
Educational Services

VMS Utilities and Commands I
Student Workbook -

· . .. ·~?;. :; . ._

EY-9764E-SG-0001

f).:~..L .. ' " . .,_
11™ info~~atio·n--in thisdocumeAt is subject to change without notice and stiould not be construed as a cemmitment
~~;[)i9it8:t ·~~iJ:mi~(tt.Corporation. Digital Equipment Corporation assumes no responsibility for any errors ~hat may

. ~::~ip&ar ·in: t_his docum~nt. '·
>·Jd
t~tfi~'software des~ribed. in this document i~ffUrnished unde~·a license and may be used or copied only in accordance
;~ :W.ith th'e· terms .of such license: ·

. r~J-': . . i..·

_ :j;f!iJ' rfl~poruiibiUfy is assumed for the' use or reliability. of sQ'ttware on equipment that is not supplied by Digital Equipment
~:iclrpti~Eition .of itS.affiliated co~Ti'~nies. . , ·. · . . . -

~~.. . .

S:$6pyright ~1 ggs··ti~ Digital Equipment Corporation ·: · ::.+·< ' . . . '
;,:~~ 8igh~1 f:\E!~ry,d.'
~:PHnted in tl'.s.A. · ·.
$~·::~ ' '

... ,~~·:The following ~re trademarks of Di.gital Equipment Corporation:

ti,.~~~·
:;~·oec ...
;;;•;: 6ec1cMs
·:,;;:-oectMMs
--'~DECnet

·6ecsystani~1 o
o·ecSYSTEM-20
[)ECUS

.DECwriter

. ·First Edition, May 1 gas

BIBOL
Edu System
IAS
MASS BUS
PDP
PDT
RSTS
RSX

.~NIBUS
VAX
V.AXcluster
VMS
VT

Thi~ ·document was prepared using VAX DOCUMENT, Version 1.o

TABLE OF CONTENTS

About This Course . xvii

MODULE 1 HARDWARE AND SOFTWARE OVERVIEW . 1-1

INTRODUCTION . 1-3

OBJECTIVES. 1-3

CO::MPONENTS OF THE HARDWARE ENVIRONMENT . 1-S

The Central Processing Unit (CPU) . 1-5

The Console Subsystem . 1-6

Mairl Memory .. , 1-6

Input/Output Subsystem . 1~

THE VMS OPERATING SYSTEM . • 1-7

DIGITAL Command Language (DCL). 1-8

Utilities . 1-9

Optional Layered Products . ~-:---· ; ,,,, . ,. . ,,.#- •• '"-'-:--t :·~--:--·- !:;::.l 0
: ;: ~·:. -:~·· ,.~ .. :,'. ~· :·'~·--· .-.:~z~~:.::::;::·:::-=:-~:·~ ... --::·,~

THE WORKING ENVIRONMENT _. 1~11

~~~~:~~oo~s.:.: .... :::.:::::: ~'.:'::: >::::. ',1f jJti~~~~Ji; 
The System User Authorization File (SYSUAF}, ~ . . . . . . . . . . . . . ~¥3:14 

>~( )}r,;:; .. 
SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :~f'f':·;_;~:'. -~. . . :111f15 

APPENDix A-PERIPHERAL DEVICES .. ':11. 1;~c . . ,_.;/~:'r.:';" ·~ ''. •· . '~. 
Temiinals . . . . . . . . . . . . . . .· . . . . . . . . . . . . . . . . . . . . . 

Printers and Printer/Plotters . . . . . . . . . . . . . . . . · . . . . . . . . . . . . . . . . . . :. . ~. ~- ._.· .. '.._.· -· .... }:'.18: 

~= ~:::: : : : : : : : : : : : : : : : : : : : : : : : : : : >: :< : : : : : : : : : : :=:w~~~~-~,"'~.1~xe~ 
APPENDIX B-SYSTEM CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . ~,::~.~¥ 

Single Processor Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : . .' ~-· - · · 1-~4 
, ~ ~:·.. .. . .. r~ ·;1. .. . ,~ 

Multiple-Processor Configurations ....... ~ .. )· ........... ; .... ; .....• ,.,~~ '.; (,;.i_ · ~r!l'-~1 

Tightly-Coupled Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ t::-28 
VAXcluster Systems ............ : . . . . .......... -... }. . . . . . . . . . . "·. ~:-:·}1-29 

... ·~~· ~. ~ ,,,..... ..· 3_· .:. 

NETWORKS . . . . . . . . . . . . . . . .. <: ••• ·:..f'\:.· • • • • • . • • • . • . • . ; • • . •.••••. ·: .: :. ' : .. ~r-t32 

··m 
i·;: 



MC)J!)tfL:E:::2 .. GETTING STARTED .................... '. ............ . 

·)ffifR0DUCTION ............................................... . 

-Q~ktTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
~ ~" .. ~ ;~·r, 

,~~O'lJRCES . . . . . . . . . . . . ...... ·... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

·:{b°dGiNG IN TO A VMS SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

:~trst!R}NA.ME· AND PASSWORD ....... · ................................ . 

:·.:hJtdINNING AND~:ENDlNG A TERMINAL SESSION ......................... . 

.=:futrti·~corvwANl5 FORMAT . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. :eoivrMANo UNE CONSTRUCTION ..................................... . 

,..;.:-··-a: ' .. :.'E>?,;_' FEATURES .. : . : ... : . . . . ..... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

·:~NG·A DCL COMMAND LINE ................................... . 
••• ·, .11."'i\. • ·~., , ' • ~ • ~ ~ ., • • • , ' ~ .. 

; ... ~·RECAI..L·COMMAND ...... · ........... , ......................... . 

(
1G:ETI!NG flELP . . . . . .· . . .· . . . . .· . . .. · .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2-1 

2-3 

2-4 

2-4 

2-5 

2-6 

2-7 

2-9 

2.;;:9 

2-13 

2-14 

2-17 

2-:-2,0 

, nrg'he Docume~~tion Set- ..................... '.""'' . . . . . . . . . . . . . . . . . . . . . . 2-20 

1 .1£.~p,.'fhe O~~e Help Facility .. · .......... ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 .. e .. . ·. . ·.. . . . . 

:;~GING YOUR PASSWORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24 

~-£¥f 'I'EM MESSAGES : : : . . . . . . . . . . ......... '. . . . . . . . . . . . . . . . . . . . . . . 2-25 

;'.:9:5fSPLAYING CHARACTERISTICS OF TERMINAL, PROCESS, AND SYSTEM . . . . . . . . . . 2-28 

;:}£ .. :;'fertninal Characteristics . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28 
::..:~t·..fj~·;-· ......... 
·. :TH.E SHOW TERMINAL COMMAND ............ ~·;:· . . . . . . . . . . . . . . . . . . . . . . 2-29 
~L~ , . 

. :•:?Tim SET T'ER.MINAL COMMAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29 

(,i!:ll§~y ... ·· ..... · ..................• ·•........•.................. 2-31 

--~~t·.~r 

MG!:lµLE 3 . CREATING AND EDITING TEXT FILES ...................... "'._j_1 

21.fRti RODUCTION~ . . .......... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 

·p~JECTIVES ................................................... - 3-4 
,., 

::;c'.~~SOURCEs· ...................................................... ·~ ::: 3-4 
;~}.;~-.; 

.. :~CHOOSING AN EDITOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
,i.: • .1.:-•·. ' . 

;J~JJID,T~ Editing Utility . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 3-6 

r t.::~'·cThe Extensible VAX Editor (EVE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 
, i ~· 

:t1J:~ING THE EDT'EDITOR . . . . . . . . . . . . . . . . . . . .... ; . . . . . . . . . . . . . . . . . . 3-8 

Invoking the EDT Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 

EDT Screen Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 

Using EDT Help ............................ ~ . . . . . . . . . . . . . . . . . . 3-9 

The EDT Keypad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 

Commonly Used Features 3-11 



Ending an EDT Editing Session 

EDT File Recovery . 

USING EVE ..... . 

Invoking the EVE Interface 

EVE Screen Layout . 

The EVE Interface ..... 

MOVING THE EVE CURSOR 

INSERTING TEXT IN EVE 

. (~ 

···t.··. 

. ;. ·: .. :c:3:-i 7 . 
•• \ ; ·_:> :3:..17 

. . .;:~)if·t. 

. ~ . .: / <~ ' .::,3~18 

· ~' ::. .:.. yJ~·t · :: . · .·; · ;!' ··:>:~ ;;() .;:·/-. · ·:·6i:/V~;- .. : ~:'.tif~ 

ERASING TEXT . . . . . . . 

~:9EFINING AN EDT-LIKE KEYPAD .. 

. . . . . . • • • • " • . . . . • . • . . : • -.": .. /:'. '><\;'!:.~·~:!;~{ • . ·)~.,.,~3 

CANCELING AN EDT-LIKE KEYPAD ........................ ;> ••• c•ka·::. z~,3 
Using EVE Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2~' · 
Ending an EVE Session .. ; . : .. :··:.·. ·. ~?:--:·J:l;-;.<·-~~ : .f. -: f '.· ~-v~:r·~3£~~ 
EVE File Recovery . . . 

·S~Y ............ . 

-~PENDIX A-EDT LINE-MODE EDITING ................... ::.f:~· . . p~.;~ . ;?;;.t?:'-~tt~;{~·S--31 
· · . \it i.:s.:: ;, :if:Dnt<:)~.:3~·· Inserting Text . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .· . . . . . . . ;· - -.31 

·'-.;.-·Substituting Text ................................. · C•. · :?,.£:.t:< •/:·.J(l:;;< :~i~;;Jt-t)>::r~~~i 

;. . Moving Text from One Location to Another . . . . . . . . . . . . . . . . . . . . . _. __,, . . . . .... · -~ _. ~33 
-· · . . .. ?3H~.;r.:y~ ·:;J1 : 1.:?T~'(.'..~ 

Delettng Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '3-3:4 
·--using Buffe~ in EDT .......... . : ........ · .. (~r,,:~>~~·:,, . . . . . ~i~f.,::~/~>:. · ~~ . __ . ·~;<···~.t~(~~ .. :.,~-:~f:~~~~ 

How to Create Buffers ...............................•.. ::;-··;·'. :~:''. .. f1'n . ...-~; . . ·~~:;,;;,if.:1·5:~$-35 

Copying Text from One Buffer to Another . 

Copying Text from a File into a Buffer .. . 

· .. , Copying Text from a Buffer into. a File . . . 

Deleting Buffers . 

J\.PPENDIX B-EVE 
Inserting Text .. . 

·:4· .. : ·--:: •,,,• .... 

:- :~ Locating Text ........ . 

Marking Locations in Text . . . . . 

Replacing Text . . . . . . . . . . . . . 

Restoring Text . . . . . . . . . . . . . . . . . 

RESTORE CHARACTER . . 

·RESTORE LINE . 

RESTORE WORD 
Using Buffers in EVE 

Using Multiple Buffers 

.... ·. 

. . . . . . . 
{. ,. '. : ~?ff{~ . ..... 

. .~~J>>·:t~' •:::~~;;,~~~8 
3-38', 

:,..:. "'.;:i~l~ji~9 ' 

.".')?~0. 

,,,.}~O· 
,,,~o 

;'';·3""~0 



,t,r -::"Using Multiple Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h • • • • • • • • • • • 3-43 
t t-.· .• 

. . DELETE WINDOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-44 

ENLARGE WINDOW ... ·>· .. ···. . . . . . • . • . . • . . . . . . . . . . . . . • . . . . . . . . . . 3-44 

i _,, .. 

:-~· ·~ !,, 

NEXT WINDOW ..... : ...................................... . 

PREVIOUS WINDOW ......................................... . 

SliRINK WINDOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3-44 

3-44 

3-45 

SPLIT WINDOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45 

-~~.DEFININ'G KEYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-46 

.,.·.'·-::Saving Key Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-47 

~~~--·~~-Using Key Definitions ........ : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-47 

()~.-?.Checking Spelling EtTOIS • • • • • • • • . • . • • • • . • • • • • . . • • • • • • . . 3-47

l.VIPDULE 4 COMMUNICATING WITH O)HER USERS
~k-L__ ··tr · r:~·
~.·7.~0DUCTION :
~~: .. .(":; ·.. ' , .• ·'

f~9~JEcnyES ·

-'~~~SO~CES ~ . ~ '. , .: ·: _·

'.>~OKING AND OBTAINING HELP FROM THE MAIL AND PHONE UTILITIES
~< . .
~!l~ MAIL tmLITY

~·S:~S.Orgamzation ofMaif Messages : . : :
r~~~:_~/; 0 .I .. • • ~ • • • <' >

;~';.,. ·;. Usmg the MAIL Utility
;~:':_·~-;:; . •· I •· ,. ,. .~ o ~ ·

·~··~.-·,,Reading a Message
.(~QO~~).... • ' .

, : ;:·.. Sending a Message .
>}~~;_:Displaying. a List of Messages•................................

j.~·-::t.Del~ti.ng a.M~ssage . : : _.
;:; · ·"Exiting from the Mail Utility .

.. ''!'r.-~~ ••• ' • •' •

~f~ PHO~ '£!TILITY .. '. ~ r •.• ~· · .
>:·t .. :;/· The_ Phone Help Facility ·, ... · : ·n~ ·

~:~MMUNICATING WITH OPERATORS i.:..i": • :

T:·~~- The REQUEST:Oommand. :··; '. ·>/ .. :<

4-1

4-3

4-3

4-3

4-5

4-7
. 4-7

4-8

4-9

4-11

4-13

4-14

4-17

. 4-18

4-19

4-21

4-21

~5:.~~y ~ . ' .. ·~ ;· ' .: 4-22

~OllULE 5 MANAGING FILES ·... 5-1

l: .lN'fRODUCTION 'Ii ~;1.H;:~.::lat,'.'. ·c.s:...~,'

· ··.~;OBJECTIVES · · · ... · . ··5-3
,, _./''

·-€~·'.RESOURCES · ·:: .. ,,.:5-3

::.:-fILE SPECIFICATIONS ... , · 5-5
...,-·,

. ;:.-tDEFAULTS FOR FILE SPECIFICATIONS .. :5-6
'. --()

.:~ :·~EVICE SPECIFICATIONS . ·. 5-7

.~ ___ DIRE0'0RY STRUCTURE . 5-9

"·--<:DIRECTORY NAMES IN TiiE ffiERARCHY 5-10

FILE MANIPULATION COM1v1ANDS . '. 5-11

FINDING FILES AND DETERJ\.1INING THEIR CHARACTERISTICS " .. :· ··.· ... · .::·· 5-13

Using Wildcards in File Specifications > ... ; • . t. · 5--15

ORGANIZING YOUR DIRECTORY STRUCTURE : ... ·: '~i . . :'":· ... :~:'. 5-17
'ifo\o.: i~ 1. ,:

CREATING A SUBDIRECTORY ... ·:0
• ;· • • :u. . ; . . S-18

USING THE SET DEFAULT CO?viMAND '~: .. -;
~~"· :: . .-.·.: .'

USING THE SHOW DEFAULT COMMAND <.:. .. :·:~< ::: : . ~<·,: ·~,'. . . :"5-19

·MOVING WITHIN A DIRECTORY IIlERARCHY 'f>,.~~: ..• :,L,/~"":·.5-20

PROTECTING DISK AND TAPES i • • · · • • · ,·; • _; · • • · ~ ,: .. · · • · ;~~.J t?_j~t~

PROTECTING FILES IN YOUR DIRECTORY HlERAR~ :· · · · ·. ·. ·;)l1l~~~4·"'
Three Levels of Disk File Protection . : ·.,-,;124

- . ? ~-·~r .·~rt~:~~~:.}."·.

UIC-Based Protection .. ; . . S..-25
: ";."_.-... -~~-' ~:;_\: :;.. ..

DETERMINING AND ALTERING FILE PROTECTION : '. ·:·,~;.'·~~8

'{ ~: :~l~o;, /fr •;u·. ~- ~;. -. ~

A~~:=~~:~ ~~-~~,;,:~~n·: : : : : : : : : : : : : : : : : >~: ·:·:. ".t· ;.:0~:.·<:~"i::,~f~~
Creating an Access Control List : ·. . . · ~5-33

Deleting an Access Control List ~ 0 • . • ~ ' ·':i:,;\5-35 ·

S~Y ·.· ·.·.;-.,:., ... i .;(\,,.5'·:·.;;'":+r(.. ;,5-36

APPENDIX A-DEVICE INFORMATION : .' . . . ~. ··•. :.,.:> •. ·~. 5-37
- . • • ~ ~%'!~~ ·:~ .

Spec1fymg Devices ._ 5-37
.... ,. .:'·:-~ ... ~-. ' :>·:· ~ '1 .·~·-~';f ~. :."(.. ~

APPENDIX B-NETWORKING INFORMATION : .. :· ~ "; :< . : .. ""'5""'43
\.. • ' • ··~ =.· .. ,.;t +

~·· Managing Files on Another VMS System in Your Network :·· .i • • · • . • • 5-43

Methods of File Management in a Network , ,-<,,.~•"'.;::=~~·: ,;;. :,,\,:43
-" Using DCL File-Manipulation Commands in a Non-VAXcluster Network Environt».ent.:T.~:;),:~,,~,. y("' 5-44

Two Node Specification Formats . >- .. · , .. , -~~

Using DCL File-Manipulation Commands in a VAXcluster Environment .. · ': ... : -:5~7
Two Cluster Device Specification Formats ::, ~{<.~ • • •••.• :.· .. ;~ ,-;,,-;;.;,t;,f~ .. c

MODULE 6 CUSTOMIZING THE USER ENVIRONMENT -" ..
,,

··~1

'INTRODUCTION .. : :.: : · f;:i :·6-3
OBJECTIVES "~.:~3

RESOURCES .. ~·· ·: .. ._ ,,Ji .. i>-3

'LOGICAL NAMES . .' :!· .')5!'. · : . . ~ · -6-5

Logical Name Tables ·" ., , · . , -~ .. {)--:6
t.-;.:.. ' >: ••••

Private . ·· 6-6

Shared <:< ... :·. :r .•.... ~- . A~<c;.6
Common User Operations Dealing with Logical Names •. , :~ :~ ":: ::;;;::~8

xi

' ·--,;
. i;

A,.dding Logical Names
'·-·.¥"SO'., '

· 'USING LOGICAL NAMES

Logical Name Translation for Logical Names that Have Single Equivalence Strings
Sample Recursive Translation .
·Displaying the Contents of Logical Name Tables .

. Determining the Equivalence of a Logical N~e .

_Deleting Logical Names .
-··

6-9
6-10

6-10
6-11

6-12

6-14

6-15
·system~Defined Logical Names . 6-17

·--~specifying Logical Name Access Modes . 6-19

·:,···:(Duration .of a Process-Private Logical Name Assignment . 6-19
:-': ··~· .·. . . . '

~,.:.USING DCL SYMBOLS . 6-20
···.•~, .. -...

~-';_p~NG KEYS .. :. 6-25
. : .;. -~ /

";'."',C<~~y • 6-27
' { .• J,...." 1-~

M0DULE7 WRITING.COMMAND PROCEDURES..................... 7-1
. ~~'.., .. ~ . .

.L-:.-J_~RODUCTION .. .

(:---g_QBJECTIVES .

,~;~:~~?URCES .. .
e:·,-~;pEy;E.LOPING A COMMAND PROCEDURE

I, ..:.-~.J •·'~ ~ . . , •

I . . ComponenfS an~' Conventions .

q-::-~~pGIN. COMMAND PROCEDURE
r· ~- . . . •

~~1i.';TERMINAL INPUT/OUTPUT .. .

r: ~j3_:::' .. Perfon.ning. Te~inal Input and Output . · · · · · · · · · · · · ·

;~ ' - ' ' ;y> ~Symbol Substitution .
,AJ--'2 . • .
'"i~~?l>ASSING PARAMETERS TO COMMAND PROCEDURES

. • '~ ;. l.,

~::J-~
~ , ... ; ,

",..

Parameters .
L_ocal ·s~mbols Pl - P8 .

Passing Parameter Values to a Command Procedure · .
' i . . ~

··- ·~ CONTROLLING PROGRAM FLOW· . ·

The IF ·Command .

THE IF-THEN-ELSE COMMAND

Restrictions to IF-THEN-ELSE Command

The GOTO Command ..

LEXICAL FUNCTIONS
:.Y Format and Syntax . ~

SlJ1'v1l'v1AR y .

viii

7-3

7-4

7-4

7-5
7-7

7-10

7-12

7-13

7-18

7-21
7-21
7-21

7-21

7-23
7-23
7-24
7-24

7-24

.. .7-28
..7-28

7-32

MODULE 8 USING DISK AND TAPE VOLUMES . &-1

JJ\TTRODUCTION .. · ... 8-3

OBJECTIVES .. . J.. •.. :: . 8-3

RESOlJRCES · , . .- . ; - .. 1
• . :8-3

CREATING PRIVATE VOLUMES: THE COMMAND SEQUENCE _; : .':'-·r':', _: 8-6

MOUNTING A VOLUME WITH AN UNKNOWN LABEL . 8-7

THE BACKUP UTILITY ; :. 8-8 • . . 3.1. .,_..,,,
. (· . . ' '

SAVE-SET SPECIFICATIONS ' » -. .: ... ~·. :~· ·~ ,_,,, ~. 8-8

S~Y .. ·--·:··: .. ·, ... :·· ... · ._r;:_,g"'--12

MODULE 9 SUBMITTING BATCH AND PRINT JOBS ;;:· . ·~ .. ·:· .· ... :·· 9-1

INTRODUCTION ··-' 2:9,:3
~ c.; -~- ~~· : ; .. ~. ~.;·~ 1 -;J ~~.:1 ~1 ~r·:t. .'.;'\ ,:

OBJECTIVES .. ; ,,.._ -~

RESOlJRCES ·: ::· :,_,_ .. ,.,.-'.·9~.
·~ '""7''i* ; ~-· •• i,. , .• ,

PRINTING A FILE . :~ ~~-"- c ..)9-5 .

PRINT Command in DCL. -~ •. : ··:::/;.~9.-~S
Types of Print Queues ,,. ;.· . ~· · (.~~-. "; ~6

. ,... ·. : ~ · ... -·¥

Qualifiers for the PRINT Command , .. .' : : ·. 9-8

OBTAINING STATUS OF QUEUES ; ... ~,: :: .. , : . 9-10

Queue Status List . '. :. ~ > i:.n
Modifying a Print Job Already in the Queue . ·: . .1 .• ;;i~14
Deleting a Print Job -~ :; . ·<r···. ·:· ::i 9-lS

SUBMITTING A BATCH JOB :.... .. :. . .. i~ ~ ..• ;";~:,':9~~16
DCL SUB:MIT Command'..· '. ... , ;• "'. ·. 9-16

• , ·I- ;

How a Batch Job Executes ·~ . · ·· ' ' 9-17

Writing a Batch Command Procedure . 9-18

Qualifiers for the SUB:MIT Command · : . ~ : .. -·~ . 9-19
OBTAINING STATUS OF BATCH QUEUES '. " .. ~ 1

: : .' • • 9-22

Modifying a Batch Job Already in the Queue '. y·. . . ,. 9-24
DELETING A BATCH JOB j • • •• 9-25 .

HANDLING BATCH AND PRINT JOBS · " . _:··~· . . J ~· 9-26

Characteristics Common to Both Batch and Print Jobs ~-.· ... " . -. . . 9-26

BATCH AND PRINT QUEUES ETIQUETTE . , 9-26

SU1v™ARY 9-27

ix

ii iv

Nl-OBULE 10 DEVELOPING PROGRAMS..... 10-1
._. ,.,. .~ I

. :-.. INTRODUCTION .. 10-3

:.. OBJECTIVES . 10-4

>-~ ·RESOURCES ·. 10-4
_ -i.

01 PROGRAM DEVELOPMENT ON A VMS SYSTEM . 10-5
,.., ... ; l. ~

p··:_:_~ VMS SYMBOLIC DEBUGGER UTILITY . 10-10

, .. ·.· A SAMPLE PROGRAM - GRADES . 10-11
.. ·~ ...,. -~ ..

:.E:.:.E'Xe·cution of GRADES . 10-12

.~ SliMM.ARY. 10-13

fif>l:ilE 11 EXERCISES . 11-1

:.r.:..HARDWARE AND SOFTWARE OVERVIEW . 11-3

~)~~:·<WRlrrEN EXERCISE I . 11-3

··WRf'n"EN EXERCISE II :· . 11-5

·~5:.-:.(:iEriING STARTED . 11-8

- tABORATORY EXERCISE I . 11-8

1.~::.LABORATORY '.EXERCISE II .. : . 11-9
'. I

'r~~-WRITrEN '.EXERCISE I 11-10

·:..---~ :i.A.BO'.RATORY EXERCISE ill

:.:::~-- l..ABORATORY EXERCISE IV

11-12

11-13

F-::
1
:.::-.:ClIBATiNG AND EDITING TEXT FILES . 11-14

··'.'::::.:INTRODUCTION TO THE LABORATORY EXERCISES . 11-14

~:-:-_:-±LABORATORY EXERCISE I - THE EDT EDITOR . 11-15

;5-'-Ll\:BORATORY EXERCISE II - THE EVE EDITOR : 11-17

ti~'-LABORATORY EXERCISE III - THE EVE EDITOR . 11-18

--co:M:M:UNICATING WITH OTiiER USERS . 11-19

?::.-LABORATORY EXERCISE I . 11-19

::;_:LABORATORY EXERClSE II : . 11-20

LABORATORY EXERCISE III . 11-21

-· MANAGING FILES . 11-22

WRITTEN EXERCISE I .. · 11-22

.> ... WRITTEN EXERCISE II . 11-23

;::: .;LABORATORY EXERCISE I 11-24

' ~•I' «. i,:·:.:. " •"("/. r~,~

LABORATORY EXERCISE II .. ··: > n'..::2:)

WRITTEN EXERCISE III . 11-26

LABORATORY EXERCISE III . ll-27
·'") "'.,

WRITI'EN EXERCISE IV ... ' "-ii-28

CUSTOMIZING THE USER ENVIROm.mNT ; : . .. ·.-sll-29

WRITTEN EXERCISE I .•................................• ·_;:_,;:.; ... ·~ .·. f~1l~29

LABORATORY EXERCISE I ~.:: . ; · : 11-31

, ' r ..•. ·. ~:=· -
LABORATORY EXERCISE IT '. · :':: .:· '~l'l-3~

WRITTEN EXERCISE Il .. . -Ii-33

LABORATORY EXERCISE III ·~-:.ti . •• ~~- ·:· :;·.:~·~; ..•. 53(:@€.G~li

LABORATORY EXERCISE IV ;'.· c' • : •••.• "'r·.· i . . .,; ,-'_:·;;_,!-p-35
-· _ ... ,, ~J ... (..... -·" ' 1 ~ ... ·'

WRITING CO:M:MAND PROCEDURES :~ _,'. ,,;<,;;:~j--36
"......... ' •. • ;., .. """J ..

WRITTEN EXERCISE I ,. :: ··->.:f}J-36

INTRODUCTION TO LABORATORY EXERCISES i: .. :·-...... ·A: -j~-:fJ-38

LABORATORY EXERCISE I ·:· ···-o'- • ..,:,..y>· ?·~~,~·:"}:_sft ~i{ii:.l::J.:-39

LABORATORY EXERCISE IT -~ ,~·.:.>;_, •... --~t;_)}.-40
, · --~·· ::.:. .)", ":...r ... ,~ .. l·Q...t-·· , ·

OPTIONAL LABORATORY EXERCISE ;: . . _.".:.;· _;, ...•. ,;,~; -~j;}-41
.... · :;: ~-2 .':· .-·· - /). . '

USING DISK AND TAPE VOLUMES .

WRITTEN EXERCISE I : ~ .. ,,. ,.· : ,;·;::! :iJ-42
. . :" ; .' '· · .. ' L ·')1 . I f-:~f..·,.;

WRITTEN EXERCISE n : ·.· · .. -~-- t//·>~(J:-.::·Y-43

WRITTEN EXERCISE ID .. _; .. ,.;. .. •, . ..:<'.--·ll-44
. .} _., \. .. :1.<~· ·~ ('

LABORATORY EXERCISE I .

SUBMITIING BATCH AND PRINT JOBS· _. . • ,

.... 'Jl-45 : ... ~. ,t

. ..• . . -'·'i_~J!-46

LABORATORY EXERCISE I ; <. _; ... ;;::.; .. ·. '''.. ~!-46

LABORATORY EXERCISE IT ,_. . . • . 11-47
' -'\.

HARDWARE AND SOFTWARE OVERVIEW-SOLUTIONS _ '. .U-48

WRITTEN EXERCISE I ;-. 11-48

WRITI'EN EXERCISE Il- ·... 11-50
' j • ~-..

GETTING STARTED-SOLUTIONS. 1.1-52

LABORATORY EXERCISE I . J.1-52

LABORATORY EXERCISE IT ; . · H-54

WRITTEN EXERCISE I .. , . <-J_JJ-55

LABORATORY EXERCISE III . 11-56

x .
. ;_XI

~-L~ORATORY EXERCISE IV 11-57

C:REATING AND EDITING TEXT FILES-SOLUTIONS : 11-59

. ~A.BORATORY EXERCISE I - Tiffi EDT EDITOR . 11-59

,-,11.,.@0RATORY EXERCISE II -THE EVE EDITOR. 11-62

LABORATORY EXERCISE III . 11-64

COMM1JNICATING WITH OTHER USERS-SOLUTIONS . 11-65

LABORATORY EXERCISE I . 11-65
4~ .:.._

LABORATORY EXERCISE II . 11-67

LABORATORY EXERCISE III . 11-68

5 MANAGING FILES-SOLUTIONS . 11--69

:::WRITTEN EXERCISE I . 11-69

·WRITTEN EXERCISE II . 11-70

:-:-. l..ABORATORY EXERCISE I . 11-71
r i-

. ',"LABORATORY EXERCISE Il. 11-72

~:WRITTEN EXERCISE ID . 11-73
I ~1 r_-·:..~ ... ·:·
:::~ORATORY EXERCISE ill . 11-74

i;.:~ITTEN EXERCISE IV . 11-75
d:;·.:;;.;. . . ' .
: -- ~ SPSTO:MIZING THE USER ENVIRONMENT-SOLUTIONS . 11-77 '

~ .. ,.·: ... WRITTEN EXERCISE I . 11-77
(; ~:~>.
- LABORATORY EXERCISE I . 11-79

-;." •t.ABORATORY EXERCISE II . 11-81
n --
·:; WRITTEN E?ffiRCISE Il . 11-82

;: '-'LABORATORY EXERCISE III

·LABORATORY EXERCISE IV

11-83

11-84

·- WRITING COMMAND PROCEDURES-SOLUTIONS . 11-85

··.".WRITTEN EXERCISE I . 11-85

-- LABORATORY EXERCISE I . 11-87

n·: LABORATORY EXERCISE n -. 11-88

... -- OPTIONAL LABORATORY EXERCISE. 11-89 •. -?

· ·- S USING DISK AND TAPE VOLUMES-SOLUTIONS . 11-91
'Q ... ',

WRITTEN EXERCISE I . 11-91

· WRITTEN EXERCISE II. 11-92

WRITTEN EXERCISE Ill 11-93

LABORATORY EXERCISE I 11-94

SUBMITTING BATCH AND PRINT JOBS-SOLlJTIONS .

LABORATORY EXERCISE I .

11-95

U-95

11~96 . LABORATORY EXERCISE II .

MODULE 12 TEST . 12-1
'.'I,

'TEST 12-3

12,....9 ANSWERS

EXAMPLES
(' ~

2-1
2-2
3-1
3-2
4-1
4-2
4-3
4-4
4-5
5-1
5-2
5-3
5-4
5-5
5-6
6-1
6-2
6-3
6-4
6-5
6-6
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8

7-9
8-1
8-2
8-3
8-4
9-1
9-2

How to Log In and Log Out
Changing Your Password . 2-24
Using the Help Facility On Line '. ·. ·;. '3:.10

Recovering a File After a System Interruption ;~ : ·-: .;· ~ '~'716

Getting Help for MAIL Utility Commands . 4-6
Reading a Mail Message . 4-9

Sending a Mail Message :· .. 4-:11
Listing Messages and Reading Old Messages ·-~:- '. ·, '.~13
Using the REQUEST/REPLY Command ·· ... ·~.''.'''. -~-4-21

Sample Directory File :' :. . 5,:16
Using VMS Commands to Create and Maintain a Directory Hierarchy : .. · ... ·. ·. . . 5':22
Changing Your Default Protection Code · .. ~ (.5:-29
Deleting a Subilirectory from a Directory Hierarchy . 5::-30

. . ' i

Removing Subdirectories from a Directory Hierarchy' '. . ·: '. .. " ~S-J 1
Modifying an Access Control List ~ .:; ; .. <---J,•S>-34
Using Logical Names to Abbreviate Device and File Specifications 6-9
Displaying the Contents of the.Process, Job, Group, and System Logical Name Tables' : :·. ''. -~:~13
Determining the Value of a Logical Name -~ : ·;· ;·:;· 6,:,14
Assigning, Changing, and Deleting Logical Name Assignments 6-16
Using ASSIGN Command to Alter the Default Output Device of Your Process .. ": :'. ... : .. . · '~19
Defining, Displaying, Using, and Deleting DCL Symbols :· ·n·. ,·.6-23
A Sample Command Procedure . 7-8
A Sample LOGIN.COM File >; ·-..... · 7-11
A Sample of Output from a Command Procedure 7-14
Using Terminal Input and Output . ·. 7-17
Using Symbol Substitution . · ;. 7-20

Passing Parameters to Command Procedures .
Controlling Program Flow
Using Lexical Fwictions with the INFO.COM Command Procedure
Using Lexical Fwictions with the PRINT.COM Command Procedure
Mowiting a Disk with an Unknown Label .
Creating Save Sets on a Tape
Transferring Files to a Tape
Restoring Files from a Tape to a Directory .
Issuing the PRINT Command
Queue Status Display Corresponding to Figure 9-1

7-22
7-:26

'. 7-30

7-31
8-7

.) 8-9

8""""9
8-11
. 9-5
9,....12

9-3';

9-4
9-5
9-6
1Q-1
10,...2
11-I~

FIGURES
i· ... '.' ...

1:.1 ;:'".

1i.2 .

1-3
1-4
1-5··_

l~
1~7

i~g-'

1;-~
g .. ;i(f
r:..,.;rr
f~ti,
l.'..;.f3~

2~1'·

i~~·
i...:s
3,~l.

3~·
3..,;3.;c
3'~····

3.~s'
3..;{)

3~7

4-f
4-2
5-1
5-2
5-3
5-4
5;;_5

~...:{)

671

6-~i

"'i,...1
:£,...1

9~r

1()-;.l

xi~

Full Format Queue Status Display
Issuing the SUBl\.1.IT Command
Sample Batch Run of COUNTl.COM ..
Full Format Queue Status Display . .
GRADES.FOR Source.File
Execution of GRADES

Process Parameters of a Sample Interactive Process .

Course Map .. .
VAX Hardware Subsystems .
Components of a Process .
Sample Hardcopy and Video Tenninals .
Sample Printers and Printer/Plotter .
Examples of Disks .
Examples of Disk Drives
Examples of Tape Media .
Sample 'Tape Drives .
MicroVAX II

VAX 8600 ·.· · · · · · · · · · · · · · · ·
A Tigtitly-Coupled System Configuration .
VAX.cluster System Structure .
A DECnet Network .
Enter a Valid User Name and Password ·
The Elements of a Command Line .
The Elements of a System Message .
EDT Screen Layout - Line Mode and Keypad Mode .
EDT Keypad Definitions .
EVE Screen Layout .
EVE Keypad Definitions (VTlOO-Series Terminals)
EVE Keypad Definitions (VT200-Series Terminals)
EDT-Like Key Definitions for VT200-Series Terminals .
EDT-Like Key Definitions for VTl 00-Series Terminals .
The Relationship Between a Mail Message, Folder, and File
Using the Phone Utility .
Naming Directories ·

File Specification in the Directory Hierarchy .
File Access to Disk and Tape Volumes
Interaction of Access Categories ·
Elements of a Protection Code: Determines Which Users Have Access to a File
Device Specifications Used to Identify the Desired Device for a Given Operation
The Relationship Between Your Terminal, the Operating System, and the Logical Name
Tables Associated with Your Process

The Relationship Between Your Terminal, the Operating System, and Your Global Symbol
Table

Command Procedure Development Process
Volume Manipulation Commands .
Execution and Generic Print Queues .
A Flow Diagram of the Five Major Programming Steps .

9-13
9-16
9-21
9-22

10-11
10,...12

11-6

xxvi

1-5
1-12
1-17
1-19
1-21
1-21
1-23
1-23
1-25
1-26
1-28
1-30
1-33
2-5
2-9

2-25
3-8

3-12
3-17
3-18
3-19
3-24
3-26

4-15
4-19
5-10
5-21
5-23
5-26
5-26
5-37

6-7

6-21
7-6
8-5
9-7

10-6

10-2

TABLES

2-1
2-2
2-3
2-4

2-5
2-6
2-7
2-8

2-9
2-10
2-11
2-12
2-13
2-14
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
4-1
4-2
4-3
4-4
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8

5-9
5-10
5-11
5-12

5-13
5-14
5-15
5-16
5-17

The Four Program Development Commands

Course Conventions .,
Elements of DCL Commands .
The Three Types of DCL Qualifiers .
Features of DCL .
Moving the Cursor .

xxvii

2-10
2.:...12

2-13
2-14

Changing Data on the Command Line • :, ~.!7:j:;;..:~;~;

Recalling a Previously Issued Command Line : . 2-16 1

Recalling a Previous Command Line with the RECALL Command 2-17
Controlling the Display of Information at Your Terminal ,_· 2--18 _
Terminating an Operation ,: . . . 2...;.19
Manuals for Locating Information About Your System , . . 2-~J

Using the DCL HELP Facility , '. -·- . 2-23
Elements of the System Message ~ ··:_·· · . . 2-26
Severity Levels in System Error Messages · .. :~:. - 2-27
Commands for Displaying the Characteristics of Your Terminal, Process? and: Syst~m .. ,. 2-30
Moving the EDT Cursor 3-13
Changing the EDT Cursor Direction. ~l.~.

Deleting Text in EDT ~··., ··:-: _. , __ . : ~- . 3-i41.
- .l

Restoring Text in EDT '. ·--:·· ':. ~ .. · .. ;~.:/·:~ . 3:-1~1
Moving the Cursor Using Keys•. .. ~ 3;..-. ~·- ·: . .:: ·. r . 3:.-20
Using Commands to Move the Cursor ··-·:· • ... : .. · . :c' ··:r·-· . 3=-:~.i
Keys for Deleting Text .. _. . . . ·;;. . 3~22·

Responding to REPLACE Prompts ~-·':'."·-.·.. ~3~~
Creating and Manipulating Buffers _.: :~ _ ... ·:· ·~ ;.' . 3-,4\
Creating and Manipulating Windows . ·~r ;; • .- ; . 3-43

MAIL Commands Used to Read a Mail Message, ~-. '. · ~' . 4-19.
MAIL Commands Used to Send Messages _. · ... ~ / •:. . .. • . 4-J_Z
MAIL Commands Used to Maintain Messages ,_.> •. '.,.,-. 4-16
Phone Commands Commonly Used to Create or Reject a Terminal Link· _ .. __ • . ;~ . 4-:20
Syntax of a Local Disk File Specification• ·. 5~5
File Specification Defaults . -_. 5-6
Naming a Device .. . -·; _. . . 5-8
Directory Nam es . _ . _. .'. 5..:..10
File Manipulation Commands . 5-q
Manipulating Files in a Directory . 5-1~

Using the DIRECTORY Command to Determine the Characteristics of Files 5-14
Wtldcards Used to Specify File Names, Types, and Versions 5-15
Using Wildcards to Specify Files . 5-16
Characters Used to Specify Directories _ . 5-20
Summary of Effects of Access Rights to Files . 5-27
Determining a User's Category by Comparing User's UIC to File Owner's UIC 5-27
Commands Used to Determine and Alter File Protection 5-28
Examples of Using Other Devices . 5-3-8
Moving a Hierarchical File Structure from one Disk Device to Another 5-:-3,9

Codes for Some Supported Devices on a VMS System . 5-:40
Summary of Device Terminology 5~ 1

5-18
5-19
5-20
5-21
fr-1
fr-2
fr-3
6-4
fr-5
6-6
fr-7
7-1
7-2
7-3
7-4
7-5
7-6
7-7
8-1
9-1
9-2
9-3
9-4
9-5
9-6
10-1

xvi

Generic Specification with the SHOW DEVICE Command
Examples of Specifying Files on Remote Nodes
DECnet-VAX DCL File-Manipulation Command Summary
Commands Used to Determine the Nodes and Devices in Your Systems Environment
Displaying the Contents of Logical Name Tables
Commands to Delete Logical Names
Process Logical Names Defined by the System
Job Logical Names Defined by the System
System Logical Names Defined by the System
Commands for Displaying and Deleting DCL Symbols .
Comparison of Logical Names and DCL Symbols
System Logical Names Used with Terminal I/0
Displaying Information on the Terminal
Getting Information from the User :
Redirecting Input and Output
Symbol Substitution Techniques .
Relational Operators Used in Expressions
Frequently Used Lexical Functions .
Commands for Creating and Accessing Private Disk and Tape Volumes
Printing Jobs with Different Characteristics .
Modifying Print Jobs in a Queue
Logical Name Definitions for _Interactive and Batch Processes
Submitting Batch Jobs .. .
Displaying Batch Queue Status .
Modifying a Batch Job
Languages and Associated File Types .

5-42
5-45
5--46

5--48
fr-12
6-15
6-17
6-18
6-18
fr-22
fr-24
7-12
7-13
7-15
7-16
7-19
7-25
7-29

8-6
9-9

9-14
9-17
9-20
9-23
9-24
10-8

About This Course

About This Course xvii

INTRODUCTION
The VMS Utilities and Commands course is a lecture/lab course designed to show you how to
perform typical nonprivileged operations on a VMS system by entering commands at a terminal.

The course has been organized into a series of units, or modules, each designed to cover a
well-organized topic, or group of topics. Each module contains its own learning objectives.

Suggested Laboratory Exercises are provided to allow you to reinforce, through practice, your
knowledge of the topics covered.

COURSE DESCRIPTION
The VMS Utilities and Commands course describes the working environment of a VMS system
and introduces frequently used operations that you can perform by entering commands at an
interactive terminal.

Among the major topics covered by the course are:

• Creating, editing, and maintaining text files

• *Submitting batch and print jobs

• ~"·Writing and using command procedures

• ~Using logical names and symbols to tailor your working environment

• Using private disk and tape volumes to back up your own files

• Communicating with other users on a system and network

• Using online and printed VMS documentation to obtain information

About This Course xix

PREREQUISITES
There are no prerequisites for this course. However, you can derive the greatest benefit from
this course if you have:

• A basic knowledge of a computer system.

The ability to work on a system using an interactive terminal.

xx About This Course

COURSE GOALS
To effectively use the nonprivileged facilities of the VMS system, you should be able to perform
the following operations:

Use online and printed documentation to obtain information about VMS features

Understand the basic hardware and software components of a VMS system

• ¥Enter syntactically correct DIGITAL Command Language (DCL) commands to obtain infor­
mation from the system

Create files using a text editor (EDT or EVE)

Communicate with other users and system operators

Organize files into subdirectories and maintain them

• ¥ Use logical names, symbols, and key definitions to modify your working environment

• { Create and use command procedures to automate repetitive tasks

• tuse the printer to produce hard copies of files and use the batch processing facility to
execute command procedures

Use private disk and tape volumes to back up and store personal files

• Follow the program development steps to produce executable programs on a VMS system
(OPTIONAL)

About This Course xxi

COURSE NONGOALS
This course introduces the concepts and command sequences necessary to achieve the course
goals. You will not learn to use the following:

The MCR command language interpreter or other RSX utilities that reside on your system.

The syntax of BASIC, COBOL, FORTRAN, or MACRO. The module dealing with program­
ming gives a generic overview of the various programming steps. It is recommended that
students enroll in a program-specific·course to obtain the greatest benefit from a program­
ming language.

• The use of commands or utilities that require privileges beyond the most basic privileges
granted to users of your system.

• The use of commands that manipulate a multiprocess environment.

VMS programmed system services, common run-time library routines, or other features that
require direct interaction with the operating system.

• Use of programmer productivity tools, databases, word processors, or any other optional
software.

References to and materials associated with VAXcluster systems.

• Advanced command procedures, such as error handling, file 1/0, dynamic arrays, CALL and
GOSUB commands.

Any functions, commands, or information related to "system management."

• File applications, such as, sorting records within a file and merging files.

~~ii About This Course

COURSE RESOURCES
In addition to the VMS system itself, there are three major resources available to you for com­
pleting this course:

This Student Workbook

The manuals of the VMS documentation set

Your Instructor

About This Course :xXiii

DOCUMENTATION
You should have access to the following manuals to complete this course:

Course Student Workbook

Guide to VMS Files and Devices

• VMS DCL Dictionary

• Guide to Using VMS Command Procedures

VMS Mail Utility

• VMS Phone Utility

• VAX EDT Reference Manual

VAX Text Processing Utility Manual

VMS DCL Concepts Manual

One complete VMS documentation set should be available tor reference.

· xxiv About This Course

COURSE ORGANIZATION
This is a lecture course that includes structured laboratory sessions. Lecture sessions consist of
instructor presentations and class discussions. Laboratory sessions consist of instructor demon­
strations or directed individual study. You should try to complete the laboratory exercises during
the laboratory sessions.

The material in the Student Workbook is divided into units, or modules of study. Each module
covers one or more of the skills typically required by a nonprivileged user of a VMS system.

A module contains the following instructional elements:

An introduction, which describes the purpose of the modules, provides some motivation
for mastering its objectives, and outlines its contents.

One or more objectives, which describe the operations for which the module provides
instruction. Objectives are designed to focus your study efforts on a selected number of
skills.

A list of resources you may need to complete the unit. Some of these resources are
distributed with this course; others are not. Since a complete document set is distributed
with each VMS operating system, you should consult your course instructor for access to
materials that do not come with this course.

The module text, which includes the following elements:

Descriptive text

Illustrations, which clarify the relationships among various elements of a VMS system,
or summarize steps of a particular process

Tables, which summarize the operations covered by the modules, and list the commands
needed to perform those operations

Examples, containing sample listings from actual terminal sessions

There is also a Laboratory Exercises module, which provides the practice needed to master
the objectives of each module. Solutions to the exercises are also provided.

About This Course xxv

COURSE MAP DESCRIPTION
The course map shows how each module of the course is related to the other modules, and
to the course as a whole. Prerequisite modules are those whose arrows in the map point into
another module.

Figure 1 : Course Map

x.xvi About This Course

COURSE CONVENTIONS
Table Table 1 describes the conventions used in the listings and tables of the Student Workbook.

Table 1: Course Conventions

Convention Meaning

new terms, prompts Terms that are introduced for the first time and
system prompts are printed in italics.

< > Angle brackets indicate that you press a key
on the terminal keyboard. For example, <RET>
means to press the RETURN key.

<CTRUX> Press and hold the key labeled CTRL while you
press another key (X). Many control key sequences
have special meanings.

SHOW QUEUE Names of commands in text are shown in upper­
case and bold.

$ SHOW QUEUE/qualifier [queue-name] Formats and command syntax are shown in bold.
wo·rds in uppercase are required, and words in
lowercase represent elements that you must re­
pl.ace according. to the description in the text.

s saow QOEUE/ALL_ENTRIEs sYS$PRINT Actual examples of commands are shown in monospace
type.

[] Square brackets indicate that the e.nclosed item
is optional. (Square brackets are not optional,
however, in the syntax of some file specifications
assignment statements.)

Type vs. Enter When the word "type" is used in text, it means
that you simply type a command'. When the word
"enter" is used, you must type the command and
press the RETURN key.

About This Course xxvii

MODULE 1
HARDWARE AND

SOFTWARE OVERVIEW

HARDWARE AND SOFTWARE OVERVIEW 1- 1

INTRODUCTION
When you begin work on a VMS system, you enter an envirg_n[Tlen_L_Q_Q!}_§isting __ Qf_Q~Ylq~§.,
grogram$.i._q._od .. Q.g§_~ The devices that compose the physical computer are called hardware. The
programs that control the hardware and process the data are called the software. To perform
job-related tasks on the system, you must use both the· hardware and the software.

This module provides an introduction· to VAX hardware, and an overview of the VMS software
environment.

OBJECTIVES
To work on a VMS system, you should be able to:

Identify the functions of each component of the hardware environment.

Identify and describe the functions of each component of the software environment.

Identify elements that make up a process in the VMS environment.

Recognize the peripheral devices supported by VAX systems.

HARDWARE AND SOFTWARE OVERVIEW 1- 3

COMPONENTS OF THE HARDWARE ENVIRONMENT

VAX computer hardware is divided into four subsystems

Each has a different function

Figure 1-1: VAX Hardware Subsystems

CONSOLE
SUBSYSTEM

CENTRAL MAIN PROCESSOR
(CPU) MEMORY

110 SUBSYSTEM

TTB_X0300_88

The Central Processing Unit (CPU)

Executes instructions one at a time

Some of the VAX family of processors include

MicroVAX II ~·

MicroVAX I

V AX-11 /780 ,,.,.,,"

VAX 8200

VAX 8600

VAX 8700

HARDWARE AND SOFTWARE OVERVIEW 1- 5

Communicates directly with the CPU

• Is primarily used for

Starting up and shutting down the system

Installing software

Remote hardware diagnosis

Main Memory

f ::/ /(L)

' ..)·{ ;A,&t:..rz..

Main memory is used to store instructions and data temporarily

Input/Output Subsystem

• Provides input to and output from the system

• Consists of peripheral devices

Common peripherals include

Terminals

Printers

Disk drives

Tape drives

Refer to Appendix A for examples of peripheral devices

1- s· HARDWARE AND SOFTWARE OVERVIEW

THE VMS OPERATING SYSTEM

The VMS Operating System is a ~Jle.Q1LQILQ.f.,.PIQ.QJ.§ID.~ that

Control the operations of the system

Manage the system's resources

The operating system performs three major functions

1. Provides the means for u·~~r§JQ~9.QJJJffi.YDl~.ate .. wit.b,,the.'".b.ardware devices that make up
the system ~·· ·

2. Creates a working envjmrne.n! in which users can access the resources needed to
perform tasks, without interfering with other users' activities on the system

3. Sched~le~ .. _the _Y.$.~- o(J_Q~~Q-~.V. .. ,. physical memory, and peripheral devices to provide
equitable access for all users, while using these resources as efficiently as possible

• Typical activities of the operating system include

Loading programs and data into memory from storage

Scheduling the order of action by the CPU

Allocating resources, such as physical memory

Scheduling input and output (1/0) to other devices

HARDWARE AND SOFTWARE OVERVIEW 1- 7

DIGITAL Command Language (DCL)

The means by which a user communicates with the system

DCL uses common words for commands and qualifiers

These common words make it easier to

Remember DCL commands

Enter DCL commands at a terminal

Recognize and correct syntax errors

• DCL commands can be used to

Perform file manipulation tasks

Display information about

The status of the system
Users on the system
Devices connected to your system
Resources available on the system

Execute user-written programs or system utilities

QQ.~_£9.l!lm~P_9~J!~~~"!!~n~Jg.tgo .. 1?.Y:Jbe~.Q2mm~rtfLb~ng.tJ~9~ .. 1n!§rpr~ter .(CLI) ,,,w.hiqh

l~!E.~et§Jh~t.PC~ QQ!D.!!l~'lQJ_Q.LGQire9~. ~ynt~~-

Calls the VM~~tin~_ttl.§.1.p_g[!QEI!L!t!~~.~~9~.~an~

1- 8 HARDWARE AND SOFTWARE OVERVIEW

Utilities
Utilities ara.softw.are_tQ_QJS that perform specified tasks. These utilities

Are provid~.Q..!Yi.!!L th~YMS §o.ttwar~

May have their own set of commands and command prompts

Perform a wide variety of tasks, such as

Text editors

EDT Editor
Extensible VAX Editor (EVE)

Communication Utilities

MAIL
PHONE

Digital Sta~ ... BYJJ.Qtf .. (Q§_f,3}

Oebµgging~_gm1Erggrammina ... IqQls

'!.M..§.J?..~.Q_ygg_gr

HARDWARE AND SOFTWARE OVERVIEW 1- 9

Optional Layered Products

Layered products are available for VMS systems

These optionai layered products

Perform specific tasks that enhance the capabilities of the system

Are provided separately

Types of layered products include

Language compilers

Communications software

Diagnostics software

Office automation products

Data management tools

1-10 HARDWARE AND SOFTWARE OVERVIEW

THE WORKING ENVIRONMENT

The Process

'!_o~!~~~-~~i~9..-~~-'{~Q.QDJ~~-t~~LQ~f1n.~~LiILtgrm§ .. Qf._g,P,LQQJ!..$,.~

~o.rk ... Qn_a__~tem .is.pe.rf.orme.d .. w.itbJn . .a .P[(),c~~-~

• The system uses processes to

Schedule the execution of programs by the CPU

Determine the availability of system resources

Allocate system resources

HARDWARE AND SOFTWARE OVERVIEW 1- 11

Compone~ts of a Process

• ~ss h~J£.~.£<2.r.!.!E~-r!~~~!~_,

T·h··· e ... H .. ·ardwa. li.·.e .. · .. · c. o .. n. text-Values~·co,atatn~l!l!b.~LPIQQ .. "~;ssg~····reglste.rs-~.t.ti-.aCd.e. -~~~t~h~)·~ .. ·· the. prQc.essJs ,Q,Ql.09 l:_.urz.12.c, J-J r ST t-•rru~;;. o 1 · , · \1.J/Af\.

The Software Conte)d-Co_·n· tr~~~-~t!~Ltt!!tJ2I9w9!~.-I!l .. ~. J?.--~UQ~~_QJQr$.d,P _ .
w»";; - 1<;;. P" \?QD¢::t':"'f\M 'i)DlJJ6 ~~:<:: 1r: t-lDv.) r-01:.'. p;'(T. Cl1i: /'

Virtual Address .. Space-f.rQ~~.s.S_addra~§_ar~_.maRP.~dJ.Q..E!:11~-~~~!-~~~r~§§e..s ____ _
(Ae...l,,01,,.~) --r1+.ut<. HE 1~tr::s. ThC.. tGt'\ t;\i!t:-'1. -\'[)

The Program (Image}- Contains if!§j-™_2!~..JQ~d.Q..!t!~L§QW.al..WQ.r.k
(,X'£,(1.(,.fi.' i ~.)/_,· L

• These components provide the environment used by the system to run an image

Figure 1-2: Components of a Process

VIRTUAL
ADDRESS

SPACE

IMAGE

SOFTWARE
CONTEXT

HARDWARE
CONTEXT

TTB_X0258_88

1-12 HARDWARE AND SOFTWARE OVERVIEW

Process Types

Interactive Process

One of the most common process types

Created when ~J:!§~t .. 1.Q_9.§..iJ:l

Terminates when the user logs out of the system

Subprocess

A process that use~~2rn~".91..Jn~.~~~~'!l~ .. r~.?Q.u!g~$. as th.Etf?.~I~.ntP.r.9C.~~.~

Subprocesses allow user~J_~~~v~-§~Y.~rsL.PIOQiam§,,.e.xe.g~.tJ~g .. ~tQl"IC?,~

.B,at<;h. PTP9~$S

9r~a.te~:tb.Y.1b~ §Y.~~~r.n,.?.QJb~L!! £~"· ,~xec.l.J~~ .. a. .~peci~l_file calle~j a comm.~rid pr~~.~dure,

l Frees .. ~e ... Y~l:JE t~~~!.~~.l, ... !~r other ~ork

HARDWARE AND SOFTWARE OVERVIEW 1-13

·+·''The System User Authorization File (SYSUAF)

(.

SYSUAE_QQ_ritai!J~~!!t~J~!9J:!JJ~!!~.~,--~-~~~U2.£!:~gt~ .. a QfQ,C.~§~.
It is us~Q_J.Q-9.~1~rmJD.~L~lLaYt.b.tui;z~~LY.?J~£1LQ.fJD(LS.YStem"

~QtL~Q9J.J1~~£n .. ~,~~!,1$"".,p1acg,g_Jr;tlb.l2,J!,1,~~PY,.,.!~~~~~§}~!T..L!!lan~g,~~ormation in-
~e~: Sys lJ AF. Dr+r •-.. ---···--------{c'ti.oNTA;\N'S p14~~~\.;-<.,.:'1':.-C''E> ,. F.£,.it• ;21PTCD/) .. ,,,

(tJo[·C: Ve'{; S:.V'C' .. .v; t--1/t/, .::_? ;7',-J/ 5c,. '---":

Us~L!.Q.entlti.g,gt.l~m Cade .. .(UIC}~ -The UIC is ... used.to,.determirle*Jhe .. ,,ay,,ner,9jJtl.~.§.J~Jld,J9
d.~rmJ!J§,Jile~ .. ac.ces.$~.

Default directory. This determines the disk and directory used by the user at login time.

Privileges. Privileges determine whether the user can perform a given task.

Priority. The process priority determines how a particular process will compete with
other processes to get work done on the system.

T1

(.

1- 14 HARDWARE AND SOFTWARE OVERVIEW

SUMMARY

There are four main functional subsystems of VAX computers:

The CPU - executes instructions.

The console subsystem - communicates with the CPU to monitor and control the system.

Main memory - stores data and instructions.

The 1/0 subsystem - consists of devices that provide input to and produce output from
the system. These devices are referred to as peripherals. Peripherals include terminals,
printers, disk drives, and tape drives.

The software environment is made up of several components:

• The VMS Operating System

Controls software on the system

Provides the means of communication with other hardware devices on the system

Schedules the allocation of resources and the execution of programs

• The user interface with the VMS system is the DIGITAL Command Language (DCL)

The means by which a user communicates with the system

Uses common English-like words

Interpreted by the Command Language Interface (CLI)

Utilities are software tools that perform specific tasks

Provided with the system software

Include tools such as editors, text formatters, and communication utilities

Optional Layered Products

Perform tasks beyond those of the system software

Must be purchased and installed separately

The working environment is defined in terms of a process:

The system creates and controls processes

Information used to create processes is stored in the System User Authorization File
(SYSUAF)

HARDWARE AND SOFTWARE OVERVIEW 1-15

VAX system configurations can be classified as single processors and multiple-processor
configurations.

A single-processor configuration is any single VAX processor and its peripheral devices.

There are three types of multiple-processor configurations:

Tightly-coupled multiprocessors

Networks

V Ax.cluster systems-configured midway between multiprocessors and networks

• Multiple-processor configurations consist of:

Processors

Peripheral devices

Communication devices

Transmission media

Terminal servers (optional)

A local area network spans a limited geographical area.

A wide area network spans a larger area.

• The important difference between a network and a VAXcluster system is that the sharing of
information between nodes is much faster and easier in a VAXcluster system.

1-16 HARDWARE AND SOFTWARE OVERVIEW

APPENDIX A-PERIPHERAL DEVICES

Terminals

Used to communicate with the computer

T~Jy_Q~~ of. terminals
----~._ --.. ··'~

.ttar9qgpy

Video
""'"••·-~ · .. -...

Figure 1-3: Sample Hardcopy and Video Terminals

A VIDEO
TERMINAL

A HARDCOPY
TERMINAL

TTB_X0302 88 S

HARDWARE AND SOFTWARE OVERVIEW 1-17

Printers and Printer/Plotters

Printers provide output from the system

• Various sizes and types include

Line printers (high speed)

Letter quality printers (hig·h-quality print)

Laser printers (high-quality print and graphics)

Printer/plotters are used for graphic output

1- 18 HARDWARE AND SOFTWARE OVERVIEW

Figure 1-4: Sample Printers and Printer/Plotter

LINE PRINTER

LASER PRINTER

LETTER-QUALITY PRINTER

PRINTER/PLOTTER
TTB_X0303_88_S

HARDWARE AND SOFTWARE OVERVIEW 1-19

Disk Drives

Record and read data on magnetic disks

Are sometimes called mass storaQ...Et_dg_'llQes.

Disks used in the drives

Are called storage media

Are either removable or fixed ... __________ J""~""'"'·'"""""~ .. ,,.

Various types of removable disks include

Cartridges
Disk packs
Diskettes
CDROM --- (:: J::

1- 20 HARDWARE AND SOFTWARE OVERVIEW

Figure 1-5: Examples of Disks

DISK CARTRIDGE
(TOP LOADING)

DISK PACK
(TOP LOADING)

DISK CARTRIDGE
(FRONT LOADING)

DISKETTE

TTB_X0304_88_S

Figure 1~: Examples of Disk Drives

[1111111!11lllllllllllllllllll!1JJ,lllllllll]

DUAL DISKETTE DRIVE

DISK PACK DRIVE

DISK CARTRIDGE DRIVE
TTB_X0305 88 S

HARDWARE AND SOFTWARE OVERVIEW 1- 21

Tape Drives

Record. and read data on magnetic tapes

Tapes usually store

BackuQ coQ!_~~ of data

Infrequently used data

Two kinds of tapes

~~l.I~~k§~.

°I~P-~---~~rtrt~Jg~-~--

1- 22 HARDWARE AND SOFTWARE OVERVIEW

Figure 1-7: Examples of Tape Media

REEL TAPE TAPE CARTRIDGE

TTB_X0306 88 S

Figure 1-8: Sample Tape Drives

CARTRIDGE TAPE DRIVE

REEL-TO-REEL TAPE DRIVE

TTB_X0307 88 S

HARDWARE AND SOFTWARE OVERVIEW 1- 23

APPENDIX B-SYSTEM CONFIGURATIONS

r·
I l .
l

l
I .
!

You can build different configurations with

VAX processors

Peripheral devices

System configurations can be classified as

Single processors

Multiple-processor configurations

A system can be:

A single VAX processor and its peripheral devices

A collection of VAX processors

Single Processor Configurations

Any single VAX processor and its peripheral devices

The family of VAX processors includes

VAX 8700

VAX 8650

VAX 8250

VAX-11/785

VAX-11/780

MicroVAX. 3000

MicroVAX. II

1- 24 HARDWARE AND SOFTWARE OVERVIEW

Figures 1-9 and 1-10 are not drawn to scale.

Figure 1-9: MicroVAX II

TTB_X0308_88

HARDWARE AND SOFTWARE OVERVIEW 1- 25

Figure 1-10: VAX 8600

111111 1111111111111111111111111m
1111111111111111111111111111111 ~

11111111111111111m111m11111

:ri:::r:r:!!!!!!!!!i!lllli!~
11111"",,",',m :::m"""ll" 11111111

1111111111

111111111:::~::::::::1111111111

111111111

w

1- 26 HARDWARE AND SOFTWARE OVERVIEW

TTB_X0309_88_S

Multiple-Processor Configurations

Two or more communicating processors

• There are three classifications

Tightly-coupled multiprocessors

Networks

V AXcluster systems

HARDWARE AND SOFTWARE OVERVIEW 1- 27

Tightly-Coupled Configurations

Share operating system code

• Cannot operate independently

• Provide high performance

• Used in compute-intensive applications
f"f\'$T

Example: VAX 8820 ,
'P 1rF 1 c..vt,.,-r· n~

Two CPUs .sha~.m~'TIQlY by means of a VAXBI system bus

Master processor runs the VMS operating system and controls the attached processor

Figure 1-11: A Tightly-Coupled System Configuration

VAX A GG
.., ___ _______ I _________ __,.vi\

TERMINAL
SERVER

1- 28 ,HARDWARE AND SOFTWARE OVERVIEW

TERMINAL
SERVER

TTB_X0310_88

VAXcluster Systems

Flexible multiprocessing system

V AXcluster systems can share

Disk and tape devices

A common file system

In addition to providing the functions of a network, VAXcluster systems provide

Higher availability of system resources

Faster and easier sharing of information and resources between nodes

A VAX cluster system configuration

May have hardware similar to a network configuration

May contain the same components as a network

VAX processors
Communication devices
Transmission media
Terminal servers
DECnet software

May have other V AXcluster system specific hardware

Hierarchical Storage Controller (HSC)
Computer Interconnect (Cl)

Major difference b~tw~en a YA)(9lust~r S.Y§t~J11and,anetw.orJ.sJs,,YMS,.clus.~~I~()ftv/C1re,VifhiC::h
-~~D£bi2~6J~:~si=~.cces·s···t9.~:$tlared."r~sQ~-r~gs -~" · ·· ·· " M , • • ~ ·'-- •

HARDWARE AND SOFTWARE OVERVIEW 1- 29

Figure 1-12: VAXcluster System Structure

SIMPLE VAXclu•ter SYSTEM

DUAL­
PORTED
DISK

VAX /1
\..>·

VAX

EXPANDED VAXcluater SYSTEM

VAX

VAX
COMPUTER

INTERCONNECT

COMPUTER
INTERCONNECT

HSC

VAX

1- 30 HARDWARE AND SOFTWARE OVERVIEW

Ho cc

TTB _XO 168_88

Notes on Figure 1-12:

1. The expanded VAXcluster system has added a third VAX system (with a local disk), and
two HSC controllers with two dual-ported disks connected to them.

2. Any of the three VAX systems in the expanded VAXcluster system can mount the two disks
that are connected to the HSC controllers. HSC disks are·more available to users than local
disks, because HSC disks are not dependent upon the availability of any processor.

3. The disks are dual-pathed to the HSC controllers, further increasing the disks' availability in
the VAXcluster system. If one HSC fails, all traffic to connected disks automatically switches
to the second HSC.

HARDWARE AND SOFTWARE OVERVIEW 1- 31

NETWORKS

Consist of two or more communicating processors

VMS system can be connected to

Other DIGITAL systems

Othdr manufacturers' systems

DIGITAL-to-DIGITAL networks are established using

Two or more processors

Hardware communication devices

Data transmission media

Terminal servers (optional)

DECnet software

• DECnet software enables communication between networked systems

• A user logged in to one of these systems can

Communicate with a user who is logged in to another node

Access disk files stored on another node

Write programs that communicate with programs running on another node

1- 32 HARDWARE AND SOFTWARE OVERVIEW

Figure 1-13: A DECnet Network

DISK

DISK

PROCESSOR
A

COMMUNICATION
DEVICE

DATA
TRANSMISSION
MEDIUM

COMMUNICATION
DEVICE

PROCESSOR
B

TTB_X0312_88

HARDWARE AND SOFTWARE OVERVIEW 1- 33

Notes on Figure 1-13:

1. This network consists of two processors, or nodes. Each node has a disk drive.

2. Each processor in the network has an attached communication device. The communication
devices are connected by a data transmission medium.

3. Access to disk files stored on a given node depends upon the availability of that node. For
example, if Processor A is shut down, any disk files stored on Processor /:\s disk become
inaccessible to users logged in to Processor B.

1- 34 HARDWARE AND SOFTWARE OVERVIEW

MODULE 2
GETTING STARTED

GETTING STARTED 2- 1

INTRODUCTION
To perform daily tasks on a VMS system, you· must issue instructions written in the DIGITAL
Command Language (DCL). DCL consists of a vocabulary and rules of grammar, as in any
language. -

The Q_Q_~_v_o_cab..uJaryJ.o_g_tyd~~-cqmma.ricis,_par~!!!~t~IS,,and.qualifie.r:s, alL.Pt .. w.~Jc..IJ .. Pert.orrn .tLJ.r:t~c­
tion~.Lm!.Lar.1Q.J_ho_§~ .. 9.t._v~rbs,.,,."n.<:>up,.? •. , .. ?c:i~(~rt:?§,~~nct.~dj~_ctiv~?,.lP~ngH.§.tl:._.W.h~!\.XC?.Y.-~:~W~~ge
meflJ_Jg _ __fQI!D _a .. 9Q!D.r!l~n.9. .. UD_~LJhe,.(CQm_mand .J .. a_aguag.e .lnterpret~, . .(.CL/) .causes/1.m.age.&)to. b.~
r=u·r, to perform the requested actions>-- · \ _,.,
---------~-·---.. ~-·~~- -- '•• ~~·"···,·- ~~-· ""' ······-··"-'"·····•••\ '"· .

This module introduces you to:

Communicating with the VMS system by using the DIGITAL Command Language (DCL)

Using both online and printed VMS documentation

GETTING STARTED 2- 3

OBJECTIVES
To effectively use the interactive featur~s of the VMS system, you should be able to:

Log in and log out of the system.

Use DCL to perform work on the user's behalf.

Use the VMS HELP facility and VMS documentation to obtain information about DCL com­
mands and error messages.

Interpret any VMS error messages and issue a corrected command by using the DCL
command-line editor.

Obtain and interpret information about the terminal, process, and system.

RESOURCES

• VMS General User's Manual

• VMS DCL Dictionary

2- 4 GElTING STARTED

LOGGING IN TO A VMS SYSTEM

Figure 2-1: Enter a Valid User Name and Password

TERMINAL

USER NAME
PASSWORD

VMS
OPERATING
SYSTEM

<RET>
USERNAME: SMITH
PASSWORD: <NO-ECHO>

VMS
COMMAND
LANGUAGE
I NTE RP RETE R

TTB_X0313 66 S

GETTING STARTED 2- 5

USER NAME AND PASSWORD
Your User Name:

Consists of 1 to 12 characters

Is assigned by the system manager

Your Password:

• Consists of 1 to 31 characters

Legal characters include:

A through Z

0 through 9

$ (dollar sign)

_(underscore)

2- 6 GETTING STARTED

BEGINNING AND ENDING A TERMINAL s·ESSION
To log in to the system:

Press the RETURN key (<RET>) on the terminal keyboard.

In response to the prompt Username:, type your user name, then press <RET>.

In response to the prompt Password:, type your password, then press <RET>. The system
does not display your password.

To log out of the system:

At the DCL prompt ($), type LOGOUT and press <RET>.

GETTING STARTED 2- 7

Example 2-1: How to Log In and Log Out

VAX/VMS SUPER
Username: SMITH
Password:
Welcome to VAX/VMS SUPER
Last interactive login on Wednesday, 30-DEC-1987 10:27

$ LOGOUT/FULL
SMITH logged out at
Accounting information:
Buffered I/O count:
Direct I/0 count:
Page faults:

5-JAN-1988 10:53:51.92

46
24

496

Peak working set size:
Peak page file size:
Mounted volumes:

333
1969

0
Charged CPU time: 0 00:00:02.51 Elapsed time: 0 00:00:18.42

NOTE
The /FULL qualifier of the LOGOUT command displays a summary of the accounting
information for the terminal session. $ LOGOUT <RET> does not display any information.

2- 8 GETTING STARTED

DCL COMMAND FORMAT

Figure 2-2: The Elements of a Command Line

COMMAND STRING---- -------

FILE SPECIFICATION LIST ----------

$PRINT FILE1 .LIS,FILE2.LIS/COPl.ES=2<RET>
~-----~ ~- -~

SYSTEM PR T ---,--
COMMAND I
LIST ELEMENT------

LIST ELEMENT SEPARATOR--------'

LIST ELEMENT---------------'

QUALi Fl ER DELI MITER ----------------'

POSITIONAL QUALIFIER ----------------

QUALIFIER VALUE DELIMITER ------------------'

QUALIFIER VALUE -----------------------'

COMMAND STRING TERMINATOR -------.....---------------'

TTB_X031'_88

COMMAND LINE CONSTRUCTION

One or more spaces or tabs separate commands, command options, and parameters from
each other.

• Slash marks (/) separate qualifiers from commands and parameters.

• Commas (,) separate elements in a parameter list.

Pressing <RET> passes the command line to the DCL CLI for execution regardless of the
cursor position on the line.

GETTING STARTED 2- 9

Table 2-1: Elements of DCL Commands

Command Element

Command Line

Definition

A command line is the complete specification of a DCL command.
One command line can consist of up to 1024 characters.

(NOTE: By entering a hyphen(-) prior to pressing <RET>, you can
enterthe command line in segments. Each command line segment
can consist of up to 256 characters. The system concatenates the
segments into one DCL command prior to interpreting the com­
mand.)

Required Elements of a Command Line

Verb The verb of the command line is like the verb of a sentence in
English. It specifies the action of your request. The verb usually
consists of one word.

Parameter

Example: $ HELP

Parameter(s) receive the action of the verb, much like the object
does in an English sentence.

Example: $ PRINT FILEl. TXT

In the instruction PRINT FILE1 .TXT, PRINT is the verb and FILE1 .T)
is the parameter.

Optional Elements of a Command Line

Qualifier

Value

The qualifier(s) of the command line describe or modify the action
taken by the verb. A slash (/) precedes each qualifier. You can
place qualifiers after the verb or after a parameter. (Some qualifiers
accept one or more values.)

Format: /quallfier[:(value[, •..])]

Example: $ SHOW PROCESS/ALL

The qualifier /ALL modifies the actlon. (There are three types of
qualifiers. For an explanation of the qualifier types, refer to Table
2-2).

A value assigns a specific quantity to a qualifier. If you specify
more than one value, you must separate the values with commas
and enclose them in parentheses.

Example: $ PRINT/COPIES=2 FILEl. TXT

In the above instruction, /COPIES=integer is a qualifier to the verb
PRINT. The value of the qualifier is the integer 2.

GETTING STARTED 2- 11

Table 2-1: Elements of DCL Commands (Cont)

Command Element Definition

Optional Elements of a Co~mand Line

$ When you are in interactive mode, the DCL CLI ignores the dollar
sign. However, the dollar sign must precede commands you place
in files. (This technique will be discussed in the Batch and Print
Jobs module and the Command Procedures module.)

Label:

The exclamation mark (!) indicates a comment. The system dis­
regards anything on a command line following an exclamation
mark. (The exclamation mark helps document commands you
place within a file.)

Examples:

$! The DCL CLI ignores this comment line .

$ SHOW PROCESS ! This comment is ignored

The label is a character string that identifies a particular line in a
file that contains DCL commands. Such a file is referred to as
a command procedure. You should use labels only in command
lines within command procedures.

GETTING STARTED 2- 11

f Table 2-2: The Three Types of DCL Qualifiers

Qualifier Type Comments

/'Command Qualifiers

Positional Qualifiers

Parameter Qualifiers

2- 12 GETTING STARTED

Command qualifiers have the same meaning regardless of where
they appear in the command line.

Examples:

$ PRINT /HOLD FILEl. TXT or

$ PRINT FILEl. TXT/HOLD

Since /HOLD is a command qualifier, the above two commands have
the same effect. Both commands place the request in a hold state.

Positional qualifiers have different meanings depending on where
they appear in the command line.

Example:

$ PRINT/COPIES=2 FILE1.TXT,FILE2.TXT

A positional qualifier placed after the verb, but before the first pa­
rameter, affects the entire command line. Therefore, this command
requests the printing of two copies of FILE1 .TXT and two copies of
FILE~.TXT.

$ PRINT FILE l. TXT /COP IES=2, FILE2. TXT

A positional qualifier placed after a parameter affects only that pa­
rameter. Therefore, this command line requests the printing of two
copies of FILE1 .TXT and one copy of FILE2.TXT.

There are several types of parameter qualifiers. Refer to the com­
mand descriptions in the VMS DCL Dictionary for the names and
types of parameter qualifiers that can be used with each command.

-·"··--~-----·--...... "'''" -· ,_. .-.- .. ,-. _ ---

DCL FEATURES

Table 2-3: Features of DCL

Feature

Continuation

Abbreviation

Prompting

Example

$ PRINT/COPIES=2 -

_ $ FILEl. TXT, FILE2. TXT, -

_ $ FILE3. TXT, FILE4. TXT

$ LOGOUT ! These are

$ LOGO ! equivalent

$LO

$ PRINT <RET>

File: FILEl. TXT

Description

The hyphen continues a command
line over more than one line of in­
put.

You can abbreviate commands and
keywords to four or fewer charac­
ters.

Type a command and-press <RET>.
DCL will prompt for the required and
optional parameters.

GETTING STARTED 2- 13

EDITING A DCL COMMAND LINE
To accomplish various tasks, you will have to perform many of the following operations on a
DCL command line:

Move the cursor

Add or delete data from the command line

Recall a previously issued command line

Control information displayed at your terminal

Terminate an operation

Table 2-4: Moving the Cursor

Special
Operation Function Key

Moving the Cursor to the Left LEFT ARROW
CTRUD

Moving the Cursor to the Right RIGHT ARROW
CT RUF

yMoving the Cursor to the Be- CTRUH
·i g1nning of the Line

~.··.· Moving the Cursor to the End CTRUE
';"'

of the Line

2-14 GETTING STARTED

Comments

Moves the cursor one character to the
left. Holding the LEFT ARROW key
down moves the cursor until the key is
released.

Moves the cursor one character to the
right. Holding the RIGHT ARROW key
down moves the cursor until the key is
released.

Moves the cursor to the beginning of the
line.

Moves the cursor to the end of the line.
G

Table 2-5: Changing Data on the Command Line

Special
Operation Function Key

Deleting a Character DELETE

\,.

':~<Deleting a Word LF <1
\ ·

. x

CTRUJ

Deleting the Line CTRUU

YClearing the Line and the CTRUX
Type-Ahead Buffer

Replacing a Character text. ..

Inserting a Character CTRUA

Comments

Deletes the character to the left of the
cursor. (Note that on a hardcopy ter­
minal the system responds by typing
a backslash (\} followed by the delete
character.}

Deletes the preceding word .

Erases all characters to the left of the
cursor. When the cursor is at the end
of the line, pressing the CTRUU key se­
quence erases the entire command line.

Discards the current line and deletes
data in the type-ahead buffer.

Pressing any keyboard character causes
that character to replace the character
originally at the cursor position. This is
referred to as the OVERSTRIKE mode
of operation~ OVERSTRIKE mode is the
default data entry mode.

CTRU A changes the terminal's data en­
try mode from OVERSTRIKE mode to
INSERT mode. When you press any
keyboard key in INSERT mode, the orig­
inal text moves to the right, making room
for the new character(s). If you are
in INSERT mode, CTRU A changes the
terminal's mode back to OVERSTRIKE.

GETTING STARTED 2- 15

Table 2-6: Recalling a Previously Issued Command Line

Operation

Recalling the most recent
commands

Recalling recently entered
commands

Refreshing a DCL command

2- 16 GETTING STARTED

Special
Function Key

UPARROW
CT RUB

DOWN ARROW

CTR UR

Comments

Consecutively recalls the last command
passed to the DCL CU. Commands
used for recalling previously entered
commands from the command buffer
are not retained.

Recalls recently entered commands from
the command buffer. After recalling
the most recently entered command,
pressing the DOWN ARROW key dis­
plays a blank line.

Redisplays the last unentered com­
mand line on your terminal. (Note that
on a hardcopy terminal, the system is­
sues a <RET> prior to retyping the cur­
rent command line.)

THE RECALL COMMAND
The RECALL command displays previously-entered commands so that the user can re-use
them. WP to 20 commands are stored in the RECALL buffer.

Press <RET> after you have redisplayed a command to have the system execute that command.

Table 2-7: Recalling a Previous Command Line with the RECALL Command

Operation Command/Qualifier Comments

-ft Displaying the RECALL buffer RECALUALL The I ALL qualifier displays a numbered
list of the commands you have en­
tered. (\J? 1 o ··2. D)

Recalling the third most re- RECALL 3
cently entered command line

Recalling the most recently RECALL PRINT
entered PRINT command

·t'Erasing the RECALL buffer RECALUERASE
i

t OfL 0pi · ..

Adding the parameter 3 to the RE­
CALL command recalls the third most
recently entered command line.

The command parameter PRINT re­
calls the last PRINT command entered.

The /ERASE qualifier empties the con­
tents of the RECALL buffer.

GETTING STARTED 2- 17

;: -· f~~ ----------------------------------

UJ .:'l .~ Table 2-8: Controlling the Display of Information at Your Terminal
D
~7· "'·'

Operation

Redisplaying the
Terminal Screen

Suspending
Terminal Output

Resuming
Terminal Output

Suppressing and *' Resuming Terminal
Display

I
~~

Special
Function Key

CTRLJW

CTR US

HOLD SCREEN

NO SCROLL

CTRUQ

HOLD SCREEN

NO SCROLL

CTRUO

2-18 GETTING STARTED

Comments

Within some programs, CTRUW refreshes
the current terminal display. (This key se­
quence is useful within the EDT editor.)

Suspends the display of information at your
terminal.

The HOLD SCREEN key on VT200-series ter­
minals also suspends the display.

The NO SCROLL .. key on VT1 CO-series termi­
nals also suspends the display.

Allows the program suspended by CTRUS to
resume execution.

Depressing the HOLD SCREEN key again af­
ter halting the terminal display resumes the
display on VT200-series terminals.

Depressing the NO SCROLL key again after
halting the terminal display resumes the dis­
play on VT1 CO-series terminals.

Suppresses the current image's output. The
routine that generates the display continues
to execute, returning control to the terminal
when it terminates. The command echoes as
Output off. Entering the key sequence a sec­
ond time, enables the terminal to receive out­
put again. The command echoes as Output
on.

Table 2-9: Terminating an Operation

Operation

Canceling a Command Line

Closing a File

Determining Your
Current Process
Operation

Special
Function Key

CT RUY

CTRuc·

CT RUZ

CTR UT

Comments

Cancels the execution of the current
image. Control returns to DCL com­
mand level. The command echoes as

· Interrupt.

Within certain applications, CTRUC can­
cels command processing. CTRUC
echoes as Cancel. (When __ CTB.L/.C_is
not_~bl.edr .. use-.Cmu¥.)

Indicates the end of a file entered at
the terminal (for example, a file you
opened with the CREATE command).
In certain utilities, the CTRUZ key se­
quence is equivalent to the EXIT com­
mand (for example, the MAIL Utility).
The command echoes as Exit.

Momentarily interrupts output to dis­
play a line of statistical information about
the current process. This key sequence
is only informative. It does not affect
the process operation.

GETTING STARTED 2- 19

GETTING HELP

The Documentation Set

Contains

Information about the VMS system

Discussions of concepts

Command examples

Definitions

Restrictions and problems

Refer to Table 2-10 as an index to documentation

2- 20 GETTING STARTED

Table 2-10: Manuals for Locating Information About Your System

Topic

Commands and Qualifiers

Descriptions

Examples

Syntax

Concepts of the Operating System

Definitions of Terms and Acronyms

Information and Error Messages Issued
by the System

Interpretations

Suggested user actions

Location of Major Topics in the Document
Set

Restrictions and Known Problems with Cur­
rent Operating System Release

Software Available for Your Use

VMS Manual

VMS DCL Dictionary

See Prompts, Command Parameters, and File Qual­
ifiers sections of a given entry

See Examples section of a given entry

See Format section of a given entry

VMS Glossary and Concepts Manual

VMS Glossary and Concepts Manual

VMS System Messages and Recovery Procedures
Reference Manual

Overview of VMS Documentation VMS Master In­
dex

VMS Version VS.O Release Notes (Current Ver­
sion)

A VMS Operating System (Current Version) Soft­
ware Product Description is included with the VMS
documentation set

GETTING STARTED 2- 21

The Online Help Facility
To invoke the Help facility:

Enter the HELP command at the VMS pro.mpt

Select a topic from the displayed list

Entering a topic printed in uppercase yields text on the DCL command of the same
name

Entering a topic printed in lowercase yields text on a general topic

Press <CTRUZ> to leave the Help facility

• Table 2-11 lists commands for operating the Help facility

2- 22 GETTING STARTED

Table 2-11: Using the DCL HELP Facility

Operation Command

Displaying a List of Available s HELP

Help Topics

Displaying Instructions on the $ HELP INSTRUCTIONS

Help Facility

Displaying a List of Hints $ HELP HINTS

Displaying Information About $ HELP sHow

the SHOW Command

Displaying Information About $HELP sHow PROcEss

the SHOW PROCESS Com-
mand

Redisplaying the Previous <'?>

HELP Screen

Returning to DCL Command <RET>

Level

<CTRL/Z>

Comments

The HELP command lists the topics
on which you can obtain information.
The system responds with the. Topic?
prompt.

Displays detailed instructions on how
to use the Help facility.

Produces lists of commands grouped
by function.

The SHOW parameter used with the
HELP command produces an informa­
tive display on the SHOW command.
The system responds with the prompt
SHOW Subtopic?.

By including the keyword PROCESS,
you can have the system produce an
informative display on the SHOW PRO­
CESS command. SHOW PROCESS
Subtopic? is the system prompt.

Pressing the question mark key(?) re­
displays the previous HELP message.

Moves you one level closer to DCL
level. When you are at the Topic?
prompt, pressing <RET> returns you
to DCL command level.

CTRUZ or EXIT returns you to DCL
command level regardless of the HELP
prompt. Both commands echo as EXIT.

GETTING STARTED 2- 23

CHANGING YOUR PASSWORD
The DCL command SET PASSWORD changes your password. When changing your password,
user input is not echoed at the terminal. You must enter the new password twice. If the two
entries do not match, the password does not change.

Example 2-2: Changing Your Password

$ SET PASSWORD

Old password: QOINOA
New password: FERMATA
Verification: FERMATA

Note that in a real session, neither the old password nor the new password and its verification
appear on the screen.

2- 24 GETTING STARTED

SYSTEM MESSAGES
A system message consists of the following parts:

System message delimiter

Facility code

• Severity level code

• Message identification code

• Message text

Figure 2-3: The Elements of a System Message

SYSTEM
-------- MESSAGE

DELIMITER

...------- FACILITY
CODE •. _..

MESSAGE TEXT MESSAGE TEXT

,,
I

< •• / ~

.,. ~:. ... FN F . ~ l.

TTB_X031 5_18

GETIING STARTED 2- 25

Table 2-12: _ Elements of the System Message

Message
Element

System
Message
Delimiter

Facility
Code

Severity
Level
Code

Message
Identification
Code

Message
Text

2- 26 GETIING STARTED

Code

%

DCL
TYPE

E -~; · ..
F . -- Ff\\(\·'. ..

FNF
IVVERB

unrecognized
command
verb
check
spelling

Purpose

All system messages begin with either
a percent sign(%) or a hyphen(-). The
percent sign precedes the first system
message received, while the hyphen
precedes all additional messages.

Names the portion of the operating
system that detected an error.

Describes the severity of the error. (For
an explanation of each severity level
code, see Table 2-13.)

Used to locate further information about
a message.

Gives a more detailed explanation of
the error, and suggests an action to
recover from the error.

Table 2-13: Severity Levels in System Error Messages

Severity
Level

Success

Informational

·warning

Error

Severe (or
Fatal) Error

Abbreviation

s

w

E

F

Comments

VMS does not usually display
success messages.

VMS sometimes displays ad­
ditional information about suc­
cess of operation.

Some operations may have suc­
ceeded. Others may have failed.

The operation probably failed,
but some part may have suc­
ceeded.

The operation failed.

GETTING STARTED 2- 27

'{-DISPLAYING CHARACTERISTICS OF TERMINAL,
PROCESS, AND SYSTEM

•

•

y~~E.~termi n~I .

Your process

YQ.Yr. system

Terminal Characteristics

• Physical (hardware}

• Assigned by system manager

• Displayed and changed with the following commands:
-ik-·

- SET TERMINAL
+·

- SHOW TERMINAL

2- 28 GETTING STARTED

THE SHOW TERMINAL COMMAND
The SHOW TERMINAL command displays the current characteristics of a terminal. Each char­
acteristic corresponds to an option of the SET TERMINAL command.

Example:

$ SHOW TERMINAL

Terminal: VTA145: Device _Type: PRO Series Owner: SMI.TH ·-Physical
Input:

terminal: LTA88: Username: SMITH
9600 LFfill: 0

Output: 9600 CRfill: 0
Terminal Characteristics:
Interactive Echo
No Hostsync TTsync
Wrap Scope
Broadcast No Readsync
No Modem No Local echo
No Brdcstmbx No OMA

Width: 80
Page: 24

Type_ahead
Lowercase
No Remote
No Form
No Autobaud
No Altypeahd

Line Editing Overstrike editing No Fallback
Ne Secure server
No SIXEL Graphics
ANSI CRT
Edit mode

Disconnect No Pasthru
No Soft Characters Printer port
Regis No Block mode
DEC CRT No DEC CRT2

~THE SET TERMINAL COMMAND

Parity: None

No Escape
Tab
No Eightbit
Fulldup
Hangup
Set_speed
No Dialup
No Syspassword
Application keypad
Advanced video
No DEC CRT3

The SET TERMINAL command changes the system's interpretation of the terminal's character­
istics.

~ Example:

$ SET TERMINAL/WIDTH=l32

This example changes the width of the terminal screen to 132 characters.

GETTING STARTED 2- 29

Table 2-14: Commands for Displaying the Characteristics of Your Terminal, Process, and
System

VMS Command Command
Information and Option Qualifier

lime of Day $SHOW TIME None

Terminal Characteristics $ SHOW TERMINAL None
'·,\ l
~ Process P&rameters

Def au It Device $ SHOW PROCESS None

Default Directory $ SHOW PROCESS None

User Name $ SHOW PROCESS None

~~-~2!J!Y $ SHOW PROCESS None

Process Identification Code (PIO) $ SHOW PROCESS None

User Identification Code (UIC) $ SHOW PROCESS None

Account Name $ SHOW PROCESS /QUOTAS

Process Quotas and Limits $ SHOW PROCESS /QUOTAS

Privileges $ SHOW PROCESS /PRIVILEGES

Space Available for Your Use on $SHOW QUOTA None
Your Default Device

All Processes Running on Your Sys- $ SHOW SYSTEM None
tern

Names of All Users Currently Logged $SHOW USERS None
in to Your System

Names of Devices on Your System $ SHOW DEVICES None

(.··,H

2- 30 GETTING STARTED

SUMMARY
To log in to the system:

Press <RET>~

Type your user name <RET>.

Type your password <RET>. Remember, your password is not displayed.

_ To log out of the system:

Type LOGOUT <RET>.

DCL Command Elements

Command Element Definition

Command line A command line is the complete specification of a DCL command.

Required Elements of a Command Line

Verb The verb specifies the action of your request.

Parameter Parameter(s) receives the action of the verb.

Optional Elements of a Command Line

Qualifier

Value

$

Label:

Getting Help

The qualifier(s) describes or modifies the action taken by the verb.
A slash (/) precedes each qualifier.

A value assigns a specific quantity to a qualifier.

The dollar sign must precede commands you place in files.

The exclamation mark(!) indicates a comment.

The label is a character string that identifies a particular line in a
command procedure.

The documentation set contains information about the VMS system, discussions of concepts,
and command definitions and examples.

The online Help facility is invoked by e_ntering the HELP command. System Messages

System messages consist of the system message delimiter, facility code, severity level code,
message identification code and the message text.

GETTING STARTED 2- 31

MODULE 3
CREATING AND EDITING TEXT FILES

CREATING AND EDITING TEXT FILES 3- 1

INTRODUCTION
One of the most common tasks for a user is the creation and modification of text files. Text files
can assume a number of forms and can serve many purposes. They can be:

Memos and letters

Data files that are used by other programs and utilities

Computer programs written in a language like FORTRAN, Pascal, or COBOL

VMS software provides a number of ways to create, maintain, and modify text files. The two
most popular are:

The EDT Editor

•

CREATING AND EDITING TEXT FILES 3- 3

OBJECTIVES
To create and modjfy text files on a VMS system, you should be able to:

• Use the proper DCL command to invoke a text editor.

EDT Editor

EVE Editor

• Identify the major features of each editor.

• Use appropriate commands and keys to perform editing tasks such as:

Moving the cursor

Adding and deleting text

Selecting and manipulating text strings

• Terminate an editing session.

Use available online Help facilities.

• Recover files that were being edited at a system interruption.

RESOURCES

• VMS Guide to Text Processing

• VMS Text Processing Utility Reference Manual {Appendix F)

• VMS EDT Reference Manual

3- 4 CREATING AND EDITING TEXT FILES

CHOOSING AN EDITOR
There are many reasons for choosing one editor over another. Your choice may be based on
ease of editing, the ability to edit more than one file simultaneously, or using multiple buffers
and windows ..

EDT is the editor supplied with many DIGITAL systems. The EVE editor is an editor available
only on VMS systems.

Restrictions may apply in unique situations, such as having to edit only on a hardcopy terminal.

Features of both the EDT and EVE editors follow. This listing should aid you in deciding which
editor to choose.

CREATING AND EDITING TEXT FILES 3- 5

EDT Editing Utility

~·

•

Default teJ<J__editing ~@y supplied with a VMS system

Available J2!:!.E'l~!J2-'J~JJ.t\,b-.§Y§,i?~....?

Allows editing on hardcopy terminals - f'.ioT so w /EV£

More system load than EVE

Two editing modes are available

Keypad mode - FoL t~,

Line mode

Automatically entered when EDT is invoked

Indicated by an asterisk prompt (*)

Works with the file on a line-by-line basis

Primarily intended for a hardcopy terminal

• Keypad mode

Requires a video terminal

Entered by using the CHANGE command at the line-mode prompt (*)

Works with the file as a unit

Modifications made on the screen become modifications to the file

3- 6 CREATING AND EDITING TEXT FILES

)

The Extensible VAX Editor (EVE)
Using EVE, it is possible to manipulate and edit text both in newly created files and existing files.

Features include:

Keypad editing

Insert and overstrike modes for text entry

Automatic word wrap

Multiple windows

Can be customized to the user's needs, using the features of the VAXTPU programming
language

P ri mari ly_g_y_M§. .. ~Qi~<?._r

Less system load than EDT

Provides more features than EDT

Provides EDT -like keypad if desired

• Functions on VT100 and VT200-series and later terminals, and on VAX workstations

EVE was designed with both ease of learning and ease of use in mind. Testing has shown it to
be easier to learn and use than EDT.

Each editor will be discussed in greater detail in the remainder of this module.

CREATING AND EDITING TEXT FILES 3- 7

USING THE EDT EDITOR

Invoking the EDT Editor

Command format: $ EDIT file-name

• The command qualifier /EDT is available but not required

EDT Screen Layout

Figure 3-1: EDT Screen Layout - Line Mode and Keypad Mode

Input flt• does not exist
[E()B]
•change

[EOB]

,,
OTL Ju::::.r c.

TT&_X0311_11

3- 8 CREATING AND EDITING TEXT FILES

j)

,_ \

Using EDT Help

From Line mode

Press key on which you want help

Press space bar to exit

CREATING AND EDITING TEXT FILES 3- 9

Example 3-1: Using the Help Facility On Line

$ ED~T MYFILE.TXT
1 Although the computer has always been

*help

HELP

You can get help on a topic by typing:

HELP topic subtopic subsubtopic ...

A topic can have one of the following forms:

1. An alphanumeric string (e.g. a command name, option, etc.)
2. The match-all or wildcard symbol (*)

Examples: HELP SUBSTITUTE NEXT
HELP CHANGE SUBCOMMAND
HELP CH

If a topic is abbreviated, HELP displays the text for all topics that
match the abbreviation.

Additional information available:

CHANGE CLEAR
FIND HELP
PRINT QUIT
SUBSTITUTE TAB

*HELP CHANGE

COPY
INCLUDE
RANGE
TYPE

DEFINE
INSERT
REPLACE
WRITE

DELETE EXIT
JOURNAL KEYPAD
RESEQUENCE SET

FILL
MOVE
SHOW

The CHANGE command puts EDT in change mode. Use change mode to edit at
the character level rather than the line level.

Format: CHANGE [range] [;nokeypad command(s)]

The optional range speci·fies the cursor position when you enter change
mode. If you omit range, the current position is used.

There are three submodes of change mode. Which submode you use depends
on the type of terminal you are using and whether or not you wish to use
the auxiliary (numeric) keypad for editing commands. These modes are:

1. Hardcopy mode
2 • Keypad mode
3. Nokeypad mode

If the CHANGE command contains a semicolon (;) it may be followed by
nokeypad commands. If the last nokeypad command is EX, EDT returns to
line mode for the next command line. This is the only form of the
CHANGE command that may be used in a startup command file or macro.

Additional information available:

ENTITIES

*QUIT

HARD COPY KEYPAD NOKEYPAD

3- 10 CREATING AND EDITING TEXT FILES

SUBCOMMANDS

The EDT Keypad

Commonly Used Features

GOLD key (<PF1 >) activates alternate definitions for keypad keys

• Moving the cursor

By character, word, or line

To the top or bottom of files

In forward or reverse direction

• Deleting and undeleting text

- By character, word, or line

CREATING AND EDITING TEXT FILES 3- 11

'*' Figure 3-2: EDT Keypad Definitions

·-

G D c:J p

7 8

PAGE SECT
_(Cou•Alffi) FILL
t------·-·-

4 5

ADVANCE BACKUP
BOTTOM TOP

C...u'l'Lho(i::- C, :. .. ¥(2.,::;D rz..

1 2 1:,,..
WORD EOL0Q'\1·

CH NG CASE DEL EOL
c.,,_,; Ci ·::.C>~--

0

LINE Gu 12.~::w.-
OPEN LINE

PF3 PF4

FNDNXT DELL
FIND UNO L

~
9

APPEND
REPLACE w

~
6

CUT
PASTE c

3

CHAR
SPECINS

SELECT
RESET

I\ I/

(;;-DL\)

L l &-:i:

(L;

ENTER
SUBS

TTB_X0317_aa

3- 12 CREATING AND EDITING TEXT FILES

)

TabJe 3-1: Moving the EDT Cursor

Function

Move one character in any direction

Move to the beginning of the next line

Move to the beginning of the next word

Move to the end of the line

Move to the next section of the text (16 lines)

Move to the bottom of the buffer

Move to the ·top of the buffer

Table 3-2: Changing the EDT Cursor Direction

Direction

Set cursor to forward

Set cursor to backward

Key

4 (on keypad)

5 (on keypad)

Key

Arrow keys (UP, DOWN, LEFT, RIGHT)

0 (on keypad)

1 (on keypad)

2 (on keypad)

8 (on keypad)

GOLD key (PF1) followed by 4 (on key­
pad)

GOLD key (PF1) followed by 5 (on key­
pad)

CREATING AND EDITING TEXT FILES 3-13

Table 3-3: Deleting Text in EDT

Function Key Comments

Delete characters ~ (VT200-series)
DELETE (VT100-series)

!?_eJ§tes_1b.a..charac.te.Llo.Jb.e.JfilLQf
the .. cursor ~" ,.~:: . . 'v ~·~

J: , (on keypad)

Delete words - (on keypad}

Delete lines PF4

Deletes the character ..oJLwhich the
~js__pQSjiiQned (L~ \<'(;; '..J;f! x"".><.1'J
Deletes characters from the cursor
position to the beginning of the next
word

Deletes text from the current cursor
position to the beginning of the next
line

PF1 followed by 2 (on keypad} Deletes text between the cursor and
the end of the line

Table 3-4: Restoring Text in EDT

Function

Restore the last character deleted

Restore the last word deleted

Restore the last line deleted

3- 14 CREATING AND EDITING TEXT FILES

Keypad Sequence

PF1 followed by comma (,}

PF1 followed by hyphen (-)

PF1 followed by PF4

Ending an EDT Editing Session

From Keypad mode

Press <CTRUZ> to return to Line mode

At the asterisk prompt

Enter EXIT to end the session and save changes, or

Enter QUIT to end the session without saving changes

Or

• Press <PF1> then keypad key 7 - rL£ --EPT'c.~ ;,._\If' h'1Dl>t:·

• At the Command: prompt

Enter EXIT to end the session and save changes, or

Enter QUIT to end the session without saving changes

CREATING AND EDITING TEXT FILES 3- 15

EDT File Recovery

Journaling

Allows file recovery after a system interruption or failure_

Used to reproduce the current editing session

Last few file modifications may not be recovered

• Journal File

The default file name is the same as the input file name

The default file type is JOU

Contains keystrokes and editing commands of your current terminal session

• Syntax

$EDIT/RECOVER file-name

::¥- • Specify the original file type (not JOU)

Example 3-2: Recovering a File After a System Interruption

$ EDIT MYFILE.TXT
*CHANGE
Editing session in progress.
System interruption occurs.
System recovers.

$ EDIT/RECOVER MYFILE.TXT

3-16 CREATING AND EDITING TEXT FILES

USING EVE

Invoking the EVE Interface
J.t Command format: $ EDIT/TPU file-name

EVE Screen Layout

Figure 3-3: EVE Screen Layout

0 ENO OF
FILE MARKER ----- [End of flle]

0 STATUS LINE ---- l ___ au_ff_•_r _Fl_LE_._TX_T ___ ._n•_•_rt ___ F_o_rw_a_r_d _..

© COMMAND LINE __ ,..

0 MESSAGE ---- Editing new flle; could not find DRA1 :[SMITH]FILE.TXT
BUFFER

TTll_X0311_11

CREATING AND EDITING TEXT FILES 3-17

The EVE Interface

Figure 3-4: EVE Keypad Definitions (VT100-Series Terminals)

[Jc:J PF3

~ HELP FORWARD
REVERSE

0

I SE:ECT 11 REM

8

0VE I

9

INSERT MOVE BY
HERE LINE

DDJD ERASE
WORD

EJDJEJ INSERT
OVERSTR

0

NEXT PREV
SCREEN SCREEN

TTB_X031 ;_aa

3- 18 CREATING AND EDITING TEXT FILES

Figure 3-5: EVE Keypad Definitions (VT200-Series Terminals)

F10 F11 F12 F13 F14

a [DI 11
FORWARD l\llOVE BY ERASE INSERT DO ~
REVERSE LINE WORD OVERSTR - t} ...)/'. .. •\ .\."\

~:~ 1-,~.tJ /_ -·~ \·•·' {

0 D INSERT
HERE

0 PREV NEXT
SCREEN SCREEN

rn
EJITJEJ

TTl_X0320_81

CREATING AND EDITING TEXT FILES 3- 19

MOVING THE EVE CURSOR
The following table describes the editing keys and EVE commands that move the cursor.

f Table 3-5: Moving the Cursor Using Keys

Key Cursor Destination

UP ARROW Moves the cursor up one character.

DOWN ARROW

LEFT ARROW

RIGHT ARROW

CTRLJE

CTRLJH

MOVE BY LINE

PREV SCREEN

NEXT SCREEN

Moves the cursor down one character.

Moves the cursor one character to the left.

Moves the cursor one character to the right.

Moves the cursor to the end of the current line.

Moves the cursor to the beginning of the currant line.

Moves the cursor to the end of the current line or to the end
of the next line if the cursor is already at the end of a line,
when the current direction is forward. Moves the cursor to the
beginning of the current line or to the beginning of the previous
line if the cursor is already at the beginning of a line, when the
current direction is reverse.

Moves the cursor to the previous screen of the .current buffer.

Moves the cursor to the next screen of the current buffer.

3- 20 CREATING AND EDITING TEXT FILES

£ .. Ai

Table 3-6: Using Commanq.s to Move the Cursor

Command

TOP

BOTTOM

BUFFER

GET FILE
[file-name]

LINE

:.\ic;..rr-.(.>

MOVE BYWORD

OTHER WINDOW

Cursor Destination

Moves the cursor to the beginning of the current buffer.

Moves the cursor to the end of the current buffer.

Puts the specified buffer in the current window, and moves the
cursor to the last location it occupied in that buffer. Creates a
new buffer if the specified buffer does not exist.

Creates a new buffer that contains the text of the specified file,
places the new buffer in the current window with the cursor at
the beginning of the new buffer. If you specify a nonexistant
file, an empty buffer is created.

Moves the cursor to the beginning of line n in the current buffer.
n must be a positive integer.

Moves the cursor to the beginning of the next word when the
current direction is forward. Moves the cursor to the beginning
of the previous word when the current direction is reverse.

()Wh~n<>th~~;-· are ~~"·;diting wind~~~-.:~-n your screen, the cur­
sor moves to the last location it occupied in the other editing
window.

,. ·~""": i..·,~

tl

CREATING AND EDITING TEXT FILES 3- 21

; 1) ~./:.)LC/:

INSERTING TEXT IN EVE
The <INSERT OVERSTR> key changes the current editing mode. The editing mode is displayed
in the status line.

Text is inserted at the current cursor position when in Insert mode, while text already in the file
moves to the right.

Text already in the file is overwritten when in Overstrike mode at the current cursor position.

ERASING TEXT
Table 3--7 shows the editing keys used to erase text.

i, Table 3-7: Keys for Deleting Text
1

Key Effect

DELETE <Z\ Deletes the character to the left of the cursor.

ERASE WORD

CTRUU

SELECT

REMOVE

INSERT HERE

Deletes the current word or, if the cursor is not on a word,
deletes the next word.

Deletes all characters from the current cursor position to the
beginning of the line.

Marks text for removal from the initial cursor position to wherever
you move the cursor.

Removes the text that was marked by the SELECT key.

Inserts the text in the INSERT HERE buffer into the file at the
current cursor position.

3- 22 CREATING AND EDITING TEXT FILES

'#"DEFINING AN EDT-LIKE KEYPAD
The command SET KEYPAD EDT defines an EDT -like keyboard. !:illt.e.JbatJ.bis_@mmaru:Ld_ges
~-to ... e..ni.eL~OI~c..9Jnma_11_q_§ ___ gy_JJ§i.ng __ tba.~.Q~~~-~· You only have access to the
EDT-like functions by pressing the keypad keys.

The EDT-style keypad does not fully implement EDT. The differences are:

<CTRUZ> makes EVE write the buffer to a file and exit to the DCL prompt.

<GOLD/KP7> is, defined as the <DO> key when the keypad is set to EDT.
·t

-:if• <GOLD/KPB> is defined as <FILL>, to reformat the currently selected text or the current
paragraph. If you want this key to fill only the selected text (as in real EDT) redefine the
key as <FILL RANGE>.

EVE defines the <ENTER> key as <RET>.

CANCELING AN EDT-LIKE KEYPAD
-f~1,41f }; ~

The command ,SET KEYPAD_ ~OE~! cancels the EDT-like keypad setting.

For VT1 OD-series terminals, this command sets the keypad to VT100, which is the default setting.

For VT200-series terminals, this command sets the keypad to NUMERIC, which is the default
setting.

CREATING AND EDITING TEXT FILES 3- 23

t>
N
.l:a

0
::D

E z
G)

)>
z
c
m
c
=i z
G)

-f m
><
-f
:!l
r
m
(/)

RESUI Tor SEr KEYPAD FDf COMMAND

CANNOr OE DEFINED

1 -- I

--· F-;- ·- - ·;~--·- --;;- -] [--;~-·] [Flj 11=...:;; :J--[-=.:-;7 :~~J-1- · -.~-=ir~-l I :::llj 1.:..~~:11 8~,o~·I [·;:.::::·11 ·n:::.. Jj I] L I I __ --- L:==1J l -·-- ----- _ _J -- --~~JJ ·-·-· ·-- . ··-··---·-· ·- ·---
-- ·-------------- --------------------------- ---- ------ ------- - ------·-- ---- ---- - ·-·--·-· ..

[~] [;.] L~J [] [] [J [] [J [] [.] C~J D [!] L:~:::,J
~1DDDDDDDDDDl'.ll'.1LIFIUllN ~ Relreoh End of Li Remembe• E• SOL Tab LJ LJ

[,,,~ I [-:~J l,..:J l-] r-· J [] D [J [J [] [] L] [: J [:]
[-- _JDDDDDDDDDDDL-=:=J
--lC::~JL .. _ -.. - JJ
SAMPl.E KEYDOAllO KEY SAMPLE KEYPAD on FUNCTION KEY

[J- SHIFT fUNCTION

- UNSlllFTED FUNCTION

-- - OOlO OR CTRI FUNC llON

WARNING: DEFINING CIRL/X llAS UNPREDICTABLE RESULTS

::!!
(Q
c .,
CD

~
m
0
~
r-
~
CD

" CD
'<
0
CD = :::J
;:::;
5·
:::J
tn
0 .,

~
0
0
I en

CD ... a;·
tn

a} .,
3
:::J
m
in

Figure 3-6: EDT-Like Key Definitions for VT200-Series Terminals (Cont)

Help Do

Keypad Help

Key Defs

Find Insert Here Remove

Find Paste Cut

Wild Find Restore Copy

Select PrevScreen NextScreen

Select Pre Ser Nax Ser

Reset

t
Move Up

Top

- + -
Move Left Move Down Move Right

Sta of Li Bottom End of Li

SAMPLE KEYBOARD KEY

D +--- SHIFT FUNCTION

+-- UNSHIFTED FUNCTION

4--- GOLD OR CTRL FUNCTION

SAMPLE KEYPAD OR FUNCTION KEY

9 4--- KEY LABEL

Append 4-- EDT DEFAULT FUNCTION

EDT Rep +--- EDT GOLD FUNCTION

'CJCJCJCJ

CJ PF2 PF3

Keypad Help Fnd Nxt

Key Defs Find d

PF4

Del L

Res Lin

7 8 9

Move by Pa Sect Append Dal W

Do Fill EDT Rep Res Wor

4 5 6

Forward Reverse Remove Del C

Bottom Top Ins Her Res Cha

2 3 Enter

Word EOL Char

Chng Cas Del EOL Spec Ins
Return

O·

Line Select

Open Lina Reset Subs

WARNING: DEFINING CTRL/X HAS UNPREDICTABLE RESULTS

TTB_X0321 _8i

CREATING AND EDITING TEXT FILES 3- 25

Figure 3-7: EDT-Like Key Definitions for VT100-Series Terminals

3- 26 CREATING AND EDITING TEXT FILES

z
0
;: z
" 0 z -::> ~

; ~
: ; Q "' c ... 0
... Q Cl
... Q Q

"' "' "'

l l l
rn ...

Q

"'

Figure 3-7: EDT-Like Key Definitions for VT100-Series Terminals (Cont)

I PF1 I PF2 PF3 ~I l lK•yp•O "°'P Fnd Nxt L

Gold Key Deis Find L Res Lin j

7 8 9

Move by Pa Sect Append Del W

Do Fill EDT Rep Rea Wor

4 5 6

Forward Reverse Remove Del C

Bottom Top Ins Her Res Cha

2 3 Enter

Word EOL Char

Chng Cas Del EOL Spec Ins
Return

0

Line Select

Open Line Reset Subs

WARNING: DEFINING CTRL/X HAS UN PREDICTABLE RES UL TS

SAMPLE KEYPAD OR FUNCTION KEY

+-- KEY LABEL

Append +-- EDT DEFAULT FUNCTION

EDT Rep +--- EDT GOLD FUNCTION

TTB_X0324_88

CREATING AND EDITING TEXT FILES 3- 27

Using EVE Help

Line mode

Press <DO> (VT200) or <PF4> (VT100)

Type HELP

Enter the topic for which you want help

Press <RET> to exit help

Keypad mode

Press <PF2> (VT100) or <HELP> (VT200)

Press. key on which you want help

Press <RET> to exit

3- 28 CREATING AND EDITING TEXT FILES

Ending an EVE Session

Press <CTRUZ> to exit and save modifications

Press <00> (VT200) or <PF4> (VT100)

Type EXIT at command prompt to save modifications, or

Type QUIT at command prompt to disregard modifications

EVE File Recovery

• Journaling facility is identical to EDT

Allows file recovery after a system interruption

Used to reproduce the editing session

Last few changes are not recovered

• Journal file

The default file name is the same as the input file name

The default file type is T JL) --------....... --... ~ .. •-'""'\'"'"'"""'',.''""'···,~""

Contains keystrokes and editing commands of your current terminal session

• Command syntax:

$ EDlfrr;~~~ECOVER file-name (i '
_______ __ --

Specify the original file type (not T JL)

Example:

$ EDIT/TPU/RECOVER MYFILE.TEXT

CREATING AND EDITING TEXT FILES 3- 29

SUMMARY
There are two editors available on a VMS system: EDT (the default editor) and EVE.
Two editing modes are available with EDT:

Line mode

Keypad mode

EVE features include:

Keypad editing

Insert and Overstrike modes for text entry

Automatic word wrap

Multiple windows

The EDT Editor is invoked by:

$EDIT file-name

The EVE Editor is invoked by:

$ EDIT/TPU file-name

HELP is available within both editors.

An EDT editing session is ended by pressing <CTRUZ> then entering EXIT or QUIT, or by
pressing <PF1 > then keypad key 7 and entering EXIT or QUIT.

An EVE editing session is ended by pressing <CTRUZ> or by pressing either <DO> or <PF4>
then entering EXIT or QUIT.

3- 30 CREATING AND EDITING TEXT FILES

APPENDIX A-EDT LINE-MODE EDITING
EDT's line editing facility can be used with any interactive terminal. Line editing uses the line as
its point of reference. Line editing commands are useful for manipulating large blocks of text.

To aid in locating and editing text, EDT assigns line numbers. Th~-~~--JtD~-Q~filQ.~r§ .. ?:re not p~rt
~the __ !~~~~-~~~ __ an~ n,gt ~~pt_ in try~ __ f.!le _yvbgn. YP.~ __ finis,b a11 .~oiJ!.Q9...~~~sion.

The following commands deal with line-mode editing.

Inserting Text
Use the INSERT command to insert text. The cursor in_dents 16 spaces and waits for the text
to be inserted. You can enter as many lines as you wish.

Example:

$ EDIT INSERT.FYI
1 This is line 1
*
2 This is line 2
*
3 This is line 3
*
4 etc.
*
[EOB)

* J: .. NS.ER'!~,.2.
This is the new text which is being typed
in the file. It is being ~;i-~e:i;:_~~;:-~9

__ Jj •. n.~ .. -4.
*EXIT

$ EDIT
1
*

INSERT.FYI
This is line 1

2 This is the new text which is being typed
*
3 in the file. It·is being inserted prior to
*
4 line 2
*
5 This is line 2
*
6 This is line 3
*
7 etc.
*
[EOB]

*QUIT

CREATING AND EDITING TEXT FILES 3- 31

Substituting Text
Use either the SUBSTITUTE or SUBSTITUTE NEXT command to substitute strings of text.

The SUBSTITUTE command operates on the current line or on a specified range within the
buffer.

Syntax:

•SUBSTITUTE/old-string/new-string

Example:

*SUBSTITUTE/FORTRAN/PASCAL

To substitute a string throughout the complete buffer, use the WHOLE parameter in conjunction
with the SUBSTITUTE command:

Example:

*SUBSTITUTE/FORTRAN/PASCAL/WHOLE

~The SUBSTITUTE NEXT command operates on the next occurrence of the specified string
within the buffer.

Syntax:

•SUBSTITUTE NEXT/old-string/new-string

Example:

*SUBSTITUTE NEXT/FORTRAN/PASCAL

3- 32 CREATING AND EDITING TEXT FILES

Moving Text from One Location to Another
Use either the MOVE or COPY command to move one or more lines of text from one location
to another.

Note that the MOVE command deletes the text from the original location, whereas the COPY
command does not delete the text.

Syntax:

*MOVE first-range TO second-range

In the following example, lines 20 through 30 are moved above line 10. Note that "second-range"
always refers to a single line.

;1

*MOVE 20 THRU 30 TO 10

To move.the current line, enter:

*MOVE TO 15

To move text without deleting the text in the original position, use the COPY command.

Syntax:

*COPY first-range TO second-range

In the following example, lines 35 through 43 are moved above line 7.

*COPY 35 THRO 43 TO 7

CREATING AND EDITING TEXT FILES 3- 33

Deleting Text
The DELETE command deletes lines or group of lines.

Syntax:

•DELETE range

The following example shows how to delete line 2 in a file.

$ EDIT MYFILE.TXT
1 This is Line 1

* TYPE WHOLE
2 This is line 2
3 This is Line 3
4 This is Line 4

* DELETE 2
1 line deleted
3 This is Line 3

* TYPE. WHOLE
1 This is Line 1
3 This is Line 3
4 This is Line 4

One of EDT's features is the ability to edit more than one file. To accomplish this, you must
understand the relationship between buffers and files.

The following section describes the use of buffers in EDT.

3- 34 CREATING AND EDITING TEXT FILES

1'' Using Buffers in EDT
Buffers are temporary storage areas for text. Buffers enable you to:

Divide one or more files into sections.

Move part or all of another file into your editing session.

Create a file from part or all of the text in a buffer.
/

When an editing session has started, ~~!fer called MAIN is ~utomatically grovided bt.._~QT.
The MAIN buffer seNes as the. work area for you.

How to Create Buffers

Press the <GOLD> key, followed by the COMMAND function.

• At the Command: prompt, enter

The FIND command

An equal sign (=)

Buffer name of your choice {buffer names must begin with a letter)

Example:

Command: FIND=PASCAL

You can now insert and edit text ~in the MltfN buffer.

To return to the MAIN buffer, enter:

Command: FIND=MAIN

CREATING AND EDITING TEXT FILES 3- 35

The COPY command is used to copy the contents of one buffer into another buffer. In the
following example, the contents of the buffer MAIN are copied into the buffer FORTRAN. The
current buffer becomes FORTRAN.

*COPY =MAIN TO =FORTRAN

if Copying Text from a File into a Buffer

The INCLUDE command copies a file (outside of EDT) into a buffer. In this example, a file
named MYFI LE. TXT is copied into the MAIN buffer.

*INCLUDE MYFILE.TXT =MAIN

;#- Copying Text from a Buffer into a File

The WRITE command copies text from your current editing session into a file of your choice. In
this example, the entire contents of the current buffer are written to a file named MYFILE.FOR.

*WRITE MYFILE.FOR

¥ Deleting Buffers

Use the line-mode command CLEAR to delete buffers during an editing session. In the following
example, the buffer PASCAL is deleted.

*CLEAR PASCAL

3- 36 CREATING AND EDITING TEXT FILES

APPENDIX B-EVE
The following EVE commands are discussed in addition to the commands included in the previ­
ous EVE section of the module.

Inserting Text
You can insert:

•

.ll· .
'fl.

Text - Characters will be inserted into the buffer at the current cursor position by typing in
the text.

Files - Files can be inserted using the INCLUDE FILE command. The contents of the
specified file are inserted into the buffer at the line before the current cursor location.

Syntax:

.:::*:~ INCLUDE FILE [file-name]
/J

• ~qial ~Q!!Qr!nttngJ~.b.a.r.agt~r§ __ :-__ .P~~~~- .~GIR.b!Y~ ~.n..Q. tb~n.J>.r~~~. th~ .. §p~cial n()nprinting
q_t}.~IsGter.

Example of inserting a form feed into the buffer:

Press <CTRUV>

Press <CTRUL>

CREATING AND EDITING TEXT FILES 3- 37

Locating Text
Syntax:

*FIND search-string

The <FIND> key is used to locate specified text strings.

If the search string is in lowercase characters, EVE disregards the case of letters and locates
any occurrence of the string.

If the search string contains one or more uppercase letters, EVE locates only the occurrences
of the string that match the search string exactly.

If a search string is found, EVE displays the string in highlighted type. EVE also defines the
search string as a select range. While the search string is highlighted, you can perform any
operation on it that requires a select range.

~ Marking Locations in Text

The MARK and GO TO commands are used when you are editing a large file and wish to return
to a specific location later on during an editing session.

Press <00> and enter MARK label-name. The label name can be one or more alphanumeric
characters.

Press <00> and enter GO TO label-name to move the cursor to the marked location.

3- 38 CREATING AND EDITING TEXT FILES

Replacing Text
The REPLACE command allows you to replace a text string in the current bufferwith another
text string.

Format:

Press <DO>

Enter REPLACE (i ·

Enter the string to be replaced following the "Old string" prompt

enter the new string at the "New string" prompt

EVE moves the cursor to the first occurrence of the string, and prompts: Replace? Type
yes,no,all,Jast or quit. The following table lists the response and the action by EVE.

Table 3-8: Responding to REPLACE Prompts

Response

YES

NO

ALL

LAST

QUIT

EVE's Action

Replaces the string and attempts to locate another occurrence of the string in
the current direction.

Does not replace the string, and attempts to locate another occurrence of the
string in the current direction.

Replaces the string and all other occurrences of the string in the current direc­
tion. The cursor is moved to the position where the last replacement occurred.

Replaces this occurrence of the string and stops the REPLACE procedure.
The cursor does not move.

Does not replace this occurrence of the string and stops the REPLACE pro­
cedure. The cursor does not move.

CREATING AND EDITING TEXT FILES 3- 39

Restoring Text
The RESTORE command restores (or undeletes) the last word, sentence, or line erased by any
of the following:

• Any EVE command or any key bound to an EVE command

The key

Also includes the <PF4>, <MINUS>, <KP6>, <COMMA>, and <KP2> keys when the keypad
is set to EDT

RESTORE CHARACTER

The RESTORE CHARACTER command restores (or undeletes} the character last erased by
any of the following:

The ERASE CHARACTER command or any key bound to that command

The key

Also includes the <COMMA> key when the keypad is set to EDT

RESTORE LINE

The RESTORE LINE command restores (or undeletes} the line last erased by any of the follow­
ing:

The EVE commands ERASE LINE, ERASE START OF LINE, or any key bound to these
commands

• The <GOLD/DEL> key sequence on a VT200 terminal

• Also includes the <PF4> or <GOLD/KP2> keys when the keypad is set to EDT

RESTORE WORD

The RESTORE WORD command restores (or undeletes) the word last erased by any of the
following:

• The ERASE WORD command or any key bound to that command

Also includes the <MINUS> key when the keypad is set to EDT

3- 40 CREATING AND EDITING TEXT FILES

*.Using Buffers in EVE
Buffers are used during an editing session as storage areas. The following table describes the
commands that are used to create and manipulate buffers.

Table 3-9: Creating and Manipulating Buffers

Command

BUFFER

GET FILE

SHOW

WRITE FILE

Function

Puts the specified buffer in the current window and moves the
cursor to the last location it occupied in that buffer.· Creates a
new buffer if the specified buffer does not exist.

Creates a new buffer containing the text of the specified file,
places the new buffer in the current window, and places the
cursor at the beginning of the new buffer. If a file is specified
that does not exist, an empty buffer is created.

Displays a screen of information about the current buffer. If
more than one buffer is active in the editing session, press the
DO key to display information about the other buffers.

Writes the contents of the current buffer to a file. If a file name
is not specified, EVE uses the buffer name as the file name.

CREATING AND EDITING TEXT FILES 3- 41

Using Multiple Buffers

Use multiple buffers when you want to edit more than one file. This is very useful if you want to
move text from one file to another file.

To create a new buffer

Press <DO>

• Enter GET FILE file-name

To change the buffer in the current window

• Press <DO>

Enter BUFFER buffer-name

When you exit from using multiple buffers, EVE writes the contents of the current buffer to a file
and asks if you want to write the other buffer to a file.

3- 42 CREATING AND EDITING TEXT FILES

Using Multiple Window~
EVE allows you to view multiple windows on your terminal screen at the same time. You can
view and edit either two sections of the same buffer (one file) or multiple buffers (multiple files)
simultaneously.

The following table lists commands that are used to create and manipulate windows.

Table 3-10: Creating and Manipulating Windows

Command

TWO WINDOWS

OTHER WINDOW

ONE WINDOW

GET FILE

BUFFER

Function

Splits the terminal screen and creates two editing windows,
moving the cursor to the last position it occupied in the text
of the bottom window.

Moves the cursor to the last position it occupied in the other
window.

Removes the other window from the screen, expanding the cur­
rent window to occupy the complete screen.

Creates a new buffer containing the text of the specified file,
places the new buffer in the current window, and places the
cursor at the beginning of the new buffer. If a nonexistant file
is specified, an empty buffer is created. After you create two
windows on your terminal screen, use the GET FILE command
to create a new buffer in one of the windows.

Puts a new buffer in the current window, and moves the cursor
to the last position it occupied in the buffer. Creates a new
buffer if the specified buffer does not exist. After you create two
windows on your terminal screen, use the BUFFER command
to put a different buffer in one of the windows.

CREATiNG AND EDITING TEXT FILES 3- 43

DELETE WINDOW

The DELETE WINDOW command deletes the window in which the cursor is located, if you are
using more than one window. Be aware that any edits or modifications made to the file in the
current window will not be saved.

ENLARGE WINDOW

Syntax:

ENLARGE WINDOW Integer

This command enlarges the window in which the cursor is located by the number of lines spec­
ified. EVE shrinks the other windows on the screen accordingly.

I

Integer is the number of lines you want to add to the current window. The minimum value is 1.
The maximum value is 20 for a VT100 or VT200 screen.

NEXT WINDOW

The NEXT WINDOW command moves the cursor from the current window to the window below.
If the cursor is already in the bottom window, EVE moves the cursor to the top window.

PREVIOUS WINDOW

The PREVIOUS WINDOW command moves the cursor from the current window to the window
above. If the cursor is already in the top window, EVE moves the cursor to the bottom window.

3- 44 CREATING AND EDITING TEXT FILES

SHRINK WINDOW

Syntax:

SHRINK WINDOW integer

The SHRINK WINDOW command reduces the size of the window the cursor is currently in by
the number of lines specified. EVE enlarges the other windows accordingly.

Integer is the number of lines by which you want to shrink the window. The minimum value is
1. The maximum value is 9, which is the number of lines by which you can shrink a window if
you have only two windows on the screen.

SPLIT WINDOW

Syntax:

SPLIT WINDOW Integer

The SPLIT WINDOW command splits the window in which the cursor is located.

Integer is the number of smaller windows .that you want to appear on the terminal screen. If
you omit the integer, the current window is replaced with two windows.

CREATING AND EDITING TEXT FILES 3- 45

Jk DEFINING KEYS
You can define keys to execute frequently used EVE commands. You may also save key
definitions to be used from one editing session to the next.

EVE 2.2~.? ..)J.QL~.UQYV.YQ.!:J. ~9,. .. 9~fin~
The <DO> key

The <RET> key ..

The space bar

All printing characters on the main keyboard ,.,,,.,./

DIGITAL !_eCQDJ.CT!~DQ.§Jb.~ty<?.~ .. -~o __ Qc:?.LQ.~fin~Jb~ .. ,!,QHP~in~$ and control key sequences

<DELETE>

• <F6> (VT200 series)

<HELP> (VT200 series) <PF2> (VTtOO series)

• <CTRUC>

<CTR UR>

• <CTRUS>

• <CTRUT>

• <CTRUU>

<CTRUO>

<CTRUX>

• <CTRUY>

· To define a key
I

I

Press <DO>

Enter DEFINE KEY

Type the key to be associated with the EVE command

A message, Key defined, appears if you have successfully defined a key

3- 46 CREATING AND EDITING TEXT FILES

Saving Key Definitions
The §AV.E EXT..END.E.D..IEU . .c.ammand.sav.e..s. .. S!H ... ~§Y.Jle.finitLans in a section file that you specify.
This command must be executed before ending an editing sessiqn.

Format:

~~·sAVE EXTENDED TPU device:[directory]file-name.TPU$SECTION

You should include the device, directory, and file name that you choose. The section must be
TPU$SECTION.

If you specify the same file name each time you execute the SAVE EXTENDED TPU command,
all key definitions will accumulate in the same file from all editing sessions.

·*: .. Using Key Definitions
To use this extended version of EVE, you must include the /SECTION qualifier when invoking
EVE.

Syntax:

"*'EDIT/TPU/SECTION:device:[dlrectory]file-name.TPU$SECTION file-name

Example:

$ EDIT/TPU/SECTION=DISK:[SMITH]EVEDEFS.TPU$S~CTION MYFILE.TXT

Checking Spelling Errors
The SP~J~L command checks for spelling errors in a selected text or buffer if your system
contains VAX-11 DECSpell.

If you do not select any text, SPELL checks the entire current buffer, and replaces the misspelled
words with correct words.

CREATING AND EDITING TEXT FILES 3- 47

MODULE 4
COMMUNICATING WITH OTHER USERS

COMMUNICATING WITH OTHER USERS 4- 1

INTRODUCTION
The ability to communicate with users, both on your system and on other VMS systems is
invaluable. There are two VMS utilities and a DCL command that allow you to do this. They
are:

The Mail utility (MAIL), which allows you to send and receive messages to other users.

The Phone utility (PHONE) for GOm_fTI.YJJJg~jJJ]g_iDjer~~!lve!y with other users that are logged
in.

:1f' • The DCL command REQUEST, which displays a message sent by you at a system opera­
tor's terminal, and optionally, requests a reply.

OBJECTIVES
To effectively communicate with other users, you should-be able to:

• Send and receive messages between users .

• Print and delete mail messages .

*' . Organize mail messages by using mail files.

• Place and answer calls using the Phone utility .

);/.. ,,,... Send messages to a system operator using the REQUEST command.

RESOURCES

• VMS Mail Utility Manual

• VMS Phone Utility Manual

VMS DCL Dictionary

COMMUNICATING WITH OTHER USERS 4- 3

INVOKING AND OBTAINING HELP FROM THE MAIL
AND PHONE UTILITIES

Enter the command that invokes the utility

The name of the utility (MAIL or PHONE)

The screen prompt is the name of the utility (MAIL> or. PHON~.>)

Enter the HELP command at the utility's prompt

MAIL> HELP

Follow the online HELP instructions

To exit the utility, enter

The EXIT command at the utility's prompt, or

The <CTRUZ> key sequence, which brings the utility's prompt to the screen, followed
by another <CTRUZ> key sequence

COMMUNICATING WITH OTHER USERS 4- 5

Example 4-1: Getting Help for MAIL Utility Commands

V.iAIL> HELP

HELP

Allows you to obtain information about the MAIL Utility.

To obtain information about all of the MAIL corrunands, enter the
following command:

MAIL> HELP *

To obtain information about individual commands or topics, enter
HELP followed by the command or topic name.

Format:

HELP [topic)

Additional information available:
/EDIT /PERSONAL_NAME
BACK COMPRESS COPY
EDIT ERASE EXIT
FORWARD GETTING STARTED
MARK MOVE NEXT
REMOVE REPLY SEARCH
VS CHANGES

Topic? READ

/SELF
CURRENT
EXTRACT
HELP
PRINT
SELECT

4- 6 COMMUNICATING WITH OTHER USERS

/SUBJECT ANSWER ATTACH
DEFINE DELETE DIRECTORY
FILE FIRST Folders
KEYPAD LAST MAIL
PURGE QUIT READ
SEND SET-SHOW SPAWN

THE MAIL UTILITY

Allows you to send messages to and receive messages from other users, both on your
system or within a network.

Organization of Mail Messages

By default, a file named MAIL.MAI stores ~.ail messages. This file is automatically created
for you by the system.

,.. MAIL organizes messages in folder$. Three of these folders are named:

NEWMAIL - Contains new messages you have not yet read.

>(MAIL - Contains old messages you have already looked at.

WASTEBASKET - Contains messages marked for deletion. 1.LP~'t:_ ·,
1,:. ·'\ I

The Wastebasket folder is emptied automatically when you exit from MAIL.

COMMUNICATING WITH OTHER USERS 4- 7

Using the MAIL Utility

Use the MAIL command to invoke the utility

$ MAIL<RET>
MAIL>

• Enter MAIL commands to

Read messages you have received

Send messages to other users

Obtain a list of mail messages you have received

Delete old mail messages

Learn about other MAIL commands

4- 8 COMMUNICATING WITH OTHER USERS

.y::"'Reading a Message
When you log in to the system, you are notified of any new mail messages.

If you are currently logged in, the Mail utility displays an informational" message on your terminal
screen.

To read the first new message

Invoke the Mail utility

Press <RET> at the MAIL> prompt

r ·)o re~_~L~.J:m~-~~~a~~~,,J~9.~IY~LY.Y.b.Ue.J~tsJagJh~J0?.iLY..~!}i~y.

Enter the READ/NEW command

MAIL> READ/NEW

• The folder you are currently in is displayed in the upper right-hand corner of the screen

Example 4-2: Reading a Mail Message

$ MAIL

You have 1 new message.

MAIL>

u
From:
To:
Subj:

John,

12-DEC-1984 09:19:25
SPEEDY: : JIM
SMITH
Status meeting

NEWMAIL

I will be out of town so I will not be able to attend the status
meeting. Fill me in when I get back.

Jim

MAIL>

COMMUNICATING WITH OTHER USERS 4- 9

Table 4-1 : MAIL Commands Used to Read a Mail Message

Operation

Displaying the contents of a
message in the current folder
of the current file

Format/Example

READ n

READ<RET>

READ/NEW

NEXT

FIRST

LAST

CURRENT

BACK

4-10 COMMUNICATING WITH OTHER USERS

Comment

Displays the message associated with
the message number (n)

Displays the next page of the current
message having the next-highest mes­
sage number

Displays new messages that arrived
while you are in MAIL,

Displays the first page of the mes­
sage having the next-highest message
number

Displays the contents of the message
having the lowest message number

Displays the contents of the message
having the highest message number

Displays the contents of the current
(last-read) message

Displays the cont~nts of the message
preceding the current message

Sending a Message

Using the SEND command

At the MAIL> prompt, enter the SEND command

Enter the node (if different from your node) and user name

Enter the subject of the message

Enter the message

Press <RET> at the end of each line
Press <CTRUZ> after the last line
Press <CTRUC> to cancel the message

Example 4-3: Sending a Mall Message

$ MAIL

MAIL> SEND
To: SMITH
Subj: Department Meeting
Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:

Jim,

There will be a department meeting on Friday at 9:00 am.
Please attend if at all possible.
John
CTRL/Z
MAIL>

COMMUNICATING WITH OTHER USERS 4- 11

'*- Table 4-2: MAIL Commands Used to Send Messages

Operation Format/Example Comment

Routing a message or the MAIL> SEND [/qualifier] [file-specification]
contents of a file to a user
or group of users

MAIL> SEND

¥- To: JONES,ALAN

Subj: Today's Agenda

MAIL> SEND/EDIT

To: @DISTRIBUTION.DIS

Subj: Today's Agenda

(
MAIL> SEND MYFILE.LIS

To: JONES

\ Subj: Today's Agenda

Routing a copy of the cur- +rMAIL> FORWARD

rent (last-read) message to a (To: JONES

user or group of users ~\subj: Good News!

Routing a message or the ~§W~B.,.Qr

Routes the contents of your mes­
sage to each user listed after
the To: prompt.

Routes the contents of your mes­
sage to each user _.li~_teQ.JrLtt:J~­
file naJn~c:i .. Pl§T8.1~lJI10bl.DlS.-~
You .. e.nter the message by us-
ing the EDT editor. The mes­
sage is sent when you exit the
editor.

Routes the contents of the file
MYFILE.LIS to the mail file of
the user JONES.

Routes a copy of the current
message to each user listed af­
ter the To: prompt.

contents of a file to the sender REPLY [/qualifier] [file-specification]
of the current (last-read) mes- --~"'~·~·,..,·-~""''~,,,.,,.,.~ .. -;,,,,""'······ .. ~;.,"""~<-... ·.

sage

MAIL> REl?LY

Subj: You' re Right!

/::.· .. ::>

4- 12 COMMUNICATING WITH OTHER USERS

The REPLY or REPLY/EDIT com­
mand routes your message to
the sender of the current mes­
sage. (REPLY and ANSWER
are synonyms.)

;)f: Displaying a List of Messages

The DIRECTORY command displays a numbered list of your mail messages.

MAIL> DIRECTORY

To read an old message

Enter the DIRECTQBY __ command

Enter the desired me~~~_ge num~er

Example 4-4: Listing Messages and Reading Old Messages

MAIL> DIRECTORY

From Date

1 SPEEDY: : JIM 12-DEC-1984
2 SPEEDY: : SMITH 12-DEC-1984
3 SPEEDY: : JONES 12-DEC-1984

MAIL> 3

#3
From:
To:
Subj:

John,

12-DEC-1984 09:22:53
SPEEDY: : JONES
SMITH
Party

Subject

Status meeting
Schedule of meetings
Party

We're having an office party next Thursday.
Would you like to come?

Tom

MAIL>

MAIL

MAIL

COMMUNICATING WITH OTHER USERS 4-13

ibeleting a Message

The DELETE command moves a message to the Wastebasket folder. The message is not
deleted until you exit Mail.

Either a single message or a range of messages can be deleted.

If a message number is omitted, this command marks the message you are currently reading
tor deletion.

MAIL> DELETE 3 (Deletes message number 3)

MAIL> DELETE 1,3,5-7 (Deletes message numbers 1, 3, 5, 6, 7)

• Deleted m.es.sagas._may. Jle .. J:ec~d.Jr.orTL.tbe .. ~Wastebas.keLfQJQ.~C by,. u~iJ'lg. the MOVE
command. · ·

4- 14 COMMUNICATING WITH OTHER USERS

Figure 4-1: The Relationship Between a Mail Message, Folder, and File

TTB_X0325_88

COMMUNICATING WITH OTHER USERS 4- 15

Table 4-3: MAIL Commands Used to Maintain Messages

Operation Example

Displaying a list of folders DIRECTORY4'0LDERf"f>\/{\(;)

Displaying a list of messages DIRECTORY CALENDAR

: Moving between folders SELECT CALENDAR

\ i \ ;
'•

e• \ Filing a message MOVE CALENDAR

Copying a message to a file EXTRACT DWAYNE. TXT

Printing a message PRINT

Emptying the Wastebasket PURGE or EXIT

folder

j _,, ,,

• ..,......, ____ _.._,.-...,,_m_,_,..,.,~--·~·-"""'"'".'<'"",.,.·' "" _,_._,... •• _._.,.,,.,.,,..,.._,.,...~,_,., • " '

4-16 COMMUNICATING WITH OTHER USERS

Comments

Displays a list of all folders in
the current mail file.

Produces a list of all the mes­
sages in the folder. Each mes­
sage contains a message num­
ber.

Moves you between folders of
your choice.

Moves the current message to
the folder named CALENDAR.

Places a copy of the current
message into a sequential file
with the file name specified.

Places a copy of the current
message into the default queue
for printing.

Discards all messages in the
Wastebasket folder.

Exiting from the Mail Utility

Enter the EXIT command, or

Press <CTRUZ> at the MAIL> prompt

COMMUNICATING WITH OTHER USERS 4- 17

){.THE PHONE UTILITY
You can use the Phone utility to contact another user by:

Entering the name of a user as a parameter to the PHONE command.

$ PHONE HARKINS

• Entering the name of a user from within the Phone utility.

$ PHONE

% DIAL HARKINS

The system responds to your request by displaying a repeating message on the terminal of user
HARKINS. To respond to this message, HARKINS must:

• Enter the PHONE command, then

• Enter the ANSWER command, or

• Enter the REJECT command at the % prompt

To enter a command while having a conversation, type the percent sign (%) followed by the
command.

(

4-18 COMMUNICATING WITH OTHER USERS

The Phone Help Facility

To display a list of available help topics, enter the HELP command.

To display a particular help text, enter the command HELP help-option.

After you receive the help display, type any character to refresh the Phone split screen.

Entering either the EXIT command or pressing <CTRUZ> returns you to DCL command
level. (Remember, to enter the EXIT command during a conversation, you must first type a
percent sign.)

Figure 4-2: Using the Phone Utility

VMS PHONE FACILITY 1 O·FEB-84

% your phone commands:

.-- -- -- -- --
SUPER::SMITH

your message

SUPER::HARKINS

their message

TTB_X0326_88

COMMUNICATING WITH OTHER USERS 4- 19

Table 4-4: Phone Commands Commonly Used to Create or Reject a Terminal Link

Operation

Choosing who to call

Requesting a terminal link

Accepting a terminal link

Rejecting a terminal link

Placing others on hold

Reversing the hold

Terminating a terminal link

Leaving the Phone utility

Format/Example

DIRECTORY [node(::]]

DIAL user-name
DIAL JONES

ANSWER

REJECT

HOLD

ON HOLD

HANGUP

EXIT
<CTRL/Z>

4- 20 COMMUNICATING WITH OTHER USERS

Comment

Displays a list of people with
whom you could talk on your
system or any other system in
the network.

Displays a repeating message
on the terminal JONES is logged
in to, that signifies a terminal
link request.

Links your terminal to the ter­
minal of the caller. The split
screen is displayed.

Terminates the repeating mes­
sage caused by the DIAL com­
mand entered by another user.

Places all other terminals in the
conversation on HOLD.

Reverses your previously en­
tered HOLD command.

Terminates the links of all ter­
minals in the conversation.

Exits the Phone utility by first
executing an automatic HANGUP
command.

COMMUNICATING WITH OPERATORS

The REQUEST Command
.......... -....... -~--..,.--- · ... -~ -...... --. ~····

There may be times when you wish to communicate with a system operator. For example, you
may need to have a magnetic tape mounted so you can access it.

The REQUEST command displays a message at a system operator's terminal and optionally
requests a reply.

Sending a message without a reply

$REQUEST "message-text"

$ REQUEST "Please mount magtape 4 on MTAO:"

• Sending a message that expects an operator reply

$REQUEST/REPLY "message-text"

$ REQUEST /REPLY "Please mount magtape 4 on MTAO"

Example 4-5: Using the REQUEST/REPLY Command

$ REQUEST/REPLY "Please mount magtape 4 on MTAO"
%0PCOM-S-OPRNOTIF, operator notified waiting ..• 11:23:02.92
%0PCOM-S-OPREPLY, AFTER 11:30

13-MAR-1985 11:26:03.87, request 7 completed by operator OPAO
$

COMMUNICATING WITH OTHER USERS 4- 21

SUMMARY
The Mail Utility

The Mail utility allows you to send to and receive mesages from other users, both on your system
and within a network. The Mail utility is invoked by entering MAIL at the DCL prompt.

To read a new message, press <RET> at the MAIL> prompt.

To read a message received while you are in the Mail utility, enter the READ/NEW command.

To send a message, enter the SEND command at the MAIL> prompt.

Enter the node (if different from your node) and user name

Enter the subject of the message

Enter the message

Press <CTRLJZ> after the last line of the message

The Phone Utility

You can use the Phone utility to contact another user by:

Entering the name of a user as a parameter to the PHONE command.

Entering the name of a user from within the Phone utility.

To enter a command while having a conversation, type the percent sign (%) followed by the
command.

The REQUEST Command

The REQUEST command displays a message at a system operator's terminal and optionally
requests a reply.

REQUEST "message-text"

REQUEST/REPLY "message-text"

4- 22 COMMUNICATING WITH OTHER USERS

MODULE 5
MANAGING FILES

MANAGING FILES 5- 1

INTRODUCTION
File management on a VMS system involves moving files between devices, directories, and/or
systems; protecting files from undesired manipulation; and maintaining and organizing collections
of files in a directory.

The VMS system provides the following means to help manage files:

Devices that store files.

A file system that organizes, protects, and retrieves files stored on the system.

• Commands and utility programs that allow you to communicate with the devices and the
system.

This module shows you how to organize and maintain a collection of files.

OBJECTIVES
To store and retrieve the many files used during daily operations, and to protect these files from
unauthorized use, you should be able to:

• Locate files stored on disks.

• Locate directories in directory trees.

Add and remove files from a directory.

Display contents of files.

• Protect files from being accessed by unauthorized users.

RESOURCES

Guide to VMS Files and Devices

VMS DCL Dictionary

MANAGING FILES 5- 3

FILE SPECIFICATIONS
,.-·'"·---~

A fil~~QQica_Uy~lie.ciiQ.o_QtJstq_~
''--------------~--/

• Use a file specification to identify a file you may wish to access.

Table 5-1 illustrates the syntax of a file specification.

Table 5-1: Syntax of a L~~---~-i~~--Fll_! __ ~ee~lfit;:~!i~!L_ .. _____________ .. Lt(~r~,/~ c,. v~t;<~;(l/'.:7
~- $ DCL-COMMA.ND DBAO : (SMITHJ MYFILE • DAT; 7) t.P ':

Name

Device

Directory

Name

Type

Version

Reference .. · · · ·· - ·Rules of Naming Example

Storage device name 1 to 255 characters DBAO:

Catalogue of files 1 to 39 characters [SM ITH]

Name of file

Kind of file

Unique number used to dif­
ferentiate files with the same
name and type

!""'

'.(;°.,'to 39 characters

(O lto 39 characters

1 to 32767 (integer)

MYFILE

DAT (~Ni

7

The following characters are allowed in directory names, file names, and file types:

• A through Z

• 0 through 9

Underscore U

Dollar sign ($)

., , l/E17.5,1(vV·rt_.
"I

Al.i:

MANAGING FILES 5- 5

"i .- ')

DEFAULTS FOR FILE SPECIFICATIONS

Each part of a fil~. SQeqjf!f?.:.~LQ!l.~~-·~-ftfilg'-

You can omit fields and allow the system to supply defaults for those fields

To override the default value for a field, supply a value for that field

• The following table summarizes the defaults used by the system

Table 5-2: File Specification Defaults

Part of File
Specification Def au It

Device Device established at login by the system manager or specified by the last
SET DEFAULT command

Directory

Name

Type

Version

Directory established at login by the system manager or specified by the last
SET DEFAULT command

None

Depends on the DCL command

The highest version number

5- 6 MANAGING FILES

DEVICE SPECIFICATIONS - 3 'T'!. L 2~

*·· Logica! device nam~

~n.QD.Ym for ~ physical g~y~~.Jl~-l'TI~

Es~ablishe.Q_QyJ.t!.~t§¥§lem~mamJg~r

Physical device name

Refers to a specific physical system device

Device code

Controller character (Optional)

Unit number (Optional)

• Generic device name

~pecifie.~.~ .~~~~!., .. ~~vi9~~ .

; ~'Jh i)

MANAGING FILES 5- 7

Table 5-3: Naming a Device

Device
Specification Function

Identifies device type

Value

2-13 characters

Default
Value

~~vic..~ .. .!YP~ .99.c:l~
Controller character Names controller to which de- One or more of the

None

A
vice is attached characters A-Z

Unit number

Device specification
delimiter

Names relative position on
controller of desired unit

Marks the end of the device
specification

NOTE

Decimal numbers from 0
0-65535

: (colon) None

Refer to Appendix A for further information regarding devices.

5- 8 MANAGING FILES

DIRECTORY STRUCTURE
\l.00'"\

/I

Each .disk con~lrJ~§__f:1.~.~.!~.L£[!~lr~qJ<;yy,,~.EPL"J.h..~t g~te3_1o.g"~--.ell l!~§H file. Dir~ctqries.
_(f!FD~J .. -7'J::.eci.·rr: ·: ''"::: ;~nl> I/ •)lL :;~;::(Lf>;1lC !

:'D~
A directory is a file that catalogs anothe.r..sei..QtJjJes.,.~JJ~ . .Q!sls:~J;ach U.EQ_.co.ntai.nsJb~ JJ.§.IJl~
2!J~.?..9!LW.~~".~l.!9. -P.~~i111~r,~~JQ_v.tbeJ.Ettne~.,.file ... iaJQQW~J.t9.nJb.~ .. ~Q!,~,~:

0··("'
Directory files have a fll~_w~._gLQ.lB..

Users can further subdivide their files by creating subdirectories. Subdirectories will be
discussed later in this module.

MANAGING FILES 5- 9

DIRECTORY NAMES IN THE HIERARCHY

Table 5-4: Directory Names

Directory Type

Master File
Directory (MFD)

User File
Directory (UFD)

Example

[000000]

[SMITH]

Naming Convention

Each disk contains one MFD, named [000000].

Your user name is usually your UFD name.

Subdirectory (SFD) [SMITH.PAYROLL] You choose the names for the subdirectories
you create.

Figure 5-1: Naming Directories

MFD
LEVEL 0

UFOs
LEVEL 1

SF Os
LEVEL 2

SF Os
LEVEL 3

(000000]

[USER1] [SMITHJ

------------...-- ...
[SMITH. PAYROLL] [SMITH.INVENTORY]

,.---------------,.--. ...
[SMITH.PAYROLL.MODULES]

• • •

[SMITH.PAYROLL.DOCUMENTS]

TTB_X0327_88

The names given in the rectangles are directory names.

· 5- 10 MANAGING FILES

FILE MANIPULATION COMMANDS
The following table lists examples of some DCL commands used to manipulate files. There are
many qualifiers that modify the action of these commands. Refer to the VMS DCL DigJjQ[]f!:tY
for more 9~1~U§.

Table 5-5: File Manipulation Commands

Operation Comments

Creating a file without The CREATE command creates a new file without using a text editor.
using a text editor

$ CREATE MYFILE. TXT

Copying a file The COPY command creates a new file from an old file.

$ COPY OLDFILE. TXT NEWFILE. TXT

Changing an existing The RENAME command changes all or part of an existing file name.
file name to new file
name

$ RENAME OLDFILE. TXT NEWFILE. TXT

Removing a file

$DELETE MYFILE. TXT ;2

Removing files on an
interactive basis

The DELETE command removes a file. A specific version number must
be used to remove a file.

The /CONFIRM qualifier initiates a system prompt to confirm whether
or not the file should be deleted.
A "Y" response deletes the file; an "N" response does not delete the
file .

.fs DEL~TE/CONFI~~~-±-±!~:..'!~'£! *
(System prompts):
DISK: (SMITH]MYFILE.TXT;3 delete? [N]:

DISK: (SMITH] MYFILE. TXT; 2 delete? [N] :

DISK: (SMITH]MYFILE.TXT; l delete? [N]:

MANAGING FILES 5-11

Ir

Table 5-6: Manipulating Files in a Directory

Operation

Removing all versions
of all files except the
latest version

$ PURGE

$ PURGE MYFILE. TXT

Displaying the contents
of a file at your termi­
nal

$ TYPE MYFILE. TXT

Comments

The DCL command PURGE removes all but the highest-numbered ver­
sion of all files.

The PURGE file-name command removes all but the highest-numbered
version of a particular file.

The TYPE command displays the contents of a file at your terminal.
Note that only ASCH files may be displayed.

Appending one or more The APPEND command adds the contents of one or more files to the
files to the end of an- end of the specified output file.
other file -trJ I ++I f /1. f+ +1J. ff

.. t : -r '·2,. ;;:::~

fl

Searching files for all f' The SEARCH command searches one or more files for the snecified
occurrences of the . §!£in~sf-Tti~,~.!!9il"~itffos:~;:Marcii~i3~~ ... 0iiJ,st .. be· .. anCio~se~~Io~.·g-~9j~tia·o
specified ~~~-~e~~Y2~_Jt£~.Q~~!~.~ .. ~~A_§Q~£~" .. cm~rg9!er.
search-stririg(s)

.:.:2r~:: $ SEARCH MYFILE. TXT "March 13 II

Comparing contents of
two files and display­
ing differences

The DIFFERENCES command compares the contents of two files and
creates a listing of the records that do not match. This listing goes to

your terminal by defa~~~;:.<Q St'fit\(.t.h ·cicr:: =·· ftJ, tl
-f $ DIFFERENCES MYFILE. TXT YOURFILE. TXT

Controlling the listing *Ih~/0.~~!.~~!~9.~~j.~~~~.E .. !~J~§.J1J.~§!~.m:!9.§J~nd .. th.~Ji.~~in[.C>t~ift~ences
output from differences _!£._~_.fiJ.~~.. ~N •• ~ •••••

~t, $ DIFFERENCES/OUTPOT=DIFF. TXT MYFILE. TXT YOURFILE. TXT

5- 12 MANAGING FILES

FINDING FILES AND DETERMINING THEIR
CHARACTERISTICS
Use the DIRECTORY command to

Find files on a peripheral storage device on your system

Display the contents of directories or the characteristics of files

MANAGING FILES 5-13

--*" Table 5-7: Using the DIRECTORY Command to Determine the Char·acteristics of Files

Operation Comments

Listing all files in your The DIRECTORY command lists all files and information about them
directory in your directory.

$DIRECTORY

Checking for a unique
file in your directory

i--· $ DIRECTORY MYFILE. TXT
___ M ____ ,... ~.,•o•V"'""''h•••'"""'"''....,._.,

Obtaining all informa­
tion about a particular
file in your directory

The file __ ~ecifl.~~ti~_!!1U$tb!!JJJQ~~g-~9 .. !Q __ Q~~~inJD!QfJ1lati.o.o-CQD_Q~~g
~- p~[tig~J.aLfiJe. ... in.~Y-Q.Y.L.91!~~~!1:.,.

The /FULL gualifie.t...Q.verddes.tt1e._ . .de.fauJL.d.ired.Q.'Y.~,g1§RJ.~y~hiq,b.J.s
BRIEF. OmitJ.be~~fl~~!!~.r.!"!Q,. q~!~~n full information abo~.t. -~.!t
ti~~~- -~~.Y~~r ~!,~~_ctg,,ry.,

·r $DIRECTORY/FOLL MYFILE. TXT

or
$ DI RECTORY /FOLL

Determining the size
of files in your direc­
tory

,~ DIRECTORY/SIZE [file-specification]

or
$ DIRECTORY/SIZE=ALL [file-specification]

Determining the owner ~/OWNER qu~~~l.~LQ.~!~ID'JtQ~§.ittlJ~ . .QWD~r'§..J)IG.J§ g.i.sp.la}!ed.
and protection of a file Th~_LP-8QIE.CI10.N .. .,QYi.lifi~r d.ete.uni oe.s if. the .. prot~~~~~!:l of the file_ .i.~

di~p,l~yed.

)/,;$.DIRECTORY/OWNER/PROTECTION MYFILE. TXT

5- 14 MANAGING FILES

Using Wildcards in File Specifications_
Wildcards are used to

Specify more than one file

Abbreviate a file specification

Match one or more characters in directory names, file names, or file types

Wildcards can be used in conjunction with each other or separately

Table 5-8: Wildcards Used to Specify File Names, Types, and Versions

Symbol

*Asterisk

% Percent~

Meaning

Match 0-39 characters in a file name, file !Y.~_r_y~rsioJJJ1~.!11ber

Match exactly ~ne character in a file-nam§. __ Q.r.JH~ .. tY.Q.~L

... I
'\ ·\ '

MANAGING FILES 5-15

Example 5-1: Sample Directory File

Directory WORK2: [SMITHJ

PAY.FOR;2
PAYOFF.FOR;3

PAY.FOR;l
PROBLEMS.TXT;4

PAYl.FOR; 1
REPORT.MEM;9

Total of 8 files.

Table 5-9: Using Wildcards to Specify Files

Directory
Specification

$ DIRECTORY PAY. FOR;*

$ DIRECTORY *. *; 1

$ DIRECTORY *. *; *

$ DIRECTORY PAY% .FOR;*

$ DIRECTORY PAY*.*;*

Description

All versions of PAY. FOR

All files with a version num­
ber of 1

All files, types, and versions 1

All versions of files with file
type of FOR and file name
beginning with PAY, followed
by exactly one character

All files whose first three let­
ters are PAY, including all file
types and all versions

PAY2.FOR;l4
REPORT.RN0;6

Corresponding Files

PAY.FOR;2
PAY.FOR;1

PAY.FOR;1
PAY1.FOR;1

All files in the directory

PAY1.FOR;1
PAY2.FOR;14

PAY1.FOR;1
PAY.FOR;2
PAY.FOR;1
PAYOFF.FOR;3
PAY2.FOR;14

1 Issuing the DIRECTORY command with no qualifiers or .wildcards lists all files, types, and versions by default.

5-16 MANAGING FILES

ORGANIZING YOUR DIRECTORY STRUCTURE

•

•

Files can be organized into subdirectories

Reasons for grouping files into subdirectories are to

Organize the directory structure

Protect them from accidental modification or loss

Decrease the time for the system to find them
~·"- ····,

Each ~~~~,,~~~!1, ... ~~~: ~~-~~~.'.11.~.~,, .. ~!l~~X~D,".~,~~~~L~!._. ~.~~~~~~~!.~E~.:~ below it

Files are usually grouped by

Function (all command files)

Application (all files for a given project)

Type (all FORTRAN files)

MANAGING FILES 5- 17

CREATING A SUBDIRECTORY

The subdirectory name must be enclosed in brackets

The subdirectory name includes the directory name where it is created

• Each subdirectory name is separated by a period

The directory or subdirectory itself is a file

The directory or subdirectory has a file type of DIR

Version number of file type DIR is 1
\

• Example:

$ CREATE/DIRECTORY/LOG [SMITH.DOC]

(System response:)
%CREATE-I-CREATED DISK: [SMITH.DOC] created

• The directory [SM ITH] is a UFD

• The subdirectory [.DOC] is the next level below the directory [SMITH]

The file DOC.DIR;1 now resides in [SMITH]

·n
; ''\
')

The /LOG qualifier displays on your terminal the fact that the subdirectory was created
,,,,,.,.__.~ • ..,._...,,...,,, .. ~ .. .,.. "m."0

',~ .. ,, • .,,,.,.-,,.,..,_,,,.\:,.~ ··""··..p,, - ··•~'-~ ,..,._:·:<-: •,,.,. ""':"-~'"'' .,.,.,_,,,,.._,.,- ;-,,.; • ., •• •<.•.;,,,•,--W<k•' • .~1l'· ' "'""'""~·''..\/'-""·.··'<'·'Ii' ·i ·• •. ,.,,,, '

• To create another subdirectory beneath the [.DOC] subdirectory:

1 $ CREATE/DIRECTORY (directory.subdirectory.subdirectory]
~----"'-'"'-·--•-M•-•--•••••'"·-•»•o.·.••• • ''

Example:

$ CREATE/DIRECTORY/LOG [SMITH.DOC.FORTRAN]

%CREATE-I-CREATED DISK: [SMITH.DOC.FORTRAN] created (System response)

• The subdirectory [.FORTRAN] is listed under the subdirectory [SMITH.DOC]

• The file FORTRAN.DIR now resides in [SMITH.DOC]

5- 18 MANAGING FILES

USING THE SET DEFAULT COMMAND

The DCL command SET DEFAULT changes the default device and/or the directory name
for your current process.

A physical device name must be terminated with a colon (:)

A directory or subdirectory name must be enclosed in square brackets

Syntax:

$ SET DEFAULT device-name:[directory-name]
or

$ SET DEFAULT [directory-name.subdirectory-name]

• Examples:

$ SET DEFAULT DISK2: [BORGERT] (Device name and directory name change)

$ SET DEFAULT [SMITH.DOC] (Device name remains the same)

USING THE SHOW DEFAULT COMMAND

The DCL command SHOW DEFAULT displays your current default device and directory
names.

• Examples:

)(.-$ SHOW DEFAULT

DISK: [SMITH] (System response)

$ SET DEFAULT [SMITH.DOC]

$ SHOW DEFAULT

DISK: [SMITH.DOC] (System response)

MANAGING FILES 5- 19

;t MOVING WITHIN A DIRECTORY HIERARCHY
There are three characters used to move within a directory hierarchy. They are:

~ • Hyphen (-) T f,;<, D11L[-J ·

• Period (.) (c~. (\J ~··vV\ he"-./+=-.

Ellipsis (...)

0<.,.la·"'· e 1 Obv1vo5L,/ -Of'lL.lf 01vI!. :,...,;p TD Co '~)i-i Ji·(,
0

f'Vlr1-NY LA.JffPs lx:.i._,._;,.,v/)

The hyphen and period characters are normally used in conjunction with the SET DEFAULT
command to move from your current directory to another directory or subdirectory.

The ellipsis character, used with the DIRECTORY command, lists files in a directory and all
subdirectories beneath it.

Table S-10: Characters Used to Specify Directories

Symbol

~f - (hyphen)

. {period)

~ t ... (ellipsis)

Cx. DJ c.H J

5- 20 MANAGING FILES

Meaning

Move one level ue. in directory hierarchy .

Move one level down in directory hierarchy (MUST b~_fol:­
l~QJ~.~-§J:Jbdjr_~!Q~,-~~.~~)
Use current directory and all directories below it

' L- ~Ni~ :;·BJ
r",

/. ..

Figure 5-2: File Specification in the Directory Hierarchy

DIRECTORY NAME

MASTER FILE DIRECTORY
[000000]

USER FILE DIRECTORY
[SMITHJ

SUBDIRECTORY
[SM ITH.PROJ]

SUBDIRECTORY
[SMITH.PROJ.LAB]

FILES CONTAINED COMMENTS

USER1.DIR

SMITH.DIR

LOGIN.COM

PROJ.DIR

MOD.DIR

LAB.DIR

I MON.TXT

0

0 [000000] SMITH.DIR

© [SMITHJ PROJ.DIR

USER2.DIR

MAIL.MAI

NOTE.TXT

TUE.TXT

THE MASTER FILE DIRECTORY
(MFD) CATALOGS THE FILES
THAT IMPLEMENT THE USER
FILE DIRECTORIES.

THE USER FILE DIRECTORY (UFO)
CATALOGS FILES. NOTE THAT
PROJ.DIR IMPLEMENTS THE
SUBDIRECTORY [SMITH.PROJ].

THE SUB FILE DI-RECTORY
(SFD) [SMITH.PROJ]
IS A LEVEL 2 DIRECTORY.

SFD [SMITH.PROJ.LAB]
IS A LEVEL 3 DIRECTORY.
LEVEL 8 IS THE MAXIMUM
DIRECTORY LEVEL.

0 [SMITH.PROJ]LAB.DIR

0 [SMITH.PROJ.LAB]MON.TXT

TTB_X0328_88

MANAGING FILES 5- 21

Example 5-2: Using VMS Commands to Create and Maintain a Directory Hierarchy

$ SHOW DEFAULT
DISK: [SMITH]

$ CREATE/DIRECTORY/LOG [SMITH.COM]
%CREATE-I-CREATED, DISK: [SMITH.COM] created
$ CREATE/DIRECTORY/LOG [SMITH.UTLCOM]
%CREATE-I-CREATED, DISK: [SMITH.UTLCOM] created
$ CREATE/DIRECTORY/LOG [.UTLCOM.FIL]
%CREATE-I-CREATED, DISK: [SMITH.UTLCOM.FIL] created
$ CREATE/DIRECTORY/LOG [.UTLCOM.EDT]
%CREATE-I-CREATED, DISK: [SMITH.UTLCOM.EDT] created

$DIRECTORY [...]

Directory DISK: [SMITH]

COM.DIR;l
PRINT.FOR;l

Total of 8 files.

FORCALL.MAR;l
RANDOM.FOR;l

Directory DISK: [SMITH.UTLCOM]

EDT.DIR;l FIL.DIR;l

Total of 2 files.

Grand total of 2 directories, 10 files.

MMUL.FOR;l
STRPROG.TXT;l

'$RENAME [SMITH].MAR,*.TXT [.UTLCOM.FIL]*.*
$ SET DEFAULT [.UTLCOM.FIL]
$ DIRECTORY

Directory DISK: [SMITH.UTLCOM.FIL]

FORCALL.MAR;l STRPROG.TXT;l

Total of 2 files.

>- 22 MANAGING FILES

POLA.QUO;l
UTLCOM.DIR;l

PROTECTING DISK AND TAPES

Figure 5-3: File Access to Disk and Tape Volumes

TERMlf\l."-.L

FILE ACCESS RE0UE.S'.T

Vtv1s··
C0Mlv1.AN[l
L.A.f\IGUA.GE
11\JTERPRETER

vr-..1s
FILE
SYSTEM

--\.-'O_L_u_M_E_P_R_o ... rE_c_r_1c_-.,N_c_oo_:: __ (".) \IOLL'tv1E PROTECTIOI·~ CODE

DIRECTORY PROTECTION CODE

FILE: PROTECTION CODE

DISK
FILE

TAF·=
F=:LE

TTB_X0329 88 S

MANAGING FILES 5- 23

PROTECTING FILES IN YOUR DIRECTORY
HIERARCHY
C_hange file protection to:

Restrict access to your files

Prevent unauthorized moving or deletion of files

~ • Assign_?__?P-~g.§L.QIQ1ec.tio.n code for all-f.iles.cr:eated.iQa_p_artJQ'=!!~rgiE~9~9rY.

Delete a subdirectory

Three Levels of Disk File Protection

Volume Protection

- Controls who can access a particular. disk volume

Directory Protection

- Controls who can access a particular directory

File Protection

Controls who can access a particular file

-f- - T.~o mean~.2Le.~~~~.£~!.Q.9Ji_les:

t) User Identification Code (UIC-based) protection
l...} Access Control Lists (ACLs)~

5- 24 MANAGING FILES

t(·-- UIC-Based Protection
o>v"c--'\\c:;

Format: [group,member] /\'"'·~</""

Can be either numeric or alphanumeric

Group = 0-37777 (octal numbering system)

Member = 0-177777 (octal numbering system)

• Examples:

•

•

Numeric: [100,30]

Alphanumeric: [GROUP11,SMITH]

The default protection mechanism

~ile is assi_g!l_~.23..BrQtecqg.o."c.o.de."whenJt .is ... creatE:lc:i

~m~Jnan~~r. ~8!1~"""~.!.£~,,,.~~",.~~,.~~

.E!Q!eQtiQ_r:~L.99Q.~§--~r~t9!'~.9.~~2 .. ~9~!!1~! .~ .. ~.§.~(~ J:J.J.q ,,~.~fo_.r.~ .. ~!l9Y!t.Irl9JD~,[LJ~qg~~s. t() a .fl.I~

By default, the file UIC matches the user's UIC
~"'"""'-..'~"'''"'·~•l.~-.\IJV,'-'°'~1'.'i.-l,.•_..,..~K' I· ,.,• .. · "• '"'"' ,:,,.";.;,.•;i,'.>•:•;•;;:)

MANAGING FILES >- 25

Figure 5-4: Interaction of Access Categories

WORLD

8
TTB_X0330_88

if ,.
,,~ Figure 5-5: Elements of a Protection Code: Determines Which Users Have Access to a

Fiie

PROTECTION CODE

(S:RWED-, O:RWED,G:RE,W)

PROTECTION CODE 11
DELIMITER

USER CATEGORY
SYMBOL (SYSTEM)

USER CATEGORY
DELIMITER

USER CATEGORY
ACCESS CODES (READ, ---­
WRITE, EXECUTE
AND DELETE)

USER CATEGORY-------~
SEPARATOR

5- 26 MANAGING FILES

TTB_X0331_88

Table 5-11: Summary of Effects of Access Rights to Files

(R)ead (W)rite (E)xecute (D)elete

Disk Directory Can read list of Can modify list Can access ex- Can delete th.e directory
files in directory plicitly named

(Add files} files
Read access
also needed

Disk File Can read con- Can modify con- Can execute ex- Can delete file(s)
tents of file(s) tents of file(s) ecutable files

Tape File Can read list of Can add files Does not ap- Does not apply
files on tape on the volume ply "'. ,,,,,,9

~·I ;.,. .. .!' I"

Table 5-12: Determining a User's Category by Comparing User's UIC to File Owner's UIC

Category

SYSTEM

OWNER

GROUP

WORLD

Group Number

0-1 O (Octal)

Matches group number of file UIC

Matches group number of file UIC

Does not matter

Member Number

Does not matter

Matches member number of file UIC

Does not matter

Does not matter

MANAGING FILES ~ 27

DETERMINING AND ALTERING FILE PROTECTION

*Table 5-13: Commands Used to Determine and Alter File Protection

Operation Comments

Displaying the default
protection assigned to
new files

t$ SHOW PROTECT ION

The default protection applies to all newly created files in the current
directory.

Obtaining the protec- Displays the current protection of an existing file.
tion code of a given
file

.)($DIRECTORY/PROTECTION MYFILE.TXT

Changing the default
protection assigned to
new files

The default protection, once cha_nged, affects_~1Y!YI~1ile,s_ .. c.raate.d
i_n this particulfil.lU rect,e,!:Y.,:,,.."B le~ _ _..qr.~aj.e,.d_t2e1ore'"~bangJng,,.,.tbe,.d_e_~~,~t
prC?!~9!1~m,_wiU._,re,tain"tbe,.,.p,r:~YIQ.Y~ .. R rotection.
,, _...,_ ~~: -.. ;t,'1';~1,,..,. •••. ,~,,.,.., ~"'~ ~~·- ,."

{$ SET PROTECTION= (S :RWED, O:RWED, G:RWE, W:R~) fDEFAULT

Changing the protec­
tion code of an exist­
ing file

The .. protection code can be ·changed to allow more or less access to
an existing file.

~$ SET PROTECTION= (S :RWED, O:RWE, G:RW, Wf) MYFILE. TXT

NOTE

If you omit a protection category when you issue the SET PROTECTION command, the
protection for that category remains unchanged.

J

I

5- 28 MANAGING FILES

Example 5-3: Changing Your Default Protection Code

$ SET DEFAULT [SMITH.DOC]

$ SHOW PROTECTION
SYSTEM=RWED, OWNER=RWED, GROUP=RE, WORLD=NO ACCESS

$ DIRECTORY/OUTPUT=DIRECTORY.LIS
$ DIRECTORY/OWNER/PROTECTION

Directory DISK: [SMITH.DOC]

DIRECTORY.LIS;l
EDT.DIR;l

Total of 1 file.

[100,200]
[100,200]

$SET PROTECTION=(S:R,G:R)/DEFAULT :i

$ SHOW PROTECTION

(RWED, RWED, RE,)
(RWE, RWE, RWE, RE)

SYSTEM=R, OWNER=RWED, GROUP=R, WORLD=NO ACCESS

$ DIRECTORY/OUTPUT=DIRECTORY.LIS
$ DIRECTORY/OWNER/PROTECTION

Directory DISK: [SMITH.DOC]

DIRECTORY.LIS;2
DIRECTORY.LIS;l
EDT.DIR;l

Total of 2 files.

[GROUPll, SMITH]
[GROUPll,SMITH]
[GROUPll,SMITH]

(R,RWED,R,)
(RWED, RWED, RE,)
(RWE, RWE, RWE, RE)

MANAGING FILES 5- 29

DELETING A SUBDIRECTORY

Before a subdirectory can be deleted, all files cataloged in that subdirectory must be deleted.

Set your default to the directory or subdirectory containing the subdirectory name to be
deleted (SUBDIRECTORY.DIR file).

• The protection on the subdirectory to be deleted must allow the owner DELETE access .
The directory protection must be changed to reflect this, since the system never assigns
DELETE access to a DIR file type.

• The subdirectory can now be deleted .

Example 5-4: Deleting a Subdirectory from a Directory Hierarchy

$ SET DEFAULT [SMITH.DOC]
$ DIRECTORY

Directory DISK: [SMITH.DOC]

CLASS.LIST;4 CLOCK.EXE;l
JOE EVE.TPU$SECTION;l
REMIND.EXE;l REMLOG.EXE;l

Total of 11 files.

$ DELETE *.*;*
$ DIRECTORY

%DIRECT-W-NOFILES, no files found

$ SET DEFAULT (SMITH]
$ DELETE DOC.DIR;l

COLOR.COM;4
M"fFILE.TXT;l
TRNG.PLAN;6

DEG.EXE;l
NOTE.COM; 4
VTlOO.CLR;l

%DELETE-W-FILNOTDEL, error deleting DISK:[SMITH]DOC.DIR;l
-RMS-E-PRV, .insufficient privilege or file protection violation

$ SET PROTECTION=(O:RWED) DOC.DIR

$ DELETE DOC.DIR;l

$ DIRECTORY DOC.DIR
%DIRECT-W-FILES, no files found

5- 30 MANAGING FILES

Example 5-5: Removing Subdirectories from a Directory Hierarchy

$ SET DEFAULT [SMITHJ
$DIRECTORY [SMITH ... J
Directory DISK: [SMITHJ
DOC.DIR;l MYFILE.TXT;l
Total of 4 files.

Directory DISK: [SMITH.DOC]
FORTRAN.DIR;l MYFILE.TXT;l
YOUR.FILE;l
Total of 5 files.

Directory DISK: [SMITH.DOC.FORTRAN]

MYTEXT.TXT;l

MYTEXT.TXT;l

MYFILE.TXT;l MYTEXT.TXT;l TXT.TXT;l
Total of 4 fi:es.

Grand total of 3 directories, 13 files.
$SET PROTECTION=O:RWED [SMITH ...]*.*;*
$DELETE [SMITH ...]*.*;*

TXT.TXT;l

TXT.TXT;l

YOUR.FILE;l

%DELETE-W-FILNOTDEL, error deleting DISK:[SMITH]DOC.DIR;l
-RMS-E-MKD, ACP could not mark file for deletion
-SYSTEM-F-DIRNOTEMPTY, directory file is not empty
%DELETE-W-FILNOTDEL, error deleting DISK: [SMITH]FORTRAN.DIR;l
-RMS-E-MKD, ACP could not mark file for deletion
-SYSTEM-F-DIRNOTEMPTY, directory file is not empty
$DIRECTORY [SMITH ...]
Directory DISK: (SMITHJ
DOC.DIR;l
Total of 1 file.

Directory DISK: [SMITH.DOC]
FORTRAN.DIR;l
Total of 1 file.

Grand total of 2 directories, 2 files.
$DELETE [SMITH ...]*.*;*
%DELETE-W-FILNOTDEL, error deleting DISK: [SMITH]DOC.DIR;l
-RMS-E-MKD, ACP could not mark file for deletion
-SYSTEM-F-DIRNOTEMPTY, directory file is not empty
$DIRECTORY [SMITH ...]
Directory DISK: [SMITH]
DOC.DIR;l
Total of 1 file.
$DELETE [SMITH ...]*.*;*
$DIRECTORY [SMITH ...]
%DIRECT-W-NOFILES, no files found

MANAGING FILES 5- 31

~Access Control Lists

.t:-n optionaJ. lay~_r:_gJ_Ei_Qte£JiQ!l

Can be used for more control than UIC-based protection

Usually ysed when *§£q_~§.§..iJi to be,,.Qr.Qyjg~gJ9J.,SP,e.QifL9-Y§..'![§_J2YLD.~~l!_~~!2 ... 2!1 .. ~~~~ef'r]~

Based on identifiers

Users can have one or more identifiers

Files specify access rights for holders of various identifiers

5- 32 MANAGING FILES

Commands to Obtain ACL Information

SHOW ACL file-name

DIRECTORY/ACL file-name

DIRECTORY/FULL file-name

DIRECTORY/SECURITY file-name

Creating an Access Control List

The DCL command EDIT/ACL file-name in,yg,~~§J!le, ... 6C-~-~e.,dltQt

Access Control List Entri~s,_ .(ACJ§§L9-~n_Q~ .. ~9.st~~<tt<?.Jllil~
......... ;,....,, ,,.. ;'<.',l:o'•:\.:·J~~;.Jto.t.r'l~i.-.~.r.:~·~.,,,·~~"""lnl:~~~"""~'lllffl'~~· ·"." '· ,}' l"':"."'"'··~

No limit to the number of ACEs contained in an ACL

No limit to the number of ACE characters contained in an ACL

ACEs are enclosed in parentheses

G
r;1a::x:---·--·------·----·---- :

YPE, [OPTIONS] ,[ACCESS])
..----····-·-.~---··-···-·~·~.--~-· , ... -~-¥~ ... --.................. ~-...-~ ··~ ,,,,

• The first field indicates the group or subset of a group that will have access to files

The second field indicates options (if any) that apply to the ACE

• The third field indicates the type of access to be granted to the file (READ, WRITE, EXE-
CUTE, DELETE, C~~TRO_b,,_J~!Q~E) ·-·- ····"· . . .
--~--~----"~~-··-···--··---·~· --·~--~---~--··--> .. -.--····~ . -··· ·-· ,,, ·---~'""'

MANAGING FILES 5- 33

Example 5-6: Modifying an Access Control List

$ DIRECTORY/FULL MYFILE.TXT

Directory DISK: (SMITH]

MYFILE.TXT;l File ID: (25168,6,0)
Size: 1/3 Owner: [GROUPll,SMITHJ
Created: 17-DEC-1986 14:18 Revised: 17-DEC-1986 14:24 (3)
Expires: <None specified> Backup: <No backup recorded>
File organization: Sequential
File attributes: Allocation: 3, Extend: O, Global buffer count: O,
No version limit
Record format:
Record attributes:
Journaling enabled:

Variable length, maximum 47 bytes
Carriage return carriage control
None

File protection: System:RWED, Owner:RWED, Group:RE, World:
Access Cntrl List: None

Total of 1 file, 1/3 blocks.

$ EDIT/ACL MYFILE.TXT

(IDENTIFIER=VMS,ACCESS=READ+WRITE+EXECUTE+DELETE)
CTRL/Z

$ DIRECTORY/FULL MYFILE.TXT

Directory DISK:(SMITH]

MYFILE.TXT;l File ID: (25168, 6,0)
Size: 1/3 Owner: (GROUPll,SMITH]

i.'

Created: 17-DEC-1986 14:18 Revised: 17-DEC-1986 14:45 (4)
Expires: <None specified> Backup: <No backup recorded>
File organization: Sequential
File attributes: Allocation: 3, Extend: O, Global buffer count: O,
No version limit
Record format:
Record attributes:
Journaling enabled:
File protection:
Access Cntrl List:

Variable length, maximum 47 bytes
Carriage return carriage control
None
System:RWED, Owner:RWED, Group:RE, World:
(IDENTIFIER=VMS,ACCESS=READ+WR.ITE+EXECUTE+DELETE)

Total of 1 file, 1/3 blocks.

(1

5- 34 MANAGING FILES

% Deleting an Access Control List

~~AC.L...car:nr:nand, ia .. delete ... an .. Acc.as.s,,,Qp!J~rnLblPt

Example:

$ SET ACL/DELETE MYFILE.TXT ~~ ..

MANAGING FILES 5- 35

SUMMARY

Directory Type

Master File
Directory (M FD)

User File
Directory (UFO)

Subdirectory (SFD)

Example

(000000]

[SMITH]

[SMITH.PAYROLL]

Use the DIRECTORY command to:

Naming Convention

Each disk contains one MFD, named [000000].

Your user name is usually your UFO name.

You choose the names for the subdirectories
you create.

Find files on a peripheral storage device on your system

Display the contents of directories or the characteristics of files

You may want to change file protection to:

• Restrict access to your files

Prevent unauthorized moving or deletion of files

Assign a special protection code for all files created in a particular directory

• Delete a subdirectory

There are two means of protecting files:

User Identification Code (UIC-based) protection

Access Control Lists (ACLs)

5- 36 MANAGING FILES

APPENDIX A-DEVICE INFORMATION

Specifying Devices

Figure 5-6: Device Specifications Used to Identify the Desired Device for a Given Oper­
ation

0
0
0

DEVICE SPECIFICATION

VMS
OPERATING
SYSTEM

VAX-11 DEVICES
TTB_X0332_88_S

MANAGING FILES 5- 37

Table >-14: Examples of Using Other Devices

Operation Comments

Listing files in a direc- Lists all files in the directory [SMITH] located on the disk DBA2:
tory on another disk

$ DIRECTORY device-name:[dlrectory-name]
$ DIRECTORY DBA2: [SMITH]

Locating a file in a di- Searches for the file name MYFILE.TXT in the ~irectory [SMITH] lo­
rectory on another disk cated on the disk DBA2:

$ DIRECTORY device-name:[dlrectory-name]file-name
$DIRECTORY DBA2: [SMITH]MYFILE. TXT

Copying a file from an- Copies the latest version of MYFILE. TXT from another disk to your
other disk to your de- default disk and directory
fault disk and direc-
tory

$ COPY devlce-name:(dlrectory-name]filename file-name
$ COPY DBA2: [SMITH] MYFILE. TXT MYFILE. TXT

Listing all files on a Lists all files on magnetic tape on device MTA2:
tape device

$ DIRECTORY device-name:
$DIRECTORY MTA2:

Finding a file on a tape Searches for the file MYFILE. TXT on magnetic tape on device MTA2:
device

$ DIRECTORY devlce-name:file-name
$DIRECTORY MTA2 :MYFILE .TXT

Copying a file from tape Copies the file MYFILE.TXT from the tape on MTA2: to your default
to a disk disk and directory

$ COPY devlce-name:file-name dlsk:[dlrectory-name]file-name
$ COPY MTA2 :MYFILE. TXT *. *; *

5- 38 MANAGING FILES

Table 5-15: Moving a Hierarchical Fiie Structure from one Disk Device to Another

Command Comment

The COPY command Copies all versions of the files in and below the SFD [SMITH.UTLCOM]
on device DBAO: to the directory [JONES] on device DRA2:, preserving
the hierarchical file structure.

$ COPY DBAO: [SMITH. OTLCOM •••] *. *. * DRA2: [JONES •••]*.*.*

Copies all versions of the files in and below the SFD [SMlTH.UTLCOM]
on device DBAO: to the directory [JONES.UTLCOM] on device DRA2:,
preserving the hierarchical file structure. If the file UTLCOM.DIR does
not exist in the directory [JONES], the COPY command fails.

$ COPY DBAO: [SMITH. OTLCOM •••] *. *; * DRA2: [JONES. OTLCOM •••] *. *; *

MANAGING FILES 5- 39

:* Table 5-16:

Code

cs
DB

DD

DJ

DL

DM

DO

DR

DU

DX

DY

LA

LC

LP

LT

MB

MF

MS

MT

MU

NET

NL

OP

RT

TT

TX

XA

XO

XE

XF

XG

XJ

XM

XQ

Codes for Some Supported Devices on a VMS System

Device Type

Console Storage Device

RPOS, RP06 Disk

TU58 Cassette Tape

RASO Removable Disk

RL02 Cartridge Disk

RK06, RK07 Cartridge Disk

R80 Disk

RM03, AMOS, RMBO, RP07 Disk

RA82, RASO, RA81, RC25, RD54, RD53 Disk, RX33, RXSO Floppy Diskette

RX01 Floppy Diskette

RX02 Floppy Diskette

LPA 11-K Laboratory Peripheral Accelerator

Line Printer on DMF32

Line Printer on LP11

Interactive Terminal or Terminal Server

Mailbox

TU78 Magnetic Tape

TS11, TUSO Magnetic Tape

T~16, TU45, TU77 Magnetic Tape

TA78, TK50, TU81 Magnetic Tape

Network Communication Logical Device

System "Null" Device

Operator's Console

Remote Terminal

Interactive Terminal on DZ11

Interactive Terminal on DMF32

DR11-W General Purpose OMA Interface

DMP-11 Synchronous Communications Lines

DEUNA Communication Device

DR32 Interface Adapter

DMF32 Synchronous· Communications Lines

DUP11_ Synchronous Communications Lines

DMC11 Synchronous Communicatjons Lines

DEQNA Communication Device

>- 40 MANAGING FILES

Table 5-17: Summary of Device Terminology

Term

Peripheral Device

Mass Storage Device

Record-Oriented Device

Physical Device Name

Logicar Device Name

Generic Device Name

Cluster Device Name

Definition

A unit on the system used for information input, output,
or storage. A device can be classified either as a mass
storage device or as a record-oriented device.

A device used for storing information on a magnetic medium.
Examples include disks and tapes.

A device used for reading and writing single units of data.
Terminals, printers, and card readers are examples of
these devices.

A specific physical device on the system. Consists of a
device-type code, a controller character, and a unit num­
ber.

A synonym for a physical device name. Often used to refer
to a specific volume, regardless of the device on which it
is mounted. Usually the system manager sets up logical
names.

A group of devices, consisting of a physical device name
that does not specify the controller and the unit number.

Name of a device on a node in a cluster, consisting of a
cluster node name and a device name or allocation class
separated by a dollar sign.

MANAGING FILES· 5- 41

Table s-1 a: Generic Specification with the SHOW DEVICE Command

Operation

Using Physical Device Names

Specifying a particular device

$SHOW DEVICE/FOLL MTAO:

Using Generic Device Names

Specifying all devices of a given type
except terminals

$ SHOW DEVICE OM:

Specifying all devices of a given type on a
single controller

$ SHOW DEVICE MTA:

Specifying all devices of a given type at the
same position on different controllers

$ SHOW DEVICES TTl:

Specifying all terminals

$ SHOW DEVICE T:

Specifying your assigned terminal

$ SHOW DEVICE TT:

5- 42 MANAGING FILES

Comment

Displays full information on the magnetic tape
(MT) unit (0) on controller A.

Displays brief characteristics of all RASO devices
(DU).

Shows brief characteristics of all MT magnetic
tape devices on controller A.

Displays brief characteristics of all terminals (TT)
with unit number 1 on any controller.

Displays brief characteristics of all system termi­
nals.

Displays brief characteristics of your assigned
terminal. TT: is a system-defined logical name
equating to your terminal.

APPENDIX B~NETWORKING INFORMATION

Managing Files on Another VMS System in Your
Network

Methods of File Management in a Network

• Use the SET HOST command

Enter SET HOST

Both processors must be running DECnet
You must know a user name and password of an account on the remote system

Enter DCL file-manipulation commands

• Use an access-control string I!' your DCL commands

Include an access-control string in your DCL file-manipulation commands

A user name of an account on the remote system
A password for the account on the remote system

• Use a proxy account

Established by the system manager

Associates your user name with an account on the remote system

The remote account provides needed system values

• Use the DECnet defaults

The system manager can establish a default DECnet account

The DECnet account supplies needed system values

MANAGING FILES 5- 43

Using DCL File-Manipulation Commands in a
Non-VAXcluster Network Environment

Two Node Specification Formats

Nodename::

The remote system process obtains needed values from its default DECnet account

{If there is no default DECnet account, your file-manipulation request fails}

You have file access rights based on the DECnet account UIC

• Nodename"access control string"::

The remote system creates a process using the access control string values

The new remote account supplies needed system values

>- 44 MANAGING FILES

Table S-19: Examples of Specifying Files on Remote Nodes

Example

$DIRECTORY DIPPER: :DBAl: [SMITH)PAY.FOR;l

Comments

Specifies file PAY.FOR;1 in the directory [SMITH]
on disk DBA 1 : on remote node DIPPER:.

Specifies the same as above example. Access
to the file uses the UIC of user SMITH.

$DIRECTORY DIPPER" SMITH CORONA": :DBAl: [SMITH) PAY .FOR; 1

$ DIRECTORY DIPPER"SMITH CORONA": :PAY .FOR; l

Specifies the same as above example. The pro­
cess supplies the defaults under the account tor
SMITH.

Specifies the file PAY. FOR in the subdirectory
[SM ITH. DOC] on the default disk of user SM ITH
on node DIPPER:.

$DIRECTORY DIPPER" SMITH CORONA":: [SMITH.DOC] PAY .FOR

MANAGING FILES S- 45

Table 5-20: DECnet-VAX DCL File-Manipulation Command Summary

Function

Adding the contents of one
or more files to the end of an­
other file (files may be local
or remote)

Comments

Appends the contents of file DEMO.DAT in the directory [JAFFE]
on the remote node BOSTON:: to the file TEST.DAT in your
current directory on your local node.

$ APPEND Input-file[,.,.] output-file[, ...]
$ APPEND BOSTON" JAFFE ANN" : : DEMO. DAT TEST. DAT

Copying one or more files to
or from a remote node

Copies the file DEC12.DAT from your current directory to the
directory [JANES] on the remote node SUPER::. Defaults on
the remote node come from the UAF record specified within
quotes. The same file name is retained.

$ COPY Input-file[, ...] output-file[, •••]
$COPY DEC12 .DAT SUPER"JANES JIL":: *. *

Creating a disk file on a re­
mote node

$ CREATE file-specification

Creates the file TEST.DAT in the directory [MO.DEL] on disk
DBA1: of remote node TRNTO::. .

$ CREATE TRNTO: : DBAl: [MODEL] TEST. DAT

Text is entered into file TEST. DAT

<CTRL/Z>

$.

Displaying information about
a file

Lists the files in the subdirectory [JANES.SUB1] located on the
remote node SUPER::.

$DIRECTORY file-specification
$DIRECTORY SUPER"JANES JIL":: [JANES. SUBl]

Displaying the contents of a
file at a terminal on a remote
node

Displays the file PAY.DO_C;1 in the directory [GREEN] on disk
OBA 1: located on remote node DIPPER::.

$ TYPE file-specification
$TYPE DIPPER:: [GREEN] PAY .DOC; l

Deleting one or more files at
a remote terminal

$ DELETE file-specification

Deletes all versions of the file PAY.FOR in subdirectory [JONES.SUB1]
located on remote node SUPER::.

$DELETE SUPER"JANES JIL":: [JANES.SUBl]PAY.FOR;*

S-46 MANAGING FILES

Using DCL File-Manipulation Commands in a
VAXcluster Environment

Two Cluster Device Specification Formats

1.

2.

Format Example

node-name$device-name PETER$DUA 1 :

Node name (name of HSC50 or VAX)

Dollar-sign ($)

Device name·

Format Example

$allocatlon-class$devlce-name 1DUAO:

Dollar-sign ($)

Allocation class (a number between O and 255)

Dollar-sign ($)

Device name

MANAGING FILES 5- 47

Table 5-21: Commands Used to Determine the Nodes and Devices in Your Systems En­
vironment

Operation Command/Example

Determining the names $ sHow NET

of nodes in a network

Determining the names $ sHow cLosTER

of nodes in a VAX-
cluster system

Determining the names $ sHow oEvicEs

of devices accessible
to your node

5- 48 MANAGING FILES

Comments

Displays a list of nodes in your network.

Displays a list of nodes (HSC and VAX) in
your cluster.

Displays a list of devices accessible to your
node.

MODULE 6
CUSTOMIZING THE

USER ENVIRONMENT

CUSTOMIZING THE USER ENVIRONMENT &- 1

INTRODUCTION
In earlier modules, you have learned to enter commands to the operating system and to specify
the locations of devices, directories, and files. The command strings and device and file speci­
fications that perform these operations are sometimes lengthy and complex, which can lead to
typographical and syntactical errors.

This module introduces logical names and demonstrates how to use them in place of complicated
device and file specifications in command strings. It also explains how to create and use symbols
to tailor the command language. Finally, it describes how to define terminal keys to perform
frequently used functions.

OBJECTIVES
To tailor the user environment, you should be able to:

Create anq_ use _!_~cal name!? f,QLfU~~~~9_g~~-~·

~he 1~9.L~~I. "~~,~.~-~,l~~~~y~~ ... ~~~~.~. define~Jpr"~JLL:J§.~[§.·

<2!~!t,!_§.IJ~t.Y.ii,,.~X,tnQQl,§ a$.. ~QJDJ!l.!D9.,"!¥!'.!2.!''Y_r;ns.

Q.E!flri~Jl0.9.,.~"§.~J.~r.mtn!L.~!Y.~J~.!e~~st ~P ~~~£LJtiqn .Q.t. tr~q~eQ.tlY,JJ.§~.9 .. Q.9k ~gg.roJJJ~nQ§,.

RESOURCES

• VMS DCL Dictionary

• VMS DCL Concepts Manual

CUSTOMIZING THE USER ENVIRONMENT 6- 3

)If LOGICAL NAMES 1

A .. Logical--name.~-a--name_y.au .. c.anJJ.se.Jn. __ plac_e .. _otall ... o.Lpatt .. ,Qf .. a ... Ul~ ... sp~,2tfi.99ti.RJ1.

It is used to

Achieve device and file indenendence in programs or nrocedures_.,~ ". ·····~ ... '"···· .. , ... ·-;.,. .. .--· ,, c ".,,,, , .. ~ <-·· ·"····· •.. ·"~ - .. - .. . "-~-... ,, ____ ,.., __ ~_,.... __ __,,_..,,._,.," ... _ •. " ••,.. .. , ..

Reduce typing and improve readability {used as replacement for long file specifications)

P.~ss ~~~ an.iong pr~"9I~I!% _9r .b~Mee.u .. ~ gQmm~n,c;tE..L9..9~9"YJ~, .. !lD.~t-~_ pJQ_g.r~m

• Format:

~ $ DEFINE logical name 1· ~!!~c! .. !!~~~l
or

f: $ ASSIGN equlvalenc~name [, ...] logical-name f
..,,_,_..,,,., -<·,..,_.,, _ __...._....,..,,_ •• _,.,...~,--,.""'"-"'~--·•-· -~ "'''"'-'''"""-·-""--" .. , ",; -.1>SJ, ·'·"''· .. ,_,:~'t<>W'-'~'-<:~'{,•'1j;.w"1.,;.:r'-"'~>",::..;o.j .. ,,;.,.~~.~~,1

• Logical names and their equivalence strings can each have a maximum of 255 characters
{including alphanumeric characters, dollar signs, and underscores)

• Any other characters must be enclosed in quotation marks

• Stored in logical name tables

CUSTOMIZING THE USER ENVIRONMENT 6- 5

~~ Logical Name Tables

~Private

i:~o.~~~ l9.9!.C:~!Jl~!!1~-~ ~·; '\ .::·-: .:~
- Used 9n1x~~HQ!~!..Pll?£!!!§S ~ ; ·· ·"-", U

- / ~.Q,.Q~S])- DCL command qualifier

~shared

• Job-wide logical name_ tab_I,~
-·~-~---i..-~ -......... ,.~,.,,,,,,.,...,,_,,<;,o,~~.,~"':>{l"'~

·/JOB .. ;- DCL command qualifier
,:;·· ~ . ._,._·-··:'J·~~~·

• Group logical name t~ble
,_,...w,,_,,..,.;,),..i...i,.;,A,::41~., .. ·~~f.1;.l_\.~:":,).•1"'"·"":"'"''""~ .

i
~~vi leg~ _i$ needed_~() ~QQ,JQgi_c;~Ll'l~r11~-~-tQ. tbi~ ta.bl~ ~.

/GR..QLJP)- DCL command qualifier

• System logical na~
l

~~!!9. .. P.Y~~JL~Y!t~rrLP.!.9.C.~§-~~.~ i

t:~yile_9§t,J~,J!~~ded !Q ag_ct,lpgj~§t.ri~trn~.§ tQJ!I!~J~~l.e i
' , ----. .. " -

/SYST~.~)- DCL command qualifier

6- 6 CUSTOMIZING THE USER ENVIRONMENT

I ,,.

Figure 6-1: The Relationship Between Your Terminal, the Operating System, and the
Logical Name Tables Associated with Your Process

TERMINAL

$ logical-name command

VMS
COMMAND
LANGUAGE
INTERPRETER

VMS
OPERATING
SYSTEM

PROCESS
LOGICAL
NAME
TABLE

SYSTEM
LOGICAL
NAME
TABLE

JOB-WIDE
LOGICAL
NAME
TABLE

GROUP
LOGICAL
NAME
TABLE

TTB_X0333_88_S

CUSTOMIZING THE USER ENVIRONMENT 6- 7

Common User Operations Dealing with Logical Names

Display the contents of logical name tables

• Determine the equivalence string of a logical name

Add or alter logical name assignments in your process logical name table

• Override system-defined logical names in your process logical name table

• Remove a logical name from your process logical name table

6- 8 CUSTOMIZING THE USER ENVIRONMENT

)

Adding Logical Names

ASSIGN command

Format:

Example:

$ ASSIGN DISK: [SMITH.UAN~C] MINE

DEFINE command

Format:

$ DEFINE[/table-name][/mode-name] logical-name(:] equivalence-name[, •••]

Example:

$ DEFINE MINE DISK: [SMITH.UANDC)

./

,Jo.·

/''{ .. ;. li,·,J
'Lt> (j·V<"

Example 6-1: Using Logical Names to Abbreviate Device and File Specifications ~·- ,,r--~>·

$ CREATE/DIRECTORY/LOG [SMITH.LOG]
%CREATE-I-CREATED, DISK: [SMITH.LOG) created

$ ASSIGN [SMITH.LOG] MY_LOG

$ COPY/LOG [SMITH)MYFILE.TXT MY LOG
%COPY-S-COPIED, DISK: [SMITH]MYFILE.TXT;l copied to
DISK: (SMITH.LOG]MYFILE.TXT;l (1 block}

$ TYPE MY_LOG:MYFILE.TXT
This is a file for use in displaying the use of logical names
to abbreviate devices and file specifications. This is in
the module entitled "Customizing the User Environment".
$

CUSTOMIZING THE USER ENVIRONMENT 6- 9

USING LOGICAL NAMES

Logical Name Translation for Logical Names that Have
Single Equivalence Strings

• The system translates logical names automaticajJY-.

Logical name tables are searched for the first occurrence of a logical name. _...... ...~~~,.. -_,, __ -~-~ --~--,~
% S~~LQtLQ!'Q.~[;_"

Process Logical Name Table
Job-Wide Logical Name Table
Group Logical Name Table
System Logical Name Table

• Translates left-most portion of all file specifications to see if it is a logical name.

Translates:
r:~?f~, 'Ill

Up to 10 times (re~~rsivel~).- ?·-Gt- 1\

Until no more eq~!'!Qg_~~-~ln~-~ to be ~'1§~

~-: __ most ~o~.P~.D-~IJ_LQUb~ ... ~$J)_~g1flcatlQJLl§.D~Qt .. Q~JJm!t~QJ?Y. ... !~ .. ~~~-!. --~-,-~pa9~1~~
-~'!~ mtt_ _ _gr _a_o._~~ng _of. !i ne,_.

Until equivalence name is a logical name that has the TERMINAL attribute. If a logical
name has the TERMINAL attribute, the translation is "TERMINAL" (completed) after the
first translation.

If the logical name has the CONCEALED attribute, the translation normally displays the
logical name for the device, rather than the physical name for the device.

NOTE

Both TERMINAL and CONCEALED are translation attributes. They are defined by using
the /TRANSLATION ATTRIBUTES= qualifier for either the DEFINE or ASSIGN DCL
commands.

. •.. /:~'

Cc

6- 10 CUSTOMIZING THE USER ENVIRONMENT

Sample Recursive Translation

Command

$ DIRECTORY PROJECTS

First table search (looking for PROJECTS)

"PROJECTS" = "DISK_USER: [ELLEN]" (LNM$PROCESSTABLE}

Second table search (looking for DISK_ USER)

"DISK USER" = "DBAO:" (LNM$SYSTEM_TABLE)

• Result

- DBAO:[ELLEN] - Searched

/
·' !

./

. ·~ ·. :-

"} : ', .:··.~

(!.'

. ,· ~ i?_., //-·-{ e .. ; -.:" .. --Jr .

CUSTOMIZING THE USER ENVIRONMENT 6- 11

Displaying the Contents of Logical Name Tabl-es

~f;: Table ~1: Displaying the Contents of Logical Name Tables

Command String/Example Comments

$ SHOW LOGI91?k

$ SHOW LOGICAL/FULL
--···'~-·-·--·.w--. ... · ~"'-""'e-"'" .. '""·-"'""

$ SHOW LOGICAL/E.R.o.cESs..

$ ~~_QW LOGICAL/ JOB

$ SHOW LOGICAL/ SYSTEM

By default, displays logical names from the process, job­
wide, group, and system logical name tables

Displays all of the attributes of logical names from the
process, job-wide, group, and system logical name ta­
bles

Displays logical names from your process logical name
table

Displays logical names from your job-wide logical name
table

Displays logical names from your group logical name ta­
ble

Displays logical names from the system logical name
table

6-12 CUSTOMIZING THE USER ENVIRONMENT

Example 6-2: Displaying the Contents of the Process, Job, Group, and System Logical
Name Tables

$ SHOW LOGICAL/PROCESS

(LNM$PROCESS_TABLE)

"SYS$COMMAND" = "DISK$RTA1:"
"SYS$DISK" = "DISK:"
"SYS$ERROR" = " DISK$RTA1:"
"SYS$INPOT" [super] = II DISK:" -- e:x: .:)~ /\./\ 0 '·>i:\;:;.,(
"SYS$INPUT" [exec] = " DISK$RTAl:" --- 1'-N:q "- ~,:· , · .":.:: ,):C. ~,'
"SYS$0UTPOT" [super] =-" DISK$RTA1:"
"SYS$00TPOT" [exec) "_DISK$RTAl:"
"TT" = "RTAl: II
$ SHOW LOGICAL/JOB

(LNM$JOB_803E4E40)

"SYS$LOGIN" = "DISK:[SMITH]"
"SYS$LOGIN DEVICE" == "DISK:"
"SYS$REM ID" = "SMITH"
"SYS$REM-NODE" ="SUPER::"
"SYS$SCRATCH" = "DISK:[SMITH]"
$ SHOW LOGICAL/GROUP

(LNM$GROOP_OOOOll}

"MY DISK" = "DJAO: II
$ SHOW LOGICAL/SYSTEM

(LNM$SYSTEM_TABLE}

"DBG$INPUT" = "SYS$INPOT:"
"DBG$0UTPOT" = "SYS$0UTPOT:"
"DISK$BROWNY SYS" = "DISK:"
"SYS$ANNOONCE" =".Welcome to Browny."
"SYS$COMMON" ="DISK: [SYSO.SYSCOMMON.]"
"SYS$DISK" = "DISK:"
"SYS$ERRORLOG" = "SYS$SYSROOT:[SYSERR]"
"SYS$HELP" = "SYS$SYSROOT:[SYSHLP]"
"SYS$MAINTENANCE" == "SYS$SYSROOT: [SYSMAINT]"
"SYS$MANAGER" == "SYS$SYSROOT: [SYSMGR]"
"SYS$MESSAGE" = "SYS$SYSROOT: [SYSMSG]"
"SYS$NODE" = "BROWNY::"
"SYS$SYLOGIN" = "SYS$MANAGER:SYLOGIN.COM"
"SYS$SYSDEVICE" = "DISK:"
"SYS$SYSROOT" = "DISK: [SYSO.]"
= "SYS$COMMON:"
"SYS$SYSTEM" "SYS$SYSROOT: [SYSEXE]"
"SYS$UPDATE" = "SYS$SYSROOT: [SYSUPDJ"

CUSTOMIZING THE USER ENVIRONMENT 6- 13

Determining the Equivalence of a Logical Name

Two commands are available to determine the equivalence of a logical name

Format:

~: $ SHOW LOG~IC.~L J~9J9.,!!::.n~m.@,,

Iteratively translates the logical name ~,~~~E.J~ye~s until everything is resolved

* $ ~'?~~l:~!!Q,t,!1$~.9.~£!~~r:'J!.!n~t-
Displays the first equivalence string it finds and stops (no iteration is performed)

-............~ ,_.,~_ "., -~·· .. " ... ~····''" ·'' ~:.-:-.,•:;,..,1,';~ ., •<· ,. ",_,,_ •.•. ,. ''·"'"'"''7~" .., . ..,..,, _,.. .· ,. ~. _.,.,., _ _,_ "'

Example 6-3: Determining the Value of a Logical Name

$ ASSIGN DJAO: DISKl

$ ASSIGN DISKl: MYNAME

$ SHOW TRANSLATION MYNAME
MYNA.."1E = "DISKl:" (LNM$PROCESS TABLE)
$ SHOW LOGICAL MYNAME -
"MYNAME" = "DISKl:" (LNM$PROCESS TABLE)
l "DISKl" = "DJAO:" (LNM$PROCESS_TABLE)

&-14 CUSTOMIZING THE USER ENVIRONMENT

f Deleting Logical Names

Table 6-2: Commands to Delete Logical Names

Operation

Delete a logical name
assignment

Command String/Example

$DEASSIGN [logical-name]

$ DEASSIGN MYFILE

$DEASSIGN/JOB

$DEASSIGN/GROUP

$ DEASSIGN/SYSTEM

Comments

Deletes the logical name MY­
FILE from your process logical
name table.

Q.~1le.!e,,~,,aJLasslQilments.that.you
ha~e .. Rl§qeglrLY.QYCQr.Qge~ss,log­
ical name table.

~.,,, ,~, _~~-.

Deletes a logical name in your
job table.

Deletes a logical name in your
group table. GRPNAM privi­
lege is needed.

Deletes a logical name in the
system table. SYSNAM privi­
lege is needed.

CUSTOMIZING THE USER ENVIRONMENT 6-15

Example 6-4: Assigning, Changing, and Deleting Logical Name Assignments

$ ASSIGN DJAO: DISKl
$ ASSIGN DISKl: [SMITH] LOG
$ SHOW LOGICAL/PROCESS

(LNM$PROCESS_TABLE)

"DISKl" = · "DJAO:"
"LOG" = "DISKl: [SMITH]"
"SYS$COMMAND" = " DISK:"
"SYSSDISK" = "DISK:"
"SYS$ERROR" = " DISK$RTA1:"
"SYS$INPOT" [super] = " DISK:"
"SYS$INPOT" [exec] = "DISK$RTA1:"
"SYS$00TPOT" [super] =-" DISK$RTA1:"
"SYS$00TPOT" [exec] = "_DISK$RTA1:"
"TT" = "RTAl: "

$ ASSIGN DJAl: DISKl
%DCL-I-SOPERSEDE, previous value of DISKl has been superseded

$ SHOW LOGICAL/PROCESS

(LNM$PROCESS_TABLE)

"DISKl" = "DJAl:"
"LOG"= "DISKl:[SMITH]"
"SYS$COMMAND" = "DISK$RTA1:"
"SYS$DISK" ="DISK:"
"SYS$ERROR" = " DISK$RTA1:"
"SYS$INPOT" = "-DISK$RTA1:"
"SYS$00TPOT" [super] = " DISK$RTA1:"
"SYS$00TPOT" [exec] = "_DISK$RTA1:"
"TT" = "RTAl:"

$ DEASSIGN/ALL
$ SHOW LOGICAL/PROCESS

(LNM$PROCESS_TABLE)

"SYS$COMMAND" = "DISK$RTA1:"
"SYS$DISK" = "DISK:"
"SYS$ERROR" = " DISK$RTA1:"
"SYS$INPOT" = "-DISK$RTA1:"
"SYS$00TPUT" [super] = " DISK$RTA1:"
"SYS$0UTPUT" [exec] "_DISK$RTA1:"
"TT" = "RTAl:"
$

6- 16 CUSTOMIZING THE USER ENVIRONMENT

f. System-Defined Logical Names
When you log in, the system:

• Defi~~_§-~Q~l ofJQ.Q!ggLo.ame..s_aru;LstQ.re§_ t~e.rrU!LY.Q.~J2r2.9-~§.~JpgJ9~l,Jo.~m,EiLt~P.J~

Creates a job-wide logical name table for your process and~s-potential subprocesses

You may override these permanently or temporarily with the ASSIGN or DEFINE commands

Refer to. the following tables for lists of system-defined logical names

Logical Name Equivalence Name

$.Y$~qQMM~~.'2 Original value of SYS$1NPUT, equated to your terminal for interactive
use and command procedures.

~.X.~~QJ§!'.S Default disk ~stablished at login. Can be changed by .the SET DE­
FAULT command.

SYS$ERROR ____ .,.,,.....,.._......""'.....,..~,-~-~_,, ... ,_

TT

Default device to which the system writes messages. For an interactive
user, the system equates SYS$ERROR to ~he terminal.

Default output devices. For an interactive user, SYS$0UTPUT is
equated to the terminal.

Default input device. For all interactive use, SYS$1NPUT is equated to
the terminal. For command procedures, it is equated to the command
file on disk.

Default device name for your terminal in interactive mode and for the
console in batch mode.

CUSTOMIZING THE USER ENVIRONMENT 6-17

.... --·--·~
_,,,,,/· \

Table 6-4: /Job Loaical/~ames Defined by the System

Logical Name

SYS$LOGIN

SYS$LOGIN_DEVICE

SYS$SCRATCH

Equivalence Name

Default disk and directory established at login time. This "home" direc­
tory is specified in the authorization record.

Default disk established at login. Unlike the logical name SYS$DISK,
SYS$LOGINDEVICE is not changed by the SET DEFAULT command.

Default device and directory to which temporary files are written. This
is always equated to your default directory. ex, {,)f':'. 1$ YN. ~0'2

*Table 6-5: ('System LoglcaJ>Names Defined by the System
......... -.......... ,, ... ~ ... ':"'"....,,.. _, ,,.,,,,-··"-

Logical Name Equivalence Name

SYS$SYSTEM Device and directory of operating system programs and proce_dures.

SYS$HELP

SYS$LIBRARY

SYS$MESSAGE

SYS$SHARE

SYS$SYSDEVICE

SYS$NODE

Device and directory name of system help files.

Device and directory name of system libraries.

Device and directory name of system message files.

Device and directory name of system shareable images.

VMS system disk, device referred to in the system logical names listed
above.

Current network node name for the local system, if DECnet is active
on the system.

~ 18 CUSTOMIZING THE USER ENVIRONMENT

*-Specifying Logical Name Access Modes

•

/USER_MODE (temporary assignment)

/SUPERVISOR_MODE (default - ~~~D!.~~~!.9nr.n~nt)J

Duration of a Process-Private Logical Name
Assignment

• Supervisor mope assignments las!_until you

Log out

Assign the particular logical name to a different equivalence string

Remove the logical name assignment by using the DEASSIGN command

:-r,r.,• User mode a~IB:~!,;_

Until the next image fY.l'l in __ YQ..YLJ2fQgj)_ss .. c.ompJetes...executLonr (An image is a program
in its executable form.)

Example 6-5: Using ASSIGN Command to Alter the Default Output Device of Your Pro­
cess

$ ASSIGN/USER_MODE OUTPUT.LIS SYS$00TPOT

$ SHOW PROCESS

$ TYPE OUTPUT.LIS
22-0CT-1987 16:20:03.20 RTAl: User: SMITH
Pid: 202001F8 Proc. name: SMITH UIC: [GROUPll,SMITH]
Priority: 4 Default file spec: DISK:[SMITH]
Devices allocated: DISK$RTA1:
$

I\ ; C-:

Dr

CUSTOMIZING THE USER ENVIRONMENT 6-19

* USING DCL 'SYMBOLS

•

•

•

t \

Symbols are names that.r.ep1es...ent.c.bsr§.~t~r....§!tlD.9~§9l~D-~ITl~Ti.9.Y~!.IJ~§~"'

Can ~e use~ as _ _Q.QJ~ .. -Q9-!Tirrt~_ng_§Y!19-QY..'TI~ allowing the user to tailor DCL command format

Equated to an equivalence string (which is enclosed in " ")

Complete CQ..F'!JI!land _$tong
.,,.,,.... ~

~~on C?!_~~2!!!!!.1~~~.,,~!~l'lg

Store_QJr'l o,ne of two tables (each process ha;;. its own)

LOCAL
~ ,_, , ... 1.

GLOBAL

• Qtten defined Jn a £Qffit!l§D.Q~1H~U1§.DJ~~Q."~QG1.N~C.Q.M {usually located in your default direc­
tory) for use in every terminal session

Defined with= or== {assignment operators)

~~ Local with = ·
ofl. -- -----'. - ----·--··

-,(!. :":.~

t'. - Global with==

Example:

,;;.~

•

•

•

$ SD = = "SET DEFAULT"

Example:

$ M*AIL = "MAIL"

)
,/
""'

The abbreviations "M", "MA", "MAI", and "MAIL" now will invoke the Mail utility

Translation is not iterative l t (
--------··\~ ""* ~

Examples:

$PROTECT== "SET PROTECTION=(S:R,O:RWED,G:R,W)" ~J

$ PROTECT [SMITH]*.*;* "" . ·"~,
jl~

6- 20 CUSTOMIZING THE USER ENVIRONMENT

Figure 6-2: The Relationship Between Your Terminal, the Operating System, and Your
Global Symbol Table

$command-synonym command

TERMINAL

VMS
COMMAND
LANGUAGE
INTERPRETER

GLOBAL SYMBOL
TABLE

LOCAL SYMBOL
TABLE

/
,;;:

TTB_X0334_88_S

CUSTOMIZING THE USER ENVIRONMENT 6- 21

-4.:· Table 6-6: Commands for Displaying and Deleting DCL Symbols

Operation Command String/Example Comm~nts

-'1Y Displaying Symbols

Displaying a sin- $ SHOW SYMBOL/GLOBAL symbol-name
gle symbol $ SHOW SYMBOL/GLOBAL GO

Displaying all sym- $SHOW SYMBOL/GLOBAL/ALL

bots

Displaying all sym- $ SHOW SYMBOL/ GLOBAL s *
bols using a wild-
card

Displays the value of the
symbol GO

Displays the values of all
symbols defined in your
global symbol table

Displays the values of all
symbols defined in your
global symbol table be­
ginning with the letter "s"

~Deleting Symbols

Deleting a single
symbol

$ DELETE/SYMBOL/GLOBAL symbol-name Deletes the symbol GO
from your global symbol

Deleting all sym­
bols

$ DELETE/SYMBOL/GLOBAL GO table

s DELETE/SYMBOL/GLOBAL/ALL Deletes all symbols from
your global symbol table

6- 22 CUSTOMIZING THE USER ENVIRONMENT

Example 6-6: Defining, Displaying, Using, and Deleting DCL Symbols

$ DIRP == "DIRECTORY/OWNER/PROTECTION"
$ GO == "SET DEFAULT"
$ RETURN == "SET DEFAULT SYS$LOGIN"

$ SHOW SYMBOL/GLOBAL/ALL

, 1 $RESTART == "FALSE"
,'$SEVERITY = "l"

$STATUS == "%X00030001"
·~ ,,, DIRP == "DIRECTORY/OWNER/PROTECTION"

GO = "SET DEFAULT"
RETURN == "SET DEFAULT SYS$LOGIN"

$ GO SYS$SYSTEM
$ DIRP DCL.EXE
Directory SYS$COMMON: [SYSEXE]

DCL.EXE;l [SYSTEM]

Total of 1 file.

$ RETURN

$ DELETE/SYMBOL/GLOBAL/ALL

$ SHOW /SYMBOL/GLOBAL/ALL

$RESTART = "FALSE"
$SEVERITY = "l"
$STATUS == "%X00030001"

(RWED,RWED,RWED,RE}

CUSTOMIZING THE USER ENVIRONMENT 6- 23

Table 6-7: Comparison of Logical Names and DCL Symbols
S'IM rbot,...-S

begie81 Ne~es

-(D USE Equated to all or part of a command
string

{~ CREATE

.(u DISPLAY

DELETE

QUALIFIERS

NOTES

=(LOCAL)
==(GLOBAL)

SHOW SYMBOL

DELETE/SYMBOL

/LOCAL
/GLOBAL
/ALL

/LOCAL

1 DIS means DISPLAYING
DEL means DELETING
CRE means CREATING

Used for:
(DIS, DEL)1

(DIS, DEL)1

(DIS, DEL)1

is the default
for display and
delete

Used in place of all or part of a
file specification

ASSIGN or DEFINE

SHOW LOGICAL or
SHOW TRANSLATION

DEASSIGN

/PROCESS
/JOB
/GROUP
/SYSTEM
/ALL

/ALL

/PROCESS

Used for:
(CRE, DIS, DEL) 1

(CRE, DIS, DEL) 1

(DIS, DEL)1

(DIS, DEL)1

(DIS)1

is the default
for display
is the default
for create and
delete

CUSTOMIZING THE USER ENVIRONMENT 6- 24

-J/(DEFINING KEYS (or1L~ PCP-- t.06· 1.tJ :;t:.::£,10,,-J

(6rJ'--Y tt T DC..-L L(:~:.Jf: L..)

Definitions often contain part or all of a DCL command string

~· Reduces typing of lengthy or frequently used DCL commands

~inal types and associated definable keys include

VT52-type terminals

All definable keys located on the numeric keypad

VT100-o/pe terminals

All keys located on the numeric keypad
<LEFT~ and <RIGHT> arrow keys

;: - Terminals with LK201 keyboards (t.11<...E A. ·1
~·~

All keys on the numeric keypad
Keys on the editing keypad (except the <UP> and <DOWN> arrow keys)
Keys on the function key row across the top of the keyboard (except function keys
<F1 > through <F5>)

Keys <KPO> - <KP9>, <PERIOD>, <COMMA>, and <MINUS> must be enableq f9r ~9~lti9ll
purposes. These keys are enabled by using either of the following commands:

$ SET TERMINAL/APPLICATION

$ SET TERMINAL/NONUMERIC

• Keypad keys <PF1 > - <PF4> can also be defined

• Format:

• One or more of the following qualifiers may be used to alter the action of a defined key:

\ t- - /TERMINATE - Produces an automatic return~ .eol;~. hc. .. ·~~ .~'°

~ - /NOECHO - Suppresses the di~play of the command being invok~d
(Otl'l.)' 1r. : ~.,: ~~, :} .. ':.~'·'···"li)t;:; ~.).•.:.1.1. 1,N01.,1'1-r 1(1.f':)f:•·· ;),

/ERASE- Erases the characters on the current line before displaying and executing the
command invoked by the defined key

-,r- /NOLOG - Suppresses the informational message you receive when you initially define
a key

CUSTOMIZING THE USER ENVIRONMENT 6- 25

To display a key definition, issue the DCL command:

>f SHOW KEY/FULL key-na~~!,

Example:

$ SHOW KEY/FULL PFl
PFl = "directory"

(echo,noterminate,noerase,nolock)

• To delete a key definition, issue the DCL command:

:f DELETE/K~Y ke~-name~
Example:

$ DELETE/KEY PFl

%DCL-I-DELKEY, HOME key PFl has been deleted

6- 26 CUSTOMIZING THE USER ENVIRONMENT

SUMMARY

A logical name is a name you can use in place of all or part of a file specification

They are used to:

Achieve device and file independence in programs or procedures

Reduce typing and improve readability (used as replacement for long file specifications)

Pass data among programs, or between a command procedure and a program

Logical names and their equivalence strings can each have a maximum of 255 characters
(including alphanumeric characters, dollar signs and underscores)

Any other characters must be enclosed in quotation marks

Stored in logical name tables

System Defined Logical Names

When you log in, the system:

• Defines a number of logical names and stores them in your process logical name table

Creates a job-wi~e logical name table for your process and all of its potential subprocesses

You may override these permanently or temporarily with the ASSIGN or DEFINE commands

DCL Symbols

Symbols are names that represent character strings or numeric values

• Can be used as DCL command synonyms allowing the user to tailor DCL command format

• Equated to an equivalence string (which is enclosed in " ")

Complete command string

Portion of a command string

• Stored in one of two tables (each process has its own)

LOCAL

GLOBAL

CUSTOMIZING THE USER ENVIRONMENT ~ 27

Defining Keys

Definitions often contain part or all of a .DCL command string

Reduces typing of lengthy or frequently used DCL commands

Syntax:

$ DEFINE/KEY key-name equivalence string /qualifiers

To display a key definition, issue the DCL command:

SHOW KEY/FULL key-name

To delete a key definition, issue the DCL command:

DELETE/KEY key-name

6- 28 CUSTOMIZING THE USER ENVIRONMENT

MODULE 7
WRITING COMMAND PROCEDURES

WRITING COMMAND PROCEDURES 7- 1

INTRODUCTION
Com~~-d procedure~.-~-~~"E.2~§,i.~!iD,Q.S~L!29..b.££~!~E~.~~~· They can be used to automatically
execute comman0sequences that are needed repeatedly. In addition to the command verbs,
qualifiers, and parameters commonly used at the interactive level, command procedures allow
the use of DCL command language features that provide increased functionality and flexibility,
including:

Symbols that can be used as numeric and string variables

Instructions that allow you to control program flow

Lexical functions

T.bi§_.module_Qresents the mateJ}~L~~d l<?_ create, test, and run a _c::o.rTim~ng __ Qrog_~.9J.ff§ . .l01~.r.­
~9tiy_~JY.:.~!n._a. la..t~Lm.o.9~1~~.,)~.9.Y .. wUI .J~~.m.b.QWJQ,,~!t99m"'ffii6.'(;[pr9Q~gure~ .. .LQ.Q.~Q~f.'Q~Q!!Y 9.!._your

.. ~ nt~!_~9!i.Y~_.PIQ9~§~h .. ~§ .. J?§.!Pb,, job~:

;/)

.I.

WRITING COMMAND PROCEDURES 7- 3

·.·:

OBJECTIVES
To write DCL command procedures, you should be able to:

Define what a command procedure is and describe why command procedures are used.

Create a command procedure, using standard DCL command elements.

Control terminal input and output in a command procedure by:

Displaying messages on the terminal

Accepting input from the user

Redirecting input or output from the terminal to another location

• Pass data to a command procedure using parameters.

Control the flow of execution within a command procedure using:

The IF command

The GOTO command /

• Use the proper lexical function to obtain the information needed in a command procedure.

RESOURCES

•

•

Guide to Using VMS Command Procedures

VMS DCL Dictionary_

WRITING COMMAND PROCEDURES 7- 4

DEVELOPING A COMMAND PROCEDURE
The steps you take to develop a command procedure are similar to the steps you take to develop
any computer program in any language. The following steps are illustrated in Figure 7-1.

1. Design the command procedure.

• Determine what tasks the procedure should perform.

Decide what results the procedure should produce.

2. Create the command procedure.

Use the text editor of your choice.

• Specify the file type COM for the command procedure.

3. Execute and test the command procedure.

• J)~~ th~ '.'~!-~i~~" _(~) to execute tt"le .. Prc:>cedu_re _interactively.

Use the DCL command SET VERIFY to:

Display each line of the procedure as it executes/

Help you locate errors if they occur /

4. Modify and retest the command procedure, if necessary.

• Repeat steps 2 and 3.
~·"""'·~·' •"'''''""'" _ _~'

• Use the DCL command SET NOVERlt::Y .. ·after the procedure has been tested and
perfected. ·- ... --·--··· ·

5. Add comments to the command procedure so it is easy to read and maintain. Comments
should:

• Describe the procedure in detail.

• Describe any parameters that are passed to the procedure.

WRITING COMMAND PROCEDURES 7- 5

Figure 7-1: Command Procedure Development Process

DEVELOPMENT STEP

DESIGN PROCEDURE

WRITE PROCEDURE

TEST PROCEDURE

ADD COMMENTS
TO PROCEDURE

MODIFY PROCEDURE

RE-TEST PROCEDURE
USING

$SET VERIFY

CORRESPONDING DCL
COMMAND (IF ANY)

NONE

$ EDIT filename.COM

$ @filename.COM

$ EDIT filename.COM

$ SET VERIFY
$ @filename.COM

$ EDIT filename.COM

TTB_X0335_88

WRITING COMMAND PROCEDURES 7- 6

Components and Conventions
Consistent formats and clear programming style make your command procedures easy to read,
test, and maintain. Example 7-1 illustrates some of the conventions below.

DCL command lines

Use full command names, no abbreviations

Precede each command line with the dollar sign($} prompt

Continue a line by QlacirtQ-a..b¥.p.he,n.atJhaancLo.Uhe_Jine.~(~;tg_,.,not .tie_glr:L!b.~. 9QD.tiO.ld§.d
~.l!~~-~-~lL~L-~l9D} ~

Comments

Precede all comment lines with an exclamation mark (I}

Use blank comment lines to separate blocks of commands

• Labels

Use labels to mark locations within a procedure

Place the label on a line by itself

Follow the label with a colon (:}

Data lines

Place data in a command procedure immediately after the command that will use it

Do not place a dollar sign at the beginning of a data line

(Terminated by the first occurrence of the dollar sign)

WRITING COMMAND PROCEDURES 7- 7

Example 7-1: A Sample Command Procedure

$ REPORT1:coM
$
$
$ This corrunand procedure sets your default directory
$ to the REPORTS.MONDAY subdirectory, prints out a report
$ for Monday, returns you to your login device and
$ directory, then exits.
$
$
$ Set your default to the REPORTS.MONDAY subdirectory
$
$ SET DEFAULT DISKl: [REPORTS.MONDAY]
$
$ Check to verify you are in the correct directory
$
$ SHOW DEFAULT

13 um: : r Riii' nt!i'Si~i?:3:
$
$ Print out the report for Monday
$
$ PRINT MONDAY.RPT
$
$ Return to your login device and directory
$
$ SET DEFAULT SYS$LOGIN
$ EXIT

7- 8 WRITING COMMAND PROCEDURES

Execution of REPORT1 .COM:

Example 7-1: A Sample Command Procedure (Cont)

$ @REPORTl
Job MONDAY (queue SYS$PRINT, entry 44) started on WORK$TXAO

. Now try it with VERIFY turned on:

$ SET VERIFY
$
$
$
$

@REPORTl

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
Job
$
$
$
$
$

REPORTl.COM

This command procedure sets your default directory
to the REPORTS.MONDAY subdirectory, prints out a report
for Monday, returns you to your login device and
directory, then exits.

Set your default to the REPORTS.MONDAY subdirectory

SET DEFAULT DISKl:[REPORTS.MONDAYJ

Check to verify you are in the correct directory

SHOW DEFAULT
DISKl: [REPORTS.MONDAY]

Print out the report for Monday

PRINT MONDAY.RPT
MONDAY (queue SYS$PRINT..--~v--.

~,,,,.,,,-""

Return to you~ l~ device

SET DEFAULT ~;LOGIN
EXIT A-
/

I
I

46) started on WORK$TXAO

d directory

/
l

WRITING COMMAND PROCEDURES 7- 9

LOGIN COMMAND PROCEDURE

•

Is a command procedure that is executed automatically each time you log in

.M,y.st be.gall~<t.l:.Q~l.~,.:.29~ an~J1L~~.Qj,~·~Y.Q9LJ:igfs.Ylt JpgJri qi,r~g,~q(Y. .. ! L
ContairJ§J,agicaLo.~m.~~!-~Y~.i?.~Cl!§., gnflgtt1er. .~Qr:runa.nds to. setup. yourJem1i 0~1 .. ~_~ssion

~e d~m:_~J~f:!a.i~.Ylar .. sessJQ1LQY,.WJ2i!!SJ~_<:?~QMM~.~~. after your user naf!le at
the u~~ma~m.e . .:".prompt
--,,...;~

Example 7-2 shows a typical LOGIN.COM file

7-10 WRITING COMMAND PROCEDURES

Example 7-2: A Sample LOGIN.COM File

$ LOGIN.COM
$
$
$ '!
$ Logical names for common files and directories
$
$ ASSIGN SYS$LOGIN DEVICE: [BLOOM.PASCAL] PASCAL
$ ASSIGN SYS$LOGIN-DEVICE: [BLOOM.GAMES) FUN
$ ASSIGN SYS$LOGIN=DEVICE: [BLOOM.PROCEDURES) CLEANUP.COM CLEANUP
$
$
$ Commonly used com.~ands
$
$ SED == "SET DEFAULT"
$ HOME == "SET DEFAULT SYS$LOGIN"
$ CLR == "SET TERMINAL/WIDTH=80"
$ EDT == "EDIT"
$ DS == "DIRECTORY/SIZE=ALL"
$ SD == "SHOW DEFAULT"
$ M == "MAIL"
$ PU "PURGE/LOG"
$ XX == "DELETE"
$
$
$ Key definitions ·
$ ~L
$ SET TERMINAL/APPLICATION_KEYPAD.,.....
$
$ DEFINE/KEY/NOLOG/TERMINATE PFl "SHOW USERS"
$ DEFINE/KEY/NOLOG/TERMINATE PF3 "SHOW TIME"
$ DEFINE/KEY/NOLOG/TERMINATE KP9 "SHOW QUEUE/ALL/FULL LPAO"
$ DEFINE/KEY/NOLOG/TERMINATE KPO "LOGOUT"
$
$ EXIT

WRITING COMMAND PROCEDURES 7- 11

TERMINAL INPUT/OUTPUT

Several DCL commands allow you to perform terminal input and output operations

These commands make use of predefined logical names

Terminal input and output operations are used to:

Display messages and command output on the terminal screen

Redirect terminal output to a file

Allow the use of an interactive utility, such as an editor

Table 7-1: System Logical Names Used with Terminal 1/0

Logical Name Description Associated File or Device

(At Login) (During Execution
of a Procedure)

SYS$COMMAND Initial input stream for your Terminal Terminal
process

SYS$1NPUT Default input stream for your Terminal Command Procedure File
process

SYS$0UTPUT Default output stream for your Terminal Terminal
process

SYS$ERROR Default file to which the sys- Terminal Terminal
tern writes error messages

7- 12 WRITING COMMAND PROCEDURES

Performing Terminal Input and Output

Table 7-2: Displaying Information on the Terminal

Command/Example

$ WRITE SYS$0UTPUT string

$WRITE SYS$0UTPUT "Hello"

$ WRITE SYS$0UTPUT symbol

$ WRITE SYS$0UTPUT FILENAME

$ TYPE SYS$1NPUT
text
text
text
$

$ TYPE SYS$INPUT

MENU CHOICES:

1. Add a user

2. Remove a user

3. List users

$

Comments

Character strings are enclosed in quotation marks.

The symbol's value is automatically substituted.

Information to be displayed follows the TYPE com­
mand. A dollar sign marks the end of the informa­
tion.

WRITING COMMAND PROCEDURES 7-13

Example 7-3: A Sample of Output from a Command Procedure

$ REPORT2.COM
$
$
$ This command procedure sets your default directory to the
$ [REPORTS.MONDAY] subdirectory, prints out a report for Monday,
$ returns you to your login device and directory, then exits.
$
$
$ WRITE SYS$0UTPUT ""
$ WRITE SYS$0UTPUT "Changing your default directory"
$
$ Set your default to the correct subdirectory
$
$ SET DEFAULT DISKl: [REPORTS.MONDAY]
$
$ WRITE SYS$0UTPUT ""
$ WRITE SYS$0UTPUT "Printing the Monday report"
$
$ Print out the report for Monday
$
$ PRINT MONDAY.RPT
$
$ Return to your login device and directory
$
$ WRITE SYS$0UTPUT ""
$ WRITE SYS$0UTPUT "Changing-back to your login directory"
$
$ SET DEFAULT SYS$LOGIN
$ EXIT

Execution of REPORT2.COM:

$ @REPORT2

Changing your default directory

Printing the Monday report

Job MONDAY (queue SYS$PRINT, entry 46) started on .WORK$TXAO

Changing back to your login directory

WRITING COMMAND PROCEDURES 7- 14

Table 7-3: Getting Information from the User

Command/Example

*$ INQUIRE symbol "prompt"

$ INQUIRE NAME "Filename"

Comments

The prompt string is optional. The user's
response is converted to uppercase.
Multiple blanks and tabs are replaced
with a single space. The response is
then assigned to a local symbol. If no
prompt string is supplied, the symbol
name is used as the prompt.

$ READ/PROMPT:string SYS$COMMAND symbol The user's response is taken as is and
stored in the local symbol.

$ READ/PROMPT="Filename: " SYS$COMMAND NAME

WRITING COMMAND PROCEDURES 7- 15

Table 7-4: Redirecting Input and Output

Command/Example

$ ASSIGN/USER_MODE SYS$COMMAND SYS$1NPUT
or
$ DEFINE/USER_MODE SYS$1NPUT SYS$COMMAND

$ @command_file-name/OUTPUT:output_file-name

$ @COMFILE. COM/OUTPUT=COM_STAT .DAT

$ ASSIGN/USER_MODE output_file_name SYS$0UTPUT
or
$ DEFINE/USER_MODE SYS$0UTPUT output_file-name

$ DEFINE/USER_MODE SYS$0UTPUT COM_STAT .DAT

7-16 WRITING COMMAND PROCEDURES

Comments

The ASSIGN or DEFINE com­
mand redirects the input stream
from the command proce­
dure file to the terminal. The
/USER_MODE qualifier spec­
ifies that the change remains
in effect only while the next
image is executing.

Redirects output to the file
you specify.

Redirects the output stream
to the file you specify while
the next image is executing.

Example 7-4: Using Terminal Input and Output

$!
$!
$!
$!

NOTICE.COM

$! This command procedure creates a text file containing
$! the message you specify, then mails it to DIST.DIS,
$! a predefined distribution list.

First, display instructions to the user.

WRITE SYS$0UTPUT " "

$!
$!
$!
$
$
$

WRITE SYS$0UTPUT "Enter your message. Press CTRL/Z when done."
WRITE SYS$0UTPUT " "

$!
$! Redirect the logical SYS$INPUT from the command
$! procedure to the terminal.
$!
$ ASSIGN/USER_MODE SYS$COMMAND SYS$INPUT
$!
$! Have the user create the message.
$!
$ EDIT MESSAGE.TXT
$!
$! When the user exits the editor, the command procedure
$! continues.
$!
$!
$! Send the message. The lines following the MAIL
$! command are data lines used by the MAIL utility.
$! The dollar sign indicates the end of the data.
$!
$ MAIL
SEND MESSAGE.TXT
@DIST.DIS
A NOTE FROM YOUR SUPERVISOR
$!
$! Leave the procedure
$!
$ EXIT

WRITING COMMAND PROCEDURES 7-17

Symbol Substitution

In a command procedure symbols can be used as

Command synonyms

Parameters

Variables

The system must translate symbols into their corresponding values

Some DCL commands automatically replace symbols with their values

Most DCL commands do not perform automatic symbol substitution

To force symbol substitution

Enclose the symbol name in apostrophes {')

In a character string, precede the symbol with two apostrophes (")and end the symbol
with a single apostrophe (')

See Table 7-5 for examples

7- 18 WRITING COMMAND PROCEDURES

Table 7-5: Symbol Substitution Techniques

Symbol Usage Substitution Technique Example

Command synonym (first item Automatic
after $ prompt)

$ XX = "DELETE"

$ XX FILE. TXT; 1

In the right-hand side of an = Automatic $ COUNT = COUNT + 1

or = = assignment statement $ FILESPEC =NAME + ". TXT"

In an IF, WRITE, or INQUIRE Automatic $ IF COUNT • GT • 10 THEN -

WRITE SYS$0UTPUT COUNT command

In a DCL command that does
not perform automatic sym­
bol substitution

In a character string

Concatenating two symbols
in a DCL command that does
not perform automatic sym­
bol substitution

Surround the symbol with apes- s RUN 'PROGRAM'

trophes (').

Place two apostrophes in front s WRITE syssouTPUT -

Of the symbol, and One apOS- "The file ' 'FILE' exists."

trophe after it.

Surround each symbol with s PRINT 'NAME'' TYPE'

apostrophes. Do not leave a
space between the symbols.

WRITING COMMAND PROCEDURES 7- 19

Example 7-5: Using Symbol Substitution

$ REPORT3.COM
$
$
$ This command procedure sets your default directory to the
$ [REPORTS.'DAY'] subdirectory, prints out a report for the
$ day of your choice, returns you to your login device and
$ directory, then exits.
$
$ Ask which daily report to print out
$
$ INQUIRE DAY "Day to print a report"
$
$ WRITE SYS$0UTPUT
$ WRITE SYS$0UTPUT "Changing your default directory"
$
$ Set your default to the correct subdirectory
$
$ SET DEFAULT DISKl: [REPORTS.'DAY']
$
$ WRITE SYS$0UTPUT
$ WRITE SYS$0UTPUT "Printing the ''day' report"
$
$ Print out the report for the correct day
$
$ PRINT 'DAY' .RPT
$
$ Return to your login device and directory
$
$ WRITE SYS$0UTPUT
$ WRITE SYS$0UTPUT "Changing back to your login directory"
$
$ SET DEFAULT SYS$LOGIN
$ EXIT

Execution of REPORT3.COM:

$ @REPORT3

Day to print report for: TUESDAY

Changing your default directory

Printing the TUESDAY report

Job TUESDAY (queue SYS$PRINT, entry 47) started on WORK$TXAO

Changing back to your login directory

7- 20 WRITING COMMAND PROCEDURES

* PASSING PARAMETERS TO COMMAND
PROCEDURES

Parameters

• Parameters are the objects of DCL commands

Parameters can be

~ey~ords

~-~~~.-~pecificatio ns

ln~er or string values
-- ,.,.,.,_,,.......,._,,,, ---.,...._~.,._,..,..,~ u,....,, . .._.,.,.,f.

You can specify parameters for a command procedure at execution time

Local Symbols P1 - PS __

• · These symbols a~-~ .. iD.iJ.i~_IJy a~sig.n~d D.l:IJL~~~.~e.s
..___°""""""'_..,..,_.,,._.,J•-~··•-~., ... ~,,_nn• '-"·---·"·' " ·' ' ' ;.,,., •

Passing Parameter Values to a Command Procedure

• If you specify parameters when you execute the command procedure, the system

Assigns th.~ .vJ;!.Y~.§_ypu specify to the symbols P1 - PS
~,..,_ • • ._,,...,,,.....,,_p..,., ,,,_.,.,;-'>""'"""'"•"'''' '' , ,,~..,.,..... ""''°'' -~····<1'<"•>(.<" <l ... ~ ,:uq_""".-,>'"'0"_.."1'>"">;\..,,, ~.,. ,.,....,..,.,,; ,_.,,~~--· '''""' ""''""'" ''~' , . ., ''"

M~i nt~iQ§. ttJe._J,Y.!l ... v.al!J_~tJf .. YQ~t.,Q.Q.JJQt_§pe_g.i,ty¥·~· J~~~~~~ter

Syntax:

$ @command_procedure.com ~ramet,.!r:_ 1_~ra~~!_er_2 ... parameter_& I)! ~-·-~--~-·-··--·•M•••-.--·--~----"'--··--· •

t· .. · • E.r,/.
\,,.

WRITING COMMAND PROCEDURES 7- 21

Example 7-6: Passing Parameters to Command Procedures

$ REPORT4.COM
$

$
$
$
$
$
$
$

, I $
$
$
$
$

This command pro9edure sets your default directory to the
[REPORTS.'Pl'] subdirectory, prints out a report for the day of
your choice, returns you to your login device and directory,
then exits.

WRITE SYS$00TPUT ""
WRITE SYS$00TPUT "Changing your default directory"

Set your default to the correct subdirectory

I\!~ $
;ii;,.

SET DEFAULT DISKl: [REPORTS.'Pl']

:::_;;: . \-7> $

~ \~~; $
·I $

WRITE SYS$0UTPUT "" /
l;:c,~

WRITE SYS$0UTPUT "Printing the ~]

Print out the report for the correct day

PRINT 7Q .RPT

Return to your login device and directory

WRITE SYS$0UTPUT

$
$
$
$
$
$
$
$

$
$
$

WRITE SYS$0UTPUT "Changing back to your login directory"

SET DEFAULT SYS$LOGIN
EXIT

Execution of REPORT4.COM

. $ @REPORT4~TUESJ?AY _2,,,;rA;"}L.)\,:\,c
--------·:::: ;-.. ,...-. -.-...,....,.,-::.:-... ,~---~~~.,...,.,...

Changing your default directory

Printing the TUESDAY report

Job TUESDAY (queue SYS$PRINT, entry 47) started on WORK$TX.~O

Changing back to your login directory

Tb

-~.

·-

7- 22 WRITING COMMAND PROCEDURES

~­,·;:

i ..)\.

Pl

~)

CONTROLLING PROGRAM FLOW

Normally commands are executed sequentially in a command procedure

Control flow statements allow you to alter the order of execution

Control flow commands include

The IF command

The GOTO command -ALLows rorz-- 1111 r:~

The IF Command

• Formats:

$ IF conditional eA-pression THEN command

$ IF conditional expression
$ THEN command
$ command
$ ENDIF

$ IF conditional eA-pression
$ THEN command
$ command
$ ELSE command
$ ENDIF

~ \N l¥,,,;

f F

,~ :

opTfcn

Accepts multiple statements for execution when the condition is true

The conditional expression is tested

If the condition is m~t, the command(s} following THEN are performed

If the condition is not met, the next DCL command in sequence is performed or an
optional ELSE statement can be performed

The command(s) following THEN or ELSE can be

A GOTO command

Another DCL command

WRITING COMMAND PROCEDURES 7- 23

+ ;) . f{

THE IF-THEN-ELSE COMMAND

The optional ELSE parameter provides command(s) to be performed when the IF condition
is false

The command(s) following ELSE can be any valid DCL command(s)

Syntax: $ IF conditional expression THEN command ELSE command(s)

Restrictions to IF-THEN-ELSE Command

A command block started by a THEN statement must be terminated by an ENDIF statement

• A THEN statement must be the first e_xecutable statement following an IF statement

• THEN, ELSE, and ENDIF statements cannot be abbreviated to fewer than four characters

Do not specify labels on a THEN or ELSE statement

• Labels are legal on an ENC?JF statement
.,,,,.,....----.. --------~--~-~--

Command procedures may branch within the current command block, but branching into
the middle of another command block is not recommended

The GOTO Command

• Syntax:

$GOTO label

• No conditional testing is performed

Control is transferred to the specified label

7- 24 WRITING COMMAND PROCEDURES

Table 7-6: Relational Operators Used in Expressions

Operator

String Operators

.EQS.

.GES.

. GTS.

. LES.

. LTS.

.NES.

Numeric Operators

.EQ.

.GE.

. GT.

.LE.

. LT.

.NE.

Logical Operators

.NOT.

.AND .

. OR.

Description

Tests if two character strings are equal.

Tests if the first string is greater than or equal to the second
string (collating sequence).

Tests if the first string is greater than the second string .

Tests if the first string is less than or equal to the second string .

Tests if the first string is less than the second string .

Tests if the two strings are not equal.

Tests if two numbers are equal.

Tests if the first number is greater than or equal to the second
number.

Tests if the first number is greater than the second number .

Tests if the first number is less than or equal to the second
number.

Tests if the first number is less than the second number .

Tests if two numbers are not equal.

Tests for the opposite of a given condition.

Tests if both of two conditions. are met.

Tests if one of a group of conditions is met.

WRITING COMMAND PROCEDURES 7- 25

Example 7-7: Controlling Program Flow

$! DEL DIR.COM
$!
$!
$!
$! This command procedure deletes previously emptied
$! directories. It assumes that the directory to be
$! deleted is owned by the procedure's user.
$!
$! Check to see if the user entered the directory name.
$! If yes, skip to the confirmation question.
$! If no, display a message and ask for the directory name
$!
$ IF Pl .NES. "" THEN GOTO CONFIRM
$!
$ WRITE SYS$0UTPUT
$ WRITE SYS$0UTPUT "This procedure deletes an emptied directory"
$ WRITE SYS$0UTPUT "The .DIR file extension is assumed."
$ WRITE SYS$0UTPUT " "
$ INQQIRE Pl "Directory name"
$!
$ CONFIRM:
$ INQUIRE P2 "Confirm, please (Y/N)"
$!
$! If the user answers 'No', abandon this procedure.
$!
$ IF .NOT. P2 THEN GOTO NODELETE
$!
$! Reset the directory protection so that the owner
$! can delete it, delete the directory and display
$! the system message. Note that the pr~cedure
$! substitutes the directory name for the symbol Pl.
$!
$ SET PROTECTION=(O:RWED) 'Pl' .DIR;*
$ DELETE/LOG 'Pl' .DIR;*

,1 ·s GOTO. END ·
·)!--···

$ NODELETE:
$!
$ WRITE SYS$0UTPUT " "
$ WRITE SYS$0UTPUT "Directory file not deleted."
$!
$. END:.
$. EXIT

7- 26 WRITING COMMAND PROCEDURES

Execution of DEL_DIR.COM:

Example 7-7: Controlling Program Flow (Cont)

$ @DEL_DIR TEST
Confirm, please (Y/N) : Y
iDELETE-I-FILDEL, DISK: [DENISE]TEST.DIR;l deleted (3 blocks)
$

Second execution:

$ @pEL_DIR

This procedure deletes an emptied directory
The .DIR file extension is assumed.

Directory name: TEST2
Confirm, please (Y/N) : Y
%DELETE-I-FILDEL, DISK: [DENISE]TEST2.DIR;l deleted (3 blocks)
$

Third execution:

$ @DEL_DIR

This procedure deletes an emptied directory
The .DIR file extension is assumed.

Directory name: TEST3
Confirm, please (Y/N) : N

Directory file not deleted.
$

WRITING COMMAND PROCEDURES 7- 27

,

\
'\

LEXICAL FUNCTIONS

Lexical functions__Qrovide information about an item _orJj.§Loi.Jtems __ ~-
--~---·-.. -·--... -----~-,.,. ~-~,,.,.,_,,,....,.,...,...._.._.,.,.,_..,_._...._,..,,,"_'"'"'·--

Thg_Jnfo1:rria.lim:Ll.SJ.eturnedJn.a .. ,s_ylJ'.l_QQL.lb§.t£~!:!-!.t!~nJ2e.used.ir:ta~comman.~LQLC?£E!~l!!~

Lexical function~et~!!l._!.Qt~.9~L2.~".£~~!.~~!~~~§tring§,_d.e.p,endtng .. gr1Jh~.J.~xi~~L.f~Qe!!g~

Format and Syntax

• All lexical functions begin with F$, followed by the function name

WHO= F$PROCESS{)

Integer or character strings:

WHAT= F$EXTRACT(0,3,"MAILMAN")

Symbols:

HOWLONG = F$LENGTH(Pl)

Keywords:

WHERE = F$TRNLNM("SYSDISK")

Null arguments:

WHEN = F$TIME ()

• Multiple arguments are separated by commas

• Optional arguments, when omitted, are indicated by commas

Table 7-7 describes some lexical functions

Examples 7-8 and 7-9 demonstrate the use of some lexical functions

7- 28 WRITING COMMAND PROCEDURES

*Table 7-7: Frequently Used Lexical Functions

Lexical Function

F$TIME()

F$PROCESS()

F$MODE()

F$LENGTH(string)

F$LOCATE(substring,string)

F$EXTRACT(offset,number,string)

· F$CVTIM E([input-time], [format] ,[field])

F$GETSYl(item,[node])

F$ENVI RONM ENT(item}

F$GETQUI(}

Description

Returns the current date and time string.

Returns the current process name.

~ms a character §tring iodica.tin.g_JlliLJUQde
~~- whi<?~.-~Y...!:9£~~.J~~-.rYnrilr:ig_iJ.m,E~,
BATCtf,, .. P.t.O_Il:i.EB} .

.,,. •• ,.:..~~--.~ .M •• :,o• "~L•

Returns the length of a string.

Locates the substring in the string and returns the
offset position.

Extracts a substring from a character string ex­
pression.

Returns information about absolute, combination,
or delta time strings.

Invokes the $GETSYI System Service to return
status and identification information about your ··
system, or a node in your cluster.

Returns information about the DCL command en­
vironment (PRIVILEGES, DEVICE, and DIREC­
TORY).

Returns information regarding queues and the
batch and print jobs currently in those queues.

WRITING COMMAND PROCEDURES 7- 29

Example 7-8: Using Lexical Functions with the INFO.COM Command Procedure

$! INFO.COM
$!
$!
$! This command procedure allows the user to leave a message
$! on the terminal screen, along with information about the
$! process. The time when the message was left is also displayed.
$!
$!
$!
$!
$

$
$
$!

Use lexical functions to determine the current time
and day of the week
TIME = F$TIME ()
CURR TIME = F$EXTRACT(l2,5,TIME)
WEEKDAY= F$CVTIME(TIME,,"WEEKDAY") ! Returns Monday,Tuesday,etc.

$! Clear the screen using the TYPE/PAGE NL: command
$ TYPE/PAGE NL:
$!
$! Display process name, the time, and the day of the week.
$ NAME= F$PROCESS()
$ WRITE SYS$0UTPOT NAME
$ WRITE SYS$0UTPOT II "

$ WRITE SYS$0UTPOT "IT IS ''CORR TIME' ON A ''WEEKDAY'"
$ WRITE SYS$0UTPUT " "
$!
$! Leave the procedure
$!
$ END:
$ EXIT

Execution of INFO. COM

$ @INFO
DENISE

IT IS 12:23 ON A Monday

7- 30 WRITING COMMAND PROCEDURES

Example 7-9: Using Lexical Functions with the PRINT.COM Command Procedure

$
$
$
$
$
$
$
$

. PRINT .COM

This procedure allows you to print multiple copies
of any file you choose. It will ask for the file
name and number of copies if the information is
not supplied on the command line. The procedure
will not let the user print a binary file.

$ NAME FILE:
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

IF Pl .EQS. "" THEN INQUIRE Pl "File to be printed"

LENGTH=F$LENGTH(Pl)
IF LENGTH .EQ. 0 THEN GOTO NAME FILE

PERIOD=F$LOCATE(".",Pl)
FNAME=F$EXTRACT(O,PERIOD,Pl)

Check to see if user entered file type. If yes, separate
filename from file type. If no, assign .LIS type to the file

IF LENGTH .EQ. PERIOD
THEN FTYPE=".LIS"
ELSE FTYPE=F$EXTRACT(PERIOD,LENGTH-PERIOD,Pl)

END IF

Check to see if user entered a binary file type. If yes, exit.
If no, see how many copies they want.

IF FTYPE . EQS. " . OBJ" . OR. FTYPE . EQS. " . EXE"
THEN WRITE SYS$0UTPUT "YOU CAN'T PRINT A ''FTYPE' FILE"
EXIT

END IF

NUMBER COPIES:

IF P2 .EQS. "" THEN INQUIRE/NOPONCTUATION P2 "HOW MANY COPIES DO YOU WANT'? "

IF NUMBER .LE. 0 THEN GOTO NUMBER COPIES

! Print the correct number of copies then exit the procedure

PRINT/COPIES='P2' 'FNAME''FTYPE'

EXIT

WRITING COMMAND PROCEDURES 7- 31

SUMMARY

A Command Procedure is a file containing DCL command strings

These command strings are made up of

DCL command verbs

Command parameters

Qualifiers

Command procedures frequently make use of

DCL symbols - command synonyms, numeric and string variables

Control flow commands - IF, GOTO

Lexical functions

You can perform terminal input and output functions using

INQUIRE

READ SYS$COMMAND

WRITE SYS$0UTPUT

TYPE SYS$1NPUT

• Control flow commands allow you to alter the order of command execution

IF-THEN or IF-THEN-ELSE - transfers control based on the results of conditional ex­
pressions

GOTO - unconditionally transfers control

• You can pass numeric and string information to the command procedure using the local
symbols P1 - PB associated with every command procedure

• Lexical functions allow you to gather and use system and process information in command
procedures

7- 32 WRITING COMMAND PROCEDURES

MODULE 8
USING DISK AND TAPE VOLUMES

USING DISK AND TAPE VOLUMES 8- 1

INTRODUCTION
In addition to your default disk device, your system includes a number of tape devices and disks.
You can use one of these devices whenever you wish to store copies of files on a private volume.
Private volumes can be created on disks or tapes. Private volumes are used to preserve files,
transfer files from one system to another, and provide more space on a system (system quotas).

OBJECTIVES
This module introduces the steps and commands required to create and use private volumes.

RESOURCES

VMS DCL Dictionary

VMS Backup Utility Manual

VMS Mount Utility Manual

USING DISK AND TAPE VOLUMES 8- 3

Figure 8-1: Volume Manipulation Commands

INTERACTIVE
TERMINAL

0
MAGNETIC
TAPE

$ volume manipulation command

VMS
COMMAND
LANGUAGE
INTERPRETER

VMS
OPERATING
SYSTEM

DECtape 11

[}] g FL~PPY
l~I DISK

. ...____,
DISK
PACK

TTB_X0336_8e_s

USING DISK AND TAPE VOLUMES 8- 5

CREATING PRIVATE VOLUMES: THE COMMAND
SEQUENCE
The following table lists DCL commands used to create and access disk and tape volumes.

Table 8-1: Commands for Creating and Accessing Private Disk and Tape Volumes

Operation

Allocate a device

Comments

Allocates a device for exclusive use. The logical name DISK
is placed in your process logical name table and assigned the
name of the allocated device. Other users are unable to access
the device.

$ ALLOCATE device [logical-name]
$ ALLOCATE OM DI SK

Initialize a tape or disk

$INITIALIZE device label

$ INITIALIZE DMA2: TEST_DISK

Builds the appropriate disk structure on the volume. Establishes
volume ownership and protection. Usually used for new vol­
umes.

Make the volume accessible You can access the device as well as manipulating files on the
to you volume. Logical names are often used.

$ MOUNT device label [logical-name)
$ MOUNT DMA2: TEST_DISK DISK

Prohibit further access to the Closes all open files. Dismounts and unloads the volume.
volume Deletes the logical name assignment made by the MOUNT com­

mand.

$ DISMOUNT device
$ DISMOUNT DMA2 :

Deallocate a device

$ DEALLOCATE device
$ DEALLOCATE DMA2 :

Frees the device for use by other users. Does not delete a
logical name assigned by the ALLOCATE command.

8- 6 USING DISK AND TAPE VOLUMES

MOUNTING A VOLUME WITH AN UNKNOWN LABEL

MOUNT command format:

$ MOUNT/OVERRIDE:IDENTIFICATION device-name volume-label logical-name

Requirements are:

Volume ownership or

VOLPRO privilege

Example S-1: Mounting a Disk with an Unknown Label

$ MOUNT/OVERRIDE=IDENTIFICATION DM: UNKNOWN MYDISK
%MOUNT-I-MOUNTED, MYVOL mounted on DMAO:
$ SHOW DEVICE/FULL MYDISK

Disk DMAO:, device type RK07, is online, allocated, deallocate on dismount,
mounted, error logging enabled.

Error count
Owner process
Owner process ID
Reference count

Volume label
Cluster size
Free blocks
E::-;tend quantity
Mount status
File ID cache size

33
"SMITH"

OOOOOOA2
2

"MYVOL"
3

53703
5

Process
64

Quota cache size
Write-thru caching enabled

0

Operations completed 3891
Owner UIC [100,0]
Dev Prot S:RWED,O:RWED;G:RWED,W:RWED
Default buff er size 512

Relative volume no.
Transaction count
Maximum files allowed
Mount count
Cache name
Extent cache size

0
1

6723
1

"DRAO :XQPCACHE"
64

Volume is subject to mount verification, file high-water marking.

USING DISK AND TAPE VOLUMES 8- 7

THE BACKUP UTILITY
The Backup utility performs the following operations

Copies disk files

Saves disk files to a BACKUP save set

Restores files to disk from a BACKUP save set

Format:

$BACKUP/qualifier Input-specifier output-specifier

• Tapes must be mounted using the /FOREIGN qualifier to the MOUNT command

• Files specified are placed in a save set

A save set can exist on a tape or disk

• When used with tape volumes, BACKUP can create and gain access to save sets only

SAVE-SET SPECI Fl CATIONS
A save-set specification is a label for a BACKUP save set. The Backup utility creates and labels
a save set and then writes files to the save set. A save-set specification can include:

• A node name

• A device specification

• A directory

• A save-set name

• A period (the mandatory delimiter after the save-set name)

• A save-set type (usually BCK or SAV)

8- 8 USING DISK AND TAPE VOLUMES

Example 8-2 demonstrates how to create a save set on a tape.

Example 8-3 shows how to transfer files from a disk to tape·.

Example 8-4 illustrates how to restore files from a tape to a disk.

Example 8-2: Creating Save Sets on a Tape

$ SET DEFAULT [SMITHJ

$ ALLOCATE MTAO:

$ INITIALIZE MTAO: SOURCE

$ MOUNT/FOREIGN MTAO:

$ BACKUP/IGNORE=LABEL_PROCESSING [...] MTAO:MY BACKUP.BCK

$ DISMOUNT MTAO:

$ DEALLOCATE MTAO:

Example 8-3: Transferring Flies to a Tape

$ ALLOCATE MUAO:
%DCL-I-ALLOC, _BROWNY$MUAO: allocated

$ INITIALIZE MUAO: SOURCE

$ MOUNT/FOREIGN MUAO:
%MOUNT-I-MOUNTED, SOURCE mounted on _BROWNY$MUAO:

$ DIRECTORY °[•••] .
. Directory DISK: [SMITH]
EVE.INIT;l FORTRAN.DIR;l
JOE EVE.TPU$SECTION;l
Tot~l of 6 files.

Directory DISK: [SMITH.FORTRAN]
EXAMPLES.FOR;l FILES.FOR;l
Total of 3 files.

Directory DISK: [SMITH.PASCAL]
EXAMPLES.PAS;l FILES.PAS;l
Total of 3 files.

Grand total of 3 directories, 12

$ SET DEFAULT [.FORTRAN]

$ BACKUP/IGNORE=LABEL_PROCESSING

$ SET DEFAULT [SMITH. PASCAL]

$ BACKUP/IGNORE=LABEL_PROCESSING

$ BACKUP/REWIND/LIST MUAO:PAS.BCK

files.

* *;*

* *;*

INSERT.FYI;6
LOGIN.COM;21

TEXT.FOR;l

TEXT.PAS;l

MUAO:FOR.BCK

MUAO :PAS .BCK

PASCAL.DIR;l

USING DISK AND TAPE VOLUMES S- 9

Example 8-3: Transferring Files to a Tape (Cont)

Listing of save set(s)

Save set:
Written by:
UIC:
Date:

PAS.BCK
SMITH
[000011, 000051]
25-JAN-1988 13:30:10.59

Command: BACKUP/IGNORE=LABEL PROCESSING *.*;* MUAO:PAS.BCK
Operating system:
CPU ID register:
Node name:
Written on:
Block size:
Group size:
Buffer count:

BACKUP version: VS.O
08000000
BROWNY::

BROWNY$MUAO:
8192
10
3

[SMITH.PASCAL]EXAMPLES.~AS;l

[SMITH.PASCAL]FILES.PAS;l
[SMITH.PASCAL] TEXT .PAS; 1

Total of 3 files, 6 blocks
End of save set

$ BACKUP/REWIND/LIST MUAO:FOR.BCK
Listing of save set(s)

Save set:
Written by:
UIC:
Date:

FOR.BCK
SMITH
(000011,000051]
25-JAN-1988 13:31:37.89

2 21-JAN-1988 15:17
2 21-JAN-1988 15:18
2 21-JAN-1988 15:17

Command:
Operating system:

BACKUP/IGNORE=LABEL PROCESSING *.*;* MUAO:FOR.BCK
VAX/VMS version X5.0

BACKUP version:
CPU ID register:
Node name:
Written on:
Block size:

V5.0
08000000
BROWNY::

BROWNY$MUAO:
8192

Group size: 10
Buffer count: 3

[SMITH.FORTRAN]EXAMPLES.FOR;l
[SMITH.FORTRAN]FILES.FOR;l
[SMITH.FORTRAN]TEXT.FOR;l

Total of 3 files, 6 blocks
End of save set

$ DISMOUNT MUAO:
$ DEALLOCATE MUAO:

8- 10 USING DISK AND TAPE VOLUMES

2 21-JAN-1988 15:16
2 21-JAN-1988 15:16
2 21-JAN-1988 15:16

Example 8-4: Restoring Files from a Tape to a Directory

$ MOUNT/FOREIGN MUAO:
~MOUNT-I-MOUNTED, SOURCE mounted on _BROWNY$MUAO:

$ DIRECTORY [SMITH.FORTRAN]
%DIRECT-W-NOFILES, no files found

$ DIRECTORY [SMITH.PASCAL]
%DIRECT-W-NOFILES, no files found

$ SET DEFAULT [SMITH.FORTRAN]

$ BACKUP/IGNORE=LABEL_PROCESSING MUAO:FOR.BCK *.*;*

$ DIRECTORY

Directory DISK: [SMITH.FORTRAN]

EXAMPLES.FOR;l FILES.FOR;l TEXT.FOR;l

Total of 3 files.

$ SET DEFAULT [SMITH.PASCAL]

$ BACKUP/REWIND/IGNORE=LABEL_PROCESSING MUAO:PAS.BCK *.*;*

$ DIRECTORY

Directory DISK:[SMITH.PASCAL]

EXAMPLES. PAS; 1 FILES.PAS;l TEXT.PAS;l

Total of 3 files.

USING DISK AND TAPE VOLUMES 8-11

SUMMARY
Creating Private Volumes: The Command Sequence

The following commands are used to create and access disk and tape volumes.-

Operation Comments

Allocating a Device Allocates a device for exclusive use.

$ ALLOCATE device [logical-name]

Initialize a tape or disk Establishes volume ownership and protection.

$ INITIALIZE device label

Make the volume accessible You can access the device as well as manipulating files on the
to you volume.

$ MOUNT device label [logical-name]

Prohibit further access to the Closes all open files. Dismounts and unloads the volume.
volume

$ DISMOUNT device

Deallocating a device Frees the device for use by other users.

$ DEALLOCATE device

The Backup Utility

The Backup utility performs the following operations:

Copies disk files

Saves disk files to a BACKUP save set

Restores files to disk from a BACKUP save set

Format:

$BACKUP/qualifier Input-specifier output-specifier

Tapes must be mounted using the /FOREIGN qualifier to the MOUNT command.

• Files specified are placed in a save set, which can be on tape or disk.

When used with tape volumes, BACKUP can create and gain access to save sets only.

8- 12 USING DISK AND TAPE VOLUMES

MODULE 9
SUBMITTING BATCH AND PRINT JOBS

SUBMITTING BATCH AND PRINT JOBS 9- 1

INTRODUCTION
The PRINT command allows you to obtain a hardcopy version of a file. Usually your print job
must wait in an orderly list of print requests called a queue. The system uses factors such as the
priority and size of your job to determine how long your job waits before printing. This does· not
affect your terminal session bec;:ause as soon as you issue the PRINT command your terminal
is freed up so you can do other jobs. Commands are provided so you can check on your job's
progress in the queue and determine when it has completed.

The VMS system provides a similar facility for queuing command procedures for execution. Until
now, you have run command procedures interactively. They process as though you were typing
in each command. However, you can create a batch process to execute a command procedure
independently of your interactive process. The SUBMIT command allows you to do this. The
VMS system also determines when sufficient system resources are available for processing a
job from the batch queue, and begins to process one or more jobs from that queue. You do not
need to be logged in for your batch job to execute.

This module discusses the PRINT and SUBMIT commands and their qualifiers. These com­
mands have different functions. However, they have several concepts and qualifiers in com­
mon.

SUBMITTING BATCH AND PRINT JOBS ~ 3

OBJECTIVES
To effectively handle batch and print jobs, you should be able to perform the following operations:

Print one or more files.

Submit command procedures to be executed as a batch job.

Display and modify the status or characteristics of print and batch jobs.

Delay processing of batch or print jobs.

• Delete a batch or print job from its queue.

RESOURCES

• VMS DCL Dictionary

Guide to Using VMS

9- 4 SUBMITTING BATCH AND PRINT JOBS

PRINTING A FILE

PRINT Command in DCL

• "[}le ~ffl. N"t:_9-QIDJTI?!.D.9,, .. ~§~.§ ... ~.--cJ~!~.~~tJJl~_~p~-"'~.f __ ~_!S

Job numbe_rs indicate the order in the queue - ;'-JJ;:.Jr.
---.. --.. ..,~·"·--~-.. l'l·,..a.,,,.~- ... , ~·-· •••. ~,..... ·~·· ""

The print queue, named SYS$PRINT, handles printreqµ~~!§ ... ~Y q~f?,ul.~
--...... ____ ,.,_,~ --" ___ __.......,..,,,U.0'4'WU><• ~~,. , .. .,_, ·-·•·~-···' · '<'.J.· <1•>.UL.l'-)''1.<.•. · '•;~•'••'·<C>,0''" •'.;'°''~W',...,,J'l>.'~' • ''"I,.,.,. . • . ·• • ' . . • •·~, ••<'• •

The first available printer prints the job

Example 9-1: Issuing the PRINT Command

$ PRINT MYFILE.TXT
Job MYFILE (queue SYS$PRINT, entry 456) started on LPAO
$

:!. .,

SUBMITTING BATCH AND PRINT JOBS 9- 5

, Ir'

' 'i·•·.,.

Types of Print Queues

Execution queue

Associated with each printer

Usually has the same name as the physical device name

Responsible for the actual printing of jobs

Generic queue

Responsible for the distribution of print jobs to printers with similar characteristics

Holds jobs until the first available execution queue is free

• To specify a particular queue, use the /QUEUE qualifier

9- 6 SUBMITTING BATCH AND PRINT JOBS

Figure 9-1: Execution and Generic Print Queues

~~~ 
L.J~~ 
-----( 

GENERIC QUEUE SYS$PRINT 

I 
I 

I 

\ 
\ 

\ 

hl@] 
/
/----:rtf/''.l ,_____ EXECUTION QUEUE LPAO J__).(J 

\ 
\ 

EXECUTION QUEUE LPBO 

r;;i r;;i 
~~ 

EXECUTION QUEUE LPCO 

DEVICE 
LPAO: 

DEVICE 
LPBO: 

DEVICE 
LPCO: 

r;;i 
L:::J 

r;;i 
~ 

TTB_X0338 88 S 

SUBMITTING BATCH AND PRINT JOBS 9- 7 



Qualifiers for the PRINT Command 

Number of copies 

/COPIES 

Defaults to one copy 

Number of copies can be 1 - 255 

• Spacing of the print job 

/[NO] SPACE 

For single spacing use /[NO]SPACE {Default) 

For double spacing use /SPACE 

Whether the system notifies you when the job is completed or aborted 

/NOTIFY 

- /[NO]NOTIFY is the default 

Number of times your complete job is printed 

/JOB_COUNT 

A value from 1 to 255 

Default is one printing 

• Number of pages to print 

/PAGES={[lowlim,],uplim) 

lowlim = First page to be printed 

upllm = Last page to be printed 

Time job is released to print 

/AFTER:tlme 

Default is current date and time 

Time can be specified as absolute time, or a combination of absolute and delta time 

9- 8 SUBMITTING BATCH AND PRINT JOBS 



Table 9-1: Printing Jobs with Different Characteristics 

Operation Example 

Requests that two copies of $ PRINT I COP IES=2 MEMO. TXT 

the file MEMO.TXT be printed. 

Requests that two copies of $PRINT MEMO.TXT/COPIES=2,MYFILE.TXT/COPIES=3 

the file MEMO.TXT and three 
copies of the file MYFILE.TXT 
be printed .. 

Requests three printings of $ PRINT I JOB_ COUNT=3 MEMO. TXT 

the file MEMO.TXT. 

Requests a double-spaced $ PRINT MEMO • TXT I SPACE 

copy of the file MEMO. TXT. 

Prints pages 6 through 8. $ PRINT/PAGES=(6, 8) MYFILE.TXT 

Prints page 6 through the end s PRINT/PAGES= (6, ""> MYFILE .TxT 

of file. 

Releases the file MEMO. TXT s PRINT /AFTER= is: oo MYFILE. TXT 

for printing at 6 p. m. on the 
current date. 

SUBMITTING BATCH AND PRINT JOBS 9- 9 



OBTAINING STATUS OF QUEUES 

Format: 

$ SHOW QUEUE/qualifier [queue-name] 

Example: 

$ SHOW QUEUE/ALL_ENTRIES SYS$PRINT 

Terminal queue SYS$PRINT, on BROWNY::$PRINTER, mounted form DEFAULT 
Jobname Username Entry Blocks Status 
------- -------- ------ ------
MYFILE SMITH 45 60 Printing 
LICENSES SMITH 48 78 Pending 
TAGS SMITH 49 88 Pending 
OFFICERS SMITH 52 90 Pending 

Format: 

$ SHOW QUEUE/BY _JOB_STATUS[:keyword[, ... ]] [queue-name] 

Keywords for the BY_JOB_STATUS qualifier include: 

EXECUTING (Displays executing jobs) 

HOLDING (Displays jobs on hold) 

P_ENDING (Displays pending jobs) 

RETAINED (Displays jobs retained in queue after execution) 

TIMED_RELEASE (Displays jobs on hold until a specified time) 

• Example: 

$ SHOW QUEUE/BY_JOB_STATUS=TIMED RELEASE SYS$PRINT 

Terminal queue SYS$PRINT, on BROWNY::$PRINTER, mounted form DEFAULT 
Jobname Username Entry Blocks Status 

MYFILE SMITH 96 1 Holding until 2-DEC-1987 15:00 

9-10 SUBMITTING BATCH AND PRINT JOBS 



Format: 

$ SHOW QUEUE/DEVICE:[keyword[, .•. ]] [queue-name] 

Keywords for /DEVICE qualifier include: 

PRINTER (Displays all print queues) 

SERVER (Displays all server queues) 

TERMINAL (Displays all terminal queues) 

Example: 

$ SHOW QUEUE/DEVICE=SERVER 

Server queue BROWNY$NARROW, stopped, on BROWNY::, mounted form DEFAULT 

Jobname Username Entry Blocks Status 

MYFILE SMITH 97 1 Holding until 2-DEC-1987 15:00 

Server queue BROWNY$WIDE, stopped, on BROWNY::, mounted form DEFAULT 

Format: 

$SHOW ENTRY [entry-number] /[qualifier] 

Example: 

$ SHOW ENTRY 96 

Jobname Username Entry Blocks Status 

MYFILE SMITH 96 1 Holding until 2-DEC-1987 15:00 
On terminal queue SYS$PRINT 

Example: 

$ SHOW ENTRY 96/FULL 

Jobname Username Entry Blocks Status 

MYFILE SMITH 96 1 Holding until 2-DEC-1987 15:00 
On terminal queue SYS$PRINT 
Submitted 2-DEC-1987 09:18 /FORM=DEFAULT /PRIORITY=lOO 

_DISK:[SMITH]MYFILE.TXT;l 

SUBMITIING BATCH AND PRINT JOBS 9- 11 



Example 9-2: Queue Status Display Corresponding to Figure 9-1 

$ SHOW QOEOE/DEVICE/ALL_ENTRIES 

Printer queue LPAO 

Jobname Username Entry Blocks Status 
------- -------- ------ ------
MYFILE.TXT JONES 225 10 Printing at block 6 

Printer queue LPBO 

Jobname Username Entry Blocks Status 
------- -------- ------ ------
USELESS.MEM JONES 231 233 Printing at block 34 

Printer queue LPCO 

Jobname Username Entry Blocks Status 
------- -------- ------ ------
SCHEDULE SMITH 229 109 Printing at block 88 
PAYROLL JONES 228 144 Pending 
SPREAD JONES 245 156 Pending 

Generic printer queue SYS$PRINT 

Jobname Username Entry Blocks Status 
------- -------- ------ ------
FILE.LOG SMITH 250 198 Pending 
TYPE.COM JONES 249 206 Pending 
CHECK ANDERSON 240 220 Pending 

9-12 SUBMITTING BATCH AND PRINT JOBS 



Queue Status List 

Example 9-3: Full Format Queue Status Display 
$ SHOW QUEUE/DEVICES/FULL/ALL_ENTRIES 

Terminal queue COMP, on SUPER::SUPER$TTA2:, mounted form DEFAULT 
/BASE PRIORITY=4 /DEFAULT=(FEED,FORM=DEFAULT) Lowercase 
/OWNER=[GROUPl,SYSTEM] /PROTECTION=(S:E,O:D,G:R,W:W) 

Printer queue LNOl, on SUPER::SUPER$LPAO:, mounted form DEFAULT 
/BASE PRIORITY=4 /DEFAULT=(FEED,FORM=DEFAULT) 
/LIBRARY=SYSDEVCTL LNOl Lowercase /OWNER=[GROUPl,SYSTEM] 
/PROTECTION=(S:E,07D,G:R,W:W) /SEPARATE=(FLAG,RESET=(ANSI$RESET)) 

Server queue NM$QUE01, on SUPER::, mounted form DEFAULT 
/BASE PRIORITY=4 /DEFAULT=(FEED,FORM=DEFAULT) 
/OWNER=[GROUPl,SYSTEM] /PROCESSOR=NM$DAEMON /PROTECTION=(S:E,O:D,G:R,W:R) 
/RETAIN=ERROR 

Generic printer queue NM$QUEUE 
/GENERIC=(NM$QUEG1,NM$QUE02) /OWNER=[GROUPl,SYSTEM] 
/PROTECTION=(S:E,O:D,G:R,W:R) /RETAIN=ERROR 

Jobname Username Entry Blocks Status 

NMAIL SMITH 1630 146 Holding until 24-NOV-1987 11:26 
Submitted 24-NOV-1987 11:16 /PRIORITY=lOO 
_$1$DUAO: [SYSCOMMON.NMAIL]NMAIL$1987112217065820.WRK;l 

SUBMITTING BATCH AND PRINT JOBS 9-13 



Modifying a Print Job Already in the Queue 

Can change characteristics of your print job if it is not currently printing 

Can move your job to another queue 

Use the SET ENTRY command 

See the following table for examples 

Table 9-2: Modifying Print Jobs in a Queue 

Command 

$ SET ENTRY 100/COPIES=S 

$ SET ENTRY SO/RELEASE 

$ SET ENTRY 95 /REQUEUE=FASTJOBS 

Comments 

Changing the number of copies to five. 

Releasing a job that was previously held. 

Moving a print job to another printer. 

9- 14 SUBMITTING BATCH AND PRINT JOBS 



Deleting a Print Job 

Can delete a print job while it is printing or while it is pending in a queue 

May need to do this if you accidentally print ~ file with non-ASCII characters, such as an 
EXE or OBJ file 

• Use the DELETE/ENTRY command 

Example: 

$ DELETE/ENTRY=l20 FASTJOBS 

SUBMITTING BATCH AND PRINT JOBS 9-15 



SUBMITTING A BATCH JOB 

DCL SUBMIT Command 

The SUBMIT command uses a default file type of COM unless another file type is specified 

• Each job in the queue consists of a command procedure 

Job numbers indicate the order in the queue 

SYS$BATCH is the default system batch queue 

The VMS system creates a batch process to execute the command procedure 

Example 9-4: Issuing the SUBMIT Command 

$ SUBMIT ACTION.COM 
Job ACTION (queue SYS$BATCH, entry 136) pending 
$ 

9-16 SUBMITTING BATCH AND PRINT JOBS 



How a Batch Job Executes 

Batch job's relationship to job that submitted it 

Runs independent~ 

Uses same UAF characteristics 

Executes same LOGIN.COM file 

Uses same default device and directory for file access 

• Batch job's SYS$0UTPUT assigned to batch log file 

Created in login default directory 

File name is the same as the name of batch command procedure 

File type is LOG \ 
File is printed, then deleted on completion of batch job 

• Logical name assignments for batch processes 

Table 9-3: Logical Name Definitions for Interactive and Batch Processes 

Definition When Definition When 
Interactive Process Batch Process 

Logical Name Begins to Execute Begins to Execute 

SYS$1NPUT Interactive terminal Batch command file 

SYS$0UTPUT Interactive terminal Batch log file 

SYS$COMMAND Interactive terminal Batch command file 

SYS$ERROR Interactive terminal Batch log file 

SUBMITTING BATCH AND PRINT JOBS 9-17 



Writing a Batch Command Procedure 

Two ways to run a command procedure 

Interactive 

Batch 

For command procedures running in batch, consider 

The system's login command procedure is executed 

Your login command procedure is executed 

Use the F$MODE() lexical function 

Bypass symbol definitions (not used in command procedures) 

Bypass commands that require a terminal, such as 

INQUIRE 
SET TERMINAL 

• By default, severe errors terl'T!inate batch job execution 

The batch process's default directory is the one specified as SYS$LOGIN 

• Verification is on in batch process by default 

9- 18 SUBMITTING BATCH AND PRINT JOBS 



Qualifiers for the SUBMIT Command 
The SUBMIT command: 

The /QUEUE qualifier overrides the default system queue. · 

The /PARAMETERS qualifier passes parameters to the command procedure. 

The /LOGFILE qualifier renames the log file. The default is the command file name with a 
file type of LOG. 

The /PRINTER qualifier redirects where the log file is printed. The default queue is 
SYS$PRINT. 

The /KEEP qualifier re,tains a copy of your log file in your directory. The default action is to 
print the log file and then delete it. 

The /AFTER qualifier delays the execution of the job until a later time. The default is to 
place the job in the queue immediately. 

The /NOTIFY qualifier notifies you when the job completes or aborts. The default is /NONO­
TIFY. 

• Refer to Table 9-4 for examples. 

SUBMITTING BATCH AND PRINT JOBS 9-19 



Table 9-4: Submitting Batch Jobs 

Operation Comments 

Submitting a job with no parameters The SUBMIT command uses a default file type of COM. 
The file submitted is ACTION.COM in this example. 

$ SUBMIT ACTION 

Submitting a job to a specified queue By default, the system batch queue SYS$BATCH is 
used. 

$ SUBMIT/QUEOE=SLOWBATCH ACTION 

Submitting a job after a specified 
time 

$ SOBMIT/AFTER=19:00 MYFILE.TXT 

Submitting a job that requires pa­
rameters 

$ SUBMIT/PARAMETERS= (3, SUM) MATH 

Changing the log file name 

$ SUBMIT/LOGFILE=WENDY MYFILE 

Keeping the log file 

$ SUBMIT /KEEP MYFILE 

The file MYFILE.TXT will be held until the specified time 
(19:00) after which it will be processed. 

Up to eight parameters may be specified using symbols 
P1-P8. The symbols are local to the specified command 
procedures. P1 is 3 and P2 is SUM. 

The log file is called WENDY.LOG instead of MYFILE.LOG. 

The log file is queued to printer LPBO instead of SYS$PRINT. 

The log file is printed and retained in the user's login 
directory. 

9- 20 SUBMITTING BATCH AND PRINT JOBS 



Example 9-5: Sample Batch Run of COUNT1.COM 

$ TYPE COUNTl.COM 
$! COUNTl.COM 
$! 
$ SHOW TIME 
$ SHOW LOGICAL/PROCESS/JOB 
$ EXIT 

$ SUBMIT COUNTl.COM 
Job COUNTl (queue SYS$BATCH, entry 366) started on SYS$BATCH 
$ 

Output from the system's LOGIN procedure 

$! COUNTl.COM 
$ ! 
$ SHOW TIME 

13-JAN-1988 09:31:22 
$ SHOW LOGICAL/PROCESS/JOB 

(LNM$PROCESS_TABLE) 

"EVE$INIT" = "SYS$LOGIN:EVE.INIT" 
"SYS$COMMAND" = II BROWNY$RTA1:" 
"SYS$DISK" = "BROWNY$DJAO:" 
"SYS$ERROR" = " BROWNY$RTA1:" 
"SYS$INPUT" [super] = " BROWNY$DJAO:" 
"SYS$INPUT" [exec] = " BROWNY$RTA1:" 
"SYS$0UTPUT" [super) =-" BROWNY$RTA1:" 
"SYS$0UTPUT" [exec) "_BROWNY$RTA1:" 
"TT" = "RTAl:" 

(LNM$JOB_803E1730) 

"SYS$LOGIN" = "J?ROWNY$DJAO:[SMITH]" 
"SYS$LOGIN DEVICE"= "BROWNY$DJAO:" 
"SYS$REM ID" = "SMITH" 
"SYS$REM-NODE" = "SUPER:: II 
"SYS$SCRATCH" = "BROWNY$DJAO: [SMITHJ" 

SUBMl1TING BATCH AND PRINT JOBS 9- 21 



OBTAINING STATUS OF BATCH QUEUES 

Format: 

$SHOW QUEUE/qualifier [queue~name] 

Example 9-6: Full Format Queue Status Display 

$ SHOW QUEOE/BATCH/FULL/ALL_ENTRIES HARDY_BATCH 

Batch queue HARDY SYSTEM, on HARDY:: 
/BASE PRIORITY=3 /JOB LIMIT=4 /OWNER=[GROOPl,SYSTEM] 
/PROTECTION=(S:W,O:W,G,W) 

Jobname 

MYFILE 

DRAFT 

TEST 

Username 

SMITH 

SMITH 

JONES 

Entry Status 

1388 Holding until 3-DEC-1987 18:00 

1425 Holding until 4-DEC-1987 01:00 

1352 Holding until 7-DEC-1987 00:00 

Batch queue HARDY BATCH, on HARDY:: 
/BASE PRIORITY=2 /JOB LIMIT=3 /OWNER=[GROOPl,SYSTEM] 
/PROTECTION=(S:E,O:D,G:R,W:W) 

9- 22 SUBMITTING BATCH AND PRINT JOBS 



Table 9-5: Displaying Batch Queue Status 

Operation Comments 

Displaying a list of batch jobs By default, the only jobs displayed other than your own are 
those currently executing. To display all jobs, add the qualifier 
/ALL_ENTRIES to the SHOW QUEUE command. For more job 
information, add the qualifier /FULL to either the SHOW QUEUE 
or SHOW ENTRY command. 

$ SHOW QUEUE/BATCH 

$ SHOW QUEUE/BATCH/ ALL_ ENTRIES 

$ SHOW QUEUE/BATCH/FULL 

$ SHOW QUEUE/BATCH/FULL/ALL_ENTRIES 

$ SHOW ENTRY /BATCH 

$ SHOW ENTRY /BATCH/FULL 

Displaying a list of batch jobs 
on a particular queue 

$ SHOW QUEUE FASTJOBS 

In any SHOW QUEUE command, you can specify a queue 
name instead of /BATCH. You can also use the qualifiers /FULL 
and /ALL_ENTRIES. 

$ SHOW QUEUE/ALL_ENTRIES FASTJOBS 

SUBMITTING BATCH AND PRINT JOBS 9- 23 



Modifying a Batch Job Already in the Queue 

Can change job characteristics if it is not currently executing 

Can move a job to another queue 

Privileges required to affect jobs 

Queued by you-None 

Queued by processes in your UIC group-GROUP 

Queued by anyone-WORLD or OPER 

Table 9-6: Modifying a Batch Job 

Operation 

Changing the charac­
teristics of a job 

$ SET ENTRY 100/COPIES=S 

Moving a job to an­
other queue 

Comments 

The entry number (or job number) parameter specifies the number of 
the job you want to change . .In this example, the number of copies tor 
entry number 100 is being changed to five. 

In this example, the job MYFILE.TXT (entry number 90) is being moved 
from a printer using narrow paper to a printer using wide paper. 

$ SET ENTRY 90/REQOEOE=WIDE 

9- 24 SUBMITTING BATCH AND PRINT JOBS 



DELETING A BATCH JOB 

Can delete a batch job while it is executing or while it is pending in the queue 

Use the DELETE/ENTRY command 

Example: 

$ DELETE/ENTRY=l20 WIDE 

SUBMITTING BATCH AND PRINT JOBS 9- 25 



HANDLING BATCH AND PRINT JOBS 

Characteristics Common to Both Batch and Print Jobs 

The name used to identify the job 

The VAX node on which the job is processed 

Whether the system displays the job number when the job is queued 

• Whether the system notifies you when the job completes 

• Whether the system deletes the log file after the job completes 

BATCH AND PRINT QUEUES ETIQUETTE 
The following suggestions are given to insure that the VMS system batch and print queues flow 
efficiently and smoothly, with no "time lags" or "backups." 

Check the size of your print jobs before submitting them. 

If feasible, submit large print or batch jobs after hours. 

Set up a file size limit (in blocks) over which a job should be submitted after hours. 

• If submitting a large job, verify that the paper supply is sufficient to handle that job, or have 
an operator check on the paper supply. 

Do not print files that are not compatable for the particular device. 

Pick up your completed job promptly. Do not allow your finished jobs to sit in the printer 
area endlessly. 

9-- 26 SUBMITTING BATCH AND PRINT JOBS 



SUMMARY 
Printing a File 

The PRINT command uses a default file type of LIS. 

Job numbers indicate the order in the queue. 

The print queue, named SYS$PRINT, handles print requests by default. 

The first available printer prints the job. 

Submitting a Batch Job 

The SUBMIT command uses a default file type COM unless another file type is specified. 

Each job in the queue consists of a command procedure. 

Job numbers indicate the order in the queue. 

• SYS$BATCH is the default system batch queue. 

The VMS system creates a batch process to execute the command procedure. 

Writing a Batch Command Procedure 

• There are two ways to run a command procedure. 

Interactive 

Batch 

By default, severe errors terminate batch job execution. 

The batch process's default directory is the one specified as SYS$LOGIN. 

Deleting a Batch or Print Job 

• Can delete a batch or print job while it is executing or while it is pending in the queue 

Use the DELETE/ENTRY command 

SUBMllTING BATCH AND PRINT JOBS 9- 27 





MODULE 10 
DEVELOPING PROGRAMS 

DEVELOPING PROGRAMS 10- 1 





INTRODUCTION 
This module presents a general discussion of the steps in developing a program on a VMS 
system as well as an introduction to a sample program. 

It does not provide details regarding any of the programming languages, such as FORTRAN or 
PASCAL. 

Tools that significantly decrease the time spent developing VMS programs include: 

Interactive Text Editor (EDT) 

Compilers 

VAX MACRO Assembler 

VMS Linker 

VMS Librarian 

• VMS Symbolic Debugger 

• System-Supplied Routines 

The editors, assembler and compilers, and linker are utilities that prepare source programs for 
execution. The VMS Symbolic Debugger detects logic errors in executable image files. 

The librarian enables you to store frequently used segments of code, such as procedures or 
functions, in specially indexed files called libraries. You can reference procedures or functions 
stored in a library with a program. The linker combines the code from the library with your source 
code to produce an executable image file. 

System libraries contain a large number of predefined routines that user programs (such as 
routines that manipulate strings or generate random numbers) can call. 

DEVELOPING PROGRAMS 10- 3 



OBJECTIVES 
Most of the programming languages available on a VMS system, involve the following prograf'!l 
development steps: 

Creating a text file containing the source statements of the program 

Compiling or assembling the text file to create a file containing object code 

• Linking the object file or files to produce a file containing executable code 

Running the executable image produced from the linker 

• Debugging the program to correct errors 

RESOURCES 
For more detailed explanations of developing programs, refer to the following documents: 

• Guide to VMS Programming Resources 

VMS DCL Dictionary 

10- 4 DEVELOPING PROGRAMS 



PROGRAM DEVELOPMENT ON A VMS SYSTEM 
A user must complete the following steps to develop a program: 

Create a text file that contains the source statements of your program. 

Compile or assemble the text file to produce a file containing object code. 

Link the object file or files to produce an executable image file. 

Run the executable code produced by the linker. 

Debug the program to correct errors. 

Figure 10-1 illustrates the orderly flow of these five program development steps. 

DEVELOPING PROGRAMS 10- 5 



Figure 10-1: A Flow Diagram of the Five Major Programming Steps 

( BEGIN ) 

' 
' O· 
! 

EDIT 

T 
COMPILE 

OR 
ASSEMBLE 

I 
I 

! 
EXECUTE 

I 
I 

! c END ) 

NO 

NO 

10- 6 DEVELOPING PROGRAMS 

DEBUG 

TTB_X0261_88 



Each of the five program development steps is discussed on the pages that follow. As you read 
each step, refer to Figure 1 0-2. 

Figure 10-2: The Four Program Development Commands 

EDIT GRADES.FOR 

GRADES.FOR I 

FORTRAN[/qualifier] GRADES 

GRADES.OBJ 

LINK[/qualifier] GRADES 

GRADES.EXE I 

RUN[/qualifier] GRADES 

--> 
TTB_X0339_88 

DEVELOPING PROGRAMS 10- 7 



1. Create a text file that contains the source statements of your program. 

Name the source file using the file type t~at relates to the source code programming lan­
guage. Below are the default file types for a number of languages. 

Table 10-1 : Languages and Associated File Types 

Language File Type 
BASIC BAS 

c c 
COBOL COB 

FORTRAN FOR 

MACRO MAR 

PASCAL PAS 

PUI PL1 

2. Compile or assemble the text file you created to produce a file containing object code. 

The compiler or assembler translates the source statements of each input file into object 
code, producing one or more object files of type OBJ. 

To compile or assemble the code, you must use the DCL command related to the language 
of the source code in the text file. The following are examples -of compile and assemble 
commands. 

Language 
BASIC 

c 
COBOL 

FORTRAN 

MACRO 

PASCAL 

PUI 

Compiler/Assembler Command 

$ BASIC file-specification 

$CC file-specification 

$ COBOL file-specif icatio.n 

$ FORTRAN file-specification 

$ MACRO file-specification 

$PASCAL file-specification 

$ PLI file-specification 

10- 8 DEVELOPING PROGRAMS 



3. Link the object file or files to produce an executable image. 

The linker searches personal and system libraries for external procedures and functions that 
it cannot find in the specified input files. 

To link the object file(s), invoke the VMS Linker with the DCL command LINK. You can 
specify the names of the files to be linked, such as object code files or modules from 
libraries, after the command. Separate names with commas. The linker assumes that the 
file type of input files is OBJ. 

The Linker's file output contains executable code assigned the file type of EXE. 

4. Invoke the image activator to run the executable code produced by the Linker. 

To execute a program, enter the DCL command RUN followed by the name of a single 
executable image file. The RUN command assumes that the file type field of the input file 
specification is EXE. 

You should not attempt to execute a program without correcting compiler and linker errors 
first. 

5. Debug the program to correct errors. 

DEVELOPING PROGRAMS 10- 9 



THE VMS SYMBOLIC DEBUGGER UTILITY 
The VMS Symbolic Debugger simplifies the debugging job. Debug commands implement many 
of the same debugging techniques used on paper. · 

The VMS Symbolic Debugger allows you to observe and manipulate your program interactively 
as it executes. By issuing debugger commands at the terminal, you can: 

Start, stop, and resume the execution of the program 

Trace the execution path of the program 

Monitor selected locations, variables, or events 

Examine and modify the contents of vari~_bles, or force events to occur 

• Test the effect of modifications without having to edit the source code, recompile, and, in 
some cases, relink. 

There are three ways to invoke the debugger: 

1. Include the debugger in the executable image. 

2. Halt the program and invoke the debugger with the DCL command DEBUG. 

3. Run the program with the debugger. · 

To use the Help facility of the Debugger, invoke the symbolic debugger and enter the HELP 
command. 

10- 10 DEVELOPING PROGRAMS 



A SAMPLE PROGRAM - GRADES 
The GRADES program (written in FORTRAN), contains the names of students and their grade 
averages for a particular course. The program obtains the names and grades from you, com­
putes the average of the grades, and outputs the results to the terminal and to a designated file, 
ENGLISH.DAT. 

Example 10-1: GRADES.FOR Source File 

PROGRAM GRADES 
CHARACTER STUDENT_NAME*30, DONE*4 
REAL AVERAGE 

OPEN (UNIT=l, FILE='English', STATUS='New') 

10 TYPE 20 
20 FORMAT (/' Student name? ', $) 
ACCEPT 30, STUDENT_NAME 
30 FORMAT (1A30) 

CALL COMPUTE (AVERAGE) 

TYPE 40,STUDENT_NAME,AVERAGE 
WRITE (1,40) STUDENT NAME,AVERAGE 
40 FORMAT (/' Student: ',A30,'Average: ',FlO.l) 

TYPE 50 
50 FORMAT (/' Are you done ? (Yes/No) ',$) 
ACCEPT 60, DONE 
60 FORMAT (lA4) 
IF (DONE.NE.'Y' .AND. DONE.NE.'y') GOTO 10 

CLOSE (lJNIT=l) 
END 

SUBROUTINE COMPUTE (AVERAGE) 

INTEGER !COUNT 
REAL TOTAL, GRADE 
!COUNT = 0 
TOTAL = 0 

10 TYPE 20 
20 FORMAT (' Input grade (or 0 to end input): ',$) 
ACCEPT 30, GRADE 
30 FORMAT (FlO.O) 

IF (GRADE.NE.O) THEN 
ICOUNT = !COUNT + 1 
TOTAL = TOTAL + GRADE 
GO TO 10 
END IF 

40 IF (ICOUNT.NE.O) AVERAGE TOTAL/ICOUNT 

RETURN 
END 

DEVELOPING PROGRAMS 10- 11 



Execution of GRADES 
Example 2 depicts a sample run of the GRADES program. 

Example 10-2: Execution of GRADES 

$ FORTRAN GRADES 
$ LINK GRADES 
$ RON GRADES 
Student name? JOHN SMITH 
Input grade (or 0 to end input): 
Input grade (or 0 to end input): 
Input grade (or 0 to end input): 
Input grade (or 0 to end input): 

Student: JOHN SMITH 

Are you done ? (Yes/No) N 

Student name? MARY HAGERTY 
Input grade (or 0 to end input): 
Input grade (or 0 to end input): 
Input grade (or 0 to end input): 
Input grade (or 0 to end input): 

Student: MARY HAGERTY 

Are you done ? (Yes/No) N 

Student name? HOSIAH HOWER 
Input grade (or 0 to end 
Input grade (or 0 to end 
Input grade (or 0 to end 
Input grade (or 0 to end 

Student: HOSIAH HOWER 

Are you done ? (Yes/No) Y 
$ 
$ 
$ TYPE ENGLISH.DAT 

Student: JOHN SMITH 

Student: MARY HAGERTY 

Student: HOSIAH HOWER 
$ 

input): 
input): 
input): 
input): 

10- 12 DEVELOPING PROGRAMS 

45 
80 
99 
0 

82 
69 
94 
0 

90 
78 
81 
0 

Average: 

Average: 

Average: 

Average: 

Average: 

Average: 

74.7 

81. 7 

83.0 

74.7 

81. 7 

83.0 



SUMMARY 
Program Development on a VMS System 

A user must complete the following steps to develop a program: 

Create a text file that contains the source statements of your program. 

• Compile or assemble the text file to produce a file containing object code. 

Link the object file or files to produce an executable image file. 

Run the executable code produced by the linker. 

• Debug the program to correct errors. 

For more detailed explanations of developing programs, refer to the following documents: 

• Guide to VMS Programming Resources 

• VMS DCL Dictionary 

DEVELOPING PROGRAMS 10- 13 





MODULE 11 
EXERCISES 

EXERCISES 11- 1 





HARDWARE AND SOFTWARE OVERVIEW 

WRITTEN EXERCISE I 
In the exercise below, match each description with the appropriate component of the hardware 
environment. Components of the hardware environment may be used once, more than once, or 
not at all. 

Hardware Components 

a. CPU 

b. Console Subsystem 

c. Main Memory 

d. 1/0 Subsystem 

Descriptions 

1. Stores instructions and data 

2. £:;, Used to monitor and control the system 

3. -2._ Consists of peripherals 

4. Executes instructions 

s. Used for starting up and shutting down the system 

EXERCISES 11- 3 



Write the letter of the term that best completes each of the following statements. 

1. _l:::_ are used to connect the various subsystems of the computer. 

a. Peripheral devices 
b. Network communication devices 
c. Interconnect devices 
d. Storage devices 

2. E, have a screen for displaying information. 

a. Hardcopy terminals 
b. Video terminals 
c. Laser printers 
d. Mass storage devices 

3. _fd:_ is NOT a peripheral device. 

a. Terminal 
b. Printer 
c. CPU 
d. Disk drive 

4. are high-speed machines that are usually used for large quantities of stored °-~~r 

a. Hardcopy terminals 
b. Disk drives 
c. Laser printers 
d. Line printers 

5. is NOT a type of disk. 

a. Reel 
b. Cartridge 
c. Diskette 
d. Disk pack 

record data on magnetic media. 

a. Disk drives 
b. Tape drives 
c. Terminal servers 
d. V AXcluster systems 

11- 4 EXERCISES 



WRITTEN EXERCISE II 
The example on the following page displays the characteristics of a privileged process on your 
system. Using the information displayed in the example, determine the value of each of the 
following parameters: 

2. o·,:~. · ----

4. ~-'\~_.~J(_.' ---

Account name 

Default Device and Directory Specification 

Interactive Terminal Specification 

Password 

Process Identification Code 

Process Name 

7. (Z>.' :'/C ··· SY 1« 1
'" :user Identification Code :(: .... 

8. 

9. 

User Name 

Priority 

Privileges (list them) 

10. ----
11 ... -------

14. ----
15. ----
16. ----
17. ----
18. IN ----
19. ----
20. ----

CPU Limit 

Open File Quota 

Subprocess Quota 

EXERCISES 11- 5 



LL 

Example 11-1: Process Parameters of a Sample Interactive Process 

31-DEC-1987 13:45:39.54 VTA15: User: SMITH 
Pid: 20400140 Proc. name: SMITH UIC: [GROUPll,SMITH] 
Priority: 4 Default file spec: DISK: [SMITHJ 
Devices allocated: VTA15: 
Process Quotas: 

Account name: VMS 
CPU limit: Direct I/O limit: 
Buffered I/O byte count quota: 

Infinite 
12192 

10 
9063 

64 
40 

1 

Buffered I/O limit: 
Timer queue entry quota: 
Paging file quota: 
Default page fault cluster: 
Enqueue quota: 
Max detached processes: 

Accounting information: 
Buffered I/O count: 
Direct I/O count: 
Page faults: 
Images activated: 

21298 
11639 
26172 

112 

Open file quota: 
Subprocess quota: 
AST limit: 
Shared file limit: 
Max active jobs: 

Peak working set size: 
Peak virtual size: 
Mounted volumes: 

1500 
1789 

0 

Elapsed CPU time: 
Connect time: 

0 00:11:33.90 
0 04:58:58.78 

Process privileges: 
GRPNAM 
GROUP 
TMPMBX 
NETMBX 

may insert in group logical name table 
may affect other processes in same group 
may create temporary mailbox 
may create network device 

Process rights identifiers: 
INTERACTIVE 
LOCAL 
VMS 
SYS$NODE_SUPER 

Process Dynamic Memory Area 
Current Size (bytes) 
Free Space (bytes) 
Size of Largest Block 
Number of Free Blocks 

11- 6 EXERCISES 

25600 
21184 
21072 

3 

Current Total Size (pages) 
Space in Use (bytes) 
Size of Smallest Block 
Free Blocks LEQU 32 Bytes 

18 
18 
63 

2 
22 

0 
0 

50 
4416 

56 
0 



Match each of the following operations with the parameter that controls your ability to perform 
it. Some operations are controlled by more than one parameter. 

Parameters 

a. Password 

b. Priority 

c. Privilege 

d. Process Identification Number (Pl D) 

e. Resource Limit 

f. User Identification Code {UIC) 

g. User Name 

Operations 

1. 0·-_: h Logging in to your system 

Deleting a file that belongs to another user 

Creating a group logical name . 

4. __ . Opening a large number of files 

EXERCISES 11- 7 



GETTING STARTED 

LABORATORY EXERCISE I 
If you have not already done so, obtain your user name and password from your instructor. 
Complete the following activities at an interactive terminal: 

1. Log in to the system, using the user name and password assigned to you. 

2. Type the following command lines at your terminal. After each command, press <RET>. 

SHOW TIME 

• SHOW USERS 

• SHOW TERMINAL 

3. Log out of the system. 

11- 8 EXERCISES 



LABORATORY EXERCISE II 

1. Enter the following command line at your terminal: 

PRODUCE NONESUCH.FIL 

Since neither the command nor the parameter of the preceding command line exists, the 
operating system will display one or more error messages at your terminal. 

a. How severe was this error? 1 .. ) ": : 

b. What part of the system produced this error message? 

2. Use the command line editor to recall the PRODUCE command and change it to the TYPE 
command. Now execute the command and observe the results. 

a. How severe was this error? .') 

b. What part of the system produced this error message? P-1'""'' s 
c. Did the message text differ from the previous exercise? 

EXERCISES 11- 9 



WRITTEN EXERCISE I 
Match the letter of a special function key with each of the operations described below. You may 
not use every letter in the list. 

Special Function Keys 

a. <CTRUB> 

b. <CTRUO> 

c. <CTRUO> 

d. <CTRUR> 

e. <CTR US> 

f. <CTRUU> 

g. <CTR UY> 

h. <DEL> or <RUBOUT> 

i. <RET> 

Operations 

:ik1. B You have logged in to your system·. A long string of messages, all of which you 
have seen before, scrolls past on your screen. Suppress the messages, without stopping 
or aborting the program that produces them. 

2. _H_t _ You have just typed the string TYPE FILE&. The cursor is positioned immediately 
after the ampersand (&). Delete the ampersand (&). 

3. __ You have entered the SHOW SYSTEM command. A listing of users on your system 
scrolls past on your screen. Abort further execution of the command and return control to 
your terminal. 

¥" 4. _f_ You have entered the following command lines at your terminal: 

$ DIFFERENCES/IGNORE=BLANK LINES -<RET> 
$ FILEl -<RET> -

=$ FILES 

The cursor is immediately to the right of the number eight on the last line. Delete the last 
line, without deleting the preceding lines of the command string. 

11-10 EXERCISES 



5. 

6 • 

You have entered the following string at your terminal: 

$ SHOW PROCESS/ALL<RET> 

Lines of information scroll past on your terminal screen. Stop the display and halt, but do 
not abort, the program that generates it. 

Resume generation of the display that you stopped in the preceding operation. 

. :{( 7. _P_ You have made extensive corrections to a command line at a hardcopy terminal. 
The output looks like this: 

$ PRYNT\TNY\NT9\9\ FILIN\NI\ 

Display the line without the echoed corrections. 

,t 8. J{ You have just issued a command line. Recall this command. 

EXERCISES 11- 11 



LABORATORY EXERCISE Ill 
Log in to your system and use the online Help facility to obtain the information listed below. 
When you have finished your work, log out. 

1. A listing of all topics available through the Help facility 

2. A description of the login procedure 

3. A description of the /FULL qualifier of the LOGOUT command 

4. A description of the TIME option of the SHOW command 

11- 12 EXERCISES 



LABORATORY EXERCISE IV 

1. Determine the following characteristics of your terminal: 

a. Number of characters displayed in an output Line ~)\:.) 

b. Receive speed ') 

c. Transmit speed 

d. Terminal type (LA34, VT100, and so on) v 17 .--} ~-} . ..._ .......... ~. . .. 

2. Determine the value of each of the following process parameters: 

a. Account Name GC.... 

b. CPU Ttme Limit !. l\/ 

c. Default Directory Specification \) .·[IJ•'.'2., ... 

d. Default Device for Input and Output <-'. 

e. Priority 

f. Privileges ~T?··i ' .. , ; 

g. Process Identification Code 2_-:;;:.e, i.:1 

h. Precess Name t).::::. : 

i. User Identification Code [ uc .... 1 ~!:;] 

j. User Name 

3. Display the names of all processes running on your system. ·;' 

4. Display the names of all users on your system. , ' 

5. Display the names of all devices on your system. ~:,, rk> 

6. Log out of your system. 

EXERCISES 11- 13 



CREATING AND EDITING TEXT FILES 

INTRODUCTION TO THE LABORATORY EXERCISES 
Students should feel free to choose either the EDT Editor exercises or the EVE Editor exercises. 
They should choose the editor that they will be primarily using. 

However, if they would like practice in both editors, they can complete all the exercises for this 
module. 

11- 14 EXERCISES 



LABORATORY EXERCISE I - THE EDT EDITOR 

1. Use the EDT editor to create a text file named EXERCISE1 .TEXT. 

a. Invoke the EDT editor, using the appropriate DCL command. 

b. Notice the message displayed on the terminal screen. 

c. Change from Line mode to Keypad mode. 

2. Before you begin entering text, you should become familiar with the Help facility that is a 
part of the EDT editor. 

a. Invoke the Help facility by pressing the appropriate key. 

b. Display information about specific keypad keys. 

c. Exit from Help. 

3. Type in the following text: 

The purpose of this exercise is to allow 
you practice using the basic capabilities 
of the EDT Editor Utility. 

4. Leave the editing session normally. 

a. Return to Line mode. 

b. Type in the command that ends the session and saves your actions. 

c. Notice the system message displayed on the terminal screen. 

EXERCISES 11-15 



5. Begin another editing session. 

a. Invoke the EDT editor, using the appropriate DCL command. 

b. Notice that the first line of the file is displayed on the terminal screen. 

c. Change from Line mode to Keypad mode. The file's contents are displayed on the 
screen. 

6. Modify the text. 

a. Using the appropriate keys, move the cursor to the beginning of the word "basic" in the 
second line. 

b. Delete the words "basic capabilities" and modify the line so that it reads: 

you practice using the simpler functions 

7. End the editing session. 

11..;.. 16 EXERCISES 



LABORATORY EXERCISE II - THE EVE EDITOR 

1. Use the EVE editor to create a file called EXERCISE3.TEXT. 

a. Notice the messages that are displayed on the terminal screen. 

2. Type in the lines listed below. DO NOT press the RETURN key while you are typing. The 
automatic word. wrap feature causes new lines to begin when text reaches the right margin 
of the terminal screen. 

Notice the automatic word wrap feature of EVE. 

This is an exercise that uses the EVE editor. 
This editor allows you to type text into a file. 
The word wrap feature will automatically wrap lines as you type, 
so that you do not have to press the RETURN key at the end of each line. 

3. End the editing session and save your work. 

a. Use the appropriate key sequence or line-mode command to end the editing session. 

b. Notice the system messages displayed on the terminal screen. 

4. Begin another editing session. 

a. Notice the system messages displayed on the terminal screen. 

5. Modify the text of the first line to read: 

This is an example that uses the EVE editor. 

a. Move the cursor to the beginning of the word "RETURN." 

b. Use the appropriate key to delete the word "RETURN." 

c. Move the cursor to the beginning of the word "example." 

d. Use the appropriate key to switch from Insert mode to Overstrike mode. f ( \{ 

e. Type over the words "example that uses" with the words "exercise that uses." 

6. End the editing session normally. 

EXERCISES 11-17 



LABORATORY EXERCISE Ill - THE EVE EDITOR 
This exercise lets you practice editing more than one file on your terminal screen. 

1. Edit a file of your choice. 

2. Split your terminal screen into two windows. 

3. Edit ano_ther file of your choice. &ET '· 

4. Move text from one file into the other file. 1 rJ C,(....I,) 

5. Exit the file so the moved text is saved. 

11-18 EXERCISES 



COMMUNICATING WITH OTHER USERS 

LABORATORY EXERCISE I 

1. Invoke the Mail utility and send several mail messages to someone in your class. 

2. Have your mail recipient send mail messages to you. 

3. Read your messages. 

4. Obtain a list of your mail messages. 

5. Read only the second mail message. 

6. Delete the fourth mail message. 

7. Create a text file in your default directory. Send this file as a mail message. 

8. Pick a message and move it to a folder named Test. Select the Test folder and check to 
see if the message is there. 

9. List the folders you have. In addition to the folder you just created, what other folders do 
you have? 

10. Create a distribution list for Mail. Include several members of your class. Send a short 
message to the people on the distribution list. 

EXERCISES 11- 19 



LABORATORY EXERCISE II 

1. Invoke the Phone utility. 

2. Obtain a list of available users. (N p ,c.fo Al yr 

3. Establish a phone connection with one of the users. 

4. Terminate all conversations. 

11- 20 EXERCISES 



LABORATORY EXERCISE Ill 
Send a request to a system operator using the REQUEST command. 

EXERCISES 11- 21 



MANAGING FILES 

WRITTEN EXERCISE I 
Suppose your default directory contains the following files: 

A.DAT;l 
B.DAT;3 
MAILD22.DAT;2 

A.FOR;2 
B.FOR;l 
MAILF22.DAT;2 

AREA.FOR;2 
C.DAT;4 
MAILIST.COB;l 

AREA.FOR;l 
C.FOR;l 
MAILJ14.DAT;l 

1. List the files that are specified by the following file specifications (using the DIRECTORY 
command): 

a. *.FOR;2 A, 
b. *.FOR : 

c. A**"* . ' tl' 
d. A%%%.*;* 

e. %.DAT 

f. * *"* ' 

• ''I ) ,.,: 

J 

/ 

A 

"!!' 

Ji{ 

' 

C.-- • ]) ltT '; L/ 
J 

) 

I ('... t ) 

2. Give a single file specification that describes the following lists of files: 

a. A.DAT;1, A:FOR;2 A . :<\~ 
b. A.DAT;1, 8.DAT;3, C.DAT;4 -, ,! , 

c. MAILD22.DAT;2, MAILJ14.DAT;1, MAILF22.DAT;2 ;J:, 

d. A.DAT;1, MAILJ14.DAT;1 'f··, 1 

11- 22 EXERCISES 



WRITTEN EXERCISE II 
Next to each file maintenance operation, write the letter that corresponds to the VMS command 
best suited to accomplish it. Specify each command at least once. 

Commands 

a. APPEND 
b. COPY 
c. DELETE 
d. DELETE/CONFIRM 
e. DIFFERENCES 
f. DIRECTORY 
g. DIRECTORY/OUTPUT =file-specification 
h. PRINT 
i. PURGE 
j. RENAME 
k. TYPE 

Operations 

1. t~.,, .. , Display the contents of a file at your terminal. 

2. _1 _ Display the contents of your default directory at your terminal. 

3. l:_39--}) Remove a specified file from your default directory. 

4. ~ Remove all but the most recent version of a specified file from your default directory. 
,,·') 

5. !~; Create an exact duplicate of a file in your default directory. 

6. 1-J"' List the contents of a file at the default system printer . 
. ~'·' 

7. l-> Compare the contents of two files. 

8. Add the contents of one file to another. 

9. ~"1',.~· Change a file name to a new file name. 

10. _Q__ Display the name of each file in your default directory and remove or retain it by 
entering a "Y" or an "N" at your terminal. 

11. ff List the contents of your default directory in a file for future reference. 

EXERCISES 11- 23 



LABORATORY EXERCISE I 

1. Create a subdirectory called [.SUB1] 

2. Copy some files from your login directory into [.SUB1] Copv 
' j 

3. Move yourself to that subdirectory '5;:: .,,_ 
...... 

4. Obtain a directory listing of all files in the subdirectory Di fL. 

5. Combine two files to create a new file named NEWFILE.DAT 

6. Create another subdirectory beneath [.SUB1] and name the new subdirectory [.SUB2] 

7. Copy some files from [.SUB1] into [.SUB2] 

8. Obtain a directory listing of all files in the subdirectory 

9. Delete both subdirectories 

I 
; './ ..4-·~v··" {··· 

l 

t 
" 

11- 24 EXERCISES 



LABORATORY EXERCISE II 

1. Create a file in your login directory. What protection code does this newly created file have 
and how did it get that pro~ection code? ([;:.:A./L, i./ . ~ '.1,,)~~e ) / .. \ ) I o-.:~j/--

2. Change the protection code for this file to (S:R,O:R,G;R,W:R). Display the protection cnrle 
to verify the change. 

3. Delete this file. What happened and why? ~>:::- //J (~· ;~) 
. "' !Vo 

4. Change your default protection code to (S:R,O:RWED,G:R,W:R). Create a new file named 
NEWFILE.TXT. What protection code does this new file have and why? 

I f;\'( ..... .::·· f'..J ,, . ,;,;i* .;(,,. ; '\ ·: o ,t·) (:.1...r i {-t 
5. Change your default protection to give all persons ih 'your UIC group RWED access and all 

persons in the WORLD category RWE access. 

EXERCISES 11- 25 



WRITTEN EXERCISE Ill 
Next to each directory maintenance operation, write the letter of the VMS command best suited 
to perform the job. You may use each command more than once; you may not use others at all. 

Commands 

a. COPY 
b. CREATE 
c. CREATE/DIRECTORY 
d. DELETE 
e. DELETE/DIRECTORY 
f. DIRECTORY 
g. RENAME 
h. SET DEFAULT 
i. SET PROTECTION 
j. SHOW DEFAULT 
k. SHOW PROTECTION 

Operations 

1. J Display the name of your current default directory. 

2. r: Display the contents of a directory hierarchy. 

3. D Remove a directory from a directory hierarchy. 

4. ~ Add a directory to a directory hierarchy. 

5. & Move files from one directory to another. ···-
6. JL Change your current default directory. 

7. -r Change the protection code of a directory file. 

8. ~- Display the name of your current default device. 

9. _IL Change your current default device. 

11- 26 EXERCISES 



LABORATORY EXERCISE Ill 

1. Choose a file in your directory. Issue a DCL cdmmand to obtain Access Control List infor-

mation regarding that file. 5 lit) >J r\ <~ t~... ~ 
1
,.) * -~ + 

2. Modify the UIC protection on the above file so that your group has no access.$€'!""· /')/~7''£~'.!((,' .J~(_o),fµ, 
-H 

3. Modify the ACL information to allow Read, Write, and Execute access to the file. 
£.D rr / 1:i..t:: .. 1.- P · :S · ;:;:. ~l 

4. Check to see if an ACL was created. Have some of your fellow students try to access the 
file. 

5. Delete the ACL on the above file. 

EXERCISES 11- 27 



WRITTEN EXERCISE IV 
Each of the following questions describes an operation a user wishes to perform on a given disk 
or tape file. Given the UIC of the user, and the owner UIC and protection code of the file, its 
directory, or its volume, determine whether the file system will permit the operation to occur. If 
the operation is permissible, write the word TRUE in the space that precedes the question; if it 
is not, write the word FALSE. 

1. F 

2. 

A user with a UIC of [100,200] wishes to delete a file on a tape volume. 
---·-~-"'·"- I 

t-J~-· .i l6 I 

Volume Owner UIC: 
Volume Protection Code: 

[100,200) 
(S:RWED,O:RWED,G:RWED,W:RE) 

A user with a UIC of [363,2] wishes to create a file on an RX33 disk volume. 
~ 

~P./t.1C fa (;t .. fN (:J-------.._, 
~ 

Volume Owner UIC: [363,0] 
Volume Protection Code: (S:RE,O:RWED,G:RE,W) 

3. T----- A user with a UIC of [4,4] wishes to read a file on an RASO disk volume. 

File Owner UIC: [411,22) ." 
File Protection Code: (S,O:RWED,G,W:R~) 

r·· "2, ¥1 \'· \.., 

4. A user with a UIC of [100,200] wishes to update a record in a file on an RASO disk 
volume. 

Volume Owner UIC: 
Volume Protection Code: 
Directory Owner UIC: 
Directory Protection Code: 
File Owner OIC: 
File Protection Code: 

[ 1, l] 
(S:RWED,O;RWED,G:RWED,W:RWED) 
[100,210] 
(S:RWE,O:RWE,G:RWE,W:RE) 
[100,210] 
(S:RE,O:RWED,G:RWE,W:RE) 

5. A user with a UIC of [521,6] wishes to read a file on an RA81 disk volume. 

Volume Owner UIC: 
Volume Protection Code: 
Directory Owner UIC: 
Directory Protection Code: 
File Owner UIC: 
File Protection Code: 

11- 28 EXERCISES 

[ 1, l] 
(S:RWED,O:RWED,G:RWED,W:RWED) 
[521,13] 
(S:RWE,O:RWE,G,W) 
[521,13] 
(S:R,O:RWED,G:R,W:R) 



CUSTOMIZING THE USER ENVIRONMENT 

WRITTEN EXERCISE I 
Write the letter of the system-defined logical name below that best fits each of the device and 
directory descriptions on the following page. Some answers require more than one letter. 

System-Defined Logical Names 

a. SYS$COMMAND 

b. SYS$DISK 

c. SYS$ERROR 

d. SYS$HELP 

e. SYS$1NPUT 

f. SYS$LIBRARY 

g. SYS$LOGIN 

h. SYS$NODE 

i. SYS$0UTPUT 

j. SYS$SYSDEVICE 

k. SYS$SYSTEM 

EXERCISES 11- 29 



Device and Directory Descriptions 

1. Specifies the default device to which the system writes output during a terminal 
session. 

2. /l 
C../ Specifies the default device to which the system writes messages during a terminal 

session. 

, ' / r·,, . '.> Specifies your default disk. 

4. f> Specifies the directory in which help files are cataloged. __,,,..:;--

5. )::. 
r Specifies the directory in which system libraries are cataloged. 

6. Specifies your default user file directory (UFO}. 

7. (:~., Specifies the device from which the command language interpreter and utility pro-
grams read input during a terminal session. 

8. _K Specifies the directory in which operating system programs and procedures are 
cataloged. 

9. -A 1C , f1 ·specifies your terminal during an interactive process. 

10. 1 
11. H 

Specifies the disk on which system programs and routines are stored. 

Specifies the name of the current network node. 

11- 30 EXERCISES 



LABORATORY EXERCISE I 
Complete each of the following exercises at an interactive terminal. Display only one logical 
name table for each exercise. 

1. Display at your terminal the contents of the logical name table used by your process. This 
particular logical name table contains process-e~~5!~e logical names. Sr-11>'v·.l LD.S 1. U\c l ?n.o ~ •:: ~ ·~ 

2. Display at your terminal the contents of the logical name table used by your process and its 
subprocesses. This particular logical name table contains ~P..le logical names. 

'5 J.+o;/J (.. 0 6 t .:: \fl; :.... ; _..; .,;:) ,'-t,' 

3. Display at your terminal the contents of the logical name table used by your UIC group 
member processes. This particular logical name table contains ~~~~~le logical names. 

4. Display at your terminal the contents of the logical name table used by all system processes. 
This particular logical name table contains §.bare.able logical names. -:; 1-+o v-I co t~ 1 c:. t\ '· / '£;; 

5. Create a logical name for your default directory. brr._ J 
a. Check the proper logical name table to make sure your newly created logical name 

exists. 

b. Use the logical name in conjunction with the DIRECTORY command to view the file 
names in your default directory. 

c. Delete your newly created logical name after correctly performing this exercise.· 

DC /' · -!:; s , :::s·· N tvA.t~tc. 

EXERCISES 11- 31 



LABORATORY EXERCISE II 
Complete each of the following laboratory exercises at an interactive terminal. 

1. Create a subd~rectory. 

2. Create a logical name for your newly created subdirectory. ~ .. 
j) E;,.:r· 1 t .. D;; Al¥~'' /'vl, [r.>e.1 'S · ":?.uQi ;\I J 

3. Create a logical name for a text file in your default directory. 
· :. ~vi; lo&f'..if~ME- ~ ~N-tf 

4. Check the process logical name table to see if your new logical names exist. 

5. Using only logical names, move the text file into your new subdirectory. 

6. After completing this exercise, remove the above logical names. 

11- 32 EXERCISES 



WRITTEN EXERCISE II 
Write the letter of the symbolic name type that best fits each of the following characteristics. 

Symbolic Name Types 

a. Command Synonym 

b. Logical Name 

Characteristics 

1. 

2. 

3. 

Represents device, directory, and file specifications 

Translated by the file system 

Translated by the Command Language Interpreter 

4. Defined by the direct assignment statement ( =) 

5. Deleted by the DEASSIGN command 

6. Displayed by the SHOW SYMBOL command 

7. 

8. 

9. 

Defined by the ASSIGN command 

Represents commands and command strings 

Deleted by the DELETE/SYMBOL command 

EXERCISES 11- 33 



LABORATORY EXERCISE Ill 
Create global symbols to perform the following tasks. You may ·create these global symbols 
interactively or in the file LOGIN.COM. 

1. Display a directory listing along with sizes of all files in your directory. 

2. Show the time of day. 

3. Display all global symbols at your terminal. 

4. Move to another default directory. 

5. Return to your original default directory. 

To correct mistakes you may have made when you defined a DCL symbol, use the 
DELETE/SYMBOL command to remove the faulty definition, then enter it again. 

6. Try the symbols to see if they work. How can you get rid of the symbols without using the 
DELETE/SYMBOL command? 

11- 34 EXERCISES 



LABORATORY EXERCISE IV 

1. Define <KP2> to be the SHOW TIME command. Try it first without the /TERMINATE qualifier, 
then with the /TERMINATE qualifier. What is the difference? 

2. Define <KP3> to be the SET DEFAULT command. Create a subdirectory. Try to move to 
the subdirectory by using your ne~ly defined key. 

3. Delete the key definition for <KP2>. See if it worked by displaying all your key definitions 
again. 

_,EXERCISES 11- 35 



WRITING COMMAND PROCEDURES 

WRITTEN EXERCISE I 
To complete these eX'ercises, use the following symbol definitions: 

COUNT = 2 
Pl = "MYFILE.TXT" 
P2 = "DATA.DAT" 

Part A: 

FILE NAME = "PROGRAM" 
FILE TYPE= ".FOR" 

Each command below uses a symbol in some way. Indicate whether or not the symbol is used 
correctly. If it is used correctly, rewrite the command, replacing the symbol with its value {see 
above). If the symbol is used incorrectly, rewrite the command correctly. 

Examples: 

$ TYPE "Pl" 

Incorrect$ TYPE 'Pl' 

$ EDIT 'P2' 

Correct $ ED IT DATA. DAT 

1. $FILE= 'FILE_NAME' + 'FILE_TYPE' 

2. $ WRITE SYS$0UTPUT COUNT " copies of the file" 

3. $ IF COUNT .LT. 10 THEN GOTO END 

4. $WRITE SYS$0UTPOT "The file '' FILE_NAME'' 'FILE_ TYPE'" 

11- 36 EXERCISES 



Part B: 

In the commands below, replace the underlined text with symbols, using the proper symbol 
substitution techniques. 

To complete these exercises, use the following symbol definitions: 

COUNT = 2 
Pl "MYFILE.TXT" 
P2 = "DATA.DAT" 

Example: 

$ PRINT MYFILE. TXT 

$PRINT 'Pl' 

FILE NAME "PROGRAM" 
FILE TYPE ".FOR" 

1. $WRITE SYS$0UTPUT "The file is MYFILE.TXT" 

2. $ TYPE PROGRAM. FOR 

3. $ ED IT DATA. DAT 

4. $WRITE SYS$0UTPUT "~copies of the file DATA.DAT exist." 

5. $FILE= "PROGRAM" + II .FOR" 

EXERCISES 11- 37 



INTRODUCTION TO LABORATORY EXERCISES 
These lab exercises· are designed to give you practice in creating, testing, and running command 
procedures. 

The procedures in these exercises will include the commonly used functions of command pro­
cedures, such as: 

• Terminal input and output 

Symbol assignment and symbol substitution 

• Controlling program flow 

• Passing data to procedures 

• Using simple lexical functions 

11- 38 EXERCISES 



LABORATORY EXERCISE I 
LOGIN.COM is one of the most commonly used command procedures. This procedure is ex­
ecuted automatically each time you log In to a VMS system. It is used to tailor your working 
environment on the system to better suit your needs. 

Write a LOGIN.COM procedure of your own that performs the following actions: 

{.\Exit if the process mode is not interactive. Use the lexical function F$MODE() t.o test the \J mode of the process. -
H- F~0\>60 ... NtS~ ''\N1't.nJ:ic!."f!VC THf.AJ !:,,;'..}. ·; 

2. Define a logical name that points to one of your subdirectories: 

disk_name:[directory_name.subdirectory_name] 

where disk_name is your default disk, and directory_name is your top level directory. 

3. Define global symbols to be used as command synonyms. These command synonyms 
should perform the following actions: 

a. Set default / 

b. Show all users currently logged in to the system Lo/"/ 

c. Display your current directory /. 

d. Set your default to your login disk and directory 

4. Display the following information on your terminal: 

a. The current date and time V' 

b. The current default directory 

EXERCISES 11- 39 



LABORATORY EXERCISE II 
Write a command procedure that allows you to create fiies that everyone on your system can 
access. The procedure performs the following tasks: 

1. Asks for the file name, if it is not provided. 

2. Displays a message that indicates the name of the file being edited. 

3. Transfers control to the terminal and then allows you to edit the file. 

4. Sets the protection on the file so that the WORLD has READ access. 

5. Prints a copy of the file for yourself, if you choose. 

The name of the file you are creating should be supplied as P1. 

This exercise uses terminal input and output including: 

• INQUIRE 

WRITE SYS$0UTPUT 

• DEFINE/USER_MODE or ASSIGN/USER_MODE 

11- 40 EXERCISES 



OPTIONAL LABORATORY EXERCISE 
Write a command procedure that displays a message on your terminal screen that states when 
you will return. The procedure pertorms the following: 

1. Asks you for the number of minutes you will be away. 

2. Erases the screen and then displays the message, 12 lines from the top: 

"Back in N minutes" 

(where N is the number of minutes you supplied in Part 1 ). 

3. It waits, and at one-minute intervals subtracts 1 from the number of minutes, erases the 
screen, and redisplays the message with the new value. 

4. When only one minute is left, it erases the screen and displays the message: 

"I'll be right back." 

This exercise uses terminal input and output commands, including: 

INQUIRE/NOPUNCTUATION 

• WRITE SYS$0UTPUT 

TYPE SYS$1NPUT 

This procedure also uses the DCL command WAIT. For more information on this command, 
refer to the VMS DCL Dictionary or use the HELP command. 

This command procedure does not use lexical functions. 

EXERCISES 11- 41 



USING DISK AND TAPE VOLUMES 

WRITTEN EXERCISE I 
The list below contains the major steps that you must complete to create and use a private vol­
ume. Indicate the order of these steps by writing the appropriate number in the space preceding 
each step. 

1. Allocate device --
2. Deallocate device 

3. Dismount volume --
4. Initialize volume --
5. Load volume --
6. Mount volume --
7. Unload volume --

11- 42 EXERCISES 



WRITTEN EXERC,SE II 
Choose the VMS command best suited to perform each of the following operations and write its 
letter in the space provided. 

VMS Commands 

a. ALLOCATE 

b. DEALLOCATE 

c. DISMOUNT 

d. INITIALIZE 

e. MOUNT 

f. SHOW DEVICE/FULL 

Operations 

1. Build the appropriate structure on a disk (usually used for a new tape). 

2. Terminate access by your process to the contents of a volume. 

3. Display the owner UIC and protection code of a volume. 

4. Initiate access by your process to the contents of a volume. 

5. Release a device from exclusive use by your process. 

6. Reserve a device for exclusive use by your process. 

EXERCISES 11- 43 



WRITTEN EXERCISE Ill 
Write a VMS command string to perform each of the following operations. 

1. Allocate any available tape unit to your process and assign the logical name TAPE to it. 

2. Initialize a tape volume that you have loaded on TAPE. Assign the label TAP _BK to the unit. 

3. Mount TAP _BK on the tape device so that the Backup utility can process it. 

4. Back up all files in your default directory to a save set on TAP _BK. 

5. List the contents of the save set TAP _BK at your terminal. 

6. Terminate access to TAP _BK, allowing the system to automatically unload the volume. 

7. Release the tape device so others on your system can use it. 

8. Delete the logical name TAPE from the logical-name table that stores it. 

11- 44 EXERCISES 



LABORATORY EXERCISE I 
Gomplete the following exercises at an interactive terminal. Note that your device names may 
differ from the device and directory names given in the solutions. 

1. Allocate the tape. 

2. Initialize the tape, giving it a label name of MYTAPE. 

3. Mount the tape, so that BACKUP can be used. 

4. Obtain a listing of the files in your directory. 

5. Transfer all files from your directory to the tape. 

6. Confirm that all files transferred successfully to the tape. 

7. Dismount the tape. 

8. Deallocate the tape. 

EXERCISES 11- 45 



SUBMITTING BATCH AND PRINT JOBS 

LABORATORY EXERCISE I 
NOTE 

Several of the laboratory exercises in this module ask you to create command procedure 
files. 

Complete the following exercises at an interactive terminal. 

1. Choose a text file and print it, using the generic print queue SYS$PRINT. 

2. Use a single PRINT command to print two copies of the same file, giving the print job priority 
3 on SYS$PRINT. 

3. Display a list of all queues on your system and all jobs in the queues. 

4. Select an execution queue from the queue display. (An execution queue will have the same 
name as its associated device, without the colon.) Print the same file, queuing it directly to 
the physical queue. 

5. Choose two text files. Print these two files so that you get two copies of the first file and 
three copies of the second file. 

6. Send a text file to the print queue, requesting that the file not be printed until an hour from 
now. 

7. Display the queue status of the job waiting to be printed. Delete this job from the queue. 

11- 46 EXERCISES 



LABORATORY EXERCISE II 

1. Display at your terminal screen all of the batch queues on the system. 

2. Submit a command procedure to the batch queue that displays the time, displays all pro­
cesses on the system, and shows all logical names on the system. Save the log file. You 
will need to examine it shortly. 

3. Submit the above command procedure to batch so that the log file will not be printed. 

4. Submit the above command procedure to batch so that the log file will not be created. 

5. Examine the log file created in Step 2. Answer the following questions: 

Find the entry for your batch job from the SHOW SYSTEM command. What was its 
process ID? 

Did your LOGIN.COM file execute? Did the system-wide login procedure execute? 

How much CPU time did your batch job use to execute? 

How much elapsed time did your batch job use to execute? 

EXERCISES 11- 47 



HARDWARE AND SOFTWARE 
OVERVIEW-SOLUTIONS 

WRITTEN EXERCISE I 
In the exercise below, match each description with the appropriate component of the hardware 
environment. Components of the hardware environment may be used once, more than once, or 
not at all. 

Hardware Components 

a. CPU 

b. Console Subsystem 

c. Main Memory 

d. 110 Subsystem 

Descriptions 

1. 

2. 

3. 

4. 

5. 

c 

b 

d 

a 

b 

Stores instructions and data 

Used to monitor and control the system 

Consists of peripherals 

Executes instructions 

Used for starting up and shutting down the system 

11- 48 EXERCISES 



Write the letter of the term that best completes each of the following statements. 

1. _c_ are used to connect the various subsystems of the computer. 

a. Peripheral devices 
b. Network communication devices 
c. Interconnect devices 
d. Storage devices 

2. b have a screen for displaying information. 

a. Hardcopy terminals 
b. Video terminals 
c. Laser printers 
d. Mass storage devices 

3. _c_ is NOT a peripheral device. 

a. Terminal 
b. Printer 
c. CPU 
d. Disk drive 

4. d are high-speed machines that are usually used for large quantities of stored output. 

a.· Hardcopy terminals 
b. Disk drives 
c. Laser printers 
d. Line printers 

5. a is NOT a type of disk. 

a. Reel 
b. Cartridge 
c. Diskette 
d. Disk pack 

6. b record data on magnetic media. 

a. Disk drives 
b. Tape drives 
c. Terminal servers 
d. V AXcluster systems 

EXERCISES 11- 49 



WRITTEN EXERCISE II 
Compare your answers with those shown below. For additional information, consult your instruc­
tor. 

1. VMS Account name 

2. DISK:[SMITH] Default Device and Directory Specification 

3. VTA 15: Interactive Terminal Specification 

4. (Not Displayed) Password 

5. 20400140 Process Identification Code 

6. SMITH Process Name 

7. [GROUP11,SMITH] User Identification Code 

8. SM ITH User Name 

9. 4 Priority 

Privileges (list them) 

10. GRPNAM 

11. GROUP 

12. TMPMBX 

13. NETMBX 

14. Infinite CPU Limit 

15. 63 

16. 2 

Open File Quota 

Subprocess Quota 

11- 50 EXERCISES 



Match each of the following operations with the parameter that controls your ability to perform 
it. Some operations are controlled by more than one parameter. 

Parameters 

a. Password 

b. Priority 

c. Privilege 

d. Process Identification Number (PIO} 

e. Resource Limit 

f. User Identification Code {UIC) 

g. User Name 

Operations 

1. ~ Logging in to your system 

To log in to a system, you must know the user name of a record in the UAF. You must also 
know the password that corresponds to that user name. 

2. _sf_ Deleting a file that belongs to another user 

Your ability to delete a file depends on your UIC. 

3. c Creating a group logical name 

4. _e_ Opening a large number of files 

A resource limit (FILLM} determines the number of files that you can open simultaneously. 

EXERCISES 11- 51 



GETTING STARTED~SOLUTIONS 

LABORATORY EXERCISE I 

1. Log in to the system, using the user name and password assigned to you. 

Press <RET> on the terminal keyboard 
At the Username: prompt, type your user name <RET> 
At the Password: prompt, type your password <RET> 

If typed successfully, you should get a "Welcome" message from the system. If typed 
unsuccessfully, the system will output an error message to your terminal, notifying you that 
either your Username or Password was illegal. Re-typing your Username and Password 
will correct this situation. 

2. Type the following command lines at your terminal: 

SHOW TIME 

$ SHOW TIME<RET> 
31-DEC-1987 14:10:32 

SHOW USERS 

$ SHOW USERS<RET> 

VAX/VMS Interactive Users 31-DEC-1987 13:30:33.86 
Total number of interactive users = 6 

Username 
BECKER 
CHAPUT 
COVERDALE 
GOEHRING 
SMITH 
JOHNSTON 

11- 52 EXERCISES 

Process Name PIO Terminal 
BECKER 20200332 VTA115: 
Mary 20200342 VTAlll: 
COVERDALE 20200390 VTA131: 
Judy 202003A7 VTA139: 
SMITH 20200331 VTA145: 
JOHNSTON 20200352 VTA124: 

LTA76: 
LTA57: 
LTA74: 
LTA82: 
LTA88: 
LTA67: 



SHOW TERMINAL 

$ SHOW TERMINAL<RET> 

Terminal: VTA145: Device_Type: PRO Series 
Physical terminal: LTA88: 
Input: 9600 LFfill: 0 Width: 80 

24· 

Owner: SMITH 
Username: SMITH 

Parity: None 
Output: 9600 CRfill: 0 
Terminal Characteristics: 
Interactive Echo 
No Hostsync TTsync 
Wrap Scope 
Broadcast No Readsync 
No Modem No Local echo 
No Brdcstmbx No DMA 

Page: 

Type_ahead 
Lowercase 
No Remote 
No Form 
No Autobaud 
No Altypeahd 

Line Editing Overstrike editing No Fallback 
No Secure server 
No SIXEL Graphics 
ANSI CRT 
Edit-mode 

3. Log out of the system. 

$ LOGOUT<RET> or 
$ LOGOUT/FULL<RET> 

Disconnect No Pasthru 
No Soft Characters Printer port 
Regis No Block mode 
DEC CRT No DEC CRT2 

No Escape 
Tab 
No Eightbit 
Fulldup 
Hangup 
Set_speed 
No Dialup 
No Syspassword 
Application keypad 
1'.dvanced video 
No DEC CRT3 

EXERCISES 11- 53 



LABORATORY EXERCISE II 

1. 

$ PRODUCE NONESUCH.FIL<RET> 
%DCL-W-IVVERB, unrecognized command verb - check validity 
and spelling \PRODUCE\ 

a. How severe was the error? 

It was a warning. 

b. What part of the system produced this error message? 

DCL was the part of the system that was upset. 

2. Use the command line editor to recall the PRODUCE command and change it to the TYPE 
command. Now execute the command and observe the results. 

$ TYPE NONESUCH.FIL 
%TYPE-W-SEARCHFAIL, error searching for DISK: [SMITH]NONESUCH.FIL; 
-RMS-E-FNF, file not found. 

a. How severe was this error? 

Severity levels of warning and error. 

b. What part of the system produced this error message? 

Messages came from the TYPE program and RMS. 

c. Did the message text differ from the previous exercise? 

The first exercise was an Unrecognized Command while the second was a Nonexistant 
File. 

The system notifies you that after searching for the file it cannot be found since it does 
not exist. To correct the error, re-issue the TYPE command followed by a legal file 
name. 

11- 54 EXERCISES 



WRITTEN EXERCISE I 

1. _b_ You have logged in to your system. A long string of messages, all of which you 
have seen before, scrolls past on your screen. Suppress the messages, without stopping 
or aborting the program that produces them. 

2. h You have just typed the string TYPE FILE&. The cursor is positioned immediately 
after the ampersand (&). Delete the ampersand (&). 

3. g You have entered the SHOW SYSTEM command. A listing of users on your system 
scrolls past on your screen. Abort further execution of the command and return control to 
your terminal. 

4. _f_ You have entered the following command lines at your terminal: 

5. 

$ DIFFERENCES/IGNORE=BLANK LINES -<RET> 
_$ FILEl -<RET> -
_$ FILES 

The cursor is immediately to the right of the number eight on the last line. Delete the last 
line, without deleting the preceding lines of the command string. 

e You have entered the following string at your terminal: 

$ SHOW PROCESS/ALL<RET> 

Lines of information scroll past on your terminal screen. Stop the display and halt, but do 
not abort, the program that generates it. 

6. _c_ Resume generation of the display that you stopped in the preceding operation. 

7. d You have made extensive corrections to a command line at a hardcopy terminal. 
The output looks like this: 

$ PRYNT\TNY\NT9\9\ FILIN\NI\ 

Display the line without the echoed corrections. 

8. a You have just issued a command line. Recall this command. 

EXERCISES 11- 55 



LABORATORY EXERCISE Ill 
Use the following commands: 

1. A listing of all topics available through the Help facility 

$ HELP 

2. A description of the login procedure 

$ HELP LOGIN 

3. A description of the /FULL qualifier of the LOGOUT command 

$ HELP LOGOUT/FULL 

4. A description of the TIME option of the SHOW command 

$ HELP SHOW TIME 

11- 56 EXERCISES 



LABORATORY EXERCISE IV 

1. To display the characteristics of your terminal, enter the SHOW TERMINAL command. 

a. The \f\!IDTH setting of your terminal determines the number of characters displayed in 
an output line. 

b. The receive speed of your terminal is the first number specified for the SPEED setting 
of your terminal. 

c. The transmit speed of your terminal is the second number specified for the SPEED 
setting of your terminal. 

d. Your terminal type is the first value that appears following the terminal name in the 
SHOW TERMINAL display. If the terminal type (NT52, NT100, /LA36, /LA 120, or 
some other value) does not match the physical characteristics of your terminal, consult 
your system manager. 

EXERCISES 11- 57 



2. To display the specified process parameters, enter the command lines shown below and 
look for the information specified within the parentheses. 

a. $ SHOW PROCESS/QUOTAS (Account Name) 

b. $ SHOW PROCESS/QUOTAS (CPU Limit) 

c. $ sHow PRocEss (Default File Specification) 

d. $ sHow TERMINAL (or$ SHOW PROCESS) 

e. $ SHOW PROCESS (Priority) 

f. $ SHOW PROCESS/PRIVILEGES (Privileges) 

g. $ SHOW PROCESS (PIO) 

h. $ SHOW PROCESS (Process Name) 

i. $ SHOW PROCESS (UIC) 

j. $ SHOW PROCESS (User) 

3. Display the names of all processes running on your system. 

$ SHOW SYSTEM 

4. Display the names of all users on your system. 

$ SHOW USERS 

5. Display the names of all devices on your system. 

$ SHOW DEVICES 

6. Log out of your system 

$ LOGOUT or 
$ LOGOUT/FULL 

11- 58 EXERCISES 



CREATING AND EDITING TEXT FILES-SOLUTIONS 

LABORATORY EXERCISE I - THE EDT EDITOR 

1. To create the file: 

a. Enter the command: 

$ EDIT EXERCISEl.TEXT 

b. The system displays the following: 

Input file does not exist 
[EOB] 

* 

The message indicates that the file EXERCISE1 .TEXT did not previously exist in your 
directory. The [EOB] marker indicates the end of the buffer. The asterisk indicates that 
you are in Line mode. 

c. To enter Keypad mode, type the CHANGE command at the line-mode prompt, then 
press <RET>: 

*CHANGE<RET> 

The screen display erases, and the [EOB] marker appears in the upper left corner of 
the screen. 

2. To become familiar with the available Help: 

a. Invoke the Help facility from Keypad mode: 

Press <PF2> on the keypad. 

or 

Press <HELP> (on the VT200 keyboard). 

The keypad diagram is displayed on your terminal screen. 

EXERCISES 11- 59 



b. You can display an explanation of each defined key by pressing the key while in HELP. 
You might want to begin with the following keys: 

HELP (PF2) 

DELETE 

DOWN ARROW 

GOLD (PF1) 

DELETE/UNDELETE LINE (PF4) 

Examine any of the key definitions you wish. 

c. To leave Help: 

Press the SPACE BAR 

3. Type in the text as indicated. 

Note that EDT does not automatically wrap at the end of a line. You must explicitly press 
<RET> to insert carriage returns into the text. 

4. To end the session and save your work: 

a. Press <CTRUZ>. This returns you to Line mode. 

b. At the line-mode prompt, type the EXIT command and press <RET>. 

*EXIT<RET> 

c. The system displays the full file specification and the file's length in lines. The system 
then returns you to the DCL level. 

$DISK: [SMITH]EXERCISEl.TEXT;l 3 lines 
$ 

11- 60 EXERCISES 



5. To edit the file: 

a. Enter the command: 

$ EDIT EXERC~SEl.TEXT 

b. The system displays the following: 

1 The purpose of this exercise is to allow 

* 

The first line of text is displayed on the screen. 

c. At the line-mode prompt, type C then press <RET>. The contents of the file EXER­
CISE1 .TEXT are displayed on the screen. 

6. To modify the text: 

a. Move the cursor to the beginning of the word "basic." You can do this by using either 
the arrow keys, or the keypad keys 0 (zero) and 1 (one). The keypad key 0 moves the 
cursor from line to line; the keypad key 1 moves the cursor from word to word. 

b. To delete a word, press the MINUS(-) key (below <PF4> on the keypad). The word to 
the right of the cursor is deleted. If you press it again, the next word to the right of the 
cursor is deleted. 

Type in the modifications to the text as shown. 

7. End the editing session normally by pressing <CTRUZ>, and then entering the EXIT com­
mand at the line-mode prompt. 

EXERCISES 11- 61 



LABORATORY EXERCISE II - THE EVE EDITOR 

1. To create the file, enter the command: 

$ EDIT/TPU EXERCISE3.TEXT 

2. You should see messages at the bottom of the screen indicating that the file EXER­
CISE3. TEXT did not previously exist in your directory. The cursor should be positioned 
at the top of the screen, next to the end of file marker. 

The status line appears at the bottom of the screen. It contains the name of the buffer. In 
this case, the buffer name is the same as the file name. In addition, the status line indicates 
the editing mode and search direction. The default values for these are Insert and Forward. 

3. Type in the text as indicated. 

Note that the EVE editor automatically wraps at the end of a line. You need not press 
<RET> to insert carriage returns into the text. 

4. To end the editing session: 

a. Press <CTRUZ>. This automatically ends the editing session. 

You can also end an EVE editing session using a line-mode command. 

Press <PF4> or <DO>. At the Command: prompt, type the EXIT command and press 
<RET>. 

b. An informational message is displayed that includes the full file specification and the 
number of line in the file. The system then returns you to the DCL level. 

NOTE 

If you wish to end an EVE editing session without saving changes, you must exit using 
Line mode. Press <PF4> or <DO>, and at the prompt, type QUIT and press <RET>. 
You will be asked if you wish to continue the quitting process. Type Y and press 
<RET>. 

11- 62 EXERCISES 



5. Enter the command: 

$ EDIT/TPU EXERCISE3.TEXT 

A message is displayed indicating that three lines were read from the file, and the contents 
of the file appear on the terminal screen. The cursor is at the top of the file. 

6. To modify the file: 

a. Use the arrow keys to move the cursor to the beginning of the word "Extensible." 

b. There are two ways to delete words, depending on the terminal you are using: 

VT1 DO-Press the <COMMA> (,) key on the keypad. The word to the right of the 
cursor is deleted. Repeat this step three times. 

VT2DO-Press the <F13> key along the top of the keyboard. The word to the right 
of the cursor is deleted. Repeat this step three times. 

c. To delete single characters, use the <DEL> key (near the <RET> key) on the keyboard. 

d. Use the arrow keys to move the cursor to the beginning of the word "exercise." 

e. There are two ways to switch editing modes, depending on the terminal you are using: 

VT1 DO-Press <ENTER> on the keypad. 

VT2DO-Press <F14> along the top of the keyboard. 

The status line indicates that the editing mode is now Overstrike. 

f. Type in the words "example that uses." Note that when you are in Overstrike mode, the 
new characters replace existing characters. 

7. End the editing session normally by pressing <CTRUZ>, and then entering the EXIT com­
mand at the line-mode prompt. 

EXERCISES 11- 63 



LABORATORY EXERCISE Ill 
This exercise lets you practice editing more than one file on your terminal screen. 

1. Edit a file of your choice .. 

$ EDIT}TPU FILEl.TXT 

2. Split your terminal screen into two windows. 

TWO WINDOWS 

3. Edit another file of your choice. 

GET FILE FILE2.TXT 

OR 

GET FILE2.TXT 

4. Move text from one file into the other file. 

5. Exit the file so the moved text is saved. 

EXIT 

NOTE 

The editor will prompt you as to whether or not you wish the second file on the screen to · 
be written. Answer Y for Yes or N for No. 

11- 64 EXERCISES 



COMMUNICATING WITH OTHER USERS-SOLUTIONS 

LABORATORY EXERCISE I 

1. Invoke the Mail utility and send several mail messages to someone in your class. 

$ MAIL<RET> 
MAIL> SEND [messages] 

2. Have your mail recipient send mail messages to you. 

3. Read your messages. 

MAIL> READ or 
MAIL><RET> or 
MAIL> 1 

4. Obtain a list of your mail messages. 

MAIL> DIRECTORY 

5. Read only the second mail message. 

MAIL> READ 2 

6. Delete ·the fourth mail message. 

MAIL> DELETE 4 or 
MAIL> DELETE (if it is the current message on your screen) 

7. Create a text file in your default directory. Send this file as a mail message. 

$ CREATE file-name 
CTRL/Z 
$ MAIL<RET> 
MAIL> SEND file-name 

EXERCISES 11- 65 



8. Pick a message and move it to a folder named Test. Select the Test folder and check to 
see if the message is there. 

MAIL> READ 1 

MAIL> MOVE TEST 

Folder TEST does not exist. 
Do you want to create it (Y/N, default is N)? Y 

MAIL> SELECT TEST 

MAIL> DIRECTORY 

9. List the folders you have. In addition to the folder you just created, what other folders do 
you have? 

MAIL> DIRECTORY/FOLDERS 

You could see three folders named MAIL, NEWMAIL, and WASTEBASKET. 

10. Create a distribution list for Mail. Include several members of your class. Send a short 
message to the people on the distribution list. 

$ EDIT DISTRIBUTION.DIS 
OSERl 
USER2 

CTRL/Z 
EXIT 
$ MAIL 
MAIL> SEND 
TO:@DISTRIBOTION.DIS 

11- 66 EXERCISES 



LABORATORY EXERCISE II 

1. Invoke the Phone utility. 

$ PHONE 
PHONE> 

2. Obtain a list of available users. 

%DIRECTORY 

3. Establish a phone connection with one of the users. 

USER 1 
%DIAL user2 

4. Terminate all conversations 

%HANGUP or CTRL/Z 

USER 2 
%ANSWER 

EXERCISES 11- 67 



LABORATORY EXERCISE Ill 
Send a request to a system operator using the REQUEST command. 

$ REQUEST "Please mount magtape" 

11- 68 EXERCISES 



MANAGING FILES-SOLUTIONS 

WRITTEN EXERCISE I 

1. List the files that are specified by the following file specifications: 

a. *.FOR;2 
A.FOR;2, AREA.FOR;2 

b. *.FOR 
A.FOR; 2, AREA.FOR; 2, AREA.FOR; 1, B.FOR; 1, C.FOR; 1 

c. A*.*;* 
A. DAT; 1, A. FOR; 2, AREA. FOR; 2, AREA. FOR; 1 

d. A%%%.*;* 
AREA.FOR; 2, AREA.FOR; 1 

e. %.DAT 

f. 

A.DAT;l, B.DAT;3, C.DAT;4 

* *"* . , 
All files 

2. Give a single file specification that describes the following lists of files: 

a. A.DAT;1, A.FOR;2 
A.* or A.*;* 

b. A.DAT;1, 8.DAT;3, C.DAT;4 
%.DAT or %.DAT;* 

c. MAILD22.DAT;2, MAILJ14.DAT;1, MAILF22.DAT;2 
MAIL*. DAT;* or MAIL%~%. DAT 

d. A.DAT;1, MAIW14.DAT;1 
*.DAT;l 

EXERCISES 11- 69 



WRITTEN EXERCISE II 
Commands 

a. APPEND 
b. COPY 
c. DELETE 
d. DELETE/CONFIRM 
e. DIFFERENCES 
f. DIRECTORY 
g. DIRECTORY/OUTPUT =file-specification 
h. PRINT 
i. PURGE 
j. RENAME 
k. TYPE 

Operations 

1. k --.. 
2. f 

3. c 

4. 

5. b 

6. h 

7. e 

8. a 

Display the contents of a file at your terminal. 

Display the contents of your default directory at your terminal. 

Remove a specified file from your default directory. 

Remove all but the most recent version of a specified file from your default directory. 

Create an exact duplicate of a file in your default directory. 

List the contents of a file at the default system printer. 

Compare the contents of two files. 

Add the contents of one file to another. 

9. _l_ Change a file name to a new file name. 

10. d Display the name of each file in your default directory and remove or retain it by 
entering a "Y" or an "N" at your terminal. 

11. g List the contents of your default directory in a file for future reference. 

11- 70 EXERCISES 



LABORATORY EXERCISE I 

1. Create a subdirectory called [.SUB1] 

$ CREATE/DIRECTORY [XXX.SUBl] 

2. Copy some files from your login directory into [.SUB1] 

$ COPY/LOG EXISTING-FILE-NAMES [XXX.SUBl]* 

3. Move yourself to that subdirectory 

$ SET DEFAULT [XXX.SUBl] 

4. Obtain a directory listing of all files in the subdirectory 

$ DIRECTORY 

5. Combine two .files to create a new file named NEWFILE.DAT 

$ COPY FILE1,FILE2 NEWFILE.DAT 

6. Create another _subdirectory beneath [.SUB1] and name the new subdirectory [.SUB2] 

$ CREATE/DIRECTORY [XXX.SOB1.SUB2] 
or 
$CREATE/DIRECTORY [.SOB2) (Assuming you are in the subdirectory [.SOBl)) 

7. Copy some files from [.SUB1] into [.SUB2] 

$ COPY EXISTING-FILE-NAMES [.SOB2)* 

8. Obtain a directory listing of all files in the subdirectory [.SUB2] 

$ DIRECTORY 

9. Delete both subdirectories. 

$ DELETE *.*;* (Assuming you are in subdirectory [.SUB2) 
$ SET DEFAULT [. SOBl) 
$ SET PROTECTION=(O:RWED) SOB2.DIR 
$ DELETE *.*;* 
$ SET DEF (-] (Login directory) 
$ SET PROTECTION=(O:RWED) SUBl.DIR 
$ DELETE SOBl.DIR;l 

EXERCISES 11- 71 



LABORATORY EXERCISE H 

1. Create a file in your login directory. What protection code does this newly created file have 
and how did it get that protection code? 

$ CREATE MYFILE.TXT 
Type in text 
CTRL/Z 

The protection applied to this file is the default protection the VMS system puts on newly 
created files. 

2. Change the protection code for this file to (S:R,O:R,G;R, W:R). Display the protection code 
to verify the change. 

$ SET PROTECTION=(S:R,O:R,G:R,W:R) MYFILE.TXT 
$ DIRECTORY/PROTECTION MYFILE.TXT 

3. Delete this file. What happened and why? 

$ DELETE MYFILE.TXT;* 

The system issues a system message informing you that you cannot delete this file, because 
you chan?ed the file protection so that the owner does not have DELETE privilege. 

4. Change your default protection code to (S:R,O:RWED,G:R,W:R). Create a new file named 
N EWFILE. TXT. What protection code does this new file have and why? 

$ SET PROTECTION= (S :R, 0 :RWED, G:R, W:R) /DEFAUL.T 

In changing your default protection, you have specified that files now created should have 
this new default protection. You can check this by issuing the command: 

$ DIRECTORY/PROTECTION NEWFILE.TXT 

5. Change your default protection to give all persons in your UIC group RWED access and all 
persons in the WORLD category RWE access. 

$ SET PROTECTION=(G:RWED,W:RWE)/DEFAULT 

11- 72 EXERCISES 



WRITTEN EXERCISE Ill 
Commands 

a. COPY 
b. CREATE 
c. CREATE/DIRECTORY 
d. DELETE 
e. DELETE/DIRECTORY 
f. DIRECTORY 
g. RENAME 
h. SET DEFAULT 
i. SET PROTECTION 
j. SHOW DEFAULT 
k. SHOW PROTECTION 

Operations 

1. _j_ Display the name of your current default directory. 

2. f Display the contents of a directory hierarchy. 

3. d Remove a directory from a directory hierarchy. 

4. c Add a directory to a directory hierarchy. 

5. __g_ Move files from one directory to another. 

6. h Change your current default directory. 

7. Change the protection code of a directory file. 

8. _j_ Display the name of your current default device. 

9. h Change your current default device. 

EXERCISES 11- 73 



LABORATORY EXERCISE Ill 

1. Choose a file in your directory. Issue a DCL command to obtain Access Control List infor­
mation regarding that file. 

$ DIRECTORY/SECURITY file-name 

2. Modify the UIC protection on the above file so that your group has no access. 

$ SET PROTECTION=(G) file-name 

3. Modify the ACL information to allow Read, Write, and Execute access to the file. 

$ EDIT/ACL file-name 
(IDENTIFIER=xxxx,ACCESS=READ+WRITE+EXECUTE) 

4. Check to see if an ACL was created. Have some of your fellow students try to access the 
file. 

$ DIRECTORY/SECURITY file-name 

5. Delete the ACL on the above file. 

$ SET ACL/DELETE f ile-narne 

NOTE 

Check with your instructor to see what your GROUP identifier is. 

11- 74 EXERCISES 



WRITTEN EXERCISE IV 

1. FALSE A user with a UIC of [100,200] wishes to delete a file on a tape volume. 

Volume Owner UIC: 
Volume Protection Code: 

[100,200] 
(S:RWED,O:RWED,G:RWED,W:RE) 

Files on a tape volume cannot be deleted. 

2. TRUE A user with a UIC of [363,2] wishes to create a file on an RX33 disk volume. 

Volume Owner UIC: 
Volume Protection Code: 

[363, OJ 
(S:RE,O:RWED,G:RE,W) 

.. 
The user is a member of the same group as the owner of the volume. Since group members 
have been granted EXECUTE"Hgnts,Jh~. lJ$~r..can create a ne"Y file. "T"""·····"······-- ··~---·"··-· · 

3. TRUE A user with a UIC of [4,4] wishes to read a file on an RASO disk volume. 

File Owner OIC: 
File Protection Code: 

[411,22] 
(S,O:RWED,G,W:R) 

The user belongs to the SYSTEM user category. System users do not have READ access 
rights to the file. However, READ access rights have been granted to members of the 
WORLD category; therefore, the user will be able to read the file. 

EXERCISES 11- 75 



4. TRUE 
volume. 

A user with a UIC of [100,200] wishes to update a record in a file ori an RASO disk 

Volume Owner UIC: 
Volume Protection Code: 
Directory Owner UIC: 
Directory Protection Code: 
File Owner UIC: 
File Protection Code: 

[ 1, l] 
(S:RWED,O;RWED,G:RWED,W:RWED) 
(100,210) 
(S:RWE,O:RWE,G:RWE,W:RE) 
(100,210] 
(S:RE,O:RWED,G:RWE,W:RE) 

The user can access files on the volume because all access rights to the volume have been 
granted to all user categories. The user is a member of the same group as the owner of 
the file and the directory in which it is listed. Members of the GROUP category have been 
granted WRITE access rights; therefore, the user can update the file. 

5. FALSE A user with a UIC of [521,6] wishes to read a file on an RA81 disk volume. 

Volume Owner UIC: 
Volume Protection Code: 
Directory Owner UIC: 
Directory Protection Code: 
File Owner UIC: 
File Protection Code: 

[ 1, l] 
(S:RWED,O:RWED,G:RWED,W:RWED) 
[521,13] 
(S:RWE,O:RWE,G,W) 
[521,13] 
(S:R,O:RWED,G:R,W:R) 

The user can access files on the volume because all access rights to the volume have been 
granted to all user categories. The user is a member of the same group as the owner of 
the file and the directory in which it is listed. Members of the GROUP category, however, 
cannot read the directory; therefore, the user will be unable to read the file. 

11- 76 EXERCISES 



CUSTOMIZING THE USER 
ENVIRONMENT-SOLUTIONS 

WRITTEN EXERCISE I 
System-Defined Logical Names 

a. SYS$COMMAND 

b. SYS$DISK _ 

c. SYS$ERROR 

d. SYS$HELP 

e. SYS$1NPUT 

f. SYS$LI BRARY 

g. SYS$LOGIN 

h. SYS$NODE 

I. SYS$0UTPUT 

j. SYS$SYSDEVICE 

k. SYS$SYSTEM 

EXERCISES 11- 77 



Device and Directory Descriptions 

1. _i _. Specifies the default device to which the system writes output during a terminal 
session. 

2. _c_ Specifies the default device to which the system writes messages during a terminal 
session. 

3. 

4. 

5. 

6. 

b 

d 

f 

g 

Specifies your default disk. 

Specifies the directory in which help files are cataloged. 

Specifies the directory in which system libraries are cataloged. 

Specifies your default user file directory (UFD). 

7. e Specifies the device from which the command language interpreter and utility pro-
grams read input during a terminal session. 

8. _k_ Specifies the directory in which operating system programs and procedures are 
cataloged. 

9. a,c,e,i Specifies your terminal during an interactive process. 

1 O. _j__ Specifies the disk on which system programs and routines are stored. 

11. h Specifies the name of the current network node. 

11- 78 EXERCISES 



LABORATORY EXERCISE I 
Compare your results with those described below. For addiUonal help, consult your instructor. 

Complete each of the following exercises at an interactive terminal. Display only one logical 
name table for each exercise. 

1. Display at your terminal the contents of the logical name table used by your process. This 
particular logical name table contains process-private logical names. 

$ SHOW LOGICAL/PROCESS 

2. Display at your terminal the contents of the logical name table used by your process and its 
subprocesses. This particular logical name table contains shareable logical names. 

$ SHOW LOGICAL/JOB 

3. Display at your terminal the contents of the logical name table used by your UIC group 
member processes. This particular logical name table contains shareable logical names. 

$ SHOW LOGICAL/GROUP 

(There may not be any logical names defined in this table.) 

4. Display at your terminal the contents of the logical name table used by all system processes. 
This particular logical name table contains shareable logical names. 

$ SHOW LOGICAL/SYSTEM 

EXERCISES 11- 79 



5. Create a logical name for your -default directory. 

$ ASSIGN WORK2: [SMITH] MYDIR 

a. Check the proper logical name table to make sure your newly created logical name 
exists. 

$ SHOW LOGICAL MYDIR 
"MYDIR" = "WORK2:[SMITH]" (LNM$PROCESS_TABLE) 

b. Use the logical name in conjunction with the DIRECTORY command to view the file 
names in your default directory. 

$ DIRECTORY MYDIR 

Directory WORK2:[SMITH] 

CALENDAR.EXE;l CLASS.LIST;4 
JOE_EVE.TPU$SECTION;l 
MAIL.DIR;l PERSONAL.LGP;4 
UTL.DIR;l WEEKDAY.EXE;l 

Total of 13 files. 

CLOCK.EXE;l 
KEYS.COM;S 
REMLOG.EXE;l 

DEG.EXE;l 
LOGIN.COM;6 
TODO.DAT;l7 

c. Delete your newly created logical name after correctly performing this exercise. 

$ DEASSIGN MYDIR 

OR 

$ DEASSIGN/PROCESS MYDIR 

11- 80 EXERCISES 



LABORATORY EXERCISE II 
Compare your results with the example specified. For additional help, consult your instructor. 

Complete each of the following laboratory exercises at an interactive terminal. 

1. Create a subdirectory. 

$ CREATE/DIRECTORY/LOG [SMITH.TEXT] 
%CREATE-I-CREATED, DISK: [SMITH.TEXT] created 

2. Create a logical name for your newly created subdirectory. 

$ ASSIGN [SMITH.TEXT] MY_TEXT 

3. Create a logical name for a text file in your default directory. 

$ASSIGN MYFILE.TXT;l OUTPUT 

4. Check the process logical name table to see if your new logical names exist. 

$ SHOW LOGICAL/PROCESS 

(LNM$PROCESS_TABLE) 

"MY_TEXT" ="[SMITH.TEXT}" 
"OUTPUT" = "MYFILE.TXT;l" 
"SYS$COMMAND" = "_DISK$RTA1:" 
"SYS$DISK" = "DISK:" 
"SYS$ERROR" = "D"ISK$RTA1:" 
"SYS$INPUT" = "-DISK$RTA1:" 
"SYS$0UTPUT" [super] = "_DISK$RTA1:" 
"SYS$0UTPUT" [exec] = "_DISK$RTA1:" 
"TT" = "RTAl: II 

5. Using only logical names, move the text file into your new subdirectory. 

$ COPY/LOG OUTPUT MY_TEXT 
%COPY-S-COPIED, DISK:[SMITH]MYFILE.TXT;l copied to 
DISK:[SMITH.TEXT]MYFILE.TXT;l (1 block) 

6. · After completing this exercise, remove the above logical names. 

$ DEASSIGN OUTPUT 
$ DEASSIGN MY TEXT 
$ 

EXERCISES 11- 81 



WRITTEN EXERCISE II 
Write the letter of the symbolic name type that best fits each of the following characteristics. 

Symbolic Name Types 

a. Command Synonym 

b. Logical Name 

Characteristics 

1. b Represents device, directory, and file specifications 

2. b Translated by the file system 

3. a Translated by the Command Language Interpreter 

4. a Defined by the direct assignment statement (=) 

5. b Deleted by the DEASSIGN command 

6. a Displayed by the SHOW SYMBOL command 

7. b Defined by the ASSIGN command 

8. a Represents commands and command strings --
9. a Deleted by the DELETE/SYMBOL command 

11-82 EXERCISES 



LABORATORY EXERCISE Ill 
Create global symbols to perform the following tasks. You may create these global symbols 
interactively or in the file LOGIN.COM. Your globa_I symbols may differ from the exercise answers. 

1. Display a directory listing along with sizes of all files in your directory. 

$ DS == "DIRECTORY/SIZE" 

2. Show the time of day. 

$ TIME == "SHOW TIME" 

3. Display all global symbols at your terminal. 

$ GLO == "SHOW SYMBOL/GLOBAL/ALL" 

4. Move to another default directory. 

$ MOVE == "SET DEFAULT" 

5. Return to your original default directory. 

$ RETURN == "SET DEFAULT SYS.$LOGIN" 

6. Symbols disappear when you log out. 

EXERCISES 11- 83 



LABO.RATORY EXERCISE IV 

1. Define <KP2> to be the SHOW TIME command. Try it first without the /TERMINATE qualifier, 
then with the /TERMINATE qualifier. What is the difference? 

$ SET TERMINAL/NONUMERIC 

$ DEFINE/KEY KP2 "SHOW TIME" 

$ DEFINE/KEY KP2 "SHOW TIME" /TERMINATE 

The difference is the first time you have to press <RET> after pressing <KP2>. The second · 
time the return is automatically supplied. 

2. Define <KP3> to be the SET DEFAULT command. Create a subdirectory. Try to move to 
the subdirectory by using your newly defined key. 

$ DEFINE/KEY KP3 "SET DEFAULT " 

$ CREATE/DIRECTORY [SMITH.TEMPORARY] 

Press <KP3> key, type in [SMITH.TEMPORARY] and press <RET> key. To see if it worked, 
issue the SHOW DEFAULT command. 

3. Delete the key definition for <KP2>. See if it worked by displaying all your key definitions 
again. 

$ SHOW KEY/ALL (Displays all key definitions) 

$ DELETE/KEY KP2 

$ SHOW KEY/ALL 

11- 84 EXERCISES 



WRITING COMMAND PROCEDURES-SOLUTIONS 

WRITTEN EXERCISE I 
Part A: 

Each command below uses a symbol in some way. Indicate whether or not the symbol is used 
correctly. If it is used correctly, rewrite the command, replacing the symbol with its value. If the 
symbol is used incorrectly, rewrite the command correctly. 

1. $FILE= 'FILE_NAME' + 'FILE_TYPE' 

Incorrect. Correct command is: $FILE= FILE_NAME + FILE_TYPE 

Do not use symbol substitution characters on the right-hand side of an = assignment state­
ment. 

2. $ WRITE SYS$00TPUT COUNT " copies of the file" 

Incorrect. Correct command is: $ WRITE SYS$0UTPOT COUNT' " copies of the file" 

Separate the items in the output list with commas. The values will be concatenated. Note 
that the symbol COUNT is substituted automatically. 

An alternate method: $WRITE SYS$0UTPOT '"'COUNT' copies of the file" 

If you place the symbol COUNT within the quoted string, symbol substitution does not occur 
automatically. For symbol substitution to occur, precede the symbol with two apostrophes. 

3. $ IF COUNT • LT. 10 THEN GOTO END 

Correct. $ IF 2 . LT. 10 THEN GOTO END 

DCL automatically performs symbol substitution in an IF command. 

4. $WRITE SYS$00TPUT "The file' 'FILE_NAME'' 'FILE_TYPE'" 

Correct. $WRITE sYs$oUTPUT "The file PROGRAM.FOR" 

In a character string, a symbol must be preceded by two apostrophes and followed by one. 

EXERCISES 11- 85 



Part 8: 

In the commands below, replace the underlined text with symbols, using the proper symbol 
substitution techniques. Use the same symbol values you used in Part A. 

1. $ WRITE SYSSOUTPUT "The file is MYFILE. TXT" 

S WRITE SYS$0UTPUT "The file is ' 'Pl' " 

2. $ TYPE PROGRAM. FOR 

$ TYPE 'FILE_NAME' 'FILE_ TYPE' 

3. $·EDIT DATA.DAT 

$EDIT'P2' 

4. $WRITE SYS$0UTPUT "~copies of the file DATA.DAT exist." 

$ WRITE SYS$0UTPUT "' 'COUNT' copies of the file '' P2' exist." 

5. $FILE= "PROGRAM"+ ".FOR" 

$FILE= FILE_NAME +FILE_ TYPE 

11- 86 EXERCISES 



LABORATORY EXERCISE I 

$! 
$! 
$ ! 

LOGIN. COM 

$! Check to see if process is interactive. If not, exit. 
$! 
$ IF F$MODE () . NES. "INTERACTIVE" THEN EXIT 
$! 
$! Define a logical name that points to the 
$! COMPROC subdirectory. 
$! 
$ DEFINE COMPROC DISKl: [MANN.COMPROC) 
$ ! 
$! Alternately, use ASSIGN DISKl: [MANN.COMPROC) COMPROC 
$ ! 

Set up global symbols to be used a command synonyms 

SED "SET DEFAULT" Resets default 
Displays all users 

$! 
$! 
$ 
$ 
$ 
$ 

WHO 
SHD 
HOME 

"SHOW USERS" 
"SHOW DEFAULT" 
"SET DEFAULT SYS$LOGIN" 

Displays current directory 
Resets default to login values 

$ ! 
$! Display some "time and place" information on the terminal 
$ ! 
$ SHOW TIME 
$ ! 
$ SHOW DEFAULT 
$ ! 
$! Leave the procedure in an orderly manner. 
$! 
$ EXIT 

EXERCISES 11- 87 



LABORATORY EXERCISE II 

S! 
$! 
$! 

CREATE FILE.COM 

S! Expected parameters: Pl =name of file to be edited 
$! 
$! This command procedure allows you to edit a file, sets the 
$! protection on the file so that the World has READ access, 
$! then gives you the option of printing a copy of it. 
$! 
$! Be sure the name of the file is assigned to Pl. If not, ask: 
$! 
$ IF Pl .EQS. "" THEN INQUIRE Pl "Filename" 
$! 
$! Display a message that indicates what file is being created: 
$! 
$ WRITE SYS$0UTPUT " II 

$WRITE SYS$0UTPUT "Editing the file ''Pl' ... " 
$ WRITE SYS$0UTPUT 
$! 
$! Redirect SYS$INPUT so that it points to the terminal: 
$! 
$ DEFINE/USER_MODE SYS$INPUT SYS$COMMAND 
$! 
$·! Alternately, ASSIGN/USER_MODE SYS$COMMAND SYS$INPUT 
$! 
$! Allow the user to edit the file: 
$! 
$ EDIT 'Pl' 
c::' .,. . 
$! Set the required protection for the file: 
$! 
$ SET PROTECTION=(W:R) 'Pl' 
$! 
$! Present the option of printing the file: 
$! 
$ INQUIRE/NOPUNCTUATION ANS "Print a copy of the file'? 
$ IF ANS THEN PRINT 'Pl' 
$ EXIT 

11- 88 EXERCISES 



OPTIONAL LABORATORY EXERCISE 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

BACK SOON.COM 

This command procedure asks the user how many minutes he/she will 
be away. It erases the screen and displays the message "Back in 
'n' minutes". It waits a minute, recalculates the value of N, and 
redisplays the message. When only one minute is left, it displays 
"I will be right back". 

$ Inquire for the number of minutes the user intends to be away. 
$ WHEN: 
$ INQUIRE/NOPUNCTUATION BACKSOON "How many minutes? " 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

$ 

! If no answer, ask again. 
IF BACKSOON . EQS . '"' 'XHEN GOTO WHEN 

! Top of time loop 
LOOP: 
IF.BACKSOON .EQ. 1 THEN GOTO RIGHTBACK 

! Erase the screen 
SET TERMINAL/WIDTH=SO 

! Use the TYPE SYS$INPUT command to type eleven blank lines on 
! the terminal. 
TYPE SYS$INPUT 

EXERCISES 1 t- 89 



$ Now use the WRITE SYS$0UTPUT command to display 
$ the message on the screen. 
$ 
$WRITE SYS$0UTPUT" Back in ''BACKSOON' minutes" 
$ 
$ ! Wait one minute--note that the terminal is 
$ ! tied up with this procedure. 
$ WAIT 00:01:00.00 
$ 
$ ! Subtract 1 from the number of minutes 
$ BACKSOON=BACKSOON - 1 
$ 
$ ! Loop until only one minute is left. 
$ GOTO LOOP 
$· 

$ ! The last step 
$ RIGHTBACK: 
$ 
$ ! Erase the Screen 
$ TYPE/PAGE NL: 
$ 
$ ! Use the TYPE SYS$INPOT command to type 
$ ! the necessary blank lines. 
$ TYPE SYS$INPOT 

$ 
$ WRITE SYS$00TPOT " 
$ END: 
$ EXIT 

11- 90 EXERCISES 

I will be right back." 



USING DISK AND TAPE VOLUMES-SOLUTIONS 

WRITTEN EXERCISE I 
The list below contains the major steps that you must complete to create and use a private 
volume. Indicate the order of these steps by writing the appropriate number in the space that 
precedes each one. 

1. 1 Allocate device 

2. 7 Deallocate device 

3. 5 Dismount volume --
4. 3 Initialize volume --
5. 2 Load volume 

6. 4 Mount volume 

7. 6 Unload volume 

EXERCISES 11- 91 



WRITTEN EXERCISE II 
Choose the VMS command best suited to perform each of the following operations and write its 
letter in the space provided. 

VMS Commands 

a. ALLOCATE 

b. DEALLOCATE 

c. DISMOUNT 

d. INITIALIZE 

e. MOUNT 

f. SHOW DEVICE/FULL 

Operations 

1. d 

2. c 

3. f 

4. e 

5. b --
6. a 

Build the appropriate structure on a disk (usually used for a new tape). 

Terminate access by your process to the contents of a volume. 

Display the owner UIC and protection code of a volume. 

Initiate access by your process to the contents of a volume. 

Release a device from exclusive use by your process. 

Reserve a device for exclusive use by your process. 

11- 92 EXERCISES 



WRITTEN EXERCISE Ill 

1. Allocate any available tape unit to your process and assign the logical name TAPE to it. 

$ ALLOCATE MT: TAPE 

2. Initialize a tape volume that you have loaded on TAPE. Assign the label TAP _BK to the unit. 

$ INITIALIZE TAPE TAP_BK 

3. Mount TAP _BK on the tape device so that the Backup utility can process it. 

$ MOUNT/FOREIGN TAPE 

4. Back up all files in your default directory to a save set on TAP _BK. 

$ BACKUP/IGNORE=LABELPROCESSING [ ... ]*.*;* TAPE:TAP_BK.BCK 

5. List the contents of the save set TAP _BK at your terminal. 

$ BACKUP/LIST TAPE:TAP_BK.BCK 

6. Terminate access to TAP _BK, allowing the system to automatically unload the volume. 

$ DISMOUNT TAPE 

7. Release the tape device so others on your system can use it. 

$ DEALLOCATE TAPE 

8. Delete the logical name TAPE from the logical name table that stores it. 

$ DEASSIGN TAPE 

EXERCISES 11- 93 



LABORATORY EXERCISE I 
Complete the following exercises at an interactive terminal. Note that your device names may 
differ from the device and directory names given in the solutions. 

1. Allocate the tape. 

~ . .. .. , . 

$ ALLOCATE MTAO: 

2. Initialize the tape, giving it a label name of MYTAPE. 

$ INITIALIZE MTAO: MYTAPE 

3. Mount the tape, so that BACKUP can be used. 

$ MOUNT/FOREIGN MTAO: 

4. Obtain a listing of the files in your directory. 

$ DIRECTORY 

5. Transfer all files from your directory to the tape. 

$ BACKUP/!GNORE=LABEL_PROCESSING *.*;* MTAO:J~l.BCK 

6. Confirm that all files transferred successfully to the tape. 

$ BACKUP/REWIND/LIST MTAO:JANl.BCK 

7. :Di_smount Jhe tape. 

$ DISMOUNT MTAO: 

8. Deallocate the tape. 

$ DEALLOCATE MTAO: 

t1- .94 EXERCISES 



SUBMITTING BATCH AND PRINT JOBS-SOLUTIONS··· 

LABORATORY EXERCISE I 

1. Choose a text file and print it, using the generic print queue SYS$PRINT. 

$ PRINT filename 

(Filename is the name of your file in all solutions.) 

2. Use a single PRINT command to print two copies of the same file. 
.C .. ~:.,-

$ PRINT/COPIES=2 filename 

3. Display a list of all queues on your system and all jobs in the queues. 
~ ' ... 

$ SHOW QUEUE/ALL_ENTRIES 

4. Select an execution queue from the queue display. (An execution queue will have the same 
name as its associated device, without the colon.) Print the same file, queuing it directly to 
the physical queue. 

$ PRINT/QUEUE=LPAO filename 

(LPAO may or may not be the name of your physical queue, depending upon how the system 
is set up.) · · 

5. Choose two text files. Print these two files so that you get two copies of the 'first file·-8.nd 
three copies of the second file. 

PRINT firstfilename/COPIES=2,secondfilename/COPIES=3 
• .1 r: . 

6. Send a text file to the print queue, requesting that the file not be printed until an hour from 
now. 

PRINT/AFTER=TIME filename 

7. Display the queue status of the job waiting to be printed. Delete this job from the queue. 

SHOW QUEUE SYS$PRINT 

DELETE/ENTRY=ENTRY-NUMBER SYS$PRINT 

exeRcises 'ft- '9s 



LABORATORY EXERCISE II 

1. Display at your terminal screen all of the batch queues on the system. 

$ SHOW QUEUE/BATCH 

2. Submit a command procedure to batch that displays the time, displays all processes on the 
system, and shows all logicai names on the system.·, Save the· log file. You will need to 
examine it shortly. 

$; ! NAME "()F •. COM FILE 
$ ! 
$ SHOW TIME 

·~$ SHOW.:_,S,Y'STEM 
$ SHow'· LOGICAL 
$ EXIT '· .. 

.. 
/.. 

3. $ubr:n_it the above command procedure to batch so that the log file will not be printed. 

$ SUBMIT/NOPRINTER FILENAME.COM 

4. Submit the above command procedure to batch so that the log file will not be created. 

$ SUBMIT/NOLOG FILENAME.COM 

11- 96 .EXERCISES 



5. Examine the log file created in Step 2. Answer the following quesUons: . 

Find the entry for your batch job from the SHOW SYSTEM command. What was its 
process ID? 

Did your LOGIN.COM file execute? Did the system-wide login procedure execute? 

How much CPU time did your batch job use to execute? 
· .. c--·~ ~ 

• .... 1 ~ ,, • 

How much elapsed time ~id your batch job use to execute? 

Your batch name entry should have a name similar to BATCHXXX (XXX would be the ID number 
of your job). Also in the right margin of the SHOW SYSTEM display, you should see the letter 
B. . 

The entries marked with a 8 are batch jobs. Both your LOGIN.COM file and the system-wide login 
procedure should have executed, assuming they exist. You may see some of y·our LOGIN.COM 
file commands in the log file. · 

Both the CPU time and elapsed time are in the accounting information in the last lines oft.he iog 
file. 

EXEf.ICIS~~ 11- 97 





MODULE 12 
TEST 

TEST 12-1 



::.,,, ..... -iJ ..... 
..... · 

·:-c-;·· 

; .. .,.,. 



TEST 
Underline the best answer to each of the following questions. 

1. When logging in to a VMS system, you typically need to supply your: 

a. User identification code and user name 

b. User name and password 

c. User identification code and password 

d. User identification code, user name, and password 

2. Which DCL command displays a text file on the terminal screen? 

a. EXAMINE 

b. TYPE 

c. SHOW. 

d. DIRECTORY 

3. Which command can move a file from one disk to another? 

a. RENAME 

b. COPY 

c. CREATE 

d. CONVERT 

4. Your default directory is [JOHNSON]. Which of the following DCL commands creates the 
subdirectory [JOHNSON.BUDGET]? 

a. CREATE/SUBDIRECTORY [JOHNSON.BUDGEi] 

b. CREATE/DIRECTORY [JOHNSON.BUDGET] 

c. CREATE/DIRECTORY [JOHNSON]BUDGET.DIR 

d. CREATE/SUBDIRECTORY BUDGET.DIR 

TEST 12- 3 



5. What ,r:pustyou d9~ b~fore tpe VMS system will al1ow\y:0u.J~: dfljete a subdirectory? 

a. Delete .all the fil~s:Jn the subdirectory. 

b. Log in to tf1e~SY$T~M account. 

c. Make;:·baclw:p, cqpies of; the files in the subdirectory;vy 

d. Notity. pther users on the system that you are deleting··«?~ subdirectory. 

6. Which D.Cb· qqm,mand do you use to put a job in a batch queue? 
":·t <.~·~· ~ -.:. 

a. SE~Q/BATCH .. 
."'·(·~ ,-~ ,.;.\ .. :....;. 

:. ..... - ~~·,;. 

b. BATCH 

c. SU~Mf:T 

d. .OU~UE;/BATCH 

7. ··Which\.G>:CL comQlai:lddo you use to put a job in a print queue? :. · 
, ·<.\ ·~~ , \ 'I .. :\(.: :;.,,., ~ , :~,; 

a. ·~$!:NO/PRINT . 

b. ·,PRINT 

c. SUE3MIT 

d. QUEl)E/PRINT 

8. Whiph qt the following requires you to use the ASSIGN command? 

J. 

' .•. " ... ·:.·,;\ ::: ""/ 

b. ;::Cre~ting a new user name 

c. .pefi~ing· a logical nam~ 

d. ._Sett#JQ·:a .:~ile's protecjiQn 
-~· ·• ... ; 



9. If a logical name· is already-' defined,v·.,.wfilich command do you ·use to asSi€rn' a'new value to . 
the logical name? 

I ' • • 

·-.. ~':·1 ~ ~-· ~~ : ~ .. L ... · .. :·: ·:. 

a. RENAME 
.... · .. :~· . : ', ··:,/t'.J ... :.:; . 

b. DEASSIGN 

c. CREATE 

d. ASSIGN 

10. If a file already exists, which command do you use to assign a new narn.~ t9 t~e}i!e? 
.. _ ; ..... ... : .. ':· ... 

a. RENAME 

b. DEASSIGN 

c. CREATE 

d. ASSIGN 

11. Which logical name refers to the disk and directory that are the defau~~ w~en you lqg,.Ln? 
/~ 1. ~.-. ~: ..... :. • •• ~ .. • .. ~s ~'. 

a. SYS$COMMAND 

b. SYS$LOGIN 

c. SYS$1NPUT 

d. SYS$0UTPUT 

12. ·;Which of the following DCL commands defines the symbol GO as the DCL command SET 
DEFAULT? ... :>:-: ;-~·({: - .... :·-·:. ·!·:.'.-: · .:. 

a. SET DEFAULT== "GO" 

b. '''GO"== "SET DEFAULT" 

c. GO== "SET DEFAULT" 

d. "SET DEFAULT"== GO 



13. Which of the following do you use to assign~,~!~.bfl.~ v~l1u~}~ ~.s~.rq~p.1.p~me? 

a. = 

b. == 

c. DEFINE 

d. DEFINE/GLOBAL 

1.4. Whic~ of the following op~rators would you us;~ ~? :}~ftt1 JiP~? :!O;ar~c~'.er st_~ng~ are ~u.~I 
following an IF command in a DCL command procedure? .. · 

\ 

a. = 

b. '{~ == 
::r.: """? '" .,. 

c. .EQ. 

d. .EQS. 
··/#IW't 

15. In a DCL command procedure, a label is followed by which of the following characters.? 

a. -

b. $ 

c. 

d. space 

16. Which DCL command do you use to display your password? 

a. EXAMINE PASSWORD 

b. SHOW PASSWORD 

c. SHOW PROCESS/PASSWORD 

d,. There is no command to do this 

\ -t2;.. treTEST 



a. RENAME PASSWORD 

b. CHANGE PASSWORD 

c. SET PASSWORD 

d. There is no command to do this 

, s~""the DCE c"C:Smni~hfj1 t~at t~i)J~~~ ·~ P.:~ocess is: 
.. :;;. fi.?V9._· ..1 · . ...,. 

a. LOGOUT 

b. EXIT 

c. DELETE 

d. QUIT 

. ~ ' "\ 
: . ~ .... 

:'" ........ 
~ .......... '". . 

. -
'·.J j/· : .. : ::· 

.)' ..,., )~ ... -:: ·. ,,.... ; .,.,, 

.t.. 

s-:~-; 

··· ...... ·". 4 
·;,· 



Match each of the following DCL commands with its function. You will not us¢.;'?~(1 ~ ll'te ;.eq. ~· 
.. ~ ~- • ;< \;:cpi' ·; .•. fr 

commands. 

DCL Command 

a. START 

b. @ 

c. SUBMIT 

d. CREATE 

e. RUN 

Function 

1. 

2. 

3. 

Execute a compiled and linked program 

Execute a command procedure in batch mode 

Execute a command procedure interactively 

,{ 

'i;..,,; .b 

Match the VMS system component with its :function ... Yo,u,maY,;~~~.l~cta~~X~tem c9.~~n~f'.:lt5~ppe, !:'> 

more than once, or not at all. ·.· - .. · :;:!. , ..... <I ·"
1 .., ~ ·· ,J" ! ·>· · , , i.... •· ,, 1 ""' ,~ 

VMS System Component 

a. CPU 

b. 1/0 Interface 

c. Disk Drive 
:~-:7 .;ar~e~: cbr~-.-~"'r~~ .. no·:; .. .,.;. 

d. Physical Memory 

e. Virtual Memory 

Function 

.s 

.c 

1. 

2. 

3. 

--

--

The system component typicall~ used by'thJ';10ard}yar~.y1h~S1*lterring to .. rne~ry 

The system component typically ~ed·by a:;progrmnmes~~!:HE~~rring to m~t:Jlory 

The pathway through which data is transferred to other hardware devices 

4. -- The only system component that performs computations 

5. The only system component that is conceptual, and not a piece of hardware 



A·NSWERS •'""j ., . >lo f"'t : ... ~ .. •" ' 
. ; ...... , . . _.,, ~- . ;,", 

' ~~. > • ... , f ,··~• i r'"'I ' 

Underline the best answer to each of the following questions. 

1. When logging in to a VMS system, you typically need to supply your: 

a. User identification code and user name 

b. User name and password 
... .; 

c. User identification code and password 

d. User identification code, user name, and password 

2. Which DCL command displays a text file on the terminal screen? 

a. EXAMINE 

" ,, 
b. TYPE 

c. SHOW 
.s 

d. DIRECTORY 

a. RENAME 

b. COPY 

c. CREATE 

d. CONVERT 
s~ .• . > :· :~ e v ~ r ~). 

4. Your default directory is [JOHNSON]. Which of the following DCL commands creates. the 
subdirectory [JOHNSON.BUDGET]? '{'CiT;·~,·~ .z.:· z .. "ic .t. 

a. CREATE/SUBDIRECTORY [JOHNSON.BUDGET] 

b. CREATE/DIRECTORY [JOHNSON.BUDGET] 

y·,<1£1S:1"eREATE!-bfRS®T0Ft¥ldOri'NSON]BUOOEtil"i:DltR . n :- ~,:;c:r;n:' ;';}~J2\'~ ai"! 

·/!Orn,;;.. ~ 1CRE".,.E1Sti 1~~m·9·0;~~v BU~GE'T,'Df:-C)· " :::~--· "'···· ~,0 "'lo·a~·f":,... '""':.::l"?·v•.:. ,··.-f"'".'' .. ·u. /""\I ucli;Jtn ~l'VRT.. Lil r. rr.:1 ~ .... -·1 ............ ~ ·i~-·~,., it·~Ji;.i,~ .~:-1:. 

,, 
·-t 

, .. 
•w 



a~ Delete all the files in the subdirectory. 

b. Log in to the SYSTEM account. 

c. Make backup copies of the files· in the subdirectory. 

d. Notify other users oh the system that you are deleting the subdirectory. 
-, r· 
.··.r 

6. Which DCL command do you use to put a job in a batch queue? .§ 

a. s"eNh/BATdH'l§ . ·~ 3;~ E '- ; ~2,,J ,. .!'X ot, 9:.\§!"]f".)~s r i1"t 2;·~:;~1X· 

b. BATCH 

c. SUBMIT 

d. QUEUE/BATCH 

1. Which DCL command do you use to put a job in a print queue? 
i/: 

a~ :-:;:·s~~:o/p,AOO~f ~~~~~1t:~ ·· 'l ... v · ... ,1io ·1~; ?':~·~- '?fi~ ;,;y. a1et ! r---. 

b. PRINT 

c. SUBMIT 

d. QUEUE/PRINT 

8. Which of the following requires you to use the ASSIGN command? 

?.e~"··~ ~~·~.~~::t: ~"P.~<2: -::i.\:>:: ~'-:.\h\:t~Hsl ~~'J:: k7 '?':.:i:n\tN; .. ::~ 
y.··:., -~,l~~~~~~' 

b~ Creating a new user name 

·c-. .Defining a lo.gical name 

ct setting a file's protection 



, .. :..~~t;F~;:~f.':~ ~:: ~,:·t- :~,·.:,~:::: : ;,.::.,:~· ;4-,~~_-:'·.;~ ,·,·.·, .,~.. -..... ·· . ~ .. ~;:.~ .. ,r.:, ._, .. ~~· .. ~~ ... : .. · ·f 
9. It a, logicc;I name" i$·-'alfe~dy definstf; 'vJhf6h command do you t..1seftc(as~fgn 'a new, value to · -

the logical name? 

~· RENAME 

b~ DEASSIGN 

c. CREATE 

d. ASSIGN 

.. , . 
. ,. \ ,·.(" 

1Q. If a file already exists, which 9pmmand do you use to assign a neyt n~rg~,t~-:.$'~fJ'e?:: .~ 

a. RENAME ,,_ ... , 
A~:\Tt!: ~d 

b. DEASSIGN 

c. CREATE 

d. ASSIGN 

11. Which logical name refers to the disk and directory that are the dera,µlt ~p,{_11~~~ ~~::in::; 
a. SYS$COMMAND -· . 

d 
b. SYS$LOGIN 

c. SYS$1NPUT 

d. SYS$QUTPl.JT . .(,_' 
"". : ~ ..... (,,., "." i 

12. Which of the following DCL commands defines the symbol GQ~~~}~e "~lqhp<?m~I~D~ SE.T 
DEFAULT? 1 '~c '"',· _ ..... - ~, ·::r ~'.}~ ,e; 

a. SET DEFAULT== "GO" 

b. "GO"== "SET DEFAULT" r~~~~~:fi~fi:~~·; ___ j: .t)i~J~"~~<:~~ ~:~1 
~· ··-~ _,...,., .. ,..!tr-;;-···-·· ..... -:. ... ..._ .... _ .... . ...... --

c. GO== "SET DEFAULT'' 

d. "SET DEFAULT"== GO 



a. = 

b. == 

c. DEFINE I: R ~:~ :., .... ::· '· ;:: ,· ~ .. 
·---· .... - ··~--. -·-· 

d. DEFINE/GLOBAL 

14. Which of the following operators would y'ot.f. usifilo tesfJ7.'tf-:tW"cf"cliarlt~stri~s -ar& ~Ja1.s' 
following.an IF command in a DCL command procedure? 

..... ·-,. . t'..,. .s ...... - .......... _,, ... ,_ ..... 
a. = ... t .. , ... 

b. = = .. 
:..;L ... .j<..l .~~ ·-

c. .EQ. ····: ..-.. .. b ·- ... .1 

d. .EQS. 

15. In a DCL command procedure, a label is followed by which of the following characters? 

a. -

b. $ 

c. -
d. space 

16. Which DCL command do you use to display your password? 

a. EXAMINE PASSWORD 

b. SHOW PASSWORD 

c. SHOW PROCESS/PASSWORD 

d. There is no command to do this 



17. Which DCL ~'il:laD~9?.:,Y.O~~U§.~1o ~~~~y9ur,pa.$S~O:~d?~r"' -~- :·:~nr,,ir:i> ,·:~--- · ,·· ;, .·. 

a. RENAME PASSWORD 

b. CHANGE PASSWORD 

c. SET PASSWORD 

d. There is no command to do this 

a. LOGOUT 

b. EXIT 

c. DELETE 

d. QUIT 



Match each-of ·th·e·toflowing;:DCL commands-with :its function; You.,,,wm not·use-:alJ of the:DCL. 
commands; 

QCL .. Comma:ntt·~ 

a .. START .. 

b~ @ 

1·~. _e ____ . ·EXecutEf:a'icomptted anct:·:linked program 

Z _£2_.. EXecute.~a- camf.Tland:;procedure.:::in batch mod~:: 

3' .. ~- 5cecute:·~command prpcedure interactiveiy;i 

Matatftbe:VMrS:·s.vstenr~nentwith its'.functton. You may{setect·a system cprnponentance; _ 
~e~ttta.n··ary:Qe; or-rrot~at:au. · · · 

v•: SVsttmn'ComPOn_(H\11 

a~, CPU 

b; .. l/Cflnt~ 
\. 

c~. Ofsk· Drive; 
:.... ' 

d~,,. PhysicaL Mi:fmo:ry,, 

~-: Virtua~ 'Mem~ny 

Fun:titt(Jn~ .. 

1~.- d:. 

.2".~--- Ef 

4t. a . 

rhe.:systefll1 can;rppnent typican}lt used by the:·tmrciware when~ referring:. to: memo1y 

Tf19, sy$tEµii. compnnent typjcaily used by a· programmerr)Nh'en~ referring to memory 

Th•; pathw&¥ tnrcrugh' whidt·data~- ig ttansferrec;t_tCJ;;Qttte,rr::~e devices;: 

The~, ~1W s.~tem'. c.m,npommtt t~t p-erft>.rms computations: 

The ~nly system-co:mpon·enMhatis· conceptual, and· nata~p,iece·af'hardware': 


