VAX/VMS
Internals and
Data Structures

Ruth E. Goldenberg
Lawrence J. Kenah

with the assistance of Denise E. Dumas

VAX/VMS

Internals and
Data Structures

Here is a thoroughly revised edition of the most
authoritative description of Digital’'s VAX/VMS
operating system available to computer profes-
sionals today.

Ruth E. Goldenberg
Lawrence J. Kenah

Written by the Digital engineers who develop and
maintain the VMS Version 5 operating system,
VAX/VMS Internals and Data Structures: Ver-

sion 5.2 features new chapters on symmetric

“with the assistance of
Denise E. Dumas

multiprocessing, the reorganized executive, VAX
v E.R SITON 5.2 interrupts and exceptions, and the I/O subsystem,
including device drivers and interrupt service

routines.

The arrival of symmetric multiprocessing has
also prompted extensive revisions to chapters
that pertain to hardware and software interrupts,

memory management, and synchronization.

All material has been revised to reflect changes
to the operating system through Version 5.2, and
an extensive all-new index improves its accessi-
bility. The authors have also taken every oppor-
tunity to clarify difficult concepts, to consolidate
related material, and to simplify and standardize
the hundreds of illustrations found throughout

this landmark reference.

Digital Press

Ruth E. Goldenberg is a member of the VMS
Operating System Development Group at Digital
Equipment Corporation and is principal author of
both the Version 4.4 and Version 5.2 editions of
this book.

Lawrence J. Kenah is a Senior Consulting Engi-
neer at Digital Equipment Corporation. He is the
principal author of the original Version 2.2 and
Version 3.3 editions.

Denise E. Dumas is an Engineer in the Digital

Software Services Group.

The painting reproduced on the front is “Schwankendes
Gleichgewicht” (“Activity in the Balance”) by Paul
Klee, 1922.159/F32, 34.5 x 7.8 ¢cm, FOUNDATION
PAUL KLEE. Copyright © 1990 by COSMOPRESS, Ge-
neva, and ARS, New York.

VAX/VMS Internals and Data Structures

VERSION 5.2

VERSION 5.2

VAX/VMS Internals
‘and Data Structures

Ruth E. Goldenberg and Lawrence J. Kenah

With the assistance of Denise E. Dumas

liloliltlal

Digital Press

Copyright © 1991 by Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior written permission of the publisher.

9876543
Order number EY-C171E-DP.
Printed in the United States of America by Hamilton Printing Company.

Design: David Ford

Copy editor: Alice Cheyer

Art editor: Carol Keller

Composition: Paul C. Anagnostopoulos and Alicia Quintano using zTEX
Index: Rosemary Simpson and John Mann

PostScript output: Chiron, Inc.

Quotations from the following works appear as epigraphs in this book: Ray Cummings,
The Man Who Mastered Time, copyright © 1957 by Gabrielle Cummings, reprinted

by courtesy of Forrest J. Ackerman, 2495 Glendower Avenue, Hollywood, California
90027; Edgar A. Guest, “The Package of Seeds,” Collected Verse of Edgar A. Guest,
copyright 1934 by Contemporary Books, Chicago, Illinois 60601, reprinted by permission
of Contemporary Books; excerpt from “The Hollow Men,” in Collected Poems 1909-1962
by T. S. Eliot, copyright 1936 by Harcourt Brace Jovanovich, Inc., copyright © 1964,

1963 by T. S. Eliot, reprinted by permission’of Harcourt Brace Jovanovich and Faber and
Faber Ltd. :

PostScript is a trademark of Adobe Systems Incorporated; TgX is a trademark of the
American Mathematical Society; CI, CMI, DDCMP, DDIF, DEC, DECnet, DECserver,
DECwindows, Digital, Digital logo, DSSI, LSI-11, MASSBUS, MicroVAX, MicroVAX II,
MSCP, NMI, PDP-11, Q22-bus, RSTS/E, RSX, RSX-11M, RT-11, SBI, TOPS-20, UDA,
UNIBUS, VAX, VAX MACRO, VAX RMS, VAXBI, VAXcluster, VAXsim, VAXsimPLUS,
VAXstation, VAXstation II/GPX, VMS, and XMI are trademarks of Digital Equipment
Corporation.

Library of Congress Cataloging-in-Publication Data

Goldenberg, Ruth E.

VAX/VMS internals and data structures: version 5.2

Ruth E. Goldenberg, Lawrence J. Kenah,

with the assistance of Denise E. Dumas.
p. cm. includes index.
ISBN 1-55558-059-9

1. VMS (Computer operating system) 2. VAX computers
-Programming. 3. Data structures (Computer science) I. Kenah,
Lawrence J., 1946~ II. Dumas, Denise E., 1956~ IIL Title.
QA76.76.063G638 1991 005.4'449-dc20 90-23081 CIP

In memory of

Lillian Davis, my grandmother,
some of whose

strength and stubbornness

I was lucky to inherit.

RE.G.

We would also like to dedicate

this book to Dick Hustvedst,

a very dear friend. His inspiration
created this book.

His example ensured its completion.
We learned more from him

than we can ever thank him for.

LJK. and RE.G.

Preface

The main topic of this book is the kernel of the VAX/VMS Version 5.2 operat-
ing system: process management; memory management; the I/O subsystem;
the mechanisms that transfer control to, from, and among these; and the
system services that support and complement them.

In explaining the operation of a subsystem, this book emphasizes the data
structures manipulated by that subsystem. Most VMS operations can be
more easily understood once the contents of the various data structures are
known. The book also provides a detailed description of the flow of some
major routines and annotated excerpts from certain key routines.

The intended readers are system programmers and other users of VMS
who wish to understand its components, mechanisms, and data structures.
For system programmers, the book provides technical background helpful in
activities such as writing privileged utilities and system services. Its detailed
description of data structures should help system managers make better
informed decisions when they configure systems for space- or time-critical
applications. It should also help application designers appreciate the effects
(in speed or in memory consumption) of different design and implementation
decisions. '

In addition, this book is intended as a case study of VMS for an advanced
undergraduate or graduate course in operating systems.

It assumes that the reader is familiar with the VAX architecture, particu-
larly its memory management, and with the VMS operating system, partic-
ularly its system services.

The book is divided into nine parts, each of which describes a different
aspect of the operating system.

« Part 1 presents an overview of the operating system and reviews the con-
cepts basic to its workings.

o Part 2 describes the mechanisms used to pass control between user pro-
grams and the operating system, and within the system itself.

« Part 3 describes the synchronization methods of VMS.

« Part 4 describes scheduling, time support, and process control.

o Part 5 discusses memory management, with emphasis on system data
structures and their manipulation by paging and swapping routines. It also
describes management of dynamic memory, such as nonpaged pool.

« Part 6 contains an overview of the I/O subsystem, paying particular atten-
tion to the I/O-related system services.

« Part 7 describes the life cycle of a process: its creation, the activation and
termination of images within its context, and its deletion.

vii

Preface

viii

« Part 8 discusses the life of the system: its organization, initialization, error
handling, powerfail recovery, and shutdown. It also explains symmetric
multiprocessing support.

o Part 9 discusses the implementation of logical names and the internals of
several miscellaneous system services.

o The appendixes include a summary of VMS data structures, a detailed
layout of system and P1 virtual address spaces, information on the use
of listing and map files, the conventions used in naming symbols, and
information about lock and resource use by various VMS components.

This book does not include a discussion of VAXcluster systems.

There is no guarantee that any data structure or subroutine described here
will remain the same from release to release. With each new version of
the operating system, a privileged application program that relies on details
contained in this book should be rebuilt and tested prior to production use.

The VMS document set supplies important background information for the
topics discussed in this book. The following provide an especially important
foundation: VMS System Services Reference Manual, VMS Device Support
Manual, and the chapter in the VMS Run-Time Library Routines Volume
that describes condition handling.

The VAX Architecture Reference Manual, Second Edition (Digital Press,
1991), edited by Richard Brunner, documents the VAX architecture in detail.
Computer Programming and Architecture: The VAX, by Henry M. Levy and
Richard H. Eckhouse, Jr. (Digital Press, 1988}, contains an excellent descrip-
tion of the VAX architecture as well as a discussion of some of the design
decisions made in various implementations. It also includes a bibliography
of the literature dealing with operating system design. VMS File System In-
ternals (Digital Press, 1990), by Kirby McCoy, provides an in-depth study of
the internals of the file system.

CONVENTIONS

A number of conventions are used throughout the text and figures of this
book.

The term executive refers to those parts of the operating system that
are loaded into and execute from system space. The executive includes
the system base image, SYS.EXE; loadable executive images; other loadable
system images such as SCSLOA; and device drivers.

The terms system and VMS system describe the entire VMS software
package, including privileged processes, utilities, and other support software
as well as the executive itself. VMS consists of many different components,
each a different file. One component is the system base image, SYS.EXE.
Others are loadable executive images, device drivers, command language
interpreters, and utility programs.

Preface

The source modules from which these components are built and their
listings are divided into facilities. Each facility is a directory on a source or
listing medium containing sources and command procedures to build one or
more components. The facility [DRIVER], for example, contains sources for
most of the device drivers. The facility [BOOTS] includes sources for the pri-
mary bootstrap program, VMB; the secondary bootstrap program, SYSBOOT;
and the SYSGEN Ugtility. The facility [SYS] contains the sources that make
up the base image and loadable executive images.

This book identifies a [SYS] facility source module only by its file name.
It identifies a module from any other facility by facility directory name and
file name. For example, [DRIVER|LPDRIVER refers to the source for the line
printer device driver. Appendix B discusses how to locate a module in the
VMS source listings.

In general, the component called INIT refers to a module of that name in
the executive and not to the volume initialization utility. When the latter
is referenced, it is clearly specified.

This book identifies a macro from SYS$LIBRARY:LIB.MLB by only its
name, for instance, WFIKPCH. The macro library of all other macros is
specified.

The unmodified terms process control block and PCB refer to the software
data structure used by the scheduler. The data structure that contains a
process’s hardware context is always called the hardware PCB.

The term inner access modes means those access modes with more priv-
ilege. The term outer access modes means those with less privilege. Thus,
the innermost access mode is kernel and the outermost mode is user.

SYSGEN parameters include both the dynamic parameters, which can be
changed on the running system, and the static parameters, whose changes
do not take effect until the next system boot. These parameters are referred
to by their parameter names rather than by the global locations where their
values are stored. Appendix C relates parameter names to their corresponding
global locations.

The terms byte index, word index, longword index, and quadword index
refer to methods of VAX operand access that use context-indexed addressing
modes. That is, the index value is multiplied by 1, 2, 4, or 8 (for bytes,
words, longwords, or quadwords, respectively) as part of operand evaluation,
to calculate the effective address of the operand.

Except in the index, a subroutine is categorized as a routine or a procedure
depending on its entry method. A routine is entered, or invoked, with a JSB
instruction. A procedure is entered, or called, with a CALLG or CALLS.

Three conventions are observed for lists:

« In lists like this one, where no order or hierarchy exists, list elements are
indicated by leading bullets (). Sublists without hierarchy are indicated by
dashes (—).

ix

Preface

« Lists that indicate an ordered set of operations are numbered. Sublists that
indicate an ordered set of operations are lettered.

o Numbered lists with the numbers enclosed in circles indicate a corre-
spondence between the list elements and numbered items in a figure or
example.

Several conventions are observed for figures. In all diagrams of memory,
the lowest virtual address appears at the top of the page and addresses
increase toward the bottom of the page. Thus, the direction of stack growth
is depicted upward from the bottom of the page. In diagrams that display
more detail, such as bytes within longwords, addresses increase from right
to left. That is, the lowest addressed byte (or bit) in a longword is on the
right-hand side of a figure and the most significant byte (or bit) is on the
left-hand side.

Each field in a data structure layout is represented by a rectangle. In many
figures, the rectangle contains the last part of the name of the field, excluding
the structure name, data type designator, and leading underscore. A rectangle
the full width of the diagram generally represents a longword regardless of
its depth. A field smaller than a longword is represented in proportion to
its size; for example, bytes and words are quarter- and half-width rectangles.
A quadword is represented by a full-width rectangle with a short horizontal
line segment midway down each side.

For example, Figure 8.1 shows the layout of a spinlock control block.
The rectangle labeled SPINLOCK represents the byte SPL$B_SPINLOCK;
the rectangle labeled OWN_CPU, the longword SPL$L_OWN_CPU; and the
rectangle labeled ACQ_COUNT, the quadword SPL§Q_ACQ_COUNT.

In almost all data structures, the data structure’s full-width rectangles rep-
resent longwords aligned on longword boundaries. In a few data structures,
such as the logical name table header (LNMTH) shown in Figure 35.2 or the
logical name translation block (LNMX) in Figure 35.4, a horizontal row of
boxes represents fields whose sizes do not total a longword. Without this
practice, most of the fields in this kind of structure would be split into two
part-width rectangles in adjoining rows, because they are unaligned long-
words.

A data structure field containing the address of another data structure in
the same figure is represented by a bullet connected to an arrow pointing to
the other structure. Where possible, the arrow points to the rightmost end
of the field, that is, to bit 0. A field containing a value used as an index into
that or another data structure is represented by an x connected to an arrow
pointing to the indexed location.

Two conventions indicate elisions in a data structure layout. A specific
amount of space is shown as a rectangle whose sides contain dots. Text
within the rectangle indicates the amount of space it represents. Field
SPLSL_OWN_PC_VEC in Figure 8.1, for example, represents 32 bytes.

Preface

An indeterminate amount of space, often unnamed, representing omitted
and undescribed fields, is indicated by a rectangle whose sides are intersected
by short parallel horizontal lines. For example, Figure 14.4, which identifies
only the PCB fields related to memory management, contains four sets of
omitted fields among the labeled fields.

Ruth E. Goldenberg
Lawrence J. Kenah
December 1990

Acknowledgments

VERSION 3.3 EDITION

Our first thanks must go to Joe Carchidi for suggesting that this book be
written, and to Dick Hustvedt, for his help and enlightening conversations.

We would like to thank John Lucas for putting together the initial versions
of Chapters 7, 11, 12, and 36 and Vik Muiznieks for writing the initial
versions of Chapters 3, 21, and 24.

Appreciation goes to all those who reviewed the drafts for the VAX/VMS
Version 2.2 and the VAX/VMS Version 3.3 editions of this book. We would
particularly like to thank Kathy Morse for reviewing the V2.2 volume in
its entirety and Wayne Cardoza for reviewing this entire V3.3 edition. Our
special thanks go to Ruth Goldenberg for reviewing both in their entirety,
and for her many corrections, comments, and suggestions. [The V2.2 book
was published in 1981. Digital Press published the first edition of the present
volume, for V3.3, in 1984.]

We owe a lot of thanks to our editing staff, especially to Jonathan Os-
trowsky for his labors in preparing the V2.2 book, and Betty Steinfeld for her
help and suggestions. Many thanks go to Jonathan Parsons for reviewing and
editing the present edition, and for all his help, patience, and suggestions.

We would like to thank the Graphic Services department at Spitbrook,
particularly Pat Walker for her help in paging and production of the V2.2
book and Paul King for his help in transforming innumerable slides and rough
sketches into figures. Thanks go to Kathy Greenleaf and Jackie Markow for
converting the files to our generic markup language.

Thanks go to Larry Bohn, Sue Gault, Bill Heffner, Kathleen Jensen, and
Judy Jurgens for their support and interest in this project.

Finally, we would like to thank all those who originally designed and
implemented the VAX/VMS operating system, and all those who have con-
tributed to later releases.

Lawrence J. Kenah
Simon F. Bate
August 1983

VERSION 4.4 EDITION -

First, I thank Larry Kenah for suggesting that I do this edition of the book, for
providing such an excellent foundation to update, and for his astute review
and responsive answers to my innumerable questions.

I was blessed with many dedicated reviewers, four of whom reviewed the

xiii

Acknowledgments

entire book: Dick Buttlar, Wayne Cardoza, Kathy Morse, and Rod Shepard-
son. Rod Shepardson, moreover, revised Chapter 24, Appendixes D and E and
provided considerable update and enhancement to Chapter 21. Dick Buttlar
also aided me in my struggles to format tables and tactfully suggested im-
provements to the book. Wayne Cardoza and Kathy Morse, who had critiqued
earlier versions of the book, provided continuity, insight, and technical as-
sistance and support.

A number of other people reviewed large portions of the book, significantly
improving its quality: Stan Amway, Richard Bishop, George Claborn, Dan
Doherty, Joy Dorman, Rod Gamache, and John Hallyburton. I also thank the
many other reviewers and early readers who helped find errors and omissions.

Carl Rehbein helped update Chapters 3, 21, 24, and Appendixes C, D,
and E.

Bob Kadlec, my manager, encouraged and supported me throughout this
endeavor and intercepted many potential interrupts. ‘

Joy Lanza edited the initial version of this edition and carefully, patiently
shepherded the copy and artwork through its preliminary publication.

George Jakobsche acted as negotiator and facilitator and played an impor-
tant part in catalyzing this edition of the book.

I thank all the people who produced this book. Alice Cheyer’s metic-
ulous editing corrected numerous errors that had escaped the rest of us.
Carol Keller edited the artwork, polishing it and removing inconsistencies.
Jonathan Weinert diligently orchestrated the entire production.

I would like to thank John Osborn and Mike Meehan of Digital Press for
their strong support.

I am especially grateful to Chase Duify of Digital Press for her compre-
hensive publishing experience and ready wit, which lightened the work.

My deepest thanks are to Jim Fraser, who wrote the final draft of several
important sections, contributed much technical and editorial review, helped
me through the gnarly bits, and, most important, supplied much gumption.

Finally, I, also, thank the original designers and implementers of VAX/VMS
and the contributors to subsequent releases, those past and those to come.

Ruth E. Goldenberg
August 1987

VERSION 5.2 EDITION

I would especially like to acknowledge the work of Denise Dumas, the other
major writer of this edition. She assembled Chapter 23, adding a considerable
amount of new material. She researched and wrote Appendix H, a labor
worthy of Hercules. She updated and enhanced Chapters 1, 6, 10, 13, 25,
26, 27, 28, 30, 31, 33, 36, and Appendixes C, F, and G. Denise’s technical
competence, unflagging energy, and hard work were critical to the successful
completion of this book.

Acknowledgments

We were fortunate when, late in the project, Saro Saravanan joined us.
Adding much new material, he assembled Chapters 3 and 22 and updated
Chapters 11 and 24 and Appendix E. He also provided diligent assistance
during the final production phase of the book, checking art edits and page
proofs.

Two other people updated chapters in this edition. Rod Shepardson assem-
bled Chapter 20 and updated and enhanced Chapter 21. He also reviewed
most of the book. George Jakobsche updated and enhanced Chapter 19 and
Appendixes A and B.

Joy Lanza was an important contributor to the creation of this book. She
coordinated the production of the Update Xpress volumes on which this
book is based and performed a variety of tasks from copy editing to preparing
repro. She also created many of the figures in this book. Her persistence and
extraordinary patience are much appreciated.

A number of people reviewed the book, contributing greatly to its qual-
ity: Stan Amway, Dick Buttlar, Wayne Cardoza, Jim Fraser, Mike Harvey,
and Richie Holstein. Stan Amway was especially helpful in reviewing the
memory management chapters. Dick Buttlar made many suggestions that
improved the writing and advised us on VAX DOCUMENT. Wayne Cardoza
caught many errors, could always be counted on to answer questions, and
was our technical court of last resort. Jim Fraser wrote-a great many key para-
graphs and sentences, reviewed multiple drafts of many chapters, and was
especially good at identifying areas needing more explanation. Mike Harvey
provided many detailed explanations for omitted or unclear areas. A careful,
thoughtful reviewer, Richie Holstein found errors that had escaped everyone
else.

Other engineers reviewed substantial portions of the book, improving its
quality: Richard Bishop, George Claborn, Stu Farnham, John Hallyburton,
Forrest Kenney, and Ben Thomas. Bob Harris graciously allowed himself to
be persuaded to review the index.

John Osborn, Director of Digital Press, initiated the program by which we
published new and revised chapters of this book as Update Xpress volumes.
His decision to fund the project made the book possible.

Chase Duffy of Digital Press astutely managed the production of the Up-
date Xpress and the book. Her good humor, good advice, and great interper-
sonal skills kept the project going. Chase was ably supported by Beth French.
Together they oversaw all aspects of the production and manufacture of the
book.

David Ford created the book design for this and previous editions. For this
edition, he designed an exceptionally elegant jacket that incorporates one of
my favorite paintings.

I was delighted to work again with Alice Cheyer, who edited the Update
Xpress and the book. With her lively intelligence and meticulous editing, she
brought consistency to a collection of chapters written in different voices. I

Acknowledgments

Xvi

was also delighted to have Carol Keller as art editor again. She helped create
and painstakingly incorporated visual conventions that improved the clarity
of the art. She is responsible for the graceful appearance of the figures and
the book pages.

Paul Anagnostopoulos wrote macros to convert our VAX DOCUMENT
chapter files to TgX. His ingenuity, skill, and willingness to learn the book-
making trade brought about the successful production of this unusually large
book. Alicia Quintano ably assisted him.

Rosemary Simpson and John Mann created a totally new, exceptionally
detailed index, one strengthened and enriched by their technical expertise.

Bob Kadlec, my previous manager, and Howard Hayakawa, my current
manager, gave encouragement and support.

In addition to being one of the book’s most helpful reviewers, Jim Fraser
could always find a way to verbalize a complex idea with clarity and grace,
to polish awkward writing, and to provide gumption when necessary.

Ruth E. Goldenberg
December 1990

Contents

I/Introduction 1

1

1.1
1.2
1.3
1.4
1.5

System Overview 3

Process, Job, and Image 3

VMS Components 8

Hardware Assistance to the Operating System Kernel 14
Other System Concepts 22

System Virtual Address Space 25

I1 / Control Mechanisms 27

2

2.1
22
2.3
2.4
2.5
2.6
2.7
2.8

3
3.1
3.2

4
4.1
4.2

5

5.1
52
53
54
5.5
5.6

VAX Interrupts and Exceptions 29

Overview 29

System Control Block 30

Interrupt Requests 32

Interrupt Dispatching 34

Restrictions Imposed on Interrupt Service Routines 34
Exception Dispatching 35

Comparison of Exceptions and Interrupts 37

The Return from Exception or Interrupt Instruction 38

Hardware Interrupts 40
Overview 40
Device Interrupts 44

Software Interrupts 54
The Software Interrupt 54
Software Interrupt Service Routines 55

Condition Handling 71

Overview 71

Features of the Condition Handling Facility 72
Establishing a Condition Handler 73
Exceptions 75

Software Conditions 85

Uniform Condition Dispatching 88

Xvii

Contents

xviii

5.7
5.8

6

6.1
6.2
6.3
6.4
6.5

7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Default (VMS-Supplied) Condition Handlers 93
Condition Handler Action 95

System Service Dispatching 106

System Service Vectors 106

Change Mode Instructions 111

Change Mode Dispatching in the VMS Executive 112
Dispatching to System Services in Privileged Shareable Images
Related System Services 126

ASTs 129

AST Hardware Components 129
AST Data Structures 131

Creating an AST 133

Queuing an AST to a Process 134
Delivering an AST 135

Disabling AST Delivery 142

Special Kernel Mode ASTs 143
System Use of Normal ASTs 146
Attention and Out-of-Band ASTs 149

ITI / Synchronization 159

8

8.1
8.2
8.3
8.4
8.5

9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Synchronization Techniques 161
Overview 161

Elevated IPL 168

Spinlocks 172

Serialized Access 195

Mutual Exclusion Semaphores (Mutexes) 196

Event Flags 202

Event Flags 202

PCB Fields Related to Event Flags 206

Associating to a Common Event Flag Cluster 206
Dissociating from a Common Event Flag Cluster 207
Deleting an Event Flag Cluster 208

Waiting for an Event Flag 208

Setting an Event Flag 211

Reading and Clearing Event Flags 212

121

9.9

10

10.1
10.2
10.3

Contents
Interprocess Synchronization Through Common Event Flags 213

Lock Management 214

Lock Management Data Structures 214
Lock Management System Services 225
Handling Deadlocks 235

IV /Scheduling and Time Support 245

11

1.1

11.2
11.3
11.4
11.5
11.6
11.7
11.8

12

12.1
12.2
12.3
12.4
12.5
12.6

13

13.1
13.2
13.3
13.4
13.5

Time Support 247

Overview 247

Hardware Clocks 248

Timekeeping in VMS 252

Set Time System Service 254

Timer Queue and Timer Queue Entries 256
Timer System Services 258

Interval Timer Interrupt Service Routine 261
Software Timer Interrupt Service Routine 263

Scheduling 268

Scheduling Data Structures 268
Process Priority 274
Scheduling States 279
Capabilities and Affinity 287
Scheduling Dynamics 289
Rescheduling Interrupt 306

Process Control and Communication 318
Requirements for Affecting Another Process 318
Process Information System Services 323

System Services Affecting Process Computability 334
Miscellaneous Process Attribute Changes 340
Interprocess Communication 342

V /[Memory Management 347

14

14.1
14.2

Memory Management Overview and
Data Structures 349

Overview of Memory Management 349
VAX Address Translation and Access Checking 362

Contents

14.3 Process Data Structures 365

144 PEN Database 378

14.5 System Memory Management Data Structures 387

14.6 Data Structures for Global Pages 388

14.7 Swapping Data Structures 393

14.8 Data Structures That Describe the Page and Swap Files 396
14.9 Swapper and Modified Page Writer Page Table Arrays 400
15 Memory Management System Services 403

15.1 Common Characteristics of Memory Management

System Services 403

“15.2 Per-Process Virtual Address Space Creation 406
15.3 Demand Zero Virtual Address Space Creation 407
15.4 Process-Private and Global Sections 411
15.5 Virtual Address Space Deletion 427
15.6 $SETSWM System Service 432
15.7 $SETPRT System Service 432
16 Paging Dynamics 435
16.1 Overview 435
16.2 Initial Page Fault Handling 436
16.3 Page Faults for Process-Private Pages 438
16.4 Page Faults for Global Pages 448
16.5 Page Faults for System Pages 458
16.6 Use of Page Files 459
16.7 Input and Output That Support Paging 462
16.8 Modified Page Writing 467
16.9 $UPDSEC System Service 476

16.10 Paging and Scheduling 478

17 Working Set List Dynamics 481

17.1 Overview 481

17.2 The Working Set List 482

17.3 Working Set Replacement 491

17.4 Working Set Limit Adjustment 496

17.5 $LKWSET System Service 502

17.6 $LCKPAG System Service 504

17.7 $ULWSET and $ULKPAG System Services 505
17.8 $PURGWS System Service 506

17.9

18

18.1
18.2
18.3
18.4
18.5
18.6

19

19.1
19.2
19.3
19.4
19.5
19.6
19.7

Contents

Keeping a Page in the Working Set List 506

The Swapper 510

Swapper Overview 510

Swapper’s Use of Memory Management Data Structures 512
Swapper Main Loop 516

Selection of Shrink and Outswap Processes 523

Outswap Operation 528

Inswap Operation 536

Pool Management 544

Dynamic Data Structures and Their Storage Areas 544
Nonpaged Pool Regions 554

Paged Pool 564

Process Allocation Region 565

KRP Lookaside List 567

Collecting Pool Allocation Statistics 568

Detecting Pool Corruption 569

VI /Input/Output 575

20

20.1
20.2
203
20.4
20.5
20.6

21

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9

Overview of the I/O Subsystem 577
Hardware Overview 577

I/O Database 578

Device Drivers 582

I/O System Services 584

Ancillary Control Processes 584

VMS I/O Routines 586

I/O System Services 587

Overview 587

Device Drivers and Fork Locks 590

Device Categories 590

Allocating and Deallocating Devices 591
Assigning and Deassigning Channels 595
Queuing an I/O Request 606

I/O Postprocessing 613

Segmented Virtual and Logical I/O 620
Cancel I/O on Channel System Service 624

xxi

Contents

xxii

22

22.1
22.2
22.3
22.4
22.5

23

23.1
23.2
23.3
23.4
23.5
23.6

24

24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8

I/O Device Drivers and Interrupt Service Routines
Device Driver Models in VMS 628

Exiting the FDT Routine 629

Driver’s Start I/O Routine 632

VMS Interrupt Service Routines 641

Connect-to-Interrupt Mechanism 652

. Mailboxes 655

Overview 655

Logical Names of Mailboxes 656

Mailbox Data Structures 657

Mailbox Creation and Deletion 658

Mailbox Driver 664

Mailbox Use by the VMS Executive and Components 673

Miscellaneous I/O Topics 676
Class and Port Drivers 676
Terminal Driver 679

Pseudo Devices 687

Console Subsystem 688

Bad Block Processing on Disks 692
$BRKTHRU System Service 694
Broadcast System Service 704
Informational Services 705

VII / Life of a Process 707

25

25.1
25.2
25.3

26

26.1
26.2
26.3
26.4

27
27.1

Process Creation 709
Create Process System Service 709
Shell Layout 724

Process Creation in the Context of the New Process 729

Image Activation and Exit 737
Image Initiation 737

Image Exit 771

Image and Process Rundown 774
Process Privileges 778

Process Dynamics 782
Process Classification 782

628

27.2
27.3
27.4
27.5
27.6
27.7

28
28.1
28.2

The Role of VMS Components 782

The Job Controller and Process Creation 783

SPAWN and ATTACH 787
The LOGINOUT Image 791
CLIs and Image Processing 799
Logout Operation 808

Process Deletion 811
Process Deletion in Context of Caller

811

Contents

Process Deletion in Context of Process Being Deleted 813

VIII/ Life of the System 821

29

29.1
29.2
29.3
29.4
29.5
29.6
29.7
29.8

30

30.1
30.2
30.3
30.4

31

31.1
31.2
31.3
31.4
31.5

32

32.1
32.2
32.3

The Modular Executive 823
Overview 823

SYS.EXE, the Base Image 825
Loadable Executive Images 831
Executive Image Loading 836

Initialization of a Loadable Executive Image 843

Version Numbers 851

Other Kinds of Loadable Executive Image 855

Dynamic Allocation and Deallocation of SPTEs 859

Bootstrap Procedures 862
Overview of System Initialization 862
Processor-Specific Initialization 866

Primary Bootstrap Program (VMB) 900
Secondary Bootstrap Program (SYSBOOT)

913

Operating System Initialization and Shutdown 923

Initial Execution of the Executive 923

Loadable Executive Image Initialization Routines 935

Initialization in Process Context 938
System Generation Utility (SYSGEN)
System Shutdown 954

Error Handling 958

Error Logging 958

System Crashes (Fatal Bugchecks) 967
Machine Check Mechanism 979

948

XXiii

Contents

32.4 CPU-Specific Error Interrupts 982

33 Power Failure and Recovery 983
33.1 Powerfail Sequence 983

33.2 Power Recovery 984

33.3 Multiple Power Failures 1000

33.4 Failure of External Adapter Power 1003
34 Symmetric Multiprocessing 1006
34.1 Overview 1006

34.2 SMP Hardware Configurations 1008

34.3 Data Structures Related to SMP Support 1013
344 The Implications of Sharing Memory 1020
34.5 Interprocessor Cooperation 1022

34.6 I/O Considerations 1038

34.7 Processor States 1043

34.8 Initialization 1044

34.9 Powerfail and Recovery 1058

34.10 Fatal Bugcheck Processing 1060

IX / Miscellaneous Topics 1065

35 Logical Names 1067

35.1 Goals of Logical Name Support 1067

35.2 Characteristics of Logical Names 1068

35.3 Characteristics of Logical Name Tables 1070
35.4 Characteristics of Logical Name Translation 1075
35.5 Logical Name Data Structures 1077

35.6 Searching for a Logical Name 1086

35.7 Logical Name Table Name Resolution 1089
35.8 Logical Name System Services 1092

359 Superseded Logical Name System Services 1100
36 Miscellaneous System Services 1102
36.1 Communication with System Processes 1102
36.2 System Message File Services 1109

36.3 System Information System Services 1115

36.4 Device Information System Services 1117

36.5 Formatting Suppdrt 1120

XXiv

Contents

Appendixes 1123

A

B

B.1
B.2
B.3
B.4

C

C.l1
C2
C3

D

D.1
D.2
D.3

E

E.l
E2
E3
E4

F

F.l1
EF2
F3
F4

G

H

H.1
H2
H.3
H4
H.5
H.6
H.7

System Processes and Privileged Images 1125

Use of Listing and Map Files 1129
Reading the Executive Listings 1129

Map Files 1147

System Dump Analyzer 1154

Interpreting SDL Files 1158

Executive Data Areas 1164

The Base Image 1164

Dynamically Allocated Executive Data 1225
Process-Specific Executive Data 1226

Naming Conventions 1232
Public Symbol Patterns 1232
Object Data Types 1238

Facility Prefix Table 1238

Data Structure Definitions 1241
Location of Data Structure Definitions 1241
Overview 1241

Executive Data Structures 1242

Symbolic Constants 1262

Size of System and P1 Virtual Address Spaces 1270
Process Header 1270

System Virtual Address Space 1274

VMS Physical Memory Requirements 1284

Size of P1 Space 1289

VAX CPU Designations 1294

Lock and Resource Use by VMS Components 1296
Aspects of Resource and Lock Use 1296

VMS Executive Lock Use 1298

$MOUNT Lock Use 1300

$DISMOU Lock Use 1302

Volume Shadowing Lock Use 1302

File System Lock Use 1304

RMS Lock Use 1310

XXV

Contents

H.8 Image Activator and Install Utility Lock Use 1320
H.9 DECnet Lock Use 1321

H.10 Job Controller Lock Use 1324

H.11 SYSGEN Lock Use 1328

H.12 SYSMAN Lock Use 1329

Index 1331

xxvi

PART I/Introduction

1.1

1.1.1

1.1.1.1

1.1.1.2

System Overview

For the fashion of Minas Tirith was such that it was built on
seven levels, each delved into a hill, and about each was set a
wall, and in each wall was a gate. :

J. R. R. Tolkien, The Return of the King

- This chapter introduces the basic components of the VMS operating system.

Special attention is given to the features of the VAX architecture that are
utilized by the operating system or that exist solely to support an operating
system. In addition, some of the design goals that guided the implementation
of the VMS operating system are discussed.

PROCESS, JOB, AND IMAGE

The fundamental unit in the implementation of scheduling on the VMS
operating system, the entity that is selected for execution, is the process. If
a process creates subprocesses, the collection of the creator process, all the
subprocesses created by it, and all subprocesses created by its descendants
is called a job. The programs executed in the context of a process are called
images.

Process

A process is fully described by data structures that specify the hardware and
software context, and by a virtual address space description. This informa-
tion is stored in several different places in the process and system address
space. The data structures that contain the various pieces of process context
are pictured in Figure 1.1.

Hardware Context. The hardware context consists of copies of the general-
purpose registers, the four per-process stack pointers, the program counter
(PC), the processor status longword (PSL), and the process-specific processor
registers, including the memory management registers and the asynchronous
system trap (AST) level register. The hardware context is stored in a data
structure called the hardware process control block (hardware PCB), which
is used primarily when a process is removed from or placed into execution.

Another part of process context that is related to hardware is four per-
process stacks, one for each of the four access modes. Code executing in
the context of a process uses the stack associated with the process’s current
access mode.

Software Context. Software context consists of all the data required by
various parts of the operating system to control that portion of common

System Overview

PLrgg_essmPrivate
) ical Names
Hardware context is stored giontrol Region) | per_process
in hardware PCB. Space Stacks
Software context is spread RMS Data
aroundF:? PCB, PHD, JIB, Image Data
3:‘:‘; P opace. System Space 80000000
description is stored in 4
P0 and P1 page tables. - PHD - Hardware PCB
,/ General Registers
JiB : Software PCB J PC, PSL
Pooled Quotas ProcessName | [~~~ ~~"=-=- 1 Pesr-Pr'?gegs
Master Process ID [*® Scheduling | | oo __ Mer:g:y ointers
Cprocmsses in Job prooelmossrmﬁ;'o" Working SetList |% | Management
Pointers to Other Process Section [*\ Registers
This JI i poined Structures AIcagfmang Y| ASTLVL
to by all other ;
pfooyesses (i any) U'ﬁgmgts“ e Information (Hardware Context)
in the same job.
PO Page Table
(Virtual
—~ Address Space ——
Description)
P1 Page Table
Figure 1.1

Data Structures That Describe Process Context

resources allocated to a given process. This context includes the process
software priority, its current scheduling state, process privileges and “iden-
tifiers,” quotas and limits, process page file assignments and reservations,
and miscellaneous data, such as process name and process identification.

The information about a process that must be in memory at all times is
stored in a data structure called the software process control block (PCB).
This information includes the software priority of the process, its unique
process identification (PID), and the particular scheduling state that the
process is in at a given point in time. The software PCB also records some
process quotas and limits. Other quotas and limits are recorded in the job
information block (JIB).

The PCB incorporates another data structure called an access rights block
(ARB), which lists the identifiers that the process holds. Identifiers are names
that specify to what groups a process belongs for purposes of determining
access to files and other protected objects. Identifiers are described briefly in
Section 1.4.1.4.

The information about a process that does not have to be permanently res-
ident (swappable process context) is contained in a data structure called the
process header (PHD). This information is needed when the process is resi-
dent and consists mainly of information used by memory management when
page faults occur. The swapper uses the data in the process header when it
removes the process from memory (outswaps) or brings the process back into

1.1.2

1.1.2.1

1.1.2.1.1

1.1 Process, Job, and Image

memory (inswaps). The hardware PCB, which contains the hardware context
of a process, including its page tables, is a part of the process header. Some
information in the process header is nonpageable and available to suitably
privileged code whenever the process is resident. The process page tables,
however, are pageable and only accessible from that process’s context.

Other process-specific information is stored in the P1 portion of the
process virtual address space (the control region). This includes exception
dispatching information, Record Management Services (RMS) data tables,
and information about the image that is currently executing. Information
that is stored in P1 space is only accessible when the process is executing
(is the current process), because P1 space is process-specific.

Image

The programs that execute in the context of a process are called images.
Images usually reside in files that are produced by the linker. When the user
initiates image execution (as part of process creation or through a Digital
command language (DCL) command in an interactive or batch job), a com-
ponent of the executive called the image activator sets up the process page
tables to point to the appropriate sections of the image file. VMS uses the
same paging mechanism that implements its virtual memory support to read
image pages into memory as they are needed.

Virtual Address Space Description. The virtual address space of a process is
described by the process PO and P1 page tables, stored in the high-address
end of the process header. The process virtual address space is altered when
an image is initially activated, during image execution through selected
system services, and when an image terminates. The process page tables
reside in system virtual address space and are in turn described by entries in
the system page table. Unlike the other portions of the process header, the
process page tables are themselves pageable, and they are faulted into the
process working set only when they are needed.

Control Region (P1 Space). Figure 1.2 shows the layout of P1 space. This
figure was produced mainly from information contained in module SHELL,
which contains a prototype of a P1 page table that is used whenever a process
is created. A System Dump Analyzer (SDA) Utility listing of process page
tables was used to determine the order and size of the portions of P1 space
not defined in SHELL.

Some of the pieces of P1 space are created dynamically when the process
is created. These include a P1 mapping of process header pages, a command
language interpreter (CLI) if one is being used, a symbol table for that CLI,
the process allocation region, and the process I/O segment. In addition, the

System Overview

Direction of Growth

Image-Specific
Portion of P1 Space

User Stack

(Deleted at image exit

l 40000000

by MMG$IMGRESET) Extra Image /O Segment
Per-Process Message Sections CTLSGL_CTLBASVA:
Dynamic Permanent - {]
Portion of P1 Space CLI Symbol Table
(Locates border between
CLI Command Table image-specific and
process—permanent
cul pieces of P1 space)

Files-11 XQP Data

Files-11 XQP Image

Image VO Segment

Process /O Segment

Process Allocation Region

Channel Control Block Table

MMGS$GL_CTLBASVA::

—t 1]

P1 Window to Process Header

(Locates initial low—

VMS Reserved Area

address end of P1
space for each process

Static Permanent
Portion of P1 Space

RMS Data Pages

as itis created)

Per-Process Common Area for Users

Per-Process Common Area Reserved to Digital

Compatibility Mode Data Page

Security Audit Data Pages

Image Activator Context Page

Generic CLI Data Pages

Image Activator Scratch Pages

Debugger Context

Vectors for Messages and User-Written System Services

Image Header Buffer

KRP Lookaside List

Kernel Stack

Executive Stack

Supervisor Stack

VMS Kernel Mode Data Page

VMS User Mode Data Page

System Service Vectors

P1 Pointer Page

Figure 1.2

Debugger Symbol Table
(not mapped if debugger not present)

7FFFFFFF

Layout of P1 Space

1.1.2.1.2

This part of

PO space is
defined by the —
linker and
mapped by the
image activator.

This part of

POs is

not defined at __|
link time.

If either of
these pieces is

1.1 Process, Job, and Image

Files-11 Extended QIO Processor (XQP) and its data areas are mapped at
process creation.

The two pieces of P1 space at the lowest virtual addresses (the user stack
and any replacement image I/O segment) are created dynamically each time
an image executes and are deleted as part of image rundown. Appendix F
contains a description of the different pieces of P1 space, including their sizes
and details such as memory management page protection and the name of
the system component that maps a given portion.

Program Region (PO Space). Figure 1.3 shows a typical layout of PO space
for both a native image (produced by the linker) and a compatibility mode
image (produced by the RSX-11M task builder). This figure is much more
conceptual than the previous illustration because the layout of PO space
depends upon the image being run.

By default, the first page of PO space (0 to 1FF;¢) is not mapped (protection
set to No Access). This no-access page allows easy detection of two common
programming errors, using zero or a small number as the address of a 'data
location or using such a small number as the destination of a control transfer.
(A link-time request or system service call can alter the protection of virtual
page zero. Note also that page zero is accessible to compatibility mode
images.) :

The main native image is placed into PO space, starting at address 200,¢.
Any shareable images that are position-independent and shared (for exam-
ple, LIBRTL) are placed at the end of the main image. The order in which
these shareable images are placed into the image is determined during image
activation.

required, it is

m . Note
that both cannot
be mapped at

the same time.

Native Mode image This portion of PO Compatibility Mode Image
B -~ oyt v °
the -1 -
Notm task builderand — m?rt.',b""y End of Compatibility
) age
Executive mapped by the — Mode Image
I Application
mage Migration Not mapped 177777 o <FFFF
Executive (AME). [RSX—11M AME 8=""""6
LIBRTL ~
TwEb;?] (BAéF&é%fr\fsE =EXE)
m the .
LBRSHR image activator Native Mode Image POLR Pages
- when it detects -
Other shareable images that it is activating = Not mapped =
= a compatibility T T aFFFFFFF
Debugger (LIBSDEBUG) mode image.
(if requested at link,
run, or execution time)
Traceback (LIBSTRACE)
(if not overridden at link
time and needed)
— POLR
> Not mapped pt
T T arrrrFFF
Figure 1.3

PO Space Allocation

System Overview

1.13

1.2

If the debugger or the traceback facility is required, these images are added
at execution time (even if /DEBUG was selected at link time). This mapping
is described in detail in Chapter 26.

Job

The collection of subprocesses that have a common root process is called
a job. The concept of a job exists for the purpose of sharing resources.
Some quotas and limits are shared among all processes in the same job.
The current values of these quotas are contained in the JIB, which is shared
by all processes in the same job. Figure 1.1 shows this structure.

VMS COMPONENTS

There are several names for different subsets of VMS. The terms system and
VMS system describe the entire VMS software package, whose components
include

« Utilities

» Program development tools

« System processes such as the job controller
« DCL interpreter

« RMS

« XQP

« The executive

The term executive refers to those components that reside in system space.
During the development of VMS, it has grown to support different CPUs,
more devices, and additional features. These have been generally supported
by code with separate loadable images rather than by modules within one
larger and larger image. Such loadable images include

« CPU-specific support such as the SYSLOAxxx modules
« System communication services support, SCSLOA
« VAXcluster connection and distributed lock management, CLUSTRLOA

The most recent stage in this evolution is a reorganization of the executive
image, SYS.EXE. It has been divided into a base image and approximately
20 loadable executive images. SYS.EXE, the base image, contains transfer
vectors to routines in the loadable executive images and storage for widely
referenced system variables.

A loadable executive image consists of modules performing related func-
tions and data and initialization code specific to those functions. The im-
age PROCESS_MANAGEMENT.EXE, for example, includes the reschedul-
ing interrupt service routine, process creation and deletion system services,
and the subroutine for reporting scheduler events. To resolve references to
routines in other executive images, PROCESS_MANAGEMENT.EXE links
against the base image symbol table, SYS.STB.

1.2.1

1.2.2

1.2.2.1

1.2.2.2

1.2 VMS Components

As each executive image is loaded into system space, its associated transfer
vectors in SYS.EXE are modified to contain the addresses of its routines. One
image can dispatch into a routine in another image using a SYS.EXE transfer
vector as bridge.

The address space of each loadable executive image is independent of that
of the others. Each image is position-independent, linked to a base address of
0, and loaded into system space allocated for that purpose. This separation
makes it possible for one image to be replaced by a newer version containing
enhancements or source-level corrections with no impact on other executive
images or the base image. Furthermore, there need be no impact on other
images linked with SYS.STB. Such flexibility was a major goal of reorganizing
the executive. For more information, see Chapter 29.

Functions Provided by VMS

VMS provides services at many levels so that user applications may execute
easily and effectively. Its layered structure is pictured in Figure 1.4. In gen-
eral, components in a given layer can make use of the facilities in all inner
layers.

Operating System Kernel

The main topic of this book is the operating system kernel: the I/O subsys-
tem, memory management, the scheduling subsystem, and the VMS system
services that support and complement these components. The discussion of
these three components and other miscellaneous parts of the operating sys-
tem kernel focuses on the data structures that are manipulated by a given
component. In describing what each major data structure represents and how
that structure is altered by different sequences of events in the system, this
chapter describes the detailed operations of each major piece of the kernel.

I/O Subsystem. The I/O subsystem consists of device drivers and their as-
sociated data structures; device-independent routines within the executive;
and several system services, the most important of which is the Queue I/O
Request ($QIO) system service. All forms of I/O request made by outer layers
of the system are transformed into $QIO requests. The I/O subsystem is de-
scribed in detail from the point of view of adding a VMS device driver in the
VMS Device Support Manual. Chapters 21 and 22 of this volume describe
some aspects of the I/O subsystem that are not described in that manual.

Memory Management. The main components of the memory management
subsystem are the page fault handler, which implements VMS virtual mem-
ory support, and the working set swapper, which allows the system to utilize
more fully the amount of physical memory that is available. The data struc-
tures used and manipulated by the page fault handler and swapper include

System Overview

Program Development
Privileged Images Tools
Images installed with privilege Command Language Interpreter Ie)l((t editors
Other privileged images inker
Images linked with the MACRO assembler
system symbol table Record Management System System message compiler
File system and System Services

Informational utilities

$CRETVA

Memor);
Management

Pager

$ADJWSL

Systemwide
Protected

Data Structures
Page tables
/O database

Scheduler data

routines

Process and Time Management

Scheduler
Process control

$CREPRC

$SETIMR
Run-Time Library
(Specific)
FORTRAN
PASCAL

PL/I

Run-Time Library
(General)

$GETQUI

$NUMTIM
Math library

String manipulation
Screen formatting

Layered Products Assorted Utilities

Language compilers
DATATRIEVE

SORT
File manipulation
Forms utilities HELP

DIRECTORY

Figure 1.4
Layered Design of the VMS Operating System

the page frame number (PFN) database and the page tables of each process.
The PFN database describes each page of physical memory that is available
for paging. A virtual address space description of each currently resident
process is contained inits page tables. The system page table describes the
system space portion of virtual address space.

System services enable a user (or the system on behalf of the user) to
create or delete specific portions of virtual address space or to map a file
into a specified virtual address range.

1.2.23 Scheduling and Process Control. The third major component of the kernel
is the scheduling subsystem. It selects processes for execution and removes
from execution processes that can no longer execute. It also handles clock
servicing and includes timer-related system services. System services are
available to allow a process to create or delete other processes. Other services

10

1.2.2.4

1.23

1.24

1.2 VMS Components

provide one process the ability to obtain information about another and
control its execution.

Miscellaneous Services. One area of the operating system kernel that is not
pictured in Figure 1.4 involves the many miscellaneous services that are
available in the operating system kernel. Some of these services for such
tasks as logical name creation or string formatting are available to the user
in the form of system services. Others, such as pool manipulation routines
and certain synchronization techniques, are only used by the kernel and priv-
ileged utilities. Still others, such as the lock management system services,
are used throughout the system—by users’ programs, system services, RMS,
the file system, and privileged utilities.

Data Management

VMS provides data management facilities at two levels. The record structure
that exists within a file is interpreted by RMS, which exists in a layer just
outside the kernel. RMS exists as a series of procedures located in system
space, so it is in some ways just like the rest of the operating system kernel.
Most of the procedures in RMS execute in executive access mode, providing
a thin wall of protection between RMS and the kernel itself.

The placement of files on mass storage volumes is controlled by one of the
disk or tape ancillary control processes (ACP) or by the Files-11 XQP. An ACP
is implemented as a separate process because many of its operations must be
serialized to avoid synchronous access conflicts. ACPs and the Files-11 XQP
interact with the kernel both through the system service vector interface
and by the use of utility routines not accessible to the general user.

The Files-11 XQP, introduced in VMS Version 4, controls the most com-
monly used on-disk structure. (The placement of files on a block-structured
medium, such as a disk volume or a TU58, is referred to as on-disk structure.)
The XQP is implemented as an extension to the $QIO system service and
runs in process context. A process’s XQP file operations are serialized with
those of other processes and processors through lock management system
services.

User Interface

The interface that is presented to the user (as distinct from the application
programmer who is using system services and Run-Time Library procedures)
is a command language interpreter. The DCL CLI is available on all VMS
systems. The monitor console routine (MCR) CLI, the command language
used with RSX-11M, is available as an optional software product. Some of the
services performed by a CLI call RMS or the system services directly; others
result in the execution of an external image. These images are generally no
different from user-written applications because their only interface to the
executive is through the system services and RMS calls.

11

System Overview

1.24.1

1.2.4.2

1.2.4.3

1.2.5

12

Images Installed with Privilege. Some of the informational utilities and disk
and tape volume manipulation utilities require that selected portions of
protected data structures be read or written in a controlled fashion. Images
that require privilege to perform their function can be installed {made known
to the operating system) by the system manager so that they can perform
their function in an ordinarily nonprivileged process environment. Images
that fit this description include AUTHORIZE, LOGINOUT, MONITOR,
SET, and SHOW. Appendix A lists those images that are installed with
privilege in a typical VMS system.

Other Privileged Images. Other images that perform privileged functions are
not installed with privilege because their functions are inherently sensitive
and less controlled. These images could reveal security information or de-
stroy the system if executed by naive or malicious users. They can only be
executed by privileged users. Examples include SYSGEN, for loading device
drivers; SDA, for examining the contents of memory; or the network con-
trol program, for network management. Other images that require privilege
to execute but are not installed with privilege in a typical VMS system are
listed in Appendix A.

Images That Link with SYS$SYSTEM:SYS.STB. Appendix A lists compo-
nents that are linked with the system symbol table, SYS$SYSTEM:SYS.STB.
These images access known locations through global cells in the system base
image, SYS.EXE. The executive is divided into conceptual categories, each
with its own version number. The versiori number of a category changes
when an interface in that category changes. Each data cell or routine trans-
fer vector in the system base image specifies the categories with which it is
associated. For example, the MEMORY_MANAGEMENT category applies
to all memory management data cells and routine transfer vectors, and the
FILES_VOLUMES category applies to all RMS and file system related items.
When a VMS release contains an incompatible change in a category, an im-
age referencing a system data cell or routine transfer vector affected by the
change must relink. For more information, see Chapter 29.

Interface among Kernel Subsystems

The connection among the three major subsystems pictured in Figure 1.4 is
somewhat misleading because there is relatively little interaction between
the three components. In addition, each of the three components has its own
data structures for which it is responsible. When one of the other pieces of
the system wishes to access such data structures, it does so through some
controlled interface. Figure 1.5 shows the small amount of interaction that
occurs between the three major subsystems in the operating system kernel.

1.2.5.1

1.25.2

1.2 VMS Components

Lock/unlock physical
pages for direct /1O

Memory | o
Management 1/0 Subsystem
D ———————
Page fault handler Regular /O

requests

Page fault read
database Inswap/outswap
Modified page write

Page IO

Pager data
structures

Wake up swapper Wait for |/O request

I/O request complete

Page fault wai\ti\ /

Scheduling

Page fault read

complete Qqueues
Free page wait
Physical page

available
Inswap complete Process and Time Management
Outswap complete Wait code (block execution)

Make processes computable

Figure 1.5

Interaction Between Components of VMS Kernel

I/O Subsystem Requests. The I/O subsystem makes a request to memory
management to lock down specified pages for a direct I/O request. The page
fault handler or swapper is notified directly when the I/O request that just
completed was initiated by either one of them.

I/O requests can result in the requesting process’s being placed in a wait
state until the request completes. This change of state requires that the
scheduling subsystem be notified. In addition, I/O completion can also cause
a process to change its scheduling state. Again, the scheduler would be called.

Memory Management Requests. Both the page fault handler and swapper
require input and output operations to fulfill their functions. The page fault
handler and swapper use special entry points into the I/O subsystem rather
than request the $QIO system service. These entry points queue prebuilt I/O
packets directly to the driver, bypassing unnecessary protection checks and
preventing an irrelevant attempt to lock pages associated with these direct
I/O requests.

If a process incurs a page fault that results in a read from disk or if a process
requires physical memory and none is available, the process is put into one
of the memory management wait states by the scheduling subsystem. When
the page read completes or physical memory becomes available, the process
is made computable again.

13

System Overview

1.2.5.3

1.3

1.3.1

14

Scheduler Requests. The scheduling subsystem interacts very little with
the rest of the system. It plays a more passive role when cooperation with
memory management or the I/O subsystem is required. One exception to this
passive role is that the scheduling subsystem awakens the swapper when a
process that is not currently memory-resident becomes computable.

HARDWARE ASSISTANCE TO THE OPERATING SYSTEM KERNEL

The method of implementing the services provided by VMS illustrates the
close connection between the hardware design and the operating system.
Many of the general features of the VAX architecture are used to advantage by
the VMS operating system. Other features of the architecture exist entirely
to support an operating system.

VAX Architecture Features Utilized by VMS

Several features of the VAX architecture that are available to all users are
used for specific purposes by the operating system:

o The general-purpose calling mechanism is the primary path into the op-
erating system from all outer layers of the system. Because all system
services are procedures, invoked using the standard VAX procedure calling

" conventions, they are available to all native mode languages.

« The memory management protection scheme is used to protect code and
data used by more privileged access modes from modification by less privi-
leged modes. Read-only portions of the executive are protected in the same
manner.

« Implicit protection is built into special instructions that can only be ex-
ecuted from kernel mode. Because only the executive (and suitably priv-
ileged process-based code) executes in kernel mode, such instructions as
MTPR, LDPCTX, and HALT are protected from execution by nonprivileged users.

o The VAX architecture provides a small number of interlocked instructions
to help synchronize simultaneous modifications of shared memory by more
than one processor. A memory modification is not atomic (a single indivisi-
ble act), but is, in fact, a read followed by a write. When multiple processors
modify the same memory at the same time, it is possible for each to read
the same initial data but for one to overwrite the other’s change. When all
processors use interlocked instructions to modify the same memory, their
modifications are atomic.

VMS uses these instructions in its implementation of symmetric mul-
tiprocessing (SMP). The interlocked instructions provide atomic forms of
queue manipulation, addition, and bit manipulation. With interlocked in-
structions, VMS implements spinlocks, structures that describe the state
of a particular set of shared data and that enable a set of processors to se-
rialize their access to the data. Chapter 8 provides more information on
multiprocessor synchronization and spinlocks.

1.3.2

1.3 Hardware Assistance to the Operating System Kernel

« The operating system uses interrupt priority level (IPL) for several pur-
poses. IPL is elevated so that certain interrupts are blocked. For example,
clock interrupts must be blocked while the system time (stored in a quad-
word) is checked because this checking takes more than one instruction.
Clock interrupts are blocked to prevent the system time from being up-
dated while it is being checked.

« IPL is also used as a synchronization tool. For example, any routine that ac-
cesses certain systemwide data structures, such as the scheduler database,
must raise IPL to the level at which the data structures are synchronized.
On a uniprocessor, this is sufficient to protect the data. On a multipro-
cessor, a routine must raise IPL and also acquire the spinlock associated
with the data structure. The assignment of various hardware and software
interrupts to specific IPL values establishes an order of importance to the
hardware and software interrupt services that the VMS operating system
performs.

Several other features of the VAX architecture are used by specific compo-
nents of the operating system and are described in later chapters:

« The change mode instructions (CHME and CHMK), which increase the privilege
of the access mode (see Figure 1.6). Note that most exceptions and all
interrupts also result in changing mode to kernel. Section 1.3.5 presents
an introduction to exceptions and interrupts. ,

« The inclusion of many protection checks and pending interrupt checks
in the single instruction that is the common exception and interrupt exit
path, REI.

« Software interrupts.

o Hardware context and the single instructions, SVPCTX and LDPCTX, that save
and restore it.

« The use of ASTs to obtain and pass information.

VAX Instruction Set

While the VAX instruction set, data types, and addressing modes were de-
signed to be somewhat compatible with the PDP-11, several features that
were missing in the PDP-11 were added to the VAX architecture. True con-
text indexing allows array elements to be addressed by element number,
with the hardware accounting for the size (byte, word, longword, or quad-
word) of each element. Short literal addressing was added in recognition of
the fact that the majority of literals appearing in a program are small num-
bers. Variable-length bit fields and character data types were added to serve
the needs of several classes of users, including operating system designers.
The instruction set includes many instructions that are useful to any
designer and occur often in the VMS executive. The queue instructions allow
the construction of a doubly linked list as a common dynamic data structure.
Character string instructions are useful when dealing with any data structure

15

System Overview

133

16

Access mode fields in the PSL are not directly accessible
to the programmer or to the operating system.

A process can reach a Theonlywaytofeacha
MORE privileged LESS privileged access
access mode thi mode is through the REI

rough
a CHMx instruction. CHMX
In addition, most other
exceptions and all
interrupts cause access
mode change to kernel.

instruction.

Executive

Supervisor

The boundaries between the access modes are nearly ~ Command language interpreters normally execute in

identical to the layer boundaries pictured in supervisor mode.

Figure 1-4. Utilities, application programs, Run-Time Library
Nearly all system services execute in kemnel mode. procedures, and so on normally execute in user mode.
RMS and some system services execute in Privileged utilities sometimes execute in kernel or

executive mode. executive mode.

Figure 1.6

Methods for Altering Access Mode

that can be treated as an array of bytes. Bit field instructions allow efficient

- operations on flags and masks.

One of the most important features of the VAX architecture is the VAX
Calling Standard. Any procedure that adheres to this standard can be called
from any native language, an advantage for any large application that requires
the use of the features of a wide range of languages. The VMS operating sys-
tem adheres to this standard in its interfaces to the outside world through the
system service interface, RMS entry points, and the Run-Time Library proce-
dures. System services and RMS services are written as procedures that can
be accessed by executing a CALLx instruction to absolute location SYS$ser-
vice in the process P1 virtual address space. Run-Time Library procedures
are mapped into a process’s PO space.

Implementation of VMS Kernel Routines

In Section 1.2.2, the VMS kernel was divided into three functional pieces
plus the system service interface to the rest of the world. Alternatively,
the operating system kernel can be partitioned according to the method
used to gain access to each part. The three classes of routines within the
kernel are procedure-based code, exception service routines, and interrupt

1.3.3.1

1.3 Hardware Assistance to the Operating System Kernel

Translation-not-valid External device
fault (page fault) hardware interrupts
(exception, not interrupt) (IPL =20 - 23)
\ Device driver
fork processing
Memory =8 -
Management | UO Subsystem / (IPL=8-11)
1/O postprocessing

Device drivers

Postprocessing
routines

Page fault
handler

- software interrupt
(IPL=4)

Process and Time Management

Rescheduling interrupt
service routine

Clock and timer service

\l\ AST delivery
software interrupt
/ \I\ (IPL=2)

Rescheduling .
software interrupt Software timer
(IPL=3) interrupt
Hardware clock . (IPL=7)
interrupt
. (IPL = 22 or 24)
Figure 1.7

Paths into Components of VMS Kernel

service routines. Other systemwide functions, the working set swapping
and modified page writing performed by the swapper, are implemented in
a separate process that resides in system space. Figure 1.7 shows the various
entry paths into the operating system kernel.

Process Context and System Context. The first section of this chapter dis-
cussed the pieces of the system that describe a process. Process context in-
cludes a complete address space description, quotas, privileges, scheduling
data, and any other private data. Any portion of the system that executes in
the context of a process has all these process attributes available.

A portion of the kernel, however, operates outside the context of a spe-
cific process. Most routines in this category are interrupt service routines,
invoked in response to external events, regardless of the currently execut-
ing process. Portions of the initialization sequence also execute outside of
process context. There are no process features, such as a kernel stack or a
page fault handler, available when these routines are executing.

Because of the lack of a process, this system context or interrupt state can
be characterized by the following limited context:

« All stack operations take place on the systemwide interrupt stack.

17

System Overview

1.3.3.2

18

o The primary indication that the CPU is in this state is contained in the
PSL. The PSL indicates that the interrupt stack is in use, the current access
mode is kernel mode, and the IPL is higher than 2.

« The system control block (SCB), the data structure that controls the dis-
patching of interrupts and exceptions, can be thought of as the secondary
structure that describes system context.

« Code that executes in system context can only refer to system virtual

addresses. In particular, there is no P1 space available, so the systemwide

interrupt stack must be located in system space.

No page faults are allowed. The page fault handler generates a fatal bug-

check if a page fault occurs and the IPL is above IPL 2 or the processor is

executing on the interrupt stack.

« No exceptions are allowed, other than subset instruction emulation ex-
ceptions. Exceptions such as page faults are associated with a process.
The exception dispatcher generates a fatal bugcheck if an exception occurs
above IPL 2 or while the processor is executing on the interrupt stack.

« ASTs, asynchronous events by which a process receives notification of ex-
ternal events, are not allowed. (The AST delivery interrupt is not requested
when the processor is in system context and not granted until IPL drops
below 2.)

« System services may not be requested from system context.

Process Context Routines. Procedure-based code (RMS services, Files-11
XQP, and system services) and exception service routines usually execute
in the context of the current process (on the kernel stack when in kernel
mode).

The system services are implemented as procedures and are available to
all native mode languages. In addition, the fact that they are procedures
means there is a call frame on the stack. Thus, a utility subroutine in a
system service can signal an error simply by putting the error status into
RO and issuing a RET instruction. All superfluous information is cleaned off
the stack by the RET instruction. The system service dispatchers, actually
the dispatchers for the CHMK and CHME exceptions, are exception service
routines.

System services must be called from process context. They are not avail-
able to system context code. One reason for requiring process context is that
the various services assume that there is a process whose privileges can be
checked and whose quotas can be charged as part of the normal operation of
the service. Some system services reference locations in P1 space, a portion
of address space only accessible from process context.

The page fault handler is the service routine for translation-not-valid ex-
ceptions. The page fault handler resolves a page fault in the context of the
process that incurred the fault. Because page faults are associated with a
process, the system cannot tolerate page faults incurred by interrupt service

1.3.3.3

1.3.34

1.3 Hardware Assistance to the Operating System Kernel

routines or other routines that execute in system context. The actual restric-
tion imposed by the page fault handler is even more stringent. Page faults
are not allowed above IPL 2. This restriction applies to process-based code
executing at elevated IPL as well as to system context code.

Interrupt Service Routines. Most VMS interrupt service routines execute in
system context on the systemwide interrupt stack.

« I/O requests are initiated through the $QIO system service, which can be
requested directly by the user or by some intermediary, such as RMS or
the Files-11 XQP, on the user’s behalf. Once an I/O request has been placed
into a device queue, it remains there until the driver is triggered, usually
by an interrupt generated in the external device.

Two classes of software interrupt support the I/O subsystem: fork level
interrupts and the I/O postprocessing interrupt. Fork level interrupts en-
able a device driver to stall a driver code thread and resume it at a lower
IPL, thus lowering IPL in a controlled fashion. The I/O postprocessing in-
terrupt enters a software interrupt service routine for final processing of
I/O requests.

« The timer functions in the operating system require both the interval
timer interrupt service routine and a software interrupt service routine
that actually dispatches individual timer requests.

« Another software interrupt performs rescheduling, by which one process is
removed from execution and another selected and placed into execution.

The Swapper Process. Some VMS functions are best performed from process
context. The swapper process performs the most significant of these. As
the inswapper of all newly created processes, the swapper process cannot
be created in the conventional way. Its code and process data structures are
therefore built into the executive. During system initialization, its PCB is
inserted into the scheduler database compute queues so that it can be the
first process selected to execute.
Other characteristics of the swapper process include the following:

« Its process header is static and contains no working set list and no process
section table. It does not support page faults. All code executed by the
swapper must be locked into memory in some way. In fact, the swapper
code is contained in a nonpageable section of a loadable executive image.

» The swapper executes entirely in kernel mode, thereby eliminating the
need for stacks for the other three access modes.

« Its limited P1 space includes only the P1 pointer page, containing the
location CTL$GL_PCB. Its kernel stack is located in system space.

« The swapper process temporarily maps PO space to transform disjoint pages
into a virtually contiguous I/O buffer, for example, to outswap a process
working set. :

19

System Overview

1.3.3.5

1.3.4

1.3.5

20

Despite its limited context, the swapper process behaves in a normal
fashion in every other way. It is selected for execution by the scheduling
subsystem just like any other process in the system. It spends its idle time
in the hibernate state until some component in the system recognizes a need
for one of the swapper functions and awakens it.

Prior to Version 5.0, VMS included a null process with a context similar to
that of the swapper process. All CPU time not used by any other process in
the system was used executing the null process. In Version 5.0, a null PCB
and PHD are defined as placeholders, but there is no null process to schedule
for execution. SMP support necessitated a different form of idle loop.

Special Subroutines. There are several utility subroutines within the oper-
ating system related to scheduling and resource allocation that are called
from both process context code, such as system services, and from software
interrupt service routines. These subroutines are constrained to execute as
though within system context. An example of such a routine is SCH$QAST,
which is invoked to queue an AST to a process. It may be invoked from the
I/O postprocessing and software timer interrupt service routines as well as
from various system services.

Memory Management and Access Modes

The VAX address translation mechanism is summarized in Chapter 14 and
described in more detail in the VAX Architecture Reference Manual. Two
side effects are of special interest to VMS. When a page is not valid, a
translation-not-valid exception is generated that transfers control to an ex-
ception service routine that takes the steps required to make the page valid.
This exception transfers control from a hardware mechanism, address trans-
lation, to a software exception service routine, the page fault handler, and
allows the operating system to gain control on address translation failures
to implement its dynamic mapping of pages while a program is executing.

Before the VAX address translation mechanism checks the valid bit in the
page table entry, it checks whether the requested access is allowable. The
check is based on the current access mode in the PSL, a protection code
that is defined for each virtual page, and the type of access (read, modify, or
write). This protection check allows the operating system to make read-only
portions of the executive write-inaccessible to any access mode, preventing
corruption of operating system code. In addition, privileged data structures
can be protected from even read access by nonprivileged users, preserving
system integrity.

Exceptions, Interrupts, and the REI Instruction

The VAX exception and interrupt mechanisms are very important to VMS.
The following sections compare the exception and interrupt mechanisms
and briefly describe features of the mechanisms used by VMS.

1.3.5.1

1.3.5.2

1.3 Hardware Assistance to the Operating System Kernel

Comparison of Exceptions and Interrupts. Interrupts occur asynchronously
to the currently executing instruction stream. They are actually serviced
between individual instructions and at well-defined points within the ex-
ecution of a given instruction. Exceptions occur synchronously as a direct
effect of the execution of the current instruction. A

Both mechanisms pass control to service routines whose addresses are
stored in the SCB. These routines perform exception-specific or interrupt-
specific processing.

Exceptions are generally a part of the currently executing process. Their
servicing is an extension of the instruction stream that is currently executing
on behalf of that process. Interrupts are generally systemwide events that
cannot rely on support of a process in their service routines.

Because interrupts are generally systemwide, the systemwide interrupt
stack is usually used to store the PC and PSL of the process that was in-
terrupted. Exceptions are usually serviced on the per-process kernel stack.
Which stack to use is usually determined by control bits in the SCB entry
for each exception or interrupt.

Interrupts cause a PC/PSL pair to be pushed onto the stack. Exceptions
often cause exception-specific parameters to be stored in addition to a PC/
PSL pair.

Interrupts cause the IPL to change. Most exceptions do not have an IPL
change associated with them.

An interrupt can be blocked by elevating IPL to a value at or above the
IPL associated with the interrupt. Exceptions, on the other hand, cannot be
blocked. However, some exceptions can be disabled by clearing associated
bits in the PSL.

When an interrupt or exception occurs, a new PSL is formed that specifies
the new IPL, current access mode (usually kernel), and stack in use (interrupt
or other). One difference between exceptions and interrupts, a difference that
reflects the fact that interrupts are not related to the interrupted instruction
stream, is that the previous access mode field in the new PSL is set to
kernel for interrupts while the previous mode field for exceptions reflects
the access mode in which the exception occurred. Chapter 2 describes the
VAX architectural interrupt and exception mechanisms in more detail.

Other Uses of Exceptions and Interrupts. In addition to the translation-not-
valid fault used by memory management software, the operating system
also uses the CHMK and CHME exceptions as entry paths to the executive.
System services that must execute in a more privileged access mode use
either the CHMK or CHME instruction to increase access mode privilege (see
Figure 1.6). The system handles most other exceptions by dispatching to
user-defined condition handlers, as described in Chapter 5.

Hardware interrupts temporarily suspend code that is executing so that
an interrupt-specific routine can service the interrupt. Each interrupt has

21

System Overview

1.3.5.3

1.3.6

14

14.1

22

a priority level, or IPL, associated with it. The CPU raises IPL when it
grants the interrupt. High-level interrupt service routines thus prevent the
recognition of low-level interrupts. Low-level interrupt service routines can
be interrupted by subsequent high-level interrupts. Kernel mode routines
can also block interrupts at certain levels by explicitly raising the IPL.

The VAX architecture also defines a set of software interrupt levels. VMS
uses them for scheduling, I/O postprocessing, and to synchronize access to
certain classes of data structures. Chapter 4 describes the software interrupt
mechanism and its use.

Chapter 3 summarizes hardware interrupts and their service routines.

The REI Instruction. The REI instruction is the common exit path for inter-
rupt and exception service routines. Many protection and privilege checks
are incorporated into this instruction. Because most fields in the PSL are not
accessible to the programmer, the REI instruction provides the only means
for changing access mode to a less privileged mode (see Figure 1.6). It is also
the only way to reach compatibility mode.

Although the IPL field of the PSL is accessible through the PR$_IPL pro-
cessor register, execution of an REI instruction is a common way that IPL
is lowered during normal execution. Because a change in IPL can alter the
deliverability of pending interrupts, many hardware and software interrupts
are delivered after an REI instruction is executed. Chapter 2 describes this
instruction and its checks in detail.

Process Structure

The VAX architecture also defines a hardware PCB, which contains copies
of all a process’s general registers when the process is not active. When a
process is selected for execution, the contents of this block are copied into
the actual registers inside the processor with a single instruction, LDPCTX.
The corresponding instruction that saves the contents of the general registers
when the process is removed from execution is SVPCTX.

Chapter 12 contains a layout of the hardware PCB and detailed descriptions
of the SVPCTX and LDPCTX instructions.

OTHER SYSTEM CONCEPTS

This chapter began by discussing the most important concepts in the VMS
operating system: process and image. There are several other fundamental
ideas that should be mentioned before beginning a detailed description of
VMS internals.

Resource Control

VMS protects itself and other processes in the system from careless or ma-
licious users, with hardware and software protection mechanisms, software
privileges, and software quotas and limits.

14.1.1

1.4.1.2

14.13

14.1.4

1.4 Other System Concepts

Hardware Protection. The VAX memory management protection mechanism
that is related to access mode prevents unauthorized users from modifying or
even reading privileged data structures. Access mode protection also protects
system and user code and other read-only data structures from modifications -
resulting from programming errors.

A more subtle but perhaps more important aspect of protection provided
by the memory management architecture is that the process address space
of one process (PO space or P1 space) is not accessible to code running in
the context of another process. When such accessibility is desired to share
common routines or data, the operating system provides controlled access
through global sections. System virtual address space is addressable by all
processes, although page-by-page protection may deny read or write access
to specific system virtual pages by certain access modes.

Process Privileges. Many operations that are performed by system services
could destroy operating system code or data or corrupt existing files if per-
formed carelessly. Other services allow a process to adversely affect other
processes in the system. VMS requires that processes executing these po-
tentially damaging operations be suitably privileged. Process privileges are
assigned when a process is created, either by the creator or through the user’s
entry in the authorization file.

These privileges are described in the Guide to Setting Up a VMS System
and in the VMS System Services Reference Manual. The privileges them-
selves are specific bits in a quadword that is stored in the process header.
(The locations and manipulations of the several process privilege masks that
the operating system maintains are discussed in Chapter 26.) When a VMS
system service that requires privilege executes, it checks whether the asso-
ciated bit in the process privilege mask is set.

Quotas and Limits. VMS also controls allocation of its systemwide resources,
such as nonpaged dynamic memory and page file space, through the use
of quotas and limits. Like privilege, these process attributes are assigned
when the process is created. By restricting such items as the number of
concurrent I/O requests or pending ASTs, VMS exercises control over the
resource drain that a single process can exert on system resources, such as
nonpaged dynamic memory. In general, a process cannot perform certain
operations, such as queuing an AST, unless it has sufficient quota (nonzero
PCB$W_ASTCNT in this case). The locations and values of the various
quotas and limits are described in Chapter 25.

User Access Control. VMS uses a user identification code (UIC) for two
different protection purposes. To perform some control operation (Suspend,
Wake, Delete, and so on) on any other process, a process requires WORLD
privilege. A process with GROUP privilege can affect only other processes

23

System Overview

1.4.2

1.4.2.1

24

with the same group number. A process with neither WORLD nor GROUP
privilege can affect only other processes with the same UIC.

VMS also uses UIC as a basis for protection of various system objects, such
as files, global sections, logical names, and mailboxes. The owner of a file,
for example, specifies what access to the file she grants to herself, to other
processes in the same group, and to other processes in the system.

VMS Version 4 introduced access control lists (ACLs), which provide more
selective levels of sharing. An ACL lists individual users or groupings of
users who are to be allowed or denied access to a system object. ACLs
specify sharing on the basis of UIC, as well as other groupings, known as
identifiers, that can be associated with a process. ACLs can be specified for
files, directories, devices, global sections, queues, and shareable logical name
tables.

Other System Primitives

Several other simple tools used by VMS are mentioned throughout this book
and are described in Chapters 8, 19, and 35.

Synchronization. Any multiprogramming system must take measures to pre-
vent simultaneous access to system data structures. The problem is further
complicated by multiprocessing, where several CPUs have independent ac-
cess to shared memory. The executive uses four synchronization techniques:
elevated IPL, spinlocks, mutexes, and locks.

On a uniprocessor, elevating IPL is sufficient to synchronize access to
systemwide data structures. By elevating IPL, the processor can block a
subset of interrupts, allowing unrestricted and uncontested access to the
data structures. The most common synchronization IPL used by VMS is
IPL 8.

To extend the uniprocessor synchronization provided by IPL to a multi-
processing environment, VMS uses spinlocks. A spinlock describes the state
of a particular set of shared data and enables a set of processors to serial-
ize their access to the data. A resource synchronized by elevated IPL on a
uniprocessor is synchronized by a combination of elevated IPL and spinlock
on an SMP system.

‘A section of code that accesses shared data in a synchronized way first
raises IPL and, in an SMP system, acquires a spinlock. When finished, the
code lowers IPL and, in an SMP system, releases the spinlock. VMS pro-
vides macros to implement these IPL-raising/spinlock acquisition and IPL-
lowering/spinlock release operations. The macros acquire and release spin-
locks only on SMP systems; otherwise, they only elevate and restore IPL.
For simplicity, this volume refers to this combined type of synchronization
as acquiring and releasing spinlocks. That the macros merely alter IPL on a
uniprocessor is implicit; that they also alter IPL on an SMP member often
goes without saying.

14.2.2

1.4.2.3

1.5

1.5 System Virtual Address Space

The use of a spinlock to synchronize access to certain types of data struc-
tures is sometimes undesirable or even potentially harmful to system perfor-
mance. For example, a process that has acquired a spinlock must execute at

‘or above IPL 3, blocking process rescheduling on that CPU until it releases

the spinlock. In addition, because page faults are not allowed above IPL 2,
any pageable data structure cannot be synchronized with a spinlock.

Thus, the VMS executive requires a third synchronization tool to allow
synchronized access to pageable data structures. This tool must also allow a
process to be removed from execution while it maintains ownership of the
structure in question. One synchronization tool that fulfills these require-
ments is called a mutual exclusion semaphore (mutex).

Synchronization, including the use of mutexes, is discussed in Chapter 8.

The VMS executive and other system components, such as the Files-11
XQP, RMS, and the job controller, use a fourth tool, the lock management
system services, for more flexible sharing of resources among processes.
These services provide a waiting mechanism for processes whose desired
access to a resource is blocked. They also provide notification to a process
whose use of a resource blocks another process. Most important, the lock
management system services provide sharing of clusterwide resources. Chap-
ter 10 describes the lock management system services.

Dynamic Memory (Pool) Allocation. The system maintains several dynamic
memory areas from which blocks of memory can be allocated and deallo-
cated. Nonpaged pool contains those systemwide structures that might be
manipulated by (hardware or software) interrupt service routines or process
context code executing above IPL 2. Paged pool contains systemwide struc-
tures that do not have to be kept memory-resident. The process allocation
region and the kernel request packet (KRP) lookaside list, both in process P1
space, are used for pageable data structures that will not be shared by any
other process. Dynamic memory allocation and deallocation are discussed
in detail in Chapter 19.

Logical Names. The system uses logical names for many purposes, including
a transparent way of implementing a device-independent I/O system. The
use of logical names as a programming tool is discussed in the VMS System
Services Reference Manual. The internal operations of the logical name
system services, as well as the internal organization of the logical name
tables, are described in Chapter 35.

SYSTEM VIRTUAL ADDRESS SPACE

The layout of system virtual address space is shown in Figure 1.8. Appendix F
gives a more complete description of system space.

25

System Overview

80000000

System Service Vectors

Executive Transfer Vectors

System Data Area

SYSGEN Parameters Area }

Boot Parameters Area

Miscellaneous

— SYS.EXE

Loadable Executive Images

e
>

Available System Pages

Restart Parameter Block

PFN Database

Paged Pool

Nonpaged Pool

LRP Lookaside List

IRP Lookaside List

SRP Lookaside List

Per-CPU Database

Guard Page

Boot Page

Guard Page

Interrupt Stack

Guard Page

System Control Block

Balance Slots

Ll

System Header

System Page Table

Global Page Table

Boot PO Page Tables

Figure 1.8

Layout of System Virtual Address Space

This figure was produced by an SDA listing of the system page table and
the contents of all global data areas in system space and from information in
[BOOTS]SYSBOOT. The relations between the variable-size pieces of system
space and their associated SYSGEN parameters are given in Appendix F.

26

PART II / Control Mechanisms

21

VAX Interrupts and Exceptions

By indirections find directions out.
Shakespeare, Hamlet, 2, i

This chapter describes the VAX architectural interrupt and exception mech-
anisms and the return from exception or interrupt (REI) instruction. It sum-
marizes VMS use of the mechanisms.

OVERVIEW

During system operation, events occur that require the execution of software
other than the current thread of execution. The processor responds to such
events by altering the control flow from the current thread of execution.
Some of these events are unrelated to the current thread and are asynchro-
nous to it; these events are called interrupts. Other events, called exceptions,
are triggered by the current thread and are synchronous to it.

The processor determines where to transfer control by examining the sys-
tem control block (SCB). The SCB contains a longword vector for each inter-
rupt and exception, specifying the address where control is to be transferred.

Most hardware interrupts are requested by signals from devices external
to the processor when they need attention from the operating system. The
hardware interrupt capability makes it unnecessary for the processor to
poll the device to determine whether its state has changed. Some hardware
interrupts are requested by signals from within processor components, such
as the interval timer.

To permit arbitration among concurrent interrupt requests and their ser-
vicing, each interrupt request has an associated interrupt priority level (IPL).
When an interrupt is granted, processor IPL is raised to that of the inter-
rupt. When the processor IPL is at or above that of the interrupt request, the
interrupt is blocked.

A software interrupt is an interrupt requested by kernel mode code rather
than by an external device. The VAX architecture provides for 15 different
software interrupts. The VMS executive is interrupt-driven and requests a
particular software interrupt to cause the corresponding service routine to
perform its designated function. That is, software interrupts are requested
to schedule operating system functions, with the highest priority interrupt
serviced first.

VAX microcode responds similarly to hardware and software interrupt re-
quests. The microcode tests for pending interrupts between each instruc-
tion and at well-defined points during the evaluation and execution of more
complicated instructions. The microcode determines the IPL of the highest

29

VAX Interrupts and Exceptions

22

30

outstanding interrupt request, whether it is requested by hardware or soft-
ware. The microcode compares that IPL to the one at which the processor is
running and takes one of two actions based on the comparison:

« If the processor is running at an IPL equal to or higher than that of the
interrupt request, the interrupt request is deferred until processor IPL drops
below the IPL level of the request.

« If the processor is running at a lower IPL than that of the interrupt request,
the interrupt is granted.

To grant the interrupt, the microcode saves the processor state and dis-
patches through the SCB vector associated with the interrupt to its service
routine.

An exception is the processor’s response to an anomaly or error it encoun-
ters while executing an instruction, for example, a divisor of zero in a DIVL
instruction. An exception occurs in direct response to a particular instruc-
tion sequence and would occur again if the instruction were repeated under
the same circumstances. VAX microcode responds as it does to an inter-
rupt, by saving the processor state and dispatching through the SCB vector
associated with the exception to its service routine.

SYSTEM CONTROL BLOCK

The SCB may occupy multiple pages, depending on CPU type and adapter
configuration. Its first page, however, is architecturally defined. Each ex-
ception and interrupt has a unique vector, identified by its offset from the
beginning of the SCB. Each vector contains the address of a service routine
for that exception or interrupt. Figure 2.1 shows the contents of a vector and
meaning of the low-order two bits.

Operating system software initializes the SCB, and the VAX processor uses
it to dispatch all interrupts and exceptions.

The SCB is page-aligned. A multiple-page SCB must be physically con-
tiguous. Its starting physical address is stored in the system control block
base register, PR$_SCBB. The processor calculates the address of a particular

31 210

Address of Longword-Aligned Service Routine Code

Code Meaning

00 Service the event on the kernel stack unless currently on the interrupt stack; in that
case, use the interrupt stack.

01 Service the event on the interrupt stack; if the event is an exception, raise IPL to 31.

10 Service the event in the writable control store (WCS), passing bits <15:2> to the
microcode; if the WCS does not exist or is not loaded, the operation is undefined.

1 The operation is undefined.

Figure 2.1
System Control Block Vector Format

2.2 System Control Block

vector using the contents of PR$_SCBB and the offset into the SCB of the
vector. This design enables executive software to place the SCB in memory
known to be good at system initialization. If the SCB were required to be
at a fixed location, and that memory had uncorrectable errors, the system
would be unable to run. VMS maps the SCB in system space and stores its
starting virtual address in global location EXE$GL_SCB.

Once memory management is enabled, vectors must contain virtual ad-
dresses. Because there may be no current process at the time an interrupt
occurs, all service routines must be in system space. Because the low-order
two bits of the vector are not part of the service routine address, each service
routine must begin on a longword boundary.

The low-order two bits of a vector specify the stack on which the interrupt
or exception should be serviced. A value of 01 means that it should be
serviced on the interrupt stack. If the vector contains the value 00, the
processor will not switch to the interrupt stack; if, however, it was already
running on the interrupt stack, it will continue to do so. A value of 01 in an
exception vector also means that IPL should be raised to 31. VMS specifies
that machine check and kernel-stack-not-valid exceptions be serviced on the
interrupt stack at IPL 31.

On a CPU type that supports user-writable control store, a value of 10 -
means that the interrupt or exception should be serviced by microcode in
user-writable control store. Most CPUs that do not support user-writable
control store halt if an interrupt or exception occurs through a vector with
10 in the low-order two bits. A value of 11 in these bits has no defined
meaning; most CPUs halt if they attempt to dispatch through a vector with
these bits set.

Figure 2.2 shows the general organization of the first page of the SCB.
It contains vectors for exceptions, software interrupts, CPU-specific error
interrupts, and some hardware interrupts. The VAX Architecture Reference
Manual contains the detailed SCB layout.

Table 5.1 lists the VAX exception vectors. The executive handles most
exceptions in a uniform way. Some exceptions, however, result in special
action. Chapter 5 describes VMS’s handling of most exceptions and summa-
rizes its responses to special exceptions.

Chapter 4 contains more details about the vectors used for software inter-
rupts and describes their service routines.

The second half of the first page is reserved for adapter interrupts. As
Figure 2.3 shows, it is divided among 16 possible adapters, each capable
of interrupting at four possible IPL values from 20 to 23. The nature and
type of the adapters vary on different VAX processors. Each adapter has
an identifying number which, along with the IPL of the interrupt, selects
a particular SCB vector. Chapter 22 describes adapter interrupts and their
service routines. Chapter 3 summarizes other hardware interrupts and their
service routines.

31

VAX Interrupts and Exceptions

2.3

32

Exception Vectors - ———— :‘ PR$__SCBB
Processor Fault Vectors
Software Interrupt Vectors EXE$GL__SCB::
Clock and Console Vectors
CPU-Specific
Adapter and -)
Device Interrupts Virtual address pointer
- — ——
Physical address pointer
| |
| |
! Optional !
+ CPU-Specific +
| Extension |
| |
| |
L -
Figure 2.2

System Control Block Organization

(Physical
Various Exceptionsand L address
Software Interrupts pointer)
10044 "] 16 vectors, one for
IPL 20 Interrupts [each adapter number
Offsets 40,¢ =
in IPL 21 Interrupts — 16 vectors
sCB terrup i
180, 7
IPL 22 Interrupts — 16 vectors
10,4 =
IPL 23 Interrupts — 16 vectors
Figure 2.3

System Control Block Vectors for Adapter Interrupts

Beyond the first page, the size of the SCB varies with processor type and
configuration. Appendix F contains further details of its sizing.

INTERRUPT REQUESTS

The VAX architecture provides 16 hardware IPLs, from IPL 31 down to IPL
16. The top eight levels are primarily for CPU-specific errors and power
failure. The lower levels are primarily for external adapters and I/O devices.

There is no one-to-one correspondence between IPL and hardware inter-
rupt vector. The SCB contains multiple vectors whose interrupts are at the
same hardware IPL (see Figure 2.3). An external adapter or I/O device re-
quests an interrupt at a particular hardware IPL. The SCB vector associated

2.3 Interrupt Requests

with the interrupt is typically determined by the combination of interrupt
IPL and adapter or device (see the VMS Device Support Manual).

To block interrupts, kernel mode code can raise IPL to that of the highest
interrupt to be blocked. The VAX architectural concept of an interrupt in-
cludes the idea that an interrupt request is expected to persist until serviced,
or until the adapter or device withdraws the request. At appropriate times,
a processor can sample outstanding interrupt requests.

The VAX architecture provides 15 vectors in the SCB for software inter-
rupts at IPLs 1 through 15; there is a one-to-one correspondence between IPL
and software interrupt vector. The architecture provides a means for kernel
mode code and CPU console commands to request software interrupts.

Kernel mode code requests a software interrupt at a particular IPL by
writing that IPL into the software interrupt request register, PR§_SIRR. VMS
code generally uses the SOFTINT macro to write the PR$_SIRR. This macro
expands into the following instruction:

MTPR ipl,S~#PR$_SIRR
The following CPU console command can also write the PR$_SIRR:
>>>D/I 14 ipl !for ipl, substitute a hexadecimal digit

Writing to PR$_SIRR causes the bit with the same number as the IPL to
be set in another processor register, the software interrupt summary register
(PR$_SISR). Figure 2.4 shows the layouts of these two registers. At any given .
time, PR$_SISR contains a bit set for each level at which a software interrupt
has been requested but not yet granted. The VAX processor reads PR$_SISR
to test for pending software interrupts. When the processor grants a software
interrupt request, it clears the corresponding bit in PR$_SISR.

The VAX architecture provides both of these processor registers to simplify
synchronization of access to PR$_SISR. If VMS were to modify the PR$_SISR
directly, several instructions would be required to preserve already set bits in
the register. VMS would have to raise IPL to block all interrupts, read PRS$_

Software Interrupt Request Register (Write Only)

31 4 3 0
Ignored Request PR$_SIRR
Software Interrupt Summary Register (Read/Write)
31 16 15 10
Must be zero Pending Software Interrupts PR$__SISR
FlEIDICIBIAlgl8l7lslsl4'I3l2l1 Il

Must be zero
Figure 2.4
Formats of Software Interrupt Request Register and
Software Interrupt Summary Register

33

VAX Interrupts and Exceptions

24

25

34

SISR, set the new bit, write PR$_SISR, and restore the previous IPL. (MTPR and
MFPR are the only instructions that access these processor registers.) Instead,
when kernel mode code (or CPU console command) writes PR$_SIRR, the
processor modifies PR$_SISR with interrupts blocked.

INTERRUPT DISPATCHING

VAX initiate-exception-or-interrupt (IEI) microcode takes the following steps
when an interrupt is requested and granted:

1. It examines the low-order bits of the SCB vector to determine on which
stack the interrupt is to be serviced. VMS has specified that all hardware
interrupts and most software interrupts be serviced on the interrupt
stack.

2. VAX IEI microcode switches stacks, if necessary, and pushes the current
program counter (PC) and processor status longword (PSL) onto the new
stack. Saving the PC and PSL preserves state so that the interrupted
thread of execution can continue after the interrupt is dismissed.

3. The microcode stores the address of the service routine in the PC and
constructs a new PSL. Its IPL is that associated with the interrupt. Its
compatibility mode, trace pending, first part done, decimal overflow en-
able, floating underflow enable, integer overflow enable, trace enable,
and condition code bits are cleared. Its current mode is set to kernel,
the mode in which the interrupt will be serviced. Its previous mode is
expected to be irrelevant to the service routine and is set to kernel also.
Its interrupt stack bit is set, if appropriate, to indicate that the processor
is running on the interrupt stack.

4. When a software interrupt is dispatched, the microcode clears the bit in
PR$_SISR corresponding to the IPL.

The interrupt service routine executes and eventually exits with an REI
instruction that dismisses the interrupt. The REI instruction, described in
Section 2.8, restores the PC and PSL, and the interrupted thread of execution
(a process or lower priority interrupt service routine) continues where it was
interrupted.

RESTRICTIONS IMPOSED ON INTERRUPT SERVICE ROUTINES

Most interrupt service routines execute in the limited system context de-
scribed in Chapter 1. These routines execute at elevated IPL on the interrupt
stack outside the context of a process.

Several restrictions are imposed on interrupt service routines by either the
VAX architecture or VMS. Many of these result from the limitations of sys-
tem context. The following list indicates some of the constraints placed on
an interrupt service routine. The description of system context in Chapter 1
contains a more general list of these and other restrictions. Chapter 8 de-
scribes the synchronization rules applicable to an interrupt service routine.

2.6

2.6 Exception Dispatching

« To reduce overhead, no context switch occurs with an interrupt. Therefore,
the instructions executed and data referenced by an interrupt service rou-
tine must be in system address space. An interrupt service routine should
not refer to per-process address space.

An interrupt service routine should be short and do as little processing as

possible at elevated IPL.

An interrupt service routine must save any registers it uses. VMS saves

some registers (usually RO through R5) prior to calling a device driver

interrupt service routine (see the VMS Device Support Manual).

Prior to executing an REI instruction, an interrupt service routine must

remove anything it pushed on the stack and restore all saved registers.

An interrupt service routine should be conservative in its use of stack

space. The interrupt stack is not very large on most VMS systems. Its

size is determined by the SYSGEN parameter INTSTKPAGES, which has

a default value of four pages.

« VMS does not allow any interrupt service routine (other than the IPL 2
interrupt service routine) to access pageable routines or data structures.
The page fault exception service routine generates a fatal bugcheck if a
page fault occurs while IPL is above 2.

« Although an interrupt service routine can raise IPL, it should not lower
IPL below the level at which the original interrupt occurred.

EXCEPTION DISPATCHING

When an exception is detected, VAX IEI microcode takes the following steps:

1. It determines on which stack the exception is to be serviced. Which stack
depends on the access mode in which the exception occurred, whether
the CPU was previously executing on the interrupt stack, and what type
of exception occurred.

In general, VAX microcode uses the low two bits of the SCB vector to
determine on which stack the exception is serviced. Table 2.1 summa-
rizes the stack choices resulting from the architectural mechanisms and
VMS SCB vector definitions. Its first column lists the exception name.
The second column specifies the access mode in which the exception
occurred. The third column specifies whether the interrupt stack is in
use at the time of the exception. The fourth column shows the stack on
which the exception is serviced.

Machine check and kernel-stack-not-valid exceptions are serviced on
the interrupt stack. A subset instruction emulation exception is serviced
on the stack on which the exception occurred. Change mode exceptions
are generally serviced on the stack of their target mode. VMS specifies
that all other exceptions are to be serviced on the kernel stack, unless
the processor is already running on the interrupt stack.

35

VAX Interrupts and Exceptions

36

Table 2.1 Selection of Exception Stack

PSL AT TIME OF EXCEPTION

Previous Interrupt Resulting
Exception Name Mode Stack Stack
Machine check Any Oorl ISP
Kernel stack not valid K 0 ISP
Subset instruction emulation Any Oorl Same
CHMx Any 0 xSP!
CHMx K 1 Halt?
All others U, S EK 0 KSP
All others K 1 ISP

!'The stack used is the destination of the CHMx instruction. Note, however,
that a CHMx instruction issued from an inner access mode in an attempt to
reach a less privileged (outer) access mode will not have the desired effect. The
mode indicated by the instruction is minimized with the current access mode to
determine the actual access mode that will be used. The exception is generated
through the indicated SCB vector, but the final access mode. is unchanged. In
other words, as illustrated in Figure 1.6, the CHMx instruction can only reach
equal or more privileged access modes.

2 Execution of a CHMx instruction while the CPU is running on the interrupt
stack is prohibited by the VAX architecture and results in a CPU halt.

The exception reporting mechanism assumes that the kernel stack is
valid. The decision to use the kernel stack for most exceptions avoids the
possibility of attempting to report an exception on, for example, the user
stack, only to find that it is corrupted in some way (invalid or otherwise
inaccessible), resulting in another exception. A kernel-stack-not-valid
exception must be taken on the interrupt stack. The VMS service routine
for this exception generates a fatal bugcheck.

If the interrupt stack is invalid, IEI microcode halts the processor.

2. The microcode switches stacks, if necessary, and pushes the PC and PSL
onto the new stack. The exception PC that it pushes depends on the
nature of the exception, that is, whether the exception is a fault, trap, or
abort {see Table 5.1):

—For a fault, the processor pushes the PC of the faulting instruction
onto the stack. When a fault is dismissed with an REI instruction, the
faulting instruction executes again from the beginning.

—For a trap, the processor pushes the PC of the next instruction onto the
destination stack. An instruction that causes a trap does not reexecute
when the exception is dismissed with an REI instruction.

—For an abort, the processor pushes the PC of the aborted instruction
onto the stack. An abort is not restartable. Exceptions that are aborts

2.7

2.7 Comparison of Exceptions and Interrupts

include kernel-stack-not-valid, some machine check codes, and some
reserved operand exceptions.

3. The microcode loads the PC with the address of the service routine
and constructs a new PSL. Its IPL is normally unchanged. If the vec-
tor contains 01 in the low-order two bits, the service routines run on
the interrupt stack at IPL 31. Machine check and kernel-stack-not-valid
exception vectors specify this value. The PSL compatibility mode, trace
pending, first part done, decimal overflow enable, floating underflow en-
able, integer overflow enable, trace enable, and condition code bits are
cleared. Its current mode is set to the mode in which the interrupt will
be serviced. Its previous mode is set to the mode in which the exception
occurred. Its interrupt stack bit is set, if appropriate, to indicate that the
processor is running on the interrupt stack.

The exception service routine executes. It eventually exits by removing

any exception-specific parameters from the stack and executing an REI in-
struction to dismiss the exception.

The REI instruction, described in Section 2.8, restores the PC and PSL, and

the thread of execution that incurred the exception resumes.

COMPARISON OF EXCEPTIONS AND INTERRUPTS

The following list summarizes some of the distinctions between exceptions
and interrupts.

Interrupts occur asynchronously to the currently executing instruction
stream. They are serviced between individual instructions or at well-
defined points in the execution of a given instruction. Exceptions occur
synchronously as a direct effect of execution of the current instruction.
Interrupts are generally systemwide events that cannot rely on support
of a process in their service routines. Exceptions are generally a part of
the currently executing process. Their servicing is an extension of the
instruction stream that is currently executing on behalf of that process.
Because interrupts are generally systemwide, they are serviced on the sys-
temwide interrupt stack. Exceptions are usually serviced on the per-process
kernel stack.

To save state at interrupt initiation, the processor records the PC and PSL
on the stack. At exception initiation, the processor often records exception-
specific parameters as well as the PC and PSL.

Interrupts cause the IPL to change. Exceptions other than machine check
and kernel-stack-not-valid do not cause IPL to change.

An interrupt can be blocked by elevating IPL to a value at or above the IPL
associated with the interrupt. Exceptions are not blocked by raising IPL.
Some exceptions, however, can be disabled by clearing their enabling bits
in the PSL.

37

VAX Interrupts and Exceptions

2.8

38

« When an interrupt or exception occurs, the microcode constructs a new
PSL. The previous mode field in the new PSL is set to kernel for an
interrupt PSL, while the previous mode field for an exception PSL is set to
the access mode in which the exception occurred. This difference between
exceptions and interrupts reflects the fact that interrupts are not related
to the interrupted instruction stream.

THE RETURN FROM EXCEPTION OR INTERRUPT INSTRUCTION

The REI instruction is the common exit path for interrupt and exception
service routines. The VAX architecture limits the types of transitions from
one access mode to another; the REI instruction is the only way to change
access mode to a less privileged one (see Figure 1.6). This property of REI,
and the VAX architecture constraint that an inner access mode will not be
interrupted to deliver an asynchronous system trap (AST) to an outer mode,
make REI the logical place to test whether an AST delivery interrupt should
be requested.

The REI instruction is also the only way to reach compatibility mode.

Execution of an REI instruction is a common way for IPL to be lowered.
Because a change in IPL can alter the deliverability of pending interrupts,
hardware and software interrupts are often delivered after an REI instruction
is executed.

Protection and privilege checks are incorporated into the REI instruction
to prevent the system from entering illegal or inconsistent states. REI is not
a privileged instruction, and these checks prevent, for example, an attempt
to enter a more privileged access mode.

The REI microcode tests the following conditions to ensure that the saved
PSL is well formed and that it is consistent with the current PSL. If any test
fails, the microcode generates a reserved operand fault exception.

« If the saved PSL interrupt stack bit is nonzero, then the saved PSL IPL must
be greater than 0. This test detects an illegal state in the saved PSL—being
on the interrupt stack at IPL 0.

« If the saved PSL IPL is greater than 0, then its current mode must be kernel.
This test prevents any mode other than kernel from raising IPL.

« The saved PSL previous mode must be no more privileged than its current
mode. This test detects a previous illegal transition or stack corruption.

o The saved PSL must-be-zero bits must be 0. This test detects corruption
of the stack.

« If the saved PSL compatibility mode bit is 1, the CPU must be one that
implements compatibility mode, the saved PSL current mode must be
user, and the saved PSL first part done, interrupt stack, floating underflow
enable, decimal overflow enable, and integer overflow enable bits must
all be 0. These tests restrict compatibility mode to user access mode and
detect stack corruption and inconsistent state.

2.8 The Return from Exception or Interrupt Instruction

« The saved PSL current mode must be no more privileged than the current
PSL current mode. This test prevents an attempt to REI to a more privileged
mode.

« If the current PSL interrupt stack bit is 0, then the saved PSL interrupt
stack bit must be 0. This test prevents an attempt to REI onto the interrupt
stack.

« The saved PSL IPL must be no larger than the current PSL IPL. This test
prevents an attempt to REI to a higher IPL. An interrupt service routine
that lowers IPL below that of its interrupt breaks synchronization and risks
a reserved operand fault when it executes an REI instruction.

After performing the previously listed tests, the REI microcode takes the
following steps:

1. It pops the saved PC and PSL from the stack into temporary registers.

2. Depending on the current PSL interrupt stack bit and current mode,
the microcode saves the contents of the SP register in the appropriate
processor register (PR$_ISP, PR$_KSP, PR$_ESP, PR$_SSP, or PR$_USP).
This step records the pointer into the current access mode’s stack.

A VAX processor is not required to implement the per-process stack
pointer registers. One that does not implement them instead saves SP in
the appropriate longword in the process’s hardware process control block
(PCB.

3. If the current PSL trace pending bit is set, the microcode sets the saved
PSL trace pending bit. This step ensures a trace fault after the execution
of the REI instruction.

4. The microcode copies the temporary registers to PC and PSL.

5. If the now-current PSL interrupt stack bit is 0, the microcode loads SP
from the appropriate PR$_x SP register. This step restores the pointer into
the now-current stack. (A VAX CPU type that does not implement these
processor registers instead loads SP from the appropriate longword in the
process’s hardware PCB.)

6. If the now-current PSL interrupt stack bit is 0, the microcode compares
the current mode to the contents of PR§_ASTLVL. If the current mode
is less privileged, the microcode requests an IPL 2 interrupt.

7. The microcode reinitializes any instruction lookahead in the processor,
flushing the instruction buffer. On some VAX CPUs, instruction exe-
cution is concurrent with the fetching and evaluation of subsequent
instructions. The REI microcode clears any such CPU state. {The REI
instruction is the only one guaranteed to do this clearing and is thus
required between modifying the instruction stream and executing the
modified instruction.)

8. Unless another interrupt occurs, execution resumes with the instruction
being executed at the time of the interrupt or exception, at the inter-
rupted instruction or the exception PC.

39

3.1

40

Hardware Interrupts

While I nodded, nearly napping, suddenly there came a tapping,
As of someone gently rapping, rapping at my chamber door.

Edgar Allan Poe, The Raven

The VMS operating system is often referred to as interrupt-driven and non-
monolithic. Hardware interrupts notify VMS of such important events as
power failure, device completion, device errors, device alerts, and work re-
quests from one processor to another in a symmetric multiprocessing (SMP)
system. In addition, the interval timer interrupt allows VMS to keep system
time.

This chapter presents an overview of hardware interrupts, interrupt prior-
ity levels (IPLs), and interrupt dispatching in VMS.

OVERVIEW

As discussed in Chapter 2, many hardware interrupts are requested by signals
from devices external to the processor when they need attention from the
operating system. Hardware interrupts may be requested by devices, con-
trollers, or other processors in an SMP system. In addition, the processor
itself may request some hardware interrupts.

The VAX architecture provides 16 priority levels, 16 through 31, for hard-
ware interrupts and 16 priority levels, O through 15, for software interrupts.
When a hardware interrupt occurs, the interrupted processor raises its pri-
ority to the IPL associated with the hardware interrupt. Table 3.1 provides a
summary of hardware interrupts and IPLs used by VMS. Software running in
kernel mode may raise and lower the priority of the processor by using the
MTPR instruction to load the register PR$_IPL. Thus, software has the ability
to block hardware interrupts as necessary.

The response of the VAX processor to any interrupt request, hardware or
software, is similar. If the processor priority permits the requested interrupt
to be granted, the processor saves the current state and invokes the interrupt
service routine for the interrupt through the interrupt vector in the system
control block (SCB).

Interrupt vectors for software interrupts are architecturally defined at fixed
offsets within the SCB. Interrupt vectors for certain hardware interrupts,
such as the interval timer interrupt, the powerfail interrupt, and console
interrupts, are also architecturally defined at fixed offsets within the SCB.
SCB vectors for other hardware interrupts, such as device interrupts, are
defined in a system-dependent manner, as discussed in Section 3.2.

3.1.1

3.1.1.1

3.1.1.2

3.1 Overview

The following sections provide brief descriptions of hardware interrupts
on VAX systems. Chapter 4 discusses software interrupts.

Urgent Conditions

The VAX architecture provides for eight priority levels, 24 through 31, for
urgent conditions such as power failure and CPU-specific bus and memory
errors. IPL 30 is reserved for the powerfail interrupt. IPL 31 is reserved for
those exceptions that must block all processing until the condition has been
handled. IPL 31 is also used by device drivers to synchronize with powerfail
recovery, as discussed in the VMS Device Support Manual.

Powerfail Interrupt. The powerfail interrupt is requested by the CPU hard-
ware when there is a drop in operating voltage. It is vectored through the SCB
at offset 0Cy4, as defined by the VAX architecture, and serviced at IPL 30.
EXE$POWERFAIL, in module POWERFAIL, is the VMS powerfail interrupt
service routine. Chapter 33 discusses powerfail recovery in detail.

System-Specific Errors. The VAX architecture reserves offsets 50,4 through
60,6 in the first page of the SCB for system-specific memory and bus errors.

Table 3.1 Hardware Interrupt Priority Levels and Their Use

Level Name Use
31 IPL$_POWER Block all interrupts
' IPL$_EMB Synchronize error logging)

IPL$_MCHECK Synchronize machine check processing
IPL§_MEGA Synchronize miscellaneous structures

30 Powerfail interrupt

30-24 CPU-specific error interrupts

24 IPL$_HWCLK Interval timer interrupt!®

22 IPL$_HWCLKLO Interval timer interrupt!

23-20 Device interrupts

22 or 20 IPL$_IPINTR Interprocessor interrupt?

20 or 22 IPL$_VIRTCONS Console terminal interrupts3

19 or 21 IPL$_INVALIDATE Synchronize translation buffer (TB)

invalidation *
18-16 Unused

! The interval timer IPL is system-dependent.

2 The interprocessor IPL is 22 on VAX 6000 series and VAXstation 35x0 systems
and 20 on all others.

3IPL$_VIRTCONS has a value of 20. However, access to the virtual console database
is synchronized at a system-dependent IPL. See Chapters 8 and 34.

*IPL$_INVALIDATE has a value of 19. However, synchronization of TB invalidation
is done at a system-dependent IPL. See Chapters 8 and 34.

41

Hardware Interrupts

3.1.2

3.1.3

42

Common examples of such interrupts are corrected read data errors, vectored
through SCB offset 54,5 on some VAX systems, and system bus errors,
vectored through SCB offset 5C;¢ on some VAX systems. Such interrupts
are taken at the highest interrupt levels, IPLs 24 through 30.

The interrupt service routines for such interrupts typically raise IPL to 31
and log the error. These routines are usually in the [SYSLOAJMCHECKxxx
modules, where xxx designates the CPU type. Appendix G lists CPU types
and their corresponding suffixes. Chapter 32 provides more discussion on
the handling and logging of system-specific errors.

Interval Timer Interrupt

The manner in which the CPU hardware requests the interval timer interrupt
is implementation-dependent. Some VAX processors, such as the MicroVAX
II, generate timer interrupts at constant 10-millisecond intervals. Other VAX
processors have the ability to generate timer interrupts at specified intervals.
Interval timer interrupts are vectored to the service routine through offset
COy¢ in the SCB, as defined by the VAX architecture. EXESHWCLKINT, in
module TIMESCHDL, is the interval timer interrupt service routine. The
IPL of the interval timer interrupt is 24 on older VAX systems and 22 on the
newer systems. Chapter 11 discusses the interval timer interrupt in detail.

Interprocessor Interrupt

On SMP systems, VMS uses the interprocessor interrupt mechanism to in-
terrupt a specific processor for a specific task or to interrupt all processors or
a subset of all processors to perform tasks as required. The interprocessor in-
terrupt vector, priority level, and interrupt service routine vary on different
VAX systems.

On all SMP systems other than VAXstation 35x0 CPUs, the interprocessor
interrupt is vectored at SCB offset 805. On a VAXstation 35x0 CPU, the
interprocessor interrupt is vectored through the upper half of the first page
of the SCB just like any other adapter interrupt.

On all SMP systems other than VAX 6000 series and VAXstation 35x0 pro-
cessors, the interprocessor interrupt vector in the SCB contains the address
of SMP$INTSRI1, in module [SYSLOA]SMPINT.

On VAX 6000 series and VAXstation 35x0 systems, the vector contains the
address of SMP$IPINT _xxx, in module [SYSLOA]JOPDRVxxx. After perform-
ing system-dependent actions, SMP$IPINT _xxx transfers to SMP$INTSRI.
SMPS$INTSRI is in module [SYSLOA]SMPINT_60 for a VAXstation 35x0
system and in module [SYSLOA]SMPINT for all other systems.

The interprocessor interrupt priority level is IPL 20 on VAX 88x0 and VAX
83x0 systems, and IPL 22 on VAX 6000 series and VAXstation 35x0 systems.
Chapter 34 discusses the use of interprocessor interrupts.

3.14

3.1.5

3.1 Overview

Table 3.2 Console Interrupts

Name SCB Vector IPL

Console storage receive' FOy¢ 20 on the VAX-11/730,
23 on the VAX-11/750

Console storage transmit! F4,4 20 on the VAX-11/730,
23 on the VAX-11/750

Console terminal receive F8is 20

Console terminal transmit FCi6 20

! These interrupts are generated only on VAX-11/730 and VAX-11/750
processors.

Console Interrupts

On most VAX systems, the console block storage device and the console
terminal are treated as a single entity with regard to interrupt processing.
On VAX-11/750 and VAX-11/730 processors, the console block storage device
is treated as distinct from the console terminal device.

Interrupts from the console are vectored through known offsets in the SCB.
Table 3.2 shows the SCB vectors and IPLs of different console interrupts.
Chapter 24 discusses console interrupts.

Unexpected Interrupts and Passive Releases

Architecturally defined SCB vectors are initialized during system initial-
ization to point to appropriate VMS routines. Other vectors in the SCB
are initialized to the VMS unexpected interrupt service routine, ERL§UN-
EXP, in module ERRORLOG. ERL§UNEXP generates the nonfatal bugcheck
UNXINTEXC and dismisses the interrupt.

When a CPU grants an interrupt request, and no device vector is returned
by the device that generated the request, a condition known as passive
release occurs. This can happen when the device determines, after it has
requested an interrupt, that it no longer needs to interrupt the CPU. A
passive release is treated as though a zero interrupt vector is returned by
the device. Passive releases are vectored to the routine ERL§VEC_RETURN,
in module ERRORLOG, which increments the global location IO$GL_SCB_
INTO to record the occurrence.

Passive releases on a UNIBUS that is adapted to a VAX system bus are vec-
tored to UBASINTO. UBASINTO is found in module [SYSLOAJINICOMBI for
all VAX systems that use the VAX bus interconnect (VAXBI) bus for I/O; for
all other systems it is found in [SYSLOA]JADPSUBxxx. UBAS$INTO incre-
ments the global location IO$GL_UBA_INTO to record the passive release
and dismisses the interrupt.

Before adapter initialization is done and the SYSGEN utility configures

43

Hardware Interrupts

3.2

44

devices on the system, all the SCB vectors reserved for adapter and device
interrupts are initialized to ERLSUNEXP. SCB vectors used for adapter and
device interrupts are later reinitialized by the appropriate procedures. Thus,
all unused SCB vectors on a system point to ERLSUNEXP, with the ex-
ception of unused SCB vectors for UNIBUS and Q22-bus device interrupts,
which point to UBASUNEXINT. UBA$SUNEXINT, a base image transfer vec-
tor, actually jumps to the REI instruction in UBAS$INTO that dismisses the
interrupt.

DEVICE INTERRUPTS

The VAX architecture provides eight priority levels, 16 through 23, for I/O
device interrupts, although all VAX implementations use only levels 20
through 23. UNIBUS levels BR4 through BR7 correspond directly to IPLs
20 through 23.

When a VAX processor receives an interrupt request from an I/O device, it
needs to determine which SCB vector corresponds to the interrupt. The man-
ner in which each VAX processor does this is implementation-dependent,
even though the principles used are common to all processors.

VAX systems are offered in a range of processor- and bus-specific config-
urations. This section provides a generic model of a VAX system and its
interrupt handling as an aid to understanding the more specific descriptions
in subsequent sections.

Figure 3.1 shows a generic model of a VAX system. The system bus con-
nects the CPU, memory controllers, and I/O adapters. An adapter connects
devices or another I/O bus to the system bus. Each slot on the system bus,
potentially occupied by a CPU, memory controller, or adapter, is known as
a nexus. Actually, the name for this varies from one VAX system type to
another; for simplicity, this chapter uses the term nexus.

CPU CPU Memory Memory

| | Spomas | |

Adapter

|Devioe| |Dewoe|

Figure 3.1
Generic Model of a VAX System

3.2 Device Interrupts

The VAX architecture specifies four interrupt vectors for each of 16 nex-
uses. Each vector corresponds to a different interrupt priority level; on cur-
rent VAX system implementations, the levels are 20 through 23.

When an I/O adapter requests an interrupt, for example, in response to a
device attention cdndition, the CPU microcode determines its nexus num-
ber. This nexus number, in conjunction with the IPL of the request (20, 21,
22, or 23), uniquely identifies an SCB vector through which the CPU dis-
patches the interrupt. The VAX architecture specifies that such vectors be
located in the upper half of the first page of the SCB, as shown in Figure 2.3.

Typically, a new VAX CPU is designed with I/O adapters that support the
bus structure and I/O architecture of a previous generation. This enables
many of the peripherals of the previous generation to run on it, preserving
the investment in them. A prime example of this is the support of PDP-11
UNIBUS peripherals on many VAX systems.

Such an adapter bridges the VAX CPU’s main bus and an earlier bus,
translating protocols and transmitting interrupt requests and grants. Support
for the interrupt vectoring of the adapted bus usually requires an extension
to the architecturally defined page of the SCB and an additional level of
interrupt dispatching, either in the processor or in the operating system
software. For instance, UNIBUS devices can interrupt at one of 128 possible
vectors. Therefore, a UNIBUS adapter requires the capability to spemfy up
to 128 vectors.

On some systems, such as the VAX-11/780 and VAX-11/785, UNIBUS in-
terrupts are indirectly vectored through a UNIBUS adapter interrupt service
routine (ISR). This means that the UNIBUS adapter transmits the UNIBUS
device’s interrupt request to the VAX CPU. When the CPU grants the in-
terrupt, it dispatches through the SCB vector corresponding to the interrupt
request level to a UNIBUS adapter ISR. The UNIBUS adapter ISR performs
another level of dispatch based on the value of the UNIBUS device’s interrupt
vector.

On most other VAX implementations that support UNIBUS peripherals,
UNIBUS interrupts are directly vectored. This means that CPU microcode
uses the UNIBUS device vector directly as an offset into the appropriate page
of the SCB to enter the device ISR. Direct vectoring requires that one page
of the SCB be dedicated to each UNIBUS adapter on the system, because
devices on its UNIBUS may generate any one of 128 possible vectors.

Another example is an adapter that supports the VAXBI bus. For instance,
on a VAX 8800 system, up to four VAXBI buses can be connected to the
VAX 8800 memory interconnect (NMI), the system bus. There are 16 slots
on each VAXBI bus, and an adapter on any of these slots may generate an
interrupt request. Every device on the system must have a unique interrupt
vector in the SCB. This means that the interrupt vector in the VAX 8800
SCB must be unique with respect to the following:

45

Hardware Interrupts

3.2.1

46

o The number of the VAXBI bus (0, 1, 2, or 3)

o The node number (0 through 15) on that VAXBI bus of the adapter that
requested the interrupt

o The IPL (20, 21, 22, or 23) of the interrupt

Therefore, one SCB page is reserved for each VAXBI bus on the system. In
addition, each UNIBUS adapter on the system requires an additional page of
the SCB.

Similarly, Q22-bus-based systems reserve the second page of the SCB for
Q22-bus device vectors. '

Adapter Initialization

VMS uses system-dependent system initialization procedures to determine
the system configuration, build the data structures that represent it, and
initialize the SCB vectors appropriately. These procedures typically test for
the presence of adapters at all the nexuses on the system, as described later
in this section.

There may be different numbers of nexuses on different systems. For
example, on a VAX 8350 system, which uses the VAXBI as the system bus as
well as the I/O bus, there are 16 nexuses. A VAX 8800 system, on the other
hand, uses the NMI as the system bus and the VAXBI as the I/O bus. There
are 16 nexuses for each VAXBI attached to the VAX 8800 system. MicroVAX
3400/3600/3900 series systems and the MicroVAX II system have exactly
one nexus, nexus 0.

Nexuses are numbered starting at 0. A system with 16 nexuses has nexus
numbers from 0 to 15. A system that has more than 16 nexuses implements
a system-dependent numbering scheme. Subsequent sections describe the
numbering schemes employed on different VAX systems.

The physical address layout of the VAX system determines the location of
the node space for a given nexus number. The node space of a nexus is defined
as that range of physical addresses through which the registers of an adapter
that is seated on the nexus may be accessed. System initialization code loads
the machine check vector in the SCB with the address of a special routine.
It then tests the first longword in every nexus’s node space. If a nonexistent
memory machine check occurs, there is no adapter at the nexus being tested.
If there is an adapter on the nexus, then the adapter type is returned, and
the adapter is configured.

On some CPU types, VMB, the primary bootstrap program, determines the
adapter configuration. On other CPU types, the configuration is determined
at a later step of initialization. Chapters 30 and 31 give further information.

The result of this testing is stored in several arrays in nonpaged pool. Chap-
ter 31 describes these arrays. During later stages of system initialization, this
information is used when specific adapters are configured into the system.

322

3.23

3.2 Device Interrupts

VAX-11/730 Systems

On VAX-11/730 systems, the CPU, UNIBUS adapter, and memory controller
are connected by the array bus. In addition to the array bus, communications
between the CPU and the integrated disk controller (IDC) are performed
over the accelerator bus, so named because the floating-point accelerator
communicates over it. The IDC controls RLO2 and R80 disks. A VAX-11/730
system is not expandable and does not have expansion slots.

The VAX-11/730 SCB is two pages long. The second page is used for di-
rectly vectored UNIBUS interrupts. Each vector in the second page corre-

,sponds to a UNIBUS vector in the range from 0 to 1FCg.

VAX-11/750 Systems

The VAX-11/750 SCB is two pages long or, if there is a second UNIBUS
on the VAX-11/750 processor, three pages long. The second SCB page on
VAX-11/750 processors is used for directly vectored UNIBUS device inter-
rupts. Each SCB vector corresponds to a UNIBUS vector in the range from
0 to 1FCy4. A third SCB page is used for directly vectored UNIBUS device
interrupts on the second UNIBUS.

The backplane interconnect on VAX-11/750 systems, called the CPU-
to-memory interconnect (CMI), connects the CPU, memory controllers,
UNIBUS adapters, and MASSBUS adapters. Each connection to the CMI is
identified by its slot number. '

There are a total of 16 slots that can be used to connect adapters. The
first ten of these are reserved for a memory controller, UNIBUS adapters,
and MASSBUS adapters. These ten slots are called fixed slots because the
mapping of controller/adapter to slot number is fixed. That is, a particular
slot can have only a particular adapter placed in it. Table 3.3 lists these
adapters.

The last six slots are reserved for adapters with configuration registers and
are called floating slots. A CI750 port adapter or a DR750 would be connected
to a floating slot.

Each slot is assigned four SCB vectors in the first SCB page, one for each
IPL value from 20 to 23, as shown in Figure 2.3.

Table 3.3 Fixed Slots on VAX-11/750

Processors

Adapter Type Slot Number
Memory controller 0

Up to three MASSBUS adapters 4 through 6
UNIBUS adapter 8

Second UNIBUS adapter 9

47

Hardware Interrupts

3.24

48

Table 3.4 Standard SBI Adapter Assignments on VAX-11/78x Systems

Interface Type Nexus Comments
TR O Hold line for next cycle. TR 0 is
the highest TR level and is not
assigned to a device.

First memory controller TR 1

Second memory controller TR 2

First MA780 shared memory If present, follows local memory
controllers

Second MA780 shared memory

First UNIBUS adapter TR 3 Follows any MA780 controllers
present

Second UNIBUS adapter TR 4

Third UNIBUS adapter TR 5

Fourth UNIBUS adapter TR 6

TR 7 Reserved

First MASSBUS adapter - TR 8

Second MASSBUS adapter TR 9

Third MASSBUS adapter TR 10

Fourth MASSBUS adapter TR 11

DR780 SBI interface TR 12

CI780 TR 14

TR 15 Reserved

VAX-11/780 and VAX-11/785 Systems

The SCB for VAX-11/780 and VAX-11/785 systems is one page. On these pro-
cessors, the synchronous backplane interconnect (SBI) connects the CPU,
memory controllers, DR780s, CI780s, UNIBUS adapters, and MASSBUS
adapters. Each connection to the SBI is identified by its transfer request (TR)
number.

The TR number determines SBI priority. TR numbers range from O, the
highest priority, to 15, the lowest priority. There is a limit of 15 connections
to the SBI, as shown in Table 3.4. TR number 0 is used for a special purpose
on the SBI and has no corresponding external adapter. The lowest priority
level is reserved for the CPU and requires no actual TR signal line. The TR
number defines the physical address space through which the device’s reg-
isters are accessed and the vectors through which the device will interrupt.
The SCB has four vectors for each possible TR, one vector each for IPLs 20,
21, 22, and 23. UNIBUS interrupts are indirectly vectored.

An adapter is not restricted to having a specific TR number. However, the
relative priorities of the various adapters cannot change. That is, a system
cannot have a MASSBUS adapter with a higher priority (lower TR number)
than a UNIBUS adapter. For instance, if a system has two local memory con-
trollers and an MA780 shared memory controller, the first UNIBUS adapter

3.25

3.2.6

3.2 Device Interrupts

on that system could have TR number 4, with the MA780 having TR number
3, and the memory controllers having TR numbers 1 and 2.

Q22-Bus-Based MicroVAX Systems
The following systems fall into this category:

o MicroVAX II, VAXstation II, VAXstation II/GPX

o MicroVAX 3400, VAXstation 3400

« MicroVAX 3500, MicroVAX 3600, MicroVAX 3800, MicroVAX 3900
« VAXstation 3200, VAXstation 3500, MicroVAX 3800/GPX

Other MicroVAX systems that provide support for the Q22-bus are listed in
subsequent sections.

The memory interconnect on these systems connects the CPU and mem-
ory modules. The CPU board contains an interface to the Q22-bus to which
all I/O devices are connected. Interrupt requests from external I/O devices
go directly to the CPU, which arbitrates interrupts. IPLs 20 through 23 cor-
respond to Q22-bus interrupt request lines BIRQ4 through BIRQ7.

The SCB for these systems is two pages long. The second page is used for
directly vectored Q22-bus device interrupts. Each vector in the second page
corresponds to a Q22-bus vector in the range from 0 through 1FCyg.

On these systems, there is exactly one nexus, numbered 0, that interfaces
the CPU board to the Q22-bus.

An interrupt on these systems is arbitrated by comparing its IPL to the
processor’s IPL. However, when a Q22-bus interrupt is granted, processor
IPL is raised to 23 by the microcode.

With VMS Version 5.0, multilevel interrupt dispatching is available on
these systems. After the interrupt is granted by the processor at IPL 23, the
VMS executive, with the help of additional code in the interrupt dispatch
area of the channel request block (CRB) of the device controller, explicitly
lowers IPL to the interrupting device’s IPL. This, however, requires that
the MicroVAX system be properly configured. See the VMS Device Support
Manual for additional details on multilevel interrupt dispatching.

MicroVAX 2000 Family Systems

The MicroVAX 2000 family includes MicroVAX 2000, VAXstation 2000, and
VAXstation 2000/GPX processors. A member of this family is sometimes
known as a busless system because the CPU, memory, and all I/O adapters
are on a single board.

There is exactly one nexus, 0, on this system, reserved for the CPU. All
device and adapter registers are visible through the node space of the CPU.

An interrupt controller collects interrupts from all I/O devices and presents
a single interrupt request to the CPU at IPL 20.

49

Hardware Interrupts

3.2.7

3.2.8

50

Table 3.5 MicroVAX 2000 Interrupt Vectors

SCB Vector Interrupting Source

244, Video end-of-frame

2486 Video controller secondary

25046 Network controller primary

2546 Network controller secondary

2C0,6 Serial line controller receiver done or silo full
2C44 Serial line controller transmitter done

3F86 SCSI controller

3FCys Disk controller

The SCB for this system is two pages long. Device interrupts are vectored
through the second page of the SCB at one of eight possible device vectors,
shown in Table 3.5.

MicroVAX 3100 Family Systems

The MicroVAX 3100 family includes the MicroVAX 3100, VAXstation 3100
(monochrome) models 30/40/38/48, and VAXstation 3100/GPX models 30/
40/38/48. The memory interconnect on the MicroVAX 3100 connects the
CPU and memory modules. The CPU board interfaces to one or two small
computer system interface (SCSI) buses, each under the control of an NCR
5380 SCSI controller chip that supports asynchronous data transfers. Fig-
ure 3.2 shows a representative MicroVAX 3100 system configuration.

The SCB for this system is two pages long. The second page is used to
vector device interrupts from all I/O devices.

VAXstation 3520 and 3540 Systems

The VAXstation 3520 system consists of two processors connected to a com-
mon backplane, the M-bus. The VAXstation 3540 system has four processors.

CPU |— Memory

| I

SCSI SCsl
Controller Cor:troller
 SCSI Bus I i SCSI Bus
1] 1
[oe] [ow] [ooe]

Figure 3.2
MicroVAX 3100 System Configuration

3.2.9

3.2.10

3.2 Device Interrupts

The processors access common memory on the M-bus. Each processor is in-
terfaced to the bus through a cache that monitors the M-bus for other CPUs’
memory references.

There are eight nexuses on the M-bus and a CPU module, a memory mod-
ule, or an I/O adapter may be present on each nexus. Disk devices connect
to a SCSI bus, which interfaces to the M-bus through an I/O adapter. An op-
tional Q22-bus adapter module allows connection of additional peripherals,
such as magnetic tape. Chapter 34 shows a sample VAX 3520 configuration.

The VAXstation 3520 and 3540 systems have a two-page SCB. I/O adapter
interrupts are vectored through the upper half of the first page of the SCB.
Interrupts from devices on the Q22-bus are vectored through the second page
of the SCB.

VAX 6000 Series Systems

VAX 6000 series systems use a high-speed interconnect (XMI} as the back-
plane. There are 13 slots, or nodes, on the XMI, and each node can connect
to a CPU module or memory module. I/O adapters may be connected only
to slots 1 through 4 and 11 through 14. DWMBA adapters adapt the VAXBI
bus to the XMI bus. The VAXBI bus connects I/O peripherals to the system.
Chapter 34 shows a diagram of a VAX 6000 series system.

The first page of the SCB is the architecturally defined page. The nexus
vectors in the upper half of this page are used for the I/O adapters on the
XMI. Each VAXBI bus on the system gets an additional page of the SCB.
Furthermore, if a UNIBUS adapter is present on the system, an additional
page of SCB is allocated for vectoring UNIBUS device interrupts.

Nexus numbering of VAXBI-based adapters on VAX 6000 series systems is
done according to the following formula:

nexus = (XMI slot number of DWMBA) x 16
+ (VAXBI node number of adapter)

Nexus numbering of XMlI-based adapters is done according to the following
formula:

nexus = {XMI slot number of adapter) x 16

VAX 8200 Family Systems

The VAX 8200 family consists of VAX 8200, VAX 8250, VAX 8300, VAX
8350, and VAXstation 8000 processors. The SCB for a member of the VAX
8200 family consists of the standard page defined by the VAX architecture,
plus an additional page for each UNIBUS adapter present. UNIBUS interrupts
are directly vectored. Note that the VAXstation 8000 does not support any
UNIBUS options.

51

Hardware Interrupts

3.2.11

52

The VAX 8200 family uses the VAXBI as a system bus as well as the I/O
bus. This means that the VAXBI allows CPU modules, memory modules, or
I/O adapters to be connected to each of its 16 slots.

I/O adapters connect devices and controllers or other buses, such as the
UNIBUS, to the VAXBI. Slots on the VAXBI are known as nodes, and nexus
numbers in the VAX 8200 family are the same as the VAXBI node numbers
of the adapters. Chapter 34 shows a diagram of a VAX 83x0 system.

Each node has four vectors in the first SCB page, one for each level at which
it can request an interrupt. VAXBI interrupt levels 4 through 7 correspond
to IPLs 20 through 23.

VAX 8600 and VAX 8650 Systems

VAX 8600 and VAX 8650 systems have a four-page SCB to support the the-
oretical maximum configuration of four SBI adapters (SBIAs), although only
two are supported by VMS. On these systems, I/O adapters are connected
to an SBI. Each SBI is connected through an SBIA to a bus called an adapter
bus (A-bus). The A-bus connects the SBIAs to the memory subsystem. The
supported I/O adapters are the UNIBUS, MASSBUS, and CI780 adapters sup-
ported on a VAX-11/78x system. Figure 3.3 shows a representative VAX 8600
system configuration.

Hardware interrupts for adapters on the first SBI are vectored through the
first page of SCB. Interrupts for adapters on the second SBI use the sec-
ond page of SCB. Interrupts generated by SBIA 0 are vectored through the
first page of the SCB, and those generated by SBIA 1 are vectored through
the second page of the SCB. A hardware interrupt vector is determined
by the combination of interrupt level, TR number, and SBI number.

sBl SBI
CPU Adapter 1 l

Memory
Controller | A-Bus

Array Bus
Memory — UNIBUS
SBI SBI
Memory Adapter
Figure 3.3

VAX 8600 System Configuration

3.2.12

3.2.13

3.2 Device Interrupts

UNIBUS interrupts are indirectly vectored, as they are on VAX-11/78x
systems.

VAX 8800 Family Systems

The VAX 8800 family includes VAX 8500, VAX 8530, VAX 8550, VAX 8700,
and VAX 8800 processors but not the VAX 88x0 family (see Section 3.2.13). A
synchronous backplane interconnect bus, the NM]J, connects CPUs, memory,
and one or two I/O adapters called NMI-to-BI {NBI) adapters. The VAXBI is
the VAX 8800 family I/O bus. Each NBI adapter can interface with up to
two VAXBIs. Each VAXBI can have up to 15 adapters apart from the NBL
Chapter 34 shows a diagram of a VAX 8800 system.

A VAX 8800 family processor has a 32-page SCB. Memory and NBI inter-
rupts vector through the architecturally defined page of the SCB. Interrupts
from each of four possible VAXBIs vector through pages 28 through 31. Pages
1 through 27 are reserved for offsettable VAXBI nodes, nodes that are directly
vectored, such as the UNIBUS adapter.

The nexus number of an adapter on such a system may be determined by
the following formula:

nexus = (VAXBI number) * 16
+ (VAXBI node number of adapter)

where the VAXBI buses are numbered 0 and 1 or 2 and 3 on VAX 85x0
systems, from O through 3 on VAX 8700 and VAX 8800 systems, and from 0
through 5 on VAX 88x0 systems. For example, an adapter on node number
5 of VAXBI number 1 has a nexus number of 21.

VAX 88x0 Family Systems

The VAX 88x0 family includes VAX 8810, VAX 8820, VAX 8830, and VAX
8840 processors but not VAX 8800 CPUs. Most of the information in Sec-
tion 3.2.12 applies to the VAX 88x0 family. However, the VAX 88x0 family
reserves pages 1 through 25 for the offsettable VAXBI nodes, such as the
UNIBUS adapter, and uses pages 26 through 31 for each of the six VAXBI
buses supported.

53

4.1

54

Software Interrupts

And now I see with eye serene
The very pulse of the machine.

William Wordsworth, She Was a Phantom of Delight

Software interrupts are fundamental to the VMS operating system. Software
interrupt service routines running at interrupt priority levels (IPLs) between
2 and 15 perform many of the most important system functions of VMS.
These include dispatching fork processes (IPLs 6 and 8 to 11), servicing pro-
cesses’ time-dependent requests (IPL 7), I/O postprocessing (IPL 4), schedul-
ing (IPL 3), and delivering ASTs (IPL 2). This chapter describes how software
interrupts are requested and granted and how VMS uses them.

THE SOFTWARE INTERRUPT

The VMS executive requests a software interrupt to cause an interrupt ser-
vice routine to execute and perform its designated function. It does this by
writing to the software interrupt request register. When the interrupt request
is granted, the VAX processor dispatches through the appropriate system con-
trol block (SCB) vector to an interrupt service routine. Chapter 2 describes
the hardware mechanism of software interrupts.

VMS uses software interrupts to schedule operating system functions. Us-
ing software interrupts is more efficient than periodically checking to see
whether these functions need to be done. IPLs are assigned to the differ-
ent operating system functions, in part, as an indication of their relative
importance.

VMS also uses specific IPLs and interrupt requests at those IPLs to synchro-
nize access to shared data structures. Chapter 8 discusses synchronization
through raising IPL.

VMS requests the software interrupt service routines for IPLs 3, 4, 6, 7, 8,
and 11 from within a hardware interrupt service routine or another software
interrupt service routine. Software interrupts at 12 and 14 are requested only
through a CPU console command. The VAX architecture specifies that the
IPL 2 software interrupt service routine be requested by REI microcode to
deliver asynchronous system traps (ASTs). Although VMS provides for fork
dispatching at IPLs 9 and 10, VMS itself makes little or no use of them. VMS
Version 5 does not use software interrupts at IPLs 1, 5, 13, and 15.

The VAX architecture constrains software interrupt service routines by
providing only one bit to indicate that a software interrupt has been re-
quested at a particular IPL. The service routine is thus unable to determine
how many requests for it were outstanding when the interrupt request was

4.2

4.2 Software Interrupt Service Routines

granted. As a result, either the software must supply some protocol for deter-
mining this number or it must be irrelevant to the execution of the service
routine.

The scheduling interrupt service routine is an example of a routine that
has one function to do, regardless of how many times that function has
been requested. Other interrupt service routines use queues to keep track of
their work. Each element in the queue represents a specific item of work for
the interrupt service routine and an instance of the interrupt’s having been
requested.

An interrupt service routine that uses a queue generally performs all the
work in the queue before dismissing the interrupt. It tries to remove an
element from the queue with the REMQUE or REMQHI instruction. If an element
was removed, the interrupt service routine processes that element and tries
to remove another element from the queue. If the queue is empty and no item
was removed from it, the interrupt service routine’s work is complete and
it then exits through an REI instruction. Such a software interrupt service
routine reacts gracefully to a spurious interrupt, one granted when there is
no work for it to do.

SOFTWARE INTERRUPT SERVICE ROUTINES

There is no central monitor routine in VMS that controls the sequence of
operating system functions. Instead, any executive thread that identifies the
need for a particular function performed within a software interrupt ser-
vice routine can request the associated interrupt. Scheduling operating sys-
tem functions as software interrupts eliminates any requirement for polling
whether these functions need to be done. It also enables more important
functions to interrupt less important ones.

Table 4.1 shows the software interrupt service routine functions and their
associated IPLs. In some cases, the assigned IPL only indicates the relative
importance of the interrupt, and the interrupt service routine runs primarily
at a higher IPL for synchronization. The table also shows the more common
symbolic names for the IPLs, defined by the macro $IPLDEF.

VMS interprets software interrupts, except the AST delivery and reschedul-
ing interrupts, as systemwide events that are serviced independently of the
context of a specific process. The rescheduling interrupt, discussed briefly in
this chapter and in greater detail in Chapter 12, is taken on the kernel stack
of the current process. The interrupt service routine immediately executes a
SVPCTX instruction, saving the process’s context and switching onto the in-
terrupt stack. The AST delivery interrupt, discussed briefly at the end of this
chapter and in greater detail in Chapter 7, is the only interrupt in use that is
serviced in the context of a specific process. The interrupt service routines
for unused software interrupts are serviced on the kernel stack. Each of these
routines merely logs an error and dismisses the interrupt.

55

Software Interrupts

4.2.1

56

Table 4.1 Software Interrupt Levels Used by the Executive

IPL IPL Names Use Stack

15 Unused Kernel

14 XDELTA Interrupt

13 Unused Kernel

12 IPC intervention Interrupt

11 IPL$_MAILBOX, Fork dispatching Interrupt

IPL$_IOLOCK11

10 IPL$_IOLOCK10 Fork dispatching Interrupt
9 IPL$_IOLOCK9 Fork dispatching Interrupt
8 IPL$_SYNCH, Fork dispatching Interrupt

IPL$_SCHED, IPL$_SCS,
IPL$_TIMER, IPL$_MMG

7 IPL$_TIMERFORK Software timer Interrupt
service routine
6 IPL$_QUEUEAST Fork dispatching Interrupt
5 Unused Kernel
4 IPL$_IOPOST I/O postprocessing Interrupt
3 IPL$_RESCHED Rescheduling Kernel
2 IPL$_ASTDEL AST delivery Kernel
1 Unused Kernel

The software interrupt service routines vary. Some perform the same func- -
tions every time they execute. The rescheduling interrupt service routine,
for example, takes the current process out of execution, selects another one
to run, and places it into execution. The functions of other software inter-
rupt service routines are quite variable. The I/O postprocessing interrupt
service routine has a specific function to perform but is data-driven by the
I/O request packets (IRPs) in its work queue. A fork dispatching interrupt
exists solely to dispatch to system routines running as fork processes. The
routines that are dispatched vary as a result of system operation.

The software interrupts are described briefly in the following sections.
Some are described at more length in subsequent chapters. The following
sections are in order by interrupt level, except that the service routines for
interrupts requested through console command are discussed last.

Fork Processing

Five software interrupts (IPLs 6 and 8 to 11) are used for dispatching to fork
processes. Each of the interrupt service routines has its own work queue of
fork blocks (FKBs).

When a fork dispatching interrupt is granted, the interrupt service routine
saves the low general registers and removes from its queue the first fork
block and dispatches to the fork process it describes.

4.2.1.1

4.2 Software Interrupt Service Routines

The following sections describe fork process data structures and service
routines in more detail.

Fork Process Data Structures. A fork block describes a routine to be called
by a fork dispatching interrupt service routine and some context for that
routine. The macro $FKBDEF defines symbolic names for the fields in a
fork block. A minimal fork block, shown in Figure 4.1, includes the address,
or saved program counter (PC), of the fork routine (FKB$L_FPC) and the
contents of two registers. The first two longwords of a fork block link it into
a queue. The fields FKB$W_SIZE and FKB$B_TYPE are the standard dynamic
data structure header fields.

The field FKB$B_FIPL specifies in which fork block queue the fork block is
inserted and at what IPL its routine will run. With VMS Version 5, this field
has an alternative name and meaning: FKB$B_FLCK identifies the spinlock
associated with the fork process. It is an index into a table of static spinlocks,
pointed to by SMPSAR_SPNLKVEC, and also into a table of spinlock IPLs,
at SMP$AL_IPLVEC. Because spinlock indexes are numbers 32 or larger, fork
processing routines can test bit 5 in this fork block field to distinguish be-
tween its two uses: bit 5 is 0 in an IPL and 1 in a spinlock index. On a
uniprocessor system, either use is permitted; on a symmetric multiprocess-
ing (SMP) system, a fork block can only contain a spinlock index. Chapter 8
describes spinlocks in detail.

A fork block must be in nonpageable system space. Most often, it is part
of a larger data structure, such as a unit control block or class driver request
packet, which contains additional data. The combination of standard fork
block fields, additional fork block data, and the routine that is to be executed
is called a fork process.

Figure 4.2 shows the array of fork block queue listheads. The array is
in the per-CPU database so that each CPU in an SMP system has its own
fork block queues. {Chapter 34 contains more information on the per-CPU
database.) The listheads of these queues are ordered in an array that includes
a placeholder listhead for IPL 7. Since the IPL 7 interrupt is serviced by
the software timer routine, there is no fork process dispatching at IPL 7.

Fork Queue Forward Link
Fork Queue Backward Link
Fork IPL/
Spinlock Type Size
Index
Saved PC
Saved R3
Saved R4
Figure 4.1

Layout of a Fork Block

57

Software Interrupts

4.2.1.2

4.2.1.3

58

Per-CPU Database for

SMP$GL _CPU _DATA:: Processor N

L L
Table of Per-CPU T
Database Addresses
| CPUSQ —SWIQFL | .
IPL 6 Listhead Fork Fork
(Placeholder) Block Block

-
[pLsLsheas Fote b |

- IPL9 Listhead -

. Fork
Index N - IPL10Listhead 4 Block

=
- IPL 11 Listhead -ZE’

4 4

[|

Figure 4.2
Fork Block Queues

However, having the placeholder listhead simplifies the fork process creation
code.

Reasons for Creating a Fork Process. Fork processing exists, in part, so that
device drivers do not have to execute at high IPLs for long periods of time,
blocking other device interrupts. Device interrupt service routines run at
device IPLs between 20 and 23. Often these routines perform lengthy process-
ing that does not require execution at high IPL. Typically, a device interrupt
service routine runs at a lower IPL as soon as possible. However, it may not
simply lower IPL directly; that could interfere with the synchronization of
code already running at the lower IPL. Instead, it creates-a fork process that
will run at the lower IPL when its turn comes.

A driver or any high-IPL thread of execution might also create a fork
process at a lower IPL to access a system database synchronized at that lower
IPL, for example, if the driver needed to queue an AST to a process. Another
example is the routine that allocates nonpaged pool. It can be invoked from
process context code and from interrupt threads of execution at IPLs up to

'11. If the routine determines that pool must be expanded, but it is running

at too high an IPL or holding a higher ranking spinlock than MMG, it
creates an IPL 6 fork process to perform the expansion. Chapter 19 gives
information on pool allocation, and Chapter 8 discusses spinlocks.

Creating a Fork Process. To fork, a driver invokes routine EXE$IOFORK
or EXE$FORK, in module FORKCNTRL, specifying the address of the fork
block, the fork process context, and a return address. Fork process context
consists of the fork block, the contents of R3 and R4, and the address of the
routine the fork process is to execute (the fork PC). EXE$IOFORK clears a

42.1.4

4.2 Software Interrupt Service Routines

bit to disable an I/O timeout on the device and continues in the EXE§FORK
routine.

EXE$FORK stores the specified fork process context in the fork block. It
tests bit 5 in FKB$B_FLCK to determine whether the field contains a fork
IPL or a spinlock index. To convert the spinlock index to an IPL, EXE$FORK
uses it as a longword context index into the array at SMP$SAL_IPLVEC. The
specified entry contains the IPL associated with that spinlock. EXE§FORK
inserts the fork block at the tail of the fork block queue for that IPL and
requests a software interrupt at that IPL if the queue was empty.

EXE$FORK then transfers control to the return address its invoker spec-
ified, sometimes in its invoker but more often in the code that entered its
invoker. This form of return is known as “returning to caller’s caller.” That
form of return enables device driver code to appear as a sequential flow when
in fact, for example, some of it executes as part of a device interrupt service
routine and some of it executes as a fork process.

The instructions in EXE$FORK that perform these functions are listed in
Example 4.1.

When IPL drops, the fork dispatching interrupt will be granted and serviced
on the CPU on which it was requested. The fork process will execute on that
CPU as well.

Dispatching a Fork Process. When a fork interrupt is granted, the VAX pro-
cessor dispatches to its interrupt service routine. Each fork IPL has a unique
interrupt service routine that performs setup for common fork dispatching
code. The fork interrupt service routine saves R6 and R7. It stores the off-
set of the corresponding fork queue listhead in R6. It then branches to the
common fork dispatching code. The interrupt service routines for IPLs 6 and

Example 4.1

EXE$FORK Routine Extract

EXE$FORK: : ;Create fork process
MOVQ R3,FKB$L_FR3(R5) ;Save registers R3 and R4
POPL FKB$L_FPC(R5) ;Get fork process PC
MOVZBL FKB$B_FLCK(R5),R4 ;Get fork lock/fork IPL
BBC #5,R4,5% ;Branch if direct IPL
MOVL G~SMP$AL_IPLVEC[R4],R4 ;Get fork IPL from spinlock

; database
5$: FIND_CPU_DATA R3 ;Get base of CPU data area

MOVAQ CPU$Q_SWIQFL-<6*8>(R3) [R4],R3
;Get address of fork queue

INSQUE (R5),04(R3) ;Insert fork block in fork queue
BNEQ 10$;If queue already populated,
; avoid extra interrupts
SOFTINT R4 ;Request software interrupt
10$: RSB ;And return

59

Software Interrupts

60

Example 4.2

Fork Dispatching Interrupt Service Routine Extract
.ALIGN LONG ;Entry point must be longword
; aligned
EXE$FRKIPL6DSP: : ;Fork IPL 6 entry point
PUSHQ R6 ;Save R6 and R7
CLRL R6 ;Get offset to fork queue listhead
BRB EXE$FORKDSPTH ;Branch to common code
.ALIGN LONG ;Entry point must be longword
; aligned
EXE$FRKIPL8DSP: : ;Fork IPL 8 entry point
PUSHQ R6 ;Save R6 and R7
MOVZBL #<2%8>,R6 ;Get offset to fork queue listhead

3

; Drop through to common code

EXE$FORKDSPTH: : ;Software interrupt fork dispatcher

FIND_CPU_DATA R7,- ;Get base of per-CPU database
ISTACK=YES ; from SP

MOVAB CPU$Q_SWIQFL(R7) [R6],R6 ;Get address of fork queue listhead
PUSHL RS ;Save R5 .
PUSHL R4 ;Save R4 .
PUSHL R3 ;Save R3 . PUSHLS are fastest!
PUSHL R2 ;Save R2 .
PUSHL R1 ;Save R1 .
PUSHL RO ;Save RO.
BRB 80$;Branch to body of dispatcher

H
; Dispatch a fork block that has no fork lock index, but rather just
; an IPL (an unmodified driver fork block perhaps).

10$: JSB QFKBS$L_FPC(R5) ;Dispatch fork
BRB 80% ;Branch to get next fork block
; Dispatch fork process when queue is not yet empty
; Dispatch fork process with:
H RO through R2 = scratch registers

; R3 and R4 = restored from fork block
5 R5 = address of fork block
20$: MovQ FKB$L_FR3(R5) ,R3 ;Restore registers R3 and R4
MOVZBL FKB$B_FLCK(R5),R7 ;Get fork lock number/FIPL
BBC #5,R7,10$;Branch if FIPL
FORKLOCK LOCK=R7,- ;Acquire the spinlock
PRESERVE=NO ;Don’t preserve RO
JSB QFKB$L_FPC(R5) ;Dispatch fork
FORKUNLOCK LOCK=R7,- ;Release the spinlock
PRESERVE=NO ;Don’t preserve RO

(continued)

4.2 Software Interrupt Service Routines

Example 4.2 (continued)
Fork Dispatching Interrupt Service Routine Extract

80$: REMQUE @(R6) ,R5 ;Remove next entry from fork queue
BNEQ 20% ;Branch if queue not yet empty
BVS 90$;If VS no entry removed

;Here when last entry dequeued
H
; Dispatch last entry in the queue

MovQ FKB$L_FR3(R5) ,R3 ;Restore registers R3 and R4

MOVZBL FKB$B_FLCK(R5),R7 ;Get fork lock number

BBC #5,R7,1008 ;Branch if FIPL

FORKLOCK LOCK=R7,- ;Acquire the spinlock
PRESERVE=NO ;Don’t preserve RO

JSB QFKB$L_FPC(R5) ;Dispatch fork

FORKUNLOCK LOCK=R7,- ;Release the spinlock
PRESERVE=NO ;Don’t preserve RO

90$: MOVQ (SP)+,R0O ;Restore registers

MOVQ (sP)+,R2 ;

MovQ (SP)+,R4 ;

MOVQ (SP)+,R6 ; .

REI ;Dismiss interrupt
I
; Dispatch a fork block that has no fork lock index, but rather just
; an IPL (an unmodified driver fork block perhaps).

100$: JSB QFKB$L_FPC(R5) ;Dispatch fork
BRB 90$;Exit

8 and the common fork dispatching code, EXE§FORKDSPTH, are listed in
Example 4.2. These routines are in module FORKCNTRL.

EXE$FORKDSPTH loads R6 with the address of the fork block queue spec-
ified by the sum of R6 and the address of the per-CPU database for this
processor. It saves RO through R5 and removes the first fork block from the
queue. It loads R3 and R4 from the fork block. If FKB$B_FLCK contains a
spinlock index, EXESFORKDSPTH acquires that spinlock before dispatch-
ing to the fork process. When the fork process returns, EXE§FORKDSPTH
releases the spinlock. (It is very important that the fork process itself not re-
lease the spinlock before returning; if it does, EXE$FORKDSPTH’s attempted
release will cause the system to crash.) EXESFORKDSPTH then removes the
next fork block and processes it in the same manner as the first.

The removal and processing continue until the queue is empty, when the
dispatcher restores the registers it saved and dismisses the interrupt with
an REI instruction. Note that, to improve performance, EXE§FORKDSPTH
detects removal of the last entry in the queue and avoids a subsequent
fruitless REMQUE by dispatching the last entry in a separate code path.

Since a fork process routine runs on the interrupt stack at an IPL higher

61

Software Interrupts

4.2.1.5

62

than 2, it must be in nonpageable system space; it must not incur page
faults, execute change mode instructions, or incur any exceptions that are
dispatched to user-defined condition handlers (see Chapter 5). While a fork
process is executing, it may use RO through R5 and, if saved and restored,
the other general registers. A fork process may also use the interrupt stack.
However, when a fork process returns control to the fork dispatcher, the
stack must be in the same state as when the fork process was entered.

Stalling a Fork Process. A fork process may be stalled for various reasons and
may have to wait. When a fork process waits, its context is saved by storing
R3, R4, and the PC in the FKB. The FKB is then placed in a queue of FKBs.
One example of such a wait is a fork process waiting in the fork dispatcher
queue while the system is running at a higher IPL. Another example is a
driver fork process that tries to allocate unavailable system resources, such
as UNIBUS adapter map registers. The fork process is stalled until another
fork process using the same adapter deallocates map registers. The routine
called to deallocate map registers restores the context of the waiting fork
process so that it can repeat its attempt to allocate map registers. (Note that
all fork processes that may stall waiting for a particular resource must use
the same fork IPL. On an SMP system, they must also use the same spinlock.)

VMS also implements a “fork and wait” wakeup mechanism so that a fork
process can stall itself for a short while and be awakened automatically. To
fork and wait, a fork process releases any spinlocks acquired as part of its
execution and invokes the macro FORK_WAIT, which generates a call to
EXE$FORK_WAIT, in module FORKCNTRL. EXE$FORK_WAIT saves the
fork process’s context in the fork block. Raising IPL to 31, it then acquires
the MEGA spinlock, which serializes access to the systemwide fork and wait
queue, and inserts the fork block at the tail of the queue. EXE$FORK_WAIT
then releases the MEGA spinlock, restoring the IPL at entry, and returns to
its “caller’s caller,” the return PC left on the stack by the fork process or its
invoker.

The base image global EXESAR_FORK_WAIT_QUEUE contains the ad-
dress of the queue listhead, which is in the same loadable executive image
that contains the module FORKCNTRL.

The fork and wait queue is serviced once every second by the routine
EXE$TIMEOUT, in module TIMESCHDL. Thus, on average, the fork process

* waits for half a second. EXE$TIMEOUT and fork processes stalled in this way

run on the primary processor of an SMP system. EXE$TIMEOUT acquires
the MEGA spinlock to serialize its access to the fork and wait queue. It copies
the queue listhead, initializes the listhead to represent an empty queue, and
releases the MEGA spinlock. EXE$TIMEOUT removes each fork block in
turn from its copy of the listhead and restores the fork process context.
EXE$TIMEOUT tests FKB$B_FLCK and, if it contains a spinlock index,
acquires that spinlock. EXE$TIMEOUT then dispatches to the fork process.

4.2.1.6

4.2 Software Interrupt Service Routines

When the fork process returns, EXE§TIMEOUT releases the spinlock. When
the copied listhead is empty, EXE$TIMEOUT is done servicing the queue
and continues with other processing.

Part of the restoration of fork process context involves changing IPL from
IPL$_TIMER to the IPL specified by FKB$B_FIPL/FLCK. Because lowering
IPL would violate the interrupt nesting scheme, use of the fork and wait
mechanism is limited to fork processes with fork IPLs at or above IPL$_
TIMER.

The disk and tape class drivers use this mechanism after an unsuccessful
attempt to allocate nonpaged pool, assuming that nonpaged pool will become
available. When the fork process is reentered, it repeats its attempt to allocate
nonpaged pool. In this example, the fork and wait mechanism is used in lieu
of nonpaged pool availability reporting, the mechanism used by full processes
(see Chapters 12 and 19).

The fork and wait mechanism is also used by the IPL 12 interrupt service
routine when it recomputes quorum, following an unsuccessful attempt to
send a message to the VAXcluster connection manager (see Section 4.2.7).

Chapter 11 contains further information about EXE§TIMEOUT.

Use of Fork IPLs. There are five different fork IPLs; three are used by most
device drivers supplied as part of VMS:

« IPL 6 is used by the connect-to-interrupt driver and by drivers that support
attention ASTs. Chapter 8 describes the reason for IPL 6 fork processing.

« IPL 11 is used by the mailbox driver and MA780 shared multiport memory
mailbox driver. The mailbox driver runs at the highest fork IPL so that any
driver fork process can write mailbox messages, primarily to the OPCOM
process’s mailbox.

« IPL 8 is the most commonly used driver fork IPL.

The following considerations affect the choice of fork IPL for any particular
driver:

« Higher fork IPLs are serviced first.

« All device drivers on a Q22-bus or UNIBUS competing for resources such
as map registers or data paths must use the same fork IPL. In particular,
if any such VMS drivers exist, all DMA drivers servicing devices on that
bus must use fork IPL 8. Moreover, with VMS Version 5, all such drivers
on an SMP system must use a common spinlock, usually the IOLOCKS
spinlock. ‘

« All SCS class and port drivers must use fork IPL 8 and, on an SMP system,
the IOLOCKS spinlock.

« A disk driver must use fork IPL 8 and, on an SMP system, the IOLOCKS8
spinlock for clusterwide mount verification synchronization.

o A driver that accesses a systemwide database synchronized at IPL$_
SYNCH can do so from fork level if its fork IPL is 8, the value of IPL$_

63

Software Interrupts

4.2.2

64

SYNCH. On an SMP system, there is a further requirement that the driver’s
spinlock be the same one that synchronizes the database of interest or that
it be of lower rank so that the fork process can acquire the needed spinlock.

Software Timer

VMS includes both a hardware clock interrupt service routine and a soft-
ware timer ihterrupt service routine. Together these routines service time-
dependent requests. Chapter 11 describes these interrupt service routines in
detail; this section summarizes some of their interaction.

The hardware interrupt service routine is EXESHWCLKINT, in module
TIMESCHDL. It runs every 10 milliseconds in response to a hardware inter-
val timer interrupt, at IPL 22 or 24, depending on the CPU type. Some of its
duties are to update the system time, perform CPU time accounting, check
for quantum expiration of the current process, and check whether the first
timer queue entry (TQE) has come due.

TQEs describe time-dependent requests usually made through the Sched-
ule Wakeup ($SCHDWK) and Set Timer ($SETIMR) system services. The
queue of TQEs is kept ordered by expiration time, with the most imminent
first. Quantum-end processing and TQE servicing require lengthier execu-
tion than is appropriate at high IPL and require modification to the scheduler
database, which is synchronized at IPL§_SCHED. For these reasons, if the
current process has run out of quantum or if the first TQE has come due,
EXE$HWCLKINT requests an IPL§_TIMERFORK (IPL 7) interrupt.

The IPL$_TIMERFORK interrupt service routine, EXE§SWTIMINT in
module TIMESCHDL, checks whether the current process’s quantum has
expired. If so, EXE§SWTIMINT acquires the SCHED spinlock, raising IPL to
IPL$_SCHED. It invokes the routine that performs quantum-end processing
and then releases the SCHED spinlock, lowering IPL to IPL§_TIMERFORK.

EXE$SWTIMINT then checks whether it is running on the primary CPU
of an SMP system (or the only CPU of a uniprocessor). If it is not, it dismisses
the interrupt. Only the primary processor services the timer queue.

If this is the primary processor, EXE§SWTIMINT acquires the TIMER and
HWCLK spinlocks to synchronize its access to the queue of TQEs and, in
particular, the first TQE. It removes the first TQE if its expiration time is the
same as or earlier than the current system time. It releases the two spinlocks,
lowering IPL to IPL$_TIMER (IPL 8). EXE§SWTIMINT then processes the
TQE.

It reacquires the two spinlocks and checks the TQE that is now first in
the queue. EXE§SWTIMINT continues in this manner until it reaches a TQE
that has not yet expired. It then releases the two spinlocks and executes an
REI instruction, dismissing the interrupt and leaving unexpired TQEs in the
queue.

4.23

4.2 Software Interrupt Service Routines

I/O Postprocessing

When a device driver has completed an I/O request, it transfers to a routine
that places the IRP associated with the request at the tail of the I/O post-
processing queue. If the queue was empty, it requests a software interrupt
at IPL$_IOPOST (IPL 4).

In earlier versions of VMS, there was one I/O postprocessing queue. In
VMS Version 5, most IRPs are queued to one systemwide I/O postprocessing
queue. The I/O postprocessing interrupt service routine, running on a unipro-
cessor or on the primary processor of an SMP system, services this queue.
An IRP for a request completed in process context (that is, by a driver’s pre-
processing function decision table action routine) is typically queued to a
postprocessing queue in the per-CPU database. Each CPU services its own
per-CPU queue. See Chapters 22 and 34 for further details.

Example 4.3, a slightly simplified extract from routine IOC$REQCOM, in
module IOSUBNPAG, shows the insertion of an IRP onto the systemwide
queue.

The I/O postprocessing interrupt software routine, IOC$IOPOST in mod-
ule IOCIOPOST, runs on each member of an SMP system. Running on the
primary processor or on a uniprocessor, it removes each IRP in turn from the
beginning of the systemwide queue and processes it. The details of the pro-
cessing vary with the type of IRP. For example, IOC$IOPOST distinguishes
between VMS buffered and direct I/O requests. When a direct I/O request
completes, IOC$IOPOST unlocks the buffer pages from memory. When a
buffered output request completes, IOC$IOPOST deallocates the buffer to

Example 4.3

IOC$REQCOM Routine Extract

IOC$REQCOM: :
$INSQTI (R3),G"IOC$GQ_POSTIQ ;Insert IRP on IOPOST list
BNEQ 49% ;Branch if queue is not empty

FIND_CPU_DATA RO ;Get address of per-CPU data
CMPL G~SMPGL_PRIMID,CPUL_PHY_CPUID(RO) .
;Are we the primary?

BNEQ 46$;Branch if not primary
SOFTINT S~#IPL$_IOPOST ;Request IOPOST interrupt
BRB 49% ;Continue

; This is not the primary CPU on an SMP system, so request an

; interprocessor interrupt of the primary for it to request an

; IPL 4 interrupt.

46%: IPINT_CPU IOPOST,G"SMP$GL_PRIMID ;Request interprocessor
; interrupt

49$:

65

Software Interrupts

4.2.4

66

nonpaged pool and returns process byte count quota. Chapter 21 contains
further information about I/O postprocessing.

IOCS$IOPOST also performs I/O postprocessing of memory management
requests, as described in. Chapter 16.

IOC$IOPOST, running on a uniprocessor or any member of an SMP sys-
tem, then services the per-CPU I/O postprocessing queue for that proces-
sor. After it processes all IRPs in the queue, it dismisses the interrupt with
an REI instruction. Example 4.4, a slightly simplified extract from module
IOCIOPOST, shows this sequence.

Rescheduling Interrupt

The executive requests a rescheduling interrupt at IPL 3 whenever a res-
ident process that can preempt the current process becomes computable.
(Although this statement is true for a uniprocessor system, it is a simplifica-
tion of what happens on an SMP system. See Chapter 12 for further details.)

The IPL 3 interrupt service routine, SCH$RESCHED in module SCHED,
removes the current process from execution. It begins execution at IPL 3 on
the kernel stack of the current process. It immediately acquires the SCHED
spinlock, raising IPL to IPL$_SCHED, and executes a SVPCTX instruction,

Example 4.4
IOCS$IOPOST Interrupt Service Routine Extract
IOC$IOPOST: : ;I0POST interrupt
MOvQ R4,-(SP) ;Save
MovVQ R2,-(SP) ; normal
MOVQ RO,-(SP) ; registers (RO-R5)
IOPOST:
FIND_CPU_DATA R1,ISTACK=YES ;Get address of per-CPU database

CMPL CPU$L_PHY_CPUID(R1) ,G~SMP$GL_PRIMID
;Are we the primary?

BNEQ 5%
TSTL G~I0C$GQ_POSTIQ ;Is systemwide queue empty?
BEQL 5% ;Branch if yes, service per-CPU
; queue
$REMQHI G~IOC$GQ_POSTIQ,RS ;Remove next packet
BVC 60$;Branch if got one
5$: REMQUE QCPU$L_PSFL(R1) ,R5 ;Remove next packet
BVC 60$;Branch if got one
MOvQ (SP)+,R0 ;Restore
MOVQ (SP)+,R2 ; registers
MOVQ (SP)+,R4 ; and exit
REI ; if queue empty
60$: . ;Postprocess this
. ; I/0 request packet
BRW I0POST ;Get next I/0 request packet

4.2.5

4.2.6

4.2 Software Interrupt Service Routines

saving the context of the current process and switching to the interrupt
stack. '

The rescheduling interrupt service routine then selects the highest prior-
ity resident computable process and places it into execution. (On an SMP
system, selecting the next process to execute is somewhat more complex.)

Many of the events that make a process computable occur as part of
servicing software interrupts between IPL 4 and IPL$_SCHED. That the
scheduler database is modified from these software interrupts implies the
following:

o SCH$RESCHED must raise IPL to IPL§_SCHED and acquire the SCHED
spinlock to block any other accesses to the scheduler database while it
takes one process out of execution and selects another one to run.

« The IPL 3 interrupt may be requested a number of times before it is granted.
The number of times the interrupt has béen requested is irrelevant, since
the interrupt service routine always has the same task to do.

« When the IPL 3 interrupt is granted, all events that might affect the choice
of which process to run have been serviced. That is, the higher priority
software interrupt service routines that affect the scheduler database have
completed all their work. Thus, SCH$RESCHED can make the best possi-
ble choice at the time it blocks further alterations to the database.

Chapter 12 discusses the scheduler database, events that affect the sched-
uler database, the rescheduling interrupt, and the additional complexities of
scheduling in an SMP system.

AST Delivery Interrupt

The AST delivery interrupt means that there is an AST for the current
process to execute. This interrupt is unique: it is the only software inter-
rupt requested by microcode and the only one that runs entirely in process
context.

An AST is a mechanism for signaling an asynchronous event to a process.
A designated AST routine runs in the context of the process at a specified
access mode. Some ASTs are requested by the process, for example, as no-
tification of I/O request completion. Some ASTs are queued to the process
by VMS as part of normal system operations, such as automatic working set
limit adjustment.

Chapter 7 describes the details of AST delivery.

XDELTA IPL 14 Interrupt Service Routine

XDELTA, the executive debugger, can optionally be made memory-resident
at system initialization. If XDELTA is resident, the SCB vectors for break-

67

Software Interrupts

4.2.7

68

point and T-bit exceptions contain addresses of service routines within
XDELTA. XDELTA remains quiescent, transferring control to the usual ex-
ception service routines for breakpoint and T-bit exceptions, until a break-
point (BPT) instruction in XDELTA'’s breakpoint table is executed. Initially,
the only such breakpoint is at global location INI$BRK.

When such a breakpoint instruction is executed, XDELTA accepts com-
mand input from the CPU console terminal. These commands can include
setting other breakpoints, setting single-step mode, and examining system
space. Often programmers debugging kernel mode code, such as a device
driver, insert a JSB instruction to INI$BRK in their code to activate XDELTA.
The VMS Delta/XDelta Utility Manual provides further information about
XDELTA (and DELTA) commands.

VMS provides the IPL 14 software interrupt service routine to enable
a person to activate XDELTA at will by depositing a 14 in the software
interrupt request register at the CPU console terminal. The interrupt service
routine to activate XDELTA is INISMASTERWAKE, in module SYSTEM_
ROUTINES. The code of this interrupt service routine follows:

.ALIGN LONG
INI$MASTERWAKE:

JSB INI$BRK

REI

However XDELTA is activated, it raises IPL and executes at IPL 31. Chap-
ter 34 describes some of the complexities of XDELTA's operation in an SMP
system.

When XDELTA is not resident, the instruction at INI$BRK is a NOP rather
than a BPT. Thus, a system without XDELTA reacts gracefully to an XDELTA
interrupt or a JSB to INI$BRK.

IPL 12 Interrupt Service Routine

The IPL 12 interrupt is similar to the XDELTA interrupt; it is only requested
by a person depositing 12 into the software interrupt request register at the
CPU console terminal. The IPL 12 interrupt service routine, EXE$IPCON-
TROL in module IPCONTROL, facilitates certain types of human interven-
tion when the system might otherwise have to be crashed.

When the IPL 12 interrupt request is granted, the interrupt service routine
temporarily disables SMP sanity and spinlock wait timeouts (see Chapter 34)
so that operations below IPL 12 can be stalled on this CPU without adverse
consequences. It then prompts on the console for human input with the
following text: IPC>. (IPC is a shortened form of IPL C, where Cj¢ is 12.)
The IPL 12 interrupt service routine accepts the following commands:

4.2 Software Interrupt Service Routines

Command Meaning

C ddcu: Cancel mount verification in progress
Q Recalculate quorum for the VAXcluster
X Activate XDELTA (if it is resident)
CTRL/Z Return the system to normal operation

The C command is issued with a device specification to cancel mount
verification on the specified disk or tape. Mount verification is a mechanism
that enables the system to recover gracefully from certain kinds of transient
device failures, by stalling I/O requests to a device while it is offline or
inaccessible. If the device comes back on line, the system confirms that
this is the same device as was previously mounted and resumes normal
I/O processing on the volume. If SYSGEN parameter MVTIMEOUT seconds
elapse before a disk comes back on line, mount verification times out and
the system aborts I/O requests in progress to that disk. For a tape, the
SYSGEN parameter TAPE_MVTIMEOUT specifies the length of the mount
verification timeout period.

While a device is in a state of mount verification in progress, all users’
I/O requests to it are stalled until the mount verification times out or the
device comes back on line. An impatient user can type CTRL/C or CTRL/Y
and STOP to abort the image and cancel its I/O requests. However, the user
cannot cancel any I/O request the Files-11 XQP may have made on the user’s
behalf, and subsequent file system activity in the process will be blocked
until mount verification times out or is canceled.

Therefore, if the device failure is known to be permanent, it may be ap-
propriate to cancel mount verification before the mount verification timeout
period has elapsed. In most cases, the DISMOUNT/ABORT command is the
preferred way to cancel mount verification. (See the VMS DCL Dictionary
for further information on this command.) However, if the state of the sys-
tem prevents that command from being entered, the C command to the IPL
12 interrupt service routine may be used instead.

For additional information on mount verification, see the Guide to Main-
taining a VMS System.

In response to a Q command, EXE$IPCONTROL requests the VAXcluster
system connection manager to recalculate dynamic quorum based on the
current cluster configuration. The Q command can be issued when a VAX-
cluster system hangs because of quorum loss, after a node crashes and fails
to reboot. Running as an IPL 12 interrupt service routine, EXE§IPCONTROL
cannot acquire the SCS spinlock to synchronize its access to the connection
manager. The IPL associated with the SCS spinlock is IPL$_SCS, or IPL 8.
EXE$IPCONTROL therefore creates an IPL 8 fork process whose fork lock
is the SCS spinlock. See Section 4.2.1 for details about fork processing.

The fork process calls a connection manager routine to recompute quorum.
If any error occurs, the fork process issues a fork and wait request (see

69

Software Interrupts

70

Section 4.2.1.5), retrying its call whenever it is reentered. Once the call to
the routine is successful, the fork process exits.

In response to an X command, EXESIPCONTROL invokes INI$BRK to
activate XDELTA, as described in Section 4.2.6. Note, however, now that
XDELTA can be activated through an IPL 14 interrupt, activation through
the lower priority IPL 12 interrupt is less commonly used.

In response to CTRL/Z, EXE$IPCONTROL restores the previous state of
the SMP sanity and spinlock wait timeouts and exits, dismissing the IPL 12
interrupt with an REI instruction.

5

5.1

Condition Handling

"Would you tell me, please, which way I ought to go from here?”
That depends a good deal on where you want to get to,” said
the Cat.

Lewis Carroll, Alice’s Adventures in Wonderland

The VAX architecture defines a generalized uniform condition handling fa-
cility for two classes of conditions:

« Conditions detected and generated by the CPU, called exceptions
« Conditions detected and generated by software, called software conditions

The VMS operating system provides this facility for users and also uses the
facility for its own purposes.

This chapter describes how VMS dispatches on exceptions and software
conditions to user-specified procedures called condition handlers. It also
briefly describes how VMS services exceptions that it handles itself.

OVERVIEW

An exception is the CPU’s response to an anomaly or error it encounters
while executing an instruction, for example, a divisor of zero in a DIVL
instruction. In response, the CPU usually changes access mode to kernel.
It pushes the exception program counter (PC), processor status longword
(PSL), and any exception-specific parameters onto the stack on which the
exception is to be serviced. It changes the flow of instruction execution to
an exception service routine pointed to by an error-specific longword vector
in the system control block (SCB). Chapter 2 describes the CPU exception
mechanism in more detail.

The VAX architecture defines approximately 20 different exceptions, each
with its own SCB vector. The VMS executive defines a unique exception
service routine for each. VMS distinguishes two categories of exceptions:

o Those that the VMS executive always handles itself
 Those that may be handled by user-specified procedures

The VMS executive always handles

« Inner access mode exceptions indicating fatal software or hardware errors
(for example, machine checks or bugchecks)

« Exceptions used in the course of normal system operations (for example,
page faults and CHMK exceptions)

Section 5.4.1 summarizes their servicing.

71

Condition Handling

5.2

72

VMS allows all other exceptions to be handled by a user-specified proce-
dure called a condition handler. Section 5.4.2 summarizes their servicing.
Section 5.3 describes how a process establishes condition handlers.

The other type of condition is a software condition, an error or anomaly
detected by software, typically application software rather than operating
system software, and treated like an exception. The software converts the
error to a software condition by calling one of two Run-Time Library pro-
cedures. It calls LIBSSIGNAL when the image can continue; if the error is
severe and the image should be aborted, it calls LIBSSTOP. Each of these
routines initiates the same condition handler search used for exceptions.
Section 5.5 describes software conditions in more detail.

The primary differences between exceptions and software conditions are
the mechanisms that generate them and the initial state of the stack that
contains the condition parameters.

VMS treats exceptions and software conditions uniformly by using the
same mechanisms to locate their condition handlers and pass information
to them.

When a condition occurs, VMS searches for a condition handler. It calls any
it finds with an argument list that includes a code describing the condition
type, called a signal or signal name, and any condition-specific parameters.
The argument list is known as a signal array.

A condition handler is established for a specific access mode. The search
for a condition handler encompasses only those handlers that were estab-
lished in the access mode at which the condition occurred.

The condition handler examines its arguments to decide which of three
actions to take. The handler can fix the condition (continuing). If the handler
cannot fix the condition, it can pass the condition on to the next handler in
the calling hierarchy (resignaling) or it can alter the flow of control (unwind-
ing the call stack). Section 5.8 describes these actions and the executive’s
response to them.

VMS establishes default condition handlers for each mode. If the search
fails to locate any user-established condition handlers, or if all such condition
handlers resignal, it invokes the appropriate default handler.

FEATURES OF THE CONDITION HANDLING FACILITY

The condition handling facility encompasses the declaration of a condition
handler, the search for a condition handler, and the responses available to
a condition handler. The condition handling facility provides that software
conditions be directed to the same condition handlers as exceptions. Thus,
application software can centralize its handling of errors, both hardware and
software.

The Introduction to VMS System Services and the VMS Run-Time Library
Routines Volume describe the declaration and coding of condition handlers.

53

5.3 Estab]ishing a Condition Handler

The major goal of the condition handling facility is to provide an easy-

“to-use, general-purpose mechanism for handling errors. Application soft-

ware and layered products can use this mechanism rather than inventing
application-specific tools. Features of the condition handling facility in sup-
port of this goal include the following:

« The condition handling mechanism is available as part of the VAX architec-
ture; space is reserved for a condition handler address in the first longword
of each call frame.

« Condition handling can be an integral part of a procedure, a processwide
facility, or both.

Each procedure can establish its own condition handler. This enables
condition handlers to be nested with the procedures that establish them.
A nested inner handler can either service a detected exception or pass it
along to some outer handler established by an earlier procedure.

A condition handler is not called to service exceptions incurred by its
own execution. Thus, a handler need not be written in a reentrant language
and need not try to deal with its own errors. However, because a condition
handler is itself a procedure, it can establish its own condition handler to
field errors that it might cause.

o There is no cost to a procedure that does not establish a handler and
minimal cost to one that does. ‘

Overhead is minimized by using only a single longword per procedure
activation for storing the address of a handler. Establishing a handler can be
as simple as executing a single MOVAx instruction. No time is spent looking
for a condition handler until a condition actually occurs.

o As far as the user or application programmer is concerned, there is no
difference in the handling of exceptions and software conditions.

» Some languages, such as BASIC and PL/I, specify signaling and error han-
dling as part of the language. The general mechanism supports their needs.

Because condition handling is part of a procedure, software written in
a high-level language can establish a handler that examines its arguments
to determine whether the signal was generated as a part of that language’s
support library. If so, the handler can attempt to fix the error in the manner
defined by the language. If not, the handler can resignal the error.

ESTABLISHING A CONDITION HANDLER
There are two different methods for establishing a condition handler:

« One method uses the stack associated with each access mode. Each pro-
cedure call frame includes a longword that contains the address of the
condition handler associated with that procedure.

« The other method uses software vectors in P1 space. Each access mode has
its own software vectors. Vectored handlers do not possess the modular

73

Condition Hand]ing

5.3.1

5.3.2

74

properties associated with call frame handlers and are intended primarily
for debuggers and performance monitors.

Establishing a Call Frame Condition Handler

A call frame handler is established by placing its address in the first longword
of the currently active call frame. The following VAX MACRO instruction
establishes a call frame condition handler:

MOVAB new_handler, (FP)

The following VAX MACRO instruction removes a condition handler by
clearing the first longword of the current call frame:

CLRL (FP)

Because direct access to the call frame is usually not available from a high-
level language, VMS provides the Run-Time Library procedures LIBSESTAB-
LISH to establish a handler and LIBSREVERT to remove one.

Establishing a Software-Vectored Condition Handler

There are three types of software-vectored condition handlers. They differ
primarily in the order in which they are called during the search for a
condition handler:

« First, the primary vector handler
« Second, the secondary vector handler
o Last, after all call frame condition handlers, the last chance handler

One of each of these handlers can be established for each access mode.

An array at CTL$AQ_EXCVEC, indexed by access mode, identifies the
process’s primary and secondary vector condition handlers. The first long-
word in each quadword contains zero or the address of a primary vector
condition handler for that mode. The second longword contains zero or
the address of a secondary vector condition handler. An array at CTL$AL_
FINALEXC, also indexed by access mode, contains the addresses of the last
chance condition handlers. ;

By default, VMS provides no primary or secondary vector handlers. It es-
tablishes the kernel, executive, and user mode last chance handlers described
in Section 5.7.

An image requests the Set Exception Vector ($SETEXV) system service to
establish or remove a software-vectored condition handler. The VMS System
Services Reference Manual provides further information.

The system service has four arguments, all of which are optional:

o The VECTOR argument identifies the type of handler. If omitted or if the
value is zero, the handler is the primary vector handler.

« The ADDRES argument contains the address of a handler. If omitted or if the
address is zero, the existing handler is to be removed.

5.4

5.4 Exceptions

« The ACMODE argument specifies the access mode of the handler. If omitted,
its default value is the mode from which the service was requested. If
present, the less privileged of the requesting mode and ACMODE is used,
preventing a process from declaring a handler for a more privileged mode.

« The PRVHND argument specifies the address of a longword to receive the
address of the previously established handler.

The $SETEXYV system service procedure, EXE$SETEXV in module SYS-
SETEXYV, runs in kernel mode. It determines the access mode of the handler
and the type of handler to be established, and stores the address of the
specified handler (or a longword containing zero) in the specified software
vector.

User mode software-vectored condition handlers are automatically re-
moved at image rundown, when the address space that contains them is
being deleted. All others must be explicitly removed.

EXCEPTIONS
Table 5.1 lists the exceptions defined by the VAX architecture. VMS ser-
vices most of them by preparing for the execution of a condition handler.
Section 5.4.2 describes some of these preparations.

In addition, the VMS executive signals some errors it detects while running

Table 5.1 Exception Vectors in the System Control Block

Vector Extra

Offset Exception Name Parameters Type
4 Machine check! 0 Abort/Fault
816 Kernel stack not valid! 0 Abort

10,6 Reserved/privileged instruction ! 0 Fault

14 Customer reserved instruction 0 Fault

1846 Reserved operand 0 Abort/Fault

1C6 Reserved addressing mode 0 Fault

20,6 Access violation ! 2 Fault

24 Translation not valid! 2 Fault

286 Trace pending 0 Fault

2Cy BPT instruction 0 Fault

3056 Compatibility mode 1 Abort/Fault

34 Arithmetic 1 Fault/Trap

40,6 CHMK! 1 Trap

44 CHME'! 1 Trap

48 CHMS 1 Trap

4C15 CHMU 1 Trap

C84 Subset instruction emulation! 10 Trap

CCy Suspended instruction emulation ! 0 Trap

! These exceptions result in special action on the part of the operating system.

75

Condition Handling

54.1

76

in inner access modes through the exception mechanism so that they can be
dispatched to outer mode condition handlers.

Those exceptions that VMS services itself are discussed briefly in the next
section.

Exceptions Handled by the VMS Executive

VMS itself services the CHME and CHMK exceptions to provide controlled
paths into inner access mode code. These exception service routines, known
as the change mode dispatchers, transfer control to Record Management
Services (RMS) and system services, as described in Chapter 6.

VMS services several other exceptions for which only operating system
action is appropriate.

The translation-not-valid exception means that a reference was made to
a virtual address that is not currently mapped to physical memory. This
exception is the entry path into the VMS paging facility. Its service routine,
the page fault handler, is described in detail in Chapter 16.

A machine check exception is a processor-specific condition that may
or may not be recoverable. A machine check is initially serviced on the
interrupt stack at IPL 31. The exception service routine generates a fatal
bugcheck in response to a nonrecoverable kernel or executive mode machine
check. It reports a nonrecoverable machine check that occurred in supervisor
or user mode through the normal exception dispatch method. Chapter 32
discusses the machine check exception service routine and the bugcheck
mechanism.

A kernel-stack-not-valid exception indicates that the kernel stack was
not valid when the processor tried to push information onto it during the
initiation of an exception or interrupt. This exception is serviced on the
interrupt stack at IPL 31. Its exception service routine generates a fatal

'KRNLSTAKNYV bugcheck.

Not all types of VAX processors implement the entire VAX instruction
set. For example, not all processors implement all types of floating-point
operands, and not all processors implement all string and decimal instruc-
tions. VMS provides emulation for VAX instructions not implemented in
CPU microcode.

VMS implements two different kinds of instruction emulation, using two
different techniques. One, based on the reserved/privileged instruction ex-
ception, is available on all CPUs. On a CPU that requires floating-point
instruction emulation, VMS alters the SCB vector for the reserved/privileged
instruction vector to execute floating-point emulation code prior to the nor-
mal service routine for this exception. The floating-point emulation code
checks the opcode of each instruction that incurs the exception, emulates
those with appropriate opcodes, and passes all others on to the normal ser-
vice routine.

5.4.2

5.4 Exceptions

The other technique is available only on certain VAX processor types.
These CPUs assist in the emulation of unimplemented string and decimal
instructions by providing two special VAX subset instruction emulation
exceptions. These processors include the MicroVAX II, MicroVAX 3x00,
and VAX 6000 series systems. When the microcode of such a processor
encounters a string or decimal opcode not present in its instruction set,
it evaluates the operands and pushes exception parameters onto the current
stack describing the opcode and its operands. The processor sets the first
part done bit in the PSL. It then dispatches through SCB vector C8;4 to
the service routine VAX$EMULATE, in module [EMULAT|VAXEMULAT,
without changing access mode.

While the emulation of the instruction is in progress, another exception,
such as a page fault, can occur. After the page fault is satisfied and the
exception dismissed, the emulated instruction is reexecuted. Finding the first
part done bit set, the processor generates a “suspended” emulation exception
through SCB vector CCy4. The second emulation vector dispatches back
into the instruction emulation code at VAX$EMULATE_FPD, in module
[EMULAT|VAXEMULAT.

For more details on these exceptions, see the VAX Architecture Reference
Manual.

Exceptions Passed to a Condition Handler

Apart from the exceptions described in Section 5.4.1, VMS passes excep-
tions to condition handlers. The service routines for these exceptions are
in module EXCEPTION. Each performs approximately the same actions in
preparing for the execution of a condition handler. Table 5.2 lists the ex-
ceptions that VMS handles in this uniform way and the exception-specific
information in their signal arrays.

Figure 5.1 shows the major steps in the flow from such an exception up
to the routine that searches for a condition handler. The column headings
in the figure describe the environment of each step, for example, its access
mode and interrupt priority level (IPL). The numbers in the figure correspond
to the steps in the following list.

Prior to the start of this flow, responding to the exception, the CPU has
pushed onto the stack the exception PC, PSL, and any exception-specific
parameters, and dispatched to the exception service routine.

(DEach exception service routine pushes onto the stack a signal name, a
status value of the form SS$_signal-name.

(®Each pushes the total number of exception parameters (from the signal
name to the saved PSL inclusive). The stack now contains the signal
array (see Figure 5.2). It begins with the signal name and ends with the
exception PC and PSL and may contain exception-specific arguments in
between.

77

Condition Handling

Time

78

Process Context (typically)

IPL O (typically)

Outer Mode (typically)

Kernel Mode

User Image VMS Executive
Exception
occurs
Exception Service Routine
1 Push signal name
2 Push number of signal arguments
EXESEXCEPTION
3 Build mechanism array
4 Legal
condition
?
BUG__CHECK -
INVEXCPTN, FATAL
5 Move signal and mechanism
arrays to outer mode stack
6 Construct PC, PSL
REI
J
NORMAL
7 Build condition
handler argument
list
8 Exception
during
emulation?
Emulation
exception
processing
9 EXE$SRCHANDLER
Figure 5.1

Flow from an Exception to EXE§SRCHANDLER

5.4 Exceptions

! N]| Pushed by N is the number of longwords from
F—— [software SS$__signal-name to the exception
S5$_signal-name = PSL. It ranges from 3 to 5.

| From O to 2 Exception-Specific
T Parameters (Table 5-1)

| Pushed by Arguments are pushed onto the
- hardware kernel stack except for CHMS and
Exception PC CHMU exceptions.
Exception PSL
Figure 5.2
Signal Array Built by CPU and Exception Service
Routine
v | 2
Address of Signal Array
Address of Mechanism Array -:—_—l
[4 These two longwords are
FP of Establisher Frame used and modified by
handler search procedure.
Depth Argument
Saved RO Condition handlers can
pass status back to mainline
Saved R1 code by modifying
Flags Longword saved RO (and R1).
Software condition — l N <
generated by call to N .
LIBSSIGNAL/STOP. Excoption or Signal Name | > Argument count (N) s the number
The argument list is N> 3)9 9 y
passed by call to —] Additional exception parameters o
LIB$SIGNAL/STOP. pushed by %ardv?:re or Hardware exception parameters
The PC and PSL are T additional arguments passedto | | are pushed initially onto the
added before handlers LIB$SIGNAL/STOP kernel stack by hardware and
are called. See ™ copied to the exception stack by
Figure 5-4. - - Excention PG or PG followl software.The exception name
’é‘;ﬁ‘::ﬂBa‘S?éN AU"S.%’;:','Q and argument count are added
by software before handlers are
Exception PSL called.
-«—e Value of SP before exception
Figure 5.3

Signal and Mechanism Arrays

After an exception service routine has completed the signal array, it
jumps to EXE$EXCEPTION, in module EXCEPTION.
(3 EXE$EXCEPTION builds a second argument list, called a mechanism
array, which serves the following purposes:

—It records the values of RO and R1 at the time of the exception (the
procedure calling standard prohibits their being saved in a procedure
entry mask|. ‘

—It records the progress made in the search for a condition handler.

Figure 5.3 shows the layout of the mechanism array. Section 5.6 de-
scribes its use during the search for a condition handler.
(D EXESEXCEPTION tests whether the exception should be dispatched to a

79

Condition Handling

5.4.3

80

condition handler (see Section 5.7.3.1). If not, EXESEXCEPTION generates
a fatal INVEXCPTN bugcheck.

(5)Most exceptions that VMS passes on to a condition handler are initially
serviced on the kernel stack. However, an exception must be signaled
to the access mode in which it occurred. EXE§EXCEPTION checks that
there is space on the stack of that mode, copies the signal and mechanism
arrays to the target stack, and removes them from the stack on which the
exception was serviced.

(It constructs a PC/PSL pair and executes an REI instruction to transfer
control to the local routine NORMAL in the access mode that incurred
the exception.

() NORMAL builds the condition handler argument list (see Figure 5.3),
which contains the addresses of the signal and mechanism arrays.

(® NORMAL examines location EXE$GL_VAXEXCVEC. If it contains zero,
NORMAL continues with the next step. Otherwise, NORMAL dispatches
to the specified address. On a processor that provides assistance for in-
struction emulation, EXE§GL_VAXEXCVEC contains the address of rou-
tine VAX$MODIFY_EXCEPTION, in module [EMULAT|VAXHANDLR.
This routine takes special action for an exception that occurs in the course
of instruction emulation (see Section 5.4.3). For any other type of excep-
tion, it returns to NORMAL.

(>) NORMAL then transfers control to EXE$SRCHANDLER, in module EX-
CEPTION, which locates any condition handlers that have been estab-
lished for the access mode of the exception.

Section 5.6 describes the search for and dispatch to a condition handler.

Special Cases in Condition Dispatching

The sequence previously described omits some special cases that occur in
the dispatching of several conditions. Most of these special cases involve the
conditions listed in Table 5.2.

Several of these are detected by executive software rather than hardware.
Rather than signal them through LIB$SIGNAL or LIB$STOP, the execu-
tive transfers control to condition-specific routines in module EXCEPTION,
which build a signal array and dispatch to EXE$EXCEPTION or EXE$RE-
FLECT, in module EXCEPTION. These conditions are typically detected
in an inner mode but must be signaled to the mode associated with the
condition. LIB§SIGNAL and LIB§STOP are unsuitable because they cannot
perform the required access mode switch.

The following list summarizes the flow for such an error. Parts of it are
congruent with the flow described in more detail in Section 5.4.2. At the
start of this flow, an executive routine has detected an error and pushed
onto the stack an exception PC, PSL, error-specific information, and the rest
of the signal array.

5.4 Exceptions

Table 5.2 Exceptions Passed to a Condition Handler

Exception
Type

Access violation

Arithmetic
AST delivery
stack fault

Breakpoint
Change mode to
supervisor
Change mode to
user
Compatibility
mode
Debug signal
Machine check
Customer
reserved
instruction
Reserved or
privileged
instruction
Page fault read
error
Reserved address-
ing mode
Reserved operand
System service
failure
Trace pending

Signal Name
SS$_ACCVIO

(See Table 5.3)
SS$_ASTFLT

SS$_BREAK
SS_CMODSUPR

S_CMODUSER
SS$_COMPAT
SS$_DEBUG

SS$_MCHECK
SS_OPCCUS

SS$_OPCDEC

SS$_PAGRDERR
SS$_RADRMOD

SS$_ROPRAND
SS$_SSFAIL

SS$_TBIT

Notes'!
1,3d

3c

3e

3b

3a

Signal
Array
Size

~N W

Extra Parameters

in Signal Array

Reason mask,

Faulting virtual address
None?

SP value at fault, -

AST parameter,

PC at AST interrupt, 3
PSL at AST interrupt,
Address of AST procedure,
PSL for AST procedure
None

Change mode operand

Change mode operand
Compatibility exception code
None

None*
None .

None

Reason mask,
Faulting virtual address
None

None
System service final status

None

! These numbers refer to list items in Section 5.4.3.
2 The arithmetic exception has no extra parameters, despite the fact that the CPU pushes an exception
code onto the kernel stack. VMS converts this code into an exception-specific signal name (see Table 5.3)
of the form 8 * code + SS§_ARTRES.
3 The AST delivery code exchanges the interrupt PC/PSL pair and the PC/PSL to which the AST would

have been delivered.

4 A machine check exception reported to a process does not have any extra parameters in the signal
array. The machine check parameters have been examined, written to the error log, and discarded by the

machine check exception service routine, as described in Chapter 32.

81

Condition Handling

82

1. If the executive routine itself always runs in kernel mode, it jumps to

EXE$EXCEPTION, which builds a mechanism array and continues with
step 4. Otherwise, it jumps to EXESREFLECT.

. EXE$REFLECT builds a mechanism array. It checks whether it is running
in kernel mode and, if so, continues with step 4.

. Otherwise, EXE$REFLECT checks that there is space for the signal and
mechanism arrays on the target stack using the Adjust Outer Mode Stack
Pointer (JADJSTK) system service. It merges with EXE§EXCEPTION, at
step 5.

. EXE$EXCEPTION tests whether the exception should be dispatched to
a condition handler (see Section 5.7.3.1). If not, it generates a fatal IN-
VEXCPTN bugcheck.

. EXE$EXCEPTION moves the signal and mechanism arrays to the target
stack.

. It executes an REI instruction to transfer control to NORMAL, which
builds the condition handler argument list.

. NORMAL dispatches into VAX$MODIFY_EXCEPTION if the exception
occurred during instruction emulation. '

. NORMAL transfers to EXE§SRCHANDLER to locate and dispatch to a
condition handler.

The following list describes each of the special cases in Table 5.2. Its

numbers correspond to the notes in that table.

1. User stack overflow is detected by the hardware as an access violation at

the low-address end of P1 space. The access violation exception service
routine tests whether the inaccessible virtual address is at the low end
of P1 space. If it is, additional virtual address space is created below the
stack and the exception dismissed. Thus, a user stack expands automat-
ically and transparently. A condition handler is notified about such an
exception only if the stack expansion is unsuccessful.

2. Ten types of arithmetic exceptions can occur. The CPU dispatches them

all through the same SCB vector but uniquely identifies them through
a code in the exception-specific parameters. The arithmetic exception
service routine translates the code into a unique signal name. Table 5.3
lists these signal names and their codes.

3. The following conditions are detected by executive software:

a. The system service failure (SS§_SSFAIL) condition is reported when
a process has enabled signaling of system service failures through the
Set System Service Failure Mode ($SETSFM) system service and a
system or RMS service returns unsuccessfully with an error or se-
vere error status. The change mode dispatchers detect such errors.
They push information about the error onto the stack of the service

5.4 Exceptions

execution and transfer control to EXE$SSFAIL, in module EXCEP-
TION (see Chapter 6). EXE$SSFAIL completes the signal array and
jumps to EXE$REFLECT.

b. The page fault read error (SS$_PAGRDERR) condition is reported
when a process incurs a page fault for a page on which a read er-
ror occurred during a previous fault for the same page. Information
about the page fault that led to the condition is already on the
stack. The translation-not-valid service routine transfers control to
EXE$PAGRDERR, in module EXCEPTION. EXE$PAGRDERR com-
pletes the signal array and jumps to EXESEXCEPTION.

c. The SS$_ASTFLT condition is reported when the asynchronous sys-
tem trap (AST) delivery interrupt service routine detects an inacces-
sible stack while attempting to deliver an AST to a process. The AST
delivery interrupt service routine pushes information about the er-
ror onto the kernel stack and transfers control to EXE§ASTFLT, in
module EXCEPTION (see Chapter 7).

EXE$ASTFLT completes the signal array. EXE$ASTFLT is entered
with current and previous modes both kernel, since it runs as part
of an interrupt service routine. The exception handling mechanism

Table 5.3 Signal Names for Arithmetic Exceptions
Code Pushed Resulting

Exception Type by CPU Signal Name
TRAPS
Integer overflow! 1 SS$_INTOVF
Integer divide by zero 2 SS$_INTDIV
Floating overflow? 3 SS$_FLTOVF
Floating/Decimal divide by zero? 4 SS$_FLTDIV
Floating underflow 23 5 SS$_FLTUND
Decimal overflow! 6 SS$_DECOVF
Subscript range 7 SS$_SUBRNG
FAULTS .
Floating overflow 8 SS$_FLTOVE_F
Floating divide by zero 9 SS$_FLTDIV_F
Floating underflow 10 SS$_FLTUND_F

!Integer overflow enable and decimal overflow enable bits in the processor
status word (PSW) can be altered either directly or through the procedure
entry mask.

% The three floating-point traps can only occur on VAX-11/780 processors
earlier than microcode revision (rev) level 7.

% The floating underflow enable bit in the PSW can only be altered directly.
There is no corresponding bit in the procedure entry mask.

83

Condition Handling

84

presumes that the previous mode is the mode of the exception.
EXE$ASTFLT therefore executes an REI instruction with a PC and
PSL constructed to transfer to EXESEXCEPTION with the previous
mode set to that of the AST.

d. Most access violations are exceptions detected by the CPU. In addi-
tion, however, the translation-not-valid exception service routine can
signal an access violation. If it detects a process faulting a page in the
process header of another process, then it transfers to EXE§ACVIO-
LAT, in module EXCEPTION, the access violation exception service
routine. Information about the error is already on the current stack.
This is an unusual error, typically the result of a software failure in
executive or kernel mode code.

e. The signal SS$_DEBUG is generated by either the Digital command
language (DCL) or monitor console routine (MCR) command language
interpreter {CLI) in response to a DEBUG command entered while an
image exists in an interrupted state. The DEBUG command processor
pushes the PC and PSL of the interrupted image, the signal name SS$_
DEBUG, and the size of the signal array onto the supervisor stack and
jumps to EXE$REFLECT.

A CLI uses this mechanism for the DEBUG signal, rather than sim-
ply calling LIB§SIGNAL, because the DEBUG command is processed
by supervisor mode code but the condition has to be reported back
to user mode.

4. The exception dispatching for the CHMS and CHMU exceptions and

compatibility mode exceptions can be short-circuited by use of the De-
clare Change Mode or Compatibility Mode Handler ($DCLCMH) system
service. The $DCLCMH system service enables a user to establish a
per-process change-mode-to-supervisor, change-mode-to-user, or compat-
ibility mode handler. This service stores the address of the handler in
CTLGL_CMSUPR, CTLGL_CMUSER, or CTL$§GL_COMPAT in the
P1 pointer page.

The exception service routine for CHMS exceptions, EXE§CMOD-
SUPR in module EXCEPTION, pushes the signal name onto the stack
and determines in what mode the exception occurred. If it occurred in
kernel or executive mode, EXESCMODSUPR completes the signal array
and jumps to EXE$REFLECT. If the exception occurred in user or super-
visor mode but the process has declared no change-mode-to-supervisor
handler, EXESCMODSUPR also completes the signal array and jumps to
EXE$REFLECT.

Otherwise, EXE§CMODSUPR removes the signal name from the stack
and transfers control to the declared handler with the stack in the same
state in which it was following the exception. That is, the change mode
operand is at the top of the stack, followed by the exception PC and PSL.

5.5

5.5 Software Conditions

The exception service routine for CHMU exceptions, EXE§CMOD-
USER in module EXCEPTION, behaves similarly. For it to transfer to a
declared change-mode-to-user handler, the exception must have occurred
in user mode.

The DCL CLI requests the $DCLCMH service to establish a CHMS
handler. Its handler is briefly described in Chapter 27. The job controller
uses a CHMU handler for its processing of error messages. The Files-11
Extended QIO Processor (XQP), running in kernel mode, signals an error
to its outermost procedure by executing a CHMU instruction from kernel
mode.

The exception service routine for compatibility mode exceptions trans-
fers control to the user-declared compatibility mode handler (if one was
declared) with the user stack in the same state in which it was before the
compatibility mode exception occurred. That is, no parameters are passed
to the compatibility mode handler on the user stack. Instead, the service
routine saves the compatibility mode code, exception PC and PSL, and
contents of RO through R6 in the first ten longwords of the compatibility
mode context page, at location CTLSAL_CMCNTX.

5. The reserved instruction fault is generated whenever an unrecognized
opcode is detected by the instruction decoder.

VMS uses this fault as a path into bugcheck processing. The reserved
instruction exception service routine tests whether the reserved opcode
is either FEFF,4 or FDFF;4. These two opcodes are reserved for the op-
erating system to signal that it has detected a serious inconsistency in
system behavior or data. If the opcode is one of these, the reserved in-
struction exception service routine jumps to the bugcheck routine, which
is described in Chapter 32.

Another special case in exception dispatching is the handling of an ex-
ception in the middle of instruction emulation, itself an exception. When
an exception occurs on a processor with subset instruction emulation, rou-
tine VAX$MODIFY_EXCEPTION (see Section 5.4.2) is invoked. If the ex-
ception occurred in the course of emulating an instruction, VAX$MODIFY_
EXCEPTION transforms that exception into one incurred by the emulated
instruction; it changes the exception PC to be that of the emulated instruc-
tion and rearranges the stack to remove any data pushed onto it during
instruction emulation. It invokes EXESEMULAT_REFLECT, in module EX-
CEPTION, to signal the exception as one incurred by the emulated instruc-
tion. Unlike EXE$REFLECT, EXESEMULAT_REFLECT has no need to alter
access mode; the dispatching that led to VAX$MODIFY_EXCEPTION has
already restored the mode of the emulated instruction.

SOFTWARE CONDITIONS

One of the choices in the design of a modular procedure is the method for

85

Condition Handling

86

reporting exceptional conditions back to the caller. There are two common
methods: returning a status in RO, and signaling the error by calling one of
the Run-Time Library procedures LIB§SIGNAL or LIB§STOP.

There are two reasons why signaling may be preferable to returning status.
In some procedures, such as the mathematics procedures in the Run-Time
Library, RO is already used for returning a function value and is unavail-
able for error return status. The procedure must therefore use the signaling
mechanism to indicate exceptional conditions, such as an attempt to take
the square root of a negative number.

A second common use of signaling occurs in an application using an
indeterminate number of procedure calls to perform some action, such as
a recursive procedure that parses a command line. In such a case, the use
of a return status is often cumbersome and difficult to code. The signaling
mechanism provides a graceful way not only to indicate that an error has
occurred but also to return control (through the SUNWIND system service)
to a known alternative return point in the calling hierarchy.

A procedure calls LIBSSIGNAL or LIB§STOP with the name of the condi-
tion to be signaled and whatever additional parameters are to be passed to a
condition handler. LIB§STOP is an alternative entry point to LIB§SIGNAL.
(This chapter refers to the combined procedures as LIB§SIGNAL/STOP.)

LIB$SIGNAL and LIB§STOP differ in whether normal execution may be
resumed after the condition handler for the signaled error returns. Use of
LIB$SIGNAL enables the image to continue if the condition handler returns
the status SS§_CONTINUE. Use of LIB§STOP does not. The two entry
points store different values in the stack flags longword, which is tested
by the code to which a condition handler returns.

Before LIB§SIGNAL/STOP can initiate the search for a condition handler,
it must transform the stack to one resembling an exception stack. LIB$SIG-
NAL/STOP constructs a signal array and removes the frame generated by the
call to itself. If LIBSSIGNAL/STOP was entered with a CALLS instruction, it
must also move the argument list onto the stack. It restores the saved argu-
ment pointer (AP) and frame pointer (FP). LIB§SIGNAL/STOP moves other
information, such as the saved PC and processor status word (PSW) to a
signal array it constructs on the stack. The signal array also incorporates
any arguments from the call to LIB§SIGNAL/STOP. Figure 5.4 shows the
transformed state of the stack following a call to LIB§SIGNAL/STOP.

LIB$SIGNAL/STOP next builds a mechanism array, saving RO and R1 in
it, and a condition handler argument list. After building the three argument
lists, LIB§SIGNAL/STOP invokes the same condition handler search code as
exception handling. It jumps to SYS§SRCHANDLER, a system service vector
that contains a jump to EXE§SRCHANDLER. The indirection supplies the
Run-Time Library with a constant address through which to dispatch to
EXE$SRCHANDLER.

18

State of the Stack Immediately After
the CALLS to LIB$SIGNAL/STOP

— — State of the Stack Aﬁe}
0 = No Condition Handler LIBSSIGNAL/STOP Has Removed
0 = Register 1 the Call Frame
Save Mask Saved PSW r“ C— _—— —ﬁ _d|_ —; _—— _L_
Callframefor ~ —| 2 Saved AP 5 Condition will go | orgument List =
LIB$SIGNAL/STOP Saved FP T —
3 Save %= Mechanism Array will go here ==
4 Saved PC Signal/Stop Code
0...3 Stack Alignment Bytes 1 = LIB$SIGNAL; 2 = LIB$STOP

| 5 M

| 6 N

32-bit Status Code (Signal Name)

32-bit Status Code (Signal Name)

The argument list is shifted
up 8 bytes to make room for
the PC/PSL pair so that T
hardware and software
signal arrays look the same.

Argument list
passed to — J

Additional arguments
LIB$SIGNAL/STOP L (if any) passed to i

LIB$SIGNAL/STOP

I
L
1

Additional arguments
(if any) passed to T
LIB$SIGNAL/STOP

- (f CALLG instead of CALLS, then -—
the argument list is copied from

Value of SP before call and

4 PC of Instruction
Following CALLXx

elsewhere to the signal array.
The rest of the call frame is
discarded in the same fashion.)

push of argument list

41 PSL That Existed
Before CALLx

Signal array
— passed to
condition handlers

The call frame is discarded before handlers are called.

1 Saved PSW =low 16 bits of PSL 4 Saved PC— PC in signal array
in signal array 5 Mis the size of the argument list.

2 Saved AP—~AP 6 Nis the size of the signal array

3 Saved FP—FP (N=M+2).

Figure 5.4
Transformation of Stack by LIB§SIGNAL/STOP

Condition Handling

5.6

5.6.1

. 5.6.1.1

5.6.1.2

88

The search for condition handlers takes place on the stack of the caller of
LIB$SIGNAL/STOP.

UNIFORM CONDITION DISPATCHING

Once information concerning the condition has been pushed onto the stack,
there are few differences between exceptions and software conditions. The
following sections discuss condition dispatching in general terms and ex-
plicitly mention EXE$EXCEPTION or LIB§SIGNAL/STOP only where their
operations differ.

The Search for a Condition Handler

At this point in the dispatch sequence, the signal and mechanism arrays and
the condition handler argument list have been set up on the stack of the
access mode to which the condition will be reported. EXESSRCHANDLER
uses the mechanism array longword initially containing the FP of the estab-
lisher frame (see Figure 5.3) to record the extent of the search. The depth
argument in the mechanism array not only provides useful information to a
condition handler that unwinds but also enables EXE$SRCHANDLER to dis-
tinguish a call frame handler (non-negative depth) from a software-vectored
condition handler (negative depth).

Primary and Secondary Exception Vectors. EXE§SRCHANDLER begins its
search with the primary vector of the access mode in which the exception
occurred. If the vector contains the address of a condition handler (any
nonzero contents), EXESSRCHANDLER sets the depth at —~2 and calls the
handler.

The primary handler {and any other condition handler) can return sev-
eral status codes. One status code, SS$_RESIGNAL, known as a resignal,
means that EXE§SRCHANDLER should continue its search for a condition
handler. Resignaling and other condition handler responses are described in
Section 5.8.

If the primary handler resignals or if none exists, EXE§SRCHANDLER
performs the same step for the secondary vector handler, with the depth at
—1. If the secondary handler resignals or there is none, EXE$SRCHANDLER
next looks for call frame condition handlers.

Call Frame Condition Handlers. EXE§SRCHANDLER examines the contents
of the current call frame. If the first longword in the current call frame is
nonzero, EXE§SRCHANDLER calls that handler with the depth at 0. If the
longword is zero or if that handler resignals, EXE§SRCHANDLER examines
the next earlier call frame by using the saved frame pointer in the current call
frame (see Figure 5.5). As it examines each earlier call frame, it increments

5.6 Uniform Condition Dispatching

See Figure 5-6
[2 .
Signal Array
Mechanism Array -
[4 :l
2 Establisher FP
Signal and Depth =1 3
mechanism RO
arrays for R1
signal S -
generated by Signal/Stop Code
procedure C] N e
Name of Signal S
= Other Parameters =
Exception PC in C
Exception PSL
CH o
1
Call frame for ,
procedure C - Direction of
Saved FP b stack growth
Saved PCin B
BH -
1
Call frame for
procedure B
Saved FP -~
Saved PC in A
AH
1
Call frame for
procedure A
Saved FP ﬂ——*
Saved PC To previous frame

Figure 5.5
Order of Search for Condition Handler

the depth to record the number of frames examined and places that frame’s
address in the frame pointer of the mechanism array.

EXE$SRCHANDLER continues the search until one of the following
occurs:

o A handler returns a status requesting the resumption of the thread of
execution that incurred the exception.
« EXE$SRCHANDLER finds a saved frame pointer whose value is not within
the bounds of that access mode’s stack.
A saved frame pointer value may be out of range as a result of stack

89

Condition Handling

5.6.1.3

5.6.2

90

corruption. A saved frame pointer value of zero indicates the end of the
call frame chain.
« EXE$SRCHANDLER reaches the end of the call frame chain.

A saved frame pointer that points outside the stack terminates the call
frame chain. The end of an inner access mode call frame chain can also
be indicated by either a change mode dispatcher call frame, described in
Chapter 6, or an AST delivery call frame, described in Chapter 7. Either
indicates that an access mode change occurred.

If a handler returns a status code with the low bit set, EXE§SRCHANDLER
cleans off the stack, restores RO and R1 from the mechanism array, and
executes an REI instruction using the saved PC and PSL from the signal array.
This resumes the thread of execution that incurred the exception. Note that
EXE$SRCHANDLER passes control back with an REI instruction, even if the
condition was caused by a call to LIB§SIGNAL/STOP. LIB§SIGNAL/STOP
discarded the frame resulting from its call, so that the stack resembles an
exception stack (see Figure 5.4).

Last Chance Condition Handler. If all handlers resignal or none is found, the
search terminates at the end of the call frame chain. EXE§SRCHANDLER
then calls the last chance handler with the depth at —3. (This handler is
also called if any error occurs during the search for a condition handler.) The
usual last chance handler is the catch-all condition handler established as
part of image initiation. Section 5.7.2 describes this handler.

If the last chance handler returns or there is none, and the exception
occurred in user or supervisor mode, EXE§SRCHANDLER calls the executive
procedure EXE$EXCMSG (see Chapter 36). Its two input parameters are an
ASCI string containing message text and the condition handler argument
list. Following the call to EXE$EXCMSG, EXE§SRCHANDLER requests the
Exit ($EXIT) system service with a status indicating either that no handler
was found or that a bad stack was detected while searching for a condition
handler.

If the exception occurred in executive or kernel mode, EXE§SRCHAN-
DLER generates a FATALEXCPT bugcheck, nonfatal for executive mode or
fatal for kernel mode.

Multiple Active Signals

An exception in a condition handler or in some procedure called by a con-
dition handler results in a condition called multiple active signals. To avoid
an infinite loop of exceptions, EXE§SRCHANDLER modifies its search al-
gorithm so that when it services the second condition, it skips those frames
it searched while servicing the first condition.

For this skipping to work correctly, call frames of condition handlers must
be distinguishable from other call frames. VMS arranges this by calling all

5.6.2.1

5.6.2.2

5.6 Uniform Condition Dispatching

handlers from a known location, so that the saved PC of a condition handler
call frame is unique.

Common Call Site for Condition Handlers. In order to dispatch to a handler,
EXE$SRCHANDLER stores the address of the handler in R1 and transfers to
the common call site with the following instruction:

JSB Q#SYS$CALL_HANDL

The code at SYSSCALL_HANDL simply calls the procedure whose address
is stored in R1 and returns to its invoker with an RSB:

SYS$CALL_HANDL: :
CALLG 4(SP), (R1)
RSB

When the CALLG instruction is executed, the address of the next instruc-
tion, SYS§CALL_HANDL + 4, is recorded in the call frame as the saved PC.
Thus, the identifying characteristic of a condition handler call frame is the
address SYS$CALL_HANDL + 4 as the saved PC. This signature is used not
only by the search procedure, as described in the following section, but also
by the Unwind Call Stack (SUNWIND) system service.

Example of Multiple Active Signals. The modified flow of control when
the search procedure encounters a condition handler call frame can best
be illustrated through an example. The example assumes that the primary
and secondary condition handlers (if they exist) have already resignaled. The
numbers in Figures 5.5 and 5.6 correspond to the following steps:

(D Procedure A calls procedure B, which calls procedure C.

(@ Procedure C generates signal S.

(3»Handler CH resignals. The depth argument is 1, and the establisher frame
argument points to the call frame for procedure B, when BH is called.
Figure 5.5 shows the stack at this point.

(@) The call frame for handler BH is located later in time on the stack, at
lower virtual addresses than the signal and mechanism arrays for signal S
(see Figure 5.6). The saved frame pointer in the call frame for BH points
to the frame for procedure C.

(®Handler BH now calls procedure X, which calls procedure Y.

(®Procedure Y generates signal T. The desired sequence of frames to be
examined is frame Y, frame X, frame BH, and then frame A. Frames B and
C are skipped because they were examined while servicing condition S.

() EXE$SRCHANDLER proceeds in its normal fashion. The primary and
secondary vectors are examined first (no skipping here). Then frames Y,
X, and BH are examined, resulting in handlers YH, XH, and BHH being
called in turn. Assume that all these handlers resignal. After handler
BHH returns to EXE$SRCHANDLER with a status of SS$_RESIGNAL,

91

Condition Handling

Signal Array o
Mechanism Array O-:I
| 4

Establisher FP

Signal and Depth =3 10
mechanism RO

arrays for

signal T R1

generated by Signal/Stop Code

procedure Y I N -

Name of Signal T

L1}

Other Parameters 3

L

Exception PCinY
Exception PSL

w - T
5

Call frame for Direction of

procedure Y stack growth

Saved FP 1 {
/

Return PC in X
To call frame for

| S

procedure Ain
XH Figure 5-5
5
Call frame for
procedure X
Saved FP \s
Return PC in BH]
BHH
Reg. Save Mask l
4 Saved FP s
Call frame for Dispatcher Call Site 7 l
handler BH
Saved registers and stack 8 To call frame for
L alignment bytes indicated L procedure C in
B by register save mask in Figure 5-5
call frame BH
Return PC from JSB 9
See Figure 5-5
Figure 5.6

Modified Search with Multiple Active Signals

EXE$SRCHANDLER notes that frame BH is the frame of a condition
handler, because its saved PC is SYS§CALL_HANDL + 4.

(® The skipping is accomplished by locating the frame that established this
handler. The address of that frame is located in the mechanism array for
signal S.

92

5.7

571

5.7 Default (VMS-Supplied) Condition Handlers

To locate the mechanism array for signal S, EXE§SRCHANDLER cal-
culates the value of SP before the call to BH, using the register save mask
and stack alignment bits in the call frame.

(® One extra longword, the return PC from the JSB to SYSSCALL_HANDL,
must be skipped to locate the argument list (and thus the mechanism
array) for signal S.

(9 The frame pointed to by the establisher frame pointer in the mechanism
array, which is the call frame for B, has already been searched. The next
frame examined by the search procedure is the call frame of A, which is
pointed to by the saved frame pointer in the call frame of B. The depths
that are passed to handlers as a result of the modified search are O for
YH, 1 for XH, 2 for BHH, and 3 for AH. Figure 5.6 shows the stack at the
point where handler AH has been located.

DEFAULT (VMS-SUPPLIED) CONDITION HANDLERS

The use of condition handlers is general and can be specified by the user.
However, some actions always occur as the result of default condition han-
dlers that are established by the executive as a part of process creation or
image activation.

The discussions of process creation in Chapter 25 and image activation in
Chapter 26 point out exactly when and how each of the handlers described
in this section is established. The action of each of these handlers, once they
are invoked, is briefly described in the following sections.

Traceback Handler Established by Image Startup

When an image includes either the debugger or the traceback handler, an-
other frame is put on the user stack before the image itself is called (see
Chapter 26). EXE$IMGSTA, in module SYSIMGSTA, the code that executes
before the image is called, stores the address of its own condition handler in
this frame so that it will be entered for any subsequent condition that is not
handled by an intervening condition handler.

This handler first checks whether the condition that occurred is SS$_
DEBUG. If so, it maps the debugger into PO space (if not already mapped)
and passes control to it. The condition SS$_DEBUG is signaled by a CLI in
response to a DEBUG command. This feature allows an image that was not
linked or run with debugger support to be interrupted and have a debugger
invoked.

For all other conditions, if the severity level is warning, error, or severe
error, the handler maps the traceback facility above the end of defined PO
space and passes control to it. The traceback facility passes information
about the exception to SYSSOUTPUT and terminates the image.

If the severity level is other than the three listed, the traceback condition
handler resignals the condition, which usually means that the condition is
being passed on to the catch-all condition handler.

93

Condition Handling

5.7.2

5.7.3

5.7.3.1

94

Catch-All Condition Handler

The address of this handler, EXE§CATCH_ALL, is placed in an initial call
frame on the user stack and in the last chance vector for user mode by either
EXE$PROCSTRT when the process is created or by a CLI before an image is
called. This handler is always called if no other handlers exist or if all other
handlers resignal. Because the address of the handler is duplicated in the last
chance vector, it is also called in the event of an error in the search through
the user stack.

The first step that EXESCATCH_ALL takes is to call SYSSPUTMSG (see
Chapter 36). If the handler was called through the last chance vector (the
depth argument in the mechanism array is —3) or if the severity level of the
condition name in the signal array indicates severe (condition-name (2:0)
GEQU 4), then EXE$EXCMSG (see Chapter 36) is called to print a summary
message, and the image is terminated; otherwise, the image is continued.

Handlers Used by Other Access Modes

In addition to the handlers that VMS supplies for user mode conditions, it
sets up handlers for the other three access modes.

Exceptions in Kernel or Executive Mode. When a kernel mode exception
occurs, EXESEXCEPTION makes special checks to determine whether it
should dispatch the exception. It checks that

« The processor was running on the kernel stack

« IPL was at or below 2

« The P1 page containing the limits of the process’s stacks is accessible {in
fact, that the process has a typical P1 space)

If any of these is not true, the dispatcher generates a fatal INVEXCPTN bug-
check. Routines whose exceptions can cause this bugcheck include interrupt
service routines, device drivers (except for their function decision table ac-
tion routines), process-based code executing above IPL 2 (such as portions of
various system services), and any code running in the context of the swapper
process.

If all of these are true, then exception dispatching proceeds in its usual
manner. If no primary, secondary, or call frame condition handlers service
the exception, the dispatcher invokes the last chance condition handler.

The last chance exception vectors for both kernel and executive modes are
initialized at process creation in module SHELL (see Chapter 25).

The kernel mode last chance handler, EXE$EXCPTN, in module SYSTEM_
ROUTINES, generates a fatal SSRVEXCEPT bugcheck. Routines whose ex-

5.7.3.2

5.8

5.8 Condition Handler Action

ceptions can result in this bugcheck include portions of many system ser-
vices, many exception service routines, device driver function decision table
action routines, and procedures that are entered through a user-written sys-
tem service dispatcher or the Change to Kernel Mode ($CMKRNL) system
service.

The executive mode last chance handler, EXE§EXCPTNE, in module SYS-
TEM_ROUTINES, generates a nonfatal SSRVEXCEPT bugcheck, causing an
error to be logged, and exits the image from executive mode, causing the
process to be deleted. Routines that execute in executive mode include
RMS, parts of the executive, and procedures that are entered through ei-
ther a user-written system service dispatcher or the Change to Executive
Mode ($CMEXEC) system service. Note that if the SYSGEN parameter
BUGCHECKFATAL is 1, a nonfatal SSRVEXCEPT bugcheck is treated as
a fatal bugcheck and results in a crash.

Chapter 32 describes bugcheck processing in detail.

Condition Handler Used by DCL or MCR. The DCL and MCR CLIs establish
nearly identical condition handlers at the beginning of their command loops
to field conditions that occur in supervisor mode.

The LOGINOUT image activates a CLI (DCL or MCR) and calls it. The
first step of the CLI is to establish a supervisor mode condition handler to
handle its own internal errors. It establishes this handler as a call frame
condition handler in the oldest call frame on the supervisor mode stack.
The condition handler performs two tasks when it is called:

1. It cancels any exit handlers that have been established.
2. It resignals the error.

There are no other condition handlers. When the search ends, the image
is exited in supervisor mode, resulting in process deletion.

CONDITION HANDLER ACTION

A condition handler first determines the nature of the condition by exam-
ining the signal name argument in the signal array (see Figure 5.2). It then
decides what action to take:

« It can pass the condition along to another handler by resignaling.

« It can fix the condition and allow execution to continue at the point in the
program that incurred the exception.

o It can also allow execution to resume at a previous place in the calling
hierarchy by removing a number of call frames from the stack, a process
called unwinding.

95

Condition Handling

5.8.1

5.8.2

96

Resignal or Continue

If a condition handler cannot deal with the type of condition signaled, it
returns the status SS§_RESIGNAL to inform EXE$SRCHANDLER that the
search for a handler must continue. A condition handler, like any other
procedure, returns a status in RO.

If, however, a condition handler can resolve the condition, it returns the
status SS$_CONTINUE to EXE§SRCHANDLER. This status means that the
thread of execution that incurred the condition can continue.

When EXE$SRCHANDLER receives the status SS§_CONTINUE, it first
checks if this was a condition signaled through LIB§STOP. If so, normal
execution cannot continue, and EXE§SRCHANDLER calls the last chance
handler, if it has not already been called, and proceeds with the action
described in Section 5.6.1.3.

If the condition was not signaled through LIB§STOP, EXE§SRCHANDLER
removes the condition handler argument list and mechanism array from the
stack, restoring RO and R1 in the process. It then removes from the stack
all of the signal array except the condition PC and PSL. Finally, it removes
these by executing an REI instruction to dismiss the exception and to return
to the thread of execution that incurred the condition.

Where control returns depends on what sort of condition occurred:

« If the condition was a fault type of exception {such as an access violation),
control returns to the instruction that caused the exception.

« If the condition was a trap type of exception {such as integer overflow),
control returns to the instruction following the instruction that caused
the exception.

« If the condition was an abort type of exception, control returns to the
instruction that caused the exception. Because an abort represents an in-
struction that could neither be completed nor rolled back, it would be
ill-advised for a handler to continue from one.

« If the condition was a software condition, which is signaled by a call
to LIB$SIGNAL, control returns to the instruction following the CALLx
instruction.

Unwinding Call Frames from the Stack
A condition handler’s third option is to alter the flow of control by requesting

~ the SUNWIND system service. Through this service, the handler returns

control to a previous level in the calling hierarchy by throwing away, or
unwinding, a number of call frames.

The $UNWIND system service has two arguments, both of which are
optional:

« The DEPADR argument specifies the number of frames to be removed from

5.8.3

5.8 Condition Handler Action

the call stack. If it is omitted, its default is for all the call frames to be
unwound from the frame that incurred the condition up to and including
the frame whose condition handler is executing.

o The NEwpC argument specifies the address to which control should be
returned after the unwind is complete. If it is omitted, its default is for
control to return to the PC saved in the call frame next outermost to the
unwound ones.

The SUNWIND system service procedure, EXESUNWIND in module SYS-
UNWIND, runs in the mode from which it is called. It uses two local
routines, STARTUNWIND and LOOPUNWIND. EXE§UNWIND does not
actually remove frames from the stack. Rather, it replaces the saved PC in
the specified number of frames so that STARTUNWIND or LOOPUNWIND
will be entered when each unwound procedure executes a RET instruction. If
the NEWPC argument was present, EXESUNWIND replaces the saved PC in
the call frame just earlier than the unwound ones (at higher addresses) with
the specified value.

Figure 5.7 shows an example of the effects of the SUNWIND system
service.

As each procedure executes a RET instruction, the registers saved in its
call frame are restored and control is passed to LOOPUNWIND. If the cur-
rent frame has an associated call frame condition handler, LOOPUNWIND
signals it with the condition name SS$_UNWIND so that it can perform
procedure-specific cleanup. When the condition handler returns, LOOPUN-
WIND executes a RET instruction on behalf of the procedure to discard the
current call frame. (If a handler called in this way requests the §UNWIND
system service rather than returning, the §UNWIND system service returns
the error status SS§_UNWINDING to indicate that an unwind is already in
progress.)

This sequence continues until the specified number of call frames have
been discarded. The technique of calling handlers as a part of the unwind
sequence enables a handler that previously resignaled a condition to re-
gain control and perform procedure-specific cleanup and also ensures correct
restoration of registers saved within each call frame.

Example of Unwinding the Call Stack

Figure 5.7 illustrates an example of an unwind sequence. The example begins
with the sequence pictured in Figure 5.5. Procedure A calls procedure B,
which calls procedure C. Procedure C generates signal S. The primary and
secondary handlers (if they exist) simply resignal. Handlers CH and BH also
resignal.

Finally, handler AH is called. To unwind the call stack back to its estab-
lisher frame, AH requests the $UNWIND system service with the DEPADR

97

Condition Handling

Call frame for
system service
$UNWIND

Call frame
for condition
handler AH

Call frame for
procedure C

Call frame for
procedure B

Call frame for
procedure A

98

Return PCs in These Frames
Call Frames on Entry after They Have Been Modified
to EXESUNWIND by EXESUNWIND

SYS$SUNWIND’s Handler le—— FP

Saved AP Lai
Saved FP la
Return PC in AH Return PC in AH 2

AHH (if established)

This AP locates
the signai and
mechanism
Saved FP . arrays passed

Return PC in Exception Dispatcher to handler AH.
(SYS$CALL__HANDL +4)

STARTUNWIND 3

Signal and mechanism arrays for The signal array contains return PC
initial condition located here - in procedure C, which is bypassed
(Figure 5-5) if unwinding any frames.

CH (if established) [

Saved FP -
Return PC in B LOOPUNWIND 4

BH (if established)

Saved FP
Return PCin A (Alternative Return PC) 5

AH

Saved FP w———*

Return PC in Caller of A To previous frame

Figure 5.7
Call Frame Modification by EXESUNWIND

argument equal to the value contained in the mechanism array, in this ex-
ample, 2. After the call to §UNWIND, but before the frame modification
occurs, the stack has the form pictured on the left-hand side of Figure 5.7.

EXE$UNWIND's frame modification proceeds as follows (the numbers in
this list correspond to the numbers in Figure 5.7):

(DEXE$UNWIND scans the stack for a condition handler call frame. Re-
call that a condition handler call frame is identified by a saved PC of
SYS$CALL_HANDL + 4.

(EXE$UNWIND does not modify its own frame. Later, when it executes
a RET instruction, control will return to handler AH.

5.8 Condition Handler Action

(®The first frame EXESUNWIND modifies is that of the first condition
handler it encounters scanning the stack, the frame for AH. EXE§UN-
WIND replaces its saved PC with the address of STARTUNWIND.

When handler AH later executes a RET instruction, control returns
to STARTUNWIND rather than to SYSSCALL_HANDL and EXE$SRC-
HANDLER. Consequently, control does not return to procedure C,
which incurred the exception. Its return PC is stored in the mechanism
array and could only be restored by an REI instruction.

(9 EXE$UNWIND continues to modify the saved PC longword in successive
frames on the call stack until the number of frames specified {or implied)
in its DEPADR argument have been modified. In all frames except the first,
it replaces the saved PC with the address of LOOPUNWIND.

(®1If the NEwpC argument was present, the call frame in which it would be
inserted is the next frame beyond the last frame specified (or implied) in
the DEPADR argument. In this example, the value of the NEwWPC argument
would be stored in the call frame for procedure B.

Now that all the frames have been modified, the actual unwinding occurs.
The sequence of steps is as follows:

1. EXE$UNWIND returns control to handler AH.

2. Handler AH does whatever else it needs to do to service the condition.
When it is done, it executes a RET instruction, passing control to START-
UNWIND.

3. STARTUNWIND first restores RO and R1 from the mechanism array. It
then performs the following three steps:

a. If a handler is established for this frame, STARTUNWIND calls it
with the signal name SS§_UNWIND.

b. If either RO or R1 is specified in the register save mask, STARTUN-
WIND replaces the value of that register in the register save area of
the call frame with the current contents of the register. Note that
this is rather an unusual case. The procedure calling standard (see
Introduction to VMS System Routines) specifies that RO and R1 are
to be used to return status codes and function values and that they
should not appear in a procedure register save mask.

c. STARTUNWIND returns control to the address specified by the saved
PC longword of the current call frame by executing a RET instruction.

4. The RET executed in step 3c passes control to LOOPUNWIND, which
repeats steps 3a through 3c.

5. The RET that discards the call frame for procedure B passes control back
to the instruction in procedure A that follows the call to procedure
B (assuming the NEWPC argument was omitted), where execution will
resume.

In effect, STARTUNWIND and LOOPUNWIND simulate returns from

99

Condition Handling

5.8.4

5.8.5

100

each nested procedure that is being unwound. These procedures never receive
control again. However, the outermost procedure receives control as if all the
nested procedures had returned normally.

Potential Infinite Loop

There is one possible problem that can occur with this implementation.
The previous section pointed out that EXESSRCHANDLER takes care (when
multiple signals are active) not to search frames for the second condition
that were examined on the first pass. If a condition handler generates an
exception, it is not called in response to its own signal (unless it establishes
itself to handle its own signals!).

However, EXESUNWIND cannot perform such a check. It must call each
condition handler that it encounters as it removes frames from the stack.
Thus, a poorly written condition handler (one that generates an exception)
could result in an infinite loop of exceptions if a handler higher up in the
calling hierarchy unwinds the frame in which this poorly written handler is
declared. This loop has no effect on the system beyond that of any compute-
bound process but can ruin the process in which the handler executes.

Unwinding Multiple Active Signals

There is a slight change in EXESUNWIND when multiple signals are active.
While modifying saved PCs in call frames, EXESUNWIND counts the num-
ber of frames that have been modified until the requested number has been
reached. The only change that occurs with multiple active signals is that the
loop stops counting while the skipped frames are being modified.

The example of multiple active signals pictured in Figures 5.5 and 5.6 can
be used to illustrate the unwinding. Recall that procedure A called proce-
dure B, which called procedure C, which signaled S. Handler CH resignaled.
Handler BH called procedure X, which called procedure Y, which signaled T.
Handlers YH, XH, and BHH all resignaled. Finally, handler AH was called
for signal T with a depth of 3.

If AH requests the $UNWIND system service, the top of the stack is as
pictured in Figure 5.8, with the continuations of this figure in Figure 5.6.
Assume that the depth argument passed to SUNWIND is 3 (taken from the
mechanism array and meaning unwind to the establlsher of AH), and the
alternative PC argument is not present.

The end result of the operation of EXE§UNWIND in this case is as follows:

1. EXESUNWIND looks down the call stack until it locates a condition
handler, which in this case is AH. The saved PC is modified to START-
UNWIND.

2. The saved PC longwords in frames Y and X are altered to contain ad-
dress LOOPUNWIND. Note that EXESUNWIND has now altered three
frames.

5.8.6

5.8 Condition Handler Action

SYS$UNWIND'’s Handler |-——eFP
Call frame for
system service Saved AP
SUNWIND Saved FP .
Return PC in AH
Direction of
AHH (if established) stack growth
Reg. Save Mask l
Saved FP -
Return PC in |
Exception Dispatcher
Call frame - To frame for
for condition Saved registers and stack procedure Y in
handler AH 1 alignment bytes indicated 1 Figure 5-6
T by register save mask in T
call frame AH
' Return PC from JSB
[2
Signal and Signal Array -
mechanism
arrays for Mechanism Array - l
signal T To signal array
in Figure 5-6
Figure 5.8

Modified Unwind with Multiple Active Signals

3. Because the next frame on the stack, BH, indicates a condition handler
(saved PC of SYS§CALL_HANDL + 4}, its associated mechanism array is
located (by skipping saved registers, stack alignment bytes, and a saved
PC from the JSB instruction). The saved PCs in all frames up to the
frame pointed to by the mechanism array are modified (but not counted
toward the number specified in the argument passed to the §UNWIND
system service) to contain address LOOPUNWIND. This modification
causes frames BH and C to get their saved PCs altered in the example.

4. The saved PC in the frame for procedure B is not altered, so that when
the unwind takes place, control will return to the call site of procedure
B in procedure A.

Correct Use of Default Depth in §UNWIND

A default depth argument of 0 to the SUNWIND system service specifies
that the stack is to be unwound to the caller of the handler’s establisher. In
most cases, the caller of the handler’s establisher is equivalent to the depth
of the handler plus 1. However, because of an inherent ambiguity in counting
the stack frames when multiple active signals are present, it is important
that the default rather than an explicit depth be used when unwinding to
the caller of the establisher.

101

Condition Handling

102

Call frame
for condition
handler AH

Signal and
mechanism
arrays generated
by procedure A

Call frame for
condition
handler BH

Signal and
mechanism
‘arrays generated
by procedure B

Call frame for
procedure B

Call frame for
procedure A

Figure 5.9

Saved FP

Establisher FP

Depth =1

Saved FP

|

Direction of

Establisher FP

stack growth

Depth =0

BH

Saved FP

AH

Saved FP

1

To previous frame

Nested Exception, Type 1

Consider the two following cases of nested conditions. In Figure 5.9, pro-
cedure A calls procedure B. A condition causes handler BH to be called. An
exception within BH causes handler AH to be called (because frame B is
skipped, as described in Section 5.6.2). The depth of the mechanism vector
in AH’s argument list is 1. For AH to unwind to its establisher, it must spec-
ify an explicit depth of 1 to the §UNWIND system service. EXESUNWIND
removes one frame, as specified by the count. EXESUNWIND then notices
that the next frame is a handler frame and therefore continues to remove
stack frames until it finds the establisher of the handler. This discovery
completes the unwind to frame A.

5.8 Condition Handler Action

Cali frame for
condition handler
AHH Saved FP
Signal and -
mechanism Establisher FP o
arrays generated Depth =0
by handler AH
AHH ~
Call frame for
condition
handler AH Saved FP -
Signal and Direction of
mechanism Establisher FP - stack growth
arrays generated Depth =0
by procedure A
AH <
Call frame for
procedure A
>
To previous frame
Figure 5.10

Nested Exception, Type 2

Now consider Figure 5.10, in which procedure A incurs an exception, re-
sulting in the invoking of handler AH. Handler AH then causes an exception,
causing its handler AHH to be invoked. The depth of AHH is 0. Suppose
that AHH wishes to unwind to the caller of its establisher. The establisher
of AHH is AH. Since AH is a handler, its caller is the condition dispatcher,
not procedure A.

Compare Figure 5.10 with Figure 5.9 and consider what happens if AHH
requests the SUNWIND system service with an explicit depth of 1 (its depth
plus 1). The'depth of 1 causes AHH's frame to be removed. EXE§UNWIND
then notices that the next frame is a handler frame and therefore unwinds it
back to its establisher (frame A). Note that once AHH’s frame is removed,
the stack is indistinguishable from the stack in Figure 5.9 (down to frame B).
Thus, requesting SUNWIND with an explicit depth of 1 results in control
being returned to procedure A, which is incorrect.

Therefore, for AHH to unwind to EXE§SRCHANDLER, the caller of its

103

Condition Handling

5.8.7

104

establisher, it must specify a default depth. When this is done, EXE§UN-
WIND's behavior upon encountering a handler frame after the count has
been exhausted is modified so that the stack is not unwound further, and
control passes correctly back to the condition dispatcher.

Because of the inherent ambiguity of these two cases, it is important that
handlers always use the default depth when unwinding to the caller of their
establisher.

Unwinding ASTs

EXE$UNWIND must perform special processing to unwind out of ASTs.
Simply removing the stack frames would ignore the presence of the AST
and fail to dismiss the AST properly. '

This situation is depicted in Figure 5.11. For handler XH to unwind to the
caller of its establisher (procedure A), it must also unwind out of the AST.

Call frame for
condition
handler XH Saved FP
Signal and
mechanism array Establisher FP o~
generated by
AST procedure X

XH -
Call frame for
AST procedure X Saved FP

EXE$ASTRET
[~ T
AST Parameter Direction of
stack growth

AST argument RO
list R1

PC

PSL

AH —
Call frame for
procedure A

Saved FP -
To previous frame

Figure 5.11
Exception During an AST

5.8 Condition Handler Action

The problem is solved by having EXESUNWIND recognize the return PC
in an AST call frame, the address EXE§ASTRET. This PC in a call frame
implies that the AST argument list immediately precedes the call frame
on the stack; that is, the AST argument list is at higher virtual addresses.
In this case, EXESUNWIND stores the unwind PC (STARTUNWIND or
LOOPUNWIND) not in the call frame but rather in the return PC of the
AST argument list. EXESUNWIND also stores the current RO and R1 in the
AST argument list so that they will propagate through the unwind process.

When the AST procedure returns during the actual unwinding of the stack,
it returns to EXE$ASTRET, which dismisses the AST and executes an REI
instruction, using the PC and PSL in the AST argument list. Control passes
to STARTUNWIND or LOOPUNWIND because of the modified PC.

While it is technically possible to unwind out of an AST, this must be
done with some caution. If the AST procedure has any sort of side effects,
it is essential to have a condition handler declared by the AST procedure to
clean up the side effects when the AST is unwound. (Note that issuing an I/O
operation is a side effect of the highest order!) Cleaning up any procedures
of the main line program from which an unwind was executed may be more
difficult, because the asynchronous nature of ASTs means that unwinding
could take place at any instant during the execution of a program.

105

6.1

6.1.1

106

System Service Dispatching

Between the idea
And the reality
Between the motion
And the act

Falls the Shadow.

T. S. Eliot, The Hollow Men

Many of the operations that the VMS operating system performs on behalf
of the user are implemented as procedures called system services. Most of
these procedures are contained in loadable executive images and reside in
system space; others are contained in privileged shareable images. Applica-
tion programs request system services directly. Components such as Record

‘Management Services (RMS) request system services on behalf of the user.

System services typically execute in kernel or executive access mode so that
they can read or write data structures protected from access by less privileged
access modes.

A system service is requested through a system service vector. The system
service vector for an inner access mode system service contains either a
CHMK or a CHME instruction whose operand identifies the system service.
Executing a CHMK or a CHME causes an exception; the CHMK and CHME
exception service routines are called change mode dispatchers. A change
mode dispatcher transfers control to the actual procedure that implements
the service.

This chapter describes how control is passed from a user program to the
procedures that execute service-specific code.

SYSTEM SERVICE VECTORS

A process requests a particular system service by CALLing a procedure whose
name has the form SYS$service. SYS$service is a system global symbol that
is the address of a minimal procedure called a system service vector. The
system service vector procedure executes in the mode of the caller and serves
as a bridge between the caller and the actual procedure(s) that implement
the service request. The actual procedure may be part of a loadable executive
image and may execute in an inner access mode. The usual name of the
procedure that performs the actual work of the system service is EXE$service
or RMS$service.

Location of System Service Vectors

The address of a system service vector is constant for all versions of VMS so
that existing user programs will not have to be relinked for a new version of

6.1.2

6.1 System Service Vectors

VMS. Prior to Version 3 of VMS, system service vectors were only defined in
the lowest pages of system address space, beginning at location 80000000;.
In Version 3 and subsequent versions, each system service vector can be
accessed through two different addresses, a system space address and a P1
space address. The physical pages containing the system service vectors are
doubly mapped, both in system space and in the P1 space of each process.
The P1 space definitions begin at 7FFEDEQO,4 and enable system services
to be intercepted on a per-process basis. The linker, by default, resolves a
system service vector global to its P1 space value using module SYS$P1_
VECTOR in SYS$LIBRARY:STARLET.OLB.

VMS Version 5 reserves 16 pages of virtual address space for system ser-
vice vectors. The system addresses of the vectors are defined in the base
image SYS.EXE, from SYS$SO_VECTOR_BASE to SYS$SO_VECTOR_END.
Currently, five pages of that area are occupied, to SYS$SO_VECTOR_LAST_
USED.

Contents of System Service Vectors

Each system service vector consists of at least eight bytes of code and data.
Many vectors consist solely of a global entry point named SYS$service, a
register save mask, a single instruction that transfers control eventually to
a service-specific procedure in the executive, and an instruction (usually a
RET) that passes control back to the caller. Other vectors, called composite
vectors, transfer control to multiple procedures.

Most of the system services execute in kernel mode; their system service
vectors contain a CHMK instruction. A few system services and all RMS ser-
vices contain a CHME instruction. Some services, such as the text formatting
services, execute in the access mode of the caller and dispatch directly to
the service-specific code in the executive with a JMP instruction. Follow-
ing are the three sets of instructions found in simple system service vectors.
Table 6.1 lists the VMS system services that use each of these three methods
of initial dispatch.

Vectors for system services that change mode to kernel contain the fol-
lowing code:

SYS$service:: ;Entry point for services that
; execute in kernel mode
.WORD entry-mask ;Mask at EXE$service, OR’d with
; R2 and R4
CHMK I"#service-specific-code
RET ;Return to caller
.BLKB 1 ;Spare byte to make vector

; eight bytes long

Vectors for system services that change mode to executive contain the
following code:

107

System Service Dispatching

108

SYS$service:: ;Entry point for services that
; execute in executive mode
.WORD entry-mask ;Mask at EXE$service, OR’d with
; R2 and R4
CHME I#service-specific-code
RET ;Return to caller
.BLKB 1 ;Spare byte to make vector

; eight bytes long

Vectors for system services that do not change mode contain the following
code:

SYS$service:: ;Entry point for services that
; execute in the access mode
; of the caller

.WORD entry-mask ;This mask is identical to the
; mask found at location
; EXE$service

JMP O#EXE$service + 2 ;Transfer control to

; first instruction after the
; entry mask at EXE$service

Some system services perform their requested function and always return
immediately to their caller. Others, called asynchronous system services,
initiate some system activity on behalf of the caller and return. To synchro-
nize with completion of the initiated activity, the caller waits for an event
flag associated with the system service request to be set. A synchronous
service initiates the activity, just as its asynchronous counterpart does, but
waits for completion of the activity before returning to its caller.

A synchronous system service is generally named for the asynchronous
system service it requests. A trailing “W” in the name of the synchronous
service distinguishes the two: $QIO and $QIOW, for example. RMS, how-
ever, does not use service names and additional system service vectors
to distinguish between the synchronous and asynchronous forms of a ser-
vice. For example, the RMS service $READ does not have a corresponding
$READW form. Instead, the asynchronous or synchronous form of a particu-
lar RMS request is specified by the content of the file and record stream data
structures.

The mechanism used by synchronous system services to test for and await
completion varies. Most non-RMS services use composite system service
vectors. RMS services use a special return mechanism.

A composite system service vector first dispatches to an asynchronous
system service, which returns when the request is initiated. The code in the
vector then branches to another system routine to wait for completion of
the asynchronous request.

To guarantee completion of this type of synchronous system service re-
quest, the caller must specify both an event flag and a status block (I/O status
block or lock status block). The asynchronous service procedure clears the

6.1.3

6.1 System Service Vectors

event flag and status block associated with the request. The synchronous
system service vector code uses a combination of event flag and status block
to test for request completion, placing the process into event flag wait if the
request is not complete.

This mechanism prevents a premature return to the synchronous service
caller as the result of concurrent uses of the same event flag. (Note, however,
that if the caller omits the optional status block, the mechanism reverts to
being a simple wait for event flag.) The mechanism is requested explicitly
as the Synchronize {$SYNCH) system service and implicitly as part of each
synchronous system service. Section 6.3.5.3 gives more information on this
mechanism.

Table 6.1 lists the synchronous system services.

The composite system service vector for the synchronous service Queue
I/O Request and Wait ($QIOW) follows in a slightly simplified form. Note
that its entry mask is the logical OR of the masks of all service procedures
to which this composite vector dispatches.

SYS$QIOW: :

.WORD "M<R2,R3,R4,R5,R6,R7,R8,R9,R10,R11>
CHMK I"#QI0

BLBC RO,ERROR_QIOW - ;Don’t wait if error
; queuing request

PUSHL QIO$_IOSB(AP) ;Fetch IOSB address
; if specified

BRW QIO_ENQ_SYNCH ;Branch to QIO_ENQ_SYNCH
; located in SYNCH system
; service

ERROR_QIOW: ;
RET ;Return if error

In earlier versions of VMS, RMS services were implemented with compos-
ite vectors similar to the composite vectors previously described. For Version
5, RMS services and the Assign Channel {$ASSIGN) service use a different
mechanism; the system service vector requests the asynchronous system
service, but control does not return to the code in the vector. Instead, each
service has a synchronization routine that conditionally stalls the process
until its service request is complete. Section 6.3.5.2 describes this return
mechanism in more detail.

Initialization of System Service Vectors

A loadable executive image containing system service procedures invokes
the SYSTEM_SERVICE macro for each of them. This macro labels the system
service procedure and creates a system service descriptor block that describes
the system service: its vector, argument count, return path, synchronization
method, access mode, and other characteristics.

At assembly time, each system service vector contains the instruction JMP
Q#EXE$LOAD_ERROR. EXESLOAD_ERROR contains a HALT instruction. When a

109

System Service Dispatching

Table 6.1 System Services and RMS Sewices That Use Each Form of System Service

Vector

The following services execute initially in kernel mode.

$ADJSTK $DASSGN $GETPTI
$ADJWSL $DCLAST $GETSECI
$ALLOC $DCLCMH $GETSYI
$ASCEFC $DCLEXH $GETTIM
$ASSIGN'! $DELLNM $HIBER
$BRKTHRU $DELMBX $LCKPAG
$CANCEL $DELPRC $LKWSET
$CANEXH $DELTVA $MGBLSC
$CANTIM $DEQ $MTACCESS
$CANWAK $DERLMB $PROCESS_SCAN
$CHKPRO $DEVICE_SCAN $PURGWS
$CLRAST $DGBLSC $QIO

$CLREF $DLCEFC $READEF
$CMKRNL $ENQ $RESCHED
$CNTREG $ERAPAT $RESUME
$CRELNM $EXIT $RUNDWN
$CRELNT $EXPREG $SCHDWK
$CREMBX $FORCEX $SETAST
$CREPRC $GETCHN? $SETEF
$CRETVA $GETDEV? $SETEXV
$CRMPSC $GETDVI $SETIME
$DACEFC $GETJPI $SETIMR
$DALLOC $GETLKI $SETPFM

The following system services execute initially in executive mode.
$ABORT_RU $COMMIT_RU $IDTOASC
$ADD_HOLDER? $CREATE_RDB? $IMGACT
$ADD_IDENT? $DISMOU 3 $MOD_HOLDER?
$ASCTOID $FIND_HELD? $MOD_IDENT?
$CHANGE_ACL?® $FIND_HOLDER? $NUMTIM
$CHANGE_CLASS?® $FINISH_RDB $PREPARE_RU
$CHECK_ACCESS? $GETQUI $REM_HOLDER?
$CMEXEC $GETUAI® $REM_IDENT?

$SETPRA
$SETPRI
$SETPRN
$SETPRT
$SETPRV
$SETRWM
$SETSFM
$SETSSF
$SETSTK
$SETSWM
$SIGPRC
$SNDERR
$SUSPND
$TRNLNM
SULKPAG
$ULWSET
$UPDSEC
$WAITFR
$WAKE
$WFLAND
$WFLOR

$SETUAI®
$SNDACC?
$SNDJBC
$SNDOPR
$SNDSMB*
$START_RU

The following system services execute initially in the mode of the caller. Several of them
change to a more privileged mode during their execution. Unless otherwise noted, each
service can be called from any access mode.

$ASCTIM
$BINTIM
$BRDCST?
$CRELOG?
$DELLOG?
$EXCMSGS

110

$FAO

$FAOL
$FORMAT_ACL?®
$GRANTID®
$FORMAT_CLASS?
$GETMSG?®

$SIMGFIX
$IMGSTA *
$MOUNT?5
$PARSE_ACL?
$PARSE_CLASS?
$PUTMSG*

$REVOKID*
$TRNLOG?
$UNWIND

(continued)

6.2 Change Mode Instructions

Table 6.1 System Services and RMS Services That Use Each Form of System Service
Vector (continued)

The following RMS services execute in executive mode and transfer control to a
synchronization routine before returning to the caller. All use the SYNCH$RMS_STALL
routine except $WAIT, which uses SYNCH$RMS_WAIT.

$CLOSE $EXTEND $PARSE $SPACE
$CONNECT $FIND $PUT $TRUNCATE
$CREATE $FLUSH $READ $UPDATE
$DELETE $FREE $RELEASE SWAIT
$DISCONNECT $GET $REMOVE $WRITE
$DISPLAY $MODIFY $RENAME

$ENTER $NXTVOL $REWIND

$ERASE $OPEN $SEARCH

The following RMS services execute in executive mode. They do not require an RMS
synchronization routine. :

$FILESCAN $SETDDIR $SETDFPROT $SSVEXC
$RMSRUNDWN

The following synchronous system services use composite vectors. Unless otherwise noted,
each service executes initially in kernel mode.

$BRKTHRUW $GETDVIW $GETQUIW’ $SNDJBCW’
$END_RU’ $GETJPIW $GETSYIW $SYNCH S
SENQW $GETLKIW $QIOW $UPDSECW

! This service executes a private synchronization routine.

% This service has been superseded.

3 This service is implemented in a privileged shareable image.

* This system service can be called only from supervisor and user modes.

® This system service can be called only from executive and less privileged access modes.
¢ This service executes initially in the caller’s mode.

7 This service executes initially in executive mode.

loadable executive image containing a service is loaded, routine EXE§CON-
NECT_SERVICES, in module SYSTEM_SERVICE_LOADER, uses the system
service descriptor block to associate the system service procedure with the
appropriate system service vector, assign a CHMx operand, and initialize the
vector. This process is summarized in Section 6.3.1 and detailed in Chap-
ter 29. ’

Note that VMS Version 5 assigns change mode operands dynamically as
system service procedures are loaded.

6.2 CHANGE MODE INSTRUCTIONS

There are four change mode instructions: CHMU, CHMS, CHME, and CHMK. Exe-
cuting any of them generates an exception. Exception-processing VAX mi-
crocode alters the access mode and pushes the processor status longword

111

System Service Dispatching

6.3

6.3.1

112

(PSL), the program counter (PC) of the next instruction, and the sign-extended
change mode operand onto the stack indicated in the instruction. The ac-
tual access mode used is the innermost of the access mode indicated by the
instruction and the current access mode contained in the PSL. The VAX mi-
crocode then dispatches through the system control block (SCB) vector for
that CHMx instruction to its exception service routine.

CHME and CHMK instructions request VMS system services and RMS services.
Their exception service routines are known as the change mode dispatchers.

CHMS and CHMU exceptions are treated much like other exceptions that
VMS passes to a user-declared condition handler (see Chapter 5).

CHANGE MODE DISPATCHING IN THE VMS EXECUTIVE

Module SYSTEM_SERVICE_DISPATCHER contains the change mode dis-
patchers: EXESCMODKRNL for CHMK exceptions and EXE§CMODEXEC
for CHME exceptions. Each change mode dispatcher makes essential checks
of the argument list and transfers control to the system service procedure
indicated by the change mode operand. Like any other procedure, a system
service procedure assumes there is a call frame on the stack and exits with
a RET instruction. The dispatcher must therefore construct a call frame on
the inner mode stack.

Building the call frame could be accomplished by using a CALLx instruction
and a dispatch table of service entry points. However, the call frame is
identical for each service. In addition, the registers that the service-specific
procedure will modify have already been saved on the caller's mode stack,
because the system service vector register save mask (at global location
SYS$service) incorporates the register save mask at location EXE$service. So
the dispatcher avoids the overhead of the general-purpose CALLx instruction
and builds a minimal call frame “by hand.”

The dispatcher achieves further speed improvement in this commonly ex-

-ecuted code path by overlapping memory write operations (building the call

frame) with register-to-register operations and instruction stream references.
Using the CHMx operand, the change mode dispatcher indexes into a table

of system service procedure addresses. It transfers control to the procedure

with a JMP instruction. :

Change Mode Dispatcher Data Structures

Several data structures are internal to the change mode dispatcher. Two are
dispatch tables: one, at CMOD$AR_KERNEL_DISPATCH_VECTOR, is for
kernel mode system services; the other, at CMOD$AR_EXEC_DISPATCH_
VECTOR, is for executive mode services. Each table contains a quadword
entry for each system service declared in the table’s access mode. The kernel
mode dispatch table, for example, contains an entry for each loaded kernel

6.3 Change Mode Dispatching in the VMS Executive

Exit Type | Argument —
Code Count Argument List Size
Service Routine Address
Figure 6.1

Change Mode Dispatch Table Entry

mode system service. Figure 6.1 shows the format of an individual dispatch
table entry.

Each table entry has four fields, obtained from the system service descrip-
tor block by EXESCONNECT_SERVICES:

« The argument list size contains the size in bytes of the argument list
required by this system service procedure, computed from the argument
count in the system service descriptor block.

« The argument count contains the minimum number of arguments required
for this service.

« The exit type field contains an index into the exit table, which begins at
CMODS$AL_EXIT_TYPE. An entry in this table contains the address of a
synchronization routine to be requested from the common return path.

The CMODS$AL_EXIT_TYPE table entries are

—O0 (the default, indicating no synchronization routine)
—SYNCH$RMS_STALL

—SYNCH$RMS_WAIT

—SYNCHS$ASSIGN_EXIT

« The service routine address field contains the address of the entry point
in the service-specific procedure to which the change mode dispatcher
transfers control. Each service-specific procedure associated with a CHMx
operand has a name of the form EXE$service or RMS$service and begins
with a register save mask. The service routine address points to the first
instruction beyond the register save mask and is therefore of the form
EXE$service + 2 or RMS$service + 2.

EXE$CONNECT_SERVICES dynamically assigns a unique CHMx operand
to each system service as the executive image containing the service is
loaded. It maintains a count of loaded kernel mode and executive mode
system services in CMOD$GW_CHMEK_LIMIT and CMOD$GW_CHME_
LIMIT. The maximum allowable CHMx value for VMS system services
loaded in this manner is 255 for each mode. VMS reserves higher CHMx
operands for its own system services in privileged shareable images and
negative CHMx operands for customer-written system services. A change
mode dispatcher compares the current CHMx operand to the value that is
in CMOD$GW_CHMEK_LIMIT or CMOD$GW_CHME_LIMIT to determine
the dispatch method.

113

System Service Dispatching

6.3.2

114

Operation of the Change Mode Dispatchers

The operations of the kernel and executive change mode dispatchers are
almost identical. This section discusses their common points. Subsequent
sections describe their differences.

The first instruction of each dispatcher pops the change mode operand
from the stack into RO. Each dispatcher then builds the call frame on the
stack with the following four instructions:

PUSHAB SERVICE_EXIT ;The next RET returns here
PUSHL FP ;Address of the CALLx call frame
PUSHL AP - ;Address of the arguments

; to the CALLx
CLRQ -(SP) ;No condition handler and

; no registers to save

After the call frame is built, each dispatcher checks that the CHMx op-
erand corresponds to a loaded system service. If not, it checks for services
supplied in privileged shareable images, as described in Section 6.4. Other-
wise, it uses the CHMx operand as an index into its dispatch table. From
the dispatch table entry, it obtains the size of the service’s argument list and
the required argument count.

The dispatcher performs two checks on the argument list:

o It checks the read accessibility of the argument list with the PROBER in-
struction to verify that the argument list is accessible in the access mode
of the caller.

« It compares the number of arguments actually passed (found in the first
byte of the argument list) to the service-specific entry (from the dispatch
table) to determine whether the required number of arguments for this
service are present.

If the dispatcher detects an error, it places an error status into RO: either
SS$_ACCVIO or SS$_INSFARG, depending on the error. The dispatcher then
executes a RET instruction, which returns control through the saved PC in
the call frame built by the dispatcher to the common exit path SERVICE_
EXIT. Section 6.3.5.1 describes the actions taken by SERVICE_EXIT when it
is entered with a severe error.

If the argument list passes the checks, the dispatcher obtains the system
service’s exit type code from the service’s dispatch table entry. The exit
type code, if nonzero, identifies an additional synchronization routine to
be executed at the completion of the common exit path, SERVICE_EXIT.
The dispatcher overwrites the exception PC pushed onto the stack by the
CHMx instruction with this address, thus altering the place to which control
will return when SERVICE_EXIT executes an REI instruction. Section 6.3.5
discusses this mechanism in more detail.

The dispatcher finally transfers control to the system service procedure
with a JMP instruction.

6.3 Change Mode Dispatching in the VMS Executive

PO Space || P1 Space : System Space
| System Service | Change Mode Service-Specific
User Program | Vector | Dispatcher Procedure
| | EXESservi
- EXE$CMODxxxx service
. ! SYS$service I Build call frame R Entry mask
CALLx —p-| Entry mask | Check argument > :
. | CHMXx #code | list)
- RET I JMP RET
| |
| |
| | Common Exit Path
[| SERVICE__EXIT |
| | .
| | :
} ! LL REI
Figure 6.2

6.3.3

6.3.4

Control Flow of System Services That Change Mode

Figure 6.2 illustrates the control flow from the user program to the service-
specific procedure. This flow is shown for both kernel and executive access
modes.

Change-Mode-to-Kernel Dispatcher

The change-mode-to-kernel dispatcher, EXESCMODKRNL, performs two
steps that the change-mode-to-executive dispatcher does not. Before it trans-
fers control to those services that execute in kernel mode, the change-mode-
to-kernel dispatcher places the address of the process control block (PCB) for
the current process (found at location CTL$GL_PCB) into R4.

Additionally, CHMK #0 is a special entry path into kernel mode for the un-
documented $CLRAST service. If the CHMK operand was a zero,
EXE$CMODKRNL transfers control to the routine CMOD$ASTEXIT, in
module SYSTEM_SERVICE_DISPATCHER. Chapter 7 describes this routine
in more detail.

Change-Mode-to-Executive Dispatcher

The change-mode-to-executive dispatcher, EXESCMODEXEC, performs one
step unique to executive mode. If the CHME operand was a zero, the execu-
tive dispatcher transfers control to the routine CMOD$SSVECX, in module
SYSTEM_SERVICE_DISPATCHER. CMOD$SSVECX is entered with an er-
ror status. It transfers control to SERVICE_EXIT with the error so that a
system service exception can be signaled or the error reported.

RMS synchronization code uses this mechanism when it detects a severe
error. It requires a CHME instruction to return to executive mode, since RMS
stalls in the mode of the caller.

Note that with VMS Version 5, RMS dispatching becomes a standard part
of executive mode dispatching, with the exception of the return path.

115

System Service Dispatching

6.3.5

6.3.5.1

116

Return Paths for System Services

When a service-specific procedure has completed its operation, it places a
status in RO and executes a RET instruction. In the case of an executive or
kernel mode system service, the RET returns control to the address that the
change mode dispatcher placed in the saved PC area of the call frame that it
built, the common exit path SERVICE_EXIT, in module SYSTEM_SERVICE_
DISPATCHER.

Change Mode Dispatcher Common Exit Path. SERVICE_EXIT is the com-
mon exit path for change mode dispatching. Its action depends on the status
code returned in RO by the system service procedure.

« If the status in RO is a success or warning code, SERVICE_EXIT merely
dismisses the CHMx exception by executing an REI instruction.

—TFor most RMS services and $ASSIGN, the exception PC has been altered,
so control transfers to the synchronization routine specified by its exit
type code, in the mode of the caller.

—For other system services, control returns to the instruction following
the CHMx in the system service vector, in the mode of the caller. In most
cases, this instruction is a RET, which returns control to the caller of
the system service or RMS service.

However, for synchronous system services, the system service vector
contains code that conditionally stalls the process until its request is
complete. Section 6.3.5.3 describes this synchronization method.

« If the status in RO is an error code, SERVICE_EXIT checks whether the
process owns any mutexes. In general, a system service procedure should
release any mutexes that it has acquired before returning to SERVICE_
EXIT. To minimize overhead, SERVICE_EXIT only performs the check for
mutexes when a service returns an error or a Severe error status.

—If the process owns a mutex, SERVICE_EXIT tests whether the interrupt
priority level (IPL) is 2. If so, the assumption is that one system service
has acquired a mutex and then called another system service, which is
returning an error status. In this case, SERVICE_EXIT merely executes
an REI instruction to return control to the presumed original service.

—If the process owns a mutex but is running at IPL 0, SERVICE_EXIT
generates a fatal MTXCNTNONZ bugcheck.

—1If the process does not own a mutex, SERVICE_EXIT continues.

Chapter 32 describes bugcheck processing, and Chapter 8 gives informa-
tion on mutexes.

If system service exceptions are disabled for the access mode in which
the system service was requested, SERVICE_EXIT dismisses the CHMx
exception by executing an REI instruction, as described previously.

6.3 Change Mode Dispatching in the VMS Executive

Otherwise, the process has enabled system service exceptions for the
access mode in which the service was requested. Since an exception rou-
tine must be entered at IPL 0, SERVICE_EXIT explicitly lowers IPL if the
process is running in kernel mode. Executive mode services do not need a
similar check because elevated IPL requires kernel mode operation. (Low-
ering IPL is unnecessary unless the process has enabled system service
failure exceptions, because the REI instruction that dismisses the CHMK
exception lowers the IPL.)

To signal the system service exception, SERVICE_EXIT transfers control
to EXE$SSFAIL, in module EXCEPTION. It signals an exception of type
SS$_SSFAIL to the caller.

Chapter 5 describes exception dispatching.

6.3.5.2 Return Paths for RMS Services. The dispatch table entry of most RMS
services contains an exit type code identifying an additional synchroniza-
tion routine to be executed at the completion of the common exit path,
SERVICE_EXIT. The RMS synchronization routines, SYNCH$RMS_STALL
and SYNCH$RMS_WAIT in module SYSTEM_SERVICE_EXIT, either return
control immediately to the RMS service’s caller or stall the process in an
event flag wait state until some operation initiated by RMS on behalf of the
caller has completed.
Figure 6.3 illustrates the control flow from the user program to the RMS
service-specific procedure and to the synchronization routine.

PO Space : P1 Space : System Space
| System Service | Change Mode Service-Specific
User Program | Vector I Dispatcher Procedure
| —-| EXESCMODEXEC RMSS$service
. | SYS$service I Build call frame Entry mask
CALLx ——p-| Entry mask I Check argument > .
. -l CHME #code. [list :
- | RET | Replace CHME PC
JMP RET
| |
| |
| | Common Exit Path
: : SERVICE__EXIT |
[| .
I | 1 REI
I |
| |
| | Synchronization Routine
: : SYNCHS$RMS__ xxxxx
| | :
| -t RET
I I
Figure 6.3

Control Flow of RMS Services

117

System Service Dispatching

6.3.5.2.1

118

RMS Synchronization. An RMS service procedure might temporarily stall it-
self to wait either for the completion of a system service that RMS requested
on behalf of the caller or for some internal RMS condition to be met. Though
the RMS code thread is stalled, the process that requested the RMS service
might be able to execute in the meantime. The process indicates its desire
to execute even though the RMS operation is not complete by setting the
asynchronous (ASY) bit in the file access block (FAB) or record access block
(RAB). The RMS service procedure tests the ASY bit. If it is clear, the ser-
vice procedure stores the status code RMS$_STALL in RO. It then returns to
SERVICE_EXIT.

When SERVICE_EXIT REIs, it transfers control to a synchronization rou-
tine, either SYNCH$RMS_STALL, for most RMS services, or SYNCH$RMS_
WAIT, for the $WAIT RMS service. Section 6.3.5.2.2 describes the routine -
SYNCH$RMS_WAIT.

SYNCHS$RMS_STALL is entered with the following register contents:

Register Contents

RO Status RMS$_STALL

R3 Number of event flag to wait for (flags 27 to 31 are reserved
for RMS) ,

R8 Address of FAB or RAB associated with stall

Executing in the caller’s mode, SYNCH$RMS_STALL uses the status in RO
to decide whether a stall is required. If so, it places the process into an event
flag wait state for the event flag specified in R3. Otherwise, for all status val-
ues except RMS$_STALL, the synchronization routine immediately returns
to the caller.

The crucial point in this implementation is that the caller waits at the
access mode associated with the original RMS service request and not in
executive mode, thus allowing AST delivery to all access modes at least as

privileged as that of the service request. In the usual case where an RMS

service is requested from user mode, an AST of any access mode can be
delivered while the process is waiting for the RMS operation to complete.

For example, when RMS requests the $QIO system service on behalf of
its caller, it specifies an event flag from the range 27 through 31 to be set
and an executive mode AST procedure to be executed when its I/O operation
completes. If the process requested a synchronous operation, RMS returns to
SERVICE_EXIT with the status RMS$_STALL in RO, the event flag number
from the $QIO request in R3, and the address of the FAB or RAB in R8.
SERVICE_EXIT REIs to SYNCH$RMS_STALL, which places the process into
an event flag wait state.

When the I/O request completes, the associated event flag is set. RMS
gains control first in the executive mode AST procedure associated with its
$QIO request. If it determines that the $QIO request is complete, the AST

6.3.5.2.2

6.3.5.2.3

6.3 Change Mode Dispatching in the VMS Executive

procedure sets final status in the data structure (FAB or RAB) associated with
the operation. Otherwise, if the AST procedure determines that it requires
further processing to complete the original request, it requests the next
service.

Control returns from the RMS AST procedure to the synchronization
routine. SYNCHS$RMS_STALL, executing in the caller’s access mode, checks
whether the RAB or FAB status field is zero. If so, it again places the caller
into an event flag wait state. In other words, a nonzero value in the status
field of the FAB or RAB is the actual indication that the RMS operation is
complete.

When the status field indicates successful completion or a warning, the
synchronization routine executes a RET instruction, returning control to the
instruction following the initial RMS service request. Otherwise, when the
synchronization routine discovers an error or the status field indicates an
error, it performs the error processing described in Section 6.3.5.2.3.

SYNCHSRMS_WAIT. SYNCH$RMS_WAIT is the synchronization routine
for the §WAIT RMS service. It is entered from the REI in SERVICE_EXIT and
so runs in the mode of the caller. This allows AST delivery to the caller’s
mode and inner modes while the process is waiting.

SYNCH$RMS_WAIT is entered with four arguments set up by the $WAIT
service procedure:

Register Contents

RO Status RMS$_STALL

R3 Number of event flag to wait for (flags 27 to 31 are reserved
for RMS)

R4 Action flag; if clear, stall on the RAB or FAB in R8. If set, wait
for event flag in R3

R8 Address of FAB or RAB

If RO contains the status RMS$_STALL, SYNCH$RMS_WAIT stalls process
execution until an asynchronous RMS operation completes. The action
flag in R4 determines the method used to decide whether the operation
is complete. If the action flag is clear, the completion of the RMS oper-
ation is indicated by the status field in the RAB, so SYNCH$RMS_WAIT
branches to SYNCH$RMS_STALL to stall in the normal manner. Otherwise,
SYNCHS$RMS_WAIT alone cannot determine completion of the operation.
It requests the Wait for Single Event Flag (SWAITFR) system service, to wait
for the event flag specified by the $WAIT service procedure. When the event
flag is set, SYNCH$RMS_WAIT reexecutes the $WAIT service request to
allow the $WAIT procedure to decide whether the operation is complete.

RMS Error Detection. An RMS synchronization routine reports errors via
the system service dispatcher. The synchronization routine, running in the

119

System Service Dispatching

6.3.5.3

User Program

PO Space

mode of the RMS service caller, executes the instruction CHME #SSVECX. In
this manner, the routine changes the access mode to executive. In response
to the operand SSVECX, a zero, the executive mode system service dispatcher
transfers control to the routine CMODS$SSVECX without building the usual
call frame. CMODS$SSVECX is an alternative entry point for SERVICE_EXIT.
Running in executive mode, SERVICE_EXIT proceeds as described in Sec-
tion 6.3.5.1.

Return Path for Synchronous Services. A synchronous system service vector
requests an asynchronous service procedure and tests its return status for
successful initiation of the request. If the asynchronous service procedure
returns an error, that status is immediately returned to the requestor of
the synchronous service. If the return status indicates success, the system
service vector code branches to one of two synchronization routines. These
routines are originally part of module EXCEPTION_INIT. During system
initialization they are copied to the system service vector area. The routines
differ only in minor detail and converge within the SYS§SYNCH composite
system service vector.

Figure 6.4 illustrates the control flow from the user program, through the
service-specific procedure, to the synchronization code.

SYS$SYNCH first tests whether a status block was specified by the re-
questor. For §GETLKIW and $ENQW, the lock status block serves this pur-
pose; in all other cases, the I/O status block is used. If no status block was
specified, SYS§SYNCH executes the instruction CHMK #WAITFR to place the
process into an event flag wait state until the specified flag is set. When the
flag is set, the process is taken out of its wait state, and SYS$SYNCH returns
to the requestor of the synchronous service. If a status block was specified,
SYS$SYNCH executes the following sequence:

P1 Space System Space

Vector Dispatcher Procedure

.

CALLX e

| |

| . |

| System Service | Change Mode Service-Specific
I |

|

SYS$service EXE$CMODxxxx EXE$service

_J‘|—> Entry mask | Build call frame Entry mask
| CHMXx #code s | Check argument .
BLBC RO, ERROR | T list I .

— BRB SYNCH JMP :

ERROR RET

120

RET

Common Exit Path
SERVICE__EXIT |

SYNCH

|
|
|
|
: Synchronization Routine
|
|
I .
REI

T RET

Figure 6.4
Control Flow of Synchronous Services

6.3.6

6.4

6.4 Dispatching to System Services in Privileged Shareable Images

1. It tests the status word of the status block. A nonzero status indicates
that the asynchronous service has completed, and SYS$SYNCH returns
to the requestor of the synchronous service.

2. A zero status indicates the asynchronous service has not completed,
and SYS$SYNCH executes the instruction CHMK #WAITFR to wait for the
specified event flag.

3. When the event flag is set and the process is placed into execution,
SYS$SYNCH tests the low word of the status block. If it is nonzero,
SYS$SYNCH returns to the requestor of the synchronous service.

4. If the low word of the status block is zero, then the flag has been set
spuriously, perhaps by another concurrent use. SYS$SYNCH clears the
event flag by executing the instruction CHMK #CLREF and then proceeds
with step 2.

A crucial point in this implementation is that the process waits at the ac-
cess mode associated with the original synchronous system service request,
thus allowing AST delivery to all access modes at least as privileged as that
of the synchronous service request. In the usual case where a synchronous
system service is requested from user mode, an AST of any access mode can
be delivered while the process is waiting for the service to complete.

System Services That Do Not Change Mode

Some system services do not change to a more privileged access mode and
instead execute in the mode from which they were requested. The system
service vector for one of these “mode of caller” services contains a JMP
instruction instead of a CHMx instruction and transfers control directly to
the service procedure. A

When the service-specific procedure has completed its operation, it places
a status code in RO and executes a RET instruction. In the case of a system
service that does not change mode, the RET returns control to the caller of
the service. (Because a mode of caller service does not change mode, the
stack does not contain a call frame built by the change mode dispatcher.)

Table 6.1 lists the mode of caller VMS system services.

Figure 6.5 shows the control flow from the user program to the service
procedure for those services that do not change mode.

DISPATCHING TO SYSTEM SERVICES IN PRIVILEGED
SHAREABLE IMAGES

VMS does not require that all system services be part of a loadable executive
image. A user may write system services as part of a privileged shareable
image. Moreover, VMS supplies a number of system services in privileged
shareable images. These include

« $MOUNT in SYS$SHARE:MOUNTSHR.EXE

121

System Service Dispatching

6.4.1

122

PO Space : P1 Space : System Space
| System Service | Service-Specific
User Program | Vector | Procedure
: : EXESservice
. SYS$service Entry mask
CALLx b= Entry mask I"""> :
. i JMP ee— | .
| — RET -
| |
| |
Figure 6.5
Control Flow of System Services That Do Not Change
Mode

o $DISMOU in SYS$SHARE:DISMNTSHR.EXE
« Services relating to system security in SYS§SHARE:SECURESHR.EXE

Implementing these less frequently used services as privileged shareable
images means that they are resident only when explicitly requested and that
they are mapped in process space.

The manual Introduction to VMS System Services describes the require-

. ments for writing privileged shareable images. This section examines the

manner in which control is passed to a system service that is part of a priv-
ileged shareable image.

EXE$CMODKRNL and EXE§CMODEXEC attempt to dispatch to a priv-
ileged shareable image whenever a CHMx instruction is executed with an
operand whose value is outside the range of those for services in loadable
executive images.

VMS system services in privileged shareable images have large positive
change mode operands (for example, 16,527). The VAX architecture reserves
negative change mode operands for customer use.

Per-Process System Service Dispatcher

For any CHMK or CHME exception, the change mode dispatcher performs
some initial operations, such as building the call frame and, for kernel mode
system services, storing the PCB address in R4. When it detects that the CHMx
operand is outside the range from zero to the value in CMOD$GW_CHMx_
LIMIT, it tries to transfer control to a privileged shareable image dispatcher.
The change mode dispatcher first checks a location in P1 space (CTL$GL_
USRCHMK or CTL$GL_USRCHME] to see whether a per-process dispatcher
exists.

It interprets nonzero contents of this location as an address in the P1 space
privileged vector list, built by the image activator. The privileged vector list
contains a JSB instruction for each per-process system service dispatcher,
invoking the dispatcher at its entry point within a privileged shareable image.
Figure 6.6 shows the privileged vector list.

6.4.2

stack growth

6.4 Dispatching to System Services in Privileged Shareable Images

P1 Space

CTLSGL__USRCHMK:: —:’
CTL$GL__USRCHME:: —::]

Privileged Vector List
CTL$A__DISPVEC:: Offset to Next Free Kernel Vector

JSB Dispatcher A
JSB Dispatcher B
JSB Dispatcher C
RSB

CTL$A__DISPVEC + 256:: Offset to Next Free Exec Vector
> RsB

Y

Figure 6.6
Privileged Vector List

Return PC in P1 Dispatch Vector <¢—e SP
Return PC in Change Mode Dispatcher
Condition Handler Address = 0 <¢——e FP
T PSW/Register Save Mask =0
Saved AP
Direction of Saved FP
Return PC = SERVICE _ EXIT
PC Following CHMx Instruction
PSL from CHMx Instruction

Figure 6.7
State of the Stack on Entry to a Per-Process Dispatcher

A per-process dispatcher is entered with the stack in the state shown in
Figure 6.7. If the per-process dispatcher accepts the change mode operand,
it requests a service-specific procedure that eventually returns to SERVICE_
EXIT by executing a RET instruction. If the per-process dispatcher rejects the
operand, it hands control to the next per-process dispatcher in the privileged
vector list by executing an RSB instruction. The privileged vector list ends
with an RSB instruction, which returns control to the change mode dispatcher
if all per-process dispatchers reject the code.

Privileged Shareable Images

In the P1 space privileged vector list, kernel mode and executive mode
each have one half page (256 bytes) devoted to user-written system service
dispatching. The first byte of each area is initialized during process creation
to an RSB instruction. With the dispatch scheme described in the previous
section, the RSB instruction initially prohibits per-process dispatching.
However, for an image linked with a privileged shareable image (linked

123

System Service Dispatching

124

with the /PROTECT and /SHAREABLE options and installed with the /PRO-
TECTED and /SHARED options), the image activator replaces the RSB in-
struction with a JSB to the per-process dispatcher specified as a part of the
privileged shareable image (see Figure 6.6). It maintains an RSB instruction
after the last JSB instruction in the kernel and executive portions of the
privileged vector list.

VMS allows multiple privileged shareable images to be linked with the
same executable image. Each privileged image can contain multiple system
service procedures. The example pictured in Figure 6.8 shows three privileged
shareable images, each with a kernel mode dispatcher.

When the image activator, described in Chapter 26, encounters a reference
to a privileged shareable image in the image it is activating, it checks that the
privileged image is compatible with the running operating system. It maps
the sections containing the user-written system services using information
stored in a protected image section (a privileged library vector, defined by the
macro $PLVDEF and pictured in Figure 6.9) to modify the privileged vector
list. For example, if a privileged shareable image contained a change-mode-
to-kernel dispatcher, the image activator would insert a JSB instruction in

PO Space : P1 Space : System Space
| Simplified |
User Program | Privileged Vector List : Change Mode Dispatcher
|
: 4 JSB Dispatcher A | (1 EXE$CMODxxxx
. | f* 6 JSB Dispatcher B | Build call frame
—— 1 CALLx | JSB Dispatcher C| ||| |3 MOVL G'CTL$GL__USRCHMx, R1
> : I RSB T JSB (R1)
. | I .
= = | | .
Dispatcher A | |
5 RSB e |
= = | |
Dispatcher B : :
= Entry mask | |
2 CHMK
RET < : I
7 CASEX i T |
. | |
. l |
Entry mask | |
: || II Common Exit Path
RO status | | > SERvIcE_ExiT
8 RET + ; .
Dispatcher C | | .
RSB | 9 REl
Figure 6.8
Dispatching to System Services in a Privileged
Shareable Image

6.4 Dispatching to System Services in Privileged Shareable Images

.ENTRY mask J_
R Entry Vectors
i I CHMx #code ' T (1 per service)

RET

Vector Type
System Version

Kernel Dispatcher

e Executive Dispatcher Privileged
— Library Vector

(1 per image)

Address Check]
CASEx RaO,... Executive Dispatcher
RSB
CASEx RO,... Kernel Dispatcher
RSB

.ENTRY mask

L . L Functional Routines
. T (1 per service)
MOVL #status, RO
RET
Figure 6.9

Structure of a Privileged Shareable Image

P1 space that transfers control to the dispatcher specified by the PLV§L_
KERNEL longword in the privileged library vector.

Once an image containing user-written system services is activated, ex-
ecution proceeds normally until the process requests one of the services.
Figure 6.8 shows an example of dispatching to a user-written system ser-
vice. The numbers in the following list correspond to the numbers in the

figure.

(DA CALLx instruction transfers control to a user-written system service
vector in PO space.

(® The CHMK or CHME instruction located there transfers control to the VMS
change mode dispatcher.

(3)Execution proceeds normally until an unsigned test of the change mode
operand discovers that it exceeds the value found in CMOD$GW_CHMx _
LIMIT. The dispatcher tests the address in CTL§GL_USRCHMx. If it is
nonzero, the dispatcher JSBs to that location.

125

System Service Dispatching

6.4.3

6.5

126

(®The JsB instruction transfers control to the P1 privileged vector list,
where another JSB instruction transfers control to the first dispatcher.
(®In this example, the first dispatcher rejects the change mode operand

simply by executing an RSB back to the P1 privileged vector list.

(®The second JsB in the P1 privileged vector list is executed, transferring
control to a second dispatcher.

(»DIn this example, the second dispatcher recognizes the change mode op-
erand as valid and dispatches (probably with a CASEx instruction) to a
service-specific procedure that is also a part of the second privileged share-
able image.

(®When the service completes (successfully or unsuccessfully), it stores
a final status into RO and exits with a RET, which transfers control to
SERVICE_EXIT.

(®A privileged shareable image system service return path merges at this
point with the return paths described for other services.

If each dispatcher executed an RSB to reject the change mode operand,
control eventually would reach the RSB instruction in the P1 privileged
vector list. This RSB instruction transfers control back to the VMS change
mode dispatcher, which checks next for a systemwide dispatcher.

Systemwide User-Written Dispatcher

If no per-process dispatcher exists or if the last per-process user-written dis-
patcher returns to the system service dispatcher with an RSB, the change
mode dispatcher checks a location in system space (EXE$GL_USRCHMK
or EXE§GL_USRCHME) for the existence of a systemwide user-written dis-
patcher. If none exists (contents are zero, its usual contents in a VMS system),
or if this dispatcher transfers control back with an RSB, the change mode dis-
patcher returns the error status SS$_ILLSER to the system service requestor
in RO.

This scheme assumes that privileged shareable image system services that
complete successfully will exit with a RET back to SERVICE_EXIT, where an
REI instruction will dismiss the CHMK or CHME exception.

Note that no standard method exists to add a systemwide user-written
dispatcher to a system.

RELATED SYSTEM SERVICES

VMS provides five system services that are closely related to system ser-
vice dispatching and the change mode instructions. Chapter 5 describes the
Declare Change Mode or Compatibility Handler ($DCLCMH) system ser-
vice. This section describes the Set System Service Failure Exception Mode
($SETSFM) system service, the change mode system services, and the Set
System Service Filter (§SETSSF) system service. '

6.5.1

6.5.2

6.5.3

6.5 Related System Services

Set System Service Failure Exceptions System Service

The $SETSFM system service either enables or disables the generation of
exceptions when SERVICE_EXIT detects an error. The service itself simply
sets (to enable) or clears (to disable) the bit in the process status longword
(PCB$L_STS in the software PCB) for the access mode from which the system
service was requested. By default the generation of an exception is disabled.

Change Mode System Services

The Change to Kernel Mode ($CMKRNL) and Change to Executive Mode
($CMEXEC) system services provide a simple path for privileged processes
to execute code in kernel or executive mode. The services begin execution in
the appropriate mode. They check for the necessary privilege (CMKRNL or
CMEXEC) and then dispatch with a CALLG instruction to the procedure whose
address is supplied as an argument to the service. (Note that if §CMKRNL
is requested from executive mode, no privilege check is made.)

The procedure that executes in kernel or executive mode must store a
return status code into RO. If not, the previous contents of RO are used to
determine whether an error occurred.

The service cleans the stack and REIs back to the instruction following
the CHMx if the privileged procedure returned a success status. Otherwise it
returns to SERVICE_EXIT with the error status for further processing.

System Service Filtering

Some applications (especially user-written CLIs) require that user mode pro-
grams have no direct access to system and RMS services. VMS provides the
$SETSSF system service for this purpose.

Each VMS system service in a loadable executive image specifies an inhibit
mask at assembly time as a parameter to the SYSTEM_SERVICE macro. The
mask is stored in the system service descriptor block for the service. As a
service is loaded, its inhibit mask is copied from its descriptor block into
one of two tables, depending on the mode of the service.

CMODS$AB_KERNEL_INHIBIT_MASK and CMOD$AB_EXEC_INHIBIT_
MASK are the names of the kernel and executive mode tables. The tables
are indexed by a change mode operand; for example, the kernel mode
system service assigned change mode operand x stores its inhibit mask at
offset x from the address in CMOD$AB_KERNEL_INHIBIT_MASK. The in-
hibit mask indicates whether the system service can be disabled by $SETSSF.
If the service can be disabled by $SETSSF, the mask also indicates the system
service filter groups for which the service is disabled. Group O specifies all
services except $EXIT; group 1 specifies most services, with the exception of
$EXIT and those services required for condition handling or image rundown.
The VMS System Services Reference Manual lists the services that are not
disabled by $SETSSF.

127

System Service Dispatching

128

The byte at offset CTL$GB_SSFILTER in the per-process control region
contains the system service filter mask for a particular process. Usually this
mask contains the value zero. The $SETSSF service writes the mask value
specified as its argument into this field.

The bit EXE$V_SSINHIBIT at global location EXE$GL_DEFFLAGS corre-
sponds to the SYSGEN parameter SSINHIBIT, which, when set, enables sys-
tem service filtering. If system initialization code discovers that the inhibit
bit is set, it loads the SCB vectors for CHME and CHMK with the addresses
of the alternative dispatchers EXESCMODEXECX and EXE§CMODKRNLX,
in module SYSTEM_SERVICE_DISPATCHER.

The processor dispatches to these alternative change mode dispatchers
when CHME and CHMK exceptions occur. They branch to the standard
change mode dispatchers for CHMx instructions executed in inner modes.
However, for a CHMx instruction executed in user mode, the alternative dis-
patcher ANDs the value in CTL$GB_SSFILTER with the value in the ap-
propriate system service filter table (CMOD$AB_EXEC_INHIBIT_MASK or
CMOD$AB_KERNEL_INHIBIT_MASK) entry indexed by the CHMx oper-
and. If the result of the AND is zero, the dispatcher branches to the standard
change mode dispatcher. If the result of the AND is nonzero, the dispatcher
returns the error status SS§_INHCHME or SS$_INHCHMK, depending on
the mode of the system service.

If CTL$GB_SSFILTER is nonzero, the dispatcher also denies access to
services in privileged shareable images. An attempt to request those services
results in the error SS§_INHCHME or SS$_INHCHMEK, depending on the
mode of the service.

7.1

7.1.1

ASTs

What you want, what you're hanging around in the world
waiting for, is for something to occur to you.

Robert Frost

An asynchronous system trap (AST) is a mechanism that enables an asyn-
chronous event to change the flow of control in a process. Specifically, as
soon as possible after the asynchronous event occurs, a procedure or routine
designated by either the process or the system executes in the context of the
process.

A process may request an AST as notification that an asynchronous system
service has completed. ASTs requested by the system result from operations
such as I/O postprocessing, process suspension, and process deletion. These
operations require that VMS executive code execute in the context of a
specific process. ASTs fulfill this need. "

To declare the asynchronous event, the executive queues an AST to the
process. Once the AST has been queued, the process eventually becomes
current. AST delivery, the actual dispatch into the AST procedure, occurs in
the context of that process. This chapter discusses the queuing and delivery
of ASTs and describes some examples of their use by VMS.

AST HARDWARE COMPONENTS

VAX hardware/microcode assists VMS in the queuing and delivery of ASTs.
Three mechanisms contribute:

« The return from exception or interrupt (REI) instruction
o The PR$_ASTLVL processor register
« The interrupt priority level (IPL) 2 software interrupt

The first two features are discussed in this section. The software interrupt
mechanism is discussed in Chapter 4. The IPL 2 interrupt service routine
for AST delivery, SCH$ASTDEL, is discussed in Section 7.5.

REI Instruction

The REI instruction initiates the delivery of an AST to a process by request-
ing an IPL 2 interrupt if appropriate. (Note that a requested IPL 2 interrupt is
not actually granted until IPL drops below 2.) The REI microcode performs
the following tests to determine whether to request the interrupt:

1. The REI microcode checks whether process context is being restored. If
the interrupt stack bit is set in the processor status longword (PSL) to be

129

ASTs

7.1.2

130

restored, the REI microcode makes no further test and does not request an
IPL 2 interrupt. AST delivery has no meaning outside of process context.
2. The REI microcode compares the value in PR§_ASTLVL to the access
mode being restored. If the value in PR§_ASTLVL is less than or equal to
the current mode field in the PSL to be restored (that is, if it represents
a more or equally privileged access mode), the REI microcode requests a
software interrupt at IPL 2. This test prevents a process running in an
inner mode from being interrupted to deliver an AST to an outer mode.

The IPL of the AST interrupt is architecturally defined and cannot be
changed by operating system software. Throughout the book, therefore, this
IPL is referred to explicitly as 2 rather than symbolically as IPL$_ASTDEL.

ASTLVL Processor Register (PR$_ASTLVL)

The processor register PR§_ASTLVL is used in conjunction with the REI in-
struction to control IPL 2 software interrupts. This register is part of the
hardware context of the process and has a save area in the process header
(PHD) hardware process control block field PHD$B_ASTLVL. (Chapter 12
contains more information on the hardware PCB.) The LDPCTX instruction
copies PHD$B_ASTLVL to PR$_ASTLVL when a process is placed into ex-
ecution. The SVPCTX instruction does not store PR$_ASTLVL in PHD$B_
ASTLVL, thus avoiding an often unnecessary memory reference. Therefore,
any code that changes PR§_ASTLVL must also make the same change to
PHD$B_ASTLVL.

PR$_ASTLVL normally contains the access mode of the first AST in the
process’s AST queue (see Section 7.2.1). Inner mode ASTs are more privileged
than outer mode ASTs and are queued and delivered before them. Specifi-
cally, PR§_ASTLVL contains the mode of the first AST in the queue

o After an AST has been queued

« After an AST routine has completed and exited

o After ASTs at a given mode have been enabled or disabled by the Set AST
Enable ($SETAST) system service

o After an AST routine has left AST level by requesting the Clear AST
($CLRAST) system service

While an AST routine is in progress, PR§_ASTLVL contains a value that
is 1 greater than the current AST’s mode. After an AST has been blocked
{(because an AST at that mode is active or delivery to that mode is disabled),
PR$_ASTLVL contains a value that is 1 greater than the blocked AST’s mode.
In both cases, this helps prevent REI from requesting IPL 2 interrupts that
cannot currently be processed.

If no AST is queued, PR$_ASTLVL contains a value of 4, chosen so that
the REI test previously described will fail regardless of the access mode being
restored by the REI instruction.

7.2

7.21

7.2 AST Data Structures

AST DATA STRUCTURES

The executive queues ASTs to a process as the corresponding events (I/O
completion, timer expiration, etc.) occur. The AST queue is maintained as a
queue of AST control blocks (ACBs) with the listhead in the process control
block (PCB). Section 7.4 describes AST queues in more detail.

Process Control Block

The PCB contains several fields related to AST queuing and delivery (see
Figure 7.1).

The fields PCB$L_ASTQFL and PCB$L_ASTQBL are the listhead for ACBs
queued to the process. The list is a doubly linked queue.

The field PCB§W_ASTCNT specifies how many concurrent ASTs the
‘process can request at the moment. It is initialized to the process’s AST
quota, typically from the user authorization file. When a process requests
an asynchronous system service, requesting AST notification of comple-
tion, and when a process declares an AST by requesting the Declare AST
(SDCLAST) system service, the system service confirms that PCB§W_AST-
CNT is greater than zero and then decrements it, to charge the process AST
quota. ‘

It is the responsibility of the system service and of any code charging AST

Software Process Control Block (PCB)

ASTQFL
ASTQBL AST Control Block (ACB) Y
ASTEN | ASTACT ASTQFL —r—>
l | ST \ Links to other
—o ASTQBL ACBs in queue
RMOD | TYPE I SIZE (See Figure 7-2.)
PID
opc | AST
ASTPRM
KAST
ASTCNT RMOD Bits
Bit Name
0—1 MODE
2—3 (reserved)
L 1 4 PKAST
i i 5 NODELETE
6 QUOTA
7 KAST
Figure 7.1
AST Control Block and AST-Related Fields in Software
PCB

131

ASTs

7.2.2

132

quota to set the ACB$V_QUOTA bit in the ACB (see Section 7.2.2) as a
flag that quota must be restored when this AST is delivered. When such an
AST is delivered, the AST delivery interrupt service routine, SCH$ASTDEL,
increments PCB§W_ASTCNT.

The process delete pending count, PCB$B_DPC, is incremented for every
reason the process should not be deleted or suspended. It is incremented by
the Files-11 Extended QIO Processor (XQP) to indicate that an XQP operation
is in progress and that the process should not be deleted or suspended until
the operation completes. Up through VMS Version 5.2, this is its only use.
Section 7.8 discusses the use of this field and its significance to ASTs in
more detail.

In both PCB$B_ASTEN and PCB$B_ASTACT, the low-order four bits con-
tain AST-related information. One bit is used for each access mode, with bit
0 corresponding to kernel mode.

Each PCB$B_ASTEN bit, when set, indicates that AST delivery to that
access mode is enabled. By default, all four bits are set. Section 7.6 describes
how a process toggles one of these bits through the $SETAST system service.

Each PCB$B_ASTACT bit, when set, indicates that an AST is active at
that access mode in the process. The AST delivery interrupt service routine
sets the bit, and AST exit code clears it. The executive uses these bits to
serialize ASTs for each access mode; that is, the executive will not inter-
rupt an AST thread to deliver another AST to the same access mode. This
serialization limits the number of concurrent threads of execution within a
process and helps ensure that AST procedures are not entered recursively,
thus simplifying synchronization among the different threads in an access
mode. It is possible, though not usual, to reset a PCB$B_ASTACT bit using
the $CLRAST system service (see Section 7.5.3).

AST Control Block
The ACB includes the following information:

o The process ID (PID) of the target process

o The AST procedure or routine address

» The access mode

o An optional argument to the AST procedure

The ACB is allocated from nonpaged pool, often as part of a larger structure
associated with the requested asynchronous event. The ACB is actually
included as the first section of several larger data structures. The I/O request
packet (IRP), lock block (LKB), and timer queue entry (TQE), for example,
are data structures whose first section is an ACB. (Compare the ACB format
pictured in Figure 7.1 with the TQE format shown in Figure 11.1, the LKB
format shown in Figure 10.4, or the IRP layout shown in Figure E.11.)

'The macro $ACBDEF defines symbolic names for the fields in the ACB.
ACBSL_ASTQFL and ACB$L_ASTQBL link the ACB into the AST queue in

7.3

7.3 Creating an AST

the PCB. The listhead of this queue is the pair of longwords PCB$L_ASTQFL
and PCB$L_ASTQBL.
The field ACB$B_RMOD contains five bit fields:

« Bits (0:1) (ACB$V_MODE) contain the access mode in which the AST
procedure is to execute.

« Bit (4) (ACB$V_PKAST), when set, indicates the presence of a “piggyback”
special kernel mode AST (see Section 7.7.4).

« Bit (5) (ACB$V_NODELETE), when set, indicates that the ACB should not
be deallocated after the AST is delivered.

« Bit (6) (ACB$V_QUOTA), when set, indicates that the process AST quota
has been charged for this ACB.

« Bit (7) (ACB$V_KAST), when set, indicates the presence of a system-
requested special kernel mode AST (see Section 7.7). If ACB§V_KAST is
clear, this is a “normal” AST.

The field ACB$L_PID identifies which process is to receive the AST.

The fields ACBSL_AST and ACB$L_ASTPRM are the entry point of the
designated AST procedure and its optional argument.

The field ACB$L_KAST contains the entry point of a system-requested
special kernel mode AST routine if the ACB$V_PKAST or ACB$V_KAST bit
of ACB$B_RMOD is set.

CREATING AN AST

ASTs can be created by three types of actions. The first is a process request
for AST notification of the completion of an asynchronous system service,
such as Queue I/O Request ($QIO) or Enqueue Lock Request ($ENQ). The
arguments for these system services include an AST procedure address and
an argument to be passed to the AST procedure. The system service charges
the process AST quota.

The second is the system’s queuing an AST to execute code in the context
of the selected process. An ACB used in this situation is not deducted from
the AST quota of the target process because of its involuntary nature; the
ACB$V_QUOTA bit is clear to indicate this.

The system’s ability to initiate the execution of code in a particular process
context is crucial to VMS operations. Only the AST mechanism provides this
capability. The executive employs this mechanism primarily to access the
process’s virtual address space.

In a virtual memory operating system such as VMS, resolving a per-process
address outside of its process context is difficult at best. The process’s pages,
as well as page table pages, may not be resident; they may be in a page
file, swap file, or in transition. Rather than attempt to locate the relevant
page table page(s) and process page(s), VMS resolves the address in process
context through the AST mechanism so that standard memory management
mechanisms can be used.

133

ASTs

7.4

134

Examples of the system’s queuing an AST include the following:

« I/O postprocessing

« The Force Exit (SFORCEX) system service

o Expiration of CPU time quota

« Working set adjustment as part of the quantum-end event (see Chapter 12)
« The Get Job/Process Information ($GET]JPI) system service

The third way to create an AST is an explicit declaration of an AST by a
process through the $DCLAST system service. The $DCLAST system service
procedure, EXE$DCLAST in module SYSASTCON, runs in kernel mode. It
simply allocates an ACB, fills in the ACB information from its argument
list, and invokes SCH$QAST to queue the ACB. The access mode in which
the AST is to execute can be no more privileged than the mode from which
$DCLAST was requested. The system service charges the process AST quota.

QUEUING AN AST TO A PROCESS

The routine SCH$QAST, in module ASTDEL, is invoked to queue an ACB
to a process. It can be invoked from a thread of execution running at an IPL
less than or equal to IPL§_SCHED and holding no spinlock of rank greater
than SCHED.

SCHS$QAST uses the ACB$V_KAST bit and ACB$V_MODE bits of the
ACB$B_RMOD field to decide where in the process’s AST queue to insert
the ACB. The AST queue for a process is a doubly linked list with its head
and tail at PCB fields PCB$L_ASTQFL and PCB$L_ASTQBL.

SCH$QAST maintains the queue as a first-in/first-out (FIFO) list for each
access mode. ASTs of different access modes are placed into the queue in
ascending access mode order, that is, kernel mode ASTs first and user mode
ASTs last. Special kernel mode ASTs precede normal kernel mode ASTs. A
piggyback special kernel mode AST is inserted in the AST queue according
to the mode of the normal AST whose ACB it shares.

SCH$QAST performs the following steps:

1. SCH$QAST acquires the SCHED spinlock, raising IPL to IPL§_SCHED,
to synchronize access to the scheduler database, the process’s AST queue,
and its PHD$B_ASTLVL.

2. If the process is nonexistent, SCH$QAST returns the error status SS$_
NONEXPR. If bit ACB$V_NODELETE in ACB$B_RMOD is clear, its
usual state, SCH$QAST deallocates the ACB before returning.

3. If the AST queue is empty (the contents of PCB$L_ASTQFL are equal
to its address), then the ACB is inserted as the first element in the AST
queue.

4. Otherwise, SCH$QAST scans the queue of ACBs. It inserts a normal ACB
before the first ACB whose ACB$V_MODE bits indicate a less privileged
access mode or, if it finds none, at the end of the queue. SCH$QAST

7.5

7.5 Delivering an AST

inserts a special kernel mode AST before the first normal ACB or, if it
finds none, at the end of the queue. Figure 7.2 shows the organization of
the AST queue.

. SCH$QAST calculates ASTLVL as the mode of the first (innermost mode)
ACB in the queue and stores it as follows:

—If the target process is currently executing on the same processor as
SCH$QAST, SCH$QAST stores the new ASTLVL value in PHD$B_
ASTLVL and in the processor register, PR§_ASTLVL. If the process is
currently executing on a different member of a symmetric multipro-
cessing system, SCH$QAST stores the new value in PHD$B_ASTLVL
and requests an interprocessor interrupt of the other CPU to update
its PR$_ASTLVL register. Chapter 34 gives further details.

—If the process is memory-resident but is not currently executing,
SCH$QAST stores the new value for ASTLVL in PHD$B_ASTLVL but
not in the processor register.

—If a process is outswapped, PHD$B_ASTLVL cannot be updated because
the PHD (including the hardware PCB) is not available. When the
process becomes resident and computable at a later time, the swapper
calculates and stores a value for PHD$B_ASTLVL, based on the first
AST in the queue.

When setting ASTLVL, SCH$QAST does not check whether an AST is
already active for this mode or whether ASTs at this mode are disabled.
When either of these conditions is true, the next REI to drop IPL below
2 will cause an IPL 2 interrupt, and SCH$ASTDEL will dismiss it as
undeliverable (blocked). This event is less frequent and thus less costly
than having SCH$QAST make the checks each time it queues an AST.

. Unless the process is currently executing, SCH$QAST invokes
SCHS$RSE, in module RSE, to report that an AST has been queued to
the process. SCH$RSE makes the process computable if it is not current,
already computable, or suspended in kernel mode.

. SCH$QAST releases the SCHED spinlock, restoring the previous IPL,
and returns to its invoker.

DELIVERING AN AST

AST delivery is initiated when the REI microcode determines from the des-
tination access mode and the PR$_ASTLVL register that a pending AST is
deliverable (see Sections 7.1.2 and 7.4) and requests a software interrupt at IPL
2. The amount of time before the AST is actually delivered depends upon the
interrupt activity of the system. When IPL drops below 2, the AST delivery
interrupt service routine will execute.

Note that a rescheduling interrupt at IPL 3 may be requested and granted

prior to the granting of the IPL 2 AST delivery interrupt request. In this
case, the REI microcode will have set the IPL 2 bit in the software interrupt

135

9¢1

Organization of the AST Queue

PCB
L I Special Kernel Normal Kernel Executive Supervisor User
1
T :] L r =] : ml
AST Queue -+ [- < [-] -~ |- - -] P ——
L -
isthead ACB
= "E
T
Figure 7.2

7.5.1

7.5 Delivering an AST

service request (SISR) register PR$_SISR. Conceptually, the IPL 2 bit of the
SISR is part of process context, but for reasons of optimization, both saving
and restoring of process context ignore it. Thus, it is possible for a newly
scheduled process to inherit an irrelevant IPL 2 bit in the SISR; an AST
delivery interrupt is then granted in the context of a different process than
was originally requested. The AST delivery interrupt service routine detects
and ignores such spurious AST interrupts. The AST delivery interrupt in
question will be requested again when the process for which it is intended
is placed back into execution by the REI from the rescheduling interrupt.

AST Delivery Interrupt

The IPL 2 software interrupt is unique. It is the only one requested by
microcode (REI) rather than by MTPR instructions in the executive, and the
only one whose service routine runs entirely in process context. When the
IPL 2 interrupt occurs, control is transferred to SCH$ASTDEL, in module
ASTDEL, the address in the IPL 2 system control block (SCB) vector. The
interrupt service routine’s functions are to remove the first pending AST
from the queue, determine that the interrupt request is not a spurious one,
and dispatch to the specified AST routine at the specified access mode.

Figure 7.3 shows the major steps in SCH$ASTDEL’s flow. The numbers
in the figure correspond to the following steps. The column headings in the
figure describe the environment of that step, for example, its access mode
and IPL.

1. SCH$ASTDEL acquires the SCHED spinlock, raising IPL to IPL§_SCHED,
to synchronize access to the process’s AST queue.

() SCH$ASTDEL tries to remove the first ACB from the process AST queue.
If the queue is empty, the IPL 2 interrupt must have been spurious. The
routine sets ASTLVL to 4, releases the SCHED spinlock, and exits with
an REI instruction.

@Testing ACBS$V_KAST in ACB$B_RMOD, SCH$ASTDEL determines if
the ACB is a special kernel mode AST. It delivers a special kernel mode
AST with the following steps:

a. SCH$ASTDEL releases the SCHED spinlock, lowering IPL to 2.

b. SCH$ASTDEL dispatches to the special kernel mode AST routine by
executing an effective JSB instruction. (It pushes a return address onto
the stack and executes a JMP instruction to minimize the number of
branches taken on a common code path.)

c. On return from the special kernel mode AST routine, SCH$ASTDEL
returns to step 1 to check the AST queue again in case there is
another pending AST, possibly queued by the special kernel mode AST
routine. One common instance of this occurs in I/O postprocessing.
The I/O postprocessing special kernel mode AST queues a normal AST
to the process if AST notification of the I/O completion was requested.

137

ASTs

Process Context
IPLO IPL2
Outer Mode Kernel Mode
Time PL2
@ interrupt /
SCH$ASTDEL
‘) [
24 .
Spurious
interrupt
?
3 Special
kernel
AST ?
Special
kernel AST
rse| /
5a Set PCB$B_ASTACT
5¢ Calculate ASTLVL
5g Construct PC, PSL
- REI
EXE$ASTDEL EXE$SASTDEL
5k CALLG 5k CALLG
¥ ¥
AST Procedure AST Procedure
RET RET
CHMK #ASTEXIT CHMK #ASTEXIT
CMODSASTEXIT
Set IPL =2 v
Clear PCB$B_ ASTA(V
Calculate ASTLVL
REI

Figure 7.3
AST Delivery Flow

138

7.5 Delivering an AST

This is a frequent enough occurrence that checking the queue again
is less costly than incurring the extra interrupt.

(OIf the AST removed from the queue is a normal AST, then SCHSASTDEL
checks that the mode of the AST is at least as privileged as the access
mode being restored by the REI instruction that initiated AST delivery. It
compares the mode in the saved PSL on the kernel stack to the mode of
the AST. If the AST mode is less privileged, SCH$ASTDEL reinserts the
ACSB at the head of the queue, releases the SCHED spinlock, and dismisses
the interrupt with an REI instruction. This test detects a spurious AST
delivery interrupt.

Two other checks for spurious AST delivery interrupts are required.
The first is that the appropriate PCB$B_ASTACT bit must be clear; this
test prevents an AST from being interrupted by another AST at the same
access mode. The second test is that the appropriate PCB$B_ASTEN bit
must be set, indicating that AST delivery for that access mode is enabled.
If either test fails, SCH$ASTDEL sets ASTLVL to the blocked access mode
plus 1, requeues the ACB, releases the SCHED spinlock, and dismisses
the interrupt.

A third test is required for a user mode AST: the low bit of CTL$GB_
SOFT_AST_DISABLE must be clear, indicating no soft disabling of user
mode ASTs. For further information, see Section 7.6.

(®If the AST is deliverable, then SCH$ASTDEL performs the following
operations before dispatching to the AST routine:

a. SCH$ASTDEL sets the bit corresponding to the AST access mode in
PCB$B_ASTACT to indicate that there is an active AST at this mode
and to block concurrent delivery of another AST.

b. If ACB$V_QUOTA is set in the ACB, SCH$ASTDEL returns process
AST quota.

c. SCH$ASTDEL stores a new value of ASTLVL in PR$_ASTLVL and
PHD$B_ASTLVL. The new value of ASTLVL is the access mode of
the AST plus 1 (the next outer mode). The access mode is calculated
in this manner to prevent another AST interrupt when SCH$ASTDEL
switches to the access mode in which the AST procedure is executed.

d. Once modifications to the process’s AST queue and ASTLVL are com-
plete, SCH$ASTDEL releases the SCHED spinlock and lowers IPL
to 2.

e. Delivery of an AST to kernel mode is simpler than to other modes
because the process is already executing in kernel mode and on the
appropriate stack. If the AST is for a mode other than kernel mode,
SCHS$ASTDEL obtains the stack pointer for that mode.

f. As described in the next section, SCH$ASTDEL builds an argument
list on the stack of the AST’s access mode. ;

g. If the AST is not for kernel mode, SCH$ASTDEL builds a program

139

ASTs

7.5.2

140

counter (PC) and PSL on the kernel stack. The stored PC is the address
of EXE$ASTDEL, the AST dispatcher. The stored PSL contains the
AST access mode in both its current mode and previous mode fields.

h. If a piggyback special kernel mode AST is associated with the current
AST, the special kernel mode AST routine is dispatched through a JSB
instruction. When the piggyback AST routine returns, SCH$ASTDEL
continues with the next step.

i. SCH$ASTDEL tests the ACB$V_NODELETE bit. If the bit is set,
processing continues with the next step; if the bit is clear, then
SCH$ASTDEL deallocates the ACB to nonpaged pool.

j. The code that actually calls an AST procedure, EXE§ASTDEL, must
execute in the access mode of the AST.

For access modes other than kernel mode, transfer of control to
EXE$ASTDEL and change of access mode is accomplished through an
REI instruction, the only way to reach a less privileged access mode.
The PC and PSL used by the REI instruction are described in step 5g.

In order to deliver a kernel mode AST, SCH$ASTDEL merely drops
IPL to O and falls through to EXE§ASTDEL.

k. EXE$ASTDEL executes a CALLG instruction, transferring control to
the AST procedure, with the argument pointer (AP) pointing to the
argument list. The use of a CALLx instruction to enter ASTs enables
them to be written in any high-level language that supports the VAX
Calling Standard. A CALLG instruction is used, rather than a CALLS,
so that the argument list will remain on the stack after the AST
procedure RETSs.

Argument List

A normal AST procedure can be written in any language. By definition, a
procedure begins with an entry mask, is passed an argument list, and returns
control to its caller (in this case, the AST dispatcher) with a RET instruction.

Figure 7.4 shows the argument list with which an AST procedure is called.
SCHS$ASTDEL copies the AST parameter from the ACB where it was ini-
tially stored by a system service, such as $QIO, $ENQ, or $DCLAST. The
AST parameter was originally an argument to the system service. The inter-
pretation of the AST parameter depends on the AST procedure.

I5<—-—0AP

ASTPRM
Saved RO
Saved R1
Saved PC
Saved PSL

Figure 7.4
Argument List Passed to AST by Dispatcher

7.5.3

7.5 Delivering an AST

SCH$ASTDEL saves the general registers RO and Rl in the argument
list. The AST procedure may not save them through its register save mask,
because the VAX Calling Standard specifies that RO and R1 be used to return
status. The asynchronous nature of ASTs implies that the RO and R1 contents
are unpredictable and therefore must be preserved. The registers are saved
and restored by the AST delivery mechanism.

The saved PC and PSL values are the register contents originally saved
when the IPL 2 interrupt was granted. The values are normally the pair that
was about to be used by the original REI instruction requesting the AST
delivery.

AST Exit Path

When an AST procedure is done, its associated PCB$B_ASTACT bit must be
cleared and ASTLVL must be recomputed. The AST procedure requests the
$CLRAST system service to perform these steps, which can only be done
from kernel mode. In most cases, the AST procedure indirectly requests
$CLRAST by executing a RET instruction. Direct request of $CLRAST is
discussed later in this section.

When the AST procedure executes the RET instruction, its call frame is
removed from the stack and control returns to EXE$ASTRET in the access
mode of the AST. The AST argument list remains on the stack. The following
steps then occur:

1. EXE$ASTRET removes the argument count and the AST parameter from
the stack, leaving RO, R1, PC, and PSL from the argument list.
2. EXE$ASTRET executes the instruction

CHMK #ASTEXIT

This instruction requests the $CLRAST system service (ASTEXIT is a
synonym for CLRAST).

3. The CHMK exception causes dispatch to the change-mode-to-kernel
system service dispatcher, EXESCMODKRNL, in module SYSTEM_
SERVICE_DISPATCHER (see Chapter 6). EXESCMODKRNL makes a
special test for the system service code of zero (ASTEXIT = 0) to shorten
the dispatching to the $CLRAST system service.

4. The $CLRAST system service procedure, CMOD$ASTEXIT in module
SYSTEM_SERVICE_DISPATCHER, performs the following steps:

a. It raises IPL to 2, to block AST delivery interrupts.

b. It clears the appropriate PCB§B_ASTACT bit to indicate that no AST
procedure is active at that mode.

c. It invokes SCH$NEWLVL, in module ASTDEL, to recompute the
ASTLVL value as the access mode of the first ACB in the queue.

d. It executes an REI instruction to return to EXE§ASTRET.

141

ASTs

7.6

142

5. EXE$ASTRET resumes at the previous access mode, the mode of the
AST:

a. It restores RO and R1 from the stack.

b. EXESASTRET executes another REI instruction to dismiss the in-
terrupt. The REI instruction returns control to the access mode and
location originally interrupted by AST delivery.

The REI instruction in the $CLRAST system service may cause another
IPL 2 interrupt to occur, depending upon the ASTLVL value and the access
mode transitions.

If another IPL 2 interrupt occurs at the REI instruction from the $CLRAST
system service, the access mode stack of the first AST still contains the saved
RO, R1, PC, and PSL. To prevent a stack from filling with these values as a
result of recurring ASTs, SCH$ASTDEL checks whether an AST interrupt
occurred at the instruction following the ASTEXIT system service. If so,
SCH$ASTDEL checks further whether the current AST and the previous
AST are for the same access mode. If they are, SCH$ASTDEL pops from the
stack the newer copy of the saved values and reuses the original ones in the
argument list it builds for the current AST.

If an AST procedure requests the $CLRAST system service directly rather
than returning through EXE$ASTRET, the appropriate PCB$B_ASTACT bit
is cleared and PR§_ASTLVL is set to the mode of the new first ACB in the
queue. This has the effect that another AST can be delivered to the same
mode; the current procedure is now an ordinary thread interruptible by ASTs.
The frame built on the stack by the call to the former AST procedure re-
mains on the stack. The former AST procedure is responsible for removing
it. Furthermore, the former AST procedure is now responsible for any syn-
chronization with another AST thread of execution.

The VAX BASIC Run-Time Library requests the $CLRAST system service
from within CTRL/C attention AST procedures. VAX BASIC requires that
user programs be notified of CTRL/C through an error signal rather than
through the AST mechanism. The VAX BASIC Run-Time Library therefore
dismisses the CTRL/C attention AST by requesting the $CLRAST system
service and then signals the condition by calling LIB§SIGNAL (see Chap-
ter 5).

Note that the §CLRAST system service is not supported by Digital, except
for use within Digital software, and is not documented in the VMS System
Services Reference Manual.

DISABLING AST DELIVERY

Through the $SETAST system service a process can enable or disable delivery
of ASTs to the mode from which the process requests the system service.
The $SETAST system service sets or clears the relevant PCB$B_ASTEN bit

7.7

7.7 Special Kernel Mode ASTs

to enable or disable AST delivery to that mode. The system service enables
synchronization between a normal thread of execution and an AST thread.
The concept of AST reentrancy and ways of achieving it are described in the
Guide to Creating VMS Modular Procedures.

The $SETAST system service procedure, EXE$SETAST in module SYS-
ASTCON, runs in kernel mode. It determines the mode from which it
was requested and tests the current setting of that PCB$B_ASTEN bit. It
copies the ENBFLG argument value to the bit, setting or clearing it. It then
invokes SCH$NEWLVL to compute a new value for ASTLVL, based on the
current contents of the AST queue and the new state of the AST enable bit.
EXE$SETAST then returns either the status SS§_WASCLR or SS$_WAS-
SET to reflect the original state of the AST enable bit.

VMS Version 5 adds an alternative way to disable delivery to user mode.
User mode code sets the low bit in the P1 global location CTL$GB_SOFT_
AST_DISABLE to communicate its intention to block user mode ASTs. The
AST delivery interrupt service routine, SCH$ASTDEL, tests this bit when-
ever it is about to deliver a user mode AST.

If the bit is set, SCH$ASTDEL clears the user mode PCB$B_ASTEN bit to
effect a conventional disable and requeues the ACB. SCH$ASTDEL also sets
the low bit of CTL§GB_REENABLE_ASTS to notify the user mode thread
that it must request the $SETAST system service to reenable AST delivery
to user mode.

Requested to reenable delivery to user mode, EXE$SETAST clears both
CTL$GB_REENABLE_ASTS and CTL$GB_SOFT_AST_DISABLE. Invoked to
disable delivery to user mode, EXE$SETAST sets them both to 1.

If no user mode AST is delivered while CTL$GB_SOFT_AST_DISABLE is
set, then PCB$B_ASTEN remains unchanged. The $SETAST system service
requests to disable and reenable AST delivery are both saved. This mecha-
nism enables fast disabling of user mode ASTs by DECwindows. Use of this
mechanism is reserved to Digital and not supported except for use within
Digital software. ~

SPECIAL KERNEL MODE ASTS
Special kernel mode ASTs differ from normal ASTs in several ways:

« A special kernel mode AST routine is dispatched at IPL 2 and executes at
that level or higher. Synchronization is provided by the interrupt mecha-
nism itself rather than requiring additional PCB$B_ASTACT and PCB$B_
ASTEN bits. Only one special kernel mode AST can be active at any time
because the AST delivery interrupt is blocked.

« Special kernel mode ASTs cannot be disabled through $SETAST. Delivery
of a special kernel mode AST can only be blocked by raising IPL to 2 or
above.

« All special kernel mode ASTs result from the operations of kernel mode

143

ASTs

7.7.1

144

code. That is, a user cannot directly request special kernel mode AST
notification of an asynchronous event.

A special kernel mode AST routine is invoked by a JSB instruction, which
is a simpler and thus faster means of transferring control than a CALLG
instruction.

The arguments passed to a special kernel mode AST routine are the PCB
address in R4 and the ACB address in R5. When the special kernel mode
AST routine executes its RSB instruction, the stack must be in the same
state as when the routine was entered. The routine may use RO through
R5 freely but must save R6 through R11 before use and restore them before
exiting.

« A special kernel mode AST routine is responsible for the deallocation of
the ACB to nonpaged pool. (For normal ASTs, this deallocation is done by
the AST delivery routine.)

The next several sections briefly describe examples of the special kernel
mode AST mechanism.

I/O Postprocessing in Process Context

Completing an I/O request requires the delivery of a special kernel mode
AST to the process whose I/O completed. I/O postprocessing is described in
more detail in Chapter 21. The I/O postprocessing interrupt service routine
queues a former I/O request packet (IRP) as an ACB to the process whose 1/O
completed. The operations performed by the I/O completion AST routine are
those that must execute in process context, particularly those that reference
process virtual addresses. The special kernel mode AST routines BUFPOST
and DIRPOST, in module IOCIOPOST, perform the following operations
(DIRPOST is actually a subentry point of BUFPOST):

1. For buffered read I/O operations only, BUFPOST copies the data from the
system buffer to the user buffer in process address space and deallocates
the system buffer to nonpaged pool.

2. DIRPOST increments either PHD$L_DIOCNT or PHD$L_BIOCNT, the
process’s cumulative totals of completed direct I/O and buffered 1/O
requests.

3. If a user diagnostic buffer was associated with the I/O request, DIRPOST
copies the diagnostic information from the system diagnostic buffer to
the user’s buffer and deallocates the system buffer.

4. DIRPOST decrements the channel control block field CCB$W_IOC, the
number of I/O requests in progress on this channel. Channel control
blocks are in P1 space.

5. If the I/O request specified an I/O status block (IOSB), the routine copies
information from the IRP to the IOSB.

6. If a common event flag is associated with the I/O request, it is set. (Local
event flags are set in IOC$IOPOST, as described in Chapter 21.)

7.7.2

7.7.3

7.7 Special Kernel Mode ASTs

7. If ACB$V_QUOTA was set in IRP$B_RMOD (the same offset as ACB$B_
RMOD), AST notification of I/O completion was requested. The AST
procedure address and the optional AST argument were originally stored
in the IRP (now an ACB). DIRPOST invokes SCH$QAST to queue the
former IRP as an ACB. This time the IRP/ACB represents a normal AST
in the access mode at which the I/O request was made.

8. Otherwise, if ACB$V_QUOTA is clear, DIRPOST deallocates the IRP/
ACB to nonpaged pool.

$GETJPI System Service

A process requests the $GETJPI system service to obtain information about
itself or another process. If the request is for information in the virtual ad-
dress space of another process on the same VAXcluster node, the $GETJPI
system service queues an AST to the target process. Running in the context
of the target process, $GETJPI’s special kernel mode AST routine can easily
examine per-process address space. Chapter 13 describes the $GET]JPI sys-
tem service in detail and discusses the additional steps necessary to obtain
information from the virtual address space of a process running on another
VAZXcluster node.

The $GETJPI system service procedure, EXE$GETJPI in module SYS-
GETJP], performs the following steps:

1. It allocates and fills in an extended ACB to describe a special kernel mode
AST and the desired items of information. The ACB includes a buffer to
return the data.

2. The special kernel mode AST routine, executing in the context of the
target process, moves the requested information into the buffer. It mod-
ifies the ACB so that it can be used to queue a second special kernel
mode AST back to the requesting process.

3. The second special kernel mode AST routine copies data from the ex-
tended ACB buffer to buffers in the requesting process. It also sets the
event flag associated with this request.

4. If the process has requested AST notification of request completion, the
extended ACB is used for the third time. The special kernel mode AST
routine uses it to cause delivery of a normal AST in the access mode
from which the system service was requested.

If the process has not requested AST notification, the extended ACB
is deallocated to nonpaged pool.

Power Recovery ASTs

The implementation of power recovery ASTs relies on special kernel mode
ASTs. A power recovery AST enables a process to receive notification that a
power failure and successful restart have occurred. Chapter 33 describes this
feature in more detail.

145

ASTs

7.7.4

7.8

146

When a power recovery occurs, VMS queues a special kernel mode AST
to each process that has requested power recovery AST notification. The
special kernel mode AST routine copies the address of the user-requested
AST procedure, which is stored in P1 space, to ACB$L_AST and requeues
the ACB as a normal AST. The special kernel mode AST routine is required
to access the process’s P1 space.

Piggyback Special Kernel Mode ASTs

Piggyback special kernel mode ASTs {PKASTS) enable a special kernel mode
AST to ride piggyback in the ACB$L_KAST field of a normal AST. The
normal access mode determines the order of enqueuing and delivery. If
delivery to that access mode is disabled or blocked, the piggyback special
kernel mode AST cannot be delivered.

The AST delivery interrupt service routine JSBs to the piggyback special
kernel mode AST routine just before calling the normal AST. When the
special kernel mode AST returns, the normal AST is called.

There are several reasons for using piggyback special kernel mode ASTs:

« It is faster to deliver two ASTs together than to deliver two ASTs separately.

« There are times when delivering an AST requires some additional work in
kernel mode in the context of the calling process. Piggyback special kernel
mode ASTs facilitate this work. .

The $ENQ system service uses a piggyback special kernel mode AST
to write to the caller’s lock status block and lock value block. To copy
the information from the lock database to the caller’s process space, a
piggyback special kernel mode AST is required.

Piggyback special kernel mode ASTs are also used in terminal out-of-
band ASTs (see Section 7.9.5.3).

« A piggyback special kernel mode AST can be used to queue other normal
ASTs to a process. The $ENQ system service uses this feature to deliver
both blocking and completion ASTs to a process through one ACB. Chap-
ter 10 contains further information.

SYSTEM USE OF NORMAL ASTS

Several other executive features are implemented through normal ASTs. For
example, the automatic working set limit adjustment that takes place at
quantum end is implemented with a normal kernel mode AST. Chapter 12
discusses quantum-end activities, and Chapter 17 provides a detailed descrip-
tion of automatic working set limit adjustment.

CPU time limit expiration is implemented with potentially multiple ASTs.
Beginning in user mode, the AST procedure requests the Exit ($EXIT) system
service. If the process is not deleted, a supervisor mode time expiration AST
is queued. This loop continues with higher access modes until the process
is deleted.

7.8 System Use of Normal ASTs

The executive also uses the AST mechanism for the $FORCEX, Suspend
Process ($SUSPND), and Delete Process ($DELPRC) system services. With
VMS Version 5.2, these services can affect a process running on another
VAXcluster node. If the target process is executing on the same VAXcluster
node as the system service requestor, the system service queues an AST
directly to the target process. Chapter 13 discusses the additional steps
required to affect a process running on another VAXcluster node.

The $FORCEX system service, detailed in Chapter 13, queues a user mode
AST that requests the $EXIT system service from the context of the target
process.

The $SUSPND and $DELPRC system services queue an AST to the target
process to implement suspension or deletion through code running in the
context of the target process.

The $SUSPND system service queues either a supervisor or kernel mode
AST to its target process, depending on the access mode of the suspension.
A process suspended through a supervisor mode AST (the default) can ex-
ecute kernel and executive mode ASTs. Supervisor mode suspension, new
with VMS Version 5, is described in greater detail in Chapter 13. A process
suspended through a kernel mode AST can become computable only when
it is resumed through another process. ’

Process deletion and kernel mode suspension must take care to synchro-
nize their actions with the activities of the Files-11 XQP. '

The Files-11 XQP runs in process context as a kernel mode AST thread,
taking out locks and making I/O requests in response to the process’s file
system requests. The XQP indicates that it is active by incrementing the
PCB field PCB$B_DPC. When the XQP must wait for a lock to be granted
or an I/O request to complete, it returns from the AST procedure so that
the process can wait at the access mode in which the file system request
originated.

Waiting in the outer mode allows delivery of ASTs to that mode and
more privileged modes. While the XQP is executing or waiting, kernel mode
suspension of the process would risk blocking other processes with interests
in the same locks. Deletion of the process would risk relatively minor on-
disk corruption, such as dangling directory entries and lost files.

Therefore, the kernel mode suspension and process deletion services queue
normal kernel mode ASTs, which cannot be delivered until the XQP AST
completes. Furthermore, these AST procedures check that PCB$B_DPC is
zero before proceeding with actual process suspension or deletion.

If PCB$B_DPC is not zero, these AST procedures place the process into a
wait. They clear bit 0 of PCB$B_ASTACT so that another kernel mode AST
can be delivered, invoke SCHSNEWLVL to recompute ASTLVL, and place
the process into the resource wait RSN$_ASTWAIT. The process waits in
kernel mode at IPL 0. Thus, special and normal kernel mode ASTs can be
delivered to it. The resource wait PC is an address within the AST procedure,

147

ASTs

7.8.1

148

so after the XQP AST completes, the suspend or delete AST procedure will
be reentered to finish its job. ‘

Some time later, queuing of an AST makes the process computable, and
delivery of an XQP completion AST causes the XQP to be reentered. When
the XQP is done, it decrements PCB$B_DPC and returns from its AST pro-
cedure. The suspend or delete AST procedure is reentered and can proceed,
now that PCB$B_DPC is zero.

Process Suspension

The $SUSPND system service causes a target process to be placed into a
suspended state. The system service procedure first checks the capability of
the initiating process to affect the target process (see Chapter 13 for further
details). It then checks whether a supervisor or kernel mode suspension is
requested. Supervisor mode is the default. A kernel mode suspension request,
specified in the optional FLAGS argument, must be made from executive or
kernel mode.

The system service procedure then sets PCB$V_SUSPEN in the target
process’s PCB$L_STS and, for a supervisor mode suspension, PCB§V_SOFT-
SUSP as well. It then queues either a kernel or supervisor mode AST to the

~ target process so that the suspension and waiting will occur in that process’s

context. The wait mechanism in VMS requires that a process be placed into
a wait from its own context.

When the kernel mode AST is delivered, the SUSPND AST procedure
acquires the SCHED spinlock, raising IPL to IPL§_SCHED, and tests whether
PCB$V_RESPEN in PCB$L_STS is set. The bit, when set, indicates that
a Resume Process (JRESUME) system service has been requested for this
process. If the bit is set, the SUSPND AST procedure clears both it and
PCB$V_SUSPEN and RETs, leaving the process unsuspended.

If a $RESUME has not been requested for this process, SUSPND tests
PCB$B_DPC to determine whether an XQP operation is in progress. If
PCB$B_DPC is greater than zero, SUSPND places the process into a resource
wait as previously described.

If PCB$B_DPC is zero, SUSPND places the process into a suspended wait
state. The process waits in kernel mode at IPL 0. Its saved PC is an address
within SUSPND, so when the process is later placed into execution, it again
tests whether a SRESUME has been requested.

When the supervisor mode AST is delivered to a process undergoing su-
pervisor mode suspension, the SUSPEND_SOFT AST procedure requests the
$SUSPND system service. Running in kernel mode in the context of the
target process, the $SUSPND system service procedure acquires the SCHED
spinlock and tests whether PCB$V_RESPEN is set. If a SRESUME has not
been requested for the process, the $SUSPND system service procedure

7.8.2

7.9

7.9 Attention and Out-of-Band ASTs

cleans up the kernel stack and places the process into a suspended wait
state. These actions can only be done from kernel mode.

The process waits in supervisor mode with the supervisor mode PCB$B_
ASTACT bit set. Its saved PC is an address within the SUSPEND_SOFT
AST procedure, so when the process is placed back into execution, it again
requests the $SUSPND system service to test whether a $RESUME has
been requested. Waiting in this manner, the process can execute kernel and
executive mode ASTs. For further details, see Chapter 13.

Process Deletion

The $DELPRC system service causes a target process to be deleted. After
checking the capability of the initiating process to affect the target process
(see Chapter 13), the system service procedure queues a normal kernel AST
to the target process so that the deletion will occur in the context of that
process. Chapter 28 provides a detailed explanation of process deletion. The
use of the AST mechanism provides the following advantages:

o Queuing the AST makes the process computable, regardless of its wait
state, unless the process is suspended. The $DELPRC system service en-
sures the deletion of a suspended process by requesting the $RESUME
system service before queuing the AST. &)

« The process must be resident for the AST to be delivered. Therefore, special
cases, such as the deletion of a process that is outswapped, simply do not
exist.

o The DELETE AST procedure, running in process context, is able to request
standard system services, such as Deassign Channel ($DASSGN], Deallo-
cate Device ($DALLOC), and Delete Virtual Address Space ($DELTVA),
to implement process deletion. These system services and the AST proce-
dure reference per-process address space, and thus they must run in process
context. '

ATTENTION AND OUT-OF-BAND ASTS

Several VMS device drivers queue an AST to notify a process that a particular
attention condition has occurred on a device. The terminal driver and mail-
box driver use ASTs in this way. The terminal driver, for example, queues
an attention AST to notify an interested process that CTRL/C or CTRL/Y
has been typed on its terminal. The terminal driver can also queue an out-
of-band AST as notification that a control character other than CTRL/C and
CTRL/Y has been typed. The mailbox driver can queue an attention AST as
notification that an unsolicited message has been put in a mailbox or that
an attempt to read an empty mailbox is in progress.

The basic sequence for both attention ASTs and out-of-band ASTs follows:

149

ASTs

7.9.1

150

1. A process assigns a channel and requests the $QIO system service, spec-
ifying that it should receive AST notification of an attention condition
on that device. :

2. The device driver builds a data structure to describe the attention AST
request, inserts it on a list connected to the device UCB, and completes
the I/O request.

3. If the attention condition occurs, the device interrupt service routine
delivers the attention AST by queuing an AST to the process.

The major distinction between the attention AST and the out-of-band
AST mechanisms is that out-of-band ASTs automatically repeat, whereas
attention ASTs must be “rearmed.” That is, a process must repeat its $QIO
request for each attention notification.

Attention ASTs are described in the following sections, and out-of-band
ASTs are described in Section 7.9.5.

Set Attention AST Mechanism

To establish an attention AST for a particular device whose driver supports
this feature, the user requests the $QIO system service with the I/O function
I0$_SETMODE or, for some devices, IO$_SETCHAR. The kind of attention
AST requested is indicated by a function modifier.

The relevant function decision table (FDT) action routine for such a driver
invokes COMS$SETATTNAST, in module COMDRVSUB, which performs
the following actions:

1. If the user AST procedure address (the $QIO P1 parameter) is zero, the
request is interpreted as a flush attention AST list request (see Sec-
tion 7.9.3).

2. Otherwise, COM$SETATTNAST allocates an expanded ACB from non-
paged pool and charges it against the process AST quota, PCB§W_AST-
CNT. The expanded ACB will be used both as a fork block (FKB) and as
an ACB and is referred to as a FKB/ACB.

3. COMS$SETATTNAST copies information into the FKB/ACB, such as the
AST procedure address, AST argument, channel number, and PID.

4. It acquires the device lock, raising IPL to UCB$B_DIPL, to synchronize
access to the attention AST list. It then inserts the FKB/ACB into a singly
linked, last-in/first-out (LIFO) list of FKB/ACBs connected to the UCB of
the associated device.

The location of the FKB/ACB listhead is device-specific; some UCBs
have multiple listheads—one for each attention condition the driver sup-
ports. The FDT action routine passes the address of the listhead in a
register to COM$SETATTNAST.

5. COMS$SETATTNAST then releases the device lock, restoring the previ-
ous IPL, and returns to the FDT action routine.

7.9.2

7.9.3

7.9 Attention and Out-of-Band ASTs

Delivery of Attention ASTs

When the driver (typically the device interrupt service routine) determines
that the attention condition has occurred, it invokes COM$DELATTNAST
with the address of the FKB/ACB listhead.

A driver uses an alternative entry point, COM$DELATTNASTP, to specify
that only ASTs requested by a particular process be delivered.

COMSDELATTNAST is entered at device IPL with the device lock held
to synchronize access to the attention AST list. The queuing of ASTs must
occur at IPL§_SCHED with the SCHED spinlock held to synchronize access
to the scheduler database {see Chapter 8). Specifically, IPL must not be
lowered to IPL§_SCHED. To accomplish correct synchronization and not
block activities at IPL 7 and IPL 8, COM$DELATTNAST creates an IPL$_
QUEUEAST (6) fork process to queue each AST.

The following steps summarize the delivery of attention ASTs:

1. COMS$DELATTNAST scans each FKB/ACB in the list. In the case of
entry through COM$DELATTNASTP, the routine compares the PID in
the FKB/ACB to the requested PID. If they are not equal, the routine
leaves the data structure in the queue and goes on to the next entry. If
the PIDs match, the routine performs the actions described in the next
step. '

2. The routine removes the FKB/ACB from its list and dispatches to
EXE$FORK, specifying the address of a fork process to be stored in
FKB$L_FPC of the FKB/ACB. EXE$FORK records the fork process ad-
dress, queues the fork block to the fork IPL 6 listhead, and requests an
interrupt at that IPL. ‘

3. When IPL drops below 6, the fork interrupt is granted. The IPL 6 fork
dispatcher removes the FKB/ACB from the IPL 6 fork block queue and
dispatches to COM$DELATTNAST’s fork process.

4. At IPL 6, COM$DELATTNAST's fork process reformats the fork control
block into an ACB, describing the AST procedure and the access mode
of the original attention AST request.

5. The fork process invokes SCH$QAST, which acquires the SCHED spin-
lock and then queues the ACB to the process that requested the attention
AST.

Flushing an Attention AST List

The list of attention ASTs is flushed as the result of an explicit user request,
a Cancel I/O ($CANCEL), or a $DASSGN system service request for the
associated device.

A user explicitly requests that the attention AST list be flushed by re-
questing a $QIO set attention AST with an AST routine address of zero (see
Section 7.9.1). When COMS$SETATTNAST is invoked with an AST proce-
dure address of zero, it branches to COM$FLUSHATTNS.

151

ASTs

794

7.9.4.1

152

COMSFLUSHATTNS is entered with the PID and channel number of the
attention ASTs to be deleted. COM$FLUSHATTNS performs the following
operations:

1. It acquires the device lock, raising IPL to UCB$B_DIPL of the device.

2. It scans the FKB/ACB list looking for any FKB/ACBs with a PID and
channel number that match those of the requested flush operation.

3. If the PIDs and channel numbers match, COM$FLUSHATTNS removes
the FKB/ACB from the attention AST list.

4. COMS$FLUSHATTNS releases the device lock, restoring the IPL at which
it was entered.

5. COM$FLUSHATTNS increments the process AST quota and deallocates
the FKB/ACB to nonpaged pool.

6. COMS$FLUSHATTNS continues processing until it has scanned the en-
tire attention AST list. It then releases the device lock and returns to its
invoker.)

Examples in the VMS Executive

Users frequently request attention ASTs for terminals and mailboxes. Brief
descriptions follow of the terminal driver’s and mailbox driver’s support of
attention ASTs.

Terminal Driver and CTRL/C-CTRL/Y Notification. A process requests
CTRL/C notification or CTRL/Y notification by requesting the $QIO sys-
tem service, specifying IO$_SETMODE (or IO$_SETCHAR) with the func-
tion modifier IO$M_CTRLCAST or IO$M_CTRLYAST. When an interactive
user spawns a new process, that new process may also request CTRL/C and
CTRL/Y attention ASTs. If the user types CTRL/C or CTRL/Y, the AST
should be delivered only to the process currently associated with the ter-
minal rather than to every process in the job. As the user spawns new
subprocesses and attaches to already created processes, DCL tells the ter-
minal driver the PID of the process currently associated with the terminal.
When CTRL/C is typed, the terminal driver invokes COM$DELATTNASTP
to deliver only the ASTs that were requested by the process associated with
the terminal.

If no CTRL/C attention AST has been requested, then the CTRL/C is
interpreted as a CTRL/Y, and the terminal driver searches the CTRL/Y AST
list instead. If a CTRL/Y is typed, only the CTRL/Y attention AST list is
searched.

Because the FKB/ACB data structures are not reused, CTRL/C and CTRL/Y
attention ASTs must be reenabled each time they are delivered to a process.

The CTRL/Y attention AST list is flushed by a $DASSGN request. The
CTRL/C attention AST list is flushed by $§CANCEL as well as by $DASSGN.
Both lists can be flushed by an explicit user request.

7.9.4.2

7.9.5

7.9.5.1

7.9 Attention and Out-of-Band ASTs

Mailbox Driver. A process requests mailbox attention ASTs by requesting
the $QIO system service with the function code IO$_SETMODE or I0$_
SETCHAR. The possible function modifiers are IOSM_READATTN and
IO$M_WRTATTN. IOSM_WRTATTN requests notification of an unsolicited
message written to that mailbox. An unsolicited message is one written to a
mailbox that has no outstanding read request. IO$M_READATTN requests
notification when any process requests a read from that mailbox and there
is no message in it.

Attention ASTs of each type may be declared by multiple processes for the
same mailbox. When a condition corresponding to an attention AST occurs,
all ASTs of the appropriate type are delivered. Only the first process to make
a corresponding I/O request will be able to complete the transfer of data
signaled by the attention ASTs.

Read and write attention ASTs must be reenabled after delivery because
the entire attention AST list is delivered and removed after each occurrence
of the specified condition.

Out-of-Band ASTs

The terminal driver uses a newer form of AST mechanism to notify a process
that an out-of-band character has been received from its terminal. Out-of-
band characters are control characters, the ASCII codes 00 to 20,¢. (Although
CTRL/C and CTRL/Y are in this range, the terminal driver provides the
attention AST mechanism described previously to notify a process of their
receipt for compatibility with earlier versions of VMS.) Out-of-band ASTs are
similar to attention ASTs in that the terminal driver forks down to IPL$_
QUEUEAST to queue an ACB to the process.

The most significant difference between the attention AST mechanism
and the out-of-band AST mechanism is that out-of-band ASTs are repeating;
that is, once declared, out-of-band ASTs are delivered to the process for the
life of the process or until the SCANCEL system service is requested to flush
the AST list. Another difference is that the out-of-band AST mechanism
employs a piggyback special kernel mode AST routine.

The Terminal AST Block. The terminal driver builds a data structure called
a terminal AST block (TAST) to describe an out-of-band AST request. Fig-
ure 7.5 illustrates the TAST.

The TAST can be in two lists at once because of its structure. Through
TAST$L_FLINK, the TAST is always queued to the terminal UCB in a singly
linked list. Through the first two longwords of the TAST, it can be inserted
into a fork queue or a process’s ACB queue. The terminal driver sets the
bit TAST$V_BUSY in TAST$B_CTRL when the TAST is in use as a fork
block or ACB. The TAST includes space for fork process context (that is, a
fork PC, fork R3, and fork R4) and the AST information (address of the AST
procedure and its argument, PID, and RMOD fields).

153

ASTs

7.9.5.2

154

[FQFL]

[FQBL]

[FIPL] | [TYPE] | [SIZE]

[FPC]

[FR3]

[FR4]

[KAST]

FLINK

AST

ASTPRM

PID

CHAN | ctRL | RMOD

MASK

Figure 7.5
Terminal AST Block

Set Out-of-Band AST Mechanism. A process requests out-of-band notifica-
tion by requesting the $QIO system service, specifying IO$_SETMODE (or
IO$_SETCHAR|) with the function modifier IO$M_OUTBAND.

The terminal driver’s FDT action routine invokes COM$SETCTRLAST,

in module COMDRVSUB, which performs the following steps:

1.

If the user AST procedure address ($QIO P1 parameter) is zero or the char-
acter mask {$QIO P2 parameter] is zero, COM$SETCTRLAST interprets
the request as a flush out-of-band AST list request (see Section 7.9.5.4).

2. Otherwise, COMS$SETCTRLAST allocates a TAST from nonpaged pool.
3. It then acquires the device lock, raising IPL to UCB$B_DIPL, to synchro-

nize access to the TAST list.

4. COMS$SETCTRLAST next scans the list of out-of-band TASTs, searching

for one with the same characteristics as the QIO request. The following
items are checked:

—The PID. Out-of-band ASTs can be requested for the same terminal
device from a process and its subprocesses (which will have different -
PIDs).

—The channel number

5. If COM$SETCTRLAST finds a TAST with the same characteristics that

is not in use, it modifies the existing TAST by replacing the AST address
and the control mask. It then invokes COM$DRVDEALMEM, in module
COMDRVSUB, to create an IPL 6 fork process to deallocate the just-
allocated TAST. This unusual sequence is required because COM$SET-
CTRLAST must hold the device lock while scanning the TAST list.
During that time, it cannot allocate pool, synchronization to which is
controlled at a lower IPL.

7.9.5.3

7.9 Attention and Out-of-Band ASTs

If the TAST is in use (perhaps queued as an ACB to the process),
COMSSETCTRLAST marks it as “lost” and removes it from the list.
COMSSETCTRLAST charges the process AST quota and initializes the
just-allocated TAST to describe the request. It copies information from
the IRP {the AST procedure address, channel number, and PID) and the
$QIO character mask into the TAST. It inserts the TAST in the queue
position of the lost TAST.

. If it does not find a similar TAST, it initializes the just-allocated TAST
and charges the process AST quota. It places the TAST at the tail of the
list.

. COMS$SETCTRLAST ORs the $QIO character mask into the terminal’s
out-of-band AST summary mask, the field UCB$L_TL_OUTBAND. This
mask represents all the control characters for which the terminal driver
must deliver an out-of-band AST. It then releases the device lock, restor-
ing the previous IPL.

Delivery of Out-of-Band ASTs. When a control key is typed at a terminal, the
terminal driver checks whether that control character is represented in the
terminal’s out-of-band AST summary mask. If the bit in the summary mask
is set, an out-of-band AST has been requested for that control character. The
terminal driver interrupt service routine invokes COM$DELCTRLAST, in
module COMDRVSUB, to deliver the out-of-band AST. The terminal driver
uses an alternative entry point, COM$DELCTRLASTP, to specify that only
ASTs requested by a particular process be delivered.

The following steps summarize the delivery of out-of-band ASTs:

1. COMS$DELCTRLAST is entered at device IPL with the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>