these fields
uniquely identify a particular resource.

RSB$B_DEPTH indicates the position of the resource in a resource tree; a
root resource has a depth of zero. The depth of a subresource is set to 1 more
than its parent'sRSB$B_DEPTH. Root resources are linked to form a queue
through their RSB$1-RRSFL and RSB$L_RRSBL. fields. All subresources ·of
the root resource:ate linked to form a queue through the fields RSB$L_SRSFL
and RSB$L_SRSBL,, Each subresource contains the address of its root RSB in

215

Lock Management

216

HSHCHN

HSHCHNBK

DEPTH I TYPE SIZE

STATUS CGMODE I GGMODE

GRQFL

GRQBL

CVTQFL

CVTQBL

WTQFL

WTQBL

I- VALBLK

CSID

RRSFL

RRSBL

SRSFL

SRSBL

RM_CSID

RTRSB

CLURCB

(reserved)

VALSEQNUM

BLKASTCNT

RQSEQNM

PARENT

RSNLEN I RMOD

Figure 10.1

RESNAM
(up to 31 bytes)

Layout of a Resource Block

ACTIVITY

REFCNT

HASHVAL

GROUP

-

RSB$1-RTRSB; a root resource contains its own address. Figure 10.2 shows
this linkage of root and subresources. RSB$W _ACTIVITY tracks the local
node's use of the resource; a root resource with a low value is more likely
to be remastered (see Section 10.1.6).

If the resource has a parent resource, its access mode is taken from the
parent. Otherwise, the access mode is specified by the $ENQ system service
argument ACMODE. The argument is maximized with the mode from which
the service was requested, which is the default if the argument is omitted.
The resource's access mode defines the name space in which the resource

L

10.1 Lock Management Data Structures

RSBA RSBB

CK$GL_RRSFL::
DEPTH=O] DEPTH=OJ

E _:r-::-..... RRSFL r--:-t!_ RRSFL

r,:2: ~ SRSFL SRSFL

RTRSB=RSBA RTRSB=RSBB

[REFCNT=2 [REFCNT=O

PARENT=O PARENT=O

RSBC RSBD RSBE

DEPTH=1] DEPTH=2] DEPTH=1J

RRSFL=O RRSFL=O RRSFL=O
-....

,__
""

SRSFL r--:-t!_
SRSFL r--:-t!_

SRSFL

RTRSB=RSBA RTRSB=RSBA RTRSB=RSBA

lREFCNT=1 lREFCNT=O lREFCNT=O

PARENT= RSB A PARENT= RSB C PARENT= RSB A

Figure 10.2
Root Resources and Subresources

exists. It specifies the least privileged mode from which locks can be queued
to the resource and from which information about the locks can be obtained.
In a parent RSB, RSB$W _REFCNT counts the number of its immediate
subresources.

An RSB contains listheads for the granted, conversion, and wait queues
of LKBs associated with the resource. The listhead for the granted LKB
queue is the fields RSB$L_GRQFL and RSB$L_GRQBL. The listhead for the
conversion queue is the fields RSB$L_CVTQFL and RSB$L_CVTQBL. The
listhead for the wait queue is the fields RSB$L_ WTQFL and RSB$1-WTQBL.
Section 10.1.3 describes the significance of these queues.

An RSB also contains 16 bytes that form the value block for the resource
at the field RSB$Q_ VALBLK. RSB$L_ VALSEQNUM contains the sequence
number associated with the contents of the value block.

Other RSB fields are described in later sections of this chapter.

217

Lock Management

10.1.2

10.1.3

218

Resource Hash Table

The resource hash table locates all the RSBs in use. The combination of the
resource name string and its length, resource access mode, UIC group num­
ber, and parent RSB hash value is hashed and the result stored in RSB$W _
HASHVAL. The hashing algorithm is similar to the algorithm used for
hashing logical names, described in Chapter 35. The contents of RSB$W _
HASHVAL index a particular entry in the resource hash table. More than
one resource name can hash to the same value. Each longword entry in the
hash table is either zero or a pointer to a list of RSBs with that hash value. If
a longword entry in the resource hash table contains a zero, there is no RSB
with that hash value.

Because the RSBs are maintained in a list that is doubly linked but not
circular (the resource hash table itself contains no backward pointers), the
list of RSBs is termed a chain. The first two longwords in each RSB contain
the forward and backward pointers for the resource hash chain. The last
block in each chain has a zero forward pointer.

The resource hash table is allocated from nonpaged pool. The global lo­
cation LCK$GL_HASHTBL contains its address. The number of longword
entries in the resource hash table is determined by the SYSGEN parameter
RESHASHTBL. Note that the parameter does not limit the number of RSBs
that can be created. However, the combination of a small hash table and
many RSBs can result in longer hash chains than might be desirable.

Figure 10.3 shows the structure of the resource hash table and its relation
to hash chains.

Lock Blocks

An LKB is allocated from nonpaged pool when a process requests the $ENQ
system service. The LKB is assigned a unique lock ID used to identify the
lock in subsequent lock conversion or dequeue requests. The LKB is owned
only by the creator process. When a process dequeues a lock, the LKB is
deallocated. When a process is deleted, all its locks are dequeued. Figure 10.4
shows the layout of a lock block.

The iock is characterized by its lock mode-one of six degrees of shareabii­
ity. Table 10.1 lists the lock modes and the other granted lock modes with
which each lock is compatible. A lock granted at one mode can later be
converted to another mode. LKB$B_RQMODE specifies the requested lock
mode of the lock, and LKB$B_GRMODE, the granted lock mode.

A lock can be granted, converting, or waiting, depending on the lock modes
of other locks on the resource. A new lock is granted and its LKB placed on
the RSB granted queue if its lock mode is compatible with those of locks
already granted on the resource and if the conversion and wait queues are
empty. Otherwise, it is placed at the end of the wait queue. A subsequent
attempt to convert a granted lock to a more restrictive lock mode can result

10.1 Lock Management Data Structures

Resource Hash Table

IrvPE I SIZE

1----------0_:--.,__ ____ L:-____ ~ LCK$GL_HASHTBL::

0

0 RSB RSB RSB
1-----------l

~ HSHCHN ~ HSHCHN

)'-e HSHCHNBK)'-e HSHCHNBK

~ HSHCHN

-i--. HSHCHNBK

[HASHVAL [HASHVAL [HASHVAL

RSB

~ HSHCHN .f--
['-. HSHCHNBK

T J LHASHVAL

Figure 10.3
Resource Hash Table and Hash Chains

ASTQFL

ASTQBL

RMOD l TYPE l SIZE

PIO t-- ACBportion

AST/RQSEQNM

ASTPRM/EPID

KAST/DUETIME
t-'

CPLASTADR

BLKASTADR

LKSB/DLCKPRI

STATUS l FLAGS

LKST1

LKST2/LKID

EFN I STATE I GRMODE I RQMODE

SQFL } SQBL
State queue links

OWNQFL } OWNQBL
Owner queue links

PARENT

(reserved) I TSLT I REFCNT

RSB

REMLKID

CSID/OLDASTPRM

OLDBLKAST

Figure 10.4
Layout of a Lock Block

219

Lock Management

220

Table 10.1 Compatibility of Lock Modes

Mode of
Requested Lock 1 Mode of Currently Granted Locks

NL CR cw PR PW EX

NL Yes Yes Yes Yes Yes Yes
CR Yes Yes Yes Yes Yes No
cw Yes Yes Yes No No No
PR Yes Yes No Yes No No
PW Yes Yes No No No No
EX Yes No No No No No

1 NL, null lock; CR, concurrent read; CW, concurrent write; PR, protected
read; PW, protected write; EX, exclusive lock.

in the insertion of its LKB at the end of the conversion queue. Conversion
requests have precedence over all waiting requests and all new lock requests.
Waiting requests have precedence over all new lock requests.

LKB$B_STATE specifies the current lock condition, for example, granted,
waiting, or in a conversion queue. LKB$L_SQFL and LKB$LSQBL link the
LKB into the appropriate state queue in its RSB. Typically, a lock in the
conversion or wait queue is also queued to the lock timeout queue through
the fields LKB$L_ASTQFL and LKB$1-ASTQBL. li the lock request is not
granted within a certain amount of time, a deadlock search is triggered (see
Section 10.3.1).

A lock with a parent lock and resource is termed a sublock. An LKB
describing a sublock contains the address of the parent LKB in field LKB$1-
PARENT; the parent LKB has no corresponding pointer to the sublock. The
RSB associated with the sublock points to the parent resource through the
field RSB$L_PARENT; the parent resource has no corresponding pointer to
the subresource. These relations are shown in Figure 10.5. LKB$W _REFCNT
specifies how many sublocks have that LKB as their parent.

The first part of an 1¥..B is an asynchronous system trap (AST) control
block (ACB). When a lock request is granted, the LKB/ACB can be queued to
the process's PCB through the fields LKB$L_ASTQFL and LKB$L_ASTQBL.
Queued as an ACB, it describes a special kernel mode AST, a blocking AST,
or a completion AST (see Section 10.2.4). LKB$L_PID contains the internal
process ID of the process that requested the lock.

LKB$B_RMOD specifies the access mode at which completion and block­
ing ASTs for this lock are delivered. The access mode from which the $ENQ
system service is requested, rather than an $ENQ service argument, deter­
mines the value of LKB$B_RMOD. This field also specifies the least privi­
leged access mode from which the lock can be converted or dequeued. H a

10.1 Lock Management Data Structures

Lock ID lilble

Resource Hash LKB
lilble

10.1.4

~ i--1---

RSB I I
_!'] b ~ 0 I-+

r-r--

r-- Granted State Queue -,....__ Owner Queue -

}REFCNT=1

RSB

RSB
LKB .. ~ I+ 0 I-+

r-!:'!_ 1----1 1---

1 1 >

...__ 1-- PARENT

PCB

I- Waiting ~ State Queue -
l+t- Owner Queue Owner Queue -

....___ ,... PARENT

RSB

Figure 10.5
Relations Between Locks and Sublocks

lock has a parent, the lock's access mode must not be more privileged than
that of its parent.

LKB$L_EPID contains the extended process ID jsee Chapter 25). LKB$L_
CPLASTADR and LKB$LBLKASTADR contain the addresses of the com­
pletion and blocking AST procedures requested by the process. LKB$L_LKSB
contains the address of the process's lock status block. LKB$LLKST1 con­
tains the condition value to be copied to the lock status block. The second
longword of lock status, LKB$LLKID, contains the lock ID itself.

Other LKB fields are described in later sections of this chapter.

Lock ID Table

The lock ID table locates all LKBs. A lock ID consists of an index into the
lock ID table and a sequence number identifying this particular use of that

221

Lock Management

10.1.5

222

index. When a lock index is in use, its entry in the lock ID table contains
the address of the associated LKB.

The entry for an unused index has two pieces of information. The high­
order word contains the updated sequence number for that index. The low­
order word contains the index of the next unused entry in the lock ID table.
The unused entries in the lock ID table are thus linked together, with the
listhead at global location LCK$GL_NXTID. When a new lock is requested,
its index is taken from LCK$GL_NXTID, which is updated to point to the
next unused entry.

A lock to be dequeued is identified by its lock ID. The lock ID locates the
corresponding lock ID table entry. The table entry has the address of the LKB
to be deallocated. After the LKB is deallocated, the lock ID of the dequeued
lock is stored in LCK$GL_NXTID.

Because it is possible that an erroneous value can be passed as a lock ID
to a lock management system service, the system services validate the lock
ID. They compare the caller's process identification (PID) and access mode
with the PID and access mode stored in the LKB. The PIDs must match and
the caller's access mode must be at least as privileged as that of the lock. If
the comparison fails, the service exits with the error status SS$_IVLOCKID.

The global symbol LCK$GL_IDTBL points to the lock ID table, whose
structure is shown in Figure 10.6. The SYSGEN parameters LOCKIDTBL
and LOCKIDTBL_MAX control the size of the lock ID table. The global
location LCK$GL_MAXID contains the index to the last entry in the lock
ID table. The lock ID table entry at that location always contains a zero.

During system initialization, a table of LOCKIDTBL longwords is allocated
from nonpaged pool. If more locks are requested than can fit in the table,
the $ENQ system service builds a new table, which is LOCKIDTBL entries
longer than the old one. It copies the old table's entries to the new table,
initializes the additional entries in the new table, and deallocates the old
table. LOCKIDTBL_MAX specifies the maximum size of the table and thus
the maximum number of locks.

Relations in the Lock Database

There are three ways in which the lock database can be accessed:

• As described in Section 10.1.2, the RSB for a given resource name can
be located through the resource hash table. All locks associated with the
resource can be located through the RSB state queue heads .

• As described in Section 10.1.4, the LKB for a given lock ID can be located
through the lock ID table. The resource address field in the LKB points to
the resource associated with the lock .

• All locks owned by a specific process can be located through the process
lock queue.

10.1.6

LKB

LKB

10.1 Lock Management Data Structures

Lock ID Table

TYPE SIZE LCK$GL_IDTBL ::

0 ------

The indexes do not always
point forward.

LCK$GL_MAXID:: ,____ ____ _.__ ____ _.

LCK$GLNXTID::__ ______ ____ _.

Figure 10.6
Structure of the Lock ID Table

Each process has a lock queue,. a doubly linked list of all the locks it has
requested. The listhead is in the PCB at the fields PCB$LLOCKQFL and
PCB$L_LOCKQBL. An LKB is linked into this list through the fields LKB$L_
OWNQFL and LKB$LOWNQBL. That is, PCB$LLOCKQFL points not to
the beginning of the first LKB in the queue hut to field LKB$L_OWNQFL
in that LKB. All granted locks are first, followed by converting and waiting
locks. The locks are ordered this way to facilitate deadlock detection (see
Section 10.3.2.2).

V AXcluster Lock Database

All resource names are clusterwide in scope, and processes running on any
node can ~cooperate in sharing resources. Lock management is the funda­
mental VAX.cluster synchronization primitive. Lock management system
services are used by VMS facilities and user applications to provide clus­
terwide synchronization. Appendix H describes the manner in which some
VMS facilities use locks.

Lock management data structures, RSBs and LKBs, are distributed among

223

Lock Management

224

the nodes of a VAXcluster system. This section provides an overview of how
the lock management database is organized.

A resource tree, consisting of a resource and all its subresources, is "mas­
tered" on one node at a time. The master node keeps track of all locks taken
out on that resource tree and performs the actual locking. A resource is ini­
tially mastered on the first node to define that resource. When the $ENQ
system service is requested for a root resource name that is not currently in
use, a master RSB is created on the requesting node.

There is also an RSB on each node other than the master with a lock on
the resource. The RSB on a node not mastering the resource contains the
cluster system ID (CSID) of the mastering node in the field RSB$L_CSID.
The RSB on the mastering node contains zero in that field to indicate that
it is the master RSB. The CSID field is also zero on a system that is not a
VAXcluster member.

When the node mastering a resource tree receives a lock request from
another VAXcluster node, it compares its own use of the tree, from the
field RSB$W _ACTIVITY, with that of the requesting node. If the requesting
node would be a more efficient resource master, that is, if its RSB$W _
ACTIVITY value is higher than the local value, the current master node
directs an exchange that transfers mastership of the lock to the other
node. This procedure is called remastering. During remastering, all other
access to the resource is denied; requests stall until remastering is complete.

A distributed directory is maintained to enable V AXcluster members to
track the existence of root resources and their associated master nodes.
The directory is composed of directory entry RSBs distributed among the
VAXcluster members. A directory entry RSB has the RSB$V _DIRENTRY bit
set in the RSB$W _STATUS field and the CSID of the resource's master node
in the RSB$L_CSID field. The VAXcluster member maintaining a directory
entry for a particular resource is termed its directory node. If the directory
node is also the resource's master node, the RSB$L_CSID field contains a
zero, and one RSB serves both functions; if not, there are RSBs on both the
directory and master nodes. Thus, there can potentially be an RSB on the
directory node, an RSB on the master node, and one RSB on each node with
a lock on the resource.

An individual member serves as the directory node for a subset of the root
resources. Its relative participation in directory activity is based on the value
of its SYSGEN parameter LOCKDIRWT. All members maintain an identical
list of CSIDs called the directory vector by exchanging LOCKDIRWT values
during VAXcluster state transitions. A member's LOCKDIRWT value deter­
mines the number of contiguous slots in the directory vector that are filled
with its CSID. The address of the directory vector is stored in global location
LCK$GL_DIRVEC.

To determine the directory node for a particular root resource, the RSB field
RSB$W _HASHVAL is hashed and the resulting value is used as an index into

10.2 Lock Management System Services

the directory vector. Since all members have an identical copy of the list,
they perform the directory determination with identical results.

In a VAXcluster system, there are three types of LKB. Under some cir­
cumstances, a process's lock is represented by two LKBs on two different
nodes .

• A local copy is an LKB for a lock on one node whose resource is mastered
on that same node. This LKB is the only one representing the process's
lock. This is similar to the nonclustered case.

• A process copy is an LKB for a lock on one node whose resource is mastered
on another node. The process copy describes the process's interest in the
resource. The other node has the master copy of the lock. The field LKB$L_
REMLKID in the process copy identifies the lock ID of the master copy.
(Lock IDs are specific to a single node.) RSB$L_CSID identifies the master
node.

• A master copy is an LKB that exists on a node mastering a resource but
that represents the lock of a process on a different node. The field LKB$L_
REMLKID in the master copy identifies the lock ID of the process copy.
The field LKB$LCSID in the master copy identifies the node of the process
copy. A process copy and a master copy are always paired.

The three types of LKB can be distinguished based on the setting of the
bit LKB$V _MSTCPY in LKB$W _FLAGS and the contents of RSB$L_CSID in
the associated resource's RSB:

• Local copy-LKB$V _MSTCPY is zero and RSB$LCSID is zero.
• Process copy-LKB$V _MSTCPY is zero and RSB$LCSID is nonzero .
• Master copy-LKB$V _MSTCPY is nonzero and RSB$L_CSID is zero.

10.2 LOCK MANAGEMENT SYSTEM SERVICES

10.2.1

The $ENQ system service attempts to grant a requested new lock or lock
conversion immediately. If the new lock or conversion cannot be granted,
the LKB is placed on the RSB's wait or conversion queue. The $DEQ sys­
tem service dequeues or cancels a lock from a resource and then searches
the resource's state queues for locks to grant that are compatible with the
currently granted locks. The $GETLKI system service returns information
about a specified lock or locks.

The following sections describe the operations of the $ENQ[W], $DEQ,
and $GETLKI[W) system services on a single node. VAXcluster operation is
mentioned, but the details are beyond the scope of this book.

The $ENQ[W] System Service

The $ENQ system service procedure, EXE$ENQ in module SYSENQDEQ,
runs in kernel mode. EXE$ENQ first validates the event flag and lock mode
arguments and tests accessibility of the lock status block. If any of these

225

Lock Management

226

tests fails, EXE$ENQ returns to its requestor with an error status. If the
tests succeed, EXE$ENQ tests whether LCK$V _CONVERT is set in the FLAGS

argument to determine whether this is a new lock request or conversion of
an existing lock. Section 10.2.2 describes lock conversions.

When a new lock is requested, EXE$ENQ allocates an LKB and RSB from
nonpaged pool and initializes them. EXE$ENQ allocates the RSB on the
assumption that the resource is being defined for the first time. EXE$ENQ
then raises IPL to IPL$_SCS and acquires the system communication services
(SCS) spinlock to synchronize access to the lock database. All error paths
release the SCS spinlock and lower IPL before exiting.

If the requestor specified the PARID argument, EXE$ENQ verifies that the
parent lock ID is valid, that the access mode of the $ENQ requestor is not
more privileged than that of the parent lock, and that the parent lock's PID
matches that of the current process. If any of these tests fails, EXE$ENQ
returns the error status SS$_IVLOCKID to its requestor. If the tests complete
successfully but the parent lock request has not been granted, EXE$ENQ
returns the error status SS$_PARNOTGRANT. If the parent lock request
has been granted, EXE$ENQ increments the reference count in the parent's
lock and stores the parent lock's address in the new lock's LKB$1-PARENT
field.

If the requestor requested a UIC-specific resource, EXE$ENQ stores the
process's UIC group in the RSB. Otherwise, if the requestor requested a
systemwide resource name by specifying the FLAGS argument bit LCK$V _
SYSTEM, EXE$ENQ checks that the process either has the SYSLCK privilege
or requested the $ENQ system service from kernel or executive mode. If
neither condition is true, EXE$ENQ returns the error status SS$_NOSYSLCK
to its requestor.

EXE$ENQ charges the lock against the job quota JIB$W _ENQCNT unless
the request specified the FLAGS argument bit LCK$V _NOQUOTA, which
requires that the request was made from executive or kernel mode. (Use
of this flag is reserved to Digital.) If the job exceeds its ENQLM quota,
EXE$ENQ returns the error status SS$_EXENQLM. Otherwise, EXE$ENQ
allocates a lock ID, expanding the lock ID table if necessary, and stores the
address of the LKB in the table entry for that lock ID.

Next, EXE$ENQ determines whether the resource already exists on this
node. It computes the resource hash value, indexes into the resource hash
table, and searches the resource hash chain for the named RSB. The resource
specified by the lock request must match an RSB with the same hash value
in the following fields:

• Parent RSB address
• UIC group number (or zero for systemwide resource names)
• Access mode
• Resource name string

10.2 Lock Management System Services

If the RSB for the named resource is not found, the new RSB is added
to the end of the hash chain. EXE$ENQ initializes the rest of the RSB
fields, including the three lock queue headers, the value block and sequence
number, and the reference count.

If the resource has no parent, EXE$ENQ inserts it onto the tail of the
systemwide list of root resources whose listhead is LCK$GL_RRSFL. The
RSB's own address is stored in its root resource field, RSB$L_RTRSB.

If the resource has a parent, the new resource inherits its CSID from the
parent resource. The parent RSB's reference count is incremented. Resource
depth is initialized to 1 more than the parent resource depth. If maximum
lock depth is exceeded, EXE$ENQ deallocates the RSB and LKB and returns
the error status SS$_EXDEPTH. The new resource also inherits the parent's
root resource, RSB$L_RTRSB. It is inserted onto the subresource queue of
its parent.

If the resource is new and mastered locally, no further checks are neces­
sary; the new lock is granted immediately (see Section 10.2.4).

If the RSB for the named resource is found, the new RSB is superfluous and
is deallocated. If the resource is mastered locally, the new lock is granted
immediately when the conversion and wait queues are empty and the re­
quest mode in the LKB is compatible with the currently granted locks lsee
Section 10.2.4). EXE$ENQ returns the success code SS$_SYNCH to its re­
questor if the FLAGS argument bit LCK$V _SYNCSTS is set. The event flag
and completion AST are omitted in this case. Otherwise, EXE$ENQ returns
the status SS$_NORMAL and proceeds to set the event flag and deliver the
completion AST as requested by the user.

If the lock cannot be granted immediately, the FLAGS argument bit LCK$V _
NOQUEUE determines EXE$ENQ's action. If LCK$V _NOQUEUE is set,
EXE$ENQ deallocates the LKB and returns the failure status SS$_NOT­
QUEUED to its requestor. If LCK$V _NOQUEUE is clear, EXE$ENQ sets
the lock state to LKB$K_ WAITING and places the LKB at the end of the
wait queue in the RSB. The wait queue is maintained in first-in/first-out
(FIFO) order. If the waiting LKB is not a master copy LKB, it is also queued
onto PCB$L_LOCKQFL in the PCB of the requesting (current) process. If the
LKB is not a process copy and has not disabled deadlock wait (LCK$V _NO­
DLCKWT is clear), and if deadlock wait is enabled on the system (LCK$GL_
WAITTIME nonzero), then a due time is computed and the LKB is inserted
on the timeout queue. See Section 10.3.1 for more information on deadlock
searches initiated by timeout.

The asynchronous form of the system service ($ENQ) returns to its re­
questor. The requestor can either wait for the lock to be granted or continue
processing. The synchronous form of the system service ($ENQW) waits
both for the event flag associated with the request to be set and for status
to be returned in the Lock Status Block (LKSB). Chapter 6 provides more
information concerning synchronous and asynchronous system services.

227

Lock Management

10.2.2

228

To speed checks for compatibility with the currently granted locks, each
RSB contains a single field indicating the highest granted lock mode of all
locks in both the granted and conversion queues for that resource. This field
is termed the group grant mode. Note that locks on the conversion queue
retain their original grant mode while waiting for their conversion requests
to complete. It is the original grant mode of these locks that is used in
calculating the group grant mode, not their request mode.

The value of the group grant mode is stored in the RSB at the field RSB$B_
GGMODE. Because this value is calculated when a lock is granted and main­
tained in the RSB, compatibility checking involves only one compare opera­
tion. Note that in a VAXcluster system, the group grant mode is maintained
only in the master RSB.

Lock Conversions

When a process requests the $ENQ system service, the value of the LCK$V _
CONVERT bit in the FLAGS argument differentiates between a new lock
request and a lock conversion. When LCK$V _CONVERT is set, EXE$ENQ
performs a lock conversion. EXE$ENQ obtains the lock ID of the lock to be
converted from the LOCKID argument and uses the LKMODE argument as the
request mode.

Four lock modes affect EXE$ENQ's actions:

• The current mode of the converting lock, called its grant mode and stored
in LKB$B_GRMODE .

• The converting lock's desired new value, called its request mode and stored
in LKB$B_RQMODE when the lock is on the conversion or wait queue.

• The most restrictive grant mode found in a lock on the resource's conver­
sion or granted queues, called the group grant mode and stored in RSB$B_
GGMODE.

• The blocking condition to compare against when locks are removed from
the granted queue, called the conversion grant mode and stored in RSB$B_
CGMODE.

The conversion grant mode prevents a lock from blocking its own conver­
sion and determines when an attempt to grant queued lock conversions is
worthwhile. Most of the time, the conversion grant mode contains the same
value as the group grant mode. The conversion grant mode differs from the
group grant mode when both of the following are true:

• The grant mode of the lock at the head of the conversion queue is the most
restrictive lock mode for the resource.

• No other locks are granted at that same lock mode.

In this case, the resource's conversion grant mode summarizes only the
grant modes of locks on the granted queue. It contains a less restrictive lock

10.2 Lock Management System Services

mode than the group grant mode does, because group grant mode includes
the grant modes of locks on the conversion queue.

EXE$ENQ begins by removing the lock specified by LOCKID from the
granted queue. If no locks remain on the granted or conversion queue, the
converting lock is granted immediately and EXE$ENQ attempts to grant
any waiting locks after clearing the group and conversion grant modes. Sec­
tion 10.2.4 describes the grant procedure.

When additional locks exist on the conversion or grant queue, the conver­
sion grant mode and the lock's grant mode are compared:

• If they are not equal, the compatibility of the converting lock's request
mode and the resource's group grant mode determines whether the lock
is granted or placed on the tail of the conversion queue. Because the
converting lock was not the most restrictive lock on the granted queue,
its conversion has no effect on locks in the conversion or wait queue.
EXE$ENQ will not attempt to grant any locks except the converting lock.

• If the lock's grant mode matches the resource's conversion grant mode, the
converting lock was granted in the most restrictive lock mode present on
the granted queue. The resource's group and conversion grant modes must
be recalculated without including the grant mode of the converting lock,
to prevent it from blocking its own conversion.

If the recalculated grant value proves compatible with the lock's request
mode, the value is stored in the group grant and conversion grant fields and
the lock conversion is granted. Since the change in this lock's status may
be significant for other locks on the conversion or wait queue, EXE$ENQ
attempts to grant locks first from the conversion queue, then from the wait
queue, until it reaches a lock that it cannot grant.

In either case, if the lock's request mode is incompatible, EXE$ENQ
tests the LCK$V _NOQUEUE bit. If LCK$V _NOQUEUE is set, EXE$ENQ
inserts the lock back onto the granted queue and returns the status SS$_
NOTQUEUED to the user. Otherwise, EXE$ENQ clears the lock state and
places the lock at the tail of the conversion queue, which is maintained
as a FIFO queue. The group grant mode is not altered, but the conversion
grant field is set to the recalculated value if the lock is first in the conver­
sion queue. EXE$ENQ also moves the LKB to the end of the PCB queue.
The PCB queue has granted locks first, followed by waiting and converting
locks. If the LKB is not a process copy, if the conversion request did not dis­
able deadlock wait, and if deadlock wait is enabled on the system (LCK$GL_
WAITTIME nonzero), then a due time is computed and the LKB is inserted
on the timeout queue. Section 10.3.1 gives more information on deadlock
searches initiated by timeouts.

Locks on the conversion or wait queue are granted later, by· EXE$DEQ
when blocking locks are removed from the granted or conversion queue,

229

Lock Management

10.2..3

230

and by EXE$ENQ when blocking locks are converted to less restrictive lock
modes.

The $DEQ System Service

A process requests the $DEQ system service to dequeue locks or sublocks
that are granted or to cancel ungranted lock requests. The $DEQ system
service procedure, EXE$DEQ in module SYSENQDEQ, runs in kernel mode.
EXE$DEQ examines the LOCKID argument and the FLAGS argument bit
LCK$V _DEQALL to determine whether a specific lock or a number of locks
are to be dequeued .

• If the FLAGS argument has the LCK$V _DEQALL bit set, then the process is
requesting the dequeuing of multiple locks. The locks to be dequeued are
determined by the $DEQ access mode argument ACMODE and by the LOCKID

argument. The ACMODE argument is maximized with the access mode from
which the $DEQ system service was requested. If omitted, it defaults to
the access mode from which the system service was requested.

-If the LOCKID argument is specified, EXE$DEQ dequeues all sublocks of
that lock whose access modes are not more privileged than the dequeue
access mode.

Note that if LOCKID is specified with LCK$V _DEQALL, sublocks of
that lock are dequeued, but the lock itself is not dequeued.

-Otherwise, if the LOCKID argument is zero, EXE$DEQ checks every lock
held by the process and dequeues each one whose lock access mode is
not more privileged than the dequeue access mode.

• If the FLAGS argument has the LCK$V _DEQALL bit clear, then the process is
requesting that one lock be dequeued or canceled. In this case, EXE$DEQ
uses the LOCKID argument to locate the LKB and the FLAGS argument bit
LCK$V _CANCEL to determine the operation.

To dequeue each individual lock, EXE$DEQ acquires the SCS spinlock
and raises IPL to IPL$_SCS. It verifies that the access mode of the $DEQ
requestor is not less privileged than that of the lock (LKB$B_RMOD) and
that the lock PIO matches that of the current process. If either of these tests
fail, EXE$DEQ returns the error status SS$_IVLOCKID to its requestor. Once
the lock is verified, EXE$DEQ checks whether the lock has sublocks. Before a
lock is deleted, its sublocks must be dequeued. Unless the LCK$V _DEQALL
flag is set, EXE$DEQ returns the error status SS$_SUBLOCKS.

All error paths release the SCS spinlock and lower IPL to IPL 2 before
exiting. When dequeuing multiple locks, EXE$DEQ releases and reacquires .
the spinlock between individual lock requests.

EXE$DEQ removes the LKB from whichever resource queue it is found on.

• If the lock is dequeued from the granted queue, EXE$DEQ checks whether
the LKB is the only lock on the resource. If so, EXE$DEQ removes the

10.2.4

10.2 Lock Management System Services

RSB from its resource hash chain and deallocates it. If other locks remain,
EXE$DEQ recomputes the resource's group grant mode and conversion
grant mode and attempts to grant locks on the conversion and wait queues .

• If the lock is dequeued from the conversion queue, it might have blocked
other lock requests. If it was at the head of the queue, or if its grant mode
is equal to the resource's conversion grant mode, EXE$DEQ recomputes
the resource's group grant mode and conversion grant mode. EXE$DEQ
attempts to grant locks beginning with the new first lock in the conversion
queue. It repeats this with the conversion and wait queues until it reaches
a lock whose lock mode is incompatible with the resource group grant
mode.

• If the lock is dequeued from the head of the wait queue and the conversion
queue is empty, EXE$DEQ tries to grant the first lock in the wait queue. If
it succeeds, EXE$DEQ continues with the next lock in the wait queue. It
repeats this until it reaches a lock whose lock mode is incompatible with
the resource group grant mode.

If the lock being dequeued was a sublock, EXE$DEQ decrements its parent
lock's reference count. It releases the lock ID and removes the LKB from the
process's PCB lock queue.

If the lock was waiting or in the conversion queue, EXE$DEQ sets the
event flag associated with the lock request and queues the LKB as an ACB
to the process to return final lock status. The LKB is deallocated when the
AST is delivered.

If the lock was granted, its LKB may still be queued as an ACB. If the ACB
was merely to deliver a blocking AST, EXE$DEQ removes the LKB/ ACB
from the ACB queue and deallocates the LKB. Otherwise, the LKB/ACB will
be deallocated when the AST is delivered. Whenever the LKB is deallocated,
the lock quota is returned to the process.

Granting a Lock

The routine LCK$GRANT _LOCK, in module SYSENQDEQ, is invoked to
grant a lock request. LCK$GRANT _LOCK is invoked under three different
sets of circumstances:

• EXE$ENQ receives a request for a lock on a new resource or a resource
with locks whose modes are compatible. The lock request can be granted
immediately, synchronously with the original system service call.

• EXE$ENQ converts a lock on a resource to a less restrictive lock mode.
Another lock that was blocked can now be granted, asynchronously to its
original lock request .

• EXE$DEQ dequeues or cancels a lock on a resource. A lock that was
blocked can now be granted, asynchronously to,its original lock request.

LCK$GRANT _LOCK takes the following steps in. granting a lock:

231

Lock Management

232

1. If the mode of the lock being granted is more restrictive than the existing
group grant mode, LCK$GRANT _LOCK copies the mode of the lock
being granted to the group grant mode field and the conversion grant
mode field.

2. It places the LKB on the granted queue, changing its state to granted.
LCK$GRANT _LOCK writes the requested lock mode in LKB$B_GR­
MODE.

3. If the lock is being granted asynchronously, it might be on the timeout
queue. If so, LCK$GRANT _LOCK removes it.

4. After processing the AST delivery requirements described below,
LCK$GRANT _LOCK invokes SCH$POSTEF to set the event flag asso­
ciated with the lock request (LKB$B_EFN). If the process was waiting
for this event flag to be set, the process scheduling priority and state
may be altered. Chapter 9 discusses event flags, and Chapter 12 gives
information about process scheduling.

LCK$GRANT _LOCK makes a series of tests to determine whether an AST
should be queued to the process whose lock request it granted. There are
three possible requirements for an AST:

• A special kernel mode AST
• A user-requested blocking AST
• A user-requested completion AST

The three are independent of each other. Thus, it is possible that no AST
will be requested or as many as three ASTs will be required.

LCK$GRANT _LOCK must queue a blocking AST to the process if it
requested one and if the newly granted lock is blocking another lock. No
blocking AST is necessary if none was requested or if the lock is not blocking
another lock.

If the process requested a completion AST, LCK$GRANT _LOCK queues
one unless the lock request was granted synchronously and the FLAGS argu­
ment bit LCK$V _SYNCSTS was set.

The special kernel mode AST must be queued if the lock request com­
pleted asynchronously. The special kernel mode AST routine writes the
status to the process's lock status block and possibly a value to the lock
value block. Even if the lock request completed synchronously, the special
kernel mode AST routine is necessary to perform cleanup if a completion or
blocking AST is to be queued.

An ACB can describe one normal AST procedure or one special kernel
mode AST routine. An ACB can also describe a special kernel mode AST
routine piggybacked on a normal AST procedure. Chapter 7 gives a detailed
description of ASTs. If an AST is required, LCK$GRANT _LOCK invokes
SCH$QAST to queue an ACB to the process. The LKB is used as the ACB.

LCK$GRANT _LOCK chooses one of the following:

10.2.5

10.2 Lock Management System Services

• It does not queue an ACB if the lock request is synchronous and neither a
blocking nor a completion AST is required .

• It queues an ACB specifying a special kernel mode AST if the lock request
is asynchronous and neither a blocking nor a completion AST is required.

• It queues an ACB specifying a piggyback special kernel mode AST if either
or both a blocking and a completion AST are required.

Because the ACB can contain the address of only one AST procedure, spe­
cial treatment is required when both completion and blocking ASTs must be
delivered. When the lock is granted, LCK$GRANT _LOCK writes the address
of the completion AST procedure (stored at the field LKB$L_CPLASTADR)
in the field LKB$LAST. It then queues the LKB as an ACB.

Just before entering the completion AST procedure, the AST delivery ser­
vice routine dispatches to the piggyback special kernel mode AST routine.
This routine writes the address of the blocking AST (stored at the field
LKB$LBLKASTADR) in LKB$LAST. It then requeues the LKB as an ACB.
When the piggyback special kernel mode AST routine exits, the completion
AST procedure executes. When the completion AST procedure exits, the
blocking AST is delivered.

System-Owned Locks

Some locks, called system-owned locks, are not associated with any process.
A system-owned lock, its resource, and thus its value block remain in ex­
istence when no process has any interest in the resource. A system-owned
lock has zero in its LKB$LPID field and is not queued to any PCB lock
queue. The scope of its resource name may be systemwide or qualified by
UIC group. Note the distinction between a system-owned lock and a resource
that is defined systemwide.

A system-owned lock may only be requested from kernel or executive
mode. The special $ENQ system service FLAGS argument LCK$V _CVTSYS
indicates that the lock should be granted as a system-owned lock or con­
verted from a process-owned lock to a system-owned lock.

Although the service request must be made from kernel or executive mode,
the access mode of the resource is determined by the $ENQ system service
argument ACMODE, as it would be for any resource. One additional restriction
applies-if a lock is system-oWI1ed, its parent lock (if any) must also be
system-owned. A process-owned lock may have a system-owned lock as its
parent, but a system-owned lock must not be a sublock of a process-owned
lock.

The only possible state of a system-owned lock is granted. That is, a lock in
a wait or conversion queue cannot be system-owned. This restriction exists
partly because delivery of a completion AST or special kernel mode AST
requires a process context. Furthermore, locks in the wait and conversion

233

Lock Management

234

queues are examined during deadlock detection on the assumption that each
lock is owned by a process.

When the FLAGS argument bit LCK$V_CVTSYS is set in a new lock re­
quest, EXE$ENQ sets the LCK$V _SYNCSTS and LCK$V _NOQUEUE flags
as well. When LCK$V _NOQUEUE is set, EXE$ENQ returns the error sta­
tus SS$_NOTQUEUED if it cannot grant the lock immediately. If it can
grant the lock immediately and LCK$V _SYNCSTS is set, it does not queue
a completion AST or set an event flag.

By specifying the FLAGS argument bit LCK$V _CVTSYS with LCK$V _CON­
VERT, a process can request the conversion of a process-owned lock to a
system-owned lock or a system-owned lock to a less restrictive lock mode.

A process can request conversion of a system-owned lock to a more re­
strictive mode, but the request can succeed only if the conversion can
complete immediately. Otherwise, the system-owned lock is converted to
a process-owned lock, the lock remains granted at its original lock mode,
and EXE$ENQ returns the error status SS$_BADPARAM.

A mechanism is defined for delivery of a blocking AST for a system-owned
lock. The field LKB$1-BLKASTADR in a system-owned lock contains the
address of a blocking AST routine in system space. Instead of queuing a
blocking AST to a process, the lock management services dispatch to that
routine at IPL$_SCS holding the SCS spinlock.

Certain VMS components, such as the Files-11 Extended QIO Processor
(XQP), use system-owned locks. The XQP synchronizes access to the in­
dividual entries in its 1/0 buffer cache through system-owned locks. The
XQP, running in the context of each process in the system, maintains a sys­
temwide cache of blocks read from the on-disk file structure. A process's
XQP requests a lock on a buffer cache entry only while it is reading or writ­
ing that entry in the cache. The cache entry exists, however, even when no
process is accessing it. The lock management data structures representing
the cache entry must also continue to exist.

The use of system-owned locks is reserved to Digital. Any other use is
strongly discouraged by Digital and completely unsupported.

The $GETLKI[W] System Service

The $GETLKI[W] system service enables a process to obtain information
about one or more locks that it is allowed. to interrogate. The process may
only obtain information about locks on resources with access modes equal
to or less privileged than the access mode at which the $GETLKI request is
issued. For example, a process running in user mode cannot obtain informa­
tion about locks taken out on executive mode resources. The field RSB$B_
RMOD defines the resource access mode.

The process can be further limited to a subset of the resource name space
by its lac;k of privilege. Without any privilege, a process can interrogate

10.3 Handling Deadlocks

only locks on resources with the same UIC group number as its own. With
WORLD privilege, a process can interrogate locks on resources of any UIC
group. Obtaining information about the locks of systemwide resources re­
quires either that the process have SYSLCK privilege or that it make the
$GETLKI request from kernel or executive mode.

The $GETLKI system service procedure, EXE$GETLKI in module SYS­
GETLKI, runs in kernel mode. The system service is called with a LOCKID

argument that either identifies a particular lock or specifies a wildcard oper­
ation. First, EXE$GETLKI locates the LKB associated with the specified lock
ID and verifies that the process can interrogate it. If the process specified
a wildcard operation, EXE$GETLKI locates the first LKB that the process
can interrogate. EXE$GETLKI begins with lock index 1 and scans the lock
ID table. On each successive call, it returns information about one lock,
maintaining the lock index context for the next call.

EXE$GETLKI is called with the address of an item list that includes, for
each specified item, which kind of lock information is to be returned, the size
and address of the buffer to receive the information, and a location to receive
the size of the information returned. EXE$GETLKI checks each item in the
item list for correctness: its item code must be valid; its buffer descriptor and
buffer must be writable in the access mode of $GETLKI's caller. In general,
it then copies the requested information, either from the LKB or its RSB, to
the buffer and records the size of the returned information in the specified
location.

Certain types of information are not obtainable through simply copying
data structure fields, for example, a list of all locks blocking the specified
lock. EXE$GETLKI contains special routines for such it].formation.

When EXE$GETLKI has either processed all items in the item list or found
one that is incorrect or that has an inaccessible buffer, it is done. It sets
the event flag associated with the request and queues a completion AST
if one was requested and if the system service completed without error.
EXE$GETLKI then returns to its requestor with completion status in RO.

10.3 HANDLING DEADLOCKS

A deadlock occurs when several locks are waiting for each other in a circular
fashion. VMS resolves deadlocks by choosing a participant in the deadlock
cycle and refusing that participant's lock request. The participant chosen
to break the deadlock is termed the victim. The victim's lock or conversion
request fails and the error status SS$_DEADLOCK is returned in the victim's
lock status block .
. None of the victim's already granted locks are affected, even when they
are part of the deadlock. Resolution of the deadlock is the responsibility of
the victim.

There are three phases of deadlock handling:

235

Lock Management

10.3.1

236

1. A deadlock is suspected.
2. A deadlock search proves that a deadlock actually exists.
3. A victim is chosen.

These three phases are described in subsequent sections. The descriptions are
limited to handling of deadlocks within one system that is not a V AXcluster
member. VAXcluster deadlock handling is beyond the scope of this book.

Initiating a Deadlock Search

Because deadlock detection is time-consuming, it is not desirable to search
for deadlocks every time a lock or conversion request is blocked. Instead,
the VMS software searches for a deadlock only when a lock request has
been waiting for a resource for a specified amount of time. The SYSGEN
parameter DEADLOCK_ WAIT specifies how many seconds a blocked lock
request must have been waiting before a deadlock search is initiated.

A way of restricting a particular lock's participation in deadlock searches
is provided through the special $ENQ FLAGS arguments LCK$V _NODLCK­
WT and LCK$V _NODLCKBLK. The LCK$V _NODLCKWT flag in a lock or
conversion request inhibits the deadlock search mechanism on a per-lock
basis. Locks requested in this manner cannot initiate conversion deadlock
searches because they never time out. They are disregarded in multiple
resource deadlock searches initiated for other locks. Incorrect use of this flag
may cause genuine deadlocks to be ignored, however. For more information,
see the VMS System Services Reference Manual.

When a lock request specifies a blocking AST procedure that dequeues
the blocking lock or converts it to a less restrictive mode, that lock request
may also specify the LCK$V _NODLCKBLK flag. This exempts the LKB from
multiple resource deadlock searches, on the assumption that the potential
deadlock condition will be resolved by the blocking AST procedure. Again,
incorrect use of this flag may cause genuine deadlocks to be ignored. For
more information, see the VMS System Services Reference Manual.

When an LKB requested without the flag LCK$V _NODLCKWT is placed
into a conversion or wait queue, EXE$ENQ also places the LKB on the
lock timeout queue. The lock timeout queue listhead is at global location
LCK$GL_ TIMOUTQ. The AST queue fields in the LKB link it into the lock
timeout queue. Figure 10. 7 shows LKBs on the timeout queue.

When an LKB is placed on the timeout queue, the time at which the lock
request will time out is computed and stored in LKB$L_DUETIME. (LKB$L_
DUETIME is actually a double use of the special kernel mode AST routine
address field, LKB$L_KAST.) The due time is the sum of DEADLOCK_ WAIT,
stored in LCK$GL_ WAITTIME, and the current system time in seconds
(EXE$GL_ABSTIM).

Once every second, the routine EXE$TIMEOUT, in module TIMESCHDL,
executes. EXE$TIMEOUT has various functions (see Chapter 11). One of

10.3.2

10.3.2.1

10.3 Handling Deadlocks

LCK$GL_ TIMOUTQ:: [1-. ASTQFL

ll--------IJ~--+- ASTQBL

DUETIME

Figure 10.7
Lock Timeout Queue Ordered by LKB$L_DUETIME

ASTQFL 9+--­
~ L I- ASTQBL

>-----------<

DUETIME

them is to check whether the first entry in the lock timeout queue has
timed out by comparing its LKB$L_DUETIME to the contents of EXE$GL_
ABSTIM. Because the queue is time-ordered, checking the due time of the
first entry is sufficient to determine whether a deadlock search is necessary.
If the first entry has not timed out, no other entry could have. If the first
entry has timed out, EXE$TIMEOUT initiates a deadlock search by invoking
the routine LCK$SEARCHDLCK, in module DEADLOCK.

Deadlock Detection

There are two forms of deadlock, each requiring a different detection method.
A conversion deadlock is easily detected, because it is restricted to locks for
a single resource. A multiple resource deadlock is harder to detect, requiring
a more complex search.

Conversion Deadlocks. A conversion deadlock can occur when there are at
least two LKBs in an RSB's conversion queue for a resource. If the request
mode of one lock in the queue is incompatible with the grant mode of
another lock in the queue, a deadlock exists.

For example, assume there are two protected read (PR) mode locks on
a resource. The process with one PR mode lock requests a conversion to
EX mode. Because PR mode is incompatible with EX mode, the conversion
request must wait. While the first conversion request is waiting, the process
with the second PR mode lock also requests a conversion to EX mode. The
first lock cannot be granted because its request mode (EX) is incompatible
with the second lock's grant mode (PR). The second conversion request
cannot be granted because it is waiting behind the first.

The search for a conversion deadlock begins with the first LKB on the
lock timeout queue. The LKB's state queue backward link points to the
previous LKB in the conversion queue. The grantmode of the previous lock is
compared with the request mode of the lock that timed out. If the modes are
compatible, the next previous lock in the conversion queue is examined. The
test is repeated until an incompatible lock is found or the beginning of the
queue is reached. The flags LCK$V _NODLCKWT and LCK$V _NODLCKBLK
are ignored.

237

Lock Management

10.3.2.2

238

If a lock with an incompatible grant mode is found, a deadlock exists. A
victim LKB is selected (see Section 10.3.3). If the beginning of the queue is
reached, a conversion deadlock does not exist, and a search for a multiple
resource deadlock is initiated.

Multiple Resource Deadlocks. A multiple resource deadlock occurs when
a circular list of processes are each waiting for one another on two or more
resources.

For example, assume process A locks resource 1 and process B locks re­
source 2. Process A then requests a lock on resource 2 that is incompatible
with B's lock on resource 2, and thus process A must wait. Note that at this
point, a circular list does not exist. When process B then requests a lock on
resource 1 that is incompatible with A's lock on resource 1, it must wait.
A multiple resource deadlock now exists. Processes A and B are both wait­
ing for each other to release different resources. These steps are shown in
Figure 10.8. In the figure, locks that are blocking a resource (incompatible
with waiting locks) are shown beneath the RSB; locks that are waiting for a
resource are shown above the RSB.

This type of deadlock normally involves two or more resources, unless
one process locks the same resource twice. (Usually a process does not
lock the same resource twice. However, if the process is multithreaded,
double locking can occur. Double locking can result in a multiple resource
deadlock.)

Figure 10.8
Example of a Deadlock Occurring

10.3 Handling Deadlocks

Saved R2

Saved R3

Saved R4 (PCB + PCB$L_LOCKQFL)

Saved RS

Saved R6 (Address of LKB)

Return Address

Figure 10.9
Stack Frame Built for LCK$SRCH_RESDLCK

To verify that a multiple resource deadlock exists, LCK$SEARCHDLCK
uses a recursive algorithm. Its approach is based upon the following:

• A waiting lock is blocked by locks owned by other processes .
• Any of the other processes might themselves have waiting locks.
• Those waiting locks are blocked by locks owned by other blocking

processes.

LCK$SEARCHDLCK starts with the lock that timed out on the lock time­
out queue. It saves the extended process ID (EPID) of the owner process of
the lock that timed out and invokes the multiple resource deadlock rou­
tine (LCK$SRCH_RESDLCK). If it finds a lock with the same owner EPID
blocking a resource, a deadlock exists.

Each time LCK$SRCH_RESDLCK is invoked, a stack frame is pushed onto
the stack. Each stack frame contains information on the current position in
the search. Figure 10.9 shows the contents of the stack frame.

The recursive nature of the deadlock search algorithm limits the maxi­
mum. depth of the resource tree as a function of the SYSGEN parameters
INTSTKPAGES and DLCKEXTRASTK. INTSTKPAGES is the size of the in­
terrupt stack, and DLCKEXTRASTK is the amount of interrupt stack space
in bytes that should not be used for deadlock searches. The difference be­
tween them is the amount of stack available for LCK$SRCH_RESDLCK's
stack frames.

Each invocation of LCK$SRCH_RESDLCK specifies the address of a wait­
ing LKB. The resource associated with the LKB is located and the resource
state queues are searched for LKBs whose granted or requested lock mode is
incompatible with that of the waiting LKB. If an incompatible LKB is found,
that lock is considered to be blocking the waiting LKB unless it has the
LCK$V _NODLCKBLK bit set in the LKB flags word.

When a blocking lock is found, its EPID is compared to that of the lock
that initiated the deadlock search:

• If they are the same, the list is proved to be circular and a deadlock exists.
A victim lock is chosen (see Section 10.3.3), and deadlock detection returns
control to EXE$TIMEOUT.

239

Lock Management

10.3.2.3

240

• If the EPID of the blocking lock is not the same as the saved EPID and the
search bitmap does not indicate that this process has been visited already,
the PCB lock queue of the process owning the blocking lock is searched. If
an LKB is found in a convert or wait state with the LCK$V _NODLCKWT
bit clear, another invocation of LCK$SRCH_RESDLCK is made, specifying
that LKB's address.

Each time LCK$SRCH_RESDLCK is invoked, it searches the state queues
associated with the specified LKB to see if it is waiting for a resource.

When all the state queues for a given resource have been searched and
no blocking lock has been found for that LKB, the routine removes the
stack frame and returns control to its invoker. If the invoker itself was
LCK$SRCH_RESDLCK, the previous search for blocked locks on the re­
source can now be resumed.

A process bitmap is maintained to reduce the number of repeated searches
for blocking locks on a particular process. Each time a new blocking PCB is
located, a bit corresponding to that process is set. If the bit for the PCB is
set already, the search for locks blocking that process is terminated, because
its locks have been searched already.

Unsuspected Deadlocks. Note that the use of the process bitmap speeds the
location of the suspected deadlock but prevents the accidental detection of
unsuspected deadlocks. An unsuspected deadlock is one that exists within
the lock management database, but that has not been detected so far, because
none of its locks have timed out on the lock timeout queue. This behavior
is accepted for the following reasons:

• The lock manager design assumes that individual locking protocols are
designed so that deadlocks are rare .

• Finding a process a second time in a deadlock search does not necessarily
indicate that an unsuspected deadlock exists.

• The occurrence of unsuspected deadlocks should be rarer still.
• Any deadlock search that does not find a deadlock is a waste of processor

time.
• The unsuspected deadlock will become a suspected deadlock when one of

its own locks times out on the lock timeout queue and a deadlock search
is initiated on its behalf.

Figure 10.10 shows two deadlocks. In the figure, locks that are blocking
a resource (incompatible with waiting locks) are shown beneath the RSB;
locks that are waiting for a resource are shown above the RSB. One deadlock
is suspected and a search is in progress for it. The heavy arrows in the figure
show the path of that deadlock cycle. The other is unsuspected. This figure
is an extension of the deadlock cycle shown in Figure 10.8.

In this case, the deadlock search was initiated as a search for the locks

10.3.2.4

10.3 Handling Deadlocks

R9source3

Figure 10.10
Suspected and Unsuspected Deadlocks

blocking process A. Because process C's lock is the first one found granted
for resource 2, it is the first lock that is investigated for participation in the
deadlock cycle. Process C is waiting for resource 3. The bit corresponding
to process C is set in the process bitmap. The context of the search is saved
on the stack, and LCK$SRCH_RESDLCK is invoked to search for processes
blocking process C's lock.

Process D has a blocking lock on resource 3. Process Dis also waiting for
resource 2. The bit corresponding to process D is set in the process bitmap.
The context of the search is saved on the stack and LCK$SRCH_RESDLCK
is invoked to search for processes blocking process D's lock. Process C
has a blocking lock on resource 2. This situation is a deadlock. However,
because the bit corresponding to process C was set in the process bitmap, the
deadlock search for process C is abandoned. One by one, the stack frames are
removed and the search whose context was saved continues. Eventually the
deadlock search continues with locks blocking resource 2, and the deadlock
cycle of processes A and B is discovered.

Eventually one of the locks requested by processes C and D will time out,
and a deadlock search will be initiated.

Example of a Search for a Multiple Resource Deadlock. Figure 10.11 shows a
series of locks that result in a deadlock. In the figure, locks that are blocking
a resource (incompatible with waiting locks) are shown beneath the RSB;
locks that are waiting for a resource are shown above the RSB. The heavy
arrows in the figure show the path of the deadlock cycle.

241

Lock Management

242

Resource 2

Figure 10.11
Example of a Multiple Resource Deadlock

Assume that the lock owned by process A timed out. Process A is waiting
for a lock on resource 1. The deadlock search routine saves process A's EPID
and invokes LCK$SRCH_RESDLCK, passing the address of process A's LIIB.

The first incompatible lock on resource 1 is owned by process C. Process C
has no other waiting locks, so LCK$SRCH_RESDLCK moves on to the next
incompatible lock. This lock is owned by process D. When LCK$SRCH_
RESDLCK follows the PCB queue for process D, it finds that this process is
waiting for a lock on resource 3.

LCK$SRCH_RESDLCK invokes itself, passing the address of the LKB
owned by process D. The new invocation of LCK$SRCH_RESDLCK pushes a
stack frame detailing the position of the search on resource 1, and
LCK$SRCH_RESDLCK starts to search for locks on resource 3 that are in­
compatible with process D's lock. Resource 3 has two incompatible locks,
owned by processes E and F. Neither of these processes is waiting for a lock,
so the search on resource 3 terminates. T'ne contents of the stack frame are
restored and LCK$SRCH_RESDLCK returns to its previous invocation. The
search for processes blocking process A resumes.

The next incompatible lock found on resource 1 is owned by process G.
Process G has no waiting locks, so the search continues with process B. The
PCB queue for process B shows that it is waiting for a lock on resource 2.

Again, LCK$SRCH_RESDLCK invokes itself, passing the address of the
LKB owned by process B. The new invocation of LCK$SRCH_RESDLCK
pushes a new stack frame onto the stack, and LCK$SRCH_RESDLCK finds
that process D owns a lock that is incompatible with the lock owned by

10.3.3

10.3 Handling Deadlocks

process B. However, because locks owned by process D have been searched
already (the bit for process Dis set in the process bitmap), the search moves
on to the next process.

The next incompatible lock is owned by process A. Because the EPID of
process A matches the EPID that was saved initially, the list is proved to be
circular and a deadlock exists. Now a victim must be chosen.

Victim Selection

Because conversion deadlocks involve only two processes, the victim selec­
tion routine simply chooses the process with the lower deadlock priority,
stored in the PCB at the field PCB$L_DLCKPRI.

For a multiple resource deadlock, the victim selection routine is only
slightly more complicated. The frames that were pushed onto the stack in
each recursion into the deadlock location routine are searched for the lowest
deadlock priority. Each time a lower deadlock priority value is found, the
priority and the owner process are noted. If a deadlock priority of zero is
found, that process is immediately chosen as the victim. When all frames
have been searched or a deadlock priority of zero is found, the stack pointer
is restored and the process with the lowest deadlock priority is chosen as
the victim.

Note that the current VMS implementation initializes the deadlock prior­
ity of all new processes to zero. Thus, it is not possible to determine which
process will be chosen as the victim. With the current implementation, vic­
tim selection depends primarily on timing.

243

PART IV/ Scheduling and Time
Support

11 Time Support

Love, all alike, no season knows, nor clime,
Nor hours, days, months, which are the rags of time.

John Donne, The Sun Rising

Support for activities that require either the date and time or the measure­
ment of an interval of time is implemented in both the VAX hardware and
the VMS operating system.

11.1 OVERVIEW

A hardware component called the interval timer interrupts at regular in­
tervals. VMS uses this timer to keep time and to service time-dependent
requests. VMS keeps two different times, the current date and time (the
system time) and the time elapsed since the system was bootstrapped (the
system uptime).

On most VAX systems, a processor register (PRxxx$_TODR) or a time­
of-year clock or, in some cases, both help VMS maintain the system time
across system bootstraps, power failures, and shutdowns. Battery backup is
usually provided to this component, generically referred to as the time-of­
year clock, so that it can maintain the time while the CPU has no power.
Note that the time-of-year clock is a longword value and can only represent
the time within a year.

VMS maintains the system time in the cell EXE$GQ_SYSTIME in incre­
ments of 100 nanoseconds from a known base time. Upon bootstrapping,
VMS determines the initial value of this cell as follows:

• When a system is bootstrapped for the first time, VMS requests the current
date and time from the operator and initializes the time-of-year clock.
VMS also records the date and time on disk whenever the system time is
initialized or changed .

• When rebooting, VMS uses the following strategy to initialize EXE$GQ_
SYSTIME.

-VMS validates the time-of-year clock by comparing its contents with the
recorded value on disk.

-If the time-of-year clock appears valid, the initial value of EXE$GQ_
SYSTIME is determined from the recorded value and the time-of-year
clock, as explained in Section 11.3.1.

-If the time-of-year clock is more than one day behind the recorded value,
the time-of-year clock is invalid. VMS either asks the operator for the

247

Time Support

new system time or, if human intervention is not desired, resets the
time-of-year clock to the recorded value plus IO milliseconds .

• A node joining a VAXcluster obtains the initial date and time from a node
that has already joined the cluster.

Once initialized, EXE$GQ_SYSTIME is incremented for every interval
timer interrupt. Typically, the timer interrupts at IO-millisecond intervals
and EXE$GQ_SYSTIME is incremented by I00,000, which is the number of
IOO-nanosecond intervals in IO milliseconds. This is done by the interval
timer interrupt service routine, EXE$HWCLKINT. On a symmetric multi­
processing (SMP) system, only the primary CPU is responsible for updating
EXE$GQ_SYSTIME.

The system manager may change the system date and time using the SET
TIME DCL command or the Set Time ($SETIME) system service. The Get
Time ($GETTIM) system service enables users to read the current date and
time. VMS provides two system services, Schedule Wakeup ($SCHDWK) and
Set Timer ($SETIMR), to support users' time-dependent requests. In addition,
there are several other services, described briefly in Chapter 36, that convert
the date and time between ASCII and binary formats.

In addition to updating the system time, the interval timer interrupt
service routine also requests a software timer interrupt when the current
process's quantum has expired or when the most imminent timer request
on the system is due. The software timer interrupt service routine is respon­
sible for initiating quantum-end processing and managing the timer queue
to deliver timer requests.

11.2 HARDWARE CLOCKS

11.2.1

248

The two hardware clocks, the interval timer and the time-of-year clock,
are updated regularly by timing circuitry. Initialization, calibration, and in­
terpretation of the clocks are performed by VMS routines during system
initialization and normal operations.

The processor registers that implement these components are summarized
in Table 11.1, along with the memory locations that record the various
soft'\vare time values.

The implementations of the interval timer and time-of-year clock vary on
the different VAX CPUs.

Interval Timer

All VAX CPUs implement an interval timer that can interrupt at IO-milli­
second intervals. The minimum implementation is the processor register
PR$_ICCS, containing a single bit, Interrupt Enable (IE) which, when set,
causes interrupts every IO milliseconds. The MicroVAX II implements the
minimum interval timer.

11.2 Hardware Clocks

Table 11.1 VMS Hardware Clocks and Software Timers

Name Use Units Frequency Updated by
PRxxx$_ICR I Interval count 1 µs 1 µs CPU hardware
PRxxx$_NICR I Next interval count 1 µs EXE$INIPROCREG 2

PR$_ICCS Interval timer IO ms EXE$HWCLKINT,
control/status EXE$INIPROCREG

PRxxx$_ TODR I Time-of-year clock IO ms IO ms CPU hardware,
EXE$INIT _ TODR,
EXE$SETIME 3

EXE$GQ_SYSTIME System date and 100 ns IO ms EXE$HWCLKINT,
time EXE$SETIME,

EXE$RESTART
EXE$GLABSTIM System uptime 1 s 1 s System initialization,

EXE$TIMEOUT
EXE$GL_ABSTIM_ TICS System uptime IO ms IO ms EXE$HWCLKINT
EXE$GL_ TODR Time-of-year base IO ms EXE$SETIME

value
EXE$GQ_ TODCBASE Time-of-year base 100 ns EXE$SETIME

value (in system
time form)

1 This is a CPU-specific register that does not exist on all processors.
2 PRxxx$_NICR is written only at system initialization and after powerfail recovery.
3 PRxxx$_TODR is actually modified through the CPU-specific routine EXE$WRITE_TODR.

Other VAX processors have two additional processor registers to control
the interval timer, PRxxx$_ICR and PRxxx$_NICR. The additional proces­
sor registers are defined by the CPU-specific macros $PRxxxDEF, where xxx
is the CPU designation. Appendix G lists the CPU designations and their
corresponding CPU types.

A description of the full interval timer implementation follows. It applies
to all the VAX processors listed in Table 11.2 except the MicroVAX Il.

The full implementation of the interval timer is the set of three processor
registers. The clock ticks at !-microsecond intervals with an accuracy of at
least 0.01 percent, an error of less than 9 seconds per day. The frequency at
which the interval timer causes an interrupt is determined by the value in
the processor register PRxxx$_NICR.

The three interval timer registers !see Table 11.1) are used as follows:

• The interval timer control/status register IPR$_ICCS) controls the inter­
rupt status of the interval timer. This register contains several bits, notably
the IE and INT bits. During system initialization, VMS sets the IE bit to
cause interval timer interrupts. The INT bit is set by the hardware when
it generates an interrupt, and the interval timer interrupt service routine
clears it to acknowledge that the interrupt was serviced !see Section 11. 7).

249

Time Support

250

Table 11.2 Implementations of the Time-of-Year Clock on VAX CPUs

Processor
MicroVAX II
VAX 3000 series
VAX-11/730
VAX-11/750
VAX-ll/78x
VAX 82x0/83x0
VAX 85x0/8700/88x0
VAX 6000 series

PRxxx$_TODR

y
y
y
y
y

y

Console
Clock

ya

Watch
Chip
y
y

y

Battery
Backup
y
y

Y'
y
y
yz
y
y

1 Certain VAX-11/730 configurations have battery backup for the time-of-year processor
register.

2 The watch chip has battery backup; the time-of-year processor register does not.
3 VMS must communicate with the console subsystem to read the time-of-year clock .

• The next interval count register IPRxxx$_NICRJ defines how often the in­
terval timer will cause a hardware interrupt. At system initialization, this
processor register is initialized with a value of -10000. This value specifies
an interval timer interrupt period of 10millisecondsI10,000 microseconds).
PRxxx$_ICR is initialized from PRxxx$_NICR .

• Every microsecond the hardware increments the interval count register
IPRxxx$_ICRJ. Thus, it counts from the PRxxx$_NICR value toward zero.
When PRxxx$_ICR becomes zero, the register overflows, with the follow­
ing results:

a. The hardware copies the contents of PRxxx$_NICR into PRxxx$_ICR
to define the next interval.

b. The hardware sets the INT bit in PR$_ICCS to indicate the overflow
condition. The setting of this bit causes an interval timer interrupt.

The interrupt priority level IIPLJ at which the hardware interrupt occurs
is either 22 or 24, depending on the processor type. Earlier VAX CPU
models, namely, the VAX-11/730, VAX-11/750, VAX-11/780 and the VAX
86x0 processors, use IPL 24. The VAX architecture now defines 22 as the
IPL associated with the interval timer, and that value is used by all other
processors.

Because the interval timer implementation varies, the interval timer reg­
ister or registers are initialized by the routine EXE$INIPROCREG, in mod­
ule (SYSLOA]ERRSUBxxx, image SYSLOAxxx.EXE, the CPU-specific code
loaded during system initialization.

11.2.2

11.2 Hardware Clocks

Time-of· Year Clock

A time-of-year clock is a hardware clock updated by hardware timing cir­
cuitry to maintain the date and time across system reboots and power fail­
ures. On most VAX CPUs, the time-of-year clock is powered by a battery
when there is no power to the system so that the clock keeps correct time.
At system initialization, the operating system uses the time-of-year clock
and the system global locations EXE$GQ_ TODCBASE and EXE$GL_ TODR
to determine the date and time (see Section 11.3.1). If there is no time-of­
year clock or if its battery lacks power, VMS cannot determine the correct
date and time without human intervention.

On many VAX CPUs, the time-of-year clock is implemented as a processor
register, PRxxx$_ TODR. The register is an unsigned 32-bit counter, the least
significant bit of which represents a resolution of IO milliseconds.

The time kept by the time-of-year clock includes no year. Instead, the time
is kept relative to 00:00:00.00 hours on January 1 of the year in which the
clock was initialized. The value I000000016 represents this base time. The
time-of-year clock is initialized to that number rather than zero to facilitate
detection of loss of power to the clock, which causes a reset to zero.

This scheme allows the time-of-year clock to represent, in IO-millisecond
intervals, up to about 466 days: from January 1 of the base year to about
April 11 of the next year. Once the time-of-year clock is initialized relative
to a base year and the system time crosses from December into January of
the ensuing year, the time-of-year clock must be reset, before April 11 of
that year, to be relative to January 1 of the new year.

EXE$SETIME, the system service routine for the $SETIME system service,
automatically resets a time-of-year clock that represents a value greater
than the number of IO-millisecond intervals in the base year. This system
service is invoked whenever the DCL command SET TIME is issued. This
system service is also invoked through a special entry point during system
initialization, as discussed in Section 11.4.

The implementation of the time-of-year clock varies on different VAX
CPUs. Table 11.2 summarizes implementations of the time-of-year clock on
the various VAX CPUs.

Access to the time-of-year clock is through CPU-specific routines in the
image SYSLOAxxx. Thus, the actual implementation of the time-of-year
clock is transparent to the rest of VMS.

The SYSLOAxxx routines for accessing the time-of-year clock are

• EXE$INIT _ TODR, in module [SYSLOA]INIADPxxx, which uses the clock
to initialize the system time

• EXE$READ_ TODR, EXE$READ_LOCAL_ TODR, and EXE$READP _
LOCAL_TODR, in module [SYSLOA]ERRSUBxxx, which read the clock

• EXE$WRITE_ TODR and EXE$WRITEP _LOCAL_ TODR, in module
[SYSLOA]ERRSUBxxx, which write the clock

251

Time Support

EXE$READ_ TODR and EXE$WRITE_ TODR are generally the routines
used to access the time-of-year clock. These routines may be invoked from
any processor in an SMP system. However, when invoked from a secondary
processor on an SMP system, these routines require the services of the
primary to access the clock. Chapter 34 describes the interprocessor dialogue
employed for this purpose.

EXE$READP _LOCAL_ TOOR and EXE$WRITEP _LOCAL_ TOOR are
primary-only routines that access the physical clock register.

EXE$READ_LOCAL_ TODR is a routine employed by EXE$POWERFAIL,
in module POWERFAIL, to read the clock in the fastest way possible.
EXE$POWERFAIL invokes this routine only from the primary processor.
Thus, EXE$READ_LOCAL_ TODR does not require any multiprocessing
synchronization.

On systems with no time-of-year processor register, EXE$READ_LOCAL_
TODR and EXE$READ_ TODR simulate one, using EXE$GL TODR and the
elapsed time since the time was last set, which is the difference between
EXE$GQ_SYSTIME and EXE$GQ_ TODCBASE.

11.3 TIMEKEEPING IN VMS

11.3.1

252

During system initialization, VMS determines the date and time from the
time-of-year clock and the system global locations EXE$GQ_ TODCBASE
and EXE$GL_TODR. During normal system operation, VMS uses the in­
terval timer interrupts to keep time. Global location EXE$GQ_SYSTIME
contains the system date and time. Global locations EXE$GL_ABSTIM and
EXE$GLABSTIM_ TICS contain the system uptime, the former in units of
seconds and the latter in IO-millisecond intervals. Table 11.1 summarizes
these global locations.

Initializing the Date and Time

The contents of EXE$GQ_ TODCBASE and EXE$GL_ TODR are maintained
both in memory and on disk in the base image file, SYS.EXE. The record
on disk is nonvolatile and survives across system bootstraps. Both repre­
sent the same time in different formats. EXE$GQ_ TODCBASE represents
the time of last adjustment in standard 64-bit time, the same format as
EXE$GQ_SYSTIME. EXE$GL_ TODR represents the time of last adjustment
in the same 32-bit format as the time-of-year clock. Whenever these cells
are adjusted on the system, they are written back to disk as well.

Recording up-to-date values of these variables ensures that

• VMS can determine the current year from EXE$GQ_ TODCBASE. A 32-bit
time-of-year clock can represent only date and time within year, but not
year.

• VMS can use the recorded value of EXE$GL_ TODR as a validity test for
the time-of-year clock.

11.3 Timekeeping in VMS

• The date and time are as recent as possible for a system that is without
battery backup for the time-of-year clock and is to boot unattended.

During system initialization, SYSINIT invokes the routine EXE$1NIT _
TODR, in module [SYSLOA]INIADPxxx, to validate the time of year and to
initialize EXE$GQ_SYSTIME from either the time-of-year clock and system
global locations or from a date and time entered by the operator. For a node
joining a VAXcluster system, SYSINIT obtains the date and time from a
node that has already joined and invokes EXE$SETIME_INT, described in
Section 11.4, to set the date and time. When a new VAXcluster system is
being formed, the time from one system is sent to all other nodes, each
of which invokes EXE$SETIME_INT. After the system disk is mounted,
SYSINIT invokes the $SETIME service to record new values for the time-of­
year global locations in the base image on disk.

The basic algorithm in EXE$INIT_TODR is similar for all VAX CPUs,
although there are some CPU-specific variants:

1. EXE$INIT _ TODR examines the SYSGEN parameter SETTIME.
2. If SETTIME is 0, EXE$INIT _ TODR reads the time-of-year clock and com­

pares its contents with those of EXE$GL_ TODR. If EXE$GL_ TODR is
more than one day ahead of the time-of-year clock, the time of year is
presumed invalid. This test detects a clock that has lost power. It also
detects cases where the clock has overflowed or is otherwise desynchro­
nized with the SYS.EXE base image being bootstrapped.

If the time-of-year clock is within a day of EXE$GL_ TODR, then its
contents and those of EXE$GL_ TODR and EXE$GQ_ TODCBASE are
used to reset the system time.

3. If SETTIME is 1, or if the time-of-year clock is invalid, EXE$INIT _
TODR examines the SYSGEN parameter TIMEPROMPTWAIT to deter­
mine how to reset the time of year:

a. A TIMEPROMPTWAIT value of zero means that the routine is to
reset the time without human intervention. EXE$INIT _ TODR com­
putes a new value for the time of year, based on the contents of
EXE$GL_ TODR plus 10 milliseconds.

b. A nonzero TIMEPROMPTWAIT value causes the routine to prompt
for the date and time on the console terminal and wait until the
operator enters valid data. If TIMEPROMPTWAIT is negative, the
system will not proceed unless the operator enters the date and time.
If TIMEPROMPTWAIT is positive, its value represents an upper limit
on the amount of time EXE$INIT _ TODR waits for the operator to
enter a new date and time. If that time elapses without the input
of valid data, EXE$INIT _ TODR proceeds as if TIMEPROMPTWAIT
were zero.

4. EXE$INIT _ TODR calls EXE$SETIME_INT, an internal entry point for

253

Time Support

11.3.2

the system service $SETIME, to initialize the system time and update
EXE$GQ_ TODCBASE and EXE$GL_ TODR. The base image on disk can­
not be modified until the system disk is mounted.

Maintaining the Date and Time

The system time, EXE$GQ_SYSTIME, is the number of 100-nanosecond in-
. tervals since 00:00 hours, November 17, 1858, the base time for the Smithso­
nian Institution astronomical calendar. EXE$GQ_SYSTIME is updated every
10 milliseconds by the interval timer interrupt service routine lsee Sec­
tion 11.7). EXE$GQ_SYSTIME is the reference for nearly all user-requested
time-dependent software activities in the system. For example, the $GET­
TIM system service simply writes this quadword value into a user-defined
buffer.

EXE$GL_ABSTIM, incremented by the routine EXE$TIMEOUT (see Sec­
tion 11.8.2), contains the number of I-second intervals that have elapsed
since the system was bootstrapped. EXE$G1-ABSTIM is the reference time

· for a number of VMS operations. In particular, it is used to check periodically
for I/O device, I/O controller, mount verification, and lock request timeouts.

EXE$GL_ABSTIM_ TICS contains the number of interval timer ticks that
have elapsed since the system was bootstrapped. It is defined as zero at
assembly time and incremented by the interval timer interrupt service
routine I see Section 11. 7). EXE$GL_ABSTIM_ TICS is the reference time
for the VMS scheduling subsystem. Its contents are recorded in the field
PCB$1-WAITIME whenever a process is placed into a wait state and in the
field PCB$L_ONQTIME when a process incurs quantum end. A comparison
between PCB$1-WAITIME and EXE$G1-ABSTIM_ TICS enables outswap
scheduling code to determine if the process can be considered to be in a long
wait, and a comparison between PCB$1-0NQTIME and EXE$GL_ABSTIM_
TICS to determine if the process is dormant (see Chapter 18).

EXE$GQ_SYSTIME is adjusted at powerfail recovery by routine EXE$RE­
START, in module POWERFAIL lsee Chapter 33), and through the system
service $SETIME. EXE$GL_ABSTIM and EXE$GL_ABSTIM_ TICS are never
adjusted.

11.4 SET TIME SYSTEM SERVICE

254

The $SETIME system service allows a system manager or operator to change
the system time while the operating system is running. This may be neces­
sary because of a power failure longer than the battery backup time of the
time-of-year clock or changes between standard and daylight saving time, for
example. The new system time is passed as the optional single argument of
the system service.

The $SETIME system service is also called directly at a special entry point,
EXE$SETIME_INT. This entry point is used during system initialization

11.4.1

11.4 Set Time System Service

to compute the system time from the contents of the time-of-year clock
and system variables. The difference between the two entry points is that
EXE$SETIME_INT is called at a point in SYSINIT before the system disk is
mounted, and hence must disable recording the values of EXE$GL_ TODR
and EXE$GQ_ TODCBASE in the base image.

The system service procedure EXE$SETIME, in module SYSSETIME, runs
in kernel mode. It first validates the request. If the requesting process does
not have the privileges OPER and LOG_IO, EXE$SETIME returns the error
SS$_NOPRIV. If the input quadword cannot be read, the procedure returns
the error SS$_ACCVIO.

The procedure diverges into the two paths described in the following
sections, based on the presence or absence of the new time argument.

$SETIME System Time Recalibration Requests

If no time argument, or an argument of zero, is passed to the system ser­
vice, this is considered a request to recalibrate EXE$GQ_SYSTIME from the
time-of-year clock, EXE$GL_ TODR, and EXE$GQ_ TODCBASE. Sometimes
recalibration is done during normal operation, because on some VAX systems
the time-of-year clock is more accurate than the interval clock.

EXE$SETIME performs the following actions:

1. It calls the scheduler routine SCH$REQUIRE_CAPABILITY, in module
SCHED, to ensure that EXE$SETIME is running on the primary processor
in a multiprocessing system.

2. EXE$SETIME invokes routine EXE$READP _LOCAL_ TODR, in module
[SYSLOA]ERRSUBxxx, to read the time-of-year clock, whose contents
are referenced in the following items and equations as TOY _CLOCK.

3. It compares the TOY_CLOCK to EXE$GL_ TODR. If the latter repre­
sents a time more than one day later, the TOY _CLOCK is not valid and
EXE$SETIME returns the error status SS$_IVTIME.

4. It computes the new system time, EXE$GQ_SYSTIME, using the follow­
ing equation:

EXE$GQ_SYSTIME = EXE$GQ_ TODCBASE
+ ((TOY_CLOCK- EXE$GL_TODR) * 100000)

EXE$GQ_SYSTIME and EXE$GQ_ TODCBASE contain quadword sys­
tem times in units of 100 nanoseconds. TOY _CLOCK and EXE$GL_
TODR contain longword time-of-year times in units of 10 milliseconds.
The multiplier of 100,000 represents the number of 100-nanosecond in­
tervals in 10 milliseconds.

5. It corrects the values in TOY_CLOCK, EXE$GL_ TODR, and EXE$GQ_
TODCBASE if TOY _CLOCK represents a value larger than one year. This
prevents the time-of-year clock from overflowing its limit.

255

Time Support

11.4.2

6. EXE$SETIME adjusts the expiration time of each entry in the timer
queue that specifies a relative (or delta) time by the difference between
the previous system time and the new system time. This modification
preserves the correct relative time across the modification to the system
time. EXE$SETIME does not adjust an entry containing an absolute time;
this ensures that the event will occur at the time specified by the user.
Section 11.5 describes the form and use of timer queue entries.

7. EXE$SETIME writes the pages of the base image in memory that contain
EXE$GQ_ TODCBASE and EXE$GL TODR back to the base image file
if the procedure was entered at EXE$SETIME.

$SETIME Time-of-Year Readjustment Requests

If a nonzero time value is given as an argument to $SETIME, EXE$SETIME
performs the following operations:

1. It converts the input argument, specified in system time units of 100
nanoseconds, into time-of-year units, the number of IO-millisecond in­
tervals after 00:00 hours on January 1 of the base year.

2. EXE$SETIME calls the scheduler routine SCH$REQUIRE.:..CAPABILITY,
in module SCHED, to ensure that it is running on the primary processor
in a multiprocessing system.

3. It writes the specified time, converted to 32-bit time-of-year format, into
the time-of-year clock and EXE$GL TODR.

4. It writes the specified time into EXE$GQ_ TODCBASE and EXE$GQ_
SYSTIME.

5. Finally, it updates the timer queue and, if the procedure was entered at
EXE$SETIME, writes the new values for the time-of-year clock base to
the base image file. Steps 6 and 7 in Section 11.4.1 give details.

11.5 TIMER QUEUE AND TIMER QUEUE ENTRIES

256

VMS describes each timer request with a data structure called a timer queue
entry (TQEJ. It maintains an absolute queue of TQEs, ordered by their ex­
piration times, at the system global location EXE$GL_ TQFL. The TIMER
spinlock synchronizes access to the timer queue.

Timer requests in VMS may be characterized according to the following
attributes:

• What action VMS takes to satisfy the request, for example, setting an event
flag or waking up a process

• Whether the request is a recurring one, to be repeated at specified intervals
• How the expiration time is determined

A user can specify that a request come due at a particular absolute time or
at a time relative to the time of the request. With VMS Version 5, the user

11.5 Timer Queue and Timer Queue Entries

has the choice of specifying a due time in terms of a process's accumulated
CPU time.

TQEs are generally allocated from nonpaged dynamic memory and inserted
into the timer queue as a result of $SETIMR and $SCHDWK system service
requests (see Section 11.6). The allocation of TQEs is governed by the pooled
job quota JIB$W_TQCNT.

The format of a TQE is shown in Figure 11.1. The link fields TQE$L_ TQFL
and TQE$L_ TQBL, the TQE$W _SIZE field, and the TQE$B_ TYPE field are
characteristic of system data structures allocated from dynamic memory.

The TQE$B_RQTYPE field describes the timer request. Its two low-order
bits define the type of timer request: process timer request, periodic system
routine request, or process wake request. Bit TQE$V _REPEAT is set if the
request is a repeating request rather than a one-time request. Bit TQE$V _
ABSOLUTE is set if the timer event was requested at a particular absolute
time rather than at a relative interval from the current time. Bit TQE$V _
CHK_CPUTIM is set if the timer event was requested based on the CPU
time accumulated by the target process. Figure 11.1 summarizes the bits in
TQE$B_RQTYPE.

The interpretation of the next three longword fields depends upon the type
of timer request. For system routine requests, these fields contain the PC, R3,
and R4 register values to be loaded before control is passed to the routine.
For process requests, these fields define the process ID of the process to
which to report the event, the address of an asynchronous system trap (AST)
procedure to execute (if requested), and an optional AST parameter.

For both process and system routine requests, the field TQE$Q_ TIME is
the quadword system time at which a particular timer event is to occur.
TQE$Q_DELTA is the absolute value of the repeat interval time for repeating
requests.

Several fields are meaningful only for process requests. The access mode
of the requesting process is stored in TQE$B_RMOD. Bit ACB$V_QUOTA

TQFL RQTYPEBlts

- TQBL Bit Value Meaning

RQTYPE l TYPE I SIZE

PIO/PC

0-1 0 Process timer request
1 System subroutine request
2 Scheduled wake request

AST/FR3
2 0 One-time request

1 Repeat request (not allowed for process

ASTPRM/FR4
timer requests)

I- TIME 3 0 Relative time request
1 Absolute time request

I- DELTA -
(reserved) 1 EFN l RMOD

4 Timer is based on CPU time accumulated
5 (reserved)

6 AST is associated with timer event

RQPID 7 (reserved)

CPUTIM

Figure 11.1
Layout of a Timer Queue Entry

257

Time Support

of TQE$B_RMOD is set if an AST is to be delivered when the timer event
occurs. The event flag to be set when the timer event occurs is stored in
TQE$B_EFN. TQE$1-RQPID contains the process ID of the process that
made the initial timer request, since the requesting process is not necessarily
the same as the target process whose ID is stored in TQE$L_PID.

For a request based on accumulated CPU time, TQE$1-CPUTIM contains
the amount of CPU time, in CPU time units, that the process should accu­
mulate for the timer event to occur.

11.6 TIMER SYSTEM SERVICES

11.6.1

258

Two system services are used to request time-dependent services, $SCHDWK
and $SETIMR, both in module SYSSCHEVT. Two complementary services,
Cancel Wakeup ($CANWAKJ and Cancel Timer Request ($CANTIMJ, both
in module SYSCANEVT, cancel time-dependent requests.

$SETIMR System Service

The $SETIMR system service creates TQEs for nonrecurring process timer
requests. Its system service procedure, EXE$SETIMR, runs in kernel mode,
performing the following steps:

1. The event flag specified as an argument to the system service is cleared
in preparation for a subsequent setting at expiration time.

2. If a fifth nonzero argument is present, this timer request is based on the
CPU time accumulated by this process; EXE$SETIMR sets the TQE$V _
CHK..CPUTIM bit in the TQE that it builds for this request.

3. EXE$SETIMR checks the request to ascertain that

-The time location is accessible to the requesting process
-The requesting process does not exceed its PCB$W _ASTCNT if an AST

is to be associated with this timer request

4. EXE$SETIMR decrements JIB$W _ TQCNT to charge the allocation of the
TQE. If the job runs out of the pooled resource JIB$W _ TQCNT, then
EXE$SETIMR puts the process into a miscellaneous wait state with its
PCB$L_EFWM field containing the address of the JIB, and bit JIB$V _
TQCNT _WAITERS set in JIB$B_FLAGS. When JIB$W _ TQCNT is re­
stored, this process will resume at the next step.

5. EXE$SETIMR allocates a TQE from nonpaged pool and initializes it from
the system service arguments of time, request type, and process ID.

6. If the time argument is negative, indicating that it is a relative time, then
EXE$SETIMR calculates the absolute expiration time of the request by
adding the absolute value of this argument to the current system time,
EXE$GQ_SYSTIME. Bit TQE$V _ABSOLUTE is cleared for this element
if this was a relative time request; otherwise, the bit is set.

11.6.2

11.6.3

11.6 Timer System Services

7. EXE$SETIMR stores the access mode from which the system service was
requested in the TQE$B_RMOD field. If AST notification was requested,
then EXE$SETIMR decrements the process PCB$W _ASTCNT to indicate
the future AST delivery and sets bit ACB$V _QUOTA of TQE$B_RMOD
to indicate the AST accounting.

8. EXE$SETIMR copies the AST parameter, which is used as request iden­
tification, and event flag number, both arguments for the $SETIMR re­
quest, to the TQE.

9. If bit TQE$V _CHK_CPUTIM is set in the TQE, the time argument rep­
resents the amount of CPU time the process must accumulate for the
timer event to occur. EXE$SETIMR estimates the earliest absolute time
at which this could happen and stores it in the TQE$Q_ TIME field.

It also calculates the total number of CPU time increments the process
must accumulate for this and stores it in TQE$1-CPUTIM. When the
TQE expires, EXE$SWTIMINT, in module TIMESCHDL, compares this
value with either PHD$1-CPUTIM or PCB$1-CPUTIM, depending on
whether the process is resident, to determine if the timer event is indeed
due (see Section 11.8.1). If it is not, EXE$SWTIMINT reestimates the
expiration time of the TQE and requeues it.

10. EXE$SETIMR invokes EXE$INSTIMQ, in module EXSUBROUT, to in­
sert the TQE into the right place in the timer queue and then returns.

$CANTIM System Service

The $CANTIM system service removes one or more TQEs before expiration.
Two arguments, the request identification parameter and the access mode,
control the actions taken by this service. EXE$CANTIM, the system service
procedure, invokes EXE$RMVTIMQ, in module EXSUBROUT, to remove
and deallocate each TQE on the timer queue that meets all of the following
criteria:

• The current process's ID is the same as TQE$1-PID .
• The access mode from which the service was requested is at least as

privileged as the access mode stored in the TQE. This ensures that no
request can be deleted for an access mode more privileged than that of the
requestor.

• The request identification parameter argument is the same as that stored
in the TQE. If the argument value is zero, then all TQEs meeting the first
two criteria are removed.

$SCHDWK System Service

The logic for managing scheduled wakeup requests is similar to that of
$SETIMR requests. Two differences are the ability to specify repeating sched­
uled wakeup requests and the ability to schedule wakeup requests for another

259

Time Support

260

process. The $SCHDWK system service procedure, EXE$SCHDWK in mod­
ule SYSSCHEVT, runs in kernel mode. It performs the following actions:

1. EXE$SCHDWK invokes EXE$NAMPID, in module SYSPCNTRL, to lo­
cate the PCB of the process to be awakened.

EXE$NAMPID determines whether the input arguments specify a tar­
get process on this V AXcluster node or on another node. In the former
case, EXE$NAMPID confirms the existence of the target process and the
ability of the current process to delete it. (Chapter 13 describes the pos­
sible relations between the two processes and the privileges required in
each case.) If the process is identified as one on another VAXcluster node,
EXE$NAMPID cannot make those checks; it can only confirm that the
VAXcluster node identification is valid.

If further action is possible, EXE$NAMPID returns at IPL$_SCHED
with the SCHED spinlock held; otherwise it returns at IPL 0. In either
case, it returns an appropriate status.

2. If EXE$NAMPID returns the status SS$_REMOTE_PROC, indicating
that the process may exist on another VAXcluster node, EXE$SCHDWK
validates the time arguments and transfers control to a clusterwide
process service (CWPS) routine in module SYSPCNTRL. The routine
transmits the wake request to the appropriate VAXcluster node and
places the requesting process into a wait state. A cooperating CWPS rou­
tine on the other node performs the request and transmits status back to
this node. Through mechanisms described in Chapter 13, control returns
to a CWPS routine running in the context of the $SCHDWK requestor.
This routine exits from the $SCHDWK system service, returning the
status transmitted from the other node.

3. If EXE$NAMPID returns any other error status, EXE$SCHDWK simply
exits, returning the error status to its requestor.

4. If EXE$NAMPID returns a status indicating that the target process exists
on this node and that the requesting process may affect it, EXE$SCHDWK
continues.

5. It tests the repeat time argument to determine whether the request is a
one-time or repeating scheduled wakeup.

6. If it is a repeating request, EXE$SCHDWK converts the requested repeat
time into system time format. If the repeat time is less than 10 millisec­
onds, it is increased to that value (the resolution of the interval timer
interrupt) ..

7. It allocates a TQE from nonpaged pool and initializes its repeat time,
request time, and target process ID fields.

8. If the initial scheduled wakeup time was expressed as a relative time,
then EXE$SCHDWK clears bit TQE$V _ABSOLUTE and calculates the
expiration time as the sum of the absolute value of the initial delta time

11.6.4

11. 7 Interval Timer Interrupt Service Routine

and the current system time. If the initial scheduled wakeup time was
expressed as an absolute time, it sets bit TQE$V _ABSOLUTE.

9. It decrements the PCB$W _ASTCNT quota of the requesting process to
account for the allocation of the TQE.

10. It invokes EXE$INSTIMQ, in module EXSUBROUT, to insert the TQE
into the ordered timer queue according to its expiration time.

When the expiration time is reached, the target process is awakened (see
Section 11.8.3). Deallocation of the TQE occurs after delivery of a one-time
scheduled wakeup request or as a result of a $CANWAK system service call.

$CANWAK System Service

The $CANWAK system service cancels all one-time and repeat scheduled
wakeup requests for a target process. EXE$CANWAK, the system service
procedure, first tests that the requesting process has the ability to affect the
target process. It then deallocates each canceled TQE to nonpaged pool and, if
the initial requesting process still exists, returns its PCB$W _ASTCNT quota
to indicate the deallocation.

11.7 INTERVAL TIMER INTERRUPT SERVICE ROUTINE

The interval timer interrupt service routine, EXE$HWCLKINT in module
TIMESCHDL, services the hardware interrupt signaled by the interval timer
every 10 milliseconds.

On some CPUs, this is an IPL 24 interrupt; on others, it is an IPL 22
interrupt (see Section 11.2.1). The interval timer interrupt service routine
has the following major functions:

• Updating the system time
• Process and CPU accounting
• Implementing the sanity timer in a multiprocessing configuration
• Checking whether the most imminent TQE is due

In a multiprocessing configuration, the interval timer interrupt is taken
by all processors, and all of them execute EXE$HWCLKINT. However, only
the primary CPU is responsible for updating the system time and checking
the timer queue.

EXE$HWCLKINT performs the following actions:

1. EXE$HWCLKINT resets the PR$_ICCS register to indicate the servicing
of the interrupt and the reenabling of the interval timer.

2. In an SMP system, EXE$HWCLKINT performs the operations necessary
to implement this processor's part of the sanity timer mechanism, as
described in Chapter 34.

3. Running on a uniprocessor or on the primary processor of an SMP system,
EXE$HWCLKINT does the following:

261

Time Support

262

Table 11.3 Per-CPU Statistics Counters

Index Meaning
O · Kernel mode on kernel stack, no spinlock

busy wait is active
1 Executive mode
2 Supervisor mode
3 User mode
4 Kernel mode on interrupt stack
5 Compatibility mode
6 Kernel mode on kernel or interrupt stack,

spinlock busy wait is active

a. It acquires the HWCLK spinlock in a multiprocessing environment.
b. It updates the system time quadword, EXE$GQ_SYSTIME, by adding

to it the value in EXE$GL_ TICKLENGTH.
EXE$GL_ TICKLENGTH is used to maintain the system time rela­

tive to an external time standard. Normally, EXE$GL_ TICKLENGTH
is initialized to the value in EXE$GL_SYSTICK, the VMS representa­
tion of 10 milliseconds. However, in some circumstances, privileged
VMS applications may adjust EXE$GL_ TICKLENGTH, thus speed­
ing up or slowing down the VMS clock until it is synchronized with
the reference time. Varying the tick length guarantees a monotoni-

. cally increasing system time and avoids the pitfalls of other means
of changing the system time.

Use of the cells EXE$GL_SYSTICK and EXE$G1-TICKLENGTH is
reserved to Digital and not supported except for use within Digital
software.

c. It increments EXE$GL_ABSTIM_ TICS.
d. It compares the updated system. time with the quadword EXE$GQ_

I ST_ TIME,, which is the time. of expiration of the most imminent
timer queue entry. H this entry' is due, then EXE$HWCLKINT re­
quests an IPL$_ Tll\iERFORK s6ftware interrupt.

e. It releases the HWCLK spinloek in a multiprocessing environment.

4. EXE$HWCLKINT then updates time statistics fields maintained as an
array in the per-CPU database at CPU$L..KERNEL. (Chapter 34 describes
the per-CPU database.) The meaning.of each counter within this array of
seven longwords is explained in Table 11.3.

5. EXE$HWCLKINT determines whether this interval timer tick should be
charged to a process:

-H CPU$B_BUSYWAIT is nonze~o, .. indicating that the processor was in
a spinwait trying to acquire a spmlock; the tick is not charged.

11.8 Software Timer Interrupt Service Routine

-If the processor was running on the interrupt stack at the time of the
. interrupt, the tick is not charged.

If neither of those is true, EXE$HWCLKINT increments the process's
accumulated CPU time, PHD$1-CPUTIM, and its quantum, PHD$W _
QUANT. If the quantum, initialized to a negative value, reaches zero,
EXE$HWCLKINT requests an IPL$_ TIMERFORK software interrupt to

. initiate quantum-end processing for this process.

11.8 SOFTWARE TIMER INTERRUPT SERVICE ROUTINE

11.8.1

The software timer interrupt service routine, EXE$SWTIMINT in module
TIMESCHDL, is. entered through the IPL$_ TIMERFORK (IPL 7) software
interrupt. Note that IPL$_ TIMERFORK is the IPL at which this software
interrupt is taken, but the interrupt service routine performs its functions
at IPL$_ TIMER (IPL 8). The software timer interrupt is requested by the
interval timer interrupt service routine either because the current process
has reached quantum end or the first TQE must be serviced.

EXE$SWTIMINT examines CPU$L_CURPCB in the processor's per-CPU
database to get the current process's PCB and locates the process's header.
EXE$SWTIMINT then tests PHD$W _QUANT to determine whether the
current process on this processor has reached quantum end. This field is
initialized to the negative value of the SYSGEN parameter QUANTUM and
incremented by the interval timer interrupt service routine. A zero or posi­
tive quantum value indicates quantum expiration. If the process has reached
quantum end, EXE$SWTIMINT obtains the SCHED spinlock and invokes
routine SCH$QEND, in module RSE, to perform quantum-end processing
(see Chapter 12).

Running on a uniprocessor or on the primary CPU in a multiprocess­
ing system, EXE$SWTIMINT checks whether the system time, EXE$GQ_
SYSTIME, is greater than or equal to the expiration time of the first entry in
the timer queue. If it is, then the timer event is due. On an SMP system, this
multiple-instruction comparison with the system time must be performed
while holding the TIMER and HWCLK spinlocks to synchronize with . the
interval timer int.errupt service routine. On a uniprocessor, IPL is. raised to
the level of the interval timer interrupt.

If the timer request is due, then EXE$SWTIMINT removes the first.TQE
from the timer queue, releases the HWCLK and TIMER spinlocks, lowering
IPL to IPL$_ TIMER, and performs one of three sequences of code depend,
ing upon the type of timer request. The following sections describe these ·
sequences.

Process Timer Requests

If the TQE is a process timer request1 created by a $SETIMR system service
call, . then EXE$SWTIMINT performs the following· operations: ·

263

Time Support

11.8.2

264

1. If bit TQE$V _CHK_CPUTIM is set to indicate that the timer request is
in terms of CPU time accumulated by the process, then EXE$SWTIMINT
takes the following steps:

a. If the requesting process is not in the system any more, it simply
deallocates the TQE.

b. Otherwise, it obtains the CPU time from PHD$L_CPUTIM if the
requesting process is resident and from PCB$L_CPUTIM if it is not.
(The swapper copies PHD$1-CPUTIM to PCB$1-CPUTIM when it
outswaps a process.) EXE$SWTIMINT compares the process's CPU
time to TQE$L_CPUTIM to see if the timer request has expired.

If the timer has expired, EXE$SWTIMINT proceeds as if this were a
normal TQE expiration. Otherwise, it converts the number of remain­
ing CPU time increments to system time format. It adds .that value
to the expiration time, making a new estimate of when the process
might have accumulated enough CPU time. EXE$SWTIMINT then
reinserts the TQE in the queue.

2. Holding the SCHED spinlock, it sets the event flag associated with
this timer request by invoking SCH$POSTEF with the contents of the
TQE$LPID and TQE$B_EFN fields. A software priority boost of 3 may
be applied to the process (see Chapter 12).

3. If the target process is no longer in the system or the event flag number
is illegal, EXE$SWTIMINT simply deallocates the TQE.

4. It increments the process's JIB$W _ TQCNT quota, using an interlocked
instruction, to indicate the pending deallocation of the TQE.

EXE$SWTIMINT tests JIB$B_FLAGS to determine if any processes in
the same job are waiting for TQE quota. For each such process, it invokes
SCH$CHSE, in module RSE, to make the process computable.

5. If ACB$V _QUOTA in TQE$B_RMOD is set, the user requested AST no­
tification. EXE$SWTIMINT copies the TQE$B_RMOD field to TQE$B_
RQTYPE to reformat the TQE into an AST control block (ACB). EXE$SW­
TIMINT invokes SCH$QAST to queue the ACB to the process (see Chap­
ter 7).

When the processing of this TQE has been completed, EXE$SWTIMINT
checks whether the next TQE is due.

Note that process timer requests are strictly one-time requests. Any repe­
tition of timer requests must be implemented by the requesting process. A
process can request $SETIMR events only on its own behalf.

Periodic System Routine Requests

The second type of TQE, a system routine request, is a system-initiated time­
dependent request to execute a specified system routine. EXE$SWTIMINT
handles this type of TQE by performing the following actions:

11. 8 Software· Timer Interrupt Service Routine

1. it loads R3 and R4 from the TQE$L_FR3 and TQE$L_FR4 fields. RS points
to the beginning of the TQE.

2. It executes a JSB instruction using the TQE$L_FPC field, which points
to the system routine to be invoked.

EXE$SWTIMINT assumes that on ·return from the system routine, RS
points to a TQE. It tests the TQE$V _REPEAT bit for this TQE. If the bit is set,
it reinserts the TQE into the timer queue, having computed a new expiration
time from TQE$Q_DELTA. EXE$SWTIMINT then checks the timer queue
for further TQEs to service.

Note that even if the TQE is not reinserted in the queue, EXE$SWTIMINT
does not deallocate the TQE. This type of TQE can be defined in a static
nonpaged portion of system space or within a device driver data structure.

One example of this type of request, a repeating system subroutine request,
is the once-per-second execution of the routine EXE$TIMEOUT, in module
TIMESCHDL. The TQE for EXE$TIMEOUT is permanently defined in the
same module, and the timer queue is initialized at bootstrap time with this
TQE as the first entry in the queue. EXE$TIMEOUT performs the following:

1. Holding the SCHED spinlock, it invokes the routine SCH$SWPWAKE to
awaken the swapper process, if appropriate (see Chapter 18).

2. EXE$TIMEOUT increments the EXE$GL_ABSTIM field to indicate the
passing of 1 second of system uptime.

3. It invokes the routine ERL$WAKE, in module ERRORLOG, to awaken
the ERRFMT process, if appropriate (see Chapter 32).

4. EXE$TIMEOUT invokes ECC$REENABLE, a routine in SYSLOAxxX.
ECC$REENABLE scans the memory controllers to log any unreported
corrected read data (CRD) errors and possibly to reenable CRD interrupts.

S. EXE$TIMEOUT scans the I/O database for devices that have exceeded
their timeout intervals. Holding the appropriate fork lock and device
lock, it invokes the driver for each such device at its timeout entry point.

This scan also invokes the driver's timeout routine for terminal timed
reads that have expired.

6. EXE$TIMEOUT scans the list of channel (controller) request blocks
(CRBs) on the list IOC$GL_CRBTMOUT for any that have timed out.
The CRB timeout mechanism enables a driver to be entered periodi­
cally for controller-related functions. The driver stores the address of
a timeout routine in the field CRB$L_ TOUTROUT and an expiration
time in CRB$L_DUETIME and invokes IOC$THREADCRB, in module
IOSUBNPAG, to thread its CRB on the list. EXE$TIMEOUT compares
the expiration time with EXE$GL_ABSTIM and, if the CRB due time has
arrived, invokes the timeout routine holding the appropriate fork lock.

The system communication services (SCS) class and port drivers em­
ploy this mechanism. The disk class driver, for example; must send its

265

Time Support

11.8.3

266

server periodic messages to inform the server that the host system is run­
ning. The disk class driver timeout routine also checks that the server
has made progress on the oldest outstanding request.

7. If a process is running the Monitor Utility to display disk and disk queue
length information, EXE$TIMEOUT scans the 1/0 database to collect
information about disk queue lengths.

8. Next, EXE$TIMEOUT scans the fork and wait queue. Chapter 4 describes
this queue and its use by fork processes.

9. The first entry on the lock manager timeout queue is checked to see
if it has expired. If it has, a deadlock search is initiated by invoking
LCK$SEARCHDLCK, in module DEADLOCK (see Chapter 10).

10. EXE$TIMEOUT invokes SCH$0NE_SEC, in module RSE. Its primary
task is to invoke SCH$PIX_SCAN, also in module RSE. SCH$PIX_SCAN
gives selected computable resident (COM) and computable outswapped
(COMO) processes a priority boost, as described in Chapter 12.

11. Invoking SCH$RAVAIL, EXE$TIMEOUT declares several system
resources available: RSN$_NPDYNMEM, RSN$_PGDYNMEM, RSN$_
MAILBOX, and RSN$_ASTWAIT. This is necessary because, in certain
rare cases, these resources are not declared available when they should
be.

Another example of a repeating system timer routine is one the terminal
driver uses to implement its modem polling. The controller initialization
routine in the terminal driver loads the expiration time field in a TQE in the
terminal driver with the current system time, sets the repeat bit, and loads
the repeat interval with the SYSGEN parameter TTY_SCANDELTA. When
the timer routine expires, it polls each modem looking for state changes.

Scheduled Wakeup Requests

The third type of TQE is a request for a scheduled wakeup ($SCHDWK) of a
hibernating process. This type of request may be either one-time or repeating
and may be requested by a process other than the target process.

EXE$SWTIMINT performs the following operations for a scheduled wake­
up TQE:

1. EXE$SWTIMINT invokes SCH$WAKE, in module RSE, to awaken the
target process, which is identified by TQE$1-PID. If the target process
is no longer in the system, it deallocates the TQE to nonpaged dynamic
memory. Otherwise, if the requesting process (TQE$L_RQPID) still ex­
ists, EXE$SWTIMINT increments its PCB$W _ASTCNT quota.

2. If the request is a one-time request, indicated by a zero TQE$V _REPEAT
bit in the TQE$B_RQTYPE field, then EXE$SWTIMINT performs the
cleanup described in step 1.

3. If the request is a repeating type, then EXE$SWTIMINT adds the re­
peat interval, TQE$Q_DELTA, to the request's expiration time, TQE$Q_

11.8 Software Timer Interrupt Service Routine

TIME, computing its new expiration time. Based on this value, it rein­
serts the TQE in the appropriate position in the timer queue, by invoking
EXE$INSTIMQ, in module EXSUBROUT.

EXE$SWTIMINT then checks to see whether the next TQE is due.

267

12 Scheduling

It is equally bad when one speeds on the guest unwilling to
go, and when he holds back one who is hastening. Rather one
should befriend the guest who is there, but speed him when
he wishes.

Homer, The Odyssey

Only one process can run on a processor at once. Scheduling is the mecha­
nism that selects a process to run.

The characteristics most significant to the scheduling of a process are

• Process priority, which determines the execution precedence of processes
• Scheduling state, which defines the readiness of a process to be scheduled

for execution, its computability or lack thereof
• Processor capability or affinity requirements (new with VMS Version 5),

which constrain the set of processors of a symmetric multiprocessing (SMP)
system on which a process can execute

Running on a particular processor, the scheduler identifies and selects for
execution the highest priority process that can execute on that processor and
places it into execution. A process currently executing enters a wait stat~
when it makes a direct or indirect request for a system operation that cannot
complete immediately. A waiting process becomes computable as the result
of system events, such as the setting of an event flag or the queuing of an
AST, and may preempt a current process.

This chapter first describes the data structures related to scheduling and
the significance of process priority, scheduling state, capabilities, and affin­
ity. It then describes the dynamics of their interactions-how changes in
one characteristic can affect the others and the mechanisms by which the
characteristics change. Finally, it describes the rescheduling interrupt service
routine in detail.

12.1 SCHEDULING DATA STRUCTURES

268

Most of the system data structures relevant to scheduling are described in
this section.

The fundamental data structure is the software process control block
(PCB). It specifies the scheduling state, process priority, and capability and
affinity requirements of a process and records many other process character­
istics. Section 12.1.1 describes fields in the PCB relevant to scheduling.

One PCB, the null PCB, is defined statically as a placeholder. In earlier
versions of VMS, the null PCB described a process called the null process.
This process no longer exists, but there is still a need for a placeholder PCB

12.1.1

12.1 Scheduling Data Structures

so that each system pointer to a PCB can point to a valid PCB, even if there
is no associated process.

Section 12.1.2 describes the process state queues, the queues in which
PCBs of processes in the same scheduling states are linked.

As part of support for SMP, VMS Version 5 adds a data structure called the
per-CPU database. The per-CPU database records processor-specific informa­
tion. Each CPU has its own per-CPU database. Section 12.1.3 describes the
fields in this structure relevant to scheduling.

Each CPU is identified by an ID, a number from 0 to 31. The system mask
SCH$GLIDLE_CPUS has a bit corresponding to each CPU. When set, the
bit indicates that the CPU is idle and has no current process. The bit is
cleared as a signal to indicate that the CPU should repeat its attempt to
select a process to execute.

Several other systemwide data structures related to process priority are
described in Section 12.2.

The set of PCBs, process state queues, and related data structures is known
as the scheduler database. The SCHED spinlock synchronizes access to it.
Chapter 8 describes the implementation and use of spinlocks. The SCHED
spinlock does not synchronize access to all PCB or per-CPU database fields,
just those related to scheduling.

PCB Fields Related to Scheduling

When a process is created, a PCB is allocated for it from nonpaged pool. A
process continues to use the same PCB until the process is deleted and its
PCB deallocated.

Figure 12.1 illustrates the fields of the PCB that are particularly important
to scheduling. Others are shown in other chapters, in particular, in Chap­
ters 7, 8, and 9.

The scheduling state of a process is specified by its PCB$W _STATE field.
All processes in the system are in either the current (CUR) state, a wait state,
computable resident (COM) state, or computable outswapped (COMO) state.
Table 12.1 lists the scheduling states; Section 12.3 summarizes them and the
transitions among them.

The PCBs of processes in most scheduling states are queued together with
those of other processes in the same state so that they can be located more
easily by scheduling routines. The scheduling state queue link fields, PCB$L
SQFL and PCB$LSQBL, link a PCB into a process scheduling state queue
(hereafter referred to as a process state queue). The various process state
queues are described in Section 12.1.2.

The data structure that contains the hardware context of the process is
called the hardware PCB. Its physical address is stored in the software PCB
field PCB$L_PHYPCB. Section 12.6.l describes the hardware PCB.

PCB$LSTS, the process status longword, contains various flags describing

269

Scheduling

270

SQFL

SQBL

l TYPE l SIZE

PHYPCB

STATE I
AFFINITY _SKIP l l PRIB l PAI

STS

AUTHPRI I I PRIBSAV I PRISAV

ONOTIME

WAITIME

I EFWM I
I PHO . I
I JIB I

AFFINITY

CAPABILITY

CPU_ID

I PIXHIST I
r

AFFINITY _CALLBACK

PERMANENT _CAPABILITY

PERMANENT_CPU_AFFINITY

CURRENT_AFFINITY

CAPABILITY _SEQ

Figure 12..1
Process Control Block Fields Used in Scheduling

the status of the process. The bit PCB$V _RES is of particular significance to
scheduling. When set, it indicates that the process is in memory rather than
outswapped. Table 25.2 describes the flags in the process status longword.

Several PCB fields are related to process priority. Section 12.2 describes
these fields.

12.1.2

12.1 Scheduling Data Structures

When a process is in an event flag wait (see Section 12.3.3.1) or miscel­
laneous wait (MWAIT) state (see Section 12.3.3.3), PCB$1-EFWM identifies
the flags or resource for which the process waits.

PCB$L_PHD contains the address of the process header (PHD). The PHD
contains the hardware PCB and the field PHD$W _QUANT, the amount of
quantum remaining to the process.

PCB$L_JIB contains the address of the job information block (JIB). The
PCBs of all processes in a job tree share the JIB, which contains information
common to all processes in the job, notably pooled quotas.

PCB$L_CPU_ID contains the processor ID of the CPU on which the
process is currently executing or has last executed.

PCB$L_ WAITIME contains the system absolute time in interval timer
ticks at which a process was most recently placed into a wait state.

PCB$1-0NQTIME records the system absolute time in interval timer
ticks at which a process most recently reached quantum end.

PCB$L_PIXHIST is described in Section 12.5.6.
The other PCB fields shown in Figure 12.1 are described in Section 12.4.

Process State Queues

PCBs of processes in the same scheduling state are linked together in doubly
linked queues. There are queues for computable processes and for processes
in different wait states. The listheads for all these queues are defined in tlie
module SYSTEM_DATA_CELLS. Each CPU has a pointer to the PCB of its
current (CUR) process in the per-CPU database.

There are 32 queues for COM processes, one for each possible process
priority. The quadword listheads of these queues are defined as an array
whose starting address is global location SCH$AQ_COMH. A process is
inserted into the queue corresponding to the internal value of its current
process priority (see Section 12.2). There is a similar array of 32 quadword
listheads for the COMO state at global location SCH$AQ_COMOH.

The condition (empty or not) of each computable queue is summarized by
a bit. If the queue contains one or more PCBs, the bit is set; if the queue
is empty, the bit is clear. The 32 bits describing the COM queues are in
the longword at global location SCH$G1-COMQS; the COMO queues are
summarized in the longword SCH$GL_COMOQS.- Bit 0 in each longword
corresponds to the process priority 31 queue, bit 1 to priority 30, and so
forth. (Section 12.2 explains the inverted order.) These summary longwords
facilitate selection of the next process to execute and selection of the next
process to be inswapped. Figure 12.2 shows the computable queues and their
summary longwords.

Figure 12.3 shows the array of scheduler wait queue headers. Each header is
a listhead for processes in one of the wait states. The first two longwords are
the links to the PCBs in this queue. The field WQH$W _ WQSTATE contains

271

Scheduling

272

Bits 31 0
For State COM 1,...------------.. I

Priorities O 31

Bits 31 0
For State COMO 1,...------------.. I

Priorities O 31

For State COM Priority 31 ..,

I- Priority 30 ..,

PriorityO ..,

For State COMO I- Priority 31 ..,

t- Priority 30 ..,

Priority 0

Figure 12.2
Computable (Executable) State Queues

WQFL

For SCH$C_COLPG
WQBL

WQSTATE I 'MlCNT

WQFL

For SCH$C_MWAIT
WQBL

WQSTATE l 'MlCNT

Null entry

WOFL

WQBL

WQSTATE 1 'MlCNT

For SCH$C_PFW

Compute Queue
Summary Longwords

SCH$GL_COMQS::

SCH$GL_COMOQS::
(A clear bit implies
an empty queue.)

Queue Headers
SCH$AQ_COMH::
SCH$AQ_COMT::

SCH$AQ_COMOH::
SCH$AQ_COMOT::

SCH$GQ COLPGWQ::/
SCH$Aa::::waHDR::

SCH$GQ_MWAIT::

SCH$GQ_PFWQ::

For SCH$C_FPG f1---WQS1--'A-TE_= __ L __ 'M:ICNT ____ J ~~
Figure 12.3
Array of Wait Queue Headers

12.1.3

12.1 Scheduling Data Structures

the numerical value corresponding to the scheduling state (see Table 12.1).
All PCBs in a process state queue have PCB$W _STATE values identical to the
state value of the wait queue header. The field WQH$W _ WQCNT contains
the number of PCBs currently in this state and queue .

. The wait queue headers for all wait states except common event flag (CEF)
wait are defined within this array ordered by increasing state number, with
the collided page wait state first. Each wait queue header except CEF has
its own global pointer. A scheduling routine can access a particular wait
queue by specifying its global name or using its state number as an index
into the wait queue header array. The global location SCH$AQ_ WQHDR is
the address of the beginning of the array and corresponds to index number 1.
(There is no state whose numeric value is 0.) Note that there is no actual
header with an index value of 3, or CEF, although space is reserved.

A process waiting for one or more common event flags is queued to a wait
queue in the common event block (CEB) defining the common event flag
cluster with which the process is associated. A CEB includes three longwords
that correspond to a wait queue header. The entire format of the CEB is
shown in Chapter 9. Having a wait queue in each CEB makes it easier to
determine which CEF processes are computable when a common event flag
is set. The wait queue in the CEB contains both resident and outswapped
processes.

Per-CPU Database Fields Related to Scheduling

The per-CPU database records processor-specific information such as the
address of the PCB of the process current on that processor, the address of
the processor's interrupt stack, and the processor's fork queues. Chapter 34
contains further information, including a detailed description of the per-CPU
database. Figure 12.4 illustrates the fields of the per-CPU database that are
related to scheduling.

CPU$L_CURPCB contains the PCB address of the process currently ex­
ecuting on this processor. CPU$B_CUR..,.PRI contains the process's current
priority. If the processor is idle, CPU$L_CURPCB contains the address of
the null PCB, and CPU$B_CUR_PRI contains -1.

CPU$L_PHY_CPUID contains the ID of the processor, a number from
0 to 31. CPU$1-CPUID_MASK is a mask of all zeros with one bit set
corresponding to the CPU ID.

CPU$L_CAPABILITY is a bit mask with bits set to represent the capabil­
ities of this processor. The low bit, when set, means that this CPU is the
primary processor. The macro $CPBDEF defines symbolic values for the bits
in this field. CPU$W _HARDAFF is the number of processes that have ex­
plicit affinity for this CPU. Section 12.4 describes the meaning and use of
these two fields.

273

Scheduling

CURPCB

CUR_PRI

,...

CPUID_MASK

PHY_CPUID

CAPABILITY

I HAR DA FF I
Figure 12.4
Per-CPU Database Fields Used in Scheduling

12.2 PROCESS PRIORITY

274

Two different mechanisms whose names contain the term priority are associ­
ated with each process. Interrupt priority level (IPL) applies to process-based
and system-based code alike. IPL governs the hardware precedence of inter­
rupts, as described in Chapter 2.

Process priority determines the precedence of a process for execution and
memory residence. Throughout this book, the term priority used without
qualification refers to process priority.

Process priorities have two different representations, an external one for
presentation to the user and an internal one for use by most scheduling
code. External process priorities take on values from 0 to 31; 0 is the lowest
priority, and 31 the highest. This representation matches the tendency of
most users to associate higher values with higher priorities.

The range of 32 priorities is divided in half. The high-priority half, 16 to 31,
is assigned to real-time processes; the low-priority half, 0 to 15, is assigned
to normal processes. The scheduling of a process is significantly affected by
its type (normal or real-time) and its assigned priority level.

Internal process priorities are stored in an inverted order. For example, 0,
the lowest external priority, is stored internally as 31; external priority 31 is
stored internally as 0. Subtracting one priority form from 31 converts it to
the other form.

Inverting the values facilitates selection of the next process to execute and
the next process to be inswapped; these functions use the find first set (FFS)
instruction, which begins its search for a set bit at bit position 0. (In other

12.2 Process Priority

data structures, external priority is used instead, for convenience of the code
referencing them.) As a result of this inversion, priority promotions or boosts
are implemented through subtract or decrement instructions.

System utilities, such as the System Dump Analyzer (SDA), MONITOR,
and the code that implements the Digital command language (DCL) com­
mand SHOW SYSTEM, convert internal priorities to external ones for dis­
play. The Get Job Process Information ($GETJPI) system service returns an
external priority when a process priority is requested.

All discussions in this book use external priority representation unless
otherwise noted. This convention should be taken into account when relat­
ing descriptions in this book to the actual routines in the listings, where
internal priorities predominate.

Several fields of the PCB describe process priority. The values in these
fields are in internal priority representation. The field PCB$B_PRI defines the
current process priority, which is used to make scheduling decisions. PCB$B_
PRIB defines the base priority of the process, from which the current priority
is calculated. For normal or time-sharing processes, these priority values are
sometimes different, while real-time processes always have identical current
and base priority values.

When a process is first created, its base priority is initialized from an
argument to the Create Process ($CREPRC) system service. Subsequently,
if the process executes the LOGINOUT.EXE image, it may reset the base
priority using the value from the user's record in the system authorization
file.

A process with the ALTPRI privilege can raise and lower its current and
base priorities without constraint, using the Set Priority ($SETPRI) system
service or the DCL command SET PROCESS/PRIORITY. Chapter 13 de­
scribes the operation of the $SETPRI system service. The field PCB$B_
AUTHPRI contains the base priority authorized at the time the process was
created. A process without the ALTPRI privilege may raise and lower its
priorities only between 0 and the contents of PCB$B_AUTHPRL

System mechanisms that adjust priority dynamically are described in Sec­
tion 12.2.3.

The fields PCB$B_PRIBSAV and PCB$B_PRISAV record the base and cur­
rent priority values at the time a process first locks a mutex, before it receives
a temporary elevation into the real-time range. When the process unlocks
the mutex, its priority values are restored from these fields.

SCH$AL_PREEMPT _MASK is a 32-longword array of constants, with one
longword for each priority. The array is indexed by internal priority; the
longword at SCH$A1-PREEMPT _MASK corresponds to internal priority 0.
The longword for a priority represents the priorities that it can preempt. Each
bit in the longword represents a priority, with bit 0 representing external
priority 0. The bits are organized that way because they are masked against
the data in SCH$GL_ACTIVE_PRIORITY, described later in this section.

275

Scheduling

276

When a resident process becomes computable, scheduling code must de­
cide whether the process should preempt one currently executing. In earlier
versions. of VMS, the test for preemption was a simple comparison of prior­
ities. In VMS Version 5.2, the test, while more complex, minimizes unnec­
essary rescheduling and improves overall system performance. Scheduling
code indexes the preemption array using the priority of the newly com­
putable process. The selected mask indicates which priorities the process
can preempt. The values in the masks implement two preemption rules and
thus simplify the decision code:

• A real-time process can preempt any process of lower priority .
• A normal process at external priority n can preempt a process at priority

n -3.

Preventing preemption by a newly computable process only one or two pri­
ority levels higher than a current process helps to minimize movement of a
process from one processor to another on an SMP system. If no other schedul­
ing events intervene, such a newly computable process will be favored at
quantum end of the current process.

The VMS Version 5.2 change in preemption policy may require system
management changes on systems that have classes of users with different
base priorities. In previous versions of VMS, defining the base priority for one
class of processes (say, batch jobs) to be 3, and the base priority for another
class (say, interactive users) to be 4, created an environment in which the
processes of the higher priority were assured maximum responsiveness. To
achieve the same effect in VMS Version 5.2, the base priorities for the two
classes must differ by 3.

The per-CPU database field CPU$B_CUR_PRI contains the internal form
of the current priority of the process current on that CPU. If the CPU is idle
and has no current I?rocess, the field contains -1.

The priorities of the processes current on each member of an SMP system
are described by two system data structures, defined in SYSTEM_DATA_
CELLS:

• SCH$ALCPU_PRIORITY is a 32-longword array, with one longword for
each priority. The array is indexed by internal priority; the longword at
SCH$AL_CPU_PRIORITY corresponds to internal priority 0. Each bit in
a longword represents one SMP member, with bit 0, for example, corre­
sponding to CPU ID 0. Bit m set in longword n means that the process
current on CPU ID m is at internal priority n.

• SCH$GL_ACTIVE_PRIORITY, summarizing SCH$AL_CPU_PRIORITY,
has a bit for each priority. When set, a particular bit indicates that one
or more SMP members have a current process at that priority. Bit 0, for
example, corresponds to external priority 0. The longword is indexed by

12.2.1

Bit representing
process at priority 8

12.2 Process Priority

Bit representing
process at priority 5

,...31 _____________ _ __,o External Prlodty

00 000 00 00 0 0 00 00 00 0 00000100100000 SCH$GL_ACTIVE_PRIORITY::

31 0 CPU ID Number : 1.------------------.l SCH$AL_CPU_PRIORITY"

23

Internal
Priority 24

25

26

Figure 12.5

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xx

xxxxxx~xxxxxxxxxxxxxxxxxxxxxxxx1

SMP Priority Summary Data Structures

i.---- Longword for priority 8

i.---- Longword for priority 5

external priority so that scheduling code can execute an FFS instruction to
locate the lowest priority current process.

Figure 12.5 shows how these data structures might look for an SMP system
of two members with CPU IDs 0 and 2. CPU 0 is executing a process at
external priority 5, and CPU 2 a process at external priority 8. For simplicity,
most of the bits are omitted.

Real-Time Priority Range

Processes with priority levels 16 through 31 are considered real-time pro­
cesses. There are two scheduling characteristics that distinguish real-time
processes from normal processes:

• The current priority of a real-time process does not change over time unless
there is a direct program or operator request to change it. No dynamic
priority adjustment (see Section 12.2.3) is applied by the VMS executive .

• A real-time process executes until it is preempted by a higher priority
process or it enters a wait state (see Section 12.3.3). A real-time process
is not susceptible to quantum end (see Section 12.5.2); it is not removed
from execution because some interval of execution time has expired.

277

Scheduling

12.2.2

12.2.3

278

Taken in isolation, the real-time range of VMS priorities provides a sched­
uling environment like traditional real-time systems: preemptive, priority­
driven scheduling without a time slice or quantum.

Normal Priority Range

Most user processes are normal processes. All system processes except the
swapper and the Files-11 Extended QIO Processor (XQP) cache server process
are normal processes.

The current priority of a normal process varies over time, while its base pri­
ority remains constant unless there is a direct program or operator request to
change it. This behavior is the result of dynamic priority adjustment applied
by the VMS system to favor I/0-bound processes and processes performing
terminal I/O over those performing other types of 1/0 and compute-bound
processes. The mechanism of priority adjustment is discussed in the follow­
ing section.

Normal processes run in a time-sharing environment that allocates time
slices (or quanta) to processes in turn. A normal process executes until one
of the following events occurs:

• It is preempted by a higher priority computable process. In VMS Ver­
sion 5.2, for one normal process to preempt another, the priority of the
preempting process must be at least 3 more than that of the preempted
process. (In VMS Versions 5.0 and 5.1, a higher priority process can pre­
empt a lower priority one.)

• It enters a resource or event wait state.
• It has used its current quantum, and there is another computable process

at the same or higher priority.

Processes with identical current priorities are scheduled on a round-robin
basis. That is, apart from the affinity and capability constraints described in
Section 12.4, each process at a given priority level executes in turn before
any other process at that level executes again.

Most normal processes experience round-robin scheduling because, by de­
fault, the user authorization file defines the base priority for users as the
value of SYSGEN parameter DEFPRL Its usual value is 4.

Dynamic Priority Adjustment

Normal processes do not generally execute at a single priority level. Rather,
the priority of a normal process changes over time in a range of zero to six
priority levels above the base process priority. Two mechanisms provide this
priority adjustment:

• As a condition for which the process has been waiting is satisfied or a
needed resource becomes available, its current priority may be recomputed

12.3 Scheduling States

as its base plus a boost or priority increment to improve the scheduling
response for the process (see Section 12.5.5.1) .

• Each time the process executes without further system events (see Sec­
tion 12.5.5), the current priority is moved toward the base priority (or
demoted) by one priority level (see Section 12.6.4).

Over time, compute-bound process priorities tend to remain at their base
priority levels, while 1/0-bound processes tend to have average current pri­
orities somewhat higher than their base priorities.

An example of priority adjustment that occurs over time for several pro­
cesses is described in Section 12.5.5.1 and illustrated in Figure 12.9.

A normal process occasionally has its priority boosted by the pixscan
mechanism, described in Section 12.5.6.

Temporary priority adjustment can also occur as a result of locking a
mutex and through action by the $GETJPI system service, which is described
in Chapter 13.

12.3 SCHEDULING STATES

12.3.1

This section describes the various scheduling states and some of the transi­
tions among them. Figure 12.6 shows the common transitions but omits a
few of the less frequent ones.

Symbolic names for scheduling states, which are defined by the macro
$STATEDEF, have the form SCH$C_mnemonic (for example, SCH$C_
COM). Table 12.1 lists the scheduling state names and the corresponding
PCB$W _STATE values.

Certain wait conditions are represented by two different scheduling states:
one resident and one outswapped. A process waiting for a local event flag
is in the LEF or the LEFO state, depending on its residence. Other schedul­
ing states, such as CEF, include both resident and outswapped processes.
The PCB$V _RES bit in PCB$1-STS always specifies whether the process is
resident or outswapped, regardless of its scheduling state.

Current State

A process in the CUR state is currently being executed. Its PCB address is
recorded in its processor's per-CPU database at CPU$1-CURPCB.

A CUR process makes a transition to the COM state when it is preempted
by a higher priority process. A CUR process of normal priority also makes
this transition when it reaches quantum end and there is another computable
process of higher or equal priority. A CUR process can make a transition to
any of the resident wait states by directly or indirectly requesting a system
operation that cannot complete immediately.

Direct requests like $HIBER and $SUSPND place the process in the vol­
untary wait states HIB and SUSP. Direct requests like $QIOW, $SYNCH,
and $WAITFR place the process in the voluntary wait states LEF or CEF.

279

Scheduling

WaitCEF

DEL

AST Represen1S AST enqueuing
DEL Repres8nts process deletion

* ~!~": :B1&:i~~~::l
to avoid cluttering the figure. They
are caused by the same evenls shown
for transitions to the COMO state.

+ A process suspended in supervisor mode
bEicomes computable as the result of
AST enqueuing. .

Q Represents a process state with a single queue.

@ Represen1S a process state with multiple queues.

Figure 12.6
State Transitions

280

Event,
AST, DEL

Create

12.3.2

12.3 Scheduling States

Table 12.1 Scheduling States

State Name Mnemonic Value
Collided page wait CO LPG 1
Miscellaneous wait MWAIT 2

Mutex wait
Resource wait
Job quota wait

Common event flag wait CEF 3
Page fault wait PFW 4
Local event flag wait (resident) LEF 5
Local event flag wait (outswappedl LEFO 6
Hibernate wait (resident) HIB 7
Hibernate wait (outswappedl HIBO 8
Suspend wait (resident) SUSP 9
Suspend wait (outswappedl SUS PO 10
Free page wait FPG 11
Computable (resident) COM 12
Computable (outswappedl COMO 13
Currently executing process CUR 14

Indirect wait requests occur as a result of paging or contention for system
resources. A process does not request PFW, FPG, COLPG, or MWAlT transi­
tions. Rather, the transitions to these wait states occur because direct service
requests to the system cannot be completed or satisfied at the moment.

Deletion of a process can only occur while it is CUR. The process's ad­
dress space and PHD are accessible only while it is current. Furthermore,
process deletion in the context of the process being deleted enables the use
of system services, such as Deassign 1/0 Channel ($DASSGN) and Delete
Virtual Address Space ($DELTVA). Chapter 28 describes process deletion in
detail.

Computable States

A process in the COM state is not waiting for events or resources, other than
acquiring control of the CPU for execution. A COM process enters the CUR
state after having been selected as the next process to run by SCH$SCHED
(see Section 12.6.4).

A COM process enters the COMO state when it is outswapped.
A process in the COMO state is waiting for the swapper process to bring

it into memory. As a COM process, it can then be scheduled for execution.
Processes are created in the COMO state.

A COM process selected for execution can enter the RWCAP miscella­
neous wait state if its capability and affinity requirements have no match
on any active member of an SMP system. Section 12.4 describes capability

281

Scheduling

12.3.3

12.3.3.1

282

and affinity requirements. (Note that this particular transition is omitted
from Figure 12.6.J

Wait States

A process that is not current or computable is waiting for the availability
of a system resource or the occurrence of an event. The process is in one of
several distinct wait states. The wait state reflects the particular condition
that must be satisfied for the process to become computable again.

A process in a wait state makes the transition to COM or COMO through
a system event such as the availability of a requested resource or the sat­
isfaction of a wait condition. For most process wait states, the queuing of
an asynchronous system trap (AST) makes a process computable even if the
wait condition is not satisfied.

Voluntary Wait States. Several scheduling states are associated with event
flag waits: LEF, LEFO, and CEF. A process enters the LEF or CEF state as
a result of requesting the $WAITFR, $WFLOR, $WFLAND, and $SYNCH
system services directly or indirectly (for example, with a $QIOW or $ENQW
system service call, issued either by the process or on its behalf by some
system component such as Record Management Services (RMSJ). A process
enters the LEF state when it waits for local event flags or the CEF state when
it waits for flags in a common event flag cluster.

An LEF process enters the LEFO state when it is outswapped. The transi­
tion from the LEF, LEFO, or CEF states to the computable (COM or COMO)
states can occur as a result of an event flag's being set that satisfies the wait
condition, AST queuing, or process deletion (a special case of AST queuing).
Chapter 9 describes event flag waits in more detail.

There are separate resident and outswapped states and queues for hiber­
nating and suspended processes. The $HIBER and $SUSPND system services
cause processes to enter the HIB and SUSP wait states. Outswapping a HIB
or SUSP process causes it to enter the HIBO or SUSPO state.

A process makes the transition from the HIB or HIBO state to COM or
COMO as a result of execution of a $WAKE or $SCHDWK system service,
AST queuing, or process deletion.

In VMS Version 5, the SUSP and SUSPO states are categorized by the
access mode of the suspension. A process in supervisor mode suspension,
the default, is made computable by the queuing of an AST. (The nature
of its wait, however, enables only executive and kernel mode ASTs to be
delivered.) A process in kernel mode suspension is not made computable
by the enqueuing of an AST. Prior to VMS Version 5, the only form of
suspension was kernel mode. A process in either type of suspension is made
computable when another process requests the $RESUME system service for
the suspended process. Chapter 7 contains further information on ASTs, and

12.3.3.2

12.3.3.3

12.3 Scheduling States

Chapter 13 further information on the implementation of the $SUSPND and
$HIBER system services.

Process deletion, implemented with a kernel mode AST, makes any pro­
cess that is being deleted computable, even one in the SUSP or SUSPO state,
because the target process is resumed before the AST is queued.

Memory Management Wait States. Three process wait states are associated
with memory management. For each there is a single queue that includes
resident and outswapped processes. Memory management wait states are
discussed in more detail in Chapter 16.

A process enters the page fault IPFW) wait state when code running in
its context refers to a page that is not in physical memory. While the page
read is in progress, the process is placed into the PFW state. Completion of
the page read, AST queuing, or process deletion can cause a PFW process to
become COM or COMO, depending upon its PCB$V _RES bit value when
the satisfying condition occurs.

A process enters the free page IFPG) wait state when it requests a physical
page to be added to its working set but there are no free pages to be allocated
from the free page list. This state is essentially a resource wait that ends
when the supply of free pages is replenished through modi£ed page writing,
working set trimming, process outswapping, or virtual address space dele­
tion. When a physical page becomes available, all FPG processes are made
COM or COMO.

A process enters the collided page ICOLPG) wait state when more than one
process causes page faults on the same shared page at the same time. The
initial faulting process enters the PFW state, while the second and succeeding
processes enter the COLPG state. All COLPG processes are made COM or
COMO when the read operation completes.

A PFW process can also enter the COLPG state following an AST:

1. The process faults a page, private or shared, and is placed into PFW state.
2. An AST is queued and delivered to the process.
3. After the AST procedure completes, an REI instruction returns control

to the instruction that caused the initial page fault. The instruction
reexecutes.

4. If the page is still not valid, it is in transition from its backing store, and
the process is placed into COLPG.

Miscellaneous Wait State. A process in the MWAIT state waits for the
availability of a depleted system resource or job quota or a locked mutex.
The contents of the field PCB$L_EFWM identify the entity for which the
process waits:

• A small positive integer identifies a system resource.

283

Scheduling

12.3.3.3.1

284

• The system virtual address of the process's JIB specifies that the process is
waiting for a job quota .

• The system virtual address of a mutex specifies that the process is waiting
for that mutex.

There is a single MWAIT queue for resident and outswapped processes.

System Resource Miscellaneous Waits. A process may enter a resource wait
if a resource it needs is not available. Common examples are the depletion of
nonpaged pool or an already full mailbox. The process becomes computable
when an executive routine declares the resource available. AST enqueuing
makes the process computable, temporarily at least (see Section 12.5.1.4).

Table 12.2 lists the resources associated with the MWAIT state. Their
symbolic values are defined by the $RSNDEF macro. System utilities such
as SDA, MONITOR, and the DCL command SHOW SYSTEM display the
state of a process in a resource wait using one of the mnemonic names in
this table.

The system global SCH$GL_RESMASK summarizes the system resources
for which processes in the MWAIT state are currently waiting. For example,
bit 3 corresponds to RSN$_NPDYNMEM. When set, it indicates that one or
more PCBs are in the MWAIT queue waiting for nonpaged pool to become
available.

RWAST is a general-purpose resource used primarily when the wait is
expected to be satisfied by the queuing or delivery of an AST to the process.

Table 12.2 'T)rpes of Resource MWAIT State

Resource Wait Name Mnemonic Symbolic Name Number

AST wait (wait for AST) RWAST RSN$_ASTWAIT 1
Mailbox full RWMBX RSN$_MAILBOX 2
Nonpaged dynamic memory RWNPG RSN$_NPDYNMEM 3
Page file full 1 RWPFF RSN$_PGFILE 4
Paged dynamic memory RWPAG RSN$_PGDYNMEM 5
Breakthrough 1 RWBRK RSN$_BRKTHRU 6
Image activation lock 1 RWIMG RSN$_IACLOCK ..,

I

Job pooled quota 1 RWQUO RSN$_JQUOTA 8
Lock identifier 1 RWLCK RSN$_LOCKID 9
Swap file space 1 RWSWP RSN$_SWPFILE 10
Modified page list empty RWMPE RSN$_MPLEMPTY 11
Modified page writer busy RWMPB RSN$_MPWBUSY 12
Distributed lock manager wait RWSCS RSN$_SCS 13
Cluster transition RWCLU RSN$_CLUSTRAN 14
CPU capability RWCAP RSN$_CPUCAP 15
Cluster server process RWCSV RSN$_CLUSRV 16

1 This resource wait is not currently used.

12.3 Scheduling States

There is no concrete resource corresponding to the name RSN$_ASTWAIT.
The Queue 1/0 Request ($QIO) system service can place a process into this
resource wait when the process is not allowed to issue another buffered or
direct 1/0 request until one completes. Another use of RSN$_ASTWAIT is
to wait for all the 1/0 requests on a channel to complete after the process has
requested the $DASSGN system service. A process about to be suspended
or deleted waits for the RSN$_ASTWAIT resource until all its Files-11 XQP
activity completes (see Chapter 7).

A process is placed into RWMBX wait when it has resource wait mode
enabled and tries to write to a mailbox that is full or has insufficient buffer
space.

A process is placed into RWNPG wait when it is unsuccessful in allocat­
ing nonpaged pool. With the expandability of nonpaged pool, this wait is
relatively rare.

A process is placed into RWPAG wait when it is unsuccessful in allocating
paged pool.

A process in RWMPE wait is waiting for the modified page writer to signal
that it has flushed the modified page list. With VMS Version 5.2, the only
process placed into this wait is one running the OPCCRASH image, which
forces a flush of the modified page list prior to stopping the system.

A process that faults a modified page out of its working set is placed into
RWMPB wait when either of the following is true:

• The modified page list contains more pages than the SYSGEN parameter
MPW _ WAITLIMIT .

• The modified page list contains more pages than the SYSGEN parame­
ter MPW _LOWAITLIMIT and the modified page writer is active, writing
modified pages.

Generally, this resource wait occurs on a system whose modified page list
has grown faster than it could be written. A process in such a wait becomes
computable when enough modified pages have been written so that there
are MPW_LOWAITLIMIT or fewer pages left on the list.

The lock manager uses RWSCS to stall execution of a process on a VAX­
cluster node when the lock manager must wait for a response from a remote
system that has information about a particular lock resource.

A process that issues any lock requests on any node of a V AXcluster in
transition (that is, while a node is being added or removed) is placed into
RWCLU wait until the V AXcluster membership stabilizes.

A computable process that requires one or more CPU capabilities that
cannot all be satisfied by a single active member of the SMP system is placed
into RWCAP wait (see Section 12.4).

There is a maximum number of outstanding transfer requests from one
VAXcluster node to a remote node's cluster server process. When this limit
has been reached and a process requests a service that would initiate another

285

Scheduling

12.3.3.3.2

12.3.3.3.3

286

such transfer, the process is placed into RWCSV wait until transfer requests
complete.

The Set Resource Wait Mode ($SETRWM) system service can cause a
subsequent system service to return an error status, rather than placing the
process in the MWAIT state. The $SETRWM system service sets the PCB$V _
SSRWAIT bit in PCB$L_STS. Disabling resource wait affects many directly
requested operations (such as 1/0 requests or timer requests) but has no
effect on allocation requests by the system on behalf of the user. Although
a process can respond to a depleted resource error from a system service call
or an RMS request, it has no means of reacting to a similar error in case of
an unexpected event such as a page fault. For example, when the page fault
service routine is unable to allocate an 1/0 request packet for a page read, it
places the process into an MWAIT wait regardless of the value of PCB$V _
SSRWAIT.

Mutex Miscellaneous Waits. A system routine that accesses data structures
protected by a mutex places a process in the MWAIT state if the requested
mutex ownership cannot be granted. Thus, the mutex wait state indicates
a locked resource and not necessarily a depleted one. When the mutex is
unlocked, each process waiting to lock that mutex is made COM or COMO
to repeat its attempt to lock the mutex. AST queuing makes a mutex-waiting
process computable only temporarily; the IPL in its stored processor status
longword (PSL) is 2, blocking the AST delivery interrupt.

Chapter 8 lists the names of mutexes whose addresses may be stored in
PCB$L_EFWM and describes the mutex lock and unlock routines. System
utilities such as SDA, MONITOR, and the DCL command SHOW SYSTEM
display the state of a process that is waiting for a mutex as MUTEX.

fob Quota Miscellaneous Waits. VMS Version 5 adds another type of mis­
cellaneous wait, a wait for a depleted job quota. Currently, there are two job
quotas for which a process may have to wait:

• Buffered 1/0 byte count quota-used in a large number of ways, including _
1/0 requests buffered in nonpaged pool, temporary mailboxes, and window
control blocks

• Timer queue entry (TQE) quota-used for timer requests and common
event flag cluster creation

When a job has one or more processes in such a wait, the field JIB$B_
FLAGS has a bit set to indicate each job quota for which processes in that
job are waiting. Bit 0, when set, means that one or more processes are waiting
for JIB$L_BYTCNT. Bit 1, when set, means that one or more processes are
waiting for TQE quota.

When another process in the job returns one of these quotas, the corre­
sponding bit is checked to see if there is any waiting process. If there is, the

12.4 Capabilities and Affinity

waiting process is made computable to repeat its attempt to charge against
the job quota.

A process in a job quota wait has the address of its JIB in PCB$L_EFWM.
System utilities such as SDA, MONITOR, and the DCL command SHOW
SYSTEM display the state of a process that is waiting for a jobwide resource
as MUTEX.

12.4 CAPABIUTIES AND AFFINITY

A capability represents a CPU attribute that a given process requires in order
to execute. Generally a capability is a hardware feature. In an SMP system,
a process's requirement for a particular capability may limit its execution
to a subset of the available processors. For example, a process might require
the capability CPB$V _PRIMARY and thus only be able to execute on the
primary processor.

Affinity is the requirement that a process execute on a specific proces­
sor of an SMP system. VMS provides for both explicit and implicit affinity.
A process must explicitly request explicit affinity and must explicitly dis­
miss it. Explicit affinity might allow processes to be segregated by CPU.
In contrast, a process acquires implicit affinity for a processor when there
are advantages to its continuing execution on that processor. For example, a
process that executed on a CPU with a large physical memory cache might
have data still cached if it were placed back into execution on that CPU.

VMS Version 5.2 contains data structures and code to implement capa­
bilities and implicit and explicit affinity at an executive level. It makes
limited use of them currently and contains no user-level interface to ei­
ther mechanism. However, because their implementation is closely related
to scheduling, this chapter describes the relevant data structures and code
where appropriate.

Each processor's per-CPU database field CPU$L_CAJ>ABILITY describes
its set of capabilities. When a new CPU joins the SMP system, its capability
mask is copied from the system default one, SCH$GL_DEFAULT _CPU_CAP,
currently defined as 0. The 32-longword array SCH$AL_CPU_CAP, indexed
by CPU ID, collects that information for all CPUs, simplifying a search
for a CPU with a set of particular capabilities. In VMS Version 5.2, the only
capability in use is that of being primary, which is set at system initialization
in the primary processor's CPU$L_CAPABILITY field and entered in the
SCH$AL_CPU_CAP array.

The routines SCH$ADD_CPU_CAP and SCH$REMOVE_CPU_CAP, both
in module SCHED, provide for dynamic changes to CPU capabilities. The
contents of SCH$GL_CAPABILITY_SEQUENCE indicate to which gener­
ation the data in SCH$ALCPU_CAP belong; whenever the data changes
by the addition or removal of a CPU capability, SCH$GL_CAPABILITY_

287

Scheduling

288

SEQUENCE is incremented. Keeping track of the generation enables pro­
cesses with capability constraints to detect changes in the set of processors
available to meet those constraints.

Fields in each process's PCB describe its current and permanent capability
requirements and affinity.

PCB$LCAPABILITY and PCB$LPERMANENT _CAPABILITY are the
current and permanent capability requirements. When a process is cre­
ated, the permanent capability mask is copied from the system default
one, SCH$GLDEFAULT _PROCESS_CAP, currently defined as 0. The rou­
tines SCH$REQUIRE_CAPABILffY and SCH$RELEASE_CAPABILITY, both
in module SCHED, provide for dynamic changes to process requirements.
These routines initialize the target process's PCB$L_CURRENT _AFFINITY
as a mask with bits set to represent the CPUs that satisfy the capability
requirements. These are the CPUs on which the process can execute. The
routines also copy the current value of SCH$GLCAPABILITY_SEQUENCE
to PCB$LCAPABILITY _SEQ for future use as a validity check on the current
affinity mask.

Two of the process capability mask bits represent affinity:

• CPB$V _IMPLICIT _AFFINITY, when set, means that the process has ac­
quired implicit affinity for a particular CPU.

• CPB$V _EXPLICIT _AFFINITY, when set, means that the process has ac­
quired explicit affinity for a particular CPU.

SCH$REQUIRE_CAPABILITY can be invoked to request that a particular
process acquire current or permanent explicit affinity for a particular CPU.
The routine stores a new value with only one bit set in the affected process's
PCB$LCURRENT _AFFINITY and stores the CPU ID of the processor in
PCB$LAFFINITY. If the request was for permanent affinity, it also stores
the CPU ID in PCB$LPERMANENT_CPU_AFFINITY and sets the capa­
bility bit in PCB$LPERMANENT _CAPABILITY. The processor's CPU$W _
HARDAFF is incremented as a count of processes that have explicit affinity
for it.

Following are examples of executive routines that employ capabilities and
explicit affinity:

• The Set Time ($SETIME) system service must run on the primary proces­
sor when it reads and writes the time-of-year clock. It invokes SCH$RE­
QUIRE_CAPABILITY to require the current capability of primary proces­
sor.

• The interval timer interrupt service routine runs on each SMP member but
performs system timekeeping functions only on the primary processor. It
tests the low bit of the current processor's per-CPU database field CPU$L
CAPABILITY to determine whether it is running on the primary.

12.5 Scheduling Dynamics

• When SMP$SHUTDOWN_CPU, in module SMPROUT, is invoked to shut
down a particular CPU, it establishes explicit affinity for that CPU to cause
itself to be rescheduled on that CPU if it is not already running on it.

The routine SCH$ACQUIRE_AFFINITY can be invoked to request that
a target process acquire implicit affinity for a particular CPU. The routine
stores a new value for PCB$1-CURRENT _AFFINITY with only one bit set
and the CPU ID in PCB$1-AFFINITY. It sets CPB$V _IMPLICIT _AFFINITY
in the target process's PCB$1-CAPABILITY. When a process with implicit
affinity is selected for execution, if its affinity is not for the current CPU,
the scheduler returns the process to the compute queue and attempts to
select another process to run. A successful alternative process is one whose
priority is high enough so that it could not be preempted by the process with
implicit affinity.

Potentially, the process can be skipped for execution in this manner re­
peatedly up to the number in PCB$B_AFFINITY _SKIP, which is decremented
at each failed attempt. PCB$B_AFFINITY _SKIP is initialized from the SYS­
GEN parameter AFFINITY _SKIP, whose default value is 2. When PCB$B_
AFFINITY_SKIP reaches 0 or whenever the scheduler cannot find an alter­
native process that can execute on this CPU, it breaks implicit affinity. That
is, a process's having implicit affinity for one CPU is not a compelling rea­
son to leave another CPU idle. If PCB$L_AFFINITY_CALLBACK is nonzero,
the scheduler calls the specified procedure to perform any processor-specific
cleanup associated with breaking affinity. The procedure is called with the
SCHED spinlock held, at IPL$_SCHED, and with two arguments, the address
of the PCB and the ID of the CPU. Currently, no use is made of implicit
affinity.

At image rundown, the capability mask is restored from the permanent ca­
pability mask and the affinity from the permanent affinity. Explicit affinity
counts in the per-CPU database are adjusted. If any change is required in ca­
pabilities or affinity, the image rundown routine requests an IPL 3 interrupt
for the scheduler to determine where the process should run.

At deletion of a process with explicit affinity, the CPU$W _HARDAFF field
of its associated processor is decremented.

12.5 SCHEDULING DYNAMICS

In general, on a VMS system in equilibrium, the available processors execute
the highest priority COM processes. A number of events can alter this
equilibrium and require that the scheduler reschedule: that is, take a current
process out of execution, saving its context; select another process to run;
and load its context, placing it into execution.

The principal events that require rescheduling are

• A current process goes into a wait state.

289

Scheduling

12.5.1

290

• A current process reaches the end of its quantum, and there is another
COM process of equal or higher priority .

• A current process changes its priority, and there is a higher priority COM
process.

• There is no longer a match between the capabilities required by a current
process and the processor on which it is executing .

• A system event alters the scheduling state of a noncurrent process to COM,
and its priority permits it to preempt a current process.

Figures 12.7, 12.8, and 12.12 show the relations among the routines in­
volved in these events. The sections that follow describe the events and the
routines that handle them. Section 12.6 describes the rescheduling interrupt.

Placing a Current Process into a Wait State

When a process directly or indirectly requests a system operation for which
it must wait, the process is placed into a wait state. The actions to place
a process into a wait state are centralized in the routine SCH$WAIT, in
module RSE.

The routines that invoke SCH$WAIT include

• EXE$WAITFR, EXE$WFLOR, and EXE$WFLAND, in module SYSWAIT, to
place a process into an LEF or CEF wait (see Chapter 9)

• EXE$HIBER, in module SYSPCNTRL, to place a process into a HIB wait
(see Chapter 13)

• EXE$SUSPND and SUSPND, in module SYSPCNTRL, to place a process
into a SUSP wait (see Chapter 13)

• EXE$JIB_WAIT, in module MUTEX, to place a process into an MWAIT for
JIB byte count quota

• SCH$LOCKR and SCH$LOCKW, in module MUTEX, to place a process
into an MWAIT for a mutex (see Chapter 8)

• SCH$RWAIT, in module MUTEX, to place a process into an MWAIT for a
system resource

Figure 12.7 shows the invokers of SCH$WAIT.
SCH$WAIT is entered in process context at IPL$_SCHED and with the

SCHED spinlock held. Register arguments specify the addresses of the soft­
ware PCB of the current process and the wait queue into which the process
is to be inserted.

Depending on which subentry point of SCH$WAIT is invoked, some or all
of the following operations are performed:

I. SCH$WAIT assumes it has been entered from a system service. It re­
moves the call frame from the kernel stack and establishes the program
counter (PC) at which the process will wait, as described in the following
section.

12.5 Scheduling Dynamics

Figure 12.7
Paths Leading to a Process Wait

2. At subentry point SCH$WAITK, it changes the process state to that in
the WQH$W _ WQSTATE field of the specified wait queue header, inserts
the PCB into the wait queue, and increments WQH$W _ WQCNT to show
the addition of a process to the queue.

3. At subentry point SCH$WAITL, it executes a SVPCTX instruction to re"
move the current process from execution.

4. At subentry point SCH$WAITM, it charges the SYSGEN parameter IOTA
against the process quantum, as described in Section 12.5.2. It also adjusts
PHD$L_ TIMREF by the value of IOTA. PHD$L_ TIMREF and the process
quantum must be adjusted together for automatic working set limit
adjustment to be responsive (see Chapter 17).

5. SCH$WAIT copies the contents of the system global EXE$GL_ABSTIM_
TICS, the system time in interval timer ticks, to PCB$L_ WAITIME, to
record the time at which the process began its wait. If the process remains
in a wait state for long, it becomes a candidate for working set shrinkage
and possibly outswapping (see Chapter 18).

6. It tests PR$_ASTLVL and the process's saved PSL to determine whether
a deliverable AST has been queued to the process but not yet deliv­
ered. This test prevents an AST event that should take the process out
of its wait from being ignored. If a deliverable AST has been queued,
SCH$WAIT reports an AST queuing event to SCH$RSE (see
Section 12.5.5), which changes the process state to COM.

7. SCH$WAIT then branches to SCH$SCHED (see Section 12.6.4), the sec­
ond half of the rescheduling interrupt service routine, to select a new
process to run.

One of the responsibilities of the routines that invoke SCH$WAIT and
its subentry points is to ensure that a process can reenter the appropriate

291

Scheduling

12.5.1.1

12.5.1.2

12.5.1.3

292

wait state, if necessary, after the process is placed back into execution as
the result of AST delivery. (Recall that AST enqueuing makes a process in
most wait states computable.) These routines therefore establish a carefully
chosen PG and PSL at which the process is to wait. The PC and PSL control
what thread of execution will run, and its access mode and IPL. Its access
mode affects AST delivery: only ASTs equally or more privileged can be
delivered. If the access mode is kernel, then the wait IPL is also significant:
an IPL of 2 blocks AST delivery interrupts. Several different techniques are
used, depending on the particular wait state being entered.

Context for CEF, HIB, or LEF Wait States. When a process enters a CEF,
HIB, or LEF wait state, the system service establishes the system service
CHMK exception PSL as the wait PSL. Consequently, the process waits in
the access mode in which the system service was issued.

For the wait PC, the code subtracts 4 from the CHMK exception PC so that
it is the address of the CHMx instruction in the system service vector. Chap­
ter 6 contains more information about system service vectors and change
mode exceptions.

If an AST is delivered to a process in such a wait state, when the AST
exits, the AST delivery interrupt service routine's REI uses the wait PC and
PSL. The system service executes again, typically placing the process back
into the wait state.

Context for Memory Management Wait States. Only the page fault exception
service routine (see Chapter 16) places processes into the three wait states
associated with memory management. This routine uses the page fault ex­
ception PC and PSL as the wait PC and PSL. Because the PSL reflects the
access mode in which the page fault occurred, ASTs can be delivered for that
and all inner access modes. The exception PC does not need to be changed;
a page fault exception pushes the PC of the faulting instruction onto the
exception stack.

After an AST executes in such a process, the process executes the faulting
instruction again. If the reason for the fault has been removed (a free page
became available or the page read completedj while the AST was being
delivered or was executing, the process simply continues with its execution.
If the situation that caused the process to wait still exists, the process
reincurs the page fault and is placed back into a memory management wait
state. (Note that a process that was initially in a PFW state would be placed
into a COLPG state by such a sequence of events.)

Context for a SUSP Wait. A process is suspended as the result of executing
an AST. In VMS Version 5, the access mode of the AST can be supervisor or
kernel mode, depending on which form of suspend is requested. The default

12..5.1.4

12..5.2.

12.5 Scheduling Dynamics

is supervisor mode. While a process is suspended in kernel mode, the wait
PC is an address in the kernel AST that caused the process to enter the
suspend state. The saved PSL indicates kernel mode and IPL 0. ASTs can be
queued to a process suspended in kernel mode but not delivered. That is,
when an AST is queued to a kernel mode suspended process, the AST event
is ignored.

While a process is suspended in supervisor mode, the saved PC is an
address in the supervisor mode AST. AST enqueuing makes the process
computable. When the process is placed into execution, a kernel or executive
mode AST can be executed, but a user or supervisor mode AST cannot: the
AST control block remains queued, and the interrupt is dismissed. In either
case, an REI instruction is executed, which causes control to return to the
wait PC. It repeats the test that suspended the process. If the process has not
been resumed, it is suspended again.

Context for an MWAIT Wait. When a process is placed into a wait for a
mutex, its saved PC is either SCH$LOCKR or SCH$LOCKW, depending on
whether it is attempting to lock the mutex for read or write access. Its saved
PSL indicates kernel mode and IPL 2, making it impossible for a process in
an MWAIT state waiting for a mutex to receive ASTs.

A process can also be placed into an MWAIT state while waiting for an
arbitrary system resource. In this case, the invoker of routine SCH$RWAIT,
in module MUTEX, determines the wait PC and PSL.

A process with resource wait mode enabled can be placed into an MWAIT
state while waiting for. a job quota, either byte count or TQE quota. The
routines that invoke EXE$JIB_ WAIT determine the wait PC and PSL.

In the case of byte count, the routine EXE$DEBIT _BYTCNT, in module
EXSUBROUT, checks whether the job has sufficient byte count quota for a
particular request. If it does not, EXE$DEBIT _BYTCNT places the process
into a wait with kernel access mode and IPL equal to that at entry to
EXE$DEBIT_BYTCNT. Typically, this routine and its subentry points are
invoked from device driver preprocessing routines at IPL 2, and thus the
process is waited at IPL 2. The wait PC is an address within EXE$DEBIT _
BYTCNT that repeats the test.

In the case of TQE quota, the process is placed into a wait similar to that
for HIB, LEF, and CEF-its wait PC is the address of the CHMK in the system
service vector and its PSL is the change mode exception PSL, so that the
process waits in the access mode from which it requested the service.

Quantum Expiration

The SYSGEN parameter QUANTUM defines the size of the tiine slice for the
round-robin scheduling of normal processes. The quantum also determines,
for most process states, the minimum amount of time a process remains

293

Scheduling

294

in memory after an inswap operation, but it is not an absolute guarantee of
memory residence. The swapper's use of the initial quantum flag in selecting
an outswap candidate is described in Chapter 18. The value of QUANTUM
is the number of IO-millisecond intervals (interval timer ticks) in the quan­
tum. The default QUANTUM value of 20, therefore, produces a scheduling
interval of 200 milliseconds.

A process's quantum is expressed as a negative number of timer ticks. After
each IO-millisecond interval, the interval timer interrupt service routine
increments the PHD$W _QUANT field in the current process's PHD. When
this value becomes zero or positive, the interrupt service routine requests a
software timer interrupt. The software timer interrupt service routine signals
a quantum-end event by invoking the subroutine SCH$QEND, in module
RSE.

An additional deduction from quantum is governed by the special SYS­
GEN parameter IOTA. Its default value is 2, representing two IO-millisecond
ticks. This value is deducted from PHD$W _QUANT each time a process
enters a wait state. This mechanism ensures that all processes experience
quantum-end events with some regularity. Processes that are compute-bound
experience quantum end as a result of using a certain amount of CPU time.
Processes that are I/0-bound experience quantum end as a result of perform­
ing a reasonable number of I/O requests.

The routine SCH$QEND is executed whenever a current process reaches
quantum end. It runs on the same CPU as the process, but it executes in
system context, as part of the software timer interrupt service routine. Its
minimum actions are to reset the field PHD$W _QUANT to the full quantum
value; clear the initial quantum flag, PCB$V _INQUAN in the field PCB$L_
STS; and record EXE$GL_ABSTIM_ TICS in PCB$L_ONQTIME. It performs
those actions for both real-time and normal processes.

For a normal process, SCH$QEND takes the following additional steps:

1. SCH$QEND updates PCB$1-PIXHIST, the pixscan history summary
longword (see Section 12.5.6), by shifting it left one bit.

2. SCH$QEND tests whether a CPU time limit has been imposed and,
if so, compares the process's limit field, PHD$1-CPULIM, against its
accumulated CPU time, PHD$1-CPUTIM, to determine whether that
limit has been reached. If the CPU limit has been reached, each access
mode has an interval of time to clean up or run down before the image
exits and the process is deleted. The size of the warning interval for each
access mode is defined by the SYSGEN parameter EXTRACPU, which
has a default value of IO seconds.

3. SCH$QEND checks whether automatic working set limit adjustment
is enabled and appropriate for this process. If both are true, the size of
the process working set list may be expanded or contracted. Chapter 17
describes automatic working set limit adjustment.

12.5.3

12.5 Scheduling Dynamics

4. If there is an inswap candidate (if SCH$GL_COMOQS is nonzero, in­
dicating at least one nonempty COMO state queue), SCH$QEND sets
the current priority of the process to its base priority. It changes, asap­
propriate, CPUB_CUR_PRI, SCHAL_CPU_PRIORITY, and SCH$GL_
ACTIVE_PRIORITY.

Furthermore, it invokes SCH$SWPWAKE, in module RSE, to awaken
the swapper. As a computable, resident, real-time process of software
priority 16, the swapper is likely to be the next process scheduled.

5. SCH$QEND checks whether there is a COM process of equal or higher
priority. If there is none, this process will continue to execute. If its
current priority is not equal to its base priority, SCH$QEND decrements
its current priority, making the appropriate changes to CPU$B_CUR_
PRI, SCH$AL_CPU_PRIORITY, and SCH$GL_ACTIVE_PRIORITY. This
decrement is equivalent to the one made every time a process is placed
into execution. SCH$QEND then returns to the software timer interrupt
service routine.

This behavior is new with VMS Version 5.2. It saves unnecessary
SVPCTX and LDPCTX instructions (and the associated translation buffef.
flush) when this process continues to be the best candidate to execute.
Earlier versions of VMS simply requested a rescheduling interrupt.

6. If there is a COM process of equal or higher priority, SCH$QEND re­
quests an IPL 3 rescheduling interrupt and returns. When the interrupt
is granted, the current process will be taken out of execution and another
selected to execute.

Figure 12.12 includes SCH$QEND as a requestor of a rescheduling interrup~.

Changing the Priority of a Current Process

Several routines change the priority of a current process:

• SCH$QEND, when a normal process reaches quantum end and there is a
COMO process

• SCH$QEND, when a normal process not yet at its base priority will con­
tinue to execute (see Section 12.5.2 for a description of quantum-end
processing)

• EXE$SETPRI, in module SYSSETPRI, when a process requests the $SETPRI
system service (see Chapter 13)

• SCH$LOCKR and SCH$LOCKW, in module MUTEX, when a normal
process locks a mutex and gets a temporary alteration to priority 16

• SCH$UNLOCK, in module MUTEX, when a normal process unlocks a
mutex and has its priority restored (see Chapter 8 for information on
locking and unlocking mutexes)

• EXE$GETJPI, in module SYSGETJPI, when the target process's original
priority is restored after a boost (see Chapter 36)

295

Scheduling

296

• EXE$RESCHED, in module SYSPARPRC, when a process requests the
Reschedule ($RESCHED) system service to lower its priority to its base
and request a rescheduling interrupt (see Chapter 13)

The actions to change the priority of a current process are centralized
in the routine SCH$CHANGE_CUR_PRIORITY, in module RSE. All the
routines in the previous list except the first invoke SCH$CHANGE_CUR_
PRIORITY. Figure 12.12 shows its invokers.

SCH$CHANGE_CUR_PRIORITY is entered at IPL$_SCHED and with
the SCHED spinlock held. It can run in system context, invoked from
SCH$QEND; in the context of the process whose priority is changing; or
in the context of a process requesting a $SETPRI service on behalf of an­
other process.

Register arguments specify the address of the software PCB of the target
process, the one whose priority is to be changed; the address of the per-CPU
database of its CPU; and the new priority.

SCH$CHANGE_CUR_PRIORITY takes the following steps:

1. It clears the bit corresponding to the CPU's ID in the longword corre­
sponding to the priority in the array at SCH$AL_CPU_PRIORITY.

2. If there are no other processes at this priority current on any CPU,
it clears the bit corresponding to that priority in SCH$GL_ACTIVE_
PRIORITY.

3. It copies the new priority to PCB$B_PRI and CPU$B_CUR_PRI.
4. It sets the bit corresponding to the CPU's ID in the longword correspond­

ing to the priority in the array at SCH$ALCPU_PRIORITY.
5. It sets the bit corresponding to the process's new priority in SCH$GL_

ACTIVE_PRIORITY.
6. It executes an FFS instruction to locate the least significant set bit in

the longword SCH$GL_COMQS. The located bit position indicates the
highest priority nonempty computable resident state queue.

7. It compares the changed priority of the target process with that of the
highest priority COM process. If the changed priority is higher or equal,
SCH$CHANGE_CUR_PRIORITY returns.

8. Otherwise, it requests a rescheduling interrupt on the CPU on which the
target process is current.

-If SCH$CHANGE_CUR_PRIORITY and the target process are exe­
cuting on the same CPU, this is simply an IPL 3 software interrupt
request.

-If the CPUs are different, SCH$CHANGE_CUR_PRIORITY requests
an interprocessor interrupt on the other CPU so that the IPL 3 interrupt
can be requested there. Chapter 34 describes interprocessor interrupts.

Clearly, this priority comparison can result in rescheduling when the pri­
ority of a current process is lowered. Moreover, under some circumstances, it

12.5.4

12.5 Scheduling Dynamics

could also result in rescheduling even when the priority of a current process
is raised a small amount. Because preemption of a current process by a
newly computable process requires a priority difference of 3, a normal com­
putable process might continue to execute despite the existence of a slightly
higher priority process that had just become computable. Under these cir­
cumstances, if the current process were to raise its priority to a value less
than that of the newly computable process, the current process would be
rescheduled.

Capability Mismatch

This section describes how a mismatch in capability requirements occurs
between a current process and the processor on which it is executing and
how the mismatch is handled.

There are several routines that can affect process capability and affinity
requirements and CPU capabilities so as to produce a mismatch.

SCH$ACQUIRE_AFFINITY, in module SCHED, can be called to request
that a current process acquire implicit affinity for a processor other than the
one on which it is executing. If the process already has implicit affinity or
has explicit affinity for a different CPU, the routine returns an error status.
Otherwise, it performs the following steps: ·

1. SCH$ACQUIRE_AFFINITY initializes PCB$B_AFFINITY _SKIP and sets
CPB$V _IMPLICIT _AFFINITY in PCB$L_CAPABILITY. It stores the ad­
dress of the routine to be called if implicit affinity is broken.

2. It stores the intended CPU ID in PCB$L_AFFINITY and tests whether
the process is current.

3. If so, it compares PCB$L_AFFINITY to PCB$L_CPU_ID. If the two are
different, SCH$ACQUIRE_AFFINITY requests a rescheduling interrupt.
If the process is current on a different CPU than the one on which
SCH$ACQUIRE_AFFINITY is executing, the routine requests an inter­
processor interrupt so that the rescheduling interrupt is requested on the
right CPU.

SCH$REMOVE_CPU_CAP, in module SCHED, is called to remove a ca­
pability from one or all CPUs. It takes the following steps, looping through
them if all CPUs are to be affected:

1. It increments SCH$GL_CAPABILITY_SEQUENCE to indicate a change
in the capabilities of the active members of the SMP system.

2. It clears the bit corresponding to the capability in the target CPU's
per-CPU database field CPU$L_CAPABILITY and its longword in the
SCH$AL_CPU_CAP array.

3. It gets the address of the process current on that CPU from CPU$L_
CURPCB and examines its capability mask.

297

Scheduling

298

4. If this capability is not required by the process current on the target CPU,
the routine returns.

5. Otherwise, it requests a rescheduling interrupt, through an interprocessor
interrupt if necessary.

SCH$REQUIRE_CAPABILITY, in module SCHED, is called for a particular
process to acquire a new capability. It takes the following steps:

1. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED.
2. It sets the capability in the target process's PCB$LCAPABILITY.
3. If a different explicit affinity is being requested than was previously

set, the routine decrements CPU$W _HARDAFF of the current CPU and
increments it for the new CPU. It stores the new CPU ID in PCB$L
AFFINITY.

4. If this is a request to alter permanent capabilities, the routine also
changes PCB$LPERMANENT _CAPABILITY.

5. It invokes SCH$CALCULATE_AFFINITY to get the new current affinity
mask.

6. It then checks whether the process is current.
7. If so, it compares PCB$LCURRENT_AFFINITY to PCB$LCPU_ID. If

the two are different, the routine requests a rescheduling interrupt,
through an interprocessor interrupt if necessary.

8. It releases the SCHED spinlock.

EXE$RUNDWN, in module SYSRUNDWN, implements the Image Run­
down ($RUNDWN) system service. It takes the following steps to reset the
process's current capabilities:

1. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED.
2. It compares the current process's PCB$LCAPABILITY with PCB$L

PERMANENT _CAPABILITY and PCB$LAFFINITY with PCB$L_
PERMANENT_CPU_AFFINITY. If neither has changed, this part of run­
down is complete. EXE$RUNDWN releases the SCHED spinlock and
continues with other processing.

3. If there is an affinity change, then the routine decrements CPU$W _
HARbAFF for the CPU to which the process currently has explicit affin­
ity, if any. It increments it for the CPU to which the process has perma­
nent affinity, if any.

4. It resets the capabilities and clears PCB$LCURRENT _AFFINITY and
PCB$LCAPABILITY_SEQ. It then requests a rescheduling interrupt so
that the rescheduling interrupt service routine will determine where the
process should continue execution.

5. It releases the SCHED spinlock, restoring the previous IPL and permitting
the rescheduling interrupt to be granted.

12.5.5

12.5 Scheduling Dynamics

Event Reporting

This section describes how a process makes a transition to a COM state and
how it preempts a current process.

A system event potentially changes the scheduling state of a process,
making it computable, memory-resident, or outswapped. Examples of system
events include the setting of an event flag for which a process is waiting,
AST queuing, and page fault 1/0 completion. An executive routine aware
of a system event that may take a process out of a wait state reports it on
behalf of the affected process.

Holding the SCHED spinlock and running at IPL$_SCHED, such a routine
invokes the RPTEVT macro, which generates the following code:

JSB SCH$RSE
.BYTE EVT$_event_name

The byte event value identifies the event being reported. The address of the
event value is pushed onto the stack by the JSB instruction.

SCH$RSE is responsible for making many of the process state transitions
shown in Figure 12.6. Figure 12.8 shows the invokers of SCH$RSE and its
entry points SCH$CHSE and SCH$CHSEP.

SCH$RSE is passed the address of the PCB of the affected process and a
priority increment class in registers. If the event makes the process com­
putable, the process may receive a priority boost, depending on the priority
class, its current priority, and its base priority.

SCH$RSE and routines it invokes, all in module RSE, perform the follow­
ing operations:

1. SCH$RSE obtains the byte event value, which is pointed to by the return
PC on the stack, and increments the return PC to point to the next
instruction.

2. It checks an internal table to determine whether the event is significant
for the process, based on its current state.

Each event has a bit mask defining which states this event can affect.
The current state of the process is obtained from the PCB$W _STATE
field.

-A wake event is only significant for processes that are hibernating (HIB
or HIBO states).

-An outswap event is only significant for the four states (COM, HIB,
LEF, and SUSP) where a wait queue change is required.

- The queuing of an AST is significant to all process states except kernel
mode SUSP and SUSPO, COM, COMO, and CUR, and results in a
transition to COM or COMO.

3. If the event is not significant for the current process state, SCH$RSE
ignores the event and simply executes an RSB instruction.

299

Scheduling

300

~ Subroutine invocation

~ Interrupt request

Figure 12.8
Paths to Event Reporting

4. For an outswap event producing an LEF to LEPO, HIB to HIBO, or SUSP to
SUSPO transition, SCH$RSE simply removes the PCB of the process from
the resident wait queue and inserts it in the corresponding outswapped
wait queue. It adjusts the corresponding wait queue header count fields
and PCB$W _STATE. It then executes an RSB instruction to return.

5. For an outswap event producing a COM to COMO transition, SCH$RSE
removes the PCB from the COM priority queue corresponding to PCB$B_
PRI and then inserts it into the corresponding COMO priority queue. It
changes PCB$W _STATE. It clears the SCH$GLCOMQS compute queue
summary longword bit corresponding to PCB$B_PRI if that COM queue

12.5 Scheduling Dynamics

is now empty and unconditionally sets the corresponding SCH$GL_
COMOQS bit. It then executes an RSB instruction to return.

6. For transitions from the LEF or resident CEF state to the COM state,
SCH$RSE adds 4 to the saved PC in the hardware PCB so that it points
past the CHMx instruction. This modification to the PC value allows the
process to begin execution immediately following the system service
request rather than re-requesting a wait-for system service for a flag that
is already set. The check for CEF residence is necessary because the saved
PC of a nonresident process is usually not accessible. (The saved PC is
stored in the hardware PCB in the PHD, which may be outswapped if the
process is not resident.) It then executes an RSB instruction to return.

7. For any transition that makes a process computable, SCH$RSE removes
the process from its wait queue and decrements the wait queue header
count.

8. It subtracts PCB$1-WAITIME from the current time in interval timer
ticks and adds the result to PCB$1-0NQTIME to subtract out from it
the effect of the time spent waiting.

9. It performs whatever priority adjustment is appropriate (see
Section 12.5.5.1).

10. If the now computable process is outswapped at present, SCH$RSE
changes its state to COMO, inserts the process into the COMO queue
corresponding to its priority, and unconditionally sets the SCH$GL_
COMOQS summary bit corresponding to the selected priority queue. It
awakens the swapper and returns. Later, after the process is inswapped,
it will become eligible for execution.

11. If the now computable process is resident, SCH$RSE changes its state
to COM, inserts the process into the COM queue corresponding to its
priority, and unconditionally sets the SCH$GL_COMQS summary bit
corresponding to the selected priority queue.

It compares the process's current affinity mask with the mask of idle
CPUs. If there are potential CPUs on which the process can execute,
SCH$RSE clears SCH$GL_IDLE_CPUS as a signal to each of them to try
to reschedule (see Section 12.6.4). If it appears that there are no potential
CPUs, SCH$RSE checks that the process's PCB$L_CAPABILITY_SEQ is
current, recalculating current affinity if it is not. If there are still no idle
candidate CPUs and the process's priority is not high enough for it to
preempt any active process, SCH$RSE simply executes an RSB instruction
to return.

If the process's priority permits it to preempt some active processes,
SCH$RSE searches for a candidate to preempt on a CPU whose capabili­
ties fit. If it finds one, it requests either an interprocessor interrupt or an
IPL 3 interrupt, depending on where the process to be preempted is exe­
cuting. When the interprocessor interrupt is granted, its service routine
will request an IPL 3 interrupt to cause rescheduling.

301

Scheduling

12.5.5.1

302

On a uniprocessor system, the issue is simpler: if there is a current
process, can it be preempted by the newly computable process? The
preemption test is based upon the SCH$AL_PREEMPT _MASK array,
described in Section 12.2. If there is no current process or if it can be
preempted by the newly computable one, SCH$RSE requests an IPL 3
software interrupt.

SCH$RSE then executes an RSB instruction to return.

System Events and Associated Priority Boosts. System routines that report
events to SCH$RSE not only describe the event and the process to which it
applies but also specify one of five classes of priority increments or boosts
that may be applied to the base priority of the process. Table 12.3 lists the
events, priority class, and potential amount of priority increment applied to
the process. The table does not show AST queuing, because system routines
queuing ASTs to a process can select any of the priority increment classes
to be associated with the queuing of an AST.

The actual software priority of the process is determined by the following
steps:

1. The priority boost for the event class (see Table 12.3) is added to the base
priority of the process (PCB$B_PRIB).

2. If the process has a current priority higher than the result of step 1, the
current priority is retained (as occurs in Figure 12.9, event 13).

3. If the higher priority of steps 1 and 2 is more than 15, then the base pri­
ority of the process is used. (Note that this test accomplishes two checks
at the same time. First, all real-time processes fit this criterion, with the
result that real-time processes do not have their priorities adjusted in re­
sponse to system events. Second, priority boosts cannot move a normal
process into the real-time priority range.)

A side effect of step 3 is that real-time processes always execute at their
base priorities. Further, note that normal processes with base priorities from
10 to 15 do not always receive priority increments as events occur. As the
base priority of a normal process is moved closer to 15, the process spends
a greater amount of time at its base priority. Priority 14 and 15 processes
experience no priority boosts. Thus, this strategy benefits those processes
that most need it-1/0-bound and interactive processes with base priorities
of 4 through 9. Processes with elevated base priorities do not require this
assistance as they are always at these levels.

An example of priority adjustment that occurs over time for several pro­
cesses is given in Figure 12.9. The following notes relate to the event num­
bers along the time axis of the figure:

G) Process C becomes computable. Process A is preempted.
G) C hibernates. A executes again, one priority level lower.

12.5 Scheduling Dynamics

Table 12.3 System Events and Associated Priority Boosts

Priority
Event Priority Class 1 Boost

Page fault read complete 0 (PRI$_NULL) 0
Inswap 0 0
Outswap 0 0
Collided page available 0 0
Quantum end 0 02
$GETxx I completion 3 0 0
$SNDJBC completion 3 0 0
Direct I/O completion 3 1 (PRI$_IOCOM) 2
Nonterminal buffered I/O completion 3 1 2
Update section write completion 3 1 2
Set priority 1 2
Event flag set through $SETEF 1 2
Modified write of deleted page complete 1 2
Resource available 2 (PRI$_RESAVL) 3
Mutex available 2 3
Job quota returned 2 3
Free page available 2 3
Resource lock granted 3 2 3
Wake a process 2 3
Resume a process 2 3
Resume a process for deletion 2 3
Timer request expiration 3 2 (PR!$_ TIMER) 3
Terminal output completion 3 3 (PRI$_ TOCOM) 4
Terminal input completion 3 4 (PRI$_ TICOM) 6
Process creation 4 6

1 Routines that report system events pass an increment class to the scheduler.
The scheduler uses this class as a byte index into a table of values (local symbol
B_PINC in module RSE) to compute the actual boost.

2 When a normal process reaches quantum end, its priority is lowered to its base
if there is a COMO process. Otherwise, the process's priority is decremented.

3 This priority boost is part of reporting that the event flag associated with the
request has been set. An AST may be queued to the process as well, with the
same boost specified. The process priority is affected only if the process is in a
wait.

G) A experiences quantum end. Because there is a computable outswapped
process (which is BJ, A is rescheduled at its base priority.

QThe swapper process now executes to inswap B, and Bis scheduled for
execution.

G) B is preempted by C.
G)B executes again, one priority level lower. .
G) B requests an 1/0 operation to a device other than a terminal. A executes

at its base priority.

303

Scheduling

304

20

18 m m m m m
16 ------------~--
14

Increasing
12

Software 10
Priority

8

6

4

2

O Tme-
Events 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 12.9

Process

A
B
c
s

Type

Compute-bound
1/0-bound
Real-time
Swapper

Priorities and Priority Adjustments

Base
Priority

4
4

18
16

Events

I 1/0 request
P Preemption
Q Quantum end

G) A requests a terminal output operation and waits for its completion. There
is no process that can be scheduled. The idle loop (see Section 12.6.4)
executes.

G)A executes following I/O completion at its base priority+ 3. (The applied
boost was 4, and A's priority was subsequently decremented when it was
rescheduled.)

@A is preempted by C.
@A executes again, one priority level lower.
@A experiences quantum end and is rescheduled at one priority level lower.

A's priority is not lowered to its base because there is no computable
outswapped process.

@B's output completes. A priority boost of 2 is not applied to B's base pri­
ority because the result would be less than B's current priority. Although
B's priority is higher than that of A, it is not high enough to preempt A,
which continues to execute until quantum end. B then executes.

C!;}B is preempted by C.
@B executes again, one priority level lower.
@B requests an I/O operation. A executes again, one priority level lower.

(A has reached its base priority.)
@A experiences quantum end, and because there are no other computable

processes of equal or higher priority, A continues to execute at the same
priority (its base priority).

@A is preempted by C.

12.5.6

12.5 Scheduling Dynamics

PIXSCAN Priority Boosts

The pixscan mechanism gives occasional priority boosts to normal priority
COM and COMO processes. The SYSGEN parameter PIXSCAN specifies
the maximum number of processes that can receive this boost each second.
The priority boost prevents a high-priority, compute-intensive job from con­
tinuously blocking lower priority processes and causing potential deadlocks.
A deadlock might occur, for example, if a low-priority process acquired a
volume lock on a critical disk but could not receive enough CPU time to
complete its use of the lock and release it.

The mechanism is implemented in the routine SCH$PIXSCAN, in module
RSE, invoked once a second from EXE$TIMEOUT (see Chapter 11).

SCH$PIXSCAN takes the following steps:

1. It first tests whether SGN$GW _PIXSCAN, the SYSGEN parameter, is
0. A zero value disables this mechanism, and SCH$PIXSCAN simply
returns to its invoker. Its default value is 1.

2. A nonzero value in SGN$GW _PIXSCAN is the maximum number of
processes that may be boosted. SCH$PIXSCAN acquires the SCHED
spinlock. No IPL change is necessary because it is already executing at
IPL 8.

3. SCH$PIXSCAN determines whether there are any processes eligible for
boost, that is, COM and COMO processes with external priorities 0
through 15. If there are none, it releases the SCHED spinlock and returns.

4. If there are eligible processes, it determines the priority of the highest
priority normal process that is CUR, COM, or COMO. This is the value
to which selected processes will be boosted.

5. SCH$PIXSCAN uses the low bit of EXE$GL_ABSTIM as a "coin" to de­
termine whether to begin scanning each priority level's compute queues
with the COM or COMO queue. In an outer loop, it scans the COM and
COMO queues, starting with the (external) priority 0. SCH$PIXSCAN
stops when one of the following occurs:

-It reaches the queues with the same priority as the boost value com­
puted in step 4.

-It has boosted the maximum number of processes.
-It reaches a process that has reached quantum end within a time

interval less than the SYSGEN parameter DORMANTWAIT.

Examining the processes in a particular nonempty compute queue,
SCH$PIXSCAN performs the following steps for each process:

a. It compares PCB$L_ONQTIME plus the SYSGEN parameter DOR­
MANTWAIT, expressed in 10-millisecond units, to the current abso­
lute time, EXE$GLABSTIM_ TICS. If the latter is less, the process is
not dormant and has not been waiting for the CPU long enough to get
a boost. By implication, no other process in that or any higher priority

305

Scheduling

queue is likely to be dormant. The default value of DORMANTWAIT
is 2 seconds.

b. If the process is dormant, SCH$PIXSCAN sets the low-order bit in its
pixscan history longword, PCB$1-PIXHIST. This longword is shifted
left at each quantum end to record whether the process had a pixscan
boost during its past executions. The pixscan history of a process is
significant for quantum-end automatic working set limit reductions,
as described in Chapter 17. It invokes SCH$CHSEP, in module RSE,
to boost the process's priority.

6. SCH$PIXSCAN releases the SCHED spinlock and returns.

12.6 RESCHEDULING INTERRUPT

12.6.1

306

The IPL 3 interrupt service routine schedules processes for execution. The
function of this interrupt service routine is to remove the currently executing
process by storing the contents of the process-private processor (hardware)
registers and to replace the register contents with those of the highest priority
computable resident process. This operation, known as context switching,
is accompanied by modifications to the process state, current priority, and
state queue of the affected processes.

The VAX architecture was designed to assist the software in perform­
ing critical, commonly performed operations. The mechanism of replacing
the hardware context of the current process with the context of a different
process is an example of hardware assistance to the operating system. The
switching of hardware context is performed by two special-purpose instruc­
tions, SVPCTX and LDPCTX, which save and load the hardware context of a
process.

Hardware Context

The definition of a process from the viewpoint of the hardware is known as
the hardware context. This collection of data is the set of processor registers
whose contents are unique to the process. These include the following:

• General registers: RO through Rl 1, AP, FP, SP, and PC
• Per-process stack pointers for kernel, executive, supervisor, and user mode

stacks (some VAX CPUs implement these stack pointers only as locations
in the hardware PCB)

• PSL
• AST level processor register, PR$_ASTLVL
• Memory-mapping registers for the program and control regions: POBR,

POLR, PlBR, and PlLR

The current values for most registers forming the hardware context of the
current process are maintained only in the registers themselves. When a

KSP
ESP
SSP
USP
RO
R1
R2
R3
R4
R5
RS
R7
RB
R9

R10
R11
AP
FP
PC
PSL

POBR
26 24 21

(res.) AST• ~ POLA
LVL ~

P1BR
21

(reserved) P1LR

Figure 12.10
Layout of the Hardware Process Control Block

12.6 Rescheduling Interrupt

i.

0

0

(Physical
address

-po_in_ter_) !.._ ___ _. c I PR$_PCBB

process is not executing, its hardware context is contained in the hardware
PCB.

The hardware PCB (see Figures 12.10 and 12.11) is a part of the fixed
portion of the PHD for each process. It is resident in memory whenever
the corresponding process is. The VMS executive normally accesses a PHD
through offsets from its starting virtual address.

However, during context switches, the CPU microcode must access the
hardware PCB directly without address translation; it uses the value in the
PCB base register (PR$_PCBB), the physical address of the hardware PCB for
the currently executing process. SCH$SCHED is responsible for initializing
PR$_PCBB. When it selects a process for execution, it copies the value in
PCB$LPHYPCB. The swapper initializes PCB$LPHYPCB when it swaps a
process into memory.

Figure 12.11 illustrates access to the hardware PCB.

307

Scheduling

12.6.2

308

Per-CPU
Database

l CURPCB 1
1 J

-Virtual address pointer ___ .,.
Physical address pointer

Figure 12.11

Software PCB

td: l

PHO

T T

Process Header
(PHO)

Hardware
PCB

LJ
Access to the Hardware Process Control Block

SVPCTX Instruction

PR$_PCBB

--+.__ _ __.

The save process context instruction, SVPCTX, performs several operations,
assuming a special set of initial and final conditions. It assumes the following
initial conditions:

• The current access mode is kernel.
• The PC and PSL to be saved for the process are on the current stack. If the

SVPCTX instruction that executes is the one in the rescheduling interrupt
service routine, the PC and PSL are on the kernel stack as a result of the
IPL 3 software interrupt. If the SVPCTX instruction that executes is one in a
routine that places a process into a wait, the PC and PSL have been chosen
to place the process back into the wait, if necessary, after it is reexecuted.

• The register PR$_PCBB contains the physical address of the hardware PCB
for the current process.

• The current values of ASTLVL, POBR, POLR, PlBR, and PlLR are already
stored in the hardware PCB.

When the SVPCTX instruction is executed, VAX CPU microcode performs
the following operations:

1. It stores the per-process stack pointers for the four access mode stacks in
the hardware PCB, unless this is a processor type that implements only
the hardware PCB forms of them.

2. It copies the general registers (RO through Rl 1, AP, and FP) to the hard­
ware PCB.

3. It pops the PC and PSL from the current stack into the hardware PCB.

Finally, the SVPCTX instruction microcode saves the current stack pointer
(SP) in the kernel stack field of the hardware PCB and switches to the
interrupt stack (by setting the PSL$V _IS bit and copying the PR$_ISP register·

12..6.3

12.6 Rescheduling Interrupt

contents into the SP register). Switching to the systemwide interrupt stack is
essential because there is no current process once the instruction completes.

The ASTLVL, POBR, POLR, PlBR, and PlLR fields of the hardware PCB
are not changed. It is the responsibility of the various system components
that alter these fields always to update both the hardware PCB fields and
the per-process processor registers. ASTLVL is unusual in that it is altered
as a result of normal system operation when the process is not current. In
that case, only the hardware PCB field is altered. The processor register is
not altered because the process does not own that register when it is not the
current process.

The memory-mapping fields do not change frequently compared to the
frequency of context switching. The overhead of storing these fields in the
hardware PCB. is incurred only when the field values change.

The SVPCTX instruction occurs in several locations in the executive:

• SCH$RESCHED, the rescheduling interrupt service routine, executes this
instruction to remove the current (and still computable) process from
execution .

• SCH$WAIT, in module RSE, executes this instruction to place the current
process into a wait state.

• MMG$SVPCTX, in module PAGEFAULT, executes a SVPCTX instruction
to place a process into one of the memory management wait states (PFW,
FPG, COLPG) .

• At the end of process deletion, the process being deleted is removed from
execution with a SVPCTX instruction .

• SCH$CUR_ TO_COM, in module RSE, saves the context of a process cur­
rent on a CPU about to be shut down.

LDPCTX Instruction

The load process context instruction, LDPCTX, performs the operations re­
quired in establishing the hardware context of the process. The instruction
assumes the following initial conditions:

• The processor is in kernel mode on the interrupt stack .
• The register PR$_PCBB contains the physical address of the hardware PCB

for the process that is to become current.

When the LDPCTX instruction is executed, VAX CPU microcode performs
the following operations:

1. Per-process translation buffer entries are invalidated. A translation buffer
caches virtual page numbers and the numbers of the physical pages to
which they are mapped, thus speeding up address translation. All the per­
process translation buffer entries belong to the previous process. They are
invalidated to prevent mistranslation of virtual addresses and to protect
the data of the previous process.

309

Scheduling

12.6.4

310

2. It loads the per-process stack pointers (KSP, ESP, SSP, and USP) from the
hardware PCB, unless this is a processor type that implements only the
hardware PCB forms of them.

3. It loads the general registers (RO through Rl 1, AP, and FP) into the
corresponding processor registers.

4. It checks the legality of the memory-mapping registers' values saved in
the hardware PCB (POBR, POLR, PlBR, and PlLR) and then loads the
values into the registers. Until they are loaded, the values in the registers
belong to the previous process.

5. It loads the PR$_ASTLVL register.
6. It saves the contents of the current stack pointer register (SP) in the

interrupt stack pointer register (ISP).
7. It clears the PSL$V _IS bit to indicate the switch to the kernel stack.
8. It copies the saved kernel stack pointer register (KSP) to SP.
9. Finally, it pushes the saved PC and PSL onto the kernel stack. The next

instruction is expected to be an REI instruction. The REI microcode pops
the two longwords. It validates the PSL against the rules described in
Chapter 2 and loads the PC and PSL registers.

The only occurrence of a LDPCTX instruction in the VMS executive is the
one shown in Example 12.1, the reschedulinginterrupt service routine.

Rescheduling Interrupt Service Routine

The IPL 3 interrupt service routine contains two parts:

• SCH$RESCHED, which preserves the hardware context of the currently
executing process and removes it from execution

• SCH$SCHED, which selects the next process to be scheduled for execution

As shown in Figure 12.12, SCH$RESCHED is requested as an IPL 3 soft­
ware interrupt by several different routines:

• SCH$RSE and SCH$CHSE/SCH$CHSEP, when a resident process becomes
computable whose priority allows it to preempt the current process

• SCH$QEND, when a current process reaches quantum end, it is a normal
process, and th.ere is a COM process of equal or higher priority

• SCH$CHANGE_CUR_PRIORITY, when a current process changes its pri­
ority and there is a COM process whose priority is higher

• SCH$ACQUIRE_AFFINITY, when a current process acquires implicit af­
finity for a processor other than the 011e on. which it is executing

• SCH$REMOVLCPU_CAP, when a current process is executing on a CPU
that just lost a capability required by the process

•· SCH$REQUIRE_CAPABILITY, when a current process requires a capabil­
ity not present on the CPU on which it is executing

• EXE$RUNDWN, when a process's just-restored permanently required ca­
pabilities do not match those of the CPU on.which it is executing

- Subroutine invocation

~ Interrupt request

Figure 12.12
Paths to Rescheduling

SCH$RSE/
SCH$CHSE/
SCH$CHSEP

{See Figure 12-8)

SOFTINT
or

IPINT_CPU

SCH$SCHED

SCH$ACQUIRE_AFFINITY

SOFTINT c:}CH$REMOVE_CPU_cv
or

IPINT CPU
- ~$REQUIRE_CAPABILIV

DELETE
odule SYSDELPRC

Scheduling

312

Note that sometimes an IPL 3 interrupt can be directly requested on the
appropriate CPU. Other times, an interprocessor interrupt must be requested
first so that the IPL 3 interrupt can be requested on the appropriate CPU by
the interprocessor interrupt service routine.

Under some circumstances, there may not be a current process to be
saved by SCH$RESCHED. In these cases, executive routines transfer control
directly to SCH$SCHED for process selection.

As shown in Figure 12.12, the routines that transfer directly to
SCH$SCHED include the following:

• SCH$WAIT and its subentry points, when a current process has been placed
into a wait state

• DELETE, in module SYSDELPRC, when a current process has been deleted
• EXE$INIT, in module INIT, leaving system context during system initial­

ization, to schedule the first process on the primary processor (or only
processor)

• STRVA, in module [SYSLOA]SMPSTART _xxx, the routine that performs
secondary processor initialization, leaving system context on a secondary
processor, to schedule its first process

SCH$RESCHED performs the following steps. (The numbers in the fol­
lowing list correspond to numbers in Example 12.1, a slightly simplified and
rearranged version of the code.)

G) SCH$RESCHED first acquires the SCHED spinlock, raising IPL to IPL$_
SCHED to block concurrent access to and modification of the scheduler
database.

G)It then executes a SVPCTX instruction to saye the hardware context of
the current process in its hardware PCB. The register PR$_PCBB contains
the physical address of the current process's hardware PCB. The detailed
operation of the SVPCTX instruction is described in Section 12.6.2.

G)It gets the address of the current process's software PCB and its current
priority from the per-CPU database.

@It clears the bit corresponding to the CPU's ID in the longword corre­
sponding to the priority in the array at SCH$A1-CPU_PRIORITY.

G) If there are no other processes at this priority current on any CPU, it clears
the bit corresponding to that priority in SCH$G1-ACTIVE_PRIORITY.

@It sets the bit corresponding to the process's priority in the compute queue
summary longword, SCH$GL_COMQS.

G) It changes the state of the process from CUR to COM by updating the
PCB$W _STATE field.

Ci) It inserts the software PCB at the tail of the COM queue corresponding
to the process's current priority.

G)It clears SCH$GL_IDLE_CPUS to signal any idle CPU that it should

12.6 Rescheduling Interrupt

attempt to reschedule. The scheduler idle loop is described later in this
section.

@SCH$RESCHED branches into SCH$SCHED, skipping its beginning in­
structions. SCH$SCHED is entered directly from code that places the
current process into a wait. Under these circumstances, SCH$SCHED
must acquire the SCHED spinlock and update priority summary data
structures to reflect the fact that the current process has been taken out
of execution.

At this point, there is no current process, and SCH$SCHED searches
for the next process to execute. It performs the following operations. (The
numbers in the following list correspond to numbers in Example 12.1.)

(!Yit executes an FFS instruction to locate the least significant set bit in
the longword SCH$GLCOMQS. The located bit position indicates the
highest priority nonempty computable resident state queue.

@If there is no computable resident process, SCH$SCHED branches to
SCH$IDLE, which is described later in this section.

@It uses the bit number as an index into the COM listheads to get the
address of the listhead of the selected computable resident queue.

@It removes the first PCB in the selected queue.
Note that the search for the highest priority computable resident

process and the removal of its PCB from the COM queue are achieved
in four instructions. The efficiency of this operation is attributable to
the instruction set and the design of the scheduler database for the com­
putable states.

@If the removed PCB ~as the only one in the queue, SCH$SCHED clears
the corresponding SCH$GL_COMQS bit to indicate that the queue is
empty.

@SCH$SCHED tests whether the process's required capabilities, including
explicit affinity, match those of the CPU. If they do not match, it tests
further to see if the capabilities can be met by any active SMP member. If
they cannot, it places the process into a RWCAP MWAIT state and selects
another process to run. If the process has implicit affinity for a different
CPU, SCH$SCHED tries to honor it but may not (see Section 12.4).

@If the capabilities match, SCH$SCHED stores the address of the new
current process PCB in the per-CPU database.

@SCH$SCHED changes the state of the process to current by storing the
value SCH$C_CUR into the PCB$W _STATE field.

@It stores the CPU's ID in PCB$L_CPU_ID.
@It examines the current process priority and potentially modifies it. If

the process is a real-time process or a normal process already at its base
priority, then the process is scheduled at its current or base priority (they

313

Scheduling

314

are the same). If the current process is a normal process above its base
priority, then a decrease of one software priority level is performed before
scheduling. Thus, priority demotions always occur before execution, and
a process executes at the priority of the queue to which it will be returned
(and not at the priority of the queue from which it was removed).

@It copies the process's current priority to the per-CPU database.
@It clears the bit corresponding to this CPU in SCH$GLIDLE_CPUS to

indicate that the CPU is not idle.
@It sets the bit corresponding to the CPU's ID in the longword correspond­

ing to the priority in the array at SCH$ALCPU_PRIORITY.
@It sets the bit corresponding to the process's current priority in SCH$GL

ACTIVE_PRIORITY.
@It copies the physical address of the hardware PCB for the scheduled

process from PCB$LPHYPCB to the PR$_PCBB register.
@It executes a LDPCTX instruction (see Section 12.6.3).
@It releases the SCHED spinlock.
@It executes an REI instruction to pass control to the scheduled process.

This transfer of control is possible because the LDPCTX instruction left the
PC and PSL of the scheduled process on the kernel stack. Execution of
the REI instruction has the following additional effects:

-The interrupt priority level is dropped from IPL$_SCHED.
-The access mode is typically changed from kernel to a less privileged

one.
-If ASTs are queued to the PCB, they are likely to be delivered at this

time, depending on their access mode and the access mode at which
the process is reentered (see Chapter 7).

@SCH$SCHED makes consistency checks to ensure that the COM queue
selected contains at least one data structure and that the data structure
is actually a PCB. Failure of these tests results in a QUEUEMPTY fatal
bugcheck.

If SCH$SCHED found no computable process to execute, it executes code
known as the idle loop. SCH$IDLE performs the following operations. (The
numbers in the following list correspond to numbers in Example 12.1.)

@SCH$IDLE sets the bit corresponding to the CPU in SCH$GLIDLE_
CPUS to indicate that the CPU is idle.

(@It stores the address of the null PCB and a priority value of -1 in the
CPU's per-CPU database.

@Having made those changes, it can release the SCHED spinlock, lowering
IPL to IPL$_RESCHED (3), the IPL of the rescheduling interrupt. This IPL
permits software interrupts on this processor that can alter the scheduler
database.

@SCH$IDLE loops, testing whether its bit in SCH$GLIDLE_CPUS is clear.

12.6 Rescheduling Interrupt

The bit is cleared as a signal that there is a resident computable process
available. The time during which the routine loops is counted as null
time, which the Monitor Utility displays as "Idle Time."

@When this CPU's idle bit is cleared, SCH$IDLE sets bit CPU$V _SCHED
in its per-CPU database to indicate that it is still idle and trying to acquire
the SCHED spinlock. If an interval timer interrupt occurs while this bit
is set, the interval timer interrupt service routine accounts for the CPU
time as null time rather than as busy wait (MPSYNCH) time.

@SCH$IDLE tries to acquire the SCHED spinlock.
@Once successful, it clears CPU$V _SCHED and branches back into

SCH$SCHED to repeat the attempt to select a process to execute. If an­
other idle processor has already scheduled the computable process, this
CPU may reexecute the idle loop.

Example 12.1
Rescheduling Interrupt Service Routine

DECLARE_PSECT EXEC$NONPAGED_CODE ;Nonpaged exec
.SBTTL SCH$RESCHED RESCHEDULING INTERRUPT HANDLER

;++
SCH$RESCHED - RESCHEDULING INTERRUPT HANDLER
This routine is entered via the IPL 3 rescheduling interrupt.
The vector for this interrupt is coded to cause execution
on the kernel stack.

ENVIRONMENT:
IPL = 3 Mode = kernel IS = 0

INPUT:
OO(SP) • PC at reschedule interrupt
04(SP) • PSL at interrupt

.ALIGN LONG

.ENABL LSB
UNIVERSAL_SYMBOL SCH$RESCHED

; SCH$RESCHED: :
LOCK LOCKNAME=SCHED,­

LOCKIPL=#IPL$_SCHED

;Reschedule interrupt handler
;Lock ached database G)
;Raise to SCHED IPL

SVPCTX
FIND_CPU_DATA R3,ISTACK•YES

;Save context of process G)
;Get this CPU's per-CPU database
; (We can assume we're on
; interrupt stack)

MOVL CPU$L_CURPCB(R3) ,R1 ;Get address of current PCB G)
MOVZBL CPU$B_CUR_PRI(R3),RO ;Current priority
BICL CPU$L_CPUID_MASK(R3),- ;Get mask for current CPU ID

w-sCH$AL_CPU_PRIORITY [RO]
;Clear CPU bit @

BNEQ 5$
SUBL3 R0,#31,R2

;Anyone else at this priority?
;Get priority in external format

(continued)

315

Scheduling

316

Example 12.1 (continued)
Rescheduling Interrupt Service Routine

5$:
10$:

;+

BBCC

BBSS
MOVW

MOVAQ

INS QUE
CLRL
BRW

R2,- ;No one else G)
G-scH$GL_ACTIVE_PRIORITY,5$
RO,L-SCH$GL_COMQS,10$;Mark queue nonempty G)
#SCHC_COM,PCBW_STATE(R1)

SCH$AQ_COMT[RO],R2

(R1) ,©(R2)+
G-scH$GL_IDLE_CPUS
30$

;Set state to res compute G)
;R2 = address of queue header
; back link
;Insert at tail of queue G)
;Tell everyone else CV
;Skip acquiring spinlock again Qg)

SCH$SCHED - SCHEDULE NEW PROCESS FOR EXECUTION
This routine selects the highest priority executable process
and places it in execution .

. ALIGN LONG
UNIVERSAL_SYMBOL SCH$SCHED

; SCH$SCHED: : ;Schedule for execution
;Get base of per-CPq data

30$:

35$:

40$:

45$:

FIND_CPU_DATA R3,ISTACK=YES
; (We can assume int. stack here)

LOCK LOCKNAME=SCHED,- ;Lock sched database
LOCKIPL=#IPL$_SCHED ;Raise to SCHED IPL

MOVZBL CPU$B_CUR_PRI(R3),RO ;Get previous CPU priority
BICL CPU$L_CPUID_MASK(R3),- ;Get mask for current CPU ID

w-scH$AL_CPU_PRIORITY[RO]
;Clear CPU bit

BNEQ 30$;Anyone else at this priority?
;Get priority in external format SUBL3 R0,#31,R2

BBCC

CLRL
FFS

BEQL
MOVAQ
REM QUE
BVS
BNEQ
BBCC
CMPB

BNEQ
BICL3

BNEQ
MOVL
MOVW

R2,- ;No one else
G-scH$GL_ACTIVE_PRIORITY,30$
R7 ;Clear implicit affinity state
#0,#32,L-SCH$GL_COMQS,RO

;Find first full state G:J)
SCH$IDLE ; No executable process? @
SCH$AQ_COMH[RO],R2 ;Compute queue head address ~
©(R2)+,R4 ;Get head of queue @
QEMPTY ;Br if queue was empty (BUGCHECK)
40$;Queue not empty
RO,L-SCH$GL_COMQS,40$;Set queue empty ~
#DYNC_PCB,PCBB_TYPE(R4)

QEMPTY
CPU$L_CAPABILITY(R3),­
PCB$L_CAPABILITY(R4),R1

;Must be a process control block
;Otherwise fatal error
;Do the CPU and process match? G§>

200$;No
R4,CPU$L_CURPCB(R3) ;Note current PCB location (!Z)
#SCHC_CUR,PCBW_STATE(R4)

;Set state to current ~

(continued)

12.6 Rescheduling Interrupt

Example 12.1 (continued)
Rescheduling Interrupt Service Routine

MOVL CPU$L_PHY_CPUID(R3),PCB$L_CPU_ID(R4)
;Save CPU ID in PCB (!2l

CMPB RO,PCB$B_PRIB(R4) ;Check for base priority=current

50$:

BGEQ
INCB
MOVB
MOVB
MOVL
BICL2
BISL

; - should never be greater ~
50$;Yes, don't float priority
RO ;Move toward base priority
RO,PCB$B_PRI(R4) ;Reflect priority change in PCB
RO,CPU$B_CUR_PRI(R3) ;Set global priority ~
CPU$L_CPUID_MASK(R3),R2 ;Get CPU mask
R2,G-SCH$GL_IDLE_CPUS ;Show this CPU as not idle ~
R2,w-sCH$AL_CPU_PRIORITY[RO]

;Set CPU bit @
SUBL3
BBSS

R0,#31,R2 ;Get priority in external format

51$:

R2,G-SCH$GL_ACTIVE_PRIORITY,51$
;Priority now active ~

MTPR PCB$L_PHYPCB(R4),#PR$_PCBB
;Set PCB base phys addr G§}

LDPCTX
UNLOCK LOCKNAME=SCHED

;Restore context G§>
;Unlock SCHED database -
; no IPL change ~

REI
QEMPTY: BUG_CHECK QUEUEMPTY,FATAL

;Normal return @
;Scheduling queue empty ~

; Make assorted checks to determine the type of capability mismatch

200$:

SCH$IDLE: ;No active, executable process

61$:

65$:

BISL2 CPU$L_CPUID_MASK(R3),- ;Show this CPU as idle Gii)
G-scH$GL_IDLE_CPUS

MOVL G-SCH$AR_NULLPCB,CPU$L_CURPCB(R3)

MNEGB

UNLOCK

MOVL
BBS

BISB

;Note null PCB as default
#1,CPU$B_CUR_PRI(R3) ;Set priority to -1

; to signal idle G:j)
LOCKNAME=SCHED,- ;Unlock sched database ~
NEWIPL=#IPL$_RESCHED ;Drop IPL to rescheduling level
CPU$L_PHY_CPUID(R3),R1 ;Get our CPU ID
R1,G-SCH$GL_IDLE_CPUS,61$

;Loop until we aren't idle ~
#CPUM_SCHED,CPUB_FLAGS(R3)

;Indicate idle vying for SCHED G9
LOCK LOCKNAME=SCHED,- ;Lock sched database G§}

LOCKIPL=#IPL$_SCHED ;Raise to SCHED IPL
BICB #CPUM_SCHED,CPUB_FLAGS(R3)

;Indicate no longer vying
; for SCHED @

BRW 30$;Go try for process

317

13 Process Control and
Communication

I was alone and unable to communicate with anyone. I did
not know the names of anything. I did not even know things
had names. Then one day, after she had tried a number of
approaches, my teacher held my hand under the water pump
on our farm. As the cool water ran over my hand and arm, she
spelled the word water in my other hand. She spelled it over and
over, and suddenly I knew there was a name for things and that
I would never be completely alone again.

Helen Keller

VMS provides a number of services that allow one process to control the
execution of another. It also provides a variety of mechanisms by which
processes can obtain information about each other and communicate with
one another.

VMS process control system services enable a process to affect its own
scheduling state or that of another process, either on the local system or on
a remote VAXcluster node. These services also enable a process to alter some
of its own characteristics (such as name or priority). The process information
system services allow a process to obtain detailed information about other
processes, both on the local system and on other V AXcluster nodes. This
chapter describes the implementation of the process control and process
information system services.

Communication mechanisms available to VMS processes include event
flags, mailboxes, the lock management system services (lock manager),
global shared data sections, and shared files. Other chapters describe the
implementation of these mechanisms. This chapter briefly discusses the
manner in which a process might use these mechanisms to communicate
'\•1ith another process.

Table 13.1 summarizes the system services related to process control and
process information.

13.1 REQUIREMENTS FOR AFFECTING ANOTHER PROCESS

318

Before a process can obtain information on another process or alter it in
any way, it must have a means of uniquely identifying the process within a
VAXcluster system. In addition, it must have appropriate privileges or user
identification code (UIC) based access to the process.

Process identification and privilege checking are centralized in the routine

13.1 Requirements for Affecting Another Process

Table 13.1 Summary of Process System Services

Scope of
Service Name Processes Affected Privileges Checked

Hibernate ($HIBER) Issuing process 1 None
Wake Process from Same V AXcluster GROUP or WORLD

Hibernation ($WAKE)
Schedule Wakeup ($SCHDWK) Same V AXcluster GROUP or WORLD
Cancel Wakeup ($CANWAK) Same V AXcluster GROUP or WORLD
Suspend Process ($SUSPND) Same V AXcluster GROUP or WORLD
Resume Process ($RESUME) Same VAXcluster GROUP or WORLD
Exit ($EXIT) Issuing process None
Force EXit ($FORCEX) Same V AXcluster GROUP or WORLD
Create Process ($CREPRC) Same node DETACH for different

user identification
codes (UICs)

Delete Process ($DELPRC) Same V AXcluster GROUP or WORLD
Set AST Enable ($SETAST) Issuing process Access mode check
Set Power Recovery AST Issuing process Access mode check

($SETPRA)
Set Priority ($SETPRI) Same V AXcluster ALTPRI and either

GROUP or WORLD
Set Process Name ($SETPRN) Issuing process None
Set Resource Wait Mode Issuing process 2 None

($SETRWM)
Set System Service Failure Issuing process 2 Access mode check

Exception Mode ($SETSFM)
Set Process Swap Mode Issuing process 2 PSWAPM

($SETSWM)
Reschedule Process ($RESCHED) Issuing process None
Get Job/Process Information Same V AXcluster GROUP or WORLD

($GETJPI)
Process Scan Same V AXcluster GROUP or WORLD

($PROCESS_SCAN)

1 As part of the $CREPRC system service, a process can specify that the process being
created hibernate before a specified image executes.

2 Through the $CREPRC system service, a process can be created with this characteristic.

EXE$NAMPID, in module SYSPCNTRL. Process control and process infor­
mation system services that can affect processes other than their requestor
all invoke EXE$NAMPID; thus they all identify processes and check privi­
leges in the same manner.

Before VMS Version 5.2, the scope of the process control and process in­
formation system services was restricted to the local node; the scope has
become VAXcluster-wide with the addition of clusterwide process service
(CWPS) routines. These routines provide a transparent mechanism by which

319

Process Control and Communication

13.1.1

13.1.2

320

a process can affect a target process on another VAXcluster member. Sec­
tion 13.1.3 contains more information on CWPS routines.

Identifying the Target Process

Process control and process information system services have arguments
that specify the target process by process name and process ID (PID). The
process requesting the service specifies one or the other of these arguments,
or neither one to default to itself.

Process name is always implicitly qualified by UIC group. That is, a
process can identify by name only processes within the same UIC group
as itself. With VMS Version 5.2, the PRCNAM argument can identify a procel>s
on another V AXcluster node. It can include up to Six characters for the node
name, followed by a double colon.

Two forms of PID identify a process: an internally visible PID, called an
IPID, and an externally visible PID, called an EPID. The IPID, stored in
PCB$1-PID, uniquely identifies a process on a single node. The low word
of the IPID is the index of the process control block (PCB) in the local PCB
vector. The EPID, an extension of the IPID, uniquely identifies a process in
a VAXcluster system by including a VAXcluster node identifier. It is stored
in PCB$L_EPID. Chapter 25 describes the layout and creation of the IPID
and EPID.

Because the IPID is only relevant to kernel mode code on the local node,
most system utilities, such as SHOW SYSTEM and the Monitor Utility,
display EPIDs. An EPID is passed as a system service argument to identify
a process by its PID.

A legitimate EPID never has its high-order bit set; the Get Job/Process
Information ($GETJPI) and Process Scan ($PROCESS_SCAN) system services
can thus use a negative value in an EPID field as a wildcard indicator.

Locating the Process and Checking Privileges

Regardless of how the target of a process control or process information
service is specified, VMS must determine whether the process exists within
the V AXcluster system and whether the requesting process has the ability
to affect the target. These two checks are centralized in EXE$N • .<\MPID.

EXE$NAMPID's argument list includes the EPID of the target process
and the process name from the process control system service's PRCNAM

argument. When neither argument is specified, the most common case, the
requesting process is also the target process. EXE$NAMPID is optimized for
this case. When both arguments are present, EXE$NAMPID uses the EPID
to identify the target.

EXE$NAMPID performs the following:

1. It determines whether the requesting process is also the target process. If
so, privilege checks are unnecessary. EXE$NAMPID obtains the SCHED

13.1 Requirements for Affecting Another Process

spinlock, raising interrupt priority level (IPL) to IPL$_SCHED, and re­
turns successfully to the system service with the IPID, the PCB address,
and optionally the EPID. It returns at IPL$_SCHED, holding the SCHED
spinlock.

2. Otherwise, when the requesting process is not the target, EXE$NAMPID
attempts to locate the target process using the EPID or, if the EPID is
not specified, the process name.

If the EPID or process name indicates a valid local process, EXE$NAM­
PID proceeds to step 3.

If the target process is not valid locally, the EPID or the process name
must designate a legitimate remote VAXcluster node. Only the remote
node can determine if the target process is valid.

-If the EPID or process name indicates that the target process is on a
valid VAXcluster node, EXE$NAMPID returns the error status SS$_
REMOTE_PROC. Section 13.1.3 describes the steps taken to locate a
target process on a remote node.

-If the EPID specifies an unknown VAXcluster node, EXE$NAMPID
returns the error status SS$_NONEXPR (nonexistent process), which
becomes the system service's return status.

-If the process name specifies an unknown VAXcluster node,
EXE$NAMPID returns the error status SS$_NOSUCHNODE (nonex­
istent node).

-If the process name uses an incorrect format for the node name,
EXE$NAMPID attempts to interpret it as a logical name and returns
the error status SS$_IVLOGNAM.

3. For a local target process, EXE$NAMPID invokes EXE$CHECK_PCB_
PRIV, in module SYSPCNTRL, to determine whether the requesting
process has the ability to examine or modify its target.

EXE$CHECK_PCB_PRIV makes the following tests, proceeding until
one is successful or until there are no more:

a. If the requesting and target processes are in the same job tree, that is,
share a job information block (JIB), EXE$CHECK_PCB_PRIV returns
success£ully.

b. If the requesting process and the target process have the same UIC,
EXE$CHECK_PCB_PRIV returns success£ully.

c. If the requesting process has WORLD privilege, EXE$CHECK_PCB_
PRIV returns success£ully.

d. If the requesting process and the target process are members of the
same UIC group and the requesting process has GROUP privilege,
EXE$CHECILPCB_PRIV returns successfully.

4. If any test is successful, EXE$NAMPID returns control to the system
service at IPL$_SCHED, holding the SCHED spinlock. It returns the

321

Process Control and Communication

13.1.3

322

address of the target process PCB in R4. Note that this return alters
the contents of R4, which formerly contained the PCB address of the
requesting process.

If all these tests fail, EXE$NAMPID returns the error SS$_NOPRIV,
which becomes the system service's return status.

Servicing a Request for a Remote Process

An EPID identifies the VAXcluster node on which a process might exist and
the PCB vector slot on that node that contain::. the process's PCB. Validating
an EPID occurs in two parts; any node in the VAXcluster system can confirm
that the node identifier is legitimate, but only the node thus identified can
access the PCB vector slot.

EXE$NAMPID is invoked by a process control or process information
system service to locate its target process. If EXE$NAMPID does not locate
the target process on the local node, it invokes a CWPS routine to verify
that the node identified by the EPID or PRCNAM argument exists within the
V AXcluster system. Executive code running on the identified node must
subsequently confirm the existence of the target process.

If the CWPS routine successfully identifies the remote VAXcluster node,
it returns the error status SS$_REMOTE_PROC. In response to this status,
the system service procedure routes the request to CWPS. CWPS allocates
and initializes a structure to describe the service request and the requesting
process and transmits it to the remote node using system communication
services (SCS). If the system service is a synchronous one, such as $SUSPND,
the process enters the RSN$_CLUSRV resource wait state until a response
is received from the remote node. For a system service such as $GETJPI[W],
the status SS$_NORMAL is returned to the caller for the asynchronous form
or to a synchronization routine for the synchronous form.

On the remote node, a CWPS dispatch routine executing in system context
receives the service request. It allocates a composite structure to describe
the request locally. It then queues a kernel mode asynchronous system trap
(AST) to the CLUSTER_SERVER process, determining the address of the AST
routine from the function to be performed; for instance, a process control
function causes the CLUSTER_SERVER process to execute CWPS$SRCV _
PCNTRLAST, in module [SYSLOA]CWPS_SERVICE.,.RECV.

For a typical process control function, the CLUSTER_SERVER process
initializes a structure that mimics the PCB of the requesting process and
invokes EXE$NAMPID. Thus, EXE$NAMPID performs privilege and access
checks, which require a PCB, regardless of whether a request is remote or
local. If EXE$NAMPID detects an error, the CWPS routine returns the error
status to the requesting process on the original node. Otherwise, it requests
the system service on behalf of the requesting process. The system service
returns status and information to the CWPS routine, which transmits that

13.2 Process Information System Services

information to a CWPS receiver on the initiating node. This routine returns
the status and data to the original requestor of the system service. (In the
case of an asynchronous service like $GETJPI, the standard kernel mode AST
is delivered at service completion.)

Figure 13.1 shows this sequence of events, slightly simplified, for an asyn­
chronous process control system service such as $GETJPI.

13.2 PROCESS INFORMATION SYSTEM SERVICES

13.2.1

The process information system services, $GETJPI and $PROCESS_SCAN,
return selected information about a process or group of processes within a
VAXcluster system.

The $PROCESS_SCAN system service, introduced in VMS Version 5.2,
functions as an adjunct to the $GETJPI system service. It creates and main­
tains a search context that filters the information returned by $GETJPI. In
the traditional form of $GETJPI wildcard processing, an image requests the
$GETJPI service from a loop, obtaining information about the next sequen­
tial process with each request. The image tests the returned information to
decide whether the process is really of interest; for instance, an image look­
ing for all processes belonging to a particular user name obtains the user
name field through the $GETJPI service and compares each returned user
name with its desired user name.

The $PROCESS_SCAN service simplifies this path; an image requests the
service $PROCESS_SCAN to record its search criteria in a context block,
then passes that context block address on subsequent $GETJPI requests.
When the $GETJPI system service procedure 1s passed a context block ad­
dress, it invokes process scan subroutines for the actual processing. Its re­
questor only receives information on processes matching the search criteria
and is no longer required to filter the data itself.

Data Structures Related to, the $PROCESS_SCAN System Service

The $PROCESS_SCAN system service uses fields in the process header
(PHD), context blocks, $GETJPI buffer areas, and CWPS structures to ser­
vice requests.

An image can request the $PROCESS_SCAN service multiple times with
different search criteria to create multiple context blocks. For instance, to
search a VAXcluster system, the image could either create one context block
matching all cluster nodes, or create a separate context block for each node
and conduct the remote scans in parallel. The PHD contains a listhead
for a process's context blocks at offset PHD$Q_PSCANCTX_QUEUE. At
PHD$W _PSCANCTILSEQNUM, the PHD contains a sequence number that
matches the value in the PSCANCTX$W _SEQNUM field of valid context
blocks.

323

Process Control and Communication

324

Tme Local Node

Requesting Process Context

Request process control system
service

System Service
Invoke EXE$NAMPID
If return status is not

SS$ REMOTE PROC
then process locally
else invoke CWPS
routine

System
Context

System
Context

Remote Node

CWPS Routine
Create appropriate

structures
Send message to

CWPS on target
node

[,.......__ _ __.]',
scs CWPS

Dispatch
Routine

Return with status
in RO

Request SYS$SYNCH

CWPSAST
Routine
Move data to

user buffer
Move status to

userlOSB
Declare user's
AST

/
Figure 13.1

/

CWPS Remote Request Processing

v

CWPSFork
Thread
QueueCWPS

AST to
requesting
process

Create
appropriate
striJctures

ClJeUe
kernel mode
AST ~

~PS Kernel Mode
AST Procedure
Request system service
Return

System Service l/1-..._ ____~ Ci>mpletion AST
SCS J Create fork thread to

" .-......----...--' return status and data
I "'I Return

The context block, pictured in Figure 13.2, is the primary data structure
created and maintained by the $PROCESS_SCAN service. The $PSCAN­
CTXDEF macro defines its header; the size of the structure varies. The item
list and data areas follow the header. They contain copies of the $PROCESS_
SCAN items comprising the process filter and the associated comparison

13.2 Process Information System Services

data. PSCANCTX$W _ITMLSTOFF and PSCANCTX$W _BUFFEROFF con­
tain the offsets from the PSCANCTX structure to these areas. The $PRO­
CESS_SCAN service allocates the PSCANCTX structure from the process
allocation region.

If a search involves VAXcluster nodes other than the local node, the con­
text block includes a cluster system ID (CSID) area. This area contains the
CSID of each node where the search is to be conducted~ PSCANCTX$W _
CSIDOFF contains the offset to this area. PSCANCTX$L_CUR_CSID stores
the CSID of the node currently being scanned, with zero indicating the lo­
cal node. The context block fields PSCANCTX$LCUR_IPID, PSCAN$L_
CUR_EPID, and PSCANCTX$LNEXT_IPID track local PCB vector scans
(see Section 13.2.3).

Only one $GETJPI request at a time can use a particular context block to
reference other VAXcluster nodes. PSCANCTX$V _BUSY in PSCANCTX$L_
FLAGS locks the context block; Section 13.2.3 describes its use.

When a remote node is scanned, the offset PSCANCTX$L_CWPSSRV
contains the address of a structure whose symbolic offsets are defined by
the $CWPSSRV macro. Allocated from nonpaged pool, this variable-sized
structure contains information to be passed to the remote node by CWPS.

FLINK

BLINK

SUBTYPE I TYPE SIZE

MIN_VERS MAJ_VERS

FLAGS

CUR_CSID

CUR_IPID

NEXT_IPID
Header CUR_EPID

~ BUFFEROFF llMLSTOFF)fo 1-i

CSIDIDX CS I DOFF)fo H

SVAPTE

CWPSSRV

JPIBUFADR

SPAREO I ACMODE SEQNUM

SPARE1

_t ltmlstArea J
1_ Data Area J:
.L ~
T CSIDArea T

Figure 13.2
$PROCESS_SCAN Context Block (PSCANCTX)

325

Process Control and Communication

13.2.2

326

PHO

Figure 13.3
Structure Linkage

PSCANCTX

CWPSSRV

CWPSSRV

1--~-EXT~_O_F_F_SE_T~~~
CWPSJPI Extension

ACBOFF ti
i-----iJ

CWPSACB Extension T

CWPSSRV$LEXT _OFFSET contains the index to a CWPSSRV extension cre­
ated for a $GETJPI request, defined by the $CWPSJPI macro. Figure 13.3
shows this linkage.

To execute more efficiently on a wildcard request in a VAXcluster sys­
tem, an image can request that the $PROCESS_SCAN and $GETJPI services
bundle information about several target processes rather than return the in­
formation one process at a time. If the image requests this $GETJPI buffering,
the $PROCESS_SCAN service allocates a buffer from the process allocation
region and stores its address in PSCANCTX$LJPIBUFADR. This variable­
sized structure, whose header offsets are defined by the $PSCANBUFDEF
macro, contains a copy of the requested $GETJPI item codes followed by the
area where returned data is stored.

The $PROCESS_SCAN System Service

The $PROCESS_SCAN system service procedure EXE$PROCESS_SCAN, in
module PROCESS_SCAN, executes in kernel mode. The service includes
additional routines in modules PROCESS_SCAN_ITMLST and PROCESS_
SCAN_CHECK.

The service has two arguments: PIDCTX and ITMLST •

• PIDCTX is a longword in which the service returns the address of the context
block. The program passes the returned PIDCTX to the $GETJPI service as
the PID argument .

• ITMLST is the address of an item list composed of one or more entries. Each
entry contains the coded value of a selection criterion for $PROCESS_
SCAN, either the value or the address of the item, and flags controlling
the manner in which the $PROCESS_SCAN and $GETJPI services use the
item.

EXE$PROCESS_SCAN performs the following:

I. It verifies that the PIDCTX argument was supplied and that it specifies a
location writable from the access mode of the requestor, returning the
error status SS$_INVSRQ or SS$_ACCVIO as appropriate.

13.2 Process Information System Services

2. If EXE$PROCESS_SCAN discovers that the PIDCTX argument contains
the address of a previous context block, it removes the context block
from the process's queue of active con.text blocks and deallocates the
block and any data structures linked to it. !Otherwise, context blocks
are deallocated at image exit.)

3. If no ITMLST argument is specified, EXE$PROCESS_SCAN merely returns
a success status to its caller, accomplishing no useful work. Otherwise,
EXE$PROCESS_SCAN checks each item in the item list for the following
conditions:

-The requested item code is recognized.
-The length of the buffer is appropriate for the item code.
-The buffer descriptor and the buffer contents are readable.
-The flags specified for a particular item code are appropriate.

In addition, the item list must be well formed; for example, the last
item cannot specify the flag PSCAN$V _OR.

4. Some item codes apply to processes; others, like PSCAN$_NODE_CSID
and PSCAN$_HW_NAME, apply to VAXcluster nodes. If the node is
part of a VAXcluster system and a specified item code indicates a node
context, EXE$PROCESS_SCAN invokes a CWPS routine to create a list
of the current VAXcluster nodes and their characteristics. From this, it
eliminates nodes that do not meet the search criteria and constructs a
table of the remaining CSIDs. Only processes on these nodes are scanned.

5. EXE$PROCESS_SCAN allocates a longword-aligned piece of memory
from the prqcess allocation region for the context block. The structure
size is the sum of the sizes of the fixed header, the item list entries that
apply to processes, their associated data for comparison, and the CSID
area !see Figure 13.2). If a $GETJPI buffer was requested, its size is in­
cluded in the allocation as well.

6. It increments the process scan sequence number in the PHD, copies that
value to the context block, and inserts the new context block onto the
PHD queue.

7. It initializes the context block, including the offset to the item list
IPSCANCTX$W _ITMLSTOFF), the offset to the data area IPSCAN­
CTX$W _BUFFEROFF),. the CSID table and the offset to the table
IPSCANCTX$W _CSIDIDX), the item list and data areas, the address of
the $GETJPI buffer IPSCANCTX$L_JPIBUFADR), and the flags.

8. Finally, it negates the address of the context block. This indicates a
wildcard context, yet also locates the context block and differentiates
the context from the traditional $GETJPI wildcard indicator, -1 in the
high word of the PID. EXE$PROCESS_SCAN returns this value to its
caller in the PIDCTX location.

The $GETJPI service can now be requested to use the context created by
$PROCESS_SCAN.

327

Process Control and Communication

13.2.3

328

The $GETJPI System Service

The $GETJPI[W) system service provides selected information about a spec­
ified process: the process requesting the $GETJPI service lthe default), a
process explicitly identified by EPID, or the next process located in a wild­
card scan. The service can obtain information from the PCB, JIB, PHD, and
control region.

$GETJPI arguments include the following:

• The EFN argument: the number of an event flag to be set when the request
is complete. If none is specified, event flag 0 is used .

• The PIO argument: the EPID of one process from which to collect infor­
mation, a traditional $GETJPI wildcard indicator, or a context block from
$PROCESS_SCAN .

• The PRCNAM argument: the node and process name of the target process,
used if the process ID is not specified .

• The ITMLST argument: the address of an item list. The item list can contain
multiple entries, each of which includes a code indicating the information
to be returned, the size and address of a buffer to hold the information,
and a location to contain the actual size of the returned information. The
item list terminates with a longword of zero .

• The IOSB argument: the address of an I/O status block where $GETJPI
records final status information .

• The ASTADR and ASTPRM arguments: the address and parameter of an AST
procedure to be called when the request completes.

The $GETJPI system service procedure, EXE$GETJPI in module SYS­
GETJPI, executes in kernel mode. It performs the following operations:

1. EXE$GETJPI allocates ten longwords of stack space as a storage area for
local context items, such as the PCB address and a set of control flags.

2. EXE$GETJPI tests the first item list entry. Like all item list entries,
it must be readable from the access mode of the requestor. The first
item list entry is the only legal location for the item code JPI$_GETJPL
CONTROLFLAGS, introduced in VMS Version 5.2. This item code al­
lows the caller to limit EXE$GETJPI's behavior with outswapped pro­
cesses, to restrict AST delivery, and to obtain information on processes
that are suspended or marked for deletion. EXE$GETJPI copies the con­
trol flags, if specified, to its local context area.

3. It checks the PIO argument; a value of zero indicates the current process,
a positive value indicates an EPID, and a negative value indicates a
wildcard specification.

-For zero or a possible EPID, EXE$GETJPI continues at step 6.
-For a negative value, EXE$GETJPI invokes the process scan routine

EXE$PSCAN_LOCKCTX, in module PROCESS_SCAN, which negates

13.2 Process Information System Services

the argument and compares it to the context blocks on PHD$Q_
PSCANCTILQUEUE.

If no matching context block is found, EXE$GETJPI attempts to
process the argument as a traditional $GETJPI wildcard. It obtains the
next EPID !see Section 13.2.6) and continues at step 6.

If a matching context block exists, EXE$PSCAN_LOCKCTX sets
PSCANCTX$V _BUSY in it to lock the context. Only one $GETJPI
request at a time can use a context block to reference other VAXclus­
ter nodes. PSCANCTX$V _BUSY in PSCANCTX$L.FLAGS locks the
context block; if the bit is set when the process attempts to acquire
the context block, it enters the RSN$_ASTWAIT resource wait state
until the context block is available. When the request referencing the
context block completes, the process is reentered with an AST routine
that clears PSCANCTX$V _BUSY. On return from the AST routine,
the process reexecutes the test of the busy bit, acquires the context
block, and continues from this point.

4. EXE$GETJPI invokes the process scan routine EXE$PSCAN_NEXT _PID
to obtain the next EPID and update the context block.

5. EXE$PSCAN_NEXT _PID, in module PROCESS_SCAN, tries to find a
local process that matches the search criteria in the context block and
that the $GETJPI requestor can access. To scan the local node, it steps
through the PCB vector one process at a time. It updates the process
index !PIX) with each iteration, and the next request using the same
context begins where the previous scan left off. The context block fields
PSCANCTX$L_CUR_IPID, PSCAN$L_CUR_EPID, and PSCANCTX$L_
NEXT _IPID track this local scan.

When EXE$PSCAN_NEXT _PID finds a process matching the search
criteria, it returns the EPID of the matching process to EXE$GETJPI and
EXE$GETJPI continues at step 6.

If it does not find a local process, EXE$PSCAN_NEXT _PID returns
the CSID of the next node to search and the error status SS$_REMOTE_
PROC. EXE$GETJPI passes control to CWPS$GETJPLPSCAN, which
continues the $GETJPI processing !see Section 13.2.4).

If it does not find a local process and the context block contains no
more CSIDs to search, EXE$PSCAN_NEXT _PID returns the error status
SS$_NOMOREPROC, which becomes the·$GETJPI status return.

6. EXE$GETJPI invokes EXE$NAMPID to obtain the target PCB address and
check privileges. As described in Section 13.1.2, EXE$NAMPID deter­
mines whether the current process has the ability to obtain information
about the target.

If the target is not on the local node, EXE$NAMPID returns the er­
ror SS$_REMOTE_PROC. EXE$GETJPI passes control to CWPS$GETJPI,
which continues the $GETJPI processing (see Section 13.2.4).

329

Process Control and Communication

330

If the target process is on the local node, EXE$GETJPI continues with
the steps that follow. These steps apply only to a target process on the
local node.

7. EXE$GETJPI checks for write access to the I/O status block IIOSB) and
clears the IOSB, if one was specified.

8. It clears the specified event flag or event flag 0.
9. If AST notification was requested, EXE$GETJPI checks that the process

has sufficient AST quota. If so, it charges for the AST; otherwise it returns
the error status SS$_EXASTLM.

10. EXE$GETJPI checks each item for the following conditions:

-The buffer descriptor must be readable and the buffer writable.
-The requested item must be a recognized one.

11. If these conditions are met, then the requested item can be retrieved.
All data about the current process and PCB and JIB data about another
process can be obtained directly without entering the context of the target
process. (The PCB and JIB are nonpaged pool data structures allocated
for the life of the process and job.) In addition, data from the PHD of
another process can be obtained directly if the PHD is resident lif the
PCB$V _PHDRES bit in PCB$L_STS is set). EXE$GETJPI moves all such
information to the user-defined buffers for each corresponding item.

12. If no information remains to be gathered, then EXE$GETJPI returns to
the caller after performing the following actions:

-Setting the specified event flag
-'-Queuing AST notification, if it was requested
-Writing status to an IOSB, if one was supplied

13. Information in the target process's control region can only be retrieved
by executing in the context of the target process. Information stored in
the target process's process header may not be available if the process is
outswapped. To collect information from the control region or from an
outswapped process header, EXE$GETJPI queues a special kernel mode
AST to the target process, enabling EXE$GETJPI code to execute in the
target context.

VMS Version 5.2 allows the $GETJPI requestor to control this behavior
through two $GETJPI control flags, JPI$V _NO_ TARGET _INSWAP and
JPI$V _NO_ TARGET _AST.

-If the caller specifies JPI$V _NO_ TARGET _INSWAP, EXE$GETJPI does
not queue an AST to the target unless it is resident. Thus, EXE$GETJPI
is unable to obtain any information about an outswapped process, but
it can obtain information from the PHD and from the control region
of a resident process.

-If the caller specifies JPI$V _NO_ TARGET _AST, EXE$GETJPI never

13.2 Process Information System Services

queues an AST to the target process. Thus, it returns data from a
resident PHD but never from the control region.

Depending on the control flags, EXE$GETJPI allocates nonpaged pool
for an extended AST control block (ACB) and an information buffer. It
charges the pool against the process's JIB$1-BYTCNT quota. EXE$GET­
JPI initializes the normal ACB fields, then stores descriptors of all the
information that must be retrieved while executing in the context of
the other process into the extension. It creates a buffer to receive the
retrieved information for transmission to the requesting process.

14. EXE$GETJPI checks the status and state of the target process. If the target
process is in any of the following states, information from it cannot be
obtained:

-It no longer exists.
-Deletion or suspension is pending.
-The process state is suspended (SUSP), suspended outswapped

(SUSPO), or miscellaneous wait (MWAIT) (see Chapter 12).

If the process is in any of these states, EXE$GETJPI deallocates the non­
paged pool and restores the quota charged. If the process no longer exists,
EXE$GETJPI returns the error status SS$_NONEXPR to its requestor. For
the other conditions, EXE$GETJPI's behavior is based on the $GETJPI
control flag JPI$V _IGNORE_ TARGET _STATUS. If the flag is specified,
EXE$GETJPI returns the status SS$_NORMAL to its requestor; otherwise
it returns the error status SS$_SUSPENDED. Even in this case, at step 11
EXE$GETJPI has already moved data from the PCB, JIB, and possibly the
PHD into user-defined buffers.

Note that the completion mechanisms are all triggered if any error
condition occurs. That is, the event flag is set, a user-requested AST is
queued, and an IOSB is written with the failure status.

15. EXE$GETJPI queues the ACB to the target process with a priority incre­
ment class of PRI$_ TICOM. However, if the target process is computable
(COM) or computable outswapped (COMO), queuing the AST does not
result in a priority boost. (See Chapter 12 for information on event re­
porting.) In that case, EXE$GETJPI boosts the target process's priority
enough to make it equal to the priority of the requesting process (un­
less the requesting process is a real-time process or its priority is lower
than that of the target process). The target priority boost ensures that
even a low-priority target process will eventually retl,ll'n an answer to
the requestor.

16. The asynchronous form of the system service returns to the requestor.
The requestor can either wait for the information to be returned or
continue processing. The synchronous form of the system service waits
for the event flag associated with the request to be set and status to be

331

Process Control and Communication

13.2.4

332

returned. See Chapter 6 for more information concerning synchronous
and asynchronous system services.

Remote $GETJPI Support

The CWPS routines CWPS$GETJPI and CWPS$GETJPLPSCAN, in module
CWPS_GETJPI, dispatch $GETJPI requests to other V AXcluster nodes and re­
turn status and item list information to the original requestor. EXE$GETJPI
passes control to CWPS$GETJPI when no context block is associated with
the request, merely an EPID or process name identifying a remote VAX­
cluster node. It passes control to the alternative entry point CWPS$GETJPL
PSCAN when a context block exists.

CWPS$GETJPI does the same argument list validation as EXE$GETJPI:
checking the IOSB for write access and clearing it, clearing the specified
event flag, checking and charging AST quota, and validating the item list.

If these checks succeed, CWPS$GETJPI allocates sufficient nonpaged pool
to describe the $GETJPI request. It creates a variable-sized data structure
with space for the context block, item list, return buffer, and an ACB. The
$CWPSSRV macro defines the symbolic offsets for the fields in the structure
header. The $CWPSJPI macro defines symbolic offsets for the fields in an
extension for $GETJPI requests.

CWPS$GETJPI initializes this structure and stores its address in the con­
text block at offset PSCANC1X$LCWPSSRV. It invokes a CWPS subroutine
to transmit the request to the appropriate remote node using SCS.

On the remote node, a CWPS dispatch routine executing in system context
receives the service request. It allocates a structure to describe the request,
including the context block. It then queues a kernel mode AST to the CLUS­
TER_SERVER process, determining the address of the ASTprocedure from
the function to be performed; in this case, CWPS$SRCV _GETJPLAST in
module CWPS_SERVICE_RECV.

CWPS$SRCV _GETJPLAST, executing in the context of the CLUSTER_
SERVER process, builds a structure that mimics the PCB of the request­
ing process. If it did not receive a context block, it merely requests the
$GETJPI system service on behalf of the original requestor. Otherwise, it
inserts the context block onto the PHD queue in the CLUSTER_SERVER
process and invokes the process scan routines EXE$PSCAN_LOCKCTX and
EXE$PSCAN_NEXT_PID as EXE$GETJPI does. These locate the EPID of the
next process. matching the search context. CWPS$SRCV _GETJPLAST then
requests the $GETJPI service with the explicit EPID of a local process, spec­
ifying a completion AST procedure. EXE$GETJPI follows the steps described
in Section 13.2.3 for a local process.

When the $GETJPI request completes, the completion AST procedure
passes control to another CWPS routine to return status and data to the
originating node using SCS.

13.2.5

13.2 Process Information System Services

When the response arrives from the remote node, a cleanup routine tests
the status returned from the remote node. On a successful return, it copies
the returned data to the $GETJPI requestor's buffer area after suitable acces­
sibility checks, updates the context block, and clears the busy flag. It sets
the event flag, queues the user-requested AST, and returns the status in the
IOSB.

$GETJPI Special Kernel Mode ASTs

To obtain information about a target process on the local node, EXE$GETJPI
must sometimes queue a special kernel mode AST to the target. From either
the context of the requesting process (if the requestor is local) or the context
of the CLUSTER_SERVER process, EXE$GETJPI queues this AST when the
required information resides in an outswapped PHD or in the control region
of the target process.

The special kernel mode AST routine executes in the context of the target
process to access the information. Once the AST has obtained the informa­
tion, it queues another special kernel mode AST to the requesting process or
the CLUSTER_SERVER process to pass the information back to the service
requestor.

A summary of the operations performed by these two special kernel mode
AST routines follows:

1. The first special kernel mode AST routine runs when the target process
is placed into execution. It examines the extended ACB to determine
the information that was requested and stores that information in the
associated system buffer. It reformats the extended ACB to deliver a
second special kernel mode AST, this time to the requesting process
or the CLUSTER_SERVER process. It queues the extended ACB to the
requesting process if it still exists and is not marked for deletion. (The
CLUSTER_SERVER process cannot be deleted or suspended.) Otherwise,
it deallocates the nonpaged pool and returns.

2. The second kernel mode AST routine executes in the context of the
requesting process or CLUSTER_SERVER process. If the PHD image
counter has changed since the service was requested, then the requesting
image has been run down. In this case, the AST routine deallocates the
block of nonpaged pool, restores the JIB$L_BYTCNT quota, and returns.

3. If the image counter in the PHD agrees with the image counter in the
extended ACB, the special kernel mode AST routine copies the retrieved
data from the system buffer into the user-defined buffers.

Note that the asynchronous nature of this aspect of the system service
requires that the IOSB and all data buffers be probed again for write
accessibility. This check ensures that the original requestor of $GET­
JPI has not altered the IOSB and data buffer protection in the interval

333

Process Control and Communication

13.2.6

between the call to $GETJPI and the delivery of the return special kernel
mode AST.

4. The event flag is set and the IOSB is written if it was specified.
5. If a completion AST was requested, the extended ACB is used for the

third time to queue an AST to the requesting process in the access mode
of the caller. Otherwise, the ACB is deallocated to nonpaged pool.

The CLUSTER_SERVER process always specifies CWPS$SRCV _
GETJPLSRV _AST as its completion AST procedure when requesting the
$GETJPI system service. Therefore, for a remote request, the ACB is al­
ways reused.

Traditional Wildcard Support in $GETJPI

In addition to the wildcard search available through the $PROCESS_SCAN
system service, VMS preserves the traditional $GETJPI wildcard behavior.
The $GETJPI system service provides the ability to obtain information about
all processes on the local node. An image requests this feature by passing
-1 as the PID argument to the $GETJPI system service. An internal routine
in EXE$GETJPI searches the PCB vector for the first slot containing a valid
PCB and passes information back to the caller about the associated process.

EXE$GETJPI alters the process index field of the requestor's PID argument
to contain the process index of the target process. When the $GETJPI service
is requested again, the negative sequence number (in the high-order word of
the process ID) indicates that a wildcard operation is in progress, and the
positive process index indicates the offset in the PCB vector where the search
should continue.

Chapter 25 provides more information on the PCB vector. Note that the
user image will not work correctly if it alters the value of the PID argument
between $GETJPI requests.

The image continues to request the $GETJPI service until a status code
of SS$_NOMOREPROC is returned, indicating that the PCB vector search
routine has reached the end of the PCB vector. VMS System Services Ref­
erence Manual and VMS Version 5.2 New Features Manual contain sample
programs using $GETJPI wildcards.

13.3 SYSTEM SERVICES AFFECTING PROCESS COMPUTABILITY

334

The controlling process in a multiprocess application typically creates other
processes to perform designated work. When these processes have completed
their work, the controlling process may delete them or place them into
some wait state in anticipation of additional work. Chapter 25 describes
the detailed operation of process creation. Process deletion is described in
Chapter 28.

Hibernation and suspension are the two different ways in which a process
can temporarily stall execution. The system services Hibernate ($HIBER) and

13.3.1

13.3 System Services Affecting Process Computability

Suspend Process ($SUSPND) implement hibernation and suspension. The
associated services Wake Process ($WAKE), Schedule Wakeup ($SCHDWK),
and Resume Process ($RESUME) cause execution to recommence.

Hibernate/Wake

A process requests the $HIBER service to place itself into hibernation; it
cannot put another process into the HIB state. The $HIBER system service
procedure is EXE$HIBER, in module SYSPCNTRL. It performs the following:

1. EXE$HIBER acquires the SCHED spinlock, raising IPL to IPL$_SCHED.
2. It uses an interlocked instruction to test the state of the wake pending

flag, PCB$V _ WAKEPEN in PCB$L_STS, and to clear the flag.
3. If the flag was set, a wake request preceded the hibernate call. EXE$HI­

BER merely releases the spinlock and returns to its requestor at IPL 0.
4. Otherwise, if the flag was clear, EXE$HIBER jumps to SCH$WAIT to

place the process into the hibernate wait state.

As Chapter 12 describes, SCH$WAIT alters the saved program counter
(PC) to contain the address of the CHMK instruction in the system service
vector. Thus, if the process receives an AST while hibernating, it reexecutes
EXE$HIBER upon completion of the AST routine. Since EXE$HIBER tests
the wake pending flag, a hibernating process is easily awakened if an AST
procedure requests the $WAKE service.

$HIBER's complementary services are $WAKE and $SCHDWK, which re­
move a process from hibernation. To awaken itself, a process can request
$WAKE from an AST procedure or schedule a wake through $SCHDWK.
Another process with the ability to affect the hibernating process, as deter­
mined by EXE$NAMPID, can request $WAKE or $SCHDWK on the process's
behalf.

The $WAKE system service procedure, EXE$WAKE in module SYS­
PCNTRL, runs in kernel mode. It invokes EXE$NAMPID, described in Sec­
tion 13.1.2. For a local process, EXE$WAKE invokes SCH$WAKE in module
RSE. SCH$WAKE sets the wake pending flag, PCB$V _ WAKEPEN, and re­
ports the awakening event to the scheduler routine SCH$RSE, specifying
the priority boost class PRl$_RESAVL for the awakening process. SCH$RSE
removes the process from the HIB or HIBO queue and places it in the COM
or COMO queue corresponding to its updated priority.

The next time the process is scheduled at non-AST level, EXE$HIBER
reexecutes because of the altered PC. Since SCH$WAKE set the wake pending
flag, EXE$HIBER clears the flag and returns immediately. Note that if a
process is awakened from any state other than HIB or HIBO, the net result
is to leave the wake pending flag set with no other change in the process
scheduling state.

If the process is remote, EXE$WAKE branches to CWPS$PCNTRL, in
module SYSPCNTRL. Section 13.1.3 summarizes the result.

335

Process Control and Communication

13.3.2

13.3.2.1

13.3.2.1.1

336

Chapter 12 provides further details on SCH$RSE, priority boosts, and
process state queues, and Chapter 11 describes the $SCHOWK system
service.

Suspend/Resume

Because one process can suspend other processes within the V AXcluster sys­
tem, the implementation of process suspension is more complicated than
that of hibernation. The VMS scheduling philosophy illustrated in Fig­
ure 12.6 assumes that processes enter various wait states from the state
of being the current process and in no other way. This assumption requires
that the process being suspended (the target) become the current process on
some CPU, possibly replacing the requestor of the $SUSPND system service.

To accommodate this scheduling constraint, a process is suspended as the
result of executing a kernel or supervisor mode AST. AST execution ensures
that the process is first made current before being placed into the SUSP
scheduling state.

Prior to VMS Version 5, process suspension always occurred in kernel
mode. Only the $RESUME system service could make the suspended process
computable; no ASTs could be delivered to the suspended process. In VMS
Version 5, suspension can occur in supervisor or kernel mode. Executive
and kernel mode ASTs can be delivered to a process suspended in supervisor
mode; non-AST execution recommences after the process is the target of
a $RESUME system service request. A process suspended in kernel mode
maintains the pre-Version 5 behavior. ASTs cannot be delivered and the
process only becomes computable following a $RESUME system service
request.

Process Suspension. Process suspension occurs in two parts, both in module
SYSPCNTRL: the $SUSPND system service procedure, EXE$SUSPND, and
a supervisor or kernel mode AST procedure, depending on the suspension
request. The default is supervisor mode.

EXE$SUSPND. EXE$SUSPND executes in kernel mode in the context of the
requesting process. It performs the following:

1. EXE$SUSPND checks for the presence of its FLAGS argument. If the low
bit of the FLAGS argument is clear or the argument is not specified, the
request is for supervisor suspension, also called soft suspension.

2 .. Otherwise, the request is for kernel mode suspension, also called hard
suspension. EXE$SUSPND checks that its caller was in kernel or execu­
tive mode; otherwise, it returns the error status SS$_NOPRIV.

3. EXE$SUSPND invokes EXE$NAMPID to identify the target process and
perform access checking.

13.3.2.1.2

13.3 System Services Affecting Process Computability

4. If the target process is not local, EXE$NAMPID returns the error status
SS$_REMOTE_PROC. EXE$SUSPND passes the request to a CWPS rou­
tine for transmission to a remote V AXcluster node. If the local process has
appropriate access to the remote target process, a CWPS routine on the
remote node eventually executes the $SUSPND request from the con­
text of the CLUSTEILSERVER process. It transmits status to a CWPS
receiver on the requesting node, which reenters the context of the re­
questing process via an AST to return the status to the user image.

5. Otherwise, if the target process is local, EXE$NAMPID returns holding
the SCHED spinlock. EXE$SUSPND continues with the steps that fol­
low. (Exit paths from EXE$SUSPND must release this spinlock and lower
IPL to 0.)

6. EXE$SUSPND checks the delete pending bit PCB$V _DELPEN, in
PCB$L_STS, in the PCB of the target process. If the process is marked
for deletion, EXE$SUSPND returns the error status SS$_NONEXPR.

7. EXE$SUSPND checks the bit PCB$V_NOSUSPEND in PCB$LSTS. If
EXE$SUSPND cannot safely suspend the process, it returns the error
status SS$_NOSUSPEND.

8. It tests and sets PCB$V _SUSPEN, the suspend pending bit in PCB$LSTS.
If suspension is pending, EXE$SUSPND tests the bit PCB$V _SOFTSUSP.
If the pending suspension is supervisor mode, PCB$V _SOFTSUSP is set;
otherwise, a kernel mode suspension is pending.

If a kernel mode suspension is pending, EXE$SUSPND returns with.
the status SS$_NORMAL.

Otherwise, if a supervisor mode suspension is pending or no suspension
is pending, EXE$SUSPND's actions depend on the mode of the new
suspension request:

-If the new suspension request is for kernel mode, EXE$SUSPND
queues the kernel mode AST (the second part of suspension) to the
target process (possibly itself).

-If the new suspension request is for supervisor mode, EXE$SUSPND
determines whether it is executing within the context of its supervi­
sor mode AST procedure. If not, it marks the process for soft suspen­
sion by setting PCB$V_SOFTSUSP. It then queues a supervisor mode
AST to the target process. Otherwise, if EXE$SUSPND is executing
within its supervisor mode AST context, it performs as described in
Section 13.3.2.1.3.

Through the normal scheduling selection process, the target process even­
tually executes the kernel or supervisor mode AST procedure.

The Kernel Mode AST Procedure. The kernel mode AST procedure SUSPND,
in module SYSPCNTRL, executes in the context of the target process.
SUSPND obtains the current PCB address and acquires the SCHED spinlock.

337

Process Control and Communication

13.3.2.1.3

338

It then tests the bit PCB$V _SOFTSUSP in PCB$L_STS. A set bit indicates
supervisor mode suspension. Since kernel mode suspension preempts super­
visor mode suspension, SUSPND clears PCB$V _SOFTSUSP and sets PCB$V _
PREEMPTED.

SUSPND checks and clears the resume pending flag PCB$V _RESPEN, in
PCB$L_STS. This check prevents the deadlock that might otherwise occur if
the associated call to the $RESUME system service preceded the execution
of the AST procedure. H the resume pending flag is set, the AST procedure
simply releases the SCHED spinlock, lowers IPL to 0, clears the suspend
pending bit, and returns. The process continues execution.

H the resume pending flag is clear, the kernel mode AST procedure checks
whether there is a Files-11 Extended QIO Processor (XQP) operation in
progress. Chapter 7 discusses this check and the action taken if an oper­
ation is in progress.

H no .Files-11 operation is in progress, the kernel mode AST procedure
places the process into the SUSP wait state. Its saved PC is an address in
the AST procedure and the saved processor status longword (PSL) indicates
kernel mode and IPL 0. ASTs can be queued to a process suspended in
kernel mode but they cannot be delivered. When an AST is queued to a
process suspended in kernel mode, SCH$RSE ignores the AST event. Only
the $RESUME system service can cause a process suspended in kernel mode
to continue with execution. At that time, the process reexecutes the check
of the resume pending flag, which would be set, causing the process to return
successfully from the AST.

The Supervisor Mode AST Procedure. The supervisor mode AST procedure,
SUSPEND_SOFT in module SYSPCNTRL, executes in the context of the
target process. Its only action is to request the $SUSPND system service,
thus reentering EXE$SUSPND.

When EXE$SUSPND is reentered, it determines that it is executing within
the context of its supervisor mode AST procedure. It tests the bit PCB$V _
PREEMPTED in PCB$L_STS. H it is set, the supervisor mode suspension was
preempted by a kernel mode suspension. H PCB$V _SOFTSUSP is clear as
well, EXE$SUSPND clears PCB$V _SUSPEN and PCB$V _PREEMPTED and
returns successfully to the caller.

H the supervisor mode suspension was not preempted by a kernel mode
suspension, PCB$V _PREEMPTED is clear. H PCB$V _RESPEN is also clear,
indicating that the process has not been resumed, EXE$SUSPND suspends
the process.

While a process is suspended in supervisor mode, its saved PC contains the
address of the CHMK instruction in the SYS$SUSPND system service vector.
Its saved PSL indicates supervisor mode. The process's supervisor mode AST
active bit is set, blocking delivery of another supervisor mode AST. The
enqueuing of an AST makes the process computable. When the process is

13.3.2.2

13.3.3

13.3 System Services Affecting Process Computability

placed into execution, a kernel or executive mode AST can be executed, but
a user or supervisor mode AST cannot; the AST control block is queued and
the interrupt is dismissed.

In either case, an REI instruction is executed, which causes the $SUSPND
system service to be reexecuted. EXE$SUSPND repeats the test that sus­
pended the process. If PCB$V _RESPEN is not set, the process is once more
suspended.

Operation of the $RESUME System Service. The $RESUME system service
is very simple. It invokes EXE$NAMPID and, for an accessible process on
the local system, sets the resume pending flag PCB$V _RESPEN in the target
process PCB. It then reports a resume event, invoking SCH$RSE. As with
all other system events, this report may result in a rescheduling interrupt
request, a request to wake the swapper process, or nothing at all.

If the target process is not local, the $RESUME request is passed to a CWPS
routine for transmission to a remote VAXcluster node. If the local process
has appropriate access to the remote target process, a CWPS routine on the
remote node eventually executes the $RESUME request from the context of
the CLUSTER_SERVER process. It transmits status to a CWPS receiver on
the requesting node, which reenters the context of the requesting process
via an AST to return the status to the user image.

Exit and Forced Exit

The Exit ($EXIT) system service terminates the currently executing image. If
the process is executing a single image without a command language inter.­
preter, image exit usually results in process deletion. A detailed discussion
of the $EXIT system service is given in Chapter 26.

The Force Exit ($FORCEX) system service enables one process to force a
target process to request the $EXIT system service. The system service pro­
cedure EXE$FORCEX, in module SYSFORCEX, locates the process through
EXE$NAMPID.

If the target process is riot local, EXE$NAMPID returns the error status
SS$_REMOTE_PROC. EXE$FORCEX passes the request to a CWPS routine
for transmission to a remote V AXcluster node. If the local process has ap­
propriate access to the remote target process, a CWPS routine on the re­
mote node eventually executes the $FORCEX request in the context of the
CLUSTER_SERVER process, performing the steps described in the following
paragraphs. The remote CWPS routine transmits status to a CWPS receiver
on the requesting node, which reenters the context of the requesting process
via an AST to return the status to the user image.

For a local process, EXE$FORCEX simply sets the force exit pending flag,
PCB$V _FORCPEN in PCB$L_STS, and queues a user mode AST to the target
process. This AST procedure, executing in user mode, requests the $EXIT

339

Process Control and Communication

system service after clearing the AST active flag by executing the following
instruction:

CHMK #ASTEXIT

Chapter 7 provides more information on this instruction. The call to
$EXIT executes in the context of the target process. Execution proceeds as
if the target process had called the system service itself.

13.4 MISCELLANEOUS PROCESS ATTRIBUTE CHANGES

13.4.1

340

Several system services allow a process to alter its characteristics, such as
its response to resource allocation failures, its priority, and its process name.
Some of these changes (such as priority elevation or swap disabling) require
privilege. The Set Priority ($SETPRI) system service is the only service de­
scribed in this section that a process can issue for a target other than itself.

Set Priority

The $SETPRI system service allows a process to alter its own priority or
the priority of other processes within the VAXcluster system, limited by
the privilege checks in EXE$NAMPID (see Section 13.1.2). A process with
the ALTPRI privilege can change priority to any value between 0 and 31.
A process without this privilege is restricted to the range between zero and
the authorized base priority of its target process (PCB$B_AUTHPRI) or the
current base priority of its target process (PCB$B_PRIB), whichever is higher.

The system service procedure EXE$SETPRI, in module SYSSETPRI, runs
in kernel mode. It locates the target process via EXE$NAMPID.

If the target process is not local, EXE$NAMPID returns the error status
SS$_REMOTE_PROC. EXE$SETPRI passes the request to a CWPS routine for
transmission to a remote VAXcluster node. If the local process has appropri­
ate access to the remote target process, a CWPS routine on the remote node
eventually executes the $SETPRI request in the context of the CLUSTER_
SERVER process, performing the steps described in the following paragraphs.
The remote CWPS routine transmits status to a CWPS receiver on the re­
questing node, which reenters the context of the requesting process via an
AST to return the status to the user image.

For a local process, EXE$SETPRI changes the base priority in the PCB
at offsets PCB$B_PRIBSAV and PCB$B_PRIB and the saved base priority at
offset PCB$B_PRISAV. (For a target process at elevated priority with a mu­
tex locked, EXE$SETPRI only alters PCB$B_PRIBSAV and PCB$B_PRISAV.)
Chapter 12 provides further information on these PCB fields.

If the target process is current, EXE$SETPRI invokes SCH$CHANGE_
CUR_PRIORITY, in module RSE, to alter its current priority, stored in offset
PCB$B_PRI. Chapter 12 describes SCH$CHANGE_CUR_PRIORITY.

13.4.2

13.4.3

13.4 Miscellaneous Process Attribute Changes

EXE$SETPRI reports a set-priority system event for the target process by
invoking SCH$RSE with a priority boost class of PRl$_IOCOM. If the tar­
get process is COM or COMO, SCH$RSE removes it from its current COM
or COMO queue and places it into the COM or COMO queue correspond­
ing to its new current priority. SCH$RSE clears and sets, as appropriate,
the bits in SCH$GL_COMQS or SCH$GL_COMOQS. SCH$RSE requests a
rescheduling interrupt if the target process is resident and can preempt a
current process. If the target process is outswapped, SCH$RSE attempts to
awaken the swapper process.

Chapter 12 provides further details.

Reschedule Current Process

The Reschedule Current Process ($RESCHED) system service was introduced
in VMS Version 5.0. $RESCHED provides run-time support for the parallel
processing features of VAX FORTRAN and VAX C. It enables the currently
executing process to request a reschedule, allowing other processes at the
same base priority to run.

The $RESCHED system service procedure, EXE$RESCHED in module
SYSPARPRC, runs in kernel mode. It takes the following steps:

1. It acquires the SCHED spinlock, raising IPL to IPL$_SCHED.
2. It records the system absolute time in interval timer ticks in PCB$L_

ONQTIME.
3. It invokes SCH$CHANGE_CUR_PRIORITY, described in Chapter 12, to

lower the process's priority to its base.
4. It requests a rescheduling interrupt.
5. It releases the SCHED spinlock, restoring the previous IPL (thus enabling

the rescheduling interrupt to be granted).
6. It returns a success status to its caller.

Use of this undocumented system service is reserved to Digital. Any other
use is completely unsupported.

Set Process Name

The Set Process Name ($SETPRN) system service allows a process to change
or eliminate its own process name. The new name cannot contain more than
15 characters. If no other process in the same group has the same name,
EXE$SETPRN, in module SYSPCNTRL, places the new name into the PCB
at offset PCB$T _LNAME. Note that this service allows more flexibility in
establishing a process name than is available from the usual channels, such
as the authorization file, $JOB card, or Digital command language (DCL)
command SET PROCESS /NAME, because there are no restrictions imposed
by the service on characters that can make up the process name.

341

Process Control and Communication

13.4.4 Process Mode Services

The PCB contains a status longword (not to be confused with the hardware
entity, the PSL) that records the current software status of the process. The
lOngword is PCB$L_STS. Table 13.2 lists each of the flags in the longword
and the direct or indirect ways to set or clear these flags. Each of these flags
has a symbolic name of the form PCB$V _name, where name is one of those
listed in the table.

The module SYSSETMOD contains three miscellaneous system services
whose only action is to set or clear a bit in PCB$L_STS. These are the Set Re­
source Wait Mode ($SETRWM), Set System Service Failure Exception Mode
($SETSFM), and Set Swap Mode ($SETSWM) system services. To disable
swapping, a process must possess the PSWAPM privilege. The other two
services require no privilege.

Several system services (such as $DELPRC, $FORCEX, $RESUME, and
$SUSPND) set or clear bits in PCB$L_STS as an indication that the service's
primary operation has been initiated.

The Set AST Enable ($SETAST) system service sets or clears (enables or
disables) delivery of ASTs to a given access mode. The offset PCB$B_ASTEN
contains the AST enable flags (see Chapter 7).

13.5 INTERPROCESS COMMUNICATION

13.5.1

342

In applications involving more than one process, the processes commonly
share data or transfer information from one process to another. VMS pro­
vides various mechanisms that accomplish this information exchange. These
mechanisms vary in the amount of information that can be transmitted,
transparency of the transmission, and amount of synchronization provided
by the VMS operating system.

This section discusses event flags, lock management system services, mail­
boxes, logical names, and global sections. In addition to these, VMS provides
file sharing and DECnet task-to-task communication. The Guide to VMS File
Applications describes use of the former and the VMS Networking Manual
the latter.

Event Flags

Common event flags can be treated as a method for several processes to share
single bits of information. However, the typical use of common event flags
is as a synchronization tool for other, more complicated, communication
techniques.

Common event flags can be shared by processes in the same UIC group
executing on processors accessing common memory, that is, processors par­
ticipating in a symmetric multiprocessing (SMP) system or processors shar­
ing MA780 memory. However, event flags cannot be shared by processes

13.5 Interprocess Communication

Table 13.2 Meanings of Flags in PCB$1-STS

Flag Name Meaning if Set Set by Cleared by
RES Process is resident Swapper Swapper
DELPEN Process deletion is pending $DELPRC
FORCPEN Forced exit is pending $FORCEX Image rundown,

Process rundown
INQUAN Process is in initial quantum Swapper SCH$QEND

after inswap
PSWAPM Process swapping is disabled $SETSWM, $SETSWM

$CREPRC
RES PEN Resume is pending (skip suspend) $RESUME Suspend AST
SSFEXC Enable system service exceptions $SETSFM $SETSFM,

for kernel mode Process rundown
SSFEXCE Enable system service exceptions $SETSFM $SETSFM,

for executive mode Process rundown
SSFEXCS Enable system service exceptions $SETSFM $SETSFM,

for supervisor mode Process rundown
SSFEXCU Enable system service exceptions $SETSFM, $SETSFM,

for user mode $CREPRC Image rundown
SSRWAIT Disable resource wait mode $SETRWM, $SETRWM

$CREPRC
SUS PEN Suspend is pending $SUSPND Suspend AST
WAKEPEN Wake is pending (skip hibernate) $WAKE, $BIBER

$SCHDWK
WALL Wait for all event flags in mask $WFLAND Next $WFLOR

or $WAITFR
BATCH Process is a batch job $CREPRC
NOACNT No accounting records for this $CREPRC

process
NOSUSPEND Do not suspend this process CWPS, Audit Server

Audit Server
ASTPEN AST is pending (not used)
PHDRES Process header is resident Swapper Swapper
BIBER Hibernate after initial image $CREPRC

activation
LOGIN Log in without reading the $CREPRC

authorization file
NETWRK Process is a network job $CREPRC
PWRAST Process has declared a power $SETPRA Queuing of

recovery AST recovery AST,
Image rundown,
Process rundown

NODELET Do not delete this process CWPS, NETACP
NETACP

DISAWS Disable automatic working set SET WORK SET WORK
adjustment on this process /NOADJUST, /ADJUST

$CREPRC

(continued)

343

Process Control and Communication

Table 13.2 Meanings of Flags in PCB$LSTS (continued)

Flag Name

INTER
RECOVER
SECAUDIT

HARDAFF
ERDACT
SOFTSUSP
PREEMPTED

13.5.2

13.5.3

344

Meaning if Set Set by Cleared by

Process is interactive job $CREPRC
(Reserved)
Perform mandatory process LOGINOUT, LOGINOUT

auditing $CREPRC
(Reserved)
Exec mode rundown active Process rundown Process rundown
Process is in soft suspend $SUSPND $SUSPND
Hard suspend has preempted soft $SUSPND $SUSPND

on different V AXcluster nodes. Chapter 9 contains more information on the
implementation of common event flags.

Lock Management System Services

The lock management system services (also known as the lock manager)
enable a process to name an arbitrary resource and share it VAXcluster­
wide. A process can request locks on the named resource in a variety of lock
modes to control the manner in which the process shares the resource with
other processes. In each lock request, the process can declare a blocking AST
procedure, which is invoked by the lock manager if the process's granted lock
blocks another request for the resource. The process can also specify the lock
manager behavior when access to a resource cannot be immediately granted:
either that it wait until the resource is available, or return immediately with
notification of the failure.

Each resource includes a 16-byte area available to store process data. The
lock manager synchronizes access to this area, allowing cooperating pro­
cesses to read and write the area using lock value blocks.

Chapter 10 describes the implementation of the lock management system
services. Appendix A provides examples of VMS modules that use lock
management system services to coordinate access to system resources.

Mailboxes

Mailboxes are software-implemented I/O devices that can be read and writ­
ten through Record Management Services (RMS) requests or the Queue I/O
Request ($QIO) system service on the local node. Although process-specific
or systemwide parameters may control the amount of data that can be writ­
ten to a mailbox in one operation, there is no limit to the total amount of
information that can be passed through a mailbox with a series of reads and
writes.

Typically, one process reads messages written to a mailbox by one or more
other processes. In the simple method of synchronizing mailbox I/O, the

13.5.4

13.5.5

13.5 Interprocess Communication

receiving process initiates its read of the mailbox and waits until the read
completes. The read completes when another process writes to the mailbox.
Since the receiving process cannot do anything else while waiting for data,
this technique is restrictive.

In most applications, the receiving process performs other tasks in addi­
tion to servicing the mailbox. Putting such a process into a wait state for
the mailbox prevents it from servicing any of its other tasks. In these appli­
cations, the receiving process could read the mailbox asynchronously with
AST notification. However, even in this case, the process must have an 1/0
request outstanding at all times to receive notification that the mailbox con­
tains a message.

For some applications, this may not be acceptable. Thus, VMS provides a
special $QIO request function code, set attention AST, which requests AST
notification that a message has been written to the mailbox. This technique
allows a process to continue its mainline processing and to handle mailbox
requests from other processes only when such work is needed, without
having an 1/0 request outstanding at all times.

Chapter 23 discusses the implementation of mailboxes and Chapter 7
describes attention ASTs.

Logical Names

VMS makes extensive use of logical names to provide device independence in
the 1/0 system. However, logical names can be used for many other purposes
as well. Specifically, one process can pass information to another process by
creating a logical name in a shared logical name table and storing information
in the equivalence string. The receiving process simply translates the name
to retrieve the data.

Although an error return (SS$_NOTRAN) from the Translate Logical
Name ($TRNLNM) system service provides a form of synchronization, a
well-behaved process generally synchronizes communication via logical
name translation by using event flags or an equivalent method. An exception
to this rule occurs when a process creates a subprocess or detached process
and passes data to the new process in the equivalence strings for SYS$IN­
PUT, SYS$0UTPUT, or SYS$ERROR. Chapter 35 provides details on the
implementation of logical names.

Global Sections

Global sections provide the fastest method for one process to pass infor­
mation to another process. Because the processes map the data area into
their address space, no movement of data takes place; the data is shared.
The sharing, however, is not transparent. Each process must map the global
section and the participating processes must agree upon a synchronization
technique to coordinate the reading and writing of the global section and

345

Process Control and Communication

346

provide notification of new data. It can be implemented with event flags,
lock management system services, or some similar mechanism.

A global section implemented on a multiprocessor system or in MA780
shared memory can be simultaneously accessed by multiple processes. Syn­
chronization in such an environment requires use of interlocked instructions
or a protocol based on event flags or locks. Chapter 8 briefly describes syn­
chronization of shared memory.

Chapter 15 describes the implementation of global sections.

PART V /Memory Management

14 Memory Management Overview
and Data Structures

... but there's one great advantage in it, that one's memory
works both ways.

Lewis Carroll, Through the Looking Glass

This chapter provides an overview of VMS memory management and de­
scribes data structures used by the memory management subsystem. Virtual
memory support for the VMS operating system is implemented partly by the
VAX processor and partly by the VMS executive.

The four chapters that follow this one describe different aspects of VMS
memory management in more detail:

• Chapter 15 describes system services that an image requests to alter the
process's virtual address space.

• Chapter 16 discusses the translation-not-valid (page fault) fault handler,
the exception service routine that responds to page faults and brings virtual
pages into memory.

• Chapter 17 describes the working set list and the mechanisms that alter,
shrink, and expand it.

• Chapter 18 examines the swapper process, a system process that manages
physical memory by writing modified pages, shrinking process working
sets, and swapping processes.

14.1 OVERVIEW OF MEMORY MANAGEMENT

Physical memory is the real memory supplied by the hardware. A vir­
tual memory environment supports software that has memory requirements
greater than the available physical memory. An individual process can re­
quire more memory than is available, or the total requirements of multiple
processes can exceed available memory; A virtual memory system simulates
real memory by transparently moving the contents of memory to and from
block-addressable mass storage.

A VAX processor and the VMS executive cooperate to support virtual mem­
ory. In normal operation, the system interprets all instruction and operand
addresses as virtual addresses (addresses in virtual memory). A VAX proces­
sor translates virtual addresses to physical addresses (addresses in physical
memory) as the instructions are being executed. This execution time trans­
lation capability allows the VMS executive to execute any particular image
in whichever physical memory is available. It also allows VMS and a VAX
processor in combination to implement memory protection.

349

Memory Management Overview and Data Structures

14.1.1

350

The term memory management describes not only virtual memory sup­
port but also the ways in which VMS exploits this capability. Memory man­
agement is fundamentally concerned with the following issues:

• Movement of code and data between mass storage and physical memory
as required to simulate a virtual memory larger than the physical one

• Support of memory areas in which individual processes can run without
interference from others, areas in which system code can be shared but not
modified by its users, and common memory for shared code and data

• Arbitration among competing uses of physical memory to optimize system
operation and equitable memory allocation

Virtual Memory

Support for virtual memory enables a process to execute an image that only
partly resides in physical memory. Only the portion of virtual address space
actually in use occupies physical memory. This enables the execution of im­
ages larger than the available physical memory. It also makes it possible for
parts of different processes' images and address spaces to be resident simulta­
neously. Virtual memory is implemented in such a way that each process can
access only its own address space; each process is thereby protected against
references from other processes. Address references in an image built for a
virtual memory system are independent of the physical memory in which
the image actually executes.

A physical address is one that can be transmitted by the processor over the
system bus, typically to a memory controller. Physical memory, also known
as physical address space, is the set of all physical addresses that identify
unique memory locations and I/O adapter registers.

During normal operations, an instruction accesses memory using the 32-
bit virtual address of a particular byte. A VAX processor translates the virtual
address to a physical address using information provided by the operating
system.

The set of all possible 32-bit virtual addresses is called virtual memory, or
virtual address space. The low half of the address space (addresses between
0 and 7FFFFFFF16) is called per-process space. This space is further divided
into two equal pieces called PO space (addresses between 0 and 3FFFFFFF16)
and Pl space (addresses between 4000000016 and 7FFFFFFF16). One process
at a time executes on a VAX processor. (On a symmetric multiprocessing
(SMP) system, one process at a time executes on each VAX processor.) As
a process is placed into execution, its per-process address space is mapped;
that is, its virtual addresses are associated with physical addresses.

The high half of the virtual address space is called system space. The lower
half of system space (the addresses between 8000000016 and BFFFFFFF16) is
called SO space; the upper half is undefined and reserved to Digital. Thus the
terms system space and SO space are used synonymously.

14.1 Overview of Memory Management

Virtual address space is divided into pages. Each page is a group of 512 con­
tiguous bytes starting on a 512-byte address boundary. The first page starts at
address 0, the second at address 20016 lor 51210), the third at address 40016
lor 102410), and so on. The virtual page is the unit of address translation;
the physical location of a particular virtual page is generally independent of
those of its adjacent virtual pages. The virtual page is also the unit of mem­
ory access checking. Each virtual page has a protection code specifying from
which access modes it can be read and written.

When a VAX processor is initialized, memory management is disabled. All
addresses generated by the CPU are physical addresses that do not require
translation. Once memory management is enabled, or turned on, an instruc­
tion can no longer access memory using a physical address. The processor
treats all instruction-generated addresses as virtual and translates them to
physical addresses using data structures called page tables, which record the
association of virtual to physical pages. IA physical page is the same size as
a virtual page, 512 bytes.) Once having enabled memory management, VMS
does not disable it.

While memory management is enabled, translation of system space ad~
dresses must always be possible. Per-process addresses, however, only have
meaning in the context of a process. If there is no current process, it is not
meaningful to access or translate PO and Pl virtual addresses.

A page table is associated with each region of virtual address space. The
processor translates system space addresses with the system page table. Each
process has its own PO and Pl page tables.

A page table does not map the full virtual address space possible; instead,
it maps only the part of its region that has been created. PO space starts
at location 0 and expands toward increasing addresses; Pl space starts at
location 7FFFFFFF16 and expands toward decreasing addresses; and SO space
begins at 8000000016 and expands toward increasing addresses.

In a page table, each page table entry IPTE) associates one page of virtual
address space with its physical location, either in memory or on a mass stor­
age medium. !This description is slightly simplified; Sections 14.2 and 14.3.3
contain more details.)

A PTE contains a bit called the valid bit, which, when set, means that
the virtual page is in a particular page of physical memory; in that case, the
PTE also contains all but the low nine bits of the physical page's address.
This part of a physical address is called the page frame number. When
a reference is made to a virtual address whose PTE valid bit is set, the
processor uses the page frame number to transform the virtual address into
a physical address. This transformation is called virtual address translation.
Section 14.2 contains more information on the VAX address translation
algorithm.

When a reference is made to a virtual address whose PTE valid bit is clear,
the processor cannot perform address translation and instead generates a

351

Memory Management Overview and Data Structures

14.1.1.1

352

translation-not-valid exception, also known as a page fault. The page fault
exception service routine, called the page fault handler, runs in the context
of the process that incurred the page fault. It examines the PTE to determine
the physical location of the invalid page. If the invalid page is in physical
memory, the page fault handler simply updates the PTE. Otherwise, it ob­
tains an available page of physical memory and initiates 1/0 to read the
virtual page into it. When this occurs, the process is said to be faulting the
page in.

When the 1/0 completes, the page fault handler sets the PTE valid bit and
dismisses the exception. With the virtual page now valid, control returns to
the instruction whose previous execution triggered the page fault. Reading
a virtual page into memory in response to an attempted access is called
demand paging.

VMS limits the number of pages of physical memory a process can use at
the same time. When this limit has been reached and the process incurs a
page fault, the page fault handler selects one of the process's virtual pages
to remove from physical memory. When this occurs, the process is said to
be faulting the page out. Removing one virtual page from a process to make
room for another is called replacement paging.

The mass storage location from which a virtual page is read is called its
backing store. A common example of backing store is a block in an image
file. If the virtual page is guaranteed not to change (that is, it contains pure
code or read-only data), the page fault handler need not write the page to
mass storage when it is faulted out (thus saving the 1/0) and can reread it
from the image file as often as required. Thus, the backing store file remains
the image file. If, however, the virtual page is writable data of which each
process gets its own copy, the page is faulted in once from the image and
later faulted out to page file backing store, from which any subsequent faults
will be satisfied.

Chapter 16 describes in detail how the page fault handler deals with vari­
ous types of page fault.

VMS Address Space. VMS uses the three regions of address space differently:

• The VMS executive occupies system space, along with systemwide data
structures.

• Pl space contains the process stacks and permanent process control infor­
mation maintained by the VMS executive. It also contains address space
used on the process's behalf by inner access mode components such as
Record Management Services (RMS), the file system, and a command lan­
guage interpreter.

• PO space maps whatever images the user activates.

Chapter 1, which contains layouts of Pl and system space, describes these

14.1 Overview of Memory Management

uses in more detail. Appendix F describes the layout of each address space
in more detail.

Different areas of virtual address space have different protections. The
protection codes on most system space data pages prohibit access from all but
kernel and executive mode. System space pages occupied by executive code
allow read access from user mode. Certain parts of Pl space are protected
against access from outer access modes. The protection on PO space pages
usually allows read access from user mode and sometimes write access as
well.

Virtual address space is. created (and recreated) at different times during
system operation. System space is formed once and always mapped. Per­
process address space is created for each process and mapped only when that
process is current.

During system initialization, SYSBOOT calculates system space require­
ments and allocates physical memory for the system page table. SYSBOOT
and other initialization routines load the executive images into system space,
form the dynamic memory pools, and initialize the other regions of system
space. Chapters 30 and 31 describe the formation and initialization of sys­
tem space in detail. Once initialization is complete, the maximum size of
system space is fixed, although individual system page table entries can be
altered to create, delete, or modify particular pages of system space.

When a process is created, its Pl space is created in several stages, as de­
scribed in Chapters 25 and 27. The global cell CTL$GL_CTLBASVA contains
the address that is the boundary between the permanent and temporary por­
tions of Pl space. The regions of Pl space 'below this address, namely, the
user stack and a possible replacement image 1/0 section, are recreated by the
image activator when it activates an executable image. Pl space can expand
toward lower addresses during image execution as a result of system services
requested explicitly by the image or implicitly on its behalf.

PO space and the nonpermanent part of Pl ·space are deleted at image run­
down and recreated with each new image run. The image activator creates
address space for the image and every shareable image that it references. Dur­
ing image execution, it creates additional address space as necessary to acti­
vate images requested through the Run-Time Library procedure LIB$FIND_
IMAGE_SYMBOL. PO and Pl space can also change during image execution
as a result of system services requested explicitly by an image or implicitly
on its behalf.

As the image activator processes images, it creates process sections for
the image sections it encounters. (A process section can also be created
dynamically in response to a system service request.) A process section is
a group of contiguous virtual pages with the same characteristics, such as
writability and shareability.

Each per-process address region is architecturally limited to one gigabyte.
Each per-process address space may be further constrained by the SYSGEN

353

Memory Management Overview and Data Structures .

14.1.1.2

14.1.2

354

parameter VIRTUALPAGECNT, the page fl.le quota available to the process,
and some additional factors, as described in Chapter 15.

Chapter 26 describes the image activator and the memory management
system services it requests to map the sections of an image. Chapter 15
describes those system services.

Virtual Address Space Data Structures. The major data structures that de­
scribe virtual address space are

• System page table (SPT)
• Per-process page tables (POPT and PlPT)
• Process section table (PST)
• System section table (better known as the global section table)

The SPT is contained in contiguous physical pages, generally at the high­
address end of physical memory. Section 14.5.1 describes it in further detail.

When the VMS executive creates a process, it allocates a data structure
called a process header (PHO) to record memory management data about
the process. A process's page tables are contained in its PHO. Section 14.3.3
describes process page tables in further detail.

The PHO also contains the PST, which has one process section table entry
(PSTE) to describe each process section created in that process's address
space. A PSTE contains information necessary to resolve a page fault for
a page in the section. The PTE for an invalid page that is part of a process
section contains a pointer to the section's PSTE. Section 14.3.S contains
more information on the PST.

Sections 14.5.2 and 14.6.2 discuss systemwide structures that are analo­
gous to the process-specific PHO and PST: the system header and its section
table, containing descriptions of system space sections and global sections.

Physical Memory

Physical memory is divided into 512-byte pages. Each page has an identifying
number called a page frame number (PFN). A PFN is simply the portion of
the physical address that specifies the physical page, namely all but the low­
order nine bits. Generally, physical memory page numbers start at 0 and
increase toward higher numbers. The size of physical address space varies
with VAX processor type. Generally, the low half of the physical address
space is used for memory locations and the high half for 1/0 adapters. The
maximum amount of memory addressable on any VAX processor is limited
by the layout of the PTE: on processors supported by VMS Version 5.2, it
has space for a 21-bit PFN. Thus, the maximum physical address space is
221 pages, or one gigabyte.

Some pages of physical memory are allocated permanently, for example,
the pages that contain the SPT or the system base image. More typically,

14.1.2.1

14.1.2.2

14.1 Overview of Memory Management

VMS allocates a physical page of memory for a particular need, such as a
virtual page in a process's address space, and deallocates the page when it is
no longer needed.

Physical Memory Data Structures. A database called the PFN database, de­
scribed in Section 14.4, records significant information about each physical
page, such as whether it is currently in use and for what purpose.

The pages of physical memory allocated to a process are called its working
set. A structure within the PHD called the working set list represents just
those pages in a compact form. (In contrast, PTEs describing valid pages are
scattered among those describing invalid pages in a per-process page table.)
The working set list is briefly described in Section 14.3.4 and in more detail
in Chapter 17. A working set list within the system header describes pageable
system pages that are valid (see Section 14.5.2).

Physical pages available for allocation are linked together into a list called
the free page list. A page is allocated from the front of the list and generally
deallocated to the back of the list. At allocation a physical page is associated
with a virtual page: the PFN of the physical page is placed in the PTE cor­
responding to the virtual page, and the virtual page is read into the physical
page. The physical page retains its virtual contents until it is allocated for a
new use. Even when the physical page is removed from a process's working
set and the valid bit in the virtual page's PTE is cleared, the PTE still con­
tains the physical page's PFN. Until the physical page is reused, it is possible
to resolve a fault for the virtual page by removing the physical page from
the free page list and setting the PTE valid bit again. A page fault resolved
in this manner without the need for mass storage 1/0 is sometimes called a
soft page fault.

When a physical page that has been modified is. removed from a process's
working set, the page is inserted at the back of another list, called the
modified page list. The modified page list differs from the free page list in
that a physical page on the modified page list cannot be reused until its
contents are written to backing store, for example, a page file or the section
file to which the virtual page belongs. Once the swapper has written the
contents of the modified page to backing store, the swapper moves the page
to the back of the free page list. (Acting in this capacity, the swapper is
referred to as the modified page writer.)

While a physical page is on either the modified or free page list, a page
fault for its virtual page can be resolved without 1/0. Thus these lists act as
systemwide caches of recently used virtual pages.

Sharing Physical Memory. Because system space addresses are mapped by the
system page table, the physical memory occupied by system pages is shared
by all processes. In addition, to enable process pages to share physical mem­
ory, VMS can map multiple processes' PTEs to the same physical pages. For

355

Memory Management Overview and Data Structures

14.1.2.3

356

example, multiple processes using the same command language interpreter
can share the read-only pages of the image. (However, each process needs a
private copy of its writable data pages.) Sharing physical pages makes more
efficient use of memory and reduces the number of page faults that require
mass storage I/O.

VMS implements the sharing of physical memory by multiple processes
through a mechanism called a global section. All the pages of a global section
have the same attributes. A global section resembles a process section and
is dealt with similarly by the page fault handler.

There are several data structures associated with global sections:

• Global section table
• Global section descriptors
• Global page table

The global section table (GST) is analogous to a process section table and
contains a global section table entry (GSTE) for each global section. Like a
PSTE, a GSTE has information necessary to resolve a page fault for a page
in the section. Section 14.6.2 contains more details.

A global section descriptor (GSD) identifies a particular global section by
name and associates the name with a GSTE. A global section descriptor con­
tains information used to determine whether a particular process is allowed
to access the global section. Section 14.6.l describes this data structure.

The global page table (GPT), described in Section 14.6.3, contains global
PTEs that serve as templates for the process PTEs that map global pages.

When multiple processes are mapped to a global section, all processes can
potentially benefit from each other's page faults. When process A incurs a
page fault for a global page not in its working set, if the page is not valid, it
is read in from its backing store. After the page fault completes, the global
page table entry (GPTE) is modified to show that the global page is valid. If
process B then incurs a page fault for that page, the page fault handler copies
the information from the GPTE to B's PTE and resolves the fault without
the need for I/O.

Managing Physical Memory. Physical memory is used in the following ways:

• Permanently, by pages occupied by the resident executive (system base
image and the nonpageable sections of loadable executive images) and
its systemwide nonpageable data structures (for example, the per-CPU
interrupt stacks and nonpaged pool)

• Dynamically, by pages on the free and modified page lists
• Dynamically, by pages in processes' working sets
• Dynamically, by pages in the system working set (pageable sections of

loadable executive images and pageable system data)

14.1.3

14.1.3.1

14.1 Overview of Memory Management

The VMS executive must apportion physical memory among these uses
based on

• SYSGEN parameters that specify various minimum and maximum limits,
such as the sizes of the free and modified page lists and the systemwide
maximum process working set size

• Process quotas and limits that specify process-specific minimum and max­
imum working set sizes

• Statistics and measurements that describe the current environment, such
as the size of the free page list and the rate at which a particular process
has _been page faulting recently

Memory Management Mechanisms "'

This section provides an overview of the mechanisms by which VMS man­
ages physical and virtual memory.

VMS memory management mechanisms are best introduced from a histor­
ical perspective. Historically, VMS has had two basic mechanisms to control
its allocation of physical memory to processes: paging and swapping. Several
auxiliary mechanisms, such as automatic working set limit adjustment and
swapper trimming, supplement these fundamental ones.

Original Design. An important goal of the initial release of the VMS operating
system was to provide an environment for a variety of applications, including
real-time, batch, and time-sharing, on a family of VAX processors with a wide
range of performance and capacity. The memory management subsystem
was designed to adjust to the changing demands of time-sharing loads and
to meet the more predictable performance required by real-time processes.

The major problems common to virtual memory systems that concerned
the original designers were the following:

• The negative effect that one heavily paging process has on the performance
of others

• The high cost of starting a process that has to fault all its pages into
memory

• The high 1/0 load imposed by paging

VMS support of virtual memory was designed to address these problems.
With some modifications, the original design remains intact in the current
release.

The VMS designers chose to implement process-local page replacement
instead of global replacement. A process pages against itself, for the most
part, rather than against. other processes. This minimizes the risk of page
fault thrashing among processes and also makes possible more predictable
performance for a real-time process.

357

Memory Management Overview and Data Structures

358

A process is created with a working set quota that limits its maximum use
of physical memory. The default and maximum sizes of each process's work­
ing set are specified at process creation. As the process executes and faults
pages, they are read into memory from backing store and plated into the
process's working set. When the process's working set reaches its maximum
size, a subsequent page fault must be a replacement page fault, requiring that
a page first be removed from the working set. In this manner, the process
pages against itself. (Note, however, that a heavily paging process that causes
the contents of the free and modified page lists to turn over rapidly can in­
directly affect other processes.)

Unlike some virtual memory architectures, the VAX does not include
a reference bit in each page table entry by means of which less recently
referenced pages can be identified. Instead, VMS uses the order of working
set list entries to determine length of residence. The working set list, which
describes the pages in the process's working set, is a ring buffer with a pointer
to the entry most recently added to the working set. In general, the page
most likely to be removed from the working set is the one following the
most recently added, that is, the oldest.

Although this working set replacement algorithm is simple to implement
and has low CPU overhead, its selection of a page to be removed is not
optimal and may cause more page faults. For those reasons, the original
algorithm has been enhanced. Chapter 17 describes the current algorithm.

To minimize the performance impact of this algorithm, VMS caches pages
removed from a working set so that they can be faulted back into it without
the need for mass storage I/O; the executive inserts a page removed from
a working set at the tail of the free page list or the modified page list,
depending on whether the page had been modified. When a process needs
a physical page of memory, for example, to fault a nonresident page, the
executive allocates the physical page at the head of the free page list. Thus
an unmodified page is cached for a length of time proportional to the size
of the free page list and the frequency with which pages are allocated from
it. When the modified page list grows beyond a certain size or the free page
list shrinks below a certain size, the executive writes modified pages to their
backing store, typically a page file, and then inserts them at the tail of the
free page list. A modified page is thus cached while it is on both the modified
and free page lists.

Because a page faulted into the working set becomes the newest page and is
thus less likely to be removed, the page list caches considerably improve the
performance of the working set list replacement algorithm, bringing it close
to that possible with a least-recently-used algorithm but with less overhead.
(Note that a heavily paging process can affect others indirectly by causing
the page lists to turn over more rapidly, thus reducing their effectiveness as
caches for the other processes.)

VMS provides services by which a process can exercise some control over

14.1 Overview of Memory Management

its working set list: it can lock and unlock selected pages into its working
set and purge its working set of pages in a specified address range. At image
exit, VMS deletes PO space and the nonpermanent part of Pl space, thereby
removing these pages from the working set. Before a process executes a
new image, VMS purges the working set of no longer needed pages, such
as command language interpreter code and data.

VMS was designed to manage memory by both paging and swapping.
Paging occurs in response to process page fault exceptions and results in
moving virtual pages into and out of physical memory. Swapping, which
occurs in response to events detected by the executive, results in moving
whole working sets into and out of physical memory. Swapping all of a
process's working set minimizes the time to start up the process and the
number of I/O operations to remove its pages from memory and to read them
back in. Swapping makes it possible for more processes to coexist even when
their working sets cannot all fit into memory at once.

Processes in certain long-lasting wait states are more likely to be out­
swapped than computable processes. When an outswapped process becomes
computable, it is eventually inswapped. Chapter 18 describes the relation
between process scheduling states and the swapper's selection of inswap
and outswap candidates. A privileged process can prevent itself from being
swapped.

To reduce thel/O overhead of paging, VMS reads and writes multiple pages
at a time. A page fault cluster size is defined for each pageable entity, for
example, an image section or a process page table. When a page is faulted,
VMS tries to read a cluster's worth of pages. It writes modified pages in
clusters also, to reduce I/O overhead. A SYSGEN parameter specifies the
number of modified pages written to a page file at once. Within this larger
cluster, the modified page writer groups related virtual pages so that they can
be faulted back in as a cluster. Chapter 16 describes both types of clustering.

Simply deferring the writing of modified pages reduces 1/0 overhead to
some extent: some pages are deleted before they are written; some pages are
faulted in from the modified page list and modified again before they are
written.

In VMS Version 1, the following parameters controlled the memory man­
agement subsystem:

• The minimum sizes of the free and modified page lists
• The maximum size the modified page list could grow before the system

began to write its pages to a page file
• The maximum number of concurrently resident processes
• For each process, a default and maximum working set size

As processes were created, used free pages, and faulted pages, the free page
list would shrink and the modified page list would grow. If the free page list
shrunk too low, the swapper would write modified pages and, if necessary,

359

Memory Management Overview and Data Structures

14.1.3.2

14.1.3.3

360

outswap a process. If the modified page list grew too large, the swapper
would write modified pages. Occasionally, the swapper would have to write
the entire modified page list, or flush it, in order to force specific pages out
of memory. A process could alter its working set size from its default to
its maximum through a system service to use that many more pages. Its
working set size would be reset to its default at image exit.

Auxiliary Mechanisms. VMS Version 2 added a mechanism called automatic
working set limit adjustment, by which a process's working set size was
altered in response to its page fault rate. The working set of a heavily faulting
process grew so as to reduce its page fault rate. The working set of a process
that incurred very few page faults was shrunk. With expansion considered
the more significant part of the mechanism, it was triggered at quantum end,
based on the idea that a process that could not execute even for a quantum
did not need its working set limit adjusted. Chapter 1 7 describes automatic
working set limit adjustment.

VMS Version 2 also employed an enhancement to the VAX architecture
that made it possible to test whether a page had been referenced recently
enough so that its page table entry was in the translation buffer cache.

In VMS Version 3, the mechanism was enhanced to permit a heavily
faulting process to grow beyond its normal maximum working set if the free
page list was sufficiently large. An alternative mechanism for reclaiming
physical pages was added, called swapper trimming. The basic idea was that
when the swapper process detected that the free page list had shrunk too
low, it could reclaim memory from the working sets of processes expanded
in times of plenty. If more memory was needed, it could either outswap a
process or shrink a process working set as low as the SYSGEN parameter
SWPOUTPGCNT. This added considerable flexibility to the original design;
by altering this and several other parameters, a system manager could tune
the system to favor swapping over paging, or vice versa.

VMS Version 4 refined swapper trimming, correcting a failure to reclaim
memory from a low-priority compute-bound process whose working set had
expanded when the system was lightly loaded. As a result of the pixscan
mechanism (see Chapter 12), the refinement was not always effective.

In VMS Version 5 there were several changes to the modified page writer,
the most significant being that it no longer flushed the modified page list to
force specific pages out of memory. Instead, it could be requested to search
the list for selected pages and write them, leaving the rest of the pages as
cache.

Comparison of Paging and Swapping. VMS uses both paging and swapping
to make efficient use of available physical memory. The page fault handler

14.1 Overview of Memory Management

Table 14.1 Comparison of Paging and Swapping

DIFFERENCES

Paging

The page fault handler moves pages in
and out of process working sets.

The page fault handler is an exception
service routine that executes in the
context of the process incurring the
page fault.

The unit of paging is the page, although
the page fault handler attempts to
read more than one page with a
single disk read.

Page read requests for process pages are
queued to the driver according to the
base priority of the process incurring
the page fault. 1 ·

Paging supports images with very large
address spaces.

Swapping

The swapper moves entire processes in
and out of physical memory.

The swapper is a separate process that
is awakened from its hibernating
state by components that detect a
need for swapper activity.

The unit of swapping is the process
or, actually, the pages of the process
currently in its working set.

Swapper I/O requests are queued
according to the value of the SYSGEN
parameter SWP _PRIO. Modified page
write requests are queued according
to the SYSGEN parameter MPW _
PRI0. 1

Swapping supports a large number of
concurrently active processes.

SIMILARITIES

The page fault handler and swapper work from a common database. The most
important structures used for both paging and swapping are the process page tables,
the working set list, and the PFN database.

The page fault handler and swapper do conventional I/O. There are only slight
differences in detail between pager and swapper I/O on the one hand and normal
Queue 1/0 requests on the other.

Both components attempt to maximize the number of blocks read or written with a
given I/O request. The page fault handler accomplishes this with read clustering.
The swapper attempts to inswap or outswap the entire working set in one (or a
small number of) I/O request(s). The modified page writer writes clusters of pages.

1 This consideration has meaning primarily for older, conventional mass storage device
drivers. The priority at which an I/O request is queued to the disk class driver is largely
irrelevant because the driver handles most requests immediately by queuing them to the
device, which is likely to reorder them based on considerations such as disk head position.

executes in the context of the process that incurs a page fault. It supports pro­
grams with virtual address spaces larger than physical memory. The swapper
enables a system to support more active processes than can fit into physical
memory at one time. The swapper's responsibilities are more global and sys­
temwide than those of the page fault hander. Table 14.1 compares the page
fault handler and the swapper.

361

Memory Management Overview and Data Structures

14.2 VAX ADDRESS TRANSLATION AND ACCESS CHECKING

362

As mentioned in Section 14.1.1, virtual to physical address translation is
supported by three page tables. Each of these page tables is described by
processor registers that specify the table's location and size:

• PR$_SBR and PR$_SLR, the system base and length registers
• PR$_POBR and PR$_POLR, the PO base and length registers
• PR$_PlBR and PR$_PlLR, the Pl base and length registers

The registers that describe the SPT are loaded during system initialization,
before memory management is enabled. PR$_SBR contains the physical ad­
dress of the SPT. The SPT provides the basis for all virtual addresses; thus, to
access PTEs within the SPT, the VAX processor must use physical addresses.

The registers that describe per-process page tables are loaded from the
process's hardware process control block when the LDPCTX instruction is
executed. In contrast to the SPT, which is physically located, per-process
page tables are located in system virtual address space. PR$_POBR and PR$_
PlBR contain the base virtual addresses of the POPT and the PlPT.

As shown in Figure 14.1, a virtual address has three parts. The high-order
two bits identify the address space and select a page table:

• The value 002 selects the PO page table. Another way of expressing this
fact is that PO space addresses range between 0 and 3FFFFFFF16 .

• The value Oh selects the Pl page table. Pl space addresses range between
4000000016 and 7FFFFFFF16·

• The value 102 selects the SPT. System space addresses range between
. 8000000016 and BFFFFFFF16·
• The value 112 is undefined and, when used in an address, causes an access

violation exception. Addresses between C000000016 and FFFFFFFF16 are
undefined.

The low-order nine bits identify a particular byte within a page. Bits (29:9) are
called the virtual page number. A virtual page number is used as a longword
context index into a page table to select the PTE that contains information
about the location of that virtual page.

Figure 14.2 shows the VAX architectural definition of a valid PTE. Bit
(31) in the PTE is set to indicate that the virtual page is valid and that the
processor can use bits (20:0) as a PFN. Bit (26), when set, indicates that the

9 8 0

Virtual Page Number I Byte within Page I
Region

Figure 14.1
Parts of a Virtual Address

14.2 VAX Address Translation and Access Checking

31 30 27 26 25 24 21 20 0

Protection

Valid
Modified

(res. for
executive)

Must be zero

Page Frame Number

Figure 14.2
Valid Page Table Entry

page has been modified. Bit (25) is reserved and must be zero. Bits (24:21)
are reserved for software; they are explained further in Section 14.3.3.

Bits (30:27) of the PTE are the protection code for the virtual page. When
a reference is made to a virtual address, whether or not the page is valid,
the processor tests the access mode and intended type of access against the
protection code in the PTE to determine whether the access is legal. This
enables the legality of an intended access to an invalid page to be checked
without having to fault the page into memory.

Table 14.2 lists the symbolic and numeric forms of possible protection
codes.

If the protection on the page prohibits the access, the processor generates
an exception called an access violation. The exception-specific parameters
it pushes onto the stack include an identification of the virtual address
to which access was attempted. (Although the address pushed is typically
the faulting virtual address, the VAX architecture requires only that the
processor push a virtual address within the same page as the faulting virtual
address.) The exception parameter information is the same for all memory
management exceptions and is shown in Figure 16.1.

In translating a system virtual address, the processor takes the following
steps:

1. It selects the SPT, based on the high-order bits of the address, and gets
its base address from PR$_SBR.

2. It compares the virtual page number to the contents of PR$_SLR. If the
page number is greater, an attempt is being made to reference an address
past the end of defined system space. The processor generates a type of
access violation known as a length violation.

3. If the virtual page number is less than or equal to the contents of PR$_
SLR, the processor computes the physical address of the PTE by multi­
plying the page number by 4 (the number of bytes in a longword) and
adding it to the base address of the page table.

4. It fetches the PTE.

-If the valid bit is set, the processor merges the PFN in the PTE with
the low nine bits of the virtual address to form the physical address.

-If the valid bit is clear, the processor generates a page fault. The VMS
page fault exception service routine, the page fault handler, locates

363

Memory Management Overview and Data Structures

Table 14.2 Memory Access Protection Codes in Page Table Entries

Protection 1

No access allowed
Reserved
Kernel write (kernel read)
Kernel read (no write)
User write (user read)
Executive write (executive read)
Executive read, kernel write
Executive read (no write)
Supervisor write (supervisor read)
Supervisor read, executive write
Supervisor read, kernel write
Supervisor read (no write)
User read, supervisor write
User read, executive write
User read, kernel write
User read (no write)

Symbol

PRT$c_NA
PRT$C_RESERVED
PRT$C_KW
PRT$C_KR
PRT$c_uw
PRT$C_EW
PRT$C_ERKW
PRT$c_ER
PRT$c_sw
PRT$c_SREW
PRT$C_SRKW
PRT$C_SR
PRT$c_URSW
PRT$c_UREW
PRT$C_URKW
PRT$C_UR

Note that the following rules govern memory access protection:

Binary
Value

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Protection
Mask
Hexadecimal

00000000
08000000
10000000
18000000
20000000
28000000
30000000
38000000
40000000
48000000
50000000
58000000
60000000
68000000
70000000
78000000

• If a given access mode has write access to a specific page, then that access mode also has
read access to that page.

• If a given access mode can read a specific page, then all more privileged access modes can
read the same page.

• If a given access mode can write a specific page, then all more privileged access modes can
write the same page.

1 Access that is implied (rather than explicitly a part of the symbolic protection name) is included
in parentheses.

364

the virtual page, reads it into memory, and changes the PTE. Subse­
quently, the instruction that triggered the page fault can be reexecuted
successfully. Chapter 16 describes the page fault handler's operations.

Figure 14.3 shows a simplified form of these steps.
Translating a per-process virtual address requires additional steps. The

processor must first calculate the system virtual address of the per-process
PTE. Then, using steps analogous to those used for system virtual address
translation, the processor translates the process virtual address to a physical
address.

That process page tables are themselves accessed via system virtual ad­
dresses rather than physical addresses means that they can be paged. Thus
the translation of a process virtual address can conceivably incur two page
faults, one for the appropriate page table page and one for the process page
itself.

14.3 Process Data Structures

The VAX Architecture Reference Manual contains further details of the
architecturally defined address translation mechanism.

As a performance optimization, a VAX processor includes a cache called
a translation buffer, which records virtual address translations. Each trans­
lation buffer entry associates a virtual address with its PTE contents. Only
the contents of valid PTEs are cached. An attempted translation that results
in a page fault is not cached; however, once the page is read in from backing
store, the faulting instruction is reexecuted and the now-valid PTE is cached.

When the LDPCTX instruction is executed to load a new process's context,
the per-process translation buffer entries for the previous process are inval­
idated. Whenever the executive changes a valid PTE, it must write to the
translation buffer invalidate single processor register, PR$_ TBIS, to inval­
idate any possible cached entry. Running on a symmetric multiprocessing
(SMP) system, the executive must ensure that whenever any processor modi­
fies a valid SPTE, all processors invalidate any possible corresponding cached
entry. Chapter 34 describes this operation in detail.

14.3 PROCESS DATA STRUCTURES

14.3.1

Memory management information about the process is maintained in the
software process control block (PCB) and in the PHD. These are described in
the sections that follow.

Software Process Control Block

The software PCB is allocated from nonpaged pool at process creation and
remains resident for the life of the process, whether the process is resident
or outswapped. When a process is outswapped, the PCB remains as the rep­
resentation of the existence of that process and must contain all information
that the swapper requires to inswap the process. Figure 14.4 shows the PCB
fields related to memory management.

31 30 29
Virtual Address

9 8 0

Virtual Page Number Byte Offset

Region

Page Frame Number PTE

Page Table

8 0

Page Frame Number Byte Offset

Figure 14.3
Physical Address

VAX Address Translation

365

Memory Management Overview and Data Structures

366

I STS I
PHO

1 APTCNT

GPGCNT

PPGCNT

I WSSWP I SWAPSIZE

Figure 14.4
PCB Fields Related to Memory Management

PCB$LSTS contains several relevant status bits:

• PCB$V_RES, when set, means that the process jthat is, its PHD and its
working set) is resident in memory .

• PCB$V _PSWAPM, when set, means that the process has disabled outswap­
ping of itself .

• PCB$V _PHDRES, when set, means that the process's PHD is resident.
jWhen a process is outswapped, its header may remain in memory.)

• PCB$V _DISAWS, when set, means that the process has disabled automatic
working set limit adjustment.

PCB$L_PHD contains the address of the PHD, if PCB$V _PHDRES in
PCB$L_STS is set.

PCB$W _APTCNT only has meaning for an outswapped process; the swap­
per records in it the number of active and valid pages in the PHD.

PCB$L_GPGCNT contains the number of global pages in the process's
working set, and PCB$L_PPGCNT, the number of process-private pages. The
sum of these two fields is the number of physically resident pages, the size
of the process's working set.

When a process is newly created, PCB$L_ WSSWP is cleared to signal the
swapper that the process's initial pages come from the shell. The field has a
different use later in the life of the process: when a process is outswapped,
PCB$L_ WSSWP contains its mass storage location. If the process has been
outswapped in one extent, PCB$L_ WSSWP contains a systemwide page file
index jsee Section 14.8.2) identifying the swap file and the starting virtual
block number. The high bit of PCB$L_SWAPSIZE is set to indicate such a
process; the low 31 bits of PCB$L_SWAPSIZE contain its outswapped size in
blocks. If the process is outswapped in more than one extent, PCB$L_ WSSWP

14.3.2

14.3 Process Data Structures

contains the address of a page/swap file mapping window block IPFLMAP),
a data structure that lists the locations and sizes of the extents. Chapter 18
describes the PFLMAP and process swapping.

Process Header

The most important process-specific memory management data structures
are contained in the PHD:

• The PO and Pl page tables are the largest contributors to the size of the PHD
and contain the complete description of the per-process virtual address
space currently in use by the process, including both valid and invalid
pages.

• The working set list describes the subset of PTEs that are currently valid.
• The process section table contains entries that associate the process sec­

tions created in the process's address space with the corresponding sections
in the files where the pages originate.

• Because the sizes of the pieces of the PHD vary from system to system,
there must be some method of determining where each piece is located.
Pointers or indexes in the fixed portion of the PHD serve this purpose.
Process accounting information, some of which is used by the page fault
handler or by the swapper, is also located in this area. The hardware PCB,
the area in which the register context of the process is saved, is also in the
fixed part of the PHD.

• Several arrays contain information about the pages in the PHD itself. The
swapper uses this information when it outswaps the PHD.

Figure 14.5 shows these parts of the PHD. The smaller figure to the right
shows the relative sizes of the portions of the PHD on a typical system. Fig­
ure E.15 shows the detailed layout of the PHD. Specific fields in the PHD are
described, where appropriate, in this chapter and the memory management
chapters that follow.

The PHD has several unusual characteristics that distinguish it from other
data structures:

• The PHD is swappable.
When a process is outswapped, its PHD can be outswapped as well.

When later inswapped, the PHD is likely to be placed in a different balance
slot at a different system space address. !Section 14.7.l describes balance
slots.) Consequently, accesses to the PHD that use its system space ad­
dress must be synchronized against swapper interference. Accesses from
a current process can be made with the SCHED spinlock held to block
any rescheduling and possible swapping of the process. Holding the MMG
spinlock is an alternative way to block swapping.

• The PHD is referenced using both system space addresses and Pl space
addresses.

367

Memory Management Overview and Data Structures

368

Contains pointers to variable
portions of the process header

Describes valid page table
entries

Describes pages in section
files
Reserved for expansion of the
working set list and process
section table
Describes pages in the
process header itself

Describes the virtual address
space used by the process

Figure 14.5

--[

{
{
-[

{

- *

'--

Fixed Portion of Process Header

Working Set List

t
t

Process Section Table

Empty Pages

Arrays for Process Header Pages

PO Page Table

t

t
P1 Page Table

Discrete Portions of the Process Header

f'
\

\
\

~ -

*
I

I
I

It

\

I

\
\

\
\

\

--

I
I

I
I

I

I

The PHD is located in system space partly so that the swapper can access
it. Furthermore, VAX address translation requires that per-process page
tables be in system space.

The PHD, excluding the per-process page tables, is also mapped in Pl
space and accessed through global pointer CTL$G1-PHD. This Pl window
to the PHD is at a fixed virtual address range and remains the same
across outswaps and inswaps. The exact location of the window varies
with system version; its size varies with several SYSGEN parameters. Most
executive code that runs in process context accesses the PHD through the
Pl window and thus avoids the need for blocking possible movement of
the PHD to a different balance slot. Chapter 18 contains more information
on double mapping of the PHD.

• The PHD has both pageable and nonpageable parts. The per-process page
tables are pageable; the rest of the PHD is not pageable.

The memory-resident portion of the PHD is described by the process's
working set list, and its nonpageable portion is locked into the working
set list. PHD pages are the only pages with system virtual addresses that
are part of a process working set.

An attempt by one process to fault a page in another process's PHD is
view<..d as an error. The page fault handler simulates an access violation
for any such attempted fault.

• The PHD has four variable-length pieces: the two per-process page tables,
the working set list, and the PST. The maximum sizes of these pieces are

14.3.3

14.3 Process Data Structures

fixed by SYSGEN parameters, but their actual sizes vary in response to
process needs.

However, the balance slots in which PHDs reside are of fixed size to
enable VMS memory management routines to associate easily the address
of a process PTE with the process, as described in Section 14.7.3.

The per-process page tables are at a fixed place (for a given set of SYSGEN
parameters) at the high-address portion of the PHD. The PO page table
grows toward increasing addresses and the Pl page table toward decreasing
addresses. The system virtual addresses of the page tables must remain
stable while the process is resident or has 1/0 in progress. Every resident
page has a back pointer to the address of the PTE that maps it in the PFN
database for that page. Any outstanding 1/0 request refers to its buffer
using the system virtual address of the buffer's PTEs.

The dynamic growth area of the PHD must accommodate the growth
of both the PST and the working set list. Expansion in either of these can
result in moving the PST to higher addresses in the PHD. Section 14.3.5
describes PST /working set list expansion.

The sections that follow describe the memory management structures in
the PHD.

Process Page Tables

The VAX architecture specifies that per-process page tables be virtually
based, unlike the system page table, which is physically based. As a re­
sult, the pages of a process page table need only be virtually contiguous, not
necessarily physically contiguous. A process page table can therefore grow
as required to reflect expansion of the address space it maps; VMS merely
maps additional page table pages into the virtual addresses contiguous to
the end of the page table. Because the dynamic growth of a process page
table can easily accommodate the dynamic expansion of a process's virtual
address space, the size of a process's page tables can be adjusted to suit its
needs. VMS does not need to allocate maximum-size process page tables for
all processes. Furthermore, per-process page tables can themselves be paged.

Figure 14.6 shows the per-process page tables in the PHD and the fields in
the fixed portion of the PHD that locate the PO and Pl page tables.

The PO page table contains PTEs for all pages currently defined in PO space
(POPTEs). The starting virtual address of the PO page table is stored in offset
PHD$1-POBR and copied to the PO base register (PR$_POBR) by LDPCTX when
the process is placed in execution. The number of pages in PO space is stored
in offset PHD$L_POLR and copied to the PO length register (PR$_POLR).

PHD$1-FREPOVA contains the process virtual address corresponding to
the first unmapped page in PO space. The PO page table maps process ad­
dresses from 0 to 1 less than the contents of PHD$L_FREPOV A. In other

369

Memory Management Overview and Data Structures

370

PCB$L_PHo-------------------,
r

POBR

l POLA

P1BR

I P1LR

FREPOVA

FREPTECNT

FREP1VA

"'[_ _j_

r r "°"'"*"' {: PO_T

~ .- {i 1-----R-oom--fo-r Ex-pa-ns-io_n_of_P_age_T_able ___ --1

(2
21

-P1LR)- { 1......._ ______ P_1 P_age_l_able ______ _,

Figure 14.6
Process Page Tables

words, the contents of PHD$1-FREPOVA are the product of 20016 and the
number of POPTEs.

In a similar manner, the Pl page table contains PTEs for the pages in Pl
space (PlPTEsJ. Its base address and length are stored in fields PHD$1-P1BR
and PHD$1-PlLR. The LDPCTX instruction copies these fields to the pro­
cessor registers PR$_PlBR and PR$_PlLR. Like Pl space itself, the Pl page
table grows toward smaller addresses. To simplify VAX address translation,
the base address of the Pl page table is the virtual address of the PlPTE
that would map virtual address 4000000016. This allows a Pl virtual page
number to be used as an index into the Pl page table. PHD$L_PlLR contains
the number of PlPTEs between virtual page 0 and the first defined (that is,
lowest) page of Pl space.

The virtual address corresponding to the first unmapped page in Pl space is
stored at offset PHD$L_FREP1 VA. The Pl page table maps addresses from the
contents of PHD$L_FREP1VA plus 20016 to 7FFFFFFF16· In other words, the
contents of PHD$1-FREP1VA are 4000000016 minus 20016, plus the product
of 20016 and the contents of PHD$1-PlLR.

The processor registers that describe the page tables are not stored by
the SVPCTX instruction. These registers change relatively rarely (for example,
as a result of address space creation or deletion). Instead, VMS explicitly

14.3.3.1

14.33.2

14.3 Process Data Structures

records such changes in the hardware PCB whenever it changes the processor
registers. This strategy saves the memory writes that would otherwise be
required every time the process context is saved.

The SYSGEN parameter VIRTUALPAGECNT is the upper limit on the
maximum combined number of PTEs in the PO and Pl page tables. Chap­
ter 15 describes additional limits to the growth of virtual address space. The
number of PTEs available for the expansion of either PO space or Pl space
is stored in offset PHD$LFREPTECNT. This number is the SYSGEN pa­
rameter VIRTUALPAGECNT minus the current sizes of the PO and Pl page
tables.

Figure 14.7 shows the various forms of valid and invalid PTE that can
appear in a process page table. Notice that the valid bit, protection code bits,
and owner access mode bits have the same meaning in all forms of PTE.
Section 14.2 describes the valid and protection code bits and the use of the
PFN. The owner access mode bits record the access mode that owns that
page. The VMS executive allows a process to modify the characteristics of
a virtual page or delete it from an access mode equal to or more privileged
than the page's owner access mode.

A PTE for an invalid page contains either the location of the page or
a pointer to further information about the page. The page fault handler
uses the type bits, bits (26) and (22), in the invalid PTE to distinguish
the different forms of invalid PTE. These are described in the sections that
follow. Chapter 16 describes the processing of page faults for various types
of invalid PTEs.

One form of invalid PTE not pictured in Figure 14.7 is a null page, a
longword of zero. A PTE with a zero protection code disallows any access
to the page by any mode. This form of PTE describes an unmapped page of
address space.

PTE Containing a Process Section Table Index. The PTE of each page in a
process section contains the index of the PSTE describing that section. The
PSTE has information about the location of the file mapped into the process
address space and the virtual block in the file containing each section page.

The PSTE also contains control bits that are copied to the PTE of each
page in the section:

• Bit (18) is set to indicate the page is writable .
• Bit (17) is set to indicate the page is demand zero .
• Bit (16) is set to indicate the page is copy-on-reference.

Section 14.3.5 describes the PST organization and layout of the PSTE.

PTE Containing a Page File Virtual Block Number. A process can page in
up to four different page files. This behavior is new with VMS Version 5; in
earlier versions, a process was assigned to one page file at process creation

371

Memory Management Overview and Data Structures

Valid

Different
forms of
invalid
PT Es

PTE

r-

-

Modify bit (Set on
write or modify
access to page.)

I

Window bit
(Indicates page
mapped by PFN.)

I
31 30 27 26 25 24 23 22 21 20 19 18 17 16 15

Protection I Owner I 1
Code

M Access w Page Frame Number (PFN)

1
Mode

I I 0 0 0 0

1----1 I--

T I 0 0 0 Page Frame Number (PFN)

1----i Protection t--

T Code Owner
0 (See 0 Access 1 Global Page Table Index

Table Mode
1----i 14-2.) t--

I Page
0 1 0 File Page File Virtual Block Number

Index
1----i t--

I I I I 0 1 1 Process Section Table Index

0

Page is
active and
valid

Demand
zero
page

Page is in
transition

Invalid
global
page

Page is in
page file

Page is in
image file

31 30

Valid bit (page tabl~
entry valid bit)

27 26 25 24 23 22 21 20 19

I I
TYP1 bit
(high-order bit
of PTE type)

TYPO bit
(low-order bit
of PTE type)

18 17 16 15

LL L Copy-on-reference

Demand zero

0

372

Writable

Figure 14.7
Different Forms of Page Table Entry

and could page only in that file. Each process has a four-byte array in its
PHD, beginning at offset PHD$B_PRCPGFL, that identifies the page files
it can use. Each byte can contain a different systemwide page file index,
an index into the page-and-swap-file-vector. Section 14.8.2 contains more
information on the page-and-swap-file vector, and Chapter 16 discusses the
assignment of a process to a page file.

When a virtual page has been faulted out to a page file, its PTE contains the
virtual block number of the page within the page file and a two-bit number
in bits (21:20) indicating the page file in which the page is located. The two­
bit number, referred to as a process-local page file index, indexes the PHD
array at PHD$B_PRCPGFL. With this extra level of indirection, there are 20
bits available for the virtual block number.

A process has a current page file in which pages have been reserved for
its use as backing store. PHD$B_PRCPAGFIL contains the process-local in­
dex of the process's current page file. (Note, PHD$B_PRCPGFL and PHD$B_
PRCPAGFIL are different PHD fields.) PHD$B_PAGFIL contains the corre­
sponding systemwide index into the page-and-swap-file vector.

The longword PHD$1-PAGFIL, of which PHD$B_PAGFIL is the high-order

14.3.3.3

14.3.3.4

14.3.3.5

14.3.4

14.3 Process Data Structures

byte, is a template for a virtual page that requires a page file backing store
address. When such a page is first faulted, the template is copied to the PFN
BAK array element (see Section 14.4.2) for the physical page. Bits (21:20) of
the template contain the same value as PHD$B_PRCPAGFIL. Bits (19:0) are
zero. A BAK array element containing such a template backing store address
indicates that a block in the specified page file has been reserved for the
virtual page but not yet allocated.

PTE Containing a Global Page Table Index. The PTE of an invalid process
page mapped to a global page contains an index into the global page table,
where an associated global PTE contains the information used to locate the
page. Section 14.6.4 describes the contents of global PTEs.

PTE of a Page in Transition. When a physical page is removed from a process
working set, it is not discarded but put on the free or modified page list.
The invalid virtual page, still associated with the physical page, is called
a transition page. Its PTE contains a PFN, but the valid bit is clear. The
two type bits are also clear. Retaining the connecticn to a physical page
enables VMS to fault the virtual page back into the working set with minimal
overhead until the physical page is reallocated for another use.

Another type of transition page is a virtual page in transit between mass
storage and physical memory. When a process faults a page not in memory,
the page fault handler allocates a physical page and requests an 1/0 operation
to read the virtual page from its backing store. While the I/O request is in
progress, the virtual page has a transition PTE.

A transition page is described further by its physical page's entries in the
PFN database (see Section 14.4). In particular, the PFN STATE array (see
Section 14.4.3) identifies the state of the page and distinguishes among the
different types of transition page.

PTE of a Demand Zero Page. One form of transition PTE has a zero in the
PFN field. This zero indicates a special form of page called a demand-allocate,
zero-fill page, or demand zero page for short. When a page fault occurs for
such a page, the page fault handler allocates a physical page, fills the page
with zeros, inserts the PFN into the PTE, sets the valid bit, and dismisses
the exception.

Working Set List

Another memory management data structure located in the PHO is the
working set list. The working set list describes the subset of a process's
pages that are currently valid. Pages described in a process's working set list
are PO, Pl, or PHO pages. Its capacity to describe pages is the upper limit on
the number of physical pages the process can occupy.

373

Memory Management Overview and Data Structures

14.3.5

374

The page fault handler and swapper use the working set list to determine
which virtual page to discard (to mark invalid) when it is necessary to remove
a physical page from the process. The swapper also uses the working set list
to determine which virtual pages need to be written to the swap file when
the process is outswapped.

Chapter 17 describes the organization and use of the working set list and
the layout of a working set list entry (WSLE).

Process Section Table

The process section table is another memory management data structure
located in the PHD. It contains PSTEs. A PSTE describes the association
between a contiguous portion of virtual address space and a contiguous por­
tion of a file. Both these portions are known as sections and consist of pages
with identical characteristics, for example, protection, owner access mode,
writability, and file location. Much of virtual address space management is
done in units of sections.

When an image is activated (see Chapter 26), the file containing the image
is opened and a process section is created for each process-private image
section. Although each image section is mapped separately, the image file
is opened only once, and the image's sections page using the same assigned
channel and window control block.

A process section is also created when

• A process opens a file and requests the Create and Map Section ($CRMPSC)
system service to map the file or some part of it into its address space

• A shareable image is activated that is not shared (that is, one that has not
been installed with the /SHARE qualifier through the Install Utility)

• A shared image is activated that has a copy-on-reference section

PSTEs enable the memory management subsystem to keep track of process
pages in different sections, potentially in different files on different mass
storage devices.

Figure 14.8 shows the location of the PST within the PHD. PHD$L_PST­
BASOFF contains the byte offset from the beginning of the PHD to the
high-address end of the PST.

Each PSTE within the table is 32 bytes long and is located through a
negative longword context index from the base of the PST. The first PSTE has
an index of -8, the second -1016• Successive PSTEs are at lower addresses.
Since all references to a PSTE are relative to PHD$1-PSTBASOFF, the PST
can be moved within the PHD without requiring changes in process PTEs
that contain process section table indexes.

The following operations compute the address of a particular PSTE:

1. Add the contents of PHD$1-PSTBASOFF to the address of the PHD. The
result is the address of the base of the PST.

PCB$L_PHD ---:[

Process Header

PSTBASOFF

PSTFREE

PSTBASMAXIWSLX

Rest of Fixed Portion,
Working Set List

Room for Expansion of
PSTorWSL

Process Section Table

1

14.3 Process Data Structures

/
/

/
/

/

PSTLAST and PSTFREE are
negative longword indexes

from the base of the
process section table.

" Empty Pages_

" " Process Header Page Arrays, ~ "_ T PO Page Table, P1 Page Table T ~ "
The process section table
cannot extend beyond
this point.

Figure 14.8
Process Section Table

2. Multiply the negative process section table longword context index by 4.
3. Add the (negative) result to the address of the PST.

A PST is organized into a variable number of linked lists of PSTEs. Fig­
ure 14.8 shows a typical PST with free and allocated PSTEs; the allocated
PSTEs are shaded. The negative index in PHD$W _PSTLAST is the largest
index of any entry ever allocated and is thus a "high-water mark."

All the process sections that page from the same section file using the
same assigned channel are linked together. The entries are linked together
through the backward and forward link index fields of each entry.

When a section is deleted, the PSTE that mapped the section is placed on
the list of free entries so that it can be reused. The negative index PHD$W _
PSTFREE points to the most recent addition to the free list. If no entry has
been deleted, PHD$W _PSTFREE contains zero. The first longword in a PSTE
on the free list contains the negative index to the previous element on the
free list. When a section is created, the PSTE allocation routine first checks
the free list. If there is no free PSTE, a new one is created from the expansion

375

Memory Management Overview and Data Structures

376

region between the working set list and the PST, and PHD$W _PSTLAST is
modified.

VMS attempts to keep the working set list and PST virtually adjacent,
partly to simplify and shorten manipulation of the PHD during outswap and
inswap and partly to minimize the chances of wasting physical memory for
partial pages of both. When VMS must expand the working set list into the
area already occupied by the PST or expand the PST into the area already oc­
cupied by the working set list, it allocates space from the existing empty page
area (see Figure 14.8). Then, it moves the entire PST into the allocated space
at higher addresses and stores the new base address in PHD$LPSTBASOFF.

The longword at PHD$L_PSTBASMAX/PHD$L_ WSLX specifies the max­
imum size of the PST. This longword points to the high-address end of the
empty page area. It contains a longword context index from the beginning
of the PHD.

Room is reserved in the PHD for the maximum PST and working set list,
specified by the SYSGEN parameters PROCSECTCNT and WSMAX. It is
possible for the PST to grow larger than PROCSECTCNT specifies, at the
expense of the working set list.

Figure 14.9 shows the format of a process/global section table entry. (Sec­
tion 14.6.2 describes global section table entries.) Note that the field names
within a section table entry are defined by the STARLET.MLB macro $SEC­
DEF and begin with SEC$.

The first longword in the PSTE has two names: in a PSTE, SEC$L_CCB
contains the address of the channel control block (CCB) on which the section
file has been opened; in a GSTE, SEC$L_GSD contains the address of the
global section descriptor for that section.

SEC$W _SEXFL and SEC$W _SEXBL contain negative indexes from the base
of the section table to the previous and next section table entry. These link
an entry in use into a list of others that page using the same CCB. They also
link all free entries together.

The low-order 22 bits of SEC$L_ VPXPFC contain the starting virtual page
number at which the section's pages are mapped in the address space.

CCB/GSD

SEX BL I SEX FL

PFC }<res.lJ VPXPFC

WNOCJ{I/

VBN'

(reserved) I FLAGS

REFCNT

PAGCNT

Figure 14.9
Layout of Process/Global Section Table Entry

PSTEFlags

Bit Meaning
O Global
1 Copy.on-reference
2 Demand zero
3 Writable
4 Shared memory global
5 (reserved)

6-7 Access mode for writing
8-9 ONner access mode

10-12 (reserved)
13 Resident global
14 Permanent
15 O = Group global

1 = System global

14.3.6

14.3 Process Data Structures

SEC$B_PFC is the number of section pages that the page fault handler will
attempt to read in together when a page fault occurs.

SEC$L_WINDOW is the address of the window control block (WCB) that
describes the locations of the section file on a mass storage volume. The
WCB points to the unit control block (UCB) for the volume.

SEC$L_ VBN specifies the starting virtual, or file-relative, block number
(VBN) of the section file at which the pages in this section begin.

SEC$W _FLAGS contains flag bits that describe the section.
SEC$L_REFCNT contains the number of PTEs that refer to the section.
SEC$L_PAGCNT contains the number of pages in the section.
For a process-private section, SEC$LREFCNT and SEC$L_PAGCNT are

typically equal. For a global section, SEC$L_REFCNT is typically some mul­
tiple of SEC$L_PAGCNT, depending on how many processes have mapped
the global section. Note, however, that if a process maps only a portion of
a global section, the reference count reflects only those pages that it has
mapped. For either type of section, SEC$LREFCNT is decreased if a process
deletes pages in its address space that map the section.

The following steps locate a virtual page in a section file through infor­
mation in the PSTE:

1. Subtract the section's starting virtual page number from the virtual page
number of the faulting page to get the page offset into the section.

2. Add the contents of SEC$L_ VBN to the page offset computed in step 1
to get the VBN of the virtual page within the file.

3. Use the mapping information in the WCB to transform the VBN to a
logical block number on a mass storage volume.

Process Header Page Arrays

When a PHD is outswapped, some information about each PHD page is
stored in the PHD page array portion of the outswapped PHD. Figure 14.10
shows this area. Two of the arrays, the BAK and WSLX arrays, save informa­
tion about each PHD page in the working set, copied either from the PFN
database (see Section 14.4) or from the SPTE that maps that PHD page.

While a PHD is resident, the backing store location of each of its valid or
transition pages is stored in the PFN database; the backing store location of a
PHD page in a page file is stored in the SPTE that maps the PHD page. For a
valid page in a resident PHD, the PFN database stores information about the
location of the page's entry in the process's working set list. When the PHD
is outswapped, both the physical pages and the balance set slot it occupied
are released for other uses. The PHD BAK array records the backing store
information for each PHD page, which would otherwise be lost.

The PHD WSLX array records the location in the working set list of each
PHD page. Without this information, locating the PHD pages in the working
set list at inswap would require searching the working set list. (The virtual

377

Memory Management Overview and Data Structures

PGB$L_PHO
_[

]

*
PHO + (4 x WSLX)

PHO + (4 x BAK)

PHO + PlWSLELCK

PHO+ PlWSLEVAL

Figure 14.10
Process Header Page Arrays

BAK

WSLX

PlWSLELCK

PTWSLEVAL

PTCNTVAL I PTCNTLCK

PTCNTMAX l PTCNTACT

Rest of Fixed Portion,
WSL, PST,

Empty Pages

WSL Index Save Area
(one [long]word for each
process header page)

Backup Address Save Area
(one longword for each
process header page)

Locked WSLE Counts Array
(one byte per page table page)

(-1 means none)

Valid WSLE Counts Array
(one byte per page table page)

(-1 means none)

PO and P1 Page Tables

-~r

I
I-

*

I-

Fixed portion of
process header

Process header
page arrays

(Eight bytes per
process header
page, rounded up
to page boundary)

address information in each PHD page's WSLE will have to be recalculated
when the PHD is inswapped into a different balance slot.)

The other two arrays, locked WSLE count and valid WSLE count, contain
a reference count for each page table page. These four arrays are described in
greater detail in Chapter 18.

14.4 PFN DATABASE

378

The memory management data structures include information about the
available pages of physical memory. The fact that this information must be
accessible while the page is in use means that it cannot be stored in the
page itself. In addition, the caching strategy for the free and modified lists
requires physical page information to be accessible, even when pages are not
currently active and valid. The PFN database records this information.

The PFN database consists of eight arrays (see Figure 14.11). Each array
contains a specific item of information about physical pages of memory.
Information about a specific page of physical memory is in the same element
of each array. Table 14.3 lists each kind of information in the PFN database,
including the global name of the pointer to the beginning of each array.

PFN$AX_FLINK PFN$AX_BLINK
PFN$AW PFN$AW PFN$AB PFN$AB
REFCNT- SWPVBN STATE- TYPE -PFN$AL_PTE PFN$AL_BAK PFN$AX_SHRCNT PFN$AX_WSLX

Data for PFN X,
a process or global
page in working set

~
HHHH~~~~

0
Data tor PFN Y,
a free or mod~ied
list page

Figure 14.11

for PFN X

for PFN Y

J J
PTEArray

of
Longwords

PFN Database Arrays

for PFN X

for PFN Y

J J
BAK Array

of
Longwords

SH RC NT
for PFN X

FLINK
for PFN Y

J J
FLINKArray

SHRCNT Array
of

[Long]words

WSLX
for PFN X

BLINK
for PFN Y

1 J
BLINK Array

WSLXArray
of

[Long]words

for
PFNX

for
PFNY

LJ
REFCNT

Array
of

Words

for
PFNX

for
PFNY

LJ
SWPVBN

Array
of

Words

x

y

u
STATE
Array

of
Bytes

x

y

Li
TYPE
Array

of
Bytes

Memory Management Overview and Data Structures

Table 14.3 PFN Database Arrays

Array Element Contents
System virtual address

Name of
Pointer to Array
PFN$AL_PTE

Size of
Element
Longword

Comments

of PTE
Backing store address
Physical page state
Page type

PFN$AL_BAK.
PFN$AB_STATE
PFN$AB_ TYPE
PFN$AX_FLINK

Lo~ord
Byte
Byte
(Long)word 1

Figure 14.12
Figure 14.13
Figure 14.14
Figure 14.15;
Overlays the

Forward link

Backward link PFN$AX_BLINK (Long]word 1

SHRCNT
array

Figure 14.15;
Overlays the

WSLX array
Reference count PFN$AW _REFCNT Word
Global share count PFN$NCSHRCNT [Long]word 1 Overlays the

FLINK array
Overlays the

BLINK array
Working set list index PFN$AX_ WSLX [Long]word 1

Swap file virtual block PFN$AW _SWPVBN Word
number

1 The size of this array element is a function of the amount of physical memory on the system
(see Section 14.4.5).

380

Most of the information in the PFN database relates to the current virtual
use of a physical page. For a physical page that is not mapped by any virtual
page the only meaningful information is that in the FLINK and BLINK arrays.

The PFN itself is the index to each array in the PFN database; that is,
information about a particular page is located by indexing each PFN array
with the PFN of that page. The global location MMG$GL_MINPFN contains
the lowest valid subscript into the PFN database. It is currently initialized
to zero, and thus the PFN arrays are zero-based.

During system initialization, the highest physical pages of memory are
allocated for permanent uses, such as the system base image, nonpaged pool,
and SPT. To save physical memory, VMS does not include such pages in the
PFN database because their virtual state will never change since they do not
page. The global location MMG$GL_MAXPFN contains the highest valid
subscript in the PFN database. That is, it contains not the highest PFN on
the system but rather the PFN of the highest physical page for which there
are corresponding PFN data array elements, the highest PFN that can be used
for paging.

VMS maintains a small list of allocatable physical pages that have no PFN
database. In circumstances such as extending nonpaged pool or loading a

14.4.1

14.4.2

14.4.3

14.4 PFN Database

nonpageable section of a loadable executive image, the executive attempts
allocation from this list first. If the list is empty, VMS simply allocates a
page from the free page list. The global cell MMG$GLFREE_NO_PFN_DB_
LIST contains the PFN of the first page on the list. The first longword of
each page contains the PFN of the next page on the list. The end of the list
is a pointer of zero.

At system initialization, an SPTE is reserved for temporarily mapping one
of these PFNs to access its forward pointer. To allocate such a page, the
routine MMG$ALLOCPFN_NO_DB, in module ALLOCPFN, maps the first
physical page on the list using the reserved SPTE, invalidates the corre­
sponding translation buffer entry, and copies the page's forward pointer to
MMG$GL_FREE_NO_PFN_DB_LIST.

The sections that follow describe the arrays that make up the PFN data­
base.

PTE Array

Each PFN PTE array element contains the system virtual address of the PTE
that maps that physical page. If no virtual page is mapped to a physical page,
its PTE array element contains the value 0. A PFN PTE array element for a
global page contains the virtual address of the global PTE.

When assigning a physical page to a new use, the executive examines its
PTE array element to determine whether the page is a transition page and
still pointed to by a PTE associated with its previous use. If the array element
value is nonzero, the executive must take steps to sever the connection
between the physical page and its previous use.

BAK Array

A PFN BAK array element contains the backing store location for the virtual
page occupying a physical page. When a physical page is assigned to another
use, the PTE, if any, that currently maps the page must be updated. VMS
replaces information about the location of the virtual page in memory (the
PFN of the physical page that contains it) with information about its location
in mass storage copied from the BAK array element. Figure 14.12 shows the
possible contents of a PFN BAK array element.

PFN STATE Array

A PFN STATE array element, shown in Figure 14.13, indicates the state of
a physical page. As shown in the figure, the low three bits contain the page
location code, indicating, for example, whether the page is on the free list or
valid in a working set.

Several codes require further explanation:

• Release pending means that the virtual page has been removed from a
working set but still has a nonzero reference count. When the reference

381

Memory Management Overview and Data Structures

7

31

31

Systemwide
Page File Index

0

Figure 14.12

24 23 22 21 20 19

0 0

Page file index

24 23 22 21

0 1 (res.)

Writable

Demand
zero

Page File Virtual Block Number

Process or Global Section Table Index

Copy-on- reference

Possible Contents of PFN BAK Array Element

4 2 0
Location

0

0

(res.) (res.) (res.) Location of Page
(See table.)

Code

0 Page on free page list
Page on modified page list
Page on bad page list
Release pending Saved modify

bit from PTE

382

Delete PFN
contents when
reference count
goes to 0.

Figure 14.13
Contents of PFN STATE Array Element

1
2
3
4
5
6
7

Page read error
Write in progress by modified page writer
Read in progress by page fault handler
Page is active and valid

count is decremented to zero at 1/0 completion, the physical page will be
placed on the free or modified list.

• Page read error means that a nonrecoverable 1/0 error occurred during an
attempt to read the virtual page from its backing store into the physical
page. During postprocessing of the 1/0 request, when the error is noted,
this code is stored in the PFN STATE array element. Consequently, when
the page is later refaulted, the page fault handler will signal a page read
error exception.

• Write in progress means that the modified page writer has initiated 1/0 to
write the page to its backing store.

• Read in progress means that the page fault handler has initiated 1/0 to read
the page from its backing store.

Bit 4 in a PFN STATE array element is the delete bit. When the reference
count of a physical page whose delete bit is set becomes zero, all ties with
its virtual page (PFN PTE array contents) are severed. The physical page is
then put at the front of the free page list, where it will be reused before pages
that are still associated with virtual pages.

Bit 7 in a PFN STATE array element is the modify bit. It determines
whether a physical page is put on the free page list or the modified page list
when the page's reference count reaches zero. The modify bit is set under a
number of circumstances:

14.4.4

14.4 PFN Database

• If a virtual page was modified while it was valid, the modify bit in its PTE
is set. When a virtual page is removed from a working set, the modify bit
in its PTE is logically ORed into the saved modify bit in the PFN STATE
array element for the physical page. The modify bit must be recorded in the
PFN STATE array element because that bit in an invalid PTE has another
use as the TYPl bit .

• When a page is used as a direct 1/0 read buffer, the executive routine that
locks down pages, MMG$IOLOCK, in module IOLOCK, sets the modify
bit in its PTE. When the page is removed from the process's working set,
the OR operation described in the previous item sets the modify bit in the
PFN STATE array element .

• When a copy-on-reference page is faulted into a working set, the executive
sets the modify bit in the PFN STATE array element of the physical page.
Thus, even if the virtual page is not modified while it is valid, when the
page is removed from the working set, the physical page is inserted into
the modified list. This ensures that it will be written to page file backing
store, from where it will be read on a subsequent page fault.

• When a demand zero page is faulted into a process's working set, the modify
bit in the PFN STATE array element is set.

PFN TYPE Array

A PFN TYPE array element specifies the type of virtual page that occupies
the corresponding physical page, for example, whether it is a process or
system page or page table page. Figure 14.14 shows the contents of the
PFN TYPE array element. The page fault handler, swapper, and other parts
of the executive take action dependent on page type. In addition to type
information, the PFN TYPE array element has three status bits.

The bad page bit is set when a nonrecoverable error, such as a read data
substitute machine check, occurs trying to access the page in memory. The
page will be put onto the bad page list when it is deallocated.

The collided page bit is set when a page fault occurs for a virtual page
that is already being read in from its backing store address (one whose
corresponding PFN STATE array element shows it as read in progress). This
can happen, for example, if multiple processes fault a shared page. It can
also happen if a process in a page fault wait is interrupted for asynchronous
system trap (AST) delivery and then reexecutes the instruction that triggered

(res.)

Report event
on 1/0
completion

Figure 14.14

6 5

Bad page bit

4 2

(res.) Page Type
(See table.)

Collided page

Contents of PFN TYPE Array Element

0
Code Type

0 Process page
1 System page
2 Global read-only page
3 Global read/write page
4 Process page table page
5 Global page table page

383

Memory Management Overview and Data Structures

14.4.5

384

the page fault. When 1/0 completes for a page with this TYPE bit set, 1/0
postprocessing code clears the bit and reports the system event collided page
available for all processes in the collided page wait state. Chapter 12 describes
system events. Collided pages are discussed briefly in Chapter 16.

The report event bit is set when an attempt is made to delete a virtual
page that cannot be deleted immediately, for example, because the modified
page writer is writing the page to its backing store. The executive places
the process into a page fault wait. When the modified page writer's 1/0
completes, it reports a page fault completion system event. When the process
is placed back into execution, the page deletion proceeds.

PFN FLINK and BLINK Arrays

A physical page that is not mapped by a valid virtual page is in one of three
lists: the free, modified, or bad page list. The heads of these lists are in an
array of longwords that begins at global location PFN$ALHEAD. The list
tails are in the array PFN$AL_ TAIL. Each array has three elements: the first
for the free page list, the second for the modified page list, and the third for
the bad page list.

The three page lists must all be doubly linked lists because an arbitrary
page is often removed from the middle of the list. The links cannot exist in
the pages themselves because the contents of each page must be preserved.
The PFN forward link (FLINK) and backward link (BLINK) arrays implement
the links for each page. The PFN FLINK array element contains the PFN of
the successor page, and the PFN BL~K array element, that of the predecessor
page.

A zero in one of the link fields indicates the end of the list, rather than
being a pointer to physical page 0. This is one reason why physical page 0
cannot be used in any dynamic function. Another reason is that the repre­
sentation of invalid demand zero PTEs assumes that a PFN of zero can never
appear in an invalid PTE (see Figure 14.7). However, it can be used by a sys­
tem virtual page that is always resident. Physical page 0 usually contains
the restart parameter block (see Chapter 30).

The amount of memory present on a particular system determines the size
of the maximum PFN. On certain VAX processor types, enough memory can
be connected to the system that the maximum PFN cannot be expressed in
16 bits. On such a system, the PFN FLINK and BLINK arrays are longword ar­
rays rather than word arrays. During system initialization, VMS determines
how much memory is to be described by the PFN database. Appendix F de­
scribes how this number is calculated. If there are 32 or more megabytes to
be described in the PFN database, the PFN FLINK and BLINK arrays must
contain longword elements. The global location MMG$GW _BIGPFN con­
tains 0 if the element size is a word; otherwise, it contains 1.

Any code that accesses these arrays (and the arrays that overlay them)

14.4.6

Free Page List

PFN$AL_HEAD:: (][)
PFN$AL_TAIL::@]

PFN$AX_FLINK::

5 ~
11 ~
15 ~
28 ~
33 ~
42 ~

'[J
Figure 14.15

PFN$AX_BLINK::

BUNK
Array

~
~
~
~
~
~
'[J

Example of Free Page List Showing Linkage Method

14.4 PFN Database

PFN$AB_STATE::

~E

~ w w w w w
L.J

must use an instruction appropriate to the element size. Two techniques
are employed: one, which adds no overhead, for critical code paths and one
for less frequently used code paths. References to these arrays made within
critical code paths in the nonpaged executive are assembled to be word con­
text instructions. If the PFN database describes 32 or more megabytes, sys­
tem initialization code alters these references to longword context instruc­
tions. Code in less frequently used code paths that depends on the size of a
PFN tests the contents of MMG$GW _BIGPFN and executes the appropriate
instruction.

Figure 14.15 shows an example of pages on the free list, along with their
corresponding PFN FLINK and BLINK array elements. The PFN STATE array
element for each of these pages contains zero, indicating that the physical
page is on the free page list.

PFN REFCNT Array

A PFN reference count (REFCNT) array element counts the number of rea­
sons a physical page should not be placed on the free or modified page list.
One reason for incrementing the reference count is that a page is in a process

385

Memory Management Overview and Data Structures

14.4.7

14.4.8

386

working set. Another reason is that a page is part of a direct 1/0 buffer with
1/0 in progress.

· 1/0 completion and working set replacement use the same routine to
decrement the reference count. If the reference count goes to zero, the phys­
ical page is released to the free or modified page list, depending on the saved
modify bit in its PFN STATE array element. Manipulations of the reference
count are illustrated in Chapter 16.

PFN SHRCNT Array

A second form of reference count is kept for global pages. A PFN share
count (SHRCNT) array element counts the number of process PTEs that are
mapped to a particular global page. When the share count for a particular page
goes from 0 to 1, the PFN REFCNT array element is incremented. Further
additions to the share count do not affect the reference count.

As the global page is removed .from the working set of each process mapped
to the page, the share count is decremented. When the share count reaches
zero, the PFN REFCNT array element for the page is also decremented.

When a physical page has a nonzero share count, it cannot be on one of
the page lists; therefore, the forward and backward links are not needed. The
PFN SHRCNT array overlays the PFN FLINK array. (PFN$AX.FLINK and
PFN$AX.SHRCNT are the same location in system space.) Thus, the size
of elements in the SHRCNT array can be a word or a longword, depending
on the size of a PFN FLINK array element.

Process and global page table pages also use the PFN SHRCNT array. In
either of these cases, the array element counts the number of PTEs in the
page table page that contain a PFN, that is, the number of PTEs mapping
valid or transition pages. When this count goes from zero to nonzero, the
page table page is dynamically locked into a working set: a process page
table page into a process working set, and a global page table page into the
system working set.

PFN WSLX Array

A PFN working set list index IWSLXj array element for a valid page contains a
longword context index from the beginning of the process (or system) header
to the WSLE for that page. The WSLX element is used, for example, during
the deallocation of a page of memory. If the virtual page is valid, the WSLE
that describes it must be altered. Without the PFN WSLX array, it would be
necessary to search the working set list to locate the WSLE.

Because a physical page in a working set is not on one of the page lists,
the PFN FLINK and BLINK array elements are not needed. The PFN WSLX
array overlays the PFN BLINK array. (PFN$AX.BLINK and PFN$AX_ WSLX
are the same location in system space.) The size of elements in the PFN

14.4.9

14.5 System Memory Management Data Structures

WSLX array is either a word or longword, depending on the size of a PFN
BLINK array element. The PFN WSLX array is not used for global pages.

PFN SWPVBN Array

The swap virtual block number (SWPVBN) array supports the outswap of a
process with 1/0 in progress. When outswap occurs, the virtual block number
in the swap file where the locked down page would go is recorded in the
PFN SWPVBN array element for that virtual page. The modified page writer
checks this array element and, if it is nonzero, diverts a modified page from
its normal backing store address to the designated block in the swap file.

14.5 SYSTEM MEMORY MANAGEMENT DATA STRUCTURES

14.5.1

14.5.2

There are several systemwide memory management data structures analo­
gous to process data structures.

System Page Table

During system initialization, SYSBOOT allocates contiguous physical pages
for the SPT from the high-address end of physical memory. The SPT maps
itself, so that the operating system can alter SPTEs when necessary. (Recall
that once memory management is enabled, all addresses are translated.) The
global cell. MMG$GL_SPTBASE contains the system virtual address of the
system page table. MMG$G1-SPTLEN contains the number of SPTEs in it.

The SPT is not merely a system analog to process page tables: it is the basis
of any virtual address translation and is accessed during the translations of
per-process address space, as described in Section 14.2.

For the most part, SPTEs can take on the same forms as valid and invalid
process PTEs. Figure 14. 7 shows these forms. The one exception is that an
invalid SPTE cannot have the global page table index form.

System Header and PCB

The VMS executive maintains two data structures for itself that parallel
process structures: the system PCB and system header. Using these, the page
fault handler can treat page faults of system pages almost identically to page
faults for process pages.

The system PCB, whose address is in MMG$AR_SYSPCB, contains a base
priority used for 1/0 requests for page taults of system space pages and global
pages. It also has a pointer to the system header, parallel to the PHD pointer
in any process PCB.

The system header, shown in Figure 14.16, contains a working set list and
a section table. The working set list governs page replacement for pageable
system pages (other than those within the balance slots). Pageable system
pages come from pageable sections in loadable executive images, paged pool,

387

Memory Management Overview and Data Structures

MMG$GL_SYSPHD::

[~

j--lc .--

rl-1

lobal (system) _ G
se ction table

T
Figure 14.16

PSTBASOFF

PSTFREE l PSTLAST

System Working Set List

Room for Expansion of GST

GSTE

System Page Table T

System Header Containing the System Working Set
List and the Global Section Table

Movable boundary
between system working set
list and global section table

and the global page table. These are all paged in the system working set list.
Its size is determined by the SYSGEN parameter SYSMWCNT. Unlike other
working set lists, the system working set list does not expand or contract
in response to system page fault rate. Once the system working set fills,
replacement paging is required.

The backing store for pageable writable executive data and page file global
sections is within page files. Like a PHD, the system header contains a
four-byte array at PHD$B_PRCPGFL with systemwide indexes of the page
files that have been assigned. PHD$B_PRCPAGFIL contains the process-local
index of the current page file, and PHD$B_PAGFIL contains the systemwide
index of the current page file.

The section table in the system header contains entries for sections in files
that contain pageable system pages and for global sections. The SYSGEN
parameter GBLSECTIONS specifies the number of entries in the section
table.

14.6 DATA STRUCTURES FOR GLOBAL PAGES

14.6.1

388

The treatment of global pages is somewhat different from that for process­
private pages; VMS must keep additional systemwide data to describe global
pages and sections. The sections that follow describe these data structures.

Global Section Descriptor

All global sections are created by the Create and Map Section ($CRMPSC)
system service, requested directly from a user image or indirectly through

14.6 Data Structures for Global Pages

the Install Utility. When the service creates a global section, it allocates a
GSD, a paged pool data structure, to describe the section. Figure 14.17 shows
the layout of a GSD. A GSD associates the global section name to its GSTE.
The information in the GSD is only used when some process attempts to
map to or delete the section. The page fault handler does not use this data
structure.

GSD$L_GSDFL and GSD$L_GSDBL link the GSD into one of several
GSD lists maintained by the system. All system global sections are linked
into one list, whose listhead is formed by global cells EXE$GL_GSDSYSFL
and EXE$GL_GSDSYSBL. Group global sections (independent of group num­
ber) are linked into the other list, at EXE$GL_GSDGRPFL and EXE$GL_
GSDGRPBL. When a request is made to delete a global section to which
processes are still mapped, its GSD is removed from its current list and in­
serted into a list of delete-pending GSDs, the listhead of which is at EXE$GL_
GSDDELFL and EXE$GL_GSDDELBL. The mutex EXE$GL_GSDMTX (see
Chapter 8) serializes access to all three lists.

GSD$W _SIZE and GSD$B_ TYPE are the standard dynamic data structure
fields.

GSD$B_HASH contains a hashed representation of the global section
name. Comparing hash values rather than section names speeds up a search
for a global section with a particular name.

GSD$1-PCBUIC is the user identification code (UIC) from the software
PCB of the creating process. GSD$1-FILUIC is the UIC of the owner of the
section file.

GSD$W _PROT contains the protection specified by the global section
creator.

RegularGSD

GSDFL . .
GSDBL

HASH I TYPE I SIZE

PCBUIC

FILUIC

GSTX l PROT

IDENT

ORB

IPID

1 FLAGS .
I

,

GSDNAM
(up to 44 characters)

Figure 14.17
Layout of Global Section Descriptor

. . .

. .

.

. .

.

. .

Extended GSD for Map-by-PFN
Global Section

RegularGSD

BASEPFN

PAGES

REFCNT

PFNGSDNAM
(up to 44 characters)

389

Memory Management Overview and Data Structures

14.6.2

14.6.3

390

GSD$W _GSTX contains the global section table index for the section's
GSTE.

GSD$L_IDENT contains the version identification of the global section.
The value is specified by the $CRMPSC system service requestor. The Install
Utility copies it from the image header of the image being installed.

GSD$L_ORB contains the address of the associated object rights block
!ORB). In the case of a section that maps a file, the global section shares the
ORB associated with the open file.

When a process requests that a global section be deleted, its internal
process ID is copied to GSD$L_IPID. H the global section is writable, when
all its modified pages have been written, the modified page writer queues
an AST to that process to perform the cleanup and deletion of the global
section.

GSD$T _GSDNAM contains a counted ASCII string that is the section's
name.

A global section created with the PFN map option of the $CRMPSC system
service has no associated GSTE; its pages are not paged. Such a section has
an extended GSD, as shown in Figure 14.17. In the extended GSD, GSD$L_
BASEPFN contains the starting PFN of the section. GSD$L_PAGES specifies
its size in pages. GSD$LREFCNT specifies how many PTEs map to this
section. GSD$T _PFNGSDNAM, rather than GSD$T _GSDNAM, contains
the section name.

Global Section Table Entries

The section table in the system header serves a second purpose. When a
global section is created, a section table entry that describes the global
section file is allocated from the section table in the system header. Because
of this use, the system header's section table is usually called the global
section table IGST).

The format of a GSTE is nearly identical to the format of a PSTE. Fig­
ure 14.9 illustrates both kinds of section table entry.

GSTEs are accessed in a similar way to PSTEs, with a negative longword
context index from the bottom of the GST jsee Section 14.3.5). The global
section table index (GSTX) in the GSD is such an index, associating a GSD
with a GSTE.

Global Page Table

Like the other page tables, the GPT describes the state of the pages it maps.
Unlike the other page tables, the GPT is not accessed by the VAX processor
during address translation; it is only accessed by VMS memory management
routines.

As shown in Figure 14.18, VMS creates the GPT as an extension to the SPT.
This extension is virtually, but not physically, contiguous to the SPT. This

14.6 Data Structures for Global Pages

MMG$GL_SYSPHD:: o--i 1
System Header I

MMG$GL_SPTBASE:: .---::1 J--------------1
MMG$GL GPTBASE:: OJl System Page Table

. ..:.,_GPTE ~--I
l Global Page Table l

MMG$GL_MAXGPTE:: LJ,__ ------------­
Figure 14.18
Location of Global Page Table at Virtual End of
System Page Table

extension is invisible to the VAX processor; the processor register PR$_SLR
records only the number of SPTEs. VMS uses the same base address for the
GPT as for the SPT, though this address is stored separately in MMG$GL~
GPTBASE.

VMS locates specific GPTEs in the GPT in a manner analogous to the
way the VAX processor locates a PTE. Recall that in address translation,
the VAX processor uses a virtual page number as a longword context index
from the base address of the page table. In place of a virtual page number,
VMS uses a global page table index (GPTX) as a longword context index from
the contents of MMG$GLGPTBASE. The first GPTX is 1 greater than the
largest system virtual page number.

When a process maps a portion of its address space to a global section, its
process PTEs that map the section are initialized to the GPTX form of PTE
(see Figure 14.7). The process PTE that maps the first global section page
contains the GPTX of the first page in the global section. Each successive
process PTE contains the next higher GPTX, so that each PTE effectively
points to the GPTE that maps that particular page in the global section.

The relation between process and global GPTEs is shown in Figure 14.19.
In the picture, the SPT maps M pages, and the global section is mapped by
the first N GPTEs.

When a process first accesses an invalid global section page, it incurs a
page fault. Determining that the invalid page is a global page, the page fault
handler indexes the GPT with the GPTX to locate the GPTE that describes
the global page.

The juxtaposition of the SPT and GPT is of benefit to other parts of
the VMS memory management subsystem. For example, the GST contains
entries for both system space sections and global sections; both types can
use the low-order 22 bits of SEC$L_ VPXPFC to contain the index into the
page table that maps the section's pages. ,

391

Memory Management Overview and Data Structures

14.6.4

14.6.5

392

MMG$GL_GPTBASE:: o~-.1.r----------,1
System Page Table Process Page Table

~

V=O GPTX=M GPTE

V=O GPTX=M+1 GPTE

V=O GPTX=M+2 GPTE

I~V-=O __ G_PTX_=_M_+N_-1 __ *,_·~1~~--<·~I~----G_PTE ____ --tl

Figure 14.19
Relation Between Process PTEs and Global PTEs

Global Page Table Entries

M
SPTEs

N
SPTEs

Each page in a global sec;tion is described by a GPTE. GPTEs are restricted
to the following forms of PTE. The first three are illustrated in Figure 14.7;
the others are illustrated in Figure 14.20 .

• The GPTE can be valid, indicating that the global page is in at least one
process working set .

• The GPTE can indicate a demand zero page .
• The GPTE can indicate a page in some transition state. The corresponding

PFN STATE array element identifies the transition state .
• For a global page in a global section file, the GPTE contains a global section

table index .
• The GPTE can indicate a demand zero page in a global page-file section .
• The GPTE can indicate a global page-file section page that has been created

and is in use.

When a global page is faulted in, the bits shown in Figure 14.20 labeled
Global Bit and Global Write Bit are incorporated into the PFN TYPE array
element for the physical page and the entry corresponding to the page in the
working set lists of processes that have mapped to it.

Relations among Global Section Data Structures

Figure 14.21 shows the relations among the GSD, GSTE, and GPTEs for a
given section. There are several relations among these three structures:

• The central shaded structure is the GSTE (see Figure 14.9 for its layout)
within the GST. The first longword in the GSTE points to the GSD.

• The virtual page number field (which contains Jin Figure 14.21) contains
the GPTX of the first GPTE that maps this section .

• The GSD contains a GSTX that locates the GSTE.

Demand
zero

14. 7 Swapping Data Structures

Writable I I I Copy-on-reference

31 30 27 26 25 24 23 22 21 19 18 17 16 15 0
.....

0 (reserved) 1
.;
~ 1

1
.1

0 (reserved) ~
0 ~ 1

I
.1

0 (reserved) 1 ~ ~ 1

_l

1

.1. t
1 0

.1.1

1 0

l

(reserved)

Page
File

Index

Global Section Table Index

0

Page File Virtual Block Number

Global page-file section
demand zero page

Global page-file section
page materialized

TYP1 bit =1 L TYPO bit (low-order
(high-order bit
of PTE type)

bit of PTE type)

Global bit ~, Global write bit

Figure 14.20
Section Table Index Forms of GPTE

SPT/GPT GST

.L
GSD

VPNJ GSTX

VPNJ+1 GSTX GSTX

VPN J+K-1 GSTX

Figure 14.21
Relations among Global Section Data Structures

• The original form of each GPTE contains the same GSTX found in the
GSD. When any given GPTE is either valid or in transition, the GSTX is
stored in the corresponding PFN BAK array element. Note that a GPTE for
a global page-file section contains a page file backing store address.

The allocation and initialization of global section data structures are de­
scribed along with the $CRMPSC and Map Global Section ($MGBLSC) sys­
tem services in Chapter 15.

14.7 SWAPPING DATA STRUCTURES

The following three data structures are used primarily by the swapper but
also indirectly by the page fault handler:

• Balance slots
• PHD reference count array

393

Memory Management Overview and Data Structures

14.7.1

14.7.2

394

• Process index array

The SYSGEN parameter BALSETCNT specifies the number of elements
in each array.

Balance Slots

A balance slot is a piece of system virtual address space reserved for a PHD.
The number of balance slots, the SYSGEN parameter BALSETCNT, defines
the maximum number of concurrently resident processes.

When the system is initialized, an amount of system virtual address space
equal to the size of a PHD times BALSETCNT is allocated. The location
of the beginning of the balance slots is stored in global location SWP$GL_
BALBASE. The size of a PHD in pages is stored in global location SWP$GL_
BSLOTSZ. Figure 14.22 shows this area. Appendix F describes the calcula­
tions performed by SYSGEN to determine the size of the PHD.

Balance Slot Arrays

As shown in Figure 14.23, the system maintains two word arrays describing
each process with a PHD stored in a balance slot. Both of the word arrays
are indexed by the balance slot number occupied by the resident process.
The balance slot number is stored in the fixed portion of the PHD at offset
PHD$W _PHVINDEX. Entries in the first array contain the number of ref­
erences to each PHD. Entries in the second array contain an index into a
longword array that points to the PCB for each PHD.

The global location PHV$GL_REFCBAS contains the starting address of
the reference count array. Each of its elements counts the number of reasons
why the corresponding PHD cannot be removed from memory. Specifically,

PFN$AL_PTE::

PFNPTE
Database Array

1 1

Figure 14.22

PHO . . .

SWP$GL_BALBASE::

Balance Set
Slots

Balance Slot o

PHVINDEX~M
\, } SWP$GL BSLOTSZ \ Balance Slot 1 pages -

PO Page Table

POPTE

J ~-~·1
. .

i----------tI ,.··
Balance Slot

BALSETCNT -1
....._ __ P1_P_age_T_abl_e __ _.J/

Balance Slots Containing Process Headers

14. 7 Swapping Data Structures

PHV$GL_REFCBAS::

The contents of
PHD$W_PHVINDEX
are used as a

' word index into
each of these arrays.

PHV$GL_PIXBAS::

Reference Count Process Index

SCH $GL_PCBVEC::

l J_ J
~ PCBVector

BALSETCNT
entries in
each array

~

PCB of Process
Whose PHD
Is in Balance

SlotM

@SCH$GL_PCBVE
+ (4 x process index >c-C Pointer to PCB --1 f--I--'

f--MAXPROCESSCNT
entries

Figure 14.23
Process Header Vector Arrays

an array element counts the number of page table pages that contain either
valid or transition PTEs. A value of -1 in a reference count array element
means that the corresponding balance slot is not in use.

The global location PHV$GL_PIXBAS contains the starting address of the
process index array. Each of its elements contains an index into the longword
array, based at the global pointer SCH$GL_PCBVEC. An element in the
longword PCB vector contains the address of the PCB of the process with
that process index. Figure 14.23 illustrates how the address _of a PHD is
transformed into the address of the PCB for that process, using the entry in
the process index array.

A zero in the process index array entry means that the corresponding
balance slot is not in use. A -1 in a process index array entry means that
the process whose PHD used that balance slot has been deleted and its PHD
can be deleted to reclaim physical memory as well as the balance slot.

If the PHD address is known, the balance slot index can be calculated
las described in the next section). By using this as a word index into the

395

Memory Management Overview and Data Structures

14.7.3

process index array, the longword index into the PCB vector is found. The
array element in the PCB vector is the address of the PCB, whose PCB$L
PHD entry points back to the balance slot. Chapter 25 contains a more
detailed description of the PCB vector and its use by the Create Process
system service.

Comment on Equal-Size Balance Slots

The choice of equal-size balance slots, at first sight seemingly inefficient,
has some subtle benefits to portions of the memory management subsystem.
There are several instances, most notably within the modified page writer,
when it is necessary to obtain a PHD address from a physical page's PFN.
With fixed-size balance slots, this operation is straightforward.

As shown in Figure 14.22, a PFN PTE array element points to a PTE
somewhere in the balance slot area. Subtracting the contents of SWP$GL_
BALBASE from the PFN PTE array element contents and dividing the result
by the size of a balance slot (the size of a PHD) in bytes produces the balance
slot index. If this index is multiplied by the size of the PHD in bytes and
added to the contents of SWP$GL_BALBASE, the final result is the address
of the PHD containing the PTE that maps the physical page in question.

Furthermore, as described in the previous section, the balance slot index
can locate the process index and its PCB address.

14.8 DATA STRUCTURES THAT DESCRIBE THE PAGE AND SWAP FILES

Page and swap files are used by the memory management subsystem to save
physical page contents or process working sets. Page files are used to save
the contents of modified pages that are not in physical memory. Both the
swap and page files are used to save the working sets of processes that are
not in the balance set.

14.8.1

396

Page File Control Blocks

Each page and swap file in use is described by a data structure called a page
file control block (PFL). A page or swap file can be placed in use either
automaticaiiy during system initialization or manually through SYSGEN
commands. In either case, code in module [BOOTS]INITPGFIL allocates a
PFL from nonpaged pool and initializes it.

Initializing the PFL includes the following operations:

1. The file is opened and a special window control block (WCB) is built
to describe all the file's extents. The special WCB, called a cathedral
window, ensures that the memory management subsystem does not have
to take a window turn (see Chapter 21), which could lead to a system
deadlock.

2. The address of the WCB is stored in the PFL.

14.8 Data Structures That Describe the Page and Swap Files

MMG$GL_PAGS WPVC:: [

SWPFILCNT + {
entries

PAGFILCNT {
entries

PFLFlags

Bit Meaning
O Initialized

[
i

I
r
j_

1 Page space al

NullPFL
r--,

!
j
J_

~
j

location has failed
2 Swapspace allocation has failed

..+,
~

PFC

PFL

BITMAP,
STARTBYTE

l TYPE l SIZE

~OCJN

VBN

BITMAPSIZ

FREPAGCNT

MINFREPAGCNT

RSRVPAGCNT

REFCNT

SWPREFCNT

MAXVBN

PGFLX FLAGS I ALLOCSIZ I (reserved) J
ding BITMAPLOC

BITMAP IZ

bytes S {=~I ----0-ne_B_•t_pe_r_B_lock_of_Fi_lle ___ __, _ (bit set for available block)

3 (reserved)
4 Deinstall pen

5-7 (reserved)

Figure 14.24
Page and Swap File Database

3. A bitmap is allocated from nonpaged pool and initialized to all l's. Each
bit in the map represents one block of swap or page file. A set bit indicates
the availability of the corresponding block.

Figure 14.24 shows the layout of a PFL. PFL$L_BITMAP is the address
of the start of the bitmap that describes the state of the blocks in the file.
PFL$1-BITMAPSIZ is the length of the bitmap in bytes. PFL$L_STARTBYTE
is the address of the bitmap byte at which the next scan for free blocks should
begin.

PFL$W _SIZE and PFL$B_ TYPE are the standard dynamic data structure
fields.

PFL$B_PFC is the number of blocks to cluster together on a page read.
PFL$1-WINDOW is the address of the WCB that describes the mapping

extents of the file so that file-relative, or virtual, block numbers can be
converted to volume-relative, or logical, block numbers.

Generally, PFL$1-VBN contains the value O; in the case of a primary page
file in use as a crash dump file, it contains the value 1, to reserve the first
block of the page file for a dump header block. Chapter 32 discusses using
the primary page file as a dump file.

PFL$L_ VBN has an additional use for a page file larger than FFFFF16 blocks.
When installing such a file, SYSGEN divides it into segments of FFFFF16

blocks. It initializes a PFL for each segment, plus one for the last partial

397

Memory Management Overview and Data Structures

14.8.2

398

segment. PFL$L VBN indicates the starting virtual block number of each
segment. A block in a segment is represented by the combination of page
file index and a block number relative to the start of the segment. The block
number is thus small enough to fit into the page file virtual block number
portion of a page file backing store PTE. To calculate the actual backing store
address, the contents of the associated PFL$L VBN are added to the page file
virtual block number.

When installing a swap file larger than FFFFFF16 blocks, SYSGEN similarly
divides it into segments of FFFFFF16 blocks.

Note that the PFL contains a WCB field, virtual block number field, and
page fault cluster factor field at the same relative offsets as they are in a
section table entry. Because all fields are present and at the same offsets,
page file and section file 1/0 requests can be processed by common code,
independent of the data structure that describes the file being read or written.

PFL$LFREPAGCNT is the number of blocks, less 1, that can be allocated.
PFL$LMINFREPAGCNT is the "low-water mark" for the file and repre­

sents the smallest number of blocks free during the use of the file.
PFL$LRSRVPAGCNT is the number of blocks that can be reserved with­

out overcommitting the page file.
PFL$LREFCNT contains the number of processes using the file for paging

or swapping. PFL$LSWPREFCNT contains the number using it only for
swapping.

PFL$LMAXVBN is the mask applied to a PTE with a page file backing
store address. For a swap file, it contains the value FFFFFF16; for a page file,
the value FFFFF16·

PFL$B_PGFLX is the systemwide index number of the page-and-swap-file
vector entry that contains the address of the PFL.

PFL$B_ALLOCSIZ is the current allocation request size in the file, the
number of contiguous blocks the modified page writer or the swapper tries
to allocate. It is initialized to the value of the SYSGEN parameter MPW _
WRTCLUSTER and adjusted dynamically with available space in the file.

PFL$B_FLAGS contains bits describing the state of the file.
At offset PFL$LBITMAPLOC the bitmap begins. It has one bit for each

block in the file. A value of 0 means the block is in use; a value of 1 means
the block is free.

Chapter 16 describes the use of page files; and Chapter 18 the use of swap
files.

Page-and-Swap-File Vector

Pointers to the PFLs are stored in a nonpaged pool array called the page­
and-swap-file vector. The number of longword pointers in this array is the
maximum number of page and swap files that can be in use on the system
(the sum of SYSGEN parameters SWPFILCNT and PAGFILCNT) plus 1. A

14.8 Data Structures That Describe the Page and Swap Files

page or swap file is identified by an index number indicating the position of
its PFL address in this array. This is called a systemwide index to distinguish
it from a two-bit process-local page file index (see Section 14.3.3.2). The page­
and-swap-file vector can contain up to 128 pointers.

During system initialization, the routine EXE$1NIT in module INIT (see
Chapter 31), allocates and initializes the page-and-swap-file vector, which
is a standard dynamic data structure. It stores the address of the beginning
of the actual data in global location MMG$GLPAGSWPVC. Figure 14.24
shows the use of the page-and-swap-file vector data area to point to PFLs.

EXE$INIT initializes each pointer with the address of the null page file
control block, the contents of MMG$AR_NULLPFL. For the most part, this
address serves as a zero value, indicating that no page or swap file with this
index is in use. The null PFL, however, is also used to describe the shell
process.

The shell process, a module in the system image, is accessed as page file
index zero. It is the prototype for creating a new process. The information
in the null PFL may be used during process creation to read a copy of the
shell process into memory.

The SYSINIT process (see Chapter 31) places in use the primary page file,
SYS$SPECIFIC:[SYSEXE]PAGEFILE.SYS, if it exists. (Any page file installed
at a later stage of system initialization or operation is not considered a
primary page file, even if it is the first page file installed.) SYSINIT builds
a PFL and places its address in the page-and-swap-file vector. The primary
page file has a systemwide index value equal to 1 more than the SYSGEN
parameter SWPFILCNT.

SYSINIT also installs SYS$SPECIFIC:(SYSEXE]SWAPFILE.SYS, if it exists,
as the primary swap file. (A swap file installed at a later state is not a primary
swap file, even if it is the first one.) The first swap file that is installed has
index 1. If there is no swap file, index 1 points to the null PFL. If the value of
the SYSGEN parameter SWPFILCNT is zero, index 1 points to the primary
page file.

If there are no swap files, all swap operations are performed to page files.
Although the system can run this way, it is desirable that there be at least
one swap file. For example, after several large processes are outswapped into
a page file, the page file may be sufficiently full that modified page writer
clustering is hindered.

Any additional page and swap files are placed in use by SYSGEN in re­
sponse to the commands INSTALL/PAGEFILE and INSTALL/SWAPFILE. In­
stalling page files other than the primary one on different disks allows for
balancing the paging load. A system with alternative swap files can support
a greater number of processes or processes with larger worltjng sets.

With VMS Version 5.2, it is possible to deinstall page and swap files, that
is, to remove an inactive file from use. After a privileged user issues the
SYSGEN command DEINSTALL to initiate the removal of a page or swap

399

Memory Management Overview and Data Structures

file, no new allocations are made from it. However, the actual removal from
use is deferred until the file is inactive and PFL$1-REFCNT has gone to
zero.

14.9 SWAPPER AND MODIFIED PAGE WRITER PAGE TABLE ARRAYS

14.9.1

14.9.2

400

The VMS I/O subsystem enables an image to make a direct I/O request (di­
rect memory access transfer) to a virtually contiguous buffer. There is no
requirement that pages in a buffer be physically contiguous, only virtually
contiguous. This capability is called scatter-read/gather-write or, more sim­
ply, scatter/gather.

Direct 1/0 and Scatter/Gather

A combination of VAX hardware and VMS I/O subsystem software supports
1/0 to physically noncontiguous pages. The manner in which this is sup­
ported varies with processor type and I/O adapter type. For example, on a
VAX processor with a UNIBUS or MASSBUS adapter, the device driver maps
the memory buffer to I/O bus space. The result of this mapping is a set of
contiguous addresses in the 1/0 bus space. Certain I/O adapters, such as CI
adapters, read the relevant PTEs to determine the physical location of the
buffer pages. On some processors, such as a MicroVAX I, there is no adapter
hardware to support bus mapping. The device driver must transform the
request into multiple transfers to or from physically contiguous memory.

Regardless of the manner of the support, a direct 1/0 request results in
locking the buffer pages into memory. The I/O locking mechanism brings
each page into the working set of the requesting process, makes it valid, and
increments that page's reference count (in the PFN REFCNT array element)
to reflect the pending read or write. The buffer is generally described in the
1/0 request packet (IRPJ through three fields:

• IRP$L_SVAPTE contains the system virtual address of the first PTE that
maps the buffer .

• IRP$W _BOFF and IRP$L_BCNT are used to calculate how many PTEs are
required to map the buffer.

A driver processes this I/O request in a manner suitable to the processor
and I/O adapter. For example, it may allocate adapter mapping registers and
load them with the PFNs found in the PTEs or it may simply pass the system
virtual address of the first PTE to an I/O adapter.

Swapper 1/0

The swapper is presented with a more difficult problem. It must write a
collection of pages to disk that are not even virtually contiguous. It solves
this problem elegantly.

14.9.3

14.9 Swapper and Modified Page Writer Page Table Arrays

When the system is initialized, an array of WSMAX longwords is allocated
from nonpaged pool for use as the swapper's 1/0 table. The starting address
of this array is stored in global pointer SWP$GL_MAP. !The address is also
stored in the saved PO base register in the swapper's PHD so the pages
mapped by this array are effectively the swapper's PO space. This use is
discussed in Chapter 25.)

When the swapper scans the working set list of the process being out­
swapped, it copies the PFNs in every valid PTE to successive entries in its
1/0 table. The swapper places the address of the base of the table into the
field IRP$L_SVAPTE before the IRP is passed to the driver. !The swapper can
exercise this control because it builds a portion of its own IRP.) The 1/0 table
looks just like any other page table to the hardware/software combination
that implements scatter/gather 1/0.

What the swapper has succeeded in doing is making pages that were not
virtually contiguous into pages that are virtually contiguous in the PO space
of the swapper, the process that is actually performing the 1/0. At the same
time that each PTE is being processed, any special actions based on the
type of page are also taken care of. The whole operation of outswap and the
complementary steps taken when the process is swapped back into memory
are discussed in Chapter 18.

The swapper map supports only one use at a time. When an inswap or
outswap operation is in progress, the swap-in-progress flag jSCH$V _SIP), in
location SCH$GB_SIP, is set to indicate its use.

Modified Page Writer PTE Array

The modified page writer, in its attempt to write many pages to backing store
with a single write request (so-called modified page write clustering), is faced
with a problem similar to that of the swapper. The modified page writer must
build a table of PTEs just as the swapper does. Unlike the swapper, which
can perform only one swap operation at a time, with VMS Version 5 the
modified page writer can perform concurrent multiple modified page writes.
The SYSGEN parameter MPW _IOLIMIT specifies its maximum number of
concurrent 1/0 operations.

When the modified page writer is building an 1/0 request, it can encounter
three different types of page:

• Pages that are bound for a swap file (SWPVBN nonzero) are written indi­
vidually.

• Pages that are bound for a section file are not necessarily virtually con­
tiguous; these pages will be written as a group only if they are virtually
contiguous .

• Pages on the modified page list that are to be written to a particular page
file may not only be noncontiguous within one process address space but

401

Memory Management Overview and Data Structures

402

may also belong to several processes. It is these pages that the modified
page writer must cluster so they appear virtually contiguous.

During system initialization, the modified page writer's initialization rou­
tine, MPW$INIT in module WRTMFYPAG, allocates nonpaged pool to build
I/O maps. It allocates MPW _IOLIMIT number of structures and links them
into a lookaside list. Each structure is large enough for an IRP and two arrays,
each of MPW _ WRTCLUSTER elements. One is a longword array, and the
other a word array.

The longword array will be filled with PTEs containing PFNs in a manner
analogous to the way in which the swapper map is used. The word array
contains an index into the PHD vector for each page in the map. In this
way, each page that is put into the map and written to its backing store
location is related to the PHD containing the PTE that maps this page. The
operation of the modified page writer, including its clustered writes to a page
file, is discussed in detail in Chapter 16.

15 Memory Management System
Services

A place for everything and everything in its place.

Isabella Mary Beeton, The Book of Household Management

This chapter describes those system services that affect a process's virtual
address space and several others:

• Create Virtual Address Space ($CRETVA), by which a process creates de­
mand zero pages in PO or Pl space

• Expand Region ($EXPREG), by which a process creates demand zero pages
at the high end of PO space or the low end of Pl space

• Create and Map Section ($CRMPSC), by which a process creates a process­
private or global section that maps the blocks of a file to a portion of
process address space

• Map Global Section ($MGBLSC), by which a process maps to an existing
global section

• Delete Virtual Address Space ($DELTVA), by which a process deletes PO or
Pl pages

• Contract Region ($CNTREG), by which the upper end of PO space or the
lower end of Pl space is deleted

• Delete Global Section ($DGBLSC), by which a global section is marked for
deletion when no more processes are mapped to it

• Set Process Swap Mode ($SETSWM), by which process swapping can be
enabled or disabled

• Set Protection on Pages ($SETPRT), by which the protection on a page of
virtual address space can be changed

Chapter 17 describes the system services that control a process's working
set list. Chapter 16 describes the Update Section File on Disk ($UPDSEC)
system service, by which the contents of all modified pages in a section are
written to their backing store.

15.1 COMMON CHARACTERISTICS OF MEMORY MANAGEMENT SYSTEM
SERVICES

A process's ability to use the services described in this chapter may be
limited by access mode, process quotas, limits, privileges, and SYSGEN
parameters.

The page table entry (PTE) associated with each page of virtual address
space contains an owner field (see Figure 14. 7). The owner field specifies

403

Memory Management System Services

404

PGFLCNT

EFBLK

VFYFLAGS

SVSTARTVA

PAGESUBR

SAVRETADR

CALLE DI PL

MAXACMODE
FP

Figure 15.1
Layout of Stack Scratch Space

which access mode owns the page. The memory management system service
checks the owner field to determine whether the requestor of the service is
at least as privileged as the owner of the page and thus able to manipulate
the page in the desired fashion.

In general, a process is only permitted to affect per-process address space
with these services.

Almost all the memory management system services accept a desired
virtual address range as an input argument. Many of the services can partly
succeed, that is, affect only a portion of the specified address range. A system
service indicates partial success by returning an error status and the address
range for which the operation completed in the optional RETADR argument.

Many of the memory management system services have a common se­
quence. First, each creates scratch space on the stack to record information
about the service request. The macro $MMGDEF defines symbolic offsets
into this scratch space, which is pointed to by the frame pointer IFP) register
while the system service procedure is executing. Figure 15.1 shows its lay­
out. Some fields are used by only a few system services; others are common
to all.

MMG$L_MAXACMODE contains flag bits and the access mode associated
with the operation, the less privileged of the mode from which the service
was requested and the mode specified in the ACMODE argument. Bit MMG$V _
CHGPAGFIL in this longword, when set, means page file quota should be
charged for the operation. Bit MMG$V _NO_OVERMAP, when set, means
that address space to be created may not overlap existing address space.
Bit MMG$V _NOWAIT _IPLO, when set, means that a memory managemeQ.t
routine should return with an error status rather than waiting at interrupt
priority level !IPL) 0 for 1/0 completion. Bit MMG$V _DELGBLDON, when
set, means that global pages in the range have already been purged.

MMG$L_CALLEDIPL records the IPL from which the service was re­
quested, typically 0.

15.1 Common Characteristics of Memory Management System Services

MMG$L_SAVRETADR contains the value of the optional service RETADR

argument, the address of a two-longword array to receive the starting and
ending virtual addresses affected by the service.

MMG$1-PAGESUBR contains the address of the executive routine that
performs the requested service on a single page.

MMG$L_SVSTARTVA saves the starting virtual address specified by the
user.

MMG$L_ VFYFLAGS contains the section flags passed as an argument to
a service such as $CRMPSC and verified by the service.

MMG$L_EFBLK contains the number of the end-of-file block for a section
file.

MMG$L_PGFLCNT contains the amount of page file quota that has been
reserved against the job's quota for this request.

After creating and initializing the stack scratch space, such a memory
management system service takes the following steps:

1. It raises IPL to 2 to block the delivery of an asynchronous system trap
(AST). In addition to blocking process deletion, this prevents the execu­
tion of AST code that could cause unexpected changes to the page tables,
working set list, and other process data structures.

2. If appropriate, it checks page ownership to ensure that a less privileged
access mode is not attempting to alter the properties of pages owned by
a more privileged access mode.

3. It invokes the routine MMG$CREDEL, in module SYSCREDEL, passing
it the address of a per-page service-specific routine to accomplish the
desired action of the system service. MMG$CREDEL performs general
page processing and invokes the per-page routine for each page in the
desired range.

4. It returns the address range actually affected through MMG$CREDEL's
actions in the optional RETADR argument.

5. It restores the entry IPL and returns to its invoker.

In some cases, step 3 in that sequence is replaced by the single invocation
of a routine that affects all pages in the desired range.

MMG$CREDEL takes the following steps:

1. It tests the starting and ending addresses and, if either is in system space,
returns the error status SS$_NOPRIV.

2. It initializes MMG$1-PAGESUBR and MMG$L_SVSTARTVA in the
scratch space and stores in general registers information such as process
control block (PCB) address, process header (PHD) address, page count,
starting virtual address, and ending virtual address.

3. MMG$CREDEL invokes the per-page routine. Unless the routine returns
an error status, MMG$CREDEL continues to invoke it, once per page.

405

Memory Management System Services

4. When an error occurs or there are no more pages, MMG$CREDEL returns
to its invoker with a status code and the address of the last affected page
in registers.

15.2 PER-PROCESS VIRTUAL ADDRESS SPACE CREATION

406

Among the most basic memory management services are those that cre­
ate per-process virtual address space: $CRETVA, $EXPREG, $CRMPSC, and
$MGBLSC. The image activator requests these services during image activa­
tion, as described in Chapter 26. An image can request these services directly
to alter the process address space.

Each per-process address space is described by a page table, with a PTE
for each page of address space. As described in Chapter 14, both page tables
are part of the PHD. Each is described by two processor registers: a base
address register, PR$_PxBR, and a length register, PR$_PxLR, where x is 0
or I, depending on the per-process space.

Four longwords in the hardware PCB save the contents of the process's four
mapping registers when the process is not current. The PHD also contains .
two longwords PHD$LFREPx VA, each of which contains the address just
beyond the space mapped by the corresponding page table. Figure 14.6 shows
the process page tables and the registers and fields that describe them.

Creating address space typically requires expanding the appropriate page
table and modifying the length register and PHD fields that delimit it. It
always requires initializing PTEs. In the case of address space associated
with a process-private section file, it also involves allocating and initializing
a process section table entry.

There are several limits on the amount of per-process virtual address space
that can be created.

The SYSGEN parameter VIRTUALPAGECNT controls the total number
of page table entries (POPTEs plus PlPTEs) that any process can have. The
division of these pages between PO space and Pl space is arbitrary and
process-specific; VIRTUALPAGECNT limits only their sum.

The size of a process working set can also constrain the size of that
process's address space. When a process tries to expand its address space,
the executive checks whether there is enough room in the dynamic working
set list for the fluid working set (PHD$L_ WSFLUID, initialized from the
SYSGEN parameter MINWSCNT), plus the worst-case number of page table
pages required to map it, to allow the process to perform useful work. If this
check succeeds, the virtual address space creation can proceed. Otherwise,
if the process's working set list is smaller than its quota, the working set
list is expanded. If the working set list is full and cannot be expanded (see
Chapter 17), the virtual address creation fails with the error status SS$_
INSFWSL.

A third constraint on the total size of the process address space is the

15.3 Demand Zero Virtual Address Space Creation

page file quota. Each demand zero page and copy-on-reference section page
is charged against the job's page :file quota, JIB$LPGFLCNT.

A fourth constraint on address space with page file backing store is based
on the number of page files to which the process has been assigned. The
form of invalid PTE that describes a page in a page file has space for a two­
bit process-local page file index and a 20-bit virtual block number. Thus,
for each page file to which the process has been assigned, it can create a
theoretical maximum of 220 pages of pageable address space that requires
page file backing store (for example, demand zero or copy-on-reference sec­
tions). The current theoretical maximum is stored in PHD$L_PPGFLVA and
decremented by each page of such address space the process creates. Each
time a process is· assigned or deassigned to a page file, the cell is increased
or decreased by 220• The cell is decremented for each demand zero or copy­
on-reference page the process creates and incremented when each such page
is deleted.

15.3 DEMAND ZERO VIRTUAL ADDRESS SPACE CREATION

15.3.1

The simplest form of address space creation is the creation of a series of
demand zero pages through the $CRETVA and $EXPREG system services.

For the $EXPREG system service, the demand zero pages are created at the
end of the designated per-process address space. For. the $C;IlETVA system
service, the pages are created in the specified address range. If any pages
already exist in the requested range, they must be deleted first. On the other
hand, if the requested range begins beyond the end of the region, the space
between them must also be created.

These two system services can partly succeed. That is, a number of pages
smaller than the number originally requested may be created. After several
pages have already been successfully created, the service can run into one of
the limits to addfess space creation.

$CRETVA System Service

The $CRETVA system service procedure, EXE$CRETVA in module SYSCRE­
DEL, runs in kernel mode. It has an alternative entry point, MMG$CRETV A,
called from code already in kernel mode, such as image activator routines
and EXE$PROCSTRT in module PROCSTRT. The alternative entry point
has additional arguments that enable the caller to specify what the protec­
tion of the new address space is and whether the new space may overlap
existing space.

EXE$CRETV A takes the following steps:

1. It creates and initializes the stack scratch space.
2. It constructs:template PTE contents for the new pages.

The template PTE indicates a demand zero page, with owner access
mode the less privileged of the requesting access mode and the ACMODE

407

Memory Management System Services

408

argument. In the case of a normal system service request, the PTE has a
protection granting write access to the owner mode. In the case of entry
through MMG$CRETVA, the protection is specified by the caller.

3. It raises IPL to 2 to block AST delivery.
4. It tests the starting and ending addresses and, if either is a system space

address, returns the error status SS$_NOPRIV.
5. It checks whether the specified address range overlaps any existing space.

If there is overlap, EXE$CRETVA continues with step 8.
6. Typically, there is no overlap; the process is requesting the creation of

address space just beyond the end of what has already been defined. As an
optimization for this common case, EXE$CRETV A invokes MMG$TRY _
ALL, in module SYSCREDEL, to test further whether the entire space can
be created. MMG$TRY _ALL tests whether there are enough free PTEs,
enough room in the dynamic working set list, enough page file quota,
and enough PHD$LPPGFLVA capacity. If all tests pass, it adjusts PR$_
PxLR, its copy in the PHD, PHD$L_FREPTCNT, and PHD$L_FREPxVA;
charges against page file quota and PHD$L_PPGFLVA; and returns a
status indicating its findings.

If the entire address space cannot be created, EXE$CRETVA proceeds
with step 8.

7. If none of the limits to growth of the process's virtual address space has
been reached, EXE$CRETVA invokes MMG$FAST_CREATE, in module
SYSCREDEL.

MMG$FAST _CREATE determines in which region space is being cre­
ated and with which starting PTE. It loops, initializing four PTEs in each
iteration. Creating the address space in this manner is significantly faster
than creating it one page at a time.

EXE$CRETV A continues with step 9.
8. If any of the limits to virtual address space growth described in the pre­

vious section prevent creation of the entire space, EXE$CRETV A creates
it one page at a time, stopping when the limit is reached. Page-by­
page creation is also necessary if the specified address space overlaps
already existing space, since the existing pages must first be deleted. In
either of these cases, EXE$CRETVA invokes MMG$CREDEL, specifying
MMG$CREPAG, in module SYSCREDEL, as the per-page service-specific
routine.

9. EXE$CRETV A returns any unused page file quota, records peak page file
usage and virtual size statistics, and stores return information in the
optional RETADR argument.

10. It restores the IPL at entry and returns to its requestor.

MMG$CREPAG is the per-page service-specific routine for the $CRETVA
and $EXPREG system services. It is invoked with an argument specifying
the PTE contents for the new page. It takes the following steps:

15.3 Demand Zero Virtual Address Space Creation

1. It tests whether the page to be created is beyond the limit of its defined
address space and, if not, continues with step 3.

2. If the page is outside its address space, MMG$CREPAG tests whether
there are enough free PTEs and enough room in the dynamic working
set list to expand the region to add all the desired pages. If there is, it
adjusts PR$_PxLR, its copy in the PHD, PHD$L_FREPxVA, and PHD$L_
FREPTCNT.

MMG$CREPAG must deal with the possibility that the requested page
may not be adjacent to the current end of the region and that the inter­
vening pages also have to be created.

-If there are insufficient PTEs to allow expansion up to the requested
starting virtual address, MMG$CREPAG returns the error status SS$_
VASFULL to its invoker.

-If there are insufficient PTEs to allow the full expansion, but the region
can be expanded at least to the first requested page, the routine adjusts
the items previously listed to show expansion of as many pages as
there are PTEs left.

-If there is insufficient room in the dynamic working set list for expan­
sion up to the first requested page, the routine returns the error status
SS$_INSFWSL.

-If there is insufficient room in the dynamic working set list for the full
expansion but enough for at least the first requested page, the routine
adjusts the listed items to show expansion through the first requested
page.

-If both tests pass, it adjusts the listed items to include the total ex­
pansion. The tests and this step will not be repeated in subsequent
invocations of MMG$CREPAG.

3. It tests whether the page to be created already exists, If it does and the
service requestor specified no address overmap, MMG$CREPAG returns
the status SS$_ VA_IN_USE to its invoker, which returns it as the system
service status. (The image activator specifies the NO_OVERMAP flag
when it requests the $CRETVA system service.)

4. If the page already exists but overmap is allowed, MMG$CREPAG in­
vokes MMG$DELPAG, described in Section 15.5.2, to delete the virtual
page.

5. If page file quota does not need to be charged, MMG$CREPAG contin­
ues with step 6. Otherwise, it must charge the pages against MMG$L_
PGFLCNT and PHD$L_PPGFLVA.

If no more reserved quota is left, MMG$CREPAG tries to reserve more
quota from the process's job page file quota.

If PHD$L_PPGFLVA would be exceeded, MMG$CREPAG tries to as­
sign the process to another page file.

If either charge cannot be made, MMG$CREPAG adjusts PR$_PxVA,

409

Memory Management System Services

15.3.2

15.3.3

410

its copy in the PHD, PHD$L_FREPxVA, and PHD$L_FREPTCNT to
show expansion up to but not including the page that could not be cre­
ated for lack of page file quota or PHD$LPPGFLVA. MMG$CREPAG
returns the error status SS$_EXQUOTA.

6. It stores the requested value into the PTE.
7. It returns to its invoker.

$EXPREG System Service

The $EXPREG system service is very similar to the $CRETVA system ser­
vice. Its system service procedure, EXE$EXPREG in module SYSCREDEL,
runs in kernel mode. Depending on the region that is to be expanded,
EXE$EXPREG uses either PHD$L_FREPOVA or PHD$L_FREP1 VA as one end
of the address range. It adds its PAGCNT argument to that address to form the
other end of the address region.

It forms template PTE contents for the new page as EXE$CRETVA does.
As an optimization, EXE$EXPREG first checks whether the entire address

space can be created. If so, EXE$EXPREG creates it all at once rather than
page by page, invoking the routine MMG$FAST _CREATE. Otherwise, it
invokes the routine MMG$CREDEL, specifying MMG$CREPAG as the per­
page service-specific routine. Section 15.3.l describes these routines.

Automatic User Stack Expansion

A special form of Pl space expansion occurs when a request for user stack
space exceeds the remaining size of the user stack. Such a request can
be reported by the VAX processor as an access violation exception or by
software.

Several software routines detect the need to expand the user stack:

• The AST delivery interrupt service routine (see Chapter 7), when it is
unable to build the AST argument list on the user stack

• The Adjust Stack ($ADJSTK) system service
• The exception dispatching routine, EXE$EXCEPTION in module EXCEP­

TION, when it is unable to copy the signal and mechanism arrays onto
the user stack (see Chapter 5)

These routines invoke EXE$EXPANDSTK, in module EXCEPTION, to try
to expand the user stack. EXE$EXPANDSTK is also invoked by the access vi­
olation exception service routine, EXE$ACVIOLAT in module EXCEPTION,
for an access violation that occurred in user mode. EXE$EXPANDSTK checks
that a length violation rather than a protection violation occurred and that
the inaccessible address is in Pl space. If so, EXE$EXPANDSTK requests the
$CRETVA system service to expand Pl space from its current low-address
end to the specified inaccessible address. For the usual case, one in which
a program requires more user stack space than requested at link time, the
expansion typically occurs one page at a time.

15.4 Process-Private and Global Sections

Because this automatic expansion cannot be disabled on a process-specific
or systemwide basis, a runaway program that uses stack space without
returning it is not aborted immediately. Instead, the program runs until
it reaches one of the limits to growth of virtual address space previously
described.

Another side effect of automatic expansion occurs when a program makes
a possibly incorrect reference to an arbitrary Pl address lower than the top
of the user stack. Rather than exiting with some error status, the program
will probably continue to execute (after the creation of many demand zero
pages).

If the stack expansion fails for any reason, the process is notified in a way
that depends on the invoker of EXE$EXPANDSTK:

• The $ADJSTK system service can fail with several of the error codes re­
turned by $CRETVA.

• An attempt to deliver an AST to a process with insufficient user stack
space results in an AST delivery stack fault condition being reported to
the process .

• If the user stack cannot be expanded in response to a Pl space length
violation, then an access violation fault is reported to the process .

• If there is not enough user stack to report an exception, EXE$EXCEPTION
first tries to reset the user stack pointer to the high-address end of the stack.
If that fails, EXE$EXCEPTION requests the $CRETVA system service in
an attempt to recreate the address space. If that fails, EXE$EXCEPTION
bypasses the normal condition handler search and reports the exception
directly to the last chance handler. Typically, this handler aborts the cur­
rently executing image. Chapter 5 contains more details.

15.4 PROCESS-PRIVATE AND GLOBAL SECTIONS

The $CRMPSC system service is an alternative method of creating address
space, one that enables a process to associate a portion of its address space
with a specified portion of a file. The section may be specific to a process
(called a process-private section or sometimes simply a process section) or it
may be a global section, shared among several processes.

The $CRMPSC system service also provides special options. For example,
a process with PFNMAP privilege can map virtual address sp~ce to specific
physical addresses. Typically, a process uses this capability to access a phys­
ical page in 1/0 space in order to communicate with a particular 1/0 device.

The $CRMPSC service also enables the creation of global page-file sec­
tions, demand zero global sections whose pages are backed by a page file.

The $MGBLSC system service is another way to create address space, one
that enables a process to map a portion of its address space to an already
existing global section.

411

Memory Management System Services

15.4.1

15.4.1.1

412

The image activator (see Chapter 26) requests these two services to map
portions of process address space to sections in image files and to previously
installed global sections.

$CRMPSC System Service

The $CRMPSC system service creates a process-private or global section
and maps it into process address space. The particular actions it takes are
determined by the options or flags with which the service is requested.
The VMS System Services Reference Manual describes the system service
arguments and shows which flags can be used together.

Process-Private Section Creation. The $CRMPSC system service procedure,
EXE$CRMPSC in module SYSCRMPSC, runs in kernel mode. When re­
quested to map a process-private section, it takes the following steps:

. 1. It creates and initializes the stack scratch space.
2. It invokes MMG$VFYSECFLG, in module SYSDGBLSC, to test the com­

patibility of the FLAGS arguments with each other and with the process's
privileges, and then confirms that the CHAN argument was supplied. (The
requestor must have already opened the section file on the specified chan­
nel.) If the flags are incompatible or the argument is absent, it returns
the error status SS$_IVSECFLG to its requestor.

3. It confirms that the specified channel has been assigned; that its associ­
ated device is directory-structured, files-oriented, and random access; and
that a file is open on the channel. In case of error, it returns a suitable
error status to its requestor.

4. It checks whether the associated window control block (WCB) maps the
entire file. (When the image activator opens a file, it does so specifying
that all extents of the file should be mapped. However, an image may
open a file itself and then request the $CRMPSC system service; in that
case, the WCB might not contain a complete description of the file.)

The memory management subsystem cannot take a window turn (see
Chapter 21) on pages within a section. It therefore requires that the
WCB describe all the extents of the mapped file. If the WCB does not,
EXE$CRMPSC queues an I/O request to remap the file with a cathedral
WCB, one that does describe all the file extents.

Because the WCB occupies nonpaged pool, its extension is charged
against the job's buffered I/O byte count quota (JIB$1-BYTCNT). Because
the quota charge persists until the section is deleted, this charge is also
made against the job's JIB$L_BYTLM, which limits the maximum charge
against JIB$1-BYTCNT. When a job has insufficient JIB$L_BYTCNT for
a request, VMS checks that the request is not larger than JIB$L_BYTLM

15.4 Process-Private and Global Sections

before placing the process in resource wait. Charging the WCB exten­
sion against JIB$L_BYTLM prevents placing the process into what might
otherwise be a never-ending resource wait.

5. If the section to be mapped is a copy-on-reference section, EXE$CRMPSC
sets bit MMG$V _CHGPAGFIL in MMG$L_MAXACMODE as a signal
that the section must be charged against the job's page file quota and
PHD$L_PPGFLVA.

6. It raises IPL to 2 to block AST delivery.
7. It invokes MMG$DALCSTXSCN, in module PHDUTL, to check the

process section table for any sections to be deallocated. A section table
entry cannot always be deallocated synchronously on request. For exam­
ple, if direct I/O is in progress to pages in the section, those pages cannot
be deleted and hence the section cannot be. After the I/O completes, the
next invocation of MMG$DALCSTXSCN results in deallocation of the
section table entry. Section 15.4.3 describes this routine.

8. Unless the section is copy-on-reference and demand zero, EXE$CRMPSC
allocates a process section table entry (PSTE, pictured in Figure 14.9) and
initializes it. A demand zero section does not need a PSTE; its page faults
require no I/O from a section file.

When the process section is being created as a part of image activation,
as described in Chapter 26, the original source for much of the data stored
in the PSTE is an image section descriptor contained in the image file.

a. EXE$CRMPSC copies the section flags to SEC$W _FLAGS.
b. It stores in SEC$L_ WINDOW the address of the WCB from the chan­

nel control block (CCB) or from the PSTE to which the CCB points.
Recall that if multiple sections are mapped from the same file, there
is one PSTE for each section but only one CCB and one WCB.

c. It checks that the file has been opened in a manner consistent with
the section flags: if the section is writable but not copy-on-reference,
the file must have been opened for write access. If the file was opened
for write access, then EXE$CRMPSC sets the writable flag in SEC$W _
FLAGS.

d. It copies the VBN argument to SEC$L_ VBN. If the VBN argument is 0,
its default, EXE$CRMPSC replaces it with 1.

e. It copies the PAGCNT argument, if present, to SEC$L_PAGCNT, af­
ter checking that the file contains at least that many blocks be­
tween SEC$L_ VBN and its end of file. If the argument is absent,
EXE$CRMPSC initializes the page count to the difference between
the end-of-file block and SEC$L_ VBN.

f. If this is the first section mapped on this file, EXE$CRMPSC stores
the section index in CCB$L_ WIND and in the PSTE forward and
backward links. If this is not the first section, EXE$CRMPSC inserts
the PSTE into the chain of other PSTEs paging on that channel.

413

Memory Management System Services

414

g. It initializes SEC$1-REFCNT to 1 and sets the section table entry
flag SEC$V _INPROG to ensure that the section is not inadvertently
deleted before its PTEs are initialized. If the system service cannot
complete, it may place the process into a wait state at IPL 0. If the
process were deleted at that point, the Delete Process ($DELPRC)
system service would be able to detect such a section by the set
SEC$V _INPROG flag and decrement the biased reference count.

h. It initializes the section page fault cluster, SEC$B_PFC, as the mini­
mum of the PFC argument and 127.

9. EXE$CRMPSC forms a template PTE for the section's pages (see Fig­
ure 14. 7). The PTE has both type bits set; the section table index in the
low 16 bits (or zero for a copy-on-reference demand zero section); and the
WRT, CRF, and DZRO bits copied from the section flags. EXE$CRMPSC
calculates the protection code based on MMG$LMAXACMODE, the
writable flag in SEC$W _FLAGS, and the input section flags specifying
the mode allowed to write the section pages.

10. If the expand-region flag was specified in the FLAGS system service argu­
ment, EXE$CRMPSC calculates the starting and ending section address
based on the page count and the contents of PHD$1-FREPxVA. The IN­

ADR argument identifies in which per-process region the section is to be
created.

If the flag is absent, the starting and ending addresses are determined·
by the INADR argument.

11. EXE$CRMPSC determines whether the new address space overmaps ex­
isting space.

-If the space does not already exist and can all be created, EXE$CRMPSC
invokes MMG$FAST _CREATE, in module SYSCREDEL, to initialize
the section's PTEs. It then increases the section's reference count by
the number of pages just mapped.

-If the space to be created overmaps existing space or cannot all be
created, EXE$CRMPSC invokes MMG$CREDEL, described in Sec­
tion 15.1, specifying MMG$MAPSECPAG as the per-page routine.

12. EXE$CRMPSC calculates the starting virtual page number of the section
and stores it in the low bytes of SEC$L_ VPXPFC.

13. It decrements SEC$L_REFCNT to remove the extra reference, unneces­
sary now that the reference count reflects the mapped PTEs, and clears
the SEC$V _INPROG flag.

14. EXE$CRMPSC returns any unused page file .quota, records peak page
fl.le use and virtual size statistics, and stores return information in the
optional RETADR argument.

15. It restores the IPL at entry and returns to its requestor.

MMG$MAPSECPAG, in module SYSCRMPSC, is the per-page service-

15.4.1.2

15.4 Process-Private and Global Sections

specific routine for $CRMPSC. It is invoked with a number of arguments,
including the PTE contents for the new page, number of pages in the section,
number of pages to be mapped, and address of the section table entry.

For a process section, it takes the following steps:

1. Within initialization code, executed only once, MMG$MAPSECPAG
sets the NO_OVERMAP flag in MMG$LMAXACMODE if it is set in
MMG$L VFYFLAGS. It minimizes the requested number of pages to be
mapped with the number of pages in the section. It replaces its own ad­
dress in MMG$L_PAGESUBR so as to bypass the initialization code the
next time it is entered.

2. MMG$MAPSECPAG invokes MMG$CREPAG, described in Sec­
tion 15.3.1, which stores the template PTE contents into the next PTE
and charges against job page file quota and PHD$L_PPGFLVA.

3. MMG$MAPSECPAG increments the reference count in the section table
entry to reflect that one more PTE maps a page in that section.

4. It returns to its invoker, MMG$CREDEL, which continues to invoke it
until there are no more pages to be mapped or until one of the limits to
growth is reached.

PFN-Mapped Process Section. The $CRMPSC system service enables a pro­
cess with PFNMAP privilege to map a portion of its virtual address space to
a specific range of physical addresses. Although the primary purpose of this
feature is to map process address space to I/O addresses, it is also used to
map specific physical memory pages. When such a section is larger than one
page, it maps physically contiguous pages.

When a process section mapped by a page frame number (PFN) is created,
the effect is to add a series of valid PTEs to the process page table. The
PFN fields in these PTEs contain the requested physical page numbers. The
window bit is set in each PTE to indicate that the virtual page is PFN­
mapped. These pages do not count against the process working set. They
cannot be paged, swapped, or locked in the process working set. Moreover, no
record is maintained in the PFN database that such pages are PFN-mapped.

Requested to create a PFN-mapped section, EXE$CRMPSC takes the fol-
lowing steps: .

1. It invokes MMG$VFYSECFLG to test the compatibility of the section
flags.

2. It raises IPL to 2 to block AST delivery.
3. It confirms that the process has PFNMAP privilege, returning the error

status SS$_NOPRIV if not.
4. It invokes MMG$DALCSTXSCN, described in Section 15.4.3, to deallo­

cate ariy process section whose reference count has gone to zero.

415

Memory Management System Services

15.4.1.3

416

5. EXE$CRMPSC forms a template PTE for pages in the section. The PTE
has the valid and window bits set. EXE$CRMPSC calculates its pro­
tection code based on MMG$L_MAXACMODE, the writable flag in
SEC$W _FLAGS, and the flags in the FLAGS argument specifying the mode
allowed to write the section pages. The PFN in the first PTE is specified
by the VBN argument (named for its more typical use).

6. If the expand-region flag was specified in the FLAGS system service ar­
gument, EXE$CRMPSC calculates the starting and ending section ad­
dress based on the page count and contents of PHD$LFREPxVA. The
INADR argument identifies in which per-process region the section is to be
created.

If the flag is absent, the starting and ending addresses are determined
by the INADR argument.

7. EXE$CRMPSC invokes MMG$CREDEL, described in Section 15.1, spec-.
ifying MMG$MAPSECPAG as the per-page routine.

8. EXE$CRMPSC records peak virtual size statistics and stores return in­
formation in the optional RETADR argument.

9. It restores the IPL at entry and returns to its requestor.

Invoked to create a PFN-mapped section page, MMG$MAPSECPAG takes
the following steps:

1. Within initialization code, executed only once, MMG$MAPSECPAG
sets the NO_OVERMAP flag in MMG$L_MAXACMODE if it is set in
MMG$L_ VFYFLAGS. It minimizes the number of pages requested in the
PAGCNT argument with the number of pages in the address range spec­
ified by the INADR argument. It replaces its own address in MMG$L_
PAGESUBR so as to bypass the initialization code the next time it is
entered.

2. MMG$MAPSECPAG invokes MMG$CREPAG, described in Sec­
tion 15.3.1. MMG$CREPAG stores the template PTE contents into the
next PTE. For a window page (or a page in shared MA780 multiport mem­
ory), MMG$CREPAG acquires the MMG spinlock, locks the page table
page that maps the newly created page into the process's working set list,
and releases the spinlock.

3. MMG$MAPSECPAG calculates the contents of the next PTE by adding
1 to the PFN in the current PTE.

4. It returns to its invoker, MMG$CREDEL, which continues to invoke it
until there are no more pages to be mapped or until one of the limits to
growth is reached.

Global Section Creation. The $CRMPSC system service enables a process
to create a global section or, if the section already exists, to map to it. The
Install Utility requests the $CRMPSC system service to create one or more
global sections when an image is installed with the /SHARE qualifier.

15.4 Process-Private and Global Sections

The global section to be created can be a group global section to be shared
by processes in the same user identification code (UIC) group, or a sys­
temwide global section. Creation of the latter requires the SYSGBL privilege.
The global section can be a temporary one that is deleted as soon as no
process is mapped to it or a permanent one that must be explicitly deleted
through the $DGBLSC system service. Creation of the latter requires the
PRMGBL privilege.

The creation of a global section in local memory is similar to the creation
of a process section except that additional data structures are involved.
Chapter 14 shows the layouts of these data structures and describes them
and their interrelations in more detail.

• A global section descriptor (GSD; see Figure 14.17), which enables subse­
quent $MGBLSC system service requests to determine whether the named
section exists and to locate its global section table entry (GSTE).

• A GSTE (see Figure 14.9), analogous to the PSTE but part of the system
header rather than of a PHD.

• Global page table entries (GPTEs), each of which describes the state of
one global page in the section. GPTEs are not used by VAX memory
management microcode but by the page fault handler when a process incurs
a page fault for a global page.

When a process maps to a global section, its PTEs that describe the speci­
fied address range are initialized with global page table indexes (GPTXs; see
Figure 14.21).

Like a process-private section, a global section can consist of specific
pages of memory or I/O address space. Creation of a global PFN-mapped
section requires the PFNMAP privilege. The only data structure necessary
to describe a global PFN-mapped section is a special form of GSD (see
Figure 14.17). There are no GPTEs nor is there a GSTE. When a process
maps to such a section, its PTEs are initialized with the valid and window
bits set and PFNs based on GSD$1-BASEPFN.

Another type of global section is a demand zero section whose pages are
backed in a page file. This type of section is called a global page-file section.
Record Management Services (RMS) uses this type of section to implement
global buffers on a file. The SYSGEN parameter GBLPAGFIL specifies the
maximum number of page file blocks that can be put to this use.

Another type of global section is a resident section, all of whose virtual
pages are in physical memory. This type of section can only be created dur­
ing system initialization, before the initiation of normal system operations.
Its only current use is to create resident global sections from the read-only
sections of the file system image, Fl lBXQP.EXE, when the SYSGEN param­
eter ACP _XQP _RES is 1. Creation of a resident section is reserved to Digital;
any other use is unsupported.

417

Memory Management System Services

418

Requested to create or map a global section, EXE$CRMPSC takes the
following steps:

1. As described in Section 15.4.1.1, it initializes stack scratch space and
tests the compatibility of the FLAGS arguments. It examines the specified
flags to determine what type of global section is to be created and what
further checks are required.

-If a PFN-mapped section or global page-file section is to be created, the
CHAN argument should not be present.

-If a disk-file section is to be created, the CHAN argument must be
present, the file must have been opened, and the WCB must map the
entire file. If the section already exists, the CHAN argument need not
be present.

-If the section is to be copy-on-reference, EXE$CRMPSC sets MMG$V_
CHGPAGFIL in MMG$L_MAXACMODE.

2. It locks the GSD mutex for write access, raising IPL to 2 as a side effect.
The GSD mutex synchronizes access to both the systemwide and group
GSD lists.

3. It invokes MMG$GSDSCN, in module SYSDGBLSC, to find the GSD, if
any, that corresponds to the GSDNAM argument.

MMG$GSDSCN scans the group or systemwide GSD list, depending
on which kind of section was requested, examining each GSD to see
if it is the requested one. If scanning the group list, it first compares
the process's UIC group code with the high word of GSD$1-PCBUIC.
It then compares the global section names. Because a character string
comparison is relatively lengthy, the routine first confirms that one is
necessary by requiring that the hash values and the character string
lengths be the same for the target section name and the one in the
candidate GSD. If they are not the same, the global section names cannot
be.

If the names match, MMG$GSDSCN checks the match control in­
formation specified in the IDENT argument against the GSD$1-IDENT. If
there is a version incompatibility, MMG$GSDSCN continues to scan the
list until it reaches the end or finds a match. Multiple versions of a global
section with different version identifications and match control informa­
tion can be installed. If a newer one were installed last and had match
control specifying upward compatibility (match less or equal), it could be
used with executables linked against it or earlier versions. If it had match
control specifying no upward compatibility (match equal), an executable
linked against an earlier version would not match; EXE$CRMPSC would
continue to scan the list and find the earlier one.

4. If MMG$GSDSCN locates a matching GSD, EXE$CRMPSC is being
requested to map to an existing section. It transfers control to EXE$M­
GBLSC, at step 6 in the description in Section 15.4.2.

15.4 Process-Private and Global Sections

5. If no match is found, EXE$CRMPSC is being requested to create a new
section. It first checks whether the process has the required privileges
for the requested section type. If not, EXE$CRMPSC unlocks the GSD
mutex and returns the error status SS$_NOPRIV.

6. It allocates paged pool for a GSD. If pool is unavailable, it unlocks the
GSD mutex and returns the error status SS$_GSDFULL.

7. It begins to initialize the GSD, copying the section name to GSD$T_
GSDNAM, storing the hash value in GSD$B_HASH, and clearing
GSD$1-IPID.

8. If the section is PFN-mapped, EXE$CRMPSC clears GSD fields irrele­
vant to this type of section and copies the VBN argument to GSD$L_
BASEPFN, the section name to GSD$T _PFNGSDNAM, and the page
count to GSD$L_PAGES.

9. If the section is to map a disk file, EXE$CRMPSC stores the address of
the object rights block !ORB) associated with the open file in GSD$1-
0RB.

If the section is a PFN-mapped or global page-file section, EXE$CRMP­
SC allocates an ORB from paged pool and initializes it, copying PCB$L_
UIC to ORB$L_OWNER and the PROT argument to ORB$W _PROT. If
pool for the ORB is unavailable, it unlocks the GSD mutex and returns
the error status SS$_GSDFULL.

10. EXE$CRMPSC copies PCB$L_UIC to GSD$1-PCBUIC and initializes
GSD$W _FLAGS from the section flags and access mode. It initializes
GSD$L_IDENT from the IDENT argument.

11. If the section is PFN-mapped, EXE$CRMPSC continues with step 22.
12. Otherwise, it allocates a GSTE from the system header. If none is avail­

able, it deallocates the ORB and GSD, unlocks the mutex, and returns
the error status SS$_SECTBLFUL.

13. EXE$CRMPSC takes most of the same steps to initialize a GSTE as
it does a PSTE for a process section (see steps Sa through Sh in Sec­
tion 15.4.1.1). One additional step required for a global section is making
the WCB a "shared" one if it is not already. This chiefly involves return­
ing the byte count quota charged for it to the appropriate job, setting the
bit WCB$V _SHRWCB in WCB$B_ACCESS, and incrementing WCB$W _
REFCNT to indicate one more reason the file should not be closed.

14. It stores the GSTE index in GSD$W_GSTX and the PROT argument in
GSD$W_PROT.

15. If the section is a disk-file section rather than a global page-file section,
EXE$CRMPSC copies the file owner to GSD$1-FILUIC.

16. If the section is a global page-file section, EXE$CRMPSC subtracts its
page count from MMG$G1-GBLPAGFIL, the number of bloc~s of page
file that can be used for this purpose, which is initialized from the
8YSGEN parameter GBLPAGFIL. It must also charge the section's pages
against PHD$L_PPGFLVA in the system header.

419

Memory Management System Services

420

If mapping this section would exceed the allowed global page file count
or if it would exceed PHD$1-PPGFLVA and another page file cannot be
assigned, EXE$CRMPSC deallocates the GSD, ORB, and GSTE, unlocks
the mutex, and returns the error status SS$_EXGBLPAGFIL.

17. It allocates a set of contiguous GPTEs, one for each global page plus two
additional GPTEs, one at the beginning of the set and one at the end.
The two additional GPTEs are cleared and serve as "stoppers," limits to
modified page write clustering (see Chapter 16 and Figure 14.18).

If there are insufficient GPTEs, EXE$CRMPSC deallocates the data
structures it built, restores the page file charges, unlocks the mutex, and
returns the error status SS$_GPTFULL.

18. It calculates the virtual page number of the second GPTE (skipping the
stopper GPTE) and stores that in SEC$L_ VPXPFC.

19. It forms template PTE contents for the GPTEs. Figure 14.20 shows the
layout of the section table index forms of GPTE.

20. EXE$CRMPSC then loops, initializing GPTEs. Its loop includes the fol­
lowing steps:

a. It faults the page of global page table that contains the GPTE, if it is
not valid.

b. It acquires the MMG spinlock, raising IPL to IPL$_MMG.
c. It confirms that the page table page is still valid. If not, it releases

the MMG spinlock and returns to step a.
d. It increments the PFN SHRCNT array element corresponding to the

physical page in which the global page table page resides.
e. If the SHRCNT makes the transition from 0 to 1 (this is the first

sharer), EXE$CRMPSC locks it into the system working set list; in­
crements the system header field PHD$W _PTCNTACT, the number
of active page table pages; and increments the reference count for the
system header.

f. If this is a resident section, it allocates a physical page from the
free list and stores its PFN into the CPTE along with the valid bit.
EXE$CRMPSC intializes the PFN database to describe the page as
active and global, with a reference count of 1, and a section backing
store.

g. It releases the MMG spinlock, restoring an IPL of 2.

21. If this is a resident section, EXE$CRMPSC reads it into the allocated
physical memory, using the swapper's interface to the Queue 1/0 Request
($QIO) system service.

22. It inserts the GSD at the front of the group or systemwide list.
23. The global section has been created. EXE$CRMPSC transfers control to

EXE$MGBLSC to map it into the process's virtual address space as an
existing section. It transfers control to EXE$MGBLSC at step 10 in the
description in Section 15.4.2.

15.4.2

15.4 Process-Private and Global Sections

$MGBLSC System Service

The $MGBLSC system service can be considered a special case of the
$CRMPSC system service, where the global section already exists. This ser­
vice maps a range of process addresses to the named global section. It usually
has no effect on the global database other than to include the latest mapping
in various reference counts.

When a process maps to a global section backed by a file rather than a
PFN-mapped section, each of its process PTEs in the designated range is
initialized with a GPTX (see Figures 14. 7 and 14.19). A GPTX is a pointer to
the GPTE that records the current state of the global page.

The $MGBLSC system service procedure, EXE$MGBLSC in module SYS­
CRMPSC, runs in kernel mode. It takes the following steps:

1. It invokes MMG$VFYSECFLG, in module SYSDGBLSC, to test the com­
patibility of the section flags with each other. If the flags are incompati­
ble, it returns the error status SS$_IVSECFLG to its requestor.

2. It initializes stack scratch space.
3. It locks the GSD mutex for write access to synchronize access to the

GSD lists, raising IPL to 2.
4. It invokes MMG$DALCSTXSCN1, in module PHDUTL, described in

Section 15.4.3, to check the global (system) section table for any sections
to be deleted.

5. It invokes MMG$GSDSCN to scan the GSD list for the specified global
section. Section 15.4.1.3 describes MMG$GSDSCN's actions.

6. If the global section is mapped to a file, EXE$MGBLSC calculates the
address of its GSTE from GSD$W_GSTX and the contents of PHD$L_
PSTBASOFF in the system header.

7. If the section is copy-on-reference, it sets MMG$V _CHGPAGFIL in
MMG$L_MAXACMODE so that the section pages will be charged
against the page file quota and PHD$LPPGFLVA.

8. It compares the section access mode with the mode bits in MMG$L_
MAXACMODE to determine if the system service requestor is allowed
to map the section. If not, EXE$MGBLSC unlocks the GSD mutex and
returns the error status SS$_NOPRIV to its requestor.

9. If the section is not PFN-mapped, it increments SEC$L_REFCNT so that
the section cannot inadvertently be deleted before its pages are mapped
into the process's address space.

If the section is PFN-mapped, EXE$MGBLSC increments GSD$L_
REFCNT to prevent section deletion. (Recall that a PFN-mapped global
section has no associated GSTE.)

10. With the section locked against deletion, EXE$MGBLSC can safely un­
lock the GSD mutex.

11. If the expand-region flag was specified in the FLAGS system service argu­
ment, EXE$MGBLSC calculates the starting and ending section addresses

421

Memory Management System Services

422

based on the section page count (GSD$L_PAGES for a PFN-mapped sec­
tion or SEC$LPAGES for all others) and contents of PHD$L_FREPxVA.
The INADR argument identifies in which per-process region the section is
to be created.

12. EXE$MGBLSC forms a template PTE for pages in the section. If the
section is PFN-mapped, the PTE has the valid and window bits set, and
the PFN in the first PTE is specified by GSD$L_BASEPFN. If the section
is backed by a section file, the PTE has the type 0 bit set and the type 1
bit clear to indicate a global page, and the first PTE has the GPTX from
SEC$L_ VPXPFC.

EXE$MGBLSC calculates a PTE protection code based on MMG$L_
MAXACMODE, the writable flag in SEC$W _FLAGS, and the input sec­
tion flags specifying the mode allowed to write the section pages.

13. It then tests whether the process has the necessary access (read, write, or
execute) to the section based on the process's access rights list and the
ORB associated with the section.

If the process does not have the desired access, EXE$MGBLSC decre­
ments the appropriate reference count, based on the section type; invokes
security auditing code, which may record the unsuccessful access; and
returns an error status to its requestor.

If the process is allowed access, EXE$MGBLSC also invokes security
auditing code, which checks whether a successful access should be au­
dited and, if so, builds a message to be logged before the service exits.

14. EXE$MGBLSC determines whether the address space into which the
section will be mapped overmaps existing space.

-If the space does not exist, the number of pages in the section is equal
to the number of pages to be mapped, and all pages can be created,
EXE$MGBLSC increases the section's reference count by the number
of pages to be mapped. It initializes all the process's PTEs. In the
case of a resident global section, it copies the PFNs from the GPTEs
into process PTEs; for a nonresident section, it inserts GPTXs into the
process PTEs.

When mapping a resident global section, it must also lock each
process page table page that maps the section into the process working
set list.

-If the space to be created overmaps existing space or if it cannot
all be created, then EXE$MGBLSC invokes the routine MMG$CRE­
DEL (see Section 15.lJ, specifying that MMG$MAPSECPAG (see Sec­
tion 15.4.1.lJ is to be the per-page routine.

15. EXE$MGBLSC returns any unused page file quota, records peak page
file use and virtual size statistics, and stores return information in the
optional RETADR argument.

15.4.3

15.4 Process-Private and Global Sections

16. It decrements the section reference count to remove the extra reference,
unnecessary now that the reference count reflects the mapped PTEs.

17. It invokes MMG$DELGBLWCB to close open files associated with tem­
porary global sections whose reference counts have gone to zero and to
delete the WCB. Section 15.4.3 describes this routine in more detail.

18. It invokes a security audit routine, which may log successful access to
the section.

19. It restores the IPL at entry and returns to its requestor.

$DGBLSC System Service

The operation of the $DGBLSC system service is more complex than that
of global section creation because the section must be reduced from one
of many states to nonexistence .. In addition, global writable pages must be
written to their backing store before a global section can be fully deleted.
To avoid stalling the process requesting the service until all associated 1/0
completes, the final steps in the deletion of a global section are often deferred
to a time after the system service request and return.

The actual section deletion cannot occur until the reference count in
the GSTE, the count of process PTEs mapped to the section, goes to zero.
Although the reference count can be zero when the $DGBLSC service is
requested, more commonly global section deletion occurs as a side effect of
virtual address deletion, which itself might occur as a result of image exit
or process deletion.

The $DGBLSC system service procedure, EXE$DGBLSC in module SYS­
DGBLSC, runs in kernel mode. It takes the following steps:

1. It confirms that the process has PRMGBL privilege and, if the section to
be deleted is a system global section, SYSGBL privilege. If the process
lacks a necessary privilege, EXE$DGBLSC returns the error status SS$_
NOPRN.

2. It invokes MMG$VFYSECFLG to test the compatibility of the specified
section flags.

3. It locks the GSD mutex for write access, raising IPL to 2.
4. It invokes MMG$GSDSCN, described in Section 15.4.1.3, to locate the

GSD for the specified global section. If the section does not exist, it
unlocks the mutex and returns the error status SS$_NOSUCHSEC to its
requestor.

5. If the global section is a PFN-mapped section, EXE$DGBLSC confirms
that the process has PFNMAP privilege, unlocking the mutex and re­
turning the error status SS$_NOPRN if not. A PFN-mapped section is
described solely by a GSD; there are no GSTE, no GPTEs, and no section
reference count. The section can be deleted immediately. EXE$DGBLSC
deallocates the ORB and GSD to paged pool. It continues with step 7.

423

Memory Management System Services

424

6. If the global section is mapped to a file, EXE$DGBLSC removes the GSD
from its current list and inserts it on the delete pending list, at global lo­
cation EXE$GL_GSDDELFL. It clears the global section's permanent flag,
SEC$V _PERM in GSD$W _FLAGS and, if there is an associated GSTE,
in SEC$W _FLAGS as well. This step changes the section to a temporary
global section that can be deleted when its reference count becomes zero.

If the reference count in the GSTE is zero, the section can be deleted
now; EXE$DGBLSC sets PHD$V _DALCSTX in the system header
PHD$W_FLAGS as a signal for MMG$DALCSTXSCN.

7. It invokes MMG$DALCSTXSCN, described later in this section, in case
this section or any other can be deleted now.

8. It unlocks the GSD mutex.
9. It invokes MMG$DELGBLWCB, described later in this section.

10. It restores the IPL at entry and returns to its requestor.

MMG$DALCSTXSCN, in module PHDUTL, is invoked to locate and deal
with deletable section table entries, in both the global section and process
section tables. Section deletion cannot occur until the section reference
count goes to zero, generally as the result of virtual address space deletion
or modified page writing. A scan for deletable GSTEs is initiated from the
$MGBLSC and $DGBLSC system services, and from the $CRMPSC system
service when it is creating a global section.

MMG$DALCSTXSCN is entered at IPL 2 in kernel mode, with the address
of a PHO whose section table should be scanned. In the case of deleted global
sections, it is entered with the address of the system header and with the
GSD mutex locked.

At alternative entry point MMG$DALCSTXSCN1, the routine first gets
the address of the system header and then merges with MMG$DALC­
STXSCN.

MMG$DALCSTXSCN takes the following steps:

1. It tests and clears PHD$V _OALCSTX, returning immediately if the bit
was already clear.

2. It scans the list of section table entries, returning when it reaches the
end of the list. It examines each entry's reference count, skipping to the
next one if the count is nonzero.

3. If the reference count is zero, MMG$DALCSTXSCN tests whether the
section is permanent and, if so, continues with step 2.

4. Otherwise, it tests whether the section is a global section. If it is, it
invokes MMG$DELGBLSEC to delete it and then continues with step 2.

5. For a process-private section, MMG$DALCSTXSCN checks whether this
section is the only one still mapped from its section file.

-If so, it restores the address of the WCB to CCB$L_ WIND and inserts
the section table entry on the free list.

15.4 Process-Private and Global Sections

-If there are other sections still mapped, it removes this one from the
chain, inserts it on the free list, and, if necessary, adjusts CCB$L
WIND to point to a section table entry other than the one being
deleted.

In either case, it continues with step 2.

MMC$DELCBLSEC, in module SYSDCBLSC, is invoked to delete a tem­
porary global section whose reference count has gone to zero, that is, one
with no pages mapped by any process.

1. It removes the CSD from the group or systemwide list and inserts it onto
the delete pending list so that no more processes can map to it.

2. It gets the starting CPTX and number of pages from the CSTE.
3. It acquires the MMC spinlock, raising IPL to IPL$_MMC.
4. It scans the section's CPTEs. If it reaches the last CPTE, rather than

reaching one of the end conditions in the following list, it continues
with step 7.

-If it finds a transition page on the free list, it invokes MMC$DELPFN­
LST, in module ALLOCPFN, to delete the page's virtual contents. The
PFN is moved from its current position on the free list to the head
of the list, so that it can be reallocated before pages whose contents
might still be useful. Its PFN database entries are reinitialized. The
reference count for the global page table page that contains the CPTE
is decremented. When an entire page of CPTEs is freed, the global page
table page can be unlocked from the system working set. MMC$DEL­
CBLSEC continues its scan of the section's CPTEs.

-If it finds a global page-file section page on the modified list, it clears
the saved modify bit in the PFN STATE array element and invokes
MMC$DELPFNLST as described. It continues its scan of the section's
CPTEs.

-If it finds a transition page on the modified page list that is not part of
a global page-file section, the page must be written to its backing store
before the section is deleted, and MMC$DELCBLSEC goes to step 5.

-If it finds a transition page that is not on the free or modified page
list, the page is being read in from its backing store. That 1/0 must
complete before the section is deleted, and MMC$DELCBLSEC goes
to step 6.

5. It requests the modified page writer to perform a selective purge of the
modified page list to write this section's global pages to their backing
store and release them. Chapter 16 describes the modified page writer.

6. It releases the MMC spinlock, restoring IPL to 2, stores the process ID of
the current process in CSD$LIPID as the target of an eventual cleanup
AST, sets PHD$V _OALCSTX in the system header, and returns.

7. If MMC$DELCBLSEC has scanned all the CPTEs for the section and

425

Memory Management System Services

426

found none for whose 1/0 it must wait, it scans the GPTEs again, this
time to decrement the global page table page reference count and to
release page fl.le backing store.

-If it finds a global page in a page file, it deallocates that block of page
fl.le, decrements the global page table page reference count, and clears
the GPTE.

-If it finds a demand zero global page, it simply decrements the global
page table reference count and clears the GPTE.

8. It releases the MMG spinlock, setting IPL to 2.
9. It deallocates the GPTEs.

10. If there is a file open on the section, it decrements the reference count
in the WCB. If the count is now zero, it inserts the WCB on a queue of
delete pending WCBs.

11. If this was a global page-file section, it adds its page count back to
MMG$GL_GBLPAGFIL and to PHD$L_PPGFLVA in the system header.

12. It removes the GSD from the delete pending list and deallocates it to
paged pool, along with the ORB, unless the ORB is still in use for an
open section fl.le.

13. It inserts the GSTE onto the free list.
14. It allocates nonpaged pool, forms it into an AST control block, queues

a normal kernel AST to the current process, and returns to its invoker.
The specified AST procedure is GSD_CLEAN_AST.

GSD_CLEAN_AST executes as a normal kernel AST procedure in the
context of the process that requested the system service that triggered
MMG$DELGBLSEC, possibly but not necessarily the process that requested
global section deletion. Its enqueuing can be requested from MMG$DEL­
GBLSEC or the modified page writer. Its enqueuing can also be requested by
the routines that decrease section reference count, MMG$SUBSECREF and
MMG$DECSECREF in module PHDUTL, when a temporary global section's
reference count goes to zero. It takes the following steps:

1. It tests whether the process is being deleted or already has this procedure
active. If either is true, it returns.

2. It requests the Clear AST ($CLRAST) system service so that a subsequent
kernel AST can be delivered.

3. If PHD$V _DALCSTX in the system header is set, it locks the GSD mu­
tex; invokes MMG$DALCSTXSCN, previously described; and unlocks
the mutex.

4. It invokes MMG$DELGBLWCB, described later in this section, to close
the section fl.le.

5. It returns.

MMG$DELGBLWCB, in module SYSDGBLSC, is invoked to close an open

15.5 Virtual Address Space Deletion

file associated with a temporary global section whose reference count has
gone to zero and to delete the WCB. It takes the following steps:

1. It makes several consistency checks, returning immediately if it is exe­
cuting within a process that owns any mutexes, has kernel mode AST
delivery disabled, or has an active kernel mode AST. Its subsequent pro­
cessing requires delivery of a kernel mode AST and IPL 0 execution.

2. It removes a WCB from the delete pending list, returning if there is none.
3. It finds an available channel control block and stores in it the address of

the unit control block on which the file represented by the WCB is open
and an indication that the channel has been assigned in kernel mode.

4. It lowers IPL to 0 and requests the Deassign Channel ($DASSGN) system
service, the actions of which result in closing the file.

5. It raises IPL back to 2 and continues with step 2.

15.5 VIRTUAL ADDRESS SPACE DELETION

15.5.1

15.5.2

Page deletion is generally more complicated than page creation. Creation
involves taking the process from one known state (the address space does
not yet exist) to another known state (for example, the PTEs contain demand
zero PTEs). Page deletion must deal with initial conditions that include all
possible states of a virtual page.

Page creation may first require that the specified pages be deleted to put
the process page tables into their known state. Thus, page deletion is often
an integral part of page creation.

A process deletes part of its address space by. requesting the $DELTVA
system service.

Page Deletion and Process Waits

A page that has 1/0 in progress cannot be deleted until the 1/0 completes. A
process trying to delete such a private page is placed into a page fault wait
state (with a request that a system event be reported when 1/0 completes)
until the page read or write completes. Deleting a page in the write-in­
progress transition state has the same effect. A page in the read-in-progress
transition state is faulted, with the immediate result that the process is
placed into the collided page wait state.

Special action must be taken for a global page with 1/0 in progress be­
cause there is no way to determine if the process deleting the page is also
responsible for the 1/0. Hence, if the process has any direct 1/0 in progress,
the process is placed into a resource wait for the resource RSN$_ASTWAIT
until its direct 1/0 completes.

$DELTVA System Service

The $DELTVA system service procedure, EXE$DELTVA in module SYSCRE­
DEL, runs in kernel mode. EXE$DELTVA takes the following steps:

427

Memory Management System Services

428

1. It creates and initializes the stack scratch space and raises IPL to 2.
2. It invokes MMG$CREDEL, specifying MMG$DELPAG as the per-page

service-specific routine.
3. It restores the IPL at entry.
4. It records peak page file use and virtual size statistics, and stores return

information in the optional RETADR argument.
5. It returns to its requestor.

When a virtual page is deleted, MMG$DELPAG (and routines it invokes)
must return all process and system resources associated with the page. These
can include the following:

• A physical page of memory for a valid or transition page
• A page file virtual block for a page whose backing store address indicates

an already allocated block
• A working set list entry for a page in a process working set list
• Page file quota for a page with a page file backing store address and the

charge against PHD$LPPGFLVA, even if the page has not yet been allo­
cated a block in a page file

Deleting a process-private section page results in decrementing the refer­
ence count in the PSTE (see Figure 14.9). If the reference count goes to zero,
the PSTE itself can be released.

In addition, a valid or modified page with a section file backing store
address rather than a page file backing store address must have its latest
contents written back to the section file. (The contents of a page with a page
file backing store address are unimportant after the virtual page is deleted
and do not have to be saved before the physical page is reused. J

Deleting a physical page means that the PFN PTE array element is cleared,
destroying all ties between the physical page and any process virtual address.
In addition, the page is placed at the head of the free page list, so that it can
be reallocated before other pages whose contents might still be useful.

MMG$DELPAG is the per-page service-specific routine for the $DELTVA
and $CNTREG system services. It is invoked with an argument specifying
the address to be deleted. It takes the following steps:

l. It saves the IPL at entry and acquires the MMG spinlock, raising IPL to
IPL$_MMG.

2. It examines the PTE that maps the page to be deleted.
3. If the PTE contains zero, the page has already been deleted, and the

routine MMG$DELPAG returns to its invoker after releasing the MMG
spinlock and restoring the previous IPL.

4. It confirms that the access mode passed in MMG$L_MAXACMODE is
at least as privileged as that of the page owner. If not, it returns the
error status SS$_PAGOWNVIO to its invoker after releasing the MMG
spinlock and restoring the previous IPL.

15.5 Virtual Address Space Deletion

5. Otherwise, it examines the PTE type bits to determine whether the page
is in a page file, an invalid process section page, a transition page, a valid
page, or a section file global page.

6. If the page is in a page file, MMG$DELPAG deallocates the occupied
block of page file, restores job page file quota and PHD$1-PPGFLVA,
clears the PTE, and releases the MMG spinlock. If this is the last page
of the address region, MMG$DELPAG removes null pages from the end
of the region. It returns to its invoker.

7. If the page is from a demand zero process section, MMG$DELPAG re­
leases the MMG spinlock, lowers IPL, touches the page to fault it into
the working set, and continues with step 1. Faulting it into the working
set first ensures that an untouched demand zero page backed by a sec­
tion file will be written back to it as all zeros. Handling it in this way
minimizes the need for complex code to handle a relatively rare case.

8. If the page is an invalid page from any other type of process section,
MMG$DELPAG decrements the section reference count. If the page is
copy-on-reference, MMG$DELPAG increments the job page file quota
and PHD$L_PPGFLVA. It clears the PTE and releases the MMG spinlock.
If this is the last page of the address region, MMG$DELPAG removes null
pages from the end of the region. It returns to its invoker.

9. If the page is a demand zero page (created by the $CRETVA or $EXPREG
system service), MMG$DELPAG restores job page file quota and PHD$L_
PPGFLVA, clears the PTE, and releases the MMG spinlock. If this is the
last page of the address region, MMG$DELPAG removes null pages from
the end of the region. It returns to its invoker.

10. If the page is any other type of transition page, MMG$DELPAG examines
the PFN STATE array entry to see where the page is.

-If the page is on the free list, MMG$DELPAG invokes MMG$DELPFN­
LST, in module ALLOCPFN, to delete the page's virtual contents. The
PFN is moved from its current position on the free list to the head of
the list. Its PFN database entries are reinitialized. The PFN SHRCNT
array entry for the page table page that maps it is decremented. If the
count goes to zero, the page table page is released from the working
set list.

-If the page is on the modify list and has page file backing store,
MMG$DELPAG clears the saved modify bit in the PFN STATE ar­
ray entry so that the page, when deleted, will be placed on the free
list, and invokes MMG$DELPFNLST, as just described.

-If the page state is read in progress or release pending, MMG$DELPAG
releases the MMG spinlock, lowers IPL, touches the page to fault it
into the working set, and continues with step 1.

-If the page state is active or there was an 1/0 error reading the page in
from mass storage, MMG$DELPAG continues with the next step.

429

Memory Management System Services

430

11. If the page is valid, MMG$DELPAG examines its PFN TYPE array ele­
ment to determine its type.

-If the page is a resident global section page, it decrements the section
reference count and the PHD$L_PTWSLELCK array byte, which counts
the number of reasons the page table page that maps the section page
is locked in the working set list. It clears the PTE and, if it is the last
page of the region, removes null pages from the end of the region before
releasing the MMG spinlock and returning to its invoker.

-If the page is a PFN-mapped section page, it invokes the INVALIDATE_
TB macro to invalidate any corresponding translation buffer entry. It
tests whether the process has direct I/O in progress. If not, it decre­
ments the corresponding PHD$1-PTWSLELCK array byte and clears
the PTE. If it is the last page of the region, MMG$DELPAG removes
null pages from the end of the region before relea~ing the MMG spin­
lock and returning to its invoker.

If the process has direct I/O in progress, its I/O must complete before
this page can be deleted. When there is direct I/O in progress to a
typical process page, its PFN REFCNT array element is incremented.
Thus a value larger than 1 indicates I/O in progress. A PFN-mapped
page may have other processes mapped to it, some of which could
be doing I/O to it, so its REFCNT value is not precise enough to
determine whether the page is in use as an I/O buffer for this process.
Furthermore, a page mapped by PFN may be one without any PFN
database to examine.

If bit MMG$V _NOWAIT _IPLO in MMG$1-MAXACMODE is set (as
it would be if the page were being deleted as a side effect of creating a
process section that overmapped the page), the process cannot wait at
IPL 0 for the I/Oto complete, and MMG$DELPAG returns the error
status SS$_ABORT to its invoker. Otherwise, it releases the MMG
spinlock and places the process into a resource wait for resource RSN$_
ASTWAIT (effectively, wait for an I/O completion) at IPL 0. When the
process is placed back into execution, MMG$DELPAG raises IPL to 2
and resumes at step 1.

-If the page is permanently locked into the working set, MMG$DEL­
PAG releases the MMG spinlock and returns a success code. Such a
page cannot be deleted until the process is deleted or outswapped.

-If the process has locked the page into its working set, MMG$DELPAG
releases the MMG spllilock; invokes MMG$LCKULKPAG, in module
SYSLKWSET (described in Chapter 17) to unlock the page; and then
resumes at step 1.

-If the PFN REFCNT array element for this (process-private) page is
larger than 1, the page is in use as an I/O buffer. MMG$DELPAG

15.5 Virtual Address Space Deletion

tests against MMG$V _NOWAIT _IPLO as described and either returns
an error status or places the process into a wait until the 1/0 completes.

-If the page has been modified but it has page file backing store,
MMG$DELPAG sets the PFN$V _DELCON bit in the PFN STATE ar­
ray element so its contents wiU be deleted when it is inserted on the
free list; invokes INVALIDATE_ TB to clear the valid and modify bits in
the PTE; removes the page from the working set list; and decrements
its PFN REFCNT array element.

If the reference count is greater than zero, the page has 1/0 in
progress, and MMG$DELPAG must wait for 1/0 completion as pre­
viously described.

If the reference count is zero, MMG$DELPAG deallocates the asso­
ciated physical page, as a result of which the PTE once again contains
a backing store format, and then resumes with step 1, deleting the page
as an invalid unmodified page-file section page.

-If the page has been modified and is backed by a section file rather
than a page file, it has to be written to its backing store before it can be
deleted. MMG$DELPAG uses a routine within the $UPDSEC system
service to write the page to its backing store, in addition to setting the
PFN$V _ WRTINPROG bit for the page and taking the actions described
in the previous step.

12. If the process page is an invalid global page, MMG$DELPAG examines
its GPTE to determine the page type and validity of the master page.

-If the master page is a demand zero page or a page in a global page­
file section, MMG$DELPAG decrements the global section reference
count and clears the process PTE. If the process page is the last page
of the region, MMG$DELPAG removes null pages from the end of the
region before releasing the MMG spinlock and returning to its invoker.

-If the global page is in transition being faulted from its backing store,
MMG$DELPAG tests and sets MMG$V _DELGBLDON in MMG$L_
MAXACMODE. If the bit was already set, it continues with the next
step. Otherwise, MMG$DELPAG must free the process's working set
list entry associated with the global page. It invokes a routine within
the Purge Working Set ($PURGWS) system service to remove that page
and any other global pages in the address range being deleted from the
working set list and to change the PFN database accordingly. It then
resumes with step 1.

-If the global page is valid or in transition, has 1/0 in progress, and the
process has outstanding direct 1/0, the direct 1/0 may be to the global
page that the process is trying to delete. MMG$DELPAG therefore
places the process into a resource wait, as previously described, until
the 1/0 completes. It then resumes with step 1.

431

Memory Management System Services

15.5.3

If the process has no outstanding direct 1/0, MMG$DELPAG con­
tinues with the next step.

-If the global page is valid with no 1/0 in progress, invalid and in a sec­
tion file, or a transition page with no 1/0 in progress, MMG$DELPAG
examines the PFN BAK array element to determine the type of section.
If the section is demand zero, it continues with the next step. If the
section is copy-on-reference, it first increments the job page file quota
and PHD$1-PPGFLVA. For any type of section that is not demand zero,
MMG$DELPAG decrements the global section reference count, clears
the process PTE, releases the MMG spinlock, and returns.

-If the global page is invalid and a page from a demand zero writable
section, MMG$DELPAG allocates a physical page, initializes its PFN
database array entries, inserts it onto the modified list, and then clears
the process PTE, releases the MMG spinlock, and returns. These steps
ensure that an untouched demand zero page backed by a global section
file will be written back to it as all zeros. This requirement is similar
to that for a demand zero page in a writable process section. However,
MMG$DELPAG takes these steps rather than fault the page in first as it
does a process-private page, for better performance in a more common
case.

$CNTREG System Service

The $CNTREG system service procedure, EXE$CNTREG in module SYS­
CREDEL, runs in kernel mode. The $CNTREG system service is a special
case of the $DELTVA system service. EXE$CNTREG simply converts the
requested number of pages into a PO or Pl page range and merges with
EXE$DELTVA at step 2 in the description in Section 15.5.2.

15.6 $SETSWM SYSTEM SERVICE

A process with PSWAPM privilege can lock and unlock itself into the balance
set by requesting the $SETSWM system service. A process locked into the
balance set cannot be outswapped.

The $SETSWM system service procedure, EXE$SETSWM in module SYS­
SETMOD, runs in kernel mode. EXE$SETSWM checks that the process has
privilege and simply sets (or clears) the PCB$V_PSWAPM bit in PCB$L_STS,
the status longword in the software PCB.

When the swapper is searching for suitable outswap candidates, a process
whose PCB$V _PSWAPM bit is set is passed over.

15.7 $SETPRT SYSTEM SERVICE

432

A process can alter the protection of a set of pages in its address space by
requesting the $SETPRT system service.

15. 7 $SETPRT System Service

The $SETPRT system service procedure, EXE$SETPRT in module SYS­
SETPRT, runs in kernel mode. It takes the following steps:

1. It performs several consistency checks on the desired protection. For
example, if the desired protection is specified as no access, EXE$SETPRT
changes it to kernel read so that the page can be faulted and can be deleted
later in the life of the process.

2. EXE$SETPRT invokes MMG$CREDEL, specifying MMG$SETPRTPAG
as the per-page service-specific routine.

MMG$SETPRTPAG, in module SYSSETPRT, takes the following steps:

1. It gets the address of the PTE that maps the specified virtual address and
faults the page table page into the process's working set list. It acquires
the MMG spinlock.

2. It compares the requestor access mode with that of the page owner. If
the access mode is insufficiently privileged, it releases the MMG spinlock
and returns the error status SS$_PAGOWNVIO, which is passed back to
the $SETPRT requestor.

3. Otherwise, it gets the type of the virtual page.
4. If the page is a transition page or is a demand zero page that is to become

read-only, MMG$SETPRTPAG releases the MMG spinlock, lowers IPL,
touches the page to make it valid, and continues at step 1.

5. If the page is a demand zero page and will remain writable or is a page
file page, MMG$SETPRTPAG continues with step 9.

6. If the page is a process-private section page and the protection change
is not from read-only to writable, MMG$SETPRTPAG continues with
step 9.

If the protection change would make the page writable, MMG$SET­
PRTPAG must change the page to be a copy-on-reference page: it charges
the page against the process's job page file quota and PHD$L_PPGFLVA,
decrements the section reference count, and changes the page's backing
store to a page file. It continues with step 9, also setting the copy-on­
reference bit in the PTE. An inability to charge the page against quota or
PHD$L_PPGFLVA results in an error return.

7. If the page is valid, MMG$SETPRTPAG checks that it is not a PFN­
mapped page and that it is a process page. If either is false, it returns the
error status SS$_NOPRIV.

If the page is a valid process page and the protection change does
not make it writable or if the page already has page file backing store,
MMG$SETPRTPAG continues with step 9. Otherwise, it decrements the
section reference count and changes the PFN BAK array for the physical
page to a page file backing store form. It completes changing the page to
a copy-on-reference page, as in step 6.

433

Memory Management System Servic_es

434

8. If the page is a global section page, MMG$SETPRTPAG determines the
page type from the global PTE. If it contains anything but a global section
index for a copy-on-reference page, MMG$SETPRTPAG returns the error
status SS$_NOPRN. Otherwise, it continues.

9. It invokes the INVALIDATE_ TB macro, described in Chapter 34, to in­
validate any cached translation buffer entry for the page and change its
protection.

10. It releases the MMG spinlock, restoring the previous IPL of 2, and returns
to its invoker.

In general, the operation of this service is straightforward. However, its
actions have one interesting side effect. If a section page for a read-only
section has its protection set to writable, the copy-on-reference bit is set.
This set bit forces the page to have its backing store address changed to the
page file when the page is faulted, preventing a later attempt to write the
modified section pages back to a file to which the process may be denied
write access.

The VMS debugger uses this service to implement its watchpoint facility.
The page containing the data element in question is set to no-write access for
user mode. When the program being debugged attempts to access the page, an
access violation occurs, which is fielded by the debugger's condition handler.
This handler performs the following actions:

1. Checks whether the inaccessible address is the one being watched and
reports the modification if it is

2. Sets the page protection to PRT$C_UW to allow the modification
3. Sets the TBIT in the processor status longword to give the debugger

control after the instruction completes
4. Dismisses the exception

When the instruction completes, the debugger's TBIT handler gains con­
trol, sets the page protection back to no-write access for user mode, and
allows the program to continue execution.

16 Paging Dynamics

16.l

I consider that a man's brain originally is like a little empty
attic, and you have to stock it with such furniture as you
choose Now, the skillful workman is very careful indeed as
to what he takes into his brain-attic. He will have nothing but
the tools which may help him in doing his work, but of these
he has a large assortment, and all in the most perfect order. It
is a mistake to think that that little room has elastic walls
and can distend to any extent. Depend upon it, there comes a
time when for every addition of knowledge you forget some­
thing that you knew before. It is of highest importance, there­
fore, not to have useless facts elbowing out the useful ones.

Sir Arthur Conan Doyle, A Study in Scarlet

This chapter's subject is paging dynamics, the movement of pages of code
and data between memory and mass storage. Specifically, it describes the
transitions a page makes as it is faulted into and out of a working set list,
and as it moves between its backing store and memory.

This chapter also discusses the allocation and use of page files and the
operation of the Update Section File on Disk ($UPDSEC) system service.

OVERVIEW

A typical virtual page, 512 bytes of virtual address space, begins life as
a block of an image file on a mass storage medium. A process initiates
execution of the image by requesting the Image Activate ($IMGACT) system
service, better known as the image activator. The image activator, described
in detail in Chapter 26, maps the image into the process's address space,
using the memory management system services described in Chapter 15.
The image activator initializes data structures such as process section table
entries (PSTEs) and page table entries (PTEs) to associate blocks of the image
file with the process pages they are to occupy. Chapter 14 explains the
various memory management data structures and the VAX processor's steps
in translating virtual addresses.

When a reference is made to an address that is not valid (one whose PTE
valid bit is clear), the VAX processor generates a page fault. When an image
begins to execute, none of its pages have been read into memory from the
image file, and all of its PTEs have been initialized to be invalid. When it
first references one of its pages, a page fault exception results. As with most
exceptions, the processor changes access mode to kernel and switches to
the kernel stack, unless it ·was already executing on the kernel stack. (It
is possible, but illegal and fatal, for a thread of execution running on the

435

Paging Dynamics

interrupt stack to incur a page fault.) It dispatches to the translation-not­
valid exception service routine, also known as the page fault handler.

The page fault handler examines the memory management data structures
to determine which mass storage block contains the virtual page that trig­
gered the fault, allocates a physical page of memory from the free page list,
stores its page frame number (PFN) in the PTE, finds an available entry in
the process's working set list, and requests an 1/0 operation to read that
block into the allocated page. It places the process into a page fault wait
state. When the 1/0 completes, the page fault handler updates the PTE so
that its valid bit is set and makes the process computable.

When the process is placed into execution, it reexecutes the instruction
that incurred the page fault. This time, with the PTE valid bit set, the
processor translates the virtual address to a physical address and execution
continues.

The virtual page remains valid and in the working set until one of the
following occurs:

• Room is required for another page.
• The virtual page is deleted .
• The Purge Working Set ($PURGWS) system service removes it.
• Swapper trimming removes it (see Chapter 18) .
• Working set limit adjustment removes it.

Removed from the working set list, the page is inserted on the modified
page list, if it has been modified; otherwise, it is inserted on the free. page
list. Sometime later, the swapper, in response to insufficient free pages or
an excess of modified pages, writes modified pages to their backing store,
typically a page fl.le. It then inserts them on the free page list. (Acting in this
capacity, the swapper is called the modified page writer.) While the page is on
the free or modified page list, it is essentially cached; the page fault handler
can resolve a fault for it by simply updating the memory management data
structures and placing the page back in the process's working set list.

This chapter shows how the page fault handler manipulates the various
memory management data structures in response to faults for different types
of pages. It presents page fault handler action in terms of modifications to
data structures and state transitions rather than as a flowchart or series of
decisions. It also describes the transitions that a virtual page makes when it
is removed from a working set list.

16.2 INITIAL PAGE FAULT HANDLING

436

The VMS page fault handler is MMG$PAGEFAULT, in module PAGEFAULT.
Figure 16.1 shows the state of the stack when it is entered.

Its first step is to check the interrupt priority level (IPL) at which the page
fault occurred. If the IPL is higher than 2, MMG$PAGEFAULT generates the

16.2 Initial Page Fault Handling

SP

Direction of
stack growth

Figure 16.1

. ._.
Reason Mask

Faulting Virtual Address

PC of Faulting Instruction

PSL at Time of Fault

Reason Mask Flags

Bit Value Meaning
o o AlwaysO

2

O Virtual address not valid
1 Associated PTE not valid

0
1

Read access
Modify or write access

State of the Stack Following a Translation-Not-Valid
Fault

fatal bugcheck PGFIPLHI. Page faults above IPL 2 are not allowed for the
following reasons:

• Code executes at an elevated IPL to perform a series of synchronized
instructions. If a page fault occurs, the faulting process might be removed
from execution, allowing another process to execute the same routine
or access the same protected data structure. The alternative, looping in
process context at elevated IPL until the page fault 1/0 completes, would
reduce system performance and responsiveness. Moreover, any loop at
IPL 4 or above would block the 1/0 postprocessing necessary for page
fault resolution. On a uniprocessor system, a loop above IPL 2 blocks the
swapper from running and would result in a deadlock if the free page list
were empty and the page fault required allocation of a physical page of
memory.

• When the system is executing at an IPL higher than 2, it is often on
the interrupt stack, running in system context. MMG$PAGEFAULT and
routines it invokes perform operations that require process context.

Next, MMG$PAGEFAULT acquires the MMG spinlock, raising IPL to
IPL$_MMG, to serialize access to the memory management database.

If the faulting virtual address is in system space, MMG$PAGEFAULT
checks that the address is not within another process's process header (PHD).
Unlike other system pages, PHD pages belong to the associated process;
pageable PHD pages are part of its working set. A process is therefore not
allowed to fault a page in another process's PHD. When MMG$PAGEFAULT
detects this type of fault, it transforms the page fault into an access violation.

It is possible, however, for a process to fault a page in its own PHD and im­
mediately be context-switched. If the process is outswapped and inswapped
before its next execution, the swapper may have moved its PHD to a different
balance set slot. At ins.wap, the swapper sets the bit PHD$V _NOACCVIO
in PHD$W _FLAGS to signal this possibility.

If the PHD does occupy a different balance set slot when the process
resumes execution in MMG$PAGEFAULT, the faulting virtual address on
its kernel stack is now an address in the balance set slots but not in the
process's own PHD. For this reason, MMG$PAGEFAULT makes a further

437

Paging Dynamics

check before simulating an access violation: it tests and clears PHD$V _
NOACCVIO in PHD$W _FLAGS.

If the bit was set, MMG$PAGEFAULT dismisses the page fault, and the
faulting instruction reexecutes with the PHD$V _NOACCVIO bit clear. If
the instruction again faults a page in another balance set slot, MMG$PAGE­
FAULT releases the MMG spinlock and simulates an access violation, using
the page fault exception parameters as access violation parameters.

If the faulting virtual address is not within another process's PHD,
MMG$PAGEFAULT continues. It locates the PTE that maps the page con­
taining the faulting virtual address by performing the same operations as the
VAX address translation hardware/microcode:

1. The upper two bits of the virtual address (VA(31:30)) select which page
table to use.

2. The virtual address field (VA(29:9)) is a longword context index into the
page table. The low-order bits specify byte offset in the page and are
ignored.

Before examining the PTE, MMG$PAGEFAULT determines whether the
system PTE (SPTE) for the page table page containing the PTE is itself valid.
This check avoids the necessity of making the page fault handler recursive.
Note that MMG$PAGEFAULT checks the valid bit in the SPTE for the page
table page rather than the page table valid bit in the exception parameter.
Between the time of the page fault and the time of the check, the SPTE could
have been altered, invalidating the exception parameter.

If the SPTE for the page containing the PTE is invalid, MMG$PAGEFAULT
transforms the page fault into a fault for the page table page. Once the
page table page is faulted in and its SPTE made valid, MMG$PAGEFAULT
will execute an REI instruction to dismiss the page fault exception. The
instruction that caused the original fault will reexecute and refault, and this
time MMG$PAGEFAULT will fault in the process page.

MMG$PAGEFAULT invokes MMG$FREWSLE, in module PAGEFAULT,
to find room in the working set list for a new page, possibly by removing a
page from it. Chapter 17 describes MMG$FREWSLE in detail. MMG$PAGE­
FAULT then takes different actions, depending on the nature of the invalid
PTE. See Figure 14.7 for the different forms of invalid PTE.

The next sections describe some of the major paths through MMG$PAGE­
FAULT. Extraordinary conditions, such as read and write errors, are only
mentioned in passing.

16.3 PAGE FAULTS FOR PROCESS-PRIVATE PAGES

438

This section describes page faults for process-private pages. Section 16.4 de­
scribes the paths through MMG$PAGEFAULT for global pages. Section 16.5
describes the path for system pages.

There are four cases of process-private page faults:

16.3.1

16.3.1.1

16.3 Page Faults for Process-Private Pages

• Two cases involve a page that is originally faulted from a section file.
The two cases are distinguished by whether or not the section is copy-on­
reference .

• A third case is a fault for a page in a private section of demand zero pages .
• A fourth case is a fault for a page in a page file, which began as a copy-on­

reference page or a demand zero page.

Page Located in a Section File

A page that initially resides in a private section file can be characterized
by whether it is copy-on-reference. A PTE for either type of page contains
a process section table index jPSTX). Figure 14.7 shows this and the other
forms of invalid PTE.

Private Page That Is Not Copy-on-Reference. The PTE of a page that is not
copy-on-reference initially contains a PSTX with the copy-on-reference bit
IPTE(l6)) clear. The transitions that such a page can make are illustrated in
Figure 16.2. The numbers in the figure are keyed to the following explana­
tions of each of the transitions. For simplicity, clustered reads and writes
are ignored in the discussion that follows. Section 16. 7 discusses aspects of
paging 1/0, including read/write clustering.

G)As described in Section 16.2, MMG$PAGEFAULT first locates the PTE
that maps .the faulting page and ensures the validity of the page table page
containing it. MMG$PAGEFAULT invokes three other routines, all in
module PAGEFAULT, to perform some of the related updates to memory
management data structures:

a. MMG$ININEWPFN allocates a physical page from the head of the
free page list. It stores the address of the PTE in that page's PFN PTE
array element and a type code of process page in its PFN TYPE array
element.

b. MMG$INCPTREF updates the data structures describing the page
table page that maps the faulted page. It increments the PFN SHRCNT
array element of the page table page to indicate that it maps one
more valid page. If this is the first valid page mapped by the page
table page lthat is, if the SHRCNT makes the transition from 0 to
1), MMG$INCPTREF locks the working set list entry jWSLE) for the
page table page into the process's working set list. It also increments
PHD$W _PTCNTACT, the number of active page table pages for the
process, and the PHD's entry in the array at PHV$G1-REFCBAS, the
number of reasons the PHD should remain in memory.

c. MMG$MAKEWSLE updates the data structures related to the working
set list. It initializes the WSLE with the virtual address and page
type of the page being faulted and sets its valid bit. It increments the
PHD$L_PTWSLEVAL array element corresponding to the page table

439

Paging Dynamics

I
I
I
I
J
I
I
I

START

PTE contains
Process Section

Table Index (PSTX)

PTE - Transition

In working set

PTE is valid

In working set

Modify bit clear

4

From bottom
of figure

PTE is valid

In working set

Modify bit set

4

I
I
I
I
I
I
I
1

I
~------- -®-

PTE - Transition

Saved modify I Saved modify -®- -------+l
bit clear 1 bit set

t+------ ---- -------®-
I
I
I
I
I
I PTE - Transition '-®-

Saved modify bit clear

To top of
figure

Figure 16.2

PTE -Transition

Saved modify bit set

PTE -Transition

Saved modify bit clear

--®--
Page fault transition

I
I
I
I
I
I
I
I

-®...i

--0--
0ther transitions

Page Transitions for Private Section Page That Is Not
Copy-on-Reference

440

PFN Data

Page not in
physical memory;
no PFN data

Read in progress
REFCNT=2
BAK= PSTX

Active and valid
REFCNT>O
BAK= PSTX

Release pending
REFCNT>O
BAK= PSTX

Modified page list
REFCNT=O
BAK=PSTX

Write in progress
REFCNT= 1
BAK= PSTX

Free page list
REFCNT=O
BAK= PSTX

16.3 Page Faults for Process-Private Pages

page to indicate one more valid entry in the process's working set list
mapped by the page table page. If the count makes the transition from
0 to 1, MMG$MAKEWSLE also increments PHD$W _PTCNTVAL, the
number of page table pages that map valid WSLEs. It increments the
field PCB$L_PPGCNT to indicate one more process-private page in
the working set. It stores the index of the WSLE just set up in the
PFN working set list index (WSLX) array element for the physical
page and also increments its PFN REFCNT array element to indicate
that the page is in a working set list.

MMG$PAGEFAULT itself increments the PFN REFCNT array, bringing
the count to 2, to indicate the I/O request about to be queued for this page.
It copies the original PTE contents to the PFN BAK array element for the
page and initializes the PTE to have a protection code, owner field, the
allocated PFN, and type bits indicating a transition page. It initializes the
PFN STATE array element for the page to read in progress.

MMG$PAGEFAULT builds an I/O request packet (see Section 16. 7) that
describes the read to be done. From the PSTX in the original PTE contents,
MMG$PAGEFAULT locates the corresponding PSTE in the PHD. From
information in the PSTE, it can calculate which virtual block in the file
contains the virtual page. It queues the request to the driver for the device
containing the page.

It releases the MMG spinlock and acquires the SCHED spinlock. Before
placing the process into a page fault wait state, MMG$PAGEFAULT tests
whether the faulted page is still invalid. On a symmetric multiprocess­
ing (SMP) system where MMG$PAGEFAULT is running on a secondary
processor, concurrent processing of the I/O request may have already
made the page valid. If the page is valid, MMG$PAGEFAULT releases the
SCHED spinlock, cleans up the stack, and executes an REI instruction
to dismiss the exception. If the page is still invalid, MMG$PAGEFAULT
removes everything from the stack except the page fault program counter
(PC) and processor status longword (PSL). It inserts the process's PCB
into the page fault wait queue, executes a SVPCTX instruction to save the
process's context, and then transfers control to the scheduler.

G) Because most of the work was done in response to the initial fault, there
is little left to do when the page read completes. Page read completion
occurs as part of I/O postprocessing (see Chapter 21) and runs in system
context. Holding the MMG spinlock, routine PAGIO, in module IOCIO­
POST, decrements the PFN REFCNT array element. In the usual case, the
reference count remains greater than zero. In that case, PAGIO changes
the PFN STATE array element to active and sets the valid bit in the
process PTE.

It is, however, possible for PAGIO to decrement the reference count
to zero. This can happen if the page was removed from the working

441

Paging Dynamics

442

set list, for example, through swapper trimming, automatic working set
limit adjustment, or the $PURGWS system service, before the page read
completes. The page would have been put in the release pending state
with a reference count of 1. If PAGIO decrements the reference count to
zero, then instead of setting the valid bit, it inserts the page on the free
page list.

PAGIO reports the scheduling event page fault completion for the
process so that it becomes computable. Chapter 12 explains how schedul­
ing events are reported. The next time the process is selected for execu­
tion, it reexecutes the instruction that caused the page fault, this time
with the page valid.

G) One transition that a valid page can undergo and still remain valid occurs
when the page is modified as a result of instruction execution. The VAX
processor sets the modify bit in the PTE. The change is not noted at this
time in the PFN database.

QA valid page becomes invalid when it is removed from the working set
list as a result of any of the conditions described in Section 16.1. Most
of those result in the invocation of MMG$FREWSLE or its alternative
entry point, MMG$FREWSLX, both in module PAGEFAULT. Chapter 17
describes them in detail. Of most relevance to this chapter are the changes
to memory management data structures when a non-copy-on-reference
page is removed from the process working set list:

a. The modify bit in the PTE is saved. The valid, modify, TYPO, and
TYPl bits in the PTE are all cleared. The PFN field is unchanged.

b. The translation buffer is invalidated to remove the cached but now
obsolete contents of the PTE.

c. The saved modify bit from the PTE is logically ORed into the PFN
STATE array element, saving its value.

d. If the page has been modified and its assigned page file backing store,
if any, contains an obsolete copy, that storage is deallocated and the
PFN BAK array element is cleared of its block number. The process­
local page file index remains intact.

e. The PFN REFCNT array element is decremented. If the reference
count goes to zero, the page is put on the free or modified page list,
according to the setting of the saved modify bit in the PFN STATE
array element. Since the PFN BLINK array overlays the PFN WSLX
array, inserting the page into the free or modified page list supplants
the PFN WSLX array contents. The new location of the page is inserted
into the PFN STATE array.

f. The WSLE is made available (that is, zeroed). The PHD$1-PTWSLE­
VAL array element for the page table page mapping this page is decre­
mented. If the count makes the transition to zero, the page table
page is now "dead," that is, it maps no valid pages, and PHD$W _

16.3 Page Faults for Process-Private Pages

PTCNTVAL is also decremented. Chapter 17 contains further infor­
mation on dead page table pages. PCB$1-PPGCNT is decremented to
indicate one less private page.

G)If the reference count (decremented in step 4e) does not go to zero, there is
outstanding 1/0 for this page. MMG$FREWSLX changes the PFN STATE
array element value to release pending. It updates the modify bit in the
PFN STATE array to record the ultimate destination for the page (the free
or modified page list).

@When direct 1/0 for the page completes, the 1/0 completion routine in­
vokes MMG$UNLOCK, in module IOLOCK. It acquires the MMG spin­
lock and invokes MMG$DECPTREF, in module PAGEFAULT, to update
the data structures describing the page table page that maps the page.

MMG$DECPTREF decrements the PFN SHRCNT array element for
the page table page to indicate that it maps one less valid page. If this
is the last valid or transition page mapped by the page table page (that
is, if the SHRCNT makes the transition from 1 to 0), MMG$DECPTREF
locates the WSLE for the page table page and unlocks it from the process's
working set list. It also decrements PHD$W _PTCNTACT, the number of
active page table pages for the process, and the PHD's entry in the array
at PHV$G1-REFCBAS, the number of reasons the PHD should remain
in memory. If that count goes to zero, MMG$DECPTREF awakens the
swapper process to outswap the PHD.

MMG$UNLOCK decrements the page's PFN REFCNT array element.
If it goes to zero, MMG$UNLOCK places the page on either the free or
the modified page list, based on the setting of the saved modify bit, and
changes the PFN STATE array element. It releases the MMG spinlock and
returns.

G) If the page was placed on the modified page list, the next stages in its
processing are performed by the modified page writer and described in
this step and step 8. If the page was placed on the free page list, the next
stages in its processing are described in step 9.

The modified page writer eventually initiates a write of this physical
page to the backing store address in the PFN BAK array. A writable page
that is not copy-on-reference is written back to the file where it originated.
The modified page writer then removes the page from the modified page
list.

It sets the PFN STATE array element for the page to write in progress
and clears the saved modify bit. The REFCNT of 1 reflects the outstanding
1/0 operation.

Note that a section containing writable private pages that are not copy­
on-reference cannot be produced by the linker. Such a section must be
created with the Create and Map Section ($CRMPSC) system service.

G)When the modified page write completes, the page's PFN REFCNT array

443

Paging Dynamics

16.3.1.2

444

element is decremented to zero. Because the saved modify bit is clear, the
page is placed on the free page list.

G) A page placed on the free page list normally remains attached to the
process for some time; that is, the PTE contains its PFN, and the PFN
PTE array contains the address of the process PTE.

When the physical page is allocated for another purpose, several steps
must be taken to break the ties between the process virtual page and
the physical page that is about to be reused. The routine MMG$DEL­
CONPFN, in module ALLOCPFN, performs these steps:

a. It locates the PTE from the contents of the PFN PTE array element.
b. The process PTE must be altered to reflect the backing store address

of the page. For a non-copy-on-reference page, it changes the PTE to
contain a PSTX, the same contents it had before the initial page fault.
It leaves the protection and owner fields the same.

c. It invokes MMG$DECPTREF, described in step 6.
d. It clears the PFN array elements for the physical page before reallo­

cating it. In particular, it clears the PFN PTE array element, the only
connection from the PFN database to the process page table.

Page Faults Out of Transition States. Figure 16.2 also shows some of the
transitions that a page makes when a page fault occurs while the physical
page is in the transition state. While the changes back to the active state are
straightforward, there are details about each fault that should be mentioned.
(Most of the following transitions are represented in the figure by a P within
a circle.)

• MMG$PAGEFAULT resolves a page fault from the free page list by first re­
moving the page from the list. It invokes MMG$MAKEWSLE, described in
step le of Section 16.3.1.1, to update the memory management data struc­
tures to reflect the fact that the page is in the working set list (the PHD$L_
PTWSLEVAL array, possibly PHD$W_PTCNTVAL, the PFN WSLX and
REFCNT array elements, and PCB$1-PPGCNT).

MMG$PAGEFAULT changes the PFN STATE array element for the page
to active and sets the valid bit in the PTE. (Recall that a transition PTE
retains the PFN of the physical page in which the virtual page resides.)
It releases the MMG spinlock, cleans up the stack, and executes an REI

instruction to return control to the faulting instruction.
• A page fault from the modified page list is resolved in exactly the same

way. The figure shows that the page was previously modified but never
written to its backing store by returning the page to its modified state.

In fact, the modify bit in the PTE is not set by MMG$PAGEFAULT.
Rather, the saved modify bit in the PFN STATE array records the fact that
the page is modified but has not been backed up.

16.3.1.3

16.3 Page Faults for Process-Private Pages

• A page fault from the release pending state is similar, except that the page
does not have to be removed from a page list. MMG$PAGEFAULT changes
the PFN STATE array element for the page to active, sets the valid bit in
the PTE, and increments the PFN REFCNT array element ..

Artistic license is taken in the figure to differentiate physical pages that
were modified from pages that were not. Again, the only difference between
the two pages is the setting of the saved modify bit in the PFN STATE array,
not the setting of the modify bit in the PTE.

• A transition that deserves special comment is a page fault that occurs
while the modified page writer is writing the page to its backing store.
The saved modify bit is cleared before the write begins so that the page
will be placed on the free page list when the write completes. Although
the page has not yet been completely backed up, it is assumed that the
write will complete successfully. A page fault for the page can thus put
it into the active but unmodified state. The only difficulty occurs in the
event of a write error. The modified page writer's 1/0 completion routine,
WRITEDONE in module WRTMFYPAG, detects this state of affairs and
turns the saved modify bit back on .

• A page fault for a page being read in response to a previous page fault results
in placing the process into a collided page wait state lsee Section 16.10.3).

Copy-on-Reference Page. The more common type of writable process-private
page is a copy-on-reference page. Figure 16.3 illustrates the transitions that
such a page makes from its initial page fault until it is written to some back­
ing store. The numbers in the figure are keyed to the following explanations
of the transitions.

Many of the transitions that occur here are the same as the case just
described. This section notes each transition but elaborates only those areas
that are different.

G)The initial value in the PTE jSTART 1 in Figure 16.3) is a PSTX; the
copy-on-reference bit IPTE(16)) is set. The writable bit IPTE(18)) is usually
set. When a page fault occurs, MMG$PAGEFAULT performs the actions
described in step 1 in Section 16.3.1.1. It also takes two additional steps:

a. First, it updates the PFN STATE array element to the value read in
progress, with the saved modify bit set. The page's backing store will
be a page file, not the image file; the image page must not be modified,
yet each of the potentially many copies of the page may be modified.
Setting the saved modify bit guarantees that an initial copy of the page
will be written to the page file when it is first paged out, whether or
not it has been modified.

b. Second, it assigns the page a backing store (namely, the process's
current page file), decrements the reserved block count, and copies
PHD$L_PAGFIL to the PFN BAK array element. (Section 16.6 provides

445

Paging Dynamics

START1 START3 START2

~----''---~ ,-- - - ----1
I~--~---.

PTE contains
PSTX, CRF

PTE contains
GPTX

GPTE contains
GSTX, CRF

I
I
I
I
I

PTE­
Demand Zero Page

I ...__,,__ ___ __,

I
I
I
I
I
I

The area
within these

PTE - Transition 1 The area
within these
dotted lines dotted lines In working set

START4

,---- ----1
I

PTE contains I
GPTX

GPTE contains O

is also shown Saved modify
in Figure 16-6.1 ...__,,.......;..bi-'-t ""-se;..;t~---'

I
I
I
I
I
I
I

is also shown
in Figure 16-7. 1

--®--

I
I L __ _ _ _J

PTE is valid

In working set

Modify bit set
---,

I
I
I
I
I
I
I
I
I
I PTE - Transition

Saved modify
bit set

-----®~

-0--

PTE - Transition

Saved modify
bit set

To Figure 16-4

CSJ

I
I
I
I
I
I
I
I
I
I

-®--'

I
I L __________ _

~
Page fault transition 0ther transitions Connection for

copy-on-reference page
Connection for

446

page file global page

Figure 16.3
Page Transitions for Private and Global
Copy-on-Reference Pages and for Demand Zero Pages

PFN Data

Page not in
physical memory;
no PFNdata

Read in progress
REFCNT=2
BAK = PGFLX,O

Active and valid
REFCNT>O
BAK = PGFLX,O

Release pending
REFCNT>O
BAK = PGFLX,O

Modified page list
REFCNT=O
BAK= PGFLX,O

CV
Connection for
global page

16.3.2

16.3 Page Faults for Process-Private Pages

further details on page file assignment, reservation, and allocation.) At
this time, all ties to the original section file have been broken. When
the modified page writer first writes this page to its backing store (as
it certainly will because the saved modify bit was just set), it will
allocate an actual block in the page file.

G)After the read completes, the 1/0 postprocessing routine PAGIO, in mod­
ule IOCIOPOST, updates the page PFN STATE array element value to
active and sets the PTE valid bit. It also subtracts the number of pages
read from the PSTE's reference count to show that many fewer PTEs
mapping pages from that section file.

G)This transition is described in Section 16.3.2.
@When the copy-on-reference page is removed from the process working

set and its REFCNT goes to zero, the page is placed on the modified page
list.

G) If the REFCNT did not go to zero when the page was removed from the
process working set, the physical page is placed into the release pending
state until the 1/0 completes.

G) At that time, the page is placed on the modified page list.
G)This transition is described as transition 3 in Section 16.4.3.

A page fault from either the release pending state or from the modified
page list puts the page back into the active (but effectively modified) state.
That is, the saved modify bit in the PFN STATE array element remains set,
causing the page to be put back on the modified page list when it is removed
from the working set again.

When the modified page writer writes the page to its backing store in a page
file, the page makes a transition from the modified page list. Figure 16.4, the
diagram for faults from the page file, shows this transition. The connection
between Figure 16.3 and Figure 16.4 is indicated by path C in the two figures.

Demand Zero Page

A demand zero page is created by the Create Virtual Address ($CRETVA) and
Expand Region ($EXPREG) system services. These services can be requested
explicitly by an image or implicitly by the system on behalf of the process,
for example, as part of image activation.

When MMG$PAGEFAULT detects a page fault for a demand zero page, it
takes the following steps. (These steps all take place beginning at the path
labeled START 2 in Figure 16.3.)

1. It invokes MMG$1NINEWPFN, MMG$INCPTREF, and MMG$MAKE­
WSLE, described in step 1 of Section 16.3.1.1, to allocate a physical page
and update the relevant memory management data structures.

2. MMG$PAGEFAULT initializes the PTE with the PFN of the allocated

447

Paging Dynamics

16.3.3

16.3.4

page1 a protection allowing kernel mode write, an owner of kernel mode,
and the valid and modify bits set.

3. It assigns the page a backing store (namely, the process's current page
file), decrements the reserved block count, and copies PHD$1-PAGFIL
to the PFN BAK array element. Allocation of an actual block in the page
file is done later by the modified page writer.

4. It zeros the page by executing a MOVC5 instruction with a zero-length
source string and a null fill character.

5. It invalidates the translation buffer to remove the cached PTE contents
and replaces owner and protection in the PTE with the original ones.

6. Finally, MMG$PAGEFAULT releases the MMG spinlock, cleans up the
stack, and dismisses the fault by executing an REI instruction, returning
to the instruction that incurred the page fault.

Global Copy-on-Reference and Page-File Section Pages

There are two types of pages that undergo the same set of state transitions as
private copy-on-reference section and demand zero pages. These are global
copy-on-reference pages and global page-file section pages. The details of
global page fault resolution are discussed in Section 16.4.

Suffice it to say here that a global copy-on-reference page is initially faulted
from a global file but is subsequently indistinguishable from other prbcess­
private pages. A global page-file section page is initially faulted as a demand
zero page and from then on is indistinguishable from other global writable
pages, except that its backing store is in a page file.

These transitions are shown in the paths labeled STAllT 3 and START 4
in Figure 16.3.

Page Located in a Page File

The transitions that a page faulted from the page file goes through (see
Figure 16.4) are the same as the transitions described for pages that are
not copy-on-reference (see Figure 16.2). The only difference in the PFN data
between the two figures is that the PFN BAK array element in Figure 16.4
indicates that the page belongs in a page file, while the PFN BAK array
element in Figure 16.2 contains a PSTX.

The other difference between the two figures is the entry point into the
transition diagram. A page can start out in a section file (PTE contains PSTX)
but a page can never start out in a page file. The entry into Figure 16.4 is
from path C in Figure 16.3, from one of four initial states that eventually
result in the physical page contents' being written to the page file.

16.4 PAGE FAULTS FOR GLOBAL PAGES

The transitions of a global page table entry (GPTE) and its associated PFN

448

16.4 Page Faults for Global Pages

I
I
I
I
I
I
I

PTE contains
Page File Virtual Block

Number (PGFLVB)

PTE - Transition

In working set

PTE is valid

In working set

Modify bit clear

4

From bottom
of figure

PTE is valid

In working set

Modify bit set

4

I PTE -Transition

I
I
I
I
I
I
I
I
I :- - - - - - - - - -®- Saved modify I Saved modify -®- --------i

I bit clear 1 bit set
I

PTE - Transition

Saved modify bit set

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I PTE - Transition
r+------ ---- -------®-
I Saved modify bit clear
I
I
I
I
I
.... ®-

--®---

PTE - Transition

Saved modify bit clear

To top of
figure

-0-- CV
Page fault transition 0ther transitions Connection for

copy-on-reference page

Figure 16.4
Transitions for a Page Located in a Page File

I
I
I
I
I
I
I
I -®._!

From
Figure 16-3

PFN Data

Page not in
physical memory;
no PFN data

Read in progress
REFCNT= 2
BAK= PGFLVB

Active and valid
REFCNT> 0
BAK= PGFLVB

Release pending
REFCNT> 0
BAK= PGFLVB

Modified page list
REFCNT = 0
BAK= PGFLVB

Write in progress
REFCNT = 1
BAK= new PGFLVB

Free page list
REFCNT = 0
BAK= new PGFLVB

449

Paging Dynamics

16.4.1

450

database entries can be described in much the same way as those for process­
private pages. A major difference, however, is the presence of both a GPTE
and potentially multiple process PTEs referring to the same page. This sec­
tion assumes much of the detail shown earlier in Figure 16.2 and focuses on
an exampl~ in which two processes map to the same global page.

Global Read-Only Page

Figure 16.5 illustrates the transitions that occur for a global read-only page (in
an already created section) that is mapped by two processes. The numbers in
the figure are keyed to the explanations of the transitions that follow. The
figure assumes the page to be read-only. The implications of a read/write
global page are described in Section 16.4.2.

When the global section is initially created, as described in Chapter 15,
the data structures described in Chapter 14 are initialized. The GPTE for the
page represented in the figure contains a global section table index (GSTX),
which locates the global section table entry (GSTE) containing information
about the global file.

G) When process A maps to the section, the process PTE contains a global
page table index (GPTX), effectively a pointer to the GPTE.

G) When process B maps to the section, its PTE contains exactly the same
GPTX as found in process A's PTE.

G) Process B happens to fault this global page first. Several things happen:

a. MMG$PAGEFAULT, noting that process B's PTE contains a GPTX,
indexes the global page table with it to get the GPTE.

b. The GPTE contains a GSTX, indicating that the global page resides
on mass storage. In order to initiate the read of a global section page,
MMG$PAGEFAULT performs many of the same steps as for a process­
private section page (see step 1 of Section 16.3.1.1).

c. MMG$PAGEFAULT invokes MMG$ININEWPFN to allocate a physi­
cal page and MMG$INCPTREF to update the data structures describ­
ing the global page table page that maps the page. (The PHD in this
case is the system header.) The address of the GPTE is stored in the
PFN PTE array element, rather than the address of a process PTE, and
a type code of global page is stored in the PFN TYPE array element.

d. MMG$MAKEWSLE updates the data structures related to process B's
working set list, initializing the WSLE. WSLX information is not kept
for a global page. Instead, MMG$MAKEWSLE increments the PFN
SHRCNT array element for the page and, because the count makes
the transition from 0 to 1, the PFN REFCNT array element as well.

It invokes MMG$INCPTREF, which processes B's process page table
that maps the global page and increments the PHD$L_PTWSLEVAL
array element corresponding to that page table page. It increments

16.4 Page Faults for Global Pages

Process B

Process A

PTE contains
Global Page Table

Index (GPTX)

START

GPTE contains
Global Section Table

Index (GSTX)

GPTE=GSTX

1---~::~~----1--~~~~--1----~:~::::---
I I

L_____ ------------ ------------ ----~
No change 3

PTE-GPTX 2 GPTE-T,.oo;tioo

No change

PTE is valid

In working set

No change

PTE is valid

In working set

PTE =GPTX

No change

E

PTE=GPTX

PTE is valid

In working set

No change

PTE is valid

In working set

PTE = GPTX

GPTE is valid

GPTE is valid

GPTE is valid

GPTE - Transition

:-~-~~ch~~------~--~~ha~~----------8 _____ 1
I PTE = GPTX PTE = GPTX GPTE = GSTX I
I I L ______________________________________ ~

-0-
Page transitions

Figure 16.5
Page Transitions Made by a Global Page Mapped by
Two Processes

These two
states are

exactly
the same.

PFN Data

Page not in
physical memory;
no PFN data

No PFN data

No PFN data

Read in progress
REFCNT = 2
SHRCNT = 1
BAK=GSTX
PTE-GPTE

Active and valid
REFCNT = 1
SHRCNT= 1
BAK=GSTX
PTE-GPTE

Active and valid
REFCNT = 1
SHRCNT=2
BAK=GSTX
PTE-GPTE

Active and valid
REFCNT= 1
SHRCNT = 1
BAK=GSTX
PTE-GPTE

Free page list
REFCNT= 0
SHRCNT=O
BAK=GSTX
PTE-GPTE

No PFN data

451

Paging Dynamics

452

PCB$L_GPGCNT to indicate that process B has one more valid global
page.

e. MMG$PAGEFAULT sets the PFN STATE array element for the page
to read in progress.

f. It stores the GSTX in the PFN BAK array element.
g. While the read is in progress, the GPTE contains a transition PTE but

process B's PTE still contains the GPTX.
h. The PFN REFCNT array element indicates two references: one for the

read in progress and one because the page is in process B's working
set (the PFN SHRCNT array element is nonzero).

@After the read completes, the 1/0 postprocessing routine PAGIO, in mod­
ule IOCIOPOST; takes the following steps:

a. It acquires the MMG spinlock.
b. It decrements the PFN REFCNT array element. (The REFCNT and

SHRCNT are both 1 at this point.)
c. It changes the PFN STATE array element for the page to active.
d. It sets the valid bit in the GPTE to record the fact that this page is in

a process working set.
e. The process PTE, located through its address stored in the 1/0 request

packet, is set up to contain the low-order 21 bits from the GPTE, with
the valid bit set and the window and modify bits cleared.

f. PAGIO reports the scheduling event page fault completion for pro­
cess B so that it becomes computable.

g. It releases the MMG spinlock.

G)When process A faults the same global page, MMG$PAGEFAULT's initial
action is the same as it was in step 3, because the PTE is a GPTX. Now,
however, MMG$PAGEFAULT finds a valid GPTE. Resolution of this page
fault is simple.

Through MMG$MAKEWSLE and MMG$INCPTREF, whose actions are
described in more detail in step 3d, MMG$PAGEFAULT initializes the
WSLE for process A, increments its PCB$L_GPGCNT, increments the
PFN SHRCNT array element to 2, and locks process A's page table page
that maps the global page.

MMG$PAGEFAULT copies the low-order 21 bits of the GPTE to process
A's PTE, sets the valid bit, and clears the window and modify bits. It
releases the MMG spinlock, cleans up the stack, and executes an REI

instruction to dismiss the fault.
0 When MMG$FREWSLE removes the global page from process B's working

set, it restores process B's PTE to its previous state (and not some tran­
sition form). Because the PFN PTE array element contains the address of
the GPTE, MMG$FREWSLE must recalculate the GPTX. The calculation
is straightforward. It subtracts the contents of MMG$GL_ GPTBASE from

16.4.2

16.4 Page Faults for Global Pages

the PFN PTE array element's contents, divides the result by 4 (to create
a longword index), and stores the quotient in process B's PTE as a GPTX.

It invokes MMG$DECPTREF, described in step 6 of Section 16.3.1.1.
MMG$FREWSLE decrements the PFN SHRCNT array element for the

page of memory. Because the SHRCNT is still positive, the GPTE remains
valid.

MMG$FREWSLE updates the data structures related to process B's
working set list, clearing the WSLE, decrementing the PHD$L_PTWSLE­
VAL array element for the process page table page that mapped the
page and, if appropriate, PHD$W_PTCNTVAL. It decrements process B's
PCB$L_GPGCNT.

G) When MMG$FREWSLE removes the global page from process A's working
set, it restores the process PTE as described in step 6.

It decrements the PFN SHRCNT array element, this time to zero. It
therefore clears the valid and modify bits in the GPTE, to turn it into a
transition PTE and decrements the PFN REFCNT array element. In the
case of a global read-only page with a REFCNT of zero, such as this one,
the page is placed on the free page list and the PFN STATE array element
set to the free page list. The other PFN array elements are unchanged.

G) When the physical page is reused, the ties must be broken between the
physical page and, in this case, the GPTE. (None of the processes mapped
to this page are affected in any way by this step.)

The contents of the PFN BAK array element, a GSTX, are inserted
into the GPTE, located by the contents of the PFN PTE array element.
MMG$DECPTREF, described in step 6 of Section 16.3.1.1, is invoked
to update the global page table page that contains the GPTE. The PFN
PTE array element is then cleared, breaking the connection between the
physical page and the global page table.

These steps put the process and global page tables back to the state they
were in following step 2 (although it is pictured here as a different state
to simplify the figure.)

Global Read/Write Page

The transitions that occur for a global writable page are the same as those
for a process-private page that is not copy-on-reference. The only difference
between such transitions and those illustrated in Figure 16.2 is that the
GPTE, not the process PTE, is affected by the transitions of the physical
page.

The process PTE for a global page contains a GPTX up to the time that
the page is made valid. Only then is a PFN inserted into the process PTE.
As soon as the page is removed from the process working set, the GPTX is
restored to the process PTE. All ties to the PFN database are made through

453

Paging Dynamics

The area
within these
dotted lines
is also shown
in Figure 16-3.
Many of A's
transitions
are, as well.

---0-
Page transitions

~
Connection for
global page

16.4.3

454

Process B

Process A

PTE contains
Global Page Table

Index (GPTX)

No change

START

GPTE contains
Global Section Table
Index (GSTX), CRF

GPTE = GSTX, CRF

PFN Data

Page not in
physical memory;
no PFN data

No PFN data

,---- ----,
I
I
I PTE = GPTX PTE = GPTX GPTE = GSTX, CRF No PFN data
I
I
I
I
I
I
I

No change No change

I PTE -Transition

Read in progress
z REFCNT=2
~ BAK= PGFLX,O

: In working set PTE = GPTX GPTE = GSTX, CRF
"' PTE - Process B's
iil page table

entry
I Saved modify bit set
I
I
I No change
L___ _ __ _J

To Figure 16-3

Figure 16.6

PTE - Transition

In working set

Saved modify bit set

To Figure 16-3

GPTE = GSTX, CRF

Page Transitions for a Global Copy-on-Reference Page

Read in progress
z REFCNT=2
~ BAK = PGFLX,O
"' PTE - Process A's
< page table

entry

the GPTE, which retains the PFN while the physical page is in the va.rious
transition states.

Global Copy-on-Reference Page

The global pages thus far described are all shared pages. A global copy-on­
reference page, however, is shared only in its initial state. As soon as the
fault occurs, the page is treated exactly like a process-private page.

Figure 16.6 illustrates the transitions for a global copy-on-reference page.
The numbers in the figure are keyed to the explanations of the transitions
that follow.

16.4 Page Faults for Global Pages

G)The initial conditions are identical to those in Figure 16.5. After the
section is created, each of its GPTEs contains a GSTX. In this case, the
copy-on-reference bit is set in each GPTE.

G) Process A maps the page; the GPTX is stored in its PTE.
Process B maps the page; the same GPTX is stored in its PTE. Up to

this point, nothing is different from Figure 16.5.
G) When process B faults the page, MMG$PAGEFAULT locates the GPTE

from the GPTX and notes that the page is located in a global section
file and is copy-on-reference. MMG$PAGEFAULT, in concert with the
routines described in step 1 of Section 16.3.1.1, allocates a page from
the free page list and makes the following modifications to the involved
memory management data structures:

a. The GPTE is not altered and retains its GSTX contents.
b. Process B's PTE is set to a transition PTE containing the PFN of the

allocated page.
c. The PFN SHRCNT array element for the page table page containing

process B's PTE is incremented. If the count was zero, the page table
page is locked in process B's working set list, PHD$W _PTCNTACT is
incremented, and the PHD's entry in the array at PHV$G1-REFCBAS
is incremented.

d. The PFN TYPE array element for the physical page is set to process
page.

e. An entry in process B's working set list is initialized to describe the
faulted page.

f. The PFN WSLX array element is set to the index of the WSLE.
g. The PHD$1-PTWSLEVAL array element corresponding to the page

table page that maps the faulted page is incremented. If the count was
zero, PHD$W_PTCNTVAL is incremented.

h. PCB$1-PPGCNT is incremented.
i. The PFN REFCNT array element is incremented twice, once for the

page's membership in the working set and once for the 1/0 in progress.
j. The PFN STATE array element is set to read in progress and modify.

k. A backing store is assigned to the page, typically a reserved page from
the process's current page file. The contents of PHD$1-PAGFIL are
stored in the PFN BAK array element.

Note that all ties between process Band the global section are broken.
The page is now treated exactly like a private copy-on-reference page.
The two boxes for process B within the dotted lines in Figure 16.6 are
also pictured.within dotted lines in Figure 16.3.

MMG$PAGEFAULT initiates a read of the faulted page.
G) When process A faults the same page, exactly the same steps are taken,

this time with. a totally different physical page.

Thus, both process A and process B get exactly the same initial copy of

455

Paging Dynamics

Process B

r---- ----,
I I
I I
I PTE=GPTX I
I I
I I
I I

The area I I
within these I I
dotted lines I I
is also shown I I
in Figure 16-3. I PTE is valid I

I In working set I
I I
I Modify bit set I
I I
I I
I I
L---

___ _J

To Figure 16-3

--0-
Page transitions

l@l
Connection for

Process A

PTE contains
Global Page Table

Index (GPTX)

No change

PTE=GPTX

No change

PTE=GPTX

PTE is valid
In working set
Modify bit set

START

GPTE contains zero

GPTE=O

GPTE = 0

GPTE is valid

No change

GPTE is valid

PFN Data

Page not in
physical memory;
no PFN data

No PFNdata

No PFN data

Active and valid
REFCNT>O
BAK= PGFLX,O

Active and valid
REFCNT>O
BAK = PGFLX,O
PFN in PTE(A) and
PTE(B) are identical

page file global page To Figure 16-3

16.4.4

456

Figure 16.7
Page Transitions for a Global Page-File Section Page

the global page from the global file but, from that point on, each pro·cess has
its own private copy of the page to modify.

Global Page-File Section Page

A global page-file section provides a means for processes to share global pages
without the need of a backing store file. By its nature, such a global page has
no initial contents and is thus initialized as a demand zero page.

Figure 16.7 illustrates the transitions that occur for a global page-file sec­
tion page. The numbers in the figure are keyed to the explanations of the
transitions that follow.

16.4 Page Faults for Global Pages

G)The initial conditions are identical to those in Figure 16.5. The section is
created; each of its GPTEs contains a zero in the PFN field.

G) Process A maps the page; the GPTX is stored in its PTE. Process B maps
the page; the same GPTX is stored in its PTE.

G)When process B faults this page, MMG$PAGEFAULT locates the GPTE
from the GPTX and notes that the page is demand zero. MMG$PAGE­
FAULT, in concert with the routines described in step 1 of Sec­
tion 16.3.1.1, allocates a page from the free page list and makes the follow­
ing modifications to the involved memory management data structures:
a. The PFN SHRCNT array element for the global page table page con­

taining the GPTE is incremented. If the count was zero, the page
table page is locked in the system working set list, the system header
PHD$W _PTCNTACT is incremented, and the system header's entry
in the array at PHV$GL_REFCBAS is incremented.

b. The PFN TYPE array element for the allocated page is set· to global
page.

c. An entry in process B's working set list is initialized to describe the
faulted page.

d. The PFN WSLX array element is set to the index of the WSLE.
e. The PFN SHRCNT array element for the page table page containing

process B's PTE is incremented. If the count was zero, the page table
page is locked in process B's working set list, PHD$W_PTCNTACT is
incremented, and the PHD's entry in the array at PHV$GL_REFCBAS
is incremented.

f. The PFN PTE array element for the allocated page points to the GPTE.
g. The PHD$1-PTWSLEVAL array element corresponding to the page

table page that maps the faulted page is incremented. If the count was
zero, PHD$W _PTCNTV AL is incremented.

h. PCB$L_GPGCNT is incremented.
i. The PFN SHRCNT and REFCNT array elements for the allocated page

are incremented.
j. The PFN STATE array element is set to active.

k. A backing store is assigned to the page, a reserved page from the cur­
rent page file in use for system working set list paging. The contents
of field PHD$L_PAGFIL in the system header are stored in the PFN
BAK array element.

1. The process PTE is initialized with the PFN of the allocated page,
a protection allowing kernel mode writes, an owner of kernel mode,
and the valid and modify bits set.

m. The page is zeroed.
n. The cached PTE is invalidated in the translation buffer, and the correct

owner mode and protection code are inserted into the PTE. The PTE
modify bit is left set.

o. The contents of the process PTE are copied to the GPTE.

457

Paging Dynamics

@When process A faults the same page, MMG$PAGEFAULT locates the
GPTE from the GPTX and finds that the GPTE is valid. The valid GPTE
is copied to process A's PTE.

Transitions for a global page-file section page are the same as those for a
page located in a page file (see Figure 16.4). However, for a global page-file sec­
tion page, the GPTE, not the process PTE, is affected by the transitions that
the physical page makes. Once the global page is removed from a process's
working set, the process PTE reverts to the GPTX form.

16.5 PAGE FAULTS FOR SYSTEM PAGES

16.5.1

458

Four kinds of pageable system space pages occur in the system working set
list:

• Read-only pages from image sections in loadable executive images
• Read/write pages from image sections in loadable executive images
• Paged pool pages
• Global page table pages

This section summarizes how their page faults are handled.
In theory, the base image, SYS.EXE, can contain pageable code and data.

However, in VMS Version 5.2, it has no pageable sections; the only pageable
sections in system space are from loadable executive images. When a load­
able executive image is mapped, a section table entry in the system section
table (which also serves as the global section table) is initialized to describe
each pageable section in the image. Each SPTE that maps a page in a page­
able section has both type bits set to indicate the process section index form
of invalid PTE and contains the index of the section's entry in the system
section table.

If the section is writable, each of its SPTEs also has the copy-on-reference
and writable bits set. Chapter 29 describes the mapping of loadable executive
images in detail.

The SPTEs that map both paged pool and the global page table have the
demand zero page form of invalid PTE.

System Page That Is Not Copy-on-Reference

The transitions for a read-only system section page resemble those described
in Section 16.3.1.1 and shown in Figure 16.2. This section notes only the
transitions that differ from those for a private page that is not copy-on­
reference.

1. MMG$PAGEFAULT locates an entry in the system working set list for
the faulted page. It allocates a page from the free list. There is no need to
update data structures describing the page table page that contains the

16.5.2

16.5.3

16.6 Use of Page Files

SPTE. The SPT does not page; its page table pages are always valid. The
page type stored in the PFN TYPE array element is system page. The
system header does not have a PHD$L_PTWSLEVAL array, nor is there
any need to record the number of page table pages with valid WSLEs; the
system working set list is not outswapped.

MMG$PAGEFAULT copies the original SPTE contents to the PFN BAK
array element. It locates the system section table entry just as it would
a PSTX and calculates the virtual block number of the faulted page.

2. After the 1/0 completes, PAGIO, the 1/0 postprocessing routine, reports
a page fault completion scheduling event for the process that faulted the
page.

3. The system working set is not subject to purging, swapper trimming,
or working set limit adjustment. A page is removed from the system
working set list when space is required for another page. Also, unloading
of a loadable executive image may result in deletion of pages.

On an SMP system, when a page is removed from the system working
set list, the cached SPTE contents must be flushed from the translation
buffers of all members of the system. Chapter 34 describes how the
processors cooperate to perform the invalidation.

System Page That Is Copy-on-Reference

The transitions for a copy-on-reference system section page resemble those
described in Section 16.3.1.3 and shown in Figure 16.3.

One difference worth noting is that space is reserved in one or more page
files for backing writable system pages. Field PHD$1-PAGFIL in the system
header is a template backing store value for writable system pages.

The page type stored in the PFN TYPE array element is system page.

Demand Zero System Page

The transitions for a demand zero system page resemble those described in
Section 16.3.2 and shown in the path labeled START 2 in Figure 16.3.

One difference worth noting is that the page type stored in the PFN TYPE
array element is either global page table page or, for paged pool, system page.

After the page is zeroed, its SPTE entry is flushed from the translation
buffer, and each active member of an SMP system must invalidate its entry.
The correct owner and protection are stored in the SPTE.

16.6 USE OF PAGE FILES

During system initialization and operation, one or more page files are placed
into use. When a process is created, it is assigned to a page file, and space in
that page file is reserved for it. When a process faults a COPY"On-reference or
demand zero page, the page is charged against the reserved space. Assignment

459

Paging Dynamics

16.6.1

460

to a particular block in the page file is deferred until the modified page writer
actually prepares to write the page. During the lifetime of the process, it can
be assigned concurrently to as many as four page files.

This section describes the data structures and mechanisms related to
process page file use.

Related Data Structures

A nonpaged pool data structure called a page file control block (PFL) describes
each page file in use. Chapter 14 depicts the PFL (see Figure 14.24) and
describes its fields. Those with particular importance to this discussion
are PFL$L_FREPAGCNT, the number of blocks that can be allocated, and
PFL$L_RSRVPAGCNT, the number of blocks that can be reserved without
overcommitting the file. Both fields are initialized to the number of total
blocks in the file available for use.

PFL$L_FREPAGCNT is the actual number of blocks free in the page file.
This field is not decremented until the modified page writer actually assigns
a particular block to a particular page. It is incremented whenever a page file
page is released, either because its virtual page is being deleted or its contents
are known to be obsolete. (That is, when a page previously assigned a block
in a page file is placed on the modified page list, its backing store copy can
no longer be regarded as good.)

In contrast, PFL$L_RSRVPAGCNT is charged when page file blocks are
reserved for a process's use. Reserved space is only a logical claim on the
page file; actual allocation of blocks is not made until the modified page
writer is about to write a cluster of pages to the file. The executive com­
putes the ratio of reservable block count to total size for each page file to
select the most lightly loaded one, when reserving space for a newly created
process or one that has used its current reservation. PFL$L_RSRVPAGCNT
can, in fact, become negative if the number of pages assigned backing store
in the file exceeds the physical size of the file. On most systems, however,
only a small percentage of reserved blocks are written; thus, an overcommit­
ment is viewed as benign. (The display for the Digital command language
SHOW MEMORY /FILES command shows the overcommitment as a negative
number.)

A number of PHD fields describe the process's connection to page files.
Beginning at PHD$B_PRCPGFL, there is a four-byte array representing

the page files to which the process has been assigned. The array is indexed
by a two-bit process-local page file number. The elements of this array are
initialized to zero to indicate no assignment. When a process is assigned to
a page file, that file's index (see Figure 14.24) is stored in the next available
element of PHD$B_PRCPGFL.

The low four bits of PHD$B_PGFLCNT contain the number of page files
to which the process has been assigned, that is, the number of valid elements

16.6.2

16.6 Use of Page Files

in the four-byte array. Each of the high four bits, when set, means that the
corresponding page file has a pending deassign.

PHD$B_PAGFIL contains the systemwide index of the page file in which
the process has reserved blocks. It is part of the longword field PHD$1-
PAGFIL, which contains the corresponding process-local page file index in
bits (21:20) and zero in the low-order bits. This field serves as template
backing store for the construction of a PTE with a page file backing store ad­
dress. PHD$B_PRCPAGFIL contains the process-local index associated with
that page file.

PHD$W_PRCPGFLOPAGES contains the total reserved blocks in the cur­
rent page file, including blocks already allocated by the modified page writer.
PHD$W _PRCPGFLPAGES contains the reserved blocks not yet allocated in
the current page file.

Beginning at PHD$1-PRCPGFLREFS, there is a four-longword array in­
dexed by the two-bit process-local page file index. Each of its elements rep­
resents the number of process PTEs currently associated with that page file.
The elements count downward from 10000016, 1 larger than the maximum
page file block number that can be accommodated in a PTE, FFFFFi6· (Count•
ing downward simplifies the test for whether the number has reached its
maximum.) The difference between 10000016 and an array element's con­
tents represents the total number of blocks in the page file referenced by
that process's PTEs. The array element for the current page file is updated
only when the currently reserved pages have been used. Thus for the current
page file, the difference between PHD$W_PRCPGFLOPAGES and PHD$W_
PRCPGFLPAGES represents additional referenced blocks.

Assignment and Deassignment to a Page File

When a process is created, MMG$ASNPRCPGFLP, in module PAGEFILE, is
invoked to assign to it the page file estimated to have the most available
space, the one with the largest ratio of reservable blocks to total blocks. The
routine stores the systemwide index of that page file in PHD$B_PAGFIL
and in the byte at PHD$B_PRCPGFL. It stores a process-local index of 0 in
PHD$B_PRCPAGFIL.

MMG$RSRVPRCPGFL2, in module PAGEFILE, is invoked to reserve a
number of blocks in the page file for the process's use. The number is
stored in PHD$W_PRCPGFLOPAGES and PHD$W_PRCPGFLPAGES and
subtracted from PFL$1-RSRVPAGCNT in the page file block.

Whenever the process faults a page that requires page file backing store,
MMG$PAGEFAULT decrements PHD$W _PRCPGFLPAGES and copies
PHD$L_PAGFIL to the PFN BAK array element for the page. When no
more reserved pages remain (when PHD$W _PRCPGFLPAGES becomes zero),
MMG$PAGEFAULT invokes MMG$SWITCH_PRCPGFL, in module PAGE­
FAULT, to reserve more page file space for the process.

461

Paging Dynamics

MMG$SWITCH_PRCPGFL subtracts PHD$W _PRCPGFLOPAGES from
the PHD$L_PRCPGFLREFS element corresponding to the current page file,
generating the fatal bugcheck BADPRCPGFLC if the result is negative.

MMG$SWITCH_PRCPGFL invokes MMG$ASNPRCPAGFL to select the
best page file for a new reservation. Unless the process has already been
assigned to four page files, the best page file is the one estimated to have the
most available space; it may be the same one the process was just using. If the
process has been assigned to four page files, the new reservation must come
from one of them. If the process has not been assigned space in the chosen
page file, MMG$ASNPRCPAGFL stores its systemwide page file index in
the next available slot in the array at PHD$B_PRCPGFL and increments
PHD$B_PGFLCNT to point to the next slot. It initializes PHD$L_PAGFIL
and PHD$B_PRCPAGFIL.

MMG$SWITCH_PRCPGFL invokes MMG$RSRVPRCPGFL2 to reserve
the SYSGEN parameter RSRVPAGCNT number of blocks in that page file.
The default value of this parameter is 2,048. MMG$RSRVPRCPGFL2 sub­
tracts that many blocks from PFL$L_RSRVPAGCNT of the chosen page file
and adds it to PHD$W _PRCPGFLPAGES and PHD$W _PRCPGFLOPAGES.

Section 16.8.6 describes the allocation of actual pages in the page file.
When a process page backed by a page file is deleted, MMG$DALCPRC­

PGFL, in module PAGEFILE, is invoked to deallocate the page file block,
if any, and returns the reservation. It increments the appropriate PHD$L_
PRCPGFLREFS longword; if, as a result, there are no more references to that
page file, the routine deassigns the process from the page file.

When a process is deleted, it is deassigned from any remaining page file
assignments.

16.7 INPUT AND OUTPUT THAT SUPPORT PAGING

462

There is little special-purpose code in the 1/0 subsystem to support page
and swap 1/0. MMG$PAGEFAULT and the swapper each build their own
1/0 request packets IIRPs) but queue these packets to a device driver in the
normal fashion. These are the only differences:

• There are special Queue 1/0 Request l$QIO) entry points for page and swap
1/0 in module SYSQIOREQ. These entry points bypass many of the usual
$QIO checks to minimize overhead. An IRP describing a page or swap
request is distinguished from other IRPs by a flag in the IRP status word .

• These flags are detected by the 1/0 postprocessing routine, which dis­
patches to special completion paths for page read and other types of mem­
ory management 1/0.

To make reading and writing as efficient as possible, MMG$PAGEFAULT
implements a feature called clustering. It checks to see whether pages ad­
jacent to the virtual page that it is reading are located in the same file in
adjacent virtual blocks. If so, it requests a multiple-block read, and a cluster

16. 7 Input and Output That Support Paging

Table 16.1 Summary of I/O Requests Issued by Memory Management-Part I

Type of I/O Priority Process ID Priority Boost
Request IRP$B_PRI IRP$L_PID at Completion

Process page read Base priority of faulting PID of faulting 0
process process

System page read Base priority from PID of faulting 0
system PCB---16 process

Modified page write MPW_PRI0 1 PID of swapper 2 None 3

$UPDSEC page write Base priority of caller PID of caller 2
Swapper I/O SWP_PRI0 1 PID of swapper None 3

1 This is a SYSGEN parameter.
2 The modified page writer is a subroutine of the swapper process.
3 The swapper is a real-time process and is therefore not subject to priority boosts.

16.7.1

of pages is brought into the working set at one time. One N-block request
has less CPU and 1/0 overhead than N one-block requests.

The modified page writer and the $UPDSEC system service also cluster
their write operations, both to make their writes as efficient as possible and
to allow subsequent clustered reads for the pages that are being written.

Tables 16.1 and 16.2 summarize the 1/0 requests issued by memory man­
agement components. The first table lists the type of paging or swapping 1/0,
the priority of each such request, the relevant process identification, and in~
formation about the priority boost the process receives at 1/0 completion.
For more information on priority classes and boosts, see Chapter 12.

Table 16.2 lists more information about each type of 1/0 request, sum­
marizing the unusual uses to which the memory management components
put several fields in the IRP. These fields are not required for their more
typical uses and can thus be used for storing other information needed by
these components.

The columns SVAPTE, AST, and ASTPRM describe the contents of the IRP
fields for each type of 1/0 operation requested by the memory management
subsystem. The SVAPTE column identifies the type of PTE whose address
is in that field. For certain types of request, the ASTPRM field contains
the address of a special kernel asynchronous system trap (KAST) routine.
The column WCB Source specifies from which memory management data
structure the address of the window control block (WCB) is obtained. (This
address is stored in the field IRP$L_ WIND.) The last column indicates the
limit to which VMS clusters the object of each type of 1/0 request.

Page Read Clustering

When MMG$PAGEFAULT determines that a read is required to satisfy a
page fault, it allocates an IRP and fills it with parameters that describe the

463

Paging Dynamics

Table 16.2 Summary of 1/0 Requests Issued by Memory Management-Part II

Type of I/0 WCB Cluster
Request SVAPTE AST ASTPRM Source Factor

PROCESS PAGE READ

Page in section PxPTE 0 O/PSTX 1 PSTE pfc/PFCDEFAULT 2

file
Page in page file PxPTE 0 0 PFL PFCDEFAULT 3

Page table page SPTE 0 0 PFL 4 PAGTBLPFC 3

SYSTEM PAGE READ

System page 5 SPTE 0 0 SSTE SYSPFC 3

Paged pool page SPTE 0 0 PFL PFCDEFAULT 3

Global page GPTE Slave PTE 0 GSTE pfc/PFCDEFAULT 2

address
Global CRF page PxPTE Master GSTX GSTE pfc/PFCDEFAULT 2

PTE
contents

Global page SPTE 0 0 PFL 4 1
table page

MODIFIED PAGE WRITE

To page file MPW 0 MPWKAST, PFL MPW_
map WRITEDONE WRTCLUSTER 3

To private MPW 0 MPWKAST, PSTE MPW_
section file map WRITEDONE WRTCLUSTER 3

To global MPW 0 MPWKAST, GSTE MPW_
section file map WRITEDONE WRTCLUSTER 3

To swap file MPW 0 MPWKAST, PFL 1
(nonzero map WRITEDONE
SWPVBN)

$UPDSEC WRITE

Private section PxPTE AST AST PSTE MPW_
address argument WRTCLUSTER 3

Global section GPTE AST AST GSTE MPW_
address argument WRTCLUSTER 3

SWAPPERI/O

S1Napper I/O Swapper 0 Swapper KAST, PFL n/a
map IODONE

1 If the page is copy-on-reference, IRP$1-ASTPRM contains the PSTX.
2 For a private or global section, at link time or when the cluster is mapped, a cluster factor (pfc) may be

explicitly declared. If unspecified, the SYSGEN parameter PFCDEFAULT is used.
3 This is a SYSGEN parameter.
4 Process page and global page tables originate as demand zero pages whose backing store is a page file.
5 Pageable executive routines originate in loadable executive images, described by section table entries

in the system header.

464

16.7.1.1

16.7.1.2

16.7.1.3

16. 7 Input and Output That Support Paging

read. Table 16.2 lists those fields that it uses for special purposes. It attempts
to identify a cluster of pages to be read at once. The manner in which this
cluster is formed depends on the initial state of the faulting PTE.

Terminating Condition for Clustered Reads. Beginning with the PTE of the
faulting page, MMG$PAGEFAULT scans adjacent PTEs in the direction of
higher virtual addresses, checking for adjacent virtual pages that have the
same backing store location. It continues until it reaches the desired cluster
size or until it reaches one of the following other terminating conditions:

• It encounters a type of PTE different from that of the original faulting PTE
(see Section 16.7.1.2).

• The page table page containing the next PTE is itself not valid. (Satisfying
this fault first, to make a larger cluster, would offset the benefits gained
by clustering.)

• No more WSLEs are available. (Each page in the cluster must be added to
the working set.)

• No physical page is available.

If MMG$PAGEFAULT has not clustered any pages after scanning the ad­
jacent PTEs toward higher virtual addresses, it scans toward lower virtual
addresses with the same terminating conditions. The scan is made initially
toward higher virtual addresses because programs typically execute sequen­
tially toward higher virtual addresses and these pages are more likely to be
needed soon. If that scan fails, MMG$PAGEFAULT scans for pages at lower
virtual addresses on the assumption that pages at lower virtual addresses but
near the faulting page are likely to be needed soon.

Matching Conditions During the Page Table Scan. The match criterion for
adjacent PTEs depends on the form of the initial PTE:

• If the original PTE contains a PSTX, successive PTEs must contain exactly
the same PSTX.

• If the original PTE contains a page file virtual block number, successive
PTEs must contain PTEs with successively increasing (or decreasing) vir­
tual block numbers.

• If the original PTE contains a GPTX, successive PTEs must contain suc­
cessively increasing (or decreasing) indexes. In addition, the GPTEs must
all contain exactly the same GSTX.

Maximum Cluster Size for Page Read. The maximum number of pages that
can make up a cluster is a function of the type of page being read:

465

Paging Dynamics

16.7.2

466

• Global page table pages are not clustered .
• The cluster factor for process page table pages is taken from PHD$B_

PGTBPFC. The default value of this field is the special SYSGEN parameter
PAGTBLPFC.

The default value for this parameter is 2. This value is chosen to avoid
an artificial end to building a cluster when the page table page also had to
be faulted. Decreasing this value may defeat clustered reads. Increasing it
is likely to have a negligible effect on most systems .

• The cluster factor for pages read from a page file is taken from the PFL$B_
PFC field of the page file control block (see Figure 14.24). The usual con­
tents of this field are zero. In that case, the cluster factor is taken from the
process's PHD$B_DFPFC. The default value of this field is the SYSGEN
parameter PFCDEFAULT.

• The cluster factor for pages read from a private or global section file is taken
from the SEC$B_PFC field of the process or global section table entry (see
Figure 14.9). This field usually contains zero, in which case the default
page fault cluster is used. (Just as for clustered reads from the page file,
this default is taken from PHD$B_DFPFC.)

There are two methods by which the cluster factor of a process or global
section can be controlled. At link time, the page fault cluster factor in an
image section descriptor can be set to nonzero through the linker cluster
option and its PFC argument:

CLUSTER= cluster-name, [base-address] ,pfc,file-spec[, .. . J

Second, the page fault cluster factor for a section mapped through the
$CRMPSC system service can be specified in the optional PFC argument.

Page Read Completion

The I/O postprocessing routine, IOC$IOPOST in module IOCIOPOST, de­
tects page read completion, using the flag IRP$V _PAGIO in the IRP status
word.

Page read completion is not reported to the faulting process in the normal
fashion with a special KAST because none of the postprocessing has to be
performed in the context of the faulting process. Holding the MMC spinlock,
the routine PAGIO performs the postprocessing needed. It then makes the
process computable.

When a page read completes successfully, PAGIO performs the following
steps for each page:

1. The PFN REFCNT array element is decremented, indicating that the read
in progress has completed.

2. The page STATE is set to active.
3. The valid bit in the PTE is set.

16.8 Modified Page Writing

4. If the page is a global page, the valid bit set in step 3 was in the GPTE.
In this case, the process (slave) PTE must also be altered: PAGIO inserts
the PFN into it and sets the valid bit.

After tending to the individual pages, PAGIO reports the scheduling event
page fault completion for the process so that it is made computable. The
priority increment value is O; that is, there is no boost to the process's
scheduling priority. If any of the pages just read were collided pages, it also
empties the collided page wait queue. That is, it makes all processes in that
state computable. Collided pages are discussed in Section 16.10.3.

16.8 MODIFIED PAGE WRITING

16.8.1

Once a second, the executive checks whether any of the swapper's tasks
need to be performed and wakes it if necessary; one such task is writ­
ing pages from the modified page list to mass storage. The modified page
writer, MMG$WRTMFYPAG, in module WRTMFYPAG, is a subroutine of
the swapper process. Within its main loop, the swapper invokes MMG$WRT­
MFYPAG to write modified pages to their backing store locations. It forms
a cluster of pages that have the same backing store and requests a write 1/0
operation.

At completion of the write 1/0 request, its KAST routine is entered to place
the pages on the free page list and, if appropriate, to initiate the writing of
more modified pages.

Requesting the Modified Page Writer

During system operation, other executive routines request the writing of
pages in the modified page list by invoking the routine MMG$PURGEMPL,
in module WRTMFYPAG, with arguments identifying the requested opera­
tion and its scope. The possible operations are writing pages to shrink the
modified list to a target size (called a MAINTAIN request), writing pages
within a virtual address range (an SVAPTE request), and writing all pages
backed by section files (an OPCCRASH request).

Modified page writing is requested in a number of circumstances:

• When the modified page list has exceeded its high limit, defined by the
SYSGEN parameter MPW _HILIMIT (MAINTAIN)

• When the free page list is below its low limit and can be replenished by
writing modified pages (MAINTAIN)

• When particular modified pages must be written to their backing store
(SVAPTE)

• When the OPCCRASH image, running during system shutdown, must
write all pages in the list that are backed by section files to their backing
store (OPCCRASH)

467

Paging Dynamics

468

In earlier versions of VMS, the modified page list was sometimes emp­
tied, or flushed, during normal operations. In VMS Version 5.2, the flushing
has been replaced by selective purging, that is, writing all modified pages
whose PTEs fall within a specified system virtual address range (the SVAPTE
request).

Selective purging is requested under the following circumstances:

• When a process body has been outswapped but its PHD, whose slot is
needed, cannot be outswapped because some of its PTEs map transition
pages on the modified page list (see Chapter 18)

• When a writable global section with transition pages still on the modified
page list is deleted (see Chapter 15)

• When a process needs to reuse a WSLE that describes a page table page that
is now inactive but still maps transition pages on the modified page list (a
dead page table page, described in Chapter 17)

The modified page writer may be requested multiple times before it is
actually invoked by the swapper. MMG$PURGEMPL therefore records infor­
mation about the request. It stores the requested command with the highest
rank in MPW$GB_STATE; from low to high, the ordering is MAINTAIN,
SVAPTE, and OPCCRASH.

For a MAINTAIN request, it typically compares the target modified page
list size with the value of the SYSGEN parameter MPW _LOLIMIT and uses
the larger as a target size. (If a previous MAINTAIN request has been made,
MMG$PURGEMPL uses the lesser of its target size and the current tar­
get size.) It records the target size in SCH$GL_MFYLOLIM and SCH$GL_
MFYLIM.

For an SVAPTE request, it also records the highest addressed PTE of inter­
est in MPW$GL_SVAPTEHIGH and the lowest in MPW$GL_SVAPTELOW.
If there are multiple outstanding SVAPTE requests, the count of such re­
quests is stored in MPW$GB_REQCNT, and the low and high SVAPTE
addresses of each request are stored in elements of a 32-quadword array
beginning at MPW$GQ_SVAPTE. MPW$GL_SVAPTEHIGH and MPW$GL_
SVAPTELOW record the highest and lowest addresses of any PTE in any of
the requests. When the modified page writer scans the list for a page that
meets any of the SVAPTE requests, it can easily reject one whose PTE ad­
dress is outside that range without having to compare its PTE address to all
the ranges. These cells facilitate easy rejection of any pages on the modified
page list.

For an OPCCRASH request, it stores 8000000016 in MPW$GL_SVAPTE­
LOW and BFFFFFFF16 in MPW$GL_SVAPTEHIGH so that all pages on the
modified page list will match the PTE address range.

Once modified page writing to shrink the list (MAINTAIN) is initiated,
the modified page writer continues writing modified pages until the size
of the list is at or below the contents of SCH$GL_MFYLOLIM. Chapter 18

16.8.2

16.8 Modified Page Writing

describes the calculation of the target modified page list size for the different
circumstances in which the swapper initiates modified page writing.

When an SVAPTE or OPCCRASH request initiates modified page writing
to purge or flush the list, both the lower and upper limits for the modified
page list are set to zero. For an SVAPTE request, the modified page writer
scans the entire list and writes all pages whose PTE addresses fall within the
specified range. For an OPCCRASH request, the modified page writer scans
the entire list and writes all pages not backed by a page file.

Before the modified page writer exits, it restores its two limits to the values
contained in the SYSGEN parameters MPW_HILIMIT and MPW_LOLIMIT.

Operation of the Modified Page Writer

The swapper invokes the modified page writer to initiate the writing of
modified pages. The modified page writer forms a cluster and queues an I/O
request. When the I/O request completes, the modified page writer's KAST
routine is entered. After performing necessary processing on the pages that
have been written, it checks whether more modified pages must be written
and, if so, forms another cluster. At the completion of that request, the
KAST routine may queue yet another request. To prevent the modified page
writer from being incorrectly reentered by the swapper, it tests and sets the
SCH$V _MPW bit in SCH$GB_SIP as a signal that modified page writing is
in progress.

In earlier versions of VMS, the modified page writer was single-streamed
and could only write one cluster of pages at a time. In VMS Version 5, it can
initiate up to SYSGEN parameter MPW _IOLIMIT concurrent I/O requests.
The default value of MPW _IOLIMIT is 4. As described in Chapter 14, during
system initialization MPW_IOLIMIT nonpaged pool data structures are al­
located. Each contains an IRP and two arrays that describe the pages in the
cluster. These structures are queued to a listhead at MPW$GL_IRPFL and
MPW$G1-IRPBL. Figure 16.8 shows this data structure, known as a modified
page writer I/O request packet (MPW IRP).

MMG$WRTMFYPAG proceeds in the following fashion:

1. It compares the number of pages on the modified page list to SCH$GL_
MFYLIM. If there are fewer pages on the list, it simply exits.

2. It sets bit SCH$V _MPW in SCH$GB_SIP to indicate that modified page
writing is active. If the bit was already set, MMG$WRTMFYPAG exits.

3. Otherwise, it proceeds, first acquiring the MMG spinlock.
4. It zeros cells used to keep track of its progress.
5. It invokes MMG$PURGEMPL, specifying the default command MAIN­

TAIN to shrink the list to MPW_LOWAITLIMIT pages.

-If a previous SVAPTE request has been made, MMG$PURGEMPL re­
turns immediately.

469

Paging Dynamics

470

DYN$C_ I DYN$C_ I
MPWMAP INIT

IRP

arrPTaEy -{f.i----------iJ (MPW_ WRTCLUSTER longwords)

in~~x -{ =.__ ____ (M_P_w ___ w_R_rc_L_u_sr_E_R_w_or_ds_) ___ _,
array

Figure 16.8
Modified Page Writer IRP

-If no previous SVAPTE or other MAINTAIN requests have been made,
MMG$PURGEMPL changes MPW$GB_STATE to MAINTAIN and
stores the larger of MPW _LOWAITLIMIT and SCH$GL_MFYLOSV in
SCH$GL_MFYLIM and SCH$GL_MFYLOLIM.

-If a previous MAINTAIN request has been made, MMG$PURGE­
MPL stores the lesser of the previous and current requested limits in
SCH$GLMFYLIM and SCH$GLMFYLOLIM.

6. MMG$WRTMFYPAG removes an MPW IRP from the list. If none is
available, it exits.

7. Otherwise, it scans the modified page list, starting at the first page, to
find a page to be the beginning of a cluster. Its actions depend on the
type of request it is performing (the value of MPW$GB_STATE):

-If performing a MAINTAIN request, it accepts the page.
-If performing an SVAPTE request, it tests whether the PTE address of

the page falls within any of the requested ranges. If not, it goes on to
the next page in the list.

-If performing an OPCCRASH request, it tests whether the page's back­
ing store is something other than a page file. If not, it goes on to the
next page in the list.

8. It determines the type of the first page in the cluster by examining the
PTE whose address is in its PFN PTE array element.

9. Based on the page type, it gets the address of the relevant PHD, either
that of a process or the system.

10. It examines the PFN BAK array element to determine the type of backing
store: page file, section file, or swap file virtual block (see Section 16.8.5).

11. Unless the backing store is a swap file block, MMG$WRTMFYPAG tries
to form a cluster of pages, as described in Section 16.8.5. It scans adjacent
PTEs (first toward lower virtual addresses and then toward higher virtual
addresses), looking for transition PTEs that map pages on the modified

16.8.3

16.8 Modified Page Writing

page list, until either the desired cluster size is reached or until one of
the other terminating conditions described in Section 16.8.4 is reached.

This scan begins first toward smaller virtual addresses for the same
reason that the page read cluster routine begins toward larger addresses.
If the program is more likely to reference higher addresses, the modified
page writer does not want to initiate a write operation, only to have the
page immediately faulted and likely modified again. The modified page
writer chooses to write first those pages with a smaller likelihood of
being referenced in the near future.

12. When it can no longer cluster, it records the PTEs and their associated
PHD vector indexes in the MPW IRP.

13. If the cluster is one of page file pages, MMG$WRTMFYPAG updates the
PFN BAK array element for each page to show the actual block allocated.

14. It removes each page from the modified page list, decrementing SCH$GL_
MFYCNT to show one less modified page.

15. It changes the PFN STATE array element for each of the pages to a
value indicating write in progress, also clearing the saved modify bit.
It increments the PFN REFCNT array element for each page to reflect
the 1/0 in progress. If the page is a page table page, MMG$WRTMFYPAG
also increments the PHV$GL_REFCBAS array element corresponding to
the PHD.

16. It releases the MMG spinlock, fills in the MPW IRP, and queues it to the
backing store driver.

17. It reacquires the MMG spinlock and goes to step 6 to try to form another
cluster of pages to write.

When a modified page write request completes, MMG$WRTMFYPAG's
KAST routine is entered. Section 16.8.3 describes this routine.

Modified Page Write Completion

The modified page writer's KAST routine, WRITEDONE in module WRT­
MFYPAG, takes the following steps:

1. It acquires the MMG spinlock, raising IPL to IPL$_MMG.
2. It deallocates the MPW IRP to its own lookaside list.
3. It examines each page in the cluster.
4. If the page is a page table page, it decrements the PHV$GL_REFCBAS

array element corresponding to that PHD.
5. If the page's backing store was a swap file block, WRITEDONE clears

the PFN SWPVBN array element.
6. It decrements the PFN REFCNT array element for the page. If the count

goes to zero, it places the page on the free page list.
7. If the RPTEVT bit in the PFN TYPE array element is set, WRITEDONE

reports an 1/0 completion scheduling event for the process that owns the

471

Paging Dynamics

16.8.4

16.8.5

472

page. This bit is set when deletion of the page has been stalled while it
is being written to its backing store.

8. It releases the MMG spinlock, restoring the previous IPL, and then reac­
quires it. This lets any waiting SMP member acquire the spinlock and
also lets any pending software interrupts between IPL 3 and 8 be serviced.

9. It attempts to form another MPW cluster, rejoining the flow described
in the previous section at step 6.

Modified Page Write Clustering

The modified page writer scans the page table, attempting to form a cluster.
The terminating conditions for its scan include the following:

• The page table page is not valid, implying that there are no transition pages
in this page table page. The special check is made to avoid an unnecessary
page fault .

• The PTE does not indicate a transition format.
• The PTE indicates a page in transition, but the physical page is not on the

modified page list.
• The physical page number is greater than the contents of global location

MMG$GL_MAXPFN. This check avoids pages in shared memory, which
have no PFN data associated with them.

• The PFN SWPVBN array element must be zero. Pages with nonzero PFN
SWPVBN array elements are treated in a special way by the modified page
writer.

• If the contents of the PFN BAK array indicate that the backing store
location for the page is a private or global file, the section index must
be the same for all pages in the cluster.

• If the PFN BAK array element indicates that the pages are to be written
to a page file, the contents of the virtual block number field are ignored.
However, all pages must contain the same page file index in their PFN
BAK array elements.

Backing Store for Modified Pages

The modified page writer attempts to cluster when writing modified pages
to their backing store addresses. It encounters three different clustering sit­
uations for the three possible backing store locations.

A nonzero PFN SWPVBN array element indicates that the process has
been outswapped and this page remained behind, probably as the result of an
outstanding read request. The modified page writer issues a write of a single
page to the designated block in the swap file. It does not attempt to cluster
because virtually contiguous pages in an I/O buffer are unlikely to be adjacent
in the outswapped process body. The process body is outswapped with pages
ordered as they appear in the working set list, not in virtual address order.

16.8.6

16.8 Modified Page Writing

A description of how the PFN SWPVBN array element is loaded is found in
Chapter 18, where the entire outswap operation is discussed.

If the backing store address is in a section file, the modified page writer
creates a cluster up to the value of the SYSGEN parameter MPW _ WRTCLUS­
TER. Any of the terminating conditions listed in the previous section can
limit the size of the cluster.

If the backing store address is in a page file, adjacent pages bound for the
same page file are also written at the same time. The modified page writer
attempts to allocate a number of blocks in the page file equal to MPW _
WRTCLUSTER. The desired cluster factor is reduced to the number of blocks
actually allocated. Section 16.8.6 describes allocation of space within the
page file.

The actual cluster created for a write to the page file consists of several
smaller clusters, each one representing a series of virtually contiguous pages
(see Figure 16.9):

1. The modified page writer creates a cluster of virtually contiguous pages,
all bound for the same page file.

2. If the desired cluster size has not yet been reached, the modified page
list is searched until another physical page bound for the same page file
is found.

3. Pages virtually contiguous to this page form the second minicluster that
is added to the eventual cluster to be written to the page file.

4. The modified page writer continues in this manner until either the clus­
ter size is reached or no more pages on the modified page list have the
designated page file as their backing store address. The modified page
writer is building a large cluster that consists of a series of smaller clus­
ters. The large cluster terminates only when the desired size is reached
or when the modified page list contains no more pages bound to the page
file in question. Each smaller cluster can terminate on any of the condi­
tions listed in the previous section, or on the two terminating conditions
for the large cluster.

Page File Space Allocation

Before the modified page writer searches for more pages to form a cluster,
it must determine the maximum size of the write cluster. To do this, it
determines the number of contiguous blocks that can be allocated in the
page file associated with the current page.

The modified page writer invokes MMG$ALLOCPAGFIL1, in module
PAGEFILE, to allocate a cluster of blocks in that page file. The number of
blocks it tries to allocate is stored in the page file control block at the off­
set PFL$B_ALLOCSIZ and is usually equal to MPW _ WRTCLUSTER. If that
many blocks are not available, MMG$WRTMFYPAG reduces the PFL$B_
ALLOCSIZ size by 16 blocks, if it can, and invokes MMG$ALLOCPAGFIL1

473

Paging Dynamics

16.8.7

474

again to search for contiguous blocks starting back at the beginning of the
page file.

The allocation size is raised sometime later when space frees up in the page
file. When the page file deallocation routine determines that it has freed a
large enough cluster, it increases the allocation size by 8, to a maximum of
MPW _ WRTCLUSTER.

When the allocation size for the page file is less than or equal to 16, the
modified page writer invokes a special-case allocation routine, MMG$AL­
LOCPAGFIL2, in module PAGEFILE. This special-case allocation routine
searches for and allocates the first available cluster of blocks, starting from
the beginning of the page file. The routine can allocate between 1 and 16
contiguous blocks. If the first available cluster of blocks is not in the first
quarter of the page file, MMG$ALLOCPAGFIL2 issues the following message
on the console terminal:

Y.SYSTEM-W-PAGEFRAG, Pagefile badly fragmented, system continuing

If the first available cluster is found in the last quarter of the page file,
MMG$ALLOCPAGFIL2 issues the following message on the terminal:

Y.SYSTEM-W-PAGECRIT, Pagefile space critical, system trying to continue

Each of these messages is issued only once during a boot of the system,
even if more than one page file becomes full. The first message is issued
when one page file becomes fragmented or full; the second, when the same
or a different page file becomes fragmented or full. These messages on the
console terminal may be a good indication that the system requires an!other)
alternative page file. However, because of the nature of the checks, it is
possible for the system to run out of page file space without any message
having been displayed.

If the modified page writer is unable to allocate any blocks in a particular
page file, it skips any pages with backing store in that page file.

Example of Modified Page Write to a Page File

Figure 16.9 illustrates a sample cluster for writing to a page file. The modified
page list, pictured in the upper right-hand comer of the figure, is shown as
a sequential array to simplify the figure.

1. The first page on the modified page list is PFN A. By scanning backwards
through the process's page table, first PFN F and then PFN Hare located.
The PTE preceding the one that contains PFN H is also a transition PTE,
but the page is on the free page list. This page terminates the backward
search.

2. The modified page writer's map begins with PFN H, PFN F, and PFN A.
The search now goes in the forward direction, with each page bound for

I

SWP$GL_BALBASE::

Balance Slot Area

GPTX I
\
\

PFN= D
\

\
\

\

Correct PGFLX but cluster is full

Transition PTE (free list)

PFN =H

PFN=F

PFN =A

PFN = E

Valid PTE

Process Section Table Index

PFN=G

PFN= B

PFN =J

Demand Zero PTE

Figure 16.9 .

\
\
\
\
\

16.8 Modified Page Writing

Modified Page List

PFN Database Arrays

PTE BAK

PGFLX

PGFLX

GSTX

PGFLX

PGFLX

PGFLX

PGFLX

PGFLX

PGFLX

PGFLX

A

B

c
D

E

F

G

H

J

MPW$AL_PTE::___~

Modified Page Writer's Map

Valid, PFN = H

Valid, PFN = F

Valid, PFN = A

Valid, PFN = E

Valid, PFN = G

Valid, PFN = B

Valid, PFN = J

\\',, I· ----'---_T ~alid, PFN = D i
'J._ ______ ___.T

Example of Clustered Write to a Page File

the page file added to the map up to and including PFN E. The next PTE
is valid, so the first minicluster is terminated.

3. The next page on the modified page list, PFN B, leads to the addition of
a second cluster to the map. This cluster begins with PFN G and ends
with PFN J. The backward search was terminated with a PTE containing
a section table index. The forward search terminated with a demand zero
PTE.

475

Paging Dynamics

Note that this second cluster consists of pages belonging to a different
process than that of the first cluster. The difference is reflected in the
process header vector index array, which contains a word element for
each PTE in the map (see Figure 16.8).

4. The next page on the modified page list is PFN C. This page belongs in a
global section file and is skipped over during the current write attempt.

5, PFN D leads to a third cluster that was terminated in the backward
direction with a PTE that contains a GPTX. The search in the forward
direction terminated when the desired cluster size was reached, even
though the next PTE was bound to the same page file. The cluster size is
either MPW _ WRTCLUSTER or the number of adjacent blocks available
in the page file, whichever is smaller. In any case, this cluster will be
written with a single write request.

6. Note that reaching the desired cluster size resulted in leaving some pages
on the modified page list bound for the same page file, such as PFN I.

16.9 $UPDSEC SYSTEM SERVICE

476

The $UPDSEC[W] system service enables a process to write a specified range
of pages in a process or global section to their backing store in a controlled
fashion, without waiting for the modified page writer to do the backup. This
system service is especially useful for frequently accessed pages that may
never be written by the modified page writer, because they are always being
faulted from the modified page list back into the working set before they are
backed up.

This system service is a cross between modified page writing and a normal
write request. As for any I/O request, the requestor can request completion
notification with an event flag and 1/0 status block or an AST. The num­
ber of pages written is specified by the address range that is passed as an
input parameter to the service. The cluster factor is the minimum of MPW _
WRTCLUSTER and the number of pages in the input range. The direction
of search for modified pages is determined by the order in which the address
range is specified to the service.

The system service procedure EXE$UPDSEC, in module SYSUPDSEC,
runs in kernel mode. It first clears the event flag associated with the 1/0
request, charges process direct 1/0 quota, and allocates nonpaged pool to
serve as an extended 1/0 packet. The pool is used to queue one or more
modified page write 1/0 requests and to keep track of how much of the
section the service has processed.

EXE$UPDSEC then invokes MMG$CREDEL, in module SYSCREDEL,
specifying MMG$UPDSECPAG, in module SYSUPDSEC, as the per-page
service-specific routine. (Chapter 15 describes the actions of MMG$CREDEL
and its use of per-page service-specific routines.) Other routines that take part

16.9 $UPDSEC System Service

in performing this service are MMG$UPDSECQWT, MMG$PTEPFNMFY,
MMG$WRTPGSBAK, and MMG$UPDSECAST, all in SYSUPDSEC.

MMG$UPDSECPAG invokes MMG$UPDSECQWT to form the first clus­
ter and initialize and queue the IRP to the driver for the backing store driver.

MMG$UPDSECQWT takes the following steps:

1. It touches the next page table page that maps pages in the specified range
to fault it into the working set list.

2. It acquires the MMC spinlock, raising IPL to IPL$_MMG.
3. It scans in the specified direction of the range for the first candidate

page: one whose owner access mode is not more privileged than that
of the service requestor; that is a valid or transition page (or a valid or
transition global page); that is writable but not copy-on-reference; and
that has been modified.

4. Having found one candidate page, it scans in the specified direction
for adjacent pages that have similar characteristics; in particular, the
backing store for the pages must be the same. The adjacent pages do
not necessarily have to have been modified but they do all have to be
valid or transition, that is, resident.

In the case of process pages, it forms a cluster from the first modi­
fied page through the last modified page in the MPW _ WRTCLUSTER
adjacent pages.

In the case of global pages, determining which pages have been modi­
fied is not feasible. The system service runs in the context of one process
and can scan its PTEs for set modify bits. However, to determine whether
a particular page has been modified requires looking at the PFN database
and the PTEs of all processes mapped to this global page. (The GPTE
is not used in address translation and thus the state of its modify bit
is not meaningful.) Because there are no back pointers for valid global
pages, this information is unavailable. Therefore, all pages in a global
section are written to their backing store location, regardless of whether
the pages have been modified.

By setting the low bit of the FLAGS parameter, the requestor can indicate
that it is the only process whose modifed pages should be written. In
that case, the process's PTEs and the PFN database are used to select
candidate pages for backing up. Only pages modified by this process can
be the beginning and end pages of a cluster.

5. Having formed a cluster, MMG$WRTPGSBAK modifies the PFN data­
base for the pages in it. It increments the PFN REFCNT array element
for each page. If the page is on the free or modified page list, it removes
it from the list and changes its PFN STATE array element to write in
progress and clears the saved modify bit. If the page was valid, it also
clears the modify bit in the PTE.

477

Paging Dynamics

6. It initializes an IRP, releases the MMC spinlock, and queues the 1/0
request to the backing store driver.

When the write completes, the process that requested the $UPDSEC sys­
tem service receives a KAST. The AST routine MMG$UPDSECAST first
checks whether all the pages requested by the system service call have
been written or whether another write is required. To perform the check,
it invokes MMG$UPDSECQWT, which forms another cluster and queues
another write request if necessary. If all requested pages have been written,
MMG$UPDSECAST enters the normal 1/0 completion path involving event
flags, 1/0 status blocks, and user-requested ASTs, thus notifying the process.

16.10 PAGING AND SCHEDULING

16.10.1

16.10.2

478

Page fault handling can influence the scheduling state of processes in several
different ways. If a read is required to satisfy a page fault, the faulting process
is placed into a page fault wait state. If a resource such as physical memory
is not available, the process is placed into an appropriate wait state. There
are several other wait states that a process may be placed into as a result of
a page fault. Chapter 12 describes process scheduling, wait states, priority
increment classes, resource waits, and the reporting of scheduler events.

Page Fault Wait State

The most obvious wait state is page fault wait, in which a process is placed
when a read is required to resolve a page fault. The 1/0 postprocessing rou­
tine, PAGIO, in module IOCIOPOST, detects that a page read has completed
and reports the scheduling event page fault completion for the process. As
a result, the process is removed from the page fault wait state and made
computable. No priority boost is associated with page fault read completion.

Free Page Wait State

If there is not enough physical memory available to satisfy a page fault,
the faulting process is placed in a free page wait state. Whenever a page is
deallocated and the free page list was formerly empty, routine MMG$DAL­
LOCPFN, in module ALLOCPFN, checks for processes in this state. It reports
the scheduling event free page available so that each process in the free page
wait state is made computable.

MMG$DALLOCPFN makes no scheduling decision about which process
will get the page. There is no first-in/first-out approach to the free page
wait state; rather, all processes waiting for the page are made computable.
The next process to execute will be the highest priority resident computable
process.

16.10.3

16.10.4

16.10.4.1

16.10 Paging and Scheduling

Collided Page Wait State

It is possible for a page fault to occur for a page that is already being read
from its backing store. Such a page is referred to as a collided page. The
collided bit is set in the PFN TYPE array element, and the process is placed
into the collided page (COLPG) wait state.

One way that this can occur is when a process in a page fault wait state is
made computable by AST enqueuing. When the AST procedure completes
execution and returns, the process reexecutes the instruction that triggered
the page fault. If the page is still invalid, that is, if it is still being read, the
process is placed into a COLPG wait.

One of the details that the page read completion routine checks is the
collided bit in the TYPE array element for the page. If the collided bit is
set, it reports the scheduling event collided page available for each process
in that wait state. It does not check whether a process is waiting for the
collided page that was faulted in.

This lack of check has two advantages:

• There is no special code to determine which process executes first. All pro­
cesses are made computable, and the normal scheduling algorithm selects
the process that executes next.

• The probability of a collided page is small. The probability of two different
collided pages is even smaller. If a process waiting for another collided
page is selected for execution, that process will incur a page fault and be
placed back into the collided wait state. Nothing unusual occurs, and the
operating system avoids a lot of special-case code to handle a situation that
rarely, if ever, occurs.

Resource Wait States

There are two types of resource wait associated with memory management.
A process waiting for one of these resources is placed in the miscellaneous
wait state (see Chapter 12) until the resource is available.

Earlier versions of VMS also could place a process into a wait for resource
RSN$_SWPFILE (RWSWP). When a process was unable to increase its swap
file allocation to accommodate a larger working set, it was placed into this
resource wait until space became available in the swap file. The timing and
form of swap file allocation have changed in VMS Version 5, and this resource
wait is no longer used.

Resource Wait for RSN$_MPWBUSY (RWMPB). A process that faults a mod­
ified page out of its working set is placed into this resource wait when either
of the following is true:

479

Paging Dynamics

16.10.4.2

480

• The modified page list contains more pages than the SYSGEN parameter
MPW _ WAITLIMIT .

• The modified page list contains more pages than the SYSGEN parame­
ter MPW _LOWAITLIMIT and the modified page writer is active, writing
modified pages.

The modified page writer declares the availability of the resource RSN$_
MPWBUSY when it writes enough modified pages so that the list has MPW:::.
LOWAITLIMIT or fewer pages on it.

Resource Wait for RSN$_MPLEMPTY (RWMPE). A process in RWMPE is
waiting for the modified page writer to signal that it has flushed the modified
page list. With VMS Version 5.2, the only process placed into this wait is
one running the OPCCRASH image, which forces a flush of the modified
page list prior to stopping the system.

In earlier versions of VMS, pages on the modified page list were written in
order, and this resource wait was more widely used to force certain modified
pages to be written. These uses have been replaced by more selective writing
of the modified page list.

17 Working Set List Dynamics

"Then you keep moving round, I suppose?" said Alice.
"Exactly so," said the Hatter: "as the things get used up."
"But what happens when you come to the beginning again?"

Alice ventured to ask.
"Suppose we change the subject," the March Hare interrupted,

yawning. "I'm getting tired of this. I vote the young lady
tell us a story."

Lewis Carroll, Alice's Adventures in Wonderland

The pages of physical memory in use by a process are called its working set.
A data structure within the process header (PHD) called the working set list
describes just those pages in a compact form.

This chapter describes the composition of the working set list, the ways
in which it shrinks and expands to describe a varying number of pages, and
the system services by which a process affects its working set and working
set list.

17.1 OVERVIEW

The term working set refers to the virtual pages of a process that are cur­
rently valid and in physical memory. A valid page is one whose page table
entry (PTE) valid bit is set.

As a process executes an image, it faults image code and data pages into
its working set. Chapter 16 describes the page fault mechanism in detail. Ex­
ecution of asynchronous system trap (AST) procedures, condition handlers,
and system services that touch pageable process space can cause additional
faults into the working set. The working set continues to grow as the process
faults pages until the process occupies as much physical memory as it is al­
lowed. Each subsequent page fault requires that a page be removed from the
working set.

The VMS executive maintains a list of working set pages for each process,
called the working set list. The list facilitates

• Selecting a page to remove from the working set when a process needs to
fault in a page but already occupies all the physical memory it is currently
allowed, or when the process's working set is being shrunk

• Determining which pages to write when a process is outswapped
• Determining which pages to read when a process is inswapped

Section 17.2 describes the structure and makeup of the working set list.
Section 17.3 gives a detailed description of replacement paging, that is, re­
moving one virtual page from the working set to make room for another.

481

Working Set List Dynamics

The size of the working set list and the number of its entries constrain
a process's use of physical memory. The working set list size varies over
the process's lifetime. It can be affected by the system authorization file
entry for an interactive user, SYSGEN parameters, availability of physical
memory, and the recent paging history of the process. Section 17.4 describes
these effects, and Section 17.2.3 discusses the capacity of the working set
list.

By requesting the following system services, a process can affect its own
working set and working set list:

•Adjust Working Set Limit ($ADJWSL)
• Lock Pages in Working Set ($LKWSET)
• Lock Pages in Memory ($LCKPAG)
• Unlock Pages from Working Set ($ULWSET)
•Unlock Pages from Memory ($ULKPAG)
• Purge Working Set ($PURGWS)

These services are described in later sections of this chapter.
Section 17.9 explains the means by which a process can prevent the re­

moval of a particular page from its working set.
Chapter 14 describes the system working set list. This chapter is primarily

concerned with the process working set list, although much of it is equally
applicable to the system working set list.

17.2 THE WORKING SET LIST

17.2.1

482

A process working set includes the process's PO and Pl space pages and the
system space pages that contain its PHD. The working set also includes
global pages in use by the process. Each of these pages is described by a
working set list entry (WSLE). Because the data structure containing the
WSLEs, the working set list, is part of the PHD, the working set list is self­
describing, containing WSLEs that describe the working set list itself as well
as the other PHD pages.

Certain other types of page are valid for the entire time the process maps
them and never appear in the working set list. These include pages mapped
by page frame number (PFN), Pl space system service vector pages, pages
in a resident global section (namely, those of the Files-11 Extended QIO
Processor, XQP), and pages in MA780 shared memory sections.

TheWSLE

The format of a valid WSLE is shown in Figure 17.1. Note that the upper
23 bits are the same as the upper 23 bits of a virtual address. This format
allows the WSLE to be passed as a virtual address to several utility routines
that ignore the byte offset bits (WSLE control bits). Table 17.1 shows the
meanings of the WSLE control bits.

31

17.2.2

17.2 The Working Set List

987 6543 1 0
Code Page Typa

Virtual Address Bits <31 :9> 0 Process page

Figure 17.1

Saved modify bit
(reserved)

Page locked in working set
Page locked in memory

Page
type

1 System page
2 Global read-only page
3 Global read/write page
4 Process page table page
5 Global page table page

Working set list
entry valid

Format of Working Set List Entry

Table 17.1 WSLE Control Bits

Field Name

VALID
PAGTYP

PFNLOCK

WSLOCK

MODIFY

Meaning

When set, this bit indicates that the WSLE is in use.
This field la duplicate of the contents of the PFN TYPE array

element) identifies the page type and specifies the action
required when the page is removed from the working set.

When set, this bit indicates that the page has been locked into
physical memory with the $LCKPAG system service.

When set, this bit indicates one of the following types of page
locked into the working set:
• Permanently locked page
• Page locked with the $LKWSET system service
• Per-process page table page that maps one or more valid or

transition pages
This bit, used when the process is outswapped, records the

logical OR of the modify bit in the PTE and the saved modify
bit in the PFN STATE array.

Regions of the Working Set List

The working set list is divided into three regions: one containing entries for
pages that are permanently locked; one containing entries for pages locked
after process creation, chiefly by user request; and one containing dynamic
entries. These regions are described in more detail later in this section.

Figure 17 .2 shows the fields in the fixed portion of the PHD that describe
the working set list. Many of them locate the different regions of the working
set list through a longword context index to a particular WSLE. For example,
the following steps compute the address of the beginning of the working set
list from the longword context in PHD$1-WSLIST:

1. Multiply the contents of PHD$L_ WSLIST by 4.
2. Add the result to the address of the PHD.

Three of the fields shown, PHD$L_DFWSCNT, PHD$L_ WSQUOTA, and
PHD$1-WSEXTENT, do not locate region boundaries but instead represent

483

Working Set List Dynamics

484

1-tc--

I
I
T
l
~

"'[

Figure 17.2
Working Set List

1

l
..L
T

WSLIST

WSLOCK

WSDYN

WSNEXT

WSLAST

WSEXTENT

WSQUOTA

DFWSCNT

WSSIZE

EXTDYNWS

WSL
(4 longwords)

Pages Permanently Locked in Working Set

Pages Locked by User Request
($LKWSET and $LCKPAG)

Working Set List Dynamic Space

Room for Expansion of Working Set List

Rest of Process Header

,..., I--,

I
I
T
j
J
1

I--

~
-i
T

a number of WSLEs. These fields nonetheless contain longword context
indexes, providing easier comparison with fields that do locate boundaries.

The following steps convert such a field into the number it represents:

1. Subtract the contents of PHD$L_ WSLIST from it.
2. Add 1 to the result.

This chapter refers to the converted contents of such a field using its field
name without the PHD$L_ prefix, for example, WSQUOTA.

Two of the fields shown, PHD$L_ WSSIZE and PHD$L_EXTDYNWS, rep­
resent a number of WSLEs.

17.2 The Working Set List

The permanently locked region of the working set list describes pages
that are forever a part of the process working set. Pages whose WSLEs are
in this region cannot be unlocked and are not candidates for working set
replacement. They include the following:

• Kernel stack pages
• Pl pointer page
• Pl page table page that maps the kernel stack and the Pl pointer page
• Pl page table pages that map the Pl window to the PHD
• PHD pages that are not page table pages-the fixed portion, the PHD page

arrays, the maximum process section table, and enough pages for a working
set list that contains the SYSGEN parameter PQL_DWSDEFAULT number
of entries

The value in PHD$L_ WSLIST is a longword context index to. the first
WSLE in this region. Its value, calculated during process creation, is the same
for all processes running on a particular VMS version. Because WSLIST is a
pointer to the beginning of the working set list, its value is simply a function
of the size of the fixed PHD that precedes it.

The offset PHD$1-WSL is at a lower address in the PHD than the WSLE
identified by PHD$1-WSLIST. There is space for four WSLEs between them~
This space is available to describe kernel stack expansion pages, which,
once created, must be represented in this region of the working set list.
The SYSINIT process, for example, requires a considerably larger kernel
stack than other processes. Expanding its kernel stack is an alternative to
increasing the memory requirements for every process.

When the kernel stack is expanded, it grows by four pages. The value 4 is
subtracted from PHD$L_ WSLIST so that it indexes the first newly created
WSLE. Kernel stack expansion is the only way this region of the working set
list can grow; its size and contents are otherwise fixed at process creation.

The second region contains WSLEs for pages that are locked by user re­
quest, specifically through the $LKWSET and $LCKPAG system services.
Pages whose WSLEs are in this region are not candidates for working set
replacement. Any per-process page table page that maps a PFN-mapped sec­
tion or an MA780 shared memory section is also locked in this region of the
working set list, as are PHD expansion pages resulting from working set list
growth.

PHD$L_ WSLOCK contains the longword context index to the first WSLE
in this region. PHD$L_ WSDYN points to the WSLE immediately follow­
ing the last WSLE in this region. To lock a page in the working set list,
the executive swaps its WSLE with that pointed to by PHD$1-WSDYN and
increments PHD$L_ WSDYN. Consequently, the user-locked region is in­
creased by one WSLE and the dynamic region decreased by one.

The two locked regions of the working set list are completely filled with
valid WSLEs. Rather than keep a count of locked pages, the executive can

485

Working Set List Dynamics

17.2.3

486

simply calculate the difference between the contents of PHD$L_ WSDYN
and PHD$L_ WSLIST.

The dynamic region of the working set list describes per-process and global
pages that have not been locked in the working set list and per-process
page table pages. Per-process and global pages are candidates for working
set replacement. A page table page that maps valid or transition pages is
locked into this region of the working set list (through the WSLOCK bit
in the WSLE) and is not a candidate for working set replacement while still
locked. Page table pages locked in this manner remain in the dynamic region,
although locked, for a number of reasons. They are considered dynamic
because they are unlocked as the result of the release of the dynamic entries
and transition pages. Also, leaving them in the dynamic region results in
less CPU overhead than switching them in and out of the locked region.

The dynamic region is treated as a ring buffer for page replacement. It
begins at the entry identified by the contents of PHD$LWSDYN. PHD$L_
WSLAST contains the longword context index for the last WSLE; its contents
identify the end of the dynamic region. The entry most recently inserted
into the working set list is pointed to by PHD$L_ WSNEXT. This marks the
point in the ring buffer at which page replacement typically occurs. The page
replacement algorithm, explained in detail in Section 17.3.1, is a modified
first-in/first-out (FIFO) scheme.

The dynamic region of the working set list is not necessarily dense; there
may be empty entries between those specified by PHD$L_ WSDYN and
PHD$L WSLAST.

Size of the Working Set List

Three critical parameters govern the dynamics of the working set list: size,
limit, and capacity.

The process's working set size is the number of WSLEs currently in use.
There is no single field that contains this value; instead, it is the sum of two
separately maintained counts, PCB$LPPGCNT and PCB$LGPGCNT.

The maximum number of WSLEs the process is allowed to use is known as
its working set limit. It is maintained in a field that is somewhat confusingly
called PHD$L_ WSSIZE. Despite its name, it contains the working set limit,
not the size (which is the sum of the two fields previously noted).

The maximum number of WSLEs that the current working set can poten­
tially contain (PHD$L WSLAST minus PHD$L_ WSLIST, plus 1) is referred
to in this chapter as the working set list capacity. When the capacity in­
creases, the working set list data structure itself consumes more physical
memory.

Figure 17.3 contrasts these three values.
Table 17.2 shows process-specific and systemwide working set list param­

eters, quotas, and limits.

17.2 The Working Set List

PHO+ (4 x PHO$L_WSLIST) ___ ..,...--------------,

(PCB$L_PPGCNT + PCB$L_GPGCNT)
WSLEs are in use.

The process may use up to
PH0$L_WSSIZE WSLEs.

PHO+ (4 xPH0$L_WSLAST) ---,__-----------~

Figure 17.3
Working Set List Parameters

Capacity of the
working set list

During system initialization, enough virtual address space is reserved in
each PHD for the maximum-sized working set list, one with SYSGEN pa­
rameter WSMAX entries.

Each process is created with its initial working set limit and working set
list capacity set to the same value, the process's default working set limit,
DFWSCNT (assuming that DFWSCNT is less than or equal to WSMAX).
VMS thus initially allocates physical memory for only a relatively small
working set list.

When a process runs an image, it begins faulting pages; the working set siz.e
increases, growing toward the working set limit. Once it reaches the limit,
subsequent page faults require the removal of pages from the working set.
With the working set limit, VMS governs the amount of physical memory a
process may use.

The process can increase the working set limit by issuing the Digital
command language (DCL) command SET WORKING_SET or requesting the
$ADJWSL system service. The executive can increase a process's working set
limit through automatic working set limit adjustment. These mechanisms
are discussed in Section 17.4.

Whenever the working set limit would exceed the working set list ca­
pacity, the capacity must grow as well to accommodate the new limit. As
described in Chapter 14, the working set list capacity is dynamic; it grows
toward the process section table (PST). When the working set list must ex­
pand into the area already occupied by the PST, the PST is moved to higher
addresses. However, there is not always room in the PHD to accommodate
the expanded working set list. The total space available for both the working
set list and the PST is determined by the two SYSGEN parameters WSMAX
and PROCSECTCNT. The PST is allowed to grow beyond PROCSECTCNT
entries, leaving less working set list area available. In that case, the working
set list capacity can grow no further, and the process must make do with
the memory it has already.

Furthermore, because the working set list contains WSLEs for all the PHD
pages in physical memory, its size and the size of the PHD are interrelated.
As the working set grows, the working set list in the PHD grows, and more

487

Working Set List Dynamics

Table 17.2 Working Set Lists: Limits and Quotas

Description

Index of first WSLE

Working set limit

Index of first locked WSLE

Index of first dynamic
WSLE

Index of most recently
inserted WSLE

Index of last WSLE

Default working set limit

Normal maximum
working set limit

Extended maximum
working set limit

Upper limit to normal
maximum working set
limit

Upper limit to extended
maximum working set
limit

Minimum number of
dynamic WSLEs for
pages accessed in one
instruction

Number of dynamic WSLEs
not counting PHD$L_
WSFLUID process pages
and a reasonable number
of page table pages

Working set size

Authorized default
working set limit

Authorized normal maxi­
mum working set limit

488

Location or Name

PHD$L_ WSLIST

PHD$L_WSSIZE

PHD$L_ WSLOCK

PHD$L_ WSDYN

PHD$L_ WSNEXT

PHD$L_ WSLAST

PHD$L_DFWSCNT

PHD$L_ WSQUOTA

PHD$L_ WSEXTENT

PHD$L_ WSAUTH

PHD$L_ WSAUTHEXT

PHD$L_WSFLUID

PHD$L_EXTDYNWS

PCB$L_PPGCNT
+PCB$L_GPGCNT

UAF$L_DFWSCNT

UAF$L_ WSQUOTA

Comments

Contains 6916, unless kernel stack has
been expanded

Set by LOGINOUT;
Altered by $ADJWSL;
Altered by automatic working set limit

adjustment, image exit, swapper
trimming

The same for all processes in a given
system

Altered by $LKWSET, $LCKPAG,
$ULWSET, and $ULKPAG

Updated each time an entry is added to
or released from working set

May be altered by $ADJWSL, page fault
handler, image exit, or automatic
working set limit adjustment

Set by LOGINOUT;
Altered by command SET WORKING_

SET/LIMIT
Set by LOGINOUT;
Altered by command SET WORKING_

SET/QUOTA
Set by LOGINOUT;
Altered by command SET WORKING_

SET/EXTENT
Set by LOGINOUT;
Cannot be altered

Set by LOGINOUT;
Cannot be altered

Set by SHELL to the value of
MINWSCNT

Updated each time size of dynamic
working set region is changed

Updated each time a page is added to
or removed from the working set

Copied to PHD$L_DFWSCNT

Copied to PHD$L_ WSAUTH and
PHD$L_ WSQUOTA

(continued)

17.2 The Working Set List

Table 17.2 Working Set Lists: Limits and Quotas (continued)

Description
Authorized extended

maximum working set
limit

Systemwide minimum
number of fluid working
set pages

Systemwide maximum
working set limit

System working set limit
Default value for working

set limit default (used by
$CREPRC)

Minimum value for working
set limit default (used by
$CREPRC)

Default value for normal
maximum working set
limit (used by $CREPRC)

Minimum value for normal
maximum working set
limit (used by $CREPRC)

Default value for extended
maximum working set
limit (used by $CREPRC)

Minimum value for
extended maximum
working set limit (used
by $CREPRC)

Location or Name
UAF$L_ WSEXTENT

MINWSCNT

WSMAX

SYSMWCNT
PQLDWSDEFAULT

PQLMWSDEFAULT

PQLDWSQUOTA

PQLMWSQUOTA

PQLDWSEXTENT

PQLMWSEXTENT

Comments

Copied to PHD$L WSEXTENT and
PHD$L WSAUTHEXT

SYSGEN parameter

SYSGEN parameter

SYSGEN parameter
SYSGEN parameter

SYSGEN parameter

SYSGEN parameter

SYSGEN parameter

SYSGEN parameter

SYSGEN parameter

WSLEs are required to describe the PHD pages in memory. The size of the
PHD (excluding the page table pages) is constrained to be no larger in pages
than half of the process's working set quota. This constraint preserves a
reasonable number of WSLEs for non-PHD pages. A process with a large
value for working set extent and a relatively small value for working set
quota may have the expansion of its working set limited by this constraint.

The process's working set size decreases as the result of deleting vir­
tual address space (explicitly or, for example, at image exit), requesting the
$PURGWS system service, and as an effect of having the working set limit
decreased below the working set size.

The working set limit is a count of WSLEs, not the boundary of a working
set region. When it is reduced, the working set list simply becomes more
sparsely populated with valid WSLEs and more heavily populated with in­
valid WSLEs.

489

Working Set List Dynamics

490

An image with a good understanding of its paging behavior can voluntarily
reduce its working set limit by requesting the $ADJWSL system service. VMS
has several mechanisms for decreasing the working set limit. Automatic
working set limit adjustment can reduce the limit jsee Section 17.4.3). The
swapper process can initiate a reduction of working set limit with a mecha­
nism known as swapper trimming. Chapter 18 describes the conditions that
trigger this mechanism and the criteria by which processes are selected. The
process working set limit is also reset at image exit to its default value,
DFWSCNT jsee Chapter 26).

Reducing the working set list capacity can also occur at image exit: if
possible, VMS resets PHD$L_ WSLAST by moving it toward lower addresses
past any invalid WSLEs. It continues until it reaches a valid WSLE or until
the working set list capacity is just equal to the working set limit. Addition­
ally, when VMS is scanning the working set list to find an entry for a page
being faulted, it may move PHD$L_ WSLAST in the same way, compressing
invalid entries at the high-address end of the working set list. VMS must
strike a balance between spending too much overhead compressing empty
entries so that PHD$L_ WSLAST is precise and spending too much overhead
searching for a valid replacement WSLE when the working set list is sparse
!see Section 17.3.1).

VMS guarantees a minimum size for the dynamic region of the working
set list. One of its concerns is the successful execution of an instruction that
references a large but reasonable number of pages. All the pages referenced
in a non-first-part-done instruction must be valid for the instruction to
complete execution. If the dynamic region of the working set is too small, an
infinite page fault loop could occur during the attempted execution of one
instruction. An instruction could begin to execute, incur a page fault, restart,
incur a different page fault, replace the first faulted page in the working
set list, restart, reincur the first page fault, and so on, unable to complete
execution.

During system initialization, the SYSGEN parameters that affect mini­
mum working set sizes are adjusted to allow for at least this minimum.
That is, SYSBOOT ensures that the values of PQL_MWSDEFAULT and PQL_
DWSDEFAULT are at least large enough to accommodate the sum of the
following:

• The SYSGEN parameter MINWSCNT, the minimum number of fluid pages
in the working set

• The worst-case number of page table pages to map MINWSCNT pages,
namely MINWSCNT

• The maximum process header, not counting page table pages
• The kernel stack pages
• The Pl pointer page

17.3 Working Set Replacement

• The minimum number of page tables to map the Pl space defined by the
SHELL module

Subsequently, the executive checks that the dynamic working set list has
enough space whenever it adjusts the working set limit or locks pages into
the working set list. For a typical process and address space, the executive
checks that the number of dynamic WSLEs is at least twice MINWSCNT. In
this check, it ignores any working set list extension above WSQUOTA, since
any extension above quota is subject to swapper trimming. To facilitate the
check, the executive maintains the field PHD$1-EXTDYNWS, which effec­
tively contains the number of WSLEs in the dynamic region of the working
set list beyond the minimum number required. The calculation of PHD$1-
EXTDYNWS is based upon a working set no bigger than WSQUOTA.

For example, whe~ a process tries to lock a page into its working set list,
the executive checks that PHD$L_EXTDYNWS has a value of at least 2, one
entry for the page and another for its page table page.

The manner in which a process is created determines how values for
WSQUOTA and WSEXTENT are defined. They are defined and potentially
redefined several times during different steps of process creation. In the case
of the typical interactive process, the values come from its authorization file
record. See Chapters 25 and 2 7 for further information.

17.3 WORKING SET REPLACEMENT

17.3.1

When a process references an invalid virtual page, the page fault handler must
take whatever steps are necessary to make the page valid. It must also create
a WSLE for the page. If there is no room in the working set list for another
entry, one must be removed. The page fault handler uses the dynamic region
of the working set list to decide which virtual page to discard.

The dynamic region of the working set list can contain unused WSLEs.
When the working set limit is reduced, the working set list capacity is
usually left intact, resulting in a sparse working set list. This makes adding
a page to the working set slightly more complex. That a WSLE is empty does
not necessarily mean the process can make use of it; the size of the working
set must be less than the working set limit. If the process is already at its
limit, a nonempty WSLE must be found whose virtual page can be removed
from the working set to make room for the new page.

The VMS executive uses a modified FIFO scheme for its working set list
replacement algorithm. The entry most likely to have been in the working
set list for the longest time, the one following that pointed to by PHD$L_
WSNEXT, is the one first considered for replacement.

Scan of the Working Set List

When the page fault handler needs an empty WSLE, it invokes routine

491

Working Set List Dynamics

17.3.2

492

MMG$FREWSLE, in module PAGEFAULT. The following steps summarize
its flow. Subsequent sections describe more details of particular aspects of
its flow.

MMG$FREWSLE scans the working set list. It begins by checking whether
the WSLE whose index is in PHD$L_ WSNEXT is empty. If not, it starts with
the next WSLE.

1. If the WSLE is empty jcontents are zero), MMG$FREWSLE checks if the
entry can be used jsee Section 17.3.2). If it can be used, it is selected.

2. If the WSLE is not empty lits contents are nonzero) but is an active page
table page jone that maps valid pages), the WSLE cannot be used.

3. If the WSLE is not empty but is a page table page that maps no valid
pages, it may be usable. MMG$FREWSLE tak.es the steps described in
Section 17.3.3 to determine whether the page table page can be released
and its WSLE reused.

4. If the WSLE is not. empty, but its virtual page has been recently enough
accessed that it appears in the translation buffer, the WSLE is skipped
jsee Section 17.3.4).

5. If the WSLE is selected for reuse and is not empty, MMG$FREWSLE
takes the actions described in Section 17.3.5.

6. If the WSLE is not selected, the index is incremented, and the steps in
this list are repeated until a WSLE that can be used is found. If the index
exceeds the end of the list, it is reset to the beginning of the dynamic
working set list.

Once a WSLE is selected for reuse, PHD$1-WSNEXT is updated to contain
its longword context index.

Using an Empty Entry in the Working Set List

If an empty WSLE is found, checks are made to see if a page can be added to
the working set. If there are fewer pages in the working set than WSQUOTA,
a new physical page can be added to the working set. It may also be pos­
sible to add physical pages to the working set above WSQUOTA jup to
WSEXTENTJ, depending on the size of the free page list.

The following checks are required for an empty WSLE to be usable:

1. If the working set size jPCB$L_PPGCNT plus PCB$L_GPGCNT) equals
the working set limit, the empty WSLE cannot be used, and a page in the
working set must be replaced.

2. If the working set size has not reached its limit, the size is compared to
WSQUOTA. If the size is less than WSQUOTA, a new page is allowed
in the working set. The empty WSLE is used.

3. If the working set has WSQUOTA or more pages, the number of pages
on the free page list is compared to the SYSGEN parameter GROWLIM.

17.3.3

17.3 Working Set Replacement

If there are more than GROWLIM pages on the free page list, a new page
is allowed in the working set. The empty WSLE is used.

Note that to extend the working set size above WSQUOTA, the work­
ing set limit must have been extended above WSQUOTA. For the work­
ing set limit to be extended above WSQUOTA, the free page list must
contain more than the SYSGEN parameter BORROWLIM pages. For more
information on working set limits, BORROWLIM, and automatic work­
ing set limit adjustment, see Section 17.4.

If an empty but unusable WSLE is found at the end of the working set list,
the working set list capacity is reduced; PHD$1-WSLAST is reset to point
to the last unavailable (nonzero) WSLE in the working set list.

Releasing a Dead Page Table Page

MMG$FREWSLE invokes SCANDEADPT, in module PAGEFAULT, to deter­
mine whether a WSLE describing a page table page can be reused to describe
a page being faulted into the working set list. There are several possible
outcomes:

• The WSLE describes a page table page that maps valid pages and is therefore
not reusable.

• The WSLE describes a page table page that maps transition pages and can be
released from its current use for reuse after the ties beween the transition
pages and the page table page are severed, that is, after no virtual pages
mapped by the page table page are cached in the free or modified page list.

• The WSLE describes such a reusable page table page, but the working set
list contains enough dynamic entries that this one need not be released
now. An attempt is made to leave a page table page in the working set list
to keep its virtual pages cached on page lists, in case the process refaults
them.

SCANDEADPT first determines whether the process has any dead page
table pages. A dead page table page is one that maps no valid pages. It
may, however, map pages on the free or modified page list. SCANDEADPT
checks this by comparing PHD$W _PTCNTV AL, the number of page table
pages with valid WSLEs, to PHD$W _PTCNTACT, the number of active page
table pages. If PHD$W _PTCNTACT is larger than PHD$W _PTCNTV AL, the
difference between them is the number of dead page table pages. If there
are none, SCANDEADPT returns immediately. MMG$FREWSLE skips this
WSLE and continues its scan of the working set list.

If there are any dead page table pages, SCANDEADPT checks how full the
working set list is. It checks whether the dynamic region of the working set
list has at least twice MINWSCNT entries, not counting those that describe
dead page table pages or page table pages that map pages locked in memory or
in the working set list. If so, it has sufficient dynamic entries; the dead page

493

Working Set List Dynamics

17.3.4

17.3.5

494

table page scan is postponed, and SCANDEADPT returns. MMG$FREWSLE
skips this WSLE and continues its scan of the working set list.

SCANDEADPT checks whether this page is a dead page table page by
testing its element in the PHD$1-PTWSLEVAL array. If the element is
nonzero, the page table page maps pages in the working set list and cannot
be released. SCANDEADPT returns, and MMG$FREWSLE goes on to the
next WSLE.

Having determined that the WSLE describes a dead page table page, SCAN­
DEADPT must scan each PTE within the page table page to determine
whether any are transition PTEs. If the page table page contains transition
PTEs for pages on the free page list, SCANDEADPT must modify the PFN
database for those pages before the WSLE can be reused. If the page table page
contains transition PTEs for pages on the modified page list, those pages must
be written to their backing store before the page table page can be released
from the working set list.

SCANDEADPT reinserts such pages at the beginning of the modified page
list and requests a selective purge of the modified page list so that those pages
will be written. SCANDEADPT returns to the invoker of MMG$FREWSLE.
The process is placed into a resource wait for RSN$_MPWBUSY until the
modified page list is selectively purged. Chapter 16 describes the selective
purge mechanism; Chapter 18 the resource wait.

Skipping WSLEs

The working set replacement routine is not strictly FIFO. It uses the special
SYSGEN parameter TBSKIPWSL to permit recently referenced pages to re­
main in the working set. This allows the operating system to modify its strict
FIFO page replacement algorithm with some frequency of use information
maintained by the hardware on most types of VAX processor.

The modified algorithm works in the following manner. Before a valid
WSLE is reused, a check is made to see if the virtual page described by that
WSLE is in the translation buffer (TB). If the PTE for that page is cached in
the TB, the search for an available WSLE starts again with the next WSLE.
If the PTE for that page is not cached in the TB, the WSLE is selected for
reuse.

After TBSKIPWSL WSLEs have been skipped in this manner, the transla­
tion buffer checks are abandoned and the next valid WSLE is simply reused.
If the value of TBSKIPWSL is set to zero, the mechanism is disabled and no
entries are checked in the translation buffer. The default value of TBSKIP­
WSL is 8.

Reusing WSLEs

The virtual page that the WSLE represents must be removed before the WSLE
can be reused. Typically, the virtual page is valid and must be made invalid.

17.3 Working Set Replacement

This section confines itself to a description of valid WSLEs that map process
and global pages. For such pages, MMG$FREWSLE takes the following steps:

1. If the page has been modified, MMG$FREWSLE tests how full the mod­
ified page list is.

-If it has fewer pages on it than the SYSGEN parameter MPW_WAIT­
LIMIT, or if modified page writing is in progress and the list has fewer
pages than the SYSGEN parameter MPW _LOWAITLIMIT, MMG$FRE­
WSLE proceeds with step 2.

-Otherwise, MMG$FREWSLE, to avoid deadlocks, checks that the pro­
cess does not hold any mutexes, that the process is not the swap­
per, and that at least one page file has been installed. If any is false,
Mlv1G$FREWSLE proceeds with step 2.

If all are true, it returns a status to the page fault handler indicat­
ing that the process should be placed into the resource wait RSN$_
MPWBUSY until the modified page list has dropped below MPW _
LOWAITLIMIT pages.

2. At alternative entry point MMG$FREWSLX, the routine saves the modify
bit from the associated PTE in the PFN STATE array element. It clears
the valid and modify bits in the PTE and invalidates any cached copy of
the PTE in the translation buffer.

3. If the page has been modified and has assigned page file backing store,
MMG$FREWSLX releases its backing store, which has a now-obsolete
copy of the page. The PFN BAK array element is reset to a process-local
page file index and a block number of zero.

4. If the page is a global page, MMG$FREWSLX changes the PTE to the
global page table index form. It invokes MMG$DECPTREF, in module
PAGEFAULT, to update the data structures describing the process page
table page that maps the page.

MMG$DECPTREF decrements the PFN SHRCNT array element for
the page table page to indicate that it maps one less valid page. If this
is the last valid or transition page mapped by the page table page lthat
is, if the SHRCNT makes the transition from 1 to 0), MMG$DECPTREF
locates the WSLE for the page table page and clears its WSL$V _ WSLOCK
bit. It also decrements PHD$W _PTCNTACT, the number of active page
table pages for the process, and the PHD's entry in the array at PHV$GL_
REFCBAS, the number of reasons the PHD should remain in memory.

MMG$FREWSLX decrements the PFN SHRCNT array element for the
global page to indicate one less process is mapping it. If the count is
still nonzero, MMG$FREWSLX proce1:,,ds with step 6. If the count goes
to zero, it clears the valid and modify bits in the GPTE.

5. For a page that is a process page or a global page with a zero SHRCNT,
MMG$FREWSLX decrements the PFN REFCNT array element for the
page to indicate one less reference to it. If the reference count goes to

495

Working Set List Dynamics

zero, MMG$FREWSLX inserts the page at the end of the free or modified
page list, depending on the state of its saved modify bit. If the reference
count is nonzero, indicating possible direct or paging 1/0 in progress, it
examines the PFN STATE array element and, if the page is not active,
changes its state to release pending.

6. MMG$FREWSLX invokes MMG$DELWSLEX, in module PAGEFAULT.
MMG$DELWSLEX decrements the appropriate element in the PHD$1-

PTWSLEVAL array to indicate the page table page that mapped this page
maps one less valid page. If that count goes to zero, it also decrements
PHD$L_PTCNTV AL to indicate one less page table page mapping valid
pages. It decrements either PCB$1-PPGCNT or PCB$1-GPGCNT, de­
pending on page type. It clears the WSLE and returns.

17.4 WORKING SET LIMIT ADJUSTMENT

17.4.1

496

A process's working set limit jsee Table 17.2) varies over its lifetime as a
result of events such as image execution and exit, dynamic working set
limit adjustment, and swapper trimming.

The working set limit can be altered with the $ADJWSL system service.
A process can request the service implicitly, through the DCL command
SET WORKING_SET, or explicitly. The service can also be requested auto­
matically on behalf of the process, for example, as part of the quantum-end
routine.

Directly requested, the system service can alter the working set limit up
to WSEXTENT. The service is indirectly requested by automatic working
set limit adjustment. Through this means, the maximum size to which the
working set limit can grow is WSQUOTA, unless there are sufficient pages
on the free page list !more than the SYSGEN parameter BORROWLIMJ. In
that case, automatic working set limit adjustment can enlarge the limit up
to WSEXTENT.

Once the working set limit is increased, if there are more than the SYSGEN
parameter GROWLIM pages on the free page list, the executive allows the
process to use the extended limit by adding more pages to its working set
without removing already valid entries. Adding pages to a process's working
set decreases the probability that the process will incur a page fault.

Section 17.4.3 describes the automatic mechanism for working set limit
adjustment.

$ADJWSL System Service

The $ADJWSL system service is requested to alter the process's working set
limit. Its procedure, EXE$ADJWSL, in module SYSADJWSL, runs in kernel
mode, at interrupt priority level IIPLJ 2 and above. There are two different
paths in the procedure, one to increase the limit and the other to reduce it.

17.4 Working Set Limit Adjustment

To increase the limit, EXE$ADJWSL first checks and possibly reduces the
size of the increase. The new limit must be less than or equal to the SYSGEN
parameter WSMAX, less than or equal to the process's extended maximum
working set limit, and within the system's physical memory capacity.

If the new working set limit is within the current capacity of the working
set list, EXE$ADJWSL computes a new value for PHD$L_EXTDYNWS and
returns. Otherwise, EXE$ADJWSL first invokes MMG$ALCPHD, in module
PHOUTL, to increase the working set list capacity.

MMG$ALCPHO tests whether there is a gap between the high-address
end of the working set list and the low-address end of the PST that is large
enough for the working set list expansion. If not, it tries to compress enough
unused entries from the low-address end of the PST to accommodate the
expansion. If that also fails, MMG$ALCPHO tries to shift the PST to higher
addresses by .moving it to as yet unused pages of the PHO. As previously
described, the PHO cannot be expanded in this manner if the number of
pages in the nonpageable part of the current PHO is half the size of the
process's WSQUOTA. If the PHO cannot be expanded, the error status SS$_
SECTBFUL is returned to EXE$ADJWSL.

If expanded working set list pages are created, they must be locked into the
working set list. It is possible that locking all the expansion pages at once
would leave insufficient extra dynamic entries in the existing working set
list. However, if the working set list were partially expanded, the number of
dynamic entries would increase, allowing more expansion pages to be locked.
Thus, expanding the working set limit may require multiple iterations.

EXE$ADJWSL changes PHD$L_ WSNEXT to point to the first of the newly
added WSLEs and initializes them. It adds the number of new WSLEs to both
PHO$L_ WSLAST and PHD$L_ WSSIZE. It recalculates PHO$L_EXTDYNWS
and returns to its requestor.

To decrease the limit, EXE$ADJWSL first acquires the MMG spinlock,
raising IPL to IPL$_MMG, to block swapper trimming and possible quantum­
end and working set adjustment. It invokes MMG$SHRINKWS, in module
SYSADJWSL.

MMG$SHRINKWS checks and possibly reduces the size of the decrease.
The new limit must allow for at least the SYSGEN parameter MINWSCNT
WSLEs in the dynamic portion of the working set list. In addition, PH0$1-
EXTDYNWS cannot be reduced below zero.

MMG$SHRINKWS modifies the working set limit. If the process's work­
ing set size is already less than or equal to the new limit, it simply re­
turns to EXE$ADJWSL. Otherwise, MMG$SHRINKWS repeatedly invokes
MMG$FREWSLE !see Section 17.3.1), in module PAGEFAULT, for each page
to be removed from the process's working set. The reduced list can be sparse,
that is, can contain unused and unusable WSLEs; the working set capacity
is not necessarily decreased with the working set limit. Control returns to
EXE$ADJWSL.

497

Working Set List Dynamics

17.4.2

17.4.3

498

EXE$ADJWSL releases the spinlock, recalculates PHD$L_EXTDYNWS,
and returns.

SET WORKING_SET Command

The DCL command SET WORKING_SET enables the user to alter the de­
fault working set limit IDFWSCNT), the normal maximum working set limit
jWSQUOTA), or the extended maximum working set limit IWSEXTENT).
None of them can be set to a value larger than the authorized extended
maximum working set limit IWSAUTHEXT).

Altering the normal maximum working set limit affects the maximum
working set limit when physical memory is not plentiful. It changes the
upper limit for future $ADJWSL system service requests. Altering the default
limit affects the working set list reset operation performed by the routine
MMG$IMGRESET, in module PHDUTL, which is invoked at image exit.

With the /[NO]ADJUST qualifier to this command, a user can also disable
or reenable automatic working set limit adjustment. Use of that qualifier
sets or clears the process control block IPCB) status longword bit PCB$V _
DISAWS.

Automatic Working Set Limit Adjustment

In addition to adjusting working set limit through an explicit $ADJWSL re­
quest or as a side effect of image exit, VMS also provides automatic working
set limit adjustment to keep a process's page fault rate within limits set
by one of several SYSGEN parameters. Note that no such adjustment takes
place for real-time processes or for a process that has disabled automatic
working set limit adjustment through the DCL command SET WORKING_
SET/NOADJUST. New with VMS Version 5 is the provision that the ex­
ecutive can also use automatic working set limit adjustment to reclaim an
extension to the working set of a low-priority process.

Table 17.3 shows the parameters that control automatic working set limit
adjustment. All the SYSGEN parameters listed in this table are dynamic and
can be altered without rebooting the system.

The automatic working set limit adjustment takes place as part of the
quantum-end routine jsee Chapter 12).

The quantum-end routine, SCH$QEND in module RSE, adjusts the work­
ing set limit in several steps:

1. SCH$QEND makes the following checks. If any of these conditions is
true, it performs no adjustment.

-If the WSINC parameter is set to zero, the adjustment is disabled on a
systemwide basis.

-If the user has entered the DCL command SET WORKING_SET/NO­
ADJUST, PCB$V _DISAWS is set and automatic working set limit ad­
justment for the process has been disabled.

17.4 Working Set Limit Adjustment

Table 17.3 Process and System Parameters Used by Automatic Working Set Limit
Adjustment

Description

Total amount of CPU time
charged to this process

Amount of CPU time at last
adjustment check

Total number of page faults for
this process

Number of page faults at last
adjustment check

Most recent page fault rate for
this process

Process automatic working set
limit adjustment flag

Amount of CPU time process
must accumulate before page
fault rate check is made

Lower limit page fault rate

Amount by which to decrease
working set limit

Lower bound for decreasing
working set list size

Upper limit page fault rate
Amount by which to increase

working set limit
Free page list size that allows

growth of working set

Free page list size that allows
extension of working set limit

1 This value is a SYSGEN parameter.

Location or Name

PHD$LCPUTIM

PHD$L TIMREF

PHD$L_PAGEFLTS

PHD$LPFLREF

PHD$LPFLTRATE

PCB$V _DISAWS in
PCB$L_STS

AWSTIME 1

PFRATL 1

WSDEC 1

AWSMIN 1

PFRATH 1

WSINC 1

GROWLIM 1

BORROWLIM 1

Comments

Updated by interval timer interrupt
service routine

Updated by quantum-end routine
when adjustment check is made;

Altered when process is placed into
a wait

Updated each time this process
incurs a page fault

Updated by quantum-end routine
when adjustment check is made

Recorded at each adjustment check;
Compared to PFRATH, PFRATL
When set, disables adjustment for

process

When 0, disables adjustment based
on page fault rate for entire
system

Also, amount to reclaim from low­
priority process with extended
working set

Do not adjust if PCB$W _PPGCNT
is less than or equal to this

When 0, disables adjustment for
entire system

Do not add new page to working
set if @SCH$GLFREECNT is
less than or equal to this value

Do not extend working set limit
beyond WSQUOTA if @SCH$GL
FREECNT is less than or equal
to this value;

When -1, disables working set
limit extension for entire system

-If PHD$V _NO_ WS_CHNG is set, the executive has temporarily
blocked changes to the working set list of this process.

2. If the process has not been executing long enough since the last adjust­
ment (if the difference between PHD$1-CPUTIM, the accumulated CPU

499

Working Set List Dynamics

500

time, and PHD$1-TIMREF, the time of the last adjustment attempt, is
less than the SYSGEN parameter AWSTIME), no adjustment based on
page fault rate is done. SCH$QEND proceeds with step 5.

If the process has accumulated enough CPU time, the reference time
is updated (PHD$1-CPUTIM is copied to PHD$1-TIMREF), and the rate
checks are made.

Between adjustment checks, PHD$L_ TIMREF is also altered when the
process is placed in a wait. As described in Chapter 12, when a process
goes into a wait, the SYSGEN parameter IOTA is charged against its
quantum. To balance the quantum charge, IOTA is subtracted from
PHD$1-TIMREF, so that the last check for adjustment appears to have
taken place longer ago than it really did and AWSTIME is more quickly
reached. This subtraction helps ensure the expansion of the working set
limit of a process that is faulting heavily. Without it, a process that un­
dergoes many page fault waits could reach quantum end without having
accumulated AWSTIME worth of CPU time and thus not be considered
for automatic working set limit adjustment.

3. SCH$QEND calculates the current page fault rate. The philosophy for
automatic working set limit adjustment is based on two premises. If the
page fault rate is low enough, the system can reclaim physical memory
from the process, by reducing its working set limit, without harming the
process by causing it to fault heavily. If the page fault rate is too high,
the process can benefit from a larger working set limit because it will
incur fewer faults without degrading the system.

4. If the current page fault rate is too high (greater than or equal to PFRATH),
SCH$QEND checks whether the working set limit should be increased.

-If the working set size is less than 75 percent of the working set limit,
the working set limit is not expanded.

-If the working set limit is below WSQUOTA, it is expanded by WSINC.
-If the working set limit is' greater than or equal to WSQUOTA, the

number of pages on the free page list is compared to the SYSGEN
parameter BORROWLIM. If there are more than BORROWLIM pages
on the free page list, the working set limit is increased by WSINC.
If there are fewer than BORROWLIM pages on the free page list, the
working set limit is not increased. The working set limit can only
be expanded up to WSEXTENT. Setting BORROWLIM to -1 disables
working set limit expansion above WSQUOTA for the entire system.

Once the working set limit has been expanded, newly faulted pages
may be added to the working set. The page fault handler adds pages to the
working set above WSQUOTA only when there are more than the SYS­
GEN parameter GROWLIM pages on the free page list (see Section 17.4).

SCH$QEND proceeds with step 6.
5. If WSDEC is zero, shrinking the working set by automatic working set

17.4 Working Set Limit Adjustment

limit adjustment is disabled and no adjustment occurs. If WSDEC is
nonzero, two types of decrease to the working set limit are possible.
First, if the current page fault rate is low enough !less than PFRATL),
the working set limit is shrunk by WSDEC. However, if the contents of
PCB$L_PPGCNT are less than or equal to AWSMIN, no adjustment takes
place. This decision is based on the assumption that many of the pages
in the working set are global pages and therefore the system will not
benefit land the process may suffer) if the working set limit is decreased.

Note that PFRATL is zero by default. This default value effectively
disables this method of working set limit reduction in favor of swapper
working set trimming. The rationale for this change is explained at the
end of this list.

Alternatively, even if a meaningful interval has not elapsed for com­
puting a page fault rate, the process's working set limit will be shrunk,
whatever its page fault rate and whatever the value of PFRATL, if all the
following are true:

- The process has had a pixscan priority boost in its last 32 execution
quantums IPCB$1-PIXHIST is nonzero). Chapter 12 describes the pix­
scan mechanism.

-The free page list contains fewer than GROWLIM pages.
-The process's working set limit is larger than WSQUOTA.

Its working set limit will be decreased by the smaller of WSDEC
and the amount by which its working set limit exceeds WSQUOTA.
This mechanism reclaims working set growth beyond WSQUOTA, which
is regarded as temporary growth to be permitted only when sufficient
memory is available.

6. The actual working set limit adjustment is accomplished by a kernel
mode AST that requests the $ADJWSL system service. The AST parame­
ter passed to this AST is the amount of previously determined increase or
decrease. This step is required because the system service must be called
from process context lat IPL OJ and SCH$QEND is executing in system
context in response to the IPL$_ TIMERFORK software timer interrupt.

Three other pieces of the executive affect the size of a process's work­
ing set: the page fault handler, the swapper, and the image reset routine,
MMG$IMGRESET, in module PHDUTL. As described previously, the page
fault handler can add a page to a process's working set when it is al­
ready above WSQUOTA only if the size of the free page list is. greater than
GROWLIM. In an effort to acquire needed physical memory, the swapper
reduces the working sets of processes in the balance set before actually re­
moving processes from the balance set. This working set reduction is known
as swapper trimming or working set shrinking. Process selection is performed
by a table-driven, prioritized scheme (see Chapter 18). The working set limit

501

Working Set List Dynamics

is reset to its default value, DFWSCNT, when image exit processing invokes
MMG$IMGRESET.

Two problems are inherent in using the quantum-end scheme of automatic
working set limit adjustment: processes that are compute-intensive will
reach quantum end many times, and images that have been written to
be efficient with respect to page faults (and incur a low page fault rate)
will qualify for working set limit reduction, because their page fault rate
is lower than PFRATL. In both these cases, working set limit reduction is
not desirable. In contrast, swapper trimming selects processes starting with
those that are less likely to need large working sets.

In what can be seen as an evolutionary change to the operating system,
working set limit reduction based on page fault rate at quantum end was
disabled by default in Version 3.1 of the VMS software by setting the default
value of PFRATL to zero. Swapper trimming and the image exit reset became
the primary methods used to reduce working set limit.

VMS Version 5 also uses automatic working set adjustment at quantum
end to reclaim extensions from the working sets of low-priority processes.

17.5 $LKWSET SYSTEM SERVICE

502

A process requests the $LKWSET system service to lock a virtual page into its
process working set and thus prevent page faults from occurring on references
to the page. Locking a. page into the working set guarantees that when the
process is current, the locked page is always valid. This service has obvious
benefit for time-critic.al applications and other situations in which a program
must access code or data without incurring a page fault.

The $LKWSET syst~ni service is also requested by process-based kernel
mode routines that execute at IPLs above 2, to ensure the validity of code
and data pages. VMS prohibits page faults at IPLs above 2; if one occurs, the
page fault handler generates the fatal bugcheck PGFIPLIIl.

Pages locked into a process working set do not necessarily remain resident
in physical memory when the process is not current; the entire working set
might be outswapped. To guarantee residency of the pages, a process must
request either the $LCKPAG system service or both the $LKWSET and the
Set Swap Mode ($SETSWM) system services.

The $LKWSET system service procedure, EXE$LKWSET in module SYS­
LKWSET, executes in kernel mode; It takes the following steps:

1. It creates and initializes scratch spac;:e on the stack and raises IPL to 2.
2. It sets the bit PHD$V _NO_ WS_CHNG in PHD$W _FLAGS to block

swapper trimming of the working set and automatic working set limit
adjustment (see Section 17.9).

3. If necessary and possible, it increases the working set limit to have
sufficient extra dynamic entries to accommodate the pages to be locked
and a page table page for each such' page.

17.5 $LKWSET System Service

If the process has disabled working set limit adjustment, or if its work­
ing set limit is already larger than its quota, no increase is possible. As a
result, MMG$LCKULKPAG may be able to lock only a limited number
of pages.

4. EXE$LKWSET invokes MMG$CREDEL, in module SYSCREDEL, spec­
ifying MMG$LCKULKPAG, in module SYSLKWSET, as the per-page
service-specif;l.c routine. Chapter 15 describes the memory management
stack scratch space, the actions of MMG$CREDEL, and its invocation of
the specified service-specific routine.

5. When MMG$CREDEL returns, EXE$LKWSET clears PHD$V _NO_ WS_
CHNG.

6. It restores the previous IPL and returns to its requestor with the status
from MMG$CREDEL.

To lock a page into the working set, MMG$LCKULKPAG takes the fol­
lowing steps:

1. It tests whether the page is readable from the system service requestor's
access mode. If the page is inaccessible, it returns the error status SS$_
ACCVIO, which becomes the status returned by the system service.

2. It acquires the MMG spinlock, raising IPL to IPL$_MMG.
3. MMG$LCKULKPAG examines the PTE that maps the page. If the page

is not valid, it releases the MMG spinlock, faults the page, and continues
with step 2.

4. It compares the page owner access mode with the mode of the system
service requestor. If the page is owned by a more privileged mode, the re­
questor is not allowed to alter its state, and MMG$LCKULKPAG releases
the MMG spinlock and returns the error status SS$_PAGOWNVIO.

5. It tests whether the WINDOW bit is set in the PTE and, if so, imme­
diately returns the success status SS$_ WASSET. A virtual page whose
PTE's WINDOW bit is set is always valid and is not described by a WSLE,
so no further action is appropriate.

6. MMG$LCKULKPAG examines the PFN TYPE array element for the page
to determine if the page type is process or read-only global. If neither, it
releases the MMG spinlock and returns the error status SS$_NOPRIV; a
process is not permitted to lock any other type of page into its working
set. In particular, it may not lock global writable pages because when
a process is outswapped, the swapper must be able to remove global
writable page$ from the working set. The removal avoids any ambiguity
at inswap concerning the location of the most recent copy of a global
writable page.

7. MMG$LCKULKPAG gets the working set list index jWSLX) for a process
page from its .PFN WSLX array element. WSLX information is not kept
for a global page; instead, MMG$LCKULKPAG must scan the process's
working set list to locate the entry for the page. In the case of a resident

503

Working Set List Dynamics

global section, MMG$LCKULKPAG returns immediately with the suc­
cess status SS$_ WASSET; pages from a resident global section are already
permanently resident and valid.

8. MMG$LCKULKPAG examines the WSLE. If the page is already locked
in the working set, the routine releases the MMG spinlock and returns
the success status SS$_ WASSET.

9. Otherwise, it checks that PHD$LEXTDYNWS is at least 2 (to allow for
the page table page as well as the page being locked). This ensures that
the process will have enough dynamic WSLEs after the page is locked
into its working set. If not, it releases the MMG spinlock and returns
the error status SS$_LKWSETFUL.

10. It sets the WSL$V _ WSLOCK bit in the WSLE of the newly locked page.
11. It must reorganize the working set list, pictured in Figure 17 .2, so that the

locked page is in the user-locked region of the working set list, following
the PHD$L_ WSLOCK pointer. MMG$LCKULKPAG accomplishes this
reorganization by exchanging the newly locked WSLE with the entry
pointed to by PHD$L_ WSDYN and incrementing PHD$L_ WSDYN to
point to the next entry in the list. If PHD$L_ WSDYN pointed to a valid
WSLE, it exchanges the PFN WSLX array elements for the two valid
pages; otherwise, it updates the PFN WSLX array element for the newly
locked page.

12. MMG$LCKULKPAG increments the PHD$LPTWSLELCK array ele­
ment corresponding to the page table page mapping the locked page. If
the count was zero, it also increments PHD$W _PTCNTLCK, the number
of page table pages mapping locked WSLEs.

13. It checks that PHD$L_ WSNEXT is still pointing into the dynamic part
of the working set list (and not at the former PHD$L_ WSDYN, which
is now in the user-locked region), moving it if necessary to point to the
same WSLE as PHD$L_ WSLAST.

14. It recalculates PHD$L_EXTDYNWS.
15. It releases the MMG spinlock and returns to MMG$CREDEL.

17.6 $LCKPAG SYSTEM SERVICE

504

The $LCKPAG system service procedure, EXE$LCKPAG in module SYSLK­
WSET, is similar to that of the $LKWSET system service. However, the
$LCKPAG service guarantees permanent residency for the specified virtual
address range, in addition to performing an implicit working set lock of those
pages. Because this operation permanently allocates a system resource, phys­
ical memory, it requires the privilege PSWAPM.

Executing in kernel mode, EXE$LCKPAG tests whether the process has the
privilege PSWAPM and, if not, returns the error status SS$_NOPRIV. It raises
IPL to 2, sets the PHD$V _NO_ WS_CHNG flag, and increases the working
set limit as necessary and possible. It invokes MMG$CREDEL, specifying

17. 7 $ULWSET and $ULKPAG System Services

MMG$LCKULKPAG as the per-page service-specific routine. MMG$LCK­
ULKPAG is invoked with a flag that specifies the page is to be locked in
memory rather than in the working set. ./

Although the results of invoking the two lock services are similar, the
following differences exist:

• The WSLE of a page locked in memory has the WSL$V _PFNLOCK bit set,
rather than the WSL$V _ WSLOCK bit .

• A PHD mapping a page locked in memory must be locked in memory itself
to ensure residency of the page table page mapping the locked page .

• A global writable page can be locked in memory, although it cannot be
explicitly locked in the working set.

17.7 $ULWSET AND $ULKPAG SYSTEM SERVICES

These system services unlock pages from either the working set or phys­
ical memory. The two system service procedures are EXE$ULWSET and
EXE$ULKPAG, both in SYSLKWSET. Both, executing in kernel mode, invoke
MMG$CREDEL with MMG$LCKULKPAG as the per-page service-specific
routine. Both execute at IPL O; working set trimming and adjustment do not
interfere with unlocking pages.

MMG$LCKULKPAG is invoked with one flag that specifies the operation
is an unlock and a second flag that specifies whether the page is to be
unlocked from the working set or from memory. It takes the following steps
to unlock each page:

1. Its first steps are identical to steps 1 through 7 described for MMG$LCK­
ULKPAG in Section 17.5.

2. MMG$LCKULKPAG examines the WSLE. If the page is not locked in
the working set, the routine releases the MMG spinlock and returns the
success status SS$_ WASCLR.

3. Otherwise, depending on the operation requested, it clears the appropri­
ate WSLE bit (WSL$V _ WSLOCK or WSL$V _PFNLOCKJ.

4. If one of the lock bits is still set, it goes on to step 6. Otherwise, it
decrements PHD$L_ WSDYN and swaps the WSLE of the page being un­
locked with the one pointed to by PHD$1-WSDYN, thus making the
unlocked WSLE the first one in the dynamic region. If PHD$L_ WSDYN
pointed to a valid WSLE, it exchanges the PFN WSLX array elements
for the two valid pages; otherwise, it updates the PFN WSLX array ele­
ment for the newly unlocked page. MMG$LCKULKPAG decrements the
PHD$1-PTWSLELCK array element corresponding to the page table page
mapping the locked page. If the count goes to zero, it also decrements
PHD$W _PTCNTLCK, the number of page table pages mapping locked
WSLEs.

5. It recalculates PHD$L_EXTDYNWS.
6. It releases the MMG spinlock and returns to MMG$CREDEL.

505

Working Set List Dynamics

17.8 $PURGWS SYSTEM SERVICE

A process requests the $PURGWS system service to remove all virtual pages
in a specified address range from its working set. A process might request
this service if a certain set of routines or data were no longer required. By
voluntarily removing entries from the working set, a process can exercise
some control over the working set list replacement algorithm, increasing
the chances for frequently used pages to remain in the working set.

The VMS executive uses this service as part of the image startup sequence
(see Chapter 26) to ensure that a program starts its execution without un­
necessary pages such as command language interpreter command processing
routines in its working set.

The $PURGWS system service procedure, EXE$PURGWS in module SYS­
PURGWS, runs in kernel mode. It takes the following steps:

1. It creates and initializes the stack scratch space and raises IPL to 2.
2. It invokes MMG$CREDEL, specifying MMG$PURGWSPAG, in module

SYSPURGWS, as the per-page service-specific routine.
3. EXE$PURGWS returns the status from MMG$CREDEL to its requestor.

MMG$PURGWSPAG immediately invokes MMG$PURGWSSCN, in
module SYSPURGWS, which takes the following steps:

1. It acquires the MMG spinlock, raising IPL to IPL$_MMG.
2. It scans the dynamic region of the working set list, examining each WSLE.

-If the WSLE is not valid, is locked in the working set, or is that of a
page table page, or if the address of the associated virtual page does not
fall within the boundaries specified by the system service requestor,
MMG$PURGWSSCN goes on to the next entry.

-Otherwise, MMG$PURGWSSCN invokes MMG$FREWSLX, described
in Section 17.3.5, to take whatever steps are necessary to release the
WSLE and change the state of the page.

3. When MMG$PURGWSSCN reaches the end of the dynamic region, it
releases the MMG spinlock, restoring the entry IPL, and returns.

17.9 KEEPING A PAGE IN THE WORKING SET LIST

506

Occasionally a page must be faulted into the working set list and remain
there. The issue may be one of improved or more predictable performance
for an application. However, code executing in kernel mode has a different
concern. Because a page fault from IPL 3 or a,bove results in a PGFIPLHI fatal
bugcheck, a code thread executing at elevated IPL must ensure the residency
of all code and data pages it accesses. This section describes issues related
to the residency of pages in the process working set lists and then to the
system working set list. Its focus is on pages that are not page table pages.

17.9 Keeping a Page in the Working Set List

A number of things can lead to replacement paging and the removal of
pages from a process's working set list:

• Execution in the process's context of a code thread of any access mode
that incurs page faults, whether mainline code, procedure in a shareable
image, inner access mode service (Record Management Services, system, or
command language interpreter callback), AST thread, or condition handler

• Execution of a code thread that directly locks an invalid page into memory
or the working set list or indirectly locks buffer pages by requesting direct
1/0 ·operations

• Quantum-end automatic working set limit adjustment of a current process
• Swapper trimming of a noncurrent process

For a process to fault a page into its working set list and have it remain
there, it must either ensure that the page is not a candidate for replacement
paging or prevent all the items previously listed that lead to replacement
paging.

The most straightforward measure, available to any access mode, is to lock
the page with the $LKWSET system service. As a result, the page's WSLE i$$
placed in the user-locked region of the working set list and is not a candidate.
for replacement paging. The page remains in the working set list regardless'
of the process's scheduling state and throughout any outswap and inswap.
The only page type for which this mechanism fails is a global writable page.
VMS prohibits locking global writable pages into the working set list to avoid
ambiguity at inswap concerning the location of the most recent version of
the page. To ensure the residency of a global writable page, a process must
lock the page into memory. ·

Locking many pages into the working set list is not alw~ys possible. To
minimize page faults once the desired pages are in the working set, a process
can do the following:

• Prevent swapper trimming by entering the DCL command SET WORK­
ING_SET/QUOTA=authquota and /EXTENT=authquota, where auth­
quota is the authorized normal maximum working set limit. This pre­
vents first-level swapper trimming by ensuring that the working set limit
is not above the authorized maximum limit .

• Disable automatic working set limit adjustment and second-level swap­
per trimming by entering the DCL command SET WORKING_SET/NO­
ADJUST .

• Execute a constrained sequence of already resident code that touches al­
ready resident data. This is likely to require blocking AST delivery, causing
no exceptions, signaling no conditions, and calling no procedures outside
the address space already resident.

For kernel mode code, typically, the issue is one of preventing any page
fault during elevated IPL execution rather than one of performance. Kernel

507

Working Set List Dynamics

508

mode code, whether running as part of an image or as part of the executive,
may be able to request the $LKWSET system service but is unable to alter the
process's working set quotas and limits through the DCL command. Other
measures available to it include

• "Poor man's lockdown" for pages in a process working set list and contin­
ued execution at elevated IPL to block AST delivery and remain current

• The LOCK_SYSTEM_PAGES and UNLOCK_SYSTEM_PAGES macros for
system working set list pages

"Poor man's lockdown" is an instruction that both faults one or more
pages into the working set and raises IPL, for example:

ASSUME NEWIPL - . LE 511

MTPR NEWIPL,#PR$_IPL

;Check that instruction and target
; IPL are on the same or
; adjacent pages
;Raise IPL to level in NEWIPL

Code to be faulted into the working set

NEWIPL: .LONG 8

For the instruction to execute, the page or pages containing the instruction
and NEWIPL must both be resident. The processor generates page faults if the
instruction and pages it references are not resident, and VMS must page them
in before the instruction can successfully execute. At the completion of the
instruction, IPL is raised, after which no further page faulting is possible.
Running at IPL 3 or above blocks the delivery of an AST that might cause
unexpected instruction execution and potential page faults. It also blocks
the delivery of the automatic working set limit adjustment AST and the
rescheduling interrupt, thus also preventing swapper trimming.

This technique is not acceptable for system working set list pages, such
as paged pool and pageable code or data in loadable executive images. The
technique assumes that the only thread of execution that could run (and thus
trigger replacement paging) is the one that has just executed the instruction
sequence. This is not necessariiy true; on a symmetric muitiprocessing sys­
tem, system working set list replacement paging could be triggered by code
executing on any of the other processors. For kernel mode code that needs
to fault pages into the system working set list and have them remain there,
VMS provides the macros previously listed. Use of these macros is described
in detail in the VMS Device Support Manual.

The LOCK_SYSTEM_PAGES macro generates code that invokes the rou­
tine MMG$LOCK_SYSTEM_PAGES, in module LOCK_SYSTEM_PAGES.
For each page to be locked, it takes the following steps:

17.9 Keeping a Page in the Working Set List

1. It faults the page.
2. It acquires the MMG spinlock.
3. It tests whether the page is still valid, and if not, it releases the spinlock

and returns to step 1.
4. It increments the PFN SHRCNT array element for the physical page,

gets the WSLX from the PFN WSLX array element, and sets the WSL$V _
WSLOCK bit in the WSLE in the system working set list.

5. It releases the MMG spinlo~k.
The routine returns to its invoker through a co-routine call. When the

invoker no longer requires the residency of the pages, it invokes the macro
UNLOCK_SYSTEM_PAGES. The code generated by the macro executes a
co-routine return to the routine, which clears the WSL$V _ WSLOCK bit and
decrements the PFN SHRCNT array element for each page.

One other option available to kernel mode code involves the PHD$V _
NO_ WS_CHNG bit. The general sequence is to raise IPL to 2, set the bit,
and fault the page or pages into the working set list. Setting this bit blocks
swapper trimming and automatic working set limit adjustment. The code
must execute a constrained instruction sequence to ensure the continued
residency of the page, since the working set list is still subject to replacement
paging. The memory management subsystem and other parts of the VMS
executive employ this option, setting the bit for relatively brief periods of
time. Use of this bit is reserved to Digital; any other use is unsupported.

509

18 The Swapper

A time to cast away stones and a time to gather stones together ...

Ecclesiastes 3:5

The amount of physical memory present on the system is not a hard limit to
the number of processes in the system. The VMS operating system effectively
extends physical memory by keeping a subset of active processes resident at
once. It maximizes the number of such processes by limiting the number
of pages that each process has in memory at any given time. Processes not
resident in memory reside on mass storage in swap files; that is, they are
outswapped.

The swapper process is the systemwide physical memory manager. Its
responsibilities include maintaining an adequate supply of physical memory
and ensuring that the highest priority computable processes are resident in
memory.

18.1 SWAPPER OVERVIEW

18.1.1

510

This section reviews some basic swapper concepts.

Swapper Responsibilities

The swapper has several main responsibilities. The first is to ensure that the
currently resident processes are the highest priority computable processes in
the system. When a nonresident process becomes computable, the swapper
must bring it back into memory if its priority and the available memory
allow.

The swapper maintains the number of pages on the free page list above
the threshold established by the SYSGEN parameter FREELIM. The free page
list is depleted by requests for physical pages for resolving page faults and
inswapping computable processes. The swapper performs four operations to
keep the free page list above FREELIM. These are described in more detail
in subsequent sections of this chapter.

1. The swapper deletes process headers (PHDs) of already deleted processes.
It outswaps any PHDs of previously outswapped process bodies that are
eligible for outswap.

2. It invokes the modified page writer subroutine to write modified pages.
3. It shrinks the working sets of one or more resident processes.
4. If necessary, the swapper selects an eligible process for outswap and

removes that process from memory. The table that determines outswap
selection also determines the order in which processes are selected for
working set reduction.

18.1.2

18.1.3

18.1 Swapper Overview

The swapper stops reclaiming pages for the free page list when its size
exceeds the SYSGEN parameter FREEGOAL.

The swapper ensures that there are fewer pages on the modified page list
than the threshold established by the SYSGEN parameter MPW _HILIMIT.
When the modified page list grows above this limit, the modified page writer
writes pages to their backing store and moves them to the free page list.

System Events That Trigger Swapper Activity

The swapper spends its idle time hibernating. Those executive components
that detect a need for swapper activity wake the swapper by invoking routine
SCH$SWPWAKE, in module RSE. In addition, SCH$SWPWAKE is invoked
once a second from system timer code. SCH$SWPWAKE performs a series
of checks to determine whether there is a real need for the swapper to run.
If so, it awakens the swapper. If not, it simply returns. Performing these
checks in SCH$SWPWAKE, rather than in the swapper process itself, avoids
the overhead of two needless context switches.

Table 18.1 lists the system events that trigger a possible need for swapper
activity, the module containing the routine that detects each need, and the
action the swapper takes in response.

The swapper can be awakened in another, more indirect way: clearing
the cell that contains the modified page list high limit so that a subse­
quent test for whether the list size exceeds its high limit will fail. The
routine MMG$PURGEMPL, in module WRTMFYPAG, uses this method~
This routine, invoked to request the writing of modified pages, is described
in Chapter 16.

Swapper Implementation

The swapper is implemented as a separate process with a priority of 16, the
lowest real-time priority. It is selected for execution like any other process
in the system.

The swapper executes entirely in kernel mode. All swapper code resides in
system space. The swapper uses its PO space only to swap processes. It has
a small amount of Pl space as of VMS Version 5, namely a Pl pointer page.
The major reason for this change was to eliminate a number of special-case
checks in the executive for swapper process context.

The swapper serves as a convenient process context for several system
functions. In particular, during system initialization it performs those ini­
tialization tasks that require process context and must be performed prior
to the creation of any other process, for example, initializing paged pool and
creating the SYSINIT process. Chapter 31 describes these functions of the
swapper.

511

The Swapper

Table 18.1 Events That May Cause the Swapper to Be Awakened

System Event

Process that is out­
swapped becomes
computable

Quantum end

Modified page list
exceeds upper limit

Free page list drops
below low limit

Balance slot of deleted
process becomes
available

PHD reference count
goes to zero

Powerfail recovery

System timer subrou­
tine executes once a
second

Routine Name
(Module)

SCH$CHSE (RSE)

SCH$QEND (RSE)

MMG$DALLOCPFN,
MMG$INSPFNH/T

(ALLOCPFN)
MMG$REMPFN

(ALLOCPFN)

DELETE
(SYSDELPRC)

MMG$DECPHDREF
(PAGEFAULT)

EXE$RESTART
(POWERFAIL)

EXE$TIMEOUT
(TIMESCHDL)

Swapper Action

The swapper attempts to make
this process resident.

The swapper may be able
to perform an outswap
previously blocked by initial
quantum flag setting or
process priority.

The swapper writes modified
pages.

The swapper increases the free
page count, taking the steps
summarized in Section 18 .1.1.

The swapper can delete the PHD
and may be able to perform a
previously blocked inswap.

The swapper can outswap a
PHD to join the previously
outswapped process body.

The swapper queues a power
recovery AST to any process
that requested one.

The swapper is awakened if
there is any work for it.

18.2 SWAPPER'S USE OF MEMORY MANAGEMENT DATA STRUCTURES

Chapter 14 describes the memory management data structures used by both
the page fault handler and the swapper. The discussion here reviews those
structures and adds descriptions of the structures used exclusively by the
swapper.

18.2.1

512

Process Header

Most of the information used by the swapper in managing the details of
inswapping or outswapping is contained in the PHD of the process to be
swapped. The process page tables contain a complete description of the
address space for a given process.

The working set list describes those page table entries (PTEs) that are valid.
This list is crucial for the swapper because only the working set is written
to the process's swap space when the process is outswapped. In a similar

18.2.1.1

18.2.1.2

18.2.1.3

18.2 Swapper's Use of Memory Management Data Structures

fashion, when a process is inswapped, the working set list in the process's
PHD describes the process pages in the swap file.

Working Set List. The working set list describes the portion of a process
virtual address space that must be written to the swap file or otherwise
dealt with when the process is outswapped; the working set list is trimmed
to a maximum of WSQUOTA pages before outswap. A page in the process
working set can be in one of the following three states:

• The page is valid .
• The page is currently being read into memory. The swapper treats page

reads like any other 1/0 in progress when swapping a process .
• The process PTE contains a global page table index (GPTX), and the indexed

global page table entry (GPTE) indicates a transition state. The swapper
handles global pages in a special manner when outswapping a process.

The swapper's scan of the process working set list at outswap is discussed
in Section 18.5.

Process Page Tables. The working set list does not supply the swapper with
all the information necessary to outswap a process. Other information about
a virtual page is contained in its PTE or in one of the page frame number
(PFN) array elements associated with the physical page. Each working set
list entry (WSLE) effectively points to a PTE that contains a PFN. When
outswapping, the swapper copies the PTE to the swapper's 1/0 map (see
Section 18.2.2). It then inserts the contents of the PFN BAK array element
for this physical page in the PTE, disassociating it from the physical memory
that its virtual page occupied.

Process Header Page Arrays. PHD pages are also part of the process working
set. These pages reside in system space; their system page table entries
(SPTEs) map the balance set slot in which the PHD resides. As part of
outswapping, the swapper disassociates the PHD pages from their SPTEs
so that it can reuse the balance set slot. Thus, unlike process pages, PHD
pages' PTEs are not available to hold these pages' backing store addresses
while they are outswapped.

Instead, when a process is outswapped, the contents of the PFN BAK array
element for each PHD page currently in the working set is stored in the
corresponding array element in the PHD page BAK array (see Figure 14.10).
When the process is inswapped, the PHD page arrays can be scanned and the
BAK contents copied from the array back into the PFN BAK array elements
for the physical pages that contain the PHD.

The swapper also records where each PHD page fits into the working set
list. It stores the PFN WSLX array element in the corresponding PHD page

513

The Swapper

18.2.2

18.2.3

514

WSLX array element. The use of this array while the PHO is being rebuilt
following inswap prevents a prohibitively long search of the working set list
for each PHO page.

Swapper 1/0 Data Structures

Like the page fault handler, the swapper uses the conventional VMS 1/0
subsystem. It allocates its own 1/0 request packet and fills in some of the
fields that will be interpreted in a special manner by the 1/0 postprocessing
routine. After these fields have been filled in, it jumps to one of the swapper
1/0 entry points in module SYSQIOREQ (EXE$BLDPKTSWPR or EXE$BLD­
PKTSWPW) that fills in an appropriate function code and queues the packet
to the appropriate disk driver. Tables 16.1 and 16.2 show how the 1/0 request
packet is used by the swapper for its 1/0 activities.

The swapper uses a private 1/0 map that allows it to read or write a
process working set, a collection of virtually noncontiguous pages, in one or
more 1/0 requests. The swapper 1/0 map is an array of WSMAX longwords
whose address is stored in the global cell SWP$GL_MAP. It can describe one
outswap or one inswap operation at a time.

Certain swapper operations complete asynchronously. The swapper main­
tains two bits in the cell SCH$GB_SIP as signals of ongoing operation: when
set, SCH$V _SIP means that an inswap or outswap is in progress and described
by the swapper 1/0 map; when set, SCH$V _MPW means that modified page
writes are in progress.

At outswap, the PFN of each page to be written to a swap file is stored in
an array element of the swapper 1/0 map. The address of this array is passed
to the 1/0 system as the system virtual address of the PTE that maps the
first page of the 1/0 buffer. At inswap, the swapper allocates physical pages
of memory for the process working set and records their PFNs in the 1/0
map. The swap image is read into these pages. As the swapper rebuilds the
process's working set list and page tables, it copies the l>FN from each entry
of its 1/0 map to the appropriate system or process PTE.

Swap File Data Structures

The system maintains a page file control block for each page and swap file in
the system. Figure 14.24 shows the layout of this data structure and describes
its fields. Both page and swap files can be used for swapping.

During system initialization, the SYSINIT process opens the primary swap
file SYS$SPECIFIC:[SYSEXE]SWAPFILE.SYS, if it exists, and initializes its
page file control block. When any additional swap file is installed (with
the SYSGEN command INSTALL), SYSGEN initializes its page file control
block.

In earlier versions of VMS, when a process was created, space for its work­
ing set was assigned in the first swap file with enough free space. When the

18.2 Swapper's Use of Memory Management Data Structures

process's working set grew too large for the swap space, a replacement swap
slot was allocated. VMS required that there be a swap slot large enough to
outswap the process at its current size, up to the maximum of its authorized
quota. When the working set limit was adjusted at image reset, a smaller
swap slot was allocated. Each swap slot consisted of virtually contiguous
blocks within a single swap file.

In VMS Version 5, swap space allocation has changed considerably, reflect­
ing the fact that processes are outswapped relatively infrequently and that
they are typically outswapped with shrunken working sets. Now swap space
is not assigned until a process has been selected for outswap, subsequent to
any swapper trimming. VMS attempts to allocate virtually contiguous space
in a single swap or page file. If that fails, however, it allocates multiple
extents in a number of swap and page files.

This approach requires less dedicated swap file space than in earlier ver­
sions of VMS and results in less fragmentation in swap and page files. The
overhead of allocating and deallocating seldom-used swap space has been
eliminated.

Two fields in the process control block (PCB) of an outswapped process
record information about its swap space: PCB$L_ WSSWP, its location, and
PCB$L_SWAPSIZE, its size. These two fields must be adjacent.

The value in PCB$L_ WSSWP has several interpretations:

• When a process is first created, its PCB$L_ WSSWP is zeroed to indicate to
the swapper that this process requires an inswap from the shell.

• A positive value indicates that the swap space consists of a single extent.
The upper byte is a longword index into the page-and-swap-file vector (see
Figure 14.24). The indexed element of the array contains the address of
the page file control block that describes the process's swap file. The other
three bytes specify the starting virtual block number of the swap space.

• A negative value is the system virtual address of a new nonpaged pool
data structure, called a page file map (PFLMAP). Whenever the swap space
consists of more ~han one extent, the swapper allocates a PFLMAP with
one pointer for each extent.

Figure 18.1 shows the layout of a PFLMAP. PFLMAP$1-PAGECNT is the
total number of pages described in all the PFLMAP's pointers. PFLMAP$W _
SIZE and PFLMAP$B_ TYPE are the standard dynamic data structure fields.
The size of a PFLMAP depends on the number of pointers it contains. Its
maximum size is 512 bytes. PFLMAP$B_ACTPTRS is the number of pointers
in the structure. The pointers begin at offset PFLMAP$Q_PTR.

Each pointer is a quadword. Its first longword contains a swap file index
and starting virtual block number, just like the contents of PCB$1-WSSWP
for a single-extent swap space. The second longword contains the number of
blocks in the extent. Bit 31 is set in the second longword of the last pointer
to flag it as the end.

515

The Swapper

PAGECNT

(reserved)

ACTPTRS 1 TYPE 1 SIZE

t- PTA -
ACTPTRS mapping pointers

T T
Figure 18.1
Page File Map Data Structure

In the case of a single-extent swap space, PCB$L_SWAPSIZE contains the
size of the slot, with bit 31 set to indicate it is the only pointer. Thus, the
executive can treat the quadword beginning at PCB$L WSSWP as a pointer
with the same form as one in a PFLMAP.

Figure 18.2 shows the relations among the data structures involved in
swap file use and also the structure of a single-extent swap space. The upper
byte of PCB$L_ WSSWP indexes the page-and-swap-file vector array element
that contains the address of the page file control block for that swap file.
The page file control block field PFL$1-WINDOW contains the address of
the window control block (WCBJ describing the location on a mass storage
medium of the swap file. The field WCB$L_ORGUCB contains the address
of the unit control block for that device.

Within the swap file, the process's slot begins at the virtual block whose
number is in the low three bytes of PCB$L_WSSWP. It must contain room
for the PHD and the process body (the PO and Pl pages belonging to the
process). The total size of the swap space, contained in PCB$L_SWAPSIZE,
is the same as the process's working set size, the sum of PCB$LPPGCNT
and PCB$LGPGCNT. The field PCB$W_APTCNT contains the size of the
first part of the space, which is reserved for the PHD. This field has no
meaning for a resident process; the swapper calculates its value by scanning
the working set list of a process about to be outswapped.

18.3 SWAPPER MAIN LOOP

516

The swapper does not determine why it was awakened. Every time it is
awakened, it tends to all the tasks for which it is responsible. The main
loop of the swapper consists of the following steps:

1. It invokes local routine BALANCE, which tests the size of the free page
list.

-If there are sufficient free pages, BALANCE transfers to local routine
OUTSWAP to clean up any deleted PHDs.

18.3 Swapper Main Loop

MMG$GL_PAGSWPVC::

Page-and-Swap-
UCB wee PFL File Vector PCB

l 1
Identifies
device ORGUCB WINDOW STS

containing PCB$V_RES = 0
swap file

T T T T I .I APTCNT I
LJ WSSWP

SWAPSIZE
Bit31=1

Swap Fiie T T

PCB$W_APTCNT {
pages

PHO
(Fixed part, working set list,

process section table,
active page tables)

1--~~~~~~~~~

PCB$L_SWAPSIZE
pages

Process Body
(PO and P1 pages)

l____J
Figure 18.2
Swap File Database

-If there are insufficient free pages and the size of the modified page list
is large enough, BALANCE requests the writing of modified pages to
make up the deficit; otherwise, it transfers to OUTSWAP.

Section 18.3.1 describes BALANCE in more detail.
2. The swapper invokes the modified page writer routine, MMG$WRTMFY­

PAG, in module WRTMFYPAG, which initiates modified page writing
in response to any pending requests. For example, if the size of the
modified page list exceeds its current upper limit, modified pages are
written until the size of the list falls below the SYSGEN parameter
MPW_LOWAITLIMIT. Chapter 16 describes the initiation of modified
page writing.

3. It invokes local routine SWAPSCHED to identify the highest priority

517

The Swapper

18.3.1

518

computable outswapped process. If there is none, SWAPSCHED returns.
Otherwise, it calculates the size of the process's working set and tests
whether there are enough free pages to accommodate it.

-If there are enough pages, SWAPSCHED transfers to local routine IN­
SWAP to initiate the inswap.

-If there are not enough pages, SWAPSCHED enters the OUTSWAP
routine to make up the free page deficit.

Section 18.3.2 discusses SWAPSCHED in more detail.
4. Because the swapper is a system process that executes fairly frequently,

it is a convenient vehicle for testing whether a powerfail recovery has
occurred and, if so, notifying all processes that have requested power
recovery asynchronous system trap (AST) notification through the Set
Powerfail Recovery AST ($SETPRA) system service. This delivery mech­
anism is described in Chapter 33.

5. Finally, the swapper puts itself into the hibernate state, after checking
its wake pending flag. If any thread of execution, including the swapper
itself in one of its main routines, has requested swapper activity since
the swapper began execution, the hibernate is skipped and the swapper
goes back to step l.

The BALANCE Routine

BALANCE takes the following steps:

1. BALANCE acquires the MMG and SCHED spinlocks, raising IPL to IPL$_
MMG.

2. It compares the size of the free page list to its low limit, the SYSGEN
parameter FREELIM. If modified page writing is in progress, BALANCE
includes the number of pages being written in the size of the free page
list. If the number is larger than FREELIM, BALANCE goes on to step 5.

3. If the number is smaller than FREELIM, the free page list must be re­
plenished to a target size of SYSGEN parameter FREEGOAL pages. The
swapper tries to free enough pages to make up the difference. BALANCE
tests whether modified page writing is already in progress. If so, it contin­
ues with step 6. If not, it tests whether the modified page list contains as
many pages as the SYSGEN parameter MPW _THRESH. If the threshold
has been reached, BALANCE further tests that the difference between
the list's current size and its low limit (the SYSGEN parameter MPW _
LOLIMIT) is large enough to satisfy the deficit. That is, the modified page
list must contain enough pages to pass both tests before the swapper can
replenish the free page list from it. If the modified page list is not large
enough, BALANCE goes to step 6.

4. If the modified page list is large enough, it invokes MMG$PURGEMPL,
in routine WRTMFYPAG, to request that enough pages be written from

18.3.2

18.3 Swapper Main Loop

the modified page list to make up the free page deficit. (Chapter 16
describes MMG$PURGEMPL and the modified page writer.) BALANCE
releases the spinlocks and returns.

5. If there are no PHDs belonging to deleted processes from which to reclaim
memory, BALANCE releases the spinlocks and returns.

6. Otherwise, it tests and sets SCH$V _SIP. If the swapper already has an
1/0 operation in progress, BALANCE releases the spinlocks and returns.
If not, it transfers to routine OUTSWAP, with the frame pointer IFP) regis­
ter and SWP$GB_ISWPRI set to zero. Section 18.3.3 discusses OUTSWAP
and the meaning of its arguments.

The SWAPSCHED Routine and Selection of Inswap Process

SWAPSCHED takes the following steps:

1. It acquires the MMG and SCHED spinlocks.
2. It tests and sets bit SCH$V_SIP in SCH$GB_SIP. If the bit was already

set, indicating that the swapper map is in use, SWAPSCHED releases the
spinlocks and returns.

Otherwise, it selects a process in the computable outswap (COMO)
state, if one exists, to inswap. Later paragraphs in this section describe
its selection. If there is no process in the COMO state, SWAPSCHED
clears SCH$V _SIP, releases the spinlocks, and returns.

3. If a COMO process exists and there are enough pages for its working set,
SWAPSCHED transfers to INSWAP to read the process into memory, as
described in Section 18.6.

4. If a COMO process exists but there are insufficient pages for its working
set, SWAPSCHED attempts an optimization aimed at minimizing swap­
ping on systems with more compute-bound processes than can fit into
available memory. It makes two checks. One is whether the process's
priority is no higher than the SYSGEN parameter DEFPRI, the default
process priority. The other is whether less time than the SYSGEN pa­
rameter SWPRATE la time interval with a default value of 5 seconds)
has elapsed since the last inswap of a process with a priority as low as
DEFPRI. If both are true, SWAPSCHED abandons the inswap.

Otherwise, it sets SWP$GB_ISWPRI to the priority of the inswap
process and FP to the complement of the free page deficit and enters
OUTSWAP to reclaim enough memory for the inswap.

The VMS scheduling subsystem maintains 32 quadword listheads for
COMO processes, one for each software priority (see Figure 12.2). These
queues are identical to the 32 queues maintained for the computable res­
ident (COM) processes. The steps taken by the swapper to decide which
process to inswap parallel the steps taken by the rescheduling interrupt ser­
vice routine (see Chapter 12) to select the next process for execution. This

519

The Swapper

Example 18.1
Parallels Between lnswap Selection and Execution Selection

Swapper's Inswap Selection Scheduler's Execution Selection

SCH$IDLE:
BISL2 CPU$L_CPUID_MASK(R3),-

G-SCH$GL_IDLE_CPUS
MOVL G-scH$AR_NULLPCB,-

CPU$L_CURPCB(R3)
MNEGB #1,CPU$B_CUR_PRI(R3)
UNLOCK LOCKNAME=SCHED,­

NEWIPL=#IPL$_RESCHED
61$:

BBS R1,G-SCH$GL_IDLE_CPUS,61$

SWAPSCHED:

5$:

LOCK
LOCK
BBSS
FFS

BNEQ
BBCC

LOCKNAME=MMG
LOCKNAME=SCHED
s-#SCH$V_SIP,w-sCH$GB_SIP,5$
#0,#32,w-sCH$GL_COMOQS,R2
10$
s-#SCH$V_SIP,w-sCH$GB_SIP,5$

UNLOCK LOCKNAME=MMG
UNLOCK LOCKNAME=SCHED,­

NEWIPL=#O
RSB

10$:
PUSHR
MOVAQ
MOVL
CMPB
BNEQ

#-M<R6,R7,R8,R9,R10,R11,AP,FP>
G-SCH$AQ_COMOH[R2] ,R3 G)
(R3),R4 G)
#DYNC_PCB,PCBB_TYPE(R4)
QEMPTY

LOCK LOCKNAME=SCHED,-
LOCKIPL=#IPL$_SYNCH

BRW 30$

SCH$SCHED: :
FIND_CPU_DATA R3,ISTACK=YES
LOCK LOCKNAME•SCHED

30$:
FFS #0,#32,G-SCH$GL_COMQS,RO
BEQL SCH$IDLE

MOVAQ G-scH$AQ_COMH[RO],R2
REMQUE G(R2)+,R4
BVS QEMPTY

State Change from COMO to COM State Change from COM to CUR

SCH$CHSEP: :
REMQUE (R4),R1

BNEQ 10$
MOVZWL PCB$W_STATE(R4),R1
BBC R1,EXESTATE,10$
MOVZBL PCB$B_PRI(R4),R1
BLBC PCB$W_STATE(R4),5$
ADDL

5$:
BBCC

520

#32,R1

R1,G-SCH$GL_COMQS,10$

REMQUE G(R2)+,R4
BVS QEMPTY
BNEQ 40$

BBCC RO,G-SCH$GL_COMQS,40$

(continued)

18.3 Swapper Main Loop

Example 18.1 (continued)
Parallels Between Inswap Selection and Execution Selection

10$:
MOVB RO,PCB$B_PRI(R4)
MOVL #SCH$C_COM,R1

30$:
BBSS

35$:
MOVW
MOVAQ

40$:
INS QUE
RSB

40$:
CMPB #DYNC_PCB,PCBB_TYPE(R4)
BNEQ QEMPTY

Ro,G-sCHSGL_COMQS,35$

R1,PCB$W_STATE(R4) 0 MOVW #SCH$C_CUR,PCB$W_STATE(R4)
G-SCH$AQ_COMT[RO],R2

(R4) ,Gl(R2)+ G) MOVL lt4,CPU$L_CURPCB(R3)

parallel is shown in Example 18.1, which contains code extracts from the
modules SWAPPER, SCHED, and RSE.

The first half of the example shows the swapper's selection of the next
inswap process and the nearly identical instructions in the rescheduling
interrupt service routine, often called the scheduler. The numbers in the
example correspond to the numbered steps in the following list:

(!)The SCHED spinlock is acquired to synchronize access to the scheduler
database.

G)The highest priority nonempty (COMO/COM) queue is selected.
G)The address of its forward pointer is loaded into a register.
G) The address of the selected PCB is loaded into R4.

At this point, SWAPSCHED has found a process to inswap. As previously
described, it tests whether the free page list is large enough. If so, the inswap
proceeds. If not, SWAPSCHED enters the OUTSWAP routine to reclaim
memory.

After enough pages are available, the swapper takes the steps necessary to
bring the selected process Into memory.

The scheduler, on the other hand, continues execution. The REMQUE in­
struction shown in the example for the scheduler is duplicated for ease of
comparison.

Some time later, the inswap operation completes. The swapper rebuilds
the working set list and process page tables. The parallel resumes when the
swapper invokes routine SCH$CHSEP, in module RSE, to change the state
of the newly inswapped process to computable.

@The selected PCB is removed from its former state (COMO/COM).
G) If the removal of the PCB emptied the queue, the associated priority bit

in the summary longword is cleared. Note that SCH$CHSEP has biased

521

The Swapper

18.3.3

522

Rl so that it points to SCH$GLCOMOQS, the summary longword for
the COMO state.

G)The STATE field in the PCB is loaded with the new state (COM/CUR) of
the process.

G)Finally, the address of the PCB is stored appropriately: the PCB for the
inswapped process is inserted into a COM queue; the address of the
current process's PCB is stored in the processor's per-CPU database.

At this point, the parallel ends. The newly inswapped process will be
scheduled when the processor (or a member of a symmetric multiprocess­
ing system) is available and the process is the highest priority computable
process able to execute.

The OUTSWAP Routine

The swapper executes the OUTSWAP routine to perform one or more tasks
related to memory reclamation. OUTSWAP is entered with the MMC and
SCHED spinlocks held. It has two arguments. The first is the contents of
FP, the desired function:

• A value of zero means OUTSWAP is to free deleted PHDs and, if possible,
outswap a PHD to join its outswapped process body .

• A positive value is the size of the free page deficit that OUTSWAP must
make up without outswapping a process .

• A value of 8000000016 means OUTSWAP must free a balance set slot,
either by outswapping a PHD or, less immediately, by outswapping a
process body .

• Any other negative value is the complement of the free page deficit that
OUTSWAP is to make up any way possible.

The second is SWP$GB_ISWPRI, which contains zero or the priority of the
inswap candidate. SCH$0SWPSCHED, invoked by OUTSWAP, compares
this priority to that of certain processes to determine if they are suitable
candidates for shrinking or outswapping; when zero is supplied, all those
processes are considered candidates. An internal priority of zero represents
the highest priority. Section 18.4 provides details on the selection of shrink
and outswap candidates.

OUTSWAP takes the following steps:

1. It first attempts to reclaim memory by releasing the PHD of a previously
deleted process or by outswapping the PHD of a previously outswapped
process. It scans the PHD reference count array for a suitable header.

2. If OUTSWAP finds a PHD with a zero reference count, it tests the cor­
responding PHV$GLPIXBAS array element.

-If it contains -1, the process has been deleted and the swapper can
release its PHD slot. OUTSWAP scans the SPTEs that map the slot,

18.4 Selection of Shrink and Outswap Processes

releases any valid pages to the free page list, and deallocates any page
file backing store associated with any invalid pages. When done, it
clears the PHV$GLPIXBAS array element and changes the PHD ref­
erence count array element to -1. It returns to the beginning of the
swapper's main loop.

-If the corresponding PHV$GL_PIXBAS array element contains a pos­
itive value, the process has been outswapped and OUTSWAP can
outswap its PHD, as described in Section 18.5.3.

3. If the PHD has a nonzero reference count and belongs to an outswapped
process, OUTSWAP takes the steps described in Section 18.5.3.1 to at­
tempt to sever all the connections between the PHD and memory so it
can be outswapped.

4. If the reference count is still nonzero, requiring that modified pages be
written, OUTSWAP returns to step 2, to scan for another PHD.

5. If OUTSWAP scans all the balance set slots without finding a PHD to
release or outswap, it tests the FP argument.

-If the argument is positive or zero, OUTSWAP returns to BALANCE,
the only routine that invokes it with either of these values.

-If the argument is negative, OUTSWAP continues with the next step.

6. OUTSWAP invokes SCH$0SWPSCHED, in module OSWPSCHED, to
shrink working sets and possibly select a process to outswap. Section 1804
describes these operations.

Whenever SCH$0SWPSCHED shrinks a process working set, it checks
whether the free page deficit has been made up. If the deficit has not yet
been made up, it makes checks similar to those previously described
to determine whether writing the modified page list is appropriate and
whether it would satisfy the deficit. If it would, SCH$0SWPSCHED
invokes MMG$PURGEMPL, in routine WRTMFYPAG, to request that
enough modified pages be written to make up the free page deficit.

7. If SCH$0SWPSCHED returns with an identified outswap candidate,
OUTSWAP takes the steps described in Section 18.5 to outswap it. After
outswapping the process and attempting to outswap its PHD, OUTSWAP
returns to the beginning of the swapper's main loop.

If SCH$0SWPSCHED returns without an identified outswap candi­
date, OUTSWAP simply returns to its invoker.

18.4 SELECTION OF SHRINK AND OUTSWAP PROCESSES

When the swapper needs physical memory or a balance set slot, it invokes
the routine SCH$0SWPSCHED, in module OSWPSCHED. It specifies ei­
ther how many pages of memory it needs or that it needs a balance set
slot. SCH$0SWPSCHED can shrink the working sets of selected processes,
select a process to be outswapped, or perform both operations. SCH$0SWP­
SCHED performs two levels of shrinking: in first-level trimming, it shrinks

523

The Swapper

18.4.1

524

.an extended working set back to the normal maximum working set limit
(WSQUOTA); in second-level trimming, it attempts to shrink a working set
to the SYSGEN parameter SWPOUTPGCNT. Before performing any second­
level trimming, it shrinks all working sets that have been extended. Note
that with VMS Version 5, SCH$0SWPSCHED stops trimming after reclaim­
ing the requested number of pages.

SCH$0SWPSCHED scans the scheduler database looking for processes to
be shrunk or outswapped. Whenever it gains free pages from shrinking a
process working set, it checks whether there are enough pages on the free
and modified page lists to satisfy the swapper's need. If enough pages are
available, SCH$0SWPSCHED returns. It also returns if it finds a process to
be outswapped.

The search for a candidate process is table-driven. The following sec­
tions describe first the table and then information about the multiple passes
through the table.

The OSWPSCHED Table

The OSWPSCHED table is divided into sections, each specifying one or
more resident process scheduling states and a set of conditions associated
with each state. Table 18.2 lists the individual entries and sections in the
OSWPSCHED table. States in the same section are considered equivalent.
Selection of shrink and outswap candidates depends on the factors named in
the column heads of Table 18.2.

SCH$0SWPSCHED scans the scheduling queues in the order shown in the
State column. It checks whether any process in that state queue satisfies the
conditions in the second through sixth columns. If a process satisfies those
conditions, it is a candidate for shrinking and possibly for swapping. When
SCH$0SWPSCHED finds such a process, its subsequent action depends on
the flags described in the last column.

The conditions in the table entries discriminate among processes, based
on their likelihood of becoming computable in a short while and the effects
of shrinking or swapping them. When the system needs to reclaim physical
memory, process working sets extended in times of plentiful memory are
shrunk first. In general, the intent is to prevent the outswap of a process
that is about to become computable when the only reason for the swap
is to bring a computable process of equal priority into memory. Overall
system performance may be improved by shrinking processes rather than
swapping them. However, a process in some states may be affected less by
being swapped than by having its working set reduced.

Descriptions of the various conditions and flags follow:

• I/0-A table entry in this column can specify No direct, Direct, No
buffered, Buffered, and n/ a.

18.4 Selection of Shrink and Outswap Processes

Table 18.2 Selection of Shrink and Outswap Candidates

Initial Long
State 1/0 Priority Quantum Wait Dormant Flags
SUSP No buffered n/a n/a n/a n/a Swap

(SWAPASAPI

SUSP Buffered n/a n/a n/a n/a Second
(SWPOGOALI

COM n/a n/a n/a n/a Yes First only
(LVLLTRIMI

lllB n/a n/a n/a Yes n/a Second
LEF No direct n/a n/a Yes n/a Second

CEF No direct n/a n/a n/a n/a Second

lilB n/a n/a n/a No n/a Second
LEF No direct n/a n/a No n/a Second

FPG n/a Yes n/a n/a n/a n/a
CO LPG n/a Yes n/a n/a n/a n/a

MWAIT n/a n/a n/a n/a n/a n/a

CEF Direct Yes Yes n/a n/a n/a
LEF Direct Yes Yes n/a n/a n/a

PFW n/a Yes Yes n/a n/a n/a
COM n/a Yes 1 Yes n/a No n/a

1 This constraint is not present in the table; however, it is present in the algorithm and thus shown here.

When a process that is in a local event flag (LEF) or common event flag
(CEF) scheduling state has an outstanding direct 1/0 request, there is a
high probability that the process is waiting for the direct 1/0 to complete.
If so, the process will soon become computable and thus be a less desirable
shrink or outswap candidate. SCH$0SWPSCHED therefore distinguishes
between processes with and without outstanding 1/0 requests.

With VMS Version 5, a suspended process, by default, can receive kernel
and executive ASTs. To prevent such a process from being outswapped and
then becoming computable again as the result of buffered 1/0 completion,
the table distinguishes between suspended processes with and without
outstanding buffered 1/0 requests.

In this column, n/a means that the existence of either type of outstanding
1/0 request is irrelevant. No test is made for either.

• Priority-A table entry in this column can specify Yes or n/a.

525

The Swapper

526

Yes in this column means that SCH$0SWPSCHED compares the prior­
ities of the inswap process with that of any process that may be shrunk or
outswapped. A process that is computable or likely to be computable soon
is not considered a candidate, unless its priority is less than or equal to that
of the potential inswap process, stored in global location SWP$GB_ISWPRI.
(The swapper zeros SWP$GB_ISWPRI before invoking SCH$0SWPSCHED
to make up a free page list deficit.)

In this column, n/a means no test is made .
• Initial Quantum-A table entry in this column can specify Yes or n/a.

Yes in this column means that SCH$0SWPSCHED rejects a process that
is in its initial memory residency quantum. A process likely to become
computable soon is not considered a candidate for second-level trimming
or outswapping if it is within its initial memory residency quantum. If
SWP$GB_ISWPRI is less than or equal to 15, the constraint is ignored. The
intent is to leave the process in memory long enough to do useful work,
after the system has expended the overhead of inswapping it. This reduces
the possibility of swap thrashing, a condition in which the system spends
more time swapping in and out than in process execution.

In this column, n/a means that SCH$0SWPSCHED does not test if the
process is in its initial quantum.

• Long Wait-A table entry in this column can specify Yes, No, or n/a.
Either Yes or No in this column means that SCH$0SWPSCHED deter­

mines whether a process has been waiting in an LEF or hibernate (HIB)
state longer than the SYSGEN parameter LONGWAIT. Yes means that
for a process to be a candidate, it must be in a long wait. A process that
has been waiting a long time is likely to wait longer still; one that has
been waiting a short time is more likely to become computable soon. For
example, a process waiting for terminal input longer than a LONGWAIT
interval is likely to remain in LEF longer still.

No in this column means that the process must not have been waiting
a long time; n/a means that SCH$0SWPSCHED does not test for this
condition.

• Dormant-A table entry in this column can specify Yes, No, or n/a.
Either Yes or No in this column means that SCH$0SWPSCHED de­

termines whether a computable process is dormant, that is, one whose
priority is less than or equal to the SYSGEN parameter DEFPRI and that
has been on a COM or COMO queue for longer than the SYSGEN param­
eter DORMANTWAIT. Yes in this column means that the process must
be dormant to be a candidate. A dormant process is considered a very good
candidate to be shrunk. An example of such a process is a compute-bound
process with a priority too low to get CPU time. This condition was added
to expedite the shrinking and outswap of a process such as a low-priority
batch job. While the process runs at night on a lightly loaded system, its

18.4.2

18.4 Selection of Shrink and Outswap Processes

working set is expanded and it can acquire extensive physical memory, but
once interactive users log in, the process cannot get CPU time.

No in this column means the process must not be dormant to be a candi­
date; n/a means that SCH$0SWPSCHED does not test for this condition.

This older mechanism for dealing with dormant processes persists in
case the system manager has disabled . the newer, preferred mechanism,
the combination of PIXSCAN priority boost and quantum-end working set
trimming. Chapter 17 contains information on quantum-end trimming,
and Chapter 12 describes the PIXSCAN mechanism.

• Flags-Three flags direct SCH$0SWPSCHED to take specific action on a
particular pass through the table. In this column, n/a means no specific
action is indicated.

The LVLL TRIM flag, shown in the table as First Only, means that the
working set of a process selected by this entry should only be trimmed to
WSQUOTA. Such a process is ignored in the second pass of the table.

The SWAPASAP flag, shown in the table as Swap, indicates that SCH$0-
SWPSCHED should outswap a process selected by this entry after reducing
its working set to WSQUOTA. When the outswapped process becomes
computable again, it will not have to waste compute time rebuilding its
working set.

The SWPOGOAL flag, shown in the table as Second, indicates that
SCH$0SWPSCHED must try to shrink the working set size of a process
selected by that table entry to SWPOUTPGCNT. Shrinking the working
set of such a process may reclaim enough memory that the process need
not be outswapped.

In addition to conditions imposed by the table entries, there are several
implicit constraints on the suitability of a particular process to be shrunk
or outswapped. A process cannot be outswapped if it has locked itself into
the balance set. The working set of a process that has disabled automatic
working set adjustment cannot be shrunk. The working set of a real-time
process cannot be shrunk below WSQUOTA. If the executive has temporarily
blocked changes to the working set list and PTEs of a process (by setting
the bit PHD$V _NO_ WS_CHNG in PHD$W _FLAGS), the process's working
set cannot be shrunk or outswapped. A process that is already outswapped
cannot be shrunk or outswapped.

Passes Through the OSWPSCHED Table

SCH$0SWPSCHED makes two passes through the table. On its first pass, it
potentially traverses all sections of the table, performing first-level trimming
of any candidate processes. If it has been entered with a request to outswap
a process to free a balance set slot, the first candidate process that is shrunk
and that has not locked itself into the balance set is also selected as an
outswap candidate.

527

The Swapper

If SCH$0SWPSCHED has been entered to satisfy a free page deficit, it
reclaims memory from working sets that had been extended until it reaches
the end of the table, reclaims enough free pages to satisfy the deficit, or
finds a process to be outswapped. A suitable outswap candidate is one that
meets the scheduling state and conditions of a table entry that includes the
SWAPASAP flag and that has not locked itself into the balance set.

If SCH$0SWPSCHED reaches the end of the table without satisfying the
deficit or locating an outswap candidate, it scans the table again, starting at
the beginning. If it has been entered to satisfy a free page deficit, it performs
second-level trimming. If it has been entered to free a balance set slot, it
selects for outswap with no trimming the first candidate process that has
not locked itself into the balance set.

In second-level swapper trimming, SCH$0SWPSCHED can scan each sec­
tion of the table twice. First, if the entry contains the SWPOGOAL flag,
SCH$0SWPSCHED shrinks the working set of a process selected by this en­
try !unless the process has disabled automatic working set adjustment). The
working set is reduced, if possible, to the SYSGEN parameter SWPOUTPG­
CNT. If the deficit is not satisfied, SCH$0SWPSCHED continues scanning
through processes selected by the table section. When it gets to the end of
the section, it restarts at the beginning of the section, looking for a process
to outswap. When SCH$0SWPSCHED gets to the end of the section for the
second time, it goes to the next section. The pass ends when the deficit is
satisfied or a process is found to outswap. If outswapping a process does not
satisfy the deficit, eventually the swapper will reexecute the OUTSWAP and
SCH$0SWPSCHED routines.

The swapper maintains a failure counter that records the number of times
it has failed to locate a candidate to shrink or swap. This count is maintained
across invocations of SCH$0SWPSCHED. It is intended to loosen the con­
straints in situations where the normal conditions have failed to produce
candidates. When this count reaches a value equal to SWPFAIL, the swapper
ignores certain constraints when selecting a process to shrink or outswap: it
ignores the initial quantum condition for all processes and the priority con­
straint for all processes except COM ones. The counter is reset each time an
outswap candidate is successfully located.

When the swapper scans· a series of processes in a particular scheduling
queue, the scan begins with the least recently queued entry lat the tail of
the queue). This starting point ensures that the longer a process has been in
a wait queue, the more chance it has of being shrunk or swapped. IA process
is inserted into a wait queue at the front of the list, unlike most queues.)

18.5 OUTSWAP OPERATION

528

Outswap is described before inswap because it is easier to explain inswap
in terms of what the swapper puts into the swap file. The swapper does

18.5.1

18.5.2

18.5.2.1

18.5 Outswap Operation

not remove processes from the balance set indiscriminately. In practice, the
swapper tries hard not to swap. It tries to satisfy the deficit first by shrinking
working sets, deleting or outswapping PHDs, and writing modified pages. If
those fail to free enough pages, if SCH$0SWPSCHED encounters a process
that meets the constraints of a table entry with the SWAPASAP flag, or if the
system needs a balance set slot (PHD slot), the swapper outswaps a process.

Selection of Outswap Candidate

As described in Section 18.4, the outswap selection is driven by an ordered
table of scheduling states and associated conditions. The swapper selects a
process less likely to benefit from remaining in memory. Once a candidate is
selected, the swapper prepares the working set of that process for outswap.

Outswap of the Process Body

The swapper outswaps the process body (PO and Pl pages) separately from
the PHD. There are two reasons for doing this:

• Fields in the PHD (most notably WSLEs and process PTEs) are modified as
the working set list is processed.

• The PHD may not be swappable at the same time as the body because of
outstanding I/O, pages on the modified page list, or some other reason.

Scanning the Working Set List. To prepare the process body for outswap, the
swapper scans the working set list. It must examine each page in the working
set list to determine if any special action is required. The swapper looks at a
combination of the page type (found in the WSLE as well as the PFN TYPE
array) and the valid bit. Table 18.3 lists all combinations of page type and
valid bit setting that the swapper encounters and the action that it takes for
each. Several combinations are discussed further in the following sections.
(One type of page not discussed further is a page locked into memory, one
whose WSLE PFNLOCK bit is set. The swapper ignores such pages; they
remain in memory, and no action is required.)

The basic step that the swapper takes as it scans the working set list
is to add a description of each swappable page to the swapper I/O map.
As a result, the virtually noncontiguous pages in the process's working set
appear virtually contiguous to the 1/0 system (see Figures 18.4 and 18.7)
in the swapper's PO address space. For each page, the swapper performs the
following steps:

1. Locates the PTE from the virtual page number in the WSLE
2. Determines any special action, based on page validity and page type
3. Copies the PFN from the PTE to the swapper map
4. Records the modify bit (logical OR of PTE modify bit and PFN STATE

array element saved modify bit) in the WSLE

529

The Swapper

530

Table 18.3 Scan of Working Set List of Outswap Process

Page Type
WSLE(3:1}

Process page

Process page

System page

Global
read-only

Global
read-only

Global
read/write

Page table
page

Page
Validity
PTE

Transition

Valid

Transition

Valid

Action of Swapper for This Page

(STATE = Read in Progress) Treat as page with
I/O in progress. Special action may be taken
at inswap or by the modified page writer.

(STATE= Read Error) Drop from working set.
No other transition states are possible for a
page in the working set.

Outswap page. If there is outstanding I/O
and the page is modified, store in its PFN
SWPVBN array element the swap fl.le address
where the updated page contents should be
written when the I/O completes.

It is impossible for a system page to be in a
process working set. The swapper generates
an error.

If the process PTE still contains a PFN, this
page is an active transition page. Outswap
the page. If the process PTE contains a GPTX,
then the global page table must contain a
transition PTE. The page is dropped from the
process working set.

If SHRCNT = 1, then outswap. If SHRCNT > 1,
drop from working set. It is highly likely that
a process can fault such a page later without
I/O. This check avoids multiple copies of
the same page in the swap fl.le.

Drop from working set. At inswap, it would
be difficult to determine whether the page
in memory is more up-to-date than the swap
fl.le copy.

Not part of the process body. However, while
the swapper is scanning the process body,
the virtual address field in the working set
list is modified to reflect the offset from the
beginning of the PHD because page table
pages will probably be located at different
virtual addresses following inswap.

5. Sets the Delete Contents bit in the PFN STATE array element. This bit
causes the page to be placed at the head of the free page list when its
reference count goes to zero (normally, when the swap write completes).

Note that the swapper does not explicitly restore each PTE to the contents
of its PFN BAK array element. The contents will be replaced when the page

18.5.2.2

18.5.2.3

18.5.2.4

18.5 Outswap Operation

is released (after the swap write completes and all other references to the
page are eliminated).

Pages with Direct 1/0 in Progress. If, in the swapper's scan of the working
set list, it encounters a modified page with outstanding 1/0, it stores in the
page's PFN SWPVBN array element the location in the swap file where that
page belongs. The page will be swapped along with the rest of the process
body to reserve a place for it in the swap file.

If the I/O operation is a read (or if it is a write and some other action
has caused the page to be modified), the physical page will be placed on the
modified page list when the I/O completes. The modified page writer takes
special action for a modified page with nonzero contents in its PFN SWP­
VBN array element. That is, it writes the page to the designated block in the
swap file rather than to its normal backing store address.

If the I/O operation is a write (from memory to mass storage) and the
page was not otherwise modified, the contents currently being written to
the swap file are good. The page will be placed on the free list when the I/O
operation completes.

Global Pages. Global pages are also given special treatment at outswap. If the
global page is writable, it is dropped from the process working set before the
process is outswapped. The task of determining whether the contents that
are swapped are up-to-date when the process is brought back into memory is
more complicated than simply refaulting the page (often without I/O) when
the process is swapped back into memory.

A global read-only page is only swapped if its global share count (PFN
SHRCNT array element) is 1. In all other cases, the page is dropped from
the working set and must be refaulted (most likely without I/O) after the
process is inswapped. (Global pages that are explicitly or implicitly locked
into the process working set are not dropped from the working set.) Global
transition pages are also dropped from the process working set.

Example of Process Body Outswap. Figures 18.3 through 18.5 show some of
the special cases the swapper encounters while it is scanning the process
working set list. The key information about each page is a combination of
the PTE validity and the page type. The order of the scan is defined by the
order of the working set list. Figure 18.3 shows the process working set,
the process page tables, and the associated PFN database entries before the
swapper begins its working set scan. Figure 18.4 shows the modified working
set and the swapper map after the working set list scan but before the I/O
request is initiated. Figure 18.5 shows the state of the PTEs after the swap
write has completed and the physical pages have been released.

1. WSLE 1 is a global read-only page. The VPN field of the WSLE locates
the PTE. The PFN field of the PTE locates the PFN data associated with

531

VPNW

VPN X

VPN Y

VPN Z

VPNW

VPN X

VPN Y

VPNZ

532

Process Header for
Swapped Process

Fixed Portion
Working Set List

VPN=Y GRO

VPN=Z PPG

VPN=W GRW

VPN=X PPG

Process Section
Table, etc.

PO Page Table

UL_ Valid, PFN•B

DI. Valid, PFNsO

LJ:. :yalld, PFN""A

la Vrtlid; P'FN=C

P1 Page Table

Figure 18.3

WSLE 1

WSLE 2

WSLE 3

WSLE 4

PTEW

PTE X

PFN Database Arrays

WSLX PTE BAK STATE TYPE Other

C==:J I GPTE al I GSTX I ~ I GRO 11sHRCNT=1 I PFN A

CJ~ @ii]~ IGRwl lsHRCNT=41 PFN B

I WSLE 2 I ~ I PGFLX I ~ I PPG 11REFCNT=2 I PFN c

I WSLE 411 PTE x I [PSTXJ ~I PPG I PFN D

SWP$GL_MAP::

Global Page Table Swapper's
1/0 Map

~ -l: J
GPTE Q

PTE Y

GPTE R J-.--'..-V-'a-'-U_d,_P,;,,.. F~N-;='"'"8--<

PTE Z

Example Working Set List before Outswap Scan

Process Header for
Swapped Process

Fixed Portion
Working Set List

VPN=Y GRO

VPN=Z PPG

Ll
VPN=X PPG

Process Section
Table, etc.

PO Page Table

rnr GPTX=A -

Valid, PFN = D

Valid, PFN=A

Valid, PFN = C

P1 Page Table

Figure 18.4

WSLE 1

WSLE 2

WSLE 3

WSLE 4

PTEW

PTE X

PFN Database Arrays

WSLX PTE BAK ST A TE TYPE Other

C==:J I GPTE Q 11 GSTX ~ I GRO 11SHRCNT=1 I PFN A

CJ~/ GSTX ~/GRwllsHACNT=31PFNB

~ ~I PGFLX ~ I PPG 11 REFCNT=2 I PFN c

I WSLE 411 PTE x 11 PSTX ~ I PPG I PFN D

Global Page Table Swapper's
1/0 Map

SWP$GL_MAP::

_ _._.t J
GPTE Q Valid, PFN =A Valid, PFN~A

Valid, PFN=C

Valid, PFN-D

PTE Y

GPTE R Valid, PFN = B

PTE Z

Example Working Set List after Outswap Scan

VPNW

VPN X

VPN Y

VPN Z

18.5 Outswap Operation

this physical page. In particular, the PFN SHRCNT array element for this
page is 1. (This process is the only process that currently has this page
in its working set.) The swapper writes this page out as part of the swap
image for this process. Thus, PFN A is the first page in the swapper's 1/0
map (see Figure 18.4).

When the swapper's write completes, the page will be deleted; that is,
the PTE array element will be cleared and the page will be placed at the
head of the free page list (see Figure 18.5).

2. WSLE 2 is a process page that also has 1/0 in progress (a REFCNT of 2).
This page will be swapped; its PFN is shown in the swapper map.

If the page was previously modified (if either the PTE modify bit or
saved modify bit in the PFN STATE array element is set), the address in
the swap file where the page belongs is stored in the PFN SWPVBN array
element. Nonzero contents in the PFN SWPVBN array element cause
the page to be placed on the modified page list when it is released. If the
process is still outswapped when the modified page writer writes this
page, the page will be written to the block reserved for it in the swap
file.

The page is marked for deletion. That is, when the REFCNT for the
page reaches zero (because of completion of both the outstanding 1/0 and

Process Header for
Swapped Process

Fixed Portion
Working Set List

VPN=Y GRO

VPN=Z PPG

VPN=X PPG

Process Section
Table, etc.

PO Page Table

GPTX=R

PSTX

GPTX=Q

PFN=C

P1 Page Table

Figure 18.5

WSLE 1

WSLE 2

WSLE 3

WSLE 4

PTEW

PTE X

PFN Database Arrays

WSLX PTE BAK ST A TE TYPE Other

I BUNK I IGPTE al I GSTx 11FREE11GRo11 SHRCNT=ol PFN A

c::=:::::J I GPTE R 11 GSTX I ~ I GRW 11SHRCNT=31 PFN B

~I PTEZ I~~ D IREFCNT=1 I PFNC

I BLINK I ~ I I I FREE 11 PPG I PFN D

Global Page Table Swapper's
1/0 Map

SWP$GL_MAP::

GPTE Q Transition, PFN"'A

PTE Y

GPTE R Valid, PFN = B

PTE Z

Changes after Swapper's Write Completes

533

The Swapper

18.5.3

18.5.3.1

534

the swapper's write), the page is placed at the head of the free page list
and its PTE array element cleared.

3. WSLE 3 is a global read/write page. The page is dropped from the process
working set (see Figure 18.4); the process PTE contents are replaced with
the GPTX of GPTE R, and the PFN SHRCNT array element for PFN B
is decremented. Notice that PFN B is not included in the swapper map,
which contains a list of the physical pages that will be written to the
swap file.

4. WSLE 4, the last WSLE in this example, is an ordinary process page. The
page is added to the swapper map (PFN D) and it is marked for dele­
tion. The deletion will actually occur after the swapper's write operation
completes.

Outswap of the Process Header

The PHD is not outswapped until after the process body has been success­
fully written to the swap file. Before the PHD can be outswapped, all ties
between physical pages and the process page tables must be severed, includ­
ing not only those pages that were in the process working set and written to
the swap file but also those pages that are in some transition state, notably
pages on the free and modified page lists.

Partial Outswap. After the process body has been outswapped, the PHD
becomes eligible for outswap. In fact, the header of an outswapped process is
one of the first things that the swapper looks for in an attempt to add pages
to the free page list.

The indication that the PHD cannot be outswapped yet is found in the
PHD vector reference count array (see Figure 14.23). This array counts the
number of reasons (transition pages, active page table pages, and so on) that
prevent the PHD from being outswapped.

Because the outswap of the header need not immediately follow the body
outswap (a situation referred to as a partial outswap), it is possible that a
PHD will not be swapped in the time between the outswap and subsequent
inswap of its process body. In the corresponding partial inswap, the swapper
need not allocate a balance set siot and bring the PHD into memory because
it is already resident.

If the swapper locates a PHD with a nonzero reference count belonging
to an outswapped process, it takes whatever actions are required to remove
the ties that bind the PHD to physical memory. The first such step is to
eliminate any transition PTE whose physical page is on the free page list.

It locates a transition PTE by scanning the free page list for a page whose
PFN PTE array element contents lie within the PO or Pl page tables of the
PHD being examined. It starts its scan at the back of the list with the most

18.5.3.2

18.5 Outswap Operation

recently queued entries, on the assumption that the transition pages are more
frequently in the back half of the list. Whenever it finds such a page, it resets
the process PTE to the contents of its PFN BAK array element. The swapper
clears the PFN REFCNT and PTE array elements and moves the page from
its current location to the head of the free page list.

Because the free page list is only one of several transition states, the scan
of the free page list may not free the PHD for removal. Pages may be in some
other transition state. Transition states that represent some form of 1/0 in
progress (release pending, read in progress, write in progress) are left alone
because there is nothing that the swapper can do until the 1/0 completes.
After the free page list is scanned, if the process still has transition pages,
the swapper invokes MMG$PURGEMPL to request that all modified pages
be written that are mapped by page tables in the PHD or that are in the
PHD itself. A modified page written to its backing store is released to the
free page list. After the pages are selectively purged from modified page list,
the swapper scans the free list again.

If the swapper succeeds in releasing a PHD with the previously described
free page list scan, it can take the steps described in the next section to
outswap the PHD.

Outswap of the Process Header. Once the reference count for the PHD
reaches zero, it can be outswapped and the balance slot freed. The outswap
of the PHD is entirely analogous to the outswap of a process body. That
is, all the header pages in the working set list are scanned and put into
the swapper's 1/0 map to form a virtually contiguous block for the 1/0
subsystem.

There are several differences between the outswap of a PHD and a process
body. When a process body is outswapped, the header that maps that body
is still resident. When the swapper's write completes and each physical page
is being deleted, the contents of the PFN BAK array element for each page
are put back into the process PTE.

PHD pages are mapped by SPTEs for that balance set slot. The SPTEs are
not available to hold the PFN BAK array contents because they will be used
by the next occupant of this balance set slot. Instead, the PHD page BAK
array (see Section 18.2.1.3) serves this purpose. As the PHD is processed for
outswap, the contents of the PFN BAK array for each active header page are
stored in the corresponding PHD page BAK array element.

At the same time, the location of each header page within the working
set list is stored in the WSLX array. This array prevents a prohibitively long
search to rebuild the PHD when the process is swapped back into memory.

Once the header is successfully outswapped, PCB$V _PHDRES in PCB$L_
STS, the header-resident bit, is cleared and the balance slot is available for
further use.

535

The Swapper

18.6 INSWAP OPERATION

18.6.1

18.6.2

536

The inswap is exactly the opposite of the outswap operation. The swapper
brings the PHD, including active page tables and the process body, back into
physical memory. It then uses the contents of the working set list to rebuild
the process page tables, an operation that primarily involves updating each
valid PTE to reflect the new PFN used by that PTE. At the same time that
each page is being processed, the swapper can resolve any special cases that
existed when the process was outswapped.

Selection of an lnswap Candidate

As described in Section 18.3.2, the swapper sel~cts a process for inswap,
much as the scheduler selects a candidate for execution. The following
processes may be potential candidates for inswap:

• Newly created processes
• Processes in some outswapped wait state that were just made computable
• Processes that were outswapped while in the computable state

The highest priority COMO process is the one selected for inswap.

Preparation for Inswap

The swapper must ensure that there is a balance set slot for the PHD and
allocate physical memory for the working set.

If the PHD is resident, the number of header pages (PCB$W _APTCNT) is
subtracted from the size of the outswap image in the swap file; even though
the PHD is not in the swap file, space has been reserved for it there. Thus,
whether the header is resident determines the total number of blocks that
must be read from the swap file and the virtual block number where the
read should begin.

If the PHD has been outswapped, the swapper scans the PHD reference
count array for a balance set slot with a negative reference count. If it fails
to find one, it transfers control to the routine OUTSWAP, specifying that
a process should be outswapped to free a balance set slot. (Section 18.3.3
summarizes OUTSWAP's actions.j If it does find one, it increments the
PHD reference count to zero, stores the low word of the process's ID in
the corresponding PHV$GL_PIXBAS array, and stores the address of the slot
in PCB$LPHD.

It then allocates as many physical pages from the free page list as are re­
quired to accommodate the process working set. If it cannot allocate enough
pages from the free page list, it transfers control to OUTSWAP, specifying
the number of free pages to be reclaimed. If enough free pages are available,
it updates the PFN database arrays for each page and builds a PTE to insert
in the swapper I/O map.

18.6.3

18.6.3.1

18.6.3.2

18.6 Inswap Operation

lnswap of the Process Header

If the PHD was outswapped, it must be brought back into memory before the
process body can be reconstructed. The swapper must adjust those process
parameters that are tied to a specific balance set slot lthat is, specific sys­
tem virtual or physical addresses) to reflect the PHD's new location. These
include the following:

• Each SPTE that maps a PHD page must be initialized with the appropriate
PFN.

• The virtual addresses of the PO and Pl page tables must be calculated and
loaded into their locations in the hardware PCB.

• The physical address of the hardware PCB must be calculated and loaded
into the software PCB field PCB$L_PHYPCB.

• Finally, the Pl PTEs that double-map the PHD pages that are not page table
pages must be initialized with the PFNs that contain the corresponding
pages.

Rebuilding th:.! Process Header. When a PHD is read from the swap image
into a new balance slot, the SPTEs that map each balance slot page must
be loaded with the PFNs from the swapper map that contain each header
page. In addition, the PFN database must be set up for each of these physical
pages. The swapper does all this work in a simple loop that it executes for
each header page.

The simplicity land speed) of the loop results from the use of the two
PHD page arrays in the PHD. These arrays enable the PFN BAK and WSLX
array elements to be loaded from the information copied to the two headei:
arrays when the process was outswapped. To access these arrays, the swapper
temporarily maps the PHD into its PO space using the swapper 1/0 map.

Pl Window to the Process Header. In any resident process, all the PHD pages
except process page tables are double-mapped into the process's Pl space.
This Pl mapping provides invariant addresses for the nonpageable part of
the PHD. The system space mapping is subject to change with outswap
and inswap: if the header is outswapped, it is likely to be inswapped into a
different balance set slot. No routine can safely store a system address of a
PHD or any part of a PHD in a register, unless it blocks swapping, because
the address could change between the register initialization and its use.

The executive observes the following conventions with respect to PHD
references:

• Any process context reference to the PHD should use the Pl address where
possible ICTL$G1-PHD contains the Pl address of the PHD).

• Any reference to the system space header must execute at an IPL high
enough to block rescheduling and thus swapping.

537

The Swapper

18.6.4

18.6.4.1

18.6.4.2

538

• A reference to a process page table must be made through the system space
address because the page table pages are not doubly mapped. Because a
process page table must be accessed with swapping blocked, at an IPL too
high to permit page faults, the executive must first examine the SPTE that
maps the page table to determine the validity of the page table page.

There are two implications for the operating system:

• These physical pages are not kept track of through reference counts. How­
ever, all these header pages are a permanent part of the process working
set .

• The Pl page table page that maps these pages must also be a permanent
member of the process working set.

Rebuilding the Process Body

The PHD must be in a known state before the process body can be restored
to the state it was in before the process was outswapped. If the PHD was
never outswapped, very little need be done; otherwise, it is first inswapped
and restored, as previously described.

Rebuilding the Working Set List and Process Page Tables. Rebuilding the
process body involves a scan of both the swapper map and the process
working set list. Recall that at outswap, the processing of each page was
determined by a combination of page type and validity. On inswap, the key
to the processing of each page is the contents of the PTE located by the
virtual address field in the WSLE. An approximation of swapper activity for
each page is as follows:

1. The PTE is located from the virtual address in the WSLE.
2. In the usual case, the original contents of the PTE are put into the PFN

BAK array element, and the PFN from the swapper map is loaded into
the now valid PTE.

3. If, for some reason, a copy of the page already exists in memory, that
page is put into the process working set. The duplicate page from the
swapper map is released to the front of the free page list.

If the virtual address field represents a system space address, the WSLE
describes a page in the PHD. The swapper must calculate the new system
virtual address corresponding to that page and modify the WSLE.

Table 18.4 details the different cases the swapper can encounter when
rebuilding the process page tables. At inswap time, the swapper uses the
contents of the PTE to determine what action to take for each particular
page.

Pages with I/O in Progress When Outswap Occurred. Pages that had I/O in
progress when the process was outswapped were written to the swap file

18.6 Inswap Operation

Table 18.4 Rebuilding the Working Set List and the Process Page Tables

Type of Page Table Entry

PTE is valid.

PTE indicates a transition page
jprobably because of outstand­
ing 1/0 when process was
outswapped).

PTE contains a GPTX. jPage must
be global read-only because global
read/write pages were dropped
from the working set at outswap
time.)

PTE contains a page file index or a
process section table index.

Action of Swapper for This Page

Page is locked into memory and was never
outswapped. No actibn is required.

Fault transition page into process working
set. Release duplicate page that was just
inswapped.

Swapper action is based on the contents
of the GPTE:
• If the GPTE is valid, copy the PFN

in the GPTE to the process PTE and
release the duplicate page.

• If the GPTE indicates a transition
page, make the GPTE valid, add that
physical page to the process working
set, and release the duplicate page.

• If the GPTE indicates. a GSTX, then
keep the page just inswapped and
make that the master page in the
GPTE as well as the slave page in the
process PTE.

These are the usual contents for a page that
did not have outstanding 1/0 or other
page references when the process was
outswapped. The PFN in the swapper
map is inserted into the process page
table. The PFN arrays are initialized for
that page.

anyway to reserve space. If the page was previously unmodified, it would be
put onto the free page list when both the swap write and the outstanding
write operation completed. If the page was previously modified, it would be
put onto the modified page list when both the swap write and the outstanding
write operation completed !because the contents of the SWPVBN array were
nonzero).

In either case, it is possible for the process to be swapped back in before
one of these physical pages was reused. The swapper uses the physical page
that is already contained in the process PTE las a transition page) and releases
the duplicate physical page from the swapper map to the front of the free
page list.

In the case of a page on the free page list, this decision is simply one of
convenience. In the case of a page on the modified page list, the contents of
the page in the swap image are out-of-date, and the swapper has no choice
but to use the physical page that.is already in memory.

539

The Swapper

18.6.4.3

18.6.4.4

540

Resolution of Global Read-Only Pages. The only possible global page that
could be in the swap file is a global read-only page that had a share count
of 1 when the process was outswapped lor a page that was explicitly locked).
All other global pages were dropped from the process working set before the
process was outswapped.

There are two cases that the swapper can find when rebuilding the process
page tables. At inswap, the process PTE for a global read-only page always
contains a GPTX. The swapper's treatment of the page is determined by the
contents of the GPTE indexed by the GPTX:

• If no other process has mapped the global page, the GPTE contains a GSTX.
The swapper stores the PFN from the swapper map in both the process PTE
and the GPTE.

• If some other process referenced the global page while this process was
outswapped, the GPTE can indicate a valid or a transition page. In either
case, the swapper releases the duplicate page to the free page list and stores
the PFN from the GPTE in the process PTE. If the page is in transition,
the swapper makes it valid.

Example of an Inswap Operation. Figures 18.6 through 18.8 show an inswap
operation that illustrates some of the special cases that the swapper encoun­
ters when inswapping a process body. Note that this example is not related
to the outswap example shown in Figures 18.3 to 18.5.

Figure 18.6 shows the state of the PHD after the process has been selected
to be inswapped. Figure 18.7 shows that four physical pages have been al­
located to contain the four working set pages that the example describes.
Figure 18.8 shows the rebuilt process page tables and the PFN database
changes that result from rebuilding the working set and process page tables.

1. WSLE 1 locates virtual page number X. This PTE contains a GPTX. The
referenced GPTE IGPTE T) contains a GSTX, indicating that the GPTE
is not valid.

PFN D is put into the process page table. It is also added to the global
page database by making the GPTE valid !see Figure 18.8), putting PFN D
into the GPTE, and updating the PFN data for physical page D to reflect
its new state.

2. WSLE 2 is a process page mapped by PTE W !see Figure 18.7). This PTE
contains a process section table index. The PTE is updated to contain
PFN C, and the PSTX is stored in the BAK array element for that page
!see Figure 18.7). Other PFN array elements are updated accordingly.

3. WSLE 3, which locates PTE Y, is exactly like the first, as far as the process
data is concerned. However, the GPTE IGPTE SJ is valid, indicating that
another copy of this page already exists. !This could occur only if another
process faulted the page while this process was outswapped.)

VPNW

VPN X

VPN Y

VPN Z

VPNW

VPN X

VPN Y

VPNZ

Process Header for
Swapped Process

Fixed Portion
Working Set List

VPN=X GRO

VPN=W PPG

VPN=Y GRO

VPN=Z PPG

Process Section
Table, etc.

PO Page Table

.PSTX

:GPTX=T

..

GPTX=S :.

PFN.,;A;

P1 Page Table

Figure 18.6

WSLE 1

WSLE2

WSLE 3

WSLE4

PTEW

PTE X

PFN Database Arrays

WSLX PTE BAK STATE TYPE Other

[BUNK] I PTE z I li_OGFLX 11 FREE I D PFN A

I I~ [GSTX] I ACT 11GRO11 SHRCNT=31 PFN B

I BLINK ILDCJ I FREE ID PFNC

I BLINK I LDCJIFREEID PFND

SWP$GL_MAP::

Global Page Table Swapper's J J [
1/0 Map

GPTE S Vatid, PFN=-B ..

PTE Y

GPTE T

PTEZ

Working Set List and Swapper Map before Physical
Page Allocation

Process Header for
Swapped Process

Fixed Portion
Working Set List

VPN=X GAO

VPN=W PPG

VPN=Y GAO

VPN=Z PPG

Process Section
Table, etc.

PO Page Table

PSTX

GPTX=T

GPTX=S

PFNc=A

P1 Page Table

Figure 18.7

WSLE 1

WSLE 2

WSLE 3

WSLE4

PTEW

PFN Database Arrays

WSLX PTE BAK STATE TYPE Other

I BLINK I [PTrr] [PGFLXJ I FREE I D PFN A

I I ~ [GSTX] I ACT 11GAO11SHRCNT=31 PFN B

CJ 0 CJ!.~r.ID PFNC

CJ o I IJAcTID PFND

C"J 0 C:=J I ACT ID PFN E

1· I o CJl··~rlD PFNF

SWP$GL_MAP::

PTE x Global Page Table Swapper's
l/OMap

GPTE S Valid, PFN = B

PTE Y

V11lkl, P~ ;,;p .
·· ;.iaik,!, Pffl""¢ '

GPTE T GSTX . Vatfd,

PTE Z

Working Set List and Swapper Map after Physical
Page Allocation

541

The Swapper

VPNW

VPN X

VPN Y

VPN Z

18.6.4.5

542

Process Header for
Swapped Process

Fixed Portion
Working Set List

VPN=X GRO

VPN=W PPG

VPN=Y GRO

VPN=Z PPG

Process Section
Table, etc,

PO Page Table

Valid, PFN;.,C

Valid, PFN=D

Valid, PFN=B

Valid, PFN=A

P1 Page Table

Figure 18.8

WSLE 1

WSLE 2

WSLE;3

WSLE4

PTEW

PTE X

PFN Database Arrays

WSLX PTE BAK STATE TYPE Other

lwsLE41~ PGFLX 11 ACT 11 PPG I PFN A

I I IGPTE sl GSTX 11 ACT 11GRO11 SHRCNT=41 PFN B

lwsLE2l i PTEWj PSTX 1 ~ IPPGI PFN C

I - I JGPTETI ,GSTX I~ IGRO 11 SHRCNT=1 I PFN D

I BLINK 11 0 I llFREEjLJ PFN E

L BLINK 11 0 I I IFfl.sEI D PFN F

SWP$GL_MAP::

Global Page Table Swapper's
1/0 Map

L J
GPTE S Valid, PFN = B

PTE Y

GPTE T 'Valid, PFN=D

PTE Z

Working Set List and Rebuilt Page Tables

The duplicate page IPFN EJ is released to the front of the free page
list. The process PTE is altered to contain the physical page that already
exists IPFN B) and the share count for that page is incremented lfrom 3
to 4).

4. WSLE 4 resembles the second. However, the process PTE indicates a
transition page. IThis implies that the header in this example was never
outswapped. J

The action taken here is similar to step 3, where a duplicate global
page was discovered. The page just read IPFN F) is released to the head of
the free list. The transition page IPFN Aj is faulted back into the process
working set by removing the page from the free list, setting its state to
active, and turning the valid bit in the PTE back on.

Final Processing of the Inswap Operation. After the working set list has been
scanned and the process page tables rebuilt, the process is ready to have its
state changed from COMO to COM. Several other scheduling actions must
be completed before the scheduler is notified:

1. A new value of ASTLVL is calculated and stored in the hardware PCB
in the PHD. IASTs may have been queued to the process while it was

18.6 Inswap Operation

outswapped. The hardware PCB, which contains a copy of the ASTLVL
register, was not available while the header was not resident.)

2. The resident bit and the initial quantum bit are set in PCB$1-STS.
3. The process's swap space is deallocated.
4. A new quantum interval is loaded into the PHD.
5. Finally, SCH$CHSEP is invoked to make the process computable.

543

19 Pool Management

In this bright little package, now isn't it odd?
You've a dime's worth of something known only to God!

Edgar Albert Guest, The Package of Seeds

The VMS operating system creates and uses many data structures in the
course of its work. It creates some of them at system initialization; it creates
others when they are needed and destroys them when their useful life is
finished. VMS maintains several areas of virtual address memory, called
pools, in which it allocates and deallocates data structures. Each such area
has different characteristics. This chapter describes these memory areas,
their uses, and their allocation and deallocation algorithms.

19.1 DYNAMIC DATA STRUCTURES AND THEIR STORAGE AREAS

19.1.1

544

Almost all the VMS data structures created after system initialization are
volatile, allocated on demand and deallocated when no longer needed. These
data structures have similar headers (see Section 19.1.4). Their memory
requirements vary in a number of ways:

• Pageability-Data structures accessed by code running at interrupt priority
level (IPL) 2 or below can be pageable; data structures accessed at higher
IPLs cannot.

• Virtual location-Some data structures are local to one process, mapped
in its per-process address space; others must be mapped in system space,
accessible to multiple processes and to system context code.

• Protection-Many dynamic data structures are created and modified only
by kernel mode code, but.some data structures are accessed by outer modes.

Storage Areas for Dynamic Data Structures

VMS provides different storage areas to meet the memory requirements of
dynamic data structures. There are several pools of storage for variable-length
allocation: a nonpageable system space pool, a pageable system space pool,
and a pageable per-process space pool. On systems with MA780 multiport
memory, there is an additional pool of nonpageable shared memory.

In addition, VMS provides lookaside lists of preformed, fixed-length pack­
ets; these enable faster allocation and deallocation of the most frequently
used sizes and types of storage. Throughout this chapter, packet refers to a
preformed, fixed-length allocation, and block refers to a variable-length al­
location. The storage areas are summarized in Table 19.l and are described
in more detail in later sections of this chapter.

19.1 Dynamic Data Structures and Their Storage Areas

Table 19.1 Comparison of Different Pool Areas

System Space

NONPAGED POOL

Protection
Synchronization technique
Type of list
Allocation
Minimum request size
Characteristics

ERKW
Spinlock
Variable-length
Multiple of 16 bytes
1 byte
Nonpageable, expandable

LARGE REQUEST PACKET jLRP) LOOKASIDE LIST

Protection ERKW
Synchronization technique Interlocked queue
Type of list Fixed-length packets
Allocation @IOC$GL_LRPSIZE 1

Minimum request size @IOC$GL_LRPMIN 1

Characteristics Nonpageable, expandable

INTERMEDIATE REQUEST PACKET jlRP) LOOKASIDE LIST

Protection ERKW
Synchronization technique Interlocked queue
Type of list Fixed-length packets
Allocation 176 bytes
Minimum request size 1+@IOC$GL_SRPSIZE 1

Characteristics Nonpageable, expandable

SMALL REQUEST PACKET jSRP) LOOKASIDE LIST

Protection ERKW
Synchronization technique Interlocked queue
Type of list Fixed-length packets
Allocation @IOC$GL_SRPSIZE 1

Minimum request size 1 byte
Characteristics Nonpageable, expandable

PAGED POOL

Protection
Synchronization technique
Type of list
Allocation
Minimum request size
Characteristics

ERKW
Mutex
Variable-length
Multiple of 16 bytes
1 byte
Pageable

Per-Process Space

PROCESS ALLOCATION REGION

UREW Protection
Synchronization technique Access mode and IPL

(continued)

545

Pool Management

19.1.2

546

Table 19.1 Comparison of Different Pool Areas (continued)

Per-Process Space

PROCESS ALLOCATION REGION

Type of list
Allocation
Minimum request size
Characteristics

Variable-length
Multiple of 16 bytes
1 byte
Pageable, expandable into PO space

KERNEL REQUEST PACKET (KRP) LOOKASIDE LIST

URKW Protection
Synchronization technique
Type of list
Allocation
Minimum request size
Characteristics

Access mode and INSQUE/REMQUE
Fixed-length packets
CTL$c_KRP _SIZE
KRP$C_KRP _SIZE
Pageable

1 The @ symbol precedes the address of a location containing the
specified value.

Variable-Length Blocks

Pools that permit allocation of variable-length blocks have a common struc­
ture. Each pool has a listhead containing the address of the first unused block
in the pool. The first two longwords of each unused block describe the block.
As illustrated in Figure 19.1, the first longword in a block contains the ad­
dress of the next unused block in the list. The second longword contains the
size in bytes of the unused block. Each successive unused block is found at
a higher address. Thus, the unused blocks in each pool area form a singly
linked, memory-ordered list. Table 19.2 summarizes the listheads and other
related locations.

Each variable-length pool has its own set of allocation and deallocation
routines. Each of the allocation routines for the variable-length pools rounds
the requested size up to the next multiple of 16 bytes to impose a granularity
on both the allocated and unused areas. Because all the pool areas are initially
page-aligned, this rounding causes every structure allocated from the pool
areas to be at least octaword-aligned.

The various allocation and deallocation routines invoke the lower level
routines EXE$ALLOCATE and EXE$DEALLOCATE, which support the
structure common to the variable-length lists. Each routine has two argu­
ments: the address of the pool listhead and the size of the data structure to
be allocated or deallocated. These general-purpose routines are also used for
several other pools, including symbol table space of the Digital command

19.1.2.1

19.1.2.2

19.1 Dynamic Data Structures and Their Storage Areas

Used

Beginning of pool area
'---------' (filled in when system

is initialized)

r------"i...----H~------, Address of first free block

T

Size of this blbck

First unused
blOOk

Used

Figure 19.1

J

(modified by allocation
.__ __ a __ _, and deallocation routines)

(Zero in pointer
signifies end of list)

Layout of Unused Areas in Variable-Length Pools

language (DCL) interpreter, the process space pool of the network ancillary
control process (NETACP), and the global page table.

All the allocation and deallocation routines described in this chapter are
in module MEMORYALC.

Variable-Length Block Allocation. When the allocation routine EXE$ALLO­
CATE is invoked, it searches from the beginning of the list until it encounters
an unused block large enough to satisfy the request. If the fit is exact, the
allocation routine simply adjusts the previous pointer to point to the next
free block. If the fit is not exact, it subtracts the allocated size from the
original size of the block, puts the new size into the remainder of the block,
and adjusts the previous pointer to point to the remainder of the block. That
is, if the fit is not exact, the low-address end of the block is allocated, and
the high-address end is placed back on the list. The two possible allocation
situations (exact and inexact fit) are illustrated in Figure 19.2.

Variable-Length Block Allocation Examples. The first part of Figure 19.2
(Initial Condition) shows a section of paged pool; MMG$GLPAGEDYN,

547

Pool Management

548

Table 19.2 Pool Listheads and Selected Data Cells

Location

EXE$GL_NONPAGED 2+4
EXE$GL_NONPAGED 2 +8

MMG$GL_NPAGEDYN 3

MMG$G1-NPAGNEXT 3

IOC$GQ_LRPIQ 4

IOC$GQ_LRPIQ 4 +4
IOC$GL_LRPSPLIT 4

MMG$GL_LRPNEXT 3

IOC$GQ_IRPIQ 4

IOC$GQ_IRPIQ 4 +4
EXE$GL_SPLITADR 2

MMG$GL_IRPNEXT 3

IOC$GQ_SRPIQ 4

IOC$GQ_SRPIQ 4 +4
IOC$GL_SRPSPLIT 4

MMG$GL_SRPNEXT 3

EXE$GL_PAGED 2

EXE$GL_PAGED 2+4

MMG$GL_PAGEDYN 3

Contents

NONPAGED POOL

Address of first free block
Size of zero (for dummy listhead)

to speed allocation
Address of beginning of nonpaged

pool area
Address of beginning of pool

expansion area

LRP LOOKASIDE LIST

Displacement to first free block
Displacement to last free block
Address of beginning of LRP area
Address of beginning of LRP

expansion area

IRP LOOKASIDE LIST

Displacement to first free block
Displacement to last free block
Address of beginning of IRP area
Address of beginning of IRP

expansion area

SRP LOOKASIDE LIST

Displacement to first free block
Displacement to last free block
Address of beginning of SRP area
Address of beginning of SRP

expansion area

PAGED POOL

Address of first free block
Size of zero (for dummy listhead)

to speed allocation
Address of beginning of paged

pool area

PROCESS QUOTA BLOCK (PQBI LOOKASIDE LIST

EXE$GL_PQBIQ 2

EXE$GL_PQBIQ 2 +4
Displacement to first free block
Displacement to last free block

PROCESS ALLOCATION REGION

Address of first free block CTL$GQ_ALLOCREG 5

CTL$GQ_ALLOCREG 5+4 Size of zero (for dummy listhead)
to speed allocation

Static or
Dynamic 1

Dynamic
Static

Static

Dynamic

Dynamic
Dynamic
Static
Dynamic

Dynamic
Dynamic
Static
Dynamic

Dynamic
Dynamic
Static
Dynamic

Dynamic
Static

Static

Dynamic
Dynamic

Dynamic
Static

(continued)

19.1.2.3

19.1 Dynamic Data Structures and Their Storage Areas

Table 19.2 Pool Listheads and Selected Data Cells (continued)

Location

CTL$GQ_POALLOC 5

CTL$GQ_POALLOC 5 +4

. CTL$GL_KRPFL 5

CTL$GL_KRPBL 5

CTL$GL_KRP 5

Contents

PROCESS ALLOCATION REGION

Address of first free block
Size of zero (for dummy listhead)

to speed allocation

KRP LOOKASIDE LIST

Address of first free block
Address of last free block
Address of beginning of KRP area

Static or
Dynamic 1

Dynamic
Static

Dynamic
Dynamic
Static

1 Static locations are loaded at initialization time, and their contents do not change
during the life of the system. The contents of dynamic locations change as pool is
allocated, deallocated, and expanded.

2 The module SYSTEM_DATA..CELLS (part of the base image, SYS.EXE) defines these
symbols.

3 The module SYSPARAM (part of the base image, SYS.EXE) defines these symbols.
4 For improved performance, these symbols are defined as global cells in module

MEMORYALC, part of a loadable executive image, rather than as universal symbols
vectored through the base image. Routines in other loadable executive images refer
to them as offsets from the contents of the universal location EXE$AILSYSTEM_
PRIMITIVES_DATA. For more information on loadable executive images, the base
image, and vectored universal symbols, see Chapter 29.

5 The module SHELL defines these Pl space symbols.

which points to the beginning of paged pool; and EXE$GL_PAGED, which
points to the first available block of paged pool. In this example, allocated
blocks of memory are identified only by the total number of bytes in use,
with no indication of the number and size of the individual data structures
within each block.

The second part of Figure 19.2 (80 Bytes Allocated) shows the structure of
paged pool after the allocation of an 80-byte block. Note that the discrete
portions of 96 bytes and 48 bytes in use and the 80 bytes that were allocated
are now combined to show a 224-byte block of paged pool in use.

The third part of Figure 19.2 (48 Bytes Allocated) shows an alternative
scenario, the structure of paged pool after the allocation of a 48-byte block.
The 48 bytes were taken from the low-address end of the first unused block
large enough to contain it. Because this allocation was not an exact fit, an
unused 32-byte block remains.

Variable-Length Block Deallocation. When a block is deallocated, it must be
inserted into the list according to its address. EXE$DEALLOCATE follows

549

Pool Management

19.1.2.4

550

EXE$GL_PAGED::

MMG$GL_PAGEDYN::

Initial Condition

in use

Figure 19.2

From listhead

80 Bytes Allocated

l 176 bytes 1

224 bytes in use
(96+80+48 bytes)

Examples of Variable-Length Block Allocation

From listhead

48 Bytes Allocated

l 176 bytes 1

the unused area pointers until it encounters a block whose address is larger
than the address of the block to be deallocated. If the deallocated block is
adjacent to another unused block, the two blocks are merged into a single
unused area.

This merging, or agglomeration, can occur at the end of the preceding
unused block or at the beginning of the following block jar both). Because
merging occurs automatically as a part of deallocation, there is no need for
any externally triggered routine to consolidate pool fragmentation.

Variable-Length Block Deallocation Examples. Figure 19.3 shows three sam­
ple deallocations, two of which illustrate merging. The first part of the fig­
ure jlnitial Condition) shows an area of paged pool containing logical name
blocks for three logical names: ADAM, GREGORY, and ROSAMUND. These
three logical name blocks are bracketed by two unused portions of paged
pool, one 64 bytes long, the other 17 6 bytes long.

19.1 Dynamic Data Structures and Their Storage Areas

Logical Name Block
(48 bytes)

Logical Name ADAM

Logical Name Block
(80 bytes)

Logical Name GREGORY

Logical Name Block
(80 bytes)

Logical Name ROSAMUND

To next block

To next block

Figure 19.3

Logical Name Block
(80 bytes)

Logical Name GREGORY

Logical Name Block
(80 bytes)

Logical Name ROSAMUND

Logical Name Block
(48 bytes)

Logical Name ADAM

Logical Name Block
(80 bytes)

To next block

Logical Name GREGORY 1

To next block

Examples of Variable-Length Block Deallocation

The second part of Figure 19.3 (ADAM Deleted) shows the result of delet­
ing the logical name ADAM. Because the logical name block was adjacent
to the high-address end of an unused block, the blocks are merged. The size
of the deallocated block is simply added to the size of the unused block. No
pointers need to be adjusted.

551

Pool Management

19.1.3

19.1.4

552

The structure shown in the third part of Figure 19.3 (GREGORY Deleted)
shows an alternative scenario, the result of deleting the logical name GRE­
GORY. The pointer in the unused block of 64 bytes is altered to point to the
deallocated block; a new pointer and size longword are created within the
deallocated block.

The fourth part of Figure 19.3 (ROSAMUND Deleted) shows the result of
deleting the logical name ROSAMUND. In this case, the deallocated block
is adjacent to the low-address end of an unused block, so the blocks are
merged. The pointer to the next unused block that was previously in the
adjacent block is moved to the beginning of the newly deallocated block.
The following longword is loaded with the size of the merged block (240
bytes).

Fixed-Length Packets

Fixed-length lists, also known as lookaside lists, consist of fixed-length pack­
ets available for allocation. With VMS Version 5, each (with the exception
of the KRP lookaside list) is a doubly linked, self-relative queue with a list­
head containing the displacements to the first and last unused blocks in
the list. Figure 19.4 (Initial Condition) shows the form of a fixed-length list.
Table 19.2 summarizes the listheads and other related locations.

Fixed-length lists expedite the allocation and deallocation of the most
commonly used sizes and types of storage. In contrast to variable-length allo­
cation, fixed-length allocation is very simple. There is no overhead searching
for a sufficiently large block of free memory to accommodate a specific re­
quest. Instead, a REMQHI instruction allocates a packet from the front of the
appropriate list (see Figure 19.4, Packet Removed from Head). An INSQTI in­
struction deallocates a packet to the back of a list (see Figure 19.4, Packet
Inserted at Tail).

Interlocked queue instructions synchronize concurrent access to system
space lookaside lists on symmetrical multiprocessor (SMP) systems. Chap­
ter 8 contains further information on interlocked queue instructions.

A KRP lookaside list exists in each process's Pl space and is accessed
only from the owning process's context. The list is a doubly linked, absolute
queue, whose listhead contains the addresses of the first and last blocks in
the list. REMQUE and INSQUE instructions remove and insert KRPs in the looka­
side list, and provide sufficient synchronization in this context. Section 19.5
describes the use of KRPs.

Dynamic Data Structures

Almost all dynamic data structures have a common header format, shown in
Figure 19.5. The header includes two structure-describing fields: the number
of bytes allocated for the data structure in the word at offset 8 and the type
code in a byte at offset 10.

19.1 Dynamic Data Structures and Their Storage Areas

Lookaside
Listhead

First Packet
in Queue
(Head)

Initial Condition

Packet Removed from Head

Removed
Packet

New Head
of Queue

Packet Inserted at Tail

...

Last Packet
in Queue

(Tail)

[(i.: ~ ... --i~--;:-1---_...r----::i "1wLJJ

L....E:l------IJ.,__--1-r-----;l-.~--,...1------1~- ... --+ '---,...1------11~

Note: Pointers are absolute or self-relative, depending on the type of queue.

Figure 19.4
Fixed-Length Packet Allocation and Deallocation

[FLINK] ''
[BLINK]

[SUBTYPEJl TYPE l SIZE
t--

* * ,__,

Figure 19.5
Format of Dynamic Data Structures

Former Tail

"SIZE"
bytes
long

1------1

Inserted Packet
(New Tail)

553

Pool Management

The third longword of a data structure contains the size, type, and (op­
tional) subtype fields, leaving the first two longwords available to link the
data structure l.nto a list or queue.

The type field enables VMS to distinguish different data structures and to
confirm that a piece of dynamic storage contains the expected data structure
type. Data structures with a type code value equal to or larger than 96 also
have a one-byte subtype code at offset 11. The macro $DYNDEF defines the
possible values for the type and subtype fields. The high-order bit's being set
in the type field indicates that a structure is allocated from MA780 multiport
memory.

When a dynamic data structure is deallocated to the variable-length list,
the size field specifies how much storage is being returned.

The System Dump Analyzer (SDA) Utility uses the type and size fields to
produce a formatted display of a dynamic data structure and to determine
the portions of variable-length pool that are in use.

19.2 NONPAGED POOL REGIONS

554

Nonpaged dynamic memory contains data structures and code used by the
portions of VMS that run in system context, such as interrupt service rou­
tines and device drivers. For these parts of the operating system, only system
space is accessible. Furthermore, they execute at IPLs above 2, where page
faults are not permitted.

Nonpaged dynamic memory, more commonly known as nonpaged pool,
also contains data structures that are shared by several processes and that
may be accessed above IPL 2.

The protection on nonpaged pool is ERKW, allowing it to be read from
executive and kernel modes but written only from kernel mode.

Nonpaged pool is the most heavily used of the storage areas. It consists of
a variable-length list and three fixed-length lookaside lists. The three looka­
side lists are the large request packet (LRP), intermediate request packet
(IRP), and small request packet (SRP) lists. These lists provide for the most
frequently allocated nonpaged pool data structures. Nonpaged pool is some­
times allocated explicitly from a lookaside list and sometimes implicitly,
as the result of general nonpaged pool allocation. Section 19.2.2 discusses
allocation in detail.

Early versions of VMS had only one lookaside list, whose primary use
was for I/O request packets; it was called the I/O request packet lookaside
list. Many other types of packets use the IRP lookaside list today, and the
I has come to stand for intermediate. Nevertheless, I/O request packets are
still among the most performance-critical and frequent users of this list, and
although the intermediate packet size varies from VMS version to version,
it is always at least the size of an I/O request packet.

19.2.1

19.2 Nonpaged Pool Regions

Nonpaged Pool Initialization

SYSGEN parameters determine the sizes of the nonpaged pool lists. Non­
paged pool is potentially expandable during normal system operation. Two
SYSGEN parameters specify the initial size and the maximum size of each
of the four nonpaged pool regions.

SYSGEN parameters NPAGEDYN and NPAGEVIR control the size in
bytes of the variable-length region of nonpaged pool. Both are rounded down
to an integral number of pages. During system initialization, SYSBOOT
allocates sufficient contiguous system page table entries (SPTEs) for the
maximum size of the region, NPAGEVIR. It then allocates physical pages
of memory for the initial size of the region, NPAGEDYN, and maps them
using the first portion of the allocated SPTEs. To minimize overhead, the
initial allocations of physical pages of memory come from pages whose state
is not described by the page frame number (PFN) database. The remaining
SPTEs remain invalid. Later pool expansions also come from such pages, as
long as any are available. Chapter 14 describes page table entries.

SYSBOOT allocates SPTEs and physical pages of memory for the looka­
side lists in the same manner as for the variable-length list. It allocates·
nonpaged system space following the variable-length list for each lookaside
list. Table 19.3 lists the SYSGEN parameters relevant to each lookaside list.
Figure 19.6 shows the four regions of nonpaged pool. In each of the three
lookaside lists, the elements in the initial allocation are formed and inserted
into a list with the INSQTI instruction, resulting in a doubly linked list of
fixed-size elements.

During system operation, a failure to allocate from a nonpaged pool region
results in an attempt to expand it. Section 19.2.4 describes pool expansion.
The deallocation merge strategy described in Section 19.2.3 requires that the
four nonpaged pool regions occupy progressively higher virtual memory ad­
dresses. That is, all the blocks on the variable-length list must have addresses
that are less than all LRP addresses; all LRPs must have addresses that are
less than all IRP addresses; and so on. It is because of this restriction that

Table 19.3 SYSGEN Parameters Controlling Lookaside List Sizes

List Type

SRP
IRP
LRP

Size of Packet

SRPSIZE
176
LRPSIZE+ 140 I

Initial Count

SRPCOUNT
IRPCOUNT
LRPCOUNT

Maximum
Count
SRPCOUNTV
IRPCOUNTV
LRPCOUNTV

1 The actual packet size is the sum of LRPSIZE and 140, rounded up
to a multiple of 16.

555

Pool Management

MMG$GL:_NPAGEDYN:: L l 1 Variable·Length List Region NPAGEDYN

J NPAGEVIR

MMG$GL_NPAGNEXT:: [J Room for Expansion j
IOC$GL_LRPSPLIT:: l J LAP List Region l 1 IOC$GQ_LRP IQ:: l -- --[x] t--r< ~ ... LRPCOUNT

* LRPCOUNTV
LRPSIZE *

J LRPSIZE

MMG$GL_LRPNEXT:: l J Room for Expansion j
EXE$GL_SPLITADR:: l l 1 IOC$GQ_IRP IQ:: B IRP List Region

IRPCOUNT

* IRPCOUNTV
176 *

J 176

MMG$GL_IRPNEXT:: []_
Room for Expansion j

IOC$GL_SRPSPLIT:: []_ l 1 IOC$GQ_SRP IQ:: B SAP List Region
SRPCOUNT

* SRPCOUNTV
SRPSIZE .*

J
SRPSIZE

MMG$GL_SRPNEXT:: [r Room for Expansion j

556

Figure 19.6
Nonpaged Pool Regions

the maximum number of SPTEs are allocated contiguously for each region,
even if some of them are initially unused.

The cell IOC$GL_SRPSIZE contains the size of the elements in the SRP
list. The SYSGEN parameter SRPSIZE determines this value. SYSBOOT
rounds SRPSIZE up to a multiple of 16.

The symbol IRP$C_LENGTH, rounded up to the next multiple of 16,
determines the size of an IRP list element. In VMS Version 5.2, an IRP is
176 bytes.

The cell IOC$GL_LRPSIZE contains the size of the elements in the LRP
list. SYSBOOT computes IOC$GL_LRPSIZE by adding CXB$C_OVERHEAD
{140 in VMS Version 5.2) to the SYSGEN parameter LRPSIZE and rounding
up the sum to a multiple of 16. The parameter LRPSIZE is intended to be

19.2.2

19.2 Nonpaged Pool Regions

the DECnet buffer size, exclusive of a 140-byte internal buffer header. (Note
that the output of SHOW MEMORY displays the inclusive packet size.)

Nonpaged Pool Allocation

A number of routines in module MEMORYALC allocate nonpaged pool.
Some of these routines, such as EXE$ALLOCPCB or EXE$ALLOCTQE, al­
locate pool for a particular type of data structure, filling in its size and
type. Some routines, intended for use only within process context, con­
ditionally place the process into a resource wait (see Chapter 12) for re­
source RSN$_NPDYNMEM if pool is unavailable. All these routines invoke
EXE$ALONONPAGED, the general nonpaged pool allocation routine.

In several instances, VMS routines explicitly allocate request packets from
a lookaside list. For example, when the Queue 1/0 Request ($QIO) system
service needs an IRP, it executes a REMQHI instruction. Several other system
routines allocate IRPs this way. Only if the lookaside list is empty (indicated
by the V-bit set in the processor status word (PSW) following the REMQHI) is
the general nonpaged pool allocation routine invoked.

Similarly, the Enqueue Lock Request ($ENQ) system service allocates pool
for a lock block by removing an SRP from the lookaside list. The SYSGEN
parameter SRPSIZE is constrained to be at least the size of a lock block. It
allocates pool for a resource block by removing an IRP from the lookaside
list.

Because allocation from and deallocation to a lookaside list are so much
faster than the equivalent operations involving the variable-length list,
EXE$ALONONPAGED performs special checks to determine whether the
requested block can be allocated from one of the lookaside lists. These checks
compare the request size to the lists' upper and lower limits. Figure 19.7
shows the size ranges for the looka~ide lists. The ranges are defined so that
the majority of requests can be satisfied from one of the lookaside lists.

Requests that must be allocated from the variable-length list are either

• Larger than an LRP, or
• Larger than an IRP but smaller than the SYSGEN parameter LRPMIN

The symbolic names in Figure 19.7 are defined as follows:

SRPSIZE IRPSIZE LRPSIZE

~
~

t
f i SRP

~
IRP LRP

00

IRPMIN LRPMIN

Figure 19.7
Lookaside List Allocation Ranges

557

Pool Management

19.2.3

558

Symbol

SRPSIZE

IRPMIN
IRPSIZE

LRPMIN
LRPSIZE

Meaning

IOC$GL_SRPSIZE, the SYSGEN parameter SRPSIZE
rounded up to a multiple of 16

IOC$GL_IRPMIN, the sum of IOC$G1-SRPSIZE plus 1
IRP$C_LENGTH rounded up to a multiple of 16, the

constant 176 in VMS Version 5.2
IOC$GL_LRPMIN, the SYSGEN parameter LRPMIN
IOC$GL_LRPSIZE, the sum of SYSGEN parameter

LRPSIZE plus 140 in VMS Version 5.2

EXE$ALONONPAGED allocates nonpaged pool by the following steps:

1. It compares the requested size to the ranges just described to determine
which, if any, lookaside list it can use.

2. If none of the lookaside lists is appropriate, it branches to EXE$ALO­
NPAGVAR to allocate the pool from the variable-length list.

3. If one of the lookaside lists is appropriate and the list is not empty, the
routine removes the first packet from the list and returns its address to
the caller.

4. If one of the lookaside lists is appropriate but is empty, EXE$ALONON­
PAGED attempts to expand the list (see Section 19.2.4) and, if it succeeds,
retries the allocation. If the lookaside list cannot be extended, it branches
to EXE$ALONPAGVAR to allocate the pool from the variable-length list.

EXE$ALONPAGVAR, an alternative entry point to EXE$ALONON­
PAGED, allocates pool only from the variable-length list. It is invoked di­
rectly whenever multiple pieces of pool are allocated as a single larger piece
but deallocated in a piecemeal fashion. EXE$ALONPAGVAR performs the
following steps:

1. It rounds the allocation size up-to a multiple of 16.
2. It acquires the POOL spinlock, raising IPL to IPL$_POOL.
3. It invokes the lower level routine EXE$ALLOCATE, described in Sec­

tion 19.1.2.
4. It releases the POOL spinlock, restoring the previous IPL. If EXE$AL­

LOCATE succeeded, EXE$ALONPAGVAR returns the size and address
of the allocated block. If the allocation failed, EXE$ALONPAGVAR at­
tempts to expand the list (see Section 19.2.4). If the expansion succeeds,
EXE$ALONPAGVAR repeats the allocation attempt. If the expansion
fails, it returns the error status SS$_INSFMEM to its invoker.

Nonpaged Pool Deallocation

A consumer of nonpaged pool invokes EXE$DEANONPAGED to deallocate
nonpaged pool back to any of the four regions. Figure 19.6 shows the four
regions and the cells that identify their boundaries.

19.2.4

19.2 Nonpaged Pool Regions

EXE$DEANONPAGED determines to which region the packet or block of
pool is being returned, not by its size but by its address, taking the following
steps:

1. It compares the address of the block being deallocated to the contents of
global location IOC$GL_SRPSPLIT. If the address is greater or equal, the
block came from the SRP list.

2. If the block's address is less than the contents of IOC$G1-SRPSPLIT,
EXE$DEANONPAGED compares it to the contents of EXE$G1-SPLIT­
ADR. If the address is greater or equal, the block came from the IRP
list.

3. If the block's address is less than the contents of EXE$GL_SPLITADR,
EXE$DEANONPAGED compares it to the contents of IOC$GL_LRP­
SPLIT. If the address is greater or equal, the block came from the LRP
list.

4. If the block's address is less than the contents of IOC$G1-LRPSPLIT,
the block came from the variable-length list.

EXE$DEANONPAGED returns a packet to one of the lookaside lists with
an INSQTI instruction, as described in Section 19.1.3. By allocating pack­
ets from one end of the list and deallocating them to the other end, VMS
maintains a transaction history as long as the list itself.

If the block was allocated from the variable-length list, EXE$DEANON­
PAGED acquires the POOL spinlock, raising IPL to IPL$_POOL; invokes
EXE$DEALLOCATE, the lower level routine described in Section 19.1.2; and
then releases the POOL spinlock, restoring the previous IPL.

When any variable-length block is returned or when a lookaside packet
is returned to an empty list, EXE$DEANONPAGED must declare that non­
paged pool is available. It acquires the SCHED spinlock, raising IPL to IPL$_
SCHED; invokes SCH$RAVAIL to declare the availability of nonpaged pool
for any process that might be waiting for resource RSN$_NPDYNMEM; and
releases the SCHED spinlock, restoring the previous IPL. The consequences
of this declaration are discussed briefly in Section 19.2.5 and at greater length
in Chapter 12.

Deallocating a block back to a list based on the address of the block has an
important implication. Lookaside list corruption results if a nonpaged pool
consumer deallocates part of a lookaside list packet. That is, VMS treats all
lookaside packets as indivisible. A partial packet deallocated to a lookaside
list is eventually allocated as a whole packet, resulting in double use of
the same memory. The entry point EXE$ALONPAGVAR should be used
for allocating nonpaged pool that may be deallocated in a piecemeal way.
EXE$ALONPAGVAR always allocates from the variable-length list.

Nonpaged Pool Expansion

Dynamic nonpaged pool expansion creates additional nonpaged pool as it is

559

Pool Management

560

needed. At system initialization, SYSBOOT allocates enough system space
for the maximum size of each nonpaged pool region, but it only allocates
enough physical memory for the initial size of each region. When an attempt
to allocate nonpaged pool fails, the pool can be expanded by allocating more
physical memory for it and altering the system page table (SPT) accordingly.

If EXE$ALONONPAGED or EXE$ALONPAGVAR fails to allocate non­
paged pool from any of the four regions, it attempts to expand the failing
region by invoking the routine EXE$EXTENDPOOL with an argument indi­
cating which list is to be expanded.

EXE$EXTENDPOOL acquires the MMG spinlock, raising IPL to IPL$_
MMG to synchronize access to the PFN database. It then attempts to allocate
eight pages of physical memory if expanding one of the lookaside lists, or
63 pages if expanding the variable-length list. First, it checks whether the
physical pages can be allocated without reducing the number of physical
pages available to the system below the minimum required. Pool expansion
must leave sufficient fluid pages to accommodate the sum of the maximum
swap image (for VMS Version 5, the lesser of WSMAX and 64K-1 pages),
the modified list low limit, and the free page list low limit. This check may
result in fewer pages being allocated for the expansion.

If the memory sufficiency check fails, the routine attempts to broadcast
a message to the operator's console and logs an expansion failure event (see
Section 19.6).

For each allocated page, EXE$EXTENDPOOL places its PFN in the next
invalid SPTE for that list and sets the valid bit. If the region is a looka­
side list, the new virtual page and any fragment from the previous virtual
page are formatted into packets of the appropriate size and placed on the
list. EXE$EXTENDPOOL records the size and address of any fragment left
from the last new page. If the region is the variable-length list, it invokes
EXE$DEANONPGDSIZ to add the new virtual pages to the list. EXE$EX­
TENDPOOL then releases the MMG spinlock, restoring the previous IPL.

If EXE$EXTENDPOOL is able to expand the failing region, it reports that
resource RSN$_NPDYNMEM is available for any waiting processes.

For proper synchronization of system databases, the resource availability
report and the allocation of physical memory must not be done from a
thread of execution running on a CPU that owns a spinlock of rank higher
than MMG. (The SCHED spinlock is the only IPL$_SYNCH spinlock with
a rank higher than MMG.) EXE$EXTENDPOOL examines the processor
status longword (PSL) to determine at what IPL the system is running. If
EXE$EXTENDPOOL was entered from an interrupt service routine running
above IPL$_SYNCH or is running on a CPU that owns the SCHED spinlock,
EXE$EXTENDPOOL creates an IPL$_QUEUEAST fork process to expand the
lists at some later time and returns an allocation failure status to its caller.

Nonpaged pool expansion provides a degree of automatic system tuning.
The penalty for setting an inadequate initial allocation size is the increased

19.2.5

19.2 Nonpaged Pool Regions

overhead in allocating requests that cause expansion. As an additional mi­
nor physical penalty, unnecessary PFN database entries are built for those
physical pages that are subsequently added to nonpaged pool as a result of
expansion. (Original nonpaged pool pages need no PFN database entries.) The
cost is about 4 percent of the size of the page per added page.

The penalty for a maximum allocation that is too large is one longword
(for the SPTE) for each unused page. If the maximum size of a lookaside
list is too small, system performance may be adversely affected when the
system is prevented from using the lookaside mechanism for pool requests.
If the maximum size of the variable-length region is too small, processes may
be placed into a resource wait state, waiting for nonpaged pool to become
available.

Nonpaged pool expands, but it does not contract. No mechanism returns
PFNs from the nonpaged pool to the free page list. The nonpaged pool regions
return to their original sizes only at the next bootstrap, assuming that the
SYSGEN parameters that control their sizes have not changed.

Nonpaged Pool Synchronization

The POOL spinlock serializes access to the nonpaged pool variable-length
list. Acquiring the POOL spinlock raises IPL to IPL$_POOL. The allocation
and deallocation routines for the nonpaged pool variable-length list acquire
and release the POOL spinlock.

Device drivers running at fork level frequently allocate dynamic storage.
The POOL spinlock ranks higher than the IOLOCKll and MAILBOX spin­
locks. This allows a CPU executing a driver fork process to acquire the
POOL spinlock while owning the MAILBOX or any of the IOLOCKx spin­
locks. However, a CPU executing at device IPL may not acquire the POOL
spinlock, because device IPL is higher than IPL$_POOL.

Each nonpaged pool allocation routine that runs in process context (for ex­
ample, EXE$ALLOCCEB) invokes EXE$ALONONPAGED without acquiring
the SCHED spinlock. If this attempt to allocate pool is successful, the rou­
tine has avoided the overhead of spinlock acquisition and release.

If EXE$ALONONPAGED fails to allocate the pool, the routine acquires the
SCHED spinlock, raising IPL to IPL$_SCHED and synchronizing access to
the scheduler database, and invokes EXE$ALONONPAGED again. If the sec­
ond allocation attempt fails, the routine tests PCB$V _SSRWAIT in PCB$L_
STS. If it is set, the routine invokes a scheduling routine to place the process
into a resource wait state, waiting for RSN$_NPDYNMEM. The scheduling
routine releases the SCHED spinlock and restores the previous IPL. The
SCHED spinlock is held throughout this sequence to block deallocation of
pool and the accompanying report of resource availability between the time
of the second allocation failure and the time the process is actually placed
into a wait state.

561

Pool Management

562

The spinlock acquisition scheme requires that spinlocks be acquired in
increasing rank. This rule dictates that nonpaged pool be deallocated from
a thread of execution owning spinlocks ranked no higher than SCHED.
The interrupt nesting scheme requires that IPL never be lowered below the
IPL value at which the current interrupt occurred. This rule dictates that
nonpaged pool be deallocated from a thread of execution running as the
result of an interrupt no higher than IPL$_SYNCH.

Note the asymmetry in allocating and deallocating nonpaged pool. Al­
though threads of execution owning spinlocks ranked as high as MAILBOX
can allocate nonpaged pool, they must not own any spinlocks ranked higher
than SCHED when they deallocate nonpaged pool. Although code running
at IPL levels up to IPL$_POOL can allocate nonpaged pool, code running as
a result of an interrupt above IPL$_SYNCH must not deallocate nonpaged
pool.

Processes might be waiting for nonpaged pool, since it is a systemwide
resource. When EXE$DEANONPAGED reports the availability of nonpaged
pool, any waiting processes are made computable. These modifications to
the scheduler database take place while the CPU owns the SCHED spinlock
and runs at IPL$_SCHED.

Code executing as the result of an interrupt at IPL$_SYNCH or above
deallocates nonpaged pool through routine COM$DRVDEALMEM, in mod­
ule COMDRVSUB. If COM$DRVDEALMEM is invoked from below IPL$_
SYNCH, it merely deallocates the pool by jumping to EXE$DEANON­
PAGED. If, however, COM$DRVDEALMEM is invoked from IPL$_SYNCH
or above, it transforms the block that is to be deallocated into a fork block
(see Figure 4.1) and requests an IPL$_QUEUEAST software interrupt. (Note
that the block to be deallocated must be at least 24 bytes, large enough for a
fork block. If it is not, COM$DRVDEALMEM generates a nonfatal bugcheck
and returns to its invoker. The block of pool space is lost.)

The code that executes as the IPL$_QUEUEAST fork process (the saved
program counter in the fork block) simply executes a JMP to EXE$DEANON­
PAGED to deallocate the block. Because EXE$DEANONPAGED is entered
at IPL$_QUEUEAST, the synchronized access to the scheduler's database is
preserved. This technique is similar to the one used by device drivers that
need to interact with the scheduler by declaring asynchronous system traps
(ASTs). The attention AST mechanism is described briefly in Chapter 8 and
in greater detail in Chapter 7.

By convention, process context code that allocates a nonpaged pool data
structure executes at IPL 2 or above as long as the data structure's existence
is recorded solely in a temporary process location, such as in a register or on
the stack. Running at IPL 2 blocks AST delivery and prevents the possible
loss of the pool if the process were to be deleted.

19.2.6

19.2 Nonpaged Pool Regions

Uses of Nonpaged Pool

Nonpaged pool serves many purposes. This section describes typical uses of
the nonpaged pool lists. Note, however, that nondefault choices for SYSGEN
parameters LRPSIZE, LRPMIN, and SRP~IZE may result in different use.

The variable-length list is used for allocating nonpaged pool that does not
fit the allocation constraints of the lookaside lists. Typically, device drivers
and the larger unit control blocks describing I/O device units are allocated
from the variable-length list. Also, process control blocks, which contain
process-related information that must remain resident, are allocated from
the variable-length list.

Nonpaged pool is allocated during early stages of system initialization.
SYSBOOT loads several images into nonpaged variable-length pool. These
include the system disk driver, terminal driver, and CPU-dependent routines.
The detailed use of nonpaged pool by the initialization routines is described
in Chapter 31.

The LRP lookaside list is typically used by DECnet for receiving messages
from other nodes. On a system connected to a CI bus, CI datagrams (CIDGs),
used to provide best-effort message service among the nodes on the CI, may
be allocated from the LRP lookaside list. On a system with a relatively large
value for LRPSIZE, many loaded images, such as device drivers, may be
allocated from the LRP lookaside list rather than from the variable-length
list.

The IRP lookaside list is typically used for the following data structures:

• I/O and class driver request packets, which describe a particular I/O request
• Job information blocks, which contain the quotas and limits shared by

processes in a job
• Resource blocks, used by the lock management system services
• Unit control blocks, which describe the state of an I/O device unit
• Larger buffered I/O buffers
• On a system with a CI bus, CI sequenced messages used to provide highly

reliable communication among the nodes on the CI
• Channel (controller) request blocks, which describe the state of a device

controller

The SRP lookaside list is typically used for the following data structures:

• Lock and small resource blocks, used by the lock management system
services

• Window control blocks, which contain the location of a file's extents
• Timer queue entries, which describe time-dependent requests such as

Schedule Wakeup ($SCHDWK) system service requests
• Smaller buffered I/O buffers
• Interrupt dispatch blocks, which describe the state of a device controller

563

Pool Management

• Object rights blocks (ORBs), which describe the rights that a process must
have in order to access the object (such as a device) with which the ORB
is associated

19.3 PAGED POOL

564

Paged dynamic memory contains data structures that are used by multiple
processes but that are not required to be permanently memory-resident. Its
protection is ERKW, allowing it to be read from executive and kernel modes
but written only from kernel mode.

During system initialization, SYSBOOT reserves system space for paged
pool, placing its starting address in MMG$GL_PAGEDYN. The SYSGEN
parameter PAGEDYN specifies the size of this area in bytes. Paged pool is
created as a set of demand zero pages. The loadable executive image EXEC_
INIT places the address of the beginning of the paged pool area in EXE$GL_
PAGED. System initialization code running in the context of the swapper
process initializes the pool as one data structure encompassing the entire
pool. That initialization incurs a page fault and thus requires process context.

Process context kernel mode code invokes the routine EXE$ALOPAGED
to allocate paged pool and EXE$DEAPAGED to deallocate paged pool. These
routines, both in module MEMORYALC, invoke the lower level variable­
length allocation and deallocation routines described in Section 19.1.2.

If an allocation request cannot be satisfied, EXE$ALOPAGED returns to its
invoker with a failure status. The invoker may return an error, for example,
SS$_INSFMEM, to the user program, or the invoker may place the process
into a resource wait state, waiting for resource RSN$_PGDYNMEM.

Whenever paged pool is deallocated, EXE$DEAPAGED invokes SCH$R­
AVAIL, in module MUTEX, to declare the availability of paged pool for any
waiting process. Chapter 12 describes process resource waits.

Paged pool requires little system overhead: one SPTE per page of pool.
Because paged pool is created ~s demand zero SPTEs (see Chapter 14), it
expands on demand through page faults.

Because this area is pageable, code that accesses it must run at IPL 2
or below while accessing it. Elevated IPL, therefore, cannot be used for
synchronizing access to the paged pool list or to any data structures allocated
from it. The EXE$GLPGDYNMTX mutex serializes access to the paged pool
list. Both EXE$ALOPAGED and EXE$DEAPAGED lock this mutex for write
access.

By convention, process context code that allocates a paged pool data struc­
ture executes at IPL 2 as long as the data structure's existence is recorded
solely in a temporary process location, such as in a register or on the stack.
Running at IPL 2 blocks AST delivery and prevents the possible loss of the
pool if the process were to be deleted.

The following data structures are located in the paged pool area:

19.4 Process Allocation Region

• The shareable logical name tables and logical name blocks
• The Files-11 Extended QIO Processor (XQP) I/O buffer cache, which is used

for data such as file headers, index file bit map blocks, directory data file
blocks, and quota file data blocks

• Global section descriptors, which are used when a global section is mapped
or unmapped

• Mounted volume list entries, which associate a mounted volume name
with its corresponding logical name and unit control block address

• Access control list elements, which specify what access to an object is
allowed for different classes of users

• ORBs that are accessed at IPL 2 and below
• Data structures required by the Install Utility to describe known images

Any image that is installed has a known file entry created to describe
it. Some frequently accessed known images also have their image headers
permanently resident in paged pool. These data structures are described in
more detail in Chapter 26.

• Process quota blocks (PQBs), which are temporarily used during process
creation to store the quotas and limits of the new process

PQBs, initially allocated from paged pool, are not deallocated back to the
paged pool list. Instead, they are queued to a lookaside list whose listhead
is at global label EXE$GL_PQBIQ. Starting with VMS Version 5, this is a
self-relative queue. Process creation code attempts to allocate a PQB by
removing an element from this queue, as a faster alternative to general
paged pool allocation.

19.4 PROCESS ALLOCATION REGION

The process allocation region contains variable-length data structures that
are used only by a single process and are not required to be permanently
memory-resident. (Process allocation region pages are pageable.) Its protec­
tion is set to UREW, allowing executive and kernel modes to write it and
any access mode to read it.

The process allocation region consists of a Pl space variable-length pool
and may include a PO space variable-length pool as well. The PO space
allocation pool is useful only for image-specific data structures that do not
need to survive image exit. The Pl space pool can be used for both image­
specific data structures and data structures that must survive the rundown
of an image, such as logical name tables.

During process startup, EXE$PROCSTRT reserves Pl address space for
the process allocation region. The SYSGEN parameter CTLPAGES specifies
the number of pages in the Pl pool. Free space in the Pl process alloca­
tion region is maintained in a singly linked, memory-ordered list (see Sec­
tion 19.1.2). EXE$PROCSTRT initializes the pool and its listhead, CTL$GQ_

565

Pool Management

566

ALLOCREG. There is no global pointer that locates the beginning of the
process allocation region.

Executive or kernel mode code running in process context invokes
EXE$ALOP1PROC, EXE$ALOP1IMAG, or EXE$ALOPOIMAG to allocate
space from the process allocation region, and EXE$DEAP1 to deallocate a
data structure to the region. These routines are in module MEMORYALC.
When the data structure must be allocated from the Pl pool, EXE$ALOP1-
PROC is used. When the data structure is image-specific, EXE$ALOP1IMAG
or EXE$ALOPOIMAG is used.

EXE$ALOP1IMAG and EXE$ALOPOIMAG differ in which region they first
attempt the allocation. EXE$ALOP1IMAG tries the Pl region first, while
EXE$ALOPOIMAG tries the PO region first. If EXE$ALOP1IMAG finds that
there is insufficient space, or EXE$ALOPOIMAG finds that allocation in the
PO region is disallowed, each attempts to allocate from the other region. Nei­
ther routine can allocate from Pl space if the Pl process allocation region
reaches a threshold of use specified by the SYSGEN parameter CTLIMGLIM.
The current image's being linked with the NOPOBUFS option prevents allo­
cation from PO space. If the allocation fails, these routines return the SS$_
INSFMEM error status.

The CTLIMGLIM limit does not apply to EXE$ALOP1PROC. It may allo­
cate space until the Pl allocation region is exhausted. The arithmetic differ­
ence between CTLPAGES and CTLIMGLIM guarantees a minimum number
of pages exclusively for EXE$ALOP1PROC. EXE$ALOP1PROC only allo­
cates space from the Pl region. If an allocation fails, it returns the error
status SS$_INSFMEM.

Free space in the PO process allocation region is maintained in a singly
linked, memory-ordered list, as described in Section 19.1.2. SHELL initial­
izes the listhead, CTL$GQ_POALLOC, to zero. The image rundown routine
deletes PO space and zeros the listhead.

If not prevented by the presence of the NOPOBUFS linker option,
EXE$ALOP1IMAG and EXE$ALOPOIMAG create and expand the PO process
allocation region by invoking the routine MMG$EXPREG, in module SYS­
CREDEL. This routine functions much like the Expand Program/Control Re­
gion ($EXPREG) system service. EXE$ALOP1IMAG and EXE$ALOPOIMAG
expand the PO region as needed to satisfy allocation requests, but always by
at least 16 pages. Each time one of these routines expands the PO region, it
invokes EXE$DEALLOCATE to link the new space into the free list.

The current image and other VMS routines may also expand the PO vir­
tual address space for their own purposes. Depending on the sequence of
these expansions, multiple PO allocation region expansions can result in a
noncontiguous PO allocation region. Note that this contrasts with the paged,
nonpaged, and Pl allocation pools, which are always contiguous.

EXE$ALOP1PROC, EXE$ALOP1IMAG, and EXE$ALOPOIMAG each store

19.5 KRP Lookaside List

the address of the appropriate listhead in a register and invoke EXE$ALLO­
CATE to perform the variable-length allocation described in Section 19.1.2.1.
EXE$DEAP1 determines whether the block being deallocated is from the PO
or Pl space pool and invokes EXE$DEALLOCATE with the address of the
appropriate listhead.

No special synchronization mechanism is currently used for either the
process allocation region or the process logical names found there. However,
the allocation routines change to kernel mode and execute at IPL 2, effec­
tively blocking any other mainline or AST code from executing and perhaps
attempting a simultaneous allocation from the process allocation region.

The following data structures are located in the process allocation region:

• The process-private logical name tables and logical name blocks
• Data structures, called image control blocks, built by the image activator

to describe what images have been activated in the process
• Rights database identifier blocks, containing Record Management Services

context (internal file and stream identifiers) for the rights database file
• A context block in which the Breakthrough ($BRKTHRUJ system service

maintains status information as the service asynchronously broadcasts
messages to the terminals specified by the user

• Process scan context blocks, used by the Process Scan ($PROCESS_SCANJ
system service, described in Chapter 13

There is enough room in the process allocation region for privileged appli­
cation software to allocate process-specific data structures of reasonable size.

19.5 KRP LOOKASIDE LIST

The KRP lookaside list is a Pl space list for process-private kernel mode
data structures that are not required to be permanently memory-resident.
The protection on this storage area is URKW, allowing it to be read from
any mode but modified only from kernel mode.

Address space for this list is defined at assembly time of the SHELL mod­
ule, which defines the fixed part of Pl space. Two global symbols, CTL$C_
KRP _COUNT and CTL$C_KRP _SIZE, control the number of KRP packets
created and the size of each packet. Routine EXE$PROCSTRT, in module
PROCSTRT, initializes the list, forming packets and inserting them in the
list at CTL$GL_KRPFL and CTL$GL_KRPBL.

A KRP is used as pageable storage, local to a kernel mode subroutine.
KRPs should be used only for temporary storage that is deallocated before the
subroutine returns. The most common use of KRPs is to store an equivalence
name returned from a logical name translation.

Allocation and deallocation to this list is through INSQUE and REMQUE in­
structions. Both allocation and deallocation are always done from the front
of the list. There is no need for synchronization other than that provided by

567

Pool Management

the queue instructions. Because KRPs are used only for storage local to the
execution of a procedure, a failure to allocate a KRP is very unexpected and
indicates a serious error rather than a temporary resource shortage. Kernel
mode code that is unsuccessful at allocating from this list thus generates the
fatal bugcheck KRPEMPTY.

19.6 COLLECTING POOL ALLOCATION STATISTICS

568

VMS requires adequate pool space to operate properly. Inadequate pool space
can contribute to poor system performance and, in extreme cases, can cause
the system to become totally unresponsive. VMS Version 5 adds a feedback
mechanism to the AUTOGEN facility. Based on data gathered by various
VMS components, this mechanism can adjust SYSGEN parameter values to
a given system's workload.

The pool allocation and expansion routines described in this chapter store
pool allocation and failure statistics in data cells. IAn allocation request that
results in a pool expansion is not classified as a failure; pool expansion is
assumed to be a routine event.) From these statistics, AUTOGEN's feed­
back mechanism can calculate new values for the SYSGEN parameters that
control the system paged and nonpaged pool sizes.

The statistics measure the appropriateness of the various pool sizes. From
the statistical point of view, a lookaside list allocation fails when the list is
empty and cannot be expanded. Although space may be allocated from the
variable-length pool to satisfy the request, the allocation is nonetheless clas­
sified as a failure because the lookaside list parameters (initial or maximum
size) are inadequate. Data cells contain the number of expansion failures for
each of the three lookaside lists.

A variable-length list jpaged or nonpaged) allocation fails when no suffi­
ciently large free block is found and, in the case of the nonpaged pool, the
list cannot be expanded.

An epoch is the 10-second period starting at a variable-length pool alloca­
tion failure. The routine that detects the allocation failure keeps a total of
the number of bytes that fail to be allocated during an epoch. At the end of
an epoch, the routine converts that to a whole number of pages and adds it
to the appropriate data cell. It collects four categories of statistics for paged
pool and variable-length nonpaged pool:

• Total number of allocation attempts
• Number of allocation failures
• Number of epochs during which allocation attempts failed
• Total number of pages that could not be allocated

Table 19.4 lists the data collected and the routines responsible for updating
the data cells. The program AGEN$FEEDBACK.EXE (part of the MANAGE

19. 7 Detecting Pool Corruption

Table 19.4 Pool Allocation Statistics

Statistic Location Maintained By

NONPAGED POOL LOOKASIDE AND VARIABLE-LENGTH LISTS

Total number of expansion
failures

PMS$GLNPAGDYNEXPF EXTENDPAGE

Number of expansion failures:
one count for each of the
three lists

NONPAGED POOL LOOKASIDE LISTS

PMS$GLXRPFAIL I EXE$ALONONPAGED

Number of allocation

VARIABLE-LENGTH NONPAGED POOL LIST

PMS$GLNPAGDYNREQ
attempts

Number of allocation failures
Number of allocation failure

epochs
Total number of pages that

failed to be allocated

Number of allocation
attempts

Number of allocation failures
Number of allocation failure

epochs
Total number of pages that

failed to be allocated

PMS$GLNPAGDYNREQF
PMS$GLNPAGDYNF

PMS$GL_NPAGDYNFPAGES

PAGED POOL

PMS$GL_PAGDYNREQ

PMS$GL_PAGDYNREQF
PMS$GL_PAGDYNF

PMS$GLPAGDYNFPAGES

1 This symbol is the address of an array of three longwords.

EXE$ALONPAGVAR

EXTEND_FAIL
EXTEND_FAIL

EXTEND_FAIL

EXE$ALOPAGED

EXE$ALOPAGED
EXE$ALOPAGED

EXE$ALOPAGED

facility) reads these data cells during the SAVPARAMS phase. of AUTO­
GEN.COM. See the Guide to Setting Up a VMS System for a description
of AUTOGEN's operational phases and instructions for running it.

19.7 DETECTING POOL CORRUPTION

VMS Version 5 implements a mechanism to help troubleshoot pool corrup­
tion problems. Certain pool misuses lead to more obscure problems if left
unchecked. This mechanism can detect pool misuses such as

• Continued use of a piece of pool after it is deallocated
• Use of uninitialized fields in a piece of allocated pool
• Use of a piece of pool that was not allocated

The mechanism applies to the variable-length pools (paged pool, nonpaged
pool, and process allocation region) and to the lookaside lists (SRP, IRP, and
LRP). It involves

569

Pool Management

19.7.1

570

Table 19.S POOLCHECK Parameter FLAGS Bits

Bit 1'v1eaning

0 Variable-length pools; fill with FREE pattern on deallocation. If bit 1 is also
set, check for FREE pattern and fill with ALLO pattern on allocation.

1 Pool checking "master switch".
2 SRP; save caller's address and fill with FREE pattern on deallocation. If

bit 1 is also set, check for FREE pattern and fill with ALLO pattern on
allocation.

3 IRP; same as bit 2.
4 LRP; same as bit 2.
5, 6 Unused.
7 Process allocation region; fill and check as controlled by bits 0 and 1 .

• Filling deallocated pool with a unique pattern, called the FREE or "poison"
pattern

• Checking that the poison pattern is intact in pool being allocated and
generating the fatal bugcheck POOLCHECK if the pattern is not intact

• Filling allocated pool with a second pattern, called the ALLO pattern

This section describes the POOLCHECK SYSGEN parameter, which con­
trols the mechanism. It explains the mechanism's workings and lists some
limits to its ability to detect corruption. Note that use of the POOLCHECK
parameter is reserved to Digital. Any other use is completely unsupported.

POOLCHECK Parameter

The dynamic SYSGEN parameter POOLCHECK consists of four eight-bit
fields, one of which must be zero (see Table 19.5 and Figure 19.8). The bits
in the FLAGS byte enable and disable pool filling and checking and specify
which pools are affected. The rest of this section describes the individual
bits. The FREE and ALLO bytes specify the patterns written into pool when
the space is deallocated and allocated.

Bits in the FLAGS byte put the mechanism into one of three states:

• Do not fill or check blocks
• Fill blocks only upon deallocation
• Fill blocks upon deallo~ation; check and fill blocks upon allocation

Bits 0, 2, 3, 4, and 7 enable the filling of blocks during deallocation. Bit
0 enables the filling; with the FREE pattern, of blocks deallocated to the

31 24 23

ALLO

Figure 19.8
POOLCHECK Parameter

FREE

16 15 8 7 0

I Must be zero I FLAGS

19.7.2

19. 7 Detecting Pool Corruption

I- Unchanged by Pool Poisoning
~

I- -I

Return Address of
Deallocator (xRPs Only)

t-- 64 Kmaximum
.Checksum

Filled with FREE pattern

.~ I
T

I
T

Unchanged

Figure 19.9
Format of Poisoned Pool Space

paged and variable-length nonpaged pools. Bits 2, 3, and 4 enable the filling
of deallocated SRP, IRP, and LRP lookaside packets. Bits 0 and 7 together
enable the filling of blocks deallocated to the process allocation region.

When set in combination with the other bits, bit 1 enables the check­
ing and filling of blocks during allocation. If set with bit 0, it enables the
checking and filling of blocks allocated from the paged and variable-length
nonpaged pool with the ALLO pattern. If set with bits 2, 3, or 4, it enables
the checking and filling of allocated SRP, IRP, or LRP packets. If set with
bit 7, it enables the checking and filling of blocks allocated from the process
allocation region.

Pool Poisoning

The routine POISON_PACKET, in module MEMORYALC, fills pool space
with a predictable pattern under several circumstances:

•Space deallocated by EXE$DEANONPAGED, EXE$DEANONPGSIZ, or
EXE$DEALLOCATE is filled .

• The entire result of merging a deallocated variable-length block with free
blocks above or below it is filled .

• Space returned to a variable-length pool by EXE$ALLOCATE as a result of
an inexact fit is filled .

• Space added to variable-length nonpaged pool as a result of pool expansion
is filled.

If enabled by the previously described bits, POISON_PACKET fills pool
space. The first five longwords form a header. The remainder of the space
receives the FREE pattern. Figure 19.9 shows the format of poisoned pool
space.

The header is as follows:

• The first three longwords are unchanged by the pool filling ·mechanism.
They contain the forward pointer to the next free block; the size of the

571

Pool Management

19.7.3

19.7.4

572

block, if it is a variable-length block; and the original size, type, and subtype
fields .

• The fourth longword of lookaside packets contains the return address of the
caller to the deallocation routine. It remains unchanged in variable-length
pool pieces .

• The fifth longword contains a checksum, which is the sum (ignoring any
carry) of the following:

-FREE pattern byte
-Block address
-Contents of the third longword
-Contents of the fourth longword
-Contents of the longword beginning at EXE$GQ_BOOTTIME + 1

Under certain circumstances and for certain VAX processors, it is possible
for the contents of memory to be preserved from one bootstrap of the operat­
ing system to the next. The last longword used in calculating the checksum
enables the checking routine to differentiate between stale poisoned pool
and pool space poisoned during this bootstrap of the operating system.

Pool Checking

The routine CHECK_P.ft.CKET, in module MEMORYALC, checks pool space.
It is invoked by

• EXE$ALLOCATE, when allocating variable-length pool space from paged
pool, nonpaged pool, or the process allocation region

• EXE$ALONONPAGED, when allocating an SRP, IRP, or LRP lookaside
packet

CHECILPACKET calculates the expected checksum using the same algo­
rithm described in Section 19.7.2. If the expected checksum does not match
the checksum found in the fifth longword, CHECK_PACKET assumes that
the block is unpoisoned and makes no further checks. (Since POOLCHECK
is a dynamic SYSGEN parameter, it is possible that pool poisoning was dis­
abled for a time, resulting in unpoisoned blocks being put on the free list.
Alternatively, the block may have been poisoned during a previous bootstrap
of the operating system.)

If the checksum matches, CHECILPACKET examines the remainder of
the block for the FREE pattern. If the FREE pattern is not intact, it generates
the fatal bugcheck POOLCHECK. If the FREE pattern is intact, CHECK_
PACKET fills the entire block (including the first five longwords) with the
ALLO pattern.

Constraints on the Pool-Checking Mechanism

Some circumstances can circumvent the pool-checking mechanism:

19.7 Detecting Pool Corruption

• Allocation and deallocation of lookaside list packets by any routine di­
rectly via REMQHI and INSQTI instructions bypass the filling and checking
performed by the previously described routines .

• Any corruption of pool space that corrupts the third, fourth, or fifth (check­
sum) longword effectively disables checking for that block.

• Checking occurs only at allocation time. Corruption that occurs after a
block is allocated is not detected .

• When a block being deallocated to variable-length pool is merged with a
free block above or below it, the entire resulting free block is filled. This
masks any corruption that may have previously occurred in an adjacent
free block.

• When a lookaside list is expanded, the checksum longword of each added
packet is zeroed to prevent checking until after the packet is allocated .

• The mechanism fills and checks a maximum of 65,516 bytes (64K bytes,
less the five-longword header).

Disabling and reenabling pool poisoning with the same FREE pattern can
lead to false POOLCHECK bugchecks. If EXE$DEALLOCATE concatenates
a variable-length block to the bottom of a poisoned free block while pool
poisoning is disabled, only the top part of the resulting free block contains
the FREE pattern. If pool checking is subsequently enabled with the same
FREE pattern and this free block is allocated, CHECK_PACKET interprets it
as being corrupt.

Certain system initialization routines reside in pool space and deallocate
the space they occupy before they exit. To prevent these routines from being
overwritten with the FREE pattern, no checking or poisoning is done during
the early stages of system initialization (while BOOSTATE$V _STARTUP is
set in EXE$GLSTATE). See Chapter 31 for more information on system
initialization.

Potentially useful values for the FREE and ALLO patterns cause an access
violation when a longword filled with either pattern is interpreted as an
address. For example, any pattern containing l's in the two high-order bits
results in an address beyond the end of system space. Additional suggestions
for using pool checking and for analyzing POOLCHECK bugchecks are given
in the VMS Device Support Manual.

573

PART VI/ Input/Output

20 Overview of the 1/0 Subsystem

Many small make a great.

Geoffrey Chaucer, Canterbury Tales

The VMS 1/0 subsystem consists of device drivers and their associated data
structures; device-independent routines within the executive; and several
system services, the most important of which is the Queue 1/0 Request
($QIO) system service, which handles the eventual requests issued by all
outer layers of the system. This chapter provides an overview of the 1/0
subsystem. Subsequent chapters provide more detail of its operation. The
1/0 subsystem is described in detail from the point of view of adding a device
driver to a VMS operating system in the VMS Device Support Manual.

The 1/0 subsystem has two major functions: to provide an interface that
is device-independent for images that perform 1/0-related operations, and to
provide device-dependent support for hardware devices. Four major compo­
nents of the 1/0 subsystem are the 1/0 database, 1/0 system services, device
drivers, and ancillary control processes (ACPs).

20.1 HARDWARE OVERVIEW

This section discusses a sample 1/0 hardware configuration, pictured in Fig­
ure 20.1, and introduces the terms used to describe such components. VAX
1/0 configurations vary in complexity. The book Computer Programming
and Architecture: The VAX discusses them, and the 1/0 configurations of
specific VAX processors are described in the VMS Device Support Manual.

The major components of an 1/0 hardware configuration are

• CPU. There may be more than one CPU in some configurations.
• Main memory. If there are multiple CPUs, main memory is shared by all

of them.
• System bus. This is the electrical connection between the CPU(s), memory,

and the 1/0 bus adapters. The address space of this bus is the physical
address space of the processor.

• 1/0 bus adapters. An 1/0 bus adapter connects an 1/0 bus to the system
bus and thus allows communication among the 1/0 bus, the CPU(s), and
memory. Some of the adapter's resources may need to be shared, such as
map registers for translating 1/0 bus addresses into system bus addresses.

• 1/0 bus. The 1/0 bus connects the various device controllers and the 1/0
bus adapter. Common VAX 1/0 buses are the UNIBUS, the MASSBUS, and
the VAX.BI.

• 1/0 device controllers and device units. A device controller contains the
logic necessary to connect to the 1/0 bus and to control the specific device

577

Overview of the 1/0 Subsystem

CPU Memory

l Backplane Interconnect l
1

1/0 Bus
Adapter

1(0 Bus 1
I

Device
Controller

I
l 1

Device Device
Unit Unit

Figure 20.1
A Sample I/O Hardware Configuration

units. A device unit is the individual hardware component, such as a line
printer or a tape drive.

In the case of single-unit devices, the distinction between device con­
troller and device unit may be artificial. In the case of some multiunit
devices, such as a terminal controller, it may be possible to treat each unit
as if it had a separate controller. In the case of multiunit devices such as
tape or disk drives, an individual unit may contain some control logic ded­
icated to the unit, while the device controller contains control logic shared
by the various units.

20.2 1/0 DATABASE

578

Because a device driver and the VMS executive cooperate to process an 1/0
request, they must have a common and current source of information about
the request. This is the 1/0 database, which consists of three parts:

• Data structures that describe every 1/0 bus adapter, device type, device
unit, device controller, and logical path from a process to a device

• Request packets, which define individual requests for 1/0 activity
• Driver tables, which allow the system to load drivers, validate device

functions, and invoke drivers at their entry points (see Section 20.3.1)

Illustrations of I/O database structures and detailed descriptions of their

20.2.1

IRP
Describes VO

request

20.2 1/0 Database

fields appear in the VMS Device Support Manual. Figure 20.2 illustrates
some of the relations among VMS 1/0 routines, the 1/0 database, and a
device driver.

Data Structures

1/0 database data structures describe 1/0 hardware components and syn­
chronize access to them. VMS creates these data structures either at system
startup or when a driver is loaded into the system. Except where noted, these
data structures are located in nonpaged pool.

The 1/0 database is unit-oriented. The item of interest to the process that
requests the I/O operation is the device unit involved in the operation. In
most cases, the device controller, 1/0 bus adapter, and so on, are significant
to the process only because they are used to communicate between the CPU
and the device unit.

VMS creates a unit control block (UCB) for each device unit attached to the
system. A UCB defines the characteristics and current state of an individual
device unit, and is the focal point for controlling access to it. In addition,
the UCB contains the listhead for the queue of pending request packets for
the unit.

When a driver is stalled or interrupted, the UCB keeps the context of the
driver in a set of fields collectively known as a fork block. Chapter 4 provides
more detail about fork blocks and fork routines.

VMS creates an object rights block (ORB) for each device unit when the

PCB
Describes

requesting process

UCB
Describes

device

r----------- --1
I CCB I
I "I

Describes I
logical path I

I
to device I

I

P1 Space
I
I
I
I
I

Figure 20.2
The 1/0 Database

ORB
Describes
permitted
accesses

DOB
Describes

device type

CRB
Synchronizes

controller

IDB
Describes
controller

DPT

DDT
locates driver

FDT

Driver
routines

ADP
Describes
adapter

Device
registers

579

Overview of the 1/0 Subsystem

20.2.2

580

associated UCB is created. An ORB describes the rights that a process must
have to access the object with which the ORB is associated. UCBs are not
the only entities in VMS that have an associated ORB. Thus, ORBs are not
unique to the I/O database but form a part of it.

A device data block (DOB) contains information common to all devices
of the same type that are connected to a particular controller. It records
the generic device name concatenated with the controller designator (for
example, LPA) and the name and location of the associated device driver.
In addition, the DOB contains a pointer to the first UCB for the device
units attached to the controller. The DOB is not used directly for controlling
access to either the device controller or the associated device units. IOC$GL_
DEVLIST is the listhead for the DOB list. From this, any part of the I/O
database can be found.

VMS creates a two-part data structure to describe each device controller.
The first part, the channel request block (CRB), is of variable length depend­
ing on the number of interrupt vectors associated with the controller. The
second part, the interrupt dispatch block (IDB), is of variable length depend­
ing on the number of units connected to the controller.

The CRB defines the current state of a gi,ven controller and lists the
devices waiting for the controller's data channel. It also contains the code
that dispatches a device interrupt to the interrupt service routine for that
unit's driver. Chapter 3 gives more information on device interrupts. The
CRB is the focal point for controlling access to the device controller.

The IDB lists the device units associated with a controller and points
to the UCB of the device unit that the controller is currently serving. The
driver's interrupt service routine uses the IDB to dispatch an interrupt to the
appropriate fork process. In addition, an IDB points to the device registers
and the controller's I/O bus adapter control block.

An adapter control block (ADP) defines the characteristics and current
state of an I/O bus adapter, such as the VAX UNIBUS and MASSBUS adapters
and the MicroVAX Q22-bus interface. An ADP contains the queues and
allocation bitmaps necessary to allocate adapter resources. VMS provides
routines that drivers can invoke to allocate these resources.

A channel control block (CCB) describes the logical path between a process
and the UCB of a specific device unit. Unlike the data structures mentioned
earlier, CCBs are not located in nonpaged system space but in the Pl space
of each process (see Chapter 21).

VMS creates several additional data structures for a file-structured device
(see Section 20.5.1).

Request Packets

The I/O database includes a set of request packets. There are two types of
request packets, I/O request packets (IRPs) and class driver request packets

20.2.3

20.2 I/0 Database

(CORPs). An IRP describes an 1/0 request that has been processed by the
$QIO system service. These are the request packets most commonly handled
by device drivers.

When a process requests 1/0 activity via the $QIO system service, VMS
constructs an IRP that describes the 1/0 request in a standard format. The
packet contains fields into which system and driver 1/0 preprocessing rou­
tines can write information. For instance, the device-dependent arguments
specified in the $QIO system service call are placed in the packet. The packet
also includes buffer addresses, a pointer to the UCB for the target device, and
the 1/0 function codes.

A CORP describes a request to be handled by a system communication
services (SCS) port driver. Such requests are generated by the disk class
driver and the VAXcluster connection manager, for example. To economize
on system overhead encountered by the disk and tape class drivers, all IRPs
have space for a suitable CORP appended to them, for use by the class drivers.
Various portions of VMS rely on the fact that each IRP has this extra space
appended to it, although the space may not always be used to contain a
CORP.

Synchronizing Access to the 1/0 Database

Four methods are used to synchronize access to the 1/0 database: mutexes,
interrupt priority level (IPL), spinlocks, and the lock management system
services. Chapter 8 discusses the use of IPL, spinlocks, and mutexes for
synchronization. Chapter 10 discusses resources, locks, and the lock man­
agement system services. The VMS Device Support Manual explains the
use of IPL and spinlocks for synchronization from the perspective of device
drivers.

The 1/0 database mutex, IOC$G1-MUTEX, synchronizes access to the 1/0
database. This mutex does not synchronize access to any of the hardware
components of the 1/0 subsystem. Its major purpose is to synchronize the
addition or deletion of data structures with searches of the 1/0 database.

The spinlocks of most interest to the 1/0 subsystem are fork locks and
device locks. Fork locks synchronize fork processing. A device lock syn­
chronizes access to the device controller data structures and thus to the
controller.

IPL synchronization of the 1/0 database normally occurs as part of spinlock
acquisition and release. Less frequently, IPL is used to synchronize access in a
context where coordination with other processors is irrelevant. For example,
a driver fork process raises IPL to IPL$_POWER (31) to block powerfail
interrupts on the local processor just before initiating device activity.

If the system is a V AXcluster member, lock management system ser­
vices synchronize access to the UCBs for devices that are cluster-available
(OEV$V _CLU set in UCB$L_OEVCHAR2). Each such device is described by

581

Overview of the 1/0 Subsystem

a resource name that is the string SYS$ concatenated with the allocation
class device name. Appendix H gives more information on specific locks.

Spinlocks and resource locks are quite different in nature and should not
be confused. In Part VI the terms spinlock, fork lock, and device lock are
used to refer to the various types of spinlocks. The locks provided by the
lock management system services are referred to as resource locks.

2.0.3 DEVICE DRIVERS

2.0.3.1

582

A device driver controls 1/0 operations on an 1/0 device by performing the
following functions:

• Defining the 1/0 device for the rest of the operating system
• Preparing a device unit or its controller for operation at system startup,

during connection of the device via SYSGEN, and during recovery from a
power failure

• Performing device-dependent 1/0 preprocessing
• Translating requests for 1/0 operations into device-specific commands
• Activating a device unit
• Responding to hardware interrupts generated by a device unit
• Responding to device timeout conditions
• Responding to requests to cancel 1/0 on a device unit
• Reporting device errors to an error logging program
• Returning status from a device unit to the process that requested the 1/0

operation

Normally, a device driver image consists of the routine.s and tables dis­
cussed in the following sections.

Driver Tables

Three driver table~ver prologue table, driver dispatch table, and function
decision table-are included in every driver.

The driver prologue table jDPT) defines the identity and size of the driver
to the system routine that loads the driver into memory and creates the
associated database. With the information provided in: the DPT, the driver­
loading procedure can both load and reload the driver and perform the re­
quired 1/0 database initialization.

The driver dispatch table jDDT) lists the addresses of the entry points of
standard routines within the driver and records the size of the diagnostic and
error log buffers for drivers that perform error logging.

The function decision table IFDT) lists all valid 1/0 function codes for the
device and associates valid codes with the addresses of 1/0 preprocessing
routines called FDT routines. Figure 20.3 illustrates the layout of a function
decision table. The FDT consists of a series of 64-bit masks, each of whose
bits corresponds to an 1/0 function code. For example, bit 33 in a mask
corresponds to 1/0 function code 33.

20.3.2

20.3 Device Drivers

I- Valid 1/0 Functions -
I- Buffered 1/0 Functions -
I- 64-Bit Mask -

Routine Address

I- 64-BitMask -
Routine Address

Figure 20.3
Layout of a Function Decision Table

The first two entries consist of just a mask. Bits set in the first mask in­
dicate which functions are legal for the associated devices. Bits set in the
second mask indicate which functions are buffered 1/0 operations. Subse­
quent entries consist of both a mask and the address of an FDT routine. Bits
set in this mask indicate which functions are processed by that FDT routine.

Some FDT routines are contained within device driver images. Others,
used by multiple drivers, are contained in loadable executive images. FDT
routines are discussed in Chapter 21 and in more detail in the VMS Device
Support Manual.

Driver Routines

In addition to any FDT routines it may contain, a device driver generally
contains controller and unit initialization routines, a start I/O routine, an
interrupt service routine, and a cancel 1/0 routine. A summary of these
routines follows; more information is available in the VMS Device Support
Manual.

The unit and controller initialization routines prepare a device or con­
troller for operation when the driver-loaQing procedure loads the driver into
memory and when VMS recovers from a power failure.

The start I/O routine performs additional device-dependent tasks such as
translating the I/O function code into a device-specific command, storing
the details of the request in the device's UCB, and if necessary, obtaining
access to controller and adapter resources. Whenever the start 1/0 routine
must wait for these resources to become available, VMS stalls the routine,
reactivating it when the resources become available.

The start 1/0 routine ultimately activates the device by loading the de­
vice's registers. At this stage, the start 1/0 routine invokes a VMS macro
that stalls the routine until the device completes the 1/0 operation and re­
quests an interrupt. The start 1/0 routine remains stalled until the driver's
interrupt service routine handles the interrupt.

When a device requests an interrupt, its driver's interrupt service routine

583

Overview of the 1/0 Subsystem

determines whether the interrupt is expected or unexpected and takes ap­
propriate action. If the interrupt is expected, the interrupt service routine
reactivates the driver's start 1/0 routine. Generally the start 1/0 routine per­
forms device-dependent 1/0 postprocessing and transfers control to VMS for
device-independent 1/0 postprocessing.

The timeout handling routine retries the 1/0 operation and performs other
error handling when a device fails to complete an operation within a reason­
able period of time. Chapter 11 discusses timeout handling in more detail.

The cancel 1/0 routine handles requests to cancel 1/0 on a unit. It is
invoked when an image requests the Cancel 1/0 on Channel ($CANCEL)
system service for the unit, and when the reference count for the unit goes
to zero. Chapter 21 discusses cancel 1/0 routines in more detail.

20.4 1/0 SYSTEM SERVICES

VMS provides system services to allow images to request 1/0 operatfons and
to obtain information about the 1/0 subsystem. The 1/0 system services
provide direct access to the device. An image can take advantage of specific
characteristics of a given device, not just the generic device characteristics
supported by Record Management Services (RMS). Subsequent chapters dis­
cuss the various 1/0 system services in more detail.

20.5 ANCILLARY CONTROL PROCESSES

20.5.1

584

An ACP is a separate process that assists device drivers in processing 1/0
requests. ACPs perform device-independent functions, such as opening files
and establishing a network link. Direct ACP involvement in processing an
1/0 request is the exception rather than the rule for most ACPs. For example,
reads and writes to a fl.le do not usually require ACP intervention. Chapter 21
provides more details of this example in its discussion of 1/0 postprocessing.

VMS provides the following ACPs:

• FllAACP-Files-11 structure level 1 ACP
• MTAAACP-Magnetic tape ACP
• NETACP-DECnet-VAX ACP
• REMACP-Remote terminal ACP

In VMS Version 4, the Files-11 structure level 2 ACP, FllBACP, was
converted to the Extended QIO Processor (XQP), FllBXQP. Unlike an ACP,
the XQP runs in the context of the process making the 1/0 request. For
purposes of this part of the book, there is no essential difference between
ACPs and the XQP. Any reference to ACPs is equally applicable to the XQP
unless stated otherwise.

ACP Data Structures

While not all the ACPs provided by VMS deal with true files, all use a set of
data structures that are based on the needs of the file system ACPs. These

20.5 Ancillary Control Processes

CCB
P1 Space

UCB

VCB FCB WCB

AQB

IRP

Figure 20.4
File System Data Structures

data structures are sufficiently general to make their use by the non-file
system ACPs straightforward. Figure 20.4 illustrates the relations among
the file system data structures common to all ACPs.

The ACP creates a volume control block (VCB) when the volume is
mounted. In the case of DECnet, the volume is the network as a whole.

VMS creates an ACP queue block (AQB) as part of the creation of the
process in which the ACP runs. The AQB contains the queue of IRPs that
the ACP is to process. (For the XQP, there is also a per-process queue of
IRPs. The XQP uses both queues, depending on the nature of the operation.)
A given AQB may be associated with more than one VCB.

The ACP creates a file control block (FCB) for each file open on the volume
or each logical link open on the network. In the case of a file, the FCB
contains the listhead for the queue of window control blocks (WCB) for the
file. One WCB for each channel is associated with the file or logical link.

A WCB describes the virtual-to-logical correspondence for the blocks in a
file and the access characteristics of the user. The CCB points to the WCB for
the file open on the channel. The WCB contains a base virtual block number
and a variable number of map entries. The map entries are a subset of the file
retrieval information for the file. An extent is a virtually contiguous series
of blocks that are also logically contiguous on the disk. Each map entry
represents one extent and consists of an extent size and a starting logical

585

Overview of the 1/0 Subsystem

block number. As a result, the entire file does not have to reside in one
logically contiguous set of logical blocks.

20.6 VMS 1/0 ROUTINES

586

VMS supplies routines that perform various functions common to device
drivers. Among these routines are FDT routines and routines to manage
adapter resources such as map registers. These routines enable common
functions to be performed in a consistent fashion and relieve the device
driver writer of the need to master the details of these functions. The VMS
Device Support Manual contains descriptions of many of these routines.
Subsequent chapters describe some of them in more detail.

21 1/0 System Services

Delay not Caesar! Read it instantly!

Shakespeare, fulius Caesar, 3, i

Here is a letter, read it at your leisure.

Shakespeare, Merchant of Venice, 5, i

An image performs 1/0 operations on: a device by requesting 1/0 system
services. The 1/0 system services also are requested on behalf of a process
by system components, for example, Record Management Services (RMS)
and file processors, such as Files-11 Extended QIO Processor (XQP) or ancil­
lary control processes (ACPs). This chapter describes the basic 1/0 system
services and the device-independent portions of the flow of an 1/0 request.
Chapter 22 describes the device-dependent portion of that flow.

21.1 OVERVIEW

The basic 1/0 system services are

• Allocate Device ($ALLOC), by which an image reserves a particular device
for exclusive use

• Deallocate Device ($DALLOC), by which an image relinquishes such a
device

• Assign 1/0 Channel ($ASSIGN), by which an image creates a logical link
to a device

• Deassign 1/0 Channel ($DASSGN), by which an image deletes the logical
link

• Queue 1/0 Request [and Wait] ($QIO[W]), by which an image requests an
1/0 operation on a particular logical link to a device

• Cancel 1/0 on Channel ($CANCEL), by which an image cancels outstand­
ing 1/0 requests on a particular logical link to a device

VMS provides other 1/0 system services in addition to those discussed in
this chapter. See the Introduction to VMS System Services for a discussion
of all the 1/0 system services.

All the system service routines discussed in this chapter that have a
device name argument accept a logical name instead of a device name. Each
routine uses the same criteria to process the device name argument. See
the Introduction to VMS System Services for a discussion of these criteria.
Logical names and logical name translation are discussed in Chapter 35.

A typical service sequence for an image is the following:

1. If appropriate, it requests the $ALLOC system service.

587

1/0 System Services

588

2. It requests the $ASSIGN system service.
3. Either it requests the $QIO system service followed by an event flag

wait system service (for example, Wait for Single Event Flag, $WAITFR,
or Synchronize, $SYNCH) or it requests the $QIOW system service. This
step is repeated for each 1/0 operation.

4. Upon completion of its 1/0 operations, the image requests the $DASSGN
system service (which can instead be requested implicitly as part of image
rundown or process deletion).

5. If necessary, it requests the $DALLOC system service (which can also
be requested implicitly as part of image rundown or process deletion).

An 1/0 request is processed in a number of steps and threads of execu­
tion. A typical sequence is shown in Figure 21.1; the numbers in the figure
correspond to those in the following list:

G) The image requests the $QIO[W] system service.
G) EXE$QIO, the $QIO system service procedure, runs in process context.

It validates its device-independent arguments and builds a data structure,
called an 1/0 request packet (IRP), that describes the I/O request.

G) It invokes one or more function decision table (FDT) action routines
specific to the device and 1/0 function. The FDT action routines, also
running in process context, complete argument validation and any neces­
sary I/O request preprocessing. An FDT routine may allocate a nonpaged
pool buffer for use by the driver, and it may lock user buffer pages into
memory so that they can be accessed by a direct memory access (DMA)
device.

G) The last FDT action routine invokes an executive routine to pass the IRP
to the device driver and to return control to the user.

G)The device driver's start I/O routine, which executes in system context,
initiates the device activity corresponding to the I/O request and then
waits for the device interrupt that signals completion of the activity.

G)The device interrupt service routine (ISR), which executes at device in­
terrupt priority level (IPL), copies device status and then forks to dismiss
the interrupt and reenter the start 1/0 routine at a lower IPL.

G) Reentered as a fork process, the start 1/0 routine verifies that the request
has been satisfied, copies status to the IRP, and queues the IRP for post­
processing.

G)The 1/0 postprocessing interrupt service routine, running in system con­
text, performs some postprocessing functions, for example, unlock buffer
pages, restore charged quota, and set the event flag associated with the
1/0 request. It queues a special kernel mode asynchronous system trap
(AST) to the process whose I/O completed.

G) Running in process context, the special kernel mode AST routine can
copy I/O status to the image's 1/0 status block (IOSB) and copy input

21.1 Overview

Trre Process Context System Context

IPLO IPL!:'. 2 IPL!:: 3 IPL!:'. UCB$B_FIPL

Outer Mode Kernel Mode

1 Call S(S$010 ...
EXE$QIO t
2 Build IRP
3 Invoke FDT routines

FDTRoutine
Complete IRP

preprocessing
4 QueueLRP to driver ...

Start 110 ioutine
5 Initiate device activity

Wait for interrupt or

• ·I-
timeo_J'

f / . .
Call SYS$SYNCH or DevicelSR

SYS$WAITFR 6 Fork

REI
Start 1/0 Routine
7 Queue IRP to VO

/ post queue

REI
l/OPostlSR
8 Perform post-

processing
Queue special kernel

AST

/
REI

AST Delivery ISR
Invoke special kernel

AST routine

110 Post AST Routine
9 Copy status to IOSB

Return

+
. ~:'.........J

(1/0 is complete; event
flag has been set)

Figure 21.1
Flow of an 1/0 Request

589

1/0 System Services

data from a nonpaged pool buffer to a user buffer. If the user requested
AST notification of the I/O completion, the special kernel mode AST
routine queues a normal AST.

21.2 DEVICE DRIVERS AND FORK LOCKS

Prior to VMS Version 5, VMS and device drivers used IPL alone to synchro­
nize access to the unit control block (UCB). To run on a VMS Version 5
symmetric multiprocessing (SMP) system, a driver must synchronize access
to its UCB with a type of spinlock called a fork lock. While all drivers pro­
vided with VMS Version 5 have been modified to use fork locks, VMS must
work with drivers that use either style of synchronization.

VMS distinguishes the two styles by the contents of UCB$B_FIPL, the
same offset as UCB$B_FLCK. If the driver uses fork locks, this location
contains the spinlock index for the fork lock, which is a value with bit
5 set. If the driver uses IPL alone, this location contains the fork IPL, which
is a value with bit 5 clear. Thus, the two styles can be distinguished by the
state of bit 5 in UCB$B_FIPL.

21.3 DEVICE CATEGORIES

590

Several I/O system services use the following categories to classify devices.
A device may be in more than one category. The two categories that are
mutually exclusive are local and remote .

• Local devices. These are devices attached directly to the system, pseudo
devices, and cluster-available devices .

• Pseudo devices. These are local devices that do not correspond to a physical
device. One example of a pseudo device is the mailbox device, described
in Chapter 23 .

• Template devices. These are pseudo devices that have bit UCB$V _ TEM­
PLATE in UCB$W _STS set. All cluster-available devices and most other
local devices are not template devices. Template devices are discussed in
more detail in Section 21.5.2.2.2 .

• Network devices. These are pseudo devices used by network software to
represent logical links. A network device has bit DEV$V _NET in UCB$L_
DEVCHAR set.

• Cluster-available devices. These are devices that are served via the mass
storage control protocol (MSCP) server and devices that are attached to de­
vice servers such as an HSC-50. Cluster-available devices have bit DEV$V _
CLU in UCB$LDEVCHAR2 set.

Access to cluster-available devices is coordinated across the VAXcluster
system by means of resource locks. A cluster-available device has the same
name on each VAXcluster node on which it appears. The device name
is prefixed with SYS$_ to form the resource name. Resource locks are
described in Chapter 10.

21.4 Allocating and Deallocating Devices

• Remote devices. These are devices accessed via DECnet-VAX, specifically
those whose device specification includes a DECnet node name, indicated
by the presence of :: in the device specification.

21.4 ALLOCATING AND DEALLOCATING DEVICES

An I/O device is characterized as shareable or not, based on whether mul­
tiple independent processes are allowed to use it concurrently. A device is
nonshareable, for example, if its I/O is inherently sequential and concurrent
requests from independent processes would read and write indeterminate
data. Before a process can request I/O of a nonshareable device, the device
must be allocated for the process's exclusive use.

A device allocated to a process can nonetheless be used by another process
under the following two conditions:

• The other process is a subprocess of the first. This condition provides, for
example, flexible access to an interactive terminal among a user's process
and its spawned subprocesses.

• The other process has the SHARE privilege. For example, the print sym­
biont uses the SHARE privilege to access a disk mounted privately when
the owner queues files on the disk for printing.

In either set of circumstances, the prncesses sharing the device are respon­
sible for arbitrating their accesses to it.

There are two forms of device allocation: explicit, requested by the process
through the $ALLOC system service, and implicit, performed as necessary
on behalf of the process by the $ASSIGN system service. In either form, the
process ID (PID) of the process that allocated the device is stored in the UCB
device owner field, UCB$1-PID.

Explicit allocation differs from implicit allocation in several ways:

• An implicitly allocated device is transparently deallocated when its last
channel is deassigned; an explicitly allocated device must be explicitly
deallocated .

• A process can request explicit allocation of a generic device type or a
specific device unit .

• In the case of explicit allocation, the device allocated bit, DEV$V _ALL in
UCB$L_DEVCHAR, is set and the device reference count, UCB$W _REFC,
is incremented twice, once by $ALLOC and once by $ASSIGN. In the case
of implicit device allocation, the device allocated bit is clear and the device
reference count is incremented only once, by $ASSIGN.

A process requests the $ALLOC system service to allocate a device explic­
itly. The device can be released only through the $DALLOC system service,
requested by the process directly or by code running on its behalf at image
rundown or process deletion.

591

1/0 System Services

21.4.1

592

The $ASSIGN system service, described in Section 21.5.2, performs im­
plicit allocation of a device that has not been explicitly allocated, provided
the device is not shareable.

Allocate Device System Service

The $ALLOC system service has five arguments, of which only the DEVNAM

argument is required:

• The DEVNAM argument identifies the device to be allocated .
• The PHYBUF argument specifies where the $ALLOC system service should

return the name of the device .
• The PHYLEN argument specifies where it should return the length of the

device name .
• The ACMODE argument identifies the access mode to be associated with the

device. It is maximized with the mode of the caller. Once allocated, the
device can only be deallocated from the same or a more privileged mode.

• The FLAGS argument contains only one flag, the low bit. When set, the low
bit indicates that any device of a particular type can be allocated, not just
a specific device.

The $ALLOC system service procedure, EXE$ALLOC in module SYS­
DEVALC, will not allocate the device if any one of the following conditions
is true:

• The device is already allocated by another process (UCB$1-PID is nonzero
and does not match PCB$L_PID).

• The device reference count is nonzero.
• A volume is mounted on the device .
• The device is spooled (DEV$V _SPL in UCB$1-DEVCHAR is set), and the

process does not have the ALLSPOOL privilege .
• The requesting process does not have access rights to allocate the device,

based on the device owner's user identification code (UIC) and protection
(fields UCB$1-UIC and UCB$W_PROT) and its access control list .

• The device is not available (DEV$V _AVL in UCB$1-DEVCHAR is clear)
or not online (UCB$V _ONLINE in UCB$L_STS is clear) .

• The device is a template device .
• The device is cluster-available and a conflicting resource lock exists.

EXE$ALLOC runs in kernel mode. It takes the following steps to allocate
a device:

1. It locks the 1/0 database mutex for write access.
2. It verifies that the DEVNAM argument's string descriptor is read-accessible.
3. If the FLAGS argument is specified, EXE$ALLOC verifies that it is read­

accessible and does not have undefined bits set.
4. It invokes IOC$SEARCH, in module IOSUBPAGD, to locate a suitable

device.

21.4.2

21.4 Allocating and Deallocating Devices

-If the FLAGS argument is not specified or is 0, EXE$ALLOC requests a
search for the exact device specified by the DEVNAM argument.

-If the FLAGS argument is 1, EXE$ALLOC requests a search for the first
available device having the type specified by the DEVNAM argument.

IOC$SEARCH invokes IOC$TRANDEVNAM, in module IOSUB­
PAGD, to translate the DEVNAM argument. It then searches the 1/0
database for either the specific device or one of the particular type.
IOC$SEARCH and routines it invokes verify the suitability of the de­
vice and its accessibility to this process.

If the appropriate device is found, IOC$SEARCH checks that the pro­
cess has access to the device. If the device is cluster-available, it invokes
IOC$LOCILDEV, in module IOSUBPAGD. IOC$LOCILDEV requests
the Enqueue Lock Request ($ENQ) system service to queue an exclusive
mode resource lock on the device. IOC$LOCILDEV stores the lock ID
in UCB$1-LOCKID.

5. EXE$ALLOC returns the translated device name if the PHYBUF argument
is specified, the descriptor is readable, and the buffer is writable. If the
PHYLEN argument is also specified and is write-accessible, EXE$ALLOC
also returns the length of the device name.

6. It allocates the device:

a. It sets the device allocated bit, DEV$V _ALL in UCB$L_DEVCHAR.
b. It maximizes the ACMODE argument with the access mode of its re­

questor and stores the result in UCB$B_AMOD.
c. It increments the device reference count, UCB$W _REFCNT.
d. It copies the process ID, PCB$1-PID, to the UCB device owner field,

UCB$1-PID.

7. It jumps to IOC$UNLOCK, in module IOSUBPAGD, to unlock the 1/0
database mutex and to return to the requestor with the success status
SS$_NORMAL.

Deallocate Device System Service

An image can deallocate a single device or all devices allocated to the process
by requesting the $DALLOC system service. The $DALLOC system service
is also requested by the Rundown ($RUNDWN) system service during image
rundown to deallocate all user-mode devices and during process deletion to
deallocate all devices still allocated to the process. The $RUNDWN system
service is discussed in Chapter 26. Process deletion is discussed in Chap­
ter 28.

The $DALLOC system service has two optional arguments:

• The DEVNAM argument specifies the device to be deallocated. If the DEVNAM

argument is specified, it must translate to a physical device name. If the
DEVNAM argument is not specified, all devices allocated by the process from

593

1/0 System Services

594

access modes equal to or less privileged than that specified by the DEVNAM

argument are deallocated .
• The ACMODE argument specifies the access mode on behalf of which the

deallocation is to be performed. It is maximized with the mode of the
caller.

The $DALLOC system service procedure, EXE$DALLOC in module SYS-
DEVALC, runs in kernel mode. It performs the following steps:

1. It maximizes the ACMODE argument with the access mode of its requestor.
2. It locks the 1/0 database mutex for write access.
3. It determines if the DEVNAM argument is present.

-If the argument is present, it invokes IOC$SEARCHDEV, in module
IOSUBPAGD, to locate the specified device.

-If the argument is absent, it invokes IOC$SCAN_IODB, in module
IOSUBNPAG, to find the first UCB in the 1/0 database.

4. In either case, EXE$DALLOC makes the following checks before deallo­
cating the device.

- The UCB$1-PID field must match the PCB$1-PID field of the process
requesting the $DALLOC system service.

- The access mode in UCB$B_AMOD must be greater than or equal to
the access mode computed in step 1.

- The device must have been explicitly allocated.
-The device must not be mounted (DEV$V _MNT in UCB$L_DEV-

CHAR must be clear), unless the device is a terminal (DEV$V _ TRM
in UCB$1-DEVCHAR is set). DECnet remote terminals are marked as
mounted but need not be interlocked against deallocation.

5. It deallocates the device by invoking IOC$DALLOC_DEV, in module
IOSUBPAGD, which takes the following steps:

a. It clears the device allocated bit.
b. If the device is shareable, it clears the device owner field.
c. It decrements the device reference count.
d. If the reference count is now zero, IOC$DALLOC_DEV clears the

owner field in the UCB and invokes IOC$LAST _CHAN, which per­
forms last channel processing (see Section 21.5.4).

e. If the device is cluster-available, IOC$DALLOC_DEV invokes
IOC$UNLOCK_DEV, in module IOSUBPAGD, to deal with the re­
source lock on the device. IOC$UNLOCK_DEV tests UCB$L_LOCK­
ID to determine whether there is a resource lock, and the device
reference count to determine whether there are still channels as­
signed to the device.

If there is no resource lock or if the device is still allocated, the
routine returns.

'21.5 Assigning and Deassigning Channels

If there is a resource lock and channels are still assigned to the
device, the routine requests the $ENQ system service to convert the
resource lock to concurrent read mode.

If there is a resource lock and no channel still assigned, the rou­
tine requests the Dequeue Lock Request ($DEQ) system service to
dequeue the resource lock.

6. If the DEVNAM argument was present, EXE$DALLOC is done. It jumps
to IOC$UNLOCK to unlock the 1/0 database mutex and to return to its
requestor with the success status SS$_NORMAL.

Otherwise, EXE$DALLOC goes to step 3 to get the next UCB in the
1/0 database. When no more UCBs are found, EXE$DALLOC is done and
exits as described.

21.5 ASSIGNING AND DEASSIGNING CHANNELS

21.5.1

The software mechanism that links a process to a device is called a channel.
To perform 1/0 on a device, an image first creates a channel to it by request­
ing the $ASSIGN system service. The image then identifies the device to the
$QIO system service through its channel number. When the image is done
with the device, it requests the $DASSGN system service to break the link
between the process and the device.

Channel Control Block

A channel is described by a process-specific data structure called a channel
control block (CCB). A process's CCBs are contained in a table located in
its Pl space (see Figure 1.2 and Table F.6). The global location CTL$GL
CCBBASE contains the address of the table's high-address end. The table
is accessed using negative byte displacements. That is, a particular CCB
is identified by its displacement from the contents of CTL$GLCCBBASE.
The number of CCBs in the table is determined by the SYSGEN parameter
CHANNELCNT. Figure 21.2 shows the layout of a CCB.

The field CCB$B_AMOD contains 0 if the channel is unassigned. Oth­
erwise, it contains the access mode from which the channel was assigned,
biased by 1. For example, the value 1 indicates that the channel was assigned

UCB

WIND

IOC l AMOD l STS

DIRP

Figure 21.2
Layout of Channel Control Block

595

1/0 System Services

21.5.2

596

from kernel mode. A $QIO system service request on a particular channel
must be made from an access mode at least as privileged as the mode from
which the channel was assigned.

CCB$L_UCB contains the address of the UCB of the device to which the
channel is assigned.

Any comparison of CCB$B_AMOD with an access mode value must be
a signed comparison. The Files-11 Extended QIO Processor (XQP) prevents
deassignment of its channel when the channel is inactive by storing -1 in
CCB$B_AMOD. Prior to using the channel, the XQP transforms the CCB
into a normal kernel mode channel to the device of the XQP's choice.

If a file has been opened on the channel, CCB$L_ WIND contains the
address of its window control block (WCB). If the file is associated with a
process section, CCB$L_ WIND contains the process section index. CCB$L_
WIND contains an unnamed flag in the low bit that is set to indicate either
an access (open) request in progress or a deaccess (close) request waiting for
all other outstanding 1/0 requests to be completed .

• If there is an access request pending, CCB$L_ WIND contains a 1.
• If there is a deaccess request pending, CCB$L_ WIND contains the WCB

address or process section index ORed with 1. CCB$LDIRP contains the
address of the IRP that describes the deaccess request. Since WCB addresses
and process section indexes are always even, system routines can recover
these values by masking out the low bit of CCB$L_ WIND.

CCB$B_STS contains several status bits.
The field CCB$W _IOC indicates how many 1/0 requests are outstanding

on the channel.

Assign 1/0 Channel System Service

The $ASSIGN system service has four arguments; the first two are required
and the last two are optional:

• The DEVNAM argument is the name of the device to which to assign the
channel.

• The CHAN argument is the address of the word in which to return the
assigned channel number.

• The ACMODE argument, indicating the access mode to be associated with
the channel, is maximized with the mode of the requestor.

• The MBXNAM argument is the name of the mailbox to be associated with
the channel. An image associates a mailbox with a nonshareable device to
receive status information, such as the arrival of unsolicited input from
a terminal. The device driver for the device either uses or ignores this
associated mailbox.

21.5.2.1

21.5 Assigning and Deassigning Channels

The $ASSIGN system service procedure, EXE$ASSIGN in module SYSAS­
SIGN, runs in kernel mode. There are two major paths through EXE$AS­
SIGN. The first path handles assignment to a local device. The second han­
dles assignment to a remote device. Both have the same initial steps. They
then diverge and do not rejoin.

Common Initial Steps. EXE$ASSIGN performs the following steps for both
local and remote device assignment:

1. It verifies that the CHAN argument is write-accessible.
2. If the MBXNAM argument was specified, EXE$ASSIGN verifies that it is

read-accessible.
3. It verifies that the DEVNAM argument is read-accessible.
4. It verifies that the ACMODE argument is read-accessible and maximizes

the argument with the access mode of its requestor.
5. It invokes IOC$FFCHAN, in module IOSUBPAGD, to find a free CCB.

IOC$FFCHAN begins its search for a free CCB at the high-address
end of the CCB table. It examines offset CCB$B_AMOD to determine
whether the CCB is free. If the CCB is in use, IOC$FFCHAN exam~
ines the next CCB, repeating its test. This sequence continues until
IOC$FFCHAN locates a free CCB or reaches the end of the table.

If IOC$FFCHAN locates a CCB, it returns the address of the free CCB
and a positive offset into the CCB table. This offset is the channel number
returned from the system service request.

If no free CCB is located, IOC$FFCHAN returns the error status SS$_
NOIOCHN.

6. EXE$ASSIGN locks the 1/0 database mutex for write access.
7. If MBXNAM was specified, EXE$ASSIGN invokes IOC$SEARCHDEV to get

the address of the specified mailbox UCB. The device must be a mailbox
device (DEV$V _MBX in UCB$L_DEVCHAR is set) but not a network
device.

8. It invokes IOC$SEARCH to locate the device specified in the DEVNAM

argument. If the device name is a logical name, IOC$SEARCH invokes
IOC$TRANDEVNAM to perform logical name translation.

If IOC$TRANDEVNAM returns a success status, IOC$SEARCH then
scans the 1/0 database for a device with the resulting equivalence name.

-If IOC$SEARCH locates the device, it returns the address of the de­
vice's UCB. EXE$ASSIGN then takes the steps discussed in Sec­
tion 21.5.2.2.

-If IOC$SEARCH does not locate the device, EXE$ASSIGN jumps to
IOC$UNLOCK to unlock the 1/0 database mutex and to return to the
caller with the error status from IOC$SEARCH.

9. If the device name contains a node delimiter (::), IOC$TRANDEVNAM

597

1/0 System Services

21.5.2.2

21.5.2.2.1

598

returns the error status SS$_NONLOCAL, and EXE$ASSIGN takes the
steps described in Section 21.5.2.3 for remote device assignment.

10. If IOC$TRANDEVNAM returns any other error status, EXE$ASSIGN
jumps to IOC$UNLOCK to unlock the 1/0 database mutex and to return
to the caller with that error status.

Local Device Assignment. EXE$ASSIGN first checks for several special
kinds of device:

1. If the UCB is a redirected UCB (DEV$V _RED in UCB$L_DEVCHAR2 is
set), EXE$ASSIGN replaces the original UCB address with the address of
the logical UCB by using the value in field UCB$L_ TT _LOGUCB of the
original UCB. This mechanism associates the assigned channel with the
virtual terminal rather than with the physical. (The physical terminal
may be a pseudo device such as a LAT terminal.) Only terminal UCBs
can be redirected.

2. If the device is set spooled, EXE$ASSIGN goes directly to local device
final processing, described in Section 21.5.2.2.4.

3. If the device is a shadow set member (bit DEV$V _SSM in DEV$LDEV­
CHAR2 is set), EXE$ASSIGN performs associated mailbox processing,
described in Section 21.5.2.2.3.

EXE$ASSIGN then determines whether the device is a template device. If
it is, EXE$ASSIGN clones the UCB to create a. new device, as described in
Section 21.5.2.2.2.

Nontemplate Device Processing. Before assigning a channel to a local non­
template device, EXE$ASSIGN confirms the following:

• If the device is allocated (UCB$LPID is nonzero) and nonshareable, one
of the following two conditions must be true:

- The requesting process must be the owner of the device or a descendant
of the owner process.

- The requesting process must have the SHARE privilege, and the volume
protection and owner UIC must allow access .

• If the device is not allocated, the volume protection and owner UIC must
allow access.

If the requestor is allowed to assign a channel. to the device, EXE$ASSIGN
handles the associated mailbox, if any, and pe~forms final processing (see
Section 21.5.2.2.4).

If the requestor is not allowed to assign the channel, EXE$ASSIGN jumps
to IOC$UNLOCK to unlock the 1/0 database mutex and to return to the
requestor with an error status.

21.5 Assigning and Deassigning Channels

21.5.2.2.2 Template Device Processing. If the device is a template device, EXE$ASSIGN
creates a new UCB, called the cloned UCB, by copying the template UCB,
and assigns the channel to the cloned UCB as follows:

1. If the template device is a network device, it verifies that the process has
NETMBX privilege.

2. EXE$ASSIGN invokes IOC$CHKUCBQUOTA, in module UCBCREDEL,
to verify that the process has as much BYTLM quota as the sum of the
size of the template UCB plus 256 additional bytes to satisfy process
deletion needs.

IOC$CHKUCBQUOTA invokes EXE$DEBIT _BYTCNT _BYTLIM_
NW, in module EXSUBROUT, to check and charge the quota. Both
the byte count quota (JIB$LBYTCNT) and limit (JIB$LBYTLIM) are
charged. Since the amount charged by IOC$CHKUCBQUOTA will not
be restored until the UCB is deleted, the process has effectively had its
byte limit reduced by the amount of the charge. EXE$DEBIT _BYTCNT _
BYTLIM._NW decrements the byte limit as well to reflect this fact.

3. EXE$ASSIGN invokes IOC$CLONE_UCB, in module UCBCREDEL, to
create the cloned UCB and an object rights block (ORB).

IOC$CLONE_UCB copies the template UCB and then makes several
modifications to the cloned UCB. The following are of particular interest:

-It sets the reference count to 1.
-It marks the unit online.
-It clears the template bit.
-It stores the size of the UCB in UCB$W_CHARGE.
-It gives the UCB a unique unit number between 1and9999.
-It links the UCB ilito the UCB chain of the related device data block

(DDB).

4. EXE$ASSIGN 'stores the current process's UIC in the ORB owner field
(ORB$LOWNER). At this point, the owner field of the cloned UCB is
still clear.

5. It sets UCB$V _DELETEUCB in UCB$LSTS to mark the cloned UCB for
deletion whenits reference count goes to 0.

6. If the template UCB is a mailbox, it sets the mailbox delete bit (UCB$V _
DELMBX in UCB$W_DEVSTS). This is done because special steps are
required to delete a mailbox UCB.

7. It clears the device reference count. This is done because the device
reference count will be incremented later and IOC$CLONE_UCB sets
it to 1. If the reference count were not cleared here, it would never go
to 0.

8. EXE$ASSIGN invokes IOC$DEBIT _UCB, in module UCBCREDEL, to
record the master PID charged for the UCB (JIB$LMPIDJ into the charge
PID field (UCB$LCPID).

599

1/0 System Services

In earlier versions of VMS, IOC$DEBIT_UCB decremented the job in­
formation block !JIB) byte count quota and byte limit fields. In VMS Ver­
sion 5, this function has been moved to EXE$DEBIT _BYTCNT _BYTLIM_
NW, which now charges the quotas while holding the JIB spinlock.

9. EXE$ASSIGN invokes the driver at the entry point specified by DDT$L_
CLONEUCB, passing it the addresses of the template and cloned UCBs.
The driver can perform any additional checks necessary. If the driver
returns any error status, the process of cloning the UCB is undone and
the $ASSIGN completes with failure.

The driver's cloned UCB routine runs in the context of the process
that requested the $ASSIGN system service. It executes at IPL 2 because
the I/O database mutex is owned by the process.

10. If the device is not shareable, EXE$ASSIGN copies the process's PID to
UCB$L_PID, implicitly allocating it.

11. It takes the steps described in Section 21.5.2.2.3.

21.5.2.2.3 Associated Mailbox Processing. If an associated mailbox was requested,
EXE$ASSIGN stores the address of the associated mailbox UCB in the
UCB$L_AMB field of the UCB to which the channel is being assigned. It
increments the reference count in the associated mailbox UCB and sets
CCB$V _AMB for later storage in CCB$B_STS to indicate that there is an
associated mailbox.

21.5.2.2.4

600

No association is made if either of the following is true:

• The device is a file-oriented device (DEV$V _FOD in UCB$L_DEVCHAR is
set) or the device is shareable. In either case, the request for an associated
mailbox is simply ignored.

•The device already has an associated mailbox (UCB$1-AMB is nonzero),
and the MBXNAM argument specifies a different mailbox. In this case,
EXE$ASSIGN unlocks the I/O database and returns the failure status SS$_
DEVACTIVE.

Upon completing any steps required for the associated mailbox, EXE$AS­
SIGN proceeds to final processing (see Section 21.5.2.2.4).

Local Device Final Processing. At this point, EXE$ASSIGN has found a free
channel, verified the existence of the device (creating the UCB in the case of
a template device), and verified that the process has access to the device. It
completes the assignment of an I/O channel to a local device in the following
steps:

1. If appropriate, it invokes IOC$LOCILDEV, described in Section 21.4.1,
to queue a concurrent read mode resource lock on it. The following
conditions must all be met for EXE$ASSIGN to take this action:

21.5.2.3

21.5 Assigning and Deassigning Channels

-The device reference count is 0.
;The system is an active member of a VAXcluster system.
~The device is cluster-available.

2. 1f the device is not shareable and not currently owned, EXE$ASSIGN im­
p1icitly allocates the device to the current process by storing the current
process's PID (PCB$L_PID) in UCB$1-PID.

3. It copies the device's UCB address to CCB$1-UCB.
4. It increments the device reference count.
5. It stores the access mode biased by 1 in CCB$B_AMOD.
6. It sets CCB$B_STS appropriately. The only bit that may be set as a result

6f this step is CCB$V _AMB.
7. EXE$ASSIGN writes the channel number, the offset into the CCB table,

in the word specified by the CHAN argument.
8. It jumps to IOC$UNLOCK to unlock the I/O database mutex and to

return the success status SS$_NORMAL to its requestor.

Assigning a Channel to a Remote Device. If the device is a remote device,
EXE$ASSIGN performs the first step in transparent network communica"­
tion, converting the transparent network communication into the related
nontransparent network communication. This section assumes familiarity
with transparent and nontransparent network communication, described in
the VMS Networking Manual.

The initiation of nontransparent network communication involves re­
questing the $ASSIGN system service again. Since this second request could
take some time to complete, EXE$ASSIGN returns to the mode of its caller.
so that any waits take place in that mode rather than in kernel mode.

EXE$ASSIGN returns to the mode of its caller in the following manner:

1. It enters the remote path when IOC$TRANDEVNAM returns the failure
status SS$_NONLOCAL (see Section 21.5.2.1). EXE$ASSIGN converts
SS$_NONLOCAL to a success status and jumps to IOC$UNLOCK to
unlock the I/O database mutex and to return the now-modified SS$_
NONLOCAL status.

2. IOC$UNLOCK exits with a RET instruction, returning control to SER­
VICE_EXIT, in module SYSTEM_SERVICE_DISPATCHER, as described
in Chapter 6. Since the status returned in RO is a success status, SER­
VICE_EXIT takes the success path and executes.an REI instruction. Nor­
mally, this would return control to the instruction after the CHMK in­
struction in the system service vector. However, as noted in Chapter 6,
the system service dispatcher modified the exception program counter
(PC) pushed by the CHMK instruction to be the address of SYNCH$AS­
SIGN_EXIT, in module SYSTEM_SERVICE_EXIT. Thus, control passesc
to SYNCH$ASSIGN_EXIT.

601

1/0 System Services

602

3. SYNCH$ASSIGN_EXIT executes in the mode from which the original
$ASSIGN system service request was made. If the return status con­
tained in RO is not SS$_NONLOCAL modified to be a success status,
SYNCH$ASSIGN_EXIT executes a RET instruction, returning control to
the requestor of the $ASSIGN system service.

4. If the return status is SS$_NONLOCAL, SYNCH$ASSIGN_EXIT trans­
fers control to EXE$NETWORK_ASSIGN, in module SYSASSIGN.

5. Since EXE$NETWORK_ASSIGN runs in the mode from which the $AS­
SIGN system service was requested, its waits are in that mode, allowing
ASTs to be delivered to that and more privileged access modes. In previ­
ous versions of VMS, the work done by EXE$NETWORK_ASSIGN was
done entirely in kernel mode. This resulted in blocking delivery of all
ASTs except special kernel ASTs during any waits.

EXE$NETWORK_ASSIGN initiates nontransparent network communica­
tion by taking the following steps:

1. It establishes a condition handler in case system service failure exception
mode has been enabled. This condition handler will resignal any condi­
tions other than SS$_NOLOGNAM, which occurs normally in logical
name translation and should not be passed back to the requestor of the
$ASSIGN system service.

2. It allocates a buffer on the stack for use as the data area for logical name
translation and initializes this area to request the equivalence name and
its attributes.

3. It requests the Translate Logical Name ($TRNLNM) system service to
translate the DEVNAM argument. This repetition of the logical name trans­
lation done at the beginning of EXE$ASSIGN is necessary because the
result of the earlier translation was not saved.

The result of this step should be a network connect block suitable for
use in an outbound connection request operation. EXE$ASSIGN makes
no attempt to ensure that the result of this step is in the proper format.
If it is not, an error will be returned when the connection is attempted
in the next step.

4. EXE$NETWORK_ASSIGN requests the $ASSIGN system service with
the following items in the argument list:

-The DEVNAM a;rgument is the network device name, _NET.
- The CHAN argument is a stack location that temporarily holds the

assigned channel number.
-The ACMODE argument is the ACMODE argument of the original $AS­

SIGN request, maximized with the access mode of the requestor.
- The MBXNAM argument is the same argument passed in the original

$ASSIGN system service request.

21.5.3

21.5 Assigning and Deassigning Channels

Since NETO is a template device, the unit to which the channel is
assigned is a new unit, created as described in Section 21.5.2.2.2.

5. It requests the $QIOW system service to establish a connection to the
remote device:

-The FUNC argument is 10$_ACCESS ORed with 10$M_ACCESS.
-The event flag is EXE$C_SYSEFN.
-The CHAN argument is the one to which the device was assigned in the

previous step.
-The network connect block is the one obtained in step 3.

6. If the $QIO completes successfully, EXE$NETWORK_ASSIGN records
the channel number from step 4 in the word specified by the CHAN

' argument of the original $ASSIGN system service request. It then returns
the success status SS$_REMOTE to its requestor.

7. If the $QIO fails, EXE$NETWORK_ASSIGN requests the $DASSGN sys­
tem service to deassign the channel. It then returns the failure status
from the $QIO system service to its requestor.

Deassign 1/0 Channel System Service

The $DASSGN system service deassigns a previously assigned 1/0 channel
and clears the linkage and control information in the corresponding CCB,
freeing the CCB for reuse. Any outstanding 1/0 request on the device is
terminated in the process. $DASSGN has only one argument, the CHAN

argument, which specifies the channel to be deassigned.
The $DASSGN system service procedure, EXE$DASSGN in module SYS­

DASSGN, runs in kernel mode. It takes the following steps:

1. It invokes IOC$VERIFYCHAN, in module IOSUBPAGD, which performs
the following steps:

a. It verifies that the channel is legal.
b. It verifies that the channel was assigned from an access mode no more

privileged than the access mode from which it is to be deassigned.
CCB$B_AMOD must be greater than the processor status longword
IPSLJ previous mode field.

c. It returns the address and the index of the CCB for the channel.

2. EXE$DASSGN calls EXE$CANCELN with a reason code of CAN$C_
DASSGN !channel is being deassigned) to cancel all outstanding 1/0 on
the channel. EXE$CANCELN is an entry point in the $CANCEL system
service, discussed in Section 21.9.

3. It invokes IOC$VERIFYCHAN again in case the cancel 1/0 operation
triggered a kernel mode AST routine that requested the $DASSGN sys­
tem service again. This second call to $DASSGN could have completely
deassigned the channel.

603

1/0 System Services

604

4. If a file is open on the channel (CCB$L_ WIND is nonzero), EXE$DASSGN
requests the $QIOW system service to close the file. It specifies a func­
tion code of 10$_DEACCESS and event flag number 30. Event flag 30 is
used to avoid conflict with the use of event flag 31 by $CANCEL.

A network logical link appears to be a file; the $QIOW system service
dissolves the link.

5. EXE$DASSGN examines CCB$W _IOC to determine whether there is 1/0
outstanding on the channel. If there is, EXE$DASSGN must wait for its
completion AST before proceeding further. EXE$DASSGN acquires the
SCHED spinlock and tests whether the process has a pending kernel
mode AST whose delivery has been blocked by EXE$DASSGN's execu­
tion at IPL 2 and above.

-If there is a pending kernel mode AST, EXE$DASSGN releases the
spinlock and executes an REI instruction that lowers IPL to 0 and
transfers control to step 3.

-If there is not, EXE$DASSGN invokes SCH$RWAIT, in module MU­
TEX, to place the process into a resource wait. SCH$RWAIT releases
the SCHED spinlock and waits the process at IPL 0 and at a PC corre­
sponding to step 3.

Chapter 7 discusses ASTs in more detail, and Chapter 12 wait states.
6. It locks the 1/0 database mutex for write access.
7. It clears CCB$B_AMOD.
8. If there is an associated mailbox (CCB$V_AMB in CCB$B_STS is set),

EXE$DASSGN dissociates the mailbox by taking the following steps:

a. It clears UCB$1-AMB in the device UCB.
b. It decrements the reference count in the mailbox UCB.
c. If the mailbox reference count is now 0, it invokes IOC$LAST _

CHAN_AMBX, in module IOSUBNPAG, to perform last channel pro­
cessing for an associated mailbox (see Section 21.5.4).

9. It decrements the reference count in the device UCB.
10. If the device reference count is now 0, indicating that the device was not

explicitly allocated, EXE$DASSGN takes the following steps:

a. It clears the device owner field, deallocating the device.
b. If the device is cluster-available, it invokes IOC$UNLOCK._DEV to_

remove the resource lock on the device (see Section 21.4.2).
c. It invokes IOC$LAST _CHAN to perform last channel processing.

11. If the device reference count is 1 and the device has been explicitly allo­
cated, EXE$DASSGN invokes IOC$LAST _CHAN to perform last chan­
nel processing.

12. It invokes IOC$UNLOCK to unlock the 1/0 database mutex and returns
the success status SS$_NORMAL to its requestor.

21.5.4

21.5 Assigning and Deassigning Channels

Last Channel Processing

Last channel processing is performed when the last channel to a device is
deassigned:

• When the device reference count goes to 0, and the device was not explic­
itly allocated

• When the device reference count goes to 1, and the device was explicitly
allocated

There are two entry points to last channel processing: IOC$LAST _CHAN
and IOC$LAST_CHAN_AMBX. The latter routine is invoked when the de­
vice is an associated mailbox, the former routine in all other cases. They
differ only in their initial steps:

• IOC$LAST _CHAN is invoked with the channel number and the address
of the UCB of the device assigned to the channel. It saves the reason code
CAN$C_DASSGN for later use.

• IOC$LAST _CHAN_AMBX is invoked with the address of the mailbox
UCB, not the UCB of the device assigned to the channel. (The channel
is not assigned to the mailbox and is not needed by the mailbox driver;
The current IRP is also not needed by the mailbox driver.) It saves the
reason code CAN$C_AMBXDGN for later use.

At this point, IOC$LAST _CHAN and IOC$LAST _CHAN_AMBX converge
in the following steps:

1. If the UCB specifies primary affinity and the process does not already
require primary affinity, the routine invokes SCH$REQUIRE_CAPABIL­
ITY, in module SCHED, to acquire affinity for the primary. This is done
to handle those cases where the device registers should be accessed only
from the primary processor in an SMP system. Chapter 12 discusses
processor affinity.

2. If the driver uses fork locks, IOC$LAST _CHAN acquires the fork lock,
raising IPL to the associated fork IPL. Otherwise, it simply raises IPL to
fork IPL. This step synchronizes access to the UCB.

3. It invokes the device driver'.s cancel 1/0 routine, passing the reason code
saved previously.

4. If the driver uses a fork lock, IOC$LAST _CHAN releases it without
changing IPL.

5. It lowers IPL to 2, leaving it there to prevent process deletion.
6. If primary affinity was acquired, the routine releases it.
7. If the device is explicitly allocated, the routine returns to its invoker.
8. If the device is a terminal or mailbox, the routine clears DEV$V _OPR in

UCB$1-DEVCHAR, disabling the device as an operator terminal.
9. If UCB$V_DELETEUCB in UCB$L_STS is set, the routine takes the fol­

lowing two steps:

605

1/0 System Services

a. It invokes IOC$CREDIT_UCB, in module UCBCREDEL, to return
the quota charged against the byte count and byte limit.

b. It invokes IOC$DELETE_UCB, in module UCBCREDEL, to delete
the UCB and the associated ORB.

10. The routine returns to its invoker.

21.6 QUEUING AN 1/0 REQUEST

21.6.1

606

The $QIO[W] system service performs device-independent preprocessing
and, via FDT routines, device-dependent preprocessing. It then queues an
1/0 request to the driver for the device associated with a channel. Any addi­
tional work to be done is performed by the device driver's start 1/0 routine.

The $QIO system service has the following arguments:

• The EFN argument is the number of the event flag to be associated with
the 1/0 request. Since this argument is passed by value, omitting it is the
same as specifying event flag 0 .

• The CHAN argument is the number of the 1/0 channel. This is the same as
the CHAN argument returned by the $ASSIGN system service.

• The FUNC argument identifies what operation is to be performed by the
device driver. It is divided into two portions, the function code proper and
function modifiers. Throughout the chapter, the term function code means
just the function code proper; the term FUNC means the entire argument.

• The IOSB argument is the address of the IOSB, a quadword to receive final
status of the 1/0 operation. See the VMS System Services Reference Manual
for a detailed description of the format of the IOSB.

• The ASTADR argument is the address of an AST procedure to be executed
in the mode of the requestor when the 1/0 operation completes .

• The ASTPRM argument is the parameter to be passed to the AST procedure.
• There are six optional device- and function-specific parameters, Pl through

P6.

The CHAN and FUNC arguments must be specified. All others are optional
and, if not specified, default to a value of zero.

Device-Independent Preprocessing

The $QIO[W] system service procedure, EXE$QIO in module SYSQIOREQ,
executes in kernel mode.

To perform device-independent preprocessing, EXE$QIO validates and pro­
cesses all its arguments except for Pl through P6. It takes the following steps:

1. It clears the specified event flag so that the process will be placed into
a wait state until the 1/0 operation completes, should the caller invoke
either the $SYNCH system service or one of the event flag wait system
services to wait for the 1/0 operation to complete.

21.6 Queuing an I/O Request

2. It verifies that the channel number is valid and has been assigned from
an access mode no more privileged than the mode of the $QIO requestor
by performing the following checks:

-The channel number is greater than zero and less than or equal to
the contents of CTL$GW _CHINDX. CTL$GW _CHINDX contains the
number of the highest assigned channel. Note that not all the channels
whose numbers are less than the contents of CTL$GW _CHINDX are
necessarily currently assigned. They could have been deassigned since
the channel whose number is stored in CTL$GW_CHINDX was last
assigned.

-The access mode of the caller (specified by the previous mode field,
PSL$V _PRVMOD, of the current PSLJ is less than the access mode
specified by the CCB access mode field. This ensures that the channel
is used only from access modes at least as privileged as the access mode
from which the channel was assigned.

3. If an access or deaccess request is pending on the channel (low bit in
CCB$L_ WIND is set), the process is placed in an AST wait state, to wait
for the access or deaccess to complete. When the AST wait is satisfied,
EXE$QIO will restart at the beginning.

4. It extracts the function code from the FUNC argument.
5. If the device is spooled and the function code specifies a virtual 1/0

function, EXE$QIO substitutes the intermediate device UCB for the UCB
specified in the CCB. The intermediate device UCB address is stored in
UCB$L_AMB of the UCB specified by the CCB. Virtual 1/0 to a spooled
device is assumed to be 1/0 that should be spooled. 1/0 done by th~
software implementing spooling, for example, the print symbiont, would
be logical or physical 1/0.

6. Under some circumstances, EXE$QIO must verify the process's access
to the device. If the device is file-oriented, then a file processor (ACP
or Files-11 XQPJ has been or will be involved in checking the process's
access to the device when it opens a file. If the device is neither file­
oriented nor shareable, the process's access has already been checked as
part of implicit or explicit device allocation.

However, when a process requests a read or write operation from a
shareable, non-file-oriented device (for example, a real-time device or
one mounted foreign), EXE$QIO checks whether the access is allowed. It
invokes either EXE$CHKRDACCES or EXE$CHKWRTACCES, in mod­
ule EXSUBROUT. If the process has the needed acc~ss, the routine sets
the appropriate bit (CCB$V _RDCHKDON or CCB$V _ WRTCHKDONJ in
CCB$B_STS.

Note that EXE$QIO contains two lists of functions, one for reads
and one for writes. While the interpretation of function codes is almost
entirely up to the device driver, EXE$QIO does know that the "correct"

607

I/O System Services

608

interpretation of certain codes is a read or a write operation and performs
access checking based on this interpretation.

In step 16, EXE$QIO performs additional access checks based on
whether the 1/0 function is physical, logical, or virtual.

7. EXE$QIO verifies that the function code is a legal function by checking
the legal function mask in the FDT (see Chapter 20).

8. If the device is offline, EXE$QIO checks that the function code is either
10$_DEACCESS or 10$_ACPCONTROL. If it is not, EXE$QIO returns
the error status SS$_DEVOFFLINE.

9. If the IOSB argument is nonzero, EXE$QIO verifies that the IOSB can be
written by the requesting mode and then clears it.

10. EXE$QIO uses the buffered 1/0 function mask in the FDT to determine
whether the function code specifies a direct or buffered operation.

11. It raises IPL to 2 to prevent process deletion. This step is necessary for
two reasons:

-EXE$QIO will allocate an IRP. The fact that this IRP is allocated to
this process will not be reflected in any data structure until much later.
If the process were to be deleted before this allocation were recorded,
the IRP would be lost.

-In steps 12 and 14, EXE$QIO indicates that this process has outstand­
ing 1/0. If process deletion were begun after these steps, but before the
request was actually queued, the process would become deadlocked,
trying to run down nonexistent 1/0.

12. It determines whether the process has sufficient 1/0 quota (direct or
buffered, depending upon the previous determination) and, if so, charges
against it.

If quota is insufficient, EXE$QIO invokes EXE$SNGLQUOTA, in mod­
ule EXSUBROUT, to place the process in an AST wait if the process has
resource wait mode enabled.

13. It allocates an IRP from nonpaged pool (see Chapter 19).
14. It increments the outstanding 1/0 count in the CCB.
15. It initializes the IRP. Most of this initialization is straightforward, for

example, storing the EFN argument in IRP$B_EFN. There are some steps
that deserve special comment:

-If the ASTADR argument is nonzero, EXE$QIO charges the process AST
quota for an AST control block (ACB). It also sets ACB$V _QUOTA in
IRP$B_RMOD to indicate that the process has been charged for the
ACB.

-If the function code specifies a buffered 1/0 operation, EXE$QIO sets
IRP$V _BUFIO in IRP$W _STS. Otherwise, it clears the bit.

-EXE$QIO clears the fields that describe the buffer, IRP$1-SVAPTE,
IRP$W_BOFF, and IRP$1-BCNT, the transfer parameters.

21.6.2

21.6 Queuing an 1/0 Request

-If CCB$L_ WIND is nonzero, the channel is associated with either a file
or a process section. If the channel is associated with a file, CCB$L_
WIND contains the system space address of a WCB, a negative number.
EXE$QIO stores the address of this WCB in IRP$L_ WIND.

If the channel is associated with a process section, CCB$L_ WIND
contains the process section index, a positive number. EXE$QIO uses
this value to index the process section table (PST) and obtain the ad­
dress of the WCB associated with the process section. (See Chapter 14
for details on the PST.) EXE$QIO stores the address of this WCB in
IRP$L_ WIND.

-If the function code is a virtual read or write to a non-file-oriented
device, EXE$QIO converts the function code into the corresponding
logical function code. It stores the converted function code in IRP$W _
FUNC and uses the converted function code for all further checking it
performs. EXE$QIO stores the function modifiers specified in the FUNC

argument in IRP$W _FUNC without change.

16. If the device is not spooled, shareable, or file-oriented, EXE$QIO does not
perform any additional privilege checks. Otherwise, it verifies that the
process has the necessary privilege to access the device based on whether
the I/O function is physical, logical, or virtual.

17. If the request specifies a diagnostic buffer, EXE$QIO allocates the buffer
and stores its address in IRP$LDIAGBUF.

The device-independent preprocessing is complete. EXE$QIO invokes FDT
routines to perform device-dependent preprocessing.

FDT Routines

The primary purpose of FDT routines is to validate and process the device­
dependent $QIO parameters, Pl to P6. A device driver can include custom
FDT routines or use some of the general-purpose routines that are part of
the VMS executive. Regardless of the location of FDT routines, they are
logically device-dependent extensibns of the $QIO[W] system service.

EXE$QIO searches the FDT entries looking for a mask that specifies the
function code. When such a mask is found, EXE$QIO invokes the associated
FDT routine. If the FDT routine returns control to EXEQIO, EXEQIO
continues its search. Successive FDT routines are invoked until an FDT
routine invokes one of the routines that terminates FDT processing. These
routines are described in the next section.

Note that no FDT entry marks the end of the FDT. It is possible for the
search of the FDT to continue past the end of the FDT. Such an occurrence
would be an error and would cause unpredictable results.

FDT routines execute in the context of the process that requested the
$QIO system service. Therefore, they have access to data in the process's PO

609

1/0 System Services

21.6.3

610

and Pl address space. FDT routines communicate information about the I/O
request to the driver through IRP fields. FDT routines may also modify I/O
database structures associated with the device assigned to the channel.

FDT routines for direct I/O (I/O done directly between a user buffer and the
device) ensure that each buffer page is locked into memory by incrementing
its reference count in the page frame number (PFN) database (see Chapter 14).

In the case of direct I/O, these routines initialize the transfer parameters
to describe the buffer as follows:

• IRP$LSVAPTE contains the system virtual address of the first page table
entry that maps the buffer.

• IRP$W _BOFF contains the buffer's offset in bytes from the beginning of
that page.

• IRP$LBCNT is the number of bytes to be transferred.

FDT routines for buffered I/O operations must allocate a buffer from non­
paged pool that will be used by the driver for the actual transfer. If the
operation is a buffered write, the FDT routine copies data that is being writ­
ten to this buffer.

The use of system space buffers permits the device driver to access the
data in the buffer from system context.

In the case of buffered I/O, these routines initialize the transfer parameters
to describe the buffer as follows:

• IRP$LSVAPTE is the address of the nonpaged pool buffer, which begins
with a 12-byte header, shown in Figure 21.3 (see Section 21.7.3.1).

• IRP$W _BOFF is the amount charged against the process's job byte count
quota.

• IRP$L_BCNT is the number of bytes to be transferred.

Transfers that may take a long time to complete (such as a terminal read
or write) are often implemented as buffered I/O operations, whereas transfers
that should complete quickly (such as a disk read or write) are implemented
as direct I/O operations. Direct I/O requires locking process pages and page
tables into memory, thus tying up the process header, or balance slot, for
the duration of the I/O request. Chapter 18 contains more information on
the complexity of swapping a process with direct I/O in progress.

1/0 Completion

It is important to distinguish between completion of the $QIO[W] system
service request, which signals either that the I/O is underway or that the
service was requested incorrectly, and the completion of the I/O request.

Passing a status in RO, EXE$QIO returns through the change mode dis­
patcher to the access mode from which it was requested. If the status is
not a success, control returns to the image at a point following its service

21.6.3.1

21.6.3.2

21.6 Queuing an I/0 Request

request. If the status is a success and the image requested the asynchro­
nous form ($QIO) of the service, control returns to the image, which later
will request the $SYNCH or an event flag wait service to await I/O com­
pletion. If the status is a success and the image requested the synchronous
form ($QIOW), the executive places the process into an event flag wait until
the I/O completes. Chapter 6 has more information on how a synchronous
system service waits a process.

Some I/O requests complete simultaneously with EXE$QIO. EXE$QIO
or an FDT routine it invokes can abort or complete an 1/0 request. More
typically, however, an FDT routine must pass a request on to a device driver
for device operation and further processing. When the 1/0 request needs
no further device operation or driver processing, it is placed on the I/O
postprocessing queue. When IOC$10POST processes the request, it sets the
associated event flag, ending the process's event flag wait.

This section describes the various ways in which requests complete.

$QIO Completion by EXE$QIO. The only case in which EXE$QIO itself
completes the 1/0 request are error conditions.

As discussed previously, EXE$QIO makes certain checks before it allocates
an IRP; for example, the CHAN argument must specify a usable channel. If
EXE$QIO detects an error before allocating an IRP, it takes the following
steps:

1. It invokes SCH$POSTEF, in module POSTEF, to set the event flag spec­
ified by the EFN argument.

2. It returns an error status in RO to the requestor.

If EXE$QIO detects an error after it has allocated an IRP, it aborts the I/O,
as described in Section 21.6.3.2.

Aborting an 1/0 Request. If EXE$QIO (after it has allocated an IRP) or an
FDT routine detects a device-independent error (for example, insufficient
privilege), it loads the final status of the system service in RO and invokes
EXE$ABORTIO, in module SYSQIOREQ, to abort the 1/0. EXE$ABORTIO
takes the following steps:

1. If the driver uses a fork lock, EXE$ABORTIO acquires it, raising IPL to
fork IPL at the same time. Otherwise, it simply raises IPL to fork IPL.

2. It clears IRP$LIOSB, ·the address of the IOSB, so that no status is written
to it.

3. It clears ACB$V _QUOTA in IRP$B_RMOD and increments the process's
AST quota if the bit was set. This prevents a user-specified AST procedure
from being called.

611

1/0 System Services

21.6.3.3

612

4. It inserts the IRP in the current CPU's per-CPU 1/0 postprocessing queue
and requests an IPL$_JOPOST interrupt (see Section 21.7). During post­
processing, any quotas charged will be restored and buffers deallocated
or unlocked, if necessary.

Use of the per-CPU 1/0 postprocessing queue ensures that 1/0 post­
processing occurs before the system service completes. If, instead, the
systemwide 1/0 postprocessing queue were used and the process were
not current on the primary, it is possible that the process would run be­
fore the 1/0 postprocessing occurred. See Chapter 34 for details on the
two types of 1/0 postprocessing queues.

5. If the driver uses a fork lock, EXE$ABORTIO releases it.
6. It lowers IPL to 0 and returns to the system service requestor.

The effect of these steps is to finish the system service request without
performing any I/O operation.

Completing the 1/0 Request in the FDT Routine. Some 1/0 requests can
be completed by an FDT routine without the need for driver processing and
device operation. There are two circumstances under which this can occur:

• If the FDT routine detects a device-specific error, for example, a buffer not
properly aligned

• If the FDT routine can perform all requested operations, for example, an
I0$_SENSEMODE operation that returns only fields in the UCB

The FDT routine takes essentially the same action in both cases; the differ­
ence is the status it returns.

The FDT routine invokes either EXE$FINISHIO or EXE$FINISHIOC, both
in module SYSQIOREQ. These are alternative entry points to the same
routine.

1. EXE$FINISHIOC clears Rl and then continues like EXE$FINISHIO.
2. EXE$FINISHIO increments the operation count in the UCB.
3. It stores RO and Rl in IRP$L_MEDIA and IRP$L_MEDIA + 4. RO on entry

to both routines contains the first longword to be stored in the IOSB. Rl
on entry to EXE$FINISHIO contains the second longword to be stored in
the IOSB.

4. If the driver uses a fork lock, EXE$FINISHIO acquires it, raising IPL to
fork IPL at the same time. Otherwise, it simply raises IPL to fork IPL.

5. It loads the success status SS$_NORMAL in RO as the final status of the
$QIO[W] system service. Note that the final status of the 1/0 operation,
now in the low-order word of IRP$1-MEDIA, may be a failure status.

6. It inserts the IRP in the current CPU's per-CPU 1/0 postprocessing queue
and requests an IPL$_IOPOST interrupt.

7. If the driver uses a fork lock, EXE$FINISHIO releases it.
8. It lowers IPL to 0 and returns to the system service requestor.

21.6.3.4

21. 7 1/0 Postprocessing

Queuing the Request to the Driver. Most 1/0 requests require driver pro­
cessing and device action. An FDT routine passes the IRP to the driver by
transferring to either EXE$QIODRVPKT or EXE$ALTQUEPKT, both in mod­
ule SYSQIOREQ.

EXE$QIODRVPKT is used more commonly. It enters the driver only if the
device unit is currently idle. If the device unit is busy, EXE$QIODRVPKT
queues the request to the unit so that the driver will process it when the
unit becomes available.

EXE$ALTQUEPKT enters the driver without regard for the device unit's
activity status.

21.7 1/0 POSTPROCESSING

21.7.1

VMS performs 1/0 postprocessing after an 1/0 operation has been completed
by the associated driver. The 1/0 postprocessing routine IOC$IOPOST, in
module IOCIOPOST, is the interrupt service routine for the IPL$_IOPOST
software interrupt. It implements the device-independent steps necessary to
complete an 1/0 request.

Some 1/0 postprocessing operations, for example, unlocking buffer pages
and deallocating buffers, are performed by IOC$IOPOST. Other operations,
such as writing the IOSB, are performed by its special kernel mode AST
routine, discussed in Section 21.7.3.

There is one systemwide 1/0 postprocessing queue and one per-CPU 1/0
postprocessing queue for each CPU. IOC$IOPOST always removes entries
from the per-CPU queue for the current CPU. It removes entries from the
systemwide queue only when it is running on the primary. When running on
the primary, it checks the systemwide queue and then, when the systemwide
queue is empty, the per-CPU queue. For simplicity, the following discussion
treats these queues as if they were one. Chapter 34 describes the need for
both types of queue.

IOC$IOPOST removes the first IRP in the 1/0 postprocessing queue. It
takes one of two paths, depending upon the value in IRP$LPID. If the value
in IRP$L_PID is negative, IOC$IOPOST performs system 1/0 completion.
If the value in IRP$LPID is positive, IOC$IOPOST performs normal 1/0
completion. These two paths are described in the following sections.

System 1/0 Completion

A negative value in IRP$LPID is the system space address of the system
completion routine to be invoked when the 1/0 completes. IOC$IOPOST
invokes this routine with a JSB instruction. When it returns, IOC$IOPOST
removes the next IRP from the queue and processes it.

Various components use system completion routines to perform special­
ized 1/0 postprocessing. For example, the V AXcluster connection manager

613

I/O System Services

21.7.2

21.7.2.1

614

uses them for the 1/0 to the quorum disk. The connection manager, which
runs as a fork process, creates the IRP and inserts it into the driver's re­
quest queue. Although the driver does not do anything unusual to process
the request, IOC$IOPOST cannot perform its usual process-related 1/0 com­
pletion tasks. Instead, the specified system completion routine returns data
and status to the connection manager and deallocates the IRP.

Normal 1/0 Completion

A positive value in IRP$1-PID is the process ID of the I/O requestor. IOC$IO­
POST determines the type of I/O operation by testing IRP$V _BUFIO in
IRP$W _STS. If the bit is set, the I/O operation is buffered; otherwise, it
is direct. IOC$IOPOST performs action appropriate to the type of 1/0 opera­
tion and then queues a special kernel mode AST to the requestor. The AST
routine will perform the completion that must be done in the context of the
requestor.

Buffered 1/0 Completion. Buffered I/O involves a transfer to or from a system
space buffer in nonpaged pool. IOC$IOPOST takes the following initial steps
in the case of buffered I/O:

1. It increments PCB$W _BIOCNT, the number of concurrent buffered 1/0
requests allowed.

2. If IRP$V _FILACP in IRP$W _STS is set, IOC$IOPOST also increments
PCB$W _DIOCNT, the number of concurrent direct I/O requests allowed.
This bit is set if the original I/O request involved an ACP that also
requested direct I/O.

3. It invokes EXE$CREDIT _BYTCNT, in module EXSUBROUT, to restore
the byte count quota that was charged for the system buffer. Note that
IRP$W _BOFF does not contain a buffer offset in this case; it contains a
byte count. The FDT routine that allocated the system buffer stored the
size of the buffer in IRP$W _BOFF and charged the JIB for the buffer.

4. IOC$10POST stores the address of the special kernel mode AST routine
in the IRP at offset ACB$1-KAST. The IRP will also be used as an ACB.
ACB$1-KAST and IRP$1-WIND are the same offset. At this point, the
WCB address is no longer needed and that location can be reused safely.

The special kernel mode AST routine, in module IOCIOPOST, has two
entry points: BUFPOST, for buffered read completion, and DIRPOST, for
all others. The first case differs from the others in that data must be
copied from the system buffer to the process buffer before the process is
informed that the 1/0 is complete. In the case of a buffered write, there
is no need to copy data between the process buffer and the system buffer.
It was copied earlier from the process buffer to the system buffer by an
FDT routine. In the case of direct 1/0, there is no system buffer.

21.7.2.2

21.7.2.3

21. 7 1/0 Postprocessing

It is possible that there was no need for a system buffer; an I/O request
with no transfer of data is usually performed as a buffered I/O request. If

, a buffer was needed, its address is in IRP$1-SVAPTE.

--If IRP$1-SVAPTE is nonzero and IRP$V_FUNC in IRP$W_STS is set,
the I/O function is a read requiring a buffer. In this case, IOC$IOPOST
stores the address of BUFPOST in ACB$L_KAST.

-Otherwise, IOC$IOPOST stores the address of DIRPOST in ACB$L_
KAST. If IRP$1-SVAPTE is nonzero, IOC$IOPOST deallocates the
buffer.

5. It performs the steps described in Section 21.7.2.3.

Direct I/O Completion. Direct I/O requests involve the transfer of data
directly to or from the process buffer, which can be paged. Since paging must
not occur during the processing of the I/O request, the pages are locked in
memory by one of the FDT routines invoked by EXE$QIO.

IOC$IOPOST takes the following initial steps for direct I/O (other than
paging and swapping I/O, discussed in Chapters 16 and 18):

1. It performs the steps necessary to handle segmented transfers, if needed,
as described in Section 21.8.

2. It determines the number of pages the direct I/O buffer occupies from
IRP$W _BOFF and IRP$W _BCNT. IRP$L_SVAPTE contains the address
of the first page table entry that maps the buffer. It unlocks the pages by
invoking MMG$UNLOCK, in module IOLOCK, which decrements the
pages' associated reference counts in the PFN database (see Chapter 14).
This step may result in the pages being placed on the free or modified
page list.

3. An IRP by itself can only describe one direct I/O buffer. If a direct I/O
request has more than one buffer, an FDT routine allocates one or more
IRP extensions (IRPEs) to describe them. Each IRPE can describe two
buffers. An IRP with an extension IRPE has bit IRP$V _EXTEND set in
IRP$W _STS and the address of the IRPE in IRP$L_EXTEND. Similarly,
each IRPE can point to another IRPE.

IOC$IOPOST tests whether IRPEs are present and unlocks whatever
additional buffers are described.

4. It increments PCB$W_DIOCNT, the number of concurrent allowed di­
rect I/O requests.

5. It stores the address of DIRPOST in ACB$L_KAST.
6. It performs the steps described in Section 21.7.2.3.

Final Steps in IOC$IOPOST. IOC$IOPOST performs the same final steps
for each buffered and direct I/O request:

615

I/0 System Services

616

1. If appropriate, it invokes SCH$POSTEF to set the specified event flag for
the process whose I/O just completed.

2. It queues a postprocessing special kernel mode AST to the process.

Whether IOC$IOPOST or its AST routine sets the event flag is determined
by the type of flag: if the flag is local, IOC$IOPOST sets it; otherwise, the
AST routine sets it.

A potential synchronization problem could occur if a process whose event
flag wait is satisfied executes before the postprocessing AST routine copies
possible buffered input to a process buffer and records status in the I/O status
block. This race condition could occur in two sets of circumstances:

• Multiple processes are waiting for a common event flag associated with an
I/O request and one of them executes before the process that requested the
I/O could execute the postprocessing AST routine. IOC$IOPOST avoids
this race condition by not setting a common event flag itself; instead, its
AST routine does .

• IOC$IOPOST and the newly computable process execute on different pro­
cessors and the process begins to execute before the AST routine is queued.
IOC$IOPOST avoids this race condition by acquiring the SCHED spinlock
before setting the flag and not releasing it until the AST is queued.

By setting the event flag before queuing the AST, IOC$IOPOST is able to
optimize the execution of the image if the process is in a local event flag
wait state ILEF) that is satisfied by setting the event flag. If the process is
in LEF, the saved PC in the process's hardware process control block !PCB)
points to the CHMK instruction in the system service vector for event flag
wait system 'service. When the process is placed back into execution, it will
reexecute the event flag wait system service.

SCH$POSTEF invokes SCH$RSE if setting the event flag satisfies the
wait. SCH$RSE modifies the saved PC in the hardware PCB to point to
the instruction after the CHMK, since the system service does not need to be
reexecuted. Chapter 9 gives more information on event flag waits; Chapter 12
on SCH$RSE.

If SCH$POSTEF were invoked after SCH$QAST, the process would be in
the computable state, COM. Thus, SCH$RSE would not modify the saved PC
and the event flag wait system service would be reexecuted unnecessarily.

If the process is current !possibly on another member of an SMP system),
IOC$IOPOST invokes SCH$QAST before it invokes SCH$POSTEF. This
ensures that the special kernel mode AST routine runs before the event flag
is set and thus before the image runs again. The optimization noted earlier
has to be sacrificed to prevent this race condition.

IOC$IOPOST sets ACB$V _KAST in IRP$B_RMOD to indicate that this is
a special kernel mode AST and invokes SCH$QAST, in module ASTDEL,
to queue the AST to the process identified by the IRP$LPID field. The IRP

21.7.3

21.7.3.1

21.7 l/0 Postprocessing

is used as the ACB for SCH$QAST, as described in Chapter 7. Except for
ACBL_KAST, IOCIOPOST does not change any fields in the IRP/ACB.

IOC$IOPOST attempts to remove another IRP from the 1/0 postprocessing
queue. If it is successful, it processes that IRP. Otherwise, it executes an REI
instruction to exit the interrupt service routine.

1/0 Completion Special Kernel Mode AST Routine

The 1/0 completion special kernel mode AST routine has two entry points:
BUFPOST and DIRPOST. BUFPOST performs certain steps unique to buf­
fered read completion and then falls into DIRPOST.

Buffered Read Completion. BUFPOST copies data from system buffers allo­
cated by an FDT routine to user buffers in per-process address space. BUF­
POST processes three types of system buffer, identified by IRP$W _STS bits:

• Simple buffer-IRP$V_COMPLEX clear
• Complex buffer-IRP$V _COMPLEX set and IRP$V _CHAINED clear
• Chained complex buffer-IRP$V _COMPLEX and IRP$V _CHAINED set

When a simple buffer is associated with an 1/0 request, IRP$L_SVAPTE
contains its address and IRP$L_BCNT contains the number of bytes of data
in the buffer. Figure 21.3 shows the layout of a simple buffer.

The first longword of the buffer points to the data, beyond the header.
The second longword contains the address of the user buffer. The next word
contains the size of the simple 1/0 buffer. The next byte contains the type,
typically DYN$C_BUFIO. The next byte is spare. The rest of the buffer
contains the data.

BUFPOST invokes routine MOVBUF, in module IOCIOPOST, to move the
data. MOVBUF takes the following steps:

1. It verifies that the user buffer is still write-accessible to the access mode
in IRP$B_RMOD.

If it is not write-accessible, MOVBUF modifies the final status in
IRP$L_IOST1 to be SS$_ACCVIO.

2. Otherwise, MOVBUF moves the data from the system buffer to the user
buffer.

3. It deallocates the system buffer to nonpaged pool.
4. It returns to its invoker.

Address of Data -+--
Address of User Buffer

l TYPE l SIZE

Figure 21.3
Layout of a Simple Buffer

617

I/O System Services

618

,......, f-o Address of First Descriptor

l TYPE l SIZE

Size l Offset to Data Buffer
First descriptor

Address of User Buffer

I
Additional descriptors

Data First data buffer

Additional data buffers

Figure 21.4
Layout of a Complex Buffer

If the I/O request is a mailbox read (IRP$V _MBXIO in IRP$W _STS is set),
BUFPOST invokes SCH$RAVAIL, in module MUTEX, to declare the mailbox
resource available in case a process is waiting for this resource. Resources
are discussed in Chapter 12.

When a complex buffer is associated with an 1/0 request, IRP$L_SVAPTE
contains its address and IRP$L_BCNT contains the number of descriptors in
the packet.

The layout of a complex buffer is shown in Figure 21.4. The first longword
points to the first descriptor. The second longword is ignored by BUFPOST.
The third longword contains the size and type. There may be space between
the third longword and the first descriptor. The rest of the buffer consists of
descriptors and the associated data buffers.

Each descriptor has the same format. The offset field contains the offset
from the start of the descriptor to the data buffer in the packet. The size
field contains the number of bytes in the data buffer; the size may be zero.
The user buffer address is the address of the per-process space user buffer.
The first byte in the data buffer is the access mode associated with the user
buffer.

One common instance of the complex buffer is the ACP I/O buffer (AIB)
used by the file system ACPs and Files-11 XQP. In the AIB, the third long­
word is followed by an access rights block (ARB) copied from the requestor's
PCB. The descriptors apply to input data as well as output data. In the case
of input data, the size field in the descriptor is set to zero before the IRP
is completed by the file system. The file system may also reduce the count
of descriptors in IRP$L_BCNT; this is done when the last descriptors are
for input data. Since the size contained in the third longword of the buffer
reflects the entire buffer, no space is lost when the buffer is deallocated to
nonpaged pool.

BUFPOST processes the buffer in the following steps:

1. It gets the address of the first descriptor.

21. 7 1/0 Postprocessing

2. It verifies that the user buffer is still write-accessible. (If the size field is
zero, BUFPOST goes to step 5 without verifying the accessibility of the
user buffer.)

3. If the user buffer is write-accessible, BUFPOST transfers the data from
the data buffer to the user buffer.

4. If the user buffer is not write-accessible, BUFPOST modifies the final
status in IRP$1-IOST1 to be SS$_ACCVIO and goes to step 6.

5. If there are more descriptors, BUFPOST gets the address of the next
descriptor and then goes to step 2.

6. It deallocates the buffer to nonpaged pool.

When a chained complex buffer is associated with an 1/0 request, IRP$L_
SVAPTE contains the address of the first chained complex buffer and IRP$1-
BCNT contains the size of the user buffer.

Chained complex buffers are used by some of the communications drivers.
They provide a mechanism for one logical buffer to be split into several
segments that are not combined until they are transferred to the user buffer.

The layout of a chained complex buffer is shown in Figure 21.5. The first
longword contains the address of the data area. The second longword con­
tains the address of the user buffer; this field is valid only in the first de­
scriptor in the chain. CXB$W _SIZE contains the size of the chained complex
buffer. CXB$B_ TYPE contains the type, DYN$C_CXB. CXB$W _LENGTH
contains the size of the data area. CXB$L_LINK contains the address of the
next chained complex buffer in the chain; zero indicates the end of the chain.

BUFPOST processes the chained complex buffers in the following manner:

1. It verifies that the user buffer is write-accessible to the access mode in
IRP$B_RMOD.

2. If the user buffer is not write-accessible, BUFPOST modifies the final
status in IRP$1-IOSTI to be SS$_ACCVIO. It then goes to step 6.

3. If the user buffer is write-accessible, BUFPOST sets CXB$L_LENGTH

Address of Data Area -+---
Address of User Buffer

I TYPE l SIZE

I
I
'[_
.r
T

Figure 21.5

I LENGTH

LINK

Data Area

Layout of a Chained Complex Buffer

I
J
.["

T

619

l/O System Services

21.7.3.2.

to be the smaller of the amount of space left in the user buffer and the
original contents of CXB$L_LENGTH.

4. It moves that amount of data from the data area to the user buffer
and reduces the amount of space left in the user buffer by th~ amount
transferred.

5. If there is space left in the user buffer, BUFPOST moves to the next
buffer. If there is a next buffer, BUFPOST goes to step 3.

6. BUFPOST deallocates all the buffers to nonpaged pool.

Common Completion. DIRPOST performs the completion common to buf­
fered and direct I/O requests:

1. It increments either PHD$L_DIOCNT or PHD$L_BIOCNT, the process's
cumulative totals of completed direct I/O and buffered I/O requests.

2. If a user's diagnostic buffer was associated with the I/O request, DIR­
POST invokes routine MOVBUF to copy the diagnostic information from
the system diagnostic buffer to the user's diagnostic buffer. DIRPOST
then deallocates the system diagnostic buffer. The system diagnostic
buffer has the same format as a simple buffered I/O buffer.

3. It decrements the CCB count of I/O requests in progress on this channel.
4. If this was the last I/O for the channel and there is a deaccess request

for the channel pending, DIRPOST queues that deaccess request to the
ACP by invoking IOC$WAKACP, in module IOCIOPOST.

5. If the I/O request specified an IOSB, DIRPOST copies the quadword at
IRP$1-IOST1 to the IOSB.

6. If a common event flag is associated with the I/O request, DIRPOST
invokes SCH$POSTEF to set the flag.

7. If any IRPEs were used, it deallocates them.
8. If ACB$V _QUOTA is set in IRP$B_RMOD, then the user requested AST

notification of I/O completion. The AST procedure address and the op­
tional AST argument were originally stored in the IRP (now used as an
ACB). DIRPOST invokes SCH$QAST to queue the IRP as an ACB, this
time for a normal AST in the access mode at which the I/O request was
made.

9. Otherwise, if ACB$V _QUOTA is clear, DIRPOST deallocates. the IRP­
/ ACB to nonpaged pool.

10. It returns to its invoker, SCH$ASTDEL in module ASTDEL.

2.1.8 SEGMENTED VIRTUAL AND LOGICAL 1/0

620

Under certain circumstances, the I/O subsystem must break I/O transfer
requests involving a block-addressable mass storage device into segments
and pass the request to the device driver segment by segment. This section
describes the means by which such requests are segmented and successive
segments are passed on to a device driver.

21.8.1

21.8.1.1

21.8 Segmented Virtual and Logical 1/0

A file is stored on such a device in a series of blocks. There are three ways
of referring to the blocks: file-relative (virtual), volume-relative (logical), and
absolute (physical). An image performing 1/0 to a file describes its request
in terms of the starting virtual block number (VBN) and the number of
bytes to be transferred. The 1/0 subsystem must convert the VBN into its
corresponding logical block number (LBN) for the device driver. For some
devices, the LBN must be converted into the corresponding physical block
number.

A logically contiguous series of blocks in a file is called an extent. An
extent is described by its starting LBN and the number of blocks in it. Most
files are made up of multiple extents; a physically contiguous file has only
one extent. Each file has an on-disk data structure called a file header that
lists the extents that make up the file. When a file is opened, information
about its extents is copied from the file header into the WCB. If the image's
1/0 request crosses a file extent boundary, the 1/0 subsystem must break
the request into segments, each of which fits within one extent.

Certain mass storage devices and their associated drivers cannot handle
transfers greater than 64K bytes at one time. In this case the 1/0 subsystem
must break the transfers into segments no greater than 64K. Note that the
request may already have been segmented to fit within file extents, which
may be greater than 64K bytes.

Segmentation by FDT Routines

Usually, a mass storage device driver specifies the following FDT routines:
ACP$READBLK for reads and ACP$WRITEBLK for writes, both in module
SYSACPFDT. These routines store the total byte count of the request in the
original byte count field of the IRP, IRP$LOBCNT, and clear the accumu­
lated byte count field of the IRP, IRP$LABCNT.

Segmenting Virtual 1/0. If the transfer is a virtual 1/0 transfer, these routines
then invoke IOC$MAPVBLK, in module IOSUBRAMS, to perform the actual
conversion from VBNs to LBNs. IOC$MAPVBLK (see Section 21.8.2) returns
the number of bytes not mapped.

If the number of bytes mapped is zero, the FDT routines store the start­
ing VBN in IRP$LSEGVBN, the number of bytes not mapped (in this case,
the total number of bytes requested) in IRP$LBCNT, and then invoke
EXE$QIOACPPKT, in module SYSQIOREQ, to send the IRP to the ACP.

When the file system processes this IRP, it detects that the WCB does not
map the requested virtual range and performs a window turn. It reads the
file header to obtain the mapping information necessary for the transfer in
question and stores the information in the WCB, replacing other mapping
information already contained there. The file system performs the equivalent
steps that IOC$MAPVBLK performs and then queues the IRP to the driver.
Note that the number of bytes mapped at this point is nonzero.

621

1/0 System Services

21.8.1.2

21.8.2

622

If the number of bytes mapped is nonzero, each FDT routine takes the
following steps:

1. It computes the number of bytes mapped by subtracting the number of
bytes not mapped from IRP$L_OBCNT and stores this number in IRP$L_
BCNT.

2. It stores the starting LBN in IRP$L_MEDIA.
3. It stores the starting VBN in IRP$1-SEGVBN.
4. It converts the 1/0 function to the equivalent physical I/O function.
5. It takes the steps discussed in Section 21.8.1.2.

Segmenting Logical and Physical 1/0. If the function is not a physical I/O
function, the FDT routines convert it to the equivalent physical I/O function.
The FDT routines then take the steps necessary to handle transfers greater
than 64K bytes, as discussed in Section 21.8.3. Note that these steps are not
required for all disk devices.

The routines then queue the IRP to the driver. The driver performs the
transfer without regard for whether the entire range is to be transferred.
IOC$IOPOST will check whether the entire range has been transferred when
the driver completes the I/O request and will take the necessary action, as
described in Section 21.8.4.

IOC$MAPVBLK

IOC$MAPVBLK uses the information passed (via registers and the IRP) to
convert the VBNs to LBNs. The goal is to convert the starting VBN to the
related LBN. The gating factor is the information stored in the WCB (the
address of the WCB is obtained from CCB$1-WIND) that was created by the
file system when the file was opened.

If the WCB contains enough mapping information to convert the entire
virtual range of the transfer into corresponding LBNs on the volume, then the
virtual I/O transfer will be handled directly by the driver and IOC$IOPOST,
even if the transfer consists of several logically noncontiguous pieces. If the
WCB does not contain enough information to completely map the virtual
range of the transfer, the intervention of the file system will be required at
some time to complete the transfer. This intervention is known as a window
tum.

Because a deadlock situation could occur if a file mapped by the memory
management subsystem requires a window turn, the memory management
subsystem must avoid window turns. To do this, each file mapped by the
memory management subsystem must have all its mapping information in
the WCB. A special, large variation of the WCB is used, called a cathedral
window (see Chapter 20).

IOC$MAPVBLK can encounter five possible cases:

21.8.3

21.8 Segmented Virtual and Logical 1/0

• The virtual range is logically contiguous and the WCB contains the needed
mapping information. In this case, all that IOC$MAPVBLK needs to do is
convert the starting VBN into the related LBN. The driver can transfer the
data without further conversion of VBNs into LBNs.

• The WCB contains mapping information for the beginning of the virtual
range, but more than two map entries are required to map the range. In
this case, IOC$MAPVBLK converts tlie starting VBN into the related LBN.
The driver can transfer the start of the virtual range but will need further
conversion of VBNs into LBNs to transfer the rest of the range.

IOC$MAPVBLK uses only the map entry that maps the starting VBN
and the next map entry, if that map entry is logically contiguous with its
predecessor. Since the block count field in the map entry is a word in size,
it is possible that a logically contiguous range will require more than one
map entry to cover the entire logical range.

• The WCB contains mapping information for the beginning of the virtual
range but not for the entire virtual range. In this case, IOC$MAPVBLK
converts the starting VBN into the related LBN. The driver can transfer
the start of the virtual range· but will need further conversion of VBNs
into LBNs to transfer the rest of the range.

In this case, the virtual range may be logically contiguous, but not
enough mapping information is contained in the WCB to verify this. A
window turn will be needed later.

• The virtual range is not logically contiguous, but the WCB does contain
mapping information for the beginning of the virtual range. IOC$MAPV­
BLK handles this case in the same way it handles the previous case.

The driver can transfer the start of the virtual range but will need fur­
ther conversion of VBNs into LBNs to transfer the rest of the range. The
WCB may or may not contain the needed information. If it does not, a
window turn will be needed. Whether a window turn will be needed later
is irrelevant at this point.

• The mapping information that maps the first virtual block in the range to
its logical counterpart is not in the WCB. A window turn is needed before
any data can be transferred.

In all five cases, IOC$MAPVBLK returns the number of bytes not mapped,
which is zero in the fifth case. If the number of bytes mapped is nonzero,
IOC$MAPVBLK also returns the starting LBN.

Segmenting Transfers Greater Than 64K Bytes

VMS supports I/O transfers greater than 64K bytes for mass storage devices,
even though a device and its driver may only support transfers up to 64K
bytes. This is done by breaking the transfer into segments no larger than the
maximum transfer size supported by the driver. The UCB$1-MAXBCNT

623

I/O System Services

21.8.4

field contains the largest transfer size supported by the driver. If it is zero,
it is assumed to be 65,024 (64K bytes minus 512).

If the IRP$LBCNT field is greater than the maximum transfer size speci­
fied by UCB$LMAXBCNT, the FDT routines set IRP$LBCNT to the max­
imum transfer size accepted by the driver. Otherwise, they do not modify
IRP$LBCNT. Remember that the FDT routines store the requested size in
IRP$L_OBCNT, as noted in Section 21.8.1.

As a result, the first transfer will be the size specified by UCB$LMAXB­
CNT. The remainder will be transferred as a result of the steps taken by
IOC$IOPOST, as described in Section 21.8.4.

IOC$IOPOST Processing of Segmented Transfers

Whenever IOC$IOPOST encounters an IRP for a direct I/O data transfer re­
quest, it determines if another segment must be transferred by comparing
the original byte count to the number of bytes transferred thus far. If the dif­
ference is not zero, another segment must be transferred. If the two numbers
agree, the request is completed exactly like other direct 1/0 requests.

If the two numbers do not agree, IOC$IOPOST prepares the IRP for the
transfer of the next segment by taking the following steps:

1. If the transfer is a virtual I/O transfer, IOC$IOPOST invokes IOC$MAPV­
BLK.

The same five cases exist here as when IOC$MAPVBLK is invoked by
the FDT routines. IOC$IOPOST takes the equivalent steps in each case
for the transfer that starts at the VBN in IRP$LSEGVBN. If there is a
total mapping failure of the remaining transfer, IOC$IOPOST invokes
IOC$QTOACP to pass the IRP to the ACP. Otherwise, IOC$IOPOST
continues.

2. It places the lesser of the remaining byte count and the maximum transfer
size accepted by the driver in IRP$LBCNT.

3. It updates the starting VBN in IRP$L_SEGVBN by the number of blocks
transferred in the last transfer.

4. It invokes EXE$INSIOQC, in module SYSQIOREQ, to queue the IRP to
the driver.

Thus, in a fashion transparent to the requestor, the original request is
segmented to satisfy the limitations of the WCB or the maximum transfer
size permitted by the device.

21.9 CANCEL I/O ON CHANNEL SYSTEM SERVICE

624

The $CANCEL system service cancels pending I/O requests on a specified
channel. These include queued I/O requests as well as the request in progress.
The $CANCEL system service may be requested by an image. It is also
requested by the $DASSGN system service, which is requested during image

21.9 Cancel 1/0 on Channel System Service

and process rundown. The $CANCEL system service has only the CHAN

argument, which specifies the 1/0 channel on which 1/0 is to be canceled.
The $CANCEL system service procedure, EXE$CANCEL in module SYS­

CANCEL, executes in kernel mode. Kernel mode code can request a second
form of the $CANCEL system service by calling the system service proce­
dure directly at an alternative entry point, EXE$CANCELN. This form of
the system service has two arguments:

• The CHAN argument
• The optional CODE argument, the reason for the cancellation

EXE$CANCELN determines if the CODE argument is present. If it is
present, the procedure saves it for later use. Otherwise, the procedure saves
a reason code of CAN$C_CANCEL. EXE$CANCEL, on the other hand, al­
ways saves a reason code of CAN$C_CANCEL. Once the reason code has
been saved, EXE$CANCEL and EXE$CANCELN converge.

1. EXE$CANCEL invokes IOC$VERIFYCHAN, as discussed in Sec­
tion 21.5.3, to verify the channel.

2. If the driver specifies primary affinity and the process has not already
acquired primary affinity, EXE$CANCEL calls SCH$REQUIRE_CAPA­
BILITY to acquire primary affinity. Chapter 12 gives details on processor
affinity.

3. It raises IPL to 2 to block process deletion.
4. It page faults the CCB into memory and raises IPL to UCB$B_FIPL,

effectively locking the CCB into memory. If the driver uses a fork lock,
EXE$CANCEL also acquires the fork lock.

5. It searches the IRPs queued to the UCB (starting at UCB$L_IOQFL),
looking for those that meet the following criteria:

-The requesting process ID (PCB$L_PID) matches the process ID in
IRP$L_PID.

-The channel number in IRP$W _CHAN matches the requested channel.
-The request is not a virtual request (IRP$V _VIRTUAL in IRP$W _STS

is clear). In general, I/O cannot be canceled on disk or tape devices.
Drivers for these devices ensure that IRP$V _VIRTUAL is set on all
requests that cannot be canceled.

For each IRP that satisfies these criteria, EXE$CANCEL takes the
following steps and then resumes the search:

a. It removes the IRP from the queue.
b. It clears the buffered read bit (IRP$V _FUNC in IRP$W _STS) for

buffered I/O functions. Since this 1/0 operation has not been started,
there is no data to be transferred to the user's buffers.

c. It places the error status SS$_CANCEL in the low-order word of

625

1/0 System Services

626

IRP$LMEDIA and clears the high-order word. This is the final status
of the I/O operation.

d. It inserts the IRP at the tail of the systemwide I/O postprocessing
queue and requests an IPL$_IOPOST interrupt jsee Section 21.7).

6. After scanning the IRP queue, EXE$CANCEL invokes the driver cancel
I/O routine, whose address is stored in the driver dispatch table. The
driver is passed the cancel reason saved at the start of EXE$CANCEL or
EXE$CANCELN. The driver should perform any actions appropriate to
canceling I/O.

Some driver cancel I/O routines execute a RET instruction if an error
occurs. In such a case, control does not return to EXE$CANCEL but to
its requestor.

7. EXE$CANCEL tests the device type to determine whether canceling its
active request is appropriate. If the device is a disk, it is likely that the
request will complete quickly enough that canceling it is unnecessary. If
canceling the active request is not appropriate, EXE$CANCEL exits, as
described in step 8. Otherwise, EXE$CANCEL continues with step 9.

8. If a fork lock was acquired, EXE$CANCEL releases it. If primary affinity
was acquired, EXE$CANCEL relinquishes it. EXE$CANCEL lowers IPL
to 0 and returns the success status SS$_NORMAL to its requestor.

9. If there is no outstanding I/O jCCB$W_IOC is zero) and there is no file
activity jCCB$L_ WIND is zero), EXE$CANCEL exits, as described in step
8. llf there is file activity, then CCB$L_ WIND contains the address of
the WCB associated with the channel or a process section index. At this
point, the distinction is not significant.)

10. If the device is not mounted or is mounted foreign, EXE$CANCEL exits,
as described in step 8.

11. If there is a process section associated with the channel, EXE$CANCEL
exits, as described in step 8.

12. At this point, EXE$CANCEL has determined that there is a file open on
this channel. If WCB$V _NOTFCP in WCB$B_ACCESS is set, EXE$CAN­
CEL exits, as described in step 8.

The WCB$V _NOTFCP bit identifies a WCB created by special routines
that run only during system startup. These routines open files before the
Files-11 XQP is available. When these files are opened again after the XQP
is available, new WCBs are created. The original WCBs are not destroyed
and are not used by the XQP.

13. At this point, EXE$CANCEL has determined that there is a user file
open on the channel. It attempts to allocate an IRP to request an IO$_
ACPCONTROL function. If it cannot allocate an IRP, it does one of two
things:

-If the process does not have resource wait mode enabled, EXE$CAN­
CEL exits, as described in step 8, with a status indicating the reason
that EXE$CANCEL could not allocate an IRP.

21.9 Cancel I/O on Channel System Service

-Otherwise, EXE$CANCEL invokes SCH$RWAIT to place the process
into an RSN$_NPDYNMEM wait. H the fork lock was acquired, it
is released prior to invoking SCH$RWAIT. H primary affinity was ac­
quired, it is relinquished prior to invoking SCH$RWAIT. When the
wait completes, EXE$CANCEL returns to step 2.

14. It initializes the IRP as follows:

a. The process ID of the requestor is set to the value in PCB$LPID.
b. The AST procedure address and parameter are cleared !no user AST).
c. The WCB address is set to the value in CCB$1-WIND.
d. The UCB address is stored in IRP$L_ UCB.
e. The function code is set to 10$_ACPCONTROL.
f. The event flag is set to EXE$C_SYSEFN.
g. The priority is set to the process's base priority.
h. The IOSB address is set to zero.
i. The channel number is stored in IRP$W_CHAN.
j. The 1/0 is marked as buffered 1/0 with no buffer.

k. The access rights block address is set to the value in PCB$LARB.

This ACP control function is special by virtue of there being no 1/0
buffer. It is ignored by disk ACPs and the Files-11 XQP. It is recognized
by the magnetic tape ACP as a special 1/0 abort function (equivalent to
invoking the driver's cancel 1/0 routine) that causes the ACP to abort
the mounting of a multivolume tape file.

15. EXE$CANCEL charges the user's buffered 1/0 quota, PCB$W _BIOCNT,
for an 1/0 request.

16. H the fork lock was acquired, it is released.
17. H primary affinity was acquired, it is relinquished.
18. EXE$CANCEL invokes EXE$QIOACPPKT to queue the packet to the

file system. EXE$QIOACPPKT will execute a RET instruction, returning
control to the requestor of the system service.

627

22 1/0 Device Drivers and
Interrupt Service Routines

"Open the pod-bay doors, HAL."

Arthur C. Clarke, 2001: A Space Odyssey

Once a user's 1/0 request is preprocessed and validated by the Queue 1/0
Request ($QIO) system service and the device driver's function decision
table (FDT) action routine, the VMS executive invokes the driver's start
1/0 routine so that the driver may actually perform the requested function.
Chapter 21 describes the validation of the 1/0 request. This chapter discusses
how VMS and a driver's start 1/0 routine cooperate to perform the user­
requested function and relay the status of the 1/0 operation, as well as any
necessary data, back to the user.

In addition, various interrupt dispatching schemes employed by different
types of adapters on VAX systems, as well as the connect-to-interrupt mech­
anism, are briefly described.

22.1 DEVICE DRIVER MODELS IN VMS

628

The two categories of device driver models in VMS systems are the tradi­
tional wait-for-interrupt model and the port/class driver model.

The former includes drivers for most devices that are not block-structured
as well as drivers for older block-structured devices that do not conform
to the Digital Storage Architecture. Examples of such device drivers are
LPDRIVER, for the UNIBUS line printer controller, and DRDRIVER, for
MASSBUS RMxx disks.

The port/class model includes device drivers for most modern block­
structured devices and those for different types of terminal devices. Note,·
however, that a number of differences exist between the port/class model as
applied to block-structured devices and the port/class model as applied to
terminal drivers in VMS. Chapter 24 briefly discusses both types of drivers.

This chapter discusses the traditional wait-for-interrupt model of device
drivers. In particular, the following issues are addressed:

• How VMS invokes a driver's start 1/0 routine
• How the start 1/0 routine initiates a transfer and waits for an interrupt

from the device
• How VMS dispatches an interrupt from the device to the interrupt service

routine (ISR) of the driver
• How the ISR resumes the start 1/0 routine

22.2 Exiting the FDT Routine

• How the start I/O routine resumes processing at a lower interrupt priority
level (IPL)

• How the start I/O routine requests I/O completion processing
• How VMS initiates I/O postprocessing

22.2 EXITING THE FDT ROUTINE

22.2.1

As described in Chapter 21, an image requests an I/O operation on a device
through the $QIO system service. Its system service procedure, EXE$QIO
in module SYSQIOREQ, validates the device-independent parameters of the
request, builds an I/O request packet (IRP) describing it, and invokes one or
more FDT action routines.

The FDT routines validate the function-dependent parameters of the re­
quest and set up any necessary I/O buffers. Some FDT routines may complete
an I/O request without device action or fork processing by entering EXE$FIN­
ISHIO or EXE$FINISHIOC, in module SYSQIOREQ. An FDT routine may
abort the I/O request by entering EXE$ABORTIO, in module SYSQIOREQ.

If the I/O operation is requested on a file-structured device, and either
a file system function was requested or file system intervention is required
before the driver can perform the requested I/O, then the FDT routine enters
EXE$QIOACPPKT, in module SYSQIOREQ.

If the I/O request is valid and device action needs to be initiated, an
FDT routine jumps to EXE$QIODRVPKT, in module SYSQIOREQ, to en­
ter the driver's start I/O routine or invokes EXE$ALTQUEPKT, in module
SYSQIOREQ, to enter its alternate start I/O routine.

Entering the Driver's Start 1/0 Routine

A traditional VMS device driver's FDT routine typically enters EXE$QIO­
DRVPKT, which initiates I/O on the device if the device is idle. If the device
is busy, it inserts the IRP on the wait queue of the unit control block (UCB).
It invokes EXE$INSIOQ, in module SYSQIOREQ, to perform the following
actions:

1. EXE$INSIOQ raises IPL to the fork IPL of the device, acquiring the fork
lock, if any, specified in UCB$B_FLCK.

2. If the device unit is busy, as indicated by a set UCB$V _BSY bit in UCB$L_
STS, EXE$INSIOQ invokes EXE$INSERTIRP, in module SYSQIOREQ, to
insert the IRP on this unit's queue of pending I/O requests. The queue,
whose listhead is at UCB$L_IOQFL, is ordered according to the base
priority of the process that requested the I/O. When EXE$INSERTIRP
returns, control is transferred to step 5.

3. If the device unit is idle, EXE$INSIOQ marks it busy by setting bit
UCB$V _BSY in UCB$L_STS and initiates I/O on the device by invoking
IOC$INITIATE, in module IOSUBNPAG.

629

I/O Device Drivers and Interrupt Service Routines

630

IOC$INITIATE determines if the device on which the 1/0 was re­
quested has affinity for the CPU that IOC$1NITIATE is running on
by examining the device's affinity mask, UCB$L_AFFINITY. If the de­
vice does not have affinity for this CPU, then IOC$INITIATE invokes
SMP$SWITCH_CPU, in module SMPROUT. SMP$SWITCH_CPU cre­
ates a fork process on the CPU with the lowest physical CPU identifi­
cation (ID) for which this device has affinity; this fork process invokes
IOC$INITIATE again.

Running on a CPU for which the device has affinity, IOC$1NITIATE
performs the following steps:

a. It saves the IRP address in UCB$LIRP.
b. IOC$1NITIATE copies IRP$LSVAPTE, IRP$W_BOFF, and IRP$W_B­

CNT to UCB$LSVAPTE, UCB$W_BOFF and UCB$W_BCNT. This
step is an optimization for direct 1/0 operations and is unnecessary
for most buffered 1/0 operations.

c. It clears UCB$V _ TIMOUT and UCB$V _CANCEL in UCB$LSTS.
Table 22.1 explains the significance of these and other important flags
in UCB$LSTS.

d. If a diagnostic buffer is associated with the current 1/0 request,
IOC$INITIATE obtains its address and records the current system
time in it as the operation start time.

e. It gets the address of the driver dispatch table (DDT) from the UCB,
locates the driver's start 1/0 routine through DDT$L_START, and
enters it with a JMP instruction.

4. The driver's start 1/0 routine eventually returns control to EXE$INSIOQ,
as discussed in Section 22.3.2.

5. EXE$INSIOQ restores the IPL at entry, releasing any fork lock it acquired,
and returns control to EXE$QIODRVPKT.

6. EXE$QIODRVPKT restores IPL to 0 and returns to the image that re­
quested this 1/0. The status returned in RO indicates that the 1/0 request
was queued to the driver successfully. The $QIO requestor cannot deter­
mine the status of the 1/0 operation until the VMS 1/0 postprocessing
routine writes the 1/0 status block for this I/O request.

Table 22.1 Important Flags in UCB$LSTS

Flag

UCB$V_INT
UCB$V_TIM
UCB$V _ TIMOUT
UCB$V _CANCEL
UCB$V _POWER

Meaning if Set

An interrupt is expected from this device
This device has an I/O operation being timed
This device has timed out
Current I/O on the device has been canceled
The system recovered from a power failure

22.2.2

22.2.3

22.2 Exiting the PDT Routine

Entering the Driver's Alternate Start 1/0 Routine

EXE$ALTQUEPKT enters the driver's alternate start 1/0 routine regardless
of the setting of the UCB$V _BSY bit, as follows:

1. EXE$ALTQUEPKT raises IPL to the device's fork IPL, obtaining the unit's
fork lock if appropriate.

2. It gets this CPU's physical CPU ID from the per-CPU database field
CPU$L_PHY _CPUID and checks the device affinity mask in UCB$L_
AFFINITY to determine if this device has affinity for the CPU. If it does
not, then EXE$ALTQUEPKT invokes SMP$SWITCH_CPU, in module
SMPROUT, to create a fork process on the CPU with the lowest physical
CPU ID for which this device has affinity. This fork process invokes
EXE$ALTQUEPKT again and resumes processing at step 1.

3. If this device does have affinity for this CPU, EXE$ALTQUEPKT gets the
address of the driver's DDT from the UCB, locates its alternate start I/O
routine through offset DDT$L_ALTSTART, and invokes it with a JSB

instruction.
4. When the driver's alternate start I/O routine returns, EXE$ALTQUEPKT

restores the IPL at entry, releasing any fork lock that was obtained earlier,
and returns to its invoker, typically the $QIO requestor.

Initiating File System 1/0

Some I/O requests require the involvement of the file system. This hap­
pens, for example, when the function requested is a file system function
request, such as IO$_ACCESS, or when a window turn is required to map
the requested virtual block number (VBN) to a logical block number (LBN).
A window turn updates file retrieval information in the window control
block (WCB), as discussed in Chapter 21. The file system may transform
the 1/0 request into one more suitable for the device driver and queue it
to the driver. Alternatively, it may request multiple I/O operations itself.
In any case, when the file system has performed the request, it performs or
initiates I/O postprocessing on the original IRP.

EXE$QIOACPPKT is entered by file system FDT routines in module
SYSACPFDT when an I/O request requires action by a file system ancil­
lary control process (ACP) or the Files-11 Extended QIO Processor (XQP). If
the target device for the I}O is serviced by an ACP, then EXE$QIOACPPKT
performs the following actions:

1. It locates the volume control block (VCB) of the device from the UCB.
From the VCB, it locates the ACP queue block (AQB) and inserts the IRP
into the tail of the interlocked I/O request queue at AQB$L_ACPIQ.

2. If the queue was not empty, EXE$QIOACPPKT returns a successful
status indicating that the I/O request is queued. Control returns to the
image following its service request.

631

1/0 Device Drivers and Interrupt Service Routines

3. If this IRP is the first to be inserted into the queue, EXE$QIOACPPKT
gets the process ID (PID) of the ACP that services this device from
AQB$L_ACPPID and invokes SCH$WAKE, in module SCHED, to wake
up that ACP. If SCH$WAKE returns a success status, EXE$QIOACPPKT
returns a success status for the $QIO request.

Later, when the ACP is placed into execution, it removes the request
from its queue. It performs the requested function and initiates 1/0
postprocessing by queuing the IRP to the systemwide postprocessing
queue. Section 22.3.4 and Chapter 21 discuss 1/0 postprocessing.

If, on the other hand, AQB$1-ACPPID is zero, then the XQP services this
device, and EXE$QIOACPPKT enters EXE$QXQPPKT, in module SYSQIO­
REQ. EXE$QXQPPKT generates a file system request in the context of the
current process as follows:

1. It gets the address of the per-process XQP data area from CTL$GL_
FllBXQP and inserts the IRP on the IRP queue in that area.

2. From the per-process XQP data area, EXE$QXQPPKT gets the address
of the XQP routine DISPATCH, in module [Fl lX)DISPATCH, which is
the asynchronous system trap (AST) procedure that initiates an XQP
transaction. The XQP code resides in a system global section that is
mapped into Pl space during process startup, as discussed in Chapter 25.

3. EXE$QXQPPKT, using the portion of the IRP that begins at offset IRP$L_
IOQFL as an AST control block (ACB), stores the address of DISPATCH
in ACB$L_AST.

4. EXE$QXQPPKT stores the address of the IRP itself in ACB$L_ASTPRM.
5. It then enters SCH$QAST, in module SCHED, to queue the IRP as a

kernel mode AST to the current process.
6. When SCH$QAST returns, EXE$QXQPPKT lowers IPL to 0 and executes

a RET instruction to return from EXE$QIO.

Before control returns to the $QIO requestor, the kernel mode AST is
delivered and the procedure DISPATCH is called. DISPATCH queues the
IRP to the per-process XQP queue in the XQP's data area. If the XQP is
not busy servicing another IRP, DISPATCH calls DISPATCHER, in module
[Fl lX)DISPAT, to service the request. DISPATCHER determines the function
requested and calls the appropriate XQP procedure to perform the requested
function.

When the XQP has serviced the request, DISPATCHER performs 1/0 post­
processing by invoking special entry points in IOC$IOPOST, in module 10-
CIOPOST, which is the VMS 1/0 postprocessing routine.

22.3 DRIVER'S START 1/0 ROUTINE

632

The driver's start 1/0 routine must perform the user-requested function by
interacting with the device. It typically initializes device registers, stalls

22.3.1

Example 22.1
Simple Start 1/0 Routine

STARTIO:

WFIKPCH DEVTMO, #6

IO FORK

REQCOM

22.3 Driver's Start I/O Routine

;Set up device registers
;Raise IPL to IPL$_POWER
;Synchronize with powerfail recovery
;Get transfer going by setting
; "GO" bit
;Wait for interrupt
;Execution resumes here upon
; interrupt
;Request to lower IPL to fork IPL

;Complete request

until the device has performed the requested task and interrupted VMS,
resumes the 1/0 after the device interrupts, and initiates 1/0 request com­
pletion processing.

Example 22.1 shows the use of the three VMS-supplied macros, WFIKPCH,
IOFORK, and REQCOM, which essentially create a framework for a simple
driver's start 1/0 routine. These and other similar macros, documented in
the VMS Device Support Manual, are building blocks for the driver's start
I/O routine. The use of these macros allows the device driver writer to
orchestrate the carefully coordinated interplay between VMS and the device
driver.

This chapter discusses the expansion of the preceding three macros in the
context of this simple example and explains how and why VMS stalls and
resumes the driver's start 1/0 routine.

Initiating Device Action

Typically, the start 1/0 routine is entered when an image makes an 1/0
request and the device is idle. Figure 22.1 shows the interaction between the
VMS executive and the appropriate device driver to initiate device action.
Note that in Figures 22.1, 22.2, and 22.3 portions of the start 1/0 routine
that are not relevant to the flow of control, but aid in understanding the
flow, are shaded.

The numbers in Figure 22.1 correspond to the numbered steps that follow:

G) The system service routine EXE$QIO is called when the $QIO service is
requested.

G) EXE$QIO validates the function-independent parameters of the request,
allocates and builds an IRP, and invokes the driver's FDT action routine
for the requested function.

G)The FDT routine validates the function-dependent parameters of the re­
quest, sets up the necessary 1/0 buffers, and enters EXE$QIODRVPKT.

633

I/0 Device Drivers and Interrupt Service Routines

634

Tme
User Image VMS Executive Device Driver

~o_u_re_r_M_od_e_(_zy_p_ica_ll_y)-1-~~~~~~~~~-K_em_e_l~M~ode~~~~~~~~~---1
CallSYS$QIO

L-...

EXE$QIO
2 Validate function-independent

parameter of $010 request
Allocate and build IRP
Invoke driver's FDT routine

EXE$QIODRVPKT
4 Invoke EXE$1NSIOQ

' EXE$1NSIOQ
5 Get fork lock

If device not busy,
invoke IOC$1NITIATE

' IOC$1NITIATE
6 Locate and enter the

start 110 routine

IOC$WFIKPCH
9 Save fork context in

UCB
RSB to caller's caller

10 RSB.._j

' 11 Return to $010 requestor

FDTRoutine
3 Perform function-dependent

preprocessing
JMP EXE$QIODRVPKT

Start 110 Routine
7 Set up device registers

to initiate 1/0 transfer
8 WFIKPCH

Figure 22.1
Entering the Start 1/0 Routine

QEXE$QIODRVPKT invokes EXE$INSIOQ (see Section 22.2.1).
G)EXE$INSIOQ obtains the fork lock for the UCB and tests UCB$V_BSY. If

the device is not busy, it invokes IOC$INITIATE.
0 IOC$INITIATE locates the start 1/0 routine and enters it.

22.3.2

22.3 Driver's Start 1/0 Routine

G) The start 1/0 routine then sets up the device registers so that the de­
vice can perform the requested function. It initializes the device's con­
trol/status register (CSR), indicating to the device that it should perform
the requested function and interrupt VMS when it is done. The start 1/0
routine manipulates device registers while holding the device spinlock to
synchronize with device interrupts.

G) Once the device starts performing the requested function, the start 1/0
routine has to stall execution until the device interrupts. It does this by
invoking the WFIKPCH macro.

The WFIKPCH macro has two arguments:

• The address of the timeout routine
• The number of seconds within which the interrupt should occur

·If the interrupt occurs within the specified time, VMS resumes the start
1/0 routine at the instruction following the WFIKPCH. If it does not occur,
VMS resumes the start 1/0 routine at the timeout routine specified.

The WFIKPCH macro invocation in the preceding example expands as
follows:

PUSHL #6
JSB c-10C$WFIKPCH
.WORD DEVTMO - .

Note that the . WORD directive leaves a value, the offset to the timeout routine
DEVTMO, in the instruction stream. By adding this value to its own address,
code in the VMS executive computes the system virtual address of the device
timeout routine when the need arises.

Waiting for the Device Interrupt

G)IOC$WFIKPCH, in module IOSUBNPAG, is invoked by a driver's start
1/0 routine through the WFIKPCH macro. It performs the following steps:

a. At entry to IOC$WFIKPCH, the return address that was left on the
stack by the JSB instruction actually points to a value rather than
to an instruction, as indicated previously. IOC$WFIKPCH adjusts the
return address by adding 2 to it, in order to point past the word value.

b. It stores the adjusted return address, after removing it from the stack,
in UCB$1-FPC.

c. It stores register R3 in UCB$L_FR3 and R4 in UCB$1-FR4.
d. It sets UCB$V _INT, to indicate that this device now expects an inter­

rupt, and UCB$V _TIM, to indicate that this unit has 1/0 being timed.
e. It obtains the timeout value from the stack, adds it to the system

uptime, EXE$GL_ABSTIM, and stores it in UCB$L_DUETIM. This
value is the system uptime at which this request expires.

635

I/0 Device Drivers and Interrupt Service Routines

22.3.3

636

f. IOC$WFIKPCH clears UCB$V _ TIMOUT. If the interrupt does not
occur within the specified time, EXE$TIMEOUT, in module TIME­
SCHDL, will set the bit. Chapter 11 describes EXE$TIMEOUT.

g. IOC$WFIKPCH releases the device spinlock and returns to the caller's
caller.

Effectively, IOC$WFIKPCH saves the context of the driver's start 1/0
routine in the fork block contained within the UCB. It will be resumed
when the device interrupts. IOC$WFIKPCH transfers control back to the
VMS routine, EXE$INSIOQ. (EXE$INSIOQ used IOC$1NITIATE to locate
and invoke the start 1/0 routine. However, IOC$INITIATE entered the
start I/O routine with a JMP instruction and did not leave a return address
on the stack. As a result, the RSB instruction in IOC$WFIKPCH returns
control to EXE$INSIOQ.)

@EXE$INSIOQ returns to EXE$QIODRVPKT.
@EXE$QIODRVPKT returns control to the image that requested this 1/0

operation, as discussed in Section 22.2.1.

Servicing the Device Interrupt

When the device has performed the requested function, it interrupts the pro­
cessor. On a symmetric multiprocessing (SMP) system, it interrupts the pri­
mary processor. The mechanism by which VMS invokes a device's ISR when
the device interrupts is known as interrupt dispatching (see Section 22.4).

Figure 22.2 shows the control flow when the ISR resumes the start 1/0 rou­
tine. The numbers in the figure correspond to the numbered steps outlined
in this section.

G) As part of VMS device interrupt dispatching, a few general registers,
typically RO through RS, are saved on the interrupt stack. VMS then
invokes the driver's ISR.

G)Example 22.2 shows a simple ISR for a device driver. Typically, an ISR
relies on the fact that when it is entered, the top of the stack has a pointer
to the interrupt dispatch block (IDB). The first two longwords of the IDB
contain the addresses of the device CSR and the UCB of the device that
requested the interrupt. The UCB contains the fork block that holds the
context of the driver's start I/O routine.

The UCB also contains the address of the device lock. The device
lock normally synchronizes access to controller and device registers and
certain UCB fields. Every code thread that accesses these registers or
UCB fields is expected to obtain that device lock first. A driver writer
determines which registers and fields the device lock synchronizes based
on the nature of the device and the interaction among driver routines like
initialization, timeout, start 1/0, and interrupt service routines.

22.3 Driver's Start I/O Routine

Tme
VMS Executive Device Driver

/~00·-
Save RO - RS ---~1-------~ ISR

2 Get IDB pointer from top
of stack

Get device CSR and UCB
Obtain device lock
Restore driver fork process

I

f
EXE$10FORK
4 Save fork context in

UCB fork block
Queue fork block on fork

queue and request fork
interrupt

-
4g RS~ to caller's caller

Figure 22.2
ISR Resumes the Start I/O Routine

Example 22.2
Simple Interrupt Service Routine

!SR:

10$:

MOVQ ©(SP)+, R4
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),-
BBCC #UCB$V_INT, -

UCB$L_STS(R5), 10$
MOVL UCB$L_FR3(RS), R3
JSB ©UCB$L_FPC(R5)
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),-
MOVQ (SP)+, RO
MOVQ (SP)+, R2
MOVQ (SP)+, R4
REI

l
5 Release device lock

Restore RO - RS
REI

;Get CSR in R4 and UCB in R5

;Obtain device lock

;If interrupt une~pected, go to 10$
;Restore fork R3
;Resume driver's start I/0 routine

;Release device lock
;Restore registers saved
; during interrupt dispatching

;Dismiss interrupt

637

1/0 Device Drivers and Interrupt Service Routines

638

The ISR obtains the device lock and tests UCB$V _INT to determine if
the interrupt is expected. If UCB$V _INT is clear, the ISR merely releases
the device lock, restores RO through RS, and dismisses the interrupt. Oth­
erwise, the ISR resumes the start 1/0 routine at the instruction following
its invocation of the WFIKPCH macro using the following instruction:

JSB ©UCB$L_FPC(R5)

G) When the start I/O routine determines that further processing for this
1/0 request may be performed at an IPL lower than the device IPL, it
invokes the IOFORK macro. Since this part of the start I/O routine has
been resumed from the ISR at device IPL, it may not explicitly lower the
IPL. To do so would be in violation of the VAX architecture, which states
that an interrupt thread of execution may not lower its IPL below that at
which it was initiated.

The IOFORK macro is provided by VMS specifically for such purposes.
This macro expands to the instruction JSB G~EXE$IOFORK.

G) EXE$IOFORK, in module FORKCNTRL, assumes that the fork block
for the fork thread that invoked it resides in the UCB. It requests the
resumption of the fork thread at its fork IPL as follows:

a. It clears bit UCB$V _TIM in UCB$1-STS to indicate that the device
no longer has an I/O operation being timed.

b. It stores registers R3 and R4 in UCB$1-FR3 and UCB$1-FR4.
c. It gets the return address from the top of the stack and stores it

in UCB$1-FPC. This is the address of the instruction following the
invocation of IOFORK, the part of the start 1/0 routine that needs to
be resumed at fork IPL.

d. It gets the fork IPL of this fork thread as follows:

On a uniprocessor system, from UCB$B_FIPL

On an SMP system, from the array SMP$ALIPLVEC indexed by
the contents of UCB$B_FLCK

e. EXE$IOFORK locates the head of the fork queue for this fork IPL in
the pet-CPU database for the processor on which it is running and
inserts the fork block into this queue.

CPU$Q_SWIQFL in the per-CPU database is the array of listheads
for the fork queues for IPLs 6 and 8 through 11. There is an unused
listhead for IPL 7 as well.

f. If this fork block is the first to be inserted on this queue, EXE$IOFORK
requests a software interrupt at the fork IPL for this queue.

g. EXE$IOFORK then executes an RSB instruction, effectively passing
control to the caller's caller which, in this example, is the ISR.

G)The ISR simply releases the device lock, restores RO through RS, and
executes an REI instruction to dismiss the interrupt.

22.3.4

22.3 Driver's Start 1/0 Routine

Trne
VMS Executive

~ ;-'-
EXE$FORKDSPTH
1 Dequeue fork block

Obtain fork lock
Restore driver fork

process

Release fork lock

IOC$REQCOM
3 Post IRP to systemwide

VO postprocessing queue
Request IPL$_10POST

software interrupt
31 If no pending IRPs on UCB,

JMP IOC$RELCHAN

J
IOCSRELCHAN

Release channels, if required
RSB

If no more fork blocks,
REI

Figure 22.3
Fork Dispatcher Resumes the Start 1/0 Routine

Requesting 1/0 Completion Processing

Device Driver

2 .
REQCOM

Figure 22.3 shows the flow of control when the start 1/0 routine is resumed
by the VMS fork dispatcher. The numbers in the figure correspond to the
numbered steps in this section.

When processor IPL falls below the fork IPL of this device, the processor
grants the requested software interrupt at that IPL. The software ISR is one
of the EXE$FRKIPLxDSP routines in module FORKCNTRL, where x is 6,
8, 9, 10, or 11, one of the fork IPL values. All these routines converge in
EXE$FORKDSPTH, also in module FORKCNTRL.

(!) EXE$FORKDSPTH removes one fork block at a time from the appropriate
fork queue and performs the following steps:

639

1/0 Device Drivers andlnterrupt Service Routines

640

a. Running on an SMP system, it obtains the fork lock.
b. It restores R3 and R4 from FKB$LFR3 and FKB$LFR4 of the fork

block. For the UCB, these are the same as offsets UCB$L_FR3 and
UCB$LFR4.

c. It executes a JSB instruction to FKB$LFPC, thus resuming the fork
process.

d. When the fork process returns, EXE$FORKDSPTH releases the fork
lock if it is running on an SMP system.

In Example 22.1, the JSB instruction in EXE$FORKDSPTH resumes
the start 1/0 routine at the instruction following the invocation of the
IOFORK macro, at the fork IPL for the device.

G)The start 1/0 routine then checks for any errors and performs any device­
dependent postprocessing of the 1/0 request. It constructs in RO and Rl
the 1/0 status block to be returned to the user image that requested the
1/0. Finally, it invokes the REQCOM macro to complete the 1/0 request
and initiate 1/0 postprocessing. VMS 1/0 postprocessing relays the final
status of the 1/0 and the data, if any, to the $QIO requestor.

The REQCOM macro generates the instruction JMP G-roc$REQCDM.

G)IOC$REQCOM, in module IOSUBNPAG, queues the IRP to the sys­
temwide postprocessing queue and requests an IPL$_IOPOST software
interrupt by performing the following steps:

a. If there is an error log buffer (if UCB$V _ERLOGIP in UCB$W _STS is
set), IOC$REQCOM transfers the necessary information to the error
log buffer and invokes ERL$RELEASEMB, in module ERRORLOG, to
complete the error log activity for this 1/0 operation.

b. It increments the I/O operation count in the UCB.
c. It stores the final 1/0 status in IRP$LIOST1 and IRP$LIOST2.
d. If the device is a tape and the request completed successfully, it

invokes EXE$MNTVER_GEN_CRC, in module [SYSLOA]MOUNT­
VER, to generate any needed cyclic redundancy check (CRC).

e. If the 1/0 request completed with an error and the device is a disk
or a tape, IOC$REQCOM checks if mount verification is pending
or in progress (if UCB$V _MNTVERPND or UCB$V _MNTVERIP in
UCB$LSTS is set). If either is true, it invokes EXE$MOUNTVER, in
module [SYSLOA]MOUNTVER, to start mount verification.

In the case of certain tape errors, IOC$REQCOM calls EXE$MNT­
VER_GEN_CRC, as it does in the previous step, without checking the
mount verification bits in UCB$LSTS.

f. IOC$REQCOM tests and saves the current IPL. If it is not at least
IPL$_IOPOST, it raises IPL to IPL$_IOPOST.

g. IOC$REQCOM inserts the IRP in the interlocked systemwide 1/0
postprocessing queue, IOC$GQ_POSTIQ.

22.4 VMS Interrupt Service Routines

Running on a uniprocessor system, IOC$REQCOM simply requests
an IPL$_IOPOST interrupt.

If this is an SMP system, and the 1/0 postprocessing queue was
empty prior to the insertion of the IRP, IOC$REQCOM must request
the IPL$_IOPOST software interrupt on the primary processor. If the
current processor is the primary, IOC$REQCOM simply writes the
appropriate value to PR$_SIRR. Otherwise, IOC$REQCOM requests
an interprocessor interrupt to tell the primary to request an IPL$_
IOPOST interrupt. Chapter 4 discusses software interrupts in more
detail; Chapter 34 interprocessor interrupts.

h. IOC$REQCOM restores the saved IPL.
i. If mount verification is in progress, it tests UCB$V _MOUNTVER-

PND:

If UCB$V _MOUNTVERPND is set and the 1/0 operation is being
performed on a disk or a tape, then IOC$REQCOM clears UCB$V _
MOUNTVERPND and invokes EXE$MOUNTVER without clear­
ing the UCB$V_BSY bit. This occurs when a VAXcluster system
has lost quorum; the result is to stall 1/0 until quorum is regained.

If UCB$V _MOUNTVERPND is clear, IOC$REQCOM simply enters
IOC$RELCHAN, in module IOSUBNPAG, to release any device
controllers to which the start 1/0 routine had obtained exclusive
access. IOC$RELCHAN returns to the caller's caller.

j. If the unit has pending 1/0 requests, IOC$REQCOM removes the
first one and branches to IOC$INITIATE, in module IOSUBNPAG,
to initiate it. IOC$INITIATE, described in Section 22.2.1, enters the
driver's start 1/0 routine. The start 1/0 routine typically invokes the
WFIKPCH macro, resulting in the invocation of IOC$WFIKPCH, de­
scribed in Section 22.3.2. IOC$WFIKPCH returns to the caller's caller,
which in this example is the fork dispatcher, EXE$FORKDSPTH.

k. If there are no pending I/O requests for the unit, IOC$REQCOM
clears the device unit busy flag (UCB$V _BSY in UCB$W _STS) and
enters IOC$RELCHAN, in module IOSUBNPAG, to release any device
controllers. IOC$RELCHAN returns to the caller's caller, which in
this example is EXE$FORKDSPTH.

22.4 VMS INTERRUPT SERVICE ROUTINES

The following sections briefly describe how VMS dispatches some device
and adapter interrupts to appropriate interrupt service routines and the ac­
tions typically taken by these routines. Chapter 20 presents an overview of
the 1/0 database, the basis for interrupt dispatching. The VMS Device Sup­
port Manual describes the 1/0 database in more detail and provides a more
complete discussion of driver interrupt service routines.

641

1/0 Device Drivers and Interrupt Service Routines

22.4.1

22.4.1.1

642

Servicing UNIBUS and Q22-Bus Interrupts

Each device on a UNIBUS or Q22-bus has one or more vector numbers and a
bus request priority. The bus request priority enables the bus to be arbitrated
among devices when multiple interrupts are requested.

On a UNIBUS, there are four bus request (BR) levels, called BR4, BRS, BR6,
and BR7. BR7 is the highest priority. If interrupts are requested concurrently
for multiple devices with the same BR level, the device electrically closest to
the UNIBUS arbitration logic has the highest priority. On a Q22-bus, there
are also four request levels, called bus interrupt request (BIRQ) levels. BIRQ7
is the highest priority.

In either case, the device IPL of the requested interrupt is the bus request
level plus 16. For example, BR4 corresponds to IPL 20.

Interrupts from UNIBUS adapters (UBAs) may be vectored directly or
indirectly, as discussed in the following sections. The difference between
the two methods of vectoring is that there is an extra level of dispatching
for indirectly vectored interrupts. When a device on an indirectly vectored
UNIBUS interrupts, the adapter's ISR gains control, interrogates the device
for its vector, and uses this vector to invoke the device's ISR.

Directly Vectored UNIBUS and Q22-Bus Interrupt Service Routines. VAX
CPUs that implement directly vectored interrupts use additional pages of
the system control block (SCB) for these interrupts.

SYSGEN is responsible for building the 1/0 database for devices and their
drivers (see Chapter 20). For a device on a bus whose interrupts are directly
vectored, SYSGEN initializes the SCB vector with the address of code that
dispatches the interrupt to the ISR. This dispatching code is contained in
the interrupt dispatch area within the channel request block (CRB) for the
controller and resembles the following:

PUSHR #~M(RO,R1,R2,R3,R4,R5)

JSB ©#driver_interrupLservice_routine

The second instruction dispatches to the driver ISR (see Figure 22.4). The
longword following the JSB instruction contains the address of the IDB. Its
address is pushed onto the stack as the return program counter (PC) for the
JSB instruction. Control never returns there because that address is removed
from the stack by the driver ISR, as are the saved registers.

After the JSB instruction in the CRB transfers control, the following events
occur:

1. The driver ISR removes the IDB pointer from the stack and uses it to
obtain the address of the device controller's CSR and the address of the
UCB for the device generating the interrupt.

2. Having found the UCB, the ISR determines whether the interrupt is
expected. If the interrupt is unsolicited, the interrupt service routine

Device
Interrupt
~

SCBof
VAX86x0or
VAX·11/78x

First Page

SCBofVAX
with

~

22.4 VMS Interrupt Service Routines

UBAADP

:!:

UBAISR
Save registers
Read BRRVR register to
get vector

Jump to CAB dispatch code
through vector table

Vector table containing
device CAB addresses

Directly Vectored Device IDB

Device
Interrupt
~

22.4.1.2

Interrupts DeviceCRB

lJ1 Save registers
JSB to driver ISR

..., IDB address

Nth Page Device Driver

ISR
Locate device registers
and UCB

Restore fork registers
JSB to fork PC
Restore registers
REI to resume interrupted
thread of execution

Figure 22.4

r
1.-J

Device register Device

address -
UCB address .. t--i

Device UCB

PC ~} R3
R4

Fork
Block

Control Flow in Servicing a UNIBUS or Q22-Bus Interrupt

may either take some appropriate action or simply dismiss the interrupt
by restoring the saved registers and executing an REI.

3. If the interrupt is expected, the ISR restores the driver context saved in
the UCB by the driver fork process. The driver ISR then executes a JSB

instruction to transfer control to the saved PC.
4. The driver fork process transfers control back to the interrupt service

routine. Most often, the driver fork process does this indirectly by forking
or waiting for another interrupt. In either case, the fork process invokes
a routine that saves the fork process context and returns to its caller
by executing an RSB instruction. The driver ISR then restores the saved
registers and dismisses the interrupt with an REI instruction.

Indirectly Vectored UNIBUS Interrupt Service Routines. When a device on
an indirectly vectored UNIBUS requests an interrupt, the UBA receives the
interrupt request and requests a CPU interrupt on behalf of the interrupting
device. It is actually the UBA interrupt that is vectored through the SCB,
using the interrupting device's IPL and the adapter's transfer request (TR)
number, to an adapter ISR.

643

I/O Device Drivers and Interrupt Service Routines

644

The adapter ISR saves registers RO through RS, determines which device
actually requested the interrupt, and then passes control to an ISR in the
device driver for the interrupting device. The driver ISR can then respond to
the interrupt in a device-dependent fashion. After servicing the interrupt, the
registers saved by the adapter ISR must be restored and an REI instruction
executed to dismiss the interrupt.

There are four ISRs for each UBA, one for each BR level at which UNIBUS
devices request interrupts. They differ only in which internal UBA register
they read to determine which device requested the interrupt. These ISRs
are found in the adapter control block (ADP) that describes the UBA. The
UBA ADP is created during system initialization by the CPU-specific rou­
tine INl$UBADP. The CPU-specific routine and the actual UBA ISRs are
in module [SYSLOA]INIADPxxx, where xxx is either 780 for VAX-ll/78x
systems or 790 for VAX 86x0 systems.

Indirectly vectored UNIBUS interrupt servicing begins in one of four
UNIBUS adapter ISRs. Each of these routines takes the following steps:

1. The routine saves registers RO through RS (see Figure 22.4).
2. A UBA internal register called the bus request receive vector register

(BRRVR) is read to determine the identity of the interrupting device.
Each BRRVR register contains either the vector number corresponding
to the device interrupt or an indication that the UBA is interrupting on
behalf of itself, not for some device. (There are four BRRVRs in the UBA,
one for each BR level.)

3. The UBA interrupts on its own behalf to indicate an adapter error. Cer­
tain adapter errors result when a reference is made to a nonexistent ad­
dress in UNIBUS 1/0 space. They can indicate a transient hardware error
or a bug in a device driver. These errors are logged, up to a maximum of
three in any given IS-minute period, and the interrupt is dismissed.

Another possible error is that power on the UNIBUS or UBA is about
to fail. Chapter 33 describes how adapter powerfail is handled.

4. For a device interrupt, the vector number is used as an index into a vector
table, which is part of the ADP. The vector table contains a pointer to
the JSB instruction in the CRB. The service routine transfers control by
executing a JMP to the JSB instruction.

The vector table entry pointing to the CRB and address fields in the
CRB are initialized by SYSGEN in response to the CONNECT command.

The JSB instruction in the CRB transfers control to the driver ISR. The
longword following the instruction contains the address of the IDB. This
address is pushed onto the stack as the return PC for the JSB instruction.
However, control is never returned there, because that address is removed
from the stack by the driver ISR.

At this point, interrupt dispatching becomes identical to that on directly

22.4.2

22.4 VMS Interrupt Service Routines

vectored systems, as described in the previous section. Device driver inter­
rupt service routines are entered in the same way regardless of system type.

MASSBUS Adapter Interrupt Service Routine

MAS SB US adapter (MBA) interrupt dispatching is identical across all VAX
CPUs that support an MBA. During system initialization, four SCB vec­
tors for each MBA are initialized by the CPU-specific routine INI$MBADP,
in module [SYSLOA]INIADPxxx, where xxx designates one of the CPU
types listed in Appendix G. The SCB vectors contain an address within
the MBA CRB. The CRB contains a PUSHR instruction to save R2 to RS
and a JSB instruction to transfer control to the MBA ISR, MBA$INT in
[SYSLOA]ADPSUBxxx.

MBA interrupts are handled differently from UNIBUS interrupts, partly be­
cause one MBA interrupt may indicate that multiple devices on the adapter
need servicing. The MBA ISR reads an attention summary register to deter­
mine its response to an interrupt.

If the interrupt enable bit in the MBA is set, an MBA interrupt can be
caused by any of the following operations:

• Completion of a data transfer
• Assertion of an attention line while the MBA is not busy
• Occurrence of an MBA error while the MBA is not busy
• Power recovery on the MBA

A device on the MASSBUS asserts its attention line under the following
circumstances:

• If an error occurs, whether or not a transfer is taking place
• When a mechanical motion such as a disk seek or tape rewind completes
• When a device changes its state

In general, a MASSBUS device driver does not request ownership of the
MBA channel (controller) until it is needed to perform a transfer. MBA$INT
assumes that if the MBA owner is expecting an interrupt, then the interrupt
currently being serviced indicates that a transfer has completed or been
aborted. That is, when an MBA interrupt occurs and the current owner of
the MBA is expecting an interrupt, MBA$INT dispatches immediately to the
owner's driver.

Because data transfer functions block the interrupts from nontransfer func­
tions until the data transfer completes, MBA$INT always checks the MBA
attention summary register after a driver ISR returns control. It tests whether
another device on the MASSBUS requested an interrupt either while the
MASSBUS owner was transferring data or while the current interrupt was
being processed. The UCB list contained in the IDB allows MBA$INT to
associate UCB addresses with devices that are requesting service.

645

I/O Device Drivers and Interrupt Service Routines

22.4.3

646

MBA$INT responds to an interrupt in one of three ways (see Figure 22.S). It
may perform all three of these actions to service multiple attention requests
in response to a single interrupt.

• For an expected interrupt (bit UCB$V _INT set in UCB$W _STS) on a single­
unit device, MBA$INT restores the driver fork process context and exe­
cutes a JSB instruction to the fork PC. The driver fork process returns to
MBA$INT when it has completed its work .

• For an unsolicited interrupt (bit UCB$V_INT clear in UCB$W_STS) on a
single-unit device, MBA$INT executes a JSB instruction that transfers con­
trol to a driver-supplied unexpected ISR, which will return to MBA$INT.

• For a multidevice controller (a magnetic tape formatter), MBA$INT trans­
fers control to the CRB for the device controller. The device controller
CRB dispatches to a controller ISR that saves R2 to RS and transfers con­
trol to the driver ISR. This service routine eventually returns control to
MBA$INT.

MBA$1NT uses the unit number of a device asserting attention as an index
into the list IDB$1-UCBLIST. It identifies the type of the selected longword
entry by checking its low-order bit. If the bit is set, then the entry is for a
multidevice controller. If the bit is clear, the entry is the UCB address for a
single-unit device. UCBs, like CRBs, are always longword-aligned (the low­
order two bits are clear). When a CRB is created for a multidevice controller,
and its address stored in the MBA IDB, the address is incremented by 1 so
the low-order bit will be set. Control is actually transferred to the PUSHR

instruction in the CRB with the following instruction, where RS contains
the MBA IDB entry:

JSB -(R5) ;Autodecrement address to subtract 1

VAXBI Adapter Interrupt Service Routines

The dispatching of interrupts from VAX bus interconnect (VAXBI) adapters to
the appropriate ISR varies according to the adapter type and the VAX system
it is on.

Each adapter on a VAXBI bus is assigned four vectors in the SCB, corre­
sponding to fomdnterrupt levels. The VAX.BI bus has 16 slots, or nodes, to
connect adapters. Therefore, each VAX.BI bus on a VAX system requires 64
interrupt vectors in the SCB to be reserved for adapter interrupts. Additional
vectors are required for adapters such as the UNIBUS-to-VAXBI adapter (DW­
BUA), as discussed in Section 22.4.3.1.

The 64 adapter interrupt vectors are organized in the appropriate page of
the SCB as four contiguous arrays of 16 longwords each. The four arrays
correspond to the four interrupt levels. This is similar to the organization of
the upper half of the first page of the SCB, as discussed in Chapter 2.

see

Devicer+-1--------1·1-
lnterrupt

MBACRB

Save registers

MBA$1NT

Determine type and state of
interrupting unit

Dispatch appropriately:

JSB to MBA$1NT __ __.

For single-unit device that is
expecting an interrupt

Restore fork registers
JSB to fork PC -------+---~

or

MBA

Device UCB

Magnetic Tape
Formatter

Magnetic Tape UCB

{
PC

~~~k I-~~-~-~~~~~ 

Figure 22.5 

IDB address --+----. 

MBA IDB 

f-9 Device register 
address 

UCB address 

UCB address 
CRB address ...+--, 

= 

Magnetic Tape CRB 

Save registers 
JSB to magnetic 

tape driver ISR 
IDB address --t--, 

Magnetic Tape IDB 

f-9 Device register I-­
address 

UCB address 

UCB address 

Control Flow in Servicing a MASSBUS Interrupt 

For single-unit device that is 
not expecting an interrupt 
JSB through driver dispatch ---1---....i 

table or 
For multi-unit controller 

-+--+-- JSB through its CRB interrupt 
dispatch code 

y More units 
need 

servicing? 

N 

REI to resume interrupted 
thread of execution 

Magnetic Tape Device Driver 

ISR 
Restore fork registers 
of unit requesting 
attention 

JSB to fork PC _:::i 

[
REI 

Start 110 routine 
Service interrupt :::..r 
RSB 

Device Driver 

Start 110 routine 
Service interrupt 
RSB 

Unexpected ISR 
Service interrupt 
RSB 



I/O Device Drivers and Interrupt Service Routines 

SCB DeviceCRB 
xx$1NT 

__r--+-11-------1Lr Save registers 

Before 
device driver 
is loaded 

JSB to driver ISR-+--------~ 
IDB address -+-

Restore registers 
REI to restore interrupted 
thread of execution Device 

Interrupt 

22.4.3.1 

648 

Device IDB 

Device Device register 1+-
.---1-e address 

UCB address -+-

Device UCB 

{ 
PC 1-

~f~k ,__ __ =_! __ ...... 

Figure 22.6 

After 
device driver 
is loaded 

Control Flow in Servicing a V AXBI Adapter Interrupt 

VAXBI Device Driver 

ISR 
Locate device registers 
and UCB 

Restore fork registers 
JSB to fork PC 
Restore registers 
REI to restore interrupted 
thread of execution 

For example, the SCB vector for the lowest interrupt level for the adapter 
at node number 0 is at offset 10016 into the SCB page assigned to the VAXBI 
bus. The next three interrupt vectors for this adapter are at offsets 14016, 
18016, and lC016, in the sam.e page of the SCB. Sections 22.4.3.2 and 22.4.3.3 
discuss the system-dependent assignment of an SCB page to a VAXBI bus. 

The four SCB vectors assigned to each V AXBI adapter are used in an 
adapter-dependent manner. Adapter initialization procedures for all VAXBI 
adapters are in module [SYSLOA]INICOMBI. 

Typically, the adapter initialization procedure connects a vector for an 1/0 
adapter to the interrupt dispatch area in the CRB for that VAXBI adapter. The 
instructions in the CRB interrupt dispatch area are a PUSHR for RO through 
RS and a JSB. The IDB address follows the JSB instruction in the CRB (see 
Figure 22.6). 

Initially, the JSB in the CRB transfers control to a skeleton ISR, such as 
CI$INT or BVP$INT, in module [SYSLOA]INICOMBI. This routine fields 
interrupts generated by the adapter prior to the loading of the device driver. 
It merely cleans off the stack and dismisses the interrupt. 

When a VAXBI device driver is loaded, the destination of the JSB instruc­
tion is modified to the address of the ISR within the driver. From this point, 
interrupt dispatching is driver-dependent but generally resembles dispatch­
ing for directly vectored interrupts, as discussed in Section 22.4.1.1. 

UNIBUS-to-VAXBI Adapters. Two adapters fit this description: the DW­
BUA, which adapts the UNIBUS to the VAXBI bus, and the KLESI-B, which 



22.4.3.2 

22.4.3.3 

22.4.4 

22.4 VMS Interrupt Service Routines 

adapts the low-end storage interconnect (LESI) to the VAXBI bus. The KLESI­
B is actually the functional equivalent of a DWBUA connected to a KLESI-U, 
which connects the LESI to the UNIBUS. 

Each of these adapters on a VAX system is assigned a separate page of the 
SCB, because. devices on the UNIBUS may generate any of the 128 possi­
ble vectors. Interrupts from devices on the UNIBUS and LESI are directly 
vectored through that assigned page. 

An interrupt requested by the DWBUA or the KLESI-B adapter on its own 
behalf is vectored through one of the four vectors assigned for the adapter. On 
most systems, the last of these four vectors is used to service error interrupts 
requested by the adapter. The other vectors are unused and point to a routine 
that restores state and dismisses the interrupt. 

The SCB entry for adapter error interrupts at offset 1 C016 in the appropriate 
page points to a JSB instruction within the ADP at offset ADP$L_UBASCB. 
The JSB invokes the routine EXE$UBAERR_INT, in module ADPERRxxx, 
where xxx is one of the CPU designations listed in Appendix G. EXE$BUA­
ERR_INT and EXE$BLAERR_INT are synonyms for EXE$UBAERR_INT. 

VAXBI Adapters on VAX 8200 Family Systems. The VAX 8200 family 
includes the VAX 8200, VAX 8250, VAX 8300, VAX8350, and the VAXstation 
8000. On these systems, the VAXBI bus is the system bus as well as the 
primary I/O bus. This means that CPU modules and memory modules as 
well as I/O adapters connect to the VAXBI bus. 

VAXBI adapter interrupts are vectored through the first page of the SCB 
on these systems. Additional pages of SCB may be assigned to adapters of 
the kind discussed in Section 22.4.3.1, if they are present. 

Other V AXBI Adapters. This category includes all V AXBI adapters on a 
VAXBI bus that is the primary I/O bus but not the system bus on a VAX 
system. It excludes those listed in Section 22.4.3.1. The VAXBI bus serves 
as the primary I/O bus on VAX 8800 family and VAX 6000 series systems. 

These systems provide support for multiple VAXBI buses. Each VAXBI 
bus is assigned a separate page of the SCB. Additional pages of SCB may 
be assigned to adapters of the kind discussed in Section 22.4.3.1, if they are 
present. Chapter 3 explains the assignment of SCB pages for specific systems. 

CI Adapter Interrupt Service Routines 

Computer interconnect (CI) adapter interrupts are dispatched directly via 
the SCB. During system initialization, four SCB vectors for each CI port 
adapter are initialized by the CPU-specific routine INI$CIADP. INI$CIADP 
is in module [SYSLOA)INICOMBI for VAXBI-to-CI adapters and in module 
[SYSLOA]INIADPxxx for all other CI adapters. 

649 



1/0 Device Drivers and Interrupt Service Routines 

~ 
Device 
Interrupt 

650 

see DeviceCRB Before Cl$1NT 
Cl driver 

jJ Save registers is loaded 
JSB to driver ISR Restore registers 
IDB address ....., t-- REI to restore interrupted 

thread of execution 

Device IDB 

Device register i- After 
Device address Cl driver Cl Device Driver 

UCB address ..--1 
is loaded 

t-- ISR 
Locate device registers 
and UCB 

Service device interrupt 
Restore registers 

Device UCB REI to restore interrupted 

f.-J 
thread of execution 

Fam { 
PC 

Block R3 
R4 

Figure 22.7 
Control Flow in Servicing a CI Interrupt 

Each of the four SCB vectors points to the interrupt dispatch area within 
the CI adapter's CRB. The interrupt dispatch area contains a PUSHR to save 
R2 to RS and a JSB instruction to transfer control to the ISR. 

Initially, the JSB in the CI adapter's CRB transfers control to routine 
CI$INT. CI$INT is in module [SYSLOA]ADPSUBxxx, where xxx is the 
CPU designation for VAX-11/7SO, VAX-11/78x, and VAX 86x0 systems. This 
routine simply performs the following operations: 

1. Clears the adapter power-up and power-down bits in the CI control 
register 

2. Sets the maintenance initialization bits in the CI control register 
3. Restores registers R2 to RS 
4. Executes an REI instruction to dismiss the interrupt 

Actually, VAXBI-to-CI adapter interrupts are disabled until PADRIVER, 
the CI device driver, is loaded. CI$INT, a dummy ISR for VAXBI-to-CI adapt­
ers, is in module [SYSLOA]INICOMBI. 

When PADRIVER is loaded, the destination of the JSB instruction is mod­
ified to the address of the interrupt service routine within the driver. There 
are several of these, one for each different type of CI port adapter. They 
are all in module [DRIVER]PAADP and have names such as INTERRUPT_ 
CI780. They are very similar, differing primarily in their methods of testing 
for error conditions. The following list summarizes their actions, which are 
pictured in Figure 22.7: 



22.4.5 

22.4 VMS Interrupt Service Routines 

1. The ISR removes the address of the IDB pointer from the stack, retrieving 
the address of the UCB. 

2. The ISR examines various adapter registers to determine whether the 
CI port adapter interrupted because it queued a response packet to a 
formerly empty response queue or because an error occurred. 

3. If there was no error, the ISR invokes the routine INT$FORK in module 
[DRNER]PAINTR .. 

4. INT$FORK sets and tests a fork block interlock bit in the UCB. If the bit 
is already set, the UCB is already in use as a fork block and INT$FORK 
merely returns to the ISR. If the bit was not already set, INT$FORK forks, 
using the UCB. That is, a fork PC is stored in the UCB and the UCB is 
inserted on the IPL 8 fork queue. 

S. INT$FORK returns to the ISR, which restores the registers saved on the 
stack and executes an REI instruction to dismiss the interrupt. 

6. When the driver fork process is entered, it updates the maintenance timer 
on the CI port to indicate that the system is still active. 

7. It then removes a response packet from the response queue and processes 
it. It continues dequeuing response packets and processing them until 
either the queue is empty or it has handled 100 response packets. 

DR32 Interrupt Service Routine 

DR32 interrupts are dispatched directly through the SCB. During system 
initialization, entries are made in the SCB to transfer control to locations 
in the CRB for the DR32. The instructions in the CRB are a PUSHR for 
R2 through RS and a JSB instruction. The DR32 IDB address follows these 
instructions in the DR32 CRB (see Figure 22.8). 

Initially, the JSB instruction in the DR32 CRB transfers control to routine 
DR$1NT, in module [SYSLOA]ADPSUBxxx. This routine simply performs 
the following operations: 

1. Clears the adapter power-up and power-down bits in a DR32 control 
register 

2. Restores registers R2 to RS 
3. Executes an REI instruction 

When the DR32 driver, in module [DRNER]XFDRNER, is loaded by SYS­
GEN, the destination of the JSB instruction is changed to the ISR in the 
driver. This routine performs the following operations: 

1. Responds to the various types of DR32 interrupts 
2. Restores registers R2 to RS 
3. Executes an REI instruction 

651 



1/0 Device Drivers and Interrupt Service Routines 

see DeviceCRB 
DR$1NT 

~~----t-Lr 
Device 

Save registers 

Before 
DR32 driver 
is loaded 

JSB to driver ISR-+---------....i 
IDB address ...+--

Disable DR32 interrupts 
Restore registers 
REI to restore interrupted 
thread of execution Interrupt 

Device IDB 

Device Device register !-
.__... address 

UCB address --+-

Device UCB 

~~~~k { 1--------t 
PC f-
R3
R4

Figure 22.8

After
DR32 driver
is loaded

Control Flow in Servicing a DR32 Interrupt

DR32 Device Driver

ISR
Locate device registers
and UCB

Service device interrupt­
e.g., queue AST to user
process

Restore registers
REI to restore interrupted
thread of execution

22.5 CONNECT-TO-INTERRUPT MECHANISM

652

The connect-to-interrupt facility is an extension of the interrupt dispatching
scheme. It enables a process to be notified of a UNIBUS or Q22-bus device
interrupt by the delivery of an AST, setting of an event flag, or both. The
process can also specify an interrupt service routine to respond to device
interrupts.

A process with CMKRNL and PFNMAP privileges can respond to an inter­
rupt by reading or writing device registers and possibly by initiating further
device activity. However, to directly manipulate device registers, the process
must first map the UNIBUS or Q22-bus space containing the registers for the
device into its per-process space. The VMS Device Support Manual describes
mapping UNIBUS 1/0 space and using the connect-to-interrupt capability.
Chapter 15 of this book contains more detailed information on how the
mapping is actually performed.

Note that the physical address range of UNIBUS 1/0 space differs on differ­
ent types of VAX systems. The VMS Device Support Manual contains a list
of symbols defined by the system-specific macros (for example, $10730DEF)
that define the physical addresses symbolically.

To use the connect-to-interrupt facility, the connect-to-interrupt driver,
in module [DRIVER]CONINTERR, must be associated with the interrupt
vector. The association is made using the SYSGEN command CONNECT,
specifying all the following:

22.5 Connect-to-Interrupt Mechanism

see DevlceCRB

CONINTERR Driver

__r--+-1------lJJI Save registers
JSB to driver ISR -+--­
IDB address ..+--,

I User-Supplied

J_
I ISR

ISR
Dispatch to user's ISR ___,.,.._.i...,i~ Respond to
Optionally queue AST or I interrupt Device

Interrupt~---~ set event flag Return

Device IDB

D . --...J,.... Device register 1..-J
evice ---------r- address

UCB address -+--i

Device UCB

Figure 22.9

Restore registers
REI to resume interrupted
thread of execution

This portion of the interrupt
dispatch scheme is an
explicit example of the
general UNIBUS interrupt
dispatch scheme illustrated
in Figure 22-4.

Extending Interrupt Dispatch Mechanism with the
Connect-to-Interrupt Facility

This portion of
the interrupt
dispatch scheme
is specific to the
connect-to­
interrupt driver.

• Name for the device jused by the process connecting to the interrupt)
• CSR address of the device
• Interrupt vector at which the device generates interrupts
• CONINTERR driver, which initially responds to the device interrupts

When the device generates an interrupt, the normal UNIBUS or Q22-bus
interrupt dispatching sequence is followed, as discussed in Section 22.4.1.
However, the CONINTERR ISR transfers control to the user-supplied ISR at
device IPL if one was supplied, using a JSB or CALL instruction, as requested
by the user. This transfer is illustrated in Figure 22.9.

When the user-supplied ISR executes an RSB or RET instruction, the CON­
INTERR ISR regains control. Before restoring the registers and dismissing
the interrupt, it creates an IPL$_QUEUEAST fork process to queue an AST,
if requested, to the process to notify it that an interrupt has occurred. CON­
INTERR's AST routine sets an event flag, queues the user-requested AST,
or both.

For the process-supplied ISR to be accessible to the CONINTERR ISR,
the CONINTERR driver must double-map the user routine into system ad­
dress space. The double mapping requires enough system page table entries
jSPTEs) to map the user-supplied routines. These SPTEs must have been re­
served through the REALTIME_SPTS SYSGEN parameter. When the process
disconnects from the interrupt, the SPTEs used to map its routines are made
available for similar use by other processes.

653

1/0 Device Drivers and Interrupt Service Routines

654

Note that the connect-to-interrupt driver has no provision for direct mem­
ory access 1/0. It does not allocate map registers and data paths. Its fork IPL,
IPL$_QUEUEAST, is lower than IPL 8, the IPL at which access to these
adapter resources is arbitrated. Furthermore, the driver does not perform the
tasks required to deal with VMS direct 1/0 buffers.

23 Mailboxes

Knowing how to answer one who speaks,
To reply to one who sends a message.

Amenemope, The Instruction of Amenemope

A VMS mailbox is a virtual I/O device for interprocess communication. One
process writes a message to a mailbox for another process to read. A process
reads or writes mailbox messages using standard VMS I/O mechanisms.

This chapter discusses mailboxes: the data structures that define them, the
system services that create and delete them, and the driver that implements
mailbox I/O. It briefly describes some examples of their use by the VMS
executive and components.

23.1 OVERVIEW

VMS mailboxes are virtual I/O devices implemented in software. A mailbox
is described by the same basic data structures as any other device. However,
unlike those of a hardware device configured by SYSGEN, mailbox data
structures are dynamically created in response to a process's Create Mailbox
and Assign Channel ($CREMBX) system service request.

Mailboxes are read and written through the standard I/O mechanisms.
However, messages written to a mailbox device are actually stored in non­
paged pool until read. The mailbox driver, MBDRIVER, services Queue
I/O ($QIO) system service requests to mailbox devices. Unlike most other
drivers, the mailbox driver is implemented within a loadable executive
image.

Processes sharing a mailbox generally identify it by an agreed-upon logical
name. Since a mailbox exists in memory, it can be shared by any process
running on a processor with access to that memory-either a uniprocessor
or any CPU in a multiprocessing system. Because processes running on
different VAXcluster system members do not share common memory, they
must communicate by mechanisms other than mailboxes.

Processes typically use a mailbox as a one-way communication path be­
tween two or more processes; one process reads messages written to the
mailbox by one or more other processes. The mailbox driver associates each
write request with a single read request; mailbox messages are read in the
order in which they are written. A message written to a mailbox cannot
be broadcast; it is read by only one process. Although each mailbox read
is paired with a mailbox write, VMS places no restrictions on the order in
which read and write requests are issued.

655

Mailboxes

A mailbox is created with a specified capacity to buffer messages written
to it that have not yet been read. Thus, a process can write a message to a
mailbox whether or not there is a pending read request. If there is a pending
read request, the message is read immediately; otherwise, the message is
buffered. A process can specify that its write request complete immediately.
By default, a write request does not complete until another process reads the
message.

When a process issues a read request to a mailbox, a buffered message
may or may not be present. A process can request that if there is no buffered
message, the read complete immediately. By default, a read request does not
complete until another process writes a message to the mailbox. The VMS

I/O User's Reference Manual: Part I provides more information on using
mailboxes.

There are two kinds of mailboxes: temporary and permanent. A temporary
mailbox is deleted automatically when no more processes have channels as­
signed to it. A permanent mailbox must be explicitly marked for deletion
using the Delete Mailbox ($DELMBX) system service. Once marked for dele­
tion, a permanent mailbox is deleted when no more processes have channels
assigned to it.

A mailbox can also be created in MA780 multiport memory. This option
loosely connects multiple VAX-11/780 processors or VAX-11/785 processors.
Processes on all the processors sharing an MA780 memory can communicate
through a mailbox in shared memory. At an application level, an MA780
shared memory mailbox differs from a local memory mailbox only in its
name. At an implementation level, however, there are significant differences.
This chapter describes only the implementation of local memory mailboxes.

23.2 LOGICAL NAMES OF MAILBOXES

656

Like any other 1/0 device, a mailbox has a device name specification in the
form ddcu. The mailbox device type, dd, is MB. Its controller designation,
c, is A. The unit number, u, is an integer from 1 to 9999.

Unlike those for other 1/0 devices, a particular unit number is not usu­
ally associated with a particular mailbox. The only mailboxes created with
specific unit numbers are those permanently defined in the executive (see
Section 23.3). When a mailbox is created, it is assigned the next available
unit number. Its unit number cannot be determined before the mailbox is
created.

Therefore, a process creating a mailbox usually also requests the creation
of a logical name that translates to the mailbox device name. Other processes
identify the mailbox by its logical name when they assign a channel to it.
Although a user-specified logical name is not required, accessing a mailbox
without one is difficult.

23.3 Mailbox Data Structures

Every logical name is associated with a logical name table. The $CREMBX
system service creates a logical name for a mailbox in one of two tables:

• The table LNM$TEMPORARY _MAILBOX for a temporary mailbox
• The table LNM$PERMANENT _MAILBOX for a permanent mailbox

LNM$TEMPORARY _MAILBOX is itself a logical name, whose default
translation is LNM$JOB, the jobwide logical name table. The default transla­
tion of LNM$PERMANENT _MAILBOX is LNM$SYSTEM, the systemwide
logical name table. Thus, temporary mailboxes, by default, can only be
shared by processes in the same job tree. Processes not in the same job
tree may share a temporary mailbox by redefining LNM$TEMPORARY _
MAILBOX to some shared logical name table. (For further information, see
the VMS System Services Reference Manual.)

In addition to automatic logical name creation for a mailbox being created,
VMS provides automatic logical name deletion for a mailbox being deleted.

Directed by the $CREMBX system service, the Create Logical Name
($CRELNM) system service stores the address of the logical name data struc­
ture in the mailbox UCB field UCB$1-LOGADR and the address of the mail.­
box UCB in the logical name data structure. (However, if the mailbox logical
name is a process-private name, $CRELNM clears UCB$1-LOGADR to pre~
vent possible race conditions at process deletion, when all process-private
logical names are deleted.)

A mailbox in MA780 multiport memory is distinguished from a local
memory mailbox by its logical name. The VMS System Services Reference
Manual discusses the format of logical names for shared memory objects,
including mailboxes.

23.3 MAILBOX DATA STRUCTURES

A mailbox device uses many of the same basic data structures that other I/O
devices use. These include

• A device data block (DDB)
• A controller request block (CRB)
• A unit control block (UCB) for each unit
• An object rights block (ORB) for each unit

However, since a mailbox is not a physical device and does not service
interrupts, it does not require an interrupt data block (IDB) or an adapter
control block (ADP).

Chapter 20 contains a further description of these data structures.
Unlike those of most other devices, the mailbox DDB and CRB are assem­

bled into the loadable executive image SYSTEM_PRIMITIVES, as are three
mailbox UCBs and ORBs.

657

Mailboxes

The first mailbox unit, MBAO, is the template from which $CREMBX
clones all other mailboxes. (See Chapter 21 for a description of template
device processing and IOC$CLONE_UCB.) Section 23.6 describes the use of
the second and third mailbox units.

A mailbox UCB contains several device-specific fields:

• UCB$LMB_MSGQ heads the queue of messages written to a mailbox
device.

The symbol UCB$LMB_MSGQ, which is local to the driver, is the same
offset as the symbol UCB$LFQFL.

• UCB$L_LOGADR contains the address of the mailbox device's logical
name block (LNMB) .

• UCB$L_MB_R_AST and UCB$L_MB_ W _AST head the read and write at­
tention asynchronous system trap (AST) lists, where AST control blocks
(ACBs) for attention ASTs are linked.

Section 23.5.1.1 describes the mailbox driver's use of attention ASTs.
The symbols UCB$L_MB_R_AST and UCB$L_MB_ W _AST are local to

the mailbox driver. They are the same offsets as UCB$LASTQFL and
UCB$L_ASTQBL.

• UCB$W _INIQUO contains the maximum space allocation for messages
written to the mailbox. No message written to the mailbox can be longer
than this value.

UCB$W _INIQUO is set to the $CREMBX argument BUFQUO if the argu­
ment is specified. Otherwise, the SYSGEN parameter DEFMBXBUFQUO
is used .

• UCB$W _BUFQUO contains the space currently available for messages. Ini­
tially, UCB$W _BUFQUO contains the value stored in UCB$W _INIQUO.
When a message is written to the mailbox, UCB$W _BUFQUO is reduced
by the size of the message. When the message is read, its size is added to
UCB$W _BUFQUO.

Figure 23.l depicts a mailbox UCB.
A message written to a mailbox is stored in a nonpaged pool data structure

called a message block. Figure 23.2 shows the layout of a mailbox message
block.

23.4 MAILBOX CREATION AND DELETION

23.4.1

658

Two system services are related specifically to mailbox use: $CREMBX and
$DELMBX.

$CREMBX System Service

The $CREMBX system service procedure, EXE$CREMBX in module SYS­
MAILBX, runs in kernel mode. It creates a virtual mailbox device named
MBAn and assigns an I/O channel to it or, if the mailbox already exists,
merely assigns an I/O channel. $CREMBX has seven arguments:

23.4 Mailbox Creation and Deletion

MB_MSGQ

MB_MSGQ+4

FLCK l TYPE l SIZE

MB_W_AST

MB_R_AST

MSGCNT I MSG MAX

INIQUO l BUFQUO

ORB

CPID

CAB

(104 bytes)

LOG A DR

SVAPTE

(16 bytes)

Figure 23.1
Mailbox Unit Control Block

Forward Link or Pointer to Start of Data

Backward Link or Pointer to User Buffer

1/0 Function Block Type Size of Block
Code

[Saved IRP Address Message Size in Bytes

Process ID of Sender (or 0)

Mailbox Message Data

Figure 23.2
Layout of Mailbox Message Block

• PRMFLG, a flag specifying whether the mailbox is to be permanent or
temporary

• CHAN, the address of a word in which the channel number assigned to the
mailbox by EXE$CREMBX is written

• MAXMSG, the maximum size of a message that can be sent to the mailbox
• BUFQUO, the number of bytes of nonpaged pool that can be used to buffer

messages sent to the mailbox
• PROMSK, the protection mask to be associated with the created mailbox
• ACMODE, the access mode to be associated with the channel to which the

mailbox is assigned

659

Mailboxes

660

• LOGNAM, the logical name to be assigned to a new mailbox or translated to
locate an existing mailbox

The CHAN argument is required; all others are optional.
EXE$CREMBX takes the following initial steps:

1. It verifies that the CHAN argument is write-accessible.
2. If the LOGNAM argument is present, EXE$CREMBX invokes MMG$MBX­

TRl:'fLOG, in module SHMGSDRTN, to determine whether the mailbox
is an MA780 shared memory mailbox.

3. EXE$CREMBX raises IPL to 2 to prevent process deletion and invokes
IOC$FFCHAN to find a free channel control block (CCB). IOC$FFCHAN
is discussed in Chapter 21.

4. It checks that the process has the necessary privilege to create the type
of mailbox specified in the PRMFLG argument: PRMMBX for a permanent
mailbox or TMPMBX for a temporary mailbox.

5. It locks the 1/0 database mutex for write access.
6. If the LOGNAM argument was omitted, EXE$CREMBX presumes that the

mailbox does not exist and must be created. It creates the mailbox, as
described in Section 23.4.1. It clears UCB$1-LOGADR to indicate that
the mailbox has no associated logical name and continues with step 11.

7. If the LOGNAM argument was specified, EXE$CREMBX requests the Trans­
late Logical Name ($TRNLNM) system service to obtain the address of
the mailbox UCB, if one exists. It passes the following arguments to
$TRNLNM:

-The name of the mailbox logical name table
-The logical name specified by the LOGNAM argument
-The maximized access mode, that is, the less privileged of the access

mode specified by the ACMODE argument and the access mode of the
requestor

-An item list element requesting the back pointer

8. If the logical name exists, EXE$CREMBX uses its back pointer contents
as the UCB address and continues with step 11.

9. If the logical name does not exist, EXE$CREMBX presumes that the
mailbox does not exist and must be created. It takes the steps described
in Section 23:4.1.

10. EXE$CREMBX requests the Create Logical Name ($CRELNM) system
service to create the logical name specified by the LOGNAM argument. It
passes the following arguments to the $CRELNM system service:

-The name of the mailbox logical name table
-The logical name specified by the LOGNAM argument
-The maximized access mode
-An item list element directing the $CRELNM system service to store

the address of the logical name block in UCB$L_LOGADR

23.4 Mailbox Creation and Deletion

11. EXE$CREMBX increments the reference count for that mailbox and as­
signs a channel to the mailbox by taking the following steps:

a. It stores the mailbox UCB address in CCB$1-UCB.
b. It stores the access mode at which the channel was assigned (plus

1) in CCB$B_AMOD. The access mode is biased by 1becausea0 in
CCB$B_AMOD indicates an unassigned channel. As usual, the access
mode at which the channel is assigned is the less privileged of the
access mode specified by the ACMODE argument and the access mode
of the requestor.

12. EXE$CREMBX stores the channel number in the address specified by the
CHAN argument. It unlocks the I/O database mutex, lowers IPL to 0, and
returns the success status SS$_NORMAL to its requestor.

EXE$CREMBX can create a temporary or a permanent mailbox depend­
ing on the value of the PRMFLG argument. To create a temporary mailbox, a
process must have sufficient byte count quota for the mailbox messages and
UCB. The quota is charged at mailbox creation and returned at mailbox dele­
tion. Because a permanent mailbox may survive the deletion of its creating
process, quota is not charged for its creation. Instead, PRMMBX, a privilege less
lightly granted than TMPMBX, is required for a process to create a permanent
mailbox.

For a temporary mailbox, EXE$CREMBX invokes IOC$CHKMBXQUOTA,
in module UCBCREDEL, to determine if the process buffered I/O byte count
quota (JIB$L_BYTCNT) can accommodate both of the following with a mar­
gin of 256 bytes left:

• The size of a mailbox UCB.
• The space to buffer mailbox messages, the buffer quota. (This value is the

BUFQUO argument if the argument was specified or the SYSGEN parameter
DEFMBXBUFQUO if the BUFQUO argument is absent.)

IOC$CHKMBXQUOTA invokes EXE$DEBIT _BYTCNT _BYTLM_NW to
charge the process buffered I/O byte count quota (JIB$L_BYTCNT) and byte
limit (JIB$L_BYTLM) for the size of the mailbox UCB and the mailbox
message buffer. If a quota is insufficient, IOC$CHKMBXQUOTA returns
an error status to EXE$CREMBX, which returns the error to its caller.

EXE$CREMBX invokes IOC$CLONE_UCB, in module UCBCREDEL, to
clone a new UCB and ORB from the template mailbox unit MBAO.
IOC$CLONE_UCB allocates sufficient nonpaged pool to create a new UCB
and ORB. It copies the template UCB and ORB to the newly allocated mem­
ory. It increments the value found in UCB$W_UNIT_SEED in the template
UCB and checks whether that unit number exists. If so, the next value is
tried. This continues until an available unit number is found or a maximum
of 9999 is reached. If that occurs, the unit number wraps to 1 and the search
continues.

661

Mailboxes

23.4.2

662

IOC$CLONE_UCB initializes the new UCB as follows: it links the new
UCB into the UCB list, sets the reference count to 1, marks the device online,
and loads the new ORB address into the UCB's ORB pointer field.

EXE$CREMBX further initializes the cloned UCB:

1. It stores the buffer quota in the buffer quota and initial buffer quota
fields, UCB$W _BUFQUO and UCB$W _INIQUO.

2. It clears the owner field, UCB$1-PID.
3. It modifies the ORB associated with the UCB to specify the system,

owner, group, and world format protection mask, and stores the PROMASK

argument in ORB$W _PROT.
4. It stores the current process's user identification code (UIC) in the ORB

owner UIC field.
5. It stores the maximum message size in the UCB device buffer size field.

This value is the MAXMSG argument if the argument is specified. Other­
wise, it is the SYSGEN parameter DEFMBXMXMSG.

6. It clears the current message count, UCB$L_DEVDEPEND.
7. It stores the sum of the UCB size and the buffer quota in UCB$W_

CHARGE.
8. If the mailbox is permanent, EXE$CREMBX sets bit UCB$V _PRMMBX

in UCB$W _DEVSTS.
9. If the mailbox is temporary, EXE$CREMBX takes the following steps:

a. It sets bit UCB$V _DELMBX in UCB$W _DEVSTS. This marks the
mailbox for deletion on the last channel deassignment.

b. It invokes IOC$DEBIT _UCB, in module UCBCREDEL, to copy the
master PID charged for the UCB (JIB$L_MPID) into the charge PID
field (UCB$L_CPIDJ.

In earlier versions of VMS, IOC$DEBIT_UCB decremented the job in­
formation block (JIB) byte count quota and byte limit fields. In VMS Ver­
sion 5, this function has been moved to EXE$DEBIT _BYTCNT _BYTLM_
NW, which now charges quotas while holding the JIB spinlock.

Figure 23.3 shows the data structures associated with mailbox creation.

$DELMBX System Service

The $DELMBX system service marks a mailbox for deletion. Requesting
$DELMBX to mark a temporary channel for deletion is superfluous; it can
be deleted simply by deassigning the channel to it. The $DELMBX system
service has only one argument: CHAN, the number of the channel assigned
to the mailbox to be deleted.

The $DELMBX system service procedure, EXE$DELMBX in module SYS­
MAILBX, runs in kernel mode. EXE$DELMBX .invokes IOC$VERIFYCHAN
to verify· the channel number and get the address of the CCB. Once it has

23.4 Mailbox Creation and Deletion

P1 Space - Executive Nonpaged
Process A Data Area

Mailbox UCB 0,
CCB Template

UCB ...+--

Paged Pool

Logical Name Block
(optional)

Equivalence name is
_MBAn:

----------+------------r-----------P1 Space - Process B Nonpaged Pool
CCB Mailbox UCB n Next Mailbox UCB

r-

UCB --+--

LINK

LOGADR

Mailbox ORB

Figure 23.3
Data Structures Associated with Mailbox Creation

located the CCB, EXE$DELMBX gets the UCB address from CCB$1-UCB
and then verifies the following:

• That the UCB is a mailbox (DEV$V _MBX in UCB$L_DEVCHAR is set)
• That, if the mailbox is permanent, the process has PRMMBX privilege

If these conditions are met, EXE$DELMBX marks a permanent mail­
box for deletion by setting bit UCB$V _DELMBX in UCB$W _DEVSTS. The
$CREMBX system service sets bit UCB$V _DELMBX for a temporary mail­
box when the mailbox UCB is created.

The mailbox is actually deleted by IOC$DELETE_UCB, in module UCB­
CREDEL, when the reference count goes to zero (after the last channel
assigned to it has been deassigned). Last channel processing is performed
by IOC$LAST_CHAN, in module IOSUBNPAG. IOC$LAST _CHAN invokes
the driver cancel 1/0 routine with an appropriate cancellation reason code.

663

Mailboxes

The mailbox driver, MBDRIVER, in module MBDRNER, deletes the logi­
cal name, if any, as part of the last channel processing done by its cancel
1/0 routine. !See Chapter 21 for a discussion of last channel processing and
Section 23.5.4 for details on the mailbox driver's cancel 1/0 routine.)

23.5 MAILBOX DRIVER

23.5.1

23.5.1.1

664

The following sections describe the functions of the mailbox driver, in mod­
ule MBDRNER. Note that mailboxes in MA780 multiport memory are
supported by a separate, loadable driver, [DRIVER]MBXDRIVER, which this
chapter does not discuss.

MBDRIVER uses IPL$_MAILBOX, the highest fork interrupt priority level
!IPL) as its fork IPL. It does this to prevent possible synchronization problems
with other drivers that reference mailboxes while in their fork processes !for
example, to send a "device is off line" message to the operator's mailbox). It
uses the MAILBOX spinlock as both the fork lock and the device lock.

Processing Set Mode Requests

A process uses. the 10$_SETMODE function to request MBDRIVER to per­
form three different operations. The function modifier determines the spe­
cific operation .

• 10$M_READATTN-Request an attention AST when a read request is
·issued for the mailbox

• 10$M_ WRTATTN-Request an attention AST when a write request is
issued for the mailbox

• 10$M_SETPROT-Set the volume protection on the mailbox

Only one of the modifiers can be specified at one time. If no modifier is
specified, MBDRIVER uses I0$M_ WRTATTN by default.

AST Notification of Mailbox Read or Write Requests. When an image re­
quests a set mode function to establish either a read or a write attention AST,
MBDRNER's set mode FDT routine, FDTSET, takes the following steps:

1. It verifies that the process may access the mailbox.
2. It invokes COM$SETATTNAST, in module COMDRVSUB, to allocate,

initialize, and queue an ACB to the appropriate listhead in the mailbox
UCB. FDTSET passes the address of the listhead, either UCB$L_MB_ W _
AST for write attention AST requests or UCB$1-MB_R_AST for read at­
tention AST requests. Chapter 7 provides more information on attention
AS Ts.

3. It acquires the MAILBOX spinlock, raising IPL to IPL$_MAILBOX, to
synchronize access to the UCB.

4. It determines if the notification condition is met.

23.5.1.2

23.5.2

23.5 Mailbox Driver

-If the request is for a write attention AST, there must be at least one
message queued to the mailbox (UCB$W _MSGCNT is not equal to
zero).

-If the request is for a read attention AST, the UCB must be busy
(UCB$V _BSY in UCB$W _STS is set).

If the appropriate condition is met, FDTSET invokes COM$DELATTN­
AST, in module COMDRVSUB, to queue the attention AST to the re­
questing process.

Otherwise, MBDRIVER later queues an attention AST to the process
when a read or write request, as appropriate, is issued for the mailbox.

5. FDTSET releases the MAILBOX spinlock and jumps to EXE$FINISIIlOC,
in module SYSQIOREQ, to complete the I/O request (see Chapter 21).

Specifying Access Protection of a Mailbox. When an image requests a set
mode function to set the protection on a mailbox, FDTSET takes the follow­
ing steps:

1. It verifies that the requesting process either has BYPASS privilege or owns
the UCB. It examines the mailbox ORB for ownership verification.

2. It acquires the MAILBOX spinlock, raising IPL to IPL$_MAILBOX, to
synchronize access to the UCB.

3. It sets the flag specifying that the standard system, owner, group, world
protection mask is valid (ORB$M_PROT_l6 in ORB$B_FLAGS) and
moves the P2 argument of the $QIO request to the protection mask word
(ORB$W_PROT) of the ORB.

4. It releases the MAILBOX spinlock and transfers control to EXE$FINISH­
IOC to complete the I/O request.

Processing a Mailbox Write Request

When an image requests the $QIO system service to request a mailbox write,
MBDRIVER's write FDT routine, FDTWRITE, takes the following steps:

1. It invokes WRITECHECKIO, in module MBDRIVER, to validate the re­
quest. The following criteria must be met:

-The process must have write access to the mailbox as determined by
EXE$CHKWRTACCES, in module EXSUBROUT.

-The message size must be less than or equal to the maximum message
size for the mailbox (UCB$W _DEVBUFSIZ). If the message size exceeds
the maximum, the request is aborted with a completion status of SS$_
MBTOOSML.

-The process must have read access to the specified buffer (from which
the mailbox message will be read) as determined by EXE$WRITECHK,
in module SYSQIOFDT.

665

Mailboxes

666

WRITECHECKIO saves the address of the specified buffer in IRP$L_
MEDIA.

2. FDTWRITE invokes EXE$ALONONPAGED, in module MEMORYALC,
to allocate a message block from nonpaged pool.

3. It initializes the block, as shown in Figure 23.2.
4. It loads the message block with the data found in the specified buffer.
5. It saves the current IPL and acquires the MAILBOX spinlock, raising IPL

to IPL$_MAILBOX.
6. It determines if there is enough buffer quota remaining for the message.

If not, it releases the spinlock, restores the saved IPL, and deallocates the
message block to nonpaged pool. It then performs one of the following
actions:

-If the message size is less than the total space allowed for messages
(UCB$W _INIQUO) and resource wait mode is enabled, as it is un­
less the $QIO no-resource-wait modifier 10$M_NORSWAIT was spec­
ified, FDTWRITE transfers control to EXE$IORSNWAIT, in module
SYSQIOFDT, to place the process into a RWMBX resource wait state.
Chapter 12 gives details on resource waits.

-If the message size is less than the total space allowed for messages
and resource wait mode is disabled (the no-resource-wait modifier,
10$M_NORSWAIT, was specified), FDTWRITE transfers control to
EXE$ABORTIO, in module SYSQIOREQ, with a completion status of
SS$_MBFULL.

-If the message size is larger than UCB$W_INIQUO, FDTWRITE trans­
fers control to EXE$ABORTIO to abort the 1/0 request with a comple­
tion status of SS$_MBTOOSML.

7. If there is enough room for the message, FDTWRITE invokes INS­
MBQUEUE, in module MBDRIVER. INSMBQUEUE takes the following
steps:

a. It increments the count of outstanding messages (UCB$W _MSGCNT)
and saves a copy of the count in UCB$1-DEVDEPEND.

b. It subtracts the size of the new message from the buffer quota field
UCB$W _BUFQUO.

c. If the UCB$V _BSY bit is set (if there is a read request outstanding), it
jumps to FINISHREAD, in module MBDRIVER (see Section 23.5.3.3).
FINISHREAD uses the message block to complete the outstanding
read request, whose 1/0 request packet IIRPJ it locates from UCB$L_
IRP.

d. If the UCB is not busy, the message block must be queued to wait for
a read request. The message block contains the address of the write
request IRP and the actual data. INSMBQUEUE inserts the message
block at the tail of the message queue, as shown in Figure 23.4.

23.5.3

23.5.3.1

23.5 Mailbox Driver

Mailbox UCB Message Block Message Block

-i1--_M_B __ M_S_G_0_-1~ I~

,-t. Saved IRP IRP =0

IRP=O

Write Request IRP

UCB$V _BSY = 0 --!

~ MEDIA

Figure 23.4
Queued Mailbox Messages

e. lNSMBQUEUE transfers control to COM$DELATINAST to queue
any write attention ASTs to the appropriate processes.

8. FDTWRITE releases the spinlock, restoring the saved IPL.
9. If the 10$M_NOW modifier was specified, FDTWRITE clears the saved

lRP address field in the message block. It transfers control to EXE$FlN­
lSHIOC to record 1/0 status block (lOSB) information in the lRP and
complete the 1/0 request through 1/0 postprocessing with a completion
status of SS$_NORMAL.

10. If the I0$M_NOW modifier was not specified, FDTWRITE transfers con­
trol to EXE$QIORETURN, in module SYSQIOREQ, to complete the
$QIO system service. The processing of the write request is stalled until
a read request is issued.

Processing a Mailbox Read Request

MBDRIVER processes a read request in three phases: FDT preprocessing,
start I/O processing, and request completion.

FDT Read Request Processing. When an image requests the $QIO system
service to read a message from a mailbox, MBDRIVER's read FDT routine,
FDTREAD, takes the following steps:

1. It invokes READCHECKIO, in module MBDRIVER, to validate the re­
quest. The following criteria must be met:

667

Mailboxes

23.5.3.2

668

-The process must have read access to the mailbox as determined by
EXE$CHKRDACCES, in module EXSUBROUT.

-The message size must be less than or equal to the maximum message
size for the mailbox jUCB$W _DEVBUFSIZ). If the message size exceeds
the maximum, the request is aborted with a completion status of SS$_
MBTOOSML.

-The process must have write access to the specified buffer lin which the
mailbox message will be placed) as determined by EXE$READCHK, in
module SYSQIOFDT.

READCHECKIO saves the address of the specified buffer in IRP$L_
MEDIA.

2. FDTREAD sets the mailbox 1/0 bit in the IRP jIRP$V _MBXIO in IRP$W _
STS). The 1/0 postprocessing special kernel mode AST routine announces
the availability of the mailbox resource when it processes an 1/0 request
with the mailbox 1/0 bit set.

3. If the 10$M_NOW modifier was not specified, FDTREAD transfers con­
trol to EXE$QIODRVPKT to queue the IRP. MBDRIVER's start 1/0
routine does the rest of the processing of this request.

4. If the 10$M_NOW modifier was specified, FDTREAD takes the following
steps:

.a. It acquires the MAILBOX spinlock, raising IPL to IPL$_MAILBOX.
b. If any message is available jUCB$W_MSGCNT is nonzero), it trans­

fers control to EXE$QIODRVP:{{T to queue the IRP. MBDRIVER's
start 1/0 routine does the rest of the processing of this request.

c. If no message is available, it releases the spinlock and transfers con­
trol to EXE$FINISHIOC to complete the 1/0 operation with a final
1/0 status of SS$_ENDOFFILE.

Start 1/0 Read Request Processing. STARTIO, which is MBDRIVER's start
1/0 routine, performs the following steps while holding the MAILBOX
spinlock:

1. It tries to dequeue a message written to the mailbox from the UCB
listhead at UCB$L_MB_MSGQ.

2. If the message queue is empty, it transfers control to COM$DELATTN­
AST to queue any pending read attention ASTs to the appropriate
processes.

The mailbox UCB busy bit remains set. As a result, subsequent read
requests are queued to the UCB. The current read request does not com­
plete until a write request is issued. When the current read request is
completed, STARTIO processes the next read request in the queue.

3. If STARTIO dequeues a message, it transfers control to FINISHREAD.

23.5.3.3

23.5 Mailbox Driver

Read Request Completion. STARTIO and INSMBQUEUE transfer control
to FINISHREAD to complete the current read request by matching it with
a message block built by a write request. STARTIO transfers control to
FINISHREAD when it processes a read request and there is at least one
message in the queue. INSMBQUEUE transfers control to FINISHREAD
when a write request is to be queued and there is a read request waiting.

For each request, FINISHREAD loads IOSB information into the request's
associated IRP and passes the IRP to a routine for insertion onto the 1/0
postprocessing queue. Since FINISHREAD matches a read request to a write
request and each request has a unique IRP, it must handle both IRPs in this
manner. It locates the read request's IRP from the current IRP field UCB$1-
IRP and the write request's IRP from the message block.

FINISHREAD takes the following steps:

1. It obtains the read request's IRP from UCB$L_IRP.
2. It holds a message block, either a newly constructed one in the case

of INSMBQUEUE or a dequeued one in the case of STARTIO. It stores
the address of the message block (see Figure 23.2) in IRP$L_SVAPTE in
the read request's IRP. The 1/0 postprocessing routine uses this field to
determine the address of the message to be copied to the user's buffer.
Chapter 21 provides more information on 1/0 postprocessing.

3. FINISHREAD initializes the first two longwords in the message block
with the values expected by the I/O postprocessing routine. The first
longword points to the message data, stored in the message block, and
the second longword points to the user buffer, where the data will be
copied by the I/O completion special kernel mode AST. It obtains the
address of the user's buffer from IRP$L_MEDIA in the read request IRP.

4. It increases the message quota (UCB$W_BUFQUO) by the size of the
message to reflect the delivery of this message.

5. It creates a fork thread to declare the availability of the mailbox resource
if bit RSN$_MAILBOX is set in SCH$1-RESMASK, indicating that a
process is waiting for the resource, and if the mailbox fork block is
available.

6. It stores the final byte count in the read request IRP.
7. It decrements the message count in UCB$W _MSGCNT and copies that

value to UCB$1-DEVDEPEND.
8. It obtains the write request's IRP address (or a zero) from the message

block. If the write request specified the 10$M_NQW modifier, or if the
message block was created by the internal routine EXE$WRTMAILBOX,
no write request IRP exists. In these cases, FINISHREAD finds a zero in
the message block and branches to step 11 to complete the read request
IRP. Section 23.5.6 describes EXE$WRTMAILBOX.

Otherwise it places the process ID (PID) of the process that issued

669

Mailboxes

23.5.4

670

the read request in IRP$1-MEDIA + 4 so that it will become the high­
order longword of the IOSB for the write request $QIO. It stores the
SS$_NORMAL success code in the low-order word of the IOSB IIRP$L
MEDIA) of the write request IRP and the final byte count at IRP$L
MEDIA+ 2.

9. It invokes COM$POST, in module COMDRVSUB, to insert the write
request's IRP on the I/O postprocessing queue. FINISHREAD invokes
this routine, rather than invoking the REQCOM macro, so that another
IRP is not dequeued !because only read request IRPs are queued to the
UCB waiting to enter the start I/O routine).

10. It places the PID of the process that issued the write request in Rl. If the
internal routine EXE$WRTMAILBOX built the message block, this PID
may be inaccurate.

11. It stores the completion status and transfer count in RO. The completion
status is either SS$_NORMAL or, if the message block function code is
IO$_ WRITEOF, SS$_ENDOFFILE.

12. To complete the read request, it invokes the REQCOM macro, which
transfers control to IOC$REQCOM. The value in Rl becomes the high­
order longword of the read request's IOSB and the value in RO becomes
the low-order longword. IOC$REQCOM dequeues the next request and
the start I/O sequence is repeated. If no read request is outstanding, the
busy bit is cleared.

Figure 23.5 shows the data structures involved in read request completion.

Mailbox Cancel 1/0 Routine

The mailbox driver's cancel I/O routine, CANCELIO, performs functions
depending on one of three cancellation reason codes: CAN$C_CANCEL,
CAN$C_AMBXDGN, or CAN$C_DASSGN .

• For a reason code of CAN$C_CANCEL, CANCELIO aborts the outstanding
I/O for a particular process and channel on a mailbox unit. It then flushes
the read and write attention AST queues (see Chapter 7) and declares the
mailbox resource available if necessary .

• For a reason code of CAN$C_AMBXDGN, CANCELIO tests bit UCB$V _
DELMBX. If it is set, CANCELIO synchronizes its access to the logical
name table and deletes the mailbox logical name if one exists. It then
deallocates all queued message blocks to nonpaged pool and marks the
mailbox UCB for deletion.

• For a reason code of CAN$C_DASSGN, CANCELIO performs all the func­
tions associated with the CAN$C_CANCEL reason code. Additionally,
CANCELIO checks whether the mailbox's reference count has fallen to
zero. If so, it performs all the functions associated with the CAN$C_
AMBXDGN reason code.

23.5.5

23.5 Mailbox Driver

Mailbox UCB

Read Request IRP

IRP

Dequeued Message Block

SVAPTE Pointer to Data

Pointer to User Buffer

UCB$V _BSY = 1

Saved IRP

i-

Message Data

Write Request IRP
~

Reader's PID

Figure 23.5
Read Request Completion

Mailbox Messages from Drivers

EXE$SNDEVMSG, in module MBDRIVER, builds a device-specific mailbox
message and inserts it onto a message queue. VMS routines like drivers
cannot assume process context and so cannot use the $QIO system service
to write a message to a mailbox, in particular, to the mailbox of the oper­
ator communication process (OPCOM). Such routines use EXE$SNDEVMSG
instead.

EXE$SNDEVMSG must be ~voked at or below mailbox fork IPL, IPL$_
MAILBOX. The driver provides its device UCB address, the address of a
mailbox UCB to which to queue a message, and the type of message to
create.

EXE$SNDEVMSG performs the following:

1. It acquires the MAILBOX spinlock, raising IPL to IPL$_MAILBOX.
2. It allocates space for the message on the stack.
3. It inserts a message code and device unit number into the message.

System mailbox message codes are defined by the $MSGDEF macro.

671

Mailboxes

23.5.6

672

4. It inserts the device name in the form node$controller into the message
by invoking IOC$CVT _DEVNAM.

5. It invokes EXE$WRTMAILBOX (see Section 23.5.6) to allocate a message
block, complete the message, and queue it to the appropriate mailbox
unit.

6. EXE$SNDEVMSG cleans the stack and releases the MAILBOX spinlock
before returning to its invoker.

Alternative Mailbox Write Request Processing

EXE$WRTMAILBOX performs message buffer allocation and message queu­
ing, just as FDTWRITE does. However, EXE$WRTMAILBOX executes within
the limitations of system context. In addition, it does not reference any IRP
fields, so it is available to driver code that bypasses the $QIO system service
and that has no IRP to describe its mailbox 1/0 request. System routines
such as EXE$SNDEVMSG and EXE$SNDOPR invoke EXE$WRTMAILBOX
to complete mailbox message processing.

EXE$WRTMAILBOX performs the following:

1. It acquires the MAILBOX spinlock.
2. It compares the message size to UCB$W _BUFQUO to ensure that there is

enough remaining quota; if not, it returns the error status SS$_MBFULL.
3. It compares the message size to UCB$W _DEVBUFSIZ to ensure that the

message does not exceed the maximum size; if the message exceeds
the maximum size, EXE$WRTMAILBOX returns the error status SS$_
MBTOOSML.

4. It verifies that the owner protection field in the ORB allows write access
to the mailbox; if not, EXE$WRTMAILBOX returns the error status SS$_
NOPRIV.

5. EXE$WRTMAILBOX invokes EXE$ALONONPAGED to allocate a mes­
sage block from nonpaged pool.

6. It initializes the block, as shown in Figure 23.2. However, it clears the
message block's packet address field because no IRP is associated with the
request. The PID is obtained from the process control block (PCB) found
in the per-CPU database field CPU$1-CURPCB. Since EXE$WRTMAIL­
BOX might be executing in system context, this PID is not necessarily
relevant.

7. It copies the data to be written to the mailbox into the message block.
8. It invokes INSMBQUEUE to insert the message onto the queue or to

complete an outstanding read request. Section 23.5.2 describes INS­
MBQUEUE.

9. Finally, EXE$WRTMAILBOX releases one instance of MAILBOX spin­
lock ownership and returns to its caller.

23.6 Mailbox Use by the VMS Executive and Components

23.6 MAILBOX USE BY THE VMS EXECUTIVE AND COMPONENTS

The VMS executive uses mailboxes in a number of different ways:

23.6.1

• A process establishes a termination mailbox to receive status information
about a subprocess it creates. Chapters 25 and 28 offer more information
on termination mailboxes .

• A process can monitor error logging activity as it happens through the
use of an error log mailbox. Chapter 32 describes the error log mailbox
mechanism .

• When a process assigns a channel to a nonshareable device, it can request
an associated mailbox to receive device status information such as the
arrival of unsolicited input. The description of the Assign 1/0 Channel
($ASSIGN) system service in Chapter 21 provides more information.

When a process spawns a subprocess through the Digital command lan-
guage (DCL), DCL establishes a termination mailbox for the spawned subpro­
cess. It also creates a mailbox to write logical names and symbol definitions
to the subprocess and another mailbox to receive attach requests from the
subprocess. Chapter 27 describes the use of these mailboxes in more detail.

The sections that follow describe the use of mailboxes to communicate
with the job controller, with OPCOM, with the audit server, and with the
file system.

Job Controller Mailbox Use

Symbiont processes and the VMS executive communicate with the job con­
troller through the job controller's input mailbox, MBAl. Various modules
in the executive pass information and requests to the job controller through
this mailbox. System services that request information from the job con­
troller, such as Send Job Controller ($SNDJBC) and Get Queue Information
($GETQUI), package their requests as mailbox messages. Unsolicited ter­
minal input, unsolicited card reader input, connection manager notification
that a node has left the V AXcluster, and notification of process termination
are all events communicated to the job controller though messages to MBAl.

INI$DEVICE_DATABASE, in module PERMANENT _DEVICE_DATA­
BASE, stores the UCB address of MBAl into the field SYS$AR_JOBCTLMB
during system initialization. The mailbox is defined with a reference count
of 1, which protects it from allocation and deletion.

The job controller's initialization routine uses the symbol SYS$C_JOB­
CTLMB, which has the value MBAl, to assign a channel to the input mail­
box.

Before the job controller creates a symbiont process, it creates an input
mailbox for that symbiont and obtains the new mailbox device name us­
ing the Get Device/Volume Information ($GETDVI) argument DVI$_DEVNAM.

673

Mailboxes

23.6.2

23.6.3

674

Then it requests the actual Create Process ($CREPRC) system service, speci­
fying the new mailbox as the symbiont's input device and the job controller's
input mailbox as the symbiont's output device.

To communicate with a symbiont, the job controller routine SEND_
SYMBIONT _MESSAGE writes to the symbiont's mailbox. It uses the $QIO
modifiers 10$M_NOW and 10$M_NORSWAIT so that its 1/0 operations
complete immediately.

Operator Communication Process Mailbox Use

A device or process communicates with OPCOM, the operator commu­
nication process, through OPCOM's input mailbox, MBA2. INl$DEVICE_
DATABASE stores the address of the OPCOM mailbox's UCB in SYS$AR_
OPRMBX during system initialization. This mailbox is defined with a refer­
ence count of 1 and cannot be allocated or deleted.

OPCOM's initialization routine assigns a channel to its mailbox and sets
the mailbox protection. It posts an initial mailbox read request, specifying
the AST procedure READ_MAILBOX, in module [OPCOM]OPCOMMAIN.

The AST is triggered by a write to OPCOM's mailbox. The AST procedure
allocates a work queue element, reads the OPCOM mailbox, and copies the
data from the mailbox into the work queue element. It inserts the element
on OPCOM's work queue, wakes the main loop, and reissues the mailbox
read request.

The main loop services the work queue, reading messages from it and
servicing each based on its function code. Most messages come through
the Send Message to Operator ($SNDOPR) system service, although device
online/offline messages, for example, are sent through EXE$SNDEVMSG.

Audit Server Mailbox Use

Communication with AUDIT _SERVER, the audit server process, occurs
via the audit server mailbox, MBA3. During system initialization, INI$DE­
VICE_DATABASE stores the UCB address of MBA3 into the field SYS$AR_
AUDSRVMBX. The audit server's initialization routine assigns a channel
to this mailbox and posts an initial mailbox read request, specifying the
AST procedure AUDSRV$QUEUE_MESSAGE, in module [AUDSRV]AUD­
SERVER.

[CLIUTL]SETAUDIT, which implements the DCL SET AUDIT command,
passes information and requests to the audit server through this mailbox. It
triggers the AST by writing to the mailbox. The AST procedure allocates a
message queue element, reads the AUDIT _SERVER mailbox, and copies the
data from the mailbox into the message queue element. It inserts the element
on AUDIT _SERVER's work queue, wakes the main loop, and reissues the
mailbox read request.

23.6.4

23.6 Mailbox Use by the VMS Executive and Components

OPCOM's initialization routine also assigns a channel to the audit server
mailbox. While security auditing is enabled, OPCOM inserts a message
in the audit server mailbox whenever a security alarm is generated. The
$NSADEF macro defines the format of both the security alarm messages
and the SET AUDIT messages.

File System Bad Block Mailbox

File system initialization creates a permanent mailbox named ACP$BAD­
BLOCK_MBX. This mailbox provides a path for communication with bad
block recovery processes.

When a driver notifies the file system (through 1/0 postprocessing) of a
suspected bad block, the file system flags the file header. When the file
containing the detected bad block is deleted, another file system routine
performs further processing. It assigns a channel to the bad block mailbox,
writes a message to the mailbox indicating the device UCB and file ID
number, and creates a process running the image BADBLOCK. The bad
block process assigns a channel to the mailbox and reads the message for
instructions. See Chapter 24 for more information on bad blockprocessing.

675

24 Miscellaneous 1/0 Topics

Lull'd in the countless chambers of the brain,
Our thoughts are link'd by many a hidden chain;
Awake but one, and lo, what myriads arise!
Each stamps its image as the other flies.

Alexander Pope

This chapter presents a number of miscellaneous 1/0-related topics. The first
few sections highlight techniques used by selected device drivers, techniques
that aid an understanding of the VMS I/O subsystem and that are not de­
scribed in the VMS Device Support Manual. No attempt is made to discuss
each VMS device driver, nor is every feature of a particular driver described.
For detailed descriptions of the features and capabilities provided by each
supported device driver, see the VMS I/0 User's Reference Volume.

Additional topics, such as bad block processing for disks, the Breakthrough
($BRKTHRU) system service, and other informational system services, are
covered in this chapter.

24.1 CLASS AND PORT DRIVERS

676

VMS uses a layered approach for certain device drivers. The class driver,
which is the functional layer, handles operations on a certain class of device,
such as disk, tape, or terminal. The port driver, which is the communications
layer, handles operations that depend on the protocol and hardware used to
communicate with the actual device and controller.

VMS class and port device drivers include the following:

• The terminal class driver, TTDRIVER
• Terminal port drivers, such as DZDRIVER and YIDRIVER
• The mass storage control protocol (MSCP) disk driver, DUDRIVER
• The tape MSCP (TMSCP) driver, TUDRIVER
• System communication services (SCS) port drivers, such as PADRIVER and

PUDRIVER
• The small computer systems interface (SCSI) disk driver, DKDRIVER
• The SCSI tape driver, MKDRIVER
• SCSI port drivers, such as PKNDRIVER and PKSDRIVER

In each case, the class driver is bound to a specific port driver through
a system data structure. Through this binding, the class driver is able to
invoke routines in the port driver in a generic fashion, and vice versa.

For example, using the following instruction, the MSCP disk class driver
invokes a port-specific routine to send a message over the port:

24.1 Class and Port Drivers

JMP ©PDT$L_SNDCNTMSG(R4) ;Jump to PORT routine

In this example, the binding data structure is the port descriptor table
(PDT), which contains pointers to port-specific routines for well-defined
functions such as sending a message over the port. A port driver is really
a set of port-specific subroutines for one or more class drivers.

Both the MSCP disk class driver and the TMSCP tape class driver support
devices that communicate using a Digital protocol known as systems com­
munication architecture (SCA). Figure 24.1 shows a conceptual diagram of
SCA. A brief description of SCA follows in Section 24.1.1.

SCSI disk and tape class drivers implement many of the same features as
their MSCP counterparts; however, they use a different protocol to commu­
nicate with the controllers. SCSI drivers are not discussed in this book.

The terminal class and port drivers differ substantially from the other
drivers and are discussed in Section 24.2.

Host Remote Device

Remote
Process Application

or Device

~
$010

Class Server
Driver

scs scs

Port Port
Driver Driver

t
I- ___ Software* _____,

r----·--------
Hardware

~

Port Port

J Device Device

£ Communications Mechanism

*It is possible for the remote device to implement the port driver and server in hardware.

Figure 24.1
Conceptual Diagram of Systems Communication
Architecture

1

677

Miscellaneous 1/0 Topics

24.1.1

24.1.2

678

Implementation of SCA on VMS

SCA defines a communications layer and the external interface to that layer.
The VMS implementation of SCA is known as SCS. An SCA port driver
implements SCS on a specific port deviCe. VMS SCA port drivers include
the following:

• PADRNER for the computer interconnect (CI) adapters, such as the CI780,
CI750, BCI750, and CIBCI

• PBDRIVER for the DEBNT, DEBNK, and TBK70 controllers
• PUDRIVER for UNIBUS port devices, such as UDASO and TU81; Q22-bus

port devices, such as RDS2 and TKSO; and VAXBI port devices, such as
KDBSO

• PEDRIVER, which implements SCA over the network interconnect (NI)
• PIDRNER for Digital storage systems interconnect (DSSI) controllers,

which are integrated with disks like the RF30 and RF71, and the KFQSA,
which is the Q22-bus-to-DSSI adapter

An SCA class driver uses SCS as a communications medium for some
higher level functions or protocols. A class driver implements the functional
layer and performs operations on a user-visible device without regard for the
SCA communications tr,ansport used.

Currently there are three protocols in the function layer that call SCS to
communicate information:

• DECnet-VAX, which uses SCS for communication over the CI. The CI
driver for DECnet is CNDRIVER .

• MSCP, a general protocol designed to describe all types of disk operation.
It is implemented by controllers for Digital Storage Architecture (DSA)
disks, such as the KDBSO and the HSCSO, and by the software MSCP server
supplied with VMS. The MSCP disk class driver is DUDRIVER .

• TMSCP, a general tape protocol designed to describe all types of tape
operations. It is implemented by controllers for tape drives, such as the
TA78, TU81, and TKSO. The TMS.CP class driver is TUDRNER.

The disk class driver can communicate to an MSCP server through any
SCA port driver. Similarly, the tape class driver can use any SCA port driver
to communicate to a TMSCP device. The DECnet class driver uses the CI
port driver exclusively.

1/0 Processing

When a user application performs I/O through a class and port driver, a
channel must be assigned to the class driver. The application requests I/O
operations on that channel.

The following sequence illustrates how SCA class and port drivers com­
municate information from a process on a host system to a remote device.
The disk class driver is used as an example.

24.2 Terminal Driver

1. The process on the host system requests an 1/0 operation of a class driver.
The Queue 1/0 Request ($QIO) system service validates the 1/0 request
·and describes it in an 1/0 request packet (lRP). The $QIO system service
passes the IRP to the class driver.

2. The class driver. translates portions of the IRP to an MSCP request.
Parameters of the MSCP request include the following:

-Unit number of the device
-Function code, such as read or write, of the operation requested
-Starting logical block number
-Number of bytes to transfer

The class driver then initializes fields in a class driver request packet
(CDRP). A CDRP contains information necessary for SCS operations. Fig­
ure 24.2 shows the layout of a CORP. As a convenience to the $QIO/class
driver interface, a CDRP is designed to be an extension of an IRP.

3. The class driver then invokes SCS to transmit the MSCP request to the
MSCP server.

4. The SCS operations are interpreted by the port driver, which then com­
municates the 1/0 request to a remote port driver.

5. The remote port driver communicates the request to the MSCP server.
6. The server acts on the MSCP request and passes the 1/0 request to the

remote application or device.

24.2 TERMINAL DRIVER

The VMS terminal driver is made up of one class driver and a number of
device-specific port drivers. The terminal class driver consists of device­
independent routines for terminal 1/0 processing. A terminal port driver
contains routines that are specific to the actual transmission and reception
of characters on a particular type of hardware. This section presents a brief
overview of terminal 1/0 processing.

Note that the terminal class and port drivers do not communicate using
the SCS protocol, nor do the terminal port devices conform to the SCA stan­
dards. The terminal class driver, TTDRIVER.EXE, contains function decision
table (FDT) routines and other device-independent routines. The port drivers
contain interrupt service routines and other controller-specific subroutines.
The logical components of the terminal 1/0 subsystem are illustrated in
Figure 24.3.

The class and port driver images are separate, loadable images. Support for
a new terminal controller can be added in a new port driver. The following
port drivers are currently supplied with VMS:

• DZDRIVER for DZl 1 and DZ32 controllers
• YCDRIVER for DMF32 and DMZ32 controllers
• YFDRIVER for DHUll, DHVll, DSH32, DHQll, and CX controllers

679

Miscellaneous 1/0 Topics

680

FQFL

FQBL

FLCK l CD_TYPE I CDRPSIZE

FPC

FR3

FR4

SAVD_RTN

MSG_BUF

RSPID

CDT

RWCPTR

(Either of the following extensions may be used)

ENDMSGSIZ

Figure 24.2

LBUFH_AD

LBOFF

RBUFH_AD

RBOFF

XCT_LEN

(reserved)

LBUFHNDL
(12 bytes)

UBARSRCE

DUTUFLAGS

l
Class Driver Request Packet

DUTUCNTR

• YIDRIVER for DMB32 and DHB32 controllers

Block
transfer
extension

Class
driver
extension

• YEDRIVER for MicroVAX 2000 and 3100 family systems' serial lines
• Various CPU-specific console port drivers built into SYSLOAxxx images

(see Section 24.4)

When the system is bootstrapped, the secondary bootstrap program, SYS­
BOOT, reads the terminal class driver image into nonpaged pool. The execu­
tive initialization routine EXE$INIT, in module INIT, creates the necessary
linkages between the terminal class driver and the console port driver. The
device-specific extension of a terminal unit control block (UCB) contains
pointers to the class and port vector dispatch tables. EXE$INIT locates the
address of the dispatch tables for the two drivers and stores them in the
console UCB.·

24.2 Terminal Driver

User issues $010 request

Terminal Driver ,---------------- -------------------1
FDT and device-independent routines

TTYFDT
TTY CHARI
TTY CHARO
TTYDRVDAT
TTYSTRSTP
TTY SUB

TTDRIVER.EXE
(Terminal class driver)

Device-dependent
control subroutines

and
interrupt service

routines for
DZ11 and DZ32

DZDRIVER.EXE
(Terminal
port driver)

Device-dependent
control subroutines

and
interrupt service

routines for
DMF32

YCDRIVER.EXE
(Terminal
port driver)

Module
OPDRIVER I
(Console
port driver) .1

Device-dependent
control subroutines

and
interrupt service

routines for
console interface I

_______ _J

24.2.1

Terminal Interrupt
(DZ11 or DZ32)

Figure 24.3
Terminal I/O System

Terminal Interrupt Console Interrupt
(DMF32 asynchronous lines)

Later in system initialization, during autoconfiguration, SYSGEN identi­
fies the terminal controllers present and loads the appropriate port drivers.
The controller and unit initialization routines of these port drivers initialize
the UCB extensions.

The relations among the terminal class driver, console port driver, and the
console UCB are shown in Figure 24.4, as an example of how the terminal
class driver and its various port drivers are bound together.

The SYSGEN parameter TTY_CLASSNAME is initialized with the first
two ASCII characters of the terminal class driver name to be loaded by
SYSBOOT. This facilitates VMS debugging of new terminal class driver
images. If a new terminal class driver image contains errors that prevent
the system from completing its initialization sequence, TTY_CLASSNAME
can be set conversationally to the first two ASCII characters of an alternative
terminal class driver image during a system reboot.

VMS does not support user-written alternative terminal class drivers.

Full-Duplex Operation

The terminal driver implements partial full-duplex operation by default.

681

Miscellaneous 1/0 Topics

682

Full-duplex operation is based upon an alternate start 1/0 routine entry
point to the terminal class driver. Whenever a write request is issued to
a full-duplex terminal, the write FDT routine TTY$FDTWRITE, in mod­
ule [TTDRVR]TTYFDT, allocates and initializes a write buffer packet to
describe the write request. It then invokes EXE$ALTQUEPKT, in module
SYSQIOREQ, to enter the alternate start 1/0 routine of the driver.

Normally, an FDT routine transfers to EXE$QIODRVPKT, in module
SYSQIOREQ, to enter the driver's start 1/0 routine. EXE$QIODRVPKT tests
whether the driver is already active for that unit. If the unit is already busy,
EXE$QIODRVPKT queues the IRP to the UCB rather than entering the start
1/0 routine.

EXE$ALTQUEPKT differs from EXE$QIODRVPKT as follows:

• It does not test the UCB busy flag. The flag may be set as the result of a
read request in progress. Full-duplex operation means that a read request
can be interrupted by a write request.

• It does not clear the UCB$V _CANCEL and UCB$V _ TIMOUT bits in
UCB$W _STS because they may be in use by the current IRP for a read
request.

• It does not copy the SVAPTE, BCNT, and BOFF fields from the IRP to the
UCB because this would affect the current I/O operation. if the UCB were
busy.

• It enters the alternate start 1/0 routine in the driver rather than the regular
start 1/0 routine.

For more information on EXE$QIODRVPKT and EXE$ALTQUEPKT, see
Chapter 22.

Terminal Class Driver

Driver Prologue Table

Driver Dispatch Table

Vectors

Console Port Driver

Driver Prologue Table

Driver Dispatch Table

Vectors

Figure 24.4

TTY$GL_DPT::

Console UCB

DDT

TT_CLASS

TT_PORT

Terminal Driver Initialization

24.2 Terminal !)river

TTY$WRTSTARTIO, in module [TTDRVR]TTYSTRSTP, is the alternate
start I/O routine entry point. It raises interrupt priority level IIPL) to device
IPL, obtains the device spinlock to block device interrupts from the current
I/O operation in case the device is busy, and processes the packet as follows:

1. If a write is currently in progress, the write buffer packet is queued.
2. If a read or a read with prompt operation is in progress but the I/O

function modifier specifies write breakthrough IIRP$V _BREAKTHRU),
the write is started.

3. If a read is occurring but no read data has echoed yet, the write is started.
4. Otherwise, the write buffer packet is queued to the UCB.

To complete a write I/O request for full-duplex operation, the driver's
start I/O routine exits by invoking routine COM$POST, in module COM­
DRVSUB. COM$POST places the IRP on the systemwide I/O postprocessing
queue, requests an IPL$_IOPOST software interrupt, and returns. See Chap­
ter 4 for details on the IPL$_POST software interrupt. Note that traditional
drivers issue the REQCOM macro to complete I/O requests. REQCOM gen­
erates a transfer to IOC$REQCOM, in module IOSUBNPAG.

IOC$REQCOM is avoided for full-duplex write requests because it would
attempt to initiate processing of the next IRP queued to the UCB while there
is still an active IRP. However, all read requests and half-duplex writes are
terminated through IOC$REQCOM, so that the next request of this type
can be processed normally. For more information on IOC$REQCOM, see
Chapter 22.

In full-duplex operation, the device can expect more than one interrupt
at a time, one for a read request and one for a write request. Therefore,
two fork program counters IPCs) must be stored. A traditional driver expects
only one interrupt at a time and stores the fork PC in UCB$LFPC. The
terminal driver stores more than one fork PC by altering the value of RS,
which normally points to the, UCB, to point to the write buffer packet or the
IRP before invoking the FORK macro.

A fork block is thereby formed in the write buffer packet or in the IRP.
The fork block in the UCB is not used for read or write requests, although
it is used at other times, for example, when a type-ahead buffer is allocated
or when unsolicited input is being handled.

The technique of altering RS before forking can be copied by any driver to
allow more than one outstanding interrupt for a particular device. Any num­
ber of outstanding I/O requests could be handled by a driver entered at the
alternate start I/O routine entry point. The driver, however, must be able to
distinguish which interrupt is associated with which fork block and synchro­
nize I/O operations. Such a driver might maintain queues for outstanding I/O
requests and operate almost exclusively at device IPL, as the terminal port
drivers do, blocking out device interrupts to achieve synchronization with
multiple I/O request processing.

683

Miscellaneous 1/0 Topics

24.2.2

24.2.3

24.2.4

684

Channels and Terminal Controllers

The VMS terminal port drivers do not need to synchronize access to a
terminal cpntroller using the channel mechanism. Therefore, the terminal
driver never requests or releases a controller channel with the REQCHAN
and RELCHAN macros. The VMS Device Support Manual documents the
use of these macros by traditional device drivers for arbitrating access to the
controller. The locations normally used in the channel request block (CRB)
as the controller wait queue for arbitrating fork processes are redefined and
contain modem control status information.

Type-Ahead Buffer

TTDRIVER allocates a type-ahead buffer from nonpaged pool for each termi­
nal device. Every character typed on the terminal is placed into this buffer
whether a read request is active or not, unless the terminal is set pasthru
and a read request is active. This ensures that characters typed at a terminal
are not lost even if there is no application at the moment to read them.

The size of the type-ahead buffer is usually specified by the SYSGEN
parameter TTY_TYPAHDSZ. This is the systemwide default and applies to
all terminals that do not have the TT2$V _ALTYPEAHD characteristic. If
the terminal has the characteristic TT2$V _ALTYPEAHD, then the SYSGEN
parameter TTY_ALTYPAHD specifies the type-ahead buffer size.

If the terminal is in host-synchronous mode when the buffer is within eight
characters of being full, the driver sends an XOFF character to the terminal
to tell it to stop sending data. If the terminal has the alternative size type­
ahead buffer, the SYSGEN parameter TTY _ALTALARM is the threshold for
determining when to send an XOFF. When the buffer is emptied, the driver
sends an XON character to the terminal to tell it to start sending data. This
technique prevents loss of characters during block 1/0 transmission from
high-speed terminals.

Virtual Terminal Support

A process that is associated with a virtual terminal device rather than a phys­
ical terminal may freely break and reestablish its connection to the virtual
terminal. A virtual terminal device is associated with a physical terminal by
the terminal driver upon process login. The connection between a physical
terminal and the virtual terminal may be broken by a line disconnect caused
by modem signals or broken local area terminal (LAT) server communica­
tion, or by the Digital command language (DCL) DISCONNECT command.
This section explains how the terminal driver implements virtual terminal
support.

When a terminal device that is not associated with any process receives
unsolicited input, TTDRIVER forks to invoke the routine UNSOL, in module
[TTDRVR]TTYSUB. UNSOL notifies the job controller of such an occurrence

24.2.5

24.2.6

24.2 Terminal Driver

by sending a message to the job controller's permanent mailbox. The message
contains the unsolicited data and the name of the terminal device. The name
of the device can be that of the physical device or that of a virtual terminal,
which is created by UNSOL.

If the terminal that received unsolicited data has the TT2$V_DISCON­
NECT characteristic and if the device VTAO exists on the system, UNSOL
invokes CLONE_UCB, in module [TTDRVR]TTYSUB, to create a virtual
device corresponding to the physical terminal.

CLONE_UCB clones the UCB for the virtual device from the UCB for
VTAO. The virtual device is called VTAn, where n is the unit number.
The virtual device UCB has a pointer, UCB$L_ TLPHYUCB, to the physical
device's UCB. Similarly, the physical device's UCB has a pointer, UCB$L_
TT _LOGUCB, to the virtual device's UCB.

UNSOL then passes the terminal device UCB to the job controller along
with the unsolicited data notification.

When the job controller receives notification of unsolicited data on an
unowned terminal, it creates a detached process running LOGINOUT.EXE,
which begins a login session at the specified terminal. For more information
on process creation by the job controller, see Chapter 25.

FDT routines in TTDRIVER operate on the terminal UCB regardless of
whether it is a physical terminal or a virtual terminal. For a virtual terminal
in a disconnected state, TTDRIVER queues any 1/0 requests to the UCB.

TTDRIVER's start 1/0 routine gets the physical device's UCB from offset
UCB$L_ TL_PHYUCB in the device UCB on which it operates. For a physical
terminal, UCB$L_ TLPHYUCB points to itself (that is, the physical termi­
nal's UCB). TTDRIVER's alternate start 1/0 routine operates in the same
manner.

Local Area Terminal Server Support

Support fpr a LAT server such as the LATl 1 is implemented in the framework
of the same terminal port/class driver model. The terminal driver treats
a LAT device as a physical terminal device. A LAT device has a name of
the form LTAn, where n is the unit number. LTDRIVER, the driver for
LAT terminal ports, interacts with TTDRIVER through the terminal driver
port/class interface.

Remote Terminals

DECnet-VAX allows users to log in on a remote VMS system and perform
operations on that remote system just as they would at the local system.
The communication from the remote system to the controlling terminal is
performed through a pseudo device on the remote system called a remote
terminal. The driver for remote terminals is CTDRIVER.EXE.

685

Miscellaneous 1/0 Topics

686

Note that while DECnet-VAX can communicate with other Digital operat­
ing systems running DECnet, the focus of this discussion is on DECnet com­
munication between two VAX systems running VMS Version 4 or a later ver­
sion. If the remote VAX system is running a version of VMS prior to Version
4, a different protocol and a remote terminal driver named RITDRIVER.EXE
are used.

In addition to DECnet, three images are required to support remote ter­
minals: the local system uses the image RTPAD.EXE; the remote system
uses the images REMACP.EXE and CTDRIVER.EXE. REMACP.EXE is cre­
ated from modules in facility [REM]. CTDRIVER.EXE and RTPAD.EXE are
created from modules in facility [RTPAD].

The following list describes the sequence by which a user on a local system
logs in on a remote system:

1. When a user on a local system issues the DCL command SET HOST,
DCL runs the image RTPAD.EXE.

2. RTPAD uses DECnet-VAX to request a connection to a network object
on the specified node. On a remote system running the VMS operating
system, the object is REMACP.

3. The image REMACP, running on the remote system, creates a UCB for
the remote terminal device whose name is of the form RTAn, where n
is the unit number.

4. REMACP links the UCB into the driver tables by invoking CTDRIVER
at its unsolicited input entry point.

5. REMACP returns information about the remote system to RTPAD.
6. RTPAD has routines for communicating with a number of different

Digital operating systems, including RSTS/E, RSX-llM, TOPS-20, and
VMS. Using the information returned from REMACP, RTPAD deter­
mines which operating system is communicating with the local system.
On a remote system running VMS Version 4 or later, REMACP sends
unsolicited data to CTDRIVER; sending this data to CTDRIVER is equiv­
alent to pressing the RETURN key on a terminal that is not logged in.

7. CTDRIVER sends a message to the job controller's mailbox, located
through the global location SYS$AR_JOBCTLMB, indicating that an un­
solicited interrupt was received from the remote terminal.

8. The job controller creates a detached process running LOGINOUT on
terminal RTAn. The user may now log in to the remote system.

RTPAD converts all 1/0 requests on the user's local terminal to messages
it sends over the DECnet link. CTDRIVER does the same for all 1/0 requests
on the remote terminal. The protocol for the exchange of messages between
RTPAD and CTDRIVER is proprietary to Digital.

When the user logs off from the remote system, REMACP deletes the
remote terminal UCB.

24.3 Pseudo Devices

24.3 PSEUDO DEVICES

24.3.1

24.3.2

VMS supports a number of virtual devices, also called pseudo devices:

• Null device, NL:
• Network device, NET:
• Virtual terminal devices, VTAn:
• Remote terminal devices, RTCn:
• Mailboxes, MBAn:

where C is the controller designation and n is the unit number.
A user can assign a channel to one of these devices and issue 1/0 re­

quests just as though it were a real device. Chapter 23 discusses mailboxes.
Section 24.2 discusses remote terminals and virtual terminals. The follow­
ing sections highlight some features of the device drivers for other pseudo
devices.

Null Device Driver

The null device driver, NLDRIVER, is assembled and linked with the exec­
utive image SYSDEVICE.EXE. It is a simple driver, consisting of two FDT
routines, one to complete read requests and one to complete write requests.
The read FDT routine responds to read requests by returning the status SS$_
ENDOFFILE. The write FDT routine responds to write requests by return­
ing the status SS$_NORMAL. No data is transferred, nor are any privilege
or quota checks made.

Network Device Driver

The network device (NET:) is best viewed as a mechanism for DECnet­
VAX users to access network functions. An image requests the Assign 1/0
Channel ($ASSIGN) system service to assign a channel to the NET: device.
EXE$ASSIGN, its system service procedure in module SYSASSIGN, clones
a network UCB from the NETO: template device. EXE$ASSIGN gives this
UCB a new unit number to produce a unique device name, such as NETlOO.
The channel assigned points to the newly created UCB. This channel can
then be used to perform access, control, and other 1/0 operations on the
network. When the image deassigns the last channel to the network UCB,
the UCB is deleted. Chapter 21 describes EXE$ASSIGN in more detail.

The following images are used for network communication:

• The network device driver, NETDRIVER
• The network ancillary control process, NETACP
• Network communication device drivers

NETDRIVER creates links to other systems, performs routing and switch­
ing functions, breaks user messages into manageable pieces for transmis-

687

Miscellaneous 1/0 Topics

sion, and reassembles the messages on reception. An appropriate communi­
cation device driver performs the actual 1/0 operations. Examples include
XEDRIVER, which does network communication over the DEUNA/DELUA
UNIBUS network adapters, and ETDRIVER, which does network communi­
cation over the DEBNT/DEBNI VAXBI network adapters.

NETACP performs the following tasks:

• Creates processes to accept inbound connects
• Parses network control blocks and supplies defaults when a user issues an

10$_ACCESS function code to create a logical link
• Transmits and receives routing messages to maintain a picture of the

network
• Maintains the volatile network database

NETDRIVER and other communication drivers support two 1/0 request
interfaces: $QIOs and internal IRPs.

• The $QIO interface is standard and works as it would for any VMS driver.
• Internal IRPs are built by kernel mode modules, such as other device

drivers, and passed to the driver's alternate start 1/0 interface. This mech­
anism avoids the overhead of the $QIO system service procedure, which
performs a number of validation checks that are considered unnecessary
at this interface level.

For example, CTDRIVER, the remote terminal driver, uses the NET­
DRIVER internal IRP interface in communication across the network.
NETDRIVER uses the internal IRP interface to pass 1/0 requests to lower
level device drivers, such as ETDRIVER or XQDRIVER.

Figure 24.5 illustrates some network 1/0 functions. For more information
on DECnet, see the VMS Networking Manual and the VMS Network Control
Program Manual.

24.4 CONSOLE SUBSYSTEM

688

The console subsystem is the portion of the processor that initiates a boot­
strap operation and permits microdiagnostics to execute. The details of the
console subsystem are not specified by the VAX architecture, but are CPU­
specific.

Some console features are common to most VAX systems. On these sys­
tems, there are at least four internal processor registers for communication
with a console terminal. Table 24.1 lists these registers. On some systems,
these registers also communicate with a console block storage device; on
others there are additional registers.

Chapter 30 contains more details about the console subsystem of each
VAX system.

24.4 Console Subsystem

NETACP

Maintains picture
of network

Parses and supplies
!-, $010 defaults for

10$ - ACCESS Communication Communication
functions Device Driver Device

Process A i..... Provides
device-specific 1-1

$ASSIGN to NET: $010 r-
functions

$010toNET: NETDRIVER
channel

Provides routing and
switching functions Internal L._: Maintains logical

f._J IRP
Remote Process CTDRIVER links

~ Packs and unpacks
Creates

$ASSIGN to RTcu: information from
remote process

$010to RT:
channel

24.4.1

internal IRPs

~ Provides

$010 interface for Internal
IRPs and j.- IRP
internal IRPs

Figure 24.5
Processing Network I/O Requests

Table 24.1 VAX Console Processor Registers

Register Name

PR$_RXCS
PR$_RXDB
PR$_TXCS
PR$_TXDB

Use
Console receive control and status register
Console receive data buffer register
Console transmit control and status register
Console transmit data buffer register

Data Transfer Between the VAX CPU and Console Devices

Data is transferred to and from console devices through internal processor
registers and, on certain systems, device registers in 1/0 space. No direct
memory transfer is made between a VAX CPU and any console device.

The internal processor registers PR$_ TXCS and PR$_RXCS are used for
control and status information such as enabling interrupts and indicating
that a device is ready. The other two internal processor registers, PR$_
RXDB and PR$_ TXDB, transfer data. For information about other CPU­
specific internal processor registers that communicate with console devices,
see the CPU-specific hardware documentation. The TX.xx registers are used
for transmit operations (with respect to the VAX CPU), while the RX.xx
registers are used for receive operations.

Most other device drivers treat device registers as if they were memory
locations, using MOVB, MOVW, or MOVL instructions to read or write data in
those registers. In the case of the console, the MTPR and MFPR instructions
must be used to transmit and receive data, control, and status information.

689

Miscellaneous 1/0 Topics

Table 24.2 Special Uses of the Console PR$_TXDB Register

Register
Contents

FOl

F02

F03

F04

24.4.2

24.4.2.1

690

Meaning

Software done

Reboot the CPU

Clear warm-start flag

Clear cold-start flag

Comments
This value notifies the console program that

a program started by means of a console
command file has completed successfully.

This value is written to request a system reboot
from the default boot device.

This flag is maintained to prevent nested restart
attempts.

This flag is maintained to prevent nested
bootstrap attempts.

For example, the following instructions on the VAX-11/780 transmit and
receive data:

MTPR
MFPR

data,#PR$_TXDB
#PR$_RXDB,data

; Transmit data
;Receive data

The data is sent or received as a longword, with bits (7:0) containing the
ASCII character and bits (11:8) identifying which console device (terminal
or block storage device) is sending or receiving the data.

On some VAX systems, the distinction between devices is made by choice
of register instead of by including a device code in a data buffer register. Note
that all data is passed a character at a time, even to the block storage device.

The VAX architecture specifies that the PR$_ TXDB register is also used
for passing a message from code executing VAX instructions to the console
subsystem. Some special uses of this register are listed in Table 24.2. Some
VAX systems support additional uses.

Console Interrupt Dispatching

As the previous discussion of processor registers indicates, the terminal
and console block storage device are treated slightly differently. On some
systems, the block storage device has its own control registers and interrupt
vectors. On others, the two devices are handled more as a single entity, with
common routines distinguishing terminal operations from console block
storage operations.

Console Terminal Interrupts. When the system is bootstrapped, the sys­
tem control block (SCB) is initialized from the SCB template in module
[SYS]SCBVECTOR. The vectors at offsets F816 and FC16 dispatch to con­
sole interrupt service routines (ISRs), CON$INTDISI for console input and
CON$INTDISO for console output, both in module [SYS]PERMANENT _
DEVICE_DATABASE.

24.4.2.2

24.4 Console Subsystem

Both routines respond to an interrupt by saving registers RO through RS
and transferring control to a console driver routine in the CPU-specific
image SYSLOAxxx. Appendix G contains a list of VAX systems and their
xxx designations. CON$INTINP is the routine invoked for console input,
and CON$INTOUT is the routine invoked for console output. For many
systems, these routines are in module [SYSLOA]OPDRIVER; on others, the
console driver modules have names of the form OPDRVxxx.

Reading the data and console device identification from the PR$_RXDB
register, CON$INTINP determines whether the interrupt was from the con­
sole terminal or block storage device. If the interrupt was from the console
terminal, then CON$INTINP reads the character using the terminal driver's
character buffering routine, whose address is stored in the console terminal
UCB. CON$INTINP also echoes the character back to the console terminal
by placing it in the PR$_ TXDB register.

Routine CON$INTOUT transmits data to the console through the PR$_
TXDB register and determines whether the resulting interrupt is from the
console terminal or the console block storage device. If the interrupt was
caused by the terminal, then CON$INTOUT invokes the terminal driver's
character output routine, whose address is stored in the console terminal
UCB.

Note that the handling of console terminal I/O is done by the normal
terminal driver routines. Only the initial fielding of interrupts and the device
registers that are read or written distinguish console terminal I/O from
operations through the regular terminal subsystem.

Figure 24.4 shows how the console terminal UCB binds the terminal class
driver and the console port driver.

Console Block Storage Device 1/0. The device driver and associated database
for the console block storage device are not loaded until an explicit CON­
NECT CONSOLE command is issued to SYSGEN. At that time, the device
driver and data structures appropriate to the specific system are loaded into
memory and initialized.

A SYSGEN CONNECT CONSOLE command on a VAX-11/730 or VAX-
11/750 causes DDDRIVER, the TU58 driver, to be loaded. Data structures
for a device called CSAl are built. On the VAX-11/730, a UCB for CSA2 is
also created. In addition, two dedicated vectors in the SCB, at offsets F016

and F416, are loaded to point to interrupt dispatch code contained in the
console device CRB.

DDDRIVER responds to console TU58 interrupts in exactly the same way
it responds to interrupts generated by a TU58 on the UNIBUS. The only
difference between the two interrupts is the device IPL at which each is
dispatched. On a VAX-11/750, a console TU58 interrupt occurs at IPL 23,
while UNIBUS TU58 interrupts and VAX-11/730 console TU58 interrupts
occur at IPL 20.

691

Miscellaneous I/0 Topics

24.4.2.3

24.5

24.5.1

692

A SYSGEN CONNECT CONSOLE command on a VAX-11/780 causes
DXDRIVER, the console floppy disk driver, to be loaded and data structures
for device CSAl to be built. Because the console floppy interrupts through
the same vectors used by the console terminal, no further SCB modification
is required.

When a console interrupt occurs, CON$INTINP determines whether the
interrupt is from the console terminal or from the block storage device. If the
interrupt is from the block storage device, the console has been connected
(a UCB exists for device CSAl), and the interrupt was expected, then the
driver context is restored from the UCB and the driver process is resumed at
the saved PC (UCB$LFPC). Otherwise, the interrupt is considered spurious
and is simply dismissed.

In response to the CONNECT CONSOLE command on a VAX 8600 or
VAX 8650, SYSGEN loads the console RL02 driver, CVDRIVER, and builds
data structures for CSAl. The SCB vector at offset F016 is initialized to point
to interrupt dispatching code in the console CRB.

The VAX 8800 family is similar to the VAX 8600, except that the console
block storage driver name is CWDRIVER and there are three block storage
units. On the VAX 8200 and VAX 8300, the console block storage device is
an RXSO and its driver is RXDRIVER.

Double Mapping of Buffer Pages. One notable feature of the console block
storage device drivers is that they double-map a page in the user's data buffer
into system address space so that data can be transferred directly to and from
the user's buffer. Such a driver identifies its need for a reserved system page
table entry to double-map a buffer by setting the DPT$V _SVP bit in the
FLAGS argument of the DPTAB macro.

A user buffer page is not normally accessible to a driver routine running
in system context, which cannot access process address space. By double
mapping a buffer page as a system page, the driver can access the entire user
buffer, one page at a time.

By making the user buffer accessible through system virtual addresses, a
console block storage driver can implement VMS direct 1/0, even though its
device cannot perform direct memory access (DMA). Use of VMS direct 1/0
enables a console block storage driver to support virtual 1/0 requests, use
VMS-supplied FDT routines, and use the virtual 1/0 postprocessing routines.

BAD BLOCK PROCESSING ON DISKS

Static Bad Block Handling

A non-DSA disk is typically tested to detect bad blocks before the disk is
put into use. The bad blocks are allocated to a special file, [OOOOOO]BAD-

24.5.2

24.5.3

24.5 Bad Block Processing on Disks

BLK.SYS, so that they cannot be allocated to user files. This is known as
static bad block handling. As the disk is used, additional blocks may become
bad. Dynamic bad block handling deals with those blocks.

Dynamic Bad Block Handling

Dynamic bad block handling is a cooperative effort among driver FDT rou­
tines, I/O postprocessing, and the Files-11 Extended QIO Processor (XQP).
FDT routines for IO$_READVBLK and IO$_ WRITEVBLK construct an IRP
and set the IRP$V _VIRTUAL bit in IRP$W _STS. When the I/O postprocess­
ing routine, in module IOCIOPOST, discovers a transfer error on a virtual
I/O function, it routes the IRP to the XQP.

The XQP, using information in the IRP, calculates the bad block address
and stores that information in the file [OOOOOO]BADLOG.SYS. This file con­
tains a list identifying suspected bad blocks on the volume that are not
currently contained in the volume's bad block file. In addition, the XQP sets
a bit in the file control block to indicate the presence of a bad block. When
the file is closed, an equivalent bit is set in the file's header on disk.

When such a file is deleted, the XQP creates a process running the image
BADBLOCK.EXE to diagnose the file. It writes worst-case test patterns over
the blocks of the file and reads them back, comparing the data to the orig­
inal pattern. If a bad block is found, the image uses privileged file system
functions to allocate the disk cluster containing the block to the bad block
file [OOOOOO]BADBLK.SYS; 1. (The smallest unit of file system allocation is
the disk cluster.) In addition, the entry in the [OOOOOO]BADLOG.SYS file that
describes this bad block is removed.

Note that a dynamic bad block is not discovered until it is already part of
a file and is not allocated to the bad block file until that file is deleted. When
a bad block is discovered while writing a file, the bad block information is
recorded. A bit is set in the file control block (FCB) for the file, and an error
indication is returned to the requesting process.

Dynamic bad block handling is restricted to virtual I/O functions (that is,
file I/O). Processes performing logical or physical I/O functions must provide
their own bad block handling.

Bad Block Replacement on DSA Disks

Dynamic bad block handling is performed only for non-DSA disks.
A DSA disk maintains a given set of logical block numbers (LBNs) regard­

less of bad blocks. It maintains a number of spare blocks that are used as
replacement blocks for LBNs that are detected to be bad. If the disk controller
detects that a given LBN has a nonrecoverable error, it initiates a procedure
known as bad block replacement (BBR). BBR remaps the bad LBN to a good
replacement block.

693

Miscellaneous I/0 Topics

24.5.4

Some controllers, such as the UDASO and the KDBSO, require host assis­
tance for BBR. Others, such as the HSCSO, are capable of performing BBR
without assistance.

A forced error flag is associated with each block on a DSA disk. When
a read operation to a DSA disk block results in a nonrecoverable error, the
block is reassigned to a replacement block on the disk and the forced error
flag for this block is set. The forced error flag is a signal that the data in the
block is questionable. When a block with this flag set is read, the status SS$_
FORCEDERROR is returned by the driver to the image that requested the
1/0 operation. A subsequent successful write to the block clears the forced
error flag.

Note that it is possible to have blocks assigned to (OOOOOO]BADBLK.SYS;l
on a DSA disk. This happens, for example, when the disk size in blocks
is odd, and the disk cluster size is even. (The cluster size of a disk is the
minimum unit of allocation on a disk in blocks and is specified by the DCL
command INITIALIZE/CLUSTER_SIZE.) In that case, one or more of the
last blocks on the disk become unusable.

Bad Block Replacement on SCSI Disks

The SCSI disk class driver (DKDRIVER) performs bad block replacement for
SCSI disks. However, there is no forced error flag associated with SCSI disk
blocks.

When a read operation to a SCSI disk results in a nonrecoverable error,
the SCSI disk class driver returns the status SS$_PARITY to the requestor
of the 1/0 operation. BBR does not occur for this block. This is because BBR
at this point would result in undetected user data corruption, since there is
no forced error flag associated with SCSI disk blocks.

The file system then performs the same bad block processing discussed in
Section 24.5.2.

24.6 $BRKTHRU SYSTEM SERVICE

694

The $BRKTHRU system service sends a specified message to one or more
terminals. All its eleven arguments except MSGBUF are optional.

• The number of the event flag to be set when the message has been written
to the specified terminals, EFN

• The message buffer containing the text to be written, MSGBUF

• The name of the terminal or user name to which to send the text, SENDTO

• The type of terminal to which to send the message, SNDTYP

• The address of an 1/0 status block (IOSB) that will receive the I/O com­
pletion status of the $BRKTHRU system service, rosB

• The carriage control to be used with the message, CARCON

• Options for the $BRKTHRU system service, FLAGS

24.6.1

24.6 $BRKTHRU System Service

• The class requestor identification, which identifies the application or im­
age that is. requesting the $BRKTHRU system service, REQID

• The number of seconds that must elapse before an attempted write by the
$BRKTHRU system service is considered to have failed, TIMOUT

• The address of the AST procedure to be executed after the message has
been sent to the specified terminals, ASTADR

• The AST parameter to be passed to the AST procedure specified by the
ASTADR argument, ASTPRM

The $BRKTHRU system service procedure, EXE$BRKTHRU in module
SYSBRKTHR, runs in kernel mode. Its processing consists of three major
steps:

1. It allocates and initializes a breakthrough message,,descriptor block (BRK)
for the request and stores the formatted message in the BRK, as discussed
in Section 24.6.1. Figure 24.6 shows the format of a BRK.

2. It initiates a write to a given terminal, as discussed in Section 24.6.2.
3. It responds to the completion of a given write, as discussed in Sec­

tion 24.6.3.

EXE$BRKTHRU sends two types of messages: the unformatted, user­
specified message and the screen message. The screen message is a formatted
version of the user-specified message that is sent to video terminals. It con­
sists of the followingfields, which are mainly escape sequences that envelop
the message:

• Escape sequences tp save the cursor's position and attributes, position it
in column 1 of the correct line, and erase to the end of the line .

• One escape sequen<,:e for every line to be erased. The number of lines to
be erased is specifie<,l by the low byte of the FLAGS argument .

• The text specified bx the MSGBUF argument.
• An escape sequence to restore the cursor position and attributes.

Initial Processing

EXE$BRKTHRU begili:S by clearing the event flag specified by the EFN argu­
ment. Since the EFN argument is passed by value, it defaults to zero. If an
IOSB is specified, ExE$BRKTHRU verifies that the caller has write access
to it and clears it. ~:.

It verifies the acce~ibility of the message buffer specified by the MSGBUF

argument. ;;4,•.:·

It computes the si~:of the BRK needed for the request as the sum of the
following items, roumled up to an integral number of longwords:

;/:~-

• The basic size IBRK$C_LENGTH) of the BRK
• Space for the name.~. the terminal to which to send the mailbox message

(16 bytes)

695

Miscellaneous 1/0 Topics

696

t OUTCNT

I-

SECONDS

PRIVS

DEVNAME
(16 bytes)

PCB

IOSB

ASTADR

ASTPRM

TIMEOUT

CAR CON

FLAGS

(16~es)

REQID

PIDCTX

UCBCTX

DDBCTX

QIOCTX

PRVMODE] STS

SUCCESSCNT

REFUSEDCNT

TRMUNIT

SCRMSGLEN

SCRMSG

TRMNAME
(16 bytes)
MSGLEN

SIZE

-

SENDTYPE

EFN

STATUS

T1MEOUTCNT

TRMMSG

210 + 2 x (size of message) bytes

~ COMMON ~ } Repeated
IOSB BRK C SIMULCAST

.. ----------.,....-----------1 times(prefix is BRK2)
CHAN _

~-------~

Figure 24.6
Layout of a Breakthrough Message Descriptor Block

• The size of the unformatted message
• Space for the screen message (208 bytes plus the size of the unformatted

message)
• Space for four $QIO context areas ·

24.6 $BRKTHRU System Service

Table 24.3 Meanings of the SNDTYP and SENDTO Arguments

SNDTYP

BRK$C_USERNAME
BRK$C_DEVICE
BRK$C_ALLUSERS
BRK$c_ALLTERMS

SNDTO

User name
Device name

Comments
Send message to a single user
Send message to a specific device
Send message to all users
Send message to all devices

It allocates space from the process allocation region in Pl space for the
BRK and initializes it as follows:

1. It clears the BRK from BRK$Q_PRIVS up to BRK$T _MSGBUF.
2. It stores the size of the BRK ih BRK$W _SIZE.
3. It locks the entire BRK structure in the process's working set through

the Lock Pages in Working Set ($LKWSETJ system service.
4. It stores the address of the $QIO context area in BRK$1-QIOCTX.
5. It stores the length of the screen message in BRK$1-SCRMSGLEN.
6. It stores the address of the requestor's PCB in BRK$L_PCB.
7. It stores the address of the IOSB in BRK$1-IOSB.
8. It stores the length of the unformatted message in BRK$W _MSGLEN and

copies the unformatted message text to the buffer starting at BRK$T _
MSGBUF.

9. It stores the address of the first byte after the message in BRK$1-
SCRMSG. It will store the screen message at this address.

10. It validates the SNDTYP argument.
11. It sets up the BRK to reflect the SNDTYP and SENDTO arguments. Table 24.3

explains the meanings of these arguments.

-If the SNDTYP argument is BRK$C_USERNAME or BRK$C_DEVICE,
EXE$BRKTHRU invokes EXE$PROBER_DSC, in module [SYS]EXSUB­
ROUT, to verify the accessibility of the user name or device specified
by the SENDTO argument.

-If the SNDTYP argument is BRK$C_USERNAME, it copies the SENDTO

argument to BRK$T _SENDNAME and compares it with the current
user name. If the two names are equal, it has completed this step. If
they are not equal, it verifies that the process has OPER privilege.

-If the SNDTYP argument is BRKC_DEVICE, EXEBRKTHRU requ~sts
the Get Device/Volume Information ($GETDVIJ system service to get
the physical name of the device. EXE$BRKTHRU copl.es the name
returned to BRK$T _DEVNAM and sets BRK$V _CHKPRV in BRK$B_
STS to indicate that it should check the process's privilege to send to
the specified device at a later step.

-If the SNDTYP argument is either. BRK$C_AlLUSERS or BRK$C_ALL­
TERMS, EXE$BRKTHRU verifies that the process has OPER privilege.

697

Miscellaneous I/0 Topics

698

12. If the TIMOUT argument was specified, EXE$BRKTHRU ensures that it is
at least BRK_C_MINTIME (4 seconds). It converts the argument to clock
ticks and stores the resulting quadword in BRK$Q_ TIMEOUT.

13. It stores the default VAXcluster timeout value BRK_C_CLUTIMEOUT
(15 seconds) in BRK$W_SECONDS.

14. EXE$BRKTHRU determines if the sender has BYPASS and SHARE priv­
ileges. This is to check if the sender has access to the target terminal.
Even if the sender does not have either of these privileges, it is suffi­
cient for the sender to have the OPER and WORLD privileges to use the
$BRKTHRU system service. For a sender that does not have either or
both of the BYPASS and SHARE privileges, EXE$BRKTHRU will later
temporarily enable these privileges (see Section 24.6.2.4).

In this step, EXE$BRKTHRU stores a privilege mask in BRK$Q_PRIVS.
The mask has at most two bits, those corresponding to the BYPASS and
SHARE privileges, set. The mask specifies which of the two privileges
the process does not already have.

15. It copies the remaining $BRKTHRU arguments to the BRK.
16. It verifies that the REQID argument is less than or equal to 63.
17. It stores the success status SS$_NORMAL in BRK$W_STATUS.
18. It stores the mailbox prefix code MSG$_ TRMBRDCST in BRK$W _ TRM­

MSG. Note that the BRK contains a mailbox message in fields BRK$W _
TRMMSG through the end of the unformatted message stored at BRK$T _
MSGBUF.

19. It stores the access mode from which the $BRKTHRU service was re­
quested in BRK$B_PRVMODE.

20. It stores -1 in BRK$LPIDCTX. This is the wildcard PIO that will be
passed as an argument to the Get Job/Process Information ($GETJPI)
system service later.

21. It requests the Formatted ASCII Output ($FAO) system service to for­
mat the message. $FAO stores the length of the screen message in
BRK$LSCRMSGLEN and the screen message at the address in BRK$L_
SCRMSG. At this point, the BRK contains the unformatted message
starting at BRK$T_MSGBUF and the screen message immediately fol­
lowing it. BRK$L_SCRMSGLEN and BRK$L_SCRMSG constitute a de­
scriptor for the screen message.

EXE$BRKTHRU is now ready to commence sending messages. It does so
in the following steps:

1. It requests the Set AST Enable ($SETAST) system service to disable
delivery of kernel mode ASTs. This is necessary to prevent image exit
before the CCB$V _IMGTMP bit is set in the CCB of the channel through
which EXE$BRKTHRU will write to a terminal. A channel with this bit
set will be deassigned upon image exit, if it is not already deassigned, by

24.6.2

24.6.2.1

24.6.2.2

24.6 $BRKTHRU System Service

the image rundown procedure (see Section 24.6.2.4).
2. It attempts to initiate BRK_C_SIMULCAST (four) message writes, as

discussed in Section 24.6.2.
3. If the system is a VAXcluster member and the BRK$V _CLUSTER flag was

specified in the $BRKTHRU request, EXE$BRKTHRU invokes EXE$CSP _
BRKTHRU, in module [SYSLOA]CSPCLIENT, to send a clusterwide
process services (CWPS) message to all other nodes in the VAXclus­
ter system. The CLUSTER_SERVER process on each of the other nodes
responds to such a message by invoking CSP$BRKTHRU, in module
[SYSLOA]CSPBRKTHR. CSP$BRKTHRU requests the $BRKTHRU sys­
tem service to broadcast the message on that system. Chapter 13 provides
more information on this mechanism.

4. It checks if all writes have been completed. If so, it deallocates the BRK.
The specific steps it takes are discussed in Section 24.6.3.3.

5. It requests the $SETAST system service to reenable kernel mode AST
delivery.

The asynchronous form of the system service, $BRKTHRU, returns to
its requestor. Its requestor can either wait for 1/0 completion or continue
processing. The synchronous form of the system service, $BRKTHRUW,
waits for the event flag associated with the request to be set and status
to be returned. See Chapter 6 for more information concerning synchronous
and asynchronous system services.

Writing the Breakthrough Message

EXE$BRKTHRU takes two major steps when it attempts to initiate writing
a message: selecting the next terminal to which to write, and starting the
actual 1/0 operation. If it does not find a terminal to which to write, it
skips the second of these. Each time it finds an acceptable terminal UCB, it
initiates a write.

The steps EXE$BRKTHRU takes to find the next terminal depend upon
the SNDTYP argument.

Finding a Specific Terminal. If the SNDTYP argument was BRK$C_DEVICE,
EXE$BRKTHRU has already found the terminal when it requested the $GET­
DVI system service to initialize the BRK. All that it does now is set BRK$V _
DONE in BRK$B_STS.

Finding All Terminals for a Specific User. If the SNDTYP argument was
BRK$C_USERNAME, EXE$BRKTHRU must find all terminals on which the
given user is logged in. It accomplishes this by finding all processes belonging
to that user and the terminal, if any, associated with each of those processes.

699

Miscellaneous l/0 Topics

700

EXE$BRKTHRU requests the $GETJPI system service to perform a wild­
card operation. The VMS System Services Reference Manual provides details
on performing wildcard operations with $GETJPI. EXE$BRKTHRU stores the
PID to be passed to $GETJPI in BRK$1-PIDCTX. The initial value of BRK$L_
PIDCTX is -1, the value required to initiate a wildcard operation. On each
request of $GETJPI, EXE$BRKTHRU requests the user name and the name
of the process's login terminal. Each time $GETJPI returns, EXE$BRKTHRU
verifies that the process is an interactive process and belongs to the correct
user. If the process does not meet these criteria, EXE$BRKTHRU requests
$GETJPI to get information about the next process.

Once EXE$BRKTHRU finds an interactive process belonging to the correct
user, it invokes IOC$SEARCHDEV, in module IOSUBPAGD, to locate the
UCB and the device data block (DDB) for the terminal. EXE$BRKTHRU then
verifies that the UCB and the device it describes meet the following criteria:

• It is a terminal UCB.
• It is available .
• It is not a network device, a spooled device, or a detached terminal.
• It does not have the broadcast class specified by the REQID argument

disabled .
• It does not have broadcasts disabled or passall enabled unless there is a

broadcast mailbox associated with the UCB.

If the UCB does not meet these criteria, EXE$BRKTHRU requests the
$GETJPI service to get information about the next process.

If the UCB meets these criteria, EXE$BRKTHRU verifies that the requestor
has the privilege to access the device. If BRK$V _CHKPRIV in BRK$B_STS
is clear, no further check is necessary. Otherwise, EXE$BRKTHRU verifies
that at least one of the following conditions is met:

• The sender process's PID matches the owner PID, UCB$1-PID, of the
terminal.

• The process is a descendant of the owner of the UCB. EXE$BRKTHRU
follows the process control block (PCB) process owner chain until it finds
a process whose PID matches the device owner. If the end of the process
owner chain is reached without a match, then the next condition must be
met .

• The process has OPER privilege.

If the process has the necessary privilege to access the device, EXE$BRK­
THRU invokes IOC$CVT_DEVNAM, in module IOSUBNPAG, to convert
the device name to the form ddcn and store the name starting at BRK$T _
DEVNAM + 1. EXE$BRKTHRU stores the length of the name in BRK$T _
DEVNAM, the unit number in BRK$W _ TRMUNIT, and the contents of
DDB$T _NAME in BRK$T _ TRMNAME.

24.6.2.3

24.6.2.4

24.6 $BRKTHRU System Service

Finding All Terminals and All Users. If the SNDTYP argument was BRK$C_
ALLTERMS or BRK$C_ALLUSERS, EXE$BRKTHRU must find all terminals
on the system. It does this by invoking IOC$SCAN_IODB, in module 10-
SUBNPAG, to find each UCB in the system.

Any invoker of IOC$SCAN_IODB must pass a DDB and UCB address to it
at each invocation. From this context IOC$SCAN_IODB determines where
to start its search of the 1/0 database. If the addresses are zero, it starts at
the beginning of the 1/0 database.

EXE$BRKTHRU passes IOC$SCAN_IODB the addresses in BRK$L_UCB­
CTX and BRK$LDDBCTX. These fields were cleared when the BRK was
initialized. EXE$BRKTHRU stores the results from invoking IOC$SCAN_
IODB in these fields. Each time IOC$SCAN_IODB finds a UCB, it returns a
success status. When IOC$SCAN_IODB reaches the end of the 1/0 database,
it returns a failure status.

After each successful call to IOC$SCAN_IODB, EXE$BRKTHRU makes
sure that the UCB is acceptable:

• It must be a terminal UCB.
• It must be online.
• If the terminal is not allocated, the terminal must not be set autobaud.

If the UCB is not acceptable, EXE$BRKTHRU invokes IOC$SCAN_IODB
to get another UCB. If IOC$SCAN_IODB finds one, EXE$BRKTHRU checks
that UCB. EXE$BRKTHRU continues this loop until it gets an accept­
able UCB or all UCBs have been found. When all UCBs have been found,
EXE$BRKTHRU sets BRK$V _DONE in BRK$B_STS.

Performing the Breakthrough 1/0. EXE$BRKTHRU now has in the BRK the
information necessary to send the message to a specific terminal. It takes
the following steps to send the message:

l. If TT2$V _BRDCSTMBX in UCB$L_DEVDEPND2 is set and UCB$L_
AMB is nonzero, EXE$BRKTHRU invokes EXE$WRTMAILBOX, in mod­
ule MBDRIVER, to write the message to the associated mailbox. Note
that the BRK contains the message already formatted for the mailbox
write starting at BRK$W _ TRMMSG.

2. It verifies that broadcasts to the terminal are not disabled and that the
terminal is not in passall mode. There are two reasons for checking these
bits now. If they were checked earlier, they could have changed since the
earlier check was performed. If the terminal has an associated mailbox,
EXE$BRKTHRU did not check these bits earlier.

3. If BRK$Q_PRIVS is nonzero, EXE$BRKTHRU requests the Set Privilege
($SETPRIV) system service to enable the privileges specified by BRK$Q_

701

Miscellaneous 1/0 Topics

702

PRIVS. The result of this step is to give the process BYPASS and SHARE
privileges if it does not already have them.

4. It requests the $ASSIGN system service to assign a channel to the ter­
minal UCB, with the CHAN argument specifying BRK2$W_CHAN. If
BRK$Q_PRIVS is nonzero, after the $ASSIGN system service completes
EXE$BRKTHRU requests $SETPRIV to disable the privileges specified by
BRK$Q_PRIVS.

5. It sets CCB$V _IMGTMP in the CCB of the channel just assigned. As
a result, SYS$RUNDWN will deassign this channel on image exit if
the channel has not been deassigned previously. This ensures that the
channel will be deassigned if the image exits before EXE$BRKTHRU
completes. Image termination is discussed in Chapter 26.

6. It requests the $QIO system service to write the message to the terminal.
Note that each concurrent write uses a different $QIO context area. Since
there are four such areas, only four writes can be outstanding at any one
time. The following arguments are specified:

-If BRK$V _SCREEN was specified in the FLAGS argument and TT2$V _
DECCRT in UCB$1-DEVDEPND2 is set, the screen message is writ­
ten. The message length is the value in BRK$1-SCRMSGLEN; the
message is the one at the address stored in BRK$L_SCRMSG; the car­
riage control is a zero.

Otherwise, the unformatted message is written. The message length
is the value in BRK$W _MSGLEN; the message is the one stored at
BRK$T_MSGBUF; the carriage control is in BRK$L_CARCON.

-The channel is the one specified by BRK2$W _CHAN.
- The IOSB is the one at BRK2$Q_IOSB.
-The AST procedure address is QIO_DONE, in module SYSBRKTHR.

This procedure is discussed in Section 24.6.3.2.
-The AST parameter is the address of the $010 context area, BRK2$L_

COMMON.
-The function code is write virtual block, with the refresh, cancel

CTRL/O, and breakthrough modifiers.
-The event flag is BRK_C_EFN (31).

7. EXE$BRKTHRU increments BRK$W _OUTCNT to reflect another out­
standing write request.

8. If the TIMOUT argument was specified, EXE$BRKTHRU requests the Set
Timer ($SETIMR) system service, specifying QIO_ TIMEOUT, in module
SYSBRKTHR, as the AST procedure to be called when the timer expires
and the value in BRK$Q_ TIMEOUT as the time. QIO_ TIMEOUT is
discussed in Section 24.6.3.1.

EXE$BRKTHRU has now completed all the work necessary to initiate the
writing of the breakthrough message to a given terminal.

24.6.3

24.6.3.1

24.6.3.2

24.6.3.3

24.6 $BRKTHRU System Service

Completion Actions

EXE$BRKTHRU performs three sets of actions related to completion:

• It responds to the expiration of a timer .
• It responds to the completion of a write to a terminal.
• It checks for completion of the $BRKTHRU system service.

It performs the first two within AST procedures. It performs the last in a
subroutine.

Timer Expiration. If the timer expires before the 1/0 completion AST is
executed, the executive calls the AST procedure QIO_ TIMEOUT with an
argument that is the address of the $QIO context area. QIO_ TIMEOUT
requests the $CANCEL system service to cancel the write request. This will
result in QIO_DONE being invoked as part of completing the 1/0 request;
any further processing required will be performed by QIO_DONE.

1/0 Completion AST. The 1/0 completion AST procedure, QIO_DONE,
is called when the 1/0 operation requested via the $QIO system service
completes. Its one argument is the address of the $QIO context area for the
completed write. QIO_DONE takes the following steps:

1. If BRK$Q_ TIMEOUT is nonzero, QIO_DONE requests the Cancel Timer
($CANTIM) system service to cancel the timer requested through the
$SETIMR system service. Note that the timer may have expired already.

2. It requests the $DASSGN system service to deassign the channel.
3. It decrements BRK$W _OUTCNT to reflect the completion of the write

request.
4. It attempts to initiate another write operation by taking the steps de­

scribed in Section 24.6.2.
5. It then checks for completion of the $BRKTHRU request by taking the

steps described in Section 24.6.3.3.

Completion Checks. CHECK_COMPLETE is invoked to check for comple­
tion of the $BRKTHRU request:

1. It checks BRK$W _OUTCNT. If it is nonzero, there is at least one write
request outstanding, and CHECK_COMPLETE exits.

2. It stores the final status in the IOSB if the requestor specified an IOSB.
3. If the $BRKTHRU request specified a completion AST, CHECK_COM­

PLETE requests the Declare AST ($DCLAST) system service, specifying
the AST procedure and parameter recorded in the BRK.

4. It requests the Set Event Flag ($SETEF) system service to set the specified
event flag.

5. It requests the Unlock Pages from Working Set ($ULWSET) system ser­
vice to unlock the BRK from the working set.

703

Miscellaneous I/O Topics

6. Finally, it deallocates the BRK to the Pl allocation region.

24.7 BROADCAST SYSTEM SERVICE

704

The Broadcast ($BRDCST) system service sends messages to one or more ter­
minals, even if an 1/0 operation is currently in progress on the terminal. The
$BRDCST system service has been superseded by the $BRKTHRUW system
service, which should be used for future software development. $BRDCST
has four arguments:

• The message buffer containing the text to be written, MSGBUF

• The device to which to send the message, DEVNAM

• The carriage control to be used with the message, CARCON

• Options for the $BRDCST system service, FLAGS

The $BRDCST system service routine, EXE$BRDCST in module SYS­
BRKTHR, runs in the access mode of the caller. EXE$BRDCST requests
the $BRKTHRUW system service to perform the breakthrough operation
equivalent to the requested broadcast operation. EXE$BRDCST specifies the
following arguments to the $BRKTHRUW system service:

• The EFN argument is BRK_C_BRDCSTEFN, event flag 31.
• The $BRKTHRUW MSGBUF argument is the same as the $BRDCST MSGBUF

argument .
• The SNDTYP argument is as follows:

-If the DEVNAM argument is zero, the SNDTYP argument is BRK$C_ALL­
TERMS.

-If the DEVNAM argument is nonzero, it is taken as the address of a de­
scriptor. If the descriptor specifies a length of zero, the SNDTYP argument
is BRK$C_ALLUSERS. If the descriptor specifies a nonzero length, the
SNDTYP argument is BRK$C_DEVICE.

• If the SNDTYP argument is BRK$C_DEVICE, the SENDTO argument is the
same as the DEVNAM argument to the $BRDCST system service.· Otherwise,
the SENDTO argument is irrelevant.

• The $BRKTHRUW FLAGS argument is the same as the $BRDCST FLAGS

argument, if the latter argument is specified. Otherwise, the $BRKTHRUW
FLAGS argument is zero. Note that the $BRDCST FLAGS argument has no
bits equivalent to the BRK$V _ERASE_LINES and BRK$V _CLUSTER bits
of the $BRKTHRUW FLAGS argument.

• The $BRKTHRUW CARCON argument is the same as the $BRDCST CARCON

argument, if the latter argument is specified. Otherwise, the $BRKTHRUW
CARCON argument is an ASCII blank.

• The TIMOUT argument is 10, which specifies a timeout of 10 seconds.
• The IOSB argument specifies an IOSB allocated on the stack by EXE$BRD­

CST.

24. 8 Informational Services

Upon completion of the $BRKTHRUW system service, EXE$BRDCST ex­
amines the return status. If the status is an error, EXE$BRDCST returns
that status to the caller. If the return status of the $BRKTHRUW system
service is a success status, EXE$BRDCST returns the status in the IOSB to
the caller. Note that if either return status is SS$_NOOPER, EXE$BRDCST
replaces it with SS$_NOPRIV. This is done to maintain compatibility with
previous implementations of $BRDCST.

24.8 INFORMATIONAL SERVICES

Images frequently require information about particular devices on the sys­
tem. VMS provides several system services to obtain specific information
about a particular device.

Device-independent information refers to information that is present for
each device on the system, such as the device unit number, UCB$W~UNIT,
device characteristics, UCB$1-DEVCHAR, and -the device type, UCB$B_
DEVTYPE. It is obtained by reading fields in the UCB that have the same
interpretation for all devices on the system. ·

Device-dependent information refers to information that is present for
each device on the system but whose interpretation is device-dependent,
such as the device-dependent information fields UCB$L_DEVDEPEND and
UCB$L_DEVDEPND2, or. information that is present only for certain de­
vices, such as the logical UCB address in a physical terminal UCB, UCB$L_
TT_LOGUCB.

There are two sets of information, the primary and secondary device char­
acteristics, for each device. These two sets are identical unless one of the
following conditions holds:

• If the device has an associated mailbox, the primary characteristics are
those of the assigned device and the secondary characteristics are those of
the associated mailbox .

• If the device is spooled, the primary characteristics are those of the inter­
mediate device and the secondary characteristics are those of the spooled
device .

• If the device represents a logical link on the network, the secondary char­
acteristics contain information about the link.

The $GETDVI system service, in module SYSGETDVI, obtains device­
independent information about a device. See the VMS System Services Ref­
erence Manual for a listing of the fields that can be returned. $GETDVI
uses an item list argument mechanism, which allows it to be extended in
an upwardly compatible fashion.

The $DEVICE_SCAN system service, in module SYSGETDVI, returns the
names of all devices that match a set of search criteria, such as those of a cer­
tain device class or type. Both $DEVICE_SCAN and $GETDVI are described
in Chapter 36.

705

Miscellaneous I/O Topics

706

Support still exists for the Get 1/0 Channel Information j$GETCHN)
and Get 1/0 Device Information j$GETDEV) system services, which are
both in module SYSGETDVI. The $GETDVI system service supersedes the
$GETCHN and $GETDEV system services and should be used in future
software development.

The $QIO system service can be used to qbtilin device information. Two
function codes, 10$_SENSEMODE and 10$..:SENSECHAR, C!Ul be used to
request the device driver to return device-dependent infonp.~tion to the
caller. The specific information that can be retutned depends ~:m the device.
See the VMS I/0 User's Reference Volume mlJ.Ilual for det~il,s about what
information is returned by specific VMS device drivers.

PART VII/ Life of a Process

25 Process Creation

All things in the world come from being.
And being comes from non-being.

Lao-tzu, Tao Te Ching

The creation of a new process takes place in several phases:

1. Creation begins in the context of an existing process that requests the
Create Process ($CREPRC) system service. The $CREPRC system service
performs the following steps:

a. It makes privilege and quota checks.
b. It allocates and initializes the process control block (PCB); the job

information block (JIB), unless it is creating a subprocess; and the
process quota block (PQB), with explicit $CREPRC arguments and
implicit parameters taken from the context of the creator.

c. It places the new process into the scheduler database.

2. The initial scheduling state of the new process is computable outswapped
(COMO). Thus, execution of the new process is suppressed until the
swapper process moves the new process into the balance set. The follow­
ing steps are performed in the context of the swapper process:

a. The· swapper moves the template for the new process context into
the balance set from the shell, a module in the WORKING_SET _
MANAGEMENT loadable executive image.

b. It builds the process header (PHD) according to the values of SYSGEN
parameters for this configuration.

c. It requests that the new process be scheduled for execution.

3. The final steps of process initialization take place in the context of the
new process in the routine EXE$PROCSTRT. EXE$PROCSTRT performs
the following steps:

a. It copies the arguments from the PQB to the PHD and various loca­
tions in Pl space.

b. It requests the image activator to activate the image.
c. It calls the image at its entry point.

Figure 25.1 shows these phases of process creation and the context within
which each phase occurs.

25.1 CREATE PROCESS SYSTEM SERVICE

The $CREPRC system service establishes the parameters of the new process.
Some of these parameters are passed to the system service by the caller. The

709

Process Creation

25.1.1

710

Process Context

Application
Image

Figure 15.1
Process Creation

$SUBMIT Command
Processed by CU

DCL:
$SPAWN

$RUN/DET

$CREPRC
Builds PCB, JIB, PQB

SWAPPER
Allocates and initializes
PHO and address space

New Process
Executes EXE$PROCSTRT

System Context

Card Reader
Driver

Job
Controller

Terminal
Driver

Swapper Process
Context

New Process
Context

system service copies others from the context of the caller: the caller's PCB,
PHD, JIB, and control region (see Figure 25.2).

The $CREPRC system service can copy information to the PCB or the
JIB of the new process but cannot access its PHD or control region because
neither exists at this stage of process creation. It stores the parameters to
be copied to either the PHD or the control region in the PQB, a temporary
data structure, until the new process comes into existence and has a virtual
address space and PHD. Table 25.1 lists the contents of the PQB.

Control Flow of the Create Process System Service

The $CREPRC system service procedure, EXE$CREPRC in module SYSCRE­
PRC, runs in kernel mode. It performs the following steps:

25.1 Create Process System Service

Creator PCB New Process PCB

PHO

UIC, Owner PIO (for subprocess)

JIB

(Pooled Quotas)

PQB

Default Privileges

Figure 2.5.2.
Sample Movement of Parameters in Process Creation

(New JIB allocated
only if creating
detached process)

1. EXE$CREPRC verifies that the address specified in the PIDADR argument
is accessible to the mode from which EXE$CREPRC was requested. If
not, it returns the error status SS$_ACCVIO.

2. EXE$CREPRC creates either a top-level process, detached from its cre­
ator, or a subprocess, attached to its creator's job tree. EXE$CREPRC's
actions depend on the me argument and the PRC$V _DETACH bit in the
STSFLG argument.

-If the requestor specified a nonzero me argument, EXE$CREPRC cre­
ates a top-level process. The process is further classified as interactive,
network, batch, or detached based on EXE$CREPRC's STSFLG argument.

-If the me argument is zero, the default, and the requestor did not set the
PRC$V _DETACH bit in the STSFLG argument, EXE$CREPRC creates a
subprocess.

-If the me argument is zero, the default, but the requestor set the
PRC$V _DETACH bit in the STSFLG argument, EXE$CREPRC creates
a top-level, detached process with the same user identification code
jUIC) as that of the requestor.

711

Process Creation

Table 25.1 Contents of the Process Quota Block

Size Size
Item (bytes) Item (bytes)
Privilege mask 8 Reserved 1
Size of PQB 2 Authorization file flags 4
Type code 1 Process creation flags 4
Status 1 Minimum authorized security class 20
AST limit 4 Maximum authorized security class 20
Buffered 1/0 limit 4 SYS$INPUT attributes 4
Buffered 1/0 byte limit 1 4 SYS$0UTPUT attributes 4
CPU time limit 4 SYS$ERROR attributes 4
Direct 1/0 limit 4 SYS$DISK attributes 4
Open file limit 1 4 CLI image name 32
Paging file quota 1 4 CLI command table name 256
Subprocess limit 1 4 Spawn CLI image name 32
Timer queue entry limit 1 4 Spawn CLI command table name 256
Working set quota 4 Equivalence name for SYS$1NPUT 256
Working set default 4 Equivalence name for SYS$0UTPUT 256
Lock limit 4 Equivalence name for SYS$ERROR 256
Working set extent 4 Equivalence name for SYS$DISK 256
Logical name table quota 4 Default directory string 256
Flags 2 Image name 256
Default message flags 1

1 This quota or limit is now pooled in the JIB; hence, the PQB is no longer used to transfer this value.

712

EXE$CREPRC tests whether the specified UIC is zero or the same
as that of the requestor. If it is, no privilege is necessary to create a
top-level process. Otherwise, the requestor needs either the DETACH
or CMKRNL privilege. If the requestor requested creation of a top-level
process without the necessary privilege, EXE$CREPRC returns the error
status SS$_NOPRN.

3. EXE$CREPRC allocates a PCB from nonpaged pool, raising interrupt
priority level (IPL) to 2. It next allocates a PQB from either the PQB
lookaside list or paged pool, and completely zeros the PCB and PQB,
except for their headers.

Chapter 19 describes nonpaged pool, paged pool, and the PQB lookaside
list.

EXE$CREPRC remains at IPL 2 or above from this point to prevent
process deletion and the loss of allocated but unrecorded memory. If
an error occurs, EXE$CREPRC deallocates the PCB, PQB, and JIB (if
necessary) before returning the error status to the requestor.

4. JIB initialization for top-level processes differs from that for subprocesses:

-If EXE$CREPRC is creating a top-level process, it allocates a JIB from
nonpaged pool. It initializes the JIB's jobwide list of mounted volumes

25.1 Create Process System Service

as an empty list, then copies the account and user name fields from
the creating process's JIB and zero-fills the JIB to its end.

-If EXE$CREPRC is creating a subprocess, no JIB allocation is neces­
sary; the subprocess shares the JIB of its creator. However, processes
sharing a JIB must access its fields in an interlocked manner, since
the processes might execute concurrently on different members of a
symmetric multiprocessing (SMP) system. Thus, EXE$CREPRC incre­
ments JIB$W _PRCCNT, the count of subprocesses in the job tree, with
ADAWI, an interlocked instruction.

Before EXE$CREPRC accesses JIB$L_PGFLCNT, the process page
file quota, it acquires the MMG spinlock, raising IPL to IPL$_MMG. It
then charges JIB$L_PGFLCNT for the number of process page file pages
contributed by the shell and releases the MMG spinlock, lowering IPL
to 2.

If the job has insufficient page file quota, EXE$CREPRC deallocates
the newly acquired data structures and returns the error status SS$_
EXQUOTA to its requestor. Otherwise, it compares JIB$W _PRCCNT
to JIB$W _PRCLIM, the maximum number of processes in the job tree.
If JIB$W _PRCCNT exceeds JIB$W _PRCLIM, the job tree is at its max­
imum size. EXE$CREPRC deallocates the PCB and PQB and returns
the error status SS$_EXQUOTA to its requestor. Figure 25.3 shows the
relation between the JIB and the PCBs of several processes in the same
job.

Note that the process count field within a PCB (PCB$W _PRCCNT)
tracks the number of subprocesses created by one process. JIB$W _
PRCCNT counts the total number of subprocesses in the entire job.

5. For both top-level processes and subproc~sses, EXE$CREPRC stores the
address of the JIB in PCB$L_JIB.

6. EXE$CREPRC initializes several fields in the PCB to nonzero values:

a. It sets up the asynchronous system trap (AST) queue as an empty
listhead and enables AST delivery to all access modes.

b. It sets up the lock queue in the PCB as an empty listhead.
c. It initializes the PCB current and permanent CPU capability require­

ment fields to the system default value found in SCH$GLDEFAULT _
PROCESS_ CAP.

d. It copies the. default affinity skip value from SCH$GL_AFFINITY _
SKIP to the PCB.

e. If the system default capability mask enables implicit affinity, it
copies the CPU ID of the processor for which the current process
has affinity to the new process's PCB$L_AFFINITY field. Chapter 12
describes process affinity.

f. It copies the default file protection from the system default file pro­
tection or the creating process's PCB.

713

Process Creation

714

Process W PCB

Process X PCB NAME=W

NAME=X PIO= 10035

PIO= 10033 PRCCNT=2

PRCCNT=O OWNER=O

OWNER= 10035 JIB ~ JIB

Process Y PCB

Pro0$ss W cteated NAME=Y

both Xaritlv PIO= 10031

PRCCNT= 1
Process Y created
Process Z OWNER= 10035

JIB

Process Z PCB

NAME=Z

PIO= 1002E

PRCCNT=O

OWNER= 10031

JIB

Figure 25.3
Relation Between the JIB and the PCBs of Several
Processes in the Same Job

JIB for All Processes
in This Job

MPIO = 10035

Pooled Quotas

PRCCNT=3

g. It copies the entire access rights block (ARB) from the creating pro­
cess's ARB. If the creator has an extended rights list, EXE$CREPRC
allocates a nonpaged pool buffer into which it copies the extended
rights list. ·

The ARB is currently located withih the PCB. However, VMS rou­
tines that check a: process's access rights use the ARB pointer, PCB$L_
ARB, to locate the privilege mask and UIC. All programs should fol­
low this convention, since the ARB may become an independent
structure in the future. Any programs that do not use the ARB pointer
will require modification when this occurs.

h. EXE$CREPRC copies the unit number of the termination mailbox
from the MBXUNIT argument. The termination mailbox number is
not used until the process is eventually deleted. At that time, the
process deletion routine writes a termination message to the specified
mailbox if the unit number is nonzero.

i. It initializes the process-private page count, PCB$W _PPGCNT, to the
number of pages required for the new process header and the shell
pages.

j. EXE$CREPRC copies the process name, if one exists, into the PCB.

7. It determines the process privileges of the new process and stores them in

25.1 Create Process System Service

the PQB. Table 26.2 summarizes the various privilege masks associated
with a process.

If no privilege argument is present, EXE$CREPRC uses the current
privileges of the creator.

If a privilege argument is present and the creator has SETPRV privilege,
EXE$CREPRC uses the privilege argument with no modification.

If a privilege argument is present and the creator does not have SETPRV
privilege, EXE$CREPRC stores the logical AND of the privileges of the
creator and the privileges specified in the argument. In short, a created
process cannot receive privileges that its creator does not have.

8. EXE$CREPRC determines the software priority of the new process and
stores it in the PCB base priority and current priority fields. Because
the BASPRI argument is passed by value, it is always present. The system
service macro $CREPRC_S, used from VAX MACRO, specifies a default
value of 2 for BASPRI. The default value for other languages is determined
by the treatment of missing arguments by the language processor.

If the creator has ALTPRI privilege, EXE$CREPRC uses the priority
specified in the argument list. If the creator does not have ALTPRI priv­
ilege, EXE$CREPRC uses the smaller of the creator's base priority and
the priority in the argument list.

9. EXE$CREPRC determines the UIC of the new process and stores it in the
PCB. The me argument is used if the requestor specified that argumel}t.
Otherwise, EXE$CREPRC uses the UIC of the creator. Therefore, a sub­
process always has the same UIC as its creator-if the me argument had
been specified, EXE$CREPRC would have created a top-level process.

10. If the new process is a subprocess, EXE$CREPRC copies the internal
process ID IIPID) of the creator to the PCB$LOWNER field of the new
PCB and the extended process ID IEPID) of the creator to the field PCB$L_
EOWNER. Section 25.1.3.l describes internal and extended process IDs.

If the process is a top-level process, the PCB$L_OWNER and PCB$L_
EOWNER fields remain zero.

11. EXE$CREPRC tests that the process name is unique within the UIC
group. It examines the process name fields of all PCBs in the system with
the same group number. If the process name is not unique, EXE$CREPRC
returns the error status SS$_DUPLNAM to its requestor. Process name
is always qualified by UIC group number.

12. EXE$CREPRC copies several text strings to the PQB, taking the image
name and the equivalence names for SYS$INPUT, SYS$0UTPUT, and
SYS$ERROR from the $CREPRC argument list. For most processes, the
image is LOGINOUT.

13. It translates the logical name SYS$DISK in the table LNM$FILE_DEV and
stores its equivalence name in the PQB. For compatibility with previous
releases, SYS$DISK is translated once. Thus, its equivalence name must
be either a shareable logical name or a physical device name.

715

Process Creation

716

14. EXE$CREPRC copies the minimum and maximum authorized security
clearance records from the creator's PHD to the new process's PQB.

15. It copies the following information from the Pl space of the creator
process:

-Default directory string
-Command language interpreter (CLI) name
-Command table name
-CLI hame for use by spawned subprocesses
-Command table name for use by spawned subprocesses

16. It copies the default message flags and flags from the authorization file
record from the control region of the creator to the PQB.

17. It extracts the status flags for the new process from the $CREPRC argu­
ment list and sets the corresponding flags in the PCB and PQB. Table 25.2
describes the status flags. All PCB flags listed in the table are found
in the field PCB$1-STS. The IMGDMP flag is eventually stored in the
field PHD$W _FLAGS, but since the PHD does not exist yet, the PQB
temporarily maintains the flag. EXE$CREPRC always propagates the
flag PCB$V _SECAUDIT from the creator process. It checks the creator
process's privilege mask for any flags requiring privilege.

18. If the process being created is not a subprocess, and it is not a batch,
network, or interactive process, then it must be a true detached process.
In that case, EXE$CREPRC copies JIB$W _MAXJOBS and JIB$W _MAX­
DETACH from the JIB of the creator to that of the new process. If either
count is nonzero, indicating a limit, EXE$CREPRC must check whether
creation of this process would exceed one of those limits.

It acquires the SCHED spinlock, raising IPL to IPL$_SCHED. Hold­
ing the spinlock, it scans all existing processes except for the swapper
process. It looks for a process that is not a network process or a subpro­
cess and that has the same user name as the process being created. If it
finds one, it increments the total count of jobs with that user name. If
the process is neither interactive nor batch, it also increments the total
count of detached processes with that user name.

After scanning all the processes, EXE$CREPRC releases the SCHED
spinlock and restores IPL to 2. If either job limit has been exceeded,
EXE$CREPRC returns the error status SS$_EXPRCLM to its requestor.

19. It determines the quotas for the new process and stores them in the PQB.
Section 25.1.2 describes the steps taken to determine the quota list for
the new process.

20. EXE$CREPRC processes the ITMLST argument, if one was supplied. This
argument is reserved for VMS software, which uses it to pass logical
name attributes for SYS$INPUT, SYS$0UTPUT, and SYS$ERROR to
EXE$CREPRC. It in turn copies the attributes into the PQB.

21. EXE$CREPRC stores the address of the PQB in the field PCB$1-PQB.

25.1 Create Process System Service

Table 25.2 Status Flags Specified at Process Creation

Flag Argument Meaning if Set Destination

PRC$V _SSRWAIT Disable system service resource PCB$V _SSRWAIT
wait mode

PRC$V _SSFEXCU Enable system service exceptions PCB$V _SSFEXCU
for user mode

PRC$V _PSWAPM I Inhibit process swapping PCB$V _PSWAPM
PRC$V _NOACNT 2 Suppress accounting PCB$V _NQACNT
PRC$V _BATCH 3 Batch (noninteractive) process PCB$V _BATCH
PRC$V _IDBER Hibernate process before calling PCB$V _IDBER

image
PRC$V _IMGDMP Enable image dump PHD$V _IMGDMP
PRC$V _NOUAF 4 Log in without reading the PCB$V _LOGIN

authorization file
PRC$V _NETWRK Process is a network connect PCB$V _NETWRK

object
PRC$V _DISAWS Disable system initiated working PCB$V _DISAWS

set adjustment
PRC$V _DETACH 5 Process is detached PCB$V _DETACH
PRC$V _INTER Process is interactive PCB$V _INTER
PRC$V _NOPASSWORD Disable prompt for user name PCB$V _NOPASSWORD

1 Requires PSW APM privilege
2 Requires NOACNT privilege
3 Requires DETACH privilege
4 Formerly PRC$V _LOGIN
5 Flag ignored unless same UIC

and password

PCB$1-PQB is the same longword as the event flag wait mask field,
PCB$L_EFWM. The field PCB$L_PQB is available until the process exe­
cutes in its own context and is placed into a resource or event flag wait
state. At that time, its contents are overwritten by an event flag wait
mask. Therefore, the initial instructions of EXE$PROCSTRT, the first
code to run in the new process's context, are nonpageable and immedi­
ately copy the PQB address elsewhere. Section 25.3 describes EXE$PROC­
STRT.

Earlier versions of VMS allocated space in the swap file for the process
at this point. For VMS Version 5, swap file space allocation does not occur
unless the process must actually be swapped from memory. Chapter 18
describes the circumstances under which this could occur.

22. EXE$CREPRC acquires the MMG and SCHED spinlocks, raising IPL to
IPL$_MMG. It searches the PCB vector for an empty slot. If none is
available, it returns the error status SS$_NOSLOT to its requestor after

717

Process Creation

25.1.2

718

releasing the SCHED and MMG spinlocks. The PCB vector is pictured
in Figure 25.4. Section 25.1.3.1 describes the search process.

Otherwise, having found an available PCB vector slot, EXE$CREPRC
tests the maximum process count. If the maximum process count has
been exceeded (SCH$GW_PROCCNT's contents are larger than those
of SCH$GW _PROCLIM), EXE$CREPRC returns the error status SS$_
NOSLOT to its requestor after releasing the SCHED and MMG spinlocks.
EXE$CREPRC increments SCH$GW _PROCCNT regardless of process
type.

If the new process is an interactive one, EXE$CREPRC increments
SYS$GW _IJOBCNT, the current interactive job count for the system.
Since all interactive jobs begin by executing the LOGINOUT image, the
comparison of SYS$GW _IJOBCNT to the SYSGEN parameter IJOBLIM
is handled by LOGINOUT.

If the new process is a batch job, EXE$CREPRC increments SYS$GW _
BJOBCNT, the current batch job count for the system.

23. EXE$CREPRC stores the new PCB address in the available PCB vector
slot.

24. It fabricates internal and extended process IDs (see Section 25.1.3.IJ and
stores them in the PCB of the new process.

25. If the new process is not a subprocess, EXE$CREPRC stores its IPID in
the master process ID field of the JIB (JIB$LMPID).

26. EXE$CREPRC invokes the routine SCH$CHSE, in module RSE, to insert
the process into the COMO scheduling queue. It specifies the priority
increment class PRl$_ TICOM to boost the base priority by 6.

27. If it is creating a subprocess, EXE$CREPRC increments the count of sub­
processes owned by the creator (PCB$W _PRCCNT in the creator's PCB).
In addition, if a CPU time limit is in effect for the creator, EXE$CREPRC
deducts the amount of CPU time that is passed to the new process from
the creator.

28. Finally, it returns the EPID of the new process to the requestor (if re­
quested), releases the SCHED and MMG spinlocks, lowers IPL to 0, and
returns control to its requestor.

Establishing Quotas for the New Process

The $CREPRC system service uses two tables in the executive to set up
quotas for the new process: a minimum quota table and a default quota table.
Each quota or limit in the system has an entry in both tables. The contents of
the minimum table are determined by the SYSGEN parameters whose names
are of the form PQL_Mquota-name; the contents of the default table are of
the form PQL_Dquota-name. Following is a list of the steps EXE$CREPRC
takes to determine the value for each quota or limit that is passed to the
new process:

25.1 Create Process System Service

1. It places the default value for each quota into the PQB as initial value.
2. It replaces the default values in the PQB by any quotas specified in the

argument list to the $CREPRC system service.
3. It forces each quota to at least its minimum value.
4. It checks to ensure that the creator possesses sufficient quota to cover

the quota that it is giving to the new process. It performs this check as
follows:

a. If the creator has either DETACH or CMKRNL privilege and is cre­
ating a top-level process, quotas are unrestricted and no check is
performed.

b. If the creator has.neither privilege and is creating a top-level process
with the same UIC, then the new process quotas must be less than
or equal to those of the creator.

c. If a subprocess is being created and the quota is neither pooled nor
deductible lthe only deductible quota currently implemented is CPU
time limit), then the subprocess quota must be smaller than or equal
to the creator's quota.

d. Pooled quotas require no special action when a subprocess is being
created b~cause they already reside in the JIB, a structure that is
shared by all processes in the job !see Figure 25.3).

e. If a subprocess is being created and the quota in question is the CPU
time limit quota, EXE$CREPRC's actions depend on how much quota
the creator process possesses. If the creator has an infinite CPU time
limit, then no check is performed. If the creator has a finite CPU time
limit and specifies an infinite CPU time limit for the subprocess, half
of the creator's CPU timt; limit is passed to the subprocess. If the
creator has a finite CPU titne limit and specifies a finite CPU time
limit for the subprocess, the amount passed to the subprocess must
be less than the creator!s.original quota, or the creation is aborted.

5. EXE$CREPRC places pooled quotas directly into the newly allocated JIB.
It places other quotas into the PCB or stores them temporarily in the
PQB.

Table 25.3 lists the quotas that are passed to a new process when it is
created, whether each quota is deeluctible or pooled, and where the limit is
stored in the context of the new process. Further discussion of quotas can
be found in the Gtiide to Settfug Up a VMS System and in the VMS System
Services Reference Manual. '

With the exception of CPU time limit and subprocess count, all active
counts start at their protess limit values and decrement to zero. An active
count of zero indicates no quota remaining. An active count equal to the
corresponding process lmiit indicates no outstanding requests.

719

Process Creation

Table 25.3 Storage Areas for Process Quotas

Quota/Limit
Name

AST limit
Buffered 1/0 limit
Direct 1/0 limit
Working set quota
Working set default
Working set extent

CPU time limit

Location of
Active Count

Location of
Process Limit

NONDEDUCTIBLE QUOTAS

PCB$W _ASTCNT PHD$W _ASTLM
PCB$W _BIOCNT PCB$W _BIOLM
PCB$W _DIOCNT PCB$W _DIOLM
n/a 2 PHD$L_ WSQUOTA
n/a 2 PHD$LDFWSCNT
n/a 2 PHD$L_ WSEXTENT

DEDUCTIBLE QUOTA

PHD$L_CPUTIM PHD$L_CPULIM

POOLED QUOTAS (SHARED BY ALL PROCESSES IN TIIE SAME JOB)

Buffered 1/0 byte limit JIB$L_BYTCNT JIB$L_BYTLM
Open file limit JIB$W _FILCNT JIB$W _FILLM
Page file page limit JIB$L_PGFLCNT JIB$L_PGFLQUOTA
Subprocess limit JIB$W _PRCCNT JIB$W _PR CLIM
Timer queue entry limit JIB$W _ TQCNT JIB$W _ TQLM
Enqueue limit JIB$W _ENQCNT JIB$W _ENQLM

Count/Limit
Stored by 1

C/P
C/C
C/C
/P
/P
/P

P/P 3

1 The slash (/) separates the count from the limit: C/ indicates that the count value is stored
by EXE$CREPRC; /C indicates that the limit value is stored by EXE$CREPRC; P/ indicates that
the count value is stored by EXE$PROCSTRT; /P indicates that the limit value is stored by
EXE$PROCSTRT.

2 Working set list quotas are handled differently from other quotas (see Chapter 17).
3 CPUTIM starts at zero and increments for each clock tick that the process is current. If limit

checking is in effect (CPULIM nonzero), then CPUTIM may not exceed CPULIM.
4 The contents of the JIB are loaded by EXE$CREPRC when a detached process is created.

Subprocess creation uses an existing JIB.

25.1.3

720

Process Identification

VMS provides two forms of process identifier (PID) for each process. The
internal, traditional form-the IPID-identifies a process within the context
of a single VMS system. The EPID is a compressed version of the IPID that
additionally identifies the VAXcluster node of a process. In this book, the
unqualified term process ID or PID refers to the internal, traditional form.

VMS routines use the IPID or EPID to locate a process's PCB. All process
PCB addresses are stored in the PCB vector. The IPID or EPID provides an
index into the PCB vector and a parallel array called the sequence vector.
The number of entries in each array (and therefore the maximum number
of processes allowed at a given time on a VMS system) is determined by the
SYSGEN parameter MAXPROCESSCNT.

The VMS executive generally identifies a process internally by its IPID,

25.1.3.1

25.1 Create Process System Service

although code such as the lock management system services and the clus­
terwide process control system service may use both forms of PIO. System
services accept and return EPIDs, and system utilities display EPIDs, but
the format of the EPID is subject to change in future versions of VMS. No
program should attempt to partition the EPID fields. Instead, VMS supplies
the following routines (in the module SYSPCNTRL) for transformation or
manipulation of an EPID when necessary:

• EXE$EPID_ TO_PCB-Convert an EPID to address of corresponding PCB
• EXE$EPID_ TO_IPID-Convert an EPID to IPID
• EXE$IPID_ TO_EPID-Convert an IPID to EPID
• EXE$IPID_ TO_PCB-Convert an IPID to address of corresponding PCB

Fabricating PIDs. EXE$CREPRC fabricates a process's IPID and EPID after
obtaining a free PCB vector slot (and implicitly the associated sequence
vector slot).

The PCB vector is allocated from nonpaged pool during system initializa­
tion, and its address is stored in SCH$GL_PCBVEC. It contains a longword
slot for each possible process in the system. The first entry in the vector
contains the address of the null PCB. The second entry contains the address
of the swapper process PCB. All other entries in the vector initially contain
the address of the null PCB.

Note that in earlier versions of VMS, the null PCB was associated with an
actual null process. In VMS Version 5, a null process became unnecessary.
The null PCB remains, however, to serve as an indicator of an available slot
in the PCB vector.

When EXE$CREPRC creates a process, it searches the PCB vector for an
empty slot into which to insert the address of the new PCB it has built.
It considers an entry that contains the address of the null PCB to be an
empty slot. EXE$CREPRC excludes the first two PCBs (the null PCB and
the swapper process) from its scan of the PCB vector. It begins the scan
with the slot most recently allocated and wraps to the slot after the swapper
process if it exceeds the maximum entry. The index of the maximum entry
is stored in SCH$GL_MAXPIX.

Figure 25.4 provides an example of the contents of the PCB vector.
As processes are created and deleted on the system over time, the slots

in the PCB vector are reused. The sequence vector tracks the reuse of these
PCB vector slots.

All entries in the sequence vector are cleared during system initialization.
Each time EXE$CREPRC uses a PCB vector slot, it increments the value
in the corresponding sequence vector slot. This sequence number becomes
the high-order word of the IPID. Thus, executive routines use the sequence
number as a consistency check to determine that a number alleged to be an
IPID corresponds to a real process in the system.

721

Process Creation

~ Null PCB

25.1.3.2

722

PCB Vector j SCH$GL_PCBVEC::

Free slot

J u I
J

SWAPPER

l PCB
Free slot

I l ERRFMT PCB J
{CACHE_ SERVER J

PCB

l JOB_~~OLJ L 1 Process X PCB J Free slot

1 l SYMBIONT_OOCll]
PCB

• Free SIPF ~ t Process Y PCB J
Figure 25.4
Sample PCB Vector

When a process is deleted, the executive stores the address of the null
PCB in its PCB vector slot to indicate that the slot is available. The se­
quence number, however, is not incremented until the slot is reassigned by
EXE$CREPRC.

The sequence number increments to 32, 767, then cycles back to 0. There­
fore, when IPIDs are interpreted as signed integers, they are never negative.
This allows the 1/0 subsystem to treat a negative value in the IRP$L_PID
field of an 1/0 request packet (IRP) in a special manner. The 1/0 postprocess­
ing interrupt service routine interprets a negative IRP$L_PID value as the
(system virtual) address of an internal 1/0 completion routine.

A PCB contains four fields related to process identification. EXE$CREPRC
loads them all, because it has access to the PCB of the creator process and
it fabricates the IPID and EPID of the new process.

• PCB$L_PID-Internal process ID
• PCB$L_EPID-Extended process ID
• PCB$L_OWNER-Internal process ID of process's creator
• PCB$L_EOWNER-Extended process ID of process's creator

Internal PID. The IPID is a longword value. Its low-order word contains an
index into the PCB vector and the sequence vector, unique across the local
system but not across the nodes of a VAXcluster system. Its high-order word
is the sequence number from the sequence vector.

The executive uses the sequence number to check the validity of an IPID.
The high-order word of the IPID must match the sequence number in the

25.1 Create Process System Service

sequence vector offset indexed by the low-order word of the IPID. Addition­
ally, the PCB vector slot must contain the address of a PCB other than the
null PCB.

To optimize the IPID validity check, the VMS routines EXE$IPID_ TO_
PCB and EXE$NAMPID, in module SYSPCNTRL, rely on two PCB charac­
teristics. First, a PCB contains its own IPID at offset PCB$L_PID. Second,
the null PCB contains a zero in its PCB$1-PID field, and it is the only PCB
whose IPID is zero. To verify that an IPID is valid, these routines index into
the PCB vector using the low-order word of the IPID. They obtain the PCB
and compare its PCB$1-PID to the IPID being checked. The test fails under
two conditions:

• If the process specified has been deleted and the slot has been reused, the
new PCB's IPID contains an incremented sequence number and does not
match.

• If the process specified has been deleted but the slot has not been reused,
the PCB vector contains the address of the null PCB. The null PCB contains
zero in its PCB$1-PID field and can never match the IPID being checked.

Figure 25.5 shows how an IPID is constructed.

SCH$GL_SEQVEC::

Sequence Vector

LJ
Figure 25.5

Sequence
Number

Index

Fabrication of Internal Process IDs

New Process PCB

PIO

SCH$GL_PCBVEC::

rE J

PCB Vector

~

Index-I
x4

~

723

Process Creation

25.1.3.3

31 30 29 28

0

Node
sequence
number

Figure 25.6

21 20

Node Index
Process Sequence
Number (8-16 bits)

Layout of an Extended Process ID

13 12 0

Process Index
(13-Sbits)

5 4

Extended PID. The EPID serves as a VAXcluster-wide process identifica­
tion. The EPID is currently constructed from the IPID. Figure 25.6 shows
its format. Its low-order 21 bits contain the IPID in two fields. The widths
of these two fields vary, depending on the value of the SYSGEN parameter
MAXPROCESSCNT. The first field, beginning at bit 0, contains the process
index. The size of the field is computed at system initialization and stored
in global location SCH$G1-PIXWIDTH. The second field contains the se­
quence number. Its size is 21 minus the size of the first field.

Bit 31 of the EPID is zero, preserving the rule that an EPID or IPID is never
negative. The other ten high-order bits identify the VAXcluster node. The
node identification is similar to process identification in that it consists of
an index into a node table and a sequence number that counts how many
times the index has been reused. On a system that is not a VAXcluster node,
these bits are all zero.

After a system becomes a VAXcluster member, the EPIDs of any existing
processes must be updated with the node information, which comes from the
node's cluster system identification (CSID). The low-order ten bits from the
global location SCH$GW _LOCALNODE are inserted into the field PCB$L_
EPID of each process and, if appropriate, into the field PCB$L_EOWNER.

25.2 SHELL LAYOUT

724

After EXE$CREPRC creates a new PCB and requests its placement in the
scheduler's database, the skeletal process exists in the COMO scheduling
state. When the swapper brings the new process into memory, it obtains the
initial pages from a special template called the shell rather than from a swap
file. The shell exists in a pageable portion of the loadable executive image
WORKING_SET_MANAGEMENT. The swapper locates the shell through
SWP$G1-SHELLBAS.

The actual contents of the shell are listed in Table 25.4. As shown in the
table, the swapper process copies eight pages from the shell when it creates
a new process: one page of PHD, three Pl page table pages, the Pl pointer
page, the Record Management Services (RMS) data page, and two pages that
contain the initialization code SWP$SHELINIT.

25.2.1

25.2 Shell Layout

Table 25.4 Contents of the Shell Pages

Item Size Locked Page Number
PHD (fixed) l1 Yes 1
Pl page table pages 3 Yes 2, 3, 4
Pl pointer page Yes 5
RMS data area 1 No 6
SWP$SHELINIT 2 Yes 7, 8

1 The ultimate size of the top of the PHD depends on the values
of several SYSGEN parameters. See Appendix F for details on how
the size of the PHD is calculated by SYSBOOT.

Moving the Shell into Process Context

The swapper takes the following steps in preparation for the inswap of any
process:

1. It allocates physical memory for the process, the number of pages speci­
fied by PCB$1-PPGCNT plus PCB$L_GPGCNT.

2. It records the page frame numbers (PFNs) of these pages in its 1/0 map.
3. It allocates a balance slot, a place for the process's PHD.

In the case of a newly created process, EXE$CREPRC has initialized
PCB$1-PPGCNT to the value in SWP$GL_SHELLSIZ. Computed during
system initialization as a function of SYSGEN parameters and the shell con~
stants, this value includes

• The fixed portion of the PHD
• The working set list
• The process section table (PST)
• The PHD page arrays and page table page arrays
• The shell pages

As the swapper allocates each physical page, it stores the PFN in its 1/0
map area. (Recall from Chapter 18 that the swapper's map area is also used
as its PO page table.) Each map entry doubles as a PO page table entry (PTE).
The swapper initializes each PTE as active, valid, with a protection code of
ERKW.

After allocating a balance slot, the swapper examines PCB$1-WSSWP, the
location of the outswapped process. A zero value in this field identifies a
newly created process that must be initialized from the shell.

The swapper uses SWP$GLSHELLBAS to locate the shell in system space.
It tests whether all the pages of the shell are resident. If any page is not valid,
the swapper reads all the pages from the image on disk rather than page fault
several times. This optimization is effective at times when many processes
are being created.

725

Process Creation

25.2.2

726

Once all the shell pages are resident, the swapper copies them into its own
PO address space with a MOVC instruction. The first eight PTEs, therefore, map
the eight pages of the shell. The remaining PTEs map physical pages that
the swapper has allocated for the new process but has not yet initialized.

The swapper then invokes a special subroutine contained within the shell,
called SWP$SHELINIT, to configure the PHD before completing the final
operations of inswap.

Configuration of the Process Header

When the loadable executive image WORKING_SET _MANAGEMENT is
linked, the shell pages within it are constructed to resemble an outswapped
process. However, a PHD cannot be entirely configured without taking into
account several SYSGEN parameters, so part of the PHD configuration must
occur dynamically (see Chapter 14).

To complete the configuration of the PHD, the swapper invokes the rou­
tine SWP$SHELINIT, in module SHELL. Since SWP$SHELINIT executes
only during the creation of a new process, it is pageable and resides with
the other shell pages. As described in the previous section, the swapper maps
the physical pages containing SWP$SHELINIT in its PO address space. It then
invokes SWP$SHELINIT as a subroutine.

Running in kernel mode from the process context of the swapper,
SWP$SHELINIT performs the following actions:

1. Since SWP$SHELINIT runs in the swapper's process context, it has ac­
cess to the swapper's virtual address space and page table. It zeros the
pages that the swapper allocated for the new process but did not read from
the shell. None of the information destined for these pages is assembled
into the WORKING_SET _MANAGEMENT image; EXE$PROCSTRT dy­
namically determines and stores their contents at a later stage.

2. SWP$SHELINIT calculates the address of the system page table entry
(SPTE) that maps the start of the PHD. It copies the first entry in the
swapper's PO page table into this SPTE, thereby initializing it with the
PFN of the first page read from the shell.

It initializes subsequent SPTEs, mapping the working set list and PST
from the swapper's POPTEs that map pages zeroed in step 1.

3. SWP$SHELINIT skips the SPTEs that map the empty pages of the PHD
(used for working set list expansion), leaving them as no-access pages.

4. It initializes the next SPTEs, which map the PHD page arrays and page
table page arrays, from swapper POPTEs that map pages zeroed in step 1.

5. It invalidates the translation buffer.
6. It stores the balance slot index in the PHD. This value indexes the PHD

reference count array and the process index array, as well as the balance
slots. Chapter 14 describes these arrays.

25.2 Shell Layout

7. It stores the SYSGEN parameters that determine the default page fault
cluster size and the default page table page fault cluster size in the PHD.

8. It requests the initial page file assignment for the new process and re­
serves enough pages in the page file for its PHD pages and the shell pages.
It stores the page file and reservation count in the PHD.

9. It calculates and stores the index to the beginning of the working set
list (PHD$L_ WSLIST) and the pointer to the end of the PST (PHD$L_
PSTBASOFF).

10. It calculates and stores PHD$L_ WSLX, PHD$L_BAK, PHD$LPTWSLE­
LCK, and PHD$LPTWSLEVAL, the pointers to the PHD page arrays and
the page table page arrays (see Figure 14.10).

The size of an entry in the PHD$L_ WSLX array corresponds to the size
of an entry in the PFN database working set list index (WSLX) array.

_The size of a WSLX entry depends on the amount of memory present
on a particular system (see Chapter 14). On a system with more than 32
megabytes described by the PFN database, each WSLX array entry is a
longword. On a system with less memory, each WSLX array entry is a
word.

11. SWP$SHELINIT initializes the page table page arrays located by PHD$L_
PTWSLELCK and PHD$L_PTWSLEVAL. These count the locked and
valid PTEs in each page table page. Initializing the entries to -1 indicates
that no pages are locked or valid. The next to last page table page in Pl
space has its entries corrected to reflect the fact that it contains the PTEs
for locked pages and valid pages.

12. The fixed portion of the PHD maintains four counters pertaining to page
table pages: the number of page table pages with locked pages, the number
with valid pages, the number of active page table pages, and the number
of page table pages with nonzero entries. SWP$SHELINIT initializes the
counters to the number of permanent Pl page table pages copied from
the shell. For VMS Version 5, there are three permanent Pl page table
pages.

13. The PHD page copied from the shell contains initial values for the
three working set list longword index values (PHD$L_ WSLOCK, PHD$L
WSDYN, and PHD$L_ WSNEXT). SWP$SHELINIT adjusts the indexes to
account for any additions to the permanent part of the working set. Note
that for VMS Version 5, these fields are longwords.

After altering the index to the dynamic portion of the working set
(PHD$L_ WSDYNJ, SWP$SHELINIT moves any dynamic working set list
entries from their old location to the new location. In VMS Version 5,
this affects only the working set list entry defined in the shell for the
RMS data page.

14. SWP$SHELINIT updates the process working set list with the pages
comprising the beginning of the PHD (fixed portion, working set list,
PST, and page table page arrays). In addition, it updates the PFN database

727

Process Creation

728

arrays for the physical pages to indicate that these pages are active and
modified (PFN STATE array) and page table pages (PFN TYPE array). It
stores the working set list offset in the PFN WSLX array, the page file
number in the PFN BAK array, and the PTE back pointer in the PFN PTE
array.

15. It initializes the SPTEs for the process page table pages as demand zero
pages with a protection code of ERKW.

16. It copies the swapper POPTEs that map the three Pl page table pages
defined in the shell into SPTEs. It locks these pages into the process
working set list and updates the PFN arrays as in step 14.

17. SWP$SHELINIT calculates the offsets from the beginning of the PHD
to the beginning of the PO page table and the end of the Pl page table
to reflect the size of the beginning of the PHD (see Chapter 14 and
Appendix F). It adjusts the address of the first free virtual address in Pl
space (stored in the PHD at offset PHD$1-FREP1VA) and the contents
of the copy of the Pl length register (stored in the hardware PCB in the
PHD) to reflect the size of the PHD that is mapped into Pl space.

18. It rearranges entries in the swapper PO page table to reflect the state of the
newly built working set list. It calculates the address of the Pl window to
the PHD and stores it in location CTL$G1-PHD. The swapper can access
the Pl address space of the newly created process because its pages are
mapped as swapper PO addresses. CTL$GL_PHD resides in the Pl pointer
page copied from the shell. When SWP$SHELINIT returns control to the
swapper for completion of the inswap, the swapper will complete PTE
generation based on the working set list.

19. SWP$SHELINIT marks the PHD resident by setting bit PCB$V _PHDRES
in PCB$L_STS.

20. It initializes the WSEXTENT and WSAUTHEXTENT indexes to reflect
the value of the SYSGEN parameter WSMAX, and the WSQUOTA and
WSAUTH indexes to reflect the value of WSMAX or 65,536 pages,
whichever is smaller. It initializes PHD$1-WSFLUID to the value of
the SYSGEN parameter MINWSCNT. The end of the working set list
(WSLAST) and the default count (DFWSCNT) initially reflect the value
of the SYSGEN parameter PQL _DWSDEFAULT. PHD$W _ WSSIZE is ini­
tialized to the value of PQL_DWSDEFAULT.

21. The calculations in step 17 adjusted the values of the PO and Pl base
registers relative to the beginning of the PHD. The virtual address of
the PHD is added to these two registers so that they contain the virtual
addresses of the beginning of the PO and Pl page tables, as required for
address translation.

22. SWP$SHELINIT initializes the PlPTEs that map the system service vec­
tors with the contents of the SPTEs that map the system service vectors
in system space. The Pl mapping of the system service vectors enables

25.3 Process Creation in the Context of the New Process

them to be replaced on a per-process basis, simply by modifying that
process's PlPTEs.

SWP$SHELINIT returns control to the swapper's main inswap rou­
tine, which completes the remaining steps of the inswap operation. It
generates the remaining PTEs based on the working set list. The pages
containing the shell code become part of the kernel stack for the new
process. They are not zeroed, so the initial content of the kernel stack is
the shell code. As the final step, the swapper invokes the scheduler rou­
tine SCH$CHSEP, in module RSE, to change the state of the new process
to executable and possibly trigger a rescheduling interrupt. These steps
are described in Chapter 18.

25.3 PROCESS CREATION IN THE CONTEXT OF THE NEW PROCESS

25.3.1

The final steps of process creation take place in the context of the newly
created process. The process's initial register context is contained within
the PHD copied from the shell. When it becomes current, the process begins
execution at the saved program counter (PC) in that PHD, the address of
the routine EXE$PROCSTRT, in module PROCSTRT. The saved processor
status longword (PSL) indicates kernel mode at IPL 2. Thus, the first code
that executes in the context of a newly created process is the same for every
process in the system.

Operation of EXE$PROCSTRT

When EXE$PROCSTRT begins execution, the PCB and the PHD have been
created. In addition, information passed from the creator process has been
copied into the PQB by EXE$CREPRC. EXE$PROCSTRT must copy the
information from its temporary location in the PQB into the PHD and Pl
space (see Figure 25. 7). EXE$PROCSTRT then prepares for and activates the
image specified by the creator process.

EXE$PROCSTRT begins execution in kernel mode at IPL 2. Later segments
of the code execute in executive mode and user mode. Because the PCB$L_
PQB field is an overlay of PCB$1-EFWM, the process cannot enter a resource
or event flag wait state until the PQB address has been copied elsewhere.
Since a page fault might cause a process to be placed in a resource wait
state, the process cannot page fault until EXE$PROCSTRT has copied the
PQB address. Therefore, the first three instructions of EXE$PROCSTRT are
located in nonpageable memory. These instructions obtain the address of
the process's PCB and copy the PQB address from the PCB to a register. The
remainder of EXE$PROCSTRT is pageable.

EXE$PROCSTRT performs the following steps:

1. It obtains the PCB address from CTL$GL_PCB and copies the PQB ad­
dress from the PCB to a register, as described previously.

729

Process Creation

730

JIB

· 1 I (Not involved
in PROCSTRT
operation)

'---------'

r-----------
1 P1 Space
I
I PQB

I

I
I
I
I

CPU and AST Li . I
m1ts, Privilege Mask . I

• Working Set 0

Figure 25.7
Removal of Process Parameters from the Process
Quota Block

PHD

2. It stores the addresses of the RMS dispatcher and the base of the control
region in the Pl pointer page. The base of the control region, stored in
CTL$GL_CTLBASVA, is the boundary between process-permanent and
image-specific Pl space. EXE$PROCSTRT initializes CTL$GLCTLBAS­
VA to a value determined during system initialization but updates it with
each expansion of process-permanent Pl virtual address space.

3. EXE$PROCSTRT initializes the dispatch vectors for kernel and executive
mode user-written system services, as well as the vectors for user-written
rundown handlers. Each of these vectors begins with a longword pointer
to the next available entry, followed by the actual entries. EXE$PROC­
STRT initializes each pointer with the offset to the second entry and
stores an RSB instruction in the first entry. Each vector has an additional
pointer to the first loaded entry, used for dispatching. EXE$PROCSTRT
stores the address of the RSB instruction here.

4. It initializes the first longword of the message vector with the offset to
the first entry and the message pointer with the address of that entry.

5. If the creator process requested an image dump, EXE$PROCSTRT prop­
agates that flag to the PHD.

6. EXE$PROCSTRT initializes the kernel request packet (KRP) lookaside
list (see Chapter 19), forming the space into KRPs and inserting them on
the list.

25.3 Process Creation in the Context of the New Process

7. It moves the CPU time limit and the AST limit from the PQB to the
PHD jsee Table 25.3).

8. EXE$PROCSTRT initializes the working set list pointers in the PHD to
reflect the quotas passed from the creator. It minimizes the SYSGEN
parameter WSMAX, the maximum working set size, with the number
of potentially available physical pages. It then enforces the following
restrictions on quotas:

-Working set quota must be less than or equal to 64K, the maximum
size of a swap slot.

-Working set extent must be less than or equal to the maximum phys­
ical pages.

-Working set quota must be less than or equal to working set extent.
-Working set default must be less than or equal to working set quota.

9. EXE$PROCSTRT copies the process's base priority to PHD$B_AUTHPRI
and PCB$B_AUTHPRI. Saving the base priority enables a process without
ALTPRI privilege to lower its base priority and later raise it as high as
the original base priority.

10. It copies the process privilege mask from the PQB to the first quadword of
the PHD jPHD$Q_PRNMSK), the permanent privilege mask jCTL$GQ_
PROCPRN in the Pl pointer page), and the authorized privilege mask
jPHD$Q_AUTHPRN). Chapter 26 describes the use of each of these
privilege masks.

11. It copies the default message flags to Pl space.
12. It saves the login time in CTL$GQ_LOGIN.
13. EXE$PROCSTRT copies the minimum and maximum authorized secu­

rity clearance records from the PQB to the PHD.
14. It initializes the following listheads as empty:

-The Get Job/Process Information j$GETJPI) system service's context
queue

-The three image activator listheads jsee Chapter 26): image control
blocks jICBs) representing activated images; ICBs representing work in
progress; and the ICB lookaside list

-The clusterwide process services jCWPS) queue in the PCB
In Version 5 of VMS, processes are visible and can be manipulated

clusterwide. CWPS supports system services in implementing this fea­
ture. Chapter 13 provides details.

-The process scan queue in. the PHD
The $PROCESS_SCAN system service uses this queue to maintain

its search context. Chapter 13 provides details.

15. EXE$PROCSTRT creates Pl virtual address space for four uses:

-Channel control block table
-Process allocation region

731

Process Creation

732

-Process I/O segment
-Image I/O segment

Appendix F describes these areas and the SYSGEN parameters that
affect their size. EXE$PROCSTRT records the address of each portion
and updates the process-permanent boundary address in CTL$G1-CTL­
BASVA with the new, lower address.

16. It allocates and initializes space from the Pl allocation region for the
process logical name hash table. EXE$PROCSTRT also allocates space for
the process-private logical names and tables that it will create. Chapter 35
describes the logical name data structures and their use.

17. It initializes the process directory logical name table, LNM$PROCESS_
DIRECTORY, and the process logical name table and inserts them into
the hash table.

18. EXE$PROCSTRT creates the logical name table logical names LNM$JOB,
LNM$GROUP, and LNM$PROCESS. It inserts them into the hash table
and into LNM$PROCESS_DIRECTORY.

19. {Jsing the equivalence strings and logical name attributes from the PQB,
EXE$PROCSTRT creates the logical names SYS$INPUT, SYS$0UTPUT,
SYS$ERROR, TT, and SYS$DISK.

20. If the process is not a subprocess, EXE$PROCSTRT creates the job and
group logical name tables. (If the process is a subprocess, then the tables
already exist.) Because multiple processes access the tables, they must
be in system space. EXE$PROCSTRT allocates space for the tables from
paged pool. It locks the logical name table mutex for write access and
holds it while accessing the shareable logical name hash table. Chapter 8
describes mutexes.

EXE$PROCSTRT initializes the two tables and inserts the job table
into the shareable logical name hash table. It attempts to do the same
with the group table. However, the group table may have already been
created by some other process with the same UIC group number. If this is
the case, the new table is unnecessary and EXE$PROCSTRT deallocates
it back to paged pool. Otherwise, EXE$PROCSTRT inserts the group
table into the shareable logical name hash table. In either case, it unlocks
the logical name table mutex.

21. EXE$PROCSTRT then allocates space from the Pl allocation region for
the process-private logical name table cache. It formats the space into a
lookaside list of logical name cache entries.

22. It copies the image name from the PQB to the image header buffer for
subsequent use by the image activator.

23. EXE$PROCSTRT copies the default directory string, if one exists, from
the PQB to the control region. It also copies the two sets of CLI and
command table information.

25.3 Process Creation in the Context of the New Process

24. It copies the $CREPRC and user authorization file (UAF) flags from the
PQB to control region flags.

25. It copies the user name and account name from the JIB into the Pl pointer
page.

26. EXE$PROCSTRT deallocates the PQB by inserting it on the PQB looka­
side list (see Chapter 19).

2 7. EXE$PROCSTRT invokes MMG$IMGRESET, which resets PHD$L_
WSLAST, the pointer to the end of the working set list. MMG$IMG­
RESET also lowers IPL to 0, making it possible for the process to be
deleted.

Another, more philosophical, interpretation is that at this point in the
creation of a process, there exists something that is capable of being
deleted, a full-fledged process.

28. EXE$PROCSTRT initializes the shareable image list for the Address Re­
location Fixup ($IMGFIX) system service to point to a dummy element.
This system service is described in Chapter 26.

29. EXE$PROCSTRT merges the Files-11 Extended QIO Processor (XQP) into
Pl space. During system initialization, a global section is created from
the XQP image. It contains pure code and read-only data to be shared
among all processes. EXE$PROCSTRT requests the Map Global Section
($MGBLSC) system service to map the shareable XQP section.

EXE$PROCSTRT writes the lowest XQP address into CTL$GL_CTL­
BASVA to record the new Pl base virtual address. It dispatches to ini­
tialization code within the XQP image. The initialization code requests
the Expand Program/Control Region ($EXPREG) system service to cre­
ate a process-private copy of XQP impure area and space for the XQP's
private kernel stack. The code then updates CTL$GL_CTLBASVA. After
performing other Files-11 initialization, it returns to EXE$PROCSTRT.

30. EXE$PROCSTRT changes access mode to executive by fabricating a PSL
and PC on the stack and executing an REI instruction. Execution of an
REI instruction is the only way to get to an outer (less privileged) access
mode.

At this point, EXE$PROCSTRT has moved all the information from
the creator to the context of the new process and is now ready to activate
the image that will execute in the context of the new process. It must
change mode to executive to request the image activator, which is an
executive mode system service.

31. EXE$PROCSTRT requests the image activator to set up the page tables
and perform the other steps necessary to activate the image. Image acti­
vation is described in Chapter 26.

32. EXE$PROCSTRT declares EXE$RMSEXH, an executive mode termina­
tion handler. This handler will be called when the Exit ($EXIT) system

733

Process Creation

734

service is requested from executive access mode, which usually happens
when the process is deleted. When called, it calls SYS$RMSRUNDWN
for each open fl.le.

33. The address of a dummy CLI call back routine is stored in location
CTL$AL_CLICALBK. If an image that was activated from EXE$PROC­
STRT attempts to communicate with a nonexistent CLI, the dummy CLI
call back routine will return the error status CLl$_INVREQTYP.

34. EXE$PROCSTRT changes access mode to user by fabricating a PSL and
PC on the stack and .executing an REI instruction.

35. It clears the frame pointer IFPJ, guaranteeing that the search of the user
mode stack for a condition handler by the exception dispatcher will
terminate (see Chapter 5).

36. EXE$PROCSTRT sets up an initial call frame on the user mode stack by
executing a CALLG instruction to an inline procedure:

CLRL FP
CALLG (AP),B -260$
REI

260$: .WORD 0 ;Entry mask
MOVAB s-EJCE$CATCH_ALL,(FP)

;Procedure code

37. EXE$PROCSTRT establishes EXE$CATCH_ALL, the catch-all condition
handler, as the condition handler for this call frame and also as the last
chance exception vector for user mode. The purpose and action of this
handler are discussed in the next section.

38. EXE$PROCSTRT requests the $IMGFIX system service to perform ad­
dress relocation for the image.

39. An argument list that is nearly identical to the one used by one of the
CLis (see Chapter 27) is built on the stack. This argument list allows an
image to execute with no concern over whether it was activated from
EXE$PROCSTRT or from a CLI.

40. EXE$PROCSTRT determines whether the process was created with the
hibernate STSFLG. If the PCB$V _HIBER bit in PCB$L_STS is set, it requests
the Hibernate ($HIBERJ system service. EXE$PROCSTRT will continue
when the process is awakened.

41. It calls the image at its initial transfer address. If the image subse­
quently terniinates with a RET instruction (instead of requesting .the
$EXIT system service directly), control returns to EXE$PROCSTRT. If
the process was created with the hibernate STSFLG, EXE$PROCSTRT
places the process back into hibernation. When awakened, EXE$PROC­
STRT calls the image again. An effect of this implementation is that
the image is not exited and no exit handlers (user-declared or system­
declared, such as EXE$RMSEXHJ are called.

2.5.3.2.

25.3 Process Creation in the Context of the New Process

If the process was not created with the hibernate flag, EXE$PROC­
STRT requests the $EXIT system service itself. In general, there is no
difference between an image terminating with a RET instruction or with
a request of the $EXIT system service. If the process was initially cre­
ated with the hibernate flag, there is a difference between executing a
RET instruction and requesting $EXIT. If a process is to be put into hiber­
nation for future awakenings, it must use the RET instruction to return to
EXE$PROCSTRT rather than terminate by requesting the $EXIT system
service.

Catch-All Condition Handler

EXE$PROCSTRT and the CLis establish the catch-all condition handler,
EXE$CATCH_ALL, in module PROCSTRT, in the outermost call frame be­
fore calling an ftnage. EXE$PROCSTRT also establishes it as the last chance
exception vector for user mode through the Set Exception Vector ($SETEXV)
system service. Any condition that is resignaled (not properly handled) by
other handlers (or unfielded because no other handlers have been established)
is eventually passed to this handler. The handler outputs a message using the
Put Message j$PUTMSG) system service. Depending on the severity level of
the condition, it may force image exit.

EXE$CATCH_ALL's arguments are the addresses of the signal and mech­
anism arrays. It performs the following actions:

1. It tests the condition in the signal array. If the condition is a system
service failure, SS$_SSFAIL, EXE$CATCH_ALL disables system service
failure mode to avoid an infinite loop.

2. If a call to LIB$SIGNAL generated the condition, EXE$CATCH_ALL re­
moves the PC and PSL that LIB$SIGNAL fabricated from the signal array,
leaving only those arguments passed to LIB$SIGNAL (see Chapter 5).

3. Unless system services are inhibited for this process, EXE$CATCH.ALL
requests the $PUTMSG system service to write an error message to
SYS$0UTPUT (and to SYS$ERROR if different from SYS$0UTPUT).
The $PUTMSG system service is discussed in Chapter 36.

4. If EXE$CATCH_ALL was called as a last chance handler or if the error
level is severe or greater (and if system services are not inhibited for
this process), it calls EXE$EXCMSG to write an exception summary to
SYS$0UTPUT. Chapter 36 describes EXE$EXCMSG.

EXE$CATCH_ALL then dispatches to EXE$IMGDUMP _MERGE, de­
scribed in Section 25.3.3, to write the process address space to a file for
later analysis. When it returns, EXE$CATCH_ALL requests the $EXIT
system service.

5. If it was not called as a last chance handler and if the error level is less
than severe, EXE$CATCH..ALL returns the status SS$_CONTINUE to
the exception dispatcher, which returns to the image.

735

Process Creation

25.3.3

736

Image Dump Facility

EXE$IMGDMP _MERGE, in module PROCSTRT, provides the capability to
write a dump file of the process's address space in a format that can be
mapped later for analysis by the debugger. It is invoked when the image ter­
minates as the result of an exception that it cannot handle. EXE$IMGDMP _
MERGE is normally invoked by the condition handler established by the
Image Startup system service (see Chapter 26), but it can also be invoked
from the last chance handler, EXE$CATCH_ALL.

If the exception occurred in a mode more privileged than user, then no
dump may be taken and EXE$IMGDMP _MERGE returns to its invoker. If the
exception occurred in user mode, the routine requests the $GETJPI system
service to obtain process privileges, installed image privileges, and the PHD
flags. EXE$IMGDMP _MERGE tests whether the PHD$V _IMGDMP flag is
set. If it is clear, the process has not requested image dump and EXE$IMG­
DMP _MERGE returns. This flag can be specified as part of the $CREPRC
STSFLG argument and with the DCL commands SET PROCESS/DUMP and
RUN/DUMP.

If the flag is set, EXE$IMGDMP _MERGE checks whether the image was
installed with more privileges than the process has. If the image was installed
with more privileges than the process, and the process has neither CMKRNL
nor SETPRV privilege, no dump can be taken and EXE$IMGDMP _MERGE
returns. Otherwise, it requests the $IMGACT and $1MGFIX system services
to activate the image SYS$LIBRARY:IMGDMP.EXE and transfers control to
the image.

26 Image Activation and Exit

I would have you imagine, then, that there exists in the mind
of man a block of wax ... and that we remember and know
what is imprinted as long as the image lasts; but when the
image is effaced, or cannot be taken, then we forget or do not
know.
Plato, Dialogs, Theaetetus 191

Before an image can execute, the VMS operating system must take several
steps to prepare the process. It must locate the correct image file on disk,
set up process page tables and other data structures, and resolve address
references among shareable images. The term image activation refers to the
combination of these steps. In addition, if the debugger, Image Dump Utility,
or traceback handler is expected to run when the image executes, VMS must
incorporate the correct hooks to enable these images to be invoked.

At image exit, VMS must call exit handlers declared by itself or by the user.
In any process that has had a command language interpreter (CLI) mapped
by LOGINOUT, multiple images can execute one after another. All traces
of the current image must be eliminated so that the next image can begin
execution with no side effects from the execution of the previous image.
This is referred to as image rundown.

This chapter describes the following system services related to image
activation and exit:

• Image Activate ($IMGACT)
• Address Relocation Fixup ($IMGFIX)
• Image Startup ($IMGSTA)
• Declare Exit Handler ($DCLEXH)
• Exit ($EXIT)
• Rundown ($RUNDWN)

These system services, other than $DCLEXH and $EXIT, are reserved for
the VMS operating system. Any other use is completely unsupported.

The chapter also describes the initialization and use of the various privilege
masks maintained for each process.

26.1 IMAGE INITIATION

VMS initiates images via a private-to-Digital system se:rVice, $IMGACT,
which is commonly known as the image activator. The image activator
contains no special code to load images into memory for initial execution.
Instead, it uses the page fault mechanism to bring in pages on demand from
an image file. For this scheme to work, the process page tables must reflect

737

Image Activation and Exit

26.1.1

738

the state of all the pages in the main image file and its shareable images'
files. The image activator initializes the process page tables and makes other
necessary preparations, such as creating address space for the user stack.

In this chapter, the term main image refers to a primary, controlling image
that can be invoked by a user through the RUN command. A main image can
be linked with multiple shareable images, which themselves can be linked
with other shareable images. A shareable image is partly linked but has no
transfer address. Thus it is not directly executable and must be linked with
object modules or other shareable images to produce a main image.

Before control is transferred to a main image, the image activator resolves
.ADDRESS and GA references that point to locations within the shareable
images that have been linked with the main image. This resolution is per­
formed at activation time rather than at link time so that shareable images
can change in size without requiring a relink of all images that use them.

The image activator transfers control to the main image by way of a special
path in the executive that allows hooks to be inserted for later inclusion of a
debugger, the Image Dump Utility, or the traceback facility. This path, called
the debug bootstrap, always executes unless explicitly excluded at link time
with a /NOTRACEBACK qualifier to the LINK command.

Image Activation

Although the concept of image activation is straightforward, there are several
special cases of image activation. This section discusses some of these cases
explicitly and mentions others only in passing.

The following types of image activation are discussed explicitly:

• Activation of a simple main image, one linked with no shareable images
This is an artificial separation from the next case, simply to illustrate

the difference in the image activator's actions.
• Activation of an image linked with one or more shareable images

Because almost every high-level language processor generates calls to
library routines implemented as shareable images, this case includes most
images.

• Activation of a known image
The activation of images that have been installed is streamlined by the

data structures created by the Install Utility.
• Activation of a compatibility mode image

When the image activator is called to activate a compatibility mode
image, it actually activates the RSX-1 lM Application Migration Executive
(AME) and passes the compatibility mode image name to the AME for
further processing. (The RSX-llM AME is part of the optional software
product VAX-11 RSX.)

There are several other special cases that the image activator must check
for:

26.1 Image Initiation

• Image activation at system initialization time
During initialization of the system, image files must be opened without

the support of either Record Management Services jRMS) or the file sys­
tem. The image activator calls special code in the executive that performs
the simpler file system operations in the absence of a file system. These
routines are briefly described with system initialization in Chapters 30
and 31.

• Merged image activation
A merged image activation occurs subsequent to the activation and trans­

fer of control to a main image. This can be used for mapping a debugger,
the Image Dump Utility, the traceback handler, a message file, or a CLI
into an unused area of PO or Pl space. It is also used to activate a shareable
image when an already activated image calls the Run-Time Library proce­
dure Find Universal Symbol in Shareable Image File jLIB$FIND_IMAGE_
SYMBOL).

Rather than using the virtual address descriptors found in the merged
image, the image activator simply uses the next available portion of PO
or Pl space. The user stack and image I/O segment are not mapped for
a merged image. The RMS initialization routines are not called either,
because an image is already executing and has RMS context that cannot
be destroyed.

• Message sections
Message sections add per-process or image-specific entries to the message

facility .
• PO-only images

The VMS Linker can produce images that map all temporary structures,
including the user stack and the image I/O segment, in PO space. The image
activator must recognize this type of image and correctly map these two
structures, usually located in the lowest address portion of Pl space.

A PO-only image executes when the permanent part of the low-address
end of Pl space must be extended without overwriting image structures.
For example, the SET MESSAGE command causes a PO-only image called
SETPO.EXE to execute. This image maps the indicated message section into
the low-address end of Pl space and alters location CTL$GL_CTLBASVA
to reflect the new boundary between the temporary and permanent parts
of Pl space. This last step is critical if the message section is to remain
mapped when later images terminate .

• Privileged shareable images
Privileged shareable images implement user-written system services and

rundown routines. System service procedures that are not part of the exec­
utive loadable images jfor example, $MOUNT and $DISMOU) are imple­
mented as privileged shareable images.

• Images that do not reside on a random access mass storage device
The image activator can activate images from sequential devices !certain

739

Image Activation and Exit

26.1.1.1

26.1.1.2

Image file

magnetic tape devices) and images located on another node of a network.
An address space large enough to contain the entire image is first created.
The image is then copied into this address space, thus requiring all image
pages, including read-only pages, to be set up as writable.

Overview of the Image Activator. The image activator performs several steps
to activate an image. First, it calls RMS to open the image file, which enables
the system to perform all its file protection checks. Then it reads the image
header (IHD). The IHD contains information about the virtual address space
requirements of each section in the image. The image activator requests a
memory management system service to map each image section.

Data Structures That Describe Images. An. image consists of several variable­
sized pieces, the first of which is the IHD. The IHD is followed by the image
body, the actual program code and data; by a fixup table with information for
address references that must be resolved at image activation; and, optionally,
by symbol table information. Figure 26.1 shows the organization of an image.

The IHD itself consists of a number of variable-sized pieces. At the begin­
ning of the IHD is the fixed portion, which contains some standard informa­
tion about the image and pointers to the other parts of the IHD. Figure 26.1

/
/

./

/
/

/

/

A

8

Image Header

Fixed Portion of
Image Header

$1HDDEF

Transfer Address Array

Fixed Portion of Image Header

Offset to B Size of Header

Offset to D Offset to c
Offset to E Offset to F

Minor ID Major ID
~

Image Header
Image l Header
Type Blocks

$I HADEF I
I

Image Body ~\
Fixup Information

Debug and Other
Symbol Tables

t- Reserved _,

Image 110 110
Segment Pages Channels

Linker Flags

Global Section ID

System Version Number
(if linked with SYS.STB)

Virtual Address of
Fixup Information

Debug and Global
Symbol Table Offsets

$I HS DEF

Image Name and
D !DENT Strings

$1HIDEF

System Version Numbers

E
Array (only in images
linked with SYS.STB)

$1HVNDEF

Patch Information
F (only in patched images)

$1HPDEF

C I
I I
I I
I I
I I

I \
I I
I I
I I
I I
I I
\ I
I I
\ I
I I

\ Image ~ection ~ T ___ D$_~~-~_b_~F_rs_~T \J-----..,...--------lI
- - _ Alias Code J

Figure 26.1
Contents of an Image Header

740

End of demand zero
section descriptor

End of process-private
section descriptor

End of global section
descriptor

Figure 26.2

PAGCNT 1 SIZE

PFC 1 VPN PFC

FLAGS

VBN

IDENT

GBLNAM
(up to 44 bytes)

Layout of an Image Section Descriptor

26.1 Image Initiation

Image Section Flags

Bit Meaning
o Global
1 Copy on reference
2 Demand zero
3 Writable

4-6 Match control field
7 Last cluster in PO space
8 Initialization code
9 Based image
1 0 Fixup vector
11 Memory-resident

12 -16 (reserved)
17 Vector contained in image section
18 Image section is protected

shows the organization of the IHD and the layout of its fixed part. The
macro $IHDDEF defines symbolic offsets for the fixed part. Offsets for the
other parts are defined by the macros shown in Figure 26.1.

The IHD contains image section descriptors (ISDs), one for each section
in the image. Each ISO describes a portion of the image and its location, in
an image file and in virtual address space. Figure 26.2 shows the layout of
the three types of ISO.

The three types of ISO are differentiated by flags in the field ISD$L_FLAGS
and by the size of the data structure:

• Demand zero ISO. Identified by the flag ISD$V _DZRO, a demand zero ISO
describes a range of virtual address space that begins as zero-filled pages.
The image section will be mapped in virtual address space beginning at
the virtual page number in ISD$L_ VPNPFC. ISD$W_PAGCNT contains
its l_ength in pages.

• ISO for a private section. A private section ISO describes a range of virtual
address space initially filled with code or data from the image file. This
type of ISD may also describe a private mapping of a global section. The
image section begins in the image file at the virtual block number in the
field ISD$1-VBN; its length in pages is in ISD$W_PAGCNT. The image
section will be faulted into virtual address space beginning at the virtual
page number in ISD$L_ VPNPFC .

• Global ISO. Identified by the flag ISD$V _GBL, a global ISO describes code
or data stored in a shareable image. The global section name is stored
as a counted string in the field ISD$T _GBLNAM. In the normal case, a
nonbased shareable image, the field ISD$L_ VPNPFC is zeroed by the linker,
and the image activator maps the shareable image into the next available
virtual address space.

A main image linked without any shareable images contains only the first
two types of ISO.

741

Image Activation and Exit

742

A main image linked with a shareable image contains a global ISD that
describes the shareable image. This type of ISD primarily serves to name
the shareable image. The shareable image contains its own IHD and ISDs to
describe its own virtual address space. Address space for the shareable image
is not usually assigned when the main image is linked; that is, the shareable
image is not normally based. Instead, the address space for the shareable
image is assigned and allocated when it is activated. Thus, the size of the
shareable image can change without requiring the main image to be relinked.

A shareable image linked with another shareable image contains a global
ISD to point to the second shareable image. If the main image refers only to
symbols in the first shareable image but not the second, it need not contain a
global ISD for the second shareable image. The entire collection of shareable
images implied by a main image is not determined until image activation.
Thus, a shareable image can be relinked to reference additional shareable
images without requiring the relink of the main image linked with it.

Activating a main image can result in the activation of many shareable
images. After a main image has begun to execute, the image activator can be
requested again to activate additional shareable images. The image activator
keeps track of which images are activated, using a data structure called an
image control block (ICB) to describe each image.

The image activator keeps two ICB lists-one for images already activated
and one for images yet to be activated. ICBs are initially allocated from the
Pl allocation region (see Chapter 19) but are deallocated to an ICB lookaside
list for faster subsequent allocation. These doubly linked lists are located in
Pl space at the following global locations:

• IAC$GL_ICBFL-Lookaside list
• IAC$GL_IMAGE_LIST-Activated images (known as the done list)
• IAC$GL_WORK_LIST-lmages to be activated (known as the work list)

Figure 26.3 shows the layout of an ICB.
ICB$B_ACT _CODE describes how the image was activated-as a main im­

age, a merged image, or a shareable image section. ICB$B_ACCESS_MODE
contains the access mode specified in the $IMGACT request, maximized
with the requestor's access mode. The image file is opened on a channel as­
signed in this access mode, and the pages that are mapped are owned by this
mode. ICB$W _CHAN holds the channel number on which the image file is
opened. The image's name is stored as a counted string in the field ICB$T _
IMAGE_NAME, and the address range into which it was mapped is stored
in ICB$L_STARTING_ADDRESS and ICB$L_END_ADDRESS. ICB$L_IHD
points to the IHD of the image file, ICB$L_KFE locates the known file entry
(KFE) associated with the image (if any), and ICB$1-CONTEXT points to
the image activator local context block, a temporary structure that points to
image activator buffers.

26.1.1.3

26.1 Image Initiation

FLINK

BLINK

(reserved) I TYPE 1 SIZE

CHAN 1 ACT_CODE I ACCESS_MODE

FLAGS

IMAGE NAME (40 bytes) -

(reserved)

(reserved) JMATCH_CONTROL

MAJOR_ID I MINOR_ ID

STARTING_ ADDRESS

END_ADDRESS

IHD

KFE

CONTEXT

BASE_ADDRESS

INITIALIZE

ACTIVE_SONS

Figure 26.3
Layout of an Image Control Block

Data Structures That Describe Known Images. Several data structures de~
scribe known images. A known image has special properties that affect its
activation. The Install Utility is used to specify known images and their
properties. The VMS Install Utility Manual describes this utility and its
commands.

The known image mechanism has several functions. Its main purpose is
to identify executable images installed with privileges and images installed
to be shared in the virtual address space of multiple processes. A subsidiary
function is faster image activation.

An executable image that requires enhanced privileges but must execute in
nonprivileged process context (such as MOUNT, SET, oi' SHOW) is installed
with the /PRIVILEGE qualifier. When such an image is activated, the process
gains enhanced privileges temporarily. The enhanced privileges are removed
when the image is run down.

Several different types of image are installed with the /SHARE qualifier:

• A shareable or executable image with image sections that are to be shared
by multiple processes

• A shareable image containing code that executes in an inner mode, such
as a user-written system service or rundown routine

• A shareable or executable image whose shareable sections are to reside
in MA780 multiport memory and be accessed by processes running on
multiple VAX-11/780 or VAX-11/785 CPUs

743

Image Activation and Exit

744

An installed image is opened by its file ID rather than its file name, saving
the overhead of a file lookup. Image activation can be further shortened if
the image is installed /OPEN so that its file remains open. In this case, the
image activator's $OPEN RMS request is essentially a null operation. If such
an image is installed /HEADER_RESIDENT, its IHD is stored in paged pool.
Keeping the IHD resident saves the additional read operations otherwise
required to read it into memory every time the image is activated.

The Install Utility creates and manages the known image database !also
called the known file database) to describe images that have been installed.
RMS scans the known image database whenever a file is opened with the
known file option. !Use of this option is reserved to the VMS operating sys­
tem and unsupported for any other use. J All the known image data structures
are in paged pool. The two major ones are the K.FE and the known file direc­
tory IKFDJ.

The Install Utility allocates a K.FE for each known image. The KFE con­
tains information used by the image activator to locate and map the image.
K.FE$L_FID and K.FE$1-WCB are different symbolic names for the same lo­
cation in the K.FE. If the image header is not memory-resident, three words
beginning at K.FE$1-FID contain the full file ID of the image, thus locat­
ing the file header on the disk. Otherwise, if the file header is already in
memory, K.FE$L_ WCB contains the address of the file's window control
block IWCBJ, which describes the disk location of the blocks of an open
file. K.FE$1-IMGHDR contains the address of the resident IHD.

The field KFE$W _FLAGS contains flag bits indicating the manner in which
the image was installed-for example, if KFE$V _PROTECT is set, the im­
age was installed /PROTECTED. An image installed with privileges has its
privilege mask recorded in KFE$Q_PROCPRIV.

When a shareable image is installed with the /SHARE qualifier, the num­
ber of global sections it consists of is stored in K.FE$W _GBLSECCNT. Its
global section identifier is at K.FE$1-IDENT, and the match control informa­
tion supplied when the image was linked is stored in K.FE$B_MATCHCTL.
The image activator maintains a count of the number of processes sharing
the image at K.FE$L_USECNT. Figure 26.4 shows the layout of a K.FE.

Although the file name of the installed image is stored in the K.FE, the full
device and directory names are stored in the KFD field K.FD$T _DDTSTR.
Typically, multiple known images are installed from the same device and
directory combination and thus share the same K.FD. Keeping the device
and directory information in the KFD rather than in each K.FE saves paged
pool. The number of K.FEs sharing a K.FD is found in KFD$W_REFCNT. The
KFEs themselves are linked together at K.FD$1-K.FELIST. Figure 26.5 shows
the layout of a K.FD. Figure 26.6 shows a K.FD and its list of K.FEs.

A data structure called a known file resident image header IKFRHj exists
for each known image installed /HEADER..RESIDENT. The K.FRH immedi-

r-

26.1 Image Initiation

HSHLNK KFEFlags

KFELINK Bit Meaning

HSHIDX I TYPE I SIZE

KFD

0 Installed/PROTECT
1 Shareable image
2 Installed/PRIVILEGE

GBLSECCNT I FLAGS 3 Installed/OPEN

USECNT
4 Image header resident
5 Shared image

WCB 6 Shared memory image

IMGHDR
7 Compatibility mode image
8 lnstalled/NOPURGE
9 Image accounting enabled

PROCPRIV - 1 O Has writable sections
11 Execute access only

AMECOD l (reserved) 1 MATCHCTL

IDENT

ORB

1 FILNAMLEN I SH RC NT

FILNAM (up to 39 bytes)

Figure 26.4
Layout of a Known File Entry

(reserved)

1 DIRLEN

Figure 26.5

LINK

KFELIST

TYPE

± DEVLEN

DDTSTR
(up to 255 bytes)

Layout of a Known File Directory

SIZE

REFCNT

l DDTSTRLEN

Nexf;
KFD

KFE

ately precedes the IHD, and space for the IHD is allocated with the KFRH.
Figure 26. 7 shows the layout of a KFRH.

A KFE hash table locates all the KFEs. A known image name is hashed
to a number between 0 and 127, which is an index into the 128-entry hash
table. If the table entry contains a zero, no KFE is associated with that hash
index. Otherwise, the table entry is the address of a KFE. As a confirmation,
the KFE contains its own hash index value at KFE$B_HSHIDX. KFEs with
the same hash index are linked together through the field KFE$L_HSHLNK.
The end of the list is a forward link of zero. Figure 26.8 shows the hash table
and several KFEs linked to it.

There is one more known image data structure, the known file pointer
block (KFPB). The KFPB contains the hash table address at KFPB$L_KFE­
HSHTAB and the number of hash table entries at KFPB$W_HSHTABLEN. It
also holds the head of the KFD list at KFPB$L_KFDLST and the KFD count

745

Image Activation and Exit

KFD

..--..! Next KFD
KFELIST et-

KFE

i--
KFELINK -+---

'--+- KFD

KFE

i--
KFELINK= 0

KFD

Figure 26.6
Known File Directory and Known File Entries

KFRH
KFE BU FEND

(reserved) J ALIAS
HDRVER I TYPE I SIZE

IMGHDR

1
IHD

I
Figure 26.7
Layout of a Known File Resident Image Header

746

KFE

26.1.1.4

26.1.1.5

26.1 Image Initiation

KFPB
] EXE$GL_KNOWN_FILES::

KFDLST KFE Hash Table
KFEHSHTAB 0

(res.) J TYPE J SIZE 0

HSHTABLEN l KFDLSTCNT 0 KFE

0

*
KFE

Figure 26.8
Layout of a Known File Pointer Block and a .KFE
Hash Table

0

*

at KFPB$W _KFDLSTCNT. Figure 26.8 shows the layout of the KFPB and its
relation to the other known image data structures.

Implementation of the Image Activator. The image activator is implemented
as the $IMGACT system service. Direct requests to this system service are
reserved for the VMS operating system. Direct requests by users are com­
pletely unsupported. Instead, users can request the image activator indirectly
through any CLI command that runs an image and through the Run-Time
Library procedure LIB$FIND_IMAGE_SYMBOL.

Table 26.1 shows the arguments to the $IMGACT system service.

Activation of a Simple Main Image. Most of the common operations that
are performed by the image activator occur during the activation of a simple
main image, that is, one linked with no shareable images. This section,
therefore, follows the general flow through the image activator for simple
main images, including those installed as header resident or shareable. Other
forms of activation, described in later sections, are mentioned briefly in this
section when appropriate.

The $IMGACT system service procedure, EXE$IMGACT, runs primarily
in executive mode with some kernel mode subroutines. EXE$IMGACT is
in the module SYSIMGACT; some of the procedures it calls are in mod­
ules IMGMAPISD, IMGDECODE, and SYSIMGFIX. EXE$IMGACT and the
procedures it calls are known as the image activator.

To activate a simple main image, the image activator takes the following
steps:

747

Image Activation and Exit

Table 26.1 Arguments to the Image Activator System Service

Argument
Name

NAME

DFLNAM

HDRBUF

IMGCTL

INADR

RETADR

ID ENT

ACMODE

748

Meaning

Descriptor of image name to be activated.
Descriptor of default file name.
Address of 512-byte buffer in which the HID and image file descriptor are returned.

The first two longwords in the buffer are the addresses within the buffer of the
HID and the image file descriptor.

Image activation control flags. These flags control the form that the activation
will take. The options are the following:
• IAC$V _MERGE-If set, the image activator is directed to merge an image

into the address space of an already activated image. When this flag is set, the
user stack and the image 1/0 segment are to be ignored. This flag must be set
if the image activator is requested from user mode.

• IAC$V _EXPREG-If set, the INADR argument does not give an actual address
range but merely indicates PO address space, which is expanded as required.
This flag is only used during a merged image activation for a PO image .

• IAC$V _PlMERGE-If set, the image activator is directed to merge an
executable image into Pl space. This flag is used when mapping a CLI into
Pl space. This merge is performed in two parts: first the image is merged into
PO space, then into Pl space. The sole purpose of the merge into PO space is
to determine the size of the image. Once the size is determined, the correct
starting address in Pl space can be calculated.

• IAC$V _SETVECTOR-If set, the image activator only initializes the Pl
vectors that dispatch to user-written system services, rundown routines, and
message sections.

Address of a two-longword array containing the virtual address range into which
the image is to be mapped. This argument is usually omitted, in which case
the address ranges designated by the ISDs in the HID are used or the image is
mapped at the next available location.

Address of a two-longword array to receive the starting and ending addresses into
which the image was actually mapped.

Address of a quadword containing the version number and matching criteria for a
shareable image.

Access mode for page ownership and image channel assignment. This defaults to
user mode. If specified, it is maximized with the access mode of the $IMGACT
requestor.

1. It initializes its eight-page scratch area in Pl space.
2. It resets the Pl space vectors for user-written system services, rundown

routines, and message sections.
3. It checks the accessibility of the system service argument list and its

arguments and copies them for later use.
4. It invokes RM$RESET, in module RMSRESET, to initialize the image

1/0 segment.
5. It allocates and zeros an ICB.
6. It locks the known file database by requesting the Enqueue Lock Request

26.1 Image Initiation

and Wait ($ENQW) system service. It locks the systemwide resource
INSTALL$KNOWN FILE for protected read. This blocks any attempt
at concurrent changes to the known file database by the Install Utility.

7. The image activator requests RMS to open the image for execute ac­
cess, specifying the user-open, process-permanent file, sequential-only,
and known file database search options. It requests a WCB containing
complete mapping information for the file, thus avoiding later window
turns.

The image activator then stores the image name and channel number
in the ICB. If RMS discovers the image in the known file database, it
returns the address of the KFE in the CTX field of the file access block
(FAB). The image activator stores the KFE address in the ICB as well.
It takes note of whether the image was installed with the /PRIVILEGE,
/ACCOUNT, /PROTECTED, /EXECUTE_ONLY, or /SHARE qualifiers.

8. The image activator tests whether the IHD is resident. A known image
with its header resident in memory can be activated quickly because a
header read operation is avoided. If the IHD is not resident, the image
activator reads the image file and performs several consistency checks to
determine that it has indeed found an IHD.

9. The image activator tests whether the image is an ordinary native mode
image. The last word in the first block of the IHD, IHD$W _ALIAS,
indicates whether the image is a native image produced by the VMS
Linker, an image produced by some other linker, or an image that is a
CLI. Depending on the value in IHD$W _ALIAS, another image might be
activated before the current one.

The only other linker supported is the RSX-llM Task Builder. It pro­
duces a compatibility mode image with a zero in IHD$W _ALIAS. When
the image activator finds such an image, it instead activates SYS$SYS­
TEM:RSX.EXE. Further details about the activation of a compatibility
mode image are found in Section 26.1.1.11.

If the IHD specifies that the image is a CLI, the image activator instead
activates LOGINOUT. Section 26.1.1.12 contains further details about
the activation of a CLI.

10. The image activator copies information from the system service argu­
ment list into the ICB and inserts the ICB at the tail of its work list.

11. The image activator enters its main loop. It begins processing the work
list by removing an ICB from the head of the list. The first ICB removed
from the work list is the ICB describing the main image, which was
inserted in step 10.

12. The image activator processes the ISDs in the image's header, which it
locates through the ICB. Its main task is setting up the process page
tables to reflect the address space produced by the linker. It reads each
ISD in the IHD (see Figure 26.2) and determines the type of section
described: private or demand zero for the simple main image in this

749

Image Activation and Exit

750

example; private, demand zero, or global for a main image linked with
shareable images. It then requests the appropriate memory management
system service to perform the actual mapping.

-The most common form of ISD describes a private section. A private
section is either read-only or read/write, depending on the attributes
of the program sections (PSECTs) that comprise the image section.
Initial page faults for all pages in a private section are satisfied from
the appropriate blocks in the image file.

To map a private section into process address space, the image activa­
tor normally requests the Create and Map Section ($CRMPSC) system
service, using the contents of the ISD as input arguments. It always
specifies the NO_OVERMAP flag, so that if pages exist in the desired
virtual address range, they are not deleted. The result is a series of
page table entries (PTEs) containing process section table indexes. Fig­
ure 26.9 shows the PTEs, the process section table entry, and the ISD.
The number of PTEs is equal to the page count in the ISD. Notice that
all the PTEs index the same process section.

If an image is installed /SHARE, however, the Install Utility has
already processed its ISDs and has created global sections wherever
image section characteristics allowed. When a process activates an im­
age installed /SHARE, the image activator maps those existing global
sections into process address space using the Map Global Section ($M­
GBLSC) system service and only creates private sections for those ISDs
whose characteristics do not allow sharing.

If the section is read-only and the image was installed /SHARE, the
image activator requests the $MGBLSC system service. The result
is a series of PTEs that are global page table indexes. Figure 26.10
shows the PTEs, global page table, and ISD.

If the section is writable and the image was installed /SHARE
/WRITE, the image activator requests the $MGBLSC system service.

If the section is writable and copy-on-reference, it requests the
$CRMPSC system service to create a private copy of the section.

If the section is read-only but not shared, it requests the $CRMPSC
system service. An image section containing a .ASCID directive or
.ADDRESS reference to a symbol in a shareable image cannot be
shared except in a main image (see Section 26.1.2).

One special kind of private section is a fixup vector table, which
describes addresses in the image that are resolved at image activation
rather than at link time. Fixup vector processing is described in Sec­
tion 26.1.2. When the image activator encounters an ISD describing a
fixup vector table, it stores the base address of the current image into

Image Section Descriptor for Process-Private Section

Number of Pages l Size= 16

Page Fault
Cluster

Type

Protection Owner
31 30 27 26 24 23 22 21

(reserved)

(Protection is either UR or UW.)

Figure 26.9

Base Virtual Page Number

Section Flags

Base Virtual Block Number
in Image File

16 15

I Process Section Table Index

ISD and Page Table Entries for Process-Private Section

0

Process Section
Table in

Process Header

I
T

Process Section
Table Entry

0

0

0

PO Page
Table

PSTX

PSTX

PSTX

I

\

I
T

I
I

I

\
\

I

~

Process Section Table Entry

Pointer to Channel Control Block

Backward Link l Forward Link

Page Fault I 1 Base Virtual Page Number
Cluster ~

Pointer to Window Control Block

Base Virtual Block Number

(reserved) I Control Flags

Count of PTEs Referencing Section

Number of Pages in Section

Image Activation and Exit

Image Section Descriptor for Global Section

Number of Pages 1 Size = 36 to 64

Page Fault Base Virtual Page Number Cluster

Type Section Flags

Base Virtual Block Number

PO Page Table

l 1
Global Page Table

l 1
Major Ii;> Minor ID

: Image Section Name 1 Count
(up to 43 bytes)

0 GPTX GPTE

0 GPTX GPTE ,..

0 GPTX ~ GPTE

0 GPTX GPTE

0 GPTX GPTE
,..

Protection Owner
0 GPTX GPTE

31 30 27 26 24 23 22 21 0 0 GPTX ~ GPTE

Global Page Table Index 0 GPTX ,.. GPTE

(reserved)

(Protection is either UR or UW.) T T T T

752

Figure 2.6.10
ISD and Page Table Entries for Global Section

Global page table entries can take
one of three forms:
• GPTE is valid.
• GPTE indicates a transition state.
• GPTE contains ·a global section

table index.

the fixup vector table and adds it to the list of fixup vector tables to
be processed later by the $IMGFIX system service.

-Another form of ISD is a demand zero section. The linker produces
such a section whenever there are five (or some user-specified default
number) consecutive uninitialized copy-on-reference pages in the im­
age fl.le. The image file does not contain demand zero section pages but
merely an indication in the ISD that a certain range of virtual address
space contains all zeros.

The image activator uses the contents of this type of ISD as input
arguments to an internal interface to the Create Virtual Address Space
($CRETVA) system service. The $CRETVA system service creates new·
demand zero pages in the specified range of virtual addresses. By de­
fault, if it discovers any pages that already exist in the range, they are
deleted. The internal interface allows the image activator to specify
the NO_OVERMAP flag, overriding this default. The result is a series
of demand zero page PTEs. The number of PTEs is equal to the page
count in the ISD. Figure 26.11 shows the ISD and PTEs for the demand
zero section.

Note that one such section is the area in Pl space that contains the
user stack. The linker distinguishes this special demand zero section

2.6.1.1.6

26.1 Image Initiation

Image Section Descriptor for Demand Zero Section Process Page Table

Number of Pages I Size= 12 l 1
Page Fault

Base Virtual Page Number Cluster 0 Demand Zero

Type Section Flags
0 Demand Zero

0 Demand Zero

0 Demand Zero

0 Demand Zero

0 Demand Zero

0 Demand Zero

Protection Owner
0 Demand Zero

31 30 27 26 24 23 22 20 0 0 Demand Zero

All zeros 0 Demand Zero

(reserved) (reserved)

T T
Figure 26.11
ISD and Page Table Entries for Demand Zero Section

from others by a special code byte in the type designator in the ISD.
The image activator records the ISD page count and delays mapping
the user stack until later in the activation.

-The third type of ISD, which would not be found in the simple main
image of this example, is a global ISD. A global ISD indicates that the
image activator must map a shareable image into a range of virtual
address space. When the image activator encounters a global ISD, it
builds an ICB to describe the shareable image and inserts it in its work
list. Section 26.1.1.6 describes ICB insertion and the activation of a
shareable image.

13. If the image is being activated from a sequential device (magnetic tape or
across a network), then the address range is created and the entire image
read from the sequential device into virtual address space. All future page
faults are resolved from the page file.

14. In this example of a simple image (with no references to shareable im­
ages and thus no global ISDs), the only ICB on the work list has now
been processed. The image activator continues with its end processing,
described in Section 26.1.1.7.

In the case of an image linked with shareable images, the image activa­
tor would have found global ISDs while processing the main image ICB.
Thus, additional ICBs were added to the work list. The image activator
processes them as described in the following section.

Activation of Shareable Images. Whenever the image activator encounters a
global ISD in the header of an image being activated, it allocates an ICB,
copies the image name from the ISD into the ICB, and inserts the ICB

753

Image Activation and Exit

754

onto the ICB work list. When the image activator completes the processing
associated with, for example, the main image's ICB, it continues with the
following steps. !In the case of a merged image activation request, perhaps
initiated through the procedure LIB$FIND_IMAGE_SYMBOL, there would
be no main image processing.)

1. The image activator attempts to remove an ICB from its work list. If
there is none, activation is complete and the image activator proceeds
with its end processing, described in Section 26.1.1.7.

2. It checks the done list to see whether the image named in the work list
ICB has already been activated in the virtual address space. If so, the done
list includes an ICB with the same name.

Commonly referenced shareable images, such as LIBRTL, can appear
on the work list multiple times. Activating an image linked with several
shareable images, each linked with LIBRTL, causes multiple insertions
of LIBRTL on the work list. No matter how many times a shareable
image appears on the work list, it is only activated once because the
image activator discovers it on the done list for all subsequent activation
attempts.

If the image activator discovers the image on the done list, it must en­
sure that the earlier activation matches current protection requirements.
If an image is installed /PROTECTED, all shareable images with which
it links must be installed. If several shareable images link with the same
shareable image X, and only one of those shareable images is installed
/PROTECTED, image X might possibly be activated before the /PRO­
TECTED image, that is, before the image activator detects that image X
must be an installed image. The image activator checks for this condi­
tion and returns the error status SS$_PRMNSTAL if the image is not
installed. Otherwise it deallocates the ICB and goes back to step 1 to
process the next ICB on the work list.

3. If the image is not already activated, the image activator places the
ICB to the right of a stack pointer maintained on the done list. This
mechanism ensures that ICBs appear on the list in the proper order for
image initialization !see Section 26.1.1.8).

4. The image activator requests RMS to open the image named by the ICB.
It specifies a default. file type of EXE and directory of SYS$SHARE, with
file open options of user-open, process~permanent file, sequential-only,
and known file database search. It requests a WCB containing complete
mapping information for the file, thus avoiding later window turns. If
the global ISD specified a writable global section, the image activator
requests shared write access. Otherwise, it requests execute access.

To locate the file, RMS attempts logical name translation of the file
name part of the image name.

When activating one of the following image types, the image activator

26.1 Image Initiation

specifies that RMS use only executive or kernel mode logical names to
translate the image name:

-An image installed with privileges
-A main image installed /EXECUTE_ONLY and activated from user

mode
-A main image invoked by a process with execute access but not read

access to the image file
-An image installed as a protected image or having an ancestor installed

as a protected image

5. If the image or any ancestor is protected, the image activator checks
that the image returned by RMS is a known image. If not, the activa­
tion is aborted and the image activator returns the error status SS$_
PRIVINSTALL.

In addition, if a shareable image is not installed /EXECUTE_ONLY,
and the process does not have both read and execute access to it, the
activation is aborted and the image activator returns the error status
SS$_ACCONFLICT.

6. If the image is not a known image with its header resident, the image
activator reads in its header (see step 8 in Section 26.1.1.5).

7. It then checks that the match control information in the IHD is consis­
tent with the match requested in the global ISD whose presence caused
the activation of this shareable image. If there is a mismatch, the im­
age activator aborts the activation and returns the error status SS$_
SHRIDMISMAT.

8. If the IHD indicates that the shareable image has an initialization section,
the image activator sets the ICB$V _INITIALIZE flag and records the
address of the initialization section in ICB$L_INITIALIZE.

9. If the image was not header resident, the image activator invokes
EXE$CHECIL VERSION, in module CHECK_ VERSION, which checks
whether an image linked against system global symbols is compatible
with the versions of those symbols in the running system. Chapter 29
describes the compatibility check in detail.

Since the Install Utility performs this check as well, the image activa­
tor skips the check if the image is header resident.

For VMS Versions 5.0 and 5.1, version incompatibility caused the image
activator to remove CMKRNL and CMEXEC privileges from the image
but continue the activation. Beginning with VMS Version 5.2, the image
activator aborts the activation and returns the fatal error status SS$_
SYSVERDIF.

10. If the versions are compatible, the image activator processes the ISDs for
each section in the shareable image.

-If the ISD is a global ISD, representing a different shareable image,
the image activator compares the portion of its name designating the

755

Image Activation and Exit

26.1.1.7

756

image (that is, without the trailing nnn) to the name of the ICB most
recently added to the work list. If the names are the same, the image
activator does not add an ICB to the work list. The comparison prevents
some ICB redundancy in the work list. An image referencing different
image sections within a second image would have multiple global ISDs
describing the second image. Without the comparison, multiple ICBs
would be generated for the second image.

If the names are different, the image activator creates an ICB to
describe the image. Before adding it to the work list, the image acti­
vator examines all existing work list entries for an entry whose name
matches. If there is no match, the current ICB is inserted at the head of
the work list. Otherwise, the ICB is inserted in place of the matching
ICB, and the matching ICB is moved to the head of the work list. This
ensures that the earliest reference to a based shareable image controls
the mapping of the image.

-If the ISD is not a global ISD, the image activator maps the section
into the process address space. Step 12 in Section 26.1.1.5 describes
the processing of private ISDs and demand zero ISDs.

11. When all ISDs are disposed of, processing for the ICB is complete. If this
ICB has added more ICBs to the work list, it becomes the top of the stack
maintained on the done list. The image activator removes the next ICB
from its work list and repeats the steps in this section.

After the last ICB is processed, the image activator performs the end
processing described in Section 26.1.1.7.

Image Activator End Processing. If a main image was activated, the image
activator performs the complete end processing described in this section. For
a merged activation, it performs only steps 7 and 8.

The image activator's end processing consists of the following steps:

1. The image activator tests if the image was linked with an image 1/0
segment larger than the standard space allocated during process creation.
The standard size is determined by the SYSGEN parameter IMGIOCNT,
which has a default value of 64. However, the default can be overridden
at link time with the following line in the linker options file:

IOSEGMENT = n

If an image 1/0 segment larger than the default value is requested, the
image activator requests the $CRETVA system service to create a re­
placement image 1/0 segment.

If a PO-only image is being activated, the image activator creates the
image 1/0 segment at the high-address end of PO space.

2. The address space for the user stack is created with the Expand Region
($EXPREG) system service. The usual location of the user stack is at the

26.1 Image Initiation

low-address end of Pl space, where the automatic stack expansion can
add user stack space as needed. The location of the user stack in PO-only
images is at the high-address end of the PO image.

The default size of the user stack is 20 pages. The following line in the
linker options file can override this value:

STACK • n

The image activator creates a user stack with two extra pages for system
use during exception processing in case the user stack is corrupted.

3. Running in kernel mode, the image activator stores the address of the
high end of the user stack in the Pl pointer page, in the CTL$ALSTACK
array. Reserving space for system use during exception processing, the
image activator loads an address two pages below the high end of the
stack into the processor register PR$_ USP. This is the value loaded into
the SP register when an REI instruction returns the process to user mode,
which usually occurs following the return from the image activator.

4. The privileges that will be in effect while this image is executing are
calculated. The logical AND of the privilege mask found in IHD$Q_
PRIVREQS (which currently enables all privileges and so is effectively un­
used) with the process-permanent privilege mask at location CTL$GQ_
PROCPRIV is then ORed with the privilege enhancements for a privi­
leged known image, from KFE$Q_PROCPRIV.

The result is stored in the process privilege mask in the access rights
block (ARB) at offset ARB$Q_PRIV (also known as PCB$Q_PRIV) and
in the process header (PHD) at offset PHD$Q_PRIVMSK. The mask at
KFE$Q_PROCPRIV is copied to the PHD at offset PHD$Q_IMAGPRIV.
The uses of the various privilege masks are described in Section 26.4.1.

5. The image activator stores the address of the IHD buffer in the global
location CTL$GLIMGHDRBF.

6. It checks whether image accounting was requested for this particular
image or enabled for the system as a whole. If so, the image activator
records various statistics, such as current CPU time, in their Pl locations.

7. If a known image is being activated, its use count must be incremented.
If the image was installed /OPEN, the share count in its WCB must also
be incremented. The image activator then sets the done bit in the ICB to
indicate that it has been activated. The actions in this step are done for
each image being activated.

8. At this point, the image activator has finished its work. It releases its
lock on the' known file list, loads a final status into RO, and returns to its
requestor to allow the image itself to be called. The caller (EXE$PROC­
STRT, LIB$FIND_IMAGE_SYMBOL, or a CLI) requests . the $1MGFIX
system service to perform address relocation. Section 26.1.2 describes
$IMGFIX.

757

Image Activation and Exit

26.1.1.8

758

Computing the Proper Order of Image Initialization. As a by-product of
its normal work, the image activator computes the order of initialization
for multiple shareable images activated by a main image. The basic rule for
image initialization is that if shareable image A calls shareable image B, then
the initialization routine for image B must be called before the initialization
routine for image A. This rule enables image A to call any routine in image B
(or in any image that B calls) during A's own initialization.

The initialization routine for each activated image is called as part of image
fixup (see Section 26.1.2.5). $IMGFIX first calls the initialization routine
specified by the ICB that is at the tail of the done list. It proceeds towards
the head of the done list. The image activator must create the correct order
of ICBs on the done list by careful placement of ICBs on both the work and
done list.

If image A calls image B, then at some point during the activation of image
A, the image activator encounters a global ISD that references image B. The
image activator builds an ICB to insert at the head of the work list. Inserting
these ICBs at the head of the list ensures that these called, or son, images
will be activated· after the calling, or parent, image and generally before any
siblings of the parent.

Before actually inserting the ICB on the work list, the image activator
examines existing work list entries. If it finds an entry whose name matches
that of the ICB to be added, it inserts the ICB after the matching ICB and then
moves the matching ICB to the head of the work list. Since an image is only
activated once no matter how many times it is referenced, this ensures that
its mapping is controlled by the top-level accessor. Otherwise the current
ICB is inserted at the head of the work list. This list generates a walk of the
image call graph known as a preorder traversal.

A stack, implemented at the head of the done list, is used to convert the
preorder traversal for image activation into a postorder traversal for image
initialization. Basically, a parent node remains on the stack until its last son
is activated. A stack pointer points to the top of this stack in the done list.
(Initially, the stack pointer points to the queue header.) Figure 26.12 shows
how the ICBs at the head of the done list form this stack.

To pop this stack, the stack pointer is simply moved to the left. The next
ICB from the work list is always inserted to the right of the top of the stack.
It becomes the new top of the stack if it has any sons. ICBs to the right of
the top of the stack are always in the proper initialization order. ICBs at and
to the left of the stack pointer are parent ICBs who still have descendants
that have not been activated.

The stack is built to ensure that the sons and descendants of an image
are always placed on the done list to the right of the ICB of the parent.
Since the done list is processed in reverse order during initialization, this
placement ensures that all images called directly or indirectly by some image
are initialized before that image itself.

IAC$GL_IMAGE_LIST:: ICB ICB

A B

These ICBs are on stack.

Figure 26.12
ICB Stack in the Done List

26.1 Image Initiation

ICB

c

t Stack
pointer

ICB

D

The manipulation of the work and done lists is controlled by the ICB$L_
ACTIVE_SONS count in each ICB. This field specifies how many of the
image's sons have not yet been activated (their ICBs are still on the work
list) and how many have been activated but still have active sons of their
own (these ICBs are on the stack in the done list). The ICBs to the right of
the stack in the done list have no active sons.

The following steps describe the image activator's manipulation of ICBs
on the done and work lists to generate the proper initialization order. The
details of image activation are described in Sections 26.1.1.5 and 26.1.1.6 and
are not repeated here.

1. The image activator tries to remove an ICB from the front of the work
list. If there is none, it goes on to end processing (see Section 26.1.1.7).

2. If this is an image that was already activated (that is, on the done list) and
still has active sons, then the image activator has detected a circularity.
(The image is one of its own descendants, so no initialization order
is possible.) In this rare case, all the images on the done list that are
involved in the circularity must be marked. An error will be reported
if a subsequent attempt is made to initialize one of those images. The
images involved in the circularity are exactly those ICBs on the stack
from the top of the stack down to and including the previously activated
image.

Regardless of whether there is a circularity, if the image was previously
activated, the image activator deallocates the ICB and then continues at
step 6.

3. Otherwise, this is a new image needing activation. The image activator
inserts its ICB just to the right of the top of the stack in the done list
and zeros its ICB$1-ACTIVE_SONS count. .

It then performs the detailed work of activation for this image (steps 4
through 8 in Section 26.1.1.6). During those steps, each time the image
activator creates a new global ICB (son), it places the new ICB at the front
of the work list and increments ICB$L_ACTIVE_SONS in its parent's
ICB. (After the parent image is activated but before its sons have been,

759

Image Activation and Exit

26.1.1.9

760

this field contains the total number of shareable images referenced by
the image.)

4. If the field ICB$L_ACTIVE_SONS in the ICB to the right of the top of the
stack is nonzero after the image has been activated, the image activator
makes that ICB the top of the stack and continues with step 1. (This
new parent remains on the stack until all its sons, which are located at
the front of the work list, are activated and no longer have active sons
of their own.)

5. Otherwise, the field ICB$L_ACTIVE_SONS in the ICB to the right of the
top of the stack is zero, and the image activator continues with step 6.

6. This step is called a "decrement parent" operation. ICB$L_ACTIVE_
SONS in the parent ICB at the top of the stack must be decremented
to indicate that one of its sons is activated. If its count becomes zero,
this same step must be repeated for its parent, and so on.

If the stack is empty, there is no parent to decrement. The image
activator continues with end processing (see Section 26.1.1. 7). Otherwise,
it decrements ICB$L_ACTIVE_SONS in the ICB at the top of the stack.

7. If the count is still positive (the image still has active sons), the ICB
remains at the top of the stack and the image activator continues with
step 1. Otherwise, if ICB$L_ACTIVE_SONS is now zero, it must decre­
ment the ICB$L_ACTIVE_SONS field in the parent of the ICB.

8. When it reaches the ICB at the top of the stack (the ICB that initiated
the activations, and therefore has no parent), the image activator proceeds
to its end processing. Otherwise, the image activator pops the stack by
moving the stack pointer to the left in the done list and repeats step 6.

Example Activation. The details of activating an image linked with several
shareable images can be illustrated with an example. The example main
image references the shareable images A and LIBRTL, image A references
the shareable images Band LIBRTL, and image B references LIBRTL.

At the beginning of the activation, an ICB representing the main image
is placed on the work list. This first ICB is moved from the work list to
the done list. As its ISDs are processed, work list items are added for A and
LIBRTL as the result of references in the main image.

Work List

LIBRTL (main image)
A (main image)

Done List

Main image (2 sons)
Stack Top
¢::

After mapping the sections of the main image, the image activator removes
the ICB for LIBRTL from its work list. The ISD is processed and the main
image's son count is decremented. Since LIBRTL has no sons, the main image
remains at the top of the stack.

Work List

A !main image)
Done List

Main image 11 son)
LIBRTL

26.1 Image Initiation

Stack Top

<=

The image activator removes the ICB for image A from its work list. In
processing A, work list items are added for Band LIBRTL. Since A has sons,
it becomes the new stack top.

Work List
LIBRTL IA)
BIA)

Done List
Main image 11 son)
A 12 sons)
LIBRTL

Stack Top

<=

The image activator removes the ICB for LIBRTL from the work list, dis­
covers the duplication, and discards the entry, decrementing A's son count.

Work List

BIA)
Done List

Main image 11 son)
A 11 son)
LIBRTL

Stack Top

<=

The image activator removes the ICB for image B from its work list. In
processing B, a work list item is added for LIBRTL. Since B has a son, it
becomes the new stack top.

Work List

LIBRTL IB)
Done List
Main image I 1 son)
A II son)
B ll son)
LIBRTL

Stack Top

The image activator removes the ICB for LIBRTL from the work _list, dis­
covers the duplication, and discards the entry, decrementing B's son count.
Since this brings B's count to zero, A !B's parent) becomes the stack top and
its son count is decremented, again to zero. Thus the main image becomes
the stack top, its count is decremented to zero, and the image activator per­
forms its end processing. The done list is left in the correct order for image
initialization.

Work List Done List
Main image
A
B
LIBRTL

Stack Top

<=

761

Image Activation and Exit

26.1.1.10

26.1.1.11

26.1.1.12

26.1.2

762

Activation of a Known Image. When the image activator opens a known
image, RMS places the address of the KFE in the CTX field of the FAB.

The activation of a known image proceeds in the same way as that of a
regular image, although some of the work that the image activator must
perform in the regular case is avoided. In particular, a known image that
has its header resident is activated more quickly, because the header read
operation is avoided.

In any case, the ISDs must still be processed and the PTEs set up so that
the image can execute. In addition, the image activator must update the
usage statistics for this known image (see Figure 26.4).

Activation of a Compatibility Mode Image. When the image activator deter­
mines from IHD$W _ALIAS that it is attempting to activate a compatibility
mode image, it changes its course and instead activates the RSX-llM AME
(SYS$SYSTEM:RSX.EXE).

An AME is itself a native mode image, responsible for mapping the com­
patibility mode image into the address range between 0 and 1000016, passing
control to that image while turning on the compatibility mode bit (with an
REI instruction), and fielding all compatibility mode and other exceptions
generated by the compatibility mode image. Currently, the RSX-llM AME
is the only supported AME.

From the point of view of image activation, once the image activator
determines that it is activating a compatibility mode image, it continues
with activation, but activation of the AME and not the compatibility mode
image. The name of the compatibility mode image is stored at location
CTL$AG_CMEDATA, where it is retrieved by the AME.

Activation of a Command Language Interpreter. When the image activator
determines that it is attempting to activate a CLI and the IAC$V _MERGE
flag is clear, it activates instead the image LOGINOUT. First, the image ac­
tivator closes the CLI image file, because LOGINOUT performs its own file
open. Then it activates LOGINOUT and transfers control to it. LOGINOUT
maps the CLI into Pl space and passes control to it. Chapter 27 describes
this flow.

$IMGFIX System Service

The $IMGFIX system service procedure, EXE$IMGFIX in module SYSIMG­
FIX, runs in the access mode from which it is requested. In cooperation with
$IMGACT and the linker, EXE$IMGFIX enables the postponement of address
assignment from link time to image activation. Delaying address assignment
permits position independence within shareable images and the images that
link with them. Because fixups modify pointers within images themselves,
they are performed in the access mode from which the main image will run.

26.1.2.1

26.1 Image Initiation

The exceptions are .ADDRESS fixups for privileged shareable images, which
are performed from executive mode.

The linker creates fixup vector tables for executable images and for most
shareable images. When EXE$IMGACT encounters an ISD describing a fixup
vector table, it copies the base address of the current image to the fixup vec­
tor table and inserts the table at the head of the list pointed to by CTL$GL_
FIXUPLNK. EXE$IMGFIX processes entries from the fixup vector list, cre­
ated by EXE$IMGACT. This chapter refers to the image whose address
EXE$IMGACT stores as the fixup image.

EXE$IMGFIX performs modifications to several forms of addressing:

• A GA (general) reference to an address in a shareable image
• A .ADDRESS reference to a location within a nonbased shareable image
• A .ASCID directive within a nonbased shareable image

Resolution of a GA reference is deferred until image activation so that the
relative address is not affected by a change in the size of any intervening
shareable image.

The .ADDRESS directive references a fixed address in virtual memory.
Resolution of a .ADDRESS reference to a location in a shareable image
is deferred so that the shareable image need not be loaded at a fixed base
address. ,.ADDRESS references are fixed up after the base address of the
shareable image is determined when it is activated. However, if the linker
options file specifies a base address for an image, .ADDRESS references to
locations within it are resolved at link time.

The .ASCID directive builds an ASCII string and a descriptor for it. It
incorporates the equivalent of an .ADDRESS directive referencing the string;
.ASCID directives within a nonbased shareable image are fixed up after the
base address of the shareable image is determined. In the following sections,
text references to .ADDRESS directives include those generated by .ASCID
directives.

The VMS Linker Utility Manual explains in more detail the motivation
for the $IMGFIX system service and the linker's action in preparing for image
fixups.

An image linked under Version 3 or later of the VMS operating system
includes a section called the fixup vector table. The table contains data that
describes GA references, a list of the shareable images referenced by the image,
and data that describes .ADDRESS references. Figute 26.13 shows the layout
of an image and its fixup vector table.

Shareable Image List. There is one shareable image list entry (SHLJ for each
shareable image referenced by the fixup image, plus one SHL for the fixup
image itself. Each SHL contains the name of the associated shareable image.
EXE$IMGFIX uses this name to match the SHL with an ICB on the done

763

Image Activation and Exit

26.1.2.2

764

MAIN.EXE

Image Header

Image Body

Fixup Vector Table

Figure 26.13

'-

Fixup Vector Table

Header $1AFDEF

G' Fixup Data

Page Protection Data

Shareable Image List

.ADDRESS Fixup Data

Image Layout with Fixup Vectors

Fixup Vector Table

/
/

/
/

/
/

/

/

1/
Shareable Image List

' ~~~~~~~~ '

Figure 26.14
Shareable Image List

' ' \
' ' ' ' '

~

~

Shareable Image List

Shareable Image List
Entry for Fixup Image

(Index 0)

SHL for Next
Shareable Image

(Index 1)

~

SHL for Last
Shareable Image

(Index N)

SHL

Base Virtual Address

Shareable Image Name

list. It then copies the base virtual address of the shareable image from the
ICB into the SHL.

The SHL for the fixup image, which is the first shareable image list ele­
ment (index O), contains information used to resolve .ADDRESS locations.
EXE$IMGACT stores the base virtual address of the image in this SHL. Fig­
ure 26.14 shows the layout of the shareable image list entries within the
fixup vector table.

Resolution of GA Locations. A section of each fixup vector table is reserved
for GA vectors. This G' vector table is composed of multiple substructures,
one for each shareable image containing the target of a G' reference. The
substructure consists of an entry count, the index of the SHL associated with
the shareable image, and a longword entry for each target label. Figure 26.15
shows the layout of the G' vector table and substructures.

When an image is linked, the linker tries to resolve G' references by chang­
ing them to absolute addressing mode,@#. When it encounters a G' reference
to a location in a shareable image, however, the linker instead changes the
addressing mode to longword relative deferred, @L'. The displacement to the

26.1.2.3

26.1 Image Initiation

I
I

I

I
I

I

I

G" Fixup Data ,-
Entry Count

Index to SHL X

Offset f-

1--F-i-xu_p_v_ec_t_or_T-ab_l_e ---r/ 1~------~I
G' Fixup Data

Offset ,_

\

Figure 26.15
c· Vector Table

\
\

\
\

\
\

\
\

\ 1

Entry Count

Index to SHL Z

Offset

Offset

1-

f-

J_

G' fixup data for
shareable image X

G' fixup data for
shareable image Z

operand address locates a longword entry in the G' vector table substructure
for the shareable image containing the target. The linker calculates the offset
from the base of the shareable image to the target and stores this value in
the substructure entry.

If there are multiple G' references to the same target, the linker points all
of them to the same substructure entry.

For each substructure in the G' vector table, EXE$1MGFIX resolves G'
references by performing the following actions:

• It uses the index into the shareable image list to locate the SHL associated
with the shareable image.

• From the SHL, it obtains the base virtual address of the shareable image.
• It adds the base address to each longword entry in the substructure.

When the image executes, the instruction's displacement to the operand
address locates the appropriate entry within the G' vector table substructure.
The entry contains the corrected virtual address of the target label.

Resolution of .ADDRESS Locations. Like the G' vector table, the .ADDRESS
vector table is composed of multiple substructures, one for each shareable
image referenced by a .ADDRESS directive. The .ADDRESS vector table also
contains a substructure for the fixup image itself, if it is not a based image.
A substructure consists of an entry count, the index of the SHL associated
with the shareable image, and a longword entry for each .ADDRESS directive
whose target is within the shareable image. The longword entry contains
the offset from the base of the fixup image to the .ADDRESS directive.
Figure 26.16 shows the layout of a .ADDRESS vector table.

The linker takes the following actions for each .ADDRESS directive:

765

Image Activation and Exit

766

Fixup Vector Table _ - -

.ADDRESS Fixup Data
\
\

Figure 26.16

\
\
\
\

.ADDRESS Vector Table

\
\
\
\
\

\ 1

.ADDRESS Fixup Data

Entry Count

Index to SHL

Offset

Offset

Entry Count

Index to SHL

Offset

Offset

-,

I-

_J

! -,

I-

J_

.ADDRESS fixup data
for first shareable
image containing
.ADDRESS targets

.ADDRESS fixup data
for last shareable
image containing
.ADDRESS targets

1. It determines the offset of the target location from the base of its share­
able image. It stores this offset in the longword reserved in the fixup
image by the .ADDRESS directive.

2. It determines the offset of the .ADDRESS directive from the base of the
fixup image. It stores this offset in the .ADDRESS vector table substruc­
ture associated with the shareable image that contains the target.

Figure 26.17 illustrates the resolution of the .ADDRESS directive by the
linker. The target MTH$SQRT is within the shareable library MTHRTL.
The .ADDRESS directive within MAIN.EXE contains the offset of the la­
bel MTH$SQRT from the base of MTHRTL.EXE. The entry in MTHRTL's
.ADDRESS vector table substructure contains the offset of the .ADDRESS
directive from the base of MAIN.

When EXE$IMGFIX resolves a .ADDRESS directive, it performs the fol­
lowing steps to obtain the actual address of the location:

1. It adds the base address of the fixup image (in the previous example, the
image MAIN), to each entry in the .ADDRESS vector table substructure.
Separating ·the offset and base address in this fashion allows the fixup
image to be a position-independent shareable image.

2. Using the substructure entry to locate the .ADDRESS cell in the fixup
image, it adds the base address of the shareable image (MTHRTL.EXE) to
the contents of the .ADDRESS cell (the offset to the label MTH$SQRT).

3. It stores the resulting address in .the .ADDRESS cell.

EXE$IMGFIX repeats this action for all .ADDRESS directives in all the
linked images, except in images that have a specified starting base address.
Note that an image section containing .ADDRESS or .ASCID references fixed

26.1.2.4

26.1.2.5

26.1 Image Initiation

MAIN.EXE

~ MTHRTL

.ADDRESS MTH$SQRT
{Offset from MTHRTL ll- Shareable Code MTH$SQRT::
base to MTH$SQRT)

'---fl< Offset from Main .ADDRESS Fixup Data
to .ADDRESS for MTHRTL

Figure 26.17
Resolution of the .ADDRESS Directive

up in this way cannot he shared among processes, since the resolutions of
those directives are spe~ific to the virtual address space in each process.

(

Page Protection Fixup. Mter address fixup is complete, EXE$IMGFIX adjusts
page protection as spec;ified in the page.protection data area of the fixup vec­
tor table. The mannedn which EXE$IMGFIX performs a .ADDRESS fixup
requires that the page)~ontaining the .ADDRESS reference be writable. To
allow a read-only imag~"section to use .ADDRESS references, the section is
originally defined as wtj;table. The linker creates an entry in the page protec­
tion data area for each i~ction of this type, specifying a new page protection
of UR. After address fixµp, EXE$1MGFIX requests the Set Protection on Pages
($SETPRT) system servfoe for each entry in the page protection data area.

The final page protection entry alters the protection of the fixup vector
section itself to UREW. The fixup vector pages are always protected from
user mode modification.because entries in the G' vector table are referenced
during image execution, figure 26.18 shows the layout of the page protection
area.

Additional Functions Q[EXE$IMGFIX. Following address fixup and page
protection modificatio~~;EXE$IMGFIX tests whether any privileged share­
able images have been ll:£'tjvated. If so, it requests the $IMGACT system ser­
vice, specifying the IAgv _SETVECTOR flag. Running in executive mode,
the image activator initif]lizes the Pl space dispatch vectors for user-written
system services, rundo~~ routines, and message sections.

If any shareable image specified an initialization routine, EXE$IMGFIX
scans the done list, ICBs representing activated images, from back to front.
EXE$IMGFIX, running iii user mode, calls the initialization routine of each
shareable image that· specified one.

767

Image Activation and Exit

26.1.3

26.1.3.1

768

Page
protection
data

r-

-
=

Figure 26.18

Flxup Vector Table

Number of Page
Protection Entries

First Entry

Last Entry
(Fixup Vector Table)

Page Protection Area

Image Startup

Base Virtual Address

New l Page
___ _.__P_ro_te_ct_ion__,__c_o_un_t__,

EXE$PROCSTRT or a CLI can request image activation and fixup, as de­
scribed in Chapter 27. After successful image activation and fixup, the image
is called at its transfer address. Depending on how the image was linked, the
initial transfer of control may be to a debugger, a user-supplied initialization
procedure, or the executable image itself.

Transfer Address Array. In addition to the ISDs previously discussed, the
linker includes in the image header a data structure called a transfer address
array. This array contains the user-supplied transfer address. It also provides
the means for including a debugger or a traceback handler in the user image.

The format of the transfer address array is pictured in Figure 26.19. If a
debugger transfer address is specified or implied, it appears first in the list.
An image-specific initialization procedure, if specified, occurs next. The last
entry in the list is the transfer address of the user image, either the argument
of a .END directive for a VAX MACRO program or the first statement of a
main program written in a high-level language. A fourth entry containing a
zero is the end of list indication, no matter what options were passed to the
linker.

The initialization transfer address is described in the VMS Run-Time Li­
brary Routines Volume and is not discussed here.

If the Digital command language IDCL) command LINK/DEBUG=file-spec
is used to link an image, the explicit file specification is the name of a partic­
ular debugger object module. The linker places the transfer address found in
the specified debugger file into the first element in the transfer address array.
If the /NOTRACEBACK option is included land not overridden implicitly
by including an explicit /DEBUG option), then there is no debug transfer ad­
dress. In all other cases !including the DCL command LINK/DEBUG, which
does not specify an explicit debugger module), the linker places the address of

26.1.3.2

SYS$1MGSTA

Transfer Address in
User Image

0

0

No entries in
PSECT LIB$1NITIALIZE

Transfer Address in
User Image

0

0

0

No entries in
PSECT LIB$1NITIALIZE

Figure 26.19
Transfer Address Array

$LINK
or

$LINK/DEBUG

$LINK/iNOTRACEBACK

26.1 Image Initiation

SYS$1MGSTA

LIB$1NITIALIZE

Transfer Address in
User Image

0

Nonzero contribution to
PSECT LIB$1NITIALIZE

LIB$1NITIALIZE

Transfer Address in
User Image

0

0

Nonzero contribution to
PSECT LIB$1NITIALIZE

SYS$IMGSTA (found in the system service vector area) in the first element
of the transfer address array.

$IMGSTA System Service. Unless explicitly suppressed (with the /NO­
TRACEBACK qualifier), all images execute the Image Startup ($IMGSTA)
system service, sometimes called the debugger bootstrap. The system ser­
vice procedure, EXE$IMGSTA in module SYSIMGSTA, runs in user mode:
This procedure examines link and CLI flags to determine whether to start'
the user image directly or to map the debugger (identified by translating the
logical name LIB$DEBUG) into the user's PO space and transfer control to it.

EXE$IMGSTA first tests whether it should map a debugger into PO space.
The mapping is done if either of the following conditions is true:

• If the program was linked with the DCL command LINK/DEBUG and
simply run (that is, not run with a RUN/NODEBUG command)

• If the program was run with the DCL command RUN/DEBUG, indepen­
dent of whether the debugger was requested at link time

The debugger is not mapped if the image was run with a RUN/NODEBUG
command or if the /DEBUG qualifier was omitted from both the LINK
command and the RUN command.

If a debugger is to be mapped, EXE$IMGSTA requests the Translate Logical
Name ($TRNLOG) system service to translate the logical name LIB$DEBUG.
If there is no translation, EXE$IMGSTA uses the string DEBUG as the de­
bugger name. EXE$IMGSTA then requests the $IMGACT system service to
activate the debugger image. It specifies flags for a merged activation in PO
space, so that the debugger will be mapped at addresses just higher than

769

Image Activation and Exit

26.1.3.3

770

the main image and its shareable images. EXE$IMGSTA then requests the
$IMGFIX system service and finally transfers control to the debugger image
through a self-relative offset at the beginning of the image. The debugger, in
response to user commands, transfers control to the image.

If no debugger is mapped, EXE$IMGSTA establishes a condition handler
in the current call frame. This condition handler, BOOT _HANDLER, gains
control on signals that the image does not handle directly. After gaining
control, the condition handler invokes the debugger, invokes the traceback

. handler, or resignals.
Whether or not a debugger is mapped, EXE$IMGSTA alters the argument

list to point to the next address in the transfer vector array and passes control
to the next transfer address. This is either the Run-Time Library procedure
LIB$INITIALIZE or the transfer address of the user image.

Exception Handler for Traceback. BOOT _HANDLER, the condition handler
established by EXE$IMGSTA before the image was called, has two functions:

• It invokes a debugger if a DEBUG command is typed after an image is
interrupted with a CTRL/Y .

• If an unfielded condition occurs, it causes an image dump, if one was
requested, and invokes the traceback handler to produce a symbolic stack
dump.

If a user interrupts execution of a nonprivileged image by typing CTRL/Y
and DEBUG, the DCL or monitor console routine (MCRJ CLI generates the
signal SS$_DEBUG. (Privileged images are simply run down in response to
this command sequence. J If all handlers established by the image resignal the
SS$_DEBUG exception, the debugger boot handler eventually gains control.
Its response to an SS$_DEBUG signal is to map the debugger specified by the
logical name LIB$DEBUG (if it is not already mapped) and transfer control to
it. Note that an image that was neither linked nor run with the debugger can
still be debugged, albeit without a debug symbol table, if the image reaches
some undesirable state, such as an infinite loop.

The second function of the condition handler is to field any error con­
ditions (where the severity level is WARNING, ERROR, or SEVERE) and
pass them on to the traceback facility. If an image dump was requested, the
handler dispatches to EXE$IMGDMP_MERGE (see Chapter 25) to create an
image dump. When EXE$IMGDMP _MERGE returns, the handler maps the
traceback facility, denoted by the logical name LIB$TRACE, into PO space.
If the condition has a severity level of either SUCCESS or INFO, the handler
merely resignals it. The condition is then handled by the catch-all condition
handler established by either EXE$PROCSTRT or the CLI that called the
image.

26.2 Image Exit

26.2 IMAGE EXIT

26.2.1

When an image has completed its work, it passes control back to VMS, either
by requesting the $EXIT system service or by returning to its caller, which
requests the $EXIT system service. $EXIT calls whatever exit handlers have
been declared by the image and then requests the Delete Process ($DELPRC)
system service.

Exit handlers are described in the next section, which is followed by a
description of the operations of the $EXIT system service.

Exit Handlers and Related System Services

An exit handler is an optional, user-declared procedure that performs im­
age cleanup. To use this option, an image running in a process builds a data
structure called an exit control block and passes its address to the $DCLEXH
system service. Exit handlers can be declared for user, supervisor, and exec­
utive access modes. The access mode from which the service is requested is
the mode in which the exit handler is to execute.

An exit control block contains the address of the exit handler and its
arguments. The exit handler's first argument is the address of a longword to
receive the final image status. The declarer of the exit handler defines any
additional arguments and their use. An exit control block also contains a
forward link field. This field contains the address of the next exit control
block or, if there is none, zero. The $DCLEXH system service links together
all the exit control blocks for an access mode. Each list is ordered with the
most recently declared exit handlers' control blocks first.

The exit handler listheads are in a three-longword array. Another three­
longword array contains the number of exit control blocks in each list. Each
array is indexed by access mode. Figure 26.20 shows these arrays and exit
control blocks.

Both arrays are in Pl space and modifiable only from kernel mode. Exit
control blocks, however, are defined by the image in the per-process address
space that it controls. Therefore, the system services that access these lists
must exercise particular care. An exit control block corrupted through pro­
gram error could destroy the integrity of its list.

When inserting or removing an exit control block, for example, each sys­
tem service must test the accessibility of affected forward links. The count
array is used to prevent infinite loops that might otherwise result from mul­
tiple declarations of the same exit control block.

Two system services other than $DCLEXH access exit control blocks:
Cancel Exit Handler ($CANEXH) and $EXIT (see Section 26.2.2). An image
requests the $CANEXH system service to delete a particular exit control
block or all those for one access mode.

The $DCLEXH and $CANEXH system service procedures, EXE$DCLEXH
and EXE$CANEXH, in module SYSDCLEXH, both execute in kernel mode.

771

Image Activation and Exit

26.2.2

772

0 i-~
(Exec) (Exec)

E F
(Declared (Declared

first) second)

0

(Super)
D

0 1--i- I-1--
(User) (User) (User)

A c
(Declared

B
(Declared

first,
(Declared

third,
called last)

second)
called first)

Figure 26.20
Sample Exit Handler Lists

Flow of the $EXIT System Service

~

- 1---- -
i-

§ CTL$GL_ THCOUNT::

CTL$GL_ TH EXEC::

CTL$GL_ THSUPR::

Forwar d Link

Exit Handle r Address

0

Address in W
Reason

N

hich to Store
for Exit

Additional Arguments - - ---T~---~(_1f a_n~y)~--~T

The $EXIT system service procedure, EXE$EXIT in module SYSEXIT, runs
in kernel mode. It also executes in outer modes, calling exit handlers.

EXE$EXIT is called with a single argument, the final status of the im-.
age. It stores the status in the Pl pointer page, at global location CTL$GL_
FINALSTS, where it can be copied for image or process accounting. It clears
the force exit pending flag, PCB$V _FORCPEN in the processor status long­
word (PCB$LSTS).

If EXE$EXIT was called from kernel mode, it requests the $DELPRC sys­
tem service, and the process is deleted. If EXE$EXIT was called from any
other access mode, it examines the exit handler listheads (see Figure 26.20).
It begins with the one for the mode from which it was called and proceeds
to those of inner (more privileged) access modes.

If EXE$EXIT finds a nonzero listhead, it saves the listhead contents and
the number of exit control blocks in the list, and clears both the listhead and
the count longwords. EXE$EXIT then empties the kernel stack and executes
an REI instruction to enter the outer access mode from which it was invoked.

Running in the outer mode, EXE$EXIT removes the first exit control block
from the list; saves the address of the next handler, final image status, and
count of remaining handlers on the stack; and zeros the list pointer. It writes
the final image status to the address specified in the exit control block and
calls the exit handler. When (if) that handler returns, EXE$EXIT calls the

26.2.3

26.2 Image Exit

next handler in the list. This continues until the list is exhausted or until
EXE$EXIT has exhausted the count of exit handlers.

Once all the exit handlers for a given access mode have been called,
EXE$EXIT must return to a more privileged access mode. It changes access
mode by requesting the $EXIT system service. If none of the exit handlers
in the list just processed has done anything extraordinary (such as declaring
another exit handler), then the list for that mode is still empty and EXE$EXIT
proceeds to the next inner access mode in its search for more exit handlers.

When EXE$EXIT reaches kernel mode, that is, when it has called all
existing handlers, it requests $DELPRC to delete the process.

Example of Exit Handler List Processing

To illustrate the processing of exit handlers, suppose that a process has its
exit handler lists set up as shown in Figure 26.20. When the image requests
the $EXIT system service from user mode, EXE$EXIT takes the following
steps:

1. EXE$EXIT finds a nonzero listhead for user mode exit control blocks.
The listhead points to the exit control block for procedure C, the most
recently declared user mode exit handler.

2. EXE$EXIT stores this address in RO and clears the listhead. It then ex­
ecutes an REI instruction to change access mode to user and then calls
procedure C. When C returns, EXE$EXIT calls procedure B and finally
procedure A. When A returns, EXE$EXIT determines that the user mode
list is exhausted (because the forward pointer in the last exit handler
is zero). EXE$EXIT, running in user mode, requests the $EXIT system
service.

3. As in step 1, the search for exit handlers begins with user mode but this
list is now empty. EXE$EXIT continues with the supervisor mode list,
which has the single exit control block for handler D. The supervisor
listhead is cleared, access mode is changed to supervisor, and procedure
D is called. When D returns, EXE$EXIT again requests the $EXIT system
service, this time from supervisor mode.

4. Now the search for exit handlers begins with supervisor mode, whose list
is empty. The list for executive mode contains two exit handlers, F and
E, which are called from executive mode. When they return, the $EXIT
system service is again requested, this time from executive access mode.
The search that now begins with the executive mode listhead fails and
the process is deleted.

The logic illustrated here shows how a process can prevent image exit
through the use of exit handlers. Suppose EXE$EXIT called a supervisor mode
handler that redeclared itself. When EXE$EXIT exhausted the exit handler
list and requested the $EXIT system service again, the handler would be back

773

Image Activation and Exit

on the supervisor mode exit handler list and would be reentered to redeclare
itself again.

In fact, this use of exit handlers is just the mechanism employed by
the DCL and MCR CLis to allow multiple images to execute, one after
another, in the same process. This mechanism is discussed in more detail in
Chapter 27.

Note that an exit handler that is declared later (which implies that it will
be called earlier) can prevent previously declared handlers for the same access
mode from even being called by simply requesting the $EXIT system service.
In the previous example, procedure C could prevent exit handlers B and A
from being called by requesting $EXIT itself.

26.3 IMAGE AND PROCESS RUNDOWN

774

In any process that has had a CLI mapped by LOGINOUT, multiple images
can execute one after another. Several steps must be taken to prevent a
later image from inheriting either enhancements (such as elevated privileges)
or degradations (such as a reduced working set) from a previous image. In
addition, when a process is deleted, all traces of it must be eliminated from
the system data structures and all reusable resources returned to the system.

The $RUNDWN system service serves both those needs. (Note that use
of the $RUNDWN system service is reserved to the VMS operating system.
Any other use is completely unsupported.)

$RUNDWN is called with one argument, access mode. This argument
enables $RUNDWN to distinguish between image rundown and process
rundown. The service is requested with an argument of user mode by both
the DCL and MCR CLis to clean up between image executions. $RUNDWN
is also requested from the $DELPRC system service (see Chapter 28) with
an argument of kernel mode to remove traces of a process being deleted.

The $RUNDWN system service performs much of its work by requesting
other system services. $RUNDWN passes its access mode argument to these
services to allow them to determine how much work to do. For example,
the Dequeue Lock Request ($DEQ) system service (see Chapter 10) can be
requested with an access mode argument to release all locks for that access
mode and all outer modes. If $RUNDWN is requested with an argument of
user mode, its $DEQ request cancels only user mode locks. If $RUNDWN
is requested with an argument of kernel mode, then all process locks are
dequeued.

The $RUNDWN system service procedure, EXE$RUNDWN in module
SYSRUNDWN, runs in kernel mode. It first maximizes the access mode
argument with the access mode of its caller. That is, the less privileged
access mode is passed to other system services. Used in the following list,
the phrase "based on access mode" means "perform this operation for this
access mode and all outer (less privileged) access modes."

26.3 Image and Process Rundown

The following steps describe its actions:

1. EXE$RUNDWN clears any previously requested powerfail asynchronous
system trap (AST) and returns AST quota to the process.

2. If any per-process or systemwide executive mode rundown routines are
defined, EXE$RUNDWN invokes them from executive mode.

3. It requests the Set Resource Wait Mode ($SETRWM) system service,
enabling resource wait mode to ensure that image rundown completes
successfully.

4. EXE$RUNDWN invokes any per-process or systemwide kernel mode
rundown routines. Such a routine might perform cleanup for user-written
system services.

5. It invokes the License Management Facility (LMF) rundown routine to
release any license units granted to the exiting image or process.

6. It resets the process's current CPU capability and affinity requirements
to their permanent values. Chapter 12 explains these requirements.

7. If image accounting is enabled, an image deletion message is written to
the accounting log file.

8. EXE$RUNDWN increments the image counter (PHD$1-IMGCNT). This
counter prevents the delivery of ASTs to an image that has exited.
The use of this synchronization technique in the operation of the Get
Job/Process Information ($GETJPI) system service is described in Chap­
ter 13.

9. The four Pl space vectors for user-written system services, user-written
rundown routines, and image-specific message sections are reset to con­
tain RSB instructions.

10. EXE$RUNDWN requests the Set Page Fault Monitoring ($SETPFM) sys­
tem service to disable any monitoring of process page faults.

11. EXE$RUNDWN searches the channel control block table for channels to
deassign. It compares the access mode of each assigned channel to that
of the rundown. For each channel assigned in the same or an outer mode,
EXE$RUNDWN requests the Deassign Channel ($DASSGN) system ser­
vice. The deassign completes unless the channel has an open file. The
access mode comparison prevents process-permanent files from being
closed when an image is being run down ($RUNDWN from user mode).
Other channels that are not deassigned at this stage of image rundown
include the image file and any other file that is mapped to a range of
virtual addresses.

If the channel's assigned mode is more privileged, EXE$RUNDWN
makes an additional check of the flag CCB$V _IMGTMP to see whether
the channel is associated with the Breakthrough ($BRKTHRU) system
service. If it is, EXE$RUNDWN deassigns the channel so that broadcast
operations are aborted at image exit.

775

Image Activation and Exit

776

t
Direction of

stack growth User Stack
(default size of 20 pages)

T
Figure 26.21
Low-Address End of Pl Space That Is Deleted at
Image Exit

12. The rights database identifier table is deallocated to the Pl process allo­
cation region.

13. EXE$RUNDWN requests the Cancel Timer ($CANTIM) and the Cancel
Wakeup ($CANWAK) system services to cancel any requests made from
this and outer access modes.

14. It requests the $DEQ service to release locks for this and outer access
modes.

15. EXE$RUNDWN invokes MMG$IMGRESET, in module PHDUTL, to
reset the image pages. MMG$IMGRESET performs the image cleanup
associated with memory management:

a. MMG$IMGRESET invokes RM$RESET, in module RMSRESET, to
reset the image I/O segment.

b. It invokes EXE$PSCAN_IMGRESET, in module PROCESS_SCAN, to
remove and deallocate process scan blocks, restoring the context of
the Process Scan ($PROCESS_SCAN) system service.

c. It returns memory management working set peak checking to its
previous state.

d. MMG$IMGRESET releases all ICBs that describe currently mapped
images and places them on the ICB lookaside list. If any ICBs remain
on the work list, it places them on the ICB lookaside list as well.

e. All of PO space is deleted. This frees the main image file and any
other image file currently mapped. Physical pages are released, and
blocks in the page files assigned to the process are deallocated.

f. The nonpermanent parts of Pl space are deleted. These are the user
stack and an optional enlarged image I/O segment (see Figure 26.21).
Any expansions to Pl space (at smaller virtual addresses than the user
stack) are also deleted, as well as VAX DEBUG dynamic memory.

g. The working set list is reset to its default value, undoing any previous
expansion or contraction performed by the Adjust Working Set Limit

26.3 Image and Process Rundown

($ADJWSLI system service. Working set size changes are described in
Chapter 17.

h. MMG$IMGRESET raises IPL to 2 and invokes MMG$SECTBLRST,
which compresses the process section table.

i. The process privilege masks in the process header and PCB are reset to
their permanent value, found at location CTL$GQ_PROCPRIV. This
step eliminates any privilege enhancements to the process resulting
from the execution of an image installed with privilege. Section 26.4
describes the various privilege masks.

j. The global location CTL$GL_IMGHDRBF is cleared to indicate that
no image is active.

k. If the process was the last accessor of a global section, releasing the
process address space may make the global section deletable. If so, the
global sections are deleted under the protection of the global section
mutex. The associated WCB is released as well.

1. The pointer to the end of the active working set list (PHD$W _
WSLAST) is reset to the end of the minimum working set list.

16. The channel deassignment loop performed in step 11 is executed again.
However, because the image file and other mapped files have now been
dissociated from virtual address space, the channels associated with those
files will also be deassigned. As in step 11, this deassignment is based
on access mode, so that process-permanent files are unaffected by image
rundown.

17. EXE$RUNDWN requests the Deallocate Device ($DALLOC) system ser­
vice to deallocate devices allocated from this and outer access modes.

18. It requests the Disassociate Common Event Flag Cluster ($DACEFC)
system service to dissociate clusters 2 and 3.

19. EXE$RUNDWN acquires the SCHED spinlock, elevating IPL to IPL$_
SCHED.

20. EXE$RUNDWN checks the system error log mailbox queue EXE$AQ_
ERLMBX. EXE$RUNDWN deassigns each error log mailbox belonging to
this process. The method for declaring an error log mailbox is described
in Chapter 32.

21. All pending AST control blocks (ACBs) are removed from the list in the
process control block (PCB), based on access mode. If user AST quota
was charged for the AST, the quota is returned. If the ACB is deletable,
it is deallocated to nonpaged pool. This operation starts at the tail of the
list and proceeds toward the head of the list until an ACB is found with a
more privileged (smaller) access mode than the $RUNDWN access mode
or until the AST pending queue is empty. (Recall from Chapter 7 that
ASTs are enqueued in order of increasing access mode.)

22. Any change mode handlers for this and outer access modes are elimi­
nated. Because change mode handlers only exist for user and supervisor

777

Image Activation and Exit

modes, this step results in elimination of a change-mode-to-user han­
dler every time an image exits and the elimination of a change-mode-to­
supervisor handler when the process is deleted.

23. Any exit handlers for this and outer access modes are canceled.
24. Exception handlers found in the primary, secondary, and last chance

vectors are eliminated for this and outer access modes.
25. The AST active bits for this and outer access modes are cleared. The AST

enable bits for this and outer access modes are set.
26. System service failure exceptions are disabled for this and outer access

modes.
27. Any compatibility mode handler that has been declared is canceled.
28. A new value of ASTLVL is calculated by routine SCH$NEWLVL, in

module ASTDEL, to reflect the change in the AST queue resulting from
step 21.

29. The force exit pending jPCB$V _FORCPEN) and wake pending IPCB$V _
WAKEPEN) flags in the PCB are cleared. After clearing these flags,
EXE$RUNDWN releases the SCHED spinlock, lowering IPL to 2.

30. It reenables AST delivery to user mode by clearing CTL$GB_SOFT _AST_
DISABLE and CTL$GB_REENABLE_ASTS.

31. EXE$RUNDWN deletes all process logical names based on access mode.
At image exit, all user mode logical names are deleted. At process dele­
tion, all process logical names are deleted.

32. EXE$RUNDWN resets any PO extension made to the process allocation
region lsee Chapter 19).

33. Resource wait mode is returned to its previous state, normal completion
status is set, and control is returned to the requestor.

26.4 PROCESS PRIVILEGES

26.4.1

778

The VMS executive prevents unauthorized use of the system through process
privileges. One or more of these privileges are required to perform particular
system services, execute certain commands, or use privileged utilities.

Process Privilege Masks

A process has three sets of privileges available to it: privileges available while
executing a particular image, privileges available to the current process con­
text, and privileges from which the process can selectively alter its current
context. Each set of privileges is represented by a quadword bit mask. A set
bit means the process has the privilege corresponding to that bit.

VMS maintains the following privilege masks for processes and images.
Table 26.2 summarizes the use of the masks .

• PCB$Q_PRIV exists in the access rights block, which is currently a part of
the software PCB. It is also referenced by the symbol ARB$Q_PRIV.

26.4 Process Privileges

Table 26.2 Process Privilege Masks

Symbolic Name Use of This Mask Modified by Referenced by
PCB$Q_PRN, Working privilege mask EXE$PROCSTRT, Device drivers,
ARB$Q_PRN LOGIN OUT, XQP,

$SETPRV, ACPs,
Image activator, System services
MMG$IMGRESET requiring privilege

PHD$Q_PRIVMSK Duplicate of ARB mask Same as PCB$Q_ Some system services
PRN requiring privilege

CTL$GQ_PROCPRN Records permanently EXE$PROCSTRT, Image activator,
enabled privileges LOGIN OUT, SET/SHOW com-

$SETPRV mands,
MMG$IMGRESET

PHD$Q_AUTHPRN Records privileges from EXE$PROCSTRT, $SETPRV,
authorization file LOGIN OUT $GETJPI

PHD$Q_IMAGPRN Records privileges of Image activator $SETPRV,
installed image LOGIN OUT,

Records prlvileges in
$GETJPI

UAF$Q_PRN AUTHORIZE LOGIN OUT
authorization file

UAF$Q_DEF _PRN Records default privi- AUTHORIZE LOGIN OUT
leges in authorization
file

KFE$Q_PROCPRN Records privileges with Install Utility Image activator
which an image is
installed

IHD$Q_PRIVREQS Currently unused Linker Image activator

PCB$Q_PRIV contains the working privilege mask, sometimes called
aii image-specific privilege mask. This mask is checked by most system
services that require privilege, and by the file system. At image activation,
the mask is initialized to the combination of the privileges of the image
and the privileges of the current process context. It can be altered by the
Set Privileges j$SETPRV) system service, either during image execution
or from DCL level. It is reset at image rundown to the current process
privileges.

• The other image-specific privilege mask is PHD$Q_PRIVMSK in the pro­
cess header. It is a duplicate of the privilege mask in the ARB and is altered
in the same manner. Some older system services reference this mask rather
than ARB$Q_PRIV.

• Current process privileges !also called process-permanent privileges) are
stored in the Pl pointer page at global location CTL$GQ_PROCPRIV. This
mask is initialized at process creation from the UAF default privilege mask;
from the privilege mask argument passed to the $CREPRC system service;
or, for a subprocess, from the creator's current privilege mask. It can be

779

Image Activation and Exit

26.4.2

780

altered by the $SETPRV system service, either during image execution or
from DCL level. Its contents are copied to the working privilege mask at
image rundown .

• The authorized privilege mask, PHD$Q_AUTIIPRIV, does not change over
the life of the process. It allows a process to remove a privilege from
its current privilege mask with the $SETPRV system service and to later
regain that privilege. The authorized privilege mask is initialized at process
creation from the UAF privilege mask; the privilege mask argument passed
to the $CREPRC system service; or, for a subprocess, the creator's current
privilege mask .

• Each user's authorization file record contains the two privilege masks
UAF$Q_DEF _PRIV and UAF$Q_PRIV. UAF$Q_DEF _PRIV contains the de­
fault privileges that LOGINOUT copies to CTL$GQ_PROCPRIV, PCB$Q_
PRIV, and PHD$Q_PRIVMSK when an interactive user logs in. UAF$Q_
PRIV contains the authorized privileges that LOGINOUT copies to
PHD$Q_AUTIIPRIV .

• KFE$Q_PROCPRIV records the privileges with which a known executable
image has been installed. When a process runs such an image, those privi­
leges are temporarily granted to the process as part of the working privilege
mask .

• PHD$Q_IMAGPRIV contains a copy of the KFE$Q_PROCPRIV mask of the
privileged known image while that image is executing in process context.
This mask is used by the $SETPRV system service to allow an image
installed with privilege to invoke the $SETPRV service without losing
privileges.

$SETPRV System Service

The $SETPRV system service enables a process to alter its image-specific
(PCB$Q_PRIV and PHD$Q_PRIVMSKJ privilege masks or its image-specific
and process-permanent (CTL$GQ_PROCPRIVJ privilege masks, giii.ning or
losing privileges as a result. In addition, the service can return the previ­
ous settings of either the image-specific or process-permanent privileges, if
requested.

The $SETPRV system service procedure, EXE$SETPRV in module SYS­
SETPRV, runs in kernel mode.

The path through EXE$SETPRV that disables privileges requires no special
privilege and clears the requested privilege bits in the image-specific and,
optionally, the process-permanent privilege masks.

The code path that enables privileges requires the requested privilege to
be already included in the mask of privileges authorized for this process
(PHD$Q_AUTHPRIVJ. If a process tries to acquire a privilege that is not in
its authorized mask, the requested privilege is still granted if any one of the
following three conditions holds:

26.4 Process Privileges

• The process has SETPRV privilege in its authorized mask. A process with
this privilege can acquire any other privilege with either the $SETPRV
system service or the DCL command SET PROCESS/PRMLEGES (which
requests the $SETPRV system service) .

• The system service was requested from executive or kernel mode. This
condition allows either VMS or user-written system services to acquire
whatever privileges they need without regard for whether the current
process has SETPRV privilege. Such procedures must disable privileges
granted in this fashion as part of their return path .

• The privilege is being acquired temporarily (enabled in the two image­
specific privilege masks) and is included in the mask of privileges au­
thorized for the image (PHD$Q_IMAGPRIV), or the SETPRV privilege is
included in this mask. This allows an image to acquire a privilege without
permanently granting the new privilege to the process. When the image
exits, image rundown copies the process-permanent mask to the image­
specific masks, removing privileges acquired temporarily.

Note that the implementation of the $SETPRV system service does not
return an error if a nonprivileged process attempts to add unauthorized
privileges. In such a case, the service clears all unauthorized bits in the
requested privilege mask, loads the modified privilege mask, and returns the
alternative success status SS$_NOTALLPRIV.

781

27 Process Dynamics

In my end is my beginning.

Motto of Mary, Queen of Scots

The three other chapters in Part VII, Life of a Process, describe the steps
of process creation, image activation, and process deletion. This chapter
describes the manner in which VMS components create processes on a user's
behalf. It examines the circumstances under which the various components
are invoked and the resulting process types.

In addition, this chapter describes the VMS mechanisms supporting the
most common situation, a process that executes several images consecu­
tively. Because this mode of operation occurs in all interactive and batch
processes, these two process types are discussed in detail.

27.1 PROCESS CLASSIFICATION

A process can be classified by several characteristics:

• It is either a subprocess and part of its creator's job tree, sharing the job
information block (JIB), or it is detached from its creator, a top-level process
with an independent job tree of its own.

• It either interacts with a user and receives input from a terminal, or it is
noninteractive and receives input from a file or device .

• It includes a command language interpreter (CLI) and can make the tran­
sition from one image to another, or it executes only one image and exits
when the image does.

27.2 THE ROLE OF VMS COMPONENTS

782

Various VMS components initiate process creation by requesting the Create
Process ($CREPRC) system service. They include

• The job controller for interactive and batch processes
• The Digital command language (DCL) CLI for subprocesses and noninter­

active processes
• NETACP for network processes

Arguments to the $CREPRC system service determine process character­
istics, particularly the arguments rnc, STSFLG, INPUT, and IMAGE. Chapter 25
discusses this system service and its arguments in detail. Tables 27.1, 27.2,
and 27.3 provide examples of arguments passed to the $CREPRC system
service by VMS components.

Some VMS components that implement portions of process startup ex­
ecute in the context of the new process. When the process is created, the

27.3 The fob Controller and Process Creation

creator specifies an image later activated by EXE$PROCSTRT, as described in
Chapter 25. This is generally the LOGINOUT image. One of LOGINOUT's
functions is to map a CLI, generally DCL, into the process's Pl space. The
CLI enables the process to execute successive images, accomplishing the
transition from one image to the next. This mode of operation occurs in all
interactive and batch processes, and is optional but common for detached
and network processes. Sections 27.5 and 27.6 provide more information on
LOGINOUT and CLis. The total operation of a CLI, however, is beyond the
scope of this chapter.

27.3 THE JOB CONTROLLER AND PROCESS CREATION

27.3.1

The job controller process manages the creation of nearly all interactive and
batch processes. It creates an interactive process in response to unsolicited
terminal input and a batch process as a result of the CLI response to the
SUBMIT command. Unsolicited card reader input results in the creation of
a batch input symbiont.

The terminal class driver and card reader driver notify the job controller
of unsolicited input via the job controller mailbox. The CLI, in response to a
SUBMIT command, notifies the job controller of a batch process creation
request. The job controller creates an appropriate process for each input
source. The sections that follow describe these steps in more detail.

The process created by the job controller executes the image LOGINOUT.
The actions that LOGINOUT takes, especially mapping a CLI into Pl space,
differentiate processes that can execute multiple images in succession, such
as interactive and batch processes, from processes that exit after the execu­
tion of a single image.

Unsolicited Terminal Input

The common terminal driver character-processing routine takes special ac­
tion for unsolicited terminal input:

• If the terminal has the characteristic NO_ TYPEAHEAD, the driver ignores
the unsolicited input and dismisses the interrupt .

• If the terminal is owned, the driver inserts the character into the type­
ahead buffer. If the owner process had requested notification of unsolicited
input, the driver notifies the owner process .

• If the terminal is unowned and has the characteristic SECURE, it is at­
tached to a secure server. The terminal driver inserts the character into
the type-ahead buffer .

• If the terminal is unowned and has the AUTOBAUD characteristic, the
driver tests the incoming character. It senses the baud rate and sets it as
appropriate. If the character is a standard terminator recognized by the
driver, the driver sends a message to the job controller mailbox, notifying
the job controller that an unowned terminal has received an unsolicited

783

Process Dynamics

27.3.2

784

Table 27.1 Arguments Resulting in Interactive
Process Creation

Argument Passed
to $CREPRC

Process name
UIC
Image name
SYS$INPUT
SYS$0UTPUT
SYS$ERROR
Base priority
Privilege mask
Status flags

Value
_ttcu:
[1,4)
SYS$SYSTEM:LOGINOUT.EXE
ttcu:
ttcu:
ttcu:
DEFPRI (SYSGEN parameter)
TMPMBX, NETMBX, SETPRV
PRC$V _INTER

interrupt. The driver then inserts the input character into the type-ahead
buffer.

In a sense, the job controller is the default owner of all otherwise un­
claimed terminals.

If the type-ahead buffer does not exist when the driver attempts to insert a
character, the driver initiates a fork thread to create the buffer. The current
character, however, is discarded.

The job controller routine that responds to unsolicited terminal input sim­
ply requests the $CREPRC system service. Table 27.1 shows the arguments
it passes to the system service.

The string ttcu: indicates the controller and unit of the terminal where
the unsolicited input was typed. The terminal device type can be an ac­
tual physical device; an LT device, if the terminal is connected through a
DECserver; an RT device, if the terminal is remote; a VT device, if virtual
terminal support is enabled; or a TW device for DECwindows.

Note that the job controller creates each interactive process with a process
name indicating its input device and LOGINOUT as the image to be exe­
cuted. The creation of an interactive process is pictured schematically in
Figure 2 7 .1.

SUBMIT Command

When the SUBMIT command is entered, the CLI activates the SUBMIT.EXE
image. SUBMIT sends messages to the job controller mailbox via the Send
to Job Controller ($SNDJBC) system service. The job controller reads the
mailbox messages and creates a job record in its data file, JBCSYSQUE.DAT.
It inserts the job record onto an internal list of pending requests for the
desired batch execution queue or generic queue. When the number of active
jobs in a batch execution queue drops below its maximum value, the job

27.3.3

27.3 The Job Controller and Process Creation

RETURN entered
at user's terminal

Job Controller
Process Context

Context of
Newly Created

Process

Figure 2.7.1

Terminal
Driver

System Context

Job
Controller

Creates new process

LOGINOUT
• Validate password, user name
• Alter process characteristics according to
authorization record

• Map CU and command tables and transfer
control to CU

Creation of an Interactive Process

Authorization
File

controller selects the queue's highest priority pending request. It requests
the $CREPRC system service to create a process for that request, specifying
LOGIN OUT as the image to be executed.

The job controller specifies _NLAO: as the SYS$INPUT value and the string
BATCH_ plus queue entry number as the process name, SYS$0UTPUT, and
SYS$ERROR value. LOGINOUT later redefines SYS$INPUT to be the name
of the batch command procedure, and SYS$0UTPUT and SYS$ERROR to
be the name of a log file in an appropriate directory. Because LOGINOUT
maps the appropriate CLI into the process Pl space, the batch input file can
contain a series of command language statements. Figure 27.2 shows the
processing of the SUBMIT command. Table 27.2 shows the arguments that
the job controller passes to $CREPRC for a batch process.

Unsolicited Card Reader Input

An alternative method for starting a batch process uses the "hot" card reader
feature implemented in the card reader driver interrupt service routine. Like
the terminal driver, the card reader driver informs the job controller that
an unsolicited interrupt has occurred on an unowned device. The job con­
troller creates a process to service the unsolicited interrupt, The process exe­
cutes an input symbiont, the image INPSMB.EXE, rather than LOGINOUT.
Table 27.3 shows the arguments passed to the $CREPRC system service by
the job controller.

The letter c represents the controller number. The unit number is always

785

Process Dynamics

Unsolicited
interrupt

System Context

,____(___,W ~ Card Reader
Driver

~-~~-~

--------r---- -------------T-----------------
user Process I 1 INPSMB Process

Context I I Context

$SN DJ BC
to create job
record for X.COM

I
I

l.,k----'----,-.----+---

I
I
I
I
I
I
I
I
I
I
I
I
I

Job
Controller

Create process
for job record

JBCSYSQUE.DAT

I
I
I

: Verify user name
1 and password

I
I
I
I
I
1 Copy cards to
I command file

I

I I

INPBATCH.COM

________ L ___________________ i ________________ _

786

LOGINOUT
• $SNDJBC to obtain information from job

record, such as user name, log file name
• Read user authorization record, but do not
validate password

• Alter process characteristics according to
job record and authorization record

• Map CU and command tables and
transfer control to CU

Figure 27.2
Creation of a Batch Process

Context of
Newly Created

Process

zero because the card reader controller supports only one unit. The fact that
this process has a card reader for its output device is irrelevant, because the
input symbiont does not write to either SYS$0UTPUT or SYS$ERROR.

The input symbiont reads the $JOB and $PASSWORD cards and performs
a validation similar to the one performed by LOGINOUT. After determining
the user's default directory from the authorization record, the input symbiont
opens a file in that directory and reads the rest of the job cards into that file.
By default, it names the file INPBATCH.COM. Terminating conditions of
this read are an end of file, an $EOJ card, or another $JOB card.

Once the input stream has been read into the user's directory, the input

27.4 SPAWN and ATTACH

Table 27.2 Arguments Resulting in Batch Process
Creation

Argument Passed
to $CREPRC

Process name
UIC
Image name
SYS$INPUT
SYS$0UTPUT
SYS$ERROR
Base priority
Privilege mask
Status flags

Value
BATCH_nnn
[1,4]
SYS$SYSTEM:LOGINOUT.EXE
_NLAO:
BATClLnnn
BATClLnnn
DEFPRI (SYSGEN parameter!
All
PRC$V _BATCH

Table 27.3 Arguments Resulting in Input Symbiont
Process

Argument Passed
to $CREPRC

Process name
UIC
Image name
SYS$INPUT
SYS$0UTPUT
SYS$ERROR
Base priority
Privilege mask
Status flags

Value
_CRcO:
[1,4]
SYS$SYSTEM:INPSMB.EXE
CRcO:
CRcO:
CRcO:
DEFPRI (SYSGEN parameter!
TMPMBX, NETMBX, SETPRV
None

symbiont sends a message to the job controller to create a job record for the
stream. The operation proceeds from this point in exactly the same manner
as for the SUBMIT command. That is, the job controller and LOGINOUT
collaborate to produce a process with the card file as SYS$INPUT and a log
file as SYS$0UTPUT and SYS$ERROR. Figure 27.2 shows this flow.

2.7.4 SPAWN AND ATTACH

DCL provides two commands to create and connect with interactive sub­
processes. The DCL command SPAWN creates interactive subprocesses. The
ATTACH command transfers terminal control from one process to another
within the same job. The module [DCL]SPAWN contains the code for both
commands. The Run-Time Library procedures LIB$SPAWN and LIB$AT­
TACH make the SPAWN and ATTACH functions available to an image by
passing the request back to the DCL CLI. The major difference between the

787

Process Dynamics

27.4.1

788

two ways of requesting the function is the method of passing parameters.
From DCL level, the command line is parsed to obtain the parameters. The
Run-Time Library procedures use an argument list.

SPAWN

Spawning a subprocess primarily involves copying process context informa­
tion from the creating process to the subprocess. This information includes
the process CLI symbols, process-private logical names, current privileges,
out-of-band asynchronous system trap (AST) settings, verify flag settings,
prompt string, default disk and directory, keypad definitions and states, and
the command line that was passed to SPAWN (if one exists).

In response to a SPAWN request, DCL performs the following operations:

1. It parses the command line to determine what qualifiers are present. It
validates the qualifiers and copies them to a temporary data structure.

2. It temporarily disables the current process's out-of-band ASTs, blocking
CTRL/Y ASTs during a critical section of code.

3. It creates or locates a termination mailbox and requests an attention AST
if a message is written to the mailbox.

Termination information from the subprocess is written to the termi­
nation mailbox when the subprocess is eventually deleted. The attention
AST is delivered to the subprocess's creator at that time. Because four
spawned subprocesses can share the same termination mailbox, DCL
checks for an available one that the new subprocess can share before
creating a new mailbox.

4. DCL records the name of the subprocess's CLI and command table files
in Pl space locations. The $CREPRC system service later copies them
to the process quota block (PQB). When LOGINOUT eventually runs in
the context of the new subprocess, this is the CLI that it will invoke.
The default, if no CLI is specified, is the creator's CLI.

5. For CLis supplied by Digital, DCL creates a second mailbox, called the
communication mailbox, through which further context information is
transferred to the spawned subprocess, as described in step 10.

6. DCL creates an attach request mailbox for the current process with a
jobwide logical name of the form DCL$ATTACH_pid, where pid is the
extended process ID. Other processes in the job tree can attach to this
process by writing attach requests to this mailbox.

7. DCL requests the Get Job/Process Information ($GETJPI) system service
to determine the current process's nondeductible quotas. From these
quotas, it builds a quota list to be used in the creation of the spawned
subprocess.

8. If the process name was not specified in the command line or argument
list, DCL creates one by appending _n to the user name string, where n

27.4 SPAWN and ATTACH

is a value from 1to255. If the new name is a duplicate, DCL increments
n and tries again ..

9. DCL requests the $CREPRC system service to create the subprocess. It
specifies LOGINOUT as the IMAGE argument and the name of the com­
munication mailbox from step 5 as the ERROR argument. If the creating
process does not specify input and output files to the SPAWN com­
mand, DCL uses the creating process's SYS$INPUT and SYS$0UTPUT
file specifications as the INPUT and OUTPUT arguments. It specifies the
termination mailbox from step 3 to the $CREPRC service to receive a
process deletion message from the subprocess. Because the request does
not include a privilege mask for the subprocess, the $CREPRC system
service creates the subprocess with the current privileges of the current
process !see Chapter 25).

10. When LOGINOUT runs in the context of the newly spawned subprocess,
it maps the specified CLI, DCL in this example, and passes control to
it. DCL determines that it is running in the context of a subprocess
and translates the logical name SYS$ERROR. If there is a supervisor
mode translation with a mailbox name as the equivalence string, DCL
recognizes that a SPAWN operation is in progress and that it must read
context information from the creating process.

At this point, both; the creating process and the spawned subprocess are
executing DCL routi.µes. The creating process passes context information
to the spawned sub~rocess in the following manner:

a. The spawned :SUbprocess assigns a channel to the communication
mailbox and issues read requests to it.

b. The creating process writes context information to the mailbox, one
record at a time. Each record has a type code identifying its contents.
When the subprocess receives the information, it adds the informa­
tion to its context.

c. The first transferred record contains the permanently enabled priv­
ilege mask ICTL$GQ_PROCPRIV), verify flag setting, out-of-band
AST flag settings, and prompt string.

The spawned subprocess reads the record and initializes the process
accordingly. It requests the Set Privilege ($SETPRV) system service
to disable all privileges, then resets the process privileges from those
transferred in the record. Thus, the working, permanently enabled
!current), and authorized privilege masks of the subprocess contain
the privileges its creator possessed when the spawn occurred. This
enables a privileged image to tailor the environment in a spawned
subprocess.

d. Next, the creating process transfers the SPAWN command string (if
one was specified).

e. The creating process then scans the process logical name directory,

789

Process Dynamics

27.4.2

790

which contains a list of process logical name table names. It copies all
table names that were defined in user or supervisor mode and that
do not have the CONFINE attribute. It then copies all the logical
names defined in those tables. The spawned subprocess creates the
corresponding logical name tables and their logical names.

f. The creating process then transfers the contents of the symbol table,
one symbol at a time, followed by terminal keypad definitions. The
spawned subprocess receives each symbol and places it into the sym­
bol table. Note that the creating process's potentially modified DCL
command tables are not transferred to the subprocess.

11. Once it has transferred all information to the subprocess, the creating
process tests whether it should wait for the subprocess. If so, it requests
a write attention AST on the attach request mailbox and hibernates.
Otherwise it restores out-of-band ASTs and resumes normal processing.

12. The spawned subprocess deletes the supervisor mode logical name
SYS$ERROR, leaving the executive mode logical name. It restores out­
of-band ASTs and, if the subprocess is interactive, issues a special 1/0
request to the terminal driver to declare the subprocess the terminal
owner. It then continues normal DCL processing.

When a subprocess created by the SPAWN command is deleted, a termi­
nation message is written to its creator's termination mailbox. As a result,
a write attention AST is queued to the creator. The AST procedure simply
performs cleanup work pertaining to the deleted subprocess. It deassigns the
channels to the attach and termination mailboxes and deletes the mailboxes.
If the subprocess was created by a call to LIB$SPAWN and if an event flag or
AST procedure was specified in the call, the event flag is set or the AST is
delivered.

ATTACH

The DCL ATTACH request transfers terminal control from the process that
issues the command to a target process. The operation of the DCL ATTACH
routine is as follows:

1. From the context of the issuing process, DCL first disables out-of-band
ASTs, blocking delivery of CTRL/Y ASTs. It then obtains the name or
process identification (PID) of the target process. It verifies that the target
process is not itself and that it is a process in the same job tree.

2. DCL creates an attach request mailbox and logical name for the issuing
process. Since interactive input will be detached from the issuing process
and attached to the target process, the issuing process must have an
attach mailbox to accept attach requests later. Otherwise, the terminal
cannot be reattached to it.

3. DCL locates the target process's attach mailbox and writes the name of

27.5 The LOGINOUT Image

the current output stream (usually the equivalence name of SYS$INPUTJ
to the mailbox. Since the target process had declared a write attention
AST on its attach mailbox, it is notified of the message placed in the
mailbox. The original process then issues a read request on the target
process's attach mailbox in anticipation of a message from the target.

4. The target process wakes in response to the write attention AST. The
AST procedure determines whether the target process is already attached
to a terminal. If not, it writes an affirmative response (a longword with
a value of 1 J to the attach mailbox. Otherwise, it writes a zero longword
to refuse the attach request and reenables the write attention AST for
the attach mailbox.

5. Once it receives the affirmation, DCL in the original process deassigns
its channel to the target process's attach mailbox. It requests a write
attention AST for its own attach mailbox so it can be notified of any
incoming attach requests. It then hibernates.

6. The AST procedure in the target process issues a wake request to return
·control to the target process.

27.5 THE LOGINOUT IMAGE

27.5.1

The LOGINOUT image provides three major functions:

1. It validates a user's access to the system, checking password information
in the authorization fl.le.

2. It adjusts various process quotas and defaults based on information from
the authorization fl.le or from the job controller.

3. It maps a CLI into Pl space.

LOGINOUT need not perform all these functions for every process. Its
actions are based on the original arguments passed to the $CREPRC system
service, stored in the process control block (PCB), process header (PHDJ,
and Pl space. For example, it does not perform password validation if the
$CREPRC STSFLG argument PRC$V _NOUAF was specified.

The LOGINOUT image is installed with privileges, which it enables and
disables based on the current function. The image executes primarily in user
mode, with some executive and kernel mode procedures.

Normally, the $CREPRC IMAGE argument specifies LOGINOUT and the
image is activated by EXE$PROCSTRT. However, under certain conditions,
the image activator independently invokes LOGINOUT. Chapter 26 contains
further details.

The LOGINOUT modules are located in the facility [LOGIN].

LOGINOUT and Interactive Processes

When the LOGINOUT image executes in an interactive process created in
response to unsolicited terminal input, it must verify that the user has access

791

Process Dynamics

792

to the system before proceeding with the rest of its operations. It performs
the following steps:

1. It establishes a user mode call frame condition handler to service any
exceptions or software conditions that occur while LOGINOUT is exe­
cuting. Should this handler be called, it first requests the Put Message
($PUTMSG) system service to write an error message. It then checks
the type and severity of the condition. If the status code has not already
been stored in Pl space, the handler stores it in preparation for writing
the code to the termination mailbox.

If the condition is a severe error, the handler requests the Exit ($EXIT)
system service from executive mode, causing the process to be deleted.
Otherwise, it returns, and LOGINOUT continues execution.

LOGINOUT declares this same condition handler for many of its ex­
ecutive mode procedures.

2. LOGINOUT requests the $GETJPI system service to obtain the user
name, process status flags, job type, and process owner.

3. LOGINOUT requests the Get Device Information ($GETDVI) system
service to obtain the name and characteristics of SYS$INPUT.

4. It translates the logical names SYS$INPUT, SYS$0UTPUT, and SYS$ER­
ROR in the LNM$PROCESS table and saves the resultant strings for later
use.

5. LOGINOUT initializes the process-permanent data (PPD) region in Pl
space. This region is shared by LOGINOUT and the CLI it maps.

6. LOGINOUT classifies the process as one of the following five mutually
exclusive types and performs type-specific initialization:

-Batch-The batch bit is set in CTL$GL_CREPRC_FLAGS, a copy of
the flags specified to the $CREPRC system service.

-Network-The network bit is set in CTL$GL_CREPRC_FLAGS.
-Subprocess-The parent PID is nonzero.
-Interactive-The interactive bit is set and the nopassword bit is clear

in CTL$GL_CREPRC_FLAGS.
A DECwindows process is an interactive process whose input device

type is DC$_ WORKSTATION.
-Detached-Anything not covered by the previous types.

7. For an interactive process, typically one created in response to unsolicited
input from a terminal, LOGINOUT performs the following steps:

a. It initializes the user name and account name fields in the JIB and Pl
space to the string <login>.

b. It creates process-permanent files for the input and output devices
through calls to Record Management Services (RMS). LOGINOUT
redefines the logical names SYS$INPUT and SYS$0UTPUT in the
LNM$PROCESS table. It defines the logical names SYS$ERROR and

27.5 The LOGINOUT Image

SYS$COMMAND with the same equivalence strings as SYS$0UT­
PUT and SYS$INPUT. It prefixes the equivalence names for these
logical names by four bytes: an escape l1B16), a null character 10016),
and the two-byte internal file identifier IIFI) returned by RMS. When
RMS receives such a string as a result of logical name translation, it
uses the IFI as an index into one. of its internal tables. Accessing by
IFI allows fast access to these commonly used files.

c. In the case of an interactive login, the input device must be a terminal
device. Otherwise, LOGINOUT exits with the errormessage "invalid
SYS$INPUT for interactive login."

d. If the terminal line has modem control enabled, LOGINOUT requires
the TT$V _REMOTE bit to be set. This bit notifies the driver that
the process must be logged off or disconnected if the modem signals
disappear.

e. LOGINOUT determines whether the job type is local, dialup, or
remote, based on the characteristics of the SYS$INPUT terminal. It
stores this status in the JIB, at offset JIB$B_JOBTYPE, and copies the
terminal name to PCB$T _TERMINAL.

It marks an interactive DECwindows process as local but does not
store a terminal name for it.

f. LOGIN OUT determines whether there is a system password and
whether it applies to this terminal. If there is, it issues a timed, no­
echo read to the terminal and checks the password entered by the
user.

g. It then translates the logical name SYS$ANNOUNCE and writes the
announcement message defined by the system manager.

h. LOGINOUT checks whether autologins are enabled for the terminal
that is logging in. If they are, LOGINOUT looks up the terminal
name in SYS$SYSTEM:SYSALF.DAT to determine the user name
associated with the terminal. It then reads the user authorization
file IUAF) record associated with the user and stores the user name
in the JIB and in CTL$T_USERNAME in Pl space.

LOGINOUT prompts for, reads, and verifies the password, if one is
required. If there is a secondary password for the account, it prompts
for, reads, and verifies that as well.

i. If autologins are not enabled for the SYS$INPUT terminal, LOGIN­
OUT prompts on it for the user name. It reads and parses the input,
noting the presence of qualifiers, such as /CONNECT and /CLI. It
opens the system authorization file and reads the record associated
with that user, if any. LOGINOUT stores the user name in the JIB
and in CTL$T_USERNAME.

Whether the desired UAF record exists or not, LOGINOUT always
prompts for the password. It reads and verifies the password and, if

793

Process Dynamics

794

there is a secondary password for the account, prompts for, reads, and
verifies that as well.

j. If the account is captive or restricted, LOGINOUT checks that the
user did not include login qualifiers to change aspects of the process
environment fixed for that account.

k. LOGINOUT then performs a scan of the intrusion database in non­
paged pool. The type of scan performed depends on the success of
user validation.

If a user validation error (such as invalid user name or password)
has occurred, a suspect scan is performed. If evasion is in effect, the
user name is set and a break-in audit is performed. Otherwise, the
failed password count is incremented in the user's UAF record, and
a corresponding intrusion record is either created or updated.

If the login was valid, an intruder scan is performed. If the user is
found to be an intruder, a break-in audit is performed and the login
terminates.

1. If SYS$INPUT is not a remote terminal and reconnection is allowed
for the account, LOGINOUT then checks whether the user has dis­
connected from a process that still exists. It performs a wildcard
$GETJPI, looking for a process with the same user name and user
identification code (UIC) and a disconnected terminal. It displays any
matches and asks the user to which process, if any, the terminal
should be connected. It records the answer for later use.

m. If the user does not have OPER privilege, LOGINOUT checks that
the interactive process count would not be exceeded by the logging
in of this process, and that logins are not currently disabled.

8. LOGINOUT records some of the process attributes extracted from the
authorization file in their proper places, overwriting the attributes placed
there when the process was created:

-Default disk and directory string
-User name
-Base scheduling priority
-UIC

9. After the process's correct UIC has been set, LOGINOUT recreates the
job logical name table and, possibly, the group logical name table.

10. LOGINOUT completes the local rights list entries based on the process
charactistics and the identifiers associated with the UIC.

11. LOGINOUT copies the remaining attributes extracted from the autho­
rization file to their proper places.

-It moves process quotas and limits, testing each to ensure that it is
not less than the minimum.

27.5 The LOGINOUT Image

-It copies the default privilege mask from the UAF record into PHD$Q_
AUTHPRN and CTL$GQ_PROCPRIV.

-It initializes ARB$Q_PRN and PHD$Q_PRIVMSK as the default priv­
ilege mask ORed with the image privilege mask.

-It copies information about primary and secondary day restrictions.

12. LOGINOUT attempts to change the process name from _ttcu: to the user
name. This attempt fails if another process in the same group already
has the same name. (A common cause of user name duplication is a user
logged in at more than one terminal.) In the case of failure, the process
retains its name (_ttcu:), guaranteed to be unique for a given system.

13. LOGINOUT checks a number of other fields in the authorization file
record. These include the user or account job limit, the primary and
secondary password expiration flags, the DISUSER flag, the account expi­
ration time, and the account hourly restrictions. These checks are waived
in the case of the SYSTEM account logging in on the console terminal.

14. LOGINOUT begins initialization for a CLI. It creates user mode logical
names PROCO through PROC9, each equated to the file specification of a
command procedure (or indirect command file) to be executed before the
CLI enters its input loop. Currently, only PROCO and PROC 1 are used.
PROCO is equated to the system name table translation of the logical
name SYS$SYLOGIN.

PROCl is equated to the file specified by the LGICMD field of the
user's UAF record or the file specified by the login qualifier /COMMAND
at login time (by an authorized user). If the contents of the LGICMD
field are null and no /COMMAND qualifier was present on the login
command, PROCl is equated to the string LOGIN. The LGICMD field
should indicate the null device (using the string NL:) to provide a default
of no login command file.

When the CLI later executes its initialization code, it will translate
these logical names and execute the command procedures (or indirect
command files).

15. LOGINOUT requests a merged image activation of the selected CLI to
map the CLI into the low-address end of Pl space. The procedure LIB$PL
MERGE first merges the CLI into PO space to determine its size, deletes
the PO space, and maps the correct amount of Pl space. Next, the CLl's
command table is mapped into Pl space, using the same procedure.

Network and DECwindows processes always use DCL and DCL­
TABLES as the CLI name and command table name. A restricted user
receives the CLI name and command table name specified in the UAF
record. However, an unrestricted interactive user can specify /CLI and
/TABLE on the login command line to choose a particular CLI and com­
mand table. If the login command line does not contain a /CLI qualifier,

795

Process Dynamics

796

LOGINOUT assigns the first nonzero CLI name in the following list to
an unrestricted user:

-CTL$AG_CMEDATA, the CLI name specified by the image activator
-CTL$GT _SPAWNCLI, the CLI name specified by a parent process for

a spawned subprocess
-The default CLI specified in the UAF record
-CTL$GT _CLINAME, the CLI name of the parent process
-DCL and DCLTABLES

16. LOGINOUT calls a kernel mode procedure to change the owner and
protection of the CLI and command table pages. It changes the owner
access mode for each page to supervisor and alters the protection on all
writable pages to prevent writes from user mode.

17. To accommodate the CLI symbol table, LOGINOUT requests the Expand
Process/Control Region l$EXPREG) system service to expand Pl space
by a number of pages equal to the SYSGEN parameter CLISYMTBL. It
updates the global location CTL$GL_CTLBASVA to reflect the new low­
address end of Pl space.

18. If the DISWELCOME flag is clear in the UAF record, LOGINOUT writes
to SYS$0UTPUT, announcing successful login. It first translates the
logical name SYS$WELCOME and writes the welcome message defined
by the system manager. If SYS$WELCOME is not defined, LOGINOUT
writes the following message, obtaining the version number from the
global location SYS$GQ_ VERSION and the node name by translating
the logical name SYS$NODE:

Welcome to VAX/VMS version V5.2 on node FOOBAR

19. If the DISREPORT flag is clear in the UAF record, LOGINOUT also
writes the dates of the last interactive and noninteractive logins and the
number of login failures since the last successful login. If the DISNEW­
MAIL flag is clear, it writes the number of new mail messages for the
user.

20. LOGINOUT creates the logical names SYS$LOGIN, SYS$LOGIN_DE­
VICE, and SYS$SCRATCH in the process's job logical name table. The
equivalence name for these logical names is the default disk and direc­
tory specified by the user's UAF record. ITo override the default disk,
follow the user name portion of the login sequence with the qualifier
/DISK=ddcu:.J

For a DECwindows terminal emulation window, LOGINOUT creates
the logical name DECW$DISPLAY, with the workstation device name
as the equivalence name. For a remote login, it creates the logical name
SYS$REM_NODE, the remote node's name or address, and SYS$REM_
ID, the remote user name.

21. LOGINOUT checks whether the primary or secondary password lifetime

27.5.2

27.5 The LOGINOUT Image

has ended. If so, it marks the password as expired in the UAF record. If
the DISFORCE flag is clear in the UAF record or if the user specified the
/NEW_PASSWORD qualifier on the login command line, LOGINOUT
forces the user to set a new password before continuing. If the DISFORCE
flag is set, LOGINOUT informs the user that the password has expired,
but allows the login to continue.

If the lifetime of either the primary or secondary password has not
ended but is due to expire within five days, LOGINOUT warns the user
of that fact.

22. LOGINOUT records the time of login in the UAF record. It notifies the
security audit subsystem of the login.

23. At this point, LOGINOUT has finished its work and must pass control
to the CLI. To pass control to the CLI, LOGINOUT calls an executive
mode routine that performs the following actions:

a. It changes the protection on pages in the PPD region so that the pages
can only be accessed from supervisor and inner access modes.

b. It copies the transfer address of the CLI from CTL$AG_CLIMAGE
into the program counter (PC) from the Change Mode to Executive
(CHME) exception.

c. It modifies the processor status longword (PSL) in the exception PSL
so that the current and previous mode fields contain supervisor mode.

d. It returns to the change mode dispatcher, which exits from executive
mode by executing an REI instruction. This returns the process to
supervisor mode with the PC pointing to the first instruction in the
CLI, its initialization routine.

LOGINOUT and Batch Processes

Many of the operations performed by LOGINOUT for an interactive process
are also necessary for a batch process. For example, LOGINOUT must open
the input and output streams and map the CLI. However, LOGINOUT does
not perform password verification-either the input symbiont has already
checked it or, in the case of a SUBMIT command, it is not necessary.

Rather than describing the steps performed by LOGINOUT again, the
following list simply specifies those that are different for a batch process:

1. When the batch flag is set in CTL$GL_CREPRC_FLAGS, a copy of the
flags originally specified to the $CREPRC system service, LOGINOUT
takes actions to create a batch process.

2. It initializes the account name fields in the JIB and Pl space to the string
<hatch>.

3. LOGINOUT requests the $SNDJBC system service to obtain information
about the batch process, for example, its user name, process priority, and
working set information.

797

Process Dynamics

27.5.3

798

The prompted reads of user name and password, and the system an­
nouncements that occur in the login of an interactive process, are un­
necessary for a batch process.

4. LOGINOUT opens the batch input file and log file as process-permanent
files through calls to RMS. It defines the logical names SYS$INPUT and
SYS$COMMAND with the batch input file name prefaced by the file IFI
!returned by RMS) as the equivalence string. It defines the logical names
SYS$0UTPUT and SYS$ERROR with the batch log file name prefaced
by the file IFI !returned by RMS) as the equivalence string.

5. LOGINOUT reads the authorization file record for this user. It ob­
tains process attributes to supplement information specified during batch
queue creation and job submission. These values from the authorization
file are minimized with the values returned by the job controller.

6. The job parameters, Pl through PB, if present, are defined as user mode
logical names, which the CLI later translates.

The procedures of mapping the CLI and transferring control are exactly
the same as if the process were interactive. In both cases, if SYS$SYLOGIN
is defined as a system logical name, the first commands that execute are the
commands in the site-specific login command file. If the UAF does not spec­
ify a user login command file, the command file SYS$LOGIN:LOGIN.COM
is executed next jif the CLI is DCL).

LOGINOUT and Network Processes

The NETACP image requests the $CREPRC system service to create a net­
work process. Many of the operations performed by LOGINOUT for a net­
work process are similar to those for an interactive process. The major dif­
ference is that LOGINOUT does not necessarily map a CLI for a network
process.

NETACP specifies the $CREPRC INPUT, OUTPUT, and ERROR arguments as
follows:

• The INPUT argument is the name of a command procedure or executable
image to be invoked by LOGINOUT.

• The OUTPUT argument is a flag indicating whether a proxy login is allowed,
followed by access control information.

• The ERROR argument is the address of a network control block INCBJ for
the connection.

LOGINOUT obtains the network logical link number from the NCB and
stores the remote node name, address, and ID in Pl space. It checks to see
whether the network process should use proxy login and performs validation
of the access control information accordingly. It creates an executive mode
logical name SYS$NET, which locates the NCB.

27.6 CLis and Image Processing

Initial Process Context

EXE$PROCSTRT
• $1MGACT Image
•$DCLEXH EXE$RMSEXH
•$SETEXV EXE$CATCH~ALL
• $1MGFIX
•Call image at EXE$1MGSTA
first transfer vector _____ ,._ • Call user image,

debugger, or
traceback handler User Image
depending on flags ----I~

~--------- RET .., _________ RET

EXE$EXIT $EXIT ______________________ ,.._• Invoke exit handler(s)

• $DELPRC

Figure 27.3
Process That Executes a Single Image

If the INPUT argument specified a file of type EXE rather than COM, LOG­
INOUT activates the executable image from a small code segment in Pl
space. Since no CLI is mapped, this process will be deleted when its image
exits. This optimization decreases network process activation time. Other­
wise, if the file type is COM, LOGINOUT activates a CLI to execute the
file's commands and creates a log file.

27.6 CLIS AND IMAGE PROCESSING

Digital provides four CLis that run under the VMS operating system: DCL,
monitor console routine (MCR), DEC/Shell, and CSHELL. DCL is supplied
with the VMS software. MCR, once a VMS component, is now part of the
optional product VAX-11 RSX. This section describes features of DCL and
MCR. The other CLis are beyond the scope of this book.

After the DCL or MCR CLI gains control and performs some initialization,
it reads and processes successive records from SYS$INPUT. This section
describes those operations that result in image execution, to contrast in­
teractive and batch processes with processes that do not map a CLI. The
operations that DCL and MCR perform to activate an image are nearly iden­
tical. Any differences are explicitly mentioned.

One of the important steps that either CLI performs is the declaration of a
supervisor mode exit handler. It is this handler that prevents process deletion
following image exit and allows the successive execution of multiple images
within the same process.

Figure 2 7 .3 shows the flow of control in a process that does not map a CLI
and thus executes only one image. Figure 27.4 shows the flow of control in
a process that maps a CLI and thus can execute multiple images.

799

00
0
0

Initial Process Context

EXE$PROCSTRT
• $1MGACT LOGINOUT
•$DCLEXH EXE$RMSEXH
• $SETEXV EXE$CATCH_ALL

LOGINOUT
---.- • LIB$P1 MERGE CLI • Call LOGINOUT at

first transfer vector
and command table CLI (DCL)

• REI to CLI ----~ • $RUNDWN previous image

Figure 27.4
Process That Executes Multiple Images

• Get command
• $DCLEXH DCL$EXITHAND
• $1MGACT image
specified by command

• $1MGFIX EXE$1MGSTA

• Call image at first ----~ • Call user image, ----.~
transfer vector debugger, or

User Image

traceback handler
depending on flags

•-----RET

-1--------- RET EXE$EXIT

$EXIT --------------------• •Invoke user mode
exit handlers

DCL$EXITHAND • Invoke supervisor
• Issue error message mode exit handlers

if any (DCL$EXITHAND)
• Close open files
• $RUNDWN previous
image

• Return to DCL
main loop

27.6.1

27.6.2

27.6 CLis and Image Processing

CLI Initialization

The DCL CU's initialization code is the routine DCL$STARTUP in mod­
ule [DCL]INITIAL. For the MCR CU, the initialization code is the routine
MCR$STARTUP in module [MCR]MCRINIT. Running in supervisor mode,
the initialization code performs the following steps before entering the main
command processing loop:

1. The CU clears the FP register and then calls itself, creating an initial call
frame on the supervisor stack. This initial call frame therefore contains
a zero in the saved FP, terminating the call frame chain. The CU calls
itself again and establishes a call frame condition handler.

2. The CU writes the address of its CU callback service routine in the
global location CTL$ALCUCALBK. Callback is a mechanism an image
uses to obtain services from the CU, such as symbol creation and lookup.

3. The CU initializes its work area from internal variables transferred by
LOGINOUT to the PPD region. It also initializes the CU symbol table
data structures.

4. For a batch proc~ss, the CU translates the logical names for parameters
Pl through PS. It creates symbols whose values are the equivalence
names.

5. The CU translates PROCO through PROC9 and saves their equivalence
names to identify the command procedures it must execute.

6. The CU requests the Rundown ($RUNDWN) system service with an
argument of user mode to run down the LOGINOUT image.

7. The CU validates the structure of its command table.
8. It issues a special 1/0 request to the terminal driver, naming the process

as the terminal owner.
9. DCL enables CTRL/Y and out-of-band ASTs on the terminal. MCR en­

ables CTRL/Y ASTs. (CTRL/Y ASTs are not enabled if the UAF record
had the DISCTLY flag set.)

10. The CU calls the Declare Change Mode Handler ($DCLCMH) system
service to establish a change-mode-to-supervisor handler. This handler
allows the CU to enter supervisor mode from user mode when it needs
to access write protected data structures. One instance where this is
required is in symbol definition, because CU symbol tables are protected
from write access by user mode.

11. Finally, the CU branches to the first instruction of the main command
processing loop (routine DCL$RESTART or MCR$RESTART).

Command Processing Loop

In the main command processing loop, the CU reads a record from SYS$1N­
PUT and takes whatever action is dictated by the command. The CU can
perform some actions directly. Others require the execution of a separate

801

Process Dynamics

27.6.3

802

Table 27.4 General Actions Performed by a Command Language Interpreter

General CLI Operations

Commands that the CLI can execute
internally (see Table 27.5)

Commands that require external
images

Commands that require internal
processing and an external image

Foreign command definition

Other operations that destroy an
image

Other internal operations

Sample Commands

EXAMINE, SET DEFAULT

COPY, LINK, some SET commands,
some SHOW commands

LOGOUT, MCR, RUN

command_string :=­
$image-file-spec

STOP, EXIT, invoking a command
procedure

Symbol definition

image. Table 27.4 lists the general operations performed by the CLI and in­
dicates those actions that require an external image.

A simplified flow of control through a CLI is pictured in Figure 27.5.
After the CLI reads a record from the input stream and recognizes a com­

mand, it either performs the requested action itself or activates an external
image. DCL or MCR can execute some commands without destroying a
currently executing image. Table 27.5 lists these commands but does not in­
clude special commands used by the MCR indirect command file processor.
Any other command either requires an image to execute lsuch as COPY or
LINK) or directly affects the currently executing image lsuch as STOP).

Image Initiation by a CLI

When the CLI determines that an external image is required, it first performs
some command-specific steps. It then enters a common routine to activate
and call the image. The steps that it takes are nearly identical to the steps
performed by EXE$PROCSTRT, described in Chapter 25:

1. The CLI requests the $RUNDWN system service, which removes any
traces of a previously executing image, if one exists. If the previous image
terminated normally, this request is unnecessary. However, if the user
typed CTRL/Y followed by an external command, the normal image
termination path is bypassed; the CLI must perform this extra step to
ensure that the previous image is eliminated before another is activated.

2. The CLI declares an internal routine as a supervisor mode exit handler
to regain control when the image exits. Recall from Chapter 26 that an
exit handler must be redeclared after each use.

3. To activate the image, the CLI requests the Image Activate ($IMGACT)
system service; described in Chapter 26.

4. If the activation succeeds, the CLI builds a PSL with a current mode

27.6 CLis and Image Processing

CLI initialization code From LOGINOUT
To exception
dispatcher Establish CHMS

handler

DEBUG command
t----------

Generate SS$ DEBUG
signal - I-'

STOP command

Close all files, run down
image, and get next
command

CTRUYAST

Save context of
interrupted image and
get next command

CONTINUE command

If previously executing
image was interrupted
with CTRUY, then
return control

EXIT command

Call$EXIT

Figure 27.5

Run down LOGINOUT
image

Beginning of CLI
command
processing loop

Determine whether
command executes
internally or requires
external image

for internal
routine

Service internal command
and go back to top of
main loop
If CONTINUE, STOP,
EXIT, or DEBUG, go
there

Image Code

Transfer-address

RET

$EXIT system service

Raise access mode to
supervisor
Call supervisor mode
exit handler

for external
image

Portion of CLI that
activates and calls
external images

Run down previous
image
Redeclare supervisor
m6de exit handler
Activate the image
Raise access mode to
user
Set up call frame and
condition handler
Build argument list
Call image

Ca11$EXIT

Supervisor mode exit
handler declared by CLI

Close all open files
Purge input stream of
data records
Run down image
Restore stack to known
state
Go back to top of main
loop

Simplified Control Flow Through a Command
Language Interpreter

803

Process Dynamics

Table 27.5 Commands Handled by CLI Internal Procedures

804

Command

ALLOCATE
ASSIGN 1

ATIACH
CALL 1

CANCEL
CLOSE 1

CONNECT 1

CONTINUE
CREATE/NAME_ TABLE
DEALLOCATE
DEASSIGN
DEBUG
DECK 1

DEFINE
DEFINE/KEY

DELETE/KEY
DELETE/SYMBOL 1

DEPOSIT
DISCONNECT 1

EOD 1

EOJ

EXAMINE
EXIT

GOSUB 1

GOTO
IF/THEN/ELSE/ENDIF I
INQUIRE 1

ON
OPEN 1

READ 1

RECALL 1

RETURN 1

SET CONTROL

SET DEFAULT
SET KEY
SET[NO)ON

Description
Create/modify a symbol
Allocate a device
Create a logical name
Transfer control to another process in job .
Transfer control to a labeled subroutine in a command

procedure
Cancel scheduled wakeups for a process
Close a process-permanent file
Connect the physical terminal to a virtual terminal of

another process
Resume interrupted image
Create a new logical name table
Deallocate a device
Delete a logical name
Invoke the symbolic debugger
Delimit the beginning of an input stream
Create a logical name
Associate a character string and attributes with a

terminal key
Delete a key definition
Delete a symbol definition
Modify a memory location
Disconnect a physical terminal from a virtual terminal
Delimit the end of an input stream
Delimit the end of batch job submitted through card

reader
Examine a memory location
Exit a command procedure

Run down an image after invoking exit handlers
Transfer control to a labeled subroutine in a command

procedure
Transfer control within a command procedure
Conditional command execution
Interactively assign a value to a symbol
Define conditional action
Open a process-permanent file
Read a record into a symbol
Display previously entered commands for possible

reissue
Terminate a GOSUB subroutine procedure
Determine responses to CTRL/C, CTRL/Y,and

CTRL/T
Define default directory string
Change current terminal key definition state
Determine error processing

(continued)

27.6 CLls and Image Processing

Table 27.5 Commands Handled by CLI Internal Procedures (continued)

Command
SET OUTPUT _RATE

SETPROMPT 1

SET PROTECTION
SETSYMBOL 1

SETUIC
SET [NO]VERIFY
SHOW DEFAULT
SHOW KEY
SHOW PROTECTION
SHOW QUOTA
SHOW STATUS
SHOW SYMBOL
SHOW TIME
SHOW TRANSLATION
SPAWN
STOP
WAIT 1

WRITE 1

Description
Set rate at which output is written to a batch job log

file
Change the CLl's prompt string
Define default file protection
Alter scope of a symbol
Change process UIC and default directory string
Determine echoing of command procedure commands
Display default directory string
Display terminal key definitions
Display default file protection
Display current disk file usage
Display status of currently executing image
Display value of symbol(s)
Display current time
Show translation of single logical name
Create a subprocess and transfer control to it
Run down an image bypassing exit handlers
Wait for specified interval to elapse
Write the value of a symbol to a file

1 These commands are available in the DCL CLI but not in the MCR CLI.

of user and pushes it onto the stack. It copies an internal CLI address
onto the stack as a PC. It then executes an REI instruction, entering an
internal routine with its access mode changed to user.

5. It clears the argument pointer (AP) and frame pointer (FP) registers and
calls another internal routine, creating an initial call frame on the user
stack. Because the saved FP in the call frame is zero, it will act as a
terminator for a future user mode call frame chain.

6. It establishes the catch-all condition handler as the handler for this call
frame and as the last chance exception handler.

7. It requests the Address Relocation Fixup ($IMGFIX) system service to
relocate image addresses.

8. The CLI builds an argument list on the user stack to pass to the image
and to any intervening procedures such as SYS$IMGSTA. Figure 27.6
shows the argument list.

9. The CLI calls the image at the first address in the transfer address array,
described in Chapter 26. Unless the image was linked with the ·/NO­
TRACEBACK qualifier, the first transfer address entry is the address of
the Image Startup ($IMGSTA) system service. This service establishes
the traceback exception handler and maps the debugger, if requested.

10. Later, the image terminates itself by issuing a RET instruction or by re­
questing the $EXIT system service. Since the CLI instruction stream

805

Process Dynamics

27.6.4

27.6.5

27.6.5.1

806

I 6

Address of Transfer Address Array

Address of CLI Utility Dispatcher

Address of Image Header

Address of Image File Descriptor

Link Flags from Image Header

CLI Flags

Figure 27.6
Argument List Passed to an Image by EXE$PROCSTRT
or a CLI

requests the $EXIT system service anyway, the termination method cho­
sen by the image is generally irrelevant. However, for an image that might
be called as a procedure from another image, a RET instruction is the pre­
ferred method of image termination.

Normal Image Termination

When an image in a process with a CLI terminates normally, the $EXIT
system service eventually calls the supervisor mode exit handler established
by the CLI before it called the image. DCL's exit handler DCL$EXITHAND
or MCR's exit handler MCR$EXITHAND performs several cleanup steps:

1. If the image exited with an error status in RO, the handler stores the error
in the symbol $STATUS. It then writes the corresponding error message.

2. It calls SYS$RMSRUNDWN, closing any files left open by the image and
the image file itself.

3. It discards any data records in the input stream (records that do not begin
with a dollar sign for DCL or a right angle bracket for MCR) and issues
a warning message.

4. It runs down the terminated image by requesting the $RUNDWN system
service with an argument of user mode.

5. Finally, it transfers control to the beginning of the main command loop
so that the CLI can read and process the next command.

Abnormal Image Termination

A user can interrupt an image by typing CTRL/Y or CTRL/C; an image can
interrupt itself through the pause capability supplied by the VMS Run-Time
Library procedure LIB$PAUSE. Further execution of the image depends on
the sequence of commands issued while the image is interrupted.

CTRL/Y Processing. When CTRL/Y is typed at the terminal, the terminal
driver transfers control to the AST procedure established by the CLI during
its initialization. The AST procedure first reestablishes itself, enabling future
CTRL/Ys to be passed to the same AST procedure. It then checks whether the

27.6.5.2

27.6.5.3

27.6 CLis and Image Processing

process has disabled CTRL/Ys through the SET NOCONTROL= Y command.
If so, the AST procedure returns, dismissing the CTRL/Y. Otherwise, its
actions depend on the access mode interrupted by the CTRL/Y.

If the previous mode was supervisor, the AST procedure actions depend on
whether an ON CONTROL Y command was issued previously, specifying
a particular command to be executed in response. If so, the AST procedure
sets a flag to request that the command be executed and returns. If not, the
CLI is restored to its initial state (with no nesting of indirect levels) and
control transfers to the beginning of the main command loop.

If the previous mode was user, then the CTRL/Y interrupted an image.
If the image was installed with enhanced privileges, the CLI saves those
privileges and resets the process privileges to those in use before the image
was activated. After setting a flag, the CLI returns to command processing.
If, at this point, the user enters the DCL commands ATTACH, CONTINUE,
or SPAWN (or the MCR command CONTINUE), the appropriate action is
taken and the image is not run down. Any other command causes the CLI to
run down a privileged image before executing the command; a nonprivileged
image may continue (see Section 27.6.5.3). Issuing a STOP command for a
nonprivileged image causes the CLI to terminate the image without calling
user mode exit handlers (see Section 27.6.5.7). However, because a privileged
image is run down before the STOP command is processed, its exit handlers
are called.

Pause Capability. The VMS Run-Time Library procedure LIB$PAUSE pro­
vides the capability to interrupt an image under program control. An image
executing in the context of an interactive process can invoke LIB$PAUSE to
interrupt itself and transfer control to the CLI at the beginning of its main
command loop.

State of Interrupted Images. When a nonprivileged image is interrupted,
the image context is saved and control transfers to the beginning of the
CLl's main command loop, allowing the user to execute commands. If the
command is one that the CLI can perform internally (see Table 27.5), the
image context is not destroyed and the image can be continued.

However, execution of any command that requires an external image
destroys the context of the interrupted image. In addition, executing an
indirect command file destroys an interrupted image, even if the commands
in the indirect comman,d file can be performed internally by the CLI.

Six commands that the user can enter when an image has been inter­
rupted by CTRL/Y have special importance. These commands are ATTACH,
CONTINUE, DEBUG, EXIT, SPAWN, and STOP. ATTACH and SPAWN are
described in Section 27.4. The other commands are described in the follow­
ing sections.

807

Process Dynamics

27.6.5.4

27.6.5.5

27.6.5.6

27.6.5.7

27.7

808

CONTINUE Command. If a CONTINUE command is typed and the previous
mode was user, the CLI dismisses the AST and returns control to the image
at the point where it was interrupted.

DEBUG Command. As described in Chapter 26, a DEBUG command causes
the CLI to generate an SS$_DEBUG signal, which is eventually fielded by
the condition handler established by the $IMGACT system service. (If the
image was linked with the /NOTRACEBACK qualifier, the handler was
never established and the image exits.) This handler responds to the SS$_
DEBUG signal by mapping the debugger (if it is not already mapped) and
transferring control to it. This technique enables the debugger to be used,
even if the image was not linked with the /DEBUG qualifier.

EXIT Command. The EXIT command invokes the $EXIT system service
from user mode. Exit handlers are called and the image is run down.

STOP Command. The STOP command performs essentially the same clean­
up operations that occur for a normally terminating image. However, STOP
does its own work and does not call the $EXIT system service. Thus, user
mode exit handlers are not called when an image terminates with a CTRL/Y
STOP sequence.

The STOP command processor first determines whether an image or a
process is being stopped. (The various STOP commands are described in the
VMS DCL Dictionary.) If an image is being stopped, all open files are closed
by calling SYS$RMSRUNDWN. The image itself is then run down through
the $RUNDWN system service. Finally, control transfers to the beginning
of the main command loop.

Note that STOP performs nearly identical operations to the CLI exit
handler called· as a result of an $EXIT system service request or an EXIT
command. The only difference between the EXIT sequences and the STOP
command is that user mode exit handlers are not called first. Thus, in most
cases, the STOP and EXIT commands are interchangeable. One useful aspect
of the STOP command is .that it can eliminate an image containing a user
mode exit handler that is preventing that image from completely going away,
either intentionally or as a result of an error.

LOGOUT OPERATION

LOGINOUT, the image that performs the initialization of an interactive
or batch process, also eventually executes to delete such a process. When
LOGINOUT executes, it performs login, logout, or batch job step initial­
ization. (When a batch process is submitted with more than one command

27. 7 Logout Operation

procedure specified, each procedure is handled as a separate batch job step.)
LOGINOUT determines whether the process is logged in already by the ex­
istence of the PPD region, used to communicate between LOGINOUT and
the CLI.

If the PPD region exists, LOGINOUT's actions depend on whether the
process is interactive or batch. For an interactive process, LOGINOUT per­
forms the following steps:

1. LOGINOUT copies the IFls for SYS$1NPUT and SYS$0UTPUT from
PPD locations into RMS data structures. This restores definitions of
SYS$1NPUT and SYS$0UTPUT made at login.

2. LOGINOUT notifies the security audit subsystem of the logout.
3. If the user specified the /[NO]HANGUP qualifier on the LOGOUT com­

mand, LOGINOUT checks whether it is appropriate to change the ter­
minal characteristics. If the process is interactive and not a subprocess,
and the terminal is local, LOGINOUT reads the current terminal char­
acteristics and resets them, altering the hangup bit.

4. LOGINOUT writes the logout message to the restored SYS$0UTPUT.
(Thus, it cannot be redirected via a logical name definition.) If the user
asked for a full logout message, LOGINOUT requests the $GETJPI sys­
tem service to get information, such as CPU time, number of page faults,
and number of 1/0 requests.

5. It closes SYS$1NPUT and SYS$0UTPUT.
6. Finally, LOGINOUT requests the $EXIT system service from executive

mode. As described in Chapter 26, this limits the search for exit handlers
to the executive mode list, bypassing the supervisor mode exit handler
established by the CLI to prevent process deletion following image exit.

7. After the executive mode exit handler has performed its work, the $EXIT
system service requests the $DELPRC system service, which removes the
logged out process from the system.

If the process is a batch process, LOGINOUT first closes SYS$1NPUT. It
requests the $SNDJBC system service again to determine if there is another
job step. If the batch process was submitted with multiple command pro­
cedures specified, LOGINOUT opens the new SYS$1NPUT, reinitializes the
batch process environment, and reenters the CLI.

If the previous batch job step failed, or the message that is returned from
the job controller indicates that the process should be terminated, LOG­
INOUT terminates it through the following steps:

1. It writes a logout message to the log file.
2. It closes the log file.
3. If the log file is to be printed, then LOGINOUT requests $SNDJBC again,

this time to queue the file to a print queue.

809

Process Dynamics

810

4. It then requests the $EXIT system service from executive mode. After
the executive mode exit handler has performed its work, the $EXIT
system service requests the $DELPRC system service, which removes
the process from the system.

28 Process Deletion

... for dust you are and unto dust you shall return.

Genesis 3:19

When a process is to be deleted, a series of cleanup actions are necessary:

• All traces of the process must be removed from the system .
• All resources in the process's custody must be returned to the system .
• Accounting information must be sent to the job controller .
• Any subprocesses of the process being deleted must be deleted.
• If the process being deleted is a subprocess, all quotas and limits taken

from its parent (owner) process must be returned .
• Finally, if the owner requested notification of the subprocess's deletion

through a termination mailbox, the deletion message must be sent.

A process can delete itself or any other process in the VAXcluster system
that it has the capability to affect. Process deletion occurs in two stages, the
first in the context of the process requesting the deletion, and the second in
the context of the process being deleted.

28.1 PROCESS DELETION IN CONTEXT OF CALLER

Process deletion is implemented by the Delete Process ($DELPRC) system
service. Its initial operation occurs in the context of the process requesting
the system service. This part of the operation performs a simple set of
privilege checks and then queues a kernel mode asynchronous system trap
(AST) that will cause the deletion to continue in the context of the process
being deleted. Chapter 7 describes the queuing and delivery of ASTs.

The $DELPRC system service procedure, EXE$DELPRC in module SYS­
DELPRC, runs in kernel mode. If the requesting process is the process to
be deleted, no arguments are required; otherwise the requesting process can
specify either the process name or the extended process ID (EPID) of the
process to be deleted.

EXE$DELPRC performs the following steps:

1. It immediately invokes EXE$NAMPID, in module SYSPCNTRL, to lo­
cate the process control block (PCB) of the process to be deleted.

EXE$NAMPID determines whether the input arguments specify a tar­
get process on this V AXcluster node or on another node. In the former
case, EXE$NAMPID confirms the existence of the target process and the
ability of the current process to delete it. (Chapter 13 describes the pos­
sible relation between the two processes and the privileges required in
each case.) If the process is identified as one on another V AXcluster node,

811

Process Deletion

812

EXE$NAMPID cannot make those checks; it can only confirm that the
VAXcluster node identification is valid.

If further action is possible, EXE$NAMPID returns at IPL$_SCHED
with the SCHED spinlock held; otherwise it returns at IPL 0. In either
case, it returns an appropriate status.

2. If EXE$NAMPID returns the status SS$_REMOTE_PROC, indicating
that the process may exist on another VAXcluster node, EXE$DEL­
PRC transfers control to the clusterwide process service (CWPSJ routine
CWPS$PCNTRL, in module SYSPCNTRL. CWPS$PCNTRL transmits
the deletion request to the appropriate V AXcluster node and places the
process into a wait state. A cooperating CWPS routine on the other node
processes the request and transmits status back to this node. Through
mechanisms described in Chapter 13, control returns to a CWPS routine
running in the context of the $DELPRC requestor. This routine exits
from the $DELPRC system service, returning the status transmitted from
the other node.

3. If EXE$NAMPID returns any other error status, EXE$DELPRC simply
exits, returning the error status to its requestor.

4. If EXE$NAMPID returns a status indicating that the target process exists
on this node and that the requesting process may affect it, EXE$DELPRC
continues.

5. EXE$DELPRC tests the flag PCB$V _NODELET in PCB$L_STS. VMS uses
this flag to prevent deletion of system processes such as the swapper and
NETACP. If the flag is set, EXE$DELPRC does not delete the process but
instead releases the SCHED spinlock, lowers IPL, and returns the error
status SS$_NODELETE. Use of the PCB$V _NODELET flag is reserved
to Digital. Any other use is completely unsupported.

6. EXE$DELPRC must queue a kernel mode AST to the target process.
It allocates and initializes an AST control block (ACBJ to describe the
kernel AST.

7. It marks the target process for deletion by setting the flag PCB$V _
DELPEN .in PCB$L_STS. If the bit is found already set, deletion is under­
way for the target process. EXE$DELPRC releases the SCHED spinlock,
lowers IPL, deallocates the ACB, and returns the success status SS$_
NORMAL. However, if an executive mode rundown routine is entered
as a result of process deletion and it rerequests the $DELPRC system
service, EXE$DELPRC ignores PCB$V _DELPEN and continues as though
the process were not marked for deletion.

8. EXE$DELPRC sets the target process's PCB$V _RESPEN bit and reports a
resume event for the process. This event is significant only for a process
in scheduling state SUSP or SUSPO and causes such a process to be
resumed. This mechanism is necessary because no ASTs can be delivered
. to a process suspended in kernel mode, including the delete process
kernel mode AST.

28.2 Process Deletion in Context of Process Being Deleted

9. EXE$DELPRC initializes the ACB with the process ID (PID) of the target
process and the address of the kernel mode AST procedure that performs
the actual process deletion, routine DELETE in module SYSDELPRC.

10. It queues the AST to the target process, with a potential boost of PRI$_
RESAVL to its software priority.

Queuing the AST to the target process makes it computable. Eventually,
the scheduler selects that process for execution.

28.2 PROCESS DELETION IN CONTEXT OF PROCESS BEING DELETED

Most of process deletion occurs in the context of the process being deleted.
If the process has no pending special kernel mode or other kernel mode
ASTs, the process deletion AST procedure executes immediately. Note that
a process executing or waiting at IPL 2 or above cannot be deleted because
ASTs cannot be delivered.

28.2.1

Deleting a process in its context means that its address space and process
header are readily accessible. The DELETE AST procedure is therefore able
to request standard system services, such as Delete Virtual Address Space
($DELTVA) and Deassign I/O Channel ($DASSGN). Special cases, such as
the deletion of a process that is outswapped, are avoided by ensuring that
the process is first made resident.

DELETE Kernel Mode AST

The DELETE AST procedure performs the following steps:

1. DELETE first enables resource wait mode by clearing PCB$V _SSRWAIT
in PCB$L_STS.

2. It then searches for per-process or systemwide executive mode rundown
routines to perform image-specific cleanup. Use of executive mode run­
down routines is reserved to Digital. Any other use is strongly discour­
aged by Digital and completely unsupported.

If executive mode rundown is not already active and executive mode
rundown routines exist, DELETE sets a flag indicating that executive
mode rundown is active and queues an executive mode AST to the
process, specifying EXEC_RUNDOWN_AST as the AST address. DE­
LETE then exits, allowing the executive mode AST to be delivered.

EXEC_RUNDOWN_AST, in module SYSDELPRC, invokes the per­
process executive mode rundown routines and the systemwide executive
mode rundown routines if any exist. It then requests the Change to
Kernel Mode ($CMKRNL) system service to resume processing in the
original DELETE code path at step 4, in kernel mode.

3. If no executive mode rundown routines need to be invoked, DELETE
clears the PCB$B_ASTACT bit to indicate that no kernel mode AST
is active. It invokes SCH$NEWLVL to determine the mode of the most

813

Process Deletion

814

important pending AST. Taking these steps enables another kernel mode
AST to interrupt the DELETE AST. Although interruption of an AST by
another at the same mode is usually prohibited, it may be necessary
before process deletion can complete.

4. DELETE checks whether the process has a Files-11 operation in progress.
This must complete before DELETE can proceed. If PCB$B_DPC is non­
zero, indicating this condition, DELETE places the process into a resource
wait state for resource RSN$_ASTWAIT. When the queuing and delivery
of a kernel mode AST ends the resource wait, DELETE repeats its check.
When PCB$B_DPC is zero, the DELETE procedure can continue. Chap­
ter 7 documents the field PCB$B_DPC and its use in stalling process
deletion.

5. If per-process or systemwide user-specified kernel mode rundown rou­
tines exist, they are invoked to perform image-specific cleanup.

6. DELETE then reinitializes the Pl cells that control dispatching to privi­
leged shareable images and user-specified rundown routines.

7. It calls SYS$RMSRUNDWN to perform Record Management Services
(RMS) rundown. The service routine, RMS$RMSRUNDWN in module
[RMS]RMSORNDWN, aborts RMS 1/0 for the process and transfers con­
trol to the routine RM$LAST _CHANCE, in module [RMS]RMSOLSTCH,
to perform the actual rundown.

RM$LAST _CHANCE scans the process's open disk files and detaches
any file that uses.global buffers from the global buffer pool. No further
rundown is performed on files that are journaled.

For a sequential file, RM$LAST _CHANCE writes the current buffer
operated on by the process to disk if the buffer has been modified. This
attempt to preserve the last data records written to the file may help
a subsequent attempt to analyze process action prior to deletion. This
feature is intended for problem analysis rather than for minimizing data
loss.

RM$LAST _CHANCE deaccesses any file open for exclusive access to
update the RMS record attributes in its file header, particularly the end­
of-file pointer.

During RMS rundown no .attempt is made to write all modified data
buffers to disk. User applications not using journaling must be able to
handle potential data loss resulting from forced process deletion.

8. If the process has any subprocesses (if its PCB$W _PRCCNT field is
nonzero), they must be deleted before deletion of the owner process can
continue. Section 28.2.2 contains an example of deleting a process with
subprocesses.

The following steps are performed to delete the subprocesses:

a. DELETE scans the PCB vector for all PCBs whose PCB$1-0WNER

28.2 Process Deletion in Context of Process Being Deleted

field specifies the PID of the process being deleted. DELETE requests
the $DELPRC system seririce to delete each of these subprocesses.

b. DELETE again checks the subprocess count PCB$W_PRCCNT. Hit
is greater than zero, the process is placed into a resource wait state
(MWAIT) for resource RSN$_ASTWAIT. This parent process becomes
computable again when the RETQUOTA special kernel mode AST
returns CPU time quota from one of the subprocesses (see step 17)
and control returns to DELETE. DELETE repeats this step until the
subprocess count is zero. At that point, all subprocesses have been
deleted and the DELETE procedure can continue.

9. DELETE requests the $RUNDWN system service to run down the pro­
cess from kernel mode (see Chapter 26).

10. For each section still mapped to the process virtual address space, DE­
LETE requests the $DELTVA system service to delete those virtual pages.
The process section table entry is checked before the deletion. H the
SEC$V _INPROG flag is set in the process section table entry, the sec­
tion was being created when the delete process AST was delivered. In
this case, DELETE invokes MMG$DECSECREFL to correct the section
reference count.

H any pages are actually deleted, the $RUNDWN system service is
requested once again to complete the deassignment of open channels.

11. The channef~ontrol blocks (CCBs) are scanned to ensure that all chan­
nels have been deassigned. H any is still assigned, DELETE generates a
fatal FILCNTNONZ bugcheck.

12. H the current process is not a subprocess (if the PCB$LOWNER field is
zero) DELETE di~mounts each jobwide mounted volume.

If the current process is a subprocess, DELE~ reassigns any volumes
allocated by the subprocess to the owner process. DELETE stores the
owner process's PID in UCB$L_PID and sets the UCB$V _DEADMO bit
to ensure that the volume will be deallocated when it is eventually
dismounted by the owner process.

13. DELETE ensilres that all outstanding process 1/0 requests have com­
pleted. It compares PCB$W _DIOLM to PCB$W _DIOCNT and PCB$W _
BIOLM to PCB$W _BIOCNT. The difference between the first two fields
is the number Of outstanding direct 1/0 requests; the difference between
the latter twO i.S the number of outstanding buffered 1/0 requests.

14. H the current process is not a subprocess, DELETE decrements otie of two
system proc~~s counts. H the process is interactive (if PCB$V _INTER
in PCB$LSTs is set), DELETE decrements the number of interactive
jobs, SYS$GW.:.:.11JOBCNT. H the process is a batch job (if PCB$V _BATCH
in PCB$LSTS is set), DELETE decrements the number of batch jobs,
SYS$GW _BJOBCNT.

815

Process Deletion

816

15. If the current process is not a subprocess, DELETE deletes the jobwide
logical name table.

16. DELETE resets the process name string in the PCB by zeroing the count
byte.

17. If the current process is a subprocess, any remaining deductible quotas
must be returned to the owner process. The following steps are taken:

a. An 1/0 request packet (IRP) is allocated for use as an ACB.
b. The address of the return quota special kernel mode AST (routine

RETQUOTA in module SYSDELPRC) and the PID of the owner
process are stored in the ACB.

c. The only quota that must be returned to the owner process, unused
CPU time, is stored in the portion of the IRP immediately following
the ACB. All other quotas are either pooled or nondeductible (see
Chapter 25).

d. Finally, the special kernel mode AST is queued to the owner process,
giving it a priority boost of PRl$_RESAVL.

18. If the current process is a subprocess and the owner process requested
a termination mailbox message, a termination message is constructed
on the stack. DELETE requests the Queue 1/0 Request ($QIO) system
service to send the termination message to the mailbox unit specified
by PCB$W_TMBU. The message contents are listed in Table 28.1. The
message size is specified by ACC$C_ TERMLEN.

19. EXE$PRCDELMSG, in module ACCOUNT, is invoked to send an ac­
counting message to the job controller. It sends the message unless ac­
counting is inhibited for this process (the NOACNT flag was specified
at process creation) or process termination accounting is disabled for the
entire system. The contents of this message are used to fill in all rel­
evant fields of the accounting identification and resource packets. The
data structures used by the Accounting Utility are described in the VMS
Accounting Utility Manual.

20. After IPL is raised to 2 to prevent AST delivery, most of the remainder
of Pl space is deleted. However, the Pl pages permanently locked into
the working set list, the kernel stack, for example, are not deleted. Some
of Pl space, including the user stack, may have already been deleted as
a result of a previous image reset call.

21. DELETE releases the process page table pages to the head of the free page
list and deallocates the associated page file space. It acquires the MMG
and SCHED spinlocks to synchronize access to the memory management
and scheduler databases.

At this point, DELETE executes a SVPCTX instruction to remove the
process from execution. Executing this instruction switches stacks; DE­
LETE is now running on the interrupt stack.

2&2 Process Deletion in Context of Process Being Deleted

Table 28.1 Contents of the Termination Mailbox
Message Sent to the Owner Process

Field in Message Block

Message type
Final exit status
Process ID
Job ID
Logout time
Account name
User name
CPU time
Number of page faults
Peak paging file usage
Peak working set· size
Buffered 1/0 count
Direct 1/0 count
Count of mounted volumes
Login time
EPID of owner

Source of Information
MSG$_DELPROC 1

CTL$GL_FINALSTS
PCB$LEPID
Not currently used
EXE$GQ_SYSTIME
CTL$T _ACCOUNT
CTL$T _USERNAME
PHD$LCPUTIM
PHD$LPAGEFLTS
Not currently used
CTL$GL_ WSPEAK
PHD$L_BIOCNT
PHD$LDIOCNT
CTL$GL_ VOLUMES
CTL$GQ_LOGIN
PCB$LEOWNER

1 MSG$_DELPROC is a constant, indicating that this is
a process termination message.

22. If the process capability mask indicates explicit affinity to a particular
CPU, DELETE decrements that CPU's explicit affinity count.

23. DELETE stores the address of the null PCB in the per-CPU database field
CPU$L_CURPCB and in the PCB vector slot formerly occupied by the
process being deleted, thus freeing the slot for future use.

24. The pages in process space that were permanently locked into the work­
ing set, for example, the kernel stack and the Pl pointer page, are deleted
and placed at the head of the free page list. The process header pages that
are a permanent part of the working set will be deleted by the swapper
when the process header is deleted.

25. Each remaining ACB is removed from the PCB queue and deallocated to
nonpaged pool unless its ACB$V _NODELETE bit is set. If the ACB$V _
NODELETE bit is set, the ACB is assumed to be part of another data
structure whose deletion is not desirable.

26. DELETE removes any pending CWPS structures from the PCB$Q_CWPS­
SRV _QUEUE queue of the process being deleted. It inserts them on the
swapper's PCB$Q_CWPSSRV _QUEUE queue.

These structures cannot be deleted until the stalled fork thread that
expects to access them is resumed by the arrival of a response from
another VAXcluster member. When the response arrives, the fork thread

817

Process Deletion

28.2.2

818

determines that the requestor process was deleted and deallocates the
structures.

27. If the process had an extended rights list, it is deallocated to nonpaged
pool.

28. The process count field in the job information block (JIB) is decremented
in an interlocked manner. If the process being deleted is a detached
process (the PID of the process being deleted is equal to the master PID
field in the JIB), the JIB is deallocated.

29. If the process being deleted is a subprocess, its owner's subprocess count
(PCB$W _PRCCNT) is decremented. If the owner process is also being
deleted, the owner is currently in a wait state, waiting for the contents of
this field to become zero. DELETE makes the owner process computable
so that it can check the value of PCB$W _PRCCNT. If the value is now
zero, the owner can continue with its own deletion.

30. The PCB is deallocated to nonpaged pool.
31. The number of processes in the balance set, SWP$GW_BALCNT, is

decremented.
32. The routine SCH$SWPWAKE is invoked to awaken the swapper because

there is a process header to be removed from the balance slot area (see
Chapter 18).

33. The scheduler's process count, SCH$GW_PROCCNT, is decremented.
34. Finally, the DELETE AST procedure releases the MMG spinlock and

exits by jumping to the scheduler at entry SCH$SCHED, holding the
SCHED spinlock. The scheduler selects the next process for execution
and releases the SCHED spinlock (see Chapter 12).

Deletion of a Process That Owns Subprocesses

When a process owns subprocesses, the deletion of the owner process must
be delayed until all its subprocesses are deleted. The prior deletion of subpro­
cesses ensures that any quotas taken from the owner process are returned. In
early versions of VMS prior to the existence of the JIB and its jobwide pooled
quotas (see Chapter 25), several quotas were charged against a process when it
created a subprocess. At deletion of the subprocess, the subprocess returned
those quotas. All the quotas treated in this way are now pooled except for
CPU time limit, which is the only quota returned at subprocess deletion.

During the execution of the DELETE AST procedure, a check is made
to see if the process being deleted owns any subprocesses. If it does, these
processes must be located and deleted.

As Figure 28.1 shows, there are no forward pointers in the JIB or PCB
of an owner process to indicate which subprocesses it has created. The
only indication that a process has created subprocesses is a nonzero value
in PCB$W _PRCCNT. The process's subprocesses can only be located by

28.2.3

28.2 Process Deletion in Context of Process Being Deleted

Name OTG

PIO 10035

Name BERT

PIO 10033 PR CC NT 2

PRCCNi 0
OWNER 0

OWNER 10035

Figure 28.1
Sample Job to Illustrate Process Deletion with
Subprocesses

Name ERNIE

PIO 10031

PRCCNi .::_ 0

OWNER 10035

scanning all the PCBs in the system until each PCB is located whose owner
field contains the PID of interest.

Example of Process Deletion with Subprocesses

The details of this situation can best be illustrated with an example. Fig­
ure 28.1 shows a process whose process ID equals 10035 and whose name is
OTC. The process OTC owns two subprocesses: the first has a process ID
of 10033 and the name BERT; the second has a process ID of 10031 and the
name ERNIE.

Neither of these subprocesses owns any further subprocesses. The follow­
ing steps occur as a result of the process OTC being deleted. Assume that
the priorities are such that the processes execute in the order OTC, BERT,
and ERNIE.

1. The deletion of process OTC proceeds normally until it is determined
that this process has created two subprocesses. The PCB vector is scanned
until the two PCBs containing 10035 in the PCB$LOWNER field are
located. These two processes are marked for deletion. This means that the
DELETE kernel mode AST is queued to the two subprocesses and they
are made computable. Process OTC. is placed into a wait state because
its count of owned subprocesses is nonzero (actually 2, at this point).

2. The previous assumption about priorities implies that process BERT ex­
ecutes next. Its deletion proceeds past the point where process OTC
stopped because it owns no subprocesses. However, the next step in the
DELETE AST procedure determines that process BERT is a subprocess
and must return quotas to its owner. The return of quotas is accom­
plished by queuing a special kernel mode AST (RETQUOTA) to process
OTC, changing its state back to computable. When BERT has finished
with all actions that require the presence of the JIB, it decrements the

819

Process Deletion

820

process count in OTC's PCB$W _PRCCNT and declares a resource avail­
ability event, which awakens OTG. However, the count of owned sub­
processes is still not zero (down to 1 now), so process OTG is put back
into the resource wait state. Process BERT continues to execute until it
disappears entirely from the system.

3. Process ERNIE now begins execution of the DELETE AST procedure.
Again, the check for owned subprocesses indicates none, but the check
for being a subprocess is positive. A RETQUOTA AST is again queued to
process OTC and the count of owned subprocesses decremented (finally
to zero).

4. Now process OTC resumes execution as a result of the delivery of the
RETQUOTA AST and subsequently finds that the count of owned sub­
processes has gone to zero. In fact, process OTC continues to be deleted
at this point, even though process ERNIE has not been entirely deleted.
This overlapping is simply a result of the timing in this example. The
process ERNIE is well on the way to being deleted and is no longer of any
concern to process OTC. The important point is that the quotas given
to process ERNIE have been returned to OTC. Once OTG's PCB$W_
PRCCNT is equal to zero, it is irrelevant which process executes next.
Because ERNIE and BERT have finished work that depended on the pres­
ence of the JIB, OTC and the JIB can be deleted totally.

In the general case of a series of subprocesses arranged in a tree structure,
the deletion of some arbitrary process requires that each subprocess further
down in the tree must execute the process deletion step, which returns quota
to its owner.

PART VIII / Life of the System

29 The Modular Executive

Non sunt multiplicanda entia praeter necessitatem.
[Entities should not be multiplied beyond necessity.]

William of Occam

The VMS executive consists of a base image and a number of separately
loadable images. Some of these images are loaded on all systems, while others
support features unique to particular systein configurations.

The base image connects requests for services with the routines that pro­
vide the services. That is, the base image consists mostly of very small
routines whose addresses are fixed and that dispatch to service-providing
routines in separately loadable images. It also contains data and pointers to
data in loadable images.

This chapter describes the organization of the base image and various types
of loadable image, and the connections among them. It concentrates on the
base image and loadable executive images, which are new to VMS Version 5.
It describes more briefly the other types of loadable image, such as the CPU­
specific code supplied in the SYSLOAxxx .EXE images.

29.1 OVERVIEW

The VMS executive has always been partitioned into multiple images. As
VMS has supported more features and CPU types, the number of images
has grown. In previous versions of VMS, much of the executive was in
SYS.EXE, the system image. Features not common to all system configu­
rations were supported in separate images, such as device drivers and the
SYSLOAxxx .EXE images.

In VMS Version 5, the executive has been further partitioned. There are
two major reasons for this change: to simplify subsequent changes to the ex­
ecutive, and to reduce the number of system-dependent images that require
relinking when some part of the executive changes. Changing SYS.EXE for­
merly meant applying complex patches to it or rebuilding it. Rebuilding has
had the undesirable side effect of requiring a subsequent relinking of all im­
ages linked against SYS.STB, both VMS- and user-supplied.

The concept underlying the reorganized executive is similar to that of
a shareable image, which contains transfer vectors and routines. A transfer
vector is a pointer or a very small number of instructions, placed at a locati?n
that does not change when the image containihg it is modified, recompiled,
or relinked. It serves as an indirect address, or transfer, to code or data whose

823

The Modular Executive

824

location may change. A transfer vector's unchanging location provides a
stable target for references from external code and frees such code from the
need to relink whenever the destination of the transfer vector moves.

The system image has been split into a base image, named SYS.EXE, and a
number of other images called loadable executive images. Unlike shareable
image transfer vectors, executive transfer vectors are collected in an image
of their own, the base image. The routines themselves are in other images,
mostly in loadable executive images. The base image also contains pointers
to systemwide data in loadable executive images. Each loadable executive
image contains related routines and data. For example, the loadable executive
image LOGICALNAMES.EXE contains all the routines and much of the
data related to support for logical names. Section 29.3.1 describes extensions
to the implementation of shareable images required for loadable executive
images.

The reorganization of the executive makes it less likely that SYS.EXE will
need to be rebuilt when corrections or enhancements are made to loadable
executive images. Under VMS Version 5, it is possible to replace a loadable
executive image with no impact on SYS.EXE. The replacement image might
be a corrected or enhanced one or it might be an alternative version. For ex­
ample, there are three versions of the system synchronization image. During
system initialization, the version appropriate to the configuration is selected
and loaded.

The reorganization of the executive also simplifies system initialization.
Initialization code specific to a feature is now part of the appropriate load­
able executive image. Furthermore, initialization routines can be invoked
multiple times at different phases of system initialization.

As part of the reorganization, all executive images have been moved from
the directory SYS$SYSTEM to the directory SYS$LOADABLE_IMAGES.

Several problems were addressed to reorganize the system image:

• Creating address space for the executive with appropriate pageability and
protection characteristics

• Developing a mechanism to load executive images
• Enabling one loadable executive image to call routines or access data in

another
• Connecting the transfer vectors in the base image to routines and data in

loaded executive images
• Maintaining the position independence of a loadable executive image that

contains .ADDRESS or .ASCID directives
• Controlling executive version identification and compatibility
• Allocating and deallocating system address space

The solutions to these problems are described throughout the rest of this
chapter.

29.2 SYS.EXE, the Base Image

SYS$SO_VECTOR_BASE :: System Service Vectors 80000000

t-----------------
SYS$SO_VECTOR_LAST_USED :: Expansion Space

SYS$SO_VECTOR_END :: End of System Service Vectors

EXE$VECTOR_BASE :: Executive Transfer Vectors 80002000

t-----------------
EXE$VECTOR_LAST_USED :: Expansion Space

EXE$VECTOR_END :: End of Vector Area

MMG$A_NPAG_DATA :: System Data Area 80004000

t- - - - - - - - - - - -- - - - - -
EXE$NPAG_DATA_LAST_USED :: Expansion Space

MMG$A_NPAG_DATA_END :: End of System Data Area

MMG$A_SYSPARAM :: SYSGEN Parameters Area 80008000

MMG$A_SYSPARAM_END :: End of SYSGEN Parameters area

MMG$A_BOOPARAM :: Boot Parameters Area 8000AOOO

MMG$A_BOOPARAM_END :: End of Boot Parameters Area

REORGANIZED_EXEC_END :: Miscellaneous Vectors Area 8000A800

MMG$A_SYS_END :: End of Base Image
8000AE4D

Figure 29.1
Layout of the Base Executive Image

29.2 SYS.EXE, THE BASE IMAGE

The base image, SYS.EXE, is the only executive image linked to a fixed
address. Its base address is 8000000016, the lowest address in system space.
It contains almost no executable code other than instructions in transfer
vectors.

The base image is the pathway to routines and data in loadable executive
images and in previously existing loaded images such as SYSLOAxxx .EXE.
The base image symbol table, SYS.STE, is linked with all images that need
resolutions for references to its global symbols. For example, each loadable
executive image is linked with SYS.STB to resolve references to other ex­
ecutive images' transfer vectors, to data and parameters in SYS.EXE, and to
transfer vectors for routines in loaded images such as SYSLOAxxx .EXE.

SYS.EXE provides a fixed address space so that the addresses of transfer
vectors and data cells within it will be constant. Having fixed values for
these addresses makes it unnecessary to relink an image that references
them. Address space is reserved for expansion so that transfer vectors and
data cells can be added without affecting the addresses of existing ones.

Figure 29.1 shows the layout of SYS.EXE, as defined by the module EXEC_
LAYOUT. It contains the following areas:

825

The Modular Executive

29.2.1

826

• Transfer vectors to system service procedures
• Transfer vectors to routines in loadable executive images
• Commonly accessed data and pointers to data structures in executive

images
• SYSGEN parameters area
• Boot parameters area
• Transfer vectors to routines in loaded images such as SYSLOAxxx .EXE

These areas are described separately in the sections that follow.

System Service Vectors

System service vectors occupy the lowest pages of system space. Their ad­
dresses are constant for all versions of VMS so that existing user programs
will not have to be relinked for a new version of VMS. A system service vec­
tor contains a minimal procedure that executes in the mode of the caller and
that dispatches to the actual procedures implementing the service request.
The actual procedures are within loadable executive images and typically
execute in an inner access mode.

A typical system service vector is eight bytes and contains the following:

SYS$service_name::
.WORD entry_mask
CHMx I"#service_specific_code
RET
.BYTE 0

An image requests a particular system service by executing a CALLx in­
struction to SYS$service_name, the global label at its system service vec­
tor. The linker resolves system service vector names using global defini­
tions from a module in the library SYS$LIBRARY:STARLET.OLB, which it
searches by default.

The change mode exception service routines use the operand of the CHMx

instruction to dispatch to the requested service. The operand serves as an
index into several tables, one of which contains the addresses of the actual
system service procedures.

In earlier versions of VMS, each system service vector was initialized with
a register save mask and a CHMx instruction; a change mode operand number
was assigned at assembly time. In VMS Version 5, each system service
vector is initialized to JMP <O#EXE$LOAD_ERROR at assembly time. EXE$LOAD_
ERROR contains a HALT instruction.

Change mode operand numbers are not assigned until executive image
load time and can vary with the order in which system services are loaded,
possibly from one system boot to another. This means, for example, that a
user program using a hard-coded CHMx instruction rather than a CALLx to a
system service vector is very unlikely to work correctly.

29.2.2

29.2 SYS.EXE, the Base Image

As an executive image is loaded, each system service in it that executes in
an inner access mode is assigned a change mode operand number. Its system
service vector is reinitialized with the appropriate register save mask and
change mode instruction. The table entries selected by that change mode
operand number are reinitialized with values appropriate to that system
service. The system service vector for a mode of caller service is reinitialized
with the appropriate register save mask and a JMP instruction that transfers
control to the service procedure.

The address space reserved for system service vectors is nonpageable.
This address space also contains the code used for testing the completion
of synchronous services such as Queue 1/0 Request and Wait ($QIOW) and
Enqueue Lock Request and Wait ($ENQW). It is defined in the module EXEC_
LAYOUT and by the macro $SYSVECTORDEF.

Chapter 6 contains further information about system ser.vice vectors,
change mode dispatching, and synchronous system services. Section 29.5.4.3
describes the initialization of system service vectors.

Executive Transfer Vectors

An executive transfer vector is similar to a system service vector or a transfer
vector in a shareable image. Unlike a system service vector, an executive
transfer vector contains no instruction to change access mode. These vectors
are used by routines already running in the appropriate mode, typically
kernel.

Each executive transfer vector contains a JMP instruction whose destina­
tion is in a loadable executive image. The address of a transfer vector is
independent of the address of its destination and independent of which load­
able executive image contains the destination.

An executive transfer vector is eight bytes long. For a called procedure, it
takes the form

exec_entry_point::
.WORD entry-mask
JMP O#routine

For a routine entered through a JSB instruction, it takes the form

exec_entry_point::
JMP O#routine
NOP
NOP

An image invokes a particular executive routine by executing a CALLx or
JSB instruction to exec_entry_point, the global label of the routine's execu­
tive transfer vector. The image must be linked with SYS.STB for the linker
to resolve the global executive transfer vector name.

Executive transfer vectors are defined in module SYSTEM_ROUTINES,
through its macros DEFINE_ROUTINE_JSB and DEFINE_ROUTINE_CALL.

827

The Modular Executive

29.2.3

828

Example 2.9.1
Definition of Executive Transfer Vectors

Transfer vectors from SYSTEM_ROUTINES
DEFINE_ROUTINE_CALL -

RMS$RESTART_THREAD,­
VERSION_MASK=<VOLATILE,FILES_VOLUMES>

.ALIGN QUAD
RMS$RESTART_THREAD == .
. WORD 0
JSB O#EXE$LOAD_ERROR

DEFINE_ROUTINE_JSB -
EXE$ALLOCIRP,­
VERSION_MASK=<MEMORY_MANAGEMENT>

.ALIGN QUAD
EXE$ALLOCIRP == .
JSB O#EXE$LOAD_ERROR

Their dispatch instructions are initialized to JSB ©#EXE$LOAD_ERROR at as­
sembly time. A transfer vector for a called routine is initialized to begin
with a register save mask. Example 29.1 shows two such macro invocations
and the code they generate. Section 29.6 describes the use of the VERSION_
MASK keyword.

When a loadable executive image is mapped and loaded into system space,
its base image transfer vectors are reinitialized to point to their corresponding
routines in the loaded executive image. For a called procedure, the entry
mask in the transfer vector is also initialized. See Section 29.4.1 for more
information on the initialization of executive transfer vectors.

The address space used for executive transfer vectors is nonpageable.

System Data Area

The system data area contains some, but not all, of the data formerly in
SYS.EXE. Its cells are accessed by multiple loadable executive images and
by other images linked against SYS.STB. Data cells accessed by only a limited
set of routines typically reside in the same loadable executive image as the
routines. A data cell in one loadable image used by another must have a
pointer in the base image. If the data cell is small, the cell itself resides in
the base image Ito save on overhead).

A data cell or structure in this area must be of fixed size. A structure
whose size may change from version to version, such as the system disk
unit control block jUCB), is placed in a loadable executive image, where its
variable size cannot affect fixed addresses in the base image.

Some locations in this area are pointers to data in loaded executive images.
Such a location is modified to contain the loaded address of the data. Its
global symbol has a type of AR to indicate that it contains the address

29.2 SYS.EXE, the Base Image

IO_ROUTINE.EXE SYS.EXE SYSTEM_PRIMITIVES.EXE

,__________,i---t: ._____I _;--~:I._____~
Extract from IO_ROUTINES.EXE

$$SYSTEM_PRIM_DATADEF
;Get address of SYSTEM_PRIMITIVES data area

MOVL G'EXE$AR_SYSTEM_PRIMITIVES_DATA,R2 1-----.­
;Get IRP from lookaside list

$REMQHI IOC_GQ_IRPIQ(R2),R2
BVC 5$;If VS empty list

;Allocate 1/0 request packet
JSB G'EXE$ALLOCIRP

5$:

Extract from SYS. EXE

- - - - - - EXE$AR_SYSTEM PRIMITIVES DATA::
.ADDRESS SYSTEM_PRIMITIVES + x

- - - - - - EXE$ALLOCIRP: :
JMP @#SYSTEM_PRIMITIVES + y

Extract from SYSTEM_PRIMITIVES.EXE

- - - - - - SYSTEM_PRIMITIVES + x :

SYSTEM PRIMITIVES+ x + IOC_GQ_IRPIQ:
IOC$GQ_IRPIQ ::

- - - - - - SYSTEM_PRIMITIVES + y:

Figure 29.2

EXE$ALLOCIRP ::

$REMQHI IOC$GQ_IRPIQ,R2

RSB

An Example of Loadable Executive Image Address
Resolution

of a record or a structure. For example, LNM$AR_SYSTEM_DIRECTORY
contains the address of the logical name table system directory, once part of
SYS.EXE, now part of LOGICAL_NAMES.EXE.

In some cases, a pointer contains the address of a block of moved data
cells whose layout is defined by a macro. For example, EXE$AR_SYSTEM_
PRIMITIVES_DATA contains the address of data relating to the nonpaged
pool lookaside lists. The macro $$SYSTEM_PRIM_DATADEF defines sym­
bols for the fields in this area, such as IOC_GQ_IRPIQ, the 1/0 request
packet lookaside listhead. Figure 29 .2 shows an example of a reference using
EXE$AR_SYSTEM_PRIMITIVES_DATA and symbolic offsets.

829

The Modular Executive

29.2.4

830

Example 29.2
Definition of Executive Data Cells

SYSTEM_PRIMITIVES private data area
DEFINE_DATA_CELL -

EXE$AR_SYSTEM_PRIMITIVES_DATA,­
VERSION_MASK=<MEMORY_MANAGEMENT>
.LONG 0

Head of executive loaded image data block list
DEFINE_DATA_CELL -

LDR$GQ_IMAGE_LIST,­
VERSION_MASK•<MEMORY_MANAGEMENT>
.LONG .,.-4

The local macro DEFINE_DATA_CELL is invoked for each data cell or
structure, along with a VAX MACRO directive to allocate and possibly
initialize storage for the cell or structure. Example 29 .2 shows two examples
of the use of this macro. Section 29.6 describes the use of the VERSION_
MASK keyword.

When a loadable executive image is mapped and loaded into system space,
the base image pointers to its universal symbols are reinitialized to point to
their corresponding data structures in the loaded executive image. Like the
address of a transfer vector, the location of a pointer to data in a loaded
executive image is fixed, while the data to which it points can change
location or even executive image.

The system data area is defined in module SYSTEM_DATA_CELLS and is
nonpageable.

Section 29.3.2 describes other criteria for locating a piece of system data
in the base image or in a particular loadable executive image.

SYSGEN Parameters Area

This area contains all the SYSGEN parameters. To coordinate with SYS­
BOOT, which copies the current parameters to this area during system boot,
all SYSGEN parameters are virtually contiguous and in an area that can be
extended to add new parameters.

SYSGEN parameters are kept in the base image rather than in a loadable
executive image so that they can be referenced directly. There is no one
loadable executive image that references them most often; they are widely
referenced from most loadable executive images and other images linked
with SYS.STB.

The SYSGEN parameters area is defined in module SYSPARAM and is
nonpageable.

29.2.5

29.2.6

29.3 Loadable Executive Images

Boot Parameters Area

The boot parameters area passes information from SYSBOOT to later stages
of system initialization. It is defined in module BOOPARAM and is non­
pageable. Chapter 30 provides further information on its contents.

Miscellaneous Vectors Area

The miscellaneous vectors area consists primarily of transfer vectors to
images that are not loadable executive images, namely SYSLOAxxx .EXE,
SCSLOA.EXE, and CLUSTRLOA.EXE. Each set of transfer vectors has its
own expansion space. This area includes the routines that connect the trans­
fer vectors to their loaded routines and data. Section 29.7.1 contains more
information about the form of these transfer vectors.

The area is nonpageable and is primarily defined in the modules SYS­
LOAVEC, SCSVEC, and CLUSTRVEC, with some contributions from SYS­
TEM_ROUTINES_MASK and LINKVEC.

29.3 LOADABLE EXECUTIVE IMAGES

29.3.1

The base image contains almost no executable code. Its system service vec­
tors, executive transfer vectors, and miscellaneous area vectors dispatch to
routines in separately loadable images. Most of these images are loadable
executive images.

A loadable executive image is a type of shareable image. Each loadable
executive image consists of data and routines related to each other and of ini­
tialization code specific to the image's functions and features. In most cases,
to simplify maintenance and enhancement, routines supporting related func­
tions and features are collected into an image. In some cases, routines used
early in system initialization are combined into a loadable executive image,
for example, EXEC_INIT.EXE and PRIMITIVE_IO.EXE. Table 29.1 lists the
loadable executive images and summarizes their contents.

Structure of a Loadable Executive Image

A loadable executive image is implemented as a form of shareable image.
Like any other shareable image, it has a global symbol table, image section
descriptors, and address fump section. The internal structure of a loadable
executive image is more constrained than that of a typical shareable im­
age. Like a nonbased shareable image, a loadable executive image must be
position-independent because its system space address range is not deter­
mined until load time.

A loadable executive image is allowed at most one image section of each
of the following types and no others:

• Nonpageable read-only, for code, read-only data, and patches
• Nonpageable read/write, for read/write data and for .ADDRESS and

.ASCID directives

831

The Modular Executive

Table 29.1 Loadable Executive Images

Image Name Description

PART A-IMAGES LOADED BY SYSBOOT.EXE

ERRORLOG.EXE
EXEC_INIT.EXE
PRIMITIVE_IO.EXE
SYSTEM_DEBUG.EXE
SYSTEM_PRIMITIVES.EXE
One of the following:
SYSTEM_

SYNCHRONIZATION.EXE
SYSTEM..SYNCHRONIZATION_

MIN.EXE
SYSTEM..SYNCHRONIZATION_

UNI.EXE

Error logging routines and system services
Routines required for executive initialization
Primitive console 1/0 and file system routines
XDELTA (optional)
Basic system support routines

Symmetric multiprocessing (SMPI synchronization
routines with debug support

SMP synchronization routines

Uniprocessor synchronization routines

CPULOA.EXE

PART B-IMAGES LOADED BY EXEC_INIT.EXE IEXE$INIT)

Tables of CPU data
EVENT _FLAGS_AND_ASTS.EXE
EXCEPTION.EXE

IMAGE_MANAGEMENT.EXE
IO_ROUTINES.EXE
LMF$GROUP _TABLE.EXE
LOCKING.EXE
LOGICAL_NAMES.EXE
MESSAGE_ROUTINES.EXE
PAGE_MANAGEMENT.EXE

PROCESS_MANAGEMENT.EXE

SECURITY.EXE
SYSDEVICE.EXE
SYSGETSYI.EXE
SYSLICENSE.EXE
WORKING_SET _

MANAGEMENT.EXE

Event flag and AST routines and system services
Exception service routines and system services, bugcheck

routines
Image activation services and routines
1/0-related routines and system services
Tables of license data
Lock management routines and system services
Logical name routines and system services
Message routines and system services
Page fault service routine, related routines, virtual address

space system services
Scheduling routines and process creation and control

system services
Security-related routines and system services
Pseudo device drivers and mailbox system services
$GETSYI system service
$LICENSE system service
Swapper and supporting routines, related system services

PART C-IMAGES LOADED BY SYSINIT.EXE

DDIF$RMS_EXTENSION.EXE Support for Digital Document Interchange Format (DDIFI
file operations

RMS.EXE Record Management Services (RMS)
RECOVERY_UNIT_SERVICES.EXE
SYSMSG.EXE
SYSLDR_DYN.EXE

832

RMS recovery services
System message file
Dynamic loading of loadable executive images

2.9.3.2.

29.3 Loadable Executive Images

• Pageable read-only, for code, read-only data, and patches
• Pageable read/write, for read/write data and for .ADDRESS and .ASCID

directives
• Initialization routine section
• Address fixup section

The first five of these image sections are defined as program sections
jPSECTs) within the modules of a loadable executive image, and the last
is created by the linker. The address fixup section jsee Chapter 26) contains
information needed to transform .ADDRESS and .ASCID references to loca­
tions within the loaded image.

The first four sections allow for the combinations of pageability and pro­
tection required for executive code and data. Because they have different
virtual memory characteristics, each must begin at a page boundary. On av­
erage, this results in half a page unused at the end of each image section.
Constraining the number of image sections limits the potential unused space
to an average of two pages per image. jThe initialization routine and address
fixup sections are deleted during system initialization.) It also simplifies the
loading mechanism.

Most modules invoke the DECLARE_PSECT macro to define standard
loadable executive PSECT names and attributes. Each image is built with a
linker options file that collects and orders the image sections. Table 29 .2 lists
the clusters and PSECTs that make up a typical loadable executive image.
It shows some of the modules that make contributions to the PSECTs. This
information is extracted from the image map of IO_ROUTINES.EXE.

In VMS Version 5, several additions and extensions were made to the
shareable image mechanism to support the reorganization of the executive.

A new type of universal symbol, a vectored universal symbol, has two
values: the relative address of the symbol in the loadable executive image,
and the absolute value of the symbol's transfer vector in the base image.
These are described by new global symbol table records.

The linker VECTOR option specifies that all universal symbols in the
loadable executive image are vectored and identifies the name of the base
image symbol table file, SYS.STB.

The image header now contains space for an array of version numbers,
described in Section 29.6.

The linker COLLECT option has a new qualifier, /ATTRIBUTES. The
possible values for the qualifier are RESIDENT, to designate a nonpageable
image section, and INITIALIZATION_CODE, to designate the initialization
image section. These values initialize the new image section descriptor flags
ISD$V _RESIDENT and ISD$V _INITIALCODE.

Data in a Loadable Executive Image

A data cell private to routines in a loadable executive image resides in that

833

The Modular Executive

Table 29.2 Organization of IO_ROUTINES.EXE, a Typical Loadable Executive Image

Cluster Name
NONPAGED_READONLY_PSECTS

PSECT Name

EXEC$NONPAGED_CODE

Modules

BUFFERCTL

NONPAGED_READWRITE_PSECTS EXEC$NONPAGED_DATA
PATA_NONPAGED
MMD AT

PAGED_READONLY _PSECTS EXEC$PAGED_CODE IOSUBPAGD

PAGED_READWRITE_PSECTS EXEC$PAGED_DATA
PATA_PAGED
IOSUBPAGD

INITIALIZATION_PSECTS EXEC$INIT ~000
EXEC$INIT _001

SYS$DOINIT
SYS$DOINIT
MMD AT

834

EXEC$INIT _002
EXEC$INIT _CODE

EXEC$INIT _PFNTBL_OOO
EXEC$INIT _PFNTBL001
EXEC$INIT _PFNTBL_002
EXEC$INIT _SSTBLOOO
EXEC$INIT _SSTBL_OO 1

EXEC$INIT _SSTBL_002
[Fixup vectors)

SYS$DOINIT
SYS$DOINIT
MMD AT

PATA_NONPAGED
PATA_PAGED
SYS$DOINIT
SYS$DOINIT
SYS$DOINIT
SYS$DOINIT
SYS$DOINIT
SYSASSIGN

SYS$DOINIT

image. A data cell accessed by routines in multiple loadable executive images
may be placed in the base image or in one of the loadable executive images. If
the data itself is not in the base image, the base image must contain a pointer
to it for use by the other loadable executive images. That is, a routine in one
loadable executive image cannot directly reference data in another and must
make an indirect reference through a base image pointer.

Certain data cells reside in loadable executive images even though they
are small and unlikely to change size. A data cell that is referenced primarily

29.3.3

29.3 Loadable Executive Images

by routines within the image is typically in the image itself, to reduce the
access overhead for the most frequent references.

A data structure whose size is likely to vary from version to version is
stored in a loadable executive image, where its varying size and movement
cannot affect the location of base image transfer vectors and pointers. A
cell in the base image points to the structure if it is referenced from other
loadable executive images.

Writable data cells referenced by commonly executed code paths are stored
in the image with the most time-critical accesses.

Read-only data cells referenced by commonly executed code paths in mul­
tiple loadable executive images are defined in the module MMDAT. Several
different loadable executive images include MMDAT by linking with it to
reference these cells locally. The local reference often saves an instruction
that would otherwise be needed for using a postindex operand specifier with
these cells. MMDAT defines, for example, the cells MMG$GL_SPTBASE,
which contains the base address of the system page table, and SCH$GL_
PCBVEC, which contains the address of the software process control block
vector. MMDAT includes an initialization routine; each image that includes
MMDAT initializes these cells from the values computed earlier in system
initialization.

Symbol Resolution in a Loadable Executive Image

A vectored universal symbol has two definitions. Each vectored universal
symbol must be defined as a global in the base image, where its value is
a system space address. It must also be defined as a universal symbol in
a loadable executive image. This definition has two values-the absolute
system space address of the base image global and the relative offset of
the symbol within the loadable executive image. The procedure that loads
loadable executive images (see Section 29.4.1) uses the relative offset in
calculating the loaded address of the symbol; it stores this loaded address
at the base image global address.

A universal symbol in a loadable executive image is defined through one
of several macros:

• For a system service, the macro SYSTEM_SERVICE, which generates a
.ENTRY directive and other code, described in Section 29.5.4.3

• For a routine entered through a CALLx instruction, the macro UNIVERSAL_
ENTRY, which generates a .ENTRY directive

• For a routine entered through a JSB instruction, the macro UNIVERSAL_
SYMBOL, which generates a .TRANSFER directive

• For a data structure whose address is stored in a base image global, the
macro UNIVERSAL_SYMBOL, which generates a .TRANSFER directive

Figure 29 .2 shows how references from one loadable executive image to
another are resolved at run time through SYS.EXE.

835

The Modular Executive

The code extracted from the image IO_ROUTINES.EXE is part of the
Queue 1/0 ($010) system service. It tries to allocate an 1/0 request packet
(IRP) from the IRP lookaside list. If the list is empty, the $QIO system service
procedure invokes EXE$ALLOCIRP either to expand the lookaside list or to
allocate one from the nonpaged variable-length list.

Both the IRP lookaside list and the routine EXE$ALLQCIRP. are in the
image SYSTEM_PRIMITIVES.EXE. The IRP lookaside list is part of a larger
structure whose fields are defined symbolically by the macro $$SYSTEM_
PRIM_DATADEF. The base image global EXE$AR_SYSTEM_PRIMITIVES_
DATA points to this larger structure. Example 29.2 shows its <;lefihition. The
base image contains an executive transfer vector for the routine EXE$AL­
LOCIRP. Example 29 .1 shows its definition.

The image SYSTEM._PRIMITIVES.EXE defines the vectored universal sym­
bols EXE$AR_SYSTEM_PRIMITIVES_DATA and EXE$ALLOCIRP, as shown
in Example 29.3. When the image is loaded, the executive image loader re­
locates their base image globals.

Thus, at run time, the instruction MOVL GAEXE$AR_SYSTEM_PRIMITIVES_

DATA,R.2 stores the effective address of the loaded SYSTEM_PRIMITIVES.EXE
data structure in R2. The instruction JSB GAEXE$ALLOCIRP transfers control
to the base image transfer vector, which then transfers control t9 the rou­
tine in the loaded SYSTEM._PRIMITIVES.EXE. Note that EXE$ALLOCIRP
itself can refer directly to IOC$GQ_IRPIQ, the IRP lookaside listhead, with­
out referring to the base image pointer, since they are in the same loadable
executive image.

29.4 EXECUTIVE IMAGE LOADING

836

Loadable executive images are loaded or initialized at several well-defined
stages in system initialization. An image is loaded at only one particular
stage. However, it may potentially execute initialization code at that and
succeeding stages of initialization. In general, loading of executive images is
deferred to the later stages of system initialization, if possible, for simplicity.

The major stages of system initialization at which im~es are loaded or
initialized are

1. SYSBOOT.EXE
2. EXEC_INIT.EXE (routine EXE$INIT)
3. The swapper process
4. The SYSINIT process

Chapters 30 and 31 describe these anq other stages of system initialization
in detail. This section is concerned only With their role in the loading and
initialization of loadable executive images.

These stages are more finely subdivided, primarily for initialization of
loadable images. The system global EXE$GL_STATE describes these finer
divisions with a bit set to represent each substage that has been reached. The

29.4 Executive Image Loading

Example 29.3
Definition of Vectored Universal Symbols

UNIVERSAL_SYMBOL -
EXE$AR_SYSTEM_PRIMITIVES_DATA

;Make pointer to lookaside lists
; universal

; I/O packet lookaside listhead
.ALIGN QUAD

IOC_BASE:
ASSUME

IOC$GQ_IRPIQ: :
.QUAD
ASSUME

IOC$GL_IRPREM: :

IOC_GQ_IRPIQ EQ 0

0
IOC_GL_IRPREM EQ .-IOC_BASE

.LONG 0 ;Address of partial packet
ASSUME IOC_GL_IRPCNT EQ .-IOC_BASE

IOC$GL_IRPCNT: :
.LONG 0 ;Current count of allocated

; packets
ASSUME IOC_GL_IRPMIN EQ .-IOC_BASE

IOC$GL_IRPMIN:: ;Minimum size to take from list
.LONG <<IRP$C_LENGTH•2>/3>

UNIVERSAL_SYMBOL EXE$ALLOCIRP
;EXE$ALLOCIRP:: ;Allocate I/O packet -

; conditional wait
ASSUME IRP$B_TYPE EQ IRP$W_SIZE+2
PUSHL <DYN$C_IRP©16>!- ;Set data structure type

<IRP$C_LENGTH+EXE$C_ALCGRNMSK>&<~C<EXEC$C_ALCGRNMSK>>

;Set size of buffer required
BRB 20$

macro $BOOSTATEDEF defines symbolic values for these bits. Table 29.3
lists them in the order in which their states occur.

Loadable executive images are mapped and loaded at several different
stages of system initialization by LDR$LOAD_IMAGE, in module SYSLDR.
LDR$LOAD_IMAGE executes as part of the following images and stages:

1. SYSBOOT.EXE, the secondary bootstrap program, which initializes sys­
tem space and loads the base image, the minimal set of executive images
listed in part A of Table 29.1, and various other images (see Chapter 30)

2. EXEC_INIT.EXE, the loadable executive image that performs initializa­
tion after memory management has been enabled and that loads most of
the rest of the executive images, as shown in Table 29.1, part B

3. SYSINIT.EXE, which runs in the SYSINIT process and loads the images
listed in Table 29.1, part C

837

The Modular Executive

29.4.l

838

Table 29.3 States in System Initialization

Bit Name Set By Meaning

BOOSTATE$V _SYSBOOT (Unused)
BOOSTATE$V JNIT EXE$INIT EXE$INIT has begun
BOOSTATE$V _MAPPED EXE$INIT Memory management has

been enabled
BOOSTATE$V _CONSOLE EXE$INIT Console 1/0 routines are

available
BOOSTATE$V _PFN_INIT EXE$INIT Page frame number (PFN)

database is initialized
BOOSTATE$V _POOL_INIT EXE$INIT Nonpaged pool allocation is

possible
BOOSTATE$V _SWAPPER EXE$SWAPINIT Swapper process has begun
BOOSTATE$V _SYSINIT SYSINIT SYSINIT process has begun
BOOSTATE$V _RMS SYSINIT RMS has been loaded
BOOSTATE$V _XQP SYSINIT File system has been mapped
BOOSTATE$V _STARTUP SYSINIT Startup process has been

created

The loading and initialization of loadable executive images are described in
the sections that follow.

In addition, after system initialization is complete, a loadable executive
image can be loaded through the LDR$LOAD_IMAGE procedure built as
part of SYSLDR_DYN.EXE, a loadable executive image.

Actions of LDR$LOAD_IMAGE

LDR$LOAD_IMAGE must effectively activate an executive image and es­
tablish connections between the transfer vectors and pointers in the base
image and their targets in the loaded image. This section describes the ba­
sic operations of LDR$LOAD_IMAGE, with some details of the differences
that arise from its execution in different initialization stages. !Note that
SYSBOOT.EXE is linked with module SYSLDR_SYSBOOT, and SYSLDR_
DYN.EXE with module SYSLDR_DYN. These modules contain slightly dif­
ferent versions of LDR$LOAD_IMAGE.)

LDR$LOAD_IMAGE is called with the name of a loadable executive image
and a flag indicating whether the image should be loaded with its pageable
sections resident. The flag is based on the value of bit SOPAGING$V _EXEC
lbit OJ of the SYSGEN parameter SO_PAGING.

LDR$LOAD_IMAGE takes the following steps:

1. It opens the image file using whatever mechanism is available at this
stage, either minimal file system routines or the full file system. A
window control block IWCB) is created for a file opened with the minimal
file system routines. Later, after SYSINIT has mapped the file system

29.4 Executive Image Loading

and loaded RMS, SYSINIT opens the file and leaves it open so that, for
example, normal file system checks will prevent the file's deletion.

Running in process context and after system initialization is complete,
LDR$LOAD_IMAGE in module SYSLDR_DYN is entered in executive
mode and uses RMS to open the image. It then requests the Change to
Kernel Mode ($CMKRNL) system service and performs the rest of its
processing in kernel mode.

2. LDR$LOAD_IMAGE reads the first block of the file, its image header,
and checks that the executive versions with which the file was linked
are compatible with the current system.

3. If the versions are incompatible, LDR$LOAD_IMAGE does not load the
executive image and returns the severe error status SS$_SYSVERDIF.

If the versions are compatible, LDR$LOAD_IMAGE allocates a load­
able image data block (LDRIMG) from nonpaged pool. (Running with
SYSBOOT, LDR$LOAD_IMAGE builds the LDRIMG in local storage and
subsequently copies it to pool.) It initializes the LDRIMG, copying infor­
mation from the image header, such as image file name, link time, and
address of the initialization routine. Figure 29.3 shows the layout of the
LDRIMG.

4. LDR$LOAD_IMAGE in module SYSLDR_DYN locks the base image
mutex, EXE$GL_BASIMGMTX, for write access. It searches the LDRIMG
list to see if a loadable executive image with the same name has already
been loaded.

-If one exists, LDR$LOAD_IMAGE deallocates the LDRIMG, unlocks
the mutex, and returns the error status SS$_DUPLNAM to its caller.

-If one does not, LDR$LOAD_IMAGE sets LDRIMG$V _PART _LOAD
to indicate that image loading is not complete, inserts the LDRIMG at
the front of the list, and unlocks the mutex.

5. Scanning the image section descriptors (ISDs), LDR$LOAD_IMAGE ini­
tializes the appropriate LDRIMG fields to describe the location and size
in bytes of each section. For example, it initializes the fields LDRIMG$1-
NONPAG_ W _BASE and LDRIMG$1-NONPAG_ W _LEN to describe the
resident writable section.

6. LDR$LOAD_IMAGE allocates contiguous system page table entries
(SPTEs) for the pages of all the image sections (see Section 29.8.1). It
computes the system address represented by the lowest SPTE as the base
address of the image, stores it in the LDRIMG, and relocates the initial­
ization routine address by the base address.

7. It invokes LDR$LOAD_NONPAGED, in module SYSLDR, twice-once
to map and load the nonpaged read-only code section and once for the
writable one. Section 29.4.2 describes LDR$LOAD_NONPAGED.

8. It invokes a local routine, LOAD_PAGED, to map pageable read-only
and then pageable writable sections. (The images loaded by SYSBOOT

839

The Modular Executive

840

LDR$GQ_IMAGE_LIST::

Figure 29.3

LORI MG

FLINK

BLINK

TYPE LENGTH

I MG NAM
(40 byt) es

BASE

PAGE_COUNT

FLAGS

LINKTIME

VERSION

NONPAG _R_ BASE

NONPAG_R_ LEN

NONPAG_W_ BASE

NONPAG _W_LEN

PAG _R_BASE

PAG _R_ LEN

PAG_W_ BASE

PAG _w_ LEN

FIXUP _ BASE

FIXUP LEN -
INIT_ BASE

INIT_ LEN

PAG_W_STX I PAG_R_STX

WCB

INIT_ RTN

PID

CHAN

(reserved, 16 bytes)

Layout of a Loadable Image Data Block (LDRIMG)

NextLDRIMG

LDRIMG Flags

Bit Meaning
0 NOT XQP
1 DELAY INIT
2 NO PFN DB
3 FIX-UPS-DONE
4 NONPAGED FIXUP
5 PART_LOAD

have no pageable code or data, so this routine is never invoked during
SYSBOOT.) Section 29.4.3 describes LOAD_PAGED.

9. LDR$LOAD_IMAGE invokes LDR$LOAD_NONPAGED twice more­
once to map and load the fixup section and once for the initialization
section.

10. LDR$LOAD_IMAGE in module SYSLDR_DYN changes the protection
on the pages containing the system service vectors to permit writes from
kernel mode.

11. It scans the image's global symbol table for vectored universal symbol
and entry point records. Each of these records contains the symbol's two
values and, for a universal entry point, the procedure register save mask.

29.4.2

29.4 Executive Image Loading

LDR$LOAD_IMAGE adds the loaded image base address to the symbol's
relative offset to form its effective address.

If the symbol is an entry point, it could be a system service vector or an
executive transfer vector for a routine entered through a CALLx instruc­
tion. LDR$LOAD_IMAGE stores in the loaded base image the symbol's
register save mask and a JMP to the effective address in the loaded image.
!Section 29.5.4.3 describes how the JMP instruction is overwritten with
instructions for inner mode system services.) Otherwise, it examines the
word at the symbol's system space address to determine whether the
symbol is a transfer vector or a pointer to data. IA transfer vector th~t
is not an entry point starts with a JSB or JMP instruction.) LDR$LOAD_
IMAGE stores the effective address of the symbol as the destination of a
transfer instruction or as the pointer value.

12. LDR$LOAD_IMAGE in module SYSLDR_DYN restores the original pro­
tection on the pages containing the system service vectors.

13. If LDR$LOAD_IMAGE is not running as part of SYSBOOT, it invokes
LDR$INIT _SINGLE to call the image's initialization routine, if there is
one lsee Section 29.5.1). Otherwise, if it is running as part of SYSBOOT
and there is an initialization routine, it sets the flag LDRIMG$V _DELAY_
INIT in LDRIMG$L_FLAGS so that the routine will be invoked at a later
stage of initialization.

14. If LDR$LOAD_IMAGE is running as part of SYSBOOT, it allocates
nonpaged pool and copies the local storage LDRIMG to the pool. If
LDR$LOAD_IMAGE is running as part of SYSBOOT, EXE$INIT, or
SYSINIT, it inserts the LDRIMG at the head of the list of LDRIMGs,
LDR$GQ_IMAGE_LIST.

If LDR$LOAD_IMAGE is running after system initialization is com­
plete, as part of SYSLDR_DYN, it locks the base image mutex, clears
LDRIMG$V _PART _LOAD to indicate that loading is complete, unlocks
the base image mutex, and returns from the kernel mode procedure.

15. LDR$LOAD_IMAGE returns to its caller.

Actions of LDR$LOAD_NONPAGED

LDR$LOAD_NONPAGED is invoked with arguments specifying the address
of the LDRIMG, base and length of the section, and protection for the sec­
tion's pages. LDR$LOAD_NONPAGED performs the following steps:

1. For each page of the section, it does the following:

a. Unless it is running as part of SYSBOOT, it acquires the MMC
spinlock.

b. It allocates a page of physical memory.
c. It initializes the SPTE for that section page with the allocated PFN,

owner mode of kernel, valid bit set, and a protection of KW. KW is

841

The Modular Executive

29.4.3

842

required so that the page can be overwritten with the contents of the
image file. Its protection is changed later.

d. If the physical page is described by the PFN database, LDR$LOAD_
NONPAGED records information about the page, such as the address
of the page table entry jPTE) that contains it, and its state and type.

e. If it has acquired the MMG spinlock, it now releases the spinlock.

2. It reads the image section into the allocated space.
3. It changes the protection in the section's SPTEs to the appropriate value.

If LDR$LOAD_NONPAGED is not executing as part of SYSBOOT, this
operation requires that the MMG spinlock be held and that any entries
in the translation buffer for these SPTEs be invalidated.

4. It returns to LDR$LOAD_IMAGE.

Actions of LOAD_PAGED

LOAD_PAGED is invoked with the same arguments as is LDR$LOAD_
NONPAGED. Its arguments include a flag that indicates whether the im­
age should be loaded with its pageable sections resident. It performs the
following steps:

1. If pageable sections are to be made resident, LOAD_PAGED invokes
LDR$LOAD_NONPAGED to load the section and returns.

2. Otherwise, LOAD_PAGED first forms prototype PTE contents suitable
for mapping each page of the section. The protection, passed as an argu­
ment, is eith.er UR for a read-only or URKW for a writable section. The
page owner is kernel mode. The type bits in the PTE are set to indicate
that the page is part of a section and currently in the image file.

3. LOAD_PAGED tests and sets the shared bit in the image's WCB. If the bit
was clear jif the file had been opened with primitive file routines), LOAD_
PAGED initializes its reference count to 2. If the bit was set, LOAD_
PAGED increments its reference count. These steps make the WCB look
like any other WCB describing a section file, even if it had been created
by primitive file routines, and ensure that the file is permanently open.

4. LOAD_PAGED, running as part of SYSLDR_DYN, locks the global sec­
tion mutex for write access.

5. It allocates and initializes a section table entry from the system header.
6. LOAD_PAGED, running as part of SYSLDR_DYN, unlocks the global

section mutex.
7. LOAD_PAGED stores the index number of the section table entry in the

prototype PTE contents. It records information such as the WCB address,
number of section pages, section base system virtual page number, and
a flag indicating whether the section is writable.

8. LOAD_PAGED writes the prototype PTE to the SPTEs previously allo­
cated for the section by LDR$LOAD_IMAGE. The section's pages will

29.4.4

29.5 Initialization of a Loadable Executive Image

be read in later from the loadable executive image in response to page
faults, possibly during image initialization when address fixups are done
or later during image execution.

9. It triggers invalidation of its own processor's translation buffer and that
of any other SMP members.

10. It returns to LDR$LOAD_IMAGE.

Loading of Optional Images

If the value of the special SYSGEN parameter LOAD_SYS_IMAGES is 1, its
default, the loading of optional images is enabled. The images to be loaded are
listed in SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA. Each
entry specifies the name of a loadable executive image and in which phase,
EXE$INIT or SYSINIT, the image should be loaded.

This mechanism provides for the loading of

• Optional VMS-supplied executive images
• Executive images that are part of optional software products
• Site-specific images containing custom versions of the Magnetic Tape Ac­

cessibility ($MTACCESS) and Get Security Erase Pattern ($ERAPAT) sys­
tem services

Both EXE$INIT and SYSINIT call LDR$ALTERNATE_LOAD, in module
ALTERNATE_LOAD. LDR$ALTERNATE_LOAD takes the following steps:

1. It tests the value of LOAD_SYS_IMAGES.
2. If the value is zero, the procedure returns. Otherwise, it opens and reads

SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA.
3. For each record in the file, LDR$ALTERNATE_LOAD tests whether it is

running during the specified initialization phase. If it is not, LDR$AL­
TERNATE_LOAD reads the next record.

4. If the current initialization phase matches that in the record, LDR$AL­
TERNATE_LOAD opens the specified image and reads its image header.
It then invokes LDR$LOAD_IMAGE to map the image.

5. When LDR$ALTERNATE_LOAD reaches the end of the file, it closes the
file and returns to its caller.

Introduction to VMS System Services documents the procedure for build­
ing a site-specific version of the $MTACCESS system service. Apart from
replacements for the $ERAPAT and $MTACCESS system services, use of
this mechanism is reserved to Digital and completely unsupported.

29.5 INITIALIZATION OF A LOADABLE EXECUTIVE IMAGE

Each loadable executive image contains its own initialization routines that
perform a variety of functions. Some are specific to the features and functions
supported by the image; others are required by all loadable executive images.

843

The Modular Executive

844

An initialization routine may need to execute in an environment that
does not exist when the routine's executive image is first loaded. There is
a mechanism, therefore, to provide for delayed and multiple invocations of
initialization routines. Initialization routines can be invoked, for example,
after the PFN database has been created or once paging is possible. The space
occupied by these routines is deallocated when initialization is complete.

Initialization routines are described by an initialization routine table in
each loadable executive image. Each table entry is a quadword. The first
longword specifies the location of an initialization routine, containing either
the system space address of a routine in the base image or a self-relative
offset to a routine within the loadable executive image. The second longword
contains flags that describe the initialization routine and its state.

Each loadable executive image jexcept SYSMSG.EXE) is linked with the
module DOINIT, which includes an initialization routine dispatcher,
INI$DOINIT. Each image linked with DOINIT specifies INI$DOINIT as its
transfer address. LDR$LOAD_IMAGE copies the transfer address from the
image header to the field LDRIMG$L_INIT _RTN. INI$DOINIT is invoked
multiple times during system initialization. It scans the initialization rou­
tine table and invokes the specified routines. Each routine can examine the
flags in EXE$G1-STATE to identify the current phase of system initialization
and determine whether its execution is appropriate.

The DOINIT module defines a number of PSECTs, all of which are clus­
tered into the initialization image section. Three of the PSECTs build the
initialization routine table: EXEC$INIT _000 defines its start and names it
IN1$A_ VECTOR_ TABLE; EXEC$INIT _001 defines its body; EXEC$INIT _002
defines its end with an entry of zero. Modules in the loadable executive
image, including DOINIT itself, make entries in the body of the table by
invoking the macro INITIALIZATION_ROUTINE. The other PSECTs and
their uses are described in subsequent sections.

The macro $INIRTNDEF defines symbolic values for the flags in the ini­
tialization table. INIRTN$V _SYSRTN, when set by the INITIALIZATION_
ROUTINE macro, means that the routine address is within the base image.
INIRTN$V _CALLED, when set, means that INI$DOINIT has invoked the
initialization routine. INIRTN$V _NO_RECALL, when set, means that the
initialization routine should not be invoked again. The use of these flags is
described in Section 29.5.3.

The module DOINIT itself contains INITIALIZATION_ROUTINE macros
that create table entries for three common initialization routines used by
most loadable executive images:

• LOADER$FIXUP _DOT _ADDRESS, which performs address fumps for the
image

• INI$PFN_FIXUP, which alters the image's instructions that reference the
PFN database

2.9.5.1

29.5 Initialization of a Loadable Executive Image

• INI$SYSTEM_SERVICE, which performs initialization for any system ser­
vices in the image

These initialization routines are described in later sections.

Initialization Sequence

LDR$INIT _SINGLE and LDR$INIT _ALL are the routines that trigger load­
able executive image initialization. LDR$INIT _SINGLE initializes a single
loadable executive image. LDR$INIT _ALL scans the LDRIMG list, which
contains image data blocks for the images loaded thus far, and invokes
LDR$INIT _SINGLE for each of them. Both these routines are in the SYSLDR,
SYSLDR_SYSBOOT, and SYSLDR_DYN modules and are linked with SYS­
BOOT.EXE, EXEC_INIT.EXE, SYSINIT.EXE, and SYSLDR_DYN.EXE.

These routines can be invoked multiple times during system initialization:

1. In the case of an image loaded by SYSBOOT, LDR$LOAD_IMAGE sets
the flag LDRIMG$V _DELAY _INIT so that the routine will be reinvoked
at a later stage. At this stage, memory management is off.

2. After memory management has been enabled and the system control
block (SCB) has been established, EXE$INIT invokes LDR$INIT _ALL to
perform further initialization of those images loaded by SYSBOOT.

3. After nonpaged pool and the PFN database are initialized, EXE$INIT
sets flags in EXE$GL_STATE to indicate their initialization and invokes
LDR$INIT _ALL again to perform further initialization of the images
loaded by SYSBOOT.

4. EXE$INIT loads the set of loadable executive images listed in Table 29.1,
part B. For each, EXE$INIT invokes LDR$LOAD_IMAGE, which invokes
LDR$INIT _SINGLE.

5. EXE$INIT then invokes LDR$INIT_ALL to perform further initialization
of all the images loaded thus far. This additional initialization is done
in case actions in one image's initialization routine depend on actions
taken in another image's initialization routine.

6. The swapper process sets a flag in EXE$GL_STATE, to indicate that the
swapper is running, and initializes paged pool. It invokes LDR$INIT _
ALL. Now that paging is possible, address fixups in pageable sections
of loadable executive images can be done and system services can be
connected.

7. The SYSINIT process loads several loadable executive images through
LDR$LOAD_IMAGE, which invokes LDR$INIT _SINGLE for each of
them.

In addition, LDR$INIT _SINGLE can be invoked to initialize a loadable
executive image that is loaded dynamically after system initialization is
complete.

845

The Modular Executive

29.5.2

29.5.3

846

Actions of LDR$INIT_SINGLE

LDR$INIT _SINGLE performs the following steps:

1. It tests whether the value of LDRIMG$L_INIT _RTN is zero. If it is, the
routine returns.

2. Otherwise, it calls the routine whose address is in LDRIMG$1-INIT _
RTN. It passes one argument, the address of the LDRIMG. Although
this mechanism allows for other possibilities, LDRIMG$L_INIT _RTN
currently always contains the address of INI$DOINIT.

3. If INI$DOINIT returns an error status, LDR$INIT _SINGLE returns to its
invoker.

4. Otherwise, it tests the flag LDRIMG$V_FIX_UPS_DONE, which is set
by LOADER$FIXUP _DOT _ADDRESS when all address fixups have been
done. If the flag is set, LDR$INIT _SINGLE deallocates the address space
occupied by the image fixup section, unless the space has already been
deallocated. Section 29.8.2 gives information on the deallocation of sys­
tem space.

5. LDR$INIT _SINGLE tests the flag LDRIMG$V _DELAY _!NIT, which is
set by INI$DOINIT when an initialization routine specifies that it must
be reinvoked. If the flag is clear, LDR$INIT _SINGLE deallocates the
address space occupied by the initialization section, unless it has already
been deallocated.

6. It returns to its invoker.

Actions of INI$DOINIT

INI$DOINIT is the initialization routine dispatcher. It performs the follow­
ing steps:

1. It clears the LDRIMG flag LDRIMG$V _DELAY _!NIT to implement its
default of not scanning the initialization table again.

2. It scans the table.
3. For each entry, it tests and sets the INIRTN$V _NO_RECALL flag to

implement the default of invoking a routine only once. If the flag was
already set, it goes on to the next entry.

4. If the flag was clear, it invokes the routine with a JSB instruction.
5. If the routine determines that it should be reentered at a later state of

system initialization, it clears the INIRTN$V _NO_RECALL flag.
6. When the routine returns, INI$DOINIT sets INIRTN$V _CALLED to

record that the routine was invoked and tests INIRTN$V _NO_RECALL.
If the flag is clear, INI$DOINIT sets LDRIMG$V_DELAY_INIT to en­
sure that LDR$INIT _SINGLE does not deallocate the initialization sec­
tion and that INI$DOINIT will be recalled at a later point in system
initialization.

29.5.4

29.5.4.1

29.5 Initialization of a Loadable Executive Image

Initialization Routines

An image-specific initialization routine might do a number of things, includ­
ing, but not limited to, the following:

• Store the absolute address of an interrupt or exception service routine in
an appropriate SCB vector

• Initialize base image (SYS.EXE) globals
• Initialize data in a loadable executive image
• Allocate pool for a data structure

For the details of what happens in the initialization of a particular loadable
executive image, see Chapters 30 and 31 and any chapters that describe that
specific image.

The following sections describe the three common initialization routines
that are part of most loadable executive images.

Address Relocation Fixups. LOADER$FIXUP _DOT _ADDRESS relocates the
addresses in any .ADDRESS and .ASCID directives within the loadable exec­
utive image. These references from the image to locations within itself can­
not be position-independent unless they are relocated after the load address
of the image is determined. Chapter 26 gives a more detailed description of
address fixups.

LOADER$FIXUP _DOT _ADDRESS uses a table in the address fixup image
section. It takes the following steps:

1. As a sanity check, it tests that the address fixup section in the loadable
executive image represents only one image and that it contains no G'
reference fixups, that is, it contains no outbound calls other than through
the base image. If either test fails, the routine returns with an error status
and without having relocated address fixups.

2. It examines the fixup section to see if there are any address fixups
required. If not, it sets LDRIMG$V _FIX_UPS_DONE in LDRIMG$L_
FLAGS and returns.

3. It tests a flag in EXE$GLSTATE to determine whether paging is possible
yet.

4. If paging is not possible, the routine tests further to see whether memory
management has been enabled.

If memory management has not been enabled, the routine clears the
flag INIRTN$V _NO_RECALL, so that the routine will be entered in a
later initialization stage, and returns.

If memory management is enabled, LOADER$FIXUP _OOT_ADDRESS
performs address fixups in the nonpageable section, unless it already has,
and sets the flag LDRIMG$V _NONPAGED_FIXUP to indicate that they
are done. If there are pageable fixups yet to be done, the routine clears

847

The Modular Executive

29.5.4.2

848

INIRTN$V _NO_RECALL before returning, so that the routine will be
entered in a later initialization stage.

5. If paging is possible, all address fixups can be done. LOADER$FIXUP _
DOT _ADDRESS performs both paged and nonpaged fixups, unless it
already has, and sets the flags LDRIMG$V _NONPAGED_FIXUP and
LDRIMG$V _FIX_UPS_DONE. It returns without clearing INIRTN$V _
NO_RECALL. When control returns to LDR$INIT _SINGLE with the
flag LDRIMG$V _FIX_UPS_DONE set, LDR$INIT _SINGLE deallocates
the fixup section.

For each address fixup (each .ADDRESS or .ASCID directive), the linker
has created a table entry in the fixup section. In that entry, it has placed the
offset into the image of the location whose address must be made absolute.
In the location itself, the linker has placed the offset into the image of
the target address. To perform an address fixup, LOADER$FIXUP _DOT_
ADDRESS first adds the image's base address to the offset in the fixup table
entry, thus calculating the address of the location to be fixed. It then adds the
image's base address to the contents of that location. If LOADER$FIXUP _
DOT _ADDRESS is only performing nonpaged or paged fixups, it must first
determine that the longword is located in a nonpageable or pageable part of
the image.

PFN Fixups. On a CPU with more than 32 MB of memory described in the
PFN database (see Chapter 14), the forward and back link arrays in the data­
base must have longword, rather than word, elements. Many of the instruc­
tions that reference these arrays use context indexing. Thus, their opcodes
are sensitive to the array element size and cannot be determined at assembly
time. INI$PFN_FIXUP replaces word context opcodes with longword context
opcodes in these instructions.

INI$PFN_FIXUP is table-driven, using a PFN opcode replacement table
within each loadable executive image. The module DOINIT defines three
PSECTs that build the table: EXEC$INIT _PFNTBL_OOO defines its start and
names it MMG$AL_FIXUPTBL; EXEC$INIT _PFNTBL001 defines its body;
and EXEC$INIT _PFNTBL_002 defines its end with an entry of zero. Modules
in the loadable executive image make entries in the body of the table by
invoking the macro PFN_REFERENCE.

PFN_REFERENCE only makes entries for instructions within nonpageable
PSECTs. (For instructions in pageable PSECTs, it generates in-line alternative
code paths and a branch selecting the appropriate one.) Each entry consists
of the following three fields:

• A longword containing the self-relative offset into the image of the instruc­
tion that may need modification

• A byte containing the word context opcode
• A byte containing the longword context opcode

29.5.4.3

29.5 Initialization of a Loadable Executive Image

INI$PFN_FIXUP tests MMG$GW _BIGPFN to determine if fixup is neces­
sary. By default, the instructions are assembled with word context opcodes.
H MMG$GW _BIGPFN is zero, fixups are not necessary and INI$PFN_FIXUP
returns. Otherwise, it scans the table.

For each entry, it calculates the effective address of the instruction. As
a sanity check, it tests that the byte at that address is the word context
opcode in the table entry. Hnot, it generates a fatal PFNFIXUP bugcheck.
Otherwise, it replaces the opcode with the longword context opcode in the
table entry. When INI$PFN_FIXUP reaches the end of the table, it constructs
a program counter/processor status longword IPC/PSL) pair and executes an

·REI instruction to flush the processor's instruction lookahead buffer. It then
returns.

System Service Initialization. INI$SYSTEM_SERVICE connects any system
services in the loadable executive image to their system service vectors and
assigns change mode codes for inner access mode services. It is table-driven,
using INI$A_BUILD_ TABLE, a table of system service descriptor blocks
within the image. The module DOINIT defines three PSECTs that build
the table: EXEC$INIT _SSTBLOOO defines its start; EXEC$INIT _SSTBLOO i ·
defines its body; and EXEC$INIT _SSTBL_002 defines its end with an entry
of zero. Modules in the loadable executive image make entries in the body of
the table by invoking the macro SYSTEM_SERVICE. The macro initializes
the fields in a system service descriptor block.

Each system service descriptor block contains the following fields:

• The absolute address of the system service vector
• The self-relative offset to the system service procedure in the loadable

executive image
• The number of arguments to the system service
• The minimum number of arguments required
• The system service filter group jsee Chapter 6)
• A code indicating the access mode in which the system service procedure

executes
• A value indicating what wait routine, if any, is required for synchronous

system services
• A value indicating what kind of additional exit processing, if any, is re­

quired after the system service returns

The macro $SSDESCRDEF defines symbolic offsets for these fields.
INI$SYSTEM_SERVICE takes the following steps:

1. Because INI$SYSTEM_SERVICE requires process context to execute, it
first tests a flag in EXE$GL_STATE to determine whether the swap­
per process has executed yet. H not, the routine clears INIRTN$V _NO_

849

The Modular Executive

850

RECALL so that the routine will be entered in process context, when pag­
ing is possible, and returns. If the swapper process has begun to execute,
INI$SYSTEM_SERVICE proceeds.

2. It changes the protection on the pages containing the system service
vectors, making them writable so that it can modify vectors.

3. It scans the system service initialization table. For each entry it finds,
it calls EXE$CONNECT _SERVICES, in module SYSTEM_SERVICE_
LOADER, passing it the address of the system ser\Tice descriptor block.

4. When INI$SYSTEM_SERVICE reaches the end of the table, it makes the
system service vector pages read-only again and returns.

EXE$CONNECT _SERVICES takes the following steps:

1. It determines whether the service is kernel mode, executive mode, or
mode of caller.

2. For a mode-of-caller service, it checks that the information in the system
service vector, already initialized by the loading of the loadable execu­
tive image, matches the information in the system service descriptor
block. If the information does not match, it generates the fatal bugcheck
BADVECTOR.

3. For an inner access mode service, EXE$CONNECT _SERVICES does the
following:

a. It acquires write ownership of a mutex called the change mode mu­
tex, which prevents multiple processes from adding system services
concurrently.

b. It tests whether the instruction in the system service vector is a JMP or
a change mode instruction. If it is already a change mode instruction,
the service is being reloaded; EXE$CONNECT _SERVICES takes the
actions described in steps 3e, 3f, and 3g. (Reloading is only used and
supported for $MTACCESS and $ERAPAT.J

c. If the instruction is a JMP, the service is being loaded for the first time.
EXE$CONNECT _SERVICES checks that the register save mask and
JMP destination in the vector match the information in the descriptor
block and generates the fatal bugcheck BADVECTOR if they do not
match. (LDR$LOAD_IMAGE stored the register save mask as part of
processing the system service procedure's .ENTRY universal symbol.)

d. If they match, EXE$CONNECT _SERVICES gets the change mode op­
erand number to be assigned to this service (contents of CMOD$GW _
CHMK_LIMIT for kernel mode, CMOD$GW _CHME_LIMIT for ex­
ecutive) and tests that the number is less than or equal to 255, the
maximum operand number. If itis not, EXE$CONNECT_SERVICES
generates the fatal bugcheck SSVECFULL.

e. If it is less than or equal to 255, EXE$CONNECT _SERVICES con­
structs the system service vector contents as the concatenation of

29.6 Version Numbers

the register save mask, the appropriate change mode instruction, a
RET, and a byte of 0. It ORs R2 and R4 into the register save mask to
reflect their use by the change mode dispatcher.

f. It builds a PC/PSL pair and executes an REI instruction to flush the
processor's instruction lookahead buffer in case any of the altered
instructions were in a CPU instruction pipeline.

g. EXE$CONNECLSERVICES records information from the system
service descriptor block in arrays used by the change mode dispatch­
ers. One set of arrays describes kernel mode system services; another
set decribes executive mode services. Each array is indexed by the
change mode operand number of the service. Chapter 6 describes
these arrays and their uses.

h. EXE$CONNECT_SERVICES increments CMOD$GW_CHMx_LIM­
IT. The change mode dispatcher compares the contents of that cell
against the operand of a change mode instruction to test its validity.
A valid operand must be less than the contents. It then releases the
change mode mutex.

4. For either type of service, EXE$CONNECT _SERVICES tests whether the
service has a synchronous form (for example, $QIOW is the synchronous
form of $QIO). If so, it initializes the system service vector (and following
bytes, if necessary) for its synchronous form, copying the wait code for
the service as well.

5. It returns to its caller.

29.6 VERSION NUMBERS

Versions of VMS have always been identifl.ed externally by a two-part num­
ber of the form M.N, for example, Version 4.6. M represents the major
version and N represents the minor version. The major version identified a
linked version of the system image, SYS.EXE, and its symbol table, SYS.STB,
and changed only when SYS.EXE was relinked. The minor version identified
a patch revision level of SYS.EXE.

An image linked with SYS.STB to resolve references to system globals
contained an internal form of the major system version number in its image
header, at field IlID$L_SYSVER.

The image activator compared the version in the image header to the run­
ning system's value. If the two were different, the image activator inhibited
kernel and executive mode execution in the image. To run under a version of
VMS with a new SYS.EXE, the image minimally had to be relinked to resolve
global references with the new SYS.EXE's addresses and to alter the system
version number in its image header. Algorithmic changes and reassembly
might also be required as the result of system data structure or routine in­
terface changes. The system version number, however, did not convey that

851

The Modular Executive

Table 29.4 Executive Version Categories

Category Name

BASE_IMAGE
MEMORY_MANAGEMENT
IO

Number

0
1
2

Description

Base image transfer vectors
Memory management and dynamic pools
1/0 data structures and routines

FILES_ VOLUMES
PROCESS_SCHED

3
4

RMS and file system
Process control, scheduling, and structure;

layout of Pl space; timer events, ASTs, and
event flags

SYSGEN 5 SYSGEN parameters
CLUSTERS_LOCKMGR 6 VAXcluster connection manager, lock

LOGICALNAMES 7
manager, and other clusterwide facilities

Logical names
SECURITY 8 Security subsystem
IMAGE_ACTIVATOR 9 Image activation and image file interpretation

DECnet and support for datalink drivers
Cells that are interpreted as counts

NETWORKS
COUNTERS
STABLE

MISC
CPU
VOLATILE

SHELL

852

10
11
12

13
14
15

16

Routines and data structures expected to be
stable

Miscellaneous
CPU-specific support
Routines and data structures expected to

change in the next release
The layout of the SHELL module and Pl

space

type of information, and care was required to ensure that the image was still
compatible with the system routines and data structures it referenced.

The intent of the Version 5 executive reorganization is to minimize the
frequency with which images linked with SYS.STB must relink. A change
to a loadable executive image does not alter the addresses of its vectored
universal symbols in SYS.EXE. However, data structure and routine interface
changes within it may require algorithmic changes and reassembly of any
images using its routines and data.

VMS Version 5 implements a more detailed form of internal system
version identifier, which can denote data structure and routine interface
changes. This number is independent of the external VMS version number.
The executive reorganization does not tie a routine to a particular loadable
executive image. Therefore, a version number for each loadable executive
image is not a good solution. Instead, the executive has been divided into
conceptual categories, such as 1/0 or memory management, each with its
own version number. Table 29.4 lists these conceptual categories, each of

29.6 Version Numbers

which is identified by a number. The $SYSVERSIONDEF macro defines sym­
bols for these numbers.

Each base image global symbol specifies the conceptual categories with
which it is associated, using the VERSION_MASK keyword in the macro that
defines it. Each bit in the mask corresponds to the number of a conceptual
category. The macros that define base image data cell and transfer vector
globals can also generate a mask global for each global. A module such
as SYSTEM_DATA_CELLS is conditionally assembled to generate its mask
globals and linked with the system image.

For example, the routine EXE$ALLOCIRP, invoked to allocate an IRP,
is associated with the category MEMORY_MANAGEMENT. The symbol
EXE$AR_SYSTEM_PRIMITIVES_DATA is also associated with the category
MEMORY_MANAGEMENT. Extracts from SYSTEM_ROUTINES and SYS­
TEM_DAT.A__CELLS that define those symbols and their masks are shown
in Examples 29.1and29.2.

Each category version number is a longword, with major ID in the high­
order word and minor ID in the low-order word. Each is defined by a symbol
named SYS$K_category-name. The category version numbers are defined in
SYS.STB.

The version number for a category changes when an interface in that cat­
egory changes. The minor ID changes for an upwardly compatible change;
the major ID changes for an incompatible change. For example, if a rou­
tine's input arguments or a data structure's fields are redefined, then images
referencing that routine or data structure will not execute properly unless
they are changed. In such a case, the major ID is incremented. Examples of
an upwardly compatible change are the addition of optional arguments to a
routine and the use of data structure fields that had previously been defined
as spare.

The format of an image header has been expanded in VMS Version 5 to
include an array for category version numbers. The first longword of the array
contains a mask identifying which categories are relevant to the image. The
image header field IHD$L_SYSVER still contains the overall system version
number, with the major version number in the high-order byte and the minor
version number in the low-order three bytes. When an image referencing an
executive global is linked, the linker ORs the value of the corresponding
mask global into the image's category mask longword. When all globals are
resolved, the mask has a bit set for each conceptual category relevant to the
image. Starting from bit 0, the linker stores the relevant category version
numbers from SYS.STB into the subsequent longwords of the version array.
There are no entries in the version array for categories not relevant to that
image.

The following is extracted from the output of the command. ANALyzE
/IMAGE SYS$SYSTEM:SDA.EXE.

853

The Modular Executive

854

SYS$COMMON:[SYSEXE]SDA.EXE;1
IMAGE HEADER

Fixed Header Information

image format major id: 02, minor id: 05
header block count: 2
image type: executable (IHD$K_EXE)
I/0 channel count: default
I/0 page count: default
linker flags:

(0) IHD$V_LNKDEBUG 0
(1) IHD$V_LNKNOTFR 0
(2) IHD$V_NOPOBUFS 0
(3) IHD$V_PICIMG 1
(4) IHD$V_POIMAGE 0
(5) IHD$V_DBGDMT 1

system version (major/minor): 1.0
system version array information:

SYS$K_MEMORY_MANAGEMENT : (1.1 I 1.1)
SYS$K_PROCESS_SCHED : (1.1 I 1.1)
SYS$K_SYSGEN : (1.1 I 1.1)
SYS$K_STABLE : (1.1 I 1.2)
SYS$K_VOLATILE : (1.1 / 1.1)

The BASE_IMAGE category describes the layout of SYS.EXE rather than
any particular conceptual category. The BASE_IMAGE minor ID is altered
when a new transfer vector or data cell is added so that an image using
the new symbol cannot run on an older version. Altering the BASE_IMAGE
major ID forces a relink of all images linked with SYS.STB. Required when
the layout of the base image changes, this is expected to be rare.

The overall system version, SYS$K_ VERSION, has for its major ID the
major ID of the BASE_IMAGE category. Its minor ID represents the particular
release or build; its use is reserved to VMS.

Base image global SYS$GL VERSION begins a 32-longword array of ver­
sion numbers generated from the assembly of module VERSION_NUMBERS.
When an image linked with SYS.STB is activated, the routine EXE$CHECK_
VERSION, in module CHECK_ VERSION, is invoked to compare the array
of version numbers in its image header with the versions of the running
executive. All of the following must be true:

• The major ID of the image must match the major ID of the running system .
• The minor ID must be less than or equal to that of the running system .
• The first longword of the IHD version array contains a mask of conceptual

executive categories relevant to the image. For each bit set in the mask,
the major ID of the executive category at the time the image was linked

29. 7 Other Kinds of Loadable Executive Image

must be equal to that of the category in the running system. The minor ID
must be less than or equal to that of the category in the running system.

In VMS Versions 5.0 through 5.1, if the versions are incompatible, the
image activator inhibits kernel and executive mode execution in the image
by removing CMEXEC and CMKRNL privileges. In VMS Version 5.2, the
image activator aborts the activation and returns the fatal error status SS$_
SYSVERDIF.

2.9.7 OTHER KINDS OF LOADABLE EXECUTIVE IMAGE

During the evolution of VMS, the number of executive images grew. Several
different loading mechanisms were implemented to deal with different types
of executive image. ·

VMS Version 1 supported one CPU type, the VAX-11/780, and a number of
1/0 devices. Most of the executive was in the system image, SYS.EXE, which
contained CPU-specific support. Separate device driver images loaded into
nonpaged pool provided most 1/0 device support. The device driver structure
and loading mechanism were designed to be extensible to user-written device
drivers. The SYSGEN utility was designed to build 1/0 data structures and
load both VMS and user-written device drivers.

VMS Version 2 supported a second CPU type, the VAX-11/750. Requir­
ing all systems to load code required for both CPU types was not desirable.
Instead, the CPU-specific routines were moved into separately loadable im­
ages named SYSLOAxxx .EXE, where xxx designates the CPU type. VMS
Version 2 included a mechanism for loading SYSLOAxxx .EXE into nonpaged
pool and a method of dispatching into its routines.

VMS Version 3 added support for a new storage system protocol, system
communication services (SCS). Support for it and its first devices required a
disk class device driver, two different port drivers, and SCS support routines
that provided an interface between a class and port driver. The SYSLOA
loading and dispatching mechanism was extended to SCS support routines,
which were built in the SCSLOA.EXE image.

VMS Version 4 added support for VAXcluster systems and for MicroVAX
processors. VAXcluster-specific routines were built in the CLUSTRLOA.EXE
image, which used the SYSLOA loading and dispatching mechanism. Two
images that contained instruction emulation routines were added: VAX­
EMUL.EXE contained support for emulating VAX instructions not imple­
mented in MicroVAX microcode; FPEMUL.EXE contained support for
floating-point data types not supported by microcode on all CPU types. The
instruction emulation images were loaded into nonpaged pool.

The rest of this section briefly describes some of the loading mechanisms
used for these executive images that existed prior to VMS Version 5. The
VMS Device Support Manual describes the driver loading mechanism.

855

The Modular Executive

29.7.1

856

CPU-Dependent and Other Loadable Routines

The CPU-specific images have names of the form SYSLOAxxx.EXE. jAppen­
dix G lists SYSLOA images.I SYSBOOT uses the CPU type, CPU subtype,
and, in some cases, type of console device, to select the SYSLOA image appro­
priate to the configuration. The SYSLOA images are in directory SYS$LOAD­
ABLE_IMAGES.

SYSBOOT opens the image and reads the image header and the first block
of the image body. It invokes EXE$CHECK_ VERSION to check that the run­
ning system has compatible software for all conceptual executive categories
relevant to the SYSLOA image. If the versions are incompatible, SYSBOOT
writes an error message on the console terminal and halts.

Otherwise, SYSBOOT allocates nonpaged pool from the high end of the
variable-length region for the image. The first block of the image body begins
with a dynamic data structure header; the longword at offset 0 and the word
at offset 8 both specify the size of the image to be loaded into nonpaged pool.
Offset 4 in the data structure header contains the offset from the beginning
of the image to a routine within the image that performs image-specific
initialization. SYSBOOT loads the image into nonpaged pool and records
its starting address and size for EXE$INIT. The image must be position­
independent code, since its location in pool is indeterminate at link time.

The miscellaneous vectors area of the base image includes vectored entry
points to routines in a SYSLOA image. These entry points are defined as
base image globals in the module SYSLOAVEC. A typical entry point is a
JMP instruction whose initial target is EXE$LOAD_ERROR, the address of a
HALT instruction.

The source for this module is conditionally assembled to build the mod­
ule LOAVEC, a table containing a self-relative offset into the image for each
CPU-dependent transfer vector. LOAVEC is linked into each SYSLOAxxx
image. During system initialization, the LOAVEC table in the loaded SYS­
LOAxxx image is used to relocate the targets of the SYSLOA transfer vectors
in the base image.

Each element in the table is five bytes long: the first byte identifies its
type; the next longword is a self-relative offset into the image of the transfer
vector's target. A type code of 1 identifies a longword-aligned transfer vector,
which is a simple pointer to data in the loaded image. A type code of 2
identifies a transfer vector that must be longword-aligned because it is an
interrupt or exception service routine. A type code of 3 identifies a simple
JMP instruction transfer vector.

EXE$INIT invokes EXE$LINK_ VEC, in module LINKVEC, to perform this
relocation. EXE$LINK_ VEC scans the table twice. The first time, it checks
that the table is well formed and has no inconsistent data. The second time,
it calculates the effective destination of each transfer vector in the loaded
image and stores it in the transfer vector. Each destination is the sum of the

29.7.2

29. 7 Other Kinds of Loadable Executive Image

base address of the loaded SYSLOA image, the offset of its table entry, and
the offset of the corresponding routine or data. Figure 29 .4 illustrates this
linkage.

EXE$INIT subsequently invokes the initialization routine in the loaded
SYSLOAxxx image.

SCSLOA is loaded on every system with any disk or magnetic tape con­
trollers that use mass storage control protocol (MSCP). If the system has a
computer interconnect (CI) adapter, if its system disk is an MSCP device,
or if the SYSGEN parameter VAXCLUSTER is nonzero, SYSBOOT loads
SCSLOA in the same manner as it does SYSLOA. SYSBOOT records its
starting address and size for EXE$INIT.

SCSLOA' s transfer vectors are defined in the base image module SCS­
VEC. The source for this module is conditionally assembled to build the
module (SYSLOA]SCSVEC, which contains the table of self-relative offsets
into SCSLOA. During system initialization, the SCSVEC table in the loaded
SCSLOA image is used to relocate the SCSLOA transfer vectors in the base
image.

If EXE$INIT finds that SCSLOA has been loaded, it invokes EXE$LINIL
VEC to relocate the SCSLOA transfer vectors. It then invokes the SCSLOA
initialization routine.

It is possible for SCSLOA to be loaded after system initialization by the
SYSGEN utility. If SYSGEN configures an MSCP disk and tape and finds that
SCSLOA has not been loaded yet, SYSGEN loads it. It invokes EXE$LINK_
VEC to relocate the SCSLOA transfer vectors and then invokes the SCSLOA
initialization routine.

The transfer vectors for CLUSTRLOA are defined in the base image mod­
ule CLUSTRVEC. The source for this module is conditionally assembled to
build the module [SYSLOA]CLUSTRLOA, which contains the table of self-.
relative offsets into CLUSTRLOA. During system initialization, the table in
the loaded CLUSTRLOA image is used to relocate the transfer vectors in the
base image.

SYSBOOT loads CLUSTRLOA into nonpaged pool on every node of a VAX­
cluster system. SYSBOOT records its address and size. EXE$INIT invokes
EXE$LINK_ VEC to relocate the CLUSTRLOA transfer vectors and then in­
vokes the initialization routine within CLUSTRLOA.

Instruction Emulators

SYSBOOT determines whether either or both types of instruction emulation
are required on a particular ·system. The VAXEMUL.EXE and FPEMUL.EXE
images are in directory SYS$LOADABLE_IMAGES.

If either is needed, SYSBOOT opens the image file and reads its image
header and the first block of the image body, just as it does for SYSLOA. It

857

00
CJl
00

System Control Block

.LONG EXE$MCHK!1 ;mach. check vector

...
.LONG EXE$1NT54!1 ;CPU error vector

...

.LONG EXE$1NT58!1 ;CPU error vector

...

Figure 29.4

Base Image Miscellaneous
Data Area
...

EXE$AL_LOAVEC ::
EXE$MCHK ::

JMP @#EXE$LOAD_ERROR
.BLKB 1

EXE$1NT54 ::
JMP @#EXE$LOAD_ERROR
.BLKB 1

EXE$1NT58 ::
JMP @#EXE$LOAD_ERROR
.BLKB 1 ...

CON$1NTINP ::
JMP @#EXE$LOAD_ERROR

CON$1NTOUT ::
JMP@#EXE$LOAD_ERROR ...

Linkage and Control Flow Example for CPU-Dependent
Routines

I-

SYSLOAxxx.EXE in Nonpaged Pool

IMAGE SIZE

Offset to Initialization Routine

-, SUBTYPE 1 TYPE l SIZE

I (reserved)

SYSLOAVEC Counted ASCII String

Offset to EXE$MCHK Routine 2

I
I
I
I Offset to EXE$1NT54 Routine 2

Offset to EXE$1NT58 Routine 2 I
I
I ...

Offset to CON$1NTINP Routine
I
I 3

I Offset to CON$1NTOUT Routine 3

(end of list) -1

Initialization Routine

I
I
I
L ---i EXE$MCHK Routine
Afte r loading ...

29.8 Dynamic Allocation and Deallocation of SPTEs

checks that the running system has compatible software for all conceptual
executive categories relevant to the emulation image.

The first block of the image body begins with a dynamic data structure
header; the longword at offset 0 and the word at offset 8 both specify the size
of the image to be loaded into nonpaged pool. Offset 4 in the data structure
header contains the offset from the beginning of the image to a routine
within the image that performs image-specific initialization. SYSBOOT loads
the image into nonpaged pool and records its starting address and size for
EXE$INIT. The image must be position-independent code, since its location
in pool is indeterminate at link time.

EXE$INIT tests whether SYSBOOT has loaded the emulation images. If an
emulation image has been loaded, EXE$INIT invokes its initialization rou­
tine. The initialization routine stores the addresses of the image's exception
service routines in the appropriate SCB vectors.

29.8 DYNAMIC ALLOCATION AND DEALLOCATION OF SPTES

VMS Version 5 implements dynamic allocation and deallocation of SPTEs.
This enables space to be allocated for a loadable executive image when
it is loaded and for its initialization and fixup sections to be deallocated
after they are no longer needed. The address space thus freed can be reused.
This replaces a simpler mechanism used in earlier versions of VMS, which
permitted only the allocation of free SPTEs.

As described in Chapter 30 and Appendix F, SYSBOOT defines the layout
of system space, based largely on SYSGEN parameter values. SYSBOOT
defines the high end of system space for areas such as the system page
table and nonpaged pool. Its layout is fixed. SYSBOOT reserves the lowest
pages of system space for the base image. The area dynamically allocated
and deallocated begins immediately above the base image.

Two routines in module PTALLOC maintain a list of available pages in
this area:

• LDR$ALLOC_PT, which allocates SPTEs
• LDR$DEALLOC_PT, which deallocates SPTEs

Their actions are described in Sections 29.8.l and 29.8.2.
The list of available pages of system space is kept within the available

SPTEs themselves. Figure 29.5 shows the form of the list. Each element on
the list is a group of adjacent available SPTEs. The smallest group is one
SPTE.

The listhead is at global cell LDR$GL_FREE_PT, which points to the first
element on the list. A list element is typically two longwords: the first points
to the next set of free SPTEs; the second is the number of SPTEs in this group.
A group of free SPTEs is identified by its byte offset from the beginning of
the system page table. For example, if LDR$G1-FREE_PT contained 3BC016,

859

The Modular Executive

860

LDR$GL_FREE_PT ::
'-----~

System Page Table

SPTEs in use

SPTEs in use

Figure 29.5
List of Available SPTEs

/
/

N Free SPTEs
Bit
21

J 0 l Offset of Next Element '

N

or

1 FreeSPTE

I 1 I Offset of Next Element I

the next SPTE available for allocation would be at offset 3BC016 from the
base of the system page table. The number of SPTEs in that group would be
at offset 3BC416·

The offset is stored in the low-order 21 bits of the SPTE. The high-order
11 bits are zero. Thus, to memory management microcode, such an SPTE
has no read or write access and an owner mode of kernel.

Two SPTEs are required to describe a group of two adjacent available
SPTEs. A single available SPTE contains, in its low-order 21 bits, the offset
of the next group. Bit 21 is set to identify the SPTE as the sole member of
its group.

The SPTE allocation algorithm is first-fit and takes the higher end of a
group of SPTEs if the group is larger than needed. SPTE deallocation keeps
the list ordered from larger offset to smaller, that is, from higher system
virtual page number to lower.

Much SPTE allocation occurs during system initialization, in EXE$INIT
and SYSBOOT.EXE. These only execute on the primary CPU of an SMP
system and at interrupt priority level (IPL) 31. When LDR$ALLOC_PT and
LDR$DEALLOC_PT are invoked at later stages of initialization, they syn­
chronize their accesses to the SPTE list by acquiring the MMG spinlock.

29.8.1

29.8.2

29.8 Dynamic Allocation and Deallocation of SPTEs

Actions of LDR$ALLOC_PT

LDR$ALLOC_PT is invoked with the number of SPTEs to be allocated. It
takes the following steps:

1. If it is running after the swapper process has begun, it acquires the MMG
spinlock, raising IPL to IPL$_MMG.

2. It scans the list of available SPTEs, starting with the group whose offset
is stored in LDR$G1-FREE_PT, looking for a large enough group.

3. If it finds a grbup exactly the right size, it removes that group from the
list by changing the forward pointer of the predecessor group to point to
the next group.

4. If it finds a group larger than needed, it subtracts the number of SPTEs
needed from the count longword. If the count is reduced to 1, LDR$AL­
LOC_PT sets bit 21 in the single available SPTE. It allocates the SPTEs
at the high end of the group, so that it does not have to copy the pointer
and count longwords and to alter the longword pointing to the beginning
of the group.

5. It zeros the allocated SPTEs and returns to its invoker the address of the
lowest SPTE in the allocated group and a status of SS$_NORMAL.

6. If it cannot make the allocation, it returns the error status SS$_INSFSPTS
to its invoker.

7. In either case, it releases the MMG spinlock and lowers IPL.

Actions of LDR$DEALLOC_PT

LDR$DEALLOC_PT is invoked with the address of the lowest SPTE in the
group to be deallocated and the number of SPTEs. The invoker must have
already deallocated any physical memory associated with the SPTEs and
zeroed the SPTEs. It takes the following steps:

1. If it is running after the swapper process has begun, it acquires the MMG
spinlock, raising IPL to IPL$_MMG.

2. It first checks that the SPTEs are all zero. If they are not, it releases
the spinlock, lowering IPL, and returns the error status LOADER$_PTE_
NOT _EMPTY to its invoker.

3. Otherwise, it scans the list of available SPTEs, looking for the first group
whose address is less than that of the group being deallocated.

4. It inserts the group being deallocated at that point and checks whether
it can be merged with the group on either side of it. It makes whatever
merges are possible, altering pointers and count longwords as appropriate.

5. It releases the spinlock, lowering IPL, and returns the status SS$_NOR­
MAL to its invoker.

861

30 Bootstrap Procedures

Ante mare et terras et quod tegit omnia caelum unus erat toto
. naturae vultus in orbe, quern dixere chaos: rudis indigestaque
moles.
[Before the sea was, and the lands, and the sky that hangs
·over all, the face of Nature showed all alike, which state has
been called chaos: a rough unordered mass of thirtgs.J

Ovid, Metamorphoses I, 5-7

Before the VMS operating system can assume control of a VAX system, some
initialization or bootstrap programs must execute to configure the system
and read the executive into memory. Parts of the bootstrap operation are
specific to the type of VAX processor. Others are common across all VAX
family members.

This chapter first summarizes all phases of system initialization and then
describes those that occur before the system base image (SYS.EXE) and load­
able executive images execute. Chapter 31 describes the later phases of
system initialization, .and Chapter 34 describes the portions of system ini­
tialization specific to multiprocessors.

30.1 OVERVIEW OF SYSTEM INITIAUZATION

862

VMS system initialization requires a number of programs. Some of them run
prior to an operating system environment; others execute in system context
with memory management enabled; others execute in process context. In

. general, VMS postpones an initialization task to as late a stage of initial­
ization as. possible. The following list summarizes the system initialization

' programs:

• The console subsystem is CPU-specific. Regardless of its implementation,
the subsystem must illitialize the CPU, locate physically contiguous good
memory, and load a VMB image into that memory.

• VMB, the primary bootstrap program, runs stand-alone on a VAX processor
with memory management disabled. In a symmetric multiprocessing (SMP)
system, VMB runs on the processor selected to be primary by the console
subsystem. It provides a bootstrap that is independent of the operating
system. It· sizes memory, initializes context for the adapter and device
unit containing the secondary bootstrap program, and loads the secondary
bootstrap.

• SYSBOOT, the secondary bootstrap program for the VMS software, also
runs stand-alone with memory management disabled. It reads SYSGEN
parameters and lays out system virtual address space based on their values.

30.1 Overview of System Initialization

SYSBOOT loads the system base image, SYS.EXE, and several loadable
executive images into memory. It also loads the system device driver, the
port driver, auxiliary drivers, the SYSLOA image, and VAXcluster code, as
needed. SYSBOOT transfers control to EXE$INIT, in the loadable executive
image EXEC_INIT .

• After turning on memory management, EXE$INIT runs at interrupt prior­
ity level (IPL) 31 on the interrupt stack. It performs initialization tasks
that require memory management but must occur before process con­
text is available. EXE$INIT invokes the initialization routines of the im­
ages loaded by SYSBOOT, including the SYSLOA routines that perform
processor-specific initialization. It loads most of the remaining loadable
executive images and invokes their initialization routines. The loadable
executive images initialize the scheduler, memory management, spinlock,
and 1/0 databases, among other operations. EXE$INIT then configures and
starts secondary CPUs. It REis to the scheduling routine SCH$SCHED,
described in Chapter 12, which places the swapper process into execution.

• EXE$SWAPINIT, the swapper initialization routine, performs the mini­
mum tasks that must complete in process context before any other pro­
cesses can be created. Because it is pageable code, it eventually disappears
from the system working set and thus occupies no physical space. Its tasks
include initializing paged pool . and the pageable logical name database,
and invoking loadable executive image initialization routines that require
process context in order to execute. EXE$SWAPINIT creates the SYSINIT
process.

• The SYSINIT process performs initialization tasks that must be done in
process context and that do not lend themselves to Digital command
language (DCL) commands. These include initializing the swap and page
files and opening the Files-11 Extended QIO processor (XQP) as a global
section. The SYSINIT process creates the startup process .

• The startup process has a full process context; it maps DCL and can thus
execute a series of DCL commands. It executes the command procedure
SYS$SYSTEM:STARTUP.COM, which processes other command proce­
dures and data files in the SYS$STARTUP directory. The various command
procedures create system processes, such as OPCOM, the job controller,
and the SMISERVER. They create systemwide logical names, run SYS­
GEN to autoconfigure the 1/0 database, and install images specified by
the VMSIMAGES.DAT data file. The startup process executes a series of
site-specific command procedures and finally enables interactive logins.

From SYSBOOT onward, the files and programs used in bootstrap op­
erations are primarily independent of processor type. Table 30.l lists the
processor-independent bootstrap programs and processes, the files they ac­
cess, and the reason for the access. Subsequent sections list processor­
dependent bootstrap files.

863

Bootstrap P10cedures

Table 30. l Processor-Independent Bootstrap Files

Files Accessed

VAXVMSSYS.PAR and other
parameter files

SYSDUMP.DMP
PAGEFILE.SYS
SYS.EXE
TTDRIVER.EXE
xx DRIVER.EXE
yyDRIVER.EXE
zzDRIVER.EXE

SYSLOAxxx .EXE
SCSLOA.EXE

CLUSTRLOA.EXE

FPEMUL.EXE

VAXEMUL.EXE

SYSTEM_SYNCHRONIZATION_
xxx.EXE

SYSTEM_PRIMITIVES.EXE
PRIMITIVE_IO.EXE
ERRORLOG.EXE
SYSTEM_DEBUG.EXE
EXEc_INIT.EXE

CPULOA.EXE
EVENT _FLAGS_AND_ASTS.EXE
EXCEPTION.EXE

IMAGE_MANAGEMENT.EXE
IO_ROUTINES.EXE
LMF$GROUP _TABLE.EXE
LOCKING.EXE
LOGICALNAMES.EXE
MESSAGE_ROUTINES.EXE
PAGE_MANAGEMENT.EXE

PROCESS_MANAGEMENT.EXE

SECURITY.EXE

864

Reason for Access

SYS BOOT

Configure system

System dump file, located and sized for later use
Primary page file, located and sized if dump file not found
System base image, loaded into memory
Terminal class driver, loaded into nonpaged pool
System device driver, loaded into nonpaged pool
Port driver, conditionally loaded into nonpaged pool
Auxiliary device driver, conditionally loaded into nonpaged

pool
CPU-specific routines, loaded into nonpaged pool
System communication services, conditionally loaded into

nonpaged pool
VAXcluster support, conditionally loaded into nonpaged

pool
Floating-point emulation code, conditionally loaded into

nonpaged pool
String and other emulated instruction code, conditionally

loaded into nonpaged pool
SMP synchronization image, one of three

Basic system support routines
Primitive console 1/0 and file system routines
Error logging routines and system services
System debugger (XDELTA), conditionally loaded
Next image in bootstrap sequence

EXEC_INIT

Tables of CPU data
Event flag and AST routines and system services
Exception service routines and system services, bugcheck

routines
Image activation services and routines
1/0-related routines and system services
Tables of license data
Lock management routines and system services
Logical name routines and system services
Message routines and system services
Page fault service routine, related routines, virtual address

space system services
Scheduling routines and process creation and control

system services
Security-related routines and system services

(continued)

30.1 Overview of System Initialization

Table 30.1 Processor-Independent Bootstrap Files (continued)

Files Accessed

SYSDEVICE.EXE
SYSGETSYI.EXE
SYSLICENSE.EXE
WORKING_SET _

MANAGEMENT.EXE

SYSMSG.EXE
RMS.EXE
Fl lBXQP.EXE
QUORUM.DAT
RECOVERY _UNIT _SERVICES.EXE
DDIF$RMS_EXTENSION.EXE

SYSLDR_DYN.EXE

STARTUP.COM
LOGIN OUT.EXE
DCL.EXE

DCLTABLES.EXE

VMS$PHASES.DAT
VMS$VMS.DAT
VMS$LAYERED.DAT
Various
SWAPFILE.SYS
PAGEFILE.SYS
SATELLITLPAGE.COM
SYPAGSWPFILES.COM
SYLOGICALS.COM
SYCONFIG.COM
SYSTARTUP _VS.COM

Reason for. Access

EXECINIT

Pseudo device drivers and mailbox system services
$GETSYI system service
$LICENSE system service
Swapper and supporting routines, related system services

SYSINIT PROCESS

System message file
Record Management Services (RMS)
File system, mapped as global section
VAXcluster system quorum file
RMS recovery services
Support for Digital Document Interchange Format (DDIF)

file operations
Dynamic loading of loadable executive images

STARWP PROCESS

SYS$INPUT for startup process
First image that runs in startup process
CLI, mapped into Pl space to interpret and execute

commands
Command tables, mapped into Pl space and used by

DCL.EXE
Startup phase definition data file
Procedure definition data file for VMS
Procedure definition data file for layered products
Procedures and images defined by previous two data files
System swap file opened and initialized
System page file opened and initialized
VAXcluster satellite page file installation
Site-specific page and swap files
Site-specific logical names
Site-specific device configuration command procedure
Site-specific startup command procedure

VMSIMAGES.DAT
All installed images

INSTALL UTILITY, IN CONTEXT OF STARWP PROCESS

List of images to be installed

VAXVMSSYS.PAR
Various device drivers

Set up as known images

SYSGEN, IN CONTEXT OF STARWP PROCESS

Written to record SYSGEN parameters
Loaded into nonpaged pool, they perform 1/0 database and

device initialization

865

Bootstrap Procedures

30.2 PROCESSOR-SPECIFIC INITIALIZATION

30.2.1

866

The preliminary steps in the initialization of a VMS system depend on
the particular VAX processor being booted. The console subsystem is the
portion of the processor that initiates a bootstrap operation and permits
microdiagnostics and macrodiagnostics to execute. Not all details of the
console subsystem are specified by the VAX architecture; some are CPU­
specific. The installation and technical guides for a particular VAX processor
contain a detailed description of its console subsystem, and Chapter 24
describes console registers and communication.

The next sections describe the various VAX systems and the processor­
specific steps that occur before VMB gains control and begins execution. In
all processors, the following steps occur:

1. An error-free, page-aligned, and contiguous block of physical memory is
located.

2. VMB is loaded into the second page of the memory.
3. The bootstrap device code, other bootstrap flags, and additional infor­

mation are passed to VMB using registers RO through RS, R7, and RlO
through AP.

4. VMB executes.

The main differences in the initiation of VMB on various VAX processors
are the following:

• Location of VMB-console block storage device, system device, or read-
only memory (ROM)

• Method for determining system device
• Contents of RO through RS and R7
• Program that loads and passes control to VMB

The amount of error-free memory located by the console subsystem is
specified by the VAX architecture, which was amended in 1987. VAX pro­
cessors announced after 1987 locate a 2S6K-byte block of memory; earlier
VAX processors locate a 64K-byte or 128K-byte block. The manner in which
error-free memory is located is CPU-dependent. The register contents are
also somewhat CPU-dependent, but the most obvious processor-specific item
that affects the bootstrap operation is the console configuration. Figure 30.1
summarizes the bootstrap sequence, and the following sections describe the
various consoles.

Note that all descriptions assume the console terminal is in local enable
mode, able to receive command input.

MicroVAX CPUs with ROM-based VMB

The MicroVAX processors implement a subset VMB in ROM. The actual
VMB code differs only slightly from one MicroVAX to another and evolved
from the MicroVAX II VMB. The following sections describe the console

30.2 Processor-Specific Initialization

MicroVAX CPUs
(ROM-based VMB)

VAX 8200, 8300 Family
VAX-11/750 VAX 6000 Serles

VAX 88x0, 8800 Family
VAX86x0

VAX-11/78x
VAX-11/730

Console Program

' VMBin ROM

30.2.1.1

Console Program

' Boot Block Program

Figure 30.1

SYS BOOT

' Loads executive images

EXE$1NIT

' Starts other CPUs

EXE$SWAPINIT (Swapper Process)

SYSINIT Process

' Startup Process

Sequence of Initialization Events

Console Microprocessor

I
Discussed
in this
chapter

Discussed
in the next
chapter

subsystems and bootstrap operations of the various MicroVAX CPUs. Note
that most of the MicroVAX CPUs are also available in VAXstation configura­
tions. The description of MicroVAX initialization applies to its VAXstation
configuration as well.

MicroVAX II Console Subsystem and Initial Bootstrap Operation. The con­
sole subsystem on the MicroVAX II consists of a console program and a con­
sole terminal. The MicroVAX II console program is written in VAX MACRO
instruction code. Because the Micro VAX II has no console block storage de­
vice, the console program is stored in ROM in the processor's local 1/0 space.
A subset version of VMB.EXE, specific to the MicroVAX II, is also stored in
ROM, along with the power-up diagnostics.

When the console program has control, the MicroVAX II processor exe­
cutes the console program's VAX instructions rather than user or system
instructions. The console program gains control of the processor whenever
any halt condition occurs, such as execution of a HALT instruction.

The MicroVAX II has four internal processor registers for communication
with the console terminal.

There are several circumstances in which a bootstrap sequence is initiated:

867

Bootstrap Procedures

868

Table 30.2 Processor-Dependent Programs Used to Bootstrap the MicroVAX II

Program Executing

CPU initialization
microcode

Console program

VMS.EXE

Location of Program

Micro VAX II CPU

1/0 address space
ROM in MicroVAX
II CPU

1/0 address space
ROM in MicroVAX
II CPU

Purpose of Program

Pass control to the console
program

Size physical memory, locate
block of good memory,
load VMB from ROM into
memory, and pass control
to it

Locate secondary bootstrap,
load it into memory, and
pass control to it

• The system is powered on, and halts are disabled through the Halt Enable
switch on the CPU patch panel insert, mounted inside the rear of the CPU
cabinet. Chapter 33 describes the significance of this switch in more detail.

• The B(oot) command is entered while the system is in console mode .
• The halt action field in the console program mailbox (CPMBX) is set to 2

by the operating system .
• An attempt to restart the system after an error halt fails, and the console

program mailbox has its default contents.

When a MicroVAX II system is initialized, several programs execute before
VMB. These are summarized in Table 30.2.

The steps of initial bootstrap are as follows:

1. Following power recovery, the processor performs hardware initializa­
tion, writes a power-up code into the AP register, and passes control to
the console program in ROM.

2. On power-up, the console program checks its own integrity by comput­
ing the checksum of its own code and comparing it to the expected value
stored within ROM. The console then looks for a small piece of con­
tiguous good physical memory. It scans from high memory addresses
downward. It requires two pages for use as a stack and writable data area
and the rest for a bitmap of available memory.

3. The console program performs some additional checks, including de­
termination of the console terminal type. It then executes diagnostics,
which are also located in ROM, to test the processor and memory. The
memory test diagnostic records the memory it finds in the bitmap. A set
bit indicates a present page of memory. The first bit in the map corre­
sponds to the first page of memory. The bitmap does not map itself or
the other pages of memory reserved for the console program's use. The
address of the bitmap and its size will be passed to VMB.

4. To perform a bootstrap, the console program searches for a 64K-byte

30.2 Processor-Specific Initialization

block of good memory. It initializes the Q22-bus I/O map registers to
map to the first four megabytes of MicroVAX II memory.

5. The console does not process command files. It must construct the con­
tents of RO through RS from the combination of boot device and bootstrap
command. Table 30.3 shows the register arguments.

6. The console program copies VMB from the console program ROM into
the piece of good memory, starting at the second page, and passes control
to it.

The MicroVAX II VMB is based upon the full VMB that runs on other
VAX processors. There are, however, a number of significant differences
between the two, which are summarized in the following list. For a detailed
description of the MicroVAX II VMB, see the MicroVAX 630 CPU Module
User's Guide. Section 30.3 gives a detailed description of the full VMB .

• The register arguments are different; contrast Table 30.20 with Table 30.3 .
• Full VMB sizes memory itself if necessary. The MicroVAX II VMB requires

an available memory bitmap built by the memory diagnostic .
• Full VMB.EXE tries to boot a system from the system device specified by

its register arguments. MicroVAX II VMB has several possibilities:

-In response to a B(oot) command with no device specification, MicroVAX
II VMB searches for a bootable disk. In searching for a bootable disk,
VMB tries each disk drive of all possible mass storage control proto­
col (MSCP) controllers. Furthermore, if it does not locate SYSBOOT, it
checks whether the first logical block of the disk (LBN 0) is a boot block.
It then searches for a TKSO magnetic tape to boot. If that fails, it scans
memory for the signature of programmable read-only memory (PROM).
Last, it looks for a DEQNA or DELQA controller to request a down-line

Table 30.3 Register Input to MicroVAX II VMB

Register

RO
Rl
R2
R3
R4
RS
RlQI

Rll 1

API

SP

Contents
Zero or ASCII name of bootstrap device
Contents of MicroVAX II boot and diagnostic register
Memory bitmap size in bytes
Address of memory bitmap
Unused
Software boot control flags
Halt program counter (PC)
Halt processor status longword (PSL)
Halt code
Address of 64K bytes of good memory plus 20016

1 The console program sets up these registers after a halt condition.
VMB does not use these values.

869

Bootstrap Procedures

30.2.1.2

870

bootstrap. If there is no response in 30 seconds, VMB retransmits its re­
quest every 30 seconds. If no response is received after 12 retransmits,
VMB doubles the timeout interval. It retransmits 12 times with a 60-
second timeout. It continues in this manner, up to a maximum delay of
60 minutes.

-In response to a boot command with a device specification, it searches
the specified device for the secondary bootstrap.

MicroVAX 2000 Console Subsystem and Initial Bootstrap Operation. The
console subsystem on the Micro VAX 2000 consists of a console program and
a console terminal port. The MicroVAX 2000 console program is written in
VAX MACRO instruction code and resides on the system module ROM. A
subset version of VMB.EXE, specific to the MicroVAX 2000, is also stored in
ROM, along with the diagnostic code.

When the console program has control, the MicroVAX 2000 processor ex­
ecutes the console program's VAX instructions. The console program gains
control of the processor whenever any halt condition occurs, such as execu­
tion of a HALT instruction.

The console program's actions are determined in part by the current con­
tents of the following three areas of nonvolatile random access memory
(NVR):

• The console program mailbox contains the default recovery setting (halt
action), the restart-in-progress flag, and the boot-in-progress flag .

• The boot device (BOOT _DEV) area stores the name of the default boot
device.

• The boot flag (BOOT _FLG) area contains the default boot flags, passed to
VMB in RS.

The console utility programs TEST 51 and TEST 52 load the boot device
and boot flag areas, respectively. The console utility program TEST 53 alters
the default recovery setting in the console program mailbox. The recovery
setting determines the console action when the processor halts, as follows:

• If the setting is 0 or 1, restart. If that fails, boot. If boot fails, halt.
• If the setting is 2, boot. If that fails, halt .
• If the setting is 3, halt at the console prompt.

Note that if the halt button is pressed, the console halts at the console
prompt and ignores the recovery setting.

A bootstrap sequence is initiated for the MicroVAX 2000 under the fol­
lowing conditions:

• The system is powered on, and the recovery setting is 0, 1, or 2 .
• The B(oot) command is entered while the system is in console mode.
• The operating system sets the halt action field in the console program

mailbox to 2.

30.2 Processor-Specific Initialization

The MicroVAX 2000 bootstrap proceeds in the following manner:

1. When the processor recovers power, it performs hardware initialization,
saves a restart code that is later passed to VMB, and transfers control to
the console program in ROM.

2. The console program performs some checks, including determination of
the console terminal type. It then executes diagnostics, which are also
located in ROM, to test the processor and memory. The memory test
diagnostic records the memory it finds in a bitmap. The first bit in the
map corresponds to the first page of memory. A set bit indicates that the
page of memory is present and usable. The bitmap itself and the pages
reserved for the console program's use are marked as bad in the bitmap.
The address of the bitmap and its size are later passed to VMB.

3. The console does not process command procedures. To perform a boot­
strap, the console program constructs the contents of RO through RS as
shown in Table 30.4. If a boot device is specified on the command line
or in the boot device area, the console loads RO from that information.

4. The console program then searches for a 128K-byte block of good mem­
ory. Reserving the first page of good memory for the restart parameter
block (RPB), it copies VMB into the memory starting at the second page.
The console program transfers control to VMB.

MicroVAX 2000 VMB evolved from MicroVAX Il VMB. It differs from full
VMB, used by larger VAX CPUs that do not store VMB in ROM, in the
following ways:

• MicroVAX 2000 VMB uses different register arguments and only recognizes
a subset of the RS boot flags.

Table 30.4 Register Input to MicroVAX 2000 VMB

Register

RO
Rl
R2
R3
R4
RS
RlQI

Rll 1

API

SP

Contents
Zero or ASCil name of bootstrap device
Address of configuration table
Memory bitmap size in bytes
Address of memory bitmap
Unused
Software boot control flags
Halt PC
Halt PSL
Halt code
Address of 128K bytes of good memory plus 20016

1 The console program sets up these registers after a halt
condition. VMB does not use these values.

871

Bootstrap Procedures

Table 30.5 MicroVAX VMB Boot Flags (Contents of RS)

Bit
Position

0

3

4

5

6

8

9

(31:28)

872

Symbolic Name
RPB$V_CONV

RPB$V _BBLOCK

RPB$V_DIAG

RPB$V _BOOBPT

RPB$V _HEADER

RPB$V _SOLICT

RPB$V_HALT

RPB$V _ TOPSYS

Meaning
Conversational boot. If set, SYSBOOT solicits

parameters from the console terminal.
Secondary boot from boot block. If set, VMB reads

LBN 0 of the boot device. If it is a boot block,
the block is executed. VMB makes no search for
a Files-11 secondary bootstrap file.

Diagnostic boot. If set, secondary bootstrap is image
[SYSn.SYSMAINT)DIAGBOOT.EXE.

Bootstrap breakpoint. If set, VMB and SYSBOOT _
XDELTA execute BPT instructions to transfer
control to XDELTA.

Image header. If set, VMB transfers control to an
address specified in the secondary bootstrap's file
image header. If clear, VMB transfers control to
the first byte of the secondary boot file.

Solicit file name. If set, VMB prompts for the
name of a secondary bootstrap file. Used to load
SYSBOOT _XDELTA.

Halt before transfer. If set, VMB executes a HALT
instruction before transferring control to the
secondary bootstrap.

Specifies the top-level directory number for a
system disk with multiple system roots.

Table 30.5 describes the VMB boot flags used by MicroVAX CPUs and the
manner in which the flags influence the search for a secondary bootstrap
image .

• Rather than size memory itself, VMB initializes the RPB page frame num­
ber (PFN) bitmap pointer to point to the bitmap built by the console mem­
ory diagnostic routine .

• If a boot device is not specified as an input argument, either from the
command line or from the default boot device area, MicroVAX 2000 VMB's
"sniffer boot" searches a priority ordered sequence of potential boot devices
until it discovers one from which it can boot.

The sniffer boot mechanism exists because the MicroVAX I and
MicroVAX II did not have NVR available in which to save a default boot­
strap device. All MicroVAX CPUs from the MicroVAX 2000 onward con­
tain NVR, preserved by battery backup across power outages, and thus can
maintain a default bootstrap device.

The sniffer boot search for a secondary bootstrap image begins with disk
drives. If no disk provides a bootstrap, VMB searches for a TKSO magnetic
tape drive. Finally, it looks for a network device to request a down-line load

30.2.1.3

30.2 Processor-Specific Initialization

of the secondary boot image. H none of these devices provide a bootstrap,
VMB displays a message and retries the last entry, the network device.

Note that the MicroVAX 2000 supports one PROM bootstrap, the system
exerciser.

MicroVAX 3100 Console Subsystem and Initial Bootstrap Operation. The
console subsystem on the MicroVAX 3100 consists of a console program and
a console terminal port. The MicroVAX 3100 console program is written in
VAX MACRO instruction code and resides on the system module ROM. A
subset version of VMB.EXE, specific to the MicroVAX 3100, is also stored in
ROM, along with the diagnostic code and drivers.

When the console program has control, the MicroVAX 3100 processor
executes the console program's VAX instructions. The console program gains
control of the processor when a halt condition occurs, such as execution of
a HALT instruction.

The console program's actions are determined in part by the current con­
tents of the following areas of NVR:

• The console program mailbox contains the default recovery setting (halt
action), the restart-in-progress flag, and the boot-in-progress flag.

• The boot device area stores the name of the default boot device.
• The boot flag area contains the default boot flags.

The console command SET BOOT stores a default boot device in the boot
device area. The SHOW DEVICE command displays the known devices, and.
the SHOW BOOT command displays the current default boot device.

The console command SET BFLG loads the boot flag area, passed to VMB
in RS.

The console command SET HALT sets the default recovery setting in
the console program mailbox. The recovery setting determines the console
action when the processor halts, as follows:

• H the setting is 0 or 1, restart. H that fails, boot. H boot fails, halt.
• H the setting is 2, boot. H that fails, halt.
• If the setting is 3, halt at the console prompt.

Note that if the halt button is pressed, the console halts at the console
prompt and ignores the recovery setting.

A bootstrap sequence is initiated for the MicroVAX 3100 in the following
circumstances:

• The system is powered on, and the power-on action is not defined as "halt."
• The B(oot) command is entered while the system is in console mode .
• The operating system sets the halt action field in the console program

mailbox to 2.

The MicroVAX 3100 bootstrap proceeds in the following manner:

873

Bootstrap Procedures

874

Table 30.6 Register Input to MicroVAX 3100 VMB

Register

RO
Rl
R2
R3
R4
RS
Rl02
Rll2
AP 2

SP

Contents
Address of descriptor specifying boot device name 1

Reserved
Memory bitmap size in bytes
Address of memory bitmap
Unused
Software boot control flags
Halt PC
Halt PSL
Halt code
Address of 256K bytes of good memory plus 20016

1 Thus, the boot device name may contain more than four
characters.

2 The console program sets up these registers after a halt condition.
VMB does not use these values.

1. When the processor recovers power, it performs hardware initialization,
saves a restart code that is later passed to VMB, and transfers control to
the console program in ROM.

2. The console program performs some checks, including determination of
the console terminal type. It then executes diagnostics, which are also
located in ROM, to test the processor and memory. The memory test
diagnostic records the memory it finds in a bitmap. The first bit in the
map corresponds to the first page of memory. A set bit indicates that
the page of memory is present and usable. The bitmap itself and the two
pages reserved for the console program's use are marked as bad in the
bitmap. The address of the bitmap and its size are passed to VMB. The
MicroVAX maintains a checksum on the bitmap. For subsequent reboots,
it does not execute the memory test diagnostic or rebuild the bitmap
unless a checksum mismatch indicates that a new bitmap is needed.

3. The console does not process command procedures. To perform a boot­
strap, the console program constructs the contents of RO through RS as
shown in Table 30.6. If a boot device is specified on the command line
or in the boot device area, it loads RO from that information. Otherwise
it loads RO with a value identifying its default boot device, the network
device.

4. The console program then searches for a 256K-byte block of good mem­
ory. Reserving the first page of good memory for the RPB, it copies VMB
into the memory starting at the second page. The console program trans­
fers control to VMB.

MicroVAX 3100 VMB is based upon MicroVAX 2000 VMB. It differs from

30.2.1.4

30.2 Processor-Specific Initialization

full VMB, used by larger VAX CPUs that do not store VMB in ROM, in the
following ways:

• MicroVAX 3100 VMB uses different register arguments and only recognizes
a subset of the RS boot flags, described in Table 30.5 .

• Rather than size memory itself, VMB initializes the RPB PFN bitmap
pointer to point to the bitmap built by the console memory diagnostic
routine.

The MicroVAX 3100 supports one PROM bootstrap, the system exerciser.

MicroVAX 3200/3500/3600 Console Subsystem and Initial Bootstrap Opera­
tion. The console subsystem on MicroVAX 3200, 3SOO, and 3600 processors
consists of a console program and a console terminal port. The console pro­
gram is written in VAX MACRO instruction code and resides on the system
module erasable programmable read-only memory (EPROM). A subset ver­
sion of VMB.EXE is also stored in ROM, along with the diagnostic code and
drivers.

When the console program has control, the processor executes the console
program's VAX instructions. The console program gains control of the pro­
cessor when a halt condition occurs, such as execution of a HALT instruction.

The console program's actions are determined in part by the current con­
tents of the following three areas of NVR:

• The console program mailbox contains the halt action setting, the restart­
in-progress flag, and the boot-in-progress flag .

• The boot device area stores the name of the default boot device .
• The boot flag area contains the default boot flags.

The halt action setting determines the console action when the processor
halts. It is used by the operating system to force a particular console ac­
tion, regardless of the setting of the Halt Enable switch. Its values are the
following:

• If the setting is 0, restart. If that fails, boot. If boot fails, halt .
• If the setting is 1, restart. If that fails, halt.
• If the setting is 2, boot. If that fails, halt .
• If the setting is 3, halt at the console prompt.

The console command SET BOOT sets an alternative boot device in the
boot device area. The SHOW DEVICE command displays the known devices.

The console command SET BFLG loads the boot flag area, passed to VMB
in RS.

A bootstrap sequence is initiated in the following circumstances:

• The system is powered on, and the power-on action is not defined as "halt."
• The B(oot) command is entered while the system is in console mode.

875

Bootstrap Procedures

876

• The operating system sets the halt action field in the console program
mailbox to 2.

The MicroVAX 3200/3500/3600 bootstrap proceeds as follows:

1. When the processor recovers power, it performs hardware initialization,
saves a restart code that is later passed to VMB, and transfers control to
the console program in ROM.

2. The console program performs some checks, including determination of
the console terminal type. It then executes diagnostics, which are also
located in ROM, to test the processor and memory. The memory test
diagnostic records the memory it finds in a bitmap. The first bit in the
map corresponds to the first page of memory. A set bit indicates that the
page of memory is present and usable. The bitmap itself and the pages
reserved for the console program's use are marked as bad in the bitmap.
The address of the bitmap and its size are passed to VMB.

Note that the MicroVAX maintains a checksum on the bitmap. For
subsequent reboots, it does not execute the memory test diagnostic or
rebuild the bitmap unless a checksum mismatch indicates that a new
bitmap is needed.

3. The console does not process command procedures. To perform a boot­
strap, the console program constructs the contents of RO through RS as
shown in Table 30.7. If a boot device is specified on the command line
or in the boot device area, it loads RO from that information.

In later versions of the console, if no boot device is specified on the
command line and no default boot device exists, the MicroVAX displays
the names of available boot devices and prompts for input. If it does not
receive a boot device name within its timeout period, it attempts to boot
from the network device.

Table 30.7 Register Input to MicroVAX 3200/3500/3600 VMB

Register
RO, Rl
R2
R3
R4
RS
Rl0 1

Rll 1

AP'
SP

Contents
Boot device name
Memory bitmap size in bytes
Address of memory bitmap
Unused
Software boot control flags
Halt PC
Halt PSL
Halt code
Address of 128K bytes of good memory plus 20016

1 The console program sets up these registers after a halt
condition. VMB does not use these values.

30.2.1.5

30.2 Processor-Specific Initialization

4. The console program then searches for a 128K-byte block of good mem­
ory. Reserving the first page of good memory for the RPB, it copies VMB
into the memory starting at the second page. The console program trans­
fers control to VMB.

MicroVAX 3200/3500/3600 VMB is based on MicroVAX II VMB. In early
versions of this console subsystem, if no boot device is specified on the
command line or in the boot device area, MicroVAX 3200/3500/3600 VMB
uses a sniffer boot mechanism, which searches a priority ordered sequence of
potential boot devices until it discovers one from which it can boot. If none of
these devices provide a bootstrap, VMB displays a message and retries the last
entry, the network device. Later versions omit the sniffer boot mechanism.

MicroVAX 3300/3400 and 3800/3900 Console Subsystem and Initial Boot­
strap Operation. Although the console subsystem and VMB for MicroVAX
3300/3400 processors differ slightly from those of MicroVAX 3800/3900
CPUs, they are alike in the details presented in this section.

The console subsystem on these processors consists of a console program
and a console terminal port. The console program is written in VAX MACRO
instruction code and resides on the system module ROM. A subset version of
VMB.EXE is also stored in ROM, along with the diagnostic code and drivers.

When the console program has control, the processor executes the console
program's VAX instructions. The console program gains control of the pro­
cessor when a halt condition occurs, such as execution of a HALT instruction.

The console program's actions are determined in part by the current con­
tents of the following three areas of NVR:

• The console program mailbox contains the halt action setting, the restart­
in-progress flag, and the boot-in-progress flag .

• The boot device area stores the name of the default boot device .
• The boot flag area contains the default boot flags, passed to VMB in RS.

The halt action setting determines the console action when the proces­
sor halts. It is used by the operating system to force a particular console
action regardless of the setting of the Halt Enable switch. Its values are the
following:

• If the setting is 0, restart. If that fails, boot. If boot fails, halt .
• If the setting is 1, restart. If that fails, halt .
• If the setting is 2, boot. If that fails, halt .
• If the setting is 3, halt at the console prompt.

The console command SET BOOT sets an alternative boot device in the
boot device area. The SHOW DEVICE command displays the known devices.

The console command SET BFLG loads the boot flag area. The console
also supports the SHOW VERSION command, which displays the console
and VMB version numbers.

877

Bootstrap Procedures

878

A bootstrap sequence is initiated in the following circumstances:

• The system is powered on, and the power-on action is not defined as "halt."
• The B(oot) command is entered while the system is in console mode .
• The operating system sets the halt action field in the console program

mailbox to 2.

The bootstrap for these processors proceeds in the following manner:

1. When the processor recovers power, it performs hardware initialization,
saves a restart code that is later passed to VMB, and transfers control to
the console program in ROM.

2. The console program performs some checks, including determination of
the console terminal type. It then executes diagnostics, which are also
located in ROM, to test the processor and memory. The memory test
diagnostic records the memory it finds in a bitmap. The first bit in the
map corresponds to the first page of memory. A set bit indicates that the
page of memory is present and usable. The bitmap itself and the pages
reserved for the console program's use are marked as bad in the bitmap.
The address of the bitmap and its size are passed to VMB.

Note that the MicroVAX maintains a checksum on the bitmap. For
subsequent reboots, it does not execute the memory test diagnostic or
rebuild the bitmap unless a checksum mismatch indicates that a new
bitmap is needed.

3. The console does not process command procedures. To perform a boot­
strap, the console program constructs the contents of RO through RS as
shown in Table 30.8. If a boot device is specified on the command line

Table 30.8 Register Input to MicroVAX 3300/3400
and 3800/3900 VMB

Register

RO
Rl
R2
R3
R4
RS
Rl02
Rll 2

AP 2

SP

Contents
Address of descriptor specifying boot device name 1

Reserved
Memory bitmap size in bytes
Address of memory bitmap
Value of PR$_ TODR
Software boot control flags
Halt PC
Halt PSL
Halt code
Address of 128K bytes of good memory plus 20016

1 Thus, the boot device name may contain more than four
characters.

2 The console program sets up these registers after a halt condition.
VMB does not use these values.

30.2.1.6

30.2 Processor-Specific Initialization

or in the boot device area, it loads RO from that information. Otherwise
it loads RO with a value identifying its default boot device, the network
device.

4. The console program searches for a 128K-byte block of good memory.
Reserving the first page of good memory for the RPB, it copies VMB into
the memory starting at the second page. The console program transfers
control to VMB.

VMBs for these processors evolved from MicroVAX 3200/3500/3600 VMB.

VAXstation 35x0 Console Subsystem and Initial Bootstrap Operation. VAX­
station 35x0 systems support multiple CPUs per system, currently two or
four. One CPU acts as the primary and performs the main work of booting
VMS. VMS directs the initialization of the remaining secondary CPUs, as
described in Chapter 34.

The console subsystem of VAXstation 35x0 processors consists of a con­
sole program and a console terminal port. The console program, imple­
mented in BLISS-32 and VAX MACRO code, resides in ROM on the CPU
module. Each CPU has a private EPROM.

The console program runs on the VAX processor rather than on a separate
console processor. It can read and interpret commands typed on the console
terminal, allowing an operator to examine or modify the state of the machine
and boot the operating system. In a multiprocessor system, each CPU runs
the console program, although only the primary processor is allowed to
perform I/O directly to the console terminal. These multiple instances of the
console program communicate with the primary processor and cooperate to
control the system. The console program reserves a segment of main memory
called the console communications area (CCA) for communication among
the processors while they are in console mode. This area is also visible to
VMS and may contain items such as hardware revision levels, machine check
functions, and CPU model information.

The console program initiates the boot sequence under the following
conditions:

• The console command B(oot) is entered on the console terminal while it
is in console mode and the control panel is enabled.

• The control panel is locked into secure mode or is enabled with auto start
selected, and one of the following occurs:

-Power is restored to the system.
- The primary processor attempts to restart and fails.
-A secondary processor attempts to restart, fails, and the bit CCA$Q_

SECSTART pertaining to that secondary is clear.

• The Restart switch is pressed and the console is enabled.

879

Bootstrap Procedures

30.2..2.

880

• Kernel mode code requests a reboot by setting the bit CCA$V _REBOOT
in the CCA$B_HFLAGS byte and halting the primary node.

VAXstation 35x0 systems execute the following in response to a power-up
or system reset:

1. Each CPU initializes itself to a known state and transfers control to the
console program.

2. The console program directs a self-test and participates in the selection
of a primary processor. The CPU that has passed self-test and has the
lowest node ID becomes the primary processor unless it has been disabled
through the SET CPU/NOPRIMARY console command.

3. Each CPU performs an extended self-test. In addition, the primary config­
ures the CCA, tests main memory, and prints the results of the various
tests on the console terminal.

4. The primary processor's console program configures memory, determin­
ing how much is present and which pages have uncorrectable errors. It
allocates pages from the high end of physical memory for the CCA and
for a bitmap that will inform VMS which physical pages are usable and
which are not. In the bitmap, the console program marks as unusable
any pages found bad. In addition, it marks as unusable those pages that
CCA and the bitmap itself occupy to prevent VMS from attempting to
put them to a second concurrent use.

The console program locates 256K bytes of good physical memory and
copies VMB from ROM into the second page of good memory, reserving
the first for the RPB.

5. The console does not process command procedures. To perform a boot­
strap, the console program constructs the contents of RO through RS as
shown in Table 30.9. If a boot device is specified on the command line
or in the boot device area, it loads RO from that information.

6. The primary processor transfers control to VMB.

The VAXstation 35x0 VMB is similar to that of the MicroVAX 3100.

VAX CPUs with Console Microprocessors

Some VAX processors communicate with an external console microproces­
sor system by means of a special interconnect, or incorporate an internal
microprocessor. On these VAX CPUs, the console program executes on the
console microprocessor, which has independent access to VAX memory. Be­
cause the console program executes on a separate processor, the console
subsystem can perform a number of functions while the VAX CPU is exe­
cuting instructions, without halting the VAX CPU. The console processor
can also monitor the running VAX and perform diagnostic tests.

The console subsystem includes a block storage device, which the console
processor can access. In particular, it reads a bootstrap command procedure

30.2.2.1

30.2 Processor-Specific Initialization

Table 30.9 Register Input to VAXstation 35x0 VMB

Register

RO
Rl
R2
R3
R4
RS
Rl02
Rll 2

AP 2

SP

Contents
Address of descriptor specifying boot device name 1

Reserved
Memory bitmap size in bytes
Address of memory bitmap
Address of CCA
Software boot control flags
Halt PC
Halt PSL
Halt code
Address of 256K bytes of good memory plus 20016

1 Thus, the boot device name may contain more than four
characters.

2 The console program sets up these registers after a halt condition.
VMB does not use these values.

and executes its commands to boot the system. A bootstrap command pro­
cedure identifies the system device and other characteristics of the bootstrap
operation by loading general registers RO through RS with parameters that
will be interpreted by the primary bootstrap program, VMB.

VAX processors with console microprocessors include the VAX 86x0, the
VAX 88x0, the VAX 8800 family, the VAX-11/780 and VAX-11/785, and the
VAX-11/730.

VAX 86x0 Console Subsystem and Initial Bootstrap Operation. The console
subsystem on VAX 8600 and VAX 8650 processors consists of a separate
PDP-11 (T-11) microcomputer, an RL02 disk console block storage device,
the console terminal, and a remote diagnosis port. The T-11 runs a modified
version of the RT-11 operating system; VAX console support is provided
by the console program, EDOAA. The console disk is an RT-11 directory­
structured device.

The VAX 8600 or VAX 8650 CPU has six internal processor registers to
communicate with the two console devices, four for the console terminal
and two for the disk.

There are several circumstances in which a bootstrap sequence is initiated:

• The VAX processor is powered on, and the system control panel Restart
Control switch is in the BOOT position .

• The console command B(oot) is typed while the console terminal is in
console mode and the VAX processor is halted .

• A bootstrap command procedure is invoked while the console terminal is
in console mode and the VAX processor is halted .

• The following instruction is executed in kernel mode:

881

Bootstrap Procedures

882

MTPR #AXF02,#PR$_TXDB

• While the Restart Control switch is in the RESTART/BOOT position, a
CPU halt condition occurs and auto restart fails .

• While the Restart Control switch is in the BOOT position, a powerfail or
error halt condition occurs.

In the bootstrap sequence, the console subsystem must execute a series of
programs to load and execute VMB. Table 30.10 lists these programs.

The initial bootstrap programs are console microprocessor programs. The
bootstrap steps are as follows:

1. When the console is powered on, code in the console PROM executes. It
initializes the console microprocessor and performs self-tests. At success­
ful completion of its self-tests, the PROM code performs some diagnosis
of the path to the RL02 and reads the boot block.

2. The boot block program boots the modified RT-11 monitor.
3. The monitor automatically locates and loads the console program. It

turns on the power for the VAX CPU.
4. The console program executes the command procedure LOAD.COM,

initializes the CPU, I/O adapters, and physical memory map, and invokes
the execution of ULOAD.COM.

5. The console program executes the command procedure ULOAD.COM,
which loads microcode from the RL02 into the various CPU microstores.

6. The console program then clears the system cache. The console tests
the Restart Control switch. If it is in the RESTART/BOOT position, the
console attempts a warm restart. If that fails, the console then initiates
a boot.

7. The three console commands that bootstrap a VMS system cause the exe­
cution of command procedures located on the console RL02. Table 30.16
shows the commands and their command procedure file names. A boot
initiated other than through console command uses the default bootstrap
command procedure DEFBOO.COM.

8. Each bootstrap command procedure contains the following command to
initiate a search for a 64K-byte block of good VAX memory:

FIND/MEMORY

9. Each contains the following three commands. These ·commands cause
the primary bootstrap program, VMB, to be loaded from the RL02 into
the good block of VAX memory, leaving the first page free for the RPB.
The START command transfers control to VMB at its first location.

EXAMINE SP
LOAD/START:© VMB
START ©

VMB is described in Section 30.3.

30.2 Processor-Specific Initialization

Table 30.10 Processor-Dependent Programs Used to Bootstrap VAX 86x0 Processors

Program Executing Location of Program Purpose of Program

EXECUTES ON CONSOLE MICROPROCESSOR

Console microprocessor
PROM bootstrap

PROM in console Read RL02 boot block into
subsystem memory and execute code

contained there
RL02 boot block

program
LBN 0 on console RL02 Locate monitor program, read it

into memory, and pass control
to it

RT-11-based monitor
program

Console RL02 Locate EDOAA, read it into
memory, and pass control to it

Initialize VAX CPU, load general
registers, and execute the next
several command procedures

Initialize VAX CPU, start execu­
tion of ULOAD.COM

EDOAA

LOAD.COM

ULOAD.COM

VMB.EXE

30.2.2.2

Console RL02

Console RL02

Console RL02 Load VAX CPU microcode from
RL02

EXECUTES ON VAX 86x0 PROCESSOR

Console RL02 Size physical memory, locate
secondary bootstrap, load it into
memory, and pass control to it

VAX 88x 0 Console Subsystem and Initial Bootstrap Operation. The VAX
88x0 processors are multiprocessing members of the VAX 8800 family. The
dual, triple, and quad CPU systems are composed of VAX 8700 CPUs and a
special bus configuration. In these systems, CPUs connect to one VAX 88x0
memory interconnect (NMI) bus, memory modules connect to a second NMI
bus, and the two NMI buses communicate via an interconnect called the
NMI bus window.

The console subsystem for the VAX 88x0 systems consists of a MicroVAX
II processor with a TKSO tape drive, an RD53 fixed disk, a console terminal,
and an LA75 printer. The MicroVAX II communicates with the VAX 88x0
CPUs via a Q22-bus module that connects to the console interface module
ICIM) in the VAX 88x0 backplane. Through the CIM, the console subsystem
controls the VAX 88x0 processor. It can load system microcode, access
system registers, transfer files, and control the system clock. It also monitors
environmental conditions and can shut down the system if tolerances are
exceeded.

The MicroVAX II console processor runs a modified version of VMS, with
a dedicated process running a console program. Its subprocesses perform
environmental monitoring and control the printer.

There are several circumstances in which a bootstrap sequence is initiated:

883

Bootstrap Procedures

884

• The console processor is powered on, and the software key switches
AUTO_POWERON and AUTO_BOOT are both enabled .

• The console command B(oot) is typed while the console terminal is in
console mode and the larger VAX processor is halted .

• A bootstrap command procedure is invoked while the console terminal is
in console mode and the larger VAX processor is halted .

• The following instruction is executed in kernel mode:

MTPR #-XF02,#PR$_TXDB

• While the software key switches AUTO_RESTART and AUTO_BOOT are
enabled, a CPU halt condition occurs and restart fails.

In the bootstrap sequence, the console subsystem must execute a series of
programs to load and execute VMB. Table 30.11 lists these programs. Note
that the foregoing description of the bootstrap sequence does not include
booting the secondary processors of an SMP system; see Chapter 34.

The initial bootstrap programs are console programs. The steps of initial
bootstrap are as follows:

1. The system power-up sequence causes the console MicroVAX and the
environmental monitoring modules (EMMs) to perform self-test.

Table 30.11 Processor-Dependent Programs Used to Bootstrap VAX 88x0 Systems

Program Executing

Console processor
microcode

Console VMS

POLARIS.EXE

Console support
microcode

VMB.EXE

Location of Program Purpose of Program

EXECUTES ON CONSOLE PROCESSOR

ROM in console
subsystem

Console fixed disk

Console fixed disk

Perform self-test, read VMS into
memory, and pass control to it

Locate console program, PO­
LARIS, read it into memory,
and transfer control to it

Initialize console database,
open log file, and execute
SYSINIT.COM and bootstrap
command procedures

EXECUTES ON VAX 88x0 PROCESSOR

Console fixed disk Initialize VAX CPUs, NMI,
NMI-to-VAXBI adapter (NBI),
and memory; locate 256K-byte
block of good memory

Console fixed disk Size physical memory, locate
secondary bootstrap, load it
into memory, and pass control
to it

30.2.2.3

30.2 Processor-Specific Initialization

2. The MicroVAX boots console VMS from its fixed disk, then executes the
console program.

3. The console program, POLARIS, optionally opens a log file to record all
console input and output (the terminal is a video monitor). It starts up
the subprocess that controls communication with the VAX CPU. It then
reads the command procedure SYSINIT.COM (not to be confused with
the SYSINIT process) from the console fixed disk and executes it.

4. The SYSINIT.COM command procedure turns on the VAX processor's
power if AUTO_POWERON is enabled and checks that hardware mod­
ules are correctly placed. It loads VAX CPU microcode from the fixed disk
into the control store of each enabled CPU and checks hardware and mi­
crocode revisions. It checks that the revisions are at least the minimum
supported and also compatible with one another.

5. Each CPU starts, controlled by its CPU microcode. The SYSINIT.COM
command procedure initializes the CPUs and the NMis to a known state.

6. SYSINIT.COM then tests the software key switches AUTO_RESTART
and AUTO_BOOT, both of which are most likely on. SYSINIT.COM
thus tries auto restart first. If restart fails, it initiates a boot.

7. The three console commands that bootstrap a VMS system cause the
execution of command procedures located on the fixed disk. Table 30.16
shows the commands and their command procedure file names. A boot
initiated other than through console command uses the default bootstrap
command procedure DEFBOO.COM.

8. Each bootstrap command procedure contains the following three com­
mands. They cause VMB to be loaded from the fixed disk into the good
block of VAX memory located by the console, leaving the first page free
for the RPB. The START command transfers control to VMB at its first
location.

EXAMINE SP
LOAD /MAINMEMORY /START:© VMB.EXE
START ©

Section 30.3 describes VMB.

VAX 8800 Family Console Subsystem and Initial Bootstrap Operation. The
VAX 8800 family includes the VAX 8500, VAX 8530, VAX 8550, VAX 8700,
and VAX 8800. The console subsystem on a VAX 8800 family member
consists of a separate PDP-11 microprocessor, three block-addressable storage
devices (two floppy RX50 diskettes and a fixed head disk), a console terminal,
and a remote diagnosis port. The microprocessor runs the P /OS operating
system; VAX console support is provided by an application task under P /OS.
The fixed head disk is an ODS-1 directory-structured device. The floppies
are either ODS-1 or ODS-2, depending on their use.

885

Bootstrap Procedures

886

Table 30.12 Processor-Dependent Programs Used to Bootstrap VAX 8800 Family
Processors

Program Executing

Console micropro­
cessor microcode

Console P/OS

CONSOL.TSK

Console support
microcode

VMB.EXE

Location of Program Purpose of Program

EXECUTES ON CONSOLE MICROPROCESSOR

ROM in console
subsystem

Console fixed disk

Console fixed disk

Perform self-test, read P/OS into
memory, and pass control to it

Locate console program, CON­
SOL.TSK (formerly called
Nl6PRO.TSK), read it into
memory, and transfer control
to it

Initialize console database,
open log file, and execute
SYSINIT.COM and bootstrap
command procedures

EXECUTES ON VAX 8800 FAMILY PROCESSOR

Console fixed disk

Console fixed disk

Initialize VAX CPUs, NMI, NBI,
and memory; locate 64K-byte
block of good memory

Size physical memory, locate
secondary bootstrap, load it
into memory, and pass control
to it

Each VAX 8800 family member has four internal processor registers to
communicate with all the console devices. The device ID is encoded into
control bits to distinguish among the devices.

There are several circumstances in which a bootstrap sequence is initiated:

• The console is powered on, and the software key switches AUTO_POWER­
ON and AUTO_BOOT are both enabled.

• The console command B(oot) is typed while the console terminal is in
console mode and the VAX processor is halted.

• A bootstrap command procedure is invoked while the console terminal is
in console mode and the VAX processor is halted.

• The following instruction is executed in kernel mode:

MTPR #~XF02,#PR$_TXDB

• While the software key switches AUTO_RESTART and AUTO_BOOT are
enabled, a CPU halt condition occurs and restart fails.

In the bootstrap sequence, the console subsystem must execute a series of
programs to load and execute VMB. Table 30.12 lists these programs. Note
that the foregoing description of the bootstrap sequence does not include
booting the secondary processors of an SMP system; see Chapter 34.

30.2.2.4

30.2 Processor-Specific Initialization

The initial bootstrap programs are console microprocessor programs. The
steps of initial bootstrap are as follows:

1. When the console microprocessor is turned on, it performs a self-test,
loads P/OS from the fixed disk, and starts it.

2. P/OS loads the console program from the fixed disk and transfers control
to it.

3. The console program opens a log file to record all console input and
output lthe terminal is a video monitor) and starts up the real-time in­
terface IRTIJ driver, which controls communication with the VAX CPU.
It reads the command procedure SYSINIT.COM (not to be confused with
the SYSINIT process) from the console fixed disk and executes it.

4 .. The SYSINIT.COM command procedure turns on the VAX CPU's power
if AUTO_POWERON is enabled and checks that hardware modules are
correctly placed. It loads VAX CPU microcode lincluding console sup­
port microcode) from the fixed disk, and checks hardware and microcode
revisions. It checks that the revisions are at least the minimum sup­
ported and also compatible with one another. The command procedure
initializes the NMI, NBis, and the memory.

5. SYSINIT.COM then tests the software key switches AUTO_RESTART
and AUTO_BOOT, both of which are most likely on. SYSINIT.COM
thus tries auto restart first. If that fails, it initiates a boot.

6. The three console commands that bootstrap a VMS system cause the
execution of bootstrap command procedures located on the fixed disk.
Table 30.16 shows the commands and their associated command pro­
cedure file names. A boot initiated other than through console com­
mand procedures uses the default bootstrap command procedure DEF­
BOO.COM.

7. Each bootstrap command procedure contains the following three com­
mands. They cause VMB to be loaded from the fixed disk into the good
64K-byte block of VAX memory, leaving the first page free for the RPB.
The START command transfers control to VMB at its first location.

EXAMINE SP
LOAD /MAINMEMORY /START:G VMB.EXE
START G

Section 30.3 describes VMB.

VAX-11/78x Console Subsystem and Initial Bootstrap Operation. The con­
sole subsystem on VAX-11/780 and VAX-11/785 processors consists of a
separate LSI-11 microcomputer, a block-addressable RXOl floppy diskette,­
a console terminal, and an optional remote diagnosis port. The console pro­
gram executes on the LSI-11, and the console devices are on the LSI-11 bus.

A VAX-11/780 or VAX-11/785 CPU has four internal processor registers
for communication with both console devices. The device ID is encoded

887

Bootstrap Procedures

888

into control bits to distinguish between the two devices. In fact, the console
program reads the registers and performs the appropriate 1/0 function to the
appropriate device.

There are several circumstances in which a bootstrap sequence is initiated:

• The Bjoot) command is entered while the system is in console mode, or
the Boot switch is pressed .

• A bootstrap command procedure is invoked while the system is in console
mode.

• The following instruction is executed in kernel mode:

MTPR #-XF02,#PR$_TXDB

• An attempt to restart the system after a power failure recovery or any other
halt condition does not succeed, and the Auto Restart switch is in the ON
position.

In the bootstrap sequence, the console subsystem must execute a series
of programs to load and execute VMB on a VAX-ll/78x processor. The
initial bootstrap programs run on the LSI-11 and execute PDP-11 instructions
without VAX instructions. Table 30.13 lists these programs and those that
run on the VAX processor.

Table 30.13 Processor-Dependent Programs Used to Bootstrap VAX-11/780 and
VAX-11/785 Processors

Program Executing

LSI-11 ROM
bootstrap

Floppy boot block
program

CONSOL SYS

ISP ROM

VMB.EXE

Location of Program Purpose of Program

EXECUTES ON LSI-11 MICROCOMPUTER

LSI-111/0 space Read floppy boot block into

LBN 0 on console
floppy

Console floppy

memory and execute code
contained there

Locate CONSOL.SYS, read it
into memory, and pass control
to it

Initialize VAX-ll/78x CPU, load
general registers, illld invoke
memory locator program; load
VMB into VAX memory and
transfer control to it

EXECUTES ON VAX-11/78x PROCESSOR

ROM in memory Locate 64K-byte block of error-
controller free memory

Console floppy Size physical memory, locate
secondary bootstrap, load it
into memory, and pass control
to it

30.2 Processor-Specific Initialization

The steps of initial bootstrap are as follows:

1. The first program that executes in the LSI-11 after self-test is a bootstrap
program located in ROM. It loads the boot block program located on
LBN 0 of the console floppy !sectors 1, 3, 5, and 7) into LSI memory.

2. The boot block program at LBN 0 is a copy of the bootstrap program used
by the RT-11 operating system. The RT-11 bootstrap, which understands
the RT-11 file system, looks for a specific file !the monitor), loads it into
memory, and transfers control to it.

The boot block program found on the console floppy diskette looks for
a program called CONSOL.SYS.

3. On the VAX 11/780, CONSOL.SYS loads the file WCSxxx.PAT from the
floppy diskette into the VAX writable control store. The VAX 11/785
loads the file SSUxxx .WCS. CONSOL.SYS then prompts »> on the con­
sole terminal. It verifies that the versions of the microcode are consistent
with one another. If there is a version mismatch between the writable
control store IWCS) and either the PROM control store !PCS) or the field
programmable logic array IFPLA), an error message is displayed on the
console terminal.

4. The three console commands that bootstrap a VMS system cause the exe­
cution of command procedures located on the console floppy. Table 30.16
shows the commands and their command procedure file names. A boot
initiated other than through a console command uses the default boot­
strap command procedure DEFBOO.CMD.

5. Each bootstrap command procedure contains the following commands:

START 20003000
WAIT DONE

These two commands cause a program located in ROM in the first
memory controller on the synchronous backplane interface ISBI) to ex­
ecute. The command procedure waits until the memory ROM program
completes before executing its next command. The memory ROM pro­
gram signals the console program that it is done by writing the "software
done" signal with the following instruction:

MTPR #-XF01,#PR$_TXDB

The program in the memory controller ROM performs a primitive
memory sizing operation in an effort to locate 64K bytes of error-free,
page-aligned, contiguous physical memory that can be used by the re­
maining bootstrap programs. The output of this program is an address
20016 bytes beyond the beginning of the first good page. This address is
loaded into SP. In a typical system with no errors in the first 64K bytes,
the contents of SP are 20016.

6. Each bootstrap command procedure contains the following three com­
mands. They cause VMB to be loaded from the floppy diskette into the

889

Bootstrap Procedures

30.2.2.5

890

good 64K-byte block of VAX memory, leaving the first page free for the
RPB. The START command transfers control to the first byte of VMB.

EXAMINE SP
LOAD VMB.EXE/START:ID
START ID

Section 30.3 describes VMB.

VAX-11/730 Console Subsystem and Initial Bootstrap Operation. The con­
sole subsystem on the VAX-11/730 consists of a console microprocessor, a
terminal, two block-addressable storage devices (TUS8 cartridge devices), and
an optional remote diagnosis port. The console TU58 is an RT-11 directory­
structured device. The console program executes on the console microproces­
sor. When the console program has control, the VAX-11/730 cannot execute
VAX instructions.

A VAX-11/730 CPU has eight internal processor registers for communica­
tion with the console devices: four for the console terminal and four for the
TU58s.

There are several circumstances in which a bootstrap sequence is initiated:

• A power-on occurs (the Boot switch is pressed or the processor is turned
on) .

• The console command B(oot) is typed while the processor is in console
mode.

• A bootstrap command procedure is invoked while the system is in console
mode.

• The following instruction is executed in kernel mode:

MTPR #~XF02,#PR$_TXDB

• While the Auto Restart switch is in the ON position, a CPU halt condition
occurs and auto restart fails.

In the bootstrap sequence, the console subsystem must execute a series of
programs to load and execute VMB. Table 30.14 lists these programs.

The initial bootstrap programs are console microprocessor programs. The
steps of initial bootstrap are as follows:

1. After performing a self-test, the microprocessor locates the TU58 that
contains the boot block (trying DDl first and, if that fails, then DDO)
and loads blocks 0 through 5 from the tape into microprocessor memory.
The code in the boot block locates the main console microcode program
CONSOL.EXE on the console TU58.

2. CONSOL.EXE executes two command procedure files, POWER.CMD
and CODEOn.CMD. POWER.CMD loads several microcode files into the
CPU, including one called POWER.CPU. POWER.CPU initializes the
machine, searches for a page-aligned 64K-byte block of good memory,

30.2 Processor-Specific Initialization

Table 30.14 Processor-Dependent Programs Used to Bootstrap a VAX-11/730
Processor

Program Executing

Console micro­
processor ROM
bootstrap

TU58 boot block
program

CONSOL.EXE

VMB.EXE

Location of Program Purpose of Program

EXECUTES ON CONSOLE MICROPROCESSOR

ROM in console Read TU58 boot block into
subsystem

LBN 0 on console
TU58

Console TU58

memory and execute code
contained there

Locate CONSOL.EXE, read it
into memory, and pass control
to it

Initialize VAX-11/730 CPU, load
general registers, and execute
command procedures

EXECUTES ON VAX-11/730 PROCESSOR

Console TU58 Size physical memory, locate
secondary bootstrap, load it
into memory, and pass control
to it

Table 30.15 VAX-11/730 Bootstrap Command Procedures

Command File

CODEOO.CMD

CODEOl.CMD
CODE02.CMD
CODE03.CMD

Hardware Configuration

No floating-point accelerator (FPA), no integrated disk
controller (IDC)

No FPA, with IDC
With FPA, no IDC
With FPA, with IDC

and checks the configuration of the machine. When POWER.CPU exits,
it returns an address 20016 bytes beyond the beginning of the first good
page. This address is loaded into SP. In a typical system with no errors
in the first 64K bytes, the contents of SP are 20016 .

Each possible configuration of the VAX-11/730 is assigned a value.
Whichever value POWER.CPU returns is substituted into the file name
CODEOn.CMD. The CODEOn.CMD command procedures load the nor­
mal run-time microcode for the appropriate processor configuration.
Table 30.15 lists the command procedures used with specific processor
configurations.

3. The Auto Restart switch is checked. If it is in the OFF position, the
processor enters console mode and prints the console command prompt
>>>.

891

Bootstrap Procedures

30.2.3

30.2.3.1

892

4. If the Auto Restart switch is in the ON position, the console executes the
commands in the default bootstrap command procedure DEFBOO.CMD.

5. The three console commands that bootstrap a VMS system cause the exe­
cution of command procedures located on the console TU58. Table 30.16
shows the commands and their command procedure file names. A boot
initiated other than through a console command uses the default boot­
strap command procedure DEFBOO.CMD.

6. Each bootstrap command procedure contains the following three com­
mands. They display the contents of SP (to identify the starting address
in physical memory). They then load the primary bootstrap program,
VMB, from the TU58 into the good 64K-byte block of VAX memory,
leaving the first page available for the RPB. The S command transfers
control to the first byte of VMB.

E SP
L/P/S:© VMB.EXE
s ©

Section 30.3 describes VMB.

VAX CPUs Without Console Microprocessors

VAX CPUs without console microprocessors include the VAX 6000 series,
the VAX 8200 family, and the VAX-11/750. On these types of VAX CPU,
the console program is implemented either in CPU microcode or in VAX
MACRO instructions and executes on the VAX processor itself. When the
CPU is in console mode, the console program (and nothing else, such as a
user program or VMS itself) executes.

VAX 6000 Series Console Subsystem and Initial Bootstrap Operation. The
VAX 6000 model 200, 300, and 400 systems are collectively referred to as
the VAX 6000 series.

Table 30.16 Commands to Boot VAX Processors

Command

B
B dev
@filespec

Command Procedure 1

DEFBOO.CMD or DEFBOO.COM
devBOO.CMD or devBOO.COM
filespec.CMD or filespec.COM

1 The file type of a console bootstrap command
procedure depends on the particular processor and
console subsystem. CMD is used by the VAX-11/730
and VAX-11/78~ processors and by BOOT58.EXE.
COM is used by VAX 8800 family, VAX 88x0, and
VAX 86x0 processors.

30.2 Processor-Specific Initialization

The VAX 6000 series machines support multiple CPUs per system. One
CPU acts as the primary and performs the main work of booting VMS. VMS
directs the initialization of the remaining secondary CPUs, as described in
Chapter 34.

The console subsystem for a VAX 6000 series system consists of a.console
program, a console terminal port, and a block storage device (a TKSO or
TK70 tape drive) to which the console state can be saved. Each CPU has a
console ROM and an electrically erasable programmable read-only memory
(EEPROM) as dedicated console memory.

The console program, written in VAX MACRO and Bliss-32, resides in
ROM. For each possible boot device, the ROM also contains a routine that
can read the boot block of its associated boot device and use information in
the boot block to locate VMB. This routine is known as a boot primitive.
Console patches, parameters, and bootstrap information are stored in the
EEPROM.

The console program runs on the VAX processor rather than on a separate
console processor. It can read and interpret commands typed on the console
terminal, allowing an operator to examine or modify the state of the machine
and boot the operating system. In a multiprocessor system, each CPU runs
the console program, although only the primary processor is allowed to
perform 1/0 directly to the console terminal. These multiple instances of the
console program communicate with the primary processor and cooperate .to
control the system. The console program reserves a segment of main memory
called the CCA for communication among the processors while they are
in console mode. This area is also visible to VMS and may contain items
such as hardware revision levels, machine check functions, and CPU model
information.

The console program initiates the boot sequence under the following
conditions:

• The console command B(oot) is entered on the console terminal while it
is in console mode and the control panel is enabled .

• The control panel is locked into secure mode or is enabled with auto start
selected, and one of the following occurs:

-Power is restored to the system.
-The primary processor attempts to restart and fails.
-A secondary processor attempts to restart, fails, and the bit CCA$Q_

SECSTART pertaining to that secondary is clear.

• The Restart switch is pressed and the console is enabled.
• Kernel mode code requests a reboot by setting the bit CCA$V _REBOOT

in the CCA$B_HFLAGS byte and halting the primary node.

The console subsystem uses a series of programs to load and execute VMB.
Table 30.17 lists these programs.

893

Bootstrap Procedures

894

Table 30.17 Processor-Dependent Programs Used to Bootstrap VAX 6000 Series
Processors

Program Executing

Console program

Boot primitive

Boot block code

VMB.EXE

Location of Program

ROM in VAX CPU

ROM

LBN 0 of boot device

Specific LBN on
system device

Purpose of Program

Initialize CPU, load boot
parameters from EEPROM,
load boot primitive from ROM,
locate block of good memory,
determine action to take, and
pass control to boot primitive

Load LBN 0 of boot device into
memory and pass control to it

Load primary bootstrap program
from system device and pass
control to it

Size physical memory, locate
secondary bootstrap, load it
into memory, and pass control
to it

VAX 6000 series systems execute the following in response to power-up
or system reset:

1. Each CPU begins execution of console code. It initializes itself to a
known state and performs appropriate actions based on the control panel
setting. Assuming that auto start is selected, it performs the steps that
follow.

2. The console program directs a self-test and participates in the selection
of a primary processor. The CPU that has passed self-test and has the
lowest VAX 6000 series memory interconnect bus (XMI) node ID be­
comes the primary processor unless it has been disabled through the
SET CPU/NOPRIMARY console command.

3. The primary prints the results of the self-test on the console terminal.
4. The CPUs perform an extended self-test, specifically verifying their abil­

ity to access main memory.
5. In case the CPU originally chosen as the primary fails the extended self­

test, the primary selection process occurs again. The CPU that passes all
self-tests and has the lowest XMI node ID becomes the primary processor
unless disabled through the SET CPU /NO PRIMARY console command.
The console program, executing on the CPU selected as the primary,
performs the remaining bootstrap operations, while the secondary CPUs
wait for permission to proceed.

6. The primary performs further testing and prints results on the console.
The primary processor's console program configures memory, determin­
ing how much is present and which pages have uncorrectable errors. It

30.2.3.2

30.2 Processor-Specific Initialization

allocates pages from the high end of physical memory for the CCA and
for a bitmap that will inform VMS which physical pages are usable and
which are not. In the bitmap, the console program marks as unusable
any pages found bad. In addition, it marks as unusable those pages that
CCA and the bitmap itself occupy to prevent VMS from attempting to
put them to a second concurrent use.

The console program also locates 256K bytes of good physical memory
for VMB.

7. The console program running on the primary searches the EEPROM and
ROM for parameters describing the boot device and bootstrap options.
It locates a matching boot primitive, loads the processor registers as
required by the boot parameters and the boot device, and transfers control
to the boot primitive.

8. The action of the boot primitive depends upon the type of boot device:.

-For a disk device, the boot primitive reads the first logical block of
the disk (the boot block, LBN OJ into the first good page of memory.
The boot block contains the size and location of the VMB image on
the disk. Code in the boot block and in the boot primitive load VMB
into memory, as described in Section 30.2.3.3.1. Note that a VAX 6000
series system never uses the BOOT58 program.

-For a tape device, the boot primitive rewinds the tape and reads the
first block into the first good page of memory. If the block size is 80
bytes, the tape is assumed to be a standard ANSI labeled tape. The
first file after the tape label is assumed to be VMB; the boot primitive
copies it into memory starting at the second good page and transfers
control. Otherwise, the boot primitive reads the remaining blocks until
it encounters a tapemark, then transfers control to the loaded image
at offset 12 from the base of good memory.

-For an Ethernet device, the boot primitive causes the adapter to request
a tertiary load, similar to the method described in Section 30.3.4.

9. Through one of these methods, the primary processor transfers control
to VMB.

VAX 8200 Family Console Subsystem and Initial Bootstrap Operation. The
VAX 8200 family consists of the VAX 8200, VAX 8250, VAX 8300, and
VAX 8350. The VAX 8200 family console subsystem includes two block­
addressable storage devices (RX50 floppy diskettes), an optional remote diag­
nosis port, and the console program. The console program is implemented as
microcode in the VAX CPU. When the CPU is in console mode, the console
program (and nothing else, such as a user program or VMS itself) executes.
The console program gains control of the processor whenever any halt con­
dition occurs, such as execution of a HALT instruction.

The VAX 8200 and VAX 8250 CPUs have four internal processor registers

895

Bootstrap Procedures

896

to communicate with the console terminal. Communication with the disk
drives is through device registers in 1/0 space.

On the multiprocessor members of the family, the VAX 8300 and VAX
8350, only the primary CPU can communicate with the console terminal
(using the same four internal processor registers as a VAX 8200 CPU). The
secondary CPU communicates with the console terminal via the primary
CPU. The primary and secondary CPUs use the internal processor register
PR8SS$_RXCD to transfer console data to each other. The primary CPU uses
the previously mentioned four internal processor registers to communicate
with the console terminal on behalf of the secondary CPU.

There are several circumstances in which a bootstrap sequence is initiated:

• The system is powered on or the RESTART button on the control panel
is pressed, and the lower key switch on the CPU control panel is in the
AUTO START position.

• The B(oot) command is typed while the system is in console mode.
• The following instruction is executed in kernel mode:

MTPR #~XF02,#PR$_TXDB

• An attempt to restart the system after a power failure recovery or some
other halt condition does not succeed, and the lower key switch is in the
AUTO START position.

When a VAX 8200 family member is initialized, the console program is
the first in a series of programs that execute before VMB executes. These
programs are summarized in Table 30.18. Note that this description does not
include booting the attached processor of an SMP system; see Chapter 34.

The steps of initial bootstrap are as follows:

1. The console program initializes the CPU. It locates 64K bytes of contigu­
ous, error-free, page-aligned memory and loads the bootstrap code from
the EEPROM into a boot random access memory (RAM).

2. The console program does not process command procedures. Instead, it
must construct the contents for RO through RS from the combination of
default boot device and the bootstrap command itself. The system man­
ager identifies the default boot device by running a stand-alone diagnostic
to load its name into the EEPROM.

3. The console program passes control to the bootstrap code loaded from
the EEPROM.

4. The bootstrap code consists of two main pieces, a dispatch routine and
device-specific routines. The dispatch routine parses the boot device
name passed from the console microcode and selects the corresponding
device-specific routine. The device-specific routine simply reads LBN 0 of
the selected device into the first page of good memory and passes control
to it (at an address 12 bytes past the beginning of the program).

30.2.3.3

30.2 Processor-Specific Initialization

Table 30.18 Processor-Dependent Programs Used to Bootstrap VAX 8200 Family
Processors

Program Executing

Console program

Bootstrap code

Boot block code

VMB.EXE

BOOTS8.EXE

Location of Program

ROM in VAX CPU

EEPROM

LBN 0 of boot device

Specific LBN on
system device

Specific LBN on
console RXSO

Purpose of Program

Initialize CPU, load bootstrap
code from EEPROM into boot
RAM, locate block of good
memory, determine action
to take, and pass control to
bootstrap code

Load LBN 0 of boot device into
memory and pass control to it

Load primary bootstrap program
from system device or BOOTS8
from console RXSO and pass
control to it

Size physical memory, locate
secondary bootstrap, load it
into memory, and pass control
to it

Process command procedures or
enhanced console commands,
boot from a hierarchical storage
controller (HSC) system device

5. The boot block program reads VMB or BOOT58 from the boot device
into memory. Section 30.2.3.3.l describes the boot block program, Sec­
tion 30.2.3.3.2 describes BOOT58, and Section 30,3 describes VMB.

VAX-11/750 Console Subsystem and Initial Bootstrap Operation. The con­
sole subsystem on the VAX-11/750 consists of a terminal, a TU58 cartridge
device, an optional remote diagnosis port, and console microcode in the VAX-
11/750 processor. The console program is implemented in CPU microcode
and stored in ROM within the CPU. When the console program has con­
trol, that is, when the CPU is in console mode, the VAX-11/750 processor
executes console microcode rather than user or system instructions.

A VAX-11/750 processor has eight internal processor registers for com­
munication with the console devices: four for the terminal and four for the
TU58 console block storage device.

There are several circumstances in which a bootstrap sequence is initiated:

• The system is powered on or the RESET front panel button is pressed, and
the Power-on Action switch is in the BOOT position .

• The B(oot) command is entered while the system is in console mode.
• A HALT instruction is executed or some other halt condition occurs, and

the Power-on Action switch is in the BOOT position.

897

Bootstrap Procedures

898

Table 30.19 Processor-Dependent Programs Used to Bootstrap a VAX-11/750
Processor

Program Executing

Console program

Device-specific
ROM code

Boot block code

VMB.EXE

BOOT58.EXE

Location of Program

ROM in VAX-11/750
CPU

1/0 address space of
VAX-11/750 CPU

LBN 0 of boot device

Specific LBN on
system device

Specific LBN on
console TU58

Purpose of Program

Initialize CPU, locate block of
good memory, determine boot
device, and. pass control to
device-specific ROM

Load LBN 0 of boot device into
memory and pass control to it

Load primary bootstrap program
from system device or BOOT58
from console TU58 and pass
control to it

Size physical memory, locate
secondary bootstrap, load it
into memory, and pass control
to it

Process indirect command files or
enhanced console commands,
boot from an HSC system
device

• The following instruction is executed in kernel mode:

MTPR #-XF02,#PR$_TXDB

• An attempt to restart the system after a power failure recovery or some
other halt condition does not succeed, and the Power-on Action switch is
in the RESTART/ BOOT position.

In the bootstrap sequence, the console subsystem must execute a series of
programs to load and execute VMB. Table 30.19 lists these programs.

The steps of initial bootstrap are as follows:

1. The console program initializes the CPU and locates a page-aligned 64K­
byte block of good memory. It loads the first 128 map registers in the
UNIBUS adapter to address this block of memory (a step not taken when
the TU58 is used as a bootstrap device). The console program on the VAX-
11/750 does not process command procedures. Instead, it must construct
the contents for RO through RS from the device selected by the Boot
Device switch and the bootstrap command itself. It then passes control to
the device-specific ROM selected either by the bootstrap device selector
switch on the CPU cabinet front panel or by the B(oot) command.

2. The device-specific ROM program is a VAX MACRO instruction pro­
gram. It consists of two main pieces, a control routine and a device­
specific subroutine. This program simply reads the boot block, LBN 0, of

30.2.3.3.1

30.2.3.3.2

30.2 Processor-Specific Initialization

the selected device into the first page of good memory and passes control
to it (at an address 12 bytes past the beginning of the program).

3. The code in the boot block reads VMB or BOOT58 from the console
device into memory. The boot block program is described in more detail
in Section 30.2.3.3.1. Section 30.3 describes VMB.

4. BOOT58 executes a command procedure that reads VMB from the sys­
tem device into memory. BOOT58 is described in more detail in Sec­
tion 30.2.3.3.2.

Boot Block Program. The boot block program loads a single program into
memory and passes control to it. The boot block program does not contain
any I/O support. It uses the driver subroutine (or boot primitive) from the
device ROM program. The boot block program on a system device loads
VMB. The boot block program on a console device can load an enhanced
command processor program, called BOOT58, for some CPUs. The boot
block program on a stand-alone Backup console device loads VMB.

The boot block program resides in the first logical block (LBN O) of the
boot device. Three longwords of header information precede the body of the
boot block program. These longwords contain the following:

• The size of the bootstrap program to be loaded by the boot block program
• The starting LBN of the bootstrap program to be loaded
• A relative offset into the block of good memory where this program is to

be loaded

The boot block is written during normal VMS system operation by the
Writeboot Utility. It uses the file system to look up a user-specified file
(VMB.EXE or BOOT58.EXE) on a user-specified device. WRITEBOOT de­
termines values for the three header longwords and writes the boot block
program into LBN 0. Note that the boot block program has the LBN of the
bootstrap program hard coded into the block. If the position of the bootstrap
program on the volume changes, the Writeboot Utility must be run again to
rewrite the boot block with new information.

Note that the location of VMB by the boot block program is one of the
few cases in the VMS system of a file being located by an LBN coded into
another program. Thus, VMB on the system device of a VAX CPU without
a console microprocessor is one of the few files that is not free to move or
be superseded by a newer version without some external intervention such
as running WRITEBOOT.

BOOT58. The block-addressable storage device on a VAX CPU without a
console processor is not necessarily used during a normal bootstrap opera­
tion. However, an alternative bootstrap path uses the device to provide the
following:

• Command procedure capability

899

Bootstiap Procedures

• An enhanced console command language
• The ability to bootstrap a system if the boot block on the system device

is corrupted
• The ability to bootstrap a system from an HSC disk

The stand-alone program BOOT58 is an e:p.hanced console command pro­
cessor loaded from the block-addressable storage device that provides the
features previously listed. BOOT58 is loaded by selecting the console block
storage device (DDAO:J as the bootstrap device, either by the device selector
switch or with the following command:

>»B DDAO:

Note that the drive DDAO: must contain an RT-11 structured medium
with console command files and BOOT58.EXE.

The boot block on the device boots BOOT58. Once BOOT58 prompts,
commands or command procedure file specifications can be entered at the
console terminal. BOOT58 accepts the commands shown in Table 30.16.

There is no device-specific ROM on a VAX-11/750 processor or VAX 8200
family member that supports loading LBN 0 from an HSC disk through a
computer interconnect (CI) adapter and then loading VMB. BOOT58 makes
it possible to load VMB from the console. VMB does contain device support
for the CI and HSC disks. It first loads volatile CI microcode from the console
device into the CI device and volatile CPU microcode into the processor.

30.3 PRIMARY BOOTSTRAP PROGRAM (VMB)

900

The first program that is common to VAX systems, generally independent
of CPU type, is the primary bootstrap program, VMB. VMB exists in two
forms:

• Full VMB is located on the system device or console medium and is used by
systems such as VAX 6000 series, VAX-11/750, and VAX 86x0 processors.
Section 30.3.1 describes the operation of full VMB.

• ROM-based VMB is a VMB subset stored in processor ROM. All MicroVAX
processors boot via this general method, with the actual VMB code differ­
ing slightly between MicroVAX implementations. ROM-based VMB links
with a processor-specific subset of the normal boot drivers, includes a min­
imal version of the XDELTA debugger, and interprets register contents
differently than does full VMB. Section 30.2.1.2 provides an example of
ROM-based VMB.

VMB performs the following two major steps:

1. It locates and determines the size of physical memory on the system
unless the console subsystem has previously sized memory, as is the
case with all MicroVAX processors.

30.3 Primary Bootstrap Program (VMB)

2. It locates a secondary bootstrap program, loads it into memory, and
transfers control to it.

VMB and the secondary bootstrap program, SYSBOOT, are conceptually
one program. The VAX-11/780 initialization (initially implemented for Ver­
sion 1.0 of the VMS operating system) required that the initial bootstrap
program reside on the console floppy diskette, whose capacity of 512 blocks
was also used for microcode, the console program, and command procedures.
Rather than impose artificial restrictions on the size of the bootstrap pro­
gram, the designers divided the program into two pieces:

• A primary piece that resides on the floppy diskette or in ROM, one of
whose major purposes is to locate the secondary piece

• A secondary piece that resides on the system device (with no real limits
on its size) that performs the bulk of the bootstrap operation

Once this division was achieved, VMB became a more flexible tool that
could be used to' load programs other than VMS. To preserve this flexibility,
the division of the bootstrap into primary and secondary pieces was contin­
ued in subsequent versions of the VMS operating system.

VMB is a general-purpose bootstrap program. In addition to loading SYS­
BOOT to initialize a VMS system, the default, VMB can perform the follow­
ing three options:

• VMB can load the diagnostic bootstrap [SYSMAINT]DIAGBOOT.EXE in­
stead of SYSBOOT .

• VMB can prompt for the name of any stand-alone program to be loaded into
VAX memory. This program might be a stand-alone diagnostic program,
an alternative secondary bootstrap, or another operating system. The file
system routines and control transfer mechanism used by VMB place some
restrictions on this file:

-The system device containing the file to be loaded by VMB must be an
ODS-2 Files-11 volume.

-The file must be contiguous.
-The code in the program must be position-independent.

• VMB can load the contents of a bootstrap block from the system disk and
execute the program that it finds there. In general, this boot block is LBN 0
on the volume. The VAX-ll/78x bootstrap sequences allow an alternative

. boot block number to be passed to VMB in R4. VMS only supports an
alternative boot block number for a VAX-ll/78x system.

The ability to pass control to a boot block program makes VMB a flexible
tool. One possible use for such a program is support for a file system other
than Files-11, such as that of ULTRIX-32.

If none of these listed options is selected through the co~esponding flags

901

Bootstrap Procedures

30.3.1

902

in RS, VMB enters its default path, which loads SYSBOOT into memory and
transfers control to it.

VMB is enhanced in each version of the VMS software. These enhance­
ments include support for new processor types, support for new devices, and
changes to the argument list passed to SYSBOOT. Because a user might at­
tempt to bootstrap a VMS system with an old version of VMB, it is desirable
to maintain forward and backward compatibility between versions of VMB
and SYSBOOT. SYSBOOT checks the version of VMB that loaded it and
takes appropriate action, depending on the relative versions. Compatibility
is maintained by not removing functionality from VMB that is required by
older versions of SYSBOOT.

Operation of VMB

VMB receives control running in the following environment:

• In kernel mode
• On the boot stack ISP = RPB base plus 20016)

• With memory management disabled
•At IPL 31

Most modules that make up full VMB.EXE are from facility [BOOTS].
VMB modules include minimal drivers for boot devices, VAX instruction
emulation routines, test routines for various types of memory, primitive file
access routines, and the XDELTA debugger.

VMB interprets the contents of registers RO through RS and R7 to deter­
mine the type of bootstrap being performed and the identity of the boot
device.

Tables 30.20 and 30.21 summarize the input parameters passed to VMB.
VMB saves these parameters in the RPB lsee Table 30.22) for use by later
steps in system initialization.

The steps that VMB takes to load SYSBOOT into memory follow. Note
that this list describes full VMB rather than ROM-based VMB and does not
include error paths. It focuses on booting VMS from a system device and
does not discuss booting stand-alone Backup.

1. VMB creates a one-page system control block (SCB) with most interrupt
and exception vectors pointing to a single service routine, a fault handler
lsee Figure 30.2). It loads the vectors for TBIT and BPT exceptions with
the addresses of exception service routines in XDELTA, linked as a part
of the VMB image. It loads the vectors for OPCDEC and OPCDEC_FPD
exceptions with the addresses of minimal character string instruction
emulation routines for processors that require emulation.

2. VMB reads the processor ID register IPR$_SID) to determine the CPU
type. It uses the CPU type in several places to choose the appropriate
section of CPU-dependent code to execute. SYSBOOT later performs

Most VAX CPUs

RPB

VMB

SCB
(1 page)

Small
PFN Bitmap

Boot Stack
(3 pages)

Remainder of
PFN Bitmap

Figure 30.2

30.3 Primary Bootstrap Program {VMB)

VAX 6000 Serles
and

VAXstation 35x0

RPB

VMB

SCB
(1 page)

Boot Stack
(3 pages)

PFN Bttmap
Built by Console

CCA

MicroVAX CPUs

RPB

VMB

SCB
(2 pages)

Boot Stack
(3 pages)

PFN Bitmap
Built by Console

Lowest good
physical memory

j
Highest
physical memory

Physical Memory Layouts Used by VMB and SYSBOOT

a similar step for the use of both SYSBOOT and the executive. If the
processor type is unknown, VMB prints an error message and halts.

3. If the RS bootstrap breakpoint flag, RPB$V _BOOBPT, is set, VMB exe­
cutes a BPT instruction, which transfers control to XDELTA, linked as a
part of the VMB image. This breakpoint is useful in debugging problems
that prevent a system from booting.

4. VMB stores some of its input parameters and the physical addresses of
the boot device driver in the RPB (see Table 30.22).

5. VMB switches to a three-page stack, either in the physical pages imme­
diately following the SCB or four pages beyond the SCB, depending on
the location of the bitmap described in the next step.

6. SYSBOOT requires a bitmap describing all physical memory that is to
be used as main memory. Each possible page is represented by one bit. If
the page is free from error, the bit representing it is set. If the page does
not exist or has errors, its bit is clear. SYSBOOT uses the bitmap as the
basis for the creation of the PFN database.

Memory test and bitmap construction is performed by VMB or, on
many VAX systems, by the VAX console. Either the console reserves
pages of memory in high physical address space for the bitmap (and for
additional CPU-specific structures such as the CCA), or VMB reserves the
four pages immediately beyond the SCB to describe up to eight megabytes
of physical memory, and allocates further pages as more memory is
discovered.

If the console tests memory and loads the bitmap, it marks the pages
containing the bitmap (and CPU-specific structures) as unavailable in

903

Bootstrap Procedures

Table 30.20 Register Input to VMB

Register

RO

Rl

904

Contents
Bootstrap device type code

Bit Field

(31: 16)

(15:8)
(7:0)

Meaning

MASSBUS-mbz 1

UNIBUS-Optional vector address; if zero, use default vector
mbz
Bootstrap device code (decimal) from $BTDDEF

Value
0
1
2
3
4-16
17
18
19-31
32
33
34
35
36-42
43-63
64
65-95
96
97
98
99
100-103
104
105-127
128

Meaning
MASSBUS device (RM03/5, RP04/5/6/7, RM80)
RK06/7
RLOl/2
IDC on VAX-11/730
Reserved for UNIBUS devices
UDA
TK50
Reserved
HSC on CI
KDB50
KRBTA
DEBNK (tape)
VAXstation 2000 and 3100 DSSI and SCSI devices
Reserved
Console block storage device
Reserved
DEQNA
DEUNA
DEBNK (Ethernet)
VAXstation 2000 and 3100 Ethernet
Reserved
DEBNI
Reserved for network boot devices
Disk served by an LAVc host

Bootstrap device bus address

CPU

VAX-11/730,
VAX-ll/78x
VAX-11/750

VAX 86x0

VAX 8200
family

Bit Field
(31:4)
(3:0)
(31:24)
(23:0)
(31:6)
(5:4)
(3:0)
(31:4)
(3:0)

Meaning

mbz
TR number of adapter
mbz
Address of I/O page for boot device's UNIBUS
mbz
A-bus adapter number
TR number of adapter
mbz
VAXBI node number of adapter

(continued)

30.3 Primary Bootstrap Program (VMB)

Table 30.20 Register Input to VMB (continued)

Register

Rl

R2

Contents

Bootstrap device bus address

CPU Bit Field Meaning

VAX 8800, (31:6) mbz
88x0 (5:4) V AXBI bus number

family (3:0) V AXBI node number of adapter
VAX 6000 (31:8) mbz

series (7:4) XMI or DWMBA TR number
(3:0) VAXBI node number of adapter

Bootstrap device controller information

Bus Type
Other buses
UNIBUS

MASSBUS

CI

Bit Field
(31:24)
(31:18)
(17:0)
(31:4)
(3:0)
(31:16)
(15:8)
(7:0)

Meaning
Bus type
mbz
UNIBUS address of the device's CSR
mbz
Adapter's controller/formatter number
mbz
HSC port number
Alternative HSC port number

R3 Boot device unit number
R4 LBN of boot block (VAX-11/780 and VAX-11/785 only)
RS Software boot control flags (see Table 30.211
R7 CCA address
Rl0 2 Halt PC
Rll 2 Halt PSL
AP 2 Halt code
SP Address of 64K bytes of good memory plus 20016

1 mbz stands for "must be zero."
2 The console subsystem sets up these registers after a halt condition. VMB does not use these values.

the bitmap itself so that VMS does not overwrite them. However, they
are not counted as bad pages. If VMB tests memory and loads the bitmap
with a CPU-specific routine, it marks the bitmap pages available to VMS,
and they are eventually reused.

If the memory test fails on 10 percent or more of the physical pages,
VMB writes a message to that effect on the console terminal and halts.

Figure 30.2 illustrates the layout of physical memory after VMB begins
execution. Note that the RPB resides at the lowest physical address
available.

905.

Bootstrap Procedures

Table 30.21 VMB Boot Control Flags (Contents of RS)

Bit
Position

0

2

3

4

5

6

7

8

9

10
11
12

13

14

906

Symbolic Name
RPB$V_CONV

RPB$V _DEBUG

RPB$V _INIBPT

RPB$V _BBLOCK

RPB$V_DIAG

RPB$V _BOOBPT

RPB$V _HEADER

RPB$V _NOTEST

RPB$V _SOLICT

RPB$V_HALT

RPB$V _NOPFND
RPB$V_MPM
RPB$V _USEMPM

RPB$V _MEMTEST

RPB$V _FINDMEM

Meaning

Conversational boot. If set, SYSBOOT solicits
parameters from the console terminal. On a
VAX-11/730, if this and RPB$V_DIAG are set,
the diagnostic supervisor enters MENUTEST mode.

Debug. If set, SYSBOOT loads the SYSTEM_DEBUG
loadable executive image.

Initial breakpoint. If it and RPB$V _DEBUG are
set, EXE$1NIT executes one BPT instruction after
turning on memory management. It enables other
breakpoints specified in the SYSGEN BREAKPOINT
parameter.

Secondary boot from boot block. If set, secondary
bootstrap is a single 512-byte block. On a VAX­
ll/78x, its LBN can be specified in R4. On other
processors, the boot block is LBN 0. On MicroVAX
CPUs, this bit causes VMB to bypass its search for a
Files-11 secondary bootstrap file.

Diagnostic boot. If set, secondary bootstrap is image
[SYSn.SYSMAINT]DIAGBOOT.EXE.

Bootstrap breakpoint. If set, VMB and SYSBOOT _
XDELTA execute BPT instructions to transfer control
toXDELTA.

Image header. If set, VMB takes the transfer address of
the secondary bootstrap image from that file's image
header. If clear, VMB transfers control to the first
byte of the secondary boot file.

Memory test inhibit. If set, VMB does not test memory
pages.

Solicit file name. If set, VMB prompts for the name of
a secondary bootstrap file. Used to load SYSBOOT _
XDELTA.

Halt before transfer. If set, VMB executes a HALT
instruction before transferring control to the
secondary bootstrap.

No PFN deletion (not currently used).
Multiport memory (not currently used).
If set, specifies that the memory bitmap is to include

both multiport memory and local memory for later
use by VMS, as though both were one single pool of
pages (not used by VMS).

If set, specifies that a more extensive algorithm is to be
used when testing main memory for uncorrectable
hardware errors.

Reserved.

(continued)

30.3 Primary Bootstrap Program (VMB)

Table 30.21 VMB Boot Control Flags (Contents of RS) (continued)

Bit
Position
lS

16

17

18
(31:28}

Symbolic Name
RPB$V _AUTOTEST

RPB$V _CRDTEST

RPB$V _DIFSYSDEV

RPB$V _BOOTLOG
RPB$V _ TOPSYS

Meaning
On a VAX-11/730, if this and RPB$V_DIAG are set,

the diagnostic supervisor enters AUTOTEST mode.
If set, specifies that memory pages with correctable

errors are not to be used by VMS.
If set, indicates that the system device is different

from the boot device, which is magnetic tape. Used
for booting stand-alone Backup from magnetic tape.

Reserved.
Specifies the top-level directory number for a system

disk with multiple system roots.

Table 30.22 Contents of the Restart Parameter Block

Size
in

Field Name Contents Bytes Loaded by Special Uses
RPB$1-BASE Physical base address 4 VMB Identifies RPB

of block·
RPB$L_ Physical address of 4 EXE$INIT Locates restart

RESTART EXE$RESTART routine
RPB$L_ Checksum of first 4 EXE$INIT Consistency check

CHKSUM 31 longwords of on RPB and
EXE$RESTART EXE$RESTART

RPB$L_ Restart in progress 4 Console, Prevents nested
RSTSTFLG flag EXE$INIT, restarts

EXE$RESTART
RPB$L_ PC at HALT/restart 4 VMB

HALTPC
RPB$L_ PSL at HALT /restart 4 VMB

HALTPSL
RPB$1- R,eason for restart 4 VMB

HALTCODE
RPB$1- Saved bootstrap 24 VMB

BOOTRx parameters (RO
through RS)

RPB$L_IOVEC Address of bootstrap 4 VMB, Loads system
driver EXE$INIT images, writes

crash dump
RPB$L_ Size (in bytes) of 4 VMB

IOVECSZ bootstrap driver
RPB$L_FILLBN LBN of secondary 4 VMB

bootstrap file

(continued)

907

Bootstrap Procedures

Table 30.22 Contents of the Restart Parameter Block (continued)

Size
in

Field Name Contents Bytes Loaded by Special Uses

RPB$L_FILSIZ Size in blocks 4 VMB
of secondary
bootstrap file

RPB$Q_ Descriptor of PFN 8 VMB Used by SYSBOOT
PFNMAP bitmap to locate bitmap

RPB$L_ Count of physical 4 VMB,
PFNCNT pages SYSBOOT

RPB$L_SVASPT System virtual 4 EXE$INIT Used by
address of system EXE$RESTART
page table

RPB$L_ Physical address of 4 VMB Locates boot device
CSRPHY UBA device CSR

RPB$L_CSRVIR Virtual address of 4 INIADPxxx Locates boot device
UBA device CSR

RPB$L_ Physical address of 4 VMB Locates boot device
ADPPHY adapter configura-

tion register
RPB$L_ADPVIR Virtual address of 4 INIADPxxx Locates boot device

adapter configura-
tion register

RPB$W_UNIT Bootstrap device unit 2 VMB
number

RPB$B_ Bootstrap device type VMB
DEVTYP code

RPB$B_SLAVE Bootstrap device VMB
slave unit number

RPB$T_FILE Secondary bootstrap 40 VMB
file name (counted
ASCII string)

RPB$B_ Byte array of adapter 16 VMB 1

CONFREG types
RPB$B_ Count of header 1 VMB

HDRPGCNT pages in secondary
bootstrap image

RPB$W_ 'fype of boot adapter 2 VMB Used by boot driver
BOOTNDT

RPB$B_FLAGS Miscellaneous flag
bits

RPB$L_MAX_ Absolute highest 4 VMB Formerly RPB$L_ISP
PFN PFN

RPB$L_SPTEP System space PTE 4 Formerly RPB$L_
prototype register PCBB

(continued)

908

30.3 Primary Bootstrap Program (VMB)

Table 30.22 Contents of the Restart Parameter Block (continued)

Size
in

Field Name Contents Bytes Loaded by Special Uses

RPB$1-SBR Saved system base 4 EXE$INIT, Restored by
register EXE$POWERFAIL EXE$RESTART

RPB$L_ Physical address of 4 EXE$INIT Formerly RPB$L_
CPUDBVEC per-CPU database SCBB

vector or primary's
per-CPU database

RPB$L_CCA. Physical address of 4 VMB Formerly RPB$1-
ADDR CCA SISR

RPB$L_SLR Saved system length 4 EXE$INIT, Restored by
register EXE$POWERFAIL EXE$RESTART

RPB$L_ Longword array 64 VMB Used by BUG-
MEMDSC of memory CHECK to dump

descriptors physical memory
RPB$L_SMP _PC SMP boot page 4 EXE$INIT Formerly RPB$L_

physical address BUGCHK
RPB$B_WAIT Bugcheck loop 4 VMB, VAX 8800 or

code for attached SMP initialization 88x0 secondary
processor processor started

at this location
RPB$L_ Number of bad pages 4 VMB

BADPGS found in memory
scan

RPB$B_ Controller letter VMB
CTRLLTR designation

RPB$B_ SCB page count 1 SYSBOOT
SCBPAGCT

Reserved 6
RPB$L_VMB_ VMB revision level 4 MicroVAX VMBs Format varies

REVISION

1 The byte array of adapter types is loaded by VMB only on VAX-11/750 and VAX-ll/78x processors.
The system configuration is determined at a later stage of system initialization on other processors.

7. If VMB finds a CI port adapter that requires loadable microcode, such
as the CIBCA-A, it looks up and reads the microcode from the console
block storage device. The microcode file for a CI780, CI750, or BCI750
adapter is called CI780.BIN; the file for a CIBCA is called CIBCA.BIN.

If the system is a VAX 8800 processor or VAX 88x0 family member,
the microcode is on CSA3. For a VAX 6000 series system, VMB reads the
CIBCA-A microcode from the TKS0/70 tape drive.

If VMB finds a CI750 on a VAX-11/750 CPU, VMB must check that
the CPU revision level is at or above the minimum level required for

909

Bootstrap Procedures

910

CI support. It also tests whether the level is high enough to require
the loading of volatile CPU microcode. If it is, VMB locates the file
PCS7SO.BIN on the console TUS8, reads it into memory, and loads it
into the CPU microstore.

VMB sets the flag VMB$V _LOAD_SCS in the SYSBOOT argument list
to indicate that SYSGEN must load the system communication services
(SCS) code.

8. VMB relocates the boot driver (see Section 30.3.2).
9. Depending on processor a:nd bus type, VMB initializes the bus and the

bus adapter for the system device. If necessary, it initializes the bootstrap
device. The CI port adapter initialization routine loads the CI microcode.

10. VMB identifies the secondary bootstrap image by flags and values in RS
and, optionally, information solicited from the console terminal. The
following order holds in choosing a secondary bootstrap image:

a. If the RS flag RPB$V _BBLOCK is set, VMB reads the boot block
program from the system device. On VAX-11/780 or VAX-11/78S
processors, R4 contains the logical number of the disk block that
contains the secondary bootstrap image.

b. If the RS flag RPB$V _SOLICT is set, VMB prompts for the name of
the secondary bootstrap image on the console terminal.

c. If the RS flag RPB$V _DIAG is set, VMB loads the diagnostic bootstrap
image, the file [SYSMAINT]DIAGBOOT.EXE, which activates the
diagnostic supervisor.

d. SYSBOOT.EXE is used as the secondary bootstrap image in the ab­
sence of any other option. To locate SYSBOOT, VMB first checks
the system root directory, specified in the high four bits of RS. VMB
searches [SYSn.SYSEXE] and [SYSn.SYSCOMMON.SYSEXE], where
n is the root number. For example, using the default root of 0, VMB
would search [SYSO.SYSEXE], then [SYSO.SYSCOMMON.SYSEXE],
for SYSBOOT. If it does not find SYSBOOT and the root directory
is 0, VMB searches [SYSEXE] for compatibility with older versions of
VMS.

11. VMB records the file name of the secondary bootstrap image in the field
RPB$T _FILE.

12. It disables XDELTA exceptions and moves the SCB, bitmap, and current
stack.

13. VMB opens the file and reads the secondary bootstrap image into mem­
ory. SYSBOOT overlays much of VMB, to fit into known good memory.

14. If the RS flag RPB$V _HALT is set, VMB executes a HALT instruction before
passing control to the secondary bootstrap image. This feature enables
use of the console subsystem to debug the secondary bootstrap.

lS. VMB passes control to the secondary bootstrap image at its transfer
address, normally the first byte in SYSBOOT. However, if an image

30.3.2

30.3.3

30.3 Primary Bootstrap Program (VMB)

other than SYSBOOT is being loaded and the flag RPB$V _HEADER in
RS is set, VMB uses the transfer address stored in the image header of
the secondary bootstrap program jprovided that the secondary bootstrap
image was produced by the VMS Linker).

Bootstrap Driver and 1/0 Subroutines

VMB contains a skeleton Queue 1/0 Request ($QIO) procedure and device
driver to perform its 1/0. SYSBOOT later copies this driver and routine
into nonpaged pool for possible later use by the bugcheck code, described
in Chapter 32.

The VMB image actually includes simple drivers for all boot devices. Once
it has determined the name of the bootstrap device from register contents,
VMB moves the driver code for the. selected device so that it is adjacent to
the $QIO procedure, thus allowing the entire bootstrap 1/0 system to be
moved with a single MOVC3 instruction.

This simple operation by VMB prevents nonpaged pool from being loaded
with a set of bootstrap device drivers that are never used. That is, the only
bootstrap driver preserved for the life of a VMS system is the bootstrap device
driver for the system device, which is selected through input to VMB. All
other bootstrap drivers are linked into the VMB image but disappear along
with the rest of VMB when VMS is completely initialized. By locating the
$QIO procedure and driver in the low-address end of VMB, much of VMB
can be overlaid by SYSBOOT code. Thus, more efficient use is made of the
pretested block of memory into which SYSBOOT must fit.

The combined $QIO procedure and .bootstrap device driver begin with
a boot driver dispatch vector area (BQO), offsets in which are defined by
the macro $BQODEF. VMB records the location of the BQO in the RPB at
the offset RPB$L_IOVEC. It records the size of the $QIO procedure plus
the driver at the offset RPB$1-IOVECSZ. SYSBOOT and EXE$INIT locate
through the RPB pointer to the BQO.

File Operations

The bootstrap operation must locate files before the file system itself is in full
operation. Many files must be looked up before the Files-11 Extended QIO
Processor (XQP) has been loaded into memory and initiafued by SYSINIT.
Two special object modules, FILEREAD and FILERWIO, exist for this pur­
pose. The modu)~s contain subroutines that can perform some primitive
file operations oiJ:.a Files-11 ODS-2 volume. VMS links these modules in the
loadable executive image PRIMITIVE_IO. One of these modules, FILEREAD,
is also part of th~JMB, SYSBOOT, NISCS_LOAD, and EXEC_INIT images.

VMB and SYS~OOT citlI FIL$0PENFILE in FILEREAD, a file open pro­
cedure, to look,:UP file~ such as SYS.EXE. To improve its performance,

911

Bootstrap Procedures

30.3.4

30.3.4.1

912

FIL$0PENFILE caches information about directories used in file lookup. For
example, to locate SYS.EXE might require looking up and reading the master
file directory, SYSn .DIR, and SYSEXE.DIR.

In order to avoid repeated lookups and directory and subdirectory reads,
FIL$0PENFILE records directory file IDs, size in blocks, starting LBN, and
also caches blocks. from directory files. While VMB and SYSBOOT run, the
cache is physically based. SYSBOOT copies the cache to nonpaged pool for
use by EXE$INIT and the SYSINIT process until the XQP is operational.

Booting a V AXcluster Member over the Ethernet

Digital's Maintenance Operations Protocol (MOP) allows a processor to re­
quest the down-line loading of a program from an Ethernet service node into
the requestor's memory. VMS uses this mechanism to allow a processor to
boot over the Ethernet and join a VAXcluster system. Note that to boot in
this manner, both VMS systems must be members of the same V AXcluster;
booting an independent VMS system over the Ethernet is not implemented.

A servicing processor, called a host, identifies a requesting processor, called
a satellite, by the satellite's unique Ethernet address. A network database on
the host, SYS$SYSTEM:NETNODE_REMOTE.DAT, contains an entry for
each valid satellite. The satellite's database entry includes the name of the
VAXcluster system disk and root directory in which its files reside.

A satellite can request a specific program from the host, accept a default
program defined in the host's database, or request the activation of the load
assist agent defined in the host's database. In this case, the host transfers
control to the load assist agent, a program which directs further communi­
cation with the satellite.

The ability to boot over the Ethernet must exist in the satellite's console
program or its ROM-based VMB, and its Ethernet device. When a satellite
executes local ROM-based VMB, VMB performs the steps described in Sec­
tion 30.3.4.1 if it discovers that the boot device is an Ethernet adapter.

Obtaining the Secondary Bootstrap. ROM-based VMB on the satellite must
obtain the secondary boot file over the network. It therefore issues a mul­
ticast MOP message requesting that an operating system be loaded into its
memory. The MOP message includes the satellite's Ethernet address.

Ethernet hosts receive the message and check their network databases for
an entry whose Ethernet address matches that of the incoming message. If a
host finds a match, it activates the load assist agent defined in the database
entry, SYS$SYSTEM:NISCS_LAA.EXE.

NISCS_LAA receives one value from the network database entry. This
load assist parameter defines the system disk and V AXcluster root direc­
tory from which the satellite should boot. If NISCS_LAA does not find a
SYSGEN parameter file, VAXVMSSYS.PAR, in the specified root directory,

30.4 Secondary Bootstrap Program (SYSBOOT)

or if the parameter file indicates that the node will not attempt to become
a member of the VAX.cluster, the boot aborts. Otherwise, NISCS_LAA ob­
tains the cluster group authorization number and password from the cluster
authorization file, CLUSTER_AUTHORIZE.DAT. It constructs a parameter
block containing the password, the cluster group number, and information
from the parameter file such as SCSNODENAME. NISCS_LAA appends the
parameter block to the image SYS$SYSTEM:NISCS_LOAD and down-line
loads both to the satellite.

The image and parameter block are stored in a known location in satellite
memory. Once the satellite recognizes that the down-line load is complete,
it transfers control to the loaded image, NISCS_LOAD. NISCS_LOAD can
be thought of as a VMB extension. It contains a minimal class driver and
several Ethernet datalink drivers. Using the class driver and the appropriate
datalink driver, the satellite can access the secondary bootstrap file, normally
SYSBOOT, on the system disk served by the host. The minimal class driver
and Ethernet datalink driver present a standard disk interface, allowing SYS­
BOOT and the rest of the boot procedure to execute as though performing a
normal disk boot.

30.4 SECONDARY BOOTSTRAP PROGRAM (SYSBOOT)

The secondary bootstrap program, SYSBOOT, executes when VMB is di­
rected to load a VMS system. VMB, having already tested main memory,
reads SYSBOOT into memory and transfers control. (When booting over the
Ethernet, VMB loads NISCS_LOAD and NISCS_LOAD loads SYSBOOT.)

Most of the modules that make up SYSBOOT are from facility [BOOTS].
There is little CPU-dependent code in SYSBOOT, as most of the CPU­
dependent requirements have already been taken care of by VMB. However,
SYSBOOT does load the CPU-dependent code that is used during normal
VMS system execution.

When SYSBOOT gains control, Rl 1 points to the beginning of the RPB.
VMB passes an argument list to SYSBOOT using the AP. The count and
defiriition of arguments depends upon the VMB version number. The BQO,
located through RPB$L_IOVEC, contains the VMB version number at the
offset BQO$W_VERSION.

Table 30.23 lists the arguments that VMB Version 15, for VMS Version 5.2,
passes to SYSBOOT.

SYSBOOT performs three major functions:

1. It configures the system by loading a set of adjustable SYSGEN parame­
ters. By default, it uses the parameters stored in the file [SYSn.SYSEXE]
VAXVMSSYS.PAR, managed by the SYSGEN utility. In a conversational
bootstrap, SYSBOOT prompts on the console terminal. The person boot­
ing the system can change the value of specific parameters, select a whole
different set of parameters from a different file, or use a set of default

913

Bootstrap Procedures

30.4.1

914

Table 30.23 Argument List Passed from VMB to SYSBOOT

Argument Name
VMB$Q_FILECACHE
VMB$L_LO_PFN
VMB$1-HLPFN
VMB$Q_PFNMAP
VMB$Q_UCODE
VMB$B_SYSTEMID
Reserved
VMB$L_FLAGS

VMB$L_CLHIPFN
VMB$Q_NODENAME
VMB$Q_HOSTADDR
VMB$Q_HOSTNAME
VMB$Q_TOD
VMB$L_XPARAM
VMB$L_BVP _PGTBL

Size

Quadword
Longword
Longword
Quadword
Quadword
6 bytes
2 bytes
Longword

Longword
Quadword
Quadword
Quadword
Quadword
Longword
Longword

Description

FILEREAD cache descriptor
Lowest PFN found by VMB
Highest PFN exclusive
PFN bitmap descriptor
Loaded microcode descriptor
SCS system ID

VMB$V _LOAD_SCS, VMB$V _TAPE, and
VMB$V _ VOLSWIT flags

Highest PFN used by CI code
Booting node name
Host node address
Host node name
Time of day in MOP format
Address of extra MOP parameters
Address of port page table

values built into SYSBOOT and SYSGEN. SYSBOOT calculates other
system parameters whose values depend on the values of the adjustable
parameters.

2. SYSBOOT maps system virtual address space. The sizes of many of the
pieces of system address space depend on the values of one or more
SYSGEN parameters. The calculations that SYSBOOT performs and the
results of these calculations are detailed in Appendix F. In addition to
sizing the pieces of system space, SYSBOOT also sets up the system
page table (SPT) to map many of the pieces of the nonpaged and paged
executive. In a related step, SYSBOOT prepares a PO page table that
allows memory management to be turned on (see Chapter 31).

3. The last major SYSBOOT step is to allocate physical memory and read
the various portions of SYS.EXE into those pages. SYSBOOT also locates
a number of other files (see Table 30.1) and reads them into nonpaged
pool. Their locations in pool are passed on to EXE$INIT in a bootstrap
parameter block, defined by module BOOPARAM (see Table 30.24).

Operation of SYSBOOT

SYSBOOT runs in the environment established by the console subsystem
and VMB:

• In kernel mode
• On the boot stack
• With memory management disabled
• At IPL 31

30.4 Secondary Bootstrap Program {SYSBOOT)

Table 30.24 Information Passed from SYSBOOT to INIT

Global Location Size Description
BOO$GL_DSKDRV Longword Address of bootstrap device driver in

nonpaged pool
BOO$GL_SYSLOA Longword Address of CPU-dependent image in nonpaged

pool
BOO$GL_ TRMDRV Longword Address of terminal class driver in nonpaged

pool
BOO$GL_NPAGEDYN Longword Size of nonpaged pool remaining (in bytes)
BOO$GL_SPLITADR Longword Base address of 1/0 request packet (IRPI

lookaside list
BOO$GL_IRPCNT Longword Number of IRPs to be initialized
BOO$GL_LRPSIZE Longword Size of large request packets (LRPsl in bytes
BOO$GL_LRPMIN Longword Minimum size of request that can be allocated

anLRP
BOO$GL_LRPSPLIT Longword Base address of LRP lookaside list
BOO$GL_LRPCNT Longword Number of LRPs to be initialized
BOO$GL_SRPSPLIT Longword Base address of small request packet (SRPI

lookaside list
BOO$GL_SRPCNT Longword Number of SRPs to be initialized
BOO$GQ_FILCACHE Quadword Pool descriptor for FIL$0PENFILE cache
BOO$GL_BOOTCB Longword Address of boot control block in pool
BOO$GT _ TOPSYS 40 bytes Top-level system directory (ASCIC string)
BOO$GB_SYSTEMID 6 bytes 48-bit SCS system ID of boot device port
BOO$GL_PRTDRV Longword Address of port driver in pool
B00$GL_SUBPRTDRV Longword Address of subport driver in pool
BOO$GL_UCODE Longword Address of port microcode in pool
BOO$GL_SCSLOA Longword Address of SCS loadable code in pool
BOO$GL_CLSLOA Longword Address of cluster loadable code in pool
BOO$GB_NODENAME 8 bytes ASCII name of the node containing boot

device
B00$GL_ VAXEMUL Longword Address of instruction emulation loadable

code in pool
BOO$GL_FPEMUL Longword Address of floating-point emulation loadable

code in pool
BOO$GL_DEVNAME Longword ASCII boot device name
B00$GL_ VMB_FLAGS Longword Boot flags from VMB
BOO$GL_BOOPTE Longword SVAPTE of page table entries (PTEsl

temporarily allocated for BOO$MAP
BOO$GL_BOOPTECNT Longword Count of PTEs temporarily allocated for

BOO$MAP
B00$GL_PDDATAPTR Longword Pointer to address and size of loaded

PSEUDO LOA.EXE
BOO$GL_SPARE1 Longword Reserved
BOO$GL_SPARE2 Longword Reserved
BOO$GL_SPARE3 Longword Reserved
BOO$GL_SPARE4 Longword Reserved

915

Bootstrap Procedures

916

Beginning with VMS Version S.O, SYSBOOT no longer links with XDELTA.
With XDELTA, SYSBOOT would have been too large to fit into the guaran­
teed 64K-byte block of good memory available on older systems. Instead,
VMS provides a separate image, SYSBOOT _XDELTA.EXE, which is loaded
by booting with the RPB$V _SOLICT flag set in RS and specifying SYSBOOT _
XDELTA at the prompt.

SYSBOOT _XDELTA performs the same functions as SYSBOOT, except for
the following:

• It alters the SCB vectors for the TBIT and BPT exceptions to dispatch to
exception service routines in the XDELTA code.

• If the bootstrap breakpoint flag, RPB$V _BOOBPT in RS, is set, SYSBOOT _
XDELTA executes a BPT instruction. The exception transfers control to the
XDELTA code.

Note that the flag RPB$V _BOOBPT controls breakpoint execution in
both VMB and SYSBOOT _XDELTA. The flag can be used to locate a hard­
ware problem or other problem that prevents system initialization.

The following steps describe the operation of SYSBOOT:

1. SYSBOOT reinitializes the SCB created by VMB so that most vectors con­
tain the address of a service routine in SYSBOOT. It modifies the machine
check vector to point to a customized exception service routine. Some
VAX processors emulate certain instructions rather than supporting them
in CPU microcode. For these processors, execution of an instruction such
as MOVTC causes an exception. SYSBOOT initializes subset instruction
emulation vectors in the SCB to dispatch to service routines within SYS­
BOOT, until the appropriate software emulation routines are loaded.

2. SYSBOOT reads the system identification processor register, PR$_SID, to
determine the CPU type. It stores this information in the field EXE$GB_
CPUTYPE. On some processors, such as the MicroVAX II and the VAX
6000 series machines, SYSBOOT reads an additional register called the
extended system ID or system type register to determine the CPU sub­
type. SYSBOOT copies this information to the 16 bytes beginning at
EXE$GB_CPUDATA. Code whose execution depends on a specific CPU
type can check EXE$GB_CPUTYPE and EXE$GB_CPUDATA to deter­
mine the environment. The CPUDISP macro, described in the VMS De­
vice Support Manual, selects portions of CPU-specific code at execution
time (with suitable test-and-branch instructions).

SYSBOOT employs the CPU type and subtype to determine the fol­
lowing items:

-Pieces of CPU-dependent code within SYSBOOT that execute; for ex­
ample, SYSBOOT must check whether the hardware revision level is
at least the minimum required to support the VMS software. Its test
is processor-specific.

30.4 Secondary Bootstrap Program (SYSBOOT)

-Name of the file containing CPU-specific support, SYSLOAxxx.EXE,
where xxx designates the CPU type. Appendix G lists CPU types and
their corresponding SYSLOAxxx image names.

-Size of the SCB. Appendix F lists the sizes required by various VAX
processors.

3. For certain processors whose console, rather than VMB, creates the PFN
bitmap, SYSBOOT moves a copy of the bitmap to the area of mem­
ory immediately following SYSBOOT's location, if sufficient error-free
contiguous memory exists. SYSBOOT alters the bitmap as it allocates
physical memory. If SYSBOOT works from a copy of the bitmap, pre­
serving the original, the MicroVAX console subsystems that maintain a
checksum on the original bitmap need not execute memory test diagnos­
tics and rebuild the bitmap on subsequent reboots.

4. SYSBOOT checks the BQO field BQO$W _VERSION to determine which
version of VMB executed. Older versions of VMB do not perform many of
the operations that newer versions incorporate. SYSBOOT compensates
for these older versions by performing the operations missing from the
older VMB version or by performing its own operations in alternative
ways. This step allows backward compatibility for earlier versions of
VMB. The following items are checked at this point:

-Bootstrap adapter device type
-Support for more than eight megabytes of memory
-Presence and contents of the SYSBOOT argument list
-Presence of the FIL$0PENFILE cache
-Presence of memory descriptors in the RPB
-Presence of CI microcode read into memory
-Presence of a system root directory name

5. SYSBOOT allocates memory for a boot control block and a buffer to
contain retrieval pointers for special files that it opens, such as the system
dump file.

The boot control block, offsets in which are defined by the macro
$BOODEF, ultimately resides in nonpaged pool and is pointed to by
EXE$GL_BOOTCB. It contains information that must be available in
the event of a fatal bugcheck, such as the mapping information for SYS­
DUMP .DMP. SYSBOOT loads all fields in the boot control block except
for B00$1-BUG_WCB and B00$1-BUG_LBN. The initialization rou­
tine for the loadable executive image EXCEPTION, which contains the
bugcheck code, stores the window control block (WCB) mapping the non­
resident bugcheck code and the first LBN of the code into these fields.

Figure 30.3 shows the structure of the boot control block.
6. For each loadable executive image to be opened, SYSBOOT allocates a

block of memory for file mapping information. SYSBOOT maintains a
statistics block for each file that it must potentially load. A statistics

917

Bootstrap Procedures

918

CHECKSUM

TIMELBN

SUBTYPE l TYPE 1 SIZE

DMP_VBN

DMP_SIZE

DMP_MAP -1--

BUG_WCB

BUG_LBN

BUG_IMAGE_ VA

SCB_LBN

Size in{ bytes

Size in bytes

File Mapping Information for
SYS$LOADABLE_IMAGES:SYS.EXE

Size in bytes

File Mapping Information for
SYS$SYSTEM:VAXVMSSYS.PAR

Size in bytes ~

File Mapping Information for Dump File

Figure 30.3
Boot Control Block

block contains the file name and context information required by the
routines that open and read the file, LDR$0PEN_FILE and LDR$READ_
FILE. The statistics block also contains a pointer to the file mapping
information. Chapter 29 describes loadable executive images and the
manner in which they are loaded.

When SYSBOOT discovers that a file for which it has a statistics block
is not, in fact, to be loaded, it clears the file name field in the statistics
block.

7. When the STABACKIT.COM file creates a bootable VMS tape, it copies
a file called OPEN_INDEX.DAT onto the tape following SYSBOOT. For
each file on the tape, OPEN_INDEX.DAT contains the file name, file
size, and tape position. If SYSBOOT determines that the boot device was
a tape, it allocates memory, reads this file, and uses the information to
optimize tape access.

8. SYSBOOT checks whether NISCS_LOAD determined that an auxiliary
device driver is needed; if so, it creates a statistics block for the driver.

9. Based on the CPU type and subtype, SYSBOOT performs the following:

-It checks that the hardware and microcode revisions are appropriate
for the VMS version being loaded and issues a warning message if not.

30.4 Secondary Bootstrap Program (SYSBOOT)

-It determines the name of the SYSLOAxxx image containing CPU­
specific code to be loaded. Appendix G lists CPU types and their
corresponding SYSLOAxxx image names.

-It determines the number of pages in the SCB.
-For an SMP system, SYSBOOT records the ID of the CPU on which it

is executing, the primary CPU.

10. For console devices and small disk devices, the boot files may require
more space than is available. For these devices, SYSBOOT sets the bit
VMB$V _ VOLSWIT in BOO$GL_ VMB_FLAGS. If this bit is set, SYS­
BOOT and EXE$INIT allow the boot medium to be removed and another
volume substituted.

11. SYSBOOT locates the system base image, SYS.EXE. It first checks the
specified root directory (defaulting to root OJ. If it does not find SYS.EXE
and the root directory was 0, SYSBOOT also checks [SYSEXE]. This
maintains compatibility with earlier versions of VMS.

During this check, SYSBOOT switches volumes if it is both necessary
and allowed.

12. If the system device is a disk, SYSBOOT records the LBN of the first block
of the storage bitmap file, BITMAP.SYS, in the boot control block at offset
B00$1-SCB_LBN. This block, which is called the storage control block,
contains shadow set generation information for shadow set members. ··

13. SYSBOOT reads VAXVMSSYS.PAR, the file containing the current SYS­
GEN parameters. Chapter 31 describes in detail the movement of param­
eter information during the initialization sequence.

14. SYSBOOT tests whether the operator requested a conversational boot­
strap by setting the RS flag RPB$V _CONV. If so, SYSBOOT prompts to
allow interactive alteration of the parameter values. In any case, SYS­
BOOT enters the next step with a set of adjustable parameters.

15. If the system device is a disk, SYSBOOT opens the system dump file,
[SYSn.SYSEXE]SYSDUMP.DMP, and records the file mapping informa­
tion for use in the event of a bugcheck.

If SYSBOOT does not find the dump file, it opens and maps the pri- .
mary page file, [SYSn.SYSEXE]PAGEFILE.SYS, and sets the flag EXE$V_
PAGFILDMP in EXE$GL_DEFFLAGS. The first blocks of the page file,
if one exists, are used as an alternative dump file when the system
bugchecks. When the SYSINIT process runs (see Chapter 31), it will look
in the page file instead of the dump file for saved error log messages to
restore.

SYSBOOT saves the size of the dump or page file in the boot control
block at the offset BOO$L_DMP _SIZE. In BOO$L_DMP _MAP, it stores
a pointer to the area of the boot control block that contains the file map
information.

919

Bootstrap Procedures

920

16. Using the system device information saved in the RPB, SYSBOOT deter­
mines the name of the full driver for the system device. It looks in the
boot driver data structure to determine the name of any auxiliary driver
needed, for example, a CI port driver.

17. SYSBOOT determines whether SCSLOA.EXE and CLUSTRLOA.EXE
must be loaded, based on the SYSGEN parameters VAXCLUSTER and
NISCS_LOAD_PEAO and on the boot device.

18. SYSBOOT then tests which types of instructions, if any, must be em­
ulated in software. Not all VAX processors implement all types of in­
structions. In particular, certain types of floating-point instructions may
not be present. For example, the MicroVAX II does not implement many
string and decimal instructions. SYSBOOT must decide whether the im­
ages VAXEMUL.EXE, FPEMUL.EXE, or both must be loaded for string
and decimal instruction emulation and floating-point instruction emula­
tion. Bits in EXE$GL_ARCHFLAG record the various types of emulation
required.

19. SYSBOOT tests the boot parameters to determine if XDELTA, in the im­
age SYSTEM_DEBUG.EXE, is to be loaded. If not, it clears the statistics
block for the image.

20. SYSBOOT then constructs the name of the terminal class driver, prefix­
ing the value of the parameter TTY_CLASSNAME to the string DRIVER.

21. SYSBOOT determines the PFN of the highest usable page of memory,
taking into account the value of the SYSGEN parameter PHYSICAL­
PAGES, and stores it in MMG$GL_MAXMEM. If the parameter is set
artificially low, specifying only partial use of the memory, the lower
physical pages are used.

22. SYSBOOT calculates the size of a process header and the sizes of the
other pieces of system address space, including the SCB. In particular, it
calculates the size of the SPT. Appendix F describes the details of these
calculations.

23. SYSBOOT allocates and zero-fills pages of contiguous physical memory
at the highest physical addresses for the SCB, SPT, and system header.

24. It loads the first page of the SCB with the contents of module SCBVEC­
TOR, which contains the entry points for the architecturally defined
interrupt and exception service routines. Vectors in additional pages of
the SCB, if present, are loaded with the address of ERL$UNEXP, an unex­
pected interrupt handler. For some processors, interrupt vectors used for
passive releases are initialized with the address of ERL$VEC_RETURN.

25. SYSBOOT configures the system header. At this time, it fills in all entries
in the system header whose contents depend on configuration parame­
ters. This step is analogous to the process header configuration performed
by code in the shell as a part of process creation jsee Chapter 25).

26. It initializes system page table entries (SPTEs) to map the pages of the
SPT and system header.

30.4 Secondary Bootstrap Program (SYSBOOT)

2 7. It initializes demand zero SPTEs for the global page table.
28. It initializes SPTEs for the SCB.
29. It allocates physical memory and initializes SPTEs for the primary's per­

CPU data area, which includes the interrupt stack and the boot stack.
30. It allocates physical memory for the initial sizes of the three nonpaged

pool lookaside lists, loads the corresponding SPTEs, and records the size
and address of each list.

31. It allocates nonpaged pool for the device drivers listed in step 37 and the
FIL$0PENFILE cache.

32. It allocates physical memory and initializes SPTEs to map the system
base image.

33. SYSBOOT determines the size of the PFN database, which must map
any remaining unassigned physical pages. It allocates and zero-fills phys­
ical memory for the PFN database and initializes the SPTEs that map
it. The physical pages allocated for the nonpaged portions of the execu­
tive are not accounted for in the PFN database, because their state will
never change. The pages occupied by the PFN database itself are also not
accounted for in the PFN database.

34. SYSBOOT initializes an SPTE for the RPB. Since the RPB is already
present in a physical page, SYSBOOT merely stores its page number in
the new SPTE and the virtual address in EXE$G1-RPB.

35. SYSBOOT reads the system base image, SYS.EXE, into memory. From
the base image, it obtains a private copy of the system version array.
These version numbers are used in step 3 7 to check that the loadable
images are compatible with the system base image.

36. SYSBOOT determines which synchronization image to use, as described
in Chapter 8.

37. SYSBOOT invokes the boot driver with a list of loadable images to read
into nonpaged pool or system virtual address space. These files include
the following:

-EXEC_INIT.EXE, the next piece of initialization code
-SYSTEM_DEBUG.EXE, the XDELTA image, if requested
-SYSTEM_PRIMITIVES.EXE, containing primitive system routines
-SYSTEM_SYNCHRONIZATION_xxx .EXE, as determined by step 36
-PRIMITIVE_IO.EXE, the primitive file system routines
-ERRORLOG.EXE, the error logging routines and system services
-The system device driver and, if applicable, its port driver
- Terminal class driver
-SCSLOA.EXE, if needed
-SYSLOAxxx .EXE
-CLUSTRLOA.EXE, if needed
-FPEMUL.EXE, if needed
-VAXEMUL.EXE, if needed

921

Bootstrap Procedures

922

38. SYSBOOT copies the contents of its internal parameter table to the
portion of the memory image of SYS.EXE that contains the adjustable
parameters. This step makes the current parameter settings available for
the remaining system initialization routines and preserves them (because
SYSBOOT is exiting) until SYSINIT writes them back to the disk (see
Chapter 31).

39. SYSBOOT copies the FIL$0PENFILE cache into nonpaged pool, where
it will facilitate file lookups until the file system is initialized. (If the
boot was from tape, SYSBOOT copies the cached OPEN_INDEX.DAT file
instead. OPEN_INDEX.DAT contains the name, size, and tape position
of every file on the tape and thus optimizes tape access.)

40. It copies the boot control block, boot driver, and any microcode associ­
ated with the boot device to nonpaged pool, and modifies RPB$L_IOVEC
to reflect the virtual address of the boot driver.

41. SYSBOOT copies the argument list it built for EXE$INIT into the boot­
. strap parameter block in the memory image of SYS.EXE (see Table 30.24).

42. SYSBOOT loads the base and length registers for the PO and system
page tables so that EXE$INIT can turn on memory management (see
Chapter 31).

43. Finally, SYSBOOT transfers control to module EXE$INIT. This transfer
must be done to a physical location, because memory management is
not yet enabled.

31 Operating System Initialization
and Shutdown

Had I been present at the creation, I would have given some
useful hints for the better ordering of the universe.

Alfonso the Wise

Several components contribute to the second phase of system initialization:

• Routine EXE$INIT in module INIT, in the EXEC_INIT image
• The initialization routines of loadable executive images
• A special process, SYSINIT, created to complete those pieces of initializa­

tion that require process context to execute

EXE$INIT turns on memory management, configures the I/O adapters,
and initializes scheduling and memory management data structures. It maps
loadable executive images and invokes their initialization routines.

The initialization routines of loadable executive images execute in various
phases of system initialization, and an initialization routine may be invoked
several times. These routines perform initialization that logically relates to
the function of the associated image.

SYSINIT opens system files, creates system processes, loads the Record
Management Services (RMS) and system message loadable executive im­
ages, among others, and creates a process to execute the startup command
procedure.

31.1 INITIAL EXECUTION OF THE EXECUTIVE

31.1.1

The final instruction in SYSBOOT transfers control to the physical address
of EXE$INIT. EXE$INIT begins execution in an environment set up by SYS­
BOOT. It executes on the interrupt stack at interrupt priority level (IPL) 31. It
immediately modifies its environment by turning on memory management.

In a symmetric multiprocessing (SMP) system, SYSBOOT and EXE$INIT
execute on the BOOT CPU, a CPU with full access to the console subsystem.
In VMS Version 5.2, the BOOT CPU is the primary processor; the other CPUs
are called secondary processors.

Turning on Memory Management

The first and perhaps most important step that EXE$INIT takes is to turn
on memory management. Actions previously taken by SYSBOOT make this
possible. SYSBOOT allocates physical memory and system page table entries

923

Operating System Initialization and Shutdown

31.1.1.1

924

(SPTEs) for the EXEC_INIT image, initializes the SPTEs, and reads EXEC_
INIT into memory.

Before SYSBOOT transfers control to EXE$INIT, it constructs a PO page
table that has only one valid page table entry (PTE). The PTE maps the first
physical page of EXE$INIT to a PO virtual address with a virtual page number
identical to its physical page number. Thus, EXE$INIT can be referenced by
its physical address before memory management is turned on, by a PO virtual
address that translates to the identical physical address, and by its system
virtual address.

Mapping of EXE$INIT by SYSBOOT. PO space is used for the double map­
ping of EXE$INIT because the PO address range (O to 3FFFFFFF16) is the
maximum physical address range permitted by the VAX architecture. That
is, even on a VAX processor with the maximum possible physical memory,
a PO address range with identical addresses exists.

SYSBOOT must be able to account for the placement of EXE$INIT any­
where in physical memory, that is, it must be able to map every PO address.
A page table page can map 128 pages of virtual address space. Construct­
ing a page table large enough to map all 2,097,152 pages of PO space would
be rather inefficient, particularly since SYSBOOT only needs to create one
valid PTE. Instead, SYSBOOT constructs a one-page PO page table and loads
the PO base register, PR$_POBR, which normally contains the system virtual
address of the first page in the PO page table, with a computed value derived
as follows:

1. SYSBOOT computes the offset within a complete PO page table that
would contain the PTE mapping EXE$1NIT's address. It determines the
required number of PTEs (the last PTE maps the first page of EXE$INIT)
and the offset of the desired PTE from the start of the last page table
page.

2. In its one-page PO page table, at the latter offset, it stores a valid PTE
mapping EXE$INIT.

3. Since it will reference only the last page table page, SYSBOOT subtracts
the amount of virtual address space that would be occupied by the miss­
ing PTEs from the system virtual address of its one-page PO page table. It
stores the resulting value in PR$_POBR. Thus, to the address translation
hardware/microcode, EXE$INIT's page table appears to be complete.

As an example, suppose EXE$INIT begins at physical address 20BA0016.
In a complete PO page table, its PO address (also 20BA0016) would be mapped
by PTE 4189, or the ninety-third PTE of the thirty-third PO page table page.
At the ninety-third PTE in its one-page PO page table, SYSBOOT constructs
a valid PTE containing EXE$1NIT's page frame number (PFN). SYSBOOT
subtracts (4096 * 4) from the system virtual address of its PO page table to
account for the missing PTEs and stores the result in PR$_POBR.

31.1.1.2

31.1.1.3

31.1 Initial Execution of the Executive

MMG$GL_SPTBASE

I
System Page Table

1
EXE$1NIT's SPTE
set up by SYSBOOT .,.._ ___ P_F_N_=_z __ --1

Boot stack SPTE

MMG$ GL_MAXGPTE

L J_
2SPTEs, 3

1
in
c

per CPU --1
dexed by
PUID

PFN=x

SPTE n, PFN = x

PFNz

EXE$1NIT .

PO Page Table Page
PFNx

POmapping ~
of EXE$1NIT LJ

'- POBR = (SVA of SPTE n) - (INT (x/127) x 512)

Figure 31.1
Mapping EXE$INIT

Accessing EXE$INIT. The net result of SYSBOOT's mapping is that the phys­
ical page containing EXE$INIT can and will be accessed in three different
ways. These different mappings are listed here in order of mapping compli­
cation, not in the order in which they are used. EXE$INIT can be accessed
in the following ways:

• As a physical address
• As a system virtual address mapped by the system page table (SPT)
• As a PO virtual address translated by the combination of computed POBR

and one-page PO page table

Figure 31.1 shows the mapping set up by SYSBOOT.

Instructions That Turn On Memory Management. When EXE$INIT begins
execution, memory management is disabled. The program counter (PC) con­
tains the physical address of EXE$INIT. In the following example, the in­
struction sequence executes in three different address contexts. The numbers
in the example correspond to numbers in the list that follows.

925

Operating System Initialization and Shutdown

31.1.1.4

926

EXE$INIT:
MOVL RPB$L_BOOTR5(R11),FP G)
MTPR #1,S.#PR$_MAPEN G)
JMP FIRST_SYS_VA(R1) G)
FIRST_SYS_VA = . - EXE$INIT

10$: INVALIDATE_TB ENVIRONMENT=UNMAPPED G)

(!)The first instruction executes in physical space. Its effect is not related
to enabling memory management.

G)This instruction actually enables memory management. All address refer­
ences from this point are translated. Note that the MTPR instruction does
not cause a transfer of control to an instruction stream at a different phys­
ical location. The PC is simply incremented by 3, the number of bytes
in the instruction. However, the next PC reference will be translated,
because memory management is enabled.

The incremented (physical) PC, the address of the JMP instruction, is
seen as a PO virtual address by the address translation hardware/micro­
code. Because of the mapping set up by SYSBOOT, translating it as a PO
address results in the correct physical address.

G)This instruction is the only instruction that executes with a PO PC. Rl
contains the system virtual address of the base of EXE$INIT, passed to
EXE$INIT by SYSBOOT.

FIRST _SYS_ VA is the offset from the base of EXE$INIT to the instruc­
tion following the JMP instruction, calculated at assembly time. When
this offset is added to the system virtual address in Rl, it results in the
system virtual address of the next instruction in EXE$INIT. Translating
this address using the SPT results in the physical address of the next
instruction, which is the first instruction to execute with a system PC.

@With the INVALIDATE_ TB macro, EXE$INIT flushes stale virtual address
translations from the translation buffer. Chapter 14 describes the transla­
tion buffer.

Thus, these instructions execute in three different mapping contexts. The
mapping set up by SYSBOOT results in the selection of successive instruc­
tions from the same physical page.

Secondary Processors and Memory Management. Each secondary CPU in an
SMP system must also turn on memory management using the same basic
sequence as the primary processor. To make this possible, SYSBOOT reserves
the highest 32 SPTEs, one for each potential CPU in the SMP system. A
CPU uses the SPTE indexed by its CPU ID number to map its one-page
PO page table. SYSBOOT reserves the highest system virtual address space
for the page tables to guarantee that the PR$_POBR values resulting from
the subtraction described in Section 31.1.1.1 are always virtual addresses in
system space.

31.1 Initial Execution of the Executive

A secondary processor uses the same physical page for both its PO page
table and its boot stack. Figure 31. l shows the mapping. Chapter 34 describes
secondary processor initialization.

31.1.2 Initialization of the Executive

Once EXE$INIT has turned on memory management, it can refer to system
addresses. In particular, it can now initialize dynamic data structures whose
listheads are in global locations in system space. Some of these steps involve
allocation from nonpaged pool. Table 31.1 lists some of the nonpaged pool
space allocated by EXE$INIT, and the SYSGEN parameters that control
allocation size.

EXE$INIT takes the following steps once memory management has been
turned on:

1. It sets the INIT and MAPPED flags in EXE$GL_STATE, indicating that
memory management is enabled and EXE$1NIT is running.

2. It switches to the primary CPU's interrupt stack by storing its address
in the stack pointer (SP) register.

3. EXE$INIT tests flags in EXE$G1-ARCHFLAG, initialized by SYSBOOT,

Table 31.1 Allocation of Nonpaged Pool by EXE$INIT

Global Name
Item

Real-time bitmap
Lock ID table
Resource hash table
Deadlock detection

process bitmap
Process control

block (PCB) and
sequence number
vectors

Process header
vectors

Network window
control block
(WCB)

Page-and-swap-file
vector

of Pointer
EXE$GL_RTBITMAP
LCK$GL_IDTBL
LCK$GL_HASHTBL
LCK$GL_PRCMAP

SCH$GL_PCBVEC,
SCH$GL_SEQVEC

PHV$GL_PIXBAS,
PHV$GL_REFCBAS
NET$AR_WCB

MMG$GL_PAGSWPVC

Factors That Affect Size

RBM$K_LENGTH+(4*REALTIME_SPTS)
12 + (4 * LOCKlDTBL)
12 + (4 * RESHASHTBL)
13 + (MAXPROCESSCNT /8)

12 + (6 * (MAXPROCESSCNT + 1)) 1

12 + (4 * (BALSETCNT + 1)) 2

WCB$K_LENGTH

4 * (PAGFILCT + SWPFILCT + 1) + 16

1 Each array contains one extra slot for the system process, which has a process index of MAX­
PROCESSCNT.

2 Each array contains one extra slot for the system header, which has a balance slot index of
BALSETCNT.

927

Operating System Initialization and Shutdown

928

to determine whether the processor needs subset instruction or floating­
point emulation. If so, SYSBOOT has already loaded VAXEMUL.EXE or
FPEMUL.EXE (or both) into nonpaged pool, and EXE$INIT invokes the
initialization routine of either or both emulators.

4. EXE$INIT stores the physical address of the system control block (SCB)
into the SCB base register (PR$_SCBB).

5. EXE$INIT allocates an SPTE and stores its virtual page number and cor­
responding virtual address in MMG$GL_FREE_NO_PFN_DB_PTE and
in MMG$GL_FREE_NO_PFN_DB_ VA. The SPTE temporarily maps an
available physical page to manipulate a list of pages not described in the
PFN database.

6. EXE$INIT calls LDR$1NIT _ALL, in module SYSLDR, to invoke the ini­
tialization routines for the loadable executive images loaded by SYS­
BOOT. The routines for SYSTEM_PRIMITIVES, SYSTEM_SYNCHRON­
IZATION, ERRORLOG, and, if requested, SYSTEM_DEBUG, execute
(see Section 31.2). '

7. EXE$INIT performs its SMP-related initialization, which is described in
Chapter 34.

8. SYSBOOT determined which SYSLOAxxx .EXE image was appropriate
for the processor type and loaded the image into nonpaged pool (xxx is
one of the CPU designations listed in Appendix G).

EXE$INIT invokes EXE$LINK_ VEC, in module LINKVEC, to connect
the routines in the SYSLOA image to vectors in the system base im­
age, SYS.EXE. Chapter 29 describes EXE$LINK_ VEC, the system images
loaded into nonpaged pool, and the system base image.

CPU-specific support for the console terminal, which is part of SYS­
LOA, is needed to print the announcement message (and any other
messages).

9. EXE$INIT initializes the console terminal and prints the announcement
message and system version number. Note that this important milestone,
while not very far into EXE$INIT, indicates that the base image and sev­
eral loadable executive. images have been read into memory and that
memory management has been turned on, both significant steps in ini­
tializing the executive.

10. It initializes the nonpaged pool variable list, described in Chapter 19.
11. The restart parameter block (RPB J contains the boot flags passed to VMB

in RS. If the boot flag RPB$V _DEBUG was specified, SYSBOOT loaded
the optional loadable executive image SYSTEM_DEBUG, the XDELTA
debugger. If the initial breakpoint flag, RPB$V _INIBPT, was specified,
EXE$INIT executes a JSB instruction to the location INI$BRK, a BPT

instruction that causes entry into XDELTA.
XDELTA prompts on the console terminal and responds to any com­

mands entered. In response to a continue command, XDELTA returns to
INI$BRK, which returns to EXE$INIT.

31.1 Initial Execution of the Executive

EXE$1NIT also copies the BREAKPOINT SYSGEN parameter to the
global location EXE$GLBRKMSK. This parameter controls other break­
points later in EXE$1NIT.

If the boot flag RPB$V _DEBUG was not specified, EXE$1NIT replaces
the BPT instruction at INI$BRK with a NOP instruction.

12. EXE$1NIT establishes a tentative value for the maximum number of
processes.

13. It sets the values for the high and low thresholds of the modified page
list.

14. It places the remaining physical pages represented in the PFN bitmap on
the free page list. Each page of the PFN bitmap must be virtually mapped
before it can be accessed; one SPTE is used for this purpose.

15. EXE$1NIT initializes the SPTEs for paged pool. By default, this pool
will page (if the POOLPAGING SYSGEN parameter is set); EXE$1NIT
initializes the SPTEs as demand zero format PTEs with a protection code
of ERKW. If pool paging is disabled, EXE$INIT allocates a physical page
for each page of pool; it stores a PFN in each SPTE, sets the protection
code to ERKW, sets the valid bit, and initializes the PFN database entry
for the page.

EXE$1NIT flushes the translation buffer to remove obsolete transla­
tions based on the earlier contents of altered PTEs.

16. EXE$1NIT sets the POOL_INIT bit in EXE$GL_STATE, indicating that
nonpaged pool allocation is enabled. (Paged pool must be initialized in
process context.) Once again, EXE$INIT invokes the initialization rou­
tines of the loadable executive images loaded by SYSBOOT.

17. EXE$INIT sets up the FIL$0PENFILE cache pointers and the top-level
system directory name string for FILEREAD. SYSBOOT initialized these
global parameters.

18. EXE$INIT initializes the permanent local system block. The SYSGEN
parameters SCSSYSTEMID, SCSSYSTEMIDH, and SCSNODE determine
the system ID and VAXcluster node name.

19. EXE$INIT flushes the temporary boot device mapping from the buffer.
20. EXE$INIT invokes a SYSLOAxxx initialization routine from module

[SYSLOA]INIADPxxx. This processor-specific routine determines which
adapters are present on the system and initializes the adapters and their
data structures. Section 31.1.3 describes adapter initialization.

21. SYSBOOT may have loaded one or both of the following images into
nonpaged pool:

-SCSLOA.EXE, if the system has a computer interconnect (CI) adapter
or system communication services (SCS) type system device

-CLUSTRLOA.EXE, if the system is to participate in a V AXcluster
system

EXE$1NIT invokes EXE$LINK_ VEC for the images, to connect their

929

Operating System Initialization and Shutdown

930

vectors in the system base image to the actual code in nonpaged pool. It
then executes each image's initialization routine. Chapter 29 describes
this process in detail.

22. EXE$INIT invokes LDR$DEALLOC_PT, in module PTALLOC, to deal­
locate the SPTEs that mapped 1/0 space for the temporary use of the boot
driver.

23. EXE$INIT reserves a page of physical memory (the "black hole" page)
for adapter powerfail. It stores the PFN in global location EXE$GL_
BLAKHOLE. When power failure occurs, for example, on a UNIBUS, all
virtual pages mapped to UNIBUS adapter (UBA) registers or UNIBUS 1/0
space (24 pages in all) are remapped to this physical page. This remapping
prevents drivers for UNIBUS devices from generating multiple machine
checks while the power is off for the UBA. Powerfail operations are dis­
cussed in more detail in Chapter 33.

24. EXE$INIT invokes LDR$LOAD_IMAGE, in module SYSLDR, for each
loadable executive image in its list, to load the image into memory and
invoke its initialization routine. If the value of SYSGEN parameter SO_
PAGING disables paging of the executive images, LDR$LOAD_IMAGE
maps all image sections as nonpageable. Chapter 29 describes its actions
in detail.

25. EXE$INIT calls LDR$ALTERNATE_LOAD, also described in Chapter 29,
to load optional images, for example, site-specific images containing cus­
tom versions of the Magnetic Tape Accessibility ($MTACCESS) and Get
Security Erase Pattern ($ERAPAT) system services. LDR$ALTERNATE_
LOAD opens [SYSx .SYS$LDR]VMS$SYSTEM_IMAGES.DATA and loads
any images flagged for the current boot phase. (LDR$ALTERNATE_
LOAD executes later during the SYSINIT phase as well.)

26. EXE$INIT initalizes the first page file control block (PFL), called the null
page file block, to access the shell process. Since the shell is part of the
loaded executive image WORKING_SET _MANAGEMENT, EXE$INIT
locates the address of the WCB mapping WORKING_SET _MANAGE­
MENT and stores it in the PFL. It also stores the virtual block number
(VBN) of the shell within the image file.

27. EXE$INIT invokes the CPU-specific routine SMP$SETUP _SMP (see
Chapter 34) to initialize the multiprocessing environment if the con­
figuration is a suitable one.

28. If the SYSGEN parameter REALTIME.:.SPTS is nonzero, EXE$INIT al­
locates the number of SPTEs that it specifies. It calculates the size of
the real-time bitmap control block, allocates it from nonpaged pool,
and stores its address in the global location EXE$GL_RTBITMAP. The
connect-to-interrupt driver, described in Chapter 22, uses these SPTEs
and the bitmap.

29. EXE$INIT allocates three lock management data structures from non­
paged pool: the lock ID table, the resource hash table, and a process

31.1 Initial Execution of the Executive

bitmap used for deadlock detection. The map has one bit for each possi­
ble process.

30. It allocates the PCB and sequence number vectors from nonpaged pool.
Chapter 25 describes these structures.

The initialization routine for the PROCESS_MANAGEMENT loadable
executive image, module SYSTEM_PCBS_AND_PHDS, initialized three
PCBs: a system PCB used by the page fault handler to read faulted pages
into the system working set, the swapper PCB for the swapper process,
and a null PCB used as a placeholder.

EXE$INIT stores the address of the swapper PCB in the second slot
of the PCB vector. It initializes all other PCB vector slots to contain
the address of the null PCB. The PCB. vector has one extra entry, where
EXE$INIT stores the address of the system PCB. It initializes all entries
in the sequence number vector to zero.

31. EXE$INIT calculates an extended process ID for the swapper process and
the null PCB, then invokes SCH$CHSE, in module RSE (see Chapter 12),
to make the swapper process computable.

32. From nonpaged pool, it allocates the process header (PHD) vectors. These
are the reference count array and the process index array, which contain
an entry for each balance slot. Chapter 14 describes these vectors.

Each element in the reference count array is initialized to contain -1.
The null PCB (with a process index of zero) does not require a balance

slot. An index of zero can thus be used for another purpose, namely
to indicate a free balance slot. Thus, to indicate free balance slots, the
process index array is zeroed.

As Appendix F illustrates, the system header and SPT immediately
follow the balance slot area in system address space. In fact, portions
of the memory management subsystem treat the system header as the
occupant of an additional balance slot, one with a slot number equal to
the SYSGEN parameter BALSETCNT. The two PHD vector arrays have
one extra entry at the end to reflect this feature.

33. The entries in the PFN database arrays for the page occupied by the RPB
are initialized.

34. EXE$INIT allocates a WCB from nonpaged pool and initializes its header.
Despite its name, NET$AR_ WCB, the structure serves as a header for a
kernel mode work queue used by the network logging monitor.

35. It initializes the page-and-swap-file vector. Each array element is the
address of a PFL for a page or swap file recognized by the system. It
stores the address of the null page file block, initialized in step 26, in the
first array element.

36. The maximum depth of the lock manager resource name tree is calcu­
lated. The size of the tree is based on the size of the interrupt stack.

37. It stores the boot time in the primary's per-CPU database.

931

Operating System Initialization and Shutdown

932

38. EXE$INIT stores the process index and the address of the system header
in the system PCB.

39. EXE$INIT calls LDR$1NIT _ALL to invoke any remaining loadable exec­
utive image initialization routines.

40. It invokes EXE$INL TIMWAIT, in module [SYSLOA)ERRSUBxxx. This
initializes CPU$1-TENUSEC and CPU$L_UBDELAY, the timed wait
count variables used in timed wait loops generated by the TIMEWAIT
and TIMEDWAIT macros. These variables count iterations of instruction
loops that are executed, in part, to wait for a minimum amount of time
to elapse. These counts are used, for example, during powerfail recovery,
to wait for disk drives to come back online. These counts also control
the length of time a processor spins waiting to acquire a spinlock. They
are not constants because they vary with CPU type. and therefore are
calibrated during system initialization by EXE$INLTIMWAIT. In earlier
versions of VMS, these counts were systemwide globals. SMP support
requires that they be CPU-specific and thus capable of being changed, for
example, to reflect cache disabling on one CPU. Therefore, the counts
now reside in the per-CPU databases.

CPU$1-TENUSEC is the number of times a prototype loop executes
in 10 microseconds. The prototype loop includes an inner loop that is
simply a SOBGTR instruction. CPU$L_UBDELAY is the number of times
the SOBGTR instruction executes in 3 microseconds. In actual use, the
prototype loop is likely to be replaced by code that polls a device register.
The delay represented by the inner SOBGTR loop is incorporated so as
to introduce a 3-microsecond gap between successive references to the
UNIBUS or other I/O bus that contains the device register.

41. EXE$INIT inserts the driver prolog table IDPTJ for the console terminal
in the driver list at the listhead IOC$G1-DPTLIST.

42. From nonpaged pool, it allocates Create Logical Name l$CRELNMJ ar­
gument lists for SYS$DISK and SYS$SYSDEVICE. The swapper process
accesses this area in nonpaged pool and creates the logical names after it
initializes paged pool and the logical name database.

43. SYSBOOT loaded the terminal class driver into nonpaged pool. EXE$INIT
invokes IOC$INITDRV, in module RELOCDRV, to initialize its data
structures as directed by the DPT !defined by the driver's invocations
of the DPT_STORE macro). Then EXE$INIT inserts the DPT into the
list at IOC$G1-DPTLIST, relocates the terminal class vector table, and
connects it to the console port driver data structures. SYSGEN estab­
lishes data structures for additional terminals later.

44. EXE$INIT completes the configuration of the I/O database for the system
device. Based on information in the driver or drivers' DPTs, EXE$INIT
allocates and initializes driver data structures if necessary and links the
drivers into the I/O database. It scans the list of adapter control blocks

31.1 Initial Execution of the Executive

(ADPs) to locate the boot adapter and obtains the boot device controller
letter and the device unit number from the RPB.

EXE$INIT processes the subpart driver, if one exists; proceeds to the
port driver, if one exists; and finally processes the system device driver.
For each driver, it performs the following actions:

a. EXE$INIT inserts the driver's DPT into the driver list.
b. It then allocates a complete set of driver data structures from non­

paged pool, including a device data block (DDB), a unit control block
(UCB), an object rights block (ORB), a channel request block (CRB), an
interrupt data block (IDB), and a device spinlock. It initializes these
structures and connects them to each other and the rest of the I/O
database. (The system device driver data structures, within the load­
able executive image SYSTEM_PRIMIUVES, are initialized by the
SYSTEM_PRIMITIVES initialization routine.)

c. EXE$INIT invokes IOC$INITDRV to initialize the data structures as
directed by the DPT.

d. For a MicroVAX with Q22-bus multilevel interrupts enabled and a
system device on a Q22-bus adapter, EXE$INIT inserts instructions
into the CRB to ensure that the system operates only with a correct
bus configuration, and to adjust the IPL at each device interrupt.

e. It invokes SMP$INIT _SPL, in module SPINLOCKS, with the address
of the device spinlock allocated in step b. SMP$INIT _SPL stores the
appropriate IPL, rank, and timeout interval, among other items, in
the new device spinlock.

f. If the driver specifies a fork IPL rather than a fork spinlock, EXE$INIT
sets a flag indicating the presence of a device driver unable to func­
tion correctly in an SMP environment. VMS will not enable SMP
operation while a driver of this type is loaded.

45. If the device is a subpart, EXE$INIT marks its UCB as a template and
sets its status to online. Otherwise, the UCB is marked valid.

46. EXE$INIT constructs a name for the system device unit using informa­
tion passed from VMB and the driver name, then stores the device and
driver names in the system DDB, SYS$AR_BOOTDDB.

47. It stores the system device UCB address in EXE$G1-SYSUCB.
48. Loadable executive images reside on the system device. EXE$INIT scans

the list of loadable images at LDR$GQ_IMAGE_LIST. If a loadable ex­
ecutive image contains a pageable image section, EXE$INIT stores the
system device UCB address in the image's associated WCB.

49. It allocates an SPTE, if requested, for the system device and stores its
number in UCB$L_SVPN.

50. Once the system device name is determined, the equivalence names for
SYS$DISK and SYS$SYSDEVICE are stored in the $CRELNM argument
lists allocated in step 42 for later use by the swapper process.

933

Operating System Initialization and Shutdown

934.

51. If the system is a VAXcluster member and requested a remote bootstrap
over its network device, BOO$GB_NODENAME contains the node name
of the remote system serving the system disk. EXE$INIT creates a system
block for this node.

52. All loaded drivers are then invoked at their controller and unit initial­
ization entry points.

53. EXE$INIT invokes EXE$INIPROCREG, a CPU-specific routine within
the SYSLOA image, to initialize processor registers, for example, to en­
able interval timer interrupts.

54. It allocates two SPTEs for tape mount verification and stores the virtual
address of the first SPTE at EXE$GL_TMV_SVAPTE.

55. It allocates a page of physical memory and an SPTE to map it for
mount verification. The virtual address of the SPTE is stored in EXE$GL_
SVAPTE.

56. It allocates an SPTE, computes the associated system virtual address, and
stores that address in MMG$G1-DZRO_ VA. This is used to optimize
global demand zero page deletion.

57. It allocates two pages of physical memory and two SPTEs to map them.
These become the system erase pattern buffer and a pseudo page table
mapping the buffer. The virtual addresses are stored in EXE$G1-ERASE­
PB and EXE$G1-ERASEPPT. These optimize erasure of disk blocks dur­
ing the deletion of an erase-on-delete file.

58. EXE$INIT adjusts the maximum allowable working set (if necessary) to
reflect the amount of available physical memory. It subtracts the number
of physical pages used by the executive from the amount of available
physical memory.

59. It clears the warm start inhibit and cold start inhibit flags, which are
used by the restart mechanism. Chapter 33 describes these flags.

60. It allocates a page of physical memory and an SPTE to map it to use as
an executive mode data page. It clears the page and stores its address in
EXE$AR_EWDATA.

61. It allocates two pages of physical memory and two SPTEs to map them.
The first page becomes the swapper's only Pl page, the Pl pointer page,
described in Appendix C. EXE$INIT stores the address of the swapper
PCB in that page at the offset CTL$GL_PCB.

The second page becomes the swapper Pl page table page, required to
map the Pl pointer page.

62. EXE$INIT removes itself from the override set and determines SMP
status (enabled or disabled) from the SYSGEN parameter MULTIPRO­
CESSING and the information described in step 44f. If SMP is enabled,
EXE$INIT sets the start flag, indicating that secondary CPU initialization
may proceed. Chapter 34 describes these flags and SMP initialization.

63. Finally, EXE$INIT builds a PC/processor status longword (PSLJ pair on
the stack and REis, passing control to the scheduler routine SCH$SCHED

31.1.3

31.2 Loadable Executive Image Initialization Routines

at IPL$_SCHED, on the interrupt stack. The memory that EXE$INIT
occupies is deallocated later by the SYSINIT process.

I/O Adapter Initialization

A CPU-specific routine in module [SYSLOA]INIADP.xxx determines the lo­
cation of external adapters and initializes the adapters for later use by SYS­
GEN.

Although some of the initialization that INIADP.xxx performs depends on
the nature of the external I/O adapter, there are several general steps that
are taken for each adapter:

1. INIADPxxx allocates an ADP from nonpaged pool and initializes it.
The ADP identifies the adapter and contains information about how the
adapter's internal registers are mapped.

2. It allocates SPTEs to map to the I/O space addresses for internal adapter
registers and other I/O space assignments.

3. It initializes the adapter hardware.

INIADP.xxx records information about the hardware configuration in three
parallel arrays in nonpaged pool, which are indexed by nexus number (the
contents of EXE$GL_NUMNEXUS specify the number of elements in each
array):

• MMG$GL_SBICONF contains the address of a longword array. Each ele­
ment contains the starting virtual address to which its adapter registers
are mapped .

• EXE$GL_CONFREG contains the address of a byte array that specifies the
type code of each adapter, as defined by the $NDTDEF macro in LIB.MLB.
Processors such as VAX-ll/78x and VAX 86x0 CPUs, whose adapter type
codes are one byte long, use this format.

• EXE$GL_CONFREGL contains the address of a longword array that also
specifies the type code of each adapter. Processors such as VAX 8200 family
systems, whose type codes are a longword in length and include a bus code,
use this format.

Table 31.2 lists the differences in ADP size and mapping requirements for
many of the possible external adapters.

INIADPxxx also checks for the presence of UNIBUS or Q22-bus memory.
If this memory exists, INIADPxxx disables the associated map registers.

31.2 LOADABLE EXECUTIVE IMAGE INITIALIZATION ROUTINES

Chapter 29 describes the general mechanism by which loadable executive
image initialization routines are invoked. The actions of these routines are
constrained by the current phase of system initialization, represented by
the flags in EXE$GL_STATE. For instance, a routine that needs to allocate

935

Operating System Initialization and Shutdown

936

Table 31.2 External Adapter Initialization

Size of ADP Number of System Virtual
Adapter Type {in bytes) Pages Mapped for Adapter

Local memory None exists 1 (or 0 on some CPUs)
MA780 shared memory 132 1
UNIBUS adapter 608 or 1248 1 24 2

Q22-bus adapter 1128 24 2

MASSBUS adapter 56 8
DR32 interface 56 4
CI interface 66 16
KDB50 600 8
KLESI-B 600 8
DMB32 interface 56 2
DRB32 56 16
DEBNI 152 16
Generic VAXBI device 56 16
Unoccupied slot None exists 1 to allow access
DWMBA 88 1

1 An ADP for a UBA with indirect vectors also contains the interrupt service
routines for the UBA and 128 longword vectors, corresponding to UNIBUS
vectors from 0 to 77 48 •

2 Eight pages map the UBA internal registers, such as mapping registers and
data path registers. Sixteen pages map the UNIBUS 1/0 page to allow virtual
access to device control/status registers, data registers, and so on.

nonpaged pool cannot do so before EXE$INIT sets the POOL_INIT flag. An
initialization routine unable to perform its tasks in the current phase returns
a status to its invoker indicating that it should be reinvoked at a later phase.
When the initialization routine completes all its tasks, it is deallocated.

Each initialization routine performs initialization that logically relates to
the function of its associated image. For instance, the SYSTEM_PRIMITIVES
image contains the interrupt service routines (ISRs) that handle fork dis­
patching. The SYSTEM_PRIMITIVES initialization routine stores the address
of these ISRs in the appropriate SCB vectors.

The following paragraphs describe some of the actions of the loadable
executive image initialization routines invoked from EXE$INIT, the swapper
process, and the SYSINIT process. Note that these routines can be invoked
multiple times and thus may not perform all listed functions in the same
system initialization phase.

The SYSTEM_PRIMITIVES initialization routine formats and links the
nonpaged pool lookaside list packets, as described in Chapter 19. It builds
the 1/0 database structures for the system, console, and mailbox devices
and stores the addresses of the fork ISRs into the appropriate SCB vectors.

31.2 Loadable Executive Image Initialization Routines

It inserts two permanent system timer queue entries into the timer queue
and stores the addresses of the interval timer and software timer ISRs in the
appropriate SCB vectors.

The SYSTEM_DEBUG initialization routine stores the address of the X­
DELTA ISR in its SCB vector.

The SYSTEM_SYNCHRONIZATION initialization routine initializes the
static spinlock vector area. It initializes spinwait timeout values; assigns
device spinlocks to the null device, console device, and permanent mailbox
devices; and initializes the buffer pool used by SMP$FORILTO_PRIMARY.

The ERRORLOG initialization routine allocates and initializes error log
allocation buffers and initializes the global cells that describe them.

The EVENT _FLAGS_AND_ASTS initialization routine copies the con­
tents of frequently referenced data cells such as SCH$G1-PCBVEC from
the system base image into cells local to itself to improve access time. It
initializes the IPL 2 SCB vector with the address of its ISR, SCH$ASTDEL.
It connects system services, including the Set Event Flag ($SETEF) and Clear
Event Flag ($CLREF) system services to their system service vectors.

The PROCESS_MANAGEMENT initialization routine similarly copies
the contents of frequently referenced data cells from the system base im­
age into local cells. It stores the address of the system logical name table
in the group and job templates used for process creation. It initializes the
swapper PCB and PHD, the system PCB, and the null PCB. It stores the ad­
dress of SCH$RESCHED, the IPL 3 ISR, in the SCB vector. It connects the
process control system services, including the Create Process ($CREPRC),
Delete Process ($DELPRC), Get Job/Process Information ($GETJPI), and Set
Process Priority ($SETPRI) system services.

The IO_ROUTINES initialization routine similarly copies the contents of
frequently referenced data cells from the system base image into local cells.
It stores the address of the IPL 4 ISR, IOC$IOPOST, in the SCB vector. It
enables system restart by storing the physical address of the system restart
routine, EXE$RESTART, in the RPB at RPB$1-RESTART and the checksum
of the first 31 longwords of the restart routine at RPB$L_CHKSUM. It stores
the address of the powerfail ISR, EXE$POWERFAIL, in the SCB vector.

The WORKING_SET _MANAGEMENT initialization routine creates the
swapper process's PO page table. It similarly copies the contents of frequently
referenced data cells from the system base image into local cells. It connects
the working set control system services, including the Adjust Working Set
Limit ($ADJWSL) and Lock Working Set ($LKWSET) system services.

The PAGE_MANAGEMENT initialization routine stores the address of
the page fault exception service routine (ESR) in the SCB vector. It ensures
that modified page writer SYSGEN parameters are sensible; for instance, it
checks that MPW _ WAITLIMIT is not less than MPW _HILIMIT and adjusts
it if necessary. MPW _IOLIMIT specifies the number of concurrent I/O oper­
ations that the modified page writer can have in progress. The initialization

937

Operating System Initialization and Shutdown

routine allocates that many I/O request packets (IRPs) and inserts them on
a private lookaside list.

The EXCEPTION initialization routine stores the addresses of its ESRs,
such as the reserved operand ESR, EXE$ROPRAND, and the access violation
ESR, EXE$ACVIOLAT, in the SCB. It stores the addresses of the change
mode to kernel (CHMK) and change mode to executive (CHME) ESRs in the
SCB. It saves the address of the EXCEPTION image's loadable image data
block (LDRIMG) and WCB in the boot control block for use during bugcheck
processing. If the SYSGEN parameter DUMPSTYLE is 1, it allocates 127
SPTEs used to write a selective dump.

The IMAGE_MANAGEMENT initialization routine stores the address of
the known file entry resource name string and its size in the global location
EXE$GQ_KFE_LCKNAM.

31.3 INITIALIZATION IN PROCESS CONTEXT

31.3.1

938

The remaining steps in system initialization must be performed by a process.
For instance, system services can only be called from process context and a
command language interpreter (CLI) can only be mapped into Pl space by
code executing in process context.

The process phase of system initialization is divided into several parts: the
swapper initialization routine EXE$SWAPINIT, in swapper process context;
the SYSINIT process; and the startup process.

Swapper Process

EXE$INIT transfers control to SCH$SCHED, in module SCHED, which se­
lects the highest priority computable process for execution. Since only one
process is computable at this time, the choice is easy: the scheduler selects
the swapper process.

Several routines cooperate to initialize the swapper's process context. An
initialization routine in the PROCESS_MANAGEMENT loadable executive
image initializes the swapper PCB, PHD, and kernel stack. An initialization
routine in the WORKING_SET _MANAGEMENT loadable executive image
allocates nonpaged pool to use as the swapper's PO page table, described
in Chapter 14. (The page table's address is stored in the global location
SWP$GL_MAP, and pages mapped in the swapper map are accessible as PO
virtual pages when the swapper is the current process.) EXE$INIT allocates
a Pl page table page and the Pl pointer page.

The swapper PHD contains the address of EXE$SWAPINIT as the saved PC,
so the swapper executes EXE$SWAPINIT when it is placed into execution
for the first time. The saved PSL contains zeros, causing the swapper process
to run in kernel mode at IPL 0.

EXE$SWAPINIT contains system initialization code, executed only once
during the life of the system. It performs the minimum initialization that

31.3 Initialization in Process Context

requires process context. In particular, it initializes paged pool, invokes load­
able executive image initialization routines once again, and initializes the
logical name database.

EXE$SWAPINIT begins by setting the swapper bit in EXE$GLSTATE
to indicate that process context is available. EXE$1NIT already initialized
demand zero PTEs for all of paged pool. EXE$SWAPINIT now initializes
the paged pool forward link and count fields in the first page of the pool.
The resulting page fault requires process context. EXE$SWAPINIT invokes
LDR$INIT _ALL to invoke loadable executive image initialization routines
and to perform address fixups for pageable image sections in loadable execu­
tive images. The loadable executive image initialization routines execute in
the context of the swapper process with paged pool available for allocation.

EXE$SWAPINIT then performs the following steps to initialize the logical
name database, described in Chapter 35:

1. It allocates paged pool for the shareable logical name hash table.
2. It zeros the allocated area, initializes its header, and stores its address in

the longword pointed to by LNM$ALHASHTBL.
3. It initializes the logical name table header (LNMTH) of the system di­

rectory. It records the hash table address in the LNMTH. It then hashes
the system directory name and inserts it into the appropriate hash chain
of the shareable hash table.

4. EXE$SWAPINIT initializes the system logical name table, recording the
hash table address in its LNMTH. It invokes LNM$INSLOGTAB, in
module LNMSUB, to insert the system table into the database.

5. The swapper requests the $CRELNM system service to create the fol­
lowing logical names:

-LNM$DIRECTORIES, whose equivalence names are the shareable and
per-process shareable directories

-The executive mode table name LNM$FILLDEV
- The supervisor mode table name LNM$FILE_DEV
-The table names that provide upward compatibility from VMS Ver-

sion 3: LOG$PROCESS, LOG$GROUP, LOG$SYSTEM, TRNLOG$_
GROUP _SYSTEM, TRNLOG$_PROCESS_GROUP, TRNLOG$_PRO­
CESS_SYSTEM, and TRNLOG$_PROCESS_GROUP _SYSTEM

-The table names LNM$PERMANENT _MAILBOX and LNM$TEMPO­
RARY _MAILBOX

-The table name LNM$SYSTEM
-The executive mode names SYS$DISK and SYS$SYSDEVICE in the

LNM$SYSTEM table

6. It deallocates the nonpaged pool used by EXE$1NIT to pass information
needed for the creation of SYS$DISK and SYS$SYSDEVICE.

EXE$SWAPINIT creates the SYSINIT process, which performs more of

939

Operating System Initialization and Shutdown

31.3.2

31.3.2.1

31.3.2.2

940

the system initialization requiring process context. EXE$SWAPINIT exits
by jumping to the swapper niain loop.

SYSINIT Process

In one sense, SYSINIT is an extension of the swapper process. However,
the initialization code is isolated to prevent encumbering the swapper with
more code that only executes once during the life of a system. This isolation
is one of several techniques used during system initialization and process
creation to cause seldom-used code to disappear after it executes. A list of
such techniques appears in Appendix B.

SYSINIT performs the following major functions:

• It loads RMS and other loadable executive images .
• It initializes VAXcluster software for a VAXcluster node.
• It opens the swap and page files and records their extents.
•It activates FllBXQP.EXE, the Files-11 Extended QIO Processor IXQP)

image, as a system global section.
• It loads the system message file .
• It creates the startup process.

Pool Allocation by SYSINIT. SYSINIT, like EXE$INIT, allocates nonpaged
pool. It also allocates some paged pool. However, the sizes of various blocks
are not directly related to SYSGEN parameters. Structures that are allocated
from nonpaged pool as a result of the execution of SYSINIT include the
following:

• Four security audit structures
• PFL structures and bitmaps for the page and swap files
• Lock and resource blocks
• File control blocks IFCBs) and WCBs for all opened files
• Space to copy the contents of the error log allocation buffers from the crash

dump file

Detailed Operation of SYSINIT. SYSINIT is a normal process, scheduled and
placed into execution in the ordinary way. Its main module is [SYSINI]SYS­
INIT. SYSINIT begins execution in user mode but performs much of its work
in kernel and executive modes.

SYSINIT takes the following steps:

1. It changes mode to kernel and sets the SYSINIT bit in EXE$G1-STATE
to indicate that the SYSINIT process context is available.

2. It expands the kernel stack and invokes LDR$UNLOAD_IMAGE, in
module SYSLDR, to release the physical pages and address space occupied
by EXE$INIT.

31.3 Initialization in Process Context

3. SYSINIT allocates four security audit vectors from nonpaged pool. It
initializes the structure headers and the pointers to these structures:
NSA$AR_ALARM_ VECTOR, NSA$AR_AUDIT _VECTOR, NSA$.AR_
ALARM_FAILURE, and NSA$AILAUDIT _FAILURE.

4. SYSINIT invokes the loader to activate the following loadable executive
images and execute their initialization routines:

RMS.EXE
RECOVERY _UNIT _SERVICES.EXE
DDIF$RMS_EXTENSION.EXE
SYSLDR_DYN.EXE

If paging of RMS and related images is disabled, LDR$LOAD_IMAGE
places them in nonpaged pool.

SYSINIT sets the RMS bit in EXE$GL_STATE to indicate that RMS is
loaded. RMS cannot be used, however, until the XQP is mapped.

5. From user mode, SYSINIT invokes LDR$ALTERNATE_LOAD, previ­
ously invoked by EXE$INIT, to load optional images. LDR$AL TER­
NATE_LOAD opens the file [SYSx.SYS$LDR]VMS$SYSTEM_IMAGES.
DATA and loads those images requesting to be loaded during the current
boot phase.

6. SYSINIT changes mode to kernel to create a system-specific root re­
source. It requests the Enqueue Lock Request ($ENQ) system service to
create an executive mode system resource and acquire an exclusive lock
on it. The resource name is the string SYS$SYS_ID concatenated with
the system's SCS system ID (SYSGEN parameters SCSSYSTEMID and
SCSSYSTEMIDH). The name is therefore unique within the VAXcluster
system.

SYSINIT locks the root resource with a system-owned lock so that the
lock survives the deletion of SYSINIT. SYSINIT stores the lock ID in
EXE$GL_SYSID_LOCK. The lock is always mastered on the local VAX­
cluster system, since each VAXcluster node locks its own unique name.
Any sublocks of this lock are guaranteed to be mastered locally. Thus,
VMS components use this lock as a parent for locks whose scope is lim­
ited to the local V AXcluster node. Appendix H provides more information
on the system ID lock, and Chapter 10 describes lock management in
general.

7. SYSINIT changes mode to kernel to set the system time. It invokes the
routine ExE$INIT _ TODR in the SYSLOA image. Chapter 11 describes
EXE$INIT _ TODR and altering the system time.

8. SYSINIT changes mode to kernel to initialize cluster connection man­
agement. If this system expects to participate in a VAXcluster sys­
tem, SYSINIT locates the incarnation file, SYS$SYSTEM:SYS$INCAR­
NATION.DAT. It opens the file, reads the first block, and stores the
WCB address and the data in the cluster incarnation block (CLUICB).

941

Operating System Initialization and Shutdown

942

SYSINIT creates the stand-alone configure process, STACONFIG. This
process autoconfigures disks and SCS communication ports. If the SYS­
GEN parameter DISK_QUORUM indicates there is to be a quorum disk,
STACONFIG starts SCS polling to discover remote mass storage control
protocol (MSCP) disk servers. Connection to the quorum disk may be
necessary for the node to join the V AXcluster system. SYSINIT sets a
flag to tell the V AXcluster connection manager to proceed with cluster
formation and prints the following message on the console terminal:

Waiting to foI'lll or join VAXcluster

It waits for 100 milliseconds, during which time the STACONFIG
process and the VAXcluster connection manager run, and then tests
whether the quorum disk has been found.

If it has, SYSINIT assigns a channel to it, opens the quorum file, and
starts the quorum disk polling routine to run every QDISKINTERVAL
seconds. It then checks whether the system is a member of a VAXcluster
system yet. If not, SYSINIT waits again.

When the system is a member, SYSINIT takes out a concurrent read
lock on the system device and resets the time to correspond to the
clusterwide time.

9. If the system disk is to be a member of a disk shadow set, SYSINIT
changes mode to kernel and establishes the shadow set.

10. Back in user mode, SYSINIT recreates executive mode logical names for
SYS$SYSDEVICE and SYS$DISK in the system logical name table. (In
the case of an MSCP system disk, their equivalence names are not quite
right. At the time EXE$INIT created them, the allocation class of the
system disk was not yet known. When SYSINIT runs, the MSCP server
for the system disk has communicated its allocation class and SYSINIT
can form an equivalence name that contains the allocation class.)

SYSINIT also creates the following logical names:

SYS$SYSROOT
SYS$COMMON
SYS$SHARE
SYS$MESSAGE
SYS$SYSTEM
SYS$LOADABLE_IMAGES

The creation of these names occurs here because they are needed
as a part of the creation of the startup process. The name of the im­
age that STARTUP initially executes is SYS$SYSTEM:LOGINOUT, and
SYS$SYSTEM is defined in terms of SYS$SYSROOT and SYS$COM­
MON. LOGINOUT performs a merged image activation to map the
Digital command language (DCL) CLI into Pl space. The image acti-

31.3 Initialization in Process Context

vator uses logical name SYS$SHARE to locate the shareable image DCL­
TABLES.EXE, which contains the command database for the DCL CLI.

11. If the SYSGEN parameter UAFALTERNATE is set, SYSINIT creates the
executive mode logical name SYSUAF in the system table. Its equiva­
lence name is SYS$SYSTEM:SYSUAFALT.DAT. This feature allows an
alternative authorization file to be used. If the alternative authorization
file does not exist, logins are enabled only from the console terminal.

12. In kernel mode, SYSINIT uses the primitive file I/O routines to open the
following files on the system disk:

-[SYSn.SYSEXE]PAGEFILE.SYS, if not already open
-[SYSn.SYSEXE]SWAPFILE.SYS, if SYSGEN parameter SWPFILCNT is

nonzero
-[SYSn.SYSEXE]SYSDUMP.DMP

It ensures that the file highwater mark is set to the end of each of
these files. A highwater mark prevents access to file blocks that are
allocated but not yet written. These blocks may have previously belonged
to another file, now deleted, and may still contain data from the other
file. A high water mark is one way to prevent access to this data. However,
SYSINIT adjusts the highwater mark to the end of the file for the page file,
swap file, and system dump file, since the mechanism is not appropriate
for these special-purpose files.

13. SYSINIT changes mode to kernel and invokes LDR$LOAD_IMAGE to
open the loadable executive image SYS$MESSAGE:SYSMSG.EXE, the
system message file.

14. It calls a kernel mode procedure that performs the following functions:

a. It initializes the global page table entry (GPTE) list.
b. The dump file (or the page file if no dump file exists) contains the

contents of the error log allocation buffers at the time of the crash
or shutdown. These buffers were written by the bugcheck code, de­
scribed in Chapter 32, so their contents would not be lost. SYSINIT
attempts to locate saved error log buffers and record their contents.

It multiplies the number of buffers by the number of pages per
buffer, adds sufficient space for a header and an extra buffer for the
bugcheck error log entry, and allocates this amount of nonpaged pool.
It stores the address of this area in EXE$GLSAVED_EMBS. It copies
the error log buffers from the dump or page file to the area and
records the number of buffers copied in EXE$GW_SAVED_EMBS_
COUNT. Eventually, the messages will be written to SYS$ERROR­
LOG:ERRLOG.SYS.

c. The kernel routine initializes the page file data structures; it allocates
a PFL and a bitmap from nonpaged pool to describe the page file and
the availability of each block in the file. The bitmap is initialized

943

Operating System Initialization and Shutdown

944

to all l's to indicate that all blocks are available. If the page file
contains a valid dump and the SYSGEN parameter SAVEDUMP is
set to 1, the blocks in the page file that contain the dump are marked
unavailable. The address of the page file WCB, the page file size, the
bitmap address, the free page count, and other items are stored in the
PFL, whose address is then stored in the page-and-swap-file vector.

Note that page file blocks marked unavailable because they contain
a crash dump may be reclaimed by copying them to another file
using the System Dump Analyzer (SDA) command COPY, or released
with the command ANALYZE/CRASH_DUMP/RELEASE. However,
releasing the blocks deletes the crash dump.

d. If present, the swap file is initialized. The routine allocates a PFL
and a bitmap from nonpaged pool to describe the swap file and the
availability of each block in the file. It initializes the bitmap to all
l's, indicating that all blocks are available. The address of the swap
file WCB, the swap file size, the bitmap address, the free page count,
and other items are stored in the PFL, whose address is then stored
in the page-and-swap-file vector.

Chapter 14 describes the page-and-swap-file vector.
e. The kernel mode routine stores the address of RMS in the Pl pointer

page at the location CTL$G1-RMSBASE.
f. So that the error log entry describing a bugcheck is not lost if the error

log buffers are full at the time of the crash, the VMS bugcheck code
writes it in the first block of the dump file. After a crash, SYSINIT
copies this error log entry from the dump file into the last error log
buffer in the area pointed to by EXE$G1-SAVED_EMBS. It logs a cold
start in the system error log.

15. SYSINIT exits the kernel mode procedure, returning to user mode, and
changes mode to executive. It requests the Image Activate ($IMGACT)
and Image Fixup ($IMGFIX) system services to activate the XQP in
SYSINIT's Pl space. After setting the XQP flag in EXE$GL_STATE, it
transfers control to kernel mode initialization routine in the XQP. From
this point on, the file system is available for SYSINIT's file operations.

16. In user mode, SYSINIT assigns a channel to the system disk. In executive
mode, it calls a procedure to mount the system disk.

17. SYSINIT requests the Set Time ($SETIME) system service to record the
system time in the system image.

18. SYSINIT disables the FIL$0PENFILE cache and deallocates its pages to
nonpaged pool.

19. It creates the logical name SYS$TOPSYS.
20. SYSINIT reads the XQP's image header, changes mode to kernel, and

calls a procedure to create global sections for the XQP's image sections.
If the SYSGEN parameter ACP _XQP _RES is set, SYSINIT creates resident

31.3.3

31.3.3.1

31.3 Initialization in Process Context

global sections so that the pages of the XQP are always ill physical
memory.

21. SYSINIT opens the page file, swap file, dump file, and all loadable execu­
tive image files. From kernel mode, each WCB is converted into a shared
window by clearing the WCB$L_PID field, setting the WCB$V _SHRWCB
flag, and incrementing its reference count to 2. Thus, an attempt to delete
one of these files will only mark the file for deletion.

22. Finally, SYSINIT creates the startup process, specifying that it execute
the LOGINOUT image, which maps the DCL CLI into Pl space. Chap­
ter 27 describes LOGINOUT.

Startup Process

The startup process created by SYSINIT completes system initialization.
This process is the first in the system to include a CLI. The inclusion of
DCL allows the operation of this process to be directed by a DCL command
procedure, SYS$SYSTEM:STARTUP.COM.

STARTUP.COM. For VMS Version 5.0, the STARTUP command procedure
was reorganized. It now directs the execution of other command proce­
dures that perform the actual work, using input from three data files in
the SYS$STARTUP directory.

• VMS$PHASES lists eight startup phases from INITIAL to END. It se­
quences the invocation of the command procedures and executable images
defined in the other two data files .

• VMS$VMS is reserved for use by the operating system. Each record con­
tains the name of a VMS-supplied command procedure or executable im­
age, the startup phase in which it executes, a flag through which execution
is enabled or disabled, and a mode field defining the manner in which the
file executes (for instance, mode "b" signifies that the file should be sub­
mitted as a batch job).

By convention, the file name in each VMS$VMS record begins with the
string VMS$, followed by the name of the phase in which the image or
procedure executes. For instance, the command procedure VMS$INITIAL-
050_ VMS.COM executes in the INITIAL phase.

• VMS$LAYERED is reserved for the use of customers and layered products.
A customer or layered product installation procedure uses SYSMAN to
insert the name of the layered product startup file, its execution phase, and
the flag, mode, and other fields, as in VMS$VMS, into a VMS$LAYERED
record. STARTUP executes the command procedure in the specified phase
and manner.

VMSVMS, VMSLAYERED, and all files that they specify reside in the
SYS$STARTUP directory. STARTUP processes them as follows:

945

Operating System Initialization and Shutdown

946

1. It reads the first phase defined in VMS$PHASES and stores it as the
current phase.

2. For records in VMS$VMS whose phase matches the current phase, it
executes the associated image or command procedure if it is enabled.
When no more records in VMS$VMS match the current phase, STARTUP
executes each image or command procedure defined in VMS$LAYERED
whose phase matches the current phase.

3. STARTUP waits for all batch processes and subprocesses to complete.
4. When no more records exist for the current phase, STARTUP reads the

next phase from VMS$PHASES and processes records from VMS$VMS
and VMS$LAYERED that match the new phase.

5. Finally, when no more phases remain, STARTUP exits.

Some of the more important command files and their actions follow. Note
that this section describes the full set of STARTUP actions, some of which
are disabled when the SYSGEN parameter STARTUP _Pl has the value MIN.

VMS$INITIAL-050_ VMS.COM, the first command procedure invoked by
STARTUP, performs these actions:

1. It creates the following system logical names:

SYS$SPECIFIC
SYS$SYSDISK
SYS$ERRORLOG
SYS$EXAMPLES
SYS$HELP
SYS$INSTRUCTION
SYS$LIBRARY
SYS$MAINTENANCE
SYS$MANAGER
SYS$UPDATE
SYS$TEST

2. It preserves SYSGEN parameters. If the SYSGEN parameter WRITESYS­
PARAMS is set, it runs SYSGEN to execute WRITE CURRENT, which
records the parameters in SYS$SYSTEM:VAXVMSSYS.PAR.

3. It installs MTHRTL.EXE or UVMTHRTL.EXE, whichever is the appro­
priate math library.

4. It makes privileged and shareable images known to the system by running
the Install Utility with input taken from the file SYS$MANAGER:VMS­
IMAGES.DAT.

5. VMS$INITIAL-050_ VMS.COM creates the CONFIGURE process for
VAXcluster members, so that page and swap files on disks other than
the system disk can be located and installed.

6. It installs the page file and swap file if they exist, either from the node's
root directory or, for satellite VAXcluster nodes, from local disks.

31.3 Initialization in Process Context

7. It invokes SYPAGSWPFILES.COM to install secondary page and swap
files.

VMS$INITIAL-OSO_LIB.COM defines logical names and name tables for
the Text Processing Utility (TPU), the debugger (DBG), and RMS. It also
invokes SYLOGICALS.COM for site-specific logical name creation.

VMS$CONFIG-050_ VMS.COM invokes the DECwindows startup proce­
dure, which in this initial invocation performs the subset of its operations
that are appropriate for all nodes.

VMS$CONFIG-OSO_ERRFMT.COM creates the error logger (ERRFMT)
process.

VMS$CONFIG-OSO_CACHE_SERVER.COM creates the Files-11 XQP
cache server (CACHE_SERVER) process for VAXcluster nodes.

VMS$CONFIG-050_CSP.COM creates the cluster server (CLUSTER_
SERVER) process for V AXcluster nodes.

VMS$CONFIG-OSO_OPCOM.COM creates the operator communication
(OPCOM) process.

VMS$CONFIG-OSO_AUDIT _SERVER.COM executes the site-specific se­
curity procedure, SYSECURITY.COM, if it exists. It then creates the audit
server (AUDIT _SERVER) process.

VMS$CONFIG-OSO_JOBCTL.COM creates the job controller (JOB_CON­
TROL) process.

VMS$CONFIG-OSO_LMF.COM loads software licenses from the license
database.

VMS$SYSFILES-050_ VMS.COM directs device configuration:

1. It stops the CONFIGURE process, created earlier to locate page and swap
files.

2. It invokes the site-specific command procedure if it exists. This com­
mand procedure, SYS$MANAGER:SYCONFIG.COM, can configure
user-written device drivers prior to VMS autoconfiguration or disable
autoconfiguration by clearing the DCL symbol STARTUP$AUTOCON­
FIGURE.

3. Unless disabled by the the SYSGEN parameter NOAUTOCONFIG or the
STARTUP$AUTOCONFIGURE symbol, the command procedure runs
SYSGEN to configure external I/O devices.

4. Unless disabled by the SYSGEN parameter NOAUTOCONFIG or the
STARTUP$AUTOCONFIGURE symbol, the command procedure creates
the CONFIGURE process for VAXcluster nodes with paging enabled.

VMS$BASEENVIRON-050_ VMS.COM configures the operator's console
as appropriate for the system and determines the message classes that will
be logged to the console and the operator log file.

947

Operating System Initialization and Shutdown

31.3.3.2

VMS$BASEENVIRON-OSO_SMISERVER.COM creates the system manage­
ment server ISMISERVER) process for VAXcluster members and larger stand­
alone systems.

VMS$LPBEGIN-050_ VMS.COM performs miscellaneous tasks:

1. It invokes the site-specific command procedure SYS$MANAGER:SY­
STARTUP _VS.COM if it exists.

2. If the SCSNODE SYSGEN parameter is not blank and the rights database
is in use, the command procedure creates the node-specific identifier (the
string SYS$NODE_ concatenated with the node name).

3. It enables interactive logins.

VMS$LPBEGIN-OSO_STARTUP.COM invokes the DECwindows startup
procedure, which in this invocation starts the windowing software.

Site-Specific Startup Command Procedure. The site-specific command pro­
cedure SYS$MANAGER:SYSTARTUP _VS.COM is typically edited by the
system manager to do the following:

• Start batch and print queues
• Set terminal speeds and other device characteristics
• Create site-specific system logical names
• Install additional privileged and shareable images
• Load use,-written device drivers
• Mount volumes other than the system disk
• Load the console block storage driver lif desired) with a CONNECT CON-

SOLE command to SYSGEN and mount the console medium
• Start DECnet lif present on the system)
• Produce an error log report
• Announce system availability

31.4 SYSTEM GENERATION UTILITY (SYSGEN)

31.4.1

948

SYSGEN fits into the initialization sequence in two unrelated ways: SYS­
BOOT may use parameter files produced by SYSGEN to define system char­
acteristics, and STARTUP.COM invokes SYSGEN directly to autoconfigure
the external 1/0 devices.

SYSGEN's role in autoconfiguring the 1/0 system is described in the VMS
Device Support Manual. Table 31.3 briefly compares the operations that
SYSGEN and SYSBOOT perform on parameter files.

SYSGEN Parameters

SYSGEN parameters are defined in the source module SYSPARAM.MAR.
Through different settings of conditional assembly parameters, this source
module produces two object modules: SYSPARAM, which links into the

31.4 System Generation Utility (SYSGEN)

Table 31.3 Comparison of SYSGEN and SYSBOOT

SYS GEN

PURPOSE

SYSGEN has four unrelated purposes:
• It creates parameter files for use in future

bootstrap operations.
• It modifies dynamic parameters in the

running system with the WRITE AC­
TIVE command.

• It loads device drivers and builds their
associated data structures.

• It creates and installs additional page and
swap files.

SYSBOOT

SYSBOOT configures the sys­
tem using parameters from
VAXVMSSYS.PAR or another
parameter file.

USE IN SYSTEM INITIALIZATION

During initialization, SYSGEN can SYSBOOT is the secondary boot-
be invoked to autoconfigure all 1/0 strap program that executes after
devices and record the current SYSGEN VMB and before control is passed
parameters. to the executive.

ENVIRONMENT

SYSGEN executes in the normal en­
vironment of a utility program. The
driver and swap/page functions require
CMKRNL privilege. A WRITE ACTIVE
command also requires CMKRNL priv­
ilege. The parameter file operations are
protected through the file system.

SYSBOOT runs in a stand-alone
environment with no file system,
memory management, process
context, or any otherenvironment
provided by VMS.

USE
VALID COMMANDS

USE
USE FILE-SPEC

USE CURRENT
USE DEFAULT
USE ACTIVE
SET
SHOW
EXIT (CONTINUE)
WRITE
Commands associated with device drivers
Commands associated with additional

page and swap files

USE FILE-SPEC

USE CURRENT
USE DEFAULT
No equivalent command
SET
SHOW
EXIT (CONTINUE)
No equivalent command
No equivalent commands
No equivalent commands

INITIAL CONDffiONS

Implied USE ACTIVE Implied USE CURRENT

949

Operating System Initialization and Shutdown

31.4.2

950

system base image, and PARAMETER, which links into both SYSGEN and
SYSBOOT.

The SYSPARAM source module invokes a macro named PARAMETER to
define each adjustable parameter. The macro $PRMDEF, in LIB.MLB, defines
the fields of the data structures created by PARAMETER. Table 31.4 lists
these fields and flags. For each parameter, the macro also creates a Get
System Information ($GETSYI) item code in the form SYI$_ followed by
parameter name. The following code demonstrates the PARAMETER macro
invocation that defines the SYSGEN parameter GBLPAGES.

PARAMETER ADDRESS=SGN$GL_MAXGPGCT,­
DEFAULT=10000,-
MIN=512,-
NAME=GBLPAGES,­
SIZE=LONG,­
TYPE=<SYSGEN,SYS,MAJOR>,­
UNIT=Pages,­
VERSION_MASK=[SYSGEN]

In an initialized system, each parameter occupies a cell in a table of active
values stored within the address space reserved for the system base image.
A parameter's virtual address within the base image does not change across
minor version releases of VMS, although new parameters may be added to
reserved address space at the end of the parameter area. Appendix C lists the
contents of this area.

When SYSBOOT or SYSGEN executes, it maintains a private table of
working parameters. It is manipulated by the following SYSGEN and SYS­
BOOT commands:

• Displayed by SHOW parameter-name commands
• Altered by SET parameter-name value commands
• Overwritten in memory by a USE command
•Written to the file VAXVMSSYS.PAR by the SYSGEN WRITE CURRENT

command
• Written to a selected file by the SYSGEN WRITE file-spec command
• Dynamic parameters are written to the executive's memory image by the

SYSGEN WRITE ACTIVE command

Use of Parameter Files by SYSBOOT

Figure 31.2 shows the flow of parameter value data during a bootstrap oper­
ation. The numbers in the figure correspond to the following steps:

G)SYSBOOT first locates the file VAXVMSSYS.PAR in SYS$SYSROOT:
[SYSEXE] and reads its parameter settings into SYSBOOT's working table.
In the language of SYSBOOT and SYSGEN commands, this step is an im­
plied command:

USE CURRENT

31.4 System Generation Utility (SYSGEN)

This initializes the system with the parameter settings saved in VAX­
VMSSYS.PAR, either during the last boot of the system as shown in
step 5, through the AUTOGEN command procedure, or from an explicit
SYSGEN command, WRITE CURRENT.

Prior to VMS Version 4, the current parameters were stored in SYS.EXE.
However, to support sharing of SYS.EXE by multiple members of a VAX­
cluster system, the parameters were moved into a separate file, VAXVMS­
SYS.PAR. Each member has its own version of this file.

Table 31.4 Information Stored for Each Adjustable Parameter by
SYSGEN and SYSBOOT

Item

Parameter address in base image 1

Parameter default value
Minimum value that the parameter can assume
Maximum value that the parameter can assume
Parameter type flags

Parameter Type

DYNAMIC
STATIC
SYSGEN
ACP
JBC
RMS
SYS
SPECIAL
DISPLAY
CONTROL
MAJOR
PQL
NEG
TTY
scs
CLUSTER
ASCII
LGI
MULTIPROCESSING

Parameter size

Display Command

SHOW /DYN

SHOW /GEN
SHOW /ACP
SHOW /JOB
SHOW /RMS
SHOW /SYS
SHOW /SPECIAL

SHOW /MAJOR
SHOW /PQL

SHOW /TTY
SHOW /SCS
SHOW /CLUSTER

SHOW /LGI
SHOW /MULTIPROCESSING

Bit position (if parameter is a flag)
Parameter's SYSGEN name (counted ASCII string)
Units of allocation (counted ASCII string)

Size of Item

Longword
Longword
Longword
Longword
Longword

Byte
Byte
16 bytes
12 bytes

1 The working value of each parameter is found not only in internal tables in
SYSBOOT and SYSGEN but also in the executive itself. In fact, the parameter
address (first item) stored for each parameter symbolically locates the working
value of each parameter in the memory image of the system base image.

951

Operating System Initialization and Shutdown

VAXVMSSYS.PAR

Default

Implied
USE

CURRENT

VAXVMSSYS.PAR

Parameter __ __. Parameter
Settings,.....,....,..

SYSBOOT
Table '="=~ Settings USE

of
Working
Values

in Memory Internal DEFAULT Image of 1-CIWIM:U......
to

SYSBOOT

952

USE Filespec

Figure 31.2

3
USE, SET,
CONTINUE (EXIT)

Executive

User-created parameter files

Movement of Parameter Data by SYSBOOT and
STARTUP

G)When a conversational bootstrap is selected (R5(0) is set as input to VMB),
SYSBOOT prompts for commands to alter current parameter settings. A
USE command at the SYSBOOT prompt results in the working table's
being overwritten with an entire set of parameter values. There are three
possible sources of these values:

-USE file-spec directs SYSBOOT to the indicated parameter file for a
new set of values.

-USE DEFAULT causes the working table in SYSBOOT to be filled with
the default values for each parameter.

-USE CURRENT causes the parameter values in VAXVMSSYS.PAR to
be loaded into SYSBOOT's working table. A USE CURRENT command
is redundant if it is the first command issued to SYSBOOT.

G)Once the initial conditions are established, individual parameters can be

31.4.3

31.4 System Generation Utility {SYSGEN)

altered with SET commands. The conversational phase of SYSBOOT ends
with a CONTINUE (or EXIT) command.

G) After SYSBOOT calculates the sizes of the various pieces of system space
but before it transfers control to EXE$INIT, it copies the contents of its
working table to the corresponding table in the memory image of the
executive.

G) One of the steps performed by the startup process copies the parameter
table from the memory image of the executive to SYS$SYSTEM:VAX­
VMSSYS.PAR if the WRITESYSPARAMS parameter is set. SYSBOOT sets
this parameter automatically when another parameter is altered in a con­
versational boot. Since SYSBOOT always uses VAXVMSSYS.PAR unless
directed otherwise, subsequent bootstraps will use the latest parameter
settings even if no conversational bootstrap is selected.

Use of Parameter Files by SYSGEN

SYSGEN's actions, pictured in Figure 31.3, closely correspond to those of
SYSBOOT. The numbers in the figure correspond to the following steps:

(!)The initial contents of SYSGEN's working table are the values taken
from the memory image of the executive. The data movement pictured
in Figure 31.3 is a movement from one memory area to another rather
than the result of an 1/0 operation. In any event, SYSGEN begins its
execution with an implied command:

USE ACTIVE

This copies the parameter table from the memory image of the execu­
tive into SYSGEN's working table.

The ACTIVE parameters in the base image in memory do not dif­
fer from the CURRENT parameters in VAXVMSSYS.PAR on disk un­
less SYSGEN is run and parameters are written to either CURRENT
(VAXVMSSYS.PAR) or ACTIVE (memory).

G) Alternatively, SYSGEN can load its working table from the same sources
available to SYSBOOT.

G) SET commands alter individual parameter values. SET only alters the
parameter in SYSGEN's working table; the setting disappears on exit from
SYSGEN unless preserved with a WRITE command.

G)The WRITE command preserves the contents of SYSGEN's working table
in the following way:

-WRITE file-spec creates a new parameter file that contains the contents
of SYSGEN's working table.

-WRITE CURRENT alters the copy of SYS$SYSTEM:VAXVMSSYS.PAR.
The next bootstrap operation uses the updated values automatically.

-Several parameters determine the size of portions of system address
space. Other parameters determine the size of blocks of pool space al­
located by EXE$INIT. These parameters cannot be changed in a running

953

Operating System Initialization and Shutdown

VAXVMSSYS.PAR

VAXVMSSYS.PAR Parameter
Settings

in Memory Implied
Image of USE ACTIVE

Executive

USE CURR~ ACTIVE

) S::f: t-4-----r-""(EITT
..---u_s_E DEF~ Values WRITE ACTIVE

3
USE, SET, WRITE Filespec
WRITE, EXIT,
CONTINUE

Default USE Files Parameter
Settings

in Memory
Parameter
Settings
Internal

to
SYSGEN

Figure 31.3

User­
defined
parameter
files

Movement of Parameter Data by SYSGEN

Image of
Executive

system. However, many parameters are not used in configuring the sys­
tem. These parameters are designated DYNAMIC (see Table 31.4).

A WRITE ACTIVE command to SYSGEN alters the settings only of
dynamic parameters, and only in the memory image of the executive.

A word of caution is in order here. Before experimenting with a new
configuration, save the parameters from a working system in a parameter
file. If the new configuration creates an unusable system, the system can be
restored to its previous state by rebooting with the saved parameters.

31.5 SYSTEM SHUTDOWN

954

VMS provides two mechanisms to shut down a system in a controlled
fashion. The preferred method, SYS$SYSTEM:SHUTDOWN.COM, provides

31.5.1

31.5 System Shutdown

a warning of the shutdown to system users and performs extensive house­
keeping. The alternative method, SYS$SYSTEM:OPCCRASH.EXE, performs
minimal cleanup.

SHUTDOWN.COM

SHUTDOWN.COM is a VMS-supplied command procedure that performs
extensive cleanup and shuts down a VMS system in a controlled fashion. It
requires the privileges CMKRNL, EXQUOTA, LOG_IO, NETMBX, OPER,
SECURITY, SYSNAM, SYSPRV, TMPMBX, and WORLD to execute suc­
cessfully, and will enable them automatically for a user with the SETPRV
privilege. SHUTDOWN's tasks include the following:

• Optionally saving AUTOGEN feedback information to SYS$SYSTEM:
AGEN$FEEDBACK.DAT

• Disabling interactive logins
• Shutting down DECnet
• Stopping the job controller's queue operations
• Stopping user processes
• Dismounting mounted volumes
• Stopping secondary processors on a multiprocessing system
• Removing installed images
• Invoking the site-specific shutdown procedure SYSHUTDWN.COM
• Closing the operator's log file
• Stopping the AUDIT _SERVER and ERRFMT processes
• Recalibrating the system time from the time-of-year clock and recording

the change in the base image

If a shutdown is requested in an AUTOGEN command procedure pa­
rameter, AUTOGEN defines the logical name SHUTDOWN$AUTOGEN_
SHUTDOWN before executing the SHUTDOWN command procedure. This
notifies SHUTDOWN that the shutdown is coordinated from AUTOGEN
and the standard shutdown questions need not be asked.

In addition, SHUTDOWN allows a reboot consistency check to be per­
formed without actually shutting down the system. If a translation exists
for the logical name SHUTDOWN$LOG_REBOOT _CHECK, SHUTDOWN
creates the file REBOOT_CHECK_nodename.LOG, where nodename is the
name of the system on which SHUTDOWN is executing. The following
factors determine the files required to reboot:

• VAXcluster membership
• MSCP requirements
• Processor type
• Multiprocessing versus single-CPU system
• System boot device !remote boot over the network)

955

Operating System Initialization and Shutdown

31.5.2

956

SHUTDOWN's reboot consistency check verifies the existence of files
required to reboot. Defining SHUTDOWN$LOG_REBOOT _CHECK causes
SHUTDOWN to write the verified file names to the log file and discontinue
the shutdown.

SHUTDOWN runs the OPCCRASH program to actually shut down the
system. It passes parameters to OPCCRASH via logical names.

The Guide to Setting Up a VMS System describes other actions of SHUT-
DOWN and its use of the following logical names:

SHUTDOWN$MINIMUM_MINUTES
SHUTDOWN$TIME
SHUTDOWN$INFORM_NODES

OPCCRASH

OPCCRASH.EXE, in module [OPCOM]OPCCRASH, performs the minimal
tasks required to shut down a VMS system. Typically it is invoked as the
final step of the SHUTDOWN.COM procedure, described in the previous
section, but it can be executed directly in an emergency.

OPCCRASH performs the following:

1. It flushes the file system caches for the system disk (or multiple disks
for a volume set) by marking the UCB for dismount and requesting a dis­
mount Queue 1/0 ($QIO) system service. If the logical name OPC$UN­
LOAD evaluates as true, OPCCRASH also marks the UCB for unload.
When OPCCRASH is executed from SHUTDOWN, SHUTDOWN sets
this parameter based on the user's answer to the question, Do you want
to spin down the disk volumes?

2. If the logical name OPC$REBOOT evaluates as true, OPCCRASH sets
the EXE$V _REBOOT flag in EXE$GL_FLAGS. This determines whether
EXE$BUG_CHECK, in modules BUGCHECKBT and BUGCHECKLD,
halts the system or invokes a processor-dependent routine that directs
the console to attempt a reboot. When OPCCRASH is executed from
SHUTDOWN, SHUTDOWN sets this parameter based on the user's an­
swer to the question, Should an automatic system reboot be performed?

3. If the logical name OPC$NODUMP evaluates as true, OPCCRASH sets
the low-order bit in EXE$GLDUMPMASK. This determines whether
EXE$BUG_CHECK writes the contents of memory to the dump file.
When OPCCRASH is executed from SHUTDOWN, SHUTDOWN passes
this parameter as true. Thus, although EXE$BUG_CHECK writes the
error log buffers and header, no memory dump occurs for an operator­
requested shutdown.

4. OPCCRASH raises IPL to IPL$_SYNCH, acquires the MMG and SCHED
spinlocks, forces the modified page list to be written, and releases the
MMG spinlock. It places the process into the resource wait state RSN$_
MPLEMPTY, where it remains until the modified page list is completely

31.5 System Shutdown

empty. When the process is taken out of the wait state, it resumes
execution at IPL 0 with no spinlocks held.

5. If the system is a VAX.cluster node, OPCCRASH translates the logi­
cal name OPC$CLUSTER_SHUTDOWN. When OPCCRASH is executed
from SHUTDOWN, SHUTDOWN sets this parameter based on the shut­
down option CLUSTER_SHUTDOWN. If the logical name evaluates as
true, OPCCRASH raises IPL to IPL$_SYNCH, acquires the SCS spin­
lock, and invokes the connection manager routine CNX$SHUTDOWN,
in module [SYSLOA]CONMAN. This routine coordinates a clusterwide
shutdown. OPCCRASH lowers IPL to 0 and hibernates; the connection
manager ultimately crashes the system with a bugcheck.

6. If the system is a VAX.cluster node, OPCCRASH translates the logi­
cal name OPC$REMOVE_NODE. When OPCCRASH is executed from
SHUTDOWN, SHUTDOWN sets this parameter based on the shutdown
option REMOVE_NODE. If the logical name evaluates as true, OPC­
CRASH raises IPL to IPL$_SYNCH, acquires the SCS spinlock, and in­
vokes CNX$SHUTDOWN to communicate the shutdown to the VAX.­
cluster connection manager on this and the other nodes. It computes
a new value for expected votes by subtracting this node's votes from
the current expected votes and invokes the connection manager routine
CNX$ADJ_EXPT_VOTES, in module [SYSLOA]CONMAN, to commu­
nicate the new value to the remaining VAX.cluster nodes. It releases the
SCS spinlock and waits until quorum is adjusted.

7. Finally, OPCCRASH crashes the system by issuing the BUG_CHECK
macro, specifying a bugcheck type of OPERATOR and the keyword FA­
TAL. Chapter 32 describes this macro, bugcheck processing, and the ac­
tions of EXE$BUG_CHECK.

957

32 Error Handling

There is always something to upset the most careful of
human calculations.

Ihara Saikaku, The fapanese Family Storehouse

This chapter discusses the mechanisms used for reporting systemwide er­
rors in VMS. Process-specific and image-specific errors are handled by the
exception mechanism described in Chapter 5.

Systemwide error-reporting mechanisms include

• The error logging subsystem, by which device drivers and other system
components record errors and other events for later inclusion in an error
log report

• The bugcheck mechanism, by which VMS shuts down the system and
records its state when internal inconsistencies or other unrecoverable er­
rors are detected

• Machine checks and error interrupts, by which the processor indicates that
it has detected CPU-specific errors

32.1 ERROR LOGGING

32.1.1

958

The error logging subsystem records device errors, CPU-detected errors, and
other noteworthy events, such as volume mounts, system startups, system
shutdowns, and bugchecks.

Overview of the Error Logging Subsystem

The error logging subsystem uses a set of buffers called error log allocation
buffers, created at system initialization. Logging an error occurs in the fol­
lowing steps:

1. A thread of execution, such as a device driver, invokes an executive
routine to reserve a portion of an error log allocation buffer. The reserved
portion is called an error message buffer.

2. The thread of execution writes information into the error message buffer
and then invokes another.executive routine to indicate that the buffer is
valid, containing a completed message.

3. The ERRFMT process is awakened to copy the contents of error log
allocation buffers to the error log file, SYS$ERRORLOG:ERRLOG.SYS.

Subsequently, the system manager can run the Error Log Utility to analyze
the contents of the error log file and produce a formatted report.

If the system is shut down or crashes, the error log allocation buffers are
copied to the dump file to prevent the loss of error log messages. On the

32.1.2

32.1 . Error Logging

next system boot, the SYSINIT process copies the error log allocation buffers
saved in the dump file to nonpaged pool. When ERRFMT runs, it scans them
for valid messages to write to the error log file. In this way, no error log
information is lost across a system crash or shutdown.

Error Log Data Stmcttlres

During system initialization, a group of buffers is allocated in contiguous
nonpageable system address space. The number of buffers allocated is spec­
ified by the SYSGEN parameter ERRORLOGBUFFERS. Their starting ad­
dress is recorded in global location EXE$ALERLBUFADR. Prior to VMS
Version 5.0, the number of error log allocation .buffers was fixed at two.

The number of pages in each error log allocation buffer is specified by the
SYSGEN parameter ERLBUFFERPAGES, whose default value is two pages.
Prior to VMS Version 5.2, each error log allocation buffer was one page.

The group of buffers is treated as a ring. Initially; error message buffers are
reserved in the first allocation buffer. When it fills, error message buffers are
reserved in the second allocation buffer. After an allocation buffer fills, the
ERRFMT process is awakened to copy the buffer's contents to the error log
file so that the buffer can be reused. By the time the last allocation buffer
becomes full, the first .allocation buffer should be reusable.

The global location EXE$GW _ERLBUFTAIL contains the number of the
allocation buffer in which error message buffers are currently being reserved .
. EXE$GW _ERLBUFHEAD contains the number of the allocation buffer whose
contents should <be written to the error log file next. These pointers replace

. ERL$GB_BUFIND used in earlier versions of VMS.
The address of a particular error log allocation buffer is computed as

.follows:

address = @EXE$AL_ERLBUFADR
+ j@EXE$GB..:ERLBUFPAGES * 512 * buffer_number)

A header at the beginning of each error log allocation buffer describes its
state. The macro· $ERLDEF defines symbolic names for fields in the buffer
header. The following fields are of particular interest:

.. • ERL$B_BUSY ·contains the number of pending messages in the buffer,
messages for which space has been reserved but which have not been
completely .written.

• ERL$B_MSGCNT contains the number of completed messages.
• ERLB_FLAG,has ot1.e defined flag, ERL$V _LOCK, set to inhibit further

allocation in the buffer while ERRFMT is copying. the buffer contents.
• ERL$L_NEXT.:.points to the first available space in the buffer.
• ERL$L_END Jioints to the first byte past the end of the buffer and is used

to test whether the buffer is full.

959

Error Handling

EXE$AL_ERLBUFADR::
Number of Number of

EXE$GW_ERLBUFHEAD:: LI Flags (reserved) Completed Pending
Messages Messages

32.1.3

960

Figure 32.1

Flags

Number of Number of
Completed Pending

(reserved) Messages Messages
(0) (0)

Pointer to Next Available Space

Buffer Pointer to End of Buffer
Index 1

Space Available
for Messages

ERRORLOGBUFFER
buffers

Error Log Allocation Buffers

ERLBUFFERPAGES
pages

Figure 32.1 shows these data structures and globals. In this figure, buffer 0
has been filled. Error message buffers will be allocated from buffer 1 next.

The format and length of an error message buffer vary with its type. Each
error message buffer has a header that contains type identification and infor­
mation common to all types of message. The macro $EMBHDDEF defines
fields in the header. The macro $EMBETDEF defines the error message types.
Most of the common information in the header is written by the routine that
reserves the error message buffer. Information specific to the error type is
written by the component logging the error.

Each message is uniquely identified by a systemwide error sequence num­
ber, the contents of global location ERL$GL_SEQUENCE. The number is
incremented on each attempt to reserve an error message buffer, whether or
not it is successful. Sequence number gaps in an error log file may indicate
the loss of error messages. (However, they may also indicate deleted time
stamp messages; see Section 32.1.6).

Operation of the Error Logger Routines

The routines that manage the error log allocation buffers are

• ERL$ALLOCEMB-Invoked to reserve an error message buffer

32.1 Error Logging

• ERL$RELEASEMB-lnvoked to release a completed error message buffer

Both are in module ERRORLOG.
ERL$ALLOCEMB is invoked with the size of the requested error message

buffer. It takes the following steps:

1. It first acquires the EMB spinlock, raising interrupt priority level (IPL) to
31, to synchronize access to the allocation buffer data structures.

2. It tests whether the message is larger than will fit into an empty alloca­
tion buffer and, if so, returns an error status.

3. ERL$ALLOCEMB calculates the address of the allocation buffer indicated
by EXE$GW _ERLBUFTAIL.

4. It tests whether the lock flag of that allocation buffer is clear (the usual
state). If it is, ERL$ALLOCEMB tests whether the message fits into the
unused space in the buffer.

5. If the lock flag is set or if the message does not fit, ERL$ALLOCEMB
forces a wakeup of the ERRFMT process. It switches to the next alloca­
tion buffer, incrementing EXE$GW _ERLBUFTAIL.

If the next available allocation buffer is still full of error messages not
yet written to the error log file, ERL$ALLOCEMB advances to the next
allocation buffer, wrapping back to the beginning of the buffer ring if
necessary. If it fails to find room for the message buffer, ERL$ALLOC­
EMB continues in this way until it reaches its starting point, the buffer
whose number is in EXE$GW _ERLBUFHEAD. ERL$ALLOCEMB then
increments ERL$GL_ALLOCFAILS; releases the EMB spinlock, restor­
ing IPL; and returns an error status. Incrementing ERL$GL_ ALLOC­
FAILS for each unsuccessful attempt to log an error facilitates the
detection of messages lost in this way.

6. If the message fits into an allocation buffer, ERL$ALLOCEMB reserves
an error message buffer of the requested size, advances the ERL$L_NEXT
pointer, and increments the pending message count.

In the error message buffer, it records information such as CPU ID,
SCS node name, the size of the message buffer, number of its allocation
buffer, contents of ERL$GL_SEQUENCE, and system time. It then incre­
ments the sequence number; releases the EMB spinlock, restoring IPL;
and returns a success status, the error sequence number, and the address
of the reserved message buffer.

When the component logging the error has written its information in the
message buffer, it invokes ERL$RELEASEMB.

ERL$RELEASEMB takes the following steps:

1. It first acquires the EMB spinlock, raising IPL to 31, to synchronize access
to the allocation buffer data structures.

2. It sets a flag in the error message buffer to indicate that this buffer is
valid.

961

E1101 Handling

32.1.4

962

3. It extracts the number of the allocation buffer in which the message
buffer was reserved and computes its address.

4. It subtracts 1 from the allocation buffer pending message count and adds 1
to the completed message count.

5. If the ERRFMT process ·is hibernating and there are ten or more com­
pleted messages in the allocation buffer, ERL$RELEASEMB forces a
wakeup of the ERRFMT process.

6. It releases the EMB spinlock, restoring the previous IPL, and returns.

The routine ERL$WAKE, in module ERRORLOG, is invoked to wake the
ERRFMT process. It is invoked once a second from EXE$TIMEOUT !see
Chapter 11). ERL$WAKE does not necessarily wake the ERRFMT process.
Rather, it decrements a counter at global location ERL$GB_BUFTIM and
only wakes ERRFMT when the counter reaches zero.

When the counter reaches zero, it is reset to its starting value of 30.
This value is an assembly time parameter, not a SYSGEN parameter. Thus,
a maximum of 30 seconds can elapse before ERRFMT is awakened. This
ensures that error messages are written to the error log file at reasonable
intervals, even on systems with very few errors.

Both ERL$ALLOCEMB and ERL$RELEASEMB exploit this timing mech­
anism to force a wakeup of ERRFMT. These routines simply set ERL$GB_
BUFTIM to 1 so that the next invocation of ERL$WAKE will wake ERRFMT.
ERL$WAKE must acquire the SCHED spinlock to synchronize access to the
scheduler database (see Chapters 8 and 12). Thus, it cannot be invoked with
a higher ranking spinlock held or from an IPL higher than IPL$_SCHED.
ERL$ALLOCEMB and ERL$RELEASEMB run at higher IPLs, holding the
EMB spinlock, and are thus unable to invoke ERL$WAKE directly.

ERL$ALLOCEMB forces a wakeup whenever the current error log alloca­
tion buffer fills and it must switch to the next one. ERL$RELEASEMB forces
a wakeup if the current message buffer contains ten or more messages.

If the ERRFMT process is not running, there is no way for error log
messages to be written to the error log file. Initially, attempts to log errors
by reserving error message buffers would be successful. However, once the
error log allocation buffers fill with messages, any subsequent attempt to
reserve an error message buffer fails. System operation is otherwise normal.

Device Driver Error Logging

It is not mandatory for device drivers to log errors, although, under most
circumstances, it is good practice. To facilitate driver error logging, VMS
provides several routines in module ERRORLOG that a driver can invoke to
log errors. To use these routines, the driver and its tables must satisfy certain
prerequisites, which are described in the VMS Device Support Manual.

Two commonly used routines are ERL$DEVICERR and ERL$DEVICTMO.
Each of these logs an error associated with a particular 1/0 request. A

32.1 Error Logging

driver invokes ERL$DEVICERR to report a device-specific error and ERL$DE­
VICTMO to report a device timeout.

Each routine executes the following sequence:

1. The routine determines whether an error should be logged by testing that
error logging is enabled on the device (bit DEV$V _ELG set in unit control
block field UCB$LDEVCHAR) and that error logging is not inhibited for
this 1/0 request (bit I0$V _INHERLOG clear in UCB$W _FUNC). If either
of these tests fails, the routine returns.

2. The routine increments UCB$W _ERRCNT, the cumulative number of
errors that have occurred on the unit.

3. The routine then tests whether an error message is already in progress
on the device (bit UCB$V_ERLOGIP set in UCB$W_STS) and returns if
one is.

4. The routine invokes ERL$ALLOCEMB to reserve a message buffer. The
size of the message buffer is device driver-specific and defined in the
driver dispatch table field DDT$W _ERRORBUF. If the reservation fails,
the routine returns. Otherwise, it records the address of the message
buffer in UCB$L_EMB and sets bit UCB$V _ERLOGIP to indicate that an
error message is in progress.

5. The routine records information common to all devices in the error mes­
sage buffer, for example, unit number, device name, count of completed
operations, error count, and 1/0 function.

6. The routine then invokes the device driver's register dump routine to
write device-specific information in the error message buffer. Typically,
this information consists of device register contents at the time of the
error.

7. When the driver register dump routine returns, the error logging rou­
tine returns control to the device driver. When the devi(ie driver finishes
processing the 1/0 request, it invokes IOC$REQCOM, in module IOSUB­
NPAG.

8. IOC$REQCOM, finding that there is an error log message in progress,
records the final 1/0 request status, device status, and error retry counters
in the error log buffer. It then invokes ERL$RELEASEMB to indicate that
the error message buffer has been completely written.

Some device drivers report conditions that are not associated with a par­
ticular 1/0 request; such conditions are called device attention errors. The
CI port driver (PADRIVER), for example, reports an error if the port's mi­
crocode is not at the required revision level. To log such an error, a driver
invokes ERL$DEVICEATTN. This routine is similar to ERL$DEVICERR and
ERL$DEVICTMO in that it reserves and fills in an error message buffer.
However, the routine itself, rather than IOC$REQCOM, invokes ERL$RE­
LEASEMB to indicate that the message buffer is completely written.

963

Error Handling

32.1.5

32.1.6

964

In addition to ERL$DEVICEATTN, the system communication services
(SCS) port and class drivers use several other error log routines:

• ERL$LOGSTATUS-Used by the disk and tape class drivers to log an error
status code returned in a mass storage control protocol (MSCP) end packet.
The end packet itself is written to the error log buffer with ERL$LOGMES­
SAGE .

• ERL$LOGMESSAGE-Used by the port and class drivers to log an error
condition associated with a command packet, for example, a packet that
contains invalid data or a hierarchical storage controller (HSC) error log
datagram.

• ERL$LOG_DMSCP-Used by the disk class drivers (DUDRIVER and DS­
DRIVER) to log controller errors and resets.

• ERL$LOG_ TMSCP-Similar to ERL$LOG_DMSCP, this is used by the
tape class driver (TUDRIVER) to log controller errors and resets.

Other Error Log Messages

VMS uses the error log subsystem to record events other than device errors.
Other kinds of entries written to the error log include the following:

• Warm start, a successful recovery from a power failure
• Cold start, a successful system bootstrap
• Fatal and nonfatal bugchecks (see Section 32.2)
• Machine check
• Memory and other CPU-specific errors
• Volume mount and dismount
• A user-requested message written by the Send Message to Error Logger

($SNDERR) system service (see Chapter 36)
• Time stamp (see Section 32.1.6)

The ERRFMT Process

During system initialization, the detached ERRFMT process is created with
user identification code [1,6] and several privileges, including CMKRNL.
ERRFMT runs in kernel and user mode. In kernel mode, it can access the
error log allocation buffers and copy their contents to its own process space.
In user mode, it scans the copied buffer contents for valid messages and
writes them to the error log file SYS$ERRORLOG:ERRLOG.SYS.

When ERRFMT is first started, it enters kernel mode, using the Change to
Kernel Mode ($CMKRNL) system service. It tests whether there are any error
log allocation buffers restored from the dump file to be processed. If global
location EXE$G1-SAVED_EMBS has nonzero contents, ERRFMT initializes
several variables to indicate that there are saved error buffers that require
processing in a later step.

It requests the Set Timer ($SETIMR) system service to request an asyn­
chronous system trap (AST) notification in ten minutes. Its AST procedure

32.1 Error Logging

invokes ERL$ALLOCEMB, writes a time stamp message containing the time
of day, invokes ERL$RELEASEMB, and requests the $SETIMR system ser­
vice again. Thus, every ten minutes, ERRFMT's kernel mode AST procedure
writes a time stamp message to indicate that ERRFMT is executing and that
the system is operational.

After kernel mode initialization is complete, ERRFMT returns to user
mode and executes the following loop to process an error log allocation
buffer:

1. ERRFMT changes mode to kernel and, in its kernel mode procedure, tries
to select an error log allocation buffer to process:

a. If there are multiple buffers restored from the dump file to be pro­
cessed, it selects the first one in the buffer ring, advances the ring
pointer, copies the buffer contents to PO space, decrements the count
of restored unprocessed buffers, and returns.

b. If there is only one restored buffer left to be processed, ERRFMT
copies its contents, deallocates the nonpaged pool occupied by the
restored buffers, clears EXE$GLSAVED_EMBS, and returns.

c. If there are no restored buffers to be processed, ERRFMT acquires
the EMB spinlock, raising IPL to 31. It determines the next.error log
allocation buffer to be processed and sets the lock flag in it to prevent
any further reservations.

d. It tests the pending message counter in the allocation buffer to de­
termine whether there are error messages for which space has been
reserved and not yet released.

If there are pending messages, ERRFMT releases the EMB spinlock,
lowering IPL to 0. It sets a timer and waits for half a second before
testing the counter again. ERRFMT repeats its wait and test sequence
until there are no more pending messages or until it has waited 255
times. It then reacquires the EMB spinlock.

e. ERRFMT then copies the error log allocation buffer contents to its
own PO space and compares the copy to the original to detect any
changes that might have occurred during the copy. If the two are
not equal, ERRFMT repeats the copy, trying to get a consistent copy
of the buffer contents. If necessary, it repeats the copy and compare
sequence 255 times. This sequence is an alternative to copying the
buffer contents with the EMB spinlock held and at IPL 31. If 255
attempts fail to get a consistent copy, ERRFMT uses the copy it has.

f. Once ERRFMT has copied the allocation buffer contents, it reacquires
the EMB spinlock, clears the pending and completed message counts
in the copied buffer, and clears its lock flag. It updates EXE$GW _
ERLBUFHEAD to point to the next allocation buffer, advancing it to
the beginning of the ring if necessary. It releases the EMB spinlock,
restoring the previous IPL.

965

Error Handling

32.1.7

966

g. ERRFMT then returns to user mode with a status indicating whether
there are any completed messages in the copied buffer.

2. In user mode, ERRFMT checks whether there are any completed mes­
sages to process. If there are none, ERRFMT hibernates until it is awak­
ened through ERL$WAKE and then returns to the first step to select an
error log allocation buffer.

3. If there are messages, ERRFMT processes the messages in the buffer,
writing valid ones to the error log file. Whenever ERRFMT finds one of
its time stamp messages, it checks whether the previous message written
to the error log file is also a time stamp. If so, ERRFMT updates the
record containing the older time stamp with the newer one. This avoids
filling the error log file with time stamps and ensures that the newest
time stamp is recorded. Note, however, that this can cause a sequence
number gap in the error log file messages.

4. If ERRFMT detects a volume mounted or dismounted message in the
error log buffer, it checks the SYSGEN parameter MOUNTMSG or DIS­
MOUMSG. If the appropriate parameter is set, ERRFMT sends a volume
mounted or dismounted message to terminals enabled as disk or tape
operators. By default, the SYSGEN parameters are zero, disabling the
sending of these messages to operator terminals.

5. If any process has declared an error log mailbox (see Section 32.1.7),
ERRFMT writes every message in the error log buffer to that mailbox.

6. ERRFMT proceeds to the first step to select an error log allocation buffer.

Error Log Mailbox

The error logging subsystem provides the capability for up to five processes
to monitor error logging activity as it happens, rather than wait for offline
processing with the Error Log Utility. This capability is provided through the
undocumented Declare Error Log Mailbox ($DERLMB) system service. This
system service is provided for use only by Digital's software, such as the
optional software products VAXsim and VAXsimPLUS, and is unsupported
for any other use.

To assign an error log mailbox, a process with DIAGNOSE privilege re­
quests the $DERLMB system service with the unit number of a mailbox
to receive error log messages. A process requests this service with a unit
number of zero to cancel its use of an error log mailbox.

The $DERLMB system service procedure, EXE$DERLMB in module SYS­
DERLMB, runs in kernel mode. It first tests whether the process has DIAG­
NOSE privilege; if it does not, the system service returns the error status
SS$_NOPRIV. If it does, EXE$DERLMB scans the array of error log mailbox
descriptors, which begins at EXE$AQ_ERLMBX. It synchronizes access to
the array by acquiring the SCHED spinlock, raising IPL to IPL$_SCHED.

If the process is trying to assign an error log mailbox, EXE$DERLMB tries

32.2 System Crashes (Fatal Bugchecks)

to find a free descriptor. If it finds one, it stores the unit number in the
first word of the mailbox descriptor and the internal process ID (IPID) of the
requesting process in the second longword. It releases the SCHED spinlock
and returns the status SS$_NORMAL. Otherwise, if no descriptor is free,
EXE$DERLMB releases the SCHED spinlock and returns the error status
SS$_DEVALLOC.

If the process is trying to cancel use of an error log mailbox, EXE$DERLMB
scans the descriptor array for the one associated with this process's IPID. If
it finds one, it clears it. The Image Rundown ($RUNDWN) system service
(see Chapter 26) performs a similar scan to ensure that error log mailbox use
is canceled at image rundown.

32.2 SYSTEM CRASHES (FATAL BUGCHECKS)

32.2.1

When VMS detects an internal inconsistency, such as a corrupted data struc­
ture or an unexpected exception, it generates a bugcheck. If the inconsistency
is not severe enough to prevent continued system operation, the bugcheck
generated is nonfatal and merely results in an error log entry.

If the error is serious enough to jeopardize system operation and data
integrity, a fatal bugcheck is generated. This generally results in aborting
normal system operation, recording the contents of memory to a dump file
for later analysis, and rebooting the system.

Bugcheck Mechanism

Source code generates a bugcheck by invoking the BUG_CHECK macro. The
macro has one required argument, the bugcheck type, and one optional ar­
gument, the keyword FATAL. This macro expands into the two-byte opcode
FEFF16 and a one-word operand that identifies the bugcheck type and, in bits
(2:0), its severity. If the keyword FATAL is present, the severity is set to the
value STS$K_SEVERE; otherwise, it is zero.

This fatal bugcheck example is extracted from SCH$SCHED, in module
SCHED:

QEMPTY: BUG_CHECK QUEUEMPTY,FATAL

Its invocation generates the following code:

.WORD AXFEFF

.WORD BUG$_QUEUEMPTY!4

The execution of the bugcheck opcode results in a reserved instruction
exception (SS$_0PCDEC, opcode reserved to Digital), causing control to be
transferred through the system control block (SCB) to the service routine for
that exception, EXE$0PCDEC in module EXCEPTION.

EXE$0PCDEC checks whether the reserved opcode is either FEFF16 or
FDFF16. The two-byte opcode FEFF16 indicates that the bugcheck operand is

967

Error Handling

32.2.2

968

a word. The two-byte opcode FDFF16 indicates that the bugcheck operand is
a longword. VMS does not currently use longword bugcheck operands.

If either opcode is present, EXE$0PC0EC interprets this exception as a
bugcheck and transfers control to routine EXE$BUG_CHECK, in module
BUGCHECKBT. Otherwise, the illegal opcode exception is treated in the
usual manner, described in Chapter 5.

The actions of EXE$BUG_CHECK vary, depending on the access mode in
which the bugcheck occurred and the severity of the bugcheck. EXE$BUG_
CHECK first saves all the general registers on the stack. It then confirms
the read accessibility of the bugcheck operand from the mode that generated
the bugcheck and advances the exception program counter (PC) saved on
the stack to point to the instruction following the bugcheck. (As a result,
the bugcheck PC shown in a dump is an address four bytes higher than the
actual bugcheck.) EXE$BUG_CHECK then determines in which access mode
the bugcheck occurred.

Bugchecks from User and Supervisor Modes

VMS itself generates few bugchecks from user or supervisor mode. It provides
the mechanism for use by other software. When a bugcheck is generated
from either user or supervisor mode code running in a process with BUG­
CHK privilege, EXE$BUG_CHECK writes an error log message, invoking
ERL$ALLOCEMB and ERL$RELEASEMB. The error message resembles that
shown in Table 32.2 but has an entry type of user-generated bugcheck and
lacks the contents of CPU-specific registers.

If the bugcheck is fatal, EXE$BUG_CHECK restores the saved registers,
executes an REI instruction to return to the access mode of the bugcheck, and
requests the Exit ($EXIT) system service. The value SS$_BUGCHECK is the
final image status. What happens as a result of this service request depends
on whether the process is executing a single image (without a command
language interpreter, CLI, to establish a supervisor mode exit handler) or is
an interactive or batch job.

• If the process i.s executing a single image, a fatal bugcheck from user or
supervisor mode typically results in process deletion.

• With the current use of supervisor mode exit handlers, a fatal bugcheck
generated from an interactive or batch job causes the currently executing
image to exit and control to be passed to the CLI to read the next command.

In either case, the only difference between user and supervisor mode is
that user mode exit handlers are not called if a fatal bugcheck is generated
from supervisor mode.

If the bugcheck is not fatal, EXE$BUG_CHECK restores the saved registers
and executes an REI instruction. Execution continues with the instruction
following the BUG_CHECK macro.

32.2.3

32.2.4

32.2 System Crashes {Fatal Bugchecks)

The SYSGEN parameter BUGCHECKFATAL has no effect on bugchecks
generated from user or supervisor mode. The severity field in the bugcheck
operand determines whether a given bugcheck is fatal. User and supervisor
mode bugchecks affect only the current process.

Bugchecks from Executive and Kernel Modes

Various VMS components generate bugchecks from executive and kernel
modes.

If an executive or kernel mode bugcheck operand is not fatal and the SYS­
GEN parameter BUGCHECKFATAL is zero, EXE$BUG_CHECK proceeds as
it does for nonfatal bugchecks for the outer two access modes. It writes an
error log entry, restores the general registers, and dismisses the exception,
passing control back to the instruction following the BUG_CHECK macro.

The error log entry for a nonfatal bugcheck is identical to that for a fatal
bugcheck (see Table 32.2) except that it has an entry type of system-generated
bugcheck and lacks the contents of CPU-specific registers.

Typically, execution continues with no further effects. However, the rou­
tine that detects the error and generates the bugcheck can take further action.
One example of such a routine is the last chance handler for executive mode
exceptions. It generates the nonfatal bugcheck SSRVEXCEPT (unexpected
system service exception). On the presumption that process data structures
are inconsistent, it then requests the $EXIT system service. Exiting from
executive mode results in process deletion.

In the case of a fatal bugcheck, EXE$BUG_CHECK's most important func­
tion is to record the contents of the error log allocation buffers and memory
in the dump file. Later, during system initialization, error log messages in the
dump file are copied to nonpaged pool for processing by the ERRFMT process.
The dump file can be examined subsequently with the System Dump An­
alyzer (SDA) to determine the cause of the crash. EXE$BUG_CHECK also
prevents any further system operations in case they might lead to data cor­
ruption. It halts the system and initiates a reboot.

If BUGCHECKFATAL is 1, any executive or kernel mode bugcheck is
treated as fatal, independent of the severity bits in the bugcheck operand. By
default, BUGCHECKFATAL is 0, which means that a nonfatal inner access
mode bugcheck does not cause the system to crash. If either BUGCHECK­
FATAL is 1 or the bugcheck is fatal, EXE$BUG_CHECK performs fatal bug­
check processing.

Section 32.2.4 describes the contents of the dump file, and Section 32.2.5
provides details about fatal bugcheck processing.

System Dump File

Syste~ initialization code locates and opens the dump file. The dump file
must be in directory SYS$SPECIFIC:[SYSEXE] on the system disk so that

969

Error Handling

970

each member of a VAXcluster system has a unique dump file. By default, the
dump file is SYSDUMP.DMP. In its absence, VMS instead writes a dump to
PAGEFILE.SYS, if it exists. !Subsequent analysis of a dump written to the
page file requires that the SYSGEN parameter SAVEDUMP be 1.)

The dump file is divided into several distinct pieces:

1. The dump header is written to the first block of the file, virtual block
number IVBN) 1. The dump header includes information that enables
SDA to determine the state of the dump file and locate key information
in it. The contents of this data structure are shown in Table 32.1. Sym­
bolic offsets for the dump header field names are defined by the macro
$DMPDEF in SYS$LIBRARY:STARLET.MLB.

2. The error log allocation buffers are written to the next blocks. The SYS­
GEN parameter ERLBUFFERPAGES specifies the number of blocks in
each buffer. The SYSGEN parameter ERRORLOGBUFFERS specifies how
many buffers there are.

3. The rest of the dump file is filled with memory contents.

Note that the dump header includes an error log entry. The entry as­
sociated with a fatal bugcheck is recorded in the header to avoid loss of
information in case the error log allocation buffers are full when the bug­
check occurs.

Table 32.2 shows the contents of an error log entry for a fatal bugcheck.
The macros $EMBHDDEF and $EMBCRDEF define symbolic offsets for
fields in this error log entry.

After the system reboots, SYSINIT !see Chapter 31) copies the fatal bug­
check error log entry to nonpaged pool, along with the error log allocation
buffers saved in the dump file. It stores their starting address in global loca­
tion EXE$G1-SAVED_EMBS. Later, the ERRFMT process will record them
in the error log file.

In earlier versions of VMS, a dump was always a dump of physical memory.
A physical dump generally requires that all physical memory be written to
the dump file to ensure the presence of the system page table ISPT). In a
typical VMS configuration, the SPT, required for virtual address translation,
is allocated in high physical memory (see Chapter 30). Since a dump of
physical memory is written in order by memory addresses, with lowest first,
an undersized dump file is likely to lack the SPT.

A partial dump without the SPT is useless and cannot be analyzed by SDA.
The size of the file required for a complete dump of physical memory is the
sum of one block for the header, ERRORLOGBUFFERS times ERLBUFFER­
PAGES blocks for the error log buffers, and as many blocks as there are
physical pages of memory being used. If MA780 shared memory is present
on the system, the dump file must be large enough to include its contents
as well.

VMS Version 5.0 introduces an alternative form of crash dump-a dump

32.2 System Crashes (Fatal Bugchecks)

Table 32. l Contents of the Dump Header

Description
Last error log sequence number
Dump file flags

Meaning if Set

Dump file has been analyzed
Dump has no valid data
Error occurred writing header
Error occurred writing error log

buffers
Error occurred writing memory
Error occurred writing system

page table
Dump completely written
Header and error log buffers com­

pletely written
Dump style

0 = full physical memory dump
1 =selective memory dump

Unused

Unused
Number of pages in each error log buffer

Bit
Position

0
1
2
3

4
5

6
7

8-11

12-15

Contents of SBR, SLR, KSP, ESP, SSP, USP, ISP
Quadword descriptors for eight memory controllers
• Page count
• Transfer request number for this controller
• Base page frame number (PFN) for this controller
System version number
One's complement of previous longword
Dump file version (contains 052016 for VMS Version 5.2)
Number of error log allocation buffers
Index of error log buffer ring head
Index of error log buffer ring tail
Last I/O status from writing the dump
Number of errors that occurred writing the dump
Number of pages of memory in the dump
Number of processes written in selective dump
Error log entry for fatal bugcheck (see Table 32.2)

Size

Longword
Word

Byte
Byte
7 longwords
8 quadwords
3 bytes
Byte
Longword
Longword
Longword
Word
Word
Word
Word
Longword
Longword
Longword
Longword
78 longwords

of selected virtual address space. This alternative makes possible a dump of
a system with more physical memory than dump file space.

In a selective dump, related pages of virtual address space are written to
the dump file as a unit called a logical memory block (LMB). For example,
one logical memory block consists of the system and global page tables;
another is the address space of a particular process. Those logical memory

971

Error Handling

32.2.5

972

Table 32.2 Contents of Error Log Entry for Fatal Bugcheck (CRASH CPU)

Description

Error message buffer header
• Size in bytes of buffer
• Allocation buffer number
• Error message valid indicator
System ID of CRASH CPU
Error message header revision level (contains FFFC16)

Extended system ID information from CRASH CPU
ID of CRASH CPU
Device class (unused)
Device type (unused)
SCS node name
Flags
Operating system ID
Header size
Entry type (contains EMB$ILCR = 2516)

System time when crash occurred (from EXE$GQ_SYSTIME)
Error log sequence number (low-order word of ERL$GL_

SEQUENCE)
Software version
Error type mask
Contents of KSP, ESP, SSP, USP, ISP from CRASH CPU
Contents of RO to RI I, AP, FP, SP, PC, PSL from CRASH CPU
Contents of POBR, POLR, PIBR, PILR, SBR, SLR, PCBB, SCBB,

ASTLVL, SISR, ICCS from CRASH CPU
Contents of CPU-specific registers from CRASH CPU
Bugcheck operand on CRASH CPU
ID of process current on CRASH CPU
Name of process current on CRASH CPU

Size

5 bytes
Word
Word
Byte
Longword
Word
Longword
Longword
Byte
Byte
16 bytes
Word
Byte
Byte
Word
Quadword
Word

Quadword
Longword
5 longwords
I 7 longwords
11 longwords

24 longwords
Longword
Longword
16 bytes

blocks likely to be most useful in crash dump analysis are written first.
Section 32.2.5.2 describes logical memory blocks in more detail. ,

A value of 1 for the SYSGEN parameter DUMPSTYLE specifies a selective
crash dump; the parameter's default value is 0. If DUMPSTYLE is 1, 127
system page table entries jSPTEs) are allocated during system initialization
for later use in writing a selective dump. If these SPTEs cannot be allocated,
DUMPSTYLE is zeroed to specify that a physical dump be taken.

Fatal Bugcheck Processing

The code that performs fatal bugcheck processing and its data are not resi­
dent and are not referenced during normal system operation. They are within
the pageable part of the executive image EXCEPTION.EXE. When needed,
they are read into memory, overlaying nonpaged read-only executive code.

The decision that fatal bugcheck code be nonresident saves a considerable

32.2 System Crashes (Fatal Bugchecks)

amount of memory during normal operations. It results, however, in some
added complexity during the infrequent occurrence of a fatal bugcheck. An­
other implication is that the executive code overlaid by the fatal bugcheck
code cannot subsequently be examined in the dump. It is thus possible that
some part of the causal sequence that led to the crash may be unavailable.
However, this is judged to be a low-probability event relative to the frequency
with which the extra memory is useful.

The fatal bugcheck overlay includes the nonresident portion of EXE$BUG_
CHECK, in module BUGCHECKLD; a table of all bugcheck codes; and two
pages containing the bugcheck message text associated with the fatal bug­
check. One additional page of executive is used as a data buffer. The bug­
check overlay and its data buffers are shown in Figure 32.2.

EXE$BUG_CHECK does not use standard 1/0 mechanisms to read the
fatal bugcheck overlay or write the dump because they may be affected
by the system inconsistency that triggered the fatal bugcheck. Instead, it
calls the bootstrap system device driver for all its 1/0. The bootstrap system
device driver is the one used during system initialization jsee Chapter 30).
Furthermore, EXE$BUG_CHECK cannot request the file system to look up
the image containing the fatal bugcheck code or the dump file. Instead, it
uses information about their locations that was recorded and checksummed
at system initialization.

Before reading the fatal bugcheck overlay, EXE$BUG_CHECK takes the
following steps:

1. It validates the checksum of the boot control block, the data struc­
ture containing the locations of the bugcheck overlay and dump file. If
the boot control block checksum is no longer valid, EXE$BUG_CHECK
clears a flag tested in a later step.

2. On a symmetric multiprocessing jSMP) system, the first CPU to execute
EXE$BUG_CHECK is called the CRASH CPU. It informs the other CPUs

System Disk

Figure 32.2
Fatal Bugcheck Overlay

l Virtual Address Space 1
}1------------1Isooooooo

Buffer for Dump Header

l Approximately
110,500 bytes

•. _J

} 2pages

1 page

973

Error Handling

974

that a fatal bugcheck is in progress and takes a number of steps to
ensure that a consistent system state can be saved. After these steps,
the primary CPU in the system assumes the context of the CRASH CPU
and completes fatal bugcheck processing. Chapter 34 contains further
details on fatal bugcheck processing in an SMP system.

3. EXE$BUG_CHECK invokes SCS$SHUTDOWN, in moduie [SYSLOA]
SCSLOA, to shut down any SCS circuits.

4. It invokes EXE$SHUTDWNADP to shut down all adapters and invokes
EXE$INIBOOTADP to initialize the adapter containing the system de­
vice. These routines are in the CPU-specific module [SYSLOA]ERR­
SUBxxx, where xxx identifies the CPU type (see Appendix G).

5. It invokes INI$WRITABLE to change the protection of the pages contain­
ing nonpaged read-only sections of loaded executive images so that they
can be overwritten by the bugcheck overlay.

6. It calls the device initialization routine in the bootstrap driver.
7. EXE$BUG_CHECK scans the list of loaded executive images for one

containing a nonpaged code section large enough for the bugcheck overlay
and its data buffers. It skips over those executive images that contain
routines used by the bugcheck overlay.

8. EXE$BUG_CHECK then tests whether the boot control block was found
to be valid. If not, it reboots the system.

EXE$BUG_CHECK calls the bootstrap driver to read the first page of the
nonresident bugcheck code and transfers control to a routine within it which
reads the rest of the overlay. (For simplicity, the name EXE$BUG_CHECK
is used here to refer to both the resident and nonresident bugcheck code.)
If an 1/0 error occurs while the nonresident bugcheck code is being read,
EXE$BUG_CHECK writes an error message on the console terminal and
reboots the system.

Before writing to the dump file, the routine takes the following steps:

1. It determines the block number in EXCEPTION.EXE that contains the
start of the bugcheck message associated with the bugcheck type. It reads
that block and, in case the message spans blocks, the next block.

2. It builds the error log message in the dump header buffer, invoking
the CPU-specific routine EXE$DUMPCPUREG, in module [SYSLOA]
ERRSUBxxx, to copy CPU-specific processor registers to the error log
message.

3. If this is an operator-requested shutdown bugcheck, EXE$BUG_CHECK
skips the next step.

4. EXE$BUG_CHECK writes information about the bugcheck to the con­
sole terminal. This information includes the bugcheck message, ad­
dresses of the loaded executive images, current process name, and con­
tents of general registers and stacks relevant to the crash. On an SMP

32.2.5.1

32.2 System Crashes (Fatal Bugchecks)

system, EXE$BUG_CHECK writes additional information, such as which
CPUs are active and which CPU incurred the fatal bugcheck.

The console output is written before the dump file and should not
be interrupted by halting the VAX processor from the console terminal.
Such an interruption prevents the dump file from being written.

5. Next, EXE$BUG_CHECK determines whether a dump is to be written
and, if so, what kind of dump:

-If the SYSGEN parameter DUMPBUG is 0, no dump is written. (Its
default value is 1.)

-If the boot control block was found to be invalid, no dump is written.
-If neither SYSDUMP.DMP nor PAGEFILE.SYS existed in the directory

SYS$SPECIFIC:[SYSEXE] at boot time, no dump is written.
-If this is an operator-requested shutdown generated through the system

shutdown command procedure, only the dump header and error log
allocation buffers are written to the dump file. (This behavior is new
with VMS Version 5.0.)

-If the parameter DUMPSTYLE is 1, memory is dumped selectively;
otherwise, a full memory dump is written. (The default value of this
parameter is 0.)

6. If no dump is to be written, EXE$BUG_CHECK concludes with the steps
described in Section 32.2.5.3.

7. If any type of dump is to be written, EXE$BUG_CHECK next writes the
dump header and the contents of the error log allocation buffers to the
dump file. After successfully writing the error log buffers, it rewrites the
dump header with a status indicating that the dump contains them.

8. If the system is being shut down and no further dump is necessary,
EXE$BUG_CHECK concludes with the steps in Section 32.2.5.3. Other­
wise, it determines whether a physical or selective dump is to be written.
The following two sections describe its actions in writing these different
types of memory dumps.

Physical Memory Dump. EXE$BUG_CHECK uses the memory descriptors
in the restart parameter block constructed by VMB (see Chapter 30) to pro­
vide an accurate description of physical address space. It uses the contents of
the global MMG$GLMAXMEM as the largest PFN that should be written
to the dump file. This global is initialized as the highest page in use by VMS.
If the SYSGEN parameter PHYSICALPAGES has been set to fewer pages of
memory than are available, VMS only uses the lowest PHYSICALPAGES of
memory.

Writing 127 physical pages at a time, EXE$BUG_CHECK writes memory
contents to the dump file. It begins writing to the block following the dump
header and error log allocation buffers and continues until it gets to the end

975

Error Handling

32.2.5.2

976

[Dump Header i VBN 1
11-----------~ VBN2

Error Log Allocation Buffers through

1-----------~ VBN (ERRORLOGBUFFERS *ERLBUFFERPAGES)+1

!Increasing
PFN

Figure 32.3

!Increasing
VBN

Layout of a Physical Memory Dump

of the dump file or until it has written all of the physical memory in use by
VMS. Figure 32.3 shows the layout of a physical memory dump.

Selective Memory Dump. In a selective dump, related pages of virtual
address space are written to the dump file as a unit called a logical memory
block. A list in EXE$BUG_CHECK explicitly specifies the order in which
logical memory blocks are written to the dump file, as follows:

1. The system and global page tables.
2. System space. This excludes the system and global page tables and those

pages overwritten by the bugcheck overlay and its data. It includes any
system transition pages, pages that are invalid but on the free or modified
list.

3. Global pages in use at the time of the crash.
4. The per-process address space of the process current at the time of the

crash, excluding global pages and including any of its pages on the free
and modifed lists. (On an SMP system, the address space of the process
current on the CRASH CPU is written in this step.)

5. The per-process address spaces of the following processes, in the order
specified:

a. MSCPmount
b. NETACP
c. REMACP
d. LES$ACP
e. On an SMP system, processes current on other active CPUs
f. Other resident processes, in order by process index

Following the dump header and error log allocation buffers, EXE$BUG_
CHECK writes logical memory blocks to the dump file until it is full or the
end of the list is reached.

Each logical memory block in a dump begins with a descriptor that iden­
tifies the block and gives its size. The range of addresses to be included in a
block is determined by the particular address space being dumped.

32.2 System Crashes {Fatal Bugchecks)

Not all virtual addresses in the range spanned by a logical memory block
are necessarily included in it. Because nonresident pages (those not currently
in memory) are not dumpable, a nonresident page is a hole in the address
space. In the case of a process logical memory block, a global page is also a
hole, because global pages are all dumped together in the global page logical
memory block.

A logical memory block with holes in its address space contains a hole
table, which lists the pages of address space not present in the dump. The
rest of the block consists of pages of address space in order by ascending
address. Figure 32.4 shows the organization of a logical memory block and
the layout of a typical selective dump.

EXE$BUG_CHECK's general sequence in writing a logical memory block
is the following:

1. It writes a logical memory block descriptor in the next block of the dump.
2. It scans the page tables that describe the address space to be dumped,

looking for invalid pages that are not transition pages. It writes an entry
in a hole table for each such sequence of pages found. It writes the hole
table to the next block (or blocks) of the dump. (Chapter 14 describes the
different PTE forms.)

3. EXE$BUG_CHECK scans the page tables again, filling in its 127 SPTEs
with information from each valid or transition PTE found. That is, it
double-maps those pages so that it can write 127 virtually noncontiguous
pages in one 1/0 request.

4. When EXE$BUG_CHECK has written all the valid and transition pages in
a particular logical memory block to the dump file, it rewrites the block
containing the descriptor with correct information about the number
of holes in the address space and the number of data blocks (valid and
transition pages) in the logical memory block.

Generally, EXE$BUG_CHECK reaches the end of a file sized for selective
dumps before it reaches the end of the logical memory block list. When it
does, it rewrites the descriptor of the current logical memory block with
the hole count and actual number of data blocks written. It then rewrites
the dump header, filling in status information such as number of 1/0 errors
encountered writing the dump file, whether the SPT was dumped, how many
process logical memory blocks were written, and so on.

Note that a selective dump to the page file is not likely to survive system
initialization. For a dump in a page file to remain intact until it can be copied,
there must be 452 additional blocks in the page file available for paging. If
there are not, SYSINIT releases for paging the blocks occupied by the dump.
Because EXE$BUG_CHECK typically continues to write a selective dump
until there is no more room, there is no way for the system manager to
ensure that 452 blocks of page file will remain unoccupied by the dump.

In writing a selective dump, EXE$BUG_CHECK must defend against the

977

Error Handling

978

{I LMB
0~··" I

LMB for SPT T System Page Table J
andGPT l 1

Global Page Table

LMBfor {
system space

LMB Descriptor

List of Missing System Pages

System Pages =:=

LMBfor {
global pages

LMB Descriptor

List of Missing Global Pages

Global Pages in Use
at Time of Crash

Process
LMB

Process
LMB

Process
LMB

Process
LMB

Figure 32.4

{
LMB Descriptor

List of Missing Per-Process Pages

:= PO and P1 Pages of Current
Process on CRASH CPU

{I~--------F-ir_st_s_p_e_ci_a_1P_r_o_ce_s_s ______ --1I

LMB Descriptor

List of Missing Per-Process Pages

PO and P1 Pages of

List of Missing Per-Process Pages {

LMB Descriptor

,______
PO and P1 Pages of
Last Special Process

List of Missing Per-Process Pages

PO and P1. Pages of

{

LMB Descriptor

}~-------F_i_rs_t_R_es_id_e_n_t_P_ro_c_e_ss ______ --iI

T

LMB Descriptor

List of Missing Per-Process Pages

PO and P1 Pages of
Last Resident Process T

Layout of a Selective Memory Dump

through

VBN (ERRORLOGBUFFERS)
* +1

ERLBUFFERPAGES

! Increasing
VBN

possibility that whatever error led to the bugcheck corrupted the data struc­
tures necessary to write virtual address space. It replaces the page fault and
access violation exception service routines with its own routines to prevent
recursive bugchecks if either of those errors occur. It also performs consis­
tency checks on certain key data structures. For example, it checks that an
address presumed to be that of a process header is "syntactically" correct;

32.2.5.3

32.3

32.3 Machine Check Mechanism

that is, it must be within known address boundaries and at an integral num­
ber of process headers from the beginning of the address range.

Final Fatal Bugcheck Processing. The last step in EXE$BUG_CHECK either
loops or reboots the system. If the SYSGEN parameter BUGREBOOT is 0,
EXE$BUG_CHECK writes a message on the console terminal and loops at
IPL 31, waiting for a command to be entered at the console terminal. If
BUGREBOOT is 1, its default value, EXE$BUG_CHECK reboots the system
by invoking the routine CON$SENDCONSCMD, in module OPDRIVER,
to send a special boot command to the console and halt. When the HALT

instruction is executed, the console subsystem gains control and processes
the boot command.

MACHINE CHECK MECHANISM

A machine check is an exception that is reported when CPU microcode
detects an internal error during the attempted execution of an instruction.
Machine check errors are CPU~specific; possible types of machine checks
include memory cache parity error, translation buffer parity error, and CPU
timeout. Many, but not all, machine checks are caused by some sort of
hardware condition. Some hardware conditions are transient; others are
persistent.

During a machine check exception, CPU microcode logs information,
called the machine check frame, on the interrupt stack. The machine check
frame identifies the type of machine check and includes the contents of
relevant CPU registers. Its exact form varies on each type of CPU. Consult
CPU-specific literature for information on the form of the machine check
frame and the layout of the associated CPU registers.

A machine check exception is dispatched through the SCB to a machine
check exception service routine. The exception is serviced on the interrupt
stack at IPL 31. On an SMP system, the machine check exception service
routine acquires the MCHECK spinlock as needed, for example, to serialize
access to VAX bus interconnect (VAXBI) or memory controller registers.

The actual exception service routine is contained in the CPU-specific
image SYSLOAxxx and is loaded during system initialization. The module
name has the form MCHECKyyy. Appendix G describes the possible values
for these CPU- and system-specific suffixes.

The actual processing of a machine check exception is CPU-specific. This
section contains only an overview of machine check handling common to
all CPU types.

VMS determines from the machine check frame what type of machine
check occurred. Although VMS treats each type of machine check somewhat
differently, its general response is to log an error and increment the global
counter EXE$GL_MCHKERRS. The Digital command language command
SHOW ERROR displays the contents of this counter as CPU errors.

979

Error Handling

32.3.1

980

VMS then determines whether the error is recoverable. Recoverability
depends on whether the machine check exception was a fault or an abort.
In the case of a fault, register and memory operands have been restored to
their state prior to the attempted execution of the instruction. In the case
of an abort, they cannot be restored, and it is therefore impossible to restart
the instruction. Recoverability also depends on whether the instruction is a
resumable one. The details of recoverability are CPU-specific.

The basic philosophy of the machine check service routine is to keep
the system running if possible. How serious a particular machine check is
depends upon whether it is recoverable and the access mode in which the
machine check occurred. If the machine check is recoverable, the service
routine takes any needed recovery action, removes the machine check frame
from the interrupt stack, and executes an REI to dismiss the exception and
return control to the instruction that incurred the exception.

If the machine check is not recoverable, the action taken by the machine
check handler depends on the access mode in which the machine check
occurred. If the previous mode was supervisor or user, a machine check
exception is reported to that access mode. (Unless the process has declared a
condition handler for this type of exception, this step results in image exit.)
If the previous mode was executive or kernel, the machine check service
routine generates the· fatal bugcheck MACHINECHK.

On some CPUs, some machine checks are asynchronous, such that the
actual PC and access mode at the time of the ~rror cannot be determined.
In such a case, VMS, acting to protect the integrity of the system, makes
the conservative assumption that the access mode was kernel or executive
and bugchecks. One example of such an error is a memory parity error on a
MicroVAX II processor.

Machine Check Protection Mechanism

VMS provides the capability for a block of kernel mode code to protect itself
from machine checks while executing and to discover whether a machine
check occurred during the protected sequence of code. For example, this
feature is used if an interrupt is generated from a previously unconfigured
adapter. The code that services the interrupt must access the adapter's regis­
ters. If the interrupt is spurious, this may mean referencing nonexistent I/O
space. In this context, a machine check caused by such a reference must not
result in a system crash.

The code to be protected is called a machine check recovery block. There
are several restrictions on such a block:

•· It must be executing in kernel mode.
• The stack cannot be used across the entry into or the exit out of the

recovery block. This restriction exists because a co-routine mechanism

32.3 Machine Check Mechanism

is used to pass control between the recovery block and the VMS routines
that establish it .

• Because VMS elevates IPL to 31, only a limited number of instructions
should be included in the block. Note that no spinlock acquisition is
required; the code is protecting against a possible machine check on the
same CPU on which it executes .

• The contents of RO are overwritten by the mechanism.

The basis for the machine check protection mechanism is several routines
in the module EXCEPTION_PRIMITIVES and two data cells in the per-CPU
database. The kernel mode code to be protected must invoke the two macros
described in the following paragraphs.

The first macro generates code that dispatches to EXE$MCHK_PRTCT to
define the beginning of the block:

$PRTCTINI LABEL,MASK

The label argument is identical to the label argument associated with the
second macro that defines the end of the block. This macro generates code
that returns to EXE$MCHK_PRTCT to define the end of the block:

$PRTCTEND LABEL

If no error occurred while the protected code was executing, RO contains the
success status SS$_NORMAL. Otherwise, RO contains the error status SS$_
MCHECK.

The mask argument allows the block of code to protect itself from different
classes of errors. The $MCHKDEF macro defines the following specific types
of protection:

Protection Name

MCHK$M_LOG
MCHK$M_MCK
MCHK$M_NEXM
MCHK$M_UBA

Description

Inhibit error logging for the error
Protect against machine checks
Protect against nonexistent memory
Protect against UNIBUS adapter error

interrupts

Invoking the following macro enables kernel mode code to determine
whether a recovery block is in effect and to take action accordingly:

$PRTCTEST ADDRESS,MASK

This macro invokes the routine EXE$MCHK_ TEST, which returns status in
RO. The low bit set in RO indicates that a recovery block is in effect and that
the specified mask is being used. This routine is typically used to determine
whether a machine check should be logged in the error log.

Another related routine, EXE$MCHK_BUGCHK, is invoked from a ma­
chine check exception service routine to determine whether a recovery block
is in effect. If no block is in effect, the routine returns, usually to code that

981

Error Handling

generates a bugcheck. If a block is in effect, the routine returns control to
the end of the protected block, with RO containing an error code of SS$_
MCHECK.

32.4 CPU-SPECIFIC ERROR INTERRUPTS

982

Five vectors in the SCB, at offsets 5016 through 6016, are reserved for CPU­
specific system bus and memory errors. These interrupts occur at CPU­
specific IPLs within the range 1816 through 1D16• Not all processors im­
plement all five interrupts.

VMS services these interrupts in the CPU-specific image SYSLOAxxx. The
actual interrupt service routines are contained in the CPU-specific module
MCHECKyyy. Appendix G describes the possible values for these CPU- and
system-specific suffixes.

In general, VMS servicing of these interrupts is done at IPL 31 and in­
cludes logging an error to the error log. On an SMP system, a CPU-specific
error interrupt service routine acquires the MCHECK spinlock as needed, for
example, to serialize access to VAX.BI or memory controller registers. This
serializes access among a CPU-specific error interrupt service routine run­
ning on one CPU and both CPU-specific error interrupt and machine check
exception service routines running on other CPUs.

33 Power Failure and Recovery

For there are moments when one can neither think nor feel.
And if one can neither think nor feel, she thought, where
is one?

Virginia Woolf, To the Lighthouse

Powerfail recovery support enables a suitably equipped VMS system to sur­
vive power fluctuations and power outages of short duration with no loss
of operation. The support is provided by hardware features (battery backup)
and VMS software routines.

VMS support includes a powerfail service routine that saves the volatile
state of the machine when the power fails, a restart routine that restores
that state when the power is restored, CPU-specific initialization code, and
device-specific code within many VMS device drivers. The VMS software
also provides process notification by means of power recovery asynchronous
system traps (ASTs).

33.1 POWERFAIL SEQUENCE

When the CPU hardware detects a drop in operating voltage, it requests a
powerfail interrupt at interrupt priority level (IPL) 30. The VAX architec­
ture specifies that this interrupt dispatch through the vector at offset OC16
in the system control block (SCB). This vector contains the address of the
VMS powerfail interrupt service routine, EXE$POWERFAIL in module POW­
ERFAIL. Because powerfail is an interrupt rather than an exception, code
executing at IPL 30 or 31 can block powerfail notification. Some VMS rou­
tines deliberately execute at IPL 31 for short instruction sequences to avoid
potential synchronization problems.

Main memory is preserved by battery backup. EXE$POWERFAIL saves
the volatile machine state, those registers whose contents are not preserved
by some sort of battery backup, in main memory. EXE'.$POWERFAIL it­
self saves registers common to all types of VAX processors. To save CPU­
specific registers, it invokes the routine EXE$REGSAVE, in module [SYS­
LOA]ERRSUBxxx, part of the CPU-specific image SYSLOAxxx. Appendix G
contains the SYSLOA image names for particular processors.

Some of a CPU's registers are saved on its interrupt stack, some in its per­
CPU database, and some in the restart parameter block (RPB). The CPU's
interrupt stack pointer (ISP) is the last value saved. Checking the value of
the saved ISP in the per-CPU database, the restart routine can determine
whether the interrupt service routine preserved all the required registers.

983

Power Failure and Recovery

Once the registers have been saved, EXE$POWERFAIL waits at IPL 31 in
the following tight loop until the CPU ceases all operations:

10$: BRB 10$

The BRB instruction was chosen over an explicit HALT to avoid triggering a
restart before the CPU stops.

Tables 33.l and 33.2 list the registers preserved by EXE$POWERFAIL and
restored at powerfail recovery.

33.2 POWER RECOVERY

33.2.1

984

The console subsystem power recovery logic performs validity checks in a
CPU-dependent fashion and then passes control to the VMS restart routine
on the primary CPU. This routine restores the saved state of the machine,
restarts the secondary CPUs that were active prior to the power failure,
and notifies each device driver in the system that power has failed and
been restored, so that the drivers can take device-specific action to restore
interrupted I/O requests.

Initial Step in Power Recovery

The initial step in recovery from a power failure is performed by the CPU­
specific console subsystem. It performs the following tasks:

1. Initializes the CPU
2. Verifies that the contents of memory survived the power outage
3. Locates the restart routine through the RPB
4. Passes control to that routine

The RPB is a page of physical memory whose first four longwords contain
the physical address of the RPB, the physical address of the restart routine,
the checksum of the first 31 longwords in the restart routine, and a warm
restart inhibit flag. On most systems, the RPB is located at physical address 0.

When searching for the RPB, the console subsystem looks for a longword
on a page boundary that contains its own address. The console subsystem
examines the second longword to determine that it contains a valid physical
address (and not zero, in case a page of zeros passes the first test). If the
address is acceptable, the checksum of the first 31 longwords of the restart
routine is calculated. The checksum is then compared to the checksum in
the RPB. If the two checksums are equal, the page contains an RPB and the
restart routine is intact.

The sections that follow contain further information about power recovery
on each type of VAX processor. Many VAX processors have two control panel
switches whose settings affect powerfail recovery: a Console Enable switch
and a Restart Action switch. The Console Enable switch allows or inhibits
command entry on the local console terminal. The descriptions that follow
assume that the local console terminal is enabled.

33.2 Power Recovery

Table 33.l Data Saved by EXE$POWERFAIL and Restored During
Power Recovery

The elements in Group A are restored before memory management is
reenabled. The RPB is accessed through its physical address.

Element
System base register (SBR)
System length register (SLR)
System control block base

register (SCBB)

GROUP A

Where Stored

RPB
RPB
Per-CPU database

The elements in Group B are restored after memory management has been
reenabled, which allows the RPB, interrupt stack, and per-CPU database to
be accessed through system virtual addresses.

Element
Interrupt stack pointer
Process control block base

register (PCBB)
Software interrupt summary

register (SISR)
Pl length register (PlLR)
Pl base register (PlBR)
PO length register (POLR)
PO base register (POBR)
AST level register (ASTLR)
Four per-process stack pointers
CPU-specific processor registers

(see Table 33.2)

GROUPB

Where Stored

Per-CPU database
Per-CPU database

Per-CPU database

Interrupt stack
Interrupt stack
Interrupt stack
Interrupt stack
Interrupt stack
Interrupt stack
Interrupt stack

The elements in Group C are not restored until the other power recovery
steps described in the text are performed and the powerfail interrupt is
dismissed. The program counter (PC) and processor status longword (PSL)
are restored by the REI instruction that dismisses the interrupt.

Element
General registers (RO through FP)
Interrupt PC
Interrupt PSL

GROUPC

Where Stored

Interrupt stack
Interrupt stack
Interrupt stack

985

Power Failure and Recovery

33.2.1.1

986

Table 33.2 CPU-Specific Registers Saved at Powerfail

Register 1

Performance monitor enable register
Performance monitor enable register
Translation buffer disable register
Memory cache disable register
Performance monitor enable register
Synchronous backplane interconnect (SBI)

maintenance register
Performance monitor enable register
Translation buffer disable register
Memory cache disable register
Performance monitor enable register
Cache state register
Fbox state register
Performance monitor enable register
Cache on register
Cache disable register
None 2

None
None 3

CPU

VAX-11/730
VAX-11/750
VAX-11/750
VAX-11/750
VAX-ll/78x
VAX-ll/78x

VAX 8200 family
VAX 8200 family
VAX 8200 family
VAX 86x0
VAX 86x0
VAX 86x0
VAX 8800 family, VAX 88x0
VAX 8800 family, VAX 88x0
VAX 6000 model 200/300
VAX 6000 model 400
VAXstation 3520/40
MicroVAX processors

1 These CPU-specific processor registers are saved on and restored from the
per-CPU interrupt stack.

2 In VMS Version 5.2, the register save routine for a VAX 6000 model 400 CPU
clears the bit corresponding to its CPU ID in CCA$Q_RESTARTIP.

3 Power failure recovery is not implemented on MicroVAX processors.

Chapter 30 provides more detail on the various implementations of the
console subsystem.

Power Recovery on a VAX-11/730 Processor. When power is restored on
a VAX-11/730 processor, the console subsystem tests whether the Auto
Restart/Boot switch on the front of the processor cabinet is in the OFF
position. If it is, the console subsystem simply prompts on the console
terminal and waits for input. (Note that the Auto Restart/Boot switch on
the front panel should be switched off when first turning on a VAX-11/730
system to avoid an unnecessary restart attempt.)

If the Auto Restart/Boot switch is in the ON position, the console subsys­
tem searches through physical memory for a valid RPB. In searching for the
RPB, it tests whether the contents of memory survived the power outage.
Memory contents can fail to be backed up for two reasons:

• Because the system does not have battery backup, the contents of memory
are lost when the power fails.

33.2.1.2

33.2 Power Recovery

• Because the power is off for longer than the battery backup could pre­
serve memory contents, the contents of memory are lost when the battery
backup fails. (This time depends on the amount of memory present but is
generally not shorter than ten minutes.)

If the RPB is not located, the restart fails and the console subsystem at­
tempts to bootstrap the system by executing the command procedure DEF­
BOO.CMD.

If the RPB is located, the warm restart inhibit flag (bit (0) in the fourth
longword of the RPB) is checked. If set, it indicates that a warm restart was
attempted and failed. In that case, the console subsystem then executes the
command procedure DEFBOO.CMD to bootstrap the system.

If the warm restart inhibit flag is clear, the console subsystem performs
the following steps:

1. Sets the warm restart inhibit flag to prevent a second restart attempt
before the first has succeeded

2. Loads the stack pointer (SP) register with the address of the RPB plus
20016

3. Loads the argument pointer (AP) register with a value indicating the cause
of the halt

4. Loads RlO and Rl 1 with the PC and PSL at the time of the halt for use
in servicing error halt conditions other than powerfail

5. Transfers control to the restart routine whose address is in the second
longword of the RPB

Power Recovery on a VAX-11/750 Processor. When power is restored on a
VAX-11/750 processor, the console subsystem tests the setting of the Power­
on Action switch on the front of the processor cabinet. If the switch is
in either the HALT or BOOT position, the console subsystem performs
the designated action. If the switch is in either the RESTART/BOOT or
RESTART/HALT position, the console subsystem attempts a restart. The
second option (BOOT or HALT) is used only if the restart fails.

For a restart, the console subsystem first tries to locate the RPB. In search­
ing for the RPB, it tests whether the contents of memory survived the power
outage.

If a valid RPB cannot be located or if the warm restart inhibit flag is
set, the restart attempt fails and the console subsystem takes its alternative
option. For the BOOT alternative, the console subsystem executes bootstrap
read-only memory (ROM) code for unit 0 of the device identified by the
device switch on the cabinet. The ROM code reads the boot block, block 0,
from that device and then transfers control to it. Chapter 30 provides more
information.

If a valid RPB is located, the console subsystem transfers control to the
restart routine, as described in Section 33.2.1.1.

987

Power Failure and Recovery

33.2.1.3

988

Power Recovery on VAX-11/780 and VAX-11/785 Processors. When power is
restored on a VAX-11/780 or VAX-11/785 processor, the console subsystem
(LSI-11) performs the same sequence as when a system is being initialized
(see Chapter 30). If power is also being restored on the LSI-11, CONSOL.SYS
is loaded from the console floppy into the LSI-11 memory. No state for the
LSI-11 is preserved across a power failure.

The console subsystem then tests the Auto Restart switch on the front
of the processor cabinet. If it is in the OFF position or if the warm restart
inhibit flag is set, the console subsystem simply prompts on the console
terminal and waits for input.

If the Auto Restart switch is in the ON position and the warm restart
inhibit flag is clear, the console subsystem executes the command pro­
cedure RESTAR.CMD, located on the console floppy. Before it executes
RESTAR.CMD, it reloads the CPU microcode writable control store (WCSJ
contents from the console floppy (from file WCSxxx.PATJ. WCS is not pre­
served by memory battery backup.

The standard RESTAR.CMD command procedure contains commands de­
signed to restart a running VMS system. RESTAR.CMD generally contains
the following lines:

HALT
!NIT
DEPOSIT/I 11 20003800
DEPOSIT RO 0
DEPOSIT R1 3
DEPOSIT R2 0
DEPOSIT R3 0
DEPOSIT R4 0
DEPOSIT R5 0
DEPOSIT FP 0
START 20003004

Halt processor
Initialize processor
Set address of SCB base
Clear unused register
TR number for UNIBUS adapter
Clear unused register
Clear unused register
Clear unused register
Clear unused register
No machine check expected
Start restart referee

On systems with more than two memory controllers, the UNIBUS adapter
(UBAJ is not located at TR 3. For such a system, RESTAR.CMD must be
altered so that Rl is loaded with the TR number of the UBA. This step is
necessary because the UBA map registers are used by ROM restart code as
temporary storage.

The START command passes control to the same ROM program that is
used during system initialization except that the program is entered at its
restart entry point. The ROM program determines whether the contents of ·
main memory are valid. If they are, the ROM program attempts to locate
the RPB.

If a valid RPB cannot be found or if the warm restart inhibit flag in the RPB
is set, the ROM program sends a Boot (cold start) command to the console
subsystem by executing the following instruction:

MTPR #-XF02,#PR$_TXDB

33.2.1.4

33.2.1.5

33.2 Power Recovery

The special uses of the PR$_ TXDB register for communication from the
VAX CPU to the console program are described in Chapter 24.

If a valid RPB is found, the ROM program passes control to the restart
routine as described in Section 33.2.1.1.

Power Recovery on VAX 8200 Family Processors. When power is restored on
a VAX 8200 family member, the console subsystem tests the settings of the
upper and lower key switches on the front of the processor cabinet. If the
upper switch is in either the ENABLE or SECURE position and the lower
switch is in the AUTO START position, the console subsystem attempts a
restart.

The console microcode tests and sets its restart-in-progress flag. It also
tests its bootstrap-in-progress flag. If either flag is already set, the restart
attempt is aborted. If the bootstrap-in-progress flag is clear, the console
subsystem initiates a boot; otherwise, it halts. Chapter 30 provides more
information.

The console subsystem next tries to locate the RPB. In searching for the
RPB, it tests whether the contents of memory survived the power outage.
If a valid RPB cannot be located or if the RPB warm restart inhibit flag
is set, the restart attempt fails and the console subsystem initiates a boot.
If a valid RPB is located, the console subsystem initiates execution of the
restart routine, described in Section 33.2.1.1, on the primary processor. The
secondary processor, if present, remains in console mode and is restarted by
software, as described in Chapter 34.

Power Recovery on VAX 8600 and VAX 8650 Processors. When power is
restored to the console microprocessor of a VAX 86x0 processor, the console
microprocessor initializes itself and the VAX CPU as described in Chapter 30.

In the case of a warm restart, the console program tests the Restart Control
switch, which has four positions:

BOOT
HALT
RESTART/BOOT
RESTART/HALT

If the switch is in the BOOT position, the console program invokes the
DEFBOO.COM command procedure. If it is in the HALT position, the con­
sole program halts.

If it is in one of the two RESTART positions, the console program con­
firms that the battery backup unit was still operational when the power was
restored. It tests its warm-start-in-progress flag. A set flag indicates a previ­
ously unsuccessful attempt at warm restart. If the flag is clear, the console
commands the VAX 86x0 console suppott microcode to locate the RPB.

989

Power Failure and Recovery

33.2.1.6

33.2.1.7

990

If the RPB is located, the console program sets the warm-start-in-progress
flag and transfers control to the restart routine (see Section 33.2.1.1).

If restart cannot be attempted and the Restart Control switch is in the
RESTART/BOOT position, the console program invokes the DEFBOO.COM
command procedure. If the switch is in the RESTART/HALT position, the
console program halts the processor.

Power Recovery on VAX 8800 Fam~y Processors. The VAX 8800 family
consists of VAX 8500, VAX 8530, VAX 8550, VAX 8700, and VAX 8800
CPUs. This family's console program executes on a separate console mi­
croprocessor, as an application task under the P/OS operating system. One
family member, the VAX 8800, is a multiprocessor. It supports two CPUs
per system, one of which acts as the primary and performs the main work
of booting VMS. VMS directs the initialization of the other, secondary CPU,
as described in Chapter 34.

When power is restored to the console microprocessor of a VAX 8800 fam­
ily member, its P/OS operating system boots and runs the console program.
The console program restores its own state, which was saved in a_ log file.
It determines whether the power failure included the VAX CPUs. If so, the
console program executes SYSINIT.COM, described in Chapter 30. If the
AUTO_RESTART software key switch is set, SYSINIT.COM invokes the
command procedure RESTAR~COM. If it is clear but the AUTO_BOOT soft­
ware key switch is set, SYSINIT.COM invokes DEFBOO.COM.

After an error halt, the console program executes the command proce­
dure RESTAR.COM. If the AUTO_RESTART switch is set, RESTAR.COM
deposits the halt code, PC, and PSL into AP, RlO, and RU, initializes the
CPU, clears RO through RS, and searches for an RPB. If it locates a valid RPB,
RESTAR.COM initiates execution of the restart routine, described in Sec­
tion 33.2.1.1, on the primary processor. The secondary processor, if present,
remains in console mode and is restarted by software, as described in Chap­
ter 34.

If the AUTO_RESTART switch is clear or a valid RPB is not found,
RESTAR.COM tests the setting of the AUTO_BOOT switch. If it is set,
the procedure DEFBOO.COM is executed.

Power Recovery on VAX 88x0 Processors. VAX 88x0 processors are multipro­
cessing members of the VAX 8800 family. The VAX 88x0 console program
executes on a separate MicroVAX II processor, which communicates with
the VAX 88x0 CPUs via a console interface module (CIM).

One CPU acts as the primary and performs the main work of booting VMS.
VMS directs the initialization of the remaining secondary CPUs, as described
in Chapter 34.

The MicroVAX II console runs console VMS; the console program is an
application running from a dedicated process. When power is restored to the

33.2.1.8

33.2 Power Recovery

console microprocessor of a VAX 88x0 family member, console VMS boots
and executes the console program. The console program restores its own
state, which was saved in a data file. It determines whether the power failure
included the VAX CPUs. If so, the console program executes SYSINIT.COM,
described in Chapter 30.

SYSINIT.COM tests the software key switch AUTO_RESTART. If it is set,
SYSINIT.COM invokes the command procedure RESTAR.COM. If it is clear
but the AUTO_BOOT switch is set, SYSINIT.COM invokes DEFBOO.COM.

After an error halt, the console program executes the command proce­
dure RESTAR.COM. If the AUTO_RESTART switch is set, RESTAR.COM
deposits the halt code, PC, and PSL into AP, RlO, and R11, initializes the
CPU, clears RO through RS, and searches for an RPB. If it locates a valid RPB,
RESTAR.COM initiates execution of the restart routine, described in Sec­
tion 33.2.1.1, on the primary processor. The secondary processors, if present,
remain in console mode and are restarted by software, as described in Chap­
ter 34.

If the AUTO_RESTART switch is clear or a valid RPB is not found,
RESTAR.COM tests the setting of the AUTO_BOOT switch. If it is set,
the procedure DEFBOO.COM is executed; otherwise, RESTAR.COM exits
and leaves the system halted.

Power Recovery on VAX 6000 Series Systems. The VAX 6000 model 200, 300,
and 400 systems are collectively referred to as the VAX 6000 series. Some
models support multiple CPUs per system. One CPU acts as the primary
and performs the main work of booting VMS. VMS directs the initialization
of the remaining secondary CPUs, as described in Chapter 34.

When power is restored on a VAX 6000 series system, the console sub­
system, executing on each CPU, directs that CPU to perform a series of
self-tests. The CPUs select" a primary processor, as described in Chapter 30.

The console program, executing on the primary processor, tests the set­
tings of the upper and lower key switches on the front of the processor
cabinet. These recovery settings determine the action of the primary pro­
cessor. Unless the upper switch is in the ENABLE position and the lower
switch is in the AUTO START position, or unless the upper key switch is
in the SECURE position, the system halts at the console prompt.

Otherwise, the actions of the console depend upon the field CCA$Q_
RESTARTIP in the console communications area jCCA). CCA$Q_RESTART­
IP contains a restart-in-progress flag for each potential processor.

To restart, the console program tests and sets the restart-in-progress flag
corresponding to the processor's CPU ID. If the flag is already set, the restart
fails. Otherwise, the console program tries to locate the RPB. If it succeeds,
the console subsystem initiates execution of the restart routine, described
in Section 33.2.1.1, on the primary processor.

991

Power Failure and Recovery

33.2.1.9

33.2.1.10

992

If the console cannot locate a valid RPB, the restart attempt fails and the
primary processor initiates a boot.

A secondary processor can attempt a restart only following an error halt.
For all other halt conditions, including power failure, the primary processor
and operating system are responsible for restarting the secondary. Chapter 34
describes restart of secondary processors.

Following an error halt, a. secondary processor tests and sets the bit corre­
sponding to its CPU ID in CCA$Q_RESTARTIP. It searches for the RPB and
transfers control to the restart routine if a valid RPB is located.

If a valid RPB is not located, the console program examines the bit
corresponding to the secondary processor's CPU ID in the field CCA$Q_
SECSTART. If the bit is clear, the console forces a reboot. Otherwise, the
processor enters console mode. CCA$Q_SECSTART is set and cleared by
the operating system, which uses it to avoid repeatedly forcing the boot of
a secondary processor.

If a different processor is selected as the primary following a power failure,
the VMS powerfail recovery routine detects the difference and forces a boot
rather than a restart.

Power Recovery on a MicroVAX II Processor. A MicroVAX II processor has
no battery backup for memory. Therefore, when the power recovers, it is not
possible to resume normal system operation. Instead, the console program
tests the setting of the Halt Enable switch. The Halt Enable switch is on the
CPU patch panel insert, mounted inside the rear of the CPU cabinet. If the
switch is down, the normal setting, halts are disabled. Otherwise, they are
enabled.

Following power recovery, the console tests the Halt Enable switch. If
halts are enabled, the console performs a diagnostic self-test and halts the
processor. Otherwise, after the self-test, it boots the processor. If the boot
attempt fails, the console halts the processor.

Following an error halt, the console tests the Halt Enable switch and halt
action bits in the console program mailbox (CPMBX) register. VMS does not
set the bits (except when it initiates a boot directly), so the bits remain
at their initialized value of zero. If halts are enabled, the console halts the
processor. Otherwise, it tests and sets the console program mailbox restart­
in-progress flag. If the flag was already set, the restart fails. If the flag was
clear, the console tries a restart, followed by a boot; if both fail, it halts the
processor.

For a restart, the console first tries to locate the RPB. If a valid RPB
is located, the console subsystem transfers control to the restart routine,
described in Section 33.2.1.1.

Power Recovery on MicroVAX 2000 and 3100 Processors. MicroVAX 2000
and 3100 processors have no battery backup for memory. Therefore, when

33.2.1.11

33.2 Power Recovery

the power recovers, it is not possible to resume normal system operation,
and the system performs its normal boot actions, described in Chapter 30.

Following an error halt rather than a power failure, the actions of the
console depend upon the default recovery setting (halt action) and the restart­
in-progress flag, both in the console program mailbox area of nonvolatile
random access memory (NVR).

The recovery settings affect the console actions as follows:

• If the setting is 0 or 1, restart. If that fails, boot. If the boot fails, halt .
• If the setting is 2, boot. If that fails, halt.
• If the setting is 3, halt at the console prompt.

A restart attempt succeeds if the console finds the restart-in-progress flag
clear and is able to set it, and if the console locates a valid RPB. The
console subsystem transfers control to the restart routine, described in Sec­
tion 33.2.1.1.

The recovery setting is specified as follows:

• On the MicroVAX 2000, the console utility program TEST53 alters the
default recovery setting in the console program mailbox .

• On the MicroVAX 3100, the console command SET HALT sets the default
recovery setting.

Power Recovery on VAXstation 35x0 Systems. VAxstation 35x0 systems
have no battery backup for memory. Therefore, when the power recovers,
they cannot resume normal system operation. Instead, the console program
initiates a boot sequence, described in Chapter 30.

Following an error halt rather than a power failure, the actions of the
console depend upon several fields, including the halt code, the default
recovery setting in the console program mailbox area of NVR, and the flag
CCA$V _REBOOT in CCA$B_HFLAGS.

If CCA$V _REBOOT is set, the primary processor attempts to boot the
operating system using the default boot device. On failure, it enters console
mode.

Otherwise, if CCA$V _REBOOT is clear, the primary processor's actions
are controlled by the recovery setting:

• If the setting is 0, restart. If that fails, boot. If the boot fails, halt.
• If the setting is 1, restart. If that fails, halt.
• If the setting is 2, boot. If that fails, halt .
• If the setting is 3, halt at the console prompt.

The primary processor tests and sets the bit corresponding to its CPU ID
in CCA$Q_RESTARTIP. If it locates a valid RPB, it transfers control to the
restart routine.

A secondary processor halts at the console prompt if the recovery setting
is 3; otherwise it attempts to restart. It tests and sets the bit corresponding

993

Power Failure and Recovery

33.2.1.12

33.2.2

994

to its CPU ID in CCA$Q_RESTARTIP. If it locates a valid RPB, it transfers
control to the restart routine. Otherwise, if the bit corresponding to the
secondary processor's CPU ID in the field CCA$Q_SECSTART is clear, the
console forces a boot. If the bit is set, the processor enters console mode. VMS
controls the setting of CCA$Q_SECSTART and uses it to avoid repeatedly
forcing the boot of a secondary processor.

Power Recovery on Other MicroVAX Processors. This section describes
the operations of MicroVAX 3200, 3300, 3400, 3500, 3600, 3800, and 3900
processors.

These MicroVAX processors have no battery backup for memory. There­
fore, when the power recovers, it is not possible to resume normal system
operation. Instead, the console program tests the setting of the Break En­
able/Disable switch (sometimes referred to as the Halt Enable switch). If the
switch is set to ENABLE, the system performs a self-test and halts. Other­
wise, if the switch is set to DISABLE, the system performs a self-test and
automatically reboots the processor. Note that a restart is not possible.

Following an error halt the actions of the console depend upon the default
recovery setting and the restart-in-progress flag, both in the console program
mailbox in NVR.

The recovery settings determine the console action when the processor
halts:

• If the setting is 0, restart. If that fails, boot. If the boot fails, halt .
• If the setting is 1, restart. If that fails, halt .
• If the setting is 2, boot. If that fails, halt .
• If the setting is 3, halt at the console prompt.

A restart attempt succeeds if the console finds the restart-in-progress flag
clear and is able to set it, and if the console locates a valid RPB. The
console subsystem transfers control to the restart routine, described in Sec­
tion 33.2.1.1.

Operations of the Restart Routine

'In a symmetric multiprocessing (SMP) system, the console subsystem re­
starts the primary processor. The secondary processors remain halted until
restarted by software. This section describes the general powerfail recovery
sequence. Chapter 34 describes in detail the steps taken by the VMS restart
routine, EXE$RESTART in module POWERFAIL, that are specific to restart­
ing a primary processor. It also describes the steps by which a secondary
processor is restarted.

The VMS restart routine, EXE$RESTART, receives control with the fol­
lowing environment:

• In kernel mode

33.2 Power Recovery

• On the boot-time interrupt stack (SP = RPB base plus 20016)

• With memory management disabled
• At IPL 31

These initial conditions are similar to the entry to VMB, except that the
RPB has already been initialized. Another similarity is that the SP register
contains the high-address end of the RPB, which serves two purposes. First,
the SP specifies the location of the RPB. Second, the last several longwords
in the page containing the RPB are used as stack space by EXE$RESTART
until the per-CPU boot stack pointer is restored.

EXE$RESTART branches to EXE$RESTART _ATT, also in POWERFAIL,
which first restores information saved in the RPB and per-CPU database by
EXE$POWERFAIL (see Table 33.1, Group A). Most of this information is
necessary to turn memory management back on. A dummy PO page table is
created (just like the one set up by SYSBOOT) so that the page containing
the restart routine is mapped as a PO virtual address that, when translated,
yields the identical physical address.

After the PO page table is set up, EXE$RESTART _ATT enables memory
management in the same manner as EXE$INIT:

MTPR #1,#PR$_MAPEN
JMP FIRST_SYSTEM_VA(R2)

FIRST_SYSTEM_VA = . - EXE$RESTART
10$:

Chapter 31 shows how the contents of PR$_POBR are determined to pro­
duce the identity mapping and describes in detail the instruction sequence
that enables memory management.

Once memory management has been enabled, EXE$RESTART _ATT
checks whether the restart was initiated as part of powerfail recovery or in
response to another error halt condition detected by the console subsystem.

If an error halt caused the restart, EXE$RESTART _ATT generates a reason­
specific fatal bugcheck. This will result in a cold start, a bootstrap, if the
SYSBOOT flag BUGREBOOT is set. By causing a crash, EXE$RESTART _
ATT preserves information about the error condition in the crash dump file.
One example of such an error halt is an invalid interrupt stack. The CPU
microcode causes this halt if the interrupt stack pointer points to a page
which is not valid or to which kernel mode does not have write access when
an interrupt or exception must be serviced.

If this is a power recovery, EXE$RESTART _ATT clears two warm restart
inhibit flags, the use of which is discussed in Section 33.3.2.

Each processor in an SMP system saves its own state and can detect the
success or failure of the endeavor by the condition of its saved ISP. However,
a mechanism is required to detect the failure of any processor to save state,
because an SMP system must boot rather than restart in that case. The field

995

Power Failure and Recovery

996

POWERDWN_L_DONE, defined in module POWERFAIL, serves this pur­
pose. Each CPU sets a bit corresponding to its CPU ID in POWERDWN_L_
DONE upon completion of the powerfail sequence. When power returns and
EXE$RESTART _ATT executes on the primary CPU, it compares SMP$GL_
ACTIVE_CPUS, the CPUs active at the time of the powerfail, to the mask
in POWERDWN_L_DONE. Unless all processors saved their state, EXE$RE­
START _ATT generates the fatal bugcheck STATENTSVD, software state not
saved during powerfail. It also generates this bugcheck if EXE$POWERFAIL
does not save the ISP in the per-CPU database. Otherwise, it copies the saved
ISP value to R6 and to the SP register.

EXE$RESTART_ATT restores the registers listed in Table 33.1, Group B.
It does not use the SP register to restore this data from the stack. Instead, it
uses a scratch register (R6J to reference the stack. Because the SP register is
left pointing to the end of the saved information, the data on the stack will
not be overwritten if another power failure occurs while the data is being
restored. Using a scratch register allows the restart routine to be repeated as
many times as necessary without special action.

The restoration of the SISR is also affected by the possibility of another
power failure. If an interrupt is requested during powerfail recovery, and
another power failure occurs before the recovery is complete, the interrupt
would be lost. Thus, EXE$RESTART _ATT sets all fork level interrupt bits
(IPL 6 and IPL 8 through 11 J in the restored SISR to guarantee that no
interrupts are lost. As each request is granted, the fork interrupt service
routine merely dismisses the interrupt if no packet exists on its work queue.

EXE$RESTART _ATT invokes the routine EXE$REGRESTOR to restore
the CPU-specific registers saved by EXE$REGSAVE. EXE$REGRESTOR re­
sides in module (SYSLOA]ERRSUBxxx, part of the CPU-specific image SYS­
LOAxxx.

It initializes processor registers by invoking the CPU-specific routine
EXE$INIPROCREG, also in module (SYSLOA]ERRSUBxxx.

At this point, only the general registers remain to be restored. Each pro­
cessor sets the bit corresponding to its CPU ID in POWERUP _L_DONE,
defined in module POWERFAIL. A secondary processor pauses here until
the primary directs it to continue. It then restores its general registers and
returns control to the instruction sequence interrupted by the power failure.

The primary processor takes the following steps:

1. It reads the battery backed up time-of-year clock by invoking the CPU­
specific routine EXE$READP _LOCAL_ TODR, in module (SYSLOA]ERR­
SUBxxx.

2. It computes the restart time plus three minutes and stores the value
in the global location EXE$GL_PWRDONE. This value represents the
time it may take all hardware components to become fully operational
again. Device drivers can use the routine EXE$PWRTIMCHK, in module

33.2 Power Recovery

POWERFAIL, to make sure that these three minutes have passed before
restarting I/O operations. Devices such as disks may take as long as three
minutes to become operational.

3. It computes the duration of the powerfail and stores the result in global
location EXE$GLPFATIM.

4. It corrects the system time, at global location EXE$GQ_SYSTIME, by
adding to it the duration of the powerfail.

5. It clears the timestamp validating the lock manager's process bitmap,
used to detect multiple resource deadlocks. Clearing the timestamp has
the effect of discarding the deadlock search in progress.

6. It scans the timer queue for timer queue entries (TQEs) that have ex­
pired. For each expired TQE, it changes the absolute due time to the
corrected system time. This substitution allows periodic timer requests
to reestablish internal synchronization.

For example, suppose that a periodic timer request is declared with a
period of one minute and the power is off for three minutes. With no
adjustment of the absolute due time, the request would expire immedi­
ately three times following power recovery. The readjustment causes one
request to come due immediately, with the next request not occurring
until one minute later.

Note that relative synchronization between several requests may be
lost as a result of a power failure. For example, if one request is due to
expire in two minutes, a second is due to expire in five minutes (or three
minutes after the first), and the power is off for more than five minutes,
then both requests will be delivered at the same time. A power recovery
AST might be used to allow multiple requests to reestablish their relative
synchronization.

7. A power recovery entry is made in the error log.
8. EXE$RESTART _ATT invokes CNX$POWER_FAIL. If the system is a

VAXcluster member, this notifies the VAXcluster connection manager
of power recovery.

9. EXE$RESTART_ATT initializes external adapters by invoking the CPU­
specific routine EXE$STARTUPADP in [SYSLOA]ERRSUBxxx.

10. Device drivers are notified that a power failure and recovery sequence
have occurred. This step is detailed in Section 33.2.3.

11. The console device unit initialization routine causes the console subsys­
tem to initialize and restart secondary CPUs. Chapter 34 describes this
process.

EXE$RESTART _ATT waits for the secondary CPUs active at the time
of the power failure to restart. The secondary CPUs are restarted here,
rather than later at a lower IPL, to avoid the possibility of deadlock. If a
secondary CPU holds a spinlock for which the primary CPU is waiting
at the time of the power failure, the primary CPU executes EXE$RE­
START _ATT and returns to the spinwait loop when power is recovered.

997

Power Failure and Recovery

33.2.3

998

Thus, the secondary CPUs must be restarted before the primary exits
EXE$RESTART _ATT.

12. EXE$RESTART lowers IPL to 29 to allow any pending powerfail interrupt
to occur, then raises IPL back to 31. Section 33.3.1 explains the reason
for this step.

13. EXE$RESTART _ATT clears POWERDWN_L_DONE.
14. On a system with multiprocessing enabled, EXE$RESTART_ATT sets

the start flag to notify secondary CPUs that they may proceed.
15. EXE$RESTART then clears EXE$GL_PFAILTIM.
16. Each CPU modifies its SP to point to the saved general registers on the

interrupt stack and restores them.
17. Each clears its last sanity check flag, the saved interrupt stack pointer,

CPU$L_SAVED_ISP. EXE$RESTART_ATT will find the pointer zero if
the state is incompletely saved in a subsequent power failure (see Sec­
tion 33.3.1).

18. EXE$RESTART_ATT dismisses the powerfail interrupt by executing an
REI instruction. Control returns to the code that was interrupted by the
power loss notification.

Device Notification

EXE$RESTART _ATT invokes the routine EXE$INIT _DEVICE, also in mod­
ule POWERFAIL, to initialize devices and device drivers after a powerfail
recovery.

While IPL is still at 31 to block all interrupts, EXE$INIT_DEVICE scans
the 1/0 database. It sets the powerfail bit, UCB$V _POWER, in the status
word of each unit control block (UCB) it finds, except for mailbox UCBs.

For each controller it finds, EXE$INIT_DEVICE invokes the controller ini­
tialization routine. If that routine returns successfully, EXE$INIT _DEVICE
invokes the unit initialization routine for each unit of that controller. The
powerfail bit enables these initialization routines to differentiate between
power recovery and ordinary initialization.

EXE$INIT _DEVICE checks each unit to see whether its driver fork process
is expecting an interrupt or has 1/0 being timed. If either is true, EXE$INIT _
DEVICE clears its interrupt-expected bit, sets its timeout-expected bit, and
sets its due time to zero. These actions cause each such device to time out.
Later, when the driver's timeout routine runs, it can differentiate between
ordinary timeout and power failure by checking the powerfail bit.

The check for device timeout occurs within EXE$TIMEOUT, the system
subroutine that executes once a second (see Chapter 11). EXE$TIMEOUT
cannot execute until later, after both of the following occur:

• The interval timer interrupts (which means that IPL has dropped below 22
or 24, depending on CPU type).

33.2.4

33.2.4.1

33.2.4.2

33.2 Power Recovery

• The software timer interrupt service routine executes. (This will not hap­
pen until IPL drops below 7.)

In VMS, most of the work done to recover from a power failure occurs in
drivers. VMS disk drivers and magnetic tape drivers are capable of restarting
whatever request they were processing when the power failed in such a way
that the power failure is totally transparent to them. (If a magnetic tape unit
lost vacuum, operator intervention is required to reestablish the vacuum and
rewind the tape. Once that is done, the driver automatically restarts the I/O
request that was in progress when the power failed.)

Process Notification

If so requested, VMS will notify a process of powerfail recovery by queuing
an AST to it. A process requests this notification by requesting the Set Power
Recovery AST ($SETPRA) system service.

$SETPRA System Service. The $SETPRA system service procedure,
EXE$SETPRA in module SYSSETPRA, runs in kernel mode. It performs two
steps:

1. Stores the address of the AST in global location CTL$GL_POWERAST
and the access mode in which the AST is to be delivered in location
CTL$GB_PWRMODE

2. Sets the power AST flag (PCB$V _PWRAST) in the process control block
(PCB) status longword

The effect of this system service is canceled by the delivery of the power
recovery AST or by image rundown (see Chapter 26).

Delivery of Power Recovery ASTs. The delivery of a power recovery AST
occurs in several distinct steps:

1. EXE$RESTART _ATT stores the duration of the power failure in location
EXE$GL_PFATIM. (This value is simply the current contents of the time­
of-year clock minus EXE$GL_PFAILTIM, the time at which the power
failed.) Nonzero contents in this location act as a trigger to the swapper
the next time that it runs.

Note that no special action is taken at this point to wake up the
swapper. In fact, because this routine is running at IPL 31, the swapper
scheduling state could not be changed without potential synchronization
problems.

2. The swapper's main loop (see Chapter 18) invokes routine EXE$POW­
ERAST, in module SYSSETPRA, if location EXE$G1-PFATIM contains
a nonzero value.

999

Power Failure and Recovery

3. EXE$POWERAST scans the PCB vector and queues a special kernel mode
AST to each process that has the PCB$V _PWRAST flag set. It then
clears the flag, disabling further power recovery ASTs to the process,
to prevent multiple ASTs in case another powerfail occurs before the
process executes. A special kernel mode AST is required because the
address and access mode of the recovery AST are stored in the Pl space
of the requesting process. When EXE$POWERAST completes its scan of
the PCB vector, it clears EXE$GLPFATIM.

4. The special kernel mode AST copies the address and access mode from
their Pl space locations into the AST control block and queues the
recovery AST to the requesting process.

5. Finally, the recovery AST itself is delivered to the requesting process.
The AST parameter is the duration of the power failure in IO-millisecond
units.

To receive notification of a subsequent powerfail recovery, a process must
"rearm" the AST by requesting the $SETPRA system service again.

33.3 MULTIPLE POWER FAILURES

33.3.1

1000

Hardware and software flags exist in combination to prevent infinite looping
or related problems in response to a power failure that occurs while either
the powerfail service routine or the restart routine is executing.

Nested Powerfail Interrupts

Caution is necessary where power failure is concerned. Fluctuating voltages
can cause the power to repeatedly fail and be restored. VMS must provide
for the possibility of a second powerfail interrupt before an earlier one is
dismissed.

The powerfail interrupt code is only guaranteed a brief interval between
the powerfaii interrupt request and the total loss of power. If the powerfail
interrupt is blocked while the CPU is running at IPL 30 or 31, EXE$POW­
ERFAIL will have that much less time to save the volatile machine state.

A second powerfail interrupt can be blocked for a considerable time while
EXE$RESTART restores state from a previous interrupt. If the second in­
terrupt were not granted until EXE$RESTART completed restoration and
dismissed the first powerfail interrupt, there could be insufficient time to
save the processor state. An additional consideration for an SMP system is
that the state of all CPUs active at the time of power loss must be saved for
a recovery to succeed.

VMS uses a combination of three things to defend against nested powerfail
interrupts: CPU$L_SAVED_ISP; preserving the processor state saved on the
stack; and temporarily lowering IPL in EXE$RESTART.

One of the first steps EXE$POWERFAIL takes is to check the contents of
CPU$L_SAVED_ISP, the saved interrupt stack field in the per-CPU database.

33.3.2.

33.3 Multiple Power Failures

This location retains nonzero contents until just before EXE$RESTART ex­
ecutes its REI instruction, dismissing the powerfail interrupt. If a powerfail
interrupt occurs while this location contains a nonzero value (indicating that
another failure/recovery is already in progress), EXE$POWERFAIL does not
save the processor state.

Volatile machine state has already been saved as a result of the first pow­
erfail interrupt. That state will be restored eventually by EXE$RESTART.
Any state saved at the time of the second interrrupt would merely reflect
the interruption of EXE$RESTART's attempts to restore state after the first
interrupt. This check prevents nested powerfail interrupts on a system expe­
riencing some obscure behavior that would otherwise be extremely difficult
to diagnose.

One more bit of caution is evident in the manner in which EXE$RESTART
restores data from the interrupt stack. A scratch register rather than the SP
register is used to traverse the stack. If another powerfail interrupt were to
occur while data was being restored, the saved PC and PSL would not overlay
the previously saved data.

When EXE$RESTART is nearly done but CPU$L_SAVED_ISP is still non­
zero and the stack is still intact, it deliberately lowers IPL to 29 to allow any
pending powerfail interrupt to be granted. If one is pending and granted,
EXE$POWERFAIL sees that CPU$L_SAVED_ISP is nonzero and saves no
state. It branches to itself, awaiting the power failure. When the power
recovers and EXE$RESTART is reentered, it again restores machine state
from the RPB and the state saved on the stack.

If there is no pending powerfail interrupt, EXE$RESTART raises IPL back
to 31, clears POWERDWN_L_DONE and EXE$GL_PFAILTIM, and notifies
secondary CPUs that they may proceed. Each CPU modifies its SP to point to
the saved general registers on the interrupt stack and restores the registers.
Each clears its last sanity check flag, the saved interrupt stack pointer,
CPU$L_SAVED_ISP. Each then executes an REI instruction to dismiss the
interrupt.

Prevention of Infinite Restart Loop

There are two flags whose purpose is tq prevent an infinite restart loop such
as the following:

1. An error halt condition occurs.
2. The console subsystem locates the RPB and transfers control to EXE$RE­

START.
3. Prior to restoring or crashing the system, EXE$RESTART incurs an error

halt condition.
4. The console subsystem locates the RPB and transfers control to EXE$RE­

START.
5. EXE$RESTART incurs the same error halt condition

1001

Power Failure and Recovery

33.3.3

1002

The first flag is the low bit of RPB$1-RSTRTFLG, located in the RPB.
During system initialization, the initialization routine for the loadable ex­
ecutive image IO_ROUTINES, invoked from EXE$INIT, clears the flag after
there is enough of VMS to restart.

The flag is tested and set by the console subsystem during restart after
it finds a valid RPB. If it locates an otherwise valid RPB with this flag set,
it aborts the restart attempt. Either the RPB is in error or an earlier restart
attempt has incurred an error halt.

A second flag, called the warm start inhibit flag or the restart-in-progress
flag, is maintained by the console subsystem on some types of VAX CPU. It
functions in a similar manner to RPB$1-RSTRTFLG. The console sets the
flag at the beginning of the restart. EXE$RESTART initiates the clearing of
it by sending a command to the console subsystem. On some CPUs, the
following instruction sends the command:

MTPR #~XF03,#PR$_TXDB

If the console subsystem detects that this flag is set while attempting a
restart, it aborts the restart and takes the same processor-specific action it
would if the RPB flag were set.

Multiprocessing systems must implement a flag of this type for each
potential CPU. Some do this by designating a bit per CPU in the CCA
field CCA$Q_RESTARTIP. This bit is cleared by EXE$REGRESTOR after
it restores any saved processor-specific registers.

Device Driver Action

Drivers do not have to concern themselves directly with the multiple restart
problem. Even though the bulk of driver recovery is done in response to an
IPL 7 software timer interrupt, when a second power failure is possible,
drivers are protected by one of the following situations:

• The driver controller and unit initialization routines are invoked at IPL 31
before CPU$L_SAVED_ISP is cleared. Drivers are protected here by the
same sanity checks that VMS uses for itself .

• If the driver does not get invoked at its timeout entry point before the
power fails again, the preserved driver state indicates a unit that has already
timed out. When power is :finally restored permanently, the driver will be
invoked at its timeout entry point.

• If the driver is in the middle of its timeout routine, it still appears to the
system as a unit that has timed out. It will be invoked at its timeout entry
point again when the machine finally stabilizes .

• The driver may succeed in returning control to the operating system with,
for example, one of the following macro invocations: WFixxCH, IOFORK, or
REQCOM.

33.4 Failure of External Adapter Power

If the operating system has received control, the request has either been
completed or the driver is back into a state (such as expecting an interrupt)
where the power recovery logic will cause the driver to be invoked at its
timeout entry point when the power is finally restored.

33.4 FAILURE OF EXTERNAL ADAPTER POWER

33.4.1

Certain adapters can experience a power failure independently of the proces­
sor. These adapters are the following:

• UNIBUS adapter on VAX-l l/78x, VAX 86x0 processors
• Second UNIBUS adapter on a VAX-11/750 processor
• MASSBUS adapter on VAX-11/78x, VAX 86x0 processors
• CI780, CI750, and CIBCI port adapters

These adapters notify VMS of power loss or power restoration by inter­
rupting. VMS provides service routines for their interrupts.

A key problem is that a reference to the registers or 1/0 space of a pow­
erfailed adapter causes a machine check. If the reference is made in kernel
mode, for example, by a device driver trying to access device registers, the
machine check would result in a fatal bugcheck.

One method that VMS uses to prevent such machine checks is to remap
the system virtual address space reserved for the adapter to point· to the
"black hole" page, EXE$GL_BLAKHOLE. This page is a physical page of
memory allocated at system initialization for this purpose. This mapping
technique prevents subsequent machine checks or related errors from device
drivers that reference a powerfailed adapter.

An adapter on an SMP system, however, requires a different method.
Remapping to the black hole page requires that the translation buffer (TB)
entry for the former adapter virtual address be invalidated on all CPUs.
TB invalidation involves an interprocessor interrupt, which is serviced at
a lower priority than the power failure processing. Thus, beginning with
VMS Version 5.0, adapters available for systems that support SMP use an
alternative technique, described in Section 33.4.3.

UNIBUS Power Failure

A UNIBUS failure on a VAX-11/780, VAX-11/785, VAX 8600, or VAX 8650
processor does not necessarily indicate that the entire system is in error. VMS
allows UNIBUS errors, including UNIBUS power failure caused by turning
off the power to the UBA or the BA-1 lK, to occur without crashing the entire
system.

When such an error occurs, the UBA interrupts on its own behalf. The
interrupt service routine for the affected UBA detects that a UBA interrupt
(rather than a UNIBUS device interrupt) has occurred and transfers control
to an error routine that does the following:

1003

Power Failure and Recovery

33.4.2

33.4.3

1004

1. Checks that the interrupt is a result of the power failure of the UBA or
UNIBUS

2. Writes an error log entry
3. Remaps the system virtual addresses that previously mapped the UBA

itself and the UNIBUS I/O page (24 pages in all) so that these pages now
point to the black hok page reserved at initialization time

4. Modifies the interrupt vector to point to a power-up routine

If the UNIBUS is not responding, either because the power was turned
off or for some other reason, devices that were waiting for I/O completion
will time out. The program that issued the initial I/O request will receive
an appropriate error notification, assuming that no driver is in a tight loop
at device IPL waiting for a status bit to change state.

When the power is restored, the system virtual pages are remapped to point
to the UBA registers and UNIBUS I/O space. EXE$INIT _DEVICE is invoked
to reinitialize all devices on the recovered UBA. Its actions in reinitializing
devices are described in Section 33.2.3. If any devices were removed while
the power was turned off, they will be marked offline as part of the power
recovery operation. The interrupt vector is restored to its usual contents.

It is also possible for power to fail on the second UNIBUS interface of a
VAX-11/750 processor without failing on the entire system. VMS responds as
it does on the systems previously described. The UBA interrupts to indicate
powerfail through the vector at SCB offset 1E416•

Support for Power Failure of MASSBUS Adapters

A MASSBUS adapter (MBA) power failure on a VAX-11/78x or VAX 86x0
processor does not necessarily indicate that power is being lost for the entire
system. VMS services MBA powerfail on those processors as it does UBA
powerfail. It maps the system virtual address space corresponding to the
MBA registers to the black hole page. When the power is restored, the address
space is mapped back to the MBA registers, the MBA is initialized, and
EXE$INIT _DEVICE is invoked to reinitialize the devices on the adapter.

Support for Power Failure of Computer Interconnect Adapters

Certain computer interconnect (Cl) adapters (CI780, CI750, and CIBCI) can
lose power independently of the rest of the system. Before VMS Version 5.0,
the CI device driver, PADRIVER, mapped the system virtual address space
corresponding to the CI registers to the black hole page. Since the CIBCI
adapter is supported on some VAX multiprocessor models, PADRIVER was
changed to access all CI registers through pointers in the port definition table
(PDT).

If a power failure occurs, the CI adapter interrupts on its own behalf.
The interrupt service routine transfers control to a power-down routine that
stores the virtual address of a private black hole location within the driver

33.4 Failure of External Adapter Power

into the PDT pointers. Thus, any subsequent register access references a
different virtual address. This alternative to remapping the same virtual
address to a different physical address does not require TB invalidation.

When power returns to the CI adapter, the driver again loads each PDT
pointer with the virtual address of a device register; reloads the volatile CI
microcode, and reinitializes the CI.

1005

34 Symmetric Multiprocessing

Virtue can only flourish amongst equals.

Mary Wollstonecraft, A Vindication of the Rights of Men

Version 5 of the VMS operating system adds support for tightly coupled
symmetric multiprocessing (SMP). This chapter describes

• Communication and cooperation among the members of an SMP system
• Initialization of the SMP environment
• Addition and removal of a member

34.1 OVERVIEW

1006

A VMS multiprocessing system consists of two or more CPUs that address
common memory and that can execute instructions simultaneously. If all
CPUs in the system execute the same copy of the operating system, the
multiprocessing system is said to be tightly coupled. If all CPUs have equal
access to operating system functions, the system is said to be symmetric.

In most respects the members of a VMS.SMP system are symmetric. Each
member can perform the following tasks:

• Initiate an I/O request
• Service exceptions
• Service software interrupts
• Service hardware interrupts (other than from I/O devices), such as inter-

processor, interval timer, and powerfail interrupts
• Execute process context code in any access mode

One CPU can be executing process context code while ~other services a
software interrupt. Section 34.4 describes the changes in VMS Version 5
that enable this cc:mcurrency.

VMS characterizes the various members of an SMP system in several
ways. One important characteristic is that of primary-CPU. During system
operation, the primary CPU has severlill unique responsibilities:

• System timekeeping
• Servicing 1/0 device interrupts and their concomitant software interrupts
• Writing messages to the console terminal and accessing other I/O devices

that are not accessible to all members

All device interrupts are serviced on the primary CPU. Section 34.6.2
describes . this division of labor. An SMP configuration. may include some
devices that are not accessible from all SMP ·members. The console ter-

34.1 Overview

minal, for example, may be accessible only from the primary processor.
Section 34.6.3 describes a mechanism called device affinity by which VMS
supports such devices.

Booting. the system is initiated on a CPU with full access to the console
subsystem, called the BOOT CPU. The BOOT CPU controls the bootstrap
sequence and boots the other available CPUs. In VMS Version 5.2, the BOOT
CPU and the primary CPU are always the same; the others are called sec­
ondary or attached processors. !The terms CPU and processor are used in­
terchangeably in tlµs chapter and throughout the book.)

The booted primary and all currently booted secondary processors are
called the active set. These processors actively participate in system opera­
tions and respond to interprocessor interrupts, which coordinate systemwide
events. Section 34.5.2 contains more information on the use of interproces­
sor interrupts.

VMS imposes little binding between a process and a particular CPU. That
is, in general, each CPU is equally able to execute any process. However, a
process may need capabilities possessed only by certain CPUs or may have
populated the meinory and translation buffer caches of a specific CPU. For
those cases, VMS implements a mechanism by which ·a process may be
bound to one or more CPUs. Chapter 12 describes the implementation of
process affinity and processor capabilities.

As described in Chapter 4, VMS performs many key system functions
through software interrupts. On an SMP system, each processor services
its own software interrupt requests, of which the most significant are the
following:

• When a process receives an interrupt priority level jIPL) 2 interrupt because
of a pending asynchronous system trap jAST), the AST delivery interrupt
service routine runs on the same processor as the process. Chapter 7 de­
scribes IPL 2 interrupts and their servicing.

• When a current process is preempted by a higher priority computable
resident process, the IPL 3 rescheduling interrupt service routine, running
on that processor, takes the current process out of execution and switches
to the higher priori~y process. Chapter 12 describes scheduling in more
detail and the circumstances under which the rescheduling interrupt is
requested. .

• When a device Clriver completes an 1/0 request, an IPL 4 1/0 postpro­
cessing interrupt is requested: some completed requests are queued to a
CPU-specific postprocessillg queue and are serviced on that CPU; others
are queued to a.'.fiystemwide queue and serviced on the primary CPU. Sec­
tion 34:6.4 describes the ·.different postprocessing queues and their uses.
Chapter 21 describes the I/O postprocessing interrupt service routine.

• When the curr~nt process/has used its quantum of CPU time, the IPL 7
software timer interrupt service routine, running on that CPU, performs

1007

Symmetric Multiprocessing

quantum-end processing. Another function of this interrupt service rou­
tine, servicing the timer queue, is only performed on the primary CPU.
Chapter 11 describes software timer interrupts and their servicing.

• Software interrupts at IPLs 6 and 8 through 11 are requested to execute
fork processes. Each processor services its own set of fork queues. A fork
process generally executes on the same CPU from which it was requested.
However, since many fork processes are requested from device interrupt
service routines, which currently execute only on the primary CPU, more
fork processes execute on the primary than on other processors. Chapter 4
describes fork interrupts and their servicing.

SMP support was added to VMS Version 5 with the following goals:

• One version of VMS. As part of the standard VMS product, SMP support
does not require its own version of VMS. The enhanced version of VMS
runs on all VAX processors. The synchronization methodology and the
interface to synchronization routines are the same on all systems. How­
ever, as described in Chapter 8, there are different versions of the synchro­
nization routines themselves. Partly for that reason, SMP support imposes
relatively little additional overhead on a uniprocessor system.

• Parallelism in kernel mode. SMP support might have been implemented
such that any single processor could execute kernel mode code, but not
more than one at a time. However, more parallelism was required for a
solution that would support configurations with more CPUs. The members
of an SMP system can be executing different portions of the executive
concurrently. The executive has been divided into different critical regions,
each with its own lock, called a spinlock.

• Flexibility in the granularity of the locking mechanisms. The spinlock
mechanism allows for the creation of additional static spinlocks in future
versions of the VMS operating system. The IOLOCK8 spinlock, for exam­
ple, could be subdivided to allow increased parallelism.

34.2 SMP HARDWARE CONFIGURATIONS

1008

SMP supports a theoretical maximum of 32 CPUs, each of which has a
unique ID between 0 to 31. For any particular processor type, the actual
maximum is likely to be smaller. The manner in which the CPU ID is
determined also varies with processor type:

• On a VAX 83x0 system, the CPU ID is taken from the system ID processor
register. It is the CPU's VAXBI bus node ID, which is determined by a plug
on the V AXBI backplane slot where the node is inserted.

• On a VAX 88x0 or VAX 8800 system, the CPU ID is taken from the system
ID processor register.

• On a VAX 6000 series processor, the CPU ID is taken from a location in
XMI bus node-private space.

34.2.1

34.2 SMP Hardware Configurations

• On a VAXstation 3520 or VAXstation 3540 system, the CPU ID is taken
from a CPU-specific processor register.

Some SMP support is processor-type-specific, for example, CPU initializa­
tion routines and the routines that request interprocessor interrupts. These
routines are implemented in CPU-specific modules in the [SYSLOA] facility
that are linked into the various SYSLOAxxx images. The xxx varies with
CPU type; for example, SYSLOA8NN supports VAX 8800 systems. Appen­
dix G contains a list of CPU types and their corresponding SYSLOAxxx
names.

VMS SMP requires a hardware configuration of multiple CPUs of the same
model type. Each processor can execute an instruction stream independently
of the others. An interprocessor interrupt mechanism enables kernel mode
software running on one processor to interrupt one or more of the others.

The CPUs access common physical memory through the same physical
addresses. The CPUs' memory caches are invalidated as needed by the hard­
ware without software involvement. This feature is called cache coherency.
As required for any VAX processor, the memory supports interlocked access.
That is, if one CPU accesses memory with an interlocked instruction, for ex­
ample, BBSSI, the memory controller must block any attempt at interlocked
access to that location by another CPU.

In addition, the CPUs must be at the same hardware and microcode revi­
sion levels. If one has a floating-point accelerator or optional microcode, such
as G-floating-point and H-floating-point support, all must have it. These re­
quirements exist because a process running on one CPU can be taken out
of execution in the middle of certain instructions and resumed on another
processor.

The primary processor must be able to access all 1/0 peripherals. All CPUs
must be able to access most I/O peripherals. On many types of configura­
tion, the console devices may not be accessible other than to the primary
processor.

The following sections describe the systems on which VMS Version 5.2
supports SMP.

VAX 8300 and VAX 8350 Systems

The VAX 8300 system consists of two VAX 8200 processors on a common
backplane interconnect, the VAXBI bus. The VAX 8350 system has two VAX
8250 processors. The processor in the second physical VAXBI backplane slot
is connected to the console. It is booted as the primary processor; the other
CPU is booted as the secondary processor. The processors access common
memory on the VAXBI bus. The VAXBI bus provides an interprocessor inter­
rupt capability. Both processors are physically capable of accessing any 1/0
adapters connected to the VAXBI bus.

1009

Symmetric Multiprocessing

34.2.2

1010

Console

VAXBI

Figure 34.1
Hardware Layout of a VAX 83x0 System

Secondary
Processor

Any VAXBI node that implements a cache, such as a CPU, must monitor
the bus for writes to locations whose contents are in its cache and invalidate
them as required. Because both processors and the memory are on the same
bus, this mechanism is sufficient to maintain the validity of both processors'
caches. The cache implements a write-through policy; that is, when a CPU
modifies a cached location, the new contents are immediately written to
memory.~

Figure 34.1 shows the hardware configuration of an example VAX 83x0
system with two 1/0 adapters: a VAXBI-to-UNIBUS adapter (DWBUA), and
a VAXBI-to-CI adapter (CIBCA).

A VAX 83x0 system has one physical console terminal. By default, console
commands are intended for the primary processor. CPU console microcode
can pass commands and messages between the physical console and the
logical console of the secondary processor. Commands and messages can
also be passed to and from the logical console of the secondary processor
through processor registers accessed with MTPR and MFPR instructions.

VAX 8800 and VAX 88x0 Family

The VAX 8800 system consists of two \{AX 8 700 processors on a common
backplane, the VAX 8800 memory interconnect (NMI). The processors access
common memory on the NMI. The NMI provides an interprocessor interrupt
capability. A processor is either the LEFT or the RIGHT processor, depending
on its physical position in the CPU cabinet. A console command allows
either processor to be selected as the primary processor. By default, the LEFT
processor is the BOOT CPU and primary processor.

Both CPUs and the memory are on the NMI. Each CPU has its own cache
of recently referenced locations and their contents. Logic in the cache mon­
itors the bus for modifications to memory whose contents are cached. The
cache is a write-through cache and invalidates itself whenever appropriate.
This, however, is not sufficient to ensure the validity of the data in another
processor's cache or in memory, since each processor's writes to memory

34.2.3

34.2 SMP Hardware Configu.rations

locations are buffered temporarily in a "write buffer." The write buffer can
combine several CPU writes into a single bus transaction, reducing bus traf­
fic. Execution of an interlocked instruction, however, forces the write buffer
to be emptied, completing writes to memory. Other instructions, such as
REI and SVPCTX, and interrupt or exception initiation also force emptying of
the write buffer. As the other processor's cache monitors the NMI, it sees
the memory writes and invalidates itself as appropriate.

A VAX 8800 NMI-to-VAXBI adapter INBIAJ connects one or two VAXBI
buses to the NMI. Both processors are physically capable of accessing any
I/O adapters connected to the NMI or VAXBI bus.

Figure 34.2 shows a possible VAX 8800 hardware configuration: a VAX
8800 system with one NBIA connecting one VAXBI bus.

The VAX 8Sx0 family is a follow-on to the VAX 8800 system. Its mul­
tiprocessor members, the VAX 8820, VAX 8830, and VAX 8840 systems,
consist of two, three, or four VAX 8700 processors on an NMI backplane.
In a dual-CPU configuration, processors and memory are on the same NMI.
In a configuration with more processors, the memory controllers are on a
second NMI.

Each processor is identified by a number from 0 to 3. A console conimand
allows any processor to be selected as the primary processor. By default, the
processor with the lowest number is the BOOT CPU and primary processor.

VAX 6000 Series Systems

VAX 6000 series systems support different processor types in otherwise simi­
lar configurations. Processors, memories, and DWMBA I/O adapters connect
as nodes to a backplane called the XMI bus. There can be up to 14 nodes on

LEFT
CPU

Figure 34.2

MelllOI)'

DWBUA

UNIBUS

Console

RIGHT
CPU

VAXBI VAXBI

Hardware Layout of a VAX 8800 System

1011

Symmetric Multiprocessing

34.2.4

1012

CPU MemOI}' CPU

XMI

DWMBA DWMBA DWMBA

VAXBI VAXBI CIBCA VAXBI

Figure 34.3
Hardware Layout of a VAX 6000 Series System

the XMI bus. The DWMBA is an XMl-to-VAXBI adapter. All 1/0 peripherals
except for the console terminal are on a VAXBI bus. Figure 34.3 shows the
configuration of an example VAX 6000 series system.

By default, the processor with the lowest CPU ID that passes self-test is
the primary processor.

Each CPU has its own write-through cache that monitors the XMI for
memory writes to locations it has cached. Each CPU has a write buffer
similar to that on a VAX 8700 processor.

Each processor runs its own console program. That is, the console sub­
system is implemented in VAX instructions that execute on the CPU itself
rather than on a separate console processor. The consoles communicate with
each other through an area in memory called the console communications
area (CCA). Each processor has a buffer of its own in the CCA. The exec­
utive, running on the primary processor, communicates with a secondary
processor's console program by testing status bits in and writing messages
to the secondary processor's CCA buffer.

VAXstation 3520 and 3540 Systems

The VAXstation 3520 system consists of two CVAX processors connected
through a cache and bus interface to a common backplane, the M-bus. The
VAXstation 3540 system has four processors. The processors access common
memory on the M-bus. Each processor is interfaced to the bus through a
cache that monitors the M-bus for other CPUs' memory references. Disk
devices connect to a small computer system interface (SCSI) bus, which
interfaces to the M-bus through the 1/0 adapter. An optional Q22-bus adapter
module allows connection of additional peripherals, such as magnetic tape.
Figure 34.4 shows a sample V AXstation 3520 configuration.

Each cache can determine whether a particular memory location is cached
exclusively in itself or shared in at least one other cache. This makes possible
a write-back policy for unshared locations and a write-through policy for
shared locations. That is, when a CPU modifies a memory location cached

34.3 Data Structures Related to SMP Support

CVAX CVAX
Monitor

Memory Memory

Figure 34.4
Hardware Layout of a VAXstation 3520 System

only in its own cache, only the cache is changed. The memory location is
not modified until that cache entry must be reused for a different memory
location not currently cached or until some other CPU reads the memory
location. When a CPU modifies a shared location, the cache initiates a "Write
on the M-bus to update the memory; monitoring the bus and seeing the
write,_ the other CPUs' caches update their own entries if necessary.

An interprocessor interrupt capability is provided. The console capability
is identical to that described in Section 34.2.3.

34.3 DATA STRUCTURES RELATED TO SMP SUPPORT

Two longwords, SMP$GL_FLAGS and EXE$GL_ TIME_CONTROL, contain
flags controlling SMP operations. These flags are accessed with interlocked
instructions. Symbolic names for the bits in SMP$GLFLAGS are defined by -
the $SPLCODDEF macro. These bits are

• SMP$V _ENABLED-When set, indicates that SMP operation is enabled
• SMP$V _START _CPU-When set, indicates that the primary CPU has fin­

ished initialization
• SMP$V _CRASH_CPU-When set, indicates that a member has initiated a

fatal bugcheck
• SMP$V _ TODR-When set, indicates that SMP$GLPROPOSED_ TODR,

described in Section 34.5.2, is in use
• SMP$V_UNMOD_DRNER-When set, indicates that a driver has been

loaded that has not been modified for SMP operation
• SMP$V _ TODILACK-When set, indicates that the primary CPU has com­

pleted its part in an SMP time-of-year clock access
• SMP$V _SYNCH-When set, indicates that an SMP synchronization image

has been loaded
• SMP$V _BENIGN-When set, indicates that a benign state, describe~ in

Section 34.5.4, has been requested

1013

Symmetric Multiprocessing

1014

Symbolic names for the bits in EXE$GL_ TIME_CONTROL are defined in
module SYSPARAM. Those relevant for SMP are

• EXE$V_NOSMPSANITY-When set, disables SMP sanity timeouts
• EXE$V_NOSPINWAIT-When set, disables SMP spinwait timeouts

SMP supports a maximum of 32 CPUs, each of which has a unique ID
between 0 to 31. Kernel mode code running at an IPL above 2 can identify the
CPU on which it is executing by examining its per-CPU database, described
later in this section.

The global cell SMP$GL_PRIMID contains the ID of the primary processor.
When the system crashes, the ID of the CPU that initiates the bugcheck, the
CRASH CPU, is recorded in the global cell SMP$GL_BUGCHKCP.

A number of global cells describe the various members of the SMP system.
Each is a longword with one bit for each CPU; when set, bit 0, for example,
indicates that the CPU whose ID is 0 has the characteristic described by the
cell.

• SMP$GL_CPUCONF identifies the available set, those physically present
processors that have passed the power-on hardware diagnostics and are
available for booting into the SMP system.

• SMP$GL_ACTIVE_CPUS identifies the active set, those CPUs that are
participating in the SMP system and responding to interprocessor interrupt
requests .

• Generally, SCH$G1-IDLE_CPUS identifies the idle set, those CPUs with­
out a process to execute. (However, whenever a resident computable
process becomes available, the bits representing idle CPUs on which the
process can run are cleared as a signal that those CPUs should reschedule.)

• XDT$G1-BENIGN_CPUS identifies those CPUs in the benign state (see
Section 34.5.4).

• SMP$GL_OVERRIDE identifies the override set (see Section 34.5.5) .
• SMP$GL_ACK_MASK identifies those CPUs that have responded to a

translation buffer invalidate request (see Section 34.5.3).
• EXE$GL_AFFINITY contains the default device affinity mask, which is

normally all l's to specify that a device ci:tn be accessed from all SMP
members. This mask is copied to the unit control block field UCB$L_
AFFINITY of each device unit when it is created .

• SMP$GL_BUG_DONE identifies those CPUs that have completed fatal
bugcheck processing (see Section 34.10).

The spinlock-related data structures are described in Chapter 8. The CPU
mutex is described in Section 34.5.

XDT$GW _INTERLOCK and XDT$GW _OWNER_ID, cells related to the
use of XDELTA, are described in Section 34.5.4.

The use of cell SMP$G1-INV ALID is related to invalidation of a single
translation buffer entry, described in Section 34.5.3.

34.3.1

34.3 Data Structures Related to SMP Support

Each member of an SMP system has memory for data that describes the
state of that CPU. Referred to as the per-CPU data area, this memory consists
of the following adjacent pieces:

• The per-CPU database
• A one-page stack, called the boot stack
• An interrupt stack
• No-access guard pages at each end of both stacks to detect stack overflow

and underflow

The VAX architecture defines five stacks: four per-process stacks for the
different access modes and one systemwide interrupt stack. Executing in
process context, a processor runs on an access mode stack private to that
process. Executing in system context in earlier versions of VMS, a processor
used the systemwide interrupt stack. On an SMP system, more than one
processor can execute in system context at the same time. Simultaneous
use of a stack by more than one processor is clearly not viable; VMS there­
fore provides system-context interrupt and boot stacks for each processor's
exclusive use.

Each processor executes on its own boot stack during bootstrap and halt­
restarts, including powerfail recovery. Under some circumstances, the pro­
cessor accesses the stack physically with memory management disabled and,
under others, virtually. In earlier versions of VMS, the space at the high end
of the page containing the restart parameter block (RPB) served this purpose.

Each processor has its own interrupt stack for use when memory manage­
ment is enabled; the SYSGEN parameter INTSTKPAGES specifies the stack
size in pages. The processor runs on this stack while executing in system
context, servicing interrupts.

SYSBOOT sums the sizes of the per-CPU database, the boot and interrupt
stacks, and the guard pages to determine how many pages are actually re­
quired for the per-CPU data area. It rounds up that page count to the next
power of 2. Each per-CPU data area begins on a virtual page boundary aligned
to that power of 2. Later in system initialization, the rounded size in bytes
minus 1 will be stored in global SMP$G1-BASE_MSK.

Locating the Per-CPU Data Area

Because of the alignment of each per-CPU data area, any virtual address
within it can be transformed to the base address of the area. The low-order
bits of the address are simply cleared against the mask in SMP$G1-BASE_
MSK. Thus it is possible to locate the per-CPU data area for a processor based
on the contents of its interrupt stack pointer.

The FIND_CPU_DATA macro serves this function. An example invocation
and expansion follow:

1015

Symmetric Multiprocessing

34.3.2

1016

Macro invocation

FIND_CPU_DATA R4 ;Get per-CPU database address

Macro expansion

MFPR s-#PR$_ISP,R4
BICL2 G-SMP$GL_BASE_MSK,R4

Note that use of this macro is restricted to code that executes in kernel
mode with memory management enabled. Furthermore, the code must run at
an IPL above 2 between invoking the macro and using the returned address.
Code running in process context at IPL 2 or below is subject to rescheduling
and subsequent execution on another processor whose per-CPU data area is
at a different address.

The array called the CPU data vector begins at global SMP$GL_CPU_
DATA. This 32-longword array contains the addresses of the per-CPU data
areas. It is indexed by CPU ID number to get the address of the area for a
particular processor. Figure 34.5 shows the organization of a per-CPU data
area and its relation to the CPU data vector.

Fields in the first page of the per-CPU database and the boot stack may
be accessed using physical addresses during bootstrap and halt-restarts. Sec­
tion 34.8.3 describes these accesses.

The Per-CPU Database

The per-CPU database contains processor-specific information such as the
process control block (PCB) address of its current process, the address of its
interrupt stack, and its fork queues. Figure 34.6 shows the layout of the
per-CPU database, which is currently two pages long.

CPU$1-CURPCB contains the PCB address of the process currently ex­
ecuting on this processor. CPU$B_CUR_PRI contains the process's current

SMP$GL_CPU_DATA::

Per-CPU Data Area
forCPUN

Figure 34.5

-.:.
_I

..i:

1

ForCPUO

For CPU 1

For CPU N

For CPU 31

CPU Data Vector and Per-CPU Data Area

~

,J..

T

Per-CPU Data Area
forCPUO

~

Per-CPU Database

Guard Page

Boot Stack

Guard Page

Interrupt Stack

Guard Page

2pages

1 page

1 page

1 page

INTSTKPAGES
pages

1 page

34.3 Data Structures Related to SMP Support

CUR PCB

REALSTACK

SUBTYPE TYPE SIZE

CUR_PRI CPUMTX STATE I BUSYWAIT

INTSTK

WORK_REQ

PERCPUVA

SAVED_AP

HALTPC

HALTPSL

SAVED_ISP

PCBB

SCBB

SISR

POBR

POLA

P1BR

P1LR

BUGCODE

CPUDATA . ~lor:ig_word!!l_ .
MCHK_MASK

MCHK_SP

POPT_PAGE

T
(reserved space to the end of the page) T

(continued)

Figure 34.6
Layout of the Per-CPU Database

.

I-

I-

.
HARDAFF

SWIQFL
J_6 _quadword!!}_

PSFL

PSBL

WORK_FQFL

QLOST FOFL
(6 longwords)

BOOT_TIME

CPUID_MASK

(reserved)

PHY_CPUID

CAPABILITY

TEN USEC

UBDELAY

KERNEL
(7 longwords)

NULLCPU

(reserved)
J_Sword&

l CLKUTICS

RANK_VEC

IPL_VEC

IPL ARRAY
(32 longwords)

TPOINTER

SANITY_TICKS l SANITY_TIMER

.

...,

...,

.

T (reserved space to the end of the page) T

priority. When the CPU is idle, CPU$LCURPCB contains the address of the
null PCB, and CPU$B_CUR_PRI contains -1.

CPU$L_REALSTACK contains the physical address of the high end of the
boot stack, and CPU$LINTSTK contains the virtual address of the high end
of the interrupt stack. CPU$L_PERCPUVA contains the virtual address of
the per-CPU data area.

1017

Symmetric Multiprocessing

1018

CPU$W _SIZE, CPU$B_ TYPE, and CPU$B_SUBTYPE contain the standard
dynamic data structure header fields.

CPU$B_BUSYWAIT is nonzero while the processor is spinning, trying to
acquire a spinlock, as described in Chapter 8. While this field is nonzero, the
interval timer interrupt service routine does not charge a timer tick against
the quantum of the current process (see Chapter 11).

CPU$B_STATE identifies the processor's current state (as distinct from
process state). Section 34.7 describes the different states and the transitions
among them.

CPU$B_CPUMTX is the number of nested times the CPU mutex has been
acquired by the processor.

CPU$L_ WORILREQ is a bitmask describing outstanding work requests
made by other processors of this processor. Section 34.5.2 describes these
requests and their handling.

The per-CPU database contains several fields used in halt-restarts. CPU$L_
SAVED_AP, CPU$L_HALTPC, and CPU$L_HALTPSL record information
passed from the console subsystem after a halt.

CPU$L_SAVED_ISP records the value of the stack pointer after registers
have been saved on the stack during a powerfail or fatal bugcheck.

During a powerfail, the current contents of various volatile processor reg­
isters are stored in the per-CPU database so that they can be restored during
restart. Section 34.9 describes their use. These fields and their contents are

• CPU$L_PCBB--The physical address of the current process's hardware PCB
• CPU$L_SCBB--The physical address of the system control block (SCBJ
• CPU$L_SISR-The software interrupt summary register
• CPU$1-POBR-The base address of the current process's PO page table
• CPU$L_POLR-The length of the current process's PO page table
• CPU$L_PlBR-The base address of the current process's Pl page table
• CPU$L_PlLR-The length of the current process's Pl page table

These fields also record information about the context at the time of a
fatal bugcheck. The bugcheck code for the processor is stored in CPU$L_
BUGCODE. Section 34.10 describes the use of these fields.

CPU$L_PHY _CPUID contains the ID of the processor, a number from 0
to 31. CPU$L_CPUID_MASK is a mask of 31 zeros with a single bit set in
the bit position corresponding to the CPU ID number.

The eight longwords beginning at CPU$B_CPUDATA contain CPU-type­
specific hardware data. The first longword is the contents of the system ID
register; the rest of this area varies with each CPU type.

CPU$L_MCHICMASK and CPU$L_MCHICSP help implement machine
check recovery blocks, described in Chapter 32.

CPU$L_POPT_PAGE contains the system virtual address of the page re­
served to this processor for use as a PO page table when memory management
is being enabled. Its use is described in Section 34.8.1.

34.3 Data Structures Related to SMP Support

The rest of the first page of the per-CPU database is reserved for future
additional fields that might be referenced with physical addresses.

The processor's fork dispatching queues begin at CPU$Q_SWIQFL. Chap­
ter 4 describes fork dispatching and the use of fork queues. The per-processor
1/0 postprocessing queue is at CPU$1-PSFL and CPU$L_PSBL. Its use is de­
scribed in Section 34.6.4.

CPU$Q_ WORK_FQFL is a work queue for switching fork processes from
other processors to this one. Section 34.5.2 describes the use of this field.

Beginning at CPU$L_QLOST _FQFL is a data structure used to stall the
CPU when quorum is lost. Section 34.5.2 describes its use.

CPU$Q_BOOT _TIME contains the system time at which the CPU was
booted.

CPU$L_CAPABILITY is a bit mask with bits set to represent the capabil­
ities of this processor. The low bit, when set, means that this CPU is the
primary processor. The macro $CPBDEF defines symbolic values for the bits
in this field. CPU$W _HARDAFF is the number of processes that have ex­
plicit affinity for this CPU. Chapter 12 describes processor capabilities and
process affinity.

The per-CPU database contains two CPU-specific counts, referred to as.
the timed wait counts. These count iterations of instruction loops that are
executed, in part, to wait for a minimum amount of time to elapse. These
counts are used, for example, during powerfail recovery, to wait for disk
drives to come back online. These counts also control the length of time a
processor spins waiting to acquire a spinlock, as described in Section 34.5.6.
They are not constants because they vary with CPU type and therefore are
calibrated during system initialization. In earlier versions of VMS, these
counts were systemwide globals. SMP support requires that they be CPU­
specific and thus capable of being changed, for example, to reflect cache
disabling on one CPU.

CPU$1-TENUSEC is the number of times a prototype loop executes in
10 microseconds. The prototype loop includes an inner loop that is sim­
ply a SOBGTR instruction. CPU$1-UBDELAY is the number of times the
SOBGTR instruction executes in 3 microseconds. In actual use, the prototype
loop is likely to be replaced by code that polls a device register. The delay
represented by the inner SOBGTR loop is incorporated so as to introduce a
3-microsecond gap between successive references to the UNIBUS or other
1/0 bus that contains the device register.

Beginning at field CPU$L_KERNEL is a seven-longword array that records
the amount of time the processor executes in each mode. CPU$1-NULLCPU
records the amount of time spent in the scheduler idle loop. These counts
are maintained by the interval timer interrupt service routine, described in
Chapter 11.

Each bit, excluding bit 31, set in the field CPU$1-RANK_ VEC corresponds
to a static spinlock held by the processor; its position identifies the rank of

1019

Symmetric Multiprocessing

the spinlock. Each bit set in the .field CPU$L_IPL_ VEC corresponds to an IPL
at which the processor holds one or more spinlocks. The IPL representation
is inverted. When a processor acquires a spinlock, the IPL of the spinlock
is subtracted from 31. The bit in CPU$L_IPL VEC corresponding to that
number is set. The field thus represents the current set of !inverted) spin­
lock IPLs active on the processor. The inverted number is also used as an
index into the 32-longword array at CPU$L_IPL_ARRAY, which records the
number of different spinlocks held at each IPL. These fields are used only
with the full-checking version of the spinlock routines, described in detail
in Chapter 8.

The fields CPU$1-TPOINTER, CPU$W _SANITY_ TIMER, and CPU$W _
SANITY_ TICKS are part of the SMP sanity timeout mechanism, which is
described in Section 34.5.7.

The remainder of the second page of the per-CPU database is reserved for
future use.

34.4 THE IMPLICATIONS OF SHARING MEMORY

1020

All memory is physically accessible to all members of an SMP system. Be­
cause a process executes on only one CPU at a time, its per-process space is
mapped on only that CPU and is not accessed concurrently from multiple
processors. Thus, SMP support generally requires no additional synchroniza­
tion of access to per-process space. !Note, however, that multiprocessing
applications sharing a writable global section must synchronize possible con­
current accesses to the global section from processes running on different
processors.)

However, all processors use the same system page table ISPT) and thus
share system space. This has several important implications for system op­
eration. First, because multiple processors can execute kernel mode threads
and make concurrent access to system space data, SMP requires additional
synchronization beyond that available with earlier versions of VMS. This
section summarizes these changes.

Second, if code running on one processor changes a valid system page table
entry ISPTE), it must inform all the other active SMP members, so that they
will flush the cached contents of that SPTE, now stale, from their translation
buffers. This mechanism is described in more detail in Section 34.5.3.

Third, multiple processors concurrently accessing pageable system space
affect the movement of pages into and out of the system working set list.
As a result, the "poor man's lockdown" technique used in earlier versions of
VMS no longer works to force pages into the system working set list. This
technique writes an IPL from the page to be locked into the PR$_IPL register.
For the instruction to complete, the pages containing it and the IPL source
must be faulted into memory and made valid. On a uniprocessor system
with IPL raised high enough to block rescheduling, no further changes in

34.4 The Implications of Sharing Memory

the system working set list due to paging are possible. On an SMP system,
however, the system working set list can change as the result of other
processors' paging. Appendix B describes the method used to lock pages in
VMS Version 5.

Earlier versions of the VMS executive used two different synchronization
methods: IPL and mutual exclusion (mutex) semaphores. Since many impor­
tant system functions are performed by software interrupt service routines,
it was possible to synchronize access to shared system data by raising IPL
to block the highest priority interrupt whose service routine accessed that
data. In cases where raising IPL would be inappropriate (for example, ac­
cess to pageable shared data), the need to acquire a mutex prevented access
by more than one process at a time. No synchronization was required for
shared system data accessed only by single uninterruptible instructions. For
example, a processor executing an INSQUE instruction to insert an element at
the tail of a lookaside list makes the multiple memory references required
without allowing interrupts.

In an SMP system, processors execute concurrently; raising IPL on one
processor blocks interrupts only on that processor and has no effect on the
others. At an architectural or hardware level, the basic multiprocessing syn­
chronization primitive is accessing shared memory with an interlocked in­
struction that reads and writes a location while blocking interlocked access
to it from other processors. Using this primitive, VMS has implemented spin­
locks, an extension to the IPL-based synchronization of previous versions.
In its simplest form, a spinlock is a bit that describes the state of a set of
shared data; the bit is set to indicate that a processor is accessing the data.
The state of the bit is tested and changed with interlocked instructions.

In VMS Version 5, shared system data has been divided into a number of
subsets, each with an associated IPL and spinlock. To access one of these sub­
sets, a thread of execution raises IPL to the associated level and acquires the
spinlock. The acquired spinlock synchronizes access from threads of execu­
tion on other processors. It could also synchronize the access of other threads
of execution on the same processor, except that VMS allows any processor
to reacquire a spinlock that it already holds. For that reason, elevated IPL is
used, as in previous releases, to synchronize the access of threads of execu­
tion on the same processor. When done, the thread of execution releases the
spinlock and typically restores the previous IPL.

During the development of VMS Version 5, each shared piece of data or
resource needing synchronization was identified and an appropriate synchro­
nization method determined.

• To certain synchronization IPLs, a corresponding spinlock was added; for
example, use of IPL 6 now also requires that the QUEUEAST spinlock
be owned. In contrast, the use of IPL$_SYNCH was subdivided into six
different spinlocks, increasing the amount of parallelism possible.

1021

Symmetric Multiprocessing

• Single noninterruptible instructions of a read-modify-write type (for exam­
ple, INCL or BBSS) that access shared data were converted to interlocked
instructions, or the shared data was protected by a spinlock .

• A shared queue was either converted to an interlocked (self-relative) queue
or accessed under protection of a spinlock. Accesses to the head or tail of
a shared queue can be synchronized with interlocked queue instructions.
A spinlock is required to synchronize access to a queue whose elements
can be inserted or removed anywhere in the queue.

Some queues, such as fork queues, are local to a CPU and accessed only
by threads of execution running on that CPU. For these, synchronization
is achieved by accessing the head or tail of the queue with noninterlocked
queue instructions or raising IPL to scan the queue.

Chapter 8 describes the use and implementation of synchronization mech­
anisms in more detail.

34.5 INTERPROCESSOR COOPERATION

1022

The members of an SMP system that are participating in system operation
make up the active set. The cell SMP$GL_ACTIVE_CPUS identifies these
members with a bit set corresponding to the CPU ID of each. The primary,
by definition, is a member of the active set. A secondary processor becomes
a member during its initialization (see Section 34.8.4) and leaves when it is
shut down (see Section 34.8.5).

A semaphore called the CPU mutex controls entry into the active set.
Despite its name, the CPU mutex is a simplified form of spinlock, not an
ordinary VMS mutex. An executive routine acquires and releases the CPU
mutex semaphore using the LOCK and UNLOCK macros, as it would a
spinlock.

A member of the active set must be responsive to interprocessor interrupts.
VMS may interrupt a particular CPU to request a specific task, or it may
interrupt all active set members to coordinate a systemwide action that
requires all to cooperate. The following sections describe the interprocessor
interrupt mechanism and the different work requests and their handling.

Some of the work requests are not urgent and are not acknowledged, for
example, reschedule, 1/0 post, and quorum-lost work requests. In fact, a
member typically responds to them by requesting a software interrupt at a
priority lower than that of the interprocessor interrupt.

Several work requests, however, require timely response to prevent pro­
cessor hangs and system deadlocks or crashes. These are a request to enter
the benign state, a request to bugcheck, a request forthe primary to serve the
console terminal to a secondary, a request to invalidate a single translation
buffer entry, and a request for the primary to access its time-of-year clock.
Some of these requests involve a timed interprocessor dialogue to complete.
Some require all members to respond. A processor executing for an extended

34.5.1

34.5 Interprocessor Cooperation

period at an IPL at or above that of the interprocessor interrupt must check
for and service certain of the requests.

A member of the active set must also release held spinlocks in a timely
fashion. When a processor loops, using the SPINWAIT macro (described in
Section 34.5.6) to wait for a spinlock to be released, it loops a finite number of
times. Typically, the loop count is based on the timed wait counts from the
per-CPU database and one of the two SYSGEN parameters SMP_SPINWAIT
or SMP _LNGSPINWAIT. If the loop count is exhausted before the other
member releases the spinlock, the waiting processor may presume the other
member is hung and crash the system.

Sanity, spinlock wait, and busy wait timeouts exist to prevent the entire
system, and the VAXcluster system of which it may be a part, from hanging
when one member of the active set becomes unresponsive. Section 34.5. 7
describes the sanity timer mechanism. Section 34.5.6 describes the need for
processor responsiveness to certain interprocessor interrupt requests.

Requesting Interprocessor Interrupts

VMS provides several macros that request an interprocessor interrupt. The
most commonly used are

• IPINT _ALL, to interrupt all other members of the active set
• IPINT _CPU, to interrupt a particular CPU

Each of these macros is typically invoked with an argument identifying the
reason for the interrupt request. The macro generates code that sets the
corresponding bit in CPU$1-WORILREQ in the per-CPU databases of the
processors to be interrupted. A work request bit is set, tested, and cleared
with an interlocked instruction to serialize access to it. Some interproces­
sor interrupt requests, however, are identified by means other than a work
request bit.

Table 34.1 lists the possible work request bits. Prefaced by CPU$V _ or
CPU$M_, these symbols are defined by the macro $CPUDEF. The function­
ing of these bits is discussed in further detail in the following sections.

The following is an example of the invocation and expansion of the IPINT _
CPU macro:

Macro invocation

IPINT_CPU IOPOST,G-SMP$GL_PRIMID ;Tell the primary to request
; a software interrupt

Macro expansion

PUSHL RO
MOVL a-sMP$GL_PRIMID,RO
PUSHL R1
MOVAL a-sMP$GL_CPU_DATA,R1
MOVL (Rl)[RO] ,R1

1023

Symmetric Multiprocessing

1024

BBSSI s-#CPUV_IOPOST,CPUL_WOR!C_REQ(R1),30010$
30010$:

POPL Rl
JSB G-SMP$INTPROC
POPL RO

The generated code invokes SMP$INTPROC, in module [SYSLOA]SMPINT _
xxx. (For the VAXstation 3520 and VAXstation 3540 systems, the module
name is SMPINT_60; the module SMPINT supports all other processors.)

SMP$INTPROC requests an interprocessor interrupt on the CPU whose ID
is in RO and returns. The method for requesting an interprocessor interrupt
is CPU-dependent and generally requires writing to a processor register or a
location in node private address space. For example, the following instruction
interrupts the other processor of a VAX 8800 system:

MTPR #1,#PR8NN$_INOP ;Write to interprocessor
; interrupt register

There are actually four slightly different routines, all of them in module
[SYSLOA]SMPINT_xxx, for requesting interprocessor interrupts of all active
set members. The IPINT _CPU macro selects one of the following routines
based on its arguments:

• SMP$INTALL-lnterrupt each other active set member
• SMP$INTALLBIT-Set the specified work request bit in each other active

set member's per-CPU database and interrupt it
• SMP$INTALL_ACQ-Acquire the CPU mutex, interrupt all other active

set members, and release the CPU mutex
• SMP$INTAL1-BIT _ACQ (the default)-Acquire the CPU mutex, set the

specified work request bit in each other active set member's per-CPU
database and interrupt it, and release the CPU mutex

Table 34.1 Interrupt Work Request Bits

Name

INV_TBS
INV_TBA
TBA CK
BUGCHK
BUGCHKACK
RECALSCH
UPDASTLVL
UPTODR
WORILFQP
QLOST
RESCHED
VIRTCONS
IO POST

Meaning

Invalidate a specific translation buffer entry
Invalidate all translation buffer entries
Acknowledge a translation buffer invalidate request
Generate a fatal bugcheck
Unused
Unused
Update current process's PR$_ASTLVL
Access the primary's time-of-year clock
Service requests on the interprocessor fork queue
Stall until VAXcluster quorum is regained
Request an IPL 3 reschedule interrupt
Unused
Request an IPL 4 1/0 postprocessing interrupt

34.5.2

34.5 Interprocessor Cooperation

Servicing Interprocessor Interrupts and Work Requests

SMP$INTSR, in module [SYSLOA]SMPINT _xxx, is the interprocessor inter­
rupt service routine. It runs at IPL 20 or 22, depending on the CPU type:
on VAX 88x0 and VAX 83x0 systems, the IPL is 20; on VAX 6000 series,
VAXstation 3520, and VAXstation 3540 systems, the value is IPL 22.

After saving registers, SMP$INTSR tests system global cells and the pro­
cessor's work request bits to determine what actions are appropriate re­
sponses to the interrupt request. Note that the service routine may have
to respond to multiple requests. It tests and clears each work request bit
with a BBCCI instruction.

It tests XDT$GW _OWNER_ID to 'see if a processor executing XDELTA has
requested the other processors to stall. If so, it raises IPL to 31 and enters a
benign state, as described in Section 34.5.4. Afterward, SMP$INTSR restores
the previous IPL, that of the interprocessor interrupt.

SMP$INTSR checks whether it is running on the primary processor. If so,
it invokes SMP$VIRTCONS_SERVER, in module [SYSLOA]SMPINT_xxx, in
case there is a virtual console request to be serviced. The need to service one
is indicated by a secondary's having acquired the VIRTCONS spinlock.

A secondary processor performing 1/0 to the console terminal requires
the assistance of the primary. User-level I/O requests are queued through
a driver to a device that has affinity for the primary. However, requests
made from system context do not go through a device driver; instead, they
are performed by direct manipulation of the processor registers that inter­
face to the console subsystem. Only the primary processor can access these
registers. SMP$VIRTCONS_SERVER serves the console terminal to the sec­
ondary processors. When the secondary processor releases the spinlock, the
routine returns to SMP$INTSR. (More typically, during normal operations,
a secondary invokes SMP$WRITE_OPAO, in module SMPROUT, to perform
console output.)

The previous two tasks, entry into the benign state and serving the console
terminal, are not requested through work request bits. Each of them is a
request for the processor to continue to perform an action until told to stop.
The signal to stop is a change in value in the relevant system global cell.

SMP$INTSR tests CPU$L_ WORK_REQ to see if another processor has
incurred a fatal bugcheck and is requesting this processor to bugcheck. If
so, it restores the registers, returning the stack to its state at the start of
the interrupt service routine, and generates the fatal bugcheck CPUEXIT.
Section 34.10 describes how fatal bugchecks are processed on an SMP system.

If a single translation buffer entry invalidation was requested, SMP$INTSR
invokes SMP$INVALID_SINGLE, in module [SYSLOA]SMPINT_xxx. Sec­
tion 34.5.3 describes this routine and its requests in more detail.

If an 1/0 postprocessing interrupt was requested, SMP$INTSR requests an
IPL 4 software interrupt. Executive code running on a secondary that queues
an 1/0 request packet to the systemwide 1/0 postprocessing queue makes

1025

Symmetric Multiprocessing

1026

this work request of the primary. Later, when IPL drops, IOC$IOPOST,
running on the primary processor, will service its queue. Section 34.6.4
discusses the need for systemwide and per-CPU I/O postprocessing queues.

If there is a work request to invalidate the entire translation buffer,
SMP$INTSR takes that action by writing to the PR$_ TBIA register. The
work request is made through the INVALIDATE_TB macro. This macro is
invoked, for example, when the swapper process deletes or fills a process
header slot, or when the protection is changed on the nonpaged pool pages
occupied by floating-point or character string emulation images.

If there is a work request to update the AST level for this processor's cur­
rent process, SMP$INTSR clears PR$_ASTLVL and its copy in the hardware
PCB. Clearing them sets the AST level to kernel mode and catalyzes an AST
delivery interrupt request when control returns to the process. Although
there may be no AST deliverable to the process's current mode, its AST level
will still be recomputed. This work request is made when SCH$QAST, in
module ASTDEL, running on another processor, queues an AST to a process
current on this processor.

SCH$QAST has no direct way to update another processor's PR$_ASTLVL
register. Furthermore, there is a potential synchronization problem in the
update of PHD$B_ASTLVL, which is the high byte of PHD$L_POLRASTL,
the hardware PCB copy of PR$_POLR. PHD$1-POLRASTL is updated from
process context by memory management code that alters the size of PO
space. If such a routine's update were concurrent with SCH$QAST's alter­
ing PHD$B_ASTLVL, the update to PHD$B_ASTLVL would be lost. There­
fore, SCH$QAST makes an interprocessor interrupt request. SMP$INTSR is
running at too high an IPL to synchronize access to the AST queue, so it
merely forces the AST interrupt by clearing both PR$_ASTLVL and PHD$B_
ASTLVL.

If there is a work request indicating a fork process to be moved from
another processor to this one, SMP$1NTSR executes a REMQHI instruction
to remove the first fork block from the queue at CPU$Q_ WORK_FQFL. It
invokes EXE$FORK, in module FORKCNTRL. EXE$FORK inserts the fork
block in the fork queue on this processor corresponding to the appropriate
IPL. (FKB$B_FIPL contains either an IPL or the index of a spinlock from
which the IPL is taken.) SMP$INTSR repeats this for each fork block in the
per-CPU database fork work queue.

Two routines in module SMPROUT make interprocessor fork work re­
quests: SMP$FORK_ TO_PRIMARY and SMP$SWITCH_CPU. The first is
typically invoked from SMP$WRITE_OPAO, running on a secondary proces­
sor, to broadcast a message to the console terminal. The second is invoked
to queue an I/O request to a device with affinity for a CPU other than the
current processor. Section 34.6.3 describes device affinity.

If there is a work request to access the time-of-year clock, SMP$INTSR

34.5 Interprocessor Cooperation

checks whether it is running on the primary. If not, it ignores the request.
With guaranteed access to the console subsystem, which is the location
of the time-of-year clock on some processors, the primary has the role of
timekeeper. The value in its time-of-year clock is the basis for initializing
system time after a boot or power failure. The clocks on secondary processors
are set to the same value as the primary's clock, because, on some systems,
the role of primary can shift to a different CPU after a reboot. During normal
system operation, secondary processors' clocks are used only for measuring
rates of certain CPU errors.

Associated with this work request are two bits in SMP$GL_FLAGS:

• SMP$V _ TODR, which a secondary tests and sets to ensure that only one
secondary at a time engages in this dialogue

• SMP$V _ TODR_ACK, for whose setting a secondary waits as a signal that
the cell SMP$G1-NEW _ TODR contains valid data

SMP$GL_PROPOSED_ TODR describes the type of clock access desired:

• On a VAX 83x0 system, -1 forces a read of the console watch chip. On
other processors, it has the same effect as a value of 0 .

• In response to a value of 0, the primary reads the time of year, typically
from the clock processor register .

• In response to any other value, the primary writes this value to the clock.

The primary writes the new value of the time-of-year clock into SMP$GL_
NEW_TODR.

The software interrupt request to access the clock is made from a sec­
ondary executing one of the following routines:

• EXE$INIT_TODR, in module [SYSLOA]INIADPxxx, which is invoked by
the SYSINIT process

• EXE$READ_ TODR or EXE$WRITE_ TODR, in module [SYSLOA]ERR­
SUBxxx

Accessing the primary's time-of-year clock from a secondary processor
requires an interprocessor dialogue, whose general sequence is as follows:

1. Prior to requesting the interprocessor interrupt, each of the previously
listed routines tests and sets bit SMP$V _ TODR, writes SMP$G1-PRO­
POSED_ TODR, requests an interprocessor interrupt of the primary, and
waits for bit SMP$V _ TODR_ACK to be set.

2. Depending on the value in SMP$GL_PROPOSED_ TODR, SMP$INTSR
invokes EXE$READP _LOCAL_ TODR or EXE$WRITEP _LOCAL_ TODR
in module [SYSLOA]ERRSUBxxx. EXE$WRITEP_LOCA1-TODR, on
some processor types, broadcasts the new time to all secondary processors
by requesting on each an interprocessor interrupt with a processor-type­
specific work request.

1027

Symmetric Multiprocessing

1028

3. SMP$INTSR then writes the time value to SMP$GL_NEW _ TODR and
sets SMP$V _ TODR_ACK.

4. Once SMP$V _ TODR_ACK has been set, the requesting secondary clears
SMP$V _ TODR_ACK, copies the time from SMP$GL_NEW _ TODR, and
clears SMP$V _ TODR.

For further information on timekeeping and the role of the time-of-year
clock, see Chapter 11.

If there is a work request indicating that VAXcluster quorum has been
lost, SMP$INTSR stalls system operations on this processor until quo­
rum has been regained. This work request is made by the VAXcluster
connection manager, from routine CNX$CHECK_QUORUM, in module
[SYSLOA]CONUTIL. The stall is implemented by the continuous requeuing
of a packet onto the per-CPU 1/0 postprocessing queue. The packet, which
begins at field CPU$1-QLOSLFQFL in the per-CPU database, contains the
address of a system routine (called an end action routine) at offset IRP$L_
PID rather than a process ID. IOC$IOPOST distinguishes the two by the sign
of the value: an end action routine address is in system space; a process ID
is always a positive number.

When IOC$IOPOST removes a packet specifying an end actionroutine, it
invokes the end action routine. The quorum-lost end action routine, which
is in module [SYSLOA]SMPINT_xxx, tests whether there is quorum. If there
is, it merely returns to IOC$IOPOST. If not, the routine requeues its packet
onto the per-CPU 1/0 postprocessing queue and requests another 1/0 post­
processing interrupt.

If there is a work request for a rescheduling interrupt, SMP$INTSR re­
quests an IPL 3 interrupt. Chapter 12 describes the circumstances under
which this interrupt is requested. Briefly, they are

• When a resident process becomes computable whose priority allows it to
preempt a process current on another CPU

• When a current process's priority is changed by a thread of'execution
running on a different CPU and there is a computable resident process
of higher priority

• When a current process acquires explicit affinity for a different'CPU
• When a capability has been removed from a CPU that is needed by its

current process

Four bits are reserved for processor-type-specific requests. After servic­
ing all other work requests, SMP$1NTSR tests whether any work request
bits are still set. If so, SMP$INTSR invokes SMP$SPEC_IPINT, in module
[SYSLOA]MCHECKxxx, to handle them. On a VAX 8800, for example, the
primary processor interrupts the secondary when an NMI bus fault machine
check occurs. Each processor logs an error with the contents of various pro­
cessor registers and its NMI silo. On a VAX 6000 series processor, the primary

34.5.3

34.5 Interprocessor Cooperation

processor makes a CPU-specific work request of a secondary processor that
the secondary processor disable a part of its cache that has received a certain
number of errors. On a VAX 6000 model 400 processor, one CPU-specific
work request is for a secondary processor to reset its time-of-year clock.

When no more work request bits are set, SMP$INTSR restores saved reg­
isters and dismisses the interrupt.

Translation Buffer Invalidation

A translation buffer (TB) is a CPU component that caches the result of re­
cent successful virtual address translations of valid pages: the virtual page
numbers and their corresponding page table entries (PTEs). Subsequent trans­
lations of cached addresses are quicker. On VAX processors supported by
VMS Version 5.2, VAX microcode automatically removes, or flushes, cached
per-process entries whenever a process is placed into execution with a LDPCTX

instruction.
Kernel mode software can invalidate either a single TB entry by writing its

virtual address to the processor register PR$_ TBIS or all entries by writing
a zero to the processor register PR$_ TBIA. An attempt to invalidate an
entry that is not cached is simply ignored. The VMS executive ensures the
consistency of the TB by invalidating the TB entry corresponding to a valid
PTE that it is changing, for example, during virtual address space deletion.
Since the PTEs of invalid pages are not cached, the VMS executive does not
invalidate TB entries when it alters a PTE for an invalid page.

On an SMP system, each processor has its own TB, which is filled with
entries as the result of instruction stream execution on that processor. Since
all members share the SPT, if one member is to change a valid SPTE, it must
ensure that no other member is attempting to change the same SPTE and that
all other members invalidate their TB entries for it. Another complication
is a requirement for synchronization with VAX microcode, which sets the
modify bit in a PTE when it writes to a page. To meet these requirements,
an active set member changing a valid SPTE must request interprocessor
interrupts of the others to put them into a quiescent state in which they
cannot execute instructions that write the page in question. The possibility
also exists that at the time of the interprocessor interrupt request a member
might be executing a relatively lengthy sequence, at an IPL higher than that
of the interprocessor interrupt, during which it could not tolerate any asyn­
chronous PTE changes. Consequently, VMS has a multistep interprocessor
dialogue for changing SPTEs.

A kernel mode routine changes a PTE using the macro INVALIDATE_ TB,
one of whose arguments is the address mapped by the PTE. (Another of its
arguments identifies the environment in which the system is running. The
description that follows assumes a full VMS environment with multipro­
cessing enabled.) If the address argument is omitted, the macro flushes the

1029

Symmetric Multiprocessing

1030

entire translation buffer and requests an interprocessor interrupt to do the
same on each active member, as described in Section 34.5.2. Flushing the
entire translation buffer is a preferred alternative to· flushing a number of
pages within a loop that includes the interprocessor dialogue described in
the following paragraphs.

If the address argument is present on the macro invocation, the macro
generates code to test in which address space the address argument lies. In
the case of a process space address, the macro generates instructions from its
arguments that actually change the PTE and then generates a simple write
to the PR$_ TBIS register. Since the same per-process space is not accessed
concurrently by multiple processors, nothing further is necessary. In the case
of a system space address, the macro generates instructions to implement
the TB invalidation in three phases:

1. Invoke SMP$INVALID, in module SMPROUT. SMP$INVALID requests
interprocessor interrupts to quiet all active members and executes a co­
routine return to its invoker to change the SPTE.

2. Change the SPTE through instructions supplied as macro arguments.
3. Co-routine return to SMP$INVALID, which sets a bit in the per-CPU

database of each active member to tell it to remove the SPTE from its
TB.

INVALIDATE_ TB invokes SMP$INVALID in the following circumstances:

• When MMG$FREWSLX, in module PAGEFAULT, removes a previously
valid page from the system working set list

• When adapter configuration code, for example, in module [SYSLOA]INI­
ADP8PS, clears an SPTE that was in use to map a potential page of adapter
registers

• When a device driver clears an SPTE that was double-mapping a page of a
direct I/O buffer

The following steps describe the sequence of a system space TB invalida­
tion as it might occur concurrently on the CPU requesting the invalidation
and the active set members. The numbers in Figure 34. 7 correspond to the
following steps, not all of which are represented in the figure.

The sequence begins with SMP$INVALID, in module SMPROUT, which
runs on the processor changing the SPTE:

G)It acquires the INVALIDATE spinlock, raising IPL to 1 less than the
interprocessor interrupt IPL.

@It acquires the CPU mutex to block entry of new members into the active
set.

G)It stores the address to be invalidated in SMP$GL_INVALID.
@It stores a mask with only its CPU ID bit set in SMP$GL_ACK..MASK.
G)It requests· an interprocessor interrupt of all other active set members

with a work request type of INV_ TBS. In response, each member should

Tme

~
Initiating Processor

Invoke SMP$1NVALID

SMP$1NVALID
1 Acquire INVALIDATE spinlock
2 Acquire CPU mutex
3 Store address in

SMP$GL_INVALID
4 Set own CPU ID bit in

SMP$GL_ACK_MASK
5 Interrupt other members with

INV_ TBS work request

s------

8 Co-routine return to invoker to
change SPTE, write to PR$_TBIS,
and return

9 Set TBACK work request for each
active set member

10 Release CPU mutex
11 Release INVALIDATE spinlock
12 Return

Figure 34.7
Invalidation of a Single TB Entry

34.5 Interprocessor Cooperation

All Other Active Set Members

~
SMP$1NTSR

Invoke SMP$1NVALID_SINGLE

SMP$1NVALID_SING~E

1 Copy SMP$GL_INVALID
2 Set CPU ID bit in

SMP$GL_ACK_MASK

3

4 Write copy of SMP$GL_INVALID
to PR$_TBIS

5 Return

copy SMP$GLINVALID and set its own CPU ID bit in SMP$GL_ACK_
MASK.

G)Within a loop, SMP$INVALID compares SMP$GLACK_MASK to the
active set mask and checks for a request to bugcheck. When all active set
members have responded, it goes on to step 8.

7. If SMP$INVALID exceeds the loop count before all active members have
responded, SMP$INVALID invokes SMP$TIMEOUT, described in Sec­
tion 34.5. 7, to determine whether the lack of response is serious enough
to warrant crashing the system. If that routine returns, SMP$INVALID
resets the loop count and continues with step 6. The loop count is the

1031

Symmetric Multiprocessing

34.5.4

1032

product of the two per-CPU database timed wait counts and the SYSGEN
parameter SMP _SPINWAIT.

G) All other active members are now in a quiescent state, waiting for the
signal to invalidate their TB entries. SMP$1NVALID executes a co-routine
return to allow its invoker to execute instructions that alter the PTE, do
a local TB invalidate, and perform a co-routine return to SMP$1NVALID.

G)SMP$1NVALID sets the bit CPU$V_TBACK in each active member's
work request longword as the signal for which they have been waiting. In
response, each should write its copy of SMP$GLINVALID to PR$_TBIS.

@SMP$INVALID releases the CPU mutex.
@It releases the INVALIDATE spinlock, restoring the previous IPL.
@It returns to its invoker.

In response to the INV_ TBS interprocessor interrupt described in step 5,
the routine SMP$INTSR, in module [SYSLOA]SMPINT_xxx, runs on each
other active set member and invokes the routine SMP$INVALID_SINGLE,
in the same module.

SMP$1NVALID_SINGLE takes the following steps:

G)It copies SMP$GLINVALID.
G)It sets the processor's CPU ID bit in SMP$GL_ACILMASK.
G)Within a loop, it waits for its work request TBACK to be set. When the

bit is set, it goes on to step 4. Within the loop, it also checks for requests
to enter the benign state and to bugcheck. The timed loop is generated
by the BUSYWAIT macro, described in Section 34.5.6.

G)It writes its copy of SMP$GLJNVALID to PR$_TBIS.
G)It returns to SMP$INTSR, which checks for other work requests and

finally executes an REI instruction to dismiss the interrupt.

Benign State and XDELTA

When one member of the active set requires that all other members tem­
porarily cease their normal operations, it initiates the benign state. All the
other members are quiescent until the initiating member terminates the be­
nign state. While in a benign state, a processor loops at IPL 31, checking
whether the state has been terminated. The benign state is currently used
only when one processor executes XDELTA code; the other CPUs effectively
pause rather than continue with operations that might disrupt or confuse
the debugging session.

When a processor enters XDELTA, through a breakpoint or T-bit exception,
the processor executes code within XDELTA that makes it the sole user of
XDELTA:

1. It raises IPL to 31.
2. It repeatedly tests the low bit of XDT$GW _INTERLOCK, the XDELTA

interlock bit, until it finds the bit clear.

34.5 Interprocessor Cooperation

3. It executes a BBSSI instruction to test and set the bit. If the bit was set,
the processor returns to step 2. Otherwise, its exclusive access to the
XDELTA owner cell, XDT$GW _OWNER_ID, is now guaranteed.

4. It tests the high bit of that cell to see whether any processor owns
XDELTA.

-If the bit is set, this processor writes its own CPU ID into the cell,
clears the interlock bit, and proceeds with XDELTA.

-If the bit is clear, indicating that some processor owns XDELTA, and
the owner ID is that of this processor, it clears the interlock bit and
proceeds with XDELTA.

-If the bit is clear and the owner ID is that of another processor, the
processor clears the interlock bit and invokes the benign state routine.

5. Proceeding with XDELTA, the processor requests an interprocessor in­
terrupt of all the other members of the active set. As they execute
SMP$INTSR, each finds XDELTA owned and enters the benign state by
invoking the benign state routine.

6. When XDELTA is done, before it restores the thread of execution that
incurred the exception, it acquires the XDELTA owner interlock bit,
writes -1 to XDT$GW _OWNER_ID, and releases the owner interlock
bit.

The benign state routine, XDT$CPU_ WAIT in module [DELTA]XDELTA,
takes the following steps:

1. To record its entry into the benign state, the processor sets the bit cor­
responding to its ID in XDT$GL_BENIGN_CPUS.

2. The processor tests whether it is the primary processor.
3. If it is not the primary processor, it continually tests the high bit of

XDT$GW _OWNER_ID, waiting for the bit to be clear. When the bit
is clear, the processor clears its bit in XDT$GLBENIGN_CPUS. It in­
validates the entire TB. It pushes a program counter/processor status
longword (PC/PSL) pair so that it can return control with an REI instruc­
tion, flushing any prefetch of instructions that might have been altered
by XDELTA commands or actions.

4. The primary processor is responsible for performing XDELTA console
terminal 1/0 on behalf of a secondary processor. This mechanism is sim­
ilar to the one described in Section 34.5.2, but not identical; the primary
assumes the need to serve the console and does not check the state of the
VIRTCONS spinlock. The primary saves the state of the physical con­
sole interface. It then communicates to the secondary processor through
memory locations that look like a console port to the secondary. The pri­
mary serves the console by relaying data between the real console port
and the virtual console port.

When the secondary processor leaves XDELTA, the primary processor

1033

Symmetric Multiprocessing

34.5.5

1034

restores the saved state of the physical console interface. It then leaves
the benign state in the same manner as the other processors.

There is provision for an alternative entry into and exit from the benign
state, through routines SMP$INITIATE_BENIGN and SMP$TERMINATE_
BENIGN, in module SMPROUT. SMP$INTSR tests for this form of the
benign state and loops, checking for concurrent bugcheck and translation
buffer invalidate requests. No current use is made of this form of benign
state.

The Override Set

The override set consists of all processors currently in the override state.
The override state allows a thread of execution to inhibit any change in its
IPL when that change would be awkward for the algorithm and when its
synchronization is not in doubt. The processor may be executing a code se­
quence beyond question, such as initialization code, or the processor may be
executing code that confirms that local synchronization is not at issue. The
machine check exception service routine is an example of a code thread that
temporarily joins the override set to acquire a spinlock from high IPL, after
checking that the code that incurred the exception was executing at IPL 2
or below, that is, that no lower IPL code thread would be desynchronized by
this action.

A processor enters the override set when it must perform a synchroniza­
tion operation that otherwise might be considered illegal. It sets its CPU ID
bit in SMP$GL_OVERRIDE and leaves the override set when it clears the
bit. While in the override set, a processor's IPL is not changed when the
processor acquires a spinlock. Furthermore, the spinlock acquisitions and
releases of a member of the override set are not subject to the IPL checks
in the full-checking SMP synchronization image, which test that local CPU
synchronization is not being violated.

Some examples of circumstances under which a processor joins the over­
ride set are

• During bootstrap and initialization, while the processor is executing at IPL
31

• During IPL 31 servicing of read data substitute machine checks, when the
MMG spinlock must be acquired

• During fatal bugcheck processing

Note that widespread use of this mechanism is not supported or recom­
mended. In many cases where it might seem like a good solution, a better
structured alternative usually exists, for example, creating a lower IPL fork
process.

34.5.6

34.5 Interprocessor Cooperation

Spinwaits and Busy Waits

The SPINWAIT and BUSYWAIT macros enable a processor to wait a finite
length of time for another processor to take some action. Both generate loops
with an iteration count based on the per-CPU database timed wait counts.
The SPINWAIT macro generates a test for the availability of a spinlock
within the loop, while the BUSYWAIT macro allows the user to specify
the test to be made. If the loop count is exhausted before the test succeeds,
the code generated by both macros invokes SMP$TIMEOUT to determine
whether the system should be crashed.

The SPINWAIT macro is defined in the SPINLOCKS_xxx module and
only used from within that module. It generates the following instruction
sequence:

1. Establish a loop count based on the spinlock's timeout count and the
per-CPU database timed wait counts.

2. Use instructions specified by the macro invoker to test whether the
spinlock is available. If so, leave this loop.

3. If the current IPL is not blocking interprocessor interrupts, go to step 9.
4. If another processor has begun to execute XDELTA (if the high bit of

XDT$GW _OWNER_ID is zero), invoke XDT$CPU_ WAIT to enter the
benign state, as described in Section 34.5.4.

5. If a bugcheck work request has been made, generate a fatal CPUEXIT
bugcheck.

6. If the processor is not a member of the override set (described in Sec­
tion 34.5.5), go to step 9.

7. If the processor is the primary, invoke SMP$VIRTCONS_SERVER to
check whether there is a secondary that needs virtual console service.

8. If a work request to invalidate a single translation buffer entry has been
made, invoke SMP$INVALID_SINGLE.

9. If the spinlock does not become available within retry count iterations
and the spinlock owner has not changed, invoke SMP$TIMEOUT to
determine whether to generate a SPINWAIT fatal bugcheck.

10. If SMP$TIMEOUT returns, continue with step 1.

SMP$TIMEOUT, in module SMPROUT, invokes SMP$CONTROLP _
CPUS (see Section 34.5. 7) to determine if any active set member has been
halted through the console. If an active set member is halted, SMP$TIME­
OUT returns. If no active set member is halted, SMP$TIMEOUT tests bit
EXE$V _NOSPINWAIT in EXE$GL_ TIME_CONTROL. This bit is set on a
system booted with XDELTA and also set during the execution of certain
CPU error routines and the IPL 12 interrupt service routine. If the bit is
clear, SMP$TIMEOUT generates the fatal bugcheck CPUSPINWAIT. If the
bit is set, SMP$TIMEOUT returns.

Even while spinwaiting, a processor must be responsive to certain inter­
processor work requests to prevent deadlocks. If the processor is looping at

1035

Symmetric Multiprocessing

1036

an IPL below that of the interprocessor interrupt, its loop can be interrupted
to service a work request. However, if it is looping at a higher IPL, it cannot
be interrupted and must minimally check for work requests to bugcheck or
to enter the benign state.

An incomplete dump or deadlock would result if such a spinwaiting pro­
cessor were unresponsive to a bugcheck request and if, when its spinwait
count was exhausted, SMP$TIMEOUT returned rather than crashing. If a
fatal bugcheck were initiated in these circumstances, regardless of which ac­
tive set member owned the spinlock of interest, it is likely that the spinlock
would not be released and that the spinwaiting processor would simply con­
tinue to spinwait and fail to save its context in the dump. If the spinwaiting
processor were the primary processor and failed to respond to the bugcheck
request, the system would hang, deadlocked. Section 34.10 describes how
fatal bugchecks are handled on an SMP system.

A deadlock could result if a primary processor spinwaiting at an IPL equal
to or above that of the interprocessor interrupt were unresponsive to a re­
quest to enter the benign state. Once the benign state is initiated, whether
the initiator or a processor already in the benign state owns the spinlock, it is
likely that the spinlock would not be released and that the spinwait would
continue. (Because the system has been booted with XDELTA, a spinwait
crash would not result at the end of the spinwait loop.) The system would
deadlock as soon as the benign state initiator required the primary proces­
sor to service secondary processor console I/O. Section 34.5.4 describes the
benign state in more detail.

A processor that spinwaits at an IPL above that of the interprocessor
interrupt and that is not in the override set is trying to acquire a spinlock
whose IPL is above that of any associated with an urgent interprocessor
request. In other words, the processor cannot be waiting for the INVALIDATE
or VIRTCONS spinlocks. (The INVALIDATE spinlock's IPL is defined to be 1
less than that of the interprocessor interrupt; the VIRTCONS spinlock's
IPL is equal to that of the interrupt.) Thus, for example, even if there is
an active set member initiating an interprocessor dialogue for translation
buffer invalidation, that processor cannot also be holding the higher ranked
spinlock that the spinwaiting processor is trying to acquire. Thus there can
be no deadlock between that processor and the spinwaiting one.

If, on the other hand, the processor is in the override set, the value of
its IPL is not necessarily the IPL of the spinlock for which it is waiting.
The SPINWAIT macro, therefore, also generates explicit tests for whether a
processor in the override set should service requests to invalidate a single
translation buffer entry or, as the primary, serve the console terminal to
a secondary. Additionally, for a processor that is primary, the SPINWAIT
macro should check whether there is an UPTODR request to service. This
last test, however, is absent in VMS Version 5.2.

34.5.7

34.5 Interprocessor Cooperation

By default, the BUSYWAIT macro does not generate any tests for out­
standing work requests that should be serviced. Any code that invokes the
BUSYWAIT macro from IPLs at or above that of the interprocessor interrupt
service routine should include the same tests as the SPINWAIT macro.

Sanity Timer Mechanism

The sanity timer mechanism enables detection of a member of the SMP
system that is hung or otherwise nonfunctional. It acts as a check that each
member is responding to interval timer interrupts. Each of the members of
the active set monitors one other member, creating a sanity timer chain. A
member monitors the one with the next lower ID than its own. The CPU
with the lowest ID monitors the one with the highest ID, forming a circular
list. When a CPU is booted and joins the active set, it inserts itself into the
sanity timer chain.

The following fields in the per-CPU database are related to the sanity timer
mechanism:

• CPU$W _SANITY_ TIMER, initialized to the value of the SYSGEN param­
eter SMP_SANITY_CNT, is the number of interval timer ticks until this
CPU times out. Its default value is 300.

• CPU$W _SANITY_ TICKS, initialized to the value of the SYSGEN parame­
ter SMP _ TICILCNT, is the number of interval timer ticks until the next
time the processor monitors its neighbor in the sanity timer chain. Its
default value is 30.

• CPU$L_ TPOINTER contains the address of CPU$W _SANITY_ TIMER in
the per-CPU database of the active set member with the next lower ID. ,,

The sanity timer mechanism is implemented as part of the interval timer
interrupt service routine. Each processor resets its own sanity timer and
monitors one other member's sanity timer, periodically decrementing it. If
a processor decrements the watched CPU's sanity timer to zero, that means
the watched CPU has not reset its sanity timer.

The interval timer interrupt service routine, EXE$HWCLKINT in mod­
ule TIMESCHDL, running on each member of an SMP system, takes the
following steps to implement the sanity timer mechanism:

1. It tests the low bit of SMP$G1-FLAGS to determine whether the system
is multiprocessing. If the bit is clear, EXE$HWCLKINT bypasses all the
sanity timer related code.

2. It resets the current processor's sanity timer in such a way as not to lose
the refresh in case there is a concurrent decrement from the next CPU
in the sanity timer chain.

3. It decrements CPU$W_SANITY_TICKS, the number of ticks until the
next time it should check its neighbor's sanity timer. If the number has

1037

Symmetric Multiprocessing

reached zero, it resets CPU$W_SANITY_TICKS from SMP_TICILCNT
and subtracts the value of the SYSGEN parameter from its neighbor's
sanity timer.

Note that EXE$HWCLKINT resets its own sanity timer at each in­
terval timer interrupt but decrements its neighbor's sanity timer less
frequently, giving its neighbor ample opportunity to reset its own sanity
timer.

4. If its neighbor's timer is now less than or equal to zero, the routine makes
several tests to determine how serious the situation is:

-If bit EXE$V _NOSMPSANITY in EXE$GL_ TIME_CONTROL is set to
indicate that sanity timeout is disabled, then the routine merely resets
its neighbor's sanity timer and continues.

On a system booted with XDELTA, sanity timeouts are disabled in
this way. During extended execution at high IPL in certain machine
checks and the IPL 12 IIPCJ interrupt service routine !see Chapter 4),
the service routine sets EXE$V _NOSMPSANITY and then clears it
when done.

-It checks the timer again and if the timer is now positive, indicating
that its neighbor has resumed normal operations, it continues.

-It invokes SMP$CONTROLP _CPUS, in module [SYSLOA)ERR­
SUB.xxx, to see whether any active set members are at present halted
via the console. On a CPU type whose console is unable to identify
which processors are halted, this routine returns the entire active set.
On other CPUs (VAX 6000 series and VAXstation 3520 or 3540 sys­
tems), it returns just those active CPUs that are halted.

If SMP$CONTROLP_CPUS returns any nonzero value, EXE$HW­
CLKINT merely resets its neighbor's sanity timer and continues, since
the halted CPU could have triggered the timeout. For example, if the
halted CPU holds a high-IPL spinlock for which another CPU is spin­
waiting at an IPL high enough to block interval timer interrupts, the
first CPU's being halted too long can trigger sanity timeout of the sec­
ond CPU. EXE$HWCLKINT therefore resets the sanity timer. If the
second CPU's timeout was merely coincident with the first CPU's
halt, the second CPU is likely to time out again.

5. If all the tests fail, EXE$HWCLKINT generates the fatal bugcheck CPU­
SANITY.

34.6 I/O CONSIDERATIONS

1038

A number of issues specific to 1/0 support arise under SMP, some of them
software and some hardware:

• Synchronizing access to the device controller and device data structures
from the asynchronous threads of execution that make up a device driver

34.6.1

34.6 I/0 Considerations

• Impact of devices' interrupting all SMP members
• Access to a device by a subset of SMP members
• Order in which I/O requests complete

These issues are described further in the following sections.

Synchronizing Driver Routines

The various routines that comprise a driver are essentially independently
activated threads of execution:

• Function decision table (FDT) action routines and cancel routines are en­
tered in response to processes' system service requests.

• Some routines trigger others; for example, an FDT routine that jumps to
EXE$QIODRVPKT eventually causes entry to the driver's start I/O routine .

• Device interrupt service routines are entered in response to various device
interrupts .

• Some routines are entered by the executive in response to events such as
powerfail recovery and expected interrupt timeout.

On a uniprocessor system, some of these routines can interrupt others.
The device unit control block (UCB) has state bits that specify, for example,
whether a fork process is active on that device unit (UCB$V _BSY in UCB$W _
STS), whether an interrupt is expected (UCB$V_INT in UCB$W_STS), and
whether there is a time limit for the interrupt's arrival (UCB$V _TIM in
UCB$W _STS). The state bits help control the activation of driver threads.
An important additional synchronization technique is raising IPL to block
interrupts, either to fork level (UCB$B_FIPL) or to device level (UCB$B_
DIPL). These techniques continue to be used, but they are not sufficient for
the concurrency possible on an SMP system and have been augmented by
spinlocks.

Each device controller has its own dynamic spinlock, called a device lock,
that synchronizes access to the controller's registers and extends the concept
of raising IPL to UCB$B_DIPL. Each device UCB identifies a static spinlock,
called a fork lock, that synchronizes access to the UCB and extends the syn­
chronization formerly achieved by raising IPL to UCB$B_FIPL. VMS enters a
driver's start I/O and cancel I/O routines with the appropriate fork lock held.
It enters the timeout routine holding both the fork lock and the device lock.
The start I/O routine acquires the device lock as necessary. The interrupt
service routine, to which the hardware may dispatch directly, must acquire
the device lock immediately. (See Chapter 8 for a detailed description of
spinlocks and the VMS Device Support Manual for a detailed description of
when each is used.) On an SMP system, multiple processes can be executing
FDT action routines or canceling I/O requests concurrently with interrupt
service routine and fork process execution.

1039

Symmetric Multiprocessing

34.6.2

34.6.3

1040

Device· Interrupts

VMS and current processors that support SMP have mechanisms to pass
device interrupts on to every system member. If these mechanisms were
enabled, the first member to respond to the interrupt would service it, and
the others would dismiss the interrupt. Currently, however, interrupts are
not distributed; device interrupts are delivered to and serviced by only the
primary processor.

Performance studies have shown no improvement from distributing in­
terrupts and, in some cases, significantly increased overhead, as a result of
several factors. If interrupt requests are distributed, on some current pro­
cessor types, each member must interrupt what it is currently doing and
perform bus transactions to determine the source of the interrupt. The first
member to respond to the device would continue with interrupt processing;
the others would receive passive releases and dismiss their interrupts. On
some systems, the superfluous bus transactions would make a noticeable
difference in bus throughput. On all such systems, all but the first member
would have interrupted what they were doing to execute an unproductive
thread of execution, with potential losses from their memory caches and
TBs.

A further issue is that a typical device interrupt service routine requests a
fork interrupt on the current processor. Distributing device interrupts thus
requires distributing fork interrupts and fork processing. Time spent in the
device interrupt service routine is small compared to fork processing time.
Although a number of spinlocks are used as fork locks, the IOLOCK8 spin­
lock is used more heavily and would become a bottleneck if fork interrupts
were distributed as a result of distributing device interrupts. As a result, pro­
cessors that could otherwise have executed applications while the primary
processor serviced device and fork interrupts would spend time spinwaiting
for IOLOCK8.

While splitting IOLOCK8 into several spinlocks to enable more parallelism
is possible in a future release of VMS, thus far the current scheme has not
been a problem.

Device Affinity

Many devices can be accessed equally by every processor of an SMP system,
but some can be accessed by only a subset of the processors. The SMP design
for device support must take that into account.

• The console terminal and block storage device are typically accessible only
from the primary .

• An application design might require that a particular device be accessed
from a subset of available processors.

Software-implemented device affinity supports these hardware limitations

34.6 1/0 Considerations

by providing a mechanism to restrict device access to a subset of the system's
processors.

Each device UCB has a longword mask in field UCB$LAFFINITY that
specifies a device affinity set, those processors from which its device registers
may be accessed. By default, the mask is all l's, enabling access from all
processors. For console devices, the mask is zero, a value that means only
the primary processor can access the device registers. In theory, the device
affinity mask can express the idea that access from the primary is prohibited.
However, in practice, under the current version, the primary processor is
always presumed to be a member of every device's affinity set.

Before VMS enters any driver routine, it must ensure that the routine will
run on a processor that is part of the device's affinity set. The major driver
entry points are

• FDT action routines
• Start 1/0 and alternate start 1/0 routines
• Interrupt service routine
• Register dumping routine
• Device timeout routine
• Unit and controller initialization routines
• Cancel 1/0 routine

FDT action routines preprocess an I/O request and are expected not to
access device registers. Thus, they can execute on any processor regardless
of device affinity.

Before entering a device driver at either its start 1/0 or alternate start 1/0
routine, the executive tests whether it is running on a processor for which
the device has affinity. If not, the executive invokes routine SMP$SWITCH_
CPU, in module SMPROUT, which stores fork process context in reserved
fields in the 1/0 request packet (IRP). It identifies the processor with the
lowest CPU ID for which the device has affinity, queues the IRP to that pro­
cessor's per-CPU database, and requests an interprocessor interrupt of work
request type WORK_FQP (see Sections 34.5.1and34.5.2). The interprocessor
interrupt service routine queues the IRP /fork block to the appropriate fork
queue and requests a fork interrupt. When the fork interrupt is granted, the
fork dispatcher acquires the appropriate fork lock and then enters the driver
start 1/0 or alternate start 1/0 routine.

As previously described, device interrupt service routines always run on
the primary processor. After the interrupt service routine forks, the fork
process (generally, the reentered start 1/0 routine) executes on the primary
processor. At that point, to run on a different processor in its affinity set,
the fork process could itself invoke SMP$SWITCH_CPU.

A register dumping routine is entered indirectly by the start 1/0 routine
when it invokes IOC$DIAGBUFILL or logs an error and thus runs on the
same processor as the start 1/0 routine.

1041

Symmetric Multiprocessing

34.6.4

1042

A device timeout routine is entered at device IPL from EXE$TIMEOUT,
which runs on the primary as part of the IPL 7 software timer interrupt
service routine. To run on another processor in its affinity set, the timeout
routine must invoke SMP$SWITCH_CPU.

Unit and controller initialization routines run when a device is config­
ured by SYSGEN and during powerfail recovery. Running in process context
in kernel mode, SYSGEN calls SCH$REQUIRE_CAPABILITY, in module
SCHED, to ensure that SYSGEN executes only on the primary processor
during device configuration and similar operations. Power recovery code ex­
ecutes on the primary processor as part of system restart following system
powerfail and recovery or as part of an adapter interrupt service routine fol­
lowing adapter powerfail and recovery.

A driver cancel routine is entered from process context code, either
EXE$CANCEL, in module SYSCANCEL, the Cancel 1/0 on Channel ($CAN­
CEL) system service procedure, or IOC$LAST _CHAN, in module IOSUB­
NPAG. Both check whether the device's affinity mask is the same as the
default mask. If not, these routines call SCH$REQUIRE_CAPABILITY to
ensure execution on the primary before invoking the cancel routine.

1/0 Postprocessing

An SMP system has one systemwide I/O postprocessing queue and one in
each CPU's per-CPU database. Most IRPs are queued to the systemwide
queue. Since only the primary processor services this queue, the sequence
in which requests complete is preserved, even if they complete on different
processors, and a process receives AST notification of I/O completion in the
order in which the requests complete.

Without the systemwide queue, AST notifications of the completion of
asynchronous I/O requests could occur out of order. This might happen to
requests made of a driver able to complete I/O requests on a secondary. To
complete an I/O request on a secondary processor, a driver would need to
have unrestricted device affinity and be able to complete a request in the
start I/O routine without the need for a device interrupt. Synchronous I/O
requests, made through the Queue I/O Request and Wait ($QIOW) system
service are processed one at a time and cannot complete out of order.

With multiple processor-specific I/O postprocessing queues rather than a
single systemwide one, problems such as the following can occur. A process
requests several small asynchronous reads to a communications driver. The
first read causes a device operation, whose interrupt service routine runs on
the primary. The driver, in fact, receives a large transmission of data, suffi­
cient to satisfy several small reads. The IRP of the first read is queued to the
primary's I/O postprocessing queue. Before IPL drops low enough on the pri­
mary for the I/O postprocessing interrupt to be granted, several subsequent
read requests from the process could complete on a secondary and their IRPs
could be queued to its I/O postprocessing queue. If the secondary's I/O post-

34. 7 Processor States

processing interrupt is serviced first, the process receives AST notification
of the later requests before the first one.

VMS provides several routines that are commonly invoked from device
drivers. Each routine queues an IRP to the systemwide queue. If the rou­
tine is running on the primary, it requests an 1/0 postprocessing interrupt.
Otherwise, it sets the primary's 1/0 postprocessing work bit and requests an
interprocessor interrupt. These routines are

• COM$POST and COM$POST _NCNT, in module COMDRVSUB, for com­
pleted and canceled requests

• IOC$REQCOM, in module IOSUBNPAG, for completed requests

EXE$ABORTIO and EXE$FINISHIO[C] are routines invoked from device
driver FDT action routines to complete an 1/0 request at FDT level. Each
queues the IRP to the per-CPU 1/0 postprocessing queue and, running at
IPL 2, requests an I/O postprocessing interrupt, which typically is granted
immediately. Postprocessing such a request on the same processor enables
it to complete immediately, synchronously with the system service, as it
would have with earlier versions of VMS.

As described in Section 34.5.2, a special IRP is queued to each processor's
per-CPU 1/0 postprocessing queue to stall during loss of V AXcluster quorum.

34.7 PROCESSOR STATES

A secondary SMP member can be characterized by its state, stored in the per­
CPU database field CPU$B_STATE. Prefaced by CPU$C_, the state symbols
are defined by the macro $CPUDEF. Table 34.2 lists the possible state values
and a brief description of each.

The primary processor itself is always in the RUN state. A secondary
processor participating in the SMP system is in the RUN state. Most of the
other states are stages through which a secondary passes on its way to or
from the RUN state. Figure 34.8 shows the transitions among them. These
are summarized here and described in detail in subsequent sections.

When SMP$SETUP _CPU, described in Section 34.8.3, first initializes the
environment for each secondary processor, it sets each CPU's state to INIT.

Table 34.2 Processor States

Name

INIT
RUN
BOOTED
STOPPED
TIMOUT
BOOT _REJECTED

Meaning

CPU is initializing
CPU is running
CPU is booted and waiting for go bit
CPU has stopped
CPU has timed out during boot
CPU was booted but refused to join the active set

1043

Symmetric Multiprocessing

Secondary is
incompatible

START/CPU command
is entered

STOPPED

Secondary
is stopped

Primary
boots a
secondary

....--....... --....,Secondal)' boot _____ ..., Primary sets.-----'----.
is sualesSful BOOTED the o bit

Attempt to boot
secondary times out

Figure 34.8

INIT

START/CPU command
is entered

State Transitions of a Secondary Processor

RUN

SMP$SETUP _CPU makes three attempts to boot a secondary by sending
a message to the console subsystem. If all fail, it sets the CPU's state to
TIM OUT.

Routine CPU_START, described in Section 34.8.4, running on each sec­
ondary, makes the other transitions from the INIT state .

• It changes the CPU's state to BOOT_REJECTED if the CPU's revision or
type is inconsistent with those of the BOOT CPU .

• It changes the CPU's state to BOOTED when it begins to loop, waiting
for the BOOT CPU to set the go bit. Once the go bit is set, it changes the
CPU's state to RUN.

SMP$SHUTDOWN_CPU, described in Section 34.8.5, makes the transi­
tions to the STOPPED state.

34.8 INITIALIZATION

1044

An SMP system initially boots as a uniprocessor. Based on hardware-specific
criteria, the console subsystem selects a processor to be _the BOOT CPU.
The BOOT CPU does most of the work of system initialization, loading the
executive into memory and performing the tasks involved in bootstrapping
a single-processor system.

The exact initialization sequence varies from system to system. In par­
ticular, the ways in which the BOOT CPU is initialized and the primary
!initial) bootstrap program, VMB.EXE, is loaded into it differ on each CPU
type. However, the steps from the beginning of the execution of VMB are
basically the same on all systems.

SMP-related initialization is performed in several phases of bootstrap:

1. SYSBOOT, the secondary bootstrap, runs on the BOOT CPU. It sizes the
SPT to accommodate the per-CPU data areas and allocates that of the
BOOT CPU.

34.8.1

34.8 Initialization

2. EXE$INIT, running on the BOOT CPU, turns on memory management
and performs CPU-independent SMP initialization.

3. The CPU-dependent routines SMP$SETUP _SMP and SMP$SETUP _CPU
run on the BOOT CPU to perform further SMP initialization and boot
the secondary processors.

4. Bootstrap code, running on each secondary, initializes processor registers,
enables memory management, and adds the processor to the active set.

Chapter 30 provides a detailed description of CPU initialization, loading
and execution of VMB, and the execution of SYSBOOT. Chapter 31 provides
a detailed description of EXE$INIT and further steps in system initialization.

The following sections describe those parts of each bootstrap phase specif­
ically related to SMP and the operations of the Digital command language
(DCL) commands START/CPU and STOP/CPU. Figure 34.9 shows the major
steps in these phases.

Initialization by SYSBOOT

SYSBOOT runs on the BOOT CPU in kernel mode at IPL 31 with memory
management disabled.

SYSBOOT tests whether the CPU type supports SMP. On one that does,
SYSBOOT includes SMP-related needs in its sizing of system space. First, it
calculates the required size of the per-CPU data area and rounds that number
up to the next power of 2. It multiplies the rounded size by 1 plus the number
of CPUs in the SMP system. For some CPU types, it uses the maximum
number of CPUs possible in an SMP configuration of that type. For others,
it uses the number actually present in the hardware configuration. SYSBOOT
adds the result to the total number of pages of system space. Adding pages
equal to the size of one more per-CPU data area ensures that the areas needed
can be allocated starting with a system space address aligned to the same
power of 2 as the size of the area.

In addition, SYSBOOT adds 32 pages to the total number of system pages,
one for each of the maximum possible number of CPUs, to double-map
the per-CPU boot stack. Recall that to enable memory management it is
necessary to execute code on a page whose physical and virtual addresses are
the same (see Chapter 30). On current VAX processors, any physical address
has the form of a PO virtual address. Thus the virtual address required for
the transition is a PO address. The boot stack page will form one page of a
temporary PO page table. The PO base register contents will be calculated
such that the boot stack page is the page of the page table that contains the
PTE of the page with the code that enables memory management.

The virtual address of the per-CPU data area, of which the boot stack is
a part, is so low in system space that the calculated base address of the
temporary PO page table could fall below the start of system space (an illegal
value). Therefore the boot stack page must be given a second (that is, doubly

1045

Symmetric Multiprocessing

1046

Tme BOOT CPU

SYSBOOT
Size per-CPU data area
Allocate BOOT CPU's per-CPU

data area

EXE$1NIT
Initialize BOOT CPU's per-CPU

data area
Join active and override sets
Invoke SMP$SETUP _SMP

SMPSSETUP _SMP
Initialize boot page
Initialize physical CPU data

vector
For each secondary, invoke

SMP$SETUP _CPU

SMP$SETUP _CPU
Allocate and initialize

per-CPU data area
Invoke boot timer routine to

boot secondary
Return

Return

Leave override set
Set SMP$V ENABLED and

SMP$V_START_CPU

Jump to SCH$SCHED

Figure 34.9
Major Steps in SMP Bootstrap

Each Secondary

CPU_START
Enable memory management
Check that CPU revision

levels are compatiJle

Join active set
Join sanity timer chain
Jump to SCH$SCHED

mapped) system space virtual address. SYSBOOT allocates the 32 SPTEs
from the high end of system space for this double mapping and stores the
system virtual address mapped by the first SPTE in SMP$GL_POPT _MAP.
It allocates a separate SPTE for each CPU to allow for the possibility that
multiple secondary processors are concurrently using their boot stack pages.

SYSBOOT allocates physical pages of memory for all of the BOOT CPU's
per-CPU data area except the guard pages. It allocates and initializes SPTEs
for the entire area. It also initializes the SPTE that double-maps the per-CPU
boot stack.

34.8.2

34.8 Initialization

SYSBOOT determines which version to load of the executive image that
supports synchronization by testing the SYSGEN parameter MULTIPRO­
CESSING in combination with the number of CPUs that are present in the
configuration:

• If MULTIPROCESSING is 0, it selects the uniprocessor version, SYSTEM_
SYNCHRONIZATION_UNl.EXE .

• If MULTIPROCESSING is 1 and multiple CPUs are present, SYSBOOT
selects the full-checking multiprocessing version, SYSTEM_SYNCHRO­
NIZATION.EXE. If only one CPU is present, it selects the uniprocessor
version .

• If MULTIPROCESSING is 2, it selects the full-checking multiprocessing
version .

• If MULTIPROCESSING is 3 and there are multiple CPUs present, it se­
lects the streamlined multiprocessing version, SYSTEM_SYNCHRONIZA­
TION_MIN.EXE. If only one CPU is present, it selects the uniprocessor
version.

If SYSBOOT loads a multiprocessing version, it sets bit SMP$V _SYNCH
in SMP$G1-FLAGS to indicate that SMP synchronization is required.

SYSBOOT stores the ID number of the BOOT CPU in SMP$GL_PRIMID.
It calculates the system virtual address corresponding to the alternative
mapping of the CPU's boot stack. Using this address, it builds a PO page
table that maps the beginning of EXE$INIT at a virtual address equal to its
physical address. Chapter 31 explains the purpose of this page table in more
detail.

SYSBOOT loads the PO base and length registers to describe the page table
and invalidates the translation buffer. It then jumps to EXE$INIT.

Initialization by EXE$INIT

This section describes SMP-related initialization in EXE$INIT. Unless oth­
erwise noted, all of it takes place on each CPU type. EXE$INIT runs on
the BOOT CPU in kernel mode at IPL 31. Its first actions include enabling
memory management.

1. If the BOOT CPU is a VAX 6000 series processor, EXE$INIT maps the
first page of its node-private space, which contains the CPU ID.

2. It initializes SMP$GL_BASE_MSK for subsequent use ~ith the FIND_
CPU_DATA macro and invokes the macro to get the address of the BOOT
CPU's per-CPU data area.

3. EXE$INIT initializes the BOOT CPU's per-CPU data area:

a. It zeros the per-CPU database.
b. It saves the CPU ID in CPU$L_PHY_CPUID ..
c. It stores the address of the per-CPU data area in the CPU data vector

entry for this CPU and in the field CPU$L_PERCPUVA.

1047

Symmetric Multiprocessing

1048

d. It stores the system virtual address of this CPU's PO page table page
in CPU$LPOPT _PAGE.

e. It stores a mask with a single bit set to represent the BOOT CPU in
CPU$LCPUID_MASK.

f. It copies 16 bytes of CPU-specific hardware data obtained by SYS­
BOOT to the per-CPU database and initializes CPU$LCURPCB to
the address of the null PCB.

g. It stores the value BUG$_CPUCEASED in CPU$L_BUGCODE.
h. It initializes the per-CPU 1/0 postprocessing queue and fork queues

as empty lists.
i. It copies the SYSGEN parameter SMP _SANITY _CNT, the number of

interval timer ticks until SMP sanity timeout, to CPU$W _SANITY_
TIMER, the BOOT CPU's sanity timer. It stores the address of the
BOOT CPU's sanity timer in CPU$L_ TPOINTER. When a secondary
processor boots and inserts itself into the sanity timer chain, the
BOOT CPU's CPU$L TPOINTER will be altered to point to the
secondary's sanity timer. For further details, see Section 34.5.7.

j. It initializes CPU$LINTSTK to the virtual address of the high end of
the CPU's interrupt stack and CPU$LREALSTACK to the physical
address of the high end of the boot stack.

k. It copies the physical address of the SCB to CPU$L_SCBB.
1. It initializes CPU$L TENUSEC and CPU$L_UBDELAY from the sys­

tem global values so that any necessary busy, spin, or timed wait
durations can be calculated on a CPU-specific basis.

4. It initializes the available set mask to the same value as CPU$L_CPUID_
MASK, that is, a configuration with the BOOT CPU available, and copies
it to the active, idle, and override set masks.

5. EXE$INIT initializes EXE$GLAFFINITY, the default device affinity
mask, to all l's, so that, by default, device access is not limited to a
subset of the SMP members.

6. It sets the processor's CPU$B_STATE field to RUN.
7. EXE$INIT stores the physical address of the BOOT CPU's per-CPU data

area in the restart parameter block field RPB$L_CPUDBVEC and clears
the bit RPB$V _PERCPU_ VEC in RPB$B_FLAGS to describe the field's
use. Later in initialization, after the system has been found to be capable
of a multiprocessing configuration, the field will be reinitialized to its
other use.

8. It defines .the BOOT CPU's capabilities to be the capability PRIMARY
plus the default ones in SCH$GLDEFAULT _CPU_CAP, currently zero.

9. After initializing the SYSLOAxxx image and invoking its initialization
routine, EXE$INIT invokes the CPU-specific routine SMP$SETUP _SMP,
in module [SYSLOA]SMPSTART _xxx. The actions of SMP$SETUP _SMP
are described in the next section.

34.8.3

34.8 Initialization

10. EXE$INIT stores the time at which the system booted in CPU$Q_BOOT _
TIME.

11. It invokes EXE$INLTIMWAIT, in module [SYSLOA]ERRSUBxxx, to cal­
ibrate the timed wait counts in the processor's per-CPU database.

12. It clears the BOOT CPU ID bit in SMP$GL_OVERRIDE, leaving the
override set. After this, to acquire a spinlock, the processor must first
lower IPL.

13. EXE$INIT tests a combination of the MULTIPROCESSING SYSGEN
parameter and the available set as described by SMP$GL_CPUCONF
(reinitialized within SMP$SETUP _SMP) to determine whether to enable
multiprocessing. If any of the following combinations is true, EXE$INIT
does not enable multiprocessing:

-MULTIPROCESSING is 0
-MULTIPROCESSING is either 1 or 3 and SMP$GL_CPUCONF indi-

cates no other CPUs present

14. If other CPUs are present or if MULTIPROCESSING is 2, EXE$INIT sets
SMP$V_ENABLED and SMP$V_START_CPU in SMP$GL_FLAGS. The
latter is known as the go bit, for whose setting the secondary processors
wait, as described in Section 34.8.4.

Initialization by CPU-Dependent Routines

SMP$SETUP _SMP runs on the BOOT CPU in kernel mode at IPL 31 with
memory management enabled. For a CPU type incapable of multiprocessing,
this routine consists merely of an RSB instruction. For a CPU type that can be
configured as a multiprocessor, the CPU-specific routine SMP$SETUP _SMP,
in module [SYSLOA]SMPSTART _xxx, initializes the SMP environment. The
following description is based upon the routine in SMPSTART _8NN for a
VAX 8800 system; the routines for other CPU types execute similar steps.

1. SMP$SETUP _SMP first establishes device affinity to the primary for
the console terminal by clearing its unit control block field UCB$L_
AFFINITY.

2. It initializes the global EXE$GL_IPINT _IPL to the priority level of the in­
terprocessor interrupt on this CPU type. It invokes the routine SMP$AD­
JUST _IPL, in module SPINLOCKS, to modify the spinlock database ac­
cordingly. That routine establishes the IPL for the INVALIDATE spinlock
as 1 less than that of the interprocessor interrupt and the IPL for the HW­
CLK spinlock as the IPL of the interval timer interrupt. (On processors
whose interprocessor interrupt IPL is 22, SMP$SETUP _SMP adjusts the
IPL of the VIRTCONS spinlock to 22 from its default value of 20.) It
adjusts spinlocks' ranks as required to ensure that rank and IPL ordering
result in the same sequence. Chapter 8 contains more information on
the spinlock database.

1049

Symmetric Multiprocessing

1050

3. SMP$SETUP _SMP then checks whether to establish an SMP environ­
ment. If the BOOT CPU is a uniprocessor or if there are no other CPUs
available, the routine returns.

4. To establish an SMP environment, the routine first initializes the global
SMP$GL_CPUCONF, the CPU configuration bitmask, using information
from the console about what CPUs are actually present.

5. It initializes the interprocessor interrupt vector in the SCB with the
address of the routine SMP$INTSR, in module [SYSLOA]SMPINT _xxx.

6. It allocates a page of physical memory, called the boot page, for CPU
initialization code and data accessed by a secondary processor prior to
its enabling memory management. If there is space las there is, in VMS
Version 5.2), the boot page also contains a physically based version of the
CPU data vector. Otherwise, the vector is in a second physical page of
memory. It updates the corresponding page frame number IPFN) database
to describe the new state of the page or pages of memory and initializes
SPTEs to map the memory while it is being initialized.

SMP$SETUP _SMP copies the CPU initialization code into the boot
page. It initializes the physical CPU data vector, stores its physical
address in RPB$1-CPUDBVEC, and sets bit RPB$V _PERCPU_ VEC in
RPB$B_FLAGS. SMP$SETUP _SMP also initializes several other pointers
for secondary processors' booting and restart:

-The field RPB$1-SMP _PC, to the physical address of the routine CPU_
START in the boot page code

-In the boot page, at OFF_STRTVA, the system virtual address of the
routine SMP$STRTVA in the boot page code

-In the boot page, at OFF _RPBBASE, the physical address of the RPB
-In the boot page, at OFF _RESTART, the physical address of the restart

routine for secondary processors, EXE$RESTART _ATT

Figure 34.10 shows the relations among the RPB, the physical CPU
data vector, and the boot page. Section 34.8.4 describes how VMS uses
these structures.

7. Systemwide SMP initialization is complete. SMP$SETUP _SMP compares
the available set mask and the SYSGEN parameter SMP _CPUS to deter­
mine which CPUs are to be booted. The default value of the parameter is
-1, a mask with all bits set, indicating that all available CPUs should be
booted. It can be modified to block the automatic booting of particular
CPUs. An available CPU not booted automatically can be brought online
later with the DCL command START/CPU.

For each secondary processor in the available set whose bit in SMP _
CPUS is set, SMP$SETUP _SMP invokes SMP$SETUP _CPU to perform
CPU-specific initialization. It then returns to its invoker.

SMP$SETUP _CPU is invoked with a register argument containing the

Physical
CPU data
area

34. 8 Initialization

Boot Page RPB

CPU_START:
,--i: 1

.......... /,--1. CPUDBVEC I ; Secondary bootstrap code

.. ~ .. : li------------1
l r __________ JMP@OFF _RESTART
I I ' : ,' '• SMP_PC

I I 1-----------~ I I JMP @OFF _STRTVA

r--i SMP$STRTVA:

JMP STRTV A ; into SYSLOA

I I
I I
I I
I I
I I
I I

I I
I I
I I

OFF _RESTART= physical address / /
of EXE$RESTART_ATI + 2 / f

I I
OFF _RPBBASE ~ I I 1_

I I -i
I I
I I
I I OFF_STRTVA
I I

{
~----------lr------1 I

l Fo•CPUN +-/
I I T (reserved)

.- Virtual address pointer

4- - - - Physical address pointer

Figure 34.10

T

--1

L .1

-·

WAIT= JMP @#SMP _PC

First Page of Per-CPU
Database for CPU N

REALSTACK

PERCPUVA

Boot Stack for CPU N

Relations among the RPB, Boot Page, and Physical
CPU Data Vector

1"91

- .,._....

CPU ID of the processor to be booted. Typically, it is invoked from SMP$SET­
UP _SMP but can also be invoked with the DCL START/CPU command. The
following description is based on the routine in SMPSTART_8NN for a VAX
8800 system; the routines for other CPU types perform much the same.

1. SMP$SETUP _CPU acquires the MMG spinlock. (This step is not neces­
sary in the environment in which EXE$INIT runs, that of a uniprocessor,
but is needed when SMP$SETUP _CPU is invoked in response to a later
START/CPU command.)

2. It tests whether a per-CPU database area already exists for this processor.
If this routine is running as part of EXE$INIT, there is none, and control
proceeds to step 3.

If this routine is running later, it is possible that the CPU has been
booted once and is being restarted or that there are multiple concurrent
attempts to start it. If the processor has a per-CPU data area and is in

1051

Symmetric Multiprocessing

1052

the INIT state, SMP$SETUP _CPU clears the processor's bug done bit in
SMP$GLBUG_DONE and transfers control to step 10.

Otherwise, the processor is being started by another process. The rou­
tine releases the MMG spinlock and returns to its invoker.

3. It clears the processor's bug done bit in SMP$GLBUG_DONE.
4. SMP$SETUP _CPU calculates the number of pages required for the per­

CPU data area, rounds that to the next power of 2, and invokes LDR$AL­
LOC_PT to allocate one fewer than twice that many SPTEs. This many
SPTEs ensures that the per-CPU data area can be aligned at an address
boundary somewhere within the allocation that is suitable for the FIND_
CPU_DATA calculation described in Section 34.3.1.

If the allocation is unsuccessful, SMP$SETUP _CPU releases the MMG
spinlock and returns the error status to its caller.

Otherwise, it calculates the placement of the per-CPU data area and
deallocates the unneeded SPTEs on either or both sides of it.

5. It then allocates physical pages of memory for the interrupt stack, boot
stack, and per-CPU database. If there is not enough physical memory
available and the routine is running as part of EXE$INIT, it generates
the fatal bugcheck INCONSTATE; when running in process context, it
places the process into a free page wait.

If the pages allocated are described in the PFN database (see Chap­
ter 14), it modifies the PFN database arrays to reflect the new state of
the pages.

6. SMP$SETUP _CPU stores the physical address of the per-CPU data area
in the physical CPU data vector entry for the processor. Bit 0 is set in
the address as a flag indicating that the area is not fully initialized.

7. It initializes the SPTEs that map these pages as valid, owned by kernel
mode, and writable only by kernel mode. The per-CPU database pages
allow user mode read access, and the interrupt and boot stack pages
allow executive mode read access. It initializes the guard pages' SPTEs
as invalid no-access pages.

It also initializes the SPTE reserved for this processor's use as a PO page
table page. The SPTE double-maps the boot stack page; it will be used
when the processor first enables memory management.

8. As described in Section 34.8.2, SMP$SETUP _CPU clears the per-CPU
database pages and initializes many of the database fields. It initializes
the processor's state to INIT. Initialization of some per-CPU database
fields is deferred until step 10.

9. It stores the virtual address of the per-CPU data area in the CPU data
vector.

10. Beginning at local routine RESTART, SMP$SETUP _CPU stores the phys­
ical address of the SCB in CPU$LSCBB.

11. It clears bit 0 in the physical CPU data vector entry for the processor to
indicate that the per-CPU data area is initialized.

34.8.4

34.8 Initialization

12. It invokes the local routine BOOT_TIMER, part of SMPSTART_xxx.
BOOT_ TIMER sends a command to the console subsystem to boot a
particular secondary CPU.

For example, the primary processor of a VAX 8800 system writes the
value F0516 to the console transmit data processor register. In response to
that particular command, the console subsystem executes the command
procedure SECBOO.COM, which starts the secondary executing at the
instruction RPB$B_ WAIT, a JMP whose destination is the CPU_START
routine in the boot page.

The primary processor of a VAX 6000 series model 400 system invokes
routine CON$BOOT _CPU, in module [SYSLOA]OPDRV9RR, to commu­
nicate with the console subsystem through the console communications
area of the CPU to be booted.

Booting another CPU is not instantaneous and may not be successful
the first time. To permit a retry, BOOT_ TIMER initializes a timer queue
entry (TQE) specific to that secondary CPU to describe a system sub­
routine with a due time of 30 seconds from the current time. Because
the routine is running with a higher ranking spinlock than the TIMER
spinlock and at too high an IPL, it first forks, using the TQE as a fork
block and the TIMER spinlock as fork lock. The fork routine queues the
TQE. (Chapter 11 describes TQEs and timer system subroutines.)

When the TQE comes due, its system subroutine, the routine TIMER_
WAKE, local to SMPSTART_xxx, checks whether that secondary is still
in the INIT state. If not, it exits. If it is, the routine invokes BOOT_
TIMER again. If, after three attempts, the secondary has failed to boot,
its state is changed to TIMOUT and a failure message is written to the
console terminal.

13. SMP$SETUP _CPU releases the MMG spinlock and returns to its invoker.

Secondary Bootstrap Code

Each secondary processor begins executing in kernel mode at IPL 31 and with
memory management disabled. The PC and stack pointer (SP) are established
in a console-specific way. A secondary processor may begin executing in the
boot page; at EXE$RESTART, the VMS halt-restart routine; or at the JMP

instruction in the RPB. Its SP may initially be at the high end of the page
containing the RPB or the boot stack page. Several examples follow:

• On a VAX 6000 series system, SMP$SETUP _CPU sends commands, byte
by byte, to the console subsystem of a secondary processor being booted:
it establishes the SP as the high-address end of the boot stack page and the
PC as the physical address of EXE$RESTART, described in Section 34.9.
EXE$RESTART transfers control to CPU_START.

• On a VAX 83x0 system, SMP$SETUP _CPU sends commands, byte by byte,
to the secondary processor's logical console: it establishes the SP as the

1053

Symmetric Multiprocessing

1054

high-address end of the boot stack page and the PC as the physical address
of the beginning. of the boot page, the copy of the routine CPU_START .

• On a VAX 88x0 or VAX 8800 system, SMP$SETUP _CPU's boot timer rou­
tine. issues a console command, in response to which the console executes
the command procedure SECBOO.COM. The command procedure estab­
lishes the SP as the high-address end of the RPB page. It establishes the PC
as the address of the RPB JMP instruction, whose destination is the copy of
CPU_START in the boot page.

A secondary of any CPU type eventually executes the boot page copy
of local routine CPU_START, in module [SYSLOA]SMPSTART _xxx. The
description that follows is based upon the routine in SMPSTART _8NN for
a VAX 8800 system; the routines for other CPU types execute similar steps.

1. CPU_START first sends a message to the console subsystem to enable
restart, in case of an error halt.

2. It determines its own CPU ID and, through RPB$L_CPUDBVEC, the
physical address of the first page of its per-CPU database, as shown in
Figure 34.10.

3. If the address is 0 (a pathological condition), the CPU loops rather than
halt and interfere with potential normal operations.

4. Under normal circumstances, it switches to its own boot stack.
5. If the CPU's state is RUN, this is a restart rather than a boot. With mem­

ory management still disabled, CPU_START dispatches through OFF_
RESTART to EXE$RESTART _ATT + 2, described in Section 34.9.

6. If the CPU's state is not RUN, this is a boot. CPU_START loads its PR$_
SBR, PR$_SLR, and PR$_SCBB from the contents of the RPB, preparatory
to enabling memory management.

7. Enabling memory management, CPU_START goes through the same
basic sequence as that of EXE$INIT, described in Chapter 31.

a. It initializes its PO mapping registers to describe a mostly nonexistent
PO page table with one real PTE, whose virtual address is the same
as the physical address of the boot page.

b. It invalidates its translation buffer (whose contents are indeterminate
on some VAX CPU types while memory management is disabled) and
then enables memory management.

c. The updated PC, translated as a PO space address, is the same as
its physical address. It is the address of a JMP instruction. The in­
struction's destination is the system virtual address corresponding to
the next physical instruction. Executing this JMP instruction, CPU_
START moves the PC to system space, to the loaded SYSLOAxxx
image.

d. The next instruction is also a JMP. Its destination is the continuation
of CPU_START elsewhere in the loaded SYSLOAxxx image. (Recall

34.8 Initialization

that the physically accessed part of CPU_START must fit within the
single boot page.)

8. At local label STRVA, the routine switches to the processor's interrupt
stack and invalidates the TB to remove the cached POPTEs.

9. It joins the ov.erride set by setting its CPU bit in SMP$GL_OVERRIDE.
10. It acquires and stores CPU-specific revision information in the per-CPU

database. It checks that the CPU type is a known one, that its subtype
is the same as that of the boot CPU, that the CPU and microcode are at
or above the minimium required revision level, and at the same level as
the primary.

11. If any check fails, it writes an error message on the console terminal
and changes the CPU state to BOOT_REJECTED. It raises IPL to 31 and
loops.

12. If the checks pass, it records the current system time in CPU$Q_BOOT _
TIME.

13. It invokes EXE$1NLTIMWAIT and EXE$INIPROCREG, routines in
[SYSLOA]ERRSUBxxx, to reinitialize the timed wait counts and to ini­
tialize processor registers, for example, the interval timer.

14. It sets the CPU's state to BOOTED.
15. CPU_START then loops, testing the "go" bit, SMP$V_START_CPU in

SMP$GL_FLAGS, set by the primary at the end of EXE$INIT.
16. When the bit is set, it writes a message to the console terminal indicating

that it has joined the primary in multiprocessor operation.
17. It lowers IPL to 29 to permit any pending powerfail interrupt to be

granted. Such an interrupt might have been blocked for a sufficiently
long time by the continuous IPL 31 execution that there is not enough
time to save software state before the power fails altogether. Rather than
risk the powerfail after joining the active state, when a failure to save
state would prevent the system's powerfail recovery, this routine lowers
IPL now. If a powerfail were to occur, when the primary restarts, its boot
timer will time out, causing it to reboot this secondary.

18. It raises IPL back to 31 and acquires the CPU mutex.
19. It changes the processor's state to RUN and sets the bit corresponding

to its ID in SMP$GL_ACTIVE_CPUS, joining the active set.
20. It invokes SMP$INIT _SANITY, in module SMPROUT, to initialize the

processor's sanity timer. Section 34.5.7 gives a description of the sanity
timer mechanism.

21. CPU_STARTreleases the CPU mutex.
22. It acquires the SCHEDspinlock; calls SCH$ADD_CPU_CAP, in module

SCHED, to initialize the processor's entry in the capabilities array; and
releases the SCHED spinlock.

23. Clearing its CPU ID bit in SMP$GL_OVERRIDE, it leaves the override
set.

1055

Symmetric Multiprocessing

34.8.5

1056

24. It sets its CPU ID bit in SCH$GL_IDLE_CPUS to indicate that the pro­
cessor needs a process to run.

25. CPU_START constructs a PC/PSL pair and executes an REI instruc­
tion that transfers control to SCH$SCHED, in module SCHED, at IPL$_
SCHED. SCH$SCHED tries to schedule a process on this CPU.

Operation of START/CPU and STOP/CPU Commands

Several DCL commands support SMP:

• START/CPU [/ALL] [cpu-id, ...]
• STOP/CPU [/ALL/OVERRIDE_CHECKS] [cpu-id, ...]
• SHOW CPU [/ALL] [cpu-id, ...]

For a complete description of the commands and their qualifiers, not all
of which are listed here, see the VMS DCL Dictionary. All three commands
are implemented by the single-module image [MP]SMPUTIL. This section
describes the implementation of the first two commands.

In response to a START/CPU command, the SMPUTIL image checks that
each specified CPU is available and not already a member of the active set.
It then checks each CPU's state to see if it can be started: the CPU must
have never been started or it must be in either the TIMOUT or STOPPED
state.

In kernel mode, the image confirms that SMP is enabled, exiting if not. If
a CPU has been started and thus has a per-CPU database, the image changes
the CPU's state to INIT. It calls SCH$REQUIRE_CAPABILITY, in module
SCHED, to ensure that the process in which it is running is executing
on the primary processor. As a result, the process may be taken out of
execution and then rescheduled on the primary. Running in kernel mode
on the primary, it invokes SMP$SETUP _CPU, described in Section 34.8.3,
to initialize each specified secondary CPU. It then calls SCH$RELEASE_
CAPABILITY to remove the requirement that the process execute on the
primary and returns.

In response to a STOP/CPU command, the SMPUTIL image checks that
each specified CPU is available and a member of the active set. Running in
kernel mode, it invokes SMP$SHUTDOWN_CPU, in module SMPROUT,
once for each CPU. It passes a register argument based on the presence
or absence of the /OVERRIDE_CHECKS qualifier, which specifies whether
checks for loss of CPUs required for process affinity needs should be made.

SMP$SHUTDOWN_CPU takes the following steps:

1. It invokes the CPU-specific routine SMP$STOP _CPU, in module
[SYSLOA]SMPSTART_xxx, passing it the address of the per-CPU data­
base of the target CPU. SMP$STOP _CPU checks the CPU's state.

-If it is BOOT_REJECTED, the routine sets the state to STOPPED and
returns. If the secondary did not boot, nothing further needs to be done.

34.8 Initialization

-Otherwise, in the case of a VAX 6000 series CPU, the routine disables
XMI bus interrupts directed at the CPU and then returns. In the case
of other SMP CPU types, the routine simply returns.

2. SMP$SHUTDOWN_CPU checks the CPU state:

-If the CPU has just been put into the STOPPED state, it simply returns.
-If the CPU is in the BOOT _REJECTED state, the routine changes its

state to STOPPED.
-If the CPU is in any other state than RUN, or if it is in RUN but

not a member of the active set, SMP$SHUTDOWN_CPU returns to
its invoker with the error status SS$_DEVOFFLINE; only a running
active set member can be stopped.

3. It calls SCH$REQUIRE_CAPABILITY, in module SCHED, to ensure that
the process in which it is running is executing on the processor to be
stopped. As a result, the process may be taken out of execution and then
rescheduled on the target processor.

4. Running on the target processor, SMP$SHUTDOWN_CPU raises IPL
to IPL$_SCHED to block rescheduling. It then calls SCH$RELEASE_ ·.
CAPABILITY to remove the explicit affinity requirement.

5. It acquires the SCHED spinlock to serialize access to the data structures
describing processor capabilities and process affinities.

6. If affinity checks are required (that is, if they are not to be overridden),
SMP$SHUTDOWN_CPU checks whether any process has explicit affin­
ity for this processor. If any does, it cannot continue the shutdown.
Instead, it releases the SCHED spinlock and returns an error status to
its invoker.

7. If affinity checks are overridden or if no process has explicit affinity,
SMP$SHUTDOWN_CPU calls SCH$REMOVE_CPU_CAP, in module
SCHED, to remove the CPU from the capability database.

8. It then invokes SCH$CUR_ TO_COM, in module RSE, to take the current
process out of execution. Its context is saved such that when it is placed
into execution on another processor, it will return a success status to the
invoker of SMP$SHUTDOWN_COM. That is, two threads of execution
diverge from this point: one continues in process context on another
CPU, and one continues on the interrupt stack of the CPU to be shut
down.

9. Running on the interrupt stack of the CPU to be shut down, SMP$SHUT­
DOWN_COM releases the SCHED spinlock.

10. It creates a fork process to execute on the primary processor and write
to the console terminal a message about this CPU's being shut down.

11. It raises IPL to 31 and sets its CPU ID bit in SMP$GL_OVERRIDE, joining
the override set.

12. It clears its CPU ID bit in SMP$GLACTIVE_CPUS, leaving the active
set.

1057

Symmetric Multiprocessing

13. It acquires the CPU mutex, removes itself from the sanity timer chain,
and releases the CPU mutex.

14. It sets the CPU state to STOPPED.
15. It leaves the override set and invokes the routine SMP$HALT _CPU, in

module [SYSLOA]SMPSTART _xxx.
16. SMP$HALT _CPU resets the stack pointer to the high end of the interrupt

stack.
17. It cannot execute a HALT instruction, since that would trigger halt­

restart processing and a system crash. Instead, it loops at IPL 31 with
memory management still enabled, continually testing whether CPU$B_
STATE has changed to the INIT state as the result of the DCL command
START/CPU.

If the state changes to INIT, SMP$HALT _CPU transfers control to
STRVA, described in Section 34.8.4, to effect a reboot.

SMP$SHUTDOWN_CPU can also be invoked from interrupt service rou­
tines in modules [SYSLOA]MCHECK.9CC and MCHECK9RR in response to
certain types of CPU errors, such as correctable main memory errors and bus
or cache parity errors. When either the cumulative number of such errors or
the error rate exceeds a given threshold and the most recent error occurred
in process context, the service routine fabricates a PC/PSL pair and executes
an REI instruction to return to process context. Running in process context
at IPL 3 to block rescheduling, it invokes SMP$SHUTDOWN_CPU.

34.9 POWERFAIL AND RECOVERY

1058

When the power fails, each CPU is interrupted and executes EXE$POWER­
FAIL, the interrupt service routine in module POWERFAIL. As described in
Chapter 33, each CPU saves general and processor registers in memory, some
in the per-CPU database and some on the interrupt stack. (Battery backup
only protects the contents of memory; it has no effect on the contents of
volatile CPU registers and temporaries.) It then saves the SP in CPU$1-
SAVED_ISP and executes a BBSSI instruction to set its CPU ID bit in the
local cell POWERDWN_L_DONE. The interlocked instruction has the side
effect of forcing any pending writes to memory to complete. The CPU then
loops, waiting for the power to cease.

When the power is restored, the console subsystem restarts the primary
processor, using methods specific to that console subsystem. The console
initializes the processor to be at IPL 31, with memory management disabled,
the interrupt stack bit in the PSL set, and the SP pointing to the high-address
end of the RPB page. Its PC contains the physical address of EXE$RESTART,
obtained from the field RPB$1-RESTART. The secondary processors remain
halted.

Chapter 33 describes the general powerfail recovery sequence. This section
describes the steps that EXE$RESTART, in module POWERFAIL, takes that

34. 9 Powerfail and Recovery

are specific to restarting a primary processor; it also describes the steps by
which a secondary is restarted.

1. EXE$RESTART tests RPB$LCPUDBVEC. If it contains a zero, the pro­
cessor is being restarted prior to the creation of its per-CPU database,
and EXE$RESTART executes a HALT instruction.

2. Otherwise, it determines the CPU type and ID of the processor and gets
the address of its per-CPU database.

If none has been created (a pathological case), EXE$RESTART loops
endlessly rather than halt and confuse the restart sequence on other
processors presumed to exist.

3. On a VAX 6000 series processor, EXE$RESTART tests that this CPU was
the primary prior to the powerfail. If not, EXE$RESTART sends a message
to the console to. force a reboot and issues a node reset to trigger a halt,
since VMS Version 5.2 does not support dynamic switching of primaries.

4. It switches to the boot stack and branches to EXE$RESTART_ATT, also
in POWERFAIL.

5. EXE$RESTART_ATT enables memory management in much the same ..
way as done by EXE$INIT, described in Section 34.8.4. -

6. In the case of a halt-restart resulting from a powerfail, it compare~·
SMP$GL_ACTIVE_CPUS to the mask in POWERDWN_L_DONE to see
if all members saved their state. If not, it generates the fatal bugcheck.
STATENTSVD.

7. It tests CPU$LSAVED_ISP as a further check that it has saved its own
state and, if zero, generates the fatal bugcheck STATENTSVD.

8. After restoring various registers, EXE$RESTART _ATT sets the bit corre-c;
sponding to its CPU ID in POWERUP _L_DONE.

9. It performs the standard powerfail recovery sequence, calculating the sys­
tem time, recalibrating timer queue entry expiration times, and logging
powerfail recovery.

10. It clears SMP$V _START _CPU in SMP$GL_FLAGS to block any sec­
ondary processors from execution until all of them are restarted.

11. It invokes EXE$INIT _DEVICE, in module POWERFAIL, which initializes
devices, among them the console.

CON$INITLINE, in [SYSLOA]OPDRVxxx, the console unit initializa­
tion routine, scans the CPU data vector for secondary processors that
were in the RUN state when the power failed. In a console-specific way,
it sends a message· to the console subsystem to initialize and then re­
start each of them. The primary processor of a VAX 8800, for example,
writes the message F0716 to the console data transmit processor register.
In response to that particular command, the console subsystem executes
a command procedure directed at the secondary.

12. EXE$RESTART_ATT then executes a BUSYWAIT loop, waiting up to 30
seconds for the masks in POWERUP _L_DONE and SMP$GL_ACTIVE_

1059

Symmetric Multiprocessing

34.10

1060

CPUS to be equal. If the masks still differ, it invokes SMP$TIMEOUT
to determine whether to generate a fatal bugcheck.

13. After all the secondary processors have restarted, EXE$RESTART _ATT
clears the mask in POWERDWN_L_DONE and sets bit SMP$V _START_
CPU, for whose setting the secondary processors have been waiting.

14. It completes the last steps of powerfail recovery and executes an REI

instruction to resume system operations.

To restart a secondary, EXE$RESTART takes the following steps:

1. As previously described, it locates the processor's physical per-CPU data­
base and switches to the boot stack.

2. At label EXE$RESTART _ATT, it tests whether the processor was in the
RUN state and, if not, dispatches through RPB$1-SMP _PC to boot page
code, described in Section 34.8.4. (This is the path by which secondary
processors of some CPU types boot.)

3. It enables memory management and tests CPU$1-SAVED_ISP to see if
this processor has saved its state, generating the fatal bugcheck
STATENTSVD if not.

4. Otherwise, it restores various processor registers and sets its bit in
POWERUP _L_DONE.

5. EXE$RESTART _ATT loops, waiting for the primary to set bit SMP$V _
START_CPU.

6. It completes the last steps of powerfail recovery and executes an REI

instruction to resume system operations.

FATAL BUGCHECK PROCESSING

When one member of an SMP system incurs a fatal bugcheck, all members
crash; the VMS executive takes the conservative approach that an inconsis­
tency severe enough that operations on one CPU should cease is likely to
be systemwide. All members of the active set participate in fatal bugcheck
processing.

The CRASH CPU, the CPU that first incurs a fatal bugcheck, drives the
crash, informing the other active CPUs that a bugcheck sequence has been
initiated. In response, the other active CPUs crash with the fatal bugcheck
CPUEXIT. The primary CPU performs most of the rest of fatal bugcheck
processing.

Chapter 32 describes in detail the uniprocessor bugcheck sequence; this
section describes the steps in fatal bugcheck processing specific to an SMP
system.

Figure 34.11 shows the sequence of some of the steps in fatal bugcheck
processing as they might occur concurrently on the CRASH CPU (which, as
pictured, is not the primary processor), the primary processor, and the other
active set members. Note that steps shown in different columns but on the
same line do not necessarily execute at the same time on all CPUs. The

34.10 Fatal Bugcheck Processing

Tme Primary CPU CRASH CPU All Other Active Set Members
i-----i-----....--

SMP$1NTSR
BUG_CHECK CPUEXIT,

FATAL ~

EXE$BUG_CHECK
1 Save general registers
2 Save bugcheck code
4 Test CRASH_ CPU bit
8 Save processor registers
9 Set bug done bit

11

13, 14 Wa~ for all active CPUs
to set bug done bit

16

Figure 34.11

Mimic context of
CRASH CPU

Continue fatal
bugcheck
processing

EXE$BUG_CHECK
1 Save general registers
2 Save bugcheck code
4 Set CRASH_CPU bit
6 Request interprocessor

interrupt
7 Record CRASH CPU ID
8 Save processor registers
9 Set bug done bit

11

Fatal Bugcheck Processing on an SMP System

SMP$1NTSR
BUG CHECK CPUEXIT,

FATAL ~

EXE$BUG_CHECK
1 ·Save general registers
2 Save bugcheck code
4 Test CRASH_ CPU bit
8 Save processor registers
9 Set bug done bit

11

numbers in the figure correspond to the following steps, not all of which are
represented in the figure.

EXE$BUG_CHECK, in module BUGCHECKBT, initially runs on the
CRASH CPU and subsequently on other SMP members. It takes the fol­
lowing steps:

(!)As described in Chapter 32, it saves the general registers on the current

1061

Symmetric Multiprocessing

1062

stack, either the interrupt stack or the kernel stack of the current process.
It then determines whether the bugcheck is fatal. For a fatal bugcheck, it
performs several sanity checks to confirm that fatal bugcheck processing
is possible.

G)It raises IPL to 31 and stores the bugcheck code in the per-CPU database
field CPU$L_BUGCODE.

3. It tests whether it is a member of the active set. If not (a pathological
and unlikely case), it proceeds to step 8 rather than taking any steps that
might interfere with SMP operations.

@If it is a member of the active set, it then tests and sets the bit SMP$V _
CRASH_CPU in SMP$G1-FLAGS. Only the first CPU to crash actually
sets this bit and thus becomes the CRASH CPU.

If the bit is already set, EXE$BUG_CHECK continues with step 8. Use
of the bit prevents confusion during concurrent independent crashes.

5. It acquires the CPU mutex to prevent any other processors from joining
the active set.

@It requests an interprocessor interrupt of each member of the active set,
specifying bugcheck as the work request type (see Section 34.5.2).

G)It records its own ID in SMP$GL_BUGCHKCP as the CRASH CPU.
G)It invokes EXE$SAVE_CONTEXT, in module [SYSLOA]ERRSUBxxx, to

save volatile processor registers on the current stack. After saving the con­
tents of CPU-specific processor registers, the number of registers saved,
the interval timer control register, the five stack pointers, and the AST
level register, it records the current stack pointer in CPU$1-SAVED_
ISP. EXE$SAVE_CONTEXT stores the contents of PR$_PCBB, PR$_SCBB,
PR$_SISR, and the per-process mapping registers in the per-CPU database,
and returns.

G)EXE$BUG_CHECK then sets its ID bit in SMP$GL_BUG_DONE to indi­
cate that it has saved its context.

10. If it owns the XDELTA lock (if its ID is in XDT$GW _OWNER_ID), it
breaks the lock, releasing other active set members from the benign state
so that each can respond to the interprocessor interrupt and save its own
context. Section 34.5.4 describes XDELTA processing and the benign state.

@EXE$BUG_CHECK compares its CPU ID to that in SMP$GL_PRIMID to
determine whether it is executing on the primary. If it is not, it loads
the address of its per-CPU boot stack into the SP and loops, awaiting
a later reboot. All members of the active set except the primary should
eventually execute this loop. A crashing CPU that is not a member of the
active set also executes this loop.

12. This and later steps execute only on the primary processor because it is
the only member guaranteed access to the console terminal.

EXE$BUG_CHECK sets its CPU ID in SMP$GL_OVERRIDE, adding
itself to the override set. As a member of the override set, its spinlock
acquisitions and releases are not subject to the normal IPL checks.

34.10 Fatal Bugcheck Processing

@EXE$BUG_CHECK waits, up to a maximum of 30 seconds, for all active
members to save their context. Under normal circumstances, much of
this wait does not occur. However, if one member is restarting following
a halt, it could take the member a significant time to complete that and
respond to the interprocessor interrupt requesting bugcheck processing.
If the time passes before all are done, EXE$BUG_CHECK proceeds.

It continues with steps common to fatal bugcheck processing on a
uniprocessor system, reading the fatal bugcheck overlay into memory.
The steps that follow are from the overlay, which is module BUGCHECK­
LD. For simplicity, this chapter uses the name EXE$BUG_CHECK to refer
to that code.

@Still running on the primary, EXE$BUG_CHECK tests if the CRASH CPU
has saved its register context, waiting for up to 1 second beyond the earlier
wait.

15. It uses the bugcheck code in the CRASH CPU's per-CPU database to
select the bugcheck message text. This field is initialized to BUG$_
CPUCEASED, in case a problem on the CRASH CPU prevents it from
recording the real bugcheck code.

@The primary checks whether it is the CRASH CPU. If not, it checks
whether the CRASH CPU completed saving its context. If it has, the
primary tnimics the CRASH CPU's context, enabling the use of the stan"
dard fatal bugcheck routine. It adopts the CRASH CPU's processor regis~
ters, copying them from its per-CPU database and stack. These registers
include PR$_SCBB, PR$_PCBB, PR$_SISR, the per-process mapping reg­
isters, the stack pointers, PR$_ASTLVL, and the interval timer control
register. (The translation buffer invalidation necessary for the primary tO

reference possible per-process addresses on the CRASH CPU is done in an
earlier step by a routine invoked to make system space writable so that
the bugcheck overlay can be loaded.)

This switch simplifies writing crash information to the console ter­
minal, which may be accessible only from the primary processor. It also
simplifies the sequence in which registers are written to the dump header
block.

Running on the primary, EXE$BUG_CHECK continues with steps common
to fatal bugcheck processing on a uniprocessor.

1063

PART IX/ Miscellaneous Topics

35 Logical Names

Call things by their right names Glass of brandy and
water! That is the current but not the appropriate name: ask
for a glass of liquid fire and distilled damnation.

Robert Hall, Olinthus Gregory, Brief Memoir of the Life of Hall

A logical name definition is a mapping of a string to zero or more replace­
ment strings. A replacement string is called an equivalence name. A logical
name can represent a node name, file specification, device name, application­
specific information, or another logical name. Replacing an occurrence of the
logical name with an equivalence string is called logical name translation.

VMS provides automatic logical name translation for a name used in a file
specification or device name. A logical name that refers to a device or file
enables transparent device independence and I/O redirection. For example, a
program or command procedure can refer to a disk volume by logical name
rather than by the name of the specific drive on which the disk volume is
mounted.

A user can define a logical name as a shorthand way to refer to a file or
directory that is referenced frequently.

This chapter first summarizes the characteristics of logical names. It then
describes the data structures that implement logical names and internal
operation of the system services related to logical names:

• Create Logical Name ($CRELNM)
• Create Logical Name Table ($CRELNT)
•Delete Logical Name ($DELLNM)
•Translate Logical Name ($TRNLNM)

Logical name concepts are described in the VMS DCL Concepts Manual.
The Introduction to VMS System Services manual and VMS System Services
Reference Manual document the use of the logical name system services.

35.1 GOALS OF LOGICAL NAME SUPPORT

The goals of VMS support for logical names are as follows:

• Independent name spaces for logical names. A logical name of a given
access mode must be unique in any given table. VMS allows for creation of
an arbitrarily large number of logical name tables, reducing the likelihood
of logical name collisions.

1067

Logical Names

• User control over the order in which logical name tables are searched. Each
request to translate a logical name can determine which tables are to be
searched by specifying a logical name whose multiple translations are the
tables to be searched.

• Provision of a basis for Record Management Services (RMS) search lists. A
multivalued logical name enables an ordered list of equivalence names to
be associated with a single logical name. An RMS search list is a multi­
valued logical name, supplied as part or all of a file specification. Through
its multiple equivalence names, a logical name can refer to multiple file
specifications.

• Control over sharing of logical names. VMS provides a number of possi­
bilities, ranging from no sharing to sharing based on access control lists
(ACLs). Degree of shareability is specified when a shareable table is cre­
ated. A process can control its sharing by partitioning its logical names
into different tables.

• Upward compatibility for VMS Version 3 and earlier logical names and
their system services. VMS provides the superseded system services as
jacket routines for calls to the newer services. It automatically defines
system, group, and process logical name tables whose properties are similar
to those of older tables.

35.2 CHARACTERISTICS OF LOGICAL NAMES

1068

A logical name is uniquely identified by the combination of the logical name
string, the logical name table that contains its definition, and its access
mode. That is, two otherwise identical name strings that have different
access modes or that are defined in different logical name tables are different
logical names.

A logical name string is from 1 to 255 bytes long.
The scope of a logical name varies. A logical name definition can be any

of the following:

• Private to one process
• Handed down from a process to its spawned subprocesses
• Shared among a detached process and all its subprocesses (job tree)
• Shared among all the processes with the same user identification code

(UIC) group code
• Shared among all the processes on the system
• Shared among a subset of processes on the system as specified by an ACL

A logical name definition cannot be shared among processes on different
nodes of a V AXcluster system.

The scope of a logical name is determined primarily by the logical name
table in which it is defined. By default, a name in a shareable table is share­
able. A logical name in a process-private table can only be used by the process

35.2 Characteristics of Logical Names

and, by default, handed down to any subprocess it spawns through the Dig­
ital command language (DCLj. When a subprocess is spawned, each logical
name created without the CONFINE attribute is copied to the spawned sub­
process. That is, the logical name definitions current at the time of the spawn
are copied; any subsequent changes to the definitions are not shared.

The access mode of a logical name can be specified when it is defined. If
not specified, access mode defaults to that of the requestor of the $CRELNM
system service. If the ACMODE argument is specified and if the process has
the privilege SYSNAM, the logical name is created with the specified access
mode. If a name of the same mode already exists, it is superseded. Otherwise,
if the process lacks the privilege, the argument is maximized with (made no
more privileged than) the mode of the system service requestor.

A logical name table can contain multiple definitions of the same logical
name with different access modes. These are called aliases. When a request to
translate such a logical name specifies the ACMODE argument, any definition
made at a less privileged mode is ignored.

The access mode of a logical name specifies an integrity level. Because
kernel and executive access mode logical names can only be created by the
system manager or someone of equivalent privilege, they are used where
the security of the system is at stake. For example, during certain system
operations, such as the activation of an image installed with privilege, only
executive and kernel mode logical names are used.

A process-private user mode logical name is deleted at the next image
rundown. Shareable user mode names, however, survive image exit and
process deletion.

A logical name can be created with several attributes:

• The CONFINE attribute indicates that DCL should not propagate the
logical name to a spawned subprocess. Logical names of files created with
the DCL OPEN command have the CONFINE attribute .

• The NO_ALIAS attribute indicates that the existence of this logical name
precludes another definition for that name in the same logical name table
and with an outer access mode. When a NO_ALIAS logical name is created,
any definition for the name made in an outer mode is deleted, as well as
any definition in the same mode .

• The CRELOG attribute indicates that the logical name was defined through
the superseded $CRELOG system service. RMS uses this attribute to en­
sure translation compatible with VMS Version 3 and earlier versions. Use
of this attribute is reserved to VMS. Section 35.9 briefly describes support
for the superseded logical name system services.

Two other attributes, TABLE and NODELETE, are described in later sections.
A logical name can have more than one equivalence name. In that case, it

is called a multivalued logical name, and its equivalence names are treated
as an ordered list.

1069

Logical Names

35.3 CHARACTERISTICS OF LOGICAL NAME TABLES

1070

A logical name table is a container for logical names. Each table defines an
independent name space. The characteristics of a logical name table are the
following:

• Scope-Whether it is shareable or process-private
• Access mode
• Name
• Parent logical name table
• Access control in the case of a shareable logical name table
• Quota to limit the amount of pool occupied by its logical names

During system initialization, several shareable logical name tables are cre­
ated. During the creation of each process, several other tables, shareable and
process-private, are created. Section 35.3.1 documents these default tables.
The $CRELNT system service enables a process to create additional tables
at will. Process-private name tables are created in Pl space. Shareable tables
are created in system space.

The access mode of a logical name table can be specified when it is created.
If not specified, the mode defaults to that of the requestor of the $CRELNT
system service. If the ACMODE argument is specified and if the process has
the privilege SYSNAM, the logical name table is created with the specified
access mode. Otherwise,· the argument is maximized with the mode of the
system service requestor.

A logical name table can contain logical names of its own and less priv­
ileged access modes. A logical name table can be a parent table to another
table of the same or a less privileged access mode.

A logical name table is identified by its name, which is itself a logical
name. The name of a logical name table has the logical name attribute
TABLE. In fact, the name table data structure is a special form of equivalence
name. As a logical name, each logical name table name must be contained
within a logical name table. Two special logical name tables called directories
exist as containers for logical name table names. A logical name that is to
translate directly or iteratively to the name of a logical name table must be
contained in a directory table. That is, there are only two name spaces for
the names of logical name tables.

The system directory, LNM$SYSTEM_DIRECTORY, contains the names
of all shareable tables. The process directory, LNM$PROCESS_DIRECTORY,
contains the names of all process-private tables for that process. Each direc­
tory contains its own table name. Each directory table name has the logical
name attributes TABLE, NO_ALIAS, and NODELETE. The NODELETE at­
tribute prevents the deletion of a directory table name.

The address of either directory table can be determined, indirectly, through
the two-longword array at LNM$ALDIRTBL. Its first longword points to a
longword containing the address of the system directory. Its second longword

35.3 Characteristics of Logical Name Tables

points to CTL$GL_LNMDIRECT, which contains the address of the process
directory. Each process has its own process directory.

Any logical name in a directory table, including a logical name table name,
is restricted to a length no longer than 31 characters. It can only consist of
the characters $, _, the digits, and uppercase alphabet. The bytes of a logical
name string in any other table can have any value.

All logical name tables are in one of two hierarchies. The system directory
is the ancestor of the tables in one hierarchy. For each process, its process
directory is the ancestor of the other. That is, each logical name table, except
for the directory tables, has a parent logical name table. A directory anchors
the quota and access hierarchy for its name space. The hierarchical structure
enables finer control over quota allocation and access to logical name tables.
When a logical name table is deleted, all its descendant tables are deleted.

The parent of a logical name table is not necessarily a directory table. That
is, this hierarchical structure is distinct from the location of logical name
table names. Consider the logical name table A, created by the following
DCL command:

$ CREATE/NAME_TABLE/PARENT=LNM$PROCESS A

The parent table of logical name table A is the process-private logical
name table LNM$PROCESS. A's table name, however, like all table names,
is contained in a directory; in this case, it is contained in LNM$PROCESS_
DIRECTORY, the same directory that contains the name of its parent table.

There is a quota on how much memory the names in a logical name
table may occupy. The quota is managed in a hierarchical fashion; a newly
created name table inherits quota through its parent. At the top of the
inheritance tree are the two logical name directories. Each of them has
"infinite" memory quota, the largest possible positive longword number.

A table that manages or holds its own quota is called a quota holder table.
The two directories are the quota holder tables at the top of the hierarchy.

When a new name table is created, its memory quota can be specified as
limited or pooled. A nonzero $CRELNT QUOTA value indicates that the quota
is limited; a zero value indicates that it is pooled.

When a name table is created with limited quota, it subtracts its quota
from the quota of its parent or of the most recent ancestor that is a quota
holder table. It then becomes a quota holder table itself.

If the quota is specified as pooled, the name table does not hold its own
quota but shares quota with its parent. If its parent was created with pooled
quota, the new table and its parent share quota with the grandparent table.
Sharing continues upward in the hierarchy to the most recent ancestor to
hold its own quota.

A shareable logical name table has UIC-based protection. Each class of
user (system, owner, group, and world) can be granted four types of access:

1071

Logical Names

35.3.1

1072

• Read (RJ access allows the user to read the contents of the logical name
table, that is, to translate logical names .

• Write (W) access allows the user to modify the contents of the table,
for example, delete or alter logical name translations. Write access to a
directory table enables the user to delete the logical name table names in
the directory .

• Enable (E) access allows the user to withdraw quota from the table when
creating a descendant logical name table .

• Delete (D) access allows the user to delete the table itself, including all its
logical names and descendant tables and their names. A logical name table
is deleted when it or its parent table is deleted.

The default protection mask for a table created through the $CRELNT
system service allows RWED access to system and owner users and no access
to group or world users.

A logical name table can also be given ACL-based protection. An ACL for
a logical name table enables fine-tuning of UIC-based protection. The DCL
command SET ACL/OBJECT =LOGICALNAME_ TABLE creates or modifies
access control entries. The VMS DCL Concepts Manual provides further
information.

To provide compatibility with earlier versions of VMS, a suitably privileged
process can read and write certain logical name tables even if UIC- and ACL­
based mechanisms would otherwise prohibit access. That is, a process with
GRPNAM privilege can access its group table, LNM$GROUP _gggggg, to
translate, create, or delete logical names, regardless of UIC- and ACL-based
protection. A process with SYSNAM can similarly access the system table,
LNM$SYSTEM_ TABLE.

Default Logical Name Tables

Table 35.1 lists the default tables created by VMS. All names of logical name
tables must be in one of the two directories. A directory table can contain
other types of logical names as well.

The system directory and table are created during system initialization
by initialization code running in the swapper process. The process directory
and table are created during process creation by code in EXE$PROCSTRT,
in module PROCSTRT. When creating a top-level process, EXE$PROCSTRT
invokes EXE$CRE_JGTABLE, also in module PROCSTRT, to create the job
table and, if it does not already exist, the group table. LOGINOUT, the first
image to run in many processes, also invokes EXE$CRE_JGTABLE so that
any changes in the process's UIC are reflected in its tables.

A number of predefined logical names for logical name tables are used
in particular VMS contexts for translating and creating logical names. By
convention, these names have the prefix LNM$. For example, RMS and other

35.3 Characteristics of Logical Name Tables

Table 35.1 Default Logical Name Tables

Table Name Directory Use

LNM$PROCESS_ Process Contains definitions of process-private
DIRECTORY logical name table names and names that

translate iteratively to these table names
LNM$PROCESS_ Process Contains process-private logical names,

TABLE such as SYS$DISK and SYS$1NPUT
LNM$SYSTEM_ System Contains definitions of shareable logical

DIRECTORY name table names and names that
translate iteratively to these table names

LNM$SYSTEM_ System Contains names shared by all processes in
TABLE the system, for example, SYS$LIBRARY

and SYS$SYSTEM
LNM$JOB_ System Contains names shared by all processes in

xxxxxxxxi the job tree, for example, SYS$LOGIN
and SYS$SCRATCH

LNM$GROUP_ System Contains names shared by all processes
gggggg 2 with that UIC group

1 The string xxxxxxxx represents an eight-digit hexadecimal number that is the address
of the job information block.

2 The string gggggg represents a six-digit octal number containing the process's UIC
group number.

VMS components specify the table LNM$FILE_DEV for file specification and
device name translations. Table 35.2 lists some of the default logical names
that translate to table names.

Some of these table names are normally referenced indirectly, through pre­
defined logical names. Typically, for example, LNM$JOB is specified as a log­
ical name for the table, rather than the actual name, LNM$JOB_xxxxxxxx.
The indirection enables a generic and transparent reference to a process's
job table rather than to the very specific and transient name LNM$JOB_
xxxxxxxx. In addition, indirections make it possible for users to redefine
some of the predefined names to modify the search order or the tables to
be used. LNM$PROCESS, for example, can be redefined as a multivalued
logical name to subsume other tables into the process table.

Some table names exist to allow for user redefinition. For example, the
table name LNM$DCL_LOGICAL is used for the SHOW LOGICAL and
SHOW TRANSLATION DCL commands and for the logical name lexical
functions. By default, as defined in LNM$SYSTEM_DIRECTORY, the name
LNM$DCL_LOGICAL translates to LNM$FILE_DEV. However, a user inter­
ested in displaying names and translations in the directory tables themselves
might define a new translation for LNM$DCL_LOGICAL, as shown in the
following example:

1073

Logical Names

1074

$ SHOW LOGICAL TRNLOG$_PROCESS_GROUP
XSHOW-S-NOTRAN, no translation for logical name TRNLOG$_PROCESS_GROUP
$
$ Since LNM$DCL_LOGICAL is to be a name that translates to a
$! table name, it must be defined in a directory.
$!
$ DEFINE/SUPERVISOR/TABLE=LNM$PROCESS_DIRECTORY LNM$DCL_LOGICAL -
_$ LNM$FILE_DEV,LNM$PROCESS_DIRECTORY,LNM$SYSTEM_DIRECTORY
$!
$ SHOW LOGICAL TRNLOG$_PROCESS_GROUP

"TRNLOG$_PROCESS_GROUP" = "LOG$PROCESS" (LNM$SYSTEM_DIRECTORY)
= "LOG$GROUP"

Table 35.2 Default Logical Names That Translate to Logical Name
Table Names

Logical Name
LNM$PROCESS
LNM$JOB
LNM$GROUP
LNM$SYSTEM
LNM$DCL_LOGICAL
LNM$FILE_DEV (supervisor mode)

LNM$FILE_DEV (executive mode)
LNM$PERMANENT _MAILBOX
LNM$TEMPORARY _MAILBOX
LOG$PROCESS 3

LOG$GROUP 3

LOG$SYSTEM 3

TRNLOG$_GROUP _SYSTEM 3

TRNLOG$_PROCESS_GROUP 3

TRNLOG$_PROCESS_SYSTEM 3

TRNLOG$_PROCESS_GROUP _SYSTEM 3

Equivalence Name
LNM$PROCESS_ TABLE
LNM$JOB..xxxxxxxx I
LNM$GROUP _gggggg 2

LNM$SYSTEM_ TABLE
LNM$FILE_DEV
LNM$PROCESS,
LNM$JOB,
LNM$GROUP,
LNM$SYSTEM
LNM$SYSTEM
LNM$SYSTEM
LNM$JOB
LNM$PROCESS,
LNM$JOB
LNM$GROUP
LNM$SYSTEM
LOG$GROUP,
LOG$SYSTEM
LOG$PROCESS,
LOG$GROUP
LOG$PROCESS,
LOG$SYSTEM
LOG$PROCESS,
LOG$GROUP,
LOG$SYSTEM

1 The string xxxxxxxx represents an eight-digit hexadecimal number that
is the address of the job information block.

2 The string gggggg represents a six-digit octal number containing the
process's UIC group number.

3 This table provides upward compatibility for tables used by the superseded
logical name services.

35.4 Characteristics of Logical Name Translation

1 "LOG$PROCESS" = "LNM$PROCESS" (LNM$SYSTEM_DIRECTORY)
= "LNM$JOB"

2 "LNM$PROCESS" = "LNM$PROCESS_TABLE" (LNM$PROCESS_DIRECTORY)
2 "LNM$JOB" = "LNM$JOB_80471670" (LNM$PROCESS_DIRECTORY)
1 "LOG$GROUP" = "LNM$GROUP" (LNM$SYSTEM_DIRECTORY)
2 "LNM$GROUP" = "LNM$GROUP_000100" (LNM$PROCESS_DIRECTORY)

Because TRNLOG$_PROCESS_GROUP is defined in LNM$SYSTEM_
DIRECTORY, the first SHOW LOGICAL command fails to find it. After
the new definition of LNM$DCL_LOGICAL to include both directory ta­
bles, SHOW LOGICAL can translate TRNLOG$_PROCESS_GROUP. It can
translate iteratively all its equivalence names as well, because they are de­
fined in one of the two directory tables. For a description of the SHOW
LOGICAL and DEFINE commands, see the VMS DCL Dictionary.

35.4 CHARACTERISTICS OF LOGICAL NAME TRANSLATION

A logical name with only one equivalence name has only one translation. A
multivalued logical name has multiple equivalence names, up to a maximum
of 128. An equivalence name is from 1 to 255 bytes long. Each byte can have
any value. Each equivalence name is uniquely identified by a number called
an index number.

An equivalence name can be defined with several attributes. Each equiv­
alence name of a multivalued logical name can have different attributes.

• The CONCEALED attribute means that the equivalence name should not
be displayed in system output. Typically, this is used to foster device
independence by displaying logical names rather than the names of spe­
cific devices. It is also used in the creation of logical names for rooted
directories .

• The TERMINAL attribute means that the equivalence name should not
itself be treated as a logical name and translated further.

When a logical name is translated, the translation attribute CASE_BLIND
can be specified. This attribute means that the search for that logical name is
independent of the case (uppercase or lowercase) in which the logical name
was originally defined and the case in which the logical name was specified
to the $TRNLNM system service.

When access mode is specified for a logical name translation, it applies
to both the translation of the name and of the name tables involved. For
example, if executive access mode translation is requested, then all outer
mode logical names and table names are ignored.

Logical name translation has two dimensions:

• Breadth. A logical name can have multiple equivalence strings .
• Depth. One logical name can translate to another logical name, which, in

turn, translates to another logical name, and so on.

1075

Logical Names

35.4.1

35.4.2

1076

These dimensions apply to the name of a logical name table as well as
to a logical name. To translate a logical name, VMS must also translate the
name of the tables in which to look for the logical name. The translation
for a logical name table name, done implicitly as part of translating a logical
name, is different from that for a logical name.

Dimensions of Logical Name Translation

Logical name translation, as performed by the logical name system services,
deals with the breadth of a name, but not its depth. That is, if requested by
the user, the $TRNLNM system service returns multiple equivalence strings
when it translates a logical name. One of the $TRNLNM arguments is an
item list through which multiple equivalence names can be returned. For
the user to receive multiple equivalence names, the item list must include
entries and buffer addresses for them.

However, when the $TRNLNM system service translates a logical name,
it does not translate iteratively. That is, it does not check whether an equiv­
alence name is itself a logical name. Further translation must be requested
explicitly; the equivalence name returned must be supplied as the logical
name argument in another $TRNLNM request. Certain system services,
such as Assign Channel ($ASSIGN), make iterative $TRNLNM requests to
translate a logical name as deeply as possible, up to a maximum iteration
count, typically of nine translations.

RMS has a more complex form of iteration. It parses a file specification
and requests the $TRNLNM system service iteratively to translate certain
components of it. For more details, see the Guide to VMS File Applications.

Dimensions of Logical Name Table Name Translation

Each of the logical name system services must translate a logical name table
name to perform its main function. A table name can be one of the following:

• A logical name whose single translation is the table data structure itself
rather than an equivalence name (see Section 35.5.2)

• A name whose equivalence name is itself a logical name that translates to
the table data structure after one or more iterations

• A multivalued logical name, each of whose equivalence names is a logical
name that translates iteratively to a table data structure

Unlike logical name translation, table name translation must deal with
both the depth and the breadth of the name. To locate a particular logical
name, for example, a table name and all its equivalence names might have
to be translated iteratively. In the $TRNLNM system service, and some­
times the $DELLNM system service as well, translation of a table name
continues until one is found that contains the target logical name. In the
system services $CRELNT, $CRELNM, and under some circumstances (see

35.5 Logical Name Data Structures

Section 35.8.5) $DELLNM, translation of a table name only goes as far as
finding the first table.

The table name translation sequence is depth-first. That is, the first equiv­
alence name is translated until it translates to a table data structure or can
be translated no further. If the table name found does not contain the logical
name of interest, the next equivalence name is translated, and so on. This is
a simplified description of the algorithm, which is described in more detail
in Section 35. 7.

35.5 LOGICAL NAME DATA STRUCTURES

35.5.1

The logical name database consists of the following kinds of structures:

• Logical name blocks (LNMBs), describing the logical names that are defined
• Logical name translation blocks (LNMXs), which contain equivalence

names
• Logical name table headers (LNMTHs), which describe logical name tables
• Hash tables that locate the LNMBs (LNMHSHs)
• Table name cache blocks (LNMCs)

The macro $LNMSTRDEF defines symbolic offsets for all these data.struc­
tures. The data structures are described in the sections that follow.

Logical Name Blocks and Logical Name Translation Blocks

Each defined logical name is described by an LNMB. An LNMB contains the
logical name counted string in field LNMB$T _NAME, its access mode in
LNMB$B_ACMODE, and its attributes in LNMB$B_FLAGS.

The LNMB field LNMB$L_TABLE specifies the address of the header of
the logical name table in which the logical name is defined. An LNMB also
has two longwords, LNMB$L_FLINK and LNMB$L_BLINK, which link it
into a hash chain of LNMBs whose logical names have the same hash value.

Each LNMB is immediately followed by at least one LNMX. An LNMX
contains flags for the equivalence name attributes in LNMX$B_FLAGS, an
index identifying the equivalence name in LNMX$B_INDEX, and a counted
string equivalence name, LNMX$T _XLATION. LNMX$W _HASH contains
the result of hashing the logical name. It is used only for table names. There
is one LNMX for each equivalence name defined for the logical name. The
series of LNMXs associated with a given LNMB concludes with a one-byte
LNMX containing only the FLAGS byte with the bit LNMX$V _XEND set.

Figure 35.1 shows the layouts of the LNMB and LNMX data structures.
The field LNMB$W _SIZE contains the size of the LNMB, including the sizes
of the LNMXs that follow it. Before the memory for the LNMB and the
LNMXs is allocated, the size required for the sum of all the strings plus
the fixed size is rounded up to the next quadword. As a result, although an

1077

Logical Names

LNMB

FLINK

BLINK

ACMODEl TYPE l SIZE

TABLE

NAME
[FLAGS

(counted string up to 255 bytes) LNMX

LNMX for First Equivalence Name HASH I INDEX FLAGS

LNMX for Second Equivalence Name XLATION

1078

- ______ _,_j ___ (c_ou_n_te_d_s1_rin_g_u_p_10_2_5_5_b_yt_es_J __ _,

LNMX for Last Equivalence Name
Logical Name Flags Equivalence Name Flags

Bit Name

0 NO_ALIAS

Bit Name

0 CONCEALED
04

1 CONFINE 1 TERMINAL
2 CRELOG 2 XEND
3 TABLE
4 NO_DELETE

Figure 35.1
Layouts of Logical Name Blocks and Logical Name
Translation Blocks

LNMB and its LNMXs are of variable length, the combined data structure is
always an integral number of quadwords.

Translation to a particular equivalence name can be requested by specify­
ing its index. The index of an equivalence name is a one-byte signed number.
By default, the first equivalence name is assigned an index value of 0, the
second a value of 1, and so forth.

The positive values 0 to 127 are available for users. The negative values
-1 to -128 are reserved for system use. Currently, VMS uses two special
index values. The value 8216, or -126, indicates that the equivalence string
is a logical name table header. The value 81 16, or -127, indicates that the
equivalence string is a back pointer, the address of another data structure.
A back pointer can be used to link a mailbox unit control block (UCB) with
the LNMB that contains its logical name. It can also be used to connect a
mounted volume list entry and its LNMB. Only shareable logical names can
have back pointers.

It is possible for the creator of a logical name explicitly to assign an
index value to each equivalence name. Translation indexes can be sparse. For
example, a particular logical name might have translations 1, 3, 5, and 10.
VMS uses this feature itself to create back pointer logical names. Any general
use of this feature is discouraged, however, because RMS and other VMS
components assume that equivalence names have dense ascending indexes.

A process-private LNMB is allocated from the process allocation region. An
LNMB for a shareable logical name must be accessible by multiple processes
and is allocated from paged pool.

35.5.2

35.5 Logical Name Data Structures

jFLAGS Flags

HASH Bit Name

ORB 0 SHAREABLE
1 DIRECTORY

NAME 2 GROUP
PARENT 3 SYSTEM

CHILD

SIBLING

QT ABLE

BYTESLM

BYTES

Figure 35.2
Layout of Logical Name Table Header

Logical Name Table Headers

The data structure describing a logical name table is an LNMB whose first
LNMX has the index value 8216 to indicate that it contains an LNMTH
instead of an equivalence name. The second LNMX merely flags the end of
the data structure.

An LNMTH describes a logical name table. Figure 35.2 shows its layout.
The field LNMTH$L_HASH contains the address of either the shareable hash
table or the process-private hash table, depending on whether the logical
name table is shareable or process-private. Section 35.5.3 describes the use
of logical name hash tables.

For a shareable table, LNMTH$1-0RB contains the address of the object
rights block (ORB) associated with the table. The ORB defines the protec­
tion information for the logical name table: its system-owner-group-world
protection mask and any access control entries that have been defined. For
a process-private table, the field is unused. LNMTH$1-NAME contains the
address of the beginning of the LNMB that contains this header; that is, it
points back to the beginning of the data structure, an address impossible to
compute from the LNMTH address, given the counted logical name string
between them.

The fields LNMTH$L_PARENT, LNMTH$1-CIIlLD, and LNMTH$L_
SIBLING contain addresses of other LNMTHs and link logical name tables
into a quota and access hierarchy. The hierarchy consists of singly linked
lists. A zero value in a pointer indicates the end of the list.

Figure 35.3 shows the hierarchical relations between several logical name
tables: tables A and B are siblings whose parent is table R; R's parent is
LNM$PROCESS_ TABLE. For simplicity, the figure shows only LNMTHs and
omits LNMBs. LNMTH$1-CHILD in table R contains the address of table
A's header. Table A's LNMTH$L_PARENT field contains the address of table
R's LNMTH. Because table R has another child table, A's field LNMTH$L_
SIBLING contains the address of R's next child, table B.

LNMTH$L_QTABLE contains the LNMTH address of the table's quota

1079

LNM$PROCESS_DIRECTORY Table

l
LNMTH$L_PARENT = 0

r--f-e LNMTH$L_CHILD

LNMTH$L_SIBLING = 0

LNMTH$L_QTABLE et--

T T
LNM$PROCESS_TABLE Table

LNMTH$L_PARENT -+--I
!-------~----~ r--f-e LNMTH$L_CHILD

LNMTH$L_SIBLING = 0

LNMTH$L_QTABLE --t--'

T T
RTable

* *
. LNMTH$L_PARENT

LNMTH$L_CHILD

LNMTH$L_SIBLING = 0

LNMTH$L_QTABLE

T T
A Table BTable

'-i-1 /1 *t--~~~~~~~-~=~ ~~~~~~~~~~~~*
t--t- LNMTH$L_PARENT LNMTH$L_PARENT -+-

LNMTH$L_CHILD = 0 LNMTH$L_CHILD = 0
J i---~~~~~~~--t

1----L_N_M_T_HS_L~S_IB_L_IN_G __ ·~ LNMTH$L_SIBLING = 0

LNMTH$L_QTABLE LNMTH$L_QTABLE

T T T T
Figure 35.3
Hierarchical Relations Between Logical Name Tables

1080

35.5.3

35.5 Logical Name Data Structures

holder table. In the case of a table with limited quota, the table is its own
quota holder, and the field contains the address of the start of the table's
own header. For a table with limited quota, LNMTH$L_BYTESLM and
LNMTH$L_BYTES contain the initial quota given to the table at its cre­
ation and the amount left. These fields are unused for a table whose quota
is pooled. Figure 35.3 shows table R as its own quota holder and also the
holder for tables A and B.

Note that an LNMTH contains no listhead for LNMBs. The intuitive view
of the relation between a logical name and its containing table is different
from the implementation. A logical name table contains logical names in
an abstract sense, but it is not possible to examine a table header to locate
logical names in that table. The only connection between a logical name
and its containing table is from the LNMB to the table header; the field
LNMB$1-TABLE contains the address of the LNMTH. Every LNMB of the
appropriate hash table must be examined to determine which ones are in the
table of interest.

A logical name directory is described by an LNMTH whose LNMTH$V _
DIRECTORY flag is set and whose LNMTH$1-PARENT field is zero.

In a logical name table name, the field LNMB$L_ TABLE always contains
the address of its directory table's LNMTH. The directory's LNMB$L_ TABLE
also points to the directory's LNMTH.

Figure 35.4 shows the relations between the process directory; a particular
logical name table, LNM$PROCESS_TABLE; and a particular logical name,
SYS$LOGIN. For simplicity, Figure 35.4 omits hash table links, which are
pictured in Figure 35.5.

Logical Name Hash Tables

Locating a translation for a particular logical name requires first hashing the
logical name in the appropriate hash table and then determining whether
the name found matches the name of interest.

Each process has its own hash table to locate all process-private logical
names. All shareable logical names are hashed in the shareable hash table.

A hash table consists of a 12-byte header and a number of longword entries.
Each entry in the hash table is either zero or a pointer to a hash chain of
LNMBs with the same hash value. The chain is doubly linked through the
fields LNMB$L_FLINK and LNMB$L_BLINK. The last LNMB in a chain has
a forward pointer of zero.

The order of LNMBs in a hash chain is determined by the following
criteria:

1. Length of the logical name, with shorter strings first
2. Alphabetical order, according to the ASCII collating sequence, of the

logical name string for LNMBs that have logical names of the same length

1081

Logical Names

LNMB-

r-

LNMX-1

CTL$GL_LNMDIRECT:: [

1--~~~~~~~~~
1------.----.-------tl---­

Kerne I J'.ivNSC-LN'1
LNMB _, Address of Containing Table +

NO_ALIAS
TABLE

NO_DELETE

LNM$PROCESS_DIRECTORY

l Length l TABLE l TERM'L

jDIRECT.6

Address of Containing LNMB

LNMTH·
Address of Child Table

1 4

Kernel lovNSC_LNtj_
Address of Containing Table --h LNMB--i Address of Containing Table ~

NO_ALIAS 1 0
TABLE

SYS$LOGIN
LNM$PROCESS_ TABLE

LNMX{l Length .__ ____ 1 __ 0_1 __ 0___, '-1-(_L_.en._gt~t--~---I-li-i\-BL_E_f_T_E_:M_'--iL ~
- WORK2:[GRISWOLD)

1082

L-

Figure 35.4
Relation Between Logical Name Table and
Directory Table

Address of Containing LNMB .-+--'

Address of Parent Table -+------'

l 4

35.5 Logical Name Data Structures

3. Address of the containing table address, with lowest address first, for
LNMBs with the same logical name

4. Access mode of the logical name, with outermost access mode first, for
LNMBs with the same logical name string in the same table

Recall that a logical name can be defined in different name tables and at
different access modes. Translating a logical name means locating the first
definition that satisfies containing table and access mode constraints. The
last criterion supplies the mechanism by which an outer mode definition for
a name can override an inner mode definition.

The SYSGEN parameter LNMPHASHTBL specifies the number of long­
word entries in the process-private hash table. During process creation,
EXE$PROCSTRT allocates it from the process allocation region and initial­
izes its header. Because the process allocation region consists of demand zero
pages, the table's longword entries are zeroed as a side effect of allocating
space from the region for the first time.

The SYSGEN parameter LNMSHASHTBL specifies the number of long­
word entries in the shareable hash table. The shareable hash table is allocated
from paged pool, its header built, and longword entries cleared by the swap­
per process during system initialization.

The address of either hash table can be determined indirectly through the
two-longword array at global location LNM$A1-HASHTBL. Its first long­
word points to a longword containing the address of the shareable hash table.
Its second longword points to CTL$GL_LNMHASH, which contains the ad­
dress of the process hash table. The field LNMTH$L_HASH in each logical
name table contains the address of the hash table for its logical names.

Figure 35.5 shows this array, the two hash tables, and two hash chains. '"
The algorithm used to hash the logical names was chosen to be relatively

fast and provide a good distribution within the hash table. It is implemented
by the routine LNM$HASH, in module LNMSUB.

The hashing algorithm is as follows:

1. The size of the logical name string is moved to a longword. This is the
base hash value.

2. Starting at the beginning of the string, four bytes are converted to up­
percase and XORed into the hash longword. The hash is then rotated by
nine bits to the left.

3. Step 2 is repeated with the next four bytes until there are fewer than four
bytes remaining in the string.

4. The remaining bytes are XORed into the hash longword, one byte at a
time. After each XOR, the hash is rotated by 13 bits.

5. The hash longword is then multiplied by an eight-digit hexadecimal
number 171279461161·

6. A number of high-order bytes in the hash longword are cleared against
the mask in LNMHSH$L_MASK.

1083

Logical Names

LNM$AL_HASHTBL:: Shareable Hash Table

rk MASK

] I
(reserved)

(res.) 1 TYPE 1 SIZE
r-1

LNMSHASHTBL
Process-Private Hash Table number of

L.[r MASK entries

CTL$GL_LNMHASH:: (reserved)
~1 J (res.) J TYPE I SIZE ~'

r-1
0

0 LNMB

'-- 0

--i-.
LNMPHASHTBL
number of
entries

35.5.4

1084

--I

LNMB LNMB LNMB

0
t......~ t......--+-- ~ '---'

Figure 35.5
Logical Name Hash Tables and Logical Name Blocks

The result is a number no larger than the number of entries in the hash
table minus 1. It is used as a longword index into the hash table. The
hash value for a logical name table name is stored in its field LNMX$W _
HASHVAL and used to speed up translation of table names.

Logical Name Table Name Cache Blocks

To speed up logical name translation, information about logical name tables
is cached. Every logical name translation entails translating a table name. If
the table name translates to another logical name or is a multivalued logical
name, iterative translation of multiple names may be required, as described
in Section 35.7.

A cache block records the result of a particular table name translation for
subsequent use. Figure 35.6 shows the layout of the logical name table cache
block.

A cache block contains the address of the LNMB of the table name in
field LNMC$L_ TBLADDR and addresses of up to 25 LNMTHs obtained from
translating that table name. As a fixed-size data structure, a cache block can
hold the addresses of only 25 LNMTHs. A table name that resolves to more

35.5 Logical Name Data Structures

CTL$GQ_LNMTBLCACHE::

FLINK "1 J
BLINK

CACHEINDX I TYPE I SIZE

TBLADDR

PROCDIRSEQ

SYSDIRSEQ
1-i

Address of LNMTH

Address of LNMTH

1-- 26 entries

1 0 J_
Figure 35.6
Layout of Logical Name Table Cache Block

than 25 table headers cannot be cached. As a table name is translated, table
header addresses are stored in its cache block.

If a particular logical name is located in a table whose name requir~s
iterative translation and the name's table is found before the table name
is exhaustively translated, the cache block contains valid but incomplete
data. The valid entries are followed by a zero longword. If the cache block
describes the complete translation of the table name, the valid entries are
followed by a longword containing -1. An incomplete list of table headers
can be extended during later resolutions of the logical table name that require
more translations. LNMC$B_CACHEINDX contains the index of the current
entry, the one most recently entered or examined.

Each time the contents of a logical name table directory change, the
sequence number associated with it is incremented. For example, when
a process-private logical name table is created or deleted, global location
CTL$GL_LNMDIRSEQ is incremented. It is also incremented if a logical
name in the process directory is changed, for example, through the definition
of an outer mode alias or the definition of a name that supersedes the old one.
The sequence number for the shareable directory, LNM$GL_SYSDIRSEQ, is
similarly incremented whenever the system directory is altered.

The cache block fields LNMC$L_PROCDIRSEQ and LNMC$L_SYSDIR­
SEQ record the sequence numbers of the process and system directories
current when a table name translation is cached. The fields are used as a
validity check on the cached LNMTH addresses. During translation: of that
table name, the cached sequence numbers are checked against the current
ones. The data cached in the block is valid only if both its sequence numbers
are current. If one of the sequence numbers is out-of-date, it is possible that
there have been changes in the directory contents that affect the cached
translations. ,

1085

Logical Names

35.5.5

Each process has its own cache with blocks for the most recently refer­
enced logical name table names. During process startup, EXE$PROCSTRT,
in module PROCSTRT, allocates cache blocks from the process allocation
region. It initializes and inserts them in a doubly linked list whose head is at
CTL$GQ_LNMTBLCACHE. The amount of space used for cache blocks is
approximately twice that used for the process hash table. Each cache block is
128 bytes. The number of cache blocks is related to the SYSGEN parameter
LNMPHASHTBL in the following way:

LNMPHASHTBL * 8
number_oLcache_blocks = 128

Synchronization of Access to the Logical Name Database

A single mutex named LNM$ALMUTEX provides synchronization to the
shareable logical name database. Chapter 8 describes the use of mutexes.

The $TRNLNM system service locks the mutex for read access. Multiple
processes can lock the mutex for concurrent read access and logical name
translation. The other logical name system services all modify the database
and therefore lock the mutex for write access, blocking any concurrent access
by another process.

35.6 SEARCHING FOR A LOGICAL NAME

1086

To search for a logical name, the $TRNLNM and $DELLNM logical name
system services invoke the routine LNM$SEARCHLOG, in module LNM­
SUB. LNM$SEARCHLOG invokes a number of other routines, some of
which are invoked directly from the $CRELNM system service.

LNM$SEARCHLOG must first hash the name in both logical name hash
tables to find out whether it exists. These hashes are independent of the
containing table and are performed to find out whether the logical name
has been defined at all. Because many file specifications are translated to
check whether they are logical names, attempted logical name translation is
most frequent. That is, most translations fail. The data structures and search
algorithm were designed to optimize the determination that a particular
string is not a logical name.

If LNM$SEARCHLOG determines that one or more names with a match­
ing logical name string exist, it must locate the first one whose containing
table and access mode match the routine's input arguments. This requires
that LNM$SEARCHLOG translate its input table name to one or more name
table header addresses.

LNM$SEARCHLOG takes the following steps:

1. It initializes a stack local data structure called a name translation block
(NT) to describe the state of the name translation.

35.6 Searching for a Logical Name

2. It then invokes LNM$PRESEARCH, in module LNMSUB, with the ad­
dress of the process-private hash table. If the current process is the swap­
per, which has no process-private logical names, LNM$SEARCHLOG
begins with the shareable logical name hash table.

LNM$PRESEARCH and its associated routines, all in module LNM­
SUB, take the following steps:

a. LNM$PRESEARCH invokes LNM$HASH to hash the logical name.
The resulting value is used as an index into the hash table. The hash
table entry located by the index is a listhead of LNMBs with that
hash value, a hash chain.

b. LNM$PRESEARCH invokes LNM$CONTSEARCH to search the
hash chain for one with a matching logical name.

c. Beginning with the first LNMB in the chain, LNM$CONTSEARCH
compares the length of the logical name with the length of the tar­
get logical name. Comparing logical name lengths eliminates the
overhead of a string comparison instruction that is bound to fail
if the lengths differ. If the logical name in the LNMB is shorter,
LNM$CONTSEARCH skips that LNMB and goes on to the next. M
the name in the LNMB is longer, the search has passed the possible
LNMBs, and the routine returns the error status SS$_NOLOGNAM.
If the names are the same length, the routine compares them.

d. If the names are identical, LNM$CONTSEARCH returns a success
status and the address of the LNMB with the matching name.

e. If the names differ, but the search is case-blind, one in which the
uppercase version of both names must be compared, LNM$CONT­
SEARCH converts the names one character at a time and compares
them. It continues converting and comparing until it reaches the end
of the names or a character comparison fails.

If it reaches the end of the names, the names are identical. It returns
a success status and the address of the LNMB with the matching
name.

f. If the search is not case-blind or the converted names differ, it tests
whether the name in the LNMB is alphabetically lower than the
target logical name. If it is higher, the search has passed the last
possible LNMB. LNM$CONTSEARCH returns the error status SS$_
NOLOGNAM to its invoker.

g. If the name is alphabetically lower, the routine continues the search
until it reaches the end of the hash chain, an LNMB containing a
name of a different length, an LNMB containing a name higher in
the sort sequence, or an LNMB with a matching name. In the first
three circumstances, LNM$CONTSEARCH returns the error status
SS$_NOLOGNAM to its invoker.

3. Regardless of the outcome, LNM$SEARCHLOG initializes a second data

1087

Logical Names

1088

structure and invokes LNM$PRESEARCH again, this time with the ad­
dress of the shareable hash table.

4. If there was no match in either hash table, LNM$SEARCHLOG returns
the error status SS$_NOLOGNAM to its invoker.

5. If at least one logical name matched in either hash table, LNM$SEARCH­
LOG must check whether the containing table and access mode also
match.

LNM$SEARCHLOG invokes LNM$SETUP to confirm that the target
logical name's table name exists and to initialize logical name table
processing. Section 35. 7 describes table name resolution in detail.

-If the table name does not exist, LNM$SETUP returns the error status
SS$_NOLOGNAM, which LNM$SEARCHLOG returns to its invoker.

-If the table name does exist, LNM$SETUP returns the address of the
first LNMTH to which the table name resolves. Recall that a table
name can be a multivalued logical name with equivalence names that
are themselves logical names.

6. LNM$SEARCHLOG invokes LNM$CONTSEARCH, this time with the
address of the containing table header.

7. Beginning at a point determined by the previous searches, LNM$CONT­
SEARCH scans the hash chain for a matching logical name. If the table is
shareable, LNM$CONTSEARCH looks in the shareable hash table chain;
otherwise, it checks the process-private one.

This time, however, when it finds a match, it also compares containing
table name addresses.

-If the LNMTH address in the hash chain LNMB is higher, the search
has failed, since LNMBs with the same logical name are ordered by
LNMTH address.

-If the LNMTH address is lower, LNM$CONTSEARCH goes on to the
next LNMB.

-If the LNMTH addresses match, the routine must also check the access
mode. If the LNMB access mode is greater (less privileged) than the
requested mode, it goes on to the next LNMB. If the LNMB mode is
equal to or less than the requested mode, the LNMB matches, and
LNM$CONTSEARCH returns a success status and the address of the
LNMB to LNM$SEARCHLOG.

8. If there is a matching logical name, LNM$SEARCHLOG returns the
success status SS$_NORMAL and the address of the target LNMB.

9. If there is no matching name in the first table, the next table to which
the table name resolves must be checked. LNM$SEARCHLOG invokes
LNM$TABLE to continue the table processing begun with the invocation
of LNM$SETUP. LNM$TABLE returns the address of the next LNMTH.
LNM$SEARCHLOG invokes LNM$CONTSEARCH again, as in step 6,
with that address.

35. 7 Logical Name Table Name Resolution

This sequence continues until the first matching logical name is found
or there are no more tables to check. If no match is found in any table,
LNM$SEARCHLOG returns the failure status SS$_NOLOGNAM to its
invoker.

System services other than logical name services, such as the $ASSIGN
system service, invoke the routine LNM$SEARCH_ONE. LNM$SEARCH_
ONE locks the logical name database mutex for read access. It invokes
LNM$SEARCHLOG to find the LNMB and extracts the translation with
index zero. It unlocks the mutex and returns to its invoker.

The SHOW LOGICAL utility builds an NT structure and invokes the
routines LNM$PRESEARCH and LNM$CONTSEARCH directly. In contrast
to the use of LNM$SEARCHLOG, where locating the first matching logical
name is sufficient, the utility must be able to generate every possible match.

35.7 LOGICAL NAME TABLE NAME RESOLUTION

To resolve a logical name table name, the logical name system services and
routines and the DCL SHOW LOGICAL command invoke either the routine
LNM$FIRSTTAB or the combination of LNM$SETUP and LNM$TABLEt
These three routines are all in module LNMSUB.

LNM$FIRSTTAB is called to return only the first table in the translation
of a table name. A typical use of it is to identify the table in which to create
a new logical name. LNM$FIRSTTAB itself invokes LNM$SETUP.

LNM$SETUP and LNM$TABLE perform iterative and potentially exhaus­
tive translations of a table name. LNM$SETUP is invoked first to initializ~
the search context and return the address of the first table header. Subse­
quently, LNM$TABLE is invoked again and again, to return the next table
header address, potentially until the table name has been exhaustively trans­
lated in a depth-first sequence.

When LNM$SETUP is entered, its invoker has allocated and partially
initialized a stack local data structure called a recursive table . translation
block (RT). Its fields include recursion depth, recursion tries, access mode
of the request, address of the associated table name cache block, and ten
longwords in which to maintain search context. The recursion depth is an
index into these ten longwords.

LNM$SETUP takes the following steps:

1. It initializes the recursion depth to zero and the number of remaining
recursion tries to 255.

2. It invokes LNM$LOOKUP to confirm that the table exists.
Invoking LNM$PRESEARCH, LNM$LOOKUP checks the process di­

rectory and, if that fails, the system directory for the starting table name.
Recall that all logical names involved in the translation of table names
must be contained in one of the two directories.

1089

Logical Names

1090

-If the table name does not exist, LNM$LOOKUP returns the error
status SS$_NOLOGNAM, which LNM$SETUP returns to its invoker.

-If the table name exists, LNM$LOOKUP returns the address of the
LNMB that defines it.

3. If the name exists, LNM$SETUP saves the address of its LNMB$T _
NAME field in the RT's top search context longword as the starting
point of the translation.

4. It then scans for a valid table name cache block describing this table
name.

-If one is found, its cache entries contain the addresses of some jpossibly
all) of the table headers to which the table name resolves.

-If a valid table name cache block is not found, the least recently used
one is selected for reuse and initialized. Its first cache entry is cleared
to .indicate that it contains no valid entries.

5. LNM$SETUP saves the address of the cache block in the RT structure. It
initializes the cache block index to -1 to indicate no cache entries have
been examined yet and enters the routine LNM$TABLE.

Each time LNM$TABLE is entered to resolve the table name, it increments
the cache index. It then checks whether the index selects a valid entry, one
whose value is nonzero.

• If the longword is nonzero, LNM$TABLE returns it as the address of the
next table header to its invoker.

• If the longword is zero, the valid cached data has been exhausted. In that
case, LNM$TABLE invokes LNM$TABLE_SRCH to expand the resolution
of the table name and add entries to the end of the cache block.

LNM$TABLE_SRCH contains the fundamental recursion loop in resolving
a table name. It uses the RT data structure to keep track of the breadth and
depth of its position in resolving the table name.

At the beginning of the loop, it decrements the number of remaining
recursion tries. If none is left, LNM$TABLE_SRCH returns the error status
SS$_ TOOMANYLNAM to its invoker. This check prevents the code, for
example, from looping endlessly trying to resolve a circular logical name
table definition.

LNM$TABLE_SRCH examines the next equivalence name at the current
recursion depth to determine what to do. There are several possibilities:

a. If the equivalence name is an ordinary string, LNM$TABLE_SRCH up­
dates the contents in the stack longword to point to the equivalence
name following it.

b. It tests that the maximum recursion depth (10) has not been exceeded. If

35. 7 Logical Name Table Name Resolution

LNM$FILE_DEV ~ LNM$PROCESS __ c_ LNM$JOB __ c __ LNM$GROUP __ c_ LNM$SYSTEM

shareable

4jb . process-private

LNM$PROCESS_ TABLE LNM$JOB_803B9020 LNM$GROUP _000200 LNM$SYSTEM_ TABLE

'l =~P'w• '1 =..-. '1 :_.. 9 l =.

LNMTH LNMTH LNMTH LNMTH

Figure 35.7
Example Resolution of a Logical Name Table Name

the depth has been exceeded, LNM$TABLE_SRCH returns the error SS$_
TOOMANYLNAM.

Otherwise, it increments the recursion depth and invokes the routine
LNM$LOOKUP to find the LNMB associated with the string. It positions
to the name string in the LNMX and examines its equivalence name,
beginning the loop again.

c. If there are no more equivalence names, LNM$TABLE_SRCH decrements
the recursion depth and selects the corresponding RT search longword.
It begins the loop again.

d. If the equivalence name is a table header (desired result), LNM$TABLE_
SRCH decrements the recursion depth and returns the address of the
table header to its invoker.

Figure 35. 7 is an example showing complete resolution of the logical name
LNM$FILE_DEV. The first step is translating LNM$FILE_DEV, a shareable
name found in the system directory with four equivalence names. The sec­
ond step is translating the "leftmost" equivalence name, LNM$PROCESS.
It is a process-private name whose equivalence name is LNM$PROCESS_
TABLE. The third step translates LNM$PROCESS_ TABLE to its equivalence
name, the first table header for LNM$FILE_OEV.

In the figure, the numbers indicate the sequence of translations. The let­
ters on each step correspond to the possible actions in the recursion loop
previously listed.

In this example, each equivalence name of LNM$FILE_DEV is translated
as deeply as required to reach a table header. In practice, during logical
name translation or deletion, table name resolution stops as soon as the first
table that contains the logical name is found. During logical name creation,
table resolution stops with the first table, in this example, LNM$PROCESS_
TABLE.

1091

Logical Names

35.8 LOGICAL NAME SYSTEM SERVICES

35.8.1

1092

The logical name system service procedures all run in kernel mode. The pro­
cedures themselves are in the module SYSLNM. Logical name subroutines
that they use are in module LNMSUB.

Before describing the specific system service procedures, this section de­
scribes some checks common to the services.

Privilege and Protection Checks

Each of the system services has an access mode argument. If the requestor
explicitly specifies it and has the privilege SYSNAM, the desired access mode
is used with no further check. If the requestor specifies it but does not have
the privilege, the access mode is maximized with the mode from which the
system service was requested. That is, the less privileged of the two is used.

Any string argument passed to the services must be probed to test acces­
sibility from the mode of the system service requestor. An input string is
tested for read accessibility and an output string for write accessibility. An
item list must be probed for read accessibility and each buffer in it must also
be probed.

The logical name system services must check a process's access to a
shareable table. IA process always has access to a process-private table, al­
though it may be constrained by access mode considerations.) The system
services use standard VMS protection checks. That is, they invoke the rou­
tine LNM$CHECK_PROT, which calls an internal entry point of the Check
Access Protection ($CHKPROJ system service.

The $CHKPRO system service determines whether the process, given
its rights and privileges, can access the table. The system service's checks
encompass the process UIC, the protection mask of the table, any ACLs
defined for the table, and whether the process has any of the following
privileges:

SYSPRV
GRPPRV
BYPASS
READ ALL

If the $CHKPRO system service returns a failure status, LNM$CHECK_
PROT makes two checks of its own to provide compatibility with earlier
versions of VMS. If the intended access is read or write, LNM$CHECIL
PROT tests whether the table of interest is either a group table or the system
table. If this is the group table and the process has the privilege GRPNAM, its
access is allowed. If this is the system table and the process has the privilege
SYSNAM, its access is allowed.

35.8.2

35.8.3

35.8 Logical Name System Services

Logical Name Translation

The $TRNLNM system service procedure, EXE$TRNLNM, takes the fol­
lowing steps to translate a logical name:

1. It first confirms the presence and accessibility of its required arguments:
descriptors for the logical name string and name of its containing table.

2. It locks the logical name database mutex for read access.
3. It invokes LNM$SEARCHLOG to locate the first logical name that meets

the table name and access mode constraints, as described in Section 35.6.
If LNM$SEARCHLOG returns the error status SS$_NOLOGNAM, in­

dicating that the logical name does not exist, EXE$TRNLNM unlocks
the logical name database mutex and passes the error status back to its
requestor.

4. If the logical name exists, LNM$SEARCHLOG returns the address of the
LNMB of the first matching logical name.

EXE$TRNLNM examines its address to determine whether it is a
process-private or a shareable name.

5. If the name is shareable (a system space LNMB), EXE$TRNLNM in­
vokes LNM$CHECK_PROT to determine whether the process has read
access to the containing table. If the process does not have access,
EXE$TRNLNM unlocks the logical name database. mutex and returns
the error status SS$_NOPRIV to its requestor.

6. If the name is a process-private one or a shareable one to whose table
the process has access, EXE$TRNLNM processes the item list, which
contains the list of specific information to be returned. EXE$TRNLNM
probes any specified output buffers for write access and copies informa­
tion from the LNMB, its LNMXs, and the LNMTH of its containing table,
as requested.

7. EXE$TRNLNM then unlocks the logical name database mutex and re­
turns to its requestor.

If there was insufficient space in the output buffers for all requested in­
formation, EXE$TRNLNM returns the success status SS$_BUFFEROVF.
Otherwise, it returns the success status SS$_NORMAL.

Logical Name Creation

The $CRELNM system service procedure, EXE$CRELNM, takes the follow­
ing steps to create a logical name:

1. It confirms the presence of its required arguments: the descriptors for the
logical name string and the name of its containing table.

2. If the requestor specified the address of an item list containing equiva­
lence strings and their attributes, EXE$CRELNM scans the list to deter­
mine their cumulative size. The item list is not a required argument, but

1093

Logical Names

1094

there is little purpose served in creating a logical name with no transla­
tions, other than perhaps the creation of a logical name whose existence
or nonexistence serves as an on-off flag.

3. EXE$CRELNM raises interrupt priority level (IPL) to 2 and allocates
enough paged pool for the LNMB and all its LNMXs. The assumption is
that the logical name is shareable and will thus require paged pool rather
than space in the process allocation region. Until the containing table is
located, EXE$CRELNM cannot determine whether the name is process­
private or shareable. If there is insufficient paged pool, EXE$CRELNM
returns the error status SS$_INSFMEM to its caller.

4. EXE$CRELNM then locks the logical name database mutex for write
access and invokes LNM$FIRSTTAB (see Section 35.7) to translate the
name of the containing logical name table. A new logical name is always
created in the first table of a table name search list.

If LNM$FIRSTTAB returns the error status SS$_NOLOGTAB to indi­
cate that the containing table name did not translate to any existing table,
EXE$CRELNM unlocks the logical name database mutex and deallocates
the paged pool. It returns the error status to its requestor.

5. If the search is successful, LNM$FIRSTTAB returns the address of the
containing table's LNMTH. EXE$CRELNM examines a flag in the
LNMTH to determine whether it is a shareable table.

-If the table is process-private, EXE$CRELNM deallocates the paged
pool and allocates the same amount from the process allocation re­
gion. If there is insufficient process allocation region, EXE$CRELNM
unlocks the mutex and returns the error status SS$_INSFMEM to its
requestor.

-If the table is shareable, EXE$CRELNM invokes LNM$CHECILPROT
to determine whether the process has write access to the containing
table (see Section 35.3). If the process does not have access, EXE$CRE­
LNM unlocks the mutex, deallocates the pool, and returns the error
status SS$_NOPRN to its requestor.

6. If the table is process-private or a shareable one to which the process
has access, EXE$CRELNM then checks that there is sufficient quota for
the LNMB in the table that holds the quota for the. containing table
(LNMTH$L_QTABLE). If there is not, EXE$CRELNM deallocates the
pool, unlocks the mutex, and returns the error status SS$_EXLNM­
QUOTA to its requestor.

7. EXE$CRELNM then begins to fill in the LNMB. If the containing table
is one of the directories, EXE$CRELNM tests that the length of the
logical name string is less than 32 characters and that it contains no
characters other than those allowed for logical names contained in a
directory. (Note that if a logical name is being created that is not a table
name but whose containing table is one of the directories, it must meet

35.8.4

35.8 Logical Name System Services

those same requirements.) If the logical name string does not meet those
requirements, EXE$CRELNM deallocates the pool, unlocks the mutex,
and returns the error status SS$_IVLOGNAM to its requestor.

8. EXE$CRELNM copies the logical' name string to the LNMB. It then
begins processing the item list, building LNMXs as specified by the
requestor.

9. EXE$CRELNM invokes LNM$INSLOGTAB to insert the LNMB into the
logical name database.

LNM$INSLOGTAB scans any LNMBs with the same name and con­
taining table until there are no more or it encounters one with a more
privileged access mode. It compares their access modes to that of the
logical name being created and examines the NO_ALIAS attribute of the
new name to determine what to do:

-If an LNMB has the same access mode, the old LNMB is deleted and
superseded by the new one.

-If one has a more privileged mode and the NO_ALIAS attribute, the
new logical name cannot be inserted. LNM$INSLOGTAB returns the
error status SS$_DUPLNAM to EXE$CRELNM. EXE$CRELNM deal­
locates the LNMB to pool, unlocks the mutex, and returns the error
status to its requestor.

-If there is one with a more privileged mode and without the NO_ALIAS
attribute, the new logical name can be created.

-If one or more is found with a less privileged mode and the new name
has the NO_ALIAS attribute, the outer mode logical names are deleted
and the new one is inserted. Section 35.8.5 describes the possible side
effects of logical name deletion.

LNM$INSLOGTAB charges the size of the LNMB against the contain­
ing table's quota holder. If the containing table is a directory,
LNM$INSLOGTAB increments the appropriate directory sequence num­
ber as part of the cache invalidation mechanism. Section 35.5.4 describes
the use of logical name caches.

10. If the containing table is a directory, EXE$CRELNM computes and stores
a hash value for each of the equivalence names of the newly created logi­
cal name. The assumption behind this is that the logical name translates
to one or more name table names, whose hash values will be needed
whenever a table search involving this name is performed.

11. EXE$CRELNM unlocks the mutex and returns to its requestor.

Logical Name Table Creation

The $CRELNT system service procedure, EXE$CRELNT, takes the following
steps to create a logical name table:

1095

Logical Names

1096

1. It confirms the presence and accessibility of the descriptor for the name
of the parent table, its one required argument.

2. If the requestor omits the name of the table to be created, EXE$CRELNT
supplies a default name. The form of default name is LNM$xxxxxxxx­
eeeeeeee, where xxxxxxxx is the address of the LNMB of the table and
eeeeeeee is the process's extended process ID (EPIDJ. Using a default table
name ensures that the name of a table does not conflict with any other
defined table.

3. EXE$CRELNT raises IPL to 2 and allocates enough paged pool for the
LNMB, its single LNMX and LNMTH, the trailer byte flagging the end of
translations, and an ORB. The assumption is that the logical name table
is shareable and thus requires paged pool rather than process allocation
region space. Until the parent table is located, EXE$CRELNT cannot
determine whether the new table is process-private or shareable.

4. EXE$CRELNT then locks the logical name database for write access and
invokes LNM$FIRSTTAB (see Section 35.7) to translate the name of the
parent logical name table. If the parent table is a table name search list,
its first table name becomes the parent of the new table.

If LNM$FIRSTTAB returns the error status SS$_NOLOGTAB to indi­
cate that the parent table name does not translate to any existing table,
EXE$CRELNT unlocks the logical name database mutex and deallocates
the paged pool. It returns the error status to its requestor.

5. If the parent table name does translate, LNM$FIRSTTAB returns the
address of the parent table's LNMTH.

-If the parent table is process-private, EXE$CRELNT deallocates the
paged pool and allocates space from the process allocation region.
The process allocation does not include 'space for the ORB, because
a process-private table does not need an ORB.

-If the parent table is shareable, EXE$CRELNT calls LNM$CHECK_
PROT to determine whether the process has enable access to the parent
table and can thus withdraw quota from it. If the process does not have
access, EXE$CRELNT deallocates the pool, unlocks the mutex, and
returns the error status SS$_NOPRN to its requestor.

If the parent table is shareable and the process specified the name
of the table to be created, EXE$CRELNT checks whether the process
has write access to the system directory. If a default table name was
constructed, the process does not need write access to the system
directory. On error, EXE$CRELNT deallocates the pool, unlocks the
mutex, and returns the error status SS$_NOPRN to its requestor.

6. EXE$CRELNT checks that there is sufficient quota for the table name
(its LNMB, LNMX, and LNMTHJ in the directory table. If a quota for the
new table was specified, then it also checks that the parent table's quota
holder has sufficient quota for the names that will be contained in the

35.8 Logical Name System Services

new table. If it does not, EXE$CRELNT deallocates the pool, unlocks the
mutex, and returns the error status SS$_EXLNMQUOTA to its requestor.

7. If there is sufficient quota, EXE$CRELNT fills in the LNMB and transla­
tion blocks. If the requestor specified the name of the table to be created,
EXE$CRELNT tests that it is a legal table name. If the table is shareable,
EXE$CRELNT initializes its ORB.

8. EXE$CRELNT then invokes LNM$INSLOGTAB to insert the LNMB into
the logical name database.

LNM$INSLOGTAB scans all LNMBs with the same name and con­
taining table until there are no more or it encounters one with a more
privileged access mode. Its actions depend on the NO_ALIAS attribute
of the new name and any old ones, the access modes of the new and old
names, and the presence or. absence of the CREATE_IF ATIR argument.
The CREATE_IF attribute means that the table should be created only if
there is not already one with the same name and access mode.

-If there is an LNMB with the same access mode and CREATE_IF was
not specified, the old LNMB is deleted and superseded by the new one.
Deleting an LNMB whose equivalence name is an LNMTH means
that all the logical names contained in that table must be deleted. Any
descendant tables and their logical names must also be deleted.

-If there is an LNMB with the same access mode and CREATE_IF
was specified, LNM$INSLOGTAB. returns the status SS$_NORMAL
and the address of the old LNMB. EXE$CRELNT deallocates the new
LNMB to pool.

-If there is an LNMB with a more privileged mode and the NO_ALIAS
attribute, the new LNMB cannot be inserted. LNM$INSLOGTAB re­
turns the error status SS$_DUPLNAM to EXE$CRELNT, which deal­
locates the new LNMB to pool.

-If there is an LNMB with a more privileged mode and without the
NO_ALIAS attribute, LNM$INSLOGTAB can insert the new LNMB.
It returns the status SS$_LNMCREATED.

-If one or more LNMBs are found with a less privileged mode and the
new name has the NO_ALIAS attribute, the outer mode LNMBs are
deleted. The new LNMB is inserted. LNM$1NSLOGTAB returns the
status SS$_SUPERSEDE.

To insert the new LNMB (and its table), LNM$INSLOGTAB inserts
the LNMB into the hash chain and the LNMTH into the name table
hierarchy as the first child of its parent table. If there already was one,
LNM$INSLOGTAB stores the address of its LNMTH in the new table's
LNMTH$1-SIBLING. If this table is to be its own quota holder, quota
is withdrawn from the parent's quota holder and allocated to the new
table. Otherwise, the table's LNMTH$L_QTABLE is set to the same value
as that of its parent table. Quota for the table's LNMB is withdrawn

1097

Logical Names

35.8.5

1098

from the appropriate directory table. LNM$INSLOGTAB increments the
appropriate directory sequence number.

9. EXE$CRELNT unlocks the logical name database mutex and returns to
its requestor, passing back the status from LNM$INSLOGTAB, and, if
requested, the name of the newly created table.

Logical Name Deletion

The $DELLNM system service procedure, EXE$DELLNM, takes the follow­
ing steps to delete ~ logical name:

1. It confirms the presence of the descriptor for the name of the table
containing the names to be deleted, its one required argument.

The LOGNAM argument is the logical name to be deleted; it can be a
logical name table name. The absence of the logical name argument is a
request to delete all the table's logical names with access mode equally
or less privileged than that of the request.

2. EXE$DELLNM raises IPL to 2 and locks the logical name database mutex
for write access.

3. If the requestor requested deletion of a particular logical name, EXE$DEL­
LNM invokes LNM$SEARCHLOG, described in Section 35.6, to deter­
mine whether the name exists. If the name is not found or if its access
mode is more privileged than that of the service request, EXE$DELLNM
unlocks the mutex and returns the error status SS$_NOLOGNAM to its
requestor.

4. If the name found is shareable, EXE$DELLNM invokes LNM$CHECK_
PROT to ensure that the requestor has write access to the containing
logical name table. If the requestor does not, but the name being deleted
is a table name, delete access to the table being deleted is sufficient.

If the requestor does not have access, EXE$DELLNM unlocks the mu­
tex and returns the error status SS$_NOPRN to its requestor.

5. EXE$DELLNM invokes LNM$DELETE_LNMB to remove the logical
name and any of i~s outer access mode aliases from the database. If the
name is not the name of a table, deleting it is straightforward and consists
of the following steps for each alias:

a. Remove the LNMB and those of any outer mode aliases from the
hash chain.

b. Return the quota charged for them.
c. Deallocate them to the process allocation region or paged pool.

If, however, the LNMB is a table name, deleting it also requires deleting
each LNMB contained within it, and any descendant tables and their
logical names. LNM$DELETE_LNMB removes the LNMB from its hash
chain and inserts it into a holding list. It then invokes a routine called
DELETE_ TABLE to delete the table.

35.8 Logical Name System Services

DELETE_ TABLE examines the table header to determine whether this
table has any descendants. If it does, DELETE_ TABLE finds the first
one, removes it from its hash chain, inserts it into the holding list, and
branches back to itself. DELETE_ TABLE is now one level lower in the
logical name table hierarchy. It continues recursively, until it reaches a
childless level.

It then invokes DELETE_NAMES to delete all the logical names in that
table. This requires scanning the appropriate hash table and examining
each LNMB to see whether it is contained within the table. Each such
LNMB is removed from its hash chain and deallocated to its pool, with
quota returned to the containing table. If the table is shareable, the LNMB
is deallocated to paged pool. Otherwise, it is deallocated to the process
allocation region. DELETE_NAMES checks that the NODELETE flag is
clear in each LNMB before deleting it, to ensure that it does not delete
either directory table.

After all its names are deleted, the table is then removed from the table
hierarchy, its table quota is returned to its quota holder, and the LNMB
quota is returned to the appropriate directory. The appropriate directory
sequence number is incremented and the LNMB deallocated to its pool.

DELETE_ TABLE then processes the first LNMB in the holding list, the
parent of the one just deleted. DELETE_ TABLE examines the table header
of that LNMB to see whether it still has descendants. If it does not, then
all the logical names in that table and the table itself are deleted. If it still
has descendants, DELETE_ TABLE places the LNMB for the first child
into the holding list and branches back to itself. Eventually, DELETE_
TABLE empties the holding list and returns.

6. EXE$DELLNM unlocks the mutex and returns to its requestor.

If EXE$DELLNM is called without the logical name argument, it invokes
LNM$FIRSTTAB to find the first table header to which the table name
resolves. If the table is shareable, it invokes LNM$CHECK_PROT to confirm
that the process has delete access to the table or write access to the directory.
DELETE_NAMES is invoked to delete all the names in that table.

As described previously, it scans the appropriate hash table, looking for
LNMBs with a matching table header address and an access mode equally or
less privileged than that of the delete request. Each such LNMB is removed
from the hash chain, its quota is returned, and it is deallocated to pool.

When all the names of suitable access mode in that table are deleted,
EXE$DELLNM unlocks the mutex and returns to its requestor.

When an image exits, the Rundown Image ($RUNDWN) system service
must delete all process-private logical names with an access mode less or
equally privileged to the exit mode.

The $RUNDWN system service invokes the routine LNM$DELETE_
HASH, specifying the exit access mode and the address of the process-private

1099

Logical Names

hash table. LNM$DELETE_HASH locks the logical name table mutex and
invokes DELETE_NAMES with the address of the hash table. Many of its
logical names, of course, are names of tables. Deleting each of them requires
the steps previously described to delete a table, its descendant tables, and
its logical names. When all the names are deleted, LNM$DELETE_HASH
unlocks the mutex and returns to the $RUNDWN system service, whose
details are described in Chapter 26.

35.9 SUPERSEDED LOGICAL NAME SYSTEM SERVICES

1100

The current logical name system services supersede several system services
from VMS Version 3 and earlier versions:

• Create logical name ($CRELOG)
•Delete logical name ($DELLOG)
• Translate logical name ($TRNLOG)

VMS supports these services to provide upward compatibility for software
written for earlier versions. Table 35.3 shows the correspondence between
the table numbers used in earlier versions and the table names that currently
implement them. Table 35.2 shows the translation of those table names.

It is possible for users of the superseded logical name system services
to make some use of current features without reprogramming. By defining
aliases to the table names used by these system services, a process can access
tables other than the standard process, group, and system logical name tables.
In fact, VMS defines the name LOG$PROCESS to equate to both the process
and jobwide logical name tables. This enables translation of logical names
within the jobwide logical name table by default.

The superseded system service procedures are in module SYSLOGNAM
and are mode-of-caller services. Each service confirms that the minimum
number of arguments expected is present and that the argument list is
accessible. Each service then transforms its argument list and invokes the
equivalent replacement system service.

The arguments for each superseded service include access mode and table
number. Each service checks that its table number argument is valid and
converts it to the corresponding logical name table name. Table 35.3 shows
this correspondence and also the access mode associated with each table.

For the process table, any access mode specified by the requestor is used.
If the argument is omitted, the requestor's access mode is used. The access
mode is passed as an argument to the replacement logical name system
service, which checks that the process has suitable privileges.

The following paragraphs supply a few specific additional details about the
implementation of the $CRELOG and $TRNLOG system services.

A name created with the $CRELOG system service has only one transla­
tion, the equivalence name supplied to $CRELOG. The logical name has the
CRELOG attribute. The equivalence name is assigned translation index 0.

35.9 Superseded Logical Name System Services

Table 35.3 Correspondence Between Table Numbers
and Logical Name Table Names

Table Number
0
1
2

Table Name
LOG$SYSTEM
LOG$GROUP
LOG$PROCESS

Access Mode

Executive
User
Mode of caller

If the equivalence name begins with a leading underscore, the underscore is
removed and the equivalence name has the TERMINAL attribute.

The $TRNLOG system service returns translation number 0 of the speci­
fied logical name. If the translation has the TERMINAL attribute, $TRNLOG
prefixes an underscore to the equivalence name. This manipulation enables
most logical names, including file names, to be created and used through
either the old or new system services.

Two arguments to the $TRNLOG system service control its actions: the
TABLE and DSBMSK arguments. The TABLE argument is the address to receive
the translation table number. The DSBMSK argument specifies which subset
of the process, group, and system tables is to be searched. (The mask is a
disable mask; by identifying which tables to omit, it indirectly identifies
those to be searched.)

If the TABLE argument is zero, EXE$TRNLOG transforms the DSBMSK ar­
gument into a table name search list with the names of the tables to be
searched. It selects one of the logical name table names whose name begins
with the string TRNLOG$. It requests the $TRNLNM system service and
transforms its return arguments into forms compatible with the Version 3
interface.

A nonzero TABLE argument means that EXE$TRNLOG must return the
number of the containing table. To determine the table, EXE$TRNLOG
requests the $TRNLNM system service once for each table to be searched,
until the logical name is found or the end of the table subset is reached.

1101

36 Miscellaneous System Services

... Of shoes-and ships-and sealing wax-
0£ cabbages-and kings-
And why the sea is boiling hot­
And whether pigs have wings.

Lewis Carroll, Through the Looking Glass

This chapter briefly discusses a number of system services not mentioned in
the previous chapters. Although these services do not generally make exten­
sive use of the internal structures and mechanisms of the VMS executive,
some of their descriptions are provided as an informational aid to users of the
services and for completeness. The VMS System Services Reference Manual
contains detailed discussions of these services and their arguments, return
status codes, required process privileges, and options.

36.1 COMMUNICATION WITH SYSTEM PROCESSES

36.1.1

1102

VMS performs some of the operations often associated with an operating
system from independent processes rather than from code in the system
base image or loadable .executive images. Examples of this type of system
activity include the following:

• Managing print and batch jobs and queues
• Gathering accounting information about utilization of system resources
• Communicating with one or more system operators
• Reporting device errors

Services Supported by the Job Controller

The job controller is a system process named JOB_CONTROL, which ex­
ecutes the image JOBCTL.EXE. The job controller supports several system
services. It performs many different functions, including the following:

• As the queue manager of the batch/print subsystem, the job controller
is responsible for all transactions to and from the queue file, typically
SYS$SYSTEM:JBCSYSQUE.DAT. On a VAXcluster system, the job con­
trollers running on every node can access a single, common queue file.
These transactions include the creation and deletion of queues, and the
creation, modification, and dispatching of batch and print jobs.

To manage print jobs, the job controller directs the activity of one or
more print sym}:,iont processes. A print symbiont process executes a stan­
dard image supplied with VMS, such as PRTSMB.EXE or LATSMB.EXE, an
image supplied with a VMS layered product, or a user-written image that
links with SMBSRVSHR.EXE.

36.1.1.1

36.1 Communication with System Processes

• As the system accounting manager, the job controller records the use
of system resources in the file SYS$SYSTEM:ACCOUNTNG.DAT. On a
VAXcluster system, each job controller accesses anode-specific accounting
file .

• As the job manager, the job controller directs the creation of interactive
and batch processes.

-To create an interactive process, the job controller initiates a detached
process running the image LOGINOUT.EXE in response to unsolicited
terminal input.

-To schedule a batch job to run from an execution queue, it creates a
process runp.ing the image LOGINOUT.EXE. The new process makes a
special job controller request to receive its job parameters.

-In response to unsolicited card reader input, the job controller creates
an input symbiont process, 'running the image INPSMB.EXE. The input
symbiont reads the card deck and submits a batch job.

Chapter 13 describes the job controller's actions as the job manager.

The job controller communicates with other processes on the system
through mailbox ~messages. It receives messages as the result of system ser­
vice requests, notification of process deletion, and messages from print sym­
bionts, the terminal driver, and the card reader driver. The job controller
sends messages to print symbionts and batch processes during login. Chap­
ter 23 provides more details about the job controller's mailbox.

Several VMS system services, described in the following sections, enable
processes to communicate with the job controller in its roles as queue man­
ager and accounting manager:

• Send Message to Job Controller ($SNDJBC[W])
• Get Queue Information ($GETQUI[W]) .
• Send Message to Acc<>unt Manager .($SNDACC, obsolete since VMS Ver­

sion 4)
• Send Message to ·Symbiont Manager ($SNDSMB, obsolete since VMS Ver­

sion 4)

$SNDJBC Systen:iService. The $SNDJBC[W} system service requests that
the job controller create, stop, or manage queues and· the batch and print
jobs in those queues. In addition, it issues requests to turn accounting on
and off.

The $SNDJBC system servfoe makes requests of the job controlle:r by
'Writing messages into its mailbox. A user typically requests the $SNDJBC
system service mdirectly :thnlugh Digital command language (DCLJ com­
mands, for example, PRINT,'StmMIT, INITIALIZE/QUEUE, STOP/QUEUE,
and DELETE/QUEUE.'The arguments to the $SNDJBC system service in­
clude the following:

1103

Miscellaneous System Services

1104

• The event flag number to set when the request completes
• The function code specifying which function $SNDJBC is to perform
• A place-holding null argument
• The address of an item list, each entry of which includes an item code

appropriate for the function code, the size and address of a buffer to re­
ceive information from $SNDJBC or pass information to $SNDJBC, and a
location to store the size of information returned from $SNDJBC

• An 1/0 status block (IOSB) to receive final status information
• The entry point and parameter for an asynchronous system trap (AST)

procedure to call when the request completes

The $SNDJBC system service procedure, EXE$SNDJBC in module SYS­
SNDJBC, executes in executive mode. It performs the following operations:

1. EXE$SNDJBC checks the IOSB, if specified, for write access. It clears the
IOSB.

2. It validates the function code specified in the $SNDJBC argument list.
3. It allocates a message buffer on the current stack, the executive mode

stack.
4. EXE$SNDJBC checks each item in the item list for correctness: its item

code must be valid; its buffer descriptor and buffer must be readable
or writable as appropriate. It checks each specified file for appropriate
protection. It stores the following information in the message buffer,
using code common to the $GETQUI system service:

-Items in the item list
-Function code
-Address of the AST procedure and parameter
-IOSB address
-Event flag number
-Image counter (PHD$L_IMGCNT)
-System time (EXE$GQ_SYSTIME)
-Terminal name of the requesting process (PCB$T _TERMINAL)
-Extended owner process ID (PCB$1-EOWNER)
-Process status longword (PCB$1-STS)
-Extended process ID (PCB$L_EPID)
-Access mode of system service requestor
-Process base priority (PCB$B_PRIB)
-Process user name and account name (CTL$T_USERNAME, CTL$T_

ACCOUNT)
-Longword reserved for the access rights block (ARB) address
-Message type, in this case MSG$_SNDJBC

5. This common code requests the Change to Kernel Mode ($CMKRNL)
system service. The kernel mode procedure called performs the following
operations:

36.1.1.2

36.1 Communication v.ri.th System Processes

a. It clears the specified eveht flag.
b. The procedure checks arid charges the process's AST quota if AST no­

tification is requested. If the AST quota is insufficient, EXE$SNDJBC
returns the status SS$_EXASTLM and does not queue the message to
the job controller.

c. After raising interrupt priority level (IPL) ico 2, the procedure invokes
EXE$COPY _ARB, in module IMPERSONATE, to create a private
copy of the ARB. It stores the address of this ARB in the longword
reserved in step 4.

d. The procedure invokes EXE$SENDMSG, in module SYSSNDMSG,
which writes the message buffer to the job controller mailbox, whose
address is in SYS$AR_JOBCTLMB.

Many system services that communicate with system processes in­
voke EXE$SENDMSG. EXE$SENDMSG verifies that the target mail­
box has a process reading messages written to the mailbox. It raises
IPL to 2 and sets a flag in the process header (PHD) to block swap­
per trimming and automatic working set limit adjustment that could
perturb the working set. It faults the message, still on the execu­
tive stack, into the process's working set. It then invokes EXE$WRT­
MAILBOX, part of the mailbox device driver, to perform the I/O oper­
ation. Because EXE$WRTMAl1LBOX runs at IPL$_MAILBOX, IPL 11,
the pages containing the mr.::ssage must be valid; page faults are
not allowed at IPLs above 2. When EXE$WRTMAILBOX returns,
EXE$SENDMSG clears the J?HD flag.

Chapter 23 describes the operation of EXE$WRTMAILBOX.

6. The asynchronous form of the. system service, $SNDJBC, returns to the
requestor. The requestor can .either wait for the information to be re­
turned or continue processing,. The synchronous form of the system ser­
vice, $SNDJBCW, waits for the event flag associated with the request
to be set and status to be returned. See Chapter 6 for more information
concerning synchronous and ,asynchronous system services.

Section 36.1.1.4 describes how information is returned to the user.

$GETQUI System Service. The $GETQUI[W] system service obtains infor­
mation about the queues and jobs initiated and managed by the job con­
troller. The $GETQUI system service shares common code with the $SND­
JBC system service, described in Section 36.1.1.1, and thus performs the
same operations. The minor difference is that $GETQUI messages have a
message type of MSG$_GETQUI. DCL commands such as SHOW QUEUE
and SHOW ENTRY request the $GETQUI service to obtain information for
the user.

Section 36.1.1.4 describes how the $SNDJBC and $GETQUI system ser­
vices return information to the user.

1105

Miscellaneous System Services

36.1.1.3

36.1.1.4

36.1.2

1106

$GETQUI Wildcard Support. A $GETQUI request causes the job controller
to create a $GETQUI context block (GQC) in which it stores the requestor's
context information. The job controller maintains a linked list of GQCs in
its process space. Unless the $GETQUI request specifies wildcard mode, the
job controller deallocates the GQC when the service completes.

The job controller maintains a linked list of GQCs, and locates a process's
GQC by an offset containing the requestor process ID (PID). The GQC
describes the current wildcard context. The VMS System Services Reference
Manual describes wildc.ard mode and its use.

$SNOJBC and $GETQUI Special Kernel AST. The job controller queues a
special kernel AST to the process when its request completes. An extended
AST control block (ACB) describes the AST. The ACB contains any data re­
quested by the process, plus information about the amount of data to return
and where to store the data. The special kernel AST routine, EXE$JBCRSP
in module SYSSNDJBC, uses this information to return status and any re­
quested data from the $SNDJBC and $GETQUI services to the process. Chap­
ter 7 describes the implementation of special kernel ASTs.

EXE$JBCRSP first tests that the process is still executing the image that
requested the system service. It compares the process's current PHD$L_
IMGCNT against its value at the time of the service request. At each image
rundown, PHD$L_IMGCNT is incremented, as described in Chapter 26. If
the two values are different, the process is executing a different image. Thus,
addresses from the previous image,, such as that of the AST procedure or
IOSB, are no longer valid. In this case, EXE$JBCRSP deallocates the extended
ACB, returning AST quota to the process, if appropriate, and returns.

If the process is still executing the image that requested the system service,
EXE$JBCRSP completes the request through the following actions:

1. It sets the specified event flag by invoking routine SCH$POSTEF with a
null priority class increment (see Chapters 12 and 13).

2. It stores a status value in the IOSB. if specified.
3. It stores data in any output buffer items from the original request.
4. If the user did not request AST notification, EXE$JBCRSP deallocates the

ACB and returns.
5. If the user requested AST notification, EXE$JBCRSP invokes SCH$QAST

to queue the ACB as a completion AST and returns.

Superseded System Services

The $SNDJBC system service supersedes two system services from versions
of VMS prior to Version 4:

• Send Message to Accounting Manager ($SNDACC)
• Send Message to Symbiont Manager ($SNDSMB)

36.1.2.1

36.1 Communication with System Processes

All functions provided by these services are available through $SNDJBC,
which is the recommended interface. VMS Version 5.2 supports these ser­
vices only for compatibility with earlier versions.

$SNDACC System Service. The $SNDACC system service sends requests to
the accounting manager through the job controller's mailbox. A user requests
the $SNDACC service to request actions normally available through the
DCL command SET ACCOUNTING and to send messages directly to the
accounting manager.

The $SNDACC system service procedure, EXE$SNDACC in module SYS­
SNDMSG, runs in executive and kernel modes. It performs the following
operations:

1. It defines the mailbox message type as MSG$_SNDACC and the target
mailbox as the job controller's mailbox, whose address is in SYS$AR_
JOBCTLMB.

2. It checks the request for possible errors, such as too large a message or
inaccessible data references. The user privilege OPER is required to create
a new log file or enable or disable accounting.

3. It allocates the message buffer on. the current stack, which is the exec­
utive mode stack, and places the following information in the message
buffer:

-Mailbox message type
-Reply mailbox channel, if specified as an optional argument
-Privilege mask, user identification code (UICJ, user name, and account

name
-Process base priority
-Extended process ID {PCB$L_EPID)
-Process status (PCB$L_STS)
-Extended owner PID (PCB$1-EOWNER)
-Terminal iiame (PCB$T _TERMINAL)
-Current system time (EXE$GQ_SYSTIME)
-User-supplied accounting message type that specifies which function

is to be performed
-User-defined message text

4. EXE$SNDACC requests the $CMKRNL system service to call the local
procedure SENDMSG.

5. SENDMSG performs the following operations:

a. It validates the process's reply channel, if one was specified as an
optional argument.

b. It verifies that the target mailbox has read/write access.
c. It invokes routine EXE$SENDMSG. Section 36.1.1.1 describes the

actions of EXE$SENDMSG.

1107

Miscellaneous System Services

36.1.2.2

36.1.3

36.1.4

1108

$SNDSMB System Service. The $SNDSMB system service sends requests
to the symbiont manager via the job controller's mailbox. A user requests
the $SNDSMB service to request actions normally available through DCL
commands, such as PRINT, SUBMIT, and DELETE/ENTRY.

The $SNDSMB and $SNDACC system services share common code. Thus,
$SNDSMB performs exactly the same operations as $SNDACC, described
in Section 36.1.2.1, except that the message type is defined to be MSG$_
SNDSMB and a $SNDSMB message buffer includes a copy of the ARB.

Operator Communications

The system process OPCOM handles operator communications. OPCOM
executes the image OPCOM.EXE, and performs the following functions:

• It selects the terminals used as operator terminals and the class of activity,
such as disk or tape operations, for which the operator terminals receive
messages .

• It replies to or cancels a user request to an operator .
• It manages the operator log file.

The Send Message to Operator ($SNDOPR) system service sends a request
to OPCOM through OPCOM's mailbox. A user requests the $SNDOPR
service to request actions normally available through the DCL command
REQUEST and the operator command REPLY.

The $SNDOPR system service requires that a user have the OPER privilege
to enable a terminal as an operator's terminal, reply to or cancel a user's
request, or initialize the operator log file.

The $SNDOPR system service shares common code with the $SNDACC
and $SNDSMB system services, described in Section 36.1.2. However, it
uses a different mailbox, the one whose address is in SYS$AR_OPRMBX,
and a different message type, MSG$_0PRQST, and it does not include the
extended process ID, process status, extended owner PID, terminal name,
and current system time fields in the message buffer.

Chapter 23 describes the OPCOM mailbox.

Error Logger

As described in Chapter 32, the error logging subsystem contains three
pieces:

• The executive contains routines that maintain a set of error message
buffers. These routines are called by device drivers and other components
that log errors so that error messages can be written to some available
space in one of these buffers .

• The error formatting process, process ERRFMT running the image ERR­
FMT.EXE, is awakened to copy the contents of these error message buffers
to the error log file for subsequent analysis.

36.2 System Message File Services

• The Error Log Utility reads the error messages in the error log file and
produces an error log report, based on the contents of the error log file and
the options selected when the utility executes.

A user can request the Send Message to Error Logger l$SNDERRJ system
service to send messages to the error logger jput messages into one of the
error message buffers for later transmission to the error log file). Using this
system service requires the BUGCHK privilege.

Unlike the $SNDJBC and $SNDOPR system services, the $SNDERR sys­
tem service has the following characteristics:

• It executes entirely in kernel mode rather than in executive and kernel
mode .

• It writes a message to an error message buffer rather than sending a mailbox
message.

The $SNDERR system service procedure, EXE$SNDERR in module SYS­
SNDMSG, performs the following actions:

1. It checks the request for access and privilege violations.
2. It invokes ERL$ALLOCEMB, in module ERRORLOG, to allocate an error.

message buffer.
3. It fills the message buffer with the message type IEMB$C_SS), the mes­

sage size, and the message text. An error log sequence number and the
current time are also a part of every error message.

4. It invokes ERL$RELEASEMB, also in ERRORLOG, to release the buffer
to the error logging routines for subsequent output to the error log file.

Chapter 32 contains a discussion of the error log routines and a brief
description of the ERRFMT process.

36.2 SYSTEM MESSAGE FILE SERVICES

VMS provides three levels of message file capability: image-specific message
files, a process-permanent message file, and a system message file.

The creation and declaration of image-specific and process-permanent mes­
sage files is discussed in the VMS Message Utility Manual and the VMS DCL
Dictionary. The following list provides a brief overview:

• The Message Utility compiles a message source file, producing an object
file that can be linked with a main program. When the resulting executable
image is activated, the image activator maps the image-specific message
file, which remains available until image rundown .

• In response to the command SET MESSAGE, DCL maps a process-specific
message file, available for the life of the process or until the command is
reissued specifying a different message file name.

1109

Miscellaneous System Services

36.2.1

1110

• During system initialization, SYSINIT maps the system message file,
SYS$MESSAGE:SYSMSG.EXE, into system address space as a pageable sec­
tion. Chapter 31 describes SYSINIT actions.

Two system services allow a user to locate and display messages from the
various message files:

• The Get Message ($GETMSG) system service searches for a message text
corresponding to a given message code .

• The Put Message ($PUTMSG) system service writes one or more message
texts to SYS$0UTPUT.

VMS uses a third procedure, EXE$EXCMSG in module EXCEPTMSG, as
part of condition handling. It does not use the various message files but
formats and displays a process's signal arguments and general registers.

Data Structures Related to Message Files

When it compiles a message file, the Message Utility produces an object
module that contains a message section header and as many message sections
as necessary.

The $PLVDEF macro defines a message section header. The Message Util­
ity creates a message section header for the message file and sets its type
code to PLV$C_ TYP _MSG. At the offset PLV$L_MSGDSP + 6, it stores the
instruction JSB (RS). The instruction merely identifies the section header;
it is not executed. The offset to the first message section follows this in­
struction, then offsets to other message sections, if any. A longword of zero
determines the end of the message section offsets.

The $MSCDEF macro defines a message section. The first byte of this
structure, MSC$B_ TYPE, contains either a 0, indicating a normal message
section, or a 1, indicating an indirect message section.

Linking a normal message file, which includes text, with user object mod­
ules generates a normal message section within the executable image.

In a normal message section, the field MSC$LINDEX_OFF contains an
offset to an index structure defined by the $MIDXDEF macro and MSC$1-
FAC_OFF is an offset to the table of facility codes.

Rather than incorporate a message file within an executable image, a
user image can establish a pointer to a nonexecutable message file. The
message file can then be changed without recompiling and relinking the
image. Compiling an indirect message file with the Message Utility produces
a pointer object module to link with user modules and a nonexecutable
message file that contains the message data.

In an indirect message section, the MSG$B_ TYPE field contains a 1. The
field MSC$T _INDNAME contains the name of the associated message file,
for example, PRGDEVMSG. At runtime, the $GETMSG system service uses
the flag MSC$V _MAPPED to indicate whether the message file has been

36.2.2

36.2 System Message File Services

mapped into virtual memory. The VMS Message Utility Manual describes
normal and indirect message files.

Three global symbols locate message section headers:

• CTL$GL_GETMSG locates image-specific message section headers
• CTL$GL_PPMSG locates a process-permanent message section header
• EXE$GL_SYSMSG locates the system message section header

CTL$GL_GETMSG contains the address of a message dispatch vector in Pl
space, which follows the dispatch vectors for user-written system services
and rundown routines. When the image activator activates an image that
includes a message section, it loads the next available entry in this dispatch
vector with the address of an offset in the message section header.

CTL$GL_PPMSG and EXE$GL_SYSMSG each contain the address of a
message section header, or zero if no process-permanent or system message
section is defined.

Figure 36.l shows the layout of the message dispatch vector, message
section headers, and message sections.

$GETMSG System Service

The $GETMSG system service procedure, EXE$GETMSG in module SYS­
GETMSG, executes in its requestor's access mode. It is requested with the
following arguments:

• The numeric identification of the desired message, called the message code
• A location in which EXE$GETMSG stores the length of the returned

message
• A buffer in which EXE$GETMSG stores the returned message
• A FLAGS argument defining the message components to return
• An optional array containing, among other items, the Formatted ASCII

Output ($FAO) argument count for the returned message

EXE$GETMSG searches each message section until it locates one contain­
ing a matching message code, at which point its search terminates, or until
it processes all message sections. It begins with in1age-specific message sec­
tions, then process-permanent message sections, and finally system message
sections.

The following list describes EXE$GETMSG's message search. If a matching
message is found at any time, this search terminates.

1. From the process's message dispatch vector, whose address is found in
CTLGL_GETMSG, EXEGETMSG obtains the first entry, the address
of an image-specific message section header.

2. The header contains a list of message sections. EXE$GETMSG searches
each section in order until it either encounters a matching message or
processes all sections. r

1111

Miscellaneous System Services

EXE$GL SYSMSG:: -
L

Message
Section
Header

($PLVDEF)

Message
Section

($MSCDEF)

u~
INDEX_OFF~

Message
Index

(SMIDXDEF)

System Space

PLV$L_MSGDSP + 6 JSB(R5)

T

CTL$GL_PPMSG::
[

.
0

Message
Section
Header

,.. 1--

I
Message
Section u INDEX_OFF >f1

Message
Index

Proceas Space

PLV$L_MSGDSP + 6 JSB(R5)

>ft--.
T 0 I

CTL$GL_GETMSG::
Message
Dispatch
Vector

Message
Section
Header

Message
Section

Message
Index

[

1112

~

lf INDEX_OFF ~ ~

JSB (R5) .
ltf--' . .

..... 1 0 r T 0 I
Figure 36.1
Message Vector, Section Headers, and Sections

For each normal message section, EXE$GETMSG calculates the start­
ing address and length of the message section index. It then performs a
binary search of the message section index to determine if it contains
the specified message code.

For an indirect message section, one with the MSG$B_ TYPE field con­
taining a 1, EXE$GETMSG tests the flag MSC$V _MAPPED. If the flag
is clear, the file is not yet mapped. EXE$GETMSG sets the flag and in­
vokes the image activator to perform a merged activation of the indirect
message section.

The image activator maps the nonexecutable image named in the file
specification into the user's virtual address space. It adds the address of

36.2.3

36.2 System Message File Services

the new message section header to the end of the message dispatch vec­
tor; thus, all sections located by the message section header are processed
later in the search. The search for the message code continues normally.

3. If no matching message is found, EXE$GETMSG locates the next image­
specific message section header from the next entry in the process's
message dispatch vector and searches its message sections as in step 2.

4. When all image-specific message section headers in the message dis­
patch vector have been processed and the search has not been success­
ful, EXE$GETMSG proceeds to the process-permanent message section
header. If one exists, CTL$G1-PPMSG contains its address; otherwise,
CTL$GL_PPMSG contains a zero.

5. EXE$GETMSG searches each process-permanent message section located
by the message section header until it finds a matching message or has
no more process-permanent message sections.

6. If the search is not successful, EXE$GETMSG proceeds to the system
message section header. If one exists, EXE$GL_SYSMSG contains its
address; otherwise, EXE$GL_SYSMSG contains a zero.

7. EXE$GETMSG searches each system message section located by the
message section header until it finds a matching message or has no more
system message sections.

8. If no message section exists or no matching message code is found,
the service returns the status code SS$_MSGNOTFND and a message
declaring that the message file does not contain the desired code.

Otherwise, if it discovers a matching message code, EXE$GETMSG
copies selected information into the user-defineq buffer.

-If the FLAGS argument is not specified, $GETMSG uses the process
default message flags (CTL$GB_MSGMASK) to select the information.

-If the combine bit is set in the FLAGS argument (bit 4), EXE$GETMSG
returns only the information selected by both the FLAGS argument and
by CTL$GB_MSGMASK.

-Otherwise, EXE$GETMSG returns the information selected by the
FLAGS argument.

9. Control returns to the requestor of the $GETMSG system service.

$PUTMSG System Service

The $PUTMSG system service provides the· ability to write one or more
error messages to SYS$ERROR (and SYS$0UTPUT if it is different from
SYS$ERROR). It executes in the access mode of its requestor and requests
the $GETMSG system service to retrieve the associated text for a particular
message code.

The $PUTMSG system service is requested with four arguments:

• A message argument vector describing the messages in terms of message

1113

Miscellaneous System Services

36.2.4

1114

codes, message field selection flag bits, and $FAO arguments (see Sec­
tion 36.5.2) .

• An optional action routine to call before writing the message texts .
• An optional facility name to associate with the first message written. If

not specified, the $PUTMSG system service uses the default facility name
associated with the message .

• An optional parameter to pass to the requestor's action routine. If not
specified, it defaults to zero.

The VMS System Services Reference Manual discusses the construction of
the message argument vector. The VMS Run-Time Library Routines Volume
describes other uses of the $PUTMSG service.

The $PUTMSG system service procedure, EXE$PUTMSG in module
SYSPUTMSG, processes each argument of the message argument vector as
follows:

1. It determines whether the facility code of the request is a system, Record
Management Services (RMS), or standard facility code. Standard facility
codes can require $FAO arguments. System messages (facility code 0) and
RMS messages (facility code 1) do not use associated $FAQ arguments in
the message argument vector. System exception messages require $FAO
arguments to follow immediately after the message identification in the
message vector.

2. It requests the $GETMSG system service with the message code and field
selections based upon the selection bits and $FAO arguments.

3. If the message flags indicate at least one $FAO argument, EXE$PUTMSG
requests the $FAOL system service (see Section 36.5.2) to assemble all
the portions of the message (supplied facility code, optionally specified
delimiters, output from $GETMSG).

4. EXE$PUTMSG invokes the user's action routine, if one was specified.
5. If the action routine returns an error status, EXE$PUTMSG does not

write the message. Otherwise, it uses an RMS $PUT request to write
the formatted message to SYS$0UTPUT, if it is informational, or to
SYS$ERROR, if it is an error. In the latter case, it also writes the for­
matted error message to SYS$0UTPUT if SYS$ERROR is different from
SYS$0UTPUT.

When all the arguments in the message argument vector have been pro­
cessed, the $PUTMSG system service returns to its requestor.

Procedure EXE$EXCMSG

The catch-all condition handler uses EXE$EXCMSG, in module EXCEPT­
MSG, internally to report a condition that has not been properly handled by
any condition handlers further up the call stack. EXE$EXCEPTION also calls

36.3 System Information System Services

EXE$EXCMSG to write the contents of the general registers to SYS$0UT­
PUT if a condition is not handled in any other way. See Chapter 5 for infor­
mation on condition handling.

EXE$EXCMSG requires two input arguments: the address of an ASCII
string, and the address of the exception argument list passed to the condition
handlers (see Chapter 5).

The procedure writes a formatted dump of the general registers, signal
array, and stack, as well as the caller's message text, to SYS$0UTPUT (and
to SYS$ERROR if different from SYS$0UTPUT). This message appears for
all fatal errors that occur in images that were linked without th.e traceback
handler. Note that most images shipped with VMS are linked without the
traceback handler.

Although this procedure has an associated entry point in the system ser­
vice vector area, it cannot be conveniently called from any languages except
VAX MACRO and VAX BLISS-32. The specification of the second argument
requires access to the argument pointer (AP), a capability denied to most
high-level languages.

36.3 SYSTEM INFORMATION SYSTEM SERVICES

36.3.1

The Get System Information ($GETSYI[W]) system service provides selected
information about the running system or about a target node in the V AXclus­
ter system. Although VMS provides synchronous and asynchronous forms
of the service, both forms complete synchronously under VMS Version 5.2.
Currently, the only information available for other VAXduster members is
the information that already resides in the nonpaged pool data structures on
the local system.

$GETSYI arguments include the following:

• An event flag to set when the request completes
• The address of the Cluster System Identification (CSID) of the target

system
• The node name of the target system
• The address of an item list that includ ~s (for each requested item) the type

of information to return (item code), the size and address of a buffer to hold
the information, and a location to receive the actual size of the returned
information

• The address of an IOSB to receive the final request status
• An entry point and parameter for an AST procedure to call when the

request completes

Operation of the $GETSYI System Service

The $GETSYI system service procedure, EXE$GETSYI in module SYSGET­
SYI, executes in kernel mode and performs the following actions:

1115

Miscellaneous System Services

36.3.2

1116

1. It invokes its local routine NAMCSID to validate the node name/CSID
pair. NAMCSID tests CLU$GL_CLUB to determine whether the running
system is a VAXcluster member.

-If the system is a VAXcluster member, NAMCSID !after resolving a
wildcard reference) invokes another local routine, EXE$NAMCSID, to
obtain the address of the cluster system block jCSB) specified by CSID
or node name. EXE$NAMCSID returns the address of the CSB or, if
no CSB is located, the error status SS$_NOSUCHNODE. EXE$GETSYI
returns this status to its requestor.

-If the system is not a VAXcluster member and the user specified
a CSID, NAMCSID returns the error SS$_NOMORENODE, which
EXE$GETSYI returns as system service status.

-If the system is not a VAXcluster member and the user specified a node
name, NAMCSID checks that the node name is that of the running
system. If it is, NAMCSID returns successfully with the address of the
system block jSB). If the node name is not that of the running sys­
tem, NAMCSID returns the error status SS$_NOSUCHNODE, which
EXE$GETSYI returns as system service status.

2. If an IOSB is specified, EXE$GETSYI checks it for write access and clears
it.

3. It clears the event flag.
4. If AST notification is requested, EXE$GETSYI checks that the process

has sufficient AST quota and charges the quota.
5. EXE$GETSYI checks each item in the list for the following conditions:

-The buffer descriptor is readable and the buffer writable.
-The requested item is a recognized one.

6. If these conditions ate met, EXE$GETSYI retrieves the requested infor­
mation and copies it to the user-defined buffer. Under VMS Version 5.2,
all available information can be obtained immediately in the context of
the requesting process. If the target is not the local system, EXE$GET­
SYI only returns information contained in the CSB or SB for that target.
For the local system, EXE$GETSYI obtains additional information from
various system global locations.

7. When no information remains to be gathered, the system service returns
to its requestor after performing the following actions:

a. Setting the specified event flag
b. Queuing requested AST notification to the process
c. Writing status information to an IOSB, if one was specified

$GETSYI Wildcard Support

The $GETSYI system service provides the ability to obtain information
about all members of a VAXcluster system, that is, to perform a wildcard

36.4 Device Information System Services

search of the cluster vector table. The cluster vector table is a table of
CSB addresses, indexed by the low word of the CSID. The global location
CLU$GL_CLUSVEC contains its address.

A negative CSID argument to the $GETSYI system service indicates a
wildcard request. EXE$GETSYI recognizes a wildcard request and passes
information back to the requestor about the first system described in the
cluster vector table.

In addition, it alters the cluster system identification field of the re­
questor's CSID argument to contain the target system's node index. When
the service requestor requests $GETSYI again, the negative sequence num­
ber lin the high-order word of the CSID) indicates that a wildcard operation
is in progress. The positive node index lin the low-order word of the cluster
system ID) indicates the cluster vector table offset where the search resumes.
Note that the user program will not work correctly if it alters the value of
the CSID argument between requests to $GETSYI.

The user program repeatedly requests the $GETSYI system service until it
receives the status SS$_NOMORENODE, indicating that the cluster vector
table has been completely searched.

36.4 DEVICE INFORMATION SYSTEM SERVICES

36.4.1

Images frequently require information about particular devices on the sys­
tem. VMS provides several system services to identify and obtain specific
information about a particular device. Two important device information
services are the Get Device/Volume Information l$GETDVI[W]) system ser­
vice and the Scan for Devices l$DEVICE_SCAN) system service.

Support still exists for two obsolete services, Get 1/0 Channel Information
j$GETCHN) and Get 1/0 Device Information l$GETDEV), both in module
SYSGETDVI, but the $GETDVI system service supersedes both and should
be used in future software development.

$DEVICE_SCAN System Service

Introduced in VMS Version 5.2, the $DEVICE_SCAN system service searches
for devices that match user-specified search criteria. The search criteria, spec­
ified in an item list, include the device type, the device class, and the wild­
carded device name. The VMS Version 5.2 New Features Manual describes
this service.

In response to an initial request, the $DEVICE_SCAN system ~ervice
searches for the first occurrence of a device that matches the search cri­
teria. It maintains context information so that on subsequent $DEVICE_
SCAN requests, it can return other matching device names, until no more
matching devices exist. At that time, the service returns the error status
SS$_NOMOREDEV.

$DEVICE_SCAN arguments include the following:

1117

Miscellaneous System Services

1118

• The address of a buffer in which $DEVICE_SCAN returns the name of a
matching device

• A location to contain the length of the returned device name
• The name of a device for which to search, which can include the standard

wildcard characters
• The address of an item list, in which each entry includes an item code, an

input buffer address and length, and a reserved field
• The address of a context quadword, initially zeroed, where $DEVICE_

SCAN maintains search context information across service requests

The $DEVICE_SCAN system service procedure, EXE$DEVICE_SCAN in
module SYSGETDVI, executes in kernel mode. It performs the following
operations:

1. It checks each item in the item list for correctness: its item code must
be valid; its buffer descriptor and buffer must be readable. The $DVS­
DEF macro defines two legal item codes, one indicating that the buffer
contains a device class (defined by the $DCDEF macro) and one indicat­
ing that the buffer contains a device type (also defined by $DCDEF) for
which to search.

2. It restores the search context information, either zeros on the first service
request or the unit number and the device data block (DDB) of the
matching device located in the previous search.

3. It invokes SCH$IOLOCKR, in module MUTEX, which raises IPL to 2 to
prevent process deletion and obtains the I/O database mutex. Thus, the
I/O database does not change until $DEVICE_SCAN releases the mutex.
Chapter 20 describes the I/O database.

4. EXE$DEVICE_SCAN invokes IOC$SCAN_IODB_USRCTX, in module
IOSUBNPAG, which sequentially scans the I/O database. EXE$DEVICE_
SCAN tests each returned device and reinvokes IOC$SCAN_IODB_USR­
CTX if the device type and class do not match the search criteria.

5. Otherwise, it invokes IOC$CVT _DEVNAM, in module IOSUBNPAG, to
convert the matching device's name and unit number to a physical device
name string. If the device allocation class is nonzero and the device is file­
oriented, it returns a string of the form $device_allocation_class$ddCn,
where dd is the device name, C is the controller designation, and n is
the unit number. Otherwise, it returns a string in the form VA.Xcluster_
nodename$ddCn.

6. If the user specified a device name in the search criteria, EXE$DEVICE_
SCAN invokes EXE$MATCH_NAME, also in module IOSUBNPAG, to
perform the wildcard comparison.

7. When it locates a device that matches all criteria, EXE$DEVICE_SCAN
returns its device name and length to the requestor after storing the unit
number and DDB address in the context block and unlocking the I/O
database mutex, lowering IPL to 0.

36.4.2

36.4 Device Information System Services

$GETDVI System Service

The $GETDVI system service and its synchronous counterpart $GETDVIW
obtain device-independent information about a device. Device-independent
information refers to information that is present for each device on the sys­
tem, such as the device unit number, UCB$W _UNIT, device characteristics,
UCB$L_DEVCHAR, and the device type, UCB$B_DEVTYPE. It is obtained
by reading fields in the unit control block (UCB) that have the same inter­
pretation for all devices on the system. The VMS System Services Reference
Manual contains a complete description of the values that the service can
return.

The $GETDVI system service is requested with the following arguments:

• The event flag number to set when the request completes
• The number of an 1/0 channel assigned to the device
• The device name (possibly obtained via the $DEVICE_SCAN system ser­

vice), used if no channel number is specified
• The address of an item list, each entry of which includes an item code, the

size and address of a buffer to receive information, and a location to store
the size of the information returned

• An IOSB to receive final status information
• The entry point and parameter for an AST procedure to call when the

request completes
• A place-holding null argument

The $GETDVI system service returns information about primary and sec­
ondary device characteristics. These two sets of characteristics are identical
unless one of the following conditions holds:

• If the device has an associated mailbox, the primary characteristics are
those of the assigned device and the secondary characteristics are those of
the associated mailbox .

• If the device is spooled, the primary characteristics are those of the inter­
mediate device and the secondary characteristics are those of the spooled
device .

• If the device represents a logical link on the network, the secondary char­
acteristics contain information about the link.

The $GETDVI system service procedure, EXE$GETDVI in module SYS­
GETDVI, executes in kernel mode. It performs the following operations:

1. EXE$GETDVI clears the specified event flag.
2. It checks the IOSB, if specified, for write access and clears the IOSB.
3. It checks and charges the process's AST quota if AST notification is

requested. If the AST quota is insufficient, it returns the status SS$_
EXASTLM.

1119

Miscellaneous System Services

4. If a channel number is specified, EXE$GETDVI verifies the channel
and obtains the UCB of the device accessed on the channel. It invokes
SCH$IOLOCKR to lock the 1/0 database mutex for read access.

5. Otherwise, if a device name is specified, EXE$GETDVI invokes SCH$10-
LOCKR to lock the 1/0 database mutex for read access and then invokes
IOC$SEARCHDEV, in module IOSUBPAGD, to search the 1/0 database
for the specified device and return the device UCB and DDB.

If the request is for secondary device characteristics, EXE$GETDVI
locates the appropriate structures at this point.

6. For each item, EXE$GETDVI performs the following:

a. It checks each item in the item list for correctness: its item code must
be valid; its buffer size, buffer, and return length must be readable or
writable as appropriate.

b. It processes the item code, locating the appropriate structure and
offset and copying the desired information into the user buffer.

7. EXE$GETDVI unlocks the 1/0 database mutex.
8. It sets the specified event flag by invoking routine SCH$POSTEF, in

module POSTEF.
9. It stores a status value in the IOSB, if specified.

10. If the user requested AST notification, EXE$GETDVI requests the De­
clare AST l$DCLAST) system service to queue the ACB as a completion
AST and returns.

11. If the user did not request AST notification, EXE$GETDVI returns.

36.5 FORMATTING SUPPORT

36.5.1

1120

The final group of system services described in this chapter provides conver­
sion support for time-related requests and formatted 1/0 of ASCII character
strings.

Time Conversion Services

Module SYSCVRTIM contains the time conversion system services. The
Convert Binary Time to Numeric Time l$NUMTIM) system service executes
in executive mode and converts a binary quadword time value in system
time format !described in Chapter 11) into the following seven numerical
word-length fields:

•Year IAD)
• Month of year
• Day of month
•Hour of day
• Minute of hour
• Second of minute
• Hundredths of seconds

36.5.2

36.5 Formatting Support

The $NUMTIM system service converts a positive time argument into the
corresponding absolute system time. It interprets a negative time argument
as a delta time, the current system time plus a time interval. A zero-valued
time argument requests the conversion of the current system time.

The Convert Binary Time to ASCII String ($ASCTIM) system service ex­
ecutes in the access mode of its requestor. It converts a system time format
quadword into an ASCII character string. It passes the input binary time
argument to the $NUMTIM system service and converts the seven fields re­
turned into ASCII character fields. The input time format (absolute or delta)
and the conversion flag determine the field selection. The conversion flag
can be set to request conversion of day and time or only the time portion.

The $ASCTIM system service uses the $FAO system service (described
in Section 36.5.2) to concatenate and format the string components before
returning the string to the caller.

The Convert ASCII String to Binary Time ($BINTIM) system service exe­
cutes in the access mode of its requestor. It converts an ASCII time string
into a quadword absolute or delta time. If the input string expresses an abso­
lute time, the service requests the $NUMTIM system service to convert the
current system time to supply any fields omitted in the ASCII string. The
$BINTIM system service converts each ASCII field to numerical values and
stores the values in the seven-word $NUMTIM format. It then combines
the seven word fields into a binary quadword value. It negates the resulting
value if the ASCII string specifies a delta time.

Formatted ASCII Output System Services

The $FAO and $FAOL system services format and convert binary and ASCII
input parameters into a single ASCII output string. The two system services,
in module SYSFAO, execute in the access mode of the requestor and use
common code. The only difference between them is whether the parameters
are passed individually ($FAO) or as the address of the first parameter in a
list ($FAOL).

The common routine, FAO, parses the control string character by charac­
ter. It copies information not preceded by the control character ! into the
output string without further action. When it encounters a control char­
acter and operation code in the control string, it executes the appropriate
conversion routine to process zero, one, or two of the system service input
parameters. When the control string is completely and correctly parsed, the
service returns to the requestor with a normal status code. It returns a buffer
overflow error if the output string length is exceeded.

The description of the $FAO system service in the VMS System Services
Reference Manual describes the proper manner in which to specify $FAO
requests.

1121

Appendixes

A System Processes and Privileged
Images

While this book describes much of the VMS executive in detail, it omits
most of the components that make up a full VMS system. This appendix
identifies those components that are most closely related to the executive,
either because they link against SYS.STB or perform privileged operations.

Table A.I System Processes

Linked with
Image Name SYS.STE

Fl lAACP.EXE Yes

MTAAACP.EXE Yes
REMACP.EXE Yes
NETACP.EXE Yes
MAIL_ SERVER.EXE No
ERRFMT.EXE Yes
INPSMB.EXE Yes
JOBCTL.EXE Yes
OPCOM.EXE Yes
PRTSMB.EXE No
FILESERV.EXE Yes

CSP.EXE Yes
CONFIGURE.EXE Yes
SMISERVER.EXE Yes
AUDIT _SERVER.EXE Yes

Description

Files-11 ODS-1 ancillary control
process (ACP)

Magnetic tape ACP
Remote terminal ACP
Network ACP
Network Mail Utility server
Error log buffer format process
Card reader input symbiont
Job controller/queue manager
Operator communication facility
Print symbiont
VAXcluster Files-11 XQP cache server

process
VAXcluster server process
Configure VAXcluster devices
VMS system management facility
Security audit server process

1125

System Processes and Privileged Images

Table A.2 Images Installed with Privilege on a Standard VMS System

Linked with
Image Name SYS.STB Description

ANALIMDMP.EXE Yes Image Dump Analyzer Utility
AUTHORIZE.EXE Yes Authorize Utility
CDU.EXE Yes Command Definition Utility
!NIT.EXE Yes Volume Initialization Utility
INSTALL.EXE Yes Known Image Installation Utility
LOGINOUT.EXE Yes Login/logout image
MAIL.EXE No Mail Utility
MAIL SERVER.EXE No Network Mail Utility server
MONITOR.EXE Yes System Statistics Utility
PHONE.EXE No Phone Utility
REQUEST.EXE No Operator request facility
RTPAD.EXE No Remote Terminal Utility
SET.EXE Yes SET command processor
SETPO.EXE Yes SET command processor
SETRIGHTS.EXE No SET RIGHTS_LIST command

processor
SHOW.EXE Yes SHOW command processor
SHWCLSTR.EXE Yes SHOW CLUSTER command

processor
SUBMIT.EXE No Batch and print job submission

facility
SYSMAN.EXE Yes VMS system management facility

command interface
VPM.EXE Yes Remote performance data collector

server

1126

System Processes and Privileged Images

Table A.3 Images Requiring Privilege That Are Typically Not Installed

Linked with
Image Name SYS.STE Description

CIA.EXE Yes Show Intrusion Utility
LALO ADER.EXE Yes LPA-1 lK microcode loader
LATCP.EXE Yes Local area transport control program
MSCP.EXE Yes V AXcluster disk server
NCP.EXE No Network control program
OPCCRASH.EXE Yes System shutdown facility
QUEMAN.EXE 1 No Queue manipulation command

processor
REPLY.EXE No Message broadcasting facility
RUND ET.EXE No RUN [process] command processor
SD A.EXE Yes System Dump Analyzer Utility
SETAUDIT.EXE Yes SET AUDIT command processor
SMPUTIL.EXE Yes Multiprocessing Utility
STOPREM.EXE Yes Stop REMACP Process Utility
SYSGEN.EXE Yes System Generation and Configura-

tion Utility
XFLOADER.EXE Yes DR32 microcode loader

1 Although this image is installed, it is not installed with privilege.

Table A.4 Images Whose Operations Are Protected by System User
Identification Code or Volume Ownership

Linked with
Image Name SYS.STE Description

AUTHORIZE.EXE Yes Authorize Utility
BACKUP.EXE Yes Backup Utility
BAD BLOCK.EXE Yes Bad block locator
DISKQUOTA.EXE Yes Disk Quota Utility
DISMOUNT.EXE No Volume Dismount Utility
ERF*.EXE No Error Log Formatting Utility and

CPU-specific extensions
!NIT.EXE Yes Volume Initialization Utility
VERIFY.EXE No File Structure Verification Utility
VMOUNT.EXE No Volume Mount Utility

1127

System Processes and Privileged Images

1128

Table A.5 Miscellaneous Other Images Linked with SYS$SYSTEM:SYS.STB

ImageName 1

AGEN$FEEDBACK.EXE
ANALAUDIT.EXE
ANALyzOBJ.EXE
CHECKSUM.EXE
CLUSTRLOA.EXE
DBGSSISHR.EXE

DCL.EXE
DELTA.EXE
DISMNTSHR.EXE
DUMP.EXE
DYNSWITCH.EXE

ERRSNAP.EXE
FIIBXQP.EXE
FORRTL2.EXE
FPEMUL.EXE
IMGDMP.EXE
MAILSHR.EXE
MAILSHRP.EXE
MOM.EXE
MOUNTSHR.EXE
MSCP.EXE
NISCS_LAA.EXE
NISCS_LOAD.EXE
PATCH.EXE
PFMFILWRT.EXE
RECOVER.EXE
SODELTA.EXE
SCSLOA.EXE
SECURESHR.EXE
SECURESHRP.EXE
SETSHOACL.EXE
SMBSRVSHR.EXE
SPISHR.EXE

SYSLOAxxx .EXE
TFFSHR.EXE
VAXEMUL.EXE
xx DRIVER.EXE

Description

AUTOGEN feedback data reader
Security Auditing Analysis Utility
Analyze Object Module Utility
Checksum File or Image Utility
VAXcluster support
System service interceptor shareable image for VAX

DEBUG and VAX PCA
Digital command language interpreter
Executive debugger
Dismount system service shareable image
File Dump Utility
Switch terminal port to asynchronous Digital Data

Communications Message Protocol (DDCMP)
VAX 86x0 error log copy program
ODS-2 fl.le system
FORTRAN parallel processing support run-time library
Floating-point instruction emulation
Write Image Dump Utility
Callable Mail Utility shareable image
Callable Mail Utility protected shareable image
Network management maintenance operations process
Mount system service shareable image
Mass storage control protocol server
Local area VAXcluster system downline load assist agent
Local area VAXcluster downline load secondary bootstrap
Patch Utility
Page Fault Monitor Utility
RECOVER/RMS_FILE command processor
Executive debugger
System communication services
Security system services shareable image
Security system services protected shareable image
SET/SHOW access control list (ACL) Utility
Print symbiont shareable image
Get System Performance Information system service

(undocumented) shareable image; used by MONITOR
CPU-specific support (see Appendix G)
Terminal fallback facility shareable image
Subset instruction emulation
All device drivers

1 The loadable executive images are also linked with SYS.STB but not listed in this table.
They are described in Chapter 29.

B Use of Listing and Map Files

This book presents a detailed overview of the VMS executive. However,
the ultimate authority on how the executive or any other component of
the system works is the source code for that component. This appendix
shows how you can use the listing and map files produced by the language
processors and the linker with other tools to investigate further how a given
component works. The appendix assumes that you are familiar with the VAX
instruction set, the VAX MACRO assembler, and the linker.

B.1 READING THE EXECUTIVE LISTINGS

Digital provides listing kits on magnetic tape, compact disk read-only mem­
ory (CD-ROM), and microfiche to customers who purchase and sign a source
license agreement. The kits include listings and maps for most components
but exclude certain proprietary modules, such as the License Management
Facility. In addition, the microfiche listings include some source files:

• Macro and constant definition files written in VAX MACRO and VAX
BLISS-32

• Command definition language ICLD) files
• Structure definition language ISDL) files

Most of the modules described in this book, those that make up the
executive and initialization routines, are written in VAX MACRO. This
appendix suggests how to read these modules as well as modules written
in VAX BLISS-32, VAX C, VAX PL/I, VAX Pascal, and other languages.

B.1.1 VMS Listing Structure

B.1.1.1

Building a VMS system from source also produces the VMS listings. A di­
rectory structure divides and organizes the more than. 4,000 VMS modules
into more than 100 facilities. A facility consists of related modules and has
a directory. Examples of facility directories include [SYS], [RMS], [JOBCTL],
[DCL], and [COPY). Each directory consists of a set of subdirectories, most
of which are used only when a VMS system is built from source.

The system build procedure places the listing and map files into the appro­
priate [facility .LIS] subdirectory of the result disk volume. The result disk
is often referenced by a logical name like RESD.

VMS Online Listing Structure. An online listing kit contains only the listing
subdirectories created by the system build procedure. A listing kit CD-ROM
contains all the distributed files for a given version of VMS (such as Version

1129

Use of Listing and Map Files

B.1.1.2

B.1.1.3

1130

5.0) and those files that have been changed or added since that version was
released (such as Versions 5.0-1, 5.0-2, and 5.1). A top-level directory for each
version contains subdirectories for each facility. The listing kit magnetic tape
is a BACKUP saveset of such a disk.

VMS Microfiche Listing Structure. The microfiche listings are similar in
organization and content to the online listings except that they also include
some source files.

The last microfiche sheet in the set contains an index. The index is or­
ganized by facility, and within each facility by file name. For each file, the
index identifies the microfiche sheet number and frame coordinates of the
beginning of the file. In addition, each microfiche sheet contains its own
table of contents in its last frame. A complete set of microfiche, including
index, is distributed after each major VMS release.

Digital updates the microfiche listings for minor VMS releases by dis­
tributing update sets. Each update set replaces the old index sheet. Each
update set begins with the sheet number of the old index sheet and contains
a new index sheet at its end. The remaining new sheets contain new and
replaced listings. Note that the out-of-date listings remain in the resulting
set of sheets but are simply not referenced by the new index. Microfiche
users may wish to retain the old index sheets to facilitate locating previous
versions' listings.

Locating a Listing File. Locating an address or symbol involves identifying
both the facility and the file name. First, you must narrow the search to
one or a few facilities. Next, since each facility contains a small number
of map files, you can search each map file for the address or global symbol
of interest. Once you find the address or symbol in a map file, you can see
which module defines it and read the corresponding listing file.

You should become somewhat familiar with the facilities that contain
the listings read most often. The [SYS] facility contains the system services
and most of the other executive routines described in this book. Most of
the system service listing file names are in the form SYSservicename.LIS.
The [BOOTS] facility contains most of the initialization listings and maps,
including VMB, SYSBOOT, and SYSGEN.

Many utilities have their own facilities, such as [MOUNT] and [OPCOM].
Some facility names are abbreviations of their associated facilities, such as
[Fl IX] for the Files-11 Extended $QIO Processor (XQP) and [PRTSMB] for the
print symbiont.

If online listings are available, VMS utilities can help locate the modules of
interest. For example, to search for a particular module without knowing the
facility or exact file name, use wild card directory searches. The following
Digital command language (DCL) command helps locate event-flag-related
files:

B.1.1.4

B.1 Reading the Executive Listings

$DIRECTORY RESD: [V50.•.LIS]•EVENT•.•,•EVT*·*

Use the DCL SEARCH command to search several listing or map files for a
particular routine, data cell, or comment. The following example locates the
module that defines EXE$ALLOCIRP, the routine that allocates 1/0 request
packets from the lookaside list:

$SEARCH RESD:[V50.SYS.LIS]•.MAP EXE$ALLOCIRP

Use an editor to peruse the file:

$ EDIT/READ_ONLY RESD:[V50.SYS.LIS]MEMORYALC.LIS

Locating a DCL Command Routine. Some DCL commands are implemented
by routines within DCL and others are implemented by external images or
routines. When you need to identify the module that implements a particular
DCL command, first determine whether it is an internal routine (sometimes
also called an internal image) by examining the second and third tables
built by the INTIMAGES macro in [DCL]COMMAND.LIS. (The first table
contains the first eight characters of each command.) The second table is
a CASE table, and the third is a list of the internal routine names. (Internal
routines have names of the form DCL$command .) Examine [DCL]DCL.MAP
to identify the module that contains the internal routine of interest.

If the command is not implemented within DCL itself, find the command
definition file that defines the command. Many command definition file
listings are combined in [CLD]DCLTABLEx.LIS; others reside in the same
facility as their related listings and maps. A command definition file as­
sociates one or more commands with either the image or the routine that
implements each command. Locate the DEFINE VERB or DEFINE SYNTAX state­
ment for the command of interest.

A command definition file either modifies the system or process command
table or is linked with a related program. The presence of a ROUTINE statement
indicates that the file is linked with a related program. The MODULE statement
assigns a name to the object module that contains the command table, and
the ROUTINE statement specifies the routine in the related program that im­
plements the command. The following example from [INSTAL]INSCMD.LIS
defines two of the commands for the Install Utility:

module INSCMD

define verb CREATE
routine INS$CREATE_VERB

define verb LIST
routine INS$LIST_VERB

1131

Use of Listing and Map Files

1132

Look for a map file that contains the object module named by the MODULE

statement, and in it find the module that defines the symbol named by the
ROUTINE statement. Read the routine in the module's listing. The following
example is part of [INSTAL)INSTALL.MAP:

+------------------------+
! Object Module Synopsis !

+------------------------+
Module Name !dent Creator

INS MAIN X-9 ... VAX Bliss-32 V4.5-862

INSCMD 0-0 ... VAX/VMS Command Definition Utility
+------------------------+
! Symbol Cross Reference !

+------------------------+
Symbol Value Defined By Referenced By ...

INS$CREATE_VERB OOOOOB18-R INSMAIN INSCMD

INS$LIST_VERB 0000113D-R INS MAIN INSCMD

If a command definition file does not contain a ROUTINE statement, then it
modifies a command table and uses the IMAGE statement to specify the name
of the image that implements the command. (Most command definition
files explicitly specify the image name. If it is missing, it defaults to the
command verb.) Look in the image's map file to identify the modules to
read. The following example from [CLD)DCLTABLEl.LIS defines three of
the DCL ANALYZE commands:

define syntax ANALYZE_CRASH_DUMP
image SDA
qualifier CRASH_DUMP,default
qualifier SYSTEM

define syntax ANALYZE_DISK_STRUCTURE
image VERIFY
qualifier DISK_STRUCTURE,default
qualifier REPAIR

define verb ANALYZE
image ANALYZOBJ
qualifier CRASH_DUMP,nonnegatable,syntax=ANALYZE_CRASH_DUMP
qualifier DISK_STRUCTURE,nonnegatable,syntax=ANALYZE_DISK_STRUCTURE
qualifier OBJECT,default,nonnegatable

B.1 Reading the Executive Listings

The VMS Command Definition Utility Manual gives more information
on command definition files.

B.1.2 Data Structure Offset, Constant, and Macro Definitions

B.1.2.1

Some data structure offset, constant, and macro definitions are contained in
facility source modules. Others reside in several libraries in SYS$LIBRARY:.
These libraries are supplied as part of the VMS binary distribution and
are used by the operating system as well as privileged and nonprivileged
applications. There are separate VAX MACRO and VAX BLISS-32 libraries.
Several SDL source files contribute definitions to each library file. This
section discusses these and other libraries and the source files that contribute
to them.

SYS$LIBRARY:STARLET.MLB, the default macro library that is automat­
ically searched by the assembler, defines offsets, constants, and macros that
are used in system services and other public interfaces. SYS$LIBRARY:
STARLET.REQ defines these in VAX BLISS-32. The STARLET definitions
are primarily intended for use in nonprivileged applications.

Most of the offsets, constants, and macros used by the executive are not
public, that is, they are subject to change. These are defined in VAX MACRO
in a special library called SYS$LIBRARY:LIB.MLB, and in VAX BLISS-32
in SYS$LIBRARY:LIB.REQ. Applications such as user-written device drivers
and user-written system services using this library must be reassembled or
recompiled with each new release of LIB, which usually occurs with each
major release of the VMS operating system.

Locating Data Structure Offset and Constant Definitions. One set of SDL
files contributes data structure offset and constant definitions to the STAR­
LET libraries. These files are in the [VMSLIB] facility and have names of the
form STARDEFxx.SDL, where xx is AE, FL, MP, or QZ. Another set con­
tributes to the LIB libraries. These are in the [SYS] facility and have names
of the form SYSDEFxx.SDL. In addition, various VAX MACRO source files
contribute definitions to these libraries. An SDL source file can yield defi­
nitions in both VAX MACRO and VAX BLISS-32. However, only the VAX
BLISS-32 files retain the comments from the SDL statements.

Section B.4 briefly discusses SDL files. Appendix E lists many of the data
structures described in this book. It also describes some of the SDL files that
contribute to the LIB and STARLET libraries.

Since the VAX BLISS-32 versions of the LIB and STARLET REQUIRE files
retain the comments, they are particularly helpful. Even readers unfamiliar
with VAX BLISS-32 can read the comments about the data structures, fields,
and constants. Use an editor to search for the section of interest:

$ EDIT/READ_ONLY SYS$LIBRARY:LIB.REQ

1133

Use of Listing and Map Files

B.1.2.2

1134

. The VMS Librarian Utility can extract modules from SYS$LIBRARY:
STARLET.MLB or SYS$LIBRARY:LIB.MLB but not from the VAX BLISS-32
REQUIRE files. An editor or the VAX BLISS-32 compiler can extract modules
from the VAX BLISS-32 REQUIRE files. The following example illustrates
extracting the macro that defines the unit control block (UCB) offset defini­
tions from LIB.MLB:

$ LIBRARY/MACRO/EXTRACT•$UCBDEF/OUTPUT=SYS$0UTPUT: -
_$ SYS$LIBRARY:LIB.MLB

The $xyzDEF Macros. Most executive modules begin by invoking a series
of macros that define symbolic offsets into data structures referenced by the
module. The general form of these macros is $xyzDEF, where xyz represents
the data structure whose offsets are required.

For example, a module that deals with the 1/0 subsystem probably invokes
the $1RPDEF and $UCBDEF macros to define offsets into 1/0 request packets
(IRPs) and UCBs. Some of the $xyzDEF macros, such as $SSDEF, $10DEF,
and $PRDEF, define constants (system service status returns, 1/0 function
codes and modifiers, and processor register definitions) rather than offsets
into data structures.

The symbol table at the end of an assembly listing lists the symbol defi­
nitions resulting from these macros. However, the assembly listing includes
only those symbols referenced by the module and not necessarily all the
symbols defined by a $xyzDEF macro. The following sequence of DCL com­
mands produces a complete list of symbols:

$ CREATE xyzDEF .MAR

- z

. TITLE xyzDEF
$xyz DEF GLOBAL
.END

$ MACRO xyzDEF+SYS$LIBRARY:LIB.MLB/LIBRARY
$ LINK/NOEXECUTABLE/MAP/FULL xyzDEF
$ PRINT xyzDEF.MAP

This command sequence produces a single object module that contains all
the symbols produced by the $xyzDEF macro. The argument GLOBAL makes
all the symbols produced by the macro global. (This argument must appear
in uppercase to be properly interpreted by the assembler's macro processor.)
That is, the assembler passes the symbol names and values to the linker so
that they appear on whatever map the linker produces. The full map contains
two lists of symbol definitions, one in alphabetical order and one in numeric
order.

The System Dump Analyzer (SDA) Utility can read the resulting object
file to add symbols to its symbol table.

B.1.2.3

B.1.2.4

B.1.2.5

B.1 Reading the Executive Listtings

Instructions That Reference Data Structures. Data structure referenc,es are
usually made using displacement mo~e addressing. For example, the follow­
ing instruction loads the contents of,1 R3 (presumably the address of ;an IRPJ
into the IRP pointer field la longwor~J in a UCB pointed to by RS:

MOVL R3,UCB$L_IRP(R5)

Such instructions are practically/ self-documenting. You do not need to
know the overall arrangement of data in a particular structure to understand
such instruction references. 1

Locating Macro Definitions. Coinbonly used instruction sequences are
often coded as macros. Other instf4'.ction sequences, particulrirly those that
read or write internal processor registers, are more readable. if hidden in a
macro. However, because macros, ate rarely expanded as a part of the assem­
bler listing, you must sometimes ~e able to locate the macro definitions to
understand the invoking code. Matros fall into three classes:

• Macros that are local to a module are defined in the module. Such macros
are often used to generate data fables used by a single module .

• Macros that are part of a spe9ific facility are defined in. a separate file
and appear with the listings fcir that facility. For example, the DCL list­
ings include the macros that.: are used to assemble the 'DCL images in
[DCL]CLIMAC.MAR. Someti~es there are related facilities, such as [CLI­
UTL], that contain related listings and macro definitions .

• Macros that are used by many components of the oper~ting system are
defined in the LIB or STARLET libraries. ·

Many macro definition files reside in the [SYS] and [VMSLIB] facilities.
For example, the [SYS] facility contains SYSMAR.MAR., EXEC_REORG_
MACROS.MAR, and LOADER_MACROS.MAR. SYSMAR.MAR defines
macros for many cotrimon instruction sequences that appear in several com­
ponents. [VMSLIB]UTLDEFM.MAR defines macros commonly used in struc­
ture and constant definitions. [VMSLIB]STARMISC.MAR defines macros for
common instructioh sequences. Other facilities also contain macro source
definition files. /

Code written m languages other than VAX MACRO may have associated
macro definition; files. These appear in the same fa¢ility as the associated
code. For example, the volume initialization utility, which is written in
VAX BLISS-32, /has a common definitions file, [INIT]INIDEF.B32. Use the
techniques des~ribed in Section B.1.2.1 to search for a particular macro.

The ASSUME .: Macro. The ASSUME macro checks assumed relations and
issues an ass~m.bly time error if an assumption is not true. Sometimes
assumptions are made about the relative location of fields within a data
structure.

1135

Use of Listing and Map Files

B.1.3

B.1.3.1

1136

• A single instruction could move two or more adjacent fields. For example,
a single MOVQ instruction could move two adjacent longword fields .

• Autoincrement or autodecrement addressing could be used to traverse a
s1tructure.

Changes in the data structure could cause these instructions to fail. For
example, to clear three adjacent fields in a UCB, a device driver uses the
following instruction and macro i~equence to prevent subtle errors if the
layout of the UCB changes in the future:

CLRQ UCB$L_SVAPTE(R5)
ASSUME UCB$W_BOFF EQ (UCB$L~SVAPTE + 4)
ASSUME UCB$W_BCNT EQ (UCB$.L_SVAPTE + 6)

Sometimes assumptions are made about the arithmetic relation between
various quantities, for example, interrupt priority levels (IPLs) or spinlock
ranks. The ASSUME macro can also check these relations. For example, the
nonpaged pool expansion routine, EXE$EXTENDPOOL in module MEM­
ORYALC, assumes that the MMC spinlock's rank is 1 higher than the rank
of the SCHED spinlock:

ASSUME SPL$C_MMG EQ SPL$C_SCHED+1

SYS$LIBRARY:STARLET.MLB definies the ASSUME macro; its source, in­
cluding comments, is contained in [VMSLIB]UTLDEFM.MAR. Examine the
definition of the ASSUME macro to determine what options are available
with it. The VAX BLISS-32 macro $ASSUME plays a similar role and is defined
in SYS$LIBRARY:STARLET.REQ.

The ASSUME and $ASSUME macros produce no executable code. Since they
perform their checks at assembly or compile time, there is no execution
performance penalty for using them.

Executive Assembler Listings

The modules that make up the base image and the loadable executive images
are all written from a common template that includes a module header
describing each routine in the module. The VAX MACRO and Instruction
Set Ref ere nee Manual describes the general format of a VAX MACRO listing
file. The comments in this section should aid you in reading the executive
assembler listings.

In general, the routines that make up the executive alt'e coded according to
standards resulting in more easily maintained code. For someone attempting
to learn how the VMS operating system works, this also produces code that
is easier to read.

Register Conventions. Each of the major subsystems of the executive uses a
set of register conventions in its main routines. That is, the same registers

B.1.3.2

B.1 Reading the Executive Listings

are used to hold the same contents from routine to routine. Some of the
more common conventions are listed here .

• R4 usually contains the address of the process control block jPCB) of
the current process. Nearly all system service procedures and scheduling
routines use this convention. In fact, the change-mode-to-kernel system
service dispatcher loads the address of the PCB of the caller into R4 before
passing control to the service-specific procedure.

• When it is necessary to store a process header jPHD) address, RS is usually
chosen. RS usually contains the address of the Pl window to the PHD.
However, during the execution of the swapper and certain memory man­
agement code that executes at IPL$_SYNCH, RS contains the system space
address of the PHD.

• The memory management subsystem uses R2 to contain an address on an
invalid page and R3 to contain the system virtual address of the page table
entry jSVAPTE) that maps the page. After a physical page is associated with
the page, its page frame number jPFN) is stored in RO.

• The 1/0 subsystem uses two nearly identical conventions, depending on
whether it is executing in process context (in the Queue 1/0 Request, $QIO,
system service and in device driver function decision table, FDT, routines)
or in response to an interrupt. The most common register contents are the
current IRP address stored in R3 and the UCB address in RS. In process
context, R4 contains the address of the PCB of the requesting process.
Within interrupt service routines, R4 contains the virtual address that
maps one of the command and status registers jCSRs) of the interrupting
device. The VMS Device Support Manual provides a more complete list of
register use by device drivers and the 1/0 subsystem.

• The synchronization routines generally store a spinlock structure address
or a spinlock index in RO. Many invocations of these routines are enveloped
in macros, some of which set up RO before passing control to the synchro­
nization routine. For the convenience of the invoking code, these macros
optionally preserve and restore the previous value of RO with the PRESERVE=

argument.

CPU-Dependent Routines. The VMS executive uses two different methods
for incorporating CPU-dependent code. When there are only a few instruc­
tions or data references that depend on the specific CPU type, the code in­
cludes the instruction or data sequences for all CPUs. The CPUDISP macro
uses the contents of global location EXE$GB_CPUTYPE to select the ap­
propriate instructions or data. SYSBOOT initializes this location with the
contents of the PR$_SID register. On some processor types, the CPUDISP
macro uses an additional level of dispatch based on the CPU subtype stored
in global location EXE$GB_CPUDATA + lS. The CPUDISP macro is de­
scribed in the VMS Device Support Manual and is defined in SYSMAR.MAR.

1137

Use of Listing and Map Files

B.L4

B.1.4.1

1138

When many instructions or data references depend on the specific CPU
type, they are linked together into a set of CPU-dependent images (see
Section B.2.3).

VAX Instruction Set and Addressing Mode Use

The VAX instruction set contains instructions with a natural number of
operands. Thus, there are two- and three-operand forms of the arithmetic
instructions ADD, SUB, MUL, and DIV. There are also bit manipulation instruc­
tions, a calling standard, character string instructions, and so on. All of these
allow the assembly language programmer to produce code that is not only
efficient but also readable.

However, there are certain places in the executive where the most obvi­
ous choice of instruction or addressing mode is not used because a shorter or
faster alternative is available. Interrupt service routines, routines that exe­
cute at elevated IPL, and commonly executed code paths, such as the system
service dispatcher and the main paths in the pager, are all examples where
clarity of the source code is sacrificed for execution speed.

There are at least two reasons for concern over instruction length, even
though the VAX architecture supports a very large virtual address space. Most
areas where instruction size is an issue are within the nonpaged executive.
This portion of the system consumes a fixed amount of physical memory.
Keeping instruction size small is one way to keep this real memory cost to
a minimum.

More important, VAX processors make use of an instruction lookahead
buffer that contains the next few bytes in the instruction stream. Its size
varies on different processors but is at least eight bytes on all current pro­
cessor types. If the buffer empties, the next instruction or operand cannot be
evaluated until the buffer is replenished. Keeping instructions small in key
areas avoids this wait. The instruction buffer is filled in parallel with other
CPU operations.

Techniques for Increasing Instruction Speed. This section lists some of the
techniques employed to reduce instruction size or increase execution speed.
The list is hardly exhaustive, but a pattern emerges here that can be applied
to other modules in the executive that are not explicitly mentioned. Each
list element describes a general technique and may also contain a specific
example, including the name of the module that employs the technique:

• Aligning data on "natural" boundaries is the most universally applied tech­
nique to reduce access time. Naturally aligned data begins at certain ad­
dress boundaries, for example, aligned longwords begin at addresses that
are multiples of four. Aligned reads and writes to memory are faster than

B.1 Reading the Executive Listings

unaligned transfers because of the way memory controllers are organized
and the way processors access memory controllers. There are several man­
ifestations of this technique:

-The VAX MACRO .PSECT directive and the DECLARE_PSECT macro,
and the VAX BLISS-32 PSECT statement specify code and data program
section (PSECT) alignments. (EXEC_REORG_MACROS.MAR defines
the DECLARE_PSECT macro.)

-The VAX MACRO .ALIGN directive aligns data and code.
-Fields within data structures are ordered so that they begin on natural

boundaries. Every structure allocated from pool is at least quadword­
aligned. Sometimes dummy fields are included to force subsequent fields
to natural boundaries.

-Many frequently invoked routines are aligned because longword-aligned
branch targets increase transfer speed. For example, system service vec­
tors and executive transfer vectors are all longword-aligned. Each set of
vectors begins on a page boundary, and each vector is padded with NOP

instructions or . BYTE o directives to make it a multiple of four bytes
long. In addition, the beginnings of some loops are aligned .

• When two successive writes to memory occur, on many types of VAX pro­
cessors the second write must wait for the first to complete. If successive
write operations can be overlapped with register-to-register operations, in­
struction stream references, or other operations that do not generate writes
to memory, then some other instruction can begin execution while the
memory write completes.

Several executive routines use this technique. The three examples that
follow are among the most commonly executed code paths in the system:

-The page fault handler saves RO through RS with PUSHL instructions
interspersed among instructions that do not write to memory.

-The $QIO system service procedure intersperses writes to memory (ini­
tializing an IRP) with reads from its argument list and register operations.

- The change mode dispatchers for executive and kernel modes build
customized call frames on their stacks. The writes to memory (the stack
operations) are overlapped with register and instruction stream refer­
ences .

• A pipeline design processor, such as the VAX 86x0 CPU, can have several
instructions at varying stages of completion at any point in time. The
overlapped instruction execution has several implications for coding style.

-The most common code path is in line. Code is arranged to minimize
branching and maximize "falling through" to the next instruction or
routine. Linear code executes faster than code that branches because
after a branch the pipe is empty, losing the advantages of overlapped
execution.

1139

Use of Listing and Map Files

B.1.4.2

1140

-Unrelated instructions are inserted between two instructions if the sec­
ond instruction depends on the result of the first. If the first instruction
has not completed, the dependent instruction stalls. Inserting unrelated
instructions allows the first instruction to complete before the depen­
dent instruction begins.

• There are three ways to push registers onto the stack: a PUSHR mask instruc­
tion, a series of MOVQ instructions to -(SP), or a series of PUSHL instructions.
Instruction implementation is sufficiently different on various VAX pro­
cessors to make generalization about performance of these instructions
difficult. However, the PUSHR instruction is seldom used in time-critical
places because it is slower than either MOVQ or PUSHL unless there are four
or more registers to save. PUSHR must interpret its bit mask operand and
then push the registers accordingly. PUSHR, however, does not alter condi­
tion codes and is used when their settings must be retained across saving
registers .

• When it is necessary to include a test-and-branch operation, a decision
as to which sense of the test to branch on and which sense to allow to
continue in line is required. One basis for this decision is to allow the
common (usually error-free) case to continue in line, only requiring the
(slower) branch operation in unusual cases.

Unusual Instruction and Addressing Mode Use. There are several instances
in the executive where the purpose of an instruction is not at all obvious.
This list includes some of the common occurrences of unusual instruction
set and addressing mode use.

• There are many instances of the following instruction sequence where the
initial setting of the bit has no effect on the flow of control:

BBSS bit arguments, 10$
10$:

This sequence sets the bit identified by a bit number or bit position. An
equivalent instruction sequence using BBCC clears the specified bit.

In some cases the BBxx instructions are preferred to the BISx or BICx

instructions. The Bixx instructions require a mask with a 1 in the desig­
nated position. Creating such a mask requires either two instructions or
an immediate mask that might occupy a longword. The only exception to
this involves a bit in the first six positions, where a short literal constant
can contain the mask.

Note that a BBCS instruction is equivalent to a BBSS instruction when
the branch destination is the next instruction. There are some occurrences
of BBCS where a BBSS would seem to accomplish the same purpose. The
usual sense of the bit in question influences the instruction choice so as
to avoid the branch in the usual case.

B.1 Reading the Executive Listings

• There are several instances of autoincrement deferred addressing where the
need for the increment of the register is not apparent. For example, both
of the following instructions occur in the rescheduling interrupt service
routine in module SCHED:

INSQUE (R1),G(R2)+

REMQUE G(R2)+,R4

In both cases, before the instruction executes, R2 contains the address
of the listhead of a doubly linked list. Its contents after the instruction
executes are irrelevant.

In fact, the increment is totally unnecessary; only double deferral from
a register is needed. In other words, the addressing mode ©O (R2) would
be equally appropriate, since the final contents of R2 are not important.
(The VAX architecture defines no ©(Rx) double deferral addressing mode
without a displacement.) However, deferred byte displacement addressing
costs an extra byte to hold the displacement. In this commonly executed
code path, saving one byte is extremely important.

It is worth noting that there i,s no similar problem when a single level of
deferral from a register is required. The assembler generates simple register
deferred mode (code 6) when it encounters byte displacement mode with
a displacement of zero (O(Rn) I in the source code .

• The MOVAx and PUSHAx instructions combined with displacement mode ad­
dressing are equivalent to an ADDLx instruction. For example, the following
two instructions are equivalent:

PUSHAB 12(R3)

ADDL3 #12,R3,-(SP)

However, the PUSHAB instruction is one byte shorter and executes faster
than the ADDL3 instruction .

• The use of MOVAx and PUSHAx described in the previous item can be com­
bined with indexed mode addressing to accomplish a multiply by 2, 4, or
8. For example, the following instruction multiplies the contents of Rl by
4, adds the value of the symbol LNMHSH$K_BUCKET to the product, and
places the result back into Rl:

MOVAL G#LNMHSH$K_BUCKET[R1],R1

EXE$PROCSTRT, in module PROCSTRT, uses this instruction during
process creation to calculate the size of a logical name hash table from the
number of entries .

• The following instruction, found in routine EXE$ALLOCATE in module
MEMORYALC, serves two purposes:

MOVAB (RO)+,R2

1141

Use of Listing and Map Files

1142

POPL des!= MOVL (SP) + ,des!

Before POPL (SP) After POPL (SP)

X: X:

X+4: X+4: t
X+8: c 1--4 SP X+8:

X+12: B X+12:

X+16: A X+16:

Figure B.1
Stack Modification due to POPL (SP) Pseudo
Instruction

(indeterminate) Direction of
..._.SP stack growth

A

Its ostensible purpose is to place the address of the allocated block of
memory into R2, where it is later picked up by the invoker. However,
because the allocated block is always at least quadword-aligned, the byte
context of the instruction forces an increment of RO by 1, setting the low
bit of RO. The invoker interprets this set bit as a success indicator .

• The permanent symbol table of the VAX MACRO assembler recognizes
the mnemonic POPL, even though there is no POPL instruction in the
VAX instruction set. The code generated for the following instructions
is identical:

POPL dst

MOVL (SP)+,dst

The mnemonic generates two bytes (one for the instruction opcode and
the other for the source operand specifier) plus whatever is required to
specify the destination operand.

For example, the following pseudo instruction (the first instruction in
the change-mode-to-kernel dispatcher in the module SYSTEM_SERVICE_
DISPATCHER) removes the change mode code from the stack (so that a
subsequent REI will work correctly) and loads it into RO:

POPL RO

A combination of the POPL instruction with an unusual addressing mode
occurs in the exception dispatcher for change-mode-to-supervisor and
change-mode-to-user exceptions where it is necessary to remove the sec­
ond longword from the stack. The following instruction has the effect of
removing the next-to-last item from the stack and discarding it, leaving
the stack in the state pictured in Figure B. l:

POPL (SP)

• The VAX instruction set does not include a TSTQ instruction. However, the
following instruction sets the condition codes as a TSTQ instruction would:

MOVQ RO,RO

B.1.4.3

B.1 Reading the Executive Listings

The Set Timer ($SETIMR) and Schedule Wakeup ($SCHDWK) system
services, in module SYSSCHEVT, use this instruction.

REI Instruction Use. The REI instruction most commonly dismisses an
interrupt or exception at the end of an interrupt or exception service routine.
However, other routines also use it. It is the only means of reaching a less
privileged access mode from a more privileged mode. Two slightly different
techniques accomplish this mode change. The most general technique of
going to a less privileged access mode alters the flow of execution at the
same time. The RSX-11 Application Migration Executive (AME), part of the
optional product VAX-11 RSX, uses this technique to get into compatibility
mode and transfer control to the PDP-11 code. The following instruction
sequence accomplishes the desired result:

PUSHL new-PSL
PUSHL new-PC
REI

Note that the many protection checks b.uilt into the REI instruction (see
Chapter 2) prevent the REI instruction from being used by a nonprivileged
user to get into a more privileged access mode or to elevate IPL, two opera­
tions that would allow such a user to damage the system.

A second technique changes the access mode but not the flow of con­
trol. The instruction sequence listed here (patterned after code contained in
module PROCSTRT) shows this second technique:

PUSHL
BSBB

PUSHL
BSBB

BRB
DORE!: REI

executive-mode-PSL
DORE!

user-mode-PSL
DORE!

somewhere_else

;Do processing in
; executive access mode

;Do processing in
; user access mode

;REI uses pushed PSL, and the PC
; that BSBB put on the stack

B.1.5 Elimination of Seldom-Used Code

Several different techniques are used to eliminate code and data that are
not used very often. For example, none of the programs used during the
initialization of a VMS system remains after its work is accomplished. The
VMS executive uses several techniques that allow these routines to do their
work as efficiently as possible and yet eliminate them after they have done
their work.

1143

Use of Listing and Map Files

B.1.5.1

B.1.5.2

B.1.6

1144

Bootstrap Programs. The following list illustrates some of the techniques
used to remove system initialization code from memory after it has done its
work:

• Both VMB and SYSBOOT execute in physical pages whose use is not
recorded anywhere. When module EXEC_INIT places all physical pages
except those occupied by the permanently resident executive on the free
page list, it includes the pages used by VMB and SYSBOOT. Their contents
are overwritten the first time that each physical page is used.

• After the initialization of a loadable executive image is complete, the ad­
dress space occupied by its fixup and initialization sections is deallocated .

• The SYSINIT process deallocates to the free page list the physical pages
occupied by EXEC_INIT (see Chapter 31). As part of this deallocation, the
system page table entries (SPTEs) mapping EXEC_INIT are also deallocated .

• Part of system initialization takes place in process context. The swapper
creates the SYSINIT process, which in turn creates the startup process.
Because both SYSINIT and startup are separate processes, they disappear
when they are deleted, that is, after they have completed their work.

Infrequently Used System Routines. The simplest and most common tech­
nique used to prevent infrequently used code and data from permanently
occupying memory is to put them into one of the pageable image sections
of a loadable executive image. Chapter 29 describes loadable executive im­
ages, their image sections, and their loading. The normal operation of system
working set replacement eventually forces infrequently referenced pages out
of the system working set.

Process creation employs an additional technique to eliminate code from
the system after a process is created. The swapper invokes a special subrou­
tine when it brings a process into memory from SHELL. This subroutine is
located in several of the SHELL pages that the swapper brings into memory.
These pages become the kernel stack of the new process, once the swapper
changes the process state to computable and resident. Because of the way
that the swapper does its I/O, these pages are mapped as PO pages in the
swapper's address space.

Locking Code or Data into Memory

While infrequent use may lead to a routine's being placed in a pageable image
section, other considerations may require that the code be nonpageable. For
example, the page fault handler assumes that page faults do not occur above
IPL 2; it enforces this assumption by generating a fatal bugcheck if it is
violated.

Several infrequently used and thus pageable system services (including the
Create Process, $CREPRC, system service) elevate IPL to IPL$_SYNCH (for
example, as a result of acquiring a spinlock while synchronizing access to

B.1.6.1

B.1.6.2

B.1 Reading the Executive Listings

the scheduler database) and thus need to lock some code pages into memory.
Several different techniques are used to lock pages into memory.

Placing Code into the Nonpaged Executive. Code and data in the executive
images reside in pageable and nonpageable image sections. The minimum
amount possible is placed into the PSECTs that comprise the nonpageable
image sections. A branch or subroutine call transfers control from the paged
to the nonpaged code. The following variation on a routine within the Get
Job/Process Information ($GETJPI) system service illustrates the technique.
The entire routine cannot exist in a pageable image section because the
routine EXE$NAMPID returns at IPL$_SYNCH and thus may not incur a
page fault .

25$:

. PSECT EXEC$PAGED_CODE

.ENABLE LOCAL_BLOCK

JSB 25$

.SAVE_PSECT

.PSECT EXEC$NONPAGED_CODE
JSB G- EXE$NAMPID

SETIPL #0
RSB
.RESTORE_PSECT

;Processing begins
; in paged code

;This is the only
; nonpaged piece

;Processing continues
; in paged code

Dynamically Locking Pages into the System Working Set. The preceding
piece of code only contributes seven bytes to the nonpaged executive. The
$CREPRC system service must execute many more instructions at IPL$_
SYNCH. It employs a technique that dynamically locks pages into the sys­
tem working set. (The Lock Pages in Working Set, $LKWSET, system service
cannot lock pages into the system working set.)

The PMLREQ and PMLEND macros, new with VMS Version 5, expand
into code that dynamically locks and unlocks a set of pages in the system
working set and optionally changes the IPL. Typically the macros appear at
the beginning and end of a code sequence that may not incur a page fault.
However, a larger range of pages may be specified with macro arguments.
This range may include data as well as code.

The instructions generated by the PMLREQ macro push the size and
starting address of the group of pages to be locked. If not el.."Jllicitly specified,
the starting addre.ss is a location within the macro. The ending address
must be specified. An instruction generated by the macro transfers control

1145

Use of Listing and Map Files

B.1.6.3

1146

to MMG$LOCK_SYSTEM_PAGES, in module LOCK_SYSTEM_PAGES, as a
co-routine.

MMG$LOCK_SYSTEM_PAGES performs several functions for each page
to be locked:

1. It checks that the page is in system space. If it is not, the routine generates
the NOTSYSVA bugcheck.

2. It faults the page into the system working set, if it is not already in the
system working set.

3. If the page's PFN is described in the PFN database, the routine increments
. the share count (PFN$Ax_SHRCNT) in the PFN database and sets the
locked in working set flag (WSL$V _ WSLOCK) in the page's working set
list entry (WSLE). These steps ensure that the page remains locked in
memory.

MMG$LOCK_SYSTEM_PAGES then returns to instructions generated by
the PMLREQ macro as a co-routine. The size and starting address of the
locked pages remain on the stack. If a new IPL was specified in the macro
invocation, PMLREQ now sets the IPL. The pages in the specified range
are now valid and will remain so until the instructions generated by the
PMLEND macro are invoked.

The PMLEND macro generates instructions that optionally change the IPL
and then transfer to MMG$UNLOCK_SYSTEM_ENTRY, in module LOCK_
SYSTEM_PAGES, as a co-routine. MMG$UNLOCK.__SYSTEM_ENTRY uses
the size and starting address information left on the stack. It decrements the
share count in the PFN database and clears WSL$V _ WSLOCK for each locked
page. After cleaning up the stack, MMG$UNLOCK_SYSTEM_ENTRY re­
turns. The following example illustrates the use of these macros:

PMLREQ END=2300$;Lock pages between here and 2300$
;++

; NB: Co-routine address + 2 LWs have been placed on top of stack
;--

;This code incurs no page faults

PMLEND ;Through with locked pages
;++

; NB: Co-routine address + 2 LWs have been removed from top of stack

2300$:

Dynamically Locking Pages into the Process Working Set. Privileged utilities
and other code that executes in process context may need to lock pages into
the process working set when running at elevated IPL. Two techniques are
available, depending on the number of pages to be locked. The $LKWSET

B.2 Map Files

system service can lock any number of pages into the process working set,
limited only by the process quotas and the amount of free memory.

A process can lock one or two pages into its working set with a simple
technique known as "poor man's lock down." Once the desired pages are
in the working set, the process raises the IPL to IPL$_SYNCH or higher,
blocking quantum-end processing and, in particular, the working set limit
adjustment.

BEGIN_LOCK:
DSBINT LOCK_IPL

ENBINT

BRB END_LOCK
LOCK_IPL:

.LONG IPL$_SYNCH
END_LOCK:

;Processing begins in paged code

;No page faults will occur here

;Page faults can occur again

ASSUME (END_LOCK-BEGIN_LOCK) LE 512

The DSBINT macro expands to the following instructions:

MFPR #PR$_IPL,-(SP)
MTPR src,#PR$_IPL

The key to this technique is that the second instruction generated by the
DSBINT macro cannot successfully complete until both the page containing
the instruction and the page containing the source operand are valid. (The
instruction faults these pages into the working set if they are not already
valid.) Once the instruction completes, implying that both pages are valid,
IPL is set at IPL$_SYNCH, preventing quantum end and further working set
list manipulation until the IPL is lowered (with the ENBINT macro).

The ASSUME macro ensures that the DSBINT macro and source operand
are not more than one page apart. This prevents the possibility of an invalid
page existing between the two valid pages, an occurrence that would not only
subvert this technique but might also lead to a PGFIPLHI fatal bugcheck.

Several processes, such as the error formatter process (ERRFMT), use this
technique.

B.2 MAP FILES

The map files produced when a VMS system is built from source are in­
dispensable, to readers of listing files. The listing kit contains map files for
many imag~s, including the base image, loadable images, device drivers, and
utilities. (Chapter 29 describes the base image and loadable executive im­
ages.) Most tnap files reside in the same facility as their related listing files.

1147

Use of Listing and Map Files

1148

Table B. l Selected Map File Locations

Map File

Base image (SYS.MAP)
Most loadable executive images
CPU-specific loadable images

(SYSLOAxxx .MAP)
CLUSTRLOA.MAP and CSP.MAP
SCSLOA.MAP
CPULOA.MAP
SYSTEM_DEBUG.MAP
DDIF$RMS_EXTENSION.MAP
RECOVERY _UNIT _SERVICES.MAP
RMS.MAP
SYSMSG.MAP
VMB.MAP, SYSGEN.MAP, and

SYSBOOT.MAP
Most device drivers

Other device drivers

DCL.MAP

Facility

[SYS]
[SYS]
[SYSLOA]

[SYSLOA]
[SYSLOA]
[CPULOA]
[DELTA]
[RMS EXT]
[RUF]
[RMS]
[MSGFIL]
[BOOTS]

[DRIVER], [COMM_DRIVER],
or [TTDRVR]

[RTPAD], [LAT], [NETACP],
[DUP], or [TFF]

[DCL]

For example, the base image and most loadable executive image map files
reside in the [SYS] facility. Table B.l lists the location of selected map files.

Map files list the value of each global symbol. These symbols include
routine and data cell locations as well as some data structure offset, bit
field, and other constant definitions. The base image map file lists the system
virtual addresses of the executive transfer vectors, data cell pointers, and data
cells in SYS.EXE. The loadable image map files list the locations of routines
and data cells as offsets from the beginning of the image. The system virtual
addresses of locations within loadable images are not determined .until the
images are loaded. The utility map files list the virtual addresses of routines
and data cells.

It is often necessary to identify which module defines a given symbol.
Because of the modular construction of VMS, many symbols referenced by
one routine are defined in some other module. Many images are built from a
large number of modules, so the map file alphabetical cross-reference listing
is particularly valuable. It identifies the modules that define and reference
each global symbol.

The techniques described for using the executive image map files are also
applicable to other map files. Map files for device drivers are necessary for
debugging a new device driver. This section also describes map files for DCL
and certain other loadable images because these images are not activated in

B.2 Map Files

the usual way but rather are mapped into process or system virtual address
space.

B.2.1 VMS Executive Map Files

B.2.1.1

Fundamentally, the map files enable you to correlate system virtual ad­
dresses and their locations in listing files. For example, when the system
crashes, the addresses that are reported on either the console terminal or in
the system dump file must be related to actual routines and data cells in
system address space.

Locating a System Address in the Listings. The list of loadable executive
images and their addresses reported on the console terminal and in the
system dump file help identify which executive image contains the offending
reference. Compare the address in question with the base and end addresses
for each loadable image to find the correct range. (System addresses less than
MMG$A_SYS_END are in the base image.)

In the following example, output from the System Dump Analyzer, the
location 80132F2016 is in the loadable executive image EXCEPTION.EXE:

Image
SYSMSG

SYSDEVICE
MESSAGE_ROUTINES
EXCEPTION
LOGICAL_NAMES
SECURITY

Base End Length
800C9COO 800F2AOO 00028EOO

8011E600 8011FCOO 00001600
80120200 80122800 00002600
80132COO 8013B200 00008600
8013BCOO 80130600 00001AOO
8013DCOO 8013F400 00001800

Subtract the image's base address from the address in question to get its
offset within the loadable image. Continuing the previous example, calculate
the offset of the location in question:

80132F20
-80132COO

Location in question
Base address of loadable executive image EXCEPTION

320 Location's offset within EXCEPTION

The identified image's map file then helps correlate addresses to PSECTs.
In its program section synopsis, a map file lists the PSECTs that contribute
to an image and lists each PSECT's address range. A loadable image's base
address is not determined until the image is loaded, so addresses in its map
file are offsets from the beginning of the image.

Compare the offset in question with each PSECT address range until you
find the PSECT that contains the offset. Note the PSECT's name, since it is
required later. From the following fragment of EXCEPTION.MAP, you can
see that offset 32016 is in PSECT EXEC$NONPAGED_CODE:

1149

Use of Listing and Map Files

1150

+--------------------------+
! Program Section Synopsis !

+--------------------------+
Psect Name Module Name Base End

EXEC$NONPAGED_CODE
BUGCHECKBT

00000000 000004FF
00000000 00000039

EXCEPTION 0000003C 0000021A
SYSTEM_SERVICE_DISPATCHER

00000220 000003F6
SYSTEM_SERVICE_EXIT

PATA_NONPAGED
EXEC$NONPAGED_DATA

000003F8 0000047E
00000480 000004FF
00000600 00001FE7

Often, several modules contribute to a given PSECT. The map file's
program· section synopsis lists the beginning and ending address of each
module's contribution to the PSECT. Compare the offset in question with
each module's contribution to the identified PSECT to find the module
that defines the location. In this example, the module SYSTEM_SERVICE_
DISPATCHER contributes offset 32016·

Subtract the beginning address of the identified module's contribution to
the PSECT from the offset of interest to produce an offset into the correct
module and PSECT:

00000320
-00000220

Location's offset within EXCEPTION
Base of EXEC$NONPAGED_CODE in SYSTEM_SERVICE_DISPATCHER

100 PSECT offset within module SYSTEM_SERVICE_DISPATCHER

This is the offset, within module SYSTEM_SERVICE_DISPATCHER's con­
tribution to PSECT EXEC$NONPAGED_CODE, of the instruction or data
reference in question. You must ensure that you locate the correct PSECT
within the listing, since there may be several PSECTs. The following frag­
ment is from SYSTEM_SERVICE_DISPATCHER.LIS:

0000 163 DECLARE_PSECT EXEC$NONPAGED_CODE,ALIGNMENT•QUAD

0100 573'EXE$CMODKRNL::
0100 574 POPL.RO ;Retrieve CHMK code from stack

If the address in question is within the base image, the calculations are
somewhat simpler. The addresses in SYS.MAP are system addresses, so com­
pare the address in question directly with the address ranges in the program
section synopsis to identify the PSF.CT and contributing module. Subtract
the beginning.address of the identified module's contribution to the PSECT
from the address in. question to produce an offset within the assembler list­
ing. Exercise care to read the correct PSECT in the listing.

B.2.1.2

B.2 Map Files

In general, this technique, transforming an address into an offset within
a module's contribution to a PSECT, can be applied to any type of image.
However, associating a system space address with a particular image may be
more difficult for images other than the base image and loadable executive
images. Other system space images include dynamically loaded images like
device drivers, or one of the other loadable images like the CPU-d!!pendent
images. Global pointers identify most dynamically mapped portions of sys­
tem address space. Examine the contents of these locations to determine
the component that contains the offending address. Chapter 29 contains. a
description of some of these loadable routines and the loading mechanism.

Relocatable and Vectored Symbols. A symbol whose ·value must be adjusted
to account for an image's base address is identified as a relocatable symbol
in a map file, indicated by R after the symbol's value:

+------------------------+
! Symbol Cross Reference !

+------------------------+
Symbol Value

EXE$GL_FKWAITFL 00003098-R

Key for special characters above·:
+------------------+
! * - Undefined ~:·

U - Universal
R - Relocatable
X - External
WK - Weak
V - Vectored
M - Mask value

+------------------+

Defined By

FORKCNTRL

Referenced By ...

TIMESCHD

Executive code refers to routines and data cells in other loadable images
through executive transfer vectors and data cell pointers in the base image.
The vectors and pointers are filled in with the correct addresses when the
corresponding im:ages are loaded. A map file identifies the symbols for these
routines and data cells :as vectored universal symbols, indicated by V after
the symbol's value. A universal symbol is one that can be interpreted outside
the image that defined it.

Vectored universal symbols appear twice in a map file.· In the first occur­
rence, the symbol's val,il:l;e equals its offset from the beginning of the image
that defines the symboLThe linker creates a second symbol, indicated by
(V) after the symbol's 'name in the map file. The second symbol's value
equals the execlitive trallsfer vector's or data cell pointer's address in the base
image.

1151

Use of Listing and Map Files

1152

For example, the routine EXE$DEANONPAGED resides in module MEM­
ORYALC, part of the loadable executive image SYSTEM_PRIMITIVES.EXE.
(Module EXSUBROUT invokes this routine directly, since EXSUBROUT is
also part of SYSTEM_PRIMITIVES.EXE.) The following fragment is from
SYSTEM_PRIMITIVES.MAP:

Symbol

EXE$DEANONPAGED
EXE$DEANONPAGED (V)

Value Defined By Referenced By ...

0000051A-RV MEMORYALC EXSUBROUT
80002338

Each loadable executive image is linked with the base image's symbol
table (SYS.STB) to resolve references to externally defined vectored universal
symbols, such as routines in other images. These universal symbols appear
twice in the resulting map file. In the first occurrence, the symbol's value
equals its location within the image that defines the symbol, in this case,
its address in the base image (the same address as its vector or pointer). As
previously described, the linker creates a second symbol whose value equals
the vector's or pointer's address in the base image.

Continuing the previous example, module ASTDEL (part of the load­
able executive image EVENT _FLAGS_AND_ASTS.EXE) invokes EXE$DEA­
NONPAGED. The following fragment is from EVENT_FLAGS_AND_
ASTS.MAP:

Symbol Value

EXE$DEANONPAGED 80002338

EXE$DEANONPAGED (V) 80002338

Defined By Referenced By ...

SYS AS TD EL
POSTEF
SYSASCEFC

A relocatable symbol that is referenced by other loadable images is gen­
erally a vectored universal symbol. Relocatable symbols that are referenced
only by modules within the same loadable image are not vectored universal
symbols.

Symbols for constants like data structure offsets, IPLs, and the sizes of
preallocated buffers are not affected by the ultimate location of a loadable
image. These symbols are therefore not relocatable:

Symbol Value Defined By Referenced By

PQL$C_SYSPQLLEN 00000046 SWAPPER SWAPPER_INIT

Some base image global symbols have an associated version mask. The
map file identifies these mask value symbols with M after the symbol values.
The map file lists the symbol values, not the mask values:

Symbol

EXE$DUMPCPUREG
EXE$V_BUGREBOOT

B.2.2 DCL.MAP

Value Defined By

8000A868-RM SYSLOAVEC
OOOOOOOB-M SYSPARAM

B.2 Map Files

Referenced By ...

SYSLOAVEC_MASK
SYSPARAM_MASK

A command language interpreter (CLI) is mapped into a virtual address
range that is not known until the mapping occurs. The first longword at
global location CTL$AG_CLIMAGE in the Pl pointer page contains the base
address of any CLI. Because DCL is linked with a base address of zero, the
contents of this location can be used to relate an address extracted from the
map with a virtual address in a running system.

For example, if the location of interest is 7FF720CC16 in Pl space and the
contents of the first longword at CTL$AG_CLIMAGE is 7FF7120016, then
the difference between these two numbers equals the offset into the DCL
image. Obviously, if this difference is larger than the size of the DCL image,
then the address is not in DCL:

7FF720CC
-7FF71200

Location of interest
Base address of DCL

ECC Location's offset within DCL image

Compare the location's offset within DCL to the address ranges listed
in [DCL]DCL.MAP to determine which PSECT and module contain the
location of interest. Subtract the beginning address of the identified module's
contribution to the PSECT from the offset within DCL to produce an offset
into the correct module and PSECT. This offset then locates in the listing
file the routine or data cell of interest.

To calculate the Pl space address of a data cell or instruction in a DCL
module, start with the location as shown in the module's listing. Add to it
the base address of the module's contribution to the correct PSECT (taken
from [DCL]DCL.MAP) to form the offset into the DCL image. Add this sum
to the contents of global location CTL$AG_CLIMAGE to form the Pl address
of the location in question.

B.2.3 CPU-Dependent Routines

Entire routines or modules that are CPU-dependent, such as the machine
check service routine, are linked together into a set of CPU-dependent im­
ages. The images have names of the form SYSLOAxxx.EXE, where xxx iden­
tifies the CPU type (see Appendix G). SYSBOOT uses the CPU type and
subtype to determine which SYSLOA image to load into nonpaged pool.
Segregating CPU-dependent routines into separate images minimizes the
number of CPU-dependent decisions that are made at execution time and
reduces the size of the executive.

1153

Use of Listing and Map Files

SYSBOOT stores the base address of the CPU-dependent code in the global
location MMG$GL_SYSLOA_BASE jsee Chapter 31). The map files for the
CPU-dependent images have names of the form [SYSLOA]SYSLOAxxx .MAP.
Perform address calculations using the techniques described in Sec­
tion B.2.1.1.

B.2..4 Device Driver Map Files

SYSGEN loads device drivers into nonpaged pool. The SYSGEN command
SHOW /DEVICE displays the address range into which the driver images
are loaded. Each driver is linked with a base address of 0. The starting
address displayed by SDA corresponds to offset 0 in the image. The address
of the driver dispatch table !DDT) displayed by SDA usually corresponds to
PSECT $$$1 lS_DRIVER in the driver map. The VMS Device Support Manual
discusses debugging device drivers in more detail.

B.2..5 Other Map Files

You can use other map files for the cross-reference capabilities already men­
tioned. In addition, many other components of the operating system execute
as regular images, so no base addresses have to be used to locate addresses
in virtual address space. The addresses on the map correspond to the vir­
tual addresses that are used for an executable image. However, the map file
does not include the base address of nonbased, position-independent code
shareable images; their base addresses are determined at image activation
time.

As the image activator processes an image and its references to other im­
ages, the image activator builds image control blocks jICBs) jsee Chapter 26).
An ICB includes the image name and the starting and ending addresses of the
image. The ICBs for activated images form a doubly linked list starting at
the listhead IAC$GL_IMAGE_LIST. You may be able to examine this list of
ICBs with SDA (in conjunction with the map file's image section synopsis)
to determine what images are mapped into PO space. The listhead and the
ICBs are pageable, so they may not be present in a system dump file.

B.3 SYSTEM DUMP ANALYZER

1154

SDA allows you to analyze a running system or examine the contents of a
dump file. Map files can only supply addresses of static data storage areas
in the system, not their contents. In addition, many data structures are
dynamically constructed. With SDA you can examine these data structures,
other memory locations, and the hardware context of each processor.

The VMS System Dump Analyzer Utility Manual describes how to use
SDA. This section mentions several of the many SDA commands that are
especially useful when studying how the operating system works.

B.3 System Dump Analyzer

B.3.1 Symbols

SDA maintains a symbol table that it uses to interpret memory addresses
and contents. SDA reads certain symbols, including SYS$SYSTEM:SYS.STB
and a small subset of SYS$SYSTEM:SYSDEF.STB, into its symbol table when
it first executes. You can add symbols to SDA's table with the DEFINE and
READ commands. Since SYS$SYSTEM:SYSDEF.STB contains many com­
mon data structure definitions, reading it into SDA's symbol table is fre­
quently useful. Use the following command:

SDA> READ SYS$SYSTEM:SYSDEF.STB

Many of the dynamic data structures are located through global pointers in
the base image. These static locations are loaded when these structures are
created or modified, either as a part of system initialization or some other
loading mechanism.

The SDA command SHOW SYMBOLS/ALL is one way to display these
global pointers. It shows both the addresses and the contents of all locations
for which SDA has symbols in its symbol table. This list, together with the
map files, enables you to locate any data structure in system address space if
you know the global name that locates the structure. Alternatively, use the
EXAMINE command to determine the contents of particular global pointers.
The SHOW SYMBOLS/ALL command produces a very long list. The SHOW
SYMBOLS/ ALL xyz command lists only those symbols that begin with xyz.

The READ/EXECUTIVE command reads the definitions of universal sym­
bols from the loadable executive images and adds the appropriate image's
base address to each relocatable symbol. Before such a command is issued,
SDA interprets references to vectored universal symbols as their base image
executive transfer vectors or data cell pointers. In the example, note that
SDA has defined the symbol SYSTEM_PRIMITIVES to be the base address
of the loadable image:

SDA> SHOW SYMBOL EXE$ALLOCIRP
EXE$ALLOCIRP = 80002160 : A4109F17
SDA> EXAMINE/INSTRUCTION EXE$ALLOCIRP !Executive transfer vector
EXE$ALLOCIRP: JMP ©#SYSTEM_PRIMITIVES+00010

After reading a loadable executive image's symbol table, SDA interprets
references to vectored universal symbols as their locations within the load­
able executive image. SDA creates new symbols (prefixed with V _) for the
vectors or pointers in the base image. In the example, note that SDA now
displays the JMP instruction destination as EXE$ALLOCIRP:

SDA> READ/EXECUTIVE

1155

Use of Listing and Map Files

1156

Y.SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]RMS.EXE;7
Y.SDA-I-READSYM, reading symbol table SYS$COMMON: [SYS$LDR]CPULOA.EXE;4

SDA> SHOW SYMBOL EXE$ALLOCIRP
EXE$ALLOCIRP = 8018!410 : OOB08FDD
SDA> SHOW SYMBOL V_EXE$ALLOCIRP
V_EXE$ALLOCIRP = 80002160 : A4109F17
SDA> EXAMINE/INSTRUCTION EXE$ALLOCIRP !Location in loadable image
EXE$ALLOCIRP: PUSHL #OOOAOOBO
SDA> EXAMINE/INSTRUCTION V_EXE$ALLOCIRP !Executive transfer vector
V_EXE$ALLOCIRP: JMP Cl#EXE$ALLOCIRP

The SDA command SHOW EXECUTIVE produces a list of the loadable
executive images, their starting and ending addresses, and their sizes. Sec­
tion B.2.1.1 describes the use of this list in conjunction with the executive
map files. SDA defines symbols for the base addresses of the loadable execu­
tive images and a number of other loadable images. These symbols include
the following:

• CLUSTRLOA-Base address of V AXcluster system support
• xxDRIVER (xx is typically a device name)-Base address of device driver
• FPEMUL-Base address of floating-point emulation code
• MSCP-Base address of the mass storage control protocol (MSCP) server
• SCSLOA-Base address of system communication services (SCS) image
• SYSLOA-Base address of CPU-specific code
• V AXEMUL-Base address of string emulation code

With these symbols you can form simple address expressions to specify a
particular location in any of these images. For example, the following SDA
command examines offset 10016 in PAGE_MANAGEMENT:

EXAMINE PAGE_MANAGEMENT + 100

The symbol table files read by SDA contain only global symbols. (In the
case of loadable executive images, they contain only universal symbols.)
Sometimes it is helpful to add some of a module's local symbols to SDA's
symbol table. You can create a local symbol definition file for SDA. Start
with the map file that includes the module in question. For example, SYS­
TEM_PRIMITIVES.MAP reveals that module TIMESCHDL's contribution to
PSECT EXEC$NONPAGED_CODE begins at offset 10B016 from the begin­
ning of the loadable image:

+--------------------------+
! Program Section Synopsis !

+--------------------------+
Psect Name Module Name Base End

EXEC$NONPAGED_CODE
MEMORYALC
INIRDWRT

00000000 00001F5F
00000000 OOOOOBC5
OOOOOBC8 OOOOOC58

B.3 System Dump Analyzer

MUTEX
FORKCNTRL
TIMESCHDL

OOOOOC5C OOOOOF5E
OOOOOF60 000010AE
000010BO 000017C1

Next, examine the list of symbols and their values located at end of the
module's listing file. The following fragment is from TIMESCHDL.LIS:

CHECK_SANITY_TIMER
CHKTMQ

PSECT name

EXEC$NONPAGED_CODE

00000000 R
000001BC R

+----------------+
! Psect synopsis !
+----------------+
Allocation

05
05

PSECT No. Attributes

00000712 (1810.) 05 (5.)

If an online listing is. available, use an editor to manipulate a copy of it
into a local symbol definition file. If only a microfiche listing is available,
manually create a local symbol definition file. In either case, phrase each
definition as an SDA DEFINE command. Begin by defining a symbol whose
value equals the starting address of the PSECT that contains the code or data
of interest. The following fragment is from a user-created symbol definition
file called TIMESCHDLLOCALS.COM:

DEFINE PSECT_BASE = SYSTEM_PRIMITIVES + 10BO
DEFINE CHECK_SANITY_TIMER = PSECT_BASE + 00000000
DEFINE CHKTMQ = PSECT_BASE + 000001BC

Invoke the local symbol definition file from SDA. Notice that SDA then
uses the local symbol CHKTMQ:

SDA> EXAMINE/INSTRUCTION SYSTEM_PRIMITIVES + 10BO + 275
SYSTEM_PRIMITIVES+01325: BRW SYSTEM_PRIMITIVES+0126C

SDA> ©TIMESCHDL_LOCALS.COM

SDA> EXAMINE/INSTRUCTION SYSTEM_PRIMITIVES + 10BO + 275
CHKTMQ+OOOB9 : BRW CHKTMQ

SDA> EXAMINE/INSTRUCTION CHKTMQ
CHKTMQ: BLBC ©#SMP$GL_FLAGS,CHKTMQ+00012

Section B.1.2.2 describes a technique for adding data structure offset and
other symbols to SDA's symbol table.

B.3.2 Address Space Layout

You can also use SDA to create a picture of Pl and system address space.

1157

Use of Listing and Map Files

As Figure 1.8 shows, many of the pieces of system address space are con­
structed at initialization time. SYSGEN parameters determine the sizes of
the various pieces (see Appendix F). In response to the command SHOW
PAGE_ TABLE/SYSTEM, SDA lists the contents of the entire system page
table. This listing, the symbol table, the list of loadable executive images
and their starting addresses, and the system map files allow you to draw a
sketch of system virtual address space.

The output from the SDA SHOW PAGE_ TABLE/Pl command, together
with the information in Figure 1.2 and Table F.6, allows you to draw a layout
of Pl address space.

B.4 INTERPRETING SDL FILES

Most data structures and other systemwide constants used by the executive
and other system components are defined with SOL files. SOL enables data
structures to be defined in a language-independent way. SOL can generate
language-specific versions of the same structure in any of several languages.

When a VMS system is built from source, the SOL preprocessor reads and
processes system data structure definitions written in SOL. It produces a set
of macro definitions for use by the VAX MACRO assembler and another set
for the VAX BLISS-32 compiler.

In particular, there are SOL files that generate the macros that define
data structures and constants in the VAX MACRO libraries SYS$LIBRARY:
LIB.MLB and STARLET.MLB and the VAX BLISS-32 files SYS$LIBRARY:
LIB.REQ and STARLET.REQ. The VMS listing kit includes these SOL files.
The SOL definition of a data structure typically includes comments describ­
ing the fields of the structure. The SOL definition can thus be a source of
information about the meaning of system data structure fields. These com­
ments are not propagated to LIB.MLB and STARLET.MLB, although they do
appear in LIB.REQ and STARLET.REQ.

This section shows how the SOL description of a data structure relates to
both the resulting VAX MACRO definition and a picture of the structure. Its
sole purpose is to assist in the interpretation of SOL files supplied with the
VMS listing kit. Note that SOL is an internal Digital tool. Any other use is
completely unsupported.

B.4.1 A Sample Structure Definition

1158

To see how a structure is defined, look at the resultant symbol definitions
and compare the SOL definition of a given structure with the resultant VAX
MACRO or VAX BLISS-32 symbols. Any listing that uses the structure in
question includes these symbols. Alternatively, use the command procedure
listed in Section B.1.2.2.

Example B.l shows the SOL definition of the AST control block (ACB)
and the comments that accompany each field definition. Figure 7 .1 shows the

B.4.2

Example B.1
SDL Definition of AST Control Block

module $ACBDEF;
I• +
/• AST CONTROL BLOCK DEFINITIONS

B.4 Interpreting SDL Files

I• AST control blocks exist as separate structures and as
I• substructures within larger control blocks such as I/O
I• request packets and timer queue entries.
I•
/•-
aggregate ACBDEF structure prefix ACB$;

ASTQFL longword unsigned; /•AST queue forward link
/•AST queue backward link
/•Structure size in bytes
/•Structure type code

ASTQBL longword unsigned;
SIZE word unsigned;
TYPE byte unsigned;
RMOD_OVERLAY union fill;

RMOD byte unsigned;
RMOD_BITS structure fill;

/•Request access mode

/•Mode for final delivery MODE bitfield length 2;
FILL_1 bitfield length 2
PKAST bitfield mask;

fill prefix ACBDEF tag $$; /•Spare
/•Piggyback

NODELETE bitfield mask;

QUOTA bitfield mask;
KAST bitfield mask;

end RMOD_BITS;
end RMOD_OVERLAY;
PID longword unsigned;
AST longword unsigned;
ASTPRM longword unsigned;
KAST longword unsigned;

constant <quote>(LENGTH) equals
constant <quote>(LENGTH) equals

end ACBDEF;
end_module $ACBDEF;

I• special kernel AST
/•Don't delete ACB on
I• delivery
/•Account for quota
/•Special kernel AST

/•Process ID of request
/•AST routine address
/•AST parameter
/•Internal kernel mode
I• transfer address

prefix ACB$ tag K; /•Length of block
prefix ACB$ tag C; /•Length of block

layout of an ACB. Table B.2 lists each SDL directive in the ACB definition, its
meaning, the symbol it creates, and the value of that symbol. The following
sections briefly describe the individual SDL directives.

Commonly Used SDL Statements

An SDL statement consists of SDL keywords, user-specified names, and
expressions. A semicolon terminates an SDL statement. It can be followed
by a comment to be included in the output macro. The comment must begin
with the character pair/*.

Valid SDL expressions can contain any of the following:

• Numeric constants

1159

Use of Listing and Map Files

Table B.2 SDL Directives and Resultant VAX MACRO Symbol Definitions for AST
Control Block

Directive Resultant Symbol
SDL Directive Meaning Symbol Value

module $ACBDEF Begin $ACBDEF
macro

aggregate ACBDEF structure Begin ACB
prefix ACB$ structure

ASTQFL longword unsigned Longword field ACB$L_ASTQFL 0
ASTQBL longword unsigned Longword field ACB$L_ASTQBL 4
SIZE word unsigned Word field ACB$W_SIZE 8
TYPE byte unsigned Byte field ACB$B_TYPE 10
RMOD_OVERLAY union fill Begin overlay

structure
RMOD byte unsigned Byte field ACB$B_RMOD 11
RMOD_BITS structure fill Begin RMOD_

BITS structure
MODE bitfield length 2 Bit field of ACB$V_MODE 0

length 2 ACB$_MODE 2
FILL_l bitfield length 2 fill Skip two spare

prefix ACBDEF tag $$ bits
PKAST bitfield mask Single bit field ACB$V _PKAST 4

ACB$M_PKAST 1016
NODELETE bitfield mask Single bit field ACB$V _NODELETE 5

ACB$M_NODELETE 2016
QUOTA bitfield mask Single bit field ACB$V _QUOTA 6

ACB$M_QUOTA 4016
KAST bitfield mask Single bit field ACB$V_KAST 7

ACB$M_KAST 8016
end RMOD_BITS End RMOD_BITS

structure
end RMOD_OVERLAY End the overlay

structure
PID longword unsigned Longword field ACB$L_PID 12
AST longword unsigned Longword field ACB$L_AST 16
ASTPRM longword unsigned Longword field ACB$L_ASTPRM 20
KAST longword unsigned Longword field ACB$L_KAST 24
constant "LENGTH" equals . Define a constant ACB$K_LENGTH 28

prefix ACB$tag K
constant "LENGTH" equals. Define a constant ACB$C_LENGTH 28

prefix ACB$tag C
endACBDEF End ACB

structure
end_module $ACBDEF End $ACBDEF

macro

1160

B.4.2.1

B.4.2.2

B.4.2.3

B.4 Interpreting SDL Files

• Local symbols
• Special offset location symbols: period j.J, colon (:J, and circumflex(')
• Arithmetic, shift, and logical operators
• Parentheses to define the order of evaluation

The next sections describe the SDL statements commonly employed to
define structures used by VMS. They emphasize the SDL files used to build
the system. A complete syntax of each statement is not given.

MODULE Statement. A MODULE statement groups related symbols and
data structures. It defines a collection of SDL statements to be processed.
Typically, each VMS data structure is defined within its own module. The
name of the module is the ~ame of the generated macro. For example, the
following statement from Example B. l defines the beginning of the module
that defines the ACB data structure:

module $ACBDEF;

AGGREGATE Statement. An AGGREGATE declaration defines a single data
structure within a module. There are two types of AGGREGATE declaration:'

•STRUCTURE
•UNION

The fields in a STRUCTURE occupy consecutive storage locations; the
fields in a UNION reuse the same storage location.

The period character symbolizes the current byte offset within an AG­
GREGATE declaration.

Each VMS data structure definition begins with an AGGREGATE STRUC­
TURE statement. This statement includes a PREFIX keyword that specifies
the prefix characters in each symbol definition. For example, the following
statement from Example B. l defines the beginning of the ACB structure,
each of whose symbol definitions begins with the characters ACB$:

aggregate ACBDEF structure prefix ACB$;

Data Structure Fields. Each field in a data structure is defined in a statement
consisting of a name and one or more keywords. A keyword can identify the
type of data or its size. For example, the keywords BYTE, WORD, LONG­
WORD, QUADWORD, and OCTAWORD specify integer fields of those
sizes. A keyword can specify some attribute of a field. For example, the
keyword SIGNED specifies that an integer field is signed. The default is
unsigned. Many other keywords are used to define VMS data structures. Ex­
amples are F _FLOATING, BITFIELD, and CHARACTER.

The value of the symbol name is set equal to the current value of an
internal offset counter. In general, as each field definition is processed, the
internal counter value is increased by the size of the field jl, 2, 4, or 8).

1161

Use of Listing and Map Files

B.4.2.4

B.4.2.5

B.4.2.6

B.4.2.7

1162

Symbol Names. The naming conventions that apply to VMS symbols defined
through SDL are listed in Appendix D. In general, a data structure symbol has
the form structure$type_field-name. Structure identifies its data structure.
Type identifies the type of data. Field-name names the field.

A data structure symbol name is formed from a combination of the fol­
lowing elements:

• PREFIX keyword value, which includes a dollar sign ($) to indicate a
Digital-defined symbol

• Letter indicating type. Data type keywords of BYTE, WORD, LONG­
WORD, QUADWORD, or OCTAWORD generate characters B, W, L, Q,
or 0. A CONSTANT statement usually specifies a TAG value of C or K.

• Underscore (_)
• Field name from the data type statement

Symbol Values. It is possible for the user to assign values directly to a
symbol defined as part of an SDL structure (for example, with the DEFAULT
keyword). Normally, however, SDL assumes that a symbol will be used as
an offset from the beginning of its data structure. SDL keeps track of the
current offset from the start of the structure, and SDL assigns that value to
the symbol.

UNION Statement. It is often desirable to give a field multiple names.
In addition, subfields within a field often exist. The UNION statement
defines the beginning of a substructure whose members reuse the same
storage locations. The following extract from Example .B.1 shows a UNION
substructure:

RMOD_OVERLAY union fill;
RMOD byte unsigned;
RMOD_BITS structure fill;

end RMOD_BITS;
end RMOD_OVERLAY;

This extract defines both the symbol ACB$B_RMOD and the structure
ACB$R_RMOD_BITS to be the value of the current byte offset. The FILL
qualifier indicates that no symbol is to be generated in the VAX MACRO
and VAX BLISS-32 expansions of the structure definition.

CONSTANT Statement. The CONSTANT statement defines a constant. De­
pending on what TAG argument is supplied, the CONSTANT statement
produces symbols of the form xyzC_name, xyzK__name, or xyz$_name.
By convention, symbols with C in the type field of the symbol name de­
fine ASCII character constants, while symbols with K in the type field de­
fine other constants. Early versions of VMS used only the C type for both

B.4.2.8

B.4.2.9

B.4 Interpreting SDL Files

character and other constants, and these symbols are still in use. Table B.2
illustrates one use of the CONSTANT statement:

constant "LENGTH" equals . prefix ACB$ tag K;

This statement defines the symbol ACB$K_LENGTH equal to the value of
the period character, the current byte offset in the ACB structure.

There are several other examples of constant definitions in both the SYS­
DEF and STARDEF SDL files. The definitions of the DYN$ symbols describe
dynamically allocated structures. The JPI$ symbols describe an information
list to the $GETJPI system service.

BITFIELD Statement. Bit fields require two numbers to completely describe
them, a bit position and a size. SDL always defines a bit position (indicated
by Vin the type field of the symbol name). The bit position is specified by
the current bit offset. The circumflex character n symbolizes the current bit
offset within the current subaggregate.

The size of a field (indicated by S in the type field of the symbol name)
is defined when the field size is specified explicitly with the LENGTH,
keyword. It is often useful to define a mask symbol (indicated by Min the·
type field of the symbol name) that has l's in each bit position defined by
the bit field and zeros elsewhere. SDL defines such a symbol if the MASK
keyword is present in the BITFIELD statement.

Because this section merely tries to show what symbols result from a given
SDL definition, the simplest way to describe the bit field syntax is with some
examples. Table B.2 includes SDL BITFIELD statements extracted from the
definition of the ACB.

END and END_MODULE Statements. The structure definition is terminated
with an END statement. The module is terminated with an END_MODULE
statement.

1163

C Executive Data Areas

The writable executive consists of various dynamically allocated tables as
well as statically allocated data structures that are a part of the base system
image SYS.EXE. This appendix summarizes the major dynamic data areas
and emphasizes the static base image data.

Most of the information presented in this appendix is from the specific
source modules that comprise SYS.EXE. In general, it does not include data
areas private to any loadable executive images. Names that appear in the
Global Symbol column in lowercase type represent local symbols, which are
only used within the module in which they are defined.

C.1 THE BASE IMAGE

This section describes the global cells that make up the base image. Its or­
ganization, defined by the module EXEC_LAYOUT, is shown in Figure 29.1.
Each subsection describes a different area in the base image and lists the
source modules that contribute to that area. Program section names (PSECT
names) are included in each section title.

C.1.1 System Service Vector Area ($$$000_SYSTEM_SERVICE_ VECTORS)

The first 16 pages of system virtual address space are reserved for system
service vectors. These pages are read-only except when system services are
being loaded. The global label SYS$SO_ VECTOR_END, defined in module
EXEC_LAYOUT, represents the high-address end of the system service vector
pages. Chapter 6 gives more information on this section.

C.1.2 Nonpaged Executive Transfer Vectors ($$$$$NONPAGED_CODE)

1164

Most of this area consists of transfer vectors to routines in loadable executive
images. Each vector is a quadword. Most vectors contain a JMP instruction
whose target is within a loadable executive image. In a few cases, a routine
itself is in this area. The table that follows identifies these cases as "routine
body." Module SYSTEM_ROUTINES defines this area. Chapter 29 gives
more information on this section.

Global Symbol

ACP$ACCESS

ACP$ACCESSNET
ACP$DEACCESS

ACP$MODIFY

ACP$MOUNT

ACP$READBLK

ACP$WRITEBLK

BUG$BUILD_HEADER

BUG$DUMP _REGISTERS
BUG$FATAL
BUG$READ_ERR_RETRY
BUG$REBOOT
COM$DELATTNAST
COM$DELATTNASTP

COM$DELCTRLAST
COM$DELCTRLASTP

COM$DRVDEALMEM
COM$FLUSHATTNS
COM$FLUSHCTRLS
COM$POST

COM$POST_NOCNT

COM$SETATTNAST
COM$SETCTRLAST
DTSS$TIMESERVICE_

HOOK
ERL$ALLOCEMB
ERL$COLDSTART

ERL$DEVICEATTN

ERL$DEVICERR

ERL$DEVICTMO

ERL$GETFULLNAME

ERL$LOGMESSAGE

Size

Quadword

Quadword
Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword
Quadword
Quadword
Quadword
Quadword
Quadword

Quadword
Quadword

Quadword
Quadword
Quadword
Quadword

Quadword

Quadword
Quadword
Quadword

Quadword
Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

C.1 The Base Image

Description of Routine
Function decision table (FDT) routine for IO$_

ACCESS and IO$_CREATE to files-oriented
device

FDT routine for 10$_ACCESS to network device
FDT routine for 10$J)EACCESS to files-oriented

device
FDT routine for IO$_ACPCONTROL, 10$_

DELETE, IO$_MQDIFY to files-oriented device
FDT routine for 10$_MOUNT to files-oriented

device
FDT routine for 10$_READxBLK to files-oriented

device
FDT routine for 10$_ WRITEx BLK to files-oriented

device
Write bugcheck information into error log message

buffer
Store processor register contents in a buffer
Reserved
Reserved
Reboot after bugcheck processing
Deliver attention ASTs from specified list
Deliver attention ASTs from specified list to a

specific process
Deliver out-of-band ASTs from specified list
Deliver out-of-band ASTs from specified list to a

specific process
Deallocate nonpaged pool
Flush specified attention AST list
Flush specified out-of-band AST list
Queue an IRP to systemwide 1/0 postprocessing

queue
Queue an IRP to systemwide 1/0 postprocessing

queue without incrementing UCB$LOPNT
Enable or disable attention ASTs
Enable or disable out-of-band ASTs
Hook for distributed time service optional

software
Allocate and initialize an error message buffer
Allocate and initialize an error message buffer for

a boot message
Allocate and initialize an error message buffer for

a device attention condition
Allocate and initialize an error message buffer for

a device error
Allocate and initialize an error message buffer for

a device timeout
Copy device name including system communica­

tion services node name to a buffer
Allocate and initialize an error message buffer for

an error associated with a command packet

1165

Executive Data Areas

Global Symbol

ERL$LOGSTATUS

ERL$LOG_DMSCP

ERL$LOG_ TMSCP

ERL$RELEASEMB
ERL$UNEXP

ERL$VEC_RETURN

ERL$WAKE
ERL$WARMSTART

EXE$ABORTIO

EXE$ACVIOLAT
EXE$ALLOCATE

EXE$ALLOCBUF
EXE$ALLOCCEB

EXE$ALLOCIRP
EXE$ALLOCJIB

EXE$ALLOCPCB
EXE$ALLOCTQE

EXE$ALONONPAGED
EXE$ALONPAGVAR

EXE$ALONPAGWAIT

EXE$ALONPAGWAITS
EXE$ALOP1IMAG

EXE$ALOP1 PROC
EXE$ALOPAGED
EXE$ALOPHYCNTG
EXE$ALOSHARED
EXE$ALTQUEPKT

EXE$ARITH
EXE$ASTDEL
EXE$ASTFLT
EXE$BLDPKTGSR

EXE$BLDPKTGSW

1166

Size

Quadword

Quadword

Quadword

Quadword
Quadword

Quadword

Quadword
Quadword

Quadword

Quadword
Quadword

Quadword
Quadword

Quadword
Quadword

Quadword
Quadword

Quadword
Quadword

Quadword

Quadword
Quadword

Quadword
Quadword
Quadword
Quadword
Quadword

Quadword
Quadword
Quadword
Quadword

Quadword

Description of Routine

Allocate and initialize an error message buffer
for an error returned in a mass storage control
protocol (MSCP) end packet

Allocate and initialize an error message buffer for
a disk MSCP controller error

Allocate and initialize an error message buffer for
a tape MSCP controller error

Release a filled-in error log message buffer
Unexpected interrupt service routine that

generates a nonfatal bugcheck
Unexpected interrupt service routine that

increments counter
Conditionally wake ERRFMT process
Allocate and initialize an error message buffer for

a restart
Abort an 1/0 request from function decision table

action routine
Access violation exception service routine
Allocate dynamic memory from specified variable­

length list
Allocate and initialize nonpaged pool for a buffer
Allocate and initialize nonpaged pool for a

common event block
Allocate and initialize nonpaged pool for an IRP
Allocate and initialize nonpaged pool for a job

information block
Allocate and initialize nonpaged pool for a PCB
Allocate and initialize nonpaged pool for a timer

queue entry
Allocate nonpaged pool
Allocate nonpaged pool from the variable-length

list
Allocate nonpaged pool and conditionally wait if

pool not available
Alternative entry point to EXE$ALONPAGWAIT
Allocate memory from process allocation region

for duration of image
Allocate memory from process allocation region
Allocate paged pool
Allocate and map physically contiguous memory
Allocate a block of MA780 shared memory
Queue an IRP to a driver's alternate start 1/0

entry point
Arithmetic error exception service routine
Call AST procedure
Signal stack access failure during AST delivery
Build 1/0 packet for shared memory global section

read
Build 1/0 packet for shared memory global section

write

C.1 The Base Image

Global Symbol Size Description of Routine

EXE$BLDPKTMPW Quadword Build 1/0 packet for modified page writer
EXE$BLDPKTSWPR Quadword Build 1/0 packet for swap read
EXE$BLDPKTSWPW Quadword Build 1/0 packet for swap write
EXE$BOOTCB_CHK Quadword Check validity of boot control block
EXE$BREAK Quadword Breakpoint exception service routine
EXE$BUG_CHECK Quadword Process a bugcheck
EXE$BUILDPKTR Quadword Build 1/0 packet for page read
EXE$BUILDPKTW Quadword Build 1/0 packet for page write
EXE$CANCELN Quadword Internal entry point for $CANCEL system service
EXE$CARRIAGE Quadword Interpret 1/0 carriage control specifier
EXE$CATCH_ALL Quadword Catch-all condition handler procedure
EXE$CEBREFLCK Quadword Acquire SHMCEB reference count lock
EXE$CHECKACL Quadword Search an access control list for an entry granting

requested rights
EXE$CHECKACMODE Quadword Perform access mode protection check
EXE$CHECKCLASS Quadword Perform nondiscretionary security check
EXE$CHECKPROT Quadword Perform system-owner-group-world protection

check using expanded protection mask
EXE$CHECKPROT_l6 Quadword Perform system-owner-group-world protection

check using 16-bit mask
EXE$CHECK_BYPASS Quadword Check for either BYPASS privilege or READALL

privilege and read access
EXE$CHKCREACCES Quadword Check that process has create access to an object
EXE$CHKDELACCES Quadword Check that process has delete access to an object
EXE$CHKEXEACCES Quadword Check that process has execute access to an object
EXE$CHKIMAGNAME Quadword Check access to image name in image header

buffer
EXE$CHKLOGACCES Quadword Check that process has logical 1/0 function access

to an object
EXE$CHKPHYACCES Quadword Check that process has physical 1/0 function

access to an object
EXE$CHKPRO_INT Quadword Internal entry point to the $CHKPRO system

service
EXE$CHKRDACCES Quadword Check that process has read access to an object
EXE$CHKWAIT2 Quadword Check whether event flag wait condition is

satisfied
EXE$CHKWRTACCES Quadword Check that process has write access to an object
EXE$CLEANUP_ORB Quadword Delete all structures referenced by an object rights

block
EXE$CLLUTILSRV Quadword Dummy command language interpreter callback

procedure
EXE$CLOSE_MSG Quadword Close files opened by EXE$0PEN_MSG for

SYS$0UTPUT and SYS$ERROR
EXE$CLOSE_RDB Quadword Close the rights database file and zero the rights

identifier table
EXE$CMODSUPR Quadword Change mode to supervisor exception service

routine
EXE$CMODUSER Quadword Change mode to user exception service routine
EXE$COMPAT Quadword Exception service routine for compatibility mode

faults

1167

Executive Data Areas

Global Symbol Size Description of Routine
EXE$CONNECT _ Quadword Initialize system service vector and array entries

SERVICES for a newly loaded system service
EXE$CONTSIGNAL Quadword Continue from exception
EXE$CRE_GTABLE Quadword Create group logical name table
EXE$CRE_JGTABLE Quadword Create job and group logical name tables
EXE$DEALLOCATE Quadword Deallocate dynamic memory to specified variable-

length list
EXE$DEANONPAGED Quadword Deallocate nonpaged pool
EXE$DEANONPGDSIZ Quadword Deallocate nonpaged pool block whose size is in

Rl
EXE$DEAP1 Quadword Deallocate memory to Pl allocation region
EXE$DEAPAGED Quadword Deallocate paged pool
EXE$DEAPGDSIZ Quadword Deallocate paged pool block whose size is in Rl
EXE$DEASHARED Quadword Deallocate a block of MA780 shared memory
EXE$EPID_ TO_IPID Quadword Convert extended process ID to internal process

ID
EXE$EPID_ TO_PCB Quadword Convert extended process ID to PCB address
EXE$EXCEPTION Quadword Common exception servicing routine
EXE$EXCPTNE 20 bytes Routine body-executive mode last chance

exception handler
EXE$EXCPTN 6 bytes Routine body-kernel mode last chance exception

handler
EXE$EXIT _IMAGE Quadword Procedure to invoke $EXIT at end of image

execution
EXE$EXPANDSTK Quadword Expand user stack
EXE$EXTENDPOOL Quadword Extend nonpaged pool areas
EXE$FINDACL Quadword Search specified access control list segment for an

entry of specified type
EXE$FINISHIO Quadword Complete an 1/0 operation at function decision

table level
EXE$FINISHIOC Quadword Complete an 1/0 operation at function decision

table level, zeroing second longword of status
EXE$FORK Quadword Insert fork process on specified queue
EXE$FORKDSPTH Quadword Dispatch fork processes from a given queue
EXE$FORIL WAIT Quadword Insert fork process on fork and wait queue
EXE$FRKIPL10DSP Quadword IPL 10 interrupt service routine, fork dispatching
EXE$FRKIPL11DSP Quadword IPL 11 interrupt service routine, fork dispatching
EXE$FRKIPL6DSP Quadword IPL 6 interrupt service routine, fork dispatching
EXE$FRKIPL8DSP Quadword IPL 8 interrupt service routine, fork dispatching
EXE$FRKIPL9DSP Quadword IPL 9 interrupt service routine, fork dispatching
EXE$HWCLKINT Quadword Interval timer interrupt service routine
EXE$IMGDELMSG Quadword Send image purge message to job controller
EXE$IMGDMP _EXEC Quadword Merge image dump facility after executive,

supervisor, or user mode error and call it
EXE$IMGDMP _MERGE Quadword Merge image dump facility after user mode error

and call it
EXE$IMGPURMSG Quadword Send image termination message to job controller
EXE$INILDEVICE Quadword Call device drivers' controller and unit initializa-

tion routines
EXE$INSERTIRP Quadword Insert IRP by priority order in unit control block

queue

1168

Global Symbol

EXE$INSIOQ

EXE$INSTIMQ

EXE$IOFORK

EXE$IORSNWAIT

EXE$IPAPBKAST
EXE$IPCONTROL

EXE$IPID_ TO_EPID

EXE$IPID_ TQ_PCB
EXE$JBCRSP

EXE$KERSTKNV
EXE$LCLDSKVALID

EXE$LDB_SYNCH
EXE$LOAD_ERROR
EXE$MAXACMODE

EXE$MCHECK

EXE$MCHK_BUGCHK

EXE$MCHK_PRTCT

EXE$MCHK_ TEST

EXE$MODIFY

EXE$MODIFYLOCK

EXE$MODIFYLOCKR

EXE$MULTIQUOTA

EXE$NAMPID
EXE$NETSNDERL
EXE$NULLPROC
EXE$0NEPARM

EXE$0PCCUS

EXE$0PCDEC
EXE$0PEN_MSG
EXE$0PEN_RDB
EXE$0PRSNDERL
EXE$0UTBLANK

Size

Quadword

Quadword

Quadword

Quadword

Quadword
Quadword

Quadword

Quadword
Quadword

Quadword
Quadword

Quadword
1 byte
Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword
Quadword
Quadword
Quadword

Quadword

Quadword
Quadword
Quadword
Quadword
Quadword

C.1 The Base Image

Description of Routine

Insert IRP in unit control block pending-I/O queue
or invoke IOC$INITIATE

Insert entry in time-ordered timer queue entry
list

Insert fork process on specified queue, disabling
timeouts from the device

Place process in resource wait, backing out $QIO
request

Reserved
IPL 12 interrupt service routine, console

intervention
Convert internal process ID to extended process

ID
Convert internal process ID to PCB address
Special kernel mode AST routine for receiving

response from $SNDJBC system service
Invalid kernel stack exception service routine
Function decision table routine for local disk valid

function
Reserved
Routine body-HALT routine
Maximize a specified access mode with previous

mode in processor status longword
Signal unrecoverable machine check to outer

mode
Handle machine checks for which protection is

desired
Enable recovery block for machine check

exceptions
Test machine check recovery block for mask

match
Function decision table routine for direct I/O

modify functions
Check I/O buffer for write accessibility and lock

in memory
Check I/O buffer for read accessibility and lock in

memory, returning via co-routine on error
Check multiunit resource request and condition-

ally wait the process
Translate process name to internal process ID
Send a network message to the error logger
Reserved
Function decision table routine for I/O request

with one parameter
Opcode reserved to customer exception service

routine
Reserved instruction exception service routine
Open files for SYS$0UTPUT and SYS$ERROR
Open the rights database as necessary
Send an operator message to the error logger
Write blank to specified device

1169

Executive Data Areas

Global Symbol Size Description of Routine

EXE$0UTCHAR Quadword Write character to specified device
EXE$0UTCRLF Quadword· Write carriage return and line feed to specified

device
EXE$0UTCSTRING Quadword Write counted string to specified device
EXE$0UTHEX Quadword Convert longword to hexadecimal digits and write

to specified device
EXE$0UTBYTE Quadword Convert byte to hexadecimal digits and write to

specified device
EXE$0UTZSTRING Quadword Write zero-terminated string to specified device
EXE$PAGRDERR Quadword Signal page read error fault
EXE$POWERAST Quadword Queue a special kernel mode AST to each process

that requested notification of power recovery
EXE$POWERFAIL Quadword Powerfail interrupt service routine
EXE$PRCDELMSG Quadword Send process termination message to job controller
EXE$PRCPURMSG Quadword Send process purge message to job controller
EXE$PROBER Quadword Check read accessibility of user buffer
EXE$PROBER_DSC Quadword Check read accessibility of user buffer specified

by descriptor
EXE$PROBEW Quadword Check write accessibility of user buffer
EXE$PROBEW _DSC Quadword Check write accessibility of user buffer specified

by descriptor
EXE$PROCIMGACT Quadword Startup code for processes such as stand-alone

SYSGEN
EXE$PROCSTRT Quadword Standard process startup code
EXE$PWRTIMCHK Quadword Check for reasonable interval since power

recovery
EXE$QIOACPPKT Quadword Queue an IRP to an ancillary control process or

the Files-11 Extended QIO Processor (XQP)
EXE$QIODRVPKT Quadword Queue an IRP to a driver's start 1/0 entry point
EXE$QIORETURN Quadword Return from $QIO system service with success

status
EXE$QXQPPKT Quadword Insert an IRP in the XQP queue and conditionally

enter the XQP dispatcher
EXE$RADRMOD Quadword Reserved addressing mode exception service

. routine
EXE$READ Quadword Function decision table routine for direct 1/0 read

functions
EXE$READCHK Quadword Check buffer for write access and abort 1/0 on

error
EXE$READCHKR Quadword Check buffer for write access
EXE$READLOCK Quadword Check 1/0 buffer for write access and lock in

memory
EXE$READLOCKR Quadword Check 1/0 buffer for write access and lock in

memory, returning via co-routine on error
EXE$REFLECT Quadword Reflect an exception from a mode other than

kernel
EXE$RESETVEC Quadword Reset privileged library vectors
EXE$RESTART Quadword Warm restart following power recovery and error

halts
EXE$RESTART _ATT Quadword Warm restart a secondary processor following

power recovery and error halts

1170

Global Symbol

EXE$RMSEXH
EXE$RMVTIMQ
EXE$ROPRAND
EXE$SEARCH_RIGHT

EXE$SENDMSG
EXE$SENSEMODE

EXE$SETCHAR

EXE$SETIME_INT
EXE$SETMODE

EXE$SETOPR
EXE$SET _RDIPTR

EXE$SET _PAGES_READ_
ONLY

EXE$SET _PAGES_
WRITABLE

EXE$SHMCEBDEL

EXE$SIGTORET

EXE$SNDEVMSG
EXE$SNGLEQUOTA

EXE$SSFAIL
EXE$SWAPINIT
EXE$SWTIMINT
EXE$TBIT
EXE$TIMEOUT

EXE$UBCLKINT
EXE$VALIDNAME
EXE$WRITE

EXE$WRITECHK

EXE$WRITECHKR
EXE$WRITELOCK

EXE$WRITELOCKR

EXE$WRTMAILBOX
EXE$ZEROPARM

FIL$CVT _DTB
FIL$CVT _HTB
FIL$CVT _OTB
FIL$CVTFILNAM

Size

Quadword
Quadword
Quadword
Quadword

Quadword
Quadword

Quadword

Quadword
Quadword

Quadword
Quadword

Quadword

Quadword

Quadword

Quadword

Quadword
Quadword

Quadword
Quadword
Quadword
Quadword
Quadword

Quadword
Quadword
Quadword

Quadword

Quadword
Quadword

Quadword

Quadword
Quadword

Quadword
Quadword
Quadword
Quadword

C.1 The Base Image

Description of Routine

Executive mode exit handler procedure
Remove entry from timer queue entry list
Reserved operand exception service routine
Search specified rights segment for a given

identifier
Write a message to specified mailbox
Function decision table (FDT) routine for 10$_

SENSEMODE and I0$_SENSECHAR functions
FDT routine for IO$_SETCHAR and 10$_

SETMODE functions
Internal entry point to $SETIME system service
FDT routine for IO$_SETCHAR and 10$_

SETMODE functions queued to a driver
Enable specified device as an operator terminal
Store the address of the rights identifier block in

Pl space
Set protection on system service vector pages to

read-only
Set protection on system service vector pages to

kernel-write
Delete (release) master common event block in

MA780 shared memory
Condition handler procedure that turns an

exception into an error return
Send device-specific message to specified mailbox
Check single-unit resource request and condition-

ally wait the process
Signal system service failure exception
Initialization code that runs in swapper process
IPL 7 interrupt service routine, software timer
Trace fault exception service routine
Perform periodic functions, including scan for

device timeouts
Clock interrupt service routine
Validate identifier name
Function decision table routine for direct 1/0

write functions
Check buffer for read access and abort 1/0 on

error
Check buffer for read access
Check I/O buffer for read access and lock in

memory
Check I/O buffer for read access and lock in

memory, returning via co-routine on error
Write specified message to mailbox
Function decision table routine for I/O request

with no parameters
Convert decimal to binary
Convert hexadecimal to binary
Convert octal to binary
Convert file name from ASCII to RADSO

1171

Executive Data Areas

Global Symbol Size Description of Routine

FIL$1NIWCB Quadword Allocate and initialize window control block
FIL$0PENFILE Quadword Open file using primitive 1/0
FIL$0PENFILE_l Quadword Assign device and open file using primitive 1/0
FIL$RDWRTLBN Quadword Read or write specified logical block from device
IMG$DECODE_IHD Quadword Read and decode image header
IMG$GET _NEXT _ISD Quadword Get next image section descriptor
IN1$ALLOC_CRB Quadword Allocate and partly fill a controller request block

and spinlock
INl$ALONONPAGED Quadword Allocate nonpaged pool; used by EXE$1NIT
INl$ALONPAGVAR Quadword Allocate nonpaged pool from the variable-length

list; used by EXE$1NIT
IN1$BRK 2 bytes Routine body-has BPT known to XDELTA
INl$MASTERWAKE 4 bytes Routine body-awakens XDELTA
INl$RDONLY Quadword Change protection on read-only sections of

loadable executive images to read-only
INl$WRITABLE Quadword Change protection on read-only sections of

loadable executive images to kernel-write
IOC$ALOUBAMAP Quadword Allocate map registers for transfer described in

unit control block fields
IOC$ALOUBAMAPN Quadword Allocate specified number of map registers
IOC$ALOUBAMAPSP Quadword Allocate a specific set of map registers
IOC$ALOUBMAPRM Quadword Permanently allocate map registers
IOC$ALOUBMAPRMN Quadword Permanently allocate specified number of map

registers
IOC$ALTREQCOM Quadword Alternative entry to 1/0 request complete
IOC$APPLYECC Quadword Apply error correction code correction to data

read from a disk
IOC$BROADCAST Quadword Broadcast to a single local terminal
IOC$BUFPOST Quadword Files-11 XQP buffered 1/0 completion routine
IOC$CANCELIO Quadword Cancel I/O on channel
IOC$CHKMBXQUOTA Quadword Check quota for creating mailbox
IOC$CHKUCBQUOTA Quadword Check quota for creating a unit control block
IOC$CLONE_UCB Quadword Copy a template to create a new unit control

block and connect it
IOC$CONBRDCST Quadword Broadcast emergency message to console
IOC$COPLUCB Quadword Copy a given unit control block
IOC$CREATE_UCB Quadword Create a mailbox or network unit control block

and link it into the 1/0 database
IOC$CREDIT _UCB Quadword Return quota charged for deleted unit control

block
IOC$CTRLINIT Quadword Call driver controller initialization routine
IOC$CVTLOGPHY Quadword Conditionally convert logical block to physical

address
IOC$CVTLOGPHYU Quadword Unconditionally convert logical block to physical

address
IOC$CVT _DEVNAM Quadword Convert a device name and unit number to a

physical device name string
IOC$DALLoc_DEV Quadword Deallocate device clusterwide
IOC$DALLOC_DMT Quadword Deallocate device on dismount
IOC$DEBIT _UCB Quadword Record master process ID charged for created unit

control block

1172

C.1 The Base Image

Global Symbol Size Description of Routine

IOC$DELETE_UCB Quadword Delete unit control block if its reference count is
zero

IOC$DIAGBUFILL Quadword Write final device information into diagnostic
buffer

IOC$DIRPOST1 Quadword Alternative entry point to direct 1/0 special kernel
mode AST

IOC$DISMOUNT Quadword Dismount a mounted mass storage volume
IOC$FFCHAN Quadword Search the 1/0 channel table for a free channel
IOC$FILSPT Quadword Fill system page table entry with page table entry

mapping user buffer
IOC$FREE_UCB Quadword Deallocate nonpaged pool for a unit control block

being deleted and its associated object rights
block

IOC$GETBYTE Quadword Get one byte of data from user buffer
IOC$INITBUFWIND Quadword Initialize one-page window into user buffer
IOC$INITDRV Quadword Initialize database for a specific device driver
IOC$INITIATE Quadword Initiate next 1/0 request on device
IOC$IOPOST Quadword IPL 4 interrupt service routine, 1/0 postprocessing
IOC$LAST_CHAN Quadword Handle deassignment of last channel to a device
IOC$LAST _CHAN_AMBX Quadword Handle deassignment of last channel to a mailbox

associated with a device
IOC$LINK_UCB Quadword Link a new unit control block to device data block

chain
IOC$LOADMBAMAP Quadword Load MASSBUS adapter map registers to describe

1/0 buffer
IOC$LOADUBAMAP Quadword Load UNIBUS adapter map registers to describe

1/0 buffer
IOC$LOADUBAMAPA Quadword Alternative entry point to IOC$LOADUBAMAP
IOC$LOADUBAMAPN Quadword Load UNIBUS adapter map registers specified by

register input
IOC$LOCK_DEV Quadword Take out clusterwide device lock
IOC$LUBAUDAMAP Quadword Load UNIBUS adapter map registers for UDA port
IOC$MAPVBLK Quadword Map virtual block number to logical block number
IOC$MNTVER Quadword Assist driver with mount verification
IOC$MOVFRUSER Quadword Move data from user buffer
IOC$MOVFRUSER1 Quadword Internal entry point to IOC$MOVFRUSER
IOC$MOVFRUSER2 Quadword Internal entry point to IOC$MOVFRUSER
IOC$MOVTOUSER Quadword Move data to user buffer
IOC$MOVTOUSER1 Quadword Internal entry point to IOC$MOVTOUSER
IOC$MOVTOUSER2 Quadword Internal entry point to IOC$MOVTOUSER
IOC$PARSDEVNAM Quadword Parse device name string
IOC$PTETOPFN Quadword Get page frame number associated with invalid

page table entry
IOC$PUTBYTE Quadword Write one byte of data to user buffer
IOC$QNXTSEG Quadword Queue next segment of virtual 1/0 request
IOC$QNXTSEG1 Quadword Alternative entry point to IOC$QNXTSEG
IOC$REINITDRV Quadword Reinitialize driver database after reloading a

device driver
IOC$RELCHAN Quadword Release device's controller
IOC$RELDATAP Quadword Release buffered data path

1173

Executive Data Areas

Global Symbol

IOC$RELDATAPUDA

IOC$RELMAPREG
IOC$RELMAPUDA

IOC$RELOC_DDT
IOC$RELSCHAN
IOC$REQCOM
IOC$REQDATAP
IOC$REQDATAPNW

IOC$REQDATAPUDA

IOC$REQMAPREG

IOC$REQMAPUDA

IOC$REQPCHANH

IOC$REQPCHANL

IOC$REQSCHANH

IOC$REQSCHANL

IOC$RETURN
IOC$SCAN_IODB
IOC$SCAN_IODB_2P

IOC$SEARCH
IOC$SEARCHALL

IOC$SEARCHCONT

IOC$SEARCHDEV

IOC$SEARCHINT
IOC$SENSEDISK

IOC$SEVER_UCB

IOC$TESTUNIT
IOC$THREADCRB

IOC$TRANDEVNAM
IOC$UNffiNIT
IOC$UNLOCK
IOC$UNLOCK_DEV

1174

Size

Quadword

Quadword
Quadword

Quadword
Quadword
Quadword
Quadword
Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword
Quadword
Quadword

Quadword
Quadword

Quadword

Quadword

Quadword
Quadword

Quadword

Quadword
Quadword

Quadword
Quadword
Quadword
Quadword

Description of Routine

Release buffered data path specified by class driver
request packet

Release map registers
Release map registers described by class driver

request packet
Relocate the driver dispatch table
Release device's secondary controller
Complete a device's 1/0 request and start the next
Request buffered data path
Request buffered data path and return if

unavailable
Request buffered data path using information

in class driver request packet and return if
unavailable

Request map registers for transfer described by
unit control block fields

Request map registers for transfer described by
class driver request packet fields

Allocate device's primary controller with high
priority

Allocate device's primary controller with low
priority

Allocate device's secondary controller with high
priority

Allocate device's secondary controller with low
priority

Null routine consisting of RSB

Scan the 1/0 database and return next block
Scan the 1/0 database, including dual-path

information, and return next block
Search the 1/0 database for specified device
Do a generic search of the 1/0 database for a local

device
Continue a device search started by

IOC$SEARCHINT
Search the 1/0 database for a specific physical

device
Search the 1/0 database for specified device
Function decision table routine for 10$_

SENSECHAR and I0$_SENSEMODE to a
disk

Unlink a unit control block from its device data
block and controller request block

Check unit control block against search rules
Insert controller request block into controller

request block timeout list
Translate logical device name
Call driver unit initialization routine
Unlock the 1/0 database mutex
Release the clusterwide device lock

C.1 The Base Image

Global Symbol Size Description of Routine

IOC$UPDATRANSP Quadword Update transfer parameters after a partly
successful 1/0 transfer

IOC$VERIFYCHAN Quadword Verify an 1/0 channel number
IOC$WAKACP Quadword Queue an IRP to an ancillary control process or

the Files-11 XQP and wake it if the queue was
empty

IOC$WFIKPCH Quadword Wait for interrupt, not releasing the device
controller

IOC$WFIRLCH Quadword Wait for interrupt, releasing the device controller
LCK$BREAILDEADLOCK Quadword Break a lock deadlock
LCK$CHECK_RSB Quadword Deallocate a resource block if necessary
LCK$COMP _GGMODE Quadword Compute lock group grant mode
LCK$CVTNOTQED Quadword Requeue a granted lock whose convert request

cannot be granted
LCK$CVT_GRANTED Quadword Grant a lock conversion
LCK$DEALLoc_RsB Quadword Deallocate a resource block with no locks
LCK$DEQLOCK Quadword Dequeue a lock
LCK$DLCKEXIT Quadword Return from lock deadlock detection
LCK$EXTEND_IDTBLW Quadword Extend the lock ID table, waiting if there is

insufficient nonpaged pool
LCK$GRANTCVTS Quadword Try to grant locks in the wait or conversion queue
LCK$GRANTWTRS Quadword Try to grant waiting locks
LCK$GRANT _LOCK Quadword Grant a lock request
LCK$GRANT_LOCILALT Quadword Alternative entry point to LCK$GRANT _LOCK
LCK$GRANT _REM Quadword Grant a remote lock request
LCK$LOCAL_CVT Quadword Convert a local lock that is the only one in

granted or conversion queue
LCK$LOCAL_LOCK Quadword Handle local lock requests
LCK$NOT _QUEUED Quadword Deallocate lock ID and return
LCK$QUEUECVT Quadword Insert a lock on the conversion queue
LCK$QUEUED_EXIT Quadword Return after successfully queuing a lock request
LCK$QUEUEWAIT Quadword Insert a lock on the wait queue
LCK$QUEUE_BLKAST Quadword Queue local blocking ASTs
LCK$QUEUE_BLOCKAST Quadword Queue local blocking ASTs or send message to

other system
LCK$QUEUE_REM Quadword Insert a remote lock request on a wait queue
LCK$SEARCHDLCK Quadword Search and break lock deadlocks
LCK$SRCH_HSHTBL Quadword Search hash table for matching resource name
LCK$SRCH_RESDLCK Quadword Search for resource deadlocks
LCK$SYNC_EXIT Quadword Complete a synchronously granted lock request
LKl$SEARCH_ Quadword Search for locks blocked by the current lock

BLOCKED BY
LKI$SEARCH_BLOCKING Quadword Search for locks blocking the current lock
LNM$CHECK_PROT Quadword Check access to a logical name table
LNM$CONTSEARCH Quadword Find the next logical name that might match
LNM$DELETE..HASH Quadword Delete all logical names in a hash table
LNM$DELETE_LNMB Quadword Delete a logical name block
LNM$FIRSTTAB Quadword Search for the first logical name table name that

matches
LNM$HASH Quadword Hash a logical name
LNM$INSLOGTAB Quadword Insert a logical name in a logical name table

1175

Executive Data Areas

Global Symbol Size Description of Routine

LNM$LOCKR Quadword Lock the logical name table mutex for read access
LNM$LOCKW Quadword Lock the logical name table mutex for write

access
LNM$PRESEARCH Quadword Find the first logical name that might match
LNM$SEARCILONE Quadword Search for a specified logical name and return

translation
LNM$SETUP Quadword Initialize recursive logical name table name

processing
LNM$TABLE Quadword Translate a logical name table name
LNM$UNLOCK Quadword Unlock the logical name table mutex
MMG$ALCPHD Quadword Allocate space in the process header for a section

table entry or working set list entries
MMG$ALCSTX Quadword Allocate a section table index from specified

section table
MMG$ALc_PGFLVBN Quadword Allocate a specific set of blocks in a page file
MMG$ALLOCONTIG Quadword Allocate physically contiguous pages
MMG$ALLOCPAGFIL1 Quadword Allocate a cluster of pages from specified file,

maintaining the reserved page count .
MMG$ALLOCPAGFIL2 Quadword Allocate the first contiguous set of blocks from

specified page file, maintaining the reserved
page count

MMG$ALLOCPFN Quadword Allocate a page from the free page list
MMG$ALLOCSWPAREA Quadword Allocate a swap area in a swap or page file
MMG$ALOSHMGSD Quadword Allocate an MA780 shared memory global section

descriptor
MMG$ALOSHMPAG Quadword Allocate MA780 shared memory pages for a global

section
MMG$CALCSWAPSIZE Quadword Calculate process swap size
MMG$CEFTRNLOG Quadword Translate a logical name for a common event

cluster
MMG$CLILBITMAP Quadword Clear bits in the MA780 shared memory global

page bitmap
MMG$CREDEL Quadword Common per-page loop for creation/deletion

/lock/unlock
MMG$CREPAG Quadword Create a page of process address space
MMG$CRETVA Quadword Internal entry point to $CRETV A system service
MMG$DALCBAKSTORE Quadword Free a page's backing store
MMG$DALCPAGFIL Quadword Deallocate specified page in specified page file
MMG$DALCSTX Quadword Deallocate a section table entry
MMG$DALCSTXSCN Quadword Scan a given process header for section table

entries that can be deallocated
MMG$DALCSTXSCN1 Quadword Scan the system header for section table entries

that can be deallocated
MMG$DALLOCPFN Quadword Deallocate a page of physical memory
MMG$DEALLOCPAGFIL Quadword Deallocate specified blocks in a page file,

maintaining the reserved page count
MMG$DECPHDREF Quadword Decrement the process header reference count
MMG$DECPHDREF1 Quadword Subentry point to MMG$DECPHDREF
MMG$DECPTREF Quadword Decrement the reference count for specified page

table entry
MMG$DECSECREF Quadword Decrement a section table reference count

1176

Global Symbol
MMG$DECSHMREF

MMG$DELCONPFN

MMG$DELGBLSEC
MMG$DELGBLWCB

MMG$DELPAG
MMG$DELPFNLST

MMG$DELSHMGS
MMG$DELWSLEPPG

MMG$DELWSLEX
MMG$QUEUE_GSD_

CLEAN
MMG$EXPKSTK
MMG$EXPREG
MMG$EXTRADYNWS
MMG$FASLCREATE

MMG$FINDISTGSD

MMG$FINDGSDPFN

MMG$FINDGSNOTRN

MMG$FINDSHB

MMG$FINDSHD

MMG$FREEGSD

MMG$FREWSLE

MMG$FREWSLX
MMG$FRE_ TRYSKIP
MMG$GETGSNAM

MMG$GETNXTGSD
MMG$GETPTIPAG
MMG$GSDMTXULK
MMG$GSDSCN

MMG$GSDTRNLOG
MMG$IMGRESET

Size

Quadword

Quadword

Quadword
Quadword

Quadword
Quadword

Quadword
Quadword

Quadword
Quadword

Quadword
Quadword
Quadword
Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword·

Quadword
Quadword
Quadword

Quadword
Quadword
Quadword
Quadword

Quadword
Quadword

C.1 The Base Image

Description of Routine
Decrement an MA780 shared memory global

section descriptor page table entry reference
count

Delete former virtual contents of a page of
physical memory

Delete a global section
Deaccess section files on the deleted section

window control block list
Delete a page of process address space
Remove a page frame number from page list and

delete its former virtual contents
Delete an MA780 shared memory global section
Delete specified process page working set list

entry
Delete specified working set list entry
Queue an AST to a process to clean up delete-

pending global section descriptor queue
Expand the kernel stack
Internal entry point to $EXPREG system service
Calculate extra dynamic working set count
Expand the process or control region by the

requested size, all at once
Find first MA780 shared memory global section

based on translating the shared memory logical
name

Find the global section descriptor (GSD) that maps
a specific MA780 shared memory page frame
number

Find the GSD when the normal search path has
failed

Find the MA780 shared memory block for a
specific MA780 shared memory

Find the MA780 shared memory containing a
particular GSD

Release any MA780 shared memory GSDs no
longer in use

Select a working set list entry and release the
page that occupied it

Free specified working set list entry
Subentry point to MMG$FREWSLX
Get a global section name and MA780 shared

memory name
Get the next GSD in the search sequence
Get page table information for specified page
Unlock the GSD mutex
Scan the GSD queue for a section with specified

name
Translate a global section logical name
Reset the process section table and working set

list and invoke RM$RESET after deleting image
pages

1177

Executive Data Areas

Global Symbol Size Description of Routine

MMG$INADRINI Quadword Get the input address range and initialize the
return address range argument

MMG$1NCPTREF Quadwo:{d Increment the reference count for specified page
table entry

MMG$INCSHMREF Quadword Increment an MA780 shared memory global
section descriptor page table entry reference
count

MMG$1NIBLDPKT Quadword Perform initialization for EXE$BLDPKTxx
routines

MMG$1NINEWPFN Quadword Allocate a page of physical memory and initialize
its page frame number (PFN) database fields

MMG$INSPFNH Quadword Insert a PFN at head of specified list
MMG$INSPFNT Quadword Insert a PFN at tail of specified list
MMG$IN_REGION Quadword Test whether address space overlaps existing space
MMG$IOLOCK Quadword Lock an 1/0 buffer into memory
MMG$IOLOCKPAG Quadword Lock a page of an 1/0 buffer into memory
MMG$LCKULKPAG Quadword Lock/unlock single page in working set or memory
MMG$LOCKPGTB Quadword Lock a page table page by incrementing its

reference count
MMG$MAKEWSLE Quadword Make a working set list entry for specified virtual

page
MMG$MBXTRNLOG Quadword Translate a logical name for a mailbox
MMG$MOVPTLOCK Quadword Lock into the working set list a page table page

with window page table entry
MMG$MOVPTLOCK1 Quadword Alternative entry point to MMG$MOVPTLOCK
MMG$MPWCHECK Quadword Test whether modified page writing should start
MMG$PAGEFAULT Quadword Translation-not-valid exception service routine
MMG$PAGETYPE Quadword Determine page type from page table entry bits
MMG$PGFLTWAIT Quadword Insert the PCB into specified wait queue following

a page fault
MMG$PTEADRCHK Quadword Return the system virtual address of the page

table entry corresponding to a given address
MMG$PTEINDX Quadword Return the longword postindex into the process

header corresponding to a given virtual address
MMG$PTEINDXCHK Quadword Alternative entry to MMG$PTEINDX that

bugchecks if address is not mapped
MMG$PTEREF Quadword Return the system virtual address of the page

table entry corresponding to a given address,
faulting the page table page if necessary

MMG$PURGWSSCN Quadword Scan the working set list for pages in specified
address range to be deleted

MMG$READ_GSD Quadword Read from disk the pages of a newly created
MA780 shared memory global section

MMG$REFCNTNEG Quadword Generate REFCNTNEG fatal bugcheck
MMG$RELPFN Quadword Release a page frame number (PFN) to the

modified or free page list
MMG$REMPFN Quadword Remove a specific PFN from specified page list
MMG$REMPFNH Quadword Remove a PFN from head of specified page list
MMG$RESRCWAIT Quadword Place the process into a wait for a resource needed

for its faulted page to become valid
MMG$RETADRINI Quadword Initialize a return address range argument

1178

C.1 The Base Image

Global Symbol Size Description of Routine

MMG$RETRANGE Quadword Return address range information and perform
common exit processing

MMG$RET _BYLQUOTA Quadword Return byte count quota to file owner for a
window control block converted to a shared
one

MMG$RLPFNSAVPTE Quadword Release the page frame number from a global
demand zero page

MMG$SCNWSLX Quadword Scan working set list for specified virtual address
MMG$SETPRTPAG Quadword Set protection on specified page
MMG$SET _BITMAP Quadword Set bits in the MA780 shared memory global page

bitmap
MMG$SHMTXLK Quadword Lock the MA780 shared memory mutex for write

access and acquire shared memory bit lock
MMG$SHMTXULK Quadword Unlock the MA780 shared memory mutex access

and release shared memory bit lock
MMG$SHRCNTNEG Quadword Generate a SHRCNTNEG fatal bugcheck
MMG$SHRINKWS Quadword Shrink specified working set list
MMG$SUBSECREF Quadword Subtract a given number from section table

reference count
MMG$SVAPTECHK Quadword Return system virtual address of page table entry

corresponding to specified virtual address
MMG$SVPCTX Quadword Save process context following an unsatisfied pa~

fault
MMG$SWAPWSLE Quadword Swap working set list entries
MMG$TRY_ALL Quadword Test whether region can be expanded to requested

size and adjust page file quota
MMG$ULKGBLWSLE Quadword Unlock a global page from working set
MMG$UNIQUEGSD Quadword Check that an MA780 shared memory global

section descriptor is unique
MMG$UNLOCK Quadword Unlock 1/0 buffer pages
MMG$UPDSECAST Quadword $UPDSEC system service 1/0 completion special

kernel mode AST
MMG$VALIDATEGSD Quadword Validate an MA780 shared memory global section

descriptor
MMG$VFYSECFLG Quadword Verify that section flags contain only user-

definable flags
MMG$WRITE_GSD Quadword Write to disk the pages of an MA780 shared

memory global section
MMG$WRTMFYPAG Quadword Write pages from the modified page list
MMG$WRTPGSBAK Quadword Write section pages to disk, part of $UPDSEC

system service
MMG$WSLEPFN Quadword Get page frame number from working set list

entry
MMG$WSPEAKCHK Quadword Enable or disable working set peak checking
MT$CHECK_ACCESS Quadword Check for write access to a magtape
NSA$ARGLSLIMGNAM Quadword Insert the image name packet entry in caller's

argument list
NSA$EVENT _AUDIT Quadword Write a journal record for an auditable system

event
PFM$GETBUF Quadword Return a buffer of page fault monitoring

information to caller

1179

Executive Data Areas

Global Symbol Size Description of Routine

PFM$MON Quadword Record information about a page fault being
monitored

PFM$PURGE Quadword Deallocate to nonpaged pool process page fault
monitoring buffers

PMS$ABORT _RQ Quadword Record aborting of 1/0 request in performance
data buffer

PMS$END_IO Quadword Record end of 1/0 transaction in performance data
buffer

PMS$END_RQ Quadword Record end of 1/0 request in performance data
buffer

PMS$START _IO Quadword Record start of 1/0 transaction in performance
data buffer

PMS$START _RQ Quadword Record start of 1/0 request in performance data
buffer

RM$DIRCACHE_BLKAST Quadword System blocking AST routine for RMS directory
cache

RM$RESET Quadword Reset process's image 1/0 segment
RM$SET Quadword Initialize process's image 1/0 segment
SCH$ASTDEL Quadword IPL 2 interrupt service routine, AST delivery
SCH$CHSE Quadword Change process scheduling state to computable
SCH$CHSEP Quadword Change process scheduling state to computable

and set priority as specified
SCH$CLREF Quadword Clear specified event flag
SCH$CLREFR Quadword Clear specified event flag and return via RSB
SCH$FORCEDEXIT Quadword Queue $FORCEX AST to process
SCH$GETEFC Quadword Compute address of event flag cluster
SCH$IOLOCKR Quadword Lock the 1/0 database mutex for read access
SCH$10LOCKW Quadword Lock the 1/0 database mutex for write access
SCH$IOUNLOCK Quadword Unlock the 1/0 database mutex
SCH$LOCKR Quadword Lock a specified mutex for read access
SCH$LOCKW Quadword Lock a specified mutex for write access
SCH$LOCKWNOWAIT Quadword Lock a mutex for write access; do not wait if it is

not free
SCH$NEWLVL Quadword Compute AST level for the current process
SCH$0SWPSCHED Quadword Select processes to shrink or outswap
SCH$PIXSCAN Quadword Give selected computable processes a priority

boost
SCH$POSTEF Quadword Set specified event flag
SCH$QAST Quadword Queue an AST to a process
SCH$QEND Quadword Perform quantum-end processing for the current

process
SCH$RAVAIL Quadword Declare scheduling resource available for waiting

processes
SCH$REMOVACB Quadword Remove an AST control block queued to a process
SCH$RESCHED Quadword IPL 3 interrupt service routine, rescheduling
SCH$RSE Quadword Report scheduling event for a process
SCH$RWAIT Quadword Place a process into resource wait
SCH$SCHED Quadword Schedule new process for execution
SCH$SWAPACBS Quadword Replace one enqueued AST control block with

another
SCH$SWPWAKE Quadword Conditionally wake the swapper process

1180

C.1 The Base Image

Global Symbol Size Description of Routine

SCH$UNLOCK Quadword Unlock specified mutex
SCH$UNWAIT Quadword Remove a PCB from a scheduling wait queue
SCH$WAIT Quadword Clean kernel stack, insert PCB in wait queue, and

place process into a wait state
SCH$WAITK Quadword Subentry point of SCH$WAIT
SCH$WAITL Quadword Subentry point of SCH$WAIT
SCH$WAITM Quadword Subentry point of SCH$WAIT
SCH$WAKE Quadword Wake specified process
XDT$BPT Quadword XDELTA breakpoint fault handler entry
XDT$IBRK Quadword Address of initial breakpoint
XDT$TBIT Quadword XDELTA TBIT handler
XDT$LOADBASE Quadword Base of loadable CPU-dependent code
XQP$BLOCK_ROUTINE Quadword Block further XQP activity
XQP$DEQBLOCKER Quadword Dequeue blocking lock
XQP$FCBSTALE Quadword Blocking routine to mark file control block as

stale
XQP$REL_QUOTA Quadword Release quota cache entry
XQP$UNLOCK_CACHE Quadword Release cache contents and unlock
XQP$UNLOCK_QUOTA Quadword Release lock on quota cache entry
LDR$ALLOC_PT Quadword Allocate system page table entries
LDR$DEALLQc_PT Quadword Deallocate system page table entries
LDR$LOAD_NONPAGED Quadword Load nonpaged section of loadable executive

image
LDR$LOAD_IMAGE Quadword Map and load a loadable executive image
LDR$INIT _ALL Quadword Invoke initialization routines of all loaded

executive images
MMG$INCSECREFL Quadword Acquire MMG spinlock and increment section

reference count
MMG$ADDSECREFL Quadword Acquire MMG spinlock and add to section

reference count
MMG$DECSECREFL Quadword Acquire MMG spinlock and decrement section

reference count
MMG$SUBSECREFL Quadword Acquire MMG spinlock and subtract from section

reference count
SMP$ACQUIRE Quadword Acquire a spinlock or fork lock and force

synchronization
SMP$ACQUIREL Quadword Acquire a device lock and force synchronization
SMP$RESTORE Quadword Conditionally release a spinlock or fork lock
SMP$RESTOREL Quadword Conditionally release a device lock
SMP$RELEASE Quadword Release a spinlock or fork lock
SMP$RELEASEL Quadword Release a device lock
SMP$RELCHECK Quadword Check spinlock database consistency
SMP$NOLOCKS Quadword Make sure no spinlocks are held
SMP$CHKLOCK Quadword Make sure spinlock is owned before proceeding
SMP$ALLoc_sPL Quadword Allocate a spinlock
SMP$INIT _SPL Quadword Initialize a spinlock
SMP$GET _CURPCB Quadword Return current PCB address
SMP$SWITCH_CPU Quadword Switch to another CPU based on device affinity
SMP$IOPOST _IRP Quadword Place IRP on per-processor I/O postprocessing

queue
SMP$INVALID Quadword Invalidate a single translation buffer entry

1181

Executive Data Areas

Global Symbol Size Description of Routine

EXE$INSIOQC Quadword Insert IRP in unit control block pending-1/0 queue
or invoke IOC$INITIATE and release fork lock

SMP$ACQNOIPL Quadword Acquire a device lock and assume IPL is already
at the correct level

LCK$EXTEND_IDTBL Quadword Extend the lock ID table
SMP$ADJUST _IPL Quadword Adjust the IPL of a lock
XDT$CPU_ WAIT Quadword Wait for release of XDELTA interlock
MMG$LOCK_SYSTEM_ Quadword Dynamically lock pages into system working set

PAGES for a bounded code segment
SCH$LOCKWEXEC Quadword From system context, lock the specified mutex

for write access
SCH$LOCKREXEC Quadword From system context, lock the specified mutex

for read access
SCH$UNLOCKEXEC Quadword From system context, unlock the specified mutex
SMP$CALCAFF Quadword Calculate process affinity mask
SMP$CALCAFF _ Quadword Calculate process affinity mask, including PCB$L_

INCLUSIVE CPU_ID in calculation if PCB$V_HARDAFF is
set

SMP$SETAFF Quadword Set/clear hard affinity for process
SMP$SETCAP Quadword Set/clear capability-based affinity for process
EXE$CHECK_ VERSION Quadword Check for mismatch of image linked with

SYS.STB against current running system
IOC$CHECK_HWM Quadword Do highwater mark processing for a write request
EXE$DVLFREEBLOCKS Quadword Fetch device free block count from volume lock

block
MMG$ALLOCPFN_NQ_ Quadword Allocate a page frame number from the list of

DB pages not described in the page frame number
database

LMF$RUNDOWN Quadword Reserved
MMG$DALCPAGFIL- Quadword Deallocate page file pages formerly occupied by a

DUMP crash dump
MPW$ALLOCPAGFIL1 Quadword Allocate a cluster of pages from specified page file
MPW$ALLOCPAGFIL2 Quadword Allocate the first contiguous set of blocks from

specified page file
MPW$DEALLOCPAGFIL Quadword Deallocate specified blocks in a page or swap file
MMG$ASNPRCPGFL Quadword Assign an additional page file to a process
MMG$ASNPRCPGFLP Quadword Assign the first page file to a process
MMG$RASNPRCPGFL Quadword Reassign a process to other page files
MMG$RSRVPRCPGFL Quadword Reserve pages from the process's current page file

unless it is overcommitted
MMG$RSRVPRCPGFL2 Quadword Reserve pages from the process's current page file
MMG$DASNPRCPGFL Quadword Deassign specified process page file
MMG$DASNPRCPGFLS Quadword Deassign all process page files
MMG$DALCPRCPGFL Quadword Deallocate specified page to specified page file,

updating page file accounting information
ARCH$PTOLEMY_HOOK Quadword Reserved
LKI$SEARCH_LOCKS Quadword Search for all locks on a given resource
LKI$STANDARD_INFO Quadword Collect standard information on a lock
SCH$0NE_SEC Quadword Perform periodic scheduling functions
MMG$SWITCH_ Quadword Select process page file and reserve space after a

PRCPGFL failure to assign backing store

1182

C.1 The Base Image

Global Symbol Size Description of Routine

LDR$ALTERNATIVE_ Quadword Conditionally load executive images listed in
LOAD VMS$SYSTEM_IMAGES.DATA file

WP$CREATE_ Quadword Create specified watchpoint
WATCHPOINT

WP$DELETE_ Quadword Delete an existing watchpoint
WATCHPOINT

SMP$INIT _SANITY Quadword Initialize symmetric multiprocessing sanity timer
pointer in CPU database

EXE$JIB_ WAIT Quadword Place a process into wait for job information block
resource

EXE$JIB_AV AIL Quadword Declare job information block resource available
for waiting processes

EXE$DEBIT _BYTCNT _ Quadword Debit JIB$LBYTCNT, waiting if insufficient
ALO quota, and allocate pool

EXE$DEBIT _BYTCNT _ Quadword Debit JIB$L_BYTCNT and JIB$L_BYTLM, waiting
BYTLM_ALO if insufficient quota, and allocate pool

EXE$DEBIT _BYTCNT Quadword Debit JIB$LBYTCNT, waiting if insufficient
quota

EXE$DEBIT _BYTCNT _ Quadword Debit JIB$LBYTCNT and JIB$LBYTLM, waiting
BYTLM if insufficient quota

EXE$CREDIT _BYTCNT Quadword Return JIB$LBYTCNT quota charge
EXE$CREDIT _BYTCNT _ Quadword Return quota charged to JIB$L_BYTCNT and

BYTLM JIB$L_BYTLM
SMP$TIMEOUT Quadword SMP timeout processing routine
EXE$DEBIT _BYTCNT _ Quadword Debit JIB$LBYTCNT, returning error if insuffi-

NW cient quota
EXE$DEBIT _BYTCNT _ Quadword Debit JIB$LBYTCNT and JIB$LBYTLM,

BYTLM_NW returning error if insufficient quota
MMG$ADDPRCPGFL Quadword Assign a process to an additional page file
MMG$LOCK_SYSTEM_ Quadword Dynamically lock pages into the system working

PAGES_ CALL set for a bounded code sequence, using call
interface

MMG$UNLOCK_ Quadword Unlock pages from the system working set, using
SYSTEM_PAGES_CALL call interface

SMP$SHUTDOWN_CPU Quadword Final actions associated with stopping a CPU
MMG$DEALLOCSWP- Quadword Deallocate a process's swap space

AREA
SMP$INITIATE_BENIGN Quadword Initiate a benign state
SMP$TERMINATE_ Quadword Leave a benign state

BENIGN
SMP$ENTER_BENIGN Quadword Reserved
MMG$ALLOCSWPAREA2 Quadword Allocate swap space using free space description

built by MMG$ALLOCPFLMAP
MMG$ALLOCPFLMAP Quadword Allocate and initialize a page and swap file

mapping window that describes free space
MMG$DEALLOCSWP- Quadword Deallocate swap space using free space description

AREA2 built by MMG$ALLOCPFLMAP
EXE$RESETVEC 1 Quadword Reset privileged library vectors
IOC$POST _IRP Quadword Insert IRP on I/O postprocessing queue and

request interrupt
RMS$GET _SPACE Quadword Get virtual memory for an RMS extension

1183

Executive Data Areas

Global Symbol Size Description of Routine

RMS$RETURN_SPACE Quadword Return virtual memory from an RMS extension
RMS$GET_EF Quadword Get the synchronization event flag
RMS$STALL_ THREAD Quadword Stall current execution thread
RMS$RESTART _THREAD Quadword Reserved
RMS$LOCK_RECORD Quadword Lock designated record
RMS$UNLOCK_RECORD Quadword Unlock designated record
RMS$IS_RECORD_ Quadword Check for conflicting lock

LOCKED
RMS$IS_RECORD_ Quadword Check for conflicting lock

WRITELOCKED
RMS$GET _BUFFER Quadword Get a data buffer
RMS$RELEASE_BUFFER Quadword Release a previously obtained buffer
RMS$0PEN_JOURNAL Quadword Open a journal file
RMS$CLOSE_JOURNAL Quadword Close a journal file
RMS$WRITE_JOURNAL_ Quadword Write a journal entry

ENTRY
RMS$FLUSH_JOURNAL_ Quadword Flush stacked journal data

ENTRIES
RMS$INIT _EXTENSION Quadword Register an RMS extension with the base RMS
RMS$DELETE_RECAT _ Quadword Delete current record

RP
RMS$FIND_RECAT _NRP Quadword Find next record
RMS$GET _RECAT _NRP Quadword Get next record
RMS$PUT _RECAT _NRP Quadword Insert next record
RMS$SCAN_XAB_CHAIN Quadword Scan extended attribute blocks
RMS$UPDATE_RECAT _ Quadword Update current record

RP
RMS$UNSUPPORTED Quadword Declare operation unsupported
EXE$PROCADP _ Quadword Reserved

INTVEC
EXE$PROCADP _CRB Quadword Reserved
EXE$PROCLOAD_ Quadword Reserved

VOLUME
ACF$PROC_ADP Quadword Reserved
EXE$NETWORK_ASSIGN Quadword Assign channel to network device
MMG$INIT _PGFLQUOTA Quadword Charge page count against job information block

page file quota
MMG$MORE_PGFL- Quadword Alternative entry point to MMG$INIT _

QUOTA PGFLQUOTA
MMG$RET _PGFLQUOTA Quadword Return charged page file quota to job information

block
EXE$READ_SYSTIME Quadword Reserved
EXE$WRITE_SYSTIME Quadword Reserved
SMP$SETUP _PFORK Quadword Set up for fork to primary
SMP$FORK_ TO_ Quadword Migrate work packet to primary CPU

PRIMARY
EXE$COPY _ARB Quadword Create a copy of an access rights block (ARB)
EXE$CLEANUP_ARB Quadword Deallocate any external structures from an ARB
EXE$DELETE_ARB Quadword Delete an ARB
EXE$HOOKUP _ARB Quadword Connect an ARB to a PCB
SMP$WRITE_OPAO Quadword Fork routine to broadcast message to console

1184

C.1 The Base Image

Global Symbol Size Description of Routine

8 reserved vectors Quadword Reserved
SCH$REQUIRE_ Quadword Add a capability to a process's required list

CAPABILITY
SCH$RELEASE_ Quadword Remove a capability from a process's required list

CAPABILITY
SCH$ADD_CPU_CAP Quadword Add a capability to a CPU's capability list
SCH$REMOVE_CPU_CAP Quadword Remove a capability from a CPU's capability list
SCH$ACQUIRE_ Quadword Acquire implicit affinity for a specific CPU

AFFINITY
SCH$REMOVE_AFFINITY Quadword Remove a process's implicit affinity for a specific

CPU
SCH$CHANGE_CUR_ Quadword Modify the priority of the current process

PRIORITY
SCH$CUR_ TO_COM Quadword Make the current process computable
CWPS$PARSE_PRCNAM Quadword Separate a process name into its component parts
EXE$ALOPOIMAG Quadword Allocate memory from process allocation region
EXE$CHECILPCB_PRN Quadword Check the ability of one process to affect another
EXE$PSCAN_CHECKCTX Quadword Validate process scan context block
EXE$PSCAN_DEALCTX Quadword Deallocate process scan context block
EXE$PSCAN_IMGRESET Quadword Reset process scan context block
EXE$PSCAN_LOCKCTX Quadword Lock process scan context block
EXE$PSCAN_NEXT _PID Quadword Scan for next proGess
IOC$SCAN_IODB_ Quadword Scan I/O database for next device

USRCTX
EXE$MATCILNAME Quadword Wildcard string match
DDTM$GET _CURRENT_ Quadword Reserved

TID
DDTM$SET _CURRENT_ Quadword Reserved

TID
IMG$ADD_PRIVILEGED_ Quadword Install a change mode, rundown, or message

VECTOR vector
NET$VEc_RESERVEl Quadword First of 32 quadwords reserved for DECnet/VAX
LDR$UNLOAD_IMAGE Quadword Remove executive image from memory
LDR$FINAL_UNLOAD Quadword Reserved
MMG$DINSPAGSWPFIL Quadword Deinstall a page or swap file
EXE$PROc_IDLE Quadword Reserved
ERL$DEVINFO Quadword Log an error message without updating unit

control block error count
LNM$SEARCHLOG Quadword Search for a logical name
2 reserved vectors Quadword Reserved
EXE$EMULAT _REFLECT Quadword Reflect an exception from a mode other than

kernel
exe_success_rsb 8 bytes Local routine body-to return success status

1185

Executive Data Areas

C.1.3 Nonpaged System Data Area ($$$$$NONPAGED_DATA)

Module SYSTEM_DATA_CELLS defines this area.

Global Symbol Size Description of Data
PFN$AL_HEAD 3 longwords Pointers to the heads of the free, modified, and

bad page lists
PFN$AL_ TAIL 3 longwords Pointers to the tails of the free, modified, and

bad page lists
SCH$GL_FREECNT Longword Free page count
SCH$GL_MFYCNT Longword Modified page count
PFN$AL_COUNT +8 Longword Bad page count
PFN$GL_PHYPGCNT Longword Number of available physical pages
SCH$GL_FREEREQ Longword Free pages required by the swapper
SCH$GL_MFYLIM Longword Modified page list high limit
PFN$AL_IIlLIMIT +8 Longword Bad page list high limit
SCH$GL_FREELIM Longword Free page list low limit
SCH$GL_MFYLOLIM Longword Modified page list low limit
PFN$AL_LOLIMIT +8 Longword Bad page list low limit
PHV$GL_PIXBAS Longword Address of process index array
PHV$GL_REFCBAS Longword Address of process header reference count· array
MMG$GL_PAGSWPVC Longword Address of vector of page/swap file control

blocks
SCH$GL_PCBVEC Longword Address of PCB vector of longwords
SCH$GL_SEQVEC Longword Address of sequence vector of words
MPW$GL_BADPAG- Longword Number of pages on the bad page list

TOTAL
MMG$GL_MAXPFIDX Longword Maximum page file index currently in use
MMG$GW _MINPFIDX} Word Minimum page file index in use
SGN$GW _SWPFILCT Number of swap file slots
MB$AR_DPT Longword Address of mailbox driver
MB$AR..DDT Longword Address of mailbox driver dispatch table
NL$AR_DPT Longword Address of null device driver
NL$ARJ)DT Longword Address of null driver dispatch table
SCH$GL_MFYLIMSV Longword Saved high-limit threshold of modified page

list
SCH$GL_MFYLOSV Longword Saved low-limit threshold of modified page list
PMS$GL_FAULTS Longword Number of page faults
PMS$GL_PREADS Longword Number of page reads
PMS$GL_PREADIO Longword Number of 1/0 requests to read pages
PMS$GL_PWRITES Longword Number of modified pages written
PMS$GL_PWRITIO Longword Number of 1/0 requests to write modified

pages
PMS$GL_DZROFLTS Longword Number of demand zero page faults
PMS$GLDPTSCN Longword Number of dead page table scans
PMS$GL_GVALID Longword Number of global valid page faults
MPW$GL_IOPAGCNT Longword Modified pages in transit to disk
MPW$L_COUNT Longword Reserved
EXE$GQ_SYSDISK Quadword Descriptor for SYS$DISK
LDR$GQ_IMAGE_LIST Quadword Listhead of loaded image data blocks
MMG$GL_PFNLOCK Longword Countdown counter of pages remaining that

may be locked in memory

1186

C.1 The Base Image

Global Symbol Size Description of Data

SWP$GL_SWTIME Longword Earliest time for next exchange swap
EXE$GL_PWRDONE Longword End time for power recovery interval
EXE$GL_PWRINTVL Longword Allowable recovery interval in IO-millisecond

units
SWP$GW _BALCNT Word Number of processes in balance set excluding

swapper and process
SCH$GW _SWPFCNT Word Number of successive outswap schedule

failures
LNM$AR_SYSTEM_ Longword Address of system logical name directory

DIRECTORY
LNM_AR_SYSTEM_DIR_ Longword Address of system directory table header

LNMTH
PQL$AR_SYSPQL Longword Address of system process quota list
PQL$GL_SYSPQLLEN Longword Length of system process quota list
ERL$GB_BUFFLAG Byte Buffer status flags

Byte Spare for alignment
ERL$GB_BUFTIM Byte Format process wakeup timer
ERL$GLERLPID Longword Process ID of error format process
ERL$GLSEQUENCE Longword Systemwide error sequence number
EXE$AR_SYSTEM_ Longword Address of SYSTEM_PRIMITIVES private data

PRIMITIVES_DATA area; offsets defined by $$SYSTEM_PRIM_
DATADEF macro

EXE$AR_IO_ROUTINES_ Longword Address of IO_ROUTINES private data
DATA area; offsets defined by $$IO_ROUTINES_

DATADEF macro
EXE$AR_FQRK_ WAIT_ Longword Address of fork and wait queue

QUEUE
EXE$AB_HEXTAB 16 bytes Hexadecimal conversion table
BUG$L_BUGCHK_FLAGS Longword Flags used by bugcheck code
BUG$LFATAL_SPSAV Longword Fatal bugcheck in progress stack pointer
EXE$A_ID_ UPCASE Longword Address of table to translate lowercase to

uppercase
IOC$GL_ADPLIST Longword Listhead of adapter control blocks
IOC$GL_DPTLIST Quadword Listhead of driver prolog tables (DPTs)
TTY$GLDPT Longword Address of terminal class driver DPT
NO$GL_DPT Longword Address of asynchronous class driver DPT
TTY$GL_JOBCTLMB Longword Address of job controller mailbox
SYS$GLUIS Longword Address of loaded UIS code
UIS$GLUSB Longword Address of UIS context block
SYS$GLFALLBACK Longword Reserved
EXE$GL_CPUNODSP Longword Virtual address that maps CPU node private

space
EXE$GL_CONFREGL Longword Address of nexus device type longword array
EXE$GLCONFREG Longword Address of nexus device type byte array
MMG$GLSBICONF Longword Address of a longword array containing nexus

slot virtual addresses
EXE$GLNUMNEXUS Longword Maximum nexus number possible
MMG$GL_RMSBASE Longword Base address of RMS image
MMG$GLFPEMULBASE Longword Base address of floating-point instruction

emulator
MMG$GL_SYSLOA_BASE Longword Base address of SYSLOAxxx .EXE

1187

Executive Data Areas

Global Symbol

MMG$GL VAXEMUL_
BASE

MMG$GLGBLSECFND

MMG$GLGBLPAGFIL

SCH$GL_MAXPIX
SCH$GLPIXLAST
SCH$GLPIXWIDTH

SCH$GW _LOCALNODE

PMS$GLDIRIO
PMS$GL_BUFIO
PMS$GL_SPLIT
PMS$GL_HIT

PMS$GLLOGNAM
PMS$GLMBREADS
PMS$GL_MBWRITES
PMS$GL TREADS
PMS$GL_TWRITES
PMS$GL_IOPFMPDB
PMS$GL_IOPFMSEQ
PMS$GLARRLOCPK
PMS$GLDEPLOCPK
PMS$GL_ARRTRAPK
PMS$GL_ TRCNGLOS
PMS$GLRCVBUFFL
PMS$GL_ENQNEW _LOC
PMS$GL_ENQNEW _IN
PMS$GL_ENQNEW _OUT
PMS$GLENQCVLLOC
PMS$GLENQCVT _IN
PMS$GL_ENQCVT _OUT
PMS$GLDEQ_LQC
PMS$GL_DEQ_IN
PMS$GLDEQ_OUT
PMS$GLENQWAIT
PMS$GL_ENQNOTQD
PMS$GL_BLILLOC
PMS$GLBLILIN
PMS$GL_BLK_OUT
PMS$GL_DIR_IN
PMS$GLJ)IR_OUT
PMS$GL_DLCKMSGS_IN

PMS$GL_DLCKMSGS_
OUT

PMS$GLDLCKSRCH
PMS$GL_DLCKFND

1188

Size
Longword

Longword

Longword

Longword
Longword
Longword

Word
Word
Longword
Longword
Longword
Longword

Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword

Longword

Longword
Longword

Description of Data

Base address of decimal/string instruction
emulator

Last global section table entry found when
deleting page file backing store addresses

Remaining page file available for global
sections

Maximum process index for this system
Last process index created
Width of process index field determined by

MAXPROCESSCNT parameter
ID for local VAXcluster node
Spare for alignment
Number of direct 1/0 operations
Number of buffered 1/0 operations
Number of split 1/0 transfers
Number of disk transfers not requiring window

turns
Number of logical name translations
Number of mailbox read operations
Number of mailbox write operations
Number of terminal read operations
Number of terminal write operations
Address of performance data block
Master 1/0 packet sequence number
Number of local packets arriving
Number of local packets departing
Number of arriving packets
Cumulative transit congestion loss
Number of receiver buffer failures
Number of local new lock requests
Number of incoming new lock requests
Number of outgoing new lock requests
Number of local conversion requests
Number of incoming conversion requests
Number of outgoing conversion requests
Number of local dequeues
Number of incoming dequeues
Number of outgoing dequeues
Number of $ENQ requests waiting
Number of $ENQ requests not queued
Number of local blocking ASTs queued
Number of incoming blocking ASTs queued
Number of outgoing blocking ASTs queued
Number of incoming directory operations
Number of outgoing directory operations
Number of incoming deadlock detection

messages
Number of outgoing deadlock detection

messages
Number of deadlock searches performed
Number of deadlocks found

C.1 The Base Image

Global Symbol Size Description of Data

PMS$GL_FLAGS Longword Flags used in disk queue length monitoring
PMS$GL_QLEN_SCANS Longword Number of 1/0 database scans for monitoring

queue length
PMS$GL_QLEN_ TQINT Longword Timeout interval for disk queue monitoring
PMS$GL_QLEN_ TQCTR Longword Timeout down counter for disk queue

monitoring
PMS$GL_RESERVED1 18 longwords Reserved
PMS$GL_CHMK. Longword Number of CHMK exceptions
PMS$GL_CHME Longword Number of CHME exceptions
PMS$GL_PAGES Longword Number of physical pages of memory in

configuration
PMS$GW _BATCH Word Number of current batch jobs

Word Spare for alignment
PMS$GW _INTJOBS Longword Number of interactive users
PMS$GL_READCNT Longword Total number of terminal characters read since

bootstrap
PMS$GL_ WRTCNT Longword Total number of terminal characters written

since bootstrap
PMS$GL_PASSALL Longword Number of reads in PASSALL mode
PMS$GL_RWP Longword Number of read-with-prompt reads
PMS$GL_LRGRWP Longword Number of read-with-prompt reads of more

than 12 characters
PMS$GL_RWPSUM Longword Total number of characters read in prompt

mode
PMS$GL_NOSTDTRM Longword Number of reads not using standard

terminators
PMS$GL_RWPNOSTD Longword Number of read-with-prompt reads not using

standard terminators
PMS$GL_ TTY_CODE1 Longword Performance code vector 1
PMS$GL_ TTY _CODE2 Longword Performance code vector 2
PMS$GL_LDPCTX Longword Reserved
PMS$GL_SWITCH Longword Number of switches from the current process
PMS$GB_PROMPT 4 bytes RTE input prompt
EXE$AILEWDATA Longword Address of the exec-writable file system

measurement data
PMS$GL_DOSTATS Longword Flags to turn statistics code on and off
SCH$GL_COMQS Longword Queue summary longword for computable

state
SCH$GL_COMOQS Longword Queue summary longword for computable

outswapped state
SCH$GB_SIP Byte Swapper flags
.SCH$V_MPW Bit Modified page writer active
• SCH$V_SIP Bit Swap in progress
SCH$GB_RESCAN Byte Queue reordering notification flags
• SCH$V _REORD Bit RELPFN has reordered the queue
MMG$GB_FREWFLGS Byte Swapper/MMG$FREWSLE communication

flags
• MMG$V _NOWAIT Bit MMG$FREWSLE may not enter resource wait

for pages from the modified list
• MMG$V _NOLASTUPD Bit MMG$FREWSLE may not update WSLAST

3 bytes Spare for alignment

1189

Executive Data Areas

Global Symbol

SCH$GW _PROCCNT
SCH$GW _PROCLIM
SWP$GL_SLOTCNT
SCH$GQ_CEBHD
SCH$GW _CEBCNT
SCH$GW _DELPHDCT

SWP$GLSHELL
SWP$GLINPCB

SWP$GL_ISPAGCNT
SWP$GW _IBALSETX
SWP$GB_ISWPRI

SWP$GLISWPPAGES
SWP$GL_ISWPCNT
SWP$GLOSWPCNT
SWP$GL_HQSWPCNT
SWP$GL_HISWPCNT
SWP$GL_MAP
SCH$GL_RESMASK
EXE$GL_FLAGS

EXE$GL_STATE_FLAGS
EXE$AQ_ERLMBX
EXE$GL_VAXEXCVEC

EXE$GLFPEXCVEC

EXE$GLUSRCHMK

EXE$GLUSRCHME

SWI$GL_FQFL

LNM$ALMUTEX
LNM$GLSYSDIRSEQ

EXE$GLSYSUCB
FIL$GT_DDDEV

FIL$GT_ TOPSYS

FIL$GQ_CACHE
EXE$GQ_BOOTCB_D
EXE$GLSAVEDUMP

EXE$GLERASEPB

EXE$GLERASEPPT

1190

Size

Word
Word
Longword
Quadword
Word
Word

Longword
Longword

Longword
Word
Byte
3 bytes
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword

Longword
5 quadwords
Longword

Longword

Longword

Longword

6 quadwords

Longword
Longword

Longword
16 bytes

40 bytes

Quadword
Quadword
Longword

Longword

Longword

Description of Data

Process count excluding the swapper process
Maximum number of processes on the system
Obsolete
Listhead for common event blocks
Number of common event blocks
Number of process headers of already deleted

processes
Shell process swap address
PCB address of process being swapped into

memory
lnswap page count
Balance set slot index for inswap process
Priority of inswap process
Spare for alignment
Number of inswapped pages
Number of inswaps performed
Number of outswaps performed
Number of header outswaps
Number of header inswaps
Address of swapper's 1/0 page table
Resource wait mask vector
System flags longword loaded from EXE$GL

DEFFLAGS (see Section C.1.4)
State of system control flags
Descriptors of error log mailboxes
Address for intercept VAX CPU exception

dispatching, used by instruction emulation
Address for intercept of floating exception

dispatching
Address of systemwide user-written change­

mode-to-kernel dispatcher
Address of systemwide user-written change­

mode-to-executive dispatcher
Fork queue listheads for IPLs 6 through 11; IPL

7 used only as a place holder
Mutex for shareable logical names
Sequence number for cache of system logical

name table translations
Address of system disk unit control block
Counted ASCII string of default device

(SYS$SYSDEVICE)
Counted ASCII string of top-level system

directory on default device
File read cache descriptor
Descriptor for boot control block
Number of page file blocks to release when

dump is copied from page file
Address of an erase pattern buffer containing

zeros
Address of a pseudo page table that maps the

erase pattern buffer filled in by !NIT

C.1 The Base Image

Global Symbol Size Description of Data
NET$GL_DIAG_BUF Longword Address of network diagnostic tool common

buffer
EXE$GQ_PQBIQ Quadword Listhead for process quota block lookaside list
IOC$GL_AQBLIST Longword Ancillary control process queue block listhead
IOC$GQ_MOUNTLST Quadword Systemwide mounted volume list
IOC$GQ_BRDCST Quadword Reserved
IOC$GL_CRBTMOUT Longword List of controller request blocks to scan for

timeouts
IOC$GL_DU_CDDB Longword Listhead of class driver data blocks for disk

class driver connections
IOC$GL_ TU_CDDB Longword Listhead of class driver data blocks for tape

class driver connections
IOC$GL_ffiRT Longword Address of host-initiated replacement table

(used by mass storage control protocol disks)
IOC$GL_SHDW _ WRK Longword Address of area used for processing shadow set

generation number comparisons
EXE$GL_GSDGRPFL 2 longwords Listhead for group global section descriptor
EXE$GL_GSDGRPBL (GSD) list
EXE$GL_GSDSYSFL 2 longwords Listhead for system GSD list
EXE$GL_GSDSYSBL
EXE$GL_GSDDELFL 2 longwords Listhead for GSD block delete pending list
EXE$GL_GSDDELBL
EXE$GQ_ WCBDELIQ Quadword Listhead for window control block delete

queue for GSD windows
EXE$GQ_SYSWCBIQ Quadword Listhead for system window control blocks
IOC$GQ_POSTIQ Quadword Systemwide sequential 1/0 postprocessing

queue
EXE$GQ_RIGHTSLIST Quadword Systemwide rights list descriptor
PMS$GL_KERNEL 6 longwords Reserved
EXE$GL_ABSTIM Longword Seconds elapsed since system booted

Longword Spare for alignment
EXE$GQ_SYSTIME Quadword System time in units of 100 nanoseconds
EXE$GQ_SYSTIME2 Quadword Number of 100-nanosecond units elapsed since

system boot
EXE$GQ_BOOTTIME Quadword Base time of last boot
EXE$GL_SYSTICK Longword Amount to be added to EXE$GQ_SYSTIME
EXE$GL_ TIMEADJUST Longword Number of ticks necessary to adjust time
EXE$GL_ TICKADJUST Longword Tick adjustment
EXE$GL_ TICKLENGTH Longword Total length of a tick
EXE$GL_DTSFLAG Longword Time service flags
EXE$GL_PFAILTIM Longword Contents of time-of-year clock at last power

failure
EXE$GL_PFATIM Longword Duration of most recent power failure in

IO-millisecond units
IOC$GL_MUTEX 2 words 1/0 database mutex
EXE$GL_CEBMTX 2 words Common event block list mutex
SMP$GL_CPU_MUTEX Longword Special mutex to freeze active CPU set
EXE$GL_PGDYNMTX 2 words Paged dynamic memory mutex
EXE$GL_GSDMTX 2 words Global section descriptor list mutex

1191

Executive Data Areas

Global Symbol

EXE$GL_SHMGSMTX

EXE$GLSHMMBMTX
EXE$GLENQMTX
EXE$GL_ACLMTX
EXE$GLSYSID_LOCK
EXE$GLKNOWN_FILES
EXE$GL_GPT

SYS$GQ_ VERSION

SYS$GW _IJOBCNT
SYS$GW _BJOBCNT
SYS$GW _NJOBCNT

EXE$GLSYSMSG
EXE$GL_USRUNDWN

EXE$GL_NONPAGED

EXE$GL_SPLITADR

EXE$GL_PAGED

EXE$GL_SHBLIST

EXE$GL_RTBITMAP

EXE$GL_MCHKERRS
EXE$GL_MEMERRS
10$GL_ UBA_INTO

EXE$GL_BLAKHOLE

IO$GL_SCB_INTO

EXE$GL_ TENUSEC

EXE$GL_UBDELAY

EXE$GL_MP
EXE$GL_SITESPEC

EXE$GL_INTSTKLM
LCK$AR_COMPAT _ TBL
LCK$GL_IDTBL
LCK$GL_NXTID
LCK$GL_MAXID

1192

Size

2 words

2 words
2 words
2 words
Longword
Longword
Longword
Longword

Quadword
Longword
Word
Word
Word
2 bytes
Longword
Longword

Longword
Longword
Longword
Longword

Longword
Longword
Longword

Longword

Longword
Longword
Longword

Longword

Longword

Longword

Longword

Longword
Longword

Longword
Longword
Longword
Longword
Longword

Description of Data

MA780 shared memory global section
descriptor list mutex

MA780 shared memory mailbox list mutex
Reserved
Reserved
System parent lock ID
Address of hash table for known file entries
Address of first free global page table entry
Dummy count of number of global page table

entries in listhead
ASCII string containing system version number
Reserved
Current count of interactive logins
Current count of batch logins
Current count of network logins
Spare for alignment
Address of systemwide message section
Address of systemwide user rundown service

vector
IPL at which nonpaged pool allocation occurs
Address of first free block of nonpaged pool
Dummy size of zero for listhead
Address of boundary between large request

packet and intermediate request packet
lookaside lists

Address of first free block of paged pool
Dummy size of zero for listhead
Address of MA780 shared memory control

block list
Address of real-time system page table entry

bitmap
Number of machine checks since bootstrap
Number of memory errors since bootstrap
Number of UNIBUS adapter interrupts through

vector 0
Physical page used to remap addresses of

adapters that have lost power
Number of unexpected system control block

interrupts
Number of times loop executed in 10

microseconds in TIMEDWAIT macro
Number of times to execute a 3-microsecond

loop delay in TIMEDWAIT macro
Obsolete
Longword available to privileged users for

site-specific purposes
Top of primary CPU's interrupt stack
Address of lock mode compatibility table
Address of lock ID table
Address of next lock ID to use
Maximum lock ID

C.1 The Base Image

Global Symbol Size Description of Data

LCK$GL_HASHTBL Longword Address of resource hash table
LCK$GL_HTBLCNT Longword Number of entries in resource hash table

!expressed as a power of 2)
LCK$GL_ TIMOUTQ Quadword Listhead for lock timeout queue
LCK$GL_DIRVEC Longword Address of directory vector
LCK$GL_PRCMAP Longword Address of process bitmap
LCK$GQ_BITMAP _EXP Quadword Process bitmap expiration timestamp jexact

time)
LCK$GQ_BITMAP _ Quadword Process bitmap expiration timestamp japproxi-

EXPLCL mate local time)
LCK$GB_HTBLSHFT Byte Number of entries in hash table !expressed as

a shift count)
LCK$GB_MAXDEPTH Byte Maximum number of sublocks allowed
LCK$GB_STALLREQS Byte Stall lock request flag
LCK$GB_REBLD_STATE Byte Lock rebuild state flag
EXE$GL_ACMFLAGS Longword Accounting manager control flags
EXE$GL_SVAPTE Longword System virtual address of page table entry that

maps the black hole page
XQP$GL_SECTIONS Longword Number of Files-11 XQP global sections
XQP$GL_DZRO Longword Size of XQP demand zero section
XQP$GL_FILESERVER Longword Process ID of CACHE_SERVER
XQP$GL_FILESERV _ Longword AST entry point of CACHE_SERVER process

ENTRY
SYS$GQ_PWD Quadword Encrypted system password
CIA$GL_MUTEX 2 words Mutex for system intruder lists
CIA$GQ_INTRUDER 2 longwords Listhead of known and suspected intruders
EXE$GL_BADACV _ T Longword Time of the last spurious access violation
EXE$GL_BADACV _C Longword Number of spurious access violations
EXE$EXCEPTABLE Longword Address of exception table
SMP$AR_SPNLKVEC Longword Address of spinlock vector
SMP$GW _SPNLKCNT Word Number of entries in spinlock vector
SMP$GW _MIN_INDEX Word Value of first spinlock index
EXE$GQ_lST _TIME Quadword Expiration time for first timer queue entry
SMP$GL_BASE_MSK Longword Per-CPU data area access mask
SMP$GL_CPUCONF Longword Bit mask of available CPUs
SMP$GL_ACTIVE_CPUS Longword Bit mask of members of active set
SMP$GL_OVERRIDE Longword Bit mask of members of override set
SMP$GL_ACILMASK Longword Bit mask of CPUs to wait for acknowledgment
SMP$GL_BUG_DQNE Longword Bit mask of CPUs that have completed state

saving during bugcheck
SMP$GL_INVALID Longword Contains system virtual address to invalidate

in the translation buffer
SMP$GL_FLAGS Longword Symmetric multiprocessing control flags
SMP$GL_BUGCHKCP Longword CPU ID of bugcheck initiator (CRASH CPU)
SMP$GL_ TODR Longword TODR value for EXE$WRITE_ TODR
SMP$GL_PRIMID Longword Primary CPU ID
SMP$GL_CPU_DATA 64 longwords Per-CPU data area pointer array
SMP$GL_PROPOSED_ Longword Proposed new value for TODRs

TODR
SMP$GL_NEW _ TODR Longword Most recent contents of primary's TODR
XDT$GW _INTERLOCK Word XDELTA entry interlock (low bit)

1193

Executive Data Areas

Global Symbol
XDT$GW _OWNER_ID
XDT$GLBENIGN_CPUS

CLU$GB_CLUVER

MMG$GLDZRO_PTE

MMG$GLDZRO_ VA

EXE$GLABSTIM_ TICS

PMS$GL_NPAGDYNEXPS
PMS$GL_NPAGDYNEXPF

PMS$GLPAGDYNF
PMS$GL_PROCCNTMAX
SMP$GL_CAPABILITIES
SMP$GW _AFFINITY_

COUNT
EXE$GA_LES_ TABLE
EXE$GLAFFINITY
EXE$GLTMV _SVAPTE

EXE$GLTMV _SVABUF
EXE$GLIPINT _IPL
EXE$GA_ WP _CRE
EXE$GA_ WP _DEL
EXE$GA. WP_ WPRE

EXE$GA.HWNAME
EXE$GA_HWTYPE
EXE$GLUSRUNDWN_

EXEC
SYS$GL VERSION
MMG$GLFREE_NO_

PFN_DB_LIST
MMG$GLFREE_NO_

PFN_DB_VA
MMG$GLFREE_NO_

PFN_DB_PTE
LMF$GLRESERVED
CLU$GW _QUORUM
SYS$GLSO_ VECTOR_

LAST_USED
EXE$GL_ VECTOR_LAST_

USED
EXE$GLNPAG_DATA_

LAST_USED

1194

Size

Word
Longword

Byte
3 bytes
Longword

Longword

Longword

Longword
Longword

Longword
Longword
32 quadwords
32 words

Longword
Longword
Longword

Longword
Longword
Longword
Longword
Longword

Longword
Longword
Longword

33 longwords
Longword

Longword

Longword

Longword
Word
Longword

Longword

Longword

2 bytes

Description of Data

CPU ID of XDELTA owner
Mask of CPUs in XDELTA-controlled benign

state
VAXcluster version number for rolling upgrade
Spare for alignment
Address of system page table entry for zeroing

demand zero global pages during address
space deletion

Address corresponding to system page table
entry for zeroing demand zero global pages
during address space deletion

Number of IO-millisecond ticks elapsed since
boot

Number of successful attempts to expand pool
Number of unsuccessful attempts to expand

pool
Number of paged pool allocation failures
Maximum number of concurrent processes
Per-capability bit mask of CPUs
Per-capability count of users of capability

Address of main low-end system data structure
Default device affinity value
Address of first page table entry used to map

tape mount verify buffer
Address of 1024-byte area for tape mount verify
IPL of interprocessor interrupts
Address of create watchpoint routine
Address of delete watchpoint routine
Address of start of watchpoint restore entries

array
Address of start of hardware name table
Address of start of hardware type table
Vector for systemwide executive mode

rundown
Array of system version numbers
Address of list of free pages not described in

the page frame number (PFN) database
Address to map free page not described in the

PFN database
System page table entry to map free page not

described in the PFN database
Reserved
Contains quorum for use by $GETSYI
End of system service vector area

End of system routine area

End of nonpageable data area

Spare for alignment

C.1 The Base Image

Global Symbol Size Description of Data
PMS$GL_NPAGDYNF Longword Count of nonpaged pool allocation failure

epochs
PMS$GL_NPAGDYNF- Longword Failed nonpaged pool pages accumulator

PAGES
PMS$GL_PAGDYNF- Longword Failed paged pool pages accumulator

PAGES
PMS$GL_NPAGDYNREQ Longword Number of nonpaged pool allocation requests
PMS$GL_NPAGDYN- Longword Number of failed nonpaged pool allocation

REQF requests
PMS$GL_PAGDYNREQF Longword Number of failed paged pool allocation requests
PMS$GL_XRPFAIL 3 longwords Number of request packet lookaside list

allocation failures
3 longwords Reserved

SYS$GL_UIS_FLAGS Longword Address of UIS flags field
SYS$GL_UISBG_EPID Longword Address of UIS background process ID
UIS$GL_LTRc_BUF Longword Address of UIS lock event trace buffer
UIS$G1-LTRC_END Longword Address of UIS lock event trace buffer end
UIS$GL_LTRC_PTR Longword Position in UIS lock event trace buffer
UIS$GL_LTRC_SPARE Longword Reserved for UIS

Quadword Terminates outswap scheduling scan
SCH$AQ_COMH 32 quadwords Listheads for computable processes at all

software priority levels
SCH$AQ_COMOH 32 quadwords Listheads for computable outswapped processes

at all software priority levels
SCH$AQ_ WQHDR 176 bytes Wait queue headers for 11 wait states with

176 - 16*12 headers reserved
PMS$AL_ TRANSFLT 60 longwords Array for recording page faults out of transition

states
NSA$AILALARM_ Longword Address of security alarm event vector

VECTOR
NSA$AR_AUDIT _ Longword Address of security audit event vector

VECTOR
NSA$AR_ALARM_ Longword Address of security alarm failure vector

FAILURE
NSA$AILAUDIT _ Longword Address of security audit failure vector

FAILURE
SCS$AR_LOCALSB Longword Address of the local system block
NET$AILWCB Longword Address of window control block for network

pseudo device
MMG$AR_NULLPFL Longword Address of the null page file structure
SCH$AR_NULLPCB Longword Address of the null PCB
SCH$AR_SWPPCB Longword Address of the swapper PCB
MMG$AILSYSPCB Longword Address of the system PCB, used for system

paging
EXE$AR_UPCASE_DAT Longword Address of the DEC multinational upcase table
IOC$GL_DEVLIST Longword Listhead of device data blocks of all devices

(part of system block)
MB$AR_DDB Longword Address of mailbox device data block
MB$AILORB1 Longword Address of object rights block (ORB) for MBAl
MB$AILORB2 Longword Address of ORB for MBA2
MB$AILUCB1 Longword Address of unit control block (UCB) for MBAl

1195

Executive Data Areas

Global Symbol
SYS$AR_JOBCTLMB

MB$AR_UCB2
SYS$AILOPRMBX
MB$AR_ORBO
MB$AR_UCBO
NL$AR_DDB
NL$AR_ORBO
NL$AR_UCBO
OPA$AILDDB
OPA$AILORBO
OPA$AILUCBO
OPA$AILCRB

OP$AR_DPT
OPA$AR_SPL
OPA$AILIDB

ARCH$GQ_PTOLEMY_
CELL

SWP$GL_SHELLBAS
LNM$AL_HASHTBL

LNM$AL_DIRTBL

SCH$GL_SWPPID
SWP$AL_SWAPPEIL

STACK
SWP$GL_SWAPPER_

STACILSIZE
SYS$AILBOOTUCB
SYS$AR_BOOTORB
SYS$AR_BOOTDDB
EXE$AR_UAFC_HASH_

TABLE
EXE$AILARBc_HAsIL

TABLE
EXE$GL_HWNAME_

LENGTH
EXE$GL_HWTYPE_

LENGTH
SMP$AL_IPLVEC

EXE$AR_ TQENOREPT
EXE$GL_SAVED_EMBS
EXE$GW_SAVED_EMBS_

COUNT
OPA$AIL VECTOR
SYS$GW _MBXUCBSIZ
EXE$ALERLBUFADR

1196

Size
Longword

Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Lqngword
Longword
Longword

Longword
Longword
Longword

Quadword

Longword
3 longwords
2 longwords
2 longwords
I longword
Longword
Longword

Longword

Longword
Longword
Longword
Longword

Longword

Longword

Longword

31 longwords

Longword
Longword
Word

Longword
Word
Longword

Description of Data

Address of job controller mailbox UCB for
MBAl

Address of UCB for MBA2
Address of OPCOM mailbox UCB for MBA2
Address of ORB for template mailbox UCB
Address of template mailbox UCB
Address of null device data block
Address of null device ORB
Address of null device UCB
Address of console terminal device data block
Address of console terminal device ORB
Address of console terminal device UCB
Address of console terminal device controller

request block
Address of console terminal device driver
Address of console terminal spinlock
Address of console device interrupt dispatch

block
Reserved

Address of beginning of SHELL
Addresses of logical name hash tables
Reserved
Addresses of logical name directories
Reserved
Process ID of swapper
Address of the swapper's stack

Size of swapper's stack

Address of system device unit control block
Address of system device object rights block
Address of system device data block
Reserved

Reserved

Length of hardware name table

Length of hardware type table

Spinlock IPL vector postindexed with negative
numbers

Address of permanent timer queue entry
Address of saved error message buffer pointers
Saved error message buffer count

Address of console port driver dispatch vector
Size of mailbox template unit control block
Address of array of error log allocation buffers

C.1 The Base Image

Global Symbol Size Description of Data
EXE$GW _ERLBUFHEAD Word Number of next error log allocation buffer to

copy to file
EXE$GW _ERLBUFTAIL Word Number of current error log allocation buffer

6 bytes Spare for alignment
EXE$GL_ TQFL Quadword Timer queue listhead
EXE$GQ_KFE_LCKNAM Quadword String descriptor of known file entry lock name
EXE$GL_BRKMSK Longword Mask of INI$BRK invokers that cause XDELTA

breakpoint
CLU$GB_QUORUM_ Byte Cluster quorum lost flag

LOST
3 bytes Spare for alignment

SMP$AR_PRIMID_COPY Longword Address of copy of primary CPU ID
EXE$GLXPCA Longword Reserved
MMG$GL_FPEMULEND Longword End address of floating-point emulator
MMG$GL_ VAXEMUL_ Longword End address of decimal/string emulator

END
PAT$A_NONPAGED Longword Dummy cell for the system loader
PAT$A_PAGED Longword Dummy cell for the system loader
SCH$GL_IDLE_CPUS Longword Bit mask of idle CPUs

Longword Reserved
DECW$GL VECTOR Longword Address of array used by DECwindows device

drivers
EXE$GW _CLKUTICS Word Reserved
EXE$GW _CLKUTICR Word Reserved
EXE$GL_ABSTIM_UTICS Longword Reserved
LMF$AR_GROUPTBL Longword Reserved
EXE$AR_DUMP _PTES Longword Address of system page table entries allocated

for selective dump
EXE$GL_DUMPMASK Longword Dump type flags
VMS$GL_LICENSE_ Longword Reserved

VERSION
VMS$GQ_LICENSE_ Quadword Reserved

DATE
MMG$GL_ VVIEF _BASE Longword Reserved
MMG$GL_ VVIEF _END Longword Reserved
MMG$GL_ VVIEF _ADDR Longword Reserved
MMG$GL_ VAXEMUL_ Longword Address of character instruction emulation

EXIT exit
SMP$GLPOPT _MAP Longword Address of array of virtual pages used to

double-map CPUs' boot stack pages
EXE$GL_NS_FLAGS Longword Vector processing flags
EXE$GL_MMG_FLAGS Longword Reserved
NET$GLATM_RCVPKT Longword Reserved
NET$GL_ATM_XMTPKT Longword Reserved
NET$GLATM_FWDPKT Longword Reserved
SMP$GLPFORILPOOL Longword Address of pool for forking to primary
SMP$GB_PFORK_POOL_ Byte Size in pages of PFORK_POOL

SIZE
SCH$GLDEFAULT _ Longword Default capabilities required by newly created

PROCESS_ CAP processes

1197

Executive Data Areas

Global Symbol

SCH$GLDEFAULT _CPU_
CAP

SCH$AR_CAP _PRIV
SCH$GLACTIVE_

PRIORITY
SCH$GLCPU_CAP _SUM
DDTM$AR_PERFOR-

MANCE_ CELLS
NET$GQ_CTF _ WRK_Q
NET$GQ_CTF _REG_Q
PMS$GL_GBLSECTCNT
PMS$GLGBLSECTMAX
PMS$GLGBLPAGCNT
PMS$GLGBLPAGMAX
SYS$GL_EXITRET
PMS$GLCWPS_MSGS_

IN
PMS$GLCWPS_MSGS_

OUT
PMS$GLCWPS_BYTES_

IN
PMS$GLCWPS_BYTES_

OUT
PMS$GLCWPS_GETJPL

IN
PMS$GLCWPS_GETJPL

OUT
PMS$GLCWPS_

PCNTRLIN
PMS$GLCWPS_

PCNTRLOUT
PMS$GL_CWPS_RSRC_

SEND
PMS$GLCWPS_RSRC_

RECV
. MB$AILUCB3

MB$AR_ORB3

SYS$AR_AUDSRVMBX

EXE$GLXMLNEXUS_
ARRAY

EXE$GLXMLCSR_
ARRAY

EXE$GLXML
STRUCTURE_ARRAY

PSX$GL_STATE
SMP$GQ_PRIMARY _

WORKQ
LCK$GLRRSFL

1198

Size

Longword

Longword
Longword

Longword
Longword

Quadword
Quadword
Longword
Longword
Longword
Longword
Longword
Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword
Quadword

Quadword

Description of Data

Default capabilities granted to every CPU

Reserved
Mask of current CPU priorities

Summary of all capabilities on all CPUs
Reserved

Reserved
Reserved
Current number of mapped global sections
Maximum number of mapped global sections
Current number of mapped global pages
Maximum number of mapped global pages
Return address of $EXIT system service
Count of inbound Clusterwide Process Server

(CWPS) messages
Count of outbound CWPS messages

Count of inbound CWPS bytes

Count of outbound CWPS bytes

Count of inbound CWPS $GETJPI requests

Count of outbound CWPS $GETJPI requests

Count of inbound process control requests

Count of outbount process control requests

Count of resource failure messages sent

Count of resource failure messages received

Address of audit server mailbox unit control
block

Address of audit server mailbox object rights
block

Address of audit server mailbox unit control
block

Address of XMI device type array

Address of XMI node space pointer array

Address of XMI primary data structure pointer
array

Reserved
Primary CPU's work queue

Listhead of all root resource blocks

Global Symbol
PMS$GL_RM_QUOTA_

WAIT
. PMS$GL_RM_UNLOAD

PMS$GL_RM_ACQUIRE
PMS$GL_RM_FINISH
PMS$GL_RM_REQ_NAK
PMS$GL_RM_MSG_SENT
PMS$GL_RM_MSG_RCV
PMS$GL_RM_RBLD_

SENT
PMS$GL_RM_RBLD_

RCVD
LCK$GB_DLCK_

INCMPLT
NET$GQ_CTF_TB_Q
EXE$GL_BASIMGMTX
EXE$GL_LDR..SEQ
EXE$GLLDR_CNT
IOC$GL_INTERRUPTS
EXE$GL_NUM_XML

NEXUS
NET$GL_RESERVED1
NET$GL_NSA_FWDPKT
EXE$GL_FT _FLAGS
EXE$GL_SYS_SPECIFIC

Size

Longword

Longword

Longword
Longword
10ngword
Longword
Longword
Longword

Longword

Byte

Quadword
Longword
Longword
Longword
Longword
Longword

7 longwords
Longword
Longword
16 longwords

C.1 The Base Image

Description of Data

Number of lock remaster quota waits

Number of resource trees moved to another
node

Number of resource trees moved to this node
Number of remaster operations completed
Number of proposed new mastership declines
Number of remaster messages sent
Number of remaster messages received
Number of remaster rebuild messages sent

Number of remaster rebuild messages received

Number of incomplete deadlock searches

Reserved
Loadable executive image mutex
Loaded image queue sequence number
Number of loadable executive images
Number of CPUs that accept I/O interrupts
Number of active array elements in EXE$GL_

XMLNEXUS_ARRAY
Reserved
Reserved
Reserved
Reserved

C.1.4 Table of Adjustable SYSGEN Parameters ($$$$$SYSPARAM_DATA)

As described in Chapter 31, the system image contains a copy of the working
value of each SYSGEN parameter. This table of values is written into the
loaded base image of the executive by SYSBOOT. Global label MMG$A_
SYSPARAM, defirted in module EXEC_LAYOUT, locate~ the beginning of
the parameters area. Global label EXE$A_SYSPARAM, defined in module
SYSPARAM, has the same value.

The following. table lists all the global symbols that make up this area.
The name of each parameter is included as a part of its description.

Global Symbol

EXE$GQ_ TODCBASE

.EXE$GL_ TODR

SGN$GW _DFPFC
SGN$GB_PGTBPFC

SGN$GB_SYSPFC

Size
Quadword

Longword

Word
Byte

··.:

Byte

Description of Data

Base value in time-of-day clock in system time
format (not a parameter)

Base value in time-of-year clock (not a
~ parameter)

Default page fault cluster size (PFCDEFAULT)
Default page table page fault cluster size

(PAGTBLPFC)
Page fault cluster factor for system paging

(SYSPFC)

1199

Executive Data Areas

Global Symbol

SGN$GB_KFILSTCT

SGN$GW _GBLSECNT
SGN$GL_MAXGPGCT
SGN$GL_GBLPAGFIL
SGN$GW _MAXPRCCT
SGN$GW _PIXSCAN

SGN$GL_SMP _CPUS

SGN$GL_SMP _CPUSH
SGN$GB_MULTI-

PROCESSING
SGN$GW _SMP _SANITY_

CNT

SGN$GW _SMP _TICK_
CNT

SGN$GL_SMP _SPINWAIT

SGN$GL_SMP _LNG-
SPINWAIT

SGN$GW _MAXPSTCT
SGN$GL_MINWSCNT
SGN$GW _PAGFILCT
SGN$GW _SWPFILES
SGN$GL_SYSDWSCT

SGN$GW _ISPPGCT

LCK$GL_EXTRASTK

SGN$GL_BALSETCT
SGN$GL_IRPCNT

SGN$GL_IRPCNTV

SGN$GL_MAXWSCNT
SGN$GL_NPAGEDYN

SGN$GL_NPAGEVIR
SGN$GL_PAGEDYN
SGN$GL_MAXVPGCT

SGN$GL_SPTREQ

SGN$GL_EXUSRSTK
SGN$GL_LRPCNT

1200

Size

Byte
Byte
Word
Longword
Longword
Word
Word

Longword

Longword
Byte

Word

Word

Longword

Longword

Word
Longword
Word
Word
Longword

Word

Longword

Longword
Longword

Longword

. Longword
Longword

Longword
Longword
Longword

Longword

Longword
Longword

Description of Data

Reserved
Spare for alignment
Global section count (GBLSECTIONSI
Global page count (GBLPAGES)
Global page file page limit (GBLPAGFILI
Maximum process count (MAXPROCESSCNTI
Maximum number of processes to scan for

priority boosting (PIXSCANI
Mask of CPUs to boot automatically during

system initialization; defaults to any that
exist (SMP _CPUSI

Reserved
Controls loading of system synchronization

image (MULTIPROCESSING!
Number of symmetric multiprocessing sanity

timer cycles before timeout (SMP_SANITY_
CNTI

Number of clock ticks between SMP sanity
timer cycles (SMP _ TICK_CNTI

Normal SMP busy wait timeout interval (SMP _
SPINWAITI

Long SMP busy wait timeout interval (SMP _
LNGSPINWAITI

Process section count (PROCSECTCNTI
Minimum working set size (MINWSCNTI
Number of page files (PAGFILCNTI
Number of swap files (SWPFILCNTI
Maximum size of system working set

(SYSMWCNTI
Size in pages of interrupt stack

(INTSTKPAGESI
Amount of interrupt stack that must remain

free when performing deadlock searches
(DLCKEXTRASTKI

Balance set count (BALSETCNT)
Initial number of preallocated intermediate

request packets (IRPCOUNT)
Maximum number of intermediate request

packets (IRPCOUNTV)
Maximum process working set size (WSMAX)
Initial number of bytes of nonpaged pool

(NPAGEDYN)
Maximum size of nonpaged pool (NPAGEVIR)
Number of bytes of paged pool (PAGEDYN)
Maximum per-process virtual page count

(VIRTUALPAGECNT)
Number of additional system page table enties

to reserve (SPTREQ)
Reserved (EXUSRSTK)
Initial number of large request packets (LRPs)

in lookaside list (LRPCOUNT)

Global Symbol

SGN$GLLRPCNTV
SGN$GLLRPSIZE
SGN$GLLRPMIN

SGN$GLSRPCNT

SGN$GL_SRPCNTV
SGN$GLSRPSIZE
SGN$GLSRPMIN

SGN$GW _PCHANCNT

SGN$GW _PIOPAGES

SGN$GW _CTLPAGES

SGN$GW _CTLIMGLIM

SGN$GW _IMGIOCNT

SCH$GW _QUAN

MPW$GW _MPWPFC

MPW$GW _HILIM

MPW$GW _LOLIM

MPW$GB_IOLIM

MPW$GB_PRIO

SWP$GB_PRIO

MPW$GL THRESH

MPW$GL WAITLIM

MPW$GLLOWAITLIM

SGN$GW _ WSLMXSKP

MMG$GLPHYPGCNT

SCH$GLPFRATL
SCH$GLPFRATH

Size

Longword
Longword
Longword

Longword

Longword
Longword
Longword

Word

Word

Word

Word

Word

Word

Word

Word

Word

Byte

Byte

Byte

Longword

Longword

Longword

Word

Longword

Longword
Longword

C.1 The Base Image

Description of Data

Maximum number of LRPs (LRPCOUNTV)
Size of an LRP (LRPSIZE)
Minimum request that can be allocated an

LRP (LRPMIN)
Initial number of small request packets (SRPs)

in lookaside list (SRPCOUNT)
Maximum number of SRPs (SRPCOUNTV)
Size of an SRP (SRPSIZE)
Minimum request that can be allocated an SRP

(SRPMIN)
Permanent I/O channel count

(CHANNELCNT)
Size of process I/O segment in pages

(PIOPAGES)
Size of process allocation region in pages

(CTLPAGES)
Limit on use of the process allocation region

by image requests (CTLIMGLIM)
Default number of pages mapped for image I/O

segment (IMGIOCNT)
Length in IO-millisecond units of quantum

(QUANTUM)
Modified page writer cluster factor (MPW _

WRTCLUSTER)
High-limit threshold of modified page list

(MPW _HILIMIT)
Low-limit threshold of modified page list

(MPW _LOLIMIT)
Maximum number of concurrent I/O transfers

initiated by the modified page writer (MPW _
IO LIMIT)

Priority at which modified page writes are
queued(MPW_PRIO)

Priority at which swapper I/O requests are
queued(SWP_PRIO)

Limit below which modified page writer does
not reclaim pages (MPW _THRESH)

Limit above which processes creating modified
pages must wait until pages have been
released from modified page list (MPW _
WAITLIMIT)

Modified page writer busy wait low limit
(MPW _LOWAITLIMIT)

Number of working set list entries to skip
in modified scan of working set list
(TBSKIPWSL)

Maximum number of physical pages to use
(PHYSICALPAGES)

Low-limit page fault rate threshold (PFRATL)
High-limit page fault rate threshold (PFRATH)

1201

Executive Data Areas

Global Symbol

SCH$GL_PFRATS

SCH$GL WSINC
SCH$GL WSDEC
SCH$GLAWSMIN

SCH$GLAWSTIME

SCH$GL_SWPRATE
SWP$GL_SWPPGCNT

SWP$GW _SWPINC

SCH$GW _IOTA

SCH$GW _LONGWAIT

SCH$GW _DORMANT-
WAIT

SCH$GW _SWPFAIL

SGN$GL VMSDl
SGN$GL VMSD2
SGN$GL VMSD3
SGN$GL VMSD4
SGN$GL_ VMSS
SGN$GLVMS6
SGN$GLVMS7
SGN$GLVMS8
SGN$GLJOBCTLD

SGN$GLPU_OPTIONS

SGN$GL WPTTE_SIZE

SGN$GW _ WPRE_SIZE

SGN$GB_QBUS_MULT _
INTR

SGN$GW _ERLBUFCNT

SGN$GLDUMP _STYLE

SGN$GLUSERD1
SGN$GLUSERD2
SGN$GL_USER3

1202

Size
Longword

Longword
Longword
Longword

Longword

Longword
Longword

Word

Word

Word

Word

Word

Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword

Longword

Longword

Word

Word

Word

Longword

Longword
Longword
Longword

Description of Data

Page fault rate threshold for system paging
(PFRATS)

Working set list increment (WSINC)
Working set list decrement (WSDEC)
Minimum value of automatic working set

limit adjustment (AWSMIN)
Working set measurement interval in 10-

millisecond units (AWSTIME)
Swap rate for compute-bound jobs (SWPRATE)
Target number of pages for a working set about

to be outswapped (SWPOUTPGCNT)
Swap file allocation increment value

(SWPALLOCINC)
Amount of time in 10-millisecond units

charged against quantum when process goes
into wait state (IOTA)

Amount of elapsed time for a LEF or HIB
process to be scheduled as a long wait
process (LONGWAIT)

Number of seconds to wait before marking
computable process dormant
(DORMANTWAIT)

Number of outswap failures to happen before
modifying selection algorithm (SWPFAIL)

Reserved (VMSD 1)
Reserved (VMSD2)
Reserved (VMSD3)
Reserved (VMSD4)
Reserved (VMSS)
Reserved (VMS6)
Reserved (VMS7)
Reserved (VMS8)
Job controller error processing control flags

(JOBCTLD)
PUDRIVER trace enable options (PU_

OPTIONS)
Number of trace table entries that WPDRIVER

allocates from nonpaged pool (WPTTE_SIZE)
Number of pages that WPDRIVER allocates

from nonpaged pool for watchpoint restore
entries (WPRE_SIZE)

Q22-bus Multilevel interrupt control (QBUS_
MULT_INTR)

Number of error log allocation buffers
(ERRORLOGBUFFERS)

Bit mask specifying the crash dump style
option, either full physical memory or a
selective dump (DUMPSTYLE)

Parameter reserved for users (USERD 1)
Parameter reserved for users (USERD2)
Parameter reserved for users (USER3)

Global Symbol

SGN$GLUSER4
SGN$GLEXTRACPU

EXE$GL_SYSUIC

IOC$GW _MVTIMEOUT

IOC$GW _TAPE_
MVTIMEOUT

IOC$GW _MAXBUF
IOC$GW _MBXBFQUO

IOC$GW _MBXMXMSG

SGN$GL_FREELIM
SGN$GL_FREEGOAL

SCH$GLGROWLIM

SCH$GLBORROWLIM

EXE$GL_LOCKRTRY

IOC$GW _XFMXRATE
IOC$GW _LAMAPREG

EXE$GL_RTIMESPT

EXE$GL_CLITABL

LCK$GLIDTBLSIZ
LCK$GLIDTBLMAX

LCK$GLHTBLSIZ
LCK$GL WAITTIME

SCS$GW _BDTCNT

SCS$GW _CDTCNT

SCS$GW _RDTCNT

SCS$GW _MAXDG
SCS$GW _MAXMSG

SCS$GW _FLOWCUSH

Size

Longword
Longword

Longword

Word

Word

Word
Word

Word

Longword
Longword

Longword

Longword

Longword

Word
Word

Longword

Longword

Longword
Longword

Longword
Longword

Word

Word

Word

Word
Word

Word

C.1 The Base Image

Description of Data

Parameter reserved for users (USER4)
Extra CPU time given a process after CPU

time expiration (EXTRACPU)
Maximum group code for system user

identification code (MAXSYSGROUP)
Time before abandoning mount verification

attempt (MVTIMEOUT)
Maximum time for a tape device to wait in

mount verification (TAPE_MVTIMEOUT)
Maximum buffered 1/0 request size (MAXBUF)
Default buffer quota for mailbox creation

(DEFMBXBUFQUO)
Default maximum message size for mailbox

creation (DEFMBXMXMSG)
Low-limit threshold of free page iist (FREELIM)
Target free page list size when memory is

reclaimed (FREEGOAL)
Minimum number of pages on the free page

list for a process to expand its working set
above WSQUOTA (GROWLIM)

Minimum number of pages on the free page
list for a process to extend its working set
list above WSQUOTA (BORROWLIM)

Number of retries allowed to lock a multipro­
cessor data structure (LOCKRETRY)

Maximum DR780 data rate (XFMAXRATE)
Number of UNIBUS map registers to

preallocate for LPAll (LAMAPREGS)
Number of preallocated system page table

entries for connect-to-interrupt driver
(REALTIME_SPTS)

Number of pages for command language
interpreter symbol table (CLISYMTBL)

Size of the lock ID table (LOCKIDTBL)
Maximum size of lock ID table (LOCKIDTBL

MAX)
Size of the resource hash table (RESHASHTBL)
Deadlock detection timeout period (DEAD­

LOCK_ WAIT)
Number of buffer descriptor table entries

allocated for system communication services
(SCS) (SCSBUFFCNT)

Number of connection descriptor table entries
allocated for SCS (SCSCONNCNT)

Number of response descriptor table entries
allocated for SCS (SCSRESPCNT)

Maximum SCS datagram size (SCSMAXDG)
Maximum SCS sequenced message size

(SCSMAXMSG)
SCS flow control cushion (SCSFLOWCUSH)

1203

Executive Data Areas

Global Symbol Size Description of Data

SCS$GB_SYSTEMID Quadword 48-bit SCS system ID (SCSSYSTEMID and
SCS$GB_SYSTEMIDH SCSSYSTEMIDH)

SCS$GB_NODENAME Quadword SCS system node name (SCSNODE)
SCS$GW _PRCPOLINT Word SCA process poller - polling interval

(PRCPOLINTERVAL)
SCS$GW _PASTMOUT Word Wakeup interval for computer interconnect

(CI) port driver (PASTIMOUT)
SCS$GW _PAPPDDG Word Number of datagram buffers to queue for

START (PASTDGBUF)
SCS$GB_PANPOLL Byte Number of CI ports to poll each interval

(PANUMPOLL)
SCS$GB_PAMXPORT Byte Maximum port number to poll each interval

(PAMAXPORT)
SCS$GW _PAPOLINT Word Time between polls (PAPOLLINTERVAL)
SCS$GW _PAPOOLIN Word Time between checks for SCS applications

waiting for pool (PAPOOLINTERVAL)
SCS$GB_PASANITY Byte CI port flags including sanity timer en-

able/disable (PASANITY)
SCS$GB_PANOPOLL Byte CI remote port polling enable/disable flags

(PANO POLL)
SGN$GL_PE1 Longword Reserved (PEI)
SGN$GL_PE2 Longword Reserved (PE2)
SGN$GL_PE3 Longword Reserved (PE3)
SGN$GL_PE4 Longword Reserved (PE4)
SGN$GL_PES Longword Reserved (PES)
SGN$GL_PE6 Longword Reserved (PE6)
SGN$GW _ TPWAIT Word Amount of time to wait for the time of day to be

entered when booting (TIMEPROMPTWAIT)
EXE$GW _CLKINT Word Reserved
SCS$GB_UDABURST Byte Maximum number of longwords that the

host is willing to accept per transfer
(UDABURSTRATE)

LNM$GLHTBLSIZS Longword Size of shareable logical name hash table
(LNMSHASHTBL)

LNM$GL_HTBLSIZP Longword Size of process logical name hash table
(LNMPHASHTBL)

EXE$GL_DEFFLAGS Longword System flags longword (copied to EXE$GL
FLAGS; not a parameter itself)

• EXE$V _BUGREBOOT Bit Automatic reboot on bugcheck (BUGREBOOT)
• EXE$V _CRDENABL Bit Corrected read data error enable (CRDENABLE)
• EXE$V _BUGDUMP Bit Write system dump on bugcheck (DUMPBUG)
• EXE$V _FATAL_BUG Bit Make all bugchecks fatal (BUGCHECKFATAL)
• EXE$V _MULTACP Bit Create separate ancillary control process for

each volume (ACP _MULTIPLE)
• EXE$V _NOAUTOCNF Bit Inhibit autoconfiguration of I/O devices

(NOAUTOCONFIG)
• EXE$V _NOCLUSTER Bit Inhibit page read clustering (NOCLUSTER)
• EXE$V _POOLPGING Bit Enable paging of paged pool (POOLPAGING)
• EXE$V _SBIERR Bit Enable detection of synchronous backplane

interconnect errors (SBIERRENABLE)

1204

Global Symbol
• EXE$V _SETIIME

• EXE$V _SHRF11ACP

• EXE$V_SAVEDUMP
• EXE$V _SSINHIBIT

• EXE$V _SYSUAFALT

• EXE$V _SYSWRTABL

• EXE$V _RESALLOC

• EXE$V _CONCEALED

EXE$GL_ TIME_
CONTROL

• EXE$V _NOCLOCK
• EXE$V _NOSMPSANITY

• EXE$V _NOSPINWAIT

SGN$GL_BRKMSK

EXE$GLDYNAMIC_
FLAGS

• EXE$V _CLASS_PROT

• EXE$V _WRITE-
SYSPARAMS

• EXE$V _BRK_ TERM

• EXE$V _BRK_DISUSER

• EXE$V _NOPGFLSWP

EXE$GLMSGFLAGS
• EXE$V _DISMOUMSG

• EXE$V _MOUNTMSG

SGN$GLLOADFLAGS
• SGN$V _LOAD_SYS_

IMAGES
TTY$GLDELTA

Size

Bit

Bit

Bit
Bit

Bit

Bit

Bit

Bit

Longword

Bit
Bit

Bit

Longword

Longword

Bit

Bit

Bit

Bit

Bit

Longword
Bit

Bit

Longword
Bit

Longword

C.1 The Base Image

Description of Data

Prompt for system time in SYSBOOT
(SETTIME)

Enable sharing of file ancillary control process
(ACP _SHARE)

Save dump from page file (SAVEDUMP)
Inhibit system services on a per-process basis

(SSINHIBIT)
Select alternative authorization file

(UAFALTERNATE)
Leave executive images in memory writable

(WRITABLESYS)
Enable resource allocation checking

(RESALLOC)
Enable use of concealed devices (CONCEAL_

DEVICES)
Time control flag (TIME_CONTROL)

Do not turn on clock
Disable symmetric multiprocessing sanity

timer timeouts
Disable symmetric multiprocessing spin/busy

wait timeouts
Determines initial breakpoint callers

(BREAKPOINTS)
Dynamic system flags (not a parameter itself)

Perform mandatory access control protection
check (CLASS_PROT)

Set by SYSBOOT if a USE DEFAULT, USE
"file," or a SET command is executed
(WRITESYSPARAMS)

Use the terminal name in the association
string used in LOGIN's break-in detection
(LGLBRK_ TERM)

If enabled, set the DISUSER flag in the user
authorization file record if a break-in attempt
is detected (LGLBRK_DISUSER)

Disallow swapping into page files
(NOPGFLSWP)

Mount message flags (not a parameter itself)
Inform operator console of dismounts

(DISMOUMSG)
Inform operator console of mounts

(MOUNTMSG)
System load flags (not a parameter itself)
Enables loading of optional loadable executive

images (LOAD_SYS_IMAGES)
Delta time for dialup line timer scan (TTY_

SCANDELTA)

1205

Executive Data Areas

Global Symbol Size

TTY$GB_DIALTYP Byte
• Bit

• Bit

• Bit

• 2 bits
• Bit

• Bit
• Bit

TTY$GB_DEFSPEED Byte
TTY$GB_RSPEED Byte
TTY$GB_PARITY Byte
TTY$GW _DEFBUF Word
TTY$GLDEFCHAR Longword

TTY$GLDEFCHAR2 Longword

TTY$GW _ TYPAHDSZ Word
TTY$GW_ALTYPAHD Word

TTY$GW_ALTALARM Word

TTY$GW _DMASIZE Word
TTY$GW _PROT Word

TTY$GLOWNUIC Longword

TTY$GW _CLASSNAM Word

TTY$GB_SILOTIME Byte

TTY$GL TIMEOUT Longword

TTY$GB_AUTOCHAR Byte

TTY$GLDEFPORT Longword
SYS$GB_DFMBC Byte
SYS$GB_DFMBFSDK Byte

SYS$GB_DFMBFSMT Byte

SYS$GB_DFMBFSUR Byte

SYS$GB_DFMBFREL Byte

1206

Description of Data

Dialup flag bits (TTY _DIALTYPE)
0 = Bell standard protocol
1 = CCITT standard protocol
0 = disable use of RING signal
1 = require RING signal before setting DTR
0 = enable 30-second timeout for channel

assignment
1 = disable timeout
Reserved
0 = VWS 77 dots per inch monitor
1 = VWS 100 dots per inch monitor
Reserved for DECwindows
0 = VWS disable square pixel monitor
1 = VWS enable square pixel monitor
Default speed for terminals (TTY _SPEED)
Default receive speed (TTY _RSPEED)
Default parity (TTLPARITY)
Default terminal line width (TTY _BUF)
Default terminal characteristics (TTY_

DEFCHAR)
Default terminal characteristics (second

longword) (TTY_DEFCHAR2)
Size of type-ahead buffer (TTY_TYPAHDSZ)
Alternative type-ahead buffer size (TTY_

ALTYPAHD)
Alternative type-ahead buffer alarm size (TTY_

ALT ALARM)
Pirect memory access size (TTY_DMASIZE)
Default terminal allocation protection (TTY_

PROT)
Default device owner user identification code

(TTL OWNER)
Default terminal class driver name prefix

(TTY_CLASSNAME)
Default silo timeout value for DMF-32 (TTY_

SILOTIME)
Default disconnected terminal timeout value

(TTY_ TIMEOUT)
Autobaud rate recognition character (TTY_

AUTOCHAR)
Default port characteristics (TTY _DEFPORT)
Default multiblock count (RMS_DFMBC)
Default multibuffer count for sequential disk

1/0 (RMS_DFMBFSDK)
Default multibuffer count for magtape 1/0

(RMS_DFMBFSMT)
Default multibuffer count for unit record

devices (RMS_DFMBFSUR)
Default multibuffer count for relative files

(RMS_DFMBFREL)

Global Symbol Size

SYS$GB_DFMBFIDX Byte

SYS$GB_DFMBFHSH Byte
SYS$GB_RMSPROLOG Byte

SYS$GW _RMSEXTEND Word

SYS$GW _FILEPROT Word

SYS$GW _GBLBUFQUO Word

SYS$GB_DFNBC Byte

PQL$AL_DEFAULT +4 12 longwords

PQL$AL_MIN+4 12 longwords

PQL$AB_FLAG+ 1 12 bytes
ACP$GW _MAPCACHE Word

ACP$GW _HDRCACHE Word

ACP$GW _DIRCACHE Word

ACP$GW _DINDXCACHE Word

ACP$GW _ WORKSET Word

ACP$GW _FIDCACHE Word

ACP$GW _EXTCACHE Word

ACP$GW _EXTLIMIT Word
ACP$GW _QUOCACHE Word

ACP$GW _SYSACC Word

ACP$GB_MAXREAD Byte

ACP$GB_ WINDOW Byte

ACP$GB_ WRITBACK Byte

ACP$GB_DATACHK Byte

• ACP$V _READCHK Bit
• ACP$V _ WRITECHK Bit
ACP$GB_BASEPRIO Byte
ACP$GB_SWAPFLGS Byte

C.1 The Base Image

Description of Data

Default multibuffer count for indexed files
(RMS_DFMBFIDX)

Reserved (RMS_DFMBFHSH)
Default structure level for indexed files (RMS_

PROLOGUE)
Default extend quantity for RMS files (RMS_

EXTEND_SIZE)
Default system-owner-group-world file

protection (RMS_FILEPROT)
Maximum number of global buffers that may

be in concurrent use (RMS_GBLBUFQUO)
Default number of blocks for RMS OAP

network record-mode transfers; defines
maximum network record size (RMS_
DFNBC)

Table of process quota list default values (see
Table 25.3)

Table of process quota list minimum values
(see Table 25.3)

Table of process quota flags
Number of blocks in bitmap cache (ACP _

MAPCACHE)
Number of blocks in file header cache (ACP _

HOR CACHE)
Number of blocks in file directory cache (ACP _

DIRCACHE)
Number of pages in file system directory index

cache (ACP _DINDXCACHE)
Ancillary control process working set size

(ACP _ WORKSET)
Number of cached index file slots (ACP _

FIDCACHE)
Number of cached disk extents (ACP _

EXTCACHE)
Fraction of disk to cache (ACP _EXTLIMIT)
Number of quota file entries to cache (ACP _

QUOCACHE)
Default directory access. Not used on disks

managed by Files-llXQP (ACP_SYSACC)
Maximum number of blocks to read at once

for directories (ACP _MAXREAD)
Default window size for system volumes

(ACP _WINDOW)
Enable deferred cache write back (ACP _

WRITEBACK)
Ancillary control process (ACP) data check

enable flags (ACP _DATACHECK)
Do data check on reads
Do data check on writes
ACP base software priority (ACP _BASEPRIO)
ACP swap flags (ACP _SWAPFLGS)

1207

Executive Data Areas

Global Symbol

• ACP$V _SWAPSYS
• ACP$V _SWAPGRP
• ACP$V _SWAPPRV
• ACP$V _SWAPMAG
EXE$GL_STATIC_FLAGS

• EXE$V _XQP _RESIOENT

• EXE$V _REBLDSYSD
• EXE$V _SHADOWING

SYS$GB_DEFPRI
SYS$GW _IJOBLIM
SYS$GW _BJOBLIM
SYS$GW _NJOBLIM
SYS$GW _RJOBLIM
SYS$GB_DEFQUEPRI
SYS$GB_MAXQUEPRI
SYS$GB_PWD_ TMO

SYS$GB_RETRY _LIM

SYS$GB_RETRY _ TMO

SYS$GB_BRK_LIM

SYS$GL_BRK_ TMO

SYS$GLHID_ TIM

CLU$GB_VAXCLUSTER

CLU$GW _EXP_ VOTES

CLU$GW _VOTES

CLU$GW _RECNXINT

CLU$GB_QDISK

1208

Size

Bit
Bit
Bit
Bit
Longword

Bit

Bit
Bit

Byte
Word
Word
Word
Word
Byte
Byte
Byte

Byte

Byte

Byte

Longword

Longword

Byte

Word

Word

Word

Octa word

Description of Data

Swap ACPs for /SYSTEM volumes
Swap ACPs for /GROUP volumes
Swap ACPs for private volumes
Swap magnetic tape ACPs
Static system control flags (not a parameter

itself)
Files-11 XQP memory resident (ACP _XQP _

RES)
System disk rebuild flag (ACP _REBLDSYSD)
Load the volume shadowing driver

(SHADOWING)
Default priority for job initiations (DEFPRI)
Limit for interactive jobs (IJOBLIM)
Limit for batch jobs (BJOBLIM)
Limit for network jobs (NJOBLIM)
Limit for remote terminal jobs (RJOBLIM)
Default queue priority (DEFQUEPRI)
Maximum queue priority (MAXQUEPRI)
Number of seconds that a dialup user has to

enter system password before LOGINOUT
exits (LGLPWD_ TMO)

Number of retries an interactive user has
before the process is deleted (LGLRETRY_
LIM)

Number of seconds user has to attempt another
login before process is deleted (LGLRETRY _
TMO)

Number of consecutive login failures before
LOGINOUT begins evasive action (LGL
BRK_LIM)

Number of seconds that a suspect must be free
of login failures before it is taken off the
suspect list (LGLBRK_ TMO)

Number of seconds that LOGINOUT should
practice evasive action on an intruder (LGL
HID_ TIM)

Controls loading of VAXcluster code; node
cannot participate in a VAXcluster unless
code is loaded (VAXCLUSTER)
0 = never load
1 = load if SCSLOA is being loaded
2 = always load and also load SCSLOA

Maximum number of votes that are expected
to be in the cluster (EXPECTED_ VOTES)

Number of votes this system contributes to
quorum (VOTES)

Interval during which to attempt re­
connection to a VAXcluster member
(RECNXINTERVAL)

VAXcluster quorum disk name (DISK_
QUORUM)

Global Symbol
CLU$GW _QDSKVOTES

CLU$GW _QDSK-
INTERVAL

CLU$GL_ALLOCLS

CLU$GW _LCKDIRWT

CLU$GL_SGN_FLAGS
• CLU$V _NISCS_CONV _

BOOT
• CLU$V _NISCS_LOAD_

PEAO
CLU$GL_NISCS_PORT _

SERV
CLU$GL_MSCP _LOAD

CLU$GL_MSCP _SERVE_
ALL

CLU$GL_MSCP _BUFFER

CLU$GL_MSCP _CREDITS

SGN$GB_ TAILORED
EXE$GL_ WSFLAGS

• EXE$V _OPAO

SGN$GB_STARTUP _Pl

SGN$GB_STARTUP _P2

SGN$GB_STARTUP _P3

SGN$GB_STARTUP _P4

SGN$GB_STARTUP _P5

SGN$GB_STARTUP _P6

SGN$GB_STARTUP _P7

SGN$GB_STARTUP _pg

EXE$GL_SO_PAGING

Size
Word

Word

Longword

Word

Longword
Bit

Bit

Longword

Longword

Longword

Longword

Longword

Byte
Longword

Bit

Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword

C.1 The Base Image

Description of Data
Number of votes contributed by quorum disk

(QDSKVOTES)
Disk quorum interval (QDSKINTERVAL)

Device allocation class for system
(ALLOCLASSI

Determines portion of lock manager directory
entries that will be handled by this system
(LOCKDIRWT)

Static cluster flags (not a parameter itselfl
Allow remote conversational boot (NISCS_

CONV_BOOTI
Load the NISCS module PEDRIVER (NISCS_

LOAD_PEAOI
Flags for port service (NISCS_PORT _SERVI

Load mass storage control protocol (MSCPI
server (MSCP _LOADI

Controls MSCP server defaults (MSCP _SERVE_
ALLI
0 = do not serve any disks
1 = serve all available disks
2 = serve only locally attached (not

hierarchical storage controller! disks
Amount of nonpaged pool to allocate for the

MSCP server (MSCP _BUFFERI
Number of MSCP send credits for each granted

connection (MSCP _CREDITS I
Indicates if system is tailored (TAILORED!
Workstation SYSGEN flags (not a parameter

itselfl
If set, reserve the first 23 scan lines for an

OPAO window (WS_OPAOI
Passes information to the system startup

procedure (STARTUP_Pll
Passes information to the system startup

procedure (STARTUP _P21
Passes information to the system startup

procedure (STARTUP_P31
Passes information to the system startup

procedure (STARTUP _P4)
Passes information to the system startup

procedure (STARTUP_PS)
Passes information to the system startup

procedure (STARTUP_P6)
Passes information to the system startup

procedure (STARTUP _P7)
Passes information to the system startup

procedure (STARTUP_P8)
Bit mask enabling paging of system code (SO_

PAGING)

1209

Executive Data Areas

Global Symbol
SGN$GL_PSEUDOLOA
EXE$GL_POOLCHECK

SCH$GL_CTLFLAGS
SCH$GB_MINCLASSPRI
SCH$GB_MAXCLASSPRI
SCH$GB_MINPRPRI
MMG$GL_RSRVPAGCNT

EXE$GL_ WINDOW_
SYSTEM

SCH$GL_AFFINITY _SKIP

SCH$GL_AFFINITY _
TIME

EXE$GB_ERLBUFPAGES

CLU$GL_ TAPE_ALLOCLS

Size
Longword
Longword

Longword
Byte
Byte
Byte
Longword

Longword

Lorigword

Longword

Byte

Longword

Description of Data

Size of pseudo device (PSEUDOLOAJ
Control flags for poolcheck code

(POOLCHECKJ
Reserved
Reserved
Reserved
Reserved
Number of pages to reserve/escrow in process

page file (RSRVPAGCNT)
Default windowing system for a workstation

(WINDOW _SYSTEM)
0 - no windowing system defined
1 = use DECwindows
2 =use VWS

Number of times that a computable process
waits for CPU for which it has implicit
affinity (AFFINITY _SKIP)

Reserved (AFFINITY_ TIMEI

Number of pages per error log buffer
(ERLBUFFERPAGESJ

Tape device allocation class (TAPE_
ALLOCLASSI

The rest of module SYSPARAM consists of other systemwide parameters,
the values of which are not directly adjustable with SYSBOOT or SYSGEN.
Rather, their values depend directly on the values of one or more adjustable
parameters.

Global Symbol
SWP$Gt_SHELLSIZ
SWP$GW _BAKPTE

SWP$GW _EMPTPTE

SWP$GW _ WSLPTE

SWP$GB_SHLP1PT

SWP$GL_BSLOTSZ
SWP$GL_MAP
SWP$GL_PHDBASVA
SGN$GL_PHDAPCNT
SGN$GL_PHDLWCNT
SGN$GL_PlLWCNT
SGN$GL_PHDPAGCT

1210

Size
Longword
Word

Word

Word

Byte

Byte
Longword
Longword
Longword
Longword
Longword
Longword
Longword

Description of Data
Pages· required for shell process
Number of process header (PHD) pages for

process header page arrays
Number of empty PHD pages for working set

list expansion ·
Number of PHD pages for fixed area, working

set list, and process section table
Number of Pl page table pages required for

SHELL
Spare for alignment
Size in pages of balance slot
Address of swapper's 1/0 page table
Base address of PHD window
Number of SHELL header pages
Number of longwords in PHD
Number of longwords to end of Pl page table
Number of all PHD pages excluding page table

pages

Global Symbol
SGN$GL_PTPAGCNT
MMG$GLCTLBASVA
EXE$GLINTSTK

MMG$GLGPTBASE
MMG$GL_GPTE

MMG$GL_MAXGPTE
MMG$GL_MAXSYSVA}
MMG$GL_FRESVA
MMG$GLSPTBASE
LDR$GLSPTBASE

MMG$GL_SPTLEN
MMG$GL_SYSPHD
MMG$GL_SYSPHDLN
SWP$GL_BALBASE
SWP$GLBALSPT

MMG$GLSBR
MMG$GL_NPAGEDYN
MMG$GL_NPAGNEXT

MMG$GL_IRPNEXT

MMG$GLLRPNEXT

MMG$GL_SRPNEXT

MMG$GLPAGEDYN
MMG$GL_MAXPFN

MMG$GL_MINPFN
MMG$GL_MAXMEM

EXE$GLRPB
EXE$GLSCB
EXE$GL_ARCHFLAG
EXE$GLSTATE
LDR$GLFREE_PT

EXE$GB_CPUDATA
EXE$GB_CPUTYPE
EXE$GW _CPUMODEL
CLU$GB_NISCS_COMM >
CLU$GQ_NISCS_AUTH

CLU$GLNISCS_GROUP

PFN$GB_LENGTH

Size
Longword
Longword
Longword

Longword
Longword

Longword
Longword

Longword
Longword

Longword
Longword
Longword
Longword
Longword

Longword
Longword
Longword

Longword

Longword

Longword

Longword
Longword

Longword
Longword

Longword
Longword
Longword
Longword
Quadword

16 bytes
Byte
Word
Quadword

Longword

12 bytes
Byte

C.1 The Base Image

Description of Data

Number of page table pages
Initial low-address end of Pl space
Address of primary processor's interrupt stack

base
Base address of global page table
Address of first global page table entry at end

of system page table (SPT)
Highest global·page table entry address
Highest system virtual address (plus 1)

Base virtual address of SPT
Base address of SPT-physical or virtual as

required by SYSLDR
Length of SPT
Virtual address of system header
Size in bytes of system header
Base virtual address of balance set slots
Base virtual address in SPT for mapping balance

slots
Physical address of SPT
Virtual address of beginning of nonpaged pool
Next virtual address for nonpaged pool variable-

length list extension
Next virtual address for intermediate request

packet list extension
Next virtual address for large request packet

list extension
Next virtual address for small request packet

list extension
Virtual address of beginning of paged pool
Maximum page frame number (PFN) accounted

for in PFN database
Minimum PFN in PFN database
Highest PFN mapped by SYSBOOT (includes

pages not in PFN database)
Virtual address of restart parameter block
Virtual address of system control block
Architectural flags (bits defined by $ARCDEF)
Flags describing bootstrap progression
Listhead of free system page table entry

database
System-specific information
CPU type read from PR$_SID
CPU model number
NISCS communications region
NISCS authorization quadword from

CLUSTER_AUTHORIZE.DAT
NISCS group code from CLUSTER_

AUTHORIZE.DAT
Spare for NISCS extensions
Number of bytes per page in PFN database

1211

Executive Data Areas

Size

Word
3 words

Description of Data

Flag to indicate size of PFN FLINK, BLINK
File ID of PAGEFILE.SYS

Global Symbol

MMG$GW _BIGPFN
EXE$GW _PGFLFID
PFN$A_BASE 8 longwords Base address of eight PFN database array

pointers
• PFN$AL_PTE
• PFN$AL_BAK
• PFN$AW _REFCNT
• PFN$AX_FLINK }

Longword
Longword
Longword
Longword

Address of page table entry array
Address of backing store address array
Address of reference count array of words
Address of combined forward link

• PFN$AX_SHRCNT
• PFN$AX_BLINK} Longword

Global share count array of words
Address of combined backward link
Working set list index array of words • PFN$AX_ WSLX

• PFN$AW _SWPVBN Longword Address of swap image virtual block number
array of words

• PFN$AB_STATE Longword
Longword
33 bytes

Address of STATE array of bytes
Address of TYPE array of bytes • PFN$AB_ TYPE

EXE$GT _STARTUP Counted ASCII string of name of startup
command procedure file

The following table lists the SYSGEN parameters alphabetically and indi­
cates the names of the cells where each parameter is stored.

1212

SYSGEN Parameter

ACP _BASEPRIO
ACP _DATACHECK
ACP _DINDXCACHE
ACP _DIRCACHE
ACP _EXTCACHE
ACP _EXTLIMIT
ACP _FIDCACHE
ACP _HDRCACHE
ACP _MAPCACHE
ACP _MAXREAD
ACP _MULTIPLE
ACP _QUOCACHE
ACP _REBLDSYSD
ACP_SHARE
ACP _SWAPFLGS
ACP_SYSACC
ACP_WINDOW
ACP _ WORKSET
ACP _ WRITEBACK
ACP _XQP _RES
AFFINITY _SKIP
AFFINITY_ TIME
ALLOCLASS
AWSMIN
AWSTIME
BALSETCNT
BJOBLIM

Cell Name

ACP$GB_BASEPRIO
ACP$GB_DATACHK
ACP$GW _DINDXCACHE
ACP$GW _DIRCACHE
ACP$GW _EXTCACHE
ACP$GW _EXTLIMIT
ACP$GW _FIDCACHE
ACP$GW _HDRCACHE
ACP$GW _MAPCACHE
ACP$GB_MAXREAD
EXE$V_MULTACP (EXE$GLDEFFLAGS)
ACP$GW _QUOCACHE
EXE$V _REBLDSYSD (EXE$GL_STATic_FLAGS)
EXE$V _SHRF l lACP (EXE$GLDEFFLAGS)
ACP$GB_SWAPFLGS
ACP$GW _SYSACC
ACP$GB_ WINDOW
ACP$GW _ WORKSET
ACP$GB_ WRITBACK
EXE$V _XQP _RESIDENT (EXE$GLSTATic_FLAGS)
SCH$GLAFFINITY _SK1P
SCH$GLAFFINITY _TIME
CLU$GLALLOCLS
SCH$GLAWSMIN
SCH$GLAWSTIME
SGN$GL_BALSETCT
SYS$GW _BJOBLIM

SYSGEN Parameter

BORROWLIM
BREAKPOINTS
BUGCHECKFATAL
BUGREBOOT
CHANNELCNT
CLASS_PROT
CLISYMTBL
CLOCK_INTERVAL
CONCEAL_DEVICES
CRDENABLE
CTLIMGLIM
CTLPAGES
DEADLOCK_ WAIT
DEFMBXBUFQUO
DEFMBXMXMSG
DEFPRI
DEFQUEPRI
DISK_ QUORUM
DISMOUMSG
DLCKEXTRASTK
DORMANTWAIT
DUMPBUG
DUMPSTYLE
ERLBUFFERPAGES
ERRORLOGBUFFERS
EXPECTED_ VOTES
EXTRA CPU
EXUSRSTK
FREEGOAL
FREE LIM
GBLPAGES
GBLPAGFIL
GBLSECTIONS
GROWLIM
IJOBLIM
IMGIOCNT
INTSTKPAGES
IOTA
IRPCOUNT
IRPCOUNTV
JOBCTLD
KFILSTCNT
LAMAPREGS
LGLBRK_DISUSER
LGLBRK_LIM .
LGLBRK_ TERM
LGLBRK_TMO
LGLHID_TIM
LGLPWD_TMO
LGLRETRY _LIM
LGLRETRY _ TMO

C.1 The Base Image

Cell Name

SCH$GL_BORROWLIM
SGN$GL_BRKMSK
EXE$V _FATAL_BUG (EXE$GL_DEFFLAGS)
EXE$V _BUGREBOOT (EXE$GL_DEFFLAGS)
SGN$GW _PCHANCNT
EXE$V _CLASS_PROT (EXE$GL_DYNAMic_FLAGS)
EXE$GL_CLITABL
EXE$GW _CLKINT
EXE$V _CONCEALED (EXE$GL_DEFFLAGS)
EXE$V _CRDENABL (EXE$GL_DEFFLAGS)
SGN$GW _CTLIMGLIM
SGN$GW _CTLPAGES
LCK$GL_ WAITTIME
IOC$GW _MBXBFQUO
IOC$GW _MBXMXMSG
SYS$GB_DEFPRI
SYS$GB_DEFQUEPRI
CLU$GB_QDISK
EXE$V _DISMOUMSG (EXE$GL_MSGFLAGS)
LCK$GL_EXTRASTK
SCH$GW _DORMANTWAIT
EXE$V _BUGDUMP (EXE$GL_DEFFLAGS)
SGN$GL_DUMP _STYLE
EXE$GB_ERLBUFPAGES
SGN$GW _ERLBUFCNT
CLU$GW _EXP_ VOTES
SGN$G1-EXTRACPU
SGN$GL_EXUSRSTK
SGN$GL_FREEGOAL
SGN$GL_FREELIM
SGN$GL_MAXGPGCT
SGN$GL_GBLPAGFIL
SGN$GW _GBLSECNT
SCH$GL_GROWLIM
SYS$GW _IJOBLIM
SGN$GW _IMGIOCNT
SGN$GW _ISPPGCT
SCH$GW _IOTA
SGN$G1-IRPCNT
SGN$G1-IRPCNTV
SGN$GL_JOBCTLD
SGN$GB_KFILSTCT
IOC$GW _LAMAPREG
EXE$V _BRK_DISUSER (EXE$GL_DYNAMIC_FLAGS)
SYS$GB_BRK_LIM
EXE$V _BRK_ TERM (EXE$GL_DYNAMIC_FLAGS)
SYS$GL_BRK_ TMO
SYS$GL_HID_ TIM
SYS$GB_PWD_ TMO
SYS$GB_RETRY _LIM
SYS$GB_RETRY _ TMO

1213

Executive Data Areas

1214

SYSGEN Parameter

LNMPHASHTBL
LNMSHASHTBL
LOAD_SYS_IMAGES
LOCKDIRWT
LOCKIDTBL
LOCKIDTBL_MAX
LOCKRETRY
LONGWAIT
LRPCOUNT
LRPCOUNTV
LRPMIN
LRPSIZE
MAXBUF
MAXCLASSPRI
MAXPROCESSCNT
MAXQUEPRI
MAXSYSGROUP
MINCLASSPRI
MINPRPRI
MINWSCNT
MOUNTMSG
MPW _HILIMIT
MPW _IOLIMIT
MPW _LOLIMIT
MPW _LOWAITLIMIT
MPW_PRIO
MPW_THRESH
MPW _ WAITLIMIT
MPW _ WRTCLUSTER
MSCP _BUFFER
MSCP _CREDITS
MSCP_LOAD
MSCP _SERVE_ALL
MULTIPROCESSING
MVTIMEOUT
NISCS_CQNV _BOOT
NISCS_LOAD_PEAO
NISCS_PORLSERV
NJOBLIM
NOAUTOCONFIG
NOC LOCK
NOCLUSTER
NOPGFLSWP
NOSMPSANITY
NOSPINWAIT
NPAGEDYN
NPAGEVIR
PAGEDYN
PAGFILCNT
PAGTBLPFC
PAMAXPORT

Cell Name

LNM$GL_HTBLSIZP
LNM$GL_HTBLSIZS
SGN$V _LQAD_SYS_IMAGES (SGN$GL_LOADFLAGS)
CLU$GW_LCKDffiWT
LCK$GL_IDTBLSIZ
LCK$GL_IDTBLMAX
EXE$GL_LOCKRTRY
SCH$GW _LONGWAIT
SGN$GL_LRPCNT
SGN$GL_LRPCNTV
SGN$GL_LRPMIN
SGN$GL_LRPSIZE
IOC$GW _MAXBUF
SCH$GB_MAXCLASSPRI
SGN$GW _MAXPRCCT
SYS$GB_MAXQUEPRI
EXE$GL_SYSUIC
SCH$GB_MINCLASSPRI
SCH$GB_MINPRPRI
SGN$GL_MINWSCNT
EXE$V _MOUNTMSG (EXE$GL_MSGFLAGS)
MPW$GW _HILIM
MPW$GB_IOLIM
MPW$GW _LOLIM
MPW$GL_LOWAITLIM
MPW$GB_PRIO
MPW$GL_ THRESH
MPW$GL_ WAITLIM
MPW$GW_MPWPFC
CLU$GL_MSCP _BUFFER
CLU$GL_MSCP _CREDITS
CLU$GL_MSCP _LQAD
CLU$GL_MSCP _SERVE_ALL
SGN$GB_MULTIPROCESSING
IOC$GW _MVTIMEOUT
CLU$V _NISCS_CQNV _BOOT (CLU$GL_SGN_FLAGS)
CLU$V _NISCS_LQAD_PEAO (CLU$GL_SGN_FLAGS)
CLU$GL_NISCS_PORT _SERV
SYS$GW _NJOBLIM
EXE$V _NOAUTOCNF (EXE$GL_DEFFLAGS)
EXE$V _NOCLOCK (EXE$GL_ TIME_CONTROL)
EXE$V _NOCLUSTER (EXE$GL_DEFFLAGS)
EXE$V _NOPGFLSWP (EXE$GL_DYNAMIC_FLAGS)
EXE$V _NOSMPSANITY (EXE$GL_ TIME_CONTROL)
EXE$V _NOSPINWAIT (EXE$GL_ TIME_ CONTROL)
SGN$GL_NPAGEDYN
SGN$GL_NPAGEVIR
SGN$GL_PAGEDYN
SGN$GW _PAGFILCT
SGN$GB_PGTBPFC
SCS$GB_PAMXPORT

SYSGEN Parameter

PANO POLL
PANUMPOLL
PAPOLLINTERVAL
PAPOOLINTERVAL
PASANITY
PASTDGBUF
PASTIMOUT
PEI
PE2
PE3
PE4
PES
PE6
PFCDEFAULT
PFRATH
PFRATL
PFRATS
PHYSICALPAGES
PIO PAGES
PIX SCAN
POOLCHECK
POOLPAGING
PQL_DASTLM
PQL_DBIOLM
PQL_DBYTLM
PQL_DCPULM
PQL_DDIOLM
PQL_DENQLM
PQL_DFILLM
PQL_DJTQUOTA
PQL_DPGFLQUOTA
PQL_DPRCLM
PQL_DTQELM
PQL_DWSDEFAULT
PQL_DWSEXTENT
PQL_DWSQUOTA
PQL_MASTLM
PQL_MBIOLM
PQL_MBYTLM
PQL_MCPULM
PQL_MDIOLM
PQL_MENQLM
PQL_MFILLM

. PQL_MJTQUOTA
PQL_MPGFLQUOTA
PQL_MPRCLM
PQL_MTQELM
PQL_MWSDEFAULT
PQL_MWSEXTENT
PQL_MWSQUOTA
PRCPOLINTERVAL

C.1 The Base Image

Cell Name
SCS$GB_PANOPOLL
SCS$GB_PANPOLL
SCS$GW _PAPOLINT
SCS$GW_PAPOOLIN
SCS$GB_PASANITY
SCS$GW _PAPPDDG
SCS$GW_PASTMOUT
SGN$GL_PE1
SGN$GL_PE2
SGN$GL_PE3
SGN$GL_PE4
SGN$GL_PE5
SGN$GLPE6
SGN$GW _DFPFC
SCH$GL_PFRATH
SCH$GL_PFRATL
SCH$GL_PFRATS
MMG$GL_PHYPGCNT
SGN$GW _PIOPAGES
SGN$GW _PIXSCAN
EXE$GL_POOLCHECK
EXE$V _POOLPGING (EXE$GL_DEFFLAGS)
PQL$GDASTLM
PQL$GDBIOLM
PQL$GDBYTLM
PQL$GDCPULM
PQL$GDDIOLM
PQL$GDENQLM
PQL$GDFILLM
PQL$GDJTQUOTA
PQL$GDPGFLQUOTA
PQL$GDPRCLM
PQL$GDTQELM
PQL$GDWSDEFAULT
PQL$GDWSEXTENT
PQL$GDWSQUOTA
PQL$GMASTLM
PQL$GMBIOLM
PQL$GMBYTLM
PQL$GMCPULM
PQL$GMDIOLM
PQL$GMENQLM
PQL$GMFILLM
PQL$GMJTQUOTA
PQL$GMPGFLQUOTA
PQL$GMPRCLM
PQL$GMTQELM
PQL$GMWSDEFAULT
PQL$GMWSEXTENT
PQL$GMWSQUOTA
SCS$GW _PRCPOLINT

1215

Executive Data Areas

1216

SYSGEN Parameter

PROCSECTCNT
PSEUDO LOA
PU_OPTIONS
QBUS_MULT _INTR
QDSKINTERVAL
QDSKVOTES
QUANTUM
REALTIME_SPTS
RECNXINTERVAL
RESALLOC
RESHASHTBL
RJOBLIM
RMS_DFMBC
RMS_DFMBFHSH
RMS_DFMBFIDX
RMS_DFMBFREL
RMS_DFMBFSDK
RMS_DFMBFSMT
RMS_DFMBFSUR
RMS_DFNBC
RMS_EXTEND_SIZE
RMS_FILEPROT
RMS_GBLBUFQUO
RMS_PROLOGUE
RSRVPAGCNT
SO_PAGING
SAVEDUMP
SBIERRENABLE
SCH_CTLFLAGS
SCSBUFFCNT
SCSCONNCNT
SCSFLOWCUSH
SCSMAXDG
SCSMAXMSG
SCSNODE
SCSRESPCNT
SCSSYSTEMID
SCSSYSTEMIDH
SETTIME
SHADOWING
SMP_CPUS
SMP_CPUSH
SMP _LNGSPINWAIT
SMP _SANITY_CNT
SMP _SPINWAIT
SMP _ TICILCNT
SPTREQ
SRPCOUNT
SRPCOUNTV
SRPMIN
SRPSIZE

Cell Name
SGN$GW _MAXPSTCT
SGN$GL_PSEUDOLOA
SGN$GL_PU_OPTIONS
SGN$GB_QBUS_MULT _INTR
CLU$GW _QDSKINTERVAL
CLU$GW _QDSKVOTES
SCH$GW_QUAN
EXE$GL_RTIMESPT
CLU$GW _RECNXINT
EXE$V _RESALLOC (EXE$GL_DEFFLAGS)
LCK$GL_HTBLSIZ
SYS$GW _RJOBLIM
SYS$GB_DFMBC
SYS$GB_DFMBFHSH
SYS$GB_DFMBFIDX
SYS$GB..DFMBFREL
SYS$GB_DFMBFSDK
SYS$GB_DFMBFSMT
SYS$GB_DFMBFSUR
SYS$GB_DFNBC
SYS$GW _RMSEXTEND
SYS$GW _FILEPROT
SYS$GW _GBLBUFQUO
SYS$GB_RMSPROLOG
MMG$GL_RSRVPAGCNT
EXE$GL_SQ_PAGING
EXE$V _SAVEDUMP (EXE$GL_DEFFLAGS)
EXE$V_SBIERR (EXE$GL_DEFFLAGS)
SCH$GL_CTLFLAGS
SCS$GW _BDTCNT
SCS$GW _CDTCNT
SCS$GW _FLOWCUSH
SCS$GW _MAXDG
SCS$GW _MAXMSG
SCS$GB_NODENAME
SCS$GW _RDTCNT
SCS$GB_SYSTEMID
SCS$GB_SYSTEMIDH
EXE$V _SETTIME (EXE$GL_DEFFLAGS)
EXE$V _SHADOWING (EXE$GL_STATIC_FLAGS)
SGN$GL_SMP _CPUS
SGN$GL_SMP _CPUSH
SGN$GL_SMP _LNGSPINWAIT
SGN$GW _SMP _SANITY _CNT
SGN$GL_SMP _SPINWAIT
SGN$GW _SMP _ TICILCNT
SGN$GL_SPTREQ
SGN$GL_SRPCNT
SGN$GL_SRPCNTV
SGN$GL_SRPMIN
SGN$GL_SRPSIZE

SYSGEN Parameter

SS INHIBIT
STARTUP_Pl
STARTUP_P2
STARTUP_P3
STARTUP_P4
STARTUP_PS
STARTUP_P6
STARTUP_P7
STARTUP_P8
SWPALLOCINC
SWPFAIL
SWPFILCNT
SWPOUTPGCNT
SWPRATE
SWP_PRIO
SYSMWCNT
SYS PFC
TAILORED
TAPE_ALLOCLASS
TAPE_MVTIMEOUT
TBSKIPWSL
TIMEPROMPTWAIT
TTY _ALTALARM
TTY _ALTYPAHD
TTY _AUTOCHAR
TTY_BUF
TTY _CLASSNAME
TTY_DEFCHAR
TTY _DEFCHAR2
TTY _DEFPORT
TTY _DIALTYPE
TTY_DMASIZE
TTY_OWNER
TTY_PARITY
TTY_PROT
TTY_RSPEED
TTY_SCANDELTA
TTY _SILOTIME
TTY_SPEED
TTY_ TIMEOUT
TTY_TYPAHDSZ
UAFALTERNATE
UDABURSTRATE
USER3
USER4
USERDl
USERD2
VAX CLUSTER
VIRTUALPAGECNT
VMSS
VMS6

C.1 The Base Image

Cell Name

EXE$V _SSINHIBIT jEXE$GL_DEFFLAGS)
SGN$GB_STARTUP _Pl
SGN$GB_STARTUP _P2
SGN$GB_STARTUP _P3
SGN$GB_STARTUP _P4
SGN$GB_STARTUP _PS
SGN$GB_STARTUP _P6
SGN$GB_STARTUP _p7
SGN$GB_STARTUP _pg
SWP$GW _SWPINC
SCH$GW _SWPFAIL
SGN$GW _SWPFILES
SWP$GL_SWPPGCNT
SCH$GLSWPRATE
SWP$GB_PRIO
SGN$GLSYSDWSCT
SGN$GB_SYSPFC
SGN$GB_ TAILORED
CLU$GL_ TAPE_ALLOCLS
IOC$GW _ TAPE_MVTIMEOUT
SGN$GW _ WSLMXSKP
SGN$GW_TPWAIT
TTY$GW_ALTALARM
TTY$GW_ALTYPAHD
TTY$GB_AUTOCHAR
TTY$GW _DEFBUF
TTY$GW _CLASSNAM
TTY$GLDEFCHAR
TTY$GLDEFCHAR2
TTY$GLDEFPORT
TTY$GB_DIALTYP
TTY$GW _DMASIZE
TTY$GLOWNUIC
TTY$GB_PARITY
TTY$GW _PROT
TTY$GB_RSPEED
TTY$GLDELTA
TTY$GB_SILOTIME
TTY$GB_DEFSPEED
TTY$GL TIMEOUT
TTY$GW _ TYPAHDSZ
EXE$V _SYSUAFALT IEXE$GLDEFFLAGS)
SCS$GB_UDABURST
SGN$GLUSER3
SGN$GLUSER4
SGN$GLUSERD1
SGN$GLUSERD2
CLU$GB_VAXCLUSTER
SGN$GL_MAXVPGCT
SGN$GL_ VMSS
SGN$GLVMS6

1217

Executive Data Areas

SYSGEN Parameter

VMS7
VMS8
VMSDl
VMSD2
VMSD3
VMSD4
VOTES
WINDOW _SYSTEM
WPRE_SIZE
WPTIE_SIZE
WRITABLESYS
WRITESYSPARAMS
WSDEC
WSINC
WSMAX
WS_OPAO
XFMAXRATE

Cell Name

SGN$GLVMS7
SGN$GL_ VMS8
SGN$GL VMSDI
SGN$GL_ VMSD2
SGN$GL_ VMSD3
SGN$GL VMSD4
CLU$GW _VOTES
EXE$GL_ WINDOW _SYSTEM
SGN$GW _ WPRE_SIZE
SGN$GL_ WPTIE_SIZE
EXE$V _SYSWRTABL (EXE$GL_DEFFLAGS)
EXE$V _ WRITESYSPARAMS (EXE$GL_DYNAMILFLAGS)
SCH$GL_ WSDEC
SCH$GL WSINC
SGN$GLMAXWSCNT
EXE$V _OPAO (EXE$GL_ WSFLAGS)
IOC$GW _XFMXRATE

C.1.5 Boot Parameters Area ($$$$$Z_BOOPARAM)

The boot parameters area passes information from SYSBOOT to later stages
of system initialization. The global label MMG$.A_BOOPARAM, pefined
in module EXEC_LAYOUT, locates the beginning of the boot parameters
area. Global label B00$.A_BOOPARAM, defined in module BOOPARAM,
has the same value. These labels mark the beginning of nonpageable storage
reserved for boot parameters. The actual parameters are defined in module
BOOPARAM. Chapter 30 gives further information on its contents.

C.1.6 Entry Points for CPU-Dependent Routines ($$$500)

1218

Module SYSLOAVEC contains an entry point for each CPU-dependent rou­
tine. Each entry point is a JMP instruction with absolute addressing. The
destination of each JMP is changed to a routine in the CPU-dependent image
SYSLOAxxx .EXE, loaded into nonpaged pool during system initialization.
Chapter 29 gives further information.

There are two types of routines in this area. Those routines that are entered
through the SCB must have their entry points longword-aligned. Each of
these routines has two spare bytes to preserve longword alignment. Other
routines can have the six-byte JMP instructions packed together. The area
also contains several pointers to CPU-specific data cells.

This program section also has contributions from modules SCSVEC and
CLUSTRVEC. Module SCSVEC contains entry points for the loadable system
communication services (SCS) code (see Chapter 22). Module CLUSTRVEC
describes the entry points for the VAXcluster connection manager and dis­
tributed lock manager.

Global Symbol

EXE$ALLOAVEC >
EXE$MCHK
EXE$INT54

EXE$INT58
EXE$INT5C
EXE$INT60
UBA$UNEXINT

EXE$EXTRA1

EXE$EXTRA2

EXE$EXTRA3

EXE$EXTRA4

EXE$EXTRA5

ECC$REENABLE
EXE$INIBOOTADP
EXE$SAVE_CONTEXT
EXE$DUMPCPUREG
EXE$REGRESTOR
EXE$REGSAVE
EXE$INIPROCREG
EXE$TEST_CSR
IOC$PURGDATAP
INI$MPMADP
EXE$STARTUPADP
EXE$SHUTDWNADP
MA$RAVAIL
MA$REQUEST
MA$INITIAL
CON$STARTIO
CON$SET _LINE
CON$DS_SET
CON$XON
CON$XOFF
CON$STOP
CON$STOP2
CON$ABORT
CON$RESUME
CON$SET _MODEM
CON$NULL
CON$DISCONNECT
CON$INITIAL
CON$INITLINE
CON$1NTINP

C.1 The Base Image

Size Description of Routine

MODULE SYSLOAVEC

8 bytes Address of start of vectors

8 bytes

8 bytes
8 bytes
8 bytes
8 bytes

8 bytes

8 bytes

8 bytes

8 bytes

8 bytes

6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes

Machine check exception service routine
Interrupt service routine for system control block

jSCB) vector 5416
Interrupt service routine for SCB vector 5816
Interrupt service routine for SCB vector 5C16
Interrupt service routine for SCB vector 6016
Interrupt service routine for unexpected UNIBUS

interrupts
Extra jump vector; currently targeted to halt in

ERR SUB
Extra jump vector; currently targeted to halt in

ERR SUB
Extra jump vector; currently targeted to halt in

ERR SUB
Extra jump vector; currently targeted to halt in

ERRSUB
Extra jump vector; currently targeted to halt in

ERR SUB
Reenable memory error timers
Initialize boot device adapter
Save processor's context in BUGCHECK
Write CPU-specific registers in error log buffer
Restore CPU-specific registers on power recovery
Save CPU-specific registers at power failure
Initialize processor registers
Test UNIBUS console/status register for existence
Purge UNIBUS buffered data path
Initialize MA780 shared memory
Start up any adapters
Shut down any jall) adapters
MA780 shared memory resource available
MA780 shared memory request
MA780 shared memory initialization
Console start 1/0
Set console line
Console data set
Send XON to console
Send XOFF to console
Stop console output
Stop console output for 2 seconds
Abort console 1/0
Resume console output
Set console modem
Null routine
Console disconnect routine
Initialize console controller
Initialize console line
Console input interrupt

1219

Executive Data Areas

Global Symbol

CON$INTOUT
CON$SENDCONSCMD
SYSL$CLRSBIA

CON$0WNCTY
CON$RELEASECTY
CON$GETCHAR
CON$PUTCHAR
CON$1NIT _CTY
EXE$READ_ TODR
EXE$WRITE_ TODR
EXE$INIT _ TODR
INI$CONSOLE
EXE$INL TIMWAIT
EXE$READP _LOCAL

TODR
EXE$WRITEP _LOCAL

TODR
EXE$MOUNTVER
EXE$MNTVERSIO
EXE$MNTVERSHDOL
EXE$CLUTRANIO

EXE$UPDGNERNUM

EXE$MNTVER_GEN_
CRC

EXE$MNTVERSP 1
EXE$MNTVERSP2
EXE$GL_MVMSLBAS
SMP$INTPROC
SMP$INTALL
SMP$INTALLBIT
SMP$INTALLACQ
SMP$INTALLBIT _ACQ

SMP$SETUP _CPU

SMP$SETUP _SMP

CON$SAVE_CTY
CON$RESTORE_CTY
IOC$ALOALTMAP

IOC$ALOALTMAPN

IOC$ALOALTMAPSP
IOC$REQALTMAP

1220

Size Description of Routine

MODULE SYSLOAVEC

6 bytes Console output interrupt
6 bytes Send CPU-dependent command to console
6 bytes Clear synchronous backplane interconnect adapter

6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes

6 bytes

6 bytes
6 bytes
6 bytes
6 bytes

6 bytes

6 bytes

6 bytes
6 bytes
Longword
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes

6 bytes

6 bytes

6 bytes
6 bytes
6 bytes

6 bytes

6 bytes
6 bytes

error bits
Set up to talk directly to console
Restore normal console interface
Get a character from the console
Put a character out to the console
Initialization routine for the console
Read time-of-year clock
Write time-of-year clock
Initialize system time-of-year clock
Initialize console device data structures
Initialize TIMEDWAIT macro loop data cells
Read physical time-of-year clock

Write physical time-of-year clock

Mount verification main entry point
Mount verification start 1/0 request
Mount verification online shadow unit
Mount verification VAXcluster state transition

block 1/0
Mount verification update shadow set generation

number
Mount verification generate cyclical redundancy

checks for magtape devices
Mount verification spare transfer vector
Mount verification spare transfer vector
Mount verification message list base address
Interrupt specified CPU
Interrupt all CPUs
Interrupt all CPUs and set work bit
Acquire CPU mutex and interrupt all CPUs
Acquire CPU mutex, set work bit, and interrupt

all CPUs
Initialize symmetric multiprocessing environment

for an individual CPU
Initialize systemwide symmetric multiprocessing

context before any individual secondary
processor boots

Save console terminal context
Restore console terminal context
Allocate alternative map registers (unit control

block specified)
Allocate alternative map registers (argument

specified)
Allocate a specific set of alternative map registers
Request a set of alternative map registers

Global Symbol

IOC$LOADALTMAP
IOC$RELALTMAP
EXE$READ_LOCAL_

TODR
SMP$START _CPU
SMP$STOP _CPU
SMP$SHOW_CPU
SMP$HALT_CPU
SMP$CONTROLP _CPUS

SMP$INV ALID_SINGLE
SMP$VIRTCONS_SERVER
EXE$SNAPSHOT _BI
EXE$LOGMEM

EXE$ISSUE_ADP _STOP
CON$VCINP

EXE$EXTRA7

EXE$EXTRA8

EXE$EXTRA9

EXE$EXTRA10

EXE$MCHK_ERRCNT

EXE$FRAME_BLOX
EXE$LOAD_NOP

EXE$LOAD_KDISP \
EXE$LOAD_KCJF I
EXE$LOAD_KRUF
EXE$LOAD_KSPR1
EXE$LOAD_KSPR2

EXE$LOAD_EDISP
EXE$LOAD_ESPR1
EXE$LOAD_ESPR2

SCS$GQ_CONFIG
SCS$GQ_DIRECT

SCS$GQ_POLL

C.1 The Base Image

Size Description of Routine

MODULE SYSLOAVEC

6 bytes Load alternative map registers
6 bytes Release alternative map registers
6 bytes Read time-of-year clock

6 bytes
6 bytes
6 bytes
6 bytes
6 bytes

6 bytes
6 bytes
6 bytes
6 bytes

6 bytes
6 bytes

6 bytes

6 bytes

6 bytes

8 bytes

Longword

Longword
Byte

6 bytes

6 bytes
6 bytes
6 bytes
Byte
6 bytes
6 bytes
6 bytes
Byte

CPU-specific kernel mode code for $START/CPU
CPU-specific kernel mode code for $STOP/CPU
CPU-specific kernel mode code for $SHOW/CPU
CPU-specific code for completely halting a CPU
Return a bit mask of CPUs halted by explicit

console command
Invalidate translation buffer entry
Serve virtual console request from secondary CPU
Log V AXBI errors
Log memory control and status registers to error

log buffer
Issue a VAXBI stop to KRBTA adapters
Workstation keyboard driver entry point to OPAO

input routines
Extra jump vector; currently targeted to halt in

ERRSUB
Extra jump vector; currently targeted to halt in

ERR SUB
Extra jump vector; currently targeted to halt in

ERRSUB
Extra jump vector; currently targeted to halt in

ERR SUB
Address of error counters in machine check

routine
Address of local copies of machine check frames
RSB instruction (initial destination of JMP

instructions in vectors)
Reserved; currently targeted to EXE$LOAD_NOP

Reserved; currently targeted to EXE$LOAD_NOP
Reserved; currently targeted to EXE$LOAD_NOP
Reserved; currently targeted to EXE$LOAD_NOP
RSB instruction
Reserved; currently targeted to EXE$LOAD_NOP
Reserved; currently targeted to EXE$LOAD_NOP
Reserved; currently targeted to EXE$LOAD_NOP
RSB instruction

MODULE SCSVEC

Quadword
Quadword

Quadword

Listhead for system descriptor blocks
Listhead for directory of processes in V AXcluster

system
Listhead of system communication architecture

poller process blocks giving process names

1221

Executive Data Areas

Global Symbol

SCS$GLBDT

SCS$GLCDL

SCS$GLRDT
SCS$GL_MCLEN
SCS$GL_MCADR

SCS$GL_MSCP

SCS$GLMSCP _MV
SCS$GLMSCP _NEWDEV
SCS$GL_PDT
SCS$GA_DFLTMSK

SCS$GW _NEXTBIT
SCS$GA_EXISTS
SCS$ALLOAVEC}
SCS$ACCEPT
SCS$ALLOC_CDT
SCS$ALLOCRSPID
SCS$CONFIG_PTH
SCS$CONFIG_SYS
SCS$CONNECT
SCS$DEALLCDT
SCS$DEALLRSPID
SCS$DISCONNECT
SCS$ENTER
SCS$LISTEN
SCS$LOCLOOKUP
SCS$REMOVE
SCS$RESUMEWAITR
SCS$UNSTALLUCB
SCS$LKP _RDTCDRP

SCS$LKP _RDTWAIT
SCS$RECYLRSPID
SCS$FIND_RDTE

SCS$LKP _MSGWAIT

SCS$DIR_LOOKUP
SCS$NEW_SB
SCS$POLLPROC
SCS$POLL_MQDE
SCS$POLLMBX
SCS$CANCELMBX
SCS$SHUTDOWN

1222

Size Description of Routine

MODULE SCSVEC

Longword

Longword

Longword
Longword
Longword

Longword

Longword
Longword
Longword
Word

Word
Longword
6 bytes

6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes

6 bytes
6 bytes
6 bytes

6 bytes

6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes

Buffer descriptor table for system communication
services (SCSI block transmissions

Connection descriptor table pointing to list of
SCS connections

Response descriptor table
Reserved
Address of computer interconnect port microcode

in nonpaged pool
Address of mass storage control protocol (MSCPl

server
MSCP server mount verification routine
MSCP server new device handling
Listhead of port descriptor blocks
Mask of SCS system applications to enable when

new systems appear
Next bit available for assignment
Address of SCSLOA
Address of start of SCS vectors
Perform SCS accept
Allocate a connection descriptor table
Allocate a response ID
Configure with path to remote system
Configure with system ID
Perform SCS connect
Deallocate a connection descriptor table
Deallocate a response ID
Perform SCS disconnect
Insert an entry in SCS directory
Perform an SCS listen operation
Look up a path block
Remove an entry in SCS directory
Resume when controller request block is dequeued
Resume when unit control block is dequeued
Search a response descriptor table for a class driver

request packet (CDRPl
Search a response ID wait queue for a CDRP
Recycle a response ID
Locate and validate the response descriptor table

entry for a given response ID
Send credit wait queues for CDRP with given

connection descriptor table
Search for processes on remote node
Called when a system block is created or reused
Declare a process name to the poller
Enable/disable polling of a process
Declare a mailbox to receive poll notifications
Cancel notifications to a mailbox
Shut down all SCS virtual circuits

Global Symbol

CLU$GL_CLUB
CLU$GL_CLUSVEC
CLU$GW _MAXINDEX
clu_rsb

CLU$AL_LOAVEC }
CLS$AL_LOAVEC
CLU$GL_LO.A_ADDR
LCK$SND_CVTREQ
LCK$SND_LOCKREQ
LCK$SND_GRANTED
LCK$SND_DEQGR

:i,CK$SND_DEQCV

LCK$SND_DEQWT

LCK$SND_BLKING
LCK$SND_RMVDIR
LCK$SND_ TIMESTAMP _

RQST
LCK$SND_SRCHDLCK
LCK$SND_DLCKFND
LCK$SND_REDO-SRCH
LCK$CVT _ID_ TO_LKB
CNX$ALLOC_CDRP

CNX$ALLOC_CDRP _
ONLY

CNX$ALLOC_
WARMCDRP

CNX$ALLOC_
WARMCDRP _CSB

CNX$DEALL_
MSG_BUF _CSB

CNX$DEALL_
WARMCDRP _CSB

CNX$INIT _CDRP
CNX$SEND_MNY_MSGS
CNX$SEND_MSG
CNX$SEND_MSG_CSB
CNX$SEND_MSG_RESP
CNX$SEND_MSG_RSPID
CNX$BLOCK_XFER
CNX$BLOCK_XFEIURP
CNX$PARTNEILINI'L

CSB
CNX$BLOCILREAD
CNX$BLOCILREAD_IRP

C.1 The Base Image

Size Description of Routine

MODULE CLUSTRVEC

Longword Address of cluster block
Longword Address of cluster system vector
Word Maximum index+ I in cluster system vector
Byte Local RSB instruction used to make unloaded

entry a NOP
Longword Contains cluster code load address

6 bytes
6 bytes
6 bytes
6 bytes

6 bytes

6 bytes

6 bytes
6 bytes
6 bytes

6 bytes
6 bytes
6 bytes
6 bytes
6 bytes

6 bytes

6 bytes

6 bytes

6 bytes

6 bytes

6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes

6 bytes
6 bytes

Send a conversion request to remote system
Send a lock request to remote system
Send a lock granted message
Send a dequeue lock message to master system

(lock is in granted state)
Send a dequeue lock message to master system

(lock is in conversion wait state)
Send a dequeue lock message to master system

(lock is in wait state)
Send a blocking message
Send a remove directory entry message
Send a timestamp request

Send a deadlock search message
Send a deadlock found message
Send a redo deadlock search message
Convert a lock ID to lock block address
Allocate a class driver request packet (CDRP) and

convert cluster system ID
. Allocate a CDRP

Allocate a CDRP with response ID and message
buffer

Allocate a warm CDRP using cluster system
block (CSB)

Deallocate a message buffer using a CSB

Deallocate a warm CDRP using a CSB

Initialize a CDRP
Send acknowledged messages to all nodes
Send an acknowledged message
Send a message using a CSB
Send a message and recycle message buffer
Send a message with a response ID
Initiate a block transfer request
Initiate a block transfer request with an IRP
Initialize partner portion of a block transfer

Partner block read
Partner block read with an IRP

1223

Executive Data Areas

Global Symbol

CNX$BLOCK_ WRITE
CNX$BLOCK_ WRITE_IRP
CNX$PARTNER_FINISH
CNX$PARTNER_

RESPOND
CNX$ADJ_EXPT _VOTES
CNX$SHUTDOWN
CNX$POWER_FAIL
CNX$DISK_CHANGE
CNX$BUGCHECK_

CLUSTER
EXE$A11oc_csD
EXE$DEALLoc_csD

EXE$CSP _BRDCST
EXE$CSP _CALL

EXE$CSP _COMMAND
EXE$CSP _BRKTHRU
LKI$SND_STDREQ
LKI$SND_BLKING
LKI$SND_BLKBY
LKI$SND_LOCKS
CNX$CREATED_INCRNF
CWPS$ALLOCATE_SRV

CWPS$COPY_NODE_
INFO

CWPS$SSND_CREPRC_
RQST

CWPS$SSND_GETJPL
RQST

CWPS$SSND_PCNTRL_
RQST

CWPS$SSND_GETSYL
RQST

CWPS$SSND_GETDVL
RQST

1224

Size Description of Routine

MODULE CLUSTRVEC

6 bytes Partner block write
6 bytes Partner block write with an IRP
6 bytes Complete partner's end of a block transfer
6 bytes Send a block transfer completed response

6 bytes
6 bytes
6 bytes
6 bytes
6 bytes

6 bytes
6 bytes

6 bytes
6 bytes

6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes
6 bytes

6 bytes

6 bytes

6 bytes

6 bytes

6 bytes

6 bytes

Adjust expected votes
Request a cluster shutdown
Powerfail recovery entry
Quorum disk connection state change
Bugcheck local cluster

Allocate and initialize a cluster server data block
Deallocate cluster server data block or mark it for

deletion
Send a cluster server process request to all nodes
Send a request message to local or remote cluster

server process
Receive command from cluster server process
Send a breakthrough message throughout cluster
Send a standard information request message
Send a request for list of blocking locks
Send a request for list of blocked locks
Send a request for list of all locks
Incarnation file creation
Allocate a clusterwide process service (CWPS)

block
Obtain information about all current VAXcluster

nodes
Send CWPS $CREPRC request to partner node

Send CWPS $GETJPI request to partner node

Send CWPS process control request to partner
node

Send CWPS $GETSYI request to partner node

Send CWPS $GETDVI request to partner node

C.2 Dynamically Allocated Executive Data

C.2 DYNAMICALLY ALLOCATED EXECUTIVE DATA

Many of the data structures and areas of system address space are not part
of the base image but instead are constructed when the system is initialized.
The sizes of some of these areas depend on the values of SYSGEN parameters;
those of others, on the particular physical configuration.

C.2.1 Restart Parameter Block

The restart parameter block (RPB) is filled in at initialization time with
bootstrap parameters. The power failure interrupt service routine loads the
volatile machine state into the RPB before the system halts. During power
recovery, the console subsystem examines the RPB to determine whether
memory contents survived the power outage. The use of the RPB is discussed
in Chapters 30 and 33.

C.2.2 Page Frame Number Database

The page frame number (PFN) database consists of several arrays, the con­
tents of which describe the state of pages of physical memory. The PFN
arrays are described in Chapter 14. Their use during page fault resolution is
discussed in Chapter 16. PFN array manipulation during swapper operations
is discussed in Chapter 18.

C.2.3 Paged Pool

Paged pool contains systemwide dynamically allocated structures that do
not have to be permanently resident. Typical structures allocated from paged
pool are listed in Chapter 19.

C.2.4 Nonpaged Pool

Nonpaged pool contains dynamically allocated structures and loaded code
modules that must not page. There are several nonpaged pool areas:

• A variable-length list area that can accommodate blocks of any size
• Three lookaside lists containing preformed fixed-length blocks, which can

be quickly allocated or deallocated

The organization and uses of the areas of nonpaged pool are described in
Chapter 19.

C.2.5 Interrupt Stack

The interrupt stack is used to service all hardware interrupts and all software
interrupts except asynchronous system trap (AST) delivery. Each CPU has
its own interrupt stack, located within the CPU's per-CPU data area.

1225

Executive Data Areas

C.2.6 System Control Block

The system control block (SCB) contains vectors through which the proces­
sor dispatches exceptions and interrupts to the appropriate service routines.
SCB size varies with processor type and configuration. All processors have
at least one page, which is defined by the VAX architecture. EXE$G1-SCB
contains the starting virtual address of the SCB. Chapter 2 contains infor­
mation on the architecturally defined page, and Chapter 3, information on
the use of any additional pages.

C.2.7 Balance Set Slot Area

The balance set slot area is an array of process headers (PHDsJ. Each resident
process has its PHD in one of the balance set slots. Balance set slots are
described in Chapter 14. Their use by the swapper is discussed in Chapter 18.

C.2.8 System Header

The system header is a system analog to PHDs. It is used in the paging of
system code. The major structures within the system header are the system
working set list and the system section table, which describes mapped global
sections.

C.2.9 System Page Table

C.2.10

The system page table (SPT) maps system space. It is sized and initialized
by SYSBOOT to reflect system needs and SYSGEN parameters. It is altered
during system operation to reflect changes in system space caused by the
following events, among others:

• Loading of executive images
• Process creation, outswap, and inswap
• Use of paged pool
• System space paging

Global Page Table

The global page table is a pseudo extension of the SPT that allows global
page table entries (GPTEs) to be accessed with system virtual page numbers
(SVPNs). The global page table is alteted when global sections are created
and deleted. In addition, GPTEs can change as a result of page faults. The
global page table is described in Chapter 14.

C.3 PROCESS-SPECIFIC EXECUTIVE DATA

1226

Some process-specific data is stored in the PHD. That data is accessible
(subject to synchronization considerations) whenever the process is resident.
Most other process-specific data is kept in Pl space. Pl space is only acces­
sible when the process is current. The executive queues an AST to execute

C.3 Process-Specific Executive Data

in process context when it is necessary to acquire or modify such data from
a process that is not current.

This section lists the contents of Pl space.

C.3.1 Pl Pointer Page

The Pl pointer page is a permanent member of the process working set and
is defined in executive module SHELL.

Global Symbol
CTL$GW _NMIOCH
CTL$GW _CHINDX
CTL$GLLNMHASH
CTL$GLLNMDIRECT

CTL$ALSTACK

CTL$GQ_LNMTBL-
CACHE

CTL$GLCMSUPR
CTL$GLCMUSER
CTL$GLCMHANDLR
CTL$AQ_EXCVEC

CTL$GL THEXEC
CTL$GL THSUPR
CTL$GQ_COMMON

CTL$GLGETMSG
CTL$ALSTACKLIM
CTL$GLCTLBASVA
CTL$GLIMGHDRBF
CTL$GLIMGLSTPTR

CTL$GLPHD

CTL$GQ_ALLOCREG
CTL$GQ_MOUNTLST

CTL$T _USERNAME

CTL$T _ACCOUNT

CTL$GQ_LOGIN
CTL$GLFINALSTS
CTL$GL WSPEAK

Size

Word
Word
Longword
Longword
Longword

4 longwords
• Longword
• Longword
• Longword
• Longword
2 longwords

Longword
Longword
Longword
8 longwords

Longword
Longword
Quadword

Longword
4 longwords
Longword
Longword
Longword

- Longword

2 longwords
Quadword

12 bytes

8 bytes

Quadword
Longword
Longword

Description of Data

Number of 1/0 channels
Maximum channel index
Process logical name hash table pointer
Process logical name directory pointer
Maximum extent (low-address limit) of kernel

stack
Array of stack pointer values
Initial value of kernel stack pointer
Initial value of executive stack pointer
Initial value of supervisor stack pointer
Initial value of user stack pointer
Listhead for logical name translation cache

Address of change mode to supervisor handler
Address of change mode to user handler
Address of compatibility mode handler
Addresses of primary and secondary exception

handlers for each of the four access modes
Executive mode exit handler listhead
Supervisor mode exit handler listhead
Descriptor (size and address) of per-process

common area
Address of per-process message dispatcher
Lowest stack value for each access mode
Low-address end of permanent part of Pl space
Address of image header buffer
Address of image control block list (for

debugger)
Address of Pl window that double-maps the

process header
Address of process allocation region and size
Listhead for the process-private mounted

volume list
User name for process (blank-filled ASCII

string)
Account name for process (blank-filled ASCII

string)
System time at process creation
Exit status of latest image to execute
Peak working set size for process

1227

Executive Data Areas

Global Symbol

CTL$GL_ VIRTPEAK
CTL$GL_ VOLUMES
CTL$GQ_ISTART
CTL$GL_ICPUTIM
CTL$GL_IFAULTS
CTL$GL_IFAULTIO
CTL$GL_IWSPEAK
CTL$GL_IPAGEFL
CTL$GL_IDIOCNT
CTL$GL_IBIOCNT
CTL$GL_IVOLUMES
CTL$T _NODEADDR
CTL$T _NQDENAME
CTL$T _REMOTEID

CTL$GQ_PROCPRIV
CTL$GL_USRCHMK

CTL$GL_USRCHME

CTL$GL_POWERAST
CTL$GB_PWRMODE
CTL$GB_SSFILTER
CTL$GB_REENABLE_

ASTS

CTL$AL_FINALEXC

CTL$GL_CCBBASE
CTL$GQ_DBGAREA

CTL$GL_RMSBASE
CTL$GL_PPMSG
CTL$GB_MSGMASK
CTL$GB_DEFLANG
CTL$GW _PPMSGCHN
CTL$GL_USRUNDWN
CTL$GL_PCB
CTL$GL_RUF
CTL$GL_SITESPEC
CTL$GL_KNOWNFIL
CTL$AL_IPASTVEC
CTL$GL_CMCNTX
CTL$GL_IAFLNKPTR

CTL$GL_Fl lBXQP
CTL$GQ_POALLOC

CTL$GL_PRCALLCNT

1228

Size

Longword
Longword
Quadword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
Longword
7 bytes
7 bytes
17 bytes
Byte
Quadword
Longword

Longword

Longword
Byte
Byte
Byte

Byte
4 longwords

Longword
Quadword

Longword
2 longwords
Byte
Byte
Word
Longword
Longword
Longword
Longword
Longword
8 longwords
Longword
Longword

Longword
Quadword

Longword

Description of Data

Peak page file used
Number of mounted volumes
Image activation time
Initial image CPU time
Initial image page fault count
Initial image page fault 1/0 count
Image working set peak
Image page file peak usage
Initial image direct 1/0 count
Initial image buffered 1/0 count
Initial image volume' mount count
Remote node address
Remote node name
Remote node ID
Spare for alignment
Permanent process privilege mask
Address of per-process change mode to kernel

dispatcher
Address of per-process change mode to

executive dispatcher
Address of power recovery AST for process
Access mode for power recovery AST
System services inhibit filter mask
Low bit set by SCH$ASTDEL to notify user

mode code that it must request $SETAST to
reenable user mode ASTs

Spare for alignment
Address of last chance exception handlers for

each of the four access modes
Address of base of 1/0 channel area
Descriptor (size and address) of debug symbol

table
Address of base of RMS image
Address of process-permanent message section
Default message display flags
Default message language
Channel to process-permanent message section
Per-process vector to user rundown service
Address of process control block
Address of recovery unit process block
Site-specific per-process cell
Process known file list pointer
Reserved
Address of the AME context page
Address of image activator furup list (used by

the debugger)
Address of Files-11 XQP data area
Header of PO extension to process allocation

region
Number of bytes of process allocation region

usable by image requests

Global Symbol

CTL$GL_RDIPTR
CTL$GL_LNMDIRSEQ

CTL$GQ_HELPFLAGS
CTL$GQ_ TERMCHAR
CTL$GL_KRPFL
CTL$GL_KRPBL
CTL$GL_CREPRCFLAGS
CTL$GL_ THCOUNT

CTL$GQ_CWPS_Q 1
CTL$GQ_CWPS_Q2
CTL$GL_CWPS_Ll
CTL$GL_CWPS_L2
CTL$GL_CWPS_L3
CTL$G1-CWPS_L4

CTL$GL_PRCPRM_
KDATA2

CTL$GL_USRUNDWN_
EXEC

Size

Longword
Longword

Quadword
Quadword
Quadword

Longword
3 longwords

Quadword
Quadword
Longword
Longword
Longword
Longword
Quadword
Longword

Longword

C.3.2 Other Pl Space Data Areas

C.3 Process-Specific Executive Data

Description of Data

Address of rights database identifier
Sequence number for cache of process logical

name table translations
Help flags
Reserved
Listhead for kernel request packet lookaside

list
$CREPRC flags used to create this process
Number of exit handlers for executive,

supervisor, and user modes
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Spare for alignment
Address of kernel mode data extension area

Address of executive mode user rundown
service

The layout of Pl space is described in Appendix F. Table F.6 lists the global
labels that delimit each area in Pl space. The remainder of this section lists
data locations in specific Pl areas that are defined in module SHELL. The
areas are presented in order of decreasing Pl virtual addresses. That is, the
command language interpreter (CLI) data pages, presented first, occupy the
highest Pl address range. The RMS data area, listed last, occupies the lowest
Pl address range of the areas presented here.

C.3.2.1 Data Pages for Command Language Interpreter. Module SHELL sets aside an
area for the generic CLI data pages.

Global Symbol

CTL$AL_CLICALBK

CTL$AG_CLIMAGE
CTL$G1-UAF _FLAGS
CTL$GT _CLINAME
CTL$GT _ TABLENAME

CTL$GT _SPAWNCLI

CTL$GT_SPAWNTABLE

CTL$AG_CLIDATA

Size

2 longwords

2 longwords
Longword
32 bytes
256 bytes

32 bytes

256 bytes

Description of Data

Call back vector for command
language interpreter (CLI)

Virtual address range of CLI
Flags from authorization record
CLI name (file name only)
CLI table name (full file

specification)
Spawn CLI name (file name

only)
Spawn CLI table name (full file

specification)
Rest of CLI data area

1229

Executive Data Areas

C.3.2.2

C.3.2.3

C.3.2.4

1230

Process Allocation Region. The process allocation area is a per-process pool
area constructed exactly like paged and nonpaged dynamic memory. Chap­
ter 19 gives further information.

Global Symbol

CTL$GQ_ALLOCREG
Size

Longword

Longword

Description of Data

Process allocation region
pointer

Initial size of region

Compatibility Mode Context Page. Another Pl data area for which module

SHELL defines symbols is the page used by the compatibility mode exception
service routine.

Global Symbol

CTL$AL_CMCNTX
Size

10 longwords

• 7 longwords
• 1 longword

• 2 longwords

Rest of page

Description of Data

General register contents
stored by exception service
routine

Saved RO through R6
Saved compatibility mode

exception code
Saved exception program

counter and processor status
longword

Used by compatibility mode
emulator

RMS Data Area. This area contains the RMS context that exists for the life
of the process. It includes impure areas to describe process-permanent and
image 1/0 files.

Global Symbol Size Description of Data

PIO$GLFMLH 2 longwords Free memory listhead for
process 1/0 segment

PIO$GL_IIOFSPLH 2 longwords Free memory listhead for
image 1/0 segment

PIO$GW _STATUS Word RMS overall status
PIO$GT _ENDSTR 16 bytes End-of-data string
PIO$GW _DFPROT Word Default file protection
PIO$GB_DFMBC Byte Default multiblock count
PIO$GB_DFMBFSDK Byte Default multibuffer count for

sequential disk 1/0
Pl0$GB_DFMBFSMT Byte Default multibuffer count for

magnetic tape 1/0
PIO$GB_DFMBFSUR Byte Default multibuffer count for

unit record devices
PIO$GB_DFMBFREL Byte Default multibuffer count for

relative files

Global Symbol

PIO$GB_DFMBFIDX

PIO$GB_DFMBFHSH
PIO$GB_DFNBC
PIO$GB_RMSPROLOG

PIO$GW _RMSEXTEND

PIO$GB_JNL_STALL_
CNT

PIO$GL_DIRCACHE
PIO$GLDIRCFRLH

PIO$GL_RUB_FLINK
PIO$GL_RUB_BLINK
PIO$GL_NXTIRBSEQ

PIO$GW _PIOIMPA

PIO$GW_IIOIMPA

PIO$ALRMSEXH
PIO$GQ_IIODEFAULT
PIO$GLLNKCSHADR

PIO$GL_RU_HANDLER_
ID

PIO$GL_RU_FAILURE_
COUNT

PIO$GL_RU_ WAIT _Q_
FLINK

PIO$GL_RU_ WAIT _Q_
BLINK

PIO$GQ_NTRUB_LH
PIO$GL_NTO_RM_ID
PIO$GL_RESERVEDO
PIO$GQ_RUF _ TSB_LH
PIO$GL_RESERVED 1
PIO$GL_RESERVED2
PIO$GL_RESERVED3
PIO$GL_RESERVED4
PIO$GL_RESERVEDS
PIO$GL_RESERVED6
PIO$GT _DDSTRING

C.3 Process-Specific Executive Data

Size
Byte

Byte
Byte
Byte

Word

Byte

2 longwords
Longword

2 longwords

Longword

9 longwords

4 bytes
41 longwords

4 longwords
Quadword
Longword

Longword

Longword

2 longwords

Quadword
Longword
Longword
Quadword
Longword
Longword
Longword
Longword
Longword
Longword
256 bytes

Description of Data

Default multibuffer count for
indexed files

Reserved
Default network block count
Default structure level for

indexed files
Default extend quantity for

RMS files
Count of stalled journal

threads
Directory cache listhead
Free list for directory cache

nodes
RMS Recovery Unit Block

listhead
Next sequence number for

IRB$L_IDENT
Impure area descriptor for

process 1/0 segment
Spare for alignment
Impure area descriptor for

image I/O segment
RMS exit handler control block
Default image 1/0 area
Logical link cache entry

listhead
Default recovery unit handler

ID
Recovery unit failure count

Recovery unit wait queue
listhead

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Default directory string

1231

D Naming Conventions

The conventions described in this appendix were adopted to aid implemen­
tors in producing meaningful public names. Public names are names that are
global (known to the linker) or that appear in parameter or macro definition
files. Public names follow these conventions for the following reasons:

• Using reserved names ensures that customer-written software will not
be invalidated by subsequent releases of Digital products that add new
symbols .

• Using definite patterns for different uses tells someone reading the source
code what type of object is being referenced. For example, the form of a
macro name is different from that of an offset, which is different from that
of a status code.

• Using length codes within a pattern associates the size of an object with
its name, increasing the likelihood that reference to this object will use
the correct instructions .

• Using a facility code in symbol definitions gives the reader an indication
of where the symbol is defined. Separate groups of implementors choose
facility code names that will not conflict with one another.

To fully conform with these standards, local synonyms should never be
defined for public symbols. The full public symbol should be used in every
reference to give maximum clarity to the reader.

D.1 PUBLIC SYMBOL PATTERNS

1232

All Digital symbols contain a dollar sign. Thus, customers and applications
developers are strongly advised to use underscores instead of dollar signs to
avoid future conflicts.

Public symbols should be constructed to convey as much information as
possible about the entities they name. Frequently, private names follow a
similar convention. The private name convention is then the same as the
public one, with the underscore replacing the dollar sign in symbol names.
Private names are used both within a module and globally between modules
of a facility that is never in a library. All names that might ever be bound
into a user's program must follow the rules for public names. In the case of
internal names, a double dollar sign convention can be used, as shown in
item 4 in the following list of formats:

1. System service and Record Management Services (RMS) VAX MACRO
names are of the form

$service-name

D.1 Public Symbol Patterns

In a system service VAX MACRO name, a trailing _Sor _G distinguishes
the stack form from the separate argument list form. Details about the
names of system service macros can be found in the Introduction to VMS
System Services.

These names appear in the system macro library STARLET.MLB and
represent a call to one of the VMS system services or RMS services. The
following examples show this form of symbol name:

$ASCEFC_S
$CLOSE
$TRNLNM_G

Associate common event flag cluster
Close a file
Translate logical name

2. Facility-specific public macro names are of the form

$facility _macro-name

The executive does not use any symbol names of this form.
3. System macros using local symbols or macros always use names of the

form

$facility$macro-name

This is the form to be used both for symbols generated by a macro and
included in calls to it, and for internal macros that are not documented.
The executive does not use any symbol names of this form.

4. Global entry point names are of the form

facility$entry-name

The following examples show this form of symbol name:

EXE$ALOPAGED
IOC$WFIKPCH
MMG$PAGEFAOLT

Allocate paged dynamic memory
Wait for interrupt and keep channel
Page fault exception handler

Global entry point names that are intended for use only within a set of
related procedures but not by any calling programs outside the set are of
the form

facility$$entry-name

The executive contains few symbol names of this form. However, the
Run-Time Library contains several examples of symbol names that fol­
low this convention, for example:

BAS$$NUM.JNIT
FOR$$SIGNAL_STO

OTS$$GET _LUN

Initialize the BASIC NUM function
Signal a FORTRAN error and call

LIB$STOP
Get logical unit number

1233

Naming Conventions

1234

5. Global entry point names that have nonstandard invocations (JSB entry
point names) are of the following form, where _Rn indicates that RO
through Rn are not preserved by the routine:

facility$entry-name_Rn

Note that the invoker of such an entry point must include at least
registers R2 through Rn in its own entry mask so that a stack unwind
will restore all registers properly.

The executive does not use this convention for its JSB entry points, but
the Run-Time Library contains several examples of its use, for example:

COB$CVTFP _R9
MTH$SIN_R4
STR$COPY _DX_R8

Convert floating to packed
Single precision sine function
JSB entry to general string copying routine

6. Status codes and condition values are of the form

facility$_status

The following examples show this form of symbol name:

RMS$_FNF
SS$_ILLEFC
SS$_WASCLR

File not found
Illegal event flag cluster
Flag was previously clear

7. Global variable names are of the form

facility$Gt _variable-name

The letter G indicates a global variable. The letter t represents the type
of variable (see Section D.2). The following examples show this form of
symbol name:

CTL$GQ_PROCPRIV
EXE$GL_NONPAGED
SCH$GL_FREECNT

Process privilege mask
First free block in nonpaged pool
Number of pages on the free page list

8. Addressable global arrays use the letter A (instead of the letter G) and
are of the form

facility$At_array-name

The letter A indicates a global array. The letter t indicates the type of
array element (see Section D.2). In some uses, the symbol's value is the
address of the beginning of the array; in other uses, the symbol is the
name of a variable that contains the address of the beginning of the array.
The following examples show both uses of this form of symbol name:

CTL$AQ_EXCVEC

CTL$AL_STACK
PFN$AX_FLINK

EXE$AL_ERLBUFADR

D.1 Public Symbol Patterns

Array of primary and secondary exception
vectors

Array of stack limits
Address of array of forward links for page

frame number lists
Address of array of error log allocation

buffers

9. The letter A, along with the letter R, indicates a pointer to a structure.
This use, new with VMS Version 5, describes a vectored universal symbol
in the base image that contains the address of a structure in a loadable
executive image. Chapter 29 describes the modular organization of the
VMS executive in detail. The following examples show this form of
symbol name:

EXE$AR_SYSTEM_
PRIMITIVES_OATA

SMP$AR_SPNLKVEC
SYS$AR_JOBCTLMB

Address of data related to nonpaged pool
allocation

Address of table of spinlock control blocks
Address of job controller's mailbox unit

control block

10. Public structure definition macro names are of the form

$facility _structureDEF

Invoking this macro defines all symbols of the form structure$xxxxxx.
Most of the public structure definitions used by the VMS operating

system do not include the string "facility_" in the macros that define
structure offsets. Rather, macros of the following form are used to define
structure$xxxxxx symbols:

$structureDEF

The following examples show the $structureDEF form of the macro:

$ACBDEF

$PCBDEF
$PHDDEF

Offsets into asynchronous system trap
(AST) control block

Offsets into software process control block
Offsets into process header

Many of the macros of this form are contained in the macro libraries
LIB.MLB or STARLET.MLB. These macros are initially defined in a
language-independent structure definition language (see Appendix B).

11. VAX MACRO public structure offset names are of the form

structure$ t _field-name

The letter t indicates the data type of the field (see Section 0.2). The
value of the public symbol is the byte offset to the start of the data

1235

Naming Conventions

1236

element in the structure. The following examples show this form of
symbol name:

CEB$1-EFC
GSD$W_GSTX

PCB$B_PRI

Event flag cluster (in common event block)
Global section table index (in global section

descriptor)
Current process priority (in software

process control block)

12. VAX MACRO public structure bit field offsets and single bit names are
of the form

structure$V _field-name

The value of the public symbol is the bit offset from the start of the
field that contains the data, not from the start of the control block. The
following examples show this form of symbol name:

ACB$V _QUOTA
PSL$V _CURMOD
UCB$V _CANCEL

Charge AST to process AST quota
Current access mode
Cancel 1/0 on this unit

13. VAX MACRO public structure bit field size names are of the form

structure$S_field-name

The value of the public symbol is the number of bits in the field. The
following examples show this form of symbol name:

ACB$S_MODE
PSL$S_CURMOD
PTE$S_PROT

Access mode of requestor (2 bits)
Current access mode (2 bits)
Memory protection on page (4 bits)

14. For BLISS, the functions of the symbols in the previous three items are
combined into a single name used to reference an arbitrary datum. Names
are of the following form, where x is the same as t for standard-sized data
(B, W, L, and Q) and x stands for V for arbitrary and bit fields:

structure$x _field-name

The macro includes the offset, position, size, and sign extension suitable
for use in a BLISS field selector. Most typically, this name is defined by
the following BLISS statement:

MACRO
structure$V_field-name=

structure$t_field-name,
structure$V_field-name,

structure$S_field-name,
(sign extension) X;

!VAX MACRO V
! bit field definition

D.1 Public Symbol Patterns

15. Public structure mask names are of the form

structure$M_field-name

The value of the public symbol is a mask with bits set for each bit in the
field. This mask is not right-justified. Rather, it has structure$V _field­
name zero bits on the right. The following examples show this form of
symbol name:

PCB$M_RES
PSL$M_CURMOD
PTE$M_PROT

Bit set to indicate process residency
Current access mode
Memory protection on page

16. Public structure constant names are of the form

structure$K_constant-name

The following examples show this form of symbol name:

PCB$K_LENGTH

SRM$K_FLT _OVF _F
STS$K_SEVERE

Length (in bytes) of software process control
block

Code for floating overflow fault
Fatal error code

For historical reasons, many of the constants used by the executive have
the letter C instead of K to indicate that the object data type is a constant.
Examples of this form of symbol name are

DYN$C_PCB

EXE$C_CMSTKSZ

PTE$C_URKW

Structure type is software process control
block

Size of stack space added by change mode
handler

Protection code of user read, kernel write

17. PSECT names are of the form

facility$mnemonic

When these names are put into,a library, they have the form

_facility$mnemonic

The following examples show symbols of the form facility$mnemonic:

COPY$COPY _FILE
DCL$ZCODE

DBG$CODE

File copying main routine program section
Program section that contains most code

for the Digital command language
interpreter

Program section containing VAX debugger
routines

1237

Naming Conventions

This convention is not adhered to as strictly as the other naming con­
ventions because PSECT names control the way that the linker allocates
virtual address space. Names are often chosen to affect the relative loca­
tions of routines and the data they reference.

Some sample PSECT names from the Run-Time Library show exam­
ples of the form _facility$mnemonic:

_LIB$CODE
_MTH$DATA
_OTS$CODE

General library (read-only) code section
Data section in mathematics library
Code portion of language-independent

support library

The VMS base image, SYS.EXE, does not use this convention in its
PSECT names. Rather, it uses names that cause the desired sections to be
placed in a particular order. The following examples show PSECT names
that are used in the base image:

$$$$$000_SYSTEM.
SERVICE_ VECTORS

$$$$$NONPAGED_
CODE

_Z_SYS$END

The first program section in the base image

Program section containing transfer vectors
to loadable executive images

Last program section

D.2 OBJECT DATA TYPES

Table D.l shows some of the letters used to indicate data types or reserved
for various other purposes. N, P, and T strings are typically variable-length.
In structures or 1/0 records, they frequently contain a byte-sized digit or
character count preceding the string. If so, the location or offset is to the
count. Counted strings cannot be passed in procedure calls. Instead, a string
descriptor must be generated.

D.3 FACILITY PREFIX TABLE

1238

Table D.2 lists some of the facility prefixes used by Digital-supplied software.
This list is not inclusive and is intended to show examples of several facility
prefixes. Each facility name has a unique facility code.

Note that bit (27), the customer facility bit, is clear in all the facility codes
listed here. Customets are free to use any of the facility codes listed here,
provided that they set bit (27). The default action of the message compiler
is to set this bit.

The location of the facility code within a status code and the meaning of
the other fields in the status code are described in the VMS Utility Routines
Manual.

Individual products such as compilers also have unique facility codes
formed from the product name.

D.3 Facility Prefix Table

Table D. l Letters and the Data Types They Indicate

Letter

A
B
c
D
E
F
G
H
I

J
K
L
M
N
0
p

Q
R
s
T
u
v

w
x
y

z

Data Type or Use

Address
Byte integer
Character 1

Double precision floating
Reserved to Digital
Single precision floating
G_floating-point values
H_floating-point values
Reserved for integer extensions
Reserved to customers for escape to other codes
Constant
Longword integer
Field mask
Numeric string (all byte forms)
Reserved to Digital as an escape to other codes
Packed string
Quadword integer
Reserved for records (structure)
Field size
Text (character) string
Smallest unit of addressable storage
Field position (VAX MACRO)
Field reference (BLISS)
Word integer
Context-dependent (generic)
Context-dependent (generic)
Unspecified or nonstandard

1 In many of the symbols used by VMS, C is used as a
synonym for K. Although K is the preferred indicator for
constants, many constants used by VMS are indicated by a
C in their name. Some constants, such as lengths of data
structures, have both a C form and a K form.

Structure name prefixes are typically local to a facility. Refer to the in­
dividual facility documentation for its structure name prefixes. Individual
facility structure names do not cause problems, because these names are not
global and are therefore not known to the linker. They become known at
assembly or compile time only by explicit invocation of the macro defining
the facility structure.

For example, the macro $FORDEF defines all the status codes that can be
returned from the VAX FORTRAN support library. The facility code of 24
is included in the upper 16 bits of each of the status codes defined with this
macro.

1239

Naming Conventions

Table D.2 Facility Names and Their Prefixes

Condition
Prefix Description (27:16)

EXECUTIVE AND SYSTEM PROCESSES

SS System service status codes 0
CLI Command language interpreters 3
JBC Job controller 4
OPC Operator communication 5
ERF Error logger format process 8

RUN-TIME LIBRARY COMPONENTS

SMG Screen management routines 18
LIB General-Purpose Library 21
MTH Mathematics Library 22
OTS Language-independent object time system 23
FOR VAX FORTRAN Run-Time Library 24
SORT VAX SORT 28
STR String manipulation procedures 36

UTILITIES AND COMPILERS

DBG Symbolic debugger 2
LIN VMS Linker 100
DIF File Differences Utility 108
PAT VAX Image File Patch Utility 109
LAT Local area terminal 374

Digital provides a registration service for customer facility names. For

1240

information on this service, contact

Digital Equipment Corporation
VMS Product Registrar-ZK02-1/N20
110 Spit Brook Road
Nashua, New Hampshire 03062-2698

E

E.1

E.2

Data Structure Definitions

This book has described the VMS operating system in terms of the data
structures used by various components of the executive. This appendix sum­
marizes those data structures.

LOCATION OF DATA STRUCTURE DEFINITIONS

The data structures used by VMS are defined in a language called structure
definition language (SDL), which is briefly described in Appendix B. Two sets
of four files each contain most SDL definitions.

Four files contain most structure and constant definitions used internally
by the VMS executive. They have names of the form [SYS]SYSDEFxx .SDL,
where xx represents the letters AE, FL, MP, or QZ. The two letters indicate
the range of initial letters of all the data structures contained in that file. The
VAX MACRO definitions based on these files are stored in the file LIB.MLB.
The BLISS-32 definitions based on these files are stored in the file LIB.REQ.
Many components of VMS are built with the definitions in these files. They
are also available to users for special applications such as user-written device
drivers and system services.

Four files named [VMSLIB]STARDEFxx.SDL contain all structure and con­
stant definitions available for general applications, such as system service
calls. Again, xx represents the letters AE, FL, MP, or QZ. The defini­
tions based on these files are stored in the files STARLET.MLB and STAR­
LET.REQ.

The distinction between the files in SYSDEFxx .SDL and STARDEFxx .SDL
is that a structure or constant defined in STARDEF is considered an external
interface and usually does not change from release to release. A, structure
or constant defined in SYSDEF is considered an internal interface and is
subject to change. Consequently, VAX MACRO programs that use LIB.MLB
or BLISS-32 programs that use LIB.REQ (or LIB.L32) must be reassembled
and relinked with each major release of the VMS operating system.

OVERVIEW

Table E.1 lists the data structures and constants summarized in this appen­
dix. The majority of them are defined in the SYSDEFxx modules. The fol­
lowing classes of structures are in the table:

• Data structures used by memory management, the scheduler, and other
components of the system image. At least one figure or table in this book
describes each of these structures.

1241

Data Structure Definitions

E.3

Table E.1 Summary of Data Structures in
Appendix E

ACB
CPU
JIB
KFRH
LNMHSH
ORB
RPB

SYSTEMWIDE DATA STRUCTURES

ACL' ARB
FKB GSD
KFD KFE
LKB
LNMTH
PCB
RSB

LNMB
LNMX
PHD
SPL

CEB
ISD
KFPB
LNMC
MTX
PQB
TQE

STRUCTURES USED BY THE 1/0 AND FILE SUBSYSTEMS

ADP BRK CCB CDDB
CDRP CRB DDB DDT
DPT FCB IDB IRP
TAST UCB WCB

SYMBOLIC CONSTANTS

BTD CA DYN IOxxx
IPL NDT PR SPL

1 This structure is defined in module STARDEFxx.

• Data structures used by the 1/0 and file subsystems.
• Constants such as data structure types, interrupt priority levels (IPLs), and

processor register definitions.

EXECUTIVE DATA STRUCTURES

This section contains a brief summary of each of the data structures de­
scribed in this book. Three data structures, the software process control
block (PCB), the process header (PHD), and the job information block (JIB),
are partly described in several places throughout the book. They are illus­
trated here in their entirety, with references to other partial descriptions.

E.3.1 ACB-Asynchronous System Trap (AST) Control Block

1242

Purpose
Usual location
Allocated from
Reference
Special notes

Describes a pending AST for a process.
AST queue with listhead in software PCB.
Nonpaged pool.
Figure 7.1.
ACBs are usually a part of a larger structure, such as

an 1/0 request packet (IRP) or timer queue entry
(TQE).

E.3 Executive Data Structures

FLINK

BLINK

(reserved) J TYPE l SIZE

LIST

Figure E.1
Layout of an Access Control List

E.3.2 ACL-Access Control List

Purpose

Usual location

Allocated from
Reference
Special notes

List of entries that grant or deny access to a particular
system resource.

ACL queue with listhead in resource's object rights
block (ORB$1-ACLFL).

Paged pool.
Figure E.l.
An ACL contains access control entries (ACEs)

beginning at offset ACL$1-LIST.

E.3.3 ADP-Adapter Control Block

Purpose

Location
Allocated from
Reference

Defines characteristics and current state of an 1/0
adapter.

Pointed to by CRB (CRB$L_INTD + VEC$L_ADP).
N onpaged pool.
Figure E.2.

E.3.4 ARB-Access Rights Block

The ARB is currently a part of the software PCB. The ARB pointer (PCB$L_
ARB) points to this overlaid data structure. Figure E.14 shows an ARB within
a software PCB. Program references that use the ARB pointer in the software
PCB to locate the ARB or any fields within the ARB (such as the privilege
mask) will continue to work without modification should the ARB become
an independent data structure in a future release of the VMS operating
system.

Purpose
Location
References

Defines process access rights and privileges.
Currently a part of the software PCB.
Table 26.2, Figures E.3, E.14.

E.3.5 BRK-Breakthrough Message Descriptor Block

Purpose Used to send asynchronous messages to one or more
terminals.

1243

Data Structtire Definitions

CSR

LINK I-

NUMBER l TYPE SIZE

ADPTYPE lR

VECTOR

DPQFL

DPQBL

AVECTOR

Bl_IDR

(reserved)

Bl_ VECTOR Bl_FLAGS

SCB_PAGE

Bl MASTER

ADDR_BITS J (reserved) ADPDISP _FLAGS

1244

(reserved)

MRQFL

MRQBL

INTO
(12 bytes)

Figure E.2

(continued)

Layout of an Adapter Control Block

PRIV

(reserved) l TYPE l SIZE

t
Figure E.3

CLASS
(20 bytes)

RIGlfTSLIST
(20 bytes)

RIGHTSDESC

UIC

(remainder of local rights list)
(60bytes).

Layout of an Access Rights Block

MRNFENCE

UBASCB
116 l>Yl!!!lt
UBASPTE

MRACTMDRS

I DPBITMAP

MRNREGARY
(248by!es)

I MRFFENCE

MRFREGARY (248 bytes)

UMR_DIS

MR2NFENCE

1
MR2QFL

MR2QBL

MR2ACTMDR

l (reserved)

MR2NREGAR
(248 bytes)

I MR2FFENCE

MR2FREGAR (248 bytes)

UMR2_DIS

MR2ADDR

-

J

.
......

Allocated from
Reference

Nonpaged pool.
Figure 24.6.

E.3 Executive Data Structures

E.3.6 CCB-Channel Control Block

Purpose

Location

Reference

Describes the logical path between the process and
the UCB of the specific device.

Within per-process space table, pointed to by CTL$GL_
CCBBASE.

Figure 21.2.

E.3.7 CDDB-Class Driver Data Block

Purpose

Usual location
Allocated from
Reference
Special notes

Auxiliary data structure for each system communi­
cation services (SCS) connection between a disk or
tape class driver and a remote mass storage control
protocol (MSCP) server.

Pointed to by CRB$LAUXSTRUC.
Nonpaged pool.
Figure E.4.
There is one CDDB per MSCP controller;

E.3.8 CDRP-Class Driver Request Packet

Purpose

Usual location
Allocated from
Reference
Special notes

Data structure used to communicate between SCS
and a class driver.

Linked into CDDB listhead (CDDB$L_CDRPQFL).
Nonpaged pool.
Figure 24.2.
Contains within it, at negative offsets, a full IRP.

E.3.9 CEB-Common Event Block

E.3.10

Purpose

Location

Allocated from

References

Contains description and wait queue for common
event flag cluster.

In list whose head is at SCH$GQ_CEBHD. (Master
CEBs are located in shared memory and pointed to
by a field in the slave CEB located in the CEB list
on each processor.)

Nonpaged pool. (Master CEBs are allocated from a
CEB table located in shared memory.)

Figures 9.1, 9.2, 9.3.

CPU-Per-CPU Database

Purpose Records processor-specific information. There is one
CPU structure for every CPU in the system.

1245

Data Structure Definitions

CDRPQFL

CDRPQBL

SUBTYPE l TYPE SIZE

SYSTEMID (6 bytes)

STATUS

PDT

CRB

DOB

I- CNTRLID -
CNTRLTMO CNTRLFLGS

OLDRSPID

OLDCMDSTS

RSTRTCDRP

RSTRTCNT DAPCOUNT RETRYCNT

RSTRTQFL

RSTRTQBL

SAVED_PC

UC BC HAIN

ORIGUCB

ALLOCLS

DAPCDRP

CDDBLINK

WTUCBCTR RSVDB FOVER_CTR

CPYSEQNUM CHVRSN CSVRSN

MAXBCNT

CTRLTR_MASK

RSVD4

PERMCDRP

Fignre E.4
Layout of a Class Driver Data Block

1246

E.3.11

E.3.12

E.3.13

E.3.14

E.3.15

Usual location

Allocated from
References

E.3 Executive Data Structures

At a known offset from the interrupt stack pointer for
the CPU. The FIND_CPU_DATA macro should be
used.

Statically allocated pages of system space.
Figures 34.5, 34.6.

CRB-Channel Request Block

Purpose

Location
Allocated from
Reference

There is one CRB for each set of devices whose access
to a controller must be synchronized.

Pointed to by the unit control block (UCB$L_CRB).
Nonpaged pool.
Figure E.5.

DDB-Device Data Block

Purpose
Location
Allocated from
Reference

There is one DDB for each controller in a system.
Linked into device listhead (IOC$GL_DEVLIST).
Nonpaged pool.
Figure E.6.

DDT-Driver Dispatch Table

Purpose Specifies driver entry points for various 1/0 functions.
Location Pointed to by DDB$L_DDT and UCB$L_DDT .

. Allocated from Nonpaged pool.
Reference Figure E. 7.

DPT-Driver Prolog Table

Purpose

Location

Allocated from
Reference
Special notes

Defines the identity and the size of the driver to the
system routine that loads the driver into virtual
memory.

Beginning of the driver image. All DPTs on the
system are linked in a list. Listhead is in IOC$GL_
DPTLIST.

Nonpaged pool.
Figure E.8.
The size of the DPT is the size of the entire driver,

including the DPT itself.

FCB-File Control Block

Purpose Describes a uniquely accessed file on a volume;
provides a means for controlling shared access to a
file.

1247

1248

FLCK l

UNIT_BRK I

Figure E.5

FOFL

FQBL

TYPE l
FPC

FR3

FR4

WQFL

WOBL

(reserved)

MASK I
AUXSTRUC

TIMELINK

DUETIME

TOUTROUT

LINK

DLCK

BUGCHECK

RTINTD
(12 bytes)

INTO
(40 bytes)

BUGCHECK2

RTINTD2
(12 bytes)

INTD2
(40 bytes)

SIZE

I TT_TYPE

REFC

Layout of a Channel Request Block

(reserved) J

Figure E.6

LINK

UCB

TYPE I
DDT

ACPD

NAME
(16 bytes)

DRVNAME
(16 bytes)

SB

CONLINK

ALLOCLS

2P_UCB

Layout of a Device Data Block

SIZE

E.3 Executive Data Structures

START

UNSOLINT

FDT

CANCEL

REGDUMP

ERRORBUF I DIAGBUF

UNITINIT

ALTSTART

MNTVER

CLONED UCB

(reserved) I __:_
FDTSIZE

MNTV_SSSC

MNTV_FOR

MNTV_SQD

AUX_STORAGE

AUX_ROUTINE

Figure E.7
Layout of a Driver Dispatch Table

FLINK

BLINK

REFC I TYPE SIZE

UCBSIZE (reserved) J ADPTYPE

FLAGS

REINITTAB INITTAB

MAXUNITS UNLOAD

DEFUNITS VERSION

VECTOR DELIVER

NAME
J12~efil_

t- LINKTIME --i

ECOLEVEL

UCO DE

DECW_SNAME

Figure E.8
Layout of a Driver Prolog Table

1249

Data Structure Definitions

FCBFL LOCKBASIS

FCBBL TRUNCVBN

ACCLKMODaj_ TYPE SIZE CACHELKID

EXFCB HIGHWATER

WLFL NEWHIGHWATER

WLBL HWM_ERASE HWM_UPDATE

ACNT REFCNT (reserved) HWM_PARTIAL

LCNT WCNT HWM_WAITFL

STATUS TCNT HWM_WAITBL

SEGN

E.3.16

E.3.17

1250

FID

STVBN

STLBN

HDLBN

FILESIZE

EFBLK

VERSIONS

DIRINDX

DIRSEQ

ACCLKID

FILEOWNER

(reserved)
12 b es

ACMODE

SYS_PROT

OWN_PROT

GRP_PROT

WOR_pROT

ACLFL

ACLBL

(reserved)
(40 bytes)

This part is structured like an ORB.
(continued)

Figure E.9
Layout of a File Control Block

Usual location

Allocated from
Reference

FKB-ForkBlock

Purpose
Usual location

Allocated from
References

Linked into the volume control block listhead
(VCB$1-FCBFL).

Nonpaged pool.
Figure E.9.

Stores minimum context for a fork process.
First six longwords of unit control block (UCB) and

CDRP.
Nonpaged pool.
Figures 4.1, 4.2.

GSD-Global Section Descriptor

Purpose Contains identifying information about a global
section.

E.3.18

E.3.19

E.3.20

VECTOR

COMBO CSR
OFFSET -

SPARE1

Figure E.10

CSR

OWNER

TYPE

TT_ENABLE

SPL

ADP

UCBLST
(32 bytes)

E.3 Executive Data Structures

SIZE

UNITS

FLAGS I COMBO_ VECTOR_
OFFSET

Layout of an Interrupt Dispatch Block

Location
Allocated from
Reference
Special notes

Group or system GSD list.
Paged pool.
Figure 14.17.
There are two types of GSD: a normal GSD and a

GSD for page frame number (PFN) mapped section.

IDB-Interrupt Dispatch Block

Purpose

Location
Allocated from
Reference

Provides the information for a controller-specific
interrupt dispatcher to dispatch an interrupt to the
appropriate driver for that device unit.

Pointed to by CRB$1-INTD + VEC$L_IDB.
N onpaged pool.
Figure E.10.

IRP-I/O Request Packet

Purpose

Usual location

Allocated from
Reference

Constructed by the Queue 1/0 Request ($QIO) system
service to describe an 1/0 function to be performed
on a device unit.

All IRPs pending for a particular device unit are linked
together, typically at UCB$1-IOQFL.

Nonpaged pool.
Figure E.11.

ISD-Image Section Descriptor

Purpose

Location
References

Describes virtual address range and corresponding
information (virtual block range, global section
name) to the image activator.

Image header.
Figures 26.2, 26.9, 26.10, 26.11.

1251

Data Structure Definitions

E.3.21

1252

IOOFL

IOOBL

RMOD 1 TYPE] SIZE

PAI] EFN

STS

Figure E.11

PIO

AST

ASTPRM

WIND

UCB

]
IOSB

T
SVAPTE

l
BCNT

I
IOST1

IOST2

ABC NT

OBCNT

SEGVBN

DIAGBUF

SEQNUM

EXTEND

ARB

KEYDESC
CORP

(72 bytes)

FUNC

CHAN

BOFF

STS2

Layout of an I/O Request Packet

JIB-Job Information Block

The JIB appears in several figures in this book. Figure E.12 shows all the
fields currently defined in this structure.

Purpose

Location

Allocated from
Reference

Contains quotas pooled by all processes in the same
job.

Pointed to by PCB$L_JIB field of all PCBs in the same
job.

Nonpaged pool.
Figure E.12.

DAYTYPES l

I-

FILLM

TQLM

PRCLIM

MTLFL

MTLBL

TYPE 1
USERNAME
(12 bytes)

ACCOUNT

BYTCNT

BYTLM

PBYTCNT

PBYTLIM

PGFLQUOTA

PGFLCNT

CPULIM

SIZE

FILCNT

TQCNT

PRCCNT

E.3 Executive Data Structures

MAXDETACH I MAXJOBS

MPID

JLNAMFL

JLNAMBL

- PDAYHOURS

ODAYHOURS

(reserved) I FLAGS I JOBTYPE

ORG_BYTLM

ORG_PBYTLM

SPARE

CWPS_TIME

CWPS_COUNT

I- CWPS_Q1 -
CWPS_L1

CWPS_L2

SHRFLIM SHRFCNT JTQUOTA

EN OLM

E.3.22

E.3.23

ENQCNT

(continued)

Figure E.12
Layout of a Job Information Block

KFD-Known File Device and Directory Block

Purpose

Location

Allocated from
Reference

Contains the file device and directory names
associated with an image. Multiple known images
share the same KFD.

Pointed to by the known file pointer block (KFPB$L_
KFDLST).

Paged pool.
Figure 26.5.

KFE-Known File Entry Block

Purpose
Location

Allocated from
References

Identifies the file name of the image and its properties.
Pointed to by the KFPE hash table, whose address is

contained in the known file pointer block (KFPB$L_
KFEHSHTAB).

Paged pool.
Figures 26.4, 26.6.

1253

Data Structure Definitions

E.3.24

E.3.25

E.3.26

E.3.27

E.3.28

E.3.29

1254

KFPB-Known File Pointer Block

Purpose

Location
Allocated from
Reference

Contains the address of KFE hash table and the
listhead for the KFDs.

Pointed to by EXE$GL_KNOWN_FILES.
Paged pool.
Figure 26.8.

KFRH-Known File Resident Image Header

Purpose

Location

Allocated from
Reference

LKB-Lock Block

Purpose

Location

Allocated from
Reference

Exists for each known image installed /HEADER_
RESIDENT.

Immediately precedes the IHD and specifies its size
and version number.

Paged pool.
Figure 26.7.

Contains information about a request to the Enqueue
Lo~k l$ENQ) system service.

All lock blocks may be located through the lock ID
table, whose address is found in global location
LCK$GL_IDTBL.

Nonpaged pool.
Figure 10.4.

LNMB-Logical Name Block

Purpose

Location

Allocated from

References

Contains the logical name string, its access mode, and
attributes.

Chained from the shared logical name hash table or a
process-private hash table.

Paged pool for shared logical names or process
allocation region for process logical names.

Figures 35.1, 35.5.

LNMC-Logical Name Table Name Cache Block

Purpose
Location

Allocated from
Reference

Facilitates logical name translation.
Doubly linked from a Pl space listhead ICTL$GQ_

LNMTBLCACHE).
Process allocation region.
Figure 35.6.

LNMHSH-Logical Name Hash Table

Purpose Locates all logical names.

E.3.30

E.3.31

E.3.32

E.3.33

E.3.34

E.3.34.1

Location

Allocated from
Reference

E.3 Executive Data Structures

Indirectly pointed to by the array of addresses at
LNM$AL_HASHTBL.

Paged pool and process allocation region.
Figure 35.5.

LNMTH-Logical Name Table Header

Purpose
Allocated from

Reference

Describes a logical name table.
Paged pool for the shared table or process allocation

region for process tables.
Figure 35.2.

LNMX-Logical Name Translation Block

Purpose
Location
Allocated from

Reference

Describes an equivalence name for a logical name.
Follows an LNMB.
Paged pool for shared names or process allocation

region for process names.
Figure 35.1.

MTX-Mutex (Mutual Exclusion Semaphore)

Purpose
Usual location
Reference

Controls process access to protected data structures.
Statically allocated longwords in system space.
Figure 8.3.

ORB-Object Rights Block

Purpose

Usual location

Allocated from
Reference

Defines the protection information for various objects
within the system.

Linked to a data structure, such as a UCB, via offset
xxx$L_ORB.

Paged pool.
Figure E.13.

PCB-Process Control Block

The term process control block can refer to two different structures in the
VAX literature. All software documentation, including this book, refers to
the software process control block as simply the PCB and always prefixes a
reference to the hardware process control block with "hardware."

Software Process Control Block

Purpose Contains the permanently resident information about
a process.

1255

Data Structure Definitions

E.3.34.2

E.3.35

1256

UICGROUP UICMEMBER

ACL_MUTEX

FLAGS l TYPE SIZE

REFCOUNT (reserved)

Figure E.13

MODE_PROTUMODE

MODE_PROTH

SYS_PROT/PROT

OWN_PROT

GRP_PROT

WOR_PROT

ACLFUACL_COUNT

ACLBUACL_DESC

MIN CLAS
(20 bytes)

MAX CLAS
(20 bytes)

Layout of an Object Rights Block

Location

Allocated from
Reference

Linked into a scheduling state queue; also pointed to
by one of the PCB vector elements.

Nonpaged pool.
Figure E.14.

Hardware Process Control Block

Purpose

Location
References

Contains hardware context of a process while it is not
executing.

Part of the fixed portion of the process header.
Figures 12.10, 12.11.

PHD-Process Header

Purpose

Location

References
Special notes

Contains process context data that must reside in
system space but can be outswapped.

Balance slot area in system space. (PHD pages that are
not page table pages are double-mapped by a range
of Pl space addresses.)

Figures E.15, 14.5, 14.6, 14.8, 14.10, 14.22.
The process's hardware PCB is contained in the PHD,

beginning at field PHD$1-PCB and ending just
before PHD$L_ WSEXTENT.

SQFL

SQBL

WEFC I TYPE

PHYPCB

ASTQFL

ASTQBL

STATE ASTEN

AFFINITY _SKIPlRESERVEO_B1 PRIB

BIOCNT

OIOCNT

PRCCNT

OWNER

STS

STS2

wnME

ONQTIME

WAITIME

TERMINAL
(8 bytes)

PQB/EFWM

EFCS

EFCU

EFC2P

E.3 Executive Data Structures

SIZE

AST ACT

PRI

ASTCNT

BIOLM

OIOLM

---------r---------1-------------------~
(reserved) PGFLINOEX PGFLCHAR

EFC3P

PIO

EPIO

EOWNER

PHO

MTXCNT I APTCNT

GPGCNT

PPGCNT

JIB

WSSWP

SWAPSIZE

(continued)

Figure E.14
Layout of a Software Process Control Block

1257

Data Structure Definitions

1258

t

t-

TMBU

PRIV

ARB

(reserved)
(48 bytes)

UIC

(reserved)
l60 IW_e~

ORB

I
LOCKQFL

LOCKQBL

DLCKPRI

IPAST

DEFPROT

PMS

AFFINITY

SCHED_SPARE

CAPABILITY

CPU_ID

CPUTIM

LNAME
(16 bytes)

PRCPDB

PIXHIST

(reserved)

NS_RESERVED_Q1

AFFINITY _CALLBACK

PERMANENT_ CAPABILITY

PERMANENT_ CPU_AFFINITY

CWPSSRV _QUEUE

CURRENT_AFFINITY

CAPABILITY _SEQ

SPARE_W2 l SPARE_W1

Figure E.14 (continued)
Layout of a Software Process Control Block

j

-1

This part is
an ARB.

r-
SPARE_1 I

E.3.36

E.3.37

E.3 Executive Data Structures

PRIVMSK, R11

TYPE I SIZE R12

WSLIST R13

WSLOCK PC

WSDYN PSL

WSNEXT POBR

WSLAST ASTLVL l POLA

PCB/KSP P1BR

ESP P1LR

SSP ASN I PRVCPU

USP WSEXTENT

RO WSOUOTA

R1 DFWSCNT

R2 PAGFIL

R3 PSTBASOFF

R4 PSTFREE I PSTLAST

RS FREPOVA

RS FREPTECNT

R7 FREP1VA

RS FLAGS l PGTBPFC l DFPFC

R9 CPUTIM

R10 PRCLM l QUANT

(continued) (continued)

Figure E.15
Layout of a Process Header

PQB-Process Quota Block

Purpose

Location
Allocated from
Reference

Used during process creation to store new process
parameters that are copied to the PHD and Pl space
after those areas are accessible.

Pointed to by PCB$L_EFWM.
Paged pool.
Figure E.16.

RPB-Restart Parameter Block

Purpose Contains volatile processor state during power failure;
locates the bootstrap 1/0 driver and associated
subroutines.

1259

Data Structure Definitions

PHVINDEX ASTLM t- IMAGPRIV -
BAK RESLSTH

WSLX/PSTBASMAX IMGCNT

PAGEFLTS PFLTRATE

WSSIZE PFLREF

(reserved) UCPUTIM TIM REF

DIOCNT PGFLTIO

BIOCNT (reserved) l (reserved) l AUTHPRI

CPULIM
EXTRACPU

PGFLCNT l PRCPAGFIL AWSMODE I CPUMODE (reserved)
(40 bytes)

PTWSLELCK PRCPGFLREFS
(16 bytes)

PTWSLEVAL
PPGFLVA

PTCNTVAL PTCNTLCK
I- PSCANCTX_QUEUE -I

PTCNTMAX PTCNTACT
SPARE_L1

WSFLUID
SPARE_L2

(reserved) EMPTPG

EXTDYNWS
SPARE_W2 I PSCANCTX_SEQNUM

UCPUTIM
PRCPGFLOPAGES PRCPGFLPAGES

I-

E.3.38

1260

PRCPGFL
NS_SPARE

(reserved)
WSAUTH

WSL
WSAUTHEXT

AUTHPRIV -
(continued)

Figure E.15 (continued)
Layout of a Process Header

Usual location

Reference

Physical page zero on system with no bad memory in
the first 64K bytes.

Table 30.22.

RSB-Resource Block

Purpose

Location

Allocated from
References

Contains information about a resource defined to the
lock management system services.

All resource blocks can be located through the resource
hash table, pointed to by LCK$GL_HASHTBL.

Nonpaged pool.
Figures 10.1, 10.3.

I- PRVMSK

STS l TYPE 1
ASTLM

BIOLM

BYTLM

CPULM

DIOLM

FILLM

PGFLQUOTA

PRCLM

TQELM

WSQUOTA

WSDEFAULT

ENQLM

WSEXTENT

JTQUOTA

-I

SIZE

E.3 Executive Data Structures

CREPRC_FLAGS

MIN CLASS
(20-bytes)

MAX_ CLASS
_1_20 tm_efil_

INPUT_ATT

OUTPUT_ATT

ERROR_ATT

DISK_ATT

CU NAME
(32-bytes)
CU TABLE
(25Sbytes)

SPAWN CU
(32 bytes)

SPAWN TABLE
(256 bytes)

INPUT
(256 bytes)

OUTPUT
(256 bytes)

ERROR
(256 bytes)

DISK
(256 bvtes)

.

(reserved) l MSGMASK 1 FLAGS IMAGE
(256 bytes)

E.3.39

E.3.40

UAF_FLAGS

(continued)

Figure E.16
Layout of a Process Quota Block

SPL-Spinlock Control Block

Purpose
Usual location

Allocated from

References

Synchronization tool for multiprocessing.
A static spinlock is identified by the position of its

address in SMP$AR_SPNLKVEC, a table of static
spinlock addresses.

A dynamic (device) spinlock is pointed to by the
field CRB$L_DLCK in the CRB that describes the
device's controller, and by the field UCB$LDLCK
in the device's UCB.

Static spinlocks are allocated statically. Dynamic
spinlocks are allocated from nonpaged pool.

Figures 8.1, 8.2.

TAST-Terminal AST Block

Purpose

Usual location

Contains information for delivery of out-of-band
character ASTs.

Queued to the terminal UCB via TAST$L LINK.

1261

Data Structure Definitions

E.3.41

E.3.42

E.3.43

E.4

Allocated from
References

Nonpaged pool.
Figures 7.5, 7.6, 7.7.

TQE-Timer Queue Entry

Purpose

Location
Allocated from
Reference

Describes pending timer or scheduled wakeup
request.

Linked to the timer queue at EXE$GL_ TQFL.
Nonpaged pool.
Figure 11.1.

UCB-Unit Control Block

Purpose

Location
Allocated from
Reference
Special notes

Describes the status, characteristics, and current state
of a device unit.

Linked from DDB$L_UCB.
Nonpaged pool.
Figure E.17.
Figure E.17 shows the part of the UCB common to all

device units. See the VMS Device Support Manual
for information on extensions to the common part
of the UCB.

WCB-Window Control Block

Purpose

Location
Allocated from
Reference

Describes the virtual to logical correspondence for the
blocks of a file.

Contained in FCB list at FCB$L_ WLFL.
Nonpaged pool.
Figure E.18.

SYMBOLIC CONSTANTS

The files [SYS]SYSDEFxx.SDL and [VMSLIB]STARDEFxx.SDL define many
systemwide symbolic codes that identify structures, resources, quotas, pri­
orities, and so on. Many of these constants are listed in the VMS System Ser­
vices Reference Manual and the VMS I/0 User's Reference Volume. Those
that are most closely tied to the material in this book but not listed in those
manuals are listed here.

E.4.1 BTD-Bootstrap Device Codes

1262

The bootstrap device codes (see Table E.2) are used by VMB, the primary
bootstrap program, and by SYSBOOT, the secondary bootstrap program, to
interpret the contents of the RPB$B_DEVTYP field, which specify the boot
device.

E.4 Symbolic Constants

FQFL t- DEVDEPEND -
FQBL I- DEVDEPND2 -

FLCK I TYPE I SIZE
IOOFL

FPC
IOQBL

FR3
CHARGE UNIT

FR4
IRP

INIQUO l BUFQUO

ORB
AMOD I DIPL REFC

AMB

LOCKID
STS

CAB
QLEN DEVSTS

DLCK
DUETIM

DOB
OPCNT

PIO SVPN

LINK
SVAPTE

VCB
BCNT BOFF

DEVCHAR

DEVCHAR2
ER RC NT ERTMAX I ERTCNT

PDT
AFFINITY DDT
(reserved)

MEDIA_ID
DEVBUFSIZ I DEVTYPE I DEVCLASS

(continued)

Figure E.17
Layout of a Unit Control Block

E.4.2 CA-Conditional Assembly Parameters

The conditional assembly parameters jsee Table E.3) control whether cer­
tain code is included when components of VMS are assembled. The first
parameter was important during the initial development of VMS but is no
longer used. All measurement code (used by the Monitor Utility) is always
included.

E.4.3 DYN-Data Structure Type Definitions

Most structures allocated from nonpaged and paged pool have a unique code
in the type field, at offset xxx$B_ TYPE lsee Table E.4). The System Dump
Analyzer (SDA) uses the contents of this field when formatting dumps of
pool and in automatic formatting of a data structure with the FORMAT
command.

Codes that have numeric values greater than or equal to DYN$C_SUB­
TYPE are subtypable codes. Each subtypable code refers to a generic function.

1263

Data Structure Definitions

WLFL

WLBL

ACCESS I TYPE I SIZE

PIO

ORGUCB

NMAP l ACON

FCB

RVT

LINK

READS

WRITES

STVBN

l P1_COUNT

P1_LBN

I P2_COUNT

P2_LBN

Figure E.18
Layout of a Window Control Block

Different data structures related to the same generic function have the same
value in the type field but different values in the subtype field. The subtype
field is at offset xxx$B_SUBTYPE within a subtypable data structure. For
example, the system block (SB) and the path block (PB) are data structures
used by SCS. Both structures have the value DYN$C_SCS in their type field;
the SB has the value DYN$C_SCS_SB in its subtype field, whereas the PB
has the value DYN$C_SCS_PB in its subtype field. SDA can interpret the
subtype fields of standard system data structures.

E.4.4 IOxxx-1/0 Address Space Definitions

The LIB.MLB $10xxxDEF macros define the layout of 1/0 space for each
CPU. Appendix G lists the values of xxx.

E.4.5 IPL-Interrupt Priority Level Definitions

IPLs that are used by VMS for synchronization and other purposes are given
the symbolic names listed in Tables 3.1 and 4.1.

E.4.6 NDT-Nexus Device Type

Each external adapter has an associated code that is used by VMB, INIT,

1264

E.4 Symbolic Constants

Table E.2 Bootstrap Device Codes

Symbolic Name
BID$ILMB
BID$ILDM
BID$ILDL
BID$ILDQ
BID$ILPROM
BID$K_PROM_COPY
BID$K_UDA
BID$K_TK50
BID$K_KFQSA
BID$K_HSCCI
BID$1LBDA
BID$ILBVPSSP
BID$ILAIE_ TK50
BID$ILKA410_DISK
BID$ILKA420_DISK
BID$ILST506_DISK
BID$1LKA410_TAPE
BID$ILKA420_TAPE
BID$ILSCSL5380_ TAPE
BID$ILSII
BID$ILSHAC
BID$ILSCSL5380_DISK
BID$ILCONSOLE
BID$K_NET_DLL
BID$ILQNA
BID$ILUNA
BID$ILAIE_NI
BID$ILKA410_NI
BID$ILKA420_NI
BID$ILLANCE

BID$ILDEBNI

BID$ILNISCS

Code
0
1
2
3
8
9
17
18
19
32
33
34
35
36
36
36
37
37
37
39
41
42
64
96
96
97
98
99
99
99
100-103
104
105-127
128

Device
MASSBUS device
RK06/7
RL02
RB02/RB80
PROM (not copied)
PROM (copied)
UDA
TK50
KFQSA adapter
HSC on a CI
KDB50, VAXBI disk adapter
KRBTA
DEBNK (tape)
VAXstation 2000 ST506 disk
VAXstation 3100 ST506 disk
VAXstation 3100 ST506 disk
V AXstation 2000 SCSI tape
VAXstation 3100 SCSI tape
VAXstation 3100 SCSI tape
Embedded DSSI controller
Single chip DSSI adapter
VAXstation 3100 SCSI disk
Console block storage device
Start of network boot devices
DEQNA
DEUNA
DEBNK (Ethernet)
VAXstation 2000 Ethernet
VAXstation 3100 Ethernet
LANCE NI chip
Reserved
DEBNI
Reserved for network boot devices
Disk served by a local area

VAXcluster host

Table E.3 Conditional Assembly Parameters

Symbolic Name
CA$_SIMULATOR
CA$_MEASURE
CA$_MEASURE_IOT

Code
1
2
4

Feature
VMS running on simulator
Accumulate statistics for Monitor Utility
Accumulate I/O statistics for Monitor Utility

1265

Data Structure Definitions

Table E.4 Data Structure Type Definitions

Symbolic Name Code Structure Type
DYN$C_ADP 1 Adapter control block
DYN$C_ACB 2 AST control block
DYN$c_AQB 3 ACP queue block
DYN$C_CEB 4 Common event block
DYN$c_CRB 5 Channel request block
DYN$c_DDB 6 Device data block
DYN$c_FCB 7 File control block
DYN$C_FRK 8 Fork block
DYN$C_IDB 9 Interrupt dispatch block
DYN$c_IRP 10 1/0 request packet
DYN$c_LoG 11 Logical name block
DYN$c_PCB 12 Software process control block
DYN$C_PQB 13 Process quota block
DYN$c_RVT 14 Relative volume table
DYN$C_TQE 15 Timer queue entry
DYN$c_ucB 16 Unit control block
DYN$C_VCB 17 Volume control block
DYN$C_WCB 18 Window control block
DYN$c_BUFIO 19 Buffered 1/0 buffer
DYN$C_ TYPAHD 20 Terminal type-ahead buffer
DYN$C_GSD 21 Global section descriptor
DYN$C_MVL 22 Magnetic tape volume list
DYN$C_NET 23 Network message block
DYN$C_KFE 24 Known file entry
DYN$C_MTL 25 Mounted volume list entry
DYN$C_BRDCST 26 Broadcast message block
DYN$C_CXB 27 Complex chained buffer
DYN$C_NDB 28 Network node descriptor block
DYN$C_SSB 29 Logical link subchannel status block
DYN$c_DPT 30 Driver prolog table
DYN$C_JPB 31 Job parameter block
DYN$c_PBH 32 Performance buffer header
DYN$c_PDB 33 Performance data block
DYN$c_Prn 34 Performance information block
DYN$c_PFL 35 Page file control block
DYN$c_PFLMAP 36 Page file mapping window
DYN$C_PTR 37 Pointer control block
DYN$C_KFRH 38 Known file image header
DYN$c_DcCB 39 Data cache control block
DYN$C_EXTGSD 40 Extended global section descriptor
DYN$c_SHMGSD 41 Shared memory global section descriptor
DYN$c_SHB 42 Shared memory control block
DYN$c_MBX 43 Mailbox control block
DYN$C_IRPE 44 Extended 1/0 request packet
DYN$c_SLAVCEB 45 Slave common event block

(continued)

1266

E.4 Symbolic Constants

Table E.4 Data Structure Type Definitions (continued)

Symbolic Name Code Structure Type
DYN$C_SHMCEB 46 Shared memory master common event

block
DYN$C_JIB 47 Job information block
DYN$C_TWP 48 Terminal driver write packet ($TTYDEF)
DYN$c_RBM 49 Real-time system page table entry bitmap
DYN$C_VCA 50 Disk volume cache block
DYN$C_CDB 51 X25 low-end system (LES) channel data

block
DYN$c_LPD 52 X25 LES process descriptor
DYN$c_LKB 53 Lock block
DYN$c_RsB 54 Resource block
DYN$C_LKID 55 Lock ID table
DYN$C_RSHT 56 Resource hash table
DYN$C_CDRP 57 Class driver request packet
DYN$C_ERP 58 Error log packet
DYN$c_CIDG 59 CI datagram buffer
DYN$C_CIMSG 60 CI message buffer
DYN$C_XWB 61 DECnet logical link context block
DYN$C_WQE 62 DECnet work queue block
DYN$C_ACL 63 Access control list queue entry
DYN$C_LNM 64 Logical name block
DYN$C_FLK 65 Fork lock request block
DYN$C_RIGHTSLIST 66 Rights list
DYN$C_KFD 67 Known file device directory block
DYN$C_KFPB 68 Known file list pointer block
DYN$C_CIA 69 Compound intrusion analysis block
DYN$C_PMB 70 Page fault monitor control block
DYN$c_PFB 71 Page fault monitor buffer
DYN$c_CHIP 72 Internal check protection block
DYN$c_QRB 73 Object rights block
DYN$C_QVAST 74 QVSS AST block
DYN$C_MVWB 75 Mount verification work buffer
DYN$C_UNC 76 Universal context block
DYN$c_DcB 77 DECnet control block for chained I/O
DYN$c_DLL 78 General DECnet datalink block
DYN$c_SPL 79 Spinlock control block
DYN$C_ARB 80 Access rights block
DYN$C_SUBTYPE 96 Beginning of subtypable codes
DYN$c_scs 96 SCS control block
DYN$C_CI 97 CI port structure
DYN$C_LOADCODE 98 Loadable code
DYN$C_INIT 99 Structure set up by INIT
DYN$c_CLASSDRV 100 Class driver structure
DYN$C_CLU 101 V AXcluster structure
DYN$C_PGD 102 Paged pool structure

(continued)

1267

Data Structure Definitions

Table E.4 Data Structure Type Definitions (continued)

Symbolic Name

DYN$c_DECW
DYN$C_VWS
DYN$c_DSRV
DYN$C_MP
DYN$C_NSA
DYN$c_cwPs
DYN$C_SPECIAL

DYN$c_SHRBUFIO

Code

103
104
105
106
107
108
128

128

Structure Type

DECwindows structure
VAX Workstation Software structure
Disk server structure
Multiprocessing-related struct~e
Nondiscretionary security audit structure
Clusterwide process services
Code that defines beginning of special

dynamic memory types
Shared memory buffered 1/0 buffer

and the power recovery routine to determine which adapter-specific action
should be taken to (re)initialize each adapter (see Table E.S).

E.4.7 PR-Processor Register Definitions

The macro $PRDEF, in LIB.MLB, defines symbolic names for the· processor
registers that are common to all types of VAX processor. For each CPU type, a
second LIB.MLB macro, $PRxxxDEF, defines symbolic names for the CPU's
additional processor registers. Appendix G lists the values of xxx.

E.4.8 SPL-Static Spinlock Definitions

1268

Symbolic names such as SPL$C_SCHED for the static spinlocks used by
VMS are listed in Table 8.2.

Table E.5 Nexus Device Types

Symbolic Name Code Adapter
NDT$_MEM4NI 8 Memory, 4K, not interleaved
NDT$_MEM41 9 Memory, 4K, interleaved
NDT$_MEM16NI 16 Memory, 16K, not interleaved
NDT$_MEM161 17 Memory, 16K, interleaved
NDT$_MEM1664NI 18 Memory, 16K and 64K mixed
NDT$_MB 32 MBA 0, 1, 2, or 3
NDT$_UBO 40 UNIBUS adapter or interconnect 0
NDT$_UB1 41 UNIBUS adapter 1
NDT$_UB2 42 UNIBUS adapter 2
NDT$_UB3 43 UNIBUS adapter 3
NDT$_DR32 48 DR32
NDT$_CI 56 CI750, CI780
NDT$_MPMO 64 Multiport memory 0

(continued)

E.4 Symbolic Constants

Table E.5 Nexus Device Types (continued)

Symbolic Name Code Adapter
NDT$_MPM1 65 Multiport memory 1
NDT$_MPM2 66 Multiport memory 2
NDT$_MPM3 67 Multiport memory 3
NDT$_MEM64NIL 104 64K memory, not interleaved, lower

controller
NDT$_MEM64EIL 105 64K memory, externally interleaved,

lower controller
NDT$_MEM64NIU 106 64K memory, not interleaved, upper

controller
NDT$_MEM64EIU 107 64K memory, externally interleaved,

upper controller
NDT$_MEM641 108 64K memory, internally interleaved
NDT$_MEM256NIL 112 256K memory, not interleaved, lower

controller
NDT$_MEM256EIL 113 256K memory, externally inter-

leaved, lower controller
NDT$_MEM256NIU 114 256K memory, not interleaved, upper

controller
NDT$_MEM256EIU 115 256K memory, externally inter-

leaved, upper controller
NDT$_MEM2561 116 256K memory, internally interleaved
NDT$_KA410 128 V AXstation 2000 processor
NDT$_KA420 128 V AXstation 3100 processor
NDT$_KA640 129 MicroVAX 3300/3400 processor
NDT$_SCORMEM 8000000116 VAX 8200 memory
NDT$_BIMFA 8000010116 DRB32 adapter
NDT$_BUA 8000010216 V AXBI UNIBUS adapter
NDT$_BLA 8000010316 KLESI-B
NDT$_KA810 8000010516 KA810 processor
NDT$_NBI 8000010616 VAX 8800 VAXBI adapter
NDT$_XBIB 8000210716 VAXBl-to-XMI adapter
NDT$_BCA 8000010816 CIBCA adapter
NDT$_BICOMBO 8000010916 DMB32 adapter
NDT$_DSB32 8000010A16 DSB32 adapter
NDT$_BCI750 8000010B16 CIBCI adapter
NDT$_BDA 8000010£16 V AXBI disk adapter
NDT$_DEBNT 8000410F16 DEBNT adapter
NDT$_DEMNA OOOOOC0316 DEMNA adapter
NDT$_CIXCD OOOOOC0516 CIXCD adapter
NDT$_XCP 0000800116 VAX 6000 models 200/300 processor
NDT$_XRP 0000808216 VAX 6000 model 400 processor
NDT$_XMA 0000400116 XMimemory
NDT$_XBI 0000200116 XMI-to-VAXBI adapter

1269

F

F.1

1270

Size of System and Pl Virtual
Address Spaces

Many of the VMS data structures are not created until the system is boot­
strapped, so that the structure sizes can be determined from the appropriate
SYSGEN parameters. This appendix describes the relations among these pa­
rameters and the resulting use of virtual address space.

In the equations that appear in this appendix, two common features domi­
nate. The first is division by 512, the number of bytes in a page. This division,
actually an arithmetic shift by -9, converts an input parameter expressed
as a number of bytes, such as the SYSGEN parameter NPAGEDYN, into a
page count. Adding 511 to a byte expression before the integer division takes
place rounds up to the next highest page boundary.

The second feature is the number 128, which appears in expressions that
convert a page count into the number of page table pages required to map that
page count. Since a page table entry (PTE) is four bytes long, each page table
page can contain 128 PTEs, mapping 128 pages. Division by 128, actually an
arithmetic shift by - 7, converts an input parameter expressed as a number
of pages (and therefore the same number of PTEs) into a count of page table
pages. In this case, 127 is added as the rounding factor.

PROCESS HEADER

The SYSBOOT image, executing in the early stages of system initialization,
reads SYSGEN parameters and sizes the various portions of address space.
SYSBOOT's first calculation of this type determines the size of the process
header (PHD) from related SYSGEN parameters. Six segments compose the
PHD:

• Fixed portion, including the register save area and offsets to the other
segments

• Working set list (WSL)
• Process section table (PST)
• Empty pages reserved for WSL expansion
• Two PHD page arrays and two page table page arrays, each containing one

entry per page of the PHD
• PO and Pl page tables

Most of the calculations in this appendix treat the PHD fixed portion,
working set list, and the PST as a unit.

Table F.1 lists the PHD segments, the global locations where segment sizes

Table F.l Discrete Portions of the Process Header

PHD
Segment

Fixed portion, WSL,
PST

Empty pages for WSL
expansion

PHD and page table
page arrays

PO and Pl page tables

Symbolic Name
Used in
Calculations

PHD(Fixed, WSL, PST)

PHD(Expansion_Pages)

PHD(Page_Arrays)

PHD(Page_ Tables)

Parameters
Affecting

Size

Global
Location
Containing
Segment Size

SWP$GW_
WSLPTE

SWP$GW_
EMPTPTE

SWP$GW_
BAKPTE

SGN$GL
PTPAGCNT

Process Header

PHD$C_LENGTH

PQL_DWSDEFAUL T

Fixed Portion of Process Header

PROCSECTCNT

WSMAX, PQL_DWSDEFAUL T

Size of entire PHD

VIRTUALPAGECNT

Figure F.1

I

Working Set List

j
t

Process Section Table

Empty Pages

Four Arrays for Process Header Pages

PO Page Table

J

1
P1 P!!!!e Table

Process Header and SYSGEN Parameters

F.1 Process Header

Parameters
Affecting Size

PHD$C_LENGTH,
PROCSECTCNT,
PQLDWSDEFAULT
WSMAX,
PQLDWSDEFAULT
Number of PHD

pages
VIRTUALPAGECNT

Size Stored
(In pages)

1-

t- SWP$GW_WSLPTE

1-

SW

SW
1....,

P$GW_EMPTPTE

P$GW_BAKPTE

J_

t- SGN$GL_PTPAGCNT

are stored, and the SYSGEN parameters that affect segment sizes. The table
also introduces the notation used in this section to describe the segments of
the PHD. Figure F.l shows the layout of the PHD and the relations among
the segments described in Table F.l.

1271

Size of System and Pl Virtual Address Spaces

The following global locations contain the sums of various segments listed
in Table F.l:

SGN$GL_PHDAPCNT = PHO(Fixed, WSL, PST) + PHD(Page_Arrays)

SGN$GL_PHDPAGCT = PHO(Fixed, WSL, PST)
+ PHD(Expansion_Pages) + PHD(Page_Arrays)

SWP$GL_BSLOTSZ = PHD(Fixed, WSL, PST)+ PHD(Expansion_Pages)
+ PHD(Page_Arrays) + PHD(Page_ Tables)

F.1.1 Process Page Tables

The PO and Pl page tables compose most of the PHO. The total number
of pages allocated for the process page tables depends on the parameter
VIRTUALPAGECNT:

PHD(p T bl) = VIRTUALPAGECNT+ 127 age_ a es 128 (Fl)

F.1.2 Working Set List and Process Section Table

1272

The PHO begins with the fixed portion. Immediately following the fixed
portion are the WSL and PST, which grow toward each other. The SYSGEN
parameter PROCSECTCNT determines the PST size. The WSL size depends
on the WSMAX parameter. In most systems, however, the working set of
an average process is much smaller than the allowed maximum. Therefore,
the parameter PQL_DWSDEFAULT determines the initial WSL size, and the
difference between WSMAX and PQLDWSDEFAULT is reserved for WSL
expansion.

To determine the initial size of the PHO fixed portion, WSL, and PST,
SYSBOOT first uses WSMAX to establish the maximum number of pages for
that area, and then it determines the extra space reserved for WSL expansion.
The difference between these two numbers is the number of pages initially
available for the fixed portion, WSL, and PST. In the following, 4 is the size
in bytes of a working set list entry, and 32 is the size in bytes of a process
section table entry.

[PH0$C_LENGTH + (4 * WSMAX)]
+ (32 * PROCSECTCNT) + 511

Temp= 512

PHD(E . p) _ WSMAX - PQL_DWSDEFAULT xpans1on_ ages - 128

PHD(Fixed, WSL, PST)= Temp- PHD(Expansion_Pages) (F2)

F.1 Process Header

F.1.3 Process Header and Page Table Page Arrays

The PHD contains two PHD page arrays, the working set list index (WSLX)
array, and the backing store (BAK) array. The swapper stores information
about PHD pages in these arrays while the header is outswapped. The BAK
array entries are longwords. The size of an entry in the WSLX array varies:
if 32 or more megabytes of memory are described by the page frame number
(PFN) database, each WSLX array entry is one longword in length; otherwise,
each entry is one word.

The PHD also contains two arrays of one-byte entries that describe each
page table page. However, to simplify the calculation of the memory required
for these arrays, each array contains an entry for each page in the PHD, as
the WSLX and BAK arrays do. Since the page tables constitute approximately
90 percent of the PHD in a typical system, this algorithm results in a good
approximation.

Thus, each page of the PHD requires an entry in each of four parallel
arrays. This requires ten bytes of memory per PHD page on a system with
32 or more megabytes of memory described by the PFN database, eight bytes
per page otherwise.

Because the page arrays reside within the PHD, their size must be included
in the PHD page count. That is, each page array must contain an entry for
each page in the PHD, including the pages within which the page arrays
themselves reside. Thus, the space allocated for this area depends on its own
size. SYSBOOT's calculation of this portion of the PHD proceeds iteratively.

1. SYSBOOT computes the size of the PHD in bytes, excluding the page
arrays and page tables, and adds 511.

PHD_Byte_Count = 512 * PHD(Fixed, WSL, PST)
+ 512 * PHD(Expansion_Pages)
+ 5ll (F3)

2. It calculates the number of PHD pages except for the page arrays them­
selves. This is the approximate number of entries needed in each page
array. SYSBOOT multiplies this count by eight or ten bytes, producing
the approximate size of the page arrays in bytes.

Page_Array_Byte_Count = Entry_Size * PHD(Fixed, WSL, PST)
+ Entry_Size * PHD(Expansion_Pages)
+ Entry _Size * PHD(Page_ Tables)

(F4)

3. SYSBOOT adds the approximate size of the page arrays to the PHD size
calculated in step 1.

PHD_Byte_Count = PHD_Byte_Count
+ Page_Array_Byte_Count (F5)

1273

Size of System and Pl Virtual Address Spaces

4. It converts the approximate page array size from step 2 into a page count.
This is the estimated number of additional page array entries required
for the page arrays themselves.

p Ar p C _ Page_Array_Byte_Count age_ ray_ age_ ount - 512 IF6)

Note that SYSBOOT converts bytes to pages by integer division. There­
fore, the resulting page count is zero if the byte count is less than 512
lone page).

If the page count is nonzero, SYSBOOT multiplies the page count by
eight or ten, depending on system memory configuration. This produces
the number of additional bytes required in the page array to describe its
own pages. SYSBOOT adds this number to the approximate PHD size
calculated in step 3. It converts these additional bytes to a page count
and repeats this step until the page count falls to zero.

5. Once the page count falls to zero, SYSBOOT converts the accumulated
size of the PHD from bytes to pages. It stores the result in SGN$GL_
PHDPAGCT.

SGN$GL PHDPAGCT = PHD_Byte_Count
- 51~

IF7)

Thus, SGN$GL_PHDPAGCT contains the number of pages in the PHD
fixed portion, WSL, PST, expansion pages, and page arrays. SGN$GLPT­
PAGCNT, initialized from VIRTUALPAGECNT, determines the page table
size. SYSBOOT adds SGN$GLPHDPAGCT and SGN$GL_PTPAGCNT to
obtain the total size of the PHD in pages, which it stores in SWP$GL_
BSLOTSZ.

F.2 SYSTEM VIRTUAL ADDRESS SPACE

1274

Once SYSBOOT has calculated the size of the PHD, it computes the size
of system virtual address space. System virtual address space must be large
enough to include the system base image and loadable executive images,
the variable-size pieces primarily defined by SYSGEN parameters, and other
variable-size pieces based on CPU and 1/0 space configuration.

Figure F .2 shows system virtual address space prior to the loading of
loadable executive images. Much of this address space is not cataloged in
the PFN database; instead, SYSBOOT itself permanently allocates physical
memory and initializes system page table entries ISPTEs) for these pages.
The section labeled Available System Pages is the area of virtual address
space available for mapping 1/0 space, loading executive images, loading
EXE$INIT, and similar functions. The global location LDR$GL_FREE_PT
contains the offset from the base of the system page table ISPT) to the

F.2 System Virtual Address Space

r--
System Service Vectors

Executive Transfer Vectors

System Data Area __, SYS.EXE No PFN data
SYSGEN Parameters Area

Boot Parameters Area

Miscellaneous
'--

Lower virtual addre sses

* Available System Pages *
Restart Parameter Block

sses PFN Database

j
Higher virtual addre]-- No PFN data

Paged Pool

Nonpaged Pool

LAP Lookaside List

IRP Lookaside List

SAP Lookaside List

Per-CPU Database

Guard Page No PFNdata

Boot Stack

Guard Page

Interrupt Stack

Guard Page

System Control Block

* Balance Slots *
System Header

System Page Table
} NoPFNdata

Global Page Table

SMP Boot PO Page Tables]-- No PFN data

Figure F.2
Initial Layout of System Virtual Address Space

first available SPTE in this address range; the actual contents are system­
dependent.

Many pieces of system address space vary in size, depending on one or
more SYSGEN parameters or on a particular CPU configuration. Table F.2
lists the pieces of system space in the order in which they are configured
(mapped from high to low virtual addres~ by SYSBOOT), the global location
of the pointer to the start of each piece, and the factors that affect the size.

1275

Size of System and Pl Virtual Address Spaces

Table F.2 Layout of System Virtual Address Space

Factors That
Item Global Location 1 Affect Size Protection Pageable

High end of system @MMG$GL_MAXSYSVA
space

Reserved for 32 pages ERKW No
symmetric
multiprocessing
(SMP) boot PO
page tables

Global page table @MMG$GL_GPTE GBLPAGES URKW Yes 2

System page table @MMG$GL_SPTBASE Everything ERKW No
System PHD @MMG$GL_SYSPHD SYSMWCNT, ERKW No

GBLSECTIONS
Balance slot area @SWP$G1-BALBASE BALSETCNT, ERKW Yes, no 3

Size of a PHD
System control @EXE$GL_SCB CPU configuration ERKW No

block
No access guard @EXE$GL_INTSTK 1 page No access No

page
Interrupt stack @EXE$G1-INTSTKLM INTSTKPAGES ERKW No
No access guard 1 page No access No

page
Boot stack 1 page ERKW No
No access guard 1 page No access No

page
Per-CPU database @SMP$GL_CPU _ 2 pages URKW No

DATA(cpu_id]
Small request @IOC$GL_SRPSPLIT SRPCOUNT, ERKW No

packet (SRP) SRPCOUNTV,
lookaside list SRPSIZE

Intermediate @EXE$GL_SPLITADR IRPCOUNT, ERKW No
request packet IRPCOUNTV
(IRP) lookaside
list

Large request @IOC$GL_LRPSPLIT LRPCOUNT, ERKW No
packet (LRP) LRPCOUNTV,
lookaside list LRPSIZE

Nonpaged pool @MMG$GL_NPAGEDYN NPAGEDYN, ERKW No
variable-length NPAGEVIR
list

Paged pool @MMG$GL_PAGEDYN PAGEDYN ERKW Yes
PFN database @PFN$.A__BASE Everything ERKW No
Restart parameter @EXE$GL_RPB 1 page URKW No

block (RPB)

(continued)

1276

F.2 System Virtual Address Space

Table F.2 Layout of System Virtual Address Space (continued)

Factors That
Item Global Location 1 Affect Size Protection Pageable

Available system LDR$GLFREE_PT 5 Everything No access
virtual address
space 4

System base image SYS$SO_ VECTOR_BASE 88 pages 7 UR and No
(SYS.EXE) 6 URKW 8

1 If the symbol @ does Qot precede the global location name, the name's value is the starting address of
the area in question. If the symbol @ precedes the global location name, the global location contains the
address of the area.

2 Global page table pages are initially configured as demand zero pages and are pageable. However, every
global page table page containing at least one valid global PTE is locked into the system working set.

3 Each PHD in the balance slot area is part of a process working set. Some portions of the PHD do not
page, but those physical pages are accounted for in a process working set and do not count toward the
executive's use of memory.

4 All loadable executive images eventually reside in this area.
5 This location contains the offset from MMG$GLSPTBASE to the first available SPTE.
6 See Chapter 29 for a detailed picture of the system base image layout.
7 This includes virtual address space reserved for expansion.
8 Four system service vector pages are protected UR; the remaining pages, including one modifiable

vector page, are protected URKW.

It also shows the protection and pageability of each piece; the owner access
mode of all system space pages is kernel.

Except for the system base image, the sizes of most pieces of system
address space listed in Table F.2 are simply based on one or two SYSGEN
parameters. SYSBOOT computes their sizes in a straightforward manner.
The system page table and the PFN database are more complicated. The
next sections discuss their sizes.

F.2.1 System Page Table

The SPT contains an SPTE for each page of system virtual address space,
including the SPT pages themselves. Thus, the space allocated for this area
depends in part on its own size. To calculate the size of the SPT, SYSBOOT
determines the actual sizes of some segments of system virtual address space
from SYSGEN parameters, estimates the size of the PFN database, and adds
1,024 SPTEs.

SYSBOOT performs the following calculations and sums the resulting
values to arrive at the SPTE count:

1. It determines the size of the area devoted to balance slots by multiplying
the size of a PHD in pages, described in Section F.l, by the SYSGEN

1277

Size of System and P1 Virtual Address Spaces

1278

parameter BALSETCNT. The area devoted to balance slots constitutes
more than half of system virtual address space in a typical configuration.

2. The SYSGEN parameter PAGEDYN is the number of bytes reserved for
paged pool. SYSBOOT converts PAGEDYN to a page count, rounding
downward, to get the number of SPTEs required to map paged pool.

3. Two SYSGEN parameters exist for each lookaside list and the nonpaged
variable-length list; one defines the initial size of the list and one defines
the maximum size to which the list can expand. SYSBOOT reserves
enough virtual address space for the maximum list size.

For each lookaside. list, SYSBOOT performs the following:

a. It determines the size of a request packet in the list, specified as a
SYSGEN parameter for SRPs and LRPs and as a constant, IRP$C_
LENGTH, for IRPs. It rounds the size upward to a 16-byte boundary,
the granularity of pool allocation. (For simplicity, Equation F8 does
not show this rounding.)

b. It multiplies the larger of the initial and maximum list size param­
eters by the size of a request packet. It converts the result to a page
count, rounding upward, to get the lookaside list size in pages. For
example, for the IRP lookaside list,

Temp= max(IRPCOUNT, IRPCOUNTV)

IRP 1 . = (IRP$C_LENGTH *Temp)+ 511
- IBt 512 (F8)

SYSBOOT converts the larger of the SYSGEN parameters NPAGEDYN
and NPAGEVIR to a page count, rounding downward, to get the size of
the nonpaged variable-length list. Note that SYSBOOT rounds the size
of the nonpaged variable-length list downward to an integral number of
pages whereas it rounds the size of each lookaside list upward.

Although SYSBOOT reserves enough virtual address space for the max­
imum size of each list, it allocates only as much physical memory as the
initial list size. This initial physical memory is not cataloged in the PFN
database. During system operations, each list can expand to its maxi­
mum size, but the physical pages allocated for expansion are generally
pages with PFN database entries.

4. SYSBOOT uses a simple estimate for the number of SPTEs to reserve for
the PFN database. It ignores the fact that some system pages will not
have entries in the PFN database and calculates the virtual address space
reserved for the PFN database as though every available page of memory
will have an entry.

This estimate errs on the high side in allocating SPTEs for the PFN
database. However, physical page allocation for the PFN database is not
based on this computation but on the more accurate computation de­
scribed in Section F.2.2. Thus, there is no large waste of physical memory.

F.2 System Virtual Address Space

5. The SYSGEN parameter SPTREQ includes sufficient additional SPTEs to
map all loadable executive images and the system base image. SYSBOOT
adds this value to its tally.

6. SYSBOOT also adds the value specified by the parameter REALTIME_
SPTS, a count of pages used by the connect-to-interrupt driver.

7. It adds 1,024 to its tally as an estimated I/O space requirement.
8. If the SYSGEN parameter DUMPSTYLE is set to 1 la selective dump

is enabled), SYSBOOT allocates 127 extra SPTEs. EXE$BUG_CHECK
uses these SPTEs to double-map noncontiguous pages of memory so that
they can be transferred to the crash dump file in a single I/O request.
Chapter 32 describes this process.

9. The system header calculation is similar to the calculation of PHO size,
described in Section F.l. However, since the size of the system working
set should not vary dramatically, the optimization technique for empty
working set expansion pages is not used. Also, since the system header
will never swap, it need not contain page arrays. The size of the SPT is
calculated separately, so the system header contains only a fixed portion,
a WSL, and a PST. Two SYSGEN parameters, SYSMWCNT and GBLSEC"
TIONS, control the size of these areas. In the following equation, 4 is the
size in bytes of a working set list entry, and 32 is the size in bytes of a
section table entry.

[PHD$C_LENGTH + j4 * SYSMWCNT)]
SYSPHD = + j32 * GBLSECTIONS) + 511

512
IF9)

10. SYSBOOT adds the size of the interrupt stack in pages, the SYSGEN
parameter INTSTKPAGES, to the number of pages required for the per­
CPU database, currently two. It adds one page for the CPU boot stack
and three pages for guard pages, and rounds the result to the next highest
power of 2.

The page protection code of guard pages is set to permit no access.
These pages cause an "interrupt stack not valid" processor halt on either
stack overflow or stack underflow.

On nonmultiprocessing systems, SYSBOOT adds the computed value
to its tally.

On an SMP system, SYSBOOT multiplies this value by the number of
actual or potential CPUs.

-For VAX 8200 family processors, the value is multiplied by 16 ..
-For VAX 8800 family processors, the value is multiplied by 2.
-For VAX 88x0 processors, SYSBOOT multiplies the value by 4.
-For the VAX 6000 series processors, SYSBOOT multiplies the value by

the actual number of CPUs available. It adds 80 additional SPTEs for
CPU-specific space requirements.

1279

Size of System and Pl Virtual Address Spaces

1280

-For VAXstation 3520 and 3540 processors, SYSBOOT multiplies the
value by 6. It adds 2,664 additional SPTEs for CPU-specific space
requirements.

11. On an SMP system, SYSBOOT allocates 3.2 additional SPTEs, one per
potential CPU. A CPU uses the SPTE indexed by its CPU ID to double­
map its boot stack. The same page serves as a PO page table page mapping
EXE$INIT, allowing EXE$INIT to be referenced by a PO address in the
process of turning on memory management. Chapter 34 describes the
boot stack. Chapter 31 describes turning on memory management.

12. SYSBOOT calculates the amount of system virtual address space to re­
serve for the global page table based on SYSGEN parameter GBLPAGES:

GBLPAGES + 127
GlobaLPage_ Table = 128 (FlO)

13. SYSBOOT adds the size of the system control block (SCB), a number
between 1and32, to its tally. The size of the SCB is CPU-dependent. All
processors have at least a one-page architecturally defined SCB, but the
bus and device configuration of a particular processor may require more
SCB pages.

-VAX-11/780 and VAX-11/785 processors use only one page of architec­
turally defined SCB.

-VAX-11/730 and MicroVAX II processors use a second page for dis­
patching UNIBUS or Q22-bus interrupts.

-VAX-11/750 processors use one additional page for each UNIBUS in­
terface on the system. This results in either a two-page or a three-page
SCB.

-VAX 8200 family processors use an additional page for each VAXBI-to­
UNIBUS adapter (DWBUA).

-VAX 8800 family and VAX 88x0 processors use a 32-page SCB to sup­
port the theoretical maximum number of directly vectored adapters.

-VAX 8600 and VAX 8650 processors use a four-page SCB to support
the maximum configuration of four synchronous backplane interface
(SBI) adapters.

-VAX 6000 series processors use an additional SCB page for each XMl-to­
V AXBI bus adapter (XBI) found on the XMI bus. The processors search
each VAXBI and use an additional page for each DWBUA on the VAXBI.

-MicroVAX 2000 processors use a two-page SCB.
-MicroVAX 3100 processors use a two-page SCB for dispatching small

computer system interface (SCSI) bus interrupts.
-MicroVAX 3300, 3400, and 3800 processors use a two-page SCB for

dispatching DSSI and Q22-bus interrupts.

F.2 System Virtual Address Space

-MicroVAX 3200, 3500, and 3600 processors use a two-page SCB for
dispatching Q22-bus interrupts.

-MicroVAX 3900 processors use a two-page SCB for dispatching Q22-
bus interrupts.

-VAXstation 3520 and 3540 processors use a two-page SCB for dispatch­
ing SCSI and Q22-bus interrupts.

The sum of items 1 through 13 represents the approximate number of
SPTEs needed, except those for the SPT pages themselves. SYSBOOT rounds
the SPTE count upward and divides it by 128, obtaining the number of SPT
pages that will themselves need SPTEs. It adds that number to the original
SPTE count and divides by 128, obtaining the number of SPT pages required .

...,.. _ SPTE_Count + 127
.iemp- 128

SPT P SPTE_Count +Temp
- ages= 128 (Fll)

SYSBOOT does not count the single page required for the RPB when
determining the initial size of the SPT. It assumes that page rounding or
one of the approximations will add the single SPTE required to map the
RPB.

F.2.2 PFN Database

The PFN database describes each page of physical memory except for certain
nonpaged portions of system space. This nonpaged area includes the area
where the PFN database itself resides. Thus, the size of the PFN database
depends in part on itself. ·

The PFN database includes either 18 or 22 bytes of information for each
page of physical memory it describes. If 32 or more megabytes of -memory
require PFN database entries, the global variable MMG$GW _BIGPFN con­
tains the value 1 and the PFN database contains 22 bytes of information
per page. Otherwise, MMG$GW _BIGPFN contains the value 0, and the PFN
database contains 18 bytes of information per page. Chapter 14 describes the
PFN database and the reason for the differing amounts of information.

In Equation Fl2, PFN_Entry_Size represents either 18 or 22. Available_
Pages represents the number of pages of available physical memory, the
lesser of actual physical memory and the SYSGEN parameter PHYSICAL­
PAGES. No_PFN_Entries represents the nonpaged portions of system space
not accounted for in the PFN database, listed in Equation Fl3.

[PFN_Entry_Size *]
(Available_Pages - No_PFN_Entries) + 511

PFN_DB_Size = (Fl2)
512

1281

Size of System and Pl Virtual Address Spaces

No_PFN_Entries =System base image
+ PFN database
+Initial allocation, nonpaged variable-length list
+ Initial allocation, lookaside lists
+ Interrupt stack
+Per-CPU database and boot stack
+SCB
+ System header
+ System page table IF13)

F.2.3 Available System Virtual Address Space

1282

After SYSBOOT calculates the size of system virtual -address space, it allo­
cates physical memory and initializes SPTEs for the portions of system space
not cataloged in the PFN database. It maps the SPT at the high end of virtual
address space, allocating its pages from the high end of physical memory. It
then assigns the system header, SCB, and so on at decreasing addresses, as
in Figure F.2. Finally, at the low end of system address space, it maps the
system base image, SYS.EXE.

The remaining SPTEs jthe section labeled Available System Pages in Fig­
ure F.2) represent a contiguous area of system virtual address space. This area
initially includes the entire region between the RPB and the system base im­
age. SYSBOOT loads the global location LDR$GL_FREE_PT with the offset
from the base of the SPT to the first available SPTE. At the next higher
SPTE, it places the count of available SPTEs. The routine LDR$ALLOC_PT,
described in Chapter 29, allocates virtual address space from this area, from
high to low virtual addresses. SYSBOOT, EXE$INIT, and SYSINIT use this
space to map I/O space, load executive images, and for similar functions.

This address space is reusable; for instance, SYSBOOT maps EXE$INIT
into this region. When EXE$INIT completes, its address space is deallocated
and becomes available to the next invoker of LDR$ALLOC_PT. Loadable
executive images, also described in Chapter 29, can contain paged and non­
paged image sections as well as image sections that are deallocated after
use. In addition, a system might not include every loadable executive image.
Thus, the contents as well as the size of this area are system-dependent, and
part of the address space may be pageable.

Table F.3 lists the items allocated from this area, the order in which they
are allocated, and the page protection. The owner access mode of all these
pages is kernel. Note that the loadable executive images loaded by SYSBOOT
contain no pageable sections. The System Dump Analyzer (SDA) command
SHOW EXECUTIVE displays the location and size of every image currently
loaded and thus provides a fairly complete picture of this area.

Figure F .3 shows the address space on a typical system after the comple­
tion of system initialization. For the sake of simplicity, the figure does not

F.2 System Virtual Address Space

Table F .3 System Virtual Address Area

Item Global Location 1

MAPPED FROM IBGH TO LOW VIRTUAL ADDRESS

FROM AVAILABLE SYSTEM SPACE AREA BY SYSBOOT

Temporary 1/0 space for boot driver
EXEC_INIT.EXE
SYSTEM_DEBUG.EXE 2

SYSTEM_PRIMITIVES.EXE
SYSTEM_SYNCHRONIZATION.EXE 3

PRIMITIVE_IO.EXE
ERRORLOG.EXE

MAPPED FROM AVAILABLE SYSTEM SPACE AREA BY EXE$INIT

Page to map pages without PFN database @MMG$GL_FREE_NO_
entry PFN_DB_vA

Temporary page (VAX 6000 series) @EXE$GL_CPUNODSP
Mapping for 1/0 adapters @(®MMG$GL_SBICONF) 4

PROCESS_MANAGEMENT.EXE
IO_ROUTINES.EXE
EVENT _FLAGS_AND_ASTS.EXE
IMAGE_MANAGEMENT.EXE
WORKING_SET _MANAGEMENT.EXE
PAGE_MANAGEMENT.EXE
LOCKING.EXE
SECURITY.EXE
LOGICAL_NAMES.EXE
EXCEPTION.EXE
MESSAGE_ROUTINES.EXE
SYSDEVICE.EXE
SYSGETSYI.EXE
SYSLICENSE.EXE
LMF$GROUP _TABLE.EXE
CPULOA.EXE
Connect-to-interrupt pages
Tape mount verification buffer

(two pages)
Mount verification buffer
Demand zero optimization page
Erase pattern buffer page
Erase pattern page table page
Executive data page
Swapper page table page
Swapper Pl vector page

@(@EXE$GL_RTBITMAP) 5

@EXE$GL_ TMV _SVABUF

EXE$GL_SV APTE 7

@MMG$GL_DZRO_ VA
@EXE$GL_ERASEPB
@EXE$GL_ERASEPPT
@EXE$AR_EWDATA
@SWP$GL_MAP

Protection

(deallocated)
(deallocated)
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW

KW

KW
KW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW
No access 6

KR

KW
KW
KW
UR
UREW
ERKW
KW

(continued)

1283

Size of System and Pl Virtual Address Spaces

Table F.3 System Virtual Address Area (continued)

Item Global Location 1 Protection

MAPPED FROM AVAILABLE SYSTEM SPACE AREA BY THE SYSINIT PROCESS

DDIF$RMS_EXTENSION.EXE UR/URKW
UR/URKW
UR/URKW
UR/URKW
UR/URKW

SYSLDILDYN.EXE
RECOVERY_UNIT _SERVICES.EXE
RMS.EXE @MMG$GL_RMSBASE

@EXE$GL_SYSMSG SYSMSG.EXE

1 If the symbol @ does not precede the global location name, the name's value is the starting address of
the area in question. If the symbol @ precedes the global location name, the global location contains the
address of the area.

2 Optionally loaded based on boot parameters.
3 One of three possible synchronization images loaded.
4 An element in the longword array @MMG$GLSBICONF contains the system virtual address of the

first page of an adapter's 1/0 space. The number and type of adapters present determine the size of this
area. The global EXE$GLNUMNEXUS contains the number of adapters.

5 This location contains a system virtual page number, not a system virtual address. REALTIME_SPTES
determines the number of pages allocated.

6 Initialization maps the connect-to-interrupt pages as "no access." Allocation alters the protection.
7 This location contains the system virtual address of a PTE, not a system virtual address.

show the areas of available virtual address space between loadable executive
images. These areas originally contained the image initialization and fixup
routines, deallocated by the time system initialization is complete. The Mis­
cellaneous sections represent pages allocated individually by EXE$INIT and
loadable executive images.

F.2.4 Nonpaged Pool

F.3

1284

SYSBOOT loads the boot driver and boot control block into nonpaged pool.
Some executive images such as SYSLOAxxx .EXE, whose format differs from
that of loadable executive images like SYSTEM_PRIMITIVES.EXE, are loaded
into nonpaged pool by SYSBOOT and later initialized by EXE$INIT. SYS­
BOOT also loads any necessary device drivers and any emulation images.
Table F.4 shows the initial use of nonpaged pool.

VMS PHYSICAL MEMORY REQUIREMENTS

The physical memory requirement of the VMS executive, that is, the number
of pages not available for user processes, is the sum of the nonpaged areas,
the system working set, the low-limit thresholds for the free and modi£ed
page lists, the Files-11 Extended QIO Processor (XQP), and the working sets
of memory-resident system processes:

Loaded by the
SYSINIT process

Loaded by
EXEC_INIT

Loaded by
SYSBOOT

Loaded by the
SYSINIT process

Figure F.3

{

-I

-I

{

F.3 VMS Physical Memory Requirements

SYSMSG

Miscellaneous

RMS

CPULOA

LMF$GROUP _TABLE

SYSLICENSE

SYSGETSYI

SYSDEVICE

MESSAGE_ROUTINES

EXCEPTION

LOGICAL_NAMES

SECURITY

LOCKING

PAGE_MANAGEMENT

WORKING_SET_MANAGEMENT

IMAGE_MANAGEMENT

EVENT_FLAGS_AND_ASTS

IO_ROUTINES

PROCESS_MANAGEMENT

VO Pages

Miscellaneous

ERRORLOG

PRIMITIVE_IO

SYSTEM_ SYNCHRONIZATION

SYSTEM_PRIMITIVES

Miscellaneous

SYSLDR_DYN

DDIF$RMS_EXTENSION

RECOVERY _UNIT_SERVICES

l/O Pages

Lower virtual addresses

I
Higher virtual addresses

}
Initially,
EXEC INIT
reside5here

Typical System Virtual Address Assignment

1285

Size of System and P1 Virtual Address Spaces

Table F.4 Loaded into Nonpaged Pool by SYSBOOT

Item

Boot driver
Boot control block

System disk driver
Port driver
Terminal driver
SCSLOA.EXE

SYSLOAxxx .EXE
CLUSTRLOA.EXE
VAXEMUL.EXE
FPEMUL.EXE

Description

Primitive system disk driver
Information for use during initial­

ization and crashing

Optional

Optional system communication
services (SCS J image

CPU-dependent image
Optional VAXcluster image
Optional instruction emulation
Optional instruction emulation

System_Memory = Nonpaged + SYSMWCNT + FREELIM
+ MPW _LOLIMIT + XQP + System_Processes

Available_Memory = TotaLPhysicaLMemory - System_Memory

IF14)

IF15)

F.3.1 Nonpaged Areas

1286

The nonpaged areas on a given system include the physical pages not cat­
aloged in the PFN database jsee Equation F12), the permanently mapped
pages for mount verification and similar items, and the nonpageable image
sections of the loadable images selected by local SYSGEN parameters:

Nonpaged = No_PFN_Entries pages+ Miscellaneous pages
+ Nonpageable image sections

of loadable executive images (F16)

As shown in this appendix, much depends on SYSGEN parameters. They
determine the size of executive data areas and whether the normally pageable
portions of the executive are made nonpageable. They influence the choice
of loadable executive images, which contribute to both paged and nonpaged
memory use.

Table F.5 lists the paged and nonpaged portions of the executive. Where
possible, the table includes either the size in pages or a reference to the
section of this appendix that describes the size computation. However, the
table does not include the sizes of the loadable executive image sections.
Chapter 29 describes the loadable executive image structure in detail; note
that each image is allowed two pageable and two nonpageable image sections.

F.3 VMS Physical Memory Requirements

(This appendix ignores the initialization section and fixup section, since they
are deallocated by the time system initialization completes.) The amount of
physical memory used by a loadable image is the sum of the sizes of its two
nonpageable image sections. The Analyze/Image Utility displays each image
section, its characteristics, and its size.

Paged pool, the paged portions of the loadable executive images, and the
global page table pages also require physical memory. However, it is rea­
sonable to assume that the system working set is full at all times, so
that the physical memory requirements of the paged portions are simply
SYSMWCNT pages.

Two other items must be taken into account when calculating the number
of physical pages used by the executive: the SYSGEN parameters FREELIM
and MPW _LOLIMIT set, which set low-limit thresholds on the number of
pages on the free and modified page lists; and the Files-11 XQP, which is
mapped in the Pl space of each process. When the SYSGEN parameter ACP _
XQP _RES is 1 (its default value), SYSINIT maps the XQP as a resident global
section, which means that all its shareable pages are permanently resident.
For VMS Version 5.2, a resident XQP contributes approximately 131 pages
to the total memory requirements.

F.3.2 System Processes

The working sets of memory-resident system processes can also be included
in the total memory requirements of VMS. Some of the following processes
are not required; however, all are considered to be system processes:

• Job controller
• Print symbionts
• Error logger format process (ERRFMT)
• Operator communication process (OPCOM)
• Magnetic tape ancillary control processes (ACPs)
• Network ACP (NETACP)
• Remote terminal ACP (REMACP)
• Audit collection process (AUDIT _SERVER)
• System Management Utility process (SMISERVER)
• Network event logger (EVL)

Several other system processes exist on a VAXcluster node:

• Cluster cache server process (CACHE_SERVER)
• Cluster server process (CLUSTER_SERVER)
• Cluster device configuration process (CONFIGURE)

The Digital command language (DCL) command SHOW SYSTEM lists the
physical memory in use by each of these processes at a given time. However,
the amount of memory varies over time for these reasons:

1287

Size of System and Pl Virtual Address Spaces

1288

Table F.5 Division of System Virtual Address Space into Nonpaged and
Paged Pieces

Item Size

SYSBOOT permanently maps the following portions of system address space. The
PFN database does not contain entries for the physical pages that these portions
occupy.

System base image

PFN database
Initial portion of nonpaged

pool
Initial portion of lookaside

lists
Interrupt stack
Per-CPU database and boot

stack
System control block
System header
System page table

34 physical pages, from MMG$A_SYS_END to
SYS$SO_ VECTOR_SPACE

Equation Fl3
Item 3 in Section F.2.1

Item 3 in Section F.2.1

Item 10 in Section F.2.1
3 pages

Item 13 in Section F.2.1
Equation F9
Equation Fll

Other nonpageable system virtual address space.

RPB 1 page
All nonpaged image sections

in loadable executive
images 1•2

Page to map pages without
PFN database entry

Temporary page (VAX 6000
series)

Tape mount verification buffer
Mount verification buffer
Demand zero optimization

page
Erase pattern buffer
Erase pattern page table
Executive data page
Swapper page table page
Swapper Pl vector page

1 page

1 page

2 pages
1 page
1 page

1 page
1 page
1 page
1 page
1 page

This system address space is pageable. A maximum of SYSMWCNT pages of this
area can be resident at a given time.

Pageable image sections of
loadable executive images 1

Paged executive data
Paged pool
Global page table pages

1 page
Item 2 in Section F.2.1
Equation FlO

(continued)

F.4

F.4 Size of Pl Space

Table F.5 Division of System Virtual Address Space into Nonpaged and
Paged Pieces (continued)

Item Size

This system address space does not require physical memory.

1/0 space mapping 1/0 addresses
Balance slot area PHD pages and page table pages are charged to

process working sets

1 Not all loadable executive images are required.
2 The SDA command SHOW EXECUTIVE displays loadable images.

' • The memory the process consumes is its working set. Automatic working
set limit adjustment changes the size of the process working set over time.
(This assumes that the process reaches its working set limit, a reasonable
assumption for a system process.)

• A system process can be outswapped, temporarily reducing its physical
memory requirement to zero.

Because many system processes are optional and because their physical
memory requirements vary over time, this appendix cannot describe their
memory use. Use the Monitor Utility and the DCL command SHOW SYS­
TEM to obtain the process working set size and other characteristics. Use
the DCL command SHOW MEMORY /PHYSICAL to obtain the number of
pages allocated to VMS and not cataloged in the PFN database.

SIZE OF Pl SPACE

Pl space includes both fixed and dynamically configured areas. The SHELL
module defines the fixed-size area. The many dynamic areas are configured
by other modules based on SYSGEN parameters, image sizes, and other
variables. Table F.6 describes the fixed and dynamic areas of Pl space and
the size of each. Note that the first module maps the low-address end of
Pl space and subsequent modules describe Pl space toward higher virtual
addresses. The highest Pl address range is the fixed-size portion defined in
SHELL, which is the initial Pl mapping for every process.

1. The SHELL module initially defines Pl space. It constructs a skeleton Pl
page table, mapping a predetermined virtual address range. It also creates
the Pl window to the PHD, which maps all PHD virtual pages except
the page table pages. Section F.l shows each segment of the PHD and
the SYSGEN parameter that controls its size.

2. Following SHELL, EXE$PROCSTRT dynamically configures more of Pl
space. It primarily determines the sizes from SYSGEN parameters. It
also expands Pl space to map the Files-11 XQP into the Pl space of each

1289

Size of System and Pl Virtual Address Spaces

Table F.6 Layout of Pl Space

Factors That Protec- Page-
Item Global Location 1 Affect Size 2 tion Owner able

MAPPED BY THE IMAGE ACTIVATOR

Low-address end @((®CTL$GL_PHD)
of Pl space +PHD$LFREP1 VA)

User stack @(CTL$ALSTACK+OC) 3 ISD$K_ uw u Yes
USRSTACK
(20-page
default)

Extra user stack 2 pages uw u Yes
pages

Extra image 1/0 IOSEGMENT UREW E Yes
segment link option

Boundary be- @CTL$GLCTLBASVA 4

tween process-
permanent and
image-specific
Pl space

MAPPED BY THE DCL COMMAND SET MESSAGE

Per-process mes- @CTL$GL_PPMSG Size of section UR E Yes
sage section

MAPPED BY LOGINOUT

CLI symbol table @(CTL$AG_CLIDATA+ 10) CLISYMTBL SW s Yes
CLI command @CTL$AG_CLITABLE Size of com- UR s Yes

tables mand tables
CLI image @CTL$AG_CLIMAGE Size of CLI UR s Yes

image

MAPPED BY EXE$PROCSTRT

Files-11 XQP data @(@CTL$GLF11BXQP+l8) KW K Yes,
and stack nos

Files-11 XQP @(@CTL$GLF1 lBXQP+lO) Size of ER E Yes,
image FllBXQP nos

Image 1/0 segment @(PIO$GQ_IIODEFAULT +4) IMGIOCNT UREW K Yes
Process I/O PIO PAGES UREW K Yes

segment
Process allocation CTLPAGES UREW K Yes

region
Channel control @CTL$GLCCBBASE 6 CHANNEL- UREW K Yes

block table CNT
Initial end of Pl @MMG$GLCTLBASVA 7

space for each
process

(continued)

1290

F.4 Size of Pl Space

Table F.6 Layout of Pl Space (continued)

Factors That Protec- Page-
Item Global Location 1 Affect Size 2 ti on Owner able

FIXED SIZE PORTION - DEFINED IN SHELL

Pl window to @CTL$GL_PHD Size of the URKW, K No
PHD PHD ERKW

VWS area CTL$A_VWS 2 pages uw K Yes
RMS pointer page PIO$GL_FMLH 1 page UREW E No
RMS pointer page 1 page UREW E Yes

extension
RMS directory PIO$A_DIRCACHE 4 pages UREW E Yes

cache
RMS internal 1 page UREW E Yes

structures
Per-process com- PIO$A_RMS_PIOEND 4 pages uw K Yes

mon for users
Per-process com- CTL$A_COMMON 4 pages uw K Yes

mon for Digital
Compatibility CTL$AG_CMEDATA 2 pages uw K Yes

mode data pages
Security audit data NSA$T_IDT 3 pages KW K Yes

pages
Image activator CTL$GL_IAFLINK 1 page UREW E Yes

context page
Generic CLI data CTL$AL_CLICALBK 12 pages URSW s Yes

pages
Image activator IAC$AL_IMGACTBUF 8 pages UREW E Yes

scratch pages
Debugger context 4 pages uw u Yes

pages
Vectors for user- CTL$A_DISPVEC 3 pages UREW K Yes

written system
services and
messages

Image header MMG$IMGHDRBUF 1 page URSW E Yes
buffer

Kernel request CTL$GL_KRP 4 pages URKW K Yes
packet lookaside
list

No access guard 1 page No K
page access

Kernel stack CTL$GL_KSTKBASEXP 4 pages No K
expansion pages access

Kernel stack CTL$GL_KSTKBAS 3 pages SRKW K No
Executive stack CTL$AL_STACK+4 3 16 pages SREW E Yes
Supervisor stack ®(CTL$AL_STACK+8) 3 32 pages URSW s Yes

(continued)

1291

Size of System and P 1 Virtual Address Spaces

Table F.6 Layout of Pl Space (continued)

Factors That Protec- Page-
Item Global Location 1 Affect Size 2 tion Owner able

FIXED SIZE PORTION - DEFINED IN SHELL

VMS kernel mode CTL$A_PRCPRM_DATA 2 pages URKW K Yes
data pages

VMS user mode CTL$GL_DCLPRSOWN l page uw K Yes
data page

System service PlSYSVECTORS 5 pages UR K No
vectors

Reserved for 11 pages No K
system service access
vector expansion

Pl pointer page CTL$GL_ VECTORS 1 page URKW K No
VAX DEBUG dy- @(CTL$GQ_DBGAREA+4) 128 pages uw u Yes

namic memory

1 Numbers in address expressions are hexadecimal. If the symbol @ precedes the global location name,
the global location contains the address of the area. If the symbol @ does not precede the global location
name, the name's value is the starting address of the area.

2 These sizes are in decimal.
3 Global location CTL$A1-STACK is the address of a four-longword array whose elements contain the

initial values of the four per-process stack pointers. An array element is indexed by access mode.
4 Global location CTL$G1-CTLBASVA contains the address of the boundary between the image-specific

portion of Pl space (deleted at image exit by routine MMG$IMGRESET) and the process-permanent portion
of Pl space.

5 The XQP stack and some of its data pages are accessed at elevated interrupt priority levels (IPLs).
Therefore, they are locked into the process's working set list and are not pageable. If the SYSGEN
parameter ACP_XQP_RES is 1, the default, the XQP is mapped as a resident global section.

6 CTL$GL_CCBBASE points to the high-address end of the channel control block table.
7 SYSBOOT sizes the PHD (and thus the Pl window to the PHD) and initializes global location

MMG$GL_CTLBASVA to the next available Pl space virtual address. Each time the process-permanent
portion of Pl space expands, to map the CCBs or the XQP for instance, CTL$G1-CTLBASVA is updated
to reflect the changes.

1292

process. It then calls initialization code within the XQP, which creates
additional Pl space to use as the XQP impure area and private kernel
stack. The size of the image Fl lBXQP.EXE and its data area determine
the space required for the file system.

3. A process typically executes LOGINOUT next. LOGINOUT maps a se­
lected command language interpreter (CLIJ, expanding Pl space to in­
clude the CLI, CLI command tables, and CLI symbol table. The size of
these images and the SYSGEN parameter CLISYMTBL determine the Pl
virtual address space requirements.

4. The DCL command SET MESSAGE maps a message file into Pl space
as a process-permanent message section.

F.4 Size of Pl Space

5. The mapping and configuration of the remaining Pl space alters with the
activation of each new image. This area is bounded by PHD$L_FREP1 VA,
the next available Pl space virtual address, and CTL$GL_CTLBASVA,
which divides the area from permanently allocated Pl space. The image
size and link options determine the size of this area. •

F.4.1 Selected Dynamic Pl Areas

The following list expands the description of selected dynamic portions of
Pl space:

• The channel control block (CCB) table has SYSGEN parameter CHAN­
NELCNT elements, each 16 bytes long. CTL$G1-CCBBASE points to the
high-address end of the table. A particular CCB is identified by its negative
byte displacement from the contents of CTL$G1-CCBBASE .

• The process allocation region is a Pl space dynamic memory pool (see
Chapter 19). The SYSGEN parameter CTLPAGES determines its size in
pages .

• The process 1/0 segment contains Record Management System (RMS) data
structures describing process-permanent files, those which can and usu­
ally do remain open across image activations. The SYSGEN parameter
PIOPAGES determines its size .

• The SYSGEN parameter IMGIOCNT specifies the default number of pages
created by EXE$PROCSTRT for the image 1/0 segment, the RMS impure
area for files opened during the execution of a specific image.

The following line in the link time option file overrides the default
number of image 1/0 segment pages for a specific image:

IOSEGMENT = n

If the IOSEGMENT option specifies more pages than the IMGIOCNT
parameter, the image activator allocates an alternative image 1/0 segment
of size IOSEGMENT .

• The image activator allocates two extra pages adjacent to the user stack.
These pages allow the operating system to recover if the user stack is
corrupted.

• The default user stack size is 20 pages. The following option in the link.
options file overrides the default user stack size at link time:

STACK = n

Because the system's access violation handler automatically expands the
user stack on overflow, the link option is generally unnecessary. One
possible exception might be an image that requires a large amount of stack
space but cannot afford the overhead required for automatic run-time stack
expansion.

1293

G VAX CPU Designations

1294

Most parts of VMS are independent of CPU type. There are, however, certain
CPU-specific components. The names of these components contain CPU
designations in the positions shown as xxx or yyy. Table G.l lists the CPU
designation for each CPU type.

The CPU-specific components include the following:

• The set of macros $PRyyyDEF
•The set of macros $IOyyyDEF
• The set of macros $KAyyyDEF
• The loadable images SYSLOAxxx .EXE

The macro $PRDEF, in STARLET.MLB, defines symbolic names for the
processor registers that are common to all types of VAX processors. For most
CPU types, a second LIB.MLB macro, $PRyyyDEF, defines symbolic names
for the CPU's additional processor registers.

The LIB.MLB $I0yyy DEF macros define symbolic names for the physical
addresses of CPU-specific registers.

The LIB.MLB $KAyyyDEF macros define symbolic names for the offsets
from the address stored in EXE$GL_CPUNODSP to CPU-specific registers,
as defined in $IOyyyDEF. There is not necessarily a $KAyyyDEF macro for
each CPU type.

The loadable SYSLOAxxx images contain support for CPU-specific im­
plementation details, such as machine check exceptions, memory and bus
error interrupts, I/O adapter initialization, and console terminal support.
The SYSLOAxxx image names and the names of their CPU-specific source
modules contain a CPU designation. Certain VAX processors, such as the
MicroVAX II, support sufficiently different console terminals that a different
SYSLOAxxx image is required for each type of console terminal. Table G.1
lists the names of the SYSLOAxxx images. Chapters 30 and 31 describe the
manner in which the SYSLOAxxx images are loaded and used.

VAX CPU Designations

Table G.l VAX CPU Designations

yyy SYSLOAxxx System Types

UV2 SYSLOAUV2.EXE MicroVAX IT
UV2 SYSLOAWS2.EXE V Ax.station II
UV2 SYSLOAWSD.EXE VAXstation 11/GPX
410 SYSLOA4 l O.EXE MicroVAX 2000
410 SYSLOA41 W.EXE VAXstation 2000 (monochrome)
410 SYSLOA41D.EXE VAXstation 2000/GPX
420 SYSLOA420.EXE MicroVAX 3100
420 SYSLOA42W.EXE VAXstation 3100 (monochrome) models. 30/40/38/48
420 SYSLOA42D.EXE VAXstation 3100/GPX models 30/40/38/48
60 SYSLOA60.EXE VAXstation 3520/3540
640 SYSLOA640.EXE MicroVAX 3300, MicroVAX 3400
650 SYSLOA650.EXE MicroVAX 3200, MicroVAX 3500, MicroVAX 3600,

MicroVAX 3800, MicroVAX 3900
650 SYSLOA65D.EXE VAXstation 3200, VAXstation 3500
730 SYSLOA730.EXE VAX-11/730
750 SYSLOA750.EXE VAX-11/750
780 SYSLOA780.EXE VAX-11/780, VAX-11/785
790 SYSLOA790.EXE VAX 8600, VAX 8650
BSS SYSLOA8SS.EXE VAX 8200, VAX 8250, VAX 8300, VAX 8350
8NN SYSLOA8NN.EXE VAX 8500, VAX 8530, VAX 8550, VAX 8700, VAX

8800
BPS SYSLOABPS.EXE VAX 8810, VAX 8820, VAX 8830, VAX 8840
9CC SYSLOA9CC.EXE VAX 6000 series model 200, model 300
9RR SYSLOA9RR.EXE VAX 6000 series model 400

1295

H Lock and Resource Use by VMS
Components

Many VMS facilities use lock management system services to coordinate
their own activities, both locally and within a VAX.cluster system. This
appendix examines a number of those facilities and describes their lock use.
The aim is to demonstrate a variety of locking techniques and to provide
examples of situations where specific techniques are beneficial.

This appendix is by no means a complete description of VMS lock use
or of the various facilities mentioned. It assumes that the reader is familiar
with Chapter 10 of this book and with the description of the VMS lock
management system services found in the VMS System Services Reference
Manual.

H.1 ASPECTS OF RESOURCE AND LOCK USE

1296

The data structure that represents the entity being locked is a resource block,
commonly referred to as a resource. A resource is uniquely identified by the
combination of its resource name string, scope, access mode, and parent
resource, if any.

A lock on a resource is characterized by its lock mode, the extent to which
it allows shared access with other locks on the same resource. Chapter 10
lists the different lock modes: concurrent read/write (CR, CW), protected
read/write (PR, PW), null (NL), and exclusive (EX). The context of a lock
is also relevant: locks on some resources are owned by the system rather
than by a particular process. For convenience in describing resources and
their associated locks, the discussion often mentions only the lock; in these
cases, the resource is implied.

The resource name string of a resource created by VMS for its own use
typically begins with a facility code. The remainder of the string further
identifies the specific resource, for example, SCSNODE, device name, or file
ID.

Table H.l lists some VMS facilities, their associated facility codes, and the
sections in this appendix that further describe the facility's lock use.

The scope of a resource, and of its locks, is the extent to which the
resource name is available to processes sharing the resource. By default, VMS
includes as part of a resource name the user identification code (UIC) group
of the process creating the resource. Processes belonging to other UIC groups
cannot share such a resource.

To share resources throughout a VAX.cluster system independent of UIC,

H.1 Aspects of Resource and Lock Use

Table H.1 VMS Facility Codes

Facility Code Section

VMS executive SYS$ Section H.2
$MOUNT system service MOU$ Section H.3
$DISMOU system service DMT$ Section H.4
Volume shadowing SHAD$ Section H.5
File system (Files-11 XQPJ F11B$ Section H.6
Record Management Services (RMS) RMS$ Section H.7
Image activator and Install Utility INSTALL$ Section H.8
DECnet-VAXcluster alias CLU$ Section H.9.1
DECnet-proxy NET$ Section H.9.2
Job controller JBC$ Section H.10
System Generation (SYSGEN) Utility SYSGEN$ Section H.11
System Management (SYSMAN) Utility SMISERVER$ Section H.12

many VMS facilities specify the Enqueue Lock Request ($ENQJ system ser­
vice flag LCK$V _SYSTEM. (A process not in kernel or executive mode re­
quires the SYSLCK privilege to specify this flag.) The flag causes VMS to
omit the UIC group from the resource name. Thus, a process belonging to
any UIC group can share the resource if it specifies the LCK$V _SYSTEM
flag in its lock request. Such a resource is usually characterized as being
systemwide. To avoid confusion with the characteristic system-owned, this
chapter refers to the scope of these resources and locks as UIC-independent.

Other VMS facilities, such as the job controller, require a process on
each VAXcluster node. The processes are created in a controlled· fashion
and belong to the same UIC group. Each process synchronizes access to
private structures and files using a protocol shared by its counterparts on
other nodes. These processes do not use the LCK$V _SYSTEM flag in their
lock requests; thus, their resources and locks are available only to members
of the same UIC group. This chapter refers to the scope of these resources
and locks as UIC-specific.

The lock manager deallocates a resource block (RSB) when its last lock
is dequeued. Locks are dequeued and lock blocks deallocated when their
creating process is deleted. To guarantee the survival of an important lock
so that its resource block and especially its value block remain available, a
VMS facility enqueuing a lock can declare its context to be system-owned
rather than process-owned. The use of system-owned locks is reserved to
Digital. Any other use is strongly discouraged by Digital and completely
unsupported.

A parent resource is used to create a logical lock grouping or, in the case
of the System ID lock, to restrict resource mastership to a particular node
(see Section H.2.1).

1297

Lock and Resource Use by VMS Components

Other significant aspects of VMS lock use include a lock's value block;
the presence or absence of a blocking asynchronous system trap (AST) and
the trigger for delivery of a blocking AST; and the name of any symbol used
to locate the lock or define the resource name. Blocking ASTs are described
in Chapter 10.

Every lock description in this appendix begins with a table of the lock's
significant attributes.

H.2 VMS EXECUTIVE LOCK USE

H.2.1 System ID Lock

Resource name string
Symbol

"SYS$SYS_ID" + SCSSYSTEMID
EXE$GL_SYSID_LOCK

H.2.2

1298

Mode of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

EX
UIC-independent
Executive
None
None
None
System-owned

The System ID lock guarantees a unique identity for each VAXcluster node
by enforcing the requirement that the SYSGEN parameter SCSSYSTEMID
be unique within the VAXcluster system.

During system initialization, every VMS system requests an EX lock on
a resource whose name is based on its own SCSSYSTEMID. Since SCSSYS­
TEMID is required to be unique in a V AXcluster system, the lock should
be granted immediately. If the lock request is successful, the numeric lock
ID is stored in the cell EXE$GL_SYSID_LOCK. If the lock request fails, an
identical SCSSYSTEMID exists in the VAXcluster system. An error message
is generated and further system initialization is prevented.

Since each V AXcluster node builds and locks a unique resource, the System
ID lock is always mastered on the local system. Therefore, any sublock of
the System ID lock is mastered on the local system. Many VMS facilities
take advantage of this feature and use the lock ID in EXE$G1-SYSID_LOCK
as a parent for locks to be mastered locally and for locks whose range is
limited to a specific VAXcluster node rather than to the entire VAXcluster
system.

Set Time Lock

Resource name string
Symbol
Mode of acquisition

"SYS$CWSETIME"
None
EX

Scope
Access mode
Parent
Value block
Blocking AST
Context

H.2 VMS Executive Lock Use

UIC-independent
Kernel
None
None
None
Process-owned

The Set Time lock serializes concurrent SET TIME/CLUSTER operations.
The image that runs in response to this Digital command language (DCL)
command acquires an EX mode lock on the resource SYS$CWSETIME. Even
if more than one process enters the SET TIME/CLUSTER command simulta­
neously, only one process acquires the lock while the others wait. Therefore,
the same time value is broadcast to all VAXcluster nodes during this interval.
When the owning process releases the lock, a waiting process may acquire
it and broadcast its own time value. This mechanism ensures that time is
broadcast consistently across all VAXcluster nodes.

H.2.3 Device Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"SYS$" + allocation class device name
UCB$LLOCKID
CR, PW, EX
UIC-independent
Kernel
None
Yes
None
System-owned

Device locks propagate the standard VMS properties for device allocation
throughout a V AXcluster system. They manage the availability of devices
visible clusterwide. The Deallocate Device ($DALLOC), Assign I/O Channel
($ASSIGN), Mount Volume ($MOUNT), Dismount Volume ($DISMOU), and
Deassign I/O Channel ($DASSGN) system services, among others, acquire
and release Device locks either directly or using the routines IOC$LOCK_
DEV and IOC$UNLOCK_DEV in module IOSUBPAGD.

A VAXcluster node actually has at most one Device lock enqueued per
device, with a resource name based on the allocation class device name as
returned by the Get Device/Volume Information ($GETDVI) system service
argument DVI$_ALLDEVNAM. Its lock ID is stored in the device's unit control
block (UCB) at UCB$LLOCKID.

A Device lock is enqueued or converted for a device visible to the VAX­
cluster system when the device is explicitly allocated, when the $MOUNT
system service implicitly allocates the device for a private mount request,
when the $MOUNT system service must ensure that the device is available

1299

Lock and Resource Use by VMS Components

and not allocated for a shareable request, when the $ASSIGN system ser­
vice creates the first channel to a device that is available clusterwide, and
through other code paths as well.

The lock mode varies depending on the operation and its arguments:

• At device allocation, an EX mode lock is requested .
• For a private mount, the $MOUNT system service requests an EX mode

lock.
• For a system or group mount, the $MOUNT system service initially re­

quests a PW mode lock with the LCK$V _NOQUEUE flag. If the device is
already allocated or mounted privately, an EX mode lock exists, the PW re­
quest fails, and the $MOUNT system service returns an error. If the device
is already mounted in a shareable fashion by any other V AXcluster nodes,
only CR mode locks exist. The PW mode lock is granted and eventually
converted to CR mode .

• The $ASSIGN system service requests a CR mode lock.

The value block of a Device lock contains such information as a device's
mount state, protection, ownership, shadow set membership, and write lock
state. It coordinates these attributes across the cluster.

System services like $DALLOC, $DASSGN, and $DISMOU invoke the
routine IOC$UNLOCK_DEV to dispose of the Device lock correctly:

• If the device remains allocated by a process, the lock is not dequeued until
device deallocation.

• If channels remain open to a dismounted device, the lock is converted to
CR mode and eventually dequeued during the closing of the last channel.

• Otherwise, the lock is dequeued.

H.3 $MOUNT LOCK USE

The $MOUNT system service establishes a lock to guard against concurrent
mount requests for a particular device or volume from the local node or from
other VAXcluster nodes. In addition, it acquires the system-owned Device
lock (see Section H.2.3) to synchronize clusterwide device access with the
$DISMOU, $DALLOC, and $ASSIGN system services, among others. The
$MOUNT system service uses the file system's Volume Allocation lock (see
Section H.6.1) to synchronize its accesses to mounted volumes with those
of the file system. It compares the mount context information in the value
blocks of the Device lock and the Volume Allocation lock to ensure that
volume labels are unique within a VAXcluster system.

H.3.1 Label Lock

Resource name string

1300

"MOU$" + CSID or zero + volume label as
specified in $MOUNT argument

H.3.2

Symbol
Mode of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

None
EX
UIC-independent
Executive
None
None
None
Process-owned

H.3 $MOUNT Lock Use

The Label lock serializes shareable mount requests for the same volume
from multiple processes on the same system. In response to a request to
mount a volume to be shared, for example, among all UIC-group members,
the $MOUNT system service requests this lock in EX mode. It includes the
VAXcluster system ID (CSID) to make the Label lock node-specific. If the
system is not a VAXcluster node, a CSID of zero is used.

For a shareable mount request, the $MOUNT system service searches the
local I/O database to ensure that no other volume has been mounted with the
same volume label and shareability. It holds the Label lock for the duration
of local mount processing to prevent other processes running on the sam~
node from trying to mount the same volume on other devices.

The $MOUNT system service cannot use either of the other two lock&
involved in mount processing to accomplish that purpose. The Mount Device
lock (see Section H.3.2) is based on device name, not volume label, so its
use would not detect simultaneous attempts to mount a volume with the
same label on different devices. Neither would the use of the system-owned
Device lock, which is only acquired for devices available clusterwide.

The $MOUNT system service does not acquire the Label lock for a private
mount request, because process-private use of a particular volume name
cannot conflict with that of any other use.

Mount Device Lock

Resource name string
Symbol
Mode of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"MOU$"+ allocation class device name
None
EX
UIC-independent
Executive
None
None
None
Process-owned

The Mount Device lock synchronizes simultaneous mount requests for the
same device. The $MOUNT system service first locates the device to be
mounted and reserves it with the system-owned Device lock. It then at-

1301

Lock and Resource Use by VMS Components

H.4

H.4.1

tempts to acquire the Mount Device lock in EX mode. If the Mount Device
lock cannot be immediately acquired, because another $MOUNT request is
proceeding concurrently on the same device, the $MOUNT system service
releases the system-owned Device lock and queues for the Mount Device
lock in EX mode. When the Mount Device lock is granted, the $MOUNT
system service releases it and repeats its attempt to acquire the system­
owned Device lock.

Thus, mount attempts in a VAXcluster wait for the Mount Device lock
rather than the system-owned Device lock when the system-owned Device
lock is not immediately available. A process cannot wait for a system-owned
lock.

The Mount Device lock's resource name is based on the allocation class
device name as returned in the $GETDVI system service argument DVI$_

ALLDEVNAM.

$DISMOU LOCK USE

Dismount Lock

Resource name string
Symbol
Mode of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"DMT$" +allocation class device name
None
EX
UIC-independent
Executive
None
None
None
Process-owned

The $DISMOU system service acquires an EX mode Dismount lock to syn­
chronize simultaneous dismount requests for the same volume from pro­
cesses on the local system and on other V AXcluster nodes. The Dismount
lock's resource name is based on the allocation class device name returned
in the $GETDVI system service argument DVI$_ALLDEVNAM.

In addition to the Dismount lock, the $DISMOU system service acquires,
converts, and releases the system Device lock to update the value block.
The $DISMOU system service also dequeues file system locks for Files-11
volumes and the Shadow lock for shadow sets.

H.5 VOLUME SHADOWING LOCK USE

H.5.1 Shadow Lock

Resource name string

1302

"SHAD$" + allocation class device name of
virtual unit

H.5 Volume Shadowing Lock Use

Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

VCB$L_SHAD_LKID
NL, CR, PW, EX
UIC-independent
Kernel
None
Yes
Yes
System-owned and process-owned

The Shadow lock manages clusterwide consistency of shadow set member­
ship knowledge using the following lock modes:

Lock Mode

EX
Meaning

Holder is rebuilding the shadow set
CR Holder has current access to the shadow set and believes that its

knowledge of the membership is accurate
NL Holder does not have access to the shadow set

This arrangement ensures that only one VAXcluster node can rebuild the
shadow set at any given time and that no other node can access the shadow
set while it is being rebuilt.

The Shadow lock has two ancillary purposes:

• It manages updates to the shadow generation information .
• It provides a doorbell mechanism by which a VAXcluster node can cause

all other nodes to check their knowledge of shadow set membership.

To alter shadow set membership generation information, a VAXcluster
node acquires the Shadow lock in PW mode.

To initiate a clusterwide review of shadow set membership, a VAXcluster
node raises its CR mode lock to EX mode temporarily, causing delivery of a
blocking AST to each other V AXcluster node holding the Shadow lock. The
blocking AST procedure verifies shadow set membership by invoking mount
verification.

The Shadow lock is initially acquired when a shadow set is mounted.
The $MOUNT system service enqueues a process-owned lock on a resource
whose name is based on the allocation class device name of the virtual
unit returned in the $GETDVI system service argument DVI$_ALLDEVNAM.

Before exiting, it converts the lock to a CR mode system-owned lock with
a blocking AST enabled. The $MOUNT system service loads the lock ID
into the volume control block (VCB) of the virtual unit at the field VCB$1-
SHAD_LKID. Normally, all VAXcluster nodes that mount the shadow set
hold a CR mode lock on the resource.

The $DISMOU system service dequeues the Shadow lock.

1303

Lock and Resource Use by VMS Components

H.6 FILE SYSTEM LOCK USE

H.6.1

1304

The file system uses locks to arbitrate access to volumes and files as well as
access to local cache structures and their contents. In a VAXcluster system,
all locks described in this section are necessary for proper synchronization.
In a stand-alone system, the volume locks and File Serialization lock are re­
quired for synchronization of local processes, but the File Access Arbitration
and Cache locks are unnecessary.

Volume Allocation Lock

Resource name string

Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"F11B$v" + VCB$T_VOLCKNAM or RVT$T_
VLSLCKNAM

VCB$L_ VOLLKID or RVT$L_STRUCLKID
CR,PW
UIC-independent
Kernel
EXE$GL_SYSID_LOCK if private mount
Yes
Yes
System-owned

The Volume Allocation lock synchronizes volume space allocation by coor­
dinating access to the storage and file header bitmaps. Each volume has a
unique volume allocation resource name. Every V AXcluster node acquires
a PW mode lock on that resource when it mounts the volume through the
$MOUNT system service. The resource name string is based on the contents
of VCB$T _ VOLCKNAM or, for volume sets, the volume set name contained
in relative volume table (RVT) field RVT$T _ VLSLCKNAM:

• For a privately mounted volume, the resource name string is based on the
name of the system issuing the $MOUNT request and that system's UCB
address for the device. The Volume Allocation lock is a sublock of the lock
ID stored in EXE$GL_SYSID_LOCK.

• For a shareable native volume, the resource name string is based on the
volume label.

• For a shareable volume set, the resource name string is the volume set
name.

The naming convention for shareable volumes guarantees that volume labels
are unique in a VAXcluster system.

The Volume Allocation lock is converted to CR mode by each VAXcluster
node when the $MOUNT system service completes. The lock ID is stored in
VCB$L_ VOLLKID (or, for volume sets, RVT$L_STRUCLKID). This lock is
held in CR mode for as long as the volume remains mounted. The $DISMOU
system service dequeues it. In addition, any code path that allocates or

H.6 File System Lock Use

deallocates space on the volume (that is, accesses the index file bitmap or the
storage bitmap) acquires an additional lock in PW mode. This is compatible
with the CR mode locks but would block another PW mode lock; thus, it
allows multiple readers but only one writer.

H.6.2 Volume Blocking Lock

Resource name string

Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"Fl 1B$b" + VCB$T _ VOLCKNAM or RVT$T _
VLSLCKNAM

VCB$1-BLOCKID or RVT$L_BLOCKID
CR, PW, EX
VIC-independent
Kernel
None
None
Yes
System-owned and process-owned

The Volume Blocking lock enables exclusive access to a volume by utilities
such as the Analyze/Disk Structure Utility. Its lock ID is stored in VCB$1-
BLOCKID or RVT$1-BLOCKID as appropriate.

The Volume Blocking lock is normally held by all nodes in CR mode. To
lock the volume, a utility requests an EX mode process-owned lock on the
resource. This causes a blocking AST to be delivered to each V AXcluster node
holding a Volume Blocking lock, including the node on which the utility is
executing. The lock manager dispatches to the blocking AST procedure at
IPL$_SCS while holding the SCS spinlock.

The blocking AST procedure clears VCB$1-BLOCKID. The field VCB$W _
ACTIVITY reflects the state of the Volume Blocking lock. The field is initial­
ized to 1, and the volume remains usable as long as the field is odd. Normal
file system activity on the volume increments the VCB$W _ACTIVITY count
by 2, and decrements it by 2 on completion. The blocking AST procedure
decrements VCB$W _ACTIVITY by 1, making its value even, and thus blocks
further file system requests for the volume. If this decrement of VCB$W _
ACTIVITY brings its value to zero, the routine requests a kernel AST to
dequeue the Volume Blocking lock from the context of the swapper process.
Otherwise, as each outstanding file system request completes, it decrements
VCB$W _ACTIVITY by 2. When VCB$W _ACTIVITY eventually falls to zero,
the completing file system request dequeues the CR mode lock. This allows
the EX mode lock to be granted so that the operation requiring exclusive
access can proceed.

After the EX mode lock is released, the next file system request reacquires
the Volume Blocking lock before accessing the volume.

1305

Lock and Resource Use by VMS Components

H.6.3

H.6.4

1306

File Access Arbitration Lock

Resource name string "Fl 1B$a" + volume lock name + FCB$L_

Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

LOCKBASIS
FCB$LACCLKID
All
UIC-independent
Kernel
None
Yes
Yes
System-owned

The file system provides access arbitration for files; users can open files for
read or write operations and specify whether others may open the file con­
currently. The Access Arbitration lock extends the scope of file arbitration to
be clusterwide. Its resource name string uniquely identifies a particular file
by including the volume lock name from VCB$T _ VOLCKNAM or RVT$T _
VLSLCKNAM, and the file's ID number and relative volume number from
the file control block (FCB) field FCB$LLOCKBASIS. Each VAXcluster node
on which at least one process has that file open holds one system-owned Ac­
cess Arbitration lock. Each lock represents the state of all accesses to the file
from a given node. Thus, a V AXcluster node acquires the lock in the most
restrictive mode in which any of its local processes have opened the file.

The Access Arbitration lock's blocking AST synchronizes access to its
associated FCB, which contains information from the file header, such as
protection and size. Each V AXcluster node accessing the file has an FCB and
an Access Arbitration lock for the file. When a node alters an FCB in its
memory, it also requests an EX mode Access Arbitration lock. This causes
execution of the blocking AST procedure on every node accessing the file,
causing each to mark its FCB as stale. Each node rebuilds its FCB on the
next local access.

File Serialization Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"Fl 1B$s" + FCB$LLOCKBASIS
None
NL,PW
UIC-independent
Kernel
VCB$L_ VOLLKID or RVT$LSTRUCLKID
Yes
None
System-owned when NL, process-owned when

PW

H.6.5

H.6 File System Lock Use

A File Serialization lock synchronizes access to a file on a particular volume.
The file's ID number and relative volume number from FCB$1-LOCKBASIS
make up the resource name string; its parent is a Volume Allocation lock.
The file system, running in local process context, requests a File Serializa­
tion lock in PW mode for the duration of a single file operation, such as
create, extend, or truncate. A process must hold the lock before accessing a
file header or associated data in a file system cache. The lock value block
contains two sequence numbers, one for the file header and one for associ­
ated data.

Upon completion of the file operation, the file system converts the lock
to a NL mode system-owned lock, rewrites the sequence numbers into the
value block, and records them in a cache descriptor. The system-owned lock
is maintained until the cache entry is removed from cache or reused as
described in the following paragraph.

If a process on this VAXcluster node requests a subsequent access to the
file, the file system acquires the File Serialization lock in PW mode and
obtains the sequence numbers in its value block. It compares the sequence
numbers to the stored values in the cache descriptor. If the values match,
the cached information is still accurate. Otherwise, another VAXcluster
node acquired a PW mode lock while this node held a NL mode lock, and
performed a file operation that updated a sequence number. The information
in the local cache is no longer accurate and must be reread.

Cache Locks

Cache locks synchronize access to the per-volume caches that exist on each
VAXcluster node for each mounted volume: the file ID cache, extent cache,
and disk quota cache. This section describes the general mechanism used to
cause each VAXcluster node in turn to flush a particular cache's contents to
disk. Sections H.6.5.1, H.6.5.2, and H.6.5.3 describe the individual locks. The
file system flushes all per-volume caches when a volume is dismounted. It
flushes an individual cache when the cache becomes full, when a privileged
user attempts to access the associated cache disk file directly, when one
VAXcluster node's cache is empty, and on similar occasions.

Each cache type has a defined cache flush resource name. Each VAXcluster
node that mounts a volume acquires a lock on each of the three cache flush
resources for the volume. These locks are normally system-owned and held
in PR mode.

To flush cache entries back to disk, a V AXcluster node writes its own
cache back under the protection of a PW mode Volume Allocation lock. It
then marks the particular cache invalid, lowers the system-owned PR mode
Cache lock to NL mode, and lowers the Volume Allocation lock back to
CR mode, rewriting the value block. The node then requests an additional
process-owned CW mode lock on the cache flush resource.

1307

Lock and Resource Use by VMS Components

H.6.5.1

1308

This causes blocking AST delivery to all other VAXcluster nodes holding
PR mode Cache locks. Since these are system-owned locks, the lock manager
dispatches to the blocking AST routine at IPL$_SCS while holding the SCS
spinlock. The AST parameter identifies which volume and cache to flush.
Each blocking AST routine uses an AST control block (ACB) built into the
cache data structure to deliver an AST to the CACHE_SERVER process.
The CACHE_SERVER process requests the Queue I/O ($QIO) system service
with the function code IO$_ACPCONTROL and a parameter identifying the
device and cache.

The fl.le system, running in the context of the CACHE_SERVER process,
requests a PW mode Volume Allocation lock on the appropriate volume.
Only one VAXcluster node's request for this lock is granted; the other nodes
wait. The node that successfully acquires the Volume Allocation lock flushes
its cache, marks the cache invalid, and lowers its PR mode Cache lock to
NL mode. Next it converts the Volume Allocation lock back to CR mode,
rewriting the value block. One waiting Volume Allocation lock request from
another node is granted, and that node flushes its cache. This sequence is
repeated until each node in turn has flushed its cache.

While the cache flush is in progress, the cache is marked invalid. If the fl.le
system accesses it and finds it invalid, the file system requests conversion
of the NL mode Cache lock back to PR mode.

When the last VAXcluster node completes and converts its PR mode Cache
lock to NL mode, the original CW mode request is granted and immediately
dequeued, and the cache flush is complete.

File ID Cache Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"Fl 1B$c" + lock basis of INDEXF.SYS
VCA$L_FIDCLKID
NL, CW, PR
UIC-independent
Kernel
VCB$L_ VOLLKID or RVT$L_STRUCLKID
Yes
Yes
System-owned

Each VAXcluster node maintains its own cache of available fl.le headers for
each mounted volume. This cache is filled primarily by fl.le deletion on the
local node. Any fl.le identification numbers (Fills) held in the cache are still
marked "in-use" in the disk file number bitmap. A cache flush requires each
V AXcluster node to write all entries in its local cache back to the fl.le number
bitmap on disk. The File ID Cache lock arbitrates this cache flush across the
VAXcluster system, as described in Section H.6.5.

H.6.5.2

H.6.5.3

H.6.5.4

Extent Cache Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

H.6 File System Lock Use

"F11B$c" + lock basis of BITMAP.SYS
VCA$1-EXTCLKID
NL, CW, PR
VIC-independent
Kernel
VCB$L_ VOLLKID or RVT$L_STRUCLKID
Yes
Yes
System-owned

Each VAXcluster node maintains its own cache of available disk space for
each mounted volume. Any disk blocks held in this cache are still marked
"in-use" in the disk storage allocation bitmap. A cache flush requires each
VAXcluster node to write all entries in its local cache back to the storage
allocation bitmap on disk. The Extent Cache lock arbitrates this cache flush
across the VAXcluster system, as described in Section H.6.5.

Disk Quota Cache Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"Fl 1B$c" + lock basis of QUOTA.SYS
VCA$L_QUOCLKID
NL, CW, PR
VIC-independent
Kernel
VCB$L_ VOLLKID or RVT$1-STRUCLKID
Yes
Yes
System-owned

If disk quotas are enabled for a volume, a disk quota cache and Disk Quota
Cache lock are created when the volume is mounted.

Each VAXcluster node maintains its own cache of quota entries. It must
sometimes flush all valid entries back to disk, for example, before dismount­
ing the device. The Disk Quota Cache lock arbitrates this cache flush across
the VAXcluster system, as described in Section H.6.5.

Quota Cache Entry Lock

Resource name string

Symbol
Modes of acquisition
Scope
Access mode

"Fl 1B$q" + VCB$T _ VOLCKNAM or RVT$T _
VLSLCKNAM + quota record VIC

VCA$L_QUOLKID
CR, PW, EX
VIC-independent
Kernel

1309

Lock and Resource Use by VMS Components

Parent
Value block
Blocking AST
Context

None
Yes
Yes
System-owned

To acquire a user's quota information, a VAXcluster node enqueues a PW
mode system-owned Quota Cache Entry lock. On the first access to a specific
quota cache entry, the user's quota information is read from disk into a cache
block. The dynamic portion of the user's quota information is shared among
V AXcluster nodes through the value blocks of the Quota Cache Entry locks
for that user.

When another VAXcluster node needs the same user's quota information,
it requests its own PW mode system-owned Quota Cache Entry lock. This
request causes a blocking AST to be delivered to the original lock owner. The
blocking AST procedure, running in the swapper's process context, marks the
local cache entry invalid. It converts the PW mode lock to CR mode, updating
the value block with the shared quota information. The other node's PW
mode lock request is granted, and it receives this quota information from
the value block.

An EX mode lock on a quota cache entry causes VAXcluster nodes to
remove the entry from the quota cache. This is used when a quota record is
deleted.

H.7 RMS LOCK USE

1310

RMS uses lock management system services to protect files and records.
When a file is accessed in a shareable fashion with write access allowed,
RMS uses locks to coordinate the actions of the file sharers. The locks that
it requests depend on a file's organization, the presence of global buffers,
and numerous file-sharing and record-locking options specified by the user
application. This section describes some of the more common RMS locks,
sometimes in a simplified manner. It does not include locks used for RMS
journaling.

RMS runs in a process's context and maintains private data structures in
process space. It requires a file access block (FAB) for each initial access
(open) of a file and a record access block (RAB) for each stream connected to
a FAB. It creates internal copies of FABs and RABs called IFABs and IRABs
(in data structures named IFB$ and IRB$) as well as many internal structures
mentioned briefly in this appendix.

A process can optionally open a file multiple times (with multiple FABs).
The term accessor, as used in this appendix, indicates an entity in process
context that has opened the file; for example, a file opened twice by process A
and once by process B would have three accessors. Additionally, each acces­
sor can optionally connect multiple record streams to the file (multiple RABs

H. 7 RMS Lock Use

to each FAB). RMS therefore must synchronize file access among accessors
and record streams from the same process through a variety of mechanisms.
The focus of this appendix, however, is primarily on the synchronization
that RMS provides among independent processes sharing a file on a local
system or in a VAXcluster.

RMS transfers a bucket of data on a process's behalf from a file into a buffer
in memory. An RMS local buffer is mapped in process space and is available
to only one process. A global buffer is mapped in system space within a VMS
global section and can be shared by any process on the system. Global buffers,
however, cannot be shared by processes on different VAXcluster nodes.

RMS performs some functions that affect the internal file structure, such
as altering the end-of-file marker; some functions that affect internal bucket
or buffer structure or contents; and some functions that affect only record
contents. It uses locks of different scope to protect these different functions.
RMS enforces a strict hierarchy in the acquisition of locks to ensure that
deadlocks do not occur. Thus, for locks other than Record locks, RMS can
safely specify the LCK$V _NODLCKWT and LCK$V _NQDLCKBLK flags in
its $ENQ system service requests. Chapter 10 gives more information on
these flags.

A user application has no direct control over most RMS locks. However, it
can directly control record locking. Therefore, RMS does not use the $ENQ
flags mentioned above when requesting Record locks.

With the exception of Record locks, RMS holds locks in restrictive lock
modes only for the duration of an RMS service request. To operate more effi­
ciently and to preserve lock value block information, especially the sequence
number, RMS typically converts a lock to NL mode rather than releasing it
altogether.

H.7.1 File Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"RMS$" + file ID + device name
SFSB$L_LOCILID, IFB$L_PAR_LOCK_ID
NL,PW
UIC-independent
Executive
None
Yes
Yes
Process-owned

A File lock's resource name identifies one specific file. Locks on that resource
serialize access to the file-clusterwide, interprocess, and intraprocess. When
an accessor opens a file, it tells RMS how it wishes to access the file and

1311

Lock and Resource Use by VMS Components

1312

the type of access that it will allow to other accessors. RMS creates a File
lock for a file opened in a shareable fashion where the opener either specifies
write access for itself or allows write access from others.

The File lock provides a consistent view of the file through the information
in its value block, which includes the current end-of-file marker and the
length of the longest record. RMS always uses the File lock as the parent
lock of a file's Record locks (see Section H.7.4). It stores the lock ID of the
File lock in IFB$L_PAR_LOCILID when global buffers are not present, so
the File lock sometimes serves as the parent lock of Bucket locks as well
(see Section H.7.2).

RMS builds the File lock resource name string from the six-byte file iden­
tifier plus the device identifier returned in the $GEIDVI argument DVI$_

DEVLOCKNAM. The device identifier is normally the mount type code followed
by the volume name from VCB$T _ VOLCKNAM or RVT$T _ VLSLCKNAM.
The mount type code is 1 for a privately mounted device or 2 for a device
mounted in a shareable fashion.

When an accessor uses RMS to open a shareable, writable file, RMS ac­
quires a File lock in PW mode and declares an RMS procedure as the asso­
ciated blocking AST procedure. The accessor retains the lock in PW mode
until another accessor requires an RMS file-level service on the same file
and requests the File lock in PW mode.

The lock request causes the blocking AST to be delivered to the accessor
holding the PW mode lock. The blocking AST procedure converts the PW
mode File lock to NL mode. This allows RMS to acquire the lock in PW mode
for the new accessor, again declaring an RMS procedure as the associated
blocking .AST procedure.

Therefore, only one accessor of the file holds the File lock in PW mode.
Every other accessor either holds a NL mode File lock, is waiting for a new
PW mode lock, or is waiting for its NL mode lock to be converted to PW
mode.

When a file accessor requests the File lock in PW mode and cannot obtain
it immediately, it stalls. When an accessor closes a file, RMS dequeues its
File lock.

RMS creates a shared file synchronization block (SFSB) in process space
for each accessor using a File lock. The SFSB describes the accessor's File
lock: its resource name, lock ID, lock value block contents, and other items.
An SFSB also contains three status bits identifying the lock state:

Bit Field Name
SFSB$V _TAKEN
SFSB$V _INUSE
SFSB$V _WANTED

Meaning if Set

File lock is held in PW mode
File lock is currently in use by a record stream
File lock is wanted by another accessor

H.7.2

H. 7 RMS Lock Use

RMS uses these status bits to support file sharing by multiple record
streams associated with one accessor (when multistreaming is selected) as
well as among multiple accessors.

For example, when RMS acquires the File lock in PW mode for a record
stream, it sets the SFSB$V_TAKEN and SFSB$V_INUSE bits in the process's
SFSB. When the record stream finishes the operation requiring the File lock,
RMS clears the SFSB$V _JNUSE bit. The accessor still holds the File lock in
PW mode.

If a record stream from a different accessor now requires the PW mode
lock, RMS requests the $ENQ system service and stalls the stream awaiting
$ENQ completion.

The accessor holding the PW mode lock must lower the lock to NL mode
before the stalled stream can proceed. It receives blocking AST notification
that another accessor has requested the lock. The blocking AST procedure
tests the SFSB$V _INUSE bit. If the File lock is not in use, it lowers the lock
to NL mode and clears the SFSB$V _TAKEN bit.

Otherwise, the blocking AST procedure sets the SFSB$V _WANTED bit
and exits. When the current operation completes, RMS will discover that
the SFSB$V_WANTED bit is set, convert the File lock to NL mode, and
clear the SFSB$V_TAKEN bit.

In either case, the lock is eventually converted to NL mode and the
stalled stream's outstanding PW mode request is granted. RMS now sets
the SFSB$V _TAKEN and SFSB$V _INUSE bits in this accessor's SFSB.

When the RMS multistreaming option is selected, there may be more than
one record stream for a given file access (an accessor may have multiple
RABs for one FAB). If a record stream needs a File lock that is already held
by another record stream sharing its FAB, the requesting stream stalls by
inserting its context on a wait queue without requesting the $ENQ system
service. When the other record stream finishes with the File lock, it checks
this wait queue and resumes the stalled stream through the Declare AST
($DCLAST) system service. There is no need to convert the File lock unless
a record stream from a different FAB requests it.

Bucket Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

Bucket virtual block number
BLB$LLOCK_ID
NL, PW, EX
UIC-independent
Executive
IFB$L_PAR_LOCK_ID
Yes
Sometimes
System-owned, process-owned

1313

Lock and Resource Use by VMS Components

1314

RMS Bucket locks ensure the integrity of buckets held in local or global
buffers. The resource name string of the Bucket lock identifies the first
virtual block number of the bucket data within the file. Because RMS must
acquire an EX mode process-owned Bucket lock for an accessor before it can
read or write the bucket, it can maintain a consistent picture of the bucket
contents clusterwide.

RMS reads a bucket into either an I/O buffer in a process's address space or
an RMS global I/O buffer in a VMS global section in system space. It protects
buckets in both locations through Bucket locks. One difference between
Bucket locks for buckets in local and in global buffers is the parent lock.
The IFB$1-PAILLOCILID cell identifies the Bucket lock's parent: the File
lock for a local buffer, or the Global Buffer Master lock (see Section H.7.3.1)
if global buffers are being used.

RMS I/O buffers are a limited commodity; both local and global buffers are
used and reused under the control of an RMS cache replacement algorithm.
RMS maintains information about local buffer entries that are in use through
buffer descriptor blocks (BDBs) and buffer lock blocks (BLBs). Before a process
fills a local buffer from a bucket, it obtains a BDB and, if RMS locking is
being performed, a BLB. It then acquires an EX mode, process-owned Bucket
lock.

RMS stores information regarding the Bucket lock in the BLB, including
the lock ID, an identifier for the record stream that owns the lock, the lock
status block, the lock value block, the lock resource name, and the associated
BDB address. The BDB contains, among other items, the actual address of
the buffer and a saved clusterwide sequence number for the bucket that
currently resides in the buffer.

The Bucket lock value block contains a sequence number for the bucket. A
process must own the Bucket lock in EX mode before modifying the bucket,
so that it can increment the sequence number in the lock. This invalidates
any buffer containing an earlier version of the bucket. For example, an
accessor might have a version (possibly an outdated version) of a bucket
in a local buffer, with an associated NL mode Bucket lock, BLB, and BDB.
To reaccess the bucket, RMS converts the NL mode Bucket lock to EX mode,
rereading the value block. RMS compares the new sequence number from
the lock value block with the buffer's saved sequence number, stored in the
BDB. If the sequence numbers do not match, this buffer contains an outdated
copy of the bucket and RMS rereads the bucket from disk. If the accessor
subsequently modifies the bucket, it increments the sequence number. When
it completes its bucket access, it converts the lock from EX to NL mode,
rewriting the value block with the updated sequence number.

RMS maintains a NL mode Bucket lock on a bucket as long as that bucket
is in a local or global buffer cache. This preserves the bucket's lock value
block and thus its sequence number. One NL mode lock is required per

H.7 RMS Lock Use

copy of the bucket. Thus, each process that has a copy of a bucket in a local
RMS I/O buffer maintains its own NL mode Bucket lock until it reuses that
local buffer for a different bucket. For a bucket in a global buffer, however,
one copy of the bucket in memory is shared by any interested process on
the system. In this case, only one NL mode lock is required per VAXcluster
node to preserve the bucket's sequence number.

The first accessor of a bucket in a global buffer converts its Bucket lock to
a NL mode system-owned Global Buffer Backing lock (see Section H.7.3.3)
when it completes its operation on the bucket. Subsequent accessors merely
dequeue their Bucket locks.

An exception to this local conversion to NL mode is the case of a deferred
write of modified buckets. For a deferred write, RMS converts the lock to
a PW mode lock with an associated blocking AST. When another accessor
of the file wants to use the modified bucket, its lock request triggers the
execution of the blocking AST procedure, which writes the modified bucket.
If no other accessor requests the modified bucket, RMS eventually writes the
bucket and dequeues the Bucket lock when cache replacement dictates that
the buffer should be reused for another bucket.

H.7.3 Locks Associated with Global Buffers

To minimize I/O operations, RMS can share buffers among multiple acces­
sors of the same file. It maintains these global buffers in system space, within
a VMS global section. A file using global buffers has one such global section
on each V AXcluster node from which a process accesses the file. When the
first process on a VAXcluster node opens a file that uses global buffers, RMS
creates the file's global section in that node's memory.

RMS constructs the name of the file's global section by appending the
hexadecimal address of the file's FCB to the string "RMS$". Any accessor
subsequently opening the file in the same memory space shares the same
FCB and thus constructs the same global section name and maps to the
existing global section.

Each global buffer global section contains a global buffer header (GBH), a
global buffer descriptor (GBD) for each global I/O buffer within the section,
and the global buffers themselves. The actual data resides in buckets within
the global buffers.

The GBH describes the global section and its locks. It contains the size of
the global section, the access count, and the Global Buffer Master lock ID
at offset GBH$L_LOCK_ID, among other information.

One GBD exists for each global buffer in the global section. A global
buffer's GBD contains the lock ID of the buffer's Global. Buffer Backing lock
in the field GBD$LLOCK_ID, the lock sequence number, the offset to the
buffer within the global section, and similar information.

1315

Lock and Resource Use by VMS Components

H.7.3.1

H.7.3.2

1316

RMS maintains a section's GBDs in an interlocked queue ordered by the
virtual block number (VBN) of the bucket currently residing in the GBD's
associated buffer. The head of the GBD queue is in the GBH, at offset
GBH$L_GBD_FLINK.

The Global Buffer Section (GBS) lock serializes access to the global buffer
header and thus to the GBD queue and the global buffer pool (see Sec­
tion H.7.3.2).

RMS deletes a file's global section when the last accessor of the file on a
VAX.cluster node closes the file.

Global Buffer Master Lock

Resource name string
Symbol
Mode of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"RMS$" +file ID+ device name
GBH$1-LOCK_ID, IFB$1-PAR_LOCK_ID
NL
VIC-independent
Executive
None
None
None
System-owned

RMS creates a Global Buffer Master lock only for a file that uses global
buffers. The Global Buffer Master lock is a system-owned NL mode version
of the File lock (see Section H.7.1).

When an accessor requests shareable write access to a file, RMS creates
a File lock. If the file uses global buffers, RMS converts that File lock to a
system-owned NL mode Global Buffer Master lock on the connect of the
first record stream. It copies the lock ID of the Global Buffer Master lock
to IFB$1-PAR_LOCK_ID, overriding the accessor's File lock as parent of its
Bucket locks. RMS then creates a new File lock.

The Global Buffer Master lock's sole purpose is to serve as the parent
lock for an accessor's Bucket locks on global buffers. Since a global buffer
survives the deletion of processes that use it, the Bucket lock on a global
buffer must be backed up with a system-owned lock so that the value block,
which maintains the integrity of the bucket, survives. Since a system-owned
lock cannot be a sublock of a process-owned lock such as the File lock, a
Bucket lock needs a system-owned version of the File lock to act as parent.

RMS dequeues the Global Buffer Master lock when it deletes the global
section.

Global Buffer Section Lock

Resource name string
Symbol

"RMS$" +file ID+ device name
GBSB$1-LOCK_ID

Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

NL, EX
UIC-independent
Executive
EXE$GL_SYSID_LOCK
Yes
Yes
Process-owned

H. 7 RMS Lock Use

The Global Buffer Section (GBS) lock synchronizes access to a file's global
buffer header, the global buffer descriptor queue in the GBH, and thus the
global buffer pool. Each VAXcluster node accessing the file has a separate
global buffer global section for the file. Therefore, a lock guaranteed to be
mastered on the local VAXcluster node is a more efficient way to serialize
global section access, so RMS creates the GBS lock as a sublock of EXE$GL_
SYSID_LOCK.

The GBS lock resource name string matches that of the file's corresponding
File lock, thus uniquely identifying a device and file in a VAXcluster system
(see Section H.7.1).

When an accessor connects a record stream to a file that uses global buffers,
RMS requests an EX mode GBS lock. The GBS lock remains in EX mode until
another accessor sharing the file on the same VAXcluster node requests a
GBS lock in EX mode, to search the GBD list, for example.

The request triggers blocking AST notification, and the lock holder con­
verts the initial GBS lock to NL mode, allowing the requestor to acquire its
own lock.

Before the original lock holder accesses the global section again, it requests
the conversion of its NL mode lock back to EX mode.

Therefore, the accessor that most recently examined the global buffer
header or searched the global buffer descriptor queue holds the only granted
EX mode lock. Every other accessor sharing the globally buffered file on this
VAXcluster node holds a NL mode lock or is waiting for a new or converted
EX mode lock.

When an accessor closes the file, RMS dequeues its GBS lock.
RMS creates a global buffer synchronization block (GBSB) in the Pl space

of each accessor holding a NL mode or EX mode GBS lock. The GBSB is
similar to the SFSB for the File lock. It maintains information about the
lock and the associated global section, including the lock ID at GBSB$L_
LOCK_ID. The GBSB also contains the lock value block, the resource name
copied from the SFSB, and three status bits:

Bit Field Name

GBSB$V _TAKEN
GBSB$V _INUSE
GBSB$V _WANTED

Meaning if Set

GBS lock is held in EX mode
GBS lock is in use by a record stream
GBS lock is wanted by another accessor

1317

Lock and Resource Use by VMS Components

H.7.3.3

1318

These status bits describe the state of the GBS lock and are treated like
the corresponding status bits in the SFSB (see Section H.7.1).

Global Buffer Backing Lock

Resource name string
Symbol
Mode of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

Bucket virtual block number
GBD$L_LOCK_ID
NL
UIC-independent
Executive
IFB$L_PAR_LOCK_ID
Yes
None
System-owned

The Global Buffer Backing lock ensures the integrity of buckets contained
in global buffers. To guard the integrity of a bucket, its sequence number
must be preserved in the lock value block of a Bucket lock. However, a
global buffer can contain a bucket that no longer has any current accessors
and therefore would have no Bucket locks. Therefore, a system-owned lock
must be used to prevent the loss of the bucket's sequence number.

Before reading a bucket from a file into a buffer, an accessor acquires a
process-owned Bucket lock. For each global buffer within the global sec­
tion, the original accessor that stores a bucket in a global buffer converts
its process-owned Bucket lock to a NL mode system-owned Global Buffer
Backing lock when it completes its access to the bucket. It saves the lock
ID in the buffer's GBD at the offset GBD$L_LOCK_ID.

A subsequent accessor of the bucket in this global buffer acquires its own
Bucket lock. When it completes its access, it can safely dequeue its Bucket
lock, since a Global Buffer Backing lock already exists for the bucket.

RMS also stores the sequence number of a bucket in a global buffer in
the buffer's associated GBD. RMS copies the sequence number from the
Bucket lock value block of the first accessor of the bucket and updates it
for each subsequent accessor. When each accessor obtains its Bucket lock,
RMS compares the sequence number in the Bucket lock value block with
the saved sequence number in the GBD. If they do not match, RMS rereads
the bucket from disk into the global buffer.

RMS dequeues the Global Buffer Backing lock when cache replacement
policy dictates that the global buffer should be reused for another bucket or
when the global section is deleted.

Since the Global Buffer Backing lock must be system-owned, and system­
owned locks cannot be sublocks of process-owned locks, the Global Buffer
Master lock was instituted (see Section H.7.3.1).

H.7.4

H.7 RMS Lock Use

Record Lock

Resource name string Record file address
Symbol RLB$1-LOCK_ID
Modes of acquisition CR, PR, PW, EX
Scope UIC-independent
Access mode Executive
Parent SFSB$L_LOCK_ID
Value block None
Blocking AST None
Context Process-owned

A Record lock coordinates access to a record in a bucket. It is always process­
owned and always a sublock of the File lock. RMS builds the Record lock
resource name string from the three-word record file address (RFA), which
locates the record within the file. The resource name string consists of RFA4,
the last of the three words, followed by two bytes of zeros, followed by RFAO,
the first word (see the VMS Record Management Services Manual).

If a file is opened in a shareable manner with record locking enabled, the
following locking options in the user-specified RAB at field RAB$1-ROP
determine the RMS lock mode:

Bit Field State

RAB$V _REA clear and RAB$V _RLK clear
RAB$V _RLK set
RAB$V _REA set and RAB$V _RLK clear
RAB$V _NLK set

• EX mode is the default.

Lock Mode

EX
PW
PR
CR

• PW mode locks the record for write access, allowing readers at CR mode
but no other writers.

• PR mode locks the record for read access, allowing other readers at CR or
PR mode but no writers.

• The RAB$V _NLK option temporarily takes a CR mode lock to verify that
the record is not locked against reading (in EX mode). These CR mode
locks are never returned to the application.

A record stream associates each of its Record locks with a record lock
block (RLB). An RLB contains the resource name, an identifier for the owning
stream, and the lock status block, including the lock ID. RLBs are linked to
the stream's IRAB at the IRB$1-RLB_FLINK/IRB$1-RLB_BLINK queue.

Application record deadlocks are possible because of the control that an
application has over its record locking, especially when it selects the manual
unlocking (RAB$V _ULK) option.

1319

Lock and Resource Use by VMS Components

H.8

H.8.1

H.8.2

1320

IMAGE ACTIVATOR AND INSTALL UTILITY LOCK USE

KFE Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"INSTALL$KNOWN FILE"
EXE$GQ_KFE_LCKNAM
PR,EX
UIC-independent
Executive
EXE$GL_SYSID_LOCK
None
None
Process-owned

Section H.8.2 describes the use of the KFE lock.

Install Lock

Resource name string
Symbol
Mode of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"INSTALL$INSLOCK"
None
PW
UIC-independent
Executive
EXE$GL_SYSID_LOCK
None
None
Process-owned

The Install Utility manages the known file entry (KFEJ list and requires read
and write access to it. The image activator system service requires protected
read access to the KFE list before opening images. The Install Utility and the
image activator coordinate access to the KFE list through the KFE lock and
use the Install lock to provide priority access to image activation.

Each VAXcluster node maintains a private KFE list. KFE locks are re­
quested as sublocks of the lock ID stored in EXE$GL_SYSID_LOCK to guar­
antee that they will be unique to the local node and mastered there. The
resource is declared to be systemwide because the activation of images and
use of the Install Utility is not restricted to a single UIC group. Multiple
processes running from different UIC groups are synchronized.

All code paths in the image activator and the Install Utility that read the
KFE list acquire PR mode locks on the KFE resource. In addition, the Install
Utility ensures that readers of the KFE list (particularly the image activator)
are not blocked too long by multiple writers of the KFE (for example, several
INSTALL ADD commands). Code paths that write the KFE must acquire the
Install lock in PW mode before acquiring the KFE lock in EX mode. Since

H.9 DECnet Lock Use

only one writer at a time can acquire the Install lock, other writers queue
for the Install lock rather than for the KFE lock.

When a writing process completes, it first converts the EX mode lock on
the KFE to a PR mode lock. The only possible waiting requests are PR mode
requests, and these are granted. The writer next dequeues the Install lock,
allowing another writer to acquire it. This new writer requests an EX mode
lock on the KFE. The request is granted when the readers complete and
release their PR mode locks.

The combination of these two locks guarantees that writers cannot block
readers for extended time periods.

H.9 DECNET LOCK USE

H.9.1

H.9.1.1

In VAXcluster configurations, the network ancillary control process INET­
ACPJ uses two categories of locks: locks to implement VAXcluster alias
functions and locks to implement network proxy access functions.

V AXcluster Alias Locks

Master Registration Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"CLU$NETACP -" + alias node address
None
NL, CR, PW, EX
VIC-specific
Kernel
None
Yes
Yes
Owned by NETACP process

The NETACP process on each VAXcluster node that participates in the Alias
Node service enqueues a lock on a resource whose name contains the alias
node address. This lock is called the Master Registration lock IMRL) and is
normally held at CR mode. The MRL is used as the parent lock for all other
VAXcluster alias locks.

The value block in the MRL contains a quadword bit mask, with a bit
set for each VAXcluster node participating in the VAXcluster alias. A new
node enqueues the MRL in PW mode, uses the value block to determine
the first free alias index number from this bit mask, allocates that index
number for its own use, updates the value block, and stores its alias index
at NET$GW _CLUSTER_INDEX. The MRL is then converted to a NL mode
lock, updating the value block. The new participant next converts the lock
to EX mode. This forces delivery of blocking ASTs to the current members,
notifying them of the new VAXcluster alias member.

1321

Lock and Resource Use by VMS Components

H.9.1.2

H.9.1.3

H.9.1.4

1322

Individual Index Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"IXL_" + alias index number
None
NL, EX
VIC-specific
Kernel
Master Registration lock
Yes
None
Owned by NETACP process

Each participant in the VAXcluster alias scheme requires an Individual In­
dex lock (IXL). An IXL is a sublock of the MRL and has a resource name
formed from "IXL_" +alias index number. Its value block contains registra­
tion data for the participating member, such as DECnet node address, alias
maximum links, and routing/nonrouting status. Each new member enqueues
an EX mode lock on its own IXL resource name. The member updates the
value block with information about itself by lowering the lock to NL mode.
Other participating members cycle through a set of lock states to allow each
member to read the updated value block.

Individual Departure Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"IDL_" + alias index number
None
CR, EX
VIC-specific
Kernel
Master Registration lock
None
None
Owned by NETACP process

Each participating VAXcluster member enqueues an EX mode lock on its
own Individual Departure lock (IDL) resource. All other members request
a CR mode lock on that resource, with deadlock search disabled. If a CR
request is ever granted, the other member knows that the original member
that held the EX mode lock is no longer participating.

Individual Link Registration Lock

Resource name string
Symbol
Modes of acquisition
Scope

"ILR_" +alias index number
None
NL, CR, EX
VIC-specific

H.9.2

H.9.2.1

Access mode
Parent
Value block
Blocking AST
Context

H.9 DECnet Lock Use

Kernel
Master Registration lock
Yes
Yes
Owned by NETACP process

An Individual Link Registration (ILR) lock is a sublock of the MRL. Each alias
member has an associated resource, of the form "ILR_" +alias index number.
A member always holds an ILR lock for itself in NL mode. In addition, a
member that is a router holds a CR mode lock for itself and every other
member. Each CR mode lock has an associated blocking AST.

An ILR lock is used for flow control, to send XOFF/XON signals to the
router (or routers). When a member can accept no more links, it raises its NL
mode lock to EX mode. This triggers the blocking AST on each router's CR
mode lock for that member. The router converts the CR mode lock to NL
immediately. This allows the EX mode lock to be granted on the initiator.

The EX mode lock is lowered back to NL, updating the value block with
current and maximum links for this member. The router requests an EX
mode lock, which will be granted when the initiating member lowers back
to NL. The router updates its tables based on the new value block, lowers
to NL to allow another router to obtain the lock, then finally returns to CR
mode.

Network Proxy Access Locks

The NETACP process uses standard RMS locks to synchronize access to
the proxy file, NETPROXY.DAT. In addition, it uses the following locks to
propagate the volatile proxy database changes to other V AXcluster nodes.

Modified Proxy Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

· "NET$NETPROXY _MODIFIED"
None
PR, PW
UIC-independent
Kernel
None
None
Yes
Owned by NETACP process

This is the main proxy lock, typically granted to all VAXcluster nodes in
PR mode with an associated blocking AST. If proxy information is modified
on a participating node, the Authorize Utility or the network management
listener (NML) requests that NETACP obtain a new lock on this resource in
PW mode. This triggers blocking AST delivery to the NETACP process on

1323

Lock and Resource Use by VMS Components

H.9.2..2.

H.9.2..3

all V AXcluster nodes, including the one that queues the PW lock, as notice
of proxy modification.

Proxy Function Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"NET$NETPROXY _FNCT"
None
NL,EX
UIC-independent
Kernel
None
Yes
None
Owned by NETACP process

The Proxy Function lock is used to transmit the function to be performed
on the NETPROXY.DAT file, for example, Rebuild_Proxy, Add_Proxy, and
Delete_Proxy. The function code is transmitted in the value block. Holding
this lock in EX mode also serializes NETACP's use of the Proxy Key locks.

Proxy Key Locks

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"NET$NETPROXY_KEY" +key number
None
NL,EX
UIC-independent
Kernel
None
Yes
None
Owned by NETACP process

NETACP uses this key value to determine whether a record with the speci­
fied key exists in the NETPROXY.DAT database used by the local node. The
value blocks of these four key locks pass the RMS key values desired for the
NETPROXY.DAT indexed file.

The four key numbers allow a total of 64 bytes of key information:

• NET$NETPROXY_KEY1: first 16 bytes of the key
• NET$NETPROXY_KEY2: second 16 bytes of the key
• NET$NETPROXY_KEY3: third 16 bytes of the key
• NET$NETPROXY_KEY4: fourth 16 bytes of the key

H.10 JOB CONTROLLER LOCK USE

1324

The job controller processes running on multiple VAXcluster nodes use a
variety of locks to synchronize their activities. Many of these locks coordi­
nate access to records within the queue file. Since the queue file is accessed

H.10.1

H.10.2

H.10 Job Controller Lock Use

through RMS, standard RMS locking activity occurs as well (see Section H. 7).
This, however, is transparent to the job controller.

Remote Request Lock (or Doorbell Lock)

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"JBC$" + SCSNODE
None
NL,EX
DIC-specific
User
None
None
Yes
Owned by job controller process

During queue file initialization, the job controller uses the SCS node name of
the system on which it executes to build a resource name. It requests an EX
mode lock on that resource, specifying a blocking AST address. This doorbell
lock is used by other V AXcluster nodes to determine if the node is available
and has completed job controller initialization and to notify the node of an
incoming work request. When a job controller receives a user request for a
queue managed on another node, it uses that node name to build a resource
name and requests an EX mode lock on that resource, specifying the LCK$V _
NOQUEUE flag. If the desired VAXcluster node exists and has performed job
controller initialization, it already has an EX mode lock on its own name.
The new request fails immediately in this case. If the request completes
successfully, the remote node either does not exist or has not performed job
controller initialization.

Queue File Master Lock

Resource name string

Symbol
Mode of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"JBC$" + queue file device name + queue file
ID

None
EX
DIC-specific
User
None
None
None
Owned by job controller process

During queue file initialization, the job controller requests an EX mode
lock on the Queue File Master resource, setting the LCK$V _NODLCKWT
flag so deadlock searches are never performed. The lock is granted to the
first requestor, which becomes the queue file master. All other requests are

1325

Lock and Resource Use by VMS Components

H.10.3

H.10.4

1326

placed on the wait queue. If the queue file master ever leaves the VAX.cluster
system, the next request on the wait queue is granted and a job controller
running on another node becomes the new queue file master.

Queue File Lock

Resource name string

Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"JBC$" + queue file device name + queue file
ID+ "LOCK"

None
NL,EX
VIC-specific
User
None
Yes
None
Owned by job controller process

The Queue File lock acts as a transaction-level lock on the queue file.
Normally, all VAX.cluster nodes hold the lock in NL mode. Before initiating
a transaction, the job controller converts the NL mode lock to EX mode,
reading the value block. On completion of a transaction, the job controller
converts the EX mode lock to NL mode, writing the value block.

The va1ue block of this lock coordinates the cleanup of the queue file
when a job controller process or a VAX.cluster node exits unexpectedly. It
contains the SCS node name of the last node to leave the VAX.cluster system
or experience job controller failure.

Queue cleanup consists of reinitializing all executor queues that were
assigned to the failing node and requeuing or deleting all jobs that were
executing on those queues. When a node or job controller process fails, the
remaining job controller processes are notified. All try to convert the Queue
File lock to EX mode. The first to acquire the Queue File lock in EX mode
performs the necessary cleanup, then loads the name of the failed node into
the value block and lowers the lock to NL. Each remaining job controller
process acquires the lock in turn, discovers that the value block contains the
name of the failed node, and merely releases the lock. When the failed node
reenters the VAX.cluster system, it acquires the Queue File lock in EX mode
and checks the lock value block. If it finds its own name in the lock value
block, it zeros the first word. This way, if the same node should leave the
VAX.cluster system again, the other nodes will not mistakenly believe that
cleanup has been performed.

Queue File Initialization Lock

Resource name string "JBC$INITIALIZE"
Symbol None
Mode of acquisition EX

H.10.5

H.10.6

Scope
Access mode
Parent
Value block
Blocking AST
Context

VIC-specific
User
None
None
None

H.10 fob Controller Lock Use

Owned by job controller process

In response to a command to start its queue management function, the job
controller requests an EX mode lock on the Queue File Initialization re­
source. Holding this lock, the job controller creates and initializes or locates
and reconstructs the queue file. It then dequeues the lock.

GETQUI Locks

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

Record number + byte offset within record
None
PR,PW
VIC-specific
User
Queue File lock
None
Yes
Owned by job controller process

The job controller's support routines for the Get Queue Information l$GET­
QUIJ system service maintain a list of descriptors for active queue context
information across a user's $GETQUI requests. These descriptors exist as
records within the queue file. Each descriptor is associated with a lock and
contains the lock ID and reference count. These locks are normally held
in PR mode. When information within a descriptor must be modified, the
modifying node converts its lock to PW mode. This initiates blocking AST
delivery to any processes holding PR locks, causing them to dequeue their
locks so the PW lock can be granted.

Master ORB Lock

Resource name string
Symbol
Mode of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"ORB$LOCK"
None
NL
UIC-independent
User
None
None
None
Owned by job controller process

1327

Lock and Resource Use by VMS Components

H.10.7

H.11

H.11.1

1328

The Master ORB lock and its sublocks are used to synchronize clusterwide
access to an object rights block (ORB) and the protection information it
contains.

Each job controller normally maintains a NL mode lock on this resource,
requested during queue file initialization. The lock is used as the parent
lock for individual job controller ORB locks describing access control lists
(ACLs) on queues. The resource tree is also referenced by the Change Access
Control List ($CHANGE_ACL) system service.

Job Controller ORB Locks

Resource name string
Symbol
Mode of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"ORB$JBC_" + ORB record number
None
EX
DIC-independent
User
ORB Master lock
None
None
Owned by job controller process

These sublocks of the Master ORB lock are associated with ORB records in
the queue file that describe ACLs on queues.

SYSGEN LOCK USE

SYSGEN Database Lock

Resource name string
Symbol
Mode of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

''SYSGEN$_DATABASE"
None
EX
DIC-independent
Executive
EXE$GL_SYSID_LOCK
None
None
Process-owned

The SYSGEN commands LOAD, RELOAD, AUTOCONFIGURE, and CON­
NECT require exclusive access to a system's SYSGEN database. SYSGEN
protects its database from concurrent access by SYSGEN executing in mul­
tiple processes through an EX mode lock on the systemwide resource "SYS­
GEN$_DATABASE". SYSGEN uses the lock ID stored in EXE$GL_SYSID_
LOCK as the parent lock to restrict the resource scope to the local system.

H.12

H.12.1

H.12.2

SYSMAN LOCK USE

SMISERVER Main Lock

Resource name string
Symbol
Mode of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

H.12 SYSMAN Lock Use

"SMISERVER$" + SCSNODE
None
EX
VIC-independent
Executive
None
None
None
Owned by SMISERVER process

The SMISERVER process uses the Main lock to ensure that only one SMI­
SERVER process at a time exists on a system. It requests an EX mode lock on
the resource using the LCK$V _NOQUEUE flag. If the request is not granted
immediately, another SMISERVER process is already running; the current
one is redundant and deletes itself.

When SMISERVER performs a clusterwide Set Time ($SETIME) system
service, it synchronizes using the Set Time lock (see Section H.2.2).

Parameter Lock

Resource name string
Symbol
Modes of acquisition
Scope
Access mode
Parent
Value block
Blocking AST
Context

"SYSPARMS_LOCK"
None
NL, PR, EX
VIC-independent
Executive
EXE$GL_SYSID_LOCK
Yes
None
Process-owned

SYSMAN uses the Parameter lock to synchronize access to the current and
active SYSGEN parameters on a system. It obtains the Parameter lock in PR
mode before reading the current or active SYSGEN parameters. When the
read completes, it converts the lock to NL mode. SYSMAN enqueues the
Parameter lock in EX mode before writing the current or active SYSGEN pa­
rameters. When the write completes, it again converts the lock to NL mode.
The Parameter lock is dequeued when this SYSMAN session completes.

1329

Index

NOTE: Page numbers for figures, tables, and examples
reflect the first references to these units in the text,
not their actual placement.

$$$$$000_SYSTEM_SERVICE_ VECTORS PSECT
global cells that compose, (table) 1164

$$$$$NONPAGED_CODE PSECT
global cells that compose, (table) 1164

$$$$$NONPAGED_DATA PSECT
global cells that compose, (table) 1186

$$$$$SYSPARAM_DATA PSECT
names and descriptions, (table) 1199

$$$$$Z_BOOPARAM PSECT
description, 1218

$$$500 PSECT
global cells that compose, (table) 1218

$ (dollar sign)
Digital symbol use of, 1232

_ (underscore)
Digital symbol use of, 1232

A-bus (adapter bus). See also buses; device drivers
VAX 86x0 system, SBI connection through, 52

abort exceptions. See also bugchecks; condition
handlers; errors

continue signal actions when condition is an, 96
SCB vectors for, (table) 75

absolute addressing mode (®#)
c· references changed to during image activation,

764
absolute queue instructions. See also instructions

noninterruptibility, 163
ACB (AST control block). See also IRP; LKB

ACB$V _QUOTA bit, flag that quota must be restored
when AST is delivered, 132

deallocating controlled by ACB$V _NODELETE flag,
133

definition and use, 132
IRP use as, 144
LKB component, LKB fields that specify, 220
LKB use as, 232
SDL definition, (example) 1159
summary, 1242
TAST use as, 153
TQE use as, 264

ACB$B_RMOD field
definition and use, 133

ACB$L_AST field
definition and use, 133

ACB$L_ASTPRM field
definition and use, 133

ACB$L_ASTQBL field
definition and use, 132

ACB$L_ASTQFL field
definition and use, 132

ACB$L KAST field
definition and use, 133

ACB$L_PID field
definition and use, 133

ACB$V _KAST bit (ACB$8_RMOD field)
definition and use, 133

setting, 133
ACB$V _MODE bits (ACB$B_RMOD field)

definition and use, 133
ACB$V _NODELETE bit (ACB$B_RMOD field)

deallocating controlled by, 133
definition and use, 133

ACB$V _PKAST bit (ACB$B_RMOD field)
definition and use, 133

ACB$V_QUOTA bit (ACB$B_RMOD field)
clear when system queues an involuntary AST, 133
definition and use, 133
flag that quota must be restored when AST is

delivered, 132
set to indicate AST notification of

I/O completion, 620
timer event, 257

$ACBDEF macro
ACB symbolic names defined by, 132

accelerator bus. See also buses
VAX-11/730 system, 47

access control. See access protection
access control list. See ACL
access modes. See also protection

AST delivery
ACB location of, 133
controlling through PCB$B_ASTEN and PCB$B_

ASTACT, 132
synchronizing with PCB$B_ASTACT, 132

AST queue entries, PR$_ASTLVL contains first
entry, 130

AST queue ordering by, 134
change mode instruction operation, 111
changing to less privileged, 38
condition handling and, 72
$EXIT operations, effect on, 772
images, ICB field that specifies, 742
logical name tables, how specified, 1070
logical names

how specified, 1069
identification, 1068
translation checking, 1092

memory management and, overview, 20
methods for altering, (figure) 15
PSL previous mode field, interrupts compared with

exceptions, 38
REI tests

before IPL 2 interrupt request, 130
that prevent changing to more privileged modes,

39
resources

how obtained, 216
identifier component, 215
lock information access restricted by, 234

$RUNDWN operations, effect on, 774
suspended process, SUSP and SUSPO categorized by,

282
system services that change to executive mode

control flow, (figure) 115
list of names, (table) 107

system services that change to kernel mode
control flow, (figure) 115
list of names, (table) 107

system services that do not change mode

1331

Index

access modes (continued)
system services that do not change mode (continued)

control flow, (figure) 121
list of names, (table) 121

system-owned locks, how determined, 233
TQE field that specifies, 257
use to index software-vectored condition handler

address arrays, 74
virtual page accessing by, protection code specifies

which, 351
access protection

common event flag clusters, CEB field that specifies,
205

mailbox, setting, 665
user access control, overview, 23
VAX memory access checking, characteristics and

mechanisms, 362
access rights block. See ARB
access violations

characteristics and use, 363
Pl space low end, user stack overflow detected as,

82
page fault handler emulation of, 84, 437

accounting manager
job controller responsibilities as, 1103
sending requests to, 1107

ACL (access control list). See also ORB
ACL-based protection, logical name tables,

characteristics, 1072
layout and summary, 1243
term definition, 24

ACNT (suppress accounting messages privilege)
use by $CREPRC, 716

ACP (ancillary control process). See also AIB; AQB;
device, drivers; file system; 1/0; XQP

characteristics and use, 584
data structures, overview, (figure) 585
term definition, 11

ACP queue block. See AQB
ACP$BADBLOCK_MBX mailbox. See also mailboxes

file system use for bad block recovery, 675
ACP$READBLK routine (SYSACPFDT module)

operations, 621
ACP$WRITEBLK routine (SYSACPFDT module)

operations, 621
ACP_XQP_RES parameter (SYSGEN}

effect on VMS memory use, 1287
residency of Files-11 XQP global sections, 417, 944

activating
command language interpreters, 762
compatibility mode images, 762
images, term definition, 737
known images, 762
shareable images, 753, (example) 760

active set
SMP term definition, 1007
term definition, 1022

adapter bus. See A-bus
adapter control block. See ADP
adapters. See also buses; hardware; 1/0

ADP size and mapping requirements, (table) 935
capable of independent power failure, 1003
CI, powerfail and recovery handling by, 1004
com_patibility role of, 45
configuration, 935
function of, VAX system generic model, (figure) 44
initialization, 46, 935
interrupts

SCB locations, (figure) 31
service routine operations, 641

1332

MASSBUS, powerfail and recovery operations, 1004
NBI, VAX 8800 family, configuration, 53
powerfail recovery, 1003
Q22-bus

interrupt vectors in the SCB, 46
VAXstation 3520 system, configuration, 51

SBIA, VAX 86x0 system, configuration, 52
type codes

arrays that specify, 935
defined by $NDTDEF macro, 935

UNIBUS, vectoring interrupts through ISR, 45
VAX 8800 family, nexus numbering, 53
VAX-11/750 system, slots used to connect, (table) 47
VAX-11/78x system, standard nexus assignments,

(table) 48
VAXBI bus, interrupt vectors in the SCB, 45
XMI, nexus numbering, 51

ADAWI instruction. See also instructions
interlocked memory instruction, synchronizing data

with, 164
.ADDRESS directive. See also .ASCID directive

characteristics and modification during image
activation, 763

resolution of, 765, (figure) 766
vector table, layout, (figure) 765

address relocation
fixup during loadable executive image initialization,

847
image activation, $IMGFIX operations, 762

Address Relocation Fixup system service. See $IMGFIX
address resolution

loadable executive images, (figure) 829, 835
address space. See also memory management; pages;

protection; virtual memory; virtual pages
PO. See also PO space

layout, (figure) 7
overview, 7

Pl. See also Pl space
layout, (figure) 5
layout, analyzing with SDA, 1157
overview, 5
size and contents, (chapter) 1270

physical, characteristics, 350
process

constraints on, 353
creating, 406
limit on creating, 403
mapping, 350, 353

system. See also system space
initial layout, (figure) 1274
layout, analyzing with SDA, 1157
overview, 25
size and contents, (chapter) 1270
size calculations, 1274
virtual. See virtual address space

address translation. Consult VAX Architecture
Reference Manual

characteristics, and mechanisms, 362
mechanism, overview, 20
operations, 363
virtual page as unit of, 351

addressable global arrays
names format, 1234

addresses
loadable executive images, locating, 1149
process space, locating, 1154
system S:E>ace, locating, 1149

$ADJSTK !Adjust Outer Mode Stack system service)
detecting need for user stack expansion, 82, 410
reflecting a condition, 82

Adjust Outer Mode Stack system service. See $ADJSTK
Adjust Working Set Limit system service. See

$ADJWSL
$ADJWSL (Adjust Working Set Limit system service)

operations, 496
ADP (adapter control block). See also adapters

characteristics and use, 580
initializ' 935
layout a:f'summary, 1243
size, (table) 935

affinity. See also capabilities; scheduler; SMP systems
characteristics and use, 287
device. See device affinity
explicit

acquired through SCH$REQUIRE_CAPABILITY,
288

characteristics and use, 28 7
examples of use, 288
released through SCH$RELEASE_CAPABILITY,

288
implicit

acquiring, 297
characteristics and use, 287
mechanism, 289

mismatch handling, 297
primary processor. See primary processors - affinity
requirements

significant scheduling process characteristic, 268
transition to RWCAP resulting from, 281

AFFINITY_SKIP parameter (SYSGEN}
initializing PCB$B_AFFINITY_SKIP field with, 289

AGENSFEEDBACK.EXE
reading pool allocation statistics, 568

AGGREGATE statement (SDL)
characteristics and use, 1161

AIB (ACP 1/0 buffer). See also 1/0
complex buffer

example, 617
used by file system, 618

aliases
logical name tables, term definition, 1069

alWunent
data, importance for performance, 1138

SALLOC (Allocate Device system service)
control flow, 592

Allocate Device system service. See $ALLOC
ALLOCPFN module

MMG$ALLOCPFN_NO_DB, operations, 381
MMG$DALLOCPFN, deallocating physical pages,

478
MMG$DELCONPFN, page fault handling, private

page not copy-on-reference, 444
ALLSPOOL (allocate spooled device privilege)

use by $ALLOC, 592
alternate start 1/0 entry

use by communication drivers, 688
ALTERNATE_LOAD module

LDR$ALTERNATE_LOAD, control flow, 843
ALTPRI (set any priority value privilege). See also

privileges
required for unconstrained process priority

modification, 275
use by SCREPRC, 715, 731

AME (Application Migration Executive)
activation, 762
characteristics, 762
definition, 762
dispatch into for compatibility mode exception, 85

ancillary control process. See ACP
AQB (ACP queue block). See also ACP1 1/0

ACP creation of, 585
queuing of IRP to, 631

AR (global symbols type)
use, 828

ARB (access rights block). See also protection
layout and summary, 1243
term definition, 4

ARBSQ...PRIV &eld. See also privileges

Index

process privilege mask, use and routines that
manipulate, (table) 778

argument lists
AST procedures, field definition and use, (figure) 140

arithmetic exceptions. See also condition handling
types and signal names, (tablel 82

array bus. See also buses
VAX-11/730 system, 47

$ASCEFC (Associate Common Event Flag Cluster
system service)

creating common event flags, 204, 206
.ASCID directive. See also .ADDRESS directive

characteristics and modification during image
activation, 763

ASCII
character strings, conversion support for, 1120
codes 00 to 20, control characters handled by

out-of-band ASTs, 153
SASCTIM (Convert Binary 1ime to ASCII String

system service)
operations, 1121

assembler listings
characteristics and use, 1136

$ASSIGN (Assign Channel system service)
control flow, common initial steps, 597
operations, 596
return mechanism characteristics, overview, 109

Assign Channel system service. See $ASSIGN
assignment

remote device, triggered by device name with node
delimiter, 598

Associate Common Event Flag Cluster system service.
See $ASCEFC

associated mailboxes. See also mailboxes
assigning channels to, 600

ASSUME macro
characteristics and use, 1135

$ASSUME macro (VAX BLISS-32)
characteristics and use, 1135

AST (asynchronous system trap). See also attention
ASTs; interrupts· resource wait - RSNS_
ASTWAIT; SCHSASIDEL routine; SCH$QAST
routine; SSETAST; special kernel mode ASTs1
synchronization

accessing process virtual address space with, 133
addresses of completion and blocking procedures,

LICB field that contains, 221
advantages for process deletion mechanism, 149
argument list meaning of

PC, 141
RO, 140
Rl, 141

blocking
deadlock handling by, dangers associated with, 236
delivery for a system-owned lock, mechanism, 234
effect of lock dequeuing on, 231
queuing after granting a lock, reasons for, 232

$CLRAST
effect on PR$_ASTLVL, 130
resetting PCB$B_ASTACT bit with, 132

CMOD$ASTEXIT, entering SCLRAST system
service, 115

1333

Index

AST (asynchronous system trap) (continued)
completion

queuing after granting a lock, reasons for, 232
queuing at 1/0 completion, 620
queuing by $GETLKI, 235
queuing when a lock is granted, 227

concepts and mechanisms, (chapter) 129
creating

actions that trigger, 133
examples of system queuing, 134
with $DCLAST, 134

CTL$GB_REENABLE_ASTS, notifying user process
to request AST reenable, 143

CTL$GB_SOFr_AST_DISABLE, blocking user mode
ASTs by setting low bit in, 143

CWPS$SRCV _GETJPl_AST, operations, 332
data, synchronizing access to with SCHED spinlock,

183
data structures, field definitions and use, 131
$DCLAST

creating ASTs with, 134
PCB$W_ASTCNT decremented by, 131

DELETE AST procedure, system services invoked
by, 149

DELETE kernel mode AST, control flow, 813
enabling AST delivery to access modes with PCB$B_

ASTEN, 132
examples, 143
EXE$ASTFLT, handling AST faults, 83
EXE$ASTRET, AST exit operations, 141
exit path operations, 141
$FORCEX use of, 147, 339
GSD_CLEAN_AST, operations, 426
hardware components, 129
1/0 completion, EXE$BRKTHRU, 703
JP1$V_NO_TARGET_AST, flag definition and use,

330
kernel mode

Files-11 XQP use of, 147
process deletion use of, 149, 813
process suspension use of, 148, 336
queuing to CLUSTER_SERVER process, 322

level
calculated after process inswap, 542
update, SMP work requests, handling, 1026

LKB$L_ASTQBL, field definition and use, 220
LKB$L_ASTQFL, field definition and use, 220
mailbox read or write requests, 664
normal, system use of, 146
out-of-band

basic operations, 149
characteristics and use, 153
compared with attention AST mechanism, 150
delivering, 155
flushing list of, 156
setting, 154

parameter
ACB location, 133
as argument to system service that queues an

AST, 141
PCB$B_ASTACT

clearing during AST exit path operations, 141
field definition and use, 132
synchronizing AST delivery to access modes with,

132
PCB$B_ASTEN

enablitut AST delivery to access modes with, 132
field definition and use, 132

PCB$L_ASTQBL, field definition and use, 131
PCB$L_ASTQFL, field definition and use, 131

1334

PCB$W _ASTCNT, maximum concurrent ASTs
process can request, 131

PHD$B_ASTLVL, software responsibilities for
managing PR$_ASTLVL save area, 130

PKAST
ACB location of flag, 133
characteristics and use, 146
out-of-band AST use of, 153
use by lock granting routine when two ASTs must

be delivered, 233
powerfail recovery

delivery operations, 999
notification through, 518
request operations, 999
special kernel mode AST use by, 145

PR$_ASTLVL. See PR$_ASTLVL
procedure

argument list characteristics, (figure) 140
entry point, ACB location, 133
zero address, as flag for flushing attention AST

list, 151
process context required, 129
process deletion use of, 149, 813
process suspension use of, 336
queuing

access mode of first AST in, PR$_ASTLVL
contains, 130

after granting a lock, requirements for, 232
as event causing process state change, 299
at timer request expiration, 264
by EXE$GETJPI, 331
effect on processes in event flag wait state, 210
effect on wait states, 282
in remote $GETJPI request, 333
inserting, in SCH$QAST control flow, 134
IPL requirements for, 171
linking ACB into PCB queue, 132
linking LKB into lock timeout queue with LKB

AST queue field, (figure) 236
makes the process computable; 284
mutex-waiting process, blocking the AST delivery

interrupt, 286
scheduler database synchronizing, 151
SUSP and SUSPO state effect dependent on access

mode, 282
to a target process during process deletion, 813
to processes, 134
transitions caused by, 282, 283

quota
charged, ACB location of flag, 133
charged by decrementing PCB$W_ASTCNT, 131
PCB$W_ASTCNT initialized from, 131

reentrancy. Consult Guide to Creating VMS Modular
Procedures

routine, ACB as location of address, 132
$SETPRA, operations, 999
SS$_ASTFLT, inaccessible stack handling, 83
termination procedure, activation by CTRL/Y

processing, 806
TQE$L_AST, field definition and use, 25 7
TQE$L_ASTPRM, field definition and use, 257
transition to COLPG triggered by, 283
UCB$L_MB_R_AST, field definition and use, 658
UCB$L_MB_ W _AST, field definition and use, 658
unwinding, example, (figure) 104
user mode, disabling AST delivery to, 143
VAX architecture feature used by VMS, 15
wait state, characteristics and use, 285
working set limit adjustment use of, 501
XQP as kernel mode AST thread, 147

AST conuol block. See ACB
AST delivery

blocking, as synchronization technique for process
data structures, 167

coordinating with event flag wait, 118, 119
disabling, 142
during process wait, mechanism that permits, 121
enabling to access modes with PCB$B_ASTEN, 132
indicating during $SETIMR request handling, 259
kernel mode, blocking process deletion by disabling,

172
operations and control flow, 135
process deletion use of, 8 ll
REI instruction testing for, 38, 129
synchronizing to access modes with PCB$B_

ASTACT, 132
system-owned lock queue restrictions resulting

from, 233
to process

in CEF, HIB, or LEF, 292
in MWAIT, 293
in PFW, PPG, or COLPG, 292
in SUSP, 292

AST delivery interrupt (IPL 2). See also SCH$ASTDEL
routine

architecturally defined, 130
catalyzed by SMP$INTSR, 1026
characteristics

and control flow, 137
and use, overview, 67

disabled by $BRKTHRU, 698
interrupt service routine, control flow, 137
only software interrupt serviced in context of a

specific process, 55
overview, 1007
PR$_ASTLVL use in controlling, 130
REI instruction

requests, 39
tests before requesting, 129

ASTDEL module
SCH$ASTDEL, delivering AST interrupts, 137
SCH$QAST, queuing ASTs, control flow, 134

ASTEXIT. See $CLRAST
ASTLVL register. See PR$_ASTLVL
ASTWAIT resource. See resource wait - RSN$_

ASTWAIT
asynchronous lock request completion

queuing a special kernel AST as result of, 232
asynchronous system services

characteristics, 108, 227
asynchronous system uap. See AST
atomic memory accesses

characteristics, 162
atomicity

use, 161
ATTACH command

operations, 790
attached processor

term definition, 1007
attention ASTs. See also AST

basic operations, 149
compared with out-of-band AST, 150, 153
CTRL/C and CTRL/Y

must be reenabled after each use, 152
notification use of, 152

delivering, 151
establishing for a particular device, 150
flushing list of, 151
mailbox driver use of, 153
mailbox must be reenabled after each use, 153

Index

setting, 150
terminal driver use by, 152
VMS executive, examples of use, 152

AUDIT SERVER process
command file that creates, 947
communication with through mailboxes, 674
mailbox use by, 674

automatic working set limit adjustment. See also
working set list

affected by DCL command SET WORKING_SET,
498

decreasing working set limit with, 490
disabling

conditions, 498
PCB$L_STS bit that specifies, 366

normal AST use by, 146, 501
operations, 498
parameters that control, (tablel 498
quantum-end scheme, problems with, 502
SCH$QEND control flow, 498
working set size altered by, 360

AWSTIME parameter (SYSGEN)
use in automatic working set limit adjustment, 500

backing store. See also memory management
address, page file, PHD field that specifies, 373
characteristics and use, 352
for modified pages, types of, 401
for page file global sections, 388
for pageable writable executive data, 388
information for PHD pages, 377
information in PFN BAK array, 381
modified page writing to, clustering situations for,

472
modified page written to its, 355
page file, as constraint on address creation, 407
transitions between memory and, (chapter! 435
when allocated for a page, 473
when reserved for a page, 461

bad blocks. See also disks; errors; I/O
BADBLK.SYS file

bad block handling use of, 692
use on DSA disks, 694

BADBLOCK.EXE image, operations, 693
BADLOG.SYS file, bad block handling use of, 693
handling, 692

dynamic, 693
mailbox use by, 675
static, 692

replacing
on DSA disks, 693
on SCSI disks, 694

bad page list
location, 384

BADBLK.SYS file. See bad blocks
BADBLOCK.EXE image. See bad blocks
BADLOG.SYS file. See bad blocks
BADVECTOR bugcheck. See also bugchecks

generated by EXE$CONNECT_SERVICES, 850
BALANCE routine (SWAPPER module)

control flow, 518
balance set. See also memory management

locking into, privilege enabling, 432
balance set slots. See also memory management

area, summary, 1226
arrays, characteristics and use, (figurel 394
characteristics and use, 394
equal-size, 396
identifying occupant of, 395

1335

Index

balance set slots (continued)
obtaining for PHD of inswap process, 536
page fault handler testing for PHD and process body

differences, 437
BALSETCNT parameter (SYSGEN)

effect on size of system space, 1278
number of

balance set slots, 931
entries in swapping data structures, 394

base image. See also SYS.STB
boot parameters area, 831
characteristics and use, 825
EXE$GQ_TODCBASE and EXE$GL_TODR

maintained in, 252
executive transfer vectors, 827
global cells that compose, !table) 1164
fayout, (figure) 825
loaded by SYSBOOT, 914
miscellaneous vectors area, 831
overview, 8
SYS.EXE characteristics and use, 825
SYSGEN parameters area, 830
system data area, 828
system service vectors, 826

system addresses located in, 107
term definition, 823

base priority. See also priorities
changed by SCH$CHANGE_CUR._PRIORITY, 296
current reset by SCH$QEND, 295
1/0 requests queued by, 629
initializ' , 275
routinesu:tt request change in, 295

batch processes. See also job controller
creation, !figure) 785

as result of SUBMIT command, 784
as result of unsolicited card reader input,

arguments passed to $CREPRC, !table) 785
by job controller process, 783

job controller responsibilities
as queue manager, 1102
in the creation of, 1103

jobstep initialization, LOGINOUT control flow, 809
LOGINOUT image operations, control flow, 797

BBCCI instruction. See also instructions
interlocked memory instruction, synchronizing data

with, 164
BBR (bad block replacement) routine

DSA disk bad block handling, 693
BBSSI instruction. See also instructions

interlocked memory instruction, synchronizing data
with, 164

benign state
processors, synchronizing entry into with MEGA

spinlock, 185
term definition, 1032
XDELTA use of, operations, 1032

$BINTIM (Convert ASCII String to Binary Time
system service)

operations, 1121
bit testing

comparison of methods, in spinlock routine control
flow description, 190

BITFIELD statement (SDL)
characteristics and use, 1163

"black hole" page
adapter powerfail handling use of, 1003
EXE$INIT initialization, 930

BLISS·32.. See VAX BLISS-32 language
blocking ASTs. See also AST

deadlock handling by, dangers associated with, 236

1336

delivery for a system-owned lock, mechanism, 234
effect of lock dequeuing on, 231
queuing, after granting a lock, reasons for, 232

blocking condition
locks, lock conversion use of, 228

blocks. See also bad blocks
1/0, ways of referring to, 621
term definition, 544

BOO$A_BOOPARAM cell
location of boot parameters area, 1218

$BOODEF macro
defining offsets in boot driver dispatch area, 911

BOOPARAM module
boot parameters area defined in, 831

$BOOSTATEDEF macro
system initialization state symbol values, 836

boot block program
VAX processors without consoles, operations, 899

boot command
form on different VAX consoles, 892

boot control block
layout, !figure) 917

BOOT CPU
characteristics, 923
primary CPU same as, 1007

boot driver. See bootstrap - driver
boot page

contents, 1050
execution of code, 1054
SMP systems, relations with RPB and physical CPU

data vector, (figure) 1050
boot parameters

area, description, 1218
system data area that contains, 831

boot stack
SMP systems, 1015

BOOT_HANDLER condition handler
functions, 770

BOOT_REJECTED state
reasons for changing SMP member state to, 1044

BOOT58 program
operations, 899

BOOTED state
reasons for changing SMP member state to, 1044

[BOOTS) facility
contents, 1130

(BOOTS)INITPGFIL module
allocating PFL, operations, 396

bootstrap. See also SYSBOOT; system initialization;
VMB

device codes, (table) 1262
driver

fatal bugcheck 1/0 handled by, 973
operations, 911

file lookup cache, 912
file operations, 911
files, processor-independent, (table) 863
1/0 subroutines, operations, 911
procedures, concepts and mechanisms,

(chapter) 862
programs

eliminating code from memory after task
completion, techniques for, 1144

secondary processors, 1053
sequence

MicroVAX II processor, 870
MicroVAX 3100 system, 873
MicroVAX 3200/3500/3600 system, 875
MicroVAX 3300/3800/3900 system, 878
VAX 6000 series, 893

bootstrap (continued)
sequence (continued)

VAX 8200 family, 896
VAX 86x0 system, 881
VAX 8800 family, 886
VAX 88x0 system, 883
VAX-11/730 system, 890
VAX-11/750 system, 897
VAX-11/78x system, 888

SMP operations, 1044
VAX.cluster bootstrapping over Ethernet, 912

BORROWLIM parameter (SYSGEN)
automatic working set limit adjustment use of, 496,

500
effect on working set limit growth, 493

branches
minimizing for performance, 1139

SBROCST (Broadcast system service)
operations, 704

BREAKPOINT parameter (SYSGEN)
breakpoints taken during system initialization, 929

breakthrough message. See also OPCOM process
locked in workina set, 697
writing, control ffow, 694 _

breakthrough message descriptor block. See BRK
Breakthrough system service. See $BRKTHRU
BRK (breakthrough message descriptor block)

layout, (figure! 6$15
summary, 1243

BRK$B_PRVMODE field
definition and use, 698

BRKSB_STS field
definition and use, 697

BRKSC_ALLTERMSfield
definition and use, 697

BRKSC_ALLUSERSfield
definition and use, 697

BRKSC_DEVICE field
definition and use, 697

BRKSC_USERNAME field
definition and use, 697

BRKSL_IOSB field
definition and use, 697

BRKSL_PCB field
definition and use, 697

BRKSL_PIDCTX field
definition and use, 698

BRKSL_QIOCTX field
definition and use, 697

BRKSL_SCRMSG field
definition and use, 697, 698

BRKSL_SCRMSGLEN field
definition and use, 697, 698

BRKSQ...PRIVS field
definition and use, 698

BRK$Q_TIMEOUT field
definition and us12 698

BRKST_DEVNAM neld
definition and use, 697

BRKST_MSGBUF field
definition and use, 697, 698

BRKST_SENDNAME field
definition and use, 697

BRKSW _MSGLEN field
definition and use, 697

BRKSW _SECONDS field
definition and use, 698

BRKSW _SIZE field
definition and use, 697

BRK$W_STATUS field

Index

definition and use, 698
BRK$W_TRMMSG fl.eld

definition and use, 698
$BRKTHRU (Breakthrough system service)

control fl.ow, 694
Broadcast system service. See SBRDCST
$BIDEFmacro

symbols and values, (tablel 1262
Bucket lock. See also locks

characteristics and use, 1313
buffer pages

user, double mapping by console block storage device
drivers, 692

buffered 1/0. See also l/01 1/0 buffers
buffers, transfer parameters that describe, 610
byte count quota, transition states triggered by, 286
PDT routines, characteristics, 610
1/0 postprocessing

BUFPOST actions, 144, 617
IOC$IOPOST actions, 65, 614

buffers
error, characteristics and use, 959

BUFPOST routine (IOCIOPOST module)
buffered read completion, control flow, 617
1/0 postprocessing, operations, 144

BUG_CHECK macro
generating bugchecks by invoking, 967

BUGCHECKBT module
EXE$BUG_CHECK

control fl.ow, 968, 969, 973
operations, 968
SMP operations, 1061

BUGCHECKFATAL parameter (SYSGEN). See also
bugchecks

effect on kernel and executive mode nonfatal
bugchecks, 969

effect on user mode nonfatal bugchecks, 95
user and supervisor mode fatal bugchecks not

affected by, 969
BUGCHECKLD module. See EXESBUG_CHECK

routine
bugchecks. See also errors

BADVECTOR, generated by EXE$CONNECT_
SERVICES, 850

CPUEXIT, generated by SMP$INTSR, 1025
CPUSANITY, generated by EXE$HWCLKINT, 1038
CPUSPINWAIT, generated by SMP$TIMEOUT, 1035
error halt, generated by EXE$RESTART_ATT, 995
executive mode, handling operations, 969
fatal

error log ·messages format and description,
(table) 968

executive and kernel mode operations, 969
~G::essing operations, 979
han . 967
handling in SMP systems, (figure) 1060
overlay and data buffers, (figure) 973
processing operations, 972

FATALEXCPT, generated during condition handler
search, 90

FILCNTNONZ
generated by DELETE, 815
handling, 967

INCONSTATE, generated by SMP$SETUP_CPU,
1052

INVEXCPTN, generated during kernel or executive
mode exception processing, 94

kernel mode, handling operations, 969
KRNLSTAKNV, generated by kernel-stack-not-valid

exception, 76

1337

Index

bugchecks (continued)
KRPEMPTY, generated by failure to allocate a KRP,

568
MACHINECHK, generated by machine check

exception service routine, 980
mechanism, characteristics and use, 967
MTXCNTNONZ, SERVICE_EXIT generation for

mutex error, 116
nonfatal

executive and kernel mode operations, 969
user and supervisor mode operations, 968

NOTSYSVA, generated by MMG$LOCK_SYSTEM_
PAGES, 1146

OPERATOR, generated by OPCCRASH, 957
PGFIPLHI, caused by page fault at IPL above 2, 437
POOL CHECK

generated when pool is poisoned, 5 70
generated when pool's FREE pattern not intact,

572
processing, reserved instruction fault as path into,

85
SPLIPLHIGH, synchronization failure indication,

192
SPLIPLLOW

generated during spinlock release, 195
reason for, 194

SPLRELERR
generated during spinlock release, 195
release failure indication, 192

SPLRSTERR, generated during spinlock restore, 194
SSRVEXCEPT

fatal, generated during kernel mode last chance
handling, 94

nonfatal, generated during executive mode last
chance handling, 95

SSVECFULL, generated by EXE$CONNECT _
SERVICES, 850

STATENTSVD, generated by EXE$RESTART_ATT,
996

supervisor mode, handling operations, 968
user mode, handling operations, 968

BUGCHK (make bugcheck log entries privilege). See
also bugchecks; privileges

use
by $SNDERR, 1109
to generate bugchecks in user and supervisor

mode, 968
BUGREBOOTJarameter (SYSGEN)

effect on fat bugcheck processing, 979
buses. See also adapters; hardware; I/O

A-bus, VAX 86x0 system, 52
accelerator, VAX-11/730 system, 47
array, VAX-11/730 system, 47
M-bus, VAXstation 3520 system, 50
NMI bus, VAX 8800 family, 53
Q22-bus

adapter, interrupt vectors in the SCB, 46
adapter, VAXstation 3520 system, 51

SBI, VAX 8800 family, 53
SCSI

MicroVAX 3100 system, 50
VAXstation 3520 system, 51

VAXBI
adapter, interrupt vectors in the SCB, 45
VAX 6000 series, 51
VAX 8200 family, use as system bus, 52

busy waits. See also wait states
address of most recent, 176
operations, 1035
timeout, purpose of, 1023

1338

wait type for processor waiting for spinlock, 173
BUSYWAIT macro

operations, 1035
BYPASS (bypass all object access controls privilege).

See also privileges
use

by $BRKTHRU, 698, 702
by logical name system services, 1092
to specify access protection of a mailbox, 665

byte count quota
charged

by EXE$GETJPI, 331
for assigning a channel to a template device, 599
for section window control block, 412
for temporary mailbox creation, 661

waiting for, context, 293
BYTLM (Authorize Utility quota). See byte count

quota

C language
parallel processing features, run-time support for,

341
CA (conditional assembly parameters)

name, code, and features, jtable) 1263
cache. See also memory management

translation buffer, performance optimization use of,
365

virtual pages, 436
cache coherency

characteristics and use, 190
term definition, 1009

Cache lock. See also locks
characteristics and use, 1307

CACHE_SERVER process
creation of, 947

call frame condition handlers. See also condition
handlers

distinguished from other call frames, 90
searching for, 88

call frames
first

set up on supervisor mode stack by CLI, 801
set up on user mode stack by EXE$PROCSTRT,

734
minimal, 112, 114
modified by EXE$UNWIND, 98
removed by SCH$WAIT, 290
traversed by EXE$SRCHANDLER, 88
unwound by $UNWIND, 98

from the stack, 96, jfigure) 97
from the stack, potential infinite loop problem,

100
CAN$C_AMBXDGN cancel code

MBDRIVER operations, 670
CAN$C_CANCEL cancel code

MBDRIVER operations, 670
CAN$C_DASSGN cancel code

MBDRIVER operations, 670
$CANCEL (Cancel 1/0 system service)

control flow, 624
flushing

attention AST list requested by, 151
CTRL/C attention AST list, 152
out-of-band AST list requested by, 156
out-of-band AST list, 153

requested during channel deassignment, 603
cancel 1/0 driver routines

characteristics and use, 584
testing device affinity in, 1042

Cancel 1/0 system service. See $CANCEL
Cancel 1imer system service. See $CANTIM
Cancel Wakeup system service. See $CANWAK
CANCELIO routine (MBDRIVER module)

mailbox cancel 1/0, operations, 670
$CANEXH (Cancel Exit Handler system service)

operations, 771
$CANTIM (Cancel 1imer system service)

operations, 259
$CANWAK (Cancel Wakeup system service)

operations, 261
capabilities. See also affinity; scheduler; SMP systems

acquiring, 298
changing, 287
characteristics and use, 287
defined by $CPBDEF macro, 1019
described in per-CPU database, 28 7
mismatch handling, 297
removing, 297
required by a process, 288
requirements

as significant scheduling process characteristic,
268

transition to RWCAP resulting from, 281
reset at image rundown, 289
resetting, 298
term definition, 1007
transitions triggered by, 285
uses, 287

card reader
driver, job controller notified of unsolicited input by,

785
driver interrupt service routine, "hot" card reader

feature description, 785
unsolicited input, batch process creation as result of,

785
CASE_BLIND logical name translation attribute

characteristics, 1075
catch-all condition handler

establishing for a new process, 735
EXE$EXCMSG use by, 1114
mechanism, 94

CCA (console communications area)
VAX 6000 series, 893
VAXstation 35x0, 879

CCB (channel control block). See also adapters; 1/0
characteristics and field definitions, 595
characteristics and use, 580
CTL$GL_CCBBASE, address of CCB table, 595
layout, {figure) 595
locating a free, 597
summary, 1245

CCB$B_AMOD field
definition and use, 595
negative access mode used by Files-11 XQP, 596

CCB$B_STS field
definition and use, 596

CCB$L_UCB field
definition and use, 596

CCB$L_ WIND field
definition and use, 596

CCB$V _IMGTMP bit (CCB$B_STS field)
set by EXE$BRK1HRU, 702
tested by EXE$RUNDWN, 775

CCB$W _IOC field
definition and use, 596

CDDB (class driver data block)
summary, 1245

CDRP (class driver request packet)
characteristics and use, 580

FKB as {>art of, 5 7
layout, (figure) 679
summary, 1245

CEB (common event block}
address for clusters 2 and 3, 204
CEF wait queue use, {figure) 204, 273

Index

common event flag cluster data .structure, field
definitions and use, {figure) 203

layout, {figure) 204
linking into systemwide list, 204
naming, 204
status byte definition and use, 204
summary, 1245

CEB$B_STS field
definition and use, 204

CEB$B_ WQCNT field
definition and use, 205

CEB$L_ CEBBL field
definition and use, 204

CEB$L_ CEBFL field
definition and use, 204

CEB$L_EFC field
definition and use, 205

CEB$L_PID field
definition and use, 205

CEB$L_UIC field
definition and use, 205

CEB$L_ WQBL field
definition and use, 205

CEB$L_ WQFL field
definition and use, 205

CEB$T_EFCNAM field
definition and use, 204

CEB$V_NOQUOTA bit (CEB$B_STS field)
definition and use, 204

CEB$V _PERM bit (CEB$B_STS field)
definition and use, 204

CEB$W _ GRP field
definition and use, 204

CEB$W _PROT field
definition and use, 205

CEB$W _REFC field
definition and use, 205

CEB$W _STATE field
definition and use, 205

CEF (common event flag wait state). See also ~ent
flag wait state; event flags; process states; wait
states

characteristics and use, 210
context for, 292
processes

queue listheads, {figure) 204
queue listheads, locati6n, 205, 273

transitions
from CEF to COM or COMO, 282
to CEF from CUR, 282

change mode. See also exceptions; system services
dispatch tables

entry format, {figure) 112
field definition and use, 112

dispatcher
change-mode-to-executive operations, 115
change-mode-to-kernel operations, 115
control flow, 115
data structures, field definitions and use, 112
exitlaths, common operations, 116
han -built call frame, 112
operations common to both kernel and executive

dispatchers, 114
process, operations, 122

1339

Index

change mode (continued)
exceptions

CHME, 76, 111
CHMK, 76, 111
CHMS, 77, 111
CHMU, 77, 111
selecting stack for servicing, 35

instructions. See also instructions
implementation description, 111
VAX architecture feature used by VMS, 15

system services, operations, 127
change mode mutex

locked by EXE$CONNECT_SERVICES, 850
change mode operands

assigned as system services are loaded, 826
values for

loaded system services, 113
services in privileged shareable image, 113

Change to Executive Mode system service. See
$CMEXEC

Change to Kernel Mode system service. See $CMKRNL
change-mode-to-executive dispatcher

operations, 115
change-mode-to-kernel dispatcher

operations, 115
change-mode-to-supervisor handler

declared by CLI, 801
declared through $DCLCMH, 84

change-mode-to-user handler
declared through $DCLCMH, 85
use

by Files-11 XQP, 85
by job controller, 85

channel control block. See CCB
channel (controller) request block. See CRB
CHANNELCNT parameter (SYSGEN)

effect on Pl space,· 1293
channels. See also CCB; device drivers; I/O

access, 595
assigning

operations, 595
to local devices, 598
to remote devices, 601
to shadow set member, 598
to virtual terminal, 598

deassigning
last channel processing, 605
operations, 595

terminal controllers and, 684
Check Protection system service. See $CHKPRO
CHECK_PACKET routine (MEMORYALC module)

pool poisoning operations, 572
CHECK_ VERSION module

EXE$CHECK_ VERSION, operations, 854
checking

pools, 572
$CHKPRO (Check Protection system service)

logical name table access checking, 1092
CHME exception. See also change mode

why VMS handles, 76
CHMK exception. See also change mode

why VMS handles, 76
CHMS exception. See also change mode; change-mode­

to-supervisor handler
establishing a handler, 84

CHMU exception. See also change mode; change­
mode-to-user handler

establishing a handler, 84
CI (computer interconnect). See also I/O

adapter

1340

communication through interlocked queues, 165
interrupt service routines operations, 649
powerfail and recovery handling by, 1004

microcode files, location on various VAX processors,
909

class driver data block. See CDDB
class driver request packet. See CDRP
class drivers. See also device drivers; I/O; port drivers;

SCS; SCSI
list of, 676
operations, 676
port driver binding, 676

(CLD)DCLTABLEx.LIS
locating command definition file listings in, 1131

cleanup operations. See also condition handlers
image termination, normal, 806
procedure-specific, performing during call frame

unwinding operations, 97
Clear AST system service. See $CLRAST
Clear Event Flag system service. See $CLREF
clearing

instruction lookahead, by REI instruction, 39
CLI (command language interpreter). See also DCL

CLI, MCRCLI
callback mechanism, address of service routine, 801
command processing loop

commands handled by internal procedures,
(table) 802

control flow, (figure) 802
operations, jtable) 802

data pages, contents, names and descriptions,
(table) 1229

exit handler, operations, 806
image activation of, 762
image initiation

argument list passed to image, jfigure) 805
operations, 802

image processing and, 799
initialization, operations, 801
processes that map, control flow, (figure) 799
STARTUP process the first to include, 945
term definition, 11

CLISYMTBL parameter (SYSGEN)
effect on Pl space, 1292
size of CLI symbol table, use by LOGINOUT, 796

clocks. See also timers
hardware

characteristics and use, 248
synchronizing access to database for, 184

time-of-year
characteristics and use, 251
resetting by $SETIME, 251

CLONE_UCB routine ((TTDRVR)TTYSUB module)
operations, 685

$CLRAST (Clear AST system service)
AST exit operations, 141
effect on PR$_ASTLVL, 130
resetting PCB$B_ASTACT bits with, 132

$CLREF (Clear Event Flag system service)
clearing event flag in a synchronous system service,

121
clearing event flags, operations, 212

cluster. See common event flags - clusters; page
cluster; VAXcluster systems

cluster system ID. See CSID
cluster-available devices

characteristics and use, 590
CLUSTER_SERVER process

creation of, 947
$GETJPI

CLUSTER_SERVER process (continued)
$GETJPI (continued)

special kernel mode AST operations in, 333
use by, 332

participant in clusterwide process services, 322
queuing kernel mode AST to, 322
use by $BRKTHRU, 699

clusterwide process services. See CWPS
CLUSTRLOA image

loading, operations, 857
transfer vectors area location, 831
vector, table, 85 7

CLUSTRVEC module
connection manager and distributed lock manager

code, entry point names and descriptions,
(table) 1218

miscellaneous transfer vector areas defined in, 831
CMEXEC (change mode to executive privilege). See

also privileges
activation of shareable images, 755
system service dispatching, 127

$CMEXEC (Change to Executive Mode system service)
control fl.ow, 127

CMI (CPU-to-memory interconnect)
VAX-11/750 system, 47

CMKRNL (change mode to kernel privilege). See also
privileges

activation of shareable images, 755
connect-to-interrupt driver, 652
system service dispatching, 127
use

by $CREPRC, 712, 719
by image dump facility, 736
by SYSGEN, 948

$CMKRNL (Change to Kernel Mode system service)
control flow, 127

CMOD$AB_EXEC_INHIBIT_MASK
executive mode inhibit mask table, system service

filtering use of, 127
CMOD$AB_KERNEL_INHIBIT_MASK

kernel mode inhibit mask table, system service
filtering use of, 127

CMOD$AL EXIT TYPE table
definition-and use, 113

CMOD$AR EXEC DISPATCH VECTOR
dispatch table for executive mode system services,

112
CMOD$AR KERNEL DISPATCH VECTOR

dispatch table for kernel mode system services,
112

CMOD$ASTEXIT routine (SYSTEM_SERVICE_
DISPATCHER module)

entering $CLRAST, 115
CMOD$GW CHMx LIMIT

change mode dispatcher use of, 113
controlling dispatching to privileged shareable

images, 122
CMOD$SSVECX routine (SYSTEM_SERVICE_

DISPATCHER module)
change-mode-to-executive error handling, ll5
RMS error detection use, 120

$CNTREG (Contract Region system service)
operations, 432

CNX$CHECK_QUORUM routine
((SYSLOA)CONUTIL module)

operations, 1028
cold-start flag

clearing, PR$_ TXDB use for, 690
COLLECT/ATTRIBUTES linker option

use, 833

Index

collided page wait state. See COLPG
COLPG (collided page wait state). See also page faults;

process states; wait states
characteristics and use, 4 79
context for, 292
page fault that results in, 445
transitions

from COLPG to COM or COMO, 283
to COLPG from CUR, 283

COM (computable state). See also COMO; process
states; wait states

characteristics, 281
processes, queue listheads, location, (figure) 271
transitions

from COM to other states, 281
to COM from CUR, 279
to COM from other states, 282

COM$DELATTNAST routine (COMDRVSUB module)
delivering attention ASTs, 151

COM$DELATTNASTP routine (COMDRVSUB
module)

CTRL/C notification use of, 152
delivering attention ASTs to a particular process,

151
COM$DELCTRLAST routine (COMDRVSUB module)

delivering out-of-band ASTs, 155
COM$DELCTRLASTP routine (COMDRVSUB

module)
delivering out-of-band ASTs to a particular process,

155
COM$DRVDEALMEM routine (COMDRVSUB

module)
deallocating pool, synchronization issues, 562

COM$FLUSHATTNS routine (COMDRVSUB module)
flushing attention AST list, control flow, 151

COM$FLUSHCTRLS routine (COMDRVSUB module)
flushing out-of-band ASTs, control flow, 157

COM$POST routine (COMDRVSUB module)
operations, 683

COM$SETATTNAST routine (COMDRVSUB module)
setting attention ASTs with, 150

COM$SETCTRLAST routine (COMDRVSUB module)
setting out-of-band ASTs with, control flow, 154

COMDRVSUB module
COM$DELATTNAST, delivering attention ASTs,

151
COM$DELATTNASTP

CTRL/C notification use of, 152
delivering attention ASTs to a particular process,

151
COM$DELCTRLAST, delivering out-of-band ASTs,

155
COM$DELCTRLASTP, delivering out-of-band ASTs

to a particular process, 155
COM$DRVDEALMEM, deallocating pool,

synchronization issues, 562
COM$FLUSHATTNS, flushing attention AST list,

control flow, 151
COM$FLUSHCTRLS, flushing out-of-band ASTs,

control flow, 157
COM$POST, operations, 683
COM$SETATTNAST, setting attention ASTs with,

150
COM$SETCTRLAST, setting out-of-band ASTs

with, control flow, 154
command definition files

locating DCL command routines in, 1131
command language interpreter. See CLI
common event block. See CEB
common event flag wait state. See CEF

1341

Index

common event flags. See also CEB; CEF
characteristics and use, 204
clusters

2 and 3, location, 204
associating to, 206
characteristics, 202
deleting permanent, 208
dissociating, 207, 208
identifying, 204
processes currently associated to, 205
wait queues, 205

interprocess communication mechanism, 342
interprocess synchronization through, 213
location, 205
number available to processes, 202
set by DIRPOST, 616
wait queues, (figure) 204
waiting for, 208

communications. See also common event flags; global
sections; locks; logical names; mailboxes

interprocess, mechanisms, overview, 342
network, images used with, 687
OPCOM process

command file that creates, 947
description, 1108
mailbox use by, 674

processes, list of available mechanisms, 318
with system processes. See ERRFMT process; job

controller; OPCOM process
COMO (computable outswapped state). See also COM;

process states; wait states
characteristics, 281
processes, queue listheads, location, (figure) 271
transitions

from COMO to other states, 281
to COMO from COM, 281
to COMO from wait states, 282

compatibility
adapter role in supporting, 45

compatibility mode
accessing through REI instruction, 38
context page, description, I table) 1230
exceptions

establishing a process handler, 84
handling, 85

images, image activator operations, 762
REI tests to enter compatibility mode, 38

compatible locks. See also locks
characteristics and use, 214

completion AST. See also AST
queuing

after granting a lock, reasons for, 232
by $GETLKI, 235

computability. See also COM; COMO; scheduler
system services affecting, 334

computable outswapped state. See COMO
computable state. See COM
computer interconnect. See CI
CON$INTDISI routine ([SYS)PERMANENT_DEVICE_

DATABASE module)
operations, 690

CON$INTDISO routine ([SYS)PERMANENT_
DEVICE_DATABASE module)

operations, 690
CON$INTINP routine ([SYSLOA]OPDRIVER

module)
operations, 691

CON$INTOUT routine ([SYSLOA]OPDRIVER
module)

operations, 691

1342

CONCEALED equivalence name attribute
characteristics, 1075

concurrency. See locks; SMP systems; VAXcluster
systems

condition handlers. See also AST; bugchecks;
conditions; exceptions; image activation;
mechanism array; process creation; signal array;
software conditions

actions performed by, 95
actions with respect to a particular access mode, 72
call frame

compared with software-vectored condition
handler, 73

distinguished from other call frames, 90
distinguished from software-vectored handlers, 88
establishing, 7 4
searching for, 88

catch-all condition handler
establishing for a new process, 735
EXE$EXCMSG use by, 1114
mechanism, 94

common call site for, 91
concepts and mechanisms, !chapter) 71
continuing, passing conditions on by, mechanism,

96
DCL use of, 95
declaration and coding. Consult Introduction to

VMS System Services; VMS Run-Time Library
Routines Volume

default !VMS-supplied), mechanism, 93
dispatching to

common call site for, 91
common procedures for, 88

establishing, 73
exceptions passed to, !table) 77, !table) 82

control flow, (figure) 77
facility

features, 72
major goal, 73

last chance
calling, 90
catch-all condition handler use for, 94

MCR use of, 95
mechanism array

building, 79
layout, (figure) 79 .

message formatting for, 1110
overview, 71
searching for, (figure) 88

with multiple active signals, (figure) 91
setting up for non-user access modes, 94
signal array

building, 77
layout, (figure) 77

software-vectored
compared with call frame condition handler, 773
distinguished from call frame handlers, 88
establishing, 7 4
searching for, 88
types of, 74

supervisor mode, establishing, 95
traceback handler, 770

established by image startup, mechanism, 93
conditional assembly parameters (CA)

name, code, and features, !table) 1263
conditions

nested, handling example, (figure) 102
passing on by resignaling or continuing, 96
software, continue signal actions, 96
type code, signal as name for, 72

conditions (continued)
values, names format, 1234

CONFIGURE process
creation of, 946

CONFINE logical name attribute
characteristics, 1069

connect-to-interrupt mechanism. See also I/O
characteristics and use, 652

connection manager. See also VAXcluster systems
entry point names and descriptions, (table) 1218

console block storage device
1/0, operations, 691

console command
software interrupts requested by, 54

console communications area. See CCA
console devices

data transfer between VAX CPU and, 689
served by primary processor in benign state, 1033
served by primary processors to secondary, 1025

console drivers. See also device drivers
block storage devices, 691

console interrupts
dispatching, 690
terminal, operations, 690
VAX architecture mechanisms, 43

console microprocessors
configuration, 880
functions, 880

console port driver
relation with terminal drivers and console UCB,

(figure) 681
terminal class driver binding to, (figure) 691

console subsystem
initialization functions, overview, 862
operations, 688
power recovery

logic, 984
operations, 984

VAX 6000 series components, 893
VAX 8200 family components, 895
VAX 86x0 configuration, 881
VAX 8800 family configuration, 885
VAX 88x0 configuration, 883
VAX-11/730 configuration, 890
VAX-11/750 components, 897
VAX-ll/78x configuration, 887

console terminal
entering XDELTA commands from, 68
requesting IPL 12 interrupt from, 68

CONSTANT statement (SDL)
characteristics and use, 1162

constants. Consult VMS 1/0 User's Reference Volume
and VMS System Services Reference Manualfor
systemwide constants not listed in Appendix E

definitions, locating, 1133
symbolic names and meanings, (tables) 1262

context. See also process context; system context
hardware. See also hardware PCB

loading process, LDPCTX instruction control flow,
309

saving process, SVPCTX instruction control flow,
308

process blocks, location of, 323
software interrupts, interrupt service routine

handling of, 55
switching. See also scheduler

accessing hardware PCB during, 307
process, characteristics and operations, 306

CONTINUE command
operations, 808

Index

Contract Region system service. See $CNTREG
control characters

handled by out-of-band ASTs, 153
out-of-band AST use for notification of, 149

control Hags
$GETJPI, AST queuing control provided by, 330

control How. See also exceptions; interrupts; scheduler;
wait states

methods for altering, overview, 29
control mechanisms. See AST; change mode -

dispatcher; condition handlers; exceptions;
interrupts; software interrupts

control region. See also address space - Pl
copying from during process creation, (figure) 710
overview, 5
process, returning information from, 330
term definition, 5

conversion deadlocks
detecting, method, 237
searching for, preventing locks from participating,

236
victim selection in, 243

conversion grant mode (locks). See also locks
characteristics and use, 228
grant mode and, 229
group grant mode and, 228

conversion queue
removing LKBs from, 231
resource, listhead location in RSB, 217

conversion support
system services that provide, 1120

Convert ASCII String to Binary Time system service.
See $BINTIM

Convert Binary Time to ASCII String system service.
See $ASCTIM

Convert Binary Time to Numeric Time system service.
See $NUMTIM

copy-on-reference page
global

page fault, control flow, 454
page fault, overview, 448

page fault
when page is, control flow, 445
when page is not, control flow, 439

system
page fault when page is, control flow, 459
page fault when page is not, control flow, 458

transitions
when page is, (figure) 445
when page is not, (figure) 439

corrected read data errors
SCB reserved offsets, 42

CPB$V _EXPLICIT_AFFINITY capability
use when set, 288

. CPBSV _IMPLICIT_AFFINITY capability
implicit affinity use of, 289
use when set, 288

CPBSV _PRIMARY capability
use, 287

$CPBDEF macro
capabilities symbolic values, 273
definitions of processor capabilities, 1019

CPU. See also CPU$ prefix entries; per-CPU database;
processors; SMP systems; VAXcluster systems

as 1/0 hardware configuration component, 577
capabilities. See capabilities
data transfer between console devices and, 689
data vector

characteristics and use, 1016
per-CPU data area relation to, (figure) 1016

1343

Index

CPU (continued)
state. See processors - states

CPUID
capabilities use of, 287
determining in SMP systems, 1008
system mask use of, 269

CPU mutex
held by

SMP$INVALID, 1030
SMP$SHUTDOWN_CPU, 1058

operations, 1022
CPU time

incremented by EXE$HWCLKINT, 262
CPU time limit expiration

normal AST handling of, 146
CPU$B_BUSYWAIT field

definition and use, 1018
CPU$B_CPUDATA field

definition and use, 1018
CPU$B_CPUMTX field

definition and use, 1018
CPU$B_CUR_PRI field

definition and use, 273, 1016
priority use of, 276

CPU$B_STATE field
definition and use, 1018, 1043

CPU$B_SUBTYPE field
definition and use, 1018

CPU$B_TYPE field
definition and use, 1018

CPU$L_BUGCODE field
definition and use, 1018

CPU$L_ CAPABILITY field
capabilities use of, 287
definition and use, 273, 1019

CPU$L_CPUID_MASK field
definition and use, 273, 1018

CPU$L_CURPCB field
address for process in CUR state, 279
definition and use, 273, 1016

CPU$L_HALTPC field
definition and use, 1018

CPU$L_HALTPSL field
definition and use, 1018

CPU$L_INTSTK field
definition and use, 1017

CPU$L_IPL_ARRAY field
definition and use, 1020
spinlock use of, 177

CPU$L_IPL_ VEC field
definition and use, 1020
spinlock use of, 177

CPU$L_KERNEL field
definition and use, 1019

CPU$L_MCHK_MASK field
definition and use, 1018

CPU$L_MCHK_SP field
definition and use, 1018

CPU$L_NULLCPU field
definition and use, 1019

CPU$L_POBR field
definition and use, 1018

CPU$L_POLR field
definition and use, 1018

CPU$L_POPT_PAGE field
definition and use, 1018

CPU$L_PlBR field
definition and use, 1018

CPU$L_PlLR field
definition and use, 1018

1344

CPU$L_PCBB field
definition and use, 1018

CPU$L_PERCPUVA field
definition and use, 1017

CPU$L_PHY_CPUID field
definition and use, 273, 1018
spinlock use of, 176

CPU$L_PSBL field
definition and use, 1019

CPU$L_PSFL field
definition and use, 1019

CPU$L_QLOST_FQFL field
definition and use, 1019

CPU$L_RANK_ VEC field
definition and use, 1019
spinlock use of, 177

CPU$L_REALSTACK field
definition and use, 1017

CPU$L_SAVED_AP field
definition and use, 1018

CPU$L_SAVED_ISP field
definition and use, 1018

CPU$L_SCBB field
definition and use, 1018

CPU$L_SISR field
definition and use, 1018

CPU$L_TENUSEC field
characteristics and use, 932
definition and use, 1019

CPU$L_TPOINTER field
definition and use, 1020
sanity timer mechanism use of, 1037

CPU$L_UBDELAY field
characteristics and use, 932
definition and use, 1019

CPU$L_ WORK_REQ field
definition and use, 1018
interprocessor interrupt request use of, 1023

CPU$Q_BOOT_TIME field
definition and use, 1019

CPU$Q_SWIQFL field
definition and use, 1019

CPU$Q_ WORK_FQFL field
definition and use, 1019

CPU$W _HARDAFF field
count of processes with explicit affinity, 288
definition and use, 273, 1019
image rundown effect on, 289
process deletion effect on, 289

CPU$W_SANITY_TICKS field
definition and use, 1020
sanity timer mechanism use of, 1037

CPU$W_SANITY_TIMER field
definition and use, 1020
sanity timer mechanism use of, 1037

CPU$W _SIZE field
definition and use, 1018

CPU-dependent images
loading, 856

CPU-dependent routines
entry points, names and descriptions, jtable) 1218
locating, 1153

CPU-specific processor registers
saving during powerfail handling, 983, jtable) 984

CPU_START routine ((SYSLOA)SMPSTART_xxx
module)

operations, 1054
CPU-to-memory interconnect. See CMI
$CPUDEF macro

per-CPU database symbolic values, 1016

SCPUDEF macro (continued)
processor state symbols defined by, 1043
work request bits defined by, 1023

CPUDISP macro
description, location of, 1137

CPUEXIT bugcheck. See also bugchecks
generated by SMP$INTSR, 1025

CPUSANITY bugcheck. See also bugchecks
generated by EXE$HWCLKINT, 1038

CPUSPINWAIT bugcheck. See also bugchecks
generated by SMP$TIMEOUT, 1035

crash. See bugchecks
CRASH CPU

fatal bugcheck operations by, 1060
term definition, 1060

crash dumps. See also bugchecks; errors
characteristics and use, 970
physical memory dump

characteristics and limitations, 970
operations, 975

selective memory dump
characteristics, 971
incompatible with dump to PAGEFILE.SYS, 977
layout, (figure) 977
operations, 976

CRB (channel request block). See also 1/0
characteristics and use, 580
layout and summary, 1247
mailbox, assembled into SYSTEM_PRIMITIVES

loadable executive image, 657 .
Q22-bus-based MicroVAX system, conflguration, 49
timeout mechanism, EXE$TIMEOUT handling of,

265
CRBSL_DLCK field

definition and use as pointer to spinlock, 180
Create and Map Section system service. See $CRMPSC
Create Logical Name system service. See $CRELNM;

$CRELOG
Create Logical Name Table system service. See

$CRELNT
Create Mailbox and Assign Channel system service.

See $CREMBX
Create Process system service. See $CREPRC
Create Vutual Address Space system service. See

$CRETVA
SCRELNM (Create Logical Name system service)

operations, 1093
$CRELNT (Create Logical Name Table system service)

operations, 1095
$CRELOG (Create Logical Name system service)

superseded in VMS Version 5, 1100
CRELOG logical name attribute

characteristics, 1069
SCREMBX (Create Mailbox and Assign Channel

system service)
control flow, 658

$CREPRC (Create Process system service). See also
process creation

arguments passed to
byDCL, 789
by job controller process, (table) 784

base priority initialization by, 275
characteristics, 709
control flow, 710

SCRETVA (Create Virtual Address Space system
service). See also address space; virtual address
space; virtual pages

control flow, 407
SCRMPSC (Create and Map Section system service).

See also global sections; process sections

control flow, 412
creating

global sections, 416
PFN-mapped process sections, 415
process sections, 374
process-private sections, 412

CSID (cluster system ID)

Index

location for node not mastering a resource, RSB field
that contains, 224

VAXcluster node search use of, 325
CTDRIVER. See also device drivers

remote terminal driver, operations, 685
CTL.$AL_FINALEXC array

condition handler search use of, 74
CTL$AQ_EXCVEC array

condition handler search use of, 74
CTL$C_KRP_COUNT symbol

KRP packet control, 567
CTLSC_KRP_SIZE symbol

KRP packet control, 567
CTL$GB_REENABLE_ASTS cell

notifying user process to request AST reenable, 143
CTL$GB_SOFT_AST_DISABLE cell

blocking user mode ASTs by setting low bit in, 143
CTL$GB_SSFILTER cell

system service filtering use of, 128
CTL$GL_CCBBASE cell

CCB table location, 595
CTL$GL_CMSUPR cell

storing process change-mode-to-supervisor handler
in, 84

CTLSGL_CMUSER cell
storing process change-mode-to-user handler in, 84

CTLSGL_COMPAT cell
storing process compatibility mode handler in, 84

CTL$GL_CTLBASVA cell .
. Pl space boundary address, 353

CTL$GL_FIXUPLNK cell
· definition and use, 763

CTL$GL_GETMSG cell
. characteristics and use, 1111

CTLSGL_KRPFL cell
KRP looka:side listhead, 567

CTL$GL_LNMDIRECT cell
meaning, 1071

CTL$GL_LNMDIRSEQ cell
meaning, 1085

CTL$GL_LNMHASH cell
meaning, 1083

CTLSGL_PHD cell
accessing PHD through, 368, 537

CTL$GL_PPMSG cell
characteristics and use, 1111

CTL$GL_USRCHME cell
address of process system service dispatcher, 122

CTLSGL_USRCHMKcell
address of process system service dispatcher, 122

CTL$GQ_ALLOCREG cell
. process allocation region listhead, 565
CTL$GQ_LNMTBLCACHE cell

meaning, 1086
CTL$GQ_POALLOC cell

PO process allocation region listhead, 566
CTL$GQ_PROCPRIV cell

process privilege mask, use and routines that
manipulate it, (table) 778

CTLSGW_CHINDX cell
number of highest assi.S!led channel, 607

CTLIMGLIM parameter (SYSGEN)
process allocation region allocation limit, 566

1345

Index

CTLPAGES parameter (SYSGEN)
effect on Pl space, 1293
number of pages in Pl pool, 565

CTRL/C
attention AST list, flushing, 152
attention AST use for notification of, overview, 149

CTRL/Y
attention AST list, flushing, 152
attention AST use for notification of, 149, 152
handling during image execution, 770
processing, image termination operations, 806

CUR (current state). See also process states; wait states
characteristics and transitions, 2 79
placing into a wait state, 290
preemption mechanism, 299
process, pointer to in per-CPU database, 271
transitions, from CUR to other states, 279

current priority. See priorities
current state. See CUR
CWPS (clusterwide process services)

creation of CLUSTER_SERVER process for, 947
extending process control and information system

services with, 319
locating processes on VAXcluster nodes, 322
queue, created in PCB by EXE$PROCSTRT, 322
remote request processing, 322
servicing requests for, (figure) 323
use by

EXE$BRKTHRU, 698, 699
EXE$DELPRC, 812
EXE$FORCEX, 339
EXE$GETJPI, 332
EXE$NAMPID, 322
EXE$SETPRI, 340
EXE$SUSPND, 337
EXE$WAKE, 335
$RESUME, 339
$SCHDWK, 260

CWPS$GETJPI routine (CWPS_GETJPI module)
dispatching $GETJPI requests to other VAXcluster

nodes, 332
CWPS$GETJPI_PSCAN routine (CWPS_GETJPI

module)
dispatching $GETJPI requests to other VAXcluster

nodes, 332
CWPS$SRCV_GETJPI_AST routine (CWPS_SERVICE_

RECV module)
operations, 332

CWPS_GETJPI module
CWPS$GETJPI, dispatching $GETJPI requests to

other VAXcluster nodes, 332
CWPS$GETJPl_PSCAN, dispatching $GETJPI

requests to other VAXcluster nodes, 332
CWPS_SERVICE_RECV module

CWPS$SRCV_GETJPl_AST, operations, 332
$CWPSJPI macro

$GETJPI requests defined by, 326
$CWPSSRV macro

defining information to be passed to a remote
VAXcluster node, 325

CWPSSRV$L_EXT_OFFSET
offset to a CWPSSRV extension, 326

$DACEFC (Disassociate Common Event Flag Cluster
system service)

control flow, 207
$DALLOC (Deallocate Device system service)

control flow, 593
requested by DELETE AST procedure, 149

1346

$DASSGN (Deassign Channel system service)
control flow, 603
flushing

attention AST list requested by, 151
CTRL/C and CTRL/Y attention AST list, 152
out-of-band AST list requested by, 156

requested by DELETE AST procedure, 149
data cells

in loadable executive images, 833
pointers, locating symbols with, 1151
system data area, characteristics and use, 828

data incoherency. See also synchronization
characteristics, 162

data management
overview, 11

data structure type definitions (DYN)
name, code, and structure type, ltable) 1263

data structures
ASTs, field definitions and use, 131
dynamic

header format, (figure) 552
storage areas for, 544

executive, summary, 1242
for global pages, characteristics and field definitions,

388
fork processes, 5 7
global sections, relations among, (figure) 392
1/0, overview, 579
1/0 devices, as component of 1/0 database, 578
images, 740
in loadable executive images, 835
known images, 743
lock management, characteristics and use, 214
logical names, 1077
mailboxes associated with creation, jfigure) 662
memory management

characteristics and field definitions, 38 7
concepts and mechanisms, !chapter) 349

offset definitions, locating, 1133
page files, characteristics and field definitions, 396
physical memory, overview, 355
private, protecting against concurrent access, 167
related to $PROCESS_SCAN, 323
scheduler, characteristics and field definitions, 268
SDL definitions, (example) 1159

interpreting field meanings with, 1158
SMP support, 1013
SMP systems, synchronizing access with spinlocks,

166
summarized in Appendix E, {table) 1242
swapping, characteristics and use, 393
system, descriptions, (chapter) 1241
that describe process context, (figure) 3
virtual address space, overview, 354

database. See also per-CPU database; scheduler -
database

1/0, components, 578
date. See also time

initializing, operations, 252
maintaining, 254

across system reboots and power failures, hardware
support, 251

DCL (Digital Command Language) CU. See also CLI,
MCRCLI

command module, identifying DCL command
internal routines with, 1131

command processing loop
commands handled by internal procedures,

{table) 802
control flow, (figure) 802

DCL (Digital Command Language) CLI (continued)
command processing loop (continued)

operations, (table) 802
commands

interactive subprocess creation and connection,
787

locating listing file for, 1131
that request $SNDJBC, 1103

condition handlers used by, 95
exit handler, operations, 806
image initiation

argument list passed to image, (figure) 805
operations, 802

image processing and, 799
initialization, operations, 801
term definition, 11

DCL$EXITHAND (DCL exit handler)
control flow, 806

DCL$STARTUP routine ([DCL]INITIAL module)
operations, 801

$DCLAST (Declare AST system service)
creating ASTs with, 134
PCB$W_ASTCNT decremented by, 131

$DCLCMH (Declare Change Mode Handler system
service)

operations, 84
[DCL]DCL.MAP map file

locating DCL command internal routines with, 1131
locating routines in DCL, using for, 1153

$DCLEXH (Declare Exit Handler system service)
operations, 771

[DCL]INITIAL module
DCL$STARTUP, operations, 801

DDB (device data block)
characteristics and use, 580
layout and summary, 1247
mailbox, assembled into SYSTEM_PRIMITIVES

loadable executive image, 657
DDT (driver dispatch table)

characteristics and use, 582
layout and summary, 1247

DEADLOCK module
LCK$SEARCHDLCK, operations, 237
LCK$SRCH_RESDLCK, operations, 239

DEADLOCK_ WAIT parameter (SYSGEN)
deadlock search initiation controlled by, 236

deadlocks. See also locks; resources; synchronization
avoiding

during spinlock acquisition, 193
during VBN to LBN conversion, 622

conversion
detecting, method, 237
preventing locks from participating in search, 236
victim selection, 243

detecting
method, 237
system-owned lock queue restrictions resulting

from, 234
$ENQ argument restricting lock participation in

search, dangers of, 236
handling, 235
multiple resource

detecting, (figure) 238
preventing locks from participating in search, 236
recursive algorithm for verifying, (figure) 239
search for, example, (figure) 241
victim selection, 243

preventing
during spinwait, 1035
spinlock use rules for, 180

Index

reasons for, 235
search for

criteria for initiating, 236
initiating from EXE$TIMEOUT, 266
triggering for lock requests, lock timeout queue

role in, 236
unsuspected, preventing accidental detection of,

(figure) 240
Deallocate Device system service. See $DALLOC
Deassign Channel system service. See $DASSGN
DEBUG command

operations, 808
debugger

bootstrap, name for $IMGSTA system service, 769
calling, during image execution, 770
condition handling in images that contain, 93
mapped by $IMGSTA, 769

debugging. See also bugchecks; crash dumps; errors;
SS$_ prefix entries; SS$_DEBUG signal; XDELTA

synchronization problems, spinlock routine
optimized for, 174

decimal instructions. See also instructions
unimplemented, emulation support for, 77

Declare AST system service. See $DCLAST
Declare Change Mode Handler system service. See

$DCLCMH
Declare Error Log Mailbox system service. See

$DERLMB
Declare Exit Handler system service. See $DCLEXH
DECLARE_PSECT macro

defining loadable PSECTs with, 833
DECnet. See also SMP systems; VAXcluster systems.

Consult VMS Network Control Program
Manual; VMS Networking Manual

buffer size, LRP list element size same as, 55 7
lock use by, characteristics and use of each lock,

1321
DECnet-VAX

SCA protocol description, 678
DEFINE DATA CELL macro

defining data cells, (example) 830
DEFINE ROUTINE CALL macro

executive transfer-vectors defined by, 827
DEFINE_ROUTINE_JSB macro

executive transfer vectors defined by, 82 7
DEFPRI rarameter (SYSGEN)

norma process priority defined from, 2 78
SWAPSCHED use of, 519

DELETE AST procedure
system services requested by, 149

Delete Common Event Flag Cluster system service.
See $DLCEFC

Delete Global Section system service. See $DGBLSC
DELETE kernel mode AST

control flow, 813
Delete Logical Name system service. See $DELLNM;

$DELLOG
Delete Mailbox system service. See $DELMBX
Delete Process system service. See $DELPRC
Delete Virtual Address Space system service. See

$DELTVA
$DELLNM (Delete Logical Name system service)

operations, 1098
$DELLOG (Delete Logical Name system service)

superseded in VMS Version 5, 1100
$DELMBX (Delete Mailbox system service)

control flow, 662
$DELPRC (Delete Process system service). See also

process deletion
kernel mode AST use by, 149

1347

Index

SDELPRC (Delete Process system service) (continued)
normal AST use by, 147
operations, 811

(DELTA)XDELTA module
XDT$CPU_WA1T, operations, 1033

SDELTVA (Delete Virtual Address Space system
service)

control flow, 427
requested by DELETE AST procedure, 149

demand paging
characteristics, 352

demand zero
global section, 417
page

backed by page file, 407
private page faults, control flow, 447
PTE characteristics, 3 73
system page faults, control flow, 459
transitions, (figure) 447

sections, activation of, ISD and PTEs for, (figure) 752
virtual address space, creating, 407

SDEQ (Dequeue Lock Request system service)
operations, 230

Dequeue Lock Request system service. See SDEQ
SDERLMB (Declare Error Log Mailbox system service)

operations, 966
DETACH (create detached processes privilege). See

also privileges
use by EXE$CREPRC, 712, 719
use in process creation, 712, 716

DEVSV _ALL bit (UCBSL_DEVCHAR field)
set to indicate explicit allocation, 591

DEV$V_CLU bit (UCB$L_DEVCHAR2 field)
cluster-available devices identified by, 590

DEVSV _NET bit (UCB$L_DEVCHAR2 field)
network devices identified by, 590

device affinity. See also affinity; capabilities; SMP
systems

SMP systems, operations, 1040
term definition, 1007
testing for

at device timeout, 1042
in EXESALTQUEPKT, 631
in EXE$CANCEL, 625
in IOC$INITIATE, 630

device attention errors
characteristics and handling, 963

device controllers
CRB, characteristics and use, 580
device lock address location, 180
initialization routine, purpose, 583

device data block. See DDB
device drivers. See also connect-to-interrupt mecha­

nism; device affinity; device timeout; FDT; I/O;
interrupts; ISR

class
list of, 676
operations, 676

concepts and mechanisms, (chapter) 628
console block storage device, operations, 691
console terminal, operations, 690
context, fork block in UCB used to contain, 579
driver tables, overview, 582
error logging, 962

participation by IOC$REQCOM, 963
fork IPL choice, considerations affecting, 63
fork lock use by, 182, 590
fork process importance to, 58
initiating device action, (figure) 633
local area terminals, characteristics, 685

1348

mailboxes
attention AST use by, 153
control flow, 664
writing to, 672

major entry point list, 1041
map files, use, 1154
network, characteristics and operations, 687
nonpaged pool synchronization, 561
overview, 582
port

list of, 676
operations, 676

port/class model, characteristics, 628
powerfail

multiple, handling, 1002
notifying about, 998
recovery responsibilities, 999

pseudo devices, characteristics and list, 687
queuing

I/O requests to, 613, 629, 631
messages to mailboxes, control flow, 671

register dump routine, 963
remote terminals, characteristics, 685
routines, overview, 583
start I/O routine

characteristics and use, 632
entering, 629
entering alternate, 631

synchronizing
in SMP systems, 1039
shared resources, fork IPL use, 170

terminal
attention AST use by, 152
operations, 679

virtual terminals, characteristics, 684
wait-for-interrupt model, characteristics and use,

628
device failure. See device timeout; mount verification
device independence

logical names role in, 1067
device interrupts. See also ISR

blocking, IPL use, 170
driver actions

servicing, 636
waiting for, 635

I/O, concepts and mechanisms, (chapter) 628
operations, 641
SMP systems, 1040

serviced by primary processor, 1039
timing out, 265
VAX architecture mechanism, 44

Device lock (lock manager)
characteristics and use, 1299

device lock (spinlock). See also locks; spinlocks
characteristics and use, 179
held

at entry to timeout routine, 1039
by TTYSWRTSTARTIO, 683
in start I/O routine, 635, 638

I/O subsystem importance, 581, 636
must be acquired by interrupt service routines, 1039
testing for, 192

Device Scan system service. See SDEVICE_SCAN
device timeout. See also timeouts

EXE$TIMEOUT, 265
initializing related UCB fields, 635
routines, testing device affinity in, 1042

device units
fundamental component for I/O database, 5 79
IDB, characteristics and use, 580

device units (continued)
initialization routines, purpose, 583

device-dependent information
characteristics, 705

device-independent information
characteristics, 705

$DEVICE_SCAN (Device Scan systelh service)
arguments, 1117
operations, 1117
use, 705

DEVICELOCK macro
generated code example, 187

devices. See also device drivers; 1/0; interrupts
allocated, accessible by subprocess of allocating

process, 591
allocating, 591

explicit compared with implicit, 591
autoconfiguring, SYSGEN operations, 948
categories, characteristics and use, 590
command file that directs configuration, 947
controllers, as 1/0 hardware configuration compo-

nent, 577
deallocating, 591

conditions that prevent, 594
deassigning channel to, 603
drivers, concepts and mechanisms, (chapter) 628
information system services, operations, 1117
local, assigning channels to, 598, 600
nontemplate, assigning channels to, 598
remote, assigning channels to, 601
SMP systems, restricting access to, 1040
template, assigning channels to, 599
units, as 1/0 hardware configuration component, 577
virtual 1/0, mailboxes as, 655

DEVICEUNLOCK macro
generated code example, 189

SDGBLSC (Delete Global Section system service)
control flow, 423

DIAGNOSE (diagnose devices privilege). See also
privileges

use to assign an error log mailbox, 966
diagnostic bootstrap

loaded by VMB, 901
Digital Command Language. See DCL CLI
Digital symbols

dollarsign($)use, 1232
underscore(_) use, 1232

direct 1/0
buffers, transfer parameters that describe, 610
device driver implementation, through buffer

mapping, 692
FDT routines, characteristics, 610
1/0 postprocessing request

DIRPOST actions, 620
IOC$IOPOST actions, 65, 144, 614

operations, 400
outswapping pages with direct 1/0 in progress, 531

directory (lock manager)
distributed, VAXcluster root resources, characteris­

tics and use, 224
directory name tables

logical name table relation with, (table) 1070
directory node (lock manager)

resource tree, characteristics and use, 224
directory vector (lock manager)

resource tree, characteristics and use, 224
DIRPOST routine (IOCIOPOST module)

common completion for direct and buffered 1/0,
control flow, 620

1/0 postprocessing, operations, 144

Index

Disassociate Common Event Flag Cluster system
service. See $DACEFC

Disk Quota Cache lock
characteristics and use, 1309

disks. See also bad blocks; virtual 1/0
bad blocks, handling of, 692
device drivers, fork IPL and spinlock considerations,

63
lock management system use to synchronize, 167

SDISMOU (Dismount Volume system service)
lock use by, characteristics and use of each lock,

1302
DISMOUMSG parameter (SYSGEN)

enabling logging of volume dismount messages, 966
Dismount lock

characteristics and use, 1302
Dismount Volume s:rstem service. See $DISMOU
DISPATCH routine l(FllX)DISPATCH module)

initiating XQP request, 632
DISPATCHER routine ((FllX)DISPAT module)

servicing XQP request, 632
distributed lock manager

entry point names and descriptions, (table) 1218
DKDRIVER driver

SCSI disk bad block handling by, 694
$DLCEFC (Delete Common Event Flag Cluster system

service)
control flow, 208

DLCKEXTRASTK parameter (SYSGEN)
limiting resource tree maximum depth with, 239

DMA (direct memory access)
device driver implementation, through buffer

mapping, 692
device drivers, fork IPL considerations, 63

$DMPDEF macro
system dump file header, field definitions, 970

DOINIT module
INl$DOINIT, control flow, 846
INl$PFN_FIXUP

operations, 848
use by loadable executive images, 844

INl$SYSTEM_SERVICE
control flow, 849
operations, 849
use by loadable executive images, 845

initializing loadable executive images, 844
LOADER$FIXUP _DOT_ADDRESS

control flow, 847
use by loadable executive images, 844

Doorbell lock
characteristics and use, 1325

dormancy
as a condition for outswap and swapper trimming

selection, 526
methods for handling, 526

DORMANTWAIT parameter (SYSGEN)
use in outswap and swapper trimming selection, 526

DPT (driver prologue table)
characteristics and use, 582
layout and summary, 1247

DR32 data port
communication through interlocked queues, 165
interrupt service routine, operations, 651

driver dispatch table. See DDT
driver prologue table. See DPT
driver tables

as component of 1/0 database, 578
overview, 582

[DRIVER]MBXDRIVER module
MA780 mailbox driver location, 664

1349

Index

drivers. See class drivers; console drivers; device
drivers; port drivers; terminal drivers

DSA disks
bad blocks, replacing, 693

DSBINT macro
changing IPL with, 168
locking pages into the process working set with,

1147
dump. See crash dumps
dump file

analyzing contents of, 1154
characteristics and handling, 969
organization, 970
recording information in during fatal bugcheck

handling, 969
dump header. See also debugging

dump file, characteristics and layout, (table) 970
DUMPSTYLE parameter (SYSGEN}

effect on size of system space, 1279
selective crash dump controlled by, 972

DWMBA adapters
VAX 6000 series, 51

DYN (data structure type definitions)
name, code, and structure type, (table) 1263

dynamic data structures
header format, (figure) 552
storage areas for, 544

dynamic spinlocks. See also device lock; spinlocks
characteristics and use, 178
rank, characteristics and use, 179

SDYNDEF macro
defining dynamic data structure type and subfype

field values, 554
symbols and values, (table) 1263

EMB spinlock
characteristics and use, 185
held by

ERL$ALLOCEMB, 961
ERL$RELEASEMB, 961
ERRFMT process, 965

SEMBETDEF macro
error message types defined by, 960

$EMBHDDEF macro
error message buffer header fields defined by, 960

emulation. See instruction emulation
[EMULAT)VAXEMULAT module

VAXSEMULATE, unimplemented instruction
emulation provided by, 77

[EMULAT)VAXHANDLR module
VAX$MODIFY_EXCEPTION, instruction emulation

use of, 80
ENBINT macro

restoring IPL with, 168
END statement (SDL)

characteristics and use, 1163
END_MODULE statement (SDL)

characteristics and use, 1163
$ENQ (Enqueue Lock Request system service)

ASTs created for process notification when SENQ
completes, 133

control flow, 225
PKAST use by, 146
process state change actions, 282

Enqueue Lock Request system service. See $ENQ
EPID (extended process identi&er)

characteristics and use, 320, 720
construction, 724
IPID use compared with, 320

1350

layout, (figure) 724
negative, as wildcard indicator, 320
obtaining, 329
routines that transform and manipulate, 721

epoch
pool allocation failure term definition, 568

equivalence names. See also logical names
attributes, 1075
characteristics, 1075
index, translation use of, 1078
logical name table data structure as an, 1070
term definition, 1067

ERL$ALLOCEMB routine (ERRORLOG module)
control flow, 961

ERL$B_BUSY field
definition and use, 959

ERL$B_FLAGS field
definition and use, 959

ERLSB_MSGCNT field
definition and use, 959

ERLSDEVICEATTN routine (ERRORLOG module)
operations, 963

ERL$DEVICERR routine (ERRORLOG module)
operations, 963

ERL$DEVICTMO routine (ERRORLOG module)
operations, 963

ERL$GB_BUFTIM cell
maximum time between ERRFMT awakenings, 962

ERL$GL_BUFINDcell
pointers that replace in Version 5, 959

ERL$GL_SEQUENCE cell
error message sequence numbers identified by, 960

ERLSL_END field
definition and use, 959

ERL$L_NEXT field
definition and use, 959

ERL$LOG_DMSCP routine (ERRORLOG module)
operations, 964

ERL$LOG_TMSCP routine (ERRORLOG module)
operations, 964

ERL$LOGMESSAGE routine (ERRORLOG module)
operations, 964

ERL$LOGSTATUS routine (ERRORLOG module)
operations, 964

ERL$RELEASEMB routine (ERRORLOG module)
control flow, 961

ERLSWAI<E routine (ERRORLOG module)
operations, 962

ERLBUFFERPAGES parameter (SYSGEN}
number of pages in each error log allocation buffer,

959
ERRFMT (error logger) process

awakening, 962
by ERL$ALLOCEMB, 961
by ERL$RELEASEMB, 962
by EXESTIMEOUT, 265

creating, 947
error log subsystem use of, 958
operations, 964
sending messages to, 1109

error log
allocation buffers

characteristics and use, 959
data structures, (figure) 960
ERRFMT operations to process, 965
error log subsystem use of, 958
error message buffers and, 958
field definitions and use, header, 959
formula for computation of address, 959
saved in dump file, 958

error log (continued)
allocation buffers (continued)

synchronizing access to with EMB spinlock, 185
data structures, characteristics and use, 959
entry

fatal bugcheck, contents, (table) 970
user-generated bugcheck, format and description,

(table) 968
mailbox

characteristics and use, 966
VMS executive mailbox use, 673

message buffers
characteristics and use, 959
error log allocation buffers and, 958
format and length, 960

non-device error entries, list of types, 964
error log subsystem

characteristics and use, 958
components of, ll08
device driver operations, 962
operations, 958, 960
overview, 958

error logger. See ERRFMT process
error-free memory

located by console subsystem, amount is CPU­
dependent, 866

ERRORLOG initialization routine
operations, 937

ERRORLOG module
ERL$ALLOCEMB, control flow, 961
ERL$DEVICEATTN, operations, 963
ERL$DEVICERR, operations, 963
ERL$DEVICTMO, operations, 963
ERL$LOG_DMSCP, operations, 964
ERL$LOG_TMSCP, operations, 964
ERL$LOGMESSAGE, operations, 964
ERL$LOGSTATUS, operations, 964
ERL$RELEASEMB, control flow, 961
ERL$WAKE, operations, 962

ERRORLOGBUFFERS parameter (SYSGEN)
number of error buffers specified by, 959

errors. See also bugchecks;conditions; deadlocks; error
log; exceptions; halts; interrupts; IPL; machine
checks; SS$_ prefix entries; traps

change mode dispatcher handling
argument list errors, 114
RMS errors, 115

conditions, signaled during image execution, 770
corrected read data errors, SCB reserved offsets, 42
detection, RMS, ll9
device attention, characteristics and handling, 963
fatal bugchecks, handling, 967

- handling, concepts and mechanisms, jchapter) 958
interrupts

CPU-specific, 982
system-specific, hardware, 41

page read error page location code, meaning, 382
reporting mechanisms, components of systemwide,

958
synchronization failure, characteristics and means of

preventing, 180
system bus, SCB reserved offsets, 42
system service, enabling and disabling exception

generation on, 127
event fiag wait state. See also CEF; LEF; LEFO

coordinating with AST delivery, 118
PCB field that identifies flags waited for, 271
PCB fields that relate to, 206
$WAITFR handling requested by

$SYNCH, 121

Index

SYNCH$RMS_WAIT, ll9
event Hags. See also CEF; common event flags; event

flag wait state; 1/0; LEF; LEFO; local event flags;
synchronization

assigning meaning to, 203
AST queuing constraints on use of, 211
avoiding ambiguous use of, 203
characteristics and use, 202
clearing, 212
clusters 0 and 1, location, 203
clusters 2 and 3, location, 204
common, set by DIRPOST, 616
concepts and mechanisms, (chapter) 202
event synchronization technique, overview, 168
1/0 and lock status block synchronization use with,

108
local. See local event flags
PCB fields related to, (figure) 206
reading, 212
setting, 2ll, 333

as event causing process state change, 299
at timer request expiration, 264
by EXE$GETJPI, 331
by EXE$QIO, 6ll
by $GETLKI, 235
when a lock is dequeued, 231
when a lock is granted, 227, 232

event reporting
during process state change, control flow, 299
paths to, (figure) 299
SCH$RSE, control flow, 299

EVENT_FLAGS_AND_ASTS initialization routine
operations, 937

events
that require rescheduling, (figure) 290

exception handlers. See condition handlers
EXCEPTION initialization routine

operations, 938
EXCEPTION module

exception service routines located in, 71
EXE$ASTFLT, handling AST faults, 83
EXE$CMODSUPR, CHMS exception handling

operations, 84
EXE$CMODUSER, CHMU exception handling

operations, 85
EXE$EMULAT_REFLECT, signaling exceptions

during instruction emulation, 85
EXE$EXCEPTION, building mechanism arrays,

control flow, 79
EXE$EXPANDSTK, operations, 409
EXE$0PCDEC, operations, 967
EXE$PAGRDERR, page fault read error handling, 83
EXE$REFLECT, exception dispatching through,

control flow, 80
EXE$SRCHANDLER, searching for condition

handlers, 88
EXE$SSFAIL, system service failure handling, 83

exception vectors
in SCB, (table) 75

EXCEPTION_PRIMITIVES module
EXE$MCHK_BUGCHK, operations, 981
EXE$MCHK_PRTCT, operations, 981
EXE$MCHK_TEST, operations, 981

exceptions. See also condition handlers; conditions
abort

continue signal actions for, 96
SCB vectors for, (table) 75

arithmetic, types and signal names, jtable) 82
categories, 71
change mode, selecting stack for servicing, 35

1351

Index

exceptions (continued)
CHME, why VMS handles, 76
CHMK, why VMS handles, 76
CHMS, establishing a process handler, 84
CHMU, establishing a process handler, 84
compatibility mode

establishing a process handler, 84
handling, 85

concepts and mechanisms, (chapterl 29
CPU response to, 71
descriptions and handling mechanisms, 75
dispatching

special cases, 80
VAX architecture mechanism, 35

fault, SCB vectors for, (tablel 75
handling

by condition handlers, (tablel 77, (figurel 77
by VMS executive, 76. Consult VAX Architecture

Reference Manual
concepts and mechanisms, (chapterl 71
on kernel stack, reasons for, 36

initiation. See IEI
interrupts compared with, 21, 37
kernel or executive mode, handling, 94
kernel-stack-not-valid

meaning and use, 76
selecting stack for servicing, 35

machine check
meaning and use, 76
mechanism characteristics and operations, 979
selecting stack for servicing, 35

overview, 29
reserved operand fault, causes for, 38
reserved/privileged instruction

instruction emulation use of, 76
operations, 967

SCB use by, 30
software conditions, compared with, 72
stack for servicing, selecting, (tablel 35
subset instruction emulation, selecting stack for

servicing, 35
term definition, 21
translation-not-valid, meaning and use, 76
trap

continue signal actions for, 96
SCB vectors for, (tablel 75

urgent, IPL reserved for, 41
user-writable control store, exception handling with,

31
uses, overview, 21
VAX microcode response to, 30
vectors

01 low-order bits value, meaning, 31
format and use, 30

EXCEPTMSG module
EXE$EXCMSG

catch-all condition handler use of, 1114
formatting signal arguments with, 1110
operations, 1114

EXE$A_SYSPARAM cell
adjustable SYSGEN parameter area location, 1199

EXE$ABORTIO routine (SYSQIOREQ module)
control flow, 611

EXE$ADJWSL routine (SYSADJWSL module)
control flow, 496

EXE$AL_ERLBUFADR cell
error buffer starting address, 959

EXE$ALLOC routine (SYSDEVALC module)
control flow, 592

EXE$ALLOCATE routine (MEMORYALC module)

1352

allocating variable-length pool, 546, 547
EXE$ALLOCPCB routine (MEMORYALC module)

allocating nonpaged pool, 557
EXE$ALLOCTQE routine (MEMORYALC module)

allocating nonpaged pool, 557
EXE$ALONONPAGED routine (MEMORYALC

module)
allocating mailbox memory block, control flow, 666
control flow, 558

EXE$ALONPAGVAR routine (MEMORYALC module)
control flow, 558

EXE$ALOPOIMAG routine (MEMORYALC module)
allocating space from process allocation region, 566

EXE$ALOP11MAG routine (MEMORYALC module)
allocating space from process allocation region, 566

EXE$ALOP1PROC routine (MEMORYALC module)
allocating space from process allocation region, 566

EXE$ALOPAGED routine (MEMORYALC module)
allocating paged pool, 564

EXE$ALTQUEPKT routine (SYSQIOREQ module)
control flow, 631
device driver start 1/0 initiation, 629
EXE$QIODRVPKT distinguished from, 682
full-duplex terminal operations, 682
operations, 613

EXE$AR_FORK_WAIT_QUEUE cell
fork and wait queue listhead address contained in,

62
EXE$ASCEFC routine (SYSASCEFC module)

creating common event flag clusters, control flow,
206

EXE$ASSIGN routine (SYSASSIGN module)
control flow

associated mailbox processing, 600
common initial steps, 597
local device assignment, 598
local device fund processing, 600
nontemplate device processing, 598
remote device assignment, 601
template device processing, 599

operations, 597
EXE$ASTFLT routine (EXCEPTION module)

handling AST faults, 83
EXE$ASTRET routine (ASTDEL module)

AST exit operations, control flow, 141
EXE$8RDCST routine (SYSBRKTHR module)

operations, 704
EXE$8RKTHRU routine (SYSBRKTHR module)

CHECK_COMPLETE routine, operations, 703
control flow

finding all terminals, 700, 701
1/0 completion, 703
1/0 completion AST, 701
initial processing, 695
sending message, 701
writing breakthrough message, 699

operations, 695
response to timeout, 703

EXE$8UG_CHECK routine (BUGCHECKBT and
BUGCHECKLD modules). See also bugchecks

control flow, 968, 969, 973
logical memory block writing, order, 976
operations, 968
selective memory dump operations, 977
SMP operations, 1061

EXE$CANCEL routine (SYSCANCEL module)
control flow, 625

EXE$CANTIM routine (SYSCANEVT module)
operations, 259

EXE$CANWAK routine (SYSCANEVT module)

EXESCANWAK routine (SYSCANEVT module)
(continued)

operations, 261
EXESCATCH_ALL routine (PROCSTRT module)

control flow, 735
last chance condition handling, 94

EXE$CHECK_PCB_PRIV routine (SYSPCNTRL
module)

operations, 321
EXESCHECK_ VERSION routine (CHECK_ VERSION

module)
operations, 854

EXE$CLREF routine (SYSEVTSRV module)
clearing event flags, operations, 213

EXE$CMODEXEC routine (SYSTEM_SERVICE_
DISPATCHER module)

change mode to executive dispatching operations,
112

control flow, 114
dispatching to privileged shareable images, 122
operations compared with EXESCMODKRNL, 115

EXESCMODEXECX routine (SYSTEM_SERVICE_
DISPATCHER module)

system service filtering, 128
EXESCMODKRNL routine (SYSTEM_SERVICE_

DISPATCHER module)
change mode to kernel dispatching operations, 112
control flow, 114
dispatching to privileged shareable images, 122
operations compared with EXE$CMODEXEC, 115

EXESCMODKRNLX routine (SYSTEM_SERVICE_
DISPATCHER module)

system service filtering, 128
EXESCMODSUPR routine (EXCEPTION module)

CHMS exception handling operations, 84
EXE$CMODUSER routine (EXCEPTION module)

CHMU exception handling operations, 85
EXE$CNTREG routine (SYSCREDEL module)

operations, 432
EXESCONNECT_SERVICES routine (SYSTEM_

SERVICE_LOADER module)
change mode operations, 113
control flow, 850
initializing system service vectors with, 111
setting up change mode dispatch table entries, 113

EXE$CRELNM routine (SYSLNM module)
control flow, 1093

EXESCRELNT routine (SYSLNM module)
control flow, 1095

EXESCREMBX routine (SYSMAILBX module)
control flow, 660
initializing cloned UCB, control flow, 662

EXE$CREPRC routine (SYSCREPRC module)
control flow, 710

EXESCRETVA routine (SYSCREDEL module)
control flow, 407

EXESCRMPSC routine (SYSCRMPSC module)
global sections, control flow, 418 1

PFN-mapped sections, control flow, 415
process-private sections, control flow, 412

EXE$DACEFC routine (SYSASCEFC module)
dissociating from an event flag cluster, control flow,

207
EXESDALLOC routine (SYSDEVALC module)

control flow, 594
EXE$DASSGN routine (SYSDASSGN module)

control flow, 603
EXESDCLAST routine (SYSASTCON module)

creating ASTs with, 134
EXE$DEALLOCATE routine (MEMORYALC module)

Index

deallocating variable-length pool, 546
variable-length pool operations, 549

EXESDEANONPAGED routine (MEMORYALC
module)

control flow, 559
EXESDEAPl routine (MEMORYALC module)

allocating space from process allocation region, 566
EXE$DEAPAGED routine (MEMORYALC module)

allocating paged pool, 564
EXESDEBIT_BYTCNT routine (EXSUBROUT module)

use in byte count quota wait handling, 293
EXESDELLNM routine (SYSLNM module)

control flow, 1098
EXE$DELMBX routine (SYSMAILBX module)

control flow, 662 '
EXE$DELPRC routine (SYSDELPRC module)

control flow, 811
EXE$DELTVA routine (SYSCREDEL module)

control flow, 427
EXE$DEQ routine (SYSENQDEQ module)

control flow, 230
EXE$DERLMB routine (SYSDERLMB module)

operations, 966
EXESDEVICE_SCAN routine (SYSGETDVI module)

control flow, 1118
EXE$DGBLSC routine (SYSDGBLSC module)

control flow, 423
EXE$DLCEFC routine (SYSASCEFC module)

deleting permanent event flag clusters, control flow,
208

EXESEMULAT_REFLECT routine (EXCEPTION
module)

signaling exceptions during instruction emulation,
85

EXE$ENQ routine (SYSENQDEQ module)
control flow, 225
lock request handling, operations, 225

EXESEPID_TO_IPID routine (SYSPCNTRL module)
purpose, 721

EXESEPID_TO_PCB routine (SYSPCNTRL module)
purpose, 721

EXESEXCEPTION routine (EXCEPTION module)
· building mechanism arrays, 79 '

EXE$EXCEPTN routine (SYSTEM_ROUTINES
module)

kernel mode last chance handler operations, 94
EXE$EXCEPTNE routine (SYSTEM_ROUTINES

module) .
executive mode last chance handler operations, 95

EXESEXCMSG routine (EXCEPTMSG module)
catch-all condition handler use of, 1114
formatting signal arguments with, 1110
operations, 1114

EXE$EXIT routine (SYSEXIT module)
control flow, 772

EXESEXPANDSTK routine (EXCEPTION module)
operations, 409

EXE$EXPREG routine (SYSCREDEL module)
operations, 409

EXE$EXTENDPOOL routine (MEMORYALC module)
operations, 560

EXESFINISHIO routine (SYSQIOREQ module)
control flow, 612

EXESFINISHIOC routine (SYSQIOREQ module)
control flow, 612

EXE$FORK routine (FORKCNTRL module)
creating fork processes, 58
fork processing operations, 196

EXE$FORK_WAIT routine (FORKCNTRL module)
stalling a fork process with, 62

1353

Index

EXE$FORKDSPTH routine (FORKCNTRL module)
common fork dispatching code listing, (example) 59
control flow, 639

EXE$FRKIPL6DSP routine (FORKCNTRL module)
IPL 6 interrupt service routine listing, (example) 59

EXE$FRKIPL8DSP routine (FORKCNTRL module)
IPL 8 interrupt service routine listing, (example) 59

EXE$GETDVI routine (SYSGETDVI module)
control flow, 1119

EXE$GETJPI routine (SYSGETJPI module)
AST use in obtaining information about a process,

145
control flow, 328

EXE$GETLKI routine (SYSGETLKI module)
operations, 235

EXE$GETMSG routine (SYSGETMSG module)
arguments, 1111
control flow, 1111
operations, 1111

EXE$GETSYI routine (SYSGETSYI module)
control flow, 1115

EXE$GL_ABSTIM system time
characteristics and use, 254
incremented by EXE$TIMEOUT, 265

EXE$GL_ABSTIM_TICS cell
characteristics and use, 254
deducted from PHD$W_QUANT, 294
synchronizing access to, with HWCLK spinlock, 184

EXE$GL_AFFINITY cell
meaning, 1014

EXE$GL BLAKHOLE cell
adapter powerfail use, 930, 1003

EXE$GL CEBMTX cell
synchronizing CEB list access, 204

EXE$GL CONFREG cell
adapter type codes, byte length, 935

EXE$GL_CONFREGL cell
adapter type codes, longword length, 935

EXE$GL_GSDGRPBL cell
group global section list listhead, 389

EXE$GL_GSDGRPFL cell
group global section list listhead, 389

EXE$GL_GSDMTX cell
serializing access to GSD lists, 389

EXE$GL_GSDSYSBL cell
system global section list listhead, 389

EXE$GL_GSDSYSFL cell
system global section list listhead, 389

EXE$GL MCHKERRS cell
machine check exception handler use of, 979

EXE$GL NUMNEXUS cell
hardware configuration array size, 935

EXE$GL_PGDYNMTX cell
paged pool mutex, 564

EXE$GL_PQBIQ cell
process quota block lookaside listhead, 565

EXE$GL_SCB cell
SCB starting virtual address, 31

EXE$GL_SPLITADR cell
IRP pool region starting address, 559

EXE$GL STATE cell
loadable executive image initialization constrained

by, 935
system initialization states, (table) 836

EXE$GL SYSMSG cell
characteristics and use, 1111

EXE$GL_TIME_CONTROL cell
bits defined in SYSPARAM, 1014
meaning, 1013

EXE$GL_TODR cell

1354

chatacteristics and use, 252
recalibrating time from, 255
system initialization use to determine date and time,

251
EXE$GL_TQFL cell

TQE listhead, 256
EXE$GL VAXEXCVEC cell

instruction emulation use of, 80
EXE$GQ_1ST_TIME cell

synchronizing access to, with HWCLK spinlock, 184
EXE$GQ_SYSTIME cell

characteristics and use, 254
EXE$GQ_ TODCBASE distinguished from, 252
incremented by EXE$HWCLKINT, 262
initialization and use, 247
synchronizing access to, with HWCLK spinlock, 184

EXE$GQ_TODCBASE cell
characteristics and use, 252
EXE$GQ_SYSTIME distinguished from, 252
recalibrating time from, 255
system initialization use to determine date and time,

251
EXE$GW_ERLBUFHEAD cell

number of buffers to be written to error log file, 959
EXE$GW ERLBUFTAIL cell

current-buffer for error messages, 959
EXE$HIBER routine (SYSPCNTRL module)

control flow, 335
EXE$HWCLKINT routine (TIMESCHDL module)

control flow, 261
interactions with software timer interrupt service

routine, 64
sanity timer mechanism operations, 1037

EXE$IMGACT routine (SYSIMGACT module)
control flow, 747
shareable images, control flow, 753

EXE$IMGDMP_MERGE routine (PROCSTRT module)
characteristics and use, 736

EXE$IMGFIX routine (SYSIMGFIX module)
calling shareable images' initialization routines, 767
operations, 762
testing for privileged shareable images' activation,

767
EXE$IMGSTA routine (SYSIMGSTA module)

operations, 769
EXE$INIPROCREG routine ([SYSLOA)ERRSUBxxx

module)
initializing processor registers, 934
interval timer registers initialized by, 250
operations, 996

EXE$1NIT routine (INIT module). See also system
initialization

accessing, methods for, 925
control flow, 927
environment, 923
executive initializing, control flow, 92 7
items allocated in system virtual address area, name

and protection, (table) 1282
loadable executive images loaded by, (table) 831
mapping, (figure) 925

by SYSBOOT, 924
memory management, turning on, 925
nonpaged pool allocation, (table) 927
operations, overview, 862
page-and-swap-file vector initializing, 399
SMP-specific operations, 1047

EXE$INIT_DEVICE routine (POWERFAIL module)
operation, 998

EXE$INIT_TODR routine ([SYSLOA)INIADPxxx
module)

EXE$INIT_TODR routine ((SYSLOA)INIADPxxx
module) (continued)

control flow, 253
initializing time of year, control flow, 253
time-of-year clock access request, 1027

EXE$INSERTIRP routine (SYSQIOREQ module)
queuing a pending 1/0 request, 629

EXE$INSIOQ routine (SYSQIOREQ module)
control flow, 629

EXE$IOFORK routine (FORKCNTRL module)
control flow, 638
creating fork processes, 58

EXE$IPCONTROL routine (IPCONTROL module)
IPL 12 interrupt service routine, commands and

mechanism, 68
EXE$IPID_TO_EPID routine (SYSPCNTRL module)

purpose, 721
EXE$IPID_TO_PCB routine (SYSPCNTRL module)

IPID validity checking with, 723
purpose, 721

EXE$JBCRSP routine (SYSSNDJBC module)
job controller special kernel AST, control flow, 1106

EXE$JIB_ WAIT routine (MUTEX module)
use in resource wait handling, 293

EXE$LKWSET routine (SYSLKWSET module)
control flow, 502

EXE$LCKPAG routine (SYSLCKWSET)
control flow, 504

EXE$LINK_ VEC routine (LINKVEC module)
relocating executive transfer vectors to SYSLOAxxx,

SCSLOA, and CLUSTRLOA, routines, 856, 857
EXE$LOAD_ERROR routine (SYSTEM_ROUTINES

module)
initializing system service vectors with, 109

EXE$MCHK_BUGCHK routine (EXCEPTION_
PRIMITIVES module)

operations, 981
EXE$MCHK_PRTCT routine (EXCEPTION_

PRIMITIVES module)
operations, 981

EXE$MCHK_TEST routine (EXCEPTION_
PRIMITIVES module)

operations, 981
EXE$MGBLSC routine (SYSCRMPSC module)

control flow, 421
EXE$NAMPID routine (SYSPCNTRL module)

control flow, 320
IPID validity checking with, 723
process ID and privilege checking with, 319

EXE$NETWORK_ASSIGN routine (SYSASSIGN
module)

operations, 602
EXE$0PCDEC routine (EXCEPTION module)

operations, 967
EXE$PAGRDERR routine (EXCEPTION module)

page fault read error handling, 83
EXE$POWERAST routine (SYSSETPRA module)

control flow, 999
EXE$POWERFAIL routine (POWERFAIL module)

accessing time-of-year clock, 252
operations, 983

EXE$PROCESS_SCAN routine (PROCESS_SCAN
module)

control flow, 326
EXE$PROCSTRT routine (PROCSTRT module)

control flow, 729
environment, 729
image initiation, argument list passed to image,

(figure) 805
KRP lookaside list initialization, 567

Index

logical name tables created by, 1072
process allocation region address space reserved by,

565
EXE$PSCAN_NEXT_PID routine (PROCESS_SCAN

module)
control flow, 329

EXE$PURGWS routine (SYSPURGWS module)
control flow, 506

EXE$PUTMSG routine (SYSPUTMSG module)
operations, 1114

EXE$QIO routine (SYSQIOREQ module)
control flow, 606
1/0 completion, control flow, 611

EXE$QIOACPPKT routine (SYSQIOREQ module)
control flow, 631
queuing a request to file system, 629

EXE$QIODRVPKT routine (SYSQIOREQ module)
control flow, 629
device driver start 1/0 initiation, 629
EXE$ALTQUEPKT distinguished from, 682
operations, 613

EXE$QXQPPKT routine (SYSQIOREQ module)
control flow, 632

EXE$READ_LOCAL_TODR routine
([SYSLOA)ERRSUBxxx module)

accessing time-of-year clock by powerfail routine,
252

EXE$READ_TODR routine ([SYSLOA)ERRSUBxxx
module)

accessing time-of-year clock, 252
time-of-year clock access request, 1027

EXE$READEF routine (SYSEVTSRV module)
reading event flags, operations, 212

EXE$READP_LOCAL_TODR routine ([SYS­
LOA)ERRSUBxxx module)

accessing time-of-year clock on primary CPU, 252
EXE$REFLECT routine (EXCEPTION module)

exception dispatching through, control flow, 80
EXE$REGRESTOR routine ([SYSLOA)ERRSUBxxx

module)
operations, 996

EXE$REGSAVE routine ([SYSLOA)ERRSUBxxx
module)

operations, 983
EXE$RESCHED routine (SYSPARPRC module)

control flow, 341
EXE$RESTART routine (POWERFAIL module)

environment, 994
VMB environment compared with, 994

operations, 994
SMP operations

primary processor, .1058
secondary processor, 1060

EXE$RESTART_ATT routine (POWERFAIL module)
control flow, 995

EXE$RMVTIMQ routine (EXSUBROUT module)
removing TQE entries from timer queue, 259

EXE$RUNDWN routine (SYSRUNDWN module)
control flow, 774
resetting capabilities, 298

EXE$SCHDWK routine (SYSSCHEVT module)
control flow, 260

EXE$SENDMSG routine (SYSSNDMSG module)
operations, ll05

EXE$service
system service routine, characteristics, 106

EXE$SETAST routine (SYSASTCON module)
control flow, 143

EXE$SETIME routine (SYSSETIME module)
operations, 255

1355

Index

EXE$SETIME routine (SYSSETIME module)
(continued)

readjusting time-of year control flow, 256
time recalibration control flow, 255

EXE$SETIME_INT routine (SYSSETIME module)
computing system time during system initialization,

254
EXE$SETIMR routine (SYSSCHEVT module)

control flow, 258
EXE$SETPRA routine (SYSSETPRA module)

control flow, 999
EXE$SETPRI routine (SYSSETPRI module)

control flow, 340
EXE$SETPRN routine (SYSPCNTRL module)

operations, 341
EXE$SETPRT routine (SYSSETPRT module)

control flow, 433
EXE$SETPRV routine (SYSSETPRV module)

operations, 780
EXE$SETSWM routine (SYSSETMOD module)

operations, 432
EXE$SNDACC routine (SYSSNDMSG module)

control flow, 1107
EXE$SNDERR routine (SYSSNDMSG module)

control flow, 1109
EXE$SNDEVMSG routine (MBDRIVER module)

control flow, 671
EXE$SNDJBC routine (SYSSNDJBC module)

control flow, 1104
EXE$SRCHANDLER routine (EXCEPTION module)

searching for condition handlers, 88
EXE$SSFAIL routine (EXCEPTION module)

system service failure handling, 83
EXE$SUSPND routine (SYSPCNTRL module)

control flow, 336
EXE$SWAPINIT routine (SWAPPER module)

control flow, 939
operations, 938

overview, 862
EXE$SWTIMINT routine (TIMESCHDL module)

control flow, 263
operations, 64
periodic system routine requests, control flow, 264
process timer requests, control flow, 263
scheduled wakeup requests, control flow, 266

EXE$TIMEOUT routine (TIMESCHDL module)
control flow, 265
deadlock search initiation by, 236
fork and wait queue servicing by, 62
I/O timeout search, 265
pixscan mechanism invoked by, 305

EXE$TRNLNM routine (SYSLNM module)
control flow, 1093

EXE$ULKPAG routine (SYSLKWSET module)
operations, 505

EXE$ULWSET routine (SYSLKWSET module)
operations, 505

EXE$UNWIND routine (SYSUNWIND module)
condition handler call frame unwinding operations,

97
EXE$UPDSEC routine (SYSUPDSEC module)

control flow, 476
EXE$V_NOSMPSANITY bit (EXE$GL_TIME_

CONTROL cell)
meaning, 1014
tested by EXE$HWCLKINT, 1038

EXE$V_NOSPINWAIT bit (EXE$GL_TIME_
CONTROL cell)

meaning, 1014
tested by SMP$TIMEOUT, 1035

1356

EXE$V _SSINHIBIT bit (EXESGL_DEFFLAGS cell)
enabling system service filtering, 128

EXE$WAIT routine (SYSWAIT module)
common event flag wait code, control flow, 209

EXE$WAKE routine (SYSPCNTRL module)
control flow, 335

EXE$WRITE_TODR routine ([SYSLOA)ERRSUBxxx
module)

accessing time-of-year clock, 252
time-of-year clock access request, 1027

EXESWRITEP_LOCAL_TODR routine
([SYSLOA)ERRSUBxxx module)

accessing time-of-year clock on primary CPU, 252
EXE$WRTMAILBOX routine (MBDRIVER module)

control flow, 672
EXEC_INIT.EXE (EXE$INIT)

files accessed by, jtable) 863
loadable executive images loaded by, 831
operations, 923

EXEC_LAYOUT module
SYS.EXE layout defined by, 825

EXEC_RUNDOWN_AST routine (SYSDELPRC
module)

operations, 813
execution

preemption rules for choosing a process for, 276
process priorities, concepts and mechanisms, 274

executive. See also executive transfer vectors
accessing process address space, AST as mechanism

for, 133
conceptual categories and version numbers,

jtable) 852
characteristics and use, 852

conditions detected by, jtable) 82
exceptions handled by, 71, 76. Consult VAX

Architecture Reference Manual
initialization, EXE$INIT operations, 927
interface among components, 12
listings

assembler, characteristics and use, 1136
reading, 1129
using, jchapter) 1129

loaded by SYSBOOT, 914
lock use by, characteristics and use of each lock,

1298
mailboxes, use by, 673
map files use, (chapter) 1129
modular, concepts and mechanisms, jchapter) 823
paged and nonpaged portions, (table) 1286
synchronization techniques, (table) 166
term definition, 8

executive data areas
description and component name tables, (chapter)

1164
dynamically allocated, 1225
process-specific, 1226

executive images
loading, history of mechanisms for, 855
map files, characteristics and use, 1149

executive mode
bugchecks, handling operations, 969
change mode dispatch table, field definitions and

use, 112
exceptions, handling, 94
stack pointer, as part of process hardware context,

306
executive transfer vectors

characteristics and use, 824, 82 7
contents, 827
defining, (example) 828

executive transfer vectors (continued)
locating symbols with, 1151
nonpaged, list of names, (table) 1164
overwritten with correct target addresses, 839
system service vectors, compared with, 827

$EXIT (Exit system service)
AST use by, 146
controlling processes with, 339
operations, 771
supervisor mode exit handler called by, 806

EXIT command
operations, 808

exit control block
characteristics, 771
layout, (figure) 771

exit handlers
images, characteristics and operations, 771
list processing, (example) 773
listhead, array layout, (figure) 771
supervisor mode, declared by CLI, 802
user mode, not entered after STOP command, 808

Exit system service. See $EXIT
Expand Region system service. See $EXPREG
explicit affinity. See also affinity

acquired through SCH$REQUIRE_CAPABILITY, 288
characteristics and use, 28 7
examples of use, 288
released through SCH$RELEASE_CAPABILITY, 288

$EXPREG (Expand Region system service)
operations, 409

EXSUBROUT module
EXE$DEBIT_BYTCNT, use in byte count quota wait

handling, 293
EXE$RMVTIMQ, removing TQE entries from timer

queue, 259
extended processor identifier. See EPID
extent (file)

characteristics and use, 621
Extent Cache lock

characteristics and use, 1309
EXTRACPU parameter (SYSGEN)

quantum expiration use of, 294

[FllX] facility
contents, 1130

FAB (file access block)
ASY bit, testing by RMS, 118

facilities
codes, (table) 1296
format

facility$_status, 1234
facility$At_array-name, 1234
facility$entry-name, 1233
facility$entry-name_Rn, 1234
facility$Gt_ variable-name, 1234
$facility$macro-name, 1233
facility$mnemonic, 1237
facility$$entry-name, 1233
_facility$mnemonic, 1237
$facility _macro-name, 1233
$facility _structureDEF, 1235
public macro names, 1233

naming conventions, (table) 1238
term definition, 1129

$FAO (Formatted ASCII Output system service).
Consult VMS System Services Reference
Manual

operations, 1121
$FAOL (Formatted ASCII Output List system service)

Index

operations, 1121
FATALEXCPT bugcheck. See also bugchecks

generating during condition handler search, 90
faults. See also abort exceptions; debugging; errors;

interrupts; page faults; traps
continue signal actions for, 96
fault exceptions, SCB vectors for, (table) 75
reserved instruction, handling, 85

FCB (file control block)
ACP creation of, 585
layout and summary, 1247

FDT (function decision table). See also I/O
action routines

buffered I/O, characteristics, 610
characteristics and use, 582, 609
direct I/O, characteristics, 610
exiting, 629
I/O requests, completing in, 612. Consult VMS

Device Support Manual
segmenting I/Oby, 621
setting attention ASTs with, 150
setting out-of-band ASTs with, 154

characteristics and use, 582
layout, (figure) 582

FDTREAD routine (MBDRIVER module)
reading mailboxes, control flow, 667

FDTSET routine (MBDRIVER module)
establishing mailbox attention ASTs, control flow,

664
FDTWRITE routine (MBDRIVER module)

writing to mailboxes, control flow, 665
FILCNTNONZ bugcheck. See also bugchecks

generated by DELETE, 815
File Access Arbitration lock

characteristics and use, 1306
file access block. See FAB
file control block. See PCB
File ID Cache lock

characteristics and use, 1308
File lock

characteristics and use, 1311
File Serialization lock

characteristics and use, 1306
file system. See also device drivers; I/O; interrupts;

logical names; RMS; XQP
bad block handling, mailbox use by, 675
data structures, ACP relations, (figure) 585
database, synchronizing with FILSYS spinlock, 181
I/O, initiating, 631
lock use by, characteristics and use of each lock,

1304
FILEREAD module

primitive file routines, 911
FILERWIO module

primitive file routines, 911
files

closing during process deletion, 814
open, KFE field that specifies WCB for, 7 44

Files-11 Extended QIO Processor. See XQP
FILSYS spinlock

characteristics and use, 181
FIND CPU DATA macro

locating per-CPU data area with, 1015
FINISHREAD routine (MBDRIVER module)

mailbox read request
I/O completion, control flow, 669
I/O completion, data structures, 670

first-part-done. See FPD instructions
fixed-length lists. See also IRP; KRP; LRP; PQB; SRP

areas, structure and operations, 552

1357

Index

fixed-length lists (continued)
pool, compared with variable-length lists, 552

fixup vector table
characteristics, 763
layout, jfigure) 763

~B (fork block). See also fork processes; fork queues
definition and use, 57
fork block identification in, 178
in TAST, 153
in terminal driver IRP, 683
in terminal driver write buffer packet, 683
larger data structures containing, 57
summary, 1250

FKB$B_FIPL field
field definition and compared with FKB$B_FLCK, 57

FKB$B_FLCK field
field definition and compared with FKB$B_FIPL, 57
fork block identification in, 178

FKB$B_TYPE field
definition and use, 57

FKB$L_FPC field
definition and use, 57

FKB$W _SIZE field
definition and use, 57

$FKBDEF macro
fork block fields defined in, 5 7

Force Exit system service. See $FORCEX
forced error

from replaced block on DSA disks, 694
$FORCEX (Force Exit system service)

controlling processes with, 339
normal AST use by, 147

fork and wait queue
stalling a fork process with, 62
synchronizing access to, with MEGA spinlock, 185

fork block. See FKB
fork interrupts (IPL 6 and 8-11). See also fork processes

characteristics and use, 63
interrupt service routine

listing, !example) 59
operations, 639

IPLs not used by VMS, 54
overview, 19, 1008
requested

by EXE$FORK, 196
by SMP$INTSR, 1041

synchronization use of, 170
fork locks

characteristics and use, 178
distinguished from other static spinlocks, 178
driver use of, 590
fork process, specifying in FKB, 57
held at entry to driver start 1/0, cancel 1/0, and

timeout routines, 1039
held by

EXE$ABORTIO, 611
EXE$ALTQUEPKT, 631
EXE$CANCEL, 625
EXE$FINISHIO, 612
EXE$FORKDSPTH, 640
EXE$INSIOQ, 629
IOC$LAST_CHAN, 605

held during
1/0 subsystem importance, 581
IOLOCK8, use as, 63, 181
IOLOCKn, characteristics and use, 183
MAILBOX, characteristics and use, 183
PR_LKS, characteristics and use, 182
PR_LKn, characteristics and use, 183

fork processes. See also fork interrupts; IPL;

1358

synchronization
characteristics, 5 7

as serialized access technique, 195
context

components of, 58
IPL restored by fork and wait mechanism, 63

creating
as safe method of lowering IPL, 169, 638
mechanisms, 58
reasons for, 58
recalculating VAXcluster quorum, 69

data structures, 5 7
device driver use, 170, 636
dispatching, 59
fork, concepts and mechanisms, 56
fork routine address, location in FKB, 57
handling mechanisms, 56
IPL$_QUEUEAST

created to expand nonpaged pool, 560
use for, 171, 653

movement between SMP members, 1026
restrictions on, 62
spinlocks, specifying in FKB, 57
stalling, reasons for, 62
synchronizing

at IPL 6, 181
through spinlocks, 178

fork queues
fork process interrupt service routine use of, 56
listheads array, location and characteristics,

jfigure) 57
per-CPU database work queue, 1019
specifying in FKB, 57

FORK_ WAIT macro
stalling a fork process with, 62

FORKCNTRL module
EXE$FORK

creating fork processes, 58
fork processing operations, 196

EXE$FORK_ WAIT, stalling a fork process with, 62
EXE$FORKDSPTH

common fork dispatching code listing, (example) 59
control flow, 639

EXE$FRKIPL6DSP, IPL 6 interrupt service routine
listing, (example) 59

EXE$FRKIPL8DSP, IPL 8 interrupt service routine
listing, (example) 59

EXE$10FORK
control flow, 638
creating fork processes, 58

forking. See fork processes
FORKLOCK macro

generated code example
using fork IPL, 187
using spinlock index, 186

FORKUNLOCK macro
generated code example, 188

Formatted ASCII Output List system service. See
$FAOL

Formatted ASCil Output system service. See $FAO
formatting. See also $FAO; $FAOL

message, condition handlers, 1110
support, 1110. See also ASCII; time

FORTRAN
parallel processing features, run-time support for,

341
FPD (first-part-done) instructions. See also instructions

characteristics and use, 163
FPEMUL image

loading, operations, 857

FPG (free page wait state). See also free page list;
process states; wait states

characteristics and use, 478
context for, 292
transitions

from FPG to COM or COMO, 283
to FPG from CUR, 283

&ee page list. See also FPG; FREEGOAL; FREELIM
characteristics and use, 355
location, 384
location of unmodified available pages, 436
maintained by swapper, 510
movement of modified page to, 447
page fault from, 444
PFN of first page on, global cell that contains, 381
use as cache, (figurel 385

&ee page wait state. See FPG
&ee pages

allocated for inswap of process working set, 536
allocated for page fault, 439, 447, 450

FREEGOAL parameter (SYSGEN)
BALANCE routine use of, 518
swapper use of, 511

FREEUM parameter (SYSGEN)
BALANCE routine use of, 518
effect on

nonpaged pool expansion, 560
VMS memory use, 1287

swapper use of, 510
full-duplex operation

terminal drivers, characteristics, 681
function decision table. See FDT
function modifiers. See also 1/0; 10$M_ prefix entries

mailbox driver use, 153
mailbox read request, 153

G. (general reference)
modifying during image activation, 763
resolution of, 764
vector table

layout, (figurel 764
page protection area, (figurel 767

GBLPAGES parameter (SYSGEN)
global page table size calculation, 1280

GBLPAGFIL parameter (SYSGEN)
maximum page file blocks available for global

buffers, 417
GBLSECTIONS parameter (SYSGEN)

effect on size of system space, 1279
number of entries in system header section table,

388
general reference. See c·
general registers

as part of process hardware context, 306
Get Device/Volume Information system service. See

$GEIDVI
Get I/O Channel Information system service. See

$GETCHN
Get I/O Device Information system servi~e. See

$GEIDEV
Get Job Process Information system service. See

$GETJPI
Get Lock Information system service. See $GETLKI
Get Message system service. See $GETMSG
Get Queue Information system service. See $GETQUI
Get System Information system service. See $GETSYI
$GETCHN (Get I/O Channel Information system

service)
characteristics and use, 706

Index

$GETDEV (Get I/O Device Information system
service)

characteristics and use, 706
$GETDVI (Get Device/Volume Information system

service)
operations, 1119

$GETJPI (Get Job Process Information system service)
arguments, 328
control flow, 328
priority representation in, 275
remote nodes support, 332
search context filtering information, 323
special kernel mode ASTs

operations, 333
use, 145

traditional wildcard support in, 334
wildcard requests

buffer use, 326
VAXcluster system handling, 326

$GETLKI (Get Lock Information system service)
characteristics and use, 234

$GETMSG (Get Message system service)
operations, 1111

$GETQUI (Get Queue Information system service)
operations, 1105
special kernel mode ASTs, operations, 1106

GETQUI lock
characteristics and use, 1327

$GETSYI (Get System Information system service)
arguments, 1115
operations, 1115

global arrays
addressable, names format, 1234

global buffer
maximum page file blocks available for, 417

Global Buffer Backing lock
characteristics and use, 1318

global buffer locks
characteristics and use of each lock, 1315

Global Buffer Master lock
characteristics and use, 1316

Global Buffer Section lock
characteristics and use, 1316

global entry point names
general use, format, 1233
nonstandard invocations, format, 1234
restricted use, format, 1233

global page table. See GPT
global page table entry. See GPTE
global page-file sections. See also global sections

creating, 417
pages

page faults, control flow, 456
page faults, overview, 448
transitions, (figurel 456

global pages. See also global sections
count of process PTEs that map to a particular, PFN

SHRCNT array use, 386
data structures, characteristics and field definitions,

388
outswapping, 531
page faults

control flow, 448
copy-on-reference page, control flow, 448, 454
page-file section page, control flow, 456
read-only page, control flow, 450
read/write page, control flow, 453

protection change prohibited, 434
read-only

resolution during inswap rebuild, 540

1359

Index

global pages (continued)
read-only (continued)

whether outswapped, (table) 529
read/write, action at outswap, (table) 529

global section descriptor. See GSD
global section table. See GST
global section table entry. See GSTE
global sections. See also global page-file sections;

global pages; memory management; sections
activation of ISD and PTEs for, (figure) 750
application synchronization techniques, 167
as interprocess communication mechanism, 345
characteristics and use, 356
creating

by Install Utility, 750
concepts and control flow, 416
group, 417
overview, 411
PFN-mapped, 417
resident, 417
system, 417

data structures
associated with, 356
relations among, (figure) 392

deleting
control flow, 423
temporary, 425

version compatibility checks, 418
writable, sharing implications, 1020

global symbols
naming conventions, (chapter) 1232
SDA use with, 1155
type meaning, AR, 828
value found in map files, 1148

global variable names
format, 1234

GPT (global page table). See also global pages
characteristics and organization, (figure) 390
index

PTE containing, characteristics, 373
use, 391, 450

overview, 356
size calculation, 1280
summary, 1226

GPTE (global page table entry). See also global pages
allocated at global section creation, 420
characteristics and field definitions, (figure) 392
forms of PTE, 392
GSD and GSTE relations with, (figure) 392
how located, 391
initialized at global section creation, 420

grant mode (locks). See also group grant mode; locks
characteristics and use, 228
compared with conversion grant mode, 229

granted queue
removing LKBs from, 230
resource, listhead location in RSB, 217

GROUP (affect other processes in same group privilege).
See also privileges

required by EXE$NAMPID, 321
use of, 23

group grant mode (locks). See also grant mode; locks
characteristics and use, 228
conversion request use of, 228
distinguished from conversion grant mode, 228

GROWLIM parameter (SYSGEN)
effect on working set growth, 492
working set limit adjustment use, 496, 500, 501

GRPNAM (insert in group logical name table privilege).
See also privileges

1360

use by logical name system services, 1092
use to access logical name table, 1072

GRPPRV (access group objects via system protection
privilege). See also privileges

use by logical name system services, 1092
GSD (global section descriptor)

characteristics and field definitions, (figure) 388
GSTE and GPTE relations with, (figure) 392
overview, 356
summary, 1250

GSD$B HASH field
definition and use, 389

GSD$B_TYPE field
definition and use, 389

GSD$L_BASEPFN extended GSD field
definition and use, 390

GSD$L_FILUIC field
definition and use, 389

GSD$L_GSDBL field
definition and use, 389

GSD$L GSDFL field
definition and use, 389

GSD$L IDENT field
definition and use, 390

GSD$L_IPID field
definition and use, 390

GSD$L ORB field
definition and use, 390

GSD$L_PAGES extended GSD field
definition and use, 390

GSD$L_PCBUIC field
definition and use, 389

GSD$L_REFCNT extended GSD field
definition and use, 390

GSD$T_GSDNAM field
definition and use, 390

GSD$T_PFNGSDNAM extended GSD field
definition and use, 390

GSD$W_GSTX field
definition and use, 390

GSD$W _PROT field
definition and use, 389

GSD$W SIZE field
definition and use, 389

GSD mutex
owned during

global section creation, 418
global section deletion, 423
global section mapping, 421

GSD_CLEAN_AST routine (SYSDGBLSEC module)
operations, 426

GST (global section table). See also global sections
characteristics and use, 356

GSTE (global section table entry). See also global
sections

characteristics and use, 356, 390
definition and use, layout, (figure) 376
GSD and GPTE relations with, (figure) 392

halts. See also bugchecks; errors; machine checks
caused by invalid bits in interrupt vector, 31
handling by EXE$RESTART_ATT, 995
power failure, 984
processor, interrupt stack invalid, 36

hard snspension
characteristics, 336

hardware. See also VAX hardware. Consult Computer
Programming and Architecture: The VAX; VMS
Device Support Manual

hardware (continued)
1/0, overview, 577

hardware context. See also context - switching;
hardware PCB

characteristics and use, 306
loading, 309
overview, 3
physical address of hardware PCB that contains, 269
saving, SVPCTX instruction, .308

hardware interrupts. See interrupts
hardware PCB. See also PCB; PHD

accessing, lfigurel 307
during context switches, 307

context switching use of, 22
hardware context component, 3
hardware context saved in, 307
layout, lfigurel 307
located in PHD, 271
page table registers loaded from, 362
PHD component, 271, 367
physical address, 269
software responsibilities for managing PHD$B_

ASTLVL, 130
summary, 1256

/HEADER_RESIDENT quali&er
known image installation, 7 44

BIB (hibernate wait state). See also hibernation; HIBO;
process states; wait states

context for, 292
ended by $WAKE and $SCHDWK, 335
transitions

from HIB to COM, 282
to HIB from CUR, 282

$BIBER {ffibernate system service)
control flow, 335
process state change actions, 279, 282

hibernate outswapped wait state. See HIBO
ffibernate system service. See $HIBER
hibernate wait state. See HIB
hibernation. See also process suspension; scheduler

placing processes in, 335
removing processes from, 335
suspension compared with, 336
waking up processes, 266

HIBO (hibernate outswapped wait state). See also HIB;
hibernation; process states; wait states

transitions
from HIBO to COMO, 282
to HIBO from HIB, 282

hole table
logical memory block, characteristics, 977

HWCLK spinlock
characteristics and use, 184
held by

EXE$HWCLKINT, 262
EXE$SWTIMINT, 64, 263

1/0. See also ACP; adapters; AST; buses; device drivers;
disks; 1/0 buffers; $QIO; resources; start 1/0
routines; wait states

buffered. See buffered 1/0 ,
canceling mailboxes, operations, 670
completing by EXE$QIO, 611
direct 1/0. See direct 1/0
file system, initiating, 631
formatted, conversion support for, 1120
logical. See logical 1/0
miscellaneous topics, concepts and mechanisms,

(chapterl 676

paging, mechanisms, 462
SCA port drivers, operations, 678
scatter/gather operations, 400
segmenting, by FDT routines, 621
SMP systems, operations, 1038
swapper

Index

handling pages with 1/0 in progress when outswap
occurred, 538

overview, 400
virtual. See virtual 1/0

1/0 adapters. See adapters
1/0 buffers

BUFPOST handling, 617
chained complex, layout and handling, lfigurel 619
complex, layout and handling, lfigurel 618
simple, layout and handling, lfigurel 617

1/0 bus. See also adapters; buses
as ~~0::ardware configuration component, 577

1/0 els
assigning, 595

to mailboxes, 658
deassigning, 595

from mailboxes, 662
images, ICB field that specifies, 742

1/0 completion. See also 1/0 postprocessing
AST, EXE$BRKTHRU actions in response to, 703
buffered 1/0

control flow, 614
read, control flow, 617

by EXE$QIO, 611
by FDT routine, 612
characteristics and operations, 610
common completion for direct and buffered 1/0,

control flow, 620
determining by SYNCH$RMS_WAIT, 119
direct 1/0, control flow, 615
full-duplex operation, 683
KAST routine, 617
normal, operations, 614
read request, mailbox, control flow, 669
requesting processing, 639
required for process deletion, 815
special kernel mode AST routine, operations, 617
system, operations, 613

1/0 database. Consult VMS Device Support Manual
components, 578
data structures

overview, 579
swapper use of, 514

device driver and 1/0 routine relations with,
(figurel 579

mutex, characteristics and use, 200
synchronizing access to, 581

with 1/0 database mutex, 201. See also IOC$GL_
MUTEX cell

1/0 device timeout. See device timeout
1/0 devices. See devices
1/0 hardware. Consult Computer Programming and

Architecture: The VAX; VMS Device Support
Manual

overview, 577
1/0 interrupt service routines

concepts and mechanisms, (chapter! 628
1/0 map

swapper, characteristics and use, 514
1/0 performance database

synchronizing access, with PERFMON spinlock, 184
1/0 postprocessing. See also 1/0 completion;

IOC$IOPOST
interrupt (IPL 4)

1361

Index

1/0 postprocessing (continued)
interrupt llPL 4) (continued)

EXE$ABORTIO use of, 612
EXE$CANCEL use of, 626
EXE$FINISHIO use of, 612
IOC$REQCOM use of, 641
SMP$INTSR use of, 1026

interrupt service routine, 65, 613
operations, 613
per-CPU queues

database, 1042
during VAXcluster quorum loss stall, 1043
for aborted I/O request, 612
for 1/0 requests completed by FDT routines, 612
used by EXE$ABORTIO and EXE$FINISHIO[C],

1043
queues

placing IRP in, 65
reasons for multiple, 1042
use in stalling while VAXcluster quorum is lost,

1028
SMP systems, operations, 1042
special kernel mode AST use in, 144
systemwide queues, 1042

for canceled I/O requests, 626
for completed I/O requests, 641
for IRPs completed through COM$POST, 683
serviced only on primary, 613
used by COM$POST and IOC$REQCOM, 1043

I/ 0 redirection
logical names role in, 1067

1/0 request packet. See IRP
1/0 requests

aborting, 611
ACP characteristics and use, 584
canceling, 624
completing, 610

by EXE$QIO, 612
by driver, 640
in FDT routine, 612. See also 1/0 completion

control flow, jfigure) 588
memory management ltable), 463
number of, CCB field that specifies, 596
outstanding, as a condition for outswap and swapper

trimming selection, 524
queuing, 606

device-dependent preprocessing, 609
device-independent preprocessing, 606
to driver, 613
to file system, 631

1/0 routines
VMS, overview, 586

1/0 status block. See IOSB
1/0 subsystem

overview, 9, !chapter) 577
requests, overview, 13

1/0 system services. Consult Introduction to VMS
System Services

concepts and mechanisms, !chapter) 587
operations, overview, 587
overview, 584

1/0 timeout
detected by EXE$TIMEOUT, 265
disabling, by EXE$IOFORK, 58
handling routine, characteristics and use, 584
measurement initiated by WFIKPCH macro, 635

1/0 transfers
IOC$IOPOST processing of segmented, 624
segmenting transfers greater than 64K bytes, 623

1/0-bound processes

1362

quantum-end mechanism for, 294
IACSGL_ICBFL cell

ICB lookaside list location, 7 42
IACSGL_IMAGE_LIST cell

ICB done list, 742
IAC$GL_ WORK_LIST cell

ICB work list, 742
ICB (image control block)

characteristics and use, 7 42
done list, location of, 742
layout, !figure) 742
locating code with, 1154
lookaside list, location of, 7 42
manipulating, example, 760
work list, location of, 742

ICB$B_ACCESS_MODE field
definition and use, 7 42

ICB$B_ACT_CODE field
definition and use, 7 42

ICBSL_CONTEXT field
definition and use, 742

ICB$L_END_ADDRESS field
definition and use, 7 42

ICB$L_IHD field
definition and use, 742

ICB$L KFE field
definition and use, 7 42

ICBSL_STARTING_ADDRESS field
definition and use, 742

ICB$T_IMAGE_NAME field
definition and use, 7 42

ICBSW_CHAN field
definition and use, 742

IDB (interrupt dispatch block)
characteristics and use, 580
layout and summary, 1251

me (integrated disk controller)
VAX-11/730 system, 47

idle set
SMP, term definition, 1014

IEI (initiate-exception-or-interrupt) microcode
exception dispatching, control flow, 35
handling

aborts, 36
faults, 36
interrupt stack invalid, 36
traps, 36

interrupt dispatching, control flow, 34
IHD (image header)

images, ICB field that specifies, 7 42
KFE field that specifies address of resident, 7 44
layout and characteristics, I figure) 7 40
macros that define, jfigure) 740

IHD$L SYSVER field
definition and use, 853

$IHDDEF macro
IHD fixed part definition, 741

image activation. See also $IMGACT
CLI, special considerations, 749, 762
compatibility mode image, special considerations,

738, 749, 762
concepts and mechanisms, !chapter) 737
from sequential devices, special considerations, 739
known image, special considerations, 738, 762
merged, special considerations, 739
PO-only images, special considerations, 739
privileged shareable images, special considerations,

739
special cases, 738
term definition, 737

image activation (continued)
types of, 738
with message sections, special considerations, 739

Image Activator system service. See $IMGACT
image control block. See ICB
image dump facility

characteristics and use, 736
image header. See IHD
image reset. See MMG$IMGRESET
Image Rundown system service. See $RUNDWN
image rundown. See also image activation; $IMGACT;

$RUNDWN
common event flag clusters, processes automatically

dissociated from, 208
deleting process-private logical names, 1099
distinguished from process rundown, 774
effect on condition handlers, 75
operations, 774
PO space deletion at, 353
term definition, 73 7

image section descriptor. See ISD
image sections

creating, 374
mapping, 374. See also image activation; $1MGACT
process sections created by image activator, 353

image startup sequence
purging working set pages as component of, 506

Image Startup system service. See $1MGSTA
IMAGE MANAGEMENT initialization routine

operations, 938
image-specific message files

characteristics and use, 1109
images. See also image activation; $IMGACT; loadable

executive images
concepts, overview, 5
data structures, 740
executing, CLI commands that are handled without

destroying, (table) 802
exiting, 771

concepts and mechanisms, (chapter) 737
from executive mode at logout, 809

initiation, 73 7
by CLI, 802

installed with privilege, overview, 12
interrupted, state of, 807
interrupting, with LIB$PAUSE, 807
known, data structures, 743
layout, (figure) 763
linked with SYS.STB, overview, 12
list, (chapter) 1126
main, term definition, 738
optional loadable executive, loading, 843
privileged

installed on a standard VMS system, (table) 1126
known, name and description tables, (chapter)

1126
linked with SYS$SYSTEM:SYS.STB, miscellaneous

list, (table) 1128
protected by system UIC or volume ownership,

(table) 1127
rundown after CTRL/Y, 807
shareable, dispatching control flow, (figure) 123
shareable, dispatching to system services in, 121
shareable, protected image section structure,

(figure) 124
shareable, system service operations in, 123
typically not installed on a standard VMS system,

(table) 1127
restricted to privileged users, overview, 12,

(table) 1126

Index

rundown by CLI at initiation of new image, 802
shareable

image activator control flow, 753
term definition, 738

simple main, image activator control flow, 747
starting up, 768, 769. See also $IMGSTA
term definition, 3
terminating

abnormally, 806
normally, 806

$IMGACT (Image Activator system service). See also
image activation; image rundown; $RUNDWN

arguments, (table) 747
buffers, ICB field that points to, 742
control flow, (table) 747

end processing, 756
shareable images, 753
simple main images, 747

initialization order computation, 758
lock use by, characteristics and use of each lock,

1320
operations

CLI, 762
compatibility mode images, 762
known images, 762

overview, 737, 740
Pl space management by, 353
shareable image initialization, example, 760
term definition, 5

$IMGFIX (Addtess Relocation Fixup system service).
See also .ADDRESS directive; address
relocation. Consult VMS Linker Utility Manual

concepts and operations, 762
IMGIOCNT parameter (SYSGEN)

effect on Pl space, 1293
size of image 1/0 segment, 756

$IMGSTA (Image Startup system service)
operations, 769

implicit affinity. See also affinity
acquiring, 297
characteristics and use, 28 7
mechanism, 289

INCONSTATE bugcheck. See also bugchecks
generated by SMP$SETUP_CPU, 1052

Individual Departure lock
characteristics and use, 1322

Individual Index lock
characteristics and use, 1322

Individual Link Registration lock
characteristics and use, 1322

information system services
overview, 705

INI$BRK routine (SYSTEM_ROUTINES module)
actions when XDELTA is not resident, 68

INI$DOINIT routine (DOINIT module)
control flow, 846
initializing loadable executive images, 844

INI$MASTERWAKE routine (SYSTEM_ROUTINES
module)

XDELTA interrupt service routine, entering, 68
INI$PFN_FIXUP routine (DOINIT module)

operations, 848
use by loadable executive images, 844

INI$SYSTEM_SERVICE routine (DOINIT module)
control flow, 849
operations, 849
use by loadable executive images, 845

$INIRTNDEF macro
initialization table flags defined by, 844

INIT module. See EXE$INIT

1363

Index

INIT processor state
secondary processors initialized to, 1043
transitions out of, by CPU_START routine, 1044

initialization. See system initialization
initialization routines

loadable executive image-specific, possible opera­
tions, 847

INITIALIZATION_ROUTINE macro
creating entries in initialization routine table, 844

initiate-exception-or-interrupt. See IEI microcode
input symbiont

batch process creation role, 786
INSMBQUEUE routine (MBDRIVER module)

control flow, 666
INSQHI instruction. See also instructions

interlocked memory instruction, synchronizing data
with, 164

INSQTI instruction. See also instructions
interlocked memory instruction, synchronizing data

with, 164
Install lock

characteristics and use, 1320
Install Utility

in context of startup process, files accessed by,
(table) 863

known image database creation and management by,
744

lock use by, characteristics and use of each lock,
1320

instruction emulation. See also FPEMUL; instructions;
VAXEMUL

emulator loading, operations, 857
exceptions, handling, 85
VMS techniques for handling, 76

instruction lookahead. See also instructions
clearing, by REI instruction, 39

instruction prefetch. See instruction lookahead
instructions. See also hardware

absolute queue, noninterruptibility, 163
change mode, VAX architecture feature used by

VMS, 15
data structure referencing, reading, 1135
decimal, unimplemented, emulation support for, 77
FPD, characteristics and use, 163
interlocked

characteristics, 163
list of, 164
shared system data protected by, 166
VAX architecture feature used by VMS, 14

interlocked queue
characteristics and use, 164
macros that use, 165
synchronizing access to system space lookaside

lists with, 552
kernel mode, VAX architecture feature used by VMS,

14
LDPCTX, VAX architecture feature used by VMS, 15
overview, 1138
REI

overview, 22
VAX architecture feature used by VMS, 15

string, unimplemented, emulation support for, 77
SVPCTX, VAX architecture feature used by VMS, 15
techniques for increasing instruction speed, 1138
uninterruptible, characteristics, 163
unusual instruction and addressing mode use, 1140
VAX instruction set, overview, 15

inswaf. See also swapper
fina processing, 542
operations, example, (figures) 540

1364

PHD, 537
preparing for, 536
processes

operations, 536
selecting, 519, 536

term definition, 4
integrated disk controller. See IDC
integrity level

logical names, term definition, 1069
interactive processes. See also processes

creating, (figure) 784
by job controller, 783

DCL spawning of, 788
LOGINOUT image operations, control flow, 791
logout, LOGINOUT, control flow, 809
subprocesses, DCL commands that create and

connect with, 787
interlocked instructions. See also instructions;

interlocked queue instructions
characteristics, 163
list of, 164
multiprocessing synchronization primitive, 1021
shared system data protected by, 166

interlocked queue instructions. See also instructions;
interlocked instructions

characteristics and use, 164
macros that use, 165
synchronizing access to system space lookaside lists

with, 552
intermediate request packet. See IRP
internal process identifier. See IPID
interprocess communication

global sections, 345
logical names, 345
mailbox use for, 344, 655
mechanisms

list of available, 318
overview, 342

synchronization
through common event flags, 213
through lock management system services, 344

interprocessor cooperation. See also SMP systems
changing valid SPTEs, 1029
concepts and mechanisms, 1022
time-of-year clock access, 1027

interprocessor interrupt work requests
AST level update, handling, 1026
benign state entry, 1025
bits, names and meaning, (table) 1023
bugcheck, 1025
console terminal serving, 1025
fork process move, handling, 1026
I/O postprocessing, 1026
processor-specific, 1028
rescheduling interrupt, handling, 1028
servicing, 1025
time-of-year clock access, handling, 1027
translation buffer invalidation, 1029
VAXcluster quorum lost, handling, 1028

interprocessor interrupts
requesting, 1023
servicing, 1025
VAX architecture mechanisms, 42

interprocessor timeouts. See also timeouts
busywait, 1035
sanity timer, 1035
spinwait, 1035

interrupt dispatch block. See IDB
interrupt initiation. See IEI microcode
interrupt priority level. See IPL

interrupt service routine. See ISR
interrupt stack

bit, PSL, AST delivery prevented by, 129
exceptions serviced on, 35
invalid, IEI microcode action, 36
pointer, locating per-CPU data area with, 1015
REI tests that prevent attempt to REI onto, 39
selecting, 34
servicing interrupts on, 31
size, 35
SMP systems, 1015
summary, 1225

interrupt state
concept overview, 17

interrupts. See also device drivers; exceptions; ISR;
software interrupts

adapter
SCB locations, (figure) 31
VMS service routine operations, 641

blocking
all, system facilities that synchronize by, 169
by raising IPL, 44, 168
IPL reserved for, 41

concepts and mechanisms, (chapter) 29
connect-to-interrupt mechanism, characteristics and

use, 652
console

dispatching, 690
VAX architecture mechanisms, 43

device
blocking, 1 70
in SMP systems, 1040
operations, 641
servicing, driver actions, 636
VAX architecture mechanisms, 44
waiting for, driver actions, 635

dispatching, VAX architecture mechanism, 34
errors, CPU-specific, handling, 982
exceptions compared with, 21, 37
fork processes, handling mechanisms, 56
granting, microcode actions, 30
hardware

concepts and mechanisms, (chapter) 40
overview, 40
software interrupts requested from hardware

interrupt service routines, 54
urgent conditions, VAX architecture mechanisms,

41
I/O postprocessing. See I/O postprocessing
initiation. See IEI microcode
interprocessor. See interprocessor interrupt work

requests
interval timer

blocking, 170
IPL for, 250
VAX architecture mechanisms, 42

multilevel dispatching
Q22-bus-based MicroVAX systems, 49. Consult

VMS Device Support Manual
overview, 29
REI instruction, control flow, 38
requests for, queues as mechanism for keeping track

of number, 55
SCB use by, 30
term definition, 21
unexpected, VAX architecture mechanisms, 43
UNIBUS adapter, vectoring interrupts through, 45
urgent conditions, VAX architecture mechanisms, 41
user-writable control store, exception handling, 31
uses for, overview, 21

Index

VAX microcode response to, 29
vectors, (figure) 29, (figure) 30, (figure) 32

format and use, (figure) 30
hardware IPL and, 32
how defined, 30
IEI microcode testing to determine stack for,

interrupt servicing, 34
MicroVAX 2000 system, (table) 50
nexus number use in identifying, 45
unused, meaning of contents, 44

interval timer
characteristics and use, 248
full implementation description, 249
interrupt (IPL 22, 24)

blocking, 1 70
VAX architecture mechanisms, 42

interrupt service routine
control flow, 261
interaction with software timer interrupt service

routine, 64
sanity timer mechanism operations, 103 7

INTSTKPAGES parameter (SYSGEN)
default value, 35
effect on size of system space, 1279
limiting resource tree maximum depth with,

239
size of interrupt stack, 1015

INVALIDATE spinlock
characteristics and use, 184
held by SMP$INVALID, 1030

INVALIDATE_TB macro
invalidating TB with, 1026, 1029

INVEXCPTN bugcheck. See also bugchecks
generated during kernel or executive·mode exception

processing, 94
IO$_SETCHAR function code

CTRL/C and CTRL/Y notification use of, 152
mailbox driver use of, 153
setting

attention AST, 150
out-of-band AST, 154

I0$_SETMODE function code
CTRL/C and CTRL/Y notification use of, 152
mailbox driver use of, 153
setting

attention AST, 150
mailbox driver mode, 664
out-of-band AST, 154

IO$M_CTRLCAST function modifier (IOS_SETMODE)
CTRL/C notification use of, 152

IO$M_CTRLYAST function modifier (IO$_SETMODE)
CTRL/Y notification use of, 152

IO$M_OUTBAND function modifier (IO$_SETMODE)
setting out-of-band AST, 154

IO$M_READATTN function modifier (IO$_
SETMODE)

mailbox
driver use of, 153
read request, operations, 664

IO$M_SETPROT function modifier (IO$_SETMODE)
mailbox read request, operations, 664

IO$M_ WRTATTN function modifier (IO$_SETMODE)
mailbox

driver use of, 153
read request, operations, 664

IO _ROUTINES initialization routine
operations, 93 7

IOC$CHKMBXQUOTA routine (UCBCREDEL
module)

operations, 661

1365

Index

IOCSCHKUCBQUOTA routine (UCBCREDEL
module)

operations, 599
IOC$CLONE_UCB routine (UCBCREDEL modqle)

cloning a mailbox UCB and ORB, operatiop.s, 661
operations, 599

IOCSDALLOC_DEV routine (IOSUBPAGD module)
control flow, 594

IOCSDEBIT_UCB routine (UCBCREDEL module)
operations, 599

IOCSDELETE_UCB routine (UCBCREDEL module)
operations, 663

IOCSFFCHAN routine (IOSUBPAGD module)
operations, 597

IOCSGL_DEVUST cell
DDB list listhead, 580

IOC$GL_LRPSIZE cell
LRP list element size, 556

IOCSGL_LRPSPLIT cell
address of start of LRP pool region, 559

IOCSGL_MUTEX cell
locked by

EXE$ALLOC, 592
EXE$ASSIGN, 597
EXE$CREMBX, 660
EXE$DALLOC, 594
EXE$DASSIGN, 604
EXE$DEVICE_SCAN, 1118
EXE$GE1DVI, 1120

synchronizing access to 1/0 database, 201, 581
IOCSGL_SRPSIZE cell

meaning, 556
IOC$GL_SRPSPLIT cell

address of start of SRP pool region, 559
IOCSINITDRV routine (RELOCDRV module)

initializing terminal class driver data structures, 932
IOC$INITIATE routine (IOSUBNPAG module)

control flow, 630
IOCSIOPOST routine (IOCIOPOST module). See also

1/0 postprocessing
buffered 1/0 completion, control flow, 614
control flow, final steps, 615
direct I/O completion, control flow, 615
I/O postprocessing interrupt software routine,

(example) 65
operations, 613
page read completion detection by, 466
segmented transfer processing, control flow, 624

IOC$LAST_CHAN routine (IOSUBPAGD module)
control flow, 605

IOCSLAST_CHAN_AMBX routine (IOSUBPAGD
module)

control flow, 605
IOC$MAPVBLK routine (IOSUBRAMS module)

operations, 622
IOCSREQCOM routine (IOSUBNPAG module)

control flow, 640
inserting IRP onto systemwide queue, (example) 65
completing device driver error log message, 963

IOCSSEARCH routine (IOSUBPAGD module)
operations, 592

IOCSUNLOCK_DEV routine (IOSUBPAGD module)
control flow, 594

IOCSVERIFYCHAN routine (IOSUBPAGD module)
control flow, 603

IOCSWFIKPCH routine (IOSUBNPAG module)
control flow, 635

IOCIOPOST module
BUFPOST, I/O postprocessing, 144
DIRPOST, I/O postprocessing, 144

1366

IOCSIOPOST
buffered I/O completion, control flow, 614
control flow, final steps, 615
direct I/O completion, control flow, 615
I/O postprocessing interrupt software routine,

operations overview, (example) 65
operations, 613
page read completion detection by, 466
segmented transfer processing, control flow, 624

IOFORK macro
I/O fork processing, 638

IOLOCK module
MMG$10LOCK, 383
MMG$UNLOCK, page fault handling, private page

not copy-on-reference, 443
IOLOCK8 spinlock

characteristics and use, 181
device driver use of, 63

IOLOCKn spiulocks
characteristics and use, 183

IOSB (I/O status block)
event flags synchronization use with, 108
synchronous system services return path handling

of, 120
IOSEGMENT linker option

effect on Pl space, 1293
IOSUBNPAG module

IOC$INITIATE, control flow, 630
IOC$REQCOM

control flow, 640
inserting IRP onto systemwide queue, (example) 65

IOC$WFIKPCH, control flow, 635
IOSUBPAGD module

IOC$DALLOC_DEV, control flow, 594
IOC$FFCHAN, operations, 597
IOC$LAST_CHAN, control flow, 605
IOC$LAST_CHAN_AMBX, control flow, 605
IOC$SEARCH, operations, 592
IOC$UNLOCK_DEV, operations, 594
IOC$VERIFYCHAN, control flow, 603

IOSUBRAMS module
IOC$MAPVBLK, operations, 622

IOTA parameter (SYSGEN)
automatic working set limit adjustment use, 500
deducted from PHD$W_QUANT, 294
SCH$WAIT use, control flow, 291

, SIOxxxDEF macro
layout of CPU I/O space, 1264
variant forms for different CPUs, (table) 1294

SIOmDEF macro
symbolic names for physical addresses of CPl.J­

specific processor registers, 1294
IPC (console prompt). See also IPL 12 interrupt service

routine
meaning, 68

IPCONTROL module
EXE$IPCONTROL, IPL 12 interrupt service routine,

commands and mechanism, 68
IPID (internal process identifier)

characteristics and use, 320, 720
EPID use compared with, 320
for global section to be deleted, GSD location, 390
for master process in job tree of process that created

a cluster, 205
formation, 722, (figure) 723
routines that transform and manipulate, 721
sequence number always positive, 722

IPINT_ALL macro
requesting interprocessor interrupts with, 1023

IPINT_CPU macro

IPINT_CPU macro (continued)
invocation and expansion, example, 1023
requesting interprocessor interrupts with, 1023

IPL (interrupt priority level)
associated with a spinlock, specifying, 175
blocking interrupts with, compared with exception

handling, 37
changing with

DSBINT macro, 168
ENBINT macro, 168
SETIPL macro, 168

checking during page fault handling, 436
console interrupt, (table) 43
converting a spinlock index to, 59
corresponding to static spinlocks, table that

identifies, 178
device, device driver use of, 170
distinguished from spinlock index, 177
elevating, overview, 24
exceptions, effect on, 37
fork

characteristics and use, 63
synchronization use of, 170

hardware, symbolic name and purpose, (table) 40
hardware clock interrupt, CPU-dependent level

definition, 250
interrupt service routines restricted from lowering,

35
interrupts

blocking, 44
effect on, 3 7

levels 16-31, meaning, 40
lowering

by REI instruction, 38
by SERVICE_EXIT, 117
forking as safe method for, 169
why dangerous, 58, 168

raising
as hardware synchronization technique, 163
distinguished from spinlock use, 173
memory interlocked, synchronization advantage

over, 164
mutexes as an alternative to, 196
synchronization use of different IPL levels, 168

REI tests preventing
attempts to REI to a higher, 39
non-kernel modes from raising, 38

role in arbitrating interrupts, overview, 29
software, symbolic name, stack and purpose,

(table) 55
software interrupt, who requests, 54
software interrupt vector and, 44
spinlocks

acquiring, rules for, 180
held at, recording in per-CPU database, 177

synchronization, spinlocks added for SMP support,
1021

values defined in $IPLDEF macro, 169
VAX architecture feature used by VMS, 15

IPL 2
blocking, 172

AST delivery interrupt, 286
synchronization

of private data structure access, 167
use of, 172

IPL 2 interrupt. See AST delivery interrupt
IPL 3 interrupt. See rescheduling interrupt
IPL 4 interrupt. See 1/0 postprocessing - interrupt
IPL 6

fork IPL of connect-to-interrupt driver, 654

Index

fork IPL used by attention AST drivers, 63
fork process

creating, reasons for, 151
deallocating pool, synchronization issues, 562

out-of-band AST use of, 153
synchronization use of, 171

IPL 6 interrupt. See fork interrupts
IPL 7

avoiding blocking activities at, 151
fork block queue listhead placeholder, reasons for,

57
IPL 7 interrupt. See software timers - interrupt
IPL 8

accessing systemwide databases synchronized at,
63

avoiding blocking of activities at, 151
fork IPL used by most drivers, 63
IPL$_SYNCH synonyms, 171
performing software timer interrupt service routine

at, 263
reasons for not lowering IPL to, 151
SCS spinlock associated with, 69
synchronization use of, 170
value change from IPL 7 to IPL 8, reasons for, 171

IPL 8 interrupt. See fork interrupts
IPL 9 interrupt. See fork interrupts
IPL 10 interrupt. See fork interrupts
IPL 11

mailbox driver fork IPL, 664
IPL 11 interrupt. See fork interrupts
IPL 12 interrupt service routine. See also IPC

C command, canceling mount verification, 69
commands, (table) 68
CTRL/Z command, exiting routine, 70
Q command, recalculating quorum for VAXcluster,

69
X command, activating XDELTA, 70

IPL 14 interrupt service routine. See also XDELTA
operations, 67

IPL 19
meaning, (table) 40

IPL 20
meaning, (table) 40

IPL21
meaning, (table) 40

IPL22
interval timer interrupt, VAX architecture current

use, 250
meaning, (table) 40
synchronization use of, 170, 184

IPL 22 interrupt. See interval timer
IPL24

interval timer interrupt, VAX architecture older use,
250

meaning, (table) 40
synchronization use of, 170, 184

IPL 24 interrupt. See interval timer
IPL 30 interrupt. See powerfail
IPL31

exceptions serviced at, 31
kernel-stack-not-valid, 76
machine check, 76

EXE$FORICWAIT use when stalling a fork process,
62

meaning, (table) 40
powerfail recovery use, 995
raising IPL to during spinlock acquisition, 192
synchronization use of, 169
use, 41
XDELTA execution at, 68

1367

Index

IPL$_ASTDEL. See IPL 2
IPL$_EMB. See IPL 31
IPL$_FILSYS. See IPL 8
IPL$_HWCLK. See IPL 24
IPL$_HWCLKLO. See IPL 22
IPL$_INVALIDATE. See IPL 19; IPL 21
IPL$_IOLOCK8. See IPL 8
IPL$_IOPOST (IPL 4). See 1/0 postprocessing -

interrupt
IPL$_IPINTR. See IPL 20; IPL 22
IPL$_JIB. See IPL 8
IPL$_MAILBOX. See IPL 11
IPL$_MCHECK. See IPL 31
IPL$_MEGA. See IPL 31
IPL$_MMG. See IPL 8
IPL$_POWER. See IPL 31
IPLS_QUEUEAST. See IPL 6
IPL$_RESCHED. See IPL 3
IPL$_SCHED. See IPL 8
IPL$_SCS. See IPL 8
IPL$_SYNCH. See IPL 8
IPLS_TIMER. See IPL 8
IPL$_TIMERFORK. See IPL 7
IPL$_ VIRTCONS. See IPL 20; IPL 22
$IPLDEF macro

IPL values defined in, 169
software IPL symbolic names defined in, (table) 55

IRP (I/O request packet). See also ACB; device drivers;
1/0 postprocessing; $QIO

ACB included in, 132
CORP as extension to, 679
characteristics and use, 580
1/0 postprocessing use as an ACB, 144
layout and summary, 1251
lookaside list

characteristics, (table) 544
element size, 556
listhead location and allocation type, (table) 546
queuing to driver, 629, 631
queuing to file system, 631
size calculation, 1278
uses of, 563

placing in 1/0 postprocessing queue, 65
IRP$C_LENGTH global symbol

IRP list element size, 556
IRP$L_BCNT field

characteristics, 610
use in direct 1/0 buffer mapping, 400

IRP$L_PID field
negative value indicates system 1/0 completion, 613

IRP$L_SVAPTE field
characteristics, 610
use in direct 1/0 buffer mapping, 400

IRP$V _BUFIO bit (ffiP$W _STS field)
distinguishes buffered and direct 1/0, 614

IRP$V_FUNC bit (IRP$W_STS field)
distinguishes input from output, 615

IRP$V _PAGIO bit (IRP$W _STS field)
detecting page read completion with, 466

mPSW _BOFF field
characteristics, 610
use in direct 1/0 buffer mapping, 400

IRPE (IRP extensions)
describing multiple direct 1/0 buffers, 615

ISD (image section descriptor)
demand zero, characteristics, 741
global, characteristics, 7 41
layout and characteristics, (figure) 7 41
private section, characteristics, 7 41
summary, 1251

1368

types, description and use, 741
ISD$L_ VBN field

definition and use, 741
ISD$L VBNPFC field

defillition and use, 7 41
ISD$T_GBLNAM field

definition and use, 741
ISD$V _DZRO bit (ISD$L_FLAGS field)

definition and use, 741
ISD$V_GBL bit (ISD$L_FLAGS field)

definition and use, 741
ISD$W _PAGCNT field

definition and use, 741
ISR (interrupt service routine). See also device drivers;

interrupts; software interrupts
driver, overview, 584
1/0, concepts and mechanisms, (chapter) 628
overview, 19
restrictions imposed on, 34

JIB (job information block)
copying during process creation, (figure) 710
JIB$L_BYTCNT field, synchronizing access to with

JIB spinlock, 182
JIB$L_BYTLYM field, synchronizing access to with

JIB spinlock, 182
layout and summary, 1252
obtaining information from, $GETJPI operations,

328
PCB address of, 271
PCB relation with, for several processes in same job,

(figure) 713
process software context contained in, 4

JIB spinlock
characteristics and use, 182

JIB$B_FLAGS field
job quota wait use of, 286

JIB$L_BYTCNT field
job quota wait use of, 286
synchronizing access to, with JIB spinlock, 182

JIB$L_BYTLYM field
synchronizing access to, with JIB spinlock, 182

JIB$W_TQCNT pooled job quota
TQE allocation controlled by, 257

job
concepts, overview, 8
term definition, 3

job controller
batch/print subsystem queue manager, 1102
creating, 947
functions of, 1102
lock use by, characteristics and use of each lock,

1324
mailboxes

sending messages to accounting manager, 1107
sending messages to symbiont manager, 1108
SUBMIT command use of, 784
use by, 673

process
command file that creates, 947
process creation by, 783

system services supported by, 1102
Job Controller ORB lock

characteristics and use, 1328
job information block. See JIB
job quota

charging locks against, 226
depleted

miscellaneous wait triggered by, 286

job quota (continued)
depleted (continued)

transition states triggered by, 286
waiting for, context, 293. See also JIB$B_FLAGS field

JOB_CONTROL process. See job controller

KAST. See special kernel mode AST
$KAyyyDEF macro

symbolic names for offsets in CPU node-private
space, 1294

kernel See also I/O subsystem; memory management;
scheduler

entry paths into, (figure) 16
hardware assistance to, overview, 14
routines, implementation, overview, (figure) 16
subsystems, interface among, (figure) 12

kernel mode
bugchecks, handling operations, 969
change mode dispatch table, field definitions and

use, 112
last chance handlers, mechanism, 94
REI tests for, 38
stack pointer, as part of process hardware context,

306
suspension

AST use in, 148
synchronizing with Files-11 XQP, 147

kernel request packet. See KRP
kernel stack

exception handling on, reasons for, 36
exception handling use of, 80
expansion, new pages locked in working set list, 485

kernel-stack-not-valid exception
meaning and use, 76
selecting stack for servicing, 35

KFD (known file device and directory block)
layout, (figure) 744
summary, 1253

KFD$L KFELIST field
definition and use, 7 44

KFD$T_DDTSTR field
definition and use, 744

KFD$W REFCNT field
definition and use, 744

KFE (known file entry block)
hash table, locating KFEs, 745
images, ICB field that specifies, 742
layout, (figure) 744
lock, characteristics and use, 1320
summary, 1253

KFE$B_HSHIDX field
definition and use, 745

KFE$B MATCHCTL field
definition and use, 744

KFE$L FID field
definition and use, 744

KFE$L HSHLNK field
definition and use, 745

KFE$L IDENT field
defilli.tion and use, 7 44

KFE$L IMGHDR field
defilli.tion and use, 744

KFE$L_USECNT field
definition and use, 744

KFE$L WCB field
defilli.tion and use, 744

KFE$Q_PROCPRIV field
definition and use, 744
process privilege mask, use and routines that

Index

manipulate, (table) 778
KFE$W FLAGS field

definition and use, 744
KFE$W _GBLSECCNT field

definition and use, 744
KFPB (known file pointer block)

layout, (figure) 745
summary, 1254

KFPB$L KFDLST field
definition and use, 745

KFPB$L KFEHSHTAB field
definition and use, 745

KFPB$W _HSHTABLEN field
definition and use, 745

KFPB$W_KFDLSTCNT field
definition and use, 747

KFRH (known file resident image header)
layout, (figure J 7 45
summary, 1254

known file database. See known image database
known file device and directory block. See KFD
known file entry block. See KFE
known file resident image header. See KFRH
known image database

characteristics, 744
known image installation

/HEADER_RESIDENT qualifier, 744
/PRIVILEGE qualifier, 7 43
/SHARE qualifier, 743

known images
characteristics and use, 7 43
image activator operations, 762

KRNLSTAKNV bugcheck. See also bugchecks
generated by kernel-stack-not-valid exception, 76

KRP (kernel request packet)
lookaside list

allocating, 56 7
characteristics, (table) 544, 552
characteristics and use, 567
deallocating, 567
listhead location and allocation type, (table) 546
process, (table) 544

packet control
CTL$C_KRP_COUNT symbol, 567
CTL$C_KRP _SIZE symbol, 567

KRPEMPTY bugcheck. See also bugchecks
generated by failure to allocate a KRP, 568

Label lock
characteristics and use, 1300

large request packet. See LRP
last chance condition handlers

calling, 90
catch-all condition handler use for, 94
established by $SETEXV, 74
kernel mode, mechanism, 94
location of, 7 4

last channel processing
control flow, 605

LAT (local area terminal)
server support, characteristics, 685
server, operations, 685

LBN (logical block number)
converting VBN to, 622
DSA disks, bad block handling, 693
term definition, 621

LCK$GL_DIRVEC cell
resource directory address located in, 224

LCK$GL_HASHTBL cell

1369

Index

LCK$GL_HASBTBL cell (continued)
resource hash table address located in, 218

LCK$GL_IDTBL cell
definition and use, 222

LCK$GL_MAXID cell
lock ID table last entry index, 222

LCK$GL_RRSFL cell
listhead for root resource list for local system, 215

LCK$GL_TIMOUTQ cell
lock timeout queue listhead, deadlock handling use

of, 236
LCK$GRANT_LOCK routine (SYSENQDEQ module)

control flow, 231
LCK$SEARCBDLCK routine (DEADLOCK module)

operations, 237
LCK$SRCH_RESDLCK routine (DEADLOCK module)

operations, 239
$LCICPAG (Lock Pages in Memory system service)

operations, 504
LDATmodule

static spinlock control blocks defined in, 177
LDPCTX instruction. See also instructions

control flow, 309
use, 310
VAX architecture feature used by VMS, 15

LDR$ALLOC_PT routine (PTALLOC module)
control flow, 861

LDR$ALTERNATE_LOAD routine (ALTERNATE_
LOAD module)

control flow, 843
LDR$DEALLOC_PT routine (PTALLOC module)

control flow, 861
LDR$GL_FREE_PT cell

listhead of available SPTEs, 859
LDR$1NIT_ALL routine (SYSLDR module)

list of options, 845
LDR$1NIT_SINGLE routine (SYSLDR module)

control flow, 846
list of options, 845

LDR$LOAD_IMAGE routine (SYSLDR module)
loading loadable executive images

control flow, 838
operations, 837

LDR$LOAD_NONPAGED routine (SYSLDR module)
mapping nonpaged read-only code section of loadable

executive image, control flow, 841
LDRIMG (loadable image data block)

layout, (figure) 839
LEF (local event 8ag wait state). See also event flag

wait state; event flags; LEFO; local event flags;
process states1 wait states

characteristics and use, 210
context for, 292
transitions

from LEF to COM, 282
to LEF from CUR, 282

LEFO (local event flag outswapped wait state). See also
event flag wait state; event flags; LEF; local
event flags; process states; wait states

characteristics and use, 210
transitions

from LEFO to COMO, 282
to LEFO from LEF, 282

LIB.MLB macro library
locating non-public data structure offsets, constants,

and macro definitions in, 1133
VAX MACRO external interface data structure

definitions stored in, 1241
LIB.REQ macro library

BLISS-32 external interface data structure definitions

1370

stored in, 1241
locating non-public data structure offsets, constants,

and macro definitions in, 1133
LIB$ATrACB routine (Run-Time Library)

ATrACH command functions available to images
through, 787

LIB$FIND_IMAGE_SYMBOL routine (Run-Time
Library)

effect on PO and Pl space, 353
procedure that initiates merged image activation,

739
LIB$PAUSE routine (Run-Time Library)

interrupting images, program control of, 807
LIB$SIGNAL routine (Run-Time Library)

building mechanism arrays, 88
compared with LIB$STOP, 86
conditions not signaled through, 80
reasons not used for DEBUG signal, 84
software condition handling, operations, 86

LIB$SPAWN routine (Run-Time Library)
SPAWN command functions available to images

through, 787
LIB$STOP routine (Run-Time Library)

building mechanism arrays, 88
compared with LIB$SIGNAL, 86
conditions not signaled through, 80
signaling through, condition handler actions, 96
software condition handling, operations, 86

limits
overview, 23

linker options
COLLECT/ATTRIBUTES, use, 833
IOSEGMENT, effect on Pl space, 1293
NOPOBUFS, use, 566
STACK, effect on Pl space, 1293
VECTOR, use, 833

LINKVEC module
miscellaneous transfer vector area defined in, 831

listing files. See VMS listing files
LKB (lock block)

ACB included in, 132
allocating pool for, 557
characteristics and use, 218
in a V Ax.cluster system, distribution of, 223
layout, (figure) 218
linking into lock timeout queue, (figurel 236
local copy, characteristics and use, 225
locating, 221, 222
master copy, characteristics and use, 225
process copy, characteristics and use, 225
removing from resource queue during dequeuing

operations, 230
summary, 1254
types

characteristics and use, 225
distinguished by LKB and RSB contents, 225

LKB$B_GRMODE field
definition and use, 218
lock conversion use of, 228

LKB$B_RMOD field
definition and use, 220

LKB$B_RQMODE field
definition and use, 218
lock conversion use of, 228

LKB$B_STATE field
definition and use, 220

LKB$GL_NXTID cell
definition and use, 222

LKB$L_ASTQBL field
definition and use, 220

LKB$L_ASTQFL field
definition and use, 220

LKB$L BLKASTADR field
definition and use, 221

LKB$L CPLASTADR field
definition and use, 221

LKB$L CSID field
definition and use, 225

LKB$L_DUETIME field
synonym for LKB$L_KAST, storing lock request

timeout time in, 236
LKB$L_EPID field

definition and use, 221
LKB$L KAST field

synoiiym for LKB$L_DUETIME, storing lock request
timeout time in, 236

LKB$L LKID field
definition and use, 221

LKB$L LKSB field
definition and use, 221

LKB$L LKSTl field
definition and use, 221

LKB$L_OWNQBL field
definition and use, 223

LKB$L_OWNQFL field
definition and use, 223

LKB$L PARENT field
definition and use, 220

LKB$L PID field
definition and use, 220

LKB$L_REMLKID field
definition and use, 225

LKB$L_SQBL field
definition and use, 220

LKB$L_SQFL field
definition and use, 220

LKB$V _MSTCPY bit (LKB$W _FLAGS field)
definition and use, 225

LKB$W REFCNT field
definition and use, 220

$LKWSET (Lock Pages in Working Set system service)
control flow, 502
locking pages into process working set with, 1147

LNM$ prefix
predefined logical names, (table) 1072

LNM$AL_DIRTBL cell
meaning, 1070

LNM$AL_HASHTBL cell
meaning, 1083

LNM$AL MUTEX cell
locked by

EXE$CRELNM, 1094
EXE$DELLNM, 1098
EXE$TRNLNM, 1093

shareable logical name database synchronized by,
1086

LNM$CHECK_PROT routine (LNMSUB module)
checking logical name access with, 1092

LNM$CONTSEARCH routine (LNMSUB module)
control flow, 1087

LNM$DELETE_LNMB routine (LNMSUB module)
control flow, 1098

LNM$FIRSTTAB routine (LNMSUB module)
operations, 1089

LNM$GL_SYSDIRSEQ cell
meaning, 1085

LNM$HASH routine (LNMSUB module)
control flow, 1083

LNM$INSLOGTAB routine (LNMSUB module)
operations, 1095

Index

LNM$PERMANENT MAILBOX
logical name table for permanent mailboxes, 657

LNM$PRESEARCH routine (LNMSUB module)
control flow, 1087

LNM$PROCESS_DIRECTORY directory
process-private logical name tables named in, 1070

LNM$SEARCH_ONE routine (LNMSUB module)
operations, 1089

LNM$SEARCHLOG routine (LNMSUB module)
control flow, 1086
operations, 1086

LNM$SETUP routine (LNMSUB module)
control flow, 1089
operations, 1089

LNM$SYSTEM_DIRECTORY directory
shareable logical name tables named in, 1070

LNM$TABLE routine (LNMSUB module)
control flow, 1090
operations, 1089

LNM$TABLE_SRCH routine (LNMSUB module)
control flow, 1090

LNM$TEMPORARY MAILBOX
logical name table for temporary mailboxes, 657

LNMB (logical name block)
back pointers, use of, 1078
definition and use, 1077
inserting into logical name database

during logical name creation, 1095
during logical name table creation, 1097

layout, (figure) 1077
removing from logical name database, 1098
summary, 1254

LNMB$B_ACMODE field
definition and use, 1077

LNMB$B_FLAGS field
definition and use, 1077

LNMB$L_BLINK field
definition and use, 1077

LNMB$L FLINK field
definition and use, 1077

LNMB$L_TABLE field
definition and use, 1077

LNMB$T NAME field
definition and use, 1077

LNMB$W _SIZE field
definition and use, 1077

LNMC (logical name table name cache block)
characteristics and use, 1084
layout, (figure) 1084
summary, 1254

LNMC$B CACHEINDX field
definition and use, 1085

LNMC$L_PROCDIRSEQ field
definition and use, 1085

LNMC$L_SYSDIRSEQ field
definition and use, 1085

LNMC$L_TBLADDR field
definition and use, 1084

LNMHSH (logical name hash table)
characteristics and use, 1081
hash chain, characteristics and use, 1081
summary, 1254

LNMPHASHTBL parameter (SYSGEN)
number of name table cache blocks related to, 1086
process-private hash table size specified by, 1083

LNMSHASHTBL parameter (SYSGEN)
shareable hash table size specified by, 1083

LNMSUB module
LNM$CHECK_PROT, checking logical name access

with, 1092

1371

Index

LNMSUB module (continued)
LNM$CONTSEARCH, control flow, 1087
LNM$DELETE_LNMB, control flow, 1098
LNM$FIRS1TAB, operations, 1089
LNM$HASH, control flow, 1083
LNM$INSLOGTAB, operations, 1095
LNM$PRESEARCH, control flow, 1087
LNM$SEARCH_ONE, operations, 1089
LNM$SEARCHLOG

control flow, 1086
operations, 1086

LNM$SETUP
control flow, 1089
operations, 1089

LNM$TABLE
control flow, 1090
operations, 1089

LNMSTABLE_SRCH, control flow, 1090
LNMTH (logical name table header)

characteristics, 1079
layout, lftgurel 1079
summary, 1255

LNMTHSL_BYTES field
definition and use, 1081

LNMTH$L_BYTESLM field
, definition and use, 1081
LNMTHSL_CHILD field

definition and use, 1079
LNMTHSL_HASH field

definition and use, 1079
LNMTHSL_NAME field

definition and use, 1079
LNMTH$L_ORB field

definition and use, 1079
LNMTHSL_lARENT field

definition and use, 1079
LNMTHSL_QTABLE field

definition and use, 1081
LNMTHSL_SmLING field

definition and use, 1079
LNMTHSV _DIRECTORY bit (LNMTH$B_FLAGS

field)
meaning, 1081

LNMX (logical name translation block)
definition and use, 1077
layout, (figurel 1077
summary, 1255

LNMXSB_FLAGS field
definition and use, 1077

LNMXSB_INDEX field
definition and use, 1077

LNMXST_XLATION field
definition and use, 1077

LNMX$W_HASH field
definition and use, 1077

LOAD_PAGED routine (SYSLDR module)
mapping paged read-only code section of loadable

executive image, control flow, 842
LOAD_SYS_IMAGES parameter (SYSGEN)

enabling loading of optional loadable executive
images, 843

loadable executive images
address relocation B.xup, 847
addresses, locating, 1149
characteristics and use, 831
constraints on, 831
data in, characteristics, 833
image sections

list, 831
nonpageable, placing code in, 1145

1372

initialization. See also DOINIT module
description of routine, 935
image section, OOINIT clustering of PSECTs into,

844
operations, 843, 846
possible times, 845
routine table, structure, 844

loading, operations, 836
mapping of, 458
names and descriptions, (tablet 831
optional, loading, 843
organization, ltablel 833
page faults for

copy-on-reference pages in, 459
read-only pages in, 458

PPN database reference B.xups, 848
structure, 831
symbol resolution in, 835
term definition, 8, 823

loadable image data block. See LDRIMG
LOADERSFIXUP_DOT_ADDRESS routine (DOINIT

module)
control flow, 847 .
use by loadable executive images, 844

LOADER_PTE_NOT_EMPTY error status
returned by LDRSDEALLOC_PT, 861

local area terminal. See LAT
local devices

assigning channels to, 598
final processing, 600

characteristics and use, 590
local event flag outswappecl wait state. See LEFO
local event flag wait state. See LEF
local event flags. See also event flags; LEF; LEFO

characteristics and use, 203
numbers

available to processes, 202
reserved for system use, 203

set by IOC$IOPOST at 1/0 completion, 616
systemwide wait states, characteristics and use, 210

lock access mode
how determined, 220

lock block. See LKB
lock ID table

characteristics and use, 221
location, 222
structure, (figurel 222

LOCK macro
generated code example, 186

lock. managem~t ~ystem. See also deadlocks;
synchroruzatton

concepts and mechanisms, lchapterl 214
data structures

characteristics and use, 214
synchronizing access to with SCS spinlock, 182

lock database. See also LKB1 lock ID table; RSB
accessing, 222
relations in the, 222
VAXcluster, characteristics and use, 223

overview, 25
system services. Consult VMS System Services

Reference Manual
interprocess communication mechanism, 344
operations, 225
VMS use of, overview, 167

lock modes
characteristics and use, ltablel 218
effect on lock requests, 218
term definition, 1296

Lock Pages in Memory system service. See $LCKPAG

Lock Pages in Working Set system service. See
$LKWSET

lock requests
effect of lock modes on, 218
for new locks, 225
queuing, 225
VAXcluster handling, by resource tree master, 224

lock status block
address and condition value, LKB field that contains,

221
event flags synchronization use with, 108
synchronous system services return path handling

of, 120
lock timeout queue

deadlock handling use of, 236
location, 236

LOCK_SYSTEM_PAGES macro
operations, 508

LOCK_SYSTEM_PAGES module
~G$UNLOCK_SYSTEM_ENTRY, operations,

1146
MMG$LOCK_SYSTEM_PAGES, operations, 508,

1146
LOCKDIRWT parameter (SYSGEN)

effect on resource directory participation, 224
locked mutex

MWAIT triggered by, 283
LOCKIDTBL parameter (SYSGEN)

lock ID table size controlled by, 222
LOCKIDTBL_MAX parameter (SYSGEN)

lock ID table size controlled by, 222
locking pages

into memory
compared with locking pages into working set,

505
operations, 1144

SMP issues, 1020
virtual, into working set, operations, 502
why not always possible, 507

locks (lock management). See also LKB; locks used by
VMS components; protection; resources1 RSB;
synchronization; SYSENQDEQ module

blocking a specific lock, 235
characteristics and use, 214
condition of current, LKB that specifies, 220
conversion grant mode, characteristics and use, 228
conversion request, handling incompatible, 229
converting

determining when it should be system-owned, 233
process-owned to system-owned, 234
to other modes, 228

dequeuing
$DEQ operations, 230
lock ID role, 222

distributed lock manager, entry point names and
- descriptions, (table! 1218

grant mode, characteristics and use, 228
granting

circumstances under which routines request, 231
determining when it should be system-owned, 233

group grant mode, characteristics and use, 228
ID

ID table, characteristics and use, 221
LKB field that contains, 221
validating, 222

index, characteristics and use, 222
information about obtaining

$GETLKI operations, 235
restrictions on, 234

locating, 222

Index

maximum number allowed, SYSGEN parameter that
specifies, 222

multiple, dequeuing, 230
reference count, decrementing when sublock is

dequeued,231
request mode, characteristics and use, 228
requests for

canceling ungranted, 230
precedence handling, 220

restricting participation in deadlock searches,
methods for, 236

sublock relations, (figure! 220
system-owned

characteristics and use, 233
how access modes determined, 233
VMS components that use, 234

timeout queue, linking locks into, 220
wait queue, placing into, 227

locks used by VMS components
Bucket, 1313
Cache, 1307 ·
characteristics and use, (chapter! 1296
Device, 1299
Disk Quota Cache, 1309
Dismount, 1302
Doorbell, 1325
Extent Cache, 1309
File, 1311
File Access Arbitration, 1306
File ID Cache, 1308
File Serialization, 1306
GETQUI, 1327
Global Buffer Backing, 1318
Global Buffer Master, 1316
Global Buffer Section, 1316
Individual Departure, 1322

·Individual Index, 1322
Individual Link Registration, 1322
Install, 1320
Job Controller ORB, 1328
KFE, 1320
Label, 1300
Master ORB, 1327
Master Registration, 1321
Modified Proxy, 1323
Mount Device, 1301
Parameter, 1329
Proxy Function, 1324
Proxy Key, 1324
Queue File, 1326
Queue File Initialization, 1326
Queue File Master, 1325
Quota Cache Entry, 1309
Record, 1319
Remote Request, 1325
Set Time, 1298
Shadow, 1302
SMISERVER Main, 1329
SYSGEN Database, 1328
Volume Allocation, 1304
Volume Blocking, 1305

LOG_IO (do logical 1/0 privilege). See also privileges
use by $SETIME, 255

logical block number. See LBN
logical 1/0 segmenting

by FDT routines, 622
concepts and control flow, 620

logical memory block
characteristics and use, 976
organization, (figure! 977

1373

Index

logical name block. See LNMB
logical name directory

specification, 1081
logical name hash table. See LNMHSH
logical name string

characteristics, 1068
logical name identification includes, 1068

logical name table header. See LNMTH
logical name table name cache block. See LNMC
logical name tables

access mode, how specified, 1070
address, stored in mailbox UCB, 657
aliases in, 1069
characteristics, 1070
creating, 1095
default, names, directory, and use, (table) 1072
deleting, 1098
directory name table and, (table) 1070
group, when created, 1072
hash table address array

characteristics, 1083
layout, (figure) 1083

hierarchical relations, (figurel 1079
hierarchies, characteristics, 1071
identification of, 1070
job, when created, 1072
jobwide, 657
limited quota, implications, 1071
logical name identification includes, 1068
name resolution, operations, 1089
parent, characteristics, 1071
process-private, LNM$PROCESS_DIRECTORY,

1070
protection, characteristics, 1071
quota, 1071
shareable

created during system initialization, 1070
LNM$SYSTEM_DIRECTORY, 1070

system, when created, 1072
systemwide, 657
translation, dimensions, 1076

logical name translation block. See LNMX
logical names. See also 1/0; LNMB; LNMC; LNMHSH;

LNMSUB module; LNMTH; LNMX; SYSLNM
module. Consult Introduction to VMS System
Services; VMS DCL Concepts Manual; VMS
System Services Reference Manual

access mode
how specified, 1069
logical name identification includes, 1068

attributes, list and description, 1069
back pointers, 1078
characteristics, 1068
concepts and mechanisms, (chapter) 1067
creating, operations, 1093
data structures, 1077
database, synchronization of access to, 1086
deleting, 1098
goals of VMS support, 1067
hashing algorithm, 1083
interprocess communication mechanism, 345
length restrictions for, in a logical name table, 1071
logical name database, initializing, 939
mailboxes, characteristics and use, 656
multivalued, term definition, 1069
overview, 25
resolution example, (figurel 1091
scope, how determined, 1068
searching for, operations, 1086
system services

1374

operations, 1092
superseded, names and descriptions, 1100

term definition, 1067
translation

attributes, 1075
characteristics, 1075
dimensions, 1075, 1076
LNMC use by, 1084
operations, 1093
term definition, 1067

login
operations, LOGINOUT control flow, 791
remote, operations, 686

LOGINOUT.EXE image
base priority resetting by, 275
effect on process capabilities, 783
logout, control flow, 808
operations

in batch processes, control flow, 797
in context of newly spawned subprocess, 789
in interactive processes, control flow, 791
in network processes, control flow, 798
overview, 791

rundown by CLI, 801
logout

operations, 808
LONGWAIT parameter (SYSGEN)

use in outswap and swapper trimming selection, 526
longword relative deferred addressing mode (@L·)

G. references to shareable images changed to during
image activation, 764

lookaside lists. See also ICB; IRP; KRP; LRP; memory
management; pool - nonpaged; SRP

allocating request packets directly from, 557
allocation size ranges for, (figurel 557
changes from earler VMS versions, 554
characteristics, (tablel 544
corruption, potential for during deallocation, 559
deallocation address ranges for, 559
initializing, (tablel 555
listhead location and allocation type, (tablel 546
nonpaged, why spinlock not needed for access

synchronization, 183
pools, structure and operations, 552
size calculation, 12 78
uses of, 563

loop
infinite, unwinding call stack possibility of, 100

LRP (large request packet)
lookaside list

characteristics, (tablel 544
element size, 556
listhead location and allocation type, (tablel 546
uses of, 563

LRPSIZE parameter (SYSGEN)
LRP list element size, 556

M-bus
VAXstation 3520 system, configuration, 50

MA780 multiport memory
common event flags supported for, 202
mailbox driver

IPL 11 use by, 63
locations for, 664
MAILBOX spinlock use by, 183

mailbox use with, 656
machine checks

caused by adapter powerfail, handling, 1003
exception

machine checks (continued)
exception (continued)

meaning and use, 76
selecting stack for servicing, 35

exception routine, MCHECK spinlock use, 185
frame, characteristics and use, 979
mechanism, characteristics and operations, 979
protection mechanism, characteristics, 980
recoverability, 980
recovery block

defining, 981
restrictions on, 980

types of, 979
MACHINECHK bugcheck. See also bugchecks

generated by machine check exception service
routine, 980

macros
classes of, characteristics and use, 1135
definitions, locating, 1133, 1135
system, using local macros, names format, 1233

mailbox driver. See also MBDRIVER module
attention AST use by, 149, 153
canceling 1/0, operations, 670
concepts and mechanisms, (chapter) 655
device driver, control flow, 664
driver, setting operation mode of, 664
IPL 11 use by, 63
operations, 664
read attention AST, setting, 664
reading

control flow, 667
requirements, 667

writing
control flow, 665
from drivers, control flow, 672
requirements, 665, 666

MAILBOX spinlock
characteristics and use, 183
held by

EXE$SNDEVMSG, 671
FDTREAD, 668
FDTSET, 664
FDTWRITE, 666

mailboxes. See also I/O; logical names
access protection, setting, 665
associated, assigning channels to, 600
associated with device, 673
attach request, for returning interactive control to a

DCL process, 790
communication, for transmitting process context

information to spawned subprocess, 788, 789
concepts and mechanisms, (chapter) 655
connection to logical name, 1078
creating

operations, 658
permanent, 661
temporary, 661

data structures
associated with creation, (figure) 662
used with, 657

DCL spawned subprocess, 673
deleting, 662

operations, 658
error log, 6 73

characteristics and use, 966
full, state transition triggered by, 284
interprocess communication, 344, 655
job controller

sending messages to accounting manager, 1107
sending messages to symbiont manager, 1108

Index

SUBMIT command use of, 784
use for communicating with other processes, 1103

kinds of, 656
message block, layout, (figure) 658
OPCOM use for communicating with other

processes, 1108
overview, 655
queuing messages from drivers, control flow, 671
synchronizing access to with MAILBOX spinlock,

183
termination, 673

message sent to owner process during process
deletion, (table) 816

shared by up to four spawned subprocesses, 788
UCB, linking LNMB with, 1078
using

AUDIT_SERVER, 674
file system bad block handling, 675
job controller, 673
OPCOM, 674
VMS executive, 673

wait state, characteristics and use, 285
write attention AST, setting, 664

main image
term definition, 738

MAINTAIN request (modified page writer)
operations, 468

Maintenance Operations Protocol. See MOP
map files

characteristics and use, 114 7
locations, (table) 1148
using VMS, (chapter) 1129

Map Global Section system service. See $MGBLSC
mapping. See also address space

PHD into Pl space, swapper implications, 537
virtual address space, differences among different

areas, 353
mass storage control protocol. See MSCP
MASSBUS adapter. See MBA
Master ORB lock. See also job controller; ORB

characteristics and use, 1327
Master Registration lock

characteristics and use, 1321
MAXPROCESSCNT parameter (SYSGEN)

maximum number of processes permitted, 720
MBA (MASSBUS adapter)

interrupt service routine, operations, 645
powerfail and recovery operations, 1004

MBA$INT routine ([SYSLOA)ADDSUBxxx module)
control flow, 645

MBAO mailbox unit
mailbox template, 658

MBDRIVER module. See also mailbox driver
CANCELIO, mailbox cancel 1/0, 670
EXE$SNDEVMSG, control flow, 671
EXE$WRTMAILBOX, control flow, 672
FDTREAD, reading a mailbox, 667
FDTSET, establishing mailbox attention AST, 664
FINISHREAD

mailbox read request 1/0 completion, control flow,
669, 670

INSMBQUEUE, control flow, 666
READCHECKIO, reading a mailbox, validation

control flow, 667
STARTIO, start 1/0 mailbox read, 668
WRITECHECKIO, writing to a mailbox, validation

control flow, 665
MCHECK spinlock

characteristics and use, 185
held by

1375

Index

MCHECK spinlock (continued)
held by (continued)

CPU-specific error interrupt service routines, 982
machine check exception service routine, 979

$MCHKDEF macro
types of machine check protection defined by, 981

MCR (monitor console routine) CLI. See also CLI,
DCL CLI

command processing loop
commands handled by internal procedures,

(table) 802
control flow, (figure) 802
operations, (table) 802

condition handlers used by, 95
exit handler, control flow, 806
image initiation

argument list passed to image, (figure) 805
operations, 802

image processing and, 799
initialization, operations, 801
term definition, 11

MCR$EXITHAND routine ([MCR)MCRIMGEXE
module)

operations, 806
MCRSSTARTUP routine ([MCR)MCRINIT module)

operations, 801
mechanism array. See also condition handlers

building, 79
LIBSSIGNAL/STOP, 88

layout, (fWue) 79
MEGA spinfock

characteristics and use, 185
held by

EXE$FORK_ WAIT when stalling a fork process, 62
EXESTIMEOUT to serialize access to fork and

wait queue, 62
memory

access
atomic, characteristics, 162
checking, virtual page as unit of, 351
interlocked, characteristics, 163

address translation, VAX characteristics and
mechanisms, 362

bus traffic, reducing with noninterlocked bit testing,
190

cache policy, VAXstation 35x0, 1012
interlocked

characteristics, 163
instructions, list of, 164

1/0 hardware configuration component, 577
logical name table size quota, 1071
mapping registers, 306
physical

characteristics and mechanisms, overview, 354
data structures, overview, 355
parameters that control management of, 357
sharing,overview,355
uses of, overview, 356

process priorities for residence, concepts and
mechanisms, 274. See also priorities

protection
mechanism, VAX architecture feature used by

VMS, 14
VAX access checking, characteristics and

mechanisms, 362
virtual memory role in, 349

reclaiming, OUTSWAP routine, 522
requirements, dynamic data structures, differences

among, 544
separating writes to, for performance, 1139

1376

sharing, implications of, 1020
system

available, size calculation, 1286
nonpaged, size calculation, 1286

validity checked at power recovery, 984
virtual. See also address space

address space, data structures, overview, 354
characteristics and mechanisms, overview, 350
original design, characteristics and motivation,

357
overview, 349

memory management. See also address space; global
sections; page faults; PFN - database; pool;
swapper; virtual memory; working set list

access modes and, overview, 20
auxiliary mechanisms, overview, 360
data structures

concepts and mechanisms, (chapter) 349
page fault handling, 439

database, synchronizing access to with MMG
spinlock, 182

mechanisms, overview, 357
original design, characteristics and motivation, 357
overview, 9, 349

concepts and mechanisms, (chapter) 349
parameters that control

VMS Version 1, 359
VMS Version 2, 360
VMS Version 3, 360
VMS Version 4, 360
VMS Version 5, 360

pool, concepts and mechanisms, (chapter) 544
protection mechanism, VAX architecture feature

used by VMS, 14
requests, overview, 13
SMP systems, CPU mapping, 926
system data structures, characteristics and field

definitions, 387
system services

common characteristics, 403
common control flow, 405
concepts and mechanisms, (chapter) 403
restrictions on use, 403
stack scratch space layout, (figure) 404

turning on, 923
after powerfail, 995
instructions for, 925
mapping contexts, 925

wait states
characteristics and transitions, 283
context for, 292

memory write buffer
VAX 6000 series, 1012

MEMORYALC module
CHECK_PACKET, pool poisoning operations, 572
EXE$ALLOCATE, arguments, 546
EXE$ALLOCPCB, allocating nonpaged pool, 557
EXE$ALLOCTQE, allocating nonpaged pool, 557
EXE$ALONONPAGED

allocating mailbox memory block, 666
control flow, 558

EXE$ALONPAGVAR, control flow, 558
EXE$ALOPOIMAG, allocating space from process

allocation region, 566
EXE$ALOP1IMAG, allocating space from process

allocation region, 566
EXESALOPlPROC, allocating space from process

allocation region, 566
EXE$ALOPAGED, allocating paged pool, 564
EXE$DEALLOCATE, arguments, 546

MEMORYALC module (continued)
EXE$DEANONPAGED, control flow, 559
EXE$DEAP1, allocating space from process allocation

region, 566
EXE$DEAPAGED, allocating paged pool, 564
EXE$EXTENDPOOL, operations, 560
POISON_PACKET, pool poisoning operations, 571

message argument vector
constructing. Consult VMS System Services

Reference Manual
message files. Consult VMS DCL Dictionary; VMS

Message Utility Manual
data structures related to, 1110
system, characteristics and use, 1109

message formatting
condition handlers, 1110

message sections
characteristics and use, 1110
dispatch vector, 1110, (figure) 1111
header, locating, 1111
layout, (figure) 1111
process, mapped by image activator, 1111

Message Utility
message file operations, 1109

$MGBLSC (Map Global Section system service)
control flow, 421
creating address space with, 411

microfiche. See VMS listings
Micro VAX II processor

console subsystem, bootstrap operations, 867
IE bit interval timer used by, 248
power recovery operations, 992
pre-VMB bootstrap programs, operations, (table) 868
unimplemented instruction emulation support, 77
VMB

operations, 867
register input, (table) 869

MicroVAX 2000 system
configuration, 49
console subsystem, operations, 871
power recovery operations, 992
VMB

boot flags, (table) 872
operations, 870
register input, (table) 871

MicroVAX 3100 system
configuration, (figure) 50
console subsystem, operations, 873
power recovery operations, 992
VMB

operations, 873
register input, (table) 874

MicroVAX 3200 system
console subsystem, operations, 875
power recovery operations, 994
VMB

operations, 875
register input, (table) 876

Micro VAX 3300 system
console subsystem, operations, 877
power recovery operations, 994
VMB

operations, 877
register input, (table) 879

MicroVAX 3400 system
console subsystem, operations, 877
power recovery operations, 994
VMB

operations, 877
register input, (table) 879

MicroVAX 3500 system
console subsystem, operations, 875
power recovery operations, 994
VMB

operations, 875
register input, (table) 876

MicroVAX 3600 system
console subsystem, operations, 875
power recovery operations, 994
VMB

operations, 875
register input, (table) 876

MicroVAX 3800 system
console subsystem, operations, 877
power recovery operations, 994
VMB

operations, 877
register input, (table) 879

MicroVAX 3900 system
console subsystem, operations, 877
power recovery operations, 994
VMB

operations, 877
register input, (table) 879

Micro VAX 3x00 system
power recovery operations, 994

Index

unimplemented instruction emulation support, 77
Micro VAX processors

with ROM-based VMB, system initialization, 866
MINWSCNT parameter (SYSGEN)

fluid working set initialized from, 406
use in process creation, 728

miscellaneous vectors area. See also base image;
vectors

characteristics and use, 831
miscellaneous wait state. See MWAIT
MMG spinlock

characteristics and use, 182
held during

global section creation, 420
global section deletion, 425
locking of pages into working set, 503
lowering of working set limit, 497
MMG$WRTMFYPAG's scan of modified page list,

469
modified page write I/O completion, 471
nonpaged pool expansion, 560
page 1/0 completion, 441, 466
page protection changes, 433
purging of pages from working set, 506
swapping, 518, 519
$UPDSEC processing, 477
virtual page deletion, 428

synchronizing PHD access, 367
use by

EXE$CREPRC, 713, 716
LDR$ALLOC_FT, 861
LDR$DEALLOC_FT, 861
LOCK_SYSTEM_FAGES macro, 509
OPCCRASH, 956
page fault handler, 437

MMG$A BOOPARAM cell
location of boot parameters area, 1218

MMG$A SYSPARAM cell
location of adjustable SYSGEN parameters area,

1199
MMG$ALCPHD routine (PHDUTL module)

operations, 497
MMG$ALLOCPAGFIL1 routine (PAGEFILE module)

operations, 473

1377

Index

MMG$ALLOCPAGFIL2 routine (PAGEFILE module)
operations, 474

MMGSALLOCPFN_NO_DB routine (ALLOCPFN
module)

operations, 381
MMGSAR_NULLPFL cell

null page file control block address, 399
MMGSAR_SYSPCB cell

address of system PCB, 387
MMGSASNPRCPGFLP routine (PAGEFILE module)

characteristics and operations, 461
MMGSCREDEL routine (SYSCREDEL module)

operations, 405
MMG$CREPAG routine (SYSCREDEL module)

control flow, 408
MMG$CRETVA routine (SYSCREDEL module)

alternative entry point for SCRETVA, 407
MMGSDALCPRCPGFL routine (PAGEFILE module)

operations, 462
MMGSDALCSTXSCN routine (PHDUTL module)

control flow, 424
· operations, 413
MMG$DALCSTXSCN1 routine (PHDUTL module)

alternative entry point to MMG$DALCSTXSCN,
424

MMG$DALLOCPFN routine (ALLOCPFN module)
deallocating physical pages, 478
operations, 478

MMGSDECPTREF routine (PAGEFAULT module)
operations, 495
page fault handling, private page not copy-on­

reference, 443
MMG$DELCONPFN routine (ALLOCPFN module)

page fault handling, private page not copy-on­
reference, 444

MMG$DELGBLSEC routine (SYSDGBLSC module)
control flow, 425

MMG$DELGBLWCB routine (SYSDGBLSC module)
control flow, 426

MMGSDELPAG routine (SYSCREDEL module)
control flow, 428

MMG$DELWSLEX routine (PAGEFAULT module)
operations, 496

MMGSFAST_CREATE routine (SYSCREDEL module)
operations, 408

MMGSFREWSLE routine (PAGEFAULT module)
control flow, 492, 495
operations, global page, 452

MMGSFREWSLX routine (PAGEFAULT module)
alternative entry point to MMG$FREWSLE, 495

MMG$GL_FREE_NO_PFN_DB_LIST cell
PFN of first page on list of pages with no PFN

database, 381
MMG$GL_GPTBASE cell

GPT address location, 391
MMGSGL_MAXMEM cell

largest PFN to be written to the physical memory
dump file, 975

MMGSGL_MAXPFN cell
highest valid subscript into PFN database, 380

MMG$GL_MINPFN cell
lowest valid subscript into PFN database, 380

MMGSGL_PAGEDYN cell
paged pool system space starting address, 564

MMGSGL_PAGSWPVC cell
page-and-swap-file vector array address, 399

MMGSGL_SBICONF cell
mapping adapter register, 935

MMG$GL_SPTBASE cell
SPT system virtual address contained in, 387

1378

MMGSGL_SPTLEN cell
number of SPTEs in SPT, 387

MMG$GL_SYSLOA_BASE cell
locating CPU-dependent routine code, 1154

MMG$GSDSCN routine (SYSDGBLSC module)
operations, 418

MMGSGW_BIGPFN cell
determining opcodes for referencing PFN database,

849
PFN FLINK and BLINK array use, 384

MMG$IMGRESET routine (PHDUTL module)
control flow, 776
working set limit reset by, 501

MMG$INCPTREF routine (PAGEFAULT module)
characteristics and operations, 439
operations, global page, 450

MMGSININEWPFN routine (PAGEFAULT module)
characteristics and operations, 439

MMG$IOLOCK routine (IOLOCK module)
PFN STATE element modify bit set by, 383

MMGSL_CALLEDIPL field (stack scratch space)
definition and use, 404

MMGSL_EFBLK 6eld
definition and use, 405

MMG$L_MAXACMODE field
definition and use, 404

MMG$L_PAGESUBR field
definition and use, 405

MMG$L_PGFLCNT field
definition and use, 405

MMG$L_SAVRETADR field
definition and use, 405

MMG$L_SVSTARTVA field
definition and use, 405

MMG$L_ VFYFLAGS field
definition and use, 405

MMG$LCKULKPAG routine
(SYSLKWSET module)

control flow, 503
unlocking pages from memory, 505

MMGSLOCK_SYSTEM_PAGES routine (LOCK_
SYSTEM_PAGES module)

operations, 508, 1146
MMG$MAKEWSLE routine (PAGEFAULT module)

characteristics and operations, 439
operations, global page, 450

MMGSMAPSECPAG routine (SYSCRMPSC module)
control flow, 414

MMG$PAGEFAULT routine (PAGEFAULT module)
operations, 436, 455, 457
page fault handling

clustered read, 463
demand zero page, 447
global read-only page, 450
private page copy-on-reference, 445
private page in transition state, 444
private page not copy-on-reference, 439
system page not copy-on-reference, 458

MMGSPURGEMPL routine (WRTMFYPAG module)
operations, 467

MMG$PURGWSPAG routine (SYSPURGWS module)
control flow, 506

MMG$PURGWSSCN routine (SYSPURGWS module)
control flow, 506

MMG$RSRVPRCPGFL2 routine (PAGEFILE module)
characteristics and operations, 461

MMGSSETPRTPAG routine (SYSSETPRT module)
control flow, 433

MMG$SHRINKWS routine (SYSADJWSL module)
operations, 497

MMGSSWITCH_PRCPGFL routine (PAGEFAULT
module)

characteristics and operations, 461
MMG$TRY_ALL routine (SYSCREDEL module)

operations, 408
MMG$UNLOCK routine (IOLOCK module)

page fault handling, private page not copy-on­
reference, 443

MMGSUNLOCK_SYSTEM_ENTRY routine (LOCK_
SYSTEM_PAGES module)

operations, 1146
MMG$UPDSECAST routine (SYSUPDSEC module)

operations, 478
MMGSUPDSECPAG routine (SYSUPDSEC module)

operations, 477
MMGSUPDSECQWT routine (SYSUPDSEC module)

control flow, 477
MMG$V _CHGPAGFIL bit (MMG$L_

MAXACMODE field)
definition and use, 404

MMGSV _DELGBLDON bit (MMGSL_
MAXACMODE field)

definition and use, 404
MMGSV _NO_OVERMAP bit (MMGSL_

MAXACMODE field)
definition and use, 404

MMG$V _NOWAIT_IPLO bit (MMG$L_
MAXACMODE field)

definition and use, 404
MMGSWRTMFYPAG routine (WRTMFYPAG module)

control flow, 469
operations, 467

MMGSWRTPGSBAK routine (SYSUPDSEC module)
operations, 477

SMMGDEF macro
stack scratch space offsets defined by, 404

mode of caller system services. See also access modes;
system services

control flow, (figure! 121
list of names, (table! 121

modem polling
operations, 266

modes. See absolute addressing mode; access modes;
change mode; compatibility mode; conversion
grant mode; executive mode; grant mode; group
grant mode; kernel mode; lock modes; PKAST;
special kernel mode AST; supervisor mode; user
mode

moclifl.ed page list
cache, characteristics and use, 358
characteristics and use, 355
high limit, clearing to wake swapper, 511
location, 384
location of modified available pages, 436
maintained by swapper, 511
page fault from, 444 447
selective purging, when requested, 468
wait state, characteristics and use, 284

moclifl.ed page write
clustering, 472
completion, control flow, 471
I/O request descriptions, (table! 463
selective purge requested to free dead page table

page, 494
to a page file, example, (figure! 474
transitions triggered by, 283
$UPDSEC compared with; 476
writing to backing store, 472

moclifl.ed page writer
control flow, 469

Index

MAINTAIN request, 468
OPCCRASH request, 468
operations, 467
page table arrays, characteristics and use, 400
requesting, 467
SVAPTE request, 468
swapper name when writing out modified pages,

355, 436
wait state, characteristics and use, 285

Moclifl.ed Proxy lock
characteristics and use, 1323

modular executive. See also executive
concepts and mechanisms, (chapter! 823

MODULE statement (SDL)
characteristics and use, 1161

MONITOR Utility
priority representation in, 275
process state displayed by, 284

MOP (Maintenance Operations Protocol)
bootstrap, booting over Ethernet, 912

Mount Device lock (spinlock)
characteristics and use, 1301

$MOUNT system service
lock use by, characteristics and use of each lock,

1300
mount verification

canceling, with IPL 12 C command, 69
mounted volume list entry

connection to logical name, 1078 ;' '.
MOUNTMSG parameter (SYSGEN)

enabling the logging of volume mount messages, 966
MPW IRP (moclifl.ed page writer IRP)

layout, (figure! 469
MPW$GB_STATE cell

highest pending modified page write request, 468
MPWSGL_IRPBL cell

MPW IRP listhead, 469
MPW$GL_IRPFL cell

MPW IRP listhead, 469
MPW$GL_SVAPTEHIGH cell

address of highest PTE for modified page list purge, ,
468

MPWSGL_SVAPTELOW cell
address of lowest PTE for modified page list purge,

470
MPWSINIT routine (WRTMFYPAG module)

operations, 402
MPW _HILIMIT parameter (SYSGEN)

modified page list high limit, 467
swapper use of, 511

MPW _IOLIMIT parameter (SYSGEN)
maximum number of concurrent I/O operations,

401, 469
MPW _LOLIMIT parameter (SYSGEN)

effect on
nonpaged pool expansion, 560
VMS memory use, 1287

modified page list low limit, 468
MPW _LOWAITLIMIT parameter (SYSGEN)

effect on removing a modified page from working
set, 495

swapper use of, 517
transitions triggered by, 285

MPW _THRESH parameterJSYSGEN)
BALANCE routine use o, 518

MPW _ WAITLIMIT parameter (SYSGEN)
effect on removing a modified page from working

set, 495
transitions triggered by, 285

MPW _ WRTCLUSTER parameter (SYSGEN)

1379

Index

MPW _ WRTCLUSTER parameter (SYSGEN)
(continued)

page file allocation request size initial value, 398
target size for

modified page write cluster, 473
$UPDSEC cluster, 476

MSC$B_TYPE field
definition and use, 1110

MSC$L_FAC_OFF field
definition and use, 1110

MSC$L_INDEX_OFF field
definition and use, 1110

MSC$T_INDNAME field
definition and use, 1110

MSC$V _MAPPED bit (MSCSB_FLAGS field)
definition and use, 1110

$MSCDEF macro
message sections defined by, 1110

MSCP (mass storage control protocol)
disk class driver, SCA port driver devices supported

by, 677
end packet, logging error status codes returned in,

964 .
SCA protocol description, 678

MTPR instruction. See also instructions
changingIPLlevel'With,40, 168

MTX$V _ WRT bit (MTX$W _STS field)
definition and use, 197

MTXSW_OWNCNT field
definition and use, 197

MTX$W _STS field
definition and use, 197

MTXCNTNONZ bugcheck. See also bugchecks
SERVICE_EXIT generation for mutex error, 116

$MTXDEF macro
mutex field name definitions, 197

multiple active signals. See also condition handlers;
EXCEPTION module

handling, 90
example, (figure) 91

unwinding, example, (figure) 100
MULTIPROCESSING parameter (SYSGEN)

enabling SMP, 934
EXE$INIT use during SMP-specific operations, 1049
selecting spinlock routine, 17 4
SYSBOOT use during SMP-specific operations, 1047

multiprocessor systems. See also SMP systems
synchronization techniques for, 164

multivalued logical names
term definition, 1069

MUTEX module
EXE$JIB_ WAIT, use in resource wait handling, 293
SCH$LOCKR

locking a mutex for read access, control flow, 198
saved PC for MUTEX wait state, 293

SCH$LOCKREXEC, accessing mutexes from system
context, 201

SCH$LOCKW
locking a mutex for write access, control flow, 199
saved PC for MUTEX wait state, 293

SCH$LOCKWEXEC, accessing mutexes from system
context, 201

SCH$LOCKWNOWAIT, locking a mutex for write
access 'With no waiting, 199

SCH$RWAIT, saved PC for mutex RWAIT, 293
SCH$UNLOCK, unlocking mutexes, control flow,

200
SCH$UNLOCKEXEC, accessing mutexes from

system context, 201
MUTEX wait state

1380

characteristics, 199
meaning, 284
transition descriptions, 286

mutexes (mutual exclusion semaphores). See also
CPU mutex; deadlocks; EXE$GL_CEBMTX;
EXE$GL_PGDYNMTX1 IOC$GL_MUTEX;
LNM$AL_MUTEX; MUTEX module; resources;
scheduler; spinlocks; synchronization

accessing from system context, 200
characteristics and use, 196
checking for, on system service error exit, 116
data structures, synchronizing access to 'With SCHED

spinlock, 183
layout, (figure) 197
locked, MWAIT triggered by, 283, 286
locking

for read access, 198
for write access, 198
saving process priorities during, 275

names and executive data structures protected by,
(table) 197

summary, 1255
synchronization technique, compared 'With raising

IPL, 196
term definition, 25
unlocking, 200
waiting for. See MUTEX wait state; MWAIT

multilevel interrupt dispatching. Consult VMS Device
Support Manual

Q22-bus-based MicroVAX systems, characteristics,
49

mutual exclusion
meaning, 162

mutual exclusion semaphores. See mutexes
MWAIT (miscellaneous wait state). See also job quota;

process states; resource wait; wait states
characteristics and transitions, 283
context for, 293
job quota, transition descriptions, 286
mutex

characteristics and use, 199
transition descriptions, 286

PCB field that identifies resource waited for, 271
system resource miscellaneous, transition descrip­

tions, 284
transitions, to MWAIT from other states, 283

name
process, changing, 341

name translation block. See NT
naming conventions, (chapter) 1232

facilities, names and prefixes, (table) 1238
formats

facility$_status, 1234
facility$At_array-name, 1234
facility$entry-name, 1233
facility$entry-name_Rn, 1234
facility$Gt_ variable-name, 1234
$facility$macro-name, 1233
facility$mnemonic, 1237
facility$$entry-name, 1233
_facility$mnemonic, 1237
$facility_macro-name, 1233
$facility _structureDEF, 1235
$service-name, 1232
structure$K_constant-name, 1237
structure$M_field-name, 1237
structure$S_field-name, 1236
structure$t_field-name, 1235

naming conventions (continued)
formats (continued)

structure$V _field-name, 1236
structure$x_field-name, 1236
$structureDEF, 1135

object data types, letters and meanings, (table) 1238
NBI (NMI-to-BI) adapters

VAX 8800 family, configuration, 53
NDT (nexus device type)

name, code, and adapter, (table) 1264
$NDTDEF macro

symbols and values, (table) 1264
nested conditions. See conditions
NET: device

channel assignment to, 687
NETACP image

creating network processes, operations, 798
NETACP network ancillary control process

operations, 688
NETDRIVER driver

operations, 687
NETMBX (create network device privilege). See also

privileges
required for assigning a channel to a network device,

599
use by $ASSIGN, 599

networks
communications, images used with, 687
device driver, characteristics and operations, 687
devices, characteristics and use, 590
1/0 functions, (figure) 688
processes, LOGINOUT image operations, control

flow, 798
proxy access locks, characteristics and use of each

lock, 1323
nexus

function of, VAX system generic model, (figure) 44
interrupt vectors for, use in identifying SCB vector,

45
MicroVAX 2000 system, configuration, 49
node space for a given, 46
number on a system, 46
numbering schemes, 46
Q22-bus-based MicroVAX systems, 49
VAX 6000 series, configuration, 51
VAX 8800 family, configuration, 53
VAXstation 3520 system, configuration, 51

nexus device type. See NOT
NLDRIVER device driver

operations, 687
NMI bus. See also buses

VAX 8800 family, configuration, 53
no-access page

term definition, 7
NO_ALIAS logical name attribute

characteristics, 1069
NOACNT (suppress accounting messages privilege)

use by $CREPRC, 716
NOAUTOCONFIG parameter (SYSGEN)

disabling 1/0 autoconfiguration, 947
node space

of a given nexus, 46
NODELETE logical name attribute

characteristics, 1070
nodes

VAX 8200 family, configuration, 52
nonpageable image sections

placing code in, 1145
nonpaged dynamic memory. See pool - nonpaged
nonpaged executive transfer vectors

Index

list of names, (table) 1164
nonpaged pool. See pool - nonpaged
nonpaged system data area

global cells that compose, (table) 1186
nonpaged system space

size calculation, 1286
without PFN database, size calculation, 1281

nontemplate devices
assigning channels to, 598

NOPOBUFS linker option
constraint on expansion of process allocation region

to PO space, 566
normal processes

priority range, 2 78
scheduling

characteristics, 2 78
distinguished from real-time processes, 277

NOTSYSVA bugcheck. See also bugchecks
generated by MMG$LOCK_SYSTEM_PAGES, 1146

NPAGEDYN parameter (SYSGEN)
controlling nonpaged pool, 555

NPAGEVIR parameter (SYSGEN)
controlling nonpaged pool, 555
effect on size of system space, 1278

NT (name translation block)
characteristics and use, 1086

null device pseudo device
driver operations, 68 7

. null page file control block
address of, 399

null PCB
characteristics and use, 268

null process
no longer present in VMS, 20

$NUMTIM (Convert Binary Time to Numeric Time
system service)

operations, 1121

object data types
naming conventions, letters and meanings,

(table) 1238
object rights block. See ORB
on-disk structure

term definition, 11
OPCCRASH request

operations, 468
OPCOM (operator communication) process. See also

bootstrap; communications; mailboxes
command file that creates, 947
description, 1108
mailbox use by, 674, 1108
operations, 1108

[OPCOM)OPCCRASH module
operations, 956
RWMPE wait state use by, 285

OPER (perform operator functions privilege). See also
privileges

use by
$BRKTHRU, 698, 700
$SETIME, 255
$SNDACC, 1107
$SNDOPR, 1108
LOGINOUT, 794

operating system
initialization, concepts and mechanisms, (chapter)

923
scheduling, software interrupts, concepts and

mechanisms, 54
shutdown, concepts and mechanisms, (chapter) 923

1381

Index

OPERATOR bugcheck. See also bugchecks
generated by OPCCRASH, 957

operator communication process. See OPCOM process
ORB (object rights block)

allocated from
nonpaged pool, 564
paged pool, 565

characteristics and use, 579
creating, for cloned device, 599
deleting, for cloned device, 606
GSD field containing address of, 390
layout and summary, 1255
mailbox, assembled into SYSTEM_PRIMITIVES

loadable executive image, 657
OSWPSCHED module

SCH$0SWPSCHED, operations, 523
OSWPSCHED table

characteristics and definitions, !table) 524
out-of-band ASTs. See also AST; attention ASTs

basic operations, 149
characteristics and use, 153
compared with attention ASTs, 150, 153
delivering, 155
flushing list of, 156
repeating, 153
setting, 154
terminal AST block. See TAST

output
paging, mechanisms, 462, 467

outswap. See also swapper
disabling, PCB$L_STS bit that specifies, 366
global pages, 531
pages with direct 1/0 in progress, 531
PHO, partial, 534
process body, 529

example, (figures) 531
processes

operations, 528
selecting, 523
transitions triggered by, 283

term definition, 4
OUTSWAP routine (SWAPPER module)

control flow, 522
override set

circumstances under which processor joins, 1034
operations, 1034
term definition, 1034

PO base register. See PR$_POBR
PO page tables

PHO component, 367
PHO fields that specify, 369
size calculations, 1272

PO space
created by image activator, 353
layout, (figure) 7
overview, 7
protections on, 353
term definition, 351
VMS use of, 352

POBR register. See PR$_POBR
POLR register. See PR$_POLR
Pl base register. See PR$_P1BR
Pl page tables

PHO component, 367
PHO fields that specify, 370
size calculations, 1272

Pl pointer page
contents of, names and descriptions, (table) 1227

1382

Pl space
contents of, names and descriptions, !table) 1226
data areas, names and descriptions, (tables) 1229
image exit, low-address end that is deleted at,

(figure) 776
layout, (figure) 5, (table) 1289

analyzing with SDA, 1157
management by image activator, 353
mapping PHO into, swapper implications, 537
overview, 5
protections on, 353
selected dynamic portions, description, 1293
size, (chapter) 1270
size calculations, 1289
system service vector locations, 107
term definition, 351
user stack overflow detection in, 82
VMS use of, 352

PlBR register. See PR$_P1BR
PlLR register. See PR$_PlLR
packet

term definition, 544
page arrays (PHD)

size calculations, 1273
page cluster

characteristics and use, 462
formation, page table scan, 465
modified pages

components of, 473
formation, 472

read
formation of, 465
operations, 463

size
factor for $UPDSEC, 476
reducing paging 1/0 overhead with, 359

writing modified pages to backing store, 472
page fault handler. See also page faults; PAGEFAULT

module
overview, 18
term definition, 9, 436
working set size affected by, 501

page fault rate
effect on working set size, 360

page fault wait state. See PFW
page faults. See also memory management; page

fault handler; PAGEFAULT module; swapper;
working set list

characteristics, 352
faulting

modified page out of working set, 285
page in, characteristics, 352
page out, characteristics, 352

global page-file section pages, overview, 448
global pages

control flow, 448
copy-on-reference, control flow, 448, 454
page-file section, control flow, 448, 456
read-only, control flow, 450
read/write, control flow, 453

handling, initial, 436
1/0 completion, as event causing process state

change, 299
1/0 request, description, (table) 463
IPL 2 highest permitted

implications, 172
reasons for, 436

page located in a page file, control fl.ow, 448
page read completion

operations, 466

page faults (continued)
page read completion (continued)

transitions triggered by, 283
private pages

characteristics and use, 438
copy-on-reference, control flow, 445
demand zero, control flow, 447
in transition state, control flow, 444
located in a section file, control flow, 439
not copy-on-reference, control flow, 439

soft page fault, characteristics and use, 355
system pages

characteristics and use, 458
copy-on-reference, control flow, 459
demand zero, control flow, 459
not copy-on-reference, control flow, 458

transitions triggered by, 283
page file control block. See PFL
page file map. See PFLMAP
page file quota

changed at virtual address space creation, 409
constraint on process address space size, 354, 407

page files
assigning processes to, 461
available to a process, PHD field that specifies, 3 71
backing store, constraint on process address space,

407
blocks free, PFL field that specifies, 460
blocks reservable for process use, PFL field that

specifies, 460
cluster factor, 466
data structures and mechanisms, 459
deassigning processes from, 461
deinstallation, 399
modified page write to, example, (figure) 474
null page file control block, address of, 399
number to which process has been assigned, PHO

field that specifies, 460
page, transitions, (figure) 448
page faults for page located in, control flow, 448
primary page file, SYSINIT use, 399
process-local index for reserved blocks, PHD field

that specifies, 461
PTEs containing a page file virtual block number,

371
reserved blocks not yet allocated, PHD field that

specifies, 461
space allocation, 473
systemwide index for reserved blocks, PHD field

that specifies, 461
to which process has been assigned, PHD field that

specifies, 460
total reserved blocks, PHD field that specifies, 461
writing modified pages to, 473

page frame number. See PFN
page lists. See also free page list; modified page list

caches, characteristics and use, 358
locations, 384

page location code
PFN STATE array, meaning, (figure) 381

page replacement
process-local, virtual memory design component,

reasons for, 357
page table entry. See PTE
page tables. See also GPT; PO page tables; Pl page

tables; SPT
arrays

modified page writer, characteristics and use, 400
size calculations, 12 73
swapper, characteristics and use, 400

characteristics and use, 351
creating address space, effect on, 406
pages

cluster factor, 466
dead, releasing, 493
faults, 438
updating, page fault handling, 439

PHD component, 367
process

characteristics and field definitions, 369
registers loaded from hardware PCB, 362

Index

processor registers that specify size and location, 362
rebuilding, after inswap, (table) 538
swapper use of, 513

page transitions. See also page faults
copy-on-reference, (figure) 445
demand zero, (figure) 447
global page-file section, (figure) 456
not copy-on-reference, (figure) 439
pages located in a page file, (figure) 448

page-and-swap-file vector. See also PFL
array, index into, 516
characteristics and use, 398

page-file section pages
global. See global page-file sections

PAGE_MANAGEMENT initialization routine
operations, 937

PAGECRIT
console error message, page fault allocation, 474

paged dynamic memory. See pool - paged
paged pool. See pool - paged
PAGEDYN parameter (SYSGEN)

effect on size of system space, 1278
paged pool size specified by, 564

PAGEFAULT module
MMG$DECPTREF

operations, 495
page fault handling, private page not copy-on­

reference, 443
MMG$DELWSLEX, operations, 496
MMG$FREWSLE

control flow, 492, 495
operations, global page, 452

MMG$FREWSLX
alternative entry point to MMG$FREWSLE,

495
MMG$INCPTREF

characteristics and operations, 439
operations, global page, 450

MMG$ININEWPFN, characteristics and operations,
439

MMG$MAKEWSLE
characteristics and operations, 439
operations, global page, 450

MMG$PAGEFAULT
clustered read, 463
demand zero page, 447
global read-only page, 450
operations, 436, 455, 457
private page copy-on-reference, 445
private page in transition state, 444
private page not copy-on-reference, 439
system page not copy-on-reference, 458

MMG$SWITCH_PRCPGFL, characteristics and
operations, 461

SCANDEADPT, operations, 493
PAGEFILE module

MMG$ALLOCPAGFIL1, operations, 473
MMG$ALLOCPAGFIL2, operations, 474
MMG$ASNPRCPGFLP, characteristics and

1383

Index

PAGEFILE module (continued)
operations, 461

MMG$RSRVPRCPGFL2, characteristics and
operations, 461

PAGEFILE.SYS file
See SYS$SPECIFIC:[SYSEXE]PAGEFILE.SYS

PAGEFRAG
console error message, page fault allocation, 4 7 4

pages. See also address space; page faults; physical
pages

characteristics, 351
free page list. See free page list
global. See global pages
locking, SMP issues, 1020
modified, writing. See modified page write
modified page list. See modified page list
modified page writer. See modified page writer
outswapping with direct I/O in progress, 531
page protection fixup, 767
physical

allocating, 354
deleting, 428
state indicated by PFN STATE array, 381

process-private section, deleting, 428
reading, clustering of, 463
systemwide cache of recently used virtual pages,

modified and free page lists used as, 355
virtual

purging from a working set, 506
returning resources associated with, 428
specifying type with PFN TYPE array, 383
valid, conditions that invalidate, 436

PAGFILCNT parameter (SYSGENJ
maximum number of swap files, 398

paging
demand, characteristics, 352
dynamics, concepts and mechanisms, (chapter) 435
I/O, mechanisms, 462
modified page writer PTE array operations, 401
PFL use by, 460
PHD fields used by, 460, 461
reducing I/O overhead, mechanism for, 359
replacement, characteristics, 352
scheduling influenced by, 478
swapping compared with, 359, (table) 361
working set replacement algorithm, compared with

other virtual memory architectures, 358
PAGIO routine (IOCIOPOST module)

I/O completion for global page, 452
1/0 completion for private copy-on-reference-page,

447
operations, 441
page read, 1/0 postprocessing, control flow, 466

PAGTBLPFC parameter (SYSGENJ
default cluster factor for process page table pages,

466
parallel processing

run-time support, 341
parallelism

spinlocks compared with IPL-based synchronization,
173

Parameter lock
characteristics and use, 1329

PARAMETER macro
defining adjustable SYSGEN parameters, 950

PARAMETER module
SYSGEN parameters defined in, 950

parent resource
term definition, 1297

passive releases

1384

UNIBUS, VAX architecture mechanisms, 43
pause capability

image interruption operations, 807
PC (program counter)

description, 3
from which a spinlock was acquired, recording in

spinlock control block, 17 6
IEI microcode saving during

exception dispatching, 36
interrupt dispatching, 34

PCB (process control block)
ACB- and AST-related fields, field definitions and

use, (figure) 131
copying during process creation, (figure) 710
creating PIDs from, 721
event flags, fields, (figure) 206
hardware. See hardware PCB
initialization during process creation, 713
JIB and, for several processes in same job, (figure) 713
layout and summary, 1255
locating with PID, 720
memory management, field definitions, (figure) 365
null

characteristics and use, 268
used as placeholder, 721

obtaining information from, $GETJPI operations,
328

placeholder, characteristics and use, 268
process identification, fields, 722
process state queue fields, 269
scheduler database component, 268
scheduling-related fields, names and values,

(figure) 269
software context contained in, overview, 4
status flags specified at process creation, meaning

and PCB field name, (table) 716
synchronizing access to, with SCHED spinlock, 183
system, characteristics and use, 38 7
vector scans, context block fields that track local,

325
vector table, contents, (figure) 721

PCB vector
scanned by EXE$PSCAN_NEXT_IPID, 329

PCB$B AFFINITY SKIP field
definition and use, 289

PCB$B_ASTACT (AST active)
clearing during AST exit path operations, 141
synchronizing AST delivery to access modes with,

132
PCB$B_ASTEN (AST enable)

enabling AST delivery to access modes with, 132
PCB$B_AUTHPRI field

process priority use of, 275
PCB$B DPC field

controlling AST procedure execution with, 148
definition and use, 132
XQP use of, 146

PCB$B_PRI field
contents stored in PCB$_PRISAV during mutex lock,

198
process priority use of, 275

PCB$B_PRIB field
contents stored in PCB$_PRIBSAV during mutex

lock, 198
determining priority with, 302
process priority use of, 275

PCB$B_PRIBSAV field
process priority use of, 275

PCB$B PRISAV field
process priority use of, 2 75

PCB$B_ WEFC field
definition and use, 206

PCB$L_AFFINITY field
definition and use, 288, 289
use in capability handling, 298

PCBSL_AFFINITY_CALLBACK field
definition and use, 289

PCB$L_ASTQBL field
definition and use, 131

PCBSL_ASTQFL field
definition and use, 131

PCB$L_CAPABILITY field
definition and use, 288, 289

PCB$L_CAPABILITY_SEQ field
definition and use, 288

PCB$L_CPU_ID field
definition and use, 271

PCB$L_CPUTIM field
definition and use, 264

PCB$L_CURRENT_AFFINITY field
definition and use, 288, 289
reset at image rundown, 289
use in SCHSRSE, control flow, 301

PCBSL_EFC2P field
definition and use, 204

PCB$L_EFC3P field
definition and use, 204

PCB$L_EFCS field
local event flags contained in, (figure) 203

PCB$L_EFCU field
local event flags contained in, (figure) 203

PCBSL_EFWM field
contents for a process in event flag wait state, 210
definition and use, 206, 271
identifies MWAIT entity, 283
JIB address for process in job quota wait, 287
mutex address for process in mutex wait, 199, 286
resource number for process in resource wait, 206

PCBSL_EOWNER field
definition and use, 722

PCBSL_EPID field
definition and use, 722
EPID location, 320

PCBSL_GPGCNT field
definition and use, 366
working set size calculated from, 486

PCBSLJIB field
definition and use, 271

PCB$L_LOCKQBL field
definition and use, 223

PCBSL_LOCKQFL field
definition and use, 223

PCB$L_ONQTIME field
definition and use, 271
EXE$GL_ABSTIM._TICS recorded in when process is

at quantum end, 254
quantum expiration use of, 294

PCB$L_OWNER field
definition and use, 722

PCB$L_PERMANENT_CAPABWTY field
definition and use, 288

PCB$L_PERMANENT_CPU_AFFINITY field
definition and use, 288

PCB$L_PHD field
definition and use, 271, 366

PCB$L_PHYPCB field
definition and use, 269
use during context switching, 307

PCB$L_PID field
definition and use, 722

IPID location, 320
PCBSL_PIXHIST field

definition and use, 271
PCB$L_PPGCNT field

definition and use, 366
working set size calculated from, 486

PCBSL_PQB field
definition and use, 716

PCBSL_SQBL field
definition and use, 269

PCB$L_SQFL field
definition and use, 269

Index

PCBSL_STS field. See also PCB$V prefix entries
definition and use, 206, 366
flags, 269, (table) 342
quantum expiration use of, 294

PCB$L_SWAPSIZE field
definition and use, 366
swap space size, 515

PCBSL_ WAITIME field
definition and use, 271
EXE$GL_ABSTIM_TICS recorded in when process is

in wait state, 254
PCBSL_ WSSWP field

definition and use, 366, 516
identifying a new process with, 725
swap space location, 515

PCB$Q_PRIV &eld
process privilege mask, use and routines that

manipulate it, (table) 778
PCBSV _DISAWS bit (PCB$L_STS field)

definition and use, 366
PCBSV _INQUAN bit (PCB$L_STS field)

quantum expiration use of, 294
PCB$V _NODELET bit (PCB$L_STS field)

set to prevent process deletion, 812
PCB$V _PHDRES bit (PCBSL_STS field)

definition and use, 366
PCB$V _PSWAPM bit (PCB$L_STS field)

definition and use, 366
PCBSV _RES bit (PCB$L_STS field)

definition and use, 366
flag for process residency state, 279
scheduling significance of, 270

PCBSV _SSRWAIT bit (PCBSL_STS field)
disabling resource waits with, 286

PCBSV _WALL bit (PCB$L_STS field)
definition and use, 206

PCBSW _APTCNT field
definition and use, 366, 516

PCBSW _ASTCNT field
maximum number of concurrent ASTs, 131

PCBSW _MTXCNT field
mutex use, 197

PCB$W _STATE field
definition and use, 269
wait queue values, 273

PDT (port descriptor table)
MSCP disk class driver binding to pon driver, 677

pa-CPU data area
boot CPU's allocated by SYSBOOT, 1046
components, 1015
locating on SMP systems, 1015
orgsnization, (figure) 1016
secondary processors' allocated by SMP$SETUP _

CPU, 1052
pa-CPU database. See also CPUS pre&x entries

definition and use, 1016
fork block queue listheads array located in, (figure) 58
layout, (figure) 1016

1385

Index

per-CPU database (continued)
pointer to current process in, 2 71
processor state stored in, 1043
queuing IRPs for requests completed in

process context to a postprocessing queue in, 65
sanity timer mechanism fields, 1037
scheduler database component, 269
scheduling-related fields, 273
spinlock-related fields, characteristics and

definitions, 176
statistics counters, meaning, (table) 262
summary, 1245

PERFMON spinlock
characteristics and use, 184

performance
data alignment, 1138
minimizing branches, 1139
monitoring

1/0, PERFMON spinlock use, 184
nonpaged pool, POOL spinlock use, 183

separating memory writes, 1139
PERMANENT_DEVICE_DATABASE module

CON$INIDISI, operations, 690
CON$INIDISO, operations, 690

PFCDEFAULT parameter (SYSGEN)
default cluster factor for page files, 466

PFL (page file control block)
characteristics and field definitions, 396
layout, jfigure) 397
paging use of, 460

PFL$B_ALLOCSIZ :6.eld
definition and use, 398

PFL$B_FLAGS field
definition and use, 398

PFL$B~PFC :6.eld
cluster factor for page files, 466
definition and use, 397

PFL$B_PGFLX :6.eld
definition and use, 398

PFL$B_TYPE field
definition and use, 397

PFL$L_BITMAP field
definition and use, 397

PFL$L_BITMAPLOC field
definition and use, 398

PFL$L_BITMAPSIZfield
definition and use, 397

PFL$L_FREPAGCNT :6.eld
definition and use, 398, 460

PFL$L_MAXVBN field
definition and use, 398

PFL$L_MINFREPAGCNT field
definition and use, 398

PFL$L_REFCNT field
definition and use, 398

PFL$L_RSRVPAGCNT field
definition and use, 398, 460

PFL$L_STARTBYTE field
definition and use, 397

PFL$L_SWPREFCNT :6.eld
definition and use, 398

PFL$L_ VBN field
definition and use, 397

PFL$L_ WINDOW field
definition and use, 397, 516

PFL$W _SIZE field
definition and use, 397

PFLMAP (page file map)
layout and field definitions, (figure) 515
swapper use of, 515

1386

PFLMAP$B_ACTPTRS field
definition and use, 515

PFLMAP$B_TYPE field
definition and use, 515

PFLMAP$L_PAGECNT field
definition and use, 515

PFLMAP$Q_PTR field
definition and use, 515

PFLMAP$W _SIZE :6.eld
definition and use, 515

PFN (page frame number)
characteristics and use, 351, 354
database

arrays that compose, (figure) 378
as a physical memory data structure, 355
characteristics and components, 378
references fixed up during loadable executive

image initialization, 848. See also memory
management

size calculation, 1281
summary description, 1225
swapper use of, 513
term definiton, 10

mapped global section, creating, 417
mapped process section, creating, 415

PFN BAK (backing store) array
characteristics and use, (figure) 381
element containing template backing store address,

meaning of, 373
PFN BLINK (backward link) array

characteristics and use, 384
free page list, example, (figure) 385
use of, 380

PFN FLINK (forward link) array
characteristics and use, 384
free page list, example, (figure) 385
use of, 380

PFN PTE (page table entry) array
characteristics and use, 381
modified page writer operations, 401

PFN REFCNT (reference count) array
actions triggered by decrementing to zero,

442
characteristics and use, 385

PFN SHRCNT (share count) array
characteristics and use, 386

PFN STATE array
characteristics and use, (figure) 381
delete bit meaning, 382
element, transition page types distinguished by,

373
modify bit meaning, 382
page read error page, meaning, 382
read in progress page, meaning, 382
release pending page, meaning, 381
write in progress page, meaning, 382

PFN SWPVBN (swap virtual block number)
array

characteristics and use, 387
PFN TYPE array

bad page status bit, meaning, 383
characteristics and use, (figure) 383
collided page status bit, meaning, 383
report event status bit, meaning, 384

PFN WSLX (working set list index) array
characteristics and use, 386

PFN$AL_HEAD array
page list listhead locations, 384

PFN$AL_ TAIL array
page list tail locations, 384

PFNMAP (map to specific physical pages privilege). See
also privileges

accessing physical pages in 1/0 space enabled by,
411

required to create PFN-mapped global section, 417
required to delete PFN-mapped global section, 423
use by $CRMPSC to create PFN-mapped

global section, 417
process section, 411, 415

use by $DGBLSC, 423
use with connect-to-interrupt driver, 652

PFRATH parameter (SYSGEN)
use in automatic working set limit adjustment, 500

PFRATL parameter (SYSGEN)
use in automatic working set limit adjustment, 501

PFW (page fault wait state). See also page faults;
process states; wait states

AST implications for, 292
characteristics and use, 4 78
context for, 292
placing a process into, 441
transitions

from PFW to COLPG, 283
from PFW to COM or COMO, 283
to PFW from CUR, 283

wait for 1/0 completion on page to be deleted, 427
PGFIPLHI bugcheck. See also bugchecks

caused by page fault at IPL above 2, 437
PHD (process header)

address of, PCB field that specifies, 366
balance slot use with, (figure) 394
characteristics and field definitions, overview, 367
compared with other data structures, 367
configuring, control flow, 726
copying from during process creation, (figure) 710
deleted process, reclaiming memory from, 522
freeing for outswap, 534
hardware PCB as part of, 307
in discussion of scheduling-related PCB fields, 271
inswapping, 537
layout and summary, 1256
mapping into Pl space, swapper implications, 537
memory residence, PCB$L_STS bit that specifies,

366
number of active and valid pages in, PCB field that

specifies, 366
obtaining information from, $GETJPI operations,

328
outswapped process, reclaiming memory from, 522
outswapping, 534

distinguished from process body outswapping, 535
page arrays

characteristics, overview, 377
size calculations, 1273
swapper use of, 513

page file related fields, 460, 461
page table page arrays, size calculations, 1273
process page tables, (figure) 369
process-specific memory management data

structures, (figure) 367
PST as component of, 367

characteristics and field definitions, 3 7 4
dynamic growth area effect on, 369
location, (figure) 374

rebuilding, after inswap, 537
segments

description, 1270
location containing size, (table) 1270
SYSGEN parameters that affect, (figure) 1270,

!table) 1270

size calculation, 1270
size, relation to working set list, 487
swapper use of, 512
term definition, 4
working set list

contained in, 482
physical memory pages described by, 355

PHD BAK array
characteristics, overview, 377

PHD WSLX array
characteristics, overview, 377

PHD$B_ASTLVL field

Index

PR$_ASTLVL save area, software responsibilities for
managing, 130

SMP considerations for updating, 1026
PHD$B_DFPFC field

default cluster factor for page files, 466
PHD$B_PAGFIL field

definition and use, 372, 461
systemwide index of current page file, 388

PHD$B_PGFLCNT field
definition and use, 460

PHD$B_PGTBPFC field
cluster factor for process page table pages, 466

PHD$B_PRCPAGFIL field
definition and use, 372, 461
process-local index of current page file, 388

PHD$B_PRCPGFL field
definition and use, 372, 460
system header page file indexes, 388

PHD$L_CPUTIM field
incremented by EXE$HWCLKINT, 263
quantum expiration use of, 294

PHD$L_DFWSCNT field
working set list use of, 483

PHD$L_EXTDYNWS field
working set list use of, 484

PHD$L_FREPOVA field
virtual address of first unmapped page in PO space,

369
PHD$L_FREP1VA field

virtual address of first unmapped page in Pl space,
370

PHD$L_FREPTECNT field
number of PTEs available for expansion, 371

PHD$L_IMGCNT field
definition and use, 775

PHD$L_POBR field
copying starting virtual address of PO page table to,

369
PHD$L_POLR field

copying number of pages in PO space to, 369
PHD$L_PlBR field

copying starting virtual address of Pl page table to,
370

PHD$L_PlLR field
copying number of pages not in Pl space to, 370

PHD$L_PAGFIL field
definition and use, 372, 461
system header, as template backing store value for

writable system pages, 459
PHDSL_PC field

adjustment by SCH$RSE, control flow, 301
PHD$L_PRCPGFLREFS field

definition and use, 461
PHD$L_PSTBASMAX field

maximum size of PST, 376
PHD$L_PSTBASOFF field

PST location, (figure) 374
PHDSL_ WSDYN field

1387

Index

PHD$L_WSDYN field (continued)
dynamic region ring buffer start, 486

PHD$L WSEXTENT field
working set list use of, 483

PHD$L_ WSL field
working set list use of, 485

PHD$L_WSLAST field
index to last WSLE, 486
working set list capacity calculated from, 486

PHD$L WSLIST field
permanently locked region index, 485
working set list address computed from, 483
working set list capacity calculated from, 486

PHD$L WSLOCK field
locked by user request region index, 485

PHD$L_ WSLX field
maximum size of PST, 376

PHD$L_ WSNEXT field
index to most recently inserted WSLE, 486

PHD$L_ WSQUOTA field
working set list use of, 483

PHD$L_ WSSIZE field
working set limit calculated from, 486
working set list use of, 484

PHD$Q_AUTHPRIV field
process privilege mask, use and routines that

manipulate it, !table) 778
PHD$Q_IMAGPRIV field

process privilege mask, use and routines that
manipulate it, !table) 778

PHD$Q_PRIVMSK field
process privilege mask, use and routines that

manipulate it, !table) 778
PHD$Q_PSCANCTX_QUEUE field

definition and use, 323
PHD$V_NO_WS_CHNG bit (PHD$W_FLAGS field)

locking system pages using, 509
PHD$V _NOACCVIO bit (PHD$W _FLAGS field)

swapper setting of, 43 7
PHD$W PHVINDEX field

balance slot number, 394
PHD$W _PRCPGFLOPAGES field

definition and use, 461
PHD$W _PRCPGFLPAGES field

definition and use, 461
PHD$W _PSCANCTX_SEQNUM field

definition and use, 323
PHD$W_PSTFREE field

most recent addition to PSTE free list, 3 75
PHD$W _PSTLAST field

largest index of a PSTE, !figure) 375
PHD$W_QUANT field

charged by EXE$HWCLKINT, 263
interval timer interrupt service routine use of, 294
quantum expiration use of, 294
scheduling-related PHD field, 271

PHDUTL module
MMG$ALCPHD, operations, 497
MMG$DALCSTXSCN

control flow, 424
operations, 413

MMG$IMGRESET, working set size reset by, 501
PHV$GL PIXBAS cell

starting address of process index array, 395
PHV$GL REFCBAS cell

startini address of reference count array, 394
physical address

characteristics, 350
space, characteristics, 350

physical CPU data vector

1388

SMP systems, relations with RPB and boot page,
!figure) 1050

physical 1/0
segmenting, by FDT routines, 622

physical memory. See also memory; pages; physical
pages

characteristics and mechanisms, overview, 354
data structures, overview, 355
dump

characteristics and limitations, 970
layout, !figure) 975
operations, 975

pages. See physical pages
parameters that control management of, 357
sharing, overview, 355
uses of, overview, 356

physical pages
allocating, 354

page fault handling, 439
characteristics, 351
deleting, 428
state indicated by PFN STATE array, 381

PHYSICALPAGES parameter (SYSGEN)
physical memory dump size controlled by, 975

PIC (position-independent code) shareable images
addresses not found in map files, 1154
aided by $IMGFIX, 762

PID (process identifier)
characteristics and use, 320
creating from PCB, 721
extended. See EPID
internal. See IPID
term definition, 4

piggyback special kernel mode AST. See PKAST
PIOPAGES parameter (SYSGEN)

effect on Pl space, 1293
pixscan mechanism

initiated from EXE$TIMEOUT, 266
priority boosts handled by, 305
swapper trimming affected by, 360

PIXSCAN parameter (SYSGEN)
pixscan mechanism use of, 305

PKAST (piggyback special kernel mode AST). See also
AST

characteristics and use, 146
flag, ACB location of, 133
routine, out-of-band AST use of, 153

placeholder PCB. See also PCB
characteristics and use, 268

PLV$L EXEC field
privileged shareable image dispatcher address,

transferring control to, 124
PLV$L KERNEL field

privileged shareable image dispatcher address,
transferring control to, 124

$PLVDEF macro
message section headers defined by, ll 10
privileged library vector defined by, !figure) 124

PMLEND macro
locking pages into system working set with, 1145

PMLREQ macro
locking pages into system working set with, 1145

PMS$GL_IOPFMSEQ cell
synchronizing access, with PERFMON spinlock, 184

POISON_PACKET routine (MEMORYALC module)
pool poisoning operations, 571

pool. See also lookaside lists; memory management;
process allocation region; system initialization

allocation statistics, collecting, !table) 568
areas, comparison of different, !table) 544

pool (continued)
checking mechanism, 5 72
corruption of, detecting, 569
fixed-length packets, structure and operations, 552
management

concepts and mechanisms, (chapter) 544
overview, 25

non paged
allocating, 557
allocating, initial, (table) 1284
allocating, wait state characteristics and use, 285
characteristics, (table) 544
components of, 554
contraction only after bootstrapping, 561
deallocating, (figure) 558
deallocating, synchronization issues, 562
depletion causes process resource wait, 284
EXE$INIT use of, (table) 927
expanding, 559
expansion, constraint on layout of pool regions,

555
initializing, 555
layout, (figure) 555
listhead location and allocation type, (table) 546
protection on, 554
structure and operations, 554
summary, 1225
synchronization, 183, 561
SYSINIT allocation, 940
uses of, 563
VMS requirements, 1286

paged
allocating, 564
allocating, wait state characteristics and use, 285
characteristics, !table) 544
data structures located in, 564
deallocating, 564
expanding, 564
initializing, 939 '
listhead location and·allocation type, (table) 546
protection, 564
shareable LNMBs allocated from, 1078
structure and operations, 564
summary, 1225
synchronization, 564

poisoning, 5 71
operations, 572

term definition, 544
variable-length blocks

allocating, (example) 547
deallocating, 549, (example) 550
layout, (figure) 546
listhead locations and allocation type, (table) 546
structure and operations, 546

POOL spinlock
characteristics and use, 183
serializing access to nonpaged pool variable-length

list, 558, 559
POOLCHECK bugcheck. See also bugchecks

generated when pool's FREE pattern is not intact,
572

POOLCHECK parameter (SYSGEN)
field and flag definitions, (figure) 570, (table) 570

POOLPAGING parameter (SYSGEN)
residency of paged pool, 929

"poor man's lockdown"
characteristics and use, 508
locking pages into process working set with, 1147
not usable by SMP systems, 1020
reasons not to use, 508

Index

'port descriptor table. See PDT
port drivers. See also class drivers; device drivers; I/01

SCS1 SCSI
class driver binding, 676
list of, 676
operations, 676
SCA, list of, 678

POSTEF module
SCH$POSTEF

setting event flags, control flow, 211
post processing

I/O. See 1/0 postprocessing
powerfail. See also adapters; debugging; errors; I/O

adapter, reserving memory for, 930
interrupt (IPL 30)

interrupt service routine, operations, 983
nested, problems and operations, 1000
VAX architecture mechanisms, 41

recovery
adapter, 1003
adjusting system time at, 254
AST delivery operations, 145, 999
AST request operations, 999
concepts and mechanisms, (chapter) 983
console subsystem logic, 984
console subsystem operations, 984
console switches that affect, 984
IPL 31 use by device driver for synchronizing with,

41
multiple power failures, problems and operations,

1000
notifying devices about, 998
notifying processes about, 999
preventing an infinite restart loop, 1001
SMP systems, EXE$RESTART operations, 1058
testing for, in swapper routine, 518

POWERFAIL module
EXE$INIT_DEVICE operations, 998
EXE$POWERFAIL

accessing time-of-year clock, 252
operations, 983

EXE$RESTART
environment, 994
operations, 994
SMP operations, primary processor, 1058
SMP operations, secondary processor, 1060

EXE$RESTART_ATT, control flow, 995
POWERUP _L_DONE cell

powerfail recovery use of, 996
PQB (process quota block)

deallocated to lookaside list, 565
layout and field contents, (table) 710
layout and summary, 1259
lookaside list, listhead location and allocation type,

(table) 546
removing process parameters from, (figure) 729

PQL_DWSDEFAULT parameter (SYSGEN)
adjusted at system initialization, 490
initial working set list size, 1272
use in process creation, 728

PQL_MWSDEFAULT parameter (SYSGEN)
adjusted at system initialization, 490

PR$_ASTLVL (ASTLVL register)
as part of process hardware context, 306
characteristics and use, 130
description, 3
distinguished from other register fields in hardware

PCB, 309
loading, 310
recomputing

1389

Index

PR$_ASTLVL (ASTLVL register) (continued)
recoID.puting (continued)

at process inswap, 542
during AST exit path operations, 141
when disabling AST delivery, 143

REI use in IPL 2 interrupt decision, 39, 130
PR$_ICCS (interval timer control/status register)

characteristics and use, 249
IE bit, ID.iniID.UID. interval tilller used by MicroVAX

II, 248
PR$_IPL (IPL register). See also IPL

changing IPL
by writing to, 40, 168
with SETIPL ID.aero, 168

PR$_POBR (PO base register)
as part of process hardware context, 306
loading by SYSBOOT, 924
PO page table base register use, 362

PR$_POLR (PO length register)
as part of process hardware context, 306
PO page table length register use, 362

PR$_PlBR (Pl base register)
as part of process hardware context, 306
Pl page table base register use, 362

PR$_PlLR (Pl length register)
as part of process hardware context, 306
Pl page table length register use, 362

PR$_PCBB (PCB base register)
use during context switching, 307

PR$_RXCS (console receiver status register)
operations, 689

PR$_RXDB (console receiver data buffer register)
operations,. 689

PR$_SBR (system base register)
systeID. page table base register use, 362

PR$_SCBB (system control block base register)
SCB starting physical address in, 30

PR$_SIRR (software interrupt request register)
forID.at, (figure) 33
requesting IPL 12 interrupt service routine, 68
requesting software interrupts by writing to, 33, 54

PR$_SISR (software interrupt summary register)
characteristics and use, 33
clearing by IEI ID.icrocode during interrupt

dispatching, 34
forID.at, (figure) 33
IPL 2 bit, possible irrelevance of, 13 7
restoration and initialization at power recovery, 996
synchronizing, 33

PR$_SLR (system length register)
systeID. page table length register use, 362

PR$_TBIA (translation buffer invalidate all register)
invalidating TB by writing to, 1029

PR$_TBIS (translation buffer invalidate single register)
invalidating .

cached entries by writing to, 365
TB by writing to, 1029

PR$_TXCS (transmit status register)
operations, 689

PR$_TXDB (transmit data buffer register)
operations, 689
special uses, (table! 690

PR$_xSP (stack pointer register)
restoring stack pointer froID., 39

PR .. LKS spinlock
characteristics and use, 182

PR~LKn spinlocks
characteristics and use, 183

$PRDEF macro
syID.bolic names for VAX processor

1390

registers, 1268, 1294
preemption of current process

control flow, 299
delayed, 200, 340
rules

for choosing a new CUR process, 276
Version 5 changes, 276

primary bootstrap program. See VMB
priID.ary device characteristics

distinguished froID. secondary, 705
primary exception vector

searching for condition handlers with, 88
primary page file. See also ID.eID.ory ID.anageID.ent; page

faults; paging
SYSINIT use, 399

primary processors
affinity

EXE$ALTQUEPKT, 631
EXE$CANCEL, 625
EXE$SETIME, 255
IOC$INITIATE, 630
last channel deassignID.ent processing, 605
SMP$SHUTDOWN_CPU, 1057

required for systeID. tiID.e, 256
responsibilities, 1006

primary swap file. See also inswap; ID.emery
management; outswap; swapper

SYSINIT use, 399
print subsystem

job controller responsibilities as queue manager,
1102

priorities. See also base priority; normal processes;
PCB$B_PRI; PCB$8_PRIB; PCB$B_PRIBSAV;
PCB$8_PRISAV; preemption of current process;
real-tiID.e processes; $SETPRI

as a condition for outswap and swapper triID.ID.ing
selection, 525

as significant scheduling process characteristic, 268
base priority, initializing, 275
boosts

associated with system events, 302
example, (figure) 302
pixscan mechanism, 305

changing for current process, 295
COM and COMO process queues, 271
data structures, scheduler database component, 269
process

altering, 340
characteristics and use, 274
dynamic adjustment of, 278
external, representation characteristics, 274
internal, representation characteristics, 274

range
high-priority half use, 274
low-priority half use, 274

/PRIVILEGE qualifier. See also privileges
known image installation, 7 43

privileged known images
name and description tables, (chapter! 1126

privileged library vector
structure, (figure) 124

privileged shareable images
dispatching

control flow, (figure) 123
to system services in, 121

protected iID.age section structure, (figure) 124.
Consult Introduction to VMS System Services

system service operations in, 123
privileges. See also access modes; ACL; protection; ,

$SETPRV; synchronization

privileges (continued)
ACNT, use by $CREPRC, 716
ALLSPOOL, use by $ALLOC, 592
ALTPRl

required for unconstrained process priority
modification, 275

use by $CREPRC, 715, 731
BUGCHK

required for use of $SNDERR system service,
1109

use to generate bugchecks in user and supervisor
mode, 968

BYPASS
use by $BRKTHRU, 698, 702
use by logical name system services, 1092
use to specify access protection of a mailbox, 665

characteristics and use, 778
checking, 318, 320
CMEXEC

use in activation of shareable images, 755
use in system service dispatching, 12 7

CMKRNL
use by SYSGEN, 948
use by image dump facility, 736
use by $CREPRC, 712
use in activation of shareable images, 755
use in system service dispatching, 127
use with connect-to-interrupt driver, 652

DETACH
use by $CREPRC, 712, 719
use in process creation, 716

DIAGNOSE, use to assign an error log mailbox, 966
GROUP, 23

required by EXE$NAMPID, 321
GRPNAM, allows access to group logical name

table, 1072
GRPPRV, use by logical name system services, 1092
image, KFE field that specifies, 744
lock information access restricted by, 235
LOG_IO, use by $SETIME, 255
logical name table access, checking, 1092
masks, characteristics and use, (table) 778
NETMBX

required for assigning a channel to a network
device, 599

use by $ASSIGN, 599
OPER

use by $BRKTHRU, 698, 700
use by $SETIME, 255
use by $SNDACC, 1107
use by LOGINOUT, 794

overview, 23
PFNMAP

accessing physical pages in 1/0 space enabled by,
411

required for deleting a PFN-mapped global section,
423

required for global PFN-mapped section creation,
417

use by $CRMPSC, 411, 415, 417
use by $DGBLSC, 423
use with connect-to-interrupt driver, 652

PRMCEB
required to create permanent clusters, 204
required to delete permanent clusters, 204
use by $ASCEFC, 206
use by $DLCEFC, 208

PRMGBL
required for permanent global section creation,

417

Index

required for permanent global section deletion,
423

use by $CRMPSC, 417
use by $DGBLSC, 423

PRMMBX
required to create a permanent mailbox, 660
required to delete a permanent mailbox, 663
use by $CREMBX, 660

PSWAPM
locking into balance set enabled by, 432
requested to lock pages in memory, 504
required to disable swapping, 342
use by $CREPRC, 716
use by $LCKPAG, 504
use by $SETSWM, 342, 432

READALL, use by logical name system services,
1092

SETPRV
use by $CREPRC, 715
use by $SETPRV, 780, 781
use by image dump facility, 736

SHARE
enables access to device allocated by another

process, 591
use by $ASSIGN, 598
use by $BRKTHRU, 698, 702

SHUTDOWN.COM, requirements, 955
SYSGBL

required for systemwide global section creation,
417

use by $CRMPSC, 417
use by $DGBLSC, 423

SYSLCK
lock information access permitted by, 235
required for systemwide resource creation, 226
use by $ENQ, 226
use by $GETLKI, 235

SYS NAM
allows access to system logical name, 1072
logical name translation affected by, 1092
use by $CRELNM, 1069
use by $CRELNT, 1070

SYSPRV, use by logical name system services, 1092
TMPMBX

required to create a temporary mailbox, 660
use by $CREMBX, 660

WORLD, 23
lock information access permitted by, 235
required by EXE$NAMPID, 321
use by $BRKTHRU, 698, 700
use by $GETLKI, 235

PRMCEB (create permanent common event Rag
clusters privilege). See also privileges

required to
create permanent clusters, 204
delete permanent clusters, 204

use by
$ASCEFC, 206
$DLCEFC, 208

$PRMDEF macro
SYSGEN parameter data structure fields defined by,

950
PRMGBL (create permanent global sections privilege).

See also privileges
required for

permanent global section creation, 417
permanent global section deletion, 423

use by
$CRMPSC, 417
$DGBLSC, 423

1391

Index

PRMMBX (create permanent mailbox privilege). See
also privileges

required to
create a permanent mailbox, 660
delete a permanent mailbox, 663

use by $CREMBX, 660
PROBER instruction. See also instructions

change mode dispatcher use to check argument list,
114

procedure calling mechanism. See also call frames;
VAX Calling Standard

VAX architecture feature used by VMS, 14
procedure-based code

VMS, overview, 18
process accounting information

PHD component, 367
process address space. See address space - process
process affinity. See affinity
process allocation region

allocating, 566
characteristics, (table) 544
data structures located in, 567
deallocating, 566
description, (table) 1230
expanding, 566
listhead location and allocation type, (table) 546
memory management, characteristics and use, 565
process-private LNMBs allocated from, 1078
structure and operations, 565

process bitmap
limiting repeated deadlock searches for a particular

process, 240
process body

outswapping, 529
distinguished from PHD outswapping, 535
example, (figures) 531

rebuilding, operations after inswap, 538
process computability

system services affecting, 334
process context. See also hardware context

AST delivery interrupt executed in, control flow,
137

AST delivery requires, 129
AST interrupt as only software interrupt serviced in,

55
blocks, location of, 323
concept, overview, 17
context block, definition and use, 324
data structures that describe, (figure) 3
moving shell into, 725
queuing IRPs for requests completed in, 65
routines, overview, 18
special kernel mode AST use for 1/0 postprocessing,

144
swapper use, 511
switching, characteristics and operations, 306

process control block. See PCB
process creation. See also shell template

concepts and mechanisms, (chapter) 709
EXE$PROCSTRT, control flow, 729
phases, overview, (figure) 709
VMS components requested by, list, 782

process delete pending count. See PCB$B_DPC
process deletion

blocking, 172
by nonzero PCB$B_DPC, 814

concepts and mechanisms, (chapter) 811
1/0 completion required for, 815
in context of

caller, 811

1392

process being deleted, 813
kernel mode AST use in, 149
open files closed during, 814
PCB$B_DPC use in preventing, 132
PCB$V _NODELET set to prevent, 812
processes that own subprocesses

example, (figure) 818, 819
operations, 818

resulting from image exit, 772, 773
with explicit affinity, 289

process directories
LNM$PROCESS_DIRECTORY, process-private

logical name tables named in, 1070
process header. See PHD
process header page arrays. See PHD - page arrays
process identifier. See PID
process lock queue

locating locks owned by a process, 222
process page tables. See page tables
process priorities. See priorities
process quota block. See PQB
process residency state

flag for, 279
process scheduler. See scheduler
process section table. See PST
process section table entry. See PSTE
process sections. See also global sections; sections

activation of, ISD and PTEs for, (figure) 750
characteristics and use, 353, 374
creating, 3 7 4

control flow, 412
overview, 411

deleting, section page, 428
PTEs, characteristics and use, 371

process states. See also COM; COMO; CUR; wait
states

as significant scheduling process characteristic, 268
characteristics and transitions, (figure) 279
collided page wait. See COLPG
common event flag wait. See CEF
computable outswapped. See COMO
computable resident. See COM
currently executing. See CUR
,displaying, with SHOW SYSTEM command, 284
free page wait. See FPG
hibernate outswapped wait. See·HIBO
hibernate wait. See HIB
local event flag outswapped wait. See LEFO
local event flag wait. See LEF
miscellaneous wait. See MWAIT
page fault wait. See PFW
queues ,

CEF wait, characteristics and use, 273
characteristics and use, 271
computable, (figure) 271
PCB fields that link, 269
scheduler database component, 269
wait, characteristics and use, 271

state transition, (figure) 279
suspended outswapped wait. See SUSPO
suspended wait. See SUSP
swapper driven by table of, 524
symbolic names and values, (table) 279
transition to COM state, control flow, 299
transitions, control flow, 299

process suspension. See also hibernation ,
access mode used to categorize SUSP and SUSPO

states, 282
blocking, 172
hard, characteristics, 336

process suspension (continued)
hibernation compared with, 336
kernel mode AST use in, 148
PCB$B_DPC use in preventing, 132
soft, characteristics, 33 7

process virtual address. See address translation
process virtual address space. See address space - PO;

address space - Pl
PROCESS_MANAGEMENT initialization routip.e

operations, 937
process-permanent message file

characteristics and use, 1109
process-private logical name tables

LNM$PROCESS_DIRECTORY, named in, 1070
process-private pages

page faults, characteristics and use, 438
process-private user mode logical name

when deleted, 1069
PROCESS_SCAN module

EXE$PROCESS_SCAN, control flow, 326
EXE$PSCAN_NEXT_PID, control flow, 329

$PR,OCESS_SCAN system service
$GETJPI use in conjunction with, 323
control flow, 326
data structures related to, 323
operations, 323

PROCESS_SCAN_CHECK module
$PROCESS_SCAN subroutines found in, 326

PROCESS_SCANJTMLST module
$PROCESS_SCAN subroutines found in, 326

processes. See also fork processes; PCB; process states;
system processes; wait states

affecting other, 318
assigning, to page files, 461
batch. See batch processes
catch-all condition handler, establishing for a new,

735
checking privileges of, 320
classification, 782

by LOGINOUT, list of types, 792
context. See process context
control and communication

concepts and mechanisms, (chapter) 318
system services available for, (table) 318

control region, returning information from, 330
creating. See process creation
deassigning, from page files, 461
definition, 720
deleting. See process deletion
determining

if dormant, PCB fields used for, 254
if in a long wait, PCB fields used for, 254

dynamics of handling, concepts and mechanisms,
(chapter) 782

EPID, LKB field that contains, 221
hardware context. See hardware context
identifying, 318, 720

target, 320
implicit constraints on swapper action, 527
information system services, characteristics and

operations, 323
inswapping. See inswap
interactive. See interactive processes
interprocess communications

mailbox use for, 655
mechanisms, overview, 342

IPID, LKB field that contains, 220
limiting deadlock searches for particular, 240
locating, 320

locks owned by, 222

Index

subprocesses owned by, 818
logout, LOGINOUT control flow, 808
memory management data structures specific to,

367
memory residence, PCB$L_STS bit that specifies,

366
multiple image execution, control flow, (figure) 799
name, changing, 341
network, LOGINOUT image operations, 798
normal. See normal processes
notifying about powerfail recovery, 999
null process, characteristics and use, 268
obtaining information from, $GETJPI operations,

328
outswapping. See outswap
page files available to, PHD field that specifies, 371
page tables. See page tables
particular, delivering out-of-band ASTs to, 155
placing

in hibernation, 335
into event flag wait state, 208

preemption. See preemption of current process
priorities. See priorities
privileges. See privileges
queuing ASTs to, 134
quotas

establishing for new, 718
storage areas for, (table) 719

real-time. See real-time processes
remote, servicing requests for, (figure) 323
removing from hibernation, 335
rescheduling current, 341
resuming, 339
rundown operations, 774
scheduling

concepts and mechanisms, (chapter) 268. See also
scheduler

wakeup requests for another, 259
scheduling states. See process states
servicing, requests for remote, 322
shrink, selecting, 523
single image execution, control flow, (figure) 799
status flags, specified at process creation, (table) 716
structure of, overview, 22
suspending. See process suspension
synchronizing with system services, event flag use

for, 202
system. See system processes
term definition, 3
terminating, 339
transferring control to, with ATTACH command,

790
virtual address space, accessing, 133

processor status longword. See PSL
processors

attached, term definition, 1007
capabilities. See capabilities
halts, interrupt stack invalid, 36
primary. See primary processors
registers. See also PR$_ and PRxxx$_ prefix entries

console terminal communication, (table/ 688
hardware clocks implemented by, (table 248
initializing, 934 .
macros that define, 249, 1268, 1294

secondary. See secondary processors
spinwaits, 190, 1035
states

name and meaning, (table) 1043
SMP systems operations, 1043
transitions, (figure) 1043

1393

Index

PROCSECTCNT parameter (SYSGEN)
maximum PST size, 376, 487, 1272
working set list capacity affected by, 487

PROCSTRT module
EXE$CATCH_ALL, control flow, 735
EXE$IMGDMP _MERGE, characteristics and use,

736
EXE$PROCSTRT

environment, 729
KRP lookaside list initialization, 567
logical name tables created by, 1072

program counter. See PC
program region

term definition, 7
program sections. See PSECTs
protection. See also access modes; ACL; locks;

privileges; spinlocks
check, overview, 20
logical name tables

characteristics, 1071
default protection mask, 1072

logical name translation, checking, 1092
memory

names and values, (table) 363
PTE bits that contain, 363
VAX access checking, characteristics and

mechanisms,362
VAX architecture feature used by VMS, 14
virtual memory role in, 349

nonpaged pool, 554
ORB, characteristics and use, 579
paged pool, 564
process allocation region, 565
virtual address space, different areas distinguished,

353
virtual page

access controlled by, 351
changing, 432

protection codes. See protection - memory
Proxy Function lock

characteristics and use, 1324
Proxy Key locks

characteristics and use, 1324
$PRTCTEND macro

end of machine check recovery block, 981
$PRTCTEST macro

test for machine check recovery block, 981
$PRTCTINI macro

start of machine check recovery block, 981
PRxxx$_ICR (interval count register)

characteristics and use, 250
PRxxx$_NICR (next interval count register)

characteristics and use, 250
interval timer use in full implementation, 249

PRxxx$_TODR (time of day register)
maintaining system time with, 247
time-of-year clock, characteristics and use, 251

$PRxxxDEF macro
symbolic names for VAX CPU-specific processor

registers, 249, 1268
$PSCANBUFDEF macro

$GETJPI buffer header defined by, 326
PSCANCTX$L_CUR_CSID field

definition and use, 325.
PSCANCTX$L_CUR_EPID field

definition and use, 325
PSCANCTX$L_CUR_IPID field

definition and use, 325
PSCANCTX$L_CWPSSRV field

definition and use, 325

1394

PSCANCTX$L_FLAGS field
definition and use, 325

PSCANCTX$L_JPIBUFADR
address of $GETJPI buffer, 326

PSCANCTX$L_NEXT_IPID field
definition and use, 325

PSCANCTX$V _BUSY bit (PSCANCTX$L_FLAGS
field)

definition and use, 325
PSCANCTX$W _CSIDOFF field

definition and use, 325
PSCANCTX$W _SEQNUM field

definition and use, 323
$PSCANCTXDEF macro

context block header defined by, 324
PSECTs (program sections)

names format, 1238
pseudo devices. See also mailboxes; remote terminals;

virtual terminals
characteristics and use, 590
drivers, characteristics and list, 68 7
network device driver, 687
null device driver operations, 687

PSL (processor status longword)
as component of process hardware context, 3, 306
first-part-done bit, instruction emulation use of, 77
for interrupt service routine, 34
IEI microcode saving during

exception dispatching, 36
interrupt dispatching, 34

interrupt stack bit, AST delivery prevented by, 129
IPL stored in, 168
IS bit clearing, 310
IS bit set by SVPCTX instruction, 308
location of, 269
previous mode field, access modes, interrupts

compared with exceptions, 38
testing by REI instruction, 38

PST (process section table)
maximum size of, PHD field that specifies, 376
PHD component, 367

characteristics and field definitions, 3 7 4
dynamic growth area effect on, 369
location, (figure) 374

size calculation, 1272
working set list increase effect on, 487

PSTE (process section table entry). See also SEC$ prefix
entries; $SECDEF macro; sections

address computation, 3 7 4
definition and use, layout, (figure) 376
overview, 354
PHD component, characteristics and field

definitions, 374
PTE relation to, 371
size and location, 374

PSWAPM (change process swap mode privilege). See
also privileges

locking into balance set enabled by, 432
requested to lock pages in memory, 504
required to disable swapping, 342
use by

$CREPRC, 716
$LCKPAG, 504
$SETSWM, 342, 432

PTALLOC module
LDR$ALLOC_PT, control flow, 861
LDR$DEALLOC_PT, control flow, 861

PTE (page table entry). See also address space; page
tables; pages

array. See PFN PTE array

PTE (page table entry) (continued)
characteristics and use, overview, 351
containing

global page table index, characteristics, 373
page file virtual block number, characteristics, 372
PST index, characteristics, 371

demand zero page, characteristics, 373
initial state of faulting, page read clustering

dependence on, 465
owner field, memory management system service

checking, 403
page in transition, characteristics, 3 73
valid

and invalid forms, (figure! 371
described in working set list, 367
VAX architectural definition of, (figure! 362

valid bit, meaning, 351
public names

conventions for, (chapter! 1232
public structures

constants, names format, 1237
definition macros, names format, 1235
masks, names format, 1237

Purge Working Set system service. See $PURGWS
$PURGWS (Purge Working Set system service)

operations, 506
Put Message system service. See $PUTMSG
$PUTMSG (Put Message system service)

arguments, 1113
operations, 1113
uses for. Consult VMS Run-Time Library Routines

Volume

Q22-bus
adapter

interrupt vectors in SCB, 46
VAXstation 3520 system, 51

device drivers, fork IPL considerations, 63
directly vectored interrupt service routines,

operations, 642
interrupts, servicing, 642
MicroVAX systems, configuration, 49

QDISKINTERVAL parameter (SYSGEN)
polling interval for quorum disk, 942

$QIO (Queue 1/0 Request system service). See also
$QIOW

arguments, 606
AST creation by, 133
attention AST use, 150
control flow, 606
CTRL/C and CTRL/Y notification use of, 152
flushing

attention AST list with, 151
out-of-band AST list, 156

1/0 request
completion by, 611
flow, (figure! 588

invoking FDT action routines, 609
mailbox driver use of, 153
setting

attention AST with, 150
out-of-band AST with, 154

special entry points for memory management
requests, 462

start 1/0 routine, entering, (figure! 633
system service completion, 611

$QIOW (Queue 1/0 Request and Wait system service).
See also $QIO

composite system service vector, 109

Index

process state change actions, 279, 282
quantum

charged by EXE$HWCLKINT; 263
expiration, operations, 293
initial, as a condition for outswap and swapper

trimming selection, 526
QUANTUM parameter (SYSGEN)

initial value for process quantum, 263
rescheduling use of, 293

Queue File Initialiiation lock
characteristics and use, 1326

Queue File lock
characteristics and use, 1326

Queue File Master lock
characteristics and use, 1325

Queue 1/0 Request and Wait system service. See
$QIOW

Queue 1/0 Request system service. See $QIO
queue manager. See job controller
QUEUEAST spinlock

characteristics and use, 181
queues

absolute, spinlock protection of, 166
absolute queue instructions, noninterruptibility, 163
fork, synchronization of, 1022
fork and wait

stalling a fork process with, 62
synchronizing access to with MEGA spinlock, 185

fork block, specifying in FKB, 57
interlocked, sharing between CPU and intelligent

1/0 control, 165
interlocked queue instructions

characteristics and use, 164
macros that use, 165

interrupt service routine use to keep track of number
of requests, 55

lock timeout, deadlock handling use of, 236
message, inserting message block at tail of,

(figure! 666
per-CPU 1/0 postprocessing, IOC$10POST handling,

613
process state. See process states - queues
resource

listhead locations in RSB, 217
RSB fields that form, 215

resource wait, placing locks in, operations, 227
shared, SMP changes to handling of, 1022
systemwide 1/0 postprocessing, IOC$IOPOST

handling, 613
timer, characteristics and TQE field definitions, 256

Quota Cache Entry lock
characteristics and use, 1309

quota holder table
term definition, 1071

quotas
logical name table size, characteristics, 1071
overview, 23
page file, process address space constrained by, 354
process

deductible, 719
establishing for new, 718
pooled, 719
storage areas for, {table! 719

RO register
conventions for use, executive, 1137
saving in

AST procedure argument list by SCH$ASTDEL
routine, 141

1395

Index

RO register (continued)
saving in (continued)

mechanism array by EXE$EXCEPTION, 79
Rl register

saving in
AST procedure argument list by SCH$ASTDEL

routine, 141
mechanism array by EXE$EXCEPTION, 79

R2 register
conventions for use, executive, 1137

R3 register
conventions for use

executive, 1137
1/0 subsystem, 1137

fork context process includes, 58
R4 register

conventions for use
executive, 1137
1/0 subsystem, 1137

fork context process includes, 58
RS register

conventions for use
executive, 1137
1/0 subsystem, 1137

RAB (record access block)
ASY bit, testing by RMS, 118

race condition
1/0 completion potential for, 616

Read Event Flag system service. See $READEF
read in progress page location code. See also PFN

STATE array
meaning, 382

read-only data cells
defined in module MMDAT, 835

read-only global pages. See also global pages; global
sections

p~ faults, control flow, 450
read/write global pages. See also global pages; global

sections
page faults, control flow, 453

READALL (read anything as owner privilege). See also
privileges

use by logical name system services, 1092
READCHECKIO routine (MBDRIVER module)

reading a mailbox, validation control flow, 667
$READEF (Read Event Flag system service)

operations, 212
real-time processes

priority handling, 302
priority range, 277
scheduling differences between normal processes

and,277
REALn:M,E_SPTS parameter (SYSGEN)

SPTEs reserved for use by connect-to-interrupt
driver, 653, 930

reboot consistency check
operations, 955

rebooting
CPU, PR$_TXDB use for, 690

record access block. See RAB
Record lock

characteristics and use, 1319
Record Management Services. See RMS
recursion

logical name table name resolution
basic loop, 1090
controlling depth, 1089

recursive procedures, signaling use with, 86
recursive table translation block. See RT

registers

1396

conventions for use, 1136. Consult VMS Device
Support Manual

CPU-specific processor, saving during powerfail
handling, 983, (table) 984

dumping routines, testing device affinity in, 1041
general, as part of process hardware context, 306
macros that define, 249, 1268, 1294
memory-mapping, as part of process hardware

context, 306
POBR. See PR$_POBR
POLR. See PR$_POLR
PlBR. See PR$_PlBR
PlLR. See PR$_PlLR
PR$_ASTLVL. See PR$_ASTLVL
PR$_1CCS. See PR$_1CCS
PR$_IPL. See PR$_1PL
PR$_POBR. See PR$_POBR
PR$_POLR. See PR$_POLR
PR$_PlBR. See PR$_PlBR
PR$_PlLR. See PR$_PlLR
PR$_PCBB. See PR$_PCBB
PR$_RXCS. See PR$_RXCS
PR$_RXDB. See PR$_RXDB
PR$_SBR. See PR$_SBR
PR$_SCBB. See PR$_SCBB
PR$_SIRR. See PR$_SIRR
PR$_SISR. See PR$_SISR
PR$_SLR. See PR$_SLR
PR$_TBIA. See PR$_TBIA
PR$_TBIS. See PR$_TBIS
PR$_TXCS. See PR$_TXCS
PR$_TXDB. See PR$_~B
PR$_xSP. See PR$_xSP
processor

console terminal communication, (table) 688
hardware clocks implemented by, (table) 248
initializing, 934

PRxxx$_1CR. See PRxxx$JCR
PRxxx$_NICR. See PRxxx$_NICR
PRxxx$_TODR. See PRxxx$_TODR
RO. See RO register
Rl. See Rl register
R2. See R2 register
R3. See R3 register
R4. See R4 register
RS. See RS register
saved during powerfail handling, names and where

stored, (table) 984
registration service

for customer facility names, 1238
REI (return from exception or interrupt) instruction.

See also instructions
AST delivery, tests before requesting IPL 2 interrupt,

129
control flow, 38
following LDPCTX instruction, 310
overview, 22
use, 1143
VAX architecture feature used by VMS, 15

release pending page location code. See also PFN
STATE array

m · 381
p~t from, 445, 447

relocatable symbols
locating, 1151

RELOCDRV module
IOC$1NITDRV, initializing terminal class driver

data structures, 932
REMACP

remote system terminal ACP, operations, 686

remastering. See resource trees
remote devices. See also communications; networks;

VAXcluster systems
assigning channels to, 601
characteristics and use, 591
communication with host system via SCS operations,

678
remote login

operations, 686
remote processes

servicing requests for, 322
Remote Request lock

characteristics and use, 1325
remote terminals

server support, characteristics, 685
REMQID instruction. See also instructions

interlocked memory instruction, synchronizing data
with, 164

REMQTI instruction. See also instructions
interlocked memory instruction, synchronizing data

with, 164
replacement paging. See also page faults

characteristics, 352
preventing, 506
triggered by, 507

REQCOM macro
completing an 1/0 request, 640

request mode
locks, characteristics and use, 228

$RESCHED (Reschedule Current Process system
service)

control flow, 341
Reschedule Current Process system service. See

$RESCHED
rescheduling interrupt (IPL 3)

AST delivery impact, 135
characteristics and operations, 306
interprocessor interrupt work requests, handling,

1028
interrupt service routine

characteristics and operations, 306
control flow, 310

operations, overview, 66
overview1 1007
requeste<1 by

EXE$RUNDWN, 298
SCH$REMOVE_CPU_CAP, 298
SMP$INTSR, 1028

service routine
code example, 313
control flow, 310

synchronization use of, 172
reserved instruction fault. See also instructions

handling, 85
reserved operand fault exception

causes for, 38
reserved/privileged instruction exception. See also

instructions
bugcheck use of, 968
instruction emulation use of, 76

RESHASHTBL parameter (SYSGEN)
determining number of resource hash table entries,

218
residency state

PHD, flag for, 366
process, flag for, 2 79

resident global sections
creating, 417

resignaling
passing conditions by, mechanism, 96

Index

status code for, 88
resource availability. See resource wait
resource block. See RSB
resource hash chains

characteristics and use, 218
resource hash table relations, (figure) 218

resource hash table
characteristics and use, 218
location and size, 218
resource hash chain relations, (figure) 218
structure, (figure) 218

resource name string
characteristics, 1296

resource trees
characteristics and use, 215 .
mastering, in a VAXcluster system, 224
maximum depth, 215, 239
remastering, characteristics and use, 224

resource wait
list of names and their meaning, (table) 284
miscellaneous wait states, transition descriptions,

284
mode, enabling and disabling

PCB flag for, 716
use of $SETRWM, 342

process context during, 293
RSN$_ASTWAIT

channel deassignment, 604
declared available, 266
$GETJPI use of, 329
meaning,284, 285
process deletion, 147, 814, 815
$QIO processing, 607, 608
$SUSPND use of, 147
uses of, 285
waiting for global page 1/0 completion, 427
waiting for subprocess deletion, 815

RSN$_BRKTHRU, obsolete, 284
RSN$_CLUSRV

meaning, 284
placing a process in, 322

RSN$_CLUSTRAN, meaning, 284
RSN$_CPUCAP

meaning, 284
placing a process in, 281, 285

RSN$_IACLOCK, obsolete, 284
RSN$JQUOTA, obsolete, 284
RSN$_LOCKID, obsolete, 284
RSN$_MAILBOX

declared available, 266, 669
meaning, 284
placing a process in, 285

RSN$_MPLEMP1Y
meaning, 284
placing a process in, 285, 480, 956

RSN$_MPWBUSY
declared available, 480
meaning, 284
placing a process in, 479, 494, 495

RSN$_NPDYNMEM
declared available, 266, 559, 560
meaning, 284
placing a process in, 285, 557, 561, 627

RSN$_PGDYNMEM
declared available, 266
meaning, 284
placing a process in, 285, 564

RSN$_PGFILE, obsolete, 284
RSN$_SCS, meaning, 284
RSN$_SWPFILE, obsolete, 284, 479

1397

Index

resource wait (continued)
states, 284

use of PCB$L_EFWM to identify, 206, 271
use of SCH$RWAIT to place process in,

604
resources. See also locks; protection; RSB;

synchronization
access modes, how obtained, 216
accessing through common event flags, 213
characteristics

system-owned, meaning, 1296
systemwide, meaning, 1297

characteristics and use, 215
controlling, overview, 22
deadlock searches, preventing locks from

participating in, 236
deallocating RSBs, 1297
depleted, MWAIT triggered by, 283
existence on a particular node, determining, 226
locating, 222
name and length, 215
position in resource tree, 215
queues

listhead locations in RSB, 217
LKB fields that link into RSB queue, 220

root
characteristics and use, 215
distributed directory characteristics and use, 224

scope, term definition, 1296
sharing

in VAXcluster systems, 1296
locks as mechanism for managing, 214

system wide
distinguished from system-owned locks, 233
privilege required for accessing, 235

term definition, 1296
value block, location, 217
VAXcluster local node use, RSB field that tracks, 216
VMS components use of, (chapter) 1296

restart parameter block. See RPB
restart routine

powerfail recovery, operations, 994
$RESUME (Resume Process system service)

characteristics and use, 336
operations, 339
process state change actions, 282
requested by $DELPRC, 149

Resume Process system service. See $RESUME
return from exception or interrupt instruction. See REI

instruction
returning to caller's caller

fork process used as form of return, reasons for, 59
RM$LAST_CHANCE routine ((RMS)RMSOLSTCH

module)
operations, 814

RMS (Record Management Services). See also system
services

data area, global cells, names and descriptions,
(table) 1230

error detection, 119
lock use by, characteristics and use of each lock,

1310
names format, 1232
requesting event flag wait, 209
return mechanism characteristics, overview, 109
services

return paths, control flow, (figure) 117
synchronizing, 118

synchronization code, error handling mechanism,
115

1398

term definition, 11
RMS$ STALL status

stalling for RMS service completion, 118, 119
RMS$RMSRUNDWN routine ([RMS)RMSORNDWN

module)
operations, 814

RMS$service
system service routine, characteristics, 106

root resources
linking subresources with, (figure) 215

round-robin scheduling
operations, 293
when used, 278

RPB (restart parameter block)
boot page and, (figure) 1050
definition and use, 902
memory descriptors used during physical memory

dump operations, 975
summary, 1225, 1259
validity checked at power recovery, 984

RPB$L_RSTRTFLG field
infinite restart loop prevention use of, 1002

RPTEVT macro
invoking SCH$RSE routine with, 299

RSB (resource block)
characteristics and use, 215
creating for new resource, operations, 227
directory entry, characteristics and use, 224
in a VAXcluster system, distribution of, 223
layout, (figure) 215
locating, 222
master, creating on a VAXcluster node, 224
parent, address as resource identifier component, 215
summary, 1260

RSB$B DEPTH field
definition and use, 215

RSB$B GGMODE field
definition and use, 228
lock conversion use of, 228

RSB$B_RMOD field
definition and use, 215

RSB$B RSNLEN field
definition and use, 215

RSB$L CSID field
definition and use, 224
distinguishing LKB type with, 225

RSB$L_CVTQBL field
definition and use, 217

RSB$L_ CVTQFL field
definition and use, 217

RSB$L_GRQBL field
definition and use, 217

RSB$L_GRQFL field
definition and use, 217

RSB$L PARENT field
definition and use, 215, 220

RSB$L_RRSBL field
definition and use, 215

RSB$L_RRSFL field
definition and use, 215

RSB$L RTRSB field
definition and use, 216

RSB$L SRSBL field
definition and use, 215

RSB$L SRSFL field
definition and use, 215

RSB$L_ WTQBL field
definition and use, 217

RSB$L_ WTQFL field
definition and use, 217

RSB$Q_ VALBLK field
definition and use, 217

RSB$Q_ VALSEQNUM field
definition and use, 217

RSB$T_RESNAM field
definition and use, 215

RSBSV _DIRENTRY bit (RSB$W _STATUS field)
definition and use, 224

RSBSW _ACTIVITY field
definition and use, 216, 224

RSB$W_GROUP field
definition and use, 215

RSB$W _HASHVAL field
definition and use, 218
resource directory lookup use of, 224

RSBSW_REFCNT field
definition and use, 217

RSB$W_STATUS field
definition and use, 224

RSE module
SCH$CHANGE_CUR_PRIORITY, control flow, 296
SCH$CHSE, control flow, 299
SCH$CHSEP, control flow, 299
SCH$PIXSCAN, control flow, 305
SCH$QEND

control flow, 294, 498
quantum end signaled by invoking, 294

SCH$RSE, control flow, 299
SCH$SCHED, control flow, 313
SCH$SWPWAKE, invoked to awaken swapper, 511
SCH$WAIT

control flow, 290
entered in process context, 290
routines that invoke, 290

SCHSWAITK, operations, 291
SCH$WAITL, operations, 291
SCH$WAITM, operations, 291
SCH$WAKE, control flow, 335

RSNS_ prefix. See resource wait
$RSNDEF macro. See also resource wait

system resource symbolic names defined in, 284
RSX-UM AME

activation of, 762
only supported AME, 762

RT (recursive table translation block)
characteristics and use, 1089

RTPAD
local system remote terminal driver, operations, 686

RTTDRIVER
remote terminal driver, pre-Version 4 support, 686

rundown routine
executive mode

invoked by DELETE, 813
invoked by EXESRUNDWN, 775

kernel mode
invoked by DELETE, 814
invoked by EXE$RUNDWN, 775

SRUNJ?WN (Image Rundown system service). See also
rmage rundown

control flow, 774
image, term definition, 737
operations, 774
resetting capabilities, 298
rundown routines, invoked by EXE$RUNDWN, 775

RWAST (AST :wait). See resource wait - RSN$_
ASTWAIT

RWBRK (breakthrough). See resource wait - RSNS_
BRKTHRU

RWCAP (CPU capability). See resource wait - RSN$_
CPU CAP

Index

RWCLU (cluster transition). See resource wait - RSN$_
CLUSTRAN

RWCSV (cluster server process). See resource wait -
RSN$_CLUSRV

RWIMG (image activation lock). See resource wait -
RSN$_IACLOCK

RWLCK (lock identifier). See resource wait - RSNS_
LOCKID

RWMBX (mailbox full). See resource wait - RSN$_
MAILBOX

RWMPB (modified page writer busy). See resource wait
- RSN$_MPWBUSY

RWMPE (modified page list empty). See resource wait
- RSN$_MPLEMPTY

RWNPG (nonpaged pool). See resource wait - RSN$_
NPDYNMEM

RWPAG (paged pool). See resource wait - RSN$_
PGDYNMEM

RWPFF (page file space). See resource wait - RSN$_
PG FILE

RWSCS (distributed lock manager wait). See resource
wait - RSN$_SCS

RWSWP (swap file space). See resource wait - RSN$_
SWPFILE.

SO space
term definition, 350

SO_PAGING parameter (SYSGEN)
residency of pageable executive, 930

sanity timer mechanism
disabled by IPL 12 interrupt service routine, 68
disabling circumstances, 1038
operations, 1037
purpose of, 1023

SAVEDUMP parameter (SYSGEN)
saving a dump in page file, 944, 970

SBI (synchronous backplane interconnect)
bus, VAX 8800 family, configuration, 53
VAX-ll/78x system

configuration, 48
standard adapter assignments, (table) 48

SBIA (SBI adapter)
VAX 86x0 system, configuration, 52

SCA (systems communication architecture)
conceptual diagram, (figure) 677
function layer, protocols that call SCS, 678
port drivers, VMS operations, 678
terminal drivers do not conform to, 679

SCANDEADPT routine (PAGEFAULT module)
operations, 493

scatter/gather
1/0 operations, 400

SCB (system control block). See also exceptions;
interrupts; ISR; software interrupts

adapter interrupt locations in, (6.gurel 31
console interrupt vectors, (table) 43
description, 1226
detailed layout. Consult VAX Architecture Reference

Manual
first page, organization, (figure) 31
interrupt and exception use of, 30
MicroVAX 2000 system, 50
MicroVAX 3100 system, 50
Q22-bus-based MicroVAX systems, 49
reserved offsets for system-specific errors, 41
size, 1280
term definition, 18
VAX 6000 series, 51
VAX 8200 family, 52

1399

Index

SCB (system control block) (continued)
VAX 86x0 system, 52
VAX 8800 family, 53
VAX 88x0 system, 53
VAX-11/730 system, 47
VAX-11/750 system, 47
VAX-11/78x system, 48
VAXstation 35x0 system, 51
vectors

exception, (table) 75
format, (figure) 30
hardware IPL and, 32
IEI microcode testing to determine stack for, 34,

35
nexus number use in identifying, 45
unused, meaning of contents, 44

SCH$ACQUIRE_AFFINITY routine (SCHED module)
acquiring implicit affinity with, 289, 297

SCH$ADD_CPU_CAP routine (SCHED module)
changing capabilities with, 287

SCH$AL_CPU_CAP array
capabilities use of, 287

SCH$AL_CPU_PRIORITY array
process priority use of, 276

SCH$AL_PREEMPT_MASK array
process priority use of, 275, 276

SCH$AQ_COMH array
array of computable queue listheads, 271

SCH$AQ_COMOH array
array of computable and outswapped queue listheads,

271
SCH$AQ_ WQHDR array

array of wait queue listheads, 273
SCH$ASTDEL routine (ASTDEL module). See also

AST delivery interrupt
control flow, !figure) 137
delivering AST interrupts, 137
PCB$W _ASTCNT incremented by, 132
RO and Rl saving in AST procedure argument list

by, 141
SCH$C_mnemonic (scheduling state symbolic name)

list of names, their meaning and value, (table) 279
SCH$CHANGE_CUR_PRIORITY routine (RSE

module)
changing priority of current process, control flow,

296
invoked by SCH$QEND, 296
routines that invoke, 296

SCH$CHSE routine (RSE module)
control flow, 299

SCH$CHSEP routine (RSE module)
control flow, 299

SCH$GB_SIP field
SCH$V _MPW bit set while modified page writing is

in progress, 469
swapper use of, 514

SCH$GL_ACTIVE_PRIORITY cell
process priority use of, 276

SCH$GL_CAPABILITY_SEQUENCE cell
capabilities use of, 28 7
copying into PCB$L_CAPABILITY_SEQ field, 288

SCH$GL_COMOQS cell
SCH$PIXSCAN use, control flow, 305
summary of computable outswapped queues, 271

SCH$GL_COMQS cell
SCH$PIXSCAN use, control flow, 305
summary of computable queues, 271

SCH$GL_DEFAULT_CPU_CAP cell
capabilities use of, 28 7

SCH$GL_DEFAULT_PROCESS_CAP cell

1400

copying into PCB$L_PERMANENT_CAPABILITY
field, 288

SCH$GL_IDLE_CPUS cell
meaning, 1014
scheduler database component, 269

SCH$GL_MFYLIM cell
target size of modified page list, 468, 469

SCH$GL_MFYLOLIM cell
target size of modified page list, 4 70

SCH$GL PCBVEC cell
address-of PCB vector, 721
process index array use, 395

SCH$GL PIXWIDTH cell
definiti:On and use, 724

SCH$GL_RESMASK cell
system resources for which processes are waiting,

284
SCH$GQ_ CEBHD cell

listhead for systemwide CEB list, (figure) 204
SCH$GQ_LEFOWQ cell

characteristics and use, 210
SCH$GW CEBCNT cell

number-of CEBs in systemwide list, 204
SCH$GW _LOCALNODE cell

use in constructing EPIDs, 724
SCH$LOCKR routine (MUTEX module)

locking a mutex for read access, control flow, 198
saved PC for mutex RWAIT, 293

SCH$LOCKREXEC routine (MUTEX module)
accessing mutexes from system context, 201

SCH$LOCKW routine (MUTEX module)
locking a mutex for write access, control flow, 199
saved PC for mutex RWAIT, 293

SCH$LOCKWEXEC routine (MUTEX module)
accessing mutexes from system context, 201

SCH$LOCKWNOWAIT routine (MUTEX module)
locking mutexes for write access, with no waiting,

199
SCH$NEWLVL routine (ASTDEL module)

process deletion and suspension use of, 147
SCH$0SWPSCHED routine (OSWPSCHED module)

control flow, 527
operations, 523

SCH$PIXSCAN routine (RSE module)
pixscan mechanism, control flow, 305

SCH$POSTEF routine (POSTEF module)
setting event flags, control flow, 211

SCH$QAST routine (ASTDEL module)
queuing ASTs, control flow, 134

SCH$QEND routine (RSE module)
control flow, 294, 498
quantum end signaled by invoking, 294

SCH$RELEASE_CAPABILITY routine (SCHED
module)

changing process capabilities with, 288
SCH$REMOVE_CPU_CAP routine (SCHED module)

changing capabilities with, 287
removing capabilities, control flow, 297

SCH$REQUIRE_CAPABILITY routine (SCHED
module)

acquiring new capabilities, control flow, 298
changing process capabilities with, 288

SCH$RESCHED routine (SCHED module)
rescheduling interrupt service routine

control flow, 312
operations, overview, 66
routines that invoke, 310

SCH$RSE routine (RSE module)
control flow, 299

SCH$RWAIT routine (MUTEX module)

SCH$RWAIT routine (MUTEX module) (continued)
saved PC for mutex RWAIT, 293

SCH$SCHED routine (RSE module)
process scheduling interrupt service routine, control

flow, 313
selecting next process to run, routines that invoke,

312
SCH$SWPWAKE routine (RSE module)

invoked to awaken swapper, 511
SCH$UNLOCK routine {MUTEX module)

unlocking mutexes, control flow, 200
SCH$UNLOCKEXEC routine {MUTEX module)

accessing mutexes from system context, 201
SCH$V _MPW bit (SCH$GB_SIP field)

set while modified page writing is in progress, 469
swapper use of, 514

SCH$V _SIP bit (SCH$GB_SIP field)
swapper use of, 514

SCH$WAIT routine (RSE module)
control flow, 290
entered in process context, 290
routines that invoke, 290

SCH$WAITK routine (RSE module)
operations, 291

SCH$WAITL routine (RSE module)
operations, 291

SCH$WAITM routine (RSE module)
operations, 291

SCH$WAKE routine (RSE module)
control flow, 335

$SCHDWK (Schedule Wakeup system service)
control flow, 260, 335
process state change actions, 282

SCHED module
SCH$ACQUIRE_AFFINITY

acquiring implicit affinity with, 289, 297
SCH$ADD_CPU_CAP, changing capabilities with,

287
SCH$RELEASE_CAPABILITY, changing process

capabilities with, 288
SCH$REMOVE_CPU_CAP

changing capabilities with, 287
removing capabilities, control flow, 297

SCH$REQUIRE_CAPABILITY
acquiring new capabilities, control flow, 298
changing process capabilities with, 288

SCH$RESCHED
control flow, 312
operations, overview, 66
routines that invoke, 310

SCHED spinlock
AST queuing concerns, 151
characteristics and use, 183
held during

channel deassignment, 604
declaration of nonpaged pool resource, 559
page fault, 441
scheduling, 312
swapping, 518, 519, 521
system event reporting, 299

invoking SCH$QAST routine from processes holding
spinlocks no greater than, 134

mutex use of, 196
synchronizing

access to mutexes, 183
PHD access, 367
scheduler database access, 269

use by
EXE$CREPRC, 716, 717
EXE$DELPRC, 812

EXE$DERLMB, 966
EXE$HIBER, 335
EXE$NAMPID, 321
EXE$RESCHED, 341
EXE$RUNDWN, 777
EXE$SWTIMINT, 64, 263, 264
EXE$TIMEOUT, 265
IOC$IOPOST, 616
OPCCRASH, 956
SCH$WAIT, 290
SMP$SHUTDOWN_CPU, 1057
SUSPND, 337

Index

Schedule Wakeup system service. See $SCHDWK
scheduler. See also affinity; capabilities; priorities;

rescheduling interrupt; RSE module; SCHED
module; swapper; synchronization; SYSWAIT
module; time - support; wait states

concepts and mechanisms, (chapter) 268
data structures, characteristics and field definitions,

268
database

components, 269
implications of modifying during IPL 3 through

IPL 7 processing, 67
synchronizing access to at IPL$_SYNCH, 170
synchronizing access to with SCHED spinlock,

183, 269
interrupt service routine, interrupt requests, number

is unimportant to function, 55
page fault handling influence on, 478
PCB fields related to, 269
preemption. See preemption of current process
preventing scheduling by raising IPL, 170
priorities. See priorities
process characteristics most important to, 268
reference time for, 254
requests, overview, 14
rescheduling interrupt, blocking, 172
round-robin scheduling

operations, 293
when used, 278

scheduling dynamics, characteristics and operations,
289

scheduling event reporting, paths leading to,
(figure) 290. See also RSE module

scheduling queues, swapper scan of, 524
scheduling-related fields, per-CPU database, 273
swapper inswap compared with, (example) 519
term definition, 10
wait queues, header array, (figure) 271

scheduling. See scheduler
scope

logical names, 1068
how determined, 1068

resource, term definition, 1296
SCS (system communication services). See also

SCSLOA image
class and port drivers, fork IPL and spinlock

considerations; 63
class drivers, error log routines used by, 964
loadable code entry point names and descriptions,

(table) 1218
port drivers

CDRP characteristics and use, 581
error log routines used by, 964

VMS implementation of SCA, description, 678
SCS spinlock

characteristics and use, 181
held during dispatch to system-owned locks blocking

AST routine, 234

1401

Index

SCS spinlock (continued)
IPL 12 interrupt service routine actions to acquire,

69
use by

EXE$DEQ, 230
EXE$ENQ, 226

SCSI (small computer system interface)
bus

MicroVAX 3100 system, configuration, 50
VAXstation 3520 system, configuration, 51

class drivers, MSCP compared with, 677
disks, bad blocks, replacing, 694

SCSLOA image
loading, operations, 857
transfer vectors area location, 831
vector table, 857

SCSNODE parameter (SYSGEN)
VAXcluster node name, 929

SCSSYSTEMID parameter (SYSGEN)
system ID, 929
system ID.lock naming, 1298

SCSSYSTEMIDH parameter (SYSGEN)
system ID, 929

SCSVEC module
loadable SCS code, entry point names and

descriptions, (table) 1218
miscellaneous transfer vectors area defined in, 831

SDA (System Dump Analyzer). Consult VMS System
Dump Analyzer Utility Manual

address space layout analysis with, 1157
characteristics and operations, 1154
priority representation in, 275
process state displayed by, 284
symbols, characteristics and use, 1155

SDL (structure definition language)
data structures defined in, files that contain, 1241
directives, meaning and resultant symbol for ACB

definition, (table) 1160
files

interpreting, 1158
libraries that contain, 1133

statements
data structure fields, 1161
descriptions of commonly used, 1159
symbol names and values, 1162

SEC$B_PFC field
cluster factor for section file, 466
definition and use, 377

SEC$L_ CCB field
definition and use, 376

SECSL_GSD field
definition and use, 376

SEC$L_PAGCNT field
definition and use, 377

SEC$L_REFCNT field
definition and use, 377

SEC$L_ VBN field
definition and use, 377

SEC$L_ VPXPFC field
definition and use, 376
page table index for system and global section pages,

391
SECSL_ WINDOW field

definition and use, 377
SEC$W _FLAGS field

definition and use, 377
SEC$W _SEXBL field

definition and use, 376
SEC$W _SEXFL field

definition and use, 376

1402

$SECDEF macro
section table entry field names defined by, 376

secondary bootstnp program. See SYSBOOT
secondary device characteristics

distinguished from primary, 705
secondary exception vector. See also condition

handlers; exceptions
searching for condition handlers with, 88

secondary processors. See also primary processors;
SMP systems

bootstrap code, 1053
memory mapping, 926
power failure; 996, 1058
power recovery, 996, 1058
state transitions, (figure) 1043
turning on, 926

section files. See also sections
cluster factor, link option, 466
page faults for process-private pages located in,

control flow, 439 .
VBN, PSTE field that specifies, 377
writing modified pages to, 473

section table entries. See also GST, GSTE, PST, PSTE
deletable, locating, 424

sections
global page-fl.le. See global page-file sections
global. See global sections
image. See image sections
message. See message sections
PFN-rnapped, creating, 415
process. See process sections
writing to backing store, $UPDSEC use, 476

selective memory dump
characteristics, 971
incompatible with dump to PAGEFILE.SYS, 977
layout, (figure) 977
operations, 976

semaphores. See also mutexes
common event flags as, 213

Send Message to Accounting Manager system service.
See $SNDACC

Send Message to Error Logger system service. See
$SNDERR

Send Message to Job Controller system service. See
$SNDJBC

Send Message to Operator system service. See
$SNDOPR

Send Message to Symbiont Manager system service.
See SSNDSMB

serialization
characteristics as a synchronization technique, 161

serialized access
VMS features that support, 195

service routines
interrupts, restrictions imposed on, 34

SERVICE_EXIT routine (SYSTEM_SERVICE_
DISPATCHER module)

change mode dispatcher common exit path, control
flow, 116

$service-name format
meaning, 1232

Set AST Enable system service. See $SETAST
Set Event Flag system service. See $SETEF
Set Exception Vector system service. See $SETEXV
set host

processing for remote login, 686
Set Power Recovery AST system service. See $SETPRA
Set Priority system service. See $SETPRI
Set Privileges system service. See $SETPRV
Set Process Name system service. See $SETPRN

SET PROCESS/PRIORITY command
process priority changing by, 275

Set Protection on Page system service. See $SETPRT
Set Resource Wait Mode system service. See $SETRWM
Set Swap Mode system service. See $SETSWM
Set System Service Failure Exception Mode system

service. See $SETSFM
Set System Service Filter system service. See $SETSSF
Set Time lock

characteristics and use, 1298
Set Time system service. See $SETIME
Set Timer system service. See $SETIMR
SET WORKING_SET command. See also working set

characteristics and use, 498
SSETAST (Set AST Enable system service). See also

AST
disabling AST delivery with, 142
effect on PR$_ASTLVL, 130
enabling or disabling AST delivery to a given access

mode, 342
synchronizing private data structure access with,

167
$SETEF (Set Event Flag system service). See also event

flags
setting event flags, control flow, 211

SSETEXV (Set Exception Vector system service). See
also condition handlers

software-vectored condition handler establishing and
removal, control flow, 74

SSETIME (Set Time system service). See also time
capabilities, 288
operations, 254
system time recalibration requests, control flow, 255
time-of-year readjustment requests, operations, 256

SSETIMR (Set Timer system service). See also timers
-requests

control flow, 258
SETIPL macro. See also IPL

changing IPL with, 168
$SETPRA (Set Power Recovery AST system service).

See also powerfail
functions, 999

SSETPRI (Set Priority system service). See also
priorities

operations, 340
process priority changing by, 275

$SETPRN (Set Process Name system service)
operations, 341

$SETPRT (Set Protection on Page system service). See
also protection - memory

control flow, 432
SETPRV (set any privilege bit privilege). See also

privileges
use by

$CREPRC, 715
image dump facility, 736
$SETPRV, 781

$SETPRV (Set Privileges system service). See also
privileges

operations, 780
$SETRWM (Set Resource Wait Mode system service)

disabling resource waits, 286
operations, 342

$SETSFM (Set System Service Failure Exception Mode
system service)

control flow, 127
operations, 342
system service failure handling, 82

$SETSSF (Set System Service Filter system service)
control flow, 127

Index

SSETSWM (Set Swap Mode system service)
operations, 342, 432

SETTIME parameter (SYSGEN)
initializing time and date, 253

SGNSGL_PHDAPCNT cell
meaning, 1272

SGN$GL_PHDPAGCT cell
meaning, 1272

SGN$GW _PIXSCAN cell. See PIXSCAN parameter
Shadow lock

characteristics and use, 1302
SHARE (assign channels to nonshared devices

privilege). See also privileges
enables access to device allocated by another process,

591
use by

$ASSIGN, 598
$BRKTHRU, 698, 702

share count. See PFN SHRCNT array
/SHARE qualifier

known image installation, 743
shareable devices

nonshareable devices compared with, 591
shareable images

initializing, computing proper order of, 758
list, 763, (figure) 764
list entry. See SHL
privileged. See privileged shareable images
term definition, 738

shareable logical names
tables

created during system initialization, 1070
LNM$SYSTEM_DIRECTORY, named in, 1070

user mode, when deleted, 1069
SHELL module. See also processes

items allocated in Pl space, names and protection,
(table) 1289

KRP lookaside list address space defined in, 567
layout, characteristics and use, 724
moving, into process context, 725
Pl data areas, names and descriptions, (tables) 1229
page contents, (table) 724
SWP$SHELINIT, control flow, 726

SHL (shareable image list entry)
characteristics and use, 763

SHOW CPU command
SMP supported by, 1056

SHOW LOGICAL Utility
logical name search operations, 1089

SHOW SYSTEM command
priority representation in, 275
process state displayed by, 284

shrink process
selecting, 523

SHUTDOWN.COM command file. Consult Guide to
Setting Up a VMS System

operations, 955
signal array

building, 77
condition handler, built by LIB$SIGNAL/STOP, 86
layout, (figure) 77
name for argument list passed to condition handler,

72
signals

advantages of reporting software conditions as, 86
multiple active

handling, 90, (figure) 91
unwinding, example, (figure) 100

name for condition type code, 72
site-specific startup command fl.le

1403

Index

site-speciftc startup command file (continued)·
operations, 948

small computer system interface. See SCSI
small request packet. See SRP
SMISERVER (system management server) process

command fl.le that creates, 948
SMISERVER Main lock

characteristics and use, 1329
SMP (symmetric multiprocessing) systems. See also

interprocessor communication; per-CPU data
area; per-CPU database; primary processors;
secondary processors; synchronization

accessing time-of-year clock, 252 ·
adapter powerfail handling, "black hole" page

problems for, 1003
affinity. See affinity
benign state operations, 1032
BOOT CPU, characteristics, 923
buffer pool, synchronizing access to with EMB

spinlock, 185
busy wait operations, 1035
capabilities. See capabilities
characteristics, overview, 1006
concepts and mechanisms, (chapter) 1006
CPU ID determination in, 1008
data structures, 1013
DCL commands that support, 1056
device affinity. See device affinity
device drivers

spinlock choice considerations, 63
synchronization in, 1039

device interrupts, 1040
fatal bugcheck handling, (figure) 1060
goals of VMS support, 1008
hardware configurations

model type requirements, 1009
overview, 1008
revision level requirements, 1009

I/O considerations, 1038
I/O postprocessing operations, 1042
initialization

bootstrap operations, (figure) 1045
bootstrap code for secondary processors, 1053
CPU-dependent, 1049
EXE$INIT operations specific to, 1047
overview, 1044
SYSBOOT operations specific to, 1045

interlocked instruction use in support of, 14
interprocessor cooperation, concepts and mecha­

nisms, 1022
interprocessor interrupt vectors, VAX architecture

mechanism, 42
interval timer interrupt routine operations,

261
locking pages, issues, 508
memory management, CPU mapping, 926
memory sharing, implications, 1020
override set operations, 1034
per-CPU data area, locating, 1015
powerfail recovery, 1058

EXE$RESTART operations, 1058
process priority data structures, 276, (figure) 277
processor states, 1043
RPB, boot page, and physical CPU data vector

relations, (figure) 1050
scheduler considerations, 276
scheduling constraints, 268
shared system data, handling, 1021
shutting down CPUs, affinity use during, 289
software timer interrupt handling, 263

1404

spinlock use to synchronize access to, 172
spinwait operations, 1035
stacks, 1015
supported by per-CPU database, 269
synchronizing

access to system data structures, with spinlocks,
166

process data structure access on, 167
system space lookaside lists, 552

translation buffer
use, 1029
validation on, 365

updating EXE$GQ_SYSTIME on, 248
SMPSACQNOIPL routine (SPINLOCKS module)

characteristics and control flow, 189
SMP$ACQUIRE routine (SPINLOCKS module)

characteristics and control flow, 189
SMPSACQUIREL routine (SPINLOCKS module)

characteristics and control flow, 189
SMPSAL_IPLVEC cell

spinlock IPL vector table pointed to by, 57
SMPSALLOC_SPL routine (SPINLOCKS module)

creating device locks, 180
SMPSAR_SPNLKVEC cell

spinlock use of, 177
static spinlock vector table pointed to by, 57

SMP$GL_ACK_MASK cell
meaning, 1014

SMP$GL_ACTIVE_CPUS cell
meaning, 1014, 1022

SMP$GL_BASE_MSK cell
meaning, 1015

SMP$GL_BUG_DONE cell
meaning, 1014

SMP$GL_BUGCHKCP cell
meaning, 1014

SMP$GL_CPU_DATA cell
meaning,1016

SMP$GL_CPUCONF cell
meaning, 1014

SMP$GL_FLAGS cell
meaning, 1013
time-of-year clock access, work request use of, 1027

SMP$GL_INVALID cell
meaning, 1014

SMPSGL_OVERRIDE cell
meaning, 1014

SMPSGL_PRIMID cell
meaning, 1014
SYSBOOT use of, 1047

SMPSGL_PROPOSED_TODR cell
meaning, 1027

SMPSGW _SPNLKCNT cell
spinlock use of, 177

SMPSINIT_SPL routine (SPINLOCKS module)
initializing device locks, 180

SMP$INITIATE_BENIGN routine (SMPROUT module)
alternative entry into benign state, 1034

SMP$INTALL routine ((SYSLOA]SMPINT_xxx
module)

operations, 1024
SMP$INTALL_ACQ routine ((SYSLOA]SMPINT_xxx

module)
operations, 1024

SMP$INTALL_BIT routine ((SYSLOA]SMPINT_xxx
module)

operations, 1024
SMP$INTALL_BIT_ACQ routine ((SYSLOA]SMPINT_

xxx module)
operations, 1024

SMP$INTPROC routine ([SYSLOA)SMPINT_xxx
module)

operations, 1024
SMP$INTSR routine ([SYSLOA)SMPINT_xxx module)

operations, 1025, 1032
SMP$INVALID routine (SMPROUT module)

control flow, 1030
SMP$INVALID_SINGLE routine ([SYSLOA)SMPINT_

xxx module)
control flow, 1032

SMP$RELEASE routine (SPINLOCKS module)
characteristics and control flow, 189

SMP$RELEASEL routine (SPINLOCKS module)
characteristics and control flow, 189

SMP$RESTORE routine (SPINLOCKS module)
characteristics and control flow, 189

SMP$RESTOREL routine (SPINLOCKS module)
characteristics and control flow, 189

SMP$SETUP _SMP routine ([SYSLOA)SMPSTART_xxx
module)

control flow, 1049
SMP$SHUTDOWN_CPU routine (SMPROUT module)

affinity use by, 289
control flow, 1056

SMP$SWITCH_CPU routine (SMPROUT module)
creating fork process on another CPU, 630

SMP$TERMINATE_BENIGN routine (SMPROUT
module)

alternative exit from benign state, 1034
SMP$TIMEOUT routine (SMPROUT module)

operations, 1035
SMP$V _BENIGN bit (SMP$GL_FLAGS cell)

meaning, 1013
SMP$V_CRASH_CPU bit (SMP$GL_FLAGS cell)

meaning, 1013
SMP$V _ENABLED bit (SMP$GL_FLAGS cell)

meaning, 1013
SMP$V _START_CPU bit (SMP$GL_FLAGS cell)

meaning, 1013
SMP$V _SYNCH bit (SMP$GL_FLAGS cell)

meaning, 1013
SMP$V_TODR bit (SMP$GL_FLAGS cell)

meaning, 1013, 1027
SMP$V_TODR_ACK bit (SMP$GL_FLAGS cell)

meaning, 1013, 1027
SMP$V _UNMOD_DRIVER bit (SMP$GL_FLAGS cell)

meaning, 1013
SMP_LNGSPINWAIT parameter (SYSGEN)

specifying spinwait timeout value, 176
spinlock loop count use of, 1023

SMP_SPINWAIT parameter (SYSGEN)
specifying spinwait timeout value, 176
spinlock loop count use of, 1023

SMP_TICK_CNT parameter (SYSGEN)
number of ticks between sanity timer checks, 103 7

SMPROUT module
SMP$INITIATE_BENIGN, alternative entry into

benign state, 1034
SMP$1NVALID, control flow, 1030
SMP$SHUTDOWN CPU

affinity use, 289 -
control flow, 1056

SMP$SWITCH_CPU, operations, 630
SMP$TERMINATE_BENIGN, alternative exit from

benign state, 1034
SMP$TIMEOUT, operations, 1035

$SNDACC (Send Message to Accounting Manager
system service)

operations, 1107
$SNDSMB compared with, 1108

Index

superseded by $SNDJBC, 1106
$SNDERR (Send Message to Error Logger system

service). See also ERRFMT; error logging
subsystem

operations, 1109
$SNDJBC and $SNDOPR compared with, 1109

SSNDJBC (Send Message to Job Controller system
service). See also batch processes; job controller

arguments to, 1103
DCL commands that request, 1103
operations, 1103
special kernel AST, operations, 1106

$SNDOPR (Send Message to Operator system service).
See also OPCOM process

operations, 1108
$SNDACC and $SNDSMB compared with, 1108

$SNDSMB (Send Message to Symbiont Manager system
service). See also batch processes; job controller

operations, 1108
$SNDACC compared with, 1108
superseded by $SNDJBC, 1106

sniffer boot
MicroVAX II VMB, 872
MicroVAX 2000 VMB, 872

soft suspension. See also process suspension
characteristics, 33 7

software conditions. See also condition handlers;
exceptions

concepts and system procedures for handling, 86
continue signal actions when condition is a, 96
converting errors to, 72
distinguished from exceptions, 72
handling, concepts and mechanisms, !chapter) 71

software context
overview, 3

software interrupt request register. See PR$_SIRR
software interrupt requests

SMP handling, 1007
software interrupt summary register. See PR$_SISR
software interrupts. See also AST delivery interrupt;

fork interrupts; I/O postprocessing1 IPL 12
interrupt service routine; IPL 14 interrupt
service routine; rescheduling interrupt; software
timers; XDELTA

AST, blocking, 172
AST delivery, characteristics and use, overview, 67
characteristics and use, 44, 54
concepts and mechanisms, !chapter) 54
1/0 subsystem support, overview, 19
requesting, 44, 54
requests for, determining how many, 54
rescheduling

blocking, 172
operations, overview, 66

service routines
concepts and mechanisms, 55
distinguished from each other, 56

software timer, interrupt service routine, overview,
64, 1007

term definition, 29
unused IPLs, 54
VAX architecture feature used by VMS, 15

software IPLs. See also IPL
symbolic name, stack and purpose, (table) 55

software licenses
command file that loads, 947

software PCB. See PCB
software timers

interrupt (IPL 7)
blocking execution of, 170

1405

Index

software timers (continued)
interrupt (IPL 7) (continued)

requested by EXE$HWCLKINT, 54, 262
interrupt service routine

control flow, 263
overview, 64, 1007
TIMER spinlock use by, 182

summary, (table! 248
software-vectored condition handlers. See also

condition handlers
location of, 7 4
searching for condition handlers with, 88
types of, 74

SP (stack pointer) register
process, as part of process hardware context, 306
saving during REI instruction, 39

SPAWN command. See also ATTACH command;
processes

operations, 788
special kernel mode AST

compared with normal ASTs, 143
examples, 143
flag, ACB location of, 133
$GETJPI use of, 145, 333
I/O postprocessing use of, 144
job controller, operations, II 06
obtaining information about an outswapped process

with, 330
PKASTs, characteristics and use, 146
power recovery AST use of, 145, 999
queuing, after granting a lock, reasons for, 232
routine

address, ACB location of, 133
I/O completion, 617

spinlock control block. See SPL
spinlocks. See also device locks; fork locks; IPL; locks;

synchronization
acquiring, 173

macros for, 185
nested, 173
recording number of successful and failed, 176
rules for, 180
streamlined routines, control flow, 189

characteristics and use, 172
clearing, 173
compared with raising IPL, 173
CPU mutex as a simplified form of, 1022
device. See device lock
dynamic

characteristics and use, 178
compared with static spinlocks, 173

EMB. See EMB spinlock
EXE$FORKDSPTH handling, 61
FILSYS, characteristics and use, 181
fork. See fork locks
form, 172
HWCLK. See HWCLK spinlock
index

characteristics and use, 1 77
converting to an IPL, 59

INVALIDATE
characteristics and use, 184
SMP$INVALID use of, 1030

IOLOCK8
characteristics and use, 181
device driver use of, 63

IOLOCKn, characteristics and use, 183
IPL table, characteristics and use, 178
JIB, characteristics and use, 182
location in SPL, 174

1406

locked, tracking how often a processor has, 175
locking, 173
macros for acquiring and releasing

common operations, 186, 188
differences among, 186. Consult VMS Device

Support Manual
MAILBOX, characteristics and use, 183
MCHECK. See MCHECK spinlock
MEGA. See MEGA spinlock
MMG. See MMG spinlock
owner, specifying, 175
per-CPU database fields, characteristics and field

definitions, 176
PERFMON, characteristics and use, 184
POOL

characteristics and use, 183
serializing access to nonpaged pool variable-length

list, 558, 561
PR_LK8, characteristics and use, 182
PR_LKn, characteristics and use, 183
processors waiting for, number of, 176
QUEUEAST, characteristics and use, 181
rank, defining, 175
releasing, 173

compared with restoring, 191
macros for, 185
rules for, 180

relinquishing
full-checking routines, control flow, 194
streamlined routines, control flow, 189

routines
full-checking, control flow, 192
full-checking, per-CPU database fields used by,

177
streamlined, control flow, 189

SCHED. See SCHED spinlock
SCS. See SCS spinlock
shared system data protected by, 166
SMP handling, 1023
SMP synchronization use of, 1021
static

characteristics and use, 177
compared with dynamic spinlocks, 178
list of names, IPL, and meaning, (table! 177
recording in per-CPU database, 177
using, descriptions of each, 181

systemwide absolute queue protection by, 166
term definition and mechanism overview, 24
timeout value, 176
TIMER

characteristics and use, 182
held by EXE$SWTIMINT, 64, 263
synchronizing timer queue access with, 256

unlocking, 173
VIRTCONS, characteristics and use, 184
VMS use of, overview, 166
wait timeout

disabled by IPL 12 interrupt service routine, 68
purpose of, 1023

waiting processor action, 173
SPINLOCKS module

SMP default spinlock routine, 174
SMP$ACQNOIPL, characteristics and control flow,

189
SMP$ACQUIRE, characteristics and control flow,

189
SMP$ACQUIREL, characteristics and control flow,

189
SMP$ALLOC_SPL, creating device locks, 180
SMP$INIT_SPL, initializing device locks, 180

SPINLOCKS module (continued)
SMP$RELEASE, characteristics and control flow,

189
SMP$RELEASEL, characteristics and control flow,

189
SMP$RESTORE, characteristics and control flow,

189
SMP$RESTOREL, characteristics and control flow,

189
SPINLOCKS_MON module

full-checking spinlock routine, 174
SPINLOCKS_UNI module

uniprocessor spinlock routine, 174
SPINWAIT macro

characteristics and use, control flow, 190
operations, 1035

spinwaits
operations, 1035
processor actions, 190

SPL (spinlock control block)
characteristics and field definitions, (figure) 174
serializing access to by full-checking routines, 17 4
size, specifying, 175
static, address table, (figure) 177
summary, 1261
type, specifying, 175

SPLSB_IPL field
definition and use, 175

SPLSB_RANK field
definition and use, 175

SPL$B_SPINLOCK field
definition and use, 174

SPLSB SUBTYPE field
definition and use, 175
device lock value, 179

SPLSB_TYPE field
definition and use, 175

SPLSB_ VEC_INX field
definition and use, 176

SPLSC_SPL_DEVICELOCK value
device lock use of, 179

SPLSC_SPL_FORKLOCK value
identifying fork locks with, 178

SPLSC_SPL_SPINLOCK value
identifying static spinlocks with, 178

SPLSL_BUSY_WAITS field
definition and use, 176

SPLSL_OWN_CPU field
definition and use, 175

SPLSL_OWN_PC_ VEC field
definition and use, 176

SPLSL_RLS_PC field
definition and use, 176

SPL$L_TIMO_INT field
definition and use, 175

SPL$L_ WAIT_PC field
definition and use, 176

SPL$Q_ACQ_COUNT field
definition and use, 176

SPL$Q_SPINS field
definition and use, 176

SPLSW_OWN_CNT field
definition and use, 175

SPLSW _SIZE field
definition and use, 175

SPLSW_WAIT_CPUS field
definition and use, 176

$SPLCODDEF macro
SMP$GL_FLAGS bits defined in, 1013

SSPLDEF macro

spinlock control block fields defined in, 17 4
SPLIPLHIGH bugcheck. See also bugchecks

synchronization failure indication, 192
SPLIPLLOW bugcheck. See also bugchecks

reason for, 194, 195
SPLRELERR bugcheck. See also bugchecks

generated during spinlock release, 195
SPLRSTERR bugcheck. See also bugchecks

generated during spinlock restore, 194, 195

Index

SPT (system page table). See also address space; page
tables; system space

characteristics and use, 38 7
description, 1226
GPT as extension to, 390
processor registers that describe, 362
sharing of system space enabled by, 355
size calculation, 1277
SMP sharing, implications for system operation,

1020
SYSBOOT creating of, 353

SPTE (system page table entry). See also PTE
available, linked list of, (figure) 859
dynamic allocation and deallocation of, operations,

859
reserved for secondary processor's boot PO page table,

926
SPTREQ parameter (SYSGEN)

effect on size of system space, 1279
SRP (small request packet)

lookaside list
characteristics, (table) 544
element size, SYSGEN parameter that determines,

556
listhead location and allocation type, (table) 546
uses of, 563

SRPSIZE parameter (SYSGEN)
lock block size as constraining factor, 55 7
SRP list element size, 556

SS$_ACCONFLICT error status
returned by EXE$IMGACT, 755

SS$_ACCVIO error status
change mode dispatcher use, 114
returned by

EXE$CREPRC, 710
EXE$PROCESS_SCAN, 326
MMG$LCKVLKPAG, 503
$SETIME, 255

SS$_ASTFLT (AST delivery stack fault)
inaccessible stack handling, 83

SS$_ASTLM error status
returned by EXE$GETJPI, 330

SS$_BADPARAM error status
returned by $ENQ, 234

SS$_BUFFEROVF error status
returned by EXE$TRNLNM, 1093

SS$_BUGCHECK error status. See also bugchecks
at exit of an image that incurred fatal outer mode

bugcheck, 968
SS$_CONTINUE status

effect on condition handler searching, 96
SS$_DEADLOCK error status

returned by $ENQ, 235
SS$_DEBUG signal

generated by CLI in response to DEBUG command,
808

handling, 84
mapping debugger in response to, 93

SS$_DEVACTIVE error status
returned by EXE$ASSIGN, 600

SS$_DEVALLOC error status

1407

Index

SS$_DEVALLOC error status (continued)
returned by EXE$DERLMB, 967

SS$_DEVOFFLINE error status
returned by EXE$QIO, 608

SS$_DUPLNAM error status
returned by

EXE$CREPRC, 715
LOG$INSLOGTAB, 1095

SS$_EXDEPTH error status
returned by $ENQ, 227

SS$_EXENQLM error status
returned by $ENQ, 226

SS$_EXGBLPAGFIL error status
returned by EXE$CRMPSC, 420

SS$_EXLNMQUOTA error status
returned by EXE$CRELNM, 1094

SS$_EXPRCLM error status
returned by EXE$CREPRC, 716

SS$_EXQUOTA error status
returned by

EXE$ASCEFC, 206
EXE$CREPRC, 713
MMG$CREPAG, 410

SS$_FORCEDERROR error status
from reading a replaced bad block, 694

SS$_GPTFULL error status
returned by EXE$CRMPSC, 420

SS$_GSDFULL error status
returned by EXE$CRMPSC, 419

SS$_ILLEFC error status
returned by

EXE$ASCEFC, 206
EXE$DACEFC, 207
EXE$WAIT, 209
SCH$POSTEF, 211

SS$_INHCHME error status
system service filtering error return, 128

SS$_INHCHMK error status
system service filtering error return, 128

SS$_INSFARG error status
change mode dispatcher use, 114

SS$ INSFMEM error status
returned by

EXE$ALONONPAGED, 558
EXE$ALOPAGED, 564
EXE$CRELNM, 1094

SS$_INSFSPTS error status
returned by LDR$ALLOC_PT, 861

SS$ INSFWSL error status
returned by

failed address space creation, 406
MMG$CREPAG, 409

SS$_INVSRQ error status
returned by EXE$PROCESS_SCAN, 326

SS$_IVLOCKID error status
returned by

$DEQ, 222, 230
$ENQ, 222, 226

SS$ IVLOGNAM error status
returned by

EXE$CRELNM, 1095
EXE$NAMPID, 321

SS$_IVSECFLG error status
returned by

EXE$CRMPSC, 412
EXE$MGBLSC, 421

SS$_LKWSETFUL error status
returned by MMG$LCKULKPAG, 503

SS$_MBFULL error status
returned by MBDRIVER, 666

1408

SS$_MBTOOSMAL error status
returned by MBDRIVER, 666, 668

SS$_MCHECK error status
returned at machine check recovery block exit, 981

SS$ NODELETE error status
returned by EXE$DELPROC, 812

SS$_NOIOCHN error status
returned by IOC$FFCHAN, 597

SS$_NOLOGNAM error status
returned by EXE$DELLNM, 1098

SS$ NOLOGTAB error status
returned by EXE$CRELNM, 1094

SS$_NOMORENODE error status
returned by EXE$GETSYI, 1116

SS$_NOMOREPROC error status
returned by EXE$PSCAN_NEXT_PID, 329

SS$_NONEXPR error status
returned by

EXE$GETJPI, 331
EXE$NAMPID, 321
EXE$SUSPND, 337
SCH$POSTEF, 211

SS$_NONLOCAL error status
returned by

EXE$ASSIGN, 598
IOC$TRANDEVNAM, 601

SS$_NOPRIV error status
returned by

$SCHDWK, 260
$SETIME, 255
EXE$ASCEFC, 206
EXE$CRELNM, 1094
EXE$CREPRC, 712
EXE$CRETVA, 408
EXE$CRMPSC, 415, 418
EXE$DELLNM, 1098
EXE$DERLMB, 966
EXE$DGBLSC, 423
EXE$DLCEFC, 208
EXE$LCKPAG, 504
EXE$MGBLSC, 421
EXE$NAMPID, 322
EXE$SUSPND, 336
EXE$TRNLNM, 1093
MMG$LCKULKPAG, 503
MMG$SETPRTPAG, 434

SS$_NOSLOT error status
returned by EXE$CREPRC, 717

SS$_NOSUCHNODE error status
returned by

EXE$GETSYI, 1116
EXE$NAMPID, 321

SS$_NOSUCHSEC error status
returned by EXE$DGBLSC, 423

SS$ NOSUSPEND error status
returned by EXE$SUSPND, 337

SS$_NOSYSLCK error status
returned by $ENQ, 226

SS$ NOTALLPRIV status
returned by EXE$SETPRIV, 781

SS$_NOTQUEUED error status
returned by $ENQ, 227, 234

SS$_PAGOWNVIO error status
returned by

MMG$DELPAG, 428
MMG$LCKULKPAG, 503
MMG$SETPRTPAG, 433

SS$_PAGRDERR (page fault read error condition)
handling, 83

SS$_PARITY error status

SS$_PARITY error status (continued)
returned by SCSI disk class driver, 694

SS$_PARNOTGRANT error status
returned by $ENQ, 226

SS$_PRIVINSTAL error status
returned by EXE$IMGACT, 754, 755

SS$_REMOTE_PROC error status
returned by

EXE$NAMPID, 260, 321, 329, 337
EXE$PSCAN_NEXT_PID, 329

SS$_RESIGNAL error status
resignaling condition with, 88

SS$_SECTBLFUL error status
returned by

EXE$CRMPSC, 419
MMG$ALCPHD, 497

SS$_SHRIDMISMAT error status
returned by EXE$IMGACT, 755

SS$_signal-name
names and exception type, (table) 77

SS$_SSFAIL error status
condition signaled at system service exit, 117
handling, 82

SS$_SUBLOCKS error status
returned by $DEQ, 230

SS$_SUSPENDED error status
returned by $GETJPI, 331

SS$_SYNCH status
returned by $ENQ, 227

SS$_SYSVERDIF error status
returned by

EXE$IMGACT, 755
image activator, 855
LDR$LOAD_IMAGE, 839

SS$_UNASCEF error status
returned by SCH$POSTEF, 212

SS$_ VA_IN_USE error status
returned by MMG$CREPAG, 409

SS$_ VASFULL error status
returned by MMG$CREPAG, 409

SS$_ WASCLR status
returned by

EXE$SETAST, 143
MMG$LCKULKPAG, 505
SCH$POSTEF, 212

SS$_WASSET status
returned by

EXE$SETAST, 143
MMG$LCKULKPAG, 503
SCH$POSTEF, 212

$SSDESCRDEF macro
system service descriptor block symbolic offsets

defined by, 849
SSINffiBIT parameter (SYSGEN)

enabling system service filtering, 128
SSRVEXCEPT bugcheck. See also bugchecks

fatal, generated during kernel mode last chance
handling, 94

nonfatal, generated during executive mode last
chance handling, 95

SSVECFULL bugcheck. See also bugchecks
generated by EXE$CONNECT_SERVICES, 850

stack. See also call frames; PR$_xSP processor register
corrupted, REI tests for, 38
exception servicing, selecting, (table) 35
initial state, distinguishing exceptions and software

conditions, 72
interrupt, REI illegal condition testing, 38
interrupt servicing, selecting, 34
process, one per access mode, 3

Index

selected, interrupts compared with exceptions, 37
SMP system handling, 1015
software IPL use, (table) 55
SP register, saved during REI instruction, 39
state following a page fault, (figure) 436
transforming into an exception stack by

LIB$SIGNAL/STOP, (figure) 86
unwinding call frames from, 96, (figure) 97, 100
user, expanding automatically, 409

STACK linker option
effect on Pl space, 1293

stack pointer. See SP register
STACONFIG process

autoconfiguration of disks and SCS ports, 942
STARDEFxx.SDL file

files, location of, 1133
SDL external interface data structure files named by,

1241
SYSDEFxx.SDL compared with, 1241

STARLET.MLB macro library
locating public data structure offsets, constants, and

macro definitions in, 1133
VAX MACRO internal interface data structure

definitions stored in, 1241
STARLET.REQ file

BLISS-32 internal interface data structure definitions
stored in, 1241

start 1/0 routines. See also device drivers
alternate, entering, 631
characteristics and use, 583
device drivers, characteristics and use, 632
driver actions, (example) 633, (figure) 633
entering, (figure) 633

device driver's, 629
from IOC$REQCOM to initiate a pending request,

641
read request, mailbox, control flow, 668
reentering

after expected interrupt occurs, operations, 638
from fork dispatcher, 639

testing device affinity in, 1041
START/CPU command

SMP operations, 1056
STARTIO routine (MBDRIVER module)

start I/O mailbox read, control flow, 668
STARTUP process

files accessed by, (table) 863
operations, overview, 862
processing of SYS$STARTUP data files, 945
SYSGEN parameter file use, operations, (figure) 950
system initialization operations, 945

STARTUP.COM command file
operations, 945
startup process directed from, 945

$STATEDEF macro
symbolic scheduling names defined in, 2 79

STATENTSVD bugcheck. See also bugchecks
generated by EXE$RESTART_ATT, 996

states. See also benign state; CEF; COLPG; COM;
COMO; CUR; FPG; HIB; HIBO; INIT; LEF;
LEFO; MWAIT; PFN STATE array; PFW; process
states; STOPPED state; SUSP; SUSPO; wait
states

process CEF wait queue, characteristics and use, 273
process state queues, characteristics and use, 2 71
process wait queues, characteristics and use, 271
saved, interrupts, 34
scheduling

characteristics and transitions, (figure) 279
symbolic names and values, (table) 279

1409

Index

static spinlocks. See also spinlocks
characteristics and use, 177
rank, 180
using, descriptions of each, 181

statistics (pool allocation)
collecting, ltable) 568

status block
synchronous system services, return path handling

of, 120
status codes. See also SS$_ prefix entries

names format, 1234
STOP command

operations, 808
STOP/CPU command

SMP operations, 1056
STOPPED state

reasons for changing CPU state to, 1044
storage areas

dynamic data structures, 544
string instructions. See also instructions

unimplemented, emulation support for, 77
structure definition language. See SDL
structure$K_constant-name format

meaning, 1237
structure$M_field-name format

meaning, 1237
structure$S field-name format

meaning, l236
structure$t_field-name format

meaning, 1235
structure$V _field-name format

meaning, 1236
structure$x_field-name format

meaning, 1236
$structureDEF macro

meaning, 1235
sublocks. See also locks

characteristics and use, lfigure) 220
dequeuing, 230

SUBMIT command
creating batch processes

arguments passed to $CREPRC, ltable) 785
operations, 784, lfigure) 785

job controller process creation of batch processes in
response to, 783

subprocesses
deleting a process that owns

example, lfigure) 818, 819
operations, 818

interactive, DCL commands that create and connect
with, 787

locating, 818
spawning, with SPAWN command, 788

subresources. See also resources
characteristics and use, 215
linking root resources with, lfigure) 215

subset instruction emulation exception. See also
instructions

selecting stack for servicing, 35
supervisor mode. See also access modes

bugchecks, operations, 968
condition handlers, establishing, 95
exit handler, CLI declaration of, 799
stack pointer, as part of process hardware context,

306
SUSP (suspended wait state). See also process states;

process suspension; SUSPO; wait states
context for, 292
transitions

from SUSP to COM or COMO, 282

1410

to SUSP from other states, 282
Suspend Process system service. See $SUSPND
SUSPEND_SOFT routine (SYSPCNTRL module)

supervisor mode AST procedure, operations, 338
suspended outswapped wait state. See SUSPO
suspended processes. See process suspension
suspended wait state. See SUSP
$SUSPND (Suspend Process system service)

control flow, 148, 336
kernel mode AST use by, 148
normal AST use by, 147
process state change actions, 279, 282

SUSPND routine (SYSPCNTRL module)
kernel mode AST procedure, operations, 148, 337

SUSPO (suspended outswapped wait state). See also
process states; process suspension; SUSP; wait
states

transitions
from SUSPO to COM or COMO, 282
to SUSPO from other states, 282

SVAPTE request
operations, 468

SVPCTX instruction. See also instructions
control flow, 308
list of routines that use, 309
VAX architecture feature used by VMS, 15

swap files
bitmaps. See memory management
data structures

characteristics and field definitions, 396, 514
relations among, (figure) 516

deinstallation, 399
primary swap file, SYSINIT use, 399
space deallocated after process inswap, 543
Version 5 approach to space allocation, 515
writing modified pages to, 472

swap virtual block number
PFN SWPVBN array use, 387

SWAPFILE.SYS. See
SYS$SPECIFIC:[SYSEXE]SWAPFILE.SYS

swappable process context
term definition, 4

swapper. See also balance set; balance set slots; inswap;
memory management; outswap; page faults;
scheduler; swapper trimming; wait states

awakened by
EXE$TIMEOUT, 265
SCH$RSE, 301

concepts, overview, 510
concepts and mechanisms, (chapter) 510
disabling for a process, privilege required, 342
1/0, overview, 400
1/0 data structures, 514
1/0 request descriptions, (table) 463
implementation, 511
initiation of modified page writing, 517
main loop, control flow, 516
memory management data structures used by, 512
modified page writer role, 355
overview, 19
page table arrays, characteristics and use, 400
preparing for process inswap, 725
responsibilities, 510
system events that trigger activities by, (table) 511
term definition, 9
working set size affected by, 501

swapper 1/0 map
outswapping use of, 529
overview, 514

SWAPPER module

SWAPPER module (continued)
BALANCE, control flow, 518
EXE$SWAPINIT

control flow, 939
operations, 862, 938

OUTSWAP, control flow, 522
SWAPSCHED, control flow, 519

swapper trimming
operations, 523
OSWPSCHED table processing to find an outswap

candidate, 527
reclaiming physical pages by, 360
reducing working set limit with, 490
term definition, 501

swapping. See also inswap; outswap
data structures, characteristics and use, 393
paging compared with, 359, (table) 361
preventing, privilege that allows a process to, 432

SWAPSCHED routine (SWAPPER module)
control flow, 519

SWP$GB_ISWPRI cell
priority of inswap process candidate, 519

SWP$GL_BALBASE cell
address of balance slots, 394

SWP$GL_BSLOTSZ cell
meaning, 1272
size of balance slot, 394

SWP$GL_MAP cell
swapper 1/0 map address contained in, 401, 514

SWP$GL_SHELLBAS cell
definition and use, 724, 725

SWP$GL_SHELLSIZ cell
definition and use, 725

SWP$SHELINIT routine (SHELL module)
control flow, 726

SWPFAIL parameter (SYSGEN)
effect on outswap and swapper trimming selection,

528
SWPFILCNT parameter (SYSGEN)

effect on primary page file index value, 399
maximum number of swap files, 398

SWPOUTPGCNT parameter (SYSGEN)
target size to shrink working set, 524, 527, 528
working set size affected by, 360

SWPRATE parameter (SYSGEN)
SWAPSCHED routine use of, 519

symbiont processes. See also job controller
communication with job controller through

mailboxes, 673
symbols. See also Digital symbols; global symbols; map

files, relocatable symbols; vectored universal
symbols

resolving, in loadable executive images, 835
symmetric

term definition, 1006
symmetric multiprocessing. See SMP systems
$SYNCH (Synchronize system service)

control flow, 120
process state change actions, 279, 282
requesting event flag wait, 209
synchronizing system service completion with, 109

SYNCH$RMS_STALL routine (SYSTEM_SERVICE_
EXIT module)

stalling RMS service procedures, control flow, 118
SYNCH$RMS_WAIT routine (SYSTEM_SERVICE_

EXIT module)
RMS synchronization routine, control flow, 119

synchronization. See also event flags; fork processes;
interlocked instructions; locks; mutexes; SMP
systems; spinlocks

Index

AST delivery to access modes with
PCB$B_ASTACT, 132

AST thread and normal threads of execution,
$SETASTuse, 143

attention AST list access, 151
CEB list access, with EXE$GL_CEBMTX mutex, 204
concepts and techniques, (chapter) 161
debugging problems, spinlock routine optimized for,

174
device drivers, SMP systems, 1039
event flags, characteristics and use, (chapter) 202
failure, characteristics and means of preventing, 180
fork process importance to, 58
hardware support, 162
1/0

completion problems, 616
database access, 581

interprocess, through common event flags, 213
KRP lookaside list, 567
logical name database access, 1086
lowering IPL dangerous for, 168
methods for obtaining, 151
mutexes, characteristics and use, 196
overview, 24
pool

lookaside lists, 552
nonpaged, 561
paged, 564

process allocation region, 567
process use of common event flags for, 213
RMS services, 118
scheduler database access, 151

SCHED spinlock use for, 269
serialized access, VMS features that support, 195
shared data structure access, with software

interrupts, 54
SMP issues, 1021
software support, 165
software techniques

application use of, 167
VMS use, comparison, (table) 166

SPL access by full-checking routines, 174
system databases, nonpaged pool expansion

considerations, 560
techniques for·

multiprocessor systems, 164
user mode applications, 167

terms and concepts overview, 161
TQE queue access, 64
VAXcluster resources, lock management as

fundamental technique, 167, 223
Synchronize system service. See $SYNCH
synchronous backplane interconnect. See SBI
synchronous system services

guaranteeing completion, requirements for, 108
return path, control flow, (figure) 120
that use composite vectors, list, (table) 109

[SYS) facility
contents, 1130
SDL files in, 1133

SYS.EXE (base image file). See base image
SYS.STB (base image symbol table)

images that link with, overview, 12
privileged images linked with, (table) 1128
read by SDA, 1155
system processes linked with, (table) 1128
term definition, 8

SYS$CALL_HANDL routine (SYSVECTOR module)
command call site for condition handlers, 91

SYS$GL_ VERSION array

1411

Index

SYS$GL_ VERSION array (continued)
conceptual category version numbers, 854

SYS$INPUT logical name
CLI processing use of, 799

SYS$LOADABLE_IMAGES directory
executive images moved into, 824

SYS$LOADABLE_IMAGES:VMS$SYSTEM_
IMAGES.DATA file

optional executive images listed in, 843
SYS$PUTMSG routine (SYSPUTMSG module)

called by catch-all condition handler, 94
SYS$SO_ VECTOR_BASE symbol

start of system service vector system addresses,
107

SYS$SO_ VECTOR_END symbol
end of system service vector area high end, 1164
system service vector system addresses, 107

SYS$SO_ VECTOR_LAST_USED symbol
system service vector system addresses, 107

SYS$service
address of system service vector, characteristics,

106
SYS$service_name

system service name template, 826
SYS$SPECIFIC:[SYSEXE] directory

system dump file location, 969
SYS$SPECIFIC:[SYSEXE]PAGEFILE.SYS file

alternative system dump file name, 970
primary page file, SYSINIT use, 399

SYS$SPECIFIC:[SYSEXE]SWAPFILE.SYS file
primary swap file

opened by SYSINIT process, 514
SYSINIT use, 399

SYS$STARTUP directory
data files for startup process contained in, 945

SYS$SYNCH system service vector
synchronous service return path, control flow, 120

SYS$SYSTEM directory
executive images moved out of, 824

SYS$SYSTEM:OPCCRASH.EXE. See
[OPCOM]OPCCRASH module

SYS$SYSTEM:SHUTDOWN.COM. See SHUT­
DOWN.COM command file

SYS$SYSTEM:STARTUP.COM. See STARTUP.COM
command file

SYS$SYSTEM:SYS$INCARNATION.DAT file
VAXcluster system initialization from, 941

SYS$SYSTEM:SYS.STB. See SYS.STB
SYSADJWSL module

EXE$ADJWSL, control flow, 496
MMG$SHRINKWS, operations, 497

SYSASCEFC module
EXE$ASCEFC, creating named common event flag

clusters, control flow, 206
EXE$DACEFC, dissociating from an event flag

cluster, control flow, 207
EXE$DLCEFC, deleting permanent event flag

clusters, control flow, 208
SYSASSIGN module

EXE$ASSIGN
associated mailbox processing, control flow, 600
common initial steps, control flow, 597
local device assignment, control flow, 598
nontemplate device processing, control flow, 598
operations, 597
remote device assignment, control flow, 601
template device processing, control flow, 599

EXE$NETWORK_ASSIGN, control flow, 602
SYSASTCON module

EXE$DCLAST, creating ASTs with, 134

1412

EXE$SETAST, disabling AST delivery, 143
SYSBOOT (secondary bootstrap program)

concepts and mechanisms, 913
argument list from VMB to SYSBOOT, (table) 913
information passed from SYSBOOT to INIT,

(table) 914
control flow, 914
environment, 914, (table) 948
files accessed by, (table) 863
initial conditions, (table) 948
items allocated in system virtual address area, name

and protection, (table) 1282
loadable executive images loaded by, (table) 831
major functions, 913
mapping of EXE$INIT, 924
nonpaged pool allocation, (table) 1284
operations, overview, 862
physical memory layouts, (figure) 902
purpose, (table) 948
SMP-specific operations, 1045
SPT created by, 353
SYSGEN parameter file use, operations, (figure) 950
SYSGEN compared with, (table) 948
system initialization use, (table) 948
valid commands, (table) 948

SYSBOOT XDELTA
operations, 916

SYSBRKTHR module
EXE$BRDCST, operations, 704
EXE$BRKTHRU

finding all terminals, control flow, 700, 701
I/O completion, control flow, 699, 701
initial processing, control flow, 695
response to timeout, 703
screen message fields, control flow, 695
sending message, control flow, 701
writing breakthrough message, control flow, 703

SYSCANCEL module
EXE$CANCEL, control flow, 625

SYSCANEVT module
EXE$CANTIM, operations, 259
EXE$CANWAK, operations, 261

SYSCREDEL module
EXE$CNTREG, operations, 432
EXE$CRETVA, control flow, 407
EXE$DELTVA, control flow, 427
EXE$EXPREG, operations, 409
MMG$CREDEL, operations, 405
MMG$CREPAG, control flow, 408
MMG$CRETVA, alternative entry point for

$CRETVA, 407
MMG$DELPAG, control flow, 428
MMG$FAST_CREATE, operations, 408
MMG$TRY_ALL, operations, 408

SYSCREPRC module
EXE$CREPRC, control flow, 710

SYSCRMPSC module
EXE$CRMPSC

global sections, control flow, 418
PFN-mapped sections, control flow, 415
process-private sections, control flow, 412

EXE$MGBLSC, control flow, 421
MMG$MAPSECPAG, control flow, 414

SYSDASSGN module
EXE$DASSGN, control flow, 603

SYSDEF.STB file
definitions of data structure symbols, 1155

SYSDEFxx.SDL file
location of, 1133
SDL internal interface data structure files

SYSDEFxx.SDL file (continued)
named by, 1241

STARDEFxx.SDL compared with, 1241
SYSDELPRC module

EXE$DELPRC, control flow, 811
EXEC_RUNDOWN_AST, operations, 813

SYSDERLMB module
EXE$DERLMB, operations, 966

SYSDEVALC module
EXE$ALLOC

conditions under which it will not allocate devices,
592

control flow, 592
EXE$DALLOC, control flow, 594

SYSDGBLSC module
EXE$DGBLSC, control flow, 423
GSD_CLEAN_AST, operations, 426
MMG$DELGBLSEC, control flow, 425
MMG$DELGBLWCB, control flow, 426
MMG$GSDSCN operations, 418

SYSDUMP.DMP file. See also SYS$SPECIFIC:[SYSEXE]
directory

default system dump file ruime, 970
SYSENQDEQ module

EXE$DEQ, control flow, 230
EXE$ENQ

control flow, 225
lock request handling, operations, 225

LCK$GRANT_LOCK, control flow, 231
SYSEVTSRV module
~· EXE$CLREF, clearing event flags, operations, 213

EXE$READEF, reading event flags, operations, 212
SYSEXIT module

EXE$EXIT, control flow, 772
SYSGBL (create systemwide global sections privilege).

See also privileges
required for

creating a system global section, 417
deleting a system global section, 423

use by
$CRMPSC, 417
$DGBLSC, 423

SYSGEN. Consult VMS Device Support Manual
environment, (table) 948
in context of startup process, files accessed by,

(table) 863
initial conditions, (table) 948
lock use by, 1328
operations, 948
purpose, (table) 948
SYSBOOT compared with, (table) 948
SYSGEN parameter file use, operations, (figure) 953
system initialization use, (table) 948
valid commands, (table) 948

SYSGEN Database lock
characteristics and use, 1328

SYSGEN parameters. See also bootstrap; SYSBOOT;
system initialization

ACP _xQP _RES
effect on VMS memory use, 1287
residency of Files-11 XQP global sections, 417, 944

active, 953
adjustable, names and descriptions, (table) 1199
AFFlNITY_SKIP, initializing PCB$B_AFFINITY_

SKIP field with, 289
alphabetical list of names and related global cell

names, (table) 1212
AWSTIME, use in automatic working set limit

adjustment, 500
BALSETCNT

Index

effect on size of system space, 1278
number of balance set slots, 931
number of entries in swapping data structures, 394

BORROWLIM
automatic working set limit adjustment use, 496,

500
effect on working set limit growth, 493

BREAKPOINT, breakpoints taken during system
initialization, 929 '

BUGCHECKFATAL
effect on kernel and executive mode nonfatal

bugchecks, 969
effect on user mode nonfatal bugchecks, 95
user and supervisor mode fatal bugchecks not

affected by, 969
BUGREBOOT, effect on fatal bugcheck processing,

979
CHANNELCNT, effect on Pl space, 1293
CLISYMTBL

effect on Pl space, 1292
size of CLI symbol table, LOGINOUT, 796

CTLIMGLIM, process allocation region allocation
limit, 566

CTLPAGES
effect on Pl space, 1293
number of pages in Pl pool, 565

current, 950
DEADLOCK_WAIT, deadlock search initiation

controlled by, 236
definition location, 948
DEFPRI

normal process priority defined from, 278
SWAPSCHED routine use of, 519

DISMOUMSG, enabling logging of volume dismount
messages, 966

DLCKEXTRASTK, limiting resource tree maximum
depth with, 239

DORMANTWAlT, use in outswap and swapper
trimming selection, 526

DUMPSTYLE
effect on size of system space, 1279
selective crash dump controlled by, 972

ERLBUFFERPAGES, number of pages in each error
log allocation buffer, 959

ERRORLOGBUFFERS, number of error buffers
specified by, 959

EXTRACPU, quantum expiration use of, 294
fields and flags, (table) 950
FREEGOAL

BALANCE routine use of, 518
swapper use of, 511

FREELIM
BALANCE routine use of, 518
effect on nonpaged pool expansion, 554, 560
effect on VMS memory use, 1287
swapper use of, 510

GBLPAGES, global page table size calculation, 1280
GBLPAGFIL, maximum page file blocks available for

global buffers, 417
GBLSECTIONS

effect on size of system space, 1279
number of entries in system header section table,

388
GROWLIM

effect on working set growth, 492
working set limit adjustment use, 496, 500, 501

IMGIOCNT
effect on Pl space, 1293
size of image 1/0 segment, 756

information stored for, (table) 950

1413

Index

SYSGEN parameters (continued)
INTSTKPAGES

default value, 35
effect on size of system space, 12 79
limiting resource tree maximum depth with, 239
size of interrupt stack, 1015

IOTA
automatic working set limit adjustment use of,

500
deducted from PHD$W _QUANT, 294
use in SCH$WAIT, control flow, 291

LNMPHASHTBL
number of name table cache blocks related to,

1086
process-private hash table size specified by, 1083

LNMSHASHTBL, shareable hash table size specified
by, 1083

LOAD_SYS_IMAGES, enabling loading of optional
loadable executive images, 843

loaded and manipulated by SYSBOOT, 913
LOCKDIRWT, effect on resource directory

participation, 224
LOCKIDTBL, lock ID table size controlled by, 222
LOCKIDTBL_MAX, lock ID table size controlled by,

222
LONGWAIT, use in outswap and swapper trimming

selection, 526
LRPSIZE, LRP list element size, 556
MAXPROCESSCNT, maximum number of processes

permitted, 720
MINWSCNT

fluid working set initialized from, 406
use in process creation, 728

MOUNTMSG, enabling logging of volume mount
messages, 966

MPW _HILIMIT
modified page list high limit, 467
swapper use of, 511

MPW _IOLIMIT, maximum number of concurrent
I/O operations, 401, 469

MPW _LOLIMIT
effect on VMS memory use, 1287
modified page list low limit, 468
nonpaged pool expansion affected by, 560

MPW LOWAITLIMIT
effect on removing a modified page from working

set, 495
swapper use of, 517
transitions triggered by, 285

MPW_THRESH, use by BALANCE, 518
MPW _ WAITLIMIT

effect on removing a modified page from working
set, 495

transitions triggered by, 285
MPW _ WRTCLUSTER

modified page write cluster target size, 473
page file allocation request size initial value, 398
$UPDSEC cluster target size, 476

MULTIPROCESSING
enabling SMP, 934
EXE$INIT use during SMP-specific operations,

1049
selecting spinlock routine, 174
SYSBOOT use during SMP-specific operations,

1047
NOAUTOCONFIG, disabling I/O autoconfiguration,

947
NPAGEDYN, controlling nonpaged pool, 555
NPAGEVIR

controlling nonpaged pool, 555

1414

effect on size of system space, 12 78
PAGEDYN

effect on size of system space, 1278
paged pool size specified by, 564

PAGFILCNT, maximum number of swap files, 398
PAGTBLPFC, default cluster factor for process page

table pages, 466
PFCDEFAULT, default cluster factor for page files,

466
PFRATH, use in automatic working set limit

adjustment, 500
PFRATL, use in automatic working set limit

adjustment, 501
PHYSICALPAGES, physical memory dump size

controlled by, 975
PIOPAGES, effect on Pl space, 1293
PIXSCAN, pixscan mechanism use of, 305
POOLCHECK

field and flag definitions, (figure) 5 70, (table) 570
POOLPAGING, residency of paged pool, 929
PQL_DWSDEFAULT

adjusted at system initialization, 490
initial working set list size, 1272
use in process creation, 728

PQL_MWSDEFAULT, adjusted at system initializa­
tion, 490

PROCSECTCNT
maximum PST size, 376, 487, 1272
working set list capacity affected by, 487

QDISKINTERVAL, polling interval for quorum disk,
942

QUANTUM
initial value for process quantum, 263
rescheduling use of, 293

REALTIME_SPTS, SPTEs reserved for use by
connect-to-interrupt driver, 653, 930

RESHASHTBL, determining number of resource
hash table entries, 218

SO_PAGING, residency of pageable executive, 930
SAVEDUMP, saving a dump in page file, 944, 970
SCSNODE, VAXcluster node name, 929
SCSSYSTEMID

system ID, 929
system ID lock naming, 1298

SCSSYSTEMIDH, system ID, 929
SETTIME, initializing time and date, 253
SMP _LNGSPINWAIT

specifying timeout value, 176
spinlock loop count use of, 1023

SMP SPINWAIT
specifying timeout value, 176
spinlock loop count use of, 1023

SMP_TICK_CNT, number of ticks between sanity
timer checks, 1037

SPTREQ, effect on size of system space, 1279
SRPSIZE

lock block size as constraining factor, 55 7
SRP list element size, 556

SSINHIBIT, enabling system service filtering, 128
SWPFAIL, effect on outswap and swapper trimming

selection, 528
SWPFILCNT

effect on primary page file index value, 399
maximum number of swap files, 398

SWPOUTPGCNT
target size to shrink working set, 524, 527, 528
working set size affected by, 360

SWPRATE, use by SWAPSCHED routine, 519
SYSMWCNT

effect on size of system space, 12 79

SYSGEN parameters (continued)
SYSMWCNT (continued)

system working set list size determined by, 388
system data area that contains, 830
system virtual address space components affected

by, names and system mapping information,
(table) 1275

TBSKIPWSL, effect on working set replacement
algorithm, 494

TIMEPROMPTWAIT, initializing time and date, 253
TTY_ALTALARM, specifying when to send XOFF,

684
TTY_ALTYPAHD, type-ahead buffer size for

terminals with TT2$V _ALTYPEAHD
characteristics, 684

TTY_CLASSNAME, terminal class driver use, 681
TTY_SCANDELTA, modem polling use of, 266
TTY_TYPAHDSZ, type-ahead buffer size, system

default, 684
UAFALTERNATE, creation of logical name SYSUAF,

943
virtual address space size relation, 1270
VIRTUALPAGECNT

maximum number of PTEs, 371, 406
process address space constrained by, 354
size of process page tables, 1272

WRITESYSPARAMS
recording SYSGEN parameters, 946, 953

WSDEC, use in automatic working set limit
adjustment,· 50 l

WSINC, use in automatic working set limit
adjustment, 500

WSMAX
constraint on nonpaged pool expansion, 560
PST use affected by, 487
swapper I/O map size, 514
use in process creation, 728
working set list size, 376, 487, 1272

SYSGETDVI module
EXE$DEVICE_SCAN, control flow, 1118
EXE$GETDVI, control flow, 1119

SYSGETJPI module
EXE$GETJPI

AST use in obtaining information about a process,
145

control flow, 328
SYSGETLKI module

EXE$GETLKI, operations, 235
SYSGETMSG module

EXE$GETMSG
arguments, ll ll
control flow, llll
operations, 1111

SYSGETSYI module
EXE$GETSYI, control flow, ll 15

SYSIMGACT module
EXE$IMGACT

control flow, 747
shareable images, 753

SYSIMGFIX module
EXE$IMGFIX, operations, 762

SYSIMGSTA module
EXE$IMGSTA, operations, 769

[SYSINI)SYSINIT module
system initialization operations, 940

SYSINIT process
computing system time during system initialization,

255
control flow, 940
creating, 939

Index

files accessed by, (table) 863
functions, 940
items allocated in system virtual address area, name

and protection, (table) 1282
loadable executive images loaded by, (table) 831
nonpaged pool allocation, 940
operations, 862, 940
primary swap file opened by, 514

SYSLCK (lock systemwide resources privilege). See
also privileges

lock information access permitted by, 235
required for systemwide resource creation, 226
use by

$ENQ, 226, 1297
$GETLKI, 235

SYSLDR module
LDR$1NIT_SINGLE, control flow, 846
LDR$LOAD_IMAGE .

image of which it is a part, 837
loading loadable executive images, control flow,

838
LDR$LOAD_NONPAGED, control flow, 842
LOAD_PAGED, control flow, 842

SYSLKWSET module
EXE$LKWSET, control flow, 502
EXE$ULKPAG, operations, 505
EXE$ULWSET, operations, 505
MMG$LCKULKPAG, control flow, 503, 505

SYSLNM module
EXE$CRELNM, control flow, 1093
EXE$CRELNT, control flow, 1095
EXE$DELLNM, control flow, 1098

[SYSLOA)CONUTIL module
CNX$CHECK_QUORUM, operations, 1028

[SYSLOA)ERRSUBxxx module
EXE$INIPROCREG, operations, 250, 996
EXE$READ _LOCAL_ TODR, accessing time-of-year

clock by powerfail routine, 252
EXE$READ_TODR, accessing time-of-year clock,

252, 1027
EXE$READP _LOCAL_TODR, accessing time-of-year

clock on primary CPU, 252
EXE$REGRESTOR, operations, 996
EXE$REGSAVE, operations, 983
EXE$WRITE_TODR, accessing time-of-year clock,

252, 1027
EXE$WRITEP_LOCAL_TODR, accessing time-of­

year clock on primary CPU, 252
(SYSLOA]INIADPxxx module

EXE$INIT_TODR
control flow, 253
initializing time of year, control flow, 253
time-of-year clock access request, 1027

initializing adapters, operations, 935
(SYSLOA]MCHECKxxx module

system error interrupt service routines found in, 42
[SYSLOA)OPDRIVER module

CON$INTINP, operations, 691
CON$INTOUT, operations, 691

[SYSLOA]SMPINT_xxx module
SMP$INTALL, operations, 1024
SMP$INTALL_ACQ, operations, 1024
SMP$INTALL_BIT, operations, 1024
SMP$INTALL_BIT_ACQ, operations, 1024
SMP$INTPROC, operations, 1024
SMP$INTSR, operations, 1025, 1032
SMP$INVALID_SINGLE, control flow, 1032

[SYSLOA]SMPSTART_xxx module
CPU_START, operations, 1054
SMP$SETUP _SMP, control flow, 1049

1415

Index

SYSLOAVEC module
CPU-dependent routines, entry point names and

descriptions, (table) 1218
miscellaneous transfer vectors area defined in, 831

SYSLOAxxx image
accessing time-of-year clock, 251
loading

example of linkage and control flow, (figure) 856
operations, 856

locating code for, 1153
names of images, (table) 1294
SYSLOAVEC entry point destinations, 1218
transfer vectors area location, 831
vector table, 856

SYSMAILBX module
EXE$CREMBX, control flow, 660
EXE$DELMBX, control flow, 662

SYSMAN (System Management Utility)
lock use by, 1329

SYSMAR.MAR file
contents, description, 1135

SYSMWCNT parameter (SYSGEN)
effect on size of system space, 1279
system working set list size determined by, 388

SYSNAM (insert in system logical name table
privilege). See also privileges

accessing logical name tables, 1072
logical name translation affected by, 1092
use by

$CRELNM, 1069
$CRELNT, 1070

SYSPARAM module
EXE$GL_TIME_CONTROL bits defined in, 1014
SYSGEN parameters defined in, 948

SYSPARPRC module
EXE$RESCHED, control flow, 341

SYSPCNTRL module
EXE$CHECK_PCB_PRIV, operations, 321
EXE$EPID_TO_IPID, purpose, 721
EXE$EPID_TO_PCB, purpose, 721
EXE$HIBER, control flow, 335
EXE$IPID_TO_EPID, purpose, 721
EXE$1PID TO PCB

IPID validity checking with, 723
purpose, 721

EXE$NAMPID
control flow, 320
IPID validity checking with, 723
process ID and privilege checking with, 319

EXE$SETPRN, operations, 341
EXE$SUSPND, control flow, 336
EXE$WAKE, control flow, 335
SUSPEND_SOFT, supervisor mode AST procedure

operations, 338
SUSPND, kernel mode AST procedure, operations,

148, 337
SYSPRV (access objects via system protection

privilege). See also privileges
use by logical name system services, 1092

SYSPURGWS module
EXE$PURGWS, control flow, 506
MMG$PURGWSPAG, control flow, 506
MMG$PURGWSSCN, control flow, 506

SYSPUTMSG module
EXE$PUTMSG, operations, 1114
SYS$PUTMSG, 94

SYSQIOREQ module
EXE$ABORTIO, control flow, 611
EXE$ALTQUEPKT

control flow, 631

1416

device driver start I/O initiation, 629
EXE$QIODRVPKT differences, 682
full-duplex terminal operations, 682
operations, 613

EXE$FINISHIO, control flow, 612
EXE$FINISHIOC, control flow, 612
EXE$1NSIOQ, control flow, 629
EXE$QIO, control flow, 606
EXE$QIOACPPKT, control flow, 631
EXE$QIODRVPKT

device driver start 1/0 initiation, 629
driver start 1/0 operations, 682
EXE$ALTQUEPKT differences, 682
operations, 613

EXE$QXQPPKT, control flow, 632
special $QIO entry points, 462

SYSRUNDWN module
EXE$RUNDWN

control flow, 774
resetting capabilities, 298

SYSSCHEVT module
EXE$SCHDWK, control flow, 260
EXE$SETIMR, control flow, 258

SYSSETEXV module
EXE$SETEXV, operations, 75

SYSSETIME module
EXE$SETIME

operations, 255
readjusting time-of year, control flow, 256
time recalibration, control flow, 255

EXE$SETIME_INT, computing system time during
system initialization, 254

SYSSETMOD module
EXE$SETSWM, operations, 432
system service routines for changing process

characteristics, 342
SYSSETPRA module

EXE$POWERAST, control flow, 999
EXE$SETPRA, control flow, 999

SYSSETPRI module
EXE$SETPRI, operations, 340

SYSSETPRT module
EXE$SETPRT, control flow, 433
MMG$SETPRTPAG, control flow, 433

SYSSETPRV module
EXE$SETPRV, operations, 780

SYSSNDJBC module
EXE$JBCRSP, job controller special kernel AST,

operations, 1106
EXE$SNDJBC, control flow, 1104

SYSSNDMSG module
EXE$SENDMSG, operations, 1105
EXE$SNDACC, control flow, 1107
EXE$SNDERR, control flow, 1109

SYSTARTUP _VS.COM command file
operations, 948

system build procedure
listing and map file handling, 1129

system bus. See also buses
errors, SCB reserved offsets, 41
function of, VAX system generic model, (figure) 44
1/0 hardware configuration component, 577
VAX 8200 family, VAXBI used as, 52

system communication services. See SCS
system context

accessing mutexes from, 200
concepts, overview, 17
constraints and characteristics, 17

system control block. See SCB
system control block base register. See PR$_SCBB

system crashes. See bugchecks; crash dumps
system data area

characteristics and use, 828
system data structures

descriptions, (chapter) 1241
memory management characteristics and field

definitions, 387
size, (chapter) 1270

system directories
LNM$SYSTEM_DIRECTORY, shareable logical

name tables named in, 1070
System Dump Analyzer. See SDA
system dump file. See dump file
system events. See also rescheduling interrupt;

scheduler
examples, 299

System Generation Utility. See SYSGEN
system header

characteristics and use, 387
description, 1226
layout, (figure) 387
section table, number of entries in, SYSGEN

parameter that specifies, 388
working set list, pageable system pages described by,

355
System ID lock

characteristics and use, 1298
system initialization. See also executive; SYSBOOT;

SYSGEN parameters; VMB
adapter initialization as part of, 46
eliminating code from memory after task completion,

techniques for, 1144
image activation at, special considerations, 739
logical name tables created during, 1070
overview, 862
process context phases, 938
processor-specific

common steps, 866
differences, 866

sequence of events, (figure) 866
stages when loadable executive images are loaded,

836
swapper process operations, 938. See also

EXE$SWAPINIT
swapper use for its process context, 511
system 1/0, completing, 613
system space initialization during, 353

system macros
using local macros, names format, 1233

system management server process. See SMISERVER
process

System Management Utility. See SYSMAN
system memory

available, size calculation, (example) 1286
management, data structures characteristics and

field definitions, 387
system process use, reasons for variation, 1287

system message file
characteristics and use, 1109

system page read
1/0 request descriptions, (table) 463

system page table. See SPT
system pages. See also address space; pages; PTE;

SPTE; system space
copy-on-reference

page fault when page is, control flow, 459
page fault when page is not, control flow, 458

demand zero page, page fault, control flow, 459
locking into system working set list, 508
page faults, characteristics and use, 458

Index

pageable, working set list in system header describes,
355

system parameters
non-SYSGEN, names and descriptions, (table) 1210

system PCB
characteristics and use, 387

system processes
ACP, characteristics and use, 584
AUDIT_SERVER, command file that creates, 947
CLUSTER_SERVER, command file that creates, 947
communicating with, system service descriptions,

1102
CONFIGURE, creation of, 946
ERRFMT

error logging subsystem use of, 958
operations, 964
waking, 962

Files-11 XQP cache server, command file that
creates, 94 7

included in total memory requirements of VMS, list
of, 1287

job controller, command file that creates, 947
JOB_ CONTROL

creation of, 947
functions of, 1102

name and description tables, (chapter) 1125
OPCOM

command file that creates, 94 7
operations, 1108

SMISERVER, command file that creates, 948
STARTUP, system initialization operations, 945

system resources. See resources
system routine requests

periodic, EXE$SWTIMINT operations, 264
system scheduling events. See system events
system service descriptor block

creation and characteristics, 109
field characteristics, 849

system service dispatcher. ·See change mode -
dispatcher

system service vectors
area, global cells that compose, (table) 1164
change mode operand, assigned at system loading,

113
characteristics and use, 106, 826
composite

characteristics and use, 108
$QIOW code for, 109

' contents, description, 107
executive transfer vectors compared with, 827
initializing, 109
location, 106
names, resolution at link time, 826
that change mode to executive, code for, 107
that change mode to kernel, code for, 107
that do not change mode, code for, 108

system services. See also change mode - dispatcher;
RMS

asynchronous, characteristics, 108
change mode operations, 127
errors, enabling and disabling exception generation

on, 127
event flag argument, list of those that include, 203
exiting from, 116
filtering, 12 7
1/0

concepts and mechanisms, (chapter) 587
operations, overview, 587
overview, 584

in privileged shareable images, dispatching to, 121

1417

Index

system services (continued)
information, overview, 705
inhibiting access to, 127
initializing, 849
list organized by mode initially executed in,

(table) 107
memory management, concepts and mechanisms,

(chapter) 403
miscellaneous, (chapter) 1102
names format, 1232
naming, 108
operations, 1115
overview, 18
process computability, characteristics and

operations, 334
process information, characteristics and operations,

323
related to system service and change mode

dispatching, 126
return paths, 116
setting process. software status, 342
synchronous

requirements for guaranteeing completion, 108
return path, control flow, (figure) 120

that do not change mode
control flow, (figure) 121
list of names, (table) 121

user-written. See also images - privileged
checking for dispatcher systemwide, 126
dispatching, control flow, (figure) 123
dispatching operations, 123

system shutdown
operations, 954

system space
available, size calculation, 1282
checking page fault address in, 43 7
code pages, protections on, 353
components and factors that affect size, (table) 1275
data pages, protections on, 353
division into nonpaged and paged portions,

(table) 1286
initial layout, (figure) 1274
IRP lookaside list, characteristics, (table) 544
items allocated in, name and protection, (table) 1282
layout, (figure) 25

analyzing with SDA, 1157
LRP lookaside list, characteristics, (table) 544
mapping of, 353
nonpaged pool, characteristics, (table) 544
overview, 25
paged pool, characteristics, (table) 544
size, (chapter) 1270

calculations, 1274
sized and laid out by SYSBOOT, 914
SRP lookaside list, characteristics, (table) 544
system service vector locations, 106
term definition, 350
translating, (figure) 364

operations, 363
VMS use of, 352

system startup
site-specific startup command file, operations,

948
system time. See time
system tuning

automatic, nonpaged pool expansion role in, 560
system working set

distinguished from process working set, 388
locking pages into, operations, 1145
SMP issues, 1020

1418

SYSGEN parameter that determines size, 388
system header component, 387
types of pages described in, 38 7

SYSTEM_DATA_CELLS module
global cells that compose, (table) 1186
process state queue listheads defined in, 2 71
system data area defined in, 830

SYSTEM DEBUG initialization routine
operations, 937

SYSTEM PRIMITIVES initialization routine
operations, 936

SYSTEM ROUTINES module
EXE$EXCEPTN, kernel mode last chance handler

vperations, 94
EXE$EXCEPTNE, executive mode last chance

handler operations, 95
EXE$LOAD_ERROR, initializing system service

vectors with, 109
executive transfer vectors defined in, 82 7
INI$MASTERWAKE, XDELTA interrupt service

routine, activating, 68
nonpaged executive transfer vectors defined in, 1164

SYSTEM ROUTINES MASK module
miscellaneous transfer vectors area defined in, 831

SYSTEM_SERVICE macro
defining a vectored universal symbol, 835
inhibit mask parameter use for system service

filtering, 12 7
system service initialization use, 849

SYSTEM SERVICE DISPATCHER module
CMOD$ASTEXIT, entering $CLRAST system

service, 115
CMOD$SSVECX, change-mode-to-executive error

handling, 115
EXE$CMODEXEC, change-mode-to-executive

dispatching operations, 112
EXE$CMODEXECX, system service filtering, 128
EXE$CMODKRNL

change-mode-to-kernel dispatching operations,
112

EXE$CMODKRNLX, system service filtering, 128
SERVICE_EXIT, change mode dispatcher common

exit path, control flow, 116
SYSTEM SERVICE EXIT module

SYNCH$RMS_STALL, stalling RMS service
procedures, control flow, 118

SYNCH$RMS_ WAIT, RMS synchronization routine,
control flow, 119

SYSTEM_SERVICE_LOADER module
EXE$CONNECT _SERVICES

control flow, 850
initializing sys tern service vectors with, 111

SYSTEM SYNCHRONIZATION initialization routine
operations, 937

systems communication architecture. See SCA
SYSUNWIND module

EXE$UNWIND, condition handler call frame
unwinding operations, 97

SYSUPDSEC module
EXE$UPDSEC, control flow, 476
MMG$UPDSECAST, operations, 478
MMG$UPDSECQWT, control flow, 477
MMG$WRTPGSBAK, operations, 477

$SYSVECTORDEF macro
layout of system service vector space, 827

$SYSVERSIONDEF macro
definitions of executive conceptual categories, 853

SYSWAIT module
EXE$WAIT, common event flag wait code, control

flow, 209

(SYSx.SYS$LDR)VMS$SYSTEM_IMAGES.DATA file
loading images from during system initialization,

941

TABLE logical name attribute
characteristics, 1070

TAST (terminal AST block)
characteristics and use, (figure) 153
summary, 1261

TAST$L_FLINK field
queuing TAST to terminal UCB with, 153

TAST$V_BUSY bit (TAST$B_CTRL field)
terminal driver setting to indicate FKB/ACB use, 153

TB (translation buffer). See also PR$_TBIA; PR$_TBIS
invalidating

during interprocessor interrupt handling, 1026
operations, 1029
single entry, (figure) 1030

-performance optimization use of, 365
presence of page, effect on working set replacement,

494
SPT sharing implications, 1020
synchronizing invalidation, with INVALIDATE

spinlock, 184
term definition, 1029

TBSKIPWSL parameter (SYSGEN)
effect on working set replacement algorithm, 494

template devices
assigning channels to, 599
characteristics and use, 590

terminal AST block. See TAST
terminal drivers. See also device drivers

attention AST use by, 152
character processing routine, unsolicited terminal

input handling, 783
checking for out-of-band ASTs, 155
class driver, relation with console port driver and

.J:Onsole UCB, (figure) 681
console port driver binding to, (figure) 691
full-duplex operation, characteristics, 681
job controller notified of unsolicited terminal input

by, 783
operations, 679
port drivers supplied with system, list of, 679

TERMINAL equivalence name attribute
characteristics, 1075

terminals
1/0 subsystem, logical components of, (figure) 679
local area, server support characteristics, 685
physical, pointer to virtual terminal UCB, 685
remote, server support characteristics, 685
unsolicited input from, interactive processes created

as a result of, 783
virtual, support characteristics, 684
writing breakthrough messages

all terminals and all users, 701
all terminals of a user, 699
sending message, control flow, 701
to specific terminals, 699

termination mailbox
message sent to owner process during process

deletion, (table) 816
VMS executive mailbox use, 673

thread of execution
interrupts and exceptions effect on, 29

tightly coupled
term definition, 1006

time. See also date; scheduler; $SETIME; time-of-year
clock; timers; wait states

Index

conversion, system services operations, 1120
initializing, operations, 252
maintaining, 251, 254
quantum expiration, operations, 293
readjusting time-of-year, 256
recalibrating, 255
representation, time-of-year clock, 251
requests, conversion support for, 1120
setting, 254
support

concepts and mechanisms, (chapter) 247
data structures and mechanisms, 247
hardware mechanisms, 247
overview, 247
system data used in, (table) 248

system, synchronizing access to with HWCLK
spinlock, 184

timekeeping operations, 252
time-dependent system requests

EXE$SWTIMINT, operations, 264
time-of-year clock

access, handling interprocessor interrupt work
requests, 1027

accessing on an SMP system, 1027
characteristics and use, 251
resetting by EXE$SETIME, 251
setting and reading, capabilities use during, 288
validating contents, 253

TIMEDWAIT macro
calibration of variables used with, 932
CPU-specific variables, 1019

timeouts. See also timers - requests
CRB timeout mechanism, EXE$TIMEOUT handling

of, 265
deadlock search initiation controlled by, 236
handling routine, characteristics and use, 584
1/0

detected by EXE$TIMEOUT, 265
measurement initiated by WFIKPCH macro, 635

queue
deadlock handling use of lock, 236
linking locks into, 220

SMP sanity, disabled by IPL 12 interrupt service
routine, 68

spinlock wait, disabled by IPL 12 interrupt service
routine, 68

TIMEPROMPTWAIT!arameter (SYSGEN)
initializing time an date, 253

timer queue entry. See TQE
TIMER spinlock

characteristics and use, 182
held by EXE$SWTIMINT, 64, 263
synchronizing timer queue access with, 256

timers. See also sanity timer mechanism
functions, overview, 19
interval

characteristics and use, 248
full implementation, description, 249
interrupt service routine, control flow, 261
interrupt service routine, interaction with software

timer interrupt service routine, 64
interrupt service routine, use of capabilities, 288

queue, characteristics and TQE field definitions, 256
requests

canceling, 259
distinguishing absolute and relative, 258
scheduling, 258, 259
TQE bits that describe, 257
transition states triggered by, 286

software

1419

Index

timers (continued)
software (continued)

interrupt service routine, control flow, 263
interrupt service routine, overview, 64
summary, (tablel 248

system services, control flow, 258
TIMESCHDL module

EXE$HWCLKINT
control flow, 261
interactions with software timer interrupt service

routine, 64
sanity timer mechanism, operations, 1037

EXE$SWTIMINT
control flow, 263
operations, 64
periodic system routine requests, control flow, 264
process timer requests, control flow, 263
scheduled wakeup requests, control flow, 266

EXE$TIMEOUT
control flow, 265
deadlock search initiation by, 236
fork and wait queue servicing by, 62
timeoutsearch,265

TIMEWAIT macro
calibration of variables used with, 932
CPU-specific variables, 1019

TMPMBX (create temporary mailbox privilege). See
also privileges

required to create a temporary mailbox, 660
use by $CREMBX, 660

TMSCP tape protocol
SCA protocol, description, 678

TQCNTJ"ob quota
charge by $SETIMR, 258
waiting for, context, 293

TQE (timer queue entry). See also time; timers -
requests

ACB included in, 132
characteristics and use, 64
definition and use, 256
due time altered at powerfail recovery, 997
expiration time

adjusted by $SETIME, 256
compared with EXE$GQ_SYSTIME, 263

handling, TIMER spinlock use in, 182
hibernating process wakeup, EXE$SWTIMINT,

control flow, 266
layout, (figurel 257
process timer request, EXE$SWTIMINT, control

flow, 263
quota

charged for common event flag cluster creation,
204

transition states triggered by, 286
waiting for, context, 293

removing before expiration, 259
summary, 1262
synchronizing access to queue with HWCLK

spinlock, 184
system routine request, EXE$SWTIMINT,

operations, 264
TQE$B_EFN field

definition and use, 258
TQESB_RMOD field

definition and use, 257
TQESB_RQTYPE field

definition and use, 257
TQESL_AST field

definition and use, 257
TQESL_ASTPRM field

1420

definition and use, 257
TQE$L_ CPUTIM field

definition and use, 257
TQESL_PID field

definition and use, 257
TQESL_RQPID field

definition and use, 258
TQE$L_TQBL field

definition and use, 257
TQESL_TQFL field

definition and use, 257
TQESQDELTA field

definition and use, 257
TQESQTIME field

definition and use, 257
TQE$V _ABSOLUTE bit (TQE$B_RQTYPE field)

definition and use, 257
TQESV_CHI<_CPUTIM bit (TQESB_RQTYPE field)

definition and use, 257
TQESV _REPEAT bit (TQE$B_RQTYPE field)

definition and use, 257
TR (transfer request number)

VAX-11/78x system, 48
trace fault

generating, REI actions, 39
traceback condition handler. S~ also condition

handlers
established by image startup, mechanism, 93

transfer address array
characteristics, 768
layout, (figure) 768

transfer request number. See TR
transfer vectors

characteristics and use, 823
executive

characteristics and use, 824, 827
defining, (examplel 828
nonpaged, list of names, (table) 1164

miscellaneous vectors area, characteristics and use,
831

transitions
illegal, REI test for, 38
page, PTE characteristics, 373
state, private page fault when page is in, 444

Translate Logical Name system service. See
$TRNLNM1 $TRNLOG

translation buffer. See TB
translation-not-valid exception. See page faults
traps

continue signal actions for, 96
exceptions, SCB vectors for, (tablel 75

STRNLNM (Translate Logical Name system service)
operations, 1093

STRNLOG (Translate Logical Name system service)
superseded in VMS Version 5, 1100

TT2$V _ALTYPEAHD characteristic
specifying type-ahead buffer size for terminals with,

684
TT2$V _DISCONNECT characteristic

virtual terminal handling, 685
[TTDRVR]TTYFDT module

TTYSFDTWRITE, operations, 682
[TTDRVR]TTYSTRSTP module

TTYSWRTSTARTIO, operations, 683
[TTDRVR]TTYSUB module

CLONE_UCB, operations, 685
UNSOL, operations, 684

TTY$FDTWRITE routine ([TTDRVR]TTYFDT
module)

operations, 682

TTY$WRTSTARTIO routine ([TTDRVR]TTYSTRSTP
module)

operations, 683
TTY_ALTALARM parameter (SYSGEN)

specifying when to send XOFF, 684
TTY_ALTYPAHD parameter (SYSGEN)

type-ahead buffer size for terminals with TI2$V _
ALTYPEAHD characteristics, 684

TTY_CLASSNAME parameter (SYSGEN)
terminal class driver use, 681

TTY_SCANDELTA parameter (SYSGEN)
modem polling use of, 266

TTY_TYPAHDSZ parameter (SYSGEN)
type-ahead buffer size, system default, 684

type-ahead buffer
terminal drivers, characteristics, 684

UAF$Q_DEF_PRIV field
process privilege mask, use and routines that

manipulate, (table) 778
UAF$Q_PRIV field

process privilege mask, use and routines that
manipulate, (table) 778

UAFALTERNATE parameter (SYSGEN)
creation of logical name SYSUAF, 943

UCB (unit control block)
address, CCB field that specifies, 596
characteristics and use, 579
cloned, creating, 599
console

binding terminal class driver and console port
. driver, (figure) 691 .
relation with terminal drivers and console port

driver, (figure) 681
FKB as part of, 5 7
fork lock identification in, 178
layout and summary, 1262
location, WCB field that specifies, 516
mailbox, (figure) 658

assembled into SYSTEM_PRIMITIVES loadable
executive image, 657

linking LNMB with, 1078
synchronizing access to, 181, 590

fork IPLs used for, 170
terminals, queuing TAST to, 153

UCB$B_FIPL field
fork IPL or spinlock index, 590

UCB$B_FLCK field
fork IPL or spinlock index, 590
fork lock identification in, 178

UCB$L_AFFINITY field
device affinity use of, 1041

UCB$L_DLCK field
definition and use, 180

UCB$L_DUETIM field
cleared at power recovery, 998
initialized by IOC$WFIKPCH, 635

UCB$L_LOGADR field
definition and use, 658
logical name data structure address, 657

UCB$L_MB_MSGQ field
definition and use, 658

UCB$L_MB_R_AST field
definition and use, 658

UCB$L_MB_ W _AST field
definition and use, 658

UCB$L_PID field
device owner PIO saved in, 591

UCB$L_STS field

flag names and meaning, (table) 630
UCB$L_TL_PHYUCB field

definition and use, 685
UCB$L_TT_LOGUCB field

definition and use, 685
UCB$V JNT bit (UCB$L_STS field)

cleared by driver ISR, (example) 638
power recovery use of, 998
set by IOC$WFIKPCH, 635

UCB$V _POWER bit (UCB$L_STS field)
set at power recovery, 998

UCB$V _TEMPLATE bit (UCB$L_STS field)
template devices identified by, 590

UCB$V _TIM bit (UCB$L_STS field)
cleared by EXE$IOFORK, 638
power recovery use of, 998
set by IOC$WFIKPCH, 635

UCB$W _BUFQUO field
definition and use, 658

UCB$W _INIQUO field
definition and use, 658

UCB$W _REFC field
decremented by

$DALLOC, 594
$DASSGN, 604

· incremented by
$ALLOC, 591
$ASSIGN, 591

UCB$W _STS field. See UCB$L_STS field
UCBCREDEL module

IOC$CHKMBXQUOTA, operations, 661
IOC$CHKUCBQUOTA, operations, 599
IOC$CLONE_UCB, operations, 599
IOC$DEBIT_UCB, operations, 599
IOC$DELETE_UCB, operations, 663

UIC (user identification code)
term definition, 23
UIC-based protection, logical name tables,

characteristics, 1071
DIC-specific resources, requesting, 226

Index

UIC group number , .
identifying common event flag cluster with, 204
lock information access restricted by, 235
process name qualified by, 320
resource identifier component, 215
sharing event flags among processes in a, 202

$ULKPAG (Uulock Pages &om Memory system service)
control flow, 505 .

$ULWSET (Unlock Pages &om Working Set system
service)

control flow, 505
UNIBUS

adapter, vectoring interrupts through ISR, 45
device drivers, fork IPL considerations, 63
directly vectored interrupt service routines, 642
indirectly vectored interrupt service routines, 643
interrupts, servicing, 642
passive releases, VAX architecture mechanism, 43
powerfail and recovery operations, 1003

UNIBUS-to-VAXBI adapters
interrupt servicing, 648

unintermptible instructions. See also instructions
characteristics, 163

UNION statement (SDL)
characteristics and use, 1162

uniprocessors
raising IPL as spinlock action, 169

unit control block. See UCB
unit initialization routine

device driver, invoked by power recovery, 998

1421

Index

UNIVERSAL_ENTRY macro
defining a vectored universal symbol, 835

UNIVERSAL SYMBOL macro
defining a vectored universal symbol, 835

UNLOCK macro
generated code example, 188

Unlock Pages from Memory system service. See
$ULKPAG

Unlock Pages from Working Set system service. See
$ULWSET

UNSOL routine ([TTDRVR)TTYSUB module)
operations, 684

unsolicited input
job controller notified of, 783

$UNWIND (Unwind Stack system service)
condition handler call frame unwinding, operations,

96, (figure) 97
default depth, correct use in, 101

Unwind Stack system service. See $UNWIND
Update Section system service. See $UPDSEC
$UPDSEC (Update Section system service)

control flow, 476
I/O request descriptions, (table) 463

user authorization file
AST quota, PCB$W_ASTCNT initialized from, 131

user interface
overview, 11

user mode. See also access modes
application synchronization techniques. Consult

VMS RTL Parallel Processing (PPL$) Manual
bugchecks, handling operations, 968
stack pointer, as part of process hardware context,

306
user stack. See also stack

expanding automatically, 409
overflow, hardware detection mechanism, 82

user-writable control store
exception handling with, 31
interrupt handling with, 31

user-written system services. See also privileged
shareable images

checking for dispatcher systemwide, 126
process, dispatching, (figure) 123

valid page. See also memory management; pages; PTE
term definition, 481

variable-length lists
compared with fixed-length lists, 552
pool

allocating, (example) 547
deallocating, 549, (example) 550
layout, (figure) 546
listhead locations and allocation type, (table) 546
nonpaged, initializing, 555
structure and operations, 546

uses of, 563
VAX 6000 series

configuration, 51
console subsystem, operations, 892
hardware layout, (figure) 1012
initial bootstrap sequence, operations, 892
interprocessor interrupt vectors, VAX architecture

mechanisms, 42
power recovery operations, 991
SMP support, 1011
unimplemented instruction emulation support, 77

VAX 8200 family
configuration, 51
console subsystem, operations, 895

1422

initial bootstrap sequence
operations, 895
programs, (table) 896

power recovery operations, 989
VAX 83x0 system

hardware layout, (figure) 1010
logical console interface, fork lock use on, 183
SMP support, 1009

VAX 86x0 system
configuration, (figure) 52
console subsystem, operations, 881
initial bootstrap sequence

operations, 881
programs, (table) 882

power recovery operations, 989
VAX 8800 family

configuration, 53
console subsystem, operations, 885
hardware layout, (figure) 1011
initial bootstrap sequence

operations, 885
programs, (table) 886

power recovery operations, 990
SMP support, 1010

VAX 88x0 system
console subsystem, operations, 883
initial bootstrap sequence

operations, 883
programs, (table) 884

power recovery operations, 990
SMP support, 1010
VMB, operations, 885

VAX architecture. See also instructions; interrupts;
PTE

exceptions defined by, (table) 75
features used by VMS, overview, 14

VAX BLISS-32 language
$ASSUME macro, 1135
definitions, data structure libraries, 1241
locating non-public data structure offsets, constants,

and macro definitions, 1133
public structures, names format, 1236

VAX C language
parallel processing features, run-time support for,

341
VAX Calling Standard

overview, 16
VAX FORTRAN language

parallel processing features, run-time support for,
341

VAX hardware
access checking, characteristics and mechanisms,

362
address translation, characteristics and mechanisms,

362
AST support, 129
clocks

characteristics and use, 248
database, synchronizing access to with HWCLK

spinlock, 184
interrupt, IPL level for, 250
summary, (table) 248

interval timer, capabilities use of interrupt service
routine, 288

protection, overview, 23
synchronization support, 162
time support data structures and mechanisms, 247

VAX MACRO language
definitions, data structure libraries, 1241
listings

VAX MACRO language (continued)
listings (continued)

characteristics and use, 1136
CPU-dependent routines, 1136

locating non-public data structure offsets, constants,
and macro definitions, 1133

public structures
names format, bit field offsets, 1236
names format, single bit, 1236

RMS names format, 1232
system service names format, 1232

VAX processors
designations, (chapter) 1294
time-of-year clock implementation on, (table) 251
transferring data between console devices and, 689
with console microprocessors, system initialization,

880
with consoles, boot console commands and

associated command files, (table) 892
without console microprocessors, system

initialization, 892
without consoles, boot block program operations,

899
VAX system

generic model, (figure) 44
VAX$EMULATE routine ((EMULAT)VAXEMULAT

module)
unimplemented instruction emulation provided by,

77
VAX$MODIFY_EXCEPTION routine ([EMU·

LAT)VAXHANDLR module)
handling exceptions during instruction emulation,

85
instruction emulation use of, 80

VAX-11/730 system
configuration, 47
console subsystem, operations, 890
initial bootstrap sequence

bootstrap command files, (table) 891
operations, 890
programs, (table) 890

power recovery operations, 986
VAX-11/750 system

configuration, 47
console subsystem, operations, 897
initial bootstrap sequence

operations, 897
programs, (table) 898

power recovery operations, 987
VAX·ll/78x system

configuration, 48
console subsystem, operations, 887
initial bootstrap sequence

operations, 887
programs, (table) 888

power recovery operations, 988
VAXBI bus. See also buses

adapters
interrupt service routines, 646
interrupt servicing, VAX 8200 family, 649
interrupt vectors in SCB, 45

VAX 6000 series, 51
VAX 8200 family, used as system bus and 1/0 bus,

52
VAXcluster systems. See also locks; resources;

synchronization
Alias locks, characteristics and use of each, 1321
booting a member over Ethernet

obtaining secondary bootstrap, 912
operations, 912

Index

CLUSTER_SERVER process, command file that
creates, 947

clusterwide broadcast, 699
conducting parallel remote process scans on, 323
connection manager, notification of

power recovery, 997
CWPS routine

extending process control and information system
services with, 319

locating processes on VAXcluster nodes, 322
data structures, synchronizing access to with SCS

spinlock, 182
distributed lock manager, IPL$_SYNCH use for

VAXcluster communication and management,
171

EPID use with, 720
event flags not visible clusterwide, 202
Files-11 XQP cache server process, command file

that creates, 947
$GETJPI support, 332
identifying a process within, 318
LKB distribution in, 223
local node, resource use by, 216
lock database, characteristics and use, 223
lock request handling, by resource tree master, 224
logical name definitions not shared across nodes,

1068
mailboxes not suitable for communication across,

655
membership, stabilization, RWCLU wait state use

with, 285
node search use of CSID, 325
nodes

$GETJPI handling, 145
initializing EXE$GQ_SYSTIME system time, 248
queuing system-generated ASTs to, 147
stalling execution on, wait state, 285

obtaining information about members of a, 1115
processes included in total memory requirements,

list of, 1287
quorum

adjustment when node is shut down, 95 7
lost, interprocessor interrupt work request

handling, 1028
recalculating with IPL 12 Q command, 63, 69

resources
lock management as fundamental synchronization

technique, 167
root resources directory, characteristics and use,

224
sharing in, 1296

RSB distribution in, 223
shutdown, initiated from OPCCRASH, 957
synchronizing

access to cluster-available devices, 581, 590
resources, lock management role in, 223

system management server process, command file
that creates, 948

time
and date initializing, 253
setting coordination, 1298

wildcard request handling, 326
VAXEMUL image

loading, operations, 85 7
VAXstation 35x0 system

configuration, 50
console subsystem, operations, 879
hardware layout, (figure) 1012
interprocessor interrupt vectors, VAX architecture

mechanisms, 42

1423

Index

VAXstation 35x0 system (continued)
power recovery operations, 993
SMP support, 1012
VMB

operations, 879
register input, (table) 880

VAXVMSSYS.PAR file
default source of SYSGEN parameters, 950

VBN (virtual block number)
converting to LBN, 622
section file, PSTE field that specifies, 3 77
term definition, 621

VCB (volume control block)
ACP creation of, 585

VECTOR linker option
use, 833

vectored universal symbols
definition, 835, (example) 836, 1235
locating, 1151
values, 833
ways to create, 835

vectors. See also base image; condition handling;
executive transfer vectors; interrupts - vectors;
SCB; transfer vectors

base image transfer, spinlock routines invoked
through, 17 4

exception
01 low-order bits value, meaning, 31
format and use, 30

interrupt
format and use, 30
how defined, 40

miscellaneous vectors area, base·image, 831
primary exception, searching for condition handlers

with, 88
privileged library, structure, (figure) 124
SCB

exception, (table) 75
format, (figure) 30
IEI microcode testing to determine stack for,

interrupt servicing, 34
nexus number use in identifying, 45
unused, meaning of contents, 44

secondary exception, searching for condition handlers
with, 88

system service. See system service vectors
version numbers

executive, characteristics and use, 851
victim selection

in deadlock handling operations, conversion
deadlocks, 243

VIRTCONS spinlock
characteristics and use, 184

virtual address
components, description, (figure) 362
process, translating operations, 364
system, translating, 363, (figure) 364
translation

caching, 1029
PFN use by, 351

virtual address space
characteristics and use, 352
creating, 353
data structures, overview, 354
deleting, 427
demand zero, creating, 407
overview, 5
PO layout, (figure) 7
Pl layout, (figure) 5
process

1424

AST as mechanism for accessing by executive, 133
creating, 406
limit on creating, 403

system
components and factors that affect size, (table) 1275
initial layout, (figure) 1274
size calculations, 1274

term definition, 350
virtual block number. See VBN
virtual console

synchronizing access to with VIRTCONS spinlock,
184

virtual 1/0
devices, mailboxes as, 655
segmenting

by FDT routines, 621
concepts and control flow, 620

virtual memory. See also address space; memory
management; pages; PTE; virtual pages

address space, data structures, overview, 354
characteristics and mechanisms, overview, 350
original design, characteristics and motivation, 357
overview, 349
term definition, 350

virtual pages
associated with a page file, PHD field that specifies,

461
characteristics, 351
deleting, 427

resources associated with, 428
locking into memory, operations, 504
protection code for, PTE bits that specify, 363
protection of, changing, 432
purging from working set, operations, 506
specifying type with PFN TYPE array, 383
systemwide cache of recently used, modified and

free page lists used as, 355
valid, conditions that invalidate, 436

virtual terminals
pointer to physical terminal UCB, 685
support, characteristics, 684

VIRTUALPAGECNT parameter (SYSGEN)
maximum number of PTEs, 371
process address space constrained by, 354
size of process page tables, 12 72

VMB (primary bootstrap program)
bootstrap, control flow, 902
concepts and mechanisms, overview, 900
environment, 902

powerfail restart environment compared with, 995
forward and backward compatibility with VMS, 902
functions for VMS bootstrap, 900
maintaining compatibility with by SYSBOOT, 917
MicroVAX II operations, 869
MicroVAX 2000 and full VMBs compared, 871
MicroVAX 3100 and full VMBs compared, 874
MicroVAX 3200/3500/3600 and full VMBs compared,

877
operations, 902

bootstrap control flags, (table) 902
overview, 862
register input, (table) 902

physical memory layouts, (figure) 902
VMS executive. See executive
VMS Librarian Utility

locating data structure offset and constant definitions
with, 1134

VMS listings
CD-ROM, 1129
DCL commands, locating, 1131

VMS listings (continued)
files, locating, 1130
kits, components, 1129
magnetic tape, 1129
microfiche listing structure, 1130
online listing structure, 1129
structure, 1129

VMS naming conventions, (chapter) 1232
VMS operating system

address space, characteristics and use, 352
components

overview, 8
that handle process creation and startup, 782

functions provided by, overview, 9
initialization, concepts and mechanisms, (chapter)

923
kernel functions, overview, 9
layered design, (figure) 9
listing files, using, (chapter) 1129
map files, using, (chapter) 1129
physical memory requirements, 1284
shutdown, concepts and mechanisms, (chapter) 923
system overview, concepts and mechanisms,

(chapter) 3
VAX architecture features used by, 14

VMS$BASEENVIRON-050_SMISERVER.COM
command file

operations, 948
VMSSBASEENVIRON-050_ VMS.COM command file

operations, 947
VMS$CONFIG-050_AUDIT_SERVER.COM command

file
operations, 947

VMS$CONFIG-050_CACHE_SERVER.COM command
file

operations, 947
VMS$CONFIG-050_CSP.COM command file

operations, 947
VMS$CONFIG-050_ERRFMT.COM command file

operations, 947
VMS$CONFIG-050JOBCTL.COM command file

operations, 947
VMS$CONFIG-050_LMF.COM command file

operations, 947
VMS$CONFIG-050_0PCOM.COM command file

operations, 947
VMSSCONFIG-050_ VMS.COM command file

operations, 947
VMS$INITIAL-050_LIB.COM command fl.le

operations, 947
VMS$INITIAL-050_ VMS.COM command file

operations, 946
VMSSLAYERED file

contents, 945
VMS$LPBEGIN-050_STARTUP.COM command file

operations, 948
VMSSLPBEGIN-050_ VMS.COM command file

operations, 948
VMS$PHASES file

contents, 945
VMSSSYSFILES-050_ VMS.COM command fl.le

operations, 947
VMS$VMS file

contents, 945
(VMSLIB] facility

SDL files in, 1133
(VMSLIB]STARDEFxx.SDL file. See STARDEFxx.SDL

file
(VMSLIB)STARMISC.MAR file

contents, 1135

(VMSLIB)UTLDEFM.MAR file
contents, 1135

Volume Allocation lock
characteristics and use, 1304

Volume Blocking lock
characteristics and use, 1305

volume control block. See VCB
volume shadowing

Index

lock use by, characteristics and use of each lock,
1302

$WAIT (Wait RMS service)
SYNCH$RMS_ WAIT synchronization routine,

control flow, 119
wait duration

as a condition for outswap and swapper trimming
selection, 526

Wait for Logical AND of Event Flags system service.
See $WFLAND

Wait for Logical OR of Event Flags system service. See
$WFLOR

Wait for Single Event Flag system service. See
$WAITFR

wait queue header. See WQH
wait queues

common event flags, (figure) 204
event flag cluster, CEB fields that define, 205
lock, removing LKBs from, 231
process state

CEF, characteristics and use, 273
characteristics and use, 271

resource, listhead location in RSB, 217
Wait RMS service. See $WAIT
wait states. See also event flags; 1/0; scheduler;

swapper; synchronization
characteristics and transitions, 282
collided page wait. See COLPG
common event flag wait. See CEF
context for, 292
event flag wait

coordinating with AST delivery, 118
PCB fields that relate to, 206
placing processes into, 208
$WAITFR handling requested by SYNCH$RMS_

WAIT, 119
free page wait. See FPB
hibernate outswapped wait. See HIBO
hibernate wait. See HIB
job quota miscellaneous. See job quota; MWAIT
local event flag outswapped wait. See LEFO
local event flag wait. See LEF
memory management

characteristics and transitions, 283
context for, 292

miscellaneous wait. See MWAIT
mutex wait. See MUTEX wait state
page fault wait. See PFW
process

characteristics during page deletion, 427
paths leading to, (figure) 290
placing a current into, 290

system. See resource wait
transition to COM state, control flow, 299
volunt~, transition descriptions, 282

$WAITFR (Wait for Single Event Flag system
service)

process state change actions, 279, 282
requesting event flag wait, control flow, 209
waiting for event flag during RMS processing, 119

1425

Index

$WAITFR (Wait for Single Event Flag system
service) (continued)

waiting for event flag in a synchronous system
service, 121

$WAKE (Wake system service)
control flow, 335
process state change actions, 282

wakeup mechanisms
fork and wait, characteristics and use, 62

wakeup requests
canceling, 261
scheduled, control flow, 266
sched~, distinguished from timer requests, 259

warm-start
clearing, PR _TXDB use for, 690

WCB (window control block)
address

CCB field that specifies, 596
PSTE field that specifies, 377

characteristics and use, 585
KFE field that specifies, 7 44
layout and summary, 1262
location, PFL field that specifies, 516
synchronizing, with FILSYS spinlock, 181
VBN to LBN conversion, use of information in, 622

WCB$L_ORGUCB field
definition and use, 516

WFIKPCH macro
waiting for device interrupt, 635

$WFLAND (Wait for Logical AND of Event Flags
system service)

AST queuing constraints on use of, 211
compared with $WFLOR, 209
process state change actions, 282
requesting event flag wait, control flow, 209

$WFLOR (Wait for Logical OR of Event Flags system
service)

compared with $WFLAND, 209
process state change actions, 282
requesting event flag wait, control flow, 209

wildcards
$GETJPI support of, 334
$GETSYI support for, 1116
indicator, EPID field negative value used as, 320
processing

$GETQUI support for, 1106
$PROCESS_SCAN distinguished from $GETJPI,

323
requests, VAXcluster system handling, 326

window control block. See WCB
window tum

performed by file system to obtain mapping
information, 621

word tearing
characteristics, 162

work requests
bits, use with interprocessor interrupts, 1023
SMP

nonurgent, 1022
urgent, 1022

working set. See also memory management
breakthrough message locked into, 697
components of, 482
conditions that remove a page from, 436
limit. See working set limit
locking virtual pages into, operations, 502
number of global pages in, PCB field that specifies,

366
number of process-private pages in, PCB field that

specifies, 366

1426

process, locking pages into, operations, 1146
purging virtual pages from, operations, 506
quota

virtual memory design component, operations
using, 358

replacement algorithm
compared with other virtual memory architectures,

358
limitations of, 358

shrinking
term definition, 501

size
affected by image reset routine, 501
automatic working set limit adjustment altering

of, 360
growth above working set quota, 492

swapper. See swapper
system, locking pages into, operations, 1145
term definition, 481
trimming, transitions triggered by, 283

working set limit
adjusting

$ADJWSL operations, 496
automatic, operations, 498
upper limit, 496

decreasing, 489
MMG$SHRINKWS, operations, 497

disabling automatic adjustment, 498
growth above working set quota, 492
increasing, 48 7
initial, 48 7

working set list. See also memory management; page
faults; swapper; system working set; working
set; working set limit; WSLE

capacity
decreasing, 490
increasing, 487, 497
initial, 487
parameters used to calculate, 486

data structure, characteristics and field definitions,
482

dynamic region, 486, 490
dynamics, concepts and mechanisms, (chapter) 481
empty WSLE usability checking, 492
entry size calculation, 12.79
expansion, constrained by working set quota, 487
index, PFN WSLX array use, 386
keeping a page in, 506
limit, value stored in PHD$L_ WSSIZE, 486
limits, quotas description, (table) 486
maximum size, SYSGEN parameter that specifies,

376
pages not appearing in, 482
parameter comparison, (figure) 486
PHD component, 367

overview, 373
PHD fields that describe, (figure) 483
physical memory pages described by, 355
process control capabilities, 359
PST kept adjacent to, reasons for, 376
purpose, 481
rebuilding, after inswap, 538
regions

description, 483
dynamic region, description, 486, 487
locked by user request region, description, 485
permanently locked region, description, 485

removing a non-copy-on-reference page from, 442
replacement algorithm, concepts and operations, 491
scanning

working set list (continued)
scanning (continued)

during process body outswap, (table) 529
for empty WSLE, control flow, 491

size
calculation, 1272
constraint on process address space size, 406
decreasing, 489
parameters and dynamics, 486

swapper use of, 513
SYSGEN parameters that affect, (table) 486
updating data structures related to, page fault

handling, 439
working set list entry. See WSLE
WORKING_SET_MANAGEMENT initialization

routine
operations, 937

WORLD (affect other processes in world privilege). See
also privileges

$BRKTHRU use of, 698, 700
$GETLKI use of, 235
lock information access permitted by, 235
required by EXE$NAMPID, 321
use, 23

WQH (wait queue header)
definition and use, 271
layout, (figure) 271

WQH$W _WQCNT field
process state wait queue use of, 273
use in SCH$RSE, control flow, 299, 301

WQH$W _ WQSTATE field
process state wait queue use of, 271

writable data cells
in loadable executive images, 835

write buffer
VAX 8800 and VAX 88x0 systems, 1010

write in progress page location code
meaning, 382

write-through cache
effect of interlocked bit testing on systems with, 190

Writeboot Utility
writing boot block of system disk, 899

WRITECHECKIO routine (MBDRIVER module)
writing to mailboxes(validation, control flow, 665

WRITEDONE routine WRTMFYPAG module)
modified page write completion KAST, control flow,

471
WRITESYSPARAMS parameter (SYSGEN)

recording SYSGEN parameters, 946, 953
WRTMFYPAG module

MMG$PURGEMPL, operations, 467
MMG$WRTMFYPAG

control flow, 469
operations, 467

MPW$INIT, operations, 402
WRITEDONE, control flow, 471

WSDEC parameter (SYSGEN)
use in automatic working set limit adjustment, 500

WSINC parameter (SYSGEN)
use in automatic working set limit adjustment, 500

WSLE (working set list entry)
characteristics and field definitions, (figure) 482
control bits, meaning, (table) 482
empty

checking usability, 492
scanning for, control flow, 491

locked, count array characteristics, 378
reusing, control flow, 494
skipping, replacement candidates, 494
valid, count array characteristics, 378

Index

WSMAX parameter (SYSGEN)
constraint on nonpaged pool expansion, 560
PST use affected by, 487
swapper 1/0 map size, 514
use in process creation, 728
working set list size, 376, 487, 1272

XDELTA. Consult VMS Delta/XDelta Utility Manual
benign state use, operations, 1032
entering

through IPL 12 interrupt service routine X
command, 70

through known breakpoint, 67
EXE$INIT use of, 928
IPL 14 interrupt service routine, overview, 67
linked with SYSBOOT_XDELTA, 916
linked with VMB, 902
not linked with SYSBOOT, 916

XDT$CPU_WAIT routine ([DELTA]XDELTA module)
operations, 1033

XDT$GL_BENIGN_CPUS cell
meaning, 1014

XDT$GW_INTERLOCK cell
use by XDELTA, 1032

XDT$GW_OWNER_ID cell
use by XDELTA, 1033

XMI (high-speed interconnect)
VAX 6000 series, configuration, 51

XQP (Files-11 Extended QIO Processor). See also ACP;
file system

kernel mode AST thread, 147
lock use by, characteristics and use, 1304
passing a request to, 632
PCB$B_DPC incremented by, 132
synchronizing with kernel mode process suspension,

147
system-owned locks, characteristics and use, 234
term definition, 11

$xyzDEF macros
data structure offsets defined by, 1134

1427

Books from Digital Press

These books may be purchased from technical reference bookstores or by calling
1-800-DIGITAL. For a copy of the latest catalog, contact Digital Press, 12 Crosby
Drive, Bedford, Massachusetts 01730 (617-276-1536).

VAX/VMS: Writing Real Programs in DCL

PAUL C. ANAGNOSTOPOULOS

Taking up where the VAX/VMS documentation leaves off, this book describes how
to write applications using Digital Command Language as a general purpose program­
ming language. EY-Cl68E-DP.

X Window System Toolkit

The Complete Programmer's Guide and Specification

PAUL J. ASENTE AND RALPH R. SWICK

Written by the X Toolkit's leading designers and reflecting the MIT X Consortium
toolkit standard, this book includes both a programmer's guide with extensive
examples and the detailed specification. EY-E757E-DP.

UNIX for VMS Users

PHILIP E. BOURNE

The only book on UNIX for VMS users, this volume is invaluable for those making
the transition between the two operating systems. It does not assume too high or low
a level of knowledge and uses prior experience as a teaching tool. EY-Cl 77E-DP.

VAX Architecture Reference Manual, Second Edition

EDITED BY RICHARD A. BRUNNER

Covering every VAX instruction addressing mode, instruction, and register, this
reference is essential for the computer professional using any VAX from the
MicroVAX II to the VAX 9000. EY-F576E-DP.

Software Design Techniques for Large Ada Systems

WILLIAM E. BYRNE

Drawing on the author's practical experience, this book introduces design strategies
for controlling the complexity of large computer programs. EY-E761E-DP.

Information Technology Standardization

Theory, Organizations and Processes

CARL F. CARGILL

Explaining the need for and the philosophy behind standards in the telecommunica­
tions industry, Cargill covers existing international, national, and regional standards,
the organizations and processes that set them, and future developments. EY-Cl67E­
DP.

Digital Guide to Developing International Software

CORPORATE USER PUBLICATIONS GROUP

An approach to simplifying the adaptation of software for local markets, this book
introduces the packaging and design guidelines recommended by Digital for products
developed for overseas markets. EY-F577E-DP.

The Digital Guide to Software Development

CORPORATE USER PuBLICATIONS GROUP

The first published description of the methodology and tools used by Digital to
develop software products, this guide offers an inside look at practices based on
Digital's phase-review process. EY-Cl 78E-DP.

Kermit: A File Transfer Protocol

FRANK DA CRUZ

From instructions for basic use to a detailed description of the Kermit protocol, this
book demonstrates how to transfer information between diverse computer systems
and data communications environments. EY-6705E-DP.

Writing VAX/VMS Applications Using Pascal

THEO DE KLERK

Programmers will appreciate this book's methodology for producing high-quality
applications by focusing on the most important aspects of VMS. It provides numerous
working program examples and coverage of the VAX calling standard, System
Services and Run Time Library routines and their implementations. Available in
May 1991. EY-F592E-DP.

Using MS-DOS Kermit

Connecting Your PC to the Electronic World

CHRISTINE M. GIANONE

This clearly written book describes how to use Kermit, the popular communications
protocol and terminal emulator. It includes a 5.25-inch diskette with MS-DOS
Kermit, Version 3. EY-C204E-DP.

RDb/VMS: A Comprehensive Guide

LILIAN HOBBS AND KEN ENGLAND

The authors have drawn on their extensive experience to introduce and discuss the
functionality of this relational database product. Available in May 1991.
EY-H873E-DP.

The User's Directory of Computer Networks

EDITED BY TRACY L. LAQUEY

This comprehensive guide to academic and research networks offers descriptions,
user information, maps, site contact names and addresses, host lists and member
organizations for more than 50 national and international networks. EY-C200E-DP.

Computer Programming and Architecture

The VAX, Second Edition

HENRY M. LEVY AND RICHARD H. EcKHousE, JR.

The authors' unique systems approach uses the VAX to teach assembly language
programming and computer architecture. They cover higher-level concepts and other
architectures such as RISC and the Intel 80386 for comparison. EY-6740E-DP.

VMS File System Internals

KIRBY McCoY

This comprehensive study of the VMS file system examines the components,
interfaces, and basic synchronization mechanisms needed to store and manage files
and information. EY-F575E-DP.

Technical Aspects of Data Communication, Third Edition

JoHN E. McNAMARA

This standard reference effectively covers the spectrum of data communication
technology, from a simple UART asynchronous interface through more intricate
system design problems. EY-8262E-DP.

Operating Systems Concepts

A Practical Approach Using VAX/VMS

DAVID DONALD MILLER

Using a hands-on approach, this practical reference illustrates general principles with
the VAX/VMS operating system. Numerous diagrams, exercises, and other learning
aids make this volume ideal for both professional and classroom use. Available in
May 1991. EY-F590E-DP.

The VMS User's Guide

JAMES F. PETERS AND PATRICK HoLMAY

Up to date with VMS Version 5.0, this volume provides hands-on experience in
customizing a working environment through step-by-step instructions, exercises, and
review questions. EY-6739E-DP.

The Matrix'

Computer Networks and Conferencing Systems Worldwide

JOHN S. QUARTERMAN

Even its users do not know how far the matrix of society and technology extends.
This exhaustive survey of computer networking in the U.S. and worldwide maps the
limits today. EY-Cl 76E-DP.

X and Motif Quick Reference Guide

RANDI ROST

Based on the latest versions of the X Window System and OSF/Motif software, this
convenient one-volume reference combines all the most pertinent information on
Xlib, X Toolkit Intrinsics, and the Motif programming libraries. EY-E758E-DP.

X Window System

The Complete Reference to Xlib, Protocol, ICCCM, XLFD: Second Edition

ROBERT w. SCHEIFLER AND JAMES GETTYS

Written by the major developers of the X Window System and updated to Version 11,
Release 4, the four parts of this comprehensive volume conform to the standard
specifications produced by the MIT Consortium. EY-E755E-DP.

Common Lisp

The Language: Second Edition

GUY 1. STEELE JR.

Reflecting the latest changes to the Common Lisp programming language, this
edition of a definitive reference bridges the gap between the new ANSI standards and
the language described in the first edition. EY-Cl87E-DP.

Working with WPS-PLUS

CHARLOTTE TEMPLE AND DOLORES CORDEIRO

A how-to manual for readers with an understanding of word processing, this book
offers helpful hints and advice on advanced techniques. EY-Cl98E-DP.

Digital Technical Journal

This topical quarterly ;ournal is devoted to the technologies used in the design,
manufacture, and maintenance of Digital's products. Individual copies may be
purchased by calling 1-800-DIGITAL. Subscription information may be obtained
from: Digital Technical f ournal, Digital Equipment Corporation, 146 Main Street,
Maynard, MA 01754-2571. Telephone: (508) 493-2894. FAX: (508) 493-3253.
NEARNET: DTf@CRL.DEC.COM.

Fiber Distributed Data Interface. Vol. 3, No. 2. Available April 1991. EY-H876E­
DP.

Transaction Processing, Databases, and Fault-tolerant Systems. Vol. 3, No. 1.

1991. EY-F588E-DP.

VAX 9000 System. Vol. 2, No. 4. 1990. EY-E762E-DP.

DECwindows Program. Vol. 2, No. 3. 1990. EY-E756E-DP.

VAX 6000 Model 400 System. Vol. 2, No. 2. 1990. EY-C197E-DP.

Compound Document Architecture. Vol. 2, No. 1. 1990. EY-C196E-DP.

Distributed Systems. Vol. 1, No. 9. 1989. EY-C179E-DP.

Storage Technology. Vol. 1, No. 8. 1989. EY-C166E-DP.

CVAX-based Systems. Vol. 1, No. 7. 1988. EY-6742E-DP.

Software Productivity Tools. Vol. 1, No. 6. 1988. EY-8259E-DP.

VAXcluster Systems. Vol. 1, No. 5. 1987. EY-8258E-DP.

VAX 8800 Family. Vol. 1, No. 4. 1987. EY-6711E-DP.

Networking Products. Vol. 1, No. 3. 1986. EY-6715E-DP.

MicroVAX II System. Vol. 1, No. 2. 1986. EY-3474E-DP.

VAX 8600 Processor. Vol. 1, No. 1. 1985. EY-3435E-DP.

	000000
	000001
	000001
	000002
	000003
	000004
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	000015
	000016
	000017
	000018
	000019
	000020
	000021
	000022
	000023
	000024
	000025
	000026
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0203
	0204
	0205
	0206
	0207
	0208
	0209
	0210
	0211
	0212
	0213
	0214
	0215
	0216
	0217
	0218
	0219
	0220
	0221
	0222
	0223
	0224
	0225
	0226
	0227
	0228
	0229
	0230
	0231
	0232
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0240
	0241
	0242
	0243
	0244
	0245
	0246
	0247
	0248
	0249
	0250
	0251
	0252
	0253
	0254
	0255
	0256
	0257
	0258
	0259
	0260
	0261
	0262
	0263
	0264
	0265
	0266
	0267
	0268
	0269
	0270
	0271
	0272
	0273
	0274
	0275
	0276
	0277
	0278
	0279
	0280
	0281
	0282
	0283
	0284
	0285
	0286
	0287
	0288
	0289
	0290
	0291
	0292
	0293
	0294
	0295
	0296
	0297
	0298
	0299
	0300
	0301
	0302
	0303
	0304
	0305
	0306
	0307
	0308
	0309
	0310
	0311
	0312
	0313
	0314
	0315
	0316
	0317
	0318
	0319
	0320
	0321
	0322
	0323
	0324
	0325
	0326
	0327
	0328
	0329
	0330
	0331
	0332
	0333
	0334
	0335
	0336
	0337
	0338
	0339
	0340
	0341
	0342
	0343
	0344
	0345
	0346
	0347
	0348
	0349
	0350
	0351
	0352
	0353
	0354
	0355
	0356
	0357
	0358
	0359
	0360
	0361
	0362
	0363
	0364
	0365
	0366
	0367
	0368
	0369
	0370
	0371
	0372
	0373
	0374
	0375
	0376
	0377
	0378
	0379
	0380
	0381
	0382
	0383
	0384
	0385
	0386
	0387
	0388
	0389
	0390
	0391
	0392
	0393
	0394
	0395
	0396
	0397
	0398
	0399
	0400
	0401
	0402
	0403
	0404
	0405
	0406
	0407
	0408
	0409
	0410
	0411
	0412
	0413
	0414
	0415
	0416
	0417
	0418
	0419
	0420
	0421
	0422
	0423
	0424
	0425
	0426
	0427
	0428
	0429
	0430
	0431
	0432
	0433
	0434
	0435
	0436
	0437
	0438
	0439
	0440
	0441
	0442
	0443
	0444
	0445
	0446
	0447
	0448
	0449
	0450
	0451
	0452
	0453
	0454
	0455
	0456
	0457
	0458
	0459
	0460
	0461
	0462
	0463
	0464
	0465
	0466
	0467
	0468
	0469
	0470
	0471
	0472
	0473
	0474
	0475
	0476
	0477
	0478
	0479
	0480
	0481
	0482
	0483
	0484
	0485
	0486
	0487
	0488
	0489
	0490
	0491
	0492
	0493
	0494
	0495
	0496
	0497
	0498
	0499
	0500
	0501
	0502
	0503
	0504
	0505
	0506
	0507
	0508
	0509
	0510
	0511
	0512
	0513
	0514
	0515
	0516
	0517
	0518
	0519
	0520
	0521
	0522
	0523
	0524
	0525
	0526
	0527
	0528
	0529
	0530
	0531
	0532
	0533
	0534
	0535
	0536
	0537
	0538
	0539
	0540
	0541
	0542
	0543
	0544
	0545
	0546
	0547
	0548
	0549
	0550
	0551
	0552
	0553
	0554
	0555
	0556
	0557
	0558
	0559
	0560
	0561
	0562
	0563
	0564
	0565
	0566
	0567
	0568
	0569
	0570
	0571
	0572
	0573
	0574
	0575
	0576
	0577
	0578
	0579
	0580
	0581
	0582
	0583
	0584
	0585
	0586
	0587
	0588
	0589
	0590
	0591
	0592
	0593
	0594
	0595
	0596
	0597
	0598
	0599
	0600
	0601
	0602
	0603
	0604
	0605
	0606
	0607
	0608
	0609
	0610
	0611
	0612
	0613
	0614
	0615
	0616
	0617
	0618
	0619
	0620
	0621
	0622
	0623
	0624
	0625
	0626
	0627
	0628
	0629
	0630
	0631
	0632
	0633
	0634
	0635
	0636
	0637
	0638
	0639
	0640
	0641
	0642
	0643
	0644
	0645
	0646
	0647
	0648
	0649
	0650
	0651
	0652
	0653
	0654
	0655
	0656
	0657
	0658
	0659
	0660
	0661
	0662
	0663
	0664
	0665
	0666
	0667
	0668
	0669
	0670
	0671
	0672
	0673
	0674
	0675
	0676
	0677
	0678
	0679
	0680
	0681
	0682
	0683
	0684
	0685
	0686
	0687
	0688
	0689
	0690
	0691
	0692
	0693
	0694
	0695
	0696
	0697
	0698
	0699
	0700
	0701
	0702
	0703
	0704
	0705
	0706
	0707
	0708
	0709
	0710
	0711
	0712
	0713
	0714
	0715
	0716
	0717
	0718
	0719
	0720
	0721
	0722
	0723
	0724
	0725
	0726
	0727
	0728
	0729
	0730
	0731
	0732
	0733
	0734
	0735
	0736
	0737
	0738
	0739
	0740
	0741
	0742
	0743
	0744
	0745
	0746
	0747
	0748
	0749
	0750
	0751
	0752
	0753
	0754
	0755
	0756
	0757
	0758
	0759
	0760
	0761
	0762
	0763
	0764
	0765
	0766
	0767
	0768
	0769
	0770
	0771
	0772
	0773
	0774
	0775
	0776
	0777
	0778
	0779
	0780
	0781
	0782
	0783
	0784
	0785
	0786
	0787
	0788
	0789
	0790
	0791
	0792
	0793
	0794
	0795
	0796
	0797
	0798
	0799
	0800
	0801
	0802
	0803
	0804
	0805
	0806
	0807
	0808
	0809
	0810
	0811
	0812
	0813
	0814
	0815
	0816
	0817
	0818
	0819
	0820
	0821
	0822
	0823
	0824
	0825
	0826
	0827
	0828
	0829
	0830
	0831
	0832
	0833
	0834
	0835
	0836
	0837
	0838
	0839
	0840
	0841
	0842
	0843
	0844
	0845
	0846
	0847
	0848
	0849
	0850
	0851
	0852
	0853
	0854
	0855
	0856
	0857
	0858
	0859
	0860
	0861
	0862
	0863
	0864
	0865
	0866
	0867
	0868
	0869
	0870
	0871
	0872
	0873
	0874
	0875
	0876
	0877
	0878
	0879
	0880
	0881
	0882
	0883
	0884
	0885
	0886
	0887
	0888
	0889
	0890
	0891
	0892
	0893
	0894
	0895
	0896
	0897
	0898
	0899
	0900
	0901
	0902
	0903
	0904
	0905
	0906
	0907
	0908
	0909
	0910
	0911
	0912
	0913
	0914
	0915
	0916
	0917
	0918
	0919
	0920
	0921
	0922
	0923
	0924
	0925
	0926
	0927
	0928
	0929
	0930
	0931
	0932
	0933
	0934
	0935
	0936
	0937
	0938
	0939
	0940
	0941
	0942
	0943
	0944
	0945
	0946
	0947
	0948
	0949
	0950
	0951
	0952
	0953
	0954
	0955
	0956
	0957
	0958
	0959
	0960
	0961
	0962
	0963
	0964
	0965
	0966
	0967
	0968
	0969
	0970
	0971
	0972
	0973
	0974
	0975
	0976
	0977
	0978
	0979
	0980
	0981
	0982
	0983
	0984
	0985
	0986
	0987
	0988
	0989
	0990
	0991
	0992
	0993
	0994
	0995
	0996
	0997
	0998
	0999
	1000
	1001
	1002
	1003
	1004
	1005
	1006
	1007
	1008
	1009
	1010
	1011
	1012
	1013
	1014
	1015
	1016
	1017
	1018
	1019
	1020
	1021
	1022
	1023
	1024
	1025
	1026
	1027
	1028
	1029
	1030
	1031
	1032
	1033
	1034
	1035
	1036
	1037
	1038
	1039
	1040
	1041
	1042
	1043
	1044
	1045
	1046
	1047
	1048
	1049
	1050
	1051
	1052
	1053
	1054
	1055
	1056
	1057
	1058
	1059
	1060
	1061
	1062
	1063
	1064
	1065
	1066
	1067
	1068
	1069
	1070
	1071
	1072
	1073
	1074
	1075
	1076
	1077
	1078
	1079
	1080
	1081
	1082
	1083
	1084
	1085
	1086
	1087
	1088
	1089
	1090
	1091
	1092
	1093
	1094
	1095
	1096
	1097
	1098
	1099
	1100
	1101
	1102
	1103
	1104
	1105
	1106
	1107
	1108
	1109
	1110
	1111
	1112
	1113
	1114
	1115
	1116
	1117
	1118
	1119
	1120
	1121
	1122
	1123
	1124
	1125
	1126
	1127
	1128
	1129
	1130
	1131
	1132
	1133
	1134
	1135
	1136
	1137
	1138
	1139
	1140
	1141
	1142
	1143
	1144
	1145
	1146
	1147
	1148
	1149
	1150
	1151
	1152
	1153
	1154
	1155
	1156
	1157
	1158
	1159
	1160
	1161
	1162
	1163
	1164
	1165
	1166
	1167
	1168
	1169
	1170
	1171
	1172
	1173
	1174
	1175
	1176
	1177
	1178
	1179
	1180
	1181
	1182
	1183
	1184
	1185
	1186
	1187
	1188
	1189
	1190
	1191
	1192
	1193
	1194
	1195
	1196
	1197
	1198
	1199
	1200
	1201
	1202
	1203
	1204
	1205
	1206
	1207
	1208
	1209
	1210
	1211
	1212
	1213
	1214
	1215
	1216
	1217
	1218
	1219
	1220
	1221
	1222
	1223
	1224
	1225
	1226
	1227
	1228
	1229
	1230
	1231
	1232
	1233
	1234
	1235
	1236
	1237
	1238
	1239
	1240
	1241
	1242
	1243
	1244
	1245
	1246
	1247
	1248
	1249
	1250
	1251
	1252
	1253
	1254
	1255
	1256
	1257
	1258
	1259
	1260
	1261
	1262
	1263
	1264
	1265
	1266
	1267
	1268
	1269
	1270
	1271
	1272
	1273
	1274
	1275
	1276
	1277
	1278
	1279
	1280
	1281
	1282
	1283
	1284
	1285
	1286
	1287
	1288
	1289
	1290
	1291
	1292
	1293
	1294
	1295
	1296
	1297
	1298
	1299
	1300
	1301
	1302
	1303
	1304
	1305
	1306
	1307
	1308
	1309
	1310
	1311
	1312
	1313
	1314
	1315
	1316
	1317
	1318
	1319
	1320
	1321
	1322
	1323
	1324
	1325
	1326
	1327
	1328
	1329
	1330
	1331
	1332
	1333
	1334
	1335
	1336
	1337
	1338
	1339
	1340
	1341
	1342
	1343
	1344
	1345
	1346
	1347
	1348
	1349
	1350
	1351
	1352
	1353
	1354
	1355
	1356
	1357
	1358
	1359
	1360
	1361
	1362
	1363
	1364
	1365
	1366
	1367
	1368
	1369
	1370
	1371
	1372
	1373
	1374
	1375
	1376
	1377
	1378
	1379
	1380
	1381
	1382
	1383
	1384
	1385
	1386
	1387
	1388
	1389
	1390
	1391
	1392
	1393
	1394
	1395
	1396
	1397
	1398
	1399
	1400
	1401
	1402
	1403
	1404
	1405
	1406
	1407
	1408
	1409
	1410
	1411
	1412
	1413
	1414
	1415
	1416
	1417
	1418
	1419
	1420
	1421
	1422
	1423
	1424
	1425
	1426
	1427
	1428
	1429
	1430
	1431
	1432
	1433
	xBack

