

VAX/VMS Internals and Data Structures

VERSION 4.4

VERSION 4.4

VAX/VMS Internals
and Data Structures
Lawrence J. Kenah, Ruth E. Goldenberg, Simon F. Bate

mamaama
Digital Press

Copyright © 1988 by Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, photocopying, record­
ing, or otherwise, without prior written permission of the publisher.

987654321

Order number EY-8264E-DP.

Designed by David Ford. Production coordinated by Editorial Inc. Automatically typeset
by York Graphic Services. Printed in the United States of America by the Alpine Press,
Inc.

The painting on the front cover is Paul Klee, 1921, 69, "Fugue in Red," watercolor,
Canson, 24.3 x 37.2 cm, signed lower left, private collection, Switzerland; copyright
© 1987 by COSMOPRESS, Geneva.

The Digital logo, DEC, DECnet, VAX, and VMS are trademarks of Digital Equipment
Corporation.

Library of Congress Cataloging-in-Publication Data

Kenah, Lawrence J.
VAX/VMS internals and data structures.
1. VAX/VMS (Computer operating system) 2. VAX-11

(Computer)-Programming. 3. Data structures (Computer
science) I. Goldenberg, Ruth. II. Bate, Simon F.
III. Title.
QA76. 76.063K47 1988 005.4'44 87-30378
ISBN 1-55558-008-4

Preface

The main topic of this book is the kernel of the VAX/VMS Version 4.4 operat­
ing system: process management; memory management; the 1/0 subsystem;
the mechanisms that transfer control to, from, and among these; and the
system services that support and complement them.

In explaining the operation of a subsystem, this book emphasizes the data
structures manipulated by that subsystem. Most of the operations of VMS
can be more easily understood once the contents of the various data struc­
tures are known. The book also provides a detailed description of the flow of
some major routines and annotated excerpts from certain key routines.

The intended readers are system programmers and other users of VAX/
VMS who wish to understand its components, mechanisms, and data struc­
tures. For system programmers, . the book provides technical background
helpful in activities such as writing privileged utilities and, system services.
Its detailed description of data structures should help system managers make
better informed decisions when they configure systems for space- or time­
critical applications. It should also help application designers appreciate the
effects (in speed or in memory consumption) of different design and imple­
mentation decisions.

In addition, this book is intended as a case study of VMS for an advanced
undergraduate or graduate course in operating systems.

It assumes thatthe reader is familiar with the VAX architecture, particu­
larly its memory management, and the VMS operating system, particularly
its system services.

The book is divided into nine parts, each of which describes a different
aspect of the operating system.

• Part 1 presents an overview of the operating system and reviews those con­
cepts that are basic to its workings.

• Part 2 describes the mechanisms used to pass control between user pro­
grams and the operating system, and within the system itself.

• Part 3 describes. scheduling, timer support, process control, and lock man­
agement.

• Part 4 discusses memory management, with emphasis on system data
structures and their manipulation by paging and swapping routines.

• Part 5 contains an overview of the 1/0 subsystem, paying particular atten­
tion to the I/0-related system services. ·

• Part 6 describes the life cycle of a process: its creation, the activation and
termination of images within its context, and its deletion.

v

Preface

vi

• Part 7 covers system initialization, powerfail recovery, and asymmetric
multiprocessing support.

• Part 8 discusses the implementation of logical names and the internals of
several miscellaneous system services.

• The appendixes include a summary of VMS data structures, a detailed lay­
out of system and Pl virtual address space, and information on the use of
listing and map files, and the conventions used in naming symbols.

This book does not include a discussion of VAXcluster Systems.
There is no guarantee that any' data structure or subroutine described here

will remain the same from release to release. With each new version of the
operating system, a privileged application program that relies on details con­
tained in this book should be rebuilt and tested prior to production use.

The VAX/VMS document set supplies important background information
for the topics discussed in this book. The following provide an especially
important foundation: VAX/VMS System Services Reference Manual, Writ­
ing a Device Driver for VAX/VMS, and the chapter in the VAX/VMS Run­
Time Library Routines Reference Manual that describes condition handling.

The VAX Architecture Reference Manual (Digital Press, 1987) documents
the VAX architecture in detail. An excellent description of the VAX architec­
ture, as well as a discussion of some of the design decisions made for its first
implementation, the VAX-111780, is found in Computer Programming and
Architecture: The VAX-11 by Henry M. Levy and Richard H. Eckhouse, Jr.,
(Digital Press, 1980). This book also contains a bibliography of some of the
literature dealing with operating system design.

There are several conventions used throughout this book. In all diagrams of
memory, the lowest virtual address appears at the top of the page and ad­
dresses increase toward the bottom of the page. This convention means that
the direction of stack growth is upward from the bottom of the page. In dia­
grams that display more detail, such as bytes within longwords, addresses
also increase from right to left. That is, the lowest addressed byte (or bit) in a
longword is on the right-hand side of a figure and the most significant byte (or
bit) is on the left-hand side.

The word executive refers to those parts of the operating system that reside
in system virtual address space. The executive includes the contents of the
file SYS.EXE, device drivers, and other code and data structures loaded at
initialization time, including RMS and the system message file.

The words system and VMS system are used to describe the entire VAX/
VMS software package, including privileged processes, utilities, and other
support software as well as the executive itself.

VAX/VMS consists of many different components, each a different file in a
directory on the system disk. One component is the system image itself,
SYS$SYSTEM:SYS.EXE. Other components include device drivers, the DCL
command language interpreter, and utility programs.

Preface

The source modules from which these components are built, and their
listings on microfiche, are divided into facilities. Each facility is a directory
containing sources and command procedures to build one or more compo­
nents. The facility [DRIVER], for example, contains sources for most of the
device drivers. The facility [BOOTS] includes sources for the primary boot­
strap program, VMB; the secondary bootstrap program, SYSBOOT; and the
SYSGEN Utility. The facility [SYS] contains the sources that comprise
SYS.EXE.

It is a convention of this book that a source module identified solely by file
name is part of the [SYS] facility. Modules from all other facilities are identi­
fied by facility directory name and file name. For example,
[DRIVER]LPDRIVER refers to the file which is the source for the line printer
device driver. Appendix B discusses how to locate a module in the VAX/VMS
source listing microfiche.

When either process control block or PCB is used without a modifier, it
refers to the software structure used by the scheduler. The data structure that
contains copies of the general registers (which the hardware locates through
the PR$_PCBB register) is always called the hardware PCB.

In reference to access modes, the term inner access modes means those
access modes with more privilege. The term outer access modes means those
with less privilege. Thus, the innermost access mode is kernel and the outer­
most mode is user.

The term SYSBOOT parameter is used to describe any of the adjustable
parameters that are used by the secondary bootstrap program SYSBOOT to
configure the system. (These parameters are often referred to elsewhere as
SYSGEN parameters.) These include both the dynamic parameters that can
be changed on the running system and the static parameters that require a
reboot in order for their values to change. These parameters are referred to by
their parameter names rather than by the global locations where their values
are stored. Appendix C relates parameter names to their corresponding global
locations.

The terms byte index, word index, longword index, and quadword index
refer to methods of VAX operand access that use context indexed addressing
modes. That is, the index value is multiplied by 1, 2, 4, or 8 (depending on
whether a byte, word, longword, or quadword is being referenced) as part of
operand evaluation to calculate the effective address of the operand.

In general, the component called INIT refers to a module of that name in
the executive and not to the volume initialization utility. When that utility
program is referenced, it is clearly specified.

Three conventions are observed for lists:

• In lists such as this one, where there is no order or hierarchy, list elements
are indicated by leading bullets (•). Sublists without hierarchy are indicated
by dashes(-).

vii

Preface

viii

• Lists that indicate an ordered set of operations are numbered. Sublists that
indicate an ordered set of operations are lettered.

• Numbered lists with the numbers enclosed in circles indicate a corres­
pondence between the individual list elements and numbered items in
a figure.

Front Cover Illustration

The cover of the Version 3.3 edition of this book displayed a painting by
Hannes Beckmann. For the cover of the present Version 4.4 edition, the au­
thor has chosen "Fugue in Red," by Paul Klee, which like the Beckmann
painting conveys a strong sense of structure.

"Fugue in Red" communicates a dynamism, a sense of flow, movement,
and adaptability. The way in which the geometric elements of the painting
repeat, with subtle variations in color and shape, suggests data structures,
whose contents change with the current state of the system and the opera­
tion under way. Like the shapes in "Fugue in Red," the key structures of VMS
are used again and again to express recurring contrapuntal themes as in a
musical fugue.

Acknowledgments: Version 3.3 Edition

Our first thanks must go to Joe Carchidi for suggesting that this book be
written, and to Dick Hustvedt, for his help and enlightening conversations.

We would like to thank John Lucas for putting together the initial versions
of Chapters 7, 10, 11, and 29 and Vik Muiznieks for writing the initial ver­
sions of Chapters 5, 18, and 19.

Appreciation goes to all those who reviewed the drafts for the VAX/VMS
Version 2.2 and the VAX/VMS Version 3.3 editions of this book. We would
particularly like to thank Kathy Morse for reviewing the V2.2 volume in its
entirety and Wayne Cardoza for reviewing this entire V3.3 edition. Our spe­
cial thanks go to Ruth Goldenberg for reviewing both in their entirety, and
for her many corrections, comments, and suggestions. [The V2.2 book was
published in 1981. Digital Press published the first edition of the present
volume, for V3.3, in 1984.]

We owe a lot of thanks to our editing staff, especially to Jonathan
Ostrowsky for his iabors in preparing the V2.2 book, and Betty Steinfeld for
her help and suggestions. Many thanks go to Jonathan Parsons for reviewing
and editing the present edition, and for all his help, patience, and suggestions.

We would like to thank the Graphic Services department at Spitbrook,
particularly Pat Walker for her help in paging and production of the V2.2 book
and Paul King for his help in transforming innumerable slides and rough

Preface

sketches into figures. Thanks go to Kathy Greenleaf and Jackie Markow for
converting the files to our generic markup language.

Thanks go to Larry Bohn, Sue Gault, Bill Heffner, Kathleen Jensen, and
Judy Jurgens for their support and interest in this project.

Finally, we would like to thank all those who originally designed and im­
plemented the VAX/VMS operating system, and all those who have contrib­
uted to later releases.

Acknowledgments: Version 4.4 Edition

Lawrence J. Kenah
Simon F. Bate

August 1983

First, I thank Larry Kenah for suggesting that I do this edition of the book, for
providing such an excellent foundation to update, and for his astute review
and responsive answers to my innumerable questions.

I was blessed with many dedicated reviewers, four of whom reviewed the
entire book: Dick Buttlar, Wayne Cardoza, Kathy Morse, and Rod
Shepardson. Rod Shepardson, moreover, revised Chapter 19, Appendixes D
and E, and provided considerable update and enhancement to Chapter 18.
Dick Buttlar also aided me in my struggles to format tables and tactfully
suggested improvements to the book. Wayne Cardoza and Kathy Morse, who
had critiqued earlier versions of the book, provided continuity, insight, and
technical assistance and support.

A number of other people reviewed large portions of the book, significantly
improving its quality: Stan Amway, Richard Bishop, George Claborn, Dan
Doherty, Joy Dorman, Rod Gamache, and John Hallyburton. I also thank
the many other reviewers and early readers who helped find errors and
omissions.

Carl Rehbein helped update Chapters S, 18, 19, and Appendixes C, D,
and E.

Bob Kadlec, my manager, encouraged and supported me throughout this
endeavor and intercepted tnany potential interrupts.

Joy Lanza edited the initial version of this edition and carefully, patiently
shepherded the copy and artwork through its preliminary publication.

George Jakobsche acted as negotiator and facilitator and played an impor­
tant part in catalyzing this edition of the book.

I thank all the people who produced this book. Alice Cheyer's meticulous
editing corrected numerous errors that had escaped the rest of us. Carol Kel­
ler edited the artwork, polishing it and removing inconsistencies. Jonathan
Weinert diligently orchestrated the entire production.

I would like to thank John Osborn and Mike Meehan of Digital Press for
their strong support.

ix

Preface

x

I am especially grateful to Chase Duffy of Digital Press for her comprehen­
sive publishing experience and ready wit, which lightened the work.

My deepest thanks are to Jim Fraser, who wrote the final draft of several
important sections, contributed much technical and editorial review, helped
me through the gnarly bits, and, most important, supplied much gumption.

Finally, I, also, thank the original designers and implementers of VAX/VMS
and the contributers to subsequent releases, those past and those to come.

Ruth E. Goldenberg
August 1987

Contents

PART I/Introduction 1

1 System Overview 3
1.1 Process, Job, and Image 3

1.2 Functions Provided by VAX/VMS 6

1.3 Hardware Assistance to the Operating System Kernel 12

1.4 Other System Concepts 20

1.5 Layout of Virtual Address Space 23

2 Synchronization Techniques 28
2.1 Overview 28

2.2 Elevated IPL 31

2.3 Serialized Access 36

2.4 Mutual Exclusion Semaphores (Mutexes) 37

2.5 VAX/VMS Lock Management System Services 42

3 Dynamic Memory 43
3.1 Dynamic Data Structures and Their Storage Areas 43

3.2 Nonpaged Dynamic Memory Regions 53

3.3 Paged Pool 62

3.4 Process Allocation Region 63

3.5 KRP Lookaside List 65

PART II/Control Mechanisms 67

4 Condition Handling 69
4.1 Overview of Conditions 69

4.2 Overview of the VAX Condition Handling Facility 70

4.3 Exceptions 72

4.4 Software Conditions 83

4.5 Uniform Condition Dispatching 84

4.6 Condition Handler Action 93

4. 7 Default (VMS-Supplied) Condition Handlers 104

xi

Contents

5 Hardware Interrupts 107
5.1 Hardware Interrupt Dispatching 107

5.2 VAX/VMS Interrupt Service Routines 115

5.3 Connect-to-Interrupt Mechanism 129

6 Software Interrupts 131
6.1 The Software Interrupt 131

6.2 Software Interrupt Service Routines 134

7 ASTs 147
7.1 AST Hardware Components 147

7.2 AST Data Structures 149

7.3 Creating an AST 151

7.4 Queuing an AST to a Process 152

7.5 Delivering an AST 153

7.6 Special Kernel Mode ASTs 160

7.'t System Use of Normal ASTs 163

7.8 Attention and Out-of-Band ASTs 166

8 Error Handling 17 6
8.1 Error Logging 176

8.2 System Crashes (Bugchecks) 182

8.3 Machine Check Mechanism 188

9 System Service Dispatching 192
9.1 System Service Vectors 192

9.2 Change Mode Instructions 195

9.3 Change Mode Dispatching in the VMS Executive 198

9.4 Dispatching to Privileged Shareable Image System Services 208

9.5 Related System Services 213

PART III/Scheduling and Time Support 217

10 Scheduling 219
10.l Process Control Block 219

10.2 Process Priority 220

10.3 Process Scheduling States 224

xii

Contents

10.4 Events That Lead to Rescheduling 231

10.5 Rescheduling Interrupt 241

11 Time Support 251
11.1 Hardware Clocks 251

11.2 Timekeeping in VAX/VMS 255

11.3 Set Time System Service 258

11.4 Timer Queue and Timer Queue Elements 260

1,1.5 Timer System Services 261

11.6 Interval Clock Interrupt Service Routine 263

11. 7 Software Timer Interrupt Service Routine 264

12 Process Control and Communication 269
12.1 Event Flag System Services 269

12.2 Affecting the Computability of Another Process 277

12.3 Miscellaneous Process Attribute Changes 282

12.4 Interprocess Communication 283

13 Lock Management 292
13.1 Lock Management Data Structures 292

13.2 Lock Management System Services 302

13.3 Handling Deadlocks 309

PART IV/Memory Management 319

14 Memory Management Data Structures 321
14.1 Process Data Structures (Process Header) 321

14.2 PFN Database 337

14.3 Data Structures for Global Pages 345

14.4 Swapping Data Structures 351

14.5 Data Structures That Describe the Page and Swap Files 353

14.6 Swapper and Modified Page Writer Page Table Arrays 358

14.7 Data Structures Used with Shared Memory 361

15 Paging Dynamics 368
15.1 Overview of Pager Operation 368

15.2 Page Faults for Process-Private Pages 370

15.3 Page Faults for Global Pages 379

xiii

Contents

15.4 Working Set Replacement 386

15.5 Input and Output That Support Paging 389

15.6 Paging and Scheduling 401

16 Memory Management System Services 404
16.1 Characteristics of Memory Management System Services 404

16.2 Virtual Address Creation and Deletion 405

16.3 Private and Global Sections 410

16.4 Working Set Adjustment 415

16.5 Locking and Unlocking Pages 422

16.6 Process Swap Mode 424

16.7 Altering Page Protection 424

17 The Swapper 426
17.1 Swapping Overview 426

17 .2 Swap Selection 431

17.3 Writing the Modified Page List 438

17.4 Swapper's Use of Memory Management Data Structures 439

17.5 Outswap Operation 442

17.6 Inswap Operation 450

PART V/Input/Output 459

18 1/0 System Services 461
18.1 Logical Name Translation 461

18.2 1/0 Subsystem Components 462

18.3 Device Allocation and Deallocation 467

18.4 Assigning and Deassigning Channels 471

18.5 $QIO System Service 480

18.6 1/0 Completion by a Driver Start 1/0 Routine 487

18.7 1/0 Postprocessing 487

18.8 Cancel 1/0 on Channel System Service 496

18.9 Mailbox Creation and Deletion 499

18.10 Breakthrough System Service 505

18.11 Broadcast System Service 515

18.12 Informational Services 517

19 VAX/VMS Device Drivers 519
19.l Disk Drivers 519

xiv

Contents

19.2 Magnetic Tape Drivers 522

19.3 Class and Port Drivers 523

19.4 Terminal Driver 525

19.5 Pseudo Device Drivers 531

19.6 Console Subsystem 539

PART VI/Process Creation and Deletion 547

20 Process Creation 549
20.1 Create Process System Service 549

20.2 The Shell Process 562

20.3 Process Creation in the Context of the New Process 566

21 Image Activation and Termination 573
21.1 Image Initiation 573

21.2 Image Exit 603

21.3 Image and Process Rundown 607

21.4 Process Privileges 611

22 Process Deletion 614
22.1 Process Deletion in Context of Caller 614

22.2 Process Deletion in Context of Process Being Deleted 615

23 Interactive and Batch Jobs 622
23.l Job Controller and Unsolicited Input 622

23.2 The LOGINOUT Image 626

23.3 Command Language Interpreters and Image Execution 634

23.4 Logout Operation 643

PART VII/System Initialization 645

24 Bootstrap Procedures 647
24.1 Overview of System Initialization 647

24.2 Processor-Specific Initialization 648

24.3 Primary Bootstrap Program (VMB) 668

24.4 Secondary Bootstrap Program (SYSBOOT) 682

25 Operating System Initialization 689
25.1 Initial Execution of the Executive 689

xv

Contents

25.2 Initialization in Process Context 701

25.3 System Generation Utility 710

26 Power Failure and Recovery 717
26.l Powerfail Sequence 717

26.2 Power Recovery 718

26.3 Multiple Power Failures 729

26.4 Failure of External Adapter Power 732

27 Asymmetric Multiprocessing 735
27.1 ASMP Design Goals 735

27.2 ASMP Hardware Configurations 736

27.3 ASMP Software Components 739

27.4 Attached Processor States 743

27.5 ASMP Initialization 744

27.6 ASMP Scheduling 751

27.7 Executing a Process on the Attached Processor 755

27.8 Interprocessor Interrupt Communication 760

PART VIII/Miscellaneous Topics 763

28 Logical Names 765
28.1 Goals of Extended Logical Name Support 765

28.2 Characteristics of Logical Names 766

28.3 Characteristics of Logical Name Tables 768

28.4 Characteristics of Logical Name Translation 772

28.5 Logical Name Data Structures 774

28.6 Searching for a Logical Name 782

28.7 Logical Name Table Name Resolution 785

28.8 Logical Name System Services 787

28.9 Superseded Logical Name System Services 794

29 Miscellaneous System Services 797
29.1 Communication with System Processes 797

29.2 System Message File Services 804

29 .3 Process Information System Services 808

29.4 System Information System Services 811

. 29.5 Formatting Support 813

xvi

Contents

APPENDIXES 817

A System Processes and Privileged Images 819

B Use of I.isting and Map Files 822
B.l Hints in Reading the Executive Listings 822

B.2 Use of Map Files 836

B.3 System Dump Analyzer 839

B.4 Interpreting SDL Files 840

C Executive Data Areas 847
C.l Statically Allocated Executive Data 847

C.2 Dynamically Allocated Executive Data 887

C.3 Process-Specific Executive Data 890

D Naming Conventions 895
D. l Public Symbol Patterns 895

D.2 Object Data Types 901

D.3 Facility Prefix Table 902

E Data Structure Definitions 904
E. l Location of Data Structure Definitions 904

E.2 Overview 904

E.3 Executive Data Structures 905

E.4 Symbolic Constants 929

F Size of System and Pl Virtual Address Spaces 936
F. l Size of Process Header 936

F.2 System Virtual Space Address 939

F.3 Physical Memory Requirements of VAX/VMS 951

F.4 Size of Pl Space 954

G VAX CPU Designations 960

INDEX 963

xvii

PART I/Introduction

1

1.1

System Overview

For the fashion of Minas Tirith was such that it was built on
seven levels, each delved into a hill, and about each was set a
wall, and in each wall was a gate.

J.R.R. Tolkien, The Return of the King

This chapter introduces the basic components of the VAX/VMS operating
system. Special attention is paid to the features of the VAX architecture that
are either exploited by the operating system or exist solely to support an
operating system. In addition, some of the design goals that guided the imple­
mentation of the VMS operating system are discussed.

PROCESS, JOB, AND IMAGE

The fundamental unit in the implementation of scheduling on tj:ie VAX/VMS
operating system, the entity that is selected for execution by the scheduler, is
the process. If a process creates subprocesses, the collection of the creator
process, all the subprocesses created by it, and all subprocesses created by its
descendants, is called a job: The programs that are executed in the context of
a process are called images.

1.1.1 Process

1.1.1.1

A process is fully described by data structures which specify the hardware
and software context, and by a virtual address space description. This infor­
mation is stored in several different places in the process and system address
space. The data structures that contain the various pieces of process context
are pictured in Figure 1-1.

Hardware Context. The hardware context consists of copies of the general
purpose registers, the four per-process stack pointers, the program counter
(PC), the processor status longword (PSL), and the process-specific processor
registers, including the memory management registers and the asynchronous
system trap (AST) level register. The hardware context is stored in a data
structure called the hardware process control block (hardware PCB), which is
used primarily when a process is removed from or placed into execution.

Another part of process context that is related to hardware is four per­
process stacks, one for each of the. four access modes. Code executing in the
context of a process uses the stack associated with the process's current ac­
cess mode.

3

1. Hardware context is stored
in hardware PCB.

2. Software context is spread
around in PCB, PHO, JIB,
and P 1 space.

3. Virtual address space
description is stored in
PO and P1 page tables.

/
This JIB is pointed
to by all other
processes (if any)
in the same job.

Job Information
Block(JIB)

• Pooled Quotas
• Master Process ID
• Count of

Processes in Job

Figure 1-1 Data Structures That Describe Process
Context

(Control Region)
P1 Space

Software
Process Control

Block(PCB)

System Space

• Process-private
logical names

• Per-Process
Stacks

•RMS Data
•Image Data

Process Header
(PHO)

80000000

~ ----~-------------+-

• Process Name
• Scheduling

Information
•Process ID
• Pointers to other

structures
• U IC and other

identifiers

1-------------
• 11\brking Set List
• Process Section

Table
• Accounting

Information

PO Page Table

(Virtual ;-
Address Space

1 Description)

P1 Page Table -

Hardware Process
Control Block

• General Registers
•PC, PSL
• Per-Process Stack

Pointers
•Memory

Management Registers
• ASTLVL

(Hardware Context)

1.1.1.2

1.1.1.3

1.1 Process, fob, and Image

Software Context. Software context consists of all the data required by vari­
ous parts of the operating system to control that portion of common
resources allocated to a given process. This context includes the process soft­
ware priority, its current scheduling state, process privileges and "identi­
fiers," quotas and limits, and miscellaneous information, such as process
name and process identification.

The information about a process that must be in memory at all times is
stored in a data structure called the software process control block (PCB).
This information includes the software priority of the process, its unique
process identification (PID), and the particular scheduling state that the pro­
cess is in at a given point in time. The software PCB also records some pro­
cess quotas and limits. Other quotas and limits are recorded in the job infor­
mation block (JIB).

The PCB incorporates another data structure called an access rights block
(ARB), which lists the identifiers that the process holds. Identifiers are names
that specify to what groups a process belongs for purposes of determining
access to files and other protected objects. Identifiers are described briefly in
Section 1.4.1.4.

The information about a process that does not have to be permanently
resident (swappable process context) is contained in a data structure called
the process header (PHD). This information is needed when the process is
resident and consists mainly of information used by memory management
when page faults occur. The data in the process header is also used by the
swapper when the process is removed from memory (outswapped) or brought
back into memory (inswapped). The hardware PCB, which contains the hard­
ware context of a process, including its page tables, is a part of the process
header. Some information in the process header is nonpageable and available
to suitably privileged code whenever the process is resident. The process page
tables, however, are only accessible from that process's context.

Other process-specific information is stored in the P 1 portion of the pro­
cess virtual address space (the control region). This includes exception dis­
patching information, Record Management Services (RMS) data tables, and
information about the image that is currently executing. Information that is
stored in Pl space is only accessible when the process is executing (is the
current process), because Pl space is process-specific.

Virtual Address Space Description. The virtual address space of a process is
described by the process PO and Pl page tables, stored in the high address end
of the process header. The process virtual address space is altered when an
image is initially activated, during image execution through selected system
services, and when an image terminates. The process page tables reside in
system virtual address space and are, in turn, described by entries in the

5

System Overview

system page table. Unlike the other portions of the process header, the pro­
cess page tables are themselves pageable, and they are faulted into the pro­
cess working set only when they are needed.

1.1.2 Image

The programs that execute in the context of a process are called images.
Images usually reside in files that are produced by the VAX/VMS Linker.
When the user initiates image execution (as part of process creation or
through a Digital command language (DCL) command in an interactive or
batch job), a component of the executive called the image activator sets up
the process page tables to point to the appropriate sections of the image file.
The VMS operating system uses the same paging mechanism that imple­
ments its virtual memory support to read image pages into memory as they
are needed.

1.1.3 Job

1.2

The collection of subprocesses that have a common root process is called a
job. The concept of a job exists for the purpose of sharing resources. Some
quotas and limits are shared among all processes in the same job. The current
values of these quotas are contained in a data structure called a job informa­
tion block (JIB) (see Figure 1-1) that is shared by all processes in the same job.

FUNCTIONS PROVIDED BY VAX/VMS

The VAX/VMS operating system provides services at many levels so that user
applications may execute easily and effectively. The layered structure of the
VAX/VMS operating system is pictured in Figure 1-2. In general, components
in a given layer can make use of the facilities in all inner layers.

1.2.1 Operating System Kernel

6

The main topic of this book is the operating system kernel: the 1/0 subsys­
tem, memory management, the scheduler, and the VAX/VMS system ser­
vices that support and complement these components. The discussion of
these three components and other miscellaneous parts of the operating sys­
tem kernel focuses on the data structures that are manipulated by a given
component. In describing what each major data structure represents and how
that structure is altered by different sequences of events in the system, this
document describes the detailed operations of each major piece of the kernel.

Privileged Images
• Images Installed with Privilege
• Other Privileged Images
• Images Linked with the

System Symbol Table
•File System
• Informational Utilities

Run-Time Library
(Specific)

•FORTRAN
•PASCAL
•PL/I

Layered Products
• Language Compilers
• DATATRIEVE
• Forms Utilities

Figure 1·2 Layered Design of the VAX/VMS Operating
System

Program Development Tools
• Text Editors
• Linker
• MACRO Assembler
• System Message Compiler

u

Run-Time Library
(General)
• Math Library
• String Manipulation
• Screen Formatting

Assorted Utilities
•SORT
• File Manipulation
•HELP
•DIRECTORY

System Overview

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

8

1/0 Subsystem. The 1/0 subsystem consists of device drivers and their asso­
ciated data structures; device-independent routines within the executive;
and several system services, the most important of which is the $QIO re­
quest, the eventual 1/0 request that is issued by all outer layers of the system.
The 1/0 subsystem is described in detail from the point of view of adding a
device driver to a VMS operating system in the manual Writing a Device
Driver for VAX/VMS. Chapters 18 and 19 of this book describe some features
of the 1/0 subsystem that are not described in that manual.

Memory Management. The main components of the memory management
subsystem are the page fault handler, which implements the virtual memory
support of the VAX/VMS operating system, and the working set swapper,
which allows the system to utilize more fully the amount of physical mem­
ory that is available. The data structures used and manipulated by the pager
and swapper include the page frame number (PFN) database and the page
tables of each process. The PFN database describes each page of physical
memory that is available for paging and swapping. Virtual address space de­
scriptions of each currently resident process are contained in their respective
page tables. The system page table describes the system space portion of vir­
tual address space.

System services are available to allow a user (or the system on behalf of the
user) to create or delete specific portions of virtual address space or map a file
into a specified virtual address range.

Scheduling and Process Control. The third major component of the kernel is
the process scheduler. It selects processes for execution and removes from
execution processes that can no longer execute. The scheduler also handles
clock servicing and includes timer-related system services. System services
are available to allow a process to create or delete other processes. Other
services provide one process the ability to control the execution of another.

Miscellaneous Services. One area of the operating system kernel that is not
pictured in Figure 1-2 involves the many miscellaneous services that are
available in the operating system kernel. Some of these services for such
tasks as logical name creation or string formatting are available to the user in
the form of system services. Others, such as pool manipulation routines and
certain synchronization techniques, are only used by the kernel and privi­
leged utilities. Still others, such as the lock management system services, are
used throughout the system-by users' programs, system services, RMS, the
file system, and privileged utilities.

1.2 Functions Provided by VAX/VMS

1.2.2 Data Management

The VAX/VMS operating system provides data management facilities at two
levels. The record structure that exists within a file is interpreted by the VAX
Record Management Services (RMS), which exists in a layer just outside the
kernel. RMS exists as a series of procedures located in system space, so it is in
some ways just like the rest of the operating system kernel. Most of the
procedures in RMS execute in executive access mode, providing a thin wall of
protection between RMS and the kernel itself.

The placement of files on mass storage volumes is controlled by one of the
disk or tape ancillary control processes (ACP) or by the Files-11 Extended
QIO Processor (XQP). An ACP is implemented as a separate process because
many of its operations must be serialized to avoid synchronous access con­
flicts. ACPs and the Files-11 XQP interact with the kernel both through the
system service vector interface and by the use of utility routines not accessi­
ble to the general user.

The Files-11 XQP, new with VAX/VMS Version 4, controls the most com­
monly used "on-disk structure." (The placement of files on a block-struc­
tured medium, such as a disk volume or a TU58, is referred to as on-disk
structure.) The XQP is implemented as an extension to the $QIO system
service and runs in process context. A process's XQP file operations are seri­
alized with those of other processes through lock management system
services.

1.2.3 User Interface

1.2.3.l

The interface that is presented to the user (as distinct from the application
programmer who is using system services and Run-Time Library procedures)
is a command language interpreter (CLI). The DCL CLI is available on all
VAX/VMS systems. The monitor console routine (MCR) CLI, the command
language used with RSX-llM, is available as an optional software product.
Some of the services performed by a CLI call RMS or the system services
directly; others result in the execution of an external image. These images
are generally no different from user-written applications because their only
interface to the executive is through the system services and RMS calls.

Images Installed with Privilege. Some of the informational utilities and disk
and tape volume manipulation utilities require that selected portions of pro­
tected data structures be read or written in a controlled fashion. Images that
require privilege to perform their function can be installed (made known to
the operating system) by the system manager so that they can perform their
function in an ordinarily nonprivileged process environment. Images that fit

9

System Overview

1.2.3.2

1.2.3.3

1.2.4

1.2.4.1

1.2.4.2

10

this description include MAIL, MONITOR, VMOUNT (the volume mount
utility), SET, and SHOW. Appendix A lists those images that are installed
with privilege in a typical VMS system.,

Other Privileged Images. Other images that perform privileged functions are
not installed with privilege because their functions are less controlled and
could destroy the system if executed by naive or malicious users. These im­
ages can only be executed by privileged users. Examples of these images in­
clude SYSGEN (for loading device drivers), INSTALL (which makes images
privileged or shareable), or the images invoked by a CLI to manipulate print
or batch queues. Images that require privilege to execute but are not installed
with privilege in a typical VAX/VMS system are also listed in Appendix A.

Images That Link with SYS$SYSTEM:SYS.STB. Appendix A also lists those
components that are linked with the system symbol table (SYS$SYSTEM:
SYS.STE). These images access known locations in the system image
(SYS.EXE) through global symbols and must be relinked each time the sys­
tem itself is relinked. User applications or special components that include
SYS.STE when they are linked, such as device drivers, must be relinked
whenever a new version of the symbol table is released, usually at each major
release of the VAX/VMS operating system.

Interface among Kernel Subsystems

The coupling among the three major subsystems pictured in Figure 1-2 is
somewhat misleading because there is actually little interaction between the
three components. In addition, each of the three components has its own data
structures for which it is responsible. When one of the other pieces of the
system wishes to access such data structures, it does so through some con­
trolled interface. Figure 1-3 shows the sm4ll amount of interaction that oc­
curs between the three major subsystems in the operating system kernel.

1/0 Subsystem Requests. The I/O subsystem makes a request to memory
management to lock down specified pages for a direct I/O request. The pager
or swapper is notified directly when the I/O request that just completed was
initiated by either one of them.

I/O requests can result in the requesting process being placed in a wait
state until the request completes. This change of state requires that the
scheduler be notified. In addition, I/O completion can also cause a process to
change its scheduling state. Again, the scheduler would be called.

Memory Management Requests. Both the pager and swapper require input
and output operations to fulfill their functions. The pager and swapper use

1.2.4.3

1.2 Functions Provided by VAX/VMS

Page Fault Wait
Page Fault Read Comp

Free Page Walt
Physical Page Available

lnswap Complete
Outswap Complete

Pager Data
Structures

\
::~p~~

Lock/Unlock Physical
Pages for Direct 1/0

Page Fault Read
lnswap/Outswap
Modified Page Write

1/0
Database

Wait for 1/0 Reques/
1/0 Request Complete

Figure 1-3 Interaction Between Components of VMS
Kernel

•Swap 1/0

special entry points into the 1/0 system rather than call $QIO. These entry
points queue prebuilt 1/0 packets directly to the driver, bypassing unneces­
sary protection checks ,and preventing an irrelevant attempt to lock pages
associated- with these direct 1/0 requests.

If a process incurs a page fault that results in a read from disk or if a process
requires physical memory and none is available, the process is put into one of
the memory management wait states by the scheduler. When the page read
completes or physical memory becomes available, the process is made com­
putable again.

Scheduler Requests. The scheduler interacts very little with the rest of the
system. It plays a more passive role when cooperation with memory manage­
ment or the 1/0 subsystem is required. One exception to this passive role is
that the scheduler awakens the swapper when a process that is not currently
memory resident becomes computable.

11

System Overview

1.3 HARDWARE ASSISTANCE TO THE OPERATING SYSTEM KERNEL

The method of implementing the many services provided by the VAX/VMS
operating system illustrates the close connection between the hardware
design and the operating system. Many of the general features of the VAX
architecture are used to advantage by the VAX/VMS operating system. Other
features of the architecture exist entirely to support an operating system.

1.3.1 VAX Architecture Features Exploited by VMS

12

Several features of the VAX architecture that are available to all users are
used for specific purposes by the operating system:

• The general purpose calling mechanism is the primary path into the operat­
ing system from all outer layers of the system. Because all system services
are procedures, they are available to all native mode languages.

• The memory management protection scheme is used to protect code and
data used by more privileged access modes from modification by less privi­
leged modes. Read-only portions of the executive are protected in the same
manner.

• There is implicit protection built into special instructions that can only be
executed from kernel mode. Because only the executive (and suitably privi­
leged process-based code) executes in kernel mode, such instructions as
MTPR, LDPCTX, and HALT are protected from execution by nonprivileged
users.

• The operating system uses interrupt priority level (IPL) for several purposes.
IPL is elevated so that certain interrupts are blocked. For example, clock
interrupts must be blocked while the system time (stored in a quadword) is
checked because this checking takes more than one instruction. Clock in­
terrupts are blocked to prevent the system time from being updated while it
is being checked.

• IPL is also used as a synchronization tool. For example, any routine that
accesses certain systemwide data structures, such as the scheduler data­
base, must raise IPL to 8 (called IPL$_SYNCH). The assignment of various
hardware and software interrupts to specific IPL values establishes an order
of importance to the hardware and software interrupt services that the VMS
operating system performs.

Several other features of the VAX architecture are used by specific compo­
nents of the operating system and are described in later chapters. They in­
clude the following:

• The change mode instructions (cHME and CHMK), which are used to decrease
access mode (to greater privilege) (see Figure 1-4). Note that most excep­
tions and all interrupts also result in changing mode to kernel. Section 1.3 .5
presents an introduction to exceptions and interrupts.

1.3.2

1.3 Hardware Assistance to the Operating System Kernel

Access mode fields in the PSL are not directly accessible to the programmer or
to the operating system.

A process can reach a
fl.'!ORE privileged access
mode through the CHMx
instructions. In addition,
most other exceptions and
all interrupts cause access
mode change to kernel.

3

The only way to reach a
LESS privileged access
mode Is through the REI
Instruction.

2

0

Kem el

Executive

Supervisor

User

The boundaries between the access modes are nearly identical to the layer
boundaries pictured in Figure 1·2.

• Nearly all of the system services execute in kernel mode.
• RMS and some system services execute in executive mode.
• Command Language Interpreters normally execute in supervisor mode.
• Utilities, application programs, Run.Time Library procedures, and so on

normally execU1e in user mode. Privileged utilities sometimes execute In
kernel or executive mode.

Figure 1-4 Methods for Altering Access Mode

• The inclusion of many protection checks and pending interrupt checks in
the single instruction that is the common exception and interrupt exit path,
REL

• Software interrupts.
• Hardware context and the single instructions (svPCTX and LDPCTX) that save

and restore it.
• The use of ASTs to obtain and pass information.

VAX Instruction Set

While the VAX instruction set, data types, and addressing modes were de­
signed to be somewhat compatible with the PDP-11, several features that
were missing in the PDP-11 were added to the VAX architecture. True con­
text indexing allows array elements to be addressed by element number, with
the hardware accounting for the size (byte, word, longword, or quadword) of

13

System Overview

each element. Short literal addressing was added in recognition of the fact
that the majority of literals that appear in a program are small numbers.
Variable length bit fields and character data types were added to serve the
needs of several classes of users, including operating system designers.

The instruction set includes many instructions that are useful to any de­
signer and occur often in the VMS executive. The queue instructions allow
the construction of doubly linked lists as a common dynamic data structure.
Character string instructions are useful when dealing with any data structure
that can be treated as an array of bytes. Bit field instructions allow efficient
operations on flags and masks.

One of the most important features of the VAX architecture is the VAX
Calling Standard. Any procedure that adheres to this standard can be called
from any native language, an advantage for any large application that requires
the use of the features of a wide range of languages. The VMS operating sys­
tem adheres to this standard in its interfaces to the outside world through the
system service interface, RMS entry points, and the Run-Time Library proce­
dures. System services and RMS services are written as procedures that can
be accessed by issuing a CALLx to absolute location SYS$service in the process
Pl virtual address space. Run-Time Library procedures are mapped into a
process's PO space, instead of being located in system space.

1.3.3 Implementation of VMS Kernel Routines

1.3.3.1

14

In Section 1.2.1, the VMS kernel was divided into three functional pieces plus
the system service interface to the rest of the world. Alternatively, the oper­
ating system kernel can be partitioned according to the method used to gain
access to each part. The three classes of routines within the kernel are proce­
dure-based code, exception service routines, and interrupt service routines.
Other systemwide functions, the swapping and modified page writing per­
formed by the swapper, are implemented as a separate process that resides in
system space. Figure 1-5 shows the various entry paths into the operating
system kernel.

Process Context and System State. The first section of this chapter discussed
the pieces of the system that are used to describe a process. Process context
includes a complete address space description, quotas, privileges, scheduling
data, etc. Any portion of the system that executes in the context of a process
has all of these process attributes available.

There is a portion of the kernel, however, that operates outside the context
of a specific process. Most routines that fall into this category are interrupt
service routines, invoked in response to external events, regardless of the
currently executing process. Portions of the initialization sequence also fall
into this category. In any case, there are no process features, such as a kernel

1.3 Hardware Assistance to the Operating System Kernel

Translation-Not-Valid
Fault (Page Fault)
(Exception, not Interrupt)

External Device
Hardware Interrupts
(IPL =20 ... 23)

f ""'"' <>•« ..C::: Fork Processing

Memory
Management

/ (IPL=B ... 11)

1/0 Subsystem 1/0 Postprocessing

•Page Fault
Handler

~ Software Interrupt
•Device Drivers ·~ (IPL=4)

Rescheduling
Software Interrupt
(IPL=3)

Process and Time Management
• Rescheduling Interrupt

Service Routine
• Clock and Timer Service

Hardware Clock
Interrupt
(IPL=22 or 24)

•Post-
processing
routines

Software Timer
Interrupt
(IPL=7)

Figure 1-5 Paths into Components of VMS Kernel

AST Delivery
Software Interrupt
(IPL=2)

stack or a page fault handler, available when these routines are executing.
Because of the lack of a process, this system state or interrupt state can be

characterized by the following limited context:

• All stack operations take place on the systemwide interrupt stack.
•The primary indication that the CPU is in this state is contained in the PSL.

The PSL indicates that the interrupt stack is being used, the current access
mode is kernel mode, and the IPL is higher than 2.

• The system control block, the data structure that controls the dispatching
of interrupts and exceptions, can be thought of as the secondary structure
that describes system state.

• Code that executes in this so-called system context can only refer to system
virtual addresses. In particular, there is no Pl space available, so the sys­
temwide interrupt stack must be located in system space.

• No page faults are allowed. The page fault handler generates a fatal bug­
check if a page fault occurs and the IPL is above IPL 2.

• No exceptions are allowed (other than subset instruction emulation excep­
tions). Exceptions such as page faults are associated with a process. The

15

System Overview

1.3.3.2

1.3.3.3

16

exception dispatcher generates a fatal bugcheck if an exception occurs
above IPL 2 or while the processor is executing on the interrupt stack.

• ASTs, asynchronous events that allow a process to receive notification
when external events have occurred, are not allowed. (The AST delivery
interrupt is not requested when the processor is in system state and not
granted until IPL drops below 2, an indication that the processor is leaving
system state.)

• No system services are allowed in the system state.

Process-Based Routines. Procedure-based code (RMS services, Files-11 XQP,
and system services) and exception service routines usually execute in the
context of the current process (on the kernel stack when in kernel mode).

The system services are implemented as procedures and are available to
all native mode languages. In addition, the fact that they are procedures
means that there is a call frame on the stack. Thus, a utility subroutine in a
system service can signal an error simply by putting the error status into
RO and issuing a RET instruction. All superfluous information is cleaned off
the stack by the RET instruction. The system service dispatchers (actually the
dispatchers for the CHMK and CHME exceptions) are exception service
routines.

System services must be called from process context. They are not avail­
able from interrupt service routines or other code (such as portions of the
initialization sequence) that execute outside the context of a process. One
reason for requiring process context is that the various services assume that
there is a process whose privileges can be checked and whose quotas can be
charged as part of the normal operation of the service. Some system services
reference locations in Pl space, a portion of address space only available
while executing in process context.

The pager (the page fault exception handler) is an exception service routine
that is invoked in response to a translation-not-valid fault. The pager thus
satisfies page faults in the context of the process that incurred the fault. Be­
cause page faults are associated with a process, the system cannot tolerate
page faults that occur in interrupt service routines or other routines that
execute outside the context of a process. The actual restriction imposed by
the pager is even more stringent. Page faults are not allowed above IPL 2. This
restriction applies to process-based code executing at elevated IPL as well as
to interrupt service code.

Interrupt Service Routines. By their asynchronous nature, interrupts execute
without the support of process context (on the systemwide interrupt stack):

• 1/0 requests are initiated through the $QIO system service, which can be
issued directly by the user or by some intermediary, such as RMS or the
Files-11 XQP, on the user's behalf. Once an I/O request has been placed into

1.3.3.4

1.3 Hardware Assistance to the Operating System Kernel

a device queue, it remains there until the driver is triggered, usually by an
interrupt generated in the external device.

Two classes of software interrupt service routines exist solely to support
the 1/0 subsystem. The fork level interrupts allow device drivers to lower
IPL in a controlled fashion. Final processing of I/O requests is also done in a
software interrupt service routine.

• The timer functions in the operating system include support in both the
hardware clock interrupt service routine and a software interrupt service
routine that actually services individual timer requests.

• Another software interrupt performs the rescheduling function, where one
process is removed from execution and another selected and placed into
execution.

Special Processes-Swapper and Null. The swapper and the null processes are
different from any other processes that exist in a VAX/VMS system. The
differences lie not in their operations but in their limited context.

The limited context of either of these processes is partly because these two
processes exist as part of the system image SYS.EXE. They do not have to be
created with the Create Process system service. Specifically, their PCBs and
process headers are assembled (in module PDAT) and linked into the system
image. Other characteristics of these two processes are listed here:

• Their process headers are static. There is no working set list and no process
section table. Neither process supports page faults. All code executed by
either process must be locked into memory in some way. In fact, the code of
both of these processes is part of the nonpaged executive.

• Both processes execute entirely in kernel mode, thereby eliminating the
need for stacks for the other three access modes.

• Neither process has a Pl space. The kernel stack for either process is lo­
cated in system space.

• The null process does not have a PO space either. The swapper uses an array
allocated from nonpaged pool as its PO page table when it swaps, writes
modified pages, and also during the part of process creation that takes place
in the context of the swapper process.

Despite their limited contexts, both of these processes behave in a normal
fashion in every other way. The swapper and the null processes are selected
for execution by the scheduler just like any other process in the system. The
swapper spends its idle time in the hibernate state until some component in
the system recognizes a need for one of the swapper functions, at which time
it is awakened. The null process is always computable but set to the lowest
software priority in the system (priority 0). All CPU time not used by any
other process in the system will be used by the null process.

17

System Overview

1.3.3.5 Special Subroutines. There are several utility subroutines within the operat­
ing system related to scheduling and resource allocation that are called from
both process-based code, such as system services, and from software interrupt
service routines. These subroutines are constrained to execute with the lim­
ited context of interrupt or system state. An example of such a routine is
SCH$QAST, which is called to queue an AST to a process. It may be invoked
from IPL 4 and IPL 7 interrupt service routines, as well as from various sys­
tem services.

1.3.4 Memory Management and Access Modes

The address translation mechanism is described in the VAX Architecture
Reference Manual. Two side effects of this operation are of special interest to
the VAX/VMS operating system. When a page is not valid, a translation-not­
valid exception is generated that transfers control to an exception service
routine that takes whatever steps are required to make the page valid. This
exception transfers control from a hardware mechanism, address translation,
to a software exception service routine, the page fault handler, and allows the
operating system to gain control on address translation failures to implement
its dynamic mapping of pages while a program is executing.

Before the address translation mechanism checks the valid bit in the page
table entry, a protection check is made to determine whether the requested
access will be granted. The check uses the current access mode in the PSL
(PSL<25:24>), a protection code that is defined for each virtual page, and the
type of access (read, modify, or write) to make its decision. This protection
check allows the operating system to make read-only portions of the execu­
tive inaccessible to anyone (all "access modes) for writing, preventing corrup­
tion of operating system code. In addition, privileged data structures can be
protected from even read access by nonprivileged users, preserving system
integrity.

1.3.5 Exceptions, Interrupts, and REI

1.3.5.1

18

The VAX exception and interrupt mechanisms are very important to the op­
eration of VMS. Below is a comparison of the exception and interrupt mecha­
nisms, followed by brief descriptions of features of the mechanisms which
are used by VMS.

Comparison of Exceptions and Interrupts. The following list summarizes
some of the characteristics of exceptions and interrupts:

• Interrupts occur asynchronously to the currently executing instruction
stream. They are actually serviced between individual instructions or at

1.3.5.2

1.3 Hardware Assistance to the Operating System Kernel

well-defined points within the execution of a given instruction. Exceptions
occur synchronously as a direct effect of the execution of the current in­
struction.

• Both mechanisms pass control to service routines whose addresses are
stored in the system control block (SCB). These routines perform excep­
tion-specific or interrupt-specific processing.

• Exceptions are generally a part of the currently executing process. Their
servicing is an extension of the instruction stream that is currently execut­
ing on behalf of that process. Interrupts are generally systemwide events
that cannot rely on support of a process in their service routines.

• Because interrupts are generally systemwide, the systemwide interrupt
stack is usually used to store the PC and PSL of the process that was inter­
rupted. Exceptions are usually serviced on the per-process kernel stack.
Which stack to use is usually determined by control bits in the SCB entry
for each exception or interrupt.

• Interrupts cause a PC/PSL pair to be pushed onto the stack. Exceptions
often cause exception-specific parameters to be stored in addition to a
PC/PSL pair.

• Interrupts cause the IPL to change. Exceptions usually do not have an IPL
change associated with them. (Machine checks and kernel-stack-not-valid
exceptions elevate IPL to 31.)

• An interrupt can be blocked by elevating IPL to a value at or above the IPL
associated with the interrupt. Exceptions, on the other hand, cannot be
blocked. However, some exceptions can be disabled (by clearing associated
bits in the PSL).

• When an interrupt or exception occurs, a new PSL is formed that summa­
rizes the new IPL, the current access mode (usually kernel), the stack in use
(interrupt or other), etc. One difference between exceptions and interrupts,
a difference that reflects the fact that interrupts are not related to the inter­
rupted instruction stream, is that the previous access mode field in the new
PSL is set to kernel for interrupts while the previous mode field for excep~
tions reflects the access mode in which the exception occurred.

Other Uses of Exceptions and Interrupts. In addition to the translation-not­
valid fault used by memory management software, the operating system also
uses the CHMK and CHME exceptions as entry paths to the executive. Sys­
tem services that must execute in a more privileged access mode use either
the CHMK or CHME instruction to gain access mode rights (see Figure 1-4). The
system handles most other exceptions by dispatching to user-defined condi­
tion handlers as described in Chapter 4.

Hardware interrupts temporarily suspend code that is executing so that an
interrupt-specific routine can service the interrupt. Each interrupt has a pri­
ority level, or IPL, associated with it. The CPU raises IPL when it grants the

19

System Overview

1.3.5.3

interrupt. High-level interrupt service routines thus prevent the recognition
of low-level interrupts. Low-level interrupt service routines can be inter­
rupted by subsequent high-level interrupts. Kernel mode routines can also
block interrupts at certain levels by specifically raising the IPL.

The VAX architecture also defines a series of software interrupt levels that
can be used for a variety of purposes. The VMS operating s-ystem uses them
for scheduling, 1/0 completion routines, and for synchronizing access to cer­
tain classes of data structures. Chapter 6 describes the software interrupt
mechanism and its use.

The REI Instruction. The REI instruction is the common exit path for inter­
rupts and exceptions. Many protection and privilege checks are incorporated
into this instruction. Because most fields in the PSL are not accessible to the
programmer, the REI instruction provides the only means for changing access
mode to a less privileged mode (see Figure 1-4). It is also the only way to reach
compatibility mode.

Although the IPL field of the PSL is accessible through the PR$_IPL pro­
cessor register, execution of an REI is a common way that IPL is lowered
during normal execution. Because a change in IPL can alter the deliverability
of pending interrupts, many hardware and software interrupts are delivered
after an REI instruction is executed.

1.3.6 Process Structure

1.4

The VAX architecture also defines a data structure called a hardware process
control block that contains copies of all a process's general registers when the
process is not active. When a process is selected for execution, the contents of
this block are copied into the actual registers inside the processor with a
single instruction, LDPCTX. The corresponding instruction that saves the con­
tents of the general registers when the process is removed from execution is
SVPCTX.

OTHER SYSTEM CONCEPTS

This chapter began by discussing the most important concepts in the VMS
operating system, process and image. There are several other fundamental
ideas that should be mentioned before beginning a detailed description of
VMS internals.

1.4.1 Resource Control

20

The VAX/VMS operating system protects itself and other processes in the
system from careless or malicious users, with hardware and software protec­
tion mechanisms, software privileges, and software quotas and limits.

1.4.1.1

1.4.1.2

1.4.1.3

1.4.1.4

1.4 Other System Concepts

Hardware Protection. The memory management protection mechanism that
is related to access mode is used to prevent unauthorized users from modify­
ing (or even reading) privileged data structures. Access mode protection is
also used to protect system and user code and other read-only data structures
from being modified by programming errors.

A more subtle but perhaps more important aspect of protection provided
by the memory management architecture is that the process address space of
one process (PO space or Pl space) is not accessible to code running in the
context of another process. When such accessibility is desired to share com­
mon routines or data, the operating system provides a controlled access
through global sections. System virtual address space is addressable by all
processes, although page-by-page protection may deny read or write access to
specific system virtual pages for certain access modes.

Process Privileges. Many operations that are performed by system services
could destroy operating system code or data or corrupt existing files if per­
formed carelessly. Other services allow a process to adversely affect other
processes in the system. The VMS operating system requires that processes
wishing to execute these potentially damaging operations be suitably privi­
leged. Process privileges are assigned when a process is created, either by the
creator or through the user's in the authorization file.

These privileges are described in the VAX/VMS System Manager's Refer­
ence Manual and in the VAX/VMS System Services Reference Manual. The
privileges themselves are specific bits in a quadword that is stored in the
beginning of the process header. (The locations and manipulations of the
several process privilege masks that the operating system maintains are dis­
cussed in Chapter 21.j When a VMS system service that requires privilege is
called, the service checks to see whether the associated bit in the process
privilege mask is set.

Quotas and Limits. The VMS operating system also controls allocation of its
systemwide resources, such as nonpaged dynamic memory and page file
space, through the use of quotas and limits. These process attributes are also
assigned when the process is created. By restricting such items as the number
of concurrent 110 requests or pending ASTs, VMS exercises control over the
resource drain that a single process can exert on system resources, such as
nonpaged dynamic memory. In general, a process cannot perform certain op­
erations (such as queue an AST) unless it has sufficient quota (nonzero
PCB$W _ASTCNT in this case). The locations and values of the various quo­
tas and limits used by the operating system are described in Chapter 20.

User Access Control.· The VMS operating system uses user identification
code IUIC) for two different protection purposes. If a process wishes to per­
form some control operation (Suspend, Wake, Delete, etc.) on another

21

System Overview

L4.2

1.4.2.1

22

process, it requires WORLD privilege to affect any process in the system. A
process with GROUP privilege can affect only other processes with the same
group number. A process with neither WORLD nor GROUP privilege can
affect only other processes with the same UIC.

VMS also uses UIC as a basis for protection of various system objects, such
as files, global sections, logical names, and mailboxes. The owner of a file, for
example, specifies what access to the file she grants to herself, to other pro­
cesses in the same group, and to other processes in the system.

A new Version 4 feature called an access control list (ACL) provides more
selective levels of sharing. An ACL lists individual users or groupings of users
who are to be allowed or denied access to a system object. ACLs specify
sharing on the basis of UIC, as well as other groupings, known as identifiers,
that can be associated with a process. As of Version 4.2, ACLs can be speci­
fied for files, directories, devices, global sections, and shareable logical name
tables.

Other System Primitives

Several other simple tools used by the VMS operating system are mentioned
freely throughout this book and are described in Chapters 2, 3, and 28.

Synchronization. Any multiprogramming system must take measures to pre­
vent simultaneous access to system data structures. The executive uses three
synchronization techniques. By elevating IPL, a subset of interrupts can be
blocked, allowing unrestricted access to systemwide data structures. The
most common synchronization IPL used by the operating system is IPL 8,
called IPL$_SYNCH.

For some data structures, elevated IPL is either an unnecessary tool or a
potential system degradation. For example, processes executing at or above
IPL 3 cannot be rescheduled (removed from execution). Once a process gains
control of a data structure protected by elevated IPL, it will not allow another
process to execute until it gives up its ownership. In addition, page faults are
not allowed above ·IPL 2 and so any data structure that exists in pageable
address space cannot be synchronized with elevated IPL.

The VMS executive requires a second synchronization tool to allow syn­
chronized access to pageable data structures. This tool must also allow a
process to be removed from execution while it maintains ownership of the
structure in question. One synchronization tool that fulfills these require­
ments is called a mutual exclusion semaphore (or mutex). Synchronization,
including the use of mutexes, is discussed in Chapter 2.

The VMS executive and other system components, such as the Files-11
XQP, RMS, and the job controller, use a third tool, the lock management
system services, for more flexible sharing of resources among processes. The

1.4.2.2

1.4.2.3

1.5

1.5 Layout of Virtual Address Space

lock management system services provide a waiting mechanism for pro­
cesses whose desired access to a resource is blocked. They also provide notifi­
cation to a process whose use of a resource blocks another process. Most
importantly, the lock management system services provide sharing of clus­
terwide resources. Chapter 13 describes the lock management system ser­
vices.

Dynamic Memory Allocation. The system maintains several dynamic mem­
ory areas from which blocks of memory can be allocated and deallocated.
Nonpaged pool contains those systemwide structures that might be manipu­
lated by (hardware or software) interrupt service routines or process-based
code executing above IPL 2. Paged pool contains systemwide structures that
do not have to be kept memory resident. The process allocation region and
the kernel request packet (KRP) lookaside list, both in process Pl space, are
used for pageable data structures that will not be shared among several pro­
cesses. Dynamic memory allocation and deallocation are discussed in detail
in Chapter 3.

Logical Names. The system uses logical names for many purposes, including
a transparent way of implementing a device-independent 1/0 system. The use
of logical names as a programming tool is discussed in the VAX/VMS System
Services Reference Manual. The internal operations of the logical name sys­
tem services, as well as the internal organization of the logical name tables,
are described in Chapter 28.

LAYOUT OF VIRTUAL ADDRESS SPACE

This section shows the approximate contents of the three different parts of
virtual address space.

1.5.1 System Virtual Address Space

The layout of system virtual address space is pictured in Figure 1-6. Details
such as the no-access pages at either end of the interrupt stack are omitted to
avoid cluttering the diagram. Table F-2 in Appendix F gives a more complete
description of system space, including these guard pages, system pages allo­
cated by disk drivers, and other details.

This figure was produced from two lists provided by the System Dump
Analyzer (SDA) Utility (the system page table and the contents of all global
data areas in system space) and from the system map SYS$SYSTEM:
SYS.MAP. The relationships between the variable size pieces of system space
and their associated SYSBOOT parameters are given in Appendix F.

23

System Overview

1.5.2

24

80000000

High address end
of system virtual
address space

~

~

System Service Vectors

Linked Driver Code and Data Structures

Nonpaged Executive Data

Nonpaged Executive Code

Pageable Executive Routines

XDEL TA (usually unmapped), INIT

I System Virtual Pages
Mapped to 110 Addresses

RMS Image
(RMS.EXE)

System Message File
(SYSMSG.EXE)

Pool of Unmapped System Pages

Restart Parameter Block

PFN Database

Paged Dynamic Memory

Nonpaged Dynamic Memory

Interrupt Stack

System Control Block

Balance Slots

System Header

System Page Table

Global Page Table

~

-!"

Static Portion (SYS.EXE)

Dynamically mapped at
inltialization time

Figure 1-6 Layout of System Virtual Address Space

Control Region (Pl Space)

Figure 1-7 shows the layout of Pl space. This figure was produced mainly
from information contained in module SHELL, which contains a prototype of
a Pl page table that is used whenever a process is created. An SDA listing of
process page tables was used to determine the order and size of the portions of
Pl space not defined in SHELL.

1.5 Layout of Virtual Address Space

Image-Specific Portion
of P1 Space
(Deleted at image exit
by MMG$1MGRESET)

Dynamic Permanent
Portion of P1 Space

Static Permanent
Portion of P1 Space

l of growth J
User Stack

Extra Image 1/0 Segment

Per-Process Message Section(s)

CLI Symbol Table

CLI Command Table

CU Image

Files-11 XOP Data

Files-11 XQP Image

Image 110 Segment

Process 1/0 Segment

Process Allocation Region

Channel Control Block Table

P1 Window to Process Header

RMS Data Pages

Per-Process Common Area
for Users

Per-Process Common Area
Reserved to DIGITAL

Compatibility Mode Data Page

VMS User Mode
Data Page

Security Audit Data Pages

Image Activator
Context Page

Generic CU Data Pages

Image Activator Scratch Pages

Debugger Context

Vectors for Messages and User-I/Witten System Services

Image Header Buffer

KAP Lookaside List

Kernel Stack

Executive Stack

Supervisor Stack

System Service
Vectors

P1 Pointer Page

Debugger Symbol Table
(not mapped if debugger not present)

Figure 1-7 Layout of Pl Space

40000000

7F

:: CTL$GLCTLBASVA
(Locates border between
image-specific and
process-permanent
pieces of P1 space)

:: MMG$GLCTLBASVA
(Locates initial low address
end of P1 space for each
process as it is created)

FFFFFF

25

This part of
PO space is
defined by the
linker and
mapped by the
image activator.

This part of
PO space is
not defined at
link time.

If either of
these pieces is
required, It is
mapped. Note
that both cannot

J.-

Native Mode Image

Not Mapped

Executable
Image

LIBRTL

LBRSHR

other shareable images

Debugger (LIB$DEBUG)
(if requested at link,

run, or execution time)

Traceback (LIB$TRACE)
(if not overridden at link

time and needed)

J-

0

The order of the images
in this portion is
undefined at link time.
The order is determined
by IMGACT at image
activation time.

POLR Pages

not mapped be mapped at 1
the same time. 1'"---------~ 3FFFFFFF

Figure 1-8 PO Space Allocation

This portion of PO

space is defined {
by the RSX-11M
task builder and
mapped by the
AME.·

TheAME is

mapped by the {
image activator
when it detects
that It is activating
a compatibility
mode image.

Compatibility Moda Image

Compatibillty
Mode Image

not mapped

RSX-11MAME
(RSX.EXE)

(BACKTRANS.EXE)
Native Mode Image

0

End of Compatibility
Mode Image

POLR Pages

not mapped 1-:

1._ ______ __.1 3FFFFFFF

1.5 Layout of Virtual Address Space

Some of the pieces of Pl space are created dynamically when the process is
created. These include a Pl map of process header pages, a command lan­
guage interpreter (CLI) if one is being used, a symbol table for that CLI, the
process allocation region, and the process 1/0 segment. In addition, the Files-
11 XQP and its data areas are mapped at process creation.

The two pieces of Pl space at the lowest virtual addresses (the user stack
and any extra image 1/0 segment) are created dynamically each time an
image executes and are deleted as part of image rundown. Appendix F con­
tains a description of the sizes of the different pieces of Pl space. Table F-5
gives a complete description of Pl space, including details, such as memory
management page protection and the name of the system component that
maps a given portion.

1.5.3 Program Region (PO Space)

Figure 1-8 shows a typical layout of PO space for both a native mode image
(produced by the VMS linker) and a compatibility mode image (produced by
the RSX-11M task builder). This figure is much more conceptual than the
previous two illustrations because the layout of PO space depends upon the
image being run.

By default, the first page of PO space (Oto lFF) is not mapped (protection set
to No Access). This no-access page allows easy detection of two common
programming errors, using zero or a small n:umber as the address of a data
location or using such a.small number as the destination of a control transfer.
(A link-time request or system service call can alter the protection of virtual
page zero. Note also that page zero is accessible to compatibility mode
images.)

The main native mode image is placed into PO space, starting at address
20016• Any shareable images that are position-independent and shared (for
example, LIBRTL) are placed at the end of the main image. The order in
which these shareable images are placed into the image is determined during
image activation.

If the debugger or the traceback facility is required, these images are added
at execution time (even if /DEBUG was selected at link time). This mapping
is described in detail in Chapter 2L

27

2

2.1

28

Synchronization Techniques

"Time," said George, "why I can give you a definition of time.
It's what keeps everything from happening at once."

Ray Cummings, The Man Who Mastered Time*

One of the most important issues in the design of an operating system is
synchronization. Especially in a system that is interrupt driven, certain se­
quences of instructions must be allowed to execute without interruption.
The VMS operating system raises processor interrupt priority level (IPL) to
block interrupts of equal and lower priority during the execution of critical
code paths.

Any operating system must also take precautions to ensure that shared
data structures are not being simultaneously modified by several routines or
being read by one routine while another routine is modifying the structure.
The VMS executive uses a combination of the following software techniques
and features of the VAX hardware to synchronize access to shared data
structures:

• Interlocked instructions
• Elevated IPL
• Serialized access
• Mutual exclusion semaphores, called mutexes
• VAX/VMS lock management system services

OVERVIEW

Synchronization is a term normally used to refer to the simultaneous occur­
rence of two or more events.

In a computer context, however, synchronization is the technique of block­
ing all but one of two or more events when their simultaneous occurrence
might disrupt the proper operation of the system.

One fundamental computer synchronization problem is the requirement
that a thread of execution change two storage locations as a single operation.
If either is changed, but not both, the storage is temporarily inconsistent. If
the thread of execution can be interrupted, after changing the first location

*Copyright © 1957 by Gabrielle Cummings; reprinted by courtesy of Forrest J Ackerman, 2495 Glen­
dower Ave., Hollywood, CA 90027.

2.1 Overview

and before changing the second, by another thread of execution which uses or
changes those locations, then access to those locations is not synchronized
and system disruption can occur.

Another fundamental synchronization problem is the requirement that a
thread of execution read a storage location and, depending on its value, write
a new value into the location. If the thread can be interrupted after the read
and before the write by another thread with the same intent toward that
location, then access to that location is not synchronized and system disrup­
tion can occur. Specifically, the modification of one of the threads can over­
lay the modification of the other.

There are a number of situations for which synchronization is an issue.
One example is a single CPU with multiple threads of execution simultane­
ously in progress. Another example is a system in which several independent
CPUs share some storage. This category includes not only multiprocessor
systems but also single CPU systems with intelligent 1/0 controllers.

Synchronization of memory and disk storage, though conceptually similar,
are different problems requiring different techniques.

When data structures in memory which require synchronized access are
accessed only by a single VAX CPU, VMS typically runs at raised IPL to block
interrupts during the relevant instruction sequences, although it may use
mutexes and locks where appropriate.

If a modification to a data structure accessed only by a single CPU can be
made with one uninterruptible instruction, then IPL need not be raised.
INSQUE and REM QUE are examples of such instructions; each is uninterruptible
and each changes two or more memory locations.
, Some types of single processor memory synchronization require specific
techniques:

• A data structure accessed from interrupt service routines is protected by
raising IPL to the highest interrupt level from which the structure is ac­
cessed (see Section 2.2.2).

• A data structure accessed by multiple processes from IPLs below 3 is pro­
tected by mutexes or lock management system services. Section 2.4 dis­
cusses mutexes and Section 2.5 briefly describes the lock management sys­
tem services.

• A process-private data structure accessed from a non-AST thread of execu­
tion and an AST thread of execution must be protected against concurrent
access. Access to the data structure can be synchronized by blocking AST
delivery, either by raising IPL to 2 or through the Set AST Enable
($SETAST) system service. The concept of AST reentrancy and ways of
achieving it are described in the Guide to Creating Modular Procedures on
VAX/VMS.

29

Synchronization Techniques

30

When there are independent processors accessing data structures in mem­
ory, synchronization requires memory interlocks. A memory interlock is a
mechanism to provide an atomic read-modify-write sequence to a location in
shared memory. The VAX architecture provides a number of instructions
which interlock memory. These consist of BBCCI, BBS SI, ADAWI, and INSQxI

and REMQxI, the instructions that manipulate the self-relative queues. The
operations of the interlocked instructions are described ih detail in the VAX
Architecture Reference Manual.

The following examples show synchronization of independent processors
accessing the same memory:

• The DR32 is a general purpose, intelligent data port that connects a VAX
internal memory bus to a bus accessible to foreign devices. An application
program accesses the DR32 through command and response queues in VAX
memory. Synchronizing access to the queues requires that both the DR32
and the application program use interlocked queue instructions. The user
interface to the DR32 is documented in the VAX/VMS 1/0 User's Reference
Manual: Part II.

• The CI adapter (for example, CI780) is a microcoded intelligent controller
that connects a VAX to a CI bus and communicates with its counterparts
on other nodes. The CI port driver communicates with the CI adapter
through command and response queues. Both the CI adapter and the port
driver must use interlocked queue instructions to access the queues.

• VMS systems sharing memory through MA780 controllers communicate
through a data area located in shared memory. The data area describes mail­
boxes, global sections, and common event flag clusters created in the shared
memory. VMS code on each processor executes interlocked instructions to
prevent concurrent access to the data area. User processes accessing a global
section in shared memory must also use interlocked instructions to syn­
chronize their access to data in the global section. Chapter 14 describes
shared memory support.

• VAX CPUs running asymmetric multiprocessing communicate through a
shared data structure located in nonpaged pool. VMS code on each processor
executes interlocked instructions to prevent concurrent access to the data
structure. Chapter 2 7 describes asymmetric multiprocessing support.

Another important synchronization issue for VMS involves disk storage.
Data structures on a shared disk (for example, files and records within files
and the actual disk structure) are protected by lock management system ser­
vices. This form of synchronization serves whether the disk is accessed by
multiple processes on a single system or by multiple processes on multiple
nodes of a VAXcluster. Lock management system services are the only clus­
terwide synchronization mechanism (see Section 2.5).

2.2

2.2 Elevated IPL

ELEVATED IPL

The primary purpose for raising IPL is to block interrupts at the selected IPL
value and all lower values of IPL. The operating system uses specific IPL
values to synchronize access to certain structures. For example, by raising
IPL to 23, all device interrupts are blocked, but interval timer interrupts at
IPL 24 can still be granted.

The IPL, stored in the Processor Status Longword (PSL) register bits
<20: 16>, is altered by writing the desired IPL value to the privileged register
PR$_IPL with the MTPR instruction. This change in IPL is usually accom­
plished in the operating system with one of two macros, SETIPL or DSBINT,
whose macro definitions are as follows:

.MACRO SETI PL IPL = #31

MTPR IPL, S"#PR$_IPL

.ENDM SETIPL

.MACRO DSBINT IPL = #31, DST -(SP)

MFPR S"#PR$_IPL, DST

MTPR IPL, S"#PR$_IPL

.ENDM DSBINT

The SETIPL macro changes IPL to the specified value. If no argument is
present, IPL is elevated to 31. The DSBINT macro first saves the current IPL
before elevating IPL to the specified value. If no alternate destination is speci­
fied, the old IPL is saved on the stack. The default IPL value is 31.

The DSBINT macro is usually used when a later sequence of code must
restore the IPL to the saved value (with the ENBINT macro). This macro is
especially useful when the caller's IPL is unknown. The SETIPL macro is
used when the IPL will later be explicitly lowered with another SETIPL or
simply as a result of executing an REI instruction. That is, the value of the
saved IPL is not important to the routine that is using the SETIPL macro.

The ENBINT macro is the counterpart to the DSBINT macro. It restores
the IPL to the value found in the designated source argument .

. MACRO ENBINT SRC = (SP)+

MTPR SRC,~#PR$_IPL

.ENDM ENBINT

Occasionally it is necessary to save an IPL value (to be restored later by the
ENBINT macro) without changing the current IPL. The SAVIPL macro per­
forms this function:

.MACRO SAVIPL DST = -(SP)

MFPR S"#PR$_IPL, DST

.ENDM SAVIPL

31

Synchronization Techniques

The successful use of IPL as a synchronization tool requires that IPL be
raised (not lowered) to the appropriate synchronization level. Lowering IPL
defeats any attempt at synchronization and also runs the risk of a reserved
operand fault when an REI instruction is later executed. (An REI instruction
that attempts to elevate IPL causes a reserved operand fault.)

Suppose a thread of execution modifying more than one location in a
shared database raises IPL to x to block interrupts from other accessors of the
database. The first thread of execution is interrupted after partially making
its modifications by a second thread running in response to a higher priority
interrupt. The shared database is now in an inconsistent state. If the second
thread were to lower IPL to x in a mistaken attempt at synchronization and
access the database, the second thread could receive incorrect data and/or
corrupt the database.

Integrity of the database would, however, be maintained if the second
thread of execution were to reschedule itself to run as the result of an inter­
rupt at or below x and access the database from the rescheduled thread.
"Forking" is the primary way in which an interrupt thread of execution re­
schedules itself to run at a lower IPL. Chapter 6 describes forking in more
detail.

2.2.1 Use of IPL$_ SYNCH

32

IPL 8 (IPL$_SYNCH) is the IPL at which the software timer routines execute.
These routines service timer queue entries and handle quantum expiration.
(The software timer interrupt is requested and granted at IPL 7, but the inter­
rupt service routine raises IPL and runs primarily at IPL$_SYNCH. See
Chapter 11 for further details.) IPL 8 is the level to which IPL must be raised
for any routine to access several systemwide data structures, for example, the
scheduler database. By raising IPL to 8, all other routines that might access
the same systemwide data structure are blocked from execution until IPL is
lowered. IPL 8 is also the IPL at which most driver fork processing occurs.

While the processor is executing at IPL 8, certain systemwide events such
as scheduling and 1/0 postprocessing are blocked. However, other more im­
portant operations, such as hardware interrupt servicing, can continue.

In previous versions of VMS, the value of IPL$_SYNCH was 7. Almost all
device driver fork processing occurred above IPL$_SYNCH, at IPL 8 and
higher IPLs. Thus the time the system spent at IPL$_SYNCH did not affect
1/0 processing. With VMS V4, the value of. IPL$_SYNCH has been changed
to IPL 8. This change was made to enable three executive components to run
at the same IPL: the distributed lock manager, system communications ser­
vices (SCS), and the CI port driver.

On a VAXcluster, the lock manager must communicate clusterwide with
its counterparts on other nodes to perform locking. The lock managers com-

2.2 Elevated IPL

municate using the message services of SCS. SCS is also used heavily by class
and port drivers and runs at the same IPL they do, IPL$_SCS, or 8. The SCS
port drivers must run at IPL 8 because some of them, for example, the UDA
port driver, run at IPL 8 to synchronize access to shared UNIBUS resources
and data structures.

In addition to having to communicate with SCS at IPL$_SCS, the lock
manager has another constraint. Its actions (granting locks, queueing ASTs,
placing processes into wait) result in modifications to the scheduler database,
which is synchronized at IPL$_ SYNCH. To simplify the interactions among
the lock manager, SCS, and other threads of execution modifying the sched­
uler database, IPL$_SYNCH and IPL$_SCS were made the same value by
changing the value of IPL$_SYNCH.

2.2.2 Other IPLs Used for Synchronization

2.2.2.1

Table 2-1 lists several IPLs that are used for synchronization purposes by the
system. Some of these levels are used to control access to shared data struc­
tures. Others are used to prevent certain events, such as a clock interrupt or
process deletion, from occurring while a block of instructions is executed.

IPL$_POWER. Routines in the operating system raise IPL to IPL$_POWER,
or 31, to block all interrupts, including power failure, an IPL 30 interrupt. IPL
is raised to this level only for a short period of time (usually less than ten
instructions once the system is initialized).

• Device drivers use IPL 31 just before they call IOC$WFixxCH to prevent a
powerfail interrupt from occurring.

Table 2-1 Common IPL Values Used by VAX/VMS for Synchronization

Value
Name (decimal)

IPL$_ POWER 31
IPL$_HWCLK1 24

UCB$B_DIPL2 20-23

UCB$B_FIPL2 8-11
IPL$_SYNCH 8

Meaning

Disable all interrupts

Block clock and device interrupts

Block interrupts from specific devices

Device driver fork levels

Synchronize access to certain system
data structures

IPL$_QUEUEAST 6 Device driver fork IPL that allows drivers to
elevate IPL to 8

IPL$_ASTDEL 2 Block delivery of ASTs (prevent process
deletion)

11nterval timer interrupts occur at IPL 22 or 24, depending on processor type.
2These symbols are offsets into a device unit control block.

33

Synchronization Techniques

2.2.2.2

2.2.2.3

2.2.2.4

34

• The entire bootstrap sequence operates at IPL 31 to put the system into a
known state before allowing interrupts to occur.

• Because the error logger routines can be called from anywhere in the execu­
tive, including fault service routine~ that execute at IPL 31 (such as ma­
chine check handlers), allocation of an error log buffer can only execute at
IPL 31. A corollary of this requirement demands that the ERRFMT process
execute at IPL 31 when it is altering data structures that describe the state
of the error log buffer. (As Chapter 8 describes, the copy is done at two IPL
levels. The error log buffer status flags and message counts are modified at
IPL 31. Then IPL is lowered to O; the contents of the error log buffer are
copied to the ERRFMT process's PO space, and the messages are formatted
and written to the error log file.)

IPL$_HWCLK. When IPL is raised to 24, interval timer interrupts are
blocked. On some VAX processors, the interval timer interrupts at IPL 22; on
others it interrupts at IPL 24. See Table 11-2 for a list of processor types and
associated interval timer IPLs. The software timer interrupt service routine
uses IPL 24 when it is comparing two quadword system time values, This IPL
prevents the system time from being updated while it is being compared to
some other time value. (This precaution is required because the VAX archi­
tecture does not contain an uninterruptible compare quadword instruction.)

Device IPL. Device drivers will raise IPL to the level at which the associated
device will interrupt to prevent the same device or other devices from gener­
ating interrupts while device registers are being read or written. This step
usually precedes the further elevation of IPL to 31 just described.

Fork IPL. Fork IPL (a value specific to each device type) is used by the execu­
tive to synchronize access to each unit control block. These blocks are ac­
cessed by device drivers and by procedure-based code, such as the completion
path of the $QIO system service and the Cancel 1/0 system service.

Device drivers also use their associated fork IPL as a synchronization level
when accessing data structures that control shared resources, such as multi­
unit controllers, datapath registers, or map registers. For this synchronization
to work properly, all devices sharing a given resource must use the same fork
IPL.

The use of fork IPL to synchronize access to unit control blocks works the
same war, that elevating IPL to IPL$_SYNCH does. That is, one piece of code
elevates IPL to the specified fork IPL (found at offset UCB$B_FJPL) and
blocks all other potential accesses to the UCB. Fork processing, the tech­
nique whereby device drivers lower IPL below device interrupt level in a
manner consistent with the interrupt nesting scheme, also uses the serializa­
tion technique described in Section 2.3.

2.2.2.5

2.2 Elevated IPL

IPL$_QUEUEAST. In previous versions of VMS, IPL$_SYNCH, the IPL at
which several systemwide databases were synchronized, was 7. Device driv­
ers that needed to execute code at IPL$_SYNCH forked to IPL 6, so that they
could raise IPL to IPL$_SYNCH. IPL 6 was named IPL$_QUEUEAST, since
its primary use as a fork IPL 6 was AST enqueuing. The terminal driver, for
example, might notify a requesting process about unsolicited input or a
CTRL/Y through an AST (see Chapter 7). The mailbox driver might also
queue an AST to notify a requesting process about unsatisfied reads and un­
solicited writes to a mailbox. Queuing an AST to a process requires scheduler
database modifications, which must be made at IPL$_SYNCH.

The IPL 7 interrupt could not be used to achieve the same result because it
is reserved for software timer interrupts. So this synchronization technique
used the first free IPL below 7, the IPL 6 software interrupt called
IPL$_QUEUEAST.

In VMS V4, the value of IPL$_SYNCH was changed to 8 for the reason
described in Section 2.2.1. As a result of this change, IPL$_QUEUEAST fork­
ing is generally unnecessary for serializing access to databases synchronized
at IPL$_SYNCH. Fork processes running at IPL 8 could remain at 8; device
interrupt service routines and fork processes running at IPLs above 8 could
fork to 8. However, many instances of IPL$_QUEUEAST fork processing
remain in VMS V4, unchanged from earlier versions. These result in placing a
somewhat higher priority on 1/0 processing.

2.2.3 IPL 2

IPL 2 is the level at which the software interrupt associated with AST deliv­
ery occurs. When system service procedures raise IPL to 2, they are blocking
the delivery of all ASTs, but particularly the kernel AST that causes process
deletion. In other words, if a process is executing at IPL 2 (or above), that
process cannot be deleted.

This technique is used in several places to prevent process deletion be­
tween the time that some system resource (such as system dynamic memory)
is allocated and the time that ownership of that resource is recorded (such as
the insertion of a data structure into a list). For example, the $QIO system
service executes at IPL 2 from the time that an I/O request packet is allocated
from nonpaged dynamic memory until that packet is queued to a unit control
block or placed into the I/O postprocessing queue.

The memory management subsystem uses IPL 2 to inhibit the special ker­
nel mode AST that is queued on 1/0 completion. This inhibition is necessary
at times when the memory management subsystem has some knowledge of
the process's working set and yet the execution of the 1/0 completion AST
could cause a modification to the working set, thereby invalidating that
knowledge.

35

Synchronization Techniques

2.3

IPL 2 also has significance for an entirely different reason: it is the highest
IPL at which page faults are permitted. If a page fault occurs above IPL 2, a
PGFIPLHI fatal bugcheck is issued~ If there is any possibility that a page fault
can occur, because either the code that is executing or the data that it refer­
ences is pageable, then that code cannot execute above IPL 2. The converse of
this constraint is that any code that executes above IPL 2, and all data refer­
enced by such code, must be locked into memory in some way. Appendix B
shows some of the techniques that the VMS executive uses to dynamically
lock code or data into memory so that IPL can be elevated above IPL 2.

SERIALIZED ACCESS

The software interrupt inechanism described in Chapter 6 provides no
method for counting the number of requested software interrupts. The VMS
operating system uses a combination of software interrupts and doubly
linked lists to cause several requests for the same data structure or procedure
to be serialized. The most important example of this serialization in the oper­
ating system is the use of fork processes by device drivers. The 1/0 post­
processing software interrupt is a second example of serialized access.

2.3.1 Fork Processing

36

Fork processing is the technique that allows device drivers to lower IPL in a
manner consistent with the interrupt nesting scheme defined by the VAX
architecture. When a device driver receives control in response to a device
interrupt, it performs whatever steps are necessary to service the interrupt at
device IPL. For example, any device registers whose contents would be
destroyed by another interrupt must be read before dismissing the device
interrupt.

Usually, there is some processing that can be deferred. For DMA devices,
an interrupt signifies either completion of the operation or an error. The code
that distinguishes these two cases and performs error processing is usually
lengthy and to execute at device IPL for extended periods of time would slow
down the system. For non-DMA devices that do not interrupt at too rapid a
rate, interrupt processing can be deferred in favor of other more important
device servicing.

In either case, the driver signals that it wants to delay further processing
until the IPL in the system drops below a predetermined value, the fork IPL
associated with this driver. This signaling is accomplished by calling a rou­
tine in the executive that saves some minimal context including the address
of the driver routine to be executed. The context is saved in a data structure
called a fork block, shown in Figure 6-2. The fork block is then inserted at the
end of the fork queue for that IPL value. A software interrupt at the appropri­
ate IPL is requested. Chapter 6 describes fork processing in further detail.

2.4 Mutual Exclusion Semaphores (Mutexes)

2.3.2 1/0 Postprocessing

2.4

Upon completion of an I/O request, there is a series of cleanup steps that
must be performed. The event flag associated with the request must be set. A
special kernel AST that will perform final cleanup in the context of the pro­
cess that initially issued the $QIO call must be queued to the process. This
cleanup must be completed for one 1/0 request before another is handled. In
other words, I/O postprocessing must be serialized.

This serialization is accomplished by performing the postprocessing opera­
tion as a software interrupt service routine (at IPL 4). When a request is recog­
nized as being complete, the 1/0 request packet is placed at the tail of the 1/0
postprocessing queue (at global listhead IOC$GL_PSBL), and a software in­
terrupt at IPL 4 is requested.

When the device driver recognizes that an I/O request has completed (ei­
ther successfully or unsuccessfully), it calls routine IOC$REQCOM, which
makes the IPL 4 software interrupt request at fork IPL (IPL 8 to IPL 11), so the
postprocessing interrupt is deferred until the IPL drops below 4.

Some 1/0 requests do not require driver action. When the Queue 1/0 Re­
quest ($QIO) system service or device-specific FDT routines detect that the
request can be completed without driver intervention, or if they detect an
error, they call one of the routines EXE$FINISHIO or EXE$FINISHIOC.
These two routines execute at IPL 2, so the requested software interrupt is
taken immediately. ACPs and Files-11 XQP also place I/O request packets
into the postprocessing queue and request the IPL 4 software interrupt.

MUTUAL EXCLUSION SEMAPHORES (MUTEXES)

The synchronization techniques described so far all execute at elevated IPL,
thus blocking certain operations, such as a rescheduling request, from taking
place. However, in some situations requiring synchronization, elevated IPL is
an unacceptable technique. One reason elevated IPL might be unacceptable is
that the processor would have to remain at an elevated IPL for an indeter­
minately long time because of the structure of the data. For example, associ­
ating to a common event block cluster requires a search of the list of com­
mon event blocks (CEBs) for the specified CEB. This might be a lengthy
operation on a system with many CEBs.

Furthermore, elevated IPL is unacceptable for synchronizing access to
pageable data. The memory management subsystem does not allow page
faults to occur when IPL is above 2. Thus, any pageable data structure cannot
be protected by elevating IPL to IPL$_SYNCH. For these two reasons, an­
other mechanism is required for controlling access to shared data structures.

The VMS operating system uses mutexes, mutual exclusion semaphores,
for this purpose. Mutexes are essentially flags that indicate whether a given
data structure is being examined or modified by one of a group of cooperating
processes. The implementation allows either multiple readers or one writer

37

Synchronization Techniques

38

Tabl.e 2-2 List of Data Structures Protected by Mutexes

Data Structure

Logical name table

I/O database2

Common event block list

Paged dynamic memory

Global section descriptor list

Shared memory global section descriptor table

Shared memory mailbox descriptor table

Not currently used

Line printer unit control block3

Not currently used

System intruder lists

Object rights block access control list4

Global Name of Mutex1

LNM$ALMUTEX

IOC$GLMUTEX

EXE$GL_CEBMTX

EXE$GLPGDYNMTX

EXE$GLGSDMTX

EXE$GLSHMGSMTX

EXE$GL_SHMMBMTX

EXE$GLENQMTX

UCB$1-LP _MUTEX

EXE$GLACLMTX

CIA$GLMUTEX

ORB$1-ACLMUTEX

1When a process is placed into an MWAIT state waiting for a mutex, the address of the
mutex is placed into the PCB$L_EFWM field of the PCB. The symbolic contents of
PCB$L_EFWM will probably remain the same for new releases, but the numeric contents
change. The numeric values are available from the system map, SYS$SYSTEM: SYS.MAP.

2This mutex is used by the Assign Channel and Allocate Device system services when
searching through the linked list of device data blocks and unit control blocks (UCBs) for a
device. It is also used whenever UCBs are added or deleted, for example, during the creation
of mailboxes and network devices.

3The mutex associated with each line printer unit does not have a fixed location like the
other mutexes. As a field in the unit control block (UCB), its location and value depend on
where the UCB for that unit is allocated.

4The mutex associated with each object rights block (ORB) does not have a fixed location
like the other mutexes. As a field in the object rights block, its location and value depend on
where the ORB is allocated.

of a data structure. Table 2-2 lists those data structures in the system that are
protected by mutexes.

The mutex itself consists of a single longword that contains the number of
owners of the mutex (MTX$W _OWNCNT) in the low-order word and status
flags (MTX$W _STS) in the high-order word (see Figure 2-1). The owner count
begins at -1 so that a mutex with a zero in the low-order word has one
owner. The only flag currently implemented indicates whether a write opera­
tion is either in progress or pending for this mutex (MTX$V _ WRT).

31 17 16 15

Status

0

Ownership Count

Write-in-Progress or
Write-Pending Flag

Figure 2-1 Format of Mutual Exclusion Semaphore
(MUTEX)

2.4 Mutual Exclusion Semaphores (Mutexes)

2.4.1 Locking a Mutex for Read Access

When a process wishes to gain read access to a data structure that is protected
by a mutex, it passes the address of that mutex to a routine called
SCH$LOCKR (in module MUTEX). If there is no write operation either in
progress or pending, the owner count of this mutex (MTX$W _QWNCNT) is
incremented, the count of mutexes owned by this process (stored at offset
PCB$W _MTXCNT in the software PCB) is also incremented, and control is
passed back to the caller, unless this is the only mutex owned by this process
(mutex count equals 1).

If this mutex is the first the process has locked and if the process is not a
real-time process, its current and base priorities are saved in the PCB at off­
sets PCB$B_PRISAV and PCB$B_PRIBSAV and its priority is elevated to 16.
The process receives a boost to hasten its execution and use of the mutex.
The mutex is owned for as little time ~s possible to avoid blocking other
processes which require it. The check on the number of owned mutexes pre­
vents a process that gains ownership of two or more mutexes from receiving a
permanent priority elevation to 16.

Routine SCH$LOCKR always returns successfully in the sense that, if the
mutex is currently unavailable, the process is placed into a miscellaneous
wait state (MWAIT) until the mutex is available for the process. When the
process eventually gains ownership of the mutex, control is then passed back
to the process. IPL is set to IPL$_ASTDEL (2) to prevent process deletion and
suspension while the mutex is owned by this process. This preventative step
must be taken because neither the Delete Process system service nor the
Suspend Process system service checks whether the target process owns any
mutexes. If the deletion or suspension were to succeed, the locked data struc­
ture would be lost to the system.

2.4.2 Locking a Mutex for Write Access

A process wishing to gain write access to a protected data structure passes the
address of the appropriate mutex to a routine called SCH$LOCKW (in mod­
ule MUTEX). This routine returns control to the caller with the mutex
locked for write access if the mutex is currently unowned. In addition, both
mutex counts (MTX$W _QWNCNT and PCB$W _MTXCNT) are incre­
mented, the process software priority is possibly altered, and IPL is set to 2.
An alternate entry point, SCH$LOCKNOWAIT, returns control to the caller
with RO<O> cleared (indicating failure) if the requested mutex is already
owned. For the regular entry point (SCH$LOCKW), if this mutex is owned,
the process is placed into the mutex wait state (MWAITJ. However, the write
pending bit is set so that future requests for read access will also be denied. In
a sense, this scheme is placing requests for write access ahead of requests for
read access. However, all that this check really does is prevent a continuous

39

Synchronization Techniques

stream of read accesses from keeping the mutex locked. When the mutex
count does go to -1 (no owners), it is declared available, and the highest
priority process waiting for the mutex is the one that will get first access to
the mutex, independent of whether that process is requesting a read or a
write access.

2.4.3 Mutex Wait State

When a process is placed into a mutex wait state, its stack is set up so that
the saved PC is the entry point of either the read-lock routine or the write­
lock routine. The PSL is adjusted so that the saved IPL is 2. The address of the
mutex that is being requested is placed into the software PCB at offset
PCB$L_EFWM. (Because the process is not waiting on an event flag, the field
is available for this purpose.) Table 2-2 lists the system global names of
mutexes whose addresses might be placed in PCB$L_EFWM.

2.4.4 Unlocking a Mutex

40

A process relinquishes ownership of a mutex by passing the address of the
mutex to be released to a routine called SCH$UNLOCK (also in module
MUTEX). This routine decrements the number of mutexes owned by this
process recorded in its PCB. If this process does not own any more mutexes
(PCB$W _MTXCNT contains zero), the saved base and current priorities (in
fields PCB$B_PRIBSAV and PCB$B_PRISAV) are established as the p Jcess's
new base and current priorities. If there is a computable resident process with
a higher priority than this process's restored priority, a rescheduling interrupt
is requested. This situation is known as "delayed preemption" of the current
process.

SCH$UNLOCK also decrements the number of owners of this mutex
(MTX$W _QWNCNT). If the owner count of this mutex does not go to -1,
there are other outstanding owners of this mutex, so control is simply passed
back to the caller.

If the count does become -1, this value indicates that this mutex is cur­
rently unowned. If the write-in-progress bit is clear, this indicates that there
are no processes waiting on this mutex and control is passed back to the
caller. (A waiting writer would set this bit. A potential reader is only blocked
if there is a current or pending writer.) If there are other processes waiting for
this mutex, SCH$UNLOCK scans the MWAIT queue to locate each process
whose PCB$L_EFWM field contains the address of the unlocked mutex. For
each process SCH$UNLOCK finds, it reports the availability of the mutex by
invoking a scheduler routine. The scheduler routine changes the process's
state to computable.

If the priority of any of the processes removed from the mutex wait state is

2.4 Mutual Exclusion Semaphores (Mutexes)

greater than or equal to the priority of the current process, a rescheduling
pass will occur that will select the highest priority process for execution. As
previously noted, there is no difference between processes waiting for read
access or write access. The criterion that determines who will get first
chance at ownership of the mutex is software priority.

2.4.5 Resource Wait State

The routines that place a process into a resource wait state and make re­
sources available share some code with the mutex locking and unlocking
routines and will be briefly described here. Chapter 10 describes system re­
sources which processes allocate.

When a process tries to acquire a resource that is unavailable, the resource­
allocating routine (for example, EXE$ALLOCBUF in the case of nonpaged
pool) dispatches to SCH$RWAIT, passing it the number of the unavailable
resource (in the case of nonpaged pool, RSN$_NPDYNMEM). The resource­
allocating routine must have already pushed a PSL onto the stack and raised
IPL to IPL$_SYNCH.

SCH$RWAIT (in module MUTEX) stores the resource number (instead of a
mutex address) in PCB$L_EFWM and changes the process's state to MWAIT.
(See Table 10-2 for a list of the resource names and numbers.) In addition,
SCH$RWAIT sets the bit corresponding to the resource number in the sys­
temwide resource wait mask SCH$GL"""'"RESMASK. SCH$RWAIT then
branches to SCH$WAITL.

SCH$WAITL (in module SYSWAIT) saves the process's context, inserts its
PCB into the MWAIT queue, and causes a new process to be selected for
execution. The PC and PSL saved in the waiting process's hardware PCB are
determined by the caller of routine SCH$RWAIT.

When such a resource becomes available, the resource-deallocating routine
(for example, EXE$DEANONPAGED) must call SCH$RAVAIL to ensure that
all processes waiting for the resource are made computable. SCH$RA VAIL (in
module MUTEX) clears the bit corresponding to the resource number in the
resource mask. If the bit was previously clear, there are no waiters and
SCH$RAVAIL returns to its invoker. If the bit was previously set, there are
processes waiting on this resource. The same routine that frees processes
waiting on a mutex is entered at this point. Offset PCB$L_EFWM now con­
tains a resource number instead of a mutex address, but this difference is a
conceptual difference that is invisible to the code that is actually executing.

The MWAIT state queue is scanned for all processes whose PCB$L_EFWM
field matches the number of the recently freed resource. All such processes
are made computable. If the new priority of any of these processes is larger
than or the same as the priority of the currently executing process, a resched­
uling interrupt is requested. In any event, all processes waiting for the now
available resource will compete for that resource based on software priority.

41

Synchronization Techniques

2.5

42

VAX/VMS LOCK MANAGEMENT SYSTEM SERVICES

So far, most of the methods of synchronization described in this chapter have
required elevated IPL, execution in kernel access mode, or both. Though
these techniques are powerful and effective in synchronizing access to sys­
tem data structures, there are other system applications in which elevated
IPL or kernel mode access are not really necessary, desirable, or allowed (for
example, RMS).

The VAX/VMS lock management system services (or the lock manager)
provide synchronization tools that can be invoked from all access modes.
Furthermore, the lock manager is the fundamental VAXcluster-wide syn­
chronization primitive. Lock management system services are used by RMS,
the file system, job controller, device allocation, and Mount Utility to pro­
vide clusterwide synchronization. The use of the VAX/VMS lock manage­
ment system services is described fully in the VAX/VMS System Services
Reference Manual; Chapter 13 in this book describes the internal workings
of the lock man~ger on a nonclustered VMS system.

3

3.1

Dynamic Memory

In this bright little package, now isn't it odd?
You've a dime's worth of something known only to God!

Edgar Albert Guest, The Package of Seeds

Some of the data structures described in this book are created when the sys­
tem is initialized; many others are created when they are needed and de­
stroyed when their useful life is finished. To store the data structures, virtual
memory must be allocated and deallocated in an orderly fashion.

The VMS operating system maintains a number of different areas for dy­
namic allocation of storage with different characteristics. This chapter de­
scribes the various areas of dynamic storage, their uses, and the algorithms
for allocation and deallocation of these areas.

DYNAMIC DATA STRUCTURES AND THEIR STORAGE AREAS

Almost all the VMS data structures that are created after system initializa­
tion are volatile, allocated on demand and deallocated when no longer
needed. These data structures have similarities of form (see Section 3.1.4),
although their memory requirements vary.

Memory requirements for dynamic data structures differ in a number of
ways:

• Pageability
Data structures accessed by code running at IPL 2 or below can be page­

able, whereas data structures accessed at higher IPLs cannot.
• Virtual location

Some data structures are local to one process, mapped in its per-process
address space; others must be mapped in system space, accessible to multi­
ple processes and to system context code.

• Protection
Many dynamic data structures are created and modified only by kernel

mode code, but some data structures are accessed by outer modes.

3.1.1 Storage Areas for Dynamic Data Stmctures

VMS provides different storage areas to meet the memory requirements of
dynamic data structures. There are several "pools" of storage for variable

43

.i:::. a .i:::. 8
!::>

t3
~

S;

Table3-l Comparison of Different Pool Areas s
0

Synchronization Type of Allocation Minimum ~
Pool Area Protection Technique List Quantum Request Characteristics

SYSTEM SPACE

Nonpaged pool ERKW Elevated IPL Variable 16 bytes 16 bytes Nonpageable,
extendable

LRP lookaside list ERKW None required Fixed @IOC$G1-LRPSIZE @IOC$G1-LRPMIN Nonpageable,
extendable

IRP lookaside list ERKW None required Fixed 208 bytes 1 +@IOC$G1-SRPSIZE Nonpageable,
extendable

SRP lookaside list ERKW None required Fixed @IOC$G1-SRPSIZE 16 bytes Nonpageable,
extendable

Paged pool ERKW Mutex Variable 16 bytes 16 bytes Pageable

PER-PROCESS SPACE

Process allocation region UREW Access mode Variable 16 bytes 16 bytes Pageable,
extendable
into PO space

KRP lookaside list URKW None required Fixed CTL$C_KRP _SIZE N onapplicable Pageable

3.1 Dynamic Data Structures and Their Storage Areas

length allocation: a nonpageable system space pool, a pageable system space
pool, a pageable per-process space pool, and a nonpageable shared memory
pool. In addition, "lookaside" lists of preformed fixed length packets enable
faster allocation and deallocation of the most frequently used sizes and types
of storage. These storage areas are summarized in Table 3-1 and described in
more detail in later sections of this chapter. One additional storage area, the
shared memory pool, is described in Chapter 14.

The next sections describe the basic methods for allocating and deallocat­
ing variable length storage and fixed length packets.

Used

Beginning of Pool Area
(filled in when system
is initialized)

0

Address of First Free Block
(modified by allocation
and deallocation routines)

(Zero in pointer
signifies end of list)

Figure 3·1 Layout of Unused Areas in Variable Length
Memory Pools

45

Table 3-2 Global Listheads for Each Pool Area

Pool Area

Nonpaged pool

Large request packet lookaside list

1/0 request packet lookaside list

Global Address of Pointer

EXE$GL_NONPAGED,
EXE$GLNONPAGED+4,
EXE$GL_NONPAGED+8,
MMG$GL_NPAGEDYN,
MMG$GL_NPAGNEXT

IOC$GLLRPFL,
IOC$GLLRPBL,
IOC$GLLRPSPLIT,
MMG$GLLRPNEXT

IOC$GLIRPFL,
IOC$GLIRPBL,
EXE$GLSPLITADR,
MMG$GLIRPNEXT

Use of These Fields

Synchronization IPL for nonpaged pool allocation
Address of next (first) free block
Dummy size of zero for listhead to speed allocation
Address of beginning of nonpaged pool area
Address of beginning of unexpanded pool area

Address of first free block
Address of last free block
Address of beginning of LRP area
Address of beginning of unexpanded LRP area

Address of first free block
Address of last free block
Address of beginning of IRP area
Address of beginning of unexpanded IRP area

s: s
0

Static or Dynamic1 ~
Dynamic2

Dynamic
Static
Static
Dynamic

Dynamic
Dynamic
Static
Dynamic

Dynamic
Dynamic
Static
Dynamic

Table 3-2 Global Listheads for Each Pool Area (continued)

Pool Area

Small request packet lookaside list

Paged pool

Process quota block lookaside list

Process allocation region

Kernel request packet lookaside list

Global Address of Pointer

IOC$GLSRPFL,
IOC$GLSRPBL,
IOC$GLSRPSPLIT,
MMG$GLSRPNEXT

EXE$GLPAGED,
EXE$GL_PAGED+4,
MMG$GLPAGEDYN

EXE$GLPQBFL,
EXE$GLPQBBL

CTL$GQ_ALLOCREG,
CTL$GQ_ALLOCREG+4,
CTL$GQ_PQALLOC,
CTL$GQ_POALLOC+4

CTL$GLKRPFL,
CTL$GLKRPBL,
CTL$GLKRP

Use of These Fields

Address of first free block
Address of last free block
Address of beginning of SRP area
Address of beginning of unexpanded SRP area

Address of next (first) free block
Dummy size of zero for listhead to speed allocation
Address of beginning of paged pool area

Address of first free block
Address of last free block

Address of next (first) free block
Dummy size of zero for listhead to speed allocation
Address of next (first) free block
Dummy size of zero for listhead to speed allocation

Address of first free block
Address of last free block
Address of beginning of area

Static or Dynamic1

Dynamic
Dynamic
Static
Dynamic

Dynamic
Static
Static

Dynamic
Dynamic

Dynamic
Static
Dynamic
Static

Dynamic
Dynamic
Static

1Static pointers are loaded at initialization time, and their contents do not change during the life of the .system. The contents of dynamic pointers change
as pool is allocated, deallocated, and expanded.

2The synchronization IPL is changed to 31 by INIT and by certain device driver initialization routines but is reset to 11 and generally remains at 11.

Dynamic Memory

3.1.2 Variable Length List Allocation Strategy

3.1.2.1

3.1.2.2

48

The variable length pools have a common structure. Each pool has a listhead
which contains the virtual address of the first unused block in the pool. The
first two longwords of each unused block in one of the pool areas are used to
describe the block. As illustrated in Figure 3-1, the first longword in a block
contains the virtual address of the next unused block in the list. The second
longword contains the size in bytes of the unused block. Each successive
unused block is found at a higher virtual address. Thus, each pool area forms
a singly linked memory ordered list. Table 3-2 lists the global names of the
variable length pool listheads.

Each variable length pool has its own set of allocation and deallocation
routines. All the allocation routines for the variable length pools round the
requested size up to the next multiple of 16 bytes to impose a granularity on
both the allocated and unused areas. Because all the pool areas are initially
page aligned, this rounding causes every structure allocated from the pool
areas to be at least octaword aligned.

The various allocation and deallocation routines call the lower-level rou­
tines EXE$ALLOCATE and EXE$DEALLOCATE, which support the struc­
ture common to the variable length lists. Each routine has two arguments:
the address of the pool listhead and the size of the data structure to be allo­
cated or deallocated. These general purpose routines are also used for several
other pools, including DCL's symbol table space, the NETACP's process
space pool, and the global page table. All the allocation and deallocation rou­
tines described in this chapter are in module MEMORYALC.

Allocation of Variable Length Pool. When the allocation routine
EXE$ALLOCATE is called, it searches from the beginning of the list until it
encounters the first unused block large enough to satisfy the request. If the fit
is exact, the allocation routine simply adjusts the previous pointer to point to
the next free block. If the fit is not exact, it subtracts the allocated size from
the original size of the block, puts the new size into the remainder of the
block, and adjusts the previous pointer to point to the remainder of the block.
That is, if the fit is not exact, the low address end of the block is allocated,
and the high address end is placed back on the list. The two possible alloca­
tion situations (exact and inexact fit) are illustrated in Figure 3-2.

Example of Allocation of Variable Length Pool. The first part of Figure 3-2
(Initial Condition) shows a section of paged pool and the pointer
MMG$GL_PAGEDYN, which points to the beginning of paged pool, and
EXE$GL_PAGED, which points to the first available block of paged pool. In
this example, allocated blocks of memory are indicated only as the total
number of bytes being used, with no indication of the number and size of the
individual data structures within each block.

3.1 Dynamic Data Structures and Their Storage Areas

Initial Condition 80 Bytes Allocated

:: MMG$GLPAGEDYN

224 Bytes in Use
(96 + 80 + 48 Bytes)

From listhead

Figure 3-2 Examples of Allocation of Variable Length
Pool

48 Bytes Allocated

From listhead

Following the allocation of a block of 80 bytes (an exact fit), the structure of
the paged pool looks like the second part of Figure 3-2 (80 Bytes Allocated).
Note that the discrete portions of 96 bytes and 48 bytes in use and the 80
bytes that were allocated are now combined to show simply a 224-byte block
of paged pool in use.

The third part of Figure 3-2 (48 Bytes Allocated) shows the case where a
48-byte block was allocated from the paged pool structure shown in the first
part of the figure. The 48 bytes were taken from the first unused block large
enough to contain it. (Note that allocation is done from the low address end
of the unused block.) Because this allocation was not an exact fit, an unused
block, 32 bytes long, remains.

49

Dynamic Memory

3.1.2.3

3.1.2.4

3.1.3

50

Deallocation of Variable Length Pool. When a block is deallocated, it must be
placed back into the list in its proper place, according to its address.
EXE$DEALLOCATE follows the unused area pointers until it encounters an
address larger than the address of the block to be deallocated. If the de­
allocated block is adjacent to another unused block, the two blocks are
merged into a single unused area.

This merging, or agglomeration, can occur at the end of the preceding un­
used block or at the beginning of the following block (or both). Because merg­
ing occurs automatically as a part of deallocation, there is no need for any
externally triggered cleanup routines.

Three sample deallocation situations, two of whieh illustrate merging, are
shown in Figure 3-3 and are described in Section 3.1.2.4.

Example of Deallocation of Variable Length Pool. The first part of Figure 3-3
(Initial Condition) shows the structure of an area of paged pool containing
logical name blocks for three logical names: ADAM, GREGORY, and
ROSAMUND. These three logical name blocks are bracketed by two unused
portions of paged pool, one 64 bytes long, the other 17 6 bytes long.

If the logical name ADAM is deleted, the structure of the pool is altered to
look like the structure shown in the second part. of Figure 3-3 (ADAM De­
leted). Because the logical name block was adjacent to the high address end of
an unused block, the blocks are merged. The size of the deallocated block
is simply added to the size of the unused block. (No pointers need to be
adjusted.)

If the logical name GREGORY is deleted, the structure of the pool is
altered to look like the structure shown in the third part of Figure 3-3
(GREGORY Deleted). The pointer in the unused block of 64 bytes is altered
to point to the deallocated block; a new pointer and size longword are created
within the deallocated block.

The fourth part of Figure 3-3 (ROSAMUND Deleted) shows the case where
the logical name ROSAMUND is deleted. In this case, the deallocated block
is adjacent to the low address end of an unused block, so the blocks are
merged. The pointer to the next unused block that was previously in the
adjacent block is moved to the beginning of the newly deallocated block. The
following longword is loaded with the size of the merged block (240 bytes).

Fixed Length ListAllocation Strategy

The fixed length lists have a common structure. Each is a doubly linked
queue with a listhead which points to the first and last unused block in the
list. A list of fixed length packets available for allocation is known as a
"lookaside" list. Figure 3-4 shows the form of a fixed length list.

Lookaside lists expedite the allocation and deallocation of the most com-

3.1 Dynamic Data Structures and Their Storage Areas

Logical Name Block
(48 Bytes)

Logical Name ADAM

Logical Name Block
(80 Bytes)

Logical Name GREGORY

Logical Name Block
(64 Bytes)

Logical Name ROSAMUND

From previous block

To next block

Logical Name Block
(80 Bytes)

Logical Name GREGORY

Logical Name Block
(64 Bytes)

Logical Name ROSAMUND

From previous block

To next block

Logical Name Block
(48 Bytes)

Logical Name ADAM

Logical Name Block
(80 Bytes)

Logical Name GREGORY

Figure 3-3 Examples of Deallocation of Variable Length
Pool

From previous block

To next block

From previous block

To next block

monly used sizes and types of storage. In contrast to variable length list allo­
cation, fixed length allocation is very simple. There is no overhead of search­
ing for blocks of free memory of sufficient size to accommodate a specific
request. Instead the appropriate listhead is selected and a packet is allocated
from the front of the list through a simple REMQUE instruction. Deallocation
to the back of the list is done by an INSQUE instruction. Examples of alloca­
tion and deallocation are shown in Figure 3-4.

51

Dynamic Memory

- - - - Previous Pointer
--- Current Pointer

// \ /O' // \ \
.-----.., .. 11 \ .. ~-~

Former
Last
Packet

t
Current Lookaside
Last Listhead
Packet
Deallocated
Via INSQUE

Figure 3-4 Fixed Length List Allocation and
Deallocation

Previous Current
First First
Packet Packet
Allocated
Via REMQUE

No additional synchronization of access to a lookaside list is required be­
yond that provided by the queue instructions.

Table 3-2 lists the global names of the fixed length pool listheads.

3.1.4 Dynamic Data Structures

52

A dynamic data structure, by convention, contains two self-describing fields:

• The size (in bytes) of the data structure in the word at offset 8
• The type code in a byte at offset 10

Data structures with a type code value equal to or larger than 96 also have a
one-byte subtype code at offset 11. The macro $DYNDEF in SYS­
$LIBRARY:LIB.MLB defines the possible values for the type and subtype
fields. The size, type, and subtype fields are defined in the third longword of
the data structure, leaving the first two longwords available to link the data
structure into a list. Figure 3-5 shows the standard dynamic data structure
format.

(SUBTYPEJl TYPE j SIZE
}

"SIZE"
Bytes
Long

1~ ___ ___.l ~

Figure 3-5 Dynamic Data Structure Format

3.2

3.2 Nonpaged Dynamic Memory Regions

The type field enables VMS to distinguish different data structures and to
confirm that a piece of dynamic storage contains the expected data structure
type. When a dynamic data structure is deallocated, the size field specifies
how much dynamic storage is being returned. At deallocation, a positive
value in the type field indicates a structure allocated from local memory, and
a negative indicates a structure allocated from shared memory.

The System Dump Analyzer (SDA) Utility uses the type and size fields to
produce a formatted display of a dynamic data structure and to determine the
portions of variable length pool that are in use.

NONPAGED DYNAMIC MEMORY REGIONS

Nonpaged dynamic memory contains data structures and code used by the
portions of the VMS operating system that are not procedure-based, such as
interrupt service routines and device drivers. These portions of the operating
system can use only system virtual address space and execute at elevated IPL,
requiring nonpaged dynamic memory rather than paged dynamic memory.

Nonpaged dynamic memory, more commonly known as nonpaged pool,
also contains data structures and code that are shared by several processes
and that must not be paged. Nonpageability is dictated by the constraint that
page faults are not permitted above IPL 2.

The protection on nonpaged pool is ERKW, allowing it to be read from
kernel and executive modes but written only from kernel mode.

Nonpaged pool is the most heavily used of the storage areas. It consists of a
variable length list and three lookaside lists. The lookaside lists provide for
the most frequently allocated nonpaged pool data structures. Nonpaged pool
is sometimes allocated explicitly from a lookaside list and sometimes allo­
cated implicitly from a. lookaside list as the result of a call to the general
routine that allocates nonpaged pool. Section 3.2.2 discusses alloc.ation in
detail.

3.2.1 Initialization of Nonpaged Pool Regions

The sizes of the variable nonpaged pool and the lookaside lists are deter­
mined by SYSBOOT parameters. Nonpaged pool is potentially extensible
during normal system operation. For each of the four regions of nonpaged
pool there are two SYSBOOT parameters, one to specify the initial size of the
region and another to specify its maximum size.

The size in bytes of the variable length region of nonpaged pool is con­
trolled by the SYSBOOT parameters NPAGEDYN and NPAGEVIR, both of
which are rounded down to an integral number of pages. During system ini­
tialization, sufficient contiguous system page table entries (SPTEs) are allo­
cated for the maximum size of the region, NPAGEVIR. Physical pages of

53

Dynamic Memory

54

memory are allocated for the initial size of the region, NPAGEDYN, and are
mapped using the first portion of allocated SPTEs. The remaining SPTEs are
left invalid. (PTEs are described in Chapter 14.)

During system operation, the failure of an attempt to allocate from the
variable nonpaged pool region results in an attempted expansion of the re­
gion, with physical page(s) allocated to fill in the next invalid SPTE(s). See
Section 3.2.4 for further details of pool expansion. The deallocation merge
strategy described in Section 3.2.3 requires that the newly extended nonpaged
dynamic region be virtually contiguous with the existing part and that the
four regions be adjacent. It is because of this restriction that the maximum
number of SPTEs are allocated contiguously for each region, even if some of
them are initially unused.

The lookaside lists are allocated during system initialization in the same
manner as the variable length region. A portion of the nonpaged system space
following the main portion of pool is partitioned into three pieces. One piece
is reserved for the IRP lookaside list, one for the LRP list, and one for the SRP
list. Table 3-3Hsts the SYSBOOT parameters relevant to each lookaside list.
The three pieces are then structured into a series of elements. Figure 3-6
shows the four regions of nonpaged pool. In each of the lists, the elements are
inserted into a list with the INSQUE instruction, resulting in a doubly linked
list of fixed-size list elements.

The size of · an IRP list element is determined by the symbol
IRP$C_LENGTH; in VMS Version 4, an IRP is 208 bytes.

The size of the elements in the SRP list is contained in the cell
IOC$GL_SRPSIZE, which is defined in module SYSCOMMON. This value
is determined from SYSBOOT parameter SRPSIZE. INIT rounds up SRPSIZE
to a multiple of 16.

The size of the elements in the LRP list is contained in the cell
IOC$GL_LRPSIZE, also. defined in module SYSCOMMON. This value is
determined from SYSBOOT 1 parameter LRPSIZE. SYSBOOT computes
IOC$GL_LRPSIZE by adding 76 to LRPSIZE and rounding up the sum to a
multiple of 16. The parameter LRPSIZE is intended to be the DECnet buffer
size, exclusive of a 76-byte internal buffer header. (Note that the output of
SHOW MEMORY displays the inclusive packet size.)

Table3-3 SYSBOOT Parameters Controlling Lookaside List Sizes

List Type Size of Packet Initial Count Maximum Count

SRP SRPSIZE SRPCOUNT SRPCOUNTV
IRP 208 IRPCOUNT IRPCOUNTV

LRP LRPSIZE + 761 LRPCOUNT LRPCOUNTV

1The actual packet size is the sum of LRPSIZE and 76, rounded up to a multiple of 16.

3.2 Nonpaged Dynamic Memory Regions

3.2.2 Allocation of Nonpaged Pool

There are a number of routines in module MEMORYALC that allocate
nonpaged pool. Some of these routines, such as EXE$ALLOCPCB or EXE$AL­
LOCTQE, allocate pool for a particular data structure, filling in its size and
type. Some routines, intended for use only within process context, condition­
ally place the process into resource wait, waiting for resource
RSN$_NPDYNMEM if pool is unavailable. (Chapter 10 discusses process
resource waits.) All of these routines invoke EXE$ALONONPAGED, the
general nonpaged pool allocation routine.

There are several instances in VMS of explicit allocation from a lookaside
list. When a routine such as the Queue 1/0 Request ($QIO) system service

IOC$GLLRPBL::

IOC$GLIRPBL::

Rest of
Non paged
Pool

: :MMG$GLNPAGEDYN

NEXT i-----+-- ::EXE$GLNONPAGED

SIZE
First
Unused
Block

Room for Expansion of Variable List : : MMG$GL_NPAGNEXT

LAP Lookaside List
: :10C$GLLRPSPLIT

~__.. _ _.__...__--1 "- ::IOC$GLLRPFL

: : MMG$Gl_LRPNEXT

Room for Expansion of LAP List

IRP Lookaside List
: :EXE$GLSPLITADR

~~---'--...._--! "'- : :IOC$GLIRPFL

: : MMG$GL_IRPNEXT

Room for Expansion of IRP List

SAP Lookaside List : : IOC$GLSRPSPLIT

-~-~--'---1 "'- : :IOC$GLSRPFL

: : MMG$GL_SRPNEXT

Room for Expansion of SAP List

Figure 3-6 Nonpaged Pool Regions

55

Dynamic Memory

56

SRPSIZE IRPSIZE LRPSIZE

t l h ~
SRP { IRP. ! LRP

00

IRPMIN LRPMIN

Figure 3-7 Lookaside List Allocation Ranges

needs an 1/0 request packet (IRP), it simply issues a REMQUE from the begin­
ning of this list (found through global label IOC$GL_IRPFL). Several other
system routines allocate IRPs this way. Only if the lookaside list is empty
(indicated by the V-bit set in the PSW following a REMQ!:E) would the general
nonpaged pool allocation routine have to be called.

Similarly, the Enqueue Lock Request ($ENQ) system service allocates pool
for lock blocks by removing an SRP from the lookaside list, located by the
global label IOC$GL_SRPFL. The SYSBOOT parameter SRPSIZE is con­
strained to be at least the size of a lock block. The $ENQ system service must
check, however, whether SRPSIZE is large enough to accommodate a re­
source block and, if it is not, call the general nonpaged allocation routine.

Because allocation and deallocation from a lookaside list are so much faster
than the general routines that allow any size block to be allocated or de­
allocated, special checks are built into the general nonpaged pool allocation
routine to determine whether the requested block can be allocated from one
of the lookaside lists. These checks compare the request size to the lists'
upper and lower limits.

Figure 3-7 shows the size ranges for the lookaside lists. The ranges are
defined so that the majority of requests can be satisfied from one of the
lookaside lists.

Requests which must be allocated from the variable list are either

• Larger than an LRP, or
• Larger than an IRP but smaller than the parameter LRPMIN

The symbolic names in the figure are defined as follows:

Symbol

SRPSIZE

IRPMIN

IRPSIZE

LRPMIN

LRPSIZE

Meaning

IOC$GL_SRPSIZE, the parameter SRPSIZE rounded up to a
multiple of 16

IOC$GL_IRPMIN, the sum of IOC$GL_SRPSIZE and 1

IRP$C_LENGTH rounded up to a multiple of 16, the
constant 208

IOC$GL_LRPMIN, parameter LRPMIN

IOC$GL_LRPSIZE, the sum of parameter LRPSIZE and 76

3.2 Nonpaged Dynamic Memory Regions

EXE$ALONONPAGED allocates nonpaged pool by the following steps:

1. It compares the requested size to the ranges just described to determine
which, if any, lookaside list it can use.

2. If none of the lookaside lists is appropriate, the pool must be allocated
from the variable length list.

3. If one of the lookaside lists is appropriate and the list is not empty, the
first packet is removed from the list and returned to the caller.

4. If one of the lookaside lists is appropriate but is empty, an attempt is made
to extend the list (see Section 3.2.4). If the list is extended, the allocation is
attempted again. If the lookaside list cannot be extended, the pool must be
allocated from the variable length list.

5. For variable length list allocation, EXE$ALONONPAGED rounds the allo­
cation size up to a multiple of 16 and calls the lower-level routine
EXE$ALLOCATE (described in Section 3.1.2).

EXE$ALONPAGVAR is a separate entry point to EXE$ALONONPAGED,
used to allocate pool explicitly from the variable length list. This entry point
should be used whenever multiple pieces of pool are allocated as a single
larger piece but deallocated in a piecemeal fashion. See Section 3.2.3 for more
information.

3.2.3 Deallocation of Nonpaged Pool

A consumer of nonpaged pool invokes EXE$DEANONPAGED to deallocate
nonpaged pool to any of the four regions. When EXE$DEANONPAGED is
called, it first checks whether the block was allocated from the main portion
of the pool or from one of the lookaside lists. The lookaside lists are divided
by the contents of the following global locations, beginning with the smaller
addresses:

IOC$GL_LRPSPLIT

EXE$GL_SPLITADR

IOC$GL_SRPSPLIT

Boundary between the main part of pool and the
LRP list

Boundary between the LRP and the IRP list

Boundary between the IRP and the SRP list

These addresses were determined by INIT when the lookaside lists were
initialized. Figure 3-6 shows the relationship of the lookaside lists to the rest
of nonpaged pool.

EXE$DEANONPAGED determines the list to which the piece of pool is
being returned by the following steps:

1. The address of the block being deallocated is compared to the contents of
global location IOC$GL_SRPSPLIT. If the address is greater, the block
came from the SRP list.

57

Dynamic Memory

2. If the address was less than the contents of IOC$GL_SRPSPLIT, the ad­
dress is compared to the contents of EXE$GL_SPLITADR. If the address is
greater, the block came from the IRP list.

3. If the address was less than the contents of EXE$GL_SPLITADR, the ad­
dress is compared to the contents of IOC$GL_LRPSPLIT. If the address is
greater, the block came from the LRP list.

4. If the address was less than the contents of IOC$GL_LRPSPLIT, the block
came from the main part of pool.

If the block was originally allocated from one of the lookaside lists, it is
returned there by inserting it at the end of the list with an INSQUE instruction.
The ends of the lookaside lists are indicated by the global labels
IOCGL_SRPBL, IOCGL_IRPBL, and IOC$GL_LRPBL. Note that by allo­
cating packets from one end of the list and putting them back at the other
end, a transaction history as long as the list itself is maintained. If the block
was originally allocated from the variable length list area, EXE$DEANON­
PAGED calls EXE$DEALLOCATE, the lower-level routine described in Sec­
tion 3.1.2.

EXE$DEANONPAGED also calls SCH$RAVAIL to declare the availability
of nonpaged pool for any process that might be waiting for resource
RSN$_NPDYNMEM. The consequences of this declaration are discussed
briefly in Section 3.2.5 and at greater length in Chapter 10.

Deallocating a block back to a list based on the address of the block has an
important implication. Lookaside list corruption will result if a nonpaged
pool consumer deallocates part of a lookaside list packet. That is, VMS treats
all lookaside packets as indivisible. A partial packet deallocated to a
lookaside list eventually will be allocated as a whole packet, resulting in
double use of the same memory. The entry point EXE$ALONPAGVAR
should be used for allocating nonpaged pool that may be deallocated in a
piecemeal way. EXE$ALONPAGVAR always allocates from the variable
length list.

3.2.4 Expansion of Nonpaged Pool

58

Dynamic nonpaged pool expansion is the creation of additional nonpaged
pool as it is needed. At system initialization, SYSBOOT allocates enough
system virtual address space for the maximum size of each nonpaged pool
region, but it only allocates enough physical memory for the initial size of
each region. When an attempt to allocate nonpaged pool is U:nsuccessful, the
pool can be expanded by allocating more physical memory for it and altering
the system page table accordingly.

When routine EXE$ALONONPAGED fails to allocate nonpaged pool from
any of the four regions, it attempts to expand nonpaged pool by invoking the
routine EXE$EXTENDPOOL (in module MEMORYALC).

EXE$EXTENDPOOL examines each list (lookaside lists and variable

3.2 Nonpaged Dynamic Memory Regions

list) in turn. If a list is empty and is not at its maximum size,
EXE$EXTENDPOOL attempts to allocate a page of physical memory. First a
check is made to see if a physical page can be allocated without reducing the
number of physical pages available to the system below the minimum re­
quired. Expansion of pool must leave sufficient pages to accommodate the
sum of the maximum working set size, the modified list low limit, and the
free list low limit. If a page can be allocated, EXE$EXTENDPOOL places its
page frame number (PFN) in the first invalid SPTE for that list, and sets the
valid bit. The new virtual page and any fragment from the previous virtual
page are formatted into packets of the appropriate size and placed on the list.
EXE$EXTENDPOOL records the size and address of any fragment left from
the new page.

If EXE$EXTENDPOOL is able to expand any of the nonpaged lists, it re­
ports that resource RSN$..:NPDYNMEM is available for any waiting
processes. (See Chapter 10 for more information on scheduling and event
reporting.)

For proper synchronization of system databases, the resource availability
report and the allocation of physical memory must not be done from a thread
of execution running as the result of an interrupt above IPL$.:.SYNCH. For
this reason, EXE$EXTENDPOOL examines the PSL to determine at what IPL
the system is running and whether the system is running on the interrupt
stack. If EXE$EXTENDPOOL has been entered from an interrupt service rou­
tine running above IPL$_SYNCH, EXE$EXTENDPOOL creates an IPL 6 fork
process tq expand the lists at some later time when IPL drops below 6 and
returns an allocation failure status to its invoker.

Nonpaged pool expansion enables automatic system tuning. The penalty
for setting an inadequate initial allocation size is the increased overhead in
allocating requests that cause expansion. An additional minor physical pen­
alty is that unnecessary PFN database is built for those physical pages that
are subsequently added to nonpaged pool as a result of expansion. The cost is
about 4 percent of the size of the page per added page.

The penalty for a maximum allocation that is too large is one SPTE for
each unused page, or less than l percent. If the maximum size o~ a lookaside
list is too small, system performance may be adversely affected when the
system is prevented from using the lookaside mechanism for pool requests.
If the maximum size of the variable length region is too small, processes
may be placed into the MWAIT state, waiting for nonpaged pool to become
available.

3.2.5 Nonpaged Pool Synchronization

Elevated IPL is used to serialize access to the nonpaged pool variable length
list. The IPL used is that stored in the longword immediately preceding the
pointer to the first unused. block in the variable length list (see Table 3-2).

59

Dynamic Memory

60

The allocation routine for the nonpaged pool variable list raises IPL to the
value found here before proceeding. While the system is running, this long­
word usually contains an 11. The value of 11 was chosen because device
drivers running at fork level frequently allocate dynamic storage and IPL 11
represents the highest fork IPL currently used in the operating system. (An
implication of this synchronization IPL value is that device drivers must not
allocate nonpaged pool while executing at device IPL in response to a device
interrupt.)

During initialization, the contents of this longword are set to 31 because
the rest of the code in the system initialization routines (module INIT) exe­
cutes at IPL 31 to block all interrupts. INIT is described in detail in Chapter
25. Changing the contents of this longword avoids lowering IPL as a side
effect of allocating space from nonpaged pool. The value is reset to 11
after INIT has finished its allocation but before INIT passes control to the
scheduler.

The nonpaged pool allocation routines that run in process context raise IPL
to IPL$_SYNCH before invoking EXE$ALONONPAGED. If EXE$ALO­
NONPAGED fails to allocate the pool, these routines test PCB$V _
SSRWAIT in PCB$L_STS. If it is set, they place the process into resource
wait, waiting for RSN$_NPDYNMEM. They run at IPL$_SYNCH to block
deallocation of pool and the accompanying report of resource availability be­
tween the time of the allocation failure and the time the process is actually
placed into a wait.

IPL is also a consideration for deallocation of nonpaged pool, but for a dif­
ferent reason. Although nonpaged pool can be allocated from fork processes
running at IPL levels up to IPL 11, it may not be deallocated as a result of an
interrupt above IPLLSYNCH. The reason for limiting the IPL is that
nonpaged pool is a systemwide resource that processes might be wait­
ing for. EXE$DEANONPAGED notifies the scheduler that the resource
RSN$_NPDYNMEM is available. The scheduler in turn checks whether any
processes are waiting for the nonpaged pool resource. All these modifications
to the scheduler database must take place at IPL$_ SYNCH, and the interrupt
nesting scheme requires that IPL never be lowered below the IPL value at
which the current interrupt occurred. This rule dictates that all pool be de­
allocated from a thread of execution running as the result of an IPL 8 or lower
interrupt.

Code executing as the result of an interrupt at IPL 9 or above deallo­
cates nonpaged pool through routine COM$DRVDEALMEM (in module
COMDRVSUB). If COM$DRVDEALMEM is called from IPL 8 or below, it
merely deallocates the pool, jumping to EXE$DEANONPAGED. If, however,
COM$DRVDEALMEM is called from above IPL 8, it transforms the block
that is to be deallocated into a fork block (see Figure 6-2), and requests an IPL
6 software interrupt. (Note that the block to be deallocated must be at least

3.2 Nonpaged Dynamic Memory Regions

24 bytes, large enough for a fork block. If it is not, COM$DRVDEALMEM
issues a nonfatal bugcheck and returns to its invoker.) The code that executes
as the IPL 6 fork process (the saved PC in the fork block) simply issues a JMP

to EXE$DEANONPAGED to deallocate the block. Because EXE$DEANON­
PAGED is entered at IPL 6, the synchronized access to the scheduler's data­
base is preserved. (This technique is similar to the one used by device drivers
that need to interact with the scheduler by declaring ASTs. The attention
AST mechanism is briefly described in Chapter 2 and discussed in greater
detail in Chapter 7.)

By convention, process context code which allocates a nonpaged pool data
structure executes at IPL 2 or above as long as the data structure's existence
is recorded solely in a temporary process location, such as in a register or on
the stack. Running at IPL 2 blocks AST delivery and prevents the possible
loss of the pool if the process were to be deleted.

3.2.6 Uses of Nonpaged Pool

Nonpaged pool serves many purposes. This section describes typical uses
of the nonpaged pool lists. Note, however, that nondefault choices for
SYSBOOT parameters LRPSIZE, LRPMIN, and SRPSIZE may result in differ­
ent usage.

The variable length list is used for allocating nonpaged pool that does not
fit the allocation constraints of the lookaside lists. Typically, device drivers
and the larger unit control blocks describing 1/0 device units are allocated
from the variable length list. Also, process control blocks (PCBs), which con­
tain process-related information that must remain resident, are allocated
from· the variable length list. Nonpaged pool is also allocated during early
stages of system initialization. SYSBOOT loads several images into nonpaged
variable length pool. These include the system disk driver, terminal driver,
and CPU-dependent routines. The detailed use of nonpaged pool by the ini­
tialization routines is described in Chapter 25.

The LRP lookaside list is typically used by DECnet for receiving messages
from other nodes. On a system connected to a CI bus, CI datagrams, used to
provide best-effort message service among the nodes on the CI, may be allo­
cated from the LRP lookaside list. On a system with a relatively large value
for LRPSIZE, many loaded images, such as device drivers, may be allocated
from the LRP lookaside list rather than from the variable length list.

The IRP lookaside list is typically used for the following data structures:

• 1/0 and class driver request packets, which describe a particular 1/0 request
• Job information blocks, which contain the quotas and limits shared by

processes in a job
• Resource blocks, used by the lock management system services

61

Dynamic Memory

3.3

62

• Volume control blocks, which describe the state of a mounted disk or tape
volume

• File control blocks, which describe the state of an open file
• Unit control blocks, which describe the state of an 1/0 device unit
• Larger device driver buffered 1/0 buffers
• On a system with a CI bus, CI messages, used to provide highly reliable

communication· among the nodes on the CI

The SRP lookaside list is typically used for the following data structures:

• Lock and resource blocks, used by the lock management system services
• Window control blocks, which contain the location of a file's extents
• Timer queue elements, which describe time-dependent requests such as

Schedule Wakeup ($SCHDWK) system service requests
• Smaller device driver buffered 1/0 buffers
• Interrupt dispatch and channel (controller) request blocks, which describe

the state of a device controller

PAGED POOL

Paged dynamic memory contains data structures that are used by multiple
processes but that are not required to be permanently memory resident. Its
protection is ERKW, allowing it to be read from kernel and executive modes
but written only from kernel mode.

During system initialization, SYSBOOT reserves system virtual address
space for paged pool, placing its starting address in MMG$GL_PAGEDYN.
The SYSBOOT parameter PAGEDYN specifies the size of this area in bytes.
Paged pool is created as a set of demand zero pages. System initialization code
running in the context of the swapper process initializes the pool as one
data structure encompassing the entire pool and places its address in
EXE$GL_PAGEDYN. That initialization incurs a page fault and thus re­
quires process context.

Process context kernel mode code calls the routine EXE$ALOPAGED to
allocate paged pool and EXE$DEAPAGED to deallocate paged pool. These
routines (all in module MEMORYALC) call the lower-level variable length
allocation and deallocation routines described in Section 3.1.2.

If an allocation request cannot be satisfied, EXE$ALOPAGED returns to its
caller with a failure status. The caller may return an error, for example,
SS$_INSFMEM, to the user program, or the caller may place the process into
resource wait, waiting for resource RSN$_PGDYNMEM.

Whenever paged pool is deallocated, EXE$DEAPAGED calls SCH$RAVAIL
to declare the availability of paged pool for any waiting process. Chapter 10
describes process resource waits.

Paged pool requires little system overhead, one SPTE per page of pool. Be-

3.4 Process Allocation Region

cause paged pool is created as demand zero system page table entries (see
Chapter 14), it expands on demand through page faults.

Because this storage area is pageable, code which accesses it must run at
IPL 2 or below while accessing it, Elevated IPL, therefore, cannot be used for
synchronizing access to the paged pool list or to any data structures allocated
from it. A mutex called EXE$GL_PGDYNMTX serializes access to the paged
pool list. Both EXE$ALOPAGED and EXE$DEAPAGED lock this mutex for
write access.

By convention, process context code which allocates a paged pool data
structure executes at IPL 2 or above as long as the data structure's existence
is recorded solely in a temporary process location, such as in a register or on
the stack. Running at IPL 2 blocks AST delivery and prevents the possible
loss of the pool if the process were to be deleted.

The following data structures are located in the paged pool area:

• The shareable logical name tables and logical name blocks
• The Files-11 XQP "I/O buffer cache," which is us.ed for data such as file

headers, index file bit map blocks, directory data file blocks, and quota file
data blocks

• ·Global section. descriptors, which are used when a global section is mapped
or unmapped

• Mounted volume list entries, which associate .a mounted volume name
with its cortesponding logical name and unit control block address

• Access control list elements, which specify what access to an object is al­
lowed for different classes of users

• Dafa structures Tequired by the Install Utility to .describe known images
Any image that is installed has a known file entry created to describe it.

Some frequently accessed known images also have their image headers per­
manently resident iri paged pool. These data structures are described in
more detail in Chapter 21.

• Process quota blocks (PQBs), which are used during process cr.eation tempo­
rarily to store the quotas and. limits of the new process

PQBs, mftially allocated f~om paged pool, are not deallocated back to the
paged pool list. Instead, they are queued to a lookaside list whose listhead is
at global label EXE$GL_PQBFL. Process .creation code attempts to allocate a
PQB by removing an element from this queue, as a faster alternative to gen­
eral paged pool allocation.

3.4 PROCESS ALLOCATION REGION

The process allocation region contains variable length data structures that
are used only by a single process and are not required to be permanently

63

Dynamic Memory

64

memory resident. Its protection is set to UREW, allowing executive and ker­
nel modes to write it and any access mode to read it.

The process allocation region consists of a Pl space variable length pool
and, with VMS Version 4, may include a PO space variable length pool as well.
The PO space allocation pool is useful only for image-specific data structures
that do not need to survive image exit. The Pl space pool can be used for both
image-specific data structures and data structures, such as logical name ta­
bles, that must survive the rundown of an image.

During process startup, EXE$PROCSTRT reserves Pl address space for
the process allocation region. SYSBOOT parameter CTLPAGES specifies the
number of pages in the Pl pool. There is no global pointer that locates the
beginning of the process allocation region. The routine EXE$PROCSTRT ini­
tializes the pool as one data structure, encompassing the whole pool, and
places its address in CTL$GQ_ALLOCREG. As pool is allocated and de­
allocated, the contents of CTL$GQ_ALLOCREG are modified to point to the
first available block.

Executive or kernel mode code running in process context calls
EXE$ALOP1PROC or EXE$ALOPIIMAG to allocate from the process alloca­
tion region and EXE$DEAP1 to deallocate a data structure to the region.
These routines are in module MEMORYALC. When the data structure must
be allocated from the Pl pool, EXE$ALOP1PROC is used. When the data
structure is image-specific, EXE$ALOPIIMAG is used.

Initially, both these routines call EXE$ALLOCATE with the address of
CTL$GQ_ALLOCREG. However, if the process allocation region reaches
a threshold of use specified by SYSBOOT parameter CTLIMGLIM,
EXE$ALOPIIMAG cannot allocate from Pl space. If the current image has
not been linked with the option NOPOBUFS, EXE$ALOPIIMAG creates a PO
process allocation region of at least 16 pages using the Expand Region
($EXPREG) system service; EXE$ALOPIIMAG initializes it as a data
structure encompassing the entire region and places its address in
CTL$GQ_POALLOC. At image rundown, PO space is deleted and
CTL$GQ_POALLOC is zeroed. If the current image has been linked with
NOPOBUFS, the allocation fails and status SS$_INSFMEM is returned.

Both EXE$ALOPIIMAG and EXE$ALOP1PROC put the address of the ap­
propriate listhead in a register and call EXE$ALLOCATE to perform the vari­
able length allocation described in Section 3.1.2. The EXE$DEAP1 routine
determines whether the block being deallocated is from the PO or Pl space
pool and calls EXE$DEALLOCATE with the address of the appropriate
listhead.

There is no locking mechanism currently used for either the process alloca­
tion region or the process logical names found there. However, the allocation
routine executes in kernel mode at IPL 2, effectively blocking any other

3.5

3.5 KRP Lookaside List

mainline or AST code from executing and perhaps attempting a simultaneous
allocation from the process allocation region.

The following data structures are located in the process allocation region:

• The process-private logical name tables and logical name blocks
• Data structures, called image control blocks, built by the image activator to

describe what images have been activated in the process
• Rights database identifier blocks, which contain RMS context (internal file

and stream identifiers) for the rights database file
• A context block in which the Breakthrough ($BRKTHRU) system service

maintains status information as the service asynchronously broadcasts
messages to the terminals specified by the user

There is enough room in the process allocation region for privileged appli­
cation software to allocate reasonably sized process-specific data structures.

KRP LOOKASIDE LIST

VMS Version 4 adds a Pl space lookaside list for process-private kernel mode
data structures that are not required to be permanently memory resident.
The protection on this storage area is URKW, allowing it to be read from any
mode but modified only from kernel mode.

Virtual address space for this list is defined at assembly time of the SHELL
module, which defines the fixed part of Pl space. Space is defined based on
the two globals CTL$C_KRP _COUNT and CTL$C_KRP _SIZE, the number
of the KRP packets to create, and the size of a packet. The EXE$PROCSTRT
routine, in module PROCSTRT, initializes the list, forming packets and in­
serting them in the list at CTL$GL_KRPFL and CTL$GL_KRPBL.

A KRP packet is used as pageable storage, local to a kernel mode subrou­
tine. KRPs should be used only for temporary storage that is deallocated be­
fore the subroutine returns. The most common use of KRPs is to store an
equivalence name returned from a logical name translation. Formerly, space
was allocated on the kernel stack for this purpose, but the VMS Version 4
increase in size of equivalence names to 255 bytes made use of the kernel
stack impractical.

Allocation and deallocation to this list is through INSQUE and REMQUE in­
structions. Both allocation and deallocation are always done from the front of
the list. There is no need for synchronization other than that provided by the
queue instructions. Because KRPs are used only for storage local to the execu­
tion of a procedure, a failure to allocate a KRP is very unexpected and indi­
cates a serious error rather than a temporary resource shortage. Kernel mode
code which is unsuccessful at allocating from this list thus generates the fatal
bugcheck KRPEMPTY.

65

PART II/Control Mechanisms

4 Condition Handling

"Would you tell me, please, which way I ought to go from
here?"
"That depends a good deal on where you want to get to, 11 said
the Cat.

Lewis Carroll, Alice's Adventures in Wonderland

The VAX architecture defines a generalized uniform condition handling facil­
ity for two classes of conditions:

• Conditions detected and generated by hardware/microcode are called ex­
ceptions.

• Conditions detected and generated by software are called software condi­
tions.

The VAX/VMS operating system provides this facility for users and also uses
the facility for its own purposes.

This chapter describes how VMS dispatches on exceptions and software
conditions to user-defined procedures called condition handlers. It also
briefly describes how VMS services exceptions which it handles itself.

4.1 OVERVIEW OF CONDITIONS

4.1.1 Overview of Exceptions

An exception is the CPU's response to an anomaly or error it encounters
while executing an instruction, for example, a divisor of zero in a DIVL

instruction. The hardware/microcode responds by changing the flow of in­
struction execution to an exception service routine pointed to by an
anomaly-specific longword vector in the system control block (SCB).

The VAX architecture defines approximately 20 different exceptions, each
with its own SCB vector and exception service routine. The exceptions de­
fined by the VAX architecture can be divided into two categories based on
whether VMS allows user-defined procedures to handle the exception.

VMS does not allow user-defined procedures to handle

• Inner mode exceptions indicating fatal software or hardware errors (for ex­
ample, machine checks)

• Exceptions used by VMS in the course of normal system operations (page
faults, CHMK, CHME, and subset instruction emulation exceptions)

69

Condition Handling

These exceptions are always handled by exception service routines that are
part of VMS.

VMS allows all other exceptions to be handled by a user-supplied proce­
dure, if any is provided. Characteristically these exceptions affect only the
current process. A user-defined procedure to handle an exception is called a
condition handler.

When an exception occurs for which VMS allows condition handling, VMS
performs a search algorithm on a list of possible condition handlers. VMS
calls any condition handlers it finds.

The condition handler can examine the parameters of the exception and
either take some action (possibly to remove or bypass the exception) or resig­
nal it to another condition handler. If the condition handler resignals, VMS
continues its search.

4.1.2 Overview of Software Conditions

4.2

A software condition is an error or anomaly detected by an image and treated
in a particular way. When the software detects such an error, it transforms it
into a software condition by calling one of two Run-Time Library procedures.
By calling LIB$SIGNAL (if the image is to continue) or LIB$STOP (if the
image is to be aborted), the same VMS condition handler search used for
exceptions is invoked.

OVERVIEW OF THE VAX CONDITION HANDLING FACILITY

The VAX condition handling facility defines the declaration of a condition
handler, the search for a condition handler, and the responses available to a
condition handler. The condition handling facility provides that software
conditions (errors detected by software rather than by CPU microcode) be
directed to the same condition handlers as exceptions. Thus, application soft­
ware can centralize its handling of errors, both hardware and software.

The term "condition" refers to an exception or software condition on
which VMS dispatches to user-defined condition handlers. VMS calls a condi­
tion handler with an argument, sometimes called a signal or signal name,
which identifies what type of condition occurred.

The VAX/VMS System Services Reference Manual and the VAX/VMS Run­
Time Library Routines Reference Man,ual describe the declara.tion and cod­
ing of condition handlers.

4.2.1 Goals of the VAX Condition Handling Facility

70

A major goal of the VAX condition handling facility is to provide an easy-to­
use, general purpose mechanism with the operating system so that applica­
tion programs and other layered products, such as compilers, can use this

4.2 Overview of the VAX Condition Handling Facility

mechanism rather than inventing their own application-specific tools. Other
explicit and implicit goals of the VAX condition handling facility are the
following:

• The condition handling facility should be included in the base system ar­
chitecture so that it is available as a part of the base system and not as part
of some software component. The space reserved for condition handler ad­
dresses in the first longword of the call frame accomplishes this goal.

• By including the handler specification in the procedure call frame, condi­
tion handling is made an integral part of a procedure rather. than merely a
global facility within a process. Including the handler specification as part
of the call frame contributes to the general goal of modular procedures and
allows condition handlers to be nested. The nested inner handlers can ei­
ther service a detected exception or pass it along to some outer handler in
the calling hierarchy.

• Some languages, such as BASIC and PL/I, have signaling and error handling
as part of the language specification. These languages can use the general
mechanism rather than inventing their own procedures.

• There should be little or no cost to procedures that do not establish han­
dlers. Further, a procedure that does establish a handler should incur little
overhead for establishing it, with the expense in time being incurred when
an error actually occurs.

• As far as the user or application programmer is concerned, there should be
no difference in the appearance of exceptions and software conditions.

4.2.2 Features of the VAX Condition Handling Facility

Some of the features of the VAX condition handling facility show how these
goals were attained. Others show the general desire to produce an easy-to-use
but general condition handling mechanism. Features of the VAX condition
handling facility include the following:

• A condition handler has three options available to it. The handler can fix
the condition (continuing). If the handler cannot fix the condition, it passes
the condition on to the next handler in the calling hierarchy (resignaling).
The handler can alter the flow of control (unwinding the call stack).

• Because a condition handler is itself a procedure, it has its own call frame
with its own slot for a condition handler address. This condition handler
address gives a handler the ability to establish its own handler to field errors
that it might cause.

• Space and time overhead was minimized by using only a single longword
per procedure activation for handler address storage. There is no cost in
time for a procedure that does not establish a handler. A procedure that
does establish a handler can do so with a single MOVAx instruction. No time
is spent looking for a condition handler until a signal is actually generated.

71

Condition Handling

4.3

• The mechanism is designed to work even if a condition handler is written
in a language that does not produce reentrant code. Thus, if a condition
handler written in FORTRAN generated an error, that error would not be
reported to the same handler.

In fact, the special actions that are taken if multiple signals are active has
a second benefit, namely that no condition handler has to worry about er­
rors that it generates, because a handler can never be called in response to
its own signals.

• Uniform dispatching for exceptions and software conditions is accom­
plished by providing the same dispatcher for both. Software conditions are
generated by calling either LIB$SIGNAL or LIB$STOP, procedures in the
Run-Time Library. These procedures jump to SYS$SRCHANDLER, a global
location in the system service vectors. SYS$SRCHANDLER transfers
control to the executive routine EXE$SRCHANDLER (in module
EXCEPTION). Exception service routines also transfer control to
EXE$SRCHANDLER. While the initial execution of these two mechanisms
differs slightly, reflecting their different initial conditions, they eventually
transfer to the same routine so that the information reported to condition
handlers is independent of the initial detection mechanism.

• By making condition handling a part of a procedure, high-level languages
can establish handlers that can examine a given signal and determine
whether the signal was generated as a part of that language's support li­
brary. If so, the handler can attempt to fix the error in the manner defined
by the langi.iage. If not, the handler passes the signal along to procedures
further up the call stack.

EXCEPTIONS

The primary differences between exceptions and software conditions are the
mechanism that generates them and the initial state of the stack that con­
tains the condition parameters.

4.3.1 Exception Mechanism

72

Exceptions are anomalies detected by the hardware/microcode. When an ex­
ception is detected, the processor may change access mode and stack. It
pushes the exception PC and PSL (and possible exception-specific parame­
ters) onto the stack on which the exception is to be serviced. After the excep­
tion information has been pushed onto the stack, control is passed to an
exception-specific service routine whose address is stored in a vector in the
SCB. Figure 4-1 shows the SCB and Figure 5-1 shows the format of an SCB
vector.

The stack on which the exception is serviced depends on the access mode
in which the exception occurred, whether the CPU was previously executing
on the interrupt stack and what type of exception occurred.

4.3 Exceptions

~

~ Exception Vectors
:PR$_SCBB

The System Control Block
Base Register (SCBB)

Processor Fault contains the physical
Vectors address of the page-

aligned System Control

Software Interrupt
Block (SCB).

Vectors

Clock and Console
Vectors

l J 1
~

::EXE$GLSCB

The system virtual address

CPU-Specific of the SCB is ·stored

Adapter and in global location EXE$GL_S CB.

Device Interrupts

Figure 4·1 System Control Block

In general, a VAX CPU uses the low two bits of the SCB vector to deter­
mine on which stack the exception is serviced. Table 4-1 summarizes the
stack choices resulting from the architectural mechanisms and VMS SCB
vector definitions. Its first column lists the exception name. The second col­
umn specifies the access mode in which the exception occurred. The third
column specifies whether the interrupt stack is in use at the time of the
exception. The fourth column shows the stack on which the exception is
serviced.

The exception PC that the processor pushes depends on the nature of the
exception, that is, whether the exception is a fault, trap, or abort:

• An exception that is a fault (see Table 4-2) causes the PC of the faulting
instruction to be pushed onto the stack. When a fault is dismissed with an
REI instruction, the faulting instruction executes again.

• An exception that is a trap (see Table 4-2) pushes the PC of the next instruc­
tion onto the destination stack. An instruction that causes a trap does not
reexecute when the exception is dismissed with an REI instruction.

• An exception that is an abort causes the PC of the next instruction to be
pushed onto the stack. Aborts are _not restartable. Exceptions that are aborts
include kernel stack not valid, some machine check codes, and some re­
served operand exceptions.

73

Condition Handling

4.3.2

74

Table 4-1 Selection of Exception Stack

Exception Name

Machine check

Kernel stack not valid

Subset exception (MicroVAX)

Change mode to x

Change mode to x

All others

All others

All others

PSL<PRVMOD>

Any

K
Any

Any

K

U,S,E

K

K

PSL<IS>

0 or 1

0

0 or 1

0

1

0

0

Stack

ISP

ISP

Same1

xSP2

Halt3

KSP

KSP

ISP4

11£ the exception was a VAX subset instruction emulation exception, then the current
stack is used. Section 4.3.5 briefly describes these exceptions.

2The stack used is the destination of the CHMx instruction. Note, however, that a CHMx
instruction issued from an inner access mode in an attempt to reach a less privileged (outer)
access mode will not have the desired effect. The mode indicated by the instruction is
minimized with the current access mode to determine the actual access mode that will be
used. The exception is generated through the indicated SCB vector, but the final access
mode is unchanged. In other words, as illustrated in Figure 1-4, the CHMx instructions can
only reach equal or more privileged access modes.

3 Execution of a CHMx instruction while the CPU is running on the interrupt stack is
prohibited by the VAX architecture and results in a CPU halt.

4VMS does not expect exceptions to occur when it is operating on the interrupt stack. If
an exception other than subset instruction emulation occurs on the interrupt stack, the
exception dispatcher generates an INVEXCEPTN fatal bugcheck (see Chapter 8).

The VAX exception vectors are listed in Table 4-2. Most of the exceptions
that are listed in this table are handled in a uniform way by the operating
system. The actions that the VMS executive takes in response to these ex­
ceptions are the subject of most of this chapter. Some of the exceptions,
however, result in special action on the part of the operating system. These
exceptions, noted in Table 4-2, are discussed in the next section.

Exceptions That the VMS Executive Treats in a Special Way

Although the operating system provides uniform handling of most excep­
tions generated by users, several possible exceptions are used as entry points
into privileged system procedures. Other exceptions can only be acted upon
by the executive. It makes no sense for these procedures to pass information
about the exceptions along to users' programs.

• The machine check exception is a processor-specific condition that may or
may not be recoverable. Machine checks are serviced on the interrupt stack
at IPL 31. The machine check exception service routine generates a fatal
bugcheck in response to a nonrecoverable kernel or executive mode ma-

4.3 Exceptions

Table4-2 Exception Vectors in the System Control Block

Vector Extra
Offset Exception Name Parameters Type

4 Machine check1 0 Abort/Fault

8 Kernel stack not valid1 0 Abort

16 Reserved/privileged instruction 1 0 Fault

20 Customer reserved instruction 0 Fault

24 Reserved operand 0 Abort/Fault
28 Reserved addressing mode 0 Fault

32 Access violation 2 Fault

36 Translation not valid1 2 Fault
40 Trace pending 0 Fault
44 BPT instruction 0 Fault

48 Compatibility mode Abort/Fault

52 Arithmetic Fault/Trap

64 CHMK1 Trap

68 CHME1 Trap

72 CHMS Trap

76 CHMU Trap

200 Subset instruction emulation1 10 Trap

204 Suspended instruction emulation1 0 Trap

1These exceptions result in special action on the part of the operating system.

chine check. Nonrecoverable machine checks in supervisor and user modes
are reported through the normal exception dispatch method. Chapter 8 dis­
cusses the machine check exception service routine and the bugcheck
mechanism.

• A kernel-stack-not-valid exception indicates that the kernel stack was not
valid while the processor was pushing information onto the stack during
the initiation of an exception or interrupt. This exception is serviced on the
interrupt stack at IPL 31. Its exception service routine generates a
KRNLSTAKNV fatal bugcheck. (See Chapter 8 for more information on
bugchecks.)

• A reserved/privileged instruction exception can indicate an attempt to exe­
cute an opcode not supported by the CPU. This can occur, for example,
when a floating-point instruction is attempted on a CPU without
microcode for that type of floating-point format. Software emulation of
floating-point instructions is invoked through a condition handler for this
exception.

Two other opcodes not supported by the CPU are reserved for use by VMS
as bugchecks. The service routine for this exception must therefore test

75

Condition Handling

whether it was entered as the result of executing one of the bugcheck op­
codes. If one of the bugcheck opcodes was executed, the service routine
transfers control to the bugcheck routine, EXE$BUG_CHECK. The han­
dling of bugchecks is described in Chapter 8.

• The translation-not-valid exception is a signal that a reference was made to
a virtual address that is not currently mapped to physical memory. This
exception is the entry path into the VMS paging facility. Its service routine,
the page fault handler, is discussed in detail in Chapter 15.

• The CHMK and CHME exceptions are the mechanisms used by RMS ser­
vices and system services to reach a more privileged access mode. The dis­
patching scheme for these services is described in Chapter 9. These two
exceptions are paths into the operating system that allow nonprivileged
users to reach an inner access mode in a controlled fashion.

• The VAX subset instruction emulation exceptions assist VMS in emulating
string and decimal instructions not present in Micro VAX hardware. When
the Micro VAX CPU encounters a string or decimal opcode not present in its
instruction set, it evaluates the operands and pushes exception parameters
on the stack describing the opcode and its operands. The CPU then dis­
patches through the SCB to the service routine, VAX$EMULATE (in
module [EMULAT]VAXEMUL). The second emulation vector is used to dis­
patch back into the instruction emulation code at VAX$EMULATE_FPD,
following an exception which the emulation code reflects back to the user.

For more details on these exceptions, see the MicroVAX I CPU Technical
Description.

4.3.3 Other Exceptions

The rest of the exceptions are handled uniformly by their exception service
routines. These exceptions are all reported to condition handlers established
by the user or by the system, rather than resulting in special system action
such as occurs following a change-mode-to-kernel exception or a translation­
not-valid fault (page fault).

For all exceptions that will eventually be reported to condition handlers,
the CPU has pushed a PC/PSL pair onto the destination stack. In addition,
from zero to two exception-specific parameters are pushed onto the destina­
tion stack (see Table 4-2). Finally, the CPU passes control to the exception
service routine whose address VMS placed into the SCB when the system was
initialized.

4.3.4 Initial Action of Exception Service Routines

76

These exception service routines all perform approximately the same action.
The exception name (of the form SS$_exception-name) and the total number
of exception parameters (from the exception name to the saved PSL inclusive)

4. 3 Exceptions

are pushed onto the stack. The destination stack now contains a list, called
the signal array, which is a VAX argument list (see Figure 4-2). The excep­
tions that the operating system handles in this uniform way, their names,
and the total number of signal array elements, are listed in Table 4-3.

After such a service routine has built this array, it jumps to EXE$EXCEP­
TION (in module EXCEPTION). EXE$EXCEPTION tests whether the excep­
tion occurred in process context (see Section 4.7.3.1). If it did not, EXE$­
EXCEPTION generates the fatal bugcheck INVEXCPTN. Otherwise,
EXE$EXCEPTION builds a second argument list, which is called the mecha­
nism array.

The mechanism array, which is pictured in Figure 4-4, serves the following
purposes:

• It records the values of RO and Rl at the time of the exception (the proce­
dure calling standard prohibits their being saved in a procedure entry mask).

• It records the progress made in the search for a condition handler.

All exceptions (except for CHME, CHMS, CHMU, and the subset instruc­
tion emulation exceptions) are initially reported on the kernel stack (as­
suming the processor is not aiready on the interrupt stack). The exception
reporting mechanism assumes that the kernel stack is valid. The decision
to use the kernel stack was made to avoid the case of attempting to report
an exception on, for example, the user stack, only to find that the user
stack is corrupted in some way (invalid or otherwise inaccessible), result­
ing in another exception. If a kernel-stack-not-valid exception is generated
while reporting an exception, the operating system generates a fatal
bugcheck.

l N

SS$_exception-name

I-: From O to 2 k
::(Exception·Specific Z

Parameters (Table 4-2)

Exception PC

Exception PSL

Pushed
by software

Pushed
by hardware

N is the number of longwords from
SS$_exception-name to the exception
PSL. It ranges from 3 to 5.

Arguments are pushed onto the kernel
stack except for CHMS and CHMU
exceptions where the supervisor or
user stack is used.

Figure 4-2. Signal Array Built by CPU and Exception
Routines

77

Condition Handling

Table 4-3 Exceptions That Use the Dispatcher in Module EXCEPTION

Signal
Dispatch Array Extra Parameters in

Exception Name Signal Name Notes 1 Size Signal Array2

Access violation SS$_ACCVIO CD@ 5 Signal(2) = Reason mask
Signal(3) = Inaccessible

virtual address

Arithmetic (See Table 4-4) <D 3 None3

exception

AST delivery SS$_ASTFLT @ 7 Signal(2) = SP value at fault
stack fault Signal(3) = AST parameter of

failed AST
Signal(4) = PC at AST delivery

interrupt4

Signal(S) = PSL at AST delivery
interrupt

Signal(6) = PC to which AST
would have been delivered

Signal(?) = PSL at which AST
would have been delivered

BPT instruction SS$_ BREAK 3
Change mode to SS$_CMODSUPR © 4 Signal(2) Change mode code

supervisor

Change mode to SS$_CMODUSER © 4 Signal(2) Change mode code
user

Compatibility SS$_COMPAT © 4 Signal(2) Compatibility
mode exception code

Debug signal SS$_ DEBUG @ 3
Machine check SS$_MCHECK 3 None5

Customer SS$_0PCCUS 3
reserved
instruction

Reserved SS$_0PCDEC ® 3
privileged
instruction

78

4.3 Exceptions

Table 4-3 Exceptions That Use the Dispatcher in Module EXCEPTION (continued)

Signal
Dispatch Array Extra Parameters in

Exception Name Signal Name Notes1 Size Signal Array2

Page fault SS$_PAGRDERR ® 5 Signal(2) = Reason mask
read error Signal(3) = Inaccessible

virtual address

Reserved SS$_RADRMOD 3
addressing
mode

Reserved operand SS$_ROPRAND 3

System service SS$_SSFAIL 4 Signal(2) = System service
failure final status

Trace pending SS$_ TBIT 3

1These numbers refer to list items in Section 4.3.5.
2 Additional parameters in the signal array are represented in the following way:

Signal(O) = N Number of additional longwords in signal array

Signal(l)

Signal(2)

Signal(3)

Exception name

First additional parameter

Second additional parameter

Signal(N - 1) Exception PC

Signal(N) Exception PSL
3 The arithmetic exception has no extra parameters, despite the fact that the hardware pushes an exception

code onto the kernel stack. VMS modifies this hardware code into an exception-specific exception name (see
Table 4-4) of the form Signal(l) = 8 •code + SS$_ARTRES.

4 The AST delivery code exchanges the interrupt PC/PSL pair and the PC/PSL to which the AST would
have been delivered.

5Machine check exceptions that are reported to a process do not have any extra parameters in the signal
array. The machine check parameters have been examined, written to the error log, and discarded by the
machine check handler (see Chapter 8).

79

Condition Handling

However, the exception must eventually be reported back to the access
mode in which the exception occurred. EXE$EXCEPTION creates space on
the stack of the mode in which the exception occurred. The exception param­
eter lists are then copied to that stack, where they will become the argument
list that is passed to condition handlers.

EXE$EXCEPTION then passes control to routine EXE$SRCHANDLER, in
module EXCEPTION, which locates any condition handlers that have been
established for the access mode of the exception. Its search method and the
list of information passed to condition handlers is described in Section 4.5.

4.3.5 More Special Cases in Exception Dispatching

80

Although the procedure previously described is a reasonable approximation
to the operation of the exception service routines in the operating system,
there are detailed differences that occur in the dispatching of several excep­
tions that deserve special mention. The following notes refer to Table 4-3:

CD User stack overflow is detected by the hardware as an access violation at
the low address end of Pl space. The access violation exception service
routine tests whether the inaccessible virtual address is at the low end of
Pl space. If it is, additional virtual address space is created below the stack
and the exception dismissed. Thus, the user stack expands automatically
and transparently. User and system condition handlers are notified about
such an exception only if the stack expansion is unsuccessful.

®There are ten possible arithmetic exceptions that can occur. They are dis­
tinguished in the hardware by different exception parameters. However,
the exception service routine does not simply push a generic exception
name onto the stack, resulting in a four parameter signal array. Rather, the
exception parameter is used by the exception service routine to fashion a
unique exception name for each of the possible arithmetic exceptions. The
exception parameters and their associated signal names are listed in Table
4-4.

®There are several conditions listed in Table 4-3 that are detected by soft­
ware rather than by hardware. However, these software conditions are not
generated by LIB$SIGNAL or LIB$STOP. Rather, they are detected by the
executive, and control is passed to the same routines that are used for
dispatching exceptions. The conditions are dispatched through the exe­
cutive because they are typically detected in kernel mode but must be
reported back to some other access mode. The code to accomplish this
access mode switch is contained in EXCEPTION. The conditions that fall
into this category are system service failure, page fault read error, insuffi­
cient stack space while attempting to deliver an asynchronous system trap
(AST), software-detected access violation, and the signal SS$_DEBUG.

4. 3 Exceptions

Table 4-4 Signal Names for Arithmetic Exceptions

Exception Type

Integer overflow1

Integer divide by zero

Floating overflow2

Floating/Decimal
divide by zero2

Floating underflow213

Decimal overflow1

Subscript range

Floating overflow

Floating divide by zero

Floating underflow

Code Pushed
by CPU

2

3

4

5

6

7

TRAPS

FAULTS

8

9

10

Resulting Exception
Reported by VMS

SS$_INTOVF

SS$_INTDIV

SS$_FLTOVF

SS$_FLTDIV

SS$_FLTUND

SS$_DECOVF

SS$_SUBRNG

SS$_FLTOVF_F

SS$_FLTDIV _F

SS$_FLTUND_F

'Integer overflow enable and decimal overflow enable bits in the PSW can be altered ei­
ther directly or through the procedure entry mask.

2The three floating point traps can only occur on VAX-ll/780s earlier than microcode
revision (rev) level 7.

3 The floating underflow enable bit in the PSW can only be altered directly. There is no
corresponding bit in the procedure entry mask.

G)The SS$_SSFAIL condition is reported when a process has enabled
signaling of system service failures through the Set System Service Fail­
ure Mode ($SETSFM) system service and a system or RMS service
returns unsuccessfully with a status of either STS$K_ERROR or
STS$K_SEVERE. The CHMK and CHME exception service routines,
the "change mode dispatchers," push information about the error on the
stack of the service execution and transfer control to EXE$SSFAIL (in
module EXCEPTION).

@The SS$_PAGRDERR condition is reported when a process incurs a
page fault for a page on which a read error occurred in response to a
previous fault for the same page. Information about the page fault that
led to the condition is already on the stack. The translation-not-valid
service routine transfers control to EXE$PAGRDERR (in module
EXCEPTION).

CE) The SS$_ASTFLT condition is reported when AST delivery code detects
an inaccessible stack while attempting to deliver an AST to a pro­
cess. The AST delivery interrupt service routine pushes information

81

Condition Handling

82

about the error on the AST access mode stack and transfers control to
EXE$ASTFLT (in module EXCEPTION).

@Most access violations are exceptions detected by the microcode. In
addition, however, the translation-not-valid exception service rou­
tine can generate an access violation. If it detects a process faulting a
page in the process header of another process, then it transfers to
EXE$ACVIOLAT (in module EXCEPTION), the access violation ex­
ception service routine. (Information about the error is already
on the current stack.) This is a very unusual situation, typically
the result of a software failure in executive or kernel mode code.

G)The signal SS$_DEBUG is generated by either the DCL or MCR com­
mand language interpreter (CLI) in response to a DEBUG command
while an image exists in an interrupted state. The DEBUG command
processor pushes the PC and PSL of the interrupted image, the condition
name (SS$_DEBUG), and the size of the signal array (3) onto the super­
visor stack and jumps to routine EXE$REFLECT (in module
EXCEPTION).

A CLI uses this mechanism for the DEBUG signal rather than simply
calling LIB$SIGNAL, because the DEBUG command is issued from su­
pervisor mode but the condition has to be reported back to user mode.
EXE$REFLECT can accomplish this access mode switch, whereas
LIB$SIGNAL and LIB$STOP have no corresponding function.

@The exception dispatching for the CHMS and CHMU exceptions and com­
patibility mode exceptions can be short-circuited by use of the Declare
Change Mode or Compatibility Mode Handler ($DCLCMH) system ser­
vice. The $DCLCMH system service enables a user to establish a per­
process change-mode-to-supervisor, change-mode-to-user, or compatibil­
ity mode handler. This service fills the locations CTL$GL_CMSUPR,
CTL$GL_CMUSER, or CTL$GL_COMPAT, respectively, in the Pl
pointer page with the address of the user-written change mode or compati­
bility handler.

When the exception service routine for the CHMS or CHMU exception
finds nonzero contents in the associated longword in Pl space, it transfers
control to the routine whose address is stored in that location with the
exception stack (supervisor or user) in exactly the same state it was in
following the exception. That is, the operand of the change mode instruc­
tion (the change mode code) is on the top of the stack and the exception PC
and exception PSL occupy the next two longwords.

The DCL command language interpreter uses the $DCLCMH service to
create a special CHMS handler. The use of the CHMS handler is briefly
described in Chapter 23. The job controller uses a CHMU handler for its
processing of error messages.

4.4

4.4 Software Conditions

The exception service routine for compatibility mode exceptions trans­
fers control to the user-declared compatibility mode handler (if one was
declared) with the user stack in the same state it was in before the compat­
ibility mode exception occurred. That is, no parameters are passed to the
compatibility mode handler on the user stack. The compatibility mode
code, exception PC and PSL, and contents of RO through R6 are saved in
the first ten longwords of the compatibility mode context page in Pl space
at global location CTL$AL_CMCNTX.

®The reserved instruction fault is generated whenever an unrecognized op­
code is detected by the instruction decoder. The same exception is gener­
ated when a privileged instruction is executed from other than kernel
mode.

VMS uses this fault as a path into the operating system crash code called
the bugcheck mechanism. Opcode FF, followed by FE or FD, tells the re­
served instruction exception service routine that the exception is actually
a bugcheck. Control is passed to the bugcheck routine that is described in
Chapter 8.

SOFTWARE CONDITIONS

One of the goals of the design of the VAX architecture was to have a common
condition handling facility for both exceptions and software conditions. The
dispatching for exceptions (and for the errors described in Section 4.3.5) is
performed by the routines in the executive module .EXCEPTION. The Run­
Time Library procedures, LIB$SIGNAL and LIB$STOP, provide a similar ca­
pability to any user of a VAX/VMS system.

4.4.1 Passing Status from a Procedure

There are usually two methods available for a procedure to indicate to its
caller whether it completed successfully. One method is to indicate a return
status in RO. The other is the signaling mechanism. The signaling mecha­
nism employs a call to the Run-Time Library procedure LIB$SIGNAL or
LIB$STOP to initiate a sequence of events exactly like those that occur in
response to an exception. One of the choices in the design of a modular proce­
dure is the method for reporting exceptional conditions back to the caller.

There are two reasons why signaling may be preferable to returning com­
pletion status. In some procedures, such as the mathematics procedures in
the Run-Time Library, RO is already used for another purpose, namely the
return of a function value, and is therefore unavailable for error return status.
In this case, the procedure must use the signaling mechanism to indicate
exceptional conditions, such as an attempt to take the square root of a nega­
tive number.

83

Condition Handling

The second common use of signaling occurs in an application that is using
an indeterminate number of procedure calls to perform some action, such as
a recursive procedure that parses a command line, where the use of a return
status is often cumbersome and difficult to code. In this case, the VAX signal­
ing mechanism provides a graceful way not only to indicate that an error has
occurred but also to return control (through $UNWIND) to a known alter­
nate return point in the calling hierarchy.

4.4.2 Initial Operation of LIB$SIGNAL and LIB$STOP

4.5

84

A procedure calls LIB$SIGNAL or LIB$STOP with the name of the condition
to be signaled and whatever additional parameters are to be passed to the
condition handlers that were established by the user and the system.
LIB$STOP is an alternate entry point to LIB$SIGNAL. (This chapter refers to
the combined procedures as "LIB$SIGNAL/STOP.") LIB$SIGNAL and
LIB$STOP differ in whether normal execution may be resumed after the con­
dition handler for the signaled error returns. Use of LIB$SIGNAL enables the
program to continue if the condition handler returns SS$_CONTINUE. Use
of LIB$STOP does not. The two entry points store different values in a stack
flag tested by the code to which a condition handler returns.

The state of the stack following a call to either of these procedures is pic­
tured in Figure 4-3.

Before LIB$SIGNAL/STOP begins its search for condition handlers, it re­
moves the call frame (and possibly the argument list) from the stack. Remov­
ing the call frame causes the stack to appear almost exactly the same to
LIB$SIGNAL/STOP as it does to the routines in EXCEPTION following an
exception (see Figure 4-3). After building the exception argument list,
LIB$SIGNAL/STOP jumps to EXE$SRCHANDLER (in module EXCEP­
TION) to search for condition handlers. (In fact, LIB$SIGNAL/STOP jumps to
SYS$SRCHANDLER in the system services vector pages, and then
SYS$SRCHANDLER jumps to EXE$SRCHANDLER. The indirection gives
the Run-Time Library a constant address to get to the routine in EXCEP­
TION.) The search for condition handlers takes place on the stack of the
caller of LIB$SIGNAL/STOP.

UNIFORM CONDITION DISPATCHING

Once information concerning the condition has been pushed onto the stack,
the differences between exceptions and software conditions are no longer
important. In the following discussion, the operation of condition dispatch­
ing is discussed in general terms and explicit mention of EXCEPTION or
LIB$SIGNAL/STOP is only made where they depart from each other in their
operation.

,{

.v

State of the stack immediately
after the CALLS to UB$SIGNAL

O = No condition handler

Register Save J SavedG) PSW
Mask, etc.

SavedAP 0
Saved FP ©
Saved PC©

0 ... 3 Stack Alignment
Bytes

]0M

32-bit Status Code
(Signal Name)

Additional Arguments

' ',,
',,

',
' Call ',,

frame for

The call frameJs discarded before
handlers are called.

f.\ Saved PSW = low 16
\,.:J bits of PSL in signal array

® Saved AP-AP

0 Saved FP-FP

©Saved PC-s

fc\ M is the size

ignal array

of the
, \V argument list

of the LIB$SIGNAL
or LIB$STOP /

/) f6\ N is the size
/ ~ signal array (N = M+2).

/

I". / " / '1 x
Lwith -------Exit from LIB$SIGNA

REI and not RET. --------!>-..&,,,
)... o"<>~ "-y

------The a

---- shifted
rgument list is

up 8 bytes / > o,,,.
I(- " '">.9

"- to ma ke room tor the

-- " 0(9
'-. PC/PS L pair so

"
o "- that h

'-. "I«+"-, softwa
"-, '"' ,._,, . '-. look th

ardware and
re signal arrays

'- Oi., "

e same.

Argument Ii st
> passed to

LIB$SIGNA
or LIB$STO

L
p

"-, &.,,,,, "
' "o '-.
" ">,~ "

" '9 " ~ ..
"-, to,~

"-,&"'~ ,,.,/

~

(if any) Passed);
to LIB$SIGNAL

-~~
"> .,,..., -- "~ ,.

or LIB$STOP

(If CALLG instead of CALLS,
then the argument list is copied
from elsewhere to the signal
array. The rest of the call frame
is discarded in the same fashion.)

_.,,--------------

Value of SP before
call and push

of argument list

-- " -- ,,

Figure 4-3 Removal of Call Frame by LIB$SIGNAL/STOP

State of the stack after
LIB$SIGNAL has removed

the call frame

Mechanism array
will go here

Signal/Stop code
1 = LIB$SIGNAL; 2 = LIB$STOP

j©N

32-bit Status Code
(Signal Name)

Additional Arguments
(if any) Passed
to LIB$SIGNAL
or LIB$STOP

PC of Instruction 0 Following CALLx

PSL that Existed 8 Before CALLx

!;; ,.

Signal
array
passed to
condition
handlers

Condition Handling

4.5.1

86

These two longwords are {
used and modified by
handler search procedure.

Because the VAX calling {
standard dictates that
RO and R 1 are not saved
across calls, they must be
preserved in some other way.

1
Address of

Signal Array

Address of
Mechanism Array

l
FP of Establisher Frame

Depth Argument

Saved RO

Saved R1

Signal/Stop Code

2

...

...

D 4

} """""""~"·· = status back to mainline code
by modifying saved RO (and R1).

1 = LIB$SIGNAL; 2 = LIB$STOP

Software condition gener­
ated by call to LIB$SIGNAL
or LIB$STOP. The argument
list is passed by call to
LIB$SIGNAL or LIB$STOP.
The PC and PSL are added
before handlers are called.
See Figure 4-3. ~

l N

Exception or Signal Name

Additional exception parameters
pushed by hardware or

additional arguments passed to
LIB$SIGNAL or LIB$STOP

Exception PC or PC following
call to LIB$SIGNAL or LIB$STOP

Exception PSL

Figure 4-4 Signal and Mechanism Arrays

~1 "J Argument count (N) is the
number of longwords in a signal
array (N « 3).

""\

~ Hardware exception parameters a re
ck pushed initially onto the kernel sta

by hardware and copied to the
> exception stack by software. The

exception name and argument co
are added by software before han
are called.

.I
f.- ~alue of SP before

exception

unt
die rs

Before the search for a condition handler begins, EXE$SRCHANDLER
builds a second data structure on the stack called the mechanism array. The
address of the mechanism array and the address of the signal array are the two
arguments that are passed to any condition handlers called by
EXE$SRCHANDLER (see Figure 4-4).

Establishing a Condition Handler

VMS provides two different methods for establishing condition handlers:

• One method uses the stack associated with each access mode. Each proce-

4.5 Uniform Condition Dispatching

dure call frame includes a longword to contain the address of a condition
handler associated with that frame. Figure 4-3 illustrates a call frame.

• The second method uses software vectors, set aside in the control region
(Pl space) for each of the four access modes. Vectored handlers do not pos­
sess the modular properties associated with call frame handlers and are
intended primarily for debuggers and performance monitors.

Call frame handlers are established by placing the address of the handler in
the first longword of the currently active call frame. Thus, in assembly lan­
guage, call frame handlers can be established with a single instruction:

MOVAB new-handler,(FP}

Because direct access to the call frame is generally not available to high­
level language programmers, LIB$ESTABLISH, the Run-Time Library proce­
dure, can be called in the following way to accomplish the same result:

old-handler = LIB$ESTABLISH (new-handler}

Condition handlers are removed by clearing the first longword of the cur­
rent call frame, as in the following assembly language instruction:

CLRL (FP}

The Run-Time Library procedure LIB$REVERT removes the condition han­
dler established by LIB$ESTABLISH.

Software-vectored condition handlers are established and removed with
the Set Exception Vector ($SETEXV) system service, which simply loads the
address of the specified handler into the specified software vector, located in
the Pl pointer page.

4.5.2 The Search for a Condition Handler

4.5.2.l

At this point in the dispatch sequence, the signal and mechanism arrays have
been set up on the stack of the access mode to which the condition will
be reported. The establisher frame argument in the mechanism array (see
Figure 4-4) will be used by the condition handler search routine
EXE$SRCHANDLER to indicate how far along the search has gone. The
depth argument in the mechanism array not only serves as useful informa­
tion to condition handlers that wish to unwind but also allows the search
procedure to distinguish call frame handlers (nonnegative depth) from soft­
ware-vectored condition handlers (negative depth).

Primary and Secondary Exception Vectors. EXE$SRCHANDLER begins the
search for a condition handler with the primary vector of the access mode in
which the exception occurred. If the vector contains the address of a condi-

87

Condition Handling

4.5.2.2

4.5.2.3

88

tion handler (any nonzero contents), the handler is called with a depth argu­
ment of -2 (third longword in mechanism array, Figure 4-4). If that handler
resignals or if none exists, the same step is performed for the secondary vec­
tor, with a depth argument of -1.

Call Frame Condition Handlers. If the search is to continue (no handler yet
passed back a status of SS$_CONTINUE), EXE$SRCHANDLER examines
the contents of the current call frame. If the first longword in the current call
frame is nonzero, that handler is called next. If no handler is found there or if
that handler resignals, the previous call frame is examined by using the saved
frame pointer in the current call frame (see Figure 4-5). As each handler is
called, the depth longword in the mechanism array is set to the number of
frames that have already been examined for a handler.

EXE$SRCHANDLER continues the search until some handler passes back
a status code of SS$_CONTINUE or until a saved frame pointer is found
whose value is not within the bounds of that access mode's stack. An out-of­
range frame pointer might, for example, point to the previous mode stack
following a call to a system service. Also, a saved frame pointer value may be
out of range as a result of stack corruption. A saved frame pointer value of
zero indicates the end of the call frame chain. When EXE$SRCHANDLER
receives a return status of SS$_CONTINUE (any code with the low bit of RO
set will do), it cleans off the stack, restores RO and Rl from the mechanism
array, and dismisses the condition by issuing an REI, using the saved PC and
PSL that formed the last two elements of the signal array.

Note that EXE$SRCHANDLER passes control back with an REI instruc­
tion, even if the condition was caused by a call to LIB$SIGNAL/STOP.
LIB$SIGNAL/STOP discards the call frame set up when it was called.
That is, LIB$SIGNAL/STOP modifies its stack to look just like the stack
used by EXCEPTION (see Figure 4-3).

Last Chance Condition Handler. If all handlers resignal, the search termi­
nates when a saved frame pointer of zero is located. EXE$SRCHANDLER
then calls with a depth argument of -3 the handler whose address is stored in
the last chance vector. (This handler is also called in the event that any errors
occur while searching the stack for the existence of condition handlers.) The
usual handler found in the last chance vector is the "catch-all" condition
handler established as part of image initiation. The action of this system­
supplied handler is described at the end of this chapter.

If the last chance handler returns (its status is ignored) or the last chance
vector is empty, EXE$SRCHANDLER indicates that no handler was found.
This notification is performed by a procedure called EXE$EXCMSG (see
Chapter 29) in the executive. Its two input parameters are an ASCII string
containing message text and the argument list that was passed to any condi-

©

Signal and
mechanism
arrays for
signal S
generated by
procedure C

0
Call frame for
procedure C

1

0
Call frame for
procedure B

Call frame for
procedure A

4.5 Uniform Condition Dispatching

©
12

Signal Array

Mechanism Array

I4
Establisher FP

Depth= 1

RO

R1

Signal/Slop Code

IN

Name of Signal S

Other Parameters

Exception PC in C

Exception PSL

CH

.. Saved FP ...

Saved PC in B

BH

Saved FP

Saved PC in A

AH

Saved FP· ...

Saved pC

p
©

~

i To previous frame

Direction of
stack growth

Figure 4-5 Order of Search for Condition Handler

89

Condition Handling

tion handlers. Following the call to EXE$EXCMSG, EXE$SRCHANDLER
invokes the $EXIT system service with a status indicating either that no
handler was found or that a bad stack was detected while searching for a
condition handler.

4.5.3 Multiple Active Signals

4.5.3.1

4.5.3.2

90

If an exception occurs in a condition handler or in some procedure called by a
condition handler, a situation called multiple active signals is reached. To
avoid an infinite loop of exceptions, EXE$SRCHANDLER modifies its search
algorithm so that those frames searched while servicing the first condition
are skipped while servicing the second condition.

For this skipping to work correctly, call frames of condition handlers must
be uniquely recognizable. The frames are made unique by always calling the
condition handlers from a standard call site, located in the system service
vector area.

Common Call Site for Condition Handlers. Before the dispatch to the handler
occurs, EXE$SRCHANDLER sets up the stack to contain the signal and
mechanism arrays and the handler argument list (see Figure 4-4). It loads the
handler address into Rl and passes control to the common dispatch site with
the following instruction:

JSB @#SYS$CALL_HANDL

The code located at SYS$CALL_HANDL simply calls the procedure whose
address is stored in Rl and returns to its caller with an RSB.

SYS$CALL_HANDL::

CALLG L1(SP),(R1)

RSB

The call instruction leaves the return address SYS$CALL_HANDL + 4,
the address of the RSB instruction, in its call frame. Thus, the unique identify­
ing characteristic of a condition handler is the address SYS$CALL_HANDL
+ 4 in the saved PC of its call frame. This signature is not only used by the
search procedure but also by the Unwind Call Stack ($UNWIND) system
service, as described in the following section.

Example of Multiple Active Signals. The modified search procedure can best
be illustrated through an example as shown in Figures 4-5 and 4-6. Figure 4-5
shows the stack after Procedure C, called from B, which is called from A, has
generated signal S. We are assuming that the primary and secondary condi­
tion handlers (if they exist) have already resignaled. Condition handler CH
also resignaled.

4.5 Uniform Condition Dispatching

©
Signal and
mechanism
arrays for
signal T
generated by
procedure Y

©
Call frame for
procedure Y

©
Call frame for
procedure X

0
Call frame for
procedure BH

J2
Signal Array ~

Mechanism Array

Establisher FP J 4

Depth= 3

RO

R1

Signal/Stop Code

JN

Name of Signal T

-:: Other Parameters

Exception PC in Y

Exception PSL

YH

Saved FP .._

Return PC in X

XH

Saved FP

Return PC in BH

BHH

RSM I
Saved FP

Dispatcher Call Site

Saved registers and

~
stack alignment
bytes indicated
by register save
mask (RSM) in
call frame BH

Return PC from JSB

0

p

®

0

,(©

0

To call fr

Direction of
stack growth

ame for
ure A
re4-5

proced
in Figu

..
To call frame to

procedure C
in Figure 4-5

Figure 4·6 Modified Search with Multiple Active
Signals

91

Condition Handling

92

CD Procedure A calls Procedure B, which calls Procedure C.
®Procedure C generates signal S.
®The search procedure modifies the depth argument and establisher frame

argument.
If handler CH resignals, then the depth argument is I when BH is called.

@The call frame for handler BH is located (at lower virtual addresses) on top
of the signal and mechanism arrays for signal S (see Figure 4-6). (The only
intervening items are the saved registers and stack alignment bytes indi­
cated by the register save mask in the upper word of the second longword
of the call frame for handler BH.) The saved frame pointer in the call frame
for BH points to the frame for Procedure C.

®Handler BH now calls Procedure X, which calls Procedure Y (see Figure
4-6).

©Procedure Y generates signal T. The desired sequence of frames to be
examined is frame Y, frame X, frame BH, and then frame A. Frames B
and C should be skipped because they were examined while servicing
condition S.

(!) EXE$SRCHANDLER proceeds in its normal fashion. The primary and sec­
ondary vectors are examined first (no skipping here). Then frames Y, X, and
BH are examined, resulting in handlers YH, XH, and BHH being called in
turn. Let us assume that all these handlers resignal. After handler BHH
returns to EXE$SRCHANDLER with a code of SS$_RESIGNAL,
EXE$SRCHANDLER notes that this is the frame of a condition handler,
because its saved PC is SYS$CALL_HANDL + 4 (see Figure 4-6).

®The skipping is accomplished by locating the frame that established this
handler. The address of that frame is located in the mechanism array for
signal S.

To locate the mechanism array for signal S, the value of SP before the
call to BH must be calculated, using the register save mask and stack align­
ment bits in the call frame.

®One extra longword, the return PC from the JSB to SYS$CALL_HANDL,
must be skipped to locate the argument list (and thus the mechanism
array) for signal S.

@ Because the frame pointed to by the mechanism array element has already
been searched, the next frame examined by the search procedure is the
frame pointed to by the saved frame pointer in the call frame of Procedure
B which, in this case, is the frame for Procedure A. The depths that are
passed to handlers as a result of the modified search are 0 for YH, I for XH,
2 for BHH, and 3 for AH.

@ The frame for the search procedure or for any of the handlers YH, XH,
BHH, and AH when they are called is located on top of the signal and
mechanism arrays for signal T (at lower virtual addresses). (One example
is shown in Figure 4-8, which illustrates the operation of $UNWIND.)

4.6

4.6 Condition Handler Action

CONDITION HANDLER ACTION

A condition handler has several options available to it:

• It can fix the condition and allow execution to continue at the interrupted
point in the program.

• It can pass the condition along to another handler by resignaling.
• It can also allow execution to resume at any arbitrary place in the calling

hierarchy by unwinding a number of frames from the call stack.

4.6.1 Continue or Resignal

A handler first determines the nature of the condition by examining the sig­
nal name in the signal array (see Figure 4-4). If the handler determines that it
is not capable of resolving the current condition for whatever reason, it in­
forms EXE$SRCHANDLER that the search for a handler must go on. This
continuation is called resignaling and is performed by passing a return status
code of SS$_RESIGNAL back to EXE$SRCHANDLER. (Recall that condition
handlers are function procedures that return a status to their caller in RO.)

On the other hand, if the condition handler is able to resolve the condition
(in some unspecified way), it indicates to the EXE$SRCHANDLER that the
program that was interrupted when the condition occurred can continue. To
indicate that the program can now continue, the return status code of SS$_
CONTINUE is passed back to the caller.

When EXE$SRCHANDLER detects this return status code, it removes the
argument list and mechanism array from the stack (see Figure 4-4), restoring
RO and RI in the process. It then removes all of the signal array except the
condition PC and PSL from the stack. Finally, these are removed with the REI

instruction that dismisses. the exception and passes control back to the pro­
gram that was interrupted when the condition occurred.

If the condition that occurred was a hardware fault (such as an access viola­
tion), the instruction that caused the exception will be repeated because the
PC of that instruction was pushed onto the stack when the exception oc­
curred. If the exception was a hardware trap (such as integer overflow), the
next instruction in the instruction stream will be the first to execute. If a
condition handler continues from a condition that was initiated through a
call to LIB$SIGNAL, the first instruction to execute will be the instruction
following the CALLx instruction.

4.6.2 Unwinding the Call Stack

Another powerful tool available to condition handlers allows them to alter
the flow of control when a condition occurs. This tool is called unwinding
and allows the condition handler to pass control back to a previous level in

93

Condition Handling

the calling hierarchy by throwing away a specified (or default) number of call
frames.

The Unwind Call Stack ($UNWIND) system service is called with two
optional arguments. The first indicates the number of frames to remove from
the call stack, and the second gives an alternate return PC to which control
will be returned.

The system service procedure EXE$UNWIND (in module SYSUNWIND)
does not actually remove frames from the stack. Rather, it changes the return
PC in the specified number of frames to point to a special routine in the
executive that will be entered as each procedure exits with a RET instruction.
The effect of calling $UNWIND is pictured in Figure 4-7. If the alternate PC
argument has also been passed to EXE$UNWIND, the return PC in the next
call frame is altered to the specified argument (see Figure 4-7).

As each procedure issues a RET instruction, registers saved in the call frame
are restored and control is passed to the executive routine that examines the
current frame for the existence of a condition handler. If such a handler
exists, it is called with the condition name SS$_ UNWIND. When the con­
dition handler returns to EXE$UNWIND, it issues a RET on behalf of the
procedure to discard the current call frame. This sequence goes on until
the specified number of call frames have been discarded. This technique
of calling handlers as a part of the unwind sequence allows handlers that
previously resignaled a condition to regain control and perform proce­
dure-specific cleanup and also ensures correct restoration of saved registers.

4.6.3 Example of Unwinding the Call Stack

94

An example of an unwind sequence is illustrated here with the help of Figure
4-7. The situation begins with a sequence exactly like the one pictured in
Figure 4-5. Procedure A calls Procedure B, which calls Procedure C. Proce­
dure C generates signal S. The primary and secondary handlers (if they exist)
simply resignal. Handlers CH and BH, located next by EXE$SRCHANDLER,
also resignal.

Finally, handler AH is called. AH decides to unwind the call stack back to
its establisher frame. (This unwinding is not the default case.) To accomplish
the unwinding, AH must call $UNWIND with a depth argument equal to the
value contained in the mechanism array. In this example, the depth argu­
ment is 2. After the call to $UNWIND, which executes ip the access mode of
its caller, but before the frame modification occurs, the stack has the form
pictured on the left-hand side of Figure 4-7. The operation of frame modifica­
tion by the EXE$UNWIND now proceeds as follows:

CD EXE$UNWIND looks down the call stack until it locates a condition han­
dler. Recall that a condition handler is identified by a saved PC of
SYS$CALL_HANDL + 4. If handler AH had called another procedure

Call frame for
system service
SYS$UNWIND
(EXE$UNWIND
executes in
access mode
of caller.)

Call frame for
condition handle
AH

Call frame for
procedure C

Call frame for
procedure B

Call frame for
procedure A

r

Call frames on entry
to EXE$UNWIND

SYS$UNWIND's Handler

Saved AP

Saved FP

Return PC in AH

AHH (if established)

Saved FP

..

..

Return PC in Exception Dispatcher
(SYS$CALLHANDL + 4)

Signal and mechanism arrays for
initial condition located here

(Figure 4-5)

CH (if established)

Saved FP ~

Return PC in B

BH (if established)

Saved FP •
Return PC in A

AH

Saved FP

Return PC in Caller of A

4.6 Condition Handler Action

-FP

1----.1
This AP locat es
the signal an d

rrays mechanism a
passed to
handler AH.

f---J

f---J

i.-

1
To previous frame

Return PCs in these
frames after they

have been modified by
EXE$UNWIND

Return PC in AH

STARTUNWIND

The signal array contains return PC
in procedure C, which is

bypassed if unwinding any frames.

LOOPUNWIND ©

(Alternate Return PC) ©

Figure 4-7 Call Frame Modification by EXE$UNWIND

95

Condition Handling

96

in this example, nothing would have happened to that procedure's call
frame. The first call frame modified by EXE$UNWIND is the frame of
the first handler that it encounters which, in this example, is the
frame for AH.

CD EXE$UNWIND does not modify its own frame. When it executes a RET

instruction, control returns to handler AH.
@The first frame that EXE$UNWIND modifies is the frame of the first con­

dition handler that it encounters by tracing back the call stack. It replaces
the return address found there with the address of STARTUNWIND, a
routine internal to EXE$UNWIND.

When handler AH executes a RET instruction, control will not return to
EXE$SRCHANDLER. Instead, the instructions beginning at START­
UNWIND execute. Note that not returning to EXE$SRCHANDLER
means that control will never get back to Procedure C, because its return
PC is stored in the mechanism array and can only be restored by the REI

instruction issued by the condition dispatcher.
© EXE$UNWIND continues to modify the saved PC longwords in-successive

frames on the call stack until the number of frames specified (or implied)
in the $UNWIND argument list have been modified. All frames except the
first have their saved PC replaced with address LOOPUNWIND, another
label in the internal unwind routine (see Figure 4-7). It is this routine that
checks whether the current frame has a handler established and, if so, calls
that handler with the signal name SS$_ UNWIND to allow the handler to
perform procedure-specific cleanup.

If a handler called in this way calls $UNWIND (with the signal array
containing SS$_UNWIND as the signal name), then an error status of SS$_
UNWINDING is returned, indicating an unwind is already in progress.

®If the alternate PC argument was also supplied to $UNWIND, the call
frame into which this argument would be inserted is the next frame be­
yond the last frame specified (or implied) in the first $UNWIND argument.
In this case, if an alternate PC argument were present, it would be placed
into the call frame for Procedure B.

Now that all the frames have been modified, the actual unwinding occurs.
The sequence of steps is the following:

1. EXE$UNWIND returns control to handler AH.
2. Handler AH does whatever else it needs to do to service the condition.

When it has completed its work, it returns to the code beginning at label
STARTUNWIND. (Because none of the unwind routines checks return
status, it does not matter what status is passed back by AH as it returns.)

3. The routine beginning at STARTUNWIND first restores RO and Rl from
the mechanism array. It then performs the following three steps:

a. If a handler is established for this frame, the handler is called with the
signal name SS$_UNWIND.

4.6 Condition Handler Action

b. If either RO or RI is specified in the register save mask, the unwind
routine replaces the value of that register in the register save area of the
call frame with the current contents of the register. Note that this is
rather an unusual case. The procedure calling standard (see Introduc­
tion to VAX/VMS System Routines) specifies that RO and RI are to be
used to return status codes and function values.

c. Control is returned to whatever address is specified in the saved PC
longword of the current call frame by issuing a RET.

4. The RET issued in step 3c discards the call frame for Procedure C, passing
control to LOOPUNWIND, where the three steps 3a through 3c are again
executed.

5. The RET that discards the call frame for Procedure B passes control back to
the point in Procedure A, following the call to Procedure B (if we assume
no alternate PC argument), where execution will resume.

In effect, STARTUNWIND and LOOPUNWIND simulate returns from
each nested procedure that is being unwound. These procedures never receive
control again. However, the outermost procedure receives control as if all of
the nested procedures had returned normally.

4.6.4 Potential Infinite Loop

There is one possible problem that can occur with this implementation. The
previous section pointed out that EXE$SRCHANDLER takes care (when
multiple signals are active) not to search frames for the second condition that
were examined on the first pass. If a condition handler generates an excep­
tion, it is not called in response to its own signal (unless it establishes itself
to handle its own signals!).

However, EXE$UNWIND cannot perform such a check. It must call each
condition handler that it encounters as it removes frames from the stack.
Thus, a poorly written condition handler (one that generates an exception)
could result in an infinite loop of exceptions if a handler higher up in the
calling hierarchy unwinds the frame in which this poorly written handler is
declared. This loop has no effect on the system but effectively destroys the
process in which this handler exists.

4.6.5 Unwinding Multiple Active Signals

There is a slight change in EXE$UNWIND when multiple signals are active.
While modifying saved PCs in call frames, EXE$UNWIND counts the num­
ber of frames that have been modified until the requested number has been
reached. The only change that occurs with multiple active signals is that the
loop stops counting while the skipped frames are being modified.

The example of multiple active signals pictured in Figures 4-5 and 4-6 can

97

Condition Handling

98

be used to illustrate the unwinding. Recall that Procedure A called Procedure
B, which called Procedure C, which signaled S. Handler CH resignaled. Han­
dler BH called Procedure X, which called Procedure Y, which signaled T.
Handlers YH, XH, and BHH all resignaled. Finally, handler AH was called for
signal T with a depth of 3.

If AH calls $UNWIND, the top of the stack is as pictured in Figure 4-8,
with the continuations of this figure in Figure 4-6. Assume that the depth
argument passed to $UNWIND is 3 (taken from the mechanism array and
meaning unwind to the establisher of AH), and the alternate PC argument is
not present.

The end result of the operation of EXE$UNWIND in this case is as follows:

1. EXE$UNWIND looks down the call stack until it locates a condition

Call frame for
system service
SYS$UNWIND
(EXE$UNWIND
executes in
access mode
of caller.)

Call frame for
condition handler
AH

:1-

Signal and
mechanism arrays
for signal T

j..o

SYS$UNWIND's Handler

Saved AP

Saved FP -
Return PC in AH

AHH (if established)

RSM I
Saved FP ...

Return PC in
Exception Dispatcher

Saved registers and
stack alignment bytes J..-
indicated by register ;1'
save mask RSM in

call frame AH

Return PC from JSB

l 2

Signal Array •
Mechanism Array µ

FP

To Ira me for
dure Y
re 4-6

proce
in Figu

To signal array
in Figure 4-6

Figure 4-8 Modified Unwind with Multiple Active
Signals

Direction of
stack growth

4.6 Condition Handler Action

handler, which in this case is AH. The saved PC is modified to
STARTUNWIND.

2. The saved PC longwords in frames Y and X are altered to contain address
LOOPUNWIND. Note that EXE$UNWIND has now altered three frames.

3. Because the next frame on the stack, BH, indicates a condition handler
(saved PC of SYS$CALL_HANDL + 4), its associated mechanism array
is located (by climbing over saved registers, stack alignment bytes, and a
saved PC from the JSB instruction). The saved PCs in all frames up to the
frame pointed to by the mechanism array are modified (but not counted
toward the number specified in the argument passed to $UNWIND) to
contain address LOOPUNWIND. This modification causes frames BH and
C to get their saved PCs altered in the example.

4. The saved PC in the frame for Procedure B is not altered so that when the
unwind takes place, control will return to the call site of Procedure B in
Procedure A.

4.6.6 Correct Use of Default Depth in $UNWIND

A default depth argument of zero to the $UNWIND system service specifies
that the stack is to be unwound to the caller of the handler's establisher. In
most cases, the caller of the handler's establisher is equivalent to the depth of
the handler plus 1. However, because of an inherent ambiguity in counting
the stack frames when multiple active signals are present, it is important
that the default rather than an explicit depth be used when unwinding to the
caller of the establisher.

Consider the two following cases of nested conditions. In Figure 4-9, Proce­
dure A calls Procedure B. A condition causes handler BH to be invoked. An
exception within BH causes handler AH to be invoked (because frame B is
skipped, as described in Section 4.5.3). The depth of the mechanism vector in
AH's argument list is 1. For AH to unwind to its establisher, it must specify
an explicit depth of 1 to $UNWIND. EXE$UNWIND removes one frame, as
specified by the count. EXE$UNWIND then notices that the next frame is a
handler frame and therefore continues to remove stack frames until it finds
the establisher of the handler. This discovery completes the unwind to
frame A.

Now consider Figure 4-10 in which Procedure A incurs an exception, re­
sulting in the invoking of handler AH. Handler AH then causes an exception,
causing its handler AHH to be invoked. The depth of AHH is zero. Now let us
suppose that AHH wishes to unwind to the caller of its establisher. Now the
establisher of AHH is AH. Since AH is a handler, its caller is the condition
dispatcher, not Procedure A.

Compare Figure 4-10 with Figure 4-9 carefully and consider what happens
if AHH calls the $UNWIND system service with an explicit depth of 1

99

Condition Handling

Call frame for
condition handler
AH

Signal and
mechanism
arrays generated
by procedure A

Call frame for
condition handler
BH

Signal and
mechanism
arrays generated
by procedure B

Call frame for
procedure B

Call frame for
procedure A

0

Saved FP ..

Establisher FP

Depth= 1

0 I--

Saved FP •

Establisher FP

Depth= 0

BH I--

Saved FP

AH

Saved FP ..

i
To previous frame

Figure 4·9 Nested Exception, Type 1

100

Direction of
stack growth

Call frame for
condition handler
AHH

Signal and
mechanism
arrays generated
by handler AH

Call frame for
condition
handler AH

Signal and
mechanism
arrays generated
by pr.>cedure A

Call frame for
procedure A

4.6 Condition Handler Action

Saved FP ..

Establisher FP

Depth= 0

AHH

Saved FP •

Establisher FP

Depth= 0

AH

I--

~

!

Direction of
stack growth

To previous frame

Figure 4·10 Nested Exception, Type 2

101

Condition Handling

(its depth plus 1). The depth of 1 causes AHH's frame to be removed.
EXE$UNWIND then notices that the next frame is a handler frame and
therefore unwinds it back to its establisher (frame A). Note that once
AHH's frame is removed, the stack is indistinguishable from the stack in
Figure 4-9 (down to frame B). Thus, invoking $UNWIND with an explicit
depth of 1 results in control's returning to Procedure A, which is incorrect.

Therefore, for AHH to unwind to the caller of its establisher
(EXE$SRCHANDLER), it must specify a default depth. When this is done,
EXE$UNWIND's behavior upon encountering a handler frame after the
count has been exhausted is modified so that the stack is not unwound fur­
ther, and control passes correctly back to the condition dispatcher.

Because of the inherent ambiguity of these two cases, it is important that
handlers always use the default depth when unwinding to the caller of their
establisher.

4.6.7 Unwinding ASTs

102

EXE$UNWIND must perform special processing to unwind out of ASTs;
simply removing the stack frames would ignore the presence of the AST and
fail to dismiss the AST properly.

This situation is depicted in Figure 4-11. If handler XH unwinds to the
caller of its establisher (Procedure A), it will also unwind out of the AST. The
problem is handled by having EXE$UNWIND recognize the return PC of the
AST call frame, which is set to the value EXE$ASTRET, the AST return point
in the executive. When this PC is seen in a call frame, EXE$UNWIND knows
that the AST parameter list is located immediately beneath the call frame. In
this case, the unwind PC (STARTUNWIND or LOOPUNWIND) is stored not
in the call frame, but rather in the PC of the AST parameter list.

When the AST procedure returns during the actual unwinding of the stack,
it returns to EXE$ASTRET, which dismisses the AST and returns to the in­
terrupted code with an REI. The REI then returns back to STARTUNWIND
or LOOPUNWIND because of the modified PC. In addition, immediately
before returning to EXE$ASTRET, EXE$UNWIND also stores the current RO
and Rl in the AST parameter list so that they will propagate through the
unwind process.

While it is technically possible to unwind out of an AST, this must be done
with some caution. If the AST routine has any sort of side effects, it is essen­
tial to have a condition handler declared by the AST routine to clean up the
side effects when the AST is unwound. (Note that issuing an I/O operation is
a side effect of the highest order!) Note that cleaning up any procedures of the
main line program from which an unwind was executed may be more diffi­
cult, because the asynchronous nature of ASTs means that unwinding could
take place at any instant during the execution of a program.

Call frame for
condition
handler XH

Signal and
mechanism
array generated
by AST
routine X

Call frame for
AST routine X

AST parameters

Call frame for
procedure A

4.6 Condition Handler Action

Saved FP •

Establisher FP •

XH

Saved FP •

EXE$ASTRET

JN
AST Parameter

RO

R1

PC

PSL

AH

Saved FP _

I'--

~

Direction of
stack growth

To previous frame

Figure 4-11 Exception during an AST

103

Condition Handling

4.7 DEFAULT {VMS-SUPPLIED) CONDITION HANDLERS

The use of condition handlers is totally general and completely in the hands
of the user. However, some actions will always occur as the result of default
condition handlers that are established by the executive as a part of process
creation or image activation.

The discussions of process creation in Chapter 20 and image initiation in
Chapter 21 point out exactly when and how each 6f the handlers described in
this section is established. The action of each of these handlers, once they are
invoked, is briefly described in the following sections.

4.7.1 Traceback Handler Established by Image Startup

When an image includes either the debugger or the traceback handler, an­
other frame is put on the user stack before the image itself is called (see
Chapter 21). The code that executes before calling the image, EXE$IMGSTA
(in module SYSIMGSTA), places the address of a condition handler local to
itself into this frame so that subsequent conditions that are not handled by an
intervening condition handler will be picked up by this traceback handler.

This handler first checks whether the condition that occurred is SS$_
DEBUG. If so, it maps the debugger into PO space (if not already mapped) and
passes control to it. The condition SS$_DEBUG is signaled by a CLI in re­
sponse to a DEBUG command. This feature allows an image that was not
linked or run with debugger support to be interrupted and have a debugger
invoked.

For all other conditions, if the severity level is warning, error, or severe
error, the handler maps the traceback facility above the end of defined PO
space and passes control to it. The traceback facility passes information
about the exception to SYS$0UTPUT and terminates the image.

If the severity level is other than the three listed in the previous paragraph,
the traceback condition handler resignals the condition, which usually
means that the condition is being passed on to the catch-all condition
handler.

4.7.2 Catch-All Condition Handler

104

The address of this handler, EXE$CATCH_ALL, is placed in an initial call
frame on the user stack and in the last chance vector for user mode by either
EXE$PROCSTRT when the process is created or by a command language
interpreter before an image is called. This handler is always called if no other
handlers exist or if all other handlers resignal. Because the address of the
handler is duplicated in the last chance vector, it will also be called in the
event of some error while looking through the user stack.

The first step that EXE$CATCH_ALL takes is to call SYS$PUTMSG (see

4. 7 Default (VMS-Supplied) Condition Handlers

Chapter 29). If the handler was called through the last chance vector (the
depth argument in mechanism array is -3) or if the severity level of the
condition name in the signal array indicates severe (condition-name <2:0>
GEQU 4), then EXE$EXCMSG (see Chapter 29) is called to print a summary
message, and the image is terminated; otherwise, the image is continued.

4.7.3 Handlers Used by Other Access Modes

4.7.3.1

In addition to the handlers that the operating system supplies to handle con­
ditions that occur in user mode, it also sets up handlers that will determine
system behavior if a condition occurs in one of the other three access modes.

Exceptions in Kernel or Executive Mode. In response to an exception in ker­
nel mode, the condition dispatcher makes special checks to determine
whether the processor was operating on the interrupt stack when the excep­
tion occurred, whether the process was the swapper or null process, or
whether IPL was above IPL$_ASTDEL (IPL 2). Any of these could indicate
that the exception is not associated with a normal process. In any case, if any
of these holds, an Invalid Exception fatal bugcheck (INVEXCPTN) is gener­
ated. Routines that may not incur exceptions include interrupt service rou­
tines, device drivers (except for their FDT routines), and process-based code
that happens to be executing above IPL$_ASTDEL (such as portions of cer­
tain system services).

If a kernel mode exception is associated with process-based code for which
exceptions are allowed (IPL is less than or equal to 2 and the exception oc­
curred on the kernel stack), then exception dispatching proceeds in its usual
manner. The last chance exception vectors for both kernel and executive
modes are initialized in module SHELL (see Chapter 20) to contain the ad­
dresses of routines that generate a bugcheck code of Unexpected System
Service Exception (SSRVEXCEPT). The difference between the bugchecks for
the two access modes is that the bugcheck generated by the kernel mode last
chance handler is fatal while the corresponding bugcheck generated by the
executive mode last chance handler is not. Fatal bugchecks cause the system
to crash. Nonfatal bugchecks generally result in error log entries and the
deletion of the process that caused the bugcheck. The handling of bugchecks
is described in Chapter 8.

Routines that execute in executive mode include RMS, parts of the execu­
tive, and any user-written procedure that is entered through either a user­
written system service dispatcher or through the Change Mode to Executive
($CMEXEC) system service. Routines that execute in kernel mode (that can
cause this bugcheck and not the INVEXCPTN bugcheck because they exe­
cute at IPL 0 or IPL 2) include portions of all system services, many exception
service routines, device driver FDT routines, including those that are written

105

Condition Handling

4.7.3.2

106

by users, and procedures that are called by either a user-written system ser­
vice dispatcher or by the Change Mode to Kernel ($CMKRNL) system
service.

Condition Handler Used by DCL or MCR. The DCL and MCR CLis establish
nearly identical condition handlers at the beginning of their command loops
to field conditions that occur in supervisor mode.

The LOGINOUT image activates a CLI (DCL or MCR). The first step that
the CLI takes is to establish the supervisor mode condition handler that the
CLI uses to handle its own internal errors. The condition handler performs
two tasks when it is called:

• It cancels any exit handlers that have been established.
• It resignals the error.

The CLI is then allowed to run to completion, as a result of which the
process is deleted.

5

5.1

Hardware Interrupts

While I nodded, nearly napping, suddenly there came a tapping,
As of someone gently rapping, rapping at my chamber door.

Edgar Allan Poe, The Raven

VAX/VMS is interrupt driven. It contains interrupt service routines that exe­
cute in response to hardware interrupts from external and internal devices,
such as the interval clock. VAX/VMS does not have a software-based central
dispatching module that receives notification of all system events (that is,
interrupts) and decides what to do next. Instead, it relies on a hardware­
controlled interrupt dispatching scheme that always forces the highest prior­
ity interrupt on the· system to be serviced first.

HARDWARE INTERRUPT DISPATCHING

The VAX architecture provides 16 hardware interrupt priority levels (IPLs),
from IPL 31 down to IPL 16. The top eight levels are used by CPU-specific
errors and power failure and, on certain types of VAX processor, by the inter­
val clock. These interrupts are discussed in Chapters 8, 26, and 11. The lower
levels are used by external devices.

An external device requests an interrupt at a particular hardware IPL (fixed
for a given device). If the requested IPL value is higher than the level at which
the processor is currently running (PSL <20: 16>), then the interrupt request
is granted. The processor reads the vector in the system control block (SCB)
associated with that device and dispatches to the service routine identified by
the vector. If the requested value is lower or equal to the current IPL, the
interrupt is deferred until IPL drops below that of the interrupt request.

When an interrupt is serviced, the current processor status must be pre­
served so that the interrupted thread of execution (either process-based code
or an interrupt service routine executing at lower IPL) can continue after the
interrupt is dismissed. VAX microcode preserves the processor status by sav­
ing the PC and PSL on the stack. These are later restored when the interrupt
service routine executes an REI instruction to dismiss the interrupt. Other
elements of the process context, such as general registers, must be saved and
restored by the routines handling the interrupt.

To reduce overhead, no memory mapping information is changed when an
interrupt occurs. Therefore, the instructions executed and data referenced by

107

Hardware Interrupts

5.1.1

108

an interrupt service routine must be in system address space. Furthermore,
because VAX/VMS does not allow page faulting at IPLs above 2, all instruc­
tions and data must be resident.

Interrupt Dispatching

The primary sequence of events in interrupt dispatching is as follows:

1. An interrupt is requested.
2. The current instruction finishes or reaches a well-defined point where the

instruction state is completely contained in the general registers, PC, and
PSL (which happens in the execution of the string instructions). Some
instructions can be interrupted at well-defined points so that, after the
interrupt dismissal, they are restarted rather than continued.

3. The interrupt sequence is initiated by VAX microcode. As described in
Chapter 4, it examines the SCB vector to determine on which stack the
interrupt is to be serviced. Figure 5-1 illustrates the format of an SCB
vector and the meaning of the low-order two bits. VMS specifies that all
hardware interrupts be serviced on the interrupt stack. The VAX
microcode switches stacks, if necessary, and pushes the current PC and
PSL onto the new stack.

Most software interrupts are also serviced on the interrupt stack. How­
ever, the per-process interrupt associated with AST delivery and nearly all
exceptions are serviced on the per-process kernel stack.

4. A new PC is loaded (from the appropriate SCB vector), and a new PSL is
created (with PSL <20: 16> containing the IPL associated with the inter­
rupt, and the previous access mode, current access mode, CM, TP, FPD,
DV, FU, IV, T, N, Z, and C bits cleared by the hardware). The current
access mode bits are cleared to indicate that the service routine runs in

31

Address of Longword-Aligned
Interrupt Service Routine

Code Meaning

2 0

Code SCB vector

00 Service the event on the kernel stack unless currently on the interrupt stack; in that
case, use the interrupt stack.

01 Service the event on the interrupt stack; if the event is an exception, raise IPL to 31.

10 Service the event in the Writable Control Store (WCS), passing bits< 15:2>
to the microcode; if the WCS does not exist or is not loaded, the operation is undefined
(the processor will halt).

11 The operation is undefined (the processor will halt).

Figure 5-1 System Control Block Vector Format

5.1 Hardware Interrupt Dispatching

kernel mode. The IS bit is set to indicate that the processor is running on
the interrupt stack.

5. The interrupt service routine identified by the SCB vector executes and
eventually exits with an REI instruction that dismisses the interrupt.

6. The PC and PSL are restored by the execution of the REI instruction, and
the interrupted thread of execution (a process or lower priority interrupt
service routine) continues where it left off.

Unlike software interrupt dispatching, there is no one-to-one correspon­
dence between hardware IPL and an interrupt service routine vector in the
SCB (see Figure 5-2). The SCB contains the addresses of several interrupt

0

t
Offsets

in
SCB

SCB (System Control Block)

Various Exceptions and
Software Interrupts

IPL 20
Interrupts

IPL 21
Interrupts

IPL 22
Interrupts

IPL 23
Interrupts

SCBB

(Physical
address of
start of SCB)

....,

<

-'

16 vectors
) one for ea ch

umber adapter n

) 16 vectors

) 16 vectors

> 16 vectors

Figure 5·2 System Control Block Vectors for Hardware
Interrupts

109

Hardware Interrupts

service routines for a given device IPL. There are no registers corresponding
to the Software Interrupt Request Register or Software Interrupt Summary
Register (see Chapter 6). instead, the processor notes that a lower priority
interrupt has been requested, but not granted. If the device is still requesting
the interrupt when IPL falls below the device interrupt level, the interrupt is
granted.

If, however, the device is no longer requesting an interrupt, the system will
he unable to determine which interrupt service routine to call. Such an oc­
currence is called a passive release. If the device .is no longer requesting an
interrupt, the system is unable to determine which adapter requested the
interrupt; in this case, a nexus 0 interrupt service routine is entered. It incre­
ments the counter 10$GL_SCB_INTO and dismisses the interrupt.

5.1.2 System Control Block

5.1.2.1

110

The SCB contains the vectors used to dispatch all interrupts and exceptions.
Its starting physical address is stored in the System Control Block Base Regis­
ter (PR$_SCBB). Its starting virtual address is stored at global location
EXE$GL_SCB. Its size varies with processor type and configuration.

The first page of the SCB is the only page defined by the VAX architecture.
The layout of the first SCB page is pictured in Figure 4-1. Table 6-1 contains
more details about the SCB vectors used for software interrupts. Figure 5-2
shows how the second half of the first page is divided among 16 possible
external devices, each interrupting at four possible IPL values from 20 to 23.

The nature and type of the external devices vary on different VAX proces­
sors. Each device has an identifying number which, along with the IPL of the
interrupt, selects a particular SCB vector. The name of the identifying num­
ber varies: on some processors, it is called a slot number; on others, a VAXBI
node number; on others, a nexus number. For simplicity, this chapter uses
the term nexus in a generic way.

The following sections briefly describe the configurations and SCB size of
various VAX processors.

Adapter Configuration. Typically, the presence of an adapter at a particular
nexus number is checked by testing the first longword in the adapter's 1/0
register space and checking for nonexistent memory. The presence or absence
of an external adapter is determined during system initialization. Specifi­
cally, the machine check vector in the SCB is loaded with the address of a
special routine. System initialization code then tests the first longword. If a
nonexistent memory machine check occurs, there is no connected adapter at
the location being tested.

On some CPU types, VMB, the primary bootstrap program, determines the
adapter configuration. On other CPU types, the configuration is determined at
a later step of initialization. See Chapters 24 and 25 for further information.

5.1.2.2

5.1.2.3

5.1.2.4

5.1 Hardware Interrupt Dispatching

The result of this testing is stored in several arrays in nonpaged pool. Chap­
ter 25 describes these arrays. During later stages of system initialization, this
information is used when specific adapters are configured into the system.

Direct and Indirect Interrupt Vectors. An interrupt can be characterized as
directly or indirectly vectored. The SCB vector for a directly vectored in­
terrupt contains the address of its interrupt service routine. An indirectly
vectored interrupt is dispatched first to a service routine that identifies the
device requesting the interrupt and dispatches to its service routine.

The following VAX CPUs implement directly vectored interrupts:

• VAX-11/730
• VAX-11/750
• MicroVAX I
• MicroVAX II
• VAX 8200 family
• VAX 8800 family

UNIBUS interrupts on the following VAX CPUs are indirectly vec.tored
through a UNIBUS adapter (UBA):

• VAX-11/780, VAX-11/782, and VAX-11/785
• VAX 8600 and VAX 8650

Section 5.2.2 describes these two types of interrupt dispatching in more
detail.

VAX-11/730 SCB and External Adapters. On the VAX-11/730, the CPU, UNI­
BUS adapter, and memory controller are connected by the array bus. In addi­
tion to the array bus, communications between the CPU and the integrated
disk controller (IDC) are performed over the accelerator bus (so-named be­
cause the floating-point accelerator communicates over it). The IDC controls
RL02 and R80 disks. The V AX-11/730 is not expandable and does not have
expansion slots.

The VAX-111730 SCB is two pages long. The second page is used for di­
rectly vectored UNIBUS interrupts. Each vector in the second page corre­
sponds to a UNIBUS vector in the range from 0 to 7748 •

VAX-11/750 SCB and External Adapters. The VAX-11/750 SCB is two pages
long or, if there is a second UNIBUS on the VAX-11/750, three pages long.
The second SCB page on the VAX-11/750 is used for directly vectored UNI­
BUS device interrupts. Each SCB vector corresponds to a UNIBUS vector in
the range from 0 to 7748. A third SCB page is used for directly vectored UNI­
BUS device interrupts on the second UNIBUS.

The backplane interconnect on the VAX-11/750, called the CPU to mem­
ory interconnect (CMI), connects the CPU, memory controllers, UNIBUS

111

lf ardvvare Interrupts

5.1.2.5

112

Table 5-1 Fixed Slots on the VAX-111750

Adapter Type

Memory controller

Up to three MASSBUS adapters

UNIBUS adapter

Second UNIBUS adapter

Slot Number

0

4 through 6

8

9

adapters, and MASSBUS adapters. Each connection to the CMI is identified
by its slot number.

There are a total of 16 slots which can be used to connect adapters. The
first ten of these are reserved for a memory controller, UNIBUS adapters, and
MASSBUS adapters. These ten slots are called fixed slots because the map­
ping of controller/adapter to slot number is fixed. That is, a particular slot
can have only a particular adapter placed in it. Table 5-1 lists these adapters.

The last six slots are reserved for adapters with configuration registers and
are called floating slots. A CI750 port adapter or a DR750 would be connected
to a floating slot.

Each slot is assigned four SCB vectors in the first SCB page, one for each
IPL value from 20 to 23 (see Figure 5-2).

VAX-11/780, VAX-11/782, and VAX-11/785 SCB and External Adapters. The
SCB for the VAX-11/780, VAX-11/782, and VAX-11/785 is one page. On these
processors, the synchronous backplane interconnect (SBI) connects the CPU,
memory controllers (including MA780s), DR780s, CI780s, UNIBUS adapters,
and MASSBUS adapters. Each connection to the SBI is identified by its trans­
fer request (TR) number.

The TR number determines SBI priority. TR numbers range from 0 (highest
priority) to 15 (lowest priority). There is a limit of 15 connections to the SBI
(see Table 5-2). TR number 0 is used for a special purpose on the SBI and has
no corresponding external adapter. The lowest priority level is reserved for
the CPU, and it requires no actual TR signal line. The TR number defines the
physical address space through which the device's registers are accessed and
through which vectors the device will interrupt. The SCB has four vectors for
each possible TR, one vector each for IPLs 20, 21, 22, and 23. UNIBUS inter­
rupts are indirectly vectored (see Section 5.2.2.2).

An adapter is not restricted to having a specific TR number. However, the
relative priorities of the various adapters may not change. That is, a system
cannot have an MBA with a higher priority (lower TR number) than a UBA.
For instance, if a system has two local memory controllers and an MA780
shared memory controller, the first UNIBUS adapter on that system could
have TR number 4, with the MA780 having TR number 3, and the memory
controllers having TR numbers 1 and 2.

5.1.2.6

5.1.2.7

5.1 Hardware Interrupt Dispatching

Table 5-2 Standard SBI Adapter Assignments on the VAX-l l/78x

External Adapter Type

First memory controller

Second memory controller

First MA780 shared memory

Second MA780 shared memory

First UNIBUS adapter

Second UNIBUS adapter

Third UNIBUS adapter

Fourth UNIBUS adapter

First MASSBUS adapter

Second MASSBUS adapter

Third MASSBUS adapter

Fourth MASSBUS adapter

DR780 SBI interface

CI780

Nexus
Number

TRO

TR 1

TR2

TR3

TR4

TR5

TR6

TR?

TR8

TR9

TRIO

TRll

TR 12

TR14

TR 15

Comments

Hold line for next cycle.
TR 0 is the highest TR
level and is not assigned
to a device.

If present, follows local
memory controllers

Follows any MA780
controllers present

Reserved

Reserved

Micro VAX I SCB and External Adapters. On the Micro VAX I, the CPU, mem­
ory, and external devices are connected to the Q22 bus. Interrupt requests
from external devices go directly to the CPU, which arbitrates interrupts.
IPLs 20 to 23 correspond to Q22 bus interrupt request lines BIRQ4 to BIRQ7.

MicroVAX I Q22 bus interrupts are somewhat different from those on most
other VAX processors. An interrupt is arbitrated in the same way, by compar­
ing its IPL to the processor's IPL. However, when a Q22 bus interrupt is
granted, processor IPL is raised to 23. For further details, refer to the manual
MicroVAX I CPU Technical Description.

The MicroVAX I SCB is two pages long. The second page is used for directly
vectored Q22 bus device interrupts. Each vector in the second page corre­
sponds to a Q22 bus vector in the range from 0 to 77 48 .

MicroVAX II SCB and External Adapters. The memory interconnect on the
Micro VAX II connects the CPU and optional memory expansion modules.
The CPU board contains an interface to the Q22 bus, to which.all I/O devices

113

Hardware Interrupts

5.1.2.8

5.1.2.9

114

are connected. Interrupt requests from external 1/0 devices go directly to the
CPU, which arbitrates interrupts. IPLs 20 to 23 correspond to Q22 bus inter­
rupt request lines BIRQ4 to BIRQ7.

The MicroVAX II SCB is two pages long. The second page is used for
directly vectored Q22 bus device interrupts. Each vector in the second page
corresponds to a Q22 bus vector in the range from 0 to 7748 .

MicroVAX II Q22 bus interrupts are like those of the MicroVAX I. An inter­
rupt is arbitrated by comparing its IPL to the processor's IPL. However, when
a Q22 bus interrupt is granted, processor IPL is raised to 23.

VAX 8200 Family SCB and External Adapters. The VAX 8200 family consists
of the VAX 8200 and VAX 8300. The SCB for a member of the VAX 8200
family consists of the standard page defined by the VAX architecture, plus an
additional page for each UNIBUS adapter present. UNIBUS interrupts are
directly vectored.

The bus on a VAX 8200 is called the VAX backplane interconnect(VAXBI).
It is a 32-bit, synchronous bus interconnect for up to 16 processors, memory
controllers, and adapters. Each node has a unique node number from 0 to 15
determined by an ID plug in the node's VAXBI slot. The node number deter­
mines the physical location of the node's registers and its interrupt vectors.
(See Chapter 27 for a block diagram of a VAX 8300.)

Each VAXBI node has an 8K-byte block of addresses known as its node
space. The first 256 bytes are used to address V AXBI registers implemented
by the BIIC (a chip which is the primary interface between the VAXBI bus and
the user interface logic on each node). The remaining space is used to address
registers on the device. In addition, each node has 256K bytes in 1/0 space,
called window space, for use in mapping addresses to the other bus's memory
space (for example, the UNIBUS address space). The physical locations of the
node and window spaces are determined by the node number.

Each node has four vectors in the first SCB page, one for each level at which
it can request an interrupt. VAXBI interrupt levels 4 through 7 correspond to
IPLs 20 through 23.

VAX 8800 Family SCB and External Adapters. The VAX 8800 family includes
the VAX 8500, VAX 8550, VAX 8700, and VAX 8800. A synchronous back­
plane interconnect bus, called the VAX 8800 memory interconnect (NMI),
connects CPUs, memory, and one or two 1/0 adapters called NMI to BI (NBI)
adapters. The VAXBI is the VAX 8800 family 1/0 bus. Each NBI adapter can
interface with up to two VAXBls. Each VAXBI can have up to 15 interfaces
apart from the NBI, which is node 0. (See Chapter 27 for a block diagram of a
VAX 8800.)

AV AX 8800 family member processor has a 32-page SCB. Memory and NBI
interrupts vector through the architecturally defined page of the SCB. Inter-

5.1.2.10

5.2

5.2 VAX/VMS Interrupt Service Routines

rupts from each of four possible VAXBis vector through pages 28 through 31.
Pages 1 through 2 7 are reserved for "offsettable" VAXBI nodes, nodes that are
directly vectored, such as the UNIBUS adapter.

VAX 8600 and VAX 8650 SCB and External Adapters. The VAX 8600 and
VAX 8650 have a four-page SCB to support the theoretical maximum configu­
ration of four synchronous backplane interface (SBI) adapters (SBIAs). On
these processors, 1/0 adapters are connected to an SBI. Each SBI is connected
through an SBIA to a bus called an adapter bus (ABUS). The ABUS connects
the SBIAs to the memory subsystem. Current configurations support a maxi­
mum of two SBIAs. The supported 1/0 adapters are the UNIBUS, MASSBUS,
and CI780 adapters supported on a VAX-11/78x system.

Exceptions, software interrupts, and memory errors are dispatched through
vectors in the first page of SCB. Hardware interrupts for adapters on the first
SBI are vectored through the first page of SCB. Interrupts for adapters on "the
second SBI use the second page of SCB. A hardware interrupt vector is deter­
mined by the combination of interrupt level, TR number, and SBI number.

UNIBUS interrupts are indirectly vectored, as they are on the VAX-U/78x
(see Section 5.2.2.2).

VAX/VMS INTERRUPT SERVICE ROUTINES

The following sections briefly describe VAX/VMS adapter interrupt service
routines and dispatching of device interrupts. Chapter 18 presents an over­
view of the 1/0 database, the basis for interrupt dispatching. The manual
Writing a Device Driver for VAX/VMS describes the 1/0 database in more
detail and contains a more complete discussion of driver interrupt service
routines than that presented here.

5.2.1 Restrictions Imposed on Interrupt Service Routines

Interrupt service routines operate in the limited system or interrupt context
described in Chapter 1. These routines execute at elevated IPL on the inter­
rupt stack outside the context of a process.

There are several restrictions imposed on interrupt service routines by ei­
ther the VAX architecture or synchronization techniques used by VAX/VMS.
Many of these result from the limitations of system context. The following
list indicates some of the constraints placed on an interrupt service routine.
The description of system context in Chapter 1 contains a more general list
of these and other restrictions.

• An interrupt service routine should be very short and do as little processing
as possible at elevated IPL.

• Any registers used by an interrupt service routine must first be saved. VMS

115

Hardware Interrupts

saves some registers (usually RO through RS) prior to calling a device driver
interrupt service routine. See the manual Writing a Device Driver for VAX/
VMS for further details.

• Although an interrupt service routine can raise IPL, it should not lower IPL
below the level at which the original interrupt occurred.

• An interrupt service routine should be conservative in its use of stack
space. The interrupt stack is not very large on most systems. Its size is
determined by the SYSBOOT parameter INTSTKPAGES, which has a de­
fault value of two pages.

• Because the low two bits of the interrupt service routine address in an SCB
vector are used for stack selection, an interrupt service routine dispatched
through an SCB vector must begin on a longword boundary. (An indirectly
vectored interrupt service routine need not begin on a longword vector.)

• An interrupt service routine may not access pageable routines or data struc­
tures. The page fault exception service routine generates a fatal bugcheck if
a page fault occurs while IPL is above 2.

• An interrupt service routine cannot access data structures synchronized by
a mutex without destroying their synchronization.

• An interrupt service routine that runs as a result of an interrupt above
IPL$_SYNCH (8) may not access data structures synchronized at
IPL$_SYNCH without destroying their synchronization. This restriction
applies to all hardware interrupts and many software interrupts.

• No references to per-process address space (PO space or Pl space) are al­
lowed.

• Prior to executing an REI instruction, an interrupt service routine must
remove anything it pushed on the stack and restore all saved registers.

5.2.2 Servicing UNIBUS and Q22 Bus Interrupts

5.2.2.1

116

Each device on a UNIBUS or Q22 bus has one or more vector numbers and a
bus request priority. The bus request priority enables the bus to be arbitrated
among devices when multiple interrupts are requested.

On a UNIBUS, there are four bus request (BR) levels, called BR4, BRS, BR6,
and BR7. BR7 is the highest priority. If interrupts are requested concurrently
for multiple devices with the same BR level, the device electrically closest to
the UNIBUS interface has the highest priority. On a Q22 bus, there are also
four request levels, called bus interrupt request (BIRQ) levels. BIRQ7 is the
highest priority.

In either case, the device IPL of the requested interrupt is the bus request
level plus 16. For example, BR4 corresponds to IPL 20.

Directly Vectored UNIBUS and Q22 Bus Interrupt Service Routines. VAX
CPUs that implement directly vectored interrupts use additional pages of the
SCB for these interrupts.

5.2.2.2

5.2 VAX/VMS Interrupt Service Routines

The System Generation Utility is responsible for building the 1/0 database
for devices and their drivers (see Chapter 18). For a device whose interrupts
are directly vectored, SYSGEN initializes the SCB vector with the address of
code that dispatches the interrupt to the interrupt service routine. This dis­
patching code is contained in a data structure called a channel request block
(CRB) and resembles the following:

PUSHR #~<RO,Rl,R2,R3,R~,RS>

JSB @#driver_interrupt_service_routine

The second instruction dispatches to the driver interrupt service routine
(see Figure 5-3). The longword following the JSB instruction contains the
address of another data structure, the interrupt dispatch block (IDB). Its ad­
dress is pushed onto the stack as the return PC for the JSB instruction. (Con­
trol never returns there because that address is removed from the stack by the
driver interrupt service routine, as are the saved registers.)

After the JSB instruction in the CRB transfers control, the following events
occur:

1. The driver interrupt service routine removes the IDB pointer from the
stack and uses it to obtain both the address of the device controller's con­
trol/status register (CSR) and the address of the unit control block (UCB)
for the device generating the interrupt.

2. Having found the UCB, the interrupt service routine determines whether
the interrupt is expected or not. If the interrupt is unsolicited, the inter­
rupt service routine may either take some appropriate action or simply
dismiss the interrupt by restoring the saved registers and executing an
REI.

3. If the interrupt is expected, the interrupt service routine restores the
driver context saved in the UCB by the driver fork process. The driver
interrupt service routine then executes a JSB instruction to transfer con­
trol to the saved PC.

4. The driver fork process transfers control back to the interrupt service rou­
tine. Most often, the driver fork process does this indirectly by forking or
waiting for another interrupt. In either case, the fork process invokes
a routine that saves the fork process context and returns to its caller
by executing an RSB instruction. The driver interrupt service routine
then restores the saved registers and dismisses the interrupt with an
REI instruction.

Indirectly Vectored UNIBUS Interrupt Service Routines. When an indirectly
vectored device on the UNIBUS requests an interrupt, the UBA receives the
interrupt request and requests a CPU interrupt on behalf of the interrupting
device. It is actually the UBA interrupt that is vectored through the SCB
(using the interrupting device's IPL and the adapter's TR number) to an
adapter interrupt service routine.

117

........

........
Oo

A
0

n interrupt
ccurs;

I-- -
he hardware
esponds to
he interrupt.

VAX86XO
or

VAX-11"8x
SCB

First Page

SCB of VAX
with

Directly Vectored
Interrupts

A---1 ~

Nth Page

.--

r

UBAADP

UBA Interrupt Service Routine
• Saves RO-RS
• Reads BRRVR register in UBA
• Uses vector read as index

into vector table
•JMP

Vector Table Containing
Device CRB Addresses

DevlceCRB j

PUSHR RO-RS
JSB
IDB pointer

Device Driver

Device Driver Interrupt Service
Routine
• Uses IDB address on stack

to locate:
- Device registers
-Device UCB

• Restores R3 and R4 from
fork block in UCB

•Transfers control to PC in
fork block (via JSB)

• When driver issues RSB:
- Restores RO-AS
- Issues REI to dismiss

the interrupt

Figure 5-3 Control Flow in Servicing a UNIBUS or Q22
Bus Interrupt

The executing process is interrupted; the
/ software response to the interrupt

is initiated.

Device IDB

r+- Device CSR D evice Registers

UCB address

i.....

Device UCB

Fork Block 1---.J
• R3
• R4
•PC

The interrupted
process

i---.. continues
execution.

5.2 VAX/VMS Interrupt Service Routines

The adapter interrupt service routine saves registers RO through RS, deter­
mines which device actually requested the interrupt, and then passes control
to an interrupt service routine in the device driver for the interrupting device.
The driver interrupt service routine can then respond to the interrupt in a
device-dependent fashion. After servicing the interrupt, the registers saved by
the adapter interrupt service routine must be restored and an REI instruction
executed to dismiss the interrupt.

There are four interrupt service routines for each UBA, one for each BR
level at which UNIBUS devices request interrupts. They differ only in which
internal UBA register they read to determine which device requested the
interrupt. These interrupt service routines are found in a data structure de­
scribing the UBA, the adapter control block (ADP). The UBA ADP is created
during system initialization by the CPU-specific routine INI$UBADP. The
CPU-specific routine and the actual UBA interrupt service routines are in
module [SYSLOA]INIADPxxx, where xxx is either 780 for the VAX-ll/78x
processors or 790 for the VAX 86x0 processors.

Indirectly vectored UNIBUS interrupt servicing begins in one of four UNI­
BUS adapter interrupt service routines. Each of these routines takes the fol­
lowing steps:

1. The routine (see Figure S-3) saves registers RO through RS.
2. A UBA internal register (BRRVR) is read to determine the identity of the

interrupting device. Each BRRVR register contains either the vector num­
ber corresponding to the device interrupt or an indication that the UBA is
interrupting on behalf of itself, not for some device. (There are four
BRR VRs in the UBA, one for each BR level.)

3. The UBA interrupts on its own behalf to indicate an adapter error. Certain
adapter errors result when a reference is made to a nonexistent address in
UNIBUS I/O space. They can indicate a transient hardware error or a bug
in a device driver. These errors are logged, up to a maximum of three in
any given IS-minute period, and the interrupt is dismissed.

Another possible error is that power on the UNIBUS or UBA is about to
fail. Chapter 26 describes how adapter powerfail is handled.

4. For a device interrupt, the vector number is used as an index into a vector
table, which is part of the ADP. The vector table contains a pointer to the
JSB instruction in the CRB. The service routine transfers control by exe­
cuting a JMP to the JSB instruction.

The vector table entry pointing to the CRB and address fields in the CRB
are initialized by SYSGEN in response to the CONNECT command.

The JSB instruction in the CRB transfers control to the driver interrupt
service routine. The longword following the instruction contains the address
of another data structure, the interrupt dispatch block (IDB). This address is
pushed onto the stack as the return PC for the JSB instruction. However,

119

lf ardvvare Interrupts

control is never returned there, because that address is removed from the
stack by the driver interrupt service routine.

At this point, interrupt dispatching is identical to that on directly vectored
processors, as described in the previous section. Device driver interrupt ser­
vice routines are entered in the same way regardless of processor type.

5.2.3 MASSBUS Adapter Interrupt Service Routine

120

MASSBUS adapter (MBA) interrupt dispatching is identical across all VAX
CPUs that support an MBA. During system initialization, four SCB vectors
for each MBA are initialized by the CPU-specific routine INI$MBADP in
module [SYSLOA]INIADPxxx (where xxx designates one of the CPU types
listed in Appendix GJ. The SCB vectors contain an address within the MBA
CRB. The CRB contains a PUSHR instruction to save R2 to RS and a JSB in­
struction to transfer control to the MBA interrupt service routine, MBA$INT
in [SYSLOA]ADPSUBxxx.

MBA interrupts are handled differently from UNIBUS interrupts, partly
because one MBA interrupt may indicate that multiple devices on the
adapter need servicing. The MBA interrupt service routine reads an attention
·summary register to determine its response to an interrupt.

If the interrupt enable bit in the MBA is set, an MBA interrupt can be
caused by any of the following operations:

• Completion of a data transfer
• Assertion of an attention line while the MBA is not busy
• Occurrence of an MBA error while the MBA is not busy
• Power recovery on the MBA

A device on the MASSBUS asserts its attention line under the following
circumstances:

• If an error occurs, whether or not a transfer is taking place
• When a mechanical motion such as a disk seek or tape rewind completes
• When a device changes its state

In general, a MASSBUS device driver does not request ownership of the
MBA until it is needed to perform a transfer. MBA$INT assumes that if the
MBA owner is expecting an interrupt, then the interrupt currently being ser­
viced indicates that a transfer has completed or been aborted. That is, when
an MBA interrupt occurs and the current owner of the MBA is expecting an
interrupt, MBA$INT dispatches immediately to the owner's driver.

Because data transfer functions block the interrupts from nontransfer func­
tions until the data transfer completes, MBA$INT always checks the MBA
attention summary register after a driver interrupt service routine returns
control. It tests whether another device on the MASSBUS requested an inter-

An interrupt occurs;
the hardware responds

see

to the interrupt.Al-____ ____,

"l....--.. -+--

MBACRB
The executive process
is interrupted; the - PUS HR R2-R5

MBA Interrupt Service
Routine (MBASINT)

~ MBA$1NT determines type
of interrupt and executes the
appropriate code.

L MBA IDB
~

MBACSR--+-

List of CRBs
and UCBs for

---....,.- MBA Registers

Device UCB
for Single-Unit Controller

......-
devices on ---1----'
MASSBUS ._-+-~

Device Driver
~CASE 1: Single-Unit (Disk)

Controller Expecting
Interrupt
JSB ---------.j...------------+-----+-~ Instruction awaiting

software response to JSB --+---+-.. 1---------------------- in UCB fork block) L interrupt (PC stored
the interrupt is initiated. 1--------1

The interrupted process _,..,_ ____ ..
continues execution.

1-cAs· ,, ""'"""' •••• ... __:_~~~~~-r Controller Not Expecting
Interrupt Unsolicited interrupt

rout one
~ -~~~

1----------------------- ----------------- - -
~CASE 3: Multiunit (Tape) Interrupt service

Controller routine JSB
PUSHL PSL Device CRB • Restores R2-R5

JSB ,......+----~~~:~~~~~--------
~-------=s"-------- -

After returning from subroutine,
MBA$1NT cleans up and then
determines if another interrupt is

'-i- present. If one exists, return to
cases; if there is no interrupt,
REI.

PUSHR R2-R5
JSB

Device IDB

'-----~ Device CSR e+- f
List of UCBs ...+-+-----'
for devices on
this controller

Device UCB for
Multiunit

Controller

Controller Registers

Figure 5-4 Control Flow in Servicing a MASSBUS
Interrupt

Hardware Interrupts

rupt either while the MASSBUS owner was transferring data or while the
current interrupt was being processed. The UCB list contained in the IDB
allows MBA$INT to associate UCB addresses with devices that are request­
ing service.

MBA$INT responds to an interrupt in one of three ways (see Figure S-4). It
may perform all three of these actions to service multiple attention requests
in response to a single interrupt.

• For an expected interrupt (bit UCB$V _INT set in UCB$W _STS) on a single
unit device, MBA$INT restores the driver fork process context and executes
a JSB instruction to the fork PC. The driver fork process returns to
MBA$INT when it has completed its work.

• For an unsolicited interrupt (bit UCB$V _INT clear in UCB$W _STS) on a
single unit device, MBA$INT executes a JSB instruction that transfers con­
trol to a driver-supplied unexpected interrupt service routine, which will
return to MBA$INT.

• For a multidevice controller (a magnetic tape formatter), MBA$INT trans­
fers control to the CRB for the device controller. The device controller CRB
dispatches to a controller interrupt service routine that saves R2 to RS and
transfers control to the driver interrupt service routine. This service routine
eventually returns control to MBA$INT.

MBA$INT uses the unit number of a device asserting attention as an index
into the list IDB$L_ UCBLIST. It identifies the type of the selected longword
entry by checking its low-order bit. If the bit is set, then the entry is for a
multidevice controller. If the bit is clear, the entry is the UCB address for a
single unit device. UCBs, like CRBs, are always longword aligned (the low­
order two bits are clear). When a CRB is created for a multidevice controller,
and its address stored in the MBA IDB, the address is incremented by 1 so the
low-order bit will be set. Control is actually transferred to the PUS HR instruc­
tion in the CRB with the following instruction (where RS contains the MBA
IDB entry):

JSB -(RS) ;autodecrement address to subtract 1

5.2.4 VAXBI Interrupt Service Routine

122

VAXBI interrupts are directly vectored. During system initialization, four
SCB vectors are assigned to each node found on the V AXBI. A vector for an
I/O adapter transfers control to a location in the CRB for that VAXBI adapter.
The instructions in the CRB are a PUS HR for RO through RS and a JSB . The
IDB address follows the JSB instruction in the CRB (see Figure S-S).

Initially, the JSB in the CRB transfers control to one of several routines
within the ADPSUB8SS module in SYSLOA8SS or ADPSUB8NN in
SYSLOA8NN. These routines field interrupts generated by the adapters prior

An interrupt
occurs;

responds to
the interrupt.

Figure 5·5

SCB

The executing
process is interrupted;
the software response
to the interrupt is
initiated.

VAXBI Device CRB

PUSHR RO-R5
JSB
VAXBI Device

IDB

VAXBI Device IDB

VAXBI Device

CASE 1

Path
taken

until the
device

driver is
loaded

CASE2

CSR -+--~ Path
taken

after the
device

driver is
loaded

Device UCB

Device UCB

Fork Block
• R3
• R4
•PC

VAXBI Device
Registers

Control Flow in Servicing a VAXBI Interrupt

xx$1NT

• Restores RO-R5

•REI

VAXBI Device Driver
Interrupt Service Routine

• Responds to interrupt;
e.g., test whether
interrupt expected;
restore fork process
context

• Restores RO-R5

•REI

The interrupted
process
continues
execution.

Hardware Interrupts

to the loading of the device driver. They each merely clean off the stack and
dismiss the interrupt.

When a VAXBI device driver is loaded, the destination of the JSB instruc­
tion is modified to the address of the interrupt service routine within the
driver. From this point, interrupt dispatching is driver-dependent but gener­
ally resembles dispatching for directly vectored interrupts (see Section
S.2.2.1).

5.2.5 CI Interrupt Service Routine

124

CI interrupts are dispatched directly through the SCB. During system initial­
ization, four SCB vectors for each CI port adapter are initialized by the
CPU-specific routine INI$CIADP in module [SYSLOA]INIADPxxx. The
SCB vectors contain an address within the CI CRB. The CRB contains a
PUSHR to save R2 to RS and a JSB instruction to transfer control to the
interrupt service routine.

Initially, the JSB in the CI CRB transfers control to routine CI$INT in
module ADPSUBxxx. This routine simply performs the following operations:

1. It clears the adapter power-up and power-down bits in the CI control
register.

2. It sets the maintenance initialization bits in the CI control register.
3. It restores registers R2 to RS.
4. It executes an REI instruction to dismiss the interrupt.

When the CI device driver, PADRIVER, is loaded, the destination of the JSB

instruction is modified to the address of the interrupt service routine within
the driver. There are several of these, one for each different type of CI port
adapter. They are all in module [DRIVER]PAADP and have names such as
INTERRUPT _CI780. They are very similar, differing primarily in their
methods of testing for error conditions. The following list summarizes their
actions, which are pictured in Figure S-6:

1. The interrupt service routine removes the address of the IDB pointer from
the stack, retrieving the address of the UCB.

2. The interrupt service routine examines various adapter registers to deter­
mine whether the CI port adapter interrupted because it queued a response
packet to a formerly empty response queue or because an error occurred.

3. If there was no error, the interrupt service routine invokes the routine
INT$FORK in module [DRIVER]PAINTR.

4. INT$FORK sets and tests a fork block interlock bit in the UCB. If the bit is
already set, the UCB is already in use as a fork block and INT$FORK
merely returns to the interrupt service routine. If the bit was not already
set, INT$FORK forks, using the UCB. That is, a fork PC is stored in the
UCB and the UCB is inserted on the IPL 8 fork queue (see Chapters 6 and
19).

An interrupt
occurs;

see

The executing
process is interrupted;
the software response
to the interrupt is
initiated.

CICRB

PUSHR R2-R5
JSB
Cl IDB

CllDB

CICSR

Device UCB

Device UCB

Fork Block
• R3
• R4
•PC

Figure 5-6 Control Flow in Servicing a CI Interrupt

CASE 1

Path
taken

until the
Cl

driver is
·1oaded

CASE2

Path
taken

after the
Cl

driver is
loaded

Registers

Cl$1NT

• Sets maintenance
bits

• Restores R2-R5

•REI

Cl Driver
Interrupt Service Routine

• Responds to interrupt;
e.g., fork and service
response queue

• Restores R2-R5

•REI

The interrupted

--~- process
continues
execution.

Hardware Interrupts

S. INT$FORK returns to the interrupt service routine, which restores the
registers saved on the stack and executes an REI instruction to dismiss the
interrupt.

6. When the driver fork process is entered, it updates the maintenance timer
on the CI port to indicate that the system is still active.

7. It then removes a response packet from the response queue and processes
it. It continues dequeuing response packets and processing them until ei­
ther the queue is empty or it has handled 100 response packets.

5.2.6 DR32 Interrupt Service Routine

DR32 interrupts are dispatched directly through the SCB. During system ini­
tialization, entries are made in the SCB to transfer control to locations in the
CRB for the DR32. The instructions in the CRB are a PUS HR for R2 through RS
and a JSB instruction. The DR32 IDB address follows these instructions in
the DR32 CRB (see Figure S-7).

Initially, the JSB instruction in the DR32 CRB transfers control to routine
DR$INT in module [SYSLOA]ADPSUBxxx. This routine simply performs the
following operations:

1. Clears the adapter power-up and power-down bits in a DR32 control register
2. Restores registers R2 to RS
3. Executes an REI instruction

When the DR32 driver (module [DRIVER]XFDRIVER) is loaded by
SYSGEN, the destination of the JSB instruction is changed to the interrupt
service routine in the driver. This routine performs the following operations:

1. Responds to the various types of DR32 interrupts
2. Restores registers R2 to RS
3. Executes an REI instruction

5.2.7 MA780 Interrupt Dispatching

126

Although the standard MS780 memory controller does not generate inter­
rupts, the shared memory (MA780) controller does. An interrupt can be re­
quested by a driver or the executive to interrupt another processor connected
to the shared memory. An interprocessor interrupt is requested whenever a
shared memory event flag is set, a shared memory mailbox message is writ­
ten, or there is interprocessor communication in the VAX-11/782. In ad­
dition, when certain types of error occur, the MA780 interrupts through a
second SCB vector.

Note that this discussion applies only to MA780 used as shared memory
among VAX-ll/780s or VAX-11/78Ss. Interrupt handling in the VAX-11/782
is somewhat different and is briefly discussed in Section S.2.8. Chapter 27

An interrupt
occurs;

responds to
the interrupt.

Figure 5-7

see

The executing
process is interrupted;
the software response
to the interrupt is
initiated.

DR32 CAB

PUSHR R2-R5
JSB
DR32 IDB

OR32 IDB

DR32CSR

Device UCB

Device UCB

Fork Block
• R3
• R4
•PC

CASE 1

Path
taken

until the
DR32

driver is
loaded

CASE2

Path
taken

after the
DR32

driver is
loaded

DR32
Registers

Control Flow in Servicing a DR32 Interrupt

DR$1NT::

• Disables DR32
interrupts

• Restores R2-R5

•REI

DR32 Driver
Interrupt Service Routine

• Responds to interrupt;
e.g., queue AST to
user process to
inform user of interrupt

• Restores R2-R5

•REI

The interrupted
process
continues
execution.

IlardlNare Interrupts

An interrupt
occurs;

the hardware
responds
to the
interrupt.

see

MA 780 Registers

MA780ADP

MA780CSR
PUSHR RO-RS

JSB ___ -+-__.

The executing process is
interrupted; the software
response to the interrupt
is initiated.

Figure 5-8 Control Flow in Servicing an MA780
Interrupt

MA$1NT::

• Computes address of
ADP from pointer on
stack

• Services interrupt

• Restores RO-RS

• Exits with REI

The
interrupted
process
continues
execution.

gives a more complete description of MA780 interrupts in the VAX-11/782.
During system initialization, module [SYSLOA]INIADP780 initializes SCB

vectors to transfer control to locations in the MA780 ADP when MA780
interrupts occur (see Figure S-8). The locations in the ADP contain a PUSHR

instruction saving RO through RS, and a JSB instruction that transfers control
to routine MA$INT in module [SYSLOA]ADPSUB780.

1. When MA$INT obtains control, it removes the value pushed onto the
stack by the JSB instruction in the ADP and uses it to determine the ad­
dress of the MA780's ADP.

2. It uses fields in the ADP to locate adapter registers in the MA780 and to
determine which port requested an interrupt and what kind of interrupt
was requested.

3. If the interrupt is for a processor being connected to the memory, the
interrupt is dismissed by restoring RO through RS and executing an REI

instruction.
4. Otherwise, MA$INT services the interrupt.
S. Finally, the interrupt is dismissed by restoring RO through RS and execut­

ing an REI instruction.

5.2.8 MA780 Interrupts on the VAX-11/782

128

The VAX-11/782 asymmetric multiprocessing system uses the MA780 inter­
processor interrupts for different functions than the MA780 support pre­
viously described. Thus, the MA780 interrupts must be handled somewhat
differently on the VAX-11/782.

When the asymmetric multiprocessing code is loaded, the MA780 inter­
processor interrupt vectors in the primary processor's SCB are redirected to
point to a multiprocessing MA780 interrupt routine (only for the first

5.3

5.3 Connect-to-Interrupt Mechanism

MA780). The interrupt service routine serves interrupts from the attached pro­
cessor. A new SCB is created in nonpaged pool for the attached processor. The
new SCB contains vectors that point to multiprocessing MA780 interrupt
service routines for the attached processor. The interprocessor interrupt vec­
tor for the remaining MA780s is pointed to an unexpected interrupt handler.

For more information on VAX-11/782 asymmetric multiprocessing, see
Chapter 27.

CONNECT-TO-INTERRUPT MECHANISM

The connect-to-interrupt mechanism enables a process to· be notified of a
UNIBUS device interrupt by the delivery of an asynchronous system trap
(AST), setting of an event flag, or both. The process can also specify an inter­
rupt service routine to respond to device interrupts.

A suitably privileged process (with CMKRNL and PFNMAP privileges) can
respond to an interrupt by reading or writing device registers and possibly by
initiating further device activity. However, to directly manipulate device reg­
isters, the process must first map the UNIBUS space containing the registers
for the device into its own process space (PO or Pl). The manual Writing a
Device Driver for VAX/VMS describes mapping UNIBUS 1/0 space and using
the connect-to-interrupt capability. Chapter 16 of this book contains more
detailed information on how the mapping is actually performed.

Note that the physical address range of UNIBUS 1/0 space differs on differ­
ent types of VAX processors. Writing a Device Driver for VAX/VMS contains
a list of symbols defined by the processor-specific macros (for example,
$10730DEF) that define the physical addresses symbolically.

The connect-to-interrupt facility is an extension of the interrupt dis­
patching scheme. To use it, the connect-to-interrupt driver (module
[DRIVER]CONINTERR) must be associated with the interrupt vector. The
association is made using the SYSGEN command CONNECT, specifying
all of the following:

• A name for the device (to be used by the process that connects to the inter-
rupt)

• The CSR address of the device
• The interrupt vector at which the device generates interrupts
• The CONINTERR driver, which initially responds to the device interrupts

When the device generates an interrupt, the normal UNIBUS interrupt
dispatching sequence is followed, as discussed in Sections 5.2.1 and 5.2.2.
However, the CONINTERR interrupt service routine transfers control to the
user-supplied interrupt service routine (if one was supplied), using a JSB or
CALL instruction (as requested by the user). This transfer is illustrated in
Figure 5-9.

129

Hardware Interrupts

130

DeviceCRB

IDB address -+--

Device IDB

Device CSR •--+--~

Device UCB -----+--- l
Device UCB

Fork Block
• R3
• R4
•PC

CONINTERR Interrupt
Service Routine

User-supplied Interrupt
Service Routine

• JSB (or CALL) _..,.....,J.....,r • Responds to interrupt
if requested by I in device-dependent
user I fashion

• Requests delivery
of AST to process
or set an event
flag, if desired
by user

• Restores RO-RS

• Issues an REI
to dismiss interrupt

I

I
I
I
I
I
I
I
I

This portion of th·e interrupt 1

1

dispatch scheme is an
explicit example of the general I
UNIBUS interrupt dispatch I
scheme illustrated in Figure 5-3. I

I

• Exits with RSB

This portion of the interrupt
dispatch scheme is specific
to the connect-to-interrupt driver.

Figure 5-9 Extending Interrupt Dispatch Mechanism
with the Connect-to-Interrupt Facility

When the user-supplied interrupt service routine executes an RSB or RET

instruction, the CONINTERR interrupt service routine regains control. Be­
fore restoring the registers and dismissing the interrupt, the CONINTERR
interrupt service routine queues an AST to the process (if requested) to notify
it that an interrupt has occurred. CONINTERR's AST routine sets an event
flag, queues the user-requested AST, or both.

For the process-supplied interrupt service routine to be accessible to the
CONINTERR interrupt service routine, the CONINTERR driver must dou­
ble map the user routine into system address space. The double mapping
requires enough system page table entries (reserved by the REALTIME_SPTS
SYSBOOT parameter) to map the user-supplied routines. When the process
disconnects from the interrupt, the SPTEs used to map its routines are made
available for later use by other processes.

Note that the connect-to-interrupt driver has no provision for DMA 1/0. It
does not allocate map registers and data paths. Its fork IPL, IPL$_
QUEUEAST, is lower than IPL 81 the IPL at which access to these adapter
resources is arbitrated. Furthermore, the driver does not perform the tasks
required to deal with VMS direct 1/0 buffers.

6

6.1

Software Interrupts

And now I see with eye serene
The very pulse of the machine.

William Wordsworth, She Was a Phantom of Delight

Software interrupts are fundamental to VAX/VMS. Software interrupt service
routines running at interrupt priority levels (IPLs) between 2 and 15 perform
many of the most important system functions of VMS. These include dis­
patching fork processes (IPLs 6 and 8 to 11), servicing processes' time-depen­
dent requests (IPL 7), I/O postprocessing (IPL 4), scheduling (IPL 3), and deliv­
ering ASTs (IPL 2). This chapter describes how software interrupts are
requested and granted and how VMS uses them.

THE SOFTWARE INTERRUPT
A software interrupt is an interrupt requested by a write to the software inter­
rupt request register rather than through a signal from an external device.
The VAX interrupt microcode responds to software interrupt requests as it
does to hardware interrupts; it dispatches through the appropriate system
control block (SCB) vector, which contains the address of the interrupt ser­
vice routine.

The VMS operating system requests a software interrupt to cause an inter­
rupt service routine to execute and perform its designated function. That is,
VMS uses software interrupts as a way of scheduling operating system func­
tions and as an alternative to periodic checking whether these operating sys­
tem functions need to be done. IPLs are assigned to the different operating
system functions, in part, as an indication of their relative importance.

VMS also uses specific IPLs and interrupt requests at those IPLs to synchro­
nize access to shared data structures. Chapter 2 discusses synchronization
through raising IPL.

6.1.1 Hardware Mechanism of Software Interrupts

The VAX architecture provides 15 vectors in the SCB for software interrupts
at IPLs 1 through 15. Figure 4-1 shows the SCB, and Figure 5-1 shows the
format of an SCB vector. The VAX architecture also provides a means for
kernel mode code and CPU console commands to request software interrupts.

A software interrupt at a particular IPL is requested by writing that IPL into
the software interrupt request register (PR$_SIRR). VMS code generally uses

131

Software Interrupts

132

the SOFTINT macro to write the PR$_SIRR. This macro expands into the
following instruction:

.MACRO SOFTINT IPL

MTPR IPL I S'#PR$_SIRR

.ENDM SOFTINT

The PR$_SIRR can also be written by the following CPU console com­
mand:

>>>D/I M ipl !for ipl, substitute a hex digit

VMS requests the software interrupt service routines for IPLs 3, 4, 6, 7, 8,
and 11 from within a hardware interrupt service routine or another software
interrupt service routine. Software interrupts at IPLs 5, 12, and 15 are re·
quested only through a CPU console command. The VAX architecture speci­
fies that the IPL 2 software interrupt service routine be requested by REI

microcode to deliver ASTs. VMS does not use software interrupts at IPLs 13
and 14. Although VMS provides for fork dispatching at IPLs 9 and 10, VMS
itself does not use those IPLs. The software interrupt at IPL 1 is unused.

Writing to PR$_SIRR causes the bit with the same number as the IPL to be
set in another processor register, the software interrupt summary register
(PR$_SISR). Figure 6-1 shows the layouts of these two registers. At any given
time, PR$_SISR contains a bit set for each level at which a software interrupt
has been requested but not yet granted. The VAX microcode reads PR$_SISR
to test for pending software interrupts. When the microcode grants a software
interrupt request, it clears the corresponding bit in PR$_SISR.

The VAX architecture provides both these processor registers to simplify
synchronization of access to PR$_SISR. If VMS were to modify the

31 4 3 0

'-------------lg-no-re-d---------~-R-eq-u-es-t ~i "RL8'RR

31

MBZ

Software Interrupt Request Register
(Write Only)

16 15

Pending Software Interrupts

1 0

M
B

F _j_ E _l_ D _l_ C _l_ B _l_ A __L 9 _l_ 8 cl 7 __L 6 __L 5 __L 4_.l_ 3 _l_ 2 __L 1
z

Software Interrupt Summary Register
(Read/Write)

Figure 6-1 Format of Software Interrupt Request
Register and Software Interrupt Summary Register

:PR$_SISR

6.1 The Software Interrupt

PR$_SJSR directly, several instructions would be required to preserve already
set bits in the register. VMS would have to raise IPL to block all interrupts,
read PR$_SJSR, set the new bit, write PR$_SJSR, and restore the previous
IPL. (MTPR and MFPR are the only instructions that access these processor regis­
ters.) Instead, when kernel mode code (or CPU console command) writes
PR$_SIRR, the microcode modifies PR$_SJSR with interrupts blocked.

The VAX microcode responds similarly to hardware and software interrupt
requests. The microcode tests for pending interrupts between each instruc­
tion and at well-defined points during the evaluation and execution of more
complicated instructions. The microcode determines the IPL of the highest
outstanding interrupt request, whether it is hardware or software. The
microcode compares that IPL to tl}e one at which the processor is running
and takes one of two actions based on the comparison.

If the processor is running at an IPL equal to or higher than the interrupt
request; the interrupt request is deferred until the IPL drops below the re­
quested level. Typically, when VMS requests a software interrupt, the inter­
rupt request is deferred. The lowering of IPL usually occurs as the result of an
REI instruction but can also occur if kernel mode code alters IPL by writing to
the PR$_JPL register (usually with the SETIPL or ENBINT macros, described
in Chapter 2).

If the processor is running at a lower IPL than the interrupt request, the
interrupt is granted. There are a few occurrences in the VMS operating sys­
tem of a software interrupt request at an IPL greater than that at which the
processor is currently running. For example, device driver FDT routines may
signal completion by calling the routine EXE$FINISHIO or EXE$FINISHIOC.
These routines execute at IPL 2 and terminate by requesting the 1/0
postprocessing software interrupt at IPL 4. In this case, the interrupt is taken
immediately. ·

To grant the interrupt request, the microcode first selects the vector in the
SCB that corresponds to the particular interrupt request. That vecto.r con­
tains the address of the interrupt service routine and a flag that specifies
whether the interrupt is to be serviced on the interrupt or kernel stack. The
microcode records the state of the interrupted thread of execution by pushing
the PSL and then the PC onto the appropriate stack. It then sets the IPL to
that of the interrupt request and transfers control to the interrupt service
routine. When the interrupt service routine is done, it executes an REI in­
struction, which resumes the previous thread of execution by restoring the
PC and PSL from the stack.

6.1.2 Software Mechanisms of Software Interrupts

The VAX architecture constrains software interrupt service routines by pro­
viding only one bit to indicate that a software interrupt has been requested at

133

Software Interrupts

6.2

134

a particular IPL. The service routine is thus unable to determine how many
times its bit number was set in PR$_SISR before the IPL dropped and the
interrupt request was granted.

As a result, either the software must supply some protocol for determining
this number or the number must be irrelevant to the execution of the inter­
rupt service routine. The scheduling interrupt service routine is an example
of a routine which has one function to do, regardless of how many times that
function has been requested. Other interrupt service routines use queues to
keep track of their work. Each element in the queue represents a specific
item of work for the interrupt service routine and an instance of the inter­
rupt's having been requested.

An interrupt service routine that uses a queue generally performs all the
work in the queue before dismissing the interrupt. It tries to remove an ele­
ment from the queue with the REMQUE instruction. The REMQUE instruction
indicates the presence of a list element by clearing the V-bit in the PSL condi­
tion codes. If the V-bit is clear, the interrupt service routine processes that
element and does another REMQUE. If the V-bit is set, the queue is empty and
no item was.removed from it. Thus, the set V-bit indicates that the interrupt
service routine's work is complete. The interrupt service routine then exits
through an REI instruction. Because such a software interrupt service routine
removes work items from its queue until the queue is empty and then dis­
misses the interrupt, the service routine reacts gracefully to any interrupt
granted when there is no work for the interrupt service routine.

SOFTWARE INTERRUPT SERVICE ROUTINES

There is no central monitor routine in VMS that controls the sequencing of
operating system functions. Instead, the need to perform a particular function
is indicated by a request for the associated interrupt. Scheduling operating
system functions as software interrupts eliminates any requirement for poll­
ing whether these functions need to be done. It also enables more important
functions to interrupt less important ones.

Table 6-1 shows the software interrupt service routines and their associ­
ated IPLs. In some cases, the assigned IPL only indicates the relative impor­
tance of the interrupt, and the interrupt service routine runs primarily at a
higher IPL for synchronization.

VMS interprets all software interrupts, except the AST delivery and re­
scheduling interrupts, as systemwide events that are serviced independently
of the context of a specific process. The rescheduling interrupt, discussed
briefly in this chapter and in greater detail in Chapter 10, is taken on the
kernel stack of the current process. The interrupt service routine immedi­
ately executes a SVPCTX instruction, saving the process's context and switch­
ing onto the interrupt stack. The AST delivery interrupt, discussed briefly at

6.2 Software Interrupt Service Routines

Table 6-1 Software Interrupt Levels Used by the Executive

IPL Use Stack

15 XDELTA on a multiprocessor Interrupt
14-13 Unused Interrupt
12 IPC intervention Interrupt
11 Fork dispatching Interrupt
10 Fork dispatching Interrupt
9 Fork dispatching Interrupt
8 Fork dispatching Interrupt
7 Software timer service routine Interrupt
6 Fork dispatching Interrupt
5 XDELTA, or scheduling on a multiprocessor Interrupt
4 1/0 postprocessing Interrupt
3 Rescheduling Kernel
2 AST delivery Kernel
1 Unused n/a

the end of this chapter and in greater detail in Chapter 7, is the only interrupt
that is serviced in the context of a specific process.

The software interrupt service routines vary. Some perform the same func­
tions every time they are executed. The rescheduling interrupt service rou­
tine, for example, takes the current process out of execution, selects another
one to run, and places it into execution. The functions of other software
interrupt service routines are quite variable. The 1/0 postprocessing interrupt
service routine has a specific function to perform but is data driven by the 1/0
request packets that are in its work queue. A fork dispatching interrupt exists
solely to dispatch to system routines. Which routines a fork dispatching in­
terrupt service routine executes is determined dynamically as a result of sys­
tem operation.

The software interrupts are described briefly in the following sections.
Some are described at more length in subsequent chapters. The use of IPL 5
for scheduling on an asymmetric multiprocessor system is described in
Chapter 27. The following sections are in order by interrupt level, except that
the service routines for interrupts requested through console command are
discussed last.

6.2.1 Fork Processing

Five software interrupts (IPLs 6 and 8 to 11) are used for fork dispatching.
Each of the interrupt service routines has its own work queue of fork blocks
(FKBs).

When a fork dispatching interrupt is granted, the interrupt service routine

135

Software Interrupts

6.2.1.1

6.2.1.2

136

Fork Queue Forward Link

Fork Queue Backward Link

Fork IPLl Type l Size

Saved PC

Saved R3

Saved R4

Figure 6-2 Layout of Fork Block

saves the low general registers and removes from its queue the first FKB and
dispatches to the fork process it describes.

The following sections describe fork process data structures and service
routines in more detail.

Fork Process Data Structures. A fork block describes a routine to be called by
a fork dispatching interrupt service routine. A minimal fork block, shown in
Figure 6-2, includes the address, or saved PC, of the fork routine
(FKB$L_FPC) and the contents of two registers. The field FKB$B_FIPL speci­
fies in which fork block queue this FKB is inserted and at what IPL its routine
will run.

Most often, a fork block is part of a larger data structure, such as a unit
control block or class driver request packet, which contains additional data.
The combination of standard fork block fields, additional fork block data, and
the routine that is to be executed is called a fork process.

Figure 6-3 shows the array of fork queue listheads. The listheads of these
queues are ordered in an array that includes a placeholder listhead for IPL 7.
Since the IPL 7 interrupt is serviced by the software timer routine, there is no
fork process dispatching at IPL 7. However, having the placeholder listhead
simplifies the fork process creation code.

Reasons for Creating a Fork Process. Fork processing exists, in part, so that
device drivers do not have to run at high IPLs for long periods of time, block­
ing other device interrupts. Hardware interrupt service routines within de­
vice drivers are entered at device IPLs between 20 and 23. Often these
routines must perform lengthy processing that does not require device inter­
rupts to be blocked, the usual reason for maintaining high IPL. The interrupt
nesting scheme defined by the VAX architecture does not work correctly if an
interrupt service routine lowers IPL below the level at which the interrupt

6.2.1.3

6.2.1.4

6.2 Software Interrupt Service Routines

SWl$GL_FQFL:: IPL 6

SWl$GL_FQBL:: 1-----l,ist_h_ea_d __ --1

(Placeholder)

IPL 8
Listhead

IPL 9
Listhead

IPL 10
Listhead

IPL 11
List head

Figure 6-3 Fork Block Queues

Fork
Block

occurred. A driver creates a fork process to lower IPL without violating the
interrupt nesting scheme. Typically, device interrupt service routines create
a fork process as soon as they are able to execute at lower IPL.

A driver might also create a fork process at a lower IPL to access system
databases synchronized at that lower IPL, for example, if the driver were to
queue an AST to a process.

Creating a Fork Process. To fork, a driver calls routine EXE$IOFORK or
EXE$FORK lin module FORKCNTRLJ specifying the address of the fork
block, the fork process context, and a return address. Fork process context
consists of the fork block, the contents of R3 and R4, and the address of the
routine the fork process is to execute I the fork PC). IEXE$IOFORK clears a bit
to disable an 1/0 timeout on the device and continues in the EXE$FORK
routine.) Routine EXE$FORK stores the specified fork process context in the
fork block, inserts the fork block at the tail of the appropriate fork queue, and
requests a software interrupt at that IPL. EXE$FORK then transfers control to
the return address the driver specified, sometimes to the driver but more
often to the code that entered the driver. This form of return is known as
"returning to caller's caller." The instructions in EXE$FORK that perform
these functions are listed in Example 6-1.

Dispatching a Fork Process. When a fork interrupt is granted, its interrupt
service routine is entered. The fork interrupt service routine saves R6, loads
it with the address of the corresponding fork queue listhead, and transfers
control to common fork dispatching code. The interrupt service routines for
IPLs 6 and 8 and the common fork dispatching code, EXE$FORKDSPTH, are
listed in Example 6-2. !These routines are all in module FORKCNTRL.J
EXE$FORKDSPTH saves RO through RS, removes each fork block in turn
from the associated queue, and processes it. The removal and processing con-

137

Software Interrupts

6.2.1.5

138

Example 6-1 EXE$FORK Routine

EXE$FORK:: ;Create fork process

10$:

MOVQ R3,FKB$L_FR3(R5) ;Save registers R3, R4

POPL FKB$L_FPC(R5) ;Get fork process PC

MOVZBL FKB$B_FIPL(R5),R4 ;Get fork IPL

MOVAQ WSWI$GL_FQFL-<b*8>[R4], R3 ;Get address of

; fork queue listhead

INSQUE (R5),@4(R3) ;Insert fork block

; in fork queue

BNEQ 10$

SOFTINT R4

RSB

;If queue populated,

; avoid extra interrupts

;Request software

; interrupt and return

tinue until the queue is empty, when the dispatcher dismisses the interrupt
with an REI instruction.

Because the fork process routine runs on the interrupt stack at IPLs above
2, it must be in nonpageable system space; it must not incur page faults,
execute change mode instructions, or incur any exceptions which are dis­
patched to user-defined condition handlers (see Chapter 4). While the fork
process is executing, it may use RO through RS and, if saved and restored, the
other general registers. The fork process may also use the interrupt stack.
However, when the fork process returns control to the fork dispatcher, the
stack must be in the same state as when the fork process was entered.

Stalling a Fork Process. A fork process may be stalled for various reasons and
have to wait. When a fork process waits, its context is saved by storing R3,
R4, and the PC in the FKB. The FKB is then placed in a queue of FKBs. One
example of such a wait is a fork process waiting in the fork dispatcher queue
while the system is running at a higher IPL. Another example is a driver
fork process which tries to allocate unavailable system resources, such as
UNIBUS map registers. The fork process is stalled until another fork process de­
allocates map registers. The routine called to deallocate map registers re­
stores the context of the waiting fork process so that it can repeat its attempt
to allocate map registers. (Note that all fork processes that may stall waiting
for a particular resource must use the same fork IPL.)

VMS Version 4 adds a "fork and wait" wakeup mechanism so that fork
processes can stall themselves for a short while and be awakened automati­
cally. To fork and wait, a fork process invokes the macro FORK_ WAIT,
which generates a call to EXE$FORK_ WAIT (in module FORKCNTRL). The
EXE$FORK_ WAIT merely saves the fork process's context (PC, R3, and R4)
in the fork block and inserts it at the tail of a queue located through the
global pointer EXE$GL_FKWAITFL.

6.2.1.6

6.2 Software Interrupt Service Routines

This queue is serviced once a second by the routine EXE$TIMEOUT (in
module TIMESCHDL). Thus, on average, the fork process waits for half a
second. EXE$TIMEOUT removes each fork block in tum from this queue,
restores the fork process context, and reenters the fork process. Part of the
restoration of context involves changing IPL from IPL$_ TIMER to
FKB$B_FIPL. Because lowering IPL would violate the interrupt nesting
scheme, use of the fork and wait mechanism is limited to fork processes with
fork IPLs at or above IPL$_ TIMER.

The disk and tape class drivers use this mechanism after an unsuccessful
attempt to allocate nonpaged pool, assuming that nonpaged pool will become
available. When the fork process is reentered, it repeats its attempt to allo­
cate nonpaged pool. In this example, the fork and wait mechanism is used in
lieu of nonpaged pool availability reporting, the mechanism used by full pro­
cesses (see Chapters 3 and 10).

The fork and wait mechanism is also used by the IPL 12 interrupt service
routine when it recomputes quorum, following an unsuccessful attempt to
send a message to the cluster connectioi:i manager (see Section 6.2. 7).

Chapter 11 contains further information about EXE$TIMEOUT.

Use of Fork IPLs. There are five different fork IPLs; three are used by device
drivers supplied as part of VMS:

• IPL 6 is used by the connect to interrupt driver and by drivers that support
attention ASTs. Chapter 2 discusses IPL 6 fork processing.

• IPL 11 is used by the mailbox driver and shared memory mailbox driver.
The mailbox driver runs at the highest fork IPL so that any driver fork
process can write mailbox messages, primarily, to the OPCOM process's
mailbox.

• IPL 8 is the most commonly used driver fork IPL. With the exception of the
connect to interrupt driver and the mailbox drivers, all drivers shipped with
VMS use IPL 8.

The following considerations affect the choice of fork IPL for any particu­
lar driver:

• Higher fork IPLs are serviced first.
• All device drivers on a Q-bus or UNIBUS competing for resources such as

map registers or datapaths must use the same fork IPL. In particular, if any
such VMS drivers exist, all DMA drivers servicing devices on that bus must
use fork IPL 8.

• All SCS class and port drivers must use fork IPL 8.
• A driver which accesses a systemwide database synchronized at

IPL$_SYNCH can do so without forkii:ig if its fork IPL is 8, the value of
IPL$_SYNCH.

139

Software Interrupts

Example 6·2 Fork Dispatching Routine

.ALIGN LONG

EXE$FRKIPLbDSP::

PUSHL

MOVAQ

BRB

Rb

WSWI$GL_FQFL, Rb

EXE$FORKDSPTH

.ALIGN LONG

EXE$FRKIPL8DSP::

PUSHL

MOVAQ

NOP

Rb

WSWI$GL_FQFL+lb I Rb

Drop through to common code

EXE$FORKDSPTH::

PUSHL RS

PUSHL Rt;

PUSHL R3

PUSHL R2

PUSHL Rl

PUSHL RD

BRB 20$

Dispatch fork process when queue is

Dispatch fork process with:

RD thru R2 = scratch registers

R3 and Rt; = restored from fork

RS = address of fork block

10$:

140

MOVQ

JSB

FKB$L_FR3(RS),R3

@FKB$L_FPC (RS)

;Entry point must be longword

; aligned

;Fork IPL b entry point

;Save Rb

;Get address of fork queue

listhead

;Branch to common code

;Entry point must be longword

; aligned

;Fork IPL B entry point

;Save Rb

;Get address of fork queue

listhead

;Pad out to longword boundary

;Software interrupt fork

; dispatcher

;Save RS

;Save Rt;

;Save R3 PUSHLS are

;Save R2

;Save Rl

;Save RO.

fastest!

;Branch to body of dispatcher

not yet empty

block

;Restore registers R3 and Rt;

;Dispatch fork

6.2 Software Interrupt Service Routines

Example 6·2 Fork Dispatching Routine (continued)

20$:REMQUE@(R6),RS ;Remove next entry from fork

; queue

BNEQ10$

BVS30$

;Branch if queue not yet empty

;If vs no entry removed

;Here when last entry dequeued

Dispatch last entry in the queue

Dispatch fork process with:

RD thru R2 = scratch registers

R3 and R~ = restored from fork block

RS = address of fork block

MOVQFKB$L_FR3(RS),R3

JSB@FKB$L_FPC(RS)

30$:POPR#'M<RO,R1,R2,R3,R~,RS,R6>

;Restore registers R3 and R~

;Dispatch fork

;Restore fork process

; register set

REI ; Dismiss interrupt

6.2.2 Software Timer

VMS includes both a hardware clock interrupt service routine and a software
timer interrupt service routine. Together these routines service time-depen­
dent requests. Chapter 11 describes these interrupt service routines in detail;
this section summarizes some of their interaction.

The hardware interrupt service routine, EXE$HWCLKINT, runs every ten
milliseconds in response to a hardware interval clock interrupt. Some of its
duties are to update the system time, check for quantum expiration of the
current process, and check whether the first timer queue element (TQE) has
come due. TQEs describe time-dependent requests usually made through the
Schedule Wakeup ($SCHDWK) and Set Timer ($SETIMR) system services.
The queue of TQEs is kept ordered by expiration time, with most imminent
first. Quantum end processing and TQE servicing require lengthier execution
than is appropriate at device IPL and require modification to the scheduler
database, which is synchronized at IPL$_SYNCH. For these reasons, if either
the current process has run out of quantum or if the first TQE has come
due, EXE$HWCLKINT requests an IPL$_ TIMERFORK interrupt for
EXE$SWTIMINT.

Entered as an IPL$_ TIMERFORK interrupt, the software timer service rou­
tine, EXE$SWTIMINT, raises IPL to IPL$_ TIMER (equal to IPL$_ SYNCH).
At IPL$_ TIMER, EXE$SWTIMINT checks for quantum expiration and per­
forms quantum end processing, if necessary. EXE$SWTIMINT then exam-

141

Software Interrupts

ines the timer queue for expired TQEs. It removes and processes any TQE
with an expiration time the same as or earlier than the current system time.
EXE$SWTIMINT continues removing and processing TQEs until it reaches
one which has not yet expired. EXE$SWTIMINT then executes an REI in­
struction, dismissing the interrupt and leaving the unexpired TQEs in the
queue.

6.2.3 1/0 Postprocessing

When a device driver or FDT routine detects that a particular 1/0 request is
complete, it calls a routine that places the 1/0 request packet (IRP) at the tail
of the I/O postprocessing queue, located through global pointer
IOC$GL_PSBL, and requests a software interrupt at IPL 4, IPL$_IOPOST.
The following instructions, extracted from routine IOC$REQCOM (in mod­
ule IOSUBNPAG), show this sequence. Other routines that request an
IPL$_IOPOST software interrupt execute similar instructions.

INSQUE (R3),@IOC$GL_PSBL

SOFTINT #IPL$_IOPOST

;Insert IRP on IOPOST list

;Request an IPL ~ interrupt

The I/O postprocessing interrupt software routine, IOC$IOPOST (in mod­
ule IOCIOPOST), removes each IRP in tum from the beginning of the queue,
located through global pointer IOC$GL_PSFL, and processes it. The details
of the processing vary with the type of IRP. For example, IOC$IOPOST dis­
tinguishes between VMS buffered and direct I/O requests. When a direct 1/0
request completes, IOC$IOPOST unlocks the buffer pages from memory.
When a buffered output request completes, IOC$IOPOST deallocates the
buffer to nonpaged pool and returns process byte count quota. Chapter 18
contains further information about 1/0 postprocessing.

When IOC$IOPOST has processed all IRPs in the queue, it dismisses the
interrupt with an REI instruction. Example 6-3, an extract from module
IOCIOPOST, illustrates the similarity between the fork dispatching and 1/0
postprocessing sequences.

6.2.4 Rescheduling Interrupt

142

The executive requests a rescheduling interrupt at IPL 3 whenever a resident
process becomes computable whose priority is greater than or equal to that of
the current process. The IPL 3 interrupt service routine, SCH$RESCHED (in

6.2 Software Interrupt Service Routines

Example 6-3 IOC$IOPOST Interrupt Service Routine

IOC$IOPOST: : ;L-0 posting interrupt

MOVQ R4,-(SP) ;Save

MOVQ R2,-(SP) ; normal

MOVQ RO,-(SP) ; registers (RO-RS)

IOPOST: REM QUE @WIOC$GL_PSFL, RS ;Get head of post queue

BVC 10$;Queue not yet empty

MOVQ (SP)+,RO ;Restore

MOVQ (SP)+,R2 registers

MOVQ (SP)+,R4 and exit

REI if queue empty

10$: ;Postprocess this

; L-0 request packet

BRx IO POST ;Get next L-0 request packet

module SCHED), removes the current process from execution, selects the
highest priority resident computable process, and places it into execution. It
begins execution at IPL 3 on the kernel stack of the current process. It imme­
diately raises IPL to IPL$_SYNCH and executes a SVPCTX instruction, saving
the context of the current process and switching onto the interrupt stack.

Many of the events that make a process computable occur as part of ser­
vicing software interrupts between IPL 4 and IPL$_SYNCH. That the sched­
uler database is modified from these software interrupts has the following
implications:

• SCH$RESCHED must raise IPL to IPL$_SYNCH to block any other ac­
cesses to the scheduler database while it takes one process out of execution
and selects another one to run.

• The IPL 3 interrupt may be requested a number of times before it is granted.
The number of times the interrupt has been requested is irrelevant, since
the interrupt service routine always has the same task to do.

• When the IPL 3 interrupt is granted, all events that might affect the choice
of which process to run have been serviced. That is, the higher priority
software interrupt service routines that affect the scheduler database have
completed all their work. Thus, SCH$RESCHED can make the best possi­
ble choice at the time it raises IPL to block further alterations to the
database.

Chapter 10 discusses the scheduler database, events that affect the sched­
uler database, and the rescheduling interrupt.

143

Software Interrupts

6.2.5 AST Delivery Interrupt

The asynchronous system trap (AST) delivery interrupt means that there is
an AST for the current process to execute. This interrupt is unique: it is the
only software interrupt requested by microcode and the only one that runs
entirely in process context.

An AST is a mechanism for signaling an asynchronous event to a process.
A designated AST routine runs in the context of the process at a specified
access mode. Some ASTs are requested by the process, for example, as notifi­
cation of 1/0 request completion. Some ASTs are queued to the process by
VMS as part of normal system operations, such as automatic working set
adjustment.

Chapter 7 describes the details of AST delivery.
An additional use of this interrupt on an asymmetric multiprocessor sys­

tem is described in Chapter 27.

6.2.6 IPL 15 and IPL 5 XDELTA Interrupts

144

XDELTA, the executive debugger, can optionally be made memory resident
at system initialization. If XDELTA is resident, the SCB vectors for break­
point and T-bit exceptions contain addresses of service routines within
XDELTA. XDELTA remains quiescent, transferring control to the usual ex­
ception service routines for breakpoint and T-bit exceptions, until the break­
point (BPT) instruction at global location INI$BRK is executed.

When that breakpoint instruction is executed, XDELTA accepts command
input from the CPU console terminal. These commands can include setting
other breakpoints, setting single-step mode, and examining system space.
Often programmers debugging kernel mode code, such as a device driver,
insert a JSB to INI$BRK in their code to activate XDELTA. The VAX/VMS
Delta/XDelta Utility Reference Manual provides further information about
XDELTA (and DELTA) commands.

VMS provides a software interrupt service routine to enable a person to
activate XDELTA at will by writing the PR$_SIRR register at the CPU con­
sole terminal. The interrupt service routine to activate XDELTA is INI$MAS­
TERWAKE (in module INIT). The code of this interrupt service routine
follows:

.ALIGN LONG

INI$MASTERWAKE:

JSB INI$BRK

REI

INI$MASTERWAKE is the IPL 15 interrupt service routine on an asymmetric
multiprocessor system or the IPL 5 interrupt service routine on a single pro-

6.2 Software Interrupt Service Routines

cessor system. Whether XDELTA is activated through the IPL 5 or IPL 15
interrupt, it runs at IPL 31.

When XDELTA is not resident, the instruction at INI$BRK is a NOP rather
than a BPT. Thus, a system withoutXDELTAreactsgracefully to an XDELTA
interrupt or a JSB to INI$BRK.

6.2.7 IPL 12 Interrupt Service Routine

The IPL 12 interrupt is similar to the XDELTA interrupt; it is only requested
by depositing 12 into PR$_SIRR at the CPU console terminal. The IPL 12
interrupt service routine, EXE$IPCONTROL (in module IPCONTROL), fa­
cilitates certain types of human intervention when the system might other­
wise have to be crashed. When the IPL 12 interrupt request is granted, the
interrupt service routine prompts on the console with the following text:

IPC>

(IPC is a shortened form of IPL C, where C16 is 12.) The IPL 12 interrupt
service routine accepts the following commands:

Command

c
Q
x
CTRL/Z

Meaning

Cancel mount verification in progress

Recalculate quorum for the VAXcluster

Activate XDELTA (if it is resident)

Return the system to normal operation

The C command is issued with a device specification to cancel mount
verification on the specified disk. Mount verification is a mechanism that
enables the system to recover gracefully from certain kinds of transient disk
failures, by stalling 1/0 requests to a disk while it is off line or inaccessible. If
the disk comes back on line, the system confirms that this is the same disk as
was previously mounted and resumes normal I/O processing on the volume.
If SYSBOOT parameter MVTIMEOUT seconds elapse before the disk comes
on line, mount verification times out and the system aborts 1/0 requests in
progress to that disk.

While the disk is in a state of mount verification in progress, all users' 1/0
requests to the disk are stalled until the mount verification times out or the
disk comes back on line. An impatient user can type CTRL/C or CTRL/Y and
STOP to abort the image and cancel its I/O requests. However, the user can­
not cancel any I/O request the Files-11 XQP may have made on the user's
behalf, and subsequent file system activity in the process will be blocked
until mount verification times out or is canceled.

Therefore, if the disk failure is known to be permanent, it may be appropri­
ate to cancel mount verification before the mount verification timeout period

145

Software Interrupts

146

has elapsed. In most cases, the DISMOUNT/ABORT command is the pre­
ferred way to cancel mount verification. (See the VAX/VMS DCL Dictionary
for further information on this command.) However, if the state of the sys­
tem prevents that command from being entered, the C command to the IPL
12 interrupt service routine may be used instead.

For additional information on mount verification, see the VAX/VMS Sys­
tem Manager's Reference Manual.

In response to a Q command, EXE$IPCONTROL creates an IPL 8 fork pro­
cess (see Section 6.2.1 for more information about fork processing) to request
the VAXcluster system connection manager to recalculate dynamic quorum
based on the current cluster configuration. The Q command can be issued
when a VAXcluster system hangs because of quorum loss, after a node
crashes and fails to reboot. Creating an IPL 8 fork process is required for
synchronization with the connection manager, which runs as an IPL 8 fork
process.

The fork process calls a connection manager routine to recompute quorum.
If any error occurs, the fork process issues a fork and wait request (see Section
6.2.1.5), retrying its call whenever it is reentered. Once the call to the routine
is successful, the fork process exits.

In response to an X command, EXE$IPCONTROL calls INI$BRK to acti­
vate XDELTA, as described in Section 6.2.6.

In response to CTRL/Z, EXE$IPCONTROL exits, dismissing the IPL 12
interrupt with an REI instruction.

7

7.1

AS Ts

What you want, what you're hanging around in the world
waiting for, is for something to occur to you.

Robert Frost

An asynchronous system trap (AST) is a mechanism for signaling an
asynchronous event to a process. Specifically, as soon as possible after the
asynchronous event occurs, a procedure or routine designated by either the
process or the system executes in the context of the process.

A process may request an AST as notification that an asynchronous system
service has completed. ASTs requested by the system result from operations
such as I/O postprocessing, process suspension, and process deletion. These
operations require that VMS code execute in the context of a specific process.
ASTs fulfill this need.

To signal the. asynchronous event, the executive queues an AST to the
process. Queuing of an AST eventually results in that process's becoming
current. AST delivery, the actual dispatch into the AST procedure, occurs in
the context of that process. This chapter discusses the queuing and delivery
of ASTs and describes some examples of their use by VMS.

AST HARDWARE COMPONENTS

VAX hardware/microcode assists VMS in the queuing and delivery of ASTs.
Three mechanisms contribute:

• The REI instruction
• The PR$_ASTLVL processor register
• The IPL 2 software interrupt

The first two features are discussed in this section. Software interrupts are
discussed in Chapter 6. The IPL 2 interrupt service routine for AST delivery,
SCH$ASTDEL1 is discussed in Section 7.5.

7.1.1 REI Instruction

The return from exception or interrupt instruction (REI) initiates the deliv­
ery of an AST to a process by requesting an IPL 2 interrupt if appropriate.
(Note that the requested IPL 2 interrupt will not actually be granted until IPL
drops below2.J The REI microcode performs the following tests to determine
whether to request the. interrupt:

147

AS Ts

1. The REI microcode checks whether process context is being restored. If
the interrupt stack bit is set in the PSL to be restored, the REI microcode
makes no further test and does not request an IPL 2 interrupt. AST deliv­
ery has no meaning outside of process context.

2. The REI microcode compares the value in PR$_ASTLVL to the access
mode being restored. If the value in PR$_ASTLVL is smaller or equal to
the current mode field in the PSL to be restored (that is, if it represents a
more or equally privileged access mode) the REI microcode requests a soft­
ware interrupt at IPL 2. This test prevents a process running in an inner
mode from being interrupted to deliver an AST to an outer mode.

7.1.2 ASTLVL Processor Register (PR$_ASTLVL)

148

The processor register PR$_ASTLVL is used in conjunction with the REI

instruction to control IPL 2 software interrupts. This register is part of the
hardware context of the process and has a save area in the hardware process
control block field PHD$B_ASTLVL (see Chapter 10). The LDPCTX instruc­
tion copies PHD$B_ASTLVL to PR$_ASTLVL when a process is placed into
execution. Because the SVPCTX instruction does not save PR$_ASTLVL in
PHD$B_ASTLVL, any code which changes PR$_ASTLVL must also make
the same change to PHD$B_ASTLVL.

PR$_ASTLVL normally contains the access mode of the first AST in the
process's AST queue. (Inner mode ASTs are more privileged than outer mode
AS Ts and are queued and delivered first.) Specifically, PR$ _ASTLVL contains
the mode of the first AST in the queue:

• After an AST has been queued
• After an AST routine has completed and exited
• After ASTs at a given mode have been enabled or disabled by the Set AST

Enable ($SETAST) system service
• After an AST routine has left AST level by invoking the Clear AST

($CLRAST) system service

Occasionally, PR$_ASTLVL contains a value that is 1 greater than the
current AST's mode. This is done to prevent IPL 2 interrupt requests until
ASTs are again deliverable at that mode. Specifically, PR$_ASTLVL contains
the current AST's mode plus 1:

• While an AST routine is in progress
• After an AST has been blocked, because ASTs at that mode are active or

disabled

If no AST is queued, PR$_ASTLVL contains a value of 4, chosen so that the
REI test previously described will fail, regardless of the access mode being
restored by the REI instruction.

7.2

7.2 AST Data Structures

AST DATA STRUCTURES

The executive queues ASTs to a process as the corresponding events (110
completion, timer expiration, etc.) occur. The AST queue is maintained as a
queue of AST control blocks (ACBs) with the listhead in the process control
block (PCB). Section 7.4 describes AST queues in more detail.

7.2.1 Process Control Block

The PCB contains several fields related to AST queuing and delivery. Figure
7-1 illustrates these fields.

The fields PCB$L_ASTQFL and PCB$L_ASTQBL are the listhead for
ACBs queued to the process. The list is doubly linked.

The field PCB$W _ASTCNT specifies how many concurrent ASTs the
process can request at the moment. It is initialized to the process's AST
quota, typically from the user authorization file. When a process calls an
asynchronous system service, requesting AST notification of completion,

Software Process Control Block (PCB)

]
ASTEN] ASTACT

j_ AST Control Block (ACB)

~----~AS~T~Q~F~L ___ •!:=:=t-.::::::=--t------____, Fe" ASTQBL

ASTQBL

] DPC

]

ASTCNT

J...-
1

RMOD1 TYPE I
PID

AST

ASTPRM

KAST

RMOD Bits:

76543210

1111 N I
llilr~ PKAST

NODELETE

QUOTA
'----KAST

Figure 7-1 AST Control Block and AST-Related Fields
in Software PCB

SIZE

Links to other
ACBs in queue
(See Figure 7-2.)

149

AS Ts

and when a process declares an AST by calling the Declare AST ($DCLAST)
system service, the service checks that PCB$W _ASTCNT is greater than
zero. If so, the service decrements PCB$W _ASTCNT.

It is the responsibility of the service and of any code decrementing
PCB$W _ASTCNT to set the ACB$V _QUOTA bit in the ACB (see Section
7.2.2) as a flag that PCB$W _ASTCNT must be incremented for this AST
when it is done. When an AST with ACB$V _QUOTA set is delivered, the
AST delivery interrupt service routine, SCH$ASTDEL, increments
PCB$W _ASTCNT.

The process delete pending count, PCB$B_DPC, can be incremented for
every reason the process should not be deleted or suspended. Currently its
value should be zero or 1. A value of 1 indicates that an XQP operation is in
progress and that the process should not be suspended or deleted. Section 7.7
discusses the use of this field in more detail.

Both PCB$B_ASTEN and PCB$B_ASTACT contain four bits, one per ac­
cess mode, with bit 0 corresponding to kernel mode.

Each PCB$B_ASTEN bit, when set, indicates that AST delivery to that
access mode is enabled. By default, all four bits are set. A process toggles a
PCB$B_ASTEN bit through the $SETAST system service. The $SETAST
serv'..ce allows a process to affect delivery of ASTs to the mode from which
the process requested the system service. It enables synchronization between
a normal thread of execution and an AST thread. The concept of AST
reentrancy and ways of achieving it are described in the Guide to Creating
Modular Procedures on VAX/VMS.

Each PCB$B_ASTACT bit, when set, indicates that an AST is active at that
access mode in the process. The AST delivery interrupt service routine sets
the bit, and AST exit code clears it. The executive uses these bits to serialize
ASTs for each access mode; that is, the executive will not interrupt an AST
thread to deliver another AST to the same access mode. This serialization
limits the number of concurrent threads of execution within a process and
helps ensure that AST procedures are not entered recursively, thus simplify­
ing synchronization among the different threads in an access mode. It is pos­
sible, though not usual, to reset the PCB$B_ASTACT bit using the
$CLRAST system service (see Section 7.5.3).

7.2.2 AST Control Block

The AST control block (ACB) includes the following information:

• The PID of the target process
• The AST procedure or routine address
• The access mode
• An optional argument to the AST procedure

150

7.3 Creating an AST

The ACB is allocated from nonpaged pool, often as part of a larger structure
associated with the requested asynchronous event. The ACB is actually in­
cluded as the first section of several larger data structures. The 1/0 request
packet (IRP), lock block (LKB), and timer queue element (TQE), for example,
all have data structures whose first section is an ACB. (Compare the ACB
format pictured in Figure 7-1 with the TQE format shown in Figure 11-1, the
LKB format shown in Figure 13-3, or the IRP layout shown in Figure E-11 in
Appendix E.)

Both ACB$L_ASTQFL and ACB$L~ASTQBL link the ACB into the AST
queue in the PCB. The listhead of this queue is the pair of longwords
PCB$L_ASTQFL and PCB$L_ASTQBL.

The field ACB$R ... RMOD contains five bit fields:

• Bits <0: 1 > (ACB$V _MODE) contain the value corresponding to the access
mode in which the AST routine is to execute.

• Bit <4> (ACB$V _PKAST), when set, indicates the presence of a piggyback
"special" kernel mode AST (see Section 7.6.4).

• Bit <5> (ACB$V _NODELETE), when set, indicates that the ACB should
·not be deallocated after the AST is delivered.
• Bit <6> (ACB$V _QUOTA), when set, indicates that the process AST

quota, PCB$W _ASTCNT, has been charged for this ACB.
• Bit <7> (ACB$V _KAST), when set, indicates the presence of a special ker­

nel mode AST (see Section 7.6). U ACB$V-KAST is clear, this is a "normal"
AST.

The field ACB$L_PID identifies which process is to receive the AST.
The fields ACB$L_AST and ACB$L_ASTPRM are the entry point of the

designated AST procedure and its optional argument.
The field ACB$L_KAST contains the entry point of a system-requested

special kernel mode AST routine if the ACB$V _PKAST or ACB$V _KAST bit
of ACB$B_RMOD is set.

7.3 CREATING AN AST

ASTs can be created by three types of actions. The first is a process request
for AST notification of the completion of an asynchronous system service,
such as Queue 1/0 Request ($QIO) or Enqueue Lock Request ($ENQ). The
arguments for the~e services include an AST procedure address and an argu­
ment to be passed to the AST procedure. The system service charges the AST
against the process AST quota (see PCB$W _ASTCNT in Section 7.2.1). The
second is the system's queuing an AST to execute code in the context of the
selected proc~ss., An ACB used in this situation is not deducted from the AST
quota of the target process because of its involuntary nature; the
ACB$V _QUOTA bit is clear to indicate this.

151

AS Ts

7.4

152

The system's ability to execute code in a particular process context is cru­
cial to VMS operations. Only the AST mechanism provides this capability.
The executive employs this mechanism primarily to access the process's vir­
tual address space.

In a virtual memory operating system such as VMS, resolving a per-process
address outside of its process context is difficult at best. The process's pages,
as well as page table pages, may not be resident; they may be in a page file,
swap file, or in transition. Rather than attempt to locate the relevant page
table page(s) and per-process page(s), VMS resolves the address in process con­
text through the AST mechanism so that standard memory management
mechanisms can be used.

Examples of the system's queuing an AST include the following:

• 1/0 postprocessing
• The Force Exit ($FORCEX) system service
• Expiration of CPU time quota
• Working set adjustment as part of the quantum end event (see Chapter 10)
• The Get Job/Process Information ($GETJPI) system service

The third way to create an AST is an explicit declaration of an AST by the
process through the $DCLAST system service. This system service simply
allocates an ACB, fills in the ACB information from its argument list, and
requests the queuing of the ACB. The access mode in which the AST is to
execute must be no more privileged than the mode from which the
$DCLAST was requested. The system service charges the AST against the
process AST quota (see PCB$W _ASTCNT in Section 7.2.1).

QUEUING AN AST TO A PROCESS

The routine SCH$QAST (in module ASTDEL) is invoked to queue an ACB to
a process. It can be invoked from a thread of execution running at any IPL
from 0 to IPL$_ SYNCH. The routine SCH$QAST uses the ACB$V _KAST
bit and ACB$V _MODE bits of the ACB$B_RMOD field to decide where in
the process's AST queue to insert the ACB. The AST queue for a process is a
doubly linked list with its head and tail at PCB fields PCB$L_ASTQFL and
PCB$L_ASTQBL.

SCH$QAST maintains the queue as a first"in/first-out (FIFO) list for each
access mode. ASTs of different access modes are placed into the queue in
ascending access mode order, that is, kernel mode ASTs first and user mode
ASTs last. Special kernel mode ASTs precede normal kernel mode ASTs.
Piggyback special kernel mode ASTs are inserted in the AST queue according
to the mode of the normal AST on which they ride.

SCH$QAST performs the following steps:

1. SCH$QAST raises IPL to IPL$_SYNCH to synchronize access to the
scheduler database and to the process's AST-related data: the AST queue,

7.5

7.5 Delivering an AST

PCB$B_ASTACT and PCB$B_ASTEN bits, and possibly PR$_ASTLVL
and PHD$B_ASTLVL.

2. If the process is nonexistent, SCH$QAST returns an error status. If bit
ACB$V _NODELETE is clear, SCH$QAST deallocates the ACB before
returning.

3. If the AST queue is empty (the contents of PCB$L_ASTQFL are equal to
its address), then the ACB is inserted as the first element in the AST
queue.

4. Otherwise, SCH$QAST scans the queue of ACBs. It inserts a normal ACB
before the first ACB whose ACB$V _MODE bits indicate a less privileged
access mode or, if it finds none, at the end of the queue. SCH$QAST in­
serts a special kernel AST before the first normal ACB, or if it finds none,
at the end of the queue. Figure 7-2 shows the organization of the AST
queue.

5. SCH$QAST calculates ASTLVL as the mode of the first (innermost mode)
ACB in the queue and stores it as follows:

-If the process is currently executing, SCH$QAST stores the new
ASTLVL value in both PHD$B_ASTLVL and the processor register,
PR$_ASTLVL.

-If the process is memory resident but not currently executing,
SCH$QAST stores the new value for ASTLVL in PHD$B_ASTLVL but
not in the processor register.

-If a process is outswapped, PHD$B_ASTLVL cannot be updated because
the process header (including the hardware PCB) is not available. When
the process becomes resident and computable at a later time, the swap­
per calculates and stores a value for PHD$B_ASTLVL by invoking
SCH$NEWLVL (in module ASTDEL).

When setting ASTLVL, SCH$QAST does not check whether an AST is
already active for this mode or whether ASTs at this mode are disabled.
When either of these conditions is true, the next REI to drop IPL below 2
will cause an IPL 2 interrupt, and SCH$ASTDEL will dismiss it as unde­
liverable (blocked). This is felt to be an infrequent enough occurrence to be
less costly than having SCH$QAST make the checks.

6. It calls SCH$RSE to report to the scheduler that an AST has been queued
to the process. SCH$RSE makes the process computable if it is not cur­
rent, already computable, or suspended.

7. SCH$QAST restores the previous IPL and returns to its invoker.

DELIVERING AN AST

AST delivery is initiated when an REI instruction determines from the desti­
nation access mode and the PR$_ASTLVL register that a pending AST is
deliverable (see Sections 7.1 and 7.4) and requests a software interrupt at IPL
2. The amount of time before the AST is actually delivered depends upon the

153

1

PCB

AST Queue
Listhead

1 ACB

Spec I al
Kernel

Normal
Kernel Executive Supervisor User

···-D-D-···-0-0-···-D-D-···-D-D-···U

Figure 7·2 Organization of the AST Queue.

7.5 Delivering an AST

interrupt activity of the system. When IPL drops below 2, the AST delivery
interrupt service routine will execute.

Note that a rescheduling interrupt at IPL 3 may be requested and granted,
prior to the granting of the IPL 2 AST delivery interrupt request. In this case
the REI will have set the IPL 2 bit in the software interrupt service request
(SISR) register PR$_SISR. Conceptually, the IPL 2 bit of the SISR is part of
process context; but, for reasons of optimization, both saving and restoring of
process context ignore it. Thus, it is possible for a newly scheduled process to
inherit a stale SISR; an AST delivery interrupt is then granted in the context
of a different process than was originally requested. The AST delivery inter­
rupt service routine detects and ignores such "spurious" AST interrupts. The
AST delivery interrupt in question will be requested again, when the process
for which it is intended is placed back into execution by the REI from the
rescheduling interrupt.

7.5.1 AST Delivery Interrupt

The IPL 2 software interrupt is unique. It is the only one requested by
microcode (REI) rather than by MTPR instructions in the executive, and the
only one whose service routine runs entirely in process context. When the
IPL 2 interrupt occurs, control is transferred to SCH$ASTDEL (in module
ASTDEL), the address in the IPL 2 system control block (SCBJ vector. The
interrupt service routine's functions are to remove the first pending AST
from the queue, determine that the interrupt request is not a spurious one,
and dispatch to the specified AST routine at the specified access mode.

Figure 7-3 shows the major steps in SCH$ASTDEL's flow. The circled iden­
tifiers in the figure correspond to the following steps. The column headings
in the figure describe the environment of that step, for example, its access
mode and IPL.

I. SCH$ASTDEL raises IPL to IPL$_SYNCH to synchronize access to the
process's AST-related data: the AST queue, PCB$B_ASTACT and
PCB$B_ASTEN bits, and ASTLVL as represented in the processor register
and PHD field.

2. SCH$ASTDEL tries to remove the first ACB from the process AST queue.
If the queue is empty, the IPL 2 interrupt must have been spurious. The
routine sets ASTLVL to 4 and exits with an REI instruction.

3. Testing ACB$V _KAST in ACB$B_RMOD, SCH$ASTDEL determines
whether the ACB is a special kernel mode AST. It delivers a special kernel
mode AST with the following steps:

a. SCH$ASTDEL drops IPL from IPL$_SYNCH back to IPL 2.
b. SCH$ASTDEL dispatches to the special kernel AST routine by execut­

ing an effective JSB instruction. (It pushes a return address on the stack
and executes a JMP instruction.)

155

AS Ts

156

Time

IPL 0

Outer Mode

Process Context

Kernel Mode

IPL 2

IPL 2
Interrupt

~ SetPCB$8__ASTACT

@ Calculate ASTLVL

@ Construct PC, PSL
~---+---------+--~REI

@ EXE$ASTDEL::

CAL LG

AST
Procedure

RET

CHMK #ASTEXIT

~---+---Set IPL = 0

@ EXE$ASTDEL::

CAL LG

AST
Procedure

RET

CHMK #ASTEXIT

Set IPL = 2 --+------.

Clear PC8$B__ASTACT

+
Calculate ASTLVL

REI

Figure 7-3 AST Delivery Flow

7.5 Delivering an AST

c. On return from the special kernel mode routine, SCH$ASTDEL returns
to step 1 to check the AST queue again in case the special kernel AST
queued a normal AST to the process.

4. If the AST removed from the queue is a normal AST, then SCH$ASTDEL
checks that the mode of the AST is at least as privileged as the destination
mode of the REI instruction that initiated AST delivery. This test is ac­
complished by checking the saved PSL on the kernel stack. If the mode of
the AST is less privileged, SCH$ASTDEL reinserts the ACB at the head of
the queue and dismisses the interrupt with an REI instruction. This test
detects a spurious AST delivery interrupt.

Two other checks for spurious AST delivery interrupts are required. The
first is that the appropriate PCB$B_ASTACT bit must be clear; this test
prevents an AST from being interrupted by another AST at the same ac­
cess mode. The second test is that the appropriate PCB$B_ASTEN bit is
set, indicating that AST delivery for that access mode i.s enabled. If either
test fails, SCH$ASTDEL sets ASTLVL to the blocked access mode plus 1,
requeues the ACB, and dismisses the interrupt.

5. If the AST is deliverable, thenSCH$ASTDEL performs the following oper­
ations before dispatching to the AST routine:

a. SCH$ASTDEL sets the bit corresponding to the current access mode in
PCB$B_ASTACT to indicate that there is an active AST at this mode
and to block concurrent delivery of another AST.

b. If ACB$V _QUOTA is set in the ACB, SCH$ASTDEL increments
PCB$W _ASTCNT quota to return the quota charged for the AST.

c. SCH$ASTDEL stores a new value of ASTLVL in PR$-ASTLVL and
PHD$B_ASTLVL. The new value of ASTLVL is the access mode of the
AST plus 1 (the next outer mode). The access mode is calculated in this
manner to prevent another AST interrupt when SCH$ASTDEL
switches to the access mode in which the AST procedure is executed.

d. Modifications to the process's AST-related data are complete and IPL is
restored to ASTDEL. ·

e. Delivery of a kernel mode AST is simpler than delivery to other modes.
because the process is already executing in kernel mode and on the
appropriate stack. If the AST is for a mode other than kernel,
SCH$ASTDEL obtains the stack pointer for that mode.

f. As described in the next section, SCH$ASTDEL builds an argument list
on the stack of the AST's access mode.

g. If the AST is not a kernel mode AST, SCH$ASTDEL builds a PC/PSL
pair of longwords on the kernel stack. The stored PC is the location
EXE$ASTDEL, the AST dispatcher. The stored PSL contains the AST
access mode in both its current mode and previous mode fields.

h. If a piggyback special kernel mode AST. is associated with the current

157

AS Ts

AST, the special kernel mode AST routine is dispatched through a JSB

instruction. When the piggyback AST routine returns, SCH$ASTDEL
continues with the next step.

i. If the AST does not include a piggyback special kernel mode,
SCH$ASTDEL tests the ACB$V _NODELETE bit. If the bit is set, pro­
cessing continues with the next step; if the bit is clear, SCH$ASTDEL
deallocates the ACB to nonpaged pool.

j. The code which actually calls an AST procedure, EXE$ASTDEL, must
execute in the access mode of the AST.

For AST access modes other than kernel, transfer of control to
EXE$ASTDEL and change of access mode is accomplished through an
REI instruction, the only way to reach a less privileged access mode (see
Figure 1-4). The PC and PSL used by the REI instruction are described in
step Sg.

To deliver a kernel mode AST, SCH$ASTDEL merely drops IPL to 0
and falls through to EXE$ASTDEL.

k. EXE$ASTDEL executes a CALLG instruction, transferring control to the
AST procedure, with the argument pointer (AP) pointing to the argu­
ment list. The use of a CALLx instruction to enter ASTs enables them to
be written in any high-level language that supports the VAX Calling
Standard. A CALLG instruction is used, rather than a CALLS, so that the
argument list will remain on the stack after the AST procedure RETS.

7.5.2 Argument List

158

AST procedures can be written in any language. By definition, a procedure
begins with an entry mask, is passed an argument list, and returns control to
its caller (in this case, the AST dispatcher) with a RET instruction.

Figure 7-4 shows the argument list which SCH$ASTDEL passes to an AST
procedure. SCH$ASTDEL copies the AST parameter from the ACB where it
was initially stored by a system service such as $QIO, $ENQ, or $DCLAST.
The AST parameter was originally an argument to the service. The interpre­
tation of the AST parameter is dependent on the application.

I 5 f-- AP
ASTPRM

Saved RO
______,

Saved R1

Saved PC

Saved PSL

Figure 7-4 Argument List Passed to AST by Dispatcher

7.5 Delivering an AST

SCH$ASTDEL saves the general purpose registers RO and Rl in the argu­
ment list. The AST procedure may not save them through its register save
mask, because the procedure calling standard specifies that RO and Rl be
used to return status. The asynchronous nature of ASTs implies that the RO
and Rl contents are unpredictable and therefore must be preserved. The reg­
isters are saved and restored by the AST delivery mechanism.

The saved PC and PSL values are the register contents originally saved
when the IPL 2 interrupt was granted. The values are normally the pair that
was about to be used by the original REI instruction requesting the AST
delivery.

7.5.3 AST Exit Path

When an AST procedure is done, it must invoke the Clear AST ($CLRAST)
system service, directly or indirectly. The $CLRAST system service,
also known as the ASTEXIT system service, clears the appropriate
PCB$B_ASTACT bit and recomputes ASTLVL. In most cases, the AST proce­
dure indirectly invokes the ASTEXIT system service by executing a RET in­
struction. Direct invocation of $CLRAST is discussed later in this section.

When the AST procedure executes the RET instruction, its call frame is
removed from the stack and control returns to EXE$ASTRET in the access
mode of the AST. The AST argument list, which is still necessary, remains
on the stack. The following steps then occur:

1. EXE$ASTRET removes the argument count and the AST parameter from
the stack, leaving the RO, Rl, PC, and PSL values.

2. EXE$ASTRET executes the instruction

CHMK #ASTEXIT

This instruction invokes the change-mode-to-kernel system service dis­
patcher, EXE$CMODKRNL (in module CMODSSDSP), described in
Chapter 9. EXE$CMODKRNL makes a special test for the system service
code of zero (ASTEXIT = O) to shorten the dispatching to that service.

3. The ASTEXIT system service is responsible for resetting ASTLVL and
PCB$B_ASTACT, which can only be altered from kernel mode. Thus, it is
necessary for the AST dispatcher to reenter kernel mode after the AST
returns control to the dispatcher and before the AST delivery interrupt is
dismissed. The ASTEXIT system service performs the following steps:

a. It raises IPL to IPL$_ASTDEL.
b. It clears the appropriate PCB$B_ASTACT bit to indicate that no AST

procedure is active at that mode.
c. It recomputes the ASTLVL value as the access mode of the first ACB in

the queue.

159

.AS Ts

7.6

160

d. It executes an REI instruction, which lowers IPL to 0 and returns to
EXE$ASTRET.

4. EXE$ASTRET resumes at the previous access mode:

a. It restores RO and Rl from the stack.
b. EXE$ASTRET executes another REI instruction to dismiss the inter­

rupt. The REI instruction returns control to the access mode and loca­
tion originally interrupted by AST delivery.

The REI instruction in the ASTEXIT system service may cause another
IPL 2 interrupt to occur, depending upon the ASTLVL value and the access
mode transitions.

If another IPL 2 interrupt occurs at the REI instruction from the ASTEXIT
service, the access mode stack of the first AST still contains the saved RO, Rl,
PC, and PSL. To prevent a stack from filling with these values as a result of
recurring ASTs, SCH$ASTDEL checks whether an AST interrupt occurred at
the instruction following the ASTEXIT service. If so, SCH$ASTDEL checks
further whether the current AST and the previous AST are for the same ac­
cess mode. If they are, SCH$ASTDEL pops from the stack the newer copy of
the saved values and reuses the original ones in the argument list it builds for
the current AST.

If an AST procedure invokes $CLRAST directly without returning through
EXE$ASTRET, the appropriate PCB$B_ASTACT bit is cleared and
PR$_ASTLVL is set to the mode of the new first ACB in the queue. This has
the effect that another AST can be delivered to the same mode; the current
procedure is now an ordinary thread interruptible by ASTs. The frame built
on the stack from calling the AST procedure remains on the stack. The
former AST procedure is responsible for removing it. Furthermore, the former
AST procedure is now responsible for any synchronization with another AST
thread of execution.

The VAX BASIC Run-Time Library requests the $CLRAST system service
from within CTRL/C attention AST procedures. VAX BASIC requires that
user programs be notified of CTRL/C through an error signal, rather than
through the AST mechanism. The VAX BASIC Run-Time Library, therefore,
dismisses the CTRL/C attention AST by invoking $CLRAST and then sig­
nals the condition by invoking LIB$SIGNAL (see Chapter 4).

Note that the $CLRAST system service is not supported by Digital, except
for use within Digital software, and is not documented in the VAX/VMS
System Services Reference Manual.

SPECIAL KERNEL MODE ASTs

Special kernel mode ASTs differ from normal ASTs in several ways:

• A special kernel mode AST routine is dispatched at IPL 2 and executes at

7.6 Special Kernel Mode ASTs

that level or higher. Synchronization is provided by the interrupt mecha­
nism itself, rather than requiring additional PCB$B_ASTACT and
PCB$B_ASTEN bits. Only one special kernel mode AST can be active at
any time because the AST delivery interrupt is blocked.

• Special kernel mode ASTs cannot be disabled through $SETAST. Delivery
of a special kernel mode AST can only be blocked by raising IPL to 2 or
above.

• All special kernel mode ASTs result from the operations of kernel mode
code. That is, a user cannot directly request special kernel mode AST notifi­
cation of an asynchronous event.

• A special kernel mode AST routine is invoked by a JSB instruction, which
is a simpler and thus faster means of transferring control than a CALLG

instruction.
The arguments passed to a special kernel AST routine are the PCB ad­

dress in R4 and the ACB address in RS. When the special kernel mode AST
routine executes its RSB instruction, the stack must be in the same state as
when the routine was entered. The routine may use RO through RS freely
but must save R6 through Rl 1 before use and restore them before exiting.

• A special kernel mode AST routine is responsible for the deallocation of the
ACB to nonpaged pool, unless it is a piggyback special kernel AST. (For
normal AS Ts, this deallocation is done by the AST delivery routine.)

The next several sections briefly describe examples of the special kernel
mode AST mechanism.

7.6.1 1/0 Postprocessing in Process Context

Completing an 1/0 request requires the delivery of a special kernel mode AST
to the process whose 1/0 completed. 1/0 postprocessing is described in more
detail in Chapter 18. The 1/0 postprocessing interrupt service routine queues
a former 1/0 request packet (IRP) as an ACB to the process whose 1/0 com­
pleted. The operations performed by the 1/0 completion AST routine are
those that must execute in process context, particularly those that reference
per-process virtual addresses. The special kernel mode AST routines
BUFPOST and DIRPOST (in module IOCIOPOST) perform the following
operations (DIRPOST is actually a subentry point of BUFPOST):

I. For buffered read 1/0 operations only, BUFPOST copies the data from the
system buffer to the user buffer in per-process address space and de­
allocates the system buffer to nonpaged pool.

2. DIRPOST increments either PHD$L_DIOCNT or PHD$L_BIOCNT, the
process's cumulative totals of completed direct 1/0 and buffered 1/0
requests.

3. If a user diagnostic buffer was associated with the 1/0 request, DIRPOST

161

AS Ts

copies the diagnostic information from the system diagnostic buffer to the
user's buffer and deallocates the system buffer.

4. DIRPOST decrements the channel control block field CCB$W _IOC, the
number of 1/0 requests in progress on this channel. Channel control
blocks are in Pl space.

5. If a common event flag is associated with the 1/0 request, it is set. (Local
event flags are set in IOC$IOPOST, as described in Chapter 18.)

6. If the 1/0 request specified an I/O status block (IOSB), the routine copies
information from the I/O request packet to the IOSB.

7. If ACB$V _QUOTA is set in IRP$B_RMOD (the same offset as
ACB$B_RMOD), then the user asked for AST notification of I/O comple­
tion. The AST procedure address and the optional AST argument were
originally stored in the IRP (now an ACB). The former IRP is queued again
as an ACB, this time as a normal AST in the access mode at which the 1/0
request was made.

8. Otherwise, if ACB$V _QUOTA is clear, DIRPOST deallocates the IRP/
ACB to nonpaged pool.

7.6.2 $GETJPI System Service

162

Chapter 29 describes the $GETJPI system service. A process requests the
$GETJPI system service to obtain information about itself or about another
process. If the request is for information in the virtual address space of an­
other process, $GETJPI queues an AST to the target process. Running in the
context of the target process, $GETJPI's special kernel AST routine can easily
examine per-process address space.

In general terms, $GETJPI performs the following steps:

1. It allocates and fills in an ACB to describe a special kernel AST and the
desired items of information; $GETJPI also allocates a nonpaged pool
buffer to return the data and saves its address in the ACB.

2. The special kernel AST routine, executing in the context of the target
process, moves the requested information into the system buffer. It modi­
fies the ACB so that it can be used to queue a second special kernel mode
AST back to the requesting process.

3. The second special kernel AST routine moves data from the system buffer
into a user buffer in the requesting process. Its other actions include the
following:

-Deallocating the system buffer
--Setting an event flag
-Delivering an AST in the access mode of the caller, if requested

If the process has requested AST notification, the ACB is used for the
third time. Otherwise, it is deallocated to nonpaged pool.

7.7 System Use of Normal ASTs

7.6.3 Power Recovery ASTs

The implementation of power recovery ASTs relies on special kernel mode
ASTs. A power recovery AST enables a process to receive notification that a
power failure and successful restart have occurred. Chapter 26 describes this
feature in more detail.

When a power recovery occurs, VMS queues a special kernel mode AST to
each process that has requested power recovery AST notification. The special
kernel mode AST routine copies the address of the user-requested AST proce­
dure, which is stored in Pl space, to ACB$L_AST and requeues the ACB as a
normal AST. The special kernel mode AST routine is required to access the
process's Pl space.

7.6.4 Piggyback Special Kernel Mode ASTs

7.7

Piggyback special kernel mode ASTs (PKASTs) allow a special kernel mode
AST to ride piggyback in the ACB$L_KAST field of a normal mode AST.

The AST delivery interrupt service routine JSBs to the piggyback special
kernel AST routine just before calling the normal AST. When the special
kernel mode AST returns, the normal mode AST is called.

There are several reasons for using piggyback special kernel mode ASTs:

• It is faster to deliver two ASTs from one interrupt than to deliver two ASTs
separately.

• There are times when delivering an AST requires some additional work in
kernel mode in the context of the calling process. Piggyback special kernel
mode ASTs facilitate this work.

The lock manager uses piggyback special kernel mode ASTs to load the
fields of the caller's lock status block and lock value block. To copy the
information from the lock manager's database to the caller's process space,
a piggyback special kernel mode AST is required.

Piggyback special kernel ASTs are also used in terminal out-of-band
ASTs (see Section 7.8.5.3).

• A piggyback special kernel AST can be used to queue other normal mode
ASTs to a process. The lock manager uses this feature to deliver both block­
ing and completion ASTs to one process.

SYSTEM USE OF NORMAL ASTs

Several other executive features are implemented through normal ASTs. The
automatic working set adjustment that takes place at quantum end is imple­
mented with normal kernel mode ASTs. (See Chapter 10 for information on
quantum end activities and Chapter 16 for a detailed description of auto­
matic working set adjustment.) CPU time limit expiration is implemented

163

AS Ts

164

with potentially multiple ASTs. Beginning with user mode, the AST proce­
dure calls the Exit ($EXIT) system service. If the process is not deleted, a
supervisor mode time expiration AST is queued. This loop continues with
higher access modes until the process is deleted. The Force Exit ($FORCEX)
system service (see Chapter 12) causes a user mode AST to be delivered to the
target process to request the $EXIT system service.

The executive also uses the AST mechanism for the Suspend Process
($SUSPND) and Delete Process ($DELPRC) system services. In VAX/VMS
Version 4, these system services queue normal kernel mode ASTs to their
target processes to implement suspension or deletion through code running
in the context of the target processes. (In earlier versions of VMS, these sys­
tem services queued special kernel mode AS Ts to their target processes.)
These system services must now take care to synchronize their actions with
activity of the Files-11 XQP.

The Files-11 XQP runs in process context as a kernel mode AST thread,
taking out locks and issuing I/O requests in response to the process's file
system requests.The XQP indicates that it is active by incrementing the PCB
field PCB$B_DPC. When the XQP must wait for a lockto be granted or an
1/0 request to complete, it returns from the AST procedure so that the pro­
cess can wait at the access mode in which the file system request originated.
Waiting in the outer mode allows delivery of ASTs to that mode and more
privileged modes. While the XQP is executing or waiting, suspension of the
process would risk blocking other processes on the system or cluster with
interests in the same locks. Deletion of the process would risk relatively
minor on-disk corruption, such as dangling directory entries and lost files.

Therefore, $SUSPND and $DELPRC queue normal kernel mode ASTs
which cannot be delivered until the XQP AST completes. Furthermore, the
SUSPND and DELETE AST procedures check that PCB$B_DPC is zero be­
fore proceeding with actual process suspension or deletion.

If PCB$B_DPC is not zero, these AST procedures place the process into a
wait. They clear bit 0 of PCB$B_ASTACT so that another kernel mode AST
can be delivered, call SCH$NEWLVL to recompute ASTLVL, and place the
process into the resource wait RSN$_ASTWAIT. The process waits in kernel
mode at IPL 0. Thus, special and normal kernel mode ASTs can be delivered
to it. The resource wait PC is an address within the SUSPND or DELETE
AST procedure, so that after the XQP AST completes, the SUSPND or
DELETE AST will be reentered to finish its job.

Sometime later, queuing of an AST makes the process computable, and
delivery of an XQP completion AST causes the XQP to be reentered. When
the XQP is done, it decrements PCB$B_DPC and returns from the AST pro­
cedure. The SUSPND or DELETE AST is reentered and can proceed now that
PCB$B_DPC is zero.

7. 7 System Use of Normal ASTs

7.7.1 Process Suspension

The $SUSPND system service causes a target process to be placed into a
suspended state. After checking the capability of the initiating process to
affect the target process (see Chapter 12), the system service procedure
queues a normal kernel AST to the target process so that the suspension and
waiting will occur in that process's context. The wait mechanism in VMS
requires that a process be placed into a wait from its own context.

When the AST is delivered, the SUSPND AST procedure raises IPL to
IPL$_SYNCH and tests whether PCB$V _RESPEN in PCB$L_STS is set. The
bit, when set, indicates that a Resume Process ($RESUME) system service
has been issued for this process. If the bit is set, the SUSPND procedure clears
it and RETS, leaving the process unsuspended.

If a $RESUME has not been issued for this process, SUSPND tests
PCB$B_DPC to determine whether an XQP operation is in progress. If
PCB$B_DPC is greater than zero, SUSPND places the process into a wait as
previously described.

If PCB$B_DPC is zero, SUSPND places the process into a suspended wait
state. The process waits in kernel mode at IPL 0. Its saved PC is an address
within SUSPND, so that when the process is later placed into execution, it
again tests whether a $RESUME has been issued.

7.7.2 Process Deletion

The $DELPRC system service causes a target process to be deleted. After
checking the capability of the initiating process to affect the target process
(see Chapter 12), the system service procedure queues a normal kernel AST
to the target process so that the deletion will occur in the context of that
process. Chapter 22 provides a detailed explanation of process deletion. The
use of the AST mechanism provides the following advantages:

• Queuing the AST makes the process computable, regardless of its wait
state, unless the process is suspended. The $DELPRC service ensures the
deletion of a suspended process by issuing a $RESUME before queuing the
AST.

• The process must be resident for the AST to be delivered. Therefore, special
cases, such as the deletion of a process that is outswapped, simply do not
exist.

• The DELETE AST procedure, running in process context, is able to request
standard system services, such as $DASSGN, $DALLOC, and $DELTVA, to
implement process deletion. These system services and the AST procedure
reference per-process address space, and thus they must run in process
context.

165

AS Ts

7.8 ATTENTION AND OUT-OF-BAND ASTs

Several VMS device drivers use ASTs to notify a process that a particular
attention condition has occurred on a device. The terminal driver and mail­
box driver use ASTs in this way. The terminal driver, for example, queues an
attention AST to notify an interested process that CTRL/C or CTRL/Y has
been typed on its terminal. The terminal driver can also queue an out-of-band
AST as notification that a control character other than CTRL/C and CTRL/Y
has been typed. The mailbox driver can queue an attention AST as notifica­
tion that an unsolicited message has been put in a mailbox or that an attempt
to read an empty mailbox is in progress.

The basic sequence for both attention ASTs and out-of-band ASTs follows:

1. A process assigns a channel and issues a Queue 1/0 ($QIO) system service
request for AST notification of an attention condition on that device.

2. The device driver builds a data structure to describe the attention AST
request, inserts it on a list connected to the device unit control block, and
completes the 1/0 request.

3. If the attention condition occurs, the device interrupt service routine de­
livers the attention AST by queuing an AST to the process.

The major distinction between the attention AST and the out-of-band AST
mechanisms is that out-of-band ASTs automatically repeat, whereas atten­
tion ASTs must be "rearmed." That is, a process must repeat its $QIO re­
quest for each attention notification.

Attention ASTs are described in the following sections, and out-of-band
ASTs are described in Section 7.8.5.

7.8.1 Set Attention AST Mechanism

166

To establish an attention AST for a particular device (whose driver supports
this feature), the user issues a $QIO request with the 1/0 function
10$_SETMODE (or 10$_SETCHAR for some devices). The kind of attention
AST requested is indicated by a function modifier.

The 10$_SETMODE FDT action routine for such a device invokes
COM$SETATTNAST (in module COMDRVSUB), which performs the fol­
lowing actions:

1. If the user AST routine address (the $QIO Pl parameter) is zero, the re­
quest is interpreted as a flush attention AST list request (see Section
7.8.3).

2. COM$SETATTNAST allocates an expanded ACB from nonpaged pool and
charges it against the process AST quota, PCB$W _ASTCNT. The ex­
panded ACB will be used as both a fork block (FKB) and an ACB and is
therefore referred to as a FK.B/ ACB.

7.8 Attention and Out-of-Band ASTs

3. COM$SETATTNAST copies information into the FKB/ACB, such as the
AST procedure address, AST argument, channel number, and PIO.

4. It raises IPL to UCB$B_DIPL, the IPL at which the attention AST list is
synchronized, and inserts the FKB/ACB into a singly linked, last-in/first­
out (LIFO) list of FKB/ACBs connected to the unit control block (UCB) of
the associated device.

The location of the FKB/ ACB listhead is device-specific; some UCBs
have multiple listheads-one for each attention condition the driver sup­
ports. The FDT action routine passes the address of the listhead in a regis­
ter to COM$SETATTNAST.

7.8.2 Delivery of Attention ASTs

When the driver (typically the device interrupt service routine) determines
that the attention condition has occurred, it calls COM$DELATTNASTwith
the address of the FKB/ ACB listhead.

A driver uses an alternate entry point, COM$DELATTNASTP, to specify
that only ASTs requested by a particular process be delivered.

COM$0ELATTNAST executes at device IPL, the IPL at which the FKB/
ACB list is synchronized. The queuing of ASTs is an operation using
IPL$_SYNCH as a synchronization mechanism (see Chapter 2). Specifically,
IPL must not be lowered to IPL$_SYNCH. To accomplish correct synchroni­
zation and not block activities at IPL 7 and IPL 8, COM$DELATTNAST
creates an IPL$_QUEUEAST (6) fork process to queue each AST.

The following steps summarize the delivery of attention ASTs:

1. COM$DELATTNAST scans each FKB/ACB in the list.
In the case of entry through COM$DELATTNASTP, the routine com­

pares the PID in the FKB/ ACB to the requested PID. If they are not equal,
the routine leaves the data structure in the queue and goes on to the next
entry. If the PIDs match, the routine performs the actions described in the
next listed item.

2. The routine removes the FKB/ ACB from its list and dispatches to
EXE$FORK, specifying the address of a fork process to be stored in
FKB$L_FPC of the FKB/ ACB. EXE$FORK records the fork process address
and queues the fork block to the listhead specified by the FKB$B_FIPL,
IPL$_QUEUEAST, and requests an interrupt at that IPL.

3. When IPL drops below 6, the fork interrupt is granted. The IPL 6 fork
dispatcher removes the FKB/ ACB from the IPL 6 fork block queue and
dispatches to COM$DELATTNAST's fork process.

4. At IPL 6, COM$DELATTNAST's fork process reformats the fork control
block into an ACB, describing the AST procedure and the access mode of
the original attention AST request.

5. The fork process calls SCH$QAST to queue the ACB to the process.

167

AS Ts

7.8.3 Flushing an Attention AST List

The list of attention ASTs is flushed as the result of an explicit user request: a
Cancel 1/0 ($CANCEL) request or a Deassign Channel ($DASSGN) request
for the associated device.

An explicit user request to flush the attention AST list is a set· attention
AST request with an AST routine address of zero (see Section 7.8.1). When
COM$SETATTNAST is invoked with an AST procedure address of zero, it
branches to COM$FLUSHATTNS.

COM$FLUSHATTNS is entered with the PID and channel number of the
attention ASTs to be deleted. COM$FLUSHATTNS performs the following
operations:

1. It raises IPL to UCB$B_DIPL of the device.
2. It scans the FKB/ ACB list looking for any FKB/ ACBs with a PID and chan­

nel number that match those of the requested flush operation.
3. If the PIDs and channel numbers match, COM$FLUSHATTNS removes

the FKB/ ACB from the attention AST list.
4. COM$FLUSHATTNS restores the IPL at which it was entered.
5. COM$FLUSHATTNS increments the process AST quota, PCB$­

. W _ASTCNT, and deallocates the FKB/ ACB to nonpaged pool.
6. COM$FLUSHATTNS continues processing until it has scanned the entire

attention AST list.

7.8.4 Examples in the VAX/VMS Executive

7.8.4.1

168

Users frequently request attention ASTs for terminals and mailboxes. Brief
descriptions follow of the terminal driver and mailbox driver's support of
attention ASTs.

Terminal Driver and CTRL/Y Notification. A process requests CTRL/C noti­
fication and CTRL/Y notification by issuing the $QIO system service re-
· quest, specifying 10$_SETMODE (or 10$_SETCHAR) with the function
modifier 10$M_CTRLCAST or 10$M_CTRLYAST. When an interactive
user spawns a new process, that new process may also request CTRL/C and
CTRL/Y attention ASTs. If the user types CTRL/C or CTRL/Y, the AST
should be delivered only to the process currently associated with the termi­
nal, rather than to every process in the job. As the user spawns new subpro­
cesses and attaches to already created processes, DCL tells the terminal
driver the PID of the process currently associated with the terminal. When
CTRL/C is typed, the terminal driver invokes COM$DELATTNASTP to de­
liver only the ASTs requested by the process associated with the terminal.

If no CTRL/C attention AST has been requested, then the CTRL/C is inter­
preted as a CTRL/Y, and the terminal driver searches the CTRL/Y AST list

7.8.4.2

7.8 Attention and Out-of-Band ASTs

instead. If a CTRL/Y is typed, only the CTRL/Y attention AST list is
searched.

Because the FKB/ACB data structures are not reused, both types of atten­
tion ASTs must be reenabled each time they are delivered to a process.

Mailbox Driver. A process requests mailbox attention ASTs by issuing a
$QIO request with function code 10$_SETMODE (or 10$_SETCHAR). The
possible function modifiers are 10$M_READATTN and 10$M_ WRTATTN.
10$M_ WRTATTN requests notification of an unsolicited message written to
that mailbox. 10$M_READATTN requests notification when any process
issues a read to that mailbox and there is no message in it.

Attention ASTs of each type may be declared by multiple processes for the
same mailbox. When a condition corresponding to an attention AST occurs,
all ASTs of the appropriate type are delivered. Only the first process to issue a
corresponding 1/0 request will be able to complete the transfer of data sig­
naled by the attention ASTs.

Read and write attention ASTs must be reenabled after delivery because
the entire attention AST list is delivered and removed after each occurrence
of the specified condition.

7.8.5 Out-of-Band ASTs

7.8.5.1

The terminal driver uses a newer form of AST mechanism to notify a process
that an "out-of-band" character has been received from its terminal. Out-of­
band characters are control characters, the ASCII codes 00 to 2016. (Although
CTRL/C and CTRL/Y are in this range, the terminal driver provides the at­
tention AST mechanism described previously to notify a process of their re­
ceipt for compatibility with earlier versions of VMS.) Out-of-band ASTs are
similar to attention ASTs in that the terminal driver forks down to
IPL$_QUEUEAST to queue an ACB to the process.

The most significant difference between the attention AST mechanism
and the out-of-band AST mechanism is that out-of-band ASTs are repeating;
that is, once declared, out-of-band ASTs are delivered to the process for the
life of the process or until the $CANCEL system service is called to flush the
AST list. Another difference is that the out-of-band AST mechanism employs
a piggyback special kernel AST routine.

The Terminal AST Block. The terminal driver builds a data structure called a
terminal AST block (TAST) to describe an out-of-band AST request. Figure
7-5 illustrates the TAST.

The TAST can be in two lists at once because of its structure. Through
TAST$L_FLINK, the TAST is always queued to the terminal UCB in a singly
linked list. Through the first two longwords of the TAST, it can be inserted

169

AS Ts

7.8.5.2

170

(FOFL]

(FQBL]

(FIPL] I (TYPE] I (SIZE]

(FPC]

(FR3]

(FR4)

(KAST)

FLINK

AST

ASTPRM

PID

CHAN l CTRL l RMOD

MASK

Figure 7-5 Terminal AST Block

into a fork queue or a process's ACB queue. The terminal driver sets the bit
TAST$V _BUSY in TAST$B_CTRL when the TAST is in use as a fork block
or ACB. The TAST includes space for fork process context (that is, a fork PC,
fork R3, and fork R4) and the AST information (address of the AST procedure
and its argument, PID, and RMOD fields).

Set Out-of-Band AST Mechanism. A process requests out-of-band notifica­
tion by issuing the $QIO system service request, specifying 10$_SETMODE
(or 10$_SETCHAR) with the function modifier 10$M_OUTBAND.

The terminal driver's FDT action routine for 10$_SETMODE invokes
COM$SETCTRLAST (in module COMDRVSUB), which performs the fol­
lowing steps:

1. If the user AST procedure address ($QIO Pl parameter) is zero or the char­
acter mask ($QIO P2 parameter) is zero, COM$SETCTRLAST interprets
the request as a flush out-of-band AST list request (see Section 7.8.5.4).

2. COM$SETCTRLAST scans the list of out-of-band ASTs, searching for .an
out-of-band ACB with the same characteristics as the caller. The following
items are checked:

-The PID
Out-of-band ASTs can be issued to the same terminal device from a

process and its subprocesses (which will have different PIDs).
-The channel number

3. If COM$SETCTRLAST finds a TAST with the same characteristics which
is not in use, it modifies the existing TAST by replacing the AST address
and the control mask. If the TAST is in use (perhaps queued as an ACB to
the process), COM$SETCTRLAST marks it as "lost," removes the TAST
from the UCB list, and builds a new TAST to describe the request.

4. If it does not find a similar TAST, it allocates a new TAST from nonpaged
pool and charges the process AST quota, PCB$W _ASTCNT. It copies in-

7.8.5.3

7.8 Attention and Out-of-Band ASTs

formation from the 1/0 request packet (the AST procedure address, chan­
nel number, and PIO) and the $QIO character mask into the TAST. It
places the TAST at the tail of the control block list.

5. COM$DELCTRLAST ORs the $QIO character mask into the terminal's
out-of-band AST summary mask, the field UCB$L_ TL_OUTBAND. This
mask represents all the control characters for which the terminal driver
must deliver an out-of-band AST.

Delivery of Out-of-Band ASTs. When a control key is typed at a terminal, the
terminal driver checks whether that control character is represented in the
terminal's out-of-band AST summary mask. If the bit in the summary mask
is set, an out-of-band AST has been requested for that control character. The
terminal driver interrupt service routine invokes COM$DELCTRLAST (in
module COMDRVSUB) to deliver the out-of-band AST. The terminal driver
uses an alternate entry point, COM$DELCTRLASTP, to specify that only
ASTs requested by a particular process be delivered.

The following steps summarize the delivery of out-of-band ASTs:

1. At device IPL, COM$DELCTRLAST scans the list of TASTs for one whose
character mask contains the character typed at the terminal.
When COM$DELCTRLAST finds a TAST with a matching character
mask, it checks the busy bit to see whether the control block is already in
use. In the case of entry through COM$DELCTRLASTP, the routine also
compares the PID in the TAST to the requested PID. If they are not equal,
the routine goes on to the next TAST in the queue.

If TAST$V _BUSY is set, COM$DELCTRLAST skips that TAST. If
TAST$V _BUSY is clear, COM$DELCTRLAST sets it, marking the TAST
in use, and records in TAST$L_ASTPRM the control character that was
received.

2. COM$DELCTRLAST executes at device IPL, the IPL at which the TAST
list is synchronized. The queuing of ASTs is an operation using
IPL$_SYNCH as a synchronization mechanism (see Chapter 2). Specifi­
cally, IPL must not be lowered to IPL$_SYNCH. To accomplish correct
synchronization and not block activities at IPL 7 and IPL 8,
COM$DELCTRLAST creates an IPL$_QUEUEAST (IPL 6) fork process to
queue each AST.

COM$DELCTRLAST dispatches to EXE$FORK, specifying the address
of a fork process to be stored in FKB$L_FPC of the TAST. EXE$FORK
records the fork process address and queues the TAST to the listhead spec­
ified by FKB$B_FIPL (IPLLQUEUEAST) and requests an interrupt at that
IPL. The TAST also remains linked to the terminal UCB list of TASTs.
Figure 7-6 shows the TAST in the terminal UCB's TAST list and in the
fork block queue.

171

~

IPL 6 Fork Queue
Listhead

TLOUTBAND
TLBANDOUE

TT UCB

~

y
/

/

/ /
~~~~~~~~~~~~~~~~~~~~~~"' / 

'--~-C_H_A_N~~'--~~0_8~~~'~~~~~03~~~~---''"'"' 
TAST$V_BUSY---- / 

User Access Mode 

Figure 7·6 TAST Used as a Fork Block 

/ 
/ ,,,,..-

FOFL 

FOBL 

FIPL j TYPE j SIZE 

FPC 

FR3 

FR4 
(unused) 

FLINK 

AST 

ASTPRM 

PIO 

CHAN l CTRL j RMOD 
MASK 

-NextTAST 
or 0 



7.8.5.4 

7.8 Attention and Out-of-Band ASTs 

3. When IPL drops below 6, the fork interrupt is granted. The IPL 6 fork 
dispatcher removes the TAST from the IPL 6 fork block queue and dis­
patches to COM$DELCTRLAST's fork process. 

4. At IPL 6, COM$DELCTRLAST's fork process reformats the fork control 
block into an ACB describing the AST procedure and the access mode of 
the original out-of-band AST request. The no delete and piggyback special 
kernel mode AST flags are set in the ACB, and the special kernel mode 
AST field is loaded with the address of COM$DELCTRLAST's piggyback 
special kernel mode AST. 

5. The fork process calls SCH$QAST to queue the ACB to the process. Figure 
7-7 shows the TAST in use as an ACB. 

6. When the process receives the AST, the piggyback special kernel mode 
AST routine is executed first. The piggyback special kernel mode AST 
performs two functions: 

a. It clears TAST$V _BUSY. 
b. If the TAST is marked as "lost," the piggyback special kernel AST 

routine deallocates it. "Lost" control blocks take place when 
COM$FLUSHCTRLS cannot deallocate a TAST because the busy bit is 
set (see Section 7.8.5.4). Once the AST has been delivered, the TAST is 
no longer needed. The piggyback special kernel AST routine deallocates 
it and returns quota to the process by incrementing PCB$W _ASTCNT. 

Flushing an Out-of-Band AST List. The list of out-of-band ASTs is flushed as 
the result of an explicit user request: a cancel 1/0 request or a deassign chan­
nel request for the associated device. 

An explicit user request to flush the out-of-band AST list is a set out-of­
band AST request with an AST routine address of zero or a character mask of 
zero (see Section 7.8.5.2). When COM$SETCTRLAST receives such a re­
quest, it branches to COM$FLUSHCTRLS. 

COM$FLUSHCTRLS is entered with the PID and channel number of the 
attention ASTs to be deleted. COM$FLUSHCTRLS performs the following 
operations: 

1. It raises IPL to UCB$B_DIPL of the device. 
2. It scans the TAST list and compares the PID and channel number in the 

TAST with those of the requested flush operation. As it scans the list, it 
builds a new out-of-band AST summary mask. If COM$FLUSHCTRLS 
finds a TAST that does not match, COM$FLUSHCTRLS ORs its control 
characters into the summary mask being built and goes on to the next 
TAST. 

3. If the PIDs and channel numbers match, COM$FLUSHCTRLS checks 
TAST$V _BUSY to see whether the TAST is in use as a FKB or ACB. If 
TAST$V _BUSY is set, the "lost" bit is set so that the control block will be 

173 



Software PCB 

t 
ASTQFL r\_ ASTQBL 

PIO 

k ~ 
TLOUTBANO 
TLBANDQUE 

{ t 
TT UCB ,,,...,,. 

,,,,,.,..,,,.......,,,,. 
~----------~----~---~,...,,..,. ,,,..,,..,. 
~----C_H_AN ____ ~l___,,_.oa __ ~l __ 3_3-.-~j.,,.,,,,. 

TAST$V_BU~B$V_NOOELETE )) 
ACB$V _PKAST 
User Access Mode 

Figure 7-7 TAST Used as an ACB 

ASTQFL 
ASTQBL 

RMOD I TYPE I SIZE 

PIO 

AST 
ASTPRM 

ASTACNTNG 
FLINK -NextTAST 

AST 
orO 

ASTPRM 

PIO 
CHAN 1 CTRL J RMOO 

MASK 



7.8 Attention and Out-of-Band ASTs 

deallocated once its AST is delivered. Otherwise, the TAST is removed 
from the out-of-band AST list. 

4. If the TAST is not busy, COM$FLUSHCTRLS increments the process AST 
quota, PCB$W _ASTCNT, and deallocates the TAST to nonpaged pool. 

5. COM$FLUSHCTRLS continues processing until it has scanned the entire 
TAST list. It then replaces the old summary mask with the one just built. 

6. COM$FLUSHCTRLS restores the IPL at which it was entered. 

175 



8 

8.1 

Error Handling 

There is always something to upset the most careful of 
human calculations. 

Ihar~ Saikaku, The fapanese Family Storehouse 

There are several mechanisms for reporting system wide errors in VAX/VMS. 
(Process-specific and image-specific errors are handled by the exception 
mechanism described in Chapter 4.) 

• The error logging subsystem enables device driv.ers and other system com­
ponents to record errors and other events for later inclusion in an error log 
report. 

• The bugcheck mechanism is used by VMS to shut down the system when it 
detects internal inconsistencies or other unrecoverable errors. 

• A machine check is an exception that indicates that the processor has de­
tected some CPU-specific error. 

ERROR LOGGING 

The error logging subsystem records device errors, CPU-detected errors, and 
other noteworthy events, such as volume mounts, system startups, system 
shutdowns, and bugchecks. 

8.1.1 Overview of the Error Logging Subsystem 

Error logging occurs in three steps: 

176 

1. A component, such as a device driver, that wishes to log an error calls a 
routine in the executive to reserve a portion of one of two error log alloca­
tion buffers that are part of the system image. The component writes its 
error message into the reserved portion and calls another executive rou­
tine to indicate that the message has been written. 

2. When an allocation buffer is full, the ERRFMT process is awakened to 
copy the buffer contents to the error log file SYS$ERRORLOG: 
ERRLOG.SYS. 

3. The Error Log Utility selectively reports the contents of the error log file. 

If the system is shut down or crashes, the error log allocation buffers are 
recorded in the dump file to prevent the loss of error log messages. On the 
next system boot, SYSINIT processes the error log allocation buffers saved in 



8.1 Error Logging 

the dump file and writes any valid error log messages to the error log alloca­
tion buffers in memory. When ERRFMT runs, it writes those messages and 
any new ones to the error log file. In this way, no error log information is lost 
across a system crash or an operator-requested shutdown. 

8.1.2 Device Driver Errors 

There are several routines, all in module ERRORLOG, which device drivers 
use to log errors. Two commonly used routines are ERL$DEVICERR and 
ERL$DEVICTMO. These routines log an error associated with a particular 
1/0 request. ERL$DEVICERR is used to report a device-specific error. 
ERL$DEVICTMO can be called by a driver to report a device timeout. Each 
routine executes the following sequence: 

I. The routine invokes ERL$ALLOCEMB to reserve a portion of the current 
error log allocation buffer. 

2. It records information, which it obtains from the unit control block (UCB) 
and current I/O request packet (IRP), in the error log message buffer. 

3. The routine calls the device driver's register dump routine entry point to 
store device-specific information into the error log message buffer. 

4. It returns control to the device driver. When the device driver finishes 
processing the 1/0 request, it invokes IOC$REQCOM (in module 
IOSUBNPAG). 

5. IOC$REQCOM, when it finds that there is an error log message in prog­
ress, records the final I/O request status, device status, and error retry 
counters in the error log buffer. It then invokes ERL$RELEASEMB to indi­
cate that the error message has been completely written. 

Some device drivers report conditions that are. not associated with a partic­
ular I/O request; these conditions are called device attention errors. The CI 
port driver (PADRIVER), for example, reports an error if the port's microcode 
is not at the required revision level. To log errors when there is no IRP, driv­
ers call ERL$DEVICEATTN. This routine records in the error log buffer infor­
mation which is from the device UCB and from the driver's register dump 
routine. 

In addition to ERL$DEVICEATTN, the system communications services 
(SCS) port and class drivers call four other error log routines: 

• ERL$LOGSTATUS-Used by the disk and tape class drivers to log an error 
status code returned in a mass storage control protocol (MSCP) end packet. 
The end packet itself is written to the error log buffer with ERL$LOGMES­
SAGE. 

• ERL$LOGMESSAGE-Used by the port and class drivers to log an error 
condition associated with a command packet, for example, a packet that 
contains invalid data or is an HSC error log datagram. 

177 



Error Handling 

• ERL$LOG_DMSCP-Used by the disk class drivers (DUDRIVER and 
DSDRIVER) to log controller errors and reasons for a controller reset. 

• ERL$LOG_ TMSCP-Similar to ERL$LOG_DMSCP, this is used by the 
tape class driver (TUDRIVER) to log controller errors and reasons for a con­
troller reset. 

8.1.3 Other Error Log Messages 

VMS uses the error log subsystem to record information other than device 
errors. Other kinds of entries written to the error log include the following: 

• Warm start, a successful recovery from a power failure 
• Cold start, a successful system bootstrap 
• Fatal and nonfatal bugchecks (see Section 8.2) 
• Machine check (see Section 8.3) 
• Volume mount and dismount 
• A message written by the Send Message to Error Logger ($SNDERR) system 

service (see Chapter 29) 

8.1.4 Error Log Data Structures 

There are two error log allocation buffers, each 512 bytes, which are built 
as part of the system image. A two-longword array at the global loca­
tion ERL$AL_BUFADDR records their starting addresses. The global 
ERL$GB_BUFIND is a flip-flop switch indicating from which buffer alloca­
tions are currently being made. Figure 8-1 shows these data structures and 
globals. 

A header at the beginning of each allocation buffer describes the buffer. 
The SYS$LIBRARY:LIB.MLB macro $ERLDEF defines symbolic names for 
fields in the buffer header. The field ERL$B_BUSY contains the number of 
pending messages in the buffer, messages for which space has been reserved 
but which have not been completely written. ERL$B_MSGCNT contains the 
number of completed messages. 

The field ERL$B_BUFIND (note, not the global ERL$GB_BUFIND) is a 0 
or 1 to identify in which allocation buffer the header is. One flag is defined in 
the field ERL$B_FLAGS; ERL$V _LOCK is set to inhibit further allocation in 
the buffer. ERL$L_NEXT points to the next available space in the buffer. 
ERL$L_END points one byte past the end of the buffer and is used in testing 
whether the buffer is full. 

8.1.5 Operation of the Error Logger Routines 

178 

ERL$ALLOCEMB is invoked with the size of the requested error log message 
buffer. It raises IPL to 31 to synchronize access to the allocation buffer 



8.1 Error Logging 

~ Buffer Number of Number of 
Flags Number Completed Pending 

(0) Messages Messages 

Pointer to Next Available Space 1--

Pointer to End of Buffer 

Completed and 
ERL$AL_BUFADDR:: 

Pointer to Buffer O !----' Pending Messages 

Pointer to Buffer 1 t---i Space Available I-
for Messages 

ERL$GB_BUFIND:: 
Number of l..-1 Buffer 

Number of Number of 

Buffer in Use Flags Number Completed Pending 

(0) (1) 
Messages Messages 

(0) (0) 

Pointer to Next Available Space t----i 

Pointer to End .of Buffer 

!----' 
Space Available 

for Messages 

Figure 8·1 Error Log Allocation Buffers 

header, since it can be called from an interrupt or exception service routine at 
any IPL. Using ERL$GB_BUFIND as a subscript into the array ERL$AL_ 
BUFADDR, ERL$ALLOCEMB obtains the address of the current buffer. If its 
lock flag is clear (its usual state), ERL$ALLOCEMB tests whether the mes· 
sage will fit in the buffer. 

If the message does not fit, ERL$ALLOCEMB forces a wakeup of the 
ERRFMT process (as described in the next section) and switches to the 
other allocation buffer. If the other buffer is full or its lock flag is set, 
ERL$ALLOCEMB increments the. universal error sequence number 
(ERL$GL_SEQUENCE), lowers IPL, and returns a failure status. Incre­
menting the error sequence number for each attempted error log facilitates 
the detection of lost messages. 
· If the message do.es fit in the allocation buffer, ERL$ALLOCEMB allocates 

an error log message buffer of the requested size, advances the ERL$L_NEXT 
pointer, and increments the pending message count. ERL$ALLOCEMB cop­
ies to the error message buffer the system ID, the size of the buffer, a 0 or 1 
to indicate in which allocation buffer this message buffer is, and the univer­
sal error sequence number. It increments the error sequence number, lowers 
IPL, and returns a success status and the address of the allocated buffer. 

When the component logging the error has written its information in the 
error log message buffer, it invokes ERL$RELEASEMB. ERL$RELEASEMB 

179 



Error Handling 

8.1.5.1 

sets a flag in the error log message buffer to indicate that the message is valid, 
subtracts 1 from the pending message count, and adds 1 to the completed 
message count. If the ERRFMT process is not currently running and there are 
ten or more completed messages in the buffer, ERL$RELEASEMB forces a 
wake of ERRFMT. 

Although ERL$RELEASEMB can be called from an interrupt or exception 
at any IPL, it does not raise IPL to 31. In the allocation buffer header, 
ERL$RELEASEMB accesses only the completed and pending message counts. 
ERL$RELEASEMB decrements the one and increments the other with one 
interlocked instruction and thus requires no further synchronization. It uses 
the instruction ADAWI to add the number FF16 to the adjacent fields, thereby 
subtracting 1 from the pending message count and adding 1 (the carry) to the 
completed message count. 

Waking the ERRFMT Process. The routine ERL$WAKE is called once a sec­
ond from EXE$TIMEOUT (see Chapter 11). The routine does not necessarily 
wake the ERRFMT process. Rather, it decrements a counter at global loca­
tion ERL$GB_BUFTIM and only wakes ERRFMT if the counter reaches zero. 

When the counter reaches zero, it is reset. The starting value for the error 
log timer is 30. (This value is an assembly-time parameter, not adjustable 
with SYSGEN.) Thus, a maximum of 30 seconds can elapse before ERRFMT 
is awakened. This ensures that error messages are written to the error log file 
at reasonable intervals, even on systems that have very few errors occurring. 

This timing mechanism is exploited by both ERL$ALLOCEMB and 
ERL$RELEASEMB to force an awakening of ERRFMT. These routines simply 
set ERL$GB_BUFTIM to 1 so that the next call to ERL$WAKE will wake 
ERRFMT. ERL$WAKE must be invoked from no higher than IPL$_SYNCH 
to synchronize access to the scheduler database (see Chapters 2 and 10). 
ERL$ALLOCEMB and ERL$RELEASEMB run at higher IPLs and thus are 
unable to invoke ERL$WAKE directly. 

ERL$ALLOCEMB forces a wake whenever the current error log allocation 
buffer fills up and ERL$ALLOCEMB must switch to the other one. 
ERL$RELEASEMB forces a wake if the current message buffer contains ten or 
more messages. 

If the ERRFMT process is not running, there is no way for error log mes­
sages to be written to the error log file. Initially, attempts to log errors by 
allocating error log message buffers would be successful. However, once the 
error log allocation buffers fill with messages, any subsequent attempt to 
allocate an error log message buffer would fail. System operation is otherwise 
normal. 

8.1.6 Overview of the ERRFMT Process 

180 

When ERRFMT is started, it enters kernel mode and invokes the Set Timer 
($SETIMR) system service to request asynchronous system trap (AST) notifi-



8.1 Error Logging 

cation at ten-minute intervals. Its AST procedure invokes ERL$ALLOCEMB, 
writes a time stamp message, and invokes ERL$RELEASEMB. Thus, every 
ten minutes, ERRFMT's kernel mode AST procedure writes a time stamp to 
an error log allocation buffer. 

Back in user mode, ERRFMT hibernates until it is awakened through 
ERL$WAKE. When ERRFMT is awakened, it must copy the current error log 
allocation buffer, process any error messages that were in it, and record them 
in SYS$ERRORLOG:ERRLOG.SYS. A description of its actions follows: 

1. Having changed mode to kernel, ERRFMT determines which error log al­
location buffer is to be copied and sets the LOCK flag in it to prevent any 
further allocations. 

2. It tests the pending message counter in the buffer to determine whether 
there are error messages for which space has been allocated but not yet 
released. 

If there are pending messages, ERRFMT sets a timer and waits for half a 
second before testing the counter again. ERRFMT repeats its wait and test 
sequence until there are no pending messages or until it has waited 255 
times. 

3. ERRFMT then copies the error log allocation buffer to its own PO space 
and compares the copy to the original to detect any changes that might 
have occurred during the copy. If the two are not equal, ERRFMT repeats 
the copy, trying to get a consistent copy of the buffer. If necessary, 
ERRFMT repeats the copy and compare sequence 255 times. ERRFMT 
performs this sequence as an alternative to copying the buffer at IPL 31. 

4. Once ERRFMT has a consistent copy of the message buffer, it clears the 
pending and completed message counts in the buffer it copied, resets 
ERL$L_NEXT, and clears the LOCK flag. It then returns to user mode. 

5. Running in user mode, ERRFMT processes the messages in the buffer. 
Whenever ERRFMT finds one of its time stamp messages, it checks 
whether the previous message written to the error log file is also a time 
stamp. If so, ERRFMT updates the record containing the older time stamp 
with the newer one. This avoids filling the error log file with time stamps 
and ensures that the newest time stamp is recorded. 

6. If a process has declared an error log mailbox (see Section 8.1.7), ERRFMT 
writes each message in the error log buffer to that mailbox. 

7. If ERRFMT detects a volume mounted or dismounted message within the 
error log buffer, it checks the SYSBOOT parameter MOUNTMSG or 
DISMOUMSG. If the appropriate parameter is set, ERRFMT sends a 
volume mounted or dismounted message to terminals enabled as disk or 
tape operators. By default, the SYSBOOT parameters are zero, disabling 
these messages to operator terminalS. 

8. After ERRFMT has completed its output operations, it reenters hiberna­
tion. 

181 



Error Handling 

8.1.7 Error Log Mailbox 

8.2 

The error logging subsystem provides the capability for a process to monitor 
error logging activity as it happens, rather than wait for offline processing 
with the Error Log Utility. This capability is provided through the undocu­
mented Declare Error Log Mailbox ($DERLMB) system service. This system 
service is provided only for use by DIGITAL's software, such as the layered 
software product V AXsim. 

A process with DIAGNOSE privilege can call the $DERLMB system ser­
vice with a single argument, the unit number of the mailbox to receive error 
log messages. If this mechanism is not in use by another process (the error log 
mailbox descriptor EXE$GQ_ERLMBX contains a zero), the unit number is 
stored in the first word of the mailbox descriptor and the process identifica­
tion (PID) of the requesting process is stored in the second longword. 

If this service is called with a unit number of zero, the descriptor is cleared, 
canceling use of the error log mailbox mechanism. The descriptor is also 
unconditionally cleared by the image rundown routine (see Chapter 21). 

SYSTEM CRASHES (BUGCHECKS) 

When VAX/VMS detects an internal inconsistency, such as a corrupted data 
structure or an unexpected exception, it generates a bugcheck. If the incon­
sistency is not severe enough to prevent continued system operation, the 
b'1gcheck generated is nonfatal and merely results in an error log entry. If the 
error is serious enough to jeopardize system operation and data integrity, a 
fatal bugcheck is generated. 

A fatal bugcheck typically results in the following actions: 

1. IPL is raised to 31, preventing any further normal system operation. 
2. If the SYSBOOT parameter DUMPBUG is 1 (its default value), the con­

tents of physical memory are written to the system dump file. The system 
dump file is SYS$SYSTEM:SYSDUMP.DMP or, in its absence, the primary 
page file. 

3. The system is halted and automatically rebooted (unless the SYSBOOT 
parameter BUGREBOOT is zero). 

8.2.1 Bugcheck Mechanism 

182 

Source code generates a bugcheck by invoking the BUG_CHECK macro. The 
macro has one required argument, the bugcheck type, and one optional argu­
ment, the keyword FATAL. This macro expands into the two-byte opcode 
FEFF 16 and one word that identifies the bugcheck type and, in bits <2:0>, its 
severity. If the keyword FATAL is present, the severity is set to the value 
STS$K_SEVERE; otherwise it is zero. 



8.2 System Crashes (Bugchecks) 

The following fatal bugcheck example is extracted from the. routine 
SCH$SCHED in module SCHED: 

QEMPTY: BUG_CHECK QUEUEMPTY,FATAL 

Its invocation generates the following code: 

.WORD 

.WORD 

'XFEFF 

BUG$_QUEUEMPTY ! ~ 

The execution of the bugcheck opcode results in a reserved instruction ex­
ception (SS$_0PCDEC, opcode reserved to DIGITAL), causing control to be 
transferred through the system control block to the service routine for that 
exception, EXE$0PCDEC in module EXCEPTION. 

EXE$0PCDEC checks whether the reserved opcode is either FEFF16 or 
FDFF16. (The two-byte opcode FDFF16 indicates that the bugcheck code is 
contained in the next longword. VMS does not currently use longword bug­
check codes.) 

If either opcode is present, EXE$0PCDEC interprets this exception as a 
bugcheck and transfers control to routine EXE$BUG_CHECK (in module 
BUGCHECK). Otherwise, the illegal opcode exception is treated in the usual 
manner described in Chapter 4. 

The actions of EXE$BUG_CHECK vary, depending on the access mode in 
which the bugcheck occurred and the severity of the bugcheck. 
EXE$BUG_CHECK first confirms the read accessibility of the bugcheck op­
erand from the mode that issued the bugcheck and advances the exception 
PC saved on the stack to point to the instruction following the bugcheck. (As 
a result, the bugcheck PC shown in a crash dump is an address four bytes 
higher than the actual bugcheck.) EXE$BUG_CHECK then determines in 
which access mode the bugcheck occurred. 

8.2.2 Bugchecks from User and Supervisor Modes 

If a bugcheck is generated from either user or supervisor mode, and the pro­
cess has BUGCHECK privilege, EXE$BUG_CHECK writes an error log mes­
sage (of type user-generated bugcheck), invoking ERL$ALLOCEMB and 
ERL$RELEASEMB. 

If the bugcheck is fatal, EXE$BUG_CHECK executes an REI instruction to 
return to the access mode of the bugcheck and invokes the Exit ($EXIT) sys­
tem service. The code SS$_BUGCHECK is the final image status. What hap­
pens as a result of this call depends on whether the process is executing a 
single image (no supervisor mode termin~tion handler has been established) 
or the process is an interactive or batch job. 

• If the process is executing a single image, a fatal bugcheck from user or 
supervisor mode results in process deletion. 

183 



Error Handling 

• With the current use of supervisor mode termination handlers, a fatal bug­
check issued from an interactive or batch job causes the currently executing 
image to exit and control to be passed to the command language interpreter 
(CLI) to receive the next command. 

In either case, the only difference between user and supervisor mode is that 
user mode termination handlers are not called if a fatal bugcheck is issued 
from supervisor mode. 

If the bugcheck is not fatal, the exception (the initial path into the bug­
check code) is dismissed, and execution continues with the instruction fol­
lowing the BUG_CHECK macro. 

The SYSBOOT parameter BUGCHECKFATAL has no effect on bugchecks 
issued from user or supervisor mode. The severity field in the bugcheck code 
is used to determine whether a given bugcheck is fatal. User and supervisor 
mode bugchecks affect only the current process. 

8.2.3 Bugchecks from Executive and Kernel Modes 

184 

VAX/VMS generates executive and kernel mode bugchecks. 
If an executive or kernel mode bugcheck is not fatal and the SYSBOOT 

parameter BUGCHECKFATAL is zero, EXE$BUG_CHECK proceeds as it 
does for nonfatal bugchecks for the outer two access modes. A message is 
sent to the error logger and the exception is dismissed, passing control back 
to the caller at the instruction following the BUG_CHECK macro. 

Typically, execution continues with no further effects. However, the rou­
tine that detects the error and generates the bugcheck can take further action. 
One example of such a routine is the last chance handler for executive mode 
exceptions. It generates the nonfatal SSRVEXCEPT (unexpected system ser­
vice exception) bugcheck. On the presumption that process data structures 
are inconsistent, it then requests the Exit ($EXIT) system service. Exiting 
from executive mode results in process deletion. 

If the bugcheck is fatal or BUGCHECKFATAL is 1, EXE$BUG_CHECK 
aborts all normal system operation, records information about the fatal bug­
check in the dump file, and reboots. If BUGCHECKFATAL is 1, any execu­
tive or kernel mode bugcheck is treated as fatal, independent of the severity 
code in the low-order bits of the bugcheck code. By default, BUGCHECK­
FATAL is zero, which means that a nonfatal inner access mode bugcheck 
does not cause the system to crash. 

The fatal bugcheck routine and all the bugcheck codes and associated text 
are not resident. They are stored in the system image SYS.EXE and must be 
read into memory, overlaying part of the read-only executive in memory. 
EXE$BUG_CHECK cannot rely on the normal I/O mechanisms. Instead, it 
calls the bootstrap system device driver for all its I/O (reading the fatal bug­
check code and writing the dump file). The bootstrap system device driver is 



8.2 System Crashes (Bugchecks) 

l 
Virtual Address Space 

l 
t-------------180000000 

Dump File Header 

Figure 8·2 Fatal Bugcheck Overlay 

the one used by the initialization programs VMB and SYSBOOT (see Chapter 
24) and loaded into nonpaged pool by INIT (see Chapter 25). EXE$BUG_ 
CHECK cannot invoke the file system to look up SYS.EXE or the dump file; 
instead, it uses information about their locations which is recorded and 
checksummed at system initialization. 

Before reading the fatal bugcheck overlay, EXE$BUG_CHECK takes the 
following steps: 

1. It validates the checksum of the boot control block, the data structure 
containing the locations of the bugcheck overlay and the dump file. 

2. EXE$BUG_CHECK invokes SCS$SHUTDOWN (in [SYSLOA)SCSLOA) 
to shut down any SCS circuits. 

3. It invokes EXE$SHUTDWNADP and EXE$INIBOOTADP to shut down 
all adapters and initialize the one containing the system device. These 
routines are in the CPU-specific module [SYSLOA]ERRSUBxxx, where 
xxx identifies the CPU type (see Appendix G). 

4. It invokes INI$WRITABLE to change the protection of the pages contain­
ing the read-only executive so that they can be overwritten by the bug­
check overlay. 

5. It calls a device initialization routine in the bootstrap driver. 

The fatal bugcheck code and data are read into system space on top of a 
read-only portion of the executive. Global label BUG$FATAL defines the be­
ginning of the buffer into which the bugcheck code and data will be read. 
This label immediately precedes the blank program section (named 
11 • BLANK."). Its value can be determined by reading the system map. The 
bugcheck overlay is shown in Figure 8-2. 

The code and data read into memory include the following: 

185 



Error Handling 

186 

• The fatal bugcheck service routine 
• A template for the message that is typed on the console terminal 
• Some primitive console terminal output routines 
• The text of all bugcheck messages 

A header block for the dump file is constructed in the 512 bytes immedi­
ately preceding the label BUG$FATAL. This area overwrites more read-only 
portions of the nonpaged executive. 

There are two implications of overlaying existing code: 

• The routines overlaid by the fatal bugcheck code, data, and dump header are 
not available for use by the bugcheck code. This requirement is most im­
portant in deciding how the nonpaged executive is laid out. 

• Portions of the dump may look strange when inspected by the System 
Dump Analyzer (SDA) Utility. For example, it is impossible to determine if 
overlaid code is corrupted because SDA can only display the bugcheck code, 
data, and dump header instead of the original instructions and read-only 
data. 

The contents of the dump file header block are listed in Table 8-1. Note 
that the error log entry associated with this bugcheck is written into the 
header to avoid loss of information in case the error log allocation buffers are 
full when the bugcheck occurs. Table 8-2 shows the layout of the error log 
message. The error log entry for a nonfatal bugcheck contains the same infor­
mation as the entry for a fatal bugcheck, except for the 35 longwords set aside 

Table 8-1 Contents of the Dump File Header Block 

Description 

Last error log sequence number (unused) 

Dump file flag (low bit set if dump file analyzed) 

Dump file version (contains a 2) 

Contents of SBR, SLR, KSP, ESP, SSP, USP, ISP 

Quadword memory descriptors for 
eight memory controllers 

Each quadword is broken down as follows: 

• Page count 

• TR number for this controller 

• Base PFN for this controller 

System version number 

One's complement of previous longword 

Error log entry for crash/restart (see Table 8-2) 

Size 

Longword 

Word 

Word 

? longwords 

8 quadwords 

3 bytes 

Byte 

Longword 

Longword 

Longword 

132 words 



8.2 System Crashes (Bugchecks) 

Table 8-2 Contents of Error Message Buffer for Crash/Restart Entry 

Description 

Error message buffer header 

Size in bytes of buffer 

Allocation buffer number 

Error message valid indicator 

System ID 

Entry type (contains EMB$K_CR = 3710) 

System time when crash occurred (from 
EXE$GQ_SYSTIME) 

Error log sequence number (low-order word of 
ERL$GLSEQUENCE) 

Contents of KSP, ESP, SSP, USP, ISP 

Contents of RO to Rl 1, AP, FP, SP, PC, PSL 

Contents of POBR, POLR, PlBR, PlLR, SBR, SLR, PCBB, 
SCBB, ASTLVL, SISR, ICCS 

Contents of CPU-specific registers 

Bugcheck code 

Process ID of current process 

Name of current process 

Size 

Longword 

Word 

Byte 

Byte 

Longword 

Word 

Quadword 

Word 

5 longwords 

17 longwords 

11 longwords 

24 longwords 

Longword 

Longword 

16 bytes 

for architectural and CPU-specific processor registers. EXE$BUG_CHECK 
invokes the CPU-specific routine EXE$DUMPCPUREG to copy CPU­
specific processor registers to the error log entry. This routine is in module 
[SYSLOA]LIOSUBxxx, where xxx identifies the CPU type (see Appendix G). 

The crash dump error log entry will be written into one of the error log al­
location buffers by SYSINIT (see Chapter 25) when the rest of the error log 
messages (blocks 2 and 3 in the dump file) are put back into the error log 
allocation buffers. (If there is no room in the error log allocation buffers, the 
bu~check entry will never be written to the error log file, although the entry 
is preserved in the dump file.) 

EXE$BUG_CHECK writes some information describing the bugcheck to 
the console terminal. This information includes the contents of general regis­
ters, stacks relevant to the crash, contents of processor internal registers, and 
a summary of the reason for the bugcheck. This output occurs before the 
dump file is written and should not be interrupted by halting the VAX proces­
sor from the console terminal. Such an interruption would prevent the dump 
file from being written. 

Next, EXE$BUG_CHECK writes the dump header and the contents of the 
two error log allocation buffers to the system dump file. Then, if the SYS-

187 



Error Handling 

BOOT parameter DUMPBUG is 1, EXE$BUG_ CHECK writes the contents of 
physical memory to the system dump file. The system dump file is described 
in the next section. 

The last step in EXE$BUG_CHECK either loops or reboots the system. If 
the SYSBOOT parameter BUGREBOOT is zero, EXE$BUG_CHECK writes a 
message on the console terminal and loops at IPL 31, waiting for a command 
to be entered at the console terminal. If BUGREBOOT is 1, its default value, 
EXE$BUG_CHECK reboots the system by invoking the routine CON$­
SENDCONSCMD (in module OPDRIVER) to send a special boot command 
to the console and halt. When the HALT instruction is executed, the console 
microcode gains control and processes the boot command. 

8.2.4 System Dump File 

8.3 

188 

The most important operation of the bugcheck routine is to write the con­
tents of the error log allocation buffers and physical memory to the dump file. 
The dump file can be examined using SDA to determine the reason for the 
crash. SDA is invoked by the DCL command ANALYZE/CRASH_DUMP. 
The dump file contains three distinct pieces: 

1. The dump header (see Table 8-1) is written to the first block in the file. 
2. The two error log allocation buffers are written to the next two blocks. 
3. The rest of the dump file is filled with the current contents of physical 

memory. EXE$BUG_CHECK uses the memory descriptors in the restart 
parameter block (RPB) constructed by VMB (see Chapter 24) to provide an 
accurate layout of physical address space. If MA780 shared memory is 
present on the system, its contents are also written to the dump file. 

The size of the dump file must be four blocks larger than the number of 
physical pages in the system. (The first three blocks are used as previously 
described; there is no current use of the fourth block.) To ensure that a crash 
dump can be analyzed with SDA, the dump file must be large enough. If a 
dump file is too small, only the physical pages that fit into the undercon­
figured dump file will be written. In a typical VMS configuration, the most 
crucial contents of physical memory, the system page table, are located at the 
largest physical addresses (see Chapter 24) and will not be written, making a 
partial dump useless. That is, SDA cannot analyze a dump file that does not 
contain the system page table. 

MACHINE CHECK MECHANISM 

A machine check is an exception that is reported when the CPU detects an 
internal error during the attempted execution of an instruction. Machine 
check errors are CPU-specific; possible types of machine checks include 
memory cache parity error, translation buffer parity error, and CPU timeout. 



8.3 Machine Check Mechanism 

Many, but not all, machine checks are caused by some sort of hardware con­
dition. Some hardware conditions are transient; others are persistent. 

During a machine check exception, the CPU logs information, called the 
machine check frame, on the interrupt stack. The machine check frame iden­
tifies the type of machine check and includes the contents of relevant CPU 
registers. Its exact form varies on each type of CPU. Consult CPU-specific 
literature for information on the form of the machine check frame and the 
layout of the associated CPU registers. 

The exception is dispatched through the SCB to a machine check exception 
service routine. The exception is serviced on the interrupt stack at IPL 31. 
The actual machine check exception service routine is contained in the CPU­
specific module SYSLOAxxx and is loaded during system initialization. The 
module name has the form MCHECKxxx. In both names, xxx indicates the 
CPU type (see Appendix G). 

The actual processing of a machine check exception is CPU specific. This 
section contains an overview of machine check handling. VMS determines 
from the machine check frame what type of machine check occurred. Al­
though VMS treats each ·type of machine check somewhat differently, its 
general response is to log an error and increment the global counter 
EXE$GL_MCHKERRS. The DCL command SHOW ERROR displays the 
contents of this counter as CPU errors. 

VMS then determines whether the error is recoverable. Recoverability de­
pends on whether the machine check exception was a fault or an abort. The 
distinction between them is whether register and memory operands have 
been restored to their state prior to the attempted execution of the instruc­
tion. In the case of a fault, they have been restored. In the case of an abort, 
they cannot be restored, and it is therefore impossible to restart the instruc­
tion. Recoverability also depends on whether the instruction is a resumable 
one. The details of recoverability are CPU-specific. 

The basic philosophy of the machine check service routine is to keep as 
much of the system running as possible. How serious a particular machine 
check is depends upon whether it is recoverable and the access mode in 
which the machine check occurred. If the machine check is recoverable, the 
service routine removes the machine check frame from the interrupt stack 
and executes an REI to dismiss the exception and return control to the in­
struction which incurred the exception. 

If the machine check is not recoverable, the action taken by the machine 
check handler depends on the access mode in which the machine check 
occurred. If the previous mode was supervisor or user, a machine check ex­
ception is reported to that access mode. (Unless the process has declared a 
condition handler for this type of exception, this step results in image exit.) If 
the previous mode was executive or kernel, the machine check service rou­
tine generates the fatal bugcheck MACHINECHK. 

189 



Error Handling 

8.3.1 Machine Check Recovery Blocks 

190 

VAX/VMS provides the capability for a block of kernel mode code to protect 
itself from machine checks while the protected code is executing. For 
example, this feature is used if an interrupt is generated from a previously 
unconfigured adapter. If the code that read the configuration register were 
not protected and the interrupt were spurious, then the configuration reg­
ister would not exist and the reference to a nonexistent I/O space address 
would crash the system. 

There are several restrictions on the protected code: 

• It must be executing in kernel mode. 
• The stack cannot be used across the entry into or the exit out of the pro­

tected code block. This restriction exists because a coroutine mechanism is 
used to pass control between the protected block and the VMS routines that 
establish the protected code. 

• VMS elevates IPL to 31, so a limited number of instructions should be in­
cluded in the block. 

• RO is destroyed by the mechanism. 

The basis for the recovery mechanism is several routines in the module 
EXCEPTION. Most of them are invoked indirectly through macros. Several 
macros are provided in the macro library SYS$LIBRARY:LIB.MLB. The fol­
lowing macro invokes EXE$MCHK_PRTCT to define the beginning of the 
block: 

$PRTCTINI LABEL,MASK 

The label argument is identical to the label argument associated with the 
following macro which defines the end of the block: 

$PRTCTEND LABEL 

If no error occurred while the protected code was executing, RO contains the 
success status SS$_NORMAL. Otherwise, RO contains the error status 
SS$_MCHECK. 

The mask argument allows the block of code to protect itself from different 
classes of errors. The following list describes the specific types of protection 
that are defined by the $MCHKDEF macro: 

MCHK$M_LQG 

MCHK$M_MCK 

MCHK$M_NEXM 

MCHK$M_UBA 

Inhibit error logging for the error 

Protect against machine checks 

Protect against nonexistent memory 

Protect against UNIBUS adapter error 
interrupts 

There are two other features used by the VMS operating system that are a 
part of this protection mechanism. Invoking the following macro enables 



8.3 Machine Check Mechanism 

kernel mode code to determine whether a recovery block is in effect and take 
action accordingly: 

$PRTCTEST ADDRESS,MASK 

This macro invokes the routine EXE$MCHK_ TEST, which returns status 
in RO. The low bit set indicates that a recovery block is in effect and that the 
specified mask is being used. This routine is typically used to determine 
whether a machine check should be logged in the error log. 

There is another related routine in EXCEPTION, one which is invoked 
directly. EXE$MCHK_BUGCHK is invoked from a machine check exception 
service routine to determine whether a recovery block is in effect. If no recov­
ery block is in effect, the routine returns, usually to code which generates a 
bugcheck. If a recovery block is in effect, the routine returns control to the 
end of the protected block with RO containing an error code of 
SS$_MCHECK. 

191 



9 

9.1 

System Service Dispatching 

Between the idea 
And the reality 
Between the motion 
And the act 
Falls the Shadow. 

T.S. Eliot, The Hollow Men 

Many of the operations that VAX/VMS performs on behalf of the user are 
implemented as procedures called system services. Most of these procedures 
are linked as part of the executive and reside in system space; others are 
contained in privileged shareable images. 

System services typically execute in kernel or executive access mode so 
that they can read or write data structures protected from access by less privi­
leged access modes. Some services are invoked directly by application pro­
grams. Others are called on behalf of the user by components such as RMS. 
This chapter describes how control is passed from a user program to the pro­
cedures that execute service-specific code. 

SYSTEM SERVICE VECTORS 

A system service vector is a system global procedure name called to invoke a 
particular service. A system service vector contains a small procedure which 
executes in the mode of the caller and serves as a bridge between the caller 
and the actual procedure(s) which implement the service request. The actual 
procedure may be part of SYS.EXE or RMS.EXE and may execute in an inner 
access mode. The global entry point name of a system service vector is 
SYS$service, as compared to EXE$service or RMS$service, the usual global 
name of the procedure in SYS.EXE or RMS.EXE that performs the actual 
work of the system service. 

9.1.1 Location of System Service Vectors 

192 

The value of a system service vector, that is, its address, is constant for all 
versions of VMS, so that existing user programs will not have to be relinked 
for a new version of VMS. Prior to VAX/VMS Version 3, system service vec­
tors were defined as the lowest pages of system address space, beginning at 
location 80000000. In VAX/VMS Version 3 and subsequent versions, system 
service vectors are also defined at Pl space addre-sses beginning at 7FFEDEOO. 



9.1 System Service Vectors 

The Pl space definitions allow system services to be intercepted on a per­
process basis. 

The linker, by default, resolves a system service vector global to its Pl 
space value. The system space and Pl space addresses for the system service 
vectors access the same physical pages. That is, the physical pages containing 
the system service vectors are mapped both in system space and in the P 1 
space of each process. 

The VAX/VMS Version 4 system services occupy five pages of memory, 
with space reserved for expansion up to 16 pages. As new services are added 
to future releases of VAX/VMS, the vector area will grow to accommodate 
new entry points. 

9.1.2 Contents of System Service Vectors 

Each service entry point contains at least eight bytes of code and data called a 
system service vector. Many vectors consist solely of a global entry point 
named SYS$service, a register save mask, a single instruction that transfers 
control eventually to a service-specific procedure in the executive, and an 
instruction (usually a RET) that passes control back to the caller. Other vec­
tors called "composite" vectors transfer control to multiple service-specific 
procedures. 

Most of the system services execute in kernel mode; their system service 
vectors contain a CHMK instruction. A few system services and all of the RMS 
services contain a CHME instruction. Some services, such as the text format­
ting services, execute in the access mode of the caller and dispatch directly to 
the service-specific code in the VMS operating system with a JMP instruction. 
The three sets of instructions found in simple system servfoe vectors are 
illustrated below. Table 9-1 l\sts the VMS system services that use each of 
the three methods of initial dispatch illustrated below. 

Vectors for system services that change mode to kernel contain the follow­
ing code: 

SYS$service:: 

.WORD entry-mask 

;Entry point for services that 

; execute in kernel mode 

;This mask is identical to the 

; mask found at location 

; EXE$service 

CHMK r#service-specific-code 

RET ;Return to caller 

.BLKB 1 ;Spare byte to make vector 

; eight bytes long 

Vectors for system services that change mode to executive contain the 
following code: 

193 



System Service Dispatching 

194 

SYS$service:: 

.WORD entry-mask 

;Entry point for services that 

; execute in executive mode 

;This mask is identical to the 

; mask found at location 

; EXE$service 

CHME !~service-specific-code 

RET ;Return to caller 

.BLKB 1 ;Spare byte to make vector 

; eight bytes long 

Vectors for system services that do not change mode contain the following 
code: 

SYS$service:: 

.WORD entry-mask 

;Entry point for services that 

; execute in the access mode 

; of the caller 

;This mask is identical to the 

; mask found at location 

; EXE$service 

JMP @#EXE$service + 2 ;Transfer control to 

first instruction after the 

; entry mask at EXE$service 

Some system service vectors are "composite." They include either mul­
tiple CHMx instructions or calls to other system service vectors to ensure 
synchronization of the service request. Many RMS services and all of the 
"synchronous" system services are composite. A synchronous system service 
is one which guarantees completion of its normally asynchronous system 
service counterpart. 

Synchronous system service vectors first invoke the asynchronous system 
service, which returns to its invoker when the request is initiated, and then 
wait for completion of the asynchronous request. A synchronous system 
service is named for the asynchronous service it invokes; a trailing "W" in 
the name of the synchronous services distinguishes the two, $QIO and 
$QIOW, for example. The asynchronous service procedure clears the event 
flag and status block (110 status block or lock status block) associated with 
the request. The synchronous system service vector code uses a combination 
of event flag and status block to test for request completion, placing the pro­
cess into event flag wait if the request has not completed. 

This combination of waiting for an event flag and testing a status block is 
new with VAX/VMS Version 4, replacing the simple wait for event flag used 
by earlier versions. The newer mechanism prevents a premature return to the 
synchronous service caller as the result of concurrent uses of the same event 
flag. (Note, however, that if the caller omits an optional status block, the 
newer mechanism reverts to being a simple wait for event flag.) The new 



9.2 

9.2 Change Mode Instructions 

mechanism is invoked explicitly as the $SYNCH system service and implic­
itly as part of each synchronous system service. 

An example synchronous system service vector, SYS$QIOW, follows. Note 
that its entry mask is the logical OR of the masks of all service procedures to 
which this composite vector dispatches. The actual synchronization code is 
described in Section 9.3. 7. Table 9-1 lists the synchronous system service 
vectors. 

SYS$QIOW:: 

.WORD <QIO_MASK!WAITFR_MASK!CLREF_MASK!SETEF_MASK> 

CHMK #QIO 

BLBC RO I QIOW_RET 

PUSHL QIO$_IOSB(AP) 

BRW QIO_ENQ_SYNCH 

QIOW_RET: 

RET 

;Don't wait if error queueing 

; request 

;Fetch IOSB address if 

; specified 

;Use common QIOW, ENQW synch 

; code 

;Return to caller of service 

An RMS composite vector branches to RMS synchronization code which 
conditionally stalls the process until all 1/0 associated with its request is 
done. An example RMS composite vector, SYS$FIND, is illustrated below. 
The actual synchronization code is described in Section 9.3.6. Table 9-1 lists 
the RMS services which branch to synchronization code and those which do 
not. 

SYS$FIND:: 

.WORD 'M<R2,R3,R~ 1 RS,Rb,R7,R8,Rg,R10,R11> 

CHME #FIND 

BRB RMS_CHECK_STALL 

CHANGE MODE INSTRUCTIONS 

Executing a change mode instruction generates an exception. Exception pro­
cessing VAX microcode alters access mode and pushes the PSL, the PC of the 
next instruction, and the code that is the single operand of the change mode 
instruction onto the stack indicated in the instruction. (As pointed out in 
Chapter 4, the actual access mode is the outermost of the access mode indi­
cated by the instruction and the current access mode contained in the PSL.) 

195 



"""' Vi 
\Q Table 9-1 System Services and RMS Services That Use Each Form of System Service Vector 'a 
°' ...... 

The following services execute initially in kernel mode. s 
$ADJSTK $CREMBX $DISMOU $MGBLSC $SETPRT Vi 

Cl;) 

$ADJWSL $CREPRC $DLCEFC $MT ACCESS $SETPRV 
.... 
:5. 

$ALLOC $CRETVA $ENQ $PURGWS $SE TR WM C"l 
Cl;) 

$ASCEFC $CRMPSC $ERAPAT $QIO $SETSFM t:J ...... 
$ASSIGN $DACEFC $EXIT $READEF $SETSSF ~ 

!::> 
$BRKTHRU $DALLOC $EXPREG $RESUME $SETSTK ...... g. 
$CANCEL $DASSGN $FORCEX $RUNDWN $SETSWM ...... 

b 
$CANEXH $DCLAST $GETCHN1 $SCHDWK $SNDERR ()q 

$CANTIM $DCLCMH $GETDEV1 $SET AST $SUSPND 

$CANWAK $DCLEXH $GE TD VI $SETEF $TRNLNM 

$CHKPRO $DELLNM $GETJPI $SETEXV $ULKPAG 

$CLRAST $DELMBX $GETLKI $SETIME $ULWSET 

$CLREF $DELPRC $GETPTI $SETIMR $UPDSEC 

$CMKRNL $DEL TVA $GETS YI $SETPFM $WAITFR 

$CNTREG $DEQ $HIBER $SETPRA $WAKE 

$CRELNM $DERLMB $LCKPAG $SETPRI $WFLAND 

$CRELNT $DGBLSC $LKWSET $SETPRN $WFLOR 

The following system services execute initially in executive mode. 

$ADD-HOLDER $CREATLRDB $GETTIM $NUMTIM $SNDJBC 

$ADD_IDENT $FIND-HELD $GE TUAI $PARSLACL $SNDOPR 

$ASCTOID $FIND_HOLDER $IDTOASC $REM_ HOLDER $SNDSMB1 

$CHANGLACL $FINISH_RDB $IM GA CT $REM_IDENT 

$CHECK_ ACCESS $FORMAT _ACL $MOD_HOLDER $SE TUAI 

$CMEXEC $GETQUI $MOD_IDENT $SNDACC1 



Table 9-1 System Services and RMS Services That Use Each Form of System Service Vector (continued) 

The following system services execute initially in the mode of the caller. Several of them change to a more privileged mode during their 
execution. Unless otherwise noted, each service can be called from any access mode. 

$ASCTIM 

$BINTIM 

$BRDCST1 

$CRELOG1 

$DELLOG1 

$EXCMSG2 

$FAQ 

$FAOL 

$GETMSG2 

$GRANTID2 

$IMGFIX 

$IMGSTA3 

$MOUNT2 

$PUTMSG3 

$REVOKID2 

$TRNLOG1 

$UNWIND 

The following RMS services execute in executive mode and branch to a synchronization routine before returning to the caller. 

$CLOSE $ENTER $GET $READ $SPACE 

$CONNECT $ERASE $MODIFY $RELEASE $TRUNCATE 

$CREATE $EXTEND $NXTVOL $REMOVE $UPDATE 

$DELETE $FIND $OPEN $RENAME $WAIT 

$DISCONNECT $FLUSH $PARSE $REWIND $WRITE 
$DISPLAY $FREE $PUT $SEARCH 

The following RMS services execute in executive mode. The vectors for these RMS services contain RET instructions rather than a 
branch to an RMS synchronization routine. 

$FILESCAN $RMSRUNDWN $SETDDIR $SETDFPROT $SSVEXC 

The following synchronous system services use composite vectors. Unless otherwise noted, each service executes initially in kernel mode. 

$BRKTHRUW 

$ENQW 

$GETDVIW 

$GETJPIW 

$GETLKIW 

1This service has been superseded. 

$GETQUIW4 

$GETSYIW 

$QIOW 

$SNDJBCW4 

2This system service can be called only from executive and less privileged access modes. 
3 This system service can be called only from supervisor and user mode. 
4This service executes initially in executive mode. 
5This service executes initially in the caller's mode. 

$SYNCH5 

$UPDSECW 



System Service Dispatching 

9.3 

198 

For example, the execution of a 

CHME #5 

instruction will push a PSL, the PC of the instruction following the CHME 

instruction, and a 5 onto the executive stack. Control is then passed to the 
exception service routine whose address is located in the appropriate entry in 
the system control block !SCB). 

During system initialization, VAX/VMS fills in the SCB entries for CHMK 
and CHME with the addresses of change mode dispatchers that pass control 
to the procedures that perform service-specific code. These dispatchers are 
EXE$CMODKRNL, for CHMK exceptions, and EXE$CMODEXEC, for 
CHME exceptions. The action of these two dispatchers is discussed in the 
next section. 

The SCB entries for CHMS and CHMU contain the addresses EXE$­
CMODSUPR and EXE$CMODUSER. These two exceptions are treated much 
like any other which VMS passes to a user-declared condition handler. See 
Chapter 4 for more information. 

CHANGE MODE DISPATCHING IN THE VMS EXECUTIVE 

The change mode dispatcher that receives control from the CHMK or CHME in­
struction in the system service vector must dispatch to the procedure indi­
cated by the code that is found on the top of the stack. In addition, because 
the service routines are written as procedures, the dispatcher must construct 
a call frame on the stack. Building the call frame could be accomplished by 
using a CALLx instruction and a dispatch table of service entry points. 

However, the call frame that must be built is identical for each service. In 
addition, the registers that the service-specific procedure will modify have 
already been saved because th!! register save mask in the vector area (at global 
location SYS$service) is the same as the register save mask at location 
EXE$service. So the dispatcher avoids the overhead of the general purpose 
CALLx instruction and builds its call frame by hand. 

Further speed improvement is achieved in this commonly executed code 
path by overlapping memory write operations (building the call frame) with 
register-to-register operations and instruction stream references. The actual 
dispatch to the sel'Vice-specific procedure is then accomplished with a CASEW 

instruction that uses the CHMx code as its index into the case table. Figure 9-1 
illustrates the control flow from the user program all the way to the service­
specific procedure. This flow is shown for both kernel and executive access 
modes. Figure 9-2 shows the corresponding flow for those services that do not 
change mode. 



9.3 Change Mode Dispatching in the VMS Executive 

9.3.1 Operation of the Change Mode Dispatcher 

The operations of the change mode dispatchers are almost identical for ker­
nel and executive modes. This section discusses the common points of the 
dispatchers for kernel and executive modes. The next sections point out the 
differences between the dispatchers for the two access modes. 

The first instruction of the dispatcher pops the exception code, unique for 
each service, from the stack into RO. In both the kernel mode dispatcher and 
the executive mode dispatcher, the call frame is built on the stack by the 
following four instructions: 

PUSHAB s·sRVEXIT 

PUSHL FP 

PUSHL AP 

CLRQ -(SP) 

PO 
Space 

P1 
Space 

System Space 

Uaet Program 

System 
Service Vector 

Change 
· Mode Dlapetcher 

EXE$CMODxxxx:: 
1) Build call frame 
2) Check argument 

list 
3)CASEW 
Offsets 

Offsets 
Process illegal 
change mode 
codes 

REI 

Figure 9·1 Control Flow of System Services That 
Change Mode 

Service-Specific 
· Pri:icedure 

EXE$service:: 
Entry mask 

RET 

199 



System Service Dispatching 

200 

PO 
Space 

User Program 

I 
I 
I 
I 
I 

P1 
Space 

System 
Service Vector 

1.-------. 
1

1 

SYS$service:: 

System Space 

Service-Specific 
Procedure 

I ~ Entry mask EXE$servlce:: 

· /'f! JMP ----11-------.J~ Entry mask 
CALLx I .__ ____ __, ~ 

l 
lii-----t------~RET ,__ ___ __.I 

I 

I 
I 

Figure 9-2 Control Flow of System Services That Do 
Not Change Mode 

While the call frame is being built, two checks are performed on the argu­
ment list. The number of arguments actually passed (found in the first byte of 
the argument list) is compared to a service-specific entry in a prebuilt table to 
determine whether the required number of arguments for this service have 
been passed. Read accessibility of the argument list is checked (with the 
PROBER instruction generated by the IFNORD macro). If either of these 
checks fails, the error processing described in Section 9.4 is performed. 

Finally, a CASEW instruction is executed, using the unique code in RO as an 
index into the case table. The case table has been set up at assembly time to 
contain the addresses of the first instruction of each service-specific routine. 
Because each service is written as a procedure with a global entry point 
named EXE$service pointing to a register save mask, the case table contains 
addresses of the form EXE$service + 2. If control is passed to the end of the 
case table, then a CHMx instruction was executed with an improper code and 
the error processing described in Section 9 .4 is performed. 

There are severAf services which are not reachable through case displace­
ments. The maximum displacement of a CASEx instruction is 32,767. The 
services which are more than 32, 767 bytes from the case table (and those 
which are Close to that limit) must be reached more indirectly. A case table 
entry for such a service points to an EXE$service entry point which is local to 
the CMODSSDSP module. The EXE$service entry point contains a JMP to the 
real procedure, whose global entry point name is EXE$$service. 

Example 9-1 compares the code for the two dispatchers, copied from the 
module CMODSSDSP. The entries containing the string "* * * * * *" indicate 
places where the change mode dispatchers differ. 



9.3 Change Mode Dispatching in the VMS Executive 

The instructions are not listed in exactly the same order that they appear in 
the source module. Rather, the instructions are shown in the order that they 
are found when all the PSECTs have been sorted out at link time. 

Example 9-2 lists the error routines to which the change mode dispatchers 
branch. These routines are described in Section 9.4. 

Example 9-1 Change Mode Dispatchers 

Change Mode to Kernel Dispatcher Change Mode to Executive Dispatcher 

EXE$CMODKRNL:: EXE$CMODEXEC:: 

POPL RD POPL RD 

BEQL ASTEXIT ****** 
PUSHAB B'SRVEXIT PUSH AB B'SRVEXIT 

MOVZBL RD,R1 MOVZBL RD,R1 

PUSHL FP PUSHL FP 

MOVZBL W'SYS$GB_KRNLARG[R1], R1 MOVZBL WB_EXECNARG[R1], R1 

PUSHL AP PUSHL AP 

MO VAL @#L;[R1],FP MO VAL @#L;[R1],FP 

CLRQ -(SP) CLRQ -(SP) 

IFNORD FP,(AP),ACCVIO IF NORD FP, (AP), EXACCVIO 

prober #D,fp,(ap) prober #D,fp,(ap) 

beql accvio beql exaccvio 

MOVL SP,FP MOVL SP,FP 

CMPB (AP),R1 CMPB (AP) ,R1 

BLSSU KINSARG BLSSU EXINSARG 

KERDSP: EXEDSP: 

MOVL G'SCH$GL_CURPCB I RL; ****** 
CA SEW RD,#1,#KCASMAX CA SEW RD I #DI S'ECASMAX 

offset to EXE$service + 2 offset to EXE$service + 2 

****** JSB @CTL$GL_RMSBASE 

check inhibit bits check inhibit bits 

(continued) 

201 



System Service Dispatching 

Example 9-1 Change Mode Dispatchers (continued) 

MOVL @#CTL$GL_USRCHMK,R1 MOVL @#CTL$GL_USRCHME,R1 

BEQL 10$ BEQL 10$ 

JSB ( R1) JSB (R1) 

10$: MOVL L.EXE$GL_USRCHMK, R1 10$: MOVL L.EXE$GL_USRCHME, R1 

BEQL 20$ 

JSB (R1) 

20$: NOP 

NOP 

ILLSER: MOVZWL #SS$_ILLSER,RO 

RET 

BEQL 20$ 

JSB (R1) 

20$: BRW ILL SER 

Example 9-2 Change Mode Dispatcher Error Routines 

EXACCVIO: 

MOVL SP,FP 

CMPW RO,#RCASCTR 

BGEQU EXEDSP 

BRW ACCVIO_RET 

EXINSARG: 

ACCVIO: 

CMPW 

BGEQU 

BRW 

MOVL 

CMPW 

BGEQU 

ACCVIO_RET: 

RO,#RCASCTR 

EXEDSP 

INSARG 

SP,FP 

RO,#KCASCTR 

KERDSP 

MOVZWL #SS$_ACCVIO,RO 

KINSARG: 

INSARG: 

RET 

CMPW 

BGEQU 

RO,#KCASCTR 

KERDSP 

;From EXE$CMODEXEC 

;Point FP to call frame 

; so that RET works 

;Only report ACCVIO for RMS 

; and built-in functions 

;Otherwise, get back in line 

;Only report INSARG for RMS 

; and built-in functions 

;Otherwise, get back in line 

;Report error to caller 

;set FP so that RET works 

;Is this a recognized code? 

;No. Get back in line 

;Is this a recognized code? 

;No - not necessarily INSARG 

MOVZWL #SS$_INSFARG,RO ;Insufficient number of arguments 

; error 

RET 

202 



9.3 Change Mode Dispatching in the VMS Executive 

The routine in Example 9-3 is the common exit path for all system service 
and RMS service calls. Its usual action is to execute an RE I instruction to 
return control to the service vector. Alternatively, this routine reports a 
SS$_SSFAIL exception. 

Example 9-3 Change Mode Dispatcher Common 
Exit Path 

SRVEXIT: 

SRVREI: 

SSFAIL: 

BLBC RO,SSFAIL 

REI 

BITL 

BEQL 

#7,RO 

SRVREI 

;Check for ~ere warning 

;If so, do not generate 

; exception 

BRW 

SSFAILMAIN: 

SSFAILMAIN ;Go to SSFAIL logic 

5$: 

10$: 

20$: 

MOVL 

TSTW 

G'CTL$GL_PCB, R1 

PCB$W_MTXCNT(R1} 

20$ 

;Check for owbership 

; of a mutex 

;If so, BUGCHECK BNEQ 

EXTZV 

ADDL 

#PSL$V_CURMOD,#PSL$S_CURMOD,~(SP),-(SP} 

#PCB$V_SSFEXC, (SP} ; Are system service 

BBC (SP)+,PCB$L_STS(R1),10$ 

MOVPSL -(SP} 

; failure exceptions enabled 

; for caller's access mode? 

;If not, dismiss the 

; exception 

;Get current PSL 

EXTZV #PSL$V_CURMOD,#PSL$S_CURMOD,(SP),(SP}+ 

BNEQ 5$ 

SETIPL ,#0 

JMP EXE$SSFAIL 

REI 

;If the current mode 

; is kernel 

;IPL must be lowered to o 
;Pass control to the 

; general exception 

; dispatcher 

;Return from service with 

; error status 
EXTV 

CMPL 

BGEQ 

#PSL$V_IPL,#PSL$S_IPL,-~(SP),-(SP} 

(S~)+,#IPL$_ASTDEL 

10$ 

BUG_CHECK MTXCNTNONZ,FATAL 

;Test if at elevated IPL 

;If yes, do not bugcheck 

203 



System Service Dispatching 

9.3.2 Change-Mode-to-Kernel Dispatcher 

There are two steps performed by the change-mode-to-kernel dispatcher, 
EXE$CMODKRNL, that are not performed by the change-mode-to-executive 
dispatcher. Before control is passed to those services that execute in kernel 
mode, the address of the PCB for the current process (found at global location 
SCH$GL_CURPCB) is placed into R4. The second difference is that 

CHMK #0 

is a special entry path into kernel mode for the $CLRAST service. If the CHMK 

code removed from the stack is a zero, control is passed to a routine called 
ASTEXIT. The action of this routine is described in Chapter 7. 

9.3.3 Change-Mode-to-Executive Dispatcher 

The change-mode-to-executive dispatcher, EXE$CMODEXEC, performs one 
step unique to executive mode. If the CHME code is not a recognized system 
service, the CASEW instruction passes control to the end of the case table. At 
that point, EXE$CMODEXEC transfers control to the RMS dispatcher to de­
termine whether this might be a valid RMS service request before dropping 
into the error processing described in Section 9.4. 

9.3.4 RMS Dispatching 

The RMS dispatcher, illustrated in Figure 9-3, consists of two instructions. 
The CASEW instruction dispatches to an RMS service-specific procedure for a 
legitimate RMS service code. The RMS service-specific procedure exits with 
a RET back to SRVEXIT. The RSB instruction in the RMS dispatcher following 
the CASEW instruction passes control back to EXE$CMODEXEC for normal 
error processing if the CHME code is out of range. 

9.3.5 Return Path for System Services 

204 

When the service-specific procedure has completed its operation, it places a 
status code in RO and executes a RET instruction. In the case of a mode of 
caller system service, dispatched via a JMP, the RET returns control to the 
caller of the service. In the case of an executive or kernel mode system ser­
vice, the RET returns control to the code at label SRVEXIT (shown in Example 
9-3), because this address was put into the saved PC area of the call frame 
built by the change mode dispatcher. 

The routine SRVEXIT first checks whether an error occurred. If no error 
occurred or if the error was merely a warning (R0<2:0>=0), the CHMx ex­
ception is dismissed with an REI instruction that passes control to the in­
struction following the CHMx in the system service vector area. 



PO 
Space 

User Program 

CALLI< 

9.3 Change Mode Dispatching in the VMS Executive 

P1 
Space 

RMS Synchronization 
Routine 

RMSCHK_STALL: 

RET 

System Space 

Change 
Mode Dispatcher 

EXE$CMODEXEC:: 
1) Build call frame 
2) Check argument 

list 
3) CASEW 
Offsets 

Offsets 
JSB 

RMS Dispatcher 

RMS$DISPATCH: 
CASEW 
Offsets ---+---. 

Offsets 
RSB 

RMS Service-Specific 
Procedure 

RMS$service:: 
Entry mask 

SRVEXIT: -----+--+- RET 

REI 

Figure 9-3 Control Flow of RMS Dispatching 

If an error or severe error occurred, a check is made to see whether the 
process owns any mutexes. If the process owns a mutex and is still running at 
IPL 2 or greater, the CHMx exception is dismissed with an REI instruction, 
passing control to the instruction following the CHMx in the system service 
vector. If the process owns a mutex but is running at IPL 0, the system service 
has not released all of its mutexes on exit but has lowered IPL (an erroneous 
error path), and a fatal bugcheck is generated. (Chapter 8 describes bugcheck 
processing and Chapter 2 describes mutexes.) 

If the process does not own a mutex and is running in kernel mode, IPL is 
explicitly lowered to 0. This step is unnecessary unless the process has en­
abled system service failure exceptions, because the REI instruction that dis­
misses the CHMK exception will lower IPL. However, if a system service 
failure exception is to be generated, the exception routines must be entered 
with IPL set to 0. (A similar check is not needed for executive mode services 
because elevated IPL requires kernel mode operation.) 

If the process has enabled system service exceptions for the calling access 

205 



System Service Dispatching 

mode, control is passed to the exception dispatcher at global label 
EXE$SSF AIL. The exception that is reported to the caller in the signal array is 
SS$_SSFAIL. Otherwise, control is passed back to the caller with RO contain­
ing the error status code. 

Unless a system service failure is to be signaled, SRVEXIT dismisses the 
CHMx exception, returning control to the system service vector at the in­
struction following the CHMx. In most cases, this instruction is a RET, which 
returns control to the instruction following the CALLx to the system service 
vector. 

However, for most RMS services and the synchronous system services, the 
system service vector contains code that conditionally stalls the process until 
its request is complete. The next two sections describe these synchronization 
methods. 

9.3.6 Return Path for RMS Services 

9.3.6.1 

206 

The return path for RMS services is slightly more complicated than the re­
turn path for system services. The last two bytes of most RMS vectors con­
tain a branch (BRB) to RMS_CHECK_STALL, an RMS synchronization 
routine (in module CMODSSDSP). RM5-CHECK_STALL checks whether 
the caller of the RMS service wishes to wait. This is the usual case, but RMS 
does allow asynchronous I/O operations. The return status code is set to 
RMS$_STALL by RMS in the usual case, in which the process must wait 
until the completion of the RMS operation. 

If the status code is not RMS$_STALL, then RMS_CHECK_STALL exe­
cutes a RET, returning control to the caller of the RMS service. If the status 
code is RMS$_STALL, RMS_CHECK_STALL branches to routine 
RMSWAIT _IO_DONE. 

Wait State Associated with RMS Requests. If a stall is indicated, RMSWAIT _ 
IO_DONE places the caller into an event flag wait state, waiting for the 
event flag associated with the I/O request that RMS has just issued. The 
crucial point in this implementation is that the caller is waiting at the access 
mode associated with the original call to RMS and not in executive access 
mode, thus allowing AST delivery for all access modes at least as privileged 
as the caller of RMS. (In the usual case where RMS is called from user mode, 
the access mode of the wait state allows both user and supervisor ASTs as 
well as executive and kernel ASTs to be delivered while waiting for the RMS 
operation to complete.) 

When the original 1/0 request completes, RMS gains control first in an 
executive mode AST that is associated with its $QIO request. If it determines 
that the original request is complete, it sets final status in the data structure 
(FAB or RAB) associated with the operation and returns from its AST. The 



9.3.6.2 

9.3 Change Mode Dispatching in the VMS Executive 

caller now drops through the event flag wait in the RMSWAIT _IO_OONE 
synchronization routine (because the I/O completion routine set the event 
flag). The synchronization routine determines that the RMS operation is 
complete (because the FAB or RAB status field contains nonzero) and exe­
cutes a RET, passing control back to the point where the initial call to RMS 
was issued. 

If the RMS executive mode AST determines that more I/O is required to 
complete the original request (such as occurs when reading a large record 
from a sequential file with small internal buffers or when operating on an 
indexed file), RMS issues the next $QIO and returns from its AST. Because 
the previous I/O completion set the associated event flag, the process is now 
computable. However, the RMS operation is not yet complete. For this rea­
son, RMSWAIT _IO_DONE (executing in the caller's access mode) checks 
the status field in the RAB or FAB for zero, indicating that RMS has more to 
do. In this case, the caller is again placed into the LEF state by the RMS 
synchronization routine. In other words, at a primitive level, the process is 
placed into a LEF state by RMS one or more times. However, the actual 
indication that the RMS operation has completed is nonzero contents in the 
status field of the FAB or RAB. 

RMS Error Detection. When the RMS synchronization routine finally decides 
that RMS has completed its work, it checks the final status. If this status 
indicates either success or warning, a RET is executed. If either an error or a 
severe error occurred, a special RMS call ($SSVEXC) is issued. This service 
simply reports the error status through the normal VMS service exit path 
(SRVEXIT) that determines whether the process has enabled system service 
failure exceptions. Because RMS errors are reported through the system ser­
vice dispatcher, they are treated in exactly the same manner as system ser­
vice errors. 

9.3.7 Return Path for Synchronous Services 

A synchronous system service vector invokes an asynchronous service proce­
dure and tests its return status for successful initiation of the request. If the 
asynchronous service procedure returns an error, that status is immediately 
returned to the caller of the synchronous service. If the return status indi­
cates success, the system service vector code branches to one of two synchro­
nization routines (within module CMODSSDSP) which differ only in minor 
detail and which converge within the SYS$SYNCH composite system service 
vector. 

SYS$SYNCH first tests whether a status block was specified by the caller. 
For $GETLKIW and $ENQW, the lock status block serves this purpose; in all 
other cases, the I/O status block is used. If no status block was specified, 

207 



System Service Dispatching 

9.4 

208 

SYS$SYNCH executes a 

CHMK #WAITFR 

on the specified event flag, placing the process into event flag wait until the 
flag is set. When the flag is set, the process is taken out of its wait state, and 
SYS$SYNCH returns to the caller of the synchronous service. If a status 
block was specified, SYS$SYNCH executes the following sequence: 

1. It tests the status word of the status block. A nonzero status word indi­
cates that the asynchronous service has completed, and SYS$SYNCH re­
turns to the caller of the synchronous service. 

2. A zero status word indicates the asynchronous service has not completed, 
and SYS$SYNCH executes a 

CHMK #WAITFR 

to wait for the specified event flag. 
3. When the event flag is set and the process placed into execution, 

SYS$SYNCH tests the low word of the status block. If it is nonzero, 
SYS$SYNCH returns to the caller of the synchronous service. 

4. If the status word is zero, then the flag has been set spuriously, perhaps by 
another concurrent use. SYS$SYNCH clears the event flag by executing a 

CHMK #CLREF 

and then proceeds with step 2. 

A crucial point in this implementation is that the caller is waiting at the 
access mode associated with the original synchronous system service call, 
thus allowing AST delivery for all access modes at least as privileged as the 
synchronous service call. (In the usual case where a synchronous system 
service is called from user mode, the access mode of the wait state allows 
both user and supervisor ASTs, as well as inner access mode ASTs, to be 
delivered while waiting for the service to complete.) 

DISPATCHING TO PRIVILEGED SHAREABLE IMAGE 
SYSTEM SERVICES 

The VMS operating system does not require that all system services be part of 
the system or RMS images. A privileged user may write system ser:vices as 
part of a privileged shareable image. Moreover, a number of VMS system 
services are supplied as privileged shareable images: 

• $MOUNT in SYS$SHARE:MOUNTSHR.EXE 
• $DISMOU in SYS$SHARE:DISMNTSHR.EXE 
• System services relating to system security in SYS$SHARE:SECURE­

SHR.EXE and RDBSHR.EXE 



9.4 Dispatching to Privileged Shareable Image System Services 

Implementing these less frequently used services as privileged shareable 
images means that they are resident only when explicitly invoked and that 
they do not contribute to a larger executive image. 

The requirements for writing privileged shareable images are described in 
the VAX/VMS System Services Reference Manual. This section describes 
how control is passed to system services that are part of privileged shareable 
images. 

EXE$CMODKRNL attempts to dispatch to a privileged shareable image 
whenever a CHMK instruction is executed with a code outside the range of its 
case table. EXE$CMODEXEC first checks whether RMS recognizes the 
change mode code before dispatching to a privileged shareable image. VMS 
system services in privileged shareable images have large positive codes (for 
example, 16527). The VAX architecture reserves CHMx instructions with nega­
tive codes for customer use. 

Occasionally, EXE$CMODKRNL and EXE$CMODEXEC spuriously detect 
an error in the change mode request prior to the CASEW dispatch. They are 
both optimized for the most common case, dispatching VMS system and 
RMS services. Each assumes the change mode instruction operand is a posi­
tive number less than 255 and uses its low-order byte as an index into the 
required argument list. 

If the argument list does not have the required number of arguments or it 
is inaccessible, each routine must test its assumption. It compares the entire 
change mode instruction operand with the maximum valid value for that 
access mode. Example 9-2 shows these comparisons. If the operand is within 
the range of valid values, then an appropriate error status is returned to the 
caller. 

If the operand is not within the range, then it may be a request for a system 

These two 
longwords are 

removed by the { 
dispatcher before 
calling the 
system service 
code. 

Return PC in Dispatch Vector 

Return PC in CMODSSDSP -sP 
O (Condition Handler Address) -FP 

o (PSW/Register Save Mask) 

Saved AP 

Saved FP 

SRVEXIT (Return PC) 

PC Following CHMx Instruction 

PSL Following CHMx Instruction 

Figure 9-4 State of the Stack within a User-Written 
Dispatcher 

Direction of 
stack growth 

209 



System Service Dispatching 

service in a privileged shareable image. The routine cases, using the entire 
argument, to reach the out-of-range processing code as shown in Example 
9-1. 

9.4.1 Per-Process System Service Dispatcher 

When a CHMK or CHME instruction is executed with a code that is out of range, 
the change mode dispatcher attempts to pass control to a privileged share­
able image change mode dispatcher. First, a location in Pl space 
(CTL$GL_USRCHMK or CTL$GL_USRCHME) is checked to see whether a 
per-process dispatcher exists. Nonzero contents of this location are inter­
preted as the address of a dispatcher within a privileged shareable image and 
control is passed to it with the stack as shown in Figure 9-4. The change 
mode dispatcher assumes that if the per-process dispatcher accepts the 
change mode code, the service-specific procedure will eventually return to 
SRVEXIT by executing a RET instruction. If the per-process dispatcher rejects 
the code, it returns control to the code listed in Section 9.3.1 with an RSB 

instruction. 

9.4.2 Privileged Shareable Images 

210 

The usual contents of CTL$GL_USRCHMK and CTL$GL_USRCHME are 
addresses within the two pages in Pl space set aside by the VMS operating 
system for user-written system services and image-specific message process­
ing. Kernel mode and executive mode each have one half page (256 bytes) 
devoted to system service dispatching. The initial content of the first byte of 
each dispatch area (set up by PROCSTRT) is an RSB instruction. With the 
dispatch scheme described in the previous section, there is effectively no 
per-process change mode dispatching. 

However, if an image executes that was previously linked with a privileged 
shareable image (linked with the /PROTECT and /SHAREABLE options and 
installed with the /PROTECTED and /SHARED options), the image activator 
replaces the RSB instruction with a JSB to the user-written change mode dis­
patcher specified as a part of the privileged shareable image (see Figure 9-5). 
The VMS operating system allows multiple privileged shareable images to be 
linked into the same executable image. (There is a limit of 42 user-written 
dispatchers of each type. How these dispatchers are collected into privileged 
shareable images determines the number of privileged shareable images that 
can be included in a single executable image.) An RSB instruction follows the 
last JSB instruction in the dispatch area. The example pictured in Figure 9-5 
shows three privileged shareable images. 

When the image activator (see Chapter 21) encounters a reference to a priv­
ileged shareable image in the executable image it is activating, it maps the 



9.4 Dispatching to Privileged Shareable Image System Services 

PO 
Space 

User Program 

.ENTRY 

RO-status 

P1 
Space 

JSBC 

RSB 

This vector is built by 
the image activator 
(CTL$A_OISPVEC). 

RET 61--1------4--------' 

Figure 9-5 Dispatching to System Services in a 
Privileged Shareable Image 

System Space 

Change Mode 
Dispatcher 

EXE$CMODxxxx:: 
1) Build call frame 
2) Check argument 

list 
3)CASEW © 
Offsets 

Offsets 
JSB 
Process illegal 
change mode codes 

Common Exit Path 

SRVEXIT: 

·© 
L--1----+-- REI 

section(s) containing the user-written system services, using information 
stored in a protected image section (a privileged library vector, pictured in 

· Figure 9-6) to modify the Pl space dispatch area. For example, if a privileged 
shareable imag~ contained a change-mode-to-kernel disp~tcher, the image 
activator would insert a JSB instruction in Pl space that transferred control 
to the dispatcher specified by the PLV$L_KERNEL longword in the privi­
leged library vector. 

Once the image containing user-written system .services is activated, exe­
cution proceed~ normally until one of the services is invoked. Dispatching 
proceeds as follows (see Figure 9-5): 

(DA CALLx instruction transfers control to a service-specific entry.mask in PO 

211 



System Service Dispatching 

212 

l {.ENTRY 
CHMx ;, 
RET 

Vector Type 

System Version 

~ Kernel Dispatcher. 

t---..-- Executive Dispatcher 

Address Check 

CASE RO, ... 

RSB 

CASE RO, ... 

RSB 

.ENTRY mask 

~ 
MOVL #status, RO 
RET 

1 

~ 

Entry Vectors 
( 1 per service) 

Privileged 
Library Vector 
(1 per image) 

Executive Dispatcher 

Kernel Dispatcher 

Functional Routines 
(1 per service) 

Figure 9·6 Structure of Privileged Shareable Image 

space. The CHMK or CHME instruction located there transfers control to the 
VMS change mode dispatcher. 

0 Execution proceeds as if a VMS service were invoked except that the 
change mode code is not recognized by the VMS dispatcher and control 
passes to the end of the case table (see the examples in Section 9.3.1). 

@The JSB instruction in CMODSSDSP passes control to the Pl space dis· 
patch area where another J.SB instruction passes control to the first 
dispatcher. 

@The first dispatcher rejects the change mode code simply by executing an 
RSB back to the Pl space vector where a second JSB is executed. 

®The second dispatcher recognizes the change mode code as valid and dis· 
patches (probably with a CASEx instruction) to a service-specific procedure 
that is also a part of the second privileged shareable image. 

@When the service completes (successfully or unsuccessfully), it loads a 



9.5 Related System Services 

final status into RO and exits with a RET which passes control to SRVEXIT. 
At this point, privileged shareable image system service dispatching 
merges with VMS system service dispatching. 

If each dispatcher executed an RSB to reject the change mode code, control 
eventually would reach the RSB instruction in the Pl space vector. This RSB 

instruction passes control back to the VMS change mode dispatcher, which 
checks next for a systemwide dispatcher. 

9.4.3 Systemwide User-Written Dispatcher 

9.5 

If no per-process dispatcher exists or if the last per-process user-written dis" 
patcher returns to the routine in CMODSSDSP with an RSB, a location in 
system space (EXE$GL_USRCHMK or EXE$GL_USRCHME) is checked for 
the existence of a systemwide user-written dispatcher. If none exists (con­
tents are zero, its usual contents in a VMS system), or if this dispatcher 
passes control back with an RSB, an illegal system service call (SS$_ILLSER) 
is reported back to the user in RO. This scheme assumes that privileged share­
able image system services that complete successfully will exit with a RET 

back to SRVEXIT, where an REI instruction will dismiss the CHMK or 
CHME exception. Note that there is no standard documented way to add a 
systemwide user-written dispatcher to a system. 

RELATED SYSTEM SERVICES 

There are five system services in the VMS operating system that are closely 
related to system service dispatching and the change mode instructions. The 
Declare Change Mode or Compatibility Handler ($DCLCMH) system service 
is described in Chapter 4. This section describes the Set System Service Fail­
ure Exception Mode ($SETSFM) system service, the Set System Service Filter 
($SETSSF) system service, and the change mode system services. 

9.5.1 Set System Service Failure Exceptions System Service 

. 9.5.2 

The $SETSFM system service either enables or disables the generation of 
exceptions when an error is detected by the system service common exit 
path. The service itself simply sets (to enable) or clears (to disable) the bit in 
the process status longword (PCB$L_STS in the software PCB) for the access 
mode from which the system service was called. Section 9.3.5 describes the 
use of these bits in more detail. 

Change Mode System Services 

The Change Mode to Kernel ($CMKRNL) and Change Mode to Executive 
($CMEXEC) system services provide a simple path for privileged processes to 

213 



System Service Dispatching 

execute code in kernel or executive mode. These services check for the appro­
priate privilege (CMKRNL or CMEXEC) and then dispatch (with a CALLG in­
struction) to the procedure whose address is supplied as an argument to the 
service. (Note that if $CMKRNL is called from executive mode, no privilege 
check is made.) 

The procedure that executes in kernel or executive mode must load a re­
turn status code into RO. If not, the previous contents of RO will be used to 
determine whether an error occurred. 

9.5.3 System Service Filtering 

214 

Some applications (especially user-written CLis) require that user mode pro­
grams have no direct access to system and RMS services. The Set System 
Service Filter ($SETSSF) system service was provided for this purpose. 

When the module CMODSSDSP is assembled in order to create the system 
service vectors, two tables of bytes are created, one for kernel mode system 
services (at the symbol SYS$GB_KMASK), and one for executive mode sys­
tem services (at the symbol B_EMASK). Each entry in these tables contains a 
mask that indicates whether or not the system service can be disabled by 
$SETSSF. If the service can be disabled by $SETSSF, the mask also indicates 
the system service filter groups for which the service is disabled. Group 0 
specifies all services, except $EXIT; group I specifies most services, with the 
exception of $EXIT and those services required for condition handling or 
image rundown. The VAX/VMS System Services Reference Manual lists the 
services that are not disabled by $SETSSF. 

The byte at offset CTL$GB_SSFILTER in the per-process control region 
contains the system service filter mask for a particular process. Usually this 
mask contains the value zero. When $SETSSF is called, the mask value speci­
fied in the call to $SETSSF is written into this mask. 

When the system is bootstrapped, module INIT checks the bit 
EXE$V _SSINHIBIT at global location EXE$GL_DEFFLAGS. This bit corre­
sponds to the SYSBOOT parameter SSINHIBIT. If the bit is set, the SCB vec­
tors for CHME and CHMK are revectored to the entry points EXE$CMODEXECX 
and EXE$CMODKRNLX, respectively. 

These alternate change mode service routines first test whether the CHMx 

was executed in user mode. These routines branch to the standard change 
mode dispatchers for CHMx instructions executed in inner modes. If the CHMx 

instruction was executed in user mode, then these alternate routines AND 
the value in CTL$GB_SSFILTER with the value in the system service filter 
tables (found at locations B_EMASK or SYS$GB_KMASK). The CHMx code is 
used as an index into these tables. If the result of the AND is zero, the rou­
tines branch to the standard change mode dispatchers. If the result of the 



9.5 Related System Services 

AND is nonzero, these routines return the error status SS$_INHCHME or 
SS$_INC0HMK1 depending on whether the system service was an executive 
or kernel mode service. 

If CTL$GB_SSFILTER is not zero, access to services in privileged shareable 
images is also denied. Attempts to invoke those services result in the error 
SS$_INHCHME or SS$_INCHMK, depending on the mode of the service. 

215 





PART III/Scheduling and Time Support 





10 Scheduling 

It is equally bad when one speeds on the guest unwilling to 
go, and when he holds back one who is hastening. Rather one 
should befriend the guest who is there, but speed him when 
he wishes. 

Homer, The Odyssey 

The scheduler identifies and selects for execution the highest priority com­
putable memory resident process. A process currently executing enters a wait 
state by making a direct or indirect request for a system operation which 
cannot complete immediately. A waiting process becomes computable as the 
result of system events, such as the setting of an event flag and queuing of an 
AST. 

This chapter describes the interactions of priorities, process scheduling 
states, and system events. It also discusses the operation of the scheduler and 
the hardware mechanisms that assist process context switching. 

10.1 PROCESS CONTROL BLOCK 

The data structure fundamental to scheduling is the software process control 
block (PCB). It specifies the scheduling state and priority of a process. When 
the term "PCB" is used without a modifier, it refers to the software PCB. The 
data structure that contains copies of the general registers is always called 
the "hardware PCB." Figure 10-1 illustrates the fields of the PCB that are 
particularly important to scheduling. 

The field PCB$W _STATE contains a numeric value equivalent to a partic­
ular process scheduling state. The state of a process defines its readiness to 
be scheduled for execution, its computability or lack thereof. In addition, 
the state may indicate whether the process is memory resident or out­
swapped. Table 10-1 lists the process state names and the corresponding 
PCB$W _STATE values. The various process scheduling states and the transi­
tions among them are discussed throughout this chapter. 

The PCBs of processes in most scheduling states are queued together with 
those of other processes in the same state so that they can be located more 
easily by scheduling routines. The state queue link fields, PCB$LSQFL and 
PCB$L_SQBL, link a PCB into a state queue. The various state queues are 
described in Section 10.3. 

The data structure which contains the hardware context of the process is 
the hardware PCB. Its physical address is stored in the software PCB field 

219 



Scheduling 

SQFL 

SQBL 

PAI I 
l 

PHYPCB 

STS 

AUTHPRII PRIBSAV 1 PRISAV 

PRIB I STATE 

~ ~ 

Figure 10·1 Process Control Block Fields Used in 
Scheduling 

PCB$L_PHYPCB. Section 10.5.l describes the hardware PCB. 
Several PCB fields define the priority of the process. Section 10.2 describes 

the use and contents of these fields. 
PCB$L_STS, the process status longword, contains various flags describing 

the status of the process. The bit PCB$V _RES is of particular significance to 
scheduling. When set, it indicates that the process is in memory rather than 
outswapped. Table 12·2 describes all the flags in the process status longword. 

10.2 PROCESS PRIORITY 

220 

Process scheduling priority (as distinct from interrupt priority level, a hard· 
ware mechanism) is used in determining the relative precedence of processes 
for execution and memory residence. Priority is a value in the range from 0 to 
31. The null process executes at priority level 0, and the highest priority 
real-time process executes at priority level 31. The range of 32 priority levels 
is divided evenly between the normal process levels of 0 to 15 and the real­
time process levels of 16 to 31. The execution behavior of a process is signifi­
cantly affected by the type of process (normal or real-time) and its assigned 
priority level. 

Several fields of the PCB describe the priority of the process. The values in 
these fields are stored internally in an inverted order. For example, the prior­
ity value of 0 for the null process is stored internally in the PCB fields as 31. 



10.2 Process Priority 

Table 10-1 Process Scheduling States 

State Name Mnemonic Value 

Collided page wait CO LPG 
Miscellaneous wait MWAIT 2 

Mutexwait 
Resource wait 

Common event flag wait CEF 3 

Page fault wait PFW 4 

Local event flag wait (resident I LEF 5 

Local event flag wait (outswappedl LEFO 6 

Hibernate wait (resident) HIB 7 
Hibernate wait (outswappedl HIBO 8 

Suspend wait (resident) SUSP 9 

Suspend wait (outswappedl SUSPO 10 
Free page wait FPG 11 

Computable (resident) COM 12 

Computable (outswapped) COMO 13 

Currently executing process CUR 14 

The highest priority process possible has internally stored software priority 
values of 0. The internal priority value is 31 minus the external priority 
value. 

As a result of this inversion, priority promotions or boosts are imple­
mented through subtract or decrement instructions. Inverting the values fa­
cilitates selection of the next .process to execute and the next process to be 
inswapped; these functions use the find first set (FFs) instruction, which be­
gins its search for a set bit at bit position 0. 

System utilities, such as SDA, MONITOR, and the DCL command SHOW 
SYSTEM, interpret these inverted values and display external values. An ex­
ternal value is also returned by the $GETJPI system service when a process 
priority is requested. Conversion in various user interfaces occurs because 
systems and users generally associate higher priority numbers with higher 
priority processes. 

Note that all discussions in this book treat process priority as an increasing 
entity from 0 (for the null process) to 31 (for the highest priority real-time 
process). Please take this convention into account when relating descriptions 
in this book to the actual routines in the listings, where inverted priorities 
are used. 

The field PCB$B_PRI (see Figure 10-1) defines the current priority of the 
process, which is used to make scheduling decisions. PCB$B_PRIB defines 
the base priority of the process, from which the current priority is calculated. 

221 



Scheduling 

10.2.1 

10.2.2 

222 

For normal or time-sharing processes, these priority values are sometimes 
different, while real-time processes always have identical current and base 
priority values. 

When a process is created, its current and base priority are initialized from 
an argument to the Create Process system service. For an interactive process, 
this value is taken from the system authorization file. A process with the 
alter priority privilege can raise and lower its priority through the Set Priority 
($SETPRI) system service or the DCL command SET PROCESS/PRIORITY. 
Chapter I2 describes the operation of the $SETPRI system service. 

The field PCB$B_AUTHPRI contains the base priority authorized at the 
time the process was created. A process without the alter priority privilege 
may raise and lower its priority between 0 and the contents of 
PCB$B_AUTHPRI. 

The fields PCB$B_PRIBSAV and PCB$B_PRISAV record the base and cur­
rent priority values at the time a process first locks a mutex, before it receives 
a temporary elevation into the real-time range. When the process unlocks the 
mutex, its priority values are restored from these fields. Chapter 2 contains 
further details. 

Real-Time Priority Range 

Processes with priority levels I6 through 3I are considered real-time pro­
cesses. There are two scheduling characteristics that distinguish real-time 
processes: 

• The priority of a real-time process does not change over time, unless there 
is a direct program or operator request to change it. The fact that the prior­
ity does not change implies that the base priority and the current priority of 
a real-time process are identical, and no dynamic priority adjustment (see 
Section 10.2.3) is applied by the operating system. 

• A real-time process executes until it is either preempted by a higher or 
equal priority process or it enters one of the wait states (see Section 10.3.3). 
Thus, a real-time process is not susceptible to quantum end events (see 
Section 10.4.2) and is not removed from execution (rescheduled) because 
some interval of execution time has expired. 

Taken in isolation, the real-time range of VMS priorities provides a sched­
uling environment like traditional real-time systems: preemptive, priority 
driven scheduling without a time slice or quantum. 

Normal Priority Range 

Normal processes include interactive terminal sessions, batch jobs, and all 
system processes except the swapper and Files- I I XQP cache server process. 



10.2.3 

10.2 Process Priority 

The scheduling behavior of a normal process differs from that of a real-time 
process in several ways. 

The current priority of a normal process varies over time, while its base 
priority remains constant unless there is a direct program or operator request 
to change it. This behavior is the result of dynamic priority adjustment ap­
plied by the VMS system to favor 1/0-bound and interactive processes at the 
expense of compute-bound (and frequently also batch) processes. The mecha­
nism of priority adjustment is discussed in the following section. 

Normal processes run in a time-sharing environment that allocates CPU 
time slices (or quanta) to processes in turn. An executing normal process 
controls the CPU until one of the following events occurs: 

• It is preempted by a higher or equal priority computable process (see Figure 
10-6, event 5, for an example). 

• It enters a resource or event wait state (see Figure 10-6, event 7, for an 
example). 

• It has used the current quantum or time slice (see Figure 10-6, event 17, for 
an example). 

Processes with identical current priorities are scheduled on a round-robin 
basis. That is, each process at a given priority level executes in turn before 
any other process at that level executes again. 

Normal processes experience round-robin scheduling because the default 
behavior (from Create Process system service arguments or from the user 
authorization file) is to .assign the same base priority to all user processes. 
The default base priority is the value of SYSBOOT parameter DEFPRI. Its 
usual value is 4. Thus priority levels 4 through 10 tend to be occupied by 
several processes simultaneously. 

Priority Adjustment 

Normal processes do not generally execute at a single priority level. Rather, 
the priority of a normal process changes over time in a range of 0 to 6 priority 
levels above the base process priority. Two mechanisms provide this priority 
adjustment. 

As a condition. for which the process has been waiting is satisfied or a 
needed resource becomes available, a boost or priority increment may be 
applied to the base priority to improve the scheduling response for the pro­
cess (see Section 10.4.3.2). Each time the process executes without further 
system events (see Section 10.4.3) or quantum expiration (see Section 10.4.2), 
the current priority is moved toward the base priority (or demoted) by one 
priority level (see Section 10.5.4). Over time, compute-bound process priori­
ties tend to remain at their base priority levels, while 1/0-bound and interac­
tive processes tend to have average current priorities somewhat higher than 
their base priorities. 

223 



Scheduling 

An example of priority adjustment that occurs over time for several pro­
cesses is illustrated in Figure 10-6. 

Priority adjustment can also occur as a result of locking a mutex (see Chap­
ter 2) or through action by the routine EXE$TIMEOUT (see Chapter 11). 

10.3 PROCESS SCHEDULING STATES 

10.3.1 

224 

All processes in the system are in either the current state, a wait state, com­
putable resident state, or computable outswapped state. The scheduling 
state of a process is specified by its PCB$W _STATE field. The symbolic 
name for a scheduling state has the form SCH$C_mnemonic, for example, 
SCH$C_COM. These symbolic names are defined by the macro $STATEDEF 
in SYS$LIBRARY:LIB.MLB. Table 10-1 lists the process scheduling state 
names and the corresponding PCB$W _STATE values. 

Certain wait conditions are represented by two different scheduling states: 
one resident and one outswapped. A process waiting for a local event flag is in 
the LEF or the LEFO state, depending on its residence. Other scheduling 
states, common event flag wait (CEF), for example, include both resident and 
outswapped processes. The PCB$V _RES bit in the PCB status longword for a 
particular process in such a state specifies whether the process is resident or 
outswapped. 

The listheads for all wait queues, computable resident (COM) queues, and 
computable outswapped (COMO) queues, are defined in the module SDAT. 
SCH$GL_CURPCB, the pointer to the PCB of the current (CUR) process, is 
also defined in SDAT. 

The rest of this section describes the various scheduling states and the 
transitions among them. 

Current State 

A process in the CUR state is currently being executed. A computable pro­
cess enters the CUR state after having been selected as the highest priority 
resident process by SCH$SCHED (see Section 10.5.4). Its PCB address is re­
corded in the global location SCH$GL_CURPCB. 

A CUR process makes a transition to the COM state when it is preempted 
by a higher or equal priority process. A CUR process of normal priority also 
makes this transition when it reaches quantum end. A CUR process can also 
make a transition to any of the resident wait states by making a direct or · 
indirect request for a system operation which cannot complete immediately. 

Direct requests, such as $HIBER and $SUSPND, place the process in the 
voluntary wait states HIB and SUSP. Direct requests, such as $QIOW, 
$SYNCH, and $WAITFR, place the process in the voluntary wait states LEF 
or CEF. Subsequent outswapping (from the process viewpoint, an unre-



10.3.2 

10.3 Process Scheduling States 

quested system operation) can move a process to the LEFO, HIBO, or SUSPO 
states. 

Indirect wait requests occur as a result of paging or contention for system 
resources. A process does not request PFW, FPG, COLPG, or MWAIT transi­
tions. Rather, the transitions to these wait states occur because direct service 
requests to the system cannot be completed or satisfied at the moment. 

Deletion of processes can only occur from the CUR state. The process's 
address space and process header are accessible only while it is current. Fur­
thermore, process deletion in the context of the process being deleted enables 
the use of system services, such as Deassign I/O Channel and Delete Virtual 
Address Space. 

Computable States 

Processes in the COM or executable state are not waiting for events or re­
sources, other than acquiring control of the CPU for execution. Processes 
must be in the computable resident state to be considered for scheduling. 
There are 32 queues for computable resident processes, one for each software 
priority. The quadword listheads of these queues are defined as an array 
whose starting address is global location SCH$AQ_COMH (see Figure 10-2). 
A process is inserted into the queue corresponding to the internal value of its 
current software priority. 

There is a similar array of 32 quadword listheads for the COMO state, at 
global location SCH$AQ_COMOH. Processes in the COMO state are wait­
ing for the swapper process to bring them into memory. As COM processes, 
they can then be scheduled for execution. Processes are created in the COMO 
state. 

The condition (empty or not) of each computable queue is summarized by a 
bit. If the queue contains one or more PCBs, the bit is set; if the queue is 
empty, the bit is clear. The 32 bits describing the COM queues are in the 
longword at global location SCH$GL_COMQS; the COMO queues are sum­
marized in the longword SCH$GL_COMOQS. Bit 0 in each longword corre­
sponds to the external priority 31 queue, bit I to priority 30, and so forth. 
These summary longwords facilitate selection of the next process to execute 
and selection of the next process to be inswapped. 

A process in a wait state makes the transition to COM or COMO through a 
system event (see Section 10.4.3 ). The availability of a requested resource or 
the satisfaction of a wait condition (such as an event flag setting or a $WAKE 
system service call) makes the process computable. In all process wait states 
except SUSP and SUSPO, the queuing of an asynchronous system trap (AST) 
makes a process computable even if the wait condition is not satisfied. Pro­
cess deletion, implemented with a kernel mode AST, makes any process that 
is being deleted computable (even if the process is in the SUSP or SUSPO 
state) because the target process is resumed before the AST is queued. 

225 



Scheduling 

10.3.3 

226 

For State COM 

Bits 31 0 

11111111111111111111111111111 I I I I ~~~:;~~~~.~~~Map 
Priorities 0 31 (A clear bit implies an empty queue.) 

Queue 0 -
Priority 31 .. • --

30 

For State COMO 

Bits 31 0 

Queue Headers 

::SCH$AQ_COMH 

::SCH$AQ_COMT 

11111111111111111111111111111 I I I I ;~~~~:~~J;~~~s~A~:pty queue.) 
Priorities 0 31 

Queue 0 

Priority 31 

30 

PRIORITY31 

PRIORITY 30 

PRIORITY 29 

Queue Headers 

::SCH$AQ_COMOH 

::SCH$AQ_COMOT 

Figure 10·2 Computable (Executable) State Queues 

Wait States 

A process which is not current or computable is waiting for the availability of 
a system resource . or the occurrence of an event. The process is in one of 
several distinct wait states. The wait state reflects the particular condition 
that must be satisfied for the process to become computable again. 

Figure 10-3 illustrates a scheduler wait queue header, a listhead for pro­
cesses in a wait state. The first two longwords in it are the links to the PCBs 
in this queue. The field WQH$W _STATE contains the numerical value cor­
responding to the process scheduling state. All PCBs in a state queue have 
PCB$W _STATE values identical to the state value of the wait queue header. 
The field WQH$W _COUNT contains the number of PCBs currently in this 
state and queue. 



10.3.3.1 

10.3 Process Scheduling States 

The wait queue headers for all wait states except CEF are defined within an 
array ordered by increasing state number, with the collided page wait state 
first. Each wait queue header (except for CEF) has its own global pointer. A 
scheduling routine can access a particular wait queue by specifying its global 
name or using its state number as an index into the wait queue header array. 
The global location SCH$AQ_ WQHDR is the address of the beginning of the 
array. 

Figure 10-4 illustrates the array of wait queue headers. Note that the global 
location SCH$AQ_ WQHDR is defined to be 12 bytes (the length of a wait 
queue header) before the collided page wait queue header. This definition 
enables the array to be treated as though it were zero-based, simplifying the 
address arithmetic. Note also that there is no actual header with an index 
value of 3, although space is reserved. The wait queue for state 3, or CEF, is 
allocated elsewhere. 

A process waiting for one or more common event flags is queued to a wait 
queue in the common event block (CEB) defining the common event flag 
cluster with which the process is associated. A CEB includes three longwords 
that correspond to a wait state queue header. The entire format of the CEB is 
shown in Chapter 12. The number of different CEF wait queues depends 
upon the number of common event flag clusters that exist on a particular 
system at any given time. Having a wait queue in each CEB makes it easier to 
determine which CEF processes are computable when a common event flag 
is set. The wait queue in the CEB contains both resident and outswapped 
processes and thus there is no CEFO state. 

Voluntary Wait States. There are several scheduling states associated with 
event flag waits: LEF, LEFO, and CEF. A process enters the LEF or CEF state 
as a result of issuing $WAITFR, $WFLOR, $WFLAND, and $SYNCH system 
services directly or indirectly (for example, with a $QIOW or $ENQW system 
service call, issued either by the user or on his behalf by some system compo­
nent such as RMS). A process enters the LEF state when it waits for local 

Wait Queue 
Forward Link 

... Wait Queue 
~ 

Backward Link 

State Count 

Figure 10-3 Layout of Wait Queue Header 

227 



Scheduling 

10.3.3.2 

228 

:: SCH$AQ_WQHDR 

Null entry 

WQFL :: SCH$GQ_COLPGWQ 

for SCH$C_COLPG WQBL 

WO STATE I WOCNT 

WQFL :: SCH$GQ_MWAIT 

for SCH$C_MWAIT WQBL 

WQSTATE l WQCNT 

Null entry 

WQFL :: SCH$GQ_PFWQ 

for SCH$C_PFW WQBL 

WO STATE I WQCNT 

~ ~ 

WOFL :: SCH$GQ_FPGWQ 

for SCH$C_FPG WQBL 

WQSTATE 1 WOCNT 

Figure 10-4 Array of Wait Queue Headers 

event flags or the CEF state when it waits for flags in a common event flag 
cluster. 

An LEF process enters the LEFO state when it is outswapped. The transi­
tion from the LEF, LEFO, or CEF states to the computable (COM or COMO) 
states can occur as a result of matching the event flag wait mask, queuing an 
AST, or process deletion (a special case of AST queuing). There are separate 
resident and outswapped states and queues for hibernating and suspended 
processes. The $HIBER and $SUSPND system services cause processes to 
enter the resident wait states. Outswapping a SUSP or HIB process causes it 
to enter the SUSPO or HIBO state. A process makes the transition from the 
HIB or HIBO state to COM or COMO as a result of execution of a $WAKE 
system service, AST queuing, or process deletion. A suspended process is 
sensitive only to the $RESUME system service and process deletion (because 
ASTs cannot be delivered to suspended processes). 

Memory Management Wait States. Three process wait states are associated 
with memory management. Each state is represented by a single queue and 
listhead of the form shown in Figure 10-3. The PCB$V _RES bit in the PCB 
status longword for a particular process in one of those states specifies 
whether that process is resident or outswapped. (Memory management wait 
states are discussed from another point of view in Chapter 15.) 



10.3.3.3 

10.3 Process Scheduling States 

A process enters the page fault wait state (PFW) when it refers to a page that 
is not in physical memory. While the page read is in progress, the process is 
placed into the PFW state. Completion of the page read, AST queuing, or 
process deletion can cause the process to become COM or COMO, depending 
upon its PCB$V _RES bit value when the satisfying condition occurs. 

A process enters the free page wait state (FPG) when it requests a page to be 
added to its working set but there are no free pages to be allocated from the 
free page list. This state is essentially a resource wait until the supply of free 
pages is replenished through modified page writing, working set trimming, 
process outswapping, or virtual address space deletion. 

A process enters the collided page wait state (COLPG) when several pro­
cesses cause page faults on the same shared page at the same time. The initial 
faulting process enters the PFW state, while the second and succeeding pro­
cesses enter the COLPG state. The COLPG state can also be entered when 
a process refers to a private page that is already in transition from the disk. 
All COLPG processes are made COM or COMO when the read operation 
completes. (A more detailed discussion of collided pages is contained in 
Chapter 15.) 

Miscellaneous Wait State. The miscellaneous wait state (MWAIT) is used to 
indicate a process waiting for a resource not managed by any of the other 
process wait states. There is a single MWAIT queue for memory resident and 
outswapped processes. A small integer identifying the resource is stored in 
the PCB$L_EFWM field. The resource values are defined symbolically by the 
$RSNDEF macro in SYS$LIBRARY:LIB.MLB. 

Table 10-2 lists the resources associated with the MWAIT state. System 
utilities such as SDA, MONITOR, and the DCL command SHOW SYSTEM 
display the state of a process in a resource wait using one of the mnemonic 
names in this table. 

The MWAIT state is used to wait for the availability of a depleted or locked 
resource. A process may enter a resource wait if the resource it requests is not 
available. Common examples are the depletion of nonpaged dynamic mem­
ory or no room in a mailbox. The process becomes computable when the 
resource becomes available again. 

Whether queuing an AST to a process makes it executable depends on the 
interrupt priority level (IPL) at which the process was placed into resource 
wait. If the IPL in the saved PSL in the hardware PCB is 2 or larger, the AST 
delivery interrupt is blocked. Thus, the process reexecutes the resource wait 
code and is placed back into the MWAIT state immediately. If the saved IPL 
is less than 2, an AST delivery interrupt occurs, causing the execution of the 
queued AST. When the AST completes, the process reexecutes the resource 
wait code. Section 10.4. l describes the mechanism that causes reexecution of 
the resource wait code. 

229 



Scheduling 

230 

Table 10-2 Types of MWAIT State 

Resource Wait Name Mnemonic Symbolic Name Numeric 

AST wait (wait for system RWAST RSN$_ASTWAIT 
or special kernel AST) 

Mailbox full RWMBX RSN$_MAILBOX 2 

Nonpaged dynamic memory RWNPG RSN$_NPDYNMEM 3 
Page file full 1 RWPFF RSNLPGFILE 4 

Paged dynamic memory RWPAG RSN$_PGDYNMEM 5 

Breakthrough 1 RWBRK RSN$_BRKTHRU 6 

Image activation lock1 RWIMG RSN$_IACLOCK 7 

Job pooled quota 1 RWQUO RSN$_JQUOTA 8 

Lock identifier1 RWLCK RSN$_LOCKID 9 

Swap file space RWSWP RSN$_SWPFILE 10 

Modified page list empty RWMPE RSN$_MPLEMPTY 11 

Modified page writer busy RWMPB RSN$_MPWBUSY 12 

Distributed lock manager wait RWSCS RSN$_SCS 13 

Cluster transition RWCLU RSN$_CLUSTRAN 14 

1This resource wait is not currently used. 

Most of the resource names are self-descriptive. RWAST, however, is a gen­
eral purpose resource used primarily when the wait is expected to be satisfied 
by the queuing or delivery of an AST to the process. There is no concrete 
resource named RSN$_ASTWAIT. The $QIO system service can place a 
process into this resource wait when the process is not allowed to issue an­
other buffered or direct 1/0 request until one completes. Another use of 
RSN$_ASTWAIT is to wait for all the 1/0 requests on a channel to complete 
after the process has issued a Deassign 1/0 Channel ($DASSGN) system ser­
vice. In Version 4, a process about to be suspended or deleted waits for the 
RSN$_ASTWAIT resource until all its Files-11 XQP activity completes (see 
Chapter 7). 

The Set Resource Wait Mode ($SETRWM) system service can force the 
immediate return of an error status code, rather than placing the process in 
the MWAIT state. $SETRWM does this by setting the PCB$V _SSRWAIT bit 
of the PCB$L_STS field. Disabling resource wait affects many directly re­
quested operations (such as 1/0 requests or timer requests) but has no effect 
on allocation requests by the system on behalf of the user. An example of this 
situation is the pager requiring an 1/0 request packet to perform a page read 
operation. If nonpaged dynamic memory is depleted, the process enters the 
MWAIT state, even if $SETRWM has been used to disable resource waits. 
The reason for this distinction is that a process can respond to a depleted 



10.4 Events That Lead to Rescheduling 

resource error from a system service call or an RMS request but has no means 
of reacting to a similar error in the event of an unexpected event such as a 
page fault. 

System routines that access data structures protected by mutexes place a 
process in the MWAIT state if the requested mutex ownership cannot be 
granted (see Chapter 2). Thus, the mutex wait state indicates a locked re­
source and not necessarily a depleted one. When the owner of the requested 
mutex releases it, the requesting process becomes COM or COMO if it has 
been outswapped. Eventually, the process is selected as the current process. 
Once it is placed into execution, it requests ownership of the mutex again. 
AST queuing cannot make a mutex-waiting process computable for long be­
cause the IPL in the stored PSL is IPLLASTDEL (IPL 2), blocking the AST 
delivery interrupt. 

The mutex wait state is distinguished from the resource wait state by the 
contents of the PCB$L_EFWM field. Interpreted as a signed integer, the con­
tents of this field are positive and small when the process is waiting for a 
resource. When the process is waiting for a mutex, the field contains the 
system virtual address of the requested mutex. Interpreted as a signed inte­
ger, a system virtual address is a negative number. Table 2-2 lists the names 
of mutexes whose addresses may be stored in PCB$L_EFWM. System utili­
ties such as SDA, MONITOR, and the DCL command SHOW SYSTEM dis­
play the state of a process which is waiting for a mutex as MUTEX. 

For example, if a process wishes to allocate a block of paged dynamic mem­
ory, it must first acquire the paged pool mutex before searching the linked 
list of available blocks of paged pool (see Chapter 3). If another process is 
already examining that list, the second process is put into a mutex wait state 
with the address of the paged pool mutex stored in PCB$L_EFWM. Once the 
mutex is released by the first process, it can be acquired by the second pro­
cess, which can then search paged pool for a block of the requested size. If 
there is no block large enough to satisfy the allocation request, the process is 
placed into a resource wait state (with 5, the value of RSN$_PGDYNMEM, 
stored in PCB$L_EFWM). The process remains in this state until a block of 
paged pool is deallocated and the resource RSN$_PGDYNMEM declared 
available. 

10.4 EVENTS THAT LEAD TO RESCHEDULING 

Three kinds of events can result in rescheduling: 

• Placement of the current process into a wait state 
• Quantum expiration for the current process 
• System events, reported for both current and noncurrent processes 

The following sections describe these events. 

231 



Scheduling 

10.4.1 

232 

Placing a Process into a Wait State 

When a process directly or indirectly requests a system operation for which it 
must wait, the process is placed into the appropriate wait state. The actions 
to place a process into a wait state are centralized in the routine SCH$WAIT, 
in module SYSWAIT. This routine is entered in process context at 
IPL$_SYNCH. Register arguments specify the addresses of the software PCB 
of the current process and the wait queue into which the process is to be 
inserted. 

Depending on which subentry point of SCH$WAIT is invoked, some or all 
of the following operations are performed: 

1. SCH$WAIT assumes it has been entered from a system service. It removes 
the call frame from the kernel stack and establishes the PC at which the 
process will wait as described in the following section. 

2. The routine changes the process state to that in WQH$W _STATE, inserts 
the PCB into the wait queue, and increments the field WQH$W _COUNT 
to show the addition of a process to the queue. 

3. The routine executes a SVPCTX instruction to remove the current process 
from execution. 

4. The routine charges the SYSBOOT parameter IOTA against the process 
quantum as descr~bed in Section 10.4.2. Another process header field, 
PHD$L_ TIMREF, is also adjusted by the value of IOTA. PHD$L_ TIMREF 
and the process quantum must be adjusted together for automatic working 
set list adjustment to be responsive. (For further details, see Chapter 16.) 

5. The contents of the global location EXE$GL_ABSTIM, the system time in 
seconds, are copied to the field PCB$L_ WAITIME, to record the time at 
which the process began its wait. If the process remains in a wait state for 
long, it becomes a candidate for working set shrinkage and possibly 
outswapping. (See Chapter 17.) 

6. The routine tests PR$_ASTLVL and the process's wait PSL to determine 
whether a deliverable AST has been queued to the process but not yet 
delivered. This test prevents the possibility that an AST event is ignored 
which otherwise should take the process out of its wait. If a deliverable 
AST has been queued, SCH$WAIT reports an AST queuing event to 
SCH$RSE (see Section 10.4.3), which changes the process state to COM. 

7. SCH$WAIT then branches to SCH$SCHED (see Section 10.5.4), the sec­
ond half of the rescheduling interrupt service routine, to select a new pro­
cess to run. 

One of the responsibilities of the routines which invoke SCH$WAIT and 
its subentry points is to ensure that a process can correctly reenter the appro­
priate wait state after successful delivery of an AST. There are three different 
techniques used, depending on the particular wait state being entered. 



10.4.1.1 

10.4.1.2 

10.4.1.3 

10.4 Events That Lead to Rescheduling 

System Service Wait States. In the case where a process is entering a wait 
state as a result of executing a system service (HIB, LEF, or CEFI, the wait 
routine is entered with the PC and PSL of the the system service CHMK 
exception (see Chapter 9) on the top of the stack. The first implication of this 
arrangement is that the process waits in the access mode in which the system 
service was issued. Because ASTs are queued and delivered based on access 
mode, a supervisor mode AST can be delivered to a process waiting on an 
event flag as a result of a $QIOW call issued from user or supervisor mode. 

In addition, the wait code backs up the saved PC by 4 so that it points to 
the CHMx instruction in the system service vector (see the code examples in 
Chapter 9). If a process receives an AST while in such a wait state, the AST is 
delivered and executes. When the AST delivery routine dismisses its inter­
rupt through an REI instruction, the system service executes again, typically 
placing the process right back into the wait state it was in before the AST was 
delivered. 

Memory Management Wait States. Only the page fault handler (see Chapter 
15) places processes into the three wait states associated with memory man­
agement. This routine places ~process into a wait state with the PC and PSL 
associated with the page fault as the saved process context. Once again, be­
cause the PSL reflects the access mode in which the fault occurred, ASTs can 
be delivered for that and all inner access modes. (Note that this routine does 
not need to change the PC that it finds on the stack because page fault excep­
tions are faults and not traps. Faults, discussed in full in Chapter 4, cause the 
PC of the faulting instruction and not the PC of the next instruction to be 
pushed onto the exception stack.) 

If an AST is delivered to and executes in such a process, the process exe­
cutes the faulting instruction again. If the reason for the fault has been re­
moved (a free page became available or the page read completed) while the 
AST was being delivered or was executing, the process simply continues with 
its execution. If, on the other hand, the situation that caused the process to 
wait still exists, the process reincurs the page fault and is placed back into 
one of the memory management wait states. (Note that a process that was 
initially in a PFW state would be placed into a COLPG state by such a se­
quence of events.) 

Special Cases. The two remaining wait states (SUSP and MWAIT) are han­
dled in a special way by the wait routine. A process suspension occurs as a 
result of executing a kernel AST. ASTs cannot be delivered to suspended 
processes. That is, an AST queued to a suspended process has its AST control 
block inserted into the AST queue in the software PCB. However, the AST 
event is ignored by the scheduler. (In fact, while a process is suspended, the 

233 



Scheduling 

10.4.2 

234 

saved PC is an address in the kernel AST that caused the process to enter the 
suspend state. The saved PSL indicates kernel mode and IPL 0.) 

When a process is placed into a wait state waiting for a mutex (see Chapter 
2), its saved PC is either SCH$LOCKR or SCH$LOCKW, depending on 
whether it is attempting to lock the mutex for read access or write access. 
The saved PSL indicates kernel mode and IPL 2, which implies that processes 
in an MWAIT state waiting for a mutex cannot receive ASTs. 

A process can also be placed into an MWAIT state while waiting for an 
arbitrary system resource. In this case, the caller of routine SCH$RWAIT (in 
module MUTEX) controls the PC and PSL that are saved when the process is 
placed into the MWAIT state. In particular, the current access mode and IPL 
in the saved PSL determine whether any ASTs can be delivered to a process 
that is waiting for a resource. 

Quantum Expiration 

The SYSBOOT parameter QUANTUM defines the size of the time slice for 
the round-robin scheduling of normal processes. The quantum also deter­
mines, for most process states, the minimum amount of time a process 
remains in memory after an inswap operation, but it is not an absolute guar­
antee of memory residence. (The swapper's use of the initial quantum flag in 
selecting an outswap candidate is described in Chapter 17.) The value of 
QUANTUM is the number of 10-millisecond intervals (clock ticks) in the 
quantum. The default QUANTUM value of 20, therefore, produces a sched­
uling interval of 200 milliseconds. 

A process's quantum is expressed as a negative number of clock ticks. After 
each 10-millisecond interval, the hardware clock interrupt service routine 
increments the quantum-remaining field in the process header of the current 
process. When this value becomes zero or positive, the hardware clock ser­
vice routine requests a software timer interrupt. The software timer routine 
signals a quantum end event by invoking the subroutine SCH$QEND in 
module RSE. 

An additional deduction from the QUANTUM is governed by the special 
SYSBOOT parameter IOTA. This value (in units of 10 milliseconds) is de­
ducted from the remaining quantum value each time a process enters a wait 
state. The default IOTA value of 2 represents a 20-millisecond charge against 
the quantum of the process. This mechanism is provided to ensure that all 
processes experience quantum end events with some regularity. Processes 
that are compute-bound experience quantum end as a result of using a certain 
amount of CPU time. Processes that are 1/0-bound experience quantum end 
as a result of performing a reasonable number of 1/0 requests. This scheme 
guarantees that processes that spend most of their time in some wait state 
proceed in an orderly fashion toward quantum end. 



10.4 Events That Lead to Rescheduling 

The routine SCH$QEND is executed at the end of every quantum. For a 
real-time process, its only actions are to reset the field PHD$W _QUANT 
to the full quantum value and to clear the initial quantum flag, 
PCB$V _INQUAN in the field PCB$L_STS. 

For a normal process, however, the occurrence of quantum expiration in­
volves several different operations: 

I. Like a real-time process, a normal process has its process header quantum 
field reset and initial quantum flag cleared. The cleared initial quantum 
flag makes a process more likely to be outswapped if process swap mode 
has not been disabled. 

2. The CPU limit field of the process header is next checked to determine if 
a CPU limit has been imposed and if that limit has expired. If the CPU 
limit has expired, each access mode has an interval of time to clean up or 
run down before the image exits and the process is deleted. The size of the 
warning interval given to each access mode is defined by the SYSBOOT 
parameter EXTRACPU (which has a default value of ten seconds). 

3. If no CPU limit expiration has occurred, then the automatic working set 
adjustment calculations take place if they are enabled. The size of the 
process working set list may be expanded or contracted by amounts speci­
fied by the SYSBOOT parameters WSINC or WSDEC. Chapter 16 de­
scribes the details of automatic working set adjustment. 

4. If there is an inswap candidate (if SCH$GL_COMOQS is nonzero, indicat­
ing at least one nonempty COMO state queue), the current priority of the 
process is set to its base priority. (If SCH$GL_COMOQS contains a zero, 
the priority is left alone.) 

5. Routine SCH$SWPWAKE is called to determine whether swapper activity 
is required. The swapper process is awakened from hibernation if any of 
the following is true: 

-There is at least one computable outswapped process. 
-Modified page writing is required as indicated by the upper and lower 

limit thresholds for the free and modified page lists. 
-There is at least one process header of a deleted process still in the 

balance slots. 
-A powerfail recovery has just occurred. 

These checks avoid awakening and rescheduling the swapper with the 
associated context switch overhead when the swapper has no useful work 
to do. 

The swapper process does not execute immediately but must be sched­
uled for execution. As a computable (after waking), resident, real-time 
process of software priority 16, the swapper is likely to be the next process 
scheduled. 

235 



Scheduling 

10.4.3 

10.4.3.1 

236 

6. Finally, a rescheduling interrupt at IPL 3 is requested to remove the cur­
rent process from execution and select the next process for execution. 
Note that on a quiet system, the process just removed from execution can 
be the highest priority computable resident process and thus be placed 
back into execution immediately. 

System Events 

System events are occurrences of operations that change the states of pro­
cesses. A system event may make a process computable, memory resident, or 
outswapped. System events provide some of the transitions among the pro­
cess states. The movement of a process into and out of the balance set is 
handled by the swapper process (see Chapter 17). 

Figure 10-5 diagrams the transitions among states. 

Event Reporting. Events are reported to the scheduler from many system 
routines through the RPTEVT macro, which generates the following code: 

JSB SCH$RSE 

.BYTE EVT$_event_name 

The byte event value identifies the event to be declared by the system rou­
tine. The address of the event value is pushed onto the stack by the JSB 

instruction. Additional parameters (priority increment class and PCB address 
of the affected process) are passed in registers. 

The routine SCH$RSE (in module RSE) performs the following operations: 

1. The event number is loaded into a register and the return PC value (on the 
stack as a result of the JSB instruction) is adjusted to point to the address 
after the stored byte event value. 

2. The state and the event are checked for a significant transition. 
Each event (or state transition) has a bit mask defining which states this 

event can affect. The state of the process is obtained from the 
PCB$W _STATE field. 

-For example, a wake event is only significant for processes that are hi­
bernating (HIB or HIBO states). 

-An outswap event is only significant for the four states (COM, HIB, LEF, 
and SUSP) where a wait queue change is required. 

-The queuing of an AST is significant to all process states, except SUSP, 
SUSPO, COM, COMO, and CUR states and results in a transition to 
COM or COMO. 

3. If the event is not significant for the current process state, the event is 
ignored and SCH$RSE simply executes an RSB instruction. 



WaitCEF 

DEL 

AST 
DEL 

Represents AST enqueuing 
Represents process deletion 

10.4 

* Transitions from memory resident 
wait states to COM are not 
labeled to avoid cluttering 

0 
g 
Figure 10-5 

the figure. They are caused 
by the same events shown for 
transitions to the COMO state. 

Represents a process state 
with a single queue 

Represents a process state 
with multiple queues 

State Transition Diagram 

Events That Lead to Rescheduling 

Out swap 

resource 
available 

Event, 
AST, DEL 

237 



Scheduling 

238 

4. For significant events, the actions of SCH$RSE vary: 

-For an outswap event producing an LEF to LEFO, HIB to HIBO, or SUSP 
to SUSPO transition, SCH$RSE simply removes the PCB of the process 
from the resident wait queue and inserts it in the corresponding 
outswapped wait queue. The corresponding wait queue header count 
fields and the process state (PCB$W _STATE) are also adjusted. 

-For an outswap event producing a COM to COMO transition, SCH$RSE 
removes the PCB from the COM priority queue corresponding to 
PCB$B_PRI and inserts it into the corresponding COMO priority queue. 
The value in PCB$W _STATE is changed to the value SCH$C_COMO. 
The SCH$GL_COMQS status bit vector is also modified if the COM 
queue is now empty. The appropriate SCH$GL_COMOQS bit is uncon­
ditionally set. 

-For transitions from the LEF (implied resident) or CEF resident state to 
the COM state, SCH$RSE adds 4 to the saved PC in the hardware PCB 
stored in the process header so that it points past the CHMx instruction. 
This modification to the PC value allows the process to begin execution 
immediately following the system service call rather than going through 
a Wait for Event Flag system service for a flag that is already set. The 
residence check is necessary because the saved PC of nonresident pro­
cesses is usually not available. (The saved PC is stored in the hardware 
PCB in the process header, which may be outswapped if the process is 
not resident.) 

-For any transition which makes a process computable, SCH$RSE re­
moves the process from the wait queue and decrements the wait queue 
header count. Priority adjustment is attempted (see Section 10.4.3.2). 
The process state is changed to COM or COMO, depending upon 
whether the process is memory resident or outswapped. SCH$RSE in­
serts the process into the compute queue appropriate for its residence 
and priority and unconditionally sets the SCH$GL_COMQS or 
SCH$GL_COMOQS summary bit corresponding to the selected prior­
ity queue. 

5. Subsequent scheduling or swapping activity is necessary to execute or 
inswap the now computable process. The swapper is awakened (routine 
SCH$SWPWAKE is called) if the now computable process is presently 
outswapped (see Section 10.4.2). 

The scheduler is requested, through an IPL 3 software interrupt, if the 
now computable process is memory resident and has a priority greater 
than or equal to that of the currently executing process. This priority 
check avoids a needless context switch with its associated overhead, when 
the previously executing process will again execute. 



10.4.3.2 

10.4 Events That Lead to Rescheduling 

System Events and Associated Priority Boosts. System routines that report 
events to SCH$RSE not only describe the event and the process to which it 
applies, but also specify one of five classes of priority increments or boosts 
that may be applied to the base priority of the process. Table 10-3 lists the 
events, priority class, and potential amount of priority increment applied to 
the process. The table does not show AST queuing, because system routines 
queuing ASTs to a process can select any of the priority increment classes to 
be associated with the queuing of an AST. 

The actual software priority of the process is determined by the following 
steps: 

1. The priority increment for the event class (see Table 10-3) is added to the 
base priority of the process (PCB$B_PRIB). 

2. If the process has a current priority higher than the result of step 1, the 
current priority is retained (such as occurs in Figure 10-6, event 13). 

3. If the higher prioritY: of steps 1and2 is more than 15, then the base priority 
of the process is used. (Note that this test accomplishes two checks at the 
same time. First, all real-time processes fit this criterion, with the result 
that real-time processes do not have their priorities adjusted in response to 

Table 10-3 System Events and Associated Priority Boosts 

Event Priority Class 1 Prio1ity Boost 

Page fault read complete 0 (PRl$_NULL) 0 
Quantum end 0 0 

Other events with no boost 0 0 

Direct I/O completion l (PRl$_IOCOM) 2 

Nonterminal buffered I/O completion 2 

Update section write completion 2 

Set priority 1 2 

Resource available 2 (PRl$_RESAVL) 3 

Wake a process 2 3 
Resume a process 2 3 
Delete a process 2 3 
Timer request expiration 2 (PiU$_ TIMER) 3 
Terminal output completion 3 (PRI$_ TOCOM) 4 

Terminal input completion 4 (PRI$_ TICOM) 6 
Process creation 4 6 

1Routines that report system events pass an increment class to the scheduler. The sched­
uler uses this class as a byte index into a table of values (local label B_PINC in module RSE) 
to compute the actual boost. 

239 



Scheduling 

240 

Increasing 
Software 
Priority 

20 

18 

16 - - - - - - - - - - ill_ ------------------------------------------------
14 

6 

4 

: Time-- ~ 

Base 
Process Type Priority 

A Compute-bound 4 

B 110-bound 4 

C Real-time 18 

S Swapper 16 

Figure 10-6 Priorities and Priority Adjustments 

Events 

CD 1/0 request 

®Preemption 

@auantum end 

system events. Second, priority boosts cannot move a normal process into 
the real-time priority range.) 

A side effect of step 3 is that real-time processes always execute at their 
base priorities. Further, note that normal processes with base priorities from 
10 to 15 do not always receive priority increments as events occur. As the 
base priority of a normal process is moved closer to 15, the process spends a 
greater amount of time at its base priority. Priority 14 and 15 processes expe­
rience no priority boosts. Thus, this strategy benefits those processes that 
most need it-1/0-bound and interactive processes with base priorities of 4 
through 9. Processes with elevated base priorities do not require this assis­
tance as they are always at these levels. 

An example of priority adjustment that occurs over time for several pro­
cesses is illustrated in Figure 10-6. The following notes relate to the numbers 
at the bottom of Figure 10-6: 

CD Process C becomes computable. Process A is preempted. 
@c hibernates. A executes again, one priority level lower. 



10.5 Rescheduling Interrupt 

@A experiences quantum end. Because there is a computable outswapped 
process (which is B), A is rescheduled at its base priority. 

©The swapper process now executes to inswap B, and B is scheduled for 
execution. 

® B is preempted by C. 
@B executes again, one priority level lower. 
0 B requests an 1/0 operation to a device other than a terminal. A executes at 

its base priority. 
®A requests a terminal output operation. The null process executes. 
®A executes following 1/0 completion at its base priority + 3. (The applied 

boost was 4, and A's priority was decremented when it was rescheduled.) 
@ A is preempted by C. 
@A executes again, one priority level lower. 
@ A experiences quantum end and is rescheduled at one priority level lower. 

A's priority is not lowered to its base because there is no computable 
outswapped process. 

@A is preempted by B. A priority boost of 2 is not applied to B's base priority 
because the result would be less than B's current priority. 

@ B is preempted by C. 
@ B executes again, one priority level lower. 
@ B requests an I/O operation. A executes again, one priority level lower. (A 

has reached its base priority.) 
@A experiences quantum end and is rescheduled at the same priority (its 

base priority). 
@A is preempted by C. 

10.5 RESCHEDULING INTERRUPT 

The IPL 3 interrupt service routine schedules processes for execution. The 
function of this interrupt service routine is to remove the currently executing 
process by storing the contents of the process-private processor (hardware) 
registers and to replace the register contents with those of the highest prior­
ity computable resident process. This operation, known as context switch­
ing, is accompanied by modifications to the process state, current priority, 
and state queue of the affected processes. 

The VAX architecture was designed to assist the software in performing 
critical, commonly performed operations. The mechanism of replacing the 
hardware context of the current process with the context of a different pro­
cess is an example of hardware assistance to the operating system. The 
switching of hardware context is performed by two special purpose instruc­
tions, SVPCTX and LDPCTX, which, respectively, save and load the hardware 
context of a process. 

241 



Scheduling 

10.5.1 

10.5.2 

242 

Hardware Context 

The definition of a process from the viewpoint of the hardware is contained 
in the hardware context. This collection of data is the set of hardware proces­
sor registers whose contents are unique to the process. These include the 
following: 

• General registers: RO through Rl 1, AP, FP, and PC 
• Per-process stack pointers for kernel, executive, supervisor, and user mode 

stacks 
• PSL 
• AST level processor register, PR$_ASTL VL 
• Memory mapping registers for the program and control regions (POBR, 

POLR, PlBR, and PlLR) 

With the exceptions of the ASTL VL register value and the contents of the 
memory mapping registers, the current values for the various registers form­
ing the hardware context of the current process are maintained only in the 
processor registers. When a process is not executing, the complete hardware 
context is contained in a portion of the process header called the hardware 
PCB. 

The hardware PCB (see Figure 10-7) is a part of the fixed portion of the 
process header (PHD) for each process. It is resident in memory whenever the 
corresponding process is in the balance set. Access by the operating system 
occurs normally through offsets from the starting address of the particular 
PHD. However, during context switching operations, the hardware must ac­
cess this data structure directly without address translation. This access uses 
the value in the PCB base register (PRLPCBB), which contains the physical 
address of the hardware PCB for the currently executing process. The swap­
per stores the physical address of the hardware PCB for each resident process 
(calculated when the process is swapped into memory) in the 
PCB$L_PHYPCB field of the corresponding software PCB. Figure 10-8 illus­
trates access to the hardware PCB. 

SVPCTX Instruction 

The save process context instruction, SVPCTX, performs several operations 
and assumes a special set of initial and final conditions. The following initial 
conditions are assumed: 

• The current access mode is kernel. 
• The PC and PSL to be saved for the process are on the kernel stack. If the 

SVPCTX instruction that executes is the one in the rescheduling interrupt 
service routine, the PC and PSL are on the kernel stack as a result of the IPL 
3 software interrupt. 



10.5 Rescheduling Interrupt 

KSP 

ESP 

SSP 

USP 

RO 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

RB 

R9 

R10 

R11 

AP 

FP 

PC 

PSL 

POBR 

[8]26 2Jgl21 
0 

AST POLR 
LVL 

P1BR 

><r 0 
P1LR 

Figure 10·7 Layout of the Hardware Process Control 
Block 

L J :PR$_PCBB 

The process cont rol block 
base register con tains 
the physical addr ess 
of this structure 
for the currently 
executing proces s. 

• The register PR$_PCBB contains the physical address of the hardware PCB 
for the current process. 

• The current values of ASTLVL, POBR, POLR, PlBR, and PlLR are already 
stored in the hardware PCB. 

When the SVPCTX instruction is executed, the following operations are per­
formed by the VAX hardware: 

1. The per-process stack pointers for the four access mode stacks are stored 
in the hardware PCB. 

2. The general registers (RO through Rl 1, AP, and FP) are moved to the hard­
ware PCB. 

3. The PC and the PSL are popped from the current stack and moved to the 
hardware PCB. 

Finally, if the current stack is the kernel stack, the SVPCTX instruction 
saves the current stack pointer (SP) in the kernel stack field of the hardware 

243 



Scheduling 

SCH$GLCURPCB :: Software PCB 
Process Header 

(PHO) 

PHO 

f f 1 

Hardware 
PCB 

PR$_PCBB 

---+--~----~ 

J 
- Virtual address pointer 

- - _. Physical address pointer 

Figure 10-8 Access to the Hardware Process Control 
Block 

244 

PCB and switches to the interrupt stack (by setting the PSL$V _IS bit and 
copying the PR$_ISP register contents into the SP register). Switching to the 
systemwide interrupt stack is essential because there is no current process 
once the instruction completes. 

The ASTLVL, POBR, POLR, PlBR, and Pl LR fields of the hardware PCB are 
not changed. It is the responsibility of the various system components that 
alter these fields always to update both the hardware PCB fields and the per­
process processor registers. ASTLVL is unusual in that it is altered as a result 
of normal system operation when the process is not current. In that case, 
only the hardware PCB field is altered. The processor register is not altered 
because the process does not own that register when it is not the current 
process. 

These fields do not change frequently compared to the frequency of context 
switching. The overhead of storing these fields in the hardware PCB is incur­
red only when the field values change. 

The SVPCTX instruction occurs in several locations in the executive: 

• The rescheduling interrupt service routine executes this instruction to 
remove the current (and still computable) process from execution. 

• Module SYSW AIT executes this instruction to place the current process 
into a scheduling wait state. 

• The page fault handler (module PAGEFAULT) executes a SVPCTX instruc­
tion to place a process into one of the memory management wait states 
(PFW, FPG, COLPG). 

• At the end of process deletion, the process being deleted is removed from 
execution with a SVPCTX instruction. 



10.5.3 

10.5 Rescheduling Interrupt 

LDPCTX Instruction 

The load process context instruction, LDPCTX, performs the operations re­
quired in establishing the hardware context of the process. The instruction 
assumes the following initial conditions: 

• The processor is in kernel mode on the interrupt stack. 
• The register PR$_PCBB contains the physical address of the hardware PCB 

for the process which is to become current. 

When the LDPCTX instruction is executed, the following operations are per­
formed by the VAX hardware: 

1. Per-process translation buffer entries are invalidated. All of the previous 
translation buffer entries belonged to the previous process. They are inval­
idated to prevent mistranslation of virtual addresses and to protect the 
data of the previous process. 

2. The per-process stack pointers (KSP, ESP, SSP, and USP) are loaded from 
the hardware PCB. 

3. The general registers (RO through Rll, AP, and FP) are loaded into the 
corresponding processor registers. 

4. The memory mapping registers (POBR, POLR, PlBR, and PlLR) are 
checked for legal values, and then they are loaded from the hardware PCB. 
Until they are loaded, the values in the registers belong to the previous 
process. 

5. The PR$_ASTLVL register is loaded. 
6. The contents of the current stack pointer register (SP) are saved in the 

interrupt stack pointer register (ISP). 
7. The PSL$V _IS bit is cleared in order to indicate the switch to the kernel 

stack. 
8. The current stack pointer is updated with the contents of the kernel stack 

pointer register (KSP). 
9. Finally, the saved PC and PSL are pushed onto the kernel stack from the 

hardware PCB. These values are not stored into the appropriate registers. 
This particular operation occurs because the next instruction is expected 
to be an REI instruction. The REI pops the two longwords. It then verifies 
the PSL format, and inserts the two longwords into the appropriate regis­
ters. 

The only occurrence of a LDPCTX instruction in the VMS executive is the 
one shown in Example 10-1, the rescheduling interrupt service routine. 
(Chapter 27 describes the use of another LDPCTX instruction to place a process 
into execution on the attached processor of an asymmetric multiprocessing 
system.) 

245 



Scheduling 

10.5.4 

246 

Rescheduling Interrupt Service Routine 

The IPL 3 interrupt service routine contains two parts. SCH$RESCHED 
preserves the hardware context of the currently executing process and 
removes it from execution. The SCH$RESCHED logic flows directly into 
SCH$SCHED, which selects the next process to be scheduled for execution. 

SCH$RESCHED is requested as an IPL 3 software interrupt by several dif­
ferent routines: 

• SCH$RSE-when a resident process whose priority is greater than or equal 
to that of the current process becomes computable. 

• SCH$QEND-when the current process uses up its quantum if the process 
is normal and not real-time. 

• SCH$UNLOCK-when the current process unlocks a mutex and has a pri­
ority restored which is lower than that of another resident computable 
process. 

• EXE$SETPRI-when the current process lowers its priority to a value lower 
than that of another resident computable process. 

Under some circumstances (such as system initialization, placing the pre­
vious process into a wait state, or deletion of the previous process), there may 
not be a current process to be saved by SCH$RESCHED. In these cases, sys­
tem routines transfer control directly to SCH$SCHED for process selection. 
(The difference between the two entry points is determined by whether the 
previous process is still computable. Typically, a process entering a wait state 
causes entry at SCH$SCHED, while a higher priority process becoming com­
putable causes entry through a software interrupt at SCH$RESCHED.) 

SCH$RESCHED performs the following steps. (The numbers in the follow­
ing list correspond to numbers in the listing of the code, Example 10-1.) 

CD SCH$RESCHED first raises IPL to IPL$_SYNCH to block concurrent ac­
cess and modification of the scheduler database by other system compo­
nents. 

0It then executes a SVPCTX instruction to save the hardware context of the 
current process in its hardware PCB. The register PR$_PCBB contains the 
physical address of the current process hardware PCB. The detailed opera­
tion of the SVPCTX instruction is described in Section 10.5.2. 

®The address of the software PCB for the current process is obtained from 
the pointer SCH$GL_CURPCB in the module SDAT. 

©The current priority of the process is determined from the PCB$B_PRI 
field. The current priority is used to determine which of the resident com­
putable state queues is to include this PCB. 

®The state of the process is changed to COM from CUR by updating the 
PCB$W _STATE field. 

@The process is inserted at the tail of the corresponding priority queue. 



10.5 Rescheduling Interrupt 

At this point, there is no current process, and the search begins for the next 
process to execute. 

SCH$SCHED raises IPL to IPL$_ SYNCH. As with rescheduling, the search 
for and modification of the next process to be executed must be performed at 
IPL$_SYNCH to block other potential system operations on the scheduler 
database. 

Note that the search for the highest priority computable resident process 
and the removal of its PCB from the COM queue are achieved in three in­
structions (see Example 10-1). The efficiency of this operation is attributable 
to the instruction set and the design of the scheduler database for the com­
putable states (see Figure 10-2). 

SCH$SCHED performs the following operations. (The numbers in the fol­
lowing list correspond to numbers in the listing of the code, shown in Exam­
ple 10-1.) 

0 It executes an FFS instruction to locate the least significant set bit in the 
longword SCH$GL_COMQS. The located bit position indicates the high­
est priority nonempty computable resident state queue. 

®The listhead of the selected computable resident queue is found by using 
the nonempty queue bit position as an index into the contiguous listheads. 

®The first PCB in the selected queue is removed by indirect reference 
through the forward link of the listhead. 

@ If the removed PCB was the only one in the queue, the corresponding 
SCH$GL_COMQS bit must now be cleared because the queue is now 
empty. 

@ SCH$SCHED changes the state of the process to current by storing the 
value SCH$C_CUR into the PCB$W _STATE field. 

@ SCH$SCHED stores the address of the new current process PCB in 
SCH$GL_ CURPCB. 

@ It examines the current process priority and potentially modifies it. If the 
process is a real-time process or a normal process already at its base prior­
ity, then the process is scheduled at its current or base priority (they are 
the same). If the current process is a normal process above its base priority, 
then a decrease of one software priority level is performed before schedul­
ing. Thus, priority "demotions" always occur before execution, and a pro­
cess executes at the priority of the queue to which it will be returned (and 
not the priority of the queue from which it was removed). See Figure 10-6, 
event 2, for an example. 

@ The physical address of the hardware PCB for the scheduled process is 
loaded into the PR$_PCBB register from the PCB$L_PHYPCB field. 

@A LDPCTX instruction is executed (see Section 10.5.3). 
@ SCH$SCHED executes an REI instruction to pass control to the scheduled 

process. This transfer of control is possible because the LDPCTX instruction 

247 



Scheduling 

Example 10-1 Scheduler Interrupt Service Routine 

.SBTTL SCH$RESCHED RESCHEDULING INTERRUPT HANDLER 

;++ 

SCH$RESCHED RESCHEDULING INTERRUPT HANDLER 

This routine is entered via the IPL 3 rescheduling interrupt. 

The vector for this interrupt is coded to cause execution 

on the kernel stack. 

ENVIRONMENT: 

INPUT: 

IPL = 3 Mode kernel IS 0 

OO(SP) PC at reschedule interrupt 

O~(SP) PSL at interrupt 

.ALIGN LONG 

MPH$RESCHED:: ;Multiprocessing code hooks in here 

SCH$RESCHED: : 

SETIPL #IPL$_SYNCH 

;Reschedule interrupt handler 

;Synchronize scheduler with event CD 
; reporting 

SVPCTX 

MOVL 

MOVZBL 

BBSS 

10$: MOVW 

MOVAQ 

INSQUE 

;+ 

L'SCH$GL_CURPCB I R1 

PCB$B_PRI(R1),R2 

;save context of process Q) 
;Get address of current PCB Q) 
;Current priority G) 

R2, L'SCH$GL_COMQS, 10$ ; Mark queue nonempty 

#SCH$C_COM,PCB$W_STATE(R1) ;Set state to res compute ~ 
SCH$AQ_COMT[R2],R3 ;compute address of queue 

(R1),@(R3)+ ;Insert at tail of queue@ 

SCH$SCHED - SCHEDULE NEW PROCESS FOR EXECUTION 

This routine selects the highest priority executable process 

and places it in execution. 

MPH$SCHED: : 

SCH$SCHED: : 

;Multiprocessing code hooks in here 

;Schedule for execution 

SETIPL #IPL$_SYNCH ;Synchronize scheduler with event 

248 

FFS 

BEQL 

MOVAQ 

REM QUE 

BVS 

; reporting 

#0,#32,L'SCH$GL_COMQS,R2 ;Find first full state CV 
SCH$IDLE ;No executable process? 

SCH$AQ_COMH[R2],R3 ;Compute queue head address ® 
@(R3)+,R~ ;Get head of queue CV 
QEMPTY ;Br if queue was empty (BUGCHECK) 



10.5 Rescheduling Interrupt 

Example 10·1 Scheduler Interrupt Service Routine (continued) 

20$: 

30$: 

BNEQ 

BBCC 

20$ 

R2 I L"SCH$GL_COMQS I 20$ 

;Queue not empty 

;Set queue empty Qgi 

CMPB #DYN$C_PCB,PCB$B_TYPE(R4) ;Must be a process control block 

BNEQ QEMPTY ;Otherwise fatal error 

MOVW #SCH$C_CUR, PCB$W_STATE ( R4) ; Set state to current @ 
MOVL R4, L"SCH$GL_CURPCB ; Note current PCB loc @ 
CMPB PCB$B_PRIB(R4),PCB$B_PRI(R4) ;Check for base~ 

BEQL 

BBC 

INCB 

MOVB 

MTPR 

LDPCTX 

REI 

30$ 

#4,PCB$B_PRI(R4),30$ 

;Priority = current 

;Yes, don't float priority 

;Don't float real-

; time priority 

PCB$B_PRI(R4) ;Move toward base priority 

PCB$B_PRI ( R4), L"SCH$GB_PRI ; Set global priority 

PCB$L_PHYPCB(R4),#PR$_PCBB ;Set PCB base phys address Q1l 
;Restore context Q§) 
;Normal return Q§l 

SCH$IDLE: ;No active, executable process 

;Drop IPL to scheduling level SETIPL #IPL$_SCHED 

MOVB #32, L"SCH$GB_PRI 

BRB SCH$SCHED 

;Set priority to -1(32) to signal idle 

; and try again 

QEMPTY: BUG_CHECK QUEUEMPTY,FATAL 

.END 

;Scheduling queue empty QV 

249 



Scheduling 

250 

left the PC and PSL of the scheduled process on the kernel stack. Execu­
tion of the REI instruction has the following additional effects: 

• The interrupt priority level is dropped from IPL$_SYNCH. 
• The access mode is typically changed from kernel to a less privileged 

one. 
• If ASTs are queued to the PCB, they are likely to be delivered at this 

time, depending on their access mode and the access mode at which the 
process is reentered (see Chapter 7). 

@ Consistency checks are made to ensure that the queue really had at least 
one PCB and that the data structure removed was actually a PCB. Failure 
of either of these tests results in a QUEUEMPTY fatal bugcheck. 



11 Time Support 

Love, all alike, no season knows, nor clime, 
Nor hours, days, months, which are the rags of time. 

John Donne, The Sun Rising 

Support for activities that require either the date and time or the measure­
ment of an interval of time is implemented in both the VAX hardware and 
the VAX/VMS operating system. 

A hardware component called the interval clock interrupts at regular inter­
vals. VAX/VMS uses this clock to keep time and to service time-dependent 
requests. VAX/VMS keeps two different times, the current date and time (the 
"system time") and the time elapsed since the system was bootstrapped (the 
"system uptime"). On most VAX processors, another hardware component 
called the time-of-year clock maintains the date and time across system re­
boots and power failures. 

VAX/VMS provides two system services to support users' time-dependent 
requests, Schedule Wakeup ($SCHDWK) and Set Timer ($SETIMR). Another 
system service, Set Time ($SETIME), enables the system manager to change 
the system date and time. The Get Time ($GETTIM) system service enables 
users to read the current date and time. Several other services, described 
briefly in Chapter 29, convert the date and time between ASCII and binary 
formats. 

Keeping time and servicing time-dependent requests require both a hard­
ware interrupt service routine for the interval clock and a software interrupt 
service routine. The hardware interrupt service routine keeps the system 
time and requests the software timer interrupt as necessary. The software 
interrupt service routine supports time-dependent services such as scheduled 
wakeups, by examining a time-ordered queue of requests and delivering them 
as their expiration times occur. 

11.1 HARDWARE CLOCKS 

The hardware clocks are updated regularly by timing circuitry. Initialization, 
calibration, and interpretation of the clocks are performed by VMS routines 
during system initialization and normal operations. 

The processor registers that implement the hardware clocks are summa­
rized in Table 11-1, along with the memory locations that implement the 
various software time values. 

The implementations of the interval and time-of-year clocks vary on the 
different VAX CPUs. 

251 



Time Support 

11.1.1 Interval Clock 

All VAX CPUs implement an interval clock that can interrupt at ten-milli­
second intervals. The minimum implementation is the processor register 
PR$_ICCS containing a single bit which, when set, enables interrupts every 
ten milliseconds. The MicroVAX I and MicroVAX II implement the mini­
mum interval timer. 

Other VAX processors have two additional processor registers to control 
the interval clock, PRxxx$_ICR and PRxxx$_NICR. The additional proces­
sor registers are defined by the CPU-specific macros $PRxxxDEF, where xxx 
is the CPU designations. Table G-1 in Appendix G lists the CPU designations 
and their corresponding CPU types. 

A description of the full interval clock implementation follows. It applies 
to all the VAX processors listed in Table 11-2 except the MicroVAX I and 
Micro VAX II. 

The full implementation of the interval clock is the set of three processor 
registers. The clock "ticks" at one-microsecond intervals with an accuracy of 
at least 0.01 percent (an error of less than nine seconds per day). The fre­
quency at which the interval clock causes an interrupt is determined by the 
value in one of the processor registers, PRxxx$_NICR. 

Table 11-1 VAX/VMS Hardware Clocks and Software Timers 

Name Use Units Frequency Updated by 

PR.xxx$_ICR1 Interval count 1 µsec I µsec CPU hardware 

PRxxx$_NICR1 Next interval count I µsec EXE$INIPROCREG2 

PR$_ICCS Interval clock 10 msec EXE$HWCLKINT, 
control/status EXE$INIPROCREG 

PRxxx$_ TODR 1 Time-of-year clock 10 msec 10 msec CPU hardware, 
EXE$INIT _ TODR, 
EXE$SETIME3 

EXE$GQ_SYSTIME System date and time 100 nsec 10 msec EXE$HWCLKINT, 
EXE$SETIME, 
EXE$RESTART 

EXE$G1-ABSTIM System uptime I sec I sec System 

r- initialization, 
EXE$TIMEOUT 

EXE$G1-TODR Time-of-year base value 10 msec EXE$SETIME 

EXE$GQ_ TODCBASE Time-of-year base value 100 nsec EXE$SETIME 
(in system time form) 

1This is a CPU-specific register that does not exist on all processors. 
2PRxxx$_NICR is written only at system initialiiation and after powerfail recovery. 
3 PRxxx$_ TODR is actually modified through the CPU-specific routine EXE$WRITE_ TODR. 

252 



\ 
11.1 Hardware Clocks 

Table 11-2 VAX Interval Clock Interrupt Priority Level 

Processor Type Interval Timer IPL 

MicroVAX I 22 

MicroVAX II 22 

VAX-11/730 24 

VAX-11/750 24 

VAX-11/780 24 

. VAX-11/782 24 

VAX-111785 24 

VAX.8200 22 

VAX.8300 22 

VAX.8500 22 

VAX.8550 22 

VAX8600 24 

VAX.8650 24 

VAX.8700 22 

VAX.8800 22 

The three interval clock registers (see Table 11-1) are used as follows: 

• The interval clock control/status register (PR$_ICCS) controls the inter­
rupt status of the interval clock. This register is set by the CPU hardware 
and then reset by the interval clock interrupt service r01Jtine (see Section 
11.6). 

• The next interval count register (PRxxx$_NICR) defines how often the in­
terval clock will cause a hardware interrupt. At system initialization, this 
processor register is initialized with a value of -10000. This value specifies 
an interval clock interrupt period of ten milliseconds ( 10,000 micro­
seconds). 

• Every microsecond the hardware increments the interval count register 
(PRxxx$_ICR). Thus, it counts from the PRxxx$_NICR value toward zero. 
When PRxxx$_ICR becomes zero, the register overflows, with the follow­
ing results: 

a. The hardware copies the contents of PRxxx$_NICR into PRxxx$_ICR 
to define the next interval. 

b. The hardware sets a bit in PR$_ICCS to indicate the overflow condition. 
The setting of the bit causes an interval clock interrupt to occur. 

The interrupt priority level (IPL) at which the hardware interrupt occurs 
is either 22 or 24, depending on the processortype. Earlier VAX CPU mod-

253 



Time Support 

11.1.2 

254 

els use IPL 24. The VAX architecture now defines 22 as the IPL associated 
with the interval clock. Table 11-2 lists the different CPU types and the IPL 
associated with their interval clocks. 

PR$_ICCS is reset by the interval clock interrupt service routine to indi­
cate servicing of the interrupt and reenabling of the interval clock. 

Because the interval clock implementation varies, the interval clock 
register or registers are initialized by the routine EXE$INIPROCREG, 
which is in CPU-specific code loaded during system initialization (the 
SYSLOA.xxx image). 

Time-of-Year Clock 

A time-of-year clock is a hardware clock updated by hardware timing cir­
cuitry to maintain the date and time across system reboots and power fail­
ures. On most VAX CPUs, the time-of-year clock is powered by a battery 
when there is no power to the system so that the clock keeps correct time. At 
system initialization, the operating system uses the time-of-year clock and 
the system global locations EXE$GQ_ TOOCBASE and EXE$GL_ TOOR to 
determine the date and time (see Section 11.2.1 ). If there is no time-of-year 
clock or if its battery lacks power, VMS cannot determine the correct date 
and time without human intervention. 

On many VAX CPUs, the time-of-year clock is implemented as a processor 
register, PRxxx$_ TOOR. The register is an unsigned 32-bit counter, the least 
significant bit of which represents a resolution of ten milliseconds. 

The base time for the time-of-year clock is 00:00:00.00 hours on January 1 
of the current year. The number 1000000016 represents this base time. That 
is, the time-of-year clock is initialized to that number rather than 0 to facili­
tate detection of loss of power to the clock (which causes a reset to O). 

Initialized to 10,000,000, the time-of-year clock can count to a maximum 
of about 15 months. To prevent overflow, the time-of-year clock must be 
adjusted during the first three months of the year. This can be accomplished 
by rebooting the system or invoking the $SETIME system service (see Sec­
tion 11.3). 

The implementation of the time-of-year clock varies on different VAX 
CPUs. The following summarizes implementations of the time-of-year clock 
on the various VAX CPUs: 

• The MicroVAX I has no time-of-year clock. 
• The MicroVAX II has a watch chip with battery backup and no time-of-year 

processor register. 
• The VAX-11/730 has a time-of-year processor register. Certain VAX-11/730 

configurations have battery backup for the register. 
•The VAX-11/750, VAX-11/780, VAX-11/782, VAX-111785, VAX 8600, and 



11.2 Timekeeping in VAX/VMS 

VAX 8650 have a time-of-year processor register with battery backup. 
• The VAX 8200 and VAX 8300 have a watch chip with battery backup and a 

time-of-year processor register without battery backup. 
• The VAX 8500, VAX 8550, VAX 8700, and VAX 8800 have a time-of-year 

clock in the console subsystem and no time-of-year processor register. The 
time-of-year clock has battery backup. VMS must communicate with the 
console subsystem to read the time-of-year clock. 

Access to the time-of-year clock is through routines in CPU-specific code 
loaded during system initialization (SYSLOAxxx). Thus, the actual imple­
mentation of the time-of-year clock is transparent to the rest of VMS. 

The SYSLOAxxx routines for accessing the time-of-year clock are the 
following: 

• EXE$INIT _ TODR, which uses the clock to initialize the system time 
• EXE$READ_ TODR and EXE$READP _ TODR, which read the clock 
• EXE$WRIT£_ TODR and EXE$WRITEP _ TODR, which write the clock 

On many VAX CPUs, EXE$READ_ TODR and EXE$READP _ TODR are 
identical, as are EXE$WRITE_ TODR and EXE$WRITEP _ TODR. On a CPU 
with a watch chip or console time-of-year clock, EXE$READP _ TODR and 
EXE$WRITEP _ TODR usually access those. On a CPU with no time-of-year 
processor register, EXE$READ_ TODR simulates one, using EXE$GL_ 
TODR and the amount of time (64-bit format) that has elapsed since the 
system was booted. 

11.2 TIMEKEEPING IN VAX/VMS 

11.2.1 

During system initialization, VMS determines the date and time from the 
time-of-year clock and the system global locations EXE$GQ_ TODCBASE 
and EXE$GL_ TODR. During normal system operation, VMS uses the inter­
val clock interrupts to keep time. Global location EXE$GQ_SYSTIME con­
tains the system date and time. Global location EXE$GL_ABSTIM contains 
the system uptime. Table 11-1 summarizes these global locations. 

Initializing the Date and Time 

The contents of EXE$GQ_ TODCBASE and EXE$GL_ TODR are maintained 
in the system image file, SYS$SYSTEM:SYS.EXE, as a record of the system 
time on which the contents of the time-of-year clock are based. Both repre­
sent the same time in different formats. EXE$GQ_ TODCBASE represents 
the time of last adjustment in standard 64-bit time (the same format as 
EXE$GQ_SYSTIME). EXE$GL_ TODR represents the time of last adjust­
ment in the same 32-bit format as the time-of-year clock. 

255 



Time Support 

256 

These base time values represent the more recent of the following times: 

• The time when the system was booted 
• The last time that the time-of-year was redefined by $SETIME 

These values are recorded in the system image whenever the system is 
booted or the $SETIME system service is requested through either the DCL 
command or some other program. These values are recorded at system shut­
down as well, through the command SET TIME in the shutdown command 
procedure. 

Recording up-to-date values of these variables ensures that 

• VMS can determine the current year from EXE$GQ_ TODCBASE. A 32-bit 
time-of-year clock can represent only date and time within year, but not 
year. 

• VMS can use the recorded value of EXE$GL_ TOOR as a validity test for the 
time-of-year clock. 

• The date and time are as recent as possible for a system which is without 
battery backup for the time-of-year clock and is to boot unattended. 

During system initialization, SYSINIT invokes the routine EXE$INIT _ 
TOOR in SYSLOAxxx to validate the time-of-year and to initialize 
EXE$GQ_SYSTIME from either the time-of-year clock and system global 
locations or from a date and time entered by the operator. For a node joining a 
VAXcluster System, SYSINIT obtains the date and time from a node which 
has already joined and invokes EXE$SETIME_INT to set the date and time. 
When a new VAXcluster System is being formed, the time from one system is 
sent to all other nodes, each of which invokes EXE$SETIME_INT. (See Sec­
tion 11.3 for a description of EXE$SETIME_INT.) After the system disk is 
mounted, SYSINIT invokes the $SETIME service to record new values for the 
time-of-year global locations in the system image on disk. 

The basic algorithm in EXE$INIT _ TODR is similar for all VAX CPUs, 
although there are some CPU-specific variants: 

1. EXE$INIT _TOOR examines the SYSBOOT parameter SETTIME. 
2. If SETTIME is zero, EXE$1NIT _TOOR reads the time-of-year clock and 

compares its contents to those of EXE$GL_ TODR. If EXE$GL_ TODR is 
more than one day ahead of the time-of-year clock, the time of year must 
be reset. This test detects a clock which has lost power. It also prevents 
losing a year in the date, for example, when a disk with a December date in 
the system image is booted on a processor whose time-of-year clock has 
been reset to reflect a new year. 

If the time-of-year clock appears valid, then its contents and those of 
EXE$GL_ TOOR and EXE$GQ_ TODCBASE are used to reset the system 
time. 



11.2.2 

11.2 Timekeeping in VAX/VMS 

3. If SETTIME is 1 or the time-of-year clock is invalid, EXE$INIT _TOOR 
examines the SYSBOOT parameter TIMEPROMPTWAIT to determine 
how to reset the time of year: 

a. A negative TIMEPROMPTWAIT value causes the routine to prompt for 
the date and time on the console terminal and wait until the operator 
enters valid data. 

b. A positive TIMEPROMPTWAIT value represents an upper limit on the 
amount of time EXE$INIT _TOOR waits for the operator to enter a new 
date and time. If that time elapses without the input of valid data, 
EXE$INIT _TOOR computes the time of year as in the next item. 

c. A TIMEPROMPTWAIT value of zero means that the routine is to reset 
the time without human intervention. EXE$INIT _TOOR computes a 
new value for the time of year, based on the contents of 
EXE$GL_ TOOR plus ten milliseconds. 

4. EXE$INIT _TOOR invokes EXE$SETIME_INT, an internal entry point for 
the system service $SETIME, to initialize the system time and update 
EXE$GQ_ TOOCBASE and EXE$GL_ TOOR. The system image on disk is 
not modified. 

Maintaining the Date and Time 

The system time, EXE$GQ_SYSTIME, is the number of 100-nanosecond in­
tervals since 00:00 hours, November 17, 1858 (the base time for the Smithso­
nian Institution astronomical calendar). EXE$GQ_SYSTIME (see Table 11-1) 
is updated every ten milliseconds by the interval clock interrupt service rou­
tine (see Section 11.6). This quadword is the reference for nearly all user­
requested time-dependent software activities in the system. For example, the 
$GETTIM system service simply writes this quadword value into a user­
defined buffer. 

EXE$GL_ABSTIM measures the number of one-second intervals that have 
elapsed since the system was bootstrapped. EXE$GL_ABSTIM is defined as 
zero at assembly time and incremented by the routine EXE$TIMEOUT (see 
Section 11. 7.2). 

EXE$GL_ABSTIM is the reference time for several system-requested time 
checks. For example, its contents are recorded in the field PCB$L_ WAITIME, 
whenever a process is placed into a voluntary wait, is removed from a volun­
tary wait, or incurs quantum end. A comparison between PCB$L_ WAITIME 
and EXE$GL_ABSTIM enables outswap scheduling code to determine if the 
process can be considered to be in a long wait or if the process is dormant. 
(See Chapter 17.) 

In addition, EXE$GL_ABSTIM is used to check periodically for 1/0 device, 
1/0 controller, mount verify, and lock request timeouts. This variable is also 

257 



Time Support 

the source for system uptime, interpreted and displayed by the DCL com­
mand SHOW SYSTEM. 

EXE$GQ_SYSTIME is adjusted at power failure recovery and through the 
system service $SETIME. EXE$GL_ABSTIM is never adjusted. 

11.3 SET TIME SYSTEM SERVICE 

11.3.1 

258 

The $SETIME system service allows a system manager or operator to change 
the system time while the operating system is running. This may be neces­
sary because of a power failure longer than the battery backup time of the 
time-of-year clock or changes between standard and daylight saving time, for 
example. The new system time (absolute time format, not relative) is passed 
as the optional single argument of the system service. 

The $SETIME system service is also invoked directly at a special entry 
point, EXE$SETIME_INT. This entry point is used during system initializa­
tion to compute the system time from the contents of the time-of-year clock 
and system variables. The difference between the two entry points is that 
EXE$SETIME_INT sets a flag to prevent recording the values of 
EXE$GL_ TODR and EXE$GQ_ TODCBASE in the system image. (SYSINIT 
invokes EXE$SETIME_INT before the system disk is mounted.) 

The system service procedure EXE$SETIME, in module SYSSETIME, first 
validates the request. If the requesting process does not have the privileges 
OPER and LOG_IO, EXE$SETIME returns the error SS$_NOPRIV. If 
the input quadword cannot be read, the procedure returns the error 
SS$_ACCVIO. 

The procedure diverges into two paths described in the following sections 
based on the presence or absence of the new time argument. 

$SETIME System Time Recalibration Requests 

If no argument was passed to the system service or the time argument is a 
zero value, then the request is considered a request to recalibrate 
EXE$GQ_SYSTIME from the time-of-year clock, EXE$GL_ TODR, and 
EXE$GQ_ TODCBASE. Sometimes recalibration is done during normal oper­
ation, because on many VAX CPUs the time-of-year clock is more accurate 
than the interval clock. 

EXE$SETIME performs the following actions: 

1. EXE$SETIME invokes EXE$READP _TOOR to read the "physical" time­
of-year clock. (Its contents are referenced in the items and equations fol­
lowing as TOY _CLOCK.) 

2. EXE$SETIME compares the TOY _CLOCK to EXE$GL_ TODR. If the lat­
ter represents a time more than one day later, the TOY _CLOCK is not 
valid and EXE$SETIME returns the error status SS$_IVTIME. 



11.3.2 

11.3 Set Time System Service 

3. The new system time, EXE$GQ_SYSTIME, is computed by the following 
equation: 

EXE$GQ_SYSTIME 

= EXE$GQ_TODCBASE + ((TOY_CLOCK - EXE$GL_TODR) * 100000) 

EXE$GQ_SYSTIME and EXE$GQ_ TOOCBASE are quadword system 
times in units of 100 nanoseconds. TOY _CLOCK and EXE$GL_ TOOR 
are longword time-of-year times in units of ten milliseconds. The multi­
plier of 100,000 represents the number of 100-nanosecond intervals in ten 
milliseconds. 

4. The values in TOY _CLOCK, EXE$GL_ TOOR, and EXE$GQ_ 
TOOCBASE are corrected if TOY _CLOCK represents a value larger than 
one year. This prevents the time-of-year clock from overflowing its limit. 

5. Each element in the timer queue (see Section 11.4) that specified a relative 
(or delta) time has its expiration time adjusted by the difference between 
the previous system time and the new system time. This modification 
prevents the actual relative time value from being changed by a modifica­
tion to system time. A timer queue element (TQE) containing an absolute 
time is not adjusted; this ensures that the TQE will come due at the time 
specified by the user. Bit TQE$V _ABSOLUTE in TQE$B_RQTYPE distin­
guishes an absolute request from a relative request: a zero value indicates 
a relative request; 1, an absolute request. Section 11.4 describes the form 
and use of TQEs. 

6. The pages of the system image in memory that contain 
EXE$GQ_ TOOCBASE and EXE$GL_ TOOR are written back to the sys­
tem image file if the procedure was entered at EXE$SETIME. 

$SETIME Time-of-Year Readjustment Requests 

If a nonzero time value is supplied as an argument to $SETIME, then 
EXE$SETIME performs the following operations: 

1. The input argument, specified in system time units of 100 nanoseconds, is 
converted into time-of-year units (the number of ten-millisecond intervals 
after 00:00 hours on January 1 of the base year). 

2. The specified time, converted to 32-bit time-of-year format, is written into 
the time-of-year clock and EXE$GL_ TOOR. 

3. The specified time is written into EXE$GQ_ TOOCBASE and 
EXE$GQ_SYSTIME. 

4. Finally, the timer queue is updated and, if the procedure was entered at 
EXE$SETIME, the new values for the time-of-year clock base are written 
to the system image file. (See steps 5 and 6 previously described in Section 
11.3.1.) 

259 



Time Support 

11.4 TIMER QUEUE AND TIMER QUEUE ELEMENTS 

260 

VMS maintains a list of time-dependent requests as a doubly linked list of 
timer queue elements, ordered by the expiration time of the requests. 
EXE$GL_ TQFL and the following longword (defined in the module SYS­
COMMON) form the listhead of the timer queue. TQEs are generally allo­
cated from nonpaged dynamic memory and initialized as a result of $SETIMR 
and $SCHDWK system service calls (see Section 11.5 ). The allocation of 
TQEs is governed by the pooled job quota JIB$W _ TQCNT. 

The format of a TQE is shown in Figure 11-1. The link fields 
(TQE$L_ TQFL and TQE$L_ TQBL), the TQE$W _SIZE field, and the 
TQE$B_ TYPE field are characteristic of system data structures allocated 
from dynamic memory. 

RQTYPEI 

t---

t---

RQTYPE Bits: 

TOFL 

TQBL 

TYPE I SIZE 

PID/PC 

AST/FR3 

ASTPRM/FR4 

TIME -
DELTA -] EFN 1 RMOD 

RQPID 

3 2 1 0 

Process timer request 
System subroutine request 
Scheduled wake request 

< o One·time request 
......___ 1 Repeat request 

(not allowed for process 
timer requests) 

'------{ 0 Relative time request 
1 Absolute time request 

AST is associated with 
timer event 

Figure 11·1 Layout of a Timer Queue Element 



11.5 Timer System Services 

The TQE$B_RQTYPE field describes the timer request. Its low-order two 
bits define the type of timer request (process timer request, periodic system 
routine request, or process wake request). Bit TQE$V _REPEAT in 
TQE$B_RQTYPE is set if the request is a repeating request, rather than a 
one-time request. Bit TQE$V _ABSOLUTE in TQE$B_RQTYPE is set if the 
timer event was requested at a particular absolute time, rather than at a rela­
tive interval from the current time. Bit ACB$V _QUOTA of TQE$B_RMOD 
is set if an AST is to be delivered when the timer event occurs. Figure 11-1 
summarizes the bits in TQE$B_RQTYPE. 

The interpretation of the next three longword fields depends upon the type 
of timer request. For system routine requests, these fields contain the PC, R3, 
and R4 register values to be loaded before control is passed to the routine. For 
process requests, these fields define the process ID of the process to which to 
report the event, the address of an AST routine to execute (if requested), and 
an optional AST parameter. 

For both process and system routine requests, the field TQE$Q_ TIME is 
the quadword system time at which a particular timer event is to occur. 
TQE$Q_DELTA is the repeat interval time for repeating requests. 

Several fields are meaningful only for process requests. The access mode of 
the requesting process is stored in TQE$B_RMOD. The event flag to be set 
when the timer event occurs is stored in TQE$B_EFN. TQE$L_RQPID con­
tains the process ID of the process that made the initial timer request. (The 
requesting process is not necessarily the same as the target process whose ID 
is stored in TQE$L_PID.) 

11.5 TIMER SYSTEM SERVICES 

11.5.1 

Two system services are used to request time-dependent services, Schedule 
Wakeup ($SCHDWK) and Set Timer ($SETIMR). Both of these services are 
in the module SYSSCHEVT. Two complementary services cancel time­
dependent requests, Cancel Wakeup ($CANWAK) and Cancel Timer Request 
($CANTIM). These system service routines are in the module SYSCANEVT. 

$SETIMR Requests 

The $SETIMR system service creates TQEs of the single process request type. 
The system service procedure, EXE$SETIMR, performs the following steps: 

1. The event flag specified as an argument to the system service is cleared in 
preparation for a subsequent setting at expiration time. 

2. The request is checked to make sure that the following are true: 

-The delta time location is accessible to the requesting process. 
-The PCB$W _ASTCNT of the requesting process is not exceeded (if an 

261 



Time Support 

11.5.2 

262 

AST is to be associated with this timer request). 
-The JIB$W _ TQCNT of the requesting job is not exceeded. 

3. A TQE is allocated from nonpaged dynamic memory and initialized from 
the system service arguments (delta time, request type, and process ID). 

4. If the expiration time was expressed as a relative time (a negative argu­
ment), then the absolute expiration time of the request is calculated by 
adding the delta time of the request to the current system time, 
EXE$GQ_SYSTIME. The absolute expiration time is stored in the 
TQE$Q_ TIME field. Bit TQE$V _ABSOLUTE in TQE$B_RQTYPE is 
cleared if the expiration time was expressed as a relative time; otherwise, 
it is set. 

5. The JIB$W _ TQCNT field of the pooled job quotas is decremented to indi­
cate the allocation of the TQE. 

6. The access mode of the system service caller is stored in the 
TQE$B_RMOD field. If an AST routine was specified as an argument to 
the $SETIMR call, then the process PCB$W _ASTCNT is decremented to 
indicate the future AST delivery and bit ACB$V _QUOTA of 
TQE$B_RMOD is set to indicate the AST accounting. 

7. The AST parameter (which is used as request identification) and event flag 
number arguments are copied to the TQE. 

8. EXE$SETIMR invokes EXE$INSTIMQ (in module EXSUBROUT) to insert 
the TQE into the right place in the timer queue and then returns. 

The $CANTIM system service removes one or more TQEs before expira­
tion. Two arguments, the request identification parameter and the access 
mode, control the actions taken by this routine. Each TQE in the timer queue 
that meets all of the following criteria is removed and deallocated: 

• The process ID of the $CANTIM system service caller is the same as the 
process ID stored in the TQE. 

• The access mode of the caller is at least as privileged as the access mode 
stored in the TQE. (That is, no request can be deleted for an access mode 
more privileged than. that of the caller.) 

• The request identification parameter argument is the same as that stored in 
the TQE. If the argument value is zero, then all TQEs meeting the first two 
criteria are removed. 

Scheduled Wakeup Operations 

The logic for managing scheduled wakeup requests is similar to that of 
$SETIMR requests. Two differences are the ability to specify repeating sched­
uled wakeup requests and the ability to schedule wakeup requests for an­
other process. The system service procedure EXE$SCHDWK, in module 
SYSSCHEVT, performs the following actions: 



11.6 Interval Clock Interrupt Service Routine 

1. The target process ID specified in the system service argument is verified. 
If the target process is not in the system, the scheduled wakeup request is 
ignored. 

2. EXE$SCHDWK checks whether the target process exists and invokes 
EXE$NAMPID (see Chapter 12) to determine whether the current process 
is allowed to affect it. If it is, EXE$SCHDWK tests the repeat time to 
determine whether the request is a one-time or repeating scheduled 
wakeup. 

3. The requested repeat time is formatted for insertion in the TQE. If the 
repeat time is less than ten milliseconds, it is increased to that value (the 
resolution of the interval clock interrupt). 

4. A TQE is allocated from nonpaged dynamic memory. 
5. The repeat time, request type, and target process ID are initialized in the 

TQE. 
6. If the initial scheduled wakeup time was expressed as a relative time, then 

bit TQE$V _ABSOLUTE is cleared and the initial expiration time is calcu­
lated as in $SETIMR from the initial delta time and the current system 
time. If the initial scheduled wakeup time was expressed as an absolute 
time, bit TQE$V _ABSOLUTE is set. 

7. The ASTCNT quota of the requesting process is decremented to account 
for the allocation of the TQE. 

8. It invokes EXE$INSTIMQ (in module EXSUBROUT) to insert the TQE 
into the right place in the timer queue. 

When the expiration time is reached, the target process is awakened (see 
Section 11. 7.3). Deallocation of the TQE occurs after delivery of a one-time 
scheduled wakeup request or as a result of a $CANWAK system service call. 

The $CANWAK system service cancels all one-time and repeat scheduled 
wakeup requests for a target process. EXE$CANWAK, the system service pro­
cedure, first invokes EXE$NAMPID to check that the requesting process has 
the ability to affect the target process (see Chapter 12). Each canceled TQE is 
deallocated to nonpaged dynamic memory and, if the initial requesting pro­
cess still exists, its PCB$W _ASTCNT is incremented to indicate the de­
allocation. 

11.6 INTERVAL CLOCK INTERRUPT SERVICE ROUTINE 

The interval clock interrupt service routine, EXE$HWCLKINT in module 
TIMESCHDL, services the hardware interrupt signaled by the interval clock 
every ten milliseconds. 

On some CPUs, this is an IPL 24 interrupt; on others, it is an IPL 22 inter­
rupt. Table 11-2 lists the CPUs and the IPL of their interval clock interrupts. 
The interval clock interrupt service routine has two major functions: 

263 



Time Support 

• Updating the system time land possibly process accounting) 
• Checking the timer queue for timer events that have timed out 

Updating the system time and process accounting fields requires the fol­
lowing actions: 

1. EXE$HWCLKINT resets the PR$_ICCS register to indicate the servicing 
of the interrupt and the reenabling of the interval clock. 

2. It updates the system time, EXE$GQ_SYSTIME, by adding the equivalent 
of ten milliseconds to the quadword value. 

3. EXE$HWCLKINT analyzes the PSL at the time of the interrupt to de­
termine which of the six timer statistics to increment: kernel mode, ex­
ecutive mode, supervisor mode, user mode, interrupt stack, or 
compatibility mode. This statistics array is defined at global location 
PMS$GL_KERNEL and displayed by Monitor Utility MODES display. 

4. If the interval clock interrupts while a process is executing (if the interrupt 
stack bit is clear in the interrupt PSL), then the accumulated CPU utiliza­
tion (PHD$L_CPUTIM) and quantum value (PHD$W _QUANT) are in­
cremented in the process header. The quantum value is used to determine 
quantum end (see Section 11.7 and Chapter 10). If the quantum value 
reaches zero, an IPL$_ TIMERFORK, or IPL 7, software interrupt is re­
quested. 

The check for whether the interrupt occurred while the system was 
already on the interrupt stack prevents a process from being charged for 
CPU time that the system was using to service interrupts. 

5. EXE$HWCLKINT determines whether the software timer interrupt 
should be requested to service the timer queue. If the first TQE has an 
expiration time less than or equal to the newly updated system time, then 
the timer event is due. The software timer is requested through an inter­
rupt at IPL$_ TIMERFORK, which is IPL 7. 

11.7 SOFTWARE TIMER INTERRUPT SERVICE ROUTINE 

264 

The software timer interrupt service routine, EXE$SWTIMINT in module 
TIMESCHDL, is invoked through the IPL$_ TIMERFORK software interrupt. 
The software timer interrupt can be requested because either the current 
process has reached quantum end or the first TQE must be serviced. 
EXE$SWTIMINT immediately raises IPL to IPL$_ TIMER (equal to 
IPL$_SYNCH) to serialize access to systemwide data, such as the scheduler 
database. 

EXE$SWTIMINT tests PHD$W _QUANT to determine whether the cur­
rent process has reached quantum end. This field is initialized to the negative 
value of the SYSBOOT parameter QUANTUM and incremented by the inter­
val clock interrupt service routine. A zero or positive quantum value indi-



11.7.1 

11.7.2 

11. 7 Software Timer Interrupt Service Routine 

cates quantum expiration. If the process has reached quantum end, 
EXE$SWTIMINT invokes routine SCH$QEND to service the quantum end 
event (see Chapter 10). 

If the system time, EXE$GQ_SYSTIME, is greater than or equal to the 
expiration time of the first element in the timer queue, then the timer event 
is due. The multiple-instruction comparison with the system time must be 
performed at IPL$_HWCLK to block a possible interval clock interrupt. 

If the timer request is due, then EXE$SWTIMINT removes its TQE from 
the timer queue, lowers IPL to IPL$_ TIMER, and performs one of three se­
quences of code (depending upon the type of request). The following sections 
describe these sequences. 

Timer Request Servicing 

If the TQE is a process timer request (created by a $SETIMR system service 
call and indicated by a type of 0), then EXE$SWTIMINT performs the follow­
ing operations: 

1. The event flag associated with this timer event is set by using the 
TQE$L_PID and TQE$B_EFN fields and invoking the SCH$POSTEF rou­
tine. A software priority increment of 3 may be applied when the process 
next executes (see Chapter 10). 

2. If the target process is no longer in the system or the event flag number is 
illegal, the TQE is simply deallocated without further action. 

3. The process's JIB$W _ TQCNT quota is incremented to indicate the deliv­
ery of the timer event and the pending deallocation of the TQE. 

4. If ACB$V _QUOTA in TQE$B_RQTYPE is set, the user requested AST 
notification. EXE$SWTIMINT copies the TQE$B_RMOD field to 
TQE$B_RQTYPE to reformat the TQE into an AST control block (ACB). 
EXE$SWTIMINT calls SCH$QAST to queue the ACB to the process in the 
access mode of the original timer request (see Chapter 7). 

When the processing of this TQE has been completed, EXE$SWTIMINT 
checks whether the next TQE is due. 

Note that process timer requests are strictly one-time requests. Any repeti­
tion of timer requests must be implemented by the requesting process. A 
process can request $SETIMR events only on its own behalf. 

Periodic System Routines 

The second type of TQE is a system routine request, indicated by a type of 1. 
A request of this type is not the result of any process request, but is a system­
requested, time-dependent event. EXE$SWTIMINT handles this type of TQE 
by performing the following actions: 

265 



Time Support 

266 

1. It loads R3 and R4 from the TQE$L_FR3 and TQE$L_FR4 fields (normally 
defined as the TQE$L_AST and TQE$L_ASTPRM fields). RS points to the 
beginning of the TQE. 

2. It executes a JSB instruction using the TQE$L_FPC field (normally de­
fined as the TQE$L_PID field). 

On return from the system subroutine, RS is assumed to point to a TQE. Its 
TQE$V _REPEAT bit is tested. If the bit is set, then the TQE is reinserted in 
the timer queue using the TQE$Q_DELTA time field. EXE$SWTIMINT next 
checks the timer queue for further TQEs to service. 

Note that even if the TQE is not reinserted in the queue, EXE$SWTIMINT 
does not deallocate the TQE. This type of TQE can be defined in a static 
nonpaged portion of system space or within a device driver data structure. For 
example, the TQE for EXE$TIMEOUT is permanently defined in the module 
SYSCOMMON, and the timer queue is initialized at bootstrap time with this 
data structure as the first element in the queue. 

One example of this type of request, a repeating system subroutine request, 
is .the once-per-second execution of the subroutine EXE$TIMEOUT in mod­
ule TIMESCHDL. EXE$TIMEOUT performs the following: 

1. The routine SCH$SWPWAKE is called to awaken the swapper process if 
appropriate (see Chapter 17). 

2. EXE$TIMEOUT increments the EXE$GL_ABSTIM field to indicate the 
passing of one second of system uptime. 

3. The routine ERL$WAKE is called to awaken the ERRFMT process if ap­
propriate (see Chapter 8). 

4. EXE$TIMEOUT calls ECC$REENABLE, a routine in CPU-specific 
loaded code. ECC$REENABLE scans the memory controllers to log any 
unreported corrected read data (CRD) errors and possibly to reenable 
CRD interrupts. 

S. EXE$TIMEOUT scans the I/O database for devices that have exceeded 
their timeout intervals. Drivers for such devices are called at their 
timeout entry points at device IPL. This scan also checks for terminal 
timed reads that have expired. If any is found, EXE$TIMEOUT invokes 
its driver's timeout routine. 

6. EXE$TIMEOUT scans for channel (controller) request blocks (CRBs) that 
have timed out. The CRB timeout mechanism, new with VMS Version 4, 
enables a driver to be entered periodically for controller-related func­
tions. The driver stores the address of a timeout routine in the field 
CRB$L_ TOUTROUT and an expiration time in CRB$L_DUETIME. 
EXE$TIMEOUT compares the expiration time to EXE$GL_ABSTIM and 
invokes the timeout routine if the CRB due time has arrived. 

The system communications services (SCS) class and port drivers em­
ploy this mechanism. The disk class driver, for example, must send its 



11.7.3 

11. 7 Software Timer Interrupt Service Routine 

server periodic messages to inform the server that the host system is 
running. The disk class driver timeout routine also checks that the server 
has made progress on the oldest outstanding request. 

7. If a process is running the Monitor Utility to display disk and disk queue 
length information, EXE$TIMEOUT scans the I/O database to collect 
information about disk queue lengths. (Note that this function is imple­
mented through a Version 4.4 patch and is therefore not visible in the 
Version 4.0 source listing of this module.) 

8. Next, EXE$TIMEOUT scans the "fork and wait" queue. Chapter 6 de­
scribes this queue and its use by fork processes. 

9. The first entry on the lock manager timeout queue is checked to see if it 
has expired. If it has, a deadlock search is initiated (see Chapter 13). 

10. EXE$TIMEOUT examines a number of processes to locate normal prior­
ity (priority less than 16) processes in the COM or COMO state, whose 
priority is less than that of the current process (or the highest normal 
priority computable process). The current priority of these lower priority 
processes is boosted to be equal to that of the highest normal priority 
COM or CUR process. 

This feature was implemented to prevent a high priority, compute­
intensive job from causing other processes to be unable to release system 
or other resources. The number of processes checked depends upon the 
special SYSBOOT parameter PIXSCAN. EXE$TIMEOUT examines 
PIXSCAN elements in the PCB pointer list each time it runs. It searches 
the list in a circular fashion, so that all normal processes eventually re­
ceive the priority boost. 

11. Invoking SCH$RA VAIL, EXE$TIMEOUT declares available several sys­
tem resources, RSN$_NPDYNMEM, RSN$_PGDYNMEM, and 
RSN$_MAILBOX. This is necessary because, in certain rare cases, these 
resources are not declared available when they should be. 

The terminal driver also uses a repeating system timer routine to imple­
ment its modem polling. The controller initialization routine in the terminal 
driver loads the expiration time field in a TQE in the terminal driver with the 
current system time, sets the repeat bit, and loads the repeat interval with 
the SYSBOOT parameter TTY _SCANDELTA. When the timer routine ex­
pires, it polls each modem looking for state changes. 

Scheduled Wakeup 

The third type of TQE, indicated by a type of 2, is associated with a request 
for a scheduled wakeup ($SCHDWK) of a hibernating process. This type of 
request may be either one-time or repeating and may be requested by a pro­
cess other than the target process. 

267 



Time Support 

268 

EXE$SWTIMINT performs the following operations for a scheduled 
wakeup TQE:. 

1. EXE$SWTIMINT invokes SCH$WAKE to awaken the target process (indi­
cated by TQE$L_PID). If the target process is no longer in the system, the 
control block is deallocated to nonpaged dynamic memory. If the request­
ing process (TQE$L_RQPID) still exists, its PCB$W _ASTCNT quota is 
incremented. 

2. If the request is a one-time request (indicated by a zero TQE$V _REPEAT 
bit in the TQE$B_RQTYPE field), then the cleanup described in step 1 is 
performed. 

3. If the request is a repeating type, then the repeat interval 
(TQE$Q_DELTA) is added to the request time (TQE$Q_ TIME), and the 
TQE is reinserted in the timer queue by its expiration time. 

EXE$SWTIMINT then checks to see whether the next TQE is due. 



12 Process Control and 
Communication 

I claim not to have controlled events, but confess plainly that 
events have controlled me. 

Abraham Lincoln, Letter to A. G. Hodges, April 4, 1864 

The VMS operating system provides many services that allow processes to 
communicate with one another and allow one process to control the execu­
tion of another. 

Communication mechanisms include event flags, mailboxes, the lock 
management system services (lock manager), global shared data sections, and 
shared files. This chapter explains the event flag mechanism and briefly de­
scribes the other mechanisms. 

VMS provides system services that enable a process to affect its own sched­
uling state or that of another process. It also provides services that enable a 
process to alter some of its parameters (such as name or priority). This chap­
ter describes the implementation of these services. Table 12-1 summarizes 
the process control services. 

12.1 EVENT FLAG SYSTEM SERVICES 

Event flags are status posting bits maintained by VAX/VMS for general pro­
gramming use. Each event flag is a variable which can be either set or clear 
and whose status can be tested. Event flags are used within a single process 
for synchronization of 1/0 requests, lock requests, various information re­
quests (for example, Get Job/Process Information), and timer requests. Event 
flags can also be used as application-specific synchronization tools. Event 
flags used for synchronization can be local to one process or shared among 
processes in the same group. 

System services are provided to read, set, or clear collections of event flags. 
Other services allow a process to wait for one or several event flags. 

Each process has available to it 64 local (process-specific) event flags and 64 
common event flags shareable among processes in the same group. The event 
flags are organized into four clusters of 32 flags each. Before a process can 
refer to a common event flag cluster, it must explicitly "associate" with the 
cluster (see Section 12.1.2). 

269 



Process Control and Communication 

12.1.1 

12.1.2 

270 

Table 12-1 Summary of Process Control System Services 

Service Name 

$ASCEFC 

$DLCEFC 

$WAITFR 

$WFLOR 

$WFLAND 

$SYNCH 

$HIBER 

$WAKE 

$SCHDWK 

$CANWAK 

$SUSPND 

$RESUME 

$EXIT 

$FORCEX 

$CREPRC 

$DELPRC 

$SET AST 

$SETPRA 

$SETPRI 

$SETPRN 

$SE TR WM 

$SETSM 

$SETSFM 

$GETJPI 

Affect Other Processes 

Same group only 

Same group only 

No1 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

No 

No 

Yes 

No 

No2 

No2 

No2 

Yes 

Privilege Checks 

PRMCEB (to create permanent cluster) 

PRMCEB 

None 

GROUP or WORLD 

GROUP or WORLD 

GROUP or WORLD 

GROUP or WORLD 

GROUP or WORLD 

None 

GROUP or WORLD 

DETACH for different UICs 

GROUP or WORLD 

Access mode check 

Access mode check 

ALTPRI and either GROUP or WORLD 

None 

None 

PSWAPM 

Access mode check 

GROUP or WORLD 

1 As part of the Create Process system service, a process can specify that the process being 
created hibernate before a specified image executes. 

2This feature can be specified as a part of the Create Process system service. 

Local Event Flags 

The 64 local event flags are stored directly in each process's PCB, at offsets 
PCB$L_EFCS and PCB$L_EFCU (see Figure 12-1). Local event flags 0 to 31 
comprise cluster 0 and ate located in longword PCB$L_EFCS. Local event 
flags 32 to 63 comprise cluster 1 and are located in longword PCB$L_EFCU. 

Common Event Flags 

A common event flag cluster is stored in a nonpaged data structure called a 
common event block (CEB), whose layout is pictured in Figure 12-2. A partic-



12.1 Event Flag System Services 

SQFL 

SQBL 

l 
l 

l WEFC STATE 

~ -
EFWM 

EFCS 

EFCU 

EFC2P 

EFC3P 

,, i.. 

r 
Figure 12·1 Software PCB Fields That Support Event 
Flags 

ular common event flag cluster is identified by its name, CEB$T _EFCNAM, 
and UIC group, CEB$W _GRP. There cannot be more than one cluster with 
the same name and group. The CEBs are queued in a systemwide, doubly 
linked list located by global listhead SCH$GQ_CEBHD (see Figure 12-3). The 
mutex EXE$GL_CEBMTX synchronizes access to the list of CEBs. (Chapter 
2 describes mutexes.) 

A process invokes the Associate Common Event Flag Cluster ($ASCEFC) 
system service to have access to the flags in a common event flag cluster. The 
process specifies the name of the cluster and implicitly, through its 
PCB$L_UIC field, the UIC group of the cluster. The process also specifies 
whether it will access the flags in that cluster using event flag numbers 64 
through 95 (cluster 2) or 96 through 127 (cluster 3). 

The system service procedure EXE$ASCEFC, in module SYSASCEFC, 

271 



Process Control and Communication 

272 

CEB Forward Link 

CEB Backward Link 

Status I Type 1 Size 

Process ID of Creator 

Event Flags 

Wait Queue Forward Link 

Wait Queue Backward Link 

CEF State Number l Wait Count 

UIC of Creator 

Reference Count I Protection Mask 

I Count 

Cluster Name 
(up to 15 characters) 

Figure 12-2 Layout of Common Event Block 

searches the CEB list for one with the same name and group. If none exists, 
EXE$ASCEFC creates one and links it into the CEB list. If the process speci­
fies creation of a permanent common event flag cluster and has the privilege 
PRMCEB, EXE$ASCEFC sets the bit CEB$V _PERM in CEB$B_STS to indi­
cate that the cluster is a permanent one. Whether or not the cluster existed 
previously, EXE$ASCEFC associates the process and the cluster by incre­
menting the cluster's reference count, CEB$W _REFC, and by storing the 
address of the CEB in either PCB$L_EFC2P (for cluster 2) or PCB$L_EFC3P 
(for cluster 3). (The creation of MA780 shared memory common event clus­
ters is discussed in Section 12.4.6.) 

A process dissociates itself from a common event flag cluster by invoking 
the Disassociate Common Event Flag Cluster ($DACEFC) system service. 
The system service procedure EXE$DACEFC, in module SYSASCEFC, lo­
cates the CEB using the pointer to the cluster in the PCB, decrements the 



12.1.3 

12.1 Event Flag System Services 

SCH$GQ_CEBHD:: 

l ...... CEB ..--..., - ----, 
Wait Queue 1-__:i PCB ~ PCB ~ PCB 

• 
CEB Name 

CEB -....-i 
Wait Queue r;-- PCB 

• 

CEB ........., -~ 

Wait Queue c;:::J PCB ~ PCB 

• 

CEB 

Wait Queue 
No processes are waiting 
for flags in this 
common event flag cluster. 

Figure 12-3 Common Event Flag Wait Queues 

cluster's reference count, and clears either PCB$L_EFC2P or PCB$L_EFC3P, 
as appropriate. If the cluster is a temporary one (if CEB$V _PERM is clear) and 
if its reference count is now zero, EXE$DACEFC removes the CEB from the 
CEB list and deallocates it to nonpaged pool. 

To delete a permanent event flag cluster, a process invokes the Delete 
Common Event Flag Cluster ($DLCEFC) system service. The system service 
procedure EXE$DLCEFC, in module SYSASCEFC, clears bit CEB$V _PERM. 
If the cluster's reference count is zero, EXE$DLCEFC removes it from the list 
and deallocates it to nonpaged pool. If the cluster's reference count is not 
zero, its deletion is deferred until all processes have dissociated from it. 

Waiting for an Event Flag 

A process can be placed into an event flag wait state when it performs any of 
the following actions: 

• Executing one of the three event flag wait services 

-Wait for Single Event Flag ($WAITFR) 

273 



Process Control and Communication 

274 

-Wait for Logical OR of Event Flags ($WFLOR) 
-Wait for Logical AND of Event Flags ($WFLAND) 

• Executing a Synchronize ($SYNCH) system service (which invokes 
$WAITFR) 

• Executing a Queue 1/0 Request and Wait ($QIOW), Enqueue Lock Request 
and Wait ($ENQW) system service, or any of the other synchronous system 
services which invoke $SYNCH 

• Invoking the RMS services as synchronous operations (the usual way they 
are called) 

If the flag or flags in question are already set, the system service immedi­
ately returns to its caller. Otherwise, the process is placed into either a local 
or common event flag wait state. The saved PC in the hardware PCB is al­
tered to contain the address of the CHMK instruction in the system service 
vector. When the process is placed back into execution, it will reexecute the 
event flag wait system service. This enables ASTs to be delivered to the pro­
cess while it is waiting for the flag(s) to be set. (See Chapter 10 for additional 
information.) 

There is anjmportant implication of this implementation-flags for which 
a process is waiting should not be toggled (set and then cleared) by other 
threads of execution. The result of toggling an event flag might be that the 
process becomes computable but reenters the event flag wait when it 
reexecutes the event flag wait service. 

The event flag cluster number (either 0 or I for local clusters or 2 or 3 for 
global clusters) is stored in the PCB (at offset PCB$B_ WEFC). The list (mask) 
of event flags being waited for is stored (in one's complement form) in 
PCB$L_EFWM. 

• If the process is waiting for a single event flag ($WAITFR), the 
PCB$L_EFWM mask contains a I in every bit except the bit number corre­
sponding to the specified flag. 

• If the process is waiting for any one of several flags to be set ($WFLOR), the 
PCB$L_EFWM mask contains the one's complement of the mask passed to 
the $WFLOR system service. (The $WAITFR mask is thus a special case of 
a wait for any one of a group of flags to be set.) If any of the flags in the 
requested mask is set when $WFLOR is called, the process is not placed 
into a wait state. Instead, the service immediately returns a success code to 
its caller. 

• If a process calls the $WFLAND system service, indicating a wait for all 
flags in a given mask to be set, the PCB$V _WALL ("wait all" bit in 
PCB$L_STS) is set. Each of the flags specified in the system service argu­
ment must have been set for the wait to be satisfied. However, the flags 
need not be set simultaneously. The $WFLAND system service comple­
ments the argument mask, then clears any bits in it corresponding to cur-



12.1.3.1 

12.1 Event Flag System Services 

rently set flags, and then stores the mask in PCB$L_EFWM. 
Subsequently, each time the process is placed back into execution as a 

result of AST delivery, the process reexecutes the $WFLAND service. Each 
time, the event flag wait mask is built anew. One implication of this imple­
mentation is that flags for which the process is waiting should not be 
cleared by other threads of execution. 

There are two local event flag wait states (LEF and LEFO) and two corre­
sponding wait queue listheads (SCH$GQ_LEFWQ and SCH$GQ_LEFOWQ) 
for the entire system. However, there is one common event flag wait queue 
listhead for each common event flag cluster. Each common event flag wait 
queue listhead is located in the corresponding CEB (see Figurel2-2) and has 
the same overall structure as any other wait queue listhead (see Figure 12-3). 
Both resident and outswapped processes waiting for flags in a common event 
flag cluster are queued to the same CEB wait queue. 

Setting an Event Flag. A process sets an event flag directly by calling the Set 
Event Flag ($SETEF) system service. A process can use this service at AST 
level to communicate with its mainline code. It can also use this service to 
set common event flags to communicate with other processes. 

Event flags are also set in response to I/O completion, timer expiration, the 
granting of a lock request, and completion of any of the following system 
services: 

• Breakthrough [and Wait] ($BRKTHRU[W]) 
• Get Device/Volume Information [and Wait] ($GETDVI[W]) 
• Get Job/Process Information [and Wait] ($GETJPI[W]) 
• Get Lock Information [and Wait] ($GETLKI[W]) 
• Get Systemwide Information [and Wait] ($GETSYI[W]) 
• Get Queue Information [and Wait] ($GETQUI[W]) 
• Send to Job Controller [and Wait] ($SNDJBC[W]) 
• Update Section File on Disk [and Wait] ($UPDSEC[W]) 

The routine SCH$POSTEF, in module POSTEF, is called to set an event 
flag. It is invoked by the $SETEF system service and by any other executive 
code which must set an event flag. SCH$POSTEF performs the actual event 
flag setting and checks for possible scheduling implications. SCH$POSTEF 
first determines what kind of event flag is being set. 

If a local event flag is being set, SCH$POSTEF checks whether this flag 
satisfies the process's wait request. In a $WFLOR wait, this flag merely has to 
match one of the flags being waited for. In a $WFLAND wait, all of the flags 
being waited for must be set to satisfy the process's wait request and report 
an event to the scheduler. If the process's wait is satisfied, SCH$POSTEF 
reports an event-flag-setting event for the process by invoking routine 
SCH$RSE (see Chapter 10). 

275 



Process Control and Communication 

12.1.4 

276 

If a common event flag is being set, SCH$POSTEF must scan the list of 
PCBs in the common event block wait queue to determine which, if any, of 
the processes waiting for flags in this cluster has its wait request satisfied. 
SCH$POSTEF reports an event-flag-setting event for each such process. 

When an event-flag-setting event is reported for a process in an event flag 
wait state, SCH$RSE changes its state to COM or COMO and, if appropriate, 
applies a priority boost. SCH$RSE places the process's PCB into the COM or 
COMO queue corresponding to its new current priority. SCH$RSE clears and 
sets, as appropriate, the bits in SCH$GL_COMQS or SCH$GL_COMOQS. 
SCH$RSE requests a rescheduling interrupt if the target process is resident 
and has a priority equal to or higher than that of the current process. If the 
target process is outswapped, SCH$RSE awakens the swapper process (see 
Chapter 10). If the process is resident, SCH$RSE adds 4 to the saved PC in the 
hardware PCB so that the process does not reexecute the event flag wait 
service. 

When a common event flag located in MA780 shared memory is being set, 
the event flag must be set in the master CEB located in shared memory and in 
the slave CEB on this processor. Other processors connected to this shared 
memory unit must be notified that a shared memory common event flag was 
just set. An event-flag-setting event is reported for any process whose wait 
request is now satisfied. (Shared memory common event flag data structures 
are discussed at the end of this chapter.) 

Any other processor connected to the same global event flag cluster re­
ceives initial notification through an MA780 interprocessor interrupt. The 
interrupt service routine determines that the interrupt was a result of an 
event flag in shared memory being set, copies the entire set of event flags 
from the master CEB to the slave CEB, and checks whether any of the pro­
cesses waiting for flags in this cluster are now computable. 

Reading and Clearing Event Flags 

The Read Event Flag ($READEF) system service is simply informational. It 
has no effect on the computability of any process on any processor. The event 
flag cluster is read from one of the following locations: 

• Local event flag clusters are read from the PCB. 
• Regular common event flag clusters are read from the CEB. 
• Common event flag clusters located in shared memory are read from the 

master CEB located in shared memory. 

The Clear Event Flag ($CLREF) system service simply clears the specified 
event flag either in the PCB or in a CEB, depending on what type of flag it is. 

Note that clearing a flag in a common event flag cluster in MA780 shared 
memory causes only the event flag in the master CEB to be cleared. It is not 



12.2 Affecting the Computability of Another Process 

necessary to copy the set of flags from the master CEB to the slave CEBs on 
this or other processors when an event flag is cleared for the following two 
reasons: 

• The event flag wait services only use the master CEB when checking 
whether to place a process into a wait state or return immediate success. 

• The event flag posting routine copies the master set of flags to the local 
slave CEB before testing whether any process wait requests are satisfied. 
The master set of flags is copied into all other slave CEBs as a result of 
notifying other processors that a flag has been set. 

The implication of this design is that processes cannot synchronize on the 
clearing of an event flag in shared memory. 

12.2 AFFECTING THE COMPUTABILITY OF ANOTHER PROCESS 

12.2.1 

In any multiprocessing application, it is necessary for one process to control 
whether and when other processes in the application can execute. The VMS 
operating system includes several mechanisms that provide this control. 

Common Event Flags 

The use of common event flags is one method of synchronization control. 
One process can reach a critical point in its execution and wait on a common 
event flag. Another process can allow this process to continue its execution 
by setting the flag in question. 

A common event flag can also be used as a semaphore to gain access to a 
resource shared among processes. Such an application would require creation 
of a common event flag cluster with its flags all set to 1. Each flag can be used 
as an individual lock. Each cooperating process must associate to the com­
mon event flag cluster. 

Before any process uses the resource represented by a particular event flag, 
it must execute the following sequence using the appropriate event flag 
number: 

5$: $CLREF_S EFN=#65 ;Clear the event flag 

CMPL 

BEQL 

RO,#SS$_WASSET ;Was its previous state 

10$ ;Branch if yes 

$WAITFR_S EFN=#65 ;Else wait for flag 

BRB 5$ 

1? 

10$: ;Proceed to access resource 

$SETEF_S EFN=#65 ;Set the event flag 

277 



Process Control and Communication 

12.2.2 

12.2.2.1 

278 

Clearing an event flag is an interlocked operation implemented by VAX/ 
VMS (except for MA780 shared memory common event flags). Only one pro­
cess at a time can clear the flag and cause the transition in its state from set 
to clear. That process then "owns" the flag and its associated resource. Any 
other process that clears the flag receives a was-clear status and must wait for 
the flag to be set. 

The process that owns the flag can then access the resource without syn­
chronization problems. When the process's accesses to the resource are 
complete, the process sets the flag, relinquishing ownership of the flag and 
resource. The processes which were waiting for the flag are made computable 
and repeat their attempts to cause the event flag transition from set to clear. 

Process Control Services 

Several system services allow one process directly to alter the scheduling 
state of another process. These services have arguments that specify the tar­
get process by process name and process identification (PID). The invoker of 
the service specifies one or the other of these arguments. Process name is 
always implicitly qualified by UIC group. That is, a process can identify by 
name only processes with the same UIC group as itself. 

It should be noted that with VMS Version 4 there are two forms of PID, an 
externally visible PID and an internally visible PID. The externally visible 
PID, new with VMS Version 4, is called an EPID. It is an extension of the 
internal PID and specifies on what node of a VAXcluster System a process is 
located. Its value is stored in PCB$L_EPID. System utilities, such as SHOW 
SYSTEM, display EPIDs. System services use the EPID in a process identifi­
cation argument passed to or from a service invoker. 

The internally visible PID, which is unchanged from earlier versions of 
VMS, is sometimes called an IPID to distinguish it from the EPID. It is stored 
in PCB$L_PID. See Chapter 20 for information on its layout and creation. 
System routines, such as EXE$EPID_ TO_IPID (in module SYSPCNTRL), 
convert an EPID to an IPID for use by VMS executive code. Unless otherwise 
noted, the term PID in this book refers to the IPID. 

Privilege Checks. Regardless of how the target process is specified, VMS 
must determine whether the process exists and whether the requesting pro­
cess has the ability to affect the target process. This check is centralized in a 
routine called EXE$NAMPID (in module SYSPCNTRL) which is called by all 
such system services. 

EXE$NAMPID first determines which process is the target of the system 
service by translating its argument process name or EPID to an IPID and 
confirming that the target process exists. If the target process specification is 
not valid, EXE$NAMPID returns the error SS$_NONEXPR (nonexistent 



12.2.2.2 

12.2.2.3 

12.2 Affecting the Computability of Another Process 

process), which becomes the system service's return status. 
If the target process specification is valid, EXE$NAMPID determines 

whether the requesting process has the ability to affect its target. EXE$NAM­
PID makes the following tests, proceeding until one is successful or until 
there are no more: 

1. If the requesting and target processes are in the same job tree (have the 
same JIB), EXE$NAMPID returns successfully. (A process trying to affect 
itself passes this test.) 

2. If the requesting and target processes have the same UIC, EXE$NAMPID 
returns successfully. (This behavior is new with VMS Version 4.) 

3. If the requesting process has WORLD privilege, EXE$NAMPID returns 
successfully. 

4. If the requesting and target processes are members of the same UIC group 
and the source process has GROUP privilege, EXE$NAMPID returns 
successfully. 

If any test is successful, EXE$NAMPID returns control at IPL$_SYNCH 
with the address .of the target process PCB in R4. Note that this return alters 
the contents of R4 which, on entry, usually contains the PCB address of the 
requesting process. 

If all these tests fail, EXE$NAMPID returns the error SS$_NOPRIV, which 
becomes the system service's return status. 

Process Creation and Deletion. A first step in a multiprocess application re­
quires that a controlling process create other processes for designated work. 
These processes may be deleted when they have completed their work or 
they may exist in some wait state in anticipation of additional work. The 
detailed operation of process creation is described in Chapter 20. Process de­
letion is described in Chapter 22. 

Hibernate/Wake. There are two different ways that a process can be tempo­
rarily halted, hibernation and suspension. Hibernation and suspension are 
implemented through the system services Hibernate ($HIBER) and Suspend 
Process ($SUSPND). 

A process invokes the $HIBER service to place itself into hibernation. (A 
process cannot put another process into the HIB state.) The $HIBER system 
service procedure EXE$HIBER, in module SYSPCNTRL, tests whether the 
wake pending flag (PCB$V _ WAKEPEN in PCB$L_STS) is set and clears it. If 
the flag was clear, indicating that an associated wake has not preceded the 
hibernate call, EXE$HIBER causes the process to be placed into the hibernate 
wait state. As described in Chapter 10, the saved PC is altered to contain the 
address of the CHMK instruction in the system service vector. This enables the 
process to receive AS Ts while it is hibernating. Furthermore, the reexecution 

279 



Process Control and Communication 

12.2.2.4 

12.2.2.4.1 

280 

of EXE$HIBER with its test of the wake pending flag enables a hibernating 
process to be awakened by a $WAKE call issued from an AST. 

The Wake Process ($WAKE) and Schedule Wakeup ($SCHDWK) system 
services are the complementary services to $HIBER. Both services can re­
move a process from hibernation. A process can awaken itself by calling 
$WAKE from an AST procedure or by having previously scheduled a wake 
through $SCHDWK. Another process with the ability to affect the hibernat­
ing process can request $WAKE or $SCHDWK to awaken it. 

The $WAKE system service procedure EXE$WAKE, in module 
SYSPCNTRL, invokes SCH$WAKE (in module RSE) to set the wake pending 
flag in the PCB and report the awakening event to the scheduler routine 
SCH$RSE, with a priority boost class of PRl$_RESAVL. SCH$RSE removes 
the process from the HIB or HIBO queue and places it in the COM or COMO 
queue corresponding to its updated priority. (See Chapter 10 for further de­
tails on SCH$RSE, priority boosts, and process state queues, and Chapter 11 
for more information on $SCHDWK.) 

The next time the process executes, EXE$HIBER executes again (because 
the PC was backed up by 4). Because the wake pending flag is now set, the 
process returns immediately from the hibernate call (with the wake pending 
flag now clear). Notice that if the process is in any state other than HIB or 
HIBO when it is awakened, the net result is to leave the wake pending flag set 
with no other change in its scheduling state. 

Suspend/Resume. The implementation of process suspension is more com­
plicated than that of hibernation because a process can be placed into the 
SUSP state by other processes. The scheduling philosophy of the VMS operat­
ing system, illustrated in Figure 10-5, assumes that processes enter various 
wait states from the state of being the current process and in no other way. 
This assumption requires that the process being suspended (the target) be­
come current, replacing the currently executing process, the requester of the 
$SUSPND system service. 

VMS accommodates this scheduling constraint by using a kernel AST, the 
same tool that it uses when it needs access to a portion of process address 
space. In this case, it is not the process address space that is so important. 
Rather, the process must first be made current before it is placed into the 
SUSP state. 

Process Suspension. Process suspension occurs in two parts, both of which 
are in module SYSPCNTRL. The first is the $SUSPND system service proce­
dure, EXE$SUSPND, which executes in the context of the requesting process. 
EXE$SUSPND first checks whether the delete pending bit in the PCB 
(PCB$V _DELPEN in PCB$L_STS) is set, indicating that the process is being 
deleted. If the bit is set, EXE$SUSPND returns the error status 



12.2.2.4.2 

12.2.2.5 

12.2 Affecting the Computability of Another Process 

SS$_NONEXPR. Otherwise, it tests and sets the suspend pending bit in the 
PCB of the target process (PCB$V _SUSPEN in PCB$L_STS). If the bit was 
already set, EXE$SUSPND merely returns with status SS$_NORMAL. 
Otherwise, it queues the kernel AST (the second part of suspension) to the 
target process. This implementation provides for the case in which a process 
suspends itself. 

Through the normal scheduling selection process, the target process even­
tually executes. The kernel AST that performs the suspension executes first 
unless there are previously queued special and normal kernel ASTs. The 
SUSPND AST procedure first checks (and clears) the resume pending flag 
(PCB$V _RESPEN in PCB$L_STS). (This check prevents the deadlock that 
might otherwise occur if the associated call to the Resume Process 
($RESUME) system service preceded the execution of the SUSPND proce­
dure.) If the resume pending flag is set, the AST procedure simply clears the 
suspend pending bit and returns, enabling the process to continue executing. 

If the resume pending flag is clear, the SUSPND AST procedure checks 
whether there is a Files-11 XQP operation in progress. (Chapter 7 discusses 
this check and the action taken if there is an operation in progress.) If there is 
none, the procedure places the process into the SUSP wait state. ASTs cannot 
be delivered to the process because queuing an AST to a suspended process is 
ignored by SCH$RSE. The saved PSL indicates kernel mode and IPL 0. The 
saved PC is an address within the SUSPND AST procedure. When the pro­
cess is resumed (the only way that a suspended process can continue with its 
execution), it reexecutes the check of the resume pending flag, which is now 
set, causing the process to return successfully from the AST. 

Operation of the $RESUME System Service. The $RESUME system service is 
very simple. The resume pending flag in PCB$L_STS of the target process is 
set and, if the target process of the resume request is in either the SUSP or 
SUSPO state, a resume event is reported by invoking SCH$RSE. As with all 
other system events, this report may result in a rescheduling interrupt re­
quest, a request to wake the swapper process, or nothing at all. 

Exit and Forced Exit. The Exit ($EXIT) system service terminates the cur­
rently executing image. If the process is executing a single image without a 
command language interpreter, image exit usually results in process deletion. 
A detailed discussion of the $EXIT system service is given in Chapter 21. 

The Force Exit ($FORCEX) system service enables one process to force a 
target process to request the $EXIT system service. The system service proce­
dure EXE$FORCEX, in module SYSFORCEX, simply sets the force exit pend­
ing flag (PCB$V _FORCEPEN in PCB$L_STS) and queues a user mode AST to 
the target process. This AST procedure, executing in user mode, calls the 

281 



Process Control and Communication 

$EXIT system service after clearing the AST active flag by executing the 
following instruction: 

CHMK #ASTEXIT 

(For more information on this instruction, see Chapter 7.) The call to $EXIT 
is executed in the context of the target process. Execution proceeds in exactly 
the same manner as it would if the target process had called the system 
service itself. 

12.3 MISCELLANEOUS PROCESS ATTRIBUTE CHANGES 

12.3.1 

282 

Finally, there are several system services that allow a process to alter its 
characteristics, such as its response to system service failures, its priority, 
and its process name. Some of these changes (such as priority elevation or 
swap disabling) require privilege. The Set Priority ($SETPRI) system service is 
the only service described in this section that can be issued for a process 
other than the caller. 

Set Priority 

The $SETPRI system service allows a process to alter its own priority or the 
priority of other processes that it is allowed to affect. A process with the 
ALTPRI privilege can change priority to any value between 0 and 31. A pro­
cess without this privilege is restricted to the range between 0 and the au­
thorized base priority of its target process (PCB$B_AUTHPRI). 

The system service procedure EXE$SETPRI, in module SYSSETPRI, 
changes the base priority in the PCB at offsets PCB$B_PRIBSAV and 
PCB$B_PRIB. If the target process is currently executing, its current priority, 
at offsets PCB$B_PRISAV and PCB$B_PRI, is also changed. If the target pro­
cess has been running at elevated priority while it has a mutex locked, only 
PCB$B_PRIBSAV and, if appropriate, PCB$B_PRISAV are altered. (See Chap­
ter 10 for further information on these PCB fields.) 

If a process is altering its own priority, EXE$SETPRI compares the priority 
of the highest priority computable resident process against the current 
process's new current priority. If there is a computable resident process of 
higher priority, EXE$SETPRI requests an IPL 3 rescheduling interrupt. 

EXE$SETPRI then reports a set-priority system event for the target process 
by invoking SCH$RSE with a priority boost class of PRI$_IOCOM. If the 
target process is COM or COMO, SCH$RSE removes it from its current 
COM or COMO queue and places it into the COM or COMO queue corre­
sponding to its new current priority. SCH$RSE clears and sets, as appropriate, 
the bits in SCH$GL_COMQS or SCH$GL_COMOQS. SCH$RSE requests a 
rescheduling interrupt if the target process is resident and has a higher or 



12.3.2 

12.3.3 

12.4 Interprocess Communication 

equal priority to that of the current process. If the target process is 
outswapped, SCH$RSE attempts to awaken the swapper process. (See Chap­
ter 10 for further details.) 

Set Process Name 

The Set Process Name ($SETPRN) system service allows a process to change 
its process name. The new name cannot contain more than 15 characters. If 
no other process in the same group has the same name, the new name is 
placed into the PCB (at offset PCB$T _LNAME). (Note that this service al­
lows more flexibility in establishing a process name than is available from 
the usual channels, such as the authoriza.tion file, $JOB card, or DCL com­
mand SET PROCESS /NAME because there are no restrictions imposed by 
the service on characters that can make up the process name.) 

Process Mode Services 

There are several miscellaneous system services whose only action is to set 
or clear a bit in some field in the PCB. In particular, the PCB contains a status 
longword (not to be confused with the hardware entity, the PSL) that records 
the current software status of the process. Table 12-2 lists each of the flags in 
this longword and the direct or indirect ways that these flags can be set or 
cleared. The symbolic name for each of these flags is of the form 
PSL$V _name, where name is one of those listed in the table. 

The Set Resource Wait Mode, Set System Service Failure Exception Mode, 
and Set Swap Mode system services all set (or clear) bits in this status long­
word. The ability to disable swapping is protected by the PSWAPM privilege. 
The other two services require no privilege. Several other system services 
(such as $DELPRC, $FORCEX, $RESUME, or $SUSPND) set or clear bits in 
the status longword as an indication of their primary operation. 

The Set AST Enable system service sets or clears (enables or disables) deliv­
ery of ASTs to a given access mode. The AST enable flags are stored at offset 
PCB$B_ASTEN within the PCB. The use of these flags is discussed in 
Chapter 7. 

12.4 INTERPROCESS COMMUNICATION 

In any application involving more than one process, it is necessary for data to 
be shared among the several processes or for information to be sent from one 
process to another. The VMS operating system provides various mechanisms 
that accomplish this information exchange. These mechanisms vary in the 
amount of information that can be transmitted, transparency of the transmis­
sion, and amount of synchronization provided by the VMS operating system. 

283 



(\;) ~ 
00 0 
~ C'l 

~ 

"' "' 
CJ 

Table 12-2 Meanings of Flags in PCB Status Longword (PCB$L_STS) 
§ 
No 

'"' 
Name Meaning of Flag If Set Flag Set By Flag Cleared By e... 

c::. 
RES Process is resident Swapper Swapper 1::$ 

>:l... 
DELPEN Process deletion is pending $DELPRC CJ 
FORCPEN Forced exit is pending $FORCEX Image rundown, ~ 

Process rundown i3 
IN QUAN Process is in initial Swapper SCH$QEND i::: 

1::$ 
quantum after inswap ....... 

C'l 

PSWAPM Process swapping is disabled $SETS WM, $SETSWM 
c::. ..... ....... 

$CREPRC 0 
1::$ 

RESPEN Resume is pending $RESUME Suspend AST 
(skip suspend) 

SSFEXC Enable system service $SETSFM $SETSFM, 
exceptions for kernel mode Process rundown 

SSFEXCE Enable system service $SETSFM $SETSFM, 
exceptions for exec. mode Process rundown 

SSFEXCS Enable system service $SETSFM $SETSFM, 
exceptions for super. mode Process rundown 

SSFEXCU Enable system service $SETSFM, $SETSFM, 
exceptions for user mode $CREPRC Image rundown 

SSRWAIT Disable resource wait mode $SE TR WM, $SETRWM 
$CREPRC 

SUS PEN Suspend is pending $SUSPND Suspend AST 

WAKEPEN Wake is pending $WAKE, $HIBER 
(skip hibernate) $SCHDWK 

WALL Wait for all event flags $WFLAND Next $WFLOR or $WAITFR 
in mask 



Table 12-2 Meanings of Flags in PCB Status Longword (PCB$L_STS) (continued) 

Name Meaning of Flag If Set Flag Set By Flag Cleared By 

BATCH Process is a batch job $CREPRC 

NOACNT No accounting records $CREPRC 
for this process 

SWPVBN Modified page write to Swapper Swapper 
swap file is in progress 

ASTPEN AST is pending (not used) 

PHDRES Process header is resident Swapper Swapper 

HIBER Hibernate after initial $CREPRC 
image activation 

LOGIN Login without reading $CREPRC 
the authorization file ...... 

!\:> 
NETWRK Process is a network job $CREPRC .+:::,. 

PWRAST Process has declared a $SETPRA Queuing of recovery AST, 
5" power recovery AST Image rundown, ..... 

Process rundown Cl) 

>ti 
NODELET Do not delete this process "" 0 

(not used) (") 
Cl) 

DISAWS Disable automatic working set SET WORK SET WORK 
Cl) 
Cl) 

adjustment on this process /NO ADJUST, /ADJUST (J 

$CREPRC 0 s 
INTER Process is interactive job $CREPRC s 
RECOVER (Reserved) i::: 

::l ...... 
SECAUDIT Perform mandatory process LOGIN OUT (") 

$::) 

l\J auditing ..... ...... 
Oo § CJ-, 



Process Control and Communication 

12.4.1 

12.4.2 

12.4.3 

286 

This section discusses event flags, lock management system services, 
mailboxes, logical names, and global sections. In addition to these, VMS pro­
vides file sharing and DECnet task-to-task communication. The Guide to 
VAX/VMS File Applications describes use of the former and the VAX/VMS 
Networking Manual the latter. 

Event Flags 

Common event flags can be treated as a method for several processes to share 
single bits of information. In fact, the typical use of common event flags is as 
a synchronization tool for other more complicated communication tech­
niques. 

The internal operations of common event flags are described in the begin­
ning of this chapter. 

Lock Management System Services 

The lock management system services (also known as the lock manager) 
enable processes to name a shared resource and request locks on that re­
source. If access to a resource cannot be immediately granted to a lock, a 
queuing mechanism is provided for a process to wait until it can be granted 
access to the resource. The lock manager provides a number of lock modes to 
control how the resource is to be shared with other processes. Blocking ASTs 
and a lock value block are also provided to pass information about, or syn­
chronize access to, a resource. The internals of the lock manager are de­
scribed in Chapter 13. 

Mailboxes 

Mailboxes are software-implemented 1/0 devices that can be read and writ­
ten through RMS requests or the $QIO system service. Although process­
specific or systemwide parameters may control the amount of data that can 
be written to a mailbox in one operation, there is no limit to the total amount 
of information that can be passed through a mailbox with a series of reads and 
writes. 

There are two forms of synchronization provided for mailbox 1/0. A simple 
but restrictive technique is that the receiving process issue a read from the 
mailbox and wait until the read completes. The read cannot complete until 
the process writing to the mailbox completes its 1/0 request. The limitation 
of this technique is that the receiving process cannot do anything else while 
it is waiting for data. Even if the process were to issue an asynchronous 1/0 
request, it must have an 1/0 request outstanding at all times to receive notifi-



12.4.4 

12.4.5 

12.4 Interprocess Communication 

cation when some other process writes to the mailbox. In some applications, 
these limitations may be acceptable so that this technique can be used. 

Other applications may have a receiving process that performs different 
tasks, depending on the information available to it. Putting such a process 
into a wait state for one task prevents it from servicing any of its other tasks. 
For such applications, the VMS operating system provides a special $QIO 
request called Set Attention AST that enables a process to receive AST notifi­
cation when a message is written to its mailbox. This technique allows a 
process to continue its mainline processing and handle requests from other 
processes only when such work is needed, without having an 1/0 request 
outstanding at all times. 

Chapter 18 discusses the implementation of mailboxes and Chapter 7 that 
of attention ASTs. 

Logical Names 

Logical names (see Chapter 28) are used extensively by the VMS operating 
system to provide total device independence in the 1/0 system. However, 
logical names can be used for many other purposes as well. Specifically, one 
process can pass information to another process by creating a logical name in 
a shared logical name table with information stored in the equivalence string. 
The receiving process simply translates the name to retrieve the data. 

Although some form of synchronization is provided by an error return 
(SS$_NOTRAN) from the Translate Logical Name ($TRNLNM) system ser­
vice, processes using such a technique shoulq use event flags (or an equiva­
lent niethod) to synchronize this communication technique. One use of this 
technique where synchronization is not required occurs when a process 
creates a subprocess or detached process and passes the new process data in 
the equivalence strings for SYS$INPUT, SYS$0UTPUT, or SYS$ERROR. 
Using this method, there is no possibility for the translation to occur before 
the creation. 

Global .Sections 

Global sections provide the fastest method for one process to pass informa­
tion to another process. Because the processes have the data area mapped into 
their address space, no movement of data takes place. Instead, the method 
provides for a sharing of the data. The method is not transparent because each 
process must map the global section that will be used to share data. 

In addition, the processes must use event flags, lock management system 
services, or their own synchronization to prevent the receiver from reading 
data before it has been made available by the sender and to notify the receiver 
that new data is available. 

287 



Process Control and Communication 

12.4.6 

12.4.6.1 

288 

If the global section is in shared memory or implemented on a multiproces­
sor system, simultaneous access by multiple processes is possible. Synchro­
nization in such an application requires use of interlocked instructions or a 
protocol based on event flags or locks. Chapters 2 and 14 briefly describe 
synchronization of shared memory. 

Chapter 16 describes the implementation of global sections. 

Interprocessor Communication with the MA780 

VAX-11/780 and VAX-11/785 CPUs can be connected to memory accessible 
by multiple processors. The controller for this shared memory is an MA780. 
VMS provides interprocessor communication in shared memory through 
common event flags, mailboxes, and global sections. This VMS support re­
quires data structures located in shared memory that describe the memory 
and the shared memory common event flag clusters, mailboxes, and global 
sections used. Chapter 14 describes the shared memory control structures. 

Each processor mapped to the shared memory requires data structures lo­
cated in local memory that describe processor-specific information.·A shared 
memory common. event flag cluster, for example, is represented by a master 
CEB in shared memory and slave CEBs in local memory. Each processor with 
one or more processes associated to the master cluster has a slave CEB. 

VMS determines that a process is attempting shared memory interproces­
sor communication by the object name the process specifies in its system 
service request. The service procedure for each of the relevant services 
($ASCEFC, Create Mailbox, Create and Map Section, and Map to Global 
Section) performs a logical name translation on the name of the object. An 
equivalence name of the following form indicates that the object is a shared 
memory object: 

shared-memory-name:object-name 

Each service procedure determines whether the specified shared memory 
object already exists or must be created. If it exists, the service makes the 
appropriate connection between the process and the data structure describing 
the object that exists in shared memory. If the shared memory data structure 
does not exist, the service procedure creates it. (The Map to Global Section 
service procedure, however, requires that the specified global section already 
exist.) 

Shared Memory Common Event Flag Clusters. When a process associates to a 
common event flag cluster in shared memory, EXE$ASCEFC must locate or 
create a master CEB in shared memory and a slave CEB in local memory. 
Figure 12-4 shows the layouts of shared memory master and slave CEBs. For 
contrast, see Figure 12-2, the layout of a local memory CEB. 



Processor 1 Local Memory Shared Memory Processor 2 Local Memory 

SCH$GQ_CEBHD:: MasterCEB 
for shared 

memoryCEF ::SCH$GQ_CEBHD 
cluster 

Slave CEB 

PCB Slave CEB 
BETA BETA 

PCB PCB 
BETA 

Local CEB 

PCB PCB MasterCEB 
Slave CEB 

for shared 
ALPHA memory CEF 

PCB ..... cluster !\J 
~ 

Local CEB 

~ 
PCB GAMMA Local CEB ..... 

~ 
GAMMA >rj 

PCB PCB 
...., 
0 ALPHA \) 
~ en en 

CJ s 
tl 
~ 
:::i ...... 
\) 
i:::. 

(\;) Shared Memory Common Event Flag Data 
..... 

Figure 12·4 ...... 
Oo 0 
\Q Structures :::i 



Process Control and Communication 

290 

Status 

Deleter 
Port 

MasterCEB 
(resides In shared memory) 

Valid and Interlock Bits 

Unused 

Type l Size 

Unused 

Event Flags 

Unused 

Unused 

Creator Number of Inter-

Port Processors processor 
Lock 

UIC of Creator 

Unused l Protection Mask 

Count 

Cluster Name 
(up to 15 characters) 

VA of Processor 0 Slave CEB 

l 
SlaveCEB 

(resides "In processor local memory) 

Same as 
Local Memory 

Common Event 
Block 

VA of Shared Memory Control Block 

1 

~ 1 ~ 
Index to 

MasterCEB 

VA of Processor N Slave CEB VA of Master CEB 

Processor 1 I Processor 0 
Reference Count Reference Count 

..( ~ 

Processor N l Processor N-1 
Reference Count Reference Count 

Figure 12·5 Relationship Between Master and Slave CEB~ 

Figure 12-5 shows the relationship between master and slave CEBs. 
EXE$ASCEFC searches the shared memory table of existing master CEBs, 

comparing the common event flag cluster names and UIC groups to the ser­
vice arguments to determine whether a cluster with that name already exists. 

Its actions vary with its findings: 

• If the slave CEB already exists, EXE$ASCEFC simply stores the address of 
the local processor's slave CEB in the appropriate pointer field in the PCB 
(PCB$L_EFC2P or PCB$L_EFC3P). The slave CEB contains information 
that identifies the master CEB located in shared memory. 

• If the slave CEB does not exist but the master does (there are currently no 
references to this cluster on this CPU), then a slave CEB is created; the 
address of the master is stored in the slave; and the address of the slave is 
stored in the master and in the PCB. 



12.4.6.2 

12.4.6.3 

12.4 Interprocess Communication 

• If the master CEB does not exist either, it is created first in shared memory. 
Then the slave is created and execution proceeds as described in the previ­
ous case. 

How common event flags are set and cleared is described at the beginning 
of this chapter. 

Shared Memory Mailboxes. When a process invokes the Create Mailbox 
($CREMBX) system service to create a mailbox in shared memory, 
EXE$CREMBX (in module SYSMAILBX) must locate or create a shared mem­
ory mailbox control block and a unit control block (UCB) in local memory. 
Figure 18-4 shows the relationship between these control blocks. Figure 18-3 
shows the layout of a shared memory mailbox control block. 

EXE$CREMBX searches the shared memory mailboxes table, comparing 
the mailbox names and UIC groups to the service arguments to determine 
whether a mailbox with that name exists. 

• If the shared memory mailbox control block does not exist, it is created. 
• If the mailbox already exists on this processor, EXE$CREMBX simply as­

signs a channel to it. (The UCB pointer in an available channel control 
block is loaded with the address of the UCB describing the shared memory 
mailbox.) 

• If the mailbox is being created on this node for the first time, a UCB is 
allocated from nonpaged pool and initialized with parameters that describe 
the mailbox. A bit is set in a mailbox-dependent field, indicating that this 
mailbox UCB describes a mailbox in shared memory. Finally, the address of 
the shared memory mailbox control block is loaded into the UCB. 

Mailbox creation is described in more detail in Chapter 18. 

Shared Memory Global Sections. For a global section in shared memory, a 
special global section descriptor is allocated that describes the global section 
in shared memory. Unlike global sections that exist in local memory, there 
are no global page table entries set up for global sections in shared memory. 

When a process maps to the shared memory global section, its process page 
tables are set up to contain the PFNs of the shared memory pages and marked 
as valid. Such pages are not counted against the process working set. That is, 
pages in shared memory do not incur page faults. They are always valid. 
Therefore, they can be described with a simple descriptor that is contained in 
the global section descriptor, rather than a set of global page table entries 
required for global pages that exist in local memory. Memory management 
data structures are described in Chapter 14. The memory management sys­
tem services are discussed in Chapter 16. 

291 



13 Lock Management 

'Tis in my memory lock'd, 
And you yourself shall keep the key of it. 

Hamlet, 1, iii 

VAXNMS lock management system services enable cooperating processes to 
synchronize their access to shared memory, files, and other entities. Using 
these services, a process assigns a name to an entity and requests a lock on it. 
In response to the first request to lock any given name, VMS creates a data 
structure called a resource block, commonly referred to as a resource. VMS 
lock management system services do not maintain any linkage between that 
structure and any actual VMS entity. Processes requiring synchronized ac­
cess to an entity must explicitly cooperate by locking the resource represent­
ing that entity. 

A lock is characterized by its lock mode, the extent to which it allows 
shared access with other locks on the same resource.' Locks which permit 
mutual shared access are termed compatible. Processes holding compatible 
locks on a resource have concurrent access to it and, if they behave consis­
tently, to the entity it represents. A process requesting an incompatible lock 
is denied access. Optionally, such a process can be placed into a wait state 
until blocking locks are released and the resource becomes available. 

This chapter discusses first the lock managerpent data structures and then 
the operations of the lock management system services: 

• Enqueue Lock Request [and Wait] ($ENQ[W]) 
• Dequeue Lock Request ($DEQ) 
• Get Lock Information [and Wait] ($GETLKI[W]) 

The iast section in this chapter describes deadlock detection. 
The treatment in this chapter assumes that the reader is familiar with the 

description of the VAX/VMS lock management system services found in the 
VAX/VMS System Services Reference Manual. This chapter briefly discusses 
VAXcluster distributed lock management, the details of which are beyond 
the scope of this book. 

13.1 LOCK MANAGEMENT DATA STRUCTURES 

292 

The lock database consists of the following four kinds of structures: 

• Resource blocks (RSBs) that represent the entities for which locks have 
been requested 



13.1.1 

13.1 Lock Management Data Structures 

• One resource hash table that locates the RSBs 
• Lock blocks (LKBs) that describe locks requested by processes 
• One lock ID table that locates the LKBs 

Resource Blocks 

A new RSB is allocated from nonpaged pool whenever a process calls the 
$ENQ system service, specifying a resource name not already in use. A re­
source can be created for any desired use but is usually used to represent an 
actual VMS entity, such as a file or global section. Because the representation 
is arbitrary, VMS lock management cannot maintain any linkage between 
the resource and the entity it represents. VMS provides tools which cooperat­
ing processes can use to synchronize access to the resource. If the processes 
honor the relationship of the resource to the entity it represents, access to 
that entity is synchronized as well. 

Resources can be hierarchical. For example, a resource can be defined to 
represent a particular file, with subresources for particular records in the file. 
The file resource is a "parent" resource to the resources representing records 
in the file. A record subresource may be a parent resource to subresources 
that represent fields in the record. The combination of a resource and all its 
subresources is called a resource tree. The top-level resource in the tree, the 
one with no parent, is called the root resource. 

The maximum depth of a resource tree is, by default, 32. This value is 
related to the SYSBOOT parameters INTSTKPAGES and DLCKEXTRASTK 
(see Section 13.3.2.2). 

Some resource names are systemwide; others are qualified by UIC group 
number. All resource names are qualified by access mode. A resource is 
uniquely identified by the following combination: 

• Resource name string, of 1 to 31 characters 
• UIC group number (or zero if the resource is systemwide) 
• Access mode 
• Address of parent RSB, if any 

Figure 13-1 shows the layout of an RSB. The resource name string and 
length of the name are stored in the fields RSB$T _RESNAM and 
RSB$B_RSNLEN. The fields RSB$W _GROUP, RSB$B_RMOD, and 
RSB$L_PARENT contain the rest of the information uniquely identifying a 
particular resource. RSB$B_DEPTH indicates the position of the resource in 
a resource tree; a root resource has a depth of zero. If the resource has a parent 
resource, its depth is set to 1 more than its parent's RSB$B_DEPTH. 

If the resource has a parent resource, its access mode is taken from the 
parent. Otherwise, the access mode is specified by the $ENQ system service 
argument ACMODE. The argument is maximized with the mode from which 
the service was called, which is the default if the argument is omitted. The 

293 



Lock Management 

13.1.2 

294 

HSHCHN 

HSHCHNBK 

DEPTH j TYPE ] SIZE 

STATUS l CGMODE l GGMODE 

GROFL 

GRQBL 

CVTQFL 

CVTQBL 

WTQFL 

WTQBL 

VALBLK 

CSID 

VALSEQNUM 

BLKASTCNT 1 REFCNT 

RQSEQNM HASHVAL 

PARENT 

RSNLEN I RMOD l GROUP 

RES NAM 
(up to 31 bytes) 

Figure 13·1 Layout of a Resource Block 

Granted 
Queue Head 

Conversion 
Queue Head 

Waiting 
Queue Head 

resource's access mode specifies the least privileged mode from which locks 
can be queued to the resource and from which information about the locks 
can be obtained. 

An RSB contains listheads for the granted, conversion, and waiting queues 
of LKBs associated with the resource. The listhead for the granted LKB queue 
is at offsets RSB$L_GRQFL and RSB$L_GRQBL. The listhead for the conver· 
sion queue is at offsets RSB$L_CVTQFL and RSB$L_CVTQBL. The listhead 
for the waiting queue is at offsets RSB$L_ WTQFL and RSB$L_ WTQBL. Sec­
tion 13.1.3 contains information about the significance of these queues. 

An RSB also contains 16 bytes which form the value block for the resource 
at offset RSB$Q_ VALBLK. The sequence number associated with the con­
tents of the value block is the field RSB$L_ VALSEQNUM. The field 
RSB$W _REFCNT is a count of how many subresources have this RSB as a 
parent. 

Other RSB fields are described in later sections of this chapter. 

Resource Hash Table 

The resource hash table locates all the RSBs in use. The combination of the 
resource name string and its length, resource access mode, UIC group num­
ber, and parent RSB hash value is hashed and the result stored in 



13.1 Lock Management Data Structures 

RSB$W _HASHVAL. The hashing algorithm is similar to the algorithm used 
for hashing logical names (see Chapter 28). The contents of RSB$W _HASH­
VAL index a particular entry in the resource hash table. More than one.-re: 
source name can hash to the same value. Each longword entry in the hash 
table is either zero or a pointer to a list of RSBs with that hash value. If a 
longword entry in the resource hash table contains a zero, there is no RSB 
with that hash value. 

Because the RSBs are maintained in a list that is doubly linked but not 
circular (the resource hash table itself contains no backward pointers), the 
list of RSBs is termed a chain. The first two longwords in each RSB contain 
the forward and backward pointers for the resource hash chain. The last 
block in each chain has a zero forward pointer. 

The resource hash table is allocated from nonpaged pool. The global loca­
tion LCK$GL_HASHTBL contains its address. The number of longword en­
tries in the resource hash table is determined by the SYSBOOT parameter 
RESHASHTBL. Note that the parameter does not limit the number of RSBs 
that can be created. However, a combination of a small hash table and many 
RSBs can result in longer hash chains than might be desirable. 

Figure 13-2 shows the structure of the resource hash table and its relation­
ships to hash chains. 

Resource Hash Table 

Type Size 

01-------1 
t---------~ ~---~ 

0 

0 RSB 

HSHCHN 

HSHCHNBK 

HASH VAL 

RSB 
HSHCHN 

HSHCHNBK 

HASHVAL 

Figure 13-2 Resource Hash Table and Hash Chains 

::LCK$GL_HASHTBL 

RSB RSB 

295 



Lock Management 

13.1.3 

296 

Lock Blocks 

An LKB is allocated from nonpaged pool when a process calls the $ENQ sys­
tem service. The LKB is assigned a unique lock ID used to identify the lock in 
later lock conversion or dequeue requests. The LKB is owned only by that 
process. When a process dequeues a lock, the LKB is deallocated. Figure 13-3 
shows the layout of a lock block. 

The lock is characterized by its lock mode-one of six degrees of 
shareability. (The VAX/VMS System Services Reference Manual lists the 
lock modes and with which other granted modes each is compatible.) 
LKB$B_RQMODE specifies the requested lock mode of the lock, and 
LKB$B_GRMODE, the granted lock mode. A lock granted at one mode can 
later be converted to another mode. 

The lock can be in one of several states, depending on the lock modes of 
other locks on the resource. If its lock mode is compatible with those of locks 
granted on the resource and if the conversion queue is empty, the lock is 
granted and its LKB placed on the RSB granted queue. A subsequent attempt 
to convert the lock to a more restrictive lock mode can result in the LKB's 
insertion on the conversion queue. Conversion requests have precedence 

ASTQFL 

ASTQBL 

RMOD l TYPE I SIZE 

PIO 

AST/RQSEQNM 

ASTPRM/EPID 

KAST/DUETIME 

CPLASTADR 

BLKASTADR 

LKSB/DLCKPRI 

STATUS I FLAGS 

LKST1 

LKST2/LKID 

EFN J STATE I GRMODE I RQMODE 

SQFL 

SQBL 

OWNQFL 

OWNQBL 

PARENT 

><J TSLT l REFCNT 

RSB 

REMLKID 

CSID/OLDASTPRM 

OLDBLKAST 

Figure 13·3 Layout of a Lock Block 

ACB Portion 

~ 
State 
Queue Links 

Owner 
Queue Links 



13.1.4 

13.1 Lock Management Data Structures 

over new lock requests. A new lock request incompatible with granted lock 
requests is placed on the waiting queue. 

LKB$B_STATE specifies in what state the lock is, for example, granted, 
waiting, or in a conversion queue. LKB$L_SQFL and LKB$L_SQBL link the 
LKB into the appropriate queue in its RSB. Typically, a lock in the conversion 
or waiting queue is also queued to the lock timeout queue through the fields 
LKB$L_ASTQFL and LKB$L_ASTQBL. If the lock request is not granted 
within a certain amount of time, a deadlock search will be triggered (see 
Section 13.3.1). 

A lock with a parent lock and resource is termed a sublock. An LKB de­
scribing a sublock contains the address of the parent LKB (at offset 
LKB$L_PARENT); the parent LKB has no corresponding pointer to the sub­
lock. The RSB associated with the sublock points to the parent resource 
(at offset RSB$L_PARENT); the parent resource has no corresponding 
pointer to the subresource. This relationship is shown in Figure 13-4. 
LKB$W _REFCNT specifies how many sublocks have that LKB as their 
parent. 

The first part of an LKB is an asynchronous system trap (AST) control block 
(ACB). When a lock request is granted, the LKB/ ACB can be queued to the 
process's PCB through the fields LKB$L_ASTQFL and LKB$L_ASTQBL. 
Queued as an ACB, it describes a special kernel mode AST, a blocking AST, 
or completion AST (see Section 13.2.4). LKB$L_PID contains the internal 
process ID of the process which requested the lock. 

LKB$B_RMOD specifies the access mode at which completion and block­
ing ASTs for this lock will be delivered. The access mode from which the 
$ENQ service is requested determines the value of LKB$B_RMOD. This field 
also specifies the least privileged access mode from which the lock can be 
converted or dequeued. If a lock has a parent, the lock's access mode must be 
the same or less privileged than that of its parent. 

LKB$L_EPID contains the extended process ID (see Chapter 20). LKB$L_ 
CPLASTADR and LKB$L_BLKASTADR contain the addresses of the 
process's AST procedures. LKB$L_LKSB contains the address of the process's 
lock status block. LKB$L_LKST1 contains the information to be copied to 
the lock status block. The second longword of lock status, LKB$L_LKID, 
contains the lock ID itself. 

Other LKB fields are described in later sections of this chapter. 

Lock ID Table 

The lock ID table locates all LKBs. A lock ID consists of an index into the 
lock ID table and a sequence number identifying this particular use of that 
index. When a lock index is in use, its entry in the lock ID table contains the 
address of the associated LKB. 

297 



Lock Management 

Resource Hash 
Table 

RSB 

I-- Granted -

RSB 

1--------t~ 
0 

~ Parent 

LKB 

..l ..l 

State Queue -

~ Owner Queue -

IREFCNT=1 

RSB 

LKB 

1---------1~ 

t-- Waiting --..-.+- ~ State Queue -

i.t--- Owner Queue -t-

'--- Parent 

~ RSB 

Lock ID Table 

PCB 

~Owner Queue-

Figure 13·4 Relationships Between Locks and Sublocks 

298 



13.1.5 

13.1 Lock Management Data Structures 

The entry for an unused index has two pieces of information. The high­
order word contains the updated sequence number for that index. The low­
order word contains the index of the next unused entry in the lock ID table. 
The unused entries in the lock ID table are linked together, with the listhead 
at global location LCK$GL_NXTID. When a new lock is requested, its index 
is taken from LCK$GL_NXTID, which is updated to point to the next un­
used entry. 

A lock to be dequeued is identified by its lock ID. The lock ID locates the 
corresponding lock ID table entry. The table entry has the address of the LKB 
to be deallocated. After the LKB is deallocated, the lock ID of the dequeued 
lock is stored in LCK$GL_NXTID. 

Because it is possible that an erroneous value can be passed as a lock ID to 
a lock management system service, the system services validate the lock ID. 
They compare the caller's process identification (PID) and access mode with 
the PID and access mode stored in the LKB. The PIDs must match and the 
caller's access mode must be equally or more privileged than that of the 
lock. If the comparison fails, the service exits with the return status code 
SS$ _JVLOCKID. 

The global symbol LCK$GL_IDTBL points to the lock ID table. Figure 13-5 
shows its structure. Its size is controlled by the SYSBOOT parameters 
LOCKIDTBL and LOCKIDTBL_MAX. The global location LCK$GL_MAXID 
contains the index to the last entry in the lock ID table. The lock ID table 
entry at that location always contains a zero. 

During system initialization, a table of LOCKIDTBL longwords is allocated 
from nonpaged pool. If more locks are requested than can fit in the table, the 
$ENQ system service builds a new table which is LOCKIDTBL entries longer 
than the old one. It copies the old table's entries to the new table, initializes 
the additional entries in the new table, and deallocates the old table. The 
maximum size of the table, and thus the maximum number of locks, is speci­
fied by LOCKIDTBL_MAX. 

Relationships in the Lock Database 

There are three ways in which the lock database can be accessed: 

• As described in Section 13.1.2, the RSB for a given resource name can be 
located through the resource hash table. All locks associated with the re­
source can be located through the RSB state queue heads. 

• As described in Section 13.1.4, the LKB for a given lock ID can be located 
through the lock ID table. The resource address field in the LKB points to 
the resource associated with the lock. 

• All locks owned by a specific process can be located through its lock queue 
header. 

299 



Lock Management 

13.1.6 

300 

Lock ID Table 

LKB J Type Size 

L 

..---

LKB 

LCK$GL_MAXID:: 

LCK$GL_NXTID:: 

Figure 13·5 Structure of the Lock ID Table 

0 .. 
"-

\L 

x--1 t::l 

f 
"-f 

J 
J 

t 

I ___ _.I ::LCK$GL_IDTBL 

T he indexes do not always 
point forward. 

Each process has a doubly linked list of all the locks it has requested. The 
listhead is in the PCB at offsets PCB$L_LOCKQFL and PCB$L_LQCKQBL. 
An LKB is linked into this list through fields LKB$L_OWNQFL and 
LKB$L_OWNQBL. All granted locks are first, followed by converted and 
waiting locks. The locks are ordered this way to facilitate deadlock detection 
(see Section 13.3.2.2). 

VAXcluster Lock Database 

VAX/VMS Version 4 expanded the scope of resources and locks to the 
VAX.cluster System. All resource names are clusterwide, and processes run· 
ning on any node can cooperate in sharing resources. Lock management is 
the fundamental VAX.cluster synchronization primitive. Lock management 
system services are used by RMS, the file system, device allocation, the 
Mount Utility, and user applications to provide clusterwide synchronization. 

Lock management data structures, RSBs and LKBs, are distributed among 



13.1 Lock Management Data Structures 

the nodes of a VAXcluster System. This section provides an overview of how 
the lock management database is organized. 

A resource tree is "mastered" on one node. The master node keeps track of 
all locks taken out on that resource tree and performs the actual locking. A 
resource is initially mastered on the first node to define that resource. When 
an $ENQ service is requested for a root resource name which is not currently 
in use, a master RSB is created on that node. 

There is an RSB on the master node and one on each node with a lock on 
the resource. The RSB on a node not mastering the resource contains the 
cluster system ID (CSID) of the mastering node in the field RSB$L_CSID. 
The RSB on the mastering node contains zero in that field to indicate that it 
is the master RSB. (This field is also zero on a system which is not a member 
of a VAXcluster System.) 

A directory is maintained to keep track of what root resources are defined 
and on which system each resource is mastered. The directory itself is dis­
tributed, consisting of RSBs on various nodes of the VAXcluster System. A 
directory entry RSB has bit RSB$V _DIRENTRY set in the field RSB$W _ 
STATUS. 

To determine which node is the directory node for a particular resource 
tree, the root resource name is hashed and the hash value is used as an 
index into a list of CSIDs. All nodes have an identical copy of the list and 
perform the directory determination with identical results. (The list of CSIDs 
is called the directory vector. Its address is stored in global location 
LCK$GL_DIRVEC.) If the same node is the master and directory node for 
a resource, there is only one RSB. 

On a VAXcluster System, there are three types of LKB. Under some circum­
stances, a process's lock is represented by more than one LKB on more than 
one node. 

A local lock is an LKB on one system for a resource mastered on that sys­
tem. This LKB is the only one representing the process's lock. (This is similar 
to the nonclustered case.) 

A process copy is an LKB on one system for a resource mastered on another 
system. The process copy describes the process's interest in the resource. The 
other system has the master copy of the lock. The field LKB$L_REMLKID in 
the process copy identifies the lock ID of the master copy. (Lock IDs are 
specific to a single VAXcluster node.) RSB$L_CSID identifies which node is 
the master. 

A master copy is an LKB which is on the node mastering the resource but 
which represents the lock of a process on a different node. The field 
LKB$L_REMLKID in the master copy identifies the lock ID of the process 
copy. The field LKB$L_CSID in the master copy identifies the node of the 
process copy. A process copy and master copy are always paired. 

The three types of LKB can be distinguished based on the setting of the bit 

301 



Lock Management 

LKB$V _MSTCPY in LKB$W _FLAGS and the contents of RSB$L_CSID in 
the associated resource's RSB: 

• Local copy-LKB$V _MSTCPY is zero and RSB$L_CSID is zero. 
• Process copy-LKB$V _MSTCPY is zero and RSB$L_CSID is nonzero. 
• Master copy-LKB$V _MSTCPY is nonzero and RSB$L_CSID is zero. 

13.2 LOCK MANAGEMENT SYSTEM SERVICES 

13.2.1 

302 

The $ENQ service attempts to grant a requested new lock or lock conversion 
immediately. If the new lock or conversion cannot be granted, the LKB is 
placed on the waiting or conversion queue. The $DEQ service dequeues the 
lock from the resource and then searches the resource's state queues for locks 
to grant that are compatible with the currently granted locks. The $GETLKI 
service returns information about a specified lock or locks. 

The following sections describe the operations of the $ENQ[W], $DEQ, and 
$GETLKI[W] system services on a single system. VAXcluster System opera­
tion is beyond the scope of this book. 

The $ENQ[W] System Service 

The $ENQ system service procedure, EXE$ENQ in module SYSENQDEQ, 
runs in kernel mode. EXE$ENQ first validates the event flag and lock mode 
arguments and tests accessibility of the lock status block. If any of these tests 
fails, EXE$ENQ returns to its caller with an error status. If the tests succeed, 
EXE$ENQ tests whether LCK$V _CQNVERT is set in the FLAGS argument to 
determine whether this is a new lock request or conversion of an existing 
lock. Section 13.2.2 describes lock conversions. 

When a new lock is requested, EXE$ENQ allocates an LKB and RSB from 
nonpaged pool and initializes them. EXE$ENQ allocates the RSB on the as­
sumption that the resource is being defined for the first time. EXE$ENQ then 
raises IPL to IPL$_SYNCH to synchronize access to the lock database. 

If the PARID argument was specified, EXE$ENQ validates the parent lock 
ID. It checks that the lock ID is valid, that the access mode of the $ENQ 
caller is less or equally privileged than that of the parent lock, and that the 
parent's lock PID matches that of the current process. If any of these tests 
fails, EXE$ENQ returns the error status SS$_IVLOCKID to its caller. If those 
checks pass, but the parent lock request has not been granted, EXE$ENQ 
returns the error status SS$_PARNOTGRANT. If the parent lock request has 
been granted, EXE$ENQ increments the reference count in the parent's lock 
and stores its address in LKB$L_PARENT. 

If the caller specified a systemwide resource name, EXE$ENQ checks that 
the process either has the SYSLCK privilege or was running in kernel or exec-



13.2 Lock Management System Services 

utive mode when it requested the $ENQ service. If neither condition is true, 
EXE$ENQ returns the error status SS$_NOSYSLCK to its caller. 

EXE$ENQ charges the lock against the job quota JIB$W _ENQCNT, unless 
the caller specified the FLAGS argument bit LCK$V _NOQUOTA, which re­
quires an executive or kernel mode caller. (Use of this flag is reserved to 
DIGITAL.) If the job is out of quota, then EXE$ENQ returns the error status 
SS$_EXENQLM. Otherwise, EXE$ENQ allocates a lock ID, expanding the 
lock ID table if necessary, and stores the address of the LKB in the table entry 
for that lock ID. 

Next, EXE$ENQ determines whether the resource already exists. It com­
putes the resource hash value to index into the resource hash table and then 
searches the resource hash chain for the named RSB. EXE$ENQ compares the 
following fields in an RSB with the same hash value to determine whether it 
is the named resource: 

• Parent RSB address 
• UIC group number (or zero for systemwide locks) 
• Access mode 
• Resource name string 

If the RSB for the named resource is not found, the new RSB is added to the 
end of the hash chain. EXE$ENQ initializes the rest of the RSB fields, includ­
ing the three lock queue headers, the value block and its sequence number, 
and the RSB reference count. If the resource has a parent (that is, if the argu­
ment PARID was specified), the parent RSB's reference count is incremented. 
The new lock is granted (see Section 13.2.4). If the FLAGS argument bit 
LCK$V _SYNCSTS is set, EXE$ENQ returns the success status code SS$_ 
SYNCH to its caller. 

If the RSB for the named resource is found, the new RSB is superfluous and 
is deallocated. EXE$ENQ first tests whether the conversion queue is empty. 
If it is, EXE$ENQ tests the requested mode in the LKB for compatibility with 
the currently granted locks. If the new lock is compatible, it is granted (see 
Section 13.2.4). 

If the FLAGS argument bit LCK$V _SYNCSTS is set, EXE$ENQ returns the 
success status code SS$_SYNCH to its caller. The event flag is not set and no 
completion AST is queued for such a synchronous return. 

If the conversion queue is not empty or if the requested lock mode is in­
compatible and cannot be granted, EXE$ENQ examines the FLAGS argument 
bit LKB$V _NOQUEUE. If the flag is set, EXE$ENQ deallocates the LKB and 
returns the failure status SS$_NOTQUEUED to its caller. If the flag is clear, 
EXE$ENQ places the LKB at the end of the waiting queue in the RSB. The 
waiting queue is ordered first-in/first-out (FIFO). 

The asynchronous form of the system service ($ENQ) returns tb the caller. 
The caller can either wait for the lock to be granted or continue processing. 

303 



Lock Management 

13.2.2 

304 

The synchronous form of the system service ($ENQW) waits for the event 
flag associated with the request to be set and status to be returned. (See Chap­
ter 9 for more information concerning synchronous and asynchronous sys­
tem services.) 

To speed checks for compatibility with the currently granted locks, each 
RSB contains a field indicating the highest granted lock mode of all locks in 
the granted and conversion queue for that resource. This field is termed the 
group grant mode. Note that locks on the conversion queue retain their 
granted mode. It is the granted mode of these locks that is used in calculating 
the group grant mode, not their requested mode. 

The value of the group grant mode is stored in the RSB at offset 
RSB$B_GGMODE. Because this value is calculated only when a new lock is 
granted and is maintained in the RSB, compatibility checking involves only 
one compare operation. (Note that on a VAXcluster System, the group grant 
mode is maintained only in the master RSB.) 

Lock Conversions 

A process requests the $ENQ service to do a lock conversion, passing the lock 
ID of the lock to be converted and the new lock mode. EXE$ENQ compares 
the new lock mode with the value of the group grant mode. If the new lock 
mode is compatible with the current granted locks, EXE$ENQ grants the 
lock (see Section 13.2.4). 

If the requested mode of the conversion is not compatible with the group 
grant mode, EXE$ENQ compares the requested lock mode to the value of the 
conversion grant mode (stored at offset RSB$B_CGMODE). If the lock is 
compatible with the conversion grant mode, EXE$ENQ grants the lock. If the 
lock is incompatible, it is placed at the tail of the conversion queue. The 
conversion queue is maintained as a FIFO queue. EXE$ENQ also moves the 
LKB to the end of the PCB queue. The PCB queue has granted locks first, 
followed by waiting locks and locks in the conversion queue. 

Most of the time the conversion grant mode contains the same value as the 
group grant mode. The only time the conversion grant mode is different from 
the group grant mode is when both of the following are true: 

• The current lock mode of the lock at the head of the conversion queue is 
the most restrictive lock mode for the resource. 

• That lock is the only lock at the current mode. 

If both of these conditions are true, the granted lock mode of the lock on 
the conversion queue is omitted from the calculation of the conversion grant 
mode. The use of the conversion grant mode ensures that lock conversions 
between incompatible lock modes will not block themselves. 

Suppose that a resource has one lock in its granted queue at null (NL) 



13.2.3 

13.2 Lock Management System Services 

mode. If a lock request is issued for the resource at protected write (PW) 
mode, the group grant mode is NL mode, so the PW mode lock is granted. 
When the new lock is granted, the group grant and conversion grant modes 
are recalculated; both equal PW mode. 

Now the PW mode lock requests a conversion to exclusive (EX) mode. If 
the group grant mode was used to determine compatibility, the conversion to 
EX mode could not be granted, because the PW mode lock is actually block­
ing its own conversion (remember that group grant mode includes both the 
granted and conversion queues). However, the lock at the head of the conver­
sion queue has the .most restrictive lock mode currently granted. In calculat­
ing the conversion grant mode, the lock at the head of the conversion queue 
is omitted. Thus, the conversion grant mode is NL mode and the conversion 
can be granted. 

The $DEQ System Service 

A process requests the $DEQ system service to cancel one or more locks. The 
$DEQ system service procedure, EXE$DEQ in module SYSENQDEQ, runs in 
kernel mode. EXE$DEQ examines the LOCKID and DEQ_FLAGS arguments to 
determine if only a specific lock or a number of locks are to be canceled. 

If the DEQ_FLAGS argument has the LCK$V _DEQALL bit clear, then the 
process is requesting that one lock be dequeued. If only one lock is being 
canceled, EXE$DEQ uses the lock ID to locate the LIIB. It then verifies that 
the access mode of the $DEQ caller is more or equally privileged than that of 
the lock (LKB$B_RMOD) and that the lock PID matches that of the current 
process. If either of these tests fails, EXE$DEQ returns the error status 
SS$_IVLOCKID to its caller. If they pass, EXE$DEQ then checks that the 
lock has no sublocks. If it does, they must be dequeued first, and EXE$DEQ 
returns the error status SS$_SUBLOCKS. 

EXE$DEQ removes the LKB from whichever resource queue it was on. If 
the lock was at the head of the wait queue and the conversion queue is 
empty, EXE$DEQ checks whether the first lock in the wait queue can now be 
granted. If it can, EXE$DEQ grants it and then goes on to the next lock in the 
wait queue. It repeats this until it reaches a lock whose lock mode is incom­
patible with the resource group grant mode. 

If the lock being canceled was in the conversion queue, EXE$DEQ checks 
whether any locks can be granted as the result of a group grant mode that 
does not include the grant mode of the canceled lock. EXE$DEQ checks 
whether the first lock in the conversion queue can be granted. If it can, 
EXE$DEQ grants it and goes on to the next lock in the queue. It repeats this 
with the conversion and wait queues until it reaches a lock whose mode is 
incompatible with the resource group grant mode. 

If the lock being canceled was in the grant queue, EXE$DEQ checks 

305 



Lock Management 

13.2.4 

306 

whether the LKB was the only lock on the resource. If so, EXE$DEQ removes 
the RSB from its resource hash chain and deallocates it. If there are any other 
locks, EXE$DEQ recomputes the resource group grant mode and checks 
whether locks on the conversion and waiting queues can be granted. 

If the lock being canceled was a sublock, EXE$DEQ decrements its parent 
lock's reference count. It releases the lock ID and removes the LKB from the 
process's PCB lock queue. 

If the lock was waiting or in the conversion queue, EXE$DEQ sets the 
event flag associated with the lock request and queues the LKB as an ACB to 
the process to return final lock status. The LKB will be deallocated when the 
AST is delivered. 

If the lock was granted, its LKB may still be queued as an ACB. If the ACB 
was merely to deliver a blocking AST, EXE$DEQ removes the LKB/ ACB from 
the ACB queue and deallocates the LKB. Otherwise, the LKB/ ACB will be 
deallocated when the AST is delivered. Whenever the LKB is deallocated, the 
lock quota is returned to the process. 

If the DEQ_FLAGS argument has the LCK$V _DEQALL bit set, then the 
process is requesting the dequeuing of multiple locks. Locks are dequeued 
selectively, in part, based on their access mode. If the PARID is nonzero, 
EXE$DEQ must examine all sublocks of that lock. If it is zero, then 
EXE$DEQ must examine all locks the process has taken out. Those locks 
with an access mode greater or equal to the dequeue access mode are can­
celed. The dequeue access mode is the argument DEQ_ACMODE, which is 
maximized with the access mode from which the $DEQ request was made. If 
the argument is omitted, the dequeue access mode is the mode from which 
the system service was requested. 

Granting a Lock 

The routine LCK$GRANT _LOCK, in module SYSENQDEQ, is invoked to 
grant a lock request. LCK$GRANT _LOCK is invoked under three different 
sets of circumstances: 

• EXE$ENQ receives a request for a lock on a new resource or a resource with 
locks whose modes are compatible. The lock request can be granted imme­
diately, synchronously with the original system service call. 

• EXE$ENQ converts a lock on a resource to a less restrictive lock mode. 
Another lock that was blocked can now be granted, asynchronously to its 
original lock request. 

• EXE$DEQ cancels a lock on a resource. A lock that was blocked can now be 
granted, asynchronously to its original lock request. 

LCK$GRANT _LOCK takes the following steps in granting a lock: 

1. It recomputes the resource's group grant mode. 
2. It places the LKB on the granted queue, changing its state to granted. 



13.2 Lock Management System Services 

LCK$GRANT _LOCK writes the requested lock mode in LKB$B_ 
GRMODE. 

3. LCK$GRANT _LOCK invokes SCH$POSTEF to set the event flag associ­
ated with the lock request (LKB$B_EFN). If the process was waiting for 
this event flag to be set, the process scheduling priority and state may be 
altered. (See Chapter 12 for information about event flags and Chapter 10 
for information about process scheduling.) 

LCK$GRANT _LOCK then makes a series of tests to determine whether it 
should queue an AST to the process whose lock request it granted. There are 
three possible requirements for an AST: 

• A special kernel AST 
• A user-requested blocking AST 
• A user-requested completion AST 

The three are independent of each other. Thus, it is possible that no AST be 
requested or as many as three AST routines be required. 

LCK$GRANT _LOCK must queue a blocking AST to the process if it re­
quested one and if the newly granted lock is blocking another lock. No block­
ing AST is necessary if none was requested or. if the lock is not blocking 
another lock. 

ff the process requested a completion AST, LCK$GRANT _LOCK queues 
one unless the lock request was granted synchronously and the FLAGS argu­
ment bit LCK$V _SYNCSTS was set. 

The special kernel AST routine must be queued if the lock request com­
pleted asynchronously. It writes the status to the process's lock status block 
and possiply a value to the lock value block. Even if the lock request com­
pleted synchronously, the special kernel AST routine is necessary to perform 
cleanup if a completion or blocking AST is to be queued. 

An ACB can describe one normal AST procedure or one special kernel AST 
routine. An ACB can also describe a special kernel AST routine "piggy­
backed" on a normal AST procedure. (See Chapter 7 for a detailed description 
of ASTs.) If an AST is required, LCK$GRANT _LOCK invokes SCH$QAST to 
queue an ACB to the process. The LKB is used as the ACB. 

LCK$GRANT _LOCK chooses one of the following: 

• It does not queue an ACB if the lock request is synchronous and neither a 
blocking nor completion AST is required. 

• It queues an ACB specifying a special kernel AST if the lock request is 
asynchronous and neither a blocking nor completion AST is required. 

• It queues an ACB specifing a piggyback special kernel AST if either or both 
a blocking and completion AST are required. 

Because the ACB can contain the address of only one AST procedure, spe­
cial treatment is required when both a completion and blocking AST must be 
delivered. When the lock is granted, LCK$GRANT _LOCK writes the address 

307 



Lock Management 

13.2.5 

13.2.6 

308 

of the completion AST procedure (stored at offset LKB$L_CPLASTADR) in 
the field LKB$L_AST. It then queues the LKB as an ACB. 

Just before entering the completion AST procedure, the AST delivery 
service routine dispatches to the piggyback special kernel AST. This 
routine writes the address of the blocking AST (stored at offset LKB$L_ 
BLKASTADR) in LKB$L_AST. It then requeues the LKB as an ACB. When 
the routine exits, the completion AST procedure executes. When the comple­
tion AST procedure exits, the blocking AST is delivered. 

System-Owned Locks 

Certain locks, called system-owned locks, are not associated with any pro­
cess. A system-owned lock and its resource remain in existence when no pro­
cess has any interest in the resource. A system-owned lock has zero in its 
LKB$L_PID field and is not queued to any PCB lock queue. 

A system-owned lock begins as a process lock requested from kernel or 
executive mode. A special FLAGS argument passed to the $ENQ service indi­
cates that the lock should be converted to a system-owned lock. The only 
possible state of a system-owned lock is granted. That is, a process lock 
which is in the waiting or conversion queue cannot be converted to system­
owned. This restriction is partly because delivery of a completion AST or 
special kernel AST requires a process context. Furthermore, locks in the 
waiting and conversion queues are examined during deadlock detection with 
the assumption that each lock is owned by a process. 

There is a mechanism defined, however, for delivery of a blocking AST for 
a system-owned lock. The field LKB$L_BLKASTADR in a system-owned 
lock contains the address of a blocking AST routine in system space. Instead 
of queuing a blocking AST to a process, the lock management services dis­
patch to that routine at IPL$_SYNCH. 

Certain components of VAX/VMS, such as the Files-11 XQP, use system­
owned locks. The XQP, for example, synchronizes access to its buffer cache 
through a system-owned lock. The XQP, running in the context of each pro­
cess in the system, maintains a systemwide cache of blocks read from the 
on-disk file structure. A process's XQP requests a lock on the buffer cache 
only while it is reading or writing a block in the cache. The cache exists, 
however, even when no process is accessing it. The lock management data 
structures representing the cache must also continue to exist. 

The use of system-owned locks is reserved to VAX/VMS. Any other use is 
strongly discouraged by DIGITAL and completely unsupported. 

The $GETLKI(W] System Service 

The $GETLKI[W] system service enables a process to get information about 
one or more locks which it is allowed to interrogate. The process may only 
get information about locks on resources defined from an access mode greater 



13.3 Handling Deadlocks 

or equal to that of the $GETLKI caller. For example, a process running in user 
mode cannot obtain information about locks taken out on inner access mode 
resources. (The field RSB$B_RMOD defines the resource access mode.) 

The process can be further limited to a subset of the resource name space 
by its lack of privilege. Without any privilege, a process can interrogate only 
locks on resources with the same UIC group number as its own. With 
WORLD privilege, a process can interrogate locks on resources of any UIC 
group. Obtaining information about the locks of systemwide resources re­
quires either that the process have SYSLCK privilege or that it make the 
$GETLKI request from kernel or executive mode. 

The $GETLKI system service procedure, EXE$GETLKI in module SYS­
ENQDEQ, runs in kernel mode. The system service is called with a LOCKID 

argument that either identifies a particular lock or specifies a wildcard opera­
tion. First, EXE$GETLKI locates the LKB associated with the specified lock 
ID and verifies that the process can interrogate it. If the process specified a 
wildcard operation, EXE$GETLKI locates the first LKB that the process can 
interrogate. EXE$GETLKI begins with lock index I and scans the lock ID 
table. On each successive call, it returns information about one lock, main­
taining the lock index context for the next call. 

EXE$GETLKI is called with the address of an item list that includes, for 
each specified item, which kind of lock information is to be returned, the size 
and address of the buffer to receive the information, and a location to insert 
the size of the information returned. EXE$GETLKI checks each item in the 
item list for correctness: its item code must be valid; its buffer descriptor and 
buffer must be readable. In general, it then copies the requested information, 
either from the LKB or its RSB, to the buffer. 

Certain types of information are not obtainable through simply copying 
data structure fields, for example, a list of all locks blocking the specified 
lock. EXE$GETLKI contains special routines for such information. 

When EXE$GETLKI has either processed all items in the item list or found 
one which is incorrect or has an inaccessible buffer, it is done. It sets the 
event flag associated with the request. A completion AST is queued if one 
was requested and if the system service completed without error. It returns 
to its caller. Under VAX/VMS Version 4, EXE$GETLKI always completes 
synchronously. 

13.3 HANDLING DEADLOCKS 

A deadlock occurs when several locks are waiting for each other in a circular 
fashion. VAX/VMS resolves deadlocks by choosing a participant in the dead­
lock cycle and refusing that participant's lock request. The participant that is 
chosen to break the deadlock is termed the victim. The victim's lock or con­
version request fails and the error status code SS$_DEADLOCK is returned 
in the victim's lock status block. 

309 



Lock Management 

13.3.1 

310 

None of the victim's already granted locks are affected, even when they are 
part of the deadlock. Resolution of the deadlock is the responsibility of the 
victim. 

There are three phases of deadlock handling: 

• A deadlock is suspected. 
• A deadlock search proves that a deadlock actually exists. 
• A victim is chosen. 

These three phases are described in subsequent sections. The descriptions are 
limited to handling of deadlocks within one system which is not a member of 
a VAXcluster System. VAXcluster deadlock handling is beyond the scope of 
this book. 

Initiating a Deadlock Search 

Because deadlock detection is time-consuming, it is not desirable to search 
for deadlocks every time a lock or conversion request is blocked. Instead, 
VAX/VMS searches for a deadlock only when a lock request has been waiting 
for a resource for a specified amount of time. The SYSBOOT parameter 
DEADLOCK_ WAIT specifies how many seconds a blocked lock request 
must have been waiting before a deadlock search is initiated. 

Whenever an LKB is placed in a conversion or waiting queue, it is also 
placed at the end of the lock timeout queue whose listhead is at global loca­
tion LCK$GL_ TIMOUTQ. The AST queue fields in the LKB link it into the 
lock timeout queue. Figure 13-6 shows LKBs on the timeout queue. When an 
LKB is placed on the timeout queue, the time at which the lock request will 
time out is computed and stored in LKB$L_DUETIME. (LKB$L_DUETIME 
is actually a double use of the special kernel AST routine address field, 
LKB$L_KAST.) The due time is the sum of DEADLOCK_ WAIT and the cur­
rent system time in seconds (EXE$GL_ABSTIM). 

Once every second, the routine EXE$TIMEOUT (in module TIMESCHDL) 
executes. EXE$TIMEOUT has various functions (see Chapter 11). One 

LCK$GL_ TIMOUTQ:: L 
~ l 

Figure 13-6 Lock Timeout Queue Ordered by 
LKB$1-DUETIME 

ASTOFL 

ASTQBL 

DUETIME 

ASTQFL t-
~ ASTQBL 

DUETIME 



13.3.2 

13.3.2.1 

13.3.2.2 

13.3 Handling Deadlocks 

of them is to check whether the first entry in the lock timeout queue has 
timed out by comparing its LKB$L_DUETIME to the contents of 
EXE$GL_ABSTIM. Because the queue is time-ordered, checking the due 
time of the first entry is sufficient to determine whether a deadlock search is 
necessary. If the first entry has not timed out, no other entry could have. If 
the first entry has timed out, EXE$TIMEOUT initiates a deadlock search by 
invoking the routine LCK$SEARCHDLCK (in module DEADLOCK). 

Deadlock Detection 

There are two forms of deadlock, each requiring a different method to detect 
it. A conversion deadlock is easily detected, because it is restricted to locks 
for a single resource. A multiple resource deadlock is harder to detect, requir­
ing a more complex search. 

Conversion Deadlocks. A conversion deadlock can occur when there are at 
least two LKBs in an RSB's conversion queue for a resource. If the requested 
mode of one lock in the queue is incompatible with the granted mode of 
another lock in the queue, a deadlock exists. 

For example, assume that there are two protected read (PR) mode locks on a 
resource. The process with one PR mode lock requests a conversion to EX 
mode. Because PR mode is incompatible with EX mode, the conversion re­
quest must wait. While the first conversion request is waiting, the process 
with the second PR mode lock also requests a conversion to EX mode. The 
first lock cannot be granted because its requested mode (EX) is incompatible 
with the second lock's granted mode (PR). The second conversion request 
cannot be granted because it is waiting behind the first. 

The search for a conversion deadlock begins with the first LKB on the lock 
timeout queue. The LKB's state queue backw~rd link points to the previous 
LKB in the conversion queue. The granted mode of the previous lock is com­
pared with the requested mode of the lock that timed out. If the modes are 
compatible, the next previous lock in the conversion queue is examined. The 
test is repeated until an incompatible lock is found or the beginning of the 
queue is reached. 

If a lock with an incompatible grant mode is found, a deadlock exists. A 
victim LKB is selected (see Section 13.3.3). If the beginning of the queue is 
reached, a conversion deadlock does not exist, and a search for a multiple 
resource deadlock is initiated. 

Multiple Resource Deadlocks. Multiple resource deadlocks occur when a cir­
cular list of processes are each waiting for one another on two or more 
resources. 

For example, assume Process A locks Resource 1 and Process B locks Re-

311 



Lock lv1anageinent 

312 

Figure 13·7 Example of a Deadlock Occurring 

source 2. Process A then requests a lock on Resource 2 that is incompatible 
with B's lock on Resource 2, and thus Process A must wait. Note that at this 
pbint, a circular list does not exist. When Process B then requests a lock on 
Resource 1 that is incompatible with A's lock on Resource 11 it must wait. A 
multiple resource deadlock now exists. Processes A and Bare both waiting 
for each other to release different resources. These steps are shown in Figure 
13-7. In the figure, locks that are blocking a resource (incompatible with 
waiting locks) are shown beneath the RSB; locks that are waiting on a re­
source are shown above the RSB. 

This type of deadlock normally involves two or more resources, unless one 
process locks the same resource twice. (Usually a process does not lock the 
same resource twice. However, if the process is multithreaded, double lock­
ing can occur. Double locking can result in a multiple resource deadlock.) 

To verify that a multiple resource deadlock exists, LCK$SEARCHDLCK 
uses a recursive algorithm. Its approach is based upon the following: 

• A waiting lock is waiting for locks owned by other processes. 
• Any of the other processes might themselves have waiting locks. 
• Those waiting locks are waiting for locks owned by other blocking 

processes. 

LCK$SEARCHDLCK starts with the lock that timed out on the lock timeout 
queue. It saves the extended process ID (EPID) of the owner process of the 
lock that timed out and invokes the multiple resource deadlock routine 
(LCK$SRCH_RESDLCK). If it finds a lock with the same owner EPID block­
ing a resource, a deadlock exists. 



13.3 Handling Deadlocks 

Each time LCK$SRCH_RESDLCK is invoked, a stack frame is pushed onto 
the stack. Each stack frame contains information on the current position in 
the search. Figure 13-8 shows the contents of the stack frame. 

The recursive nature of the deadlock search algorithm limits the maxi­
mum depth of the resource tree as a function of the SYSBOOT parameters 
INTSTKPAGES and DLCKEXTRASTK. INTSTKPAGES is the size of the in­
terrupt stack, and DLCKEXTRASTK is the amount of interrupt stack space 
that should not be used for deadlock searches. The difference between them 
is the amount of stack available for LCK$SRCH_RESDLCK's stack frames. 

Each call to LCK$SRCH_RESDLCK specifies the address of a waiting LKB. 
The resource associated with the LKB is located and the resource state 
queues are searched for LKBs whose granted or requested lock mode is in­
compatible with that of the waiting LKB. If an incompatible LKB is found, 
that lock is considered to be blocking the waiting LKB. 

When a blocking lock is found, its EPID is compared to that of the lock that 
initiated the deadlock search. If they are the same, the list is proven to be 
circular and a deadlock exists. A victim lock is chosen (see Section 13.3.3 for 
details on victim selection), and deadlock detection returns control to 
EXE$TIMEOUT. If the EPID of the blocking lock is not the same as the saved 
EPID, another call is made to LCK$SRCH_RESDLCK, specifying the address 
of the new blocking LKB. 

Each time LCK$SRCH~RESDLCK is called, it searches the state queues 
associated with the specified LKB to see if it is waiting on a resource. 

When all the state queues for a given resource have been searched and no 
blocking lock has been found for that LKB, the routine removes the stack 
frame and returns control to its caller. If the caller itself was 
LCK$SRCH_RESDLCK, the previous search for blocked locks on the re­
source can now be resumed. 

A process bitmap is maintained to reduce the number of repeated searches 
for blocking locks on a particular process. Each time a new blocking PCB is 

Saved R2 

Saved R3 

Saved R4 (PCB + PCB$L_LOCKQFL) 

Saved RS 

Saved R6 (Address of LKB) 

Return Address 

Figure 13-8 Stack Frame Built for 
LCK$SRCH_RESDLCK 

313 



Lock Management 

13.3.2.3 

314 

located, a bit corresponding to that process is set. If the bit for the PCB is set 
already, the search for locks blocking that process is terminated, because its 
locks have been searched already. 

Unsuspected Deadlocks. Note that the use of the process bitmap speeds the 
location of the suspected deadlock, but prevents the accidental detection of 
unsuspected deadlocks. An unsuspected deadlock is one that exists within 
the lock management database, but that has not been detected so far, because 
none of its locks have timed out on the lock timeout queue. This behavior is 
accepted for the following reasons: 

• Deadlocks should be rare. 
• Finding a process a second time in a deadlock search does not necessarily 

indicate that an unsuspected deadlock exists. 
• The occurrence of unsuspected deadlocks should be rarer still. 
• Any deadlock search that does not find a deadlock is a waste of processor 

time. 
• The unsuspected deadlock will become a suspected deadlock when one of 

its own locks times out on the lock timeout queue and a deadlock search is 
initiated on its behalf. 

Figure 13-9 shows two deadlocks. In the figure, locks that are blocking a 
resource (incompatible with waiting locks) are shown beneath the RSB; locks 
that are waiting on a resource are shown above the RSB. One deadlock iS 
suspected and a search is in progress for it. The heavy arrows in the figure 

Figure 13-9 Suspected and Unsuspected Deadlocks 



13.3.2.4 

13.3 Handling Deadlocks 

show the path of that deadlock cycle. The other is unsuspected. This figure is 
an extension of the deadlock cycle shown in Figure 13-7. 

In this case, the deadlock search was initiated as a search for the locks 
blocking Process A. Because Process C's lock is the first one found granted for 
Resource 2, it is the first lock that is investigated for participation in the 
deadlock cycle. Process C is waiting for Resource 3. The bit corresponding to 
Process C is set in the process bitmap. The context of the search is saved on 
the stack and LCK$SRCH_RESDLCK is called to search for processes block­
ing Process C's lock. 

Process D has a blocking lock on Resource 3. Process Dis also waiting for 
Resource 2. The bit corresponding to Process D is set in the process bitmap. 
The cont;ext of the search is saved on the stack and LCK$SRCH_RESDLCK 
is called to search for processes blocking Process D's lock. Process C has a 
blocking lock on Resource 2. This situation is a deadlock. However, because 
the bit corresponding to Process C was set in the process bitmap, the dead­
lock search for Process C is abandoned. One by one the stack frat;nes are 
removed and the search whose context was saved continues. Eventually the 
deadlock search will continue with locks blocking Resource 2, and the dead­
lock cycle of Processes A and B will be discovered. 

Eventually one of the locks requested by Processes C and D will time out, 
and a deadlock search will be initiated. 

Example of a Search for a Multiple Resource Deadlock. Figure 13-10 shows a 
series of locks that result in a deadlock. In the figure, locks that are blocking a 

Resource 2 

Figure 13-10 Example of a Multiple Resource Deadlock 

315 



Lock Management 

13.3.3 

316 

resource (incompatible with waiting locks) are shown beneath the RSB; locks 
that are waiting on a resource are shown above the RSB. The heavy arrows in 
the figure show the path of the deadlock cycle. 

Assume that the lock owned by Process A timed out. Process A is waiting 
for a lock on Resource 1. The deadlock search routine saves Process A's EPID 
and calls LCK$SRCH_RESDLCK, passing the address of Process A's LKB. 

The incompatible lock on Resource 1 is owned by Process C. Process C 
has no other waiting locks, so LCK$SRCH_RESDLCK moves on to the 
next incompatible lock. This lock is owned by Process D. When 
LCK$SRCH_RESDLCK follows the PCB queue for Process D, it finds that 
this process is waiting for a lock on Resource 3. 

LCK$SRCH_RESDLCK calls itself, passing the address of the LKB owned 
by Process D. The new invocation of LCK$SRCH_RESDLCK pushes a stack 
frame detailing the position of the search on Resource 1, and 
LCK$SRCH_RESDLCK starts to search for locks on Resource 3 that are in­
compatible with Process D's lock. Resource 3 has two incompatible locks, 
owned by Processes E and F. Neither of these processes is waiting for a lock, 
so the search on Resource 3 terminates. The contents of the stack frame are 
restored and LCK$SRCH_RESDLCK returns to its previous invocation. The 
search for processes blocking Process A resumes. 

The next incompatible lock found on Resource 1 is owned by Process G. 
Process G has no waiting locks, so the search continues with Process B. The 
PCB queue for Process B shows that it is waiting for a lock on Resource 2. 

Again, LCK$SRCH_RESDLCK calls itself, passing the address of the LKB 
owned by Process B. The new invocation of LCK$SRCH_RESDLCK pushes a 
new stack frame onto the stack, and LCK$SRCH_RESDLCK finds that Pro­
cess D owns a lock that is incompatible with the lock owned by Process B. 
However, because locks owned by Process D have been searched already (the 
bit for Process Dis set in the process bitmap), the search moves on to the next 
process. 

The next incompatible lock is owned by Process A. Because the EPID of 
Process A matches the EPID that was saved initially, the list is proven to be 
circular and a deadlock exists. Now a victim must be chosen. 

Victim Selection 

Because conversion deadlocks involve only two processes, the victim selec­
tion routine simply chooses the process with the lower deadlock priority 
(stored in the PCB at offset PCB$L_DLCKPRI). 

For a multiple resource deadlock, the victim selection routine is only 
slightly more complicated. The frames that were pushed onto the stack in 
each recursion into the deadlock location routine are searched for the lowest 
deadlock priority. Each time a lower deadlock priority value is found, the 



13.3 Handling Deadlocks 

priority and the owner process are noted. If a deadlock priority of zero is 
found, that process is immediately chosen as the victim. When all frames 
have been searched or a deadlock priority of zero is found, the stack pointer is 
restored and the process with the lowest deadlock priority is chosen as the 
victim. 

Note that the current implementation of the VAX/VMS operating system 
initializes the deadlock priority of all new processes to zero. Thus, it is not 
possible to determine which process will be chosen as the victim. With the 
current implementation, victim selection depends primarily on timing. 

317 





PART IV/Memory Management 





14 Memory Management Data 
Structures 

... but there's one great advantage in it, that one's memory 
works both ways. 

Lewis Carroll, Through the Looking Glass 

VAX/VMS virtual memory support is implemented partly in VAX hardware/ 
microcode and partly in VMS software. VAX microcode translates a virtual 
address to a physical address. The VAX Architecture Reference Manual docu­
ments virtual address translation. In this book, the reader is assumed to be 
familiar with address translation. 

This chapter and the three that follow it describe the data structures and 
mechanisms that implement software virtual memory support. Chapter 15 
describes the translation-not-valid fault handler (pager). The pager is the ex­
ception service routine that responds to page faults and brings virtual pages 
into memory on behalf of a process. Chapter 16 describes system services an 
image invokes to alter the process's virtual address space and affect its pag­
ing. Chapter I 7 describes the swapper process. The swapper manages physi­
cal memory. It writes modified pages, shrinks process working sets, and 
outswaps processes to keep the highest priority computable processes in 
memory. 

These components maintain a number of memory management data struc­
tures, some process-specific and others systemwide. This chapter describes 
the following memory management data structures: 

• Process-specific memory management data structures in the process header 
• Data structures that account for physical memory, the page frame number 

(PFN) database 
• Structures that are used for system and global pages 
• Structures that keep track of processes in memory 
• Structures that support process swapping 
• Structures that describe the page and swap files 
• Structures that support MA780 shared memory 

14.1 PROCESS DATA STRUCTURES (PROCESS HEADER) 

The most important process-specific data structures used by the memory 
management subsystem are contained in the PHO (Figure 14-1). The address 
of the process header (PHO) is stored in the software PCB. 

321 



Memory Management Data Structures 

322 

Figure 14-1 shows the portions. of the PHD that are of special interest to 
memory management. The smaller figure to the right shows the relative 
sizes of the portions of the PHD on a typical system. Appendix F describes 
how the sizes of the pieces of the PHD are related to SYSBOOT parameters. 

The following pieces of the PHD are related to memory management: 

• The PO and Pl page tables are the largest contributors to the size of the PHD 
and contain the complete description of the per-process virtual address 
space currently being used by the process. 

• The working set list (WSL) describes the subset of process page table entries 
that are currently valid. 

• The process section table (PST) is used by the pager to locate a virtual page 
in a section file. It contains information about the location of the file on a 
mass storage medium and in virtual address space. 

• Because the sizes of the different pieces of the PHD vary from system to 
system, there must be some method of determining where each piece is 

Contains pointers to variable 
portions of the process header. 

r>escribes valid page table entries. 

Describes pages in section files. 

Reserved for expansion of the 
working set list and process 
section table. 

Describes pages in the process 
header itself. 

Describes the virtual address 
space used by the process. 

< 
{ 
{ 
< 
{ 

< I-: 

'-1 

Fixed Portion of Process Header 

Working Set List 

z=> 
LJ 

Process Section Table 

Empty Pages 

Arrays for Process Header Pages 

PO Page Table 

z=> 

~ 
P1. Page Table 

Figure 14-1 Discrete Portions of the Process Header 

T\ 

----~----+-~~----! 

----------
I 

// 

~ I 
It' 

/ 
I 

I 
I 

/ 



14.1.1 

14.1 Process Data Structures (Process Header) 

located. Pointers or indexes in the fixed portion of the PHD serve this pur­
pose. Process accounting information, some of which is used by the pager or 
the swapper, is also located in this area. 

• There are several arrays that contain information about each PHD page. 
This information is used by the swapper when it is necessary to outswap 
the PHD. 

Process Page Tables 

A large part of the PHD is devoted to the PO and Pl page tables. A page table 
contains page table entries (PTEs), each of which describes one page of virtual 
address space. The combined number of PTEs in the two tables is determined 
by the SYSBOOT parameter VIRTUALPAGECNT. Figure 14-2 shows these 
page tables in the PHD and the fields in the fixed portion of the PHO that are 
used to locate the PO and Pl page tables. 

PCB$L_PHD 

FREPOVA= POBR +(4 x POLR) 

FREP1VA=P1BR+(4xP1LR) 

These four values { 
are stored in the 
hardware PCB, a 
part of the fixed 
portion of the 
process header. 

.... 

~ 

* 
~I 

~l 

'""'"'{ 
Figure 14-2 Process Page Tables 

Process Header (PHO) 

;.. 

FREPOVA 

FREPTECNT 

FREP1VA ~ 

~ 

POBR 

-0 POLR 

P1BR h -1 
I P1LR 

;, 

PO Page Table 
(Maps Virtual Addresses from 

0 to FREPOVA-1) 

Room for Expansion of Either 
PO Page Table 

~ or 
P1 Page Table 

P1 Page Table 
(Maps Virtual Addresses from 

(FREP1VA+2001sl to 7FFFFFFF) 

End of Process Header 

323 



Memory Management Data Structures 

324 

.-------.. Modify Bit -Set by Hardware on Write or 
Modify Access to Page r- Window Bit -Indicates Page Mapped by PFN 

31 30 27 26 25 24 23 22 21 20 19 18 17 16 15 0 

Valid PTE w Page Frame Number (PFN) 

0 0 

0 Page Frame Number (PFN) 

Different 
Forms of 0 Protection 0 Global Page Table Index 
Invalid PTEs Code 

0 (See Page File Virtual Block Number 
able 14-1) 

0 Process Section Table Index 

31 30 27 26 25 24 23 22 21 20 19181716 15 0 

'-------! .. ~TYPO Bit-Low-Order Bit of PTE Type 
.__ ______ _.,.., TYP1 Bit-High-Order Bit of PTE Type 

,__ __________ _,.,~Valid Bit-Page Table Entry Valid Bit 

Figure 14·3 Different Forms of Page Table Entry 

Figure 14-3 shows the format of a PTE. 

Page Is Active 
and Valid 

Demand Zero 
Page 

Page Is in 
Transition 

Invalid Global 
Page 

Page Is in 
Page File 

Page Is in 
Image File 

The PO page table contains PTEs for all pages currently defined in PO space 
(these are called POPTEs). The starting virtual address of the PO page table is 
stored in offset PHD$L_POBR and copied to the PO base register (PR$_POBR) 
by LDPCTX when the process is placed in execution. The number of pages in PO 
space is stored in offset PHD$L_POLR and copied to the PO length register 
(PR$_POLR). The virtual page number of the first unmapped page in PO 
space (the index of the first nonexistent POPTE) is stored at offset 
PHD$L_FREPOV A. 

In a similar manner, the Pl page table contains PTEs for the pages cur­
rently stored in Pl space (called PlPTEs). The base address and length of the 
Pl page table are stored in fields PHD$L_PlBR and PHD$L_PlLR. The 
LDPCTX instruction copies these fields to the processor registers PR$_PlBR 
and PR$_PlLR. Like Pl space itself, the Pl page table grows toward smaller 
addresses. To simplify VAX address translation, the base address of the Pl 
page table is the virtual address of the PlPTE that would map virtual address 
40000000. This allows a Pl virtual page number to be used as an index into 
the Pl page table. PHD$L_PlLR contains the number of PlPTEs that do not 



14.1.1.1 

14.1 Process Data Structures (Process Header) 

exist. The virtual page number of the high address end of the unmapped por­
tion of Pl space (Figure 14-2) is stored at offset PHD$L_FREP1 VA. 

The processor registers that describe the page tables are not stored by the 
SVPCTX instruction. These registers change relatively rarely. Thus, having 
VMS explicitly record changes to them in the hardware PCB saves the mem­
ory writes that would otherwise be required every time the process context is 
saved. 

The number of PTEs available for the expansion of either PO space or Pl 
space is stored in offset PHD$L_FREPTECNT. This number is the SYSBOOT 
parameter VIRTUALPAGECNT, minus the current sizes of the PO and Pl 
page tables. 

A valid PTE is used by the VAX microcode to translate a virtual address to 
its physical counterpart. Figure 14-3 shows the form of a valid PTE. Bit <31> 
in the PTE is set to indicate that it is valid and that the microcode can use the 
page frame information. When a process references a virtual address whose 
PTE is not valid, a page fault occurs. One of the exception-specific parameters 
pushed onto the stack by the microcode identifies the invalid virtual page; it 
is an address within the page, typically the virtual address referenced. This 
enables the pager to retrieve the PTE for the invalid page to determine where 
the page is located. 

A PTE for an invalid page contains either the location of the page or a 
pointer to further information about the page. Figure 14-3 shows the different 
forms of invalid PTE. Notice that bits <31> (valid bit), <30:27> (protection 
code), and <24:23> (owner access mode) have the same meaning in all possi­
ble forms of PTE. 

The VAX microcode makes protection checks on both valid and invalid 
pages. This enables the legality of an intended access to an invalid page to be 
checked without having to fault the page into memory. Thus, PTE <30:27> 
must always contain a protection code. Table 14-1 lists the symbolic and 
numeric forms of possible protection codes. 

The pager uses bits <26> and <22> in the invalid PTE to distinguish the 
different forms of invalid PTE. These are described in the following para­
graphs, starting with the PTE at the bottom of Figure 14-3. One form of inva­
lid PTE not pictured in Figure 14-3 is a "null page," a longword of zero. A PTE 
with a zero protection code disallows any access to the page by any mode. 
This form of PTE describes an unmapped page of address space. 

Process Section Table Index. When a virtual page is located in a section file 
(other than a page file), its PTE contains an index into the process section 
table (PST). This index locates a process section table entry (PSTE). Initially, 
the PTE of each page in a process section contains the index of its PSTE. The 
PSTE has information about the location of the file mapped into the process 

325 



Memory Management Data Structures 

14.1.1.2 

326 

address space and the virtual block in the file containing each section page. 
The PSTE contains control bits which are copied to the PTE: 

• Bit <18> is set to indicate the page is writable. 
• Bit < 17> is set to indicate the page is demand zero. 
• Bit <16> is set to indicate the page is copy-on-reference. 

The PST is described in Section 14.1.3 and further in Chapter 15. 

Page File Virtual Block Number. When a virtual page is located in a page file, 
its PTE contains the virtual block number of the page within the page file. A 
virtual block number of zero indicates that a block in the page file will exist 
for the page, but has not yet been allocated. The field PHD$B_PAGFIL indi-

Table 14-1 Memory Access Protection Codes in Page Table Entries 

Binary Protection Mask 
Protection Symbol Value Hexadecimal 

No access allowed PRT$c_NA 0000 00000000 

Reserved PRT$C_RESERVED 0001 00000001 

Kernel write (kernel read) PRT$C_KW 0010 10000000 

Kernel read (no write) PRT$C_KR 0011 18000000 

User write (user read) PRT$C_uw 0100 20000000 

Executive write (executive read) PRT$C_EW 0101 28000000 

Executive read, kernel write PRT$C_ERKW 0110 30000000 

Executive read (no write) PRT$C_ER 0111 38000000 

Supervisor write (supervisor read) PRT$C_SW 1000 40000000 

Supervisor read, executive write PRT$C_SREW 1001 48000000 

Supervisor read, kernel write PRT$C_SRKW 1010 50000000 

Supervisor read (no write) PRT$C_SR 1011 58000000 

User read, supervisor write PRT$C_URSW llOO 60000000 

User read, executive write PRT$C_UREW 1101 68000000 

User read, kernel write PRT$C_URKW 1110 70000000 

User read (no write) PRT$C_UR 1111 78000000 

Note that the following rules govern memory access protection: 

• If a given access mode has write access to a specific page, then that access mode also has 
read access to that page. 

• If a given access mode can read a specific page, then all more privileged access modes 
can read the same page. 

• If a given access mode can write a specific page, then all more privileged access modes 
can write the same page. 

• Access that is implied !rather than explicitly a part of the symbolic protection name) is 
included in parentheses. 



14.1.1.3 

14.1.1.4 

14.1.1.5 

14.1.2 

14.1 Process Data Structures (Process Header) 

cates which page file contains the virtual page. This byte is used as an index 
into the page-and-swap-file vector (see Section 14.5.2). Since a process is as­
signed to only one page file, PHD$B_PAGFIL applies to all such PTEs. 

PHD$B_PAGFIL is part of the longword field PHD$L_PAGFIL, which con­
tains zero in its low-order three bytes. This field is used as a template for a 
PTE that acquires a page file backing store address. 

Global Page Table Index. The PTE of an invalid process page mapped to a 
global page contains an index into the global page table, where an associated 
global PTE contains further information used to locate the page. The global 
page table is described in Section 14.3. Page faults involving global pages are 
discussed in Chapter 15. 

Page in Transition. There are several situations in which an invalid virtual 
page is associated with a physical page. For example, when a page is removed 
from a process working set, it is not discarded but put on the free or modified 
page list. Such a page is called a transition page. The PTE contains a PFN, but 
the valid bit is clear. The two type bits (PTE <26> and <22>) are also clear. 
Retaining the connection to a transition page minimizes the cost of faulting 
the page back into the working set. 

Transition pages are described by the entries for the physical page found in 
the PFN database (see Section 14.2). In particular, the PFN STATE array des­
ignates the particular transition state the physical page is in. 

Demand Zero Pages. One form of the transition PTE has a zero in the PFN 
field. This zero indicates a special form of page called a demand-allocate, 
zero-fill page or demand zero page for short. When a page fault occurs for such 
a page, the pager allocates a physical page, fills the page with zeros, inserts 
the PFN into the PTE, sets the valid bit, and dismisses the exception. (For 
this reason, and a second reason explained in Section 14.2.5, the virtual state 
of physical page zero cannot change.) 

Working Set List 

The working set list (WSL) describes the subset of a process's pages that are 
currently valid. Pages described in a process's WSL are either PO, Pl, or PHD 
pages. The WSL is used by the pager and swapper to determine which virtual 
page to discard (to mark invalid) when it is necessary to take a physical page 
away from the process. The swapper also uses the WSL to determine which 
virtual pages need to be written to the swap file when the process is 
outswapped. 

Figure 14-4 shows the WSL in the PHD and the various fields in the fixed 

327 



Memory Management Data Structures 

328 

PCB$LPHD 

-( 
PHO+ (4xWSLIST ) 

PHO+ (4xWSLOCK) 

) 

)~ 

PHO+ (4xWSDYN 

PHO+ (4xDFWSCNT 

PHO+ (4xWSNEXT 

PHO+ (4xWSLAST 

)~ 

,-

PHO+ (4xWSQUOTA ) 

PHO+ (4xWSEXTENT ) 

)' 

Process Header (PHO) 

WSAUTH WSLIST 

WSDYN WSLOCK 

WSLAST WSNEXT 

WSEXTENT WSAUTHEXT 

DFWSC~T WSQUOTA 

WSSIZE 

Rest of Fixed Portion 
of Process Header 

Pages Permanently 
Locked in 

Working Set 

Pages Locked by 
User Request 

($LKWSET and $LCKPAG) 

Working Set List 
Dynamic Space 

Room for Expansion of WSL 

Rest of Process Header 

Figure 14-4 Working Set List 

~ 

v 

> 
These values are longword 
indexes from the top of the 
process header. 

portion that locate different piece& of the list. Each of these fields, including 
the quota fields, contains a longword index (multiply contents by 4 or use 
longword context index addressing) to the working set list entry (WSLE) in 
question. The following operations compute the address of the beginning of 
the WSL: 

1. Multiply the contents of PHD$W _ WSLIST by 4. 
2. Add the result to the address of the PHD. 

PHD$W _ WSSIZE is the only field shown which is a count rather than a 
longword index. 

Certain types of page are valid for the entire time that they are mapped and 
do not appear in the WSL. These include PFN-mapped pages, Pl space system 
service vector pages (see Chapter 9), pages in a resident global section, and 
pages in MA780 shared memory. 



14.1.2.1 

14.1 Process Data Structures (Process Header) 

Division of the Working Set List. The WSL consists of three pieces: entries 
for pages that are permanently locked, entries for pages locked by user re­
quest, and the dynamic portion. The quota fields in the fixed portion of the 
PHO determine how large the WSL may grow in response to different work­
ing set size adjustments. The contents of the three pieces are as follows: 

• The permanently locked portion of the WSL (from WSLIST to WSLOCK) 
describes the pages that are forever a part of the process working set. These 
include the following: · 

-Kernel stack 
. -Pl pointer page 
-Pl page table page that maps the kernel stack and the Pl pointer page 
-Pl page table page that maps the Pl window to the PHO 
-PHO pages that are not page table pages. These include the fixed portion, 

WSL, PST, and PHO page arrays. 

• The portion of the WSL between WSLOCK and WSOYN describes all pages 
that are locked by user request, specifically with the Lock Pages in Working 
Set ($LKWSET) or Lock Pages in Memory ($LCKPAG) system services. Any 
per-process page table page that maps a PFN-mapped section or an MA780 
shared memory section is placed in this portion of the WSL. 

• The. dynamic portion of the WSL is a ring. buffer used for page replacement. 
It describes per-process pages and the page table pages that map them. It 
begins at WSOYN. WSLAST is the offset to the end of the working set list. 
It marks the end of the ring buffer. The WSL is not necessarily dense; there 
may be empty entries between WSOYN and WSLAST. The entry most re­
cently inserted into the WSL is pointed to by WSNEXT. The page replace­
ment algorithm, explained in detail in Chapter 15, is a modified first-in/ 
first-out scheme. 

The current size of the WSL is PHO$W _ WSSIZE, the potential number of 
valid process or global pages. The actual number of pages that a process 
currently occupies is the sum of the process private page count 
(PCB$W _PPGCNT) and the global page count (PCB$W _GPGCNT). 

Normally, the maximum size to which the working set can grow is 
WSQUOTA. However, if there are more than the SYSBOOT parameter BOR­
ROWLIM pages on the free page list, the WSL can be extended up to WSEX­
TENT (at quantum end). If there are more than the SYSBOOT parameter 
GROWLIM pages on the free page list, pages can be add.ed to a process's 
workings.et above WSQUOTA (on resolution of a page fault). WSQUOTA can 
be altered in interactive and batch jobs by the SET WORKING_SET/QUOTA 
command. Part of the image reset logic, invoked at image exit, resets the end 
of the WSL to its default working set count (OFWSCNT). The meanings of 
the various WSL quotas and limits are summarized in Table 16-1. 

329 



Memory Management Data Structures 

31 9 8 7 6 5 4 3 

Virtual Address Bits (31:9) 

Saved Modify Bit 

Page Locked in Working Set --------' 
Page Locked in Memory ..-------­
r----·-- Page Type -----------

+ WSL Entry Valid 

Code Page '!Ype 

O Process Page 
1 System Page 
2 Global Read-Only Page 
3 Global Read/Write Page 
4 Process Page Table Page 
5 Global Page Table Page 

Figure 14·5 Format of Working Set List Entry 

1 0 

Process Header (PHD) 

PSTLAST and PSTFREE are 
negative longword indexes 

from the base of the 
process section table. 

PSTBASOFF 

PSTFREE PST LAST 

PSTBASMAX/WSLX 

Rest of Fixed Portion, 
Working Set List 

Room for Expansion of PST 
orWSL 

Process Section Table 

Empty Pages 

1 

I 
I 

I 
I 

I 

I 
I 

I 
I 

I 
I 

I 

l---+.l-~~~~~~~~---1 ............. 

Process Header Page Arrays, 
PO Page Table, P1 Page Table 

The process section table 
cannot extend beyond 
this point. 

Figure 14·6 Process Section Table 

330 



14.1.3 

14.1 Process Data Structures (Process Header) 

The format of a valid working set list entry (WSLE) is shown in Figure 14-5. 
Notice that the upper 23 bits are the same as the upper 23 bits of a virtual 
address. This format allows the WSLE to be passed as a virtual address to 
several utility routines which ignore the byte offset bits (WSLE control bits). 

Table 14-2 shows the meanings of the WSLE control bits. 

Process Section Table 

The process section table (PST) contains process section table . entries 
(PSTEs). A PSTE is used to locate a section within a file mapped in the 
process's address space. A process section is a contiguous portion of virtual 
address space consisting of pages with identical characteristics (for example, 
protection, owner access mode, writability, file location). When an image is 
activated (see Chapter 21), the file containing the image is opened and a pro­
cess section is created for each private image section. 

Other process sections can be created when 

• An image opens a file and requests the Create and Map Section system 
service to map that file into its address space 

Table 14-2 WSLE Control Bits 

Field Name 

VALID 

PAGTYP 

PFNLOCK 

WSLOCK 

MODIFY 

Bit Number 

<0> 

<1:3> 

<4> 

<5> 

<8> 

Meaning 

This bit is set to indicate that the WSLE is in use. 

This field (a duplicate of the contents of the PFN 
TYPE array) distinguishes pages that require 
different action when removed from a working 
set. 

This bit is set to indicate that the page has been 
locked into physical memory with the $LCKPAG 
system service. Such a page is also locked into 
the working set by moving its WSLE into the 
portion that contains pages locked by user 
request. However, its WSLOCK bit is not set. 

This bit is set when one of the following types of 
page is locked into the process working set: 

• Permanently locked page 
• Page locked by user request 
• Per-process page table page that maps 

a currently valid page 

This bit is used when the process is outswapped to 
record the logical OR of the modify bit in the 
PTE and the saved modify bit in the PFN STATE 
array. 

331 



Memory Management Data Structures 

332 

• A shareable image is activated which is not shared (that is, which has not 
been installed with the /SHARE qualifier through the Install Utility) 

PSTEs enable the memory management subsystem to keep track of process 
pages in different sections potentially in different files on different mass stor­
age devices. 

The location of the PST within the PHD is pictured in Figure 14-6. Figure 
14-7 shows the format of a PSTE. Field PHD$L_PSTBASOFF contains the 
byte offset from the beginning of the PHD to the base of the PST. The base of 
the PST is at its high address end. 

All PSTEs within the table are located through negative longword indexes 
from the base of the PST. The first PSTE has an index of -8, the second 
-1016. Successive PSTEs are at lower addresses. 

The following operations compute the address of a particular PSTE: 

1. Add the contents of PHD$L_PSTBASOFF to the address of the PHD. The 
result is the address of the PST. 

2. Multiply the negative process section table index by 4. 
3. Add the negative result to the address of the PST. 

Since all references to a PSTE are relative to PHD$L_PSTBASOFF, the PST is 
position-independent. 

A PST is organized into a variable number of linked lists of PSTEs. Figure 
14-6 shows a typical PST with free and allocated PSTEs; the allocated PSTEs 
are shaded. The negative index PHD$W _PSTLAST is the largest index of any 
entry ever allocated and is a "high-water mark." 

All the entries in use for process sections from the same file are linked 
together. (This is somewhat simplified. Actually, the list consists of all the 
process sections which page from the section file using the same assigned 
channel.) The entries are linked together through the backward and forward 
link index fields of each entry. 

When a section is deleted, the PSTE that mapped the section is placed on 
the list of free entries so that it can be reused. The negative index 
PHD$W _PSTFREE points to the most recent addition to the free list. If no 
entry has been deleted, PHD$W _PSTFREE contains zero. The first longword 
in a PSTE on the free list contains the negative index to the previous element 
on the free list. When a section is created, the PSTE allocation routine first 
checks the free list. If there is no free PSTE, a new PSTE is created from the 
expansion region between the WSL and the PST, and PHD$W _PSTLAST is 
modified. 

VMS attempts to keep the WSL and PST virtually adjacent to simplify and 
shorten manipulation of the PHD during outswap and inswap. When it is 
necessary to expand the WSL into the area already occupied by the PST or 
expand the PST into the area already occupied by the WSL, space is allocated 



Pointer to Channel Control Block/ 
Pointer to Global Section Descriptor 

Backward Link j Forward Link 
Index Index 

Page 
Starting Virtual 

IX Fault 
Cluster 

Page Number (22 bits) Control Flags Word in Process/Global Section Table Entry 

15 14 13 12 11 10 9 
Address of Window Control Block 

Base Virtual Block Number 
for This Section 

I, 

><I Control 
Flags y 

Count of PTEs Referencing 
Thia Section 

Number of Pages in 
This Section 

Figure 14-7 Layout of Process/Global Section Table 
Entry 

8765432 0 

Global 

Copy on Reference 

'-----4~ Demand Zero 

'-------... Writable 

'---------- Shared Memory Global 

'-------------- Access Mode for Writing 

'------------------ Access Mode of Section 

Resident Global 

Permanent 

System Global (Set) 
Group Global (Clear) 



Memory Management Data Structures 

14.1.4 

334 

from existing empty page area (see Figure 14-6). Then, the entire PST is 
moved into the allocated space at higher addresses, and the new base address 
is stored in PHD$L_PSTBASOFF. Another reason for their adjacency is to 
minimize the chances of wasting physical memory for partial pages of PST 
and WSL. 

The longword at PHD$L_PSTBASMAX/PHD$L_ WSLX specifies the max­
imum size of the PST. This longword points to the high address end of the 
empty page area. Its contents are in WSL index form; that is, PHD$L_ WSLX 
is a longword context index from the beginning of the PST. 

The maximum PST and the WSL sizes are limited by the SYSBOOT param­
eters PROCSECTCNT and WSMAX. Room is reserved in the PHD for the 
maximum PST and WSL. It is possible for the PST to grow larger than PROC­
SECTCNT specifies, at the expense of the WSL. 

Figure 14-7 shows the format of a process/global section table entry. (Sec­
tion 14.3.2 describes global section table entries.) Note that the field 
names within a section table entry are defined by the SYS$LIBRARY: 
STARLET.MLB macro $SECDEF and begin with SEC$. 

The following steps are used to locate a virtual page in a section file using 
information in the PSTE: 

1. The WCB address points to the window control block (WCB) for the file. 
The WCB contains the mapping information that relates virtual block 
numbers in a file to logical block numbers on a volume. 

2. The starting virtual page number for the section, when subtracted from 
the virtual page number of the faulting page, gives the page offset into the 
section. 

3. The starting virtual block number of the section is added to the page offset 
computed in step 2 to give the virtual block number of the virtual page 
within the file. 

Process Header Page Arrays 

When a PHD is outswapped, some information about each PHD page must be 
stored in the outswapped header. The PHD page array portion of the PHD 
provides an area where this information can be stored (Figure 14-8). Two of 
the arrays, the BAK and WSLX arrays, save information from the PFN data­
base about each PHD page in the working set. 

In the case of a process-private page in PO or Pl space, the WSLE and PTE 
record information about the page, such as whether it is valid and where its 
backing store is. A system page in a released balance slot, however, can be 
reused for another process header. Any information in its SPTE is overwrit­
ten. The BAK array records this information that would otherwise be lost. 
The WSLX array records the location in the WSL of each PHD page. Without 



14.1.5 

14.1 Process Data Structures (Process Header) 

PCB$L_PHO 

PHO + (4xWSLX) 
(Longword Index) 

PHO + (4xBAK) 
(Longword Index) 

PHO+PTWSLELCK 
(Byte Index) 

PHO+ PTWSLEVAL 
(Byte Index) 

1 ,,. 

~ 

-
-
-

)-' 

BAK 

WSLX 

PTWSLELCK 

PTWSLEVAL 

PTCNTVAL PTCNTLCK 

PTCNTMAX PTCNTACT 

Rest of Fixed Portion, 
WSL, PST, 

Empty Pages 

WSL Index Save Area 
(One Word for Each 

Process Header Page) 

Backup Address Save Area 
(One Longword for Each 
Process Header Page) 

Locked WSLE Counts Array 
(One Byte per Page Table Page) 

(-1-+None) 

Valid WSLE Counts Array 
(One Byte per Page Table Page) 

(-1-+None) 

PO and P1 Page Tables 

Figure 14·8 Process Header Page Arrays 

I 
1 

* 

.v 

Fixed Portion Of 
Process Header 

Process Header 
Page Arrays 

(Eight bytes per 
process header 
page, rounded up 
to page boundary) 

this information, locating the PHD pages in the WSL at inswap would require 
searching the WSL. 

The other two arrays (locked WSLE count and valid WSLE count) contain a 
reference count for each page table page. These four arrays are described in 
greater detail in Chapter 17. 

Unusual Characteristics of the Process Header 

The PHD has several unusual characteristics that distinguish it from other 
data structures: 

• The PHD is swappable. 
When a process is outswapped, its PHD can be outswapped as well. The 

entire PHD address space is not written to process swap space, only that 
part of the space in use. In particular, empty pages reserved for expansion of 
the PST and WSL are not written out and only those page table pages which 

335 



Memory Management Data Structures 

336 

map pages in the WSL are outswapped. 
When later inswapped, the PHD is likely to be placed in a different bal­

ance slot at a different system space address (see Section 14.4.1). This 
means that system space accesses to the PHD must be made while at an IPL 
high enough to block rescheduling. (Blocking a reschedule means that the 
swapper process cannot execute and therefore cannot outswap the process 
while it is accessing its PHD.) 

• The PHD is referenced using both system space addresses and P 1 space 
addresses. 

The PHD is located in system space partly so that the swapper can access 
it. Furthermore, VAX address translation requires that per-process page ta­
bles be in system space (whose address translation is physically based). 

The PHD, excluding the per-process page tables, is also mapped in Pl 
space and accessed through global pointer CTL$GL_PHD. This "Pl win­
dow" to the PHD is at a fixed virtual address range and remains the same 
across outswaps and inswaps. The exact location and size of the window 
vary with system version and several SYSBOOT parameters. Most system 
code that runs in process context accesses the PHD through the Pl window 
and thus is not constrained to run at IPL 3 or above to block swapping. 
Chapter 17 contains more information on double mapping of the PHD. 

• The PHD is both pageabl~ and nonpageable. The per-process page tables are 
pageable; the rest of the PHD is not pageable. 

The pageable portion of the PHD is paged in the process's WSL; its 
nonpageable portion is locked into the process's WSL. 

In contrast, other pageable system space pages are paged in the system 
working set (see Section 14.3.2). 

An attempt by one process to fault a page in another process's PHD is 
viewed as an error. The pager simulates an access violation for any such 
attempted fault. 

• The PHD has four variable-length pieces: the two per-process page tables, 
the WSL, and the PST. The maximum sizes 0f these pieces are fixed by 
SYSBOOT parameters, but their actual sizes vary in response to process 
needs. 

The per-process page tables are at a fixed place (fixed for a given set of 
SYSBOOT parameters) at the high-address portion of the PHO. The PO page 
table grows toward increasing addresses and the P 1 page table toward de­
creasing addresses. Enough PHD space must be reserved for their maximum 
sizes, because the system virtual addresses of the page tables must remain 
stable while the process is in the balance set. Any outstanding I/O request 
refers to its buffer using the system virtual address of the PTEs, and every 
resident page has a back pointer to the address of the PTE that maps it in its 
associated PFN database. 



14.2 PFN Database 

The dynamic growth area of the PHD must accommodate the growth of 
both the PST and the WSL. Expansion in either of these can result in mov­
ing the PST to higher addresses in the PHO. Section 14.1.3 briefly describes 
header expansion. 

14.2 PFN DATABASE 

14.2.1 

The memory management data structures include information about the 
available pages of physical memory. The fact that this information must be 
available while the page is in use means that it cannot be stored in the page 
itself. In addition, the caching strategy of the free page list and modified page 
list requires physical page informatfon to be available, even when pages are 
not currently active and valid. A portion of the nonpaged executive is set 
aside for this data, called the page frame number !PFN) database. 

The PFN database consists of eight arrays, each of which contains a differ­
ent kind of information about physical pages of memory. Information about 
one page of memory is at the same element of each array. The same item of 
information about all.physical pages is stored 'in successive elements of an 
array (see Figure 14-9). Table 14-3 lists each kind of information in the PFN 
database, including the global name of the pointer to the beginning of each 
array. 

PFN is used as an index into each array in the PFN database. The global 
location MMG$GL_MINPFN contains the lOwest valid subscript into the 
PFN database. It is currently initialized to zero, and thus the PFN arrays are 
zero-based. Global location MMG$GL_MAXPFN contains the highest valid 
subscript in the PFN database. Its contents are not the highest PFN on the 
system but rather the number of the highest physical page for which there are 
corresponding PFN data array elements, the highest PFN that can be used for 
paging. 

During system initialization, the highest physical pages of memory are 
allocated for permanent uses, such as the resident executive, nonpaged pool, 
and system page table .. To save physical memory, VMS does not create PFN 
database to describe sµch pages because their virtual state does not change 
(that is, they do not page). 

PTEArray 

When a physical page is assigned to another use, the pager must be able to 
find the transition PTE that maps the page. The connection between .the 
physical page and the process which used it must be severed. The PFN PTE 
longword array contains the system virtual address of the PTE that maps 
each physical page. A PFN PTE array element for a global page points to the 
global PTE. 

337 



w 
w 
Clo 

Array 
of 

Longwords 

Array 
of 

[Long]words 

Array 
of 

[Long]words 

t t 
Both of these arrays 

are overlaid. 

Figure 14·9 PFN Database Arrays 

Array 
of 

Longwords 

Array 
of 

Words 

Array 
of 

Bytes 

Array 
of 

Words 

PFN Data for 
Process or Global 
Page in Process 

Working Set 

PFN Data for Page 
on Free or Modified 

Page List 



14.2.2 

14.2 PFN Database 

BAK Array 

A PFN BAK array element stores the backing store information for a PTE. 
When a physical page is assigned to another use, all links with the PTE that 
currently maps the page must be broken. The PTE is altered to indicate 
where the contents of the page can be obtained the next time that they are 
needed. The BAK array element contains the information that goes back into 
the PTE. 

The PFN PTE array element is used to locate the PTE that must be altered. 
Figure 14-10 shows the possible contents of a PFN BAK array element. The 
only forms of PTE (see Figure 14-3) that can go into the BAK array are a 
process section table index, a global section table index, and a page file virtual 
block number. 

Table 14-3 PFN Database Arrays 

Global Address 
Array Element of Pointer to 
Contents Start of Array 

System virtual PFN$ALPTE 
address of PTE 

Backing store PFN$ALBAK 
address 

Physical page state PFN$AB_STATE 

Page type PFN$AB_ TYPE 

Forward link PFN$AX_FLINK 

Backward link PFN$AX_BLINK 

Reference count PFN$AW _REFCNT 

Global share count PFN$AX_SHRCNT 

Working set list PFN$AX_ WSLX 
index 

Swap file virtual PFN$AW _SWPVBN 
block number 

Size of Array 
Element 

Longword 

Longword 

Byte 

Byte 

[Long]word 1 

[Long]word1 

Word 

[Long]word 1 

[Long]word 1 

Word 

Comments 

(Figure 14-10) 

(Figure 14-11 J 

(Figure 14-12) 

(Figure 14-13 ); 
Overlays the 

SHRCNT array 

(Figure 14-13 ); 
Overlays the 

WSLKarray 

Overlays the 
FLINK array 

Overlays the 
BLINK array 

1The size of this array element is a function of the amount of physical memory on the 
system (see Section 14.2.SJ. 

339 



Memory Management Data Structures 

14.2.3 

340 

31 24 23 22 21 

Page File Index O O Page File Virtual Block Number 

31 242322~ 1918171615 

0 0 1 Process or Global Section Table Index 

Figure 14-10 Possible Contents of PFN BAK Array 
Element 

STATE Array 

0 

0 

The PFN STATE array (see Figure 14-11) indicates the physical state of each 
physical page. The low three bits contain the page location code. The upper 
bit in a STATE array element is the modify bit. It determines whether a 
physical page is put on the free page list or the modified page list when the 
page is released. 

There are a number of paths that can cause the modify bit in the STATE 
array to be set: 

• When a page is removed from a process working set, the modify bit in its 
PTE is logically ORed into the saved modify bit in the STATE array. The 
modify bit is recorded in the STATE array element because that bit in an 
invalid PTE has another use as the TYPI bit. 

• When a page is used as a direct 1/0 read buffer, the executive routine that 
locks down pages, MMG$IOLOCK in module IOLOCK, sets the modify bit 

2 

Code Location 

O Page on Free Page List 
1 Page on Modified Page List 
2 Page on Bad Page List 

0 

STATE Array Element 

Locati.on of Page (See below.) 

Delete PFN Contents When 
Reference Count Goes to O 

Saved Modify Bit from PTE 

3 Release Pending (When Reference Count Goes to 0, Put Page on 
Free or Modified Pege List) 

4 Read Error Occurred While Page Read Was in Progress 
5 Write in Progress by Modified Page Writer 
6 Read in Progress by Page Fault Handler 
7 Page Is Active and Valid 

Figure 14-11 Contents of PFN STATE Array Element 



14.2.4 

14.2.5 

14.2 PFN Database 

6 5 4 2 0 

TYPE Array Element 

'----..- Page Type (See below.) 

.__ ________ ,,..... Collided Page (Empty COLPG State 
When Page Read Completes) 

'------------ Bad Page Bit (When Reference 
Count= O, Put Page on Bad Page List) 

'--------------- Report Event-on 110 Completion 

Code Page Type 

O Process Page 
1 System Page 
2 Global Read-Only Page 
3 Global Read/Write Page 
4 Process Page Table Page 
5 Global Page Table Page 

Figure 14-12 Contents of PFN TYPE Array Element 

in the PTE. When the page is removed from the process's working set, the 
OR operation will cause the bit to be set in the PFN STATE array. 

• When a copy-on-reference page is faulted into a process's working set, the 
modify bit in the STATE array element is set. The set bit forces a write to 
the page file when the page is removed from the process working set. When 
a demand zero page is faulted into a process's working set, the modify bit in 
the STATE array element is set. 

The delete bit in the PFN STATE array element affects physical page con­
tents. When the reference count becomes zero of a physical page whose de­
lete bit is set, all ties with its virtual page (PFN PTE array contents) are 
destroyed. The physical page is then put at the front of the free page list, 
where it will be reused as quickly as possible. 

TYPE Array 

The PFN TYPE array (see Figure 14-12) distinguishes the different types of 
valid pages. This information is required because the pager and swapper must 
take different action, depending on what type of page is being acted on. The 
collided page bit in the TYPE array element is set when a page fault occurs 
while the page is already being read in from its backing store address. Col­
lided pages are described briefly in Chapter 15. 

Forward and Backward Link Arrays 

A physical page which does not contain a valid virtual page is in one of three 
lists: free page list, modified page list, or bad page list. The heads of these lists 

341 



Memory Management Data Structures 

14.2.6 

342 

are in an array of longwords which begins at global location PFN$AL_HEAD. 
The list tails are in the array PFN$AL_ TAIL. Each array has three elements: 
the first for the free list, the second for the modified list, and the third for the 
bad page list. 

The three page lists must all be doubly linked lists because an arbitrary 
page is often removed from the middle of the list. However, the links cannot 
exist in the pages themselves because the original contents of each page must 
be preserved. The FLINK and BLINK arrays implement the links for each 
page. The FLINK contains the PFN of the successor page, and the BLINK, that 
of the predecessor page. 

A zero in one of the link fields indicates the end of the list (and is not a 
pointer to physical page zero). For this reason, physical page zero cannot be 
used in any dynamic function by the VMS operating system but may be 
mapped by some system virtual page that is always resident. Physical page 
zero usually contains the restart parameter block (see Chapter 24). 

The maximum page frame number depends on how much memory is pres­
ent on a particular system. On certain VAX CPUs, enough memory can be 
connected to the system that the maximum page number cannot be ex­
pressed in 16 bits. On such a system, the FLINK and BLINK arrays are long­
word arrays rather than word arrays. During system initialization, VMS 
determines how much memory is to be described by the PFN database. (Ap­
pendix F describes how this number is calculated.) If there are 32 or more 
megabytes to be described in the PFN database, the FLINK and BLINK arrays 
must contain longword elements. The global location MMG$GW _BIGPFN 
contains zero if the element size is a word; otherwise, it contains 1. 

Any code which accesses these arrays (and the arrays which overlay them) 
must use an instruction appropriate to the element size. Two techniques are 
employed: one, which adds no overhead, for critical code paths and one for 
less frequently used code paths. References to these arrays made within criti­
cal code paths in the nonpaged executive are assembled to be word-context 
instructions. If the system has 32 or more megabytes, system initialization 
code alters these references to longword-context instructions. Code in less 
frequently used code paths which is dependent on the size of a PFN tests the 
contents of MMG$GW _BIGPFN and executes the appropriate instruction. 

Figure 14-13 shows an example of pages on the free list, along with their 
corresponding FLINK and BLINK array elements. The STATE array element 
for each of these pages contains zero, indicating that the physical page is on 
the free page list. 

REFCNT Array 

The PFN REFCNT array counts the number of reasons why a page should not 
be put on the free or modified page list. One reason for incrementing the 



14.2.7 

14.2 PFN Database 

reference count is that a page is in a process working set. Another reason is 
that a page is part of a direct 1/0 buffer with I/O in progress. 

I/O completion and working set replacement use the same routine to dec­
rement the reference count. If the reference count goes to zero, the physical 
page is released to the free or modified page list as indicated by the saved 
modify bit in the PFN STATE array. Manipulations of the reference count are 
illustrated in the discussion of paging dynamics in Chapter 15. 

SHRCNT Array 

A second form of reference count is kept for global pages. The PFN share 
count (SHRCNT) array counts the number of process PTEs that are mapped 
to a particular global page. When the share count for a particular page goes 
from zero to 1, the PFN REFCNT array element is incremented. Further addi­
tions to the share count do not affect the reference count. 

Head of 
Free Page List 

5 

11 

33 

Tail of 
Free Page List 

BLINK 
Array 

28 

15 

5 

Previous 

11 

!__.....--" 

J ::PFN$ALBLINK 

PFN FLINK 
Array 

5 15 

11 33 

15 11 

28 5 

33 Next 

L__..-.--

J ::PFN$A)(_FLINK 

PFN STATE 
Array 

5 0 

11 0 

15 0 

28 0 

33 0 

Figure 14-13 Example of Free Page List Showing 
Linkage Method 

::PFN$AB_STATE 

343 



Memory Management Data Structures 

14.2.8 

14.2.9 

344 

As the global page is removed from the working set of each process mapped 
to the page, the share count is decremented. When the share count finally 
reaches zero, the REFCNT array element for the page is also decremented. 

When a physical page has a nonzero share count, it cannot be on one of the 
page lists. The forward and backward links are not needed. The SHRCNT 
array overlays the forward link array. (PFN$AX_FLINK and PFN$AX_ 
SHRCNT are the same global location in system space.) Thus, the size of 
elements in the SHRCNT array can be a word or longword, depending on the 
size of a FLINK array element. The SHRCNT array is only used for global 
pages. 

The SHRCNT array is used for a second purpose when the physical page in 
question is a process page table page or global page table page. In either of 
these cases, the array element counts the number of active PTEs in the pro­
cess or global page table page. When this value passes from zero to nonzero, 
process page table pages are dynamically locked into the process working set 
and global page table pages are locked into the system working set. 

WSLXArray 

A working set list index (WSLX) array element for a valid page contains an 
index into a process or system WSL. The content of an array element is a 
longword context index from the beginning of the process (or system) header 
to the WSLE in question. The WSLX element is used, for example, in the 
deletion of a page of memory. Its PFN is used to locate the PTE that maps it. 
If the virtual page is valid, the WSLE that describes it must be altered. With­
out the WSLX array, it would be necessary to search the WSL to locate the 
WSLE. 

Because a physical page in a working set is not on one of the page lists, the 
forward and backward links are available for other uses. The WSLX array 
overlays the backward link array. (PFN$AX_BLINK and PFN$AX_ WSLX are 
the same global location in.system space.) Thus, the size of elements in the 
WSLX array can be a word or longword, depending on the size of a BLINK 
array element. The WSLX array is not used for global pages. 

SWPVBN Array 

The swap virtual block number (SWPVBN) array is used to support the 
outswap of a process with 1/0 in progress. When such an outswap occurs, the 
virtual block number in the swap file where the locked down page would go 
is recorded in the SWPVBN array. The modified page writer checks this array 
for nonzero contents and, if they are nonzero, diverts the page from its nor­
mal backing store address to the designated block in the swap file. 



14.3 

14.3.1 

14.3 Data Structures for Global Pages 

Regular Global Section Descriptor 

GSD Forward Link \ \ 
GSD Backward Link \ 

This portion of a GSD 
appears in extended 
GSDs used for 
shared memory 
(see Figure 14-27). 

Hash} Type I Size 

UIC of Creator of Section 

UIC of File Owner 

Global Section I Protection 
Table Index Mask 

Global Section ldent 

Object Rights Block Address 

1 Count I Section Flags V / 

Section Name 
(up to 43 characters) 

(Counted ASCII String) 

Figure 14·14 Layout of Global Section Descriptor 

\ 
\ 
\ 

\Extended Global Section Descriptor 
\ for Map-by-PFN Global Sections 

::P 
.1 / 

/ 
I 

Regular Global ~ Section Descriptor 

Base PFN 

Number of Pages in Section 

Reference Count 

l Count 

Section Name 
(up to 43 characters) 

(Counted ASCII String) 

DATA STRUCTURES FOR GLOBAL PAGES 

The treatment of global pages is not much different from process private 
pages. However, VMS must keep a systemwide database for the various glob­
al pages in the system. 

Global Section Descriptor 

When a global section is created, a structure called a global section descriptor 
(GSD) is allocated from paged pool to describe the section (see Figure 14-14). 
A GSD maps the name of a global section to its global section table entry (see 
Section 14.3.2). The information in the GSD is only used when the section is 
created or deleted or when some process attempts to map to the section. The 
pager does not use this data structure. 

The GSD is linked into one of two doubly linked GSD lists maintained by 
the system. All system global sections are put into one list; group global 
sections (independent of group number) are put into the other list. Global 
locations EXE$GL_GSDSYSFL and EXE$GL_GSDSYSBL form the listhead 
for system GSDs; EXE$GL_GSDGRPFL and EXE$GL_GSDGRPBL, the list­
head for group GSDs. The mutex EXE$GL_GSDMTX (see Chapter 2) serial­
izes access to both these lists. When a request is made to delete a global 
section to which processes are still mapped, its GSD is inserted onto a list of 
delete-pending GSDs. 

The global section table index field of the GSD contains an index that 
allows a second structure (called a global section table entry) to be located. 

345 



Memory Management Data Structures 

14.3.2 

346 

MMG$GL_SYSPH 

Global (System) 
Section Table 

o-

,...! 

< 

. \,. 

.Y 

PSTBASOFF 

PSTFREE 1 PSTIAST 

System Working Set List 

Room for Expansion of GST 

GSTE 

System Page Table 

._ Movable Boundary 
Between System Working Set 
List and Global Section Table 

I 
GSTX 

_J 
.Y 

Figure 14-15 System Header Containing the System 
Working Set List and the Global Section Table 

The System Header and Global Section Table Entries 

The system maintains two data structures for itself that parallel structures 
maintained for each process in the system. The system PCB and system 
header are used by the pager to allow page faults of system pages to be treated 
almost identically to page faults for process pages. 

The system header (see Figure 14-15). contains a WSL and a section table. 
The WSL governs page replacement for pageable system pages (other than 
those within the balance set slots). The size of the WSL is determined by 
SYSBOOT parameter SYSMWCNT. The section table in the system header 
contains.section table entries for the files that contain pageable system pages 
and global section table entries. The size of the section table is determined by 
SYSBOOT parameter GBLSECTIONS. 

The files that contain pageable system pages include the executive image 
(SYS.EXE), record management services image (RMS.EXE), and system mes­
sage file (SYSMSG.EXE). These are all paged in the system WSL. In addition 
to these, the system WSL is also used for paged pool and the global page table. 

The section table in the system header serves a second purpose. When a 
global section is created, a section table entry that describes the global sec­
tion file is created. The new section table entry is allocated from the section 
table in the system header. This table is called the global section table (GST). 
The format of a global section table entry (GSTE) is nearly identical to the 
format of a PSTE. Figure 14-7 illustrates both kinds of section table entry. 



14.3.3 

14.3 Data Structures for Global Pages 

MMG$GL_SYSPHD~~ 

;,. 

MMG$GL_SPTBASE 
MMG$GL_GPTBASE-

MMG$GL_GPTE ~ 

GPTEs are located with 
a virtual page number 
from the beginning of 
the system page table. 

;,.(-

1 

System 
Header 

System 
Page 
Table 

Global 
Page 
Table 

Global Page Table Entry 

GPTE 

GPTE 

GPTE 

GPTE 

GPTE 

GPTE 

GPTE 

1 ;,. 

I'.: 

J 

GPTEs may indicate pages 
that are: 

1. Valid 

2. In transition 

3. In a global section file 
(In this case, the GPTE 
contains an index into 
the GST in the system 
header.) 

Figure 14·16 Location of Global Page Table at Virtual 
End of System Page Table 

GSTEs are accessed in exactly the same way as PSTEs, with a negative 
longword index from the bottom of the GST (see Section 14.1.3). The global 
section table index (GSTX) in the GSD is such an index, associating a GSD 
with a GSTE. 

Global Page Table Entries 

A third set of data is also created for each global section. Each page in the 
global section is described by a global page table entry (GPTE) in the global 
page table (see Figure 14-16). The pager uses GPTEs, just like process PTEs, to 
locate global pages. 

GPTEs are restricted to the following forms of PTE. The first three are 
illustrated in Figure 14-3. The others are illustrated in Figure 14-17. 

347 



Memory Management Data Structures 

31 30 27 26 24 22 18171615 0 

0 Global Section Table Index 

0 Page File Virtual Block Number Global Page-File Section 
~---~,....._.....,...._,......,...~-------------------' Page Materialized 

~--------------- TypO Bit-Low-Order Bit of PTE Type 

'------~------------- Global Write Bit 
~-----------------+- Global Bit 

'---------------------- TYP1 Bit-High-Order Bit of PTE Type 

Figure 14-17 Global Section Table Index Forms of 
GPTE 

14.3.4 

348 

• The GPTE can be valid, indicating that the global page is in at least one 
process working set. 

• The GPTE can indicate a demand zero page. 
• The GPTE can indicate some transition state. The PFN STATE array indi­

cates which transition state is involved. 
• The global page can be in a global section file, in which case the GPTE 

contains a global section table index (GSTX). 
• The GPTE can indicate a demand zero page in a global page-file section. 
• The GPTE can indicate a global page-file section page which has been cre­

ated and is in use. 

Global Page Table and System Page Table 

GPTEs are located in exactly the same manner as process or system PTEs. 
Location MMG$GL_GPTBASE contains the address of the base of the global 
page table. All references to GPTEs use what can be thought of as a virtual 
page number as an index into the global page table. 

The interesting thing to note about this approach is that the base of the 
global page table coincides with the base of the system page table. Further, 
the virtual page numbers that are used as indexes into the global page table 
are system virtual page numbers. In fact, when looking at system virtual 
address space, the global page table simply appears as an extension to the 
system page table. The global page table index associated with the first global 



14.3 Data Structures for Global Pages 

page is I greater than the largest system virtual page number for a given 
configuration. 

This logical extension of the system page table exists only when looking at 
system virtual address space. The global page table does not exist in physical 
pages adjacent to the system page table. The system length register only re­
cords the number of real system page table entries, not the logical extensions. 
In other words, global pages are not mapped into system virtual address space 
and are not accessible through system virtual addresses. This pseudo exten­
sion to the system page table is only available to the software routines in the 
memory management subsystem. 

Figure 14-18 shows how the global page table relates to the system page 
table. It also shows the relationship among the GSD, GSTE, and GPTEs for a 
given section. There are several relationships among these three structures: 

• The central structure is the GSTE (see Figure 14-7 for its layout). The first 
longword in the GSTE points to the GSD. 

System Header 
Global Section 

Table Entry Fixed Size Portion 

B 

WCBAddress 

BaseVBN 

Global Section Descriptor 

A 

Section 
Name 

..... 

I 
I 

I 

I 
I 

I 

System Working Set List 

Global Section Table 

System 
Page Table 

Global 
Page Table 

Figure 14-18 Relationships among Global Section Data 
Structures 

,~ 

Global 
Page 
T bl a e 

Entries 

GPTE 

GPTE 

GPTE 

GPTE 

GPTE 

GPTE 

349 



Memory Management Data Structures 

14.3.5 

350 

• The virtual page number field (labeled B in Figure 14-18) contains the 
pseudo system virtual page number that serves as a longword index to the 
first GPTE that maps this section. This number is called a global page table 
index (GPTX). 

• The GSD contains a GSTX (labeled A in the figure) that allows the GSTE to 
be located from the GSD. 

• The original form of each GPTE is a section table index (identical to the 
GSTX found in the GSD), effectively pointing to the GSTE. When any given 
GPTE is either valid or in transition, the GSTX is stored in the PFN BAK 
array. Note that GPTEs for global page-file sections contain the page file 
backing store address. 

Process PTEs for Global Pages 

When a process maps a portion of its virtual address space to a global section, 
its process PTEs that map the section are in the form used for global page 
table indexes. The process PTE that maps the first global section page con­
tains the GPTX of the first page in the global section. Each successive process 
PTE contains the next GPTX, so that each PTE effectively points to the 
GPTE that maps that particular page in the global section. This relationship 
is shown in Figure 14-19. Assume that the section shown in the figure con­
tains N number of pages. 

Figure 14-3 shows the global page table index form of a process PTE. 
All of the data structures associated with global sections are described in 

detail in Chapter 15, where page faults for global pages are discussed. The 
initial allocation of these structures is briefly described along with the Create 
and Map Section and Map Global Section system services in Chapter 16. 

Process Page Table 
MMG$GLGPTBASE._1 

1 
0 GPT lndex=M "-

0 GPT lndex=M+1 .... 

0 GPT lndex=M+N-1 

)" 
,) 

Figure 14-19 Relationship Between Process PTEs and 
Global PTEs 

Global Page Tabla 

1 M Entries 

GPTE 

GPTE 

1J 
N Entries 

GPTE 

1.-



14.4 Swapping Data Structures 

14.4 SWAPPING DATA STRUCTURES 

14.4.1 

There are three data structures that are used primarily by the swapper but 
indirectly by the pager: 

• Balance slots 
• PHD reference count array 
• Process index array 

The SYSBOOT parameter BALSETCNT is the number of elements in each 
array. 

Balance Slots 

A balance slot is a piece of system virtual address space reserved for a PHD. 
The number of balance slots, the SYSBOOT parameter BALSETCNT, is the 
maximum number of concurrently resident processes. 

When the system is initialized, an amount of system virtual address space 
equal to the size of a PHD times BALSETCNT is allocated (see Figure 14-20). 
The location of the beginning of the balance slots is stored in global location 
SWP$GL_BALBASE. The size of a PHD (in pages) is stored in global location 
SWP$GL_BSLOTSZ. The calculations performed by SYSBOOT to determine 
the size of the PHD are described in Appendix F. 

=* 

SWP$GLBALBASE 

Process Helilder (PHD) 

SVAPTE -1 t---i PHVINDEX J 
Working Set List 

Process Section Table 

~ 
Process Header 

Page Arrays 

PTE Longword 
Array in PFN PO Page Table 

Database --------

\ 
\ 
\ 
\ 
I 
\ 
I 
\ 
I 
I 

L+1 POPTE I 
I 
I 

--------
"": 11-------11 I f P1 Page Table J 

Balance 
SlotO 

are exactly the same )
. All balance slots 

· size. 
1------1 

Balance 
Slot 1 

The size of a 

) 
balance slot In 

Balance 
Slot M pages is stored in 

1-----~ global location 
SWP$GLBSLOTSZ. 

Last 
Balance Slot 

There are 
BALSETCNT slots. 

Figure 14-20 Balance Slots Containing Process Headers 

351 



Memory Management Data Structures 

14.4.2 

352 

Balance Slot Arrays 

The system maintains two word arrays describing each process with a PHO 
stored in a balance slot (see Figure 14-21). Both of the word arrays are 
indexed by the balance slot number occupied by the resident process. The 
balance slot number is stored in the fixed portion of the PHO at offset 
PH0$W _PHVINOEX. Entries in the first array contain the number of refer­
ences to each PHO. Entries in the second array contain an index into a long­
word array that points to the PCB for each PHO. 

The global location PHV$GL_REFCBAS contains the starting address of 
the reference count array. Each of its elements counts the number of reasons 
why the corresponding PHO cannot be removed from memory. Specifically, 
an array element counts the number of page table pages that contain either 
valid or transition PTEs. A -1 in a reference count array element means that 
the corresponding balance slot is not in use. 

The global location PHV$GL_PIXBAS contains the starting address of the 
process index array. Each of its elements contains an index into the longword 
array, based at the global pointer SCH$GL_PCBVEC. A zero in the process 

The contents of 
PHD$W_PHVINDEX 
are used as a < 
word index into 
each of these arrays 

S PHV$Gl_PIXBAS l PHV$GL_REFCBA 

BALSETCNT 
}Entries in 

'--
Each Array 

Ref. Count Process In dex 

-

/ 

[ 
CH$GL_PCBVEC 

~ 

PCB of Process 
Whose PHO 

Is in Balance 
Slot M 

h 

@SCH$GL_PCBVEC -
+ (4xProcess Index) 

1--Pointer to PCB ~ 

) MAXPROCESSCNT 
Entries 

PCB Vector 

/ 

Figure 14·21 Process Header Vector Arrays 



14.4.3 

14.5 Data Structures That Describe the Page and Swap Files 

index array entry means that the corresponding balance slot is not in use. An 
element in the longword PCB vector contains the address of the PCB of the 
process with that process index. Figure 14-21 illustrates how the address of a 
PHD is transformed into the address of the PCB for that process, using the 
entry in the process index array. 

If the PHD address is known, the balance slot index can be calculated (as 
described in the next section). By using this as a word index into the process 
index array, the longword index into the PCB vector is found. The array ele­
ment in the PCB vector is the address of the PCB (whose PCB$L_PHD entry 
points back to the balance slot). A more detailed description of the PCB vec­
tor can be found in Chapter 20, where its use by the Create Process system 
service is discussed. 

Comment on Equal Size Balance Slots 

The choice of equal size balance slots, at first sight seemingly inefficient, has 
some subtle benefits to portions of the memory management subsystem. 
There are several instances, most notably within the modified page writer, 
when it is necessary to obtain a PHD address from a physical page's PFN. 
With fixed size balance slots, this operation is straightforward. 

The contents of the PFN PTE array point to a PTE somewhere in the bal­
ance slot area. Subtracting the contents of SWP$GL_BALBASE from the PFN 
PTE array contents and dividing the result by the size of a balance slot (the 
size of a PHD) in bytes produces the balance slot index. If this index is multi­
plied by the size of the PHD in bytes and added to the contents of 
SWP$GL_BALBASE, the final result is the address of the PHD that contains 
the PTE that maps the physical page in question. 

14.5 DATA STRUCTURES THAT DESCRIBE THE PAGE AND SWAP FILES 

14.5.1 

Page and swap files are used by the memory management subsystem to save 
physical page contents or process working sets. Page files are used to save the 
contents of modified pages that are not in physical memory. Both the swap 
and page files are used to save the working sets of processes that are not in the 
balance set. 

Page File Control Blocks 

Each page and swap file in use is described by a data structure called a page 
file control block (PFL). A page or swap file can be placed in use either auto­
matically during system initialization or m:fnually through the SYSGEN 
commands INSTALL/PAGEFILE and INSTALL/SWAPFILE. In either case, 
code in module [BOOTS]INITPGFIL allocates a PFL from nonpaged pool and 

353 



Memory Management Data Structures 

14.5.2 

354 

initializes it. Figure 14-22 illustrates the fields in a PFL. 
Initializing the PFL includes the following operations: 

1. The file is opened and a special window control block (WCB) is built to 
describe all the file's extents. The special WCB, called a "cathedral win­
dow," ensures that the memory management subsystem does not have to 
take a window turn (see Chapter 18), which could lead to system deadlock 
conditions. 

2. The address of the WCB is stored in the PFL. 
3. A bitmap is allocated from nonpaged pool and initialized to all bits set. 

Each bit in the map represents one block of swap or page file. A bit set 
indicates the availability of the corresponding block. 

Note that the locations of the WCB field, the virtual block number field, 
and the page fault cluster factor field are in the same relative offsets in this 
structure as they are in a section table entry. Because the offsets are the same, 
1/0 requests can be processed by common code, independent of the data 
structure that describes the file being read or written. 

Page-and-Swap-File Vector 

Pointers to the PFLs are stored in a nonpaged pool array called the page-and­
swap-file vector. The number of longword pointers in this array is the maxi­
mum number of page and swap files that can be in use on the system (the 
sum of SYSGEN parameters SWPFILCNT and PAGFILCNT) plus 1. A page or 
swap file is identified by an index number indicating the position of its PFL 
address in this array. 

During system initialization, the routine EXE$INIT (see Chapter 25) allo­
cates and initializes the page-and-swap-file vector, which is a standard dy­
namic data structure. The first two longwords of its header are unused. The 
third longword of its header contains the size of the data structure, a type 
value of DYN$C_PTR, and a subtype value of DYN$C_PFL. 

The fourth longword contains the number of pointers in the array. The data 
begins at the fifth longword. The address of the beginning of the actual data is 
stored in global location MMG$GL_PAGSWPVC. Figure 14-22 shows the 
use of the page-and-swap-file vector data area to point to PFLs. 

EXE$INIT initializes each pointer with the address of the "null page file 
coatrol block," MMG$GL_NULLPFL. For the most part, this address serves 
as a zero value, indicating that no page or swap file with this index is in use. 
The null PFL, however, is also used to describe the shell process. 

The shell process, a module in the system image, is accessed as page file 
index zero. It is the prot6type for creating a new process. The information in 
the null PFL is optionally used during process creation to read a copy of the 
shell process into memory. 



• MMG$GLPAGSWPVC 

r 
. 
. Entry for 

SWPFILCNT + 1 j . SHELL 

Entries (Not Used) 

Entry for 
· SWAPFlLE.SYS 

i--......., (Initialized by SYSINll) 

H I-
Entries for 

PAGFILCNT Alternate 
Entries l Swap Files 

(Initialized by SYSGEN) 

Process Header 
(PHD) 

PHD$B_PAGFIL: L t-i< 1 Entry for 
PAGEFl.LE.SYS 

J 
(Initialized by SYSINll) 

1 Entries for 
Alternate 

Process Control Block Page Files 

(PCB) 

Li 
(Initialized by SYSGEN) 

PCB$LWSSWP: 
j.. y 

r 
Figure 14-22 Page and Swap File Database 

.--

i:----

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

Page Fiie Control Block 

Address of Start of Bitmap 

Starting Byte Offset to Scan 

Page Fault! 
Cluster 

Type l Size 

Pointer to Window Control Block 

Base Virtual Block Number 

Size in Bytes of Bitmap 

Count -1 of Pages Which May Be 
Allocated 

Page File Backing Store Mask 

Flags l Alloc. l Req. Size Number of Bad Pages 

Bitmap 
\ )..- y f One Bil per Block in Page or Swap File 

'~._ __ <_A_b-it_s_e_1 _m_e_an_s_a_b1oc_k_i_s_ava_il_ab_1_e_.> _--JJ 



Memory Management Data Structures 

14.5.3 

356 

The process SYSINIT (see Chapter 25) places in use the primary page file, 
SYS$SYSTEM:PAGEFILE.SYS. SYSINIT builds a PFL and places its address 
in the page-and-swap-file vector. The primary page file has an index value 
equal to 1 more than the SYSBOOT parameter SWPFILCNT. 

SYSINIT also places in use the primary swap file, SYS$SYSTEM:SWAP­
FILE.SYS. The primary swap file is index 1. If there is no swap file, index 1 
points to the null PFL. If the value of the SYSGEN parameter SWPFILCNT is 
zero, index 1 points to the primary page file. If there are no swap files, all 
swap operations are performed to the page files. Although the system can run 
this way, Digital Equipment Corporation recommends that there be at least 
one swap file. The allocation algorithm for swap files and dynamics of their 
use are quite different from those for page files. As a result, page files tend 
to become internally fragmented into pieces that are smaller than 
MPW _ WRTCLUSTER and thus much smaller than the average swap space. 

Any additional page and swap files are placed in use by SYSGEN in 
response to commands INSTALL/PAGEFILE and INSTALL/SWAPFILE. In­
stalling page files other than the primary one on different disks allows for 
balancing the paging load. A system with alternate swap files can support a 
greater number of processes or processes with larger working sets. 

Use of Swap Files 

When a process is created, it is assigned swap space. Its swap space must 
contain room for the PHD and the process body (the PO and Pl pages belong­
ing to the process). The initial amount of swap space is equal to the value 
of the SYSGEN parameter MPW _ WRTCLUSTER. If the value of MPW _ 
WRTCLUSTER is less than the size of the shell process, the initial amount of 
swap space is set to the size of the shell (20 pages). Figure 14-23 shows how 
swap space is structured. 

When the system assigns swap space, it scans from the beginning of the 
page-and-swap-file vector and selects the first file with sufficient space. Thus, 
if there is insufficient swap file space or none, swap space can be allocated 
from a page file. 

If a process's working set grows so that it no longer fits its swap space, the 
process is reassigned to new swap space, which is MPW _ WRTCLUSTER 
pages bigger than its old swap space. (The code actually uses the SYSBOOT 
parameter SWPALLOCINC, which is set to the value of MPW _ 
WRTCLUSTER at system initialization. If the two parameters had different 
values and swapping to page files occurred, fragmentation problems would be 
more severe.) The process's new swap space can be in a different swap (or 
page) file than its old swap space. A process's swap space can grow up to 
WSQUOTA pages. At image exit and process creation, routine 
MMG$IMGRESET (in module PHDUTL) reduces the process's working set 



From page-and-swap-file 
vector (Figure 14-22) 

Page File Control Block 

Pointer to Window Control Block 

PCB$L_WSSWP: 

1) The upper byte contains 
an index into the 
page-and-swap-file vector. 

2) The lower three bytes 
contain the virtual 
block number of the 
beginning of the slot 
allocated to this 
process. 

PCB 

VBN of Slot1---------' 

APTCNT 

Bit PCB$V_AES In PCB$L_STS 
indicates residency of process: 
1 =Resident 
0= Outswapped 

Figure 14-23 Swap File Database 

Page File or Swap File 

( I I I I Slot I 11 

Non-Page-Table I A t" c 1ve I 
Pro~s:g~:ader I Page Tables I 

PCB$W_APTCNT 
Pages 

II 

\ 
\ 
\ 
\ 

I ) 

Process Body 
(PO and P1 pages) 



Memory Management Data Structures 

14.5.4 

back to PHD$W _DFWSCNT, and the process is reassigned to an initial size 
swap space. 

Dynamically allocated swap space represents a significant change from 
early versions of VAX/VMS. Prior to VAX/VMS Version 3, swap files were 
composed of a number of fixed size areas known as swap slots. These swap 
slots were permanently allocated. The size of the swap slots was tied directly 
to the SYSGEN parameter WSMAX. This rigidity placed some restrictions on 
the system. The fixed size of the swap slots limited the possible growth of 
process working sets. Because each swap slot was the maximum required size 
(for WSMAX), this limited the number of processes that could be created. 

Use of Page Files 

When a process is created, it is assigned for its life to the page file with the 
most available space, the one with the largest value in PFL$L_FREPAGCNT. 
Installing alternate page files can enhance system performance by reducing 
paging activity to the existing page files (and sometimes by making more 
room available for swap spaces). The field PFL$L_FREPAGCNT contains the 
number of blocks or pages currently available for use in a page file. It is 
decreased when the modified page writer allocates space in a page file and 
increased when page file pages are released at address space deletion. 

The primary page file, SYS$SYSTEM:PAGEFILE.SYS, is the only one in use 
until late in system initialization. Thus, the processes created during system 
initialization (for example, the job controller and OPCOM) are all assigned to 
the primary page file. 

In addition, the primary page file is the backing store for system writable 
and pageable sections, notably paged pool. It is also the backing store for all 
global page-file sections. 

A global page-file section is used to store temporary global data. It is a 
section of virtual memory not mapped to a file, whose only backing store is 
the primary page file. The SYSBOOT parameter GBLPAGFIL specifies the 
maximum number of pages or blocks of page file that can be used for this type· 
of section. This type of global section is used to implement RMS global 
buffers. 

14.6 SWAPPER AND MODIFIED PAGE WRITER PAGE TABLE ARRAYS 

358 

The VAX/VMS 1/0 subsystem enables an image to make a direct 1/0 request 
(OMA transfer) to a virtually contiguous buffer. There is no requirement that 
pages in a buffer be physically contiguous, only virtually contiguous. This 
capability is called "scatter-read/gather-write" or, more simply, "scatter/ 
gather." 



14.6.1 

14.6.2 

14.6 Swapper and Modified Page Writer Page Table Arrays 

Direct 1/0 and Scatter/Gather 

A combination of VAX hardware and VMS 1/0 subsystem software supports 
1/0 to physically noncontiguous pages. The manner in which this is sup­
ported varies with processor type and I/O adapter type. For example, on a 
VAX processor with a UNIBUS or MASSBUS adapter, the device driver maps 
the memory buffer to I/O bus space. The result of this mapping is a set of 
contiguous addresses in the 1/0 bus space. Certain I/O adapters, such as CI 
adapters, read the relevant PTEs to determine the physical location of the 
buffer pages. On some processors, such as a MicroVAX I, there is no adapter 
hardware to support bus mapping. The device driver must transform the re­
quest into multiple transfers to or from physically contiguous memory. 

Regardless of the manner of the support, a direct 1/0 request results in the 
locking of the buffer pages into memory. The 1/0 locking mechanism in­
voked at the FDT level brings each page into the working set of the request­
ing process, makes it valid, and increments that page's reference count (in 
PFN REFCNT array) to reflect the pending read or write. The buffer is gener­
ally described in the 1/0 request packet (IRP) through three fields: 

• IRP$L_SVAPTE contains the system virtual address of the first PTE that 
maps the buffer. 

• IRP$W _BQFF and IRP$L_BCNT together describe the buffer size that is 
used to calculate how many PTEs are required to map the buffer. 

A driver processes this I/O request in a manner suitable to the processor 
and 1/0 adapter. For example, it may allocate adapter mapping registers and 
load them with the PFNs found in the PTEs or it may simply pass the system 
virtual address of the first PTE to an 1/0 adapter. 

Swapper 1/0 

The swapper is presented with a more difficult problem. It must write a col­
lection of pages to disk that are not even virtually contiguous. It solves this 
problem elegantly. 

When the system is initialized, an array of WSMAX longwords is allocated 
from nonpaged pool for use as the swapper's I/O table. The starting address of 
this array. is stored in global pointer SWP$GL_MAP. (The address is also 
stored in the saved PO base register in the swapper's PHD so the pages 
mapped by this array are effectively the swapper's PO space. This use is dis­
cussed in Chapter 20.) 

When the swapper scans the WSL of the process being outswapped, it cop­
ies the PFNs in every valid PTE to successive entries in its 1/0 table. The 
swapper places the address of the base of the table into the field IRP$L_ 
SVAPTE before the IRP is passed to the driver. (The swapper can exercise this 

359 



Memory Management Data Structures 

14.6.3 

360 

control because it builds a portion of its own lRP.) The 1/0 table looks just 
like any other page table to the hardware/software combination that imple­
ments scatter/gather 1/0. 

What the swapper has succeeded in doing is making pages that are not 
virtually contiguous appear to be virtually contiguous to the I/O subsystem. 
(A different interpretation is that the pages are virtually contiguous in the PO 
space of the swapper, the process that is actually performing the I/O.) At the 
same time that each PTE is being processed, any special actions based on the 
type of page are also taken care of. The whole operation of outswap and 
the complementary steps taken when the process is swapped back into mem­
ory are discussed in Chapter I 7. 

Modified Page Writer PTE Array 

The modified page writer, in its attempt to write many pages to backing store 
with a single write request (so-called modified page write clustering), is faced 
with a problem similar to that of the swapper. The modified page writer 
builds a table of PTEs in a manner similar to the swapper. 

When the modified page writer is building an I/O request, it can encounter 
three different types of page: 

• Pages that are bound for a swap file (SWPVBN nonzero) are written 
individually. 

• Pages that are bound for a section file are not necessarily virtually con­
tiguous; these pages will be written as a group only if they are virtually 
contiguous. 

SWP$GL_MAP-
(This address is stored 
in the swapper's PO 
base register.) 

Swapper's 

110 WSMAX Elements 
-'l Page Table -'l) (This number is stored in 
' Entry '1 the swapper's PO length 

Array of register.) 
Longwords 

MPW$AL_PTE___...--~~~~~I~ 

Modified 
Page Writer's 

1/0 
Page Table 

Entry 
Array of 

Longwords 

!:;:\MPW_WRTCLUSTER 
I' Elements 

Figure 14-24 Swapper and Modified Page Writer PTE 
Arrays 

MPW's --MPW$AW_PHVINDEX 
Process 
Header 1 Vector 
Index 
Array 

of 
Words 



14.6.4 

14.7 Data Structures Used wit~ Shared Memory 

• Pages on the modified page list that are to be written to a particular page file 
may be not only noncontiguous within one process address space, but may 
also belong to several processes. It is these pages that the modified page 
writer must cluster so they appear virtually contiguous. 

At initialization time (in module INIT), two arrays are allocated from 
nonpaged pool for the modified page writer (see Figure 14-24). Each array 
contains MPW _ WRTCLUSTER elements. The longword array will be filled 
with PTEs containing PFNs analogous to the swapper map. The word array 
coritains an index into the PHD vector for each page in the map. In this way, 
each page that is put into the map and written to its backing store location is 
related to the PHD containing the PTE that maps this page. The operation of 
the modified page writer, including its clustered writes to a page file, is dis­
cussed in detail in Chapter 15. 

Use of the Swapper and Modified Page Writer PTE Array 

Each of these arrays supports only one use at a time. 
If an inswap or outswap operation is in progress, the swapper map is in use. 

The swap in progress flag (SCH$V _SIP), in location SCH$GB_SIP, is set to 
indicate its use. 

If the modified page writer is active, the modified page write in progress 
flag (SCH$V _MPW), in the same global location (SCH$GB_SIP), is set. 

14.7 DATA STRUCTURES USED WITH SHARED MEMORY 

An MA780 is a multiport memory that can be connected to multiple VAX-
11/780 processors or VAX-11/785 processors. The MA780 shared memory 
unit can be used as an interprocessor communication path with common 
event flags, mailboxes, or global sections. This VMS support requires data 
structures located in the shared ~emory that describe the shared memory 
itself and its common event flag clusters, mailboxes, and global sections. 

In addition, each processor connected to the shared memory requires data 
structures located in local memory that describe processor-specific informa­
tion (such as the starting PFN or port number). Inforn;iation common to both 
processors (for example, the size of the global section descriptor tables) is 
maintained in the shared memory data structures .. 

Note that this use of shared memory differs significantly from the use of 
MA780 shared memory in the VAX-11/782. In the VAX-11/780 and VAX-11/ 
785, shared memory is used as a common data area or communications path 
among multiple processors; in the VAX-111782, the MA780 is used as main 
memory. (Chapter 27 describes the VAX-11/782.) 

361 



Memory Management Data Structures 

14.7.1 

14.7.1.1 

362 

Shared Memory Control Structures 

The shared memory unit consists of a series of pages of physical memory. 
The bootstrap sequence records the presence of the shared memory unit but 
does not configure the physical pages into the system, allowing the user to 
include shared memory in a site-specific way (for example, whether to reini­
tialize the MA780 shared memory after each reboot). Once system initializa­
tion is complete and memory management is enabled, the physical memory 
pages must be virtually mapped to be accessible to program code. 

The virtual mapping used by one processor to access shared memory pages 
may be different from the virtual mapping used by another processor. For this 
reason, some of the data structures that the VMS operating system uses to 
manipulate its data structures located in shared memory are self-relative 
queue elements. (Self-relative queue elements are described in the VAX Ar­
chitecture Reference Manual.) 

VMS cannot use one of its usual synchronization techniques, elevated IPL, 
to control access to shared memory data structures. Elevated IPL blocks in­
terrupts on only one processor. Instead, all accesses to shared memory data 
that must be synchronized are done with one of the interlocked instructions 
provided for just this purpose in the VAX architecture. User programs that 
must synchronize their access to shared memory global sections must also 
use interlocked instructions. 

These instructions are as follows: 

INSQHI 

INSQTI 

REMQHI 

REM QT I 

BBS SI 

BBCCI 

AD AW I 

Insert entry into queue at head, interlocked 

Insert entry into queue at tail, interlocked 

Remove entry from queue at head, interlocked 

Remove entry from queue at tail, interlocked 

Branch on bit set and set, interlocked 

Branch on bit clear and clear, interlocked 

Add aligned word, interlocked 

The four instructions that manipulate self-relative queues actually provide 
two levels of interlocking. Because self-relative queue elements must be 
quadword aligned, the low three address bits (all zero) are available for other 
uses. The low-order bit in the forward link is used as a secondary interlock. 
When this bit is set, interlocked access to the head or tail of the queue is 
denied. This interlock bit is read in the same interlocked fashion as the other 
three instructions in the list (BBSSI, BBCCI, and ADAWI). 

Physical Layout of Shared Memory. If the shared memory is to be supported 
by the VMS operating system, it must be configured into the system with the 
System Generation Utility. This installation step is described in the VAX/ 



14.7.1.2 

14.7.1.3 

14.7.2 

14. 7 Data Structures Used with Shared Memory 

Balance of Memory 
Available for 

~ Shared Memory 
Global Section 

Pages 

Global Page Allocation Bitmap 

Pool Space 

Table for Shared Memory CEBs 

Mailbox Table 

Table for Shared Memory GSDs 

Shared Memory Common Data Page 

* 
Lowest Physical 
Address 

Highest Physical 
Address 

Figure 14·25 Physical Layout of Shared Memory 

VMS System Manager's Reference Manual. The resulting physical layout of 
shared memory is illustrated in Figure 14-25. The VMS data areas located in 
the shared memory are initialized when the first processor (port) connects the 
shared memory unit. As other ports make their connection, their local mem­
ory data structures are simply initialized to point to the shared structures. 

Shared Memory Common Data Page. The shared memory page with the 
highest physical address is used by the VMS operating system to contain the 
information that describes this shared memory unit. This page is called 
the common data page. Because this page may be virtually mapped to differ­
ent addresses on each port (and may not even exist at the same physical 
address), each pointer in the common data page is a relative pointer from the 
base virtual address of the common data page. The contents of the common 
data page are listed in Table 14-4. 

Processor-Specific Control. As each processor connects itself to the shared 
memory unit, a data structure in processor local memory is initialized that 
allows that processor to locate the common data page. That structure also 
contains physical page information that allows the shared physical memory 
to be virtually mapped on that processor. The layout of the shared memory 
control block is pictured in Figure 14-26. 

Global Sections in Shared Memory 

The creation and mapping of a global section in shared memory are slightly 
different from the corresponding actions for local memory global sections. 
The global section is recognized as a shared memory global section because 

363 



Memory Management Data Structures 

Table 14-4 Contents of Shared Memory Common Data Page 

Field Name 

SHD$1-MBXPTR 

SHD$1-GSDPTR 

SHD$1- CEFPTR 

SHD$1-GSBITMAP 

SHD$1-GSPAGCNT 

SHD$1-GSPFN 

SHD$W _GSDMAX 

SHD$W _MBXMAX 

SHD$W _CEFMAX 

SHD$T_NAME 

SHD$Q_INITTIME 

Item 

Relative pointer to mailbox table 

Relative pointer to GSD table 

Relative pointer to CEB table 

Relative pointer to global page bitmap 

Total count of pages for global sections 

Relative PFN of first global section page 

Number of entries in GSD table 

Number of entries in MBX table 

Number of entries in CEB table 
(spare word for alignment) 

Name of shared memory 
(counted ASCII string) 

Initialization time 

This is the end of the constant area of the shared memory common data page. 

SHD$1-CRC 

SHD$W _GSDQUOTA 

SHD$W _MBXQUOTA 

SHD$W _CEFQUOTA 

SHD$B_PORTS 

SHD$B_INITLCK 

SHD$B_BITMAPLCK 

SHD$B_FLAGS 

SHD$B_GSDLOCK 

SHD$B_MBXLOCK 

SHD$B_ CEFLOCK 

SHD$W _PRQWAIT 

SHD$W_POLL 

SHD$W _RESWAIT 

SHD$W _RESAVAIL 

SHD$W _RESSUM 

SHD$Q_PRQ 

SHD$Q_POOL 

SHD$Q_PRQWRK 

364 

CRC of fields in constant area 

Count of GSDs created (one word per port) 

Count of mailboxes created (one word per port) 

Count of CEBs created (one word per port) 

Number of ports 

Owner of initialization lock 

Owner of global page bitmap lock 

Flags for locking data structures 

Owner of GSD table lock 

Owner of MBX table lock 

Owner of CEF table lock 
(spare byte for alignment) 

Ports waiting for interprocessor 
request blocks (one bit per port) 

Ports actively using the memory 
(one bit per port) 

Ports waiting for a resource (one bit per port) 
(one word mask per resource) 

Ports needing to report resource 
available (one bit per port) 
(one word mask per resource) 

Ports with resources to report (one bit per port) 
(three spare words for alignment) 

Free interprocessor request block listhead 

Free pool block listhead 

Interprocessor request work queue listheads 
(one listhead per port) 

Size 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Word 

Word 

Word 
Word 

16 bytes 

Quadword 

Longword 

16 words 

16 words 

16 words 

Byte 

Byte 

Byte 

Byte 

Byte 

Byte 

Byte 

Word 

Word 

16 words 

16 words 

Word 
3 words 

Quadword 

Quadword 

16 quadwords 



14. 7 Data Structures Used with Shared Memory 

Link to Next SHB 

VA of Common Data Page 

Flags Type Size 

Reference Count 

Base PFN for Global Section Pages 

Port TR Number 
Number of Memory 

Address Past Last Byte of Shared Memory Pool 

Address of Adapter Control Block 

Figure 14-26 Contents of Shared Memory Control 
Block 

its name translates to an equivalence name of the form 

shared-memory-name: sectibn-name 

The Create and Map Section system service then creates the data struc­
tures necessary to describe this section: 

• The GSD for such a section (see Figure 14-27) is located in shared memory 
and contains information used to map the section. 

• Only the port that creates the global section has a GSTE (in the local mem­
ory of the creating processor) describing the section. This section table 
entry is used by the VMS operating system to load the physical pages of the 
section with the contents of the designated file when the section is created~ 
The GSTE is also used if the Delete Global Section or Update Section sys­
tem services are called to write the contents of a writable global section 
located in shared memory back to its original file. (Either system service 
will not have any effect if it is issued from any port other than the creator 
port, because only the creator port has a GSTE for the section.) 

• Because the pages of a shared memory global section are always valid, there 
is no need to page those pages. Therefore, no GPTEs are created for the 
section. Instead, when a process maps to such a section, its process PTEs 
are loaded with the PFNs of the shared memory section pages and marked 
valid. These pages are not charged against the process's ';VOiking set. 

Because of the way in which the VMS operating system uses shared mem-
ory for global sections, putting global sections into shared memory, even 
when the memory unit is not connected to another processor, improves sys­
tem utilization. Each process using the shared sections receives a free exten­
sion to its working set. There is no demand placed on the global page table. 
Local physical memory that would otherwise be requited to contain such en­
tities as DCL or the screen management routines in the Run-Time Library is 
available for other uses, like an expanded physical page cache (free page list). 

365 



Memory Management Data Structures 

14.7.3 

14.7.4 

366 

Shared Memory Flags 

* 
Rest of Regular ::P Global Section Descriptor 

Deleter Creator 
Number of Inter-

Port Pb rt 
Processor processor 

Ref. Counts Lock 

Base PFN for Section Pages 

r------------------------------~ 

The assembly­
time parameter 
GSD$C_PFNBASMAX 
(currently= 4) 
defines the 
number of 
noncontiguous 
pieces in a 
single section. 

Number of Pages 

Second Base PFN/ 
Pege Count Peir 

Third Base PFN/ 
Pege Count Peir 

Fourth Base PFN/ 
Pege Count Peir 

PTE Count for First Processor 

PTE Count for Second Processor 

PTE Count for Third Processor 

PTE Count for Fourth Processor 

Figure 14-27 Contents of Shared Memory Global 
Section Descriptor 

Mailboxes in Shared Memory 

A mailbox is recognized as a shared memory mailbox because its name trans­
lates to an equivalence name of the form 

shared-memory-name:mailbox-name 

When a mailbox is created in shared memory, it is described by a shared 
memory mailbox descriptor block (MBX) located in the shared memory (see 
Figure 18-4). In addition, each port connected to the shared memory mailbox 
has a unit control block (UCB) in its local memory 1/0 database that makes 
the connection between the local 1/0 system and the shared memory mail­
box. The relationships among shared memory mailbox data structures are 
pictured in Figure 18-5. 

Common Event Flag Clusters in Shared Memory 

A common event flag cluster is recognized as a shared memory event flag 
cluster because its name translates to an equivalence name of the form 

shared-memory-name: event-flag-cluster-name 



14. 7 Data Structures Used with Shared Memory 

As with global sections and mailboxes land the shared memory itself), 
there are data structures in shared memory and other structures in local 
memory required to fully describe a common event flag cluster located in 
shared memory. The shared memory data structure is called a master com­
mon event block ICEB) and contains the only valid set of event flags. Each 
port connected to this common event flag cluster has. a slave CEB in local 
memory that locates the master. The relationship between the master CEB 
and the slave CEBs is pictured in Figure 12-5. The layouts of the master and 
slave CEBs are pictured in Figure 12-4. 

367 



15 Paging Dynamics 

15.1 

15.1.1 

368 

I consider that a man's brain originally is like a little empty 
attic, and you have to stock ·it with such furniture as you 
choose .... Now, the skillful workman is very careful indeed as 
to what he takes into his brain-attic. He will have nothing but 
the tools which may help him in doing his work, but of these 
he has a large assortment, and all in the most perfect order. It 
is a mistake to think that that little room has elastic walls 
and can distend to any extent. Depend upon it, there comes a 
time when for every addition of knowledge you forget some­
thing that you knew before. It is of highest importance, there­
fore, not to have useless facts elbowing out the useful ones. 

Sir Arthur Conan Doyle, A Study in Scarlet 

This chapter shows how the various memory management data structures 
are manipulated by the pager in response to different forms of page faults. 

Although pager action is described here, it is not presented in a flowchart 
or decision fashion. Rather, the actions are described in terms of modifica­
tions to data structures and state transitions. 

OVERVIEW OF PAGER OPERATION 

Before discussing how the pager reacts to different forms of page faults, this 
chapter briefly describes the overall operation of the pager. 

Hardware Action 

When memory management is enabled, all program references generated by 
the CPU are virtual addresses. Each address must be translated to a physical 

31 30 29 98 0 

Virtual Page Number Byte Offset 

'----------.-. P1 Space Indicator if VA <31 > =0 

'-----------~ System Virtual Address Space Indicator 

VA < 31 :30 > Selects the page Jable: 
O =PO Page Table 
1 = P1 Page Table 
2=System Page Table 
3=Reserved 

VA < 29:9> is used as a longword index into the selected table. 

Figure 15-1 Format of Virtual Address 



15.1.2 

15.1 Overview of Pager Operation 

Direction of 
stack growth 

Reason Mask 

Invalid Virtual Address 

PC of Faulting Instruction 

PSL at Time of Fault 

~. 

\ 
\ 

-SP 

\ 
\ 

\\ 
\ \ 
\ \ 2 0 
\,---.---..------,.-.,.--. Reason Mask for 

Translation-Not-Valid Fault 

This Bit Is Always 0 for 
Translation-Not-Valid Faults 

..._____,~ PTE Reference 
0-+Virtual Address Not Valid 
1-+Associated PTE Not Vslid 

'--------.~ Intended Access Type 
0-+Read Access 
1-+Modify or Write Access 

Figure 15-2 State of the Kernel Stack Following 
a Translation-Not-Valid Fault 

address before a reference to memory or I/O space can be made. The virtual 
address (see Figure 15-1) is used by the VAX hardware/microcode address 
translation mechanism to find the page table entry (PTE) that is used to trans­
late the address. 

If the PTE is valid, its contents are used to translate the virtual address to a 
physical address and execution continues. If the PTE is invalid (PTE<31>= 
0), then the VAX microcode generates a translation-not-valid exception, bet­
ter known as a page fault. The VMS page fault exception service routine, 
MMG$PAGEFAULT in module PAGEFAULT, is known as the pager. Figure 
15-2 shows the state of the kernel stack following a page fault. 

Initial Pager Action 

MMG$PAGEFAULT immediately raises IPL to IPL$_SYNCH to serialize 
access to the memory management database. Before the pager does any work, 
it checks at what IPL the page fault occurred. If the page fault IPL is higher 
than 2, the pager generates the fatal bugcheck PGFIPLHI. Page faults above 
IPL 2 are not allowed for the following· two reasons: 

• Code that is executing at a higher IPL needs to perform a series of instruc­
tions without being interrupted. If a page fault happens, the faulting process. 
might be removed from execution, allowing another process to execute the 
same routine or access the same protected data structure. 

• Page faults are exceptions that happen to a process. When the system is 
executing at an IPL higher than 2, it is often on the interrupt stack, running 

369 



Paging Dynamics 

in system context. There is not necessarily a process in whose context the 
page can be made valid, 

The next step that the pager takes is to retrieve the invalid virtual address 
from the kernel stack. It uses this address to locate the PTE that maps this 
page by performing the same operations that the VAX address translation 
mechanism uses: 

1. The upper two bits of the virtual address (VA <31 :30>) select which page 
table (or which base register) to use. 

2. The virtual address field (VA<29:9>) is used as a longword index into the 
page table. The low-order bits specify byte offset in the page and are 
ignored. 

Before examining the PTE, the pager determines whether the SPTE for the 
page containing the PTE is itself valid. (This check avoids the necessity of 
making the pager recursive.) If not, the page table page is made valid first. 
Note that the pager does not perform this check using the page table valid bit 
in the exception parameter; rather, it checks the valid bit in the system PTE 
for the page table page. The pager checks the PTE rather than the excep­
tion parameter because between the time of the page fault and the time 
of the check, the PTE could have been altered, invalidating the exception 
parameter. 

Once the PTE is available, the pager takes different actions, depending on 
the nature of the invalid PTE. (See Figure 14-3 for the different forms of inval­
id PTE. The next several sections describe some of the major paths through 
the pager. Extraordinary conditions, such as read and write errors, are only 
mentioned in passing. 

15.2 PAGE FAULTS FOR PROCESS-PRIVATE PAGES 

15.2.1 

370 

This section describes page faults for process-private pages. The different 
path through the pager for shared pages is discussed in the next section. 
There are four cases in the category of private pages: 

• Two of the cases involve a page that is originally faulted from a section file. 
The two cases are distinguished by whether or not the section is copy-on­
reference. 

• A third case is a fault for a page in a private section of demand zero pages. 
• A fourth case that can result from either a copy-on-reference page or a de­

mand zero page is a fault for a page in a page file. 

Page Located in a Section File 

There are two different types of page that can initially reside in a private 
section file: a page that is copy-on-reference and one that is not. The PTE for 



15.2.1.1 

15.2 Page Faults for Process-Private Pages 

either type of page contains a process section table index (PSTX). The only 
initial difference between the two types of page is the setting of the copy-on­
reference bit in the PTE (see Figure 14-3). 

Private Page That Is Not Copy-on-Reference. The first type of fault is for a 
page that is not copy-on-reference. The various transitions that such a page 
can possibly make are illustrated in Figure 15-3. The numbers in circles are 
keyed to explanations of each of the following transitions. (For simplicity, 
clustered reads and writes are ignored in the discussion that follows. Section 
15.5 discusses all aspects of paging 1/0.) The PTE initially contains a PSTX 
with the copy-on-reference bit (PTE<l6>) clear. 

CD A page fault occurs. The pager uses the virtual address exception parame­
ter to locate the PTE. The PTE contains a PSTX. Information contained in 
the process section table entry (PSTE) indicates which virtual block in the 
file contains the virtual page. The pager invokes MMG$FREWSLE (in 
module PAGEFAULT) to make room in the WSL for a new page. This may 
require the removal of a page from the working set. The pager then allo­
cates a physical page from the head of the free list and adds the page to the 
WSL. The field PCB$W _PPGCNT is incremented to indicate one more 
page in the working set. 

The PFN array elements for the physical page allocated are initialized. 
The STATE array element indicates that a read is in progress. The PTE 
array element points to the process PTE. The WSLX array element locates 
the working set list entry (WSLE) just set up. The BAK array element con­
tains the initial contents of the PTE (the PSTX). The REFCNT array ele­
ment contains the value 2, one reference because the page is in the process 
working set and one for the read in progress. 

The pager builds and queues an 1/0 request packet (see Section 15.5) that 
describes the read to be done. The process is placed into a page fault wait 
state until the page read completes. 

@)Because most of the work was done in response to the initial fault, there is 
little left to do when the page read completes. Page read completion occurs 
as part of 1/0 postprocessing (see Chapter 18) and runs in system context. 
Routine PAGIO (in module IOCIOPOST) decrements the REFCNT array 
element (but, in the usual case, its contents stay above zero so nothing 
special happens). It changes the PFN STATE array element to active and 
valid and sets the valid bit in the process PTE. PAGIO reports the schedul­
ing event page fault completion for the process so that it is made computa­
ble. (C~apter 10 describes how scheduling events are reported.) The next 
time that the process is selected for execution, it executes the same in­
struction that caused the initial page fault. 

®One transition that a valid page can undergo (and still remain valid) occurs 
when the page is modified as a result of instruction execution. The VAX 

371 



Paging Dynamics 

372 

START 

--©--
PTE contains 

Process Section 
Table Index (PSTX) 

From bottom 
of page 

Page Fault Transition 

- PTE-+Transltion 
- In Working Set 

-PTE Is Valid 
r----- -In Working Set 

- Modify Bit Clear 

4 
PTE-+ Transition 

-0--
0ther Transitions 

-PTE Is Valid 
- In Working Set 
- Modify Bit Set 

--, 
I 
I 
I 
I 
I 
I 

I 
I 

~------- ~--- Saved Modify I Saved Modify 
Bit Clear I Bit Set 

--©---- --------...1 

I 

1 .. -------
1 
I 
I 
I 

I 
I 

~ 

------- -----------~-

PTE-+ Transition 

Saved Modify Bit Clear 

'------1 9 1----,1~ To top 
of page 

PTE-+Transition 

Saved Modify Bit Set 

PTE-+Transition 

Saved Modify Bit Clear 

Figure 15·3 State Diagram Showing Page Transitions 
for Private Section Page That Is Not Copy-on-Reference 

Page NOT in 
physical memory; 
no PFN data 

Read in Progress 
REFCNT=2 
BAK=PSTX 

Active and Valid 
REFCNT>O 
BAK=PSTX 

Release Pending 
REFCNT>O 
BAK=PSTX 

Modified Page List 
REFCNT=O 
BAK=PSTX 

Write in Progress 
REFCNT=1 
BAK=PSTX 

Free Page List 
REFCNT=O 
BAK=PSTX 



15.2 Page Faults for Process-Private Pages 

hardware sets the modify bit in the PTE. The change is not noted at this 
time in the PFN database. 

©When a non-copy-on-reference page is removed from the process working 
set by the routine MMG$FREWSLE, several things happen: 

a. The modify bit in the PTE is logically ORed into the PFN STATE array 
element, saving its value. 

b. The valid, modify, TYPO, and TYPI bits in the PTE are all cleared. The 
PFN field is left alone. 

c. The CPU translation buffer is invalidated to remove cached but now 
obsolete contents of the PTE. 

d. The REFCNT array element is decremented. If the reference count goes 
to zero, MMG$RELPFN (in module ALLOCPFN) is invoked to put the 
page on the free or modified page list, according to the setting of the 
saved modify bit in the PFN STATE array element. Since the BLINK 
array overlays the WSLX array, inserting the page into the free or modi­
fied list supplants the WSLX array contents. The new location of the 
page is inserted into the STATE array. 

e. The WSLE is made available (that is, zeroed), and PCB$W _PPGCNT is 
decremented to indicate one less private page. 

A page remains in the working set until one of the following occurs: 

-Room is required for another page. 
-The virtual page is deleted. 
-,-The Purge Working Set ($PURGWS) system service is requested. 
-Swapper trimming (see Chapter 17) removes it. 
-Working set list adjustment removes it. 

®If the reference count (decremented in 4d) does not go to zero, there is 
outstanding I/O for this page. The state is changed to release pending. The 
ultimate destination for the page (free or modified list) is recorded in the 
saved modify bit in the STATE array. 

@The 1/0 completion routine, MMG$UNLOCK in module IOLOCK, decre­
ments reference counts for pages that are locked down. When this routine 
detects that the count has gone to zero, it invokes MMG$RELPFN to place 
the page on either the free list or the modified list as appropriate. The 
STATE array element is changed. 

0The modified page writer eventually writes this physical page to its back­
ing store address, which is stored in the BAK array. Writable pages that are 
not copy-on-reference are written back to the file where they originated. 

The STATE of the page is set to write in progress. The saved modify bit 
is cleared. The REFCNT of I reflects this outstanding output operation. 

Note that writable private pages that are not copy-on-reference are not 

373 



Paging Dynamics 

15.2.1.2 

374 

produced by the linker. Such a section must be created with the Create and 
Map Section system service. 

®When the modified page write completes, the page's REFCNT is decre­
mented to zero. Because the saved modify bit is clear, the page is placed on 
the free list. 

®While the physical page remains attached to the process, the PTE contains 
a PFN, and the PFN PTE array contains the address of the process PTE. 

When the physical page is reused for another purpose, several steps must 
be taken to break the ties between the process virtual page and the physi­
cal page that is about to be reused. 

The process PTE must be altered to reflect the backing store address of 
the page. (The PFN PTE array is used to locate the PTE.) In this case, the 
PTE is reset so it contains a PSTX, the same contents it had before the 
initial page fault. 

The PFN array elements for this physical page are all cleared before the 
page is passed on to the new owner of the physical page. In particular, 
the PTE array element, the only connection from the PFN database to the 
process page table, is cleared. 

Page Faults Out of Transition States. Figure 15-3 also shows the transitions 
that a page makes when a page fault occurs while the physical page is in the 
transition state. While the changes back to the active state are straight­
forward, there are details about each fault that should be mentioned. Note 
that in each case a new WSLE must be acquired, and its acquisition can 
involve the removal of some other page from the process working set. 

1. A page fault from the free page list is resolved by changing the STATE of 
the page to active, setting the valid bit in the PTE, and incrementing the 
REFCNT array element. 

2. A page fault from the modified list is resolved in exactly the same way. By 
putting the page back into its modified state, the figure shows that the 
page was previously modified but never written to its backing store 
address. 

In fact, the modify bit in the PTE is not set by the pager. Rather, the 
· saved modify bit in the PFN STATE array records the fact that the page has 

not been backed up. 
3. A page fault from the release pending state is similar. The STATE of the 

page is changed to active, the valid bit in the PTE is set, and the REFCNT 
is incremented. 

Artistic license is taken in the figure to differentiate physical pages that 
were modified from pages that were not. Again, the only difference be­
tween the two pages is the setting of the saved modify bit in the PFN 
STATE array, not the setting of the modify bit in the PTE. 



15.2.1.3 

15.2 Page Faults for Process-Private Pages 

4. The transition that deserves special comment is a page fault that occurs 
while the modified page writer is writing the page to its backing store 
address. The saved modify bit is cleared before the write begins so that the 
page will be placed on the free list when the write completes. Although 
the page has not yet been completely backed up, the assumption is made 
that the write will complete successfully. Page faults can thus put the 
page into the active but unmodified state. The only difficulty occurs in the 
event of a write error. The modified page writer's 1/0 completion routine, 
WRITEDONE in module WRTMFYPAG, detects this state of affairs and 
turns the saved modify bit back on. 

Copy-on-Reference Page. A more common type of writable process-private 
page is called copy-on-reference. Figure 15-4 illustrates the transitions that 
such a page makes from its initial page fault until it is written to some back­
ing store address. 

Many of the transitions that occur here are the same as the case just de­
scribed. This section notes each transition but elaborates only those areas 
that are different. 

(!)The initial setting of the PTE (START I in the figure) is the PSTX, but the 
copy-on-reference bit (PTE<l6>) is set. The writable bit, PTE<l8>, is 
also usually set. When a page fault occurs, the pager allocates a physical 
page, copies its PFN to the PTE, and initiates the read. Two important 
steps are taken that differ from the previous case. 

First, the saved modify bit in the PFN STATE array is turned on. Setting 
the bit guarantees that the page will be written to its backing store address· 
when removed from the process working set, regardless of what instruc­
tions or 1/0 operations the process chooses to execute. 

Second, the BAK array element is set to point to the page file, with an 
indication that no block has yet been allocated. At this time, all ties to the 
original section file are broken. Before the modified page writer writes this 
page to its backing store address (as it certainly will because the saved 
modify bit was just turned on), it must allocate a block in the page file. 

@When the read completes, the page STATE is made active and the PTE set 
valid (and effectively modified). 

©When the copy-on-reference page is removed from the process working set 
(and its REFCNT is zero), the page is unconditionally placed on the modi­
fied page list. 

®If the REFCNT did not go to zero when the page was removed from the 
process working set, the physical page is placed into the release pending 
state until the 1/0 completes. 

©At that time, the page is placed on the modified page list. 

A page fault from either the release pending state or from the modified page 

375 



Paging Dynamics 

START4 

r---- ----1 

376 

PTE contains 
PSTX,CRF 

PTE contains GPTX 
GPTE contains 

GSTX,CRF 

PTE-. 
Demand Zero Page 

I 
I 
I ,.--•---•---, 
I 
I 
I 
I 

- PTE--. Transition 
- In Working Set 
- Saved Modify Bit Set 

1~--.-----r-~ 
L--

The area within these 
dotted lines is also 
shown in Figure 15-7. 

- PTE is Valid 
- In Working Set 
- Modify Bit Set 

3 

---, 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PTE-.Transition 
Saved Modify Bit Set -----~ 

PTE-. Transition 
Saved Modify Bit Set 

To Figure 15-5 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 15·4 State Diagram Showing Page Transitions 
for Private and Global Copy-on-Reference Pages and for 
Demand Zero Pages 

I Page NOT in 
PTE contains GPTX 1 physical memory; 

GPTE contains 0 I no PFN data 
I . 

~---.-----1 

I 
I 
I 
I 
I 
I 
I Read in Progress 
IREFCNT=2 
: BAK= PGFLX,O 

PFG I 
____ _J 

The area within 
these dotted lines is 
also shown in Figure 15-8. 

Active and Valid 
REFCNT>O 
BAK= PGFLX,O 

Release Pending 
REFCNT>O 
BAK= PGFLX,O 

Modified Page List 
REFCNT=O 
BAK= PGFLX,O 

----0--_.. 
Page Fault Transition 

-0-
Other Transitions 



15.2.2 

15.2.3 

15.2 Page Faults for Process-Private Pages 

list puts the page back into the active (but effectively modified) state. That is, 
the saved modify bit in the PFN STATE array remains set, causing the page to 
be put back on the modified page list when it is removed from the working 
set again. 

When the modified page writer writes the page to its backing store address 
(in the page file), the page makes a transition from the modified page list. 
Figure 15-5, the diagram for faults from the page file, shows this transition. 
The connection between Figure 15-4 and Figure 15-5 is indicated by path C in 
the two figures. 

Demand Zero Pages 

A demand zero PTE can be created by invoking the Create Virtual Address 
and Expand Region system services. One of these services can be issued ex­
plicitly by the process or on its behalf by the system (as part of image activa­
tion or in the LIB$GET _ VM Run-Time Library procedure). 

· When the pager detects a page fault for a demand zero page, it takes the 
following steps: 

1. The pager invokes MMG$FREWSLE to make room in the WSL for a new 
page. 

2. It invokes MMG$ININEWPFN to allocate a physical page from the begin­
ning of the free page list. 

3. The PFN array elements are initialized. The PTE array element points. to 
the process PTE. 

4. The BAK array element denotes a not-yet-allocated block in the page file. 
5. The page is filled with zeros. This is done with a Moves instruction that 

uses a zero-length source string and a null fill character. 
6. The page's REFCNT is incremented, the page is added to the process 

working set, and its STATE is set active. The WSLX array element is filled 
in, and the process's private page count is incremented. 

7. Finally, the pager dismisses the fault by executing an REI instruction, 
passing control back to the user. 

These steps all take place along path 3 in the upper right-hand portion of 
Figure 15-4. 

Global Copy-on-Reference and Page-File Section Pages 

There are two forms of pages that merge into the same set of state transitions 
as private copy-on-reference sections and demand zero pages. These forms are 
global copy-on-reference pages and global page-file section pages. The details 
of global page fault resolution are discussed in Section 15.3. 

377 



Paging Dynamics 

378 

,-----
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PTE contains 
Page File Virtual ---@--From bottom 

Block Number (PGFLVB) of page 

PTE-+Transition 
in Working 'set 

- PTE is Valid 
- In Working Set 
- Modify Bit Clear 

4 

3t------t 

----©---· 
Page Fault Transition 

-0--
0ther Transitions 

- PTE is Valid 
- In Working Set 
- Modify Bit Set 

--, 

I 

~------ ----~ 
I 

PTE-+Transition 

Saved Modify l Saved Modify 
Bit Clear I Bit Set 

-©----- -------•, 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

f-+------ ------- -------------©--

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PTE-+Transition ~ 
Saved Modify Bit Set ·~ 

PTE-+ Transition 
Saved Modify Bit Clear 

Page NOT in 
physical memory; 
no PFN data 

Read in Progress 
REFCNT=2 
BAK=PGFLVB 

Active and Valid 
REFCNT>O 
BAK=PGFLVB 

Release Pending 
REFCNT>O 
BAK=PGFLVB 

Modified Page List 
REFCNT=O 
BAK=PGFLVB 

Write in Progress 
REFCNT=1 
BAK= new PGFLVB ! 

I 
I 
I 
I 
I 
I 
I 
I 
I 

From 
Figure 15-4 

I PTE-+ Transition 
Saved Modify Bit Clear 

To top 
of page 

Figure 15-5 Transitions for a Page Located in a Page 
File 

Free Page List 
REFCNT=O 
BAK= new PGFLVB 



15.2.4 

15.3 Page Faults for Global Pages 

Suffice it to say here that a global copy-on-reference page is initially faulted 
from a global file but is subsequently indistinguishable from other process­
private pages. A global page-file section page is initially faulted as a demand 
zero page and from then on is indistinguishable from other global writable 
pages, except that its backing store is in the page file. 

Page Located in a Page File 

The transitions that a page faulted from the page file goes through (see Figure 
15-5) are the same as the transitions described for pages that are not copy-on­
reference (see Figure 15-3). The only difference in the PFN data between the 
two figures is that the BAK array element in Figure 15-5 indicates that the 
page belongs in the page file. The BAK array element in Figure 15-3 contains a 
PSTX. 

The other difference between the two figures is the entry point into the 
transition diagram. A page can start out in a section file (PTE contains PSTX) 
but a page can never start out in a page file. The entry into Figure 15-5 is from 
Figure 15-4, from one of three initial states that eventually result in the phys­
ical page contents being written to the page file. 

15.3 PAGE FAULTS FOR GLOBAL PAGES 

15.3.1 

The page fault resolution for global pages can be described in exactly the 
same way as process-private pages are described. Following the transition of a 
global page table entry (GPTE) and its associated PFN database entries adds 
nothing to the information already presented in Figure 15-3. 

A more interesting approach is to look at the interaction of the process 
PTEs and the GPTEs that they point to. The following discussion uses a 
specific example, rather than a general case, to allow specific numbers to be 
used. 

Page Fault for Global Read-Only Page 

Figure 15-6 illustrates the transitions that occur for a global read-only page 
that is mapped by two processes. The mapping is shown separately from the 
operation of section creation to simplify the figure. A second simplification 
in the figure is that the page is assumed to be read-only. The implications of 
a read/write global page are described in the next section. 

When the global section is initially created, the data structures described in 
the previous chapter are all set up. The GPTE for the page represented in the 
figure contains a global section table index (GSTX), which locates the global 
section table entry (GSTE) containing information about the global file. 

379 



Paging Dynamics 

380 

-PTE is Valid 
- In Working Set 

No Change 

- PTE is Valid 
- In Working Set 

PTE=GPTX 

No Change 

t 
PTE=GPTX 

I 

Process A 

PTE contains 
Global Page Table 

Index (GPTX) 

PTE=GPTX 

- PTE is Valid 
- In Working Set 

No Change 

-PTE ls Valid 
- In Working Set 

PTE=GPTX 

GPTE contains 
Global Section Table 

Index (GSTX) 

GPTE=GSTX 

GPTE is Valid 

GPTE is Valid 

GPTE is Valid 

GPTE-+Transition 

No Change No Change e 

11:.:i-.=--1--1---~!:1--~=-·= 
I ' I 
I . I 
I I 
L------------------------------------------~------~ 

Figure 15-6 Example of Page Transitions Made by a 
Global Page Mapped by Two Processes 

.. 
E .. .. ., 
= 
~ 

1l 
)( ., 
! .. .. 
~ 
ii 
0 
! 
3l ., 
s:. 
I-

Page NOT in 
physical memory; 
no PFN data 

NoPFN data 

NoPFN data 

Read in Progress 
REFCNT=2 
SHRCNT=1 
BAK=GSTX 
PTE-+GPTE 

Active and Valid 
REFCNT=1 
SHRCNT=1 
BAK=GSTX 
PTE-+GPTE 

Active and Valid 
REFCNT=1 
SHRCNT=2 
BAK=GSTX 
PTE-+GPTE 

Active and Valid 
REFCNT=1 
SHRCNT=1 
BAK=GSTX 
PTE-+GPTE 

Free Page List 
REFCNT=O 
SHRCNT=O 
BAK=GSTX 
PTE-+GPTE 

No PFN data 



15.3 Page Faults for Global Pages 

CD When Process A maps to the section, the process PTE contains a global 
page table index (GPTX), effectively a pointer to the GPTE. 

@When Process B maps to the section, its PTE contains exactly the same 
GPTX as found in Process A's PTE. 

®Process B happens to incur a page fault on this global page first. Several 
things happen: 

a. The pager notes that the process PTE contains a GPTX. This index is 
used to locate the GPTE. 

b. The GPTE contains a GSTX, indicating that the global page resides on 
disk somewhere. Exactly the same things are done to initiate the read 
here as in the case of a process-private page. 

c. A physical page is allocated. A WSLE is created and Process B's global 
page count, PCB$W _GPGCNT, is incremented. 

d. The STATE of that page is set to read in progress. 
e. Its REFCNT array element is incremented. 
f. Its BAK array element is loaded with the GSTX. 
g. Note that the .PFN PTE array element is loaded with the address of the 

GPTE, not the address of the process PTE. Note also that, while the read 
is in progress, the GPTE contains a transition PTE but the process PTE 
still contains the GPTX. 

h. The REFCNT array element indicates two references: one for the read 
in progress and one because the page is in some process working set (the 
SHRCNT array element is nonzero). The SHRCNT array element con­
tains a 1 while the read is in progress. 

©When the read completes, the 1/0 postprocessing routine, IOC$IOPOST, 
queues a special kernel AST to Process B. The special kernel AST routine 
is the page 1/0-done routine, PAGIO. Running in the context of Process B, 
PAGIO takes the following steps: 

a. The STATE of the page is changed to active. 
b. The GPTE is set to valid to record the fact that this page is in some 

process working set. 
c. The process PTE, located through its address stored in the 1/0 request 

packet, is set up to contain the low-order 21 bits from the GPTE, with 
the valid bit set and bits 21 and 26 cleared. 

d. The REFCNT and SHRCNT are both 1 at this point. 

®When Process A faults the same global page, the initial pager action is the 
same as it was in step 3, because the PTE is a GPTX. Now, however, the 
pager finds a valid GPTE. Resolution of this page fault. is simple. 

A WSLE is created for Process A and its ·global page count is incre­
mented. The low-order 21 bits of GPTE are simply copied to Process A's 

381 



Paging Dynamics 

15.3.2 

382 

PTE. The valid bit is set and bits 21 and 26 are cleared. The SHRCNT is 
incremented, and the fault is dismissed. 

@When MMG$FREWSLE removes the global page from Process B's working 
set, it decrements B's global page count and the SHRCNT for the page of 
memory. Because the SHRCNT is still positive, nothing dramatic happens 
to the physical page. 

Process B's PTE must be restored to its previous state. (The PTE does not 
assume some transition form.) The PTE array element contains the ad­
dress of the GPTE so the GPTX must be recalculated. 

The calculation is straightforward. The contents of MMG$GL_ 
GPTBASE are subtracted from the PTE array element, the result is divided 
by 4 (to create a longword index), and the quotient is stored in the process 
PTE in the GPTX field . 

. 0When MMG$FREWSLE removes the global page from Process A's working 
set, it restores the process PTE as described in step 6. 

The SHRCNT is decremented, this time to zero. Therefore, the 
REFCNT is also decremented. If the page is unmodified and there is no 
outstanding 1/0, the physical page is placed on the free page list. 

The GPTE contains a transition PTE. The STATE array element indi­
cates the free page list. The other PFN array elements are unchanged. 

®When the physical page is reused, the ties must be broken between the 
physical page and, in this case, the GPTE. (None of the processes mapped 
to this page are affected ln any way by this step.) 

The contents of the BAK array element (a GSTX) are inserted into the 
GPTE, located by the contents of the PFN PTE array element. The PFN 
PTE array element is then cleared, breaking the connection between the 
physical page and the global page table. 

These steps put the process and global page tables back to the state they 
were in following step 2 (although it is pictured here as a different state to 
make the figure simpler). 

Global Read/Write Pages 

The transitions that occur for global writable pages are the same as the transi­
tions for a process-private page that is not copy-on-reference. The only differ­
ence between such transitions and the transitions illustrated in Figure 15-3 is 
that the GPTE, not the process PTE, is affected by the transitions of the 
physical page. 

The process PTE for global pages contains a GPTX up until the time that 
the page is made valid. Only then is a PFN inserted into the process PTE. As 
soon as the page is removed from the process working set, the GPTX is placed 
back into the process PTE. All ties to the PFN database are made through the 
GPTE, which retains the PFN while the physical page is in the various transi­
tion states. 



15.3.3 

15.3 Page Faults for Global Pages 

Global Copy-on-Reference Pages 

The global pages previously described are all shared pages. One type of global 
page is shared only in its initial state. As soon as the fault occurs, the page is 
treated exactly like a process-private page. This type of page is a global copy­
on-reference page. 

Figure 15-7 illustrates the transitions that occur for a global copy-on-refer­
ence page: 

CD The initial conditions are identical to those used in Figure 15-6. The sec­
tion is created and each of the GPTEs contains a GSTX although, in this 
case, the copy-on-reference bit is set. ' 

®Process A maps the page and has its PTE set to contain a GPTX. 

Process B 

Process A 

PTE contains 
Global Page Table 

Index (GPTX) 

2 No Change 

:---=-G::---1 ~ 
I I No Change 

I : t 
I . PTE-+Transition I 
I . In Working Set I 
I - Saved Modify Bit Set I 
I I '------.---....J 

PTE=GPTX 

L---, r--...J 
: G I 
I I 
~-- __ J • PTE-+ Transition 

To 
Figure 15-4 

• In Working Set 
• Saved Modify Bit Set 

To 
Figure 15-4 

START 

GPTE contains 
Global Section Table 
Index (GSTX),CRF 

GPTE = GSTX, CRF 

GPTE=GSTX, CRF 

No Change 

GPTE = GSTX, CRF 

Page NOT in 
physical memory; 
no PFN data 

No PFN data 

No PFN data 

Read in Progress 
z REFCNT=2 
lt BAK= PGFLX,O 

'------.---~ ., PTE-+Process B's 
cS page table entry 

No Change 

if Read in Progress 
~----'----. n. REFCNT=2 

J ~~~.:::~;:~oA's 
0 page table entry 

'------.---~< 

GPTE = GSTX, CRF 

Figure 15-7 Example of Page Transitions for Global 
Copy-on-Reference Pages 

383 



Paging Dynamics 

15.3.4 

384 

Process B maps the page and gets the same GPTX in its PTE. Up to this 
point, nothing is different,from Figure 15-6. 

®Now when Process B incurs a page fault, the pager follows the GPTX to the 
GPTE, noting that the page is located in a global section file and is copy­
on-reference. A read is initiated and the following modifications are made 
to the process PTE and the PFN database: 

a. The GPTE is not touched. It retains its GSTX contents. 
b. The process PTE is set to a transition PTE. 
c. The STATE of the physical page is set to read in progress. 
d. Its BAK array element contains a page file index (with no block allo­

cated yet). 
e. Its PTE array element contains the address of Process B's PTE. 

Note that all ties between Process Band the global section are broken. 
The page is now treated exactly like a private copy-on-reference page. The 
two boxes for Process B in Figure 15-7 are the boxes within the dashed 
outline in Figure 15-4. 

©When Process A faults the same page, exactly the same steps are taken, 
this time with a totally different physical page. 

Thus, both Process A and Process B get exactly the same initial copy of the 
global page from the global file but, from that point on, each process has its 
own private copy of the page to modify. 

Global Page-File Section Pages 

A global page-file section provides a means for processes to share global pages 
without the need of a backing store file. By its nature, such a page has no 
initial contents and is thus initialized as a demand zero page. 

Figure 15-8 illustrates the transitions that occur for a global page-file sec­
tion page: 

(DThe initial conditions are identical to those used in Figure 15-6. The sec­
tion is created and each of the GPTEs contains a zero in the PFN field. 

®Process A maps the page and has its PTE set to contain a GPTX. 
Process B maps the page and has its PTE set to contain a GPTX. 

@When Process B incurs a page fault, the pager follows the GPTX to the 
GPTE and notes that the GPTE is demand zero. The following modifica­
tions are made to the PTEs and to the PFN database: 

a. A physical page of memory is allocated. 
b. Its PTE array element points to the GPTE. 
c. Its BAK array element contains the primary page file index (with no 

block allocated). 
d. The newly allocated PFN is stored in the GPTE. 



15.3 Page Faults for Global Pages 

Process A 

PTE contains 
Global Page Table 

Process B Index (GPTX) 

2 No Change 
r------ ------

PTE=GPTX PTE=GPTX 

No Change 

-PTE is Valid 
- In Working Set PTE=GPTX 
- Modify Bit Set 

----, 
I 
I 
I 
'-- -PTE is Valid 

To - In Working Set 

Figure 15-4 - Modify Bil Set 

To 
Figure 15-4 

Figure 15-8 Example of Page Transitions for Global 
Page-File Section Pages 

e. The valid bit is set in the GPTE. 

START 

GPTE contains 
Zero 

GPTE=O 

GPTE=O 

GPTE is Valid 

No Change 

GPTE is Valid 

Page NOT in 
physical memory; 
no PFNdata 

No PFNdata 

No PFNdata 

Active and Valid 
REFCNT>O 
BAK=PGFLX,O 

Active and Valid 
REFCNT>O 
BAK=PGFLX,O 
PFN in PTE(A) and 
PTE(B) is identical 

f. The PFN is copied to Process B's PTE and the valid bit is set. 

@When Process A incurs a fault on the page, the pager follows the GPTX to 
the GPTE and finds that the GPTE is valid. The valid GPTE is copied to 
Process A's PTE. 

Transitions for a global page-file section page are the same as the transi· 
tions for a page located in a page file (see Figure 15-5). However, for a global 
page-file section page, the GPTE, not the process PTE, is affected by the tran­
sitions that the physical page makes. Once the global page is removed from 
the working set, the process PTE reverts to the GPTX form. 

385 



Paging Dynamics 

15.4 WORKING SET REPLACEMENT 

15.4.1 

386 

The WSL (see Figure 14-4) is a circular buffer that describes the process pages 
that are valid. When a process references an invalid virtual page, the pager 
must take whatever steps are necessary to make the page valid. It must also 
add a description of the page to the WSL. In principle, the size (or capacity) of 
the WSL is used as a brake on memory growth. That is, if there is no room in 
the WSL for another entry, one must be removed. The pager uses the WSL to 
decide which virtual page to discard. 

The size of a process's WSL is adjusted in response both to process paging 
and system needs for memory (see Chapter 16). When the WSL is made 
smaller and pages are removed from the working set, empty entries are not 
immediately compressed from the circular buffer. Instead, the field 
PCB$W _ WSSIZE is decreased. This field specifies the maximum number of 
entries in the WSL a process may use. 

Leaving empty entries in the WSL reduces CPU overhead. However, it 
makes adding a page to the working set slightly more complex. That a WSLE 
is empty does not necessarily mean the process can make use of it; the size of 
the working set must be less than PCB$W _ WSSIZE. If the process is already 
at its maximum size, a nonempty WSLE must be found whose virtual page 
can be replaced in the working set by the new page. 

The WSL replacement algorithm that the VMS executive uses is a modified 
first-in/first-out (FIFO) scheme. The entry that has been in the WSL for the 
longest time (the one pointed to by PHD$W _ WSNEXT) is the one first con­
sidered for replacement. 

Scan of Working Set List 

When the pager needs an empty WSLE, it calls routine MMG$FREWSLE (in 
module PAGEFAULT). This routine selects a WSLE for use. The following 
steps summarize its flow. Subsequent sections describe more details of par­
ticular aspects of its flow. 

MMG$FREWSLE scans the WSL,"beginning at the WSLE whose index is in 
PHD$W _ WSNEXT: 

1. If the WSLE is empty (contents are zero), MMG$FREWSLE checks 
whether the entry can be used (see Section 15.4.2). If the WSLE can be 
used, it is selected. 

2. If the WSLE is not empty (its contents are nonzero), but is an active page 
table page (one which maps valid pages), the WSLE cannot be used. 

3. If the WSLE is not empty and is an inactive page table page, it may be 
usable, MMG$FREWSLE takes the steps described in Section 15.4.3 to 
determine whether the page table page can be released and its WSLE re­
used. 



15.4.2 

15.4 Working Set Replacement 

4. If the WSLE is not empty, but its virtual page has been recently enough 
accessed that it appears in the translation buffer, the WSLE is skipped (see 
Section 15.4.4). 

5. If the WSLE is selected for reuse and is not empty, MMG$FREWSLE takes 
the actions described in Section 15.4.5. 

6. If the WSLE is not selected, the index is incremented, and the steps in this 
list are repeated until a WSLE that can be used is found. If the index ex­
ceeds the end of the list, it is reset to the beginning of the dynamic WSL. 

Using an Empty Entry in the Working Set List 

If an empty WSLE is found, checks are made to see if a page can be added to 
the working set. If there are fewer pages in the working set than are indicated 
by WSQUOTA, a new physical page can be added to the working set. It may 
also be possible to add physical pages to the WSL above WSQUOTA (up to 
WSEXTENT), depending on the size of the free page list. 

The following checks are required for an empty WSLE to be usable: 

1. If the size of the working set (process page count, PCB$W _PPGCNT, plus 
global page count, PCB$W _GPGCNT) equals the maximum number of 
valid WSLEs allowed to the process (PHD$W _ WSSIZE), the empty WSLE 
cannot be used. That is, the working set is full and a page in it must be 
replaced. 

2. If the working set is not full, the size of the working set is compared to 
WSQUOTA. If the size of the working set is less than WSQUOTA, a new 
page is allowed in the working set. The empty WSLE pointed to by 
PHD$W _ WSNEXT is used. 

3. If there are more than WSQUOTA pages in the working set, the number of 
pages on the free page list is compared to the SYSBOOT pa~ameter 
GROWLIM. If there are more than GROWLIM pages on the free page list, 
a new page is allowed in the working set. The empty WSLE pointed to by 
PHD$W _ WSNEXT is used. 

Note that to extend the working set above WSQUOTA, the WSL itself 
must have been extended above WSQUOTA. To extend the WSL above 
WSQUOTA, the free page list must contain more than the SYSBOOT 
parameter BORROWLIM pages. For more information on working set 
limits, BORROWLIM, and automatic working set limit adjustment, see 
Chapter 16. 

If an empty but unusable WSLE is found at the end of the WSL, 
PHD$W _ WSLAST is reset to point to the last unavailable (nonzero) WSLE in 
the WSL. In other words, empty entries at the end of the WSL are compressed 
if it contains more entries than the size of the working set allowed to the 
process. 

387 



Paging Dynamics 

15.4.3 

15.4.4 

15.4.5 

388 

Releasing a Dead Page Table Page 

An inactive page table page (also known as a "dead" page table page) is one 
which maps no valid pages. If an inactive page table page contains transition 
PTEs for pages on the free page list, the PFN database for those pages must be 
modified before the page table page can be released from the WSL. If an inac­
tive page table page contains transition PTEs for pages on the modified page 
list, those pages must be written to their backing store before the page table 
page can be released from the WSL. 

To determine whether an inactive page table page contains any transition 
PTEs requires examining all its PTEs. MMG$FREWSLE avoids the overhead 
of this scan whenever possible. That is, it checks how full the WSL is. If the 
WSL has room for growth, the dead page table scan is postponed. 
MMG$FREWSLE skips this WSLE and continues its scan of the WSL. 

If the WSL does not have room for growth, the inactive page table page is 
scanned. MMG$FREWSLE severs the connection between the process and 
any transition page on the free page list. If the page table page contains no 
modified pages, it is released from the WSL and its WSLE reused. 

If, however, the page table page does describe pages on the modified list, 
they must be written to their backing store before the page table page can be 
released from the working set. MMG$FREWSLE forces a flush of the modi­
fied page list and returns to the pager. The pager places the process into a 
resource wait until the modified page list is flushed (see Section 15.6.4.2). 

Skipping Working Set List Entries 

The working set replacement routine is not strictly FIFO. It uses the special 
SYSBOOT parameter TBSKIPWSL to permit recently referenced pages to 
remain in the working set. This allows the operating system to modify its 
strict FIFO page replacement algorithm with some frequency of use informa­
tion maintained by VAX hardware. 

The modified algorithm works in the following manner. Before a valid 
WSLE is reused, a check is made to see if the virtual page described by that 
WSLE is in the translation buffer. If the PTE for that page is cached in the TB, 
the search for an available WSLE starts again with the next WSLE. After 
TBSKIPWSL WSLEs have been skipped in this manner, the translation buffer 
checks are abandoned and the next valid WSLE is simply reused. If the value 
of TBSKIPWSL is set to zero, the mechanism is disabled and no entries are 
checked in the translation buffer. The default value of TBSKIPWSL is 8. 

Reusing Working Set List Entries 

The virtual page indicated by the WSLE must be removed before this WSLE 
can be reused. Typically, the virtual page is valid and must be made invalid. 



15.5 Input and Output That Support Paging 

The modify bit from the associated PTE is saved in the PFN STATE array 
element. The valid and modify bits in the PTE are cleared. Any cached copy 
of the PTE is invalidated in the translation buffer. 

If the page is a global page, the PFN SHRCNT array element is decre­
mented. If the SHRCNT goes to zero, the REFCNT array element is decre­
mented. The GPTX is copied to the process PTE. 

For a process-private page, the REFCNT is decremented. If the page is 
placed into a transition state, the balance slot reference count for this PHD is 
incremented to prevent its outswap. 

The WSLE is zeroed and its index is stored in PHD$W _ WSNEXT. 

15.5 INPUT AND OUTPUT THAT SUPPORT PAGING 

There is very little special purpose code in the 1/0 subsystem to support 
pager and swapper 1/0. The pager and swapper each build their own 1/0 re­
quest packets (IRPs), but queue these packets to the device driver in the nor­
mal fashion. These are the only differences: 

• There are special Queue 1/0 Request entry points for pager and swapper 1/0 
(in module SYSQIOREQ). These entry points bypass many of the usual QIO 
checks to minimize overhead. An IRP describing a pager or swapper request 
is distinguished from other IRPs by a flag in the IRP status word. 

• These flags are detected by the 1/0 postprocessing routine. There are special 
completion paths for page read and other forms of memory management 
1/0. 

To make reading and writing as efficient as possible, the pager supports a 
feature called clustering. The pager checks to see whether pages adjacent to 
the virtual page that it is reading are located in the same file in adjacent 
virtual blocks. If so, the pager requests a multiple-block read, and a cluster of 
pages is brought into the working set at one time. One N-block request has 
less CPU and 1/0 overhead than N one-block requests. 

The modified page writer and the Update Section ($UPDSEC) system ser­
vice also cluster their write operations, both to make their writes as efficient 
as possible and to allow subsequent clustered reads for the pages that are 
being written. 

Tables 15-1 and 15-2 summarize the 1/0 requests issued by memory man­
agement components. The first table lists the process identification, priority 
of each 1/0 request, and information about the priority boost the process 
receives at 1/0 completion. (For more information on priority classes and 
boosts, see Chapter 10.) Table 15-2 summarizes the unusual uses to which 
the memory management components put several fields in the IRP. These 
fields are not required for their more typical uses and can thus be used for 
storage by these components. 

389 



Paging Dynamics 

15.5.1 

15.5.1.1 

390 

Table 15-1 Summary of 1/0 Requests Issued by Memory Management-Part I 

Priority Process ID Priority Boost at 
Type of 110 Request IRP$B_PRI IRP$LPID 110 Completion 

Process page read 16-Base priority of PID of faulting 0 
faulting process process 

System page read Base priority of PID of faulting 0 
"system" process process 

Modified page write MPW_PRl01 PID of swapper2 None3 

$UPDSEC page write Base priority PID of caller 2 
of caller 

Swapperl/O SWP_PRI01 PID of swapper None3 

1This is a SYSBOOT parameter. 
2The modified page writer is a subroutine of the swapper process. 
3The swapper is a real-time process and is therefore not subject to priority boosts. 

The second table lists more information about each type of 1/0 request. 
The columns SVAPTE, AST, and ASTPRM contain the contents for those 
fields in the IRP for each type. The column "Source of WCB" specifies from 
which memory management data structure the address of the window con­
trol block is obtained. (This address is stored in the field IRP$L_ WIND.) The 
last column contains the limit to the clustering done for each type of 1/0 
request. 

Page Reads and Clustering 

When the pager determines that a read is required to satisfy a page fault, it 
allocates an IRP and fills it with parameters that describe the read. Table 15-2 
lists those fields that are used for special purposes by the pager. 

The pager attempts to create a cluster of pages to read. The manner in 
which this cluster is formed depends on the initial state of the faulting PTE. 

Terminating Condition for Clustered Reads. The pager scans PTEs that map 
larger virtual addresses, checking for more virtual pages that are located in 
the same backing store location, until the desired cluster size is reached or 
until one of the following other terminating conditions is reached: 

• A PTE different from the original faulting PTE is encountered (see Section 
15.5.1.2) 

• The page table page is itself not valid. (Satisfying this fault first, to make a 
larger cluster, would offset the benefits gained by clustering.) 

• No more WSLEs are available. (Each page in the cluster must be added to 
the working set.) 

• No physical page is available. 



15.5.1.2 

15.5.1.3 

15.5 Input and Output That Support Paging 

If, after scanning the adjacent PTEs toward higher virtual addresses, no 
pages have been clustered, the process is repeated toward lower virtual ad­
dresses with the same terminating conditions. The scan is made initially 
toward higher virtual addresses because programs typically execute sequen­
tially toward higher virtual addresses and these pages are likely to be needed 
soon. If the forward attempt fails, the pager attempts to read pages adjacent to 
the faulting page at lower virtual addresses on the assumption that even 
pages at lower virtual addresses but near the faulting page are likely to be 
needed soon. 

Matching Conditions while Scanning Page Table. The match that is looked 
for when scanning the adjacent·PTEs depends on the form of the initial PTE: 

• If the original PTE contains a PSTX, successive PTEs must contain exactly 
the same PSTX. 

• If the original PTE contains a page file virtual block number, successive 
PTEs must contain PTEs with successively increasing (or decreasing) vir­
tual block numbers. 

• If the original PTE contains a GPTX, successive PTEs must contain succes­
sively in~reasing (or decreasing) indexes. In addition, the GPTEs must all 
contain exactly the same GSTX. 

Maximum Cluster Size for Page Read. The maximum number of pages that 
can be in a cluster is determined in several ways, depending on the type of 
page being read: 

• Global page table pages are not clustered. 
• The cluster factor for process page table pages is taken from 

PHD$B_PGTBPFC. The default value of this field is the special SYSBOOT 
parameter PAGTBLPFC. 

The default value for this parameter is 2. This value is chosen to avoid an 
artificial end to building a cluster when the page table page also had to be 
faulted. Decreasing this value may defeat clustered reads. Increasing it 
above 2 is likely to have a negligible effect in most systems. 

• The cluster factor for page file pages is taken from the PFL$B_PFC field of 
the page file control block (see Figure 14-22). The usual contents of this 
field are zero. In that case, the cluster factor is taken from the process's 
PHD$B_DFPFC. The default value of this field is the SYSBOOT parameter 
PFCDEFAULT. 

• The cluster factor for a process or global section is taken from the 
SEC$B_PFC field of the process or global section table entry (see Figure 
14-7). This field usually contains zero, in which case the default page fault 
cluster is used. (Just as for clustered reads from the page file, this default is 
taken from PHD$B_DFPFC.) 

391 



Table 15-2 Summary of 1/0 Requests Issued by Memory Management-Part II 

Type of 110 Source 
Request SVAPTE AST ASTPRM of WCB Cluster Factor 

PROCESS PAGE READ 

Page in POPT/PIPT 0 0/PSTX1 PSTE pfc/PFCDEFAULT2 

mapped file 

Page in POPT/PIPT 0 0 PFL PFCDEFAULT3 

page file 

Page table page SPT 0 0 PFL4 PAGTBLPFC3 

SYSTEM PAGE READ 

System page5 SPT 0 0 SSTE SYSPFC3 

Paged pool page SPT 0 0 PFL PFCDEFAULT3 

Global page GPT Slave PTE 0 GSTE pfc/PFCDEFAULT2 

address 

Global CRF POPT/PIPT Master PTE GSTX GSTE pfc/PFCDEFAULT2 

page contents 

Global page SPT 0 0 PFL4 

table page 



Table 15-2 Summary of 1/0 Requests Issued by Memory Management-Part II (continued) 

Type of IIO Source 
Request SVAPTE AST ASTPRM of WCB Cluster Factor 

MODIFIED PAGE WRITE 

To page file MPWmap 0 MPW's KAST PFL MPW _ WRTCLUSTER3 

(WRITEDONE) 

To private file MPWmap 0 MPW's KAST PSTE MPW _ WRTCLUSTER3 

(WRITEDONE) 

To global file MPWmap 0 MPW's KAST GSTE MPW _ WRTCLUSTER' 
(WRITEDONE) 

To swap file MPWmap 0 MPW's KAST PFL 
(SWPVBN = O) (WRITEDONE) 

UPDATE SECTION PAGE WRITE 

Private section POPT/PlPT AST address AST argument PSTE MPW _ WRTCLUSTER3 

Global section GPT AST address AST argument GSTE MPW _ WRTCLUSTER3 

SWAPPER I/O 

Swapper 1/0 Swapper 0 Swapper KAST PFL n/a 
map (IODONE) 

1If the page is copy-on-reference, IRP$L_ASTPRM contains the PSTX. 
2The cluster factor for a private or global section can be specified at link time or when the cluster is mapped by explicitly 

declaring a cluster factor (pfc). If unspecified, the SYSBOOT parameter PFCDEFAULT is used. 
·'This is a SYSBOOT parameter. 
4 Process page tables and global page tables originate as demand zero pages whose backing store is the page file. 
"Pageable executive routines originate in one of three files (SYS.EXE, RMS.EXE, and SYSMSG.EXE) described by three system 

section table entries (SSTEs) located in the system header. 



Paging Dynamics 

15.5.1.4 

15.5.2 

394 

There are two methods available to the user to control the cluster factor 
of a process or global section. Specifying PFC in the following line from a 
linker options file enables the page fault cluster factor in the image section 
descriptor to be set to nonzero contents: 

CLUSTER = cluster-name, [base-address], pfc, file-spec[, ... ] 

A section that is mapped through the Create and Map Section system 
service can have its page fault cluster factor specified by the optional PFC 

argument to the system service call. 

Page Read Completion. The 1/0 postprocessing routine, IOC$IOPOST in 
module IOCIOPOST, detects page read completion, using the flag 
IRP$V _PAGIO in the IRP status word. 

Page read completion is not reported to the faulting process in the normal 
fashion with a special kernel mode asynchronous system trap (AST) because 
none of the postprocessing has to be performed in the context of the faulting 
process. The routine PAGIO performs the postprocessing needed and makes 
the process computable. 

When a page read completes successfully, PAGIO performs the following 
steps for each page: 

1. The PFN REFCNT array element is decremented, indicating that the read 
in progress has completed. 

2. The page STATE is set to active. 
3. The valid bit in the PTE is set. 
4. If the page is a global page, the valid bit set in step 3 was in the GPTE. In 

this case, the process (slave) PTE must be loaded with the PFN and made 
valid. 

After the individual pages have been tended to, PAGIO reports the schedul· 
ing event page fault completion for the process so that it is made computable. 
The priority increment class is 0, so there is no boost to the process's sched­
uling priority. (If any of the pages just read were collided pages, the collided 
page wait queue is also emptied. That is, all processes in that state are made 
computable. Collided pages are discussed in Section 15.6.3.) 

Modified Page Writing 

The modified page writer (a subroutine of the SWAPPER process) also at­
tempts to cluster when writing modified pages to their backing store ad­
dresses. The three different cases encountered by the modified page writer 
depend on the three possible backing store locations that pages on the modi­
fied page list can have. 



15.5.2.1 

15.5.2.2 

15.5 Input and Output That Support Paging 

Operation of the Modified Page Writer. The modified page writer, 
MMG$WRTMFYPAG in module WRTMFYPAG, proceeds in approximately 
the following fashion: 

l. The first page is removed from the modified page list, and 
SCH$GL_MFYCNT, the number of pages on the list, is decremented. The 
PTE address of the page is retrieved from the PFN PTE array. 

2. Adjacent PTEs are scanned (first toward lower virtual· addresses and then 
toward higher virtual addresses) looking for transition PTEs that map 
pages on the modified page list until either the desired cluster size is 
reached or until one of the other terminating conditions is reached. 

This scan begins first toward smaller virtual addresses for the same rea­
son that the page read cluster routine begins toward larger addresses. If the 
program is more likely to reference higher addresses, the modified page 
writer does not want to initiate a write operation, only to have the page 
immediately faulted (and likely modified again). The modified page writer 
chooses to first write those pages with a smaller likelihood of being refer­
enced in the near future. 

3. If the backing store for the page is a page file, the modified page writer tries 
to build a larger cluster as described in Section 15.5.2.3. When it can no 
longer cluster (see Section 15.5.2.2), it initiates a write. The PFN STATE 
array element for each of the pages is changed to write in progress, and the 
REFCNT element for each page is incremented. ' 

4. The modified page writer subroutine exits. When the modified page write 
completes, MMG$WRTMFYPAG's special kernel AST routine, 
WRITEDONE, is entered. 

Modified Page Write Clustering. The terminating conditions for the scan of 
the page table include the following: 

• The page table page is not valid, implying that there are no transition pages 
in this page table page. The special check is made to avoid an unnecessary 
page fault. 

• The PTE does not indicate a transition format. 
• The PTE indicates a page in transition> but the physical page is not on the 

modified page list. 
• The physical pitge number is greater than the contents of global location 

MMG$GL_MAXPFN. This check avoids pages in shared memory, which 
have no PFN data associated with them. 

• The SWPVBN array element must be zero. Pages with nonzero SWPVBN 
contents are treated in a special way by the modified page writer. 

• If the contents of the BAK array indicate that the backing store location for 
the page is a private or global file, the section index must be the same for all 
pages in the cluster. 

395 



Paging Dynamics 

15.5.2.3 

396 

• If the BAK array element indicates that the pages are to be written to the 
page file, the contents of the virtual block number field are ignored. How­
ever, all pages must contain the same page file index in their BAK array 
elements. 

Backing Store Addresses for Modified Pages. There are three different kinds 
of backing store address that the modified page writer encounters as it re­
moves pages from the modified page list. 

A nonzero SWPVBN array element indicates that the process has been 
outswapped and this page remained behind, probably as the result of an out­
standing read request. The modified page writer issues a write of a single page 
to the designated block in the swap file. It does not attempt to cluster because 
virtually contiguous pages in an 1/0 buffer are unlikely to be adjacent in the 
outswapped process body. The process body is outswapped with pages or­
dered as th~y appear in the WSL, not in virtual address order. A description of 
how the SWPVBN array element is loaded is found in Chapter 17, where the 
entire outswap operation is discussed. 

If the backing store address is a section, the modified page writer creates a 
cluster (up to the value of the SYSBOOT parameter MPW _ WRTCLUSTER). 
Any of the terminating conditions listed in the previous section can limit the 
size of the cluster. 

If the backing store address is a page file, adjacent pages bound for the same 
page file are also written at the same time. The modified page writer attempts 
to allocate a number of blocks in the page file equal to MPW _ 
WRTCLUSTER. The desired cluster factor is reduced to the number of blocks 
actually allocated. (Section 15.5.2.4 describes allocation of space within the 
page file.) 

The actual cluster created for a write to the page file consists of several 
smaller clusters, each one representing a series of virtually contiguous pages 
(see Figure 15-9): 

1. The modified page writer creates a cluster of virtually contiguous pages, 
all bound for the same page file. 

2. If the desired cluster size has not yet been reached, the modified page list 
is searched until another physical page bound for the same page file is 
found. 

3. Pages virtually contiguous to this page form the second minicluster that is 
added to the eventual cluster to be written to the page file. 

4. The modified page writer continues in this manner until either the cluster 
size is reached or no more pages on the modified page list have the desig­
nated page file as their backing store address. The modified page writer is 
building a large cluster that consists of a series of smaller clusters. The 
large cluster terminates only when the desired size is reached or when the 
modified page list contains no more pages bound to the page file in ques-



15.5 Input and Output That Support Paging 

SWP$GL_BALBASE 

Balance Slot Area • ~ 

11-----------11 
gptx 

I 
\ 
I 
\ 0 pin D 

I 
I 
I 

Correct pgflx but Cluster Is Full 
1--------------t' 

\ 
\ 
\ 
\ 

Transition PTE (free list) I 
1-------------1--~ 

0 pin H 

0 pin F 

0 pin A 

0 pin E 

pin (valid) 

Process Section Table Index 

0 pin G 

0 pin B 

o pin J 

Demand Zero PTE 

\ 
\ 

\ 
\ 

\ 
I 

; \ 
I 

I 
\ 
\ 
\ 

Modified Page List 

PTE BAK 

pgflx 

pgflx 

gstx 

pg fix 

pgflx 

pgflx 

pgflx 

pgflx 

pgflx 

pgffx 

A 

B 

c 

D 

E 

F 

G 

H 

J 

MPW$AL_PTE :J 
Modified Page Writer's Map 

_...:..----
pin H 

pin F 

pin A 

pin E 

pin G 

\]1----p-fn_B ___ -t 

\l>------pfn_J ___ __, 

\Jl---pfn_D -------IJ 

Figure 15-9 Example of Clustered Write to a Page File 

397 



Paging Dynamics 

15.5.2.4 

398 

tion. Each smaller cluster can terminate on any of the conditions listed in 
the previous section, or on the two terminating conditions for the large 
cluster. 

Page File Space Allocation. Before the modified page writer searches for pages 
to write, it must first determine the size of the write cluster. To do this, it 
must determine the number of contiguous blocks in the page file that can be 
allocated. 

The modified page writer invokes MMG$ALLOCPAGFIL1 (in module 
PAGEFILE) to allocate a cluster of blocks in the page file. The number of 
blocks it tries to allocate is stored in the page file control block at the offset 
PFL$B_ALLOCSIZ and is usually equal to MPW _ WRTCLUSTER. If that 
many blocks are not available, MMG$WRTMFYPAG reduces the 
PFL$B_ALLOCSIZ size by 16 blocks, if it can, and invokes MMG$AL­
LOCPAGFIL1 again to search for contiguous blocks starting back at the be­
ginning of the page file. 

The allocation size is raised sometime later when space frees up in the page 
file. When the page file deallocation routine determines that it has freed a 
large enough cluster, it increases the allocation size by 8, to a maximum of 
MPW _ WRTCLUSTER. 

When the allocation size for the page file is less than or equal to 16, a 
special-case allocation routine, MMG$ALLOCPAGFIL2 is invoked. This 
special-case allocation routine searches for and allocates the first available 
cluster of blocks, starting from the beginning of the page file. The routine can 
allocate between 1 and 16 contiguous blocks. If the first available cluster of 
blocks is not in the first quarter of the page file, MMG$ALLOCPAGFIL2 
issues the following message on the console terminal: 

%SYSTEM-W-PAGEFRAG, Pagefile badly fragmented, 

system continuing 

If the first available cluster is in the last quarter of the page file, MMG$AL­
LOCPAGFIL2 issues the following message on the console terminal: 

%SYSTEM-W-PAGECRIT, Pagefile space critical, 

system trying to continue 

Each of these messages is issued only once during a boot of the system, 
even if more than one page file becomes full. The first message is issued 
when one page file becomes fragmented or full; the second, when the same or 
a different page file becomes very fragmented or full. These messages on the 
console terminal may be a good indication that the system requires an( other) 
alternate page file. However, because of the nature of the checks, it is possi­
ble for the system to run out of page file space without any message having 
been displayed. 



15.5.2.5 

15.5.2.6 

15.5 Input and Output That Support Paging 

If the modified page writer is unable to allocate any blocks in the page file, 
it exits, returning to the swapper. If the modified page list is still above its 
high limit, the swapper will be awakened periodically to repeat its call to 
MMG$WRTMFYPAG. 

Example of Modified Page Write to a Page File. Figure 15-9 illustrates a sam­
ple cluster for writing to a page file. The modified page list (pictured in the 
upper right-hand corner of the figure) is shown as a sequential array to sim­
plify the figure. 

1. The first page on the modified page list is pfn A. By scanning backwards 
through the process's page table, first pfn F and then pfn Hare located. The 
PTE preceding the one that contains pfn His also a transition PTE, but the 
page is on the free page list. This page terminates the backward search. 

2. The modified page writer map begins with pfn H, pfn F, and pfn A. The 
search now goes in the forward direction, with each page bound for the 
page file added to the map up to and including pfn E. The next PTE is valid 
so the first minicluster is terminated. 

3. The next page on the modified page list, pfn B, leads to the addition of a 
second cluster to the map. This cluster begins with pfn G and ends with 
pfn J. The backward search was terminated with a PTE containing a sec­
tion table index. The forward search terminated with a demand zero PTE. 

Note that this second cluster consists of pages belonging to a different 
process from the first cluster. The difference is reflected in the word array 
element for each PTE in the map that contains a process header vector 
index for each page (see Figure 14-24). 

4. The next page on the modified page list is pfn C. This page belongs in a 
global image file and is skipped over during the current write attempt. 

5. Pfn D leads to a third cluster that was terminated in the backward direc­
tion with a PTE that contains a GPTX. The search in the forward direction 
terminated when the desired cluster size was reached, even though the 
next PTE was bound to the same page file. The cluster size is either 
MPW _ WRTCLUSTER or the number of adjacent blocks available in the 
page file, whichever is smaller. In any case, this cluster will be written 
with a single write request. 

6. Note that reaching the desired cluster size resulted in leaving some pages 
on the modified page list bound for the same page file, such as pfn I. 

Modified Page Write Completion. When the modified page write is complete, 
the modified page writer's special kernel AST routine, WRITEDONE, is en­
tered. WRITEDONE decrements various reference counts that indicated the 
write in progress. If a page's REFCNT is now zero, the page is placed on the 
free page list. If the number of pages on the modified page list 

399 



Paging Dynamics 

15.5.3 

15.5.3.1 

15.5.3.2 

400 

(SCH$GL_MFYCNT) is still above the low-limit threshold for the modified 
page list (SCH$GL_MFYLOLIM), then the modified page writer removes the 
new first page from the modified page list and starts all over. 

Update Section System Service 

The $UPDSEC[W] system service allows a process to write pages in a section 
to their backing store addresses in a controlled fashion, without waiting for 
the modified page writer to do the backup. This system service is especially 
useful for frequently accessed pages that may never be written by the modi­
fied page writer, because they are always being faulted from the modified 
page list back into the working set before they are backed up. 

This system service is a cross between modified page writing and a normal 
write request. As for any I/O request, the caller can request completion noti­
fication with an event flag and I/O status block or an AST. The number of 
pages written is specified by the address range that is passed as an input 
parameter to the service. The cluster factor is the minimum of 
MPW _ WRTCLUSTER and the number of pages in the input range. The di­
rection of search for modified pages is determined by the order that the ad­
dress range is specified to the service. 

Page Selection. If the section that is being backed up is a process-private 
section, only those pages that have the modified bit set in the PTE (or in the 
PFN state array for transition pages) are written out. 

If the section is a global section, then determining which pages have been 
modified is not feasible. The system service runs in the context of one pro­
cess and can scan its PTEs for set modify bits. However, to determine 
whether a particukr page has been modified requires looking at the PFN 
database and the PTEs of all processes mapped to this global page. (The mod­
ify bit in the GPTE is inaccessible to hardware and contains no useful infor­
mation.) Because there are no back pointers for valid global pages, this infor­
mation is unavailable. Therefore, all pages in a global section are written to 
their backing store location, regardless of whether the pages have been modi­
fied. 

If the FLAGS parameter passed to the service has its low bit set, the caller 
indicates that it is the only process whose modifed pages should be written. 
In that case, the process's PTEs (and the PFN database) are used to select can­
didate pages for backing up. Only pages modified by this process are written. 

Write Completion. The process that issued the $UPDSEC system service is 
first notified of write completion with a special kernel mode AST. This AST 
routine first checks whether all the pages requested by the system service 



15.6 Paging and Scheduling 

call have been written or whether another write is required. If more pages 
have to be written, another cluster is set up and an I/O request queued. If all 
requested pages have been written, the normal 1/0 completion path involving 
event flags, 1/0 status blocks, and user-requested ASTs is entered, and the 
process is notified. 

15.6 PAGING AND SCHEDULING 

15.6.l 

15.6.2 

Page fault handling can influence the scheduling state of processes in several 
different ways. If a read is required to satisfy a page fault, the faulting process 
is placed into a page fault wait state. If a resource such as physical memory or 
page file space is not available, the process is placed into an appropriate wait 
state. There are several other wait states that a process may be placed into as 
a result of a page fault. (Chapter 10 describes process scheduling, wait states, 
priority increment classes, resource waits, and the reporting of scheduler 
events.) 

Page Fault Wait State 

The most obvious wait state is page fault wait, in which a process is placed 
when a read is required to resolve a page fault. The process that requires the 
read to resolve its page fault is placed in a page fault wait state. The 1/0 
postprocessing routine, PAGIO, detects that a page read has completed and 
reports the scheduling event page fault completion for the process. The 
scheduler removes the process from the page fault wait state and makes 
it computable. Th.ere is no priority boost associated with page fault read 
completion. 

Free Page Wait State 

If there is not enough physical memory available to satisfy a page fault, the 
faulting process is placed in a free page wait state. The physical page manager 
(routine MMG$DALLOCPFN in module ALLOCPFN) checks for processes 
in this state whenever a page is deallocated and the free list was formerly 
empty. It reports the scheduling event free page available so that each process 
in the free page wait state is made computable. 

The physical page manager makes no scheduling decision about which 
process will get the page. There is no FIFO approach to the free page wait 
state. Rather, all processes waiting for the page are made computable. The 
next process to execute will be chosen by the scheduler, using the normal 
algorithm that the highest priority resident computable process executes 
next. 

401 



Paging Dynamics 

15.6.3 

15.6.4 

15.6.4.1 

15.6.4.2 

402 

Collided Page Wait State 

It is possible for a page fault to occur for a page which is already being read 
from disk. Such a page is referred to as a collided page. The collided bit (in the 
PFN TYPE array) is set and the process placed into the collided page (COLPG) 
wait state. 

One of the details that the page read completion routine checks is the 
collided bit in the TYPE array element for the page. If the collided bit is set, it 
reports the scheduling event collided page available for each process in that 
wait state. It does not check that each process is waiting for the collided page 
that was faulted in. 

This lack of check has two advantages: 

• There is no special code to determine which process executes first. All pro­
cesses are made computable, and the normal scheduling algorithm selects 
the process that executes next. 

• The probability of a collided page is small. The probability of two different 
collided pages is even smaller. If a process waiting for another collided page 
is selected for execution, that process will incur a page fault and get put 
right back into the collided wait state. Nothing unusual occurs and the 
operating system avoids a lot of special"case code to handle a situation that 
rarely, if ever, occurs. 

Resource Wait States 

There are several types of resource wait associated with memory manage­
ment. A process waiting for one of these "resources" is placed in the miscel­
laneous wait state (see Chapter 10) until the resource is available. 

Resource Wait for RWMPB. When the modified page list contains more pages 
than the SYSBOOT parameter MPW _ WAITLIMIT, any process which faults 
a modified page out of its working set is placed into this resource wait. The 
modified page writer declares the availability of the resource 
RSN$_MPWBUSY when it writes enough modified pages that the list has 
fewer than MPW _LOLIMIT pages on it. 

Resource Wait for RWMPE. When a process faults a page, the pager invokes 
MMG$FREWSLE to find a WSLE to describe the page to be added to the 
process's working set. One possible WSLE is a process page table page that is 
now inactive; that is, the page table page maps no valid pages. Such a WSLE 
can be reused. If, however, the page table page contains a transition PTE for a 
modified page, the modified page must be written to its backing store before 
the WSLE used by the page table page can be released. 



15.6.4.3 

15.6 Paging and Scheduling 

In such a case, the modified list high limit is temporarily set to zero so that 
the modified page writer will flush it. The process is placed in resource wait 
for RSN$_MPLEMPTY until its modified page has been written to its back­
ing store. The modified page writer declares the availability of the resource 
RSN$_MPLEMPTY when it empties the modified page list. 

Resource Wait for RWSWP. When a process is first created, minimal swap 
space is allocated for it, as described in Chapter 14. As the process faults 
pages and its working set grows, more swap space must be allocated. If more 
swap space is not available when the process's working set is increased be­
yond the size of its current swap space, the process is placed in resource wait 
for RSN$_SWPFILE. This resource is declared available when a new page or 
swap file is installed with the SYSGEN Utility and whenever space is de­
allocated in a page or swap file in which there had previously been an alloca­
tion failure. 

403 



16 Memory Management System 
Services 

A place for everything and everything in its place. 

Isabella Mary Beeton, The Book of Household Management 

The previous two chapters discussed the data structures used by the memory 
management subsystem to describe physical and virtual memory and the 
action of the pager when an invalid page was referenced. This chapter de­
scribes the system services available to the user (and also used internally by 
the executive) to allocate these structures and initialize their contents. 

These services enable the user to perform the following memory manage­
ment services, subject to limitations imposed by process quotas, limits, privi­
leges, and SYSBOOT parameters: 

• Create or delete virtual address space 
• Create private and global sections that map the blocks of a file to a portion 

of process address space 
• Lock a portion of the process address space into the working set, to avoid 

the overhead of page faults or to allow portions of code to execute at ele­
vated IPL 

• Lock a portion of the process address space into physical memory 
• Change the protection on a page of virtual address space 
• Disable swapping of a process to prevent it from being removed from 

memory 
• Force the contents of all modified pages in a section to be written to their 

backing store addresses 
• Purge pages from the process's working set list (WSL) 

16.1 CHARACTERISTICS OF MEMORY MANAGEMENT SYSTEM SERVICES 

Almost all the memory management system services specify a desired virtual 
address range as an input argument. The page table entry (PTE) associated 
with each page of virtual address space contains an owner field (see Figure 
14-3). The owner field specifies which access mode owns the page. The mem­
ory management system service checks the owner field to determine whether 
the caller of the service is more or equally privileged than the owner of the 
page and thus can manipulate the page in the desired fashion. 

Another characteristic of the memory management system services is that 

404 



16.2 Virtual Address Creation and Deletion 

many of the services can partially succeed, that is, affect only a portion of the 
specified address range. The system service indicates partial success by re­
turning an error status and also the address range for which the operation 
completed (in the optional RETADR argument). 

A common dispatch method is used by most of the memory management 
system services: 

1. Information about the specific service, including the input parameters, is 
placed on the stack for later retrieval. 

2. Page ownership is checked to ensure that a less privileged access mode is 
not attempting to alter the properties of some pages owned by a more 
privileged access mode. 

3. The address of a single page service-specific routine to accomplish the 
desired action of the original service is placed into R6. 

4. A common routine, MMG$CREDEL in module SYSCREDEL, is called 
that performs general page processing and calls the single page service­
specific routine for each page in the desired range. 

5. The address range actually operated on is returned to the caller (in the 
optional RETADR argument). 

16.2 VIRTUAL ADDRESS CREATION AND DELETION 

16.2.1 

The most basic memory management services available to a process are the 
creation and deletion of virtual address space. These services are used by the 
system when an image first begins executing (the image activator calls sev­
eral services to create process address space) and as part of image exit (the 
image reset routine deletes all of PO space and a small part of Pl space). The 
memory management performed by the system as part of image activation 
and process deletion is described in Chapter 21. 

Address Space Creation 

Address space creation is essentially a simple operation in which a series of 
demand zero pages is created. If necessary, the process page table is expanded. 
PTEs are initialized to the demand zero form. For the Expand Region 
($EXPREG) system service, the demand zero pages are created at the end of 
the designated per-process address space. For the Create Virtual Address 
Space ($CRETVA) system service, the pages are created in the specified ad­
dress range; however, if any pages already exist in the requested range, they 
must be deleted first. 

These two system services can partially succeed. That is, a number of 
pages smaller than the number originally requested may be created. After 
several pages have already been successfully created, it is possible to run into 

405 



Memory Management System Services 

16.2.1.1 

16.2.1.2 

406 

one of the limits on the number of pages that can be created. For this reason, 
it is especially important for the caller of either $CRETV A or $EXPREG to 
look at the RETADR argument to determine whether the service was partially 
successful. 

Limits on Virtual Address Space Creation. There are three limitations on the 
amount of virtual address space that can be created. 

The SYSBOOT parameter VIRTUALPAGECNT controls the total number 
of page table entries (POPTEs plus PlPTEs) that any process can have in its 
process header. The division of these pages between PO space and Pl space is 
totally arbitrary and process-specific. It is only the sum of PO and Pl pages 
that is limited by the SYSBOOT parameter. 

The size of a process working set also controls the size of that process's 
address space. When a process page is valid, the page table page for that page 
is not only valid but also dynamically locked into the working set. For small 
address spaces, the set of valid process pages can be represented by a small 
number of page table pages. 

As the address space grows, the probability that a given page table page 
maps more than one valid process page decreases. The limiting case, one that 
can usually be reached only with very large process address spaces, requires 
two working set list entries (WSLEs) for each valid process page. In any case, 
there is an implicit limit to the process address space imposed by the process 
working set quotas. 

The specific check that is made is whether there is enough room in the 
dynamic WSL for the fluid working set (PHD$W _ WSFLUID), plus the worst 
case number of page table pages required to map PHD$W _ WSFLUID pages, 
in order to allow the process to perform useful work. 1:he number of page 
table pages that results is the minimum of PHD$W _ WSFLUID and the num­
ber of page table pages not already locked down. If this check. succeeds, the 
WSL is expanded. If the working set is full (see Section 16.4), the virtual 
address creation fails with the status of SS$_INSFWSL. 

The third constraint on the total size of the process address space is the 
page file quota. Each demand zero page and each copy-on-reference section 
page is charged against the job's page file quota (JIB$L_PGFLCNT). 

Create Virtual Address Space System Service. The $CRETVA system service 
procedure, EXE$CRETVA in module SYSCREDEL, runs in kernel mode. As 
an optimization, it first checks whether the entire address space can be cre­
ated. If so, EXE$CRETVA creates it all at once rather than page by page, 
invoking the routine MMG$FAST _CREATE (also in module SYSCREDEL). 

If EXE$CRETVA encounters any of the limits to virtual address space crea­
tion described in the previous section, the address space must be created a 
page at a time. Page-by-page creation is also necessary if the specified address 



16.2.1.3 

16.2.1.4 

16.2 Virtual Address Creation and Deletion 

space overlaps already existing space, since the existing pages must also be 
deleted. In either of these cases, EXE$CRETVA invokes MMG$CREDEL, 
specifying MMG$CREPAG as the single page service-specific routine. 

Expand Region System Service. The $EXPREG system service is very similar 
to the $CRETVA system service. Its system service procedure1 EXE$EXPREG 
in module SYSCREDEL, runs in kernel mode. Depending on the region 
that is to be expanded, EXE$EXPREG uses either PHD$L_FREPOVA or 
PHD$L_FREP1VA as one end of the address range. 

As an optimization, EXE$EXPREG first checks whether the entire address 
space can be created. If so, EXE$EXPREG creates it all at once rather than 
page by page, invoking the routine MMG$FAST _CREATE (also in module 
SYSCREDELJ. Otherwise, it invokes the routine MMG$CREDEL, specifying 
MMG$CREPAG as the single page service-specific routine. 

Automatic User Stack Expansion. A special form of Pl space expansion oc­
curs when a request for user stack space exceeds the remaining size of the 
user stack. Such a request can be reported by the hardware as an access viola­
tion exception or by software when insufficient user stack space is detected. 

Several software routines detect the need to expand the user stack: 

• The AST delivery interrupt service routine (see Chapter 7), when it is un­
able to build the AST argument list on the user stack 

• The Adjust Stack ($ADJSTK) syste:pl service (only for user mode stack 
expansion) 

• The exception dispatching routine (EXE$EXCEPTION in module 
EXCEPTION) when it is unable to copy the signal and mechanism arrays 
onto the user stack (see Chapter 4) 

These routines invoke EXE$EXPANDSTK (in module EXCEPTION) to try 
to expand the user stack. EXE$EXPANDSTK is also invoked by the access 
violation exception service routine (EXE$ACVIOLAT in module EXCEP­
TION) for an access violation that occurred in user mode. EXE$EXPANDSTK 
checks that a length violation (as opposed to a protection violation) occurred 
and that the inaccessible address is in Pl space. If so, EXE$EXPANDSTK 
invokes $CRETVA to expand Pl space from its current low address end to the 
specified inaccessible address. For the usual case, one in which a program 
requires more user stack space than requested at link time, the expansion 
typically occurs one page at a time. 

Because this automatic expansion cannot be disabled on a process-specific 
or systemwide basis, a runaway program that uses stack space without re­
turning it is not aborted immediately. Instead, the program runs until it ex­
ceeds the virtual address size determined by the SYSBOOT parameter 
VIRTUALPAGECNT. ($CRETVA indicates this quota violation by returning 

407 



Memory Management System Services 

16.2.2 

16.2.2.1 

408 

the error status SS$_ VASFULL.) 
Another side effect of automatic expansion occurs when a program makes 

a random (and probably incorrect) reference to an arbitrary Pl address lower 
than the top of the user stack. Rather than exiting with some error status, the 
program probably will continue to execute (after the creation of many de­
mand zero pages). 

If the stack expansion fails for any reason, the process is notified in a way 
that depends on the invoker of EXE$EXPANDSTK: 

• The $ADJSTK system service can fail with several of the error codes re­
turned by $CRETVA. 

• An attempt to deliver an AST to a process with insufficient user stack space 
results in an AST delivery stack fault condition being reported to the pro­
cess. (Enough information is removed from the stack by the error routine 
that the exception dispatcher can at least get started in reporting the 
exception.) 

• If the user stack cannot be expanded in response to a Pl space length viola­
tion, then an access violation fault is reported to the process. 

• If there is not enough user stack to report an exception, EXE$EXCEPTION 
first tries to reset the user stack pointer to the high address end of the stack. 
If that fails, EXE$EXCEPTION invokes $CRETVA in an attempt to recreate 
the address space. If that fails, EXE$EXCEPTION bypasses the normal con­
dition handler search and reports the exception directly to the last chance 
handler. Typically, this handler aborts the currently executing image. (See 
Chapter 4 for more details.) 

Address Space Deletion 

Page deletion is more complicated than page creation. Creation involves tak­
ing the process from one known state (the address space does not yet exist} to 
another known state (the PTEs contain demand zero PTEs}. Page deletion 
must deal with initial conditions that include all possible states of a virtual 
page. Page deletion also requires a check that the access mode that owns the 
page is not more privileged than the mode requesting deletion of the page. 

Page creation may first require that the specified pages be deleted to put the 
process page tables into their known state. Thus, page deletion is often an 
integral part of page creation. 

Page Deletion and Process Waits. A page that has 1/0 in progress cannot be 
deleted until the 1/0 completes. A process trying to delete such a page is 
placed into a page fault wait state (with a request that a system event be 
reported when 1/0 completes) until the page read or write completes. Trying 
to delete a page in the write-in-progress transition state has the same effect. 



16.2.2.2 

16.2.2.3 

16.2 Virtual Address Creation and Deletion 

A page in the read-in-progress transition state is faulted, with the immedi­
ate result that the process is placed into the collided page wait state. Special 
action must be taken for a global page with 1/0 in progress because there is no 
way to determine if the process deleting the page is also responsible for the 
1/0. In such cases, the process is placed into a miscellaneous wait state 
(MWAIT) until its direct 1/0 completes. (If the process has no direct 1/0 in 
progress, the problem does not arise in the first place, and the deletion is 
allowed to proceed.) 

Delete Virtual Address Space System Service. The $DELTVA system service 
procedure, EXE$DELTVA in module SYSCREDEL, runs in kernel mode. 
EXE$DELTVA invokes MMG$CREDEL, specifying MMG$DELPAG as the 
single page service-specific routine. 

When a virtual page is deleted, MMG$DELPAG (and routines it invokes) 
must return all process and system resources associated with the page. These 
can include the following: 

• A physical page of memory for a valid or transition page 
• A page file virtual block for a page whose backing store address indicates an 

already allocated block 
• A WSLE for a page in the process WSL 
• Page file quota for a page with a page file backing store address, even if the 

page has not yet been allocated a block in the page file 

Deleting a private section page results in decrementing the reference count 
in the PSTE (see Figure 14-7). If the reference count goes to zero, the PSTE 
itself can be released. 

In addition, a valid or modified page with a section backing store address 
(as opposed to a page file backing store address) must have its latest contents 
written back to the section file. (The contents of a page with a page file 
backing store address are unimportant after the virtual page is deleted and do 
not have to be saved before the physical page is reused.) 

Deletion of a physical page means that the PFN PTE array element is 
cleared, destroying all ties between the physical page and any process virtual 
address. In addition, the page is placed at the head of the free page list, caus­
ing it to be used before other pages whose contents might still be useful. 

Contract Region System Service. The $CNTREG system service procedure, 
EXE$CNTREG in module SYSCREDEL, runs in kernel mode. The 
$CNTREG system service is a special case of the $DELTVA system service. 
EXE$CNTREG simply converts the requested number of pages into a PO or 
Pl page range and passes control to a page deletion routine that is common to 
the two services. That routine invokes MMG$CREDEL, specifying 
MMG$DELPAG as the single page service-specific routine. 

409 



Memory Management System Services 

16.2.3 Controlled Allocation of Virtual Memory 

There is a second level of memory management available to a process. The 
Run-Time Library procedures LIB$GET _ VM and LIB$FREE_ VM provide a 
mechanism for allocating small blocks of virtual memory in a controlled 
fashion. Allocation from the free memory pool is performed in much the 
same way as pool space is allocated by the VMS operating system (see Chap­
ter 3 ). If there is not a block of memory in the pool large enough to satisfy the 
request, PO space is expanded (by calling $EXPREG), and the pool is extended 
to include the newly created virtual address space. 

16.3 PRIVATE AND GLOBAL SECTIONS 

16.3.1 

16.3.1.1 

410 

In addition to the $CRETVA and $EXPREG system services, another method 
of creating address space is available. The Create and Map Section 
($CRMPSC) system service allows a process to associate a portion of its ad­
dress space with a specified portion of a file. The section may be specific to a 
process (private section) or shared among several processes (global section). 
The Map Global Section ($MGBLSC) system service allows a process to map 
a portion of its virtual address space to an already existing global section. 
These two services are used by the image activator (see Chapter 21) to map 
portions of process address space to either the image file or previously in­
stalled global sections. 

The $CRMPSC system service also provides special options. Rather than 
mapping a portion of process address space to a file, a suitably privileged 
process (with PFNMAP privilege) can map virtual address space to specific 
physical addresses. In addition, the $CRMPSC service enables the creation of 
global sections in MA780 shared memory and global page-file sections. 

Create and Map Section System Service 

The $CRMPSC system service creates a private or global section and maps 
the process to it. (The $MGBLSC system service is a special case 
of $CRMPSC in which the global section has already been created.) 
The $CRMPSC system service procedure, EXE$CRMPSC in module 
SYSCRMPSC, runs in kernel mode. 

The particular actions EXE$CRMPSC takes are determined by the options 
or flags with which the service is invoked. (The VAX/VMS System Services 
Reference Manual lists the flags that can be used together and those that are 
incompatible.) 

The following sections describe the various actions of EXE$CRMPSC 
through its effects on memory management data structures. 

Private Section Creation. When a process-private section is created, a process 
section table entry (PSTE, pictured in Figure 14-7) is allocated from the PHD. 



16.3.1.2 

16.3 Private and Global Sections 

The information that associates the virtual address range with virtual blocks 
in the file is loaded into the PSTE. When the private section is being created 
as a part of image activation as described in Chapter 21, the original source 
for much of the data stored in the PSTE is an image section descriptor con­
tained in the image file. Each process PTE in the designated address range is 
loaded with identical contents, namely a process section table index (see Fig­
ure 14-3) that locates the PSTE. 

The memory management subsystem cannot take a window turn (see 
Chapter 18) on pages within a section. Therefore, it requires that all the map­
ping information for the newly mapped file be available in the window con­
trol block associated with the mapped file. If EXE$CRMPSC determines that 
the mapping information is incomplete, it makes a file system request to 
extend the window control block. Because the window control block occu­
pies nonpaged pool, the extension of the window control block is charged 
against the process's BYTCNT quota. 

Because the quota is charged until the section is deleted, this charge is also 
made against the process's BYTLM. BYTLM limits the maximum charge 
against BYTCNT. When a process has insufficient BYTCNT for a request, 
VMS checks. that the request is not larger than BYTLM before placing the 
process in resource wait. Charging the window control block extension 
against BYTLM prevents placing the process into what might otherwise be a 
never-ending resource wait. 

Global Section Creation. The creation of a global section in local memory is 
similar to the creation of a private section except that the data structures are 
located in the system header (see Figures 14-15 and 14-18) instead of the 
PHD: 

1. A global section descriptor (GSD, pictured in Figure 14-14) is allocated 
from paged pool and initialized with the name and protection attributes of 
the section. This data structure is used by subsequent $MGBLSC system 
service calls to determine whether the named section exists and to locate 
the global section table entry (GSTE), which more fully describes the 
section. 

2. A GSTE (see Figure 14-7) is the structure analogous to the process section 
table entry (PSTE). It is allocated from the system header and initialized. 

3. A set of contiguous global page table entries (GPTEs) is allocated from the 
global page table. There must be one GPTE for each global page plus two 
additional GPTEs, one at the beginning of the set and one at the end. The 
two additional GPTEs are cleared and serve as "stoppers," limits to modi­
fied page write clustering (see Chapter 15 and Figure 14-16). Except for the 
stoppers, each GPTE contains information that describes the current state 
of one global page in the section. GPTEs are not used by the memory 
management hardware but are used by the pager when a process incurs a 
page fault for a global page. 

411 



Memory Management System Services 

16.3.1.3 

16.3.1.4 

16.3.1.5 

412 

4. A global section can be created and mapped by a single system service call. 
Alternatively, the section can be created in one step and mapped later by 
either the creating process or by any other process allowed to map the 
section. In any case, mapping to a global section results in no changes to 
the PFN database. Rather, a series of PTEs that each contain a global page 
table index (GPTX) is added to the process page table to describe the desig­
nated address range (see Figure 14-19). The process PTEs for global pages 
can be in one of two states, either valid or containing the appropriate 
GPTX. 

Global Sections in MA780 Shared Memory. Global sections that are located 
in MA780 shared memory are treated in a slightly different fashion from local 
memory global sections. The sections are created after shared memory has 
been initialized. (See Chapter 14 for a description of the data structures that 
describe global sections in shared memory.) Global sections in shared mem­
ory have the following characteristics: 

1. A shared memory GSD (see Figure 14-27) is created that contains, among 
other things, a list of the physical pages in shared memory that will con­
tain the section. Each page of the section is loaded from the mapped file. 

2. A GSTE is created only on the CPU that originally creates the section. 
This GSTE allows the initial read to be performed and allows subsequent 
section updates (with the Update Section system service) for writable sec­
tions. Pages are also written back to the mapped file on the creating CPU 
when the section is deleted. 

3. No GPTEs are needed for global sections in shared memory because each 
page is always valid. The PFN information necessary to allow processes to 
map into this section is contained in the shared memory GSD. 

4. When a process maps to the shared memory global section, the process 
PTEs are loaded with the appropriate PFNs and set valid. These pages are 
not counted against the process working set. 

Global Page-File Sections. The $CRMPSC system service can create a global 
page-file section, a temporary demand zero global section. Its backing store is 
the primary page file, SYS$SYSTEM:PAGEFILE.SYS. The SYSBOOT parame­
ter GBLPAGFIL specifies the maximum number of page file pages that can be 
put to this use. 

When a global page-file section is created, a GSD and GSTE are allocated 
and initialized. GPTEs are allocated and initialized. Each process PTE is ini­
tialized with the appropriate GPTX. 

Map by PFN. The $CRMPSC system service enables a privileged process (one 
with PFNMAP privilege) to map a portion of its virtual' address space to spe-



16.3.2 

16.3.3 

16.3 Private and Global Sections 

cific physical addresses. Although the primary intention of this service is to 
allow process address space to be mapped to 1/0 addresses, it can also be used 
to map specific physical memory pages. 

When a private PFN-mapped section is created, the only effect is to add a 
series of valid PTEs to the process page table. The PFN fields in these PTEs 
contain the requested physical page numbers. The PTE$V _WINDOW bit (see 
Figure 14-3) is set in each PTE to indicate that each of these virtual pages is 
PFN-mapped. These pages are not counted against the process working set. In 
addition, no record is maintained in the PFN database that such pages are 
PFN-mapped. 

When a global PFN-mapped section is created, the only data structure 
created to describe such a mapping request is a special form of GSD (see 
Figure 14-14). There are no GPTEs nor is there a GSTE. When a process 
maps to such a section, its process PTEs are set valid, mapped by PFN 
(PFN$V _WINDOW is set), and the PFN fields are filled in according to the 
contents of the extended GSD (see Figure 14-14). 

Map Global Section System Service 

The $MGBLSC service can be considered a special case of the $CRMPSC 
system service, where the global section already exists. This service usually 
has no effect on the global database (other than to include the latest mapping 
in various reference counts). Rather, this service allows a range of process 
addresses to become mapped to the named global section. 

The actual effect of this service is to load each of the designated process 
PTEs with a GPTX (see Figures 14-3 and 14-19). These GPTXs are effectively 
pointers to GPTEs in the system header, where the current state of each 
global page is actually recorded. 

When a process maps to a global section in shared memory or to a section 
that is PFN-mapped, there are no GPTEs to be pointed to. Instead, each pro­
cess PTE is set valid with the PFN field containing a physical page number 
either in shared memory (for shared memory global sections) or anywhere in 
physical address space (as indicated by the extended GSD for PFN-mapped 
global sections). 

Delete Global Section System Service 

The Delete Global Section ($DGBLSC) system service is more complicated 
than global section creation because the section must be reduced from one of 
many states to nonexistence. In addition, global writable pages must be writ­
ten to their backing store addresses before a global section can be fully de­
leted. For these reasons, the actual deletion of a global section is often 
separated in time from the system service call and return. 

413 



Memory Management System Services 

16.3.4 

414 

The $DGBLSC system service procedure, EXE$DGBLSC in module 
SYSDGBLSC, runs in kernel mode. It locates the GSD associated with the 
named section and moves it from the normal GSD list to the delete pending 
list, at global location EXE$GL_GSDDELFL. The permanent indicator in the 
GSD is cleared. 

The actual section deletion cannot occur until the reference count in the 
GSTE, the count of process PTEs mapped to the section, goes to zero. Al­
though the reference count can be zero when the $DGBLSC service is in­
voked, the more typical global section deletion occurs as a side effect of 
virtual address deletion (which itself might occur as a result of image exit or 
process deletion). 

A reference count of zero indicates that no more process PTEs are mapped 
to the section. At that time, the following data structures that describe the 
section can be deallocated: 

• The GPTEs in the system header that describe the global section are 
scanned. If any indicates a transition page on the modify list, that page 
must be written to its backing store before the section is deleted. To force 
the modify list to be flushed, the longword at global location 
SCH$GL_MFYLOLIM and the low word of global SCH$GL_MFYLIM are 
cleared. When an entire page of GPTEs is freed, the page can be unlocked 
from the system working set. 

• The GSTE in the system header is removed from its active list and placed 
on the free list of system section table entries for possible later use. 

Global sections in shared memory and PFN-mapped global sections exer­
cise some of the same logic when the sections are deleted, but the effects are 
different because not all of the global data structures exist for these special 
global sections. A PFN-mapped section is described entirely by an extended 
GSD (see Figure 14-14). No reference counts are kept for such sections, so the 
GSD can be placed on the free list of GSDs immediately. 

When a shared memory global section is deleted, there are no GPTEs to 
delete. Furthermore, a GSTE exists only on the CPU from which the section 
was created. 

Update Section System Service 

A process invokes the $UPDSEC[W] system service to request that a speci­
fied range of process private or global pages be written to their backing store 
addresses. The system service procedure, EXE$UPDSEC in module 
SYSUPDSEC, runs in kernel mode. It first clears the event flag associated 
with the 1/0 request, charges process direct 1/0 quota, and allocates 
nonpaged pool to serve as an "extended" 1/0 packet. The pool is used to 
queue one or more modified page write 1/0 requests and to keep track of how 



16.4 Working Set Adjustment 

much of the section the service has processed. 
EXE$UPDSEC then invokes MMG$CREDEL, specifying MMG$UPDSEC­

PAG (in module SYSUPDSEC) as the single page service-specific routine. 
This service and its similarities to modified page writing are described in 

more detail in Chapter 15. 

16.4 WORKING SET ADJUSTMENT 

The term working set refers to the physical pages which the process currently 
occupies. The number of pages in a process's working set is the sum of two 
fields in the PCB: PCB$W _PPGCNT, private pages in use, and 
PCB$W _GPGCNT, global pages in use. There are two possible limits to the 
growth of a process's working set. 

One limit is the working set limit, PHD$W _ WSSIZE. This field contains 
the maximum number of valid WSLEs the process can have. At any given 
time, the sum of PCB$W _PPGCNT and PCB$W _GPGCNT cannot exceed 
PHD$W _ WSSIZE. 

Sometimes the space available for the WSL limits the growth of the 
process's working set. A process cannot have more valid pages than its WSL 
has capacity to describe. As described in Chapter 14, the WSL is variable 
length and grows toward the process section table (PST). When the working 
set must expand into the area already occupied by the PST, the PST is moved 
to higher addresses. However, there is not always room in the PHD to accom­
modate the expanded WSL. The PST can grow so large that there is not 
enough WSL area available. 

The field PHD$W _ WSLAST points to the end of the WSL. That is, there 
can be no valid WSLEs past the offset described by PHD$W _ WSLAST. Be­
cause the WSL is not necessarily dense, the capacity of the list may be larger 
than the process's working set limit. 

The size of the process working set limit can be altered with the Adjust 
Working Set Limit ($ADJWSL) system service either manually by explicit call 
or automatically as part of the quantum end routine. When the working set 
limit is increased, new pages can be added to the working set without remov­
ing already valid entries. Addjng pages to a process's working set decreases 
the probability that the process will incur a page fault. 

It is unlikely that a program will voluntarily reduce its working set limit, 
unless the program has a good understanding of its paging behavior. The sys­
tem reduces a process working set as part of the automatic working set ad­
justment. The swapper process can shrink a process's working set in an 
attempt to gain more pages, before resorting to swapping a process out of the 
balance set. In addition, a process working set limit is reset to its default 
value by MMG$IMGRESET (see Chapter 21) when the image exits. 

Table 16-1 lists the process-specific and systemwide WSL parameters. 

415 



-I::. ~ N Table 16-1 Working Set Lists: Limits and Quotas 
°' 

Cl:> s 
Description Location or Name Comments 0 

Beginning of working set list PHD$W _ WSLIST Always contains 6316 
~ 
s: 

Working set limit PHD$W _ WSSIZE Set by LOGINOUT; i::, 

Altered by $ADJWSL; i::l 
l:l 

Altered by automatic 
OQ 

working set adjustment s 
Beginning of list of focked PHD$W _ WSLOCK The same for all processes § 

...... 
entries in a given system Cl:> 

Beginning of dynamic portion PHD$W _ WSDYN Altered by $LKWSET and ~ ...... 
of working set list $LCKPAG Cl:> s 

Index of most recently inserted PHD$W _ WSNEXT Updated each time an entry Vi 
working set list entry is added to working set ~ 

End of current working set list PHD$W _ WSLAST May be altered by $ADJWSL, S. 
() 

by pager, by image exit, Cl:> 

"' or by automatic working 
set adjustment 

Default working set size PHD$W _DFWSCNT Set by LOGINOUT; 
Altered by command 

SET WORK/LIMIT 

Normal limit to working set size PHD$W _ WSQUOTA Set by LOGINOUT; 
Altered by command 

SET WORK/QUOTA 

Maximum limit to working set size PHD$W _ WSEXTENT Set by LOGINOUT; 
Altered by command 

SET WORK/EXTENT 

Upper limit to working set quota PHD$W _ WSAUTH Set by LOGINOUT; 
Cannot be altered 

Upper limit to working set extent PHD$W _ WSAUTHEXT Set by LOGINOUT; 
Cannot be altered 



Table 16-1 Working Set Lists: Limits and Quotas (continued) 

Description Location or Name Comments 

Lower limit to size of dynamic PHD$W_ WSFLUID Set by SHELL to the value 
working set ofMINWSCNT 

Dynamic working set size not counting PHD$W _EXTDYNWS Updated each time size of 
PHD$W _ WSFLUID process pages dynamic working set 
and a reasonable number of page is changed 
table pages 

Number of pages in use by process PCB$W _PPGCNT + Updated each time a page 
PCB$W _GPGCNT is added to or removed 

from the working set 

Authorized default working set size UAF$W _DFWSCNT Copied to PHD$W _DFWSCNT 

Authorized default working set limit UAF$W _ WSQUOTA Copied to PHD$W _ WSAUTH 
and PHD$W _ WSQUOTA 

Authorized default working set UAF$W _ WSEXTENT Copied to PHD$W _ WSEXTENT 
maximum and PHD$W _ WSAUTHEXT 

Systemwide minimum working set size MINWSCNT SYSBOOT parameter 

Systemwide maximum working set size WSMAX SYSBOOT parameter 

Working set size for system paging SYSMWCNT SYSBOOT parameter ...... 
Default value for working set size PQLDWSDEFAULT SYSBOOT parameter °' default (used by $CREPRC) ~ 

Minimum value for working set size PQLMWSDEFAULT SYSBOOT parameter 
~ default (used by $CREPRC) 

Default value for working set quota PQLDWSQUOTA SYSBOOT parameter ~ 
:::;· 

(used by $CREPRC) ()Q 

Minimum value for working set quota PQLMWSQUOTA SYSBOOT parameter Cl'.) 
~ 

(used by $CREPRC) No 

~ Minimum value for working set PQLMWSEXTENT SYSBOOT parameter !:).. 

extent (used by $CREPRC) 
...... 
i::: 
~ 

Default value for working set PQLDWSEXTENT SYSBOOT parameter s 
~ extent (used by $CREPRC) § ...... 
"I No 



Memory Management System Services 

16.4.1 

16.4.2 

418 

Adjust Working Set Limit System Service 

The $ADJWSL system service procedure, EXE$ADJWSL in module 
SYSADJWSL, runs in kernel mode. It is invoked to alter the process's work­
ing set limit, PHD$W _ WSSIZE. There are two different paths in the proce­
dure, one to increase the limit and the other to reduce it. 

To increase the working set limit, EXE$ADJWSL first checks and possibly 
decreases the size of the increase. The new limit must be less than or equal to 
WSMAX, less than or equal to the process's WSEXTENT, and within the 
system's physical memory capacity. If the new working set limit is within 
the capacity of the WSL (PHD$W _ WSLAST minus PHD$W - WSLIST), 
EXE$ADJWSL computes a new value for PHD$W _EXTDYNWS and returns. 
Otherwise, EXE$ADJWSL must first invoke MMG$ALCPHD (in module 
PHDUTL) to expand the WSL and then initialize the extra WSLEs. 

To reduce the working set limit, EXE$ADJWSL first checks and possibly 
decreases the size of the reduction. The new limit must allow for at least 
MINWSCNT WSLEs in the ~ynamic portion of the WSL. In addition, the 
extra dynamic working set size (PHD$W _EXTDYNWS) cannot be reduced 
below zero. If the process's working set (PCB$W _PPGCNT plus 
PCB$W _GPGCNT) is already less than or equal to the new limit, 
EXE$ADJWSL simply modifies PHD$W _ WSSIZE and returns. Otherwise, 
EXE$ADJWSL must repeatedly invoke MMG$FREWSLE (in module 
PAGEFAULT) for each page to be removed from the process's working set. 
(Chapter 15 describes MMG$FREWSLE.) The reduced list can have holes in 
it; the PHD$W _ WSLAST pointer is only moved back as a side effect of free­
ing excess WSLEs (above the new limit). 

SET WORKING_SET Command 

The SET WORKING_SET DCL command enables the default working set 
size (PHD$W _DFWSCNT), the normal limit to the working set size 
(PHD$W _ WSQUOTA), or the working set maximum (PHD$W _ WSEXTENT) 
to be altered at the command level. Neither the default size nor the maxi­
mum can be set to a value larger than the authorized upper limit 
(PHD$W _ WSAUTHEXT). 

If the normal limit to the working set size is altered, it affects the maxi­
mum size of the working set when physical memory is scarce. If the working 
set maximum is altered, it changes the upper limit for future calls to the 
$ADJWSL system service. If the limit (default size) is altered, it affects the 
WSL reset operation performed by the routine MMG$IMGRESET invoked at 
image exit. If the limit is set to a value larger than the current quota, both the 
quota and the limit are altered to the new value. 

With the /[NO]ADJUST qualifier to this command, a user can also disable 
(or reenable) automatic working set adjustment. Use of that qualifier sets (or 
clears) the process control block (PCB) status longword bit PCB$V _DISAWS. 



16.4 Working Set Adjustment 

16.4.3 Automatic Working Set Size Adjustment 

In addition to adjusting working set through an explicit $ADJWSL request or 
as a side effect of image exit, VMS also provides automatic working set ad­
justment to keep a process's page fault rate within limits set by one of several 
SYSBOOT parameters (see Table 16-2). All of the SYSBOOT parameters listed 
in this table are dynamic and can be altered without rebooting the system. 

The automatic working set adjustment takes place as part of the quantum 

Table 16-2 Process and System Parameters Used by Automatic Working Set Size Adjustment 

Description 

Total amount of CPU time 
charged to this process 

Amount of CPU time since 
last adjustment check 

Total number of page faults 
for this process 

Number of page faults at last 
adjustment check 

Most recent page fault rate 
for this process 

Process automatic working 
set adjustment flag 

Amount of CPU time process 
must accumulate before page 
fault rate check is made 

Lower limit page fault rate 

Amount by which to decrease 
working set list size 

Lower bound for decreasing 
working set list size 

Upper limit page fault rate 

Amount by which to increase 
working set list size 

Free page list size to allow 
growth of working set 

Free page list size to allow 
extension of working set list 

Location or Name 

PHD$LCPUTIM 

PHD$L TIMREF 

PHD$LPAGEFLTS 

PHD$LPFLREF 

PHD$LPFLTRATE 

PCB$V _DISAWS 

AWSTIME1 

PFRATL1 

WSDEC1 

AWSMIN1 

PFRATH1 

WSINC1 

GROWLIM1 

BORROWLIM1 

1 This value is a SYSBOOT parameter. 

Comments 

Updated by hardware timer 
interrupt service routine 

Updated by quantum end routine 
when adjustment check is made; 

Altered when process is placed 
into a wait 

Updated each time this 
process incurs a page fault 

Updated by quantum end routine 
when adjustment check is made 

Recorded at each adjustment check; 
Compared to PFRATH and PFRATL 

Disables automatic adjustment for 
process if equal to 1 

Do not adjust if PCB$W _PPGCNT 
is less than or equal to this 

Disables automatic ·adjustment for 
entire system if equal to zero 

Do not add working set list entry if 
@SCH$GLFREECNT is less 
than or equal to this value 

Do not adjust working set list size 
if @SCH$GLFREECNT is less 
than or equal to this value; 

Disables working set extension for 
entire system if equal to - 1 

419 



Memory Management System Services 

420 

end routine (see Chapter 10), because a process that cannot execute for even a 
single quantum will not benefit from an increased working set size. (Note 
that no adjustment takes place for real-time processes.) 

The quantum end routine, SCH$QEND in module RSE, adjusts the work­
ing set in several steps: 

1. If the WSINC parameter is set to zero, the adjustment is disabled on a 
systemwide basis, so nothing is done. If automatic working set adjustment 
for the process has been turned off by the DCL command SET 
WORKING_SET/NOADJUST, nothing is done. 

2. If the process has not been executing long enough since the last ad­
justment (if the difference between accumulated CPU time, PHD$L_ 
CPUTIM, and the time of the last adjustment attempt, PHD$L_ TIMREF, 
is less than the SYSBOOT parameter AWSTIME), no adjustment is done at 
this time. If the process has accumulated enough CPU time, the reference 
time is updated (PHD$L_CPUTIM is copied to PHD$L_ TIMREF), and the 
rate checks are made. 

Between adjustment checks, PHD$L_ TIMREF is also altered when the 
process is placed in a wait. As described in Chapter 10, wlien a process 
goes into a wait, the SYSBOOT parameter IOTA is charged against its 
quantum. To balance the quantum charge, IOTA is subtracted from 
PHD$L_ TIMREF. Without this balancing effect, a process that undergoes 
many page fault waits can reach quantum end without having accumu­
lated AWSTIME worth of CPU time and thus not be considered for auto­
matic working set adjustment. This Version 4 change helps ensure the 
expansion of the working set of a heavily page faulting process. 

3. The current page fault rate is calculated. The philosophy for automatic 
working set adjustment consists of two premises. If the page fault rate is 
too low, the system can benefit from a smaller working set size (because 
more physical pages become available) without harming the process (by 
causing it to incur many page faults). If the page fault rate is too high, the 
process can benefit from a larger working set size (by incurring fewer 
faults), without degrading the system. 

-If the current page fault rate is too high (greater than or equal to 
PFRATH), a determination is made to see if the working set limit 
should be increased. If the process is not making use of its current WSL 
(if the sum PCB$W _PPGCNT and PCB$W _GPGCNT is less than 75 
percent of PHD$W _ WSSIZE), the WSL is not expanded. If the size of 
the WSL is below WSQUOTA, the WSL is extended by WSINC. If the 
size of the WSL is greater than or equal to WSQUOTA, the number of 
pages on the free page list is compared to the SYSBOOT parameter 
BORROWLIM. If there are more than BORROWLIM pages on the free 
page list, the WSL is increased by WSINC. However, if there are fewer 



16.4 Working Set Adjustment 

than BORROWLIM pages on the free page list, the WSL is not extend­
ed. The WSL can only be extended up to WSEXTENT. Setting 
BORROWLIM to -1 disables working set extension for the entire 
system. 

Note that the adjustment taking place here affects only the size of the 
WSL, not the working set itself. Once the WSL has been extended, 
newly faulted pages can be added to the working set. The pager adds 
pages to the working set above WSQUOTA only when there are more 
than the SYSBOOT parameter GROWLIM pages on the free page list 
(see Chapter 15). 

-If the current page fault rate is too low (strictly, less than PFRATL), the 
work~ng set is decreased (by WSDEC). However, if the contents of 
PCB$W _PPGCNT are less than or equal to AWSMIN, no adjustment 
takes place. This decision is based on the assumption that many of the 
pages in the working set are global pages and therefore the system will 
not benefit (and the process may suffer) if the working set is decreased. 
Note that PFRATL is zero by default. This default value effectively disa­
bles this method of working set reduction in favor of swapper working 
set trimming. The rationale for this change is explained at the end of 
this list. 

4. The actual working set adjustment is accomplished by a kernel mode AST 
that requests an $ADJWSL system service. The AST parameter passed to 
this AST is the amount of previously determined increase or decrease. 
This step is required because the system service must be called from pro­
cess context (at IPL O) and the quantum end routine is executing in system 
context in response to the IPL 7 software timer interrupt. 

Two other pieces of the executive control the size of a process's working 
set: the pager and the swapper. As described previously, the pager can add a 
page to a process's working set if the size of the free page list is greater than 
GROWLIM. In an effort to gain pages, the swapper reduces the working sets 
of processes in the balance set before actually removing processes from the 
balance set. This working set reduction is known as swapper trimming or 
working set shrinking. Process selection is performed by a table driven, prior­
itized scheme (see Chapter 17). 

Two problems are inherent in using the quantum end scheme of automatic 
working set adjustment: processes that are compute-intensive will reach 
quantum end many times and images that have been written to be efficient 
with respect to page faults (a low page fault rate) will qualify for working set 
reduction, because their page fault rate is lower than PFRATL. In both of 
these cases, working set reduction is not desirable. In contrast, swapper trim­
ming selects its processes starting with those that are least likely to need 
large working sets. 

421 



Memory Management System Services 

16.4.4 

In what can be seen as an evolutionary change to the operating system, 
working set reduction at quantum end was disabled in VAX/VMS Version 3.1 
by setting the default value of PFRATL to zero. Swapper trimming and the 
image exit reset are now the primary methods used to reduce working set 
size. 

Purge Working Set System Service 

The Purge Working Set ($PURGWS) system service requests that all virtual 
pages in the specified address range be removed from the working set. A 
program might invoke this service if a certain set of routines or data were no 
longer required. By voluntarily removing entries from the working set, a 
process cap exercise some control over the WSL replacement algorithm, in­
creasing the chances for frequently used pages to remain in the working set. 

The VMS executive uses this service as part of the image startup sequence 
(see Chapter 21) to ensure that a program starts its execution without unnec­
essary pages (such as command language interpreter command processing 
routines) in its working set. 

The $PURGWS system service procedure, EXE$PURGWS in module 
SYSPURGWS, runs in kernel mode. EXE$PURGWS invokes MMG$­
CREDEL, specifying MMG$PURGWSPAG (also in SYSPURGWS) as the sin­
gle page service-specific routine. 

16.5 LOCKING AND UNLOCKING PAGES 

16.5.1 

422 

Four system services are provided to lock pages into the process working set 
or into memory: 

• Lock Pages in Working Set ($LKWSET) 
• Lock Pages in Memory ($LCKPAG) 
• Unlock Pages from Working Set ($ULWSET) 
• Unlock Pages in Memory ($ULKPAG) 

Locking Pages in the Working Set 

A set of virtual pages can be locked into the process working set to prevent 
page faults from occurring on references to these pages. Locking pages in the 
working set guarantees that when this process is executing (is the current 
process), the locked pages are always valid. This service has obvious benefit 
for time-critical applications and other situations in which a program must 
access code or data without incurring a page fault. 

This service is also used by process-based kernel mode routines that exe­
cute at IPLs above 2 to ensure the validity of code and data pages. VMS pro-



16.5.2 

16.5 Locking and Unlocking Pages 

hibits page faults at IPLs above 2. In response to such a page fault, the pager 
generates the fatal bugcheck PGFIPLHI. 

Pages locked into a process working set do not necessarily remain resident 
when the process is not current; the entire working set might be outswapped. 
To guarantee residency of the pages requires either the $LCKPAG system 
service or the combination of the $LKWSET and the Set Swap Mode 
($SETSWM) system services. 

The $LKWSET system service procedure, EXE$LKWSET in module 
SYSLKWSET, executes in kernel mode. EXE$LKWSET invokes MMG$­
CREDEL, specifying MMG$LCKULKPAG (also in SYSLKWSET) as the single 
page service-specific routine. 

MMG$LCKULKPAG faults each page in the specified range into the work­
ing set if it is not already valid. The WSL (see Figure 14-4) must be reorga­
nized so that the locked page is in the portion of the list following the 
WSLOCK pointer. MMG$LCKULKPAG accomplishes this reorganization by 
exchanging the locked WSLE with the entry pointed to by WSDYN, and then 
incrementing WSDYN to point to the next element in the list. It must also 
exchange the WSLX PFN array elements for the two valid pages. In addition, 
the WSL$V _ WSLOCK bit is set in the WSLE of the locked page. 

MMG$LCKULKPAG checks to ensure that the process will have enough 
dynamic WSLEs after the page is locked into its working set. The test is that 
the extra dynamic working set size, the size of the dynamic working set after 
space has been allocated for page table pages and a minimum working set 
size, is greater than zero. 

When a process is being outswapped, global read/write pages are dropped 
from the process working set (see Chapter 17) to avoid cumbersome account­
ing problems about whether the outswapped page contains the most up-to­
date information. For this reason, a global read/write page cannot be locked 
into the process working set. (Such a page can be locked into memory be­
cause the $LCKPAG system service prevents outswap of either the PHD or 
the locked page, avoiding an outswap altogether.) The swapper also performs 
an optimization with a global read-only page by dropping it from the working 
set on outswap if the global share count is larger than 1. If such a page is 
locked into the working set, it is not dropped from the working set, regardless 
of the contents of the PFN SHRCNT array. 

Locking Pages in Memory 

The $LCKPAG system service is similar to the $LKWSET system service. 
The $LCKPAG system service procedure, EXE$LCKPAG in module 
SYSLKWSET, runs in kernel mode. Like EXE$LKWSET, it invokes 
MMG$CREDEL, specifying MMG$LCKULKPAG (also in SYSLKWSET) as 
the single page service-specific routine. MMG$LCKULKPAG is invoked with 

423 



Memory Management System Services 

16.5.3 

a flag that identifies its target as a page locked in memory, rather than a page 
locked in the working set. 

The results of invoking the two lock services are similar. One difference is 
that the WSL$V _PFNLOCK bit in the WSLE is set (rather than the 
WSL$V _ WSLOCK bit). Another difference is that the PHD must be locked in 
memory because it maps a page locked in memory. 

This service performs an implicit working set lock in addition to guaran­
teeing permanent residency to the specified virtual address range. Because 
this operation permanently allocates a system resource, physical memory, it 
requires the privilege PSWAPM. 

Unlocking Pages 

The unlock pages system services unlock pages from either the working set 
or physical memory. The two system procedures are EXE$ULWSET and 
EXE$ULKPAG, both in SYSLKWSET. Both, executing in kernel mode, invoke 
MMG$CREDEL with MMG$LCKULKPAG as the single page service­
specific routine. MMG$LCKULKPAG is invoked with one flag that identifies 
its target as a page locked in the working set or a page locked in memory and 
with a second flag that requests an unlock operation. 

The WSLE for the page being unlocked may have to be exchanged with 
another locked entry to place the unlocked entry back into the dynamic por­
tion of the list. As with the exchange associated with locking a page, the 
WSLX PFN array elements must also be exchanged. Finally, the appropriate 
bit in the WSLE (WSL$V _ WSLOCK or WSL$V _PFNLOCK) is cleared. 

16.6 PROCESS SWAP MODE 

A process with PSWAPM privilege can prevent itself from being removed 
from memory by invoking the Set Process Swap Mode ($SETSWM) system 
service. The $SETSWM system service procedure, EXE$SETSWM in module 
SYSSETMOD, runs in kernel mode. EXE$SETSWM checks that the process 
has privilege and simply sets (or clears) the PCB$V _PSWAPM bit in the sta­
tus longword (PCB$L_STS) in the software PCB. When the swapper is search­
ing for suitable outswap candidates, a process whose PCB$V _PSWAPM bit is 
set is passed over. 

16.7 ALTERING PAGE PROTECTION 

424 

A process can alter the protection of a set of pages in its address range with 
the Set Protection on Pages system service ($SETPRT). 

The $SETPRT system service procedure, EXE$SETPRT in module SYS­
SETPRT, runs in kernel mode. EXE$SETPRT invokes MMG$CREDEL, speci-



16. 7 Altering Page Protection 

fying MMG$SETPRTPAG as the single page service-specific routine. 
ln general, the operation of this service is straightforward. However, its 

actions have one interesting side effect. Ifa section page for a read-only sec­
tion has I.ts protection set to writable, the copy-on-reference bit is set. This 
set bit forces the page to have its backing store address changed to the page 
file when the page is faulted, preventing a later attempt to write the modified 
section pages back to a file to which the process may be denied write access. 

The VAX/VMS debugger uses this service to implement its watchpoint .. 
facility. The page containing the data element in question is set to no-write 
access for user mode. When the program being debugged attempts to access 
the page, an access violation occurs, which is fielded by the debugger's condi­
tion handler. This handler performs the following actions: 

1. Checks whether the inaccessible address is the one being watched and 
reports the modification if it is 

2. Sets the page protection to PRT$C_UW to allow the modification 
3. Sets the TBIT in the PSL to give the debugger control after the instruction 

completes 
4. Dismisses the exception 

When the instruction completes, the debugger's TBIT handler gains con­
trol, sets the page protection back to no-write access for user mode, and .al­
lows the program to continue execution. 

425 



17 The Swapper 

A time to cast away stones and a time to gather stones together ... 

Ecclesiastes 3:5 

VAX/VMS does not let the amount of physical memory limit the number of 
processes in the system. Physical memory is effectively extended by keeping 
only a subset of active processes resident at once. The number of active pro­
cesses is kept at a maximum by limiting the number of pages that each pro­
cess has in memory at any given time. Processes not resident in memory 
reside on disk in swap file locations; that is, they are outswapped. 

The swapper process is the systemwide physical memory manager. Its re­
sponsibilities include maintaining an adequate supply of physical memory 
and ensuring that the highest priority computable processes are resident in 
memory. 

17.1 SWAPPING OVERVIEW 

17.1.1 

17.1.2 

426 

This section reviews some basic swapper concepts. 

Comparison of Paging and Swapping 

VAX/VMS uses two different techniques to make efficient use of available 
physical memory. The ability to support programs with virtual address 
spaces larger than physical memory is the responsibility of the pager. The 
swapper allows a running system to support more active processes than can 
fit into physical memory at one time. The swapper's responsibilities are more 
global or systemwide than those of the pager. Table 17-1 compares the pager 
and swapper in several details. 

Swapper Responsibilities 

The swapper has several main responsibilities: 

• The subset of processes that are currently resident should represent the 
highest priority computable processes in the system. When a nonresident 
process becomes computable, the swapper must bring it back into memory 
if its priority allows. 

• The number of pages on the free page list must be above the low-limit 



17.1 Swapping Overview 

Table 1 7-1 Comparison of Paging and Swapping 

DIFFERENCES 

PAGING 

The pager moves pages in and out of 
process working sets. 

The pager is an exception service 
routine that executes in the context 
of the process that incurs the page 
fault. 

The unit of paging is the page, although 
the pager attempts to read more than 
one page with a single disk read. 

Page read requests for process pages are 
queued to the driver according to the 
base priority of the process incurring 
the page fault. 

Paging supports images with very large 
address spaces. 

SWAPPING 

The swapper moves entire processes in 
and out of physical memory. 

The swapper is a separate process that 
is awakened from its hibernating 
state by components that detect a 
need for swapper activity. 

The unit of swapping is the process or, 
actually, the pages of the process 
currently in its working set. 

Swapper I/O requests are queued 
according to the value of the 
SYSBOOT parameter SWP _PRIO. 
Modified page write requests are 
queued according to the SYSBOOT 
parameter MPW_PRIO. 

Swapping supports a large number of 
concurrently active processes. 

SIMILARITIES 

The pager and swapper work from a common database. The most important structures 
that are used for both paging and swapping are the process page tables, the working 
set list, and the PFN database. 

The pager and swapper do conventional 1/0. There are only slight differences in detail 
between pager and swapper I/O on the one hand and normal Queue I/O requests on 
the other. 

Both components attempt to maximize the number of blocks read or written with a 
given I/O request. The pager accomplishes this with read clustering. The swapper 
attempts to inswap or outswap the entire working set in one lor a small number of) 
I/O requestls). The modified page writer writes clusters of pages. 

threshold established by the SYSBOOT parameter FREELIM. The free page 
list is depleted by requests for physical pages for resolving page faults and 
inswapping computable processes. The swapper must maintain the free list 
at or above its low limit. 

• The number of pages on the modified page list must be below the high-limit 
threshold established by the SYSBOOT parameter MPW _HILIM. When the 
modified page list grows above this limit, the modified page writer (which is 
a subroutine of the swapper) writes pages to their backing store and moves 
them to the appropriate page list, typically the free list. 

427 



The Swapper 

17.1.3 

17.1.4 

428 

There are four operations that the swapper performs to keep the free page 
list above its low limit. These are described in subsequent sections of this 
chapter. 

1. Process headers (PHDs) of previously outswapped process bodies may be 
eligible for outswap. If so, they are outswapped. PHDs for already deleted 
processes are simply deleted. 

2. The swapper invokes the modified page writer subroutine to write modi­
fied pages. 

3. The swapper can shrink the working set of one or more resident processes. 
4. If necessary, the swapper selects an eligible process for outswap and re­

moves that process from memory. The table which determines outswap 
selection also determines the order in which processes are selected for 
working set reduction. 

System Events That Trigger Swapper Activity 

The swapper spends its idle time hibernating. Those components that detect 
a need for swapper activity wake the swapper by calling routine 
SCH$SWPWAKE (in module RSE). In addition, SCH$SWPWAKE is invoked 
once a second from system timer code. SCH$SWPWAKE performs a series of 
checks to determine whether there is a real need for the swapper to run. If so, 
it awakens the swapper. If not, it simply returns. Performing these checks in 
SCH$SWPWAKE, rather than in the swapper process itself, avoids the over­
head of two needless context switches. 

Table 17-2 lists the system events that trigger a possible need for swapper 
activity, the module that contains the routine that detects each need, and the 
reason the swapper must be informed about the system event. 

Swapper Implementation 

The swapper is implemented as a separate process with a priority of 16, the 
lowest real-time priority. It is selected for execution like any other process in 
the system. The swapper has its own resources and quotas that are charged 
when it issues 1/0 requests. 

The swapper executes entirely in kernel mode. All of the swapper code 
resides in system space. The swapper uses its PO space when it swaps pro­
cesses. It has no Pl space. 

The swapper serves as a convenient process context for several system 
functions. In particular, during system initialization, it performs those ini­
tialization tasks that require process context and must be performed prior to 
the creation of any other process, for example, initializing paged pool and 
creating the SYSINIT process. Chapter 25 describes the system initialization 
functions of the swapper. 



17.1 Swapping Overview 

Table 17-2 Events That Cause the Swapper or Modified Page Writer to Be Awakened 

Event 

Process that is outswapped 
becomes computable 

Quantum' end 

Modified page list exceeds 
upper lfmit 

Free page list drops below 
low limit 

Balance slot of deleted 
process becomes 
available 

PHD reference count goes 
to zero 

System timer subroutine 
executes 

Routine Name 
(Module) 

SCH$CHSE 
(RSE) 

SCH$QEND 
(RSE) 

MMG$DALLOCPFN, 
MMG$INSPFNH/T 

(ALLOCPFN) 
MMG$REMPFN 

(ALLOCPFN) 

DELETE 
(SYSDELPRC) 

MMG$DECPHDREF 
(PAGEFAULT) 

EXE$TIMEOUT 
(TIMESCHDL) 

17.1.5 Swapper Main Loop 

Comments 

The swapper attempts to make 
this process resident. 

An outswap previously blocked 
by initial quantum flag 
setting or process priority 
may now be possible. 

Modified page writing is 
performed by the swapper. 

The swapper must balance free 
page count by 

• Reclaiming deleted process 
headers 

• Writing modified pages 
• Swapping headers of 

previously outswapped 
process bodies 

• Swapper trimming 
• Outswapping 

A previously blocked inswap 
may now be possible. 

A PHD can now be outswapped 
to join a previously 
Ol\tswapped process body. 

The swapper may be awakened 
every second if there is any 
work to be,done. 

The swapper does not determine why it was awakened. Every time it is awak­
ened, it tends to all of its responsibilities. The main loop of the swapper 
performs the following steps: 

1. It compares the size of the free page list to its low limit. If the list is large 
enough, the swapper performs any necessary cleanup of J;>HDs belonging 
to previously deleted processes. 

If the free page list is too small, it must be replenished. The number of 
additional pages needed is the difference between the SYSBOOT parame­
ter FREEGOAL and its current size. 

The swapper tests whether the modified page list contains that many 

429 



The Swapper 

430 

pages in addition to its low limit. If it does, the swapper triggers modified 
page writing by changing the modified page list upper limit to the value of 
its lower limit. 

If the modified page list has insufficient pages, the swapper attempts to 
reclaim memory by releasing the PHO of a previously deleted process or 
by outswapping the PHO of a previously outswapped process. 

If there is no PHO from which memory can be reclaimed, the swapper 
invokes SCH$0SWPSCHEO to shrink working sets and possibly select a 
process to outswap. Section 17.2.2 describes these operations. Section 17.5 
describes the outswap of a process. 

Whenever SCH$0SWPSCHEO shrinks a process working set, it checks 
whether the deficit has been made up. If the deficit has not yet been made 
up, SCH$0SWPSCHEO checks whether writing the modified page list 
would satisfy the deficit. If it would, SCH$0SWPSCHEO changes the 
modified page list upper limit to the value of its lower limit to trigger 
modified page writing. 

2. Next, the swapper calls the modified page writer routine, 
MMG$WRTMFYPAG in module WRTMFYPAG. If the size of the modi­
fied page list exceeds its current upper limit, modified pages are written 
until the size of the list falls below the current low limit. Section 17.3 
describes the initiation of modified page writing. 

3. The swapper selects a process in the computable outswap (COMO) state 
(if one exists) to inswap. Section 17.2.1 describes this selection. 

If there is a COMO process and sufficient pages for its working set, the 
swapper reads the process into memory (see Section 17.6). 

If there is a COMO process but insufficient pages for its working set, the 
swapper attempts to outswap a PHO of a previously outswapped process 
or to delete a PHO of a previously deleted process. 

If there is no PHO from which memory can be reclaimed, the swapper 
invokes SCH$0SWPSCHEO. The deficit to be made up is the difference 
between how many pages the process needs and how many can be allo­
cated from the free page list without reducing it below its low limit. (The 
actions of SCH$0SWPSCHEO were summarized previously in step 1.) 

4. Because the swapper is a separate process that executes fairly frequently, it 
is a convenient vehicle for testing whether a powerfail recovery has oc­
curred and, if so, notifying all processes that have requested power recov­
ery asynchronous system trap (AST) notification (with the Set Powerfail 
Recovery AST system service). This delivery mechanism is described in 
Chapter 26. 

5. Finally, the swapper puts itself into the hibernate state, after checking its 
wake pending flag. If anyone (including the swapper itself in one of its 
three main subroutines) has requested swapper activity since the swapper 
began execution, the hibernate is skipped and the swapper goes back to 
step 1. 



17.2 Swap Selection 

17.2 SWAP SELECTION 

17.2.1 

This section describes the actions that the swapper takes to select a particu­
lar process to inswap, shrink, or outswap. 

Selection of Inswap Process 

The scheduler maintains 32 quadword listheads for COMO processes, one for 
each software priority !see Figure 10-2). These queues are identical to the 32 
queues maintained for the computable resident (COM) processes. The steps 
that t.he swapper takes to decide what process to inswap parallel the steps 
that the rescheduling interrupt sertrice routine takes (see ChaptedO) to se­
lect the next process for execution. This parallel is shown in Example 17 -1, 
which contains code extracts from the modules SWAPPER, SCHED, and RSE. 

The first half of the parallel listed in the example shows the swapper's 
selection of the next inswap process and the nearly identical instructions in 
the scheduler. These routines perform the following operations. (The mun'­
bers in the following list correspond to numbers in Example 17-1.) 

(DIPL is raised to IPL$_SYNCH to synchronize access to the scheduler's 
database. 

@The highest priority nonempty (COMO/COM) queue is selected. 
@The address of its forward pointer is loaded into R3. 
©The address of the selected process control block (PCB) is loaded into R4. 

At this point, the swapper has found a process to inswap. The swapper tests 
whether there are enough pages on the free page list to hold the inswap pro­
cess and leave at least FREELIM pages on the list. If so, the inswap proceeds. 
If not, the swapper attempts to make more pages available by shrinking 
working sets, outswapping one or more processes, writing modified pages, or 
deleting PHDs of already deleted process bodies. After there are enough pages 
available, the swapper takes the steps necessary to bring the selected process 
into memory. 

The scheduler, on the other hand, continues execution. The REMQUE in­
struction shown in the example for the scheduler is duplicated to emphasize 
that, while a long time elapses between inswap selection and completion of 
the inswap, there is no time lapse for execution selection. 

Some time later, the inswap operation completes. The swapper rebuilds the 
working set list (WSL) and process page tables. The parallel resumes when 
the swapper calls routine SCH$CHSEP, in module RSE, to change the state of 
the newly inswapped process to computable. 

®The selected PCB is removed from its former state (COMO/COM). 
@If the removal of the PCB emptied the queue, the associated priority bit in 

the summary longword is cleared. !Note that SCH$CHSEP has biased RI 
so that it points to SCH$GL_COMOQS, the summary longword for the 
COMO state.) 

431 



The Swapper 

Example 17·1 Parallels Between Inswap Selection and 
Execution Selection 

Swapper's Inswap Selection 

QEMPTY: 

BUG_CHECK QUEUEMPTY,FATAL 

SWAPSCHED: 

SETI PL 

BBSS 

FFS 

BNEQ 

BBCC 

5$: 

SETI PL 

RSB 

10$: 

PUS HR 

MOVAQ 

MOVL 

CMPB 

BNEQ 

432 

#IPL$_SYNCH CD 
S'#SCH$V_SIP I W'SCH$GB_SIP I 5$ 

#0 I #32 I W'SCH$GL_COMOQS I R2 CD 
10$ 

S'#SCH$V_SIP I W'SCH$GB_SIP I 5$ 

#0 

#'M < Rb,R7 ,R1l,R"l,R10,R11,AP,FP > 

W'SCH$AQ_COMOH[R2], R3 

( R3) I Rt; 

#DYN$C_PCB,PCB$B_TYPE(Rt;) 

QEMPTY 

® 
© 

Scheduler's Execution Selection 

SCH$IDLE: 

SETIPL #IPL$_SCHED 

MOVB #32 I W'SCH$GB_PRI 

BRB SCH$SCHED 

SCH$SCHED:: 

SETIPL #IPL$_SYNCH 

FFS #0 I #32 I L'SCH$GL_COMQS I R2 

BEQL SCH$IDLE 

BVS 

MOVAQ SCH$AQ_COMH[R2), R3 

REMQUE @(R3)+,Rt; 

QEMPTY 



Example 17-1 Parallels Between Inswap Selection and 
Execution Selection (continued) 

State Change from COMO to COM 

SCH$CHSEP:: 

REM QUE (Rt;) I R1 ® 

BNEQ 10$ 

MOVZWL PCB$W_STATE(Rt;),R1 

BBC Rl,EXESTATE,10$ 

MOVZBL PCB$B_PRI(Rt;),R1 

BLBC PCB$W_STATE(Rt;),5$ 

ADDL #32,Rl 

5$: 

BBCC R1IL'SCH$GL_COMQSI10$ ® 
10$: 

MOVB RO,PCB$B_PRI(Rt;) 

MOVL #SCH$C_COM,R1 

30$: 

BBSS RD I L'SCH$GL_COMQS I 35$ 

35$: 

MOVW R1,PCB$W_STATE(Rt;) 0 
MOVAQ L'SCH$AQ_COMT[ROJ, R1 

t'.;0$; 

INSQUE (Rt;),@(R1)+ ® 
RSB 

17.2 Swap Selection 

State Change from COM to CUR 

REMQUE @(R3)+,Rt; 

BVS QEMPTY 

BNEQ 20$ 

BBCC R2, L'SCH$GL_COMQS I 20$ 

20$: 

CMPB #DYN$C_PCB,PCB$B_TYPE(Rt;) 

BNEQ QEMPTY 

MOVW #SCH$C_CUR,PCB$W_STATE(Rt;) 

MOVL Rt; I L'SCH$GL_CURPCB 

433 



The Swapper 

17.2.2 

17.2.2.1 

434 

Q)The STATE field in the PCB is loaded with the new state (COM/CUR) of 
the process. 

®Finally, the address of the PCB is stored appropriately: the PCB for the 
inswapped process is inserted into a COM queue; the address of the cur­
rent process's PCB is stored in SCH$GL_CURPCB. 

At this point, the parallel ends. If the newly inswapped process is of higher 
priority than the swapper, that process will be scheduled as soon as the IPL is 
lowered below 3 and the rescheduling interrupt occurs. Otherwise, the pro­
cess will not execute until it becomes the highest priority computable 
process. 

There is one optimization that the swapper performs that may prevent an 
eventual outswap. This optimization is intended to decrease swapping 1/0 on 
systems with more compute-bound processes than can fit into available 
memory. It is controlled by two SYSBOOT parameters, DEFPRI (the default 
process priority) and SWPRATE (a time interval with a default value of five 
seconds). The swapper abandons the inswap of a process whose priority is 
DEFPRI or lower if there is not enough memory for the inswap and if an 
interval less than SWPRATE has elapsed since the last inswap of a process 
with priority of DEFPRI or lower. 

Selection of Shrink and Outswap Processes 

When the swapper must make physical memory available, it invokes the 
subroutine SCH$0SWPSCHED, in module OSWPSCHED, specifying how 
many pages of memory it needs. SCH$0SWPSCHED can shrink the working 
sets of selected processes and/or select a process to be outswapped. To shrink 
a working set means to remove pages of physical memory from it. 

SCH$0SWPSCHED scans the scheduler database looking for processes to 
be shrunk or swapped. Whenever it gains free pages from shrinking a process 
working set, it checks whether there are enough pages on the free and modi­
fied page lists to satisfy the swapper's need. If enough pages are available, 
SCH$0SWPSCHED returns. 

The search for a candidate process is table driven. The following sections 
describe first the table and then information about the multiple passes 
through the table. 

The Table. The OSWPSCHED table is divided into sections, each specifying 
one or more resident process scheduling states and a set of conditions associ­
ated with each state. Table 17-3 lists the individual entries and sections in 
the OSWPSCHED table. States in the same section are considered equivalent. 

SCH$0SWPSCHED scans the scheduling queues in the order shown in the 
column labeled "Process State." It checks whether any process in that state 



17.2 Swap Selection 

Table 17-3 Selection of Shrink and Outswap Candidates 

SELECTION DEPENDENT ON: FLAGS 

Process Direct Initial Long SWAP- SWPO-
State 110! Priority! Quantum! Wait! Dormant! ASAP GOAL 

SUSP n/a n/a No n/a n/a 0 

COM n/a Yes No n/a Yes 0 

HIB n/a n/a No Yes n/a 0 

LEF No n/a No Yes n/a 0 

CEF No n/a No n/a n/a 0 

HIB n/a n/a No No n/a 0 

LEF No n/a No No n/a 0 

FPG n/a Yes No n/a n/a 0 0 

CO LPG n/a Yes No n/a n/a 0 0 

MWAIT n/a n/a No n/a n/a 0 0 

CEF Yes Yes Yes n/a n/a 0 0 

LEF Yes Yes Yes n/a n/a 0 0 

PFW n/a Yes Yes n/a n/a 0 0 

COM n/a Yes Yes n/a No 0 0 

queue satisfies the conditions in the second column through the sixth col­
umn. If a process satisfies those conditions, it is a candidate for shrinking and 
possibly for swapping. When SCH$0SWPSCHED finds such a process, its 
subsequent action depends on the flags in the last two columns. 

The conditions in the table entries discriminate among processes, based on 
their likelihood of becoming computable in a short while and the effects of 
shrinking or swapping them. In general, the intent is to prevent the outswap 
of a process which is about to become computable when the only reason for 
the swap is to bring a computable process of equal priority into memory. 
Overall system performance may be improved by shrinking processes, rather 
than swapping them. However, a process in a certain state may be affected 
less by being swapped than by having its working set reduced. 

Descriptions of the various conditions and flags follow: 

• Direct 1/0 
When a process which is in a local event flag (LEF) or common event flag 

(CEF) scheduling state has an outstanding direct 1/0 request, there is a high 
probability that the process is waiting for the direct 1/0 to complete. If so, 
the process will soon become computable and thus be a less desirable 
shrink or outswap candidate. 

• Priority 
A process that is computable or likely to be computable soon is not con-

435 



The Swapper 

436 

sidered a candidate, unless its priority is less than or equal to that of the 
potential inswap process (stored in global location SWP$GB_ISWPRI). 

• Initial Quantum 
A process likely to become computable soon is not considered a candi­

date if it is within its initial memory residency quantum, unless the inswap 
process has a real-time priority. The intent is to leave the process in mem­
ory long enough to do useful work, after the system has expended the over­
head of inswapping it. This reduces the possibility of swap thrashing, a 
condition in which the system spends a larger percent of time swapping in 
and out than in process execution. 

•Long Wait 
A process waiting in an LEF or hibernate (HIB) state can be characterized 

by whether it has been in that state longer than the SYSBOOT parameter 
LONGWAIT. A process that has been waiting a long time is likely to wait 
longer still; one which has been waiting a short time is more likely to 
become computable soon. For example, a process waiting for terminal input 
longer than a LONGWAIT interval is likely to remain in LEF longer still. 

•Dormant 
A dormant process is a computable process whose priority is less than or 

equal to the SYSBOOT parameter DEFPRI and one to which no scheduling 
event of any kind has happened within the interval specified by the SYS­
BOOT parameter DORMANTWAIT. Such a process is considered a very 
good candidate to be shrunk or outswapped. An example of such a process is 
a compute-bound process with a priority too low to get CPU time. This 
condition was added to expedite the shrinking and outswap of a process 
such as a low priority batch job. While the process runs at night on a lightly 
loaded system, its working set is expanded to WSEXTENT and it acquires 
lots of physical memory, but once interactive users log in, the process can­
not get CPU time. 

In addition to conditions imposed by the table entries, there are several 
implicit constraints on the suitability of a particular process to be shrunk or 
outswapped. A process cannot be outswapped if it has locked itself into the 
balance set. The working set of a process which has disabled automatic work­
ing set adjustment cannot be shrunk, nor can the working set of a real-time 
process. A process which is already outswapped cannot be shrunk or 
outswapped. 

Two flags direct SCH$0SWPSCHED to take specific action on a par­
ticular pass through the table. The SWAPASAP flag indicates that 
SCH$0SWPSCHED should swap out a process selected by this entry, after 
reducing its working set to WSQUOTA. If the system needs memory, one of 
these processes will be swapped out at its current size. When the outswapped 
process becomes computable again, it will not have to waste compute time 



17.2.2.2 

17.2 Swap Selection 

rebuilding its working set. The SWPOGOAL flag indicates that 
SCH$0SWPSCHED must try to shrink the working set size of a process se­
lected by that table entry to SWPOUTPGCNT. Shrinking the working set of 
such a process may reclaim enough memory that the process need not be 
outswapped. 

Passes Through the OSWPSCHED Table. SCH$0SWPSCHED makes two 
passes through the table. On its first pass, it goes through all the sections of 
the table, trimming any candidate processes back to WSQUOTA. This is 
known as "first-level swapper trimming." It continues reclaiming memory 
from working sets that had been extended until it has reclaimed enough free 
pages to satisfy the deficit or until it finds a process to be outswapped. A 
suitable outswap candidate is one that meets the scheduling state and condi­
tions of a table entry that includes the SWAPASAP flag (and which has not 
locked itself into the balance set). 

If the first pass does not satisfy the deficit and does not locate an outswap 
candidate, SCH$0SWPSCHED scans the table again. This is known as 
"second-level swapper trimming." In second-level swapper trimming, 
SCH$0SWPSCHED can scan each section of the table twice. First, if the 
entry contains the SWPOGOAL flag, SCH$0SWPSCHED shrinks the work­
ing set of a process selected by this entry (unless the process has disabled 
automatic working set adjustment). The working set is reduced, if possible, 
to the SYSBOOT parameter SWPOUTPGCNT. If the deficit is not satisfied, 
SCH$0SWPSCHED continues scanning through processes selected by the 
table section. When it gets to the end of the section, it restarts at the 
beginning of the section, looking for a process to outswap. When 
SCH$0SWPSCHED gets to the end of the section for the second time, it goes 
to the next section. The pass ends when the deficit is satisfied or a process is 
found to outswap. 

The swapper maintains a failure counter that records the number of times 
that it has attempted to locate a candidate to shrink or swap and failed. This 
count is maintained across invocations of SCH$0SWPSCHED. It is intended 
to loosen the constraints in situations where the normal conditions have 
failed to produce candidates. When this count reaches a value equal to 
SWPFAIL, the swapper ignores the priority and initial quantum conditions 
when selecting a process to shrink or outswap. The counter is reset each time 
that an outswap candidate is successfully located. 

When the swapper scans a series of processes in a particular scheduling 
queue, the scan begins with the least recently queued entry (at the tail of the 
queue). This starting point ensures that the longer a process has been in a 
wait queue, the more chance it has of being shrunk or swapped. (A process is 
inserted into a wait queue at the front of the list, not the tail.) 

437 



The Swapper 

17.3 WRITING THE MODIFIED PAGE LIST 

438 

The modified page writer, MMG$WRTMFYPAG, writes modified pages to 
their backing store locations. Modified page writing is initiated when the 
modified page list has exceeded its high limit, defined by the SYSBOOT 
parameter MPW _HJLIMIT. As described in Chapter 15, the modified 
page writer attempts to write a number of pages at once. After 
MMG$WRTMFYPAG has written a cluster of pages to their backing store, 
the pages are removed from the modified page list and placed on the appropri­
ate page list, typically the free page list. Once modified page writing is initi­
ated, the modified page writer continues writing modified pages until the size 
of the list is at or below its low limit, defined by the SYSBOOT parameter 
MPW _LOLIMIT. 

The actual limits which drive the modified page writer are the system 
global locations SCH$GL_MFYLIM, the upper limit threshold, and 
SCH$GL_MFYLOLIM, the low-limit threshold. At system initialization, 
these globals are initialized from SYSBOOT parameters. 

Modified page writing is sometimes triggered when the list is not yet as 
large as its upper limit by setting SCH$GL_MFYLIM to the same value as 
SCH$GL_MFYLOLIM. The swapper does this when the free page list can be 
replenished by writing modified pages. SCH$0SWPSCHED also triggers 
modified page writing in this way, but only after testing that the modified 
page list contains at least as many pages as the SYSBOOT parameter 
MPW _THRESH. MPW:.... THRESH sets a higher minimum than MPW _ 
LOLIMIT to be met before SCH$0SWPSCHED can trigger writing the modi­
fied page list to gain pages. 1 

Only the low-order word of SCH$GL_MFYLIM is used as an upper limit. 
The high-order word is set to a value of 010016, as a flag that modified page 
writing is in progress. By temporarily making the value of the upper limit 
very large, threshold checks are altered in the various routines which try to 
wake the swapper when the modified page list reaches its upper limit. This 
eliminates the overhead of unnecessary wake events for the swapper while 
processing of the modified page list is already underway. 

There are times when all pages in the modified page list must be written to 
their backing store. This is known as "flushing the .modified page list." 
Flushing .the modified page list is triggered by setting both the lower and 
upper limits for the modified page list to zero. Clearing the upper limit guar­
antees that a nonempty list has exceeded its threshold, initiating a request for 
modified page writing. Clearing the lower limit causes modified page writing 
to continue until the list is empty {below the low limit). Before the modified 
page writer exits, it restores its two limits to the values contained in the 
SYSBOOT parameters MPW _HJLIMIT and MPW _LOLIMIT. 

There are four circumstances in which the modified page list is flushed: 



17.4 Swapper's Use of Memory Management Data Structures 

• When a process body has been outswapped but its PHD maps transition 
pages on the modified page list (as described in Section 17.5.3.1) 

• When a writable global section with transition pages still on the modified 
page list is deleted 

• When a process needs to reuse a working set list entry (WSLE) which de­
scribes a page table page that is now inactive but still maps transition pages 
on the modified page list (described in Chapter 15) 

• When the OPCCRASH image runs during system shutdown 

17.4 SWAPPER'S USE OF MEMORY MANAGEMENT DATA STRUCTURES 

17.4.1 

17.4.1.1 

In Chapter 16, the memory management data structures that are used by 
both the pager and the swapper were described. The discussion here reviews 
those structures and adds descriptions of those structures that are used exclu­
sively by the swapper. 

Process Header 

Most of the information that the swapper uses in managing the details of 
either inswapping or outswapping is contained in the PHD. The process page 
tables contain a complete description of the address space for a given process. 

The WSL describes those page table entries (PTEs) that are valid. This list is 
crucial for the swapper because it is only the process working set that will be 
written to its swap space when the process is outswapped. In a similar fash­
ion, when a process is inswapped, the WSL in its PHD describes what the rest 
of the process looks like in the swap file. 

Working Set List. The WSL describes the portion of a process virtual address 
space that must be written to the swap file when the process is outswapped. 
A page in the process working set can be in one of the following three states: 

• The page is valid. 
• The page is currently being read into memory. The swapper treats page 

reads like any other I/O in progress when swapping a process. This treat­
ment is described in Section 17.5. 

• The process PTE contains a global page table index (GPTX) and the indexed 
global page table entry (GPTE) indicates a transition state. The swapper 
handles global pages in a special manner when outswapping a process. This 
treatment is also described in Section 17.5. 

The operation of the swapper's scan of the process WSL at outswap is dis­
cussed in Section 17.5. 

439 



The Swapper 

17.4.1.2 

17.4.1.3 

17.4.2 

440 

Process Page Tables. The WSL does not supply the swapper with all the infor­
mation necessary to outswap a process. Other information about a virtual 
page is contained in either the valid (or transition) PTE or in one of the PFN 
array elements associated with the physical page. Each WSLE effectively 
points to a different process (or system) PTE that contains a page frame num­
ber (PFN). The PTE is copied to the swapper's 1/0 map and then the contents 
of the BAK array element for this physical page are put back into the process 
PTE. These actions eliminate any ties between an outswapped process's page 
tables and physical memory. 

Process Header Page Arrays. The breaking of ties between process PTEs and 
physical memory is straightforward for process pages. The contents of the 
BAK array element are simply merged into the PTE. However, PHD pages are 
also a part of the process working set. These pages reside in system space and 
are mapped by system page table entries (SPTEs) that map the balance slot in 
which the PHD resides. 

The relinquishing of the balance slot implies that these SPTEs must also be 
surrendered. There is no analogous way to store the BAK array contents for 
PHD pages. For this reason, the PHD page arrays (see Figure 14-8) save the 
BAK array contents. There is an array element for each page in the PHD. 
When a process is outswapped, each PHD page currently in the working set 
has its BAK address put into the corresponding array element in the PHD 
page BAK array. When the process is swapped back into memory, the PHD 
header page arrays can be scanned and the BAK contents copied from the 
array back into the PFN BAK array elements for the physical pages that con­
tain the PHD. 

In a similar manner, it is necessary to remember where each PHD page fits 
into the WSL. This record keeping is done by storing the WSLX PFN array 
element into· the corresponding PHD page WSLX array element. The use of 
this array while the PHD is being rebuilt following inswap prevents a prohib­
itively long search of the WSL for each PHD page. 

Swapper 1/0 Data Stmctures 

Like the pager, the swapper uses the conventional VMS 1/0 subsystem. It 
allocates its own 1/0 request packet and fills in some of the fields that will be 
interpreted in a special manner by the 1/0 postprocessing routine. After these 
fields have been filled in, it jumps to one of the swapper 1/0 entry points in 

· module SYSQIOREQ (EXE$BLDPKTSWPR or EXE$BLDPKTSWPW) that fills 
in an appropriate function code and queues the packet to the appropiiate disk 
driver. Tables 15-1and15-2 show how the 1/0 request packet is used by the 
swapper for its 1/0 activities. 

The swapper uses a special 1/0 map that allows it to read or write a process 



17.4.3 

17.4 Swapper's Use of Memory Management Data Structures 

working set, a collection of virtually noncontiguous pages, in one or a small 
number of 1/0 requests. 

The use of the swapper 1/0 map to write virtually noncontiguous pages of a 
process being swapped is described in Chapter 14. This array contains 
WSMAX longwords and is used for both outswap and inswap operations. 

At outswap, the PFN of each page that will be written to the swap file is 
stored in an array element. The address of this array is passed to the 1/0 
system as the system virtual address of the PTE that maps the first page of 
the 1/0 buffer. At inswap, the swapper allocates physical pages of memory for 
the process working set and records their PFNs in the 1/0 map. The swap 
image is read into these pages. As the swapper rebuilds the process's WSL and 
page tables, it copies the PFN from each entry of its 1/0 map to the appropri­
ate process PTE. 

Swap File Data Structures 

The system maintains a page file control block for each page and swap file in 
the system. Figure 14-23 shows the layout of a page file control block, the 
structure that allows a page or swap file to be located on disk. Notice that the 
window control block pointer and virtual block number field are located at 
the same offsets in page file control blocks and in process or global section 
table entries. Thus, these data i;tructures can be used by common routines 
that need not distinguish the type of structure being used to describe a mem­
ory management 1/0 request. 

When the system is initialized, the SYSINIT process initializes the primary 
swap file SYS$SYSTEM:SWAPFILE.SYS. If an alternate swap file is installed 
(with the SYSGEN command INSTALL), the page file control block for the 
new swap file is initialized by SYSGEN. 

For each process, the indication of which page file control block to use is 
contained in the software PCB in field PCB$L_ WSSWP. The page file control 
block then indicates the file in which swapping space is assigned to the pro­
cess. The upper byte is a longword index into the array of pointers to page file 
control blocks (see Figure 14-22). 

When a process is first created, its initial swap space is allocated by 
the Create Process ($CREPRCJ system service. The initial size of the sw~p 
space is the size of the shell process, unless SYSBOOT parameter 
MPW _ WRTCLUSTER is larger. The page file index and the virtual block 
number of the beginning of the space are recorded in the PCB as negative 
values. A negative value indicates to the swapper that this PCB requires an 
inswap from the SHELL. After the SHELL has been swapped in, the values are 
restored to their positive form. 

A zero value in PCB$L_ WSSWP indicates to the swapping and paging sys­
tems that the process is permanently memory resident. Only the processes 

441 



The Swapper 

that are created before the page and swap files are located (null process, swap­
per process, and SYSINIT process) are permanently memory resident. 

When a process's working set is extended, a check is made to see if the new 
working set fits in the. currently allocated swap space. If the new sized work­
ing set does not fit in the current swap space, a new swap space (that is 
MPW _ WRTCLUSTER pages larger) is allocated. The old swap space is de­
allocated. 

17.5 OUTSWAP OPERATION 

17.5.1 

17.5.2 

17.5.2.1 

442 

Outswap is described before inswap because it is easier to explain inswap in 
terms of what the swapper puts into the swap file. The swapper does not 
remove processes from the balance set indiscriminately. In practice, the 
swapper tries hard not to swap. A process is removed only if there is a need 
for physical pages that cannot be satisfied by shrinking working sets and 
flushing the modified page list or if the system needs a balance set slot (PHO 
slot). 

Selection of Outswap Candidate 

As described in Section 17.2, the outswap selection is driven by an ordered 
table of scheduling states and associated conditions. The swapper selects the 
process that benefits the least from remaining in memory. Once a candidate 
is selected, the swapper prepares the working set of that process for outswap. 

Outswap of the Process Body 

The swapper outswaps the process body (PO and Pl pages) separately from the 
PHO. There are two reasons for doing this: 

• Fields in the PHO (most notably WSLEs and process PTEs) are modified as 
the WSL is processed. 

• The PHO may not be swappable at the same time as the body because of 
outstanding 1/0, pages on the modified page list, or some other reason. 

Scanning the Working Set List. The process body is prepared for outswap by 
scanning the WSL. Each page in the WSL must be looked at to determine if 
any special action is required. The swapper looks at a combination of the 
page type (found in the WSLE, as well as the PFN TYPE array) and the valid 
bit. Table 17-4 lists all combinations of page type and valid bit setting that 
the swapper encounters and the action that it takes for each. Several combi­
nations are discussed further in the following sections. 

The basic step that the swapper must take as it scans the WSL is to move 
each swappable page into the swapper's 1/0 map. This causes the virtually 



17.5 · Outswap Operation 

Table 1 7-4 Scan of Working Set List of Outswap Process 

Type of Page 
WSL<3:1> 

Process page 

Process page 

System page 

Global read only 

Global read only 

Global read/write 

Page table page 

Valid Bit 
PTE<31> 

Transition 

Valid 

Transition 

Valid 

Action of Swapper for This Page 

(STATE = Read in Progress) 
Treat as page with 1/0 in progress. Special action 

may be taken at inswap or by modified page 
writer. 

(STATE = Active) 
Outswap. The page will be put back into active 

transition state at inswap time. 
(STATE = Read Error) 
Drop from working set. 
No other transition states are possible for a page in 

the working set. 
Outswap page. If there is outstanding I/O and the 

page is modified, load SWPVBN array element 
with block in swap file where the updated page 
contents should be written when the I/O 
completes. 

It is impossible for a system page to be in a process 
working set. The. swapper generates an error. 

If the process PTE still contains a PFN, this page is 
an active transition page. Outswap the page. 

If the process PTE contains a GPTX, then the 
global page table must contain a transition PTE. 
The page is dropped from the process working 
set. 

If SHRCNT = 1, then outswap. 
If SHRCNT. > 1, drop from working set. It is highly 

likely that a process can fault such a page later 
without I/O. This check avoids multiple copies 
of the same page in -the swap file. 

Drop from working set. It is extremely difficult to 
determine whether the page in memory was 
modified after this copy was written to the swap 
file. 

Not part of the process body. However, while the 
swapper is scanning the process body, the virtual 
address field in the WSL is modified to reflect 
the offset from the beginning of the PHD 
because page table pages will probably be located 
at different virtual addresses following inswap. 

443 



The Swapper 

17.5.2.2 

17.5.2.3 

444 

noncontiguous pages in the process's working set to appear virtually contigu­
ous to the 1/0 system (see Figures 17-2 and 17-5). For each page, the swapper 
performs the following steps: 

1. Locates the PTE from the virtual page number field in the WSLE 
2. Determines any special action, based on page validity and page type 
3. Copies the PFN from the PTE to the swapper map 
4. Records the modify bit (logical OR of PTE modify bit and PFN STATE 

array saved modify bit) in the WSLE 
5. Sets the Delete Contents bit in the PFN STATE array element. This bit 

causes the page to be placed at the head of the free page list when its 
reference count goes to zero (which in normal circumstances is when the 
swap write completes). 

Note that the swapper does not have to explicitly put the contents of the 
PFN BAK array into each PTE. The contents are replaced when the page is 
released (after the swap write completes and all other references to the page 
are eliminated). 

Pages with Direct 1/0 in Progress. If a (modified) page has outstanding 1/0 
while the process is being outswapped, the swapper takes note of this by 
loading the SWPVBN PFN array element with the virtual block number in 
the swap file where the page is being written to. The page is nevertheless 
swapped at this time to reserve a place for it in the swap file. 

If the 1/0 operation is a read (or it is a write and some other action has 
caused the page to be modified), the physical page is placed on the modified 
page list when the 1/0 completes. MMG$RELPFN, the routine that releases 
the page, puts a page on the modified page list if either the modify bit in the 
PFN STATE array is set or if the PFN SWPVBN array has nonzero contents. 

The modified page writer takes special action for a modified page with 
nonzero contents in the SWPVBN array. That is, it writes each page to the 
designated block in the swap file rather than to its normal backing store 
address. 

If the 1/0 operation is a write (from memory to mass storage) and the page 
was not otherwise modified, the contents that are currently being written to 
the swap file are good. The page is placed on the free list when the write 
completes. 

Global Pages. Global pages are also given special treatment at outswap. If the 
global page is writable, it is dropped froni the process working set before the 

· process is swapped to disk. The task of recording whether the contents that 
are swapped are up to date when the process is brought back into memory is 
more complicated than simply refaulting the page (often without I/O) when 
the process is swapped back into memory. 



17.5 Outswap Operation 

Global read-only pages are only swapped if the global share count (PFN 
SHRCNT array) is one. In all other cases, the page is dropped from the work­
ing set and must be refaulted (most likely without 1/0) when the process is 
inswapped. (Global pages that are explicitly or implicitly locked into the 
process working set are not dropped from the working set.) Global transition 
pages are also dropped from the process working set. 

17.5.2.4 Example of Process Body Outswap. Figures 17-1 through 17-3 show some of 
the special cases encountered by the swapper while it is scanning the process 
WSL. As mentioned in connection with Table 17-4, the key information 
about each page is a combination of the PTE valid bit and the physical page 
type. The order of the scan is determined by the order defined by the WSL. 
Figure 17-1 shows the process working set, the process page tables, and the 
associated PFN database entries before the swapper begins its working set 
sr.an. Figure 17-2 shows the modified working set and the swapper map after 
the WSL scan but before the 1/0 request is initiated. Figure 17-3 shows the 

Process Header for 
Swapped Proceas 

Fixed Portion 
Working Set List 

vpn y GAO wsle1 

vpn z PPG wsle2 

vpn w GAW wsle3 

vpn x PPG wsle4 

Process Section 
Table, etc. 

PO Page Table 

vpnW 1 . : P'l'I&. pteW 

vpnX 1. pteX 

vpn Z _1 > ,;:.-;q_ '' ·. pte Z 

P1 Page Table 

WSLX PTE 

D gpteQ 

D 
~ pteZ 

I wsle4 I pteX 

Global Page Table 

Figure 17-1 Example Working Set List before Outswap 
Scan 

PFN Database Arrays 

BAK STATE TYPE other 

gstx I G IGAol I SHACNT=1 I ptn A 

gstx I B IGAwl I SHACNT=4 I pine 

pgflx I G ~~ I AEFCNT=2 I pfn C 

pstx I G IPPGI 

SWP$GL_MAP::-~-~ 

Swapper's 1----J 
l/OMap 

445 



The Swapper 

Process Header for PFN Database Arrays 
Swapped Process WSLX PTE BAK STATE TYPE other 

Fixed Portion 
Working Set List 

vpn y GAO 

vpn z PPG 

vpn x PPG 

Process Section 
Table, etc. 

PO Page Table 

vpnW 

vpn X 1 pin D 

vpn Y 1 pin A 

vpn Z 1 pin C 

P1 Page Table 

DI 
gpteO 11 

wsle 1 DI 
gpte A II 

wsle 2 81 pie Z 11 
wsle3 

wsle4 81 pteX 11 

pteW 

pteX Global Page Table 

gpte Q valid, pin A 

pteY 

gpte A valid, pin B 

pte Z 

gstx 

gstx 

pgflx 

pstx 

B I GAO 11 SHACNT = 1 I pin A 

G IGAWI pin B 

B I PPG I ~EFCNT=2 I pin C 

GIPPGI 

SWP$GLMAP:: 

Swapper's 
l/OMap 

Figure 17-2 Example Working Set List after Outswap 
Scan 

446 

state of the PTEs after the swap write has completed and the physical pages 
have been released. 

1. The first WSLE is a global read-only page. The VPN field of the WSLE 
locates the PTE. The PFN field of the PTE locates the PFN data associated 
with this physical page. In particular, the global share count for this page 
is 1. (This process is the only process that currently has this page in its 
working set.) The swapper writes this page out as part of the swap image 
for this process. Thus, pfn A is the first page in the swapper's 1/0 map (see 
Figure 17-2). 

When the swapper's write operation completes, the page will be deleted. 
That is, the PTE array element will be cleared and the page will be placed 
at the head of the free page list (see Figure 17-3). 

2. The second WSLE is a process page that also has 1/0 in progress (a 
REFCNT of 2). This page will be swapped. This fact is illustrated by the 
inclusion of pfn C in the swapper map. 

If the page was previously modified (either the PTE modify bit or saved 



17.5 Outswap Operation 

Process Header for PFN Database Arrays 
Swapped Process WSLX PTE BAK STATE TYPE other 

Fixed Portion 
Working Set List 

.___g_st_x ___.I -~ I GRO I pin A 

vpn y GRO wsle 1 

vpn z PPG wsle 2 

wsle3 

vpn x PPG wsle4 

Process Section 
Table, etc. 

PO Page Table 

vpnW 0 gptx (R) pteW 

vpn X Global Page Table 

gpteO 

vpnY 

gpte R valid, pin B 

vpn Z 

P1 Page Table 

Figure 17-3 Process Page Table Changes after Swapper's 
Write Completes 

modify bit in the PFN STATE array was set), the virtual block number in 
the swap file will be loaded into the SWPVBN array. Loading the SWPVBN 
array will force the page to the modified page list when it is released. If the 
process is still outswapped by the time the modified page writer gets 
around to writing this page, the page will be written to the block reserved 
for it when the process is first outswapped. 

The page is marked for deletion. That is, when the reference count for 
the page reaches zero (because ot completion of both the outstanding 1/0 
and the swapper's write), the page is placed at the head of the free page list 
and its PTE array element cleared. 

3. The third WSLE is a global read/wri.te page. The page is dropped from the 
process working set (see Figure 17-2), meaning that the process PTE is 
replaced with a GPTX (that locates gpte R) and the share count for pfn Bis 
decremented. Notice that pfn B is not a part of the swapper map, which 
contains a list of the physical pages that will be written to the swap file. 

447 



The Swapper 

17.5.3 

17.5.3.1 

448 

4. The last WSLE in this example is a process page with nothing special 
about it. This page is added to the swapper map (pfn 0) and its contents are 
marked for deletion. The deletion will actually <?Ccur when the swapper's 
write operation completes. 

Outswap of Process Header 

The PHO is not outswapped until after the process body has been success­
fully written to the swap file. The reason for this illustrates two other cases 
that can keep the PHO in memory. Before the PHO can be outswapped, all 
ties to physical memory that exist in the process page tables must be severed, 
including not only those pages that were in the process working set and writ­
ten to the swap file but also those pages that are in some transition state, 
most notably pages on the free and modified page lists. 

Partial Outswap. After the process body has been outswapped, the PHO be­
comes eligible for outswap. In fact, the header of an outswapped process is 
the first thing that the swapper looks for in an attempt to balance the free 
page list. 

The indication that the PHO cannot be outswapped yet is found in the 
PHO vector reference count array (see Figure 14-21). This array counts the 
number of reasons (transition pages, active. page table pages, and so on) that 
prevent the PHO from being outswapped. 

Because the outswap of the header does not have to immediately follow the 
body outswap, it is possible (even probable) that a PHO will not be swapped 
in the time between when a process body is outswapped and when that pro­
cess is brought back into memory. Such a situation is referred to as a partial 
outswap. It has an obvious counterpart, a partial inswap, where the swapper 
does not have to allocate a balance slot and bring the PHO into memory 
because the header is already resident. 

An important system management point is illustrated here. Process bodies, 
which consume physical memory, are relatively easy to remove from mem­
ory. PHOs consume a smaller amount of physical memory but they also oc­
cupy a balance slot. The balance slot is not freed for other use until the entire 
header is outswapped. If the SYSBOOT parameter BALSETCNT is too small, 
the system can reach the unfortunate state where there is more than enough 
physical memory, but computable processes cannot be brought into memory 
because the balance slots are still tied to already outswapped processes. This 
situation can be avoided by setting BALSETCNT to an adequate value. See 
the Guide to VAX/VMS Performance Management for details on determining 
the correct value for SYSBOOT parameters. 

When the swapper locates a PHO that can be removed from its balance 
slot, it takes whatever actions are required to remove the ties that bind the 
PHO to physiciµ memory. The first such step is to eliminate any transition 



17.5.3.2 

17.5 Outswap Operation 

PTE whose physical page is on the free page list. 
A transition PTE is located by scanning the free page list for a page whose 

PTE array element contents lie within the PO or Pl page tables of the PHO 
being examined. The swapper scans the free page list, starting at the back of 
the list with the most recently queued entries. The assumption is that, on 
average, the transition page is in the back half of the list. Whenever such a 
page is found, the process PTE is reset to the contents of the BAK array. The 
reference count and PTE array elements are cleared and the page is moved 
from its current location to the head of the free page list. 

Because the free page list is only one of several transition states, the scan of 
the free page list may not free the PHO for removal. Pages may be in some 
other transition state. Transition states that represent some form of 1/0 in 
progress (release pending, read in progress, write in progress) are left alone 
because there is nothing that the swapper can do until the 1/0 completes. 
After the free page list is scanned, if the process still has transition pages, the 
swapper forces the modified page list to be flushed. A modified page written 
to its backing store is released to the free page list. Thus, after the modified 
page list is flushed (see. Section 17.3), the swapper must scan the free list 
again. 

Outswap of the Process Header. Once the reference count for the PHO 
reaches zero, the header can be outswapped and the balance slot freed. The 
outswap of the PHO is entirely analogous to the outswap of a process body. 
That is, the header pages that are not page table pages and the active page 
table pages are scanned and put into the swapper's 1/0 map to form a virtu­
ally contiguous block for the 1/0 subsystem. 

There are several differences between the outswap of a PHO and a process 
body. When a process body is outswapped, the header that maps that body is 
still resident. When the swapper's write completes and each physical page is 
deleted, the contents of the BAK array element for each page are put back into 
the process PTE. 

PHO pages are mapped by SPTEs for that balance slot. The SPTEs are not 
available to hold the BAK array contents because they will be used by the 
next occupant of this balance slot. One of the PHO page arrays (see Section 
17.4.1.3) is set aside for exactly this purpose. As the PHO is processed for 
outswap, the contents of the BAK array for each active header page are stored 
in the corresponding PHO page array element. 

At the same time, the location of each header page within the WSL is 
stored in the WSLX array. This array prevents a prohibitively long search to 
rebuild the PHO when the process is swapped back into memory. 

Once the header is successfully outswapped, PCB$V _PHDRES in 
PCB$L_STS, the header-resident bit, is cleared and the balance slot is avail­
able for further use. 

449 



The Swapper 

17.6 INSWAP OPERATION 

17.6.1 

17.6.2 

450 

The inswap is exactly the opposite of the outswap operation. The swapper 
brings the PHD, including active page tables, and the process body back into 
physical memory. It then uses the contents of the WSL to rebuild the process 
page tables, an operation that primarily involves updating each valid PTE to 
reflect the new PFN used by that PTE. At the same time that each page is 
being processed, the swapper can resolve any special cases that existed when 
the process was outswapped. 

Selection of an Inswap Candidate 

As described in Section 17.2.1, the swapper selects a process for inswap, ex­
actly as the scheduler selects a candidate for execution. The following pro­
cesses may be potential candidates for inswap: 

• Newly created processes 
• Processes in some outswapped wait state that were just made computable 
• Processes that were outswapped while in the computable state 

The highest priority process in this collection is the one selected for 
inswap. 

Inswap of the Process Header 

If the PHD was outswapped, it must be brought back into memory before the 
process body can be reconstructed. Unlike the special operations that took 
place when the process was outswapped, an outswapped PHD merely adds 
two details to the inswap operation: 

• If the header is resident, the number of header pages is subtracted from the 
size of the outswap image in the swap file. That is, whether the header is 
resident determines the total number of blocks that must be read from the 
swap file and the virtual block number where the read should begin. 

• If the header was swapped, those process parameters that are tied to a spe­
cific balance slot (that is, specific system virtual or physical addresses) must 
be adjusted to reflect the new locations in virtual or physical address space. 
These include the following: 

-Each SPTE must be loaded with the PFN that contains the contents of 
each PHD page. 

-The virtual addresses of the PO and P 1 page tables must be calculated and 
loaded into their locations in the hardware PCB. 

-The physical address of the hardware PCB must be calculated and loaded 
into software PCB field PCB$L_PHYPCB. 



17.6.2.1 

17.6.2.2 

17.6 Inswap Operation 

-Finally, the Pl pages that double map the PHO pages that are not page 
table pages must be loaded with the new PFNs that contain these pages. 

Rebuilding the Process Header. When a PHO is read from the swap image 
into a new balance slot, the SPTEs that map each balance slot page must be 
loaded with the PFNs from the swapper map that contain each header page. 
In addition, the PFN database must be set up for each of these physical pages. 
The swapper does all this work in a very simple loop that it executes for each 
header page. 

The simplicity (and speed) of the loop results from the use of the two PHO 
page arrays in the PHO. These arrays enable the PFN BAK and WSLX arrays 
to be loaded with their previous contents (because their previous contents 
were copied to the two header arrays when the process was outswapped). 

To access these arrays, the swapper needs a virtual mapping to the PHO. It 
actually reads the PHO into its PO space, using the swapper 1/0 map. It then 
generates the appropriate PO address. 

Pl Window to the Process Header. All of the PHO pages except process page 
tables are double mapped with a range of Pl addresses. This double mapping 
is done because whenever a process is swapped out and then back in, its PHO 
may shift to a different balance set slot. The system space addresses of the 
PHO fields are thus not constant. No routine could safely store a PHO ad­
dress in a register, because the address could change between the storage and 
its use. To provide constant addresses for the PHO, the swapper sets up a 
second mapping in Pl space of the pages containing the PHO. The swapper 
keeps the Pl addresses constant across swaps. 

The conventions that the operating system observes about header refer­
ences are these: 

• Any process context reference to the PHO should use the P 1 address 
(CTL$GL_PHO contents point to the Pl map of the PHO). 

• Any reference to the system space header must execute at an IPL high 
enough to block rescheduling and thus swapping. 

• Any reference to process page tables must execute at IPL$_SYNCH because 
the page table pages are not double mapped. 

There are two implications for the operating system here: 

• These physical pages are not kept track of in any way through reference 
counts or any other technique. However, all of these header pages are a 
permanent part of the process working set. 

• The Pl page table page that maps these pages must also be a permanent 
member of the process working set. 

451 



The Swapper 

17.6.3 

17.6.3.1 

17.6.3.2 

452 

Rebuilding the Process Body 

The PHD must be put into a known state before the process body can be put 
back into the approximate shape it was in before the process was 
outswapped. If the header was never outswapped, there is very little that has 
to be done. If the header was outswapped, the steps previously described are 
taken to restore the PHD. 

Rebuilding the Working Set List and Process Page Tables. The rebuilding of 
the process body involves a simple scan of both the swapper map and the 
process WSL. Recall that at outswap, the key to each special case was the 
combination of physical page type and the setting of the valid bit in the PTE. 
On inswap, the key to each special case is the contents of the PTE located by 
the virtual address field in the WSLE. An approximation of swapper activity 
for each page is as follows: 

1. The PTE is located from the virtual address field of the WSLE. 
2. In the usual case, the original contents of the PTE are put into the PFN 

BAK array, and the PFN from the swapper map is loaded into the now 
valid PTE. 

3. If, for some reason, a copy of the page already exists in memory, then that 
page is put into the process working set. The duplicate page from the 
swapper map is released to the front of the free page list. 

If the virtual address field represents a system space address, then the 
WSLE describes a page in the PHD. The swapper must calculate the new 
system virtual address corresponding to that page and modify the WSLE. 

Table 17-5 contains a detailed list of the different cases that the swapper 
can encounter when rebuilding the process page tables. At inswap time, the 
swapper uses the contents of the PTE to determine what action to take for 
each particular page. Several cases deserve special comment. 

Pages with 1/0 in Progress when Outswap Occurred. Pages that had I/O in 
progress when the process was outswapped were written to the swap file 
anyway to reserve space. If the page was previously unmodified, then it 
would be put onto the free page list when both the swap write and the out­
standing write operation completed. If the page was previously modified, 
then it would be put onto the modified page list when both the swap write 
and the outstanding write operation completed (because the contents of the 
SWPVBN array were nonzero). 

In either case, it is possible for the process to be swapped back in before one 
of these physical pages was reused. The swapper uses the physical page that is 
already contained in the process PTE (as a transition page) and releases the 
duplicate physical page from the swapper map to the front of the free page 
list. , 



17.6.3.3 

17.6 Inswap Operation 

Table 17-5 Rebuilding the Working Set List and the Process Page Tables at Inswap 

Type of Page Table Entry 

PTE is valid. 

PTE indicates a transition page 
(probably because of outstanding I/O 
when process was outswapped). 

PTE contains a GPTX. (Page must be 
global read-only because global read/ 
write pages were dropped from the 
working set at outswap time.) 

PTE contains a page file index or a 
process section table index. 

Action of Swapper for This Page 

Page is locked into memory and was 
never outswapped. 

Fault transition page into process 
working set. Release duplicate page 
that was just swapped in. 

Swapper action is based on the contents 
of the GPTE: 

• If the GPTE is valid, copy the PFN in 
the GPTE to the process PTE and 
release the duplicate page. 

• If the GPTE indicates a transition 
page, make the GPTE valid, add that 
physical page to the process working 
set, and release the duplicate page. 

• If the GPTE indicates a GSTX, then 
keep the page just swapped in and 
make that the master page in the 
GPTE, as well as the slave page in the 
process PTE. 

These are the usual contents for a page 
that did not have outstanding I/O or 
other page references when the 
process was outswapped. 

The PFN in the swapper map is inserted 
into the process page table. The PFN 
arrays are initialized for that page. 

In the case of a page on the free page list, this decision is simply one of 
convenience. In the case of a page on the modified page list, the contents of 
the page in the swap image are out of date, and the swapper has no choice but 
to use the physical page that is already in memory. 

Resolution of Global Read-Only Pages. The only possible global page that 
could be in the swap file is a global read-only page that had a share count of 
1 when the process was outswapped (or a page that was explicitly locked). All 
other global pages were dropped from the process working set before the pro­
cess was outswapped. 

There are two different cases that the swapper will find when rebuilding 
the process page tables. In either case, the process PTE contains a GPTX so 
the determining factor is the contents of the GPTE. 

• The GPTE contains a GPTX. In this case, the PFN trom the swapper map is 

453 



The Swapper 

stored in the GPTE as well as in the process PTE. 
• It is possible that the global page was referenced by some other process 

while this process was outswapped. In that case, the GPTE might contain a 
transition or valid PTE. In either case, the PFN that is already in the GPTE 
is kept. (If the GPTE is in transition, it is made valid.) The duplicate PFN 
from the swapper map is released to the front of the free page list. 

17.6.3.4 Example of an Inswap Operation. To illustrate at least some of the special 
cases that the swapper encounters when a process body is swapped back into 
memory, Figures 17-4 through 17-6 contain an example of an inswap opera­
tion. Note that this example is not related to the outswap example used 
before (see Figures 17-1 to 17-3). This example is tailored to illustrate the 
interesting cases the swapper can encounter during an inswap operation. 

Figure 17-4 shows the state of the PHD after the process has been selected 

Process Header for 
Swapped Process WSLX PTE 

I BLINK I pteZ 

D gpteS 

Fixed Portion 
Working Set List 

vpn x GAO wsle 1 

vpn w PPG wsle2 I BLINK I 0 

vpn y GAO wsle3 
I BLINK I 0 

vpn z PPG wsle4 

Process Section 
Table, etc. 

PO Page Table 

pteW 

Global Page Table 

gpteS 

gpte T 

Figure 17-4 Working Set List and Swapper Map before 
Physical Page Allocation 

454 

PFN Database Arrays 

BAK 

pgllx 

gstx 

STATE TYPE other 

IEJD 

I B IGAol I SHACNT=31 

IEJD 

IEJD 

SWP$GLMAP:: w 
Swapper's 
l/OMap 

pin A 

pin B 

pin C 

pin D 



vpnW 

vpn X 

vpn Y 

vpn Z 

Process Header for 
Swapped Process 

Fixed Portion 
Working Set List 

vpn x GAO 

vpn w PPG 

vpn y GAO 

vpn z PPG 

Process Section 
Table, etc. 

PO Page Table 

0 pstx 

0 gptx (T) 

0 gptx(S) 

pin A 

P1 Page Table 

wsle 1 

wsle2 

wsle3 

wsle4 

pteW 

pteX 

pteY 

pte Z 

WSLX PTE 

I BLINK I pteZ 

D gpteS 

0 

0 

0 

17.6 lnswap Operation 

PFN Database Arrays 

BAK STATE TYPE other 

pgflx 11 free I D pin A 

~-gs_ix_~I B I GAO 11 SHACNT = 31 pin B 

.._____.I ~ D 
~' D 
~~l~D 

pin C 

pin D 

pin E 

0 ~~l~D pin F 

Global Paga Table 

gpte S valid, pin B 

gpte T gstx 

SWP$GL_MAP:: =t:J 
Swapper's 
l/OMap 

Figure 17-5 Working Set List and Swapper Map after 
Physical Page Allocation 

to be inswapped. Figure 17 -5 shows that four physical pages have been allo­
cated to contain the four working set pages that the example is describing. 
Figure 17-6 shows the rebuilt process page tables and the PFN database 
changes that result from rebuilding the working set and process page tables. 

l. The first WSLE locates virtual page number X. This PTE contains a GPTX. 
The referenced GPTE (gpte T) contains a GSTX, indicating that the GPTE 
is not valid. 

Pfn D is put into the process page table. It is also added to the global page 
database by making the GPTE valid (see Figure 17-6), putting pfn D into 
the GPTE and updating the PFN data for physical page D to reflect its new 
state. 

2. The next WSLE is a process page mapped by pte W (see Figure 17-5 ). This 
PTE contains a process section table index. The PTE is updated to contain 
pfn C, and the PSTX is stored in the BAK array element for that page (see 
Figure 17-6). Other PFN arrays are updated accordingly. 

455 



The Swapper 

vpn W 

vpn X 

vpn Y 

vpn Z 

Process Header for 
Swapped Process 

Fixed Portion 
Working Set List 

vpn x GRO 

vpn w PPG 

vpn y GRO 

vpn z PPG 

Process Section 
Table, etc. 

PO Page Table 

1 pfnC 

1. pfn o 

1 ptnB 

1 ·: pin A 

P1 Page Table 

wsle 1 

wsle 2 

wsle3 

wsle 4 

pteW 

pte X 

gpte S 

~teY 

gpte T 

pie Z 

WSLX PTE 

I WS!e 4 l I pteZ I I 
DI gpteS 

I I 

I W$re 2J I p111yv I f 
LJ I· gpte T :l f 
1~1Nkl I 0 

I I 
I at.~11 0 I I 

Global Page Table 

valid, pin B 

.' vatld, jlfn o • 

PFN Database Arrays 

BAK 

pgllx 

gstx 

,',',; 

Pl'IX•.· 

·g~; 

STATE TYPE other 

I B~ 
I B IGRol ts~li,~I 

I B ~ 
ii B [GR6J l~~T".'1.1 

I ~ D 
I . [8 D 

SWP$GL_MAP::w 

Swapper's 
1/0 Map 

pin A 

pin B 

pin C 

pin D 

pin E 

pin F 

Figure 17·6 Working Set List and Rebuilt Page Tables 

456 

3. The next WSLE (that locates pte Y) is exactly like the first, as far as the 
process data is concerned. However, the GPTE (gpte S) is valid, indicating 
that another copy of this page already exists. (This second copy could only 
have happened if another process faulted the page while this process was 
outswapped.) 

The duplicate page (pfn E) is released to the front of the free page list. 
The process PTE is updated to contain the physical page that already 
exists (pfn B) and the share count for that page is incremented (from 3 to 4). 

4. The fourth WSLE looks just like the se.cond. However, the process PTE 
indicates a transition page. (This implies that the header in this example 
was never outswapped.) 

The action taken here is similar to step 3, where a duplicate global page 
was discovered. The page just read (pfn F) is released to the head of the free 
list. The transition page (pfn A) is faulted back into the process working 
set by removing the page from the free list, setting its state to active, and 
turning the valid bit in the PTE back on. 



17.6.3.5 

17.6 Inswap Operation 

Final Processing of the lnswap Operation. After the WSL has been scanned 
and the process page tables rebuilt, the process is ready to have its state 
changed from COMO to COM. Several other scheduling actions must be 
completed before the scheduler is notified: 

1. A new value of ASTLVL is calculated and stored in the hardware PCB in 
the PHD. (ASTs may have been queued to the process while it was 
outswapped. The hardware PCB, which contains a copy of the ASTLVL 
register, was not available while the header was not resident.) 

2. The resident bit and the initial quantum bit in the status longword in the 
software PCB are set. 

3. A new quantum interval is loaded into the PHD. 
4. Finally, SCH$CHSEP is called to make the process computable. 

457 





PART V/Input/Output 





18 1/0 System Services 

Delay not Caesar. Read it instantly. 

fulius Caesar, 3, i 

Here is a letter, read it at your leisure. 

Merchant of Venice, 5, i 

All 1/0 operations performed on a device are requested using the 1/0 system 
services. The I/O system services also are called on behalf of a user by system 
components, such as Record Management Services (RMS). This chapter dis­
cusses the following topics: 

• The major components of the I/O subsystem 
• How an image reserves a particular device for exclusive use and relin­

quishes the device (device allocation and deallocation) 
• How an image creates a logical link to a device and deletes the logical link 

(channel assignment and deassignment) 
• How an image makes an 1/0 request 
• How an image is notified of the completion of an 1/0 request 
• How an image creates and deletes mailbox devices 
• How an image performs a breakthrough write to a terminal 
• How an image obtains information about a particular device 

This chapter assumes a knowledge of device naming conventions. For a 
detailed discussion of local and VAXcluster System device naming con­
ventions, refer to the Introduction to VAX/VMS and Guide to VAXcluster 
manuals. 

18.1 LOGICAL NAME TRANSLATION 

All of the system service routines discussed in this chapter that have a de­
vice-name argument accept a logical name instead of a device name. Each 
routine uses the same logic to process the device-name argument. 

Each system service routine attempts to translate the argument. If the ini­
tial attempt at translation is unsuccessful, the routine assumes that the argu­
ment specified a physical name, not a logical name, and concludes the logical 
name translation successfully. 

If the initial attempt at translation is successful, the system service routine 
does one of two things, depending on the nature of the equivalence string 
returned by the translation. If the equivalence string has the TERMINAL 

461 



110 System Services 

attribute, the routine concludes the logical naine translation successfully. 
The routine uses the equivalence string in place of the original argument. 

If the equivalence string does not have the TERMINAL attribute, the sys­
tem service routine attempts to translate the equivalence string until either 
an equivalence string that has the TERMINAL attribute is obtained or 
LNM$C_MAXDEPTH number of translations have been performed without 
producing an equivalence string with the TERMINAL attribute. (In VAX/ 
VMS Version 4, LNM$C_MAXDEPTH is 10.) 

If the system service routine terminates this iteration because an equiva­
lence string with the TERMINAL attribute is obtained, the routine concludes 
the logical name translation successfully. The routine uses the TERMINAL 
equivalence string in place of the original argument. 

If the system service routine terminates this iteration because LNM$C_ 
MAXDEPTH translations have been done without obtaining an equivalence 
string with the TERMINAL attribute, the routine terminates with the error 
status SS$_ TOOMANYLNM. 

The Create Mailbox and Assign Channel ($CREMBX) system service has 
an argument that specifies a logical name. This argument is subject to the 
same logical name translation described in this section. 

Logical names and logical name translation are discussed in Chapter 28. 
The VAX/VMS System Services Reference Manual discusses logical names in 
the context of the 1/0 system services. 

18.2 1/0 SUBSYSTEM COMPONENTS 

18.2.1 

462 

There are four major components of the 1/0 subsystem: I/O system services, 
device drivers, the I/O database, and ancillary control processes (ACP). The 
I/O system services are discussed in subsequent sections. A brief discussion 
of device drivers, the I/O database, and ACPs follows. 

Device Drivers 

A device driver controls I/O operations on a peripheral device by performing 
the following functions: 

• Defining the peripheral device for the rest of the operating system 
• Preparing a device unit and/or its controller for operation at system startup, 

during connection of the device via SYSGEN, and during recovery from a 
power failure 

• Performing device-dependent 1/0 preprocessing 
• Translating requests for 1/0 operations into device-specific commands 
• Activating a device unit 
• Responding to hardware interrupts generated by a device unit 
• Responding to device timeout conditions 



18.2.2 

18.2.2.1 

18.2.2.2 

18.2 110 Subsystem Components 

• Responding to requests to cancel 1/0 on a device unit 
• Reporting device errors to an error logging program 
• Returning status from a device unit to the process that requested the 1/0 

operation 

Driver Components 

Normally, a device driver module can consist of the routines and tables dis­
cussed in this section. 

Driver Tables. The three driver tables-driver prolog table, driver dispatch 
table, and function decision table-are defined in every driver. 

The driver prolog table (DPT) defines the identity and size of the driver to 
the system routine that loads the driver into virtual memory and creates the 
associated database. With the information provided in the DPT, the driver 
loading procedure can both load and reload the driver and perform the re­
quired 1/0 database initialization. 

The driver dispatch table (DDT) lists the addresses of the entry points of 
standard routines within the driver and records the size of the diagnostic and 
error log buffers for drivers that perform error logging. 

The function decision table (FDT) lists all valid function codes for the de­
vice and associates valid codes with the addresses of 1/0 preprocessing rou­
tines called FDT routines. The FDT consists of a series of entries. Each entry 
has a quadword mask. Each bit in the mask corresponds to a function code. 
(For example, bit 33 in a mask corresponds to function code 33.) The first 
entry consists of just a mask. This mask has bits set to indicate which func­
tions are legal for the associated device. The second entry also consists of just 
a mask. This mask has bits set to indicate which functions are buffered 1/0 
operations. The subsequent entries consist of a mask and the address of an 
FDT routine. The mask indicates which functions correspond to the associ­
ated FDT routine. FDT routines are discussed in Section 18.5.2. FDT routines 
are discussed in detail in the manual Writing a Device Driver for VAX/VMS. 

Driver Routines. ln addition to any FDT routines it may contain, a device 
driver generally contains both a start 1/0 routine and an interrupt service 
routine. 

The start 1/0 routine performs additional device-dependent tasks such as 
translating the 1/0 function code into a device-specific command, storing the 
details of the request in the device's unit control block (UCB) in the 1/0 
database and, if necessary, obtaining the access to controller and adapter re­
sources. Whenever the start 1/0 routine must wait for these resources to 
become available, VAX/VMS suspends the routine, reactivating it when the 
resources become available. 

463 



110 System Services . 

18.2.3 

18.2.3.1 

464 

The start 1/0 routine ultimately activates the device by suitably loading 
the device's registers. At this stage, the start 1/0 routine invokes a VAX/VMS 
macro that causes the routine's execution to be suspended until the device 
completes the 1/0 operation and posts an interrupt to the processor. The start 
1/0 routine remains suspended until the driver's interrupt service routine 
handles the interrupt. 

When a device posts an interrupt, its device driver's interrupt service rou­
tine determines whether the interrupt is expected or unexpected and takes 
appropriate action. If the interrupt is expected, the interrupt service routine 
reactivates the driver's start 1/0 routine at the point of suspension. The gen­
eral course of action of the start 1/0 routine is to perform device-dependent 
1/0 postprocessing and transfer control to VAX/VMS for device-independent 
1/0 postprocessing. 

The unit and controller initialization routines prepare a device or control­
ler for operation when the driver loading procedure loads the driver into 
memory and when VAX/VMS recovers from a power failure. 

The timeout handling routine retries the 1/0 operation and performs other 
error handling when a device fails to complete an operation within a reason­
able period of time. Chapter 11 discusses timeout handling in more detail. 

The cancel 1/0 routine handles requests to cancel 1/0 on a unit. It is called 
when an image issues a Cancel 1/0 on Channel ($CANCEL) system service 
for the unit, and when the device reference count for the unit goes to zero. 
Section 18.8 discusses cancel 1/0 routines in more detail. 

1/0 Database 

Because a device driver and the VAX/VMS executive cooperate to process an 
1/0 request, they must have a common and current source of information 
about the request. This is the function of the 1/0 database. Under VAX/VMS, 
the 1/0 database consists of three parts: 

• Driver tables that allow the system to load drivers, validate device func­
tions, and call drivers at their entry points (see Section 18.2.2) 

• Data structures that describe every 1/0 bus adapter, device type, device 
unit, controller, and logical path from a process to a device 

• 1/0 request packets (IRP) that define individual requests for 1/0 activity 

Illustrations of 1/0 database structures and detailed descriptions of their 
fields appear in the manual Writing a Device Driver for VAX/VMS. Figure 
18-1 illustrates some of the relationships among VAX/VMS 1/0 routines, the 
1/0 database, and a device driver. 

Data Structures. 1/0 database data structures describe peripheral hardware 
and are used by VAX/VMS to synchronize access to devices. VAX/VMS 



Process 
Control 
Block 

Describes 
Requesting 

Process 

1/0 
Request 

UCB Packet 
Describes Describes 

1/0 Device 

Request 

CCB 
Describes 

Logical Path 
to Device 

DOB for 
Device 
Type 

CAB 
Synchronizes 

Controller 

IDB 
Describes 
Controller 

18.2 

ADP 
Describes 

UBA 

Device 
Registers 

110 Subsystem Components 

DOT 
Locates Driver 

Driver 
FDT Routine 

Driver 
Start 1/0 Routine 

Driver 
Interrupt Servicing 

Routine 

Driver 
Controller Initialization 

Routine 

Figure 18·1 The VO Database 

creates these data structures either at system startup or when a driver is 
loaded into the system. · 

VAXNMS creates a UCB for each device unit attached to .the system. A 
UCB defines the characteristics and current state of an individual device 
unit. 

When a driver is suspended or interrupted, the UCB keeps the context of 
the driver in a set of fields collectively known as a fork block. (See Chapter 6 
for more detail about fork blocks and fork routines.) In addition, the UCB 
contains the listhead for the queue of pending IRPs for the unit. 

A device data block (DOB) contains information common to all devices of 
the same type that are connected to a particular controller. It records the 
generic device name concatenated with the controller designator (for exam· 
ple, LPA) and the name and location of the associated device driver. In ad­
dition, the DOB contains a pointer to the first UCB for the device units 
attached to the controller. 

The channel request block (CRB) defines the current state of a given con­
troller and lists the devices waiting for the controller's data channel. It also 

465 



110 System Services 

18.2.3.2 

466 

contains the code that dispatches a device interrupt to the interrupt service 
routine for that unit's driver. (See Chapter 5 for more information on device 
interrupts.) 

VAX/VMS also creates an interrupt dispatch block (IDB) for each control­
ler. An IDB lists the device units associated with a controller and points to 
the UCB of the device unit that the controller is currently serving. In addi­
tion, an IDB points to the device registers and the controller's I/O adapter. 

An adapter control block (ADP) defines the characteristics and current 
state of an I/O adapter, such as the VAX UNIBUS and MASSBUS adapters, 
and the MicroVAX Q22 bus interface. An ADP contains the queues and allo­
cation bit maps necessary to allocate adapter resources. VAX/VMS provides 
routines that drivers can call to interface with the appropriate adapter. 

A channel control block (CCB) describes the logical path between a process 
and the UCB of the specific device unit. Unlike the data structures men­
tioned earlier, CCBs are not located in nonpaged system space, but in the Pl 
space of each process. CCBs are discussed in more detail in Section 18.4.1. 

A window control block (WCB) describes the virtual to logical correspon­
dence for the virtual blocks in a file. The WCB is pointed to by the CCB. The 
WCB contains a base virtual block number and a variable number of map 
entries (controlled by the /WINDOWS = n qualifier to the DCL command 
INITIALIZE, by the SYSBOOT parameter ACP _WINDOW for disks 
mounted with the /SYSTEM qualifier, and by the FAB field RTV at file open 
time). The map entries form a subset of the file retrieval information for the 
file. Each map entry consists of an extent size and a starting logical block 
number (LBN). The map entries represent a virtually contiguous set of blocks 
that are not necessarily logically contiguous on the disk. 

Synchronizing Access to the 110 Database. There are three methods used to 
synchronize access to the I/O database: IPL, mutexes, and the lock manage­
ment system services. Chapter 2 discusses the use of IPL and mutexes for 
synchronization. Chapter 13 discusses resources, locks, and the lock manage­
ment system services. The manual Writing a Device Driver for VAX/VMS 
discusses the use of IPL for synchronization from the perspective of device 
drivers. 

The I/O database mutex, IOC$GL_MUTEX, is used to lock the I/O data­
base for either read or write access by process-based code. 

If the system is a member of a VAXcluster System, lock management sys­
tem services are used to synchronize access to the UCBs for devices that are 
cluster-available (DEV$V _CLU set in UCB$L_DEVCHAR2). The resource 
name is the string SYS$ concatenated with the allocation class device name. 
In this chapter, any reference to taking out a lock on a device means using 
lock management system services. 



18.2.3.3 

18.2.4 

18.3 Device Allocation and Deallocation 

1/0 Request Packets. The third part of the 1/0 database is a set of IRPs. When 
a process requests 1/0 activity, VAX/VMS constructs an IRP that describes 
the I/O request in a standard format. The IRP contains fields into which 
system and driver I/O preprocessing can write information. For instance, the 
device-dependent arguments specified inthe Queue I/O Request ($QIO) sys­
tem service call are placed in the IRP. The IRP also includes buffer addresses, 
a pointer to the UCB for the target device, and the 1/0 function codes. 

Ancillary Control Processes 

An ACP is a process that assists device drivers in processing 1/0 requests. 
ACPs perform functions that are device-independent, such as opening files 
and establishing a network link. VAX/VMS provides the following ACPs: 

• Fl lAACP-Files-11 structure level 1 ACP 
• MTAAACP-Magnetic tape ACP 
• NETACP-DECnet-VAX ACP 
• REMACP-Remote terminal ACP 

For VAX/VMS Version 4, the Files-11 structure level 2 ACP, FllBACP, was 
converted to the Extended QIO Processor (XQP), Fl lBXQP. Unlike an ACP, 
the XQP runs in the context of the process making the I/O request. For pur­
poses of this chapter, there is no essential difference between ACPs and the 
XQP. Any reference to ACPs is equally applicable to the XQP unless stated 
otherwise. 

18.3 DEVICE ALLOCATION AND DEALLOCATION 

18.3.1 

The Allocate Device ($ALLOC) system service allocates a device for exclu­
sive use by a process and its subprocesses. No other processes can allocate the 
device or assign channels to it until the image that invoked $ALLOC exits or 
explicitly deallocates the device with the Deallocate Device ($DALLOC) 
system service. Their system service procedures, EXE$ALLOC and 
EXE$DALLOC in module SYSDEVALC, run in kernel mode. 

There are two exceptions to the restriction just stated. SHARE privilege, 
which is new in VAX/VMS Version 4, allows a process to assign a channel to 
a device that is allocated to another process. Processes that are subprocesses 
of the process that allocated the device can assign channels to the device. 

Explicit and Implicit Device Allocation 

There are two forms of device allocation, explicit and implicit. In both cases, 
the process ID of the process that allocated the device is stored in the UCB 

467 



IIO System Services 

18.3.2 

468 

device owner field, UCB$L_PID. In the case of explicit allocation, the device 
allocated bit (DEV$V _ALL in UCB$L_DEVCHAR) is set. In the case of im­
plicit device allocation, this bit is clear. In the case of explicit allocation, the 
device reference count (UCB$W _REFC) is incremented. In the case of im­
plicit allocation, the device reference count is not changed. 

The system services $ALLOC and $DALLOC explicitly allocate and deal­
locate a device. A device can be explicitly deallocated only if it has been 
explicitly allocated. 

The Assign 1/0 Channel ($ASSIGN) system service and the Deassign 1/0 
Channel ($DASSGN) system service perform implicit allocation and de­
allocation if the device has not been explicitly allocated, it is not share­
able (DEV$V _SHR in UCB$L_DEVCHAR is clear), and it is not cluster­
available. 

Allocate Device System Service 

The $ALLOC system service has five arguments: 

• The device to allocate, DEVNAM. 

• The PHYBUF argument specifies where $ALLOC should return the name of 
the device. 

• The PHYLEN argument specifies where $ALLOC should return the length of 
the device name. 

• The access mode to be associated with the device, ACMODE. 

• The FLAGS argument contains only one flag, the low bit. When set, the low 
bit indicates that any device of a particular type can be allocated, not just a 
specific device. 

Only the DEVNAM argument is required. 
EXE$ALLOC takes the following steps to allocate a device: 

1. It locks the 1/0 database mutex for write access. 
2. It verifies that the DEVNAM argument's string descriptor and string buffer 

are read accessible. 
3. It invokes IOC$SEARCH (in module IOSUBPAGD) to locate a suitable 

device. If the FLAGS argument is not specified or is zero, EXE$ALLOC re­
quests IOC$SEARCH to search for the exact device specified by the 
DEVNAM argument. If the FLAGS argument is 1, EXE$ALLOC requests 
IOC$SEARCH to search for the first available device having the type 
specified by the DEVNAM argument. 

IOC$SEARCH translates the DEVNAM argument, as specified in Section 
18.1. It then searches the 1/0 database for either the specific device or one 
of the particular type. IOC$SEARCH and routines it invokes verify the 
suitability of the device and its accessibility to this process. 



18.3.3 

18.3 Device Allocation and Deallocation 

If the appropriate device is found, IOC$SEARCH checks that the pro­
cess has access to the device. If the system is a member of a VAXcluster 
System and the device is cluster-available, IOC$SEARCH invokes 
IOC$LOCK_DEV (in module IOSUBPAGD). IOC$LOCK_DEV in­
vokes the Enqueue Lock Request l$ENQ) system service to queue an ex­
clusive mode lock on the device. (This defines the device as a cluster­
available resource.) IOC$LOCK_DEV then stores the lock ID in 
UCB$L_LOCKID. 

4. EXE$ALLOC returns the translated device name if the PHYLEN and PHYBUF 

arguments are specified, the descriptor is readable, and the buffer is 
writable. 

5~ It sets the device-allocated bit. 
6. It maximizes the ACMODE argument with the access mode of the caller 

and stores the result in UCB$B_AMOD. 
7. It increments the device reference count. 
8. It copies the process ID, PCB$L_PID, to the UCB device owner field. 
9. It releases the 1/0 database mutex. 

The device cannot be allocated if any one of the following conditions is 
true: 

• The device is already allocated by another process IUCB$L_PID is nonzero). 
• The device reference count is nonzero. 
• A volume is mounted on the device. 
• The device is spooled (DEV$V _SPL in UCB$L_DEVCHAR is set), and the 

process does not have ALLSPOOL privilege. 
• The requesting process does not .have access rights to allocate the device, 

based on the device owner's UIC (UCB$L_OWNUIC), device protection 
IUCB$W _PROT), and access control list IACL). 

•.The device is not available (DEV$V _AVL in UCB$L_DEVCHAR is clear) or 
not online (UCB$V _ONLINE in UCB$L_STS is clear). 

•The device is a template device (UCB$V _TEMPLATE in UCB$W _STS is 
set). 

• The device is cluster-available and a conflicting lock exists elsewhere in the 
V AXcluster System. 

Deallocate Device System Service 

An image can deallocate a single device or all devices allocated to the process 
by invoking the $DALLOC system service. $DALLOC has two optional 
arguments: 

• The DEVNAM argument specifies the device to be deallocated. If the DEVNAM 

argum,ent is specified, it must translate to a physical device name. If the 

469 



110 System Services 

470 

DEVNAM argument is not specified, all devices allocated by the process from 
access modes equal to or less privileged than that specified by the DEVNAM 

argument are deallocated. 
• The ACMODE argument specifies the access mode on behalf of which the 

deallocation is to be performed. The ACMODE argument is maximized with 
the access mode of the caller. 

EXE$DALLOC performs the following steps: 

1. It locks the I/O database mutex for write access. 
2. It maximizes the ACMODE argument with the access mode of the caller. 
3. It determines if the DEVNAM argument is present. If the argument is pres­

ent, EXE$DALLOC invokes IOC$SEARCHDEV (in module IOSUBPAGD) 
to locate the specified device. If the argument is absent, EXE$DALLOC 
invokes IOC$SCAN_IODB (in module IOSUBNPAG) to find the first 
UCB in the I/O database. 

4. In either case, EXE$DALLOC makes the following checks before de­
allocating the device. 

-The UCB$L_PID field must match the PCB$L_PID field of the process 
issuing the $DALLOC request. 

-The access mode in UCB$B_AMOD must be greater than or equal to 
the access mode computed in step 2. 

-The device must be explicitly allocated. 
-The device must not be mounted (DEV$V _MNT in UCB$L_DEV-
CHAR is clear). 

5. EXE$DALLOC deallocates the device by invoking IOC$DALLOC_DEV 
(in module IOSUBPAGD). IOC$DALLOC_DEV takes the following steps: 

a. It clears the device allocated bit. 
b. If the device is shareable, it clears the device owner field. 
c. It decrements the device reference count .. 
d. If the reference count is now zero, EXE$DALLOC_DEV invokes 

IOC$LAST _CHAN, which performs last channel processing. Last 
channel processing is discussed in Section 18.4.4. 

e. IOC$DALLOC_DEV invokes IOC$UNLOCK_DEV (in module 
IOSUBPAGD) to deal with the resource lock on the device. IOC$UN­
LOCK_DEV tests UCB$L_LOCKID to determine whether there is a 
lock, and the device reference count to determine whether there are 
still channels assigned to the device. If there is no lock, the routine 
returns. Otherwise, if there are still channels assigned to the device, the 
routine invokes the $ENQ system service to convert the lock to con­
current read mode. If there are no channels assigned to the device, the 
routine invokes the Dequeue Lock Request ($DEQ) system service to 
dequeue the lock. 



18.4 Assigning and Deassigning Channels 

6. If the DEVNAM argument is not present, EXE$DALLOC goes back to step 3 
to get the next UCB in the I/O database. When no more UCBs are found, 
EXE$DALLOC unlocks the I/O database mutex and returns. 

If the DEVNAM argument is present, EXE$DALLOC unlocks the 1/0 
database mutex and returns. 

18.4 ASSIGNING AND DEASSIGNING CHANNELS 

18.4.1 

To request an I/O operation on a device, an image must identify the device to 
the system. The software mechanism used to link a process to a device is 
called a channel. A channel to a device is established through the $ASSIGN 
system service. The image can then issue 1/0 requests to that device by speci­
fying the channel number assigned to the device. An I/O request is made 
through the $QIO system service. When the image no longer wants to use the 
device, it invokes the $DASSGN system service to break the link between 
the process and the device. 

Channel Control Block 

A channel is described by a process-specific data structure called a CCB. A 
process's CCBs are contained in a table located in its Pl space (see Figure 1-7 
and Table F-5). The global location CTL$GL_CCBBASE contains the address 
of the table's high address end. The table is accessed using negative byte 
displacements. That is, a particular CCB is identified by its displacement 
from the contents of CTL$GL_CCBBASE. The number of CCBs in the table 
is determined by the SYSBOOT parameter CHANNELCNT; its value is 
stored in CTL$GW _NMIOCH. 

Figure 18-2 shows the layout of a CCB. The field CCB$B_AMOD contains 
zero if the channel is unassigned. Otherwise, it identifies the access mode 
from which the channel was assigned, containing the access mode biased by 
1. For example, the value 1 indicates the channel was assigned from kernel 
mode. CCB$L_ UCB contains the address of the UCB of the device to which 
the channel is assigned. If a file has been opened on the channel, 
CCB$L_ WIND contains the address of its WCB. (If the file is associated with 
a process section, CCB$L_ WIND contains the process section index.) 

CCB$LUCB 

CCB$LWIND 

CCB$W_IOC I CCB$B_AMOD I CCB$B_STS 

CCB$LDIRP 

Figure 18-2 Layout of Channel Control Block 

471 



IIO System Services 

18.4.2 

18.4.2.1 

472 

CCB$B_STS contains several status bits. 
Any comparison of the CCB$B_AMOD with an access mode value must be 

a signed comparison. The XQP reserves a channel for itself by storing -1 in 
CCB$B_AMOD when the XQP is not actively using the channel. As a result, 
any access mode value will be greater than the value in CCB$B_AMOD if a 
signed comparison is made. The XQP takes this step to prevent the channel 
from being deassigned when the XQP is not actively using the channel. When 
the XQP wants to actively use the channel, it modifies the CCB to make the 
channel look like a normal kernel mode channel to the device of the XQP's 
choice. 

The field CCB$W _IOC indicates how many I/O requests are outstanding 
on the channel. The field CCB$L_DIRP contains an unnamed flag in the low 
bit that is set to indicate an outstanding access (open) or a deaccess (close) 
request on this channel. If the deaccess request is pending, waiting for all 
other outstanding I/O requests to be completed, CCB$L_DIRP contains the 
address of the IRP that describes the deaccess request ORed with 1. 

Assign 1/0 Channel System Service 

The $ASSIGN system service has four arguments; the first two are required, 
and the last two are optional: 

• The name of the device to which to assign the channel, DEVNAM. 

• The address of the word in which to store the assigned channel number, 
CHAN. 

• The access mode to be associated with the channel, ACMODE. 

• The name of the mailbox to be associated with the channel, MBXNAM. (An 
image associates a mailbox with a nonshareable device to receive status 
information, such as the arrival of unsolicited input from a terminal. The 
device driver for the device either uses or ignores this associated mailbox.) 

The $ASSIGN system service procedure, EXE$ASSIGN in module 
SYSASSIGN, runs in kernel mode. There are two major paths through 
EXE$ASSIGN. The first path handles assignment to a local device. The 
second path handles assignment to a remote device. Both paths have the 
same initial steps. 

Common Initial Steps. EXE$ASSIGN performs the following steps for both 
local and remote device assignment: 

1. It verifies that the CHAN argument is write accessible. 
2. If the MBXNAM argument is specified, EXE$ASSIGN verifies that it is read 

accessible and names an existing mailbox. 
3. It verifies that the DEVNAM argument is read accessible. 
4. It verifies that the ACMODE is read accessible and maximizes the argument 



18.4.2.2 

18.4 Assigning and Deassigning Channels 

with the access mode of the caller. 
5. It invokes IOC$FFCHAN (in module IOSUBPAGD) to find a free CCB. 

IOC$FFCHAN begins its search for a free CCB at the high address end of 
the CCB table. It examines offset CCB$B_AMOD to determine whether 
the CCB is free. If the CCB is in use, IOC$FFCHAN examines the previous 
CCB, repeating its test. This sequence continues until IOC$FFCHAN lo­
cates a free CCB or comes to the end of the table. 

If no free CCB is located, IOC$FFCHAN returns the error status 
SS$_NOIOCHN. If IOC$FFCHAN locates a CCB, it returns the address of 
the free CCB and a positive index that is the offset into the CCB table. 
This index is the channel number returned from the system service 
request. 

6. EXE$ASSIGN locks the 1/0 database mutex for write access. 
7. If the MBXNAM argument was specified, EXE$ASSIGN invokes 

IOC$SEARCHDEV to search the 1/0 database to locate the device speci­
fied in the MBXNAM argument. IOC$SEARCHDEV returns the address of 
the mailbox UCB. 

8. EXE$ASSIGN invokes IOC$SEARCH to locate the device whose name 
was specified in the DEVNAM argument. If the device name is a logical 
name, IOC$SEARCH performs logical name translation of the DEVNAM 

argument as described in Section 18.1. It then scans the 1/0 database for a 
device with the name that was the result of the logical name translation. If 
IOC$SEARCH locates the device in the 1/0 database, it returns the ad­
dress of the device's UCB. 

At this point, the two major paths through EXE$ASSIGN diverge. The cri­
teria used by IOC$SEARCH to distinguish between remote and local devices 
is the presence or absence of a node delimiter(::) in the device name. (If the 
device is remote, IOC$SEARCH returns the error status SS$_NONLOCAL.) 
The local device path is discussed in Section 18.4.2.2. The remote device path 
is discussed in Section 18.4.2.3. The two paths do not converge. 

Local Device Assignment. EXE$ASSIGN distinguishes between two types 
of local devices, template and nontemplate. Template devices have 
UCB$V _TEMPLATE in UCB$L_STS set; nontemplate devices have this bit 
clear. The beginning and end of the local device assignment path are common 
to both types of local devices. 

• If the UCB is a redirected UCB (DEV$V _RED in UCB$L_DEVCHAR2 is 
set), EXE$ASSIGN replaces the original UCB address with the address of 
the logical UCB by using the value in field UCB$L_ TT _LOGUCB of the 
original UCB. This mechanism connects a physical terminal to its virtual 
terminal. Only terminal UCBs can be redirected. 

• If the device is set spooled, EXE$ASSIGN skips the test for a template 
device. 

473 



110 System Services 

18.4.2.2.1 

18.4.2.2.2 

474 

Nontemplate Device Processing. Nontemplate device processing is the typi­
cal case. Most local devices are nontemplate devices. Devices that are 
cluster-available are considered local, nontemplate devices as far as 
EXE$ASSIGN is concerned. 

• If the device is nonshareable and allocated (UCB$L_PID is nonzero), one of 
the following two conditions must be true: 

-The requesting process is the owner of the device or is a descendant of the 
owner process. 

-The requesting process has the SHARE privilege and the volume protec­
tion and owner UIC allow access. 

• If the device is not allocated, EXE$ASSIGN implicitly allocates it to the 
process by storing the process ID into UCB$L_PID. This can happen only 
for devices that are not cluster-available. 

The rest of the steps EXE$ASSIGN takes are common to the template and 
nontemplate cases. 

Template Device Processing. If the device is a template device, EXE$ASSIGN 
does not assign the channel to that device (the template device). It creates a 
new UCB (the cloned UCB) using the template UCB as a template (hence the 
name) and assigns the channel to the cloned UCB. The cloned UCB will have 
a unique unit number. EXE$ASSIGN accomplishes this as follows: 

1. If the template device is a network device, EXE$ASSIGN verifies that the 
calling process has NETMBX privilege. 

2. EXE$ASSIGN invokes IOC$CHKUCBQUOTA (in module UCBCREDEL) 
to verify that the process has sufficient BYTLM quota (at least the sum of 
the following): 

-The size of the template UCB 
-The size of an object rights block (ORB) 
-256 bytes left to satisfy process deletion needs 

3. It invokes IOC$CLONE_UCB (in module UCBCREDEL) to create the 
cloned UCB and an ORB. 

IOC$CLONE_UCB makes several modifications to the cloned UCB 
once it creates the cloned UCB. The following modifications are of inter­
est here: 

-Set the reference count to 1. 
-Mark the unit online. 
-Clear the template bit. 
-Store the sum of the size of the UCB and the size of the ORB in 

UCB$W _CHARGE. 



18.4.2.2.3 

18.4 Assigning and Deassigning Channels 

-Give the UCB a unique unit number between I and 9999. (If all of these 
units already exist, the cloning and thus the $ASSIGN fail.) 

-Link the UCB into the UCB chain of the related DDB. 

4. EXE$ASSIGN stores the current process's UIC (PCB$L_ UIC) in the ORB 
owner field (ORB$L_OWNER). The object in this case is the UCB. At this 
point, the owner field of the cloned UCB is still clear. 

5. It sets UCB$V _DELETEUCB in UCB$L_STS to mark the cloned UCB for 
deletion when the reference count goes to zero. 

6. If the template UCB is a mailbox UCB (DEV$V _MBX in UCB$L_DEV­
CHAR is set), EXE$ASSIGN sets the mailbox delete bit (UCB$V _ 
DELMBX in UCB$W _DEVSTS). This is done because special steps are 
required to delete a mailbox UCB. 

7. EXE$ASSIGN reduces the process's byte count quota and limit by the 
value stored in UCB$W _CHARGE by IOC$CLONE_ UCB. Both are de­
creased by the charge to prevent infinite asynchronous system trap (AST) 
waits. 

EXE$BUFFRQUOTA and EXE$BUFFQUOPRC test and charge both val­
ues. If a process does not have sufficient byte count but does have suffi­
cient byte limit, these routines will place the process in an AST wait, if 
the process has system service resource wait mode enabled. The objective 
is to wait until an 1/0 completion AST has increased the byte count as a 
result of 1/0 completion. Since the amount charged by EXE$ASSIGN will 
not be restored until the UCB is deleted, the process has effectively had its 
byte limit reduced by the amount of the charge. EXE$ASSIGN decrements 
the byte limit as well to reflect this fact. 

8. EXE$ASSIGN invokes the driver at entry point DDT$L_CLONEUCB. 
EXE$ASSIGN passes the driver the address of the template UCB as well 

as the address of the cloned UCB. The driver can perform any additional 
checks necessary. If the driver returns any error status, the process of clon­
ing the UCB is undone and the $ASSIGN completes with failure. 

The driver's cloned UCB routine runs in the context of the process that 
invoked the $ASSIGN system service at IPL$_ASTDEL (IPL 2) because 
the 1/0 database mutex is owned by the process. 

9. If the device is not shareable, EXE$ASSIGN copies the process's PID to 
UCB$L_PID. 

The rest of the steps EXE$ASSIGN takes are common to the template and 
nontemplate cases. 

Local Device Final Processing. At this point, EXE$ASSIGN has found a free 
channel, verified the existence of the device (creating the UCB in the case of 
a template device), and verified that the process has access to the device. It 

475 



IIO System Services 

18.4.2.3 

476 

completes the assignment of an 1/0 channel to a local device in the following 
steps: 

1. If an associated mailbox was requested, EXE$ASSIGN stores the address of 
the associated mailbox UCB in the UCB$L_AMB field of the UCB to 
which the channel is being assigned. It increments the reference count in 
the associated mailbox UCB and sets CCB$V _AMB in R6 to indicate that 
there is an associated mailbox. 

No association can be made if any of the following is true: 

-The device is a file-oriented device (DEV$V _FOD in UCB$L_DEV­
CHAR is set). 

-The device is shareable. 
-The device already has an associated mailbox (UCB$L_AMB is non-

zero), and the MBXNAM argument specifies a different mailbox. 

2. If appropriate, it invokes IOC$LOCK_DEV to define the device as a 
cluster-available resource and queue a concurrent read mode lock on it. 
The following conditions must all be met for EXE$ASSIGN to take this 
action: 

-The device reference count is zero. 
-The system is an active member of a VAXcluster System. 
-The device is cluster-available. 

3. It copies the device's UCB address to CCB$L_ UCB. 
4. It increments the device reference count. 
5. It stores the access mode biased by 1 in CCB$B_AMOD. The access mode 

specified by the ACMODE argument was maximized with the access mode 
of the caller. 

6. It stores R6 in CCB$B_STS. (The only bit that may be set as a result of this 
step is CCB$V _AMB.) 

7. It unlocks the I/O database mutex. 
8. It writes the channel number (the index into the CCB table) in the word 

specified by CHAN argument. 
9. It returns to the caller with the success status SS$_NORMAL. 

Assigning a Channel to a Remote Device. If the device is a remote device (the 
device name contains"::"), EXE$ASSIGN performs the first step in transpar­
ent network communication, converting the transparent network communi­
cation into the related nontransparent network communication. Transparent 
and nontransparent network communication are described in the VAX/VMS 
Networking Manual. This section assumes familiarity with transparent and 
nontransparent network communication. 



18.4 Assigning and Deassigning Channels 

1. EXE$ASSIGN unlocks the I/O database mutex and lowers IPL to 0. It 
takes these steps because it will invoke the $ASSIGN system service. This 
can be done only at IPL 0. When it is invoked as a result of this second 
$ASSIGN, it will try to lock the 1/0 database mutex for write access. If it 
did not unlock the I/O database mutex before requesting the $ASSIGN 
system service, the system would become deadlocked. 

2. It allocates a kernel request packet (KRP). (See Chapter 3 for a description 
of KRPs.) It uses the KRP as the data area for logical name translation. 

3. It verifies that the remote device name descriptor is accessible and the 
string is the proper length. 

4. It translates the DEVNAM argument, as discussed in Section 18.1. This step 
is a repetition of the logical name translation done at the beginning of 
EXE$ASSIGN. It is done again because the result of the earlier translation 
was not saved. 

The result of this step should be a network connect block suitable for 
use in an outbound connection request operation. EXE$ASSIGN makes no 
attempt to ensure that the result of this step is in the proper format. If the 
result is not in the proper format, an error will be returned when the con­
nection is attempted in the next step. 

5. It invokes the $ASSIGN system service with the following items in the 
argument list: 

-The DEVNAM argument is the network device name, _NET. 
-The CHAN argument is a stack location to temporarily hold the assigned 

channel number. 
-The ACMODE argument is the ACMODE argument of the original 

$ASSIGN maximized with the access mode of the caller. 
-The MBXNAM argument is the same argument passed in the original 

$ASSIGN system service request. 

6. It invokes the $QIOW system service to establish a connection to the 
remote device: 

-The function code is IO$_ACCESS ORed with IO$M_ACCESS. 
-The event flag is EXE$C_SYSEFN. 
-The channel number is the one returned by $ASSIGN in the previous 

step. 
-The network connect block is the result of translating the original 

DEVNAM argument. 

7. It writes the channel number obtained as a result of the original $ASSIGN 
system service call in the word specified by the CHAN argument of the 
original $ASSIGN system service call. 

8. The system service returns to the caller with the success status 
SS$_ REMOTE. 

477 



110 System Services 

18.4.3 

478 

Deassign 1/0 Channel System Service 

The $DASSGN system service deassigns a previously assigned I/O channel 
and clears the linkage and control information in the corresponding CCB, 
freeing the CCB for reuse. $DASSGN has only one argument, the CHAN argu­
ment, which specifies the channel to be deassigned. The channel can be deas­
signed only from the same mode from which it was allocated or from a more 
privileged access mode. 

The $DASSGN system service routine, EXE$DASSGN in module SYS­
DASSGN, runs in kernel mode. It takes the following steps: 

1. It invokes IOC$VERIFYCHAN (in module IOSUBPAGD). IOC$VER­
IFYCHAN performs the following steps: 

a. It verifies that the channel is a legal channel for the process: there 
must be at least one channel assigned (CTL$GW _NMIOCH is non­
zero), and the channel in question must be assigned. 

b. It verifies that the channel was assigned from an access mode at least 
as privileged as the access mode from which it is to be deassigned 
(CCB$B_AMOD must be greater than or equal to the PSL previous 
mode field). 

c. It returns the address and the index of the CCB for the channel. 

2. It invokes EXE$CANCELN with a reason code of CAN$C_DASSGN 
(channel is being deassigned) to cancel all outstanding I/O on the chan­
nel. EXE$CANCELN is an entry point in the $CANCEL system service 
routine, which is discussed in Section 18.8. 

3. It invokes IOC$VERIFYCHAN again. This is because the cancel 1/0 op­
eration could have activated a kernel mode AST routine that did another 
$DASSGN. 

4. If a file is open on the channel (CCB$L_ WIND is nonzero), 
EXE$DASSGN invokes the $QIOW system service to close the file. (The 
function code is I0$_DEACCESS; the event flag is number 30. Event flag 
30 is used to avoid conflict with the use of event flag 31 by $CANCEL.) A 
network logical link appears to be a file; the $QIOW dissolves the link. 

5. If any 1/0 is still outstanding (indicated by CCB$W _IOC being nonzero), 
EXE$DASSGN waits for the 1/0 completion ASTs to occur. (110 comple­
tion ASTs are discussed in Section 18.7.3. Chapter 7 discusses ASTs in 
more detail.) This is done in one of two ways: 

-If there is a kernel mode AST pending (the AST level register is zero), 
EXE$DASSGN lowers IPL to 0 to allow it to be delivered. 
EXE$DASSGN lowers IPL by pushing the address of step 4 onto the 
stack and executing an REI instruction, because only the REI instruc­
tion causes AST delivery interrupts to be requested. (EXE$DASSGN 



18.4.4 

18.4 Assigning and Deassigning Channels 

pushes a PSL onto the stack as part of the check for a pending kernel 
mode AST.) 

-If there is no kernel mode AST pending (the AST level register is non­
zero), EXE$DASSGN invokes SCH$RWAIT (in module MUTEX) to 
place the process in an AST wait state to wait for the 1/0 completion 
ASTs to be delivered. Chapter 10 discusses wait states in detail. 

6. It locks the 1/0 database mutex for write access. 
7. It clears CCB$B_AMOD. 
8. If there is an associated mailbox (CCB$V _AMB in CCB$B_STS is set), 

EXE$DASSGN disassociates the mailbox by taking the following steps: 

a. It clears UCB$L_AMB in the device UCB. 
b. It decrements the reference count in the mailbox UCB. 
c. If the mailbox reference count is now zero, EXE$DASSGN invokes 

IOC$LAST _CHAN _AMBX to perform last channel processing for an 
associated mailbox. Last channel processing is discussed in Section 
18.4.4. 

9. It decrements the reference count in the device UCB. 
10. If the device reference count is now zero, EXE$DASSGN clears the de­

vice owner field, which deallocates the device. (Note that the device ref­
erence count will be zero only if the allocation was implicit, not explicit. 
If the allocation was explicit, the device reference count will still be non­
zero.) 

Also, if the reference count is now zero and the device is cluster-avail­
able, EXE$DASSGN invokes IOC$UNLOCK_DEV to remove the device 
lock. 

11. If the device reference count is 1 and the device has been explicitly allo­
cated, EXE$DASSGN invokes IOC$LAST _CHAN to perform last chan­
nel processing. Last channel processing is discussed in Section 18.4.4. 

12. It unlocks the 1/0 database mutex and exits with success status 
SS$_NORMAL. 

Last Channel Processing 

EXE$DASSGN performs last channel processing when the last channel to a 
device is deassigned. There are two circumstances under which this process­
ing will occur: 

• If the device reference count goes to zero, the device is not explicitly 
allocated. 

• If the device reference count goes to 1 and the device allocated bit is set, the 
device is explicitly allocated-the one outstanding reference to the device 
is the explicit allocation. 

479 



l/O System Services 

Last channel processing is performed by IOC$LAST _CHAN (in 
module IOSUBNPAG). IOC$LAST _CHAN has two entry points, 
IOC$LAST _CHAN and IOC$LAST _CHAN_AMBXDGN. The latter rou­
tine is called when the device is an associated mailbox; the former routine is 
called in all other cases. They differ only in their initial steps: 

• IOC$LAST _CHAN is called with the UCB address in RS and the channel 
index in R2. The UCB address in this case is the UCB of the device assigned 
to the channel. IOC$LAST _CHAN loads the address of the current IRP 
(contained in UCB$L_IRP) in R3. It loads the reason code CAN$C_ 
DASSGN in RS. · 

• IOC$LAST_CHAN_AMBXDGN is called with the UCB address in RS. 
The UCB in this case is the mailbox UCB, not the UCB of the device as­
signed to the channel. IOC$LAST_CHAN_AMBXDGN clears R2 and R3. 
It loads the reason code CAN$C_AMBXDGN in RS. (The channel is not 
assigned to the mailbox and is not needed by the mailbox driver. The cur­
rent IRP is also not needed by the mailbox driver.) 

At this point, IOC$LAST _CHAN and IOC$LAST _CHAN _AMBXDGN 
converge. The steps of this path are as follows: 

1. It raises IPL to UCB$B_DIPL. This is to synchronize access to the UCB. 
2. It invokes the device driver's cancel 1/0 routine with the registers set as 

indicated previously. 
3. It lowers IPL to IPL$_ASTDEL. This is to prevent process deletion. 
4. It tests whether the device is explicitly allocated. If it is, the routine re­

turns to its caller. 
S. The routine tests whether the device is a terminal or mailbox. If it is, the 

routine clears DEV$V _QPR in UCB$L_DEVCHAR, which disables the 
device as an operator terminal. 

6. It tes.ts whether UCB$V _OELETEUCB in UCB$L_STS is set. If this bit is 
set, the routine takes the following two steps: 

a. It invokes IOC$CREDIT _UCB (in module UCBCREDEL) to return the 
quota charged against the process's byte count and byte limit. 

b. It invokes IOC$DELETE_ UCB (in module UCBCREDEL) to delete the 
UCB and the associated ORB. 

7. The routine returns to its caller. 

18.5 $QIO SYSTEM SERVICE 

480 

The $QIOIW] system service queues an 1/0 request to the device driver for 
the device associated with a channel. The $QIO system service routine, 
EXE$QIO in module SYSQIOREQ, runs in kernel mode. EXE$QIO performs 
device-independent preprocessing and, via FDT routines; device-dependent 



18.5.1 

18.5 $QIO System Service 

preprocessing. Once the FDT routines have completed, EXE$QIO has com­
pleted. Any additional work to be done will be performed by the device driv­
er's start 1/0 routine. 

$QIO has the following arguments: 

• The number of the event flag to be associated with the 1/0 request, EFN. 

Since this argument is passed by value, omitting the argument is the same 
as specifying event flag zero. 

• The number of the 1/0 channel, CHAN. This is the same as the CHAN argu­
ment returned by the $ASSIGN system service. 

• The function code, FUNC. This identifies what operation is to be performed 
by the device driver. The FUNC argument is divided into two portions, the 
function code proper and function modifiers. In the following discussion, 
"function code" means just the function code proper. The term FUNC means 
the entire argument. EXE$QIO does not perform any processing on the 
function code modifiers. See the VAX/VMS System Services Reference 
Manual for a detailed description of the FUNC argument. 

• The address of the 1/0 status block (IOSB), IOSB. The IOSB is a quadword to 
receive final status of the 1/0 operation. See the VAX/VMS System Services 
Reference Manual for a detailed description of the format of the IOSB. 

• The address of an AST routine to be executed when the 1/0 operation com­
pletes, ASTADR. 

• The AST parameter to be passed to the routine specified by the ASTADR 

argument, ASTPRM. 

• Six optional device and function-specific parameters, Pl through P6. 

The CHAN and FUNC arguments must be specified. All other arguments are 
optional. Any argument not specified defaults to a value of zero. 

Device-Independent Preprocessing 

EXE$QIO validates and processes all of the arguments except for arguments 
PI through P6. This activity constitutes device-independent preprocessing. 
EXE$QIO takes the following steps to perform the device-independent pre­
processing: 

1. It clears the specified event flag. It takes this step so that the process will 
be placed into a wait state until the 1/0 operation completes, should the 
caller invoke either the Wait for Single Event Flag ($WAITFR) or Syn­
chronize ($SYNCH) system services to wait for the 1/0 operation to 
complete. 

2. It verifies that the channel number is valid and usable. The channel num­
ber is considered valid and usable if the following conditions are true: 

-The channel number is greater than zero and less than or equal to the 

481 



I/O System Services 

482 

contents of CTL$GW _ CHINDX. CTL$GW _ CHINDX contains the 
number of the highest assigned channel. Note that not all of the chan­
nels whose number is less than the contents for CTL$GW _CHINDX 
are necessarily currently assigned. They could have been deassigned 
since the channel whose number is stored in CTL$GW _ CHINDX was 
last assigned. 

-The access mode of the caller (specified by the previous mode field, 
PSL$V _PRVMOD, of the current PSL) is less than or equal to the ac­
cess mode specified by the CCB access mode field. This ensures that 
the channel is used only from access modes at least as privileged as the 
access mode from which the channel was assigned. 

3. If an access or deaccess request is pending on the channel (low bit in 
CCB$L_ WIND is set), the process is placed in an AST wait state, to wait 
for the access or deaccess to complete. When the AST wait is satisfied, 
EXE$QIO will be restarted at the beginning. (Resource wait states are 
discussed in Chapter 10.) 

4. It extracts the function code from the FUNC argument. 
5. If the device is spooled and the function code specifies a virtual I/O func­

tion, EXE$QIO substitutes the intermediate device UCB for the UCB 
specified in the CCB. (The intermediate device UCB address is stored in 
UCB$L_AMB of the UCB specified by the CCB.) 

6. It verifies the protection on the device when all of the following condi­
tions are true: 

-The device is not file oriented. 
-The device is shareable. 
-The I/O function is a read or a write. 

If all of the previously mentioned conditions are true, EXE$QIO in­
vokes the appropriate routine (EXE$CHKRDACCES or EXE$CHK­
WRTACCES in module EXSUBROUT). If the process has the needed ac­
cess, the appropriate bit (CCB$V _RDCHKDON or CCB$V _ WRTCHK-
DON) is set in CCB$B_STS. . 

Note that EXE$QIO contains two lists of functions, one for reads and 
one for writes. While the interpretation of function codes is almost en­
tirely up to the device driver, EXE$QIO does know that the "correct" 
interpretation of certain codes is a read or a write operation and performs 
access checking based on this interpretation. (In addition, EXE$QIO di­
vides function codes into virtual, logical, and physical, and performs ac­
cess checking in a later step based on this division.) 

7. It verifies that the function code is a legal function by checking the legal 
function mask in the FDT. 

8. If the device is offline, EXE$QIO ensures that the function code is either 
IO$_DEACCESS or IO$_ACPCONTROL. 



18.5 $QIO System Service 

9. If the IOSB argument is nonzero, EXE$QIO verifies that the IOSB can be 
written by the caller. It then clears the IOSB. 

10. It uses the buffered I/O function mask in the FDT to determine if the 
function code specifies a direct or buffered operation. 

11. It raises IPL to IPL$_ASTDEL to prevent process deletion. This step is 
necessary for two reasons: 

-EXE$QIO will allocate an IRP. The fact that this IRP is allocated to this 
process will not be reflected in any data structure until much later. If 
the process were to be deleted before this allocation were recorded, the 
IRP would become lost. 

-In steps 12 and 14, EXE$QIO indicates that this process has outstand­
ing I/O. If the process were to be deleted after these steps, the process 
would become deadlocked, trying to run down nonexistent I/O. 

12. It determines if the process has sufficient quota (direct or buffered, de­
pending upon the previous determination). If the process does have suffi­
cient quota, the quota is reduced. 

If the process does not have sufficient quota, EXE$QIO invokes 
EXE$SNGLQUOTA (in module EXSUBROUT) to place the process in an 
AST wait if the process has resource wait mode enabled. 

13. It allocates an IRP. (Chapter 3 discusses IRP allocation.) 
14~ It increments the outstanding I/O count in the CCB. 
15. It initializes the IRP. Most of this initialization is straightforward, for 

example, storing the EFN argument in IRP$B_EFN. There are some steps 
that deserve special comment: 

-If the ASTADR argument is nonzero, EXE$QIO charges the process AST 
quota for an AST control block (ACB). It also sets ACB$V _QUOTA in 
IRP$B_RMOD, to indicate that the process has been charged for the 
ACB. 

-If the function code specifies a buffered I/O operation, EXE$QIO sets 
IRP$V _BUFIO in IRP$W _STS. Otherwise, it clears the bit. 

-EXE$QIO clears the fields that describe the buffer, IRP$L_SVAPTE, 
IRP$W _BOFF, and IRP$L_BCNT. 

-If CCB$L_ WIND is nonzero, the channel is associated with either a 
file or a process section. If the channel is associated with a file, the 
value in CCB$L_ WIND is the address of a WCB. This address is a 
system space address, a negative number. EXE$QIO stores this address 
in IRP$L_ WIND. 

If the channel is associated with a process section, the value in 
CCB$L_ WIND is the process section index, a positive number. 
EXE$QIO uses the process section index as an index into the process 
section table (PST). This PST entry contains the address of the WCB 
associated with the process section. (See Chapter 14 for details on the 

483 



110 System Services 

18.5.2 

484 

PST.) EXE$QIO stores the address of this WCB in IRP$L_ WIND. 
-If the function code is a virtual read or write to a non-file-oriented 

device, EXE$QIO converts the function code into the corresponding 
logical function code. It stores the converted function code in 
IRP$W _FUNC and uses the converted function code for all further 
checking it performs. (EXE$QIO stores the function modifiers specified 
in the FUNC argument in IRP$W _FUNC without change.) 

16. If the device is not spooled, shareable, or file oriented, EXE$QIO does not 
perform any additional privilege checks. Otherwise, it verifies that the 
process has the necessary privilege to access the device. 

17. If the request specifies a diagnostic buffer, EXE$QIO allocates the buffer 
and stores its address in IRP$L_DIAGBUF. 

18. If the image requested an 1/0 completion AST, EXE$QIO verifies that the 
process has sufficient AST quota. 

The device-independent preprocessing is complete. EXE$QIO now per­
forms the device-dependent preprocessing. 

FDT Routines 

FDT routines are device-specific extensions to EXE$QIO. Their primary pur­
pose is to validate the device-dependent $QIO parameters (Pl to P6). A device 
driver can include customized FDT routines or use some of the general pur­
pose routines that are a part of the system image. Although FDT routines can 
be included in a driver image, they are logically device-dependent extensions 
of the $QIO system service. 

FDT routines execute in the context of the process that issued the $QIO 
request. Therefore, they have access to data in the process's PO and Pl address 
space. FDT routines communicate information about the 1/0 request to the 
driver by passing information to the driver in the IRP. FDT routines may also 
modify 1/0 database structures associated with the device assigned to the 
channel. 

FDT routines for direct 1/0 (I/O done directly between a user buffer and the 
device) ensure that each buffer page is valid and locked into memory. (Buffer 
pages are locked into memory by incrementing the reference count in the 
PFN database for each physical page involved in the transfer. The PFN data­
base is discussed in Chapter 14.) 

FDT routines for buffered 1/0 operations must allocate a buffer from 
nonpaged pool that will be used by the driver for the actual transfer. If the 
operation is a buffered write, the data that is being written is copied into this 
buffer. 

The use of system space buffers permits the device driver to access the data 
in the buffer from system context. 



18.5.3 

18.5.3.1 

18.5.3.2 

18.5 $QIO System Service 

Transfers that may take a long time to complete (such as a terminal read or 
write) are usually buffered 1/0 operations. Transfers that should complete 
quickly (such as a disk read or write) are usually direct 1/0 operations. 

EXE$QIO searches the FDT entries looking for a mask that specifies the 
function code. When such a mask is found, EXE$QIO invokes the associated 
FDT routine. If the FDT routine returns control to EXE$QIO, EXE$QIO con­
tinues its search. Successive FDT routines are called until an FDT routine 
invokes one of the routines that terminates FDT processing. These routines 
are described in the next section. 

$QIO Completion 

There are a variety of circumstances under which the $QIO system service 
completes. This section discusses these circumstances. 

Error Detected by EXE$QIO. As discussed previously, EXE$QIO makes cer­
tain checks before it allocates an IRP; for example, the CHAN argument must 
specify a usable channel. If EXE$QIO detects an error before allocating an 
IRP, it takes the following steps: 

1. It invokes SCH$POSTEF (in module POSTEF) to set the event flag speci-
fied by the EFN argument. 

2. It returns to the caller with an error status in RO. 

If the synchronous form of the system service was used, EXE$QIO still re­
turns to the caller because the service has completed with error. (See Chapter 
9 for more information concerning synchronous and asynchronous system 
services.) 

EXE$QIO may detect an error after it has allocated an IRP. In this case, it 
will abort the 1/0. EXE$QIO behaves differently in this case than in the pre­
vious case because the IRP must be deallocated. 

$QIO Completion by an FDT Routine. FDT routines complete the $QIO 
system service under three different circumstances: 

• The request is aborted by the FDT routine. 
•· The request is completed by the FDT routine. 
• The request must be completed by the device driver's start 1/0 routine. 

In all three cases, the final step is to return to the system service dispatcher 
via a RET instruction. (This step is not listed in any of the following discus­
sions.) The asynchronous form of the system service returns to the caller. 
The caller can either wait for 1/0 completion or continue processing. The 
synchronous form of the system service waits for the event flag associated 
with the request to be set and status to be returned. (See Chapter 9 for more 
information concerning synchronous and asynchronous system services.) 

485 



110 System Services 

18.5.3.2.1 

18.5.3.2.2 

486 

Aborting the I/O Request. If EXE$QIO or an FDT routine detects a device­
independent error (for example, insufficient privilege), it invokes 
EXE$ABORTIO (in module SYSQIOREQ) to abort the I/O. Before invoking 
EXE$ABORTIO, EXE$QIO or the FDT routine loads the final status of the 
$QIO in RO. EXE$ABORTIO takes the following steps: 

1. It clears IRP$L_IQSB, the address of the IOSB. 
2. It clears ACB$V _QUOTA in IRP$B_RMOD and increments the process's 

AST quota if the bit was set. 
3. It inserts the IRP in the I/O postprocessing queue and requests an 

IPL$_IOPOST (IPL 4) interrupt. Note that the interrupt will occur imme­
diately. (Chapter 6 discusses software interrupts in general. Section 18. 7 
discusses the IPL$_IOPOST interrupt in particular.) 

The effect of these steps is to finish the I/O operation without any user 
AST and without posting 1/0 status. 

Completing the I/O Request in the PDT Routine. Some I/O requests can be 
completed by an FDT routine. There are two circumstances under which this 
can occur. In both cases, the driver's start 1/0 routine does not have to take 
any action. In one case, the FDT routine detects a device-specific error, for 
example, a buffer not properly aligned. In the second case, the FDT routine 
can perform all requested operations, for example, an IO$_SENSEMODE 
operation that returns only fields in the UCB. The FDT routine takes essen­
tially the same action in both cases; the difference is the status it returns. 

The FDT routine invokes either EXE$FINISHIO or EXE$FINISHIOC (both 
in module SYSQIOREQ). These are alternate entry points to the same 
routine. 

1. EXE$FINISHIOC clears Rl. It then continues as if entered at 
EXE$FINISHIO. 

2. EXE$FINISHIO increments the operation count in the UCB 
(UCB$L_ OPCNT). 

3. It stores RO ancf Rl in IRP$L_MEDIA and IRP$L_MEDIA + 4. RO on 
entry to both routines contains the first longword to be stored in the IOSB. 
Rl on entry to EXE$FINISHIO contains the second longword to be stored 
in the IOSB. 

4. It loads the success status SS$_NORMAL in RO. This will be the final 
status of the $QIO system service. Note that the final status of the 1/0 
operation (now in the low-order word of IRP$L_MEDIA) may be a failure 
status. 

5. It inserts the IRP in the I/O postprocessing queue and requests an 
IPL$_IOPOST interrupt. (Chapter 6 discusses software interrupts in gen­
eral. Section 18.7 discusses the IPL$_IOPOST interrupt in particular.) 



18.5.3.2.3 

18. 7 II 0 Postprocessing 

Queuing the Request to the Driver's Start IIO Routine. Most 1/0 requests 
involve device action. The device action is initiated by the driver's start 1/0 
routine. An FDT routine passes the IRP to the start I/O routine by invok­
ing either EXE$QIODRVPKT or EXE$ALTQUEPKT (both in module 
SYSQIOREQ). 

EXE$QIODRVPKT is the standard method used to queue an I/O request for 
device activity. This routine initiates driver action only if the device unit is 
currently idle. If the device unit is busy, EXE$QIODRVPKT queues the re­
quest to the unit so that the device driver's start 1/0 routine will process it 
when the unit becomes available. 

EXE$ALTQUEPKT initiates driver action at the driver's alternate start I/O 
routine entry point without regard for the device unit's activity status. 

18.6 1/0 COMPLETION BY A DRIVER START 1/0 ROUTINE 

When a device driver start I/O routine completes an 1/0 operation, it invokes 
the REQCOM macro. This macro jumps to the IOC$REQCOM (in module 
IOSUBNPAG). IOC$REQCOM performs the following steps: 

1. If .there is an error log buffer (UCB$V _ERLOGIP in UCB$W _STS is set), 
IOC$REQCOM transfers the necessary information to the error log buffer 
and invokes ERL$RELEASEMB (in module ERRORLOG) to complete the 
error log activity for this 1/0 operation. 

2. It increments the I/O operation count in the UCB. 
3. It stores the final 1/0 status in IRP$L_MEDIA and IRP$L_MEDIA + 4. As 

is the case with IOC$FINISHIO, the status was in RO and Rl when 
IOC$REQCOM was invoked. 

4. If the I/O request completed with an error and the device is a disk, 
IOC$REQCOM checks if mount verification is pending or in progress 
(UCB$V _MNTVERPND or UCB$V _MNTVERIP in UCB$L_STS is set). 
If either bit is set, IOC$REQCOM invokes EXE$MOUNTVER (in module 
[SYSLOA]MOUNTVER) to start mount verification. 

5. IOC$REQCOM inserts the IRP in the 1/0 postprocessing queue and re­
quests an IPL$_IOPOST software interrupt. 

6. If mount verification is in progress, IOC$REQCOM determines what addi­
tional action is necessary and takes it. 

18.7 1/0 POSTPROCESSING 

VAX/VMS performs 1/0 postprocessing after an 1/0 operation has been com­
pleted by the associated driver. It consists of performing device-independent 
processing necessary to complete the 1/0 request. 

487 



110 System Services 

18.7.1 

18.7.2 

18.7.3 

18.7.3.1 

488 

1/0 Postprocessing Routine 

The 1/0 postprocessing routine, IOC$10POST (in module IOCIOPOST), is 
the interrupt service routine for the IPL$_IOPOST (IPL 4) software interrupt. 
It implements the device-independent facets of 1/0 completion and handles 
paging and swapping 1/0 completion as well (see Chapter 15). 

Some 1/0 postprocessing operations (for example, unlocking buffer pages 
and deallocating buffers) are performed in the 1/0 postprocessing interrupt 
service routine. Other operations (such as writing the IOSB) are performed by 
a special kernel mode AST routine. The special kernel mode AST routine 
used by IOC$IOPOST is discussed in Section 18. 7.5. 

IOC$IOPOST removes the first IRP in the 1/0 postprocessing queue. It 
takes one of two paths, depending upon the value in IRP$L_PID. If the value 
in IRP$L_PID is negative (a system space address), IOC$10POST performs 
system 1/0 completion. If the value in IRP$L_PID is positive, IOC$IOPOST 
performs normal 1/0 completion. 

System 1/0 Completion 

If the value in IRP$L_PID is negative, it is the system space address of the 
system routine (a system completion routine) to be called when the 1/0 com­
pletes. IOC$IOPOST invokes the system completion routine. Upon return 
from the system completion routine, IOC$IOPOST removes the next IRP in 
the 1/0 postprocessing queue and processes it. 

Normal 1/0 Completion 

If the value in IRP$L_PID is positive, it is the process ID of the requestor. 
IOC$IOPOST determines if the 1/0 operation was buffered or direct by test­
ing IRP$V _BUFIO in IRP$W _STS. If the bit is set, the 1/0 operation is a 
buffered one. If the bit is clear, the 1/0 operation is direct. IOC$IOPOST 
performs action appropriate to the type of 1/0 operation and then queues a 
special kernel mode AST to the requestor. The AST routine will perform the 
completion that must be done in the context of the requestor. 

Buffered 1/0 Completion. The portions of buffered 1/0 completion that take 
place in the IPL$_IOPOST interrupt service routine differ from the direct 1/0 
case because of the differences in the way the two kinds of requests are pro­
cessed. Buffered 1/0 involves a transfer to or from a system space buffer, 
rather than a per-process space buffer. 

IOC$10POST takes the following initial steps in the case of buffered 1/0: 

1. It increments the process buffered 1/0 count (PCB$W _BIOCNT), the 
number of concurrent allowed buffered 1/0 requests. 



18.7.3.2 

18.7 IIO Postprocessing 

2. If IRP$V _FILACP in IRP$W _STS is set, IOC$IOPOST also increments 
PCB$W _DIOCNT, the number of concurrent allowed direct 1/0 requests. 
This bit is set if the original 1/0 request involved an ACP that had to 
perform direct I/O to accomplish the original request. 

3. It adds the contents of IRP$W _BOFF to JIB$L_BYTCNT. This restores the 
byte count quota that was allocated for the system buffer. Note that 
IRP$W _BOFF does not contain a buffer offset in this case; it contains a 
byte count. 

4. It stores the address of the special kernel mode AST routine in the IRP. 
The address is stored at offset ACB$L_KAST because the IRP is used as 
the ACB for the special kernel mode AST. ACB$L_KAST and IRP$L_ 
WIND are the same offset. At this point, the WCB address is no longer 
needed and that location can be reused safely. 

The special kernel mode AST routine (in module IOCIOPOST) has two 
entry points: BUFPOST for buffered read completion and DIRPOST for 
direct read, direct write, and buffered write completion. The first case dif­
fers from the other cases in that data must be copied from the system 
buffer to the process buffer before the process is informed that the 1/0 is 
complete. In the case of a buffered write, there is no need to copy data 
between the process buffer and the system buffer. It was copied from the 
process buffer to the system buffer by an FDT routine. In the case of direct 
1/0, there is no system buffer. 

It is possible that there was no need for a system buffer (110 requests 
that do not involve the transfer of data are usually buffered 1/0 requests, 
not direct 1/0 requests). If one was needed, its address is in IRP$L_ 
SVAPTE. 

-If IRP$L_SVAPTE is nonzero and IRP$V _FUNC in IRP$W _STS is set, 
the I/O function is a read requiring a buffer. In this case, IOC$IOPOST 
stores the address of BUFPOST in ACB$L_KAST. 

-Otherwise, IOC$10POST stores the address of DIRPOST in ACB$L_ 
KAST. If IRP$L_SVAPTE is nonzero, IOC$IOPOST deallocates the 
buffer. 

5. It performs the steps described in Section 18. 7.3.3. 

Direct 1/0 Completion. The portions of direct I/O completion that take place 
in the IPL$_IOPOST interrupt service routine differ from the buffered 1/0 
case because of the differences in the way the two kinds of requests are pro­
cessed. Direct I/O requests involve the transfer of data directly to or from the 
process buffer; system buffers are not used. Unlike system buffers, process 
buffers can be paged. Since paging must not occur during the processing of 
the I/O request, the pages are locked in memory by one of the FDT routines 
invoked by EXE$QIO. 

489 



110 System Services 

18.7.3.3 

490 

Paging and swapping 1/0 requests are direct 1/0 requests. IOC$10POST 
takes special steps in the interrupt service routine when the 1/0 request is a 
paging or swapping 1/0 request. Paging and swapping 1/0 requests are dis­
cussed in Chapter 15. 

IOC$IOPOST takes the following initial steps for direct 1/0 other than 
paging and swapping 1/0: 

1. It increments PCB$W _DIOCNT, the number of concurrent allowed direct 
1/0 requests. 

2. It performsthe steps necessary to handle segmented transfers, if needed. 
Segmented transfers are described in Section 18. 7.4. 

3. It unlocks the buffer pointed to by IRP$L_SVAPTE, using the 
IRP$L_BCNT and IRP$W _BOFF fields to determine the size of the locked 
buffer. It unlocks the pages by invoking MMG$UNLOCK (in module 
IOLOCK), which decrements the pages' associated reference counts in the 
PFN database. (The PFN database is discussed in Chapters 14 and 15.) This 
step may result in the pages being placed on the free or modified page list. 

4. If an IRP extension (IRPE) is present (IRP$V _EXTEND in IRP$W _STS is 
set), IOC$IOPOST unlocks any buffers described by the IRPE. (The address 
of the IRPE is in IRP$L_EXTEND.) Each IRPE may describe up to two 
locked buffers (pointed to by IRPE$L_SVAPTE1 and IRPE$L_SVAPTE2, 
with sizes determined by IRPE$W _BOFF1 and IRPE$L_BCNT1, and 
IRPE$W _BOFF2 and IRPE$L_BCNT2). IOC$IOPOST then determines if 
IRPE$V _EXTEND in IRPE$W _STS in the IRPE is set. If so, it repeats this 
step until the last IRPE in the linked list is found and all buffers described 
by the IRPEs are unlocked. 

5. It stores the address of DIRPOST in ACB$L_KAST. 
6. It performs the steps described in Section 18. 7.3.3. 

Final Steps in IOC$IOPOST. IOC$IOPOST performs the same final steps for 
both buffered and direct 1/0 requests. After completing these steps, it at­
tempts to remove another IRP from the 1/0 postprocessing queue. If it is 
successful, it processes that IRP. Otherwise, it executes an REI instruction to 
exit the interrupt service routine. 

If the event flag to be set upon completion of the 1/0 request is a local event 
flag, IOC$IOPOST invokes SCH$POSTEF to set the flag. It does not set the 
event flag if the event flag is common to avoid a race condition. If the event 
flag is common, some other process could be in a common event flag wait 
state that would be satisfied by setting the event flag associated with this 
request. In that case, it is possible that the other process would be scheduled 
to run before completion status is posted to the process that invoked the 
$QIO system service. (Event flags are discussed in Chapter 12. Process sched­
uling is discussed in Chapter 10.) 



18.7.4 

18.7.4.1 

18.7 IIO Postprocessing 

A similar race condition is possible in a multiprocessor system. In this 
case, the event flag could be either local or common. The race condition is 
that it is possible for the requestor to be scheduled before the special kernel 
mode AST is queued. Since IOC$IOPOST does not set a common event flag 
at this point, it avoids the race condition in the case of common event flags. It 
avoids the race condition in the case of local event flags by always raising IPL 
to IPL$_SYNCH (IPL 8) before setting the local event flag and not lowering 
IPL until after the special kernel mode AST is queued. Although this raising 
of IPL is not needed if the system is not a multiprocessor system, 
IOC$IOPOST always raises IPL to IPL$_SYNCH to block rescheduling be­
fore setting the event flag. 

IOC$IOPOST sets ACB$V _KAST in IRP$B_RMOD (to indicate that this 
is a special kernel mode AST) and invokes SCH$QAST (in module ASTDEL) 
to queue the AST to the process (using the IRP$L_PID field to identify the 
process to which the AST should be queued). The IRP is used as the ACB for 
SCH$QAST (as described in Chapter 7). Note that the size of the ACB in this 
case is the size of the IRP. Except for ACB$L_KAST, IOC$IOPOST has not 
changed any fields in the IRP/ACB. 

Segmented Virtual and Logical 1/0 

When an image issues a read or write virtual 1/0 request for a file on a block­
structured device, the image must specify a starting virtual block number 
(VBN) and the number of virtually contiguous bytes to be transferred. Since 
the device driver requires LBNs, the 1/0 subsystem must convert the VBNs 
into the related LBNs. The conversion is performed in at least one, and possi­
bly two, places: an FDT routine and IOC$IOPOST. In either case, the same 
basic steps are taken. 

When an image issues a read or write logical 1/0 request for a file on a 
block-structured device, the image must specify a starting logical block num­
ber and the number of logically contiguous bytes to be transferred. If the size 
of the transfer is greater than 64K bytes, the steps described in Section 
18.7.4.3 must be taken. 

Common Virtual and Logical 1/0 FDT Processing. Usually, the device driver 
specifies the following FDT routines: ACP$READBLK for virtual and logical 
reads, and ACP$WRITEBLK for virtual and logical writes (both routines are 
in module SYSACPFDT). These routines store the total byte count of the 
request in the original byte count field of the IRP (IRP$L_OBCNT) and set 
the accumulated byte count field of the IRP (IRP$L_ABCNT) to zero. If the 
transfer is a virtual 1/0 transfer, these routines then invoke IOC$MAPVBLK 
(in module IOSUBRAMS) to perform the actual conversion from VBNs to 
LBNs. 

491 



110 System Services 

18.7.4.2 

492 

In the case of virtual I/O, the FDT routines take the steps necessary to 
handle transfers greater than 64K bytes if IOC$MAPVBLK is successful. (If 
IOC$MAPVBLK is unsuccessful, the FDT routines take the steps discussed 
in the next section.) 

In the case of logical I/O, the FDT routines always take the steps necessary 
to handle transfers greater than 64K bytes. 

The. routines then queue the IRP to the driver. The driver performs the 
transfer without regard for whether the entire range is to be transferred. 
IOC$IOPOST will check whether the entire range has been transferred when 
the driver completes the 1/0 request and take the necessary action. 

Virtual 1/0 FDT Processing. IOC$MAPVBLK uses the information passed 
(via registers and the IRP) to convert the VBNs to LBNs. The goal is to con­
vert the starting VBN to the related LBN. The gating factor is the information 
stored in the WCB (the address of the WCB is passed by the caller) that was 
created by an ACP when the file was opened. 

If the WCB contains enough mapping information to convert the entire 
virtual range of the transfer into corresponding LBNs on the volume, then the 
virtual I/O transfer will be handled directly by the driver and IOC$IOPOST, 
even if the transfer consists of several logically noncontiguous pieces. If the 
WCB does not contain enough information to completely map the virtual 
range of the transfer, the intervention of an ACP will be required at some 
time to complete the transfer. This intervention is known as a window tum. 
(The number of window turns per unit of time can be displayed by the Moni­
tor Utility with the DCL command MONITOR FCP.) 

Because a deadlock situation could occur if a file mapped by the memory 
management subsystem requires a window tum, the memory management 
subsystem must avoid window turns. To do this, each file mapped by the 
memory management subsystem must have all its mapping information in 
the WCB. This large WCB is called a cathedral window. The format of a WCB 
is discussed in Section 18.2.3.1. 

IOC$MAPVBLK can encounter five possible cases: 

• The virtual range is logically contiguous and the needed mapping informa­
tion is contained in the WCB. In this case, all that IOC$MAPVBLK needs to 
do is convert the starting VBN into the related LBN. The driver can transfer 
the data without further conversion of VBNs into LBNs. 

• The WCB contains mapping information for the beginning of the virtual 
range, but more than two map entries are required to map the range. In this 
case, IOC$MAPVBLK converts the starting VBN into the related LBN. The 
driver can transfer the start of the virtual range, but will need further con­
version of VBNs into LBNs to transfer the rest of the range. 

IOC$MAPVBLK uses only the map entry that maps the starting VBN and 



18.7 110 Postprocessing 

the next map entry (if that map entry is logically contiguous with its prede­
cessor). Since the field in the map entry that contains the count of blocks 
covered by the entry is a word in size, it is possible that a logically contigu­
ous range will require more than one map entry to cover the entire logical 
range. 

• The WCB contains mapping information for the beginning of the virtual 
range, but not for the entire virtual range. In this case, IOC$MAPVBLK 
converts the starting VBN into the related LBN. The driver can transfer the 
start of the virtual range, but will need further conversion of VBNs into 
LBNs to transfer the rest of the range. 

In this case, the virtual range may be logically contiguous, but not 
enough mapping information is contained in the WCB to verify this. A 
window tum will be needed later. 

• The virtual range is not logically contiguous, but the WCB does contain 
mapping information for the beginning of the virtual range. IOC$­
MAPVBLK handles this case in the same way it handles the previous case. 

The driver can transfer the start of the virtual range, but will need further 
conversion of VBNs into LBNs to transfer the rest of the range. The WCB 
may or may not contain the needed information. If it does not, a window 
tum will be needed. Whether a window tum will be needed later is irrele­
vant at this point. 

• The mapping information that maps the first virtual block in the range to 
its logical counterpart is not in the WCB. A window tum is needed before 
any data can be transferred. 

In all five cases, IOC$MAPVBLK returns the number of bytes not mapped. In 
the first four cases, the FDT routines take the following steps: 

1. They compute the number of bytes mapped (by subtracting the number 
of bytes not mapped from IRP$L_OBCNT) and store this number in 
IRP$L_BCNT. 

2. They store the starting LBN in IRP$L_MEDIA. 
3. They store the starting VBN in IRP$L_SEGVBN. 

The routines then queue the IRP to the driver. The driver performs the trans­
fer without regard for whether the entire virtual range has been mapped. 
IOC$IOPOST will check whether the entire virtual range has been mapped 
when the driver completes the I/O request and take the necessary action. 

In the fifth case, the FDT routines store the starting VBN in IRP$L_ 
SEGVBN, the number of bytes not mapped (in this case, the total number 
of bytes requested) in IRP$L_BCNT, and then invoke EXE$QIOACPPKT 
(in module SYSQIOREQ) to send the IRP to the ACP. 

When the ACP processes this IRP, it detects that the WCB does not map 
the requested virtual range and performs a window tum. It reads the file 

493 



1/0 System Services 

18.7.4.3 

18.7.4.4 

494 

header to obtain the mapping information necessary for the transfer in ques­
tion and stores the information in the WCB, replacing other mapping infor­
mation already contained there. The ACP then performs the equivalent steps 
that IOC$MAPVBLK performs in the first four cases and queues the IRP to 
the driver. 

Transfers Greater Than 64K Bytes. VMS supports virtual and logical 1/0 
transfers greater than 64K bytes for disk devices, even though a device and its 
driver may only support transfers up to 64K bytes. This is done using the 
UCB$L_MAXBCNT field. This field contains the largest transfer size sup­
ported by the driver. If it is zero, it is assumed to be 65024 (64K bytes minus 
512). 

There are two cases in which a request for a logical 1/0 transfer greater 
than 64K bytes can arise: 

• A virtual 1/0 transfer request is made. As described earlier, the FDT rou­
tines ACP$READBLK and ACP$WRITEBLK convert the request into a logi­
cal 1/0 transfer request. 

• A logical 1/0 transfer request is made by the image. 

The two FDT routines handle the two cases identically once the virtual 1/0 
request has been turned into a logical 1/0 request. If the IRP$L_BCNT is 
greater than the maximum transfer size specified by UCB$L_MAXBCNT, 
the FDT routines set IRP$L_BCNT to the maximum transfer size accepted 
by the driver. Otherwise, they do not modify IRP$L_BCNT. 

IOC$IOPOST Processing. Whenever IOC$IOPOST encounters an IRP for a 
direct 1/0 data transfer request, it determines if the data transfer request 
requires only one transfer by comparing the original byte count to the num­
ber of bytes just transferred (IRP$L_IQST + 2). If the difference is not zero, 
the request cannot be completed in one transfer. In this case, the accumu­
lated byte count is incremented by the number of bytes just transferred. The 
accumulated byte count is then compared with the original byte count. If the 
two numbers agree, the request is completed exactly like other direct 1/0 
requests. 

If the two numbers do not agree, IOC$IOPOST prepares the IRP for the 
transfer of the next segment by taking the following steps: 

1. It places the lesser of the remaining byte count and the maximum transfer 
size accepted by the driver in IRP$L_BCNT. 

2. It updates the starting VBN in IRP$L_SEGVBN by the number of blocks 
transferred in the last transfer. 

3. If the transfer is a virtual 1/0 transfer, IOC$IOPOST invokes 
IOC$MAPVBLK. 



18.7.5 

18.7.5.1 

18.7.5.2 

18.7 110 Postprocessing 

The same five cases exist here as do when IOC$MAPVBLK is invoked 
by the FDT routines. IOC$10POST takes the equivalent steps in each case 
for the transfer that starts at the VBN in IRP$L_SEGVBN. 

4. If the transfer is a logical 1/0 transfer, IOC$10POST queues the IRP to the 
driver. 

Thus, in a fashion transparent to the requestor, the original request is di­
vided into several requests to satisfy the limitations of the WCB and/or maxi­
mum transfer size permitted by the device. 

1/0 Completion Special Kernel Mode AST Routine 

The 1/0 completion special kernel mode AST routine has two entry points: 
BUFPOST and DIRPOST. BUFPOST performs certain steps unique to buf­
fered read completion and then falls into DIRPOST. 

Buffered Read Completion. BUFPOST copies data from the system buffer to 
the user buffer in per-process address space and deallocates the system buffer 
to nonpaged pool. If the 1/0 request was a mailbox read (IRP$V _MBXIO set 
in IRP$W _STS), BUFPOST invokes SCH$RAVAIL (in module MUTEX) to 
declare the mailbox resource (RSN$_MAILBOX) available in case a process is 
waiting for this resource. (Resources are discussed in Chapter 10.) 

Common Completion. DIRPOST performs the completion common to buf­
fered and direct 1/0 requests: 

1. It increments either PHD$L_DIOCNT or PHD$L_BIOCNT, the 
process's cumulative totals of completed direct 1/0 and buffered 1/0 
requests. 

2. If a user's diagnostic buffer was associated with the 1/0 request, 
DIRPOST copies the diagnostic information from the system diagnostic 
buffer to the user's diagnostic buffer and deallocates the system diagnos­
tic buffer. 

3. It decrements the CCB count of 1/0 requests in progress on this channel. 
4. If this was the last I/O for the channel and there is a deaccess request for 

the channel pending, DIRPOST queues that deaccess request to the ACP 
by invoking IOC$WAKACP (in module IOC$IOPOST). 

5. If a common event flag is associated with the 1/0 request, DIRPOST 
invokes SCH$POSTEF to set the flag. 

6. If the 1/0 request specified an IOSB, DIRPOST copies the quadword at 
IRP$L_MEDIA to the IOSB. 

7. If any IRPEs were used, it deallocates them. 
8. If ACB$V _QUOTA is set in IRP$B_RMOD, then the user requested AST 

notification of 1/0 completion. The AST procedure address and the op-

495 



I!O System Services 

tional AST argument were originally stored in the IRP (now an ACB). 
DIRPOST invokes SCH$QAST to queue the IRP as an ACB, this time for 
a normal AST in the access mode at which the 1/0 request was made. 

9. Otherwise, if ACB$V _QUOTA is clear, DIRPOST deallocates the IRP/ 
ACB to nonpaged pool. 

10. It returns to its caller (SCH$ASTDEL in module ASTDEL). 

18.8 CANCEL 110 ON CHANNEL SYSTEM SERVICE 

496 

The $CANCEL system service cancels all pending 1/0 requests on a specified 
channel. In general, this includes all 110 requests that are queued as well as 
the request currently in progress. The $CANCEL system service may be in­
voked by an image. It is also invoked by the $DASSGN system service. The 
$CANCEL system service routine, EXE$CANCEL in module SYSCANCEL, 
runs in kernel mode. The $CANCEL system service has only the CHAN argu­
ment, which specifies the 1/0 channel on which 1/0 is to be canceled. 

There is a second form of the $CANCEL system service that can be in­
voked only by calling the system service routine directly at an alternate entry 
point, EXE$CANCELN. When called at this entry point, the system service 
has two arguments: 

• The CHAN argument 
• The optional CODE argument, the reason for the cancellation. 

EXE$CANCELN determines if the CODE argument is present. If it is pres­
ent, the routine saves it for later use. If the CODE argument is not present, the 
routine saves a reason code of CAN$C_CANCEL. EXE$CANCEL, on the 
other hand, always saves a reason code of CAN$C_CANCEL. Once the rea­
son code has been saved, EXE$CANCEL and EXE$CANCELN take the same 
steps: 

1. It invokes IOC$VERIFYCHAN to verify the channel. (IOC$VERIFY­
CHAN is discussed in Section 18.4.3.) 

2. It page faults the CCB into memory, raising IPL to UCB$B_FIPL. The 
CCB is effectively locked into memory. 

3. It then searches the IRPs queued to the UCB (starting at UCB$L_IOQFL), 
looking for IRPs that meet the following criteria: 

-The request is not a virtual request (IRP$V _VIRTUAL in IRP$W _ STS 
is clear). In general, 1/0 cannot be canceled on disk or tape devices. 
Drivers for these devices ensure that IRP$V _VIRTUAL is set on all 
requests that cannot be canceled. 

-The requesting process ID (PCB$L_PID) matches the process ID in 
IRP$L_PID. 

-The channel number in IRP$W _CHAN matches the channel specified 



18.8 Cancel 110 on Channel System Service 

by the CHAN argument. (Note that the CHAN argument specifies the 
channel number. IOC$VERIFYCHAN converted that value to the asso­
ciated channel index. It is the latter value that must match the value in 
IRP$W _CHAN.) 

When an IRP that satisfies these criteria is found, EXE$CANCEL takes 
the following steps and then resumes the search: 

a. It clears the buffered read bit (IRP$V _FUNC in IRP$W _STS) for buf­
fered 1/0 functions. 

b. It places the error status SS$_CANCEL in the low-order word of 
IRP$L_MEDIA and clears the high-order word. This field is used to 
return the final status of the 1/0 operation. 

c. It inserts the IRP at the tail of the 1/0 postprocessing queue and re­
quests an IPL$_IOPOST interrupt. The IPL$_IOPOST interrupt ser­
vice routine is discussed in Section 18.7. 

4. When all IRPs meeting these criteria have been found and processed, 
EXE$CANCEL invokes the driver cancel 1/0 routine (the address of this 
routine is stored in DDT$L_CANCEL in the driver's DPT). The driver is 
passed the cancel reason saved at the start of EXE$CANCEL or 
EXE$CANCELN. The driver should perform any actions appropriate to 
canceling 1/0. 

Some driver cancel 1/0 routines will execute a RET instruction if an 
error occurs. If the driver cancel 1/0 routine invoked in this step does this 
and an error occurs, control does not return to EXE$CANCEL but to the 
routine that called EXE$CANCEL. 

5. If the device is a disk, EXE$CANCEL lowers IPL to 0, and returns to the 
caller with the success status SS$_NORMAL. (As noted in step 11, the 
ACP control function issued in step 11 is applicable only to the magnetic 
tape ACP.) 

6. If there is no outstanding 1/0 (CCB$W _IOC is zero) and there is no file 
activity (CCB$L_ WIND is zero), EXE$CANCEL lowers IPL to 0 and 
.returns to the caller with the success status SS$_NORMAL. (If there is 
file activity, then CCB$L_ WIND contains the address of the WCB asso­
ciated with the channel or a process .section index. At this point, the 
distinction is not significant.) 

7. If the device is not mounted or is mounted foreign, EXE$CANCEL 
lowers IPL to 0 and returns to the caller with the success status 
SS$_NORMAL. 

8. If there is a process section associated with the channel, EXE$CANCEL 
low~rs IPL to 0 and returns to the caller with the success status 
SS$_NORMAL. 

9. At this point, EXE$CANCEL has determined that there is a file open 

497 



I/O System Services 

498 

on this channel. If WCB$V _NOTFCP in WCB$B_ACCESS is set, 
EXE$CANCEL lowers IPL to 0 and returns to the caller with the success 
status SS$_NORMAL. 

The WCB$V _NOTFCP bit identifies files that were opened during the 
system startup process before the XQP was available by special routines 
that exist only during the system startup process. The files associated 
with these WCBs are not served by any ACP or by the XQP. 

10. At this point, EXE$CANCEL has determined that there is a user file open 
on the channel. It attempts to issue an IO$_ACPCONTROL function. If 
it cannot allocate an IRP, it does one of two things: 

-If the process does not have resource wait mode enabled, it lowers IPL 
to 0 and returns to the caller. The status indicates the reason that 
EXE$CANCEL could not allocate an IRP. 

-If the process does have resource wait mode enabled, EXE$CANCEL 
invokes SCH$RWAIT to place the process in an RSN$_NPDYNMEM 
wait. 

11. It initializes the IRP as follows: 

a. The process ID of the requestor is set to the value in PCB$L_PID. 
b. The AST routine address and parameter are cleared (no user AST). 
c. The WCB address is set to the value in CCB$L_ WIND. 
d. The UCB address is stored in IRP$L_ UCB. 
e. The function code is set to IOLACPCONTROL. 
f. The event flag is set to EXE$C_SYSEFN. 
g. The priority is set to the value in PCB$B_PRIB (the process's base 

priority). 
h. The IOSB address is set to zero. 
i. The channel number is stored in IRP$W _CHAN. 
j. The 1/0 is marked as buffered 1/0 with no buffer. 
k. The access rights block address is set to the value in PCB$L_ARB. 

This ACP control function is special by virtue of there being no I/O 
buffer. It is ignored by disk ACPs and the XQP. It is recognized by the 
magnetic tape ACP as a special 1/0 abort function (equivalent to calling 
the driver's cancel 1/0 routine) which causes the ACP to abort the 
mounting of a multivolume tape file. 

12. It charges the user's buffered I/O quota, PCB$W _BIOCNT, for an 1/0 
request. 

13. It invokes EXE$QIOACPPKT to queue the packet to the ACP. 
(EXE$QIOACPPKT will execute a RET instruction, returning control to 
the caller of the system service.) 



18.9 Mailbox Creation and Deletion 

18.9 MAILBOX CREATION AND DELETION 

18.9.1 

Mailboxes are virtual devices used for interprocess communication. They are 
created by the $CREMBX system service. There are two kinds of mailboxes, 
temporary and permanent. Temporary mailboxes are deleted automatically 
when no more processes have channels assigned to them. Permanent mail­
boxes must be explicitly marked for deletion using the Delete Mailbox 
($DELMBX) system service. (After being marked for deletion, permanent 
mailboxes are deleted when no more processes have channels assigned to 
them.) 

Create Mailbox and Assign Channel System Servic~ 
The $CREMBX system service routine, EXE$CREMBX in module SYS­
MAILBX, runs in kernel mode. It creates a virtual mailbox device named 
MBAn and assigns an I/O channel to it. $CREMBX has seven arguments: 

• A flag specifying whether the mailbox is to be permanent or temporary, 
PRMFLG 

• The address of a word into which to write the channel number assigned to 
the mailbox by EXE$CREMBX, CHAN 

• The maximum size of a message that can be sent to the mailbox, MAXMSG 

• The number of bytes of nonpaged pool that can be used to buffer messages 
sent to the mailbox, BUFQUO 

• The protection mask to be associated with the created mailbox, PROMSK 

• The access mode to be associated with the channel to which the mailbox is 
assigned, ACMODE 

• The logical name to be assigned to the mailbox, LOGNAM 

The CHAN argument is required; all others are optional. 
EXE$CREMBX takes the following initial steps for local and shared mem­

ory mailboxes: 

1. It verifies that the CHAN argument is write accessible. 
2. It performs logical name translation of the LOGNAM argument if that argu­

ment is specified. EXE$CREMBX invokes MMG$MBXTRNLOG (in mod­
ule SHMGSDRTN) to attempt the translation, as discussed in Section 
18.1. MMG$MBXTRNLOG returns two strings: 

-The first string is the name of the shared memory in which the mailbox 
resides (or will reside if the mailbox does not yet exist). If the LOGNAM 

argument did not specify a shared memory mailbox, this string is null. 
-The second string is the physical name of the mailbox (MBAn). 

3. It invokes IOC$FFCHAN to find a free CCB. (IOC$FFCHAN is discussed 
in Section 18.4.2.1.) 

499 



I/O System Services 

18.9.1.1 

_) 

500 

4. It locks the 1/0 database mutex for write access. 
5. It determines if the mailbox is a local mailbox or a shared memory mail­

box by examining the LOGNAM argument and the two strings returned by 
MMG$MBXTRNLOG. If the LOGNAM argument was omitted, or if the 
LOGNAM argument was not omitted and MMG$MBXTRNLOG returned a 
null shared memory name, the mailbox is a local mailbox. Otherwise, the 
mailbox is a shared memory mailbox. !The VAX/VMS System Services 
Reference Manual discusses the format of logical names for shared mem­
ory objects, including mailboxes.) 

The rest of the steps EXE$CREMBX takes in the case of a local mailbox are 
similar to those it takes in the case of a shared memory mailbox. Section 
18.9.1.1 discusses the steps taken for local mailbox creation. Section 18.9.1.2 
discusses the special considerations that apply to shared memory mailboxes. 

Mailbox Creation in Local Memory. Permanent local mailboxes must be 
named; temporary local mailboxes can be either named or unnamed. 
EXE$CREMBX determines which type of local mailbox !named or unnamed) 
is specified by the presence or absence of the LOGNAM argument. !Note that 
the LOGNAM argument cannot specify a null string.) 

EXE$CREMBX tests whether the process has the necessary privilege: 
TMPMBX for a temporary mailbox, PRMMBX for a permanent mailbox. In 
the case of a temporary mailbox, the mailbox will have to be created. Thus, 
EXE$CREMBX is not premature in checking for privilege. In the case of a 
permanent mailbox, EXE$CREMBX is premature in checking for privilege in 
that the mailbox may already exist. This means that $CREMBX can be used 
to assign a channel to an existing permanent mailbox only if the process has 
PRMMBX privilege. $CREMBX cannot be used to assign a channel to an ex­
isting temporary mailbox. 

If a logical name has been specified, EXE$CREMBX invokes the Translate 
Logical Name j$TRNLNM) system service to obtain the address of the mail­
box UCB. It passes the following arguments to $TRNLNM: 

• The logical name specified by the LOGNAM argument 
• An item-list element requesting the back pointer 

If the logical name exists, EXE$CREMBX verifies that the back pointer re­
turned by $TRNLNM points to a UCB. The only UCBs that should be 
pointed to by a logical name back pointer are mailbox UCBs. 

If the mailbox exists and the process has the privilege to access the mailbox 
or owns the mailbox, EXE$CREMBX increments the reference count for that 
mailbox and assigns a channel to the mailbox by taking the following steps: 

1. It stores the mailbox UCB address in CCB$L_ UCB. 
2. It stores the access mode at which the channel was assigned jplus 1) in 



18.9 Mailbox Creation and Deletion 

CCB$B_AMOD. As usual, the access mode at which the channel is as­
signed is the less privileged of the access mode specified by the ACMODE 

argument and the access mode of the caller. 

EXE$CREMBX stores the channel number in the address specified by the 
CHAN argument and returns to the caller with the success status SS$_ 
NORMAL. 

If the mailbox did not previously exist, EXE$CREMBX must create it. If the 
mailbox to be created is a temporary mailbox, EXE$CREMBX invokes 
IOC$CHKMBXQUOTA (in module UCBCREDEL) to determine if the pro­
cess buffered I/O byte count quota (JIB$L_BYTCNT) is at least the sum of the 
following: 

• The size of a mailbox UCB. 
• The overhead to allow for process deletion (256 bytes). 
• The space to buffer mailbox messages, the buffer quota. (This value is the 

BUFQUO argument if the argument was specified or the SYSBOOT parame­
ter DEFMBXBUFQUO if the BUFQUO argument is absent.) 

EXE$CREMBX invokes IOC$CLONE_UCB to clone the UCB for MBAO:. 
EXE$CREMBX initializes the cloned UCB as follows: 

1. It stores the buffer quota in the buffer quota and initial buffer quota fields, 
UCB$W _BUFQUO and UCB$W _INIQUO. 

2. It clears the owner field. 
3. It modifies the ORB associated with the UCB to specify the system, 

owner, group, and world format protection mask, and stores the PROMASK 

argument .in ORB$W _PROT. 
4. It stores the current process's UIC in the ORB owner UIC field. 
5. It stores the maximum message size in the UCB device buffer size field. 

This value is the MAXMSG argument, if the argument is specified; other­
wise, it is the SYSBOOT parameter DEFMBXMXMSG. 

6. It clears the current message count, UCB$L_DEVDEPND. 
7. It stores the sum of the UCB size, the buffer byte count quota, and the 

overhead for process deletion in UCB$W _CHARGE. 
8. If the mailbox is permanent, EXE$CREMBX sets UCB$V _PRMMBX in 

UCB$L_DEVSTS. 
9. If the mailbox is temporary, EXE$CREMBX takes the following two steps: 

a. It sets UCB$V _DELMBX in UCB$L_DEVSTS. This marks the mailbox 
for deletion on last channel deassign. 

b. It invokes IOC$DEBIT _UCB (in module UCBCREDEL) to reduce the 
process's byte count quota (JIB$L_BYTCNT) and byte limit (JIB$L_ 
BYTLM) by the value stored in UCB$W _CHARGE. 

If the LOGNAM argument was omitted, EXE$CREMBX clears the pointer in 

501 



110 System Services 

18.9.1.2 

502 

Per-Process P1 
Space 

Proceas z 

CCBfor 

CCBfor 
Process A 

Process A 

System Virtual Address 
Space 

Static Executive Data 

Mailbox 
Unit Control 

Block 0 

Template for 
Other Units 

System Virtual 
Address $pace 

Mailbox 
Unit Control 

Block n 

Paged Pool 

(Optional) 
Logical Name 

Block 

_MBAn: 

First 
Message 

Second 
Message 

Figure 18-3 Data Structures Associated with Mailbox 
Creation 

the UCB to the logical name (UCB$L_LOGADR). Otherwise, EXE$CREMBX 
invokes the Create Logical Name ($CRELNM) system service to create the 
logical name specified by the LOGNAM argument. $CRELNM stores the ad­
dress of the logical name in UCB$L_LOGADR. Finally, EXE$CREMBX as­
signs a channel in the same way as if the mailbox had already existed. The 
relationships among the data structures associated with mailbox creation are 
pictured in Figure 18-3. 

In VAX/VMS Version 4.4, the behavior just described was changed. If the 
logical name is located in a process-private table, $CRELNM clears 
UCB$L_LOGADR. As a result, the logical name is not deleted when the 
mailbox is deleted. This change only applies when one of the table names, 
such as LNM$TEMPORARY_MAILBOX or LNM$JOB, is redirected to a 
process-private table, such as LNM$PROCESS_ TABLE. 

Mailbox Creation in Shared Memory. Although the format of a shared mem­
ory mailbox UCB is somewhat different from a local memory mailbox UCB, 
EXE$CREMBX takes the same general steps in the case of a shared memory 
mailbox as for a local memory mailbox when the LOGNAM is specified. (The 
caller of $CREMBX must specify a logical name if the mailbox is a shared 



18. 9 Mailbox Creation and Deletion 

memory mailbox.) This section discusses the special considerations for 
shared memory mailboxes. 

EXE$CREMBX tests whether the caller has SHMEM privilege. The caller 
must also have either TMPMBX or PRMMBX privilege. Which privilege de­
pends on whether the caller specified that the mailbox is to be permanent or 
temporary via the PRMFLG argument. Shared memory mailboxes are always 
permanent, regardless of the value of the PRMFLG argument. 

One extra level of data structure is required to describe a shared memory 
mailbox. This structure, called a shared memory mailbox control block (Fig­
ure 18-4), is located in the shared memory. The UCBs on each port associated 
with the shared memory mailbox contain the (processor-specific) virtual ad­
dress of the mailbox. There are three cases that EXE$CREMBX can encounter 
when creating a mailbox in shared memory: 

• If the shared memory mailbox control block does not exist (if the mailbox 
does not already exist on any processor), EXE$CREMBX creates it before 
creating the mailbox UCB in local memory. It then creates the logical 

Message Queue Listhead 

------------
(Self-Relative Queue) 

Unit Number Creator} 
Port 

Flags 

Waiting Reader Reference Flags 

Waiting Write AST Waiting Read AST 

Current Maximum 
Message Count Message Size 

Protection Mask Buffer Quota 

OwnerUIC 

l Count 

Mailbox Name 
(up to 15 characters) 

(Counted ASCII String) 

Figure 18-4 Contents of a Shared Memory Mailbox 
Control Block 

503 



I!O System Services 

18.9.2 

504 

Processor 1 
Local Memory 

Logical Name 
Block 

(Implicit Pointer) 

SHMEM:MBn 

Mailbox 
Unit Control 

Block for Unit n 

Shared Memory 

Second 

~----~, 

Message Queue 

Shared Memory 
Mailbox 

Control Block 

Figure 18·5 Shared Memory Mailbox Creation 

'

Processor 2 Local Memory 
(Creator Port) 

I 
I 
I Logical Name 
I Block 
I (Implicit Pointer) 

I 
I 
I SHMEM:MBm 

I 

Mailbox 
Unit Control 

Block for Unit m 

name, because shared memory structures always have a logical name asso­
ciated with them. Finally, it assigns a channel for the creating process. 

• If the mailbox is being created on this processor for the first time (but 
already exists on another processor), EXE$CREMBX invokes 
IOC$CLONE_UCB to clone the template UCB for the shared memory 
unit. It sets UCB$V _SHMMBX in UCB$W _DEVSTS, indicating that this 
mailbox UCB describes a mailbox in shared memory. Finally, it stores 
the address of the shared memory mailbox control block in UCB$L_ 
MB_MBX. 

• If the mailbox already exists on this processor, EXE$CREMBX assigns a 
channel to it. 

The data structures required to describe a shared memory mailbox are pic­
tured in Figure 18-5. 

Mailbox Deletion 

The $DELMBX system service, EXE$DELMBX in module SYSMAILBX, 
marks a mailbox for deletion. Invoking $DELMBX to mark a temporary mail-



18.10 Breakthrough System Service 

box for deletion is superfluous. The mailbox is actually deleted by 
IOC$DELETE_ UCB when its reference count goes to zero (after the last 
channel assigned to it has been deassigned). The mailbox driver, MBDRIVER 
(in module MBDRIVER), will delete the logical name, if any, as part of the 
last channel processing. See Section 18.4.4 for a discussion of last channel 
processing. 

The $DELMBX system service has only one argument: CHAN, the number 
of the channel assigned to the mailbox to be deleted. 

EXE$DELMBX invokes IOC$VERIFYCHAN to verify the channel number 
and get the address of the CCB. Once it has located the CCB, EXE$DELMBX 
gets the UCB address from CCB$L_UCB and then verifies the following: 

• That the UCB is a mailbox (DEV$V _MBX in UCB$L_DEVCHAR is set) 
• That, if the mailbox is a permanent mailbox, the process has PRMMBX 

privilege 

If these conditions are met, EXE$DELMBX marks the mailbox for deletion by 
setting bit UCB$V _DELMBX in UCB$W _DEVSTS. 

18.10 BREAKTHROUGH SYSTEM SERVICE 

The Breakthrough ($BRKTHRU[W]) system service sends a message to one or 
more terminals, even if an 1/0 operation is currently in progress on the termi­
nal. There are eleven arguments to $BRKTHRU. All of the arguments except 
MSGBUF are optional. 

• The number of the event flag to be set when the message has been written 
to the specified terminals, EFN 

• The message buffer containing the text to be written, MSGBUF 

• The name of the terminal or user name to which to send the text, SENDTO 

• The type of terminal to which to send the message, SNDTYP 

• The address of an IOSB that will receive the 1/0 completion status of the 
$BRKTHRU system service, IOSB 

• The carriage control to be used with the message, CARCON 

• Options for the $BRKTHRU system service, FLAGS 

• The class requestor identification, which identifies the application or image 
that is requesting the $BRKTHRU system service, REQID 

• The number of seconds that must elapse before an attempted write by the 
$BRKTHRU system service is considered to have failed, TIMOUT 

• The address of the AST routine to be executed after the message has been 
sent to the specified terminals, ASTADR 

• The AST parameter to be passed to the AST routine specified by the ASTADR 

argument, ASTPRM 

The $BRKTHRU system service routine, EXE$BRKTHRU in module 

505 



110 System Services 

18.10.1 

506 

SYSBRKTHR, runs in kernel mode. It takes three major steps: 

1. It allocates and initializes a breakthrough message descriptor block (BRK) 
for the request and stores the formatted message in the BRK. This step is 
discussed in Section 18.10.1. (See Figure 18-6 for the format of a BRK.) 

2. It initiates a write to a given terminal. This step is discussed in Section 
18.10.2. 

3. It responds to the completion of a given write. This step is discussed in 
Section 18.10.3. 

There are two messages sent by EXE$BRKTHRU. One message is the text 
specified by the MSGBUF argument, the unformatted message. The other mes­
sage is the message to be sent to video terminals, the screen message. The 
screen message consists of the following fields: 

• An escape sequence to save the cursor position and attributes. 
• An escape sequence to position the cursor in column 1 of the correct line. 
• An escape sequence to erase to the end of the line. 
• One or more escape sequences to erase lines. The number of lines (and thus 

the number of escape sequences) is specified by the low byte of the FLAGS 

argument. 
• The text specified by the MSGBUF argument. 
• An escape sequence to restore the cursor position and attributes. 

Initial Processing 

EXE$BRKTHRU begins by clearing the event flag specified by the EFN argu­
ment. Since the EFN argument is passed by value, it defaults to zero. If an 
IOSB is specified, EXE$BRKTHRU verifies that the caller has write access to 
the IOSB and clears the IOSB. It takes these steps so that the caller will wait 
until the system service completes, should the caller invoke either the 
$WAITFR or $SYNCH system services to wait for the $BRKTHRU system 
service to complete. 

It invokes EXE$PROBER_DSC (in module EXSUBROUT) to verify the ac­
cessibility of the message buffer specified by the MSGBUF argument. 

It computes the size of the breakthrough message descriptor block needed 
for the current request. The size of the BRK is the sum of the following items, 
rounded up to an integral number of longwords: 

• The basic size (BRK$C_LENGTH) of the BRK 
• Space for the name of the terminal to which to send the mailbox message 

(16 bytes) 
• The size of the unformatted message 
• Space for the screen message (208 bytes plus the size of the unformatted 

message) 



18.10 Breakthrough System Service 

• Space for four QIO context areas 

It invokes EXE$ALOP1IMAG (in module MEMORYALC) to allocate space 
from the process allocation region in Pl space for the BRK, and initializes the 
BRK as follows: 

1. It clears the BRK from BRK$Q_PRIVS up to BRK$T _MSGBUF. 
2. It stores the size of the BRK in BRK$W _SIZE. 
3. It stores the address of the QIO context area in BRK$L_QIOCTX. 
4. It stores the length of the screen message in BRK$L_SCRMSGLEN. 
5. It stores the address of the requestor's PCB in BRK$L_PCB. 
6. It stores the address of the IOSB specified by the IOSB argument in 

BRK$L_IOSB. 
7. It stores the length of the unformatted message in BRK$W _MSGLEN 

and copies the unformatted message text to the buffer starting .at 
BRK$T _MSGBUF. 

8. It stores the address of the first byte after the message in BRK$L_ 
SCRMSG. It will store the screen message at this address. 

9. It validates the SNDTYP argument. 
10. It sets up the BRK to reflect the SNDTYP and SENDTO arguments. It han­

dles the four cases as follows (the last two cases are handled identically): 

-If the SNDTYP argument is BRK$C_USERNAME (send message to a 
single user name), EXE$BRKTHRU invokes EXE$PROBER_DSC to 
verify the accessibility of the user name specified by the SENDTO argu­
ment. It copies the SENDTO argument to BRK$T _SENDNAME and 
compares it to the current user name (stored in the Job Information 
Block at offset JIB$T _USERNAME). If the two names are equal, it has 
completed this step. If they are not equal, it verifies that the process 
has OPER privilege. 

-If the SNDTYP argument is BRK$C_DEVICE (send message to a specific 
device), EXE$BRKTHRU invokes EXE$PROBER_DSC to verify the 
accessibility of the device name specified by the SENDTO argument. It 
then invokes the Get Device/Volume Information ($GETDVI) system 
service to get the physical name of the device. EXE$BRKTHRU copies 
the name returned by $GETDVI to BRK$T _DEVNAM and sets 
BRK$V _CHKPRV in BRK$B_STS to indicate that it should check the 
requestor's privilege to send to the specified device at a later step. 

-If the SNDTYP argument is either BRK$C_ALLUSERS (send message to 
all users) or BRK$C_ALLTERMS (send message to all devices), 
EXE$BRKTHRU verifies that the requestor has OPER privilege. 

11. If the TIMOUT argument is specified, EXE$BRKTHRU ensures that it is at 
least BRK_C_MINTIME (four seconds). It converts the argument to 
clock ticks and stores the resulting quadword in BRK$Q_ TIMEOUT. 

507 



110 System Services 

508 

BRK$Q_PRIVS 

BRK$W_SIZE 
BRK$W_OUTCNT 

BRK$T _DEVNAME 

BRK$L_PCB 

BRK$LIOSB 

BRK$L_ASTADR 

BRK$L_ASTPRM 

BRK$Q_ TIMEOUT 

BRK$LCARCON 

BRK$L_FLAGS 

BRK$T _SENDNAME 

BRK$W_SENDTYPE 
BRK$W_SECONDS 

BRK$LREQID 

y 

Privileges to Set 

Outstanding 1/0 Count l Block Size 

l Size 

Device Name for $ASSIGN 
(up to 15 bytes) 

to Receive Message 

Requestor PCB 

Return IOSB Address 

Address of AST to Be Executed on 
Completion of Write Breakthrough 

Value of AST Parameter 

Attempted Write Breakthrough 
Timeout Period 

Carriage Control 

Breakthrough Option Flags 

l Size 

ASCII Sender Username 
(up to 15 bytes) 

Cluster Timeout l Type of Terminal to Be 
Period Sent the Message 

Requestor Class ID 

Figure 18-6 Layout of a Breakthrough Message 
Descriptor Block 

..... 



18. 10 Breakthrough System Service 

BRK$L_PIDCTX 

BRK$L_UCBCTX 

BRK$L_DDBCTX 

BRK$L_OIOCTX 

BRK$W_EFN 
BRK$B_STS, BRK$B_PRVMODE 

BRK$L_SCRMSGLEN 

BRK$L_SCRMSG 

BRK$W_STATUS 
BRK$W_SUCCESSCNT 

BRK$W_ TIMEOUTCNT 
BRK$W_REFUSEDCNT 

BRK$W_TRMMSG 
BRK$W_ TRMUNIT 

BRK$W_MSGLEN 
BRK$T _MSGBUF 

BRK2$L_QOMMON 

BRK2$Q_IOSB 

BRK2$W_CHAN 

,. o(' 

Last PIO Searched 

Last UCB Searched 

Last DOB Searched 

010 Context Start Address 

Previous l Status 
User Event Flags 

Proc. Mode Flags 

Screen Message Length 

Screen Message Address 

Messages Sent Final Write 
Successfully Breakthrough Status 

$ASSIGN 010 Timeout 
Failures Count 

Terminal Unit Mailbox Message 
Number Code 

L Size 

Terminal Name to Receive 
Write Breakthrough via Mailbox 

(up to 15 bytes) 

Length of Message 

Start of Message 
(up to 65,381 bytes) 

: 
Breakthrough Write Message 

010 Storage 

Breakthrough Message QIO Storage 
.--~~~~~---''--~~~~~~~~~-..,,~ 

Pointer to Common Area 
(BRK block) 

IOSB forOIO 

[ 1/0 Channel ......________,,,. 
Figure 18-6 Layout of a Breakthrough Message 
Descriptor Block (continued) 

Repeated 
> BRK_C_SIMULCAST 

Times 

509 



110 System Services 

510 

(See Chapter 11 for details on timer support.) 
12. It stores a privilege mask in BRK$Q_PRIVS. This mask has at most two 

bits set, the ones for BYPASS and SHARE privileges. These bits are set 
only if they are not already set in PCB$Q_PRIVMSK. In other words, the 
mask specifies which of the two privileges the process does not already 
have. 

13. It stores the default cluster timeout value BRK_C_CLUTIMEOUT (four 
seconds) in BRK$W _SECONDS. 

14. It copies the remaining $BRKTHRU arguments to the BRK. 
15. It verifies that the REQID argument is legal (a value less than or equal to 

63). 
16. It stores the success status SS$_NORMAL in BRK$W _STATUS. 
17. It stores the mailbox prefix code MSG$_ TRMBRDCST in BRK$W _ 

TRMMSG. Note that the BRK contains a mailbox message in fields 
BRK$W _ TRMMSG through the end of the unformatted message stored 
at BRK$T _MSGBUF. 

18. It stores the previous processor access mode in BRK$B_PRVMODE. 
19. It stores -1 in BRK$L_PIDCTX. 
20. It invokes the Formatted ASCII Output ($FAO) system service to format 

the message. $F AO stores the length of the screen message in 
BRK$L_SCRMSGLEN and the screen message at the address in 
BRK$L_SCRMSG. At this point, the BRK contains the unformatted mes­
sage (starting at BRK$T _MSGBUG) and the screen message (immedi­
ately following the unformatted message). BRK$L_SCRMSGLEN and 
BRK$L_SCRMSG constitute a descriptor for the screen message. 

EXE$BRKTHRU is now ready to commence sending messages. It does so in 
the following steps: 

1. It invokes the Set AST Enable ($SETAST) system service to disable AST 
delivery for the current process. (Since it executes in kernel mode, invok­
ing $SETAST to disable AST delivery effectively disables AST delivery for 
all access modes.) This is necessary to prevent image exit before the image 
temporary bit (CCB$V _IMGTMP) is set in the CCB. This is discussed in 
further detail in Section 18.10.2.2. 

2. It attempts to initiate BRK_C_SIMULCAST (four) message writes. The 
specific steps it takes to initiate the writing of a message are discussed in 
Section 18.10.2. 

3. If the system is a member of a VAXcluster System, EXE$BRKTHRU in­
vokes EXE$CSP _BRKTHRU (in module [SYSLOA]CSPCLIENT) to send 
the message to all other nodes in the VAXcluster System. 

4. It checks if all writes have been completed. If so, it deallocates the BRK. 
The specific steps it takes are discussed in Section 18.10.3.3. 

5. It invokes $SETAST to enable AST delivery for the current process. 



18.10.2 

18.10 Breakthrough System Service 

The asynchronous form of the system service returns to the caller. The 
caller can either wait for 1/0 completion or continue processing. The syn­
chronous form of the system service waits for the event flag associated with 
the request to be set and status to be returned. (See Chapter 9 for more infor­
mation concerning synchronous and asynchronous system services.) 

Writing the Breakthrough Message 

EXE$BRKTHRU takes two major steps when it attempts to initiate writing a 
message: selecting the next terminal to which to write, and starting the ac­
tual 1/0 operation. If it does not find a terminal to which to write, the second 
major step is skipped. Each time it finds an acceptable terminal UCB, it initi­
ates a write. 

18.10.2.1 Finding a Terminal. The steps EXE$BRKTHRU takes to find the next termi­
nal depend upon the SNDTYP argument. 

18.10.2.1.1 Finding a Specific Terminal. If the SNDTYP argument was BRK$C_DEVICE, 
EXE$BRKTHRU has already found the terminal. It did this using the 
$GETDVI system service when it initialized the BRK. All that it does now is 
set BRK$V _DONE in BRK$B_STS. 

18.10.2.1.2 Finding All Terminals and All Users. If the SNDTYP argument was 
BRK$C_ALLTERMS or BRK$C_ALLUSERS, EXE$BRKTHRU must find all 
terminals on the system. It does this by invoking IOC$SCAN _IODB to find 
each UCB in the system. 

The caller must pass context to IOC$SCAN _IODB on each call. (The con­
text consists of a DDB address and a UCB address.) 10~$SCAN_IODB uses 
this context to determine where to start its search of the 1/0 database. 
EXE$BRKTHRU uses BRK$L_ UCBCTX and BRK$L_DDBCTX to save this 
context between calls to IOC$SCAN _IODB. EXE$BRKTHRU set these fields 
to zero when it initialized the BRK, causing IOC$SCAN _IODB to begin its 
search at the beginning of the 1/0 database. Each time IOC$SCAN _IODB 
finds a UCB, it returns a success status. When IOC$SCAN _IODB has 
reached the end of the 1/0 database, it returns a failure status. 

After each successful call to IOC$SCAN_IODB, EXE$BRKTHRU makes 
sure that the UCB is acceptable: 

• It must be a terminal UCB. 
• It must be omline. 
• If the terminal is not allocated, the terminal must not be set autobaud. 

If the UCB is not acceptable, EXE$BRKTHRU invokes IOC$SCAN_IODB 
again to get another UCB. If IOC$SCAN _IODB finds another UCB, 

511 



110 System Services 

EXE$BRKTHRU checks that UCB. EXE$BRKTHRU continues this loop until 
it gets an acceptable UCB or all UCBs have been found. When all UCBs have 
been found, EXE$BRKTHRU sets BRK$V _DONE in BRK$B_STS. 

18.10.2.1.3 Finding All Terminals for a Specific User. If the SNDTYP argument was 
BRK$C_ USERNAME, EXE$BRKTHRU must find all terminals on which the 
given user is logged in. It accomplishes this by finding all processes belonging 
to that user and the terminal, if any, associated with those processes. 

512 

EXE$BRKTHRU invokes the Get Job/Process Information ($GETJPI) 
system service to perform a wildcard operation. (See the VAX/VMS System 
Services Reference Manual for details on performing wildcard operations 
with $GETJPI.) EXE$BRKTHRU stores the PID to be passed to $GETJPI in 
BRK$L_PIDCTX. (The initial value of BRK$L_PIDCTX is -1, the value re­
quired to initiate a wildcard operation.) On each invocation of $GETJPI, 
EXE$BRKTHRU requests the user name and the name of the process's login 
terminal. Upon completion of each invocation of $GETJPI, EXE$BRKTHRU 
verifies that the process is an interactive process (the terminal name has a 
nonzero length) and belongs to the correct user (the name stored in 
BRK$T _SENDNAME matches the user name returned by $GETJPI). If the 
process does not meet these criteria, EXE$BRKTHRU invokes $GETJPI to get 
information about the next process. 

Once EXE$BRKTHRU finds an interactive process belonging to the correct 
user, it invokes IOC$SEARCHDEV to locate the UCB and the DDB for the 
terminal. EXE$BRKTHRU then verifies that the UCB meets the following 
criteria: 

• It must be a terminal UCB. 
• It must be available. 
• It must not be for a network device or a spooled device. 
• It must not be for a detached terminal. 
• It must not have the specific broadcast class disabled (the bit whose number 

is specified by the REQID argument in UCB$Q_ TT _BRKTHRU must be 
clear). 

• It must not have broadcasts disabled or pass-all enabled unless there is a 
broadcast mailbox associated with the UCB (TT$V _BRDCSTMBX in 
UCB$L_DEVDEPND2 set). 

If the UCB does not meet these criteria, EXE$BRKTHRU invokes $GETJPI to 
get information about the next process. 

If the UCB does meet these criteria, EXE$BRKTHRU verifies that the 
requestor has the privilege to access the device. If BRK$V _ CHKPRIV in 
BRK$B_STS is set, EXE$BRKTHRU verifies that at least one of the following 
conditions is met. If this bit is not set, EXE$BRKTHRU proceeds as if one of 
the following conditions were true: 



18.10.2.2 

18.10 Breakthrough System Service 

• The requestor is the owner of the terminal. (PCB$L_PID of the requestor's 
PCB matches UCB$L_PID; the address of the requestor's PID is obtained 
from BRK$L_PCB.) 

• The requestor is a descendant of the owner of the UCB. EXE$BRKTHRU 
follows the PCB process owner chain until it finds a process whose process 
ID matches the device owner or it finds a process with no owner. 

• The process has OPER privilege. 

If the requestor has the necessary privilege to access the device, 
EXE$BRKTHRU invokes IOC$CVT _DEVNAM (in module IOSUBNPAG) to 
convert the device name to the form ddcn and store the name starting at 
BRK$T _DEVNAM + 1. EXE$BRKTHRU stores the length of the name in 
BRK$T _DEVNAM. EXE$BRKTHRU then stores the UCB$W _UNIT field in 
BRK$W _ TRMUNIT and DDB$T _NAME in BRK$T _ TRMNAME. 

Performing the Breakthrough 1/0. EXE$BRKTHRU now has in the BRK the 
information necessary to send the message to a specific terminal. It takes the 
following steps to send the message: 

1. If TT2$V _BRDCSTMBX in UCB$L_DEVDEPND2 is set and UCB$L_ 
AMB is nonzero, EXE$BRKTHRU invokes EXE$WRTMAILBOX (in mod­
ule MBDRIVER) to write the message to the associated mailbox. Note that 
the BRK contains the message already formatted for the mailbox write 
starting at BRK$W _ TRMMSG. 

2. It verifies that broadcasts to the terminal are not disabled and that the 
terminal is not in pass-all mode. There are two reasons for checking these 
bits now. If they were checked earlier, they could have changed since the 
earlier check was performed. If the terminal has an associated mailbox 
(actually, if TT2$V _BRDCSTMBX in UCB$L_DEVDEPND2 is set), 
EXE$BRKTHRU did not check these bits earlier. 

3. If BRK$Q_PRIVMSK is nonzero, EXE$BRKTHRU invokes the Set Privi­
lege ($SETPRIV) system service to enable the privileges specified by 
BRK$Q_PRIVMSK. The result of this step is to give the process BYPASS 
and SHARE privilege if it does not already have them. 

4. It invokes the $ASSIGN system service to assign a channel to the terminal 
UCB, with the CHAN argument specifying BRK2$W _CHAN. If BRK$Q_ 
PRIVMSK is nonzero after the $ASSIGN system service completes, 
EXE$BRKTHRU invokes $SETPRIV to disable the privileges specified by 
BRK$Q_PRIVMSK. 

5. It sets CCB$V _IMGTMP in the CCB of the channel just assigned. As a 
result, SYS$RUNDWN will deassign this channel on image exit if the 
channel has not been deassigned previously. This ensures that the channel 
will be deassigned if the image exits before EXE$BRKTHRU completes. 
(Image termination is discussed in Chapter 21.) 

513 



II 0 System Services 

18.10.3 

514 

6. It invokes the $QIO system service to write the message to the terminal. 
(Note that each concurrent write uses a different QIO context area. Since 
there are four such areas, only four writes can be outstanding at any one 
time.) The following arguments are specified: 

-If BRK$V _SCREEN was specified in the FLAGS argument and 
TT2$V _DECCRT in UCB$L_DEVDEPND2 is set, the screen message 
is written. The message and carriage control are specified as follows: the 
message length is the value in BRK$L_SCRMSGLEN; the message is 
the one at the address stored in BRK$L_SCRMSG; the carriage control 
is a zero. 

Otherwise, the unformatted message is written. The message and car­
riage control are specified as follows: the message length is the value in 
BRK$W _MSGLEN; the message is the one stored at BRK$T _MSGBUF; 
the carriage control is the value in BRK$L_CARCON. 

-The channel is the one specified by BRK2$W _CHAN. 
-The IOSB is the one at BRK2$Q_IOSB. 
-The AST address is QIO_DONE (in module SYSBRKTHRU). This rou-

tine is discussed in Section 18.10.3.2. 
-The AST parameter is the address of the QIO context area, BRK2$L_ 

COMMON. 
-The function code is write virtual block, with the refresh, cancel 

CTRL/O, and breakthrough modifiers. 
-The event flag is BRK_C_EFN (31). 

7. EXE$BRKTHRU increments BRK$W _OUTCNT to reflect another out­
standing write request. 

8. If the TIMOUT argument was specified (BRK$Q_ TIMEOUT is nonzero), 
EXE$BRKTHRU invokes the Set Timer ($SETIMR) system service, speci­
fying QIO_ TIMEOUT (in module SYSBRKTHRU) as the AST routine to 
be activated when the timer expires and the value in BRK$Q_ TIMEOUT 
as the time. QIO_ TIMEOUT is discussed in Section 18.10.3.1. 

EXE$BRKTHRU has now completed all the work necessary to initiate the 
writing of the breakthrough message to a given terminal. 

Completion Actions 

EXE$BRKTHRU performs three distinct actions related to completion: 

• It responds to the expiration of a timer. 
• It responds to the completion of a write to a terminal. 
• It checks for completion of the $BRKTHRU system service. 

It performs the first two actions in AST routines. It performs the latter action 
in a subroutine. 



18.10.3.1 

18.10.3.2 

18.10.3.3 

18.11 Broadcast System Service 

Timer Expiration. If the timer expires before the 1/0 completion AST is exe­
cuted, the executive invokes QIO_ TIMEOUT as an AST routine. The only 
argument to QIO_ TIMEOUT is the address of the QIO context area. QIO_ 
TIMEOUT invokes the $CANCEL system service to cancel the write re­
quest. This will result in QIO_DONE being invoked as part of completing 
the I/O request; any further processing required will be performed by 
QIO_DONE. 

1/0 Completion AST. The 1/0 completion AST, QIO_DONE, is activated 
when the I/O operation requested via the $QIO system service completes. 
The one argument to QIO-DONE is the address of the QIO context area for 
the completed write. QIO_DONE takes the following steps: 

1. If BRK$Q_ TIMEOUT is nonzero, QIO_DONE invokes the Cancel Timer 
($CANTIM) system service to cancel the timer requested via the 
$SETLMER system service. Note that the timer may have expired already. 

2. It invokes $DASSGN to deassign the channel. 
3. It decrements BRK$W _OUTCNT to reflect the completion of the write 

request. 
4. It attempts to initiate another write operation by taking the steps de­

scribed in Section 18.10.2. 
5. It then checks for completion of the $BRKTHRU request by taking the 

steps described in Section 18.10.3.3. 

Completion Checks. CHECK_ COMPLETE is invoked to check for comple­
tion of the $BRKTHRU request: 

1. It checks BRK$W _OUTCNT. If it is nonzero, there is at least one write 
request outstanding, and CHECK_COMPLETE exits. 

2. It stores the final status in the IOSB if the requestor specified one 
(BRK$L_IOSB is nonzero). Note that CHECK_ COMPLETE always runs in 
the context of the requestor. Thus, the IOSB, if specified, is accessible. 

3. If the requestor specified an AST routine (BRK$L_ASTADR is nonzero), 
CHECK-COMPLETE invokes the Declare AST system service, giving the 
AST routine address as that stored in BRK$L_ASTADR and the AST pa­
rameter as that stored in BRK$L_ASTPRM. 

4. It invokes the Set Event Flag ($SETEF) system service to set the event flag 
specified by the requestor. 

5. It invokes EXE$DEAP1 (in module MEMORYALC) to deallocate the BRK. 

18.11 BROADCAST SYSTEM SERVICE 

The Broadcast ($BRDCST) system service sends messages to one or more 
terminals, even if an I/O operation is currently in progress on the terminal. 

515 



110 System Services 

516 

The $BRDCST system service has been superseded by the $BRKTHRUW sys­
tem service, which should be used for future software development. 
$BRDCST has four arguments: 

• The message buffer containing the text to be written, MSGBUF 

• The device to which to send the message, DEVNAM 

• The carriage control to be used with the message, CARCON 

• Options for the $BRDCST system service, FLAGS 

The $BRDCST system service routine, EXE$BRDCST in module SYS­
BRKTHR, runs in the access mode of the caller. EXE$BRDCST invokes the 
$BRKTHRUW system service to perform the breakthrough operation equiva­
lent to the requested broadcast operation. EXE$BRDCST specifies the follow­
ing arguments to the $BRKTHRUW system service: 

• The EFN argument is BRK_C_BRDCSTEFN, event flag 31. 
• The $BRKTHRUW MSGBUF argument is the same as the $BRDCST MSGBUF 

argument. 
• The SNDTYP argument is as follows: 

-If the DEVNAM argument is zero, the SNDTYP argument is BRK$C_ 
ALLTERMS (send to all terminals). 

-If the DEVNAM argument is nonzero, it is taken as the address of a descrip­
tor. If the descriptor specifies a length of zero, the SNDTYP argument is 
BRK$C_ALLUSERS (send to all users). If the descriptor specifies a non­
zero length, the SNDTYP argument is BRK$C_DEVICE (send to the speci­
fied device). 

• If the SNDTYP argument is BRK$C_DEVICE, the SENDTO argument is the 
same as the DEVNAM argument to the $BRDCST system service. Otherwise, 
the SENDTO argument is irrelevant. 

• The $BRKTHRUW FLAGS argument is the same as the $BRDCST FLAGS, if 
the latter argument is specified. Otherwise, the $BRKTHRUW FLAGS argu­
ment is zero. Note that the $BRDCST FLAGS argument has no bits equiva­
lent to the BRK$V _ERASE_LINES and BRK$V _CLUSTER bits of the 
$BRKTHRU FLAGS argument. 

• The $BRKTHRUW CARCON argument is the same as the $BRDCST CARCON 

argument, if the latter argument is specified. Otherwise, the $BRKTHRUW 
CARCON argument is an ASCII blank. 

• The TIMOUT argument is 10, which specifies a timeout of ten seconds. 
• The IOSB argument specifies an IOSB allocated on the stack by 

EXE$BRDCST. 

Upon completion of the $BRKTHRUW system service, EXE$BRDCST ex­
amines the return status. If the status is an error, EXE$BRDCST returns that 
status to the caller. If the return status of the $BRKTHRUW system service is 



18.12 

18.12 Informational Services 

a success status, EXE$BRDCST returns the status in the IOSB to the caller. 
Note that if either return status is SS$_NOOPER, EXE$BRDCST replaces it 
with SS$_NOPRIV. This is done to maintain compatibility with previous 
implementations of $BRDCST. 

INFORMATIONAL SERVICES 

Images frequently require information about particular devices on the sys­
tem. VAX/VMS provides several system services to obtain specific informa­
tion about a particular device. 

Device-independent information refers to information that is present for 
each device on the system, such as the device unit number (UCB$W _UNIT), 
device characteristics (UCB$L_DEVCHAR), and the device type 
(UCB$B_DEVTYPE). It is obtained by reading fields in the UCB that have the 
same interpretation for all devices on the system. 

Device-dependent information refers to information that is present for 
each device on the system but whose interpretation is device-dependent 
(such as the device-dependent information fields UCB$L_DEVDEPEND and 
UCB$L_DEVDEPND2) or information that is present only for certain de­
vices, such as the logical UCB address in a terminal UCB, 
UCB$L_ TT _LOGUCB. 

There are two sets of information, the primary and secondary device char­
acteristics, for each device. These two sets are identical unless one of the 
following conditions holds: 

• If the device has an associated mailbox, the primary characteristics are 
those of the assigned device and the secondary characteristics are those of 
the associated mailbox. 

• If the device is spooled, the primary characteristics are those of the interme­
diate device and the secondary characteristics are those of the spooled 
device. 

• If the device represents a logical link on the network, the secondary charac­
teristics contain information about the link. 

The $GETDVI system service (in module SYSGETDEV) obtains device­
independent information about a device. See the VAX/VMS System Services 
Reference Manual for a listing of the fields that can be returned. $GETDVI 
uses an item list argument mechanism, which allows it to be extended in an 
upwardly compatible fashion. 

Support still exists for the Get 1/0 Channel Information ($GETCHN) and 
Get 1/0 Device Information ($GETDEV) system services, which are both 
in module SYSGETDVI. The $GETDVI system service supersedes the 
$GE TCHN and $GE TD EV system services and should be used in £u ture software 
development. 

517 



110 System Services 

518 

The $QIO system service can be used to obtain device information. Two 
function codes, IO$_SENSEMODE and 10$_S£NSECHAR, can be used to 
request the device driver to return device-dependent information to the 
caller. The specific information that can be returned depends on the device. 
See the VAX/VMS I/O Reference Volume manual for details about what in­
formation is returned by specific device drivers. 



19 VAX/VMS Device Drivers 

"Open the pod-bay doors, HAL." 

Arthur C. Clarke, 2001: A Space Odyssey 

A VAX/VMS device driver is a collection of tables and routines that control 
1/0 operations on a peripheral device. The manual Writing a Device Driver 
for VAX/VMS describes the general structure of a driver and introduces the 
system routines commonly called by device drivers. 

This chapter highlights various techniques used by selected drivers and 
documents some of their device-specific processing. The intent is to present 
techniques which are helpful in understanding the VAX/VMS 1/0 subsystem 
but which are not described in the manual Writing a Device Driver for VAX/ 
VMS. No attempt is made to discuss each VAX/VMS device driver, nor is 
every feature of a particular driver described. For detailed descriptions of the 
features and capabilities provided by each supported device driver, see the 
VAX/VMS I/O Reference Volume. 

19.1 DISK DRIVERS 

19.1.1 

Disks are random access mass storage devices placed either on the 
MASSBUS, UNIBUS, IDC (VAX-11/730 only), computer interconnect (CI), 
Q22 bus, or VAXBI. 

The drivers written for these devices perform some of the functions in the 
following list. Newer disks, known as Digital Storage Architecture (DSA) 
disks, have more intelligent controllers, which perform several of these 
functions. 

• Use hardware error recovery and correction capabilities, such as data check­
ing, offset recovery, and error correction code (ECC) 

• Optimize controller operations by overlapping seek and data transfer 
operations 

• Perform dynamic bad block handling (in conjunction with the file system) 
• Support online diagnostics and error logging 
• Support 1/0 requests at the logical and physical levels and cooperate with 

the file system to support virtual 1/0 requests 

The following sections describe some of these functions. 

ECC Error Recovery 

ECC errors occur only on the following read operations: 

519 



VAX/VMS Device Drivers 

520 

• Read data 
• Read header and data 
• Write check data 
• Write check header and data 

A disk driver corrects these errors by applying a hardware-specified correc­
tion mask to the appropriate memory data. The transfer is then continued as 
if an error never occurred. Note that a DSA disk has a different ECC scheme, 
which is implemented within its controller (for example, the UDA or HSC). 

The actual error correction information consists of the following: 

• An 11-bit mask that must be XORed with the appropriate memory data 
• The number of the bit within the sector that specifies the start of the error 

burst 

A disk driver calls routine IOC$APPLYECC (in module IOSUBRAMS) to 
apply the ECC correction. IOC$APPLYECC requires the use of a system page 
table entry (SPTE). A device driver that supports ECC recovery specifies the 
DPT$V _SVP flag in the FLAGS argument to the DPTAB macro. When a device 
supported by such a driver is connected by SYSGEN, an SPTE is allocated for 
each unit. Its system virtual page number in stored in field UCB$L_SVPN in 
the unit control block (UCB). The SPTE is used to double map a data block to 
be corrected. 

The driver must also specify the number of bytes that were transferred into 
memory (up to, but not including, the block to be corrected). This number 
can be calculated by adding the remaining byte count to the transfer byte 
count (UCB$W _BCNT). 

IOC$APPLYECC applies the correction by taking the following steps: 

1. The transferred byte count is decremented and then ANDed with 1FF16• 

The result is the byte offset from the start of the buffer to the block that 
contains the data in error. 

2. The starting bit number of the error burst (a number in the range from 1 to 
4096) is decremented to convert it to a relative bit number. The result is 
separated into a byte offset within the block and a mask shift count. 

3. The byte offset within the block is added to the byte offset from the buffer 
calculated in step 1. The result is the byte offset within the buffer to the 
start of the error burst. 

4. The XOR pattern mask is shifted left by the mask shift count calculated in 
step 2. 

At this point, the longword XOR pattern and the byte offset within the 
buffer to the first byte to be corrected have been calculated. All that re­
mains is to double map the data block to be corrected and XOR the pattern 
mask with memory. However, the following considerations must be ac­
counted for: 

-The transfer may have been satisfied part way through the last block, 



19.1.2 

19.1.3 

19.1 Disk Drivers 

and the error correction is outside the data of interest. For example, 
suppose the byte count terminated after 20 bytes into the sector and the 
correctable data starts at byte 35. 

-The transfer may have been satisfied part way through the last block, 
and the error correction is partly inside and partly outside the data of 
interest. For example, the byte count terminated after 20 bytes into the 
sector, and the correctable data started at byte 19. 

Thus, the correction must be applied one byte at a time. Steps 5 through 7 
are repeated four times, if necessary. 

5. The offset to the next byte to be corrected is compared with the transfer 
byte count. If the offset byte count is greater than or equal to the transfer 
byte count, the remaining corrections are outside the area of interest. Step 
8 is executed next. 

6. The byte to be corrected. is double mapped, using the system virtual page 
number stored in UCB$L_SVPN. The translation buffer entry for that 
page is invalidated. 

7. The next byte !lowest) of the longword pattern mask is XORed with the 
memory data, the offset in the.buffer is incremented, and the pattern mask 
is shifted right by eight bits. If all four correction bytes are not applied, 
steps 5, 6, and 7 are repeated. -

8. The transfer is continued by reexecuting the appropriate function after 
updating the current transfer parameters (byte count, disk address, and 
system virtual address of the next PTE that maps the transfer). 

Offset Recovery 

Offset recovery is a technique whereby the drive read heads are moved in 
small increments (usually 200 to 400 microinches) from the track centerline 
in an attempt to pick up a stronger signal. A disk driver uses this technique 
only for read operations. Offset recovery for a DSA disk is implemented by its 
controller, not the device driver. 

When encountering an error that may be correctable using offset recovery, 
a disk driver takes the following steps: 

1. The read heads are returned to the centerline. 
2. Up to 16 attempts are made to read the data at the centerline. 
3. The heads are offset by an increment, and two retries are performed at that 

offset. This procedure is repeated up to six times. 
4. If after 28 attempts 116 at the centerline and two at each of six offset 

positions) the data still cannot be retrieved, a failure is returned. 

Dynamic Bad Block Handling 

A non-DSA disk is typically tested to detect bad blocks before the disk is 
put into use. The bad blocks are allocated to a special file called 

521. 



VAX/VMS Device Drivers 

[OOOOOO]BADBLK.SYS, so that they cannot be allocated to user files. This is 
known as static bad block handling. As the disk is used, additional blocks 
may become bad. Dynamic bad block handling deals with those blocks. 

Dynamic bad block handling is a cooperative effort among driver FDT rou­
tines, 1/0 postprocessing, and the Files-11 Extended QIO Processor (XQP). 
FDT routines for 10$_READVBLK and 10$_ WRITEVBLK construct an 1/0 
request packet (IRP) and set the virtual bit in the IRP status word 
(IRP$V _VIRTUAL in IRP$W _STS). When the 1/0 postprocessing routine (in 
module IOCIOPOST) discovers a transfer error on a virtual 1/0 function, it 
routes the IRP to the XQP. 

The XQP, using information in the IRP, calculates the bad block address 
and stores that information in [OOOOOO]BADLOG.SYS. (This file contains a 
list identifying suspected bad blocks on the volume that are not currently 
contained in the volume's bad block file.) In addition, it sets a bit in the file 
control block to indicate the presence of a bad block. When the file is closed, 
an equivalent bit is set in the file's header on disk. 

When such a file is deleted, the XQP creates a process running the image 
BADBLOCK.EXE to diagnose the file. It writes worst-case test patterns over 
the blocks of the file and reads them back, comparing the data to the original 
pattern. If a bad block is found, the image uses privileged file system func­
tions to allocate the cluster containing the block to the bad block file 
([OOOOOO]BADBLK.SYS;l), because the smallest unit of file system allocation 
is the disk cluster. 

Note that a dynamic bad block is not discovered until it is already part of a 
file and is not allocated to the bad block file until that file is deleted. When a 
bad block is discovered while writing a file, the bad block information is 
recorded. A bit is set in the FCB for the file and an error indication is returned 
to the requesting process. 

Dynamic bad block handling is restricted to virtual 1/0 functions (that is, 
file 1/0). Processes performing logical or physical 1/0 functions must provide 
their own bad block handling. 

Dynamic bad block handling is performed only for non-DSA disks. A DSA 
disk appears to the system as a perfect medium. When a bad block is detected 
on a DSA disk, the controller (or the controller and the device driver) remap 
that block to a new location on the disk. 

19.2 MAGNETIC TAPE DRIVERS 

522 

Magnetic tapes are sequential access mass storage devices. 
To perform data transfer operations, the MASSBUS magnetic tape driver (in 

[DRIVER]TMDRIVER or [DRIVER]TFDRIVER) has to obtain ownership of 
both the TM03 or TM78 controller (primary channel) and the MASSBUS 
adapter (secondary channel) by issuing the REQPCHAN and REQSCHAN 



19.3 Class and Port Drivers 

macros, respectively. At times, the secondary channel may be released (using 
the RELSCHAN macro) so that other disks may use the MASSBUS. The man­
ual Writing a Device Driver for VAX/VMS contains information on how driv­
ers are written for devices on the MASSBUS. 

The VAX/VMS IIO Reference Volume describes the features and capabili­
ties provided by the magnetic tape drivers and discusses the general error 
recovery and data check logic employed by them. 

The specific algorithm used to correct non-return-to-zero-inverted (NRZI) 
read errors is the following: 

1. If the error occurred while reading in the forward direction, the tape is 
backspaced and the record is read again. 

2. If an error occurred while reading in the reverse direction, the following 
steps are taken: 

a. The record is read in the forward direction to set up the error correction 
in the hardware. 

b. The tape is backspaced over the record just read. 
c. The record is reread in the forward direction to apply the error correc­

tion. 
d. The tape is backspaced over the record to position the tape properly 

(because the initial request was for a read in the reverse direction). 

A magnetic tape ancillary control process (ACP) is called from various 
driver FDT routines to perform functions such as writing tape labels. 

19.3 CLASS AND PORT DRIVERS 

19.3.1 

VAX/VMS has a layered strategy for certain device drivers and I/O. A number 
of drivers are divided into a class driver and a port driver. The class driver 
handles operations that depend on the actual device (the functional layer). 
The port driver handles operations that depend on the protocol and hardware 
used to communicate with a device (the communications layer). 

The class and port strategy is applied to the terminal driver (see Section 
19.4) and to drivers written for devices that communicate using a DIGITAL 
protocol known as systems communication architecture (SCA). Figure 19-1 
shows a conceptual diagram of SCA. 

Implementation of SCA on VAX/VMS 

SCA defines a communications layer and the external interface to that layer. 
The VMS implementation of SCA is known as the system communications 
services (SCS). An SCA port driver implements SCS on a specific port device. 
VAX/VMS supplies the following SCA port drivers: 

• PADRIVER for the CI780, CI750, BCI750, and CIBCI 

523 



VAX/VMS Device Drivers 

524 

Host 

Process 

$010 

Class 
Driver 

sos 

Port 
Driver 

Remote Device 

Remote 
Application 
or Device 

Server 

sos 

Port 
Driver 

------+- -----------+- ___ Software' 
Hardware 

Port 
Device 

Port 
Device 

/ Communications Mechanism f. 
Z.~----~7 
'It is possible for the remote device to implement the port driver and server in hardware. 

Figure 19-1 Conceptual Diagram of Systems 
Communication Architecture (SCA) 

• PUDRIVER for UNIBUS port devices, such as UDASO and TU81; Q22 bus 
port devices, such as RD52 and TKSO; and VAXBI port devices, such as 
KDBSO 

An SCA class driver uses SCS as a communications medium for some 
higher level functions or protocols. A class driver implements the functional 
layer within the layered strategy and performs operations on a user-visible 
device without regard for the SCA communications transport used. 

Currently there are three protocols in the function layer that call SCS to 
communicate information: 

• DECnet-VAX 
DECnet-VAX uses SCS for communication over the Cl. The DECnet CI 

driver is CNDRIVER. 
• Mass storage control protocol (MSCP) 

MSCP is a general protocol designed to describe all types of disk opera­
tion. It is implemented by controllers for DSA disks and by the software 



19.3.2 

19.4 Terminal Driver 

MSCP server supplied with VMS. The MSCP disk class driver is 
DUD RIVER. 

• Tape mass storage control protocol (TMSCP) 
TMSCP is a general tape protocol designed to describe all types of tape 

operations. It is implemented by controllers for tape drives, such as the 
TA78, TU8i, and TKSO. The TMSCP class driver is TUDRIVER. 

The disk class driver can use either the CI, the UNIBUS and Q22 bus, or 
any other SCA port driver to communicate to an MSCP server. Similarly, the 
tape class driver can use any SCA port driver to communicate to a TMSCP 
device. The DECnet class driver uses the CI port driver exclusively. 

I/O Processing 

When a user application performs 1/0 through a class and port driver, a chan­
nel must be assigned to the class driver. $QIOs are issued to that channel. 

The following sequence illustrates how SCA class and port drivers commu­
nicate information from a process on a host system to a remote device. The 
disk class driver is used as an example. 

1. The process on the host system issues a $QIO to a class driver. The $QIO 
system service validates the 1/0 request and describes it in an 1/0 request 
packet (IRP). The $QIO system service passes the IRP to the class driver. 

2. The class driver translates portions of the IRP to an MSCP request, It then 
initializes fields in a class driver request packet (CORP). A CORP contains 
information necessary for SCS operations. (Figure 19-2 shows the layout of 
a CORP.) As a convenience to the $QIO/class driver interface, a CORP is 
designed to be an extension of an IRP. 

3. The class driver then calls SCS to transmit the MSCP request to the MSCP 
server. 

4. The SCS operations are interpreted by the port driver, which then commu­
nicates the 1/0 request to a remote port driver. 

5. The remote port driver communicates the request to the MSCP server. 
6. The server acts on the MSCP request and passes the 1/0 request to the 

remote application or device. 

19.4 TERMINAL DRIVER 

The terminal 1/0 subsystem is a collection of routines that provide a· flexible 
approach to terminal input and output (as described in the VAX/VMS 110 
Reference Volume). The terminal 1/0 subsystem is divided into one terminal 
class driver and a number of device-specific port drivers. 

Note that the terminal class and pott drivers do not communicate using 
·the SCS protocol, nor do the terminal port devices conform to the SCA stan-

525 



VAX/VMS Device Drivers 

526 

IRP 
at Negative Offsets from CORP 

Fork Queue FLINK 

Fork Queue BLINK 

FIPL l Type l CORP Size 

Fork PC 

ForkR3 

ForkR4 

· Savad Return Address 

Address of Allocated MSCP Bulfer 

Allocated Request ID 

Address of Connection Descriptor Table 

RWAITCNT Pointer 

(Either of the extensions may be used) 

Local Buffer Handle Address 

Local Byte Offset 

Remote Bulfer Handle Address 

Remote Byte Offset 

ll'ansferLengthQnbytes) 

Local Bulfer Handle 
(12 bytes) 

UNIBUS Mapping Resources Allocated 

Device Status Flags 

Size of Last 1 General Purpose 
MSCP End Message Counter 

Figure 19-2 Class Driver Request Packet 

> 

, .... 

Block 
Transfer 
Extension 

Class 
Driver 
Extension 

dards. The terminal class driver, TTDRIVER.EXE, contains FDT and device­
independent routines. The port drivers contain interrupt service routines and 
controller-specific control subroutines. 

The following port drivers are supplied with VAX/VMS Version 4.4: 

• DZDRIVER for DZl I and DZ32 controllers 
• DZVDRIVER for DZVI I controllers 
• YCDRIVER for DMF32 and DMZ32 controllers 
• YFDRIVER for DHUll and DHVll controllers 
• YIDRIVER for DMB32 controllers 
• Various CPU-specific console port drivers built into the SYSLOAxxx 

images 



19.4 Terminal Driver 

User issues $010 request 

Terminal Driver ,--------------- ------------------1 

1 

I 

I 

Device-Dependent 
Control Subroutines 

and 
Interrupt Service 

Routines for 
DZ-11 andDZ-32 

.....-------~--------. TTDqlVER.EXE 
FDT and Device-Independent Routines (Terminal Class Driver) 

TTYFDT 
TTYCHARI 
TTYCHARO 
TTYDRVDAT 
TTYSTRSTP 
TTYSUB 

DZDRIVER.EXE Device-Dependent 
Control Subroutines 

and 
(Terminal 
Port Driver) 

Interrupt Service 
Routines for 

DMF-32 

YCDRIVER.EXE 
(Terminal 
Port Driver) 

Device-Dependent 
Control Subroutines 

and 
Interrupt Service 

Routines for 
Console Interface 

Module 
OPDRIVER 
(Console 
Port Driver) 

I 
I 
I 
I 
I 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I L;:.t.----------,....,. 

Interrupt Interrupt 

_______ __j 

Interrupt 
(DZ-11 or DZ-32) (DMF-32 Asynchronous Lines) 

Figure 19-3 Terminal I/O System 

The logical components of the terminal 1/0 subsystem are illustrated in 
Figure 19-3. (The console interface is discussed in Section 19.6.) 

The class and port driver images are separate, loadable images. Therefore, 
changes can be made to any of them without rebuilding the system image. 
Support for a new terminal controller can be added in a new port driver. 

When the system is bootstrapped, SYSBOOT reads the terminal class 
driver image into nonpaged pool. INIT creates the necessary linkages be­
tween the class and port drivers by linking the console port and terminal 
class drivers. The device-specific extension of a terminal UCB contains 
pointers to the class and port vector dispatch tables. INIT locates the address 
of the dispatch tables for the two drivers and stores them in the console UCB. 

Later iri system initialization, during autoconfiguration, SYSGEN identi­
fies the terminal controllers present and loads the appropriate port drivers. 
The controller and unit initialization routines of these port drivers initialize 
the UCB extensions. 

The relationships among the terminal class driver, console port driver, and 
the console UCB are shown in Figure 19-4. 

The fact that the terminal class driver is loaded by SYSBOOT has im-

527 



VAX/VMS Device Drivers 

19.4.1 

528 

Terminal Class Driver ~ : :TTY$GLDPT 

DPT 

[ 
~ ... 

DDT 

Vectors 

Console UCB 

""' -1' 

'--t- : UCB$LDDT 

* ~ ... : UCB$L_TT_CLASS 
' 

: UCB$L_ TT _PORT 
Console Port Driver 

DPT 

l DDT 

Vectors >- >-

Figure 19-4 Terminal Driver Initialization 

plications for anyone who writes a new terminal class driver. Maintain a 
backup copy of the terminal class driver in SYS$SYSTEM with a different 
name. If the new terminal driver .contains errors that prevent the system 
from completing its initialization sequence, the SYSBOOT parameter 
TTY_ CLASSNAME can be set during a conversational bootstrap to the name 
of the backup class driver. 

To test a new terminal class driver or a replacement port driver, the system 
must be rebooted, because the SYSGEN command RELOAD will not reload 
terminal class or port drivers. 

Full-Duplex Operation 

The terminal driver implements partial full-duplex operation by default. 
Full-duplex operation is based upon an alternate start 1/0 entry point to 
the terminal class driver. Whenever a write request is issued to a full­
duplex terminal, the write FDT routine (TTY$FDTWRITE in module 
[TIDRVR]TTYFDT) allocates and initializes a write buffer packet to describe 
the write request. It then calls routine EXE$ALTQUEPKT (in ~odule 
SYSQIOREQ) to enter the alternate start 1/0 routine of the driver. 



19.4 Terminal Driver 

Normally, FDT routines invoke EXE$QIODRVPKT (in module 
SYSQIOREQ) to enter the driver start 1/0 routine. EXE$QIODRVPKT tests 
whether the driver is already active for that unit (the bit UCB$V _BSY in 
UCB$W _STS). If the unit is already busy, EXE$QIODRVPKT queues the IRP 
to the UCB rather than entering the start I/O routine. 

EXE$ALTQUEPKT differs from EXE$QIODRVPKT in the following 
respects: 

• It does not test the UCB busy flag. The flag may be set as the result of a read 
request in progress. Full-duplex operation means that a read request can be 
interrupted by a write request. 

• It does not clear the cancel and timeout bits in the UCB (UCB$V _CANCEL 
and UCB$V _ TIMOUT in UCB$W _STS) because they may be in use by the 
current IRP for a read request. 

• It does not copy the SVAPTE, BCNT, and BOFF fields from the IRP to the 
UCB because this would affect the current 110 operation if the UCB is busy. 

• It enters the alternate start 1/0 routine in the driver rather than the regular 
start I/O routine. 

TTY$WRTSTARTIO (in module [TTDRVR]TTYSTRSTP) is the alternate 
start I/O routine entry point. It raises IPL to device IPL to block device inter­
rupts from the current I/O operation in case the device is busy, and processes 
the packet as follows: 

1. If a write is currently in progress, the write buffer packet is queued. 
2. If a read is in progress but the I/O function (IRP$W _FUNC) specifies write 

breakthrough (IRP$V _BREAKTHRU), the write is started. 
3. If a read is occurring but no read data has echoed yet (TTY$W _ 

RB_ TXTOFF equals zero), the write is started. 
4. Otherwise, the write buffer packet is queued to the UCB. 

To complete a write I/O request for full-duplex operation, the driver start 
I/O routine exits by calling routine COM$POST (in module COMDRVSUB) 
rather than issuing the REQCOM macro. COM$POST places the IRP on the 
postprocessing queue, requests an IPL$_IOPOST software interrupt (see 
Chapter 6), and returns. 

Routine IOC$REQCOM is avoided because it would attempt to initiate 
the next IRP queued to the UCB, and there is still an active IRP. How­
ever, all read requests (and half-duplex writes) are terminated through 
IOC$REQCOM, so that the next request of this type can be processed in the 
normal fashion. 

In full-duplex operation, the device can be expecting more than one inter­
rupt at a time (one for a read request and one for a write request). Therefore, 
two fork PCs must be stored. (Usually a driver expects only one interrupt at a 
time and stores the fork PC in UCB$L_FPC.) The terminal driver stores more 

529 



VAX/VMS Device Drivers 

19.4.2 

19.4.3 

530 

than one fork PC by altering the value of RS (which normally points to the 
UCB) to point to the write buffer packet or the IRP before forking (by invok­
ing the FORK macro). 

A fork block is therefore formed in the write buffer packet or in the IRP. 
The fork block in the UCB is not used for read or write requests, although it 
is used at other times, for example, when a type-ahead buffer is allocated or 
when unsolicited input is being handled. 

The technique of altering RS before forking can be copied by any driver to 
allow more than one outstanding interrupt for a particular device. Any num­
ber of outstanding 1/0 requests could be handled by a driver entered at the 
alternate start 1/0 entry point. The driver, however, must be able to distin­
guish which interrupt is associated with which fork block and synchronize 
1/0 operations. Such a driver might maintain queues for outstanding 1/0 re­
quests and operate almost exclusively at device IPL (as the terminal port 
drivers do), blocking out device interrupts to achieve synchronization with 
multiple 1/0 request processing. 

Channels and Terminal Controllers 

The VMS terminal port drivers do not need to synchronize access to a termi­
nal controller using the channel mechanism. Therefore, the terminal driver 
never requests or releases a controller channel (with the REQCHAN and 
RELCHAN macros). The locations normally used in the channel request 
block (CRB) as the controller wait queue are redefined and contain modem 
control status information. 

Type-Ahead Buffer 

A type-ahead buffer is allocated from nonpaged pool for each terminal. 
The size of the type-ahead buffer is usually specified by the SYSBOOT 
parameter TTY_ TYPAHDSZ. If the terminal has the characteristic 
TT2$V _ALTYPEAHD, then the parameter TTY _ALTYPAHD specifies 
the type-ahead buffer size. Every character typed is placed into the 
buffer, even if a read request is active. 

If the terminal is in host-synchronous mode when the buffer is within 
eight characters of being full, the driver sends an XOFF character to the ter­
minal to tell it to stop sending data. (If the terminal has the alternate size 
type-ahead buffer, the SYSBOOT parameter TTY _ALTALARM is the thresh­
old for determining when to send an XOFF.) The driver sends an XON charac­
ter to the terminal to tell it to start sending data when the buffer is emptied. 
This technique prevents loss of characters during block 1/0 transmission 
from high-speed terminals. 



19.5 Pseudo Device Drivers 

19.5 PSEUDO DEVICE DRIVERS 

19.5.1 

19.5.2 

VMS supports drivers for virtual devices (pseudo devices). These include the 
null device (NL:), network device (NET:), remote terminal device (RT:), and 
mailbox (MB:). Users can assign channels to these devices and issue 1/0 re­
quests just as though they were real devices. The following sections highlight 
some of the features of these pseudo device drivers. 

Null Device Driver 

The null device driver (in NLDRIVER) is assembled and linked with the sys­
tem image (SYS.EXE). It is a very simple driver, consisting of two FDT rou­
tines (one to complete read requests and one to complete write requests). The 
read FDT routine in the null driver responds to read requests by returning an 
SS$_ENDOFFILE status code to the user. The write FDT routine in the null 
driver responds to write requests by returning an SS$_NORMAL status code. 
No data is transferred, nor are any privilege or quota checks made. 

Network Device Driver 

The network device (NET:) is best viewed as a mechanism for DECnet-VAX 
users to access network functions. When a process assigns a channel to NET, 
a network UCB is created and given a unique number, such as NETIOO. The 
channel number returned to the user points to the newly created UCB. This 
channel can then be used to perform access, control, and 1/0 operations on 
the network. When the user deassigns the last channel to the network UCB, 
the UCB is deleted. 

The network device driver and the communication drivers support two 1/0 
request interfaces: $QIOs and "internal" IRPs. 

• When a user issues a $QIO, the executive and the driver's FDT routines 
cooperate to build an IRP. The driver then processes the IRP (normally by 
passing it to its own STARTIO routine). 

• So-called internal IRPs are built by kernel mode modules (device drivers) 
and passed to another driver's alternate start 1/0 interface. 

The remote terminal drivers (CTDRIVER and RTTDRIVER) use 
NETDRIVER's internal IRP interface in communication across the net­
work. NETDRIVER uses the internal IRP interface to pass 1/0 requests to 
communication device drivers. 

There are actually two images that are used for network communication: 
the network device driver (NETDRIVER) and the network ACP (NETACP). 
NETDRIVER creates links to other CPUs, performs routing and switching 
functions, breaks user messages into manageable pieces on transmission, and 

531 



VAX/VMS Device Drivers 

19.5.3 

532 

reassembles the messages on reception. The actual 1/0 in network communi­
cation is performed by the communication device driver (for example, 
XMDRIVER performs network communication through DMC-1 ls). 

NETACP performs the following tasks: 

• Creates processes to accept inbound connects 
• Parses network control blocks and supplies defaults when a user issues an 

10$_ACCESS function code to create a logical link 
• Transmits and receives routing messages to maintain a picture of the net­

work 
• Maintains the volatile network database 

Figure 19-5 illustrates some network 1/0 functions. For more information 
on DECnet, see the VAX/VMS Networking Manual and the VAX/VMS Net­
work Control Program Reference Manual. 

Remote Terminals 

DECnet-VAX allows users to log in on a remote VAX/VMS processor and 
perform operations on that remote processor just as they would at the local 
processor. The communication from the remote processor to the controlling 
terminal is performed through a pseudo device on the remote processor called 
a remote terminal. The driver for remote terminals is CTDRIVER.EXE. 

Note that while DECnet-VAX can communicate with other DIGITAL op­
erating systems running DECnet, the focus of this discussion is on DECnet 
communication between two VAX processors running V AXNMS Version 4. 
A different protocol is used when the remote VAX processor is running a 
version of VAX/VMS prior to Version 4, in which case the remote terminal 
driver is RTTDRIVER.EXE. 

In addition to DECnet, three images are required to support remote termi­
nals: the local processor uses the image RTPAD.EXE; the remote processor 
uses the images REMACP.EXE and CTDRIVER.EXE. 

When a user on a local system issues the DCL command SET HOST, 
RTPAD uses DECnet-VAX to request a connection to a network object on the 
specified node. On remote processors running VAX/VMS, the object is 
REMACP. The image REMACP creates a UCB for the remote terminal and 
links the UCB into the driver tables by calling CTDRIVER at its unsolicited 
input entry point. REMACP then returns information about the remote pro­
cessor to RTPAD. 

RTPAD has routines for communicating with a number of different DIGI­
TAL operating systems (including RSTS/E, RSX-llM, TOPS-20, and VAX/ 
VMS). The information returned from REMACP is used to determine which 
operating system is communicating with the local processor. In VAX/VMS, 
REMACP sends unsolicited data to CTDRIVER; sending this data to 



Process A 

$ASSIGN to NET: 

$010toNET: 
Channel 

"Remote" Process 

$ASSIGN to RTcu 

$010to RT: 
Channel $010 

Creates 
Remote Process 

Interface for 
IRPs and 

"Internal" IRPs 

'-------~ 

"Internal" 
IRP 

Figure 19-5 Processing Network I/O Requests 

NETACP 

Maintains "Picture" 
of Network 

Parses and Supplies 
Defaults for 10$_ACCESS 

Functions 

NETDRIVER 

Routing and 
Switching Functions 

Maintains Logical 
Links 

Packs and Unpacks 
Information from 
"Internal" IRPs 

$010 Communication 
Device Driver 

Device-Specific 
Functions 

"Internal" 
IRP 

Communications 
Device 



VAX/VMS Device Drivers 

19.5.4 

19.5.4.1 

534 

CTDRIVER is equivalent to pressing the RETURN key on a terminal that is 
not logged in. CTDRIVER creates a detached process running LOGINOUT. 
The user is now logged in to the remote system. 

In communicating information across the network, CTDRIVER receives 
$QIOs from the remote processor, packs the information into a block, and 
uses the "internal" IRP interface to pass the request to NETDRIVER. RTPAD 
unpacks the information and reissues the $QIO for the local terminal. If the 
$QIO is a read, RTPAD packs the input information into a block and passes 
the packets of information back to CTDRIVER. 

When the user logs off from the remote system, REMACP deletes the re­
mote terminal UCB. 

Mailbox Driver 

Mailboxes are software-implemented devices that can be read and written. 
Normally, mailboxes are used for communication between processes. Al­
though mailboxes trarisfer information in much the same way that other I/O 
devices do, they are not actual devices. 

The messages written to a mailbox are stored in nonpaged pool until they 
are read. The space available for messages is determined when the mailbox is 
created. The mailbox driver uses two locations in the UCB to keep track of 
how much space is available. UCB$W _INIQUO contains the space originally 
allocated for messages. No message written to the mailbox can be greater 
than this value. UCB$W _BUFQUO contains the space currently available 
for messages. Originally, UCB$W _BUFQUO contains the value stored in 
UCB$W _INIQUO. 

The following sections describe how the mailbox driver (in module 
MBDRIVER) buffers messages written to mailboxes and serializes mailbox 
read requests; Note that mailboxes in shared memory are supported by a 
separate, loadable driver, MBXDRIVER (in module [DRIVER]MBXDRIVER). 

MBDRIVER uses the highest fork IPL (IPL$_MAILBOX, IPL 11) as its fork 
IPL. It does this to prevent possible synchronization problems with other 
drivers that reference mailboxes while in their respective fork processes (for 
example, to send a "device is off line" message to the operator's mailbox). 

Processing Set Mode Requests. A process can use the IO$_SETMODE func­
tion to request MBDRIVER to perform three different operations. The spe­
cific operation is determined by the function modifier. 

• IO$M_READATTN-Request an attention asynchronous system trap 
(AST) when a read request is issued for the mailbox 

• IO$M_ WRTATTN-Request an attention AST when a write request is is­
sued for the mailbox 



19.5.4.1.1 

19.5.4.1.2 

19.5 Pseudo Device Drivers 

• IO$M_SETPROT-Set the volume protection on the mailbox 

Only one of the modifiers can be specified at a time. If no modifier is speci­
fied, MBDRIVER assumes that IO$M_ WRTATTN was specified. 

AST Notification of Mailbox Read or Write Requests. When an image re­
quests a set mode function to establish either a read or write attention AST, 
MBDRIVER's set mode FDT routine, FDTSET, takes the following steps: 

1. It verifies that the process may access the mailbox. 
2. It invokes COM$SETATTNAST (in module COMDRVSUB) to allocate, 

initialize, and queue an AST control block (ACB) to the appropriate list­
head in the mailbox UCB. FDTSET passes the address of the listhead, 
either UCB$L_MB_ W _AST for write attention AST requests or 
UCB$L_MB_R_AST for read attention AST requests. (See Chapter 7 for 
further details.) 

3. It raises IPL to IPL$-MAILBOX to synchronize access to the UCB. 
4. It determines if the notification condition is met. The condition is met in 

the following cases: 

-If the request is for a write attention AST, there must be at least one 
message queued to the mailbox (UCB$W _MSGCNT not equal to zero). 

-If the request is for a read attention AST, the UCB must be busy 
(UCB$V _BSY in UCB$W _$TS is set). 

If the appropriate condition is met, FDTSET invokes COM$DELATTN­
AST (in module COMDRVSUB) to queue the attention AST to the re­
questing process (see Chapter 7 for details). 

If the appropriate condition is 'not met, FDTSET invokes 
EXE$FINISHIOC (in module SYSQIOREQ) to complete the I/O request. 
(See Chapter 18 for details.) The attention AST will be queued to the pro­
cess when a read or write request, as appropriate, is issued for the mailbox. 

Specifying Access Protection of a Mailbox. When an image requests a set 
mode function to set the protection on the mailbox, FDTSET takes the fol­
lowing steps: 

1. It examines the mailbox UCB object rights block (ORB) to verify that the 
requesting process is the owner of the UCB. 

2. It raises IPL to IPL$_MAILBOX to synchronize access to the UCB. 
3. It sets the flag specifying that the standard system, owner, group, world 

. protection mask is valid (ORB$M_PROT _ 16 in. ORB$B_FLAGS) and 
moves . the P2 argument of the 1/0 call to the protection mask word 
(ORB$W _PROT) of the ORB. 

4. It invokes EXE$FINISHIOC to complete the I/O request. 

535 



VAX/VMS Device Drivers 

19.5.4.2 

536 

Processing a Mailbox Write Request. When an image invokes the $QIO sys­
tem service to request a mailbox write, MBDRIVER's write FDT routine, 
FDTWRITE, takes the following steps: 

1. It invokes WRITECHECKIO (in module MBDRIVER) to validate the re­
quest. The following criteria must be met: 

-The process must have write access to the mailbox. 
-The message size must be less than or equal to the maximum message 

size for the mailbox (UCB$W _DEVBUFSIZ). 
-The process must have read access to the buffer specified (from which 

the mailbox message will be read). 

WRITECHECKIO saves the address of the specified buffer in 
IRP$L_MEDIA. 

2. FDTWRITE invokes EXE$ALONONPAGED (in module MEMORYALC) 
to allocate a message block from nonpaged pool. 

3. It initializes the block, as shown in Figure 19-6. 
4. It copies the data to be written to the mailbox from the specified buffer to 

the message block. 
5. It saves the current IPL and raises IPL to IPL$_MAILBOX. 
6. It determines if there is enough space for the message. 
7. If not, it restores the saved IPL and deallocates the message block. 

If the message size is less than the total space allowed for messages 
(UCB$W _INIQUO) and the no-resource-wait modifier (IO$M_NO­
RSWAIT) was not specified, FDTWRITE invokes EXE$IORSN­
WAIT (in module SYSQIOFDT) to place the process in a resource wait 
state waiting for the mailbox resource. (See Chapter 10 for details on 
resource waits.) 

If the message size is larger than UCB$W _INIQUO or if the no­
resource-wait modifier was specified, FDTWRITE invokes EXE$ABORT­
IO (in module SYSQIOREQ) to abort the 1/0 request with a completion 
status of SS$_MBTOOSMALL. 

8. If there is enough room for the message, it invokes INSMBQUEUE (in 
module MBDRIVER). INSMBQUEUE takes the following steps: 

a. INSMBQUEUE increments the count of outstanding messages 
(UCB$W _MSGCNT). 

b. If the UCB is busy (in other words, if there is a read in progress), it 
jumps to FINISHREAD (in module MBDRIVER), performing no fur­
ther processing. 

c. If the UCB is not busy, it inserts the message block at the tail of the 
queue of messages at listhead UCB$L_MB_MSGQ. 

d. It invokes COM$DELATTNAST to queue any write attention ASTs 
to the appropriate processes. 



19.5.4.3 

19.5:4.3.1 

19.5 Pseudo Device Drivers 

Pointer to Start of Data 

Pointer to User Buffer ~ 

l/O=lonl 
Block 

Size of Block 
Type 

Saved Packet Address Size of Message 
(Low Word) in Bytes 

Process ID of Sender Saved Packet Address 
(Low Word) (High Word) 

Mailbox 
Message 

Data 

Figure 19-6 Layout of Mailbox Message Block 

9. FDTWRITE restores the saved IPL. 
10. If tl,.e 10$M_NOW modifier was specified, it invokes EXE$FINISHIOC 

to complete the I/O request with a completion status of SS$_NORMAL. 
11. If the IO$M_NOW modifier was not specified, it invokes EXE$­

QIORETURN (in module SYSQIOREQ) to complete the $QIO system 
service. The processing of the write 1/0 request is suspended until a read 
request is issued. 

Processing a Mailbox Read Request. MBDRIVER takes three major steps to 
process a read request: FDT processing, start 1/0 processing, and request 
completion. · 

PDT Read Processing. When an image invokes the $QIO system service to 
request a mailbox read, MBDRIVER's read FDT routine, FDTREAD, takes 
the following steps: 

1. It invokes READCHECKIO (in module MBDRIVER) to validate the re­
quest. The following criteria must be met: 

-The process must have read access to the mailbox. 
-The message size must be less than or equal to the maXimum message 

537 



VAX/VMS Device Drivers 

19.5.4.3.2 

19.5.4.3.3 

538 

size for the mailbox (UCB$W _DEVBUFSIZ). 
-The process must have write access to the specified buffer (into which 

the mailbox message will be placed). 

READCHECKIO saves the address of the specified buffer in 
IRP$L_MEDIA. 

2. FDTREAD sets the mailbox 1/0 bit in the IRP (IRP$V _MBXIO in 
IRP$W _STS). The 1/0 postprocessing special kernel mode AST routine 
announces the availability of the mailbox resource when it processes an 
I/O request with the mailbox I/O bit set (see Chapter 18). 

3. If the IO$M_NOW modifier was not specified, FDTREAD invokes 
EXE$QIODRVPKT to queue the IRP. MBDRIVER's start I/O routine will 
perform the rest of the processing of this request. 

4. If the IO$M_NOW modifier was specified, it takes the following steps: 

a. It raises IPL to IPL$_MAILBOX. 
b. If any messages are available (UCB$W _MSGCNT is nonzero), it in­

vokes EXE$QIODRVPKT to queue the IRP. MBDRIVER's start I/O rou­
tine will perform the rest of the processing of this request. 

c. If no messages are available, it invokes EXE$FINISHIOC to complete 
the 1/0 operation with a final 1/0 status of SS$_ENDOFFILE. 

Start 110 Read Request Processing. MBDRIVER's start I/O routine, START­
IO, performs the following steps: 

1. It tries to dequeue a message written to the mailbox (messages are queued 
to the UCB listhead at UCB$L_MB_MSGQ). 

2. If the message queue is empty, STARTIO invokes COM$DELATTNAST 
to queue any pending read attention ASTs to the appropriate processes. 

The mailbox UCB busy bit remains set. As a result, subsequent read 
requests will be queued to the UCB. The current read request will not 
complete until a write request is issued. When the current read request is 
completed, STARTIO will process the next read request in the queue. 

3. If STARTIO dequeued a message, it invokes FINISHREAD (in module 
MBDRIVER). 

Read Request Completion. FINISHREAD is invoked by STARTIO and 
INSMBQUEUE to complete the current read request. STARTIO invokes 
FINISHREAD when it processes a read request and there is at least one mes­
sage in the queue. INSMBQUEUE invokes FINISHREAD when a write re­
quest is to be queued and there is a read request in progress. 

FINISHREAD takes the following steps: 

1. It stores the address of the message block built by FDTWRITE (see Figure 
19-6) in IRP$L_SVAPTE in the read request's IRP. The I/O postprocessing 



19.6 Console Subsystem 

routine uses this field to determine the address of the message to be copied 
to the user's buffer. (See Chapter 18 for more information on 1/0 
postprocessing. J 

2. It initializes the first two longwords in the message block with the values 
expected by the I/O postprocessing routine. (The first longword points to 
the message data, stored in the message block, and the second longword 
points to the user buffer, where the data will be copied by the I/O comple­
tion special kernel mode AST. J 

3. It stores the address of the user's buffer (which is in IRP$L_MEDIA) in the 
message block. 

4. It increases the message quota (UCB$W _BUFQUO) by the size of the mes­
sage to reflect the delivery of this message. 

5. It invokes SCH$RAVAIL to declare the availability of the mailbox re­
source. 

6. It stores the final byte count in the read request IRP. 
7. It places the process ID of the process that issued the read request in 

IRP$L_MEDIA + 4 (so that it will become the high-order longword of the 
I/O status block (IOSBJ for the' write request $QIO) and the SS$_NOR­
MAL success code in the low-order word of the IOSB (IRP$L_MEDIA) of 
the write request IRP. 

8. It invokes COM$POST (in module COMDRVSUB) to insert the write re­
quest's IRP on the 1/0 postprocessing queue. FINISHREAD calls this rou­
tine, rather than issuing the REQCOM macro,· so that another IRP is not 
dequeued (because only read request JRPs are queued to the UCB waiting 
to enter the start 1/0 routine). 

9. It places the process ID of the process that issued the write request in Rl 
and invokes the REQCOM macro to complete the read request. The value 
in Rl will become the high-order longword of the read request's IOSB. 
IOC$REQCOM will dequeue the next request and the start I/O sequence 
will be repeated. If no read request is outstanding, the busy bit will be 
cleared. 

19.6 CONSOLE SUBSYSTEM 

The console subsystem is the portion of the processor that initiates a boot­
strap operation and permits microdiagnostics to execute. The details of the 
console subsystem are not specified by the VAX architecture, but are CPU­
specific. The Guide to VAX/VMS Software Installation contains more details 
about the console subsystem of each CPU. 

Some console features are common to most VAX processors. On these pro­
cessors, there are at lea.st four internal processor registers for communication 
with a console terminal. On some processors, these registers also communi­
cate with a console block storage device; on others there are additional regis-

539 



VAX/VMS Device Drivers 

19.6.1 

540 

Table 19-1 VAX Console Processor Registers 

Register Name 

PR$_RXCS 

PR$_RXDB 

PR$_TXCS 

PR$_TXDB 

Use 

Console receive control and status register 

Console receive data buffer register 

Console transmit control and status register 

Console transmit data buffer register 

ters. Table 19-1 lists the registers common to all VAX processors. 
Transfers to console devices are made through internal processor registers 

and, on certain processors, device registers in 1/0 space. No direct memory 
. transfer is made between a VAX CPU and any console device. 

The VAX architecture specifies that the PR$_ TXDB register is also used 
for communication from code executing VAX instructions to the console 
subsystem. Some special uses of this register are listed in Table 19-2. Some 
VAX processors support additional uses. 

VAX-11/730 Console Subsystem 

The console subsystem on the VAX-11/730 consists of a terminal, two TU58 
cartridge devices, an optional remote diagnosis port, and a console micro­
processor. The console program executes on the console microprocessor. 
When the console program has control, the VAX-11/730 cannot execute VAX 
instructions. 

There are eight internal processor registers on the VAX-11/730 for commu­
nication with the console devices, four for the console terminal and four for 
the TU58s. 

Table 19-2 Special Uses of the Console PR$_ TXDB Register 

Register 
Contents 

FOl 

F02 

F03 

F04 

Meaning 

Software done 

Reboot the CPU 

Clear warm-start flag 

Clear cold-start flag 

Comments 

This value notifies the console program 
that a program started by means of a 
console command file has completed 
successfully. 

This value is written to request a system 
reboot from the default boot device. 

This flag is maintained to prevent 
nested restart attempts. 

This flag is maintained to prevent nested 
bootstrap attempts. 



19.6.2 

19.6.3 

19.6.4 

19.6.5 

19.6 Console Subsystem 

VAX·ll/750 Console Subsystem 

The console subsystem on the VAX-11/750 consists of a terminal, a TU58 
cartridge device, an optional remote diagnosis port, and console microcode in 
the V AX-111750 processor. When the console program has control, the VAX-
111750 processor is not executing user or system instructions but, rather, 
console microcode. 

There are eight internal processor registers on the VAX-11/750 for commu­
nication with the console devices, four for the terminal and four for the TU58 
console block storage device. 

VAX-11/780 and VAX-11/785 Console Subsystem 

The console subsystem on the VAX-111780 and VAX-11/785 consists of an 
LSI-11 microcomputer, a floppy disk, the console terminal, and an optional 
remote diagnosis port. The console program executes on the LSI-11, and the 
console devices are on the LSI-11 bus. Because the console program executes 
on a separate processor, the console subsystem can perform a limited set of 
functions without halting the VAX CPU. 

The VAX-111780 or VAX-111785 CPU has four internal processor registers 
for communication with both console devices. The device ID is encoded into 
control bits to distinguish between the two devices. In fact, the console pro­
gram reads the registers and performs the appropriate I/O function to the 
appropriate device. 

Micro VAX I Console Subsystem 

The console subsystem on the MicroVAX I system consists 'of console 
microcode and a console terminal. 

When the console program has control, the MicroVAX I processor is not 
executing user or system instructions but, rather, the console program 
microcode. The console program gains control of the processor whenever any 
halt condition occurs, such as execution of a HALT instruction. 

The MicroVAX I has four internal processor registers for communication 
with the terminal. 

MicroVAX II Console Subsystem 

The console subsystem on the Micro VAX II system consists of a console 
program stored in ROM in the processor's local I/O space and a console 
terminal. 

When the console program has control, the Micro VAX II processor is not 
executing user or system instructions but, rather, the console program's VAX 
instructions. The console program gains control of the processor whenever 

541 



VAX/VMS Device Drivers 

19.6.6 

19.6.7 

19.6.8 

542 

any halt condition occurs, such as execution of a HALT instruction. 
The MicroVAX II has four internal processor registers for communication 

with the console terminal. 

VAX 8200 Family Console Subsystem 

The VAX 8200 family consists of the VAX 8200 and VAX 8300. The console 
subsystem on a VAX 8200 family member consists of a console terminal, two 
RX50 floppy disk drives, an optional remote diagnosis port, and console 
microcode in the VAX CPU. When the console program has control, the VAX 
processor is not executing user or system instructions but, rather, console 
microcode. The console program gains control of the processor whenever any 
halt condition occurs, such as .execution of a HALT instruction. 

The VAX 8200 CPU has four internal processor registers to communicate 
with the console terminal. Communication with the disk drives is through 
device registers in 1/0 space. 

On a VAX 8300, only the primary CPU can communicate with the console 
terminal (using the same four internal processor registers as a VAX 8200 
CPU). The secondary CPU communicates with the console terminal via the 
primary CPU. The primary and secondary CPUs use the internal processor 
register PR8SS$_RXCD to pass console data between them. The primary 
CPU uses the previously mentioned four internal processor registers to com­
municate with the console terminal on behalf of the secondary CPU. 

VAX 8600 and VAX 8650 Console Subsystem 

The console subsystem on the VAX 8600 and VAX 8650 consists of a PDP-11 
microcomputer, an RL02 disk console block storage device, the console ter­
minal, and an optional remote diagnosis port. The console program executes 
on the PDP-11. Because the console program executes on a separate proces­
sor, the console subsystem can perform a number of functions without halt­
ing the VAX CPU. 

The VAX 8600 or VAX 8650 CPU has six internal processor registers to 
communicate with the two console devices, four for the console terminal and 
two for the disk. 

VAX 8800 Family Console Subsystem 

The VAX 8800 family consists of the VAX 8500, VAX 8550, VAX 8700, and 
VAX 8800. The console subsystem on a VAX 8800 family member consists of 
a microprocessor with a fixed disk, two floppy diskettes, a console terminal, 
and an optional remote diagnosis port. The console program executes on the 
console subsystem microcomputer. Because the console program executes on 



19.6.9 

19.6.10 

19.6.10.1 

19.6 Console Subsystem 

a separate processor, the console subsystem can perform a number of func­
tions without halting the VAX CPUs. 

Each VAX 8800 family member has four internal processor registers to 
communicate with all the console devices. The device ID is encoded into 
control bits to distinguish among the devices. 

Data Transfer Between the VAX CPU and Cons()le Devices 

The internal processor registers PR$_ TXCS and PR$_RXCS are used for con-
. trol and status information (to enable interrupts and indicate that a device is 
ready). The other two internal processor registers, PR$_RXDB and 
PR$_ TXDB, are used to transfer data. !For information about other CPU· 
specific internal processor registers that communicate with console devices, 
see the CPU-specific hardware documentation.) The TXxx registers are used 
for transmit operations (with respect to the VAX CPU), while the RXxx regis­
ters are used for receive operations. 

Most other drivers treat device registers as if they wi;:re memory locations, 
using MOVB or MOVW instructions to read or write data in those registers. In the 
case of the console, the MTPR and MFPR instructions must be used to transmit 
and receive data, control, and status information. 

For example, the following instructions on the VAX -11/780 transmit and 
receive data: 

MTPR data,#PR$_TXDB 

MFPR #PR$_RXDB,data 
Transmit data 

Receive data 

The data is sent or received as a longword, with bits <7:0> containing the 
ASCII character and bits <11:8> identifying which console device (terminal 
or block storage device) is sending or receiving the data. 

On some VAX CPUs, the distinction between devices is made by choice of 
register instead of by including a device code in a data buffer register. Note 
that all data is passed a character at a time, even to the block storage device. 

Console Interrupt Dispatching 

As the previous discussion of processor registers indicates, the terminal and 
console block storage device are treated slightly differently. On some CPUs, 
the block storage device has its own control registers and interrupt vectors. 
On others, the two. devices are handled ~ore as a single entity, with common 
routines distinguishing terminal operatipns from console. block storage 
operations. 

Console Tenninal Interrupts. When the system is bootstrapped, the system 
control block (SCB) is initialized (from the SCB template in module 

543 



VAX/VMS Device Drivers 

19.6.10.2 

544 

[SYS]SCBVECTOR) so that the vectors at offsets F8 16 and FC16 point to 
console interrupt service routines (CON$INTDISI for console input and 
CON$INTDISO for console output). 

Both routines respond to an interrupt by saving registers RO through RS 
and transferring control to a console driver in the CPU-specific image SYS­
LOA.xxx (CON$INTINP for console input, CON$INTOUT for console out­
put). For many processors, the name of the driver is [SYSLOA]OPDRIVER. 
Other console drivers have names of the form OPDRVxxx. (See Appendix G 
for a list of VAX processors and their xxx designations.) 

CON$INTINP reads the data and console device identification from the 
PR$_RXDB register and determines whether the interrupt was from the con­
sole terminal or block storage device. If the interrupt was from the console 
terminal, then the chapter read operation is handled by the terminal driver's 
character buffering routine whose address is stored in the console terminal 
UCB. The character is also echoed back to the console terminal by being 
placed in the PR$_ TXDB register. 

Routine CON$INTOUT transmits data to the console terminal through 
the PR$_ TXDB register and determines whether the resulting interrupt is 
from the terminal or the console block storage device. If the interrupt was 
caused by the terminal, then the terminal output routine (whose address is 
stored in the console terminal UCB) is called to get the next character for 
output. 

Note that the handling of console terminal I/O is done by the normal ter­
minal driver routines. Only the initial fielding of interrupts and the device 
registers that are read or written distinguish console terminal I/O from oper­
ations through the regular terminal subsystem. Note also that the con­
sole terminal always interrupts at IPL 20 (the lowest device IPL) on all VAX 
processors. 

Console Block Storage Device 1/0. The device driver and associated database 
for the console block storage device are not loaded until an explicit 
CONNECT CONSOLE command is issued to SYSGEN. At that time, 
the device driver and data structures appropriate to the specific processor 
are loaded into memory and initialized. 

A SYSGEN CONNECT CONSOLE command on a VAX-11/730 or VAX-
11/750 causes the TU58 driver (called DDDRIVER) to be loaded. Data struc­
tures for a device called CSAl are built. (On the VAX-11/730, a unit control 
block for CSA2 is also created.) In addition, two dedicated vectors in the SCB 
(at offsets F016 and F416 are loaded to point to interrupt dispatch code con­
tained in the console device CRB. 

DDDRIVER responds to console TU58 interrupts in exactly the same way 
that it responds to interrupts generated by a TU58 on the UNIBUS. The only 
difference between the two interrupts may be the device IPL at which each is 



19.6.10.3 

19.6 Console Subsystem 

dispatched. On a VAX-11/750, a console TU58 interrupt occurs at IPL 23, 
while UNIBUS TU58 interrupts and VAX-11/730 console TU58 interrupts 
occur at IPL 20. 

A SYSGEN CONNECT CONSOLE command on a VAX-11/780 causes the 
console floppy disk driver (called DXDRIVER) to be loaded and data struc­
tures for a device called CSAl to be built. Because the console floppy inter­
rupts through the same vectors used by the console terminal, no further SCB 
modification is required. 

When a console device interrupt occurs, the interrupt service routine deter­
mines whether the interrupt was from the console terminal or from the block 
storage device. If the interrupt was from the block storage device, the console 
has been connected (a UCB exists for device CSAl ), and the interrupt was 
expected (the UCB$V _INT bit is set in the status word in the UCB), then the 
driver context is restored from the UCB and the driver process is resumed at 
the saved PC (UCB$L_FPC). Otherwise, the interrupt is considered spurious 
and is simply dismissed. 

In response to the CONNECT CONSOLE command on a VAX 8600 or 
VAX 8650, SYSGEN loads the console RL02 driver, CVDRIVER, and builds 
data structures for CSAl. The SCB vector at offset F016 is initialized to point 
to interrupt dispatching code in the console CRB. 

The VAX 8800 family is similar to the VAX 8600, except that the console 
block storage driver name is CWDRIVER and there are three block storage 
units. On the VAX 8200 and VAX 8300, the console block storage driver is 
RXDRIVER. 

Double Mapping of Buffer Pages. One interesting feature of the console block 
storage device drivers is that they double map a page in the user's data buffer 
into system address space so that data can be transferred directly to and from 
the user's buffer. User buffer pages are not normally accessible because de­
vice drivers execute in system context and do not have process address space 
available to them. By double mapping a buffer page into a system address 
range, the driver can access the entire user buffer one page at a time. The 
SPTE used to map the page is reserved in the driver by setting the 
DPT$V _SVP bit in the FLAGS argument to the DPTAB macro. 

By making the user buffer accessible through system virtual addresses, 
these drivers can use VMS direct 1/0, even though they are not DMA devices. 
Use of direct 1/0 enables them to issue virtual 1/0 requests, call existing file 
system FDT routines, and use the virtual 1/0 completion routines in the 1/0 
postprocessing code. 

545 





PART VI/Process Creation and Deletion 





20 Process Creation 

All things in the world come from being. 
And being comes from non-being. 

Lao-tzu, Tao Te Ching 

The creation of a new process requires the cooperation of several pieces of the 
executive: 

• Creation begins in the context of an existing process that requests the 
Create Process ($CREPRC) system service. The $CREPRC system service 
performs the following steps: 

a. It makes privilege and quota checks. 
b. It allocates and initializes the process control block (PCB): a job informa- · 

tion block (JIB), if it is creating a detached process; and the process quota 
block (PQB), with explicit $CREPRC arguments and implicit parameters 
taken from the context of the creator. 

c. It places the new process into the scheduler database. 

• The initial scheduling state of the new process is computable outswapped 
(COMO). Thus, execution of the new process is suppressed until the swap­
per process moves the new process into the balance set. The following steps 
are performed in the context of the swapper process: 

a. The swapper moves the template for the new process context into the 
balance set from SHELL, a module in the system image. 

b. It builds the process header (PHD) according to the values of SYSBOOT 
parameters for this configuration. 

• The final steps of process initialization take place in the context of the new 
process in the routine EXE$PROCSTRT. EXE$PROCSTRT performs the 
following steps: 

a. It copies the arguments from the PQB to the PHD and various locations 
in Pl space. 

b. It calls the image activator to activate the image. 
c. It calls the image at its entry point. 

20.1 CREATE PROCESS SYSTEM SERVICE 

The $CREPRC system service establishes the parameters of the new process. 
Some of these parameters are passed to the system service by the caller. The 

549 



Process Creation 

20.1.1 

550 

Creator (Sample parameters 
that are stored 

(New JIB allocated 
only if creating 

detach/ 

JIB 

(Pooled 
Quotas) 

PCB 
in JIB, PCB, and PQB) Pooled Quotas .___ ___ __. 

SCREPRC 
Arguments 

Control 
Region 

PHO 

Figure 20-1 Sample Movement of Parameters in Process. 
Creation 

PQB 

system service copies others from the context of the caller: the caller's PCB, 
PHD, JIB, and control region are all used (see Figure 20-1). 

The $CREPRC system service can copy information to the PCB or the JIB 
of the new process, but cannot access its PHD or control region because nei­
ther exists at this stage of process creation. The parameters to be copied to 
either of these are stored in a temporary data structure until the new process 
comes into existence and has a virtual address space and PHD. The PQB is 
this temporary data structure. Its contents are listed in Table 20-1. 

Control Flow of the Create Process System Service 

The $CREPRC system service procedure, EXE$CREPRC in module 
SYSCREPRC, runs in kernel mode. It takes the following steps: 

1. The caller specifies the me argument to request creation of a detached 
process. EXE$CREPRC tests whether the specified user identification 
code (UIC) is the same as that of the caller. If it is, no privilege is neces­
sary. (This behavior is new with VAX/VMS Version 4.) Otherwise, the 
process needs either the DETACH or CMKRNL privilege. If the process is 



20.1 Create Process System Service 

Table 20-1 Contents of the Process Quota Block 

Item 

Privilege mask 

Size of PQB 

Type code 

Status 

AST limit 

Buffered 1/0 limit 

Buffered 1/0 byte limit1 

CPU time limit 

Direct I/O limit 

Open file limit1 

Paging file quota 1 

Subprocess limit1 

Timer queue entry limit1 

Working set quota 

Working set default 

Lock limit 

Working set extent 

Logical name table quota 

Flags 

Default message flags 

Reserved 

Authorization file flags 

Process creation flags 

Minimum authorized security class 

Maximum authorized security class 

SYS$INPUT attributes 

SYS$0UTPUT attributes 

SYS$ERROR attributes 

SYS$DISK attributes 

CL! image name 

CL! command table name 
Spawn CL! image name 

Spawn CL! command table name 

Equivalence name for SYS$INPUT 

Equivalence name for SYS$0UTPUT 

Equivalence name for SYS$ERROR 

Equivalence name for SYS$DISK 

Default directory string 

Image name 

Size (Bytes) 

8 

2 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

2 

4 

4 

20 

20 

4 

4 

4 

4 

256 
256 
256 
256 
256 
256 
256 
256 
256 
256 

1This quota or limit is now pooled in the JIB; hence, the PQB is no longer used to transfer 
this value. 

551 



Process Creation 

552 

requesting creation of a detachc.d process without the necessary privilege, 
EXE$CREPRC returns the error status SS$_NOPRIV to its caller. 

2. EXE$CREPRC allocates a PCB from nonpaged pool and a PQB from ei­
ther the PQB lookaside list or paged pool. (Chapter 3 describes nonpaged 
pool, paged pool, and the PQB lookaside list.) EXE$CREPRC zeros all of 
both data structures except their headers. After allOcating the pool, 
EXE$CREPRC is running at IPL 2. 

3. If EXE$CREPRC is creating a detached process, it allocates a JIB from 
nonpaged pool and initializes it. EXE$CREPRC initializes the jobwide 
list of mounted volumes as an empty list. It copies account and user 
name from the creating process's JIB and zeros all other fields. 

If EXE$CREPRC is creating a subprocess, no JIB allocation is neces­
sary; the subprocess shares the JIB of its creator. The relationship be­
tween the JIB and the PCBs of several processes in the same job is shown 
in Figure 20-2. EXE$CREPRC increments JIB$W _PRCCNT, the count of 
subprocesses in the job. It tests whether the field is less than or equal to 
JIB$W _PRCLIM, the maximum number of processes in the job tree. If 
the job tree is at its maximum size, EXE$CREPRC returns the error sta­
tus SS$_EXQUOTA to its caller. 

Note that the process count fields within each PCB (PCB$W ~ 
PRCCNT) count the number of subprocesses created by that process. 
JIB$W _PRCCNT counts the total number of subprocesses in the job. 

Whether a detached process or subprocess is being created, 
EXE$CREPRC stores the address of the JIB in PCB$L_JIB. 

4. If a subprocess is being created, EXE$CREPRC charges the number of 
SHELL pages against JIB$L_PGFLCNT, the page file quota. If the job has 
insufficient page file quota, · EXE$CREPRC returns the error status 
SS$_EXQUOTA to its caller. 

5. Several fields in the PCB are initialized to nonzero values: 

a. The AST queue is set up as empty. 
b. AST delivery to all access modes is enabled. 
c. The lock queue in the PCB is set up as empty. 
d. The default file protection is copied from the creating process's PCB. 
e. The entire access rights block (ARB) is copied from the creating 

process's ARB. If the creator has an extended rights list, EXE$CREPRC 
allocates a nonpaged pool buffer into which it copies the extended 
rights list. 

The ARB is currently located within the PCB. However, routines 
such as ACPs and device drivers that wish to check a process's access 
rights use the ARB pointer to locate the privilege mask and UIC. If, in 
the future, the ARB becomes an independent structure, the programs 
that use the ARB pointer will continue to work without modification. 

f. The unit number of a termination mailbox is copied from the 



20.1 Create Process System Service 

NAME w 

PIO 10035 

PRCCNT 2 

OWNER 0 

JIB e--1 I--

JIB for 
...... All Processes 

in This Job 

NAME x NAME y 
MPIO 10035 

PIO 10033 PIO 10031 
Pooled 

PRCCNT 0 PRCCNT 1 Quotas 

OWNER 10035 OWNER 10035 PRCCNT 3 

JIB JIB 

1 . Process W created NAME z 
both X and Y. 

PIO 1002E 

PRCCNT 0 

2. Process Y created OWNER 10031 
Process Z. 

JIB • 

Figure 20-2 Relationship Between the JIB and PCBs of 
Several Processes in the Same Job 

$CREPRC MBXUNIT argument. A unit number of zero will indicate to 
the process deletion routine that no termination message is to be sent 
back to the creator. 

g. The process page count, PCB$W _PPGCNT, is initialized to the count 
of pages in the shell process. 

h. EXE$CREPRC copies the process name into the PCB. 

6. The process privileges of the new process are determined and stored into 
the PQB. If no privilege argument is present, the current privileges of the 
creator are used. (Table 21-2 summarizes the various privilege masks as­
sociated with a process.) 

If a privilege argument is present and the creator has SETPRV privilege, 
then the privilege argument is used with no modification. 

If a privilege argument is present and the creator does not have 
SETPRV privilege, then the privileges passed to the new process are the 
logical AND of the privileges of the creator and the privileges specified in 

553 



Process Creation 

554 

the argument to $CREPRC. In short, a created process cannot receive 
privileges that its creator does not have. 

7. The software priority of the new process is determined and stored in the 
PCB in the base priority, initial priority, and current priority fields. (Be­
cause the BASPRI argument is passed by value, it is always present, with a 
default value determined by the treatment of missing arguments by the 
language processor.) 

If the creator has ALTPRI privilege, the priority specified in the argu­
ment list is used. If the creator does not have ALTPRI privilege, the 
smaller of its base priority and the priority in the argument list is used. 

8. The UIC of the new process is determined and stored in the PCB. If the 
caller specified the me argument, the new process is a detached process 
and the argument is the UIC for that detached process. 

If the caller did not specify the me argument, the UIC of the creator is 
used. If the caller specified the STSFLG bit DETACH, then the process 
being created is detached. The absence of that flag and a zero UIC indi­
cate the creation of a subprocess. The (internal) process ID (PID) of the 
creator is stored in the PCB$L_QWNER field of the PCB of the new 
subprocess. Its extended PID is stored in the field PCB$L_EOWNER. 
(Section 20.1.4 describes internal and extended PIDs.) 

9. EXE$CREPRC tests that the process name is unique within the UIC 
group. It examines the process name fields of all PCBs in the system with 
the same group number. If the process name is not unique, 
EXE$CREPRC returns the error status SS$_DUPLNAM to its caller. 
Process name is always qualified by UIC group number. 

10. Several text strings are copied to the PQB. The image name and the 
equivalence names for SYS$INPUT, SYS$0UTPUT, and SYS$ERROR 
are taken from the $CREPRC argument list. EXE$CREPRC translates the 
logical name SYS$DISK in the table LNM$FILE_DEV and stores its 
equivalence name in the PQB. For compatibility with previous releases, 
SYS$DISK is translated once. Thus, its equivalence name must be either 
a shareable logical name or physical device name. 

11. The default message flags and flags from the authorization file record are 
copied from the control region of the creator to the PQB. 

12. EXE$CREPRC copies the minimum and maximum authorized security 
clearance records from the creator's PHD to the new process's PQB. 

13. It copies the following information from the Pl space of the creator 
process: 

-Default directory string 
-Command language interpreter ( CLI) name 
-Command table name 
-CLI name for use by spawned subprocesses 
-Command table name for use by spawned subprocesses 



20.1 Create Process System Service 

Table 20-2 Flags in the Status Longword in the PCB (PCB$L_STS) That Can Be Set at 
Process Creation 

Flag in PCB$LSTS 

PCB$V _SSRWAIT 

PCB$V _SSFEXCU 
PCB$V _PSWAPM 
PCB$V _NOACNT 
PCB$V _BATCH 
PCB$V _HIBER 

PCB$V _LOGIN 
PCB$V _NETWRK 
PCB$V _DISAWS 
PCB$V _INTER 

Meaning (If Set) 

Disable system service resource wait mode 
Enable system service exceptions for user access mode 

Inhibit process swapping 
Suppress accounting 
Batch (noninteractive) process 
Hibernate process before calling image 
Log in without reading the authorization file 
Process is a network connect object 
Disable system initiated working set adjustment 
Process is interactive 

Privilege Required 

None 
None 
PSWAPM 
NOACNT 
DETACH 
None 
None 
DETACH 
None 
None 

14. The status flags for the new process are extracted from the $CREPRC 
argument list and set in the PCB$L_STS field in the new PCB. Some of 
these flags require privileges (see Table 20-2). The privilege mask that is 
checked is that of the creator process. 

15. If the process being created is a detached process (that is, not a 
subprocess, batch, network, or interactive process), then EXE$CREPRC 
copies JIB$W _MAXJOBS and JIB$W _MAXDETACH from the JIB of the 
creator to that of the new process. If either count is nonzero, indicating a 
limit, EXE$CREPRC must check whether creation of this process would 
exceed one of those limits. To check, it raises IPL to IPL$_SYNCH (8) 
and scans all existing processes. It looks for one which is not a network 
process or a subprocess and which has the same user name as the process 
being created. If it finds one, it increments the total count of jobs with 
that user name. If the process is neither interactive nor batch, it also 
increments the total count of detached processes with that user name. 
After scanning all the processes, if either limit has been exceeded, 
EXE$CREPRC returns the error status SS$_EXPRCLM to its caller. 

16. The quotas are determined for the new process and stored in the PQB. 
Section. 20.1.2 describes the steps taken to determine the quota list for 
the new process. 

17. The address of the PQB is stored in the field PCB$L_PQB (see Figure 
20-1). PCB$L_PQB uses the same longword as the event flag wait mask 
field, PCB$L_EFWM. This field is available because the process cannot 
yet be waiting for any event flags. 

18. EXE$CREPRC processes the ITMLST argument, if one was supplied. This 
argument is reserved for use by VAX/VMS. Its use is to pass logical name 
attributes for SYS$1NPUT, SYS$0UTPUT, and SYS$ERROR, which 

555 



Process Creation 

556 

EXE$CREPRC copies to the PQB. 
19. IPL is raised to IPL$_SYNCH to synchronize access to the scheduler 

database. Swap space is allocated for the process. Its address and size are 
stored in the PCB. If sufficient swap space cannot be allocated, 
EXE$CREPRC returns the error status SS$_INSSWAPSPACE to its 
caller. 

20. EXE$CREPRC searches the PCB vector (pictured in Figure 20-3 and de­
scribed in Section 20.1.3) for an empty slot. If it finds none, it returns the 
error status SS$_NOSLOT to its caller. 

21. If the maximum process count has been exceeded (SCH$GW _PROC­
CNT's contents are larger than those of SCH$GW _PROCLIM), 
EXE$CREPRC returns the error status SS$_NOSLOT to its caller. Other­
wise, internal and extended PIOs are fabricated (see Section 20.1.4) and 
stored in the PCB of the new process. 

22. If a detached process is being created, its internal PIO (IPIO) is stored in 
the master PIO field of the JIB (JIB$L_MPIO). 

23. EXE$CREPRC invokes the routine SCH$CHSE to make this process 
COMO. A boost of 6 is given to the base priority. It is this boosted prior­
ity that will determine when the new process is copied in from the 
SHELL. 

24. If a subprocess is being created, the count of subprocesses owned by the 
creator (PCB$W _PRCCNT in the creator's PCB) is incremented. In addi-

l j_ 
PCB Vector J 

::::hn-1rl~~,t~;sw.11o.~~~:d:~VI~;;~,:,~ .... ~~~~~~===--
._f,k,~,-.~~~ Free Slot 

ERRFMT 

:: SCH$G~PCBVEC 

PCB of 
&Napper 
Process 

CACHE-SERVER 1-------~ PCB of 

f'---To PCB of OPCOM CACHE-SERVER OPCOM 

JOB-CONTROL 1--------------. 
CEZANNE 

~\3,~;~~,j;~:U Free s1ot 

PCB of 
CEZANNE 

SYMBIONT-00011--------------

~ ~ ,,, ~ 

'-----t~:;if:\2~;:;~!Zi Free Slot 

MONET 

Figure 20~3 Sample PCB Vector 

PCB of 
MONET 

PCB of 
ERRFMT 

PCB of 
JOB-CONTROL 

PCB of 
SYMBIONT --0001 



20.1.2 

20.1 Create Process System Service 

tion, if the creator has a nonzero CPU time limit (there is a CPU time 
limit in effect), the amount of CPU time passed to the new process is 
deducted from the creator. 

25. Finally, the extended PID (EPID) of the new process is returned to the 
creator (if requested), IPL is lowered to 0, and control is passed back to 
the caller of $CREPRC. 

Establishing Quotas for the New Process 

Two tables in the executive are used by the $CREPRC system service when 
quotas are set up for the new process: a minimum quota table and a default 
quota table. Each quota or limit in the system has an entry in both tables. 
The contents of the minimum table are determined by the SYSBOOT param­
eters whose names are of the form PQL_Mquota-name; the contents of the 
default table are of the form PQL_Dquota-name. Following is a list of the 
steps taken to determine the value for each quota or limit that is passed to 
the new process: 

1. The default values for each quota are put into the PQB as initial values. 
2. Each quota that is included in the argument list to $CREPRC replaces the 

default value in the list. 
3. Each quota is forced to at least its minimum value. 
4. A check is made to ensure that the creator possesses sufficient quota to 

cover the quotas that it is giving to the new process. This check is per­
formed in the following way: 

a. If the creator has either DETACH or CMKRNL privilege and is creating 
a detached process, then no check is performed. If the creator has nei­
ther privilege and is creating a detached process with the same UIC, 
then the new process quotas must be less than or equal to those 
of the creator. This type of process creation is termed "restricted 
detached." Pooled quotas are placed directly into the newly allocated 
JIB. 

b. If a subprocess is being created and the quota is neither pooled nor 
deductible (the only deductible quota currently implemented is CPU 
time limit), then the subprocess quota must be smaller than or equal to 
the creator's quota. 

c. Pooled quotas require no special action when a subprocess is being cre­
ated because they already reside in the JIB, a structure that is shared by 
all processes in the job (see Figure 20-2). 

d. If a subprocess is being created and the quota in question is the CPU 
time limit quota, what happens depends on how much quota the cre­
ator process possesses. If the creator has infinite CPU time limit, then 
no check is performed. If the creator has a finite CPU time limit and 

557 



Process Creation 

20.1.3 

20.1.4 

558 

specifies an infinite CPU time limit for the subprocess, half of the cre­
ator's CPU time limit is passed to the subprocess. If the creator has a 
finite CPU time limit and specifies a finite CPU time limit for the 
subprocess, the amount passed to the subprocess must be less than the 
creator's original quota, or the creation is aborted. 

5. The quotas and working values that belong in the PCB are moved to the 
PCB. 

Table 20-3 lists the quotas that are passed to a new process when it is 
created, whether each quota is deductible or pooled, and where the limit is 
stored in the context of the new process. Further discussion of quotas can be 
found in the VAX/VMS System Manager's Reference Manual and in the VAX/ 
VMS System Services Reference Manual. 

With the exception of CPU time limit and subprocess count, all active 
counts start at their process limit values and decrement to zero. An active 
count of zero indicates no quota remaining. An active count equal to the 
corresponding process limit indicates no outstanding requests. 

The PCB Vector 

When the system is initialized, an array of MAXPROCESSCNT longwords is 
allocated from nonpaged pool. This array locates the PCB of each process in 
the system at any given time. The first two entries in the table point to the 
PCBs of the null process and the swapper process. All other entries in the 
table initially point to the PCB of the null process. 

An entry that points to the PCB of the null process but has nonzero index is 
considered an empty slot. (The entry that locates the PCB of the null process 
that has an index of zero is the "real" pointer.) The scan for an empty slot 
begins with the slot most recently allocated. System processes created during 
system initialization have low indexes. 

An example of the contents of this table is shown in Figure 20-3. 

Fabrication of Process IDs 

Under VAX/VMS Version 4, a process has two forms of PIO, an internal one 
and an extended one. In this book, the unqualified term "process ID" refers to 
the internal and traditional form. Internal PID and extended PIO are referred 
to as IPID and EPID. The EPID is a version of the IPID that is compressed so 
that it can also specify the VAXcluster node of a process. 

The following PCB fields contain information related to process identifica­
tion: 

• PCB$L_PID-Internal process ID 
• PCB$L_EPID-Extended process ID 



20.1 Create Process System Service 

Table 20-3 Storage Areas for Process Quotas 

Quota/Limit Name 
Location of 
Active Count 

Location of 
Process Limit 

NONDEDUCTIBLE QUOTAS 

AST limit 

Buffered 110 limit 

Direct I/O limit 

Working set quota 

Working set default 

Working set extent 

PCB$W _ASTCNT 

PCB$W _BIQCNT 

PCB$W _DIQCNT 

nla2 

nla2 

nla2 

PHD$W _ASTLM 

PCB$W _BIOLM 

PCB$W _DIOLM 

PHD$W _ WSQUOTA 

PHD$W _DFWSCNT 

PHD$W _ WSEXTENT 

DEDUCTIBLE QUOTA 

CPU time limit PHD$LCPUTIM PHD$1-CPULIM 

POOLED QUOTAS (SHARED BY ALL PROCESSES IN THE SAME JOB) 

Buffered IIO byte limit 

Open file limit 

Page file page limit 

Subprocess limit 

Timer queue entry limit 

Enqueue limit 

JIB$LBYTCNT 

JIB$W _FILCNT 

JIB$LPGFLCNT 

JIB$W _PRCCNT 

JIB$W _ TQCNT 

JIB$W _ENQCNT 

1The slash Ill separates the count from the limit: 

JIB$LBYTLM 

JIB$W _FILLM 

JIB$LPGFLQUOTA 

JIB$W _PRCLIM 

JIB$W_TQLM 

JIB$W _ENQLM 

Cl indicates that the count value is stored by EXE$CREPRC. 
IC indicates that the limit value is stored by EXE$CREPRC. 
Pl indicates that the count value is stored by EXE$PROCSTRT. 
IP indicates that the limit value is stored by EXE$PROCSTRT. 

2Working set list quotas are handled differently from other quotas isee Chapter 15). 

Count/Limit 
Stored by1 

CIP 
CIC 
CIC 
IP 
IP 
IP 

PIP3 

4 

4 

4 

4 

4 

4 

3CPUTIM starts at zero and increments for each clock tick that the process is current. If limit checking is 
in effect ICPULIM nonzero), then CPUTIM may not exceed CPULIM. 

4The contents of the JIB are loaded by EXE$CREPRC when a detached process is created. Subprocess 
creation uses an existing JIB. 

• PCB$L_OWNER-Internal process ID of process's creator 
• PCB$L_EOWNER-External process ID of process's creator 

The executive generally identifies a process by its IPID, although code such 
as the lock management system services may use both forms. System ser­
vices accept and return EPIDs. System utilities display EPIDs. 

The low-order word of the IPID contains the index into the PCB vector that 
locates the PCB of the identified process. The high-order word is taken from 
an array of words that is allocated from nonpaged pool and cleared during 
system initialization. There is one element (called a sequence number) in 

559 



Process Creation 

560 

PCB Vector 

NULL 

SWAPPER 

ERRFMT 

OPCOM 

JOB-CONTROL 

To PCB of 
New Process 

I 
The index value that is l 
used to locate an array 
element in either array 
forms the low 16 bits . 
of the IPID. 

:: SCH$GL-PCBVEC 

:: SCH$GL-SEQVEC 

i---------t 
.-------1 Sequence Number 

/ 
/ 

/ 

New Sequence 
Number 

/ 
/ 

/ 
/ I Sequence Number r Index 

IPID 

Figure 20-4 Fabrication of Internal Process IDs (IPIDs) 

this array for each possible PCB vector index. The element is used as a con­
sistency check to determine that a number alleged to be an IPID corresponds 
to a real process in the system. 

When an empty slot in the PCB vector is located, the corresponding se­
quence number (see Figure 20-4) is incremented and used as the high-order 16 
bits of the IPID. When a process is referenced by its IPID, the validity of the 
IPID is checked by using the low-order 16 bits as an index into the sequence 
vector and comparing the value found there with the high-order 16 bits of the 
IPID. With this scheme, a second check must also be made. The entry in the 
PCB vector must be compared to the address of the null process. If the ad­
dresses are equal, the process has been deleted but no new process has been 
assigned to the empty slot. 

Sequence numbers cycle to 0 after reaching 32767. Thus, IPIDs, when in­
terpreted as signed integers, are always positive. Negative values in the 
IRP$L_PID field of an 1/0 request packet are used in a special form of 1/0 
completion. The 1/0 postprocessing interrupt service routine interprets a 
negative IRP$L_PID value as the (system virtual) address of an internal 1/0 
completion routine. 

The two checks described in the previous paragraphs are actually per­
formed. in one step (routine EXE$NAMPID in module SYSPCNTRL) by using 



20.1 Create Process System Service 

31 30 29 28 21 20 13 12 0 

Node 
..... , 

' Seq. Process Sequence Number ' Process Index 0 Node Index ' Num- (8-16 bits) -...... (13-5 bits) ' ber ' ..... 
---·--~-- 5 4 

Figure 20·5 Layout of Extended Process ID (EPID) 

the low-order word of the IPID as an index into the PCB vector. The PCB 
indexed by the IPID contains its IPID at offset PCB$L_PID. The IPID in the 
PCB is compared to the IPID that is being checked. If the process specified 
has been deleted (the PCB vector now points to the PCB of the null process) 
but the slot has not yet been reused (the sequence number is not yet incre­
mented), the sequence number array element will match the high-order word 
in the IPID but the full 32-bit IPIDs will not match. 

The EPID is constructed from the IPID. Figure 20-5 shows its format. Its 
low-order 21 bits contain the IPID in two fields. The widths of these two 
fields vary, depending on the value of the SYSBOOT parameter MAX­
PROCESSCNT. The first field, beginning at bit zero, contains the process 
index. The size of the field is computed at system initialization and stored in 
global location SCH$GL_PIXWIDTH. The second field contains the se­
quence number. Its size is 21 minus the size of the first field. 

Bit 31 of the EPID is zero. The other ten high-order bits identify the 
VAXcluster node. The node identification is similar to process identification 
in that it consists of an index into a node table and a sequence number that 
counts how many times the i:Q.dex has been reused. On a system that is not a 
VAXcluster node, these bits are all zero. 

After a system joins a VAXcluster System, the EPIDs of any existing pro­
cesses must be updated with the node information, which comes from the 
node's cluster system identification (CSID). The low-order ten bits from the 
global location SCH$GW _LOCALNODE are inserted into the field 
PCB$L_EPID of each process and, if appropriate, into the field 
PCB$L_EOWNER. 

The format of the EPID, like any other internal interface, is subject to 
change in future releases of VAX/VMS. Kernel mode software should not 
attempt to partition the fields in the EPID and, instead, should use one of 
the following routines when transformation or manipulation of an EPID is 
necessary: 

• EXE$EPID_ TQ_PCB-Convert an EPID to address of corresponding PCB 
• EXE$EPID_ TQ_IPID-Convert an EPID to IPID 
• EXE$IPID _TO _EPID-Convert an IPID to EPID 
• EXE$1PID_ TO_PCB-Convert an IPID to address of corresponding PCB 

These routines are in the module SYSPCNTRL. 

561 



Process Creation 

20.2 THE SHELL PROCESS 

20.2.1 

562 

A process comes into existence in the COMO scheduling state. However, the 
swap image of a newly created process does not reside in the swap file. In­
stead, a special swap image exists in the paged portion of the system image 
file, SYS$SYSTEM:SYS.EXE (see Figures 20-6 and 14-22). Table F-2 shows the 
relative location of SHELL within the paged executive. This image contains a 
minimal PHD and Pl space. 

The actual contents of the swap image found in SHELL are listed in Table 
20-4. As shown in the table, there are five Pl pages, two Pl page table pages, 
and a variable number of PHD pages that contribute to SHELL. The swapper 
process reads seven of these pages when it creates a new process. 

Moving SHELL into Process Context 

The selection of a newly created process for inswap and the actual inswap 
operation are performed by the swapper. If all SHELL's pages are valid, the 
swapper copies them to the new process's Pl space by a Move instruction. If 
any is invalid, the swapper reads all the pages from the system image on disk, 
rather than pagefault several times. This optimization is especially effective 
at times when many processes are being created. 

Process B 
is being 
creeled. 

Process X 
already 
exists 
and is 
currently 
outswapped. 

PCB 
for 

Process B 

WSSWP 

PCB 
for 

Process X 

WSSWP 

Swap File Table 

EntryO 
Locates SHELL 

Entry 1 
Locates SWAPFILE.SYS 

Figure 20·6 Location of Shell Process in the System 
Image File 

SWAPFILE.SYS 

&Nap Slot 
for Process X 



20.2.2 

20.2 The Shell Process 

Table 20-4 Contents of the Initial Swap Image in the Shell Process 

Permanently Is Page Read 
Locked in Page Number from SHELL by 

Item Size Working Set in SHELL Swapper Process! 

PHD n/a1 Yes Yes, 1 page only 
(fixed + WSL + PST) 

Pl page table pages 2 Yes 2,3 Yes, 2 pages 

Pl pointer page Yes 4 Yes, 1 page 

RMS data area 1 No 5 Yes, 1 page 

Kernel stack 3 Yes 6, 7 Yes, first 2 pages 

Restof PHD n/a1 Yes No 

Page table page arrays n/a2 Yes No 

1The size of the top of the PHD depends on the values of several SYSBOOT parameters. 
See Appendix F for details on how the size of the PHD is calculated by SYSBOOT. 

2There are eight bytes per PHD page in these arrays. See Appendix F for details. 

Configuration of the Process Header 

When the system image SYS.EXE is linked, the shell process is constructed to 
look exactly like an outswapped process. However, a PHD cannot be entirely 
configured without taking into account several SYSBOOT parameters. 

To accomplish the final configuration of the PHD, the swapper makes one 
check (after the process has been read in, but before the working set is rebuilt) 
to determine whether this is a new process created from SHELL. If it is, a 
special subroutine is called to configure the PHD before the final operations 
of inswap are completed. 

This subroutine of the swapper, SWP$SHELINIT in module SHELL, exe­
cutes only as part of the creation of a new process. To avoid using up space in 
the resident executive, the routine is put into some of the pages that are read 
in from SHELL. Recall from Chapter 17 that the swapper's pseudo page table 
(as far as the 1/0 system is concerned) is also its PO page table (as far as 
address translation routines are concerned). This special subroutine executes 
from PO addresses in the context of the swapper process. After the new pro­
cess page tables are set up, the physical pages that contain this code become 
the kernel stack. 

Running in kernel mode, the routine SWP$SHELINIT performs the follow­
ing actions: 

1. It zeros pages that are a part of SHELL (and also permanently locked into 
the working set), but which are not read from the copy of SHELL in the 
system image. The pages zeroed are all but the first page of the beginning 
of the PHD, one page of the kernel stack, and the page table page arrays 

563 



Process Creation 

564 

(see Table 20-4). None of the information to be put into these pages is 
assembled into the system image. Their contents are determined dynam­
ically and stored by EXE$PROCSTRT. 

2. The system page table entries (SPTEs) that map the fixed portion of the 
PHO, the working set list (WSL), and the process section table {PST) are 
temporarily mapped so that SWP$SHELINIT can access them. The initial 
contents of each SPTE are simply the contents of the swapper's 1/0 map 
(see Figure 14-24). 

3. The SPTEs that map the empty pages of the PHO (used for WSL expan­
sion, see Chapter 14) are left as no-access pages. The SPTEs that map the 
page table page arrays in the PHO (see Chapters 14 and 17) are also tem­
porarily mapped so that SWP$SHELINIT can access them. 

4. The translation buffer is invalidated. 
5. The balance slot index is stored in the PHO. This number is supplied to 

SHELL by the swapper, which records the number of the slot that has just 
been filled. 

6. The SYSBOOT parameters that determine the default page fault cluster 
size and the default page table page fault cluster size are stored in the 
PHO. 

7. The page file with the most free space is selected as the page file for the 
new process. The page file number is recorded in the PHO at offset 
PHO$B_PAGFIL. 

8. The index to the beginning of the WSL (PHO$W _ WSLIST) and the 
pointer to the end of the PST (PHO$L_PSTBASOFF) are calculated and 
stored. 

9. The pointers to the four arrays in the page table page array portion of the 
PHO (see Figure 14-8) are calculated and stored. The page table page ar­
rays (which count valid and locked pages in each page of PTEs) are initial­
ized to -1, indicating no valid or locked pages. The next to last page table 
page in Pl space has its entries corrected to reflect four locked pages and 
five valid pages. The four locked pages are the Pl pointer page and three 
pages of kernel stack. The page that is valid but not locked is one page of 
Record Management Services (RMS) data area. 

10. The four counters in the fixed portion of the header that count page table 
pages with locked pages, valid pages, active page table pages, and those 
PTEs with nonzero entries (see Figure 14-8) are initialized to the number 
of active Pl page table pages. There are two such pages for VAX/VMS 
Version 4. 

11. Three WSL pointers (WSLOCK, WSOYN, WSNEXT) are adjusted from 
their initial values assembled into SHELL to reflect the additional pages 
from the top of the PHO that are a permanent part of the working set. 
The WSL entry (WSLE) for the one page that is valid but not locked (step 
9) is slid down to make room for the WSLEs for the PHO pages. 



20.2 The Shell Process 

12. The pages that comprise the top of the PHD (fixed portion, WSL, PST, 
and page table page arrays) are added to the process WSL. In addition, the 
page frame number (PFN) database arrays for the physical pages that are 
mapped are updated to indicate that these pages are page table pages 
(TYPE array), active and modified (STATE array), and in the process 
working set (WSLX array). 

13. The SPTEs that map the process PTEs are initialized to demand zero 
pages. The two Pl page table pages that are a permanent part of the work­
ing set are added to the WSL. The PFN arrays for the physical pages to 
which the Pl page table pages are mapped are updated as in step 12. 
Finally, the SPTEs that map these Pl page table pages are set up so that 
these pages are accessible. 

14. The offsets from the beginning of the PHD to the beginning of the PO 
page table and the end of the Pl page table are calculated, reflecting the 
size of the beginning of the PHD (see Chapter 14 and Appendix F). The 
address of the first free virtual address in Pl space (stored in the PHD at 
offset PHD$L_FREP1VA) and the contents of the copy of the Pl length 
register (stored in the hardware PCB in the PHD) are also adjusted to 
reflect the size of the PHD which is mapped into Pl space. 

15. The swapper 1/0 map (see Figure 14-24) is adjusted to reflect the current 
state of the WSL. The address of the Pl window to the top of the PHD is 
calculated and stored in location CTL$GL_PHD. (Although the swapper 
is the current process, it is able to access the Pl address of the newly 
created process because its pages are mapped as swapper PO addresses in 
the swapper 1/0 page table.) When SWP$SHELINIT returns control to the 
swapper, the completion of the inswap operation will reflect the correct 
state of the WSL and the location of the Pl window to the PHD. 

16. The PHD is marked resident by setting bit PCB$V _PHDRES in 
PCB$L_STS. 

17. The WSQUOTA, WSAUTH, WSEXTENT, and WSAUTHEXTENT point­
ers are initialized to the value of the SYSBOOT parameter WSMAX. The 
WSFLUID counter is initialized to the value of the SYSBOOT parameter 
MINWSCNT. The end of the WSL (WSLAST) and the default count 
(DFWSCNT) initially reflect the value of the SYSBOOT parameter 
PQL_DWSDEFAULT. PHD$W _ WSSIZE is initialized to the value of 
PQL_DWSDEFAULT. 

18. The calculations in step 14 adjusted the values of the PO and Pl base 
registers relative to the beginning of the PHD. The virtual address of the 
PHD is added to these two registers so that they contain the virtual ad­
dresses of the beginning of the PO and Pl page tables, exactly what is 
required for address translation. 

19. The PlPTEs that map the system service vectors are initialized with the 
contents of the SPTEs that map the system service vectors in system 

565 



Process Creation 

space. The Pl mapping of the system service vectors ehables them to be 
replaced on a per-process basis, simply by modifying that process's 
PlPTEs. 

20. Finally, the size of the initial swap space allocation is copied from the 
PCB to the PHO (PHD$L_SWAPSIZE). 

SWP$SHELINIT returns control to the swapper's main inswap routine, 
where the final steps of the inswap operation are completed. The operation of 
the swapper process is described in Chapter 17. 

20.3 PROCESS CREATION IN THE CONTEXT OF THE NEW PROCESS 

20.3.1 

566 

The final steps of process creation take place in the context of the newly 
created process. SHELL contains an initial hardware context for the process. 
In particular, the saved PC in the hardware PCB is the address of the routine 
EXE$PROCSTRT in module PROCSTRT. The saved PSL indicates kernel 
mode at IPL 2. Thus, the first code that executes in the context of a newly 
created process is the same for every process in the system. 

Operation of EXE$PROCSTRT 

EXE$PROCSTRT begins execution in kernel mode at IPL 2. It also executes 
in executive and user modes. When EXE$PROCSTRT is ,entered, the PCB and 
the PHO have been properly configured. In addition, all PCB information 
passed from the creator process has been copied by EXE$CREPRC. 
EXE$PROCSTRi must copy the information from its temporary location in 
the PQB to the PHO and Pl space (see Figure 20-7). EXE$PROCSTRT then 
prepares for execution and calls the image whose name was passed by the 
creator process. 

EXE$PROCSTRT performs the following steps: 

1. It stores the addresses of the RMS dispatcher and the base of the control 
region in the Pl pointer page. The base of the control region is the address 
of the Pl map to the PHO, which is the part of Pl space currently at the 
lowest virtual address. 

2. The Pl space vectors for user-written system services, user-written run­
down handlers, and per-process or image-specific messages are initialized 
to point to RSB instructions. (The use of these vectors in dispatching to 
user-written system services is discussed in Chapter 9.) 

3. The address of the process's PCB is stored in CTL$GL_PCB. 
4. EXE$PROCSTRT initializes the kernel request packet (KRP) lookaside 

list (see Chapter 3), forming the space into KRPs and inserting them on 
the list. 

5. Those quotas that are stored in the PHO (currently only CPU time limit 



20.3 Process Creation in the Context of the New Process 

~ JIB 
(not inwlved 
in PROCSTRT 

New Process 
operation) 

PCB 

--
(Sample parameters 
that are moved from 
PQB to new process) 

~ 
~ 

Image name, Username, 
Default Directory z PQB ~u and AST limits, 
Privilege Mask, 

Working Set Quotas ---... ~ 

Figure 20·7 Removal of Process Parameters from the 
Process Quota Block 

Control 
Region 

~ 

Process 
Header 

and asynchronous system trap (AST) limit) are moved from the PQB to 
the PHO (see Table 20-3). 

6. The WSL pointers are initialized to reflect the quotas passed from the 
creator (after minimization with the systemwide working set maxi­
mum). 

7. The process's base priority is copied to PHO$B_AUTHPRI and 
PCB$B_AUTHPRI. Saving the base priority enables a process without 
ALTPRI privilege to lower its base priority and later raise it as high as the 
original base priority. 

8. The process privilege mask is copied to the first quadword of the PHO 
(the working privilege mask), the permanent privilege mask 
(CTL$GQ_PROCPRIV in the Pl pointer page), and the authorized privi­
lege mask (PHO$Q_AUTHPRIV). The use of each of these privilege 
masks is described in Chapter 21. 

9. The default message flags are copied into Pl space. 
10. The login time is saved in CTL$GQ_LOGIN. 
11. EXE$PROCSTRT copies the minimum and maximum authorized secu­

rity clearance records from the PQB to the PHO. 
12. It initializes to empty three image activator lists (see Chapter 21 ): 

-Image control blocks (ICBs) representing activated images 

567 



Process Creation 

568 

-ICBs representing work in progress 
-ICB lookaside list 

13. EXE$PROCSTRT creates Pl virtual address space for four uses: 

-Channel control block table 
-Process allocation region 
-Process I/O segment 
-Image I/O segment 

Appendix F describes these areas and the SYSBOOT parameters that af­
fect their size. EXE$PROCSTR T records the address of each portion and 
writes the new low Pl space address in CTL$GL_CTLBASVA. 

14. It allocates space from the Pl allocation region for the process logical 
name hash table and initializes it. EXE$PROCSTRT also allocates space 
for the process-private logical names and tables which it will create. 
(Chapter 28 describes the logical name data structures and their use.) 

15. It initializes the process directory logical name table, LNM$PRO­
CESS_DIRECTORY, and the process logical name table and inserts them 
into the hash table. 

16. EXE$PROCSTRT creates the logical name table logical names 
LNM$PROCESS, LNM$GROUP, and LNM$JOB. It inserts them into the 
hash table and in LNM$PROCESS_DIRECTORY. 

17. Using the PQB equivalence strings and logical name attributes, 
EXE$PROCSTRT creates the logical names SYS$INPUT, SYS$0UTPUT, 
SYS$ERROR, TT, and SYS$DISK. 

18. If this process is not a subprocess, EXE$PROCSTRT creates the job and 
group logical name tables. (If the process is a subprocess, then the tables 
have already been created.) These tables are accessed by multiple pro­
cesses and must be in system space. EXE$PROCSTR T allocates paged 
pool for them and locks the logical name table mutex for write access. 
(See Chapter 2 for a description of mutexes.) 

EXE$PROCSTRT initializes the two tables and inserts the job table 
into the shareable logical name hash table. It then checks whether the 
group table already exists (created by some other process with the same 
UIC group number). If the group table exists, EXE$PROCSTRT deal­
locates its pool. Otherwise, it inserts the logical name into the shareable 
logical name hash table. 

19. EXE$PROCSTRT then allocates space from the Pl allocation region for 
the process-private logical name table cache. It formats the space into a 
lookaside list of logical name cache entries. 

20. The image name is moved to the image header buffer for subsequent use 
by the image activator. 

21. EXE$PROCSTRT copies the default directory string from the PQB to the 



20.3 Process Creation in the Context of the New Process 

control region. It also copies the two sets of CLI and command table 
information. 

22. It copies the $CREPRC and user authorization file (UAF) flags from the 
PQB to Pl space. 

23. It stores, redundantly, the user name and account name in the Pl pointer 
page. (With VAX/VMS Version 4, this information is also in the JIB.) 

24. EXE$PROCSTRT deallocates the PQB by inserting it on the PQB 
lookaside list (see Chapter 3). Once the PQB has been deallocated, IPL 
can be lowered to 0, allowing the process to be deleted. By keeping IPL at 
2 until the PQB has been released, the need for special case code in the 
Delete Process ($DELPRC) system service is avoided. There is no need to 
check in $DELPRC whether the process being deleted is only partially 
created and still owns a PQB. 

Another more philosophical interpretation is that at this point in the 
creation of a process, there exists something that is capable of being de­
leted, a full-fledged process.' 

25. EXE$PROCSTRT merges the Files-I I XQP into Pl space. During system 
initialization, a global section is created from the XQP image, which is 
pure code and read-only data to be shared among all processes. 
EXE$PROCSTRT invokes the Map Global Section ($MGBLSC) system 
service to map the shareable XQP section. 

EXE$PROCSTRT writes the lowest XQP address into CTL$GL_ 
CTLBASVA to record the new Pl base virtual address. It dispatches to 
initialization code within the XQP image. The initialization code re­
quests the Expand Region ($EXPREG) system service to create a process­
private copy of XQP impure area and space for a kernel stack. It then 
updates CTL$GL_CTLBASVA. After performing other Files-11 initiali­
zation, it returns to EXE$PROCSTR T. 

26. The shareable image list for the Address Relocation Fixup ($IMGFIX) 
system service is initialized to point to a dummy element. (This system 
service is described in Chapter 21.) 

27. EXE$PROCSTRT changes access mode to executive by fabricating a PSL 
and PC on the stack and executing an REI instruction. Execution of an 
REI instruction is the only way to get to an outer (less privileged) access 
mode. 

At this point, EXE$PROCSTRT has moved all the information from 
the creator to the context of the new process and is now ready to activate 
the image that will execute in the context of the new process. It must 
change mode to executive to call the image activator, which is an execu­
tive mode system service. 

28. The image activator is called to set up the page tables and perform the 
other steps necessary to activate the image. Image activation is described 
in Chapter 21. 

569 



Process Creation 

570 

29. An executive mode termination handler, EXE$RMSEXH in module 
PROCSTRT, is declared that calls SYS$RMSRUNDWN for each open 
file. This handler is invoked when the Exit ($EXIT) system service is 
called from executive access mode, which usually happens when the 
process is deleted. 

30. EXE$PROCSTRT changes access mode to user by fabricating a PSL and 
PC on the stack and executing an REI instruction. 

31. The frame pointer (FP) is cleared, guaranteeing that the search of the user 
mode stack for a condition handler by the exception dispatcher will 
terminate (see Chapter 4). 

32. EXE$PROCSTRT sets up an initial call frame on the user mode stack by 
executing a CALLG instruction to an inline procedure: 

CALLG (AP), B'90$ 

REI 

90$: .WORD 0 ;Entry mask 

;Procedure code 

EXE$PROCSTRT establishes the catch-all condition handler, 
EXE$CATCH_ALL, as the condition handler for this call frame and also 
as the last chance exception vector for user mode. The purpose and 
action of this handler are discussed in the next section. 

33. EXE$PROCSTRT requests the $IMGFIX system service to perform 
fixups on the image. 

34. An argument list that is nearly identical to the one used by one of the 
CLis (see Chapter 23) is built on the stack. This argument list allows an 
image to execute with no concern over whether it was activated from 
EXE$PROCSTR T or from a CLI. The address of a dummy CLI call back 
routine is stored in location CTL$AL_CLICALBK. If an image that was 
activated from EXE$PROCSTRT attempts to communicate with a non­
existent CLI, the dummy CLI call back routine will return the error sta­
tus CLI$_INVREQTYP. 

35. EXE$PROCSTRT tests the PCB$V _HIBER bit in PCB$L_STS to deter­
mine whether the process was created with the hibernate STSFLG. If it 
was, EXE$PROCSTRT requests the Hibernate ($HIBER) system service. 
When the process is awakened, EXE$PROCSTRT proceeds. 

36. EXE$PROCSTRT calls the image at its initial transfer address. If the 
image terminates with a RET instruction (instead of calling the $EXIT 
system service directly), control returns to EXE$PROCSTRT. If the pro­
cess was created with the hibernate STSFLG, EXE$PROCSTRT places the 
process back into hibernation. If it is awakened, EXE$PROCSTRT calls 
the image again. An effect of this implementation is that the image is not 
exited and no exit handlers (user-declared or system-declared, such as 



20.3.2 

20.3 Process Creation in the Context of the New Process 

EXE$RMSEXH) are invoked. 
If the process was not created with the hibernate flag, 

EXE$PROCSTRT calls the $EXIT system service itself. In general, there 
is no difference between an image terminating with a RET instruction or 
with a call to $EXIT. If the process was initially created with the hiber­
nate flag, there is a difference between RET and $EXIT. If a process is to be 
put into hibernation for future awakenings, it must use the RET instruc­
tion to return to EXE$PROCSTRT rather than terminate with a call to 
$EXIT. 

Catch-All Condition Handler 

This condition handler is established in the outermost call frame by 
EXE$PROCSTRT and the CLis before calling an image. Any condition that is 
resignaled (not properly handled) by other handlers (or unfielded because no 
other handlers have been established) is eventually passed to this handler. 
The handler issues a message using the Put Message ($PUTMSG) system 
service. Depending on the severity level of the condition, it may force image 
exit. 

The catch-all condition handler, EXE$CATCH_ALL in module PROC­
STRT, performs the following actions: 

1. If the condition is SS$_SSFAIL, then it disables system service failure 
mode to avoid an infinite loop. 

2. If the exception was generated by a call to LIB$SIGNAL (that is, the excep­
tion did not pass through the module EXCEPTION in the executive), the 
argument list is adjusted to contain only those arguments passed to 
LIB$SIGNAL and not the PC and PSL fabricated into the signal array 
by that procedure (see Chapter 4). 

3. Unless system services are inhibited for this process, EXE$CATCH_ALL 
requests the $PUTMSG system service to write an error message to 
SYS$0UTPUT (and to SYS$ERROR if different from SYS$0UTPUT). 
(The $PUTMSG system service is discussed in Chapter 29.) 

4. If this handler was called as a last chance handler (indicated by a depth of 
-3) or if the error level is severe or greater (and if system services are not 
inhibited for this process), it calls EXE$EXCMSG to write an exception 
summary to SYS$0UTPUT. (EXE$EXCMSG is described in Chapter 29.) 
EXE$CATCH_ALL then dispatches to EXE$IMGDUMP _MERGE, de­
scribed in Section 20.3.3, to write the process address space to a file for 
later analysis. When it returns, EXE$CATCH_ALL requests the $EXIT 
system service. , 

5. If the handler was not called as a last chance handler and if the error 
level is less than severe, EXE$CATCH_ALL returns the status 
SS$_CONTINUE to the exception dispatcher, which returns to the 
image. 

571 



Process Creation 

20.3.3 

572 

Image Dump Facility 

EXE$IMGDMP _MERGE, in module PROCSTRT, provides the capability to 
write a dump file of the process's address space in a format which can be 
mapped later for analysis by the debugger. It is invoked when the image ter­
minates as the result of an exception which it cannot handle. It is normally 
invoked from the condition handler estabhshed by the Image Startup system 
service (see Chapter 21), but, if not, it can also be invoked from the last 
chance handler. 

If the exception occurred in a mode more privileged than user, then no 
dump may be taken and EXE$IMGDMP _MERGE returns to its invoker. If 
the exception occurred in user mode, the routine requests the Get Job or 
Process Information ($GETJPI) system service to obtain process privileges, 
installed image privileges, and the PHO flags. EXE$IMGDMP _MERGE tests 
whether the PHD$V _IMGDMP flag is set. If it is clear, the process has not 
requested image dump and EXE$IMGDMP _MERGE returns. This flag can be 
specified as part of the $CREPRC STSFLG argument and with the DCL com­
mands SET PROCESS/DUMP and RUN/DUMP. 

If the flag is set, EXE$IMGDMP _MERGE checks whether the image was 
installed with more privileges than the process has. If the image was and the 
process has neither CMKRNL nor SETPRV privilege, no dump can be taken 
and EXE$IMGDMP _MERGE returns. Otherwise, EXE$IMGDMP _MERGE 
requests the $IMGACT and $IMGFIX system services to activate the image 
SYS$LIBRARY:IMGDMP.EXE and transfers control to the image. 



21 Image Activation and Termination 

I would h.ave you imagine, then, that there exists in the mind 
of man a block of wax .. _. and that we remember and know 
what is imprinted as long as the image lasts; but when the 
image is effaced, or cannot be taken, then we forget or do not . 
know. 

Plato, Dialogs, Theaetetus 191 

Before an image can execute, VAX/VMS must take several steps to prepare 
the process .. Process page tables and other data structures must be set up to 
locate the correct image files on disk. Address references among shareable 
images must be resolved. The term "image activation" refers to the combina­
tion of these steps. In addition, if the debugger, Image Dump Utility, or 
traceback handler is expected to run when the image executes, the correct 
hooks must be present to allow these images to be invoked. 

At image exit, exit handlers declared by the user or VAX/VMS must be 
called. If the image is executing in a batch or interactive environment, all 
traces of the image must be eliminated so that the next image can begin 
execution with no side effects from the execution of the previous image. 

This chapter describes the following system services related to image acti­
vation and termination: 

•Image Activate ($1MGACT) 
• Address Relocation Fixup ($IMGFIX) 
• Image Startup l$IMGSTAI 
•Declare Exit Handler l$DCLEXH) 
• Exit !$EXIT) 
• Rundown l$RUNDWN) 

It also describes the initialization and use of the various privilege masks 
maintained for each process. 

21.1 IMAGE INITIATION 

VAX/VMS contains no special code to load images into memory for initial 
execution. Instead, it uses the pa~e fault mechanism that brings in pages on 
demand from an image file. For this scheme to work, the process page tables · 
must reflect the state of all the pages in the main image file and its shareable 
images' files. The image activator initializes the process page tables and 
makes other necessary preparations, such as creating address space for the 
user stack. 

573 



Image Activation and Termination 

21.1.1 

574 

In this chapter, the term "main image" refers to a main, controlling image 
that has been invoked by a user. A main image can be linked with multiple 
shareable images, which themselves can be linked with other shareable 
images. 

Before control can be transferred to the main image, .ADDRESS and G' 
references that point to locations within shareable images must be resolved. 
This resolution is performed at activation time rather than at link time so 
that shareable images can change in size without requiring a relink of all 
images that use them. 

The actual transfer of control to the main image also takes place through 
the executive so that hooks can be inserted to allow later inclusion of a 
debugger, the Image Dump Utility, or the traceback facility. This path, called 
the debug bootstrap, always executes unless explicitly excluded at link time 
with a /NOTRACEBACK qualifier to the LINK command. 

Image Activation 

Although the concept of image activation is straightforward, there are several 
special cases of image activation. Some of these cases are discussed explic­
itly. Others are mentioned only in passing. 

The following types of image activation are discussed explicitly: 

• Activation of a simple main image, one linked with no shareable images 
This is an artificial separation from the next case, simply to illustrate the 

difference in the image activator's actions. 
• Activation of an image linked with one or more shareable images 

Because almost every high-level language processor generates calls to li­
brary routines, this case includes most images. 

• Activation of a known image 
The activation of images that have been installed is streamlined by the 

data structures that were created by the Install Utility. 
• Activation of a compatibility mode image 

When the image activator is called to activate a compatibility mode 
image, it actually activates the RSX-llM Application Migration Executive 
(AME) and passes the compatibility mode image name to the AME for fur­
ther processing. (The RSX-llM AME is part of the optional software prod­
uct VAX-11 RSX.) 

There are several other special cases that the image activator must check 
for. These are mentioned in the specific parts of image activation where they 
cause special action to be taken. Some specific cases are the following: 

• Image activation at system initializatior; time 
During initialization of the system, image files must be opened without 

the support of either Record Management Services (RMS) or the file system. 



21.1 Image Initiation 

The image activator calls special code in the executive that performs the 
simpler file system operations in the absence of a file system. These rou­
tines are briefly described with system initialization in Chapters 24 and 25. 

• Merged image activation 
A merged image activation occurs subsequent to the activation and trans­

fer of control to a main image. This can be used for mapping a debugger, the 
Image Dump Utility, traceback handler, message file, or command lan­
guage interpreter (CLI) into an unused area of PO or Pl space. It is also used 
to activate a shareable image when an already activated image calls the 
Run-Time Library procedure LIB$FIND_IMAGE_SYMBOL. 

Rather than using the virtual address descriptors found in the merged 
image, the image activator simply uses the next available portion of PO or 
Pl space. The user stack and image I/O segment are not mapped for a 
merged image. The RMS initialization routines are not called either, be­
cause an image is already executing and has RMS context that cannot be 
destroyed. 

• Message sections 
Message sections add per-process or image-specific entries to the message 

facility. 
• PO-only images 

The VAX/VMS Lip.ker can produce images that map all temporary struc­
tures, including the user stack and the I/O segment in PO space. The image 
activator must recognize this type of an image so that the two structures 
usually located in the lowest address portion of Pl space are correctly 
mapped. 

PO-only images are used whenever it is necessary to extend the perma­
nent part of the low address end of Pl space. For example, the SET MES­
SAGE command causes a :PO-only image called SETPO.EXE to execute. This 
image maps the indicated message section into the low address end of Pl 
space and alters location CTL$GL_CTLBASVA to reflect the new boun­
dary between the temporary and permanent parts of Pl space. This last 
step is critical if the message section is to remain mapped when later images 
terminate. 

• Privileged shareable images 
Privileged shareable sections implement user-written system services 

and rundown routines. System service procedures that are not part of the 
system image (for example, $MOUNT and $DISMOU) ar~ implemented as 
privileged shareable images. 

• Images that do not reside on a random access mass storage device 
The image activator can activate images from sequential devices (certain 

magnetic tape devices) and images located on another node of a network. 
An address space large enough to contain the entire image is first created. 
The image is then copied into this address space, thus requiring all image 
pages, including read-only pages, to be set up as writable. 

575 



Image Activation and Termination 

21.1.1.1 

21.1.1.2 

576 

Overview of the Image Actjvator. There are essentially two steps that the 
image activator performs each time that it activates an image. First, it calls 
RMS to open the image file, which enables the system to perform all of its file 
protection checks. Then it reads the image header (IHD). The IHD contains 
information about the virtual address space requirements of each section in 
the image. The image activator requests memory management system ser­
vices to map each image section. 

Data Stmctures That Describe Images. An image file begins with an IHD that 
describes the image and its sections. The IHD contains image section de­
scriptors (ISDs), one for each section in the image. Each ISD describes a por­
tion of the image's virtual address space, including its size and starting ad­
dress. Figure 21-1 shows the layout of an IHD and its position in an image. 
Figure 21-2 shows the layout of an ISD. 

There are three types of ISD: 

• ISD for a private section-The code or data is in the image file (or this 
section represents a private mapping of a global section) 

• Demand zero ISD-The range of virtual address space begins as zero-filled 
pages 

Image Fiia 

Image Header 

Image Body 

Fixup Information 

Debug and Other 
Symbol Tables 

\ 

/ 
/ 

/ 

\ 
\ 
\ 
\ 

A 

B 

c 

D 

E 

\~ 

mage H d ea er 

Fixed Ponion of 
Image Header 

Transfer Address 
Array 

Debug and Global 
Symbol Table Offsets 

Image Name and 
IDENT Strings 

Patch Information (only 
found in patched images) 

Image Section 
Descriptors 

Figure 21-1 Contents of an Image Header. 

J 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

Fixed Portion of Image Header 

Size of Header 

Offsetto C 

Offsetto E 

Major ID 

Image Header 
Type Blocks 

Requested 
Privilege Mask 

lmagel/O 
Segment Pages 

1/0 
Channels 

Image Flags 

Global Section ID 

~ 
\t------------, 
\ System Version Number 

\ (if linked with SYS.STB) 
t--~~~~~~~___, 

\ Vinual Address of 
Fixup Information 

T AliasCode T 



21.1 Image Initiation 

End of Demand 
Zero Section Descriptor 

End of Process-
Private Section Descriptor 

End of Global 
Section Descriptor 

Image Section Descriptor (ISD) 

Number of Pages 
in This Section 

Size of ISO 
(in bytes) 

Page Fault 
Cluster 

Type 
0-+Normal 
253-+User 

Stack 

Starting Virtual Page 
Number for This Section 

Section Flags 

Base Virtual Block Number 
in Image File for This Section 

Identifier for Global Section 

Global Section Name 
(up to 44 bytes) 

Count 

Figure 21·2 General Form of an Image Section 
Descriptor 

' 

• Global ISO-The code or data is in a shareable image 

Image Section Flags 

Bit Mun Ing 

0 Global 

2 

3 

4-6 

7 

8 

9 

10 

11-16 

17 

18 

Copy on Reference 

Demand Zero 

Writable 

Match Control Field 

Last Cluster in PO 
Space 

Copy Always 

Based Image 

Flxup Vector 

Spare 

Vector Contained 
in Image Section 

Image Section 
Is Protected 

A main image linked without any shareable images contains the first two 
types of ISO. 

A main image linked with a shareable image contains an ISO that describes 
the shareable image. This type of ISO, called a global ISO, primarily serves to 
name the shareable image. The shareable image contains its own IHO and 
ISOs to describe its own virtual address space. Address space for the shareable 
image is not usually assigned when the main image is linked, Instead, the 
addr~ss space for the shareable image is assigned and allocated when it is 
activated. Thus, the size of the shareable image can change without requiring 
the main image to be relinked. 

A shareable image linked with another shareable image contains a global 
ISO to point to the second shareable image. If the main image refers only to 
symbols in the first shareable image but not the second, it need not contain a 
global ISO for the second shareable image. The entire collection of shareable 
images implied by a main image is not determined until image activation. 
Thus, a ::;hareable image .can be relinked to reference additional shareable 
images without requiring the relink of the main image linked with it. 

Activating a main image can result in the activation of many shareable 
images. After a main image has begun to execute, the image activator can be 

577 



Image Activation and Termination 

21.1.1.3 

578 

Forward Link 

Backward Link 

><J Type Size 

Channel Number Activation I Access 
Code Mode 

Flags 

~ Image Name ~ ,,. (40 bytes) :.., 

--- --- l Match 
Control 

Major ID I Minor ID 

Starting Address of Image 

Ending Address of Image 

Address of IHD 

Address of KFE 

Address of Image Activator Context Block 

Base Address at Which Image Is Mapped 

Address of Initialization Routine 

Figure 21·3 Layout of an Image Control Block 

called again to activate additional shareable images. The image activator 
must keep track of which images are already activated. It uses a data struc­
ture called an image control block (ICB) to describe each image. Figure 21-3 
shows the layout of an ICB. 

ICBs are initially allocated from the Pl allocation region (see Chapter 3), 
but are deallocated to an ICB lookaside list for faster subsequent allocation. 
In addition to the lookaside list, the image activator keeps two other ICB 
lists-one for images already activated and one for images yet to be activat­
ed. These doubly linked lists are located in Pl space at the following global 
locations: 

• IAC$GL_ICBFL-Lookaside list 
• IAC$GL_IMAGE_LIST-Activated images (known as the "done list") 
• IAC$GL_ WORK_LIST-lmages to be activated (known as the "work list") 

Data Stmctures That Describe Known Images. Several data structures de­
scribe "known images." A known image has special properties that affect its 
activation. The Install Utility is used to specify known images and their 
properties. (The VAX/VMS Install Utility Reference Manual describes this 
utility and its commands.) 

The known image mechanism has several functions. Its main purpose is to 



21.1 Image Initiation 

identify images installed with privileges and images installed to be shared in 
the virtual address space of multiple processes. A subsidiary function is faster 
image activation. 

An image that requires enhanced privileges but must execute in 
nonprivileged process context (such as MOUNT, SET, or SHOW) is installed 
with the /PRIVILEGE qualifier. When such an image is activated, the process 
gains enhanced privileges temporarily. The enhanced privileges are removed 
when the image is run down. 

Several different types of image are installed with the /SHARE qualifier: 

• A shareable or executable image with image sections that are to be shared 
by multiple processes 

• A shareable or executable image whose shareable sections are to reside in 
MA780 multiport memory and be accessed by processes running on multi­
ple VAX-111780 or VAX-111785 CPUs 

• A shareable image containing a privileged section, such as a user-written 
system service or rundown routine 

An installed image is opened by its file ID rather than its file name, saving 
the overhead of a file lookup. Image activation can be further shortened if the 
iinage is installed /OPEN so that its file remains open. In this case, the image 
activator's $OPEN call to RMS is essentially a null operation. If such an 
image is installed /HEADER_RESIDENT, its IHD is stored in paged pool. 
Keeping the IHD resident saves the additional read operations otherwise re­
quired to read it into memory every time the image is activated. 

The Install Utility creates and manages the known image database (also 
called the known file database) to describe images that have been installed. 
RMS scans the known image database whenever a file is opened with the 
known file option. (Use of this option is reserved to VAX/VMS and unsup­
ported for any other use.) All of the known image data structures are in paged 
pool. The two major ones are the known file entry (KFE) and known file 
directory (KFD). 

A KFE is allocated for each known image. It identifies the file name of the 
image and its properties. If the image is shareable, the KFE specifies how 
many global sections are in it, the image version, and match control. The KFE 
also contains either the full file ID or the addresses of the file's resident IHD 
and its window control block (WCB). (A WCB describes the disk location of 
the blocks of an open file.) Figure 21-4 shows the layout of the KFE. 

Each KFE has the address of its corresponding KFD. The KFD contains the 
full device and directory names associated with a known image. If multiple 
known images are installed from a particular device and directory combina­
tion, they share the same KFD. Each KFD has a reference count of how many 
KFEs point to it and a listhead for its KFEs, which are linked together. Keep­
ing the device and directory information in the KFD rather than in each KFE 

579 



Image Activation and Termination 

Hash Table Forward Link 
KFE Flags 

KFE List Link Bit Meaning 

Hash 1 Type 1 Size 
Index 

Address of KFD 

0 Installed /PROTECT 

Shareable Image 

2 Installed /PRIVILEGE 

Global Section Count ] Flags 
3 Installed /OPEN 

4 Image Header Resident 

Usage Counter 5 Shared Image 

Address of wee 6 Shared Memory Image 
or 7 Compatibility Mode Image 

--;;i; ~q;;;;~-;u-;;;-b-;-1- ---;;;~~;;;r- - - 8 Installed /NOPURGE 

Address of IHD 
9 Image Accounting Enabled 

or 10 Has Writable Sections 

~--..:::::J~;;;-R-;;;a;;-vo~;;;;;-;u;;;-b-; 11 Execute Access Only 

I--- Process Privilege Mask -

AME Code I5<J Match 
Control 

Global Section Identification 

Address of ORB l Length of 1 . File Name Maximum Share Count 

File Name 
(up to 39 bytes) 

Figure 21-4 Layout of a Known File Entry 

KFD List Link 

KFE List Link 

>< Type Size 

Length of Length of 
Directory Device Name 

Number of KFEs 
Name 1 Length of 

Device, 
Directory, Type 

Device, Directory 
File Type String 
(up to 255 bytes) 

Figure 21-5 Layout of a Known File Directory 

580 



KfD 

KFELIST 

KFE 

I-
KFELINK 

KFD 

KFE 

~ 
KFELINK 0 

KFD 

Figure 21-6 Known File Directory and Known File 
Entries 

21.1 Image Initiation 

saves paged pool. Figure 21-5 shows the layout of the KFD. Figure 21-6 shows 
a KFD and its list of KFEs. 

A data structure called a known file resident image header (KFRH) exists 
for each known image installed /HEADER-RESIDENT. Space for the IHD is 
allocated with the KFRH. The KFRH immediately precedes the IHD and 
specifies its size and version number, The field KFE$L_IMGHDR contains 
the address at which the IHD begins. Figure 21-7 shows the layout of a KFRH. 

A KFE hash table locates allthe KFEs. A known image name is hashed to a 
number between 0 and 127. The number indexes into the hash table, which 
has 128 longword entries. An entry value of zero indicates no KFE with that 

581 



Image Activation and Termination 

21.1.1.4 

21.1.1.5 

582 

KFRH 

Address of End of IHD 

KFE >< Alias 

Hea~er I Type 
Version 

Size 

I MG HOR 

v IHD ~ 

. 1 J 
Figure 21-7 Layout of a Known File Resident Image 
Header 

hash index. A nonzero entry is the address of a KFE with that hash index. 
KFEs with the same hash index are linked together. The end of the list is 
indicated by a forward link of zero. Figure 21-8 shows the hash table and 
several KFEs linked to it. 

There is one more known image data structure, called the known file 
pointer block (KFPB). It contains the address of the hash table and also the 
head of the list of KFDs and the number of KFDs in the list. Figure 21-8 shows 
the layout of the KFPB and its relationship to the other known image data 
structures. 

Implementation of the Image Activator. The image activator is implemented 
as the $IMGACT system service. Direct calls to this system service are re­
served for VAX/VMS. Direct calls by users are completely unsupported. In­
stead, users can call the image activator indirectly through any CLI com­
mand that runs an image and through the Run-Time Library procedure 
LIB$FIND_IMAGE_SYMBOL. 

Table 21-1 shows the arguments that can be passed to the $IMGACT sys­
tem service. The last four arguments are similar to the input arguments for 
various other memory management system services that are described in 
Chapter 16. 

Activation of a Simple Main Image. Most of the common opercttions that are 
performed by the image activator occur during the activation of a simple 
main image, that is, one linked with no shareable images. This section 
describes the general flow through the image activator. Other forms of 
activation, described in later sections, . are mentioned in this section when 
appropriate. 



l .... ~ 

KFD Listhead L 
KFPB 

Address of KFE Hash Table 

><l Type Size 

length of Hash Table Number of KFDs 

~ ;... 

KFE KFE 

0 ~ 

Figure 21·8 Layout of Known File Pointer Block and 
KFE Hash Table 

J ::EXE$Gl_KNOWN_FILES 

0 

0 

0 KFE 

0 

~ ;... 

KFE Hash Table 



Image Activation and Termination 

584 

Table 21-1 Arguments for the Image Activator System Service 

Argument 
Name Meaning 

NAME Descriptor of image name to be activated. 

DFLNAM Descriptor of default file name. 

HDRBUF Address of 512-byte buffer in which the IHD and image file descriptor 
are returned. The first two longwords in the buffer are the addresses 
within the buffer of the IHD and the image file descriptor. 

IMGCTL Image activation control flags.These flags control the form that the 
activation will take. The options are the following: 

FLAG 

IAC$V _MERGE 

IAC$V _EXPREG 

IAC$V _PlMERGE 

MEANING 

If set, the image activator is directed to merge one 
executable image into the address space of 
another. When this flag is set, the user stack and 
the image 1/0 segment are to be ignored. This flag 
must be set if the image activator is called from 
user mode. 

If set, the INADR argument does not give an actual 
address range but merely indicates PO address 
space, which is expanded as required. This flag is 
only used during a merged image activation for a 
PO image. 

If set, the image activator is directed to merge an 
executable image into Pl space. This flag is used 
when mapping a CLI into Pl space. This merge is 
performed in two parts: first the image is merged 
into PO space and then the image is moved into Pl 
space. The sole purpose of the merge into PO space 
is to determine the size of the image. Once the size 
has been determined, the correct starting address 
in Pl space can be calculated. 

IAC$V _SETVECTOR If set, the image activator initializes the Pl vectors 
that dispatch to user-written system services, 
rundown routines, and message sections. 

INADR Address of a two-longword array containing the virtual address range 

RETADR 

ID ENT 

ACMODE 

into which the image is to be mapped. This argument is usually 
omitted, in which case the address ranges designated by the ISDs in 
the IHD are used or the image is mapped at the next available 
location. 

Address of a two-longword array to receive the starting and ending 
addresses into which the image was actually mapped. 

Address of a quadword containing the version number and matching 
criteria for a shareable image. 

Access mode for page ownership and image channel assignment. This 
defaults to user mode. If specified, it is maximized with the access 
mode of the $IMGACT caller. 



21.1 Image Initiation 

The $IMGACT system service procedure, EXE$$IMGACT, runs primarily 
in executive mode with some kernel mode subroutines. (The "$$" in the 
system service procedure name results from its distance from the case table 
used by the change mode dispatcher. See Chapter 9 for more information.) 
EXE$$IMGACT is in the module SYSIMGACT; some of the procedures it 
calls are in modules IMGMAPISD, IMGDECODE, and SYSIMGFIX. 
EXE$$IMGACT and the procedures it calls are known as the image activator. 

To activate a simple main image, the image activator takes the following 
steps: 

1. It initializes its scratch area in Pl space. 
2. It resets the Pl space vectors for user-written system services, rundown 

routines, and message sections. 
3. It checks the accessibility of the system service argument list and its 

arguments and copies them for later use. 
4. It calls RM$RESET (in module RMSRESET) to initialize the image 1/0 

segment. 
5. It allocates and zeros an ICB. 
6. It locks the known file database by invoking the Enqueue Lock Request 

and Wait ($ENQW) system service. It locks the systemwide resource 
"INSTALL$KNOWN FILE" for protected read. This blocks any attempt 
at concurrent changes to the known file database by the Install Utility. 

7. The image activator calls RMS to open the image for execute access, 
specifying the user-open, process-permanent file, and known file data­
base search options. If the image has been installed as a known image, 
RMS returns the address of its KFE. The image activator stores the image 
name, channel number, and KFE address in the ICB. If the image is known, 
the image activator takes note of whether it was installed with the 
/PRIVILEGE, I ACCOUNT, or /SHARE qualifiers. 

8. If the IHD is not resident, the image activator reads the first block of the 
image file and performs several consistency checks to determine that it is 
indeed an IHD. At this point, the check for an ordinary native mode 
image is made. The last word in the first block of the IHD, IHD$W _ 
ALIAS, indicates whether a different image should be activated first. The 
word can indicate an image produced by the VAX/VMS Linker, an image 
produced by some other linker, or an image that is a CLI. 

The only other linker supported is the RSX-llM Task Builder. It 
produces a compatibility mode image with a zero in IHD$W _ALIAS. 
When the image activator finds such an image, it instead activates 
SYS$SYSTEM:RSX.EXE. Further details about the activation of a com­
patibility mode image are found in Section 21.1.1.11. 

If the IHD specifies that the image is a CLI, the image activator instead 
activates LOGINOUT. Section 21.1.1.12 contains further details about 
the activation of a CLI. 

585 



Image Activation and Termination 

586 

9. The image activator copies information from the system service argu­
ment list into the ICB and inserts the ICB at the tail of its work list. 

10. It begins to process its work list. It removes the ICB from its work list 
and checks whether the image described is already mapped. In the case of 
a simple main image, the image described by the ICB has not been 
mapped. 

11. It processes the ISDs in the image's header. Its main task is setting up the 
process page tables to reflect the address space produced by the linker. It 
performs this task by reading each ISD in the IHD (see Figure 21-2), deter­
mining the type of section described, and calling the appropriate memory 
management system service to perform the actual mapping. 

a. The most common form of ISD in a simple image describes a private 
section. This type of section can be either read-only or read/write, 
depending on the attributes of the program sections that made up the 
image section. Initial page faults for each page in this type of section 
will be satisfied from the appropriate blocks in the image file. 

The image activator uses the contents of this type of ISD as input 
arguments to the Create and Map Section ($CRMPSC) system service. 
The result is a series of page table entries (PTEs) that contain process 
section table indexes. Figure 21-9 shows the PTEs, section table entry, 
and ISD. The number of PTEs is equal to the page count in the ISD. 
Notice that all of the PTEs index the same process section. 

If the image has been installed /SHARE by the Install Utility, then 
some of its sections are global and can be shared. 

-If the section is read-only and the image was installed /SHARE, it 
requests the Map Global Section ($MGBLSC) system service. The 
result is a series of PTEs that are global page table indexes. Figure 
21-10 shows the PTEs, global page table, and ISD. 

-If the section is writable and the image was installed /SHARE 
/WRITE, it requests the $MGBLSC system service. 

-If the section is writable and copy-on-reference, it requests the 
$CRMPSC system service. 

-If the section is read-only but not shared, it requests the $CRMPSC 
system service. (An image section containing an .ASCID directive or 
.ADDRESS reference to a symbol in a shareable image cannot be 
shared. See Section 21.1.2 for further information.) 

One special kind of private section is a "fixup vector table," which 
describes addresses in the image that are resolved at image activation, 
rather than at link time. (Section 21.1.2 describes the processing of 
fixup vectors.) When the image activator encounters a fixup vector, it 
adds it to the list of fixup vectors to be processed later. 



Image Section Descriptor 
for Process-Private Section 

Number of Pages l Size=16 

Page Fault 
Base Virtual Page Number Cluster 

Type Section Flags 

Base Virtual Block Number 
in Image File 

Protection Owner 

loluxl1Dqul1I 

Number I 
""'"t I Process Section Table Index c: : 

31 30 2726 24 23 22 15 0 
(Protection is either UR or UW.) 

Process Section 
Table In 

Process Header 

Process Section 
Table Entry 

PO Page 
Table 

0 PSTX 

0 PSTX 

0 PSTX • 

Figure 21-9 ISD and Page Table Entries for Process­
Private Section 

/ 

1/ 

/ 
/ 

/ 

r--

I\ 
\ 
\ 
\ 

\ 

\ 
\ 

Pointer to Channel Control Block 

Backward Link Forward Link 

Page Fault 
Cluster Base VPN 

Pointer to Window Control Block 

Base Virtual Block Number 

Control Flags 

Count of PTEs 

Number of Pages 



Image Activation and Termination 

588 

Image Section Dellcrlptor 
for Global Section 

Number of Pager. l Size=36 to 64 

Page Fault BaseVPN Cluster 
PO Page Table Global Page Table 

Type Section Flags 

Base Vlnual Block Number 0 GPTX Global Page Table Entry! 

Major ID Minor ID 0 GPTX GPTE 

l Count 
Image Section Name 

-­__...-----
Protection - Owner 

0 ux 0 

31 30 27 26 24 23 22 21 

(Protection is either UR or UW.) 

0 GPTX 

0 GPTX 

0 GPTX 

0 GPTX 

0 GPTX 

0 GPTX 

0 

Figure 21·10 ISD and Page Table Entries for Global 
Section 

7 
I 

GPTE 

...... GPTE 

GPTE 

GPTE 

GPTE 

GPTE 

Global page table entries can 
take one of three forms: 

• GPTE is valid. 

• GPTE indicates a 
transition state. 

• GPTE contains a 
Global Section Table Index. 

b. Another form of ISD is a demand zero section. The linker produces 
such a section whenever there are five (or some user-specified default 
number of) consecutive pages in the image file that contain all zeros. 
It also produces a demand zero section for an uninitialized copy-on­
reference section of any size. The image file does not contain demand 
zero section pages but merely an indication (in the ISD) that a certain 
range of virtual address space contains all zeros. 

The image activator uses the contents of this type of ISD as input 
arguments to the Create Virtual Address Space ($CRETVA) system 
service. The result is a series of demand zero page PTEs. The number 
of PTEs is equal to the page count in the ISD. Figure 21-11 shows the 
PTEs and demand zero section ISD. 

Note that one such section is the area in Pl space that contains the 
user stack. The linker distinguishes this special demand zero section 
from others by a special code byte in the type designator in the ISD. 
The image activator records the ISD page count and delays mapping 
the user stack until later in the activation. 



21.1.1.6 

Image Section Descriptor for 
Demand Zero Section 

Number of Pages I Size=12 

Page Fault Base Virtual Page Number 
Cluster 

Type Section Flags 

21.1 

Number 
of 

Pages 

"" 
"" "" 

"" " "" "" "" " ,. "" 
._I o ...... l _u_w~l_o~~~u_l~o~~~--A_11z_eros ___ (>/ 

Protection Owner 

.31 30 27 26 24 23 22 20 0 

Figure 21-11 ISD and Page Table Entries for Demand 
Zero Section 

Image Initiation 

Process Page Table 

r-1 
0 Demand Zero 

0 Demand Zero 

0 Demand Zero 

0 Demand Zero 

0 Demand Zero 

0 Demand Zero 

0 Demand Zero 

0 Demand Zero 

" " 0 Demand Zero 

... ( 0 Demand Zero 

...... , 

c. The third type of ISD is a global ISD, which indicates that a range of 
virtual address space is to be mapped to a shareable image. When the 
image activator encounters a global ISD, it builds an ICB to describe 
the shareable image and inserts it at the end of its work list. The next 
section describes the activation of a shareable image. 

12. If the image is being activated from a sequential device (magnetic tape or 
across a network), then the address range is created and the en,tire image 
read from the sequential device into virtual address space. All future page 
faults will be resolved from the page file: · 

13. In the case of a simple.image (with no references to shareable images and 
thus no global ISDs), there was only one ICB on the work list. The image 
activator continues with its end processing (see Section 21.1.1.7). 

If ICBs have been added to the work list as a result of processing a main 
image ICB, the image activator processes them as described in the follow­
ing section. 

Activation of Shareable Images. Whenever the image activator encounters 
a global ISD in the header of an image· being activated, it allocates an 

/ 

ICB, records the image name in it, and inserts it at the tail of the ICB work 
· list. When the image activator completes the processing associated with, for 

example, the main image's ICB, it continues with the following steps. (In 
the case of a merged image activation request, perhaps initiated through the 

589 



Image Activation and Termination 

590 

procedure LIB$FINO_IMAGE_SYMBOL, there would be no main image 
processing. J 

1. It removes an ICB from its work list. If there is none, activation is com­
plete and the image activator proceeds with its end processing (see Section 
21.1.1.7). 

2. It scans the done list to see whether an image with the same name has 
already been activated in the virtual address space. 

If one has, the image activator deallocates the ICB and goes back to step 
1 to process the next ICB on the work list. Cominonly referenced share­
able images, such as LIBRTL, can appear on the work list multiple times. 
This could result from the activation of several shareable images, each of 
which was linked with LIBRTL. No matter how niany times a shareable 
image appears on the work list, the check for an ICB on the done list with 
the same name results in only one activation of the shareable image. 

3. If no image 0£ that natne has been activated, the image activator places the 
ICB on the done list. It is placed on a stack that is maintained in the done 
list. This stack ensures that ICBs appear on the list in the proper order for 
image initialization (see Section 21.1.1.8). 

4. The image activator calls RMS to open the image named by the ICB. It 
specifies a default file type of EXE and directoty of SYS$SHARE, with file 
open options of user-open, process-permanent file, and known file data­
base search. if the global ISO specified a writable global section, the image 
is opened for write access. Otherwise, it is opened for execute access. 

There are two conditions under which the image activator enters a "re­
stricted" mode of operation: 

-If a main image installed with privileges has been activated 
-If a main image has been activated to which the process has only exe-

cute access 

If either condition is true, the image activator specifies that RMS use only 
executive or kernel mode logical names when it tries to translate the 
image name. Furthermore, the shareable image must be a known image. If 
not, the activation is aborted and the itnage activator returns the error 
status SS$_PRIVINSTALL. 

5. If the image is not a known image with its header resident, the image 
activator reads in its header. See step 8 in Section 21.1.1.5 for further 
details. 

6. It then checks that the match control information in the IHO is consis­
tent with the match requested in the global ISO whose presence caused 
the activation of this shareable image. If there is a mismatch, the 
image activator aborts the activation and returns the error status 
SS$_SHRIDMISMAT. 



21.1.1.7 

21.1 Image Initiation 

7. If the IHD indicates that the shareable image has an initialization section, 
the image activator sets the ICB$V _INITIALIZE flag and records the ad­
dress of the initialization section (see Section 21.1.1.8). 

8. It processes the ISDs for each section in the shareable image. 
If the ISD is a global ISD, representing a different shareable image, the 

·image activator compares its name to the name in the most recently added 
ICB. If the names are different, it creates an ICB to describe the image and 
adds it to the front of the work list. The comparison prevents redundant 
ICBs for one image that might otherwise result from multiple global ISDs 
in a second image which represent different image sections in the first 
image. 

If the ISD is not a global ISD, the image activator maps the section into 
the process address space. If the shareable image has been installed 
/SHARE, then some of its sections are global and can be shared. Step 11 in 
Section 21.1.1.5 lists which system service the image activator calls for 
each type of image section. 

If the section is a protected section, the image activator maps the read­
only pages with UR protection and the writable pages with UREW protec­
tion. It specifies that the pages are owned by executive mode, preventing 
user mode code from deleting them or altering them. 

9. The image activator is done processing the ICB. It removes the next ICB 
from its work list and repeats the steps in this section. 

If there is no ICB and if a main image was activated in this call to the 
image activator, it performs the end processing described in Section 
21.1.1.5. Otherwise, the image activator is done and returns to its caller. 
The caller must request the $IMGFIX system service (see Section 21.1.2) 
to perform address relocation. 

Image Activator End Processing. The image activator's end processing con­
sists of the following steps: 

1. The image activator tests whether the image was linked with an image 
1/0 segment larger than the standard space allocated during process crea­
tion. The standard size is determined by the SYSBOOT parameter IMG­
IOCNT (default value of 32). However, the size can be overridden with 
the following entry in the linker options file: 

IOSEGMENT = n 

If a larger image 1/0 segment was requested, the image activator calls the 
$CRETV A system service to create a replacement image 1/0 segment. 

If a PO-only image is being activated, the image activator creates the 
image 1/0 segment at the high address end of PO space. 

2. The address space for the user stack is created with the Expand Region 
($EXPREG) system service. The usual location of the user stack is at the 

591 



Image Activation and Termination 

592 

low address end of Pl space, where the automatic stack expansion facility 
of the exception dispatcher can add user stack space as needed. The loca­
tion of the user stack in PO-only images is at the high address end of the PO 
image. 

The default size of the user stack is 20 pages. This value can be overrid­
den with the following line in the linker options file: 

STACK = n 

The image activator creates a user stack with two extra pages for system 
use during exception processing in case the user stack is corrupted. 

3. Running in kernel mode, the image activator stores the address of the high 
end of the user stack in the Pl pointer page, in the CTL$AL_STACK array. 
Reserving space for system use during exception processing, the image 
activator loads an address two pages below the high end of the stack into 
the processor register PR$_ USP. This value is loaded into the SP register 
when an REI instruction returns the process to user mode, which usually 
occurs following the return from the image activator. 

4. The privileges that will be in effect while this image is executing are cal­
culated. The logical AND of the privilege mask found in the IHD 
(IHD$Q_PRIVREQS, which currently enables all privileges and so is effec­
tively unused) with the process-permanent privilege mask (found at global 
location CTL$GQ_PROCPRIV) is then ORed with the privilege enhance­
ments for a privileged known image (KFE$Q_PROCPRIV). 

The result is stored in the process privilege mask in the process control 
block (PCB) at offset PCB$Q_PRIV and in the process header (PHD) at 
offset PHD$Q_PRIVMSK (the mask that is actually checked by other rou­
tines in the system). The mask at KFE$Q_PROCPRIV is copied to the 
PHD at offset PHD$Q_IMAGPRIV. The uses of the various privilege 
masks are described in Section 21.4. 

5. A check is made to determine whether any of the images activated were 
linked with the system symbol table, SYS$SYSTEM:SYS.STB. If so, the 
image activator checks that the version of the symbol table agrees with 
the currently running system version. If the version numbers disagree, the 
image activator turns off CMKRNL and CMEXEC privileges in the current 
privilege mask and returns the status SS$_SYSVERDIF. Removing these 
privileges prevents many different spurious errors that could occur if the 
outdated image were to execute with those privileges intact. 

6. The image activator stores the address of the IHD buffer in the global 
location CTL$GL_IMGHDRBF. 

7. It checks whether image accounting was requested for this particular 
image or enabled for the system as a whole. If so, the image activator 
records various statistics, such as current CPU time, in their Pl locations. 

8. If a known image is being activated, its use count must be incremented. If 



21.1.1.8 

21.1 Image Initiation 

the image was installed /OPEN, the share count in its WCB must also be 
incremented. The image activator then sets the done bit in the ICB to 
indicate that it has been activated. (The actions in this step are done for 
each image being activated.) 

9. At this point, the image activator has finished its work. It dequeues the 
known file list lock. It loads a final status into RO and returns to its caller 
(either EXE$PROCSTRT or a CLI) to allow the image itself to be called. 
The caller must request the $IMGFIX system service (see Section 21.1.2) 
to perform address relocation. 

Computing the Proper Order of Image Initialization. As a by-product of its 
normal work, the image activator computes the order of initialization for 
multiple shareable images activated by a main image. The basic rule for 
image initialization is that if shareable image A calls shareable image B, then 
the initialization routine for image B must be called before the initialization 
routine for image A. This rule enables image A to call any routine in image B 
(or in any image that B calls) during A's own initialization. 

The initialization routine for each activated image is called as part of image 
fixup (see Section 21.1.2.4). EXE$IMGFIX first calls the initialization routine 
specified by the ICB that is at the end of the done list. Then it works its way 
from the rear to the front of the done list. The image activator must create 
the correct order of ICBs on the done list by careful placement of ICBs on 
both the work and done list. 

If image A calls image B, then at some point during the activation of image 
A, the image activator encounters a global ISD that references image B, The 
image activator builds a global ICB and inserts it at the front of the work list. 
Inserting these global ICBs at the front of the list ensures that these called, or 
"son," images will be activated after the calling, or "parent," image and be­
fore any brothers of the parent. This list generates a walk of the impge call 
graph known as a preorder traversal. 

A stack, implemented at the front of the done list, is used to convert this 
preorder traversal into the proper initialization order-a postorder traversal. 
Basically, a parent node is stacked until its last son has been activated. A 
stack pointer points to the top of this stack in the done list. (Initially, the 
stack pointer points to the queue header.) Figure 21-12 shows how the ICBs at 
the front of the done list form this stack. 

To pop this stack, the stack pointer is simply moved to the left. The next 
ICB from the work list is always inserted to the right of the top of the stack 
and will become the new top of the stack if it has any sons. ICBs to the right 
of the top of the stack are always in the proper initialization order. ICBs at 
and to the left of the stack pointer are parent ICBs who still have descendants 
that have not been activated. 

The stack is built so as to ensure that the sons and descendants of an image 

593 



Image Activation and Termination 

Done Listhead A B 

ICB ICB 

These ICBs Are Stacked 

c 

ICB 

t Stack 
Pointer 

D 

ICB 

Figure 21·12 ICB Stack in the Done List 

594 

are always placed on the done list to the right of the ICB of the parent. Since 
the done list is processed in reverse order during initialization, this place­
ment ensures that all images called directly or indirectly by some image are 
initialized before that image itself. 

The manipulation of the work and done lists is controlled by the 
ICB$L_ACTIVE_SONS count in each ICB. This field specifies how many 
of the image's sons have not yet been activated (their ICBs are still on 
the work list) and how many have been activated but still have active 
sons of their own (these ICBs are on the stack in the done list). The ICBs 
to the right of the stack in the done list have no active sons. 

The following steps describe the image activator's manipulation of ICBs on 
the done and work lists to generate the proper initialization order. The details 
of image activation are described in Sections 21.1.1.5 and 21.1.1.6 and are not 
repeated here. 

1. The image activator removes an ICB from the front of the work list. If 
there is none, it goes on to end processing (see Section 21.1.1.7). 

2. If this is an image that was already activated (that is, on the done list) and 
still has active sons, then the image activator has detected a circularity. 
(The image is one of its own descendants, so no initialization order is 
possible.) In this rare case, all the images on the done list that are involved 
in the circularity must be marked. An error will be reported if a subse­
quent attempt is made to initialize one of those images. The images in­
volved in the circularity are exactly those ICBs on the stack from the top 
of the stack down to and including the previously activated image. 

Regardless of whether there is a circularity, if the image was previously 
activated, the image activator deallocates the ICB and continues at step 6. 

3. Otherwise, this is a new image needing activation. The image activator 
inserts its ICB just to the right of the top of the stack in the done list and 
zeros its ICB$L_ACTIVE_SONS count. 

It then performs the detailed work of activation for this image (steps 4 
through 8 in Section 21.1.1.6). During those steps, each time the image 



21.1.1.9 

21.1 Image Initiation 

activator creates a new global ICB (son), it places the new ICB at the front 
of the work list and increments ICB$L_ACTIVE_SONS in its parent's 
ICB. (After the parent image is activated but before its sons have been, this 
field contains the total number of shareable images referenced by the 
image.) 

4. If the field ICB$L_ACTJVE_SONS in the ICB to the right of the top of the 
stack is nonzero after the image has been activated, the image activator 
makes that ICB the top of the stack and continues with step I. (This new 
parent remains on the stack until all its sons, which are located at the 
front of the work list, are activated and no longer have active sons of their 
own.) 

5. Otherwise, the field ICB$L_ACTIVE_SONS in the ICB to the right of the 
top of the stack is zero, and the image activator continues with step 6. 

6. This step is called a "decrement parent" operation. ICB$L_ 
ACTIVE_ SONS in the parent ICB waiting at the top of the stack must be 
decremented to indicate that one of its sons is no longer active. If its count 
becomes zero, this same step must be repeated for its parent, and so on. 

If the stack is empty, there is no parent to decrement. The image activa­
tor continues with end processing (see Section 21.1.1.7). Otherwise, it dec­
rements ICB$L_ACTIVE_SONS in the ICB at the top of the stack. 

7. If the count is still positive (the image still has active sons), the ICB re­
mains at the top of the stack. The image activator continues with step 1. 
Otherwise, if ICB$L_ACTIVE_SONS is now zero, it must decrement the 
ICB$L_ACTIVE_SONS field in the parent of the ICB. 

8. If the ICB at the top of the stack is the one that initiated the activations, it 
has no parent, so the image activator goes on to its end processing. Other­
wise, the image activator pops the stack by moving the stack pointer to 
the left in the done list and repeats step 6. 

Example Activation. The details of activating an image linked with several 
shareable images can be illustrated with an example. The example main 
image is linked with the shareable images A, B, C, and LIBRTL. A, B, and C 
are themselves linked with LIBRTL. 

At the beginning of the activation, an ICB representing the main image is 
placed on the work list. As its ISDs are processed, work list items are added 
for A, B, C, and LIBRTL as the result of references in the main image: 

Work List 

A (main imagel 

B (main imagel 

C (main image) 

LIBRTL (main imagel 

In Progress Done List 

Main image 

After mapping the sections of the main image, the image activator removes 

595 



Image Activation and Termination 

21.1.1.10 

21.1.1.11 

596 

the ICB for A from its work list. A's global ISO for LIBRTL makes a contribu­
tion to the work list: 

Work List 

B (main image) 

C (main image) 

LIBRTL (main image) 

LIBRTL (A) 

In Progress 

A 

Done List 

Main image 

After the sections for B and C are mapped, there are two more entries on 
the work list, both additional duplicate entries for LIBRTL: 

Work List 

LIBRTL (main image) 
LIBRTL (A) 
LIBRTL (B) 
LIBRTL (C) 

In Progress Done List 

Main image 
A 
B 
c 

Mapping the first LIBRTL entry, the image activator adds nothing to the 
work list, because LIBRTL references no other shareable images: 

Work List 

LIBRTL (A) 
LIBRTL (B) 
LIBRTL (C) 

In Progress Done List 

Main image 
A 
B 
c 
LIBRTL 

The image activator removes each remaining entry from the work list, 
discovers the duplication, and discards the entry. It empties its work list and 
completes the activation without encountering any new images to map. 

Activation of a Known Image. When a known image is activated, the image 
activator is informed by RMS, which places the address of the KFE in the 
CTX field of the file access block (FAB). Of course, the open operation may 
have been shortened as a result of install options (see Section 21.1.1.3). 

The activation of a known image proceeds in much the same way as a 
regular image, although some of the work that the image activator must per­
form in the regular case can be avoided here. In particular, a known image 
that has its header resident can be activated more quickly, because the header 
read operation is avoided. 

In any case, the ISDs must still be processed and the PTEs set up so that the 
image can execute. In addition, the image activator must update the usage 
statistics for this known image (see Figure 21-4). 

Activation of a Compatibility Mode Image. When the image activator deter­
mines from IHD$W _ALIAS that it is attempting to activate a compatibility 



21.1.1.12 

21.1.2 

21.1 Image Initiation 

mode image, it changes its course and instead activates the RSX-llM AME 
(SYS$SYSTEM:RSX.EXE). 

An AME is itself a native mode image that is responsible for mapping the 
compatibility mode image into the address range between 0 and 1000016 

(see Figure 1-8 ), passing control to that image while turning on the compat­
ibility mode bit (with an REI instruction), and fielding all compatibility 
mode and other exceptions generated by the compatibility mode image. 
Currently, the RSX-llM AME is the only supported AME. 

From the point of view of image activation, once the image activator deter­
mines that it is activating a compatibility mode image, it continues with 
activation, but activation of the AME and not the compatibility mode image. 
The name of the compatibility mode image is stored in the compatibility 
mode page (at global location CTL$AG_CMEDATA) in Pl space, whence it 
is retrieved by the AME. 

Activation of a Command Language Interpreter. When the image activator 
determines that it is attempting to activate a CLI and the IAC$V _MERGE 
flag is clear, it activates instead the image LOGINOUT. First, the image acti­
vator closes the CLI image file, because LOGINOUT performs its own file 
open. Then it activates LOGINOUT and transfers control to it. LOGINOUT 
maps the CLI into Pl space and passes control to it. 

Address Relocation Fixup ($IMGFIX) System Service 

The $IMGFIX system service enables the postponement of address assign­
ment from link time to image activation. By delaying address assignment, 
position independence is maintained in images that are linked with shareable 
images and within shareable images themselves. 

There are several forms of addressing that are modified by $IMGFIX: a G' 
reference to an address in a shareable image, an .ADDRESS reference to a 
location within a nonbased shareable image, and an .ASCID directive within 
a nonbased shareable image. Resolution of a G' reference is deferred so that 
the relative address is not affected by a change in size of any of the interven­
ing shareable images. 

The .ADDRESS directive references a fixed address in virtual memory. 
Resolution of an .ADDRESS reference to a location in a shareable image is 
deferred so that the fixed address can be determined at run time, not link 
time. However, if the link options file specified a base address for an image, 
.ADDRESS references to locations within it do not need to be deferred. 

The .ASCID directive builds an ASCII string and a descriptor for it. It incor­
porates the equivalent of an .ADDRESS directive referencing the string . 
. ASCID directives within a nonbased shareable image must be fixed up after 
the base address of the shareable image is determined. In the following sec-

597 



Image Activation and Termination 

598 

tions, text references to .ADDRESS directives include those generated by 
.ASCID directives. 

The VAX/VMS Linker Reference Manual explains in more detail the moti­
vation for the $IMGFIX system service and the linker's action in preparing 
for image fixups. 

An image linked under VAX/VMS Version 3 or a later version contains a 
section called the fixup vector tables. These tables contain data that describe 
.ADDRESS references, data that describe G' references, and a list of the 
shareable images referenced by the image. Figure 21-13 shows the layout of 
an image and its fixup vector tables. 

G"Flxup Data 

Reference Count 

Index to SHL 

Offset } G'F""pD~ 
Offset 

for 1 st Shareab 
Image 

le 

MAIN.EXE Flxup Vector Reference Count 

} G'F""p""' Index to SHL 
Image G" for Nth Sharea 

Offset 
Header Fixup Offset 

Image 

Data 

ble 

Page 
Proteciion 

Data 

Image Shareable Image 

V1 Base Virtual Address 
Body List Entry for 

Shareable Main (Index 0) 

Image (Index 1) 
List 

(SHL) ;;- ~\j Shareable L_ 
Image 

""' 
(Index N) Name 

Fix up .ADDRESS 

Vector Fix up .ADDRESS Flxup Data 
Data I'\ Number of Offsets 

Index to SHL 

Offset .ADDRESS Fix up 

Offset >Data for 
MAIN.EXE 

1..1 

Number of Offsets h 
Index to SHL 

Offset .ADDRESS Fi xup 

Offset > Data for Nth 
Shareable Ima ge 

,.,, 
Figure 21-13 Image Layout with Fixup Vectors 



21.1.2.1 

21.1.2.2 

21.1.2.3 

21.1 Image Initiation 

Shareable Image List. There is one shareable image list entry (SHL) for each 
shareable image referenced by the image, plus one SHL for the image itself. 
Each SHL contains the base virtual address and name of its shareable image. 
The base virtual address is copied from the ICB corresponding to the share­
able image. The first shareable image list element (index 0) contains informa­
tion used to resolve .ADDRESS locations. 

Resolution of G' Locations. When the image is linked, all G' references to 
locations in shareable images are changed to @'L references (longword rela­
tive deferred). (AG' reference resolved at link time is changed to @#, abso­
lute addressing mode.) The @'L address points to a location in the fixup 
vector tables reserved for G' vectors. The G' vector table contains one table 
for each shareable image linked with the main image. All references to a 
specific global label (within a specific shareable image) use the same G' vec­
tor table entry. The linker loads the entries in the G' vector tables with the 
location of the label, expressed as an offset from the base of its shareable 
image. 

When resolving G' references, the $IMGFIX system service locates each 
shareable image entry in the G' vector table and performs the following 
action: 

• The index into the shareable image list is used to locate the appropriate 
shareable image list entry. 

• Using this entry, the base virtual address of the shareable image is located. 
• The base address is added to each offset contained in the G' vector table and 

the resulting value is stored in the G' vector table. 

When the image is actually executed, the longword relative deferred ad­
dress points to the cell within the G' vector table. The cell in the G' vector 
table contains the correct virtual address of the reference. 

ResQlution Qf .ADDRESS Locations. When an image is linked, the following 
actions take place for each .ADDRESS directive: 

l. The offset of the specified location from the base of its image is deter­
mined. This offset is stored in the longword reserved by the .ADDRESS 
directive. 

2. The offset of the .ADDRESS directive from the base of its image is deter­
mined. This offset is stored in the .ADDRESS vector table portion of the 
fixup vector table. 

Like G' vector table entries, .ADDRESS vector table entries are separated 
into tables for each specific image. The .ADDRESS vector table also contains 
a table for entries in the image (if it is not a based image). 

Figure 21-14 illustrates the resolution of the .ADDRESS directive by the 

599 



Image Activation and Termination 

21.1.2.4 

600 

MAIN.EXE 

{ ,..... 

.ADDRESS 
MTH$SORT 

MTHRTL 

MTH$SQRT:: Shareable Code 

} 
.ADDRESS Fixup Data 
for MTHRTL 

Figure 21-14 Resolution of the .ADDRESS Directive 

linker. The address of MTH$SQRT is within the shareable library MTHRTL. 
The .ADDRESS directive within MAIN.EXE contains the offset of the label 
MTH$SQRT from the base of MTHRTL.EXE. The entry in the .ADDRESS 
vector table contains the offset of the .ADDRESS directive from the base of 
MAIN. 

When $IMGFIX resolves the .ADDRESS directives, it performs the follow­
ing steps to obtain the actual address of the location: 

1. The offset to the .ADDRESS cell is added to the base address of the main 
image (using the previous example, the image MAIN). Separating the off­
set and base address in this fashion allows the main image to be a position­
independent shareable image. 

2. The contents of the .ADDRESS cell (the offset to the label MTH$SQRT) 
are added to the base address of the shareable image (MTHRTL.EXE). 

3. The resulting address is loaded into the .ADDRESS cell. 

This action is repeated for all .ADDRESS directives in all images in the 
image file, except in images that have a specified starting base address. Note 
that an image section containing any .ADDRESS or .ASCID references fixed 
up in this way cannot be shared among processes, since the resolutions of 
those directives are specific to the virtual address space in each process. 

Additional Functions of EXE$IMGFIX. After address fixup is complete, 
EXE$IMGFIX alters the protection on the fixup vector section to UREW. It 
then tests whether any privileged shareable images have been activated. If 
any has, it calls the $IMGACT system service, specifying the IAC$V _SET-



21.1.3 

21.1.3.1 

21.1 Image Initiation 

VECTOR flag. Running in executive mode, the image activator can initialize 
the Pl space dispatch vectors for user-written system services, rundown rou­
tines, and message sections. 

If any shareable image specified an initialization routine, EXE$IMGFIX 
scans, from back to front, the list of ICBs representing activated images. 
EXE$IMGFIX, running in user mode, calls the initialization routine of each 
shareable image that specified one. 

Image Startup 

After the page tables have been set up by the image activator, the image is 
called at its transfer address. Depending on how the image was linked, the 
initial transfer of control may be to a debugger, user-supplied initialization 
procedure, or the user image itself. 

Transfer Vector Array. In addition to the ISDs previously discussed, the 
linker also includes in the image header a data structure called a transfer 
vector array. This array contains the user-supplied transfer address and also 
the means for including a debugger or a traceback handler in the user image. 

The format of the transfer vector array is pictured in Figure 21-15. If a 
debugger transfer address is specified or implied, it appears first in the list. An 

SYS$1MGSTA 

Transfer Address of 
User Image 

0 

0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

SYS$1MGSTA 

SLINK 

LIB$1NITIALIZE or 

$LINK/DEBUG 

Transfer Address of or 
User Image 

$LINK/DEBUG= filespec 

0 

-------+--~--~--------

Transfer Address of 
User Image 

0 

0 

0 

! 
I 
I 
I 
I 
I 
I 
I 
I 
I 

LIB$1NITIALIZE 

Transfer Address of 
User Image 

0 

0 

No Entries in PSECT Nonzero Contribution to 
LIB$1NITIALIZE PSECT l.IB$1NITIALIZE 

Figure 21-15 Transfer Vector Array 

$LINK/NOTRACEBACK 

601 



Image Activation and Termination 

21.1.3.2 

602 

image-specific initialization procedure, if specified, occurs next. The last 
entry in the list is the transfer address of the user image, either the argument 
of an .END directive for a VAX MACRO program or the first statement of the 
main program written in a high-level language. A fourth entry containing a 
zero is the end of list indication, no matter what options were passed to the 
linker. 

The initialization transfer address is described in the Guide to Creating 
Modular Procedures on VAX/VMS and is not discussed here. 

If the DCL command LINK/DEBUG = file-spec is used to link an image, 
the explicit file specification is the name of a particular debugger object mod­
ule. The linker places the transfer address found in the specified debugger file 
into the first element in the transfer vector array. If the /NOTRACEBACK 
option is included (and not overridden implicitly by including an explicit 
/DEBUG option), then there is no debug transfer address. In all other cases 
(including the DCL command LINK/DEBUG, which does not specify an ex­
plicit debugger module), the linker places the address of SYS$IMGSTA (found 
in the system service vector area) in the first element of the transfer vector 
array. 

Image Startup System Service. Unless explicitly suppressed (with the 
/NOTRACEBACK qualifier), all images execute the Image Startup system 
service, sometimes called the debugger bootstrap. The system service proce­
dure, EXE$IMGSTA in module SYSIMGSTA, runs in user mode. This proce­
dure examines link and CLI flags to determine whether to start the user 
image directly or map the debugger (sJ>ecified by translating the logical name 
LIB$DEBUG) into the user's PO space and transfer control to it. 

EXE$IMGSTA first tests whether it should map a debugger into PO space. 
The mapping is done if either of the following conditions is true: 

•If the program was linked with the DCL command LINK/DEBUG and sim­
ply run (that is, not run with a RUN/NODEBUG command) 

• If the program was run with the DCL command RUN/DEBUG, indepen-
dent of whether the debugger was requested at link time 

The debugger is not mapped if the image was run with a RUN/NODEBUG 
command or if the /DEBUG qualifier was omitted from both the LINK com­
mand and the RUN command. 

If a debugger is to be mapped, EXE$IMGSTA requests the Translate Logical 
Name ($TRNLOG) system service to translate the logical name LIB$DEBUG. 
If there is no translation, EXE$IMGSTA uses the string "DEBUG" as the 
debugger name. EXE$IMGSTA then requests the $IMGACT system service 
to activate the debugger image. It specifies flags for a merged activation in PO 
space, so that the debugger will be mapped at addresses just higher than the 
main image and its shareable images. EXE$IMGSTA then requests the $IMG­
FIX system service and then transfers control to the debugger image through 



21.1.3.3 

21.2 Image Exit 

a self-relative offset at the beginning of the image. The debugger, in response 
to user commands, transfers control to the image. 

If no debugger is mapped, EXE$IMGSTA establishes a condition handler in 
the current call frame that gains control on signals that the image does not 
handle directly. One option that this handler can exercise is to map the 
traceback facility to print a symbolic dump of the exception. 

Whether or not a debugger is mapped, EXE$IMGSTA alters the argument 
list to point to the next address in the transfer vector array and passes control 
to the next transfer address. This is either the Run-Time Library procedure 
LIB$INITIALIZE or the transfer address of the user image. 

Exception Handler for Traceback. The condition handler that was established 
before the image was called has two purposes: 

• It invokes a debugger if a DEBUG command is typed after an image is inter­
rupted with a CTRL/Y. 

• If an unfielded condition occurs, it causes an image dump, if one was re­
quested, and invokes the traceback handler to produce a symbolic stack 
dump. 

If a user interrupts execution of a nonprivileged image by typing CTRL/Y 
and DEBUG, the DCL (or MCR) CLI generates the signal SS$_DEBUG. (Priv­
ileged images .are simply run down in response to this command sequence.) If 
all handlers established by the image resignal the SS$_DEBUG exception, 
the debugger boot handler eventually gains control. Its response to a 
SS$_DEBUG signal is to map the debugger specified by the logical name 
LIB$DEBUG (if it is not already mapped) and transfer control to it. Notice 
that an image that was neither linked nor run with the debugger can still be 
debugged (albeit, without a debug symbol table) if the program reaches some· 
undesirable state, such as an infinite loop. 

The second purpose of the exception handler is to field any error conditions 
(where the severity level is WARNING, ERROR, or SEVERE) and pass them 
on to the traceback facility. If an image dump was requested, the handler 
dispatches to EXE$IMGDMP _MERGE (see Chapter 20) to create an image 
dump. When EXE$IMGDMP _MERGE returns, the handler maps the 
traceback facility (denoted by the logical name LIB$TRACE) into PO space. If 
the condition has a severity level of either SUCCESS or INFO, the handler 
merely resignals it. The condition is then handled by the catch-all condition 
handler established by either EXE$PROCSTRT or the CLI that called the 
image. 

21.2 IMAGE EXIT 

When an image has completed its work, it passes control back to VMS either 
by calling the Exit ($EXIT) system service or by returning to its caller, which 

603 



Image Activation and Termination 

21.2.l 

604 

calls the $EXIT system service. $EXIT calls whatever exit handlers have been 
declared by the image and then requests the Delete Process ($DELPRC) sys­
tem service. 

Exit handlers are described in the next section, which is followed by a 
description of the operations of the $EXIT system service. 

Exit Handlers and Related System Services 

An exit handler is an optional, user-declared procedure that performs image 
cleanup. To use this option, an image running in a process builds a data 
structure called an exit control block and passes its address to the Declare 
Exit Handler ($DCLEXH) system service. Exit handlers can be declared for 
user, supervisor, and executive access modes. The access mode from which 
the service is called is the mode in which the exit handler is to execute. 

An exit control block contains the address of the exit handler and its argu­
ments. The exit handler's first argument is the address of a longword to re­
ceive the final image status. The declarer of the exit handler defines any 
additional arguments and their use. An exit control block also contains a 
forward link field. This field contains the address of the next exit control 
block or, if there is none, zero. The $DCLEXH system service links together 

0 

(User) 
A 

(Declared 
First, 

Called Last) 

0 

(Exec) 
E 

(Declared 
First) 

(User) 
B 

(Declared 
Second) 

::CTL$GL_THEXEC 
t---------t 

(Exec) 
F 

(Declared 
Second) 

0 ,.._._ 

,/ 

::CTL$GL_ THSUPR .. 

Forward Link (Super) 
D 

,/ ____________ __, 

(User) 
c 

(Declared ~ 
Third, l 

~c_a_11e_d_F_ira_t> ..... ________ _ 

Exit Handler Address 

0 

Address in Which to Store 
Reason for Exit 

Additional Arguments 
(if any) 

N 

r 
Figure 21-16 Sample Exit Handler Lists 



21.2.2 

21.2 Image Exit 

all the exit control blocks for an access mode. Each list is ordered with the 
most recently declared exit handlers' control blocks first. 

The exit handler listheads are in a three-longword array. Another three­
longword array contains the number of exit control blocks in each list. Each 
array is indexed by access mode. Figure 21-16 shows these arrays and exit 
control blocks. 

Both arrays are in Pl space and modifiable only from kernel mode. Exit 
control blocks, however, are defined by the image in per-process address 
space it controls. Therefore, the system services that access these lists must 
exercise particular care. An exit control block corrupted through program 
error could destroy the integrity of its list. , 

When inserting or removing an exit control bloclc, for example, each sys­
tem service must test the accessibility of affected forward links. The count 
array is used to prevent infinite loops that might otherwise result from multi­
ple declarations of the same exit control block. 

Two system services other than $DCLEXH access exit control blocks: Can­
cel Exit Handler l$CANEXH) and $EXIT lsee Section 21.2.2). An image in­
vokes the $CANEXH system service to delete a particular exit control block 
or all those for one access. mode. 

The $DCLEXH and $CANEXH system service procedures are 
EXE$DCLEXH and EXE$CANEXH, both in module SYSDCLEXH. Both exe­
cute in kernel mode. 

Flow of the Exit System Service 

The $EXIT system service procedure, EXE$EXIT in module SYSEXIT, 
runs initially in kernel mode. It also executes in outer modes, calling exit 
handlers. 

EXE$EXIT is called with a single argument, the final status of the image. 
It stores the status in the Pl pointer page, at global location 
CTL$GL_FINALSTS, where it can be copied for image or process accounting. 
EXE$EXIT clears the force exit pending flag in the process status longword 
IPCB$L_STS). 

If EXE$EXIT was called from kernel mode, it invokes $DELPRC, and the 
process is deleted. If EXE$EXIT was called from any other access mode, it 
examines the exit handler listheads lsee Figure 21-,16). It begins with the one 
for the mode from which it was called and proceeds to those of inner lmore 
privileged) access modes. 

If EXE$EXIT finds a nonzero listhead, it saves the listhead contents and the 
number of exit control blocks in the list, and clears both the listhead and the 
count longwords. EXE$EXIT then empties the kernel stack and executes an 
REI instruction to enter the outer access mode. 

Running in the outer mode, EXE$EXIT removes the first exit control block 

605 



Image Activation and Termination 

21.2.3 

606 

from the list, updates the list pointer, writes the final image status to the 
address specified in the exit control block, and calls the exit handler. When 
(if) that handler returns, EXE$EXIT calls the next handler in the list. This 
continues until the list is exhausted or until EXE$EXIT has exhausted the 
count of exit handlers. 

Once all the exit handlers for a given access mode have been called, 
EXE$EXIT must return to a more privileged access mode. It changes access 
mode by requesting the $EXIT system service. If none of the exit handlers in 
the list just processed has done anything extraordinary (such as declaring 
another exit handler), then the list for that mode is still empty and EXE$EXIT 
proceeds to the next inner access mode in its search for more exit handlers. 

When EXE$EXIT reaches kernel mode, it invokes $DELPRC to delete the 
process. 

Example of Exit Handler List Processing 

To illustrate the processing of exit handlers, suppose that a process has its 
exit handler lists set up as shown in Figure 21-16. When the image requests 
the $EXIT system service from user mode, EXE$EXIT takes the following 
steps: 

1. EXE$EXIT finds a nonzero listhead for user mode exit c;ontrol blocks. The 
listhead points to the exit control block for Procedure C, the most recently 
declared user mode exit handler. 

2. EXE$EXIT stores this address in RO and clears the listhead. It then exe­
cutes an REI instruction to change access mode to user and then calls 
Procedure C. When C returns, EXE$EXIT calls Procedure B and finally 
Procedure A. When A returns, EXE$EXIT determines that the user mode 
list is exhausted (because the forward pointer in the last exit handler is 
zero). EXE$EXIT, running in user mode, requests the $EXIT system 
service. 

3. As in step 1, the search for exit handlers begins with user mode but this 
list is now empty. EXE$EXIT continues with the supervisor mode list, 
which has the single exit control block for handler D .. The supervisor 
listhead is cleared, access mode is changed to supervisor, and Procedure 
D is called. When D returns, EXE$EXIT again requests the $EXIT system 
service, this time from supervisor mode. 

4. Now the search for exit handlers begins with supervisor mode, whose list 
is empty. The list for executive mode contains two exit handlers, F and E, 
which are called from executive mode. When they return, the $EXIT sys­
tem service is again requested, this time from executive access mode. The 
search that now begins with the executive mode listhead fails and the 
process is deleted. 

The logic illustrated here shows how a process can prevent image termina-



21.3 Image and Process Rundown 

tion through the use of exit handlers. Suppose EXE$EXIT invoked a supervi­
sor mode handler which redeclared itself. When EXE$EXIT exhausted the 
exit handler list and requested the $EXIT system service again, the handler 
would be back on the supervisor mode exit handler list and would be reen­
tered to redeclare itself again. 

In fact, this use of exit handlers is just the mechanism used by the DCL and 
MCR CLis to allow multiple images to execute, one after another, in the 
same process. This mechanism is discussed in more detail in Chapter 23. 

Note that an exit handler that is declared later (which implies that it will 
be called earlier) can prevent previously declared handlers for the same access 
mode from even being called by simply requesting the $EXIT system service. 
In the previous example, Procedure C could prevent exit handlers B and A 
from being called by requesting $EXIT itself. 

21.3 IMAGE AND PROCESS RUNDOWN 

21.3.1 

In an interactive or batch process, multiple images can execute one after 
another. Several steps must be taken to prevent a later image from inheriting 
either enhancements (such as elevated privileges) or degradations (such as a 
reduced working set) from a previous image. In addition, when a process is 
deleted, all traces of it must be eliminated from the system data .structures 
and all reusable resources returned to the system. 

The Rundown ($RUNDWN) system service serves both those needs. (Note 
that use of the $RUNDWN system service is reserved for VAX/VMS. Any 
other use is completely unsupported.) 

$RUNDWN is called with one argument, access mode. This argument en­
ables $RUNDWN to qistinguish between image rundown and process run­
down. The service is requested with an argument of user mode by both the 
DCL and MCR CLis (see Chapter 23) to clean up between image executions. 
$RUNDWN is also requested from the $DELPRC system service (see Chap­
ter 22) with an argument of kernel mode to remove traces of a process being 
deleted. 

The $RUNDWN system service performs much of its work by requesting 
other system services. $RUNDWN passes its access mode argument to these 
services to allow them to determine how much work to do. For example, the 
Dequeue Lock Request ($DEQ) system service (see Chapter 13) can be called 
with an access mode argument to release all locks for that access mode and 
all outer modes. If $RUNDWN is requested with an argument of user mode, 
its $DEQ request cancels only user mode locks. If $RUNDWN is called with 
an argument of kernel mode, then all process locks are dequeued. 

Flow of Rundown 

The $RUNDWN system service procedure, EXE$RUNDWN in module 
SYSRUNDWN, runs in kernel mode. It first maximizes the access mode 

607 



Image Activation and Termination 

608 

argument with the access mode of its caller. That is, the less privileged 
access mode is passed to other system services. Used in the following list, 
the phrase "based on access mode" means "perform this operation for this 
access mode and all outer (less privileged) access modes." 

The following steps describe its actions: 

1. EXE$RUNDWN clears any previously requested powerfail asynchronous 
system trap (AST) and returns ASTquota to the process. 

2. It requests the Set Resource Wait Mode ($SETRWM) system service, en­
abling resource wait mode to ensure that image rundown completes 
successfully. 

3. EXE$RUNDWN invokes any per-process user-written rundown routines. 
Such a routine might perform cleanup for user-written system services. 

4. If image accounting is enabled, an image deletion message is written to 
the accounting log file. 

5. EXE$RUNDWN increments the image counter (PHD$L_IMGCNT). 
This counter prevents the delivery of ASTs to an image that has exited. 
The use of this synchronization technique in the operation of the Get 
Job/Process Information ($GETJPI) system service is described in Chapter 
29. 

6. The four Pl space vectors for user-written system services, user-written 
rundown routines, and image-specific message sections (see Figure 9-5) 
are reset to contain RSB instructions. 

7. EXE$RUNDWN requests the Set Pagefault Monitoring ($SETPFM) sys­
tem service to disable any monitoring of process page faults. 

8. EXE$RUNDWN searches the channel control block table for channels to 
deassign. It compares the access mode of each assigned channel to that of 
the rundown. For each channel assigned in the same or an outer mode, 
EXE$RUNDWN requests the Deassign Channel ($DASSGN) system 
service. The deassign completes unless the channel has an open file. The 
access mode comparison prevents, for example, process-permanent files 
from being closed when an image is being run down (input access mode is 
user). Other channels that are not deassigned at this stage of image run­
down include the image file and any other file that is mapped to a range 
of virtual addresses. 

If the channel's assigned mode is more privileged, EXE$RUNDWN 
makes an additional check of the flag CCB$V _IMGTMP to see whether 
the channel is associated with the Breakthrough ($BRKTHRU) system 
service. If it is, EXE$RUNDWN deassigns the channel so that broadcast 
operations are aborted at image exit. 

9. The rights database identifier table is deallocated to the Pl process allo­
cation region. 

10. EXE$RUNDWN invokes MMG$IMGRESET (in module PHDUTL) to 
reset the image pages. MMG$IMGRESET performs the image clean-



21.3 Image and Process Rundown 

up associated with memory management. The steps it performs are as 
follows: 

a. MMG$IMGRESET invokes RM$RESET (in module RMSRESET) to 
reset the image I/O segment. 

b. MMG$IMGRESET releases all ICBs that describe currently mapped 
images and places them on the ICB lookaside list. 

c. All of PO space is deleted. This frees the main image file and any other 
mapped file. Physical pages are released and blocks in the page file are 
deallocated. 

d. The nonpermanent parts of Pl space are deleted. These are the user 
stack and an optional enlarged image I/O segment (see Figure 21-17). 
Any expansions to Pl space (at smaller virtual addresses than the user 
stack) are also deleted, as well as VAX DEBUG dynamic memory. 

e. The working set list is reset to its default value, undoing any previous 
expansion or contraction performed by the Adjust Working Set Limit 
($ADJWSL) system service. Working set size changes are described in 
Chapter 16. 

f. The process privilege masks in the process header and PCB are reset to 
their permanent value, found at location CTL$GQ_PROCPRIV. This 
step eliminates any privilege enhancements to the process resulting 
from the execution of an image installed with privilege. (Section 21.4 
describes the various privilege masks.) 

g. The global location CTL$GL_IMGHDRBF is cleared to indicate that 
no image is active. 

h. If any global sections were released as a result of releasing the process 
address space, the global sections are deleted. 

i. The pointer to the end of the active working set list 

Direction of Growth 

Created L:J Deleted 
by 
Image 
Activator 
for User Stack 

Each (Default Size of 20 Pages) 

Image 
Optional Enlarged Image 

l/OSegment 

Created CU Image and Data, 
as Part 
of 

Other Stacks, etc. 

Process 
Creation 

at 
Image 
Exit 
by 
Image 
Reset 

----
Exists 
for 
Life of 
the 
Process 

4 -4--+--• I ::CTL$GLCTLBASVA 

Location CTL$GLCTLBASVA 
contains the address of 
the boundary between 
the temporary and 
permanent parts of 
P1 space. 

Figure 21-17 Low Address End of Pl Space That Is 
Deleted at Image Exit 

609 



Image Activation and Termination 

610 

(PHD$W _ WSLAST) is reset to the end of the minimum working set 
list. 

j. The process is allocated a new, smaller swap space. 

11. The channel deassignment loop performed in step 8 is executed again. 
However, because the image file and other mapped files have now been 
disassociated from virtual address space, the channels associated with 
those files will also be deassigned. As in step 8, this deassignment is 
based on access mode, so that process-permanent files are unaffected by 
image rundown. 

12. EXE$RUNDWN requests the Deallocate Device ($DALLOC) system 
service to deallocate devices allocated from this and outer access 
modes. 

13. It requests the Cancel Timer ($CANTIM) and the Cancel Wakeup 
($CANWAK) system services to cancel requests made from this and outer 
access modes. 

14. It requests the $DEQ service to release locks for this and outer access 
modes. 

15. It requests the Disassociate Common Event Flag Cluster ($DACEFC) 
system service to disassociate clusters 2 and 3. 

16. It raises IPL to IPL$_SYNCH (8) because the next several steps manipu­
late systemwide data structures. 

17. If this image has declared an error log mailbox, it is eliminated. The 
method for declaring an error log mailbox is described in Chapter 8. 

18. All pending AST control blocks (ACBs) are removed from the list in the 
PCB, based on access mode. The blocks are then deallocated to nonpaged 
pool. This operation starts at the tail of the list and proceeds toward the 
head of the list until an ACB is found with a more privileged (smaller) 
access mode than the $RUNDWN access mode or until the AST pending 
queue is empty. (Recall from Chapter 7 that ASTs are enqueued in order 
of increasing access mode.) 

19. Any change mode handlers for this and outer access modes are elimi­
nated. Because change mode handlers only exist for user and supervisor 
modes, this step results in elimination of a change mode to user handler 
every time an image exits and the elimination of a change mode to super­
visor handler when the process is deleted. 

20. Any exit handlers for this and outer access modes are canceled. 
21. Exception handlers found in the primary, secondary, and last chance vec­

tors are eliminated for this and outer access modes. 
22. The AST active bits for this and outer access modes are cleared. The AST 

enable bits for this and outer access modes are set. 
23. System service failure exceptions are disabled for this and outer access 

modes. 
24. Any compatibility mode handler that has been declared is canceled. 



21.4 Process Privileges 

25. A new value of ASTLVL is calculated (by routine SCH$NEWLVL in mod­
ule ASTDEL) to reflect the change in the AST queue resulting from step 
18. 

26. The force exit pending and wake pending flags in the PCB are cleared. 
Clearing these flags is the last step that must be performed at 
IPL$_SYNCH, and IPL is lowered to 0. 

27. EXE$RUNDWN deletes all process logical names based on access mode. 
At image exit, all user mode logical names are deleted. At process dele­
tion, all process logical names are deleted. 

28. EXE$RUNDWN resets any PO extension made to the process allocation 
region (see Chapter 3). 

29. Resource wait mode is returned to its previous state, normal completion 
status is set, and control is returned to the caller. 

21.4 PROCESS PRIVILEGES 

21.4.1 

VAX/VMS prevents unauthorized use of the system through process privi­
leges. One or more of these privileges is required to perform particular system 
services, execute certain commands, or use privileged utilities. 

Process Privilege Masks 

VAX/VMS maintains several privilege masks for each process (see Table 21-2 
and Section 21.1.1.5). 

• PHD$Q_PRIVMSK contains the working privilege mask, the one checked 
by all system services that require privilege. This mask can be altered each 
time an image executes, can be altered by the Set Privileges ($SETPRV) 
system service, and is reset to the process-permanent privilege mask as a 
part of image rundown. 

• The process privilege mask (PCB$Q_PRIV) in the access rights block (ARB) 
is always an exact duplicate of the privilege mask in the PHD. The ARB is 
currently a part of the software PCB. 

• The process-permanent privilege mask is in the Pl pointer page at global 
location CTL$GQ_PROCPRIV. This mask is copied to the PHD and PCB 
privilege masks at image exit by MMG$IMGRESET. This mask is initial­
ized when the process is created. 

• The authorized privilege mask, PHD$Q_AUTHPRIV, is used by the 
$SETPRV system service to allow a process without SETPRV privilege to 
remove one of its permanent privileges and later regain that privilege. This 
mask is also initialized when the process is created. 

• The image privilege mask, PHD$Q_IMAGPRIV, contains the privilege 
mask from a privileged known image while that image is executing in the 
process. This mask is used by the $SETPRV system service to allow an 

611 



Image Activation and Termination 

Table 21-2 Process Privilege Masks 

Symbolic Name Use of This Mask Modified by Referenced by 

PHD$Q_PRIVMSK Working EXE$PROCSTRT, System services 
privilege mask LOGIN OUT, that require 

$SETPRV, privilege 
Image activator, 
MMG$IMGRESET 

PCB$Q_PRIV Duplicate of the Same as Device drivers, 
PHD mask PHD$Q_PRIVMSK Files-11 XQP, 

ACPs 
CTL$GQ_PROCPRIV Records the EXE$PROCSTRT, Image activator, 

permanently LOGIN OUT, MMG$IMGRESET, 
enabled privileges $SETPRV SET/SHOW 

commands 

PHD$Q_AUTHPRIV Records the EXE$PROCSTRT, $SETPRV, 
privileges from the LOGIN OUT $GETJPI 
authorization file 

PHD$Q_IMAGPRIV Records the Image activator $SETPRV, 
privileges of an LOGIN OUT, 
installed image $GETJPI 

UAF$Q_PRIV Records the AUTHORIZE LOGIN OUT 
privileges in the 
authorization file 

UAF$Q_DEF _PRIV Records the default AUTHORIZE LOGIN OUT 
privileges in the 
authorization file 

KFE$Q_PROCPRIV Records privileges INSTALL Image activator 
with which an 
image is installed 

IHD$Q_PRIVREQS Currently unused Linker Image activator 

image installed with privilege to invoke the $SETPRV service without los­
ing privileges. 

612 

• The authorization file record for a user contains two privilege masks: 
UAF$Q_DEF_PRIV and UAF$Q_PRIV. UAF$Q_DEF_PRIV contains the 
privileges which LOGINOUT copies to CTL$GQ_PROCPRIV, 
PHD$Q_PRIVMSK, and PCB$Q_PRIV when a user logs in. LOGINOUT 
copies the privileges in UAF$Q_PRIV to PHD$Q_AUTHPRIV. 

• KFE$Q_PROCPRIV records the privileges with which a known image has 
been installed. When a process runs such an image, those privileges are 
temporarily granted to the process. 



21.4.2 

21.4 Process Privileges 

Set Privilege System Service 

The $SETPRV system service enables a process to alter its image­
specific (PHD$Q_PRIVMSK and PCB$Q_PRIV) or process-permanent 
(CTL$GQ_PROCPRIV) privilege masks, gaining or losing privileges as a re­
sult. In addition, the service can return the previous settings of either. the 
image-specific or process-permanent privileges, if requested. 

The $SETPRV system service procedure, EXE$SETPRV in module SYS­
SETPR V, runs in kernel mode. 

The path through EXE$SETPRV used to disable privileges requires no spe­
cial privilege and clears the requested privilege bits in the image-specific 
(and, optionally, the process-permanent) privilege masks. 

The path through the code used to enable privileges requires no privilege if 
the requested privilege is included in the list of privileges authorized for this 
process (PHD$Q_AUTHPRIV). If a process tries to acquire a privilege that is 
not in its authorized list, one of two conditions must hold for the requested 
privilege to be granted: 

• The process must have SETPRV privilege. A process with this privilege can 
acquire any other privilege with either the $SETPRV system service or the 
DCL command SET PROCESS/PRIVILEGES (which invokes $SETPRV). 

• The system service was called from executive or kernel mode. This condi­
tion is an escape to allow either VMS or user-written system services to 
acquire whatever privileges they need without regard for whether the call­
ing process has SETPRV privilege. Such procedures must disable privileges 
granted in this fashion as part of their return path. 

Note that the implementation of the $SETPRV system service does not 
return an error if a nonprivileged process attempts to add unauthorized privi­
leges. In such a case, the service clears all unauthorized bits in the requested 
privilege mask, loads the modified privilege mask, and returns the alternate 
success status SS$_NOTALLPRIV. 

613 



22 Process Deletion 

... for dust you are and unto dust you shall return. 

Genesis 3: 19 

The Delete Process ($DELPRC) system service enables a process to remove a 
process from existence. A process can delete itself or any other process in the 
system which it has the capability to affect. 

Process deletion occurs in two steps: the first in the context of the process 
requesting the deletion, and the second in the context of the process to be 
deleted. The system service first checks the capability of the current process 
to affect its target process and then queues a kernel mode asynchronous sys­
tem trap (AST) to the target process. The AST, executing in the target process 
context, performs the actual deletion operations. 

Process deletion requires the following operations: 

• All traces of the process must be removed from the system. 
• All system resources it used must be returned. 
• Accounting information must be sent to the accounting manager (the job 

controller). 
• If the process being deleted is a subprocess, all quotas and limits taken from 

its creator must be returned. 
• Finally, if the creator requested notification of the subprocess's deletion 

through a termination mailbox, the deletion message must be sent. 

22.1 PROCESS DELETION IN CONTEXT OF CALLER 

22.1.1 

614 

The initial operation of the $DELPRC system service occurs in the context of 
the process requesting the system service. This part of the operation performs 
a simple set of privilege checks and then queues a kernel mode AST that will 
cause the deletion to continue in the context of the process actually being 
deleted. (Chapter 7 describes the queuing and delivery of ASTs.) 

Delete Process System Service 

The $DELPRC system service procedure, EXE$DELPRC in module SYS­
DELPRC, runs in kernel mode. It first allocates an AST control block (ACB) 
to describe the AST to be queued. It then invokes the routine EXE$NAMPID 
(in module SYSPCNTRL) to convert the specified process name or extended 
process ID (EPID) to the address of the PCB of the process to be deleted. 



22.2 Process Deletion in Context of Process Being Deleted 

EXE$NAMPID checks that the name or EPID corresponds to an actual 
process and verifies that the process requesting the system service has the 
capability to delete its target process. (Chapter 12 describes the requirements 
for one process to affect another.) If EXE$NAMPID returns an error status, 
EXE$DELPRC deallocates the ACB and returns the error status to its caller. 

EXE$DELPRC checks that the target process is neither the swapper nor the 
null process; neither of these processes can be deleted, regardless of the privi­
leges of the calling process. If the target process is either of these, 
EXE$DELPRC deallocates the ACB and returns the error status 
SS$_NONEXPR. 

EXE$DELPRC then performs the following steps: 

1. It marks the target process for deletion by setting bit PCB$V _DELPEN in 
the process status longword PCB$L_STS. If the bit was already set, a de­
lete is already in progress for the target process. EXE$DELPRC deallocates 
the ACB and returns the success status SS$_NORMAL to its caller. 

2. If the target process is suspended (scheduling states SUSP or SUSPO), 
EXE$DELPRC resumes the process. If the process were to remain sus­
pended, no AST (including the delete process kernel mode AST) could be 
delivered to it. 

3. EXE$DELPRC initializes the ACB with the PID of the target process and 
the address of the DELETE kernel mode AST procedure that performs the 
actual process deletion. 

4. It queues the AST to the target process, with a potential boost of 3 to its 
software priority. 

Queuing the AST to the target process makes it computable. Eventually, 
the scheduler selects that process for execution. 

22.2 PROCESS DELETION IN CONTEXT OF PROCESS BEING DELETED 

Most of process deletion occurs in the context of the process being deleted. If 
the process has no pending special kernel mode or other kernel mode ASTs, 
the delete process kernel mode AST procedure, which is called DELETE, exe­
cutes immediately. 

Deleting a process in its conte:xt means that its address space and process 
header are readily accessible. The DELETE AST procedure is therefore able to 
request standard system services, such as $DELTVA and $DASSGN. Special 
cases, such as the deletion of a process that is outswapped, simply do not 
exist. 

In earlier versions of VAX/VMS, a special kernel mode AST, rather than a 
normal kernel mode AST, was queued to do process deletion. Chapter 7 dis­
cusses this Version 4 change in behavior. 

615 



Process Deletion 

22.2.1 

616 

DELETE Kernel Mode AST 

The following steps are performed by the DELETE AST procedure: 

1. DELETE first clears the PCB$B_ASTACT bit to indicate that no kernel 
mode AST is active and invokes SCH$NEWLVL to determine the mode 
of the most important pending AST. Taking these steps enables another 
kernel mode AST to interrupt the DELETE AST. Although interruption 
of an AST by another at the same mode is usually prohibited, it may be 
necessary before process deletion can complete. 

In particular, if the process has a Files-11 operation in progress, it must 
complete before DELETE can proceed. A nonzero field PCB$B_DPC indi­
cates this condition. DELETE places the process into a resource wait. The 
queuing and delivery of a kernel mode AST ends the resource wait. When 
the file system operations are complete, control returns to the DELETE 
procedure. (Chapter 7 documents the field PCB$B_DPC and its use in 
stalling process deletion.) 

2. DELETE then enables resource wait mode. 
3. Any user-specified rundown routines are invoked to do image-specific 

cleanup, if they have not already been invoked once through image run­
down. DELETE then resets the Pl cells that control dispatching to privi­
leged shareable images. 

4. It calls SYS$RMSRUNDWN to perform an RMS rundown. 
SYS$RMSRUNDWN is a system service vector that invokes the proce­
dure RMS$RMSRUNDWN, in module [RMS]RMSORNDWN, to abort 
RMS I/O for the process. RMS$RMSRUNDWN invokes the routine 
RM$LAST _CHANCE, which is in module [RMS]RMSOLSTCH.LIS. 

RM$LAST _CHANCE scans the process's open files. It looks for se­
quential disk files which are not shared and are open for write. For each 
such file, the routine closes the file to update the RMS record attributes 
in the file header, particularly the end-of-file pointer. 
RM$LAST _CHANCE also looks for any file that uses global buffers and 
detaches the process from the global buffer pool for the file. It makes no 
attempt to write out modified global buffers, because successful process 
deletion is considered more important. 

5. If the process has any subprocesses (if its PCB$W _PRCCNT field is non­
zero), they must be deleted before deletion of the owner can continue. 
(Section 22.2.2 contains an example of deleting a process with subpro­
cesses.) The following steps are performed to delete the subprocesses: 

a. DELETE scans the PCB vector for all PCBs whose owner field specifies 
the PID of the process being deleted. DELETE requests the $DELPRC 
system service to delete each of these subprocesses. 

b. DELETE checks whether PCB$W _PRCCNT is zero. If it is greater 
than zero, the process is placed into the resource wait state (MWAIT). 



22.2 Process Deletion in Context of Process Being Deleted 

The process becomes computable again when a special kernel mode 
AST is used to return CPU time quota from one of the subprocesses. 

c. After the special kernel mode AST executes, control returns to DE­
LETE. It checks the subprocess count. If the count is still nonzero, the 
process is put back in the MWAIT state until another special kernel 
AST is queued. If the count is zero, all subprocesses have been deleted 
and the DELETE procedure can continue. 

6. DELETE requests the system service $RUNDWN to run down the pro­
cess from kernel mode. ($RUNDWN is described in Chapter 21.) 

7. DELETE requests the Delete Virtual Address Space ($DELTVA) system 
service to delete the virtual pages associated with all sections still 
mapped to the process address space. 

8. If the process is not a subprocess, DELETE dismounts each jobwide 
mounted volume. 

9. All allocated devices are deallocated. 
10. DELETE ensures that all outstanding process 1/0 requests have com­

pleted. It compares PCB$W _DIOLM to PCB$W _DIOCNT and 
PCB$W _BIOLM to PCB$W _BIOCNT. The difference between the first 
two fields is the number of outstanding direct 1/0 requests; the difference 
between the latter two is the number of outstanding buffered 1/0 re­
quests. DELETE loops at IPL 0, waiting for the two sets of counts to be 
equal. 

11. If the current process is not a subprocess, DELETE decrements one of two 
system process counts. If the process is interactive (if PCB$V _INTER in 
PCB$L_STS is set), DELETE decrements the number of interactive jobs, 
SYS$GW _IJOBCNT. If the process is a batch job (if PCB$V _BATCH in 
PCB$L:-STS is set), DELETE decrements the number of batch jobs, 
SYS$GW _BJOBCNT. 

12. If the current process is not a subprocess, DELETE deletes the jobwide 
logical name table. 

13. The process name string in the PCB is cleared by zeroing the count byte. 
14. If the process is a subprocess (if the PCB$L_OWNER field is nonzero), 

any remaining deductible quotas must be returned to the owner process. 
The following steps are taken to return quotas to the subprocess's owner 
process: 

a. An 1/0 request packet (IRP) is allocated for use as an ACB. The extra 
space at the bottom of the IRP will be used to hold the quotas being 
returned to the owner. 

b. The address of the return quota special kernel mode AST 
(RETQUOTA) and the PID of the owner are stored in the ACB. 

c. The unused quotas are put into the bottom of the IRP. The only quota 
that must be returned to the creator is unused CPU time. All other 

617 



Process Deletion 

618 

quotas are either pooled or nondeductible (see Chapter 20). 
d. Finally, the special kernel mode AST is queued to the creator, giving it 

a priority boost of 3. 

15. If the creator of this process requested a termination mailbox message, a 
termination message is constructed on the stack. The contents of the 
message are listed in Table 22-1. 

16. Routine EXE$PRCDELMSG (in module ACCOUNT) is invoked to send 
an accounting message to the job controller. The message is sent to the 
job controller, unless it was explicitly prevented by the NOACNT flag at 
process creation time or process termination accounting has been dis­
abled for the entire system. The contents of this message are used to fill 
in all relevant fields of the accounting identification and resource pack­
ets. (The data structures used by the Accounting Utility are described in 
the VAX/VMS Accounting Utility Reference Manual.) 

17. Most of the remainder of Pl space is deleted. The Pl pages permanently 
locked into the working set list, for example, the kernel stack, are not 
deleted. Some of Pl space, including the user stack, may have already 
been deleted as a result of a previous image reset call. 

Table 22-1 Contents of the Termination Mailbox Message Sent to the Process 
Creator 

Field in Message Block 

Message type 

Message size 

Final exit status 

Process ID 

TobID 

Logout time 

Account name 

User name 

CPU time 

Number of page faults 

Peak paging file usage 

Peak working set size 

Buffered I/O count 

Direct I/O count 

Count of mounted volumes 

Login time 

EPID of owner 

Source of Information 

MSG$ _DELPROC1 

CTL$GLFINALSTS 

PCB$LEPID 

Not currently used 

EXE$GQ_SYSTIME 

CTL$GT _ACCOUNT 

CTL$GT _ USERNAME 

PHD$L_CPUTIM 

PHD$LPAGEFLTS 

Not currently used 

CTL$GL WSPEAK 

PHD$LBIOCNT 

PHD$LDIOCNT 

CTL$GL VOLUMES 

CTL$GQ_LOGIN 

PCB$LEOWNER 

1MSG$_DELPROC is a constant, indicating that this is a process termination message. 



22.2.2 

22.2 Process Deletion in Context of Process Being Deleted 

18. At this point, the process must be removed from the scheduler's data­
base. To synchronize access to this data, the rest of the code in the DE­
LETE AST executes at IPL$_SYNCH. 

The process is removed from execution with a SVPCTX instruction. Exe­
cuting this instruction switches stacks so that the DELETE procedure is 
running on the interrupt stack. 

19. DELETE stores the address of the PCB of the null process in global loca­
tion SCH$GL_CURPCB, making the null process the current process. 
DELETE also stores it in the slot in the PCB vector formerly occupied by 
the process being deleted, freeing this slot for future use. 

20. The pages in process space that were permanently locked into the work­
ing set (for example, the kernel stack and the Pl pointer page) are deleted 
and placed at the beginning of the free page list. The process header pages 
that are a permanent part of the working set will be deleted by the swap­
per when the process header is deleted. 

21. Any remaining ACBs are removed from the PCB queue and deallocated 
to nonpaged pool. 

22. The process swap space is deallocated. 
23. If the process had an extended rights list, it is deallocated to nonpaged 

pool. 
24. The process count field in the job information block (JIB) is decremented. 

If the process being deleted is a detached process (the PID of the process 
being deleted is equal to the master PID field in the JIB), the JIB is de­
allocated. 

25. The owner process's subprocess count (PCB$W _PRCCNT) is decre­
mented. If the owner process is also being deleted, the owner is currently 
in a wait state, waiting for the contents of this field to become zero. The 
parent process is made computable, so that it can check the value of 
PCB$W _PRCCNT. If the value is now zero, the parent can continue 
with its own deletion. 

26. The PCB is deallocated to nonpaged pool. 
27. The number of processes in the balance set is decremented. 
28. The routine SCH$SWPWAKE is invoked to awaken the swapper because 

there is a process header to be removed from the balance slot area (see 
Chapter 17). 

29. Finally, the DELETE AST procedure exits by jumping to the scheduler (at 
entry SCH$SCHED) to select the next process for execution (see Chapter 
10). 

Deletion of a Process That Owns Subprocesses 

When a process owns subprocesses, the deletion of the owner process must 
be delayed until all the subprocesses that it owns are deleted. The prior dele-

619 



Process Deletion 

22.2.3 

620 

Name OTG 

PIO 10035 

Name BERT Name ERNIE 

PIO 10033 PIO 10031 

Figure 22·1 Sample Job to Illustrate Process Deletion 
with Subprocesses 

tion of subprocesses ensures that any quotas taken from the creator are re­
turned. In early versions of VAX/VMS, prior to the existence of the JIB and its 
jobwide pooled quotas (see Chapter 20), there were several quotas charged 
against a process when it created a subprocess. At deletion of the subprocess, 
the subprocess returned those quotas. All of the quotas treated in this way are 
now pooled except for CPU time limit, which is the only quota returned at 
subprocess deletion. 

During the execution of the DELETE AST procedure, a check is made to 
see if the process being deleted owns any subprocesses. If it does, these pro­
cesses must be located and deleted. 

As Figure 22-1 shows, there are no forward pointers in the JIB or PCB of an 
owner process to indicate which subprocesses it has created. The only indica­
tion that a process has created subprocesses is a nonzero value in 
PCB$W _PRCCNT. The process's subprocesses can only be located by scan­
ning all the PCBs in the system until each PCB is located whose owner field 
contains the PIO of interest. 

Example of Process Deletion with Subprocesses 

The details of this situation can be best illustrated with an example. Figure 
22-1 shows a process whose process ID equals 10035 and whose name is 
OTG. The process OTG owns two subprocesses: the first has a process ID of 
10033 and the name BERT; the second has a process ID of 10031 and the 
name ERNIE. 

Neither of these subprocesses owns any further subprocesses. The follow-



22.2 Process Deletion in Context of Process Being Deleted 

ing steps occur as a result of the process OTG being deleted. Assume that the 
priorities are such that the processes execute in the order OTG, BERT, and 
ERNIE. 

1. The deletion of process OTG proceeds normally until it is determined that 
this process has created two subprocesses. The PCB vector is scanned 
until the two PCBs with 10035 in the owner field are located. These two 
processes are marked for deletion. This means that the DELETE kernel 
mode AST is queued to the two subprocesses and they are made computa­
ble. Process OTG is placed into a wait state because the count of owned 
subprocesses is nonzero (actually two, at this point). 

2. The previous assumption about priorities implies that process BERT exe­
cutes next. Its deletion proceeds past the point where process OTG 
stopped because it owns no subprocesses. However, the next step in the 
DELETE AST procedure determines that process BERT is a subprocess and 
must return quotas to its owner. The return of quotas is accomplished by 
queuing a special kernel mode AST (RETQUOTA) to process OTG, chang­
ing its state back to computable. When BERT has finished with all actions 
that require the presence of the JIB, it decrements the process count in 
OTG's PCB$W _PRCCNT. However, the count of owned subprocesses is 
still not zero (down to one now) so process OTG is put right back into the 
resource wait state. 

3. The assumption about priorities indicates that process BERT continues to 
execute until it disappears entirely from the system. Process ERNIE now 
begins execution of the DELETE AST procedure. Again, the check for 
owned subprocesses indicates none, but the check for being a subprocess 
indicates that it is. A RETQUOTA AST is again queued to process OTG 
and the count of owned subprocesses decremented (finally to zero). 

4. Now process OTG resumes execution as a result of the delivery of the 
RETQUOTA AST and subsequently finds that the count of owned sub­
processes has gone to zero. In fact, process OTG continues to be deleted at 
this point, even though process ERNIE has not been entirely deleted. This 
overlapping is simply a result of the timing in this example. The process 
ERNIE is well on the way to being deleted and is no longer of any concern 
to process OTG. The important point is that the quotas given to process 
ERNIE have been returned to OTG. Once OTG's PCB$W _PRCCNT is 
equal to zero, it is irrelevant which process executes next. Because ERNIE 
and BERT have finished work that depended on the presence of the JIB, 
OTG and the JIB can be deleted totally. 

In the general case of a series of subprocesses arranged in a tree structure, 
the deletion of some arbitrary process requires that each subprocess further 
down in the tree must execute the process deletion step which returns quota 
to its owner. 

621 



23 

23.1 

622 

Interactive and Batch Jobs 

In my end is my beginning. 

Motto of Mary, Queen of Scots 

The previous three chapters describe the creation and deletion of a process 
that executes a single image. This chapter describes the special actions that 
must be taken to allow several images to execute consecutively in the con­
text of the same process. Because this mode of operation occurs in all interac­
tive and batch jobs, it merits special discussion. However, the total operation 
of a VAX/VMS command language interpreter ( CLI) is not discussed. 

JOB CONTROLLER AND UNSOLICITED INPUT 

The job controller is the process that controls the creation of nearly all inter­
active and batch jobs. Interactive jobs are usually initiated by unsolicited 

Terminal 
Driver RETURN Entered /1"1 _/ 

at User's Terminal - [)/"'----.-~ 

Job Controller's 
Mailbox 

SYS$1NPUT 
SYS$0UTPUT 
SYS$ERROR 
SYS$COMMAND 

ttcu: 

Job 
Controller 

Creates 
Process 

LOGINOUT.EXE 

1) Verify Username/Password 
against record in the 
authorization file. 

2) Alter process characteristics 
according to authorization record. 

Context of Job 
Controller Process 

Context of Newly 
Created Process 

Set up process-permanent files @ 
for SYS$1NPUT, SYS$0UTPUT, 

1--s_v_s_s_E_R_Ro_R_._a_nd_sv_S$_c_o_M_M_A_N_o_,. / DCL.EXE 

3) Map requested CLI into P1 space, 
stack login command file, and 

LOGIN.COM 
(or equivalent) 

(ii it exists) 

pass control to CLI in supervisor " or 
mode (Figured 23-3). ~ .______ _ ____.. 6 

Figure 23-1 Steps Involved in Initiating an Interactive Job 



23.1 fob Controller and Unsolicited Input 

Job Controller's Job 
Mailbox Controller 

Card Reader 
Driver 

Creates 
Input 
Symbiont 
Process 

INPSMB.EXE 
Verifies Usemame and 
Password and copies 
rest of Input stream into 
INPBATCH.COM or 

Context of Job 
Controller Process 

Context of Input 
Symbiont Process 

Context of Job Controller Process Context of 
Requesting Process The job controller makes a job queue 

entry in response to $SNDJBC from either 
_____ input symbiont or SUBMIT command. 

$SUBMIT X.COM 

CU activates 
SUBMIT utility 

SUBMIT command 
notifies job controller of 
requested batch job 
($SNDJBC) . 

Job 
Controller 

SYS$1NPUT 
SYS$COMMAND 

SYS$0UTPUT 
SYS$ERROR 

Creates 
Process 

LOGINOUT.EXE 

Sometime later, the job controller 
removes queue entry and creates 
requested process with specWled 
characteristics. 

The two chief differences between batch 
and Interactive jobs are: 
1) No Usemame/Password verification has 
. tooccur 

2) SYS$1NPUT and SYS$0UTPUT are different 

The difference between batch jobs initiated 
with a SUBMIT command and batch jobs read 
from the card reader lies In the method of 
creating the batch command Ille. 

The remaining operations performed by 
LOGINOUT for batch jobs are the same as 
those performed by Interactive jobs: 
1) Process characteristics altered according to 

authorization record 
2) Map CU and pass control to It 

Fignre 2.3·2. Steps Involved in Initiating a Batch job 

terminal input. Batch jobs are usually initiated through the SUBMIT com­
mand, although unsolicited card reader input also results in the creation of a 
batch job. 

The crucial step performed by the job controller is the creation of a process 
that executes the image LOGINOUT. This image is activated and called ex-

623 



Interactive and Batch Jobs 

23.1.1 

624 

actly like any other image, as described in Chapters 20 and 21. The actions 
that LOGINOUT takes, especially mapping a CLI into Pl space, are what 
differentiate interactive and batch jobs from the single image process de­
scribed in the previous chapters. The creation of an interactive job is pictured 
schematically in Figure 23-1. The creation of a batch job is shown in Figure 23-2. 

Unsolicited Terminal Input 

The terminal interrupt service routine performs special action when an unex­
pected input interrupt occurs. First, it checks whether the terminal has the 
characteristic NO_ TYPEAHEAD. If the terminal does, unsolicited input. is 
ignored and the interrupt is dismissed. Otherwise, a check is made to deter­
mine whether the device is owned. If it is and if the owner process has re­
quested notification of unsolicited interrupts, it is notified. Otherwise, the 
input characters are pliced into a type-ahead buffer. 

If the device is unowned, the job controller is notified through its mailbox 
that an unowned terminal has received an unexpected interrupt. In a sense, 
the job controller is the default owner of all otherwise unclaimed terminals. 

The job controller routine that responds to unsolicited terminal input sim­
ply requests the Create Process ($CREPRC) system service. Table 23-1 shows 
the process parameters it passes to the system service. 

The string ttcu: indicates the controller and unit of the terminal where the 
unsolicited input was typed. The terminal device type can be an actual physi­
cal device; an LT device, if the terminal is connected through a DECserver; 
an RT device, if the terminal is remote; a VT device, if virtual terminal sup­
port is enabled; or a WT device for a VAXstation window. 

Note that each interactive process is initiated with a process name indicat­
ing its input device and LOGINOUT as the image to be executed (see Figure 
23-1). 

Table 23-1 $CREPRC Arguments for an Interactive Process 

Argument Value 

Process name _ttcu: 

UIC [1,4] 
Image name SYS$SYSTEM:LOGINOUT.EXE 

SYS$INPUT ttcu: 

SYS$0UTPUT ttcu: 

SYS$ERROR ttcu: 

Base priority DEFPRI (SYSBOOT parameter) 

Privilege mask TMPMBX, NETMBX, SETPRV 

Status flags Interactive process 



23.1.2 

23.1.3 

23.1 fob Controller and Unsolicited Input 

SUBMIT Command 

When the SUBMIT command is executed, a message is sent to the job con­
troller, which places the requested job in one of its job queues. When the 
number of active jobs in one of the batch queues qrops below its maximum 
value, the job controller selects the highest priority pending job from one 
of its queues. It creates a process for that job with the specified command 
procedure as SYS$INPUT and a log file in an appropriate directory as 
SYS$0UTPUT (see Figure 23-2). The image to be executed is LOG­
INOUT. Because LOGINOUT maps the appropriate CLI into the process 
Pl space, the input stream can be a series of command language commands. 

Unsolicited Card Reader Input 

An alternative method for starting batch jobs uses the "hot" card reader fea­
ture implemented in the card reader driver interrupt service routine. Like the 
terminal driver, the card reader driver informs the job controller that an un­
expected interrupt has occurred on an unowned device. The job controller 
creates a process similar to the process created in response to unsoliCited 
terminal input except that the image INPSMB.EXE, the input symbiont, exe­
cutes in place of LOGINOUT. 

Table 23-2 shows the process parameters passed by the job controller to the 
$CREPRC system service. 

The letter c represents the controller number. The fact that this process 
has a card reader for its output device is irrelevant, because it does no writing 
to either SYS$0UTPUT or SYS$ERROR. 

The input symbiont reads the $JOB and $PASSWORD cards and performs a 
validation similar to the one performed by LOGINOUT. After determining 
the user's default directory from the authorization record, the input symbiont 
opens a file in that directory and reads the rest of the job cards into that file. 
By default, the file is named INPBATCH.COM. Terminating conditions of 

Table 23-2 $CREPRC Arguments for Input Symbiont Process 

Argument 

Process name 

UIC 

Image name 

SYS$1NPUT 

SYS$0UTPUT 

SYS$ERROR 

Base priority 

Privilege mask 

Value 

_CRcO: 

(1,4] 
SYS$SYSTEM:INPSMB.EXE 

CRcO: 

CRcO: 

CRcO: 

DEFPRI (SYSBOOT parameter) 

TMPMBX, NETMBX, SETPRV 

625 



Interactive and Batch fobs 

this read are an end of file, an $EOJ card, or another $JOB card. 
Once the input stream has been read into the user's directory, the input 

symbiont sends a message to the job controller. The operation proceeds 
from this point in exactly the same manner as for the SUBMIT command. 
That is, the job controller eventually creates a process with the card file as 
SYS$INPUT, a log file as SYS$0UTPUT, and LOGINOUT as the image 
to be executed (see Figure 23-2). 

23.2 THE LOGINOUT IMAGE 

23.2.1 

626 

The LOGINOUT image is responsible for verifying that the user is author­
ized to use the system, reading the user's record in the authorization file, and 
altering the process characteristics to reflect what is found there. The most 
important step that this image performs in altering the process is to map a 
CLI into Pl space. (The layout of Pl space is pictured in Figure 1-7 and de­
tailed in Table F-5). 

Interactive Jobs 

The LOGINOUT image is the first to run in an interactive process. It exe­
cutes primarily in user mode, with some executive and kernel mode proce­
dures. Its modules are in the facility [LOGIN]. 

When LOGINOUT executes in response to unsolicited terminal input, it 
must verify that the user has access to the system before it proceeds with the 
rest of its operations. It performs the following steps: 

1. A user mode call frame condition handler is established to service any 
hardware exceptions or signaled conditions that occur while LOG­
INOUT is executing. When this handler is invoked, it first calls the Put 
Message ($PUTMSG) system service to write an error message. It then 
checks the type and severity of the condition. If the condition has not 
already been stored in Pl space, the handler stores it in preparation for 
writing the code to the termination mailbox. 

If the condition is a severe error, the handler calls the Exit ($EXIT) 
system service from executive mode, causing the process to be deleted. 
Otherwise, it returns, and LOGINOUT continues execution. 

When LOGINOUT executes executive mode code, it declares the same 
condition handler for executive mode. 

2. LOGINOUT calls the Get Job/Process Information ($GETJPI) system 
service to find out the user name, process status flags, job type, and pro­
cess owner. 

3. LOGINOUT calls the Get Device Information ($GETDVI) system service 
to find out the name and characteristics of SYS$INPUT. 



23.2 The LOGINO UT Image 

4. The logical names SYS$INPUT, SYS$0UTPUT, and SYS$ERROR are 
translated in the LNM$PROCESS table. The resultant strings are saved 
for later use. 

5. LOGINOUT initializes the process-permanent data region in Pl space. 
This region is shared by LOGINOUT and the CLI it maps. 

6. LOGINOUT next determines what type of process is being created from 
the global location CTL$GL_CREPRC_FLAGS, which contains a copy 
of the flags specified to the $CREPRC system service. 

7. For an interactive process, one usually created in response to unsolicited 
input from a terminal, LOGINOUT performs the following steps: 

a. It initializes the user name and account name fields in the job infor­
mation block (JIB) and Pl space to the string "<login>". 

b. Process-permanent files are created for the input and output devices 
by calls to Record Management Services (RMS). In the case of an 
interactive login, these are typically terminal devices. LOGINOUT 
redefines the logical names SYS$INPUT and SYS$0UTPUT in the 
LNM$PROCESS table. LOGINOUT defines the logical names 
SYS$ERROR and SYS$COMMAND with the same equivalence 
strings as SYS$0UTPUT and SYS$INPUT. The equivalence names 
for these logical names are prefixed by four bytes consisting of an 
escape ( 1B16), a null character (0016), and a two-byte internal file iden­
tifier (IFI). When RMS receives such a string as a result of logical 
name translation, it uses the IFI as an index into one of its internal 
tables. Using the IFI allows fast access to these commonly used files. 

c. LOGINOUT determines whether the job type is local, dialup, or re­
mote, based on the characteristics ·of the SYS$INPUT terminal. It 
stores the terminal name in PCB$T _TERMINAL. 

d. LOGINOUT determines whether there is. a system password and 
whether it applies to this terminal. If there is, it issues a timed, no­
echo read to the terminal and checks the password entered· by the 
user. 

e. It then translates the logical name SYS$ANNOUNCE and writes the 
announcement message defined by the system manager. This message 
might consist of the system name and a description of its use. 

f. LOGINOUT checks to see if autologins are enabled for the terminal 
that is logging in. If they are, LOGINOUT looks up the terminal name 
in SYS$SYSTEM:SYSALF.DAT to determine the user name associated 
with the terminal. It then reads the user authorization file (UAF) rec­
ord associated with the user and stores the user name in the JIB. 

g. If autologins are not enabled for the SYS$INPUT terminal, LOG­
INOUT prompts on it for the user name. It reads and parses the input, 
noting the presence of qualifiers, such as /CONNECT and /CLI. It 

627 



Interactive and Batch fobs 

628 

opens the system authorization file and reads the record associated 
with that user. LOGINOUT stores the user's name in the JIB and Pl 
space. 

h. In either case, LOGINOUT then prompts for password, reads it, and 
verifies it. If there is a secondary password for the account, LOG­
INOUT prompts for it, reads it, and verifies it. 

i. LOGINOUT then performs a scan of the intrusion database in 
nonpaged pool. The type of scan performed depends on the success of 
user validation: 

-If a user validation error (such as invalid user name or password) has 
occurred, a suspect scan is performed. If evasion is in effect, the user 
name is set and a breakin audit is performed. Otherwise, the failed 
password count is incremented in the user's UAF record, and a cor­
responding intrusion record is either created or updated. 

-If the login was valid, an intruder scan is performed. If the user is 
found to be an intruder, a breakin audit is performed and the login 
terminates. 

j. If this is a captive or restricted account, LOGINOUT checks that the 
user did not include login qualifiers to change aspects of the process 
environment fixed for that account. 

k. If SYS$INPUT is not a remote terminal, LOGINOUT then checks 
whether the user has disconnected from a process that still exists. It 
performs a wildcard $GETJPI, looking for a process with the same user 
name and user identification code (UIC) and a disconnected terminal. 
It displays any matches and asks the user to which, if any, the termi­
nal should be connected. It records the answer for later use. 

1. LOGINOUT checks that the interactive job count would not be ex­
ceeded by the logging in of this process. 

8. Many of the process attributes extracted from the authorization file are 
put into their proper places, overwi;i.ting the attributes placed there when 
the process was created: 

-Default disk and directory string 
-User name 
-Default privilege mask 
-Process quotas and limits 
-Information about primary and secondary day restrictions 
-Base software priority 
-UIC 

9. After the process's correct UIC has been set, LOGINOUT recreates the 
job logical name table and, possibly, the group logical name table. 



23.2 The LOGINOUT Image 

10. LOGINOUT attempts to change the process name from _ttcu: to the 
user name. This attempt fails if another process in the same group al­
ready has the same name. (A common cause of user name duplication is 
a user logged in at more than one terminal.I In the case of failure, the 
process retains its name (_ttcu:), guaranteed to be unique for a given 
system. 

11. LOGINOUT checks a number of other fields in the authorization file 
record. These fields include the user or account job limit, account and 
password expiration, the hourly restrictions, the terminal type (dialup or 
remote terminal), and the DISUSER flag. These checks are waived in the 
case of the SYSTEM account logging in on the console terminal. 

12. LOGINOUT begins initialization for a CLL It creates logical names 
PROCO through PROC9, each equated to the file specification of a com­
mand procedure (or indirect command file I to be executed before the CLI 
enters its input loop. Currently, only PROCO and PROCl are used. 
PROCO is equated to the system name table translation of the logical 
name SYS$SYLOGIN. 

PROCl is equated to the file specified by the LGICMD field of 
the user's UAF record or the file specified by the login qualifier 
/COMMAND at login time (by an authorized user). If the contents of 
the LGICMD field are null and no /COMMAND qualifier was present 
on the login command, PROCl is equated to the string LOGIN. The 
LGICMD field should indicate the null device (using the string NL:) 
to provide a default of no login command file. 

When the CLI later executes its initialization code, it will translate 
these logical names and execute the command procedures (or indirect 
command files). 

13. The CLI is mapped into the low address end of Pl space (see Figure 1-7). 
This mapping is accomplished by a merged image activation of the se­
lected CLI. The procedure LIB$Pl _MERGE first merges the CLI into PO 
space to determine its size, deletes the PO space, and maps the correct 
amount of Pl space. Next, the CLl's command table is mapped into Pl 
space, using the same procedure. 

The default CLI is specified by the authorization file. However, it can 
be overridden with the login qualifier /CLI by a user allowed to do so. 
The default command table is also specified by the authorization file. 
However, it can be overridden with the login qualifiers /CLI and /TABLE 
by a user allowed to do so. 

14. LOGINOUT calls a kernel mode procedure to change the owner and pro­
tection of the CLI and command table pages. The owner access mode for 
each page is set to supervisor. The protection on all writable pages is 
changed to prevent writes from user mode. 

15. Pl space is expanded by a number of pages equal to the SYSBOOT param-

629 



Interactive and Batch fobs 

23.2.2 

630 

eter CLISYMTBL to accommodate the CLI symbol table. Global location 
CTL$GL_CTLBASVA is altered to reflect the new low address end of Pl 
space. 

16. LOGINOUT writes to SYS$0UTPUT, announcing successful login. It 
translates the logical name SYS$WELCOME and writes the announce­
ment message defined by the system manager. If SYS$WELCOME is not 
defined, LOGINOUT writes the message below, obtaining the version 
number from the global location SYS$GQ_ VERSION: 

Welcome to VAX/VMS Version v~.~ 

It also writes the dates of the last logins, the number of login failures 
for that user since the last succcessful login, and the number of new mail 
messages for the user. (If the DISNEWMAIL flag is set in the UAF record, 
the new mail message is omitted.) 

17. The logical names SYS$LOGIN, SYS$LOGIN_DEVICE, and SYS$­
SCRATCH are also created in the process's job logical name table. If this 
is a remote login, the name SYS$REM_NQDE is also created. The equiv­
alence name for these logical names is the default disk and directory 
specified by the user's UAF record. The qualifier /DISK= ddcu: (used 
with the user name portion of the login sequence) can be used to override 
the default disk. 

18. LOGINOUT records the time of login in the UAF record. 
19. At this point, LOGINOUT has finished its work and must pass control to 

the CLI. To pass control to the CLI, LOGINOUT calls an executive mode 
routine that performs the following actions: 

a. Changes the protection on pages in the process-permanent data region 
so that the pages can only be accessed from supervisor and inner ac­
cess modes 

b. Modifies the PSL in the call frame so that the current and previous 
mode fields contain supervisor mode 

c. Writes the transfer address of the CLI into the PC saved in the call 
frame 

d. Exits from executive mode, by executing an REI instruction, which 
returns the process to supervisor mode with the PC pointing to the 
first instruction in the CLI 

Batch Jobs 

Many of the operations performed by LOGINOUT for an interactive process 
are also necessary for a batch job. For example, LOGINOUT must open the 
input and output streams and map the CLI. However, password verification 
is not performed, either because the input symbiont has already done it or 
because it is not necessary, in the case of a SUBMIT command. 



23.2.3 

23.2 The LOGINOUT Image 

Rather than describing the steps performed by LOGINOUT again, the fol­
lowing list simply specifies those that are different for a batch process: 

1. LOGINOUT determines that it is creating a batch process because the 
batch flag is set in CTL$GL_CREPRC_FLAGS, a copy of the flags origi­
nally specified to the $CREPRC system service. 

2. LOGINOUT initializes the account name fields in the JIB and Pl space to 
the string "<batch>". 

3. LOGINOUT requests the Send to Job Controller ($SNDJBC) system ser­
vice to obtain information about the batch job, for example, its user name, 
process priority, and working set information. 

· 4. The prompted reads of user name and password and the system announce­
ments that occur in the login of an interactive process are unnecessary for 
a batch process. 

5. It reads the authorization file record for this user. It obtains process attri­
butes to supplement information not specified at batch queue creation or 
job submission. These values are minimized with the values returned by 
the job controller. 

6. The job parameters, Pl through P8, if present, are defined as user mode 
logical names which the CLI later translates. 

Mapping the CLI and transferring control to it happen in exactly the same 
way as they do fqr an interactive job. In both cases, if SYS$SYLOGIN is 
defined as a system logical name, the first commands that execute are the 
commands in the site-specific login command file. If the user authorization 
file does not specify a user login command file, the command file 
SYS$LOGIN:LOGIN.COM is executed (if the CLI is DCL). 

SPAWN and ATTACH 

The DCL command SPAWN is used to create interactive subprocesses. The 
ATTACH command is used to transfer terminal control from one process to 
another within the same job. An image can also request an ATTACH or 
SPAWN function by calling the Run-Time Library procedures LIB$ATTACH 
and LIB$SPAWN. These procedures pass back the request to the DCL CLI. 
The major difference between the two ways of requesting the function is 
whether additional information about the request is passed in a command 
line or an argument list. 

The major work involved in spawning a new subprocess is in copying pro­
cess context information from the creating process to the subprocess. This 
information includes the process CLI symbols, process logical names, current 
privileges, out-of-band asynchronous system trap (AST) settings, verify flag 
settings, prompt string, default disk and directory, keypad definitions and 
states, and the command line that was passed to SPAWN (if one exists). 

631 



Interactive and Batch fobs 

632 

In response to a SPAWN request, DCL performs the following operations: 

1. It parses the command line to determine what qualifiers are present (or 
examines an argument list) and validates them. 

2. It temporarily disables the current process's out-of-band ASTs, blocking 
CTRL/Y ASTs during a critical section of code. 

3. It creates a mailbox, requesting an attention AST if a message is written 
to the mailbox. This mailbox will receive termination information from 
the subprocess (and from up to three other spawned subprocesses) when 
it is deleted. 

4. DCL records the name of the subprocess's CLI and command table files 
in Pl space locations. The $CREPRC system service will copy them to 
the process quota block for later use by LOGINOUT running in the con­
text of the subprocess. 

5. It creates a second mailbox through which context will be copied to the 
spawned subprocess. DCL obtains its name from the $GETDVI system 
service. 

6. DCL creates an attach request mailbox. The process receives attach re­
quests from other processes in the job tree in this mailbox. It is created 
with a logical name of the form DCL$ATTACH_pid, where pid is the 
extended process ID. 

7. DCL requests the $GETJPI system service to determine the current 
process's quotas. From them, it builds a quota list used in creation of the 
spawned subprocess. 

8. It requests the $CREPRC system service to create the subprocess. The 
IMAGE argument specifies LOGINOUT. The ERROR argument specifies 
the name of the communication mailbox through which context is to be 
passed. If the creating process does not specify input and output files to 
the SPAWN command, the INPUT and OUTPUT arguments specify the cre­
ating process's SYS$INPUT and SYS$0UTPUT file specifications. The 
$CREPRC request specifies a termination mailbox to receive a process 
deletion message from the subprocess. Because the request does not in­
clude a privilege mask for the subprocess, the $CREPRC system service 
creates the subprocess with the current privileges of the current process 
(see Chapter 20). 

9. When the subprocess is created, LOGINOUT maps the specified CLI, 
typically DCL, and passes control to it. DCL, running in the context of 
the subprocess, first tests whether it is a subprocess. If it is, it translates 
the logical name SYS$ERROR. If there is a supervisor mode translation 
with an equivalence string which is the name of a mailbox, DCL recog­
nizes that a SPAWN operation is in progress and that it must read context 
information from the creating process. 

The context information is passed in the following manner: 

a. DCL issues read requests to the communication mailbox. 



23.2 The LOGINOUT Image 

b. The creating process writes context information to the mailbox, one 
record at a time. Each record has a type code identifying its contents. 
When the subprocess receives the information, it adds the information 
to its context. 

c. The first record passed contains the permanently enabled privilege 
mask ICTL$GQ_PROCPRIV), out-of-band AST flag settings, verify 
flag setting, and prompt string. DCL, running in the context of the 
spawned subprocess, reads the record and initializes the process ac­
cordingly. 

It requests the Set Privilege l$SETPRV) system service to reset the 
process privileges from those passed in the record. Thus, the 
subprocess has its working and permanently enabled privileges set to 
the permanently enabled privileges of its creator. Its authorized privi­
lege mask, however, contains the privileges its creator possessed when 
the spawn occurred. This enables a privileged image to tailor an envi­
ronment in a spawned subprocess and pass additional privileges onto 
its first image. 

d. Next, the SPAWN command string is passed !if one was specified). 
e. The creating process then scans the process logical name directory, 

which contains a list of process logical name table names. It copies all 
tables which were defined in user or supervisor mode and which do 
not have the LNM$V _CONFINE attribute. It then copies all of the 
logical names defined in those tables. DCL, running in the spawned 
subprocess context, creates the corresponding logical name tables and 
then their logical names. 

f. The contents of the symbol table are then passed, one symbol at a 
time, followed by terminal keypad definitions. Note that DCL com­
mand tables are not passed to the subprocess. 

10. Once it has passed all inforqiation to the subprocess, DCL tests whether 
the creating process is to wait for the subprocess. If it is, DCL requests a 
write attention AST on the attach request mailbox and hibernates. 
Otherwise, it restores out-of-band ASTs and resumes normal processing. 

11. DCL, running in the context of the spawned subprocess, issues a special 
1/0 request to the terminal driver to specify itself as owner of the termi­
nal and continues normal processing. 

The DCL request ATTACH transfers terminal control to a specified pro­
cess !called the target process in this discussion). The operation of the DCL 
ATTACH routine is as follows: 

1. DCL first disables out-of-band ASTs, to block CTRL/Y ASTs. It gets the 
naIµe or process identification IPID) of the target process and then checks 
that the target process is not itself and that it is a process in the same job 
tree. 

633 



Interactive and Batch fobs 

2. DCL creates an attach mailbox for the calling process. It will be used if a 
later attach request names this process as its target. DCL requests a write 
attention AST for the mailbox. 

3. DCL locates the target process's attach mailbox and writes the name of its 
output stream (usually the equivalence name of SYS$INPUT) to the mail­
box, thus triggering the write attention AST that was declared when the 
target process spawned a subprocess. It then issues a read request on the 
target process's attach mailbox. 

4. The target process wakes in response to the write attention AST. The AST 
procedure tests whether the current process is detached. If it is, the AST 
procedure writes an affirmative response (a longword with a value of 1) to 
its attach mailbox. Otherwise, it writes a zero longword to mean the pro­
cess is not detached. 

5. Once it receives the affirmation, DCL in the calling process deassigns its 
channel to the target process's attach mailbox and hibernates. 

6. The AST procedure in the target process issues a wake request for the 
process, declares another write attention AST for its attach mailbox, and 
returns control to the target process. 

When one of the subprocesses created by the SPAWN command is deleted, 
the termination AST is delivered. The termination AST simply performs 
cleanup work before the subprocess is deleted. The channels to the attach 
and termination mailboxes are deassigned, and the mailboxes are deleted. If 
the subprocess was created by a call to LIB$SPAWN and if an event flag or 
AST routine was specified in the call, the event flag is set or the AST is 
delivered. 

23.3 COMMAND LANGUAGE INTERPRETERS AND IMAGE EXECUTION 

There are three VAX/VMS CLis available from DIGITAL: DCL, MCR, and 
DEC/Shell. DCL is supplied with VAX/VMS. MCR, once a component of 
VAX/VMS, is now part of the optional product VAX-11 RSX. This section 
describes features of DCL and MCR. Discussion of the third CLI, supplied 
with the optional product VAX DEC/Shell, is beyond the scope of this book. 

634 

Once DCL or MCR gains control, it performs some initialization and then 
reads and processes successive records from SYS$INPUT. This section de­
scribes those operations that result in image execution, to contrast interac­
tive and batch jobs with the simple processes described in previous chapters. 
The operations of both DCL and MCR in activating an image are described in 
some detail. These steps in the two CLis are nearly identical. DCL is men­
tioned explicitly where it differs from MCR. 

One of the important steps that either CLI performs is the declaration of a 
supervisor mode exit handler. It is this handler that prevents process deletion 
following image exit and allows the successive execution of multiple images 



23.3.1 

23.3.2 

23.3 Command Language Interpreters and Image Execution 

within the same process. 
A simplified flow of control through ei~her CLI is pictured in Figure 23-3. 

CLI Initialization 

The first DCL CLI code is the routine DCL$STARTUP in module 
[DCL]INITIAL. For the MCR CLI, the initialization code is the routine 
MCR$STARTUP in module [MCR]MCRINIT. The initialization code 
performs the following steps before it enters the main command pro­
cessing loop: 

1. The CLI clears the FP register and then calls itself, creating an initial call 
frame on the supervisor stack. Because the saved FP in the call frame is 
zero, the call frame chain is terminated. It calls itself again and estab­
lishes a call frame condition handler. 

2. The CLI writes the address of its CLI callback service routine in the 
global location CTL$AL_CLICALBK. Callback is a mechanism used to 
obtain services from the CLI, such as symbol creation and lookup. 

3. The CLI initializes its work area. It initializes various internal variables 
based on information from LOGINOUT, passed in the process-perma­
nent data region. It also initializes the CLI symbol table data structures. 

4. If this is a batch job, the CLI translates the logical names for parameters 
PO through P8 and creates symbols whose values are the equivalence 
names. 

5. The CLI translates PROCO through PROC9 and saves their equivalence 
names to identify the command procedures it must execute. 

6. The CLI calls the Rundown ($RUNDWN) system service with an argu­
ment of user mode to run down the LOGINOUT image. 

7. The CLI validates the structure of its command table. 
8. DCL enables CTRL/Y and out-of-band ASTs on the terminal. MCR 

enables CTRL/Y ASTs. (If the UAF record had the DISCTLY flag set, 
CTRL/Y ASTs are not enabled.) 

9. The CLI calls the Declare Change Mode Handler ($DCLCMH) system 
service to establish a change-mode-to-supervisor handler. This handler 
allows the CLI to get back to supervisor mode from user mode when it 
needs to write protected data structures. One instance where this is re­
quired is in symbol definition, because CLI symbol tables are protected 
from write access by user mode. 

10. Finally, control is passed to the first instruction of the main command 
processing loop (routine DCL$RESTART or MCR$RESTART). 

Command Processing Loop 

The main command processing loop reads a record from SYS$INPUT and 
takes whatever action is dictated by the command. Some actions can be per-

635 



Interactive and Batch fobs 

636 

DEBUG Command 

Generate 
SS$_DEBUG 
signal 

STOP Command 

To Exception 
Dispatcher 

CLI Initialization 
Code 

Establish CHMS 
handler 

Run down LOGINOUT 
image 

Beginning of CLI 
Command 
Processing Loop 

f--- From LOGINOUT 

-H 

Determine whether 
command executes 
internally or requires 
external image 

Close all files, 
run down image, and 
get next command 

CONTINUE Command 

If previously executing 
image was interrupted 
with CTRL/Y, 
then return control 1 

CTRL/Y AST 

Save context of 
interrupted image and 
get next command 

EXIT Command 

Call $EXIT 

Internal __- ----- External 
Routine ~ --....._ Image 

>-----+-~_. .... Service internal 
command and 
go back to top 
of main loop 

1~ 

If CONTINUE, STOP, 
EXIT, or DEBUG, go 
there 

transfer-address:: 

Portion of CLI that 
activates and calls 
external images 

Run down previous 
image 

Redeclare supervisor 
mode exit handler 

Activate the image 

Raise access mode 
to user 

Set up call frame 
and condition handler ru Build argument list 

~Call image 

Call$EXIT~ RET-+---

Image Code 

_f 
$EXIT System Service 

Raise access 
mode to supervisor 

Call supervisor mode 

Supervisor Mode 
r+'I Exit Handler 

Declared by CLI 

Close all open Illes 

exit handler -t-- Purge input stream 
of data records 

Run down image 

Restore stack 
to known state 

Go back to top 
of main loop 

Figure 23-3 Simplified Control Flow Through a 
Command Language Interpreter 



23.3.3 

23.3 Command Language Interpreters and Image Execution 

Table 23-3 General Actions Performed by a Command Language Interpreter 

General CLI Operations 

Commands that require 
external images 

Commands that require 
internal processing and 
an externalimage 

Foreign commands 

Other operations that 
destroy an image 

Commands that the CLI 
can execute internally 
(see Table 23-4) 

Other internal operations 

Sample Commands 

COPY, 
LINK, 
Some SET commands, 
Some SHOW commands 

LOGOUT, 
MCR, 
RUN 

string: = =$image-file-spec 

STOP, 
EXIT, 
Invoking a command procedure 

EXAMINE, 
SET DEFAULT 

Symbol definition 

formed directly by the CLI. Others require the execution of a separate image. 
Table 23-3 lists the general operations performed by a CLI and indicates those 
actions that require an external image. 

If the record that is read from the input stream is a recognized command, 
DCL (or MCR) must also determine whether it can perform the requested 
action itself or activate an external image. Table 23-4 lists the commands 
that can be executed by DCL or MCR without destroying a currently execut­
ing image. (Special commands used by the MCR indirect command file pro­
cessor are not included in the table.) Any other command either requires an 
image to execute (such as COPY or LINK) or directly affects the currently 
executing image (such as STOP). 

Image Initiation by a CLI 

When an external image is required, the CLI first performs some command­
specific steps. It then enters a common routine to formally activate and call 
the image. The steps that it takes are nearly identical to the steps performed 
by EXE$PROCSTRT, described in Chapter 20: 

1. The previous image (if any) is run down by calling the $RUNDWN sys­
tem service. This system service removes any traces of a previously ex­
ecuting image. If the previous image terminated normally, this call is 
unnecessary. However, a CTRL/Y followed by an external command 
bypasses the normal image termination path, requiring this extra step to 

637 



Interactive and Batch fobs 

Table 23-4 Commands Handled by CLI Internal Procedures 

Command 

ALLOCATE 

ASSIGN 

ATTACH1 

CALL1 

CANCEL 

CLOSE1 

CONNECT1 

CONTINUE 
CREATE/NAME_ TABLE 

DEALLOCATE 

DEASSIGN1 

DEBUG 

DECK1 

DEFINE1 

DEFINE/KEY 

DELETE/KEY 

DELETE/SYMBOL 1 

DEPOSIT 

DISCONNECT1 

EOD1 

EOJ 
EXAMINE 

EXIT 

GOSUB 1 

GOTO 

IF1 

INQUIRE1 

ON 
OPEN1 

READ1 

RECALL 1 

RETURN1 

SET CONTROL 

SET DEFAULT 
SET KEY 

SET[NO]ON 
SET OUTPUT _RATE 

638 

Description 

Create/modify a symbol 

Allocate a device 

Create a logical name 

Transfer control to another process in job 

Transfer control to a labeled subroutine in a command procedure 

Cancel scheduled wakeups for a process 

Close a process-permanent file 

Connect the physical terminal to a virtual terminal of another 
process 

Resume interrupted image 

Create a new logical name table 

Deallocate a device 

Delete a logical name 

Invoke the symbolic debugger 
Delimit the beginning of an input stream 

Create a logical name 

Associate a character string and attributes with a terminal key 

Delete a key definition 

Delete a symbol definition 

Modify a memory location 

Disconnect a physical terminal from a virtual terminal 

Delimit the end of an input stream 

Delimit the end of batch job submitted through card reader 

Examine a memory location 

Exit a command procedure, 

Run down an image after invoking exit handlers 

Transfer control to a labeled subroutine in a command procedure 

Transfer control within a command procedure 
Conditional command execution 

Interactively assign a value to a symbol 

Define conditional action 

Open a process-permanent file 

Read a record into a symbol 

Display previously entered commands for possible reissue 

Terminate a GOSUB subroutine procedure 

Determine CTRL actions 

Define default directory string 

Change current terminal key definition state 

Determine error processing 

Set rate at which output is written to a batch job log file 



23.3 Command Language Interpreters and Image Execution 

Table 23-4 Commands Handled by CLI Internal Procedures (continued) 

Command Description 

SET PROMPT1 

SET PROTECTION 
SET SYMBOL1 

Change the CLI's prompt string 
Define default file protection 
Alter scope of a symbol 

SET UIC 
SET [NO)VERIFY 
SHOW DEFAULT 
SHOW KEY 

Change process UIC and default directory string 
Determine echoing of command procedure commands 
Display default directory string 
Display terminal key definitions 

SHOW PROTECTION 
SHOW QUOTA 
SHOW STATUS 
SHOW SYMBOL 
SHOW TIME 

Display default file protection 
Display current disk file usage 
Display status of currently executing image 
Display value of symbol(s) 

Display current time 
SHOW TRANSLATION 
SPAWN1 

Show translation of single logical name 
Create a subprocess and transfer control to it 

STOP 
WAIT1 

WRITE1 

Run down an image bypassing termination handlers 
Wait for specified interval to elapse 
Write the value of a symbol to a file 

1These commands are available in the DCL CLI but not in the MCR CLI. 

ensure that the previous image is eliminated before another is activated. 
2. The supervisor mode exit handler is declared to enable the CLI to regain 

control at image exit. Recall from Chapter 21 that an exit handler must 
be redeclared after each use. 

3. The image is activateq by calling the Image Activate ($IMGACT) system 
service (see Chapter 21). 

4. The CLI pushes a PSL with a current mode of user and an address within 
itself onto the stack. It then executes an REI instruction to change access 
mode to user. 

5. It clears the FP register and then calls itself, creating an initial call frame 
on the user stack. Because the saved FP in the call frame is zero, the call 
frame chain is terminated. 

6. It establishes the catch-all condition handler as the handler for this call 
frame and as last chance exception vector. 

7. It calls the Address Relocation Fixup ($IMGFIX) system service to relo­
cate image addresses. 

8. The argument list (see Figure 23-4) that is passed to the image (and to any 
intervening procedures such as SYS$IMGSTA) is built on the user stack. 
The CLI flags argument specifies, for example, whether the process is 

639 



Interactive and Batch fobs 

23.3.4 

640 

l 6 

Address of Transfer Address Array 

Address of CLI Utility Dispatchar 

Address of Image Header 

Address of Image File Descriptor 

Link Flags from lma.ge Header 

Cll Flags 
(0 from PROCSTRT) 

Figure 23-4 Argument List Passed to an Image by 
EXE$PROCSTRT or a CLI 

batch, whether verify mode is enabled, and whether the image was run 
with the /DEBUG qualifier. 

9. The image is called at the first address in the transfer address array (de­
scribed in Chapter 21). As mentioned in the discussion of image startup, 
the first transfer address is the address of the debug bootstrap that estab­
lishes the traceback exception handler and maps the debugger, if re­
quested. 

10. The instruction following the call to the image results in a call to the 
$EXIT system service. The code path through either CLI makes it irrele­
vant whether an image terminates with a RET instruction or a call to the 
$EXIT system service. For any image that might be called as a procedure 
from another image, the RET instruction is the preferred method of image 
termination. 

Image Termination 

When an image in an interactive or batch job terminates, the $EXIT system 
service eventually calls the supervisor mode exit handler established by the 
CLI before the image was called. This exit handler performs several cleanup 
steps before passing control to the beginning of the main command loop to 
allow the CLI to process the next command: 

1. If the image exited with an error status in RO, DCL writes the correspond­
ing error message. 

2. Any files left open by the image are closed by calling SYS$RMSRUNDWN 
for each open file. 

3. Any data records in the input stream (records that do not begin with a 
dollar sign for DCL or a right angle bracket for MCR) are discarded and a 
warning message is issued. 

4. The image that just terminated is run down by calling $RUNDWN with 
an argument of user mode. 



23.3.5 

23.3.5.1 

23.3.5.2 

23.3 Command Language Interpreters and Image Execution 

5. Finally, control is passed to the beginning of the main command loop so 
that the CLI can read and process the next command. 

Abnormal Image Termination 

When an image terminates normally, it is run down as a part of the CLl's exit 
handler, and control is passed to the CLI at the start of its command loop. An 
image can also be interrupted by typing CTRL/Y or by using the COBOL or 
FORTRAN pause capability. Further execution of the image depends on the 
sequence of commands that execute while the image is interrupted. 

CTRL/Y Processing. When CTRL/Y (or possibly CTRL/C) is typed at the 
terminal, the terminal driver passes control to the AST procedure the CLI 
established during its initialization. The AST procedure first reestablishes 
itself, enabling future CTRL/Ys to be passed to the same AST procedure. It 
then checks whether a SET NOCONTROL = Y command has been exe­
cuted. If so, the AST procedure returns, dismissing the CTRL/Y. Otherwise, 
it then checks what access mode was interrupted by the CTRL/Y. 

If the previous mode was supervisor, the AST procedure checks whether an 
ON CONTROL_ Y command has been issued previously that specifies a par­
ticular command to be executed in response. If this is so, the procedure sets a 
flag to indicate that the command be executed and returns. If not, DCL is 
restored to its initial state (with no nesting of indirect levels) and control is 
passed to the beginning of the main command loop. 

If the previous mode was user, then the CTRL/Y must have interrupted an 
image. If the image was installed with enhanced privileges, the CLI saves the 
current privileges and resets the process privileges to those it had before the 
image was activated. A flag is set and the CLI returns to command process­
ing. If, at this point, the user enters the DCL commands ATTACH, CON­
TINUE, or SPAWN (or the MCR command CONTINUE), the appropriate 
action is taken and the image is not run down. Any other command causes 
the privileged image to be run down before the next command is executed. 
Issuing a STOP .command for a nonprivileged image causes the image to be 
terminated without the invocation of its exit handlers (see Section 23.3.5. 7). 
However, because a privileged image is run down before the STOP command 
is invoked, its exit handlers are invoked. 

Pause Capability. The VAX COBOL and VAX FORTRAN languages provide 
the capability to interrupt an image under program control. Either of the 
Run-Time Library procedures that implement this feature could also be 
called from any other language. 

The following COBOL statement generates a call to the Run-Time Library 
procedure COB$PAUSE, which sends the message "literal" to SYS$0UTPUT 

641 



Interactive and Batch fobs 

23.3.5.3 

23.3.5.4 

23.3.5.5 

23.3.5.6 

642 

and passes control to the CLI at the beginning of its main command loop: 

STOP literal 

The following FORTRAN statement generates a call to the Run-Time 
Library procedure FOR$PAUSE, which sends the message "literal" to 
SYS$0UTPUT and passes control to the CLI at the beginning of its main 
command loop: 

PAUSE [literal] 

If the "literal" argument is omitted, FOR$PAUSE sends the following mes­
sage to SYS$0UTPUT: 

FORTRAN PAUSE 

State of Interrupted Images. If a nonprivileged image was interrupted, the 
image context is saved and control is passed to the beginning of the main 
command loop to allow the user to execute commands. If the CLI can per­
form the requested action internally (see Table 23-4), then the image can be 
continued. 

However, execution of any command that requires an external image de­
stroys the context of the interrupted image. In addition, if the user executes 
an indirect command file while an image is interrupted, that image is de­
stroyed, even though the commands in the indirect command file can be 
performed internally by the CLI. 

Six commands that the user can request when an image has been inter­
rupted by CTRL/Y have special importance. These commands are ATTACH, 
CONTINUE, DEBUG, EXIT, SPAWN, and STOP. (Note that ATTACH and 
SPAWN are supported only by DCL.) 

CONTINUE Command. If a CONTINUE command is typed and the previous 
mode was user, the AST is dismissed and control is passed back to the image 
at the point where it was interrupted. 

DEBUG Command. As described in Chapter 21, a DEBUG command causes 
the CLI to generate a SS$_DEBUG signal that will eventually be fielded by 
the condition handler established in image startup. This handler responds to 
the SS$_DEBUG signal by mapping the debugger (if it is not already mapped) 
and transferring control to it. This technique enables the debugger to be used, 
even if the image was not linked with the /DEBUG qualifier. (For this capa­
bility to work, the image cannot be linked with the /NOTRACEBACK quali­
fier. That qualifier prevents the handler that dynamically maps the debugger 
from being established.) 

EXIT Command. The EXIT command invokes the $EXIT system service 
from user mode. Exit handlers are called and the image is run down. 



23.3.5.7 

23.4 

23.4 LOGOUT Operation 

STOP Command. The STOP command performs essentially the same 
cleanup operations that occur for a normally terminating image. However, 
STOP does its own work and does not call the $EXIT system service. Thus, 
user mode exit handlers are not called when an image terminates with a 
CTRL/Y STOP sequence. 

The STOP command processor first determines whether an image or a 
process is being stopped. (The various possible STOP commands are de­
scribed in the VAX/VMS DCL Dictionary.) If an image is being stopped, all 
open files are closed by calling SYS$RMSRUNDWN. The image itself is then 
run down (by requesting the $RUNDWN system service). Finally, control is 
passed to the beginning of the main command loop. 

Note that STOP performs nearly identical operations to the CLI exit han­
dler invoked as a result of a call to the $EXIT system service or an EXIT 
command. The only difference between either EXIT sequence and the STOP 
command is that user mode exit handlers are not called first. Thus, in most 
cases, the STOP and EXIT commands are interchangeable. One useful aspect 
of the STOP command is that it can be used to eliminate an image that 
contains a user mode exit handler which is preventing that image from com­
pletely going away, either intentionally or as a result of an error. 

LOGOUT OPERATION 

LOGINOUT, the image that performs the initialization of an interactive or 
batch job, also executes to cause the eventual deletion of such a process. 
When LOGINOUT is entered, it must determine whether to perform login, 
logout, or batch job step initialization. The indication to LOGINOUT that 
the process is logged in already is the existence of the process-permanent data 
(PPD) region, used to communicate between LOGINOUT and the CLI. 

If this region exists, LOGINOUT tests whether the process is batch. If it is 
not, LOGINOUT takes whatever action is required before calling the Delete 
Process ($DELPRC) system service to perform those parts of process deletion 
that are independent of the kind of process that is being deleted. 

1. If the user specified the /[NO]HANGUP qualifier on the LOGOUT com­
mand, LOGINOUT checks whether changing the terminal characteristics 
is appropriate. If the process is interactive and not a subprocess and the 
terminal is a local terminal, LOGINOUT reads the current terminal char­
acteristics and resets them, altering the hangup bit. 

2. LOGINOUT copies the IFis for SYS$INPUT and SYS$0UTPUT from 
PPD locations into RMS data structures. This restores definitions of 
SYS$INPUT and SYS$0UTPUT made at login. 

3. The logout message is written to the restored SYS$0UTPUT. (Thus, it 
cannot be redirected via a logical name definition.) If the user asked for a 

643 



Interactive and Batch fobs 

644 

full logout message, LOGINOUT calls $GETJPI to get information, such 
as CPU time, number of page faults, and number of 110 requests. 

4. SYS$INPUT and SYS$0UTPUT are closed. 
5. Finally, $EXIT is called from executive mode. As described in Chapter 21, 

the .search for exit handlers is limited to the executive mode list, bypass­
ing the supervisor mode exit handler established by the CLI to prevent 
process deletion following image exit. 

6. After the executive mode exit handler has performed its work, the $EXIT 
system service calls the $DELPRC system service, which removes the 
logged out process from the system. 

If the process is a batch job, LOGINOUT first closes SYS$INPUT. It calls 
the $SNDJBC system service again to determine if there is another job step. If 
the batch job was submitted with multiple command procedures specified, 
LOGINOUT opens the new SYS$INPUT, reinitializes the batch job environ­
ment, and reenters the CLI. 

If the message returned from the job controller indicates that the job 
should be terminated, LOGINOUT terminates it through the following 
steps: 

1. It writes a logout message to the log file. 
2. It closes the log file. 
3. If the log file is to be printed, then LOGINOUT calls $SNDJBC again, this 

time to queue the file to a print queue. 
4. It then calls the $EXIT system service from executive mode, resulting in 

the deletion of the process. 



PART VII/System Initialization 





24 Bootstrap Procedures 

Ante mare et terras et quod tegit omnia caelum unus erat toto 
naturae vultus in orbe, quern dixere chaos: rudis indigestaque 
moles ... 
[Before the sea was, and the lands, and the sky that hangs 
over all, the face of Nature showed all alike, which state has 
been called chaos: a rough unordered mass of things ... ] 

Ovid, Metamorphoses I, 5-7 

Before a VAX/VMS system can operate, some initialization or bootstrap pro­
grams must execute to configure the system and read the executive into 
memory. Parts of the bootstrap operation are specific to the type of VAX 
processor. Others are common across all VAX family members. 

This chapter first summarizes all phases of system initialization and then 
describes those that occur before code contained in the system image 
(SYS.EXE) executes. Chapter 25 describes the later phases of system initial­
ization. 

24.1 OVERVIEW OF SYSTEM INITIALIZATION 

There are a number of programs invoked in VAX/VMS system initialization. 
Some of them run outside an operating system environment; others execute 
in system context with memory management enabled; others execute irt 
process context. In general, an initialization task is postponed to as late a 
program as possible. With a larger percentage of the system environment 
present, a task is easier to implement and debug. These programs are summa­
rized in the following list and described in detail in this and the next chapter. 

• The console subsystem is CPU-specific. Regardless of its implementation, 
it must initialize the CPU, locate 64K bytes of good memory, and load 
VMB.EXE into it. 

• VMB.EXE, the primary bootstrap program, runs stand-alone on the VAX 
processor. It provides an operating-system-independent bootstrap. Its func­
tions are to size memory, initialize the adapter and device that contain the 
secondary bootstrap program, and load it. 

• SYSBOOT.EXE, the secondary bootstrap program for VAX/VMS, also runs 
stand-alone. It reads SYSBOOT parameters and, based on their values, lays 
out system virtual address space. It loads the system image, SYS.EXE, into 
memory, as well as several other images, such as the system device driver. 

647 



Bootstrap Procedures 

It transfers control to EXE$INIT, a module in SYS.EXE. 
• After turning on memory management, EXE$INIT runs in system context, 

on the interrupt stack. It performs those initialization tasks which require 
memory management enabled and which must be done prior to entering 
process context. These tasks include initializing the scheduler and memory 
management databases. EXE$INIT jumps to the scheduling routine 
SCH$SCHED (see Chapter 10), which places the swapper process into 
execution. 

• EXE$SWAPINIT, a routine in the swapper process, performs the minimum 
initialization tasks that must be done in process context and before creating 
a new process. As part of the swapper, it is part of the system image and is 
thus kept to a minimum size. Because it is pageable code, it eventually 
disappears from the system working set and thus occupies no physical 
space. These tasks include initializing paged pool and the pageable logical 
name database. EXE$SWAPINIT creates the SYSINIT process. 

• The SYSINIT process performs initialization tasks which must be done in 
process context and which do not lend themselves to DCL commands. 
These include initializing the swap and page files, mapping the Files-11 
XQP as a global section, and mapping RMS. The SYSINIT process creates 
the STARTUP process. 

• The STARTUP process executes a series of DCL commands. It creates vari­
ous system processes such as OPCOM and the job controller. It runs SYS­
GEN to autoconfigure the I/O database. It runs the Install Utility to alter 
the default activation of various images. Some images are installed to be 
activated more quickly; others, so they can be shared among processes; and 
others, to be activated with privileges not otherwise granted to the process. 
The STARTUP process executes a series of site-specific commands and en­
ables interactive logins. 

24.2 PROCESSOR-SPECIFIC INITIALIZATION 

648 

The initial steps that occur in the initialization of a VAX/VMS system de­
pend on the particular VAX processor being booted. The next sections briefly 
describe the processor-specific steps that occur before VMB gains control and 
begins execution. (Note that all descriptions assume that the console termi­
nal is in local enable mode, able to receive command input.) 

In all processors, the following steps occur: 

• 64K bytes of error-free, page-aligned, contiguous memory are located. 
• VMB is loaded into the second page of the 64K bytes of memory. 
• The bootstrap device code, other bootstrap flags, and additional information 

are passed to VMB using registers RO through RS and RIO through AP. 
• VMB executes. 



24.2.1 

24.2 Processor-Specific Initialization 

MicroVAX I 
MicroVAX II 

Console Program 

! 
Subset VMB in ROM 

VAX-11/750 
VAX 8200 Family 

VAX-11/730 
VAX-11n8x 
VAX86x0 

VAX 8800 Family 

Console Program Console Microprocessor 

•/ Boot Block Program 

-­VMB.EXE 

----------- / 

JOB_ CONTROL 

SYSBOOT.EXE 

t Loads SYS.EXE 

EXE$1NIT 

t Process Scheduling 

SWAPPER Process 

t Process Creation 

SYSINIT Process 

t Process Creation 

STARTlJP Process 

Running 

STARTUP.COM 

OPCOM ERRFMT SYSTARTUP.COM 

Figure 24-1 Sequence of Initialization Events 

Covered in 
Chapter 24 

Covered in 
Chapter 25 

The way in which good memory is located and registers are loaded is CPU­
dependent. The most obvious processor-specific item that affects the boot· 
strap operation is the console configuration. Figure 24-1 summarizes the 
bootstrap sequence. 

VAX-11/730 Initial Bootstrap Operation 

The console subsystem on the VAX-11/730 consists of a separate micropro­
cessor, two block-addressable storage devices (TU58 cartridge tape drives), 
and a terminal. The console TU58 is an RT-11 directory structured device. 
When the CPU is in console mode, only the console program can execute; the 
CPU cannot execute any VAX instructions. 

There are several ways in which a bootstrap sequence may be initiated: 

• A power-on occurs (boot switch is pressed, or processor is turned on). 
• The console command B(oot) is typed while the processor is in console 

mode. 

649 



Bootstrap Procedures 

650 

• A bootstrap command procedure is invoked while the system is in console 
mode. 

• The following instruction is executed in kernel mode: 

MTPR #.XFD2, #PR$_TXDB 

•While the AUTO RESTART switch is in the ON position, a CPU halt con­
dition occurs and auto restart fails. 

In the bootstrap sequence, the console subsystem must execute a series of 
programs to load and execute VMB. Table 24-1 lists these programs. 

The initial bootstrap programs are console microprocessor programs. The 
steps of initial bootstrap are as follows: 

1. After performing a self-test, the microprocessor locates the TU58 that 
contains the boot block (trying DDl first and, if that fails, then DDO) and 
loads blocks 0 through 5 from the tape into microprocessor memory. The 

Table 24-1 Processor-Dependent Programs Used to Bootstrap the V AX-11/730 

Program Executing 

Console micropro-
cessorROM 
bootstrap 

TU58 boot block 
program 

CONSOL.EXE 

POWER.CMD1 

CODEOn.CMD2 

Bootstrap 
command file 

VMB.EXE 

Location of Program Purpose of Program 

EXECUTES ON CONSOLE MICROPROCESSOR 

ROM in console Read TU58 boot block into memory 
subsystem and execute code contained 

there 

LBN 0 on console Locate CONSOL.EXE, read it into 
TU58 memory, and pass control to it 

Console TU58 Initialize VAX-11/730, load general 
registers, and execute the next two 
indirect command files 

Console TU58 Locate 64K-byte block of good 
memory and check system 
configuration 

Console TU58 Configuration-dependent 

Console TU58 Load VMB into VAX memory and 
transfer control to it 

EXECUTES ONVAX·ll/730 

Console TU58 Size physical memory, locate 
secondary bootstrap, load it into 
memory, and pass control to it 

1This is actually a command procedure that loads and runs programs written in CPU 
microcode. 

2When POWER.CMD determines the configuration of the machine, it returns a value to 
CONSOL.EXE. This value is then used as n to determine which CODEOn.CMD to execute. 



24.2 Processor-Specific Initialization 

code in the boot block locates the main console microcode program CON­
SOL.EXE on the console TU58. 

2. CONSOL.EXE then executes two command procedure files, POWER. 
CMD and CODEOn.CMD. POWER.CMD loads several microcode files 
into the CPU, including one called POWER.CPU. POWER.CPU initializes 
the machine, searches for a page-aligned 64K-byte block of good memory, 
and checks the configuration of the machine. When POWER.CPU exits, it 
returns an address 20016 bytes beyond the beginning of the first good page. 
This address is loaded into SP. (In a typical system with no errors in the 
first 64K bytes, the contents of SP are 20016.) 

Each possible configuration of the VAX-111730 is assigned a value. 
Whichever value POWER.CPU returns is substituted into the file name 
CODEOn.CMD. The CODEOn.CMD routines load the normal run-time 
microcode for the appropriate processor configuration. Table 24-2 lists the 
command files used with specific processor configurations. 

3. The AUTO RESTART switch is checked. If it is in the OFF position, the 
processor enters console mode and prints the following console command 
prompt: 

>>> 

If the AUTO RESTART switch is in the ON position, the console 
executes the commands in the default bootstrap command file 
(DEFBOO.CMD). 

4. The three console commands that bootstrap a VMS system cause the exe­
cution of command files located on the console TU58. Table 24-3 shows 
the commands and their associated command files. 

These command files identify the system device and other characteris­
tics of the bootstrap operation by loading general registers RO through RS 
with parameters that will be interpreted by the primary bootstrap pro­
gram, VMB. 

5. The following three commands in the bootstrap command files display the 
contents of SP (to identify the starting address in physical memory). They 
then load the primary bootstrap program, VMB, from the TU58 into the 

Table 24-2 VAX-11/730 Bootstrap Command Files 

Command File 

CODEOO.CMD 

CODEOl.CMD 

CODE02.CMD 

CODE03.CMD 

Hardware Configuration 

No FPA, no me 
No FPA, with me 
With FPA, no me 
With FPA, with me 

651 



Bootstrap Procedures 

24.2.2 

652 

Table 24-3 Commands to Boot VAX Processors 

Command Command File1 

B DEFBOO.CMD 

Bdev 

@files pee 

devBOO.CMD or devBOO.COM 

filespec.CMD or filespec.COM 

1The file type of a console command procedure depends on the particular processor and 
console subsystem. CMD is used by the VAX-11/730, VAX-11/78x, and BOOTSS.EXE. 
COM is used by the VAX 8800 family and the VAX 86x0. 

good 64K-byte block of VAX memory, leaving the first page free. 

E SP 

L/P/S:@ VMB-EXE 

s @ 

The free page will contain a data structure called a restart parameter block 
(RPB). The RPB is used by VMB and, in the event of powerfail or other 
system failure, by restart routines in the console subsystem and VMS. 

The third command, START, transfers control to the first byte of VMB. 
6. VMB.EXE is described in Section 24.3. 

VAX-11/750 Initial Bootstrap Operation 

The console subsystem on a VAX-11/750 consists of one block-addressable 
TU58 cartridge tape and a terminal. The VAX-11/750 console program is 
implemented in CPU microcode stored in read-only memory (ROM) within 
the CPU. When the CPU is in console mode, the console program (and noth­
ing else, such as a user program or VMS itself) executes. 

There are several ways in which a bootstrap sequence may be initiated: 

• The system is powered on, or the RESET front panel button is depressed, 
and the POWER-ON ACTION switch is in the bootstrap position. 

• The B(oot) command is entered while the system is in console mode. 
• A HALT instruction is executed, or some other halt condition occurs, and the 

POWER-ON ACTION switch is in the BOOT position. 
• The following instruction is executed in kernel mode: 

MTPR #.XFD2 I #PR$_TXDB 

• An attempt to restart the system after a power failure recovery or some 
other halt condition does not succeed, and the POWER-ON ACTION 
switch is in the RESTART/BOOT position. 

In the bootstrap sequence, the console subsystem must execute a series of 



24.2 Processor-Specific Initialization 

Table 24-4 Processor-Dependent Programs Used to Bootstrap the VAX-111750 

Program Executing 

Console program 

Device-specific 
ROM code 

Boot block code 

VMB.EXE 

BOOT58.EXE 

Location of Program 

ROMinVAX-
111750 CPU 

1/0 address 
space of VAX-
111750 CPU 

LBNOof boot 
device 

Specific LBN on 
system device 

Specific LBN on 
console TU58 

Purpose of Program 

Initialize CPU, locate block of good 
memory, determine boot device, 
and pass control to device-specific 
ROM 

Load LBN 0 of boot device into 
memory and pass control to it 

Load primary bootstrap program 
from system device or BOOT58 
from console TU58 and pass 
control to it 

Size physical memory, locate 
secondary bootstrap, load it into 
memory, and pass control to it 

Process indirect command files or 
enhanced console commands, 
boot from an HSC system device 

programs to load and execute VMB. Table 24-4 lists these programs. 
The steps of initial bootstrap are as follows: 

1. The console program initializes the CPU and locates a page-aligned 64K­
byte block of good memory. It loads the first 128 map registers in the 
UNIBUS adapter to address this block of memory (a step not taken when 
the TU58 is used as a bootstrap device). The console program on the VAX-
11/750 does not process command files. Instead, it must construct the 
contents for RO through RS from the device selected by the BOOT DE­
VICE switch and the bootstrap command itself. It then passes control to 
the device-specific ROM selected either by the bootstrap device selector 
switch on the CPU cabinet front panel or by the boot command. 

2. The device-specific ROM program is a VAX macro instruction program. It 
consists of two main pieces, a control routine and a device-specific sub­
routine. This program simply reads the boot block, LBN 0, of the selected 
device into the first page of the good memory and passes control to it (at an 
address 12 bytes past the beginning of the program). 

3. The code in the boot block reads VMB or BOOT58 from the console device 
into memory. The boot block program is described in more detail in Sec­
tion 24.2.2.1. 

4. BOOT58 executes a command procedure that reads VMB from the system 
device into memory. BOOT58 is described in more detail in Section 
24.2.2.2. 

5. VMB is described in Section 24.3. 

653 



Bootstrap Procedures 

24.2.2.1 

24.2.2.2 

654 

Boot Block Program. The boot block program loads a single program into 
memory and passes control to it. The boot block program does not contain 
any 1/0 support. It uses the driver subroutine contained in the device ROM 
program. The boot block program on a system device loads VMB. The boot 
block program on a console TU58 loads an enhanced command processor 
program called BOOT58. The boot block program on a stand-alone BACKUP 
console TU58 loads VMB. 

There are three longwords of header information that precede the body of 
the boot block program. These longwords contain the following: 

• The size of the bootstrap program to be loaded 
• The starting logical block number (LBN) of the bootstrap program to be 

loaded 
• A relative offset into the blot:k of good memory where this program is to be 

loaded 

The boot block is written during normal system operation by the Writeboot 
Utility. It uses the file system to look up a user-specified file (VMB.EXE or 
BOOT58.EXE) on a user-specified device. WRITEBOOT determines values 
for the three header longwords and writes the boot block program into LBN 0. 
Notice that the boot block program has the LBN of the bootstrap program 
hard coded into the block. If the position of the bootstrap program on the 
volume changes, the Writeboot Utility must be run again to rewrite the boot 
block with new information. 

Note that the location of VMB by the boot block program is one of the few 
cases in VAX/VMS of a file being located by an LBN coded into another pro­
gram. Thus, VMB on a VAX-11/750 system device is one of the few files that 
is not free to move or be superseded by a newer version without some exter­
nal intervention, in this case, running WRITEBOOT. 

BOOTSS. The TU58 on the VAX-11/750 is not necessarily used during a 
normal bootstrap operation. However, the VAX-11/750 has an alternate boot­
strap path that uses the TU58 and provides the following: 

• Command procedure capability 
• An enhanced console command language 
• The ability to bootstrap a system if the boot block on the system device is 

corrupted 
• The ability to bootstrap a system from a hierarchical system controller 

(HSC) disk 

The stand-alone program BOOT58 is an enhanced console command pro­
cessor loaded from the TU58 that provides the features previously listed. 
BOOT58 is loaded by selecting the console block storage device (DDAO:) as 



24.2.3 

24.2 Processor-Specific Initialization 

the bootstrap device, either by the device selector switch or with the follow­
ing command: 

>>>B DDAO: 

Note that the drive DDAO: must contain the TU58 cartridge with console 
command files and BOOT58.EXE. The TU58 is an RT-11 structured device. 

The boot block on the TU58 boots BOOT58. Once BOOT58 prompts, com­
mands or command procedure file specifications can be entered at the con­
sole terminal. BOOT58 accepts the commands shown in Table 24-3. 

There is no device-specific ROM on the VAX-111750 that supports loading 
LBN 0 from an HSC disk through a CI750 adapter and then loading VMB. 
BOOT58 makes it possible to load VMB from the console. VMB does contain 
device support for the CI750 and HSC disks. It first loads volatile computer 
interconnect (CI) microcode from the console TU58 into the CI750 and vola­
tile VAX-111750 microcode into the VAX-111750. 

BOOT58 is used on the VAX 8200 family processors in an analogous man­
ner (see Section 24.2.6). On those processors, it is booted from the console 
RX50 and is used to boot VMS from an HSC system disk. 

VAX-11/780 and VAX-11/785 Initial Bootstrap Operation 

The console subsystem on the VAX-11/780, VAX-111782, and VAX-11/785 
consists of a separate LSI-11 microprocessor, a block-addressable RXOl floppy 
disk, and a terminal. The console subsystem can perform certain (but not all) 
operations while the VAX-ll/78x CPU is executing instructions. 

There are several ways in which a bootstrap sequence may be initiated: 

• The B(oot) command is entered while the system is in console mode, or the 
boot switch is depressed. 

• A bootstrap command procedure is invoked while the system is in console 
mode. 

• The following instruction is executed in kernel mode: 

MTPR #AXF02, #PR$_TXDB 

• An attempt to restart the system after a power failure recovery or any other 
halt condition does not succeed, and the AUTO RESTART switch is in the 
ON position. 

In the bootstrap sequence, the console subsystem must execute a series of 
programs to load and execute VMB on a VAX-ll/78x. The initial bootstrap 
programs run on the LSI-11 and execute PDP-11 instructions rather than 
VAX instructions. Table 24-5 lists these programs and those that run on the 
VAX processor. (Note that this description does not include booting the at-

655 



Bootstrap Procedures 

656 

Table 24-5 Processor-Dependent Programs Used to Bootstrap the VAX-111780, VAX-
111782, and VAX-111785 

Program Executing 

LSl-11 ROM 
bootstrap 

Floppy boot block 
program 

CONSOL.SYS 

Good memory 
locator1 

VMB.EXE 

Location of Program Purpose of Program 

EXECUTES ON LSI-11 

LSI-111/0 space 

LBN 0 on console 
floppy 

Console floppy 

Read floppy boot block into memory 
and execute code contained there 

Locate CONSOL.SYS, read it into 
memory, and pass control to it 

Initialize VAX- l l/78x, load general 
registers, and invoke memory 
locator program; load VMB into 
VAX memory and transfer control 
to it 

EXECUTES ON VAX-11/78x 

ROM in memory 
controller 

Console floppy 

Locate 64K-byte block of error-free 
memory 

Size physical memory, locate 
secondary bootstrap, load it into 
memory, and pass control to it 

1This program does not run on a VAX-11/782 system. 

tached processor of an asymmetric multiprocessing system; see Chapter 27 
for information.) 

The steps of initial bootstrap are as follows: 

1. The first program that executes in the LSI-11, after self-test, is a bootstrap 
program located in ROM. It loads the boot block program located on LBN 
0 of the console floppy (sectors 1, 3, 5, and 7) into LSI memory. 

2. The boot block program at LBN 0 is a copy of the bootstrap program used 
by the RT-11 operating system. The RT-11 bootstrap, which understands 
the RT-11 file system, looks for a specific file (the monitor), loads it into 
memory, and transfers control to it. 

The boot block program found on the console floppy diskette looks for a 
program called CONSOL.SYS. 

3. CONSOL.SYS loads the file WCSxxx.PAT from the floppy diskette into 
the VAX writable control store and then prompts (>>>) on the console 
terminal. It verifies that the versions of the microcode are consistent with 
one another. If there is a version mismatch between the writable control 
store (WCS) and either the PROM control store (PCS) or the field program-



24.2 Processor-Specific Initialization 

mable logic array IFPLAJ, an error message is displayed on the console 
terminal. 

4. The three console commands that bootstrap a VMS system cause the exe­
cution of command files located on the console floppy. Table 24-3 shows 
the commands and their associated command files. 

These command files identify the system device and other characteris­
tics of the bootstrap operation by loading general registers RO through RS 
with parameters that will be interpreted by the primary bootstrap program 
IVMB). 

Note that the DEFBOO.CMD command files used to bootstrap either 
processor on a VAX-11/782 multiprocessing system are not the same as 
the command files described here. The contents and operation of 
DEFBOO.CMD on a VAX-11/782 are described in Chapter 27. 

5. The command files also contain the following commands: 

START 20003000 

WAIT DONE 

These two commands cause a program located in ROM in the first 
memory controller on the synchronous backplane interface ISBI) to exe­
cute. The command file waits until the memory ROM program completes 
before executing its next command. The memory ROM program signals 
the console program that it is done by writing the "software done" signal 
with the following instruction: 

MTPR #"XFOl, #PR$_TXDB 

The program in the memory controller ROM performs a pnm1uve 
memory sizing operation in an effort to locate 64K bytes of error-free, 
page-aligned, contiguous physical memory that can be used by the remain­
ing bootstrap programs. The output of this program is an address 20016 

bytes beyond the beginning of the first good page. This address is loaded 
into SP. lln a typical system with no errors in the first 64K bytes, the 
contents of SP are 20016.) 

6. The following three commands cause the primary bootstrap program VMB 
to be loaded from the floppy disk into the good 64K-byte block of VAX 
memory, leaving the first page free for the RPB. The START command 
transfers control to VMB at its first location. 

EXA.MINE SP 

LOAD VMB.EXESTART:@ 

START @ 

7. VMB.EXE is described in Section 24.3. 

657 



Bootstrap Procedures 

24.2.4 

658 

Micro VAX I Initial Bootstrap Operation 

The Micro VAX I console program is implemented in CPU microcode. When 
the .CPU is in console mode, the console microcode, and nothing else, exe­
cutes. The MicroVAX I has no console block storage device. A subset version 
of VMB.EXE, specific to the MicroVAX I, is stored in erasable programmable 
read-only memory (EPROM) in the CPU. 

There are several ways in which a bootstrap sequence can be initiated: 

• The system is powered on, and the option switches specify that the proces­
sor is to boot or warm start and then boot. 

• The B(oot) command is entered while the system is in console mode. 
• A HALT instruction is executed, or some other error halt condition occurs, 

and the option switches specify that the processor is to boot. 
• An attempt to restart the system after an error halt fails, and the option 

switches specify that the system should be booted next. 
• The following instruction is executed in kernel mode: 

MTPR #'XF02, #PR$_TXDB 

When a MicroVAX I system is initialized, the console microcode locates a 
page aligned 64K-byte block of good memory, copies VMB.EXE from ROM to 
the good memory, and transfers control to VMB. Table 24-6 summarizes 
these two processor-dependent programs. 

The steps of initial bootstrap are as follows: 

1. On power-up, the MicroVAX I performs a self-test called Microverify to 
test that the CPU works and can execute VAX instructions. Microverify 
also checks the integrity of VMB in the EPROM. It adds all the words in 
the EPROM and checks that the result is zero. (The last word in the 
EPROM is a two's complement of all the other words.) 

2. After the hardware is tested and initialized, the console microcode 
searches for a 64K-byte block of good memory. The console program on 

Table 24-6 Processor-Dependent Programs Used to Bootstrap the MicroVAX I 

Program Executing 

Console microcode 

VMB.EXE 

Location of Program 

MicroVAX I CPU 

EPROMin 
MicroVAX I CPU 

Purpose of Program 

Locate block of good memory, 
load VMB from EPROM into 
memory, and pass control to it 

Size physical memory, 
locate secondary bootstrap, 
load it into memory, 
and pass control to it 



24.2.4.1 

24.2 Processor-Specific Initialization 

Table 24-7 Register Input to MicroVAX I VMB 

Register 

RO 
Rl 

R2 

R3 

R4 

RS 

Rl01 

Rll 1 

AP1 

SP 

Contents 

Zero or ASCII name of bootstrap device 

Setting of the option switches 

Unused 

Unused 

Unused 

Software boot control flags 

Halt PC 

HaltPSL 

Halt code 

Address of 64K bytes of good memory plus 20016 

1The console program sets up these registers after a halt condition. These registers are not 
used byVMB. 

the MicroVAX I does not process command files. It must construct the 
contents for RO through RS from· the boot device and/or the bootstrap 
command. Table 24-7 shows the register arguments. 

3. The console program copies VMB from the EPROM into the piece of good 
memory and passes control to it. 

4. MicroVAX I VMB is described in the following section. 

MicrQ VAX I VMB.EXE. MicroVAX I VMB is based upon the full VMB that 
runs on other VAX processors. There are, however, a number of significant 
differences between the two. These differences are summarized in the follow­
ing list. For a detailed description of MicroVAX I VMB, see the MicroVAX I 
CPU Technical Description manual. For a detailed description of the full 
VMB, see Section 24.3. 

• MicroVAX. I VMB is not linked with XDELTA. 
• The register arguments are different. Contrast Table 24-14 with Table 24-7. 
• Full VMB.EXE tries to boot a system from the system device specified by its 

register arguments. MicroVAX I VMB is called a "sniffer boot" b.ecause it 
can search for a bootable device. Its search sequence is affected by the set­
ting of option switch 1. 

-If option switch 1 is off (its default position), and if a B(oot) command is 
entered with no device specification, MicroVAX. I VMB searches for a 
bootable disk. It first looks at each floppy diskette in ascending unit order 
on an RQDXl controller. If the diskette is Files-11, VMB looks up SYS­
BOOT. If it is there, VMB boots it. If the diskette is not Files-11, VMB 
tests whether LBN 0 is a boot block. If it is, VMB boots it. If VMB fails to 

659 



Bootstrap Procedures 

24.2.5 

660 

find anything to boot on any diskette, it checks the fixed head disks next. 
If that fails, it scans memory for the signature of a programmable ROM 

(PROM). Lastly, it looks for a DEQNA to request a down-line bootstrap. If 
there is no response in 30 seconds, VMB retransmits its request every 30 
seconds. If no response is received within two minutes, the bootstrap 
fails. 

-If option switch 1 is on, VMB bypasses searching the disks for a secondary 
bootstrap and begins looking for a PROM. 

-In response to a boot command with a device specification, VMB searches 
the specified device for the secondary bootstrap. 

Micro VAX II Initial Bootstrap Operation 

The MicroVAX II console program is implemented in VAX macro instruction 
code. When the CPU is in console mode, the console program, and nothing 
else, executes. The MicroVAX II has no console block storage device. A sub­
set version of VMB.EXE, specific to the MicroVAX II, is stored in ROM in the 
CPU, along with the console program and power-up diagnostics. 

There are several ways in which a bootstrap sequence may be initiated: 

• The system is powered on, and halts are disabled through the halt enable 
switch on the CPU patch panel insert, mounted inside the rear of the CPU 
cabinet. (Chapter 26 describes the significance of this switch in more 
detail.) 

• The B(oot) command is entered while the system is in console mode. 
• An F0216 is written to the console program mailbox (CPMBX, see Chapter 

26). 
• An attempt to restart the system after an error halt fails, and the CPMBX 

has its default contents. 

When a MicroVAX II system is initialized, several programs execute before 
VMB. These are summarized in Table 24-8. 

The steps of initial bootstrap are as follows: 

1. Following power recovery, the processor performs hardware initialization, 
writes a power-up code into the AP register, and passes control to the 
console program in ROM. 

2. On power-up, the console program checks its own integrity by computing 
the checksum of its own code and comparing it to the expected value 
stored within ROM. The console then looks for a small piece of contigu­
ous good physical memory. It scans from high memory addresses down­
ward. It requires two pages for use as a stack and writable data area and the 
rest for a bit map of available memory. 

3. The console program performs some additional checks, including determi­
nation of the console terminal type. It then executes diagnostics, which 
are also located in ROM, to test the processor and memory. The memory 



24.2 Processor-Specific Initialization 

Table 24-8 Processor-Dependent Programs Used to Bootstrap the MicroVAX II 

Program Executing Location of Program Purpose of Program 

CPU initialization Micro VAX II CPU Pass control to the console 
microcode program 

Console program 1/0 address space Size physical memory, locate 
ROM in block of good memory, 
Micro VAX II CPU load VMB from ROM into 

memory, and pass control 
to it 

VMB.EXE 1/0 address space Locate secondary bootstrap, 
ROM in load it into memory, and 
MicroVAX II CPU pass control to it 

test diagnostic records the memory it finds in the bit map. A bit set indi­
cates a present page of memory. The first bit in the map corresponds to the 
first page of memory. The bit map does not map itself or the other pages of 
memory reserved for the console program's use. The address of the bit map 
and its size will .be passed to VMB. 

4. To perform a bootstrap, the console program then searches for a 64K-byte 
block of good memory. It initializes the Q22 bus 1/0 map registers to map 
to the first four megabytes of MicroVAX II memory. 

5. The console does not process command files. It must construct the con­
tents for RO through RS from the boot device and/or the bootstrap com­
mand. Table 24-9 shows the register arguments. 

Table 24-9 Register Input to MicroVAX II VMB 

Register 

RO 
Rl. 

R2 

R3 

R4 

RS 

Rl01 

Rll 1 

AP1 

SP 

Contents 

Zero or ASCII name of bootstrap device 

Contents of MicroVAX II boot and diagnostic register 

Memory bit map size in bytes 

Address of memory bit map 

Unused 

Software boot control flags 

Halt PC 

Halt PSL 

Halt code 

Address of 64K bytes of good memory plus 200 16 

1The console program sets up these registers after a halt condition. These registers are not 
used by VMB. 

661 



Bootstrap Procedures 

24.2.5.1 

24.2.6 

662 

6. The console program copies VMB from the console program ROM into the 
piece of good memory and passes control to it. 

7. Micro VAX II VMB is described in the following section. 

Micro VAX II VMB.EXE. MicroVAX II VMB is based upon the full VMB that 
runs on other VAX processors. There are, however, a number of significant 
differences between the two. These differences are summarized in the follow­
ing list. For a detailed description of MicroVAX II VMB, see the MicroVAX 
630 CPU Module User's Guide. For a detailed description of the full VMB, 
see Section 24.3. 

• The register arguments are different. Contrast Table 24-14 with Table 24-9. 
• Full VMB sizes memory itself. MicroVAX II VMB uses the available mem­

ory bit map built by the memory diagnostic. 
• Full VMB.EXE tries to boot a system from the system device specified by its 

register arguments. MicroVAX II VMB has several possibilities: 

-In response to a B(oot) command with no device specification, MicroVAX 
II VMB searches for a bootable disk. In searching for a bootable disk, VMB 
tries each disk drive of all possible mass storage control protocol (MSCP) 
controllers. Furthermore, if it does not locate SYSBOOT, it checks 
whether LBN 0 is a boot block. It then searches for a TKSO magnetic tape 
to boot. If that fails, it scans memory for the signature of a programmable 
ROM. Lastly, it looks for a DEQNA to request a down-line bootstrap. If 
there is no response in 30 seconds, VMB retransmits its request every 30 
seconds. If no response is received after 12 retransmits, VMB doubles the 
timeout interval. It retransmits 12 times with a 60-second timeout. It 
continues in this manner, up to a maxium delay of 60 minutes. 

-In response to a boot command with a device specification, it searches 
the specified device for the secondary bootstrap. 

VAX 8200 and VAX 8300 Family Initial Bootstrap Operation 

The VAX 8200 family console consists of two block-addressable storage de­
vices (RXSO floppy diskettes) and a console terminal. The console program is 
implemented in CPU microcode. When the CPU is in console mode, the 
console program (and nothing else, such as a user program or VMS itself) 
executes. 

There are several ways in which a bootstrap sequence may be initiated: 

• The system is powered on, or the RESTART button on the control panel is 
depressed, and the lower key switch on the CPU control panel is in the 
Auto Start position. 



24.2 Processor-Specific Initialization 

• The B(oot) command is typed while the system is in console mode. 
• The following instruction is executed in kernel mode: 

MTPR #"XFD2 I #PR$_TXDB 

• An attempt to restart the system after a power failure recovery or some 
other halt condition does not succeed, and the lower key switch is in the 
Auto Start position. 

When a VAX 8200 family memberis initialized, the console program is the 
first in a series of programs that execute before VMB executes. These pro­
grams are summarized in Table 24-10. (Note that this description does not 
include booting the attached processor of an asymmetric multiprocessing 
system; see Chapter 27.) 

The steps of initial bootstrap are as follows: 

1. The console program initializes the CPU. It locates 64K bytes of contigu­
ous, error-free, page aligned memory and loads the bootstrap code from the 
electrically erasable programmable read-only memory (EEPROM) into a 

Table 24-10 Processor-Dependent Programs Used to Bootstrap the VAX 8200 Family 

Program Executing 

Console program 

Bootstrap code 

Boot block code 

VMB.EXE 

BOOTS8.EXE 

Location of Program 

ROM in VAX CPU 

EEPROM 

LBN 0 of boot device 

Specific LBN on 
system device 

Specific LBN on 
console RXSO 

Purpose of Program 

Initialize CPU, load bootstrap 
code from EEPROM into boot 
RAM, locate block of good 
memory, determine action to 
take, and pass control to 
bootstrap code 

Load LBN 0 of boot device into 
inemory and pass control 
to it 

Load primary bootstrap program 
from system device or BOOTS8 
from console RXSO and pass 
control to it 

Size physical memory, locate 
secondary bootstrap, load it 
into memory, and pass control 
to it 

Process indirect command files or 
enhanced console commands, 
boot from an HSC system 
device 

663 



Bootstrap Procedures 

24.2.7 

664 

boot random access memory (RAM). 
2. The console program does not process command files. Instead, it must 

construct the contents for RO through RS from the default boot device 
and/or the bootstrap command itself. The system manager identifies the 
default boot device by running a stand-alone diagnostic to load its name 
into the EEPROM. 

3. The console program passes control to the primary bootstrap code. 
4. The bootstrap code consists of two main pieces, a dispatch routine and 

device-specific routines. The dispatch routine parses the boot device name 
passed from the console microcode and selects the corresponding device­
specific routine. The device-specific routine simply reads LBN 0 of the 
selected device into the first page of the good memory and passes control 
to it (at an address 12 bytes past the beginning of the program). 

5. The boot block program reads VMB or BOOT58 from the boot device into 
memory. The boot block program is described in Section 24.2.2.1. 

6. VMB is described in Section 24.3. 
7. BOOT58 is described in Section 24.2.2.2. 

VAX 8600 and VAX 8650 Initial Bootstrap Operation 

The console subsystem on the VAX 8600 and VAX 8650 consists of a separate 
T-11 microprocessor, a block-addressable storage device (RL02 disk), and a 
terminal. The T-11 runs a modified version of the RT-11 operating system; 
VAX console support is provided by the console program, EDOAA. The con­
sole disk is an RT-11 directory structured device. A number of console com­
mands can be executed while the VAX CPU is executing instructions. 

There are several ways in which a bootstrap sequence may be initiated: 

• The VAX processor is powered on, and the system control panel Restart 
Control switch is in the BOOT position. 

• The console command B(oot) is typed while the console terminal is in con­
sole mode and the VAX processor is halted. 

• A bootstrap command procedure is invoked while the console terminal is in 
console mode and the VAX processor is halted. 

• The following instruction is executed in kernel mode: 

MTPR #'XFD2 I #PR$_TXDB 

• While the Restart Control switch is in the RESTART/BOOT position, a 
CPU halt condition occurs and auto restart fails. 

• While the Restart Control switch is in the BOOT position, a powerfail or 
error halt condition occurs. 

In the bootstrap sequence, the console subsystem must execute a series of 
programs to load and execute VMB. Table 24-11 lists these programs. 



24.2 Processor-Specific Initialization 

Table 24-11 Processor-Dependent Programs Used to Bootstrap the VAX 86x0 

Program Executing 

Console micro-
processor 
PROM 
bootstrap 

RL02 boot block 
program 

RT-11 based mon-
itor program 

EDOAA 

LOAD.COM 

ULOAD.COM 

Bootstrap com-
mandfile 

VMB.EXE 

Location of Program Purpose of Program 

EXECUTES ON CONSOLE MICROPROCESSOR 

PROM in console 
subsystem 

LBN 0 on console 
RL02 

Console RL02 

Console RL02 

Console RL02 

Console RL02 

Console RL02 

Read RL02 boot block into 
memory and execute code 
contained there 

Locate monitor program, read it 
into memory, and pass control 
to it 

Locate EDOAA, read it into 
memory, and pass control to it 

Initialize VAX 86x0, load general 
registers, and execute the next 
several indirect command files 

Initialize VAX CPU, start 
execution of ULOAD.COM 

Load VAX CPU microcode from 
RL02 

Initialize VAX processor and 
registers, load VMB into VAX 
memory, and transfer control 
to it 

EXECUTES ON VAX 86x0 

Console RL02 Size physical memory, locate 
secondary bootstrap, load it 
into memory, and pass control 
to it 

The initial bootstrap programs are console microprocessor programs. The 
bootstrap steps are as follows: 

1. When the console is powered on, code in the console PROM executes. It 
initializes the console microprocessor and performs self-tests. At suc­
cessful completion of its self-tests, the PROM code performs some diag­
nosis of the path to the RL02 and reads the boot block. 

2. The boot block program boots the modified RT-11 monitor. 
3. The monitor automatically locates and loads the console program. 
4. The console program then executes the command procedure LOAD. 

COM, initializes the CPU, 1/0 adapters, and physical memory map, and 
invokes the execution of ULOAD.COM. 

665 



Bootstrap Procedures 

24.2.8 

666 

5. The console program executes the command procedure ULOAD.COM, 
which loads microcode from the RL02 into the various CPU microstores. 

6. The console program then clears the system cache. The console tests the 
Restart Control switch. If it is in the RESTART/BOOT position, the con­
sole attempts a warm restart. If that fails, the console then executes the 
command procedure DEFBOO.COM. 

7. The three console commands that bootstrap a VMS system cause the 
execution of command files located on the console TU58. Table 24-3 
shows the commands and their associated command files. 

8. The following command from a boot command file initiates a search for 
a 64K-byte block of good VAX memory: 

FIND/MEMORY 

9. The following three commands cause the primary bootstrap program 
VMB to be loaded from the RL02 into the good block of VAX memory, 
leaving the first page free for the RPB. The START command transfers 
control to VMB at its first location. 

EXAMINE SP 

LOAD/START:@ VMB 

START @ 

10. VMB.EXE is described in Section 24.3. 

VAX 8800 Family Initial Bootstrap Operation 

The console subsystem on the VAX 8800 family consists of a separate micro­
processor, three block-addressable storage devices (two floppy RXSO diskettes 
and a fixed head disk), and a terminal. The microprocessor runs the P/OS 
operating system; VAX console support is provided by an application task. 
The fixed head disk is an ODS-1 directory structured device. The floppies can 
be ODS-1 or ODS-2, depending on their use. A number of console commands 
can be executed while the VAX CPU is running. 

There are several ways in which a bootstrap sequence may be initiated: 

• The console is powered on, and the software keyswitches AUTO_ 
POWERON and AUTO_BOOT are both enabled. 

• The console command B(oot) is typed while the console terminal is in con­
sole mode and the VAX processor is halted. 

• A bootstrap command procedure is invoked while the console terminal is in 
console mode and the VAX processor is halted. 

• The following instruction is executed in kernel mode: 

MTPR #'XF02, #PR$_TXDB 



24.2 Processor-Specific Initialization 

Table 24-12 Processor-Dependent Programs Used to Bootstrap the VAX 8800 Family 

Program Executing 

Console 
microprocessor 
microcode 

Console P/OS 

Nl6PRO.TSK 

SYSINIT.COM 

Bootstrap 
command file 

Console support 
microcode 

VMB.EXE 

Location of Program Purpose of Program 

EXECUTES ON CONSOLE MICROPROCESSOR 

ROM in console 
subsystem 

Console fixed disk 

Console fixed disk 

Console fixed disk 

Console fixed disk 

Perform self-test, read P/OS into 
memory, and pass control to it 

Locate console program, 
Nl6PRO.TSK, read it into 
memory, and transfer control 
to it 

Initialize console database, open 
log file, and execute next two 
indirect command files 

Turn on VAX CPU power, run 
diagnostics, load microcode, 
and start console support 
microcode 

Load registers for VMB, load VMB 
into VAX memory, and transfer 
control to it 

EXECUTES ON VAX 8800 FAMILY MEMBER 

Console fixed disk 

Console fixed disk 

Initialize VAX CPUs, NMI, NBI, 
and memory; locate 64K-byte 
block of good memory 

Size physical memory, locate sec­
ondary bootstrap, load it into 
memory, and pass control to it 

• While the software keyswitches AUTO_RESTART and AUTO_BOOT are 
enabled, a CPU halt condition occurs and restart fails. 

In the bootstrap sequence, the console subsystem must execute a series of 
programs to load and execute VMB. Table 24-12 lists these programs. (Note 
that this description does not include booting the attached processor of an 
asymmetric multiprocessing system; see Chapter 27.) 

The initial bootstrap programs are console microprocessor programs. The 
steps of initial bootstrap are as follows: 

1. When the console microprocessor is turned on, it performs a self-test, 
loads P/OS from the fixed disk, and starts it. 

2. P/OS loads the console program from the fixed disk and transfers control 
to it. 

3. The console program opens a log file to record all console input and output 

667 



Bootstrap Procedures 

(the terminal is a video monitor) and starts up the real-time interface (RTI) 
driver which controls communication with the VAX CPU. It executes the 
command procedure SYSINIT.COM (not to be confused with the SYSINIT 
process). 

4. The SYSINIT.COM command procedure turns on the power on the VAX 
CPU if AUTO_POWERON is enabled, checks that hardware modules are 
correctly placed, loads VAX CPU microcode (including console support 
microcode) from the fixed disk, and checks hardware and microcode r~vi­
sions. It checks that the revisions are at least the minimum supported and 
also compatible with one another. The command procedure initializes the 
NMI, NBis, and the memory. 

5. SYSINIT.COM then tests the software keyswitches AUTO_RESTART 
and AUTO_BOOT, both of which are most likely on. SYSINIT.COM thus 
tries auto restart first, but when that fails, it invokes DEFBOO.COM to 
boot the VAX CPU. 

6. The console executes the commands in the default bootstrap command 
file (DEFBOO.COM). The three console commands that bootstrap a VMS 
system cause the execution of command files located on the fixed disk. 
Table 24-3 shows the commands and their associated command files. 

7. The following three commands cause the primary bootstrap program VMB 
to be loaded from the fixed disk into the good 64K-byte block of VAX 
memory, leaving the first page free for the RPB. The START command 
transfers control to VMB at its first location. 

EXAMINE SP 

LOAD /MAINMEMORY /START:@ VMB.EXE 

START @ 

8. VMB.EXE is described in Section 24.3. 

24.3 PRIMARY BOOTSTRAP PROGRAM (VMB) 

668 

The first program that is common to VMS systems, generally independent of 
CPU type, is the primary bootstrap program, VMB. The processor-indepen­
dent files and programs used in bootstrap operations are listed in Table 24-13. 
(MicroVAX VMB is somewhat different. See Sections 24.2.4.1and24.2.5.1 for 
more information.) 

The main differences in the initiation of VMB on various VAX processors 
are the following: 

• Location of VMB (console block storage device, system device, or ROM) 
• Method for determining system device 
• Method for determining and loading RO through RS 
• Program that loads and passes control to VMB 



24.3.1 

24.3 Primary Bootstrap Program (VMB) 

VMB performs the following two major steps: 

I. It locates and determines the size of physical memory on the system. 
2. It locates the secondary bootstrap program, loads it into memory, and 

transfers control to it. 

Motivation for Two Bootstrap Programs 

VMB and the secondary bootstrap program, SYSBOOT, are conceptually one 
program. The VAX-11/780 initialization (initially implemented for VAX/ 
VMS Version I.OJ required that the initial bootstrap program reside on the 
console floppy diskette, whose capacity of 512 blocks was also used for 
microcode, the console program, and command procedures. Rather than im~ 
pose artificial restrictions on the size of the bootstrap program, it was divided 
into two pieces: 

• A primary piece that resides on the floppy disk and one of whose major 
purposes is to locate the secondary piece 

• A secondary piece that resides on the system device (with no real limits on 
its size) that performs the bulk of the bootstrap operation 

Once this division was achieved, VMB became a more flexible tool that 
could be used to load programs other than VMS. To preserve this flexibility, 
the division of the bootstrap into primary and secondary pieces was contin­
ued in subsequent versions of VAX/VMS. 

VMB is a general purpose bootstrap program that is used for several options 
other than initializing a VMS system. There are three options currently avail­
able in addition to initializing a VAX/VMS system by loading SYSBOOT: 

• The, diagnostic supervisor [SYSMAINT]DIAGBOOT.EXE can be loaded in­
stead of SYSBOOT. 

• VMB can prompt for the name of any stand-alone program to be loaded into 
VAX memory. This program might be a stand-al.one diagnostic program, an 
alternate secondary bootstrap, or another operating system. The file system 
routines and control transfer mechanism used by VMB place some restric­
tions on this file. 

-The system device containing the file to be loaded by VMB must be an 
ODS-2 Files-11 volume. 

· -The file must be contiguous. 
-The code in the program must be position-independent. 

• VMB can load the contents of a bootstrap block from the system disk and 
execute the program that it finds there. In general, this boot block is LBN 0 
on the volume. The VAX-11/780 and VAX-11/785 bootstrap sequences 
allow an alternate boot block number to be passed to VMB in R4. Specifying 

669 



Bootstrap Procedures 

Table 24-13 Processor-Independent Bootstrap Files 

670 

Files Used by This Program 

SYSBOOT.EXE2 

VAXVMSSYS.PAR and other 
parameter files 

SYS.EXE 

TIDRIVER.EXE 

SYSLOAxxx.EXE 

SCSLOA.EXE 

CLUSTRLOA.EXE 

yyDRIVER.EXE 

ERAPATLOA.EXE 

CHKPRTLOA.EXE 

FPEMUL.EXE 

VAXEMUL.EXE 

SYSDUMP.DMP 

SYSINIT.EXE 

RMS.EXE 

SYSMSG.EXE 

SWAPFILE.SYS 

PAGEFILE.SYS 

FllBXQP.EXE 

QUORUM.DAT 

STARTUP.COM 

Use of Files 

VMB.EXE1 

Secondary bootstrap program, loaded into 
memory 

SYSBOOT.EXE 

Configure system 

System image, loaded into memory 

Terminal class driver, loaded into nonpaged pool 

CPU-specific routines, loaded into nonpaged 
pool 

System communications services, loaded into 
nonpaged pool 

Loadable VAXcluster support, loaded into 
nonpaged pool 

System device driver, loaded into nonpaged pool 

Optional erase pattern routine, loaded into 
nonpaged pool 

Optional protection check routine, loaded into 
nonpaged pool 

Floating-point emulation code, loaded into 
nonpaged pool 

String and other emulated instruction code, 
loaded into nonpaged pool 

System dump file, located and sized for later use 

SYSINIT PROCESS 

Image that runs in this process 

Record Management Services, mapped as 
pageable system section 

System message file, mapped as pageable system 
section 

Opened and initialized 

Opened and initialized 

Activated in Pl space, mapped as global section 

On a VAXcluster System with a quorum disk, 
opened 

STARTUP PROCESS 

SYS$INPUT for STARTUP process 



24.3 Primary Bootstrap Program (VMB) 

Table 24-13 Processor-Independent Bootstrap Files (continued) 

Files Used by This Program 

LOGINOUT.EXE 

DCL.EXE 

DCLTABLES.EXE 

SYCONFIG.COM 

SYSTARTUP.COM 

VMSIMAGES.DAT 

All installed images 

VAXVMSSYS.PAR 

Various device drivers 

Use of Files 

STARTUP PROCESS 

Image that first runs in STARTUP process 

Command language interpreter, mapped into Pl 
space to interpret and execute commands 

Command tables, mapped into Pl space and used 
byDCL.EXE 

In SYS$MANAGER, site-specific device 
configuration command procedure 

In SYS$MANAGER, site-specific startup 
command procedure 

INSTALL, STARTUP PROCESS 

List of images to be installed 

Set up as known images 

SYSGEN, STARTUP PROCESS 

Written to record SYSBOOT parameters 

Loaded into nonpaged pool, specify 1/0 database 
and device initialization 

1VMB must be contiguous, because it is loaded by either the console subsystem or a boot 
block program. 

2This file must be contiguous, because it is located by primitive file system routines in 
VMB. 

an alternate boot block number is only supported on a VAX-11/780 or VAX-
111785. 

The ability to pass control to a boot block program makes VMB a flexible 
tooL One possible use for a bootstrap program is support for a file system 
other than Files-11, such as that of ULTRIX-32. 

If none of these options is selected through the corresponding flags in RS, 
VMB enters its default path, which loads SYSBOOT into memory and trans­
fers control to it. 

In each version of VAX/VMS, enhancements are made to VMB. These en­
hancements include support for new processor types, support for new de­
vices, and changes to the argument list passed to SYSBOOT. Because a user 
might attempt to bootstrap a VAX/VMS system with an old version of VMB, 
it is desirable to maintain forward and backward compatibility between ver­
sions of VMB and SYSBOOT. SYSBOOT checks the version of VMB that 

671 



Bootstrap Procedures 

24.3.2 

672 

loaded it and takes appropriate action, depending on the relative versions. 
Compatibility is maintained by not removing functionality from VMB that is 
required by older versions of SYSBOOT. 

Operation of VMB 

VMB receives control running in the following environment: 

• In kernel mode 
• On the boot interrupt stack (SP = RPB base plus 20016 ) 

• With memory management disabled 
• At IPL 31 

Most of the modules that make up full VMB.EXE are from facility [BOOTS]. 
VMB determines the type of bootstrap that is being performed and the iden­

tity of the system device by interpreting the contents of registers RO through 
RS. 

Tables 24-14 and 24-lS summarize the input parameters passed to VMB. 
VMB saves these parameters in the RPB (see Table 24-16) for use by later 
steps in system initialization. 

The steps that VMB takes to load SYSBOOT into memory follow. Note 
that this list does not include error paths. It focuses on booting VMS from a 
system device and does not discuss booting stand-alone backup. 

1. VMB sets up a one-page system control block (SCB) (see Figure 24-2) with 
all but two interrupt and exception vectors pointing to a single service 
routine. The vectors for TBIT and BPT exceptions are loaded with the 
addresses of exception service routines in XDELTA, linked as a part of the 
VMB image. 

2. VMB then reads the processor ID register (PR$_SID) to determine the 
CPU type. VMB uses the CPU type as the basis of decisions about which 
piece of CPU-dependent code to execute. A similar step is performed 
later by SYSBOOT for the use of both SYSBOOT and the executive. 

3. VMB switches to a three-page stack in physical pages four pages above 
the end of the SCB. The four pages immediately above the SCB are 
reserved for a bit map to describe up to eight megabytes of physical 
memory. 

Figure 24-2 illustrates the layout of physical memory after VMB begins 
execution. 

4. If the RS bootstrap breakpoint flag, RPB$V _BOOBPT, is set, VMB exe­
cutes a BPT instruction, which transfers control to XDELTA, linked as a 
part of the VMB image. This breakpoint is useful in debugging problems 
that prevent a system from booting. 

S. The input parameters to VMB are stored in the RPB (see Table 24-16). 
6. A bit map is set up to describe all physical memory that is to be used as 



PR$_ SC BB 

SP 

Physical State 
after VMB Begins Execution 

Restart Parameter Block 
(APB) 

Primary 
Bootstrap 
Program 

VMB 

System Control Block (SCB) 
for VMB 

PFN Bitmap 
(4 Pages) 

Bootstrap Stack 
(3 Pages) 

R10 contains HALT PC. 
R11 contains HALT PSL. 
AP contains HALT code. 

RO through RS contain 
initial bootstrap parameters. 
These are loaded into APB 
by VMB. (See Table 24-14.) 

24.3 Primary Bootstrap Program (VMB) 

(Loaded by VMB) 

(Read into memory 
by console program) 

(Set up first few 
instructions in VMB) 

(Filled in by VMB to 
reflect presence of 
each physical page) 

(Used by both VMB 
and SYSBOOT) 

(Read into memory 
byVMB) 

(Set up by first few 
instructions in 

.SYSBOOT) 

Physical State 
after SVSBOOT Begins Execution 

R11 
Restart Parameter Block 

(APB) 

VMB Boot Driver 

System Control Block (SCB) 
for VMB 

PFN Bitmap 
(4 Pages) 

Bootstrap Stack 
(3 Pages) 

SP,R10 

Secondary 
Bootstrap 
Program 

SYSBOOT 
PR$_SCBB 

System Control Block (SCB) 
forSYSBOOT 

Figure 24-2 Physical Memory Layouts Used by VMB 
and SYSBOOT 

main memory. Each possible page is represented by one bit. If the page is 
free from error, the bit representing it is set. If the page does not exist or 
has errors, its bit is clear. The bit map is the basis for the creation of the 
PFN database, built during a later step in system initialization. The rou­
tine that tests for memory errors is CPU-specific. 

7. If VMB finds a CI port adapter, it must load the volatile CI microcode. It 
looks it up and reads it from the console block storage device. The 
microcode file for a CI780, Cl750, or BCI750 adapter is called CI780.BIN; 
the file for a BCA is called CIBCA.BIN. (If the system is a VAX 8800 
family member, the microcode is on CSA3.) VMB sets the flag 
VMB$V _LOAD_SCS in the SYSBOOT argument list to indicate that the 
loadable system communications services (SCS) code is to be loaded. 

8. If VMB finds a CI750 on a VAX-111750, VMB must check that the CPU 
revision level is at or above the minimum level required for CI support. It 
also tests whether the level is high enough to require the loading of vola­
tile CPU microcode. If it is, VMB locates the file PCS750.BIN on the 
console TU58, reads it into memory, and loads it into the CPU 
microstore. 

9. VMB relocates the boot driver (see Section 24.3.3). 
10. Depending on processor and bus type, the bus and the bus adapter for the 

system device are initialized. The bootstrap device is initialized, if 

673 



Bootstrap Procedures 

674 

needed. The CI port adapter initialization routine loads the CI 
microcode. 

11. The secondary bootstrap image is identified (by flags and values in RS 
and, optionally, information solicited from the console terminal). The 
order of precedence in choosing a secondary bootstrap ima,ge is the fol­
lowing: 

a. If the RS flag RPB$V _BBLOCK is set, a boot block program is read 
from the system device. On a VAX-11/780 or a VAX-ll/78S, R4 con­
tains the logical number of the disk block that contains the secondary 
bootstrap image. 

b. If the RS flag RPB$V _SOLICT is set, VMB prompts for the name of the 
secondary bootstrap image on the console terminal. 

c. If the RS flag RPB$V _DIAG is set, the diagnostic supervisor is loaded. 
This option specifies that the file [SYSMAINT]DIAGBOOT.EXE be 
used as the secondary bootstrap image. 

d. The absence of any of the three options (a, b, or c) means that 
[SYSEXE]SYSBOOT.EXE is to be used as the secondary bootstrap 
image. Before SYSBOOT.EXE can be located, the value in RS at 
PRB$V _ TOPSYS must be evaluated to determine which of the system 
root directories on a multiple-system device is being bootstrapped. By 
default, the high four bits of RS are zero, so VMB searches [SYSO. 
SYSEXE] for SYSBOOT. In the case of a VAXcluster common system 
disk, VMB also searches [SYSn.SYSCOMMON.SYSEXE]. If SYSBOOT 
is not found in [SYSO.SYSEXE], for backward compatibility VMB looks 
in [SYSEXE]. 

VMB records the file name of the secondary boot image in field 
RPB$T _FILE. 

12. The image is read into memory (see Figure 24-2). Actually, SYSBOOT is 
read into memory overlaying roughly half of VMB, so that it might fit in 
the 64K bytes of good memory. Before reading SYSBOOT, VMB disables 
XDELTA exceptions and moves the SCB, PFN bit map, and stack it is 
running on. 

13. If the RS flag RPB$V _HALT is set, VMB executes a HALT instruction be­
fore passing control to the secondary bootstrap image. This feature en­
ables use of the console subsystem to debug the secondary bootstrap. 

14. VMB passes control to the secondary bootstrap image at its transfer ad­
dress. This address is the first byte in SYSBOOT. However, if an image 
other than SYSBOOT is being loaded and the flag RPB$V _HEADER in 
RS is set, VMB uses the transfer address stored in the image header of the 
secondary bootstrap program (provided that the secondary bootstrap 
image was produced by the VAX/VMS Linker). 



24.3 Primary Bootstrap Program (VMB) 

Table 24-14 Register Input to VMB 

Register 

RO 

Rl 

Contents 

Bootstrap device type code 

BIT FIELD 

<31:16> 

<15:8> 

<7:0> 

MEANING 

MASSBUS-MBZ1 

UNIBUS-Optional vector address; if 
zero, use default vector 

MBZ 

Bootstrap device type code 

VALUE MEANING 

0 MASSBUS device (RM03/5, 

RP04/5/6/7,RM80I 

1 RK06/7 

2 RLOl/2 

3 IDC on VAX-11/730 
. 4-16 Reserved for UNIBUS devices 

17 UDA-50. 
18-31 Reserved 
32 HSConCI 

33-63 Reserved for UNIBUS devices 

64 Console block storage device 

Bootstrap device bus address 

CPU 

11/730 and 

ll/78x 

11/750 

86xo 

8200family 

8800family 

BIT FIELD 

<31:4> 

<3:0> 

<31:24> 

<23:0> 

<31:06> 

<5:4> 

<3:0> 
<31:4> 

<3:0> 
<31:6> 

<5:4> 
<3:0> 

MEANING 

MBZ 

TR number of adapter 

MBZ 
Address of I/O page for 

boot device's UNIBUS 

MBZ 

A-bus adapter number 

TR number of adapter 

MBZ 

VAXBI node number of adapter 

MBZ 

VAXBI bus number 
VAXBI node number of adapter 

1MBZ stands for "must be zero." 

(continued) 

675 



Bootstrap Procedures 

24.3.3 

676 

Table 24-14 Register Input to VMB (continued) 

Register Contents 

R2 Bootstrap device controller information 

BUS TYPE 

All types 

UNIBUS 

MASSBUS 

CI 

BIT FIELD 

<31:24> 

<31:18> 

<17:0> 

<31:4> 

<3:0> 

<31:16> 

<15:8> 

<7:0> 

R3 Boot device unit number 

MEANING 

Optional controller letter 

MBZ 

UNIBUS address of the device's CSR 

MBZ 

Adapter's controller/formatter number 

MBZ 

Alternate HSC port number 

HSC port number 

R4 LBN of boot block (VAX-11/780 and V AX-11 /785 only) 

RS Software boot control flags (see Table 24-15) 

Rl02 Halt PC 

Rl 12 Halt PSL 

AP2 Halt code 

SP Address of 64K bytes of good memory plus 20016 

2The console subsystem sets up these registers after a halt condition. These registers are 
not used by VMB. 

Bootstrap Driver and 1/0 Subroutines 

VMB contains a skeleton Queue 1/0 Request ($QIO) routine and device 
driver to perform its 1/0. This driver and routine are loaded into nonpaged 
pool by SYSBOOT for possible later use by the bugcheck code (see Chapter 8). 

The VMB image actually contains simple drivers for all possible system 
devices. Once it has determined the name of the bootstrap device (from regis­
ter contents), VMB moves the driver code for the selected device so that it is 
adjacent to the $QIO routine, thus allowing the entire bootstrap 1/0 system 
to be moved with a single MOVC3 instruction. The location and the size of the 
$QIO routine plus the selected driver are recorded in the RPB for later use by 
SYSBOOT and EXE$INIT. 

This simple operation by VMB prevents nonpaged pool from being loaded 
with a set of bootstrap device drivers that are never used. That is, the only 
bootstrap driver that is preserved for the life of a VMS system is the bootstrap 
device driver for the system device, which is selected through input to VMB. 
All other bootstrap drivers are linked into the VMB image but disappear along 
with the rest of VMB when VMS is completely initialized. It also makes more 
efficient use of the 64K-byte block of memory into which SYSBOOT must fit. 



24.3 Primary Bootstrap Program (VMB) 

Table 24-15 Bootstrap Control Flags to VMB (Contents of RS) 

Bit 
Position 

0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Symbolic Name 

RPB$V_CONV 

RPB$V _DEBUG 

RPB$V _INIBPT 

RPB$V _BBLOCK 

RPB$V_DIAG 

RPB$V _BOOBPT 

RPB$V _HEADER 

RPB$V _NOTEST 

RPB$V _SOLICT 

RPB$V_HALT 

RPB$V _NOPFND 

RPB$V_MPM 

Meaning 

Conversational boot. If set, SYSBOOT 
solicits parameters from the console 
terminal. On a VAX-11/730, if this and 
RPB$V _DIAG are set, the diagnostic 
supervisor enters MENUTEST mode. 

Debug. If set, VMS makes the XDELTA 
debugger resident in the running system. 

Initial breakpoint. If set, VMS executes a 
BPT instruction after turning on 
memory management. 

Secondary boot from boot block. If set, 
secondary bootstrap is a single 512-byte 
block. On a VAX-l l/78x, its LBN can be 
specified in R4. On other processors, the 
boot block is LBN 0. On Micro VAX I and 
II, this bit causes VMB to bypass its 
search for a Files-11 secondary bootstrap 
file. 

Diagnostic boot. If set, secondary 
bootstrap is image 
[SYSn.SYSMAINT]DIAGBOOT.EXE. 

Bootstrap breakpoint. If set, VMB and 
SYSBOOT execute BPT instructions to 
transfer control to XDELTA. 

Image header. If set, VMB takes the 
transfer address of the secondary 
bootstrap image from that file's image 
header. If clear, VMB transfers control to 
the first byte of the secondary boot file. 

Memory test inhibit. If set, VMB does not 
test memory pages. 

Solicit file name. If set, VMB prompts for 
the name of a secondary bootstrap file. 

Halt before transfer. If set, VMB executes a 
HALT instruction before transferring 
control to the secondary bootstrap. 

No PFN deletion (not currently used) 

Multiport memory. If set, specifies that 
the memory bit map is to include only 
multiport memory for later use by VMS. 
No local memory is to be used. This bit 
applies to the VAX-11/782 only. 

(continued) 

677 



Bootstrap Procedures 

24.3.4 

678 

Table 24-15 Bootstrap Control Flags to VMB (Contents of RS) (continued) 

Bit 
Position 

12 

13 

14 

15 

16 

17 

<31:28> 

Symbolic Name 

RPB$V _ USEMPM 

RPB$V _MEMTEST 

RPB$V _FINDMEM 

RPB$V _AUTOTEST 

RPB$V _CRDTEST 

RPB$V _DIFSYSDEV 

RPB$V _ TOPSYS 

File Operations 

Meaning 

If set, specifies that the memory bit map is 
to include both multiport memory and 
local memory for later use by VMS, as 
though both were one single pool of 
pages (not used by VMS). 

If set, specifies that a more extensive 
algorithm is to be used when testing 
main memory for uncqrrectable 
hardware errors. 

If set, requests use of MA780 memory if 
MS780 memory is insufficient for 
bootstrap. This flag is only used when 
performing software installations on a 
VAX-11/782. 

On a VAX-11/730, if this and 
RPB$V _DIAG are set, the diagnostic 
supervisor enters AUTOTEST mode. 

If set, specifies that memory pages with 
correctable errors are not to be used by 
VMS. 

If set, indicates that the system device is 
different from the boot device, which is 
magnetic tape. Used for booting stand­
alone BACKUP from magnetic tape on 
MicroVAX systems. 

Specifies the top-level directory number 
for a system disk with multiple system 
roots. 

One of the problems that must be solved in any bootstrap operation is the 
location of files before the file system itself is in full operation. Many files 
must be looked up before the Files-11 XQP is initialized. 

VMS solves this problem by including two special object modules 
(FILEREAD and FILERWIO) in the system image. The modules contain sub­
routines that can perform some primitive file operations on an ODS-2 Files-
11 volume. One of these modules (FILEREAD) is also linked into both the 
VMB and the SYSBOOT images. 

VMB and SYSBOOT call a file open routine, FIL$0PENFILE in FILEREAD, 
to look up files, such as SYS.EXE. To improve its performance, FIL$0PEN-



24.4 Secondary Bootstrap Program (SYSBOOT) 

FILE uses a cache to record information about directories used in file lookup. 
For example, to locate SYS.EXE might require looking up and reading the 
master file directory, SYSn.DIR, and SYSEXE.DIR. 

To avoid repeated lookups and directory and subdirectory reads, 
FIL$0PENFILE records directory file IDs, size in blocks, starting LBN, and 
also caches blocks from directory files. While VMB and SYSBOOT run, the 
cache is physically based. SYSBOOT copies the cache to nonpaged pool for 
use by EXE$1NIT and the SYSINIT process until the XQP is operational. 

24.4 SECONDARY BOOTSTRAP PROGRAM (SYSBOOT) 

The secondary bootstrap program, SYSBOOT, executes when VMB is directed 
to load a VMS system. VMB has already tested main memory, read SYSBOOT 
into memory, and transferred control to it. 

SYSBOOT performs three major functions: 

• The system is configured. That is, SYSBOOT loads a set of adjustable SYS­
BOOT parameters. By default, it uses the parameters from the last system 
initialization, those in the file [SYSn.SYSEXE]VAXVMSSYS.PAR. If this is a 
conversational bootstrap, SYSBOOT prompts on the console terminal. The 
person booting the system can specify values for selected parameters or a 
whole different set of parameters loaded from a specified file. SYSBOOT 
calculates other system parameters whose values depend on the values of 
the adjustable parameters. 

• SYSBOOT maps system virtual address space. The sizes of many of the 
pieces of system address space depend on the values of one or more SYS­
BOOT parameters. The calculations that SYSBOOT performs and the re­
sults of these calculations are detailed in Appendix F. 

In addition to sizing the pieces of system space, SYSBOOT also sets. up 
the system page table (SPT) to map many of the pieces of the nonpaged and 
paged executive. In a related step, SYSBOOT prepares a PO page table that 
allows memory management to be turned on. (This last step is described in 
Chapter 25.) 

• The last major step that SYSBOOT performs is reading the various portions 
of SYS.EXE into the physical pages it allocated when it set up the SPT. It 
also locates a number of other files (see Table 24-13) and reads them into 
space it allocates in nonpaged pool. Their locations in pool are passed on to 
EXE$INIT in a bootstrap parameter block, defined by module BOOPARAM 
(see Table 24-17). 

There is little CPU-dependent code in SYSBOOT. Most of the CPU depen" 
dencies have already been taken care of by VMB. However, SYSBOOT does 
load the CPU-dependent code that is used during normal VMS system 
execution. 

679 



°" O:l 
00 Table 24-16 Contents of the Restart Parameter Block 0 
a 0 ...... 

Vi 
Size in .... 

>--; 

Field Name Contents Bytes Loaded by Special Uses {:; 
RPB$LBASE Physical base address 4 VMB Used to identify RPB ~ 

of 64K-byte block 0 
(") 

RPB$LRESTART Physical address of 4 EXE$INIT Locates restart routine 
Cl> 
i::i... 

EXE$RESTART ::::: 
>--; 
Cl> 

RPB$LCHKSUM Checksum of first 31 4 EXE$INIT Consistency check on Vi 

longwords of EXE$RESTART RPB and EXE$RESTART 

RPB$LRSTSTFLG Restart in progress flag 4 Console, Prevents nested restarts 
EXE$INIT, 
EXE$RESTART 

RPB$LHALTPC PC at HALT/restart 4 VMB 

RPB$LHALTPSL PSL at HALT/restart 4 VMB 

RPB$LHALTCODE Reason for restart 4 VMB Determines EXE$RESTART's 
actions 

RPB$LBOOTRx Saved bootstrap parameters 24 VMB 
(RO through RS) 

RPB$LIOVEC Address of bootstrap driver 4 VMB, Loads system images, writes 
EXE$1NIT crash dump 

RPB$LIOVECSZ Size (in bytes) of 4 VMB 
bootstrap driver 

RPB$LFILLBN LBN of secondary 4 VMB 
bootstrap file 

RPB$LFILSIZ Size in blocks of 4 VMB 
secondary bootstrap file 

RPB$Q_PFNMAP Descriptor of PFN bit map 8 VMB Used by SYSBOOT to 
locate bit map 

RPB$LPFNCNT Count of physical pages 4 VMB, 
SYSBOOT 



Table 24-16 Contents of the Restart Parameter Block (continued) 

Size in 
Field Name Contents Bytes Loaded by Special Uses 

RPB$LSVASPT System virtual address of 4 EXE$INIT Used by EXE$RESTART 
system page table 

RPB$LCSRPHY Physical address of 4 VMB Locates boot device 
UBA device CSR 

RPB$LCSRVIR Virtual address of 4 INIADPxxx Locates boot device 
UBA device CSR 

RPB$LADPPHY Physical address of adapter 4 VMB Locates boot device 
configuration register 

RPB$LADPVIR Virtual address of adapter 4 INIADPxxx Locates boot device 
configuration register 

RPB$W_UNIT Bootstrap device unit number 2 VMB I\) 

RPB$B_DEVTYP Bootstrap device type code 1 VMB 
f::. 
.i:::.. 

RPB$B_SLA VE Bootstrap device slave 1 VMB 
unit number 

Vl 
Cl:> 
(') 

RPB$T_FILE Secondary bootstrap file name 40 VMB § 
(counted ASCII string) s::i... 

i:::i 
RPB$B_CQNFREG Byte array of adapter types 16 VMB1 ~ 
RPB$B_HDRPGCNT Count of header pages in 1 VMB b;:j 

secondary bootstrap image 0 
0 ,..... 

RPB$W _BQOTNDT Type of boot adapter 2 VMB Used by boot driver V'.l ,..... 

"' RPB$B_FLAGS Miscellaneous flag bits 1 .§ 
RPB$LISP Powerfail interrupt 4 EXE$POWERF AIL Restored by EXE$RESTART ~ 

stack pointer 
~ RPB$LPCBB Saved process control 4 EXE$POWERFAIL Restored by EXE$RESTART i:::i 

block base register s 
RPB$LSBR Saved system base register 4 EXE$INIT, Restored by EXE$RESTART -----Cr.> 

EXE$POWERFAIL ~ 
RPB$LSCBB Saved system control 4 EXE$INIT, Restored by EXE$RESTART b;:j 

0 
°' block base register EXE$POWERF AIL 0 Oo 

~ N 

(continued) 



Table 24-16 Contents of the Restart Parameter Block (continued) 

Size in 
Field Name Contents Bytes Loaded by Special Uses 

RPB$LSCBB Saved system control 4 EXE$INIT, Restored by EXE$RESTART 
block base register EXE$POWERFAIL 

RPB$LSISR Saved. software interrupt 4 EXE$POWERFAIL Restored by EXE$RESTART 
summary register 

RPB$LSLR Saved system length register 4 EXE$INIT, Restored by EXE$RESTART 
EXE$POWERFAIL 

RPB$LMEMDSC Longword array of 64 VMB Used by BUGCHECK to 
memory descriptors dump physical memory 

RPB$LBUGCHK Address of bugcheck loop for 4 VMB, Address of attached 
attached processor MP_xxx.EXE processor initialization 

code or RPB$B_ WAIT 

RPB$B_WAIT Bugcheck loop code 4 VMB, Before MP _xxx.EXE is run, 
for attached processor MP_xxx.EXE contains a jump to self 

RPB$LBADPGS Number of bad pages 4 VMB 
found in memory scan 

RPB$B_ CTRLLTR Controller letter designation 4 VMB 

'The byte array of adapter types is loaded by VMB only on the VAX-11/750 and VAX-ll/78x. The system configuration is determined at a 
later stage of system initialization on other processors. 



24.4 Secondary Bootstrap Program (SYSBOOT) 

Table 24-1 7 Information Passed from SYSBOOT to INIT 

Global Location Size Description 

BOO$GLDSKDRV Longword Address of bootstrap device driver in nonpaged 
pool 

BOO$GL _ SYSLOA Longword Address of CPU-dependent image in nonpaged 
pool 

BOO$GL_ TRMDRV Longword Address of terminal class driver in nonpaged 
pool 

BOO$GQ _INILOA Quadword Currently unused 

BOO$GL_NPAGEDYN Longword Size of nonpaged pool remaining (in bytes) 

B00$GLSPLITADR Longword Base address of IRP lookaside list 

BOO$GLIRPCNT Longword Number of IRPs to be initialized 

BOO$GL LRPSIZE Longword Size of large request packets lin bytes) 

BOO$GLLRPMIN Longword Minimum size of request that can be allocated 
an LRP 

BOO$GLLRPSPLIT Longword Base address of LRP lookaside list 

BOO$GLLRPCNT Longword Number of LRPs to be initialized 

BOO$GL SRPSPLIT Longword Base address of SRP lookaside list 

BOO$GLSRPCNT Longword Number of SRPs to be initialized 

BOO$GQ_FILCACHE Quadword Pool descriptor for FIL$0PENFILE cache 

BOO$GLBOOTCB Longword Address of boot control block in pool 
BOO$GT _ TOPSYS 10 bytes Top-level system directory (ASCIC string) 

B00$GB_SYSTEMID 6 bytes 48-bit SCS system ID of boot device port 

BOO$GLPRTDRV Longword Address of port driver in pool 

BOO$GL UCODE Longword Address of port microcode in pool 

BOO$GL SCSLOA Longword Address of SCS loadable code in pool 

BOO$GL CLSLOA Longword Address of cluster loadable code in pool 

BOO$GLERAPATLOA Longword Address of $ERAPAT loadable code in pool 

BOO$GL_CHKPRTLOA Longword Address of $CHKPR T loadable code in pool 

BOO$GLMTACCESSLOA Longword Address of $MTACCESS loadable code in pool 
BOO$GB_NODENAME 8 bytes ASCII name of the node containing boot device 
B00$GL_ V AXEMUL Longword Address of instruction emulation loadable code 

in pool 
BOO$GL _ FPEMUL Longword Address of floating-point emulation loadable 

code in pool 

BOO$GLDEVNAME Longword ASCII boot device name 

683 



Bootstrap Procedures 

24.4.1 

684 

Detailed Operation of SYSBOOT 

SYSBOOT runs in the environment established by the console subsystem 
and VMB: 

• In kernel mode 
• On the interrupt stack 
• With memory management disabled 
• At IPL 31 

Most of the modules that make up SYSBOOT are from facility [BOOTS]. 
SYSBOOT begins operation with the physical memory layout pictured in 

Figure 24-2. Rl 1 points to the beginning of the RPB. The following steps 
describe the operation of SYSBOOT: 

1. SYSBOOT rewrites the SCB so that most vectors contain the address of a 
service routine in SYSBOOT. The vectors for TBIT and BPT exceptions 
dispatch to exception service routines in XDELTA, which is linked with 
the SYSBOOT image. The machine check vector is modified to point to a 
customized exception service routine. SYSBOOT initializes the vectors 
for subset instruction emulation to dispatch to service routines for the 
emulation of certain instructions not supported in CPU microcode. 
These exceptions are implemented on the Micro VAX I and MicroVAX II 
to facilitate software emulation of instructions such as MOVTC. Emula­
tion of some of these unsupported instructions is linked into VMB and 
SYSBOOT. 

2. The system identification processor register, PR$_SID, is read to deter­
mine the CPU type. On the MicroVAX II, an additional register, called 
the system type register, is read to determine the CPU subtype. The CPU 
type and subtype are stored for later use by code whose execution de­
pends on the specific CPU type. This value is used in several ways: 

-It determines which pieces of CPU-dependent code within SYSBOOT 
execute. For example, SYSBOOT must check whether the hardware 
revision level is at least the minimum required to support VAX/VMS. 
Its test is processor-specific. 

-The CPU type and subtype determine the name of the file that con­
tains CPU-specific support, SYSLOAxxx.EXE, where xxx designates 
the CPU type. See Appendix G for a list of CPU types and their corre­
sponding SYSLOAxxx image names. 

-Those portions of CPU-specific code that are selected at execution 
time (with suitable test and branch instructions) use the CPU type and 
subtype as the object of the tests. 

-The size of the SCB, a part of the overall sizing of system address space 
described in step 18 and Appendix F, depends on the CPU type. 



24.4 Secondary Bootstrap Program (SYSBOOT) 

The different strategies used to handle CPU dependencies are described 
in the next chapter. 

3. If the bootstrap breakpoint flag, RPB$V _BQOBPT in RS, is set, SYS­
BOOT executes a BPT instruction. The exception transfers control to 
XDELTA. 

Note that the same flag controls breakpoint execution in both VMB 
and SYSBOOT. This flag can be used in locating a hardware problem or 
other problem that is preventing system initialization. 

4. SYSBOOT checks which version of VMB loaded it. If an older version of 
VMB was used, SYSBOOT performs operations not performed by VMB. 
This step allows backward compatibility for earlier versions of VMB. The 
following items are checked: 

-Presence and contents of the SYSBOOT argument list 
-Support for more than eight megabytes of memory 
-Bootstrap adapter device type 
-Presence of the FIL$0PENFILE cache 
-Presence of memory descriptors in the RPB 
-Presence of CI microcode read into memory 
-Presence of a system root directory name 

S. SYSBOOT looks up SYS.EXE and records the locations of its disk extents. 
6. It then looks up and reads VAXVMSSYS.PAR, the file containing the 

current SYSBOOT parameters. Chapter 2S describes in more detail the 
movement of parameter information during the initialization sequence. 

7. At this point, SYSBOOT tests whether the operator requested a conversa­
tional bootstrap by setting the RS flag RPB$V _ CONV. If so, SYSBOOT 
prompts to allow interactive alteration of the parameter values. In any 
case, SYSBOOT enters the next step with some set of adjustable parame­
ters. 

8. The file SYSDUMP.DMP is opened and its file extents are mapped for 
later use. If the dump file is not found, SYSBOOT opens and maps the 
primary page file, PAGEFILE.SYS, instead. Its first blocks will be used as 
a gump file when the system bugchecks or is shut down, When the 
SYSINIT process runs (see Chapter 2S), it will look in the page file in­
stead of the dump file to see whether there are saved error log messages 
to be restored. 

9. Using the system device information saved in the RPB, SYSBOOT deter­
mines the name of the full driver for the system device. It looks in the 
boot driver data structure to determine the name of any auxiliary driver 
needed, for example, a CI port driver. 

10. It determines the name of the SYSLOAxxx image containing CPU­
specific code to be loaded. Appendix G lists the name used for each differ­
ent processor. 

685 



Bootstrap Procedures 

686 

11. It tests several SYSBOOT parameters to determine whether optional site­
specific images such as CHKPR TLOA.EXE should be loaded. 

12. It determines whether SCSLOA.EXE and CLUSTRLOA.EXE must be 
loaded as a function of system device type and the SYSBOOT parameters 
VAXCLUSTER and PE6. 

13. SYSBOOT then tests which types of instructions, if any, must be emu­
lated in software. Not all VAX processors implement all types of instruc­
tions. In particular, certain types of floating-point instruction may not be 
present. The MicroVAX I and MicroVAX II do not implement many 
string and decimal instructions. SYSBOOT must decide whether the 
images VAXEMUL.EXE and/or FPEMUL.EXE must be loaded for string 
and decimal instruction emulation and floating-point instruction emula­
tion. 

14. SYSBOOT then constructs the name of the terminal class driver, prefix­
ing the value of the parameter TTY _CLASSNAME to the string 
DRIVER. 

15. Having constructed a list of all the images to be loaded, SYSBOOT looks 
up each image in the list to determine its existence and location on the 
disk. SYSBOOT uses the boot driver built into VMB and primitive file 
system routines. It then truncates the FIL$0PENFILE cache, because no 
more file lookups are necessary. 

16. SYSBOOT saves the contents of the PR$_SID register and any CPU­
specific extended system information. This information will be copied 
into the system image in memory later at the 16 bytes beginning at 
EXE$GB_CPUDATA. 

17. SYSBOOT determines the page frame number (PFN) of the highest usable 
page of memory, taking into account the value of the PHYSICALPAGES 
parameter, and stores it in MMG$GL_MAXMEM. If the parameter is set 
low to specify only partial use of the memory, it is the lower pages of 
memory that will be used. 

18. The size of each process header and the sizes of the other pieces of system 
address space, including the SCB, are calculated. In particular, the size of 
the SPT is calculated. The details of these calculations are described in 
Appendix F. Pages of contiguous physical memory are allocated at the 
highest portion of physical memory for the SCB, SPT, and system header. 
The pages are filled with zeros, and the system page table entries (SPTEs) 
used to map the pages are filled in. 

19. The first page of the SCB is loaded with the contents of module SCBVEC­
TOR, which contains the entry points for the interrupt and exception 
service routines located in SYS.EXE. Vectors in additional pages of the 
SCB, if present, are loaded with the address of ERL$UNEXP, an unex­
pected interrupt handler. For some processors, interrupt vectors used for 
passive releases are initialized with the address of ERL$VEC_RETURN. 



24.4 Secondary Bootstrap Program (SYSBOOT) 

20. The system header is configured. All entries in the system header whose 
contents depend on configuration parameters are filled in at this time. 
This step is analogous to the process header configuration that is per­
formed by code in SHELL as a part of process creation (see Chapter 20). 

21. Space for the interrupt stack is allocated and mapped. The SPTEs for the 
global page table are filled in to indicate that they are demand zero pages. 
Physical memory is allocated for the initial sizes of the three nonpaged 
pool lookaside lists, and the corresponding SPTEs are filled in. The size 
and address of each list is recorded. 

22. The high end of nonpaged pool is preallocated for the boot driver, any 
microcode file needed by the boot device, boot control block data struc­
ture, images which SYSBOOT looked up earlier, and, below those, the 
FIL$0PENFILE cache. The pool used for the FIL$0PENFILE cache is 
deallocated later in the bootstrap operation. Allocating it below the other 
images eliminates pool fragmentation when it is deallocated. 

23. Pieces of the executive that are never paged (see Table F-4) are allocated 
from the highest pages of physical memory. These include device drivers 
(for the null device and mailbox), other permanently resident parts of the 
system image, the interrupt stack, nonpaged pool, the SPT, the SCB, and 
the system header. 

SYSBOOT estimates the size of the PFN database based on the number 
of pages left and allocates it. It initializes the pages of the PFN database, 
and the SPTEs that map them. The physical pages allocated for the 
nonpaged portions of the executive are not accounted for in the PFN 
database, because their state will never change. The pages occupied by 
the PFN database are also not accounted for in the PFN database. 

24. The pageable portions of SYS.EXE (the pageable executive routines) are 
also mapped so that the system image can be read into memory. 

25. SYSBOOT calls the boot driver to read the list of loadable images built 
earlier into nonpaged pool. These files include the following: 

-The system device driver and, if applicable, its port driver 
-Terminal class driver 
-SCSLOA.EXE, if needed 
-SYSLOA.xxx.EXE 
-CLUSTRLOA.EXE, if needed 
-Optionally, ERAPATLOA.EXE 
-Optionally, CHKPRTLOA.EXE 
-FPEMUL.EXE, if needed 
-VAXEMUL.EXE, if needed 
-Optionally, MTACCESS.EXE. 

The addresses of these files are recorded in the argument list passed to 
EXE$INIT (see Table 24-17) so that they can be stored in appropriate 

687 



Bootstrap Procedures 

688 

0 -----~i--~l Dynamic Pages 

(Process Working Sets .... ;.. 

MMG$GL_MAXP 
(Physical Page Nu 

PR$_SCBB 
(Physical Address ) 

PR$_SBR 
(Physical Address) 
Largest PFN 

FN 
mber) 

(Physical Page Number) 

System Working Set, Free Page List, 
Modified Page List) 

PFN Database 

Nonpaged Executive 
Code and Data 

Nonpaged Dynamic Memory 

Interrupt Stack 

System Control Block 

System Header 

System Page Table 

Figure 24·3 Physical Memory Layout Used by the 
Executive 

These pages are 
described by 
entries in the PFN 
database. 

The PFN database 
contains no information 
about the physical 
pages containing any 
of these pieces of 
the executive. 

places in system address space after memory management is turned on. 
26. The system image is read into memory. 
27. The contents of SYSBOOT's internal parameter table are copied to the 

portion of the memory image of SYS.EXE that contains.all the adjustable 
parameters. This step preserves the current parameter settings (because 
SYSBOOT is exiting) until they can be written back to the disk by 
SYSINIT (see Chapter 25): 

28. SYSBOOT copies the FIL$0PENFILE cache into the nonpaged pool allo· 
cated for it, where it will facilitate file lookups until the file system is 
initialized. 

29. It also copies to nonpaged pool the boot control block, boot driver, and 
any microcode associated with the boot device. It modifies 
RPB$L_IOVEC to reflect the virtual address of the boot driver. 

30. SYSBOOT copies the argument list it built for EXE$INIT into the boot­
strap parameter block within the memory image of SYS.EXE (see Table 
24-17). 

31. SYSBOOT loads the base and length registers for the PO and system page 
tables so that EXE$INIT can turn memory management on. Enabling 
memory management is described in more detail in Chapter 25. 

32. Finally, SYSBOOT transfers control to module EXE$INIT. This transfer 
must be done to a physical location, because memory management has 
not been enabled yet. The state of physical memory is pictured in Figure 
24-3. 



25 Operating System Initialization 

Had I been present at the creation, I would have given some 
useful hints for the better ordering of the universe. 

Alfonso the Wise 

The second phase of system initialization occurs in several components. The 
most significant ones are as follows: 

• Code that is a part of the executive (routine EXE$INIT in module INIT) 
• A special process (SYSINIT) created to complete those pieces of initializa­

tion that require process context to execute 

EXE$INIT turns on memory management and establishes many data struc­
tures whose size or contents depend on SYSBOOT parameters. SYSINIT 
opens system files, creates system processes, maps Record Management Ser­
vices (RMS) and the message file, and creates the process that invokes the 
startup command file. 

25.1 INITIAL EXECUTION OF THE EXECUTIVE 

25.1.1 

The final instruction in SYSBOOT transfers control to the (physical) address 
of EXE$INIT (in module INIT). EXE$INIT turns on memory management, 
configures the 1/0 adapters, and initializes scheduling and memory manage­
ment data structures. Finally, it releases the pages that it occupies so that 
code that executes only once during the life of the system does not consume 
system resources. 

EXE$INIT begins execution in the environment set up by prior phases of 
system initialization. It immediately modifies its environment by turning on 
memory management. Subsequently, it executes under the following condi­
tions: 

• At IPL 31 
• With memory management enabled 
• On the systemwide interrupt stack 

Turning on Memory Management 

The first (and perhaps most important) step that EXE$INIT takes turns on 
memory management. Before SYSBOOT transfers control to EXE$INIT, it 
sets up the system page table (SPT) to map the executive and dynamic data 

689 



Operating System Initialization 

25.1.1.l 

690 

structures. In addition, SYSBOOT builds a small PO page table that maps the 
first physical page of EXE$INIT to a virtual page whose virtual page number 
is identical to its physical page number. Thus, EXE$INIT can be referenced 
by a PO virtual address that is identical to its physical address. 

PO space is used for this double mapping because the PO space address range 
from 0 to 40000000 is the maximum physical address range permitted by the 
VAX architecture. That is, even with the maximum possible physical mem­
ory on a VAX processor, there is a PO address range with identical addresses. 

Double Mapping of EXE$INIT by SYSBOOT. This PO page table is con­
structed by loading the PO base and length registers with values that access a 
portion of the SPT (see Figure 25-1). If EXE$INIT is located in PFN n, then 

PR$_SBR contains 

System Page Table 
physical address of 1 thisSPTE. . 

..___..,__·1~-_-_------t~J SPTE for zero-th SVP r- 1 

EXE$1NIT is contained 
in system virtual page 
v1 and In physical 
page P1. 

SPTE for virtual page v1 

This system virtual 
page contains EXE$1NIT. 

SPTE for last SVp 

1 

Valid, PROT] 
etc. 

1-:: 

1 

~ 

1 

=* 

Pi-1 

pi 

PFN=Pi Pj+1 

Pj+2 

J 
Figure 25-1 Double Use of System Page Table Entries 
by EXE$INIT 

PR$_POBR contains the virtual 
address of this longword. 

This longword becomes the PO 
PTE for the zero-th POVP. 

The relative sizes of Pi and Vi deter­
mine whether the longword pointed 
to by POBR lies within the system 
page table. 

Pisv1"'wilhin system page table 

Pi> Vi:::>outside the system page 
table 

Whether this longword lies within the 
system page table is of no concern 
to address translation. 

POPTE for PO virtual page that 
contains EXE$1NIT. 

(This is the Pi"' PO 
page table entry.) 

PR$_POLR is loaded with Pi+2. 

There are Pl+ 1 longwords inclusive 
from the longword located by POBR 
to the SPTE that maps INIT. By put­
ting Pj+2 into POLA, EXE$1NIT can 
exten<I into a second page •. 



25.1.1.2 

25.1 Initial Execution of the Executive 

From SYSBOOT 

Virtual Addre""s""'s '""Sp""a'"""ce'""'"""""""""+----L+----Ph_ys_i_ca-1-A-dd-re-s-s-S-pa-c-e---l 

I EXE$1NIT:: CD 
I 

PO 

Space Ir 

System 

Space 

Figure 25·2 Address Space Changes as Memory 
Management Is Enabled by EXE$INIT 

MOVL APB$L_BOOTR5(R11),FP 

MTPR #1,S• #PA$_MAPEN 

G) Instructions that execute with 
physical (no) mapping 

@ Instruction that executes 
from PO space 

G) Instructions that execute 
from system virtual 
address space 

POLR is loaded with n + 2. POBR is loaded with a system virtual address that 
is n longwords smaller than the system virtual address of the system page 
table entry (SPTE) that maps EXE$1NIT. 

The net result of all this mapping is that the physical page containing 
EXE$INIT can and will be accessed in three different ways (see Figure 25·2). 
These different mappings are listed here in order of mapping complication, 
and not in the order in which they are used. EXE$INIT can be accessed in the 
following ways: 

• As a physical address 
• As a system virtual address (80024EAO in Version 4) mapped by the SPT 
• As a PO virtual address located by the subset of the SPT that is also used as 

a PO page table 

Instructions That Turn On Memory Management. When EXE$INIT begins 
execution, memory management is disabled. The PC contains the physical 
address of EXE$INIT. The following numbered descriptions correspond to 
numbers in Figure 25-2. 

CD The first instruction executes in physical space: 

MOVL RPB$L_BOOTRS(R11),FP 

691 



Operating System Initialization 

25.1.2 

692 

Its effect is not related to turning memory management on. 
The next instruction actually turns memory management on: 

MTPR #1, S"#PR$_MAPEN 

That is, all address references from that point on must be translated. 
Note that the instruction does not cause a transfer of control. The PC is 
simply incremented by 3, the number of bytes in the instruction. How­
ever, the next PC reference will be translated, because memory manage­
ment has been enabled. 

Because of the mapping set up by SYSBOOT, the incremented (physical) 
PC (the address of the JMP instruction) translated as a PO address is the 
physical address of the JMP instruction. 

@)The next instruction is the only instruction that executes with a PO PC: 

JMP @#10$ 

This instruction immediately transfers control to a system virtual ad­
dress that was calculated when the system image was linked. When this 
system virtual address is translated, it results in the physical address of the 
next instruction in the physical page containing EXE$INIT. 

@The next instruction is the first one to execute in system address space: 

10$: MOVL EXE$GL_INTSTK,SP ;SET TO USE INTERRUPT STACK 

Its effect is not directly related to turning on memory management. 

The four instructions shown in Figure 25-2 execute in three different map­
ping contexts. The mapping that was set up by SYSBOOT results in the selec­
tion of successive instructions from the same physical page. 

Initialization of the Executive 

Once EXE$INIT has turned on memory management, it can make references 
to system addresses. In particular, it can now initialize dynamic data struc­
tures whose listheads are in global locations in system space. Some of these 
steps involve allocation from nonpaged pool. (The nonpaged pool space allo­
cated by EXE$INIT and the SYSBOOT parameters that control its size are 
listed in Table 25-1.) 

EXE$INIT takes the following steps once memory management has been 
turned on: 

1. The address of the systemwide interrupt stack is stored in the SP register. 
2. EXE$INIT tests flags in EXE$GL_ARCHFLAG, initialized by SYSBOOT, 

to determine whether any instruction emulation is required. If subset 
instruction or floating-point emulation is required, SYSBOOT has al­
ready loaded VAXEMUL.EXE or FPEMUL.EXE (or,bothl into nonpaged 



25.1 Initial Execution of the Executive 

Table 25-1 Use of Nonpaged Pool by EXE$INIT 

Item 

Real-time bit map 

Lock ID table 

Resource hash table 

Deadlock detection 
process bit map 

Adapter control blocks 

PCB and sequence 
number vectors 

Process header vectors 

Swapper map 

Modified page writer 
arrays 

Page-and-swap-file vector 

DDB, UCB, and ORB for 
system device port driver 

CRB and IDB for system 
device class driver 

Global Name of Pointer 

EXE$GLRTBITMAP 

LCK$GLIDTBL 

LCK$GLHASHTBL 

LCK$GLPRCMAP 

IOC$GLADPLIST 

SCH$GLPCBVEC, 
SCH$Gt_SEQVEC 

· PHV$GLPIXBAS, 
PHV$GLREFCBAS 

SWP$GLMAP 

MPW$ALPTE, 
MPW$AW _PHVINDEX 

MMG$GLPAGSWPVC 

Factors That Affect Size 

RBM$K_LENGTH + 
(4 • REALTIMLSPTS) 

12 + (4 • LOCKIDTBL) 

12 + (4 • RESHASHTBL) 

13 + (MAXPROCESSCNT/8) 

Number and type of 
external adapters (see Table 25-2) 

12 + (6. (MAXPROCESSCNT + 1)) I 

12 + (4 • (BALSETCNT + 1)) 2 

12 + (4 • WSMAX) + 4 3 

12 + (6 • MPW_WRTCLUSTER) 

4 • (SWPFILCT + PAGFILCT) + 16 

UCB size for that driver 

1There is one extra slot in each array for system PCB. The system process has a process index of 
MAXPROCESSCNT. , 

• 2There is one extra slot in each array for the system header. The system header has a balance slot index of 
BALSETCNT. 

3 The extra longword contains a zero, an end of list indicator. 

pool. EXE$INIT invokes the initialization routine of either or both 
emulators. 

3. EXE$INIT initializes several exception vectors in the system control 
block (SCB) built by SYSBOOT. If the SYSBOOT parameter SSINHIBIT is 
set, the CHMK and CHME vectors are redirected to enable system ser­
vice filtering. System service filtering is briefly described in Chapter 9. 

4. The SCB base register is loaded with the physical address of the SCB. 
5. Executive debugger support is either initialized or eliminated, according 

to the setting of the RS debug flag, RPB$V _DEBUG, ori input to VMB. 

-If debug support is selected, the BPT and TBIT exception vectors are 
loaded with the addresses of exception service routines within 
XDELTA. 

-If debug support is not selected, the BPT instruction in EXE$INIT (at 
address INI$BRK) is converted to a NOP. In addition, the pages contain-

693 



Operating System Initialization 

694 

ing XDELTA (see Appendix F) are included in the list of pages that 
EXE$INIT will release to the free page list as part of its exit routine. 

6. SYSBOOT has loaded the SYSLOAxxx.EXE image into nonpaged pool 
appropriate for the processor type. EXE$INIT invokes EXE$LINK_ VEC 
(in module LINKVEC) to connect the routines in the SYSLOA image to 
"vectors" in the system image. Section 25.1.3 describes this in detail. 
CPU-specific support for the console terminal, part of SYSLOA, is needed 
to print the announcement message and any others. 

7. EXE$INIT initializes the console terminal and prints the announcement 
message on it. Note that this important milestone, while not very far 
into EXE$INIT, indicates that the system image has been read into mem­
ory and memory management turned on, both significant steps in initial­
izing the executive. 

8. The virtual page number of the boundary between the paged and 
nonpaged executive is loaded into the paged code arrays. 

9. The nonpaged pool variable list is initialized (see Chapter 3). 
10. If the RS initial breakpoint flag, RPB$V _INIBPT, was set on input to 

VMB, then EXE$INIT executes a JSB to INI$BRK. If debug support has 
been selected, the instruction at INI$BRK contains a BPT instruction, 
which dispatches to XDELTA. 

11. A tentative value for the maximum number of processes is established. 
12. The values for the high and low thresholds of the modified page list are 

set. 
13. If the system has more than 32 MB of memory, page frame number (PFN) 

database references in the nonpaged system image are modified to use 
longword context opcodes. 

14. If the SYSPAGING SYSBOOT parameter is set, indicating that the page­
able executive routines will page, then the SPTEs for these pages are 
initialized with system section table indexes. In addition, the first sec­
tion table entry in the system section table is initialized to point to the 
executive image SYS.EXE. (Chapter 14 describes the system section 
table.) If SYSPAGING is clear, SYSBOOT has allocated physical pages for 
this portion of the executive and initialized the SPTEs appropriately. 

15. The fields in the restart parameter block (RPB) used by the restart routine 
(see Chapter 26) are initialized. 

16. The physical pages represented by the PFN bit map set up by VMB are 
placed on the free page list. (Note that the pages that contain the PFN bit 
map must be virtually mapped before they can be accessed.) 

17. The SPTEs for paged pool are initialized. If paged pool will page (if the 
POOLPAGING SYSBOOT parameter flag is set), the SPTEs are initial­
ized to demand zero format PTEs. If pool paging is turned off, physical 
pages are allocated; a PFN is stored in each SPTE, with a protection code 



25.1 Initial Execution of the Executive 

of ERKW and the valid bit set. 
18. The nonpaged pool lookaside list packets are formatted and linked to­

gether. (The lookaside lists are described in Chapter 3.) 
19. IOC$GL_IRPMIN, the minimum size allocation that can be filled with 

an 1/0 request packet (IRP) is initialized to be 1 larger than the size of a 
small request packet ISRP). 

20. The FIL$0PENFILE cache pointers and the top-level system directory 
name string are set up for FILEREAD. These global parameters were ini­
tialized by SYSBOOT. 

21. EXE$1NITinitializes tile permanent local system block (SB). The system 
ID and VAXcluster node name are taken from the SYSBOOT parameters 
SCSSYSTEMJD, SCSSYSTEMIDH, and SCSNODE. 

22. SYSBOOT loads a number of images into nonpaged pool. EXE$INIT must 
initialize them. In particular, "vectors" in the system image that dis­
patch to routines within an image must be modified to point to the rou­
tines in pool. EXE$INIT invokes a local routine to connect the vectors 
and call any initialization routine within the image (see Section 25.1.3). 
The images treated in this way are as follows: 

-SYSLOAxxx.EXE (where xxx is one of the CPU designations listed in 
Appendix GI 

-Optionally, ERAPATLOA.EXE 
--Optionally, MTACCESS.EXE 
-SCSl.OA.EXE, if the system h~s a computer interconnect (CI) adapter 

or system communications services ISCS) type system device 
-CLUSTRLOA.EXE, if the system is to participate in a V AXcluster 

System 

The ini.tialization routine in the SYSLOA image determines which 
adapters are present on the system and initializes them and their data 
structures. Adapter initialization is discussed further in Section 25.1.4. 

23. If the SYSBOOT parameter REALTIME_SPTS is nonzero, that number of 
SPTEs is taken from the list of available SPTEs (see Appendix F) and 
described in a real-time bit map control block, allocated from nonpaged 
pool. These SPTEs are used by the connect-to-interrupt driver. 

24. Lock management data structures, the lock ID table and the resource 
hash table, are initialized. A process bit map is set up for deadlock detec­
tion; the map has one bit for each possible process. 

25. The process control block (PCB) and sequence number vectors !see Chap­
ter 20) are allocated from nonpaged pool· and initialized. All sequence 
numbers are initialized to zero. All PCB vector slots except one are ini­
tialized to the address of the PCB of the null process. Process index 1 is 
the swapper process. An extended process ID is calculated for both the 
swapper and null processes. · 

695 



Operating System Initialization 

696 

Note that one extra entry is allocated at the end of each array. The 
extra entry in the PCB vector points to the system PCB. The system PCB 
is defined in module PDAT; its dynamic contents are loaded by 
EXE$INIT. It is used by the pager to read faulted pages into the system 
working set list. 

26. The scheduler is called to make computable the two processes that are 
assembled as part of the executive image, the swapper and the null pro­
cess. 

27. The process header (PHD) vectors (see Chapter 14) are initialized for each 
balance slot. The reference count array is initialized to contain -1 in 
each array element. The process index array is zeroed to indicate free 
balance slots. The null process is the process with a process index of zero. 
Because the null process does not swap, it does not require a balance slot. 
An index of zero can thus be used for another purpose, namely to indicate 
a free balance slot. 

As Appendix F illustrates, the system header and system page table 
(SPT) immediately follow the balance slot area in system address space. 
In fact, portions of the memory management subsystem treat the system 
header as the occupant of an additional balance slot, one with a slot num­
ber equal to the SYSBOOT parameter BALSETCNT. The two PHD vector 
arrays have one extra entry at the end to reflect this feature. 

28. The swapper map is allocated from nonpaged pool (see Chapters 14 and 
17). Its address is stored in global location SWP$GL_MAP and also in the 
swapper's PO base register. Pages mapped in the swapper map are accessi­
ble as PO virtual pages when the swapper is the current process. 

29. The modified page writer arrays (see Chapters 14 and 15) are allocated 
from nonpaged pool. 

30. PFN database array fields for the page occupied by the RPB are initialized 
to reflect its use. 

31. The page-and-swap-file vector is initialized. Each array element is the 
address of a page file control block for a page or swap file recognized by 
the system. The first element is initialized so it can be used to read the 
shell process into the system working set. (See Chapter 14 for more infor­
mation.) 

32. A number of miscellaneous initialization operations are performed here. 
The maximum depth of the lock manager resource name tree is calcu­
lated. The size of the tree is associated with the size of the interrupt 
stack. Space is reserved in the system working set for the shell. The ad­
dress of the system header is stored in the system PCB and the process 
index for the system process is determined. The map of the file SYS.EXE, 
contained in the boot control block, is placed in a window control block 
(WCB). 

33. EXE$INIT invokes EXE$INL TIMWAIT to initialize global variables 



25.1 Initial Execution of the Executive 

used in timed wait loops generated by the macros TIMEWAIT and 
TIMEDWAIT. EXE$INL TIMWAIT is in module [SYSLOA]INIADPxxx. 
These macros are invoked, typically from code running at IPL 3I, to en­
sure the passage of a specified relatively small amount of time. For exam­
ple, the PADRIVER uses the TIMEWAIT macro to wait, after initializing 
the port adapter, for 100 milliseconds or for it to become ready. 

EXE$INL TIMWAIT calibrates EXE$GL_ TENUSEC and EXE$GL_ 
UBDELAY. EXE$GL_UBDELAY is the number of times a particular 
I -instruction loop must execute to take three microseconds. 
EXE$GL_ TENUSEC is the number of times a prototype loop executes in 
ten microseconds. The prototype loop includes an inner loop executed 
EXE$GL_UBDELAY times. In actual use, the prototype loop is likely to 
be replaced by code that polls a device register. The delay is incorporated 
so as to introduce a three-microsecond gap between UNIBUS or other I/O 
bus references. 

34. The driver prolog tables (DPTs) for the three devices (mailbox, null de­
vice, and console terminal) that are linked with SYS.EXE are connected 
to the driver database (located through listhead IOC$GL_DPTLIST). 

35. Argument lists to create logical names for SYS$DISK and SYS$­
SYSDEVICE are allocated from nonpaged pool. Nonpaged pool is used to 
pass information to the swapper process, which will create the logical 
names after it initializes paged pool and the logical name database. 

36. SYSBOOT has already loaded the terminal class driver into nonpaged 
pool. EXE$INIT invokes IOC$INITDRV (in module RELOCDRV) to ini­
tialize its data structures as directed by the DPT. Then EXE$INIT inserts 
the DPT into the list at IOC$GL_DPTLIST. It relocates the terminal 
class vector table and connects it to the console port driver data struc­
tures. (See Chapter I9 for further information.) The data structures for 
additional terminals will be established later by the System Generation 
Utility. 

37. SYSBOOT has already loaded into nonpaged pool the driver for the sys­
tem device and, if any, its port driver. EXE$INIT allocates and initializes 
the associated database. It takes the following actions: 

a. It scans the list of adapter control blocks (ADPs) looking for the one 
with a node number that matches boot RI (see Chapter 24). As it 
scans, it fills in each ADP$B_NUMBER to indicate how many adapt­
ers of this type have already been found. That is, it determines 
whether a particular adapter is the first of its kind, or the second, and 
so on. 

b. If there is a port driver, EXE$INIT links it into the list at 
IOC$GL_DPTLIST. It allocates from nonpaged pool and initializes a 
DOB, UCB, and ORB, and links them into the I/O database. 

697 



Operating System Initialization 

698 

c. EXE$INIT constructs a name for the system device unit using infor­
mation passed from VMB and the driver name. 

d. It stores the device and driver names in the device data block (DDB) 
for the system device and unit number in its unit control block (UCB). 

e. It links the system device driver into the list at IOC$GL_DPTLIST. 
f. It stores the system device UCB address in EXE$GL_SYSUCB and in 

the SYS.EXE WCB. 
g. EXE$INIT then invokes EXE$BOOTCB_CHK to compute a check­

sum for the boot control block, which contains the SYS.EXE WCB. 
Bugcheck processing code recomputes the checksum to test the integ­
rity of the boot control block before using it as a source of disk ad­
dresses for the fatal bugcheck code overlay and the dump file. 

h. It allocates an SPTE, if requested, for the system device and stores its 
number in UCB$L_SVPN. 

i. Once the system device name is determined, the equivalence names 
for SYS$DISK and SYS$SYSDEVICE can be stored in Create Logical 
Name ($CRELNM) argument lists for later use by the swapper process. 

j. If there is a system device port driver, EXE$INIT connects its channel 
request block (CRB), interrupt dispatch block (IDB), and UCB and calls 
IOC$INITDRV to initialize its data structures. It allocates a CRB and 
an IDB for the system device class driver and calls IOC$INITDRV. 

38. All loaded drivers are then called at their controller and unit initializa­
tion points. 

39. EXE$INIT invokes EXE$INIPROCREG, a CPU-specific routine within 
the SYSLOA image, to initialize processor registers, for example, to en­
able interval clock interrupts. 

40. A page of physical memory (the "black hole" page) is reserved for adapter 
powerfail. Its PFN is stored in global location EXE$GL_BLAKHOLE. 
When power failure occurs, for example, on a UNIBUS, all virtual pages 
mapped to UBA registers or UNIBUS I/O space (24 pages in all) are re­
mapped to this physical page. This remapping prevents drivers for UNI­
BUS devices from generating multiple machine checks while the power 
is off for the UBA. Powerfail operations are discussed in more detail in 
Chapter 26. 

41. A page of physical memory and an SPTE to map it are allocated for use in 
mount verification. The virtual address of the SPTE is stored in 
EXE$GL_SVAPTE. 

42. A page of physical memory and an SPTE to map it are allocated for both a 
system erase pattern buffer and a pseudo page table to map the buffer. 
Their virtual addresses are stored in EXE$GL_ERASEPB and 
EXE$GL_ERASEPPT. These are used to optimize erasure of disk blocks 
when an erase-on-delete file is deleted. 



25.1.3 

25.1 Initial Execution of the Executive 

43. The maximum allowable working set is readjusted (if necessary) to re­
flect the amount of available physical memory. 

Specifically, the number of physical pages used by the executive (see 
Appendix F) is subtracted from available physical memory. System usage 
includes not only nonpaged code and data but also the system working 
set, MPW _LOLIMIT pages on the modified page list, and FREELIM pages 
on the free page list (but not the pages used by EXE$INIT). The value of 
WSMAX is then minimized with this difference. 

44. Two flags used by the restart mechanism (see Chapter 26) are cleared. 
45. Finally, EXE$INIT frees up the pages that it occupied and jumps to the 

scheduler. The protection fields for these system virtual pages are set to 
no access in the SPT and the physical pages are placed on the free page 
list. EXE$INIT accomplishes these steps by copying a small routine into 
nonpaged pool and transferring control to that routine. The routine itself 
vanishes as a result of the first allocation from pool, because the use of 
this block of pool was not recorded anywhere. 

CPU-Dependent and Other Loadable Routines 

There are two different types of CPU-dependent code that appear in the VAX/ 
VMS operating system and two corresponding methods that the VMS operat­
ing system uses for incorporating the code: 

• When there are one or two instructions or data references that depend on 
the specific type of CPU being used, the system usually includes the code or 
data. sequence for all CPUs in line and uses the contents of location 
EXE$GB_CPUTYPE to determine which piece of the code or data to use. 
(This location was previously loaded by SYSBOOT from the contents of the 
PR$_SIO register.) On some processor types, there is an additional level of 
dispatch based on CPU subtype. 

• In the case of CPU-dependent routines (such as the purge datapath routine, 
IOC$PURGDATAP) or CPU-dependent modules (such as the machine 
check handler), a technique of vectored entry points to routines in a sepa­
rate image is used. 

The vectored entry point method works in the following way. Each refer­
ence within the executive image to a CPU-dependent routine is dispatched to 
a JMP instruction in module SYSLOAVEC, which is linked with SYS.EXE. 
The CPU-dependent routines are linked together into a set of CPU-dependent 
images with names of the form SYSLOAxxx.EXE. (See Appendix G for a list 
of SYSLOA images.) SYSBOOT uses the CPU type and subtype to determine 
which SYSLOA image to load into nonpaged.pool. 

Another vector module called LOA VEC (actually, SYSLOA VEC with a dif­
ferent setting of a conditional assembly flag), linked into each CPU-depen-

699 



Operating System Initialization 

dent image SYSLOAxxx.EXE, contains an offset into the loadable image for 
each of the CPU-dependent subroutines. EXE$LINK_ VEC uses the informa­
tion in this table to adjust the arguments of the JMP instructions (in module 
SYS LOA VEC) so that they point to the correct routines in the copy of the 
SYSLOA image in nonpaged pool. The initial destination of all the JMP in­
structions is EXE$LQAD_ERROR, a global address of a HALT instruction 
within module SYSLOA VEC. If any of these CPU-dependent routines is refer­
enced before EXE$INIT has invoked EXE$LINK_ VEC, the system will halt. 

The cost of separating out CPU-dependent routines from the system image, 
one extra level of indirection, is far outweighed by the benefits, which in­
clude fewer execution time decisions and no need for either separate system 
images for each CPU or one larger system image supporting all CPUs. The 
linkage established by EXE$INIT for CPU-dependent routines is illustrated 
in Figure 25-3. 

This same mechanism is used for SCSLOA and CLUSTRLOA. SCSLOA 
routines are required on a system which has any disk or magnetic tape con­
trollers. that use the mass storage control protocol (MSCP). SCSLOA and 
CLUSTRLOA routines are both required for a system that is a member of a 
V AXcluster System. 

SYS.EXE 

JSB G•IOC$PURGDA/ 

(This linkage is established 
at link time to a vector in 
module SYSLOAVEC.) 

Module 
LOAVEC 

Each 
contains 
displace 

SYSLOAxxx.EXE 

(Vector for purge datapath routine 
.LONG IOC$PURGOATAP-.) 

~:~~AVEC { 

Each vector in SVSLOAVEC 
Initially contains a JMP (with 
absolute addreBBlng) to an 
intemal error routine. If a 
loadable routine were called 
before the linkage Is estab­
lished, that error routine would 
halt. 

(Vector for purge datapsth 
routine) 

t 
IOC$PURGDATAP: JMP @#• 

vector in LOAVEC 
a self-relative 

ment (offset) to 
e in question. the routin 

This linkage i s dynamically 
y INIT. established ~ 

IOC$PURGOATAP:: 

Real purge datapath routine 

RSB 

INIT modifies the destina-
tions of the JMP instructions 
after It loads 
SVSLOAxxx.EXE. 

Figure 25-3 Linkage and Control Flow Example for 
CPU-Dependent Routines 

700 

Modules LOAVEC and SVSLOAVEC are 
produced from the same source with 
altemate settings of an assembly-
time parameter. 



25.1.4 

25.2 Initialization in Process Context 

1/0 Adapter Initialization 

The CPU-specific routine [SYSLOA]INIADPxxx is used to determine the lo­
cation of external adapters and initialize the adapters for later use by the 
SYSGEN configuration operations. INIADPxxx also records the processor 
type in the hardware type field of the local system block. 

Although some of the initialization that INIADPxxx performs depends on 
the nature of the external 1/0 adapter, there are several general steps that are 
taken for each adapter: 

1. An adapter control block (ADP) that identifies the adapter and contains 
information about how the adapter's internal registers are mapped is allo­
cated from nonpaged pool and initialized. 

2. System virtual space is set up to map to the 1/0 space addresses for inter­
nal adapter registers and other 1/0 space assignments. 

3. The adapter hardware is initialized. 

Information about the hardware configuration is recorded in several 
nonpaged pool arrays. The number of elements in each array is specified by 
the contents of the global EXE$GL_NUMNEXUS. Each array is indexed by 
nexus number. There are three arrays: 

• MMG$GL_SBICONF contains the address of a longword array. Each ele­
ment contains the starting virtual address to which its adapter registers are 
mapped. 

• EXE$GL_CONFREG contains the address of a byte array that specifies the 
type of each adapter. On some processors, such as the VAX-ll/78x or the 
VAX 86x0, adapter type codes are one byte long. Type codes are defined by 
the SYS$LIBRARY:LIB.MLB macro $NDTDEF. 

• EXE$GL_CONFREGL contains the address of a longword array which also 
specifies the type of each adapter. 

Table 25-2 lists the differences in ADP size and mapping requirements for 
each of the possible external adapters. 

INIADPxxx also checks for the presence of UNIBUS memory. If UNIBUS 
memory is found, the associated UBA map registers are disabled. 

25.2 INITIALIZATION IN PROCESS CONTEXT 

Further steps in system initialization must be performed by a process. Sys­
tem services can only be called from process context. A command language 
interpreter (CLI) can only be mapped into Pl space by code executing in pro­
cess context. 

The process phase of system initialization is divided into several parts: 

• Initialization within the swapper process 

701 



Operating System Initialization 

25.2.1 

702 

Table 25-2 External Adapter Initialization 

Size of ADP 
Adapter Type (in bytes) 

Local memory None exists 

MA780 shared memory 132 

UNIBUS adapter 600 or 1240 I 

MASSBUS adapter 48 

DR32 interface 48 

CI interface 66 

KDBSO 600 

KLESI-B 600 

DMB32 interface 48 

DRB32 48 

DEBNT 66 

Unknown VAXBI device 48 

Unoccupied slot None exists 

Number of System Virtual 
Pages Mapped for Adapter 

1(or0 on some CPUs) 

1 

24 2 

8 

4 

16 

8 

8 

2 

16 

16 

16 

1 to allow access 

1 An ADP for a UBA with indirect vectors also contains the interrupt service routines for 
the UBA and 128 longword vectors, corresponding to UNIBUS vectors from 0 to 7748 . 

2Eight pages map the UBA internal registers, such as mapping registers, data path regis­
ters, and the like. There are 16 pages that map the UNIBUS I/O page to allow virtual access 
to device CSRs, data registers, and so on. 

• SYSINIT process 
• Startup process 

Swapper Process 

When the scheduler executes, it selects the highest priority computable pro­
cess for execution. There are only two processes in existence at this time, the 
swapper and null processes. The swapper process is always selected, because 
it has an external priority of 16 and the null process has an external priority 
of 0. 

The swapper process is entirely resident within system space. Other than 
that, it is scheduled and placed into execution like any other process. Its PCB 
and PHD are defined within the module PDAT. Its hardware PCB defines its 
PC as the address of EXE$SWAPINIT and its PSL as kernel mode and IPL 0. 
Thus, when the swapper executes for the first time, it enters EXE$SWAP­
INIT, system initialization code executed only once during the life of the 
system. 

The swapper performs the minimum initialization that requires process 
context. In particular, it initializes paged pool and the logical name database. 
The swapper initializes the paged pool listhead, which must be done from 



25.2.2 

25.2 Initialization in Process Context 

process context to handle the resulting page faults. 
The swapper then performs the following steps to initialize the logical 

name database. (See Chapter 28 for a description of logical name data struc­
tures.) 

1. It allocates paged pool for the shareable logical name hash table. 
2. The swapper zeros it, initializes its header, and stores its address in the 

longword pointed to by LNM$AL_HASHTBL. 
3. The swapper initializes the logical name table header (LNMTH) of the 

system directory. It records the hash table address in the LNMTH. It then 
hashes the system directory name and inserts it into the appropriate hash 
chain of the shareable hash table. 

4. It initializes the system logical name table, recording the hash table ad­
dress in its LNMTH. It invokes LNM$INSLOGTAB (in module LNMSUB) 
to insert the system ·table into the database. 

5. The swapper calls the Create Logical Name ($CRELNM) system service to 
create the following logical names: 

-LNM$DIRECTORIES, whose equivalence names are the shareable and 
per-process shareable directories 

-The executive mode table name LNM$FILE_DEV 
-The supervisor mode table name LNM$FILE_DEV 
-The table names that provide upward compatibility from VMS Version 

3: LOG$PROCESS, LOG$GROUP, LOG$SYSTEM, TRNLOG$_GROUP _ 
SYSTEM, TRNLOG$_PROCESS_GROUP, TRNLOG$_PROCESS_ 
SYSTEM, and TRNLOG$_PROCESS_GROUP _SYSTEM 

-The table names LN~$PERMANENT_MAILBOX and LNM$TEM­
PORARY_MAILBOX 

-The table name LNM$SYSTEM 
-The executive mode names SYS$DISK and SYS$SYSDEVICE in 

LNM$SYSTEM table 

6. It deallocates the nonpaged pool used by EXE$INIT to pass information 
needed for the creation of SYS$DISK and SYS$SYSDEVICE 

The swapper then creates a process called SYSINIT that performs much of 
the system initialization requiring process context. 

SYSINIT Process 

In one sense, SYSINIT is an extension of the swapper process. However, the 
initialization code is isolated to prevent encumbering the swapper with more 
code that only executes once during the life of a system. (This isolation is one 
of several techniques used during system initialization and process creation 
to cause seldom-used code to disappear after it is used. A list of such tech-

703 



Operating System Initialization 

25.2.2.1 

25.2.2.2 

704 

niques appears in Appendix B.) 
The major functions that SYSINIT performs can be grouped into several 

categories: 

• Initiation of VAXcluster initialization for this node 
• Opening the swap and page files and recording their extents 
• Mapping RMS.EXE and the system message file as system sections 
• Creation of the STARTUP process 

Pool Usage by SYSINIT. SYSINIT, like EXE$INIT, allocates nonpaged pool. It 
also allocates some paged pool. However, the sizes of various blocks are not 
directly related to SYSBOOT parameters. Structures that are allocated from 
nonpaged pool as a result of the execution of SYSINIT include the following: 

• Software PCBs and JIBs for system processes 
• File control blocks and.window control blocks for all opened files 
• A volume control block for the system disk 

Detailed Operation of SYSINIT. SYSINIT is a normal process, scheduled and 
placed into execution in the ordinary way. Its image, SYSINIT.EXE, is part of 
the [SYSINI] facility. SYSINIT begins execution in user mode, but performs 
much of its work in kernel and executive mode procedures. 

SYSINIT takes the following steps: 

1. SYSINIT changes mode to kernel to create a system-specific root re­
source. It calls the Enqueue Lock Request ($ENQ) system service to 
create an executive mode system resource. Its name is the string SYS$­
SYS_ID concatenated with the system's SCS system ID (SYSBOOT pa­
rameters SCSSYSTEMID and SCSSYSTEMIDH) and is therefore unique 
within the V AXcluster System. 

SYSINIT locks the root resource with a system-owned lock that will 
survive the deletion of SYSINIT. SYSINIT stores its lock ID in 
EXE$GL_SYSID_LOCK. VMS components use it as a parent resource for 
resources local to this system. (See Chapter 13 for information on lock 
management.) 

2. SYSINIT changes mode to kernel to set the system time. It invokes the 
routine EXE$INIT _TOOR in the SYSLOA image. (See Chapter 11 for 
more information on EXE$INIT _ TODR and setting system time.) 

3. SYSINIT changes mode to kernel to initialize cluster connection man­
agement. If this system expects to participate in a VAXcluster System, 
SYSINIT creates the stand-alone configure process, STACONFIG. This 
process autoconfigures disks and SCS communication ports. If the SYS­
BOOT parameter DISK_QUORUM indicates there is to be a quorum 
disk, STACONFIG starts SCS polling to discover remote MSCP disk 



25.2 Initialization in Process Context 

servers in case connection to a quorum disk is necessary for the node to 
join the VAXcluster System. 

SYSINIT sets a flag to tell the cluster connection manager to proceed 
with cluster formation and prints the following message on the console 
terminal: 

Waiting to form or join VAXcluster 

It waits for 100 milliseconds, during which time the STACONFIG pro­
cess and the cluster connection manager run; and then tests whether the 
quorum disk has been found. 

If it has, SYSINIT assigns a channel to it, opens the quorum file, and 
starts the quorum disk polling routine to run every QDISKINTERVAL 
seconds. It then checks whether the system is a member of a VAXcluster 
System yet. If not, SYSINIT waits again. 

When the system is a member, SYSINIT takes out a concurrent read 
lock on the system device and resets the time to correspond to the clus­
terwide time. 

4. If the system disk is to be a member of a disk shadow set, SYSINIT 
changes mode to kernel and establishes the shadow set. 

5. Back in user mode, SYSINIT recreates executive mode logical names for 
SYS$SYSDEVICE and SYS$DISK in the system logical name table. (In the 
case of an MSCP system disk, their equivalence names are not quite 
right. At the time EXE$INIT created them, the allocation class of the 
system disk was not yet known. When SYSINIT runs, the MSCP server 
for the system disk has communicated its allocation class and SYSINIT 
can form an equivalence name that contains the allocation class.) It also 
creates the following logical names: 

SYS$SYSTEM 
SYS$SYSROOT 
SYS$COMMON 
SYS$SHARE 
SYS$MESSAGE 

The creation of these names cannot be delayed until the creation of the 
STARTUP process, because these names are needed as a part of the crea­
tion of that process: 

-The name of the image that is passed to the STARTUP process is 
SYS$SYSTEM:LOGINOUT. 

-SYS$SYSTEM is defined in terms of SYS$SYSROOT and SYS$­
COMMON. 

-The LOGINOUT image performs a merged image activation (see 
Chapter 21) to map the DCL CLI into Pl space. The image activator 

705 



Operating System Initialization 

706 

uses logical name SYS$SHARE to locate the shareable image DCL­
TABLES.EXE, which contains the command database for the DCL CLI. 

-The logical name SYS$MESSAGE is required for RMS to open the sys­
tem message file. 

6. If the SYSBOOT parameter UAFALTERNATE is set, SYSINIT creates the 
executive mode logical name SYSUAF in the system table. Its equiva­
lence name is SYS$SYSTEM:SYSUAFALT.DAT. This feature allows an 
alternate authorization file to be used. If the alternate authorization file 
does not exist, all users are denied access to the system. 

7. The following files are opened by the file 1/0 routines located in the 
executive: 

SYS$SYSTEM:PAGEFILE.SYS 
SYS$SYSTEM: SWAPFILE.SYS 
SYS$SYSTEM:RMS.EXE 

If the first part of the page file is being used as the dump file, SYSBOOT 
has already opened PAGEFILE.SYS; it is not opened again. 

8. SYSINIT calls a kernel mode procedure whose first step is to initialize 
the global page table entry list. 

9. Next, the page file is initialized. This requires that the information ob­
tained in SYSBOOT or in step 7 be loaded into a WCB that describes the 
page file. The address of that WCB is stored in the page file control block 
(see Figure 14-22) for the initial page file. 

In addition, a bit map that describes the availability of each block in 
the page file is allocated from nonpaged pool and initialized to all l's to 
indicate that all blocks are available. If the page file is being used as a 
dump file, then the first four blocks of the page file are not reflected in 
the bit map and will always be reserved for a minimum dump containing 
pending error log messages and the dump header block. If the page file 
contains a valid dump and the SYSBOOT parameter SA VEDUMP is set 
to 1, the blocks in the page file that contain the dump are marked un­
available. When the dump is successfully copied to another file using the 
SDA command COPY, the blocks are marked available. If the page file 
contains a valid dump, the second and third blocks of the dump file (error 
log buffers) are preserved before the page file is initialized. 

10. If present, the swap file is initialized. SYSINIT allocates a WCB from 
nonpaged pool and stores its address in the first swap file entry in the 
page-and-swap-file vector (see Chapter 14). A bit map identical to a page 
file bit map is allocated from nonpaged pool and initialized to all l's to 
indicate all blocks are available. 

11. SYSINIT tests the SYSPAGING parameter. If it is set, SYSINIT allocates 
and fills in a WCB that describes all of the file extents of RMS.EXE and 



25.2 Initialization in Process Context 

creates a pageable system section for RMS. The section table entries that 
describe it are initialized, starting with the second section table entry in 
the system header. (The first system section table entry, the one that 
describes the system image itself, was set up by EXE$INIT.) RMS pages 
in the system working set. If SYSPAGING is zero, SYSINIT creates 
writable address space for RMS and reads it into memory. SYSINIT re­
cords the starting address of RMS in MMG$GL_RMSBASE. 

12. The second and third blocks of the dump file contain the contents of the 
error log buffers if the system just crashed. These buffers were written to 
the dump file by the bugcheck code (see Chapter 8) so their contents 
would not be lost. If the system is rebooting after a crash, SYSINIT copies 
the valid and complete messages that were in the second and third blocks 
of the dump file to the error log buffers. Eventually, they will be written 
to SYS$ERRORLOG:ERRLOG.SYS. 

SYSINIT also reads the first block of the dump file and logs the entry 
describing the crash. The bugcheck routine wrote this entry in the first 
block of the dump file when the system crashed. This alternative to typi­
cal error logging avoids the loss of the entry that might otherwise result if 
the two error log buffers had insufficient space at the time of the crash. 

If they were very full at the time of the crash, after SYSINIT processes 
the second and third blocks of the dump file, they may be very full again. 
When SYSINIT tries to log the crash entry, there may be insufficient 
space for it in the error log buffers. In that case, the error log entry that 
actually describes the crash will never appear in an error log report. How­
ever, the crash entry is contained in the dump file and its information 
can be retrieved until the time the dump file is reused. 

13. A cold start is logged in the error log. 
14. SYSINIT exits the kernel mode procedure, returning to user mode, and 

then changes mode to executive. It calls the Image Activate ($IMGACT) 
and Image Fixup ($IMGFIX) system services to activate the Files-11 ex­
tended QIO Processor (XQP) in SYSINIT's Pl space. It then calls an ini­
tialization routine in the XQP. From this point on, the file system is 
available for SYSINIT's file operations. 

15. SYSINIT exits the kernel mode procedure, returning to user mode, and 
then changes mode to executive. It calls a procedure to mount the system 
disk. 

16. SYSINIT requests the Set Time ($SETIME) system service to record the 
system time in the system image. 

1 7. The FIL$0PENFILE cache can now be deallocated from nonpaged pool. 
18. The logical name SYS$TOPSYS is created. 
19. SYSINIT changes mode to kernel and calls a procedure to create global 

sections for the XQP's image sections. If the SYSBOOT parameter 
ACP _XQP _RES is set, SYSINIT creates resident global sections so that 

707 



Operating System Initialization 

25.2.3 

25.2.3.1 

708 

the pages of the XQP will always be in physical memory. The primitive 
file system routines that are a part of SYS.EXE are no longer required and 
will disappear in time as a result of system working set replacement. 

20. The system message file (SYS$MESSAGE:SYSMSG.EXE) is opened and 
mapped. The section table entries that map the message file's sections 
are initialized following the section table entries for RMS in the system 
header. 

21. Finally, the STARTUP process is created. The important point about this 
process is that it executes the image LOGINOUT, which maps a CLI (see 
Chapter 23). 

STARTUP Process 

The STARTUP process created by SYSINIT completes system initialization. 
This process is the first in the system to include a CLI. The inclusion of DCL 
allows the operation of this process to be directed by a DCL command proce­
dure. 

STARTUP.COM. The steps performed by commands in this file follow: 

1. System logical names are created, including the following: 

-If the system root is not part of a VAXcluster common disk, redefini­
tions of 

SYS$COMMON 
SYS$SYSROOT 

-VMS-specific names: 

SYS$SPECIFIC 
SYS$SYSDISK 
SYS$ERRORLOG 
SYS$EXAMPLES 
SYS$HELP 
SYS$INSTRUCTION 
SYS$LIBRARY 
SYS$MAINTENANCE 
SYS$MANAGER 

-Logical names used for system management, installation, and testing 
-Logical names used by the symbolic debugger 
-The logical name table LNM$DCL_LQGICAL 

2. If the SYSBOOT parameter WRITESYSPARAMS is set, STARTUP runs 
SYSGEN to issue the command WRITE CURRENT. This preserves the 



25.2.3.2 

25.2 Initialization in Process Context 

parameter settings in the file SYS$SYSTEM:VAXVMSSYS.PAR. 
3. Detached system processes are started: 

-Error logger (ERRFMT) 
-,-Job controller (JOB_CONTROL) 
-Operator communication process (OPCOM) 

On a system that is a member of a VAXcluster System, several other 
detached processes are started: 

-Files-11 XQP cache server (CACHE_SERVER) 
-Cluster server (CLUSTER_SERVER) 
-Configure process (CONFIGURE) 

4. The Install Utility is invoked to make privileged and shareable im­
ages known to the system. Its input is taken from the file SYS$­
MANAGER: VMSIMAGES.DAT. 

5. If there is a site-specific command procedure SYS$MANAGER:SYCON­
FIG.COM, STARTUP invokes it. This command procedure can configure 
user-written device drivers prior to VMS autoconfiguration or disable 
autoconfiguration. 

6. If the SYSBOOT parameter NOAUTOCONFIG is zero and if SYCON­
FIG.COM has not zeroed the DCL symbol STARTUP$AUTOCON­
FIGURE, STARTUP runs SYSGEN to configure external I/O devices. If 
NOAUTOCONFIG is zero and STARTUP$CONFIGURE has not been 
zeroed, STARTUP.COM creates the CONFIGURE process. 

7. If a secondary swap file is to be used, it is installed. 
8. If the system is a VAX 8600 or a VAX 8650, STARTUP runs the program 

ERRSNAP to copy hardware-recorded error information from the console 
disk to SYS$ERRORLOG. 

9. STARTUP enables interactive logins. 
10. The site-specific c01nmand file SYS$MANAGER:SYSTARTUP.COM is 

invoked. 
11. If the rights database is in use and if the node-specific identifier (the 

string SYS$NODE_ concatenated with the node name) does not exist, 
STARTUP creates it. 

12. STARTUP then logs out. 

Site-Specific Startup Command File. The site-specific command file, 
SYS$MANAGER:SYSTARTUP.COM, that is distributed with VAX/VMS 
contains no commands. It can be edited to do the following: 

• Start batch and print queues 
·~ Set terminal speeds and other device characteristics 
• Create site-specific system logical n:ames 

709 



Operating System Initialization 

• Install additional privileged and shareable images 
• Load user-written device drivers 
• Mount volumes other than the system disk 
• t-oad the console block storage driver (if desired) with a CONNECT 

CONSOLE command to SYSGEN and mount the console medium 
• Issue the DCL command START/CPU to initialize the attached processor 

on an asymmetric multiprocessing system 
• Start DECnet (if present on the system) 
• Run the System Dump Analyzer (SDA) to preserve the previous dump file 

in case the system crashed 
• Produce an error log report 
• Announce system availability 

25.3 SYSTEM GENERATION UTILITY 

25.3.1 

710 

SYSGEN fits into the initialization sequence in two unrelated ways: 

• It is invoked directly by STARTUP.COM to autoconfigure the external 1/0 
devices. 

• It interacts indirectly with system initialization by producing parameter 
files that may be used by SYSBOOT for future bootstrap operations. 

The role of SYSGEN in autoconfiguring the 1/0 system is described in the 
manual Writing a Device Driver for VAX/VMS. This section briefly compares 
the operations that SYSGEN and SYSBOOT perform on parameter files. 
Table 25-3 summarizes this comparison. 

Contents of Parameter Block 

A common module called PARAMETER is linked into both the SYSGEN and 
SYSBOOT images. This module contains information about each adjustable 
parameter. Each parameter is defined by a data structure. The SYS$­
LIBRARY:LIB.MLB macro $PRMDEF defines the fields in the data structure. 
Table 25-4 lists the fields. This data never changes. In addition, each parame­
ter occupies a cell in a table of working values. This table is manipulated 
with the following SYSGEN and SYSBOOT commands: 

• Displayed by SHOW parameter-name commands 
• Altered by SET parameter-name value commands 
• Overwritten by a USE command 

There is also a copy of the working table linked into the system image, 
SYS.EXE. (This table is produced from the same source module as PARAME­
TER with a different setting of a conditional assembly parameter. The resul­
tant module is called SYSPARAM.) 



25.3 System Generation Utility 

Table 25-3 Comparison of SYSGEN and SYSBOOT 

SYS GEN 

SYSGEN has four unrelated purposes: 
• It creates parameter files for use in 

future bootstrap operations. 
• It modifies dynamic parameters in 

the running system with the 
WRITE ACTIVE command. 

• It loads device drivers and builds 
their associated data structures. 

• It creates and installs additional 
page and swap files. 

PURPOSE 

SYSBOOT 

SYSBOOT configures the 
system using parameters 
from VAXVMSSYS.PAR or 
anotherparameter file. 

USE IN SYSTEM INITIALIZATION 

During initialization, SYSGEN can 
be invoked to autoconfigure all 
1/0 devices and record the current 
SYSBOOT parameters. 

ENVIRONMENT 

SYSGEN executes in the normal 
environment of a utility program. 
The driver and swap/page 
functions require privilege 
(CMKRNL). A WRiTE ACTIVE 
command also requires CMKRNL 
privilege. The parameter file 
operations are protected through 
the file system. 

USE 
• USE FILE-SPEC 

• USE CURRENT 
• USE DEFAULT , 
• USEACTIVE 

SET 
SHOW 

EXIT (CONTINUE) 

WRITE 

VALID COMMANDS 

Commands associated with device drivi;rs 
Commands associated with 

.additional page and swap files 

INITIAL CONDffiONS 

Implied USE ACTIVE 

SYSBOOT is the secondary 
bootstrap program that 
executes after VMB and 
before control is passed to 
the executive. 

SYSBOOT runs in a stand­
alone environment with no 
file system, memory 
management, process 
context, or any other 
environment provided by 
VMS. 

USE 
• USE FILE-SPEC 

• USE CURRENT 
• USEDEFAULT 
• No equivalent command 

SET 

SHOW 
EXIT (CONTINUE) 

No equivalent command 

No equivalent commands 

No equivalent commands 

Implied USE CURRENT 

711 



Operating System Initialization 

25.3.2 

712 

Table 25-4 Information Stored for Each Adjustable Parameter by SYSGEN and 
SYSBOOT 

Item 

Address of parameter in SYS.EXE 1 

Default value of parameter 

Minimum value that parameter can assume 

Maximum value that parameter can assume 

Parameter flags 

• DYNAMIC parameter 

• STATIC parameter 

• SYSGEN parameter 

• ACP parameter 

• JBC parameter 

• RMS parameter 

• SCS parameter 

• SYS parameter 

• TTY parameter 

• SPECIAL parameter 

• DISPLAY parameter 

• CONTROL parameter 

• MAJOR parameter 

• PQL parameter 

• NEG parameter 

• CLUSTER parameter 

• LGI parameter 

• ASCII parameter 

Size of this parameter 

SHOW /DYN 

SHOW /GEN 

SHOW /ACP 

SHOW /JOB 

SHOW /RMS 

SHOW /SCS 

SHOW /SYS 

SHOW /TTY 

SHOW /SPECIAL 

SHOW /MAJOR 

SHOW /PQL 

SHOW /CLUSTER 

SHOW /LGI 

Bit position if parameter is flag 

Name string for parameter 

Name string for units 

Working value of parameter 

Size of Item 

Longword 

Longword 

Longword 

Longword 

Word 

Byte 

Byte 

16 bytes 

12 bytes 

Longword 

'The working value of each parameter is found not only in internal tables in SYSBOOT 
and SYSGEN but also in the executive itself. In fact, the parameter address (first item) stored 
for each parameter locates the working value of each parameter in the memory image of the 
executive. 

Use of Parameter Files by SYSBOOT 

Figure 25-4 shows the flow of parameter value data during a bootstrap opera­
tion. The numbers in the figure describe the significant steps in setting val­
ues or moving data: 



·.Default 
Parameter 
Settings 
lntemal 

to 
SYSBOOT 

~ 
USjCURRENT 

1-----' 

USE 
DEFAULT 

USEfllespec 

Implied 
USE 

CURRENT 

SYS BOOT 
. Table 

SYSBOOT 
Action of 

Working 
Values 

USE 
SET 
CONTINUE (EXll) 

User-creeled Parameter Flies 

25.3 System Generation Utility 

Parameter 
Settings 

In Memory 
Image of 
Executive 

STARTUP 
Action· 

Figure 25-4 Movement of Parameter Data by SYSBOOT 
and SYSINIT 

(DThe first step that SYSBOOT performs is to locate the file VAXVMS­
SYS.PAR in SYS$SYSROOT:!SYSEXE] and read its parameter settings into 
SYSBOOT's working table. In the language of SYSBOOT and SYSGEN 
commands, this step is an implied command: 

USE CURRENT 

This operation causes the system to be initialized with the parameter 
settings used during the previous configuration of the system !because of 
step s1. 

In versions of VMS prior to Version 4, the current parameters were 
stored in SYS.EXE. However, to support sharing of SYS.EXE by multiple 
members of a V AXcluster System, it was necessary to move the parame­
ters into a separate file, called VAXVMSSYS.PAR. Each member has its 
own version of this file. 

713 



Operating System Initialization 

25.3.3 

714 

®If a conversational bootstrap was selected (R5<0> was set as input to 
VMB), then SYSBOOT will prompt for commands to alter current parame­
ter settings. A USE command to SYSBOOT's prompt results in the work­
ing table being overwritten with an entire set of parameter values. There 
are three possible sources of these va~ues: 

-USE FILE-SPEC directs SYSBOOT to the indicated parameter file for a 
new set of values. 

-USE DEFAULT causes the working table in SYSBOOT to be filled with 
the default values for each parameter. 

-USE CURRENT causes the parameter values in VAXVMSSYS.PAR to be 
loaded into SYSBOOT's working table. (A USE CURRENT command is 
redundant if it is the first command passed to SYSBOOT.) 

®Once the initial conditions have been established, individual parameters 
can be altered with SET commands. The conversational phase of SYS­
BOOT is terminated with a CONTINUE (or EXIT) command. 

©After SYSBOOT has calculated the sizes of the various pieces of system 
space but before it transfers control to EXE$INIT, it copies the contents of 
its working table to the corresponding table in the memory image of the 
executive. 

®One of the steps performed by the STARTUP process copies the parameter 
table from the memory image of the executive to SYS$SYSTEM: 
VAXVMSSYS.PAR. Because SYSBOOT always does an implied USE CUR­
RENT as its first step, this implied command guarantees that all subse­
quent bootstraps will use the latest parameter settings even if no conversa­
tional bootstrap is selected. 

Use of Parameter Files by SYSGEN 

SYSGEN's interaction with parameter files is not an integral part of the boot­
strap operation. However, its action, pictured in Figure 25-5, closely parallels 
that of SYSBOOT. 

(!)The initial contents of SYSGEN's working table are the values taken from 
the memory image of the executive. The data movement pictured in Fig­
ure 25-5 is a movement from one memory area to another, rather than the 
result of an 1/0 operation. In any event, SYSGEN begins its execution with 
an implied command: 

USE ACTIVE 

This set of initial conditions would differ from SYSBOOT's initial state 
only if someone had already run SYSGEN and written parameters to either 
CURRENT (VAXVMSSYS.PAR) or ACTIVE (the memory image of the ex­
ecutive) or if SYSBOOT had modified any parameters. 



25.3 System Generation Utility 

Parameter Implied 
Settings USE ACTIVE 

in Memory 
Image of 
Executive 

SYSGEN 
Table 

of 
Working 
Values 

us'E)c"~\"' "j' ACT~'" @ 

/~--~I 
U~E DE/FAULT .__ __ _, 

WR<-
1 lwRIT~TIVE-'\ 

WRITE filespec 'Y 
Default 

Parameter 
Settings 
Internal 

to 
SYSGEN 

USE filespec 

I I us~ 
SET 
WRITE 
EXIT(CONTINUE) 

User-defined 
Parameter Files 

~ ~ 
Parameter 
Settings 

in Memory 
Image of 
Executive 

Figure 25·5 Movement of Parameter Data by SYSGEN 

CD SYSGEN can choose initial settings for its working table in exactly the 
same fashion as SYSBOOT. 

There is an additional reserved file specification available to SYSGEN. A 
USE ACTIVE command causes the parameter table from the memory 
image of the executive to be copied into SYSGEN's working table. 

®SET commands can be used to alter individual parameter values. Typi­
cally, an EXIT (or CONTINUE) command would not be used until the 
final settings were preserved with a WRITE command. 

@This step preserves the contents of SYSGEN's working table in the follow­
ing way: 

-WRITE FILESPEC creates a new parameter file that contains the contents 
of SYSGEN's working table. 

-WRITE CURRENT alters the copy of SYS$SYSTEM:VAXVMSSYS.PAR. 
The next bootstrap operation will use these values automatically (even 
without a conversational bootstrap option). 

-Several parameters determine the size of portions of system address 
space. Other parameters determine the size of blocks of pool space allo-

715 



Operating System Initialization 

716 

cated by EXE$INIT. These parameters cannot be changed in a running 
system. However, many parameters are not used in configuring the sys­
tem. These parameters are designated as DYNAMIC (see Table 25-4). 

A WRITE ACTIVE command to SYSGEN alters the settings of dy­
namic parameters only in the memory image of the executive. 

A word of caution is in order here. Before one experiments with a new 
configuration, the parameters from a working system should be saved in a 
parameter file. If the new configuration creates a system that is unusable, the 
system can be restored to its previous state by directing SYSBOOT to use the 
saved parameters. 



26 Power Failure and Recovery 

For there are moments when one can neither think nor feel. 
And if one can neither think nor feel, she thought, where is 
one? 

Virginia Woolf, To the Lighthouse 

Powerfail recovery support enables a suitably equipped VAX/VMS system to 
survive power fluctuations and power outages of short duration with no loss 
of operation. The support is provided by hardware features (battery backup) 
and VAX/VMS software routines. 

VAX/VMS support includes a power failure service routine that saves the 
volatile state of the machine when the power fails, a restart routine that 
restores that state when the power is restored, CPU-specific initialization 
code, and device-specific code within many VAX/VMS device drivers. VAX/ 
VMS also provides process notification by means of power recovery asyn 
chronous system traps (ASTs). 

26.1 POWERFAIL SEQUENCE 

When a drop in operating voltage occurs, the CPU hardware requests a 
powerfail interrupt at IPL 30. This interrupt is dispatched through the vector 
at offset 12 in the system control block (SCB). The VMS powerfail interrupt 
service routine is EXE$POWERFAIL, in module POWERFAIL. That powerfail 
is an interrupt means its grant can be blocked by code executing at IPL 30 or 
31. A number of routines in VMS do this deliberately for a short sequence of 
instructions to avoid potential synchronization problems. 

EXE$POWERFAIL saves the volatile machine state (those registers whose 
contents are not pres~rved by some sort of battery backup) in main memory 
(which is preserved by battery backup). EXE$POWERFAIL itself saves regis­
ters common to all types of VAX processor. To save CPU-specific registers, it 
invokes the routine EXE$REGSAVE, in module [SYSLOA]ERRSUBxxx, part 
of the CPU-specific image SYSLOAxxx (see Appendix G). The registers are 
saved either on the interrupt stack or in the restart parameter block (RPB). 
The interrupt stack pointer (ISP) is the last value saved. Checking the value 
of the saved ISP, the restart routine can determine whether the interrupt 
service routine preserved all the required registers. 

Once the registers have been saved, EXE$POWERFAIL waits in the follow­
ing tight loop until the CPU ceases all operations: 

10$: BRB 10$ 

717 



Power Failure and Recovery 

26.2 

718 

Table 26-1 Data Saved by EXE$POWERFAIL and Restored during Power Recovery 

The elements in Group A are restored before memory management is reenabled. The RPB is accessed 
through its physical address. 

Element 

System base register 

System length register 

GROUP A 

System control block base register 

Where Stored 

RPB 

RPB 
. RPB 

The elements in Group Bare restored after memory management has been reenabled, which allows the 

RPB and interrupt stack to be accessed through system virtual addresses. 

GROUPB 

Element 

Interrupt stack pointer 

Process control block base register 

Software interrupt summary register 
Pl length register 

P 1 base register 
PO length register 

PO base register 
AST level register 

Four per-process stack pointers 

CPU-specific processor registers 
(see Table 26.2) 

Where Stored 

RPB 

RPB 

RPB 
Interrupt stack 

Interrupt stack 

Interrupt stack 

Interrupt stack 
Interrupt stack 

Interrupt stack 

Interrupt stack 

The elements in Group Care not restored until the other power recovery steps described in the text are 

performed and the powerfail interrupt is dismissed. The PC/PSL pair are restored by the RE I 

instruction that dismisses the interrupt. 

GROUPC 

Element 

General registers (RO through FP) 

Interrupt PC and PSL 

Where Stored 

Interrupt stack 

Interrupt stack 

The BRB instruction was chosen over an explicit HALT to avoid triggering a 
restart before the CPU stops. 

Tables 26-1 and 26-2 list the registers preserved by EXE$POWERFAIL and 
restored at powerfail recovery. 

POWER RECOVERY 

The console subsystem power recovery logic performs various validity 
checks in a CPU-dependent fashion and then passes control to the VMS re-



26.2.1 

26.2 Power Recovery 

Table 26-2 CPU-Specific Registers Saved at Powerfail 

Register1 

Performance monitor enable register 
Performance monitor enable register 

Translation buffer disable register 

Memory cache disable register 

None 

None 
Performance monitor enable register 

SBI maintenance register 

Performance monitor enable register 

Translation buffer disable register 

Memory cache disable register 

Performance monitor enable register 

Cache state register 
Fbox state register 

Performance monitor enable register 

Cache on register 

CPU 

VAX-il/730 

VAX-11/750 

VAX-11/750 

VAX-11/750 

MicroVAX I 

MicroVAXlI 

VAX-ll/78x 

VAX-11/78x 

VAX 8200 family 
VAX 8200 family 

VAX 8200 family 

VAX86x0 

VAX86x0 

VAX86x0 

VAX 8800 family 

VAX 8800 family 

1These CPU-specific processor registers are saved on and restored from the interrupt 
stack. 

start routine. This routine restores the saved state of the machine and then 
notifies each device driver hi the system that power has failed, so that the 
drivers can take device-specific action to restore interrupted 1/0 requests. 

Initial Step in Power Recovery 

The initial step in recovery from a power failure is performed by the CPU­
specific console subsystem. It performs the following tasks: 

I. Initializes the CPU 
2. Verifies that the contents of memory survived the power outage 
3. Locates the restart routine through the RPB 
4. Passes control to that routine · 

The RPB is a page aligned page of physical memory whose first four 
longwords contain the physical address of the RPB, physical address of the 
restart routine, checksum of the first 31 longwords in the restart routine, and 
a warm restart inhibit flag. On most systems, the RPB is located at physical 
address 0. If the first 64K-byte block of physical memory contains any bad 
pages, the RPB is at a higher address. (The RPB in the V AX-11/782 must be at 
address 0.J 

719 



Power Failure and Recovery 

26.2.1.1 

720 

When searching for the RPB, the console subsystem looks for a longword 
on a page boundary that contains its own address. The console subsystem 
examines the second longword to determine that it contains a valid physical 
address (and not zero, in case a page of zeros passes the first test). If the 
address is acceptable, the checksum of the first 31 words of the restart rou­
tine is calculated. The checksum is then compared to the checksum in the 
RPB. If the two checksums are equal, the page contains an RPB and the re­
start routine is intact. 

The subsections that follow contain further information about power re­
covery on each VAX processor. Many VAX processors have two control panel 
switches whose settings affect powerfail recovery: a console enable switch 
and a restart action switch. The console enable switch can allow or inhibit 
command entry on the local console terminal. The descriptions that follow 
assume that the local console terminal is enabled and that console com­
mands can be entered at it. 

Power Recovery on the VAX-11/730. When power is restored on a VAX-ll/ 
730, the console subsystem tests whether the AUTO RESTART/BOOT 
switch on the front of the processor cabinet is in the OFF position. If it is, the 
console subsystem simply prompts on the console terminal and waits for 
input. (Note that the AUTO RESTART/BOOT switch on the front panel 
should be switched off when first turning on a VAX-111730 system to avoid 
an unnecessary restart attempt.) 

If the AUTO RESTART/BOOT switch is in the ON position, the console 
subsystem searches through physical memory for a valid RPB. In searching 
for the RPB, it tests whether the contents of memory survived the power 
outage. Memory contents can fail to be backed up for two different reasons: 

• Because the system does not have battery backup, the contents of memory 
are lost when the power fails. 

• Because the power is off for longer than the battery backup could preserve 
memory contents, the contents of memory are lost when the battery 
backup fails. (This time depends on the amount of memory present but is 
generally not shorter than ten minutes.) 

If the RPB is not located, the restart fails and the console subsystem 
attempts to bootstrap the system by executing the command file 
DEFBOO.CMD. 

If the RPB is located, the warm restart inhibit flag (bit <0> in the fourth 
longword of the RPB) is checked. The bit set indicates that a warm restart has 
already been attempted and has failed. In that case, the console subsystem 
then executes the command file DEFBOO.CMD to bootstrap the system. 

If the warm restart inhibit flag is clear, the console subsystem performs the 
following steps: 



26.2.1.2 

26.2.1.3 

26.2 Power Recovery 

1. Sets the warm restart inhibit flag to prevent a second restart attempt be-
fore the first has succeeded 

2. Loads SP with the address of the RPB plus 20016 

3. Loads AP with a value indicating the cause of the halt 
4. Loads RIO and Rl 1 with the PC and PSL at the time of the halt for use in 

servicing error halt conditions other than powerfail 
5. Transfers control to the restart routine whose address is in the second 

longword of the RPB 

Power Recovery on the VAX-11/750. When power is restored on a VAX-11/ 
750, the console subsystem tests the setting of the POWER-ON ACTION 
switch on the front of the processor cabinet. If the switch is in either the 
HALT or BOOT position, the console subsystem performs the designated 
action. If the switch is in either the RESTART/BOOT or RESTART/HALT 
position, the console subsystem attempts a restart. The second option (BOOT 
or HALT) is used only if the restart fails. 

For a restart, the console subsystem first tries to locate the RPB. In search­
ing for the RPB, it tests whether the contents of memory survived the power 
outage. 

If a valid RPB cannot be located or if the warm restart inhibit flag is set, the 
restart attempt has failed and the console subsystem takes its alternative 
option. For the BOOT alternative, the console subsystem executes bootstrap 
read-only memory (ROM) code for unit 0 of the device identified by the de­
vice switch on the cabinet. The ROM code reads the boot block, block 0, 
from that device and then transfers control to it. (See Chapter 24 for more 
information.) 

If a valid RPB is located, the console subsystem transfers control to the 
restart routine as described in Section 26.2.1.1. 

Power Recovery on the VAX-11/780 and VAX-11/785. When power is re­
stored on the VAX-11/780 or VAX-11/785, the console subsystem (LSI-11) 
performs the same sequence that it does when a system is being initialized 
(see Chapter 24). If power is also being restored on the LSI-11, CONSOL.SYS 
is loaded from the console floppy. No state for the LSI-11 is preserved across a 
power failure. 

The console subsystem then tests the AUTO RESTART switch on the 
front of the processor cabinet. If it is in the OFF position or if the warm start 
inhibit flag maintained by the console subsystem is set, the console subsys­
tem simply prompts on the console terminal and waits for input. 

If the AUTO RESTART switch is in the ON position and the warm start 
inhibit flag is clear, the console subsystem executes the command file 
RESTAR.CMD. Before it executes RESTAR.CMD, it reloads the CPU 
microcode writable control store (WCS) contents from the console floppy 

721 



Power Failure and Recovery 

26.2.1.4 

722 

(from file WCSxxx.PAT). WCS is not preserved by memory battery backup. 
The standard RESTAR.CMD command file contains commands designed 

to restart a running VMS system. RESTAR.CMD generally contains the fol­
lowing lines: 

HALT 

!NIT 

DEPOSIT/I l:L 

DEPOSIT RO 0 

DEPOSIT R:L 3 

DEPOSIT R2 0 

DEPOSIT R3 0 

DEPOSIT Rt; 0 

DEPOSIT RS 0 

DEPOSIT FP 0 

200031100 

START 2000300.!; 

Halt processor 

Initialize processor 

Set address of SCB base 

Clear unused register 

TR number for UNIBUS adapter 

Clear unused register 

Clear unused register 

Clear unused register 

Clear unused register 

No machine check expected 

Start restart referee 

On systems with more than two memory controllers, the UNIBUS adapter 
(UBA) is not located at TR 3. For such a system, RESTAR.CMD must be 
altered so that Rl is loaded with the TR number of the UBA. This step is 
necessary because the UBA map registers are used by ROM restart code as 
temporary storage. Note that RESTAR.CMD is different on the VAX-11/782 
multiprocessing system; RESTAR.CMD for the VAX-11/782 is described in 
Chapter 27. 

The START command passes control to the same ROM program that is 
used during system initialization, except that the program is entered at its 
restart entry point. The ROM program determines whether the contents of 
main memory are valid. If they are, the ROM program attempts to locate the 
RPB. 

If a valid RPB cannot be found or if the warm restart flag inhibit in the RPB 
is set, the ROM program sends a reboot (cold start) command to the console 
subsystem by executing the following instruction: 

MTPR #·xro2, #PR$_TXDB 

(The special uses of the PR$_ TXDB register for communication from the 
VAX CPU to the console program are described in Chapter 19.) 

If a valid RPB is found, the ROM program passes control to the restart 
routine as described in Section 26.2.1.1. 

Power Recovery on the MicroVAX I. The MicroVAX I has no battery backup 
for its memory. Therefore, when the power recovers, it is not possible to 
resume normal system operation. When power is restored on a MicroVAX I, 
the console microcode tests the setting of two option switches (dual-in-line 
package, or DIP, switches 3 and 4 on the datapath module of the CPU). These 
two recovery action switches specify the actions that the processor attempts 



26.2.1.5 

26.2.1.6 

26.2 Power Recovery 

following power recovery or a halt condition. 
The four possibilities are as follows: 

• Both off-Warm start, boot, halt 
• Switch 4 off, 3 on-Boot, halt 
• Switch 4 on, 3 off-Warm start, halt 
• Both on-Halt 

The default setting is the first one, with both switches off. This means that 
after a power recovery or halt condition, the console microcode first tries to 
restart. The next activity, boot, is attempted only if the restart fails. If the 
boot attempt fails, the console microcode halts the processor and prompts on 
the console terminal. 

For a restart, the console microcode first tries to locate the RPB. If a valid 
RPB is located, the console subsystem transfers control to the restart routine 
as described in Section 26.2.1.1. Because there is no battery backup, the con­
sole is not likely to find a valid RPB except after an error halt. 

Power Recovery on the Micro VAX II. The MicroVAX II has no battery 
backup for its memory. Therefore, when the power recovers, it is not possible 
to resume normal system operation. When power is restored on a Micro VAX 
II, the console program tests the setting of the halt enable switch. The halt 
enable switch is on the CPU patch panel insert, mounted inside the rear of 
the CPU cabinet. 

It has two positions to specify the actions the processor attempts following 
power recovery or a halt condition. If the switch is down, as it is by default, 
halts are "disabled." Otherwise, they are enabled. Following power recovery, 
the console tests the halt enable switch. If halts are enabled, the console 
performs a diagnostic self-test and halts the processor. Otherwise, after the 
self-test, it reboots the processor. If the boot attempt fails, the console halts 
the processor. 

Following an error halt, the console tests the halt enable switch and halt 
action bits in a register called the console program mailbox (CPMBX). VMS 
does not set the bits (except when it initiates a reboot directly), so the bits 
remain at their initialized value of zero. If halts are enabled, the console halts 
the processor. Otherwise, it tests and sets the CPMBX restart-in-progress flag. 
If the flag was already set, the restart fails. If the flag was clear, the console 
tries a warm restart, followed by a boot; if both fail, it halts the processor. 

For a restart, the console first tries to locate the RPB. If a valid RPB is 
located, the console subsystem transfers r~ontrol to the restart routine as de­
scribed in Section 26.2.1.1. 

Power Recovery on the VAX 8200 Family. When power is restored on a VAX 
8200 family member, the console subsystem tests the settings of the upper 
and lower key switches on the front of the processor cabinet. If the upper 

723 



Power Failure and Recovery 

26.2.1.7 

26.2.1.8 

724 

switch is in either the Enable or Secure position and the lower switch is in 
the Auto Start position, the console subsystem attempts a restart. 

The console microcode tests and sets its restart-in-progress switch. It also 
tests its bootstrap-in-progress switch. If either flag is already set, the restart 
attempt is aborted. If the bootstrap-in-progress switch is clear, the console 
subsystem initiates a boot; otherwise, it halts. (See Chapter 24 for more infor­
mation.) The console subsystem next tries to locate the RPB. In searching for 
the RPB, it tests whether the contents of memory survived the power outage. 

If a valid RPB cannot be located or if the RPB warm restart inhibit flag is 
set, the restart attempt has failed and the console subsystem initiates a boot. 
If a valid RPB is located, the console subsystem transfers control to the re­
start routine as described in Section 26.2.1.1. 

Power Recovery on the VAX 8600 and VAX 8650. When power is restored to 
the console microprocessor of a VAX 86x0, the console microprocessor ini­
tializes itself and the VAX CPU as described in Chapter 24. 

In the case of a warm restart, the console program tests the Restart Control 
switch, which has four positions: 

BOOT 
HALT 
RESTART/BOOT 
RESTART/HALT 

If the switch is in the BOOT position, the console program invokes the DEF­
BOO.COM command procedure. If it is in the HALT position, the console 
program halts. 

If it is in one of the two RESTART positions, the console program confirms 
that the battery backup unit was still operational when the power was re­
stored. It tests its warm-start-in-progress flag. A set flag indicates a previ­
ously unsuccessful attempt at warm start. If the flag is clear, the console 
commands the VAX 86x0 console support microcode to locate the RPB. 

If the RPB is located, the console program sets the warm-start-in-progress 
flag and transfers control to the restart routine as described in Section 
26.2.1.1. 

If restart cannot be attempted and the Restart Control switch is in the 
RESTART/BOOT position, the console program invokes the DEFBOO.COM 
command procedure. If the switch is in the RESTART/HALT position, the 
console program halts the processor. 

Power Recovery on the VAX 8800 Family. When power is restored to the 
console microprocessor of a VAX 8800 family member, P/OS boots and runs 
th~ console program. The console program restores its own state, which had 
been saved in a log file. It determines whether the power failure ·included 



26.2.2 

26.2 Power Recovery 

the VAX CPU. If it did, the console program begins the execution of 
SYSINIT.COM, described in Chapter 24. SYSINIT.COM tests the software 
keyswitch AUTO_RESTART. If it is set, SYSINIT.COM invokes the com­
mand procedure RESTAR.COM. If it is not set but AUTO_BOOT is, 
SYSINIT.COM invokes DEFBOO.COM. 

After an error halt, the console program executes the command procedure 
RESTAR.COM. 

RESTAR.COM tests the state of the AUTO_RESTART switch. If it is set, 
the command procedure deposits the halt code, PC, and PSL into AP, RIO, 
and Rl 1, initializes the CPU, clears RO through RS, and searches for an RPB. 
If a valid RPB is located, RESTAR.COM transfers control to the restart rou­
tine as described in Section 26.2.1.1. 

If AUTO_RESTART is disabled or if a valid RPB is not found, then 
RESTAR.COM tests the setting of AUTO_BOOT. If it is enabled, the pro­
cedure DEFBOO.COM is executed. 

Operations of the Restart Routine 

The VMS restart routine, EXE$RESTART in module POWERFAIL, receives 
control with the following environment: 

• In kernel mode 
• On the boot-time interrupt stack (SP = RPB base plus 20016) 

• With memory management disabled 
• At IPL 31 

These initial conditions are similar to the entry to VMB, except that the 
RPB has already been initialized. One more similarity between the entry to 
EXE$RESTART and VMB is the contents of the SP register. This value serves 
two purposes. First, the SP specifies the location of the RPB. Second, the last 
several longwords in the page containing the RPB are used as stack space by 
EXE$RESTART until the saved interrupt stack pointer is restored. 

EXE$RESTART first restores information saved in the RPB by 
EXE$POWERFAIL (see Table 26-1, Group A). Most of this information is 
necessary to tum memory management back on. A dummy PO page table is 
set up (just like the one set up by SYSBOOT) so that the page containing the 
restart routine is mapped as a PO virtual address that, when translated, yields 
the identical physical address. Chapter 25 shows how the contents of POBR 
are determined to produce this identity mapping. 

After the PO page table is set up, memory management is enabled using the 
same two instructions used by EXE$INIT: 

MTPR #1,#PR$_MAPEN 

JMP @#10$ 

10$: 

725 



Power Failure and Recovery 

726 

(This technique is described at the beginning of Chapter 25.) 
Once memory management has been enabled, EXE$RESTART checks 

whether the restart was initiated as a part of powerfail recovery or in response 
to some other error halt condition detected by the console subsystem. 

If the restart did not result from powerfail recovery, EXE$RESTART signals 
a reason-specific fatal bugcheck. This will result in a cold start, a bootstrap, if 
the SYSBOOT flag BUGREBOOT is set. By causing a crash, EXE$RESTART 
preserves information about the error condition in the crash dump file. One 
example of such an error halt is invalid interrupt stack. The CPU microcode 
causes this halt if the interrupt stack pointer points to a page which is not 
valid or to which kernel mode does not have write access when an interrupt 
or exception must be serviced. 

If this is a power recovery, EXE$RESTART clears two warm start inhibit 
flags, the use of which is discussed in Section 26.3.2. 

Before copying the saved value of the interrupt stack pointer to the SP 
register, EXE$RESTART tests it. If the value is zero, the ISP was not saved by 
EXE$POWERFAIL, and EXE$RESTART signals the fatal bugcheck STATE­
NTSVD, software state not saved during powerfail. 

EXE$RESTART restores the registers listed in Table 26-1, Group B. 
EXE$RESTART does not use the SP register to restore this data from the 
stack. Instead, it uses a scratch register (R6) to traverse the stack. Because the 
SP register is left pointing to the end of the saved information, the data on the 
stack will not be overwritten if another power failure occurs while the data is 
being restored. Using a scratch register allows the restart routine to be re­
peated as many times as necessary without special action. 

EXE$POWERFAIL invokes the routine EXE$REGRESTOR, in module 
[SYSLOA]ERRSUBxxx, part of the CPU-specific image SYSLOAxxx (see Ap­
pendix G). After everything except the general registers has been restored, 
EXE$RESTART takes the following steps: 

1. It initializes processor registers by invoking the CPU-specific routine 
EXE$INIPROCREG, in module [SYSLOA]ERRSUBxxx. 

2. It reads the battery backed up time-bf-year clock by invoking the CPU­
specific routine EXE$READ_ TODR, also in [SYSLOA]ERRSUBxxx. 

3. The restart time plus three minutes is computed and stored at the global 
location EXE$GL_PWRDONE. This value represents the time it may 
take all hardware components to become fully operational again. Device 
drivers can use the routine EXE$PWRTIMCHK (in module POWERFAIL) 
to make sure that these three minutes have passed before restarting 1/0 
operations. It may take as long as three minutes for devices such as disks 
to become operational. 

4. It computes the duration of the powerfail and stores the result in global 
location EXE$GL _PF ATIM. 



26.2.3 

26.2 Power Recovery 

5. It corrects the system time, at global location EXE$GQ_SYSTIME, by 
adding to it the duration of the powerfail. 

6. It scans the timer queue for timer queue elements that have expired. It 
changes absolute due time in each TQE it finds to the corrected system 
time. This substitution is done to allow periodic timer requests to rees­
tablish internal synchronization. 

For example, suppose that a periodic timer request is declared with a 
period of one minute and the power is off for three minutes. With no 
adjustment of the absolute due time, the request would expire immedi­
ately three times following power recovery. The readjustment causes one 
request to come due immediately, wi~h the next request not occurring 
until one minute later. · 

Note that relative synchronization between several requests may be 
lost as a result of a power failure: For example, if ope request is due to 
expire in two minutes, a second is due to expire in five minutes (or three 
minutes after the first), and the power is off for more than five minutes, 
then both requests will be delivered at the same time. A power recovery 
AST might be used to allow multiple requests to reestablish their relative 
synchronization. 

7. A power recovery entry is made in the error log. 
8. EXE$RESTART invokes CNX$POWER_FAIL. If the system is a member 

of a VAXcluster System, this notifies the connection manager of power 
recov~ry. 

9. EXE$RESTART initializes external adapters by invoking the CPU­
. specific routine EXE$STARTUPADP in [SYSLOA]ERRSUBxxx. 

10. All external devices are notified that a power failure and recovery se­
quence have occurred. This step is detailed in Section 26.2.3. 

11. EXE$RESTART lowers IPL to 29 to allow any pending powerfail inter­
rupt to occur (see Section 26.3.1) and then raises it back to IPL 31. 

12. It modifies the SP to point to the saved general registers on the interrupt 
stack and restores them. . · 

13. The last sanity check flag, EXE$GL_PFAI:J:,TIM, is cleared (see Section 
26.3.1). 

14. RPB$L.ISP is cleared (so that EXE$RESTART will find it zero if the state 
is incompletely saved in a subsequent power failure). 

15. EXE$RESTART dismisses the powerfail interrupt by executing an REI 

mstruction. 

Device Notification 

EXE$RESTART invokes the routine EXE$INIT _DEVICE, also in module 
POWERFAIL, to initialize devices and device drivers after a powerfail 
recovery. 

727 



Power Failure and Recovery 

26.2.4 

26.2.4.1 

728 

While IPL is still at 31 to block all interrupts, EXE$INIT _DEVICE scans 
the 1/0 database. It sets the powerfail bit, UCB$V _POWER, in the status 
word of each unit control block (UCB) it finds (except mailbox UCBs). 

For each controller it finds, EXE$INIT _DEVICE invokes the controller ini­
tialization routine. If that routine returns successfully, EXE$INIT _DEVICE 
invokes the unit initialization routine for each unit of that controller. The 
powerfail bit enables these initialization routines to differentiate between 
power recovery and ordinary initialization. 

EXE$INIT _DEVICE checks each unit to see whether its driver fork process 
is expecting an interrupt or has 1/0 being timed. If either is true, 
EXE$INIT _DEVICE clears its interrupt-expected bit, sets its timeout­
expected bit, and sets its due time to zero. These actions cause each such 
device to time out. Later, when the driver's timeout routine runs, it can dif­
ferentiate between ordinary timeout and power failure by checking the 
powerfail bit. 

The check for device timeout occurs within EXE$TIMEOUT, the system 
subroutine that executes once a second (see Chapter 11). EXE$TIMEOUT 
cannot execute until later, after both of the following occur: 

1. The interval clock interrupts (which means that IPL has dropped below 22 
or 24, depending on CPU type). 

2. The software timer interrupt service routine executes. (This will not hap­
pen until IPL is lowered below 7.) 

In VMS, most of the work done to recover from a power failure occurs in 
drivers. VMS disk drivers and magnetic tape drivers are capable of restarting 
whatever request they were processing when the power failed in such a way 
that the power failure is totally transparent to them. (If a magnetic tape unit 
lost vacuum, operator intervention is required to reestablish the vacuum and 
rewind the tape. Once that is done, the driver automatically restarts the 1/0 
request that was in progress when the power failed.) 

Process Notification 

VMS can notify a process of powerfail recovery by queuing an AST to it. A 
process requests this notification by calling the Set Power Recovery AST 
($SETPRA) system service. 

Set Power Recovery AST System Service. The $SETPRA system service pro­
cedure, EXE$SETPRA in module SYSSETPRA, runs in kernel mode. It per­
forms two steps: 

1. Stores the address of the AST in global location CTL$GL_POWERAST 



26.2.4.2 

26.3 Multiple Power Failures 

and the access mode in which the AST is to be delivered in location 
CTL$GB_PWRMODE 

2. Sets the power AST flag (PCB$V _PWRAST) in the process control block 
(PCB) status longword 

The effect of this system service is disabled at image rundown (see Chap­
ter 21). 

Delivery of Power Recovery ASTs. The delivery of a power recovery AST 
occurs in several distinct steps: 

1. EXE$RESTART stores the duration of the power failure in location 
EXE$GL_PFATIM. (This value is simply the current contents of the time­
of-year clock minus EXE$GL_PFAILTIM, the time at which the power 
failed.) Nonzero contents in this location act as a trigger to the swapper 
the next time that it runs. 

Note that no special action is taken at this point to wake up the swap­
per. In fact, because this routine is running at IPL 31, the swapper sched­
uling state could not be changed without potential synchronization 
problems. 

2. The swapper's main loop (see Chapter 17) calls routine EXE$POWERAST 
(in module SYSSETRPA) if location EXE$GL_PFATIM contains a nonzero 
value. 

3. EXE$POWERAST scans the PCB vector and queues a special kernel mode 
AST to each process that has the PCB$V _PWRAST flag set. That flag is 
cleared to prevent mµltiple ASTs in case another powerfail occurs before 
the process executes. A special kernel mode AST is required because the 
address and access mode of the recovery AST are stored in the Pl space of 
the requesting process. 

4. The special kernel mode AST copies the address and access mode from 
their Pl space locations into the AST control blockand queues the recov­
ery AST to the requesting process. 

5. Finally, the recovery AST itself is delivered to the requesting process. The 
AST parameter is the duration of the power failure in ten-millisecond 
units. 

To receive notification of a subsequent powerfail recovery, a process must 
"rearm" the AST by calling the $SETPRA system service again. 

26.3 MULTIPLE POWER FAILURES 

Hardware and software flags exist in combination to prevent infinite looping 
or related problems in response to a power failure that occurs while either the 
powerfail service routine or the restart routine is executing. 

729 



Power Failure and Recovery 

26.3.1 

730 

Nested Powerfail Interrupts 

Caution is necessary where power failure is concerned. Fluctuating voltages 
can cause the power repeatedly to fail and be restored. VMS must provide for 
the possibility of a second powerfail interrupt before an earlier one is dis­
missed. 

The powerfail interrupt code is guaranteed only a brief interval be­
tween the powerfail interrupt request and the total loss of power. If the 
powerfail interrupt is blocked while the CPU is running at IPL 30 or 31, 
EXE$POWERFAIL will have that much less time to save the volatile 
machine state. 

A second powerfail interrupt can be blocked for a considerable time while 
EXE$RESTART restores state from a previous interrupt. If the second inter­
rupt were not granted until EXE$RESTART completed restoration and dis­
missed the first powerfail interrupt, there could be insufficient time to save 
the machine state. 

VMS uses a combination of three things to defend against nested powerfail 
interrupts: 

• EXE$GL_PFAILTIM 
• Preserving the machine state saved on the stack 
• Temporarily lowering IPL in EXE$RESTART 

One of the first steps EXE$POWERFAIL takes is to save the contents of the 
time-of-year clock in location EXE$GL_PFAILTIM. This location retains 
nonzero contents until just before EXE$RESTART executes its REI instruc­
tion, dismissing the powerfail interrupt. If a powerfail interrupt occurs while 
this location contains a nonzero value (indicating that another failure/recov­
ery is already in progress), EXE$POWERFAIL does not save the machine 
state. 

Volatile machine state has already been saved as a result of the first power­
fail interrupt. That state will be restored eventually by EXE$RESTART. Any 
state saved at the time of the second interrrupt would merely reflect the 
interruption of EXE$RESTART's attempts to restore state after the first inter­
rupt. This check prevents nested powerfail interrupts on a system experienc­
ing some obscure behavior that would otherwise be extremely difficult to 
diagnose. 

One more bit of caution is evident in the manner in which EXE$RESTART 
restores data from the interrupt stack. A scratch register is used to traverse 
the stack, rather than the SP register. If another powerfail interrupt were to 
occur while data was being restored, its saved PC and PSL would not overlay 
the previously saved data. 

When EXE$RESTART is nearly done but EXE$GL_PFAILTIM is still non­
zero and SP is still intact, it deliberately lowers IPL to 29 to allow any pend­
ing powerfail interrupt to be granted. If one is pending and granted, 



26.3.2 

26.3.3 

26.3 Multiple Power Failures 

EXE$POWERFAIL sees that EXE$GL_PFAILTIM is nonzero and saves no 
state. It branches to self, awaiting the power failure. When the power recov­
ers and EXE$RESTART is reentered, it again restores machine state from the 
RPB and the state saved on the stack. 

If there is no pending powerfail interrupt, EXE$RESTART raises IPL back 
to 31, clears EXE$GL_PFAILTIM and RPB$L_ISP, and resets the SP register 
to reflect the removal of all saved machine state. It then executes an REI 

instruction to dismiss the interrupt. 

Prevention of Infinite Restart Loop 

There are two flags whose purpose is to prevent an infinite restart loop like 
the following loop: 

1. An error halt condition occurs. 
2. The console subsystem locates the RPB and transfers control to 

EXE$RESTART. 
3. Prior to restoring or crashing the system, EXE$RESTART incurs an error 

halt condition. 
4. The console subsystem locates the RPB and transfers control to 

EXE$RESTART. 
5. EXE$RESTART incurs the same error halt condition ... 

The first flag is located in the RPB. During system initialization, EXE$1NIT 
clears it after there is enough of VMS to restart. 

The flag is tested 'and set by the console subsystem during restart after it 
has found a valid RPB. If it locates an otherwise valid RPB with this flag set, it 
aborts the restart attempt. Either the RPB is in error or an earlier restart 
attempt has incurred an error halt. 

A second flag, maintained by the console subsystem on some types of VAX 
CPU, functions in a similar manner. It is set by the console at the beginning 
of the restart. EXE$RESTART initiates the clearing of it by sending a com­
mand to the console subsystem. On some CPUs, the following instruction 
sends the command: 

MTPR #'XF03, #PR$_TXDB 

If the console subsystem detects that this flag is set while attempting a re­
start, it aborts the restart and takes the same processor-specific action it 
would if the RPB flag were. set. 

Device Driver Action 

Drivers do not have to concern themselves directly with the multiple resta!t 
problem. Even though the bulk of driver recovery is done in response to an 

731 



Power Failure and Recovery 

IPL 7 software interrupt when a second power failure is possible, drivers are 
protected by one of the following situations: 

• The driver controller and unit initialization routines are called at IPL 31 
before EXE$GL_PFAILTIM is cleared. Drivers are protected here by the 
same sanity checks that VMS uses for itself. 

• If the driver does not get called at its timeout entry point before the power 
fails again, the preserved driver state indicates a unit that has already timed 
out. When power is finally restored permanently, the driver will be called at 
its timeout entry point. 

• If the driver is in the middle of its timeout routine, it still appears to the 
system as a unit that has timed out. It will be called at its timeout entry 
point again when the machine finally stabilizes. 

• The driver may succeed in returning control to the operating system with, 
for example, one of the following calls: 

WFixxCH 

IOFORK 

REQCOM 

If the operating system has received control, the request has either been 
completed or the driver is back into a state (such as expecting an interrupt) 
where the power recovery logic will cause the driver to be called at its 
timeout entry point when the power is finally restored. 

26.4 FAILURE OF EXTERNAL ADAPTER POWER 

732 

Certain adapters can experience a power failure independently of the proces­
sor. These adapters are as follows: 

• UNIBUS adapter on a VAX-ll/78x, VAX 86x0 
• Second UNIBUS interface on a VAX-11/750 
• MASSBUS adapter on a VAX-11/78x, VAX 86x0 
• CI780, CI750, and CIBCI port adapters 

For these adapters, VMS provides service routines for the powerfail and sub­
sequent recovery interrupts. 

A key problem is that a reference to the registers or 1/0 space of a power­
failed adapter causes a machine check. If the reference is made in kernel 
mode, for example, by a device driver trying to access device registers, the 
machine check would result in a fatal bugcheck. To prevent such machine 
checks, VMS remaps the system virtual address space reserved for the adapter 
to point to the "black hole" page. This page is a physical page of memory 
allocated at system initialization for this purpose. This mapping technique 
prevents subsequent machine checks or related errors from device drivers 
that reference a powerfailed adapter. 



26.4.1 

26.4.2 

26.4 Failure of External Adapter Power 

UNIBUS Power Failure 

A UNIBUS failure on a VAX-11/780, VAX-111782, VAX-11/785, VAX 8600, or 
VAX 8650 does not necessarily indicate that the entire system is in error. 
VMS allows UNIBUS errors, including UNIBUS power failure caused by 
turning off the power to the UBA or the BA-llK, to occur without crashing 
the entire system. 

When such an error occurs, the UBA interrupts on behalf of itself. The 
interrupt service routine for the affected UBA detects that a UBA interrupt 
(as opposed to a UNIBUS device interrupt) has occurred and transfers control 
to an error routine that does the following: 

• Checks that the interrupt is a result of the power failure of the UBA or 
UNIBUS 

• Writes an error log entry 
• Remaps the system virtual addresses that previously mapped the UBA itself 

and the UNIBUS 1/0 page (24 pages in all) so that these pages now point to 
the so-called black hole page reserved at initialization time 

• Modifies the interrupt vector to point to a power-up routine 

If the UNIBUS has gone away either because the power was turned off or 
for some other reason, devices that were waiting for 1/0 completion will time 
out. The program that issued the initial 1/0 request will receive an appropri­
ate error notification, assuming that no driver is sitting in a tight loop at 
device IPL waiting for a status bit to change state. 

When the power is restored, the system virtual pages are remapped to point 
to the UBA registers and UNIBUS 1/0 space. EXE$INIT _DEVICE is invoked 
to reinitialize all devices on the recovered UBA. Its actions in reinitializing 
devices are described in Section 26.2.3. If any devices were removed while the 
power was turned off, they will be marked offline as part of the power recov­
ery operation. The interrupt vector is restored to its usual contents. 

It is also possible for power to fail on the second UNIBUS interface (UBI) of 
a VAX-11/750 without failing on the entire system. VMS responds as it does 
on the systems previously described. The UBI interrupts to indicate powerfail 
through the vector at SCB offset 1£416. 

Support for Power Failure of Other Adapters 

A MASSBUS adapter (MBA) power failure on a VAX-l l/78x or VAX 86x0 does 
not necessarily indicate that power is being lost for the entire system. VMS 
services MBA powerfail on those processors as it does UBA powerfail. It maps 
the system virtual address space corresponding to the MBA registers to the 
black hole page. When the power is restored, the address space is mapped 
back to the MBA registers, the MBA is initialized, and EXE$INIT _DEVICE is 
invoked to reinitialize the devices on the adapter. 

733 



Power Failure and Recovery 

734 

Certain computer interconnect (CI) adapters (CI780, CI750, and CIBCI) can 
also lose power independently of the rest of the system. The CI device driver, 
PADRIVER, maps the system virtual address space corresponding to the CI 
registers to the black hole page. When the power is restored, the driver 
remaps the address space, reloads the volatile CI microcode, and initializes 
the CL 



27 Asymmetric Multiprocessing 

The one is independent, and its essential nature is to be for 
itself; the other is dependent, and its essence is life or exis­
tence for another. The former is the Master, or Lord, the latter 
the Bondsman. 

Hegel, Phenomenology of Mind 

An asymmetric multiprocessing (ASMP) system contains two processors in a 
tightly coupled configuration. The primary processor of an ASMP system 
does computational work, performs memory management and I/O for the 
system, and schedules work for itself and the attached processor. The at­
tached processor does computational work and can perform any user, super­
visor, or executive mode service. 

The primary processor, however, must execute most kernel mode code 
(system services and exception service routines) for user processes. An excep­
tion or interrupt that causes a change to kernel mode on the attached proces­
sor usually results in an interrupt to the primary processor. The primary 
processor selects another process for the attached processor and schedules for 
itself the process executing in kernel mode. 

This chapter describes the internals of VAX/VMS asymmetric multipro­
cessing. It is assumed that readers are familiar with the concepts of multipro­
cessing and the multiprocessing configurations described in the Guide to 
Multiprocessing on VAX/VMS. 

27.1 ASMP DESIGN GOALS 

VAX/VMS ASMP was originally designed to join two VAX-11/780 processors 
into a tightly coupled, asymmetric multiprocessing system (the VAX-11/782) 
to expand the processing power of the VAX-111780. The system was targeted 
for users with multistreamed, compute-intensive jobs. 

There were several requirements for the multiprocessing system: 

• It must use existing DIGITAL hardware with no changes. 
• The same version of VAX/VMS must run on the VAX-11/782 and any other 

VAX processor. In addition, applications must run on all processors. 
• Single processor systems must not be penalized by an increase in size of the 

executive. 
• There must be no complex changes to existing kernel mode routines. 

The last requirement is met by preventing the attached processor from 

735 



Asymmetric Multiprocessing 

executing most VMS kernel mode code. VMS runs in kernel mode when it 
modifies system data structures. Its chief means of synchronizing access to 
these data structures is raising IPL to block interrupts. Raising IPL on one 
processor does not synchronize two processors' accesses. Implementing mul­
tiprocessor synchronization requires complex changes to existing kernel 
mode routines. ASMP therefore ensures that nothing runs in kernel mode on 
the attached processor except ASMP code. (Chapter 2 describes the impor­
tance of synchronization in maintaining system databases and several meth­
ods of achieving it.) 

To meet the rest of these requirements, the asymmetric multiprocessing 
code was designed as a separate component loaded into nonpaged pool when 
multiprocessing is turned on. 

With VAX/VMS Version 4.4, asymmetric multiprocessing support has been 
extended to the VAX 8300 and VAX 8800 systems, in addition to the VAX-ll/ 
782. Each of the systems has its own version of the multiprocessing code 
with support for its hardware. 

27.2 ASMP HARDWARE CONFIGURATIONS 

27.2.1 

736 

VAX/VMS ASMP requires a hardware configuration of two CPUs of the same 
model type. Each processor can execute an instruction stream independently 
of the other. There must be an interprocessor interrupt mechanism that en­
ables software running on one processor to interrupt the other. 

The CPUs access common physical memory through the same physical 
addresses. The CPUs' memory caches are invalidated as needed by the hard­
ware, without software involvement. The memory must be capable ofinter­
locked access. That is, if one CPU accesses the memory with an interlocked 
instruction (for example, BBSSI), the memory must block any attempted in­
terlocked access by the other CPU. 

In addition, the CPUs must be at the same hardware and microcode revi­
sion level. If one has a floating-point accelerator or optional microcode, such 
as G and H floating-point support, both must have it. These requirements 
exist because a process running on one CPU can be context switched in the 
middle of an instruction and resumed on the other processor. 

The following sections describe the systems on which ASMP is supported. 

VAX-11/782 

The VAX-ll/782 system consists of two VAX-ll/780 processors that use 
from two to four MA780 shared memory units as common memory. Both 
processors address a common pool of memory in the MA780 shared memory. 
The local memory on either processor is not used by VAX/VMS but is re­
quired for stand-alone diagnostics. 



27.2 ASMP Hardware Configurations 

The MA780 shared memory was designed to support multiprocessing. It 
provides interprocessor interrupts and, optionally, multiprocessor selective 
cache invalidation. For performance reasons, MA780 selective cache invali­
dation is required on MA 780s used in a VAX-111782 system. 

Although the two processors share a common physical memory, each CPU 
has its own memory cache of recently referenced physical addresses and their 
contents. If one processor writes to a location in the shared memory whose 
contents the other processor has cached, the second processor's cache must 
be invalidated. The MA780 provides for this by having the second processor's 
MA780 port adapter send its processor a cache invalidation message. How­
ever, use of this technique for every memory write on a VAX-111782 system 
would result in more synchronous backplane interconnect (SBI) traffic than is 
desirable. 

Instead, MA780 selective cache invalidation reduces overall SBI traffic. 
The hardware associates longwords in shared memory with the processor (or 
processors) using those locations. When one processor performs a write to a 
longword of shared memory, the other processor is sent a. cache invalidation 
message only if its cache contains the location that was written. Execution of 
an interlocked instruction forces any pending cache invalidations to be com­
pleted before the instruction completes. 

Figure 27-1 shows the hardware configuration of a VAX-11/782. The con­
figuration shown in the figure uses two MA780 shared memory units. The 
configuration is asymmetric, unlike that of the VAX 8300 and VAX 8800. 
Except for one UNIBUS adapter, all 1/0 adapters are attached to the SBI of the 
primary processor. Although 1/0 devices can be physically connected to the 

MA780 
MA780 Shared MA780 

Port Memory Port 
#1 

VAX-11/780 s s VAX-111780 
Attached B B Primary 
Processbr .1 I Processor 

MA780 
MA780 Shared MA780 

Port Memory Port 
#2 

UNIBUS 
Adapter UNIBUS 

Adapter 

Figure 27•1 Hardware Layout of the VAX-11/782 

737 



Asymmetric Multiprocessing 

27.2.2 

27.2.3 

738 

attached processor, they are not recognized by VMS. One UNIBUS adapter is 
required on the attached processor for stand-alone diagnostic purposes. 

VAX8300 

The VAX 8300 consists of two VAX 8200 processors on a common backplane 
interconnect, the VAXBI. The processor which is in the first physical V AXBI 
backplane slot is connected to the console. It is booted as the primary proces­
sor; the other one is the attached processor. The processors access common 
memory on the VAXBI. The VAXBI provides an interprocessor interrupt capa­
bility. Although both processors are physically capable of accessing any 1/0 
adapters connected to the VAXBI, ASMP support requires that only the pri­
mary processor access 1/0 adapters and devices. 

Any VAXBI node which implements a cache, such as a CPU, must monitor 
the VAXBI for writes to locations in its cache and invalidate them as re­
quired. Because both processors and the memory are on the same VAXBI, that 
mechanism is sufficient to maintain the validity of both processors' caches. 

Figure 27-2 shows the hardware configuration of a VAX 8300. The configu­
ration in the figure shows a VAX 8300 with two 1/0 adapters on the VAXBI, a 
VAXBI-to-UNIBUS adapter (DWBUA), and a VAXBI-to-CI adapter (BCI750). 

VAX8800 

The VAX 8800 consists of two processors on a common backplane, the VAX 
8800 memory interconnect (NMI). The processors access common memory 
on the NMI. The NMI provides an interprocessor interrupt capability. A 
processor is either the LEFT or the RIGHT processor, depending on its physi­
cal position in the CPU cabinet. A console command allows either processor 
to be selected as the primary processor. By default, the LEFT processor boots 
as the primary processor. 

Both CPUs and the memory are on the NMI. Each CPU has its own cache 
of recently referenced locations and their contents. Logic in the cache moni­
tors the bus for modifications to memory whose contents are cached. The 
cache invalidates itself whenever appropriate. This, however, is not sufficient 
to ensure the validity of the data in cache, since each processor's writes to 
memory locations are buffered temporarily in its cache. Execution of an in­
terlocked instruction, however, forces the "write buffer" to be emptied, com­
pleting writes to memory. (Other instructions such as REI and SVPCTX also 
force emptying of the write buffer.) As the other processor's cache monitors 
the NMI, it sees the forced writes and invalidates itself as appropriate. 

A VAX 8800 NMI-to-VAXBI adapter (NBIA) connects one or two VAXBI 
buses to the NMI. Although both processors are physically capable of access­
ing any I/O adapters connected to the NMI or VAXBis, ASMP support re­
quires that only the primary processor access 1/0 adapters and devices. 



27.3 

27.3 ASMP Software Components 

Console 

VAXBI 
Memory 

VAXBI 

Figure 27·2 Hardware Layout of the VAX 8300 

DWBUA 

u 
N 
I 
B 
u 
s 

Attached 
Processor 

BCl750 

c 
I 

Figure 27·3 shows a possible VAX 8800 hardware configuration. The con­
figuration in the figure shows a VAX 8800 with one NBIA/NBIB connecting 
one VAXBI bus. 

ASMP SOFTWARE COMPONENTS 

The following executable images, each with a corresponding symbol table, 
contain the ASMP code: 

• MP.EXE and MP.STB for the VAX-111782 
• MP _SSS.EXE and MP _8SS.STB for the VAX 8300 
• MP _8NN.EXE and MP ~8NN.STB for the VAX 8800 

Note that ASMP support for either the VAX 8300 or the VAX 8800 is an 
option licensed separately from VAX/VMS. The executable image for either 
of these systems is shipped as an encrypted file with VAX/VMS; obtaining 
the key requires purchase of the license. ASMP support for the VAX-11/782, 
however, is included in the VAX/VMS license. 

To run ASMP on a VAX 8300 or a VAX 8800, the system manager defines 
the logical name MP to be equivalent to the appropriate image name. For 
example, the following command specifies support for a VAX 8800: 

DEFINE/EXEC/SYSTEM MP MP_BNN 

In response to the DCL multiprocessing commands SHOW CPU, START 
/CPU, and STOP/CPU, DCL activates the image MP in SYS$SYSTEM. If the 

739 



Asymmetric Multiprocessing 

27.3.1 

740 

LEFT 
CPU 

Console 

Console 
Interface 

Memory NBIA 

RIGHT 
CPU 

NBIB NBIB 

DWBUA 

u 
N 
I 
B 
u 
s 

v 
A 
x 
B 
I 

Figure 27·3 Hardware Layout of the VAX 8800 

v 
A 
x 
B 
I 

system manager has defined the logical name MP, then DCL activates the 
image whose name is equivalenced to MP. 

Each ASMP image contains support for the DCL multiprocessing com· 
mands and the ASMP code that is loaded into nonpaged pool. The symbol 
tables define symbolic offsets in the ASMP code loaded into nonpaged pool. 

The source modules for these images are part of the [MP] facility. Each 
image contains source modules in common with the others and source mod­
ules which are unique to it. The source modules which are hardware-specific 
have file names that end in _ 782, _8SS, or _8NN, depending on the system 
type. For example, the module MPLOAD_ 782 contains the load code for a 
VAX-11/782. This chapter refers to the generic hardware-specific source 
module by using a file name that ends in _xxx, for example, MPLOAD_xxx. 

Hooks in the Executive 

For the nonpaged pool ASMP code to be included as part of the VMS execu­
tive, a number of symbols were added to the executive. These symbols indi-



27.3 ASMP Software Components 

cate locations which must be patched dynamically to jump into ASMP code 
when multiprocessing is turned on. These symbols are termed ASMP hooks. 
The symbols used as multiprocessing hooks are contained in every copy of 
the VAX/VMS operating system; however, they are used only by the ASMP 
code. 

Three types of hooks are used to link the multiprocessing code into the 
VMS executive. The following table shows the hooks and the changes they 
perform: 

Symbol Format 

MPH$name 

MPH$nameHK 

MPH$nameCONT 

Change to Code 

The instruction indicated by the hook is replaced by a 
jump to multiprocessing code. This hook is used 
when the multiprocessing routine MPS$name 
performs the entire set of actions normally performed 
by the routine xxx$name. 

The instruction indicated by the hook is replaced by a 
jump to multiprocessing code. This hook is used 
when only a few lines need to be changed by 
multiprocessing, or when supplemental action is 
necessary. 

Multiprocessing code returns to the normal flow of code 
at this point. No change is made to the instruction 
indicated by this hook. 

All the instructions at MPH$nameHK and MPH$name hooks are modified 
when multiprocessing is turned on. First, however, six bytes at each location 
are saved in a storage area in nonpaged pool so that they can be restored if 
multiprocessing is turned off. At each location an instruction is placed that 
transfers control to corresponding ASMP code. In most cases, the instruction 
isaJMP: 

JMP @#MPS$name 

All entry points in the loaded multiprocessing code have names of the form 
MPS$name. 

The following code fragments illustrate the use of the MPH$name hook in 
the routine SCH$QAST, in module ASTDEL. Because queuing ASTs is sig­
nificantly different on an ASMP system, the entire routine is superseded by 
one within the ASMP code. 

The following fragment shows the instruction at hook MPH$QAST before 
multiprocessing is turned on: 

MPH$QAST:: 
SCH$QAST:: 

MOVZWL ACB$L_PID(RS),RO 

After multiprocessing is turned on and the hook altered, the instruction is as 
follows: 

741 



Asymmetric Multiprocessing 

27.3.2 

742 

MPH$QAST:: 

SCH$QAST:: 

JMP @#MPS$QAST 

In such a case, the replacement multiprocessing routine exits by returning 
control to the modified routine's caller (with an RSB or RET instruction, as 
appropriate). 

The following code fragment illustrates the use of the MPH$nameHK and 
MPH$nameCONT, in the routine SCH$ASTDEL. This hook is used to insert 
multiprocessing code into the routine, rather than to replace code. 

SETIPL #IPL$_SYNCH 

MPH$ASTDELHK:: 

REMQUE @PCB$L_ASTQFL(R~),RS 

BVS QEMPTY 

MPH$ASTDELCONT:: 

When multiprocessing is turned on, the instruction at MPH$ASTDELHK is 
replaced with a 

JMP @#MPS$ASTDELHK 

The code at MPS$ASTDELHK returns by jumping to MPH$ASTDELCONT. 

Hooks in the Primary Processor's SCB 

Another form of hook is used to modify the software control block (SCB) of 
the primary processor. In this case, the contents of specific vectors in the SCB 
are replaced by the addresses of multiprocessing interrupt service routines. 
These routines are invoked by interrupts and return through the normal REI 

mechanism. 
When the ASMP code is loaded, the primary processor's SCB is modified. 

The original contents of the modified vectors are saved so that they can be 
restored if ASMP is turned off. The IPL 5 software interrupt vector is modi­
fied to point to the multiprocessing rescheduling routine (see Section 27.6.1 
for a description of its operation). Because this vector is used to awaken 
XDELTA on a single processor system, the XDELTA interrupt must be 
moved. The IPL 15 software interrupt vector, which is otherwise unused, is 
modified to dispatch to the XDELTA interrupt service routine. 

These two changes to the software interrupt vectors occur on all ASMP 
systems. The other SCB changes, however, are specific to each hardware 
system. 

When multiprocessing is enabled on a VAX-11/782, the interprocessor in­
terrupt vector for the first MA780 is modified to point to a multiprocessing 
routine; the MA780 error interrupt vector remains unchanged. The inter­
processor interrupt vectors for any additional MA780s point to unexpected 



27.4 Attached Processor States 

interrupt error handlers. The vectors at IPLs 20 and 21 and IPLs 22 and 23 are 
loaded redundantly, because the IPL levels interrupted by the MA780 are 
jumper-selectable. The even-numbered IPLs are the interprocessor interrupts 
and the odd-numbered IPLs are the error interrupts. The MA780 vectors are 
located among the nexus interrupt vectors in the second half of the SCB. 
Their exact location depends on the nexus number(s) of the MA780(s). 

For a VAX 8300 or VAX 8800 system, the SCB vector at offset 8016 is initial­
ized to contain the address of the primary processor's interprocessor interrupt 
service routine. 

27.4 ATTACHED PROCESSOR STATES . 

Within the loaded multiprocessing code, the location MPS$GL_STATE con­
taihs the state of the attached processor. There are six possible states: INI­
TIALIZE, IDLE, BUSY, EXECUTE, DROP, and STOP. 

Figure 27-4 shows the states for the attached processor and the possible 
transitions among the states. As shown in the figure, certain transitions can 
be caused only by the primary processor; others can be caused only by the 
attached processor. This protocol was designed to prevent possible synchro­
nization problems. 

When the ASMP code is loaded in response to the DCL command START 
/CPU, the attached processor is set to the INITIALIZE state. Once the at­
tached processor has executed its initialization code, it changes its execution 
state to IDLE. The primary processor schedules work for the attached proces­
sor only when the attached processor is in the IDLE. state. 

If no suitable computable process exists, the state of the attached processor 
remains IDLE and the processor loops, waiting for its state to be set to BUSY 
by the primary processor. 

The primary processor sets the state to BUSY when it schedules a process 
for the attached processor. The primary processor places the address of the 
process's PCB in MPS$GL_CURPCB. The attached processor detects the 
change to BUSY, loads its PR$_PCBB register with the physical address of the 

.---p-~ INITIALIZE 1-+--p-.-----1 DROP 

A p A 

STOP IDLE EXECUTE 

A 

p 
BUSY 

Figure 27-4 Attached.Processor States 

743 



Asymmetric Multiprocessing 

process hardware PCB, and executes a LDPCTX instruction to load the process. 
The attached processor then sets its state to EXECUTE and executes an REI 

instruction to place the process into execution. (See Chapter 10 for further 
information on the hardware PCB and the LDPCTX instruction.) 

The BUSY and EXECUTE states must be unique so that special conditions, 
such as powerfail recovery, can be handled correctly. If a powerfail occurs on 
the attached processor when its state is BUSY, the processor simply halts. 
However, if its state is EXECUTE, the attached processor must save the con­
text of its current process before halting. 

When the attached processor can no longer execute its process, it saves the 
process's context, changes its state to DROP, and interrupts the primary 
processor. The primary processor places the process's PCB into the appropri­
ate resident computable queue, sets the attached processor's state to IDLE, 
and tries to schedule another process for the attached processor. 

Thus, the attached processor usually cycles through IDLE, BUSY, EXE­
CUTE, and DROP. Section 27.6 describes ASMP scheduling in more detail. 

The attached processor enters the STOP state at the primary's request 
when the DCL command STOP/CPU is issued or when the primary proces­
sor issues a bugcheck. 

27.5 ASMP INITIALIZATION 

27.5.1 

744 

The primary processor does most of the work of system initialization. It loads 
the executive into memory and performs all the tasks that are involved in 
bootstrapping a single processor system. 

The sequence tb boot VMS varies from system to system. In particular, 
CPU initialization and loading of the primary bootstrap program, VMB.EXE, 
differ on each CPU type. However, the steps from VMB through execution of 
startup command files are basically the same on all systems. After VMS is 
running as a single processor system, the DCL command START/CPU turns 
on multiprocessing. 

Booting the attached processor differs on each of the three systems. How­
ever, once the attached processor is booted, its execution is very similar on 
all systems. 

The following sections describe briefly the parts of each system boot rele­
vant to ASMP and then the operations of the START/CPU and STOP/CPU 
commands. For additional details on system initialization, see Chapter 24. 

System Initialization on the VAX·ll/782 

As part of the installation procedures used to install the VAX/VMS operating 
system on the VAX-11/782, two special console floppy diskettes are created: 
one for the primary processor and one for the attached processor. These 



27.5 ASMP Initialization 

floppy diskettes contain special command files used to bootstrap the proces­
sors of the multiprocessing system. 

In response to a BOOT console command on the primary processor, its 
console selects one of the bootstrap command files on the console floppy and 
executes it on the primary processor. The command file clears error bits in 
the MA780 registers and defines the starting address for each MA780 mem­
ory. It initializes the CPU, initializes RO to RS as arguments to VMB, loads 
VMB at location 20016, and starts execution of VMB. Because there is no 
bootstrap ROM in the MA780, the first 64K bytes in the first MA780 are 
assumed "good," free of uncorrectable errors. The command file sets the flag 
RPB$V _MPM in RS, causing VMB to ignore local memory and use only 
shared memory as main memory. 

VMB builds the restart parameter block (RPB) at physical address 0. VMB 
configures only the shared memory in the bit map it builds to describe main 
memory. From this point on, initialization continues as it would on a single 
processor VAX-111780 system (see Chapter 24). When the initialization is 
complete on the primary processor, VMS runs normally on the primary pro­
cessor without multiprocessing, using MA780 memory rather than local 
memory. 

In response to a BOOT console command on the attached processor, its 
console locates the command file DEFBOO.CMD on the console floppy and 
executes it on the attached processor. This command file clears error bits in 
the MA780 registers and defines the starting address for each MA780 mem­
ory. These addresses must be identical to those established by the primary 
processor; hence, the need for the new VAX-11/782-specific console floppies. 

The command file initializes the CPU and starts execution at offset 
RPB$B_ WAIT ( 10016) in the RPB. Both processors share the same RPB. Until 
multiprocessing is turned on, offset RPB$B_ WAIT contains a HALT instruc­
tion. For this reason, a START/CPU command must be issued on the primary 
processor before the attached processor can be booted. In response to a 
START/CPU command, ASMP is loaded and moves a JMP instruction to off­
set RPB$B_ WAIT so that the attached processor jumps to its initialization 
code. 

The instruction at RPB$B_ WAIT resembles the following example: 

RPB$L_BUGCHK: .ADDRESS EXE$MPSTART 

RPB$B_WAIT: JMP @RPB$L_BUGCHK 

RPB$L_BUGCHK, another RPB offset, contains the physical address of EXE$­
MPSTART. See Section 27.S.4 for information on CPU-independent ASMP 
initialization. 

When multiprocessing is turned off, the location RPB$L_BUGCHK is 
loaded with the address corresponding to RPB$B_ WAIT. This turns the in­
struction into a jump to itself. If the attached processor is rebooted before 

745 



Asymmetric Multiprocessing 

27.5.2 

27.5.3 

746 

multiprocessing is turned on again, the attached processor simply waits in 
this loop until the DCL command START/CPU is reissued. 

System Initialization on the VAX 8300 

A VAX 8300 has only one physical console terminal. By default, console com­
mands are intended for the primary processor. CPU console microcode can 
pass commands and messages between the physical console and the "logical" 
console of the attached processor. Commands and messages can also be 
passed to and from the logical console of the attached processor through pro­
cessor registers accessed with MTPR and MFPR instructions. 

In response to a B[oot] console command, CPU console microcode performs 
the following actions: 

1. It locates the first 64K bytes of physically contiguous good memory. 
2. It does a node reset for all VAXBI nodes, initializing the primary processor 

and the attached processor. 
3. It initializes RO to RS on the primary processor as register arguments for 

VMB to use. 
4. It begins execution on the primary of bootstrap code loaded from an 

EEPROM in the CPU. 

The bootstrap code reads the boot block from the system disk and transfers 
control to it. The boot block code, in tum, loads VMB at offset 200 16 in the 
64K bytes of memory and transfers control to it. Finally, VMB builds the RPB 
at offset 0 in the 64K bytes of memory. Initialization continues as it would on 
a single processor system, bringing up VMS on the primary processor. 

After VMS is running, the DCL command START/CPU turns on multi­
processing and boots the attached processor. After ASMP is initialized and 
offsets RPB$B_ WAIT and RPB$L_BUGCHK modified, the ASMP code writes 
commands to the logical console of the attached processor so that the at­
tached processor begins execution at offset RPB$B_ WAIT in the RPB. The 
initialization of the RPB by the primary processor is identical to that de­
scribed in Section 27.5.1. See Section 27.5.4 for information on CPU-inde­
pendent ASMP initialization. 

System Initialization on the VAX 8800 

A VAX 8800 console is called a VAXCONSOLE. The console subsystem has 
its own processor with a fixed disk and floppy diskettes. VMB.EXE and the 
console command procedures are on the fixed disk. Through the console sub­
system, a user can issue commands to one or both CPUs. 

In response to a BOOT console command, the console locates the com­
mand procedure DEFBOO.COM. DEFBOO.COM contains a BOOT com-



27.5.4 

27.5 ASMP Initialization 

mand with a device specification. The console locates and executes the 
command procedure corresponding to the device specification, for example, 
BCIBOO.COM, to boot from a hierarchical storage controller (HSC) disk. 
Executing the command procedure, the console performs the following 
actions: 

1. It initializes both CPUs and the NMI. 
2. It locates the first 64K bytes of physically contiguous good memory. 
3. On the CPU designated to be primary, the console initializes RO to RS as 

register arguments for VMB to use. 
4. It loads VMB.EXE from the fixed disk into offset 20016 of the 64K bytes of 

memory. 
5. It starts the primary processor executing at the beginning of VMB. VMB 

builds the RPB at offset 0 in the 64K bytes of memory. 

After VMS is running, the DCL command START/CPU turns on multi­
processing and boots the attached processor. After ASMP is initialized and 
offsets RPB$B_ WAIT and RPB$L_BUGCHK are modified, the ASMP code 
sends a command to the console to boot the attached processor. The console 
executes the command procedure SECBOO.COM, performing the following 
actions: 

1. It halts the attached processor if it is not already halted. 
2. It disables memory management on the attached processor. 
3. It initializes the attached processor's PSL to indicate interrupt stack exe­

cution at IPL 31. 
4. It locates the RPB initialized by the primary processor. 
5. It starts the attached processor, executing at offset RPB$B_ WAIT, which 

contains a jump to EXE$MPSTART. 

The initialization of the RPB by the primary processor is identical to that 
described in Section 27.5.1. See the following section for information on 
CPU-independent ASMP initialization. 

Turning On Multiprocessing 

Multiprocessing is turned on in response to the DCL command START/CPU, 
which executes the MP image specified by the system manager. The com­
mand invokes routine MPS$LOAD in the hardware-specific module MP­
LOAD _xxx. 

MPS$LOAD performs the following actions: 

1. It loads a portion of the MP image into approximately 24 pages of 
nonpaged pool. These pages contain the following: 

-Data areas used for communication between the two processors 

747 



Asymmetric Multiprocessing 

748 

-Replacement code for several VMS kernel mode routines 
-All special code executed by the attached processor 
-Space for the interrupt stack, SCB, and error log buffers of the attached 

processor 

The global pointer EXE$GL_MP contains the address of the loaded 
code. The loaded code must begin on a page boundary because it contains 
data structures and code that must be page aligned. MPS$LOAD allocates 
enough pool that it can place the loaded code on a page boundary and 
deallocate any unused portion. 

The loaded code is a dynamic nonpaged pool data structure with a 
standard header. Its first longword, which is usually a FLINK, instead 
contains the address of the pool allocated for ASMP. The contents of the 
first longword are used as the address of pool to deallocate when ASMP is 
unloaded. (This address differs from the contents of EXE$GL_MP only 
when the unused portion of pool is too small to deallocate at load time.) 
The second longword is the size of the pool in bytes. The third longword 
contains the size and type fields. 

Symbolic offsets within the loaded code (for example, MPS$GL_ 
STATE) are defined in the symbol table corresponding to the MP image. 

2. The communication data areas are initialized, and the attached proces­
sor's state is set to INITIALIZE. 

3. The current system time is recorded in MPS$GQ_MPSTRTIM as the 
start time for ASMP. 

4. IPL is raised to 31 to block all interrupts, and the pages containing the 
VMS executive are made writable. 

5. Locations within the executive that are multiprocessing hooks are modi­
fied so that control is transferred to ASMP code (see Section 27.3.1 ). 

6. The primary processor's SCB is modified to handle multiprocessor sched­
uling and interprocessor interrupts (see Section 27.3.2). 

7. The attached processor's SCB is initialized. Most of its vectors dispatch 
to interrupt and exception service routines within the loaded code. There 
are, however, three exceptions which are handled by the usual VMS 
service routines-CHMU, CHMS, and CHME. These change mode 
exceptions are serviced by the usual VMS service routines running on 
the attached processor. CHMU and CHMS exceptions are described in 
Chapter 4. Chapter 9 describes the CHME exception, which is the path to 
executive mode system services and RMS services. 

8. MPS$LOAD stores the physical address of EXE$MPSTART into offset 
RPB$L_BUGCHK in the RPB. EXE$MPSTART is the attached proces­
sor's initialization and restart routine which is loaded as part of the multi pro­
cessing code. 

9. The pages containing the VMS executive that had been made writable are 



27.5 ASMP Initialization 

now made read-only. 
10. CPU-specific initialization is performed: 

-On a VAX-11/782, the MA780 port is initialized and its interprocessor 
and error interrupts are enabled. 

-On a VAX 8300, boot commands are sent to the logical console of the 
attached processor. Invoked by MPS$LOAD, MPS$MPINIT writes a 
processor register on the primary processor to send console commands, 
one character at a time. These commands make the attached processor 
halt, initialize itself, initialize its SP, and start execution at offset 
RPB$B_ WAIT in the RPB. 

-On a VAX 8800, a miscellaneous console command called "boot other 
CPU" is sent to the console subsystem. In response, it executes a com­
mand procedure to boot the attached processor. 

11. IPL is lowered to 0. 

When the attached processor is started at offset RPB$B_ WAIT, the JMP 

instruction transfers control to the initialization routine EXE$MPSTART, in 
MPINIT _xxx. EXE$MPSTART begins execution at IPL 31 with memory 
management turned off. Because memory management is disabled, 
EXE$MPSTART and all its data references must be contained in a single page 
of memory. This page of memory is referred to as the attached processor's 
"boot page." EXE$MPSTART is aligned on a page boundary within the pool 
allocated by MPS$LOAD. 

1. EXE$MPSTART stores the contents of the system ID register and any ad­
ditional CPU-specific hardware revision level information beginning at 
offset MPS$GB_CPUDATA, which is within the boot page. 

2. It turns on memory management, using information in the RPB. A pointer 
to the RPB is stored in the boot page. Once memory management is turned 
on, EXE$MPSTART is no longer confined to the boot page. 

3. It compares the hardware revision level information for the attached pro­
cessor to that of the primary processor to ensure that they are at the same 
level. If any incompatibility is found, EXE$MPSTART outputs an error 
message to the attached processor's console. 

4. It turns on the interval clock. The attached processor uses its own inter­
val clock to do CPU-time accounting and quantum-end detection for its 
processes. 

5. A cold start message is logged in the error log. 
6. IPL is lowered to IPL$_SYNCH. 
7. The attached processor's state is set to IDLE. 
8. The primary processor is interrupted with a rescheduling request. 
9. The attached processor loops, waiting for its state to be altered. 

749 



Asymmetric Multiprocessing 

27.5.5 

27.5.5.1 

750 

Turning Off Multiprocessing 

The DCL command STOP/CPU turns off ASMP. This command invokes the 
routine MPS$UNLOAD, in module MPLOAD_xxx. MPS$UNLOAD, run­
ning on the primary processor, performs the following functions: 

1. IPL is raised to IPL$_SYNCH. 
2. MPS$UNLOAD interrupts the attached processor with a stop request 

and waits for the attached processor to acknowledge the stop request. 
If the attached processor is running a process, it saves the context of 

the current process and the primary processor adds the process to its 
scheduling queues. 

In response to the stop request, the attached processor loads a jump to 
self instruction into RPB$B_ WAIT, acknowledges the stop request, and 
executes a HALT instruction. 

3. After the attached processor acknowledges the stop request, MPS$UN­
LOAD sets the state of the attached processor to STOP. 

4. MPS$UNLOAD changes the protection on the pages that contain the 
VMS executive to make them writable ahd raises IPL to 31 to block all 
interrupts. 

5. Each location identified by multiprocessing hooks is replaced with its 
original contents. 

6. MPS$UNLOAD restores the primary processor's SCB to its original con-
dition, a single processor SCB. 

7. The executive is made read-only. 
8. MPS$UNLOAD clears the global pointer EXE$GL_MP. 
9. It lowers IPL to 2 and deallocates the pages containing the multiprocess­

ing code to nonpaged pool. 
10. It lowers IPL to 0. 

When MPS$UNLOAD completes execution, the primary processor runs as 
a single CPU, and the attached processor either remains halted or restarts, 
executing the jump to self instruction at RPB$B_ WAIT until the DCL com­
mand START/CPU is issued. 

Timeout of the Attached Processor. If, for some reason, the attached proces­
sor does not respond to an interrupt request for a translation buffer invali­
dation after a reasonable amount of time (in Version 4.4, three minutes), 
the primary assumes that the attached processor is no longer functioning. In 
this case, all the steps in turning off ASMP are executed, with the exception 
of deallocating the pages in nonpaged pool. The multiprocessing code 
in nonpaged pool is not deallocated in case the attached processor resumes 
execution. 

If the attached processor times out while it is executing a process, that 
process is lost. There is no way to recover its context from the attached 



27.6 ASMP Scheduling 

processor. The process remains visible in the system with a state of CURrent, 
but it cannot be examined or deleted. Any devices or system resources allo­
cated by the lost process cannot be recovered for use without rebooting the 
system. 

27.6 ASMP SCHEDULING 

27.6.1 

To simplify synchronization of the scheduler database, the primary processor 
schedules processes for execution on itself and on the attached processor. 
Scheduling a process for the attached processor takes precedence over sched­
uling one for the primary processor. 

• The need to reschedule the attached processor is indicated by an IPL 5 inter­
rupt. 

• The need to reschedule the primary processor is indicated by an IPL 3 inter­
rupt, as it is on a single processor system. If the attached processor is IDLE, 
the IPL 3 interrupt service routine schedules a process for the attached pro­
cessor before scheduling one for the primary processor. 

The IPL 5 Interrupt Service Routine 

When the attached processor needs to be rescheduled, it interrupts the pri­
mary processor by requesting an interprocessor interrupt. The primary pro­
cessor's interprocessor interrupt service routine requests an IPL 5 interrupt to 
reschedule the attached processor. The IPL 5 interrupt service routine, 
MPS$RESCHEDIPL5, running on the primary, selects a process to run on the 
attached processor. 

MPS$RESCHEDIPL5 saves the low general registers .and invokes the rou­
tine MPS$SCHSCND, which actually schedules the attached processor. (The 
attached processor is also known as the secondary processor; the routine 
name is an abbreviated form of the phrase "schedule the secondary.") Both 
routines are in module MPSCHED. MPS$SCHSCND is also invoked from 
the IPL 3 interrupt service routine when it detects that. the attach~d processor 
is IDLE. 

MPS$SCHSCND, running on the primary processor, performs the follow­
ing actions: 

1. It raises IPL to IPL$_SYNCH to synchronize access to the scheduler data­
base. 

2. If the attached processor's state is DROP, MPS$SCHSCND first tests the 
flag MPS$V _SECWAITCK in MPS$GL_SECREQFLG. The attached pro­
cessor sets this flag if its process has invoked an event flag wait system 
service and the specified flags are clear. If MPS$V _SECWAITCK is set, the 
primary processor completes the event flag wait system service. (See Sec­
tion 2 7. 7 .2 for further details.) 

751 



Asymmetric Multiprocessing 

27.6.2 

752 

To remove a process from the attached processor, MPS$SCHSCND 
reads its PCB address from MPS$GL_ CURPCB and places the process into 
the appropriate resident computable queue. It requests an IPL 3 interrupt 
and sets the attached processor's state to IDLE. 

3. MPS$SCHSCND then searches the resident computable queues for a pro­
cess suitable for execution on the attached processor. Section 27.6.3 lists 
the constraints placed on a process which runs on the attached processor. 

4. If MPS$SCHSCND finds a suitable process, it sets the process state to 
CUR, stores its PCB address in MPS$GL_CURPCB, and sets the attached 
processor's state to BUSY. If no suitable process is available, the attached 
processor's state remains IDLE. 

The attached processor loops until its state is set to BUSY. Then the at­
tached processor executes LDPCTX and REI instructions to place the selected 
process into execution. 

When MPS$SCHSCND returns, the IPL 5 interrupt service routine restores 
the saved registers and executes an REI instruction to dismiss the interrupt. 

The IPL 3 Interrupt Service Routine 

The IPL 3 interrupt service routine consists of two routines, MPS$RESCHED 
and MPS$SCHED, both in module MPSCHED. These routines replace 
SCH$RESCHED and SCH$SCHED, their counterparts on a single processor 
system. (Chapter 10 contains a detailed description of SCH$RESCHED and 
SCH$SCHED) 

The IPL 3 interrupt service routine, running on the primary processor, per­
forms the following actions: 

1. MPS$RESCHED raises IPL to IPL$_SYNCH to synchronize access to the 
scheduler database and removes the current process from execution on the 
primary. 

2. Entry point MPS$SCHED (which can be entered directly, for example, 
when the primary processor's current process is placed into a wait) in­
vokes MPS$SCHSCND to select a process for the attached processor if it 
is IDLE. (Sections 27.6.l and 27.6.3 describe MPS$SCHSCND.J 

3. MPS$SCHED selects a process for the primary processor and ioads it with 
a LDPCTX instruction. 

4. MPS$SCHED then checks whether the attached processor is IDLE. If the 
attached processor is still IDLE, there is no suitable process for it to run. 
MPS$SCHED determines whether it should simulate a pending executive 
mode AST for the primary processor's current process. An executive mode 
AST would enable the primary processor to detect when its process leaves 
kernel mode and thus becomes a candidate to run on an IDLE attached 
processor. (See the next section for more information.) 



27.6.2.1 

27.6.3 

27.6 ASMP Scheduling 

5. MPS$SCHED executes an REI instruction, dismissing the interrupt and 
placing the primary's new current process into execution. 

Transitions from Kernel Mode. The IPL 3 scheduling routine simulates a 
pending executive mode AST for the process it has just scheduled on the 
primary processor when all the following are true: 

• There is no process suitable to execute on the attached processor. 
• There is at least one other resident computable process (excluding the null 

job). 
• The process scheduled on the primary processor has no pending ASTs. 
• The process scheduled on the primary processor would be suitable to run on 

the attached if it were not in kernel mode. (See Section 27.6.3 for the crite­
ria which make a process unsuitable.) 

The process then executes on the primary processor. Eventually, when the 
process issues the REI instruction to leave kernel mode, an AST delivery 
interrupt is triggered. The AST delivery interrupt service routine determines 
that this is a simulated AST and that the attached processor is IDLE. The 
routine then requests an IPL 3 rescheduling interrupt and dismisses the AST 
delivery interrupt. 

The IPL 3 rescheduling interrupt service routine saves the context of the 
current process and places it on the appropriate compute queue. Then the 
interrupt service routine looks for a suitable process to schedule on the at­
tached processor. If the process whose context was just saved is the most 
suitable process, it is scheduled to run on the attached processor. Note that 
this AST is simulated only when the attached processor is IDLE and there are 
at least two computable processes (other than the null job). 

This mechanism helps to minimize idle time on the attached processor. 

Selecting a Process for the Attached Processor 

The primary processor's routine MPS$SCHSCND is invoked from the IPL 5 
and IPL 3 interrupt service routines to select a suitable process to run on the 
attached processor. MPS$SCHSCND uses a modified form of the scheduling 
algorithm used on a single processor system. The algorithm for scheduling 
processes on a single processor or on the primary processor of an ASMP is 
round-robin within priority level, highest priority processes scheduled first 
(see Chapter 10). However, not all processes are eligible for execution on the 
attached processor. 

A process in one of the following conditions is unsuitable for execution on 
the attached processor: 

• A process in kernel mode 

753 



Asymmetric Multiprocessing 

754 

• A process about to go into kernel mode to service a pending AST delivery 
interrupt 

• A process which has issued the Create and Map Section ($CRMPSC) system 
service to map particular pages of physical address space 

• A process which has issued the DCL command SET PROCESS 
/CPU= NOATTACHED 

• A process with a current priority higher than the SYSBOOT parameter 
VMSD2 

A process executing in kernel mode or about to execute in kernel mode 
must run on the primary processor and is unsuitable for execution on the 
attached processor (see Section 27.1). 

A process that has created and mapped a section to 1/0 space physical pages 
(using the PFNMAP option with the $CRMPSC system service) is.not sched­
uled to execute on the attached processor. For each page the process maps 
that is in 1/0 space, a location in the process header (PHD$L_MPINHIBIT) is 
incremented. 

This form of PFN mapping is usually done to access VAX-11/780 UNIBUS 
1/0 space. The process's PO page table is loaded with PFNs that correspond to 
particular locations in 1/0 address space. If such a process were to execute on 
the attached processor, its translated references to the PFN-mapped section 
would access the attached processor's 1/0 address space (instead of the 
primary's 1/0 address space where the devices are). 

Note that while the processors share common addresses in the MA780 
shared memory, each processor has its own 1/0 address space. Because the 
attached processor has no devices a process can access, processes with PFN­
mapped pages are not allowed to run on the attached processor. Figure 27-5 
shows the relative layout of physical address space in the VAX-11/782. Al­
though this restriction arises from the nature of the VAX-11/782 hardware 
configuration, for reasons of simplicity and consistency, it applies equally to 
the other ASMP systems. 

The DCL command SET PROCESS/CPU= NOATTACHED provides a way 
to specify that a particular process not run on the attached processor. This 
DCL command sets bit 29 in PHD$L_MPINHIBIT. Thus, a single test of 
PHD$L_MPINHIBIT can detect both this condition and a PFN-mapped 
section. 

The system manager sets the SYSBOOT parameter VMSD2 to the value of 
the highest priority at which a process is eligible to run on the attached 
processor. The default value for the parameter is 0, indicating no priority 
constraint. Setting this parameter to a value 1 or 2 larger than the value of the 
parameter DEFPRI tends to restrict the attached processor to the execution of 
compute-intensive processes. A process which is not compute-intensive and 
which issues 1/0 requests receives priority boosts as those requests complete 



27.7 

27. 7 Executing a Process on the Attached Processor 

Physical Address Space 
Accessible to the Primary Processor 

Physical Memory 
Addresses 

1/0 Space 
Addresses 

Physical Address 

Figure 27-5 Layout of the VAX-111782 Physical Address 
Space 

Physical Address Space 
Accessible to the Attached Processor 

and thus runs at higher than default priority. For more details on priority 
adjustment, see Chapter 10. 

System rescheduling overhead is minimized when the attached processor 
executes compute-intensive processes that do not require frequent kernel 
mode services. However, if there are no compute-intensive processes, it may 
be wise to allow a boosted process to run on the attached processor rather 
than no process. 

EXECUTING A PROCESS ON THE ATTACHED PROCESSOR 

A process running on the attached processor is not preempted if a higher 
priority process becomes available. Instead, a process executes on the at­
tached processor either until it incurs an exception or interrupt that requires 
a transition to kernel mode or until the process runs out of quantum. This 
means that VMS does not necessarily execute the two highest priority resi­
dent-computable processes. 

It also means that when the process is executing kernel mode system ser-

755 



Asymmetric Multiprocessing 

27.7.1 

27.7.2 

756 

vices, it runs on the primary processor. The only kernel mode system ser­
vices which can execute on the attached processor are the event flag wait and 
Clear AST ($CLRAST) system services. 

Transitions to Kernel Mode on the Attached Processor 

Because most process context, kernel mode code can be executed only on the 
primary processor, it is critical for the attached processor to detect when its 
current process changes access mode to kernel. Transitions to kernel mode 
are caused by exceptions or interrupts. 

Almost all exceptions and interrupts cause a transition to kernel mode. 
The vectors in the attached processor's SCB are set up so that only the 
CHME, CHMS, and CHMU exceptions are vectored to the normal VMS ser­
vice routine. All other exceptions and the AST delivery interrupt dispatch to 
special ASMP service routines. For the most part, these service routines save 
the current process context and interrupt the primary processor for a resched­
uling event. 

The typical actions of such a service routine follow: 

1. Pushing the current PSL onto the process's kernel mode stack. 
2. Pushing the appropriate PC onto the stack. The appropriate PC is the ad­

dress of the first instruction in the routine which would service this kind 
of exception on the primary processor. For example, MPS$PAGEFAULT, 
the attached processor's page fault exception service routine, pushes onto 
the stack the address of MMG$PAGEFAULT. Typically, a service routine 
computes the offset of its SCB vector and pushes the address of the service 
routine in the corresponding vector in the primary processor's SCB. 

3. Branching to MPS$MPSCHED, which removes the process from execu­
tion (see Section 27.7.4). When the process is placed back into execution 
on the primary processor, it resumes execution at the first instruction of 
the primary's service routine. 

The exception service routine for the CHMK exception, MPS$­
CMODKRNL, in module MPCMOD, differs somewhat from the preceding 
description because certain kernel mode system services can execute on the 
attached processor. 

Kernel Mode System Services on the Attached Processor 

Several kernel mode system services can execute at least partly on the at­
tached processor: 

• Clear AST ($CLRAST) 
• Wait for Event Flag ($WAITFR) 



27.7.2.1 

27. 7 Executing a Process on the Attached Processor 

• Wait for Logical Or of Event Flags ($WFLOR) 
• Wait for Logical And of Event Flags ($WFLAND) 

MPS$CMODKRNL tests the CHMK operand to see if it represents a request 
for one of the services just listed. (For a detailed description of the CHMK 
exception and change mode dispatching on a single processor system, see 
Chapter 9.) 

If the request is not for one of those services, MPS$CMODKRNL pushes a 
suitable PSL on the stack and the address of its primary processor counter­
part, EXE$CMODKRNL, and branches to MPS$MPSCHED, which saves the 
process context (see Section 27. 7.4). 

If the request is for the $CLRAST service, MPS$CMODKRNL branches to 
MPS$ASTEXIT, described in the next section. 

If the request is for an event flag wait system service, MPS$CMODKRNL 
builds a change mode dispatcher call frame and transfers control to the sys­
tem service procedure. The event flag wait services are described in Section 
27.7.2.2. 

It should be noted that although MPS$CMODKRNL and these several sys­
tem services execute on the attached processor, they run primarily at IPL 0 
and are interruptible. It is possible for the process to be context switched and 
for execution in these code sequences to resume on the primary processor. 
This possibility requires additional tests in MPS$CMODKRNL and in these 
services to determine on which processor they are running. 

The $CLRAST System Service on the Attached Processor. The $CLRAST 
system .service request is requested automatically at the end of every AST 
procedure. (Chapter 7 describes this system service in detail and its results on 
a single processor system.) This service clears the PCB$B_ASTACT bit corre­
sponding to the mode of the AST procedure and computes a new value for 
PR$_ASTLVL, the mode of the most important AST pending for the process. 

The $CLRAST service routine MPS$ASTEXIT, in module MPCMOD, exe­
cuting on the attached processor, performs the following actions: 

1. It determines the access mode of the AST procedure just executed. 
2. It reads the address of the process's PCB and clears the appropriate 

PCB$B_ASTACT bit to indicate that there is no longer an AST active in 
that mode in this process. 

3. MPS$ASTEXIT examines the first AST control block (ACB) queued to the 
process at PCB$L_ASTQFL. As a result of concurrent activity on the pri­
mary processor, the process's AST queue may be changing while the at­
tached processor tries to examine the first ACB in the queue. To ensure 
valid data, MPS$ASTEXIT first executes an interlocked instruction to 
flush any pending cache invalidates and then examines PCB$L_ASTQFL. 

757 



Asymmetric Multiprocessing 

27.7.2.2 

758 

4. MPS$ASTEXIT computes and stores a new value for ASTLVL in 
PR$_ASTLVL and in the process header, based on the ACB it found. 

5. MPS$ASTEXIT executes another interlocked instruction and reexamines 
PCB$L_ASTQFL. If its value has changed, MPS$ASTEXIT repeats the pre­
ceding step. 

6. MPS$ASTEXIT dismisses the CHMK exception, returning to the process. 

Event Flag Wait System Services. The event flag wait system services are 
among the most frequently executed kernel mode system services. These 
services begin execution on the attached processor and can complete on the 
attached processor whenever the event flag wait is unnecessary, that is, if the 
flags necessary to end the wait are set when the system service first reads 
them. 

Each event flag wait system service procedure (all of which are in module 
MPWAIT) executes code equivalent to that of its counterpart on a single 
processor system. (Chapter 12 describes those services in detail.) 

Running at IPL$_SYNCH, the service procedure tests whether the wait is 
satisfied. If the wait is satisfied, the service procedure removes its call frame 
from the kernel stack and executes an REl instruction to dismiss the excep­
tion and return to the system service caller. 

If the wait is not satisfied, the service procedure pushes the PSL and the 
address of MPS$WAITCONT onto the stack. It then sets the flag 
MPS$V _SECWAITCK in MPS$GL_SECREQFLG and branches to MPS$­
MPSCHED, which saves the process context (see Section 27.7.4). 

Before the primary processor removes this process from the attached pro­
cessor, it tests and clears the flag MPS$V _SECWAITCK. If the flag was set, 
the primary processor must repeat the test for whether the event flag wait is 
satisfied. 

The routine MPS$WAITCK (in module MPWAIT), running at 
IPL$_SYNCH on the primary processor, repeats the wait test. It checks 
whether the specified event flags are set. If the wait condition is satisfied, 
MPS$WAITCK changes the attached processor's state to BUSY so that it will 
resume execution of this process. 

If the wait condition is not satisfied, MPS$WAITCK places the process into 
a wait state. The process must wait with a saved PC and PSL that will cause 
reexecution of the system service. Because the process hardware context has 
already been saved, MPS$WAITCK modifies the hardware PCB, saved PC, 
and PSL fields directly and changes the attached processor's state to IDLE. 
The remainder of MPS$WAITCK's actions are similar to those of its counter­
part, SCH$WAIT. (See Chapter 10 for detailed information on placing a pro­
cess into a wait.) 



27.7.3 

27.7.3.1 

27.7.3.2 

27. 7 Executing a Process on the Attached Processor 

Quantum End on the Attached Processor 

The quantum of a process is charged whenever that process is current and 
executing when the interval timer interrupts. Other events, such as volun­
tary waits, are also charged against the process quantum. (See Chapter 10 for 
more details.) 

Interval Clock Interrupt Service Routine. The interval timer interrupt ser­
vice routine which runs on the attached processor, MPS$HWCLKINT in 
module MPTIMER, is similar to its counterpart for the primary processor. 
(See Chapter 11 for a description of EXE$HWCLKINT.) 

I. MPS$HWCLKINT increments the appropriate CPU mode field to main­
tain the statistics displayed by the Monitor Utility MODES screen. 

2. If the system was not running in process context at the time of the inter­
rupt, MPS$HWCLKINT increments the null job's CPU time and dis­
misses the interrupt. (Although the null job does not really execute on the 
attached processor, idle time is charged against it.) 

3. If the system was running in process context at the time of the interrupt, 
MPS$HWCLKINT increments the CPU time field in the current process 
header and charges the process quantum. 

4. If the process has quantµm remaining, MPS$HWCLKINT dismisses the 
interrupt. 

5. If, however, this charge results in quantum runout, MPS$HWCLKINT 
determines whether the process is real-time or normal, as a function of its 
base priority. 

6. If the process is real-time, it is not subject to quantum end events. 
MPS$HWCLKINT gives the process another quantum and dismisses the 
interrupt. 

7. If, however, the process is normal, MPS$HWCLKINT requests an 
IPL$_ TIMERFORK (IPL 7) interrupt before dismissing the interval timer 
interrupt. 

Software Timer Interrupt Service Routine. The IPL 7 interrupt service rou­
tine, MPS$SWTIMINT, also in module MPTIMER, runs in process context. 
As a sanity check, MPS$SWTIMINT checks whether the process has run out 
of quantum. (There should be no other source of IPL 7 software interrupt 
requests.) If the process has not, MPS$SWTIMINT dismisses the interrupt. 

If the process has reached quantum end, it must be scheduled to run on the 
primary processor. Quantum end processing must run only on the primary 
processor because its actions (such as automatic working set adjustment) can 
result in modifications to systemwide databases synchronized by raising IPL. 

If the process has run out of quantum, MPS$SWTIMINT pushes a PC and 

759 



Asymmetric Multiprocessing 

27.7.4 

PSL on the stack and branches to MPS$MPSCHED, which saves the process 
context (see Section 27. 7.4). The PC saved in the process hardware PCB is the 
address of a quantum end routine, MPS$QEND. The PSL saved in the hard­
ware PCB indicates IPL 0 and kernel mode. Thus, when the process is placed 
back into execution on the primary processor, it will resume execution at the 
quantum end routine, MPS$QEND. 

MPS$QEND, also in module MPTIMER, merely establishes an environ­
ment suitable for the execution of SCH$QEND, the usual quantum end rou­
tine, and dispatches to it. (See Chapter 11 for a description of SCH$QEND.) 

Removing a Process from the Attached Processor 

A process is removed from the attached processor in two phases. The first, 
executed on the attached processor, is routine MPS$MPSCHED (and its 
subentry points in module MPSCHED). The second phase, chiefly the routine 
MPS$SCHSCND, must execute on the primary processor because the sched­
uler database is modified. 

MPS$MPSCHED, running on the attached processor, pe1:orms the follow­
ing actions: 

1. MPS$MPSCHED executes a SVPCTX instruction, saving the context of the 
process. 

2. It sets the state of the attached processor to DROP. 
3. It interrupts the primary processor to request rescheduling. 
4. MPS$MPSCHED loops at IPL$_SYNCH, waiting for its state to change to 

BUSY. This loop is known as the attached processor's busy wait. 

The primary processor's interprocessor interrupt service routine requests 
an IPL 5 interrupt. When the interrupt is granted, MPS$SCHSCND executes 
as the second phase of removing a process from the attached processor. Sec­
tion 27.6.l describes how this routine completes rescheduling of the attached 
processor. 

27.8 INTERPROCESSOR INTERRUPT COMMUNICATION 

760 

On all systems, the same interprocessor interrupt service routines are used, 
regardless of which SCB vectors dispatch the interprocessor interrupts. 
MPS$PINTSR is the primary processor's interprocessor interrupt handler; 
MPS$SINTSR is the attached processor's interprocessor interrupt handler. 
Both are in module MPINT _xxx. 

The primary processor interrupts the attached processor for one of several 
reasons: 

• When an AST is queued to the process running on the attached processor, 



27.8 Interprocessor Interrupt Communication 

the primary processor interrupts the attached processor to update its 
PR$_ASTLVL register. PR$_ASTLVL on the attached processor can be 
modified only by code executing on the attached processor. 

• When a fatal bugcheck occurs on the primary processor, it interrupts the 
attached processor. The attached processor executes a SVPCTX instruction to 
save the context of the current process and sets its state to STOP. 

• In response to the DCL command STOP/CPU, the primary processor inter­
rupts the attached processor. The attached processor then executes a 
SVPCTX instruction to save the context of the current process and halts. 

• When a system page table entry is altered, the primary processor interrupts 
the attached processor, requesting it to invalidate the. corresponding entry 
in its translation buffer. The primary processor loops until the attached 
processor writes a global flag to indicate that the address has been invali­
dated. After a certain amount of time has gone by with no acknowledg­
ment, the attached processor is presumed no longer running. See Section 
27.5.5.1 for further information. 

The attached processor interrupts the primary processor for one of several 
reasons: 

• When the attached processor must be rescheduled, it interrupts the primary 
processor to request a process to execute. A rescheduling request can occur 
when the attached processor is first init.ialized or when the current process 
c:in the attached processor makes a transition to kernel mode. 

• When the attached processor has an error log message, it interrupts the 
primary processor to copy the error log message to the system error log 
block buffers. 

• When a fatal bugcheck occurs on the attached processor, it interrupts the 
primary processor and requests the primary processor to crash the system. 

761 





PART VIII/Miscellaneous Topics 





28 Logical Names 

Call things by their right names .... Glass of brandy and 
water! That is the current but not the appropriate name: ask 
for a glass of liquid fire and distilled damnation. 

Robert Hall, Olinthus Gregory, Brief Memoir of the Life of Hall 

A logical name definition is a mapping of a string to one or more replacement 
strings. A replacement string is called an equivalence name. A logical name 
can represent a file specification, device name, application-specific informa­
tion, or another logical name. Replacing an occurrence of the logical name 
with an equivalence string is called logical name translation. 

VAX/VMS provides automatic logical name translation for a name used in 
a file specification or device name. A logical name used to refer to a device or 
file enables transparent device independence and 1/0 redirection. For exam­
ple, a program or command procedure can refer to a disk volume by logical 
name, rather than by the name of the specific drive on which the disk volume 
is mounted. 

A user can define a logical name as a shorthand way to refer to a file or 
directory that is referenced frequently. 

This chapter first summarizes the characteristics of logical names. It then 
describes the data structures that implement logical names and internal oper­
ation of the system services related to logical names: 

• Create Logical Name ($CRELNM) 
• Create Logical Name Table ($CRE,LNT) 
• Delete Logical Name ($DELLNM) 
• Translate Logical Name ($TRNLNM) 

Logical name concepts are described in the VAX/VMS DCL Concepts 
Manual. The VAX/VMS System Services Reference Manual documents the 
use of the logical name system services. 

28.1 GOALS OF EXTENDED LOGICAL NAME SUPPORT 

VAX/VMS Version 4 provides extended support for logical name processing. 
The goals of this new support are as follows: 

• Upward compatibility for Version 3 logical names 
VAX/VMS Version 4 provides the earlier system services as jacket rou­

tines for calls to the newer services (see Section 28.9). It automatically de-

765 



Logical Names 

fines system, group, and process logical name tables whose properties are 
similar to those of Version 3 tables. 

• Provision of a basis for RMS search lists 
A Record Management Services (RMS) search list is an ordered list of file 

specifications that RMS processes in a special way. Multivalued logical 
names provide multiple equivalence names for a logical name. Thus, a 
search list can be built as a set of equivalence names for a logical name used 
in a file specification. 

• More independent name spaces for logical names 
Version 3 provided only one shared system table, one table shared among 

all the processes in the same user identification code (UIC) group, and one 
process-private name table for each process. A logical name must be unique 
in a given table. Version 4 allows for creation of an arbitrarily large number 
of logical name tables, reducing the likelihood of logical name collisions. 

• More user control over the order in which logical name tables are searched 
In Version 3, the order in which tables were searched was defined as pro­

cess, group, and system. The only control over the sequence was to disable 
searching of a particular table. For example, a particular logical name trans­
lation might bypass the process table. In Version 4, each request to translate 
a logical name can determine which tables are to be searched by specifying 
a logical name whose multiple translations are the tables to be searched. 

• More control over sharing of logical names 
In Version 3, process-private tables were shared among users in the same 

group or among all users in the system. In addition to those sorts of sharing, 
Version 4 supports sharing among processes in the same job tree and shar­
ing based on access control lists (ACLs). 

Protection is assigned to a shareable table through a mask specified when 
the table is created. Section 28.3 describes this mechanism further. The 
number of different name tables possible also enables a process to control 
its sharing. 

28.2 CHARACTERISTICS OF LOGICAL NAMES 

766 

A logical name is uniquely identified by the combination of the logical name 
string, logical name table that contains its definition, and its access mode. 
That is, two otherwise identical name strings which have different access 
modes or which are defined in different logical name tables are two different 
logical names. 

A logical name string is from 1 to 255 bytes long. Each byte can have any 
value. 

The scope of a logical name varies. A logical name definition can be any of 
the following: 

• Private to one process 



28.2 Characteristics of Logical Names 

• Handed down from a process to its spawned subprocesses 
• Shared among a detached process and all its subprocesses (job tree) 
• Shared among all the processes with the same UIC group code 
• Shared among all the processes on the system 
• Shared among a subset of processes on the system as specified by an ACL 

A logical name definition cannot be shared among processes on different 
nodes of a VAXcluster System. 

The scope of a logical name is determined primarily by the logical name 
table in which it is defined. If the table is a shareable one, then, by default, · 
the name is shareable. 

If the table is a process-private table, then, by default, the logical name can 
be used by the process and handed down to any subprocess it spawns. When a 
subprocess is spawned, certain environmental characteristics of the creating 
process are copied. In particular, all logical names created without the CON­
FINE attribute are copied to the spawned subprocess. That is, the definitions 
current at the time of the spawn are copied; any subsequent changes to the 
definitions are not shared. 

The access mode.of a logical name can be specified when it is defined. If not 
specified, access mode defaults to that of the caller of the $CRELNM system 
service. If the ACMODE argument is specified and if the process has the privi­
lege SYSNAM, the logical name is created with the specified access mode. 
Otherwise, the argument is maximized with (made no more privileged than) 
the mode of the system service caller. 

A logical name table can contain multiple definitions of the same logical 
name with different access modes. When a request to translate such a logical 
name specifies the ACMODE argument, then all names defined at a less privi­
leged mode are ignored. 

The access mode of a logical name is really an integrity level. Because 
kernel and executive access mode logical names can only be created by the 
system manager or someone of equivalent privilege, they are used where the 
security of the system is at stake. For example, during certain system opera­
tions, such as the activation of an image installed with privilege, only execu­
tive and kernel mode logical names are used. 

A process-private user fllOde logical name is deleted at rundown of the 
image that defined it (or at rundown of the next image if the name was de­
fined by DCL command). Shareable user mode names, however, survive 
image. exit and process deletion. 

A logical name can be created with several attributes. The CONFINE attri­
bute indicates that DCL sp.ould not propagate the logical name to a spawned 
subprocess. Logical names of process-permanent files created with the OPEN 
command have the CONFINE attribute. The NO_ALIAS attribute indicates 
that the logical name cannot coexist in a logical name table with another 
definition for that name that has an outer access mode. The CRELOG attri-

767 



Logical Names 

bute indicates that the logical name was defined through the VAX/VMS 
Version 3 $CRELOG system service. RMS uses this attribute to ensure trans­
lation compatible with VAX/VMS Version 3. (Section 28.9 briefly describes 
support for the superseded logical name system services.) 

28.3 CHARACTERISTICS OF LOGICAL NAME TABLES 

768 

A logical name table is a container for logical names. Each table defines an 
independent name space. A logical name table has the following characteris­
tics: 

• Scope-whether it is shareable or process-private 
• Access mode 
•Name 
• Parent logical name table 
• Access control in the case of a shareable logical name table 
• Quota to limit the amount of pool occupied by its logical names 

During system initialization, several shareable logical name tables are cre­
ated. During the creation of each process, several other tables, shareable and 
process-private, are created. (Section 28.3.l documents these default tables.) 
The $CRELNT system service enables a process to create additional tables at 
will. Process-private name tables are created in Pl space. Shareable tables are 
created in system space. 

The access mode of a logical name table can be specified when it is defined. 
If not specified, the mode defaults to that of the caller of the $CRELNT sys­
tem service. If the ACMODE argument is specified and if the process has the 
privilege SYSNAM, the logical name table is created with the specified ac­
cess mode. Otherwise, the argument is maximized with the mode of the 
system service caller. 

A logical name table can contain logical names of its access mode and less 
privileged access modes. A logical name table can be a parent table to another 
table of the same or a less privileged access mode. 

A logical name table is identified by its name, which is itself a logical 
name. In fact, the name table data structure is a special form of equivalence 
name. As a logical name, each logical name table name must be contained 
within a logical name table. Two special logical name tables called direc­
tories exist as containers for logical name table names. A logical name that is 
to translate (directly or iteratively) to the name of a logical name table must 
be contained within a directory table. 

The "system" directory, named LNM$SYSTEM_DIRECTORY, contains 
the names of shareable tables. The process directory, LNM$­
PROCESS_DIRECTORY, contains the names of process-private tables. Each 
directory contains its own table name. 



28.3 Characteristics of Logical Name Tables 

The address of either directory table can be determined, indirectly, through 
the two-longword array at LNM$AL_DIRTBL. Its first longword points to a 
longword containing the address of the system directory. Its second longword 
points to CTL$GL_LNMDIRECT, which contains the address of the process 
directory. Each process has its own process directory. 

A logical name in a directory table is restricted to a length no longer than 
31 characters. It can only consist of the characters "$", "_", and the DIGI­
TAL alphanumeric character set (the digits, upper and lowercase alphabet). 

Logical name tables have a hierarchy. That is, each logical name table, 
except for the directory tables, has a parent logical name table. Directories 
have no parent table and serve as ancestors of all logical name tables. A direc­
tory anchors the quota and access hierarchy for its name space. The hierar­
chical structure enables finer control over quota allocation and access to 
logical name tables. 

The parent of a logical name table is not necessarily a directory table. That 
is, this hierarchical structure is distinct from the location of logical name 
table names. Consider the logical name table A, created by the following 
DCL command: 

$ CREATE/NAME_TABLE/PARENT = LNM$PROCESS A 

The parent table of logical name table A is the process-private logical name 
table LNM$PROCESS. A's table name, however, is contained in LNM$­
PROCESS_DIRECTORY, the same directory as its parent table. 

A logical name table is restricted in the amount of memory its logical 
names can occupy. There are two types of table quota: pooled and limited. 
Quota of either type is derived from the directory table at the top of the 
hierarchy. 

Pooled quota is held by a logical name table called a quota holder and can 
be used by any other table that specifies this table as its quota holder. When a 
table is created, its quota is specified. A quota value of zero indicates that the 
table will use the quota of its parent table's quota holder. 

A nonzero quota value indicates a limited amount of quota to be with­
drawn from the parent table's quota holder and given to the newly created 
table. The newly created table is its own quota holder. 

A shareable logical name table is protected through UIC-based protection. 
Each class of user (system, owner, group, and world) can be granted four types 
of access: 

• Read (R) access allows the user to read the contents of the logical name 
table, that is, to translate logical names. 

• Write (W) access allows the user to modify the contents of the table, for 
example, delete or alter logical name translations. 

• Enable (E) access allows the user to withdraw quota from the table to create 

769 



Logical Names 

28.3.l 

770 

a descendant logical name table. 
• Delete (D) access allows the user to delete the table itself, including all its 

logical names and descendant tables and their names. A logical name table 
is deleted when its name or parent table is deleted. 

The default protection mask for a table created through $CRELNT allows 
RWED access to system and owner users and no access to group or world 
users. 

In addition, an ACL for a logical name table enables fine-tuning of 
UIC-based protection. (ACLs for logical name tables were introduced in 
VAX/VMS Version 4.2.) The DCL command SET ACL /OBJECT= 
LOGICAL_NAME_ TABLE creates or modifies access control entries. See 
the VAX/VMS DCL Concepts Manual for further information. 

To provide compatibility with Version 3 behavior, a suitably privileged 
process can read and write certain logical name tables if UIC- and ACL-based 
mechanisms prohibit access. That is, a process with GRPNAM privilege can 
access its group table, LNM$GROUP _gggggg, to translate, create, or delete 
logical names. A process with SYSNAM can similarly access the system 
table, LNM$SYSTEM_ TABLE. 

Default Logical Name Tables 

Table 28-1 lists the default tables created by VMS. The names of the share­
able tables are contained in the system directory. The names of the process­
private tables are contained in the process directory. 

There are a number of predefined logical names for logical name tables that 
are used in particular VMS contexts for translating and creating logical 
names. By convention, these names have the prefix LNM$. For example, 
RMS and other VMS components specify the table LNM$FILE_DEV when­
ever file specifications or device names are translated. Table 28-2 lists some 
of the default logical names that translate to table names. 

Some table names are not usually referenced directly. Typically, for exam­
ple, LNM$PROCESS and LNM$JOB are specified as table names, rather than 
LNM$PROCESS_ TABLE and LNM$JOB_xxxxxxxx. The indirection makes 
it possible for users to redefine some of the predefined names to modify the 
search order or the tables to be used. In addition, it enables a "generic" and 
transparent reference to a process's job table, for example, rather than to the 
very specific and transient name LNM$JOB_xxxxxxxx. 

Some table names exist to allow for user redefinition. For example, the 
table name LNM$DCL_LOGICAL is used for the SHOW LOGICAL and 
SHOW TRANSLATION commands and for the logical name lexical func­
tions. By default, LNM$DCL_LOGICAL translates to LNM$FILE_DEV. 
However, a user interested in displaying names and translations in the direc-



28.3 Characteristics of Logical Name Tables 

Table 28-1 Default Logical Name Tables 

Table Name Use 

LNM$PROCESS_DIRECTORY 

Shareable 

No Contains definitions of process-private logical 
name table names and names that translate 
to these table names 

LNM$PROCESS_ TABLE 

LNM$SYSTEM_DIRECTORY 

LNM$JOB_xxxxxxxx1 

LNM$GROUP _gggggg2 

LNM$SYSTEM_ TABLE 

No 

Yes 

Yes 

Yes 

Yes 

Contains process-private logical names, such 
as SYS$DISK and SYS$INPUT 

Contains definitions of shareable logical name 
table names and names that translate to 
these table names 

Contains names shared by all processes in the 
job tree, for example, SYS$LOGIN and 
SYS$SCRATCH 

Contains names shared by all processes with 
that UIC group 

Contains names shared by all processes in the 
system, for example, SYS$LIBRARY and 
SYS$SYSTEM 

1The string xxxxxxxx represents an eight-digit hexadecimal number that is the address of the job informa­
tion block. 

2The string gggggg represents a six-digit octal number containing the process's UIC group number. 

tory tables themselves might redefine LNM$DCL_LOGICAL as shown in 
the following example: 

$ SHOW LOGICAL TRNLOG$_PROCESS_GROUP 

% SHOW-S-NOTRAN, no translation for logical name 

TRNLOG$_PROCESS_GROUP 

$ DEFINE/SUPERVISOR/TABLE= LNM$PROCESS_DIRECTORY LNM$DCL_LOGICAL -

_$ LNM$FILE_DEV,LNM$PROCESS_DIRECTORY,LNM$SYSTEM_DIRECTORY 

$ SHOW LOGICAL TRNLOG$_PROCESS_GROUP 

11 TRNLOG$_PROCESS_GROUP 11 = 11 LOG$PROCESS 11 (LNM$SYSTEM_DIRECTORY) 

= 11 LOG$GROUP 11 

1 11 LOG$PROCESS" = 11 LNM$PROCESS 11 (LNM$SYSTEM_DIRECTORY) 

= 11 LNM$JOB 11 

2 "LNM$PROCESS 11 = 11 LNM$PROCESS_TABLE 11 (LNM$PROCESS_DIRECTORY) 

2 11 LNM$JOB 11 = "LNM$JOB_80~71670 11 (LNM$PROCESS_DIRECTORY) 

1 11 LOG$GROUP 11 11 LNM$GROUP 11 (LNM$SYSTEM_DIRECTORY) 

2 11 LNM$GROUP 11 = 11 LNM$GROUP_000100 11 (LNM$PROCESS_DIRECTORY) 

Because TRNLOG$_PROCES5-GROUP is defined in LNM$SYSTEM_ 
DIRECTORY, the first SHOW LOGICAL command fails to find it. After re­
defining LNM$DCL_LOGICAL to include both directory tables, SHOW 

771 



Logical Names 

Table 28-2 Default Logical Names That Translate to Logical Name Table Names 

Logical Name 

LNM$PROCESS 

LNM$JOB 

LNM$GROUP 

LNM$SYSTEM 

LNM$DCL_LOGICAL 

LNM$FILE_DEV (supervisor mode) 

LNM$FILE_DEV (executive mode) 

LNM$PERMANENT _MAILBOX 

LNM$TEMPORARY _MAILBOX 

LOG$PROCESS 

LOG$GROUP 

LOG$SYSTEM 

TRNLOG$_GROUP _SYSTEM 

TRNLOG$_PROCESS_GROUP 

TRNLOG$_PROCESS_SYSTEM 

TRNLOG$_PROCESS_GROUP _SYSTEM 

Equivalence Name 

LNM$PROCESS_ TABLE 

LNM$JOB_xxxxxxxx1 

LNM$GROUP _gggggg2 

LNM$SYSTEM_ TABLE 

LNM$FILLDEV 

LNM$PROCESS, 
LNM$JOB, 
LNM$GROUP, 
LNM$SYSTEM 

LNM$SYSTEM 

LNM$SYSTEM 

LNM$JOB 

LNM$PROCESS, 
LNM$JOB 

LNM$GROUP 

LNM$SYSTEM 

LOG$GROUP, 
LOG$SYSTEM 

LOG$PROCESS, 
LOG$GROUP 

LOG$PROCESS, 
LOG$SYSTEM 

LOG$PROCESS, 
LOG$GROUP, 
LOG$SYSTEM 

1The string xxxxxxxx represents an eight-digit hexadecimal number that is the address of 
the job information block. 

2The string gggggg represents a six-digit octal number containing the process's UIC group 
number. 

LOGICAL displays TRNLOG$_PROCEss_GROUP. It can translate 
iteratively all its equivalence names as well, because they are defined in one 
of the two directory tables. Note that since LNM$DCL_LOGICAL is a name 
that translates to a logical name table, its redefinition must be in one of the 
two directories. (For a description of the SHOW LOGICAL and DEFINE com­
mands, see the VAX/VMS DCL Dictionary.) 

28.4 CHARACTERISTICS OF LOGICAL NAME TRANSLATION 

772 

A logical name with only one equivalence name has only one translation. A 
multivalued logical name has multiple equivalence names, up to a maximum 



28.4.1 

28.4 Characteristics of Logical Name Translation 

of 128. Each of its equivalence names can be identified by an index number. 
An equivalence name is from 1 to 255 bytes. Each byte can have any value. 

An equivalence name can be defined with several attributes. Each equiva­
lence name of a multivalued logical name can have different attributes. The 
CONCEALED attribute means that the equivalence name should not be dis­
played in system output. Typically, this is used to foster device independence 
by displaying logical names rather than the names of specific devices. It is 
also used in the creation of logical names for rooted directories. The TERMI­
NAL attribute means that the equivalence name should not be translated 
further. 

When a logical name is translated, the translation attribute CASE_BLIND 
can be specified. This attribute means that the search for that logical name is 
independent of the case (upper or lowercase) in which the logical name was 
originally defined and that in which the logical name was specified to the 
$TRNLNM system service. 

When access mode is specified for a logical name translation, it applies to 
both the translation of the name and of the name tables involved. For exam­
ple, if executive access mode translation is requested, then all outer mode 
logical names and table names are ignored. 

Logical name translation has two dimensions: 

• Breadth-A logical name can have multiple equivalence strings. 
• Depth-One logical name can translate to another logical nanie, which, in 

turn, translates to another logical name, and so on. 

These dimensions apply to the name of a logical name table, as well as to a 
logical name. To translate a logical name, VMS must also translate the name 
of the tables in which to look for the logical name. The translation for a 
logical name table name, done implicitly as part of translating a logical name, 
is different from that for a logical name. 

Dimensions of Logical Name Translation 

Default logical name translation deals with the breadth of a name, but not its 
depth. That is, the $TRNLNM . system service can return multiple equiv­
alence strings when it translates a logical name. One of the $TRNLNM ar­
guments is an item list through which multiple equivalence names can be 
returned. The item list must explicitly request multiple equivalence names 
and supply buffer addresses for them. 

However, when $TRNLNM translates a logical name, it does not translate 
iteratively. That is, it does not check whether an equivalence name is itself a 
logical name. Further translation must be requested explicitly; the equiva­
lence name returned must be supplied as the logical name argument in an­
other $TRNLNM request. Certain system services, such as Assign Channel 

773 



Logical Names 

28.4.2 

($ASSIGN), make iterative $TRNLNM requests to translate a logical name as 
deeply as possible. These system services have a maximum iteration count, 
typically of nine translations. 

RMS has a more complex form of iteration. It parses a file specification and 
calls $TRNLNM iteratively to translate certain components of it. For more 
details, see the Guide to VAX/VMS File Applications. 

Dimensions of Logical Name Table Translation 

Each of the logical name system services must translate a logical name table 
name to perform its main function. A table name can be one of the following: 

• A logical name whose single equivalence name is the table data structure 
itself (see Section 28.5.2) 

• A name whose equivalence name is itself a logical name that translates 
iteratively to the table data structure 

• A multivalued logical name, each of whose equivalence names is a logical 
name that translates iteratively to a table data structure 

Unlike logical name translation, table name translation must deal with 
both the depth and the breadth of the name. To locate a particular logical 
name, for example, a table name and all its equivalence names might have to 
be translated iteratively. In the $TRNLNM system service, and sometimes 
$DELLNM, translation of a table name stops as soon as one is found that 
contains the target logical name. In the system services $CRELNT, 
$CRELNM, and under some circumstances (see Section 28.8.5) $DELLNM, 
translation of a table name only goes as far as finding the first table. 

The table name translation sequence is depth-first. That is, the first equiv­
alence name is translated until it translates to a table data structure or can be 
translated no further. If the table name found does not contain the logical 
name of interest, the second equivalence name is translated, and so on. This 
algorithm is described in more detail in Section 28.7. 

28.5 LOGICAL NAME DATA STRUCTURES 

The logical name database consists of the following kinds of structures: 

• Logical name blocks (LNMBs) that describe the logical names that are 
defined 

• Logical name translation blocks (LNMXs) that contain equivalence names 
• Logical name table headers (LNMTHs) that describe logical name tables 
• Hash tables that locate the LNMBs (LNMHSHs) 
• Table name cache blocks (LNMCs) 

774 



28.5.1 

28.5 Logical Name Data Structures 

The SYS$LIBRARY:LIB.MLB macro $LNMSTRDEF defines symbolic offsets 
for all these data structures. 

Logical Name Blocks and Logical Name Translation Blocks 

Each defined logical name is described by a logical name block (LNMB). An 
LNMB contains the logical name string, its access mode, and its attributes. 

Each LNMB is immediately followed by at least one data structure called a 
logical name translation block (LNMX). An LNMX contains flags for the 
equivalence name attributes, an index identifying the equivalence name, and 
a counted string equivalence name. There is one LNMX for each equivalence 
name defined for the logical name. The series of LNMXs associated with a 
given LNMB concludes with a single LNMX that contains no equivalence 
name and has the bit LNMX$V _XEND set in its flags byte. 

Translation to a particular equivalence name can be requested by specify­
ing its index value. A translation index is a byte-sized signed number. The 
positive values 0 to 127 are available for users. By default, the first equiva­
lence name is assigned an index value of 0, the second a value of 1, and so 
forth. 

The negative values -1 to -128 are reserved for system use. Currently, 
VMS uses two special index values. The value 8216 (or -126) indicates that 
the equivalence string is a table data structure (see Section 28.5.2). The value 
81 16 (or -127) indicates that the equivalence string is a back pointer. A back 
pointer can be used to link a mailbox unit control block (UCB) with the 
LNMB that contains its logical name. It can also be used to connect a 
mounted volume list entry and its LNMB. 

It is possible for the creator of a logical name explicitly to assign an index 
value to each equivalence name. Translation indexes can be sparse. For exam­
ple, a particular logical name might have translations 11 3, 5, and 10. VMS 
uses this feature itself to create back pointer logical names. Any general use 
of this feature is discouraged, because RMS and other VMS components as­
sume that equivalence names have dense ascending indexes. 

Figure 28-1 shows the layout of the LNMB and. LNMX data structures. The 
field LNMB$W _SIZE contains the size of the LNMB, including the sizes of 
the LNMXs that follow the LNMB. Before the memory for the LNMB and the 
LNMXs is allocated, the size required for the sum of all the strings plus the 
fixed size is rounded up to the next quadword. As a result, although logical 
name blocks are of variable length, they are always an integral number of 
quadwords. 

A process-private LNMB is allocated from the process allocation region. 
The LNMB for a shareable logical name must be accessible by multiple pro­
cesses and is allocated from paged pool. 

775 



Logical Names 

28.5.2 

776 

LNMB 

Hash Table Forward Link 

Hash Table Backward Link 

Access I I Mode Type Size 

Address of Logical Name 
Table Header 

Logical Name 
l Flags 

(counted string up to 255 bytes) 

LNMX for First 
Equivalence Name 

LNMX for Second 
Equivalence Name 

{ LNMX for Last 
Equivalence Name 

1 04 

Logical Name Flags 

Bit Meaning 

0 NO_ALIAS 

CONFINE 

2 CRELOG 

3 TABLE 

4 NO_DELETE 

LNMX 

/ 
Hash Value I Translation I 

Index Flags 

~ 

Equivalence Name 
(counted string up to 255 bytes) --........_ ______________ __. 

Equivalence Name Flags 

Bit Meaning 

o Concealed 

Terminal 

2 Last translation 

Figure 28·1 Layouts of Logical Name and Logical 
Name Translation Blocks 

The LNMB specifies the address of the logical name table in which the 
logical name is defined; the field LNM$L_ TABLE contains the address of the 
logical name table's header (see Section 28.5.2). The LNMB also has two 
longwords, LNMB$L_FLINK and LNMB$L_BLINK, which link the LNMB 
into a hash chain of LNMBs whose logical names have the same hash value 
(see Section 28.5.3). 

Logical Name Table Headers 

A logical name table is a logical name with one special translation. Its first 
LNMX has the special index value 8216 to indicate that it contains an 
LNMTH as an equivalence name. The second LNMX merely flags the end of 
the data structure. 

An LNMTH describes a logical name table. Figure 28·2 shows its lay· 
out. The field LNMTH$L_HASH contains the address of either the 
shareable hash table or the process-private hash table (see Section 
28.5.3). LNMTH$L_NAME contains the address of the LNMB. The fields 
LNMTH$L_PARENT, LNMTH$L_CHILD, and LNMTH$L_SIBLING con­
tain addresses of other LNMTHs and link logical name tables into a quota 
and access hierarchy. LNMTH$L_QTABLE contains the LNMTH address of 
the table that is the quota holder for the table. 



28.5.3 

28.5 Logical Name Data Structures 

l Flags 
Flags 

Address of Hash Table Bit Meaning 

Address of Object Rights Block 
0 Shareable 

Directory 
Address of Header's LNMB 

2 Group 

Address of Parent Table 3 System 

Address of Child Table 

Address of Sibling Table 

Address of Table Holding Quota 

Initial Quota 

Remaining Quota 

Figure 28·2 Layout of Logical Name Table Header 

Note that an LNMTH contains no listhead for LNMBs. The intuitive view 
of the relationship between a logical name and its containing table is differ· 
ent from the implementation. A logical name table is a container for logical 
names in an abstract sense. The only connection between a logical name and 
its containing table is from the LNMB to the table header; the field 
LNMB$L_TABLE contains the address of the LNMTH. In other words, it is 
not possible to examine a table header to locate logical names in that table. 
Instead, every LNMB of the appropriate hash table must be examined to de· 
termine which ones are in the table of interest. 

Figure 28-3 shows the relationship between the process directory, a partic­
ular logical name table, LNM$PROCESS_ TABLE, and a particular logical 
name, SYS$LOGIN. (For simplicity, Figure 28-3 omits hash table links, 
which are pictured in Figure 28-4.) 

Logical Name Hash Tables 

Locating a particular logical name and its translation requires hashing the 
logical name in the appropriate hash table and then determining whether the 
name and its containing logical name table match the name of interest. Each 
process has its own hash table to locate all process-private logical names. All 
shareable logical names are hashed in the shareable hash table. 

A hash table consists of a 12-byte header and a number of longword entries. 
Each entry in the hash table is either zero or a pointer to a hash chain of 
LNMBs with the same hash value. The chain is doubly linked through the 
fields LNMB$L_FLINK and LNMB$L_BLINK. The last LNMB in a chain has 
a forward pointer of zero. 

The order of LNMBs in a hash chain is determined by the following · 
criteria: 

777 



Logical Names 

CTL$G L_LNMDIRECT:: l J-

r 

L NMB< 

l Length 
r 

LNMX 
LN MTH 

'-

r 

Exec DYNSC_LNM 

LNMB Address of Containing Table L NMB< 

SYS$LOGIN 

0 0 l Length 

r 
WORK2:[GRISWOLD] 

LNMX 
LN MTH< 

'-

Figure 28-3 Relationship Between Logical Name Table 
and Directory Table 

778 

~ 

Kernel JoYN$C_LN1 

Address of Containing Table t-
lNO_ALIAS 

TABLE 
NO_DELETE 

LNM$PROCESS_DIRECTORY 

l TABLE l TERM'L 

lDIRECT. i--t--1 

Address of Containing LNMB i--

Address of Child Table 

l 4 

I-

Kernell DYN$C_LN':i 

Address of Containing Table l NO_ALIAS 
TABLE 

LNM$PROCESS_ TABLE 

l TABLE l TERM'L 

l 0 

Address of Containing LNMB t---' 
Address of Parent Table 

~ 



LNM$AL_HASHTBL:: 

J } I 
.-

CTL$GL_LNMHASH:: Process-Private Hash 'lllble 

y t Mask 
J 

r 
C><:I Type J 

LNMPHASHTBL 
Number of Entries < ..( 

' 

Figure 28-4 Logical Name Hash Tables and Logical 
Name Blocks 

Size 

0 

0 

Shareable Hash 'lllble 

~ Mask 

. ><I Type 1 Size 

~· 1 
LNMB 

~ 
0 

~· 

LNMB LNMB 

~ !~ ~ 

'I 

* 
,, 

LNMB 

}L 
N 

NMSHASHTBL 
umber of Entries 

0 



Logical Names 

780 

1. Length of the logical name, with shorter strings first 
2. Alphabetical order of the logical name string for LNMBs with names of 

the same length 
3. Address of the containing table address, with lowest address first, for 

LNMBs with the same logical name 
4. Access mode of the logical name, with outermost access mode first, for 

LNMBs with the same logical name string in the same table 

The SYSBOOT parameter LNMPHASHTBL specifies the number of long­
word entries in the process-private hash table. During process creation, 
EXE$PROCSTRT allocates it from the process allocation region and initial­
izes its header. Because the process allocation region consists of demand zero 
pages, the table's longword entries are zeroed as a side effect of allocating 
space from the region for the first time. 

The SYSBOOT parameter LNMSHASHTBL specifies the number of long­
word entries in the shareable hash table. The shareable hash table is allocated 
from paged pool, its header built, and longword entries cleared during system 
initialization. 

The address of either hash table can be determined indirectly through the 
two-longword array at global location LNM$AL_HASHTBL. Its first long­
word points to a longword containing the address of the shareable hash table. 
Its second longword points to CTL$GL_LNMHASH, which contains the 
address of the process hash table. The field LNMTH$L_HASH in each logical 
name table contains the address of the hash table for its logical names. 

Figure 28-4 shows this array, the two hash tables, and two hash chains. 
The algorithm used to hash the logical names was chosen to be relatively 

fast and provide a good distribution within the hash table. It is implemented 
by the routine LNM$HASH (in module LNMSUB). 

The hashing algorithm is as follows: 

1. The size of the logical name string is moved to a longword. This is the base 
hash value. 

2. Starting at the beginning of the string, four bytes are converted to upper­
case and XORed into the hash longword. The hash is then rotated by nine 
bits to the left. 

3. Step 2 is repeated with the next four bytes until there are fewer than four 
bytes remaining in the string. 

4. The remaining bytes are XORed into the hash longword, one byte at a 
time. After each XOR, the hash is rotated by 13 bits. 

5. The hash longword is then multiplied by an eight-digit hexadecimal num­
ber (7127946116). 

6. A number of high-order bytes in the hash longword are cleared. 
(LNMHSH$L_MASK contains the mask against which these bytes are 
cleared.) The result can be stored within a word and is a number no larger 



28.5.4 

28.5 Logical Name Data Structures 

than the number of entries in the hash table. It is used as a longword index 
into the hash table. 

Logical Name Table Name Cache Blocks 

To speed up logical name translation, information about logical name tables 
is cached. The name of a logical name table is itself a logical name that must 
be translated to translate a logical name. If the name of a logical name table 
translates to another logical name or, indeed, to a multivalued logical name, 
iterative translation may be required. 

A cache block records the result of a particular table name translation for 
subsequent use. Figure 28-5 shows the layout of the logical name table cache 
block. 

A cache block contains the address of the LNMB of the table name 
(LNMC$L_ TBLADDR) and addresses of up to 25 LNMTHs obtained from 
translating that table name. (A table name that resolves to more than 25 table 
headers cannot be cached.) In the course of resolving a table name, table 
header addresses are stored in its cache block. 

If the target table is found before the table name is exhaustively translated, 
the cache block contains valid but incomplete data. In this case, a zero long­
word indicates the end of the series of valid entries. If the table name has 
been exhaustively translated, a longword containing a -1 indicates that the 
cache block contains the complete list of table headers for that table name. 
An incomplete list of table headers can be extended during later resolutions 
of the logical table name that require more translations. 

Each time the contents of a directory change, the sequence number associ­
ated with it is incremented. For example, when a process-private logical 
name table is created or deleted, global location CTL$GL_LNMDIRSEQ is 
incremented. It is also incremented if a logical name in the process directory, 
for example, LNM$PROCESS, is redefined. The sequence number for the 
shareable directory, LNM$GL_SYSDIRSEQ, is similarly incremented when­
ever the system directory is altered. 

The cache block fields LNMC$L_PROCDIRSEQ and LNMC$L_SYS­
DIRSEQ record the sequence numbers of the process and system directories 
current when a table name translation is cached. The fields are used as a 
validity check on the cached LNMTH addresses. During translation of that 
table name, the cached sequence numbers are checked against the current 
ones. The cache is valid only if they both match. 

Each process has its own cache, with blocks for the most recently refer­
enced logical name table names. During process startup, EXE$PROCSTRT 
(in module PROCSTRT) allocates cache blocks from the process allocation 
region. It initializes and inserts them in a doubly linked list whose head is at 
CTL$GQ_LNMTBLCACHE. The amount of space used for cache blocks is 

781 



Logical Names 

28.5.5 

CTL$GQ_LNMTBLCACHE :: 

Forward Link i-l j 
Backward Link 

Cache l 
Index Type l Size 

Address of Table Name LNMB 

Process Directory Sequence Number 

System Directory Sequence Number 

Address of LNMTH "\ 

Address of LNMTH 

).-: r )'"""'M 

Address of LNMTH 

Figure 28·5 Layout of Logical Name Table Cache Block 

approximately twice that used for the process hash table. The size of each 
cache block is 128 bytes. The number of cache blocks is related to the SYS­
BOOT parameter LNMPHASHTBL in the following way: 

Number_oLcache_blocks = (LNMPHASHTBL * 8)/128 

Synchronization of Access to the Logical Name Database 

A single mutex provides synchronization to the logical name database. 
(Chapter 2 describes the use of mutexes.) Its global name is LNM$AL_ 
MUTEX. 

The $TRNLNM system service locks the mutex for read access. Other 
processes can also lock the mutex for read access and translate logical names. 
The other logical name system services all modify the database and therefore 
lock the mutex for write access, blocking any access by another process. 

28.6 SEARCHING FOR A LOGICAL NAME 

782 

To search for a logical name, the logical name system services invoke the 
routine LNM$SEARCHLOG (in module LNMSUB). 

LNM$SEARCHLOG must first hash the name in the two logical name 
hash tables to find out whether it exists at all. (If the current process is the 
swapper, with a system space stack and no Pl space, the search is limited to 
the shareable logical name hash table.) LNM$SEARCHLOG initializes a 
stack local data structure called a name translation block (NT) to describe the 
state of the name translation. It then invokes LNM$PRESEARCH with the 
address of the process-private hash table. (The DCL SHOW LOGICAL 



28.6 Searching for a Logical Name 

command also builds an NT structure and invokes the routines 
LNM$PRESEARCH and LNM$CONTSEARCH directly.) 

LNM$PRESEARCH invokes LNM$HASH .to hash the logical name. The 
resulting value is used as an index into the hash table. The hash table entry 
located by the index is a listhead of LNMBs with that hash value. 
LNM$PRESEARCH invokes routine LNM$CONTSEARCH to search the 
LNMB list for one with a matching logical name. 

LNM$CONTSEARCH compares the length of the logical name in the 
LNMB with the length of the name being searched for. If the logical name in 
the LNMB is shorter, the LNMB is passed over. The search continues with­
out the overhead of a string comparison instruction that is bound to fail. If 
the name in the LNMB is longer, the search has passed the possible LNMBs 
and fails. 

If an LNMB is found whose name is the same length, the logical name 
strings are compared. If the comparison fails, LNM$CONTSEARCH tests 
whether the search is a case-blind search, one in which the uppercase version 
of both strings' characters must be compared. If a caseless search is required, 
LNM$CONTSEARCH converts the strings one character at a time and com­
pares them. The routine continues converting and comparing until a charac­
ter comparison fails or the end of string is reached. 

If the comparison fails, LNM$CONTSEARCH tests whether the string in 
the LNMB is alphabetically lower than the logical name of interest. If it is 
higher, the search has passed the last possible LNMB and fails. If it is lower, 
the search continues until it reaches the end of the hash chain, an LNMB 
containing a string higher in the sort sequence, or an LNMB with matching 
name. 

Regardless of the outcome, LNM$SEARCHLOG initializes a second data 
structure and invokes LNM$PRESEARCH with the address of the shareable 
hash table. 

These searches are independent of the containing table. They are per­
formed to find out whether the logical name has been defined at all. Because 
many file specifications are translated to check whether they are logical 
names, attempted logical name translation is most frequent. That is, most 
translations fail. The data structures and search algorithm were designed to 
optimize the determination that a particular string is not a logical name. 

If LNM$PRESEARCH finds no match in either hash table, LNM$­
SEARCHLOG cleans off the stack and returns the failure status 
SS$_NOLOGNAM to its invoker. It also returns the address of the LNMB on 
which it failed. If the target logical name is subsequently created (as it might 
be if LNM$PRESEARCH were invoked from $CRELNM to determine 
whether a logical name already existed), its LNMB will be inserted into the 
hash chain at this position. 

If there is an LNMB containing the logical name of interest, LNM$-

783 



Logical Names 

784 

SEARCHLOG must check it to determine whether its containing table and 
access mode also match. The LNMB may be followed by others with the 
same logical name but different containing tables or access modes. (Section 
28. 7 describes table name resolution in detail.) Note that if there are both 
process-private and shareable LNMBs containing the logical name, the search 
begins with the process-private ones. 

LNM$SEARCHLOG first invokes LNM$SETUP to confirm that the table 
name passed to it does have a translation in one of the two directories and 
initialize logical name table processing. If the table name does not exist, 
LNM$SEARCHLOG cleans up the stack and returns the failure status 
SS$_NOLOGNAM to its invoker. 

If the table name does exist, LNM$SETUP returns in Rl the address of the 
first LNMTH to which the table name resolves. (Recall that a table name can 
be a multivalued logical name with equivalence names that are themselves 
logical names.) LNM$SEARCHLOG invokes LNM$CONTSEARCH again, 
but this time with the address of the containing table header. 

If the table is shareable, LNM$CONTSEARCH looks in the shareable hash 
table; otherwise, it checks the process-private one. Beginning at a starting 
point determined by the previous search, it scans the hash chain for a match­
ing logical name. This time, however, when it finds a match, it compares 
containing table name addresses. 

If it comes to a higher address, the search has failed, since LNMBs with the 
same logical name are ordered by LNMTH address. If the LNMTH address in 
the LNMB in the hash chain is smaller, LNM$CONTSEARCH goes on to the 
next LNMB. 

If it finds one with the same LNMTH address, LNM$CONTSEARCH must 
also check the access mode. If the LNMB access mode is greater (less privi­
leged) than the requested mode, it goes on to the next LNMB. If the LNMB 
mode is equal to or less than the requested mode, the LNMB matches. The 
first match that satisfies all criteria terminates the search. 

If LNM$CONTSEARCH returns, having found a matching logical name, 
LNM$SEARCHLOG cleans up the stack and returns the success status 
SS$_NORMAL to its invoker, along with the address of the target LNMB. 

If LNM$CONTSEARCH does not find a matching name, the next table to 
which the table name resolves must be checked. LNM$SEARCHLOG in­
vokes LNM$TABLE to continue the table processing begun with the invoca­
tion of LNM$SETUP. LNM$TABLE returns the address of the next LNMTH. 
LNM$SEARCHLOG invokes LNM$CONTSEARCH again. 

This sequence continues until either a matching logical name is found or 
there are no more tables to check. 

There is another path into this search sequence; system services other 
than logical name services, such as $ASSIGN, invoke the routine 
LNM$SEARCH_QNE. LNM$SEARCH_ONE locks the logical name data-



28. 7 Logical Name Table Name Resolution 

base mutex for read access. It invokes LNM$SEARCHLOG to find the LNMB 
and extracts the translation with index zero. It unlocks the mutex and re­
turns to its invoker. 

28.7 LOGICAL NAME TABLE NAME RESOLUTION 

To resolve a logical name table name, the logical name system services and 
routines and the DCL SHOW LOGICAL command invoke either the routine 
LNM$FIRSTTAB or the combination of LNM$SETUP and LNM$TABLE. 
These three routines are all in module LNMSUB. 

LNM$FIRSTTAB is called to return only the first table in the translation of 
a table name. A typical use of it is to identify the table in which to create a 
new logical name. LNM$FIRSTTAB itself invokes LNM$SETUP. 

LNM$SETUP and LNM$TABLE are used to perform iterative and poten­
tially exhaustive translations of a table name. LNM$SETUP is invoked first 
to initialize the search context and return the address of the first table header. 
Each subsequent invocation of LNM$TABLE returns another table header 
address, until the table name has been exhaustively translated. 

When LNM$SETUP is entered, its invoker has allocated and partially ini­
tialized a stack local data structure called a recursive table translation block 
(RT). Its fields include recursion depth, access mode of the request, address of 
the associated table name cache block, and ten longwords in which to main· 
tain search context. The recursion depth is an index into these longwords. 

LNM$SETUP initializes the recursion depth to zero. It checks first the 
process directory and, if that fails, the system directory for the starting table 
name. (Recall that all logical names involved in the translation of table 
names must be contained in one of the two directories.) If the table name 
does not exist, LNM$SETUP returns the error status SS$_NOLOGNAM to 
its invoker. 

If the name exists, LNM$SETUP saves the address of its LNMB in the RT's 
top search context longword as the starting point of the translation. It then 
scans for a valid table name cache block (see Section 28.5.4) describing this 
table name. 

If one is found, its cache entries contain the addresses of some (possibly all) 
of the table headers to which the table name resolves. 

If LNM$TABLE exhausts the valid cache data, it invokes LNM$­
TABLE_SRCH to expand the resolution of the table name and add entries to 
the end of the cache block. 

The fundamental recursion loop in resolving a table name is within 
LNM$TABLE_SRCH. LNM$TABLE_SRCH uses the RT data structure to 
keep track of the breadth and depth of its position in resolving the table 
name. 

At the beginning of the loop, it examines the next equivalence name at the 

785 



Logical Names 

current recursion depth to determine what to do. There are several possibili­
ties: 

a. If the equivalence name is an ordinary string, LNM$TABLE_SRCH up­
dates the contents in the stack longword to point to the next equivalence 
name. 

@It tests that the maximum recursion depth (10) has not been exceeded. If 
the depth has been exceeded, LNM$TABLE_SRCH returns the error 
SS$_ TOOMANYLNAM. 

Otherwise, it increments the recursion depth and invokes LNM$­
LOOKUP to find the LNMB associated with the string. It positions to the 
name string in the LNMB and examines its equivalence name, beginning 
the loop again. 

(S)If there are no more equivalence names, LNM$TABLE_SRCH decrements 
the recursion depth and selects the corresponding RT search longword. It 
begins the loop again. 

@If the equivalence name is a table header (the desired result), 
LNM$TABLE_SRCH decrements the recursion depth and returns the ad­
dress of the table header to its invoker. 

Figure 28-6 shows an example complete resolution of the logical name 
LNM$FILE_DEV. The first step is translating LNM$FILE_DEV. It is a share­
able name found in the system directory with four equivalence names. The 
second step is translating the "leftmost" equivalence name, LNM$PRO­
CESS. It is a process-private name with the equivalence name LNM$­
PROCESS_ TABLE. The third step translates LNM$PROCESS_ TABLE to its 
equivalence name, the first table header for LNM$FILE_DEV. 

In the figure, the numbers indicate the sequence of translations. The letters 

'..NM$FILE_DEV ~ LNM$PROCESS ~ LNM$JOB ---'®~- LNM$GROUP ~ LNM$SYSTEM 

shareable 

j@ 
2 process-private j@ 

4 process-private l@ 
6 process-private 8 shareable j@ 

LNM$PROCESS_ TABLE LNM$JOB_803B9020 LNM$GROUP _000200 LNM$SYSTEM_ TABLE 

3 process-private l
@ 

5 shareable j@ 

LNMTH LNMTH 

Figure 28-6 Example Resolution of a Logical Name 
Table Name 

786 

7 shareable j@ 
9 shareable l@ 

LNMTH LNMTH 



28.8 Logical Name System Services 

on each step correspond to the possible actions in the recursion loop previ­
ously listed. 

In this example, each equivalence name of LNM$FILE_DEV is translated 
as deeply a.s required to reach a table header. In practice, during logical name 
translation or deletion, table name resolution stops as soon as the containing 
table for the logical name is found. During logical name creation, table reso­
lution stops with the first table, in this example, LNM$PROCESS_ TABLE. 

28.8 LOGICAL NAME SYSTEM SERVICES 

28.8.1 

The logical nan;ie system service procedures all run in kernel mode. The pro­
cedures themselves are in the module SYSLNM. Logical name subroutines 
that they use are in module LNMSUB. 

Before describing the specific system service procedures, this section de­
scribes some checks common to the services. 

Privilege and Protection Checks 

Each of the system services has an access mode argument. If the caller explic­
itly specifies it and has the privilege SYSNAM, the desired access mode is 
used with no further check. If the caller specifies it but does not have the 
privilege, the access mode is maximized with the mode from which the sys­
tem service was called. That is, the less privileged of the two is used. 

Any string argument passed to the services must be probed to test accessi­
bility from the mode of the system service caller. An input string is tested for 
read accessibility and an output string for write accessibility. An item list 
must be probed for read accessibility and each buffer in it must also be 
probed. 

The logical name system services must check a process's access to a share­
able table. (A process always has access to a process-private table, although it 
may be constrained by access mode considerations.) The system services use 
standard VMS protection checks. That is, they invoke the routine 
LNM$CHECK_PROT, which calls an internal entry point of the Check Ac­
cess Protection ($CHKPRO) system service. 

The $CHKPRO system service determines whether the process, given its 
rights and privileges, can access the table. The system service's checks en­
compass the process UIC, the protection mask of the table, any ACLs defined 
for the table, and whether the process has any of the following privileges: 

SYSPRV 
GRPPRV 
BYPASS 
READ ALL 

787 



Logical Names 

28.8.2 

28.8.3 

788 

If the $CHKPRO system service returns a failure status, LNM$CHECK_ 
PROT makes two checks of its own to provide compatibility with earlier 
versions of VMS. If the intended access is read or write, LNM$CHECK_ 
PROT tests whether the table of interest is either a group table or the system 
table. If this is the group table and the process has the privilege GRPNAM, its 
access is allowed. If this is the system table and the process has the privilege 
SYSNAM, its access is allowed. 

Logical Name Translation 

The $TRNLNM system service procedure, EXE$TRNLNM, confirms the 
presence of its required arguments: descriptors for the logical name string 
and name of its containing table. EXE$TRNLNM locks the logical name 
database mutex for read access and then invokes LNM$SEARCHLOG to lo­
cate the logical name (see Section 28.6). 

If LNM$SEARCHLOG returns the error status SS$_NOLOGNAM, indi­
cating that the logical name does not exist, EXE$TRNLNM passes that error 
status back to its caller. On a successful search, LNM$SEARCHLOG returns 
the address of the logical name's LNMB. 

EXE$TRNLNM examines the address of the LNMB to determine whether 
it is a process-private or a shareable name. If the name is shareable (a system 
space LNMB), EXE$TRNLNM calls LNM$CHECK_PROT to determine 
whether the process has read access to the containing table (see Section 28.3). 
If the process does not have access, EXE$TRNLNM returns the failure status 
SS$_NOPRIV to its caller. 

If the process does have access, EXE$TRNLNM processes the item list, 
which contains the list of specific information to be returned. EXE$­
TRNLNM probes any specified output buffers for write access and copies 
information from the LNMB, its LNMXs, and the LNMTH of its containing 
table, as requested. It then unlocks the logical name database mutex and 
returns to its caller. 

Logical Name Creation 

The $CRELNM system service procedure, EXE$CRELNM, confirms the pres­
ence of its required arguments, descriptors for the logical name string, and 
name of its containing table. If the caller specified the address of an item list 
containing equivalence strings and their attributes, EXE$CRELNM scans the 
list to determine their cumulative size. The item list is not a required argu­
ment, but there is probably little purpose served in creating a logical name 
with no translations, other than perhaps the creation of a logical name to 
serve as an on-off flag. 

EXE$CRELNM raises IPL to IPL$_ASTDEL and allocates enough paged 



28.8 Logical Name System Services 

pool for the LNMB and all its LNMXs. The assumption is that the logical 
name is shareable and will thus require paged pool, rather than Pl pool. Until 
the containing table is located, EXE$CRELNM cannot determine whether 
the name is private or shareable. If there is insufficient paged pool, 
EXE$CRELNM returns the error status SS$_INSFMEM to its caller. 

EXE$CRELNM then locks the logical name database mutex for write ac­
cess and invokes LNM$FIRSTTAB (see Section 28. 7) to translate the name of 
the containing logical name table. A new logical name is always created in 
the first table of a table name search list. 

If LNM$FIRSTTAB returns the error status SS$_NOLOGTAB to indicate 
that the containing table name did not translate to any existing table, 
EXE$CRELNM unlocks the logicalname database mutex and deallocates the 
paged pool. It returns the error status to its caller. 

On a successful search, LNM$FIRSTTAB returns the address of the con­
taining table's LNMTH. EXE$CRELNM examines a flag in the LNMTH to 
determine whether it is a shareable table. If the table is process-private, 
EXE$CRELNM deallocates the paged pool and allocates the same amount 
from the Pl allocation region. If there is insufficient Pl allocation region, 
EXE$CRELNM unlocks the mutex and returns the error status SS$_ 
INSFMEM to its caller. 

If the table is shareable, EXE$CRELNM calls LNM$CHECK_PROT to de­
termine whether the process has write access to the containing table (see 
Section 28.3). If the process does not have access, EXE$CRELNM unlocks the 
mutex, deallocates the pool, and returns the failure status SS$_NOPRIV to 
its caller. 

In either case, EXE$CRELNM then checks that there is sufficient quota for 
the LNMB in the table that holds the quota for the containing table 
(LNMTH$L_QTABLE). If there is not, EXE$CRELNM deallocates the pool, 
unlocks the mutex, and returns the error status SS$_EXLNMQUOTA to its 
caller. 

EXE$CRELNM then begins to fill in the LNMB. If the containing table is 
one of the directories, EXE$CRELNM tests that the length of the logical 
name string is less than 32 characters and that it contains no characters other 
than those allowed for logical names contained in a directory. (Note that if a 
logical name is being created which is not a table name but whose containing 
table is one of the directories, it must meet those same requirements.) If the 
logical name string does not meet those requirements, EXE$CRELNM de­
allocates the pool, unlocks the mutex, and returns the error status SS$_ 
IVLOGNAM to its caller. 

EXE$CRELNM copies the logical name string to the LNMB. It then begins 
processing the item list, building LNMXs as specified by the caller. After the 
LNMB is built, EXE$CRELNM invokes LNM$INSLOGTAB to insert the 
LNMB into the logical name database. 

789 



Logical Nam es 

28.8.4 

790 

LNM$INSLOGTAB scans any LNMBs with the same name and containing 
table until there are no more or it encounters one with a more privileged 
access mode. It compares their access modes to that of the logical name being 
created and examines the NO_ALIAS attribute of the new name to deter­
mine what to do: 

• If there is an LNMB with the same access mode, the old LNMB is deleted 
and superseded by the new one. 

• If there is one with a more privileged mode and the NO_ALIAS attribute, 
the new logical name cannot be inserted. LNM$INSLOGTAB returns the 
error status SS$_DUPLNAM to EXE$CRELNM. EXE$CRELNM deletes 
the LNMB, unlocks the mutex, and returns the error status to its caller. 

• If there is one with a more privileged mode and without the NO_ALIAS 
attribute, the new logical name can be created. 

• If one is found with a less privileged mode and the new name has the 
NO_ALIAS attribute, the old LNMB is deleted and the new one is inserted. 

LNM$INSLOGTAB charges the size of the LNMB against the containing 
table's quota holder. If the containing table is a directory, LNM$INSLOGTAB 
increments the directory sequence number as part of the cache invalidation 
mechanism (see Section 28.5.4). If the containing table is a directory, 
EXE$CRELNM computes and stores a hash value for each of its equivalence 
names. The assumption behind this is that the logical name translates to one 
or more name table names, whose hash values will be needed whenever a 
table search involving this name is performed. 

Logical Name Table Creation 

The $CRELNT system service procedure, EXE$CRELNT, confirms the pres­
ence of the descriptor for the name of the parent table, its one required argu­
ment. If the caller omits the name of the table to be created, EXE$CRELNT 
supplies a default name. The form of the default name is LNM$­
xxxxxxxxeeeeeeee, where xxxxxxxx is the address of the LNMB of the table 
and eeeeeeee is the process's extended process ID (EPID). A default table 
name can be used to ensure that the name of a table does not conflict with 
any other defined table. 

EXE$CRELNT raises IPL to IPL$_ASTDEL and allocates enough paged 
pool for the LNMB, its single LNMX and LNMTH, the trailer byte flagging 
the end of translations, and an object rights block (ORB). The assumption is 
that the logical name table is shareable and thus requires paged pool, rather 
than Pl allocation region pool. Until the parent table is located, 
EXE$CRELNT cannot determine whether the new table is private or share­
able. 

EXE$CRELNT then locks the logical name database mutex for write access 
and invokes LNM$FIRSTTAB (see Section 28.7) to translate the name of the 



28.8 Logical Name System Services 

parent logical name table. If the parent table is a table name search list, its 
first table name becomes the parent of the new table. 

If LNM$FIRSTTAB returns the error status SS$_NOLOGTAB to indicate 
that the parent table name did not translate to any existing table, 
EXE$CRELNT unlocks the logical name database mutex and deallocates the 
paged pool. It returns the error status to its caller. 

On a successful search, LNM$FIRSTTAB returns the address of the parent 
table's LNMTH. If the parent table is process-private, EXE$CRELNT de­
allocates the paged pool and allocates space from the Pl allocation region. 
The Pl allocation does not include space for the ORB, because a process­
private table does not need an ORB. 

If the parent table is shareable, EXE$CRELNT calls LNM$CHECK_PROT 
to determine whether the process has enable access to the parent table (see 
Section 28.3). If the process does not have access, EXE$CRELNT deallocates 
the pool, unlocks the mutex, and returns the failure status SSLNOPRIV to 
its caller. 

If the parent table is shareable and the process specified the name of the 
table to be created, EXE$CRELNT checks whether the process has write ac­
cess to the system directory. If a default table name was constructed, the 
process does not need write access to the system directory. On error, 
EXE$CRELNT deallocates the pool, unlocks the mutex, and returns the error 
status SS$_NOPRIV to its caller. 

EXE$CRELNT then checks that there is sufficient quota for the LNMB in 
the directory table. If a quota for the new table was specified, then 
EXE$CRELNT also checks that the parent table's quota holder has sufficient 
quota for the new table. If there is not, EXE$CRELNTdeallocates the pool, 
unlocks the mutex, and returns the error status SS$_EXLNMQUOTA to its 
caller. 

EXE$CRELNT then fills in the LNMB and translation blocks. If the caller 
specified the name of the table to.be created, EXE$CRELNT tests that it is a 
legal table name. If the table is shareable, EXE$CRELNT initializes its ORB. 
EXE$CRELNT then invokes LNM$INSLOGTAB to insert the LNMB into the 
logical name database. 

LNM$INSLOGTAB scans any LNMBs with the same name and containing 
table until there are no more .or it encounters one with a more privileged 
access mode. Its actions depend on the NO_ALIAS attribute of the new name 
and any old ones, the access modes of the new and old names, and the pres­
ence or absence of the CREATE_IF ATTR argument. The CREATE_IF attri­
bute means that the table should be created only if there is not already one 
with the same name and access mode. 

•If there is an LNMB with the same access mode and CREATE~IF was not 
specified, the old LNMB is deleted and superseded by the new one. Deleting 
an LNMB whose equivalence name is an LNMTH means that all the logical 

791 



Logical Names 

28.8.5 

792 

names contained in that table must be deleted. Any descendant tables and 
their logical names must also be deleted. 

• If there is an LNMB with the same access mode and CREATE_ IF was speci­
fied, LNM$INSLOGTAB returns the status SS$_NORMAL and the address 
of the old LNMB. EXE$CRELNT deletes the new LNMB. 

• If there is an LNMB with a more privileged mode and the NQ_ALIAS attri­
bute, the new LNMB cannot be inserted. LNM$INSLOGTAB returns the 
error status SS$_DUPLNAM to EXE$CRELNT. 

• If there is an LNMB with a more privileged mode and without the 
NQ_ALIAS attribute, LNM$INSLOGTAB can insert the new LNMB. It 
will return the status SS$_LNMCREATED. 

• If an LNMB is found with a less privileged mode and the new name has the 
NQ_ALIAS attribute, the old LNMB is deleted (along with all its logical 
names and descendants' logical names). The new LNMB is inserted. 
LNM$INSLOGTAB returns the status SS$_SUPERSEDE. 

To insert the new LNMB (and its table), LNM$INSLOGTAB inserts the 
LNMB into the hash chain and the LNMTH into the name table hierarchy as 
the first child of its parent table. If there already was one, the address of its 
LNMTH is stored in the new table's LNMTH$L_SIBLING. If this table is to 
be its own quota holder, quota is withdrawn from the parent's quota holder 
and allocated to the new table. The table's LNMB is withdrawn from the 
appropriate directory table. LNM$INSLOGTAB increments the appropriate 
directory sequence number. 

EXE$CRELNT returns to its caller, if requested, the name of the newly 
created table. It unlocks the logical name database mutex and returns, pass­
ing back the status from LNM$INSLOGTAB. 

Logical Name Deletion 

The $DELLNM system service procedure, EXE$DELLNM, confirms the pres­
ence of the descriptor for the name of the table containing the names to be 
deleted, its one required argument. The LOGNAM argument is the logical 
name to be deleted; it can be a logical name table name. The absence of the 
logical name argument is a request to delete all logical names in the table. 
Only logical names with an access mode equally or less privileged than that 
of the request can be deleted. 

EXE$DELLNM raises IPL to IPL$_ASTDEL and locks the logical name 
database mutex for write access. 

If the caller requested deletion of a particular logical name, EXE$DELLNM 
invokes LNM$SEARCHLOG (see Section 28.6) to determine whether the 
name exists. If the name is not found or if its access mode is more privileged 
than that of the service request, EXE$DELLNM unlocks the mutex and re­
turns the error status SS$_NOLOGNAM to its caller. 



28.8 Logical Name System Services 

If the name found is shareable, EXE$DELLNM invokes LNM$CHECK_ 
PROT to ensure that the caller has write access to the containing logical 
name table. If the caller does not, but the name being deleted is a table name, 
delete access to the table being deleted is sufficient. If the caller does not have 
access, EXE$DELLNM unlocks the mutex and returns the error status 
SS$_NQPRIV to its caller. 

EXE$DELLNM invokes LNM$DELETE_LNMB to remove the logical 
name and any outer access mode aliases from the database. As long as the 
name is not the name of a table, deleting it is straightforward and consists of 
the following steps for each alias: 

• Removing the LNMB from its hash chain 
• Returning the quota charged for it 
• Deallocating it to the Pl allocation region or paged pool 

EXE$DELLNM unlocks the mutex and returns to its invoker. 
If, however, the LNMB is a table name, deleting it also requires deleting 

each LNMB contained within the table. In addition, any descendant tables 
and their logical names are deleted. LNM$DELETE_LNMB removes the 
LNMB from its hash chain and inserts it into a holding list. It then invokes a 
routine called DELETE_ TABLE to delete the table. 

DELETE_ TABLE examines the table header to determine whether this 
table has any descendants. If it does, DELETE_ TABLE finds the first one, 
removes it from its hash chain, inserts it into the holding list, and branches 
back to itself. DELETE_ TABLE is now one level lower in the logical name 
table hierarchy. It continues recursively,· until it reaches a childless level. 

It then deletes all the logical names in that table. This requires scanning 
the appropriate hash table and examining each LNMB to see whether it is 
contained within the table. Each such LNMB is removed from its hash chain 
and deallocated to its pool, with quota returned to the containing table. (If the 
table is shareable, the LNMB is deallocated to paged pool. Otherwise, it is 
deallocated to Pl pool.) 

After all its names are deleted, the table is then removed from the table 
hierarchy, its table quota is returned to its quota holder, and the LNMB quota 
is returned to the appropriate directory. The appropriate directory sequence 
number is incremented and the LNMB deallocated to its pool. 

Control returns to DELETE_ TABLE, which processes the first LNMB in 
the holding list, the parent of the one just deleted. DELETE..:.TABLE exam­
ines the table header of thatLNMB to see whether it still has descendants. If 
it does not, then all the user names in that table and the table itself are 
deleted. If it does still have descendants, DELETE_ TABLE places the LNMB 
for the first child into the holding list and branches back to itself. Eventually, 
DELETE_ TABLE empties the holding list and returns. EXE$DELLNM un­
locks the mutex and returns to its caller. 

793 



Logical Names 

If EXE$DELLNM is called without the logical name argument, it invokes 
LNM$FIRSTTAB to find the first table header to which the table name re­
solves. If the table is shareable, it confirms that the process has write access 
to the table. DELETE_NAMES is invoked to delete all the names in that 
table. 

As described previously, it scans the appropriate hash table, looking for 
LNMBs with a matching table header address and an access mode equally or 
less privileged than that of the delete request. Each such LNMB is removed 
from the hash chain, its quota is returned, and it is deallocated to pool. 

When all the names of suitable access mode in that table are deleted, 
EXE$DELLNM unlocks the mutex and returns to its caller. 

When an image exits, the Rundown Image ($RUNDWN) system service 
must delete all process-private logical names with an access mode less or 
equally privileged to the exit mode (see Chapter 21). It invokes the routine 
LNM$DELETE_HASH, specifying the exit access mode and the address of 
the process-private hash table. LNM$DELETE_HASH locks the logical name 
table mutex and invokes DELETE_NAMES with the address of the hash 
table. Many of its logical names, of course, are names of tables. Deleting each 
of them requires the steps previously described to delete a table, its descen­
dant tables, and its logical names. When all the the names are deleted, 
LNM$DELETE_HASH unlocks the mutex and returns to the $RUNDWN 
system service. 

28.9 SUPERSEDED LOGICAL NAME SYSTEM SERVICES 

794 

The VAX/VMS Version 4 logical name system services supersede several sys­
tem services from earlier versions of VAX/VMS: 

• Create logical name ($CRELOG) 
• Delete logical name ($DELLOG) 
• Translate logical name ($TRNLOG) 

These services are supported under Version 4 for backward compatibility. 
Moreover, VAX/VMS creates a process with logical name tables and table 
name definitions that support these services and the tables they use. Table 
28-3 shows the correspondence between Version 3 table numbers and Version 
4 table names. Table 28-2 shows the translation of those table names. 

It is possible for users of the V3 logical name system services to make some 
use of Version 4 features without reprogramming. By redefining the table 
names used by these Version 3 system services, a process can access tables 
other than the standard process, group, and system logical name tables. In 
fact, VMS defines the name LOG$PROCESS to equate to both the process 
and jobwide logical name tables. This enables translation of logical names 
within the jobwide logical name table by default. 



28.9 Superseded Logical Name System Services 

Table 28-3 Correspondence Between Table Numbers and Logical Name Table 
Names 

Table Number 

0 

1 

2 

Table Name 

LOG$SYSTEM 

LOG$GROUP 

LOG$PROCESS 

1 An access mode specified by the caller is 'used. 

Access Mode 

Executive 

User 

Mode of caller1 

The Version 3 system service procedures are in module SYSLOGNAM and 
are mode-of-caller services. Each service transforms its argument list and in­
vokes the equivalent Version 4 system service. Each service confirms that the 
minimum number of arguments expected is present and that the argument 
.list .is accessible. 

The arguments to each service include access mode and table number. 
Each service checks that its table number argument is valid and converts it to 
the corresponding Version 4 logical name table name. Table 28-3 shows this 
correspondence and also the access mode associated with each table. 

For the process table, any access mode specified by the caller is used. If the 
argument is omitted, the caller's access mode is used. This access mode is 
passed as an argument to the Version 4 logical name system service. The 
Version 4 service will test that the process has suitable privileges. 

The following paragraphs supply a few specific additional details about the 
implementation of the $CRELOG and $TRNLOG services. 

A name created with the $CRELOG service has only one translation, the 
equivalence name supplied to $CRELOG. The logical name has the CRELOG 
attribute. The equivalence name is assigned translation index 0. If the equiv­
alence name begins with a leading underscore, the underscore is removed and 
the equivalence name has the TERMINAL attribute. 

$TRNLOG returns translation number 0 of the specified logical name. If 
the translation has the TERMINAL attribute, $TRNLOG prefixes an under­
score to the equivalence name. This manipulation enables most logical 
names, including file names, to be created and used through either the old or 
new system services. 

Two arguments to the $TRNLOG system service control its actions: the 
TABLE and DSBMSK arguments. The TABLE argument is the address to receive 
the translation table number. The DSBMSK argument specifies which subset 
of the process, group, and system tables is to be searched. (The mask is a 
"disable" mask; by specifying which tables to omit, it indirectly identifies 
those to be searched.) 

If the TABLE argument is zero, EXE$TRNLOG transforms the DSBMSK argu­
ment into a table name search list with the names of the tables to be 

795 



Logical Names 

796 

searched. It selects one of the logical name table names whose name begins 
with the string TRNLOG$. It calls the $TRNLNM system service and trans­
forms its return arguments into forms compatible with the V3 interface. 

A nonzero TABLE argument means that EXE$TRNLOG must return the 
number of the containing table. To determine the containing table, 
EXE$TRNLOG calls the $TRNLNM system service once for each table to be 
searched, until the logical name is found or the end of the table subset is 
reached. 



29 Miscellaneous System Services 

... Of shoes-and ships-and sealing wax­
Of cabbages-and kings-
And why the sea is boiling hot­
And whether pigs have wings. 

Lewis Carroll, Through the Looking Glass 

This chapter includes brief discussions of the system services not mentioned 
in the previous chapters. Although these services do not generally make ex­
tensive use of the internal structures and mechanisms of the VMS executive, 
these descriptions are provided as an informational aid to users of the ser­
vices and for completeness. Detailed discussions of the arguments, return 
status codes, required process privileges, and system service options can be 
found in the VAX/VMS System Services Reference Manual. 

29.1 COMMUNICATION WITH SYSTEM PROCESSES 

29.1.1 

Some of the operations often associated with an operating system are per­
formed in the VAX/VMS system by independent processes rather than by 
code in the linked system image. Examples of this .type of system activity 
include the following: 

• Managing print and batch jobs and queues 
• Gathering accounting information about utilization of system resources 
• Communicating with one or more system operators 
• Reporting device errors 

Services Supported by the Job Controller 

The job controller is a system process, named JOB_ CONTROL, which runs 
the image JOBCTL.EXE. The job controller performs many different func­
tions and supports several system services. It uses several independent 
threads of execution to perform the following roles: 

• As the queue manager of the batch/print subsystem, the job controller is 
responsible for all transactions to and from the queue file, whose name is 
SYS$SYSTEM:JBCSYSQUE.DAT. (On a VAXcluster System, the job con­
trollers running on each node all access a single, common queue file.) These 
transactions include the creation and deletion of job queues and the crea­
tion, modification, and dispatching of batch and print jobs. For processing 

797 



Miscellaneous System Services 

29.1.1.1 

798 

print jobs, the job controller directs the activity of one or more print symbi­
ont processes. A print symbiont process can run the standard image sup­
plied with VAX/VMS, PRTSMB.EXE, or one which has been modified or 
rewritten by a user. 

• As the system accounting manager, the job controller records the use of 
system resources in the file SYS$SYSTEM:ACCOUNTNG.DAT. (On a 
VAXcluster System, each job controller accesses a node-specific accounting 
file.) 

• As the job manager, the job controller is responsible for the creation of 
interactive and batch processes. In response to unsolicited terminal input, 
the job controller creates a detached process running the image 
LOGINOUT.EXE. In response to unsolicited card reader input, the job con­
troller creates an input symbiont process, running the image INPSMB. The 
input symbiont reads the card deck and submits a batch job. When the job 
controller schedules a batch job to run from an execution queue, it creates a 
process running the image LOGINOUT.EXE and passes any job parameters 
to it through the DCL symbols Pl through P8. 

The job controller communicates with other processes on the system 
through mailbox messages. It receives messages from the executive (as the 
result of system service calls and notification of process deletion), print sym­
bionts, terminal driver, and card reader driver. The job controller sends mes­
sages to print symbionts and detached processes during login. 

VAX/VMS provides several system services to communicate with the job 
controller in its roles as queue manager and accounting manager. These 
system services are described in the following sections and include the 
following: 

• Send Message to Job Controller ($SNDJBC[W]) 
• Get Queue Information ($GETQUI[W]) 
• Send Message to Account Manager ($SNDACC, which is obsolete under 

VAX/VMS Version 4) 
• Send Message to Symbiont Manager ($SNDSMB, which is obsolete under 

VAX/VMS Version 4) 

Operation of the $SNDJBC System Service. The $SNDJBC[W] system service 
creates, stops, and manages queues and the batch and print jobs in those 
queues. In addition, it turns accounting on and off. The service requests the 
job controller to perform those actions by writing messages into its mailbox. 
A user invokes the $SNDJBC system service to request any of the job control­
ler actions available through DCL commands, for example, PRINT, SUBMIT, 
INITIALIZE/QUEUE, STOP/QUEUE, and DELETE/QUEUE. The arguments 
to the $SNDJBC system service include the following: 



29.1 Communication with System Processes 

• The event flag number to be set when the request completes 
• The function code specifying which function $SNDJBC is to perform 
• A place-holding null argument 
• The address of an item list that includes (for each requested item) which 

item of information is specified or returned, the size and address of the 
buffer to receive or specify the information, and a location to insert the size 
of the information returned 

• An I/O status block (IOSB) to receive final status information 
• The entry point and parameter for an asynchronous system trap (AST) pro­

cedure to be called when the request completes 

The $SNDJBC system service procedure EXE$SNDJBC, in module SYS­
SNDJBC, executes in executive mode. It performs the following operations: 

I. The message type is defined as MSG$_SNDJBC and the target mailbox is 
defined as the job controller's mailbox, SYS$GL_JOBCTLMB. 

2. The IOSB, if specified, is checked for write access and is cleared. 
3. The FUNC code specified in the $SNDJBC argument list is validated. 
4. The message buffer is allocated on the current stack (the executive mode 

stack). Each item in the item list is checked for correctness: its item code 
must be valid; its buffer descriptor and buffer must be readable. The fol­
lowing information is placed in the buffer (using code common to the 
$GETQUI service): 

-Items in the item list 
-The function code 
-Address of the AST procedure and parameter 
-"-IOSB address 
-Event flag number 
-Image counter (PHD$L_IMGCNT) 
-System time (EXE$GQ_SYSTIME) 
-Terminal name of the requesting proce~s (PCB$T _TERMINAL) 
-Extended owner process ID (PCB$L_EOWNER) 
-Process status longword (PCB$L_STS) 
-Extended process ID (PCB$L_EPID) 
-Access mode of system service caller 
-Process base priority PCB$B_PRIB) 
-Process user name and account name (CTL$T _USERNAME and 

CTL$T _ACCOUNT) 
-Process UIC (PCB$L_ UIC) 
-Process privileges (PHD$Q_PRIVMSK) 
-Message type 

5. The common code then invokes the Change Mode to Kernel ($CMKRNL) 

799 



Miscellaneous System Services 

29.1.1.2 

29.1.1.3 

800 

system service. The kernel mode procedure called performs the following 
operations: 

a. It clears the specified event flag. 
b. If AST notification was requested, the routine checks the process's AST 

quota. If the AST quota is insufficient, the message is not queued to the 
job controller, and EXE$SNDJBC returns with status SS$_EXASTLM. 
If the process has AST quota, its quota is charged. 

c. It calls EXE$SENDMSG (in module SYSSNDMSG) to write the buf­
fer to the job controller mailbox. EXE$SENDMSG is invoked by many 
system services that communicate with system processes. 
EXE$SENDMSG verifies that the target mailbox has a process reading 
messages written to the mailbox. 

EXE$SENDMSG raises IPL .to 2 and faults the message (which is still 
on the executive stack) into the process's working set. It then invokes 
EXE$WRTMAILBOX, part of the mailbox device driver (module 
MBDRIVER), to do the 1/0 operation. (Because EXE$WRTMAILBOX 
runs at IPL$_MAILBOX, IPL 11, the pages containing the message 
must be valid; page faults are not allowed at IPLs above 2.) 

6. The asynchronous form of the system service ($SNDJBC) returns to the 
caller. The caller can either wait for the information to be returned or 
continue processing. The synchronous form of the system service 
($SNDJBCW) waits for the event flag associated with the request to be set 
and status to be returned. (See Chapter 9 for more information concerning 
synchronous and asynchronous system services.) 

Section 29.Ll.3 describes how information is returned to the user. 

Operation of the $GETQUI System Service. The $GETQUI[W] system ser­
vice obtains information about the queues and jobs initiated and managed by 
the job controller. The $GETQUI system service performs the same opera­
tions (using common code) as the $SNDJBC system service (described 
in the previous section). The message type for $GETQUI messages is 
MSG$_GETQUI. This service is requested to obtain any of the information 
available through the DCL command SHOW QUEUE. 

Section 29.1.1.3 describes how information is returned to the user. 

$SNDJBC and $GETQUI Special Kernel AST. The job controller queues a 
special kernel AST (see Chapter 7) tO the process when its request has com­
pleted. The AST is described by an extended AST control block (ACB). The 
ACB includes any data requested by the process and information about where 
and how .much data is to be stored. EXE$JBCRSP (in module SYSSNDJBC), 
the special kernel AST routine, returns status and any requested data from 



29.1.2 

29.1.2.1 

29.1 Communication with System Processes 

the $SNDJBC and $GETQUI services to the process. 
EXE$JBCRSP first tests that the image which requested the system service 

is still executing. This test is a comparison of the process's current 
PHD$L_IMGCNT against its value at the time of the service request. 
PHD$L_IMGCNT is incremented each time that an image is run down (see 
Chapter 21). If the two values are different, a different image is running now, 
and addresses in the previous image, such as that of the AST procedure or 
IOSB, are no longer valid. If the same image is no longer running, 
EXE$JBCRSP deallocates the extended ACB, returning AST quota to the 
process, if appropriate, and returns. 

If the same image is running, EXE$JBCRSP completes the request through 
the following actions: 

1. It sets the specified event flag by calling routine SCH$POSTEF with a null 
priority class increment (see Chapters 10 and 12). 

2. It stores a status value in the IOSB, if one was specified. 
3. It stores data in any output buffer items from the original request. 
4. If the user requested AST notification, EXE$JBCRSP calls SCH$QAST to 

queue the ACB as a completion AST and returns. 
5. If the user did not request AST notification, EXE$JBCRSP deallocates the 

ACB and returns. 

Superseded System Services 

The $SNDJBC system service supersedes two system services from versions 
of VAX/VMS prior to Version 4: 

• Send Message to Accounting Manager ($SNDACC) 
• Send Message to Symbiont Manager ($SNDSMB) 

These services are supported under VMS Version 4 for compatibility with 
earlier versions. 

Send Message to Accounting Manager System Service. Requests to the ac­
counting manager can be s~nt through the job controller's mailbox by the 
$SNDACC system service. A user invokes the $SNDACC service to request 
actions normally available through the DCL command SET ACCOUNTING 
and to send messages directly to the accounting manager. 

The $SNDACC system service procedure, EXE$SNDACC in module 
SYSSNDMSG, runs in executive and kernel modes. It performs the following 
operations: 

1. The mailbox message type is defined as MSG$_SNDACC and the target 
mailbox is defined as the job controller's mailbox, SYS$GL_JOBCTLMB. 

2. The request is checked for possible errors, such as too large a message, 

801 



Miscellaneous System Services 

29.1.2;2 

29.1.3 

802 

insufficient privilege, or inaccessible data references. (The u,ser privilege 
OPER is required to create a new log file or enable or disable accounting.) 

3. The message buffer is allocated on the current stack (the executive mode 
stack), and the following information is placed in the buffer: 

-Mailbox message type 
_:Reply mailbox channel (if specified as an optional argument) 
-Privilege mask, UIC, user name, and account name 
-Process b~se priority 
-User-supplied accounting message type that specifies which function is 

to be performed 
-User-defined message text 

4. EXE$SNDACC invokes the $CMKRNL system service to call the local 
procedure SENDMSG. 

5. SENDMSG performs the following operations: 

a. It validates the process's reply channel (if one was specified as an op­
tional argument). 

b. It verifies that the target mailbox has read/write access. 
c. It invokes routine EXE$SENDMSG. Section 29.1.1.1 describes the ac­

tions of EXE$SENDMSG. 

Send Message to Symbiont Manager System Service. Requests to the symbi­
ont manager are sent to the job controller's mailbox by the $SNDSMB system 
service. A user invokes the $SNDSMB service to request actions normally 
available through DCL commands, such as PRINT, SUBMIT, and DELETE 
/ENTRY. 

The $SNDSMB system service performs exactly the same operations (using 
common code) as the $SNDACC system service (described in the previous 
section), except that the message type is defined to be MSG$_SNDSMB. 

The user privilege OPER is required to use any function of $SNDSMB that 
affects a queue itself (for example, initializing or deleting a queue). 
$SNDSMB requires GROUP privilege to affect queue entries owned by pro­
cesses in the caller's group; WORLD privilege is required to affect entries 
from outside the group. 

Operator Communications 

Operator communications are handled by a system process named OPCOM, 
which runs the image OPCOM.EXE). OPCOM has the following responsibili­
ties: 

• Defining which terminals are operator terminals and for what class of activ­
ity (such as disk or tape operations) these terminals will receive messages 



29.1.4 

29.1 Communication with System Processes 

• Replying to or canceling a user request to an operator 
• Managing the operator log file 

Requests to OPCOM are sent through OPCOM's mailbox by the Send Mes­
sage to Operator ($SNOOPR) system service. A user invokes the $SNDOPR 
service to request actions normally available through the DCL user com­
mand REQUEST and the operator command REPLY. 

The user privilege OPER is required to call $SNDOPR to enable a terminal 
as an operator's terminal, reply to or cancel a user's request, or initialize the 
operator log file. 

With exceptions of a different mailbox (SYS$GL_OPRMBX) and a different 
message type (MSG$_0PRQST), $SNDOPR shares common code with 
$SNDACC and $SNDSMB (described in Section 29.1.2). 

Error Logger 

As described in Chapter 8, the error logging subsystem contains three pieces: 

• The executive itself contains routines that maintain a set of error message 
buffers. These routines are called by device drivers and other components 
that log errors so that error messages can be written to some available space 
in one of these buffers. 

• The error formatting process (process ERRFMT running image 
ERRFMT.EXE) is awakened. to copy the contents of these error message 
buffers to the error log file for subsequent analysis. 

• The Error Log Utility reads the error messages in the error log file and 
produces an error log report, based on the contents of the error log file and 
the options selected when the utility is run. 

A user can invoke the Send Message to Error Logger ($SNDERR) system 
service to send messages to the error logger (put messages into one of the 
error message buffers for later transmission to the error log file). Using this 
system service requires the BUGCHK privilege. 

Unlike the $SNDJBC and $SNDOPR system services, the $SNDERR sys­
tem service has the following characteristics: 

• It executes entirely in kernel mode (rather than executive and kernel 
mode). 

• It writes a message to an error message buffer (rather than sending a mail­
box message). 

The $SNDERR system service procedure, EXE$SNDERR in module 
SYSSNDMSG, performs the following actions: 

1. The request is checked for access and privilege violations. 
2. It invokes ERL$ALLOCEMB (in module ERRORLOG)to allocate an error 

803 



Miscellaneous System Services 

log message buffer. 
3. The message buffer is filled with the message type (EMB$C_SS), the mes­

sage size, and the message text. An error log sequence number and the 
current time are also a part of every error message. 

4. It invokes ERL$RELEASEMB (also in ERRORLOG) to release the buffer to 
the error logging routines for subsequent output to the error log file. 

Chapter 8 contains a discussion of the error log routines and a brief descrip­
tion of the ERRFMT process. 

29.2 SYSTEM MESSAGE FILE SERVICES 

29.2.1 

29.2.1.1 

804 

VAX/VMS provides three levels of message file capability. The creation and 
declaration of image-specific and process-permanent message files are dis­
cussed in the description of the Message Utility in the VAX/VMS Message 
Utility Reference Manual and the VAX/VMS DCL Dictionary. The system 
message file (SYSMSG.EXE) is mapped into system address space as a page­
able section. This initialization is performed by SYSINIT during system ini­
tialization (see Chapter 25). 

Two system services provide the capability for a user to do the following: 

• Search for a message text corresponding to a given status code-the Get 
Message ($GETMSG) system service 

•Write one or more message texts to SYS$0UTPUT-the Put Message 
($PUTMSG) system service 

A third procedure (EXE$EXCMSG) does not use the various message files 
but is also one of the message output procedures that can be invoked as part 
of condition handling. 

Get Message System Service 

The $GETMSG system service executes in the mode of the caller. It searches 
each of the three levels of message files for a match to the status code pro­
vided as an argument. 

Finding the Message Files. The first step of the retrieval of a message involves 
determining which types of message files have been defined. 

1. If an image message section has been defined, then it has been incorpo­
rated as a program region image section. The control region location 
CTL$GL_GETMSG points to the per-image message section vector in the 
control region (see Appendix F). The vector is initialized with a value cor­
responding to an RSB instruction. If an image has defined any message 
sections, then this vector is changed by the image activator to the follow­
ing code sequence: 



29.2.1.2 

29.2 System Message File Services , 

JSB @#<PD-location_L> 

JSB @#<PO-location_2> 

JSB @#<PD-location_n> 

RSB 

These instructions are not executed; rather, the address serves as a 
pointer to the message sections. (That there is a JSB instruction is a side 
effect of the use of a particular code path in the image activator also used 
in the support of privileged shareable images. J Each PO location is in a 
different message section (up to a maximum of 41 distinct message sec­
tions in a given image). The message section search routine searches one 
message section at a time. 

2. If no match is found in the current section, the message dispatcher 
searches the next message section given in the PO space vector, and so on. 

3. If no image message section has been defined or the input status value 
could not be found in any image message section, then a test is made for a 
process-permanent message section (established by the SET MESSAGE 
command). The absence of a process-permanent message section is indi-

. cated by a zero in the control region location, CTL$GL_PPMSG. If a 
process-permanent message section has been defined, CTL$GL_PPMSG 
points to a control region address in a process-permanent section vector 
(see Appendix F). The process-permanent message section is searched in a 
fashion similar to that used for the 'Previous image section case. 

4. If a process-permanent message section has not been defined or the input 
status value could not be found in the process-permanent message section, 
then the system message file is searched. The location EXE$GL_SYSMSG 
points to a system location in a system section vector. The message sec­
tion search routine is called to search for the system message file. 

If no message file is found or none of the defined message files contains the 
specified status code, then the status code is inserted into a message indicat­
ing that the 'message is not in the message file, and the service returns with 
the status code SS$_MSGNOTFND. 

Searching a Located Message Section. When a message section is located, the 
starting address and length of the message section index· are calculated. A 
binary search of the message section index is then performed to determine if 
the specified status code is included. 

If no message is defined within the section for the specified status code, a 
check is made in other message sections of the same type. If no further mes­
sage sections of the same type exist, the search routine returns to the 
$GETMSG main search procedure. $GETMSG then checks the next type of 

805 



Miscellaneous System Services 

29.2.1.3 

29.2.2 

806 

message section until the system message file has been searched. 
If a message corresponding to the specified status code is located within a 

message section, then the information selected by the $GETMSG FLAGS argu­
ment is copied into the user-defined buffer. If the combine bit is set in the 
FLAGS argument (bit 4), then the argument is reduced to the information se­
lected by the process's default message flags (CTL$GB_MSGMSK). If the 
FLAGS argument is not specified, the process default message flags 
(CTL$GB_MSGMSK) is used to select the information. The search routine 
returns control to the caller of the $GETMSG system service. 

Indirect Message Sections. Indirect message sections allow users to create 
more than one message file associated with an executable image. Message 
files can then be changed without recompiling and relinking the image. 
Briefly, the executable image contains pointers to a message file rather than 
the messages themselves. The DCL commands used to create indirect mes­
sage sections are described in the VAX/VMS Message Utility Reference 
Manual. 

As a result of creating an indirect message section, two image files are 
created. One is an executable image, in which the actual message text areas 
contain the file specification of the second image. The second image is 
nonexecutable and contains the message data. 

When the $GETMSG system service searches for a message code and finds 
a file specification (rather than message text) related to the code, it maps the 
nonexecutable image specified by the file specification to the end of the vir­
tual address space. The newly mapped section contains the actual message 
text. The search for the message code continues. When the message is found, 
the information specified by the $GETMSG FLAGS argument is copied into 
the user-defined buffer. If the combine bit is set in the argument (bit 4), then 
the argument is reduced to the information specified in the process's default 
message flags (CTL$GB_MSGMSK). If the FLAGS argument is not specified, 
the process's default message flags (CTL$GB_MSGMSK) is used to select the 
information. 

If the nonexecutable image has already been mapped, the text for the code 
is in the newly mapped section. $GETMSG then searches for the second 
occurrence of the message code and processes the code as usual. 

Put Message System Service 

The $PUTMSG system service provides the ability to write one or more 
error messages to SYS$ERROR (and SYS$0UTPUT if it is different from 
SYS$ERROR). It executes in the access mode of its calier and uses 
$GETMSG to retrieve the associated text for a particular status code. 

The following four arguments are passed to $PUTMSG: 



29.2.3 

29.2 System Message File Services 

• A message argument vector describing the messages in terms of status 
codes, message field selection flag bits, and $FAO arguments (see Section 
29.5.2). 

• An optional action routine to be called before writing the message texts. 
• An optional facility name to be associated with the first message written. If 

it is not specified, the default facility name associated with the message is 
used. 

• An optional parameter to be passed to the caller's action routine. If it is not 
specified, it defaults to zero. 

The construction of the message argument vector is discussed in the VAX/ 
VMS System Services Reference Manual. Other uses of the $PUTMSG sys­
tem service are described in the VAX/VMS Run-Time Library Routines Ref­
erence Manual. 

Each argument of the message argument vector is processed as follows: 

1. The facility code of the request is determined to be a system, RMS, or 
standard facility code. Standard facility codes can require $FAO argu­
ments. System messages (facility code 0) and RMS messages (facility code 
1) do not use associated $FAO arguments in the message argument vector. 
System exception messages require $FAO arguments to follow immedi­
ately after the message identification in the message vector. 

2. $GETMSG is called with the status code and field selections (based upon 
the selection bits and $FAO arguments). 

3. If there are $FAO arguments present and the message is flagged as having 
at least one $FAO argument, $FAOL is called to assemble all the portions 
of the message to be written (supplied facility code, optionally specified 
delimiters, output from $GETMSG). 

4. The user's action routine is called, if one was specified. 
5. If the action routine returns an error status, the message is not written. 

Otherwise, the formatted message is written to SYS$ERROR by an RMS 
$PUT request. If SYS$0UTPUT is different from SYS$ERROR, then the 
formatted message is also written to SYS$0UTPUT. 

When all of the arguments in the message argument vector have been pro­
cessed, the $PUTMSG system service returns to its caller. 

Procedure EXE$EXCMSG 

This procedure is used internally by the catch-all condition handler to report 
a condition that has not been properly handled by any condition handlers 
further up the call stack. EXE$EXCMSG is also called by EXE$EXCEPTION 
to write the contents of the general registers to SYS$0UTPUT if a condition 
is not handled in any other way. (See Chapter 4 for information on condition 
handling.) 

807 



Miscellaneous System Services 

The two input arguments to this procedure are the address of an ASCII 
string and the address of the exception argument list passed to the condition 
handlers (see Chapter 4). 

The procedure writes a formatted dump of the general registers, signal 
array, and stack, as well as the caller's message text to SYS$0UTPUT (and to 
SYS$ERROR if different from SYS$0UTPUT). This message appears for all 
fatal errors that occur in images that were linked without the traceback han­
dler. (Note that most images shipped with the VAX/VMS operating system 
are linked without the traceback handler.) 

Although this procedure has an associated entry point in the system ser­
vice vector area, it cannot be conveniently called from any languages, except 
VAX MACRO and VAX BLISS-32. This restriction is imposed by the specifi­
cation of the second argument, which requires access to the general register 
AP, a capability denied to most high-level languages. 

29.3 PROCESS INFORMATION SYSTEM SERVICES 

29.3.1 

808 

The Get Job/Process Information ($GETJPI[W]) system service provides se­
lected information about a specified process (which may not necessarily be 
the process requesting the $GETJPI service). The information that can be 
obtained from this service includes selected data from the process control 
block (PCB), job information block (JIB), process header (PHD), and control 
region. 

The arguments to $GETJPI include the following: 

• The event flag number to be set when the request completes 
• The process ID of the process from which information is to be collected 
• The process name of the target process 
• The address of an item list that includes (for each requested item) which 

item of information is to be returned, the size and address of the buffer to 
hold the information, and a location to insert the size of the returned infor­
mation 

• An IOSB to receive final status information 
• The entry point and parameter for an AST procedure to be called when the 

request completes 

Operation of the $GETJPI System Service 

The $GETJPI system service procedure, EXE$GETJPI in module SYSGETJPI, 
executes in kernel mode. It performs the following operations: 

1. It invokes EXE$NAMPID to check that the current process has the abil­
ity to obtain information about the target process (see Chapter 12). 

2. The IOSB, if specified, is checked for write access and cleared. 



29.3 Process Information System Services 

3. The event flag is cleared. 
4. If AST notification was requested, EXE$GETJPI checks that the process 

has sufficient AST quota and charges it. 
5. Each item in the list is checked for the following conditions: 

-The buffer descriptor must be readable and the buffer writable. 
-The requested item must be a recognized one. 

6. If these conditions are met, then the requested item can be retrieved. All 
data about the current process and PCB and JIB data about another pro­
cess can be obtained directly without entering the context of the target 
process. (The PCB and JIB are nonpaged pool data structures allocated for 
the life of the process and job.) In addition, data from the PHD of another 
process can be obtained directly if the PHD is resident (if the 
PCB$V _PHDRES bit in PCB$L_STATUS is set). All such information is 
moved to the user-defined buffers for each corresponding item. 

7. If no information remains to be gathered, then EXE$GETJPI returns to 
the caller after performing the following actions: 

-Setting the specified event flag 
~ueuing AST notification, if it was requested 
-Writing status to an IOSB, if one was supplied 

8. If there is remaining information that could not be retrieved by step 6, 
the information concerns a process other than the caller and is stored 
either in the target process's control region or process header. This infor­
mation must be retrieved by executing in the context of the target pro­
cess. EXE$GETJPI must queue a special kernel mode AST (see Chapter 7) 
to the target process so that EXE$GETJPI code can execute in the context 
of the target process. 

EXE$GETJPI allocates nonpaged dynamic memory for an extended 
ACB and an information buffer. (The pool is charged to the process's 
JIB$L_BYTCNT quota.) The normal ACB fields are initialized. The ex­
tension is initialized with descriptors of all the information that must be 
retrieved by executing in the context of the other process. The buffer is 
created to receive. the retrieved information for transmission to the re­
questing process. 

9. EXE$GETJPI checks the status and state of the target process. If the tar­
get process is in any of the following states, information from it cannot 
be obtained: 

-It no longer exists. 
-Deletion or suspension is pending. 
-The process state is suspended (SUSP), suspended outswapped 

(SUSPO), or miscellaneous wait (MWAIT) states (see Chapter 10). 

809 



Miscellaneous System Services 

29.3.2 

810 

If the process is any of these states, EXE$GETJPI deallocates the 
nonpaged pool, restoring the quota charged, and returns an error to its 
caller. The status of SS$_SUSPENDED is returned for the three wait 
states of SUSP, SUSPO, and MWAIT. If the process has been deleted or is 
in the process of being deleted (has the delete pending bit set in the PCB 
status longword), a status of SS$_NONEXPR is passed back to the caller. 
Note that the completion mechanisms are all triggered if one of these 
errors occurs. That is, the event flag is set, a user-requested AST is 
queued, and an IOSB is written with the failure status. 

10. EXE$GETJPI queues the ACB to the target process with a priority incre­
ment class of PRI$_ TICOM (6). However, if the target process is comput­
able (COM) or computable outswapped (COMO), queuing the AST does 
not result in a priority boost. (See Chapter 10 for information on event 
reporting.) In that case, EXE$GETJPI boosts the target process's priority 
enough to make it equal to the priority of the current process (unless the 
current process is a real-time process or its priority is lower than that of 
the target process). 

11. The asynchronous form of the system service returns to the caller. The 
caller can either wait for the information to be returned or continue pro­
cessing. The synchronous form of the system service waits for the event 
flag associated with the request to be set and status to be returned. (See 
Chapter 9 for more information concerning synchronous and asynchro­
nous system services.) 

$GETJPI Special Kernel Mode ASTs 

When the target process is not the caller and the information needed resides 
in the process header or Pl space. of the target process, the special kernel 
mode AST code must execute in the context of the target process (to access 
the information). Once the AST has obtained the information, it must be 
passed back to the caller's context, so that it can be written to the caller's 
address space. The VMS system uses special kernel mode ASTs for both 
pieces of this operation. 

A summary of the operations performed by these special kernel mode ASTs 
follows: 

1. When the target process is placed in execution, the first special kernel 
AST routine runs. It examines the extended ACB to determine what infor­
mation was requested and stores it in the associated system buffer. It 
reformats the extended ACB to deliver a second special kernel mode AST, 
this time to the requesting process. It queues the extended ACB to the 
requesting process and returns. 

2. The second kernel mode AST routine executes in the context of the re­
questing process. If the PHO image counter is not the same as it was when 



29.3.3 

29.4 System Information System Services 

the service was requested, then the requesting image has been run down. 
In this case, the block of nonpaged pool is deallocated, the JIB$L_ 
BYTCNT quota is restored, and the special kernel mode AST simply 
returns. 

3. If the image counter in the process header agrees with the image counter 
in the extended ACB, the special kernel AST routine copies the retrieved 
data from the system buffer into the user-defined buffers. 

Note that the asynchronous nature of this aspect of the system service 
requires that the IOSB and all data buffers be probed again for write acces­
sibility. This check ensures that the original caller of $GETJPI has not 
altered the IOSB and data buffer protection in the interval between the call 
to $GETJPI and the delivery of the return special kernel AST. 

4. The event flag is set and the IOSB is written if it was specified. 
5. If a completion AST was requested, the extended ACB is used for the third 

time to queue an AST to the requesting process in the access mode of the 
caller. Otherwise, the ACB is deallocated to nonpaged pool. 

Wildcard Support in $GETJPI 

The $GETJPI system service also provides the ability to obtain information 
about all processes in the system (in other words, a wildcard search). A 
wildcard request is indicated oy passing a negative process ID to the $GETJPI 
system service. The internal routine in $GETJPI that determines the identity 
of the target process recognizes a wildcard request and passes information 
back to the caller about the first process in the PCB vector after the swapper 
and the null process (see Chapter 20). 

In addition, the process index field of the caller's PIO argument is altered to 
contain the process index of the target process. When the caller of $GETJPI 
issues a second call, the negative sequence number (in the high-order word of 
the process ID) indicates that a wildcard operation is in progress, but a posi­
tive process index indicates where in the PCB vector the search should con­
tinue. Note that the user program will not work correctly if the caller alters 
the value of the process ID argument between calls to $GETJPI. 

The user issues calls to $GETJPI until a status code of SS$_ 
NOMOREPROC is returned, indicating that the PCB vector search routine 
has reached the end of the PCB vector. An example of the wildcard use of the 
$GETJPI system service is contained in the VAX/VMS System Services Refer­
ence Manual. 

29.4 SYSTEM INFORMATION SYSTEM SERVICES 

The Get System Information ($GETSYI[W]) system service provides selected 
information about the running system or another node within the 
VAXcluster System. Although synchronous and asynchronous forms of the 

811 



Miscellaneous System Services 

29.4.1 

812 

service are provided, both forms of the service complete synchronously under 
VAX/VMS Version 4. Currently, the only information that can be obtained 
about a target system which is not the running system is contained in 
nonpaged pool data structures on the local system. 

The arguments to $GETSYI include the following: 

• Event flag to be set when the request completes 
• Node name of the system for which the information is requested 
• Address of the Cluster System Identification (CSID) of the system 
• Address of the item list that includes (for each requested item) which item 

of information is to be returned, the size and address of the buffer to hold 
the information, and a location to insert the size of the returned informa­
tion 

• Address of an IOSB to receive the final status of the information requested 
• Entry point and parameter for an AST procedure to be called when the 

request completes 

Operation of the $GETSYI System Service 

The $GETSYI system service procedure, EXE$GETSYI in module SYS­
GETJPI, executes in kernel mode. It performs the following actions: 

1. It invokes local routine NAMCSID to validate the node name/CSID pair. 
NAMCSID tests CLU$GL_CLUB to determine whether the running sys­
tem is a member of a VAXcluster System. 

-If the system is a member of a VAXcluster System, NAMCSID (after 
resolving a wildcard reference) invokes another local routine, 
EXE$NAMCSID, to obtain the address of the cluster system block (CSB) 
specified by CSID or node name. If a CSB is located, its ad.dress is re­
turned to EXE$GETSYI. Otherwise, the error status SS$_NQSUCH­
NODE is returned, which EXE$GETSYI returns as system service 
status. 

-If the system is not a member of a VAXcluster System and the user 
specified a CSID, NAMCSID returns the error SS$_NOMORENODE, 
which EXE$GETSYI returns as system service status. 

-If the system is not a member of a VAXcluster System and the user 
specified a node name, NAMCSID checks that the node name is that of 
the running system. If it is, NAMCSID returns successfully with the 
address of the system block (SB). If the node name is not that of the 
running system, NAMCSID returns the em>r status SS$_NQSUCH­
NODE, which EXE$GETSYI returns as system service status. 

2. The_ IOSB, if specified, is checked for write access and cleared. 
3. The event flag is cleared. 
4. If AST notification was requested, EXE$GETSYI checks that the process 



29.4.2 

29.5 Formatting Support 

has sufficient AST quota and charges it. 
5. Each item in the list is checked for the following conditions: 

-The buffer descriptor must be readable and the buffer writable. 
-The requested item must be a recognized one. 

6. If these conditions are met, then the requested information is retrieved 
and copied to the user-defined buffer. Under VMS Version 4, all available 
information can be obtained immediately and while in the context of the 
requesting process. The only information available about a nonlocal sys­
tem is contained in its CSB or SB. Other information about the current 
system can be obtained from various system global locations. 

7. When no information remains to be gathered, then the system service 
returns to the caller after performing the following actions: 

-Setting the specified event flag 
-Queuing requested AST notification to the process 
-Writing status information to an IOSB, if one was specified 

Wildcard Support in $GETSYI 

The $GETSYI system service provides the ability to obtain information about 
all systems in a VAXcluster System, that is, to perform a wildcard search of 
the cluster vector table. The cluster vector table is a table of CSB addresses, 
indexed by the low word of the CSID. Its address is stored in global location 
CLU$GL_CLUSVEC. A wildcard request is indicated through a negative 
CSID argument to the $GETSYI system service. The internal routine in 
$GETSYI that determines the identity of the target system recognizes a 
wildcard request and passes information back to the caller about the first 
system described in the cluster vector table. 

In addition, the cluster system identification field of the caller's CSID argu­
ment is altered to contain a node index of the target system. When the caller 
of the $GETSYI service issues a second call, the negative sequence number 
(in the high-order word of the CSID) indicates that a wildcard operation is in 
progress. The positive node index (in the low-order word ofthe cluster sys­
tem ID) indicates where in the cluster vector table the search should resume. 
Note that the user program will not work correctly if the caller alters the 
value of the CSID argument between calls to $GETSYI. 

The user continues to request the $GETSYI system service until a status of 
SS$_NOMORENODE is returned, indicating that the cluster vector table 
has been exhausted. 

29.5 FORMATTING SUPPORT 

The final group of system services provides conversion support for time­
related requests and formatted I/O of ASCII character strings. 

813 



Miscellaneous System Services 

29.5.1 

29.5.2 

814 

Time Conversion Services 

The time conversion system services are defined in the module SYSCVRTIM. 
The $NUMTIM system service executes in executive mode and converts a 
binary quadword time value in system time format (described in Chapter 11) 
into the following seven numerical word length fields: 

•Year (AD) 
• Month of year 
• Day of month 
• Hour of day 
• Minute of hour 
• Second of minute 
• Hundredths of seconds 

A positive time argument is converted into the corresponding absolute sys­
tem time. A zero-valued time argument requests the conversion of the cur­
rent system time. A negative time argument is interpreted as a time interval 
from the current system time. 

The $ASCTIM system service executes in the access mode of the caller and 
converts a system time format quadword into an ASCII character string. The 
input binary time argument is passed to $NUMTIM. The seven fields re­
turned from $NUMTIM are then converted into ASCII character fields with 
the selection determined by whether the input time was an absolute or delta 
time and whether the conversion flag was set, indicating conversion of day 
and time or only the time portion. The $FAO system service (described in 
Section 29.5.2) is used to concatenate and format the string components be­
fore returning the string to the caller. 

The $BINTIM system service executes in the access mode of the caller and 
converts an ASCII time string into a quadword absolute or delta time. If the 
input string expresses an absolute time, then the current system time is con­
verted by $NUMTIM to supply any fields omitted in the ASCII string. Each 
ASCII field is then converted to numerical values and stored in the seven 
word fields used by $NUMTIM. The seven word fields are then combined 
into a binary quadword value. The resulting value is negated if a delta time 
was specified in the ASCII string. 

Formatted ASCII Output 

The $FAO and $FAOL system services provide formatting and conversion 
facilities from binary and ASCII input parameters to a single ASCII output 
string. The two system services execute in the access mode of the caller and 
use common code. The only difference between them is whether the parame­
ters are passed as a list of arguments ($FAO) or as the address of the first 
parameter ($FAOL). 



29.5 Formatting Support 

The control string is parsed character by character. Information that is not 
preceded by the control character ( ! ) is copied into the output string without 
further action. When a control character and operation code are encountered 
in the control string, the appropriate conversion routine is executed to pro­
cess zero, one, or two of the input parameters to the system service. When 
the control string has been completely parsed, the service returns to the 
caller with a normal status code. If the output string length is exceeded, a 
buffer overflow error status is returned. 

The description of the $FAO system service in the VAX/VMS System Ser­
vices Reference Manual contains details about how to specify $FAQ requests. 

815 





APPENDIXES 





Appendix A 

System Processes and Privileged 
Images 

Table A-1 System Processes 

Linked with 
Image Name SYS.STE 

Fl lAACP.EXE Yes 

MTAAACP.EXE Yes 

REMACP.EXE Yes 
NETACP.EXE Yes 

ERRFMT.EXE Yes 

INPSMB.EXE Yes 

JOBCTL.EXE Yes 

OPCOM.EXE Yes 
PRTSMB.EXE Yes 

FILESERV.EXE Yes 

CSP.EXE Yes 

CONFIGURE.EXE Yes 

Description 

Files-11 ODS-1 ACP 

Magnetic tape ACP 

Remote terminal ACP 

Network ACP 

Error log buffer format process 

Card reader input symbiont 

Job controller/Symbiont manager 

Operator communication facility 

Print symbiont 

Cluster cache server process 

Cluster server process 

Configure cluster devices 

819 



System Processes and Privileged Images 

Table A-2 Images Installed with Privilege (in a Typical VMS System) 

Linked with 
Image Name SYS.STE Description 

ANALIMDMP.EXE Yes Image Dump Analyze Utility 

CDU.EXE Yes Command Definition Utility 

LOGINOUT.EXE Yes Login/logout image 

MAIL.EXE No Mail Utility 

MONITOR.EXE Yes System Statistics Utility 

PHONE.EXE No Phone Utility 

REQUEST.EXE Yes Operator request facility 

RTPAD.EXE No Remote Terminal Utility 

SET.EXE Yes SET command processor 

SETPO.EXE Yes SET command processor 

SHOW.EXE Yes SHOW command processor 

SHWCLSTR.EXE Yes SHOW CLUSTER command processor 

SUBMIT.EXE No Batch and print job sub~ission facility 

Table A-3 Images Requiring Privilege That Are Typically Not Installed 

Linked with 
Image Name SYS.STE Description 

CIA.EXE Yes Show Intrusion Utility 

INSTALL.EXE Yes Known Image Installation Utility 

MP.EXE Yes Multiprocessing loadable code 

MSCP.EXE Yes VAXcluster disk server 

NCP.EXE No Network control program 

OPCCRASH.EXE Yes System shutdown facility 

QUEMAN.EXE No Queue manipulation command processor 

REPLY.EXE No Message broadcasting facility 

RUNDET.EXE No RUN process command processor 

SD A.EXE Yes System dump analyzer 

STOPREM.EXE Yes Stop REMACP Process Utility 

SYSGEN.EXE Yes System Generation and Configuration Utility 

XFLOADER.EXE Yes DR32 microcode loader 

820 



System Processes and Privileged Images 

Table A-4 Images Whose Operations Are Protected by System UIC or Volume 
Ownership 

Linked with 
Image Name SYS.STE Description 

AUTHORIZE.EXE Yes Authorize Utility 

BAD BLOCK.EXE Yes Bad block locator 

BACKUP.EXE No Backup Utility 

DISKQUOTA.EXE Yes Disk Quota Utility 

DISMOUNT.EXE No Volume Dismount Utility 

ERRFMT.EXE Yes Error Log Utility 

!NIT.EXE Yes Volume Initialization Utility 

VERIFY.EXE No File Structure Verification Utility 

VMOUNT.EXE No Volume Mount Utility 

Table A-5 Miscellaneous Images Linked with SYS$SYSTEM:SYS.STB 

Linked with 
Image Name SYS.STE Description 

ANALYZOBJ.EXE Yes Analyze Object Module Utility 

CHECKSUM.EXE Yes Checksum File or Image Utility 

CLUSTRLOA.EXE Yes VAXcluster support 

DCL.EXE Yes DCL command interpreter 

DELTA.EXE Yes Executive debugger 

DISMNTSHR.EXE Yes Dismount service shareable image 

Fl lBXQP.EXE Yes ODS-2 file system 

FPEMUL.EXE Yes Floating-point instruction emulation 

IM GD MP.EXE Yes Write Image Dump Utility 

MOUNTSHR.EXE Yes Mount service shareable image 

PATCH.EXE Yes Patch Utility 

PFMFILWRT.EXE Yes Page Fault Monitor Utility 

RMS.EXE Yes Record Management Services image 

SODELTA.EXE Yes Executive debugger 

SCSLOA.EXE Yes System communications services 

SECURESHR.EXE Yes Security services shareable image 

SETSHOACL.EXE Yes Set/Show ACL Utility 

SMBSRVSHR.EXE Yes Print symbiont shareable image 

SYSLOAxxx.EXE Yes CPU-specific support 

VAXEMUL.EXE Yes Subset instruction emulation 

821 



B.1 

Appendix B 

Use of Listing and Map Files 

This book has presented a detailed overview of the VAX/VMS executive. 
However, the ultimate authority on how the executive or any other compo­
nent of the system works is the source code for that component. This appen­
dix shows how the listing and map files produced by the language processors 
and the VAX/VMS Linker can be used with other tools to understand how a 
given component works or why the system is malfunctioning. 

HINTS IN READING THE EXECUTIVE LISTINGS 

The sources for the VAX/VMS operating system are available in two forms 
for customers who purchase a source license. The source listings option in­
cludes microfiche listings for most components. The source distribution op­
tion provides source files and command procedures on magnetic tape. 

The suggestions made in this appendix emphasize reading the modules 
that make up the executive and the initialization routines, most of whi.ch are 
written in VAX MACRO. 

B.1.1 Structure of a MACRO Listing File 

B.1.1.1 

822 

The modules that make up the system image are all written from a common 
template that includes a module header describing each routine in the mod­
ule. The general format of a VAX MACRO listing file is described in the VAX 
MACRO and Instruction Set Reference Volume. Features that are specific to 
listings included in the source listing kit are described here. 

$xyzDEF Macros. One of the first parts of each module that requires explana­
tion is the invocation of a series of macros that define symbolic offsets into 
data structures referenced in the module. The general form of these macros is 
shown in the following example, where xyz represents the data structure 
whose offsets are required: 

$xyzDEF 

For example, a module that deals with the 1/0 subsystem probably invokes 
the $1RPDEF and $UCBDEF macros to define offsets into 1/0 request packets 
(IRPs) and unit control blocks (UCBs). Some of the $xyzDEF macros, such as 



B.1.1.2 

B.1 Hints in Reading the Executive Listings 

$SSDEF, $IODEF, and $PRDEF, define constants (system service status re­
turns, 1/0 function codes and modifiers, and processor register definitions) 
rather than offsets into data structures. 

Structures and constants that are used in system services and other public 
interfaces have their $xyzDEF macros defined in SYS$LIBRARY: 
STARLET.MLB, th.e default macro library that is automatically searched 
by the assembler. Most of the data structures used by the executive have 
their macro definitions contained in a special macro library called 
SYS$LIBRARY:LIB.MLB. The distinction between these two macro libraries is 
discussed in Appendix E, where many of the data structures described in this 
book are listed. 

One way to obtain the symbol definitions resulting from these macros is to 
look at the symbol table that appears at the end of the assembly listing. 
However, the information presented there is often incomplete· or not in a 
suitable form. An alternative representation of the data can be obtained from 
the following sequence of DCL commands: 

$ CREATE xyzDEF.MAR 

.TITLE xyzDEF 

$xyzDEF GLOBAL 

.END 

·z 
$ MACRO xyzDEF+SYS$LIBRARY:LIB.MLB/LIBRARY 

$ LINK/NOEXE/MAP/FULL xyzDEF 

$ PRINT xyzDEF.MAP 

This command sequence produces a single object module that contains all 
the symbols produced by the $xyzDEF macro. The argument GLOBAL makes 
all the symbols produced by the macro global. (This argument must appear in 
uppercase to be properly interpreted by the assembler's macro processor.) 
That is, the symbol names and values are passed from the assembler to the 
linker so that they appear on whatever map the linker produces. The full map 
contains two lists of symbol definitions, one in alphabetical order and one in 
numeric order. 

Routine Body. In general, the routines that make up the executive were 
coded according to strict standards that result in code that is easily main­
tained. One side effect of these standards is that the code is easy to read for 
someone attempting to learn how the VMS operating system works. 

Several items about the instructions that appear in the module body are 
worth describing: 

• Data structure references are usually made using displacement mode ad-

823 



Use of Listing and Map Files 

824 

dressing. For example, the following instruction loads the contents of R3 
(presumably the address of an IRP) into the IRP pointer field (a longword) in 
a UCB pointed to by RS: 

MOVL R3,UCB$L_IRP(RS) 

Such instructions are practically self-documenting. The overall arrange­
ment of data in a particular structure does not need to be known to under­
stand such instruction references. 

• Whenever a sequence of instructions makes an assumption about the rela­
tive locations of fields within a data structure, there is a possibility of fail­
ure if the structure were to change. In the following two instances, such 
assumptions might be used: 

-Two adjacent longword fields could be loaded with a single MOVQ 

instruction. 
-A structure could be traversed using autoincrement or autodecrement 

addressing. 

The ASSUME macro (defined in SYS$LIBRARY:STARLET.MLB) is often 
used to detect these failures immediately by issuing an assembly-time 
error. For example, if a device driver wanted to clear adjacent fields in a 
UCB, the following instruction and macro sequence would prevent subtle 
errors if the layout of the UCB changed in the future: 

CLRQ UCB$L_SVAPTE(RS) 

ASSUME UCB$L_BOFF EQ <UCB$L_SVAPTE + ~> 
ASSUME UCB$L_BCNT EQ <UCB$L_SVAPTE + 6> 

The options available with this macro can be determined by examining its 
definition in the microfiche listing in the SYS component. 

• There are some commonly used instruction sequences that occur so fre­
quently that the author of a module used an assembly-time macro to repre­
sent the instruction sequence. Other instruction sequences, particularly 
those that read or write the internal processor registers, are more readable if 
hidden in a macro definition. However, because macros are rarely expanded 
as a part of the assembler listing, the reader of listing files must be able to 
locate the macro definitions. 

There are three levels at which macros are defined in the VAX/VMS 
operating system: 

-A macro may be local to a module. In this case, the macro definition 
appears as part of the module header. Such macros are often used to gen­
erate data tables used by a single module. 

-A macro may be a part of a specific facility, such as DCL. The macros that 
are a part of a specific facility are included as part of the microfiche listing 



B.1 Hints in Reading the Executive Listings 

for that facility. For example, the DCL microfiche includes not only all 
modules that make up the DCL images but also the macros that are used 
to assemble those modules. 

-A macro may be.used by many components of the operating system. In 
this case, the macro definition is found on either the SYS microfiche (for 
example, in SYSDEFxx.SDL or SYSMAR.MAR) or the VMSLIB micro­
fiche (for example, in STARDEFxx.SDL or SSMSG.SDL). Most of the 
macro definitions in this category are data structure definitions, but there 
are many common instruction sequences appearing in several compo­
nents that are defined in the file called SYSMAR.MAR. Note that 
SYSDEF and STARDEF were divided into four submodules each. The 
strings AE, FL, MP, or QZ are used to identify the first letters of the 
structures defined in each module. These strings should be substituted 
for the string xx. 

The definitions of all system macros that are used in building the oper­
ating system are included in the macro library SYS$LIBRARY:LIB.MLB, 
which is supplied as a part of the VAX/VMS binary distribution kit. Ap­
plications such as user-written device drivers or user-written system 
services can also use this macro library. Such applications must be reas­
sembled or recompiled with each new release of LIB.MLB, which usually 
occurs with each major release of the VAX/VMS operating system. 

The definitions of all macros that are intended for use in nonprivileged 
applications, such as system service calls, can be found in the macro 
library SYS$LIBRARY:STARLET.MLB, which is also supplied as a part of 
the VAX/VMS binary distribution kit. This macro library is automati­
cally searched by the assembler to resolve undefined macros. Appen­
dix E contains a description of some of the data structures defined in 
STARDEF.SDL and SYSDEF.SDL. 

• Another search that the reader of listings has to embark on involves looking 
for destinations of instructions that transfer control or reference static data 
locations. If the destination or data label is outside the module currently 
being looked at, the symbol appears in the symbol table at the end of the 
assembler listing as an undefined global. The module that defines that sym­
bol can be determined with the map file for that component (see Section 
B.2). 

Symbols that are local to a module are usually easy to find, because most 
of the modules that make up the executive or any other component are not 
very large. However, the listing files for some modules are longer than 50 
pages. There are a couple of steps that can be taken before the reader scans 
every page of the listing, looking for the place where the symbol is defined: 

-The symbol in question or some textual reference to it may appear in the 
table of contents for this module. 

825 



Use of Listing and Map Files 

-The value of the symbol appears in the symbol table. Because the assem­
bler includes the value of the current location counter in every line of the 
listing, the reader can determine approximately where in the listing the 
symbol is defined. (This technique is not foolproof. The value of the sym­
bol that appears in the symbol table is relative to the beginning of the 
PSECT in which the symbol is defined. Modules with more than one 
relocatable PSECT may have to be searched more carefully.) 

B.1.2 VAX Instruction Set and Addressing Modes 

B.1.2.1 

826 

One of the design goals of the VAX instruction set was that it contain useful 
instructions with a natural number of operands. Thus, there are two- and 
three-operand forms of the arithmetic instructions ADD, SUB, MUL, and 
DIV. There are also bit manipulation instructions, a calling standard, charac­
ter string instructions, and so on. All of these allow the assembly language 
programmer to produce code that is not only efficient but also highly 
readable. 

However, there are certain places in the executive where the most obvious 
choice of instruction or addressing mode was not used, because a shorter or 
faster alternative was available. Interrupt service routines, routines that exe­
cute at elevated IPL, and commonly executed code paths, such as the system 
service dispatcher and the main paths in the pager, are all examples where 
clarity of the source code was sacrificed for execution speed. 

One question that must be answered at this point is why there is a concern 
over instruction length on a machine with practically unlimited virtual ad­
dress space. There are at least two answers to that question. 

Most of the areas where instruction size is an issue are within the perma­
nently resident executive. This portion of the system consumes a fixed per­
centage of the physical memory that is present in the configuration. Keep­
ing instruction size small is one way to keep this real memory cost to a 
minimum. 

A second answer is that VAX processors make use of an instruction 
lookahead buffer that contains the next bytes in the instruction stream. Its 
size varies on different processors but is at least eight bytes on all current 
types of VAX. If the buffer empties, the next instruction or operand cannot be 
evaluated until the buffer is replenished. By keeping instructions small in 
key areas, this wait can be avoided and the instruction buffer can be filled in 
parallel with other CPU operations. 

Techniques for Increasing Instruction Speed. This section lists some of the 
techniques employed to reduce instruction size or increase execution speed. 
The list is hardly exhaustive but a pattern emerges here that can be applied 
to other modules in the executive that are not explicitly mentioned here. 



B.1 Hints in Reading the Executive Listings 

Each list element consists of a general technique and may also contain a 
specific example, including the name of the module where this technique 
is employed. 

• The MOVAx and PUSHAx instructions combined with displacement mode ad­
dressing are equivalent to an ADDLx instruction with the addition being per­
formed to calculate the effective address of the operand. For example, the 
following two instructions are equivalent: 

PUSHAB 12(R3) 

ADDL3 #12,R3,-(SP) 

However, the PUSHAB instruction is one byte shorter than the ADDL3 instruc­
tion and also faster. 

• The use of MOVAx and PUSHAx described in the previous item can be com­
bined with indexed mode addressing to accomplish a multiply by 2, 4, or 8. 
For example, the following instruction multiplies the contents of Rl by 4, 
adds 4 to the product, and places the re.suit back into Rl: 

MOVAL @#L;[R1], R1 

This instruction is used by the change mode dispatchers (in module 
CMODSSDSP) to calculate the length of an argument list from the number 
of arguments. 

• The following instruction found in routine EXE$ALLOCATE, in module 
MEMOR YALC, performs two steps at once: 

MOVAB (RO)+,R2 

Its ostensible purpose is to place th'e address of the allocated block of mem­
ory into R2, where it will be picked up by the caller. However, because the 
allocated block is always at least quadword aligned, the byte context of the 
instruction forces an increment of RO by I, setting the low bit of RO. This 
set bit will be interpreted as a success indicator by the caller. 

• When two successive writes to memory occur, on many types of VAX pro­
cessors, the second write must wait for the first to complete. If successive 
write operations can be overlapped with register-to-register operations, in­
struction stream references, or other operations that do not generate writes 
to memory, then some other instruction can begin execution while the 
memory write is completing. 

There are several places in the executive where t.his technique is used. 
The three examples that follow are among the most commonly executed 
code paths in the system: 

-,-The page fault handler saves RO through RS with PUSHL instructions in­
terspersed among instructions that do not write to memory. 

827 



Use of Listing and Map Files 

B.1.2.2 

828 

-The Queue 1/0 Request ($QIO) system service procedure intersperses 
writes to memory, initializing an IRP, with reads from its argument list 
and register operations. 

-The change mode dispatchers for executive and kernel modes build cus­
tomized call frames on their stacks. As the code examples in Chapter 9 

illustrate, the writes to memory (the stack operations) are overlapped 
with register and instruction stream references. 

• There are three ways to push registers onto the stack: with a PUSHR mask 
instruction, with a series of MOVQ instructions to -(SP), or with a series of 
PUSHL instructions. Instruction implementation is sufficiently different on 
various VAX processors that generalization about performance of these in­
structions is difficult. However, the PUSHR instruction is seldom used in 
time-critical places because it is slower than either MOVQ or PUSHL. PUSHR 

must interpret its bit mask operand and then push the registers accordingly. 
PUS HR, however, does not alter condition codes and is used when their set­
tings must be retained across saving registers. 

• When it is necessary to include a test and branch operation, a decision as to 
which sense of the test to branch on and which sense to allow to continue 
in line is required. One basis for this decision is to allow the common (usu­
ally error-free) case to continue in line, only requiring the (slower) branch 
operation in unusual cases. 

Unusual Instmction and Addressing Mode Usage. There are several instances 
in the executive where the purpose of an instruction is not at all obvious. 
This list includes the most common occurrences of unusual use of the in­
struction set and addressing modes. 

• There are many instances of the following instruction sequence where the 
initial setting of the bit has no effect on the flow of control: 

BBSS bit arguments , LO$ 

LO$: 

This sequence is used whenever the bit to be set (or cleared) with an equiva­
lent sequence using BBCC is identified by bit number or bit position. 

To set (or clear) the bit with a BISx or BICx instruction, a mask must first 
be created with a 1 in the designated position, requiring either two instruc­
tions or an immediate mask that might occupy a longword. (The only ex­
ception to this involves a bit in the first six positions, where the mask can 
be contained in a short literal constant.) 

Note that a BBCS instruction is equivalent to a BBSS instruction when the 
branch destination is the next instruction. There are some occurrences of 
BBCS where a BBSS seems to accomplish the same purpose. Probably the 
choice was made by looking at the usual sense of the bit in question before 



B.1 Hints in Reading the Executive Listings 

the instruction and choosing the instruction to avoid the branch in the 
usual case. 

• There are several instances of autoincrement deferred addressing where the 
need for the increment of the register is not apparent. For example, both of 
the following instructions occur in the rescheduling interrupt service rou­
tine in module SCHED: 

INSQUE (R1),@(R3)+ 

REMQUE @(R3)+,R~ 

In both cases, R3 contains the address of the listhead of some doubly linked 
list before instruction execution. Its contents after the instruction is exe­
cuted are irrelevant. 

In fact, the increment is totally unnecessary. All that is needed is double 
deferral from a register. In other words, the addressing mode @O(R3) would 
be equally appropriate if the contents of R3 were not important. However, 
deferred byte displacement addressing costs an extra byte to hold the dis­
placement. In this commonly executed code path, the savings of one byte 
was extremely important. 

It is worth noting that there is no similar problem when a single level of 
deferral from a register is required. The assembler is smart enough to gener­
ate simple register deferred mode (code 6) when it encounters byte displace­
ment mode with a displacement of zero (O(Rn)) in the source code. 

• The permanent symbol table of the VAX MACRO assembler recognizes the 
mnemonic POPL, even though there is no POPL instruction in the VAX 
instruction set. The generated code for the following instructions are 
identical: 

POP.L dst 

MOVL (SP)+,dst 

That is, the mnemonic generates two bytes (for instruction opcode and 
source operand specifier) plus whatever is required to specify the destina­
tion operand. 

For example, the following pseudo instruction (the first instruction in the 
change-mode-to-kernel dispatcher in module CMODSSDSP) removes the 
change mode code from the stack (so that REI will work correctly) and loads 
it into RO: 

POPL RD 

A combination of the POPL instruction with an unusual addressing mode 
occurs in the exception dispatcher for change-mode-to-supervisor and 
change-mode-to-user exceptions where it is necessary to remove the second 

829 



Use of Listing and Map Files 

POPL dest•MOVL (SP)+,dest 

Before POPL (SP) After POPL (SP) 

X: X: 

X+4: X+4: 

X+B: c 
X+12: B 

X+16: A 

-+-SP X+B: 

X+12: 

X+16: 

Direction of 
Stack Growth 

C (or indeterminate) 

A 

Figure B·l Stack Modification Due to POPL (SP) 
Pseudo Instruction 

longword from the stack. The following instruction has the effect of remov­
ing the next-to-last item from the stack and discarding it, leaving the stack 
in the state pictured in Figure B-1: 

POPL (SP) 

• The following instruction, followed by some conditional branch instruc­
tion, performs exactly the same function as a TSTQ instruction, which does 
not exist: 

MOVQ RO,RO 

This curious instruction is found in module SYSSCHEVT, where the Set 
Timer Request ($SETIMR) and Schedule Wakeup ($SCHDWK) system ser­
vices are implemented. 

B.1.3 Use of the REI Instruction 

830 

The only means of reaching a less privileged access mode from a more privi­
leged mode is through the REI instruction. There are two slightly different 
techniques that :iccomplish this mode change. 

The most general technique of going to a less privileged access mode alters 
the flow of execution at the same time. This technique is used by the RSX­
llM AME to get into compatibility mode. The following instruction se­
quence accomplishes the desired result: 

PUSHL new-PSL 

PUSHL new-PC 

REI 



B.1 Hints in Reading the Executive Listings 

Note that the many protection checks built into the REI instruction pre­
vent this technique from being used by a nonprivileged user to get into a 
more privileged access mode or to elevate IPL, two operations that would 
allow such a user to damage the system. A second technique can be used 
when it is only necessary to change access mode. No accompanying change 
in control flow is required. The instruction sequence listed here (patterned 
after code contained in module PROCSTRT) shows this second technique: 

PUSHL executive-mode-PSL 

BSBB DORE! 

PUSHL user-mode-PSL 

BSBB DORE! 

DORE!: REI 

B.1.4 Register Conventions 

;Do processing in 

; executive access mode 

;Do processing in 

; user access mode 

;REI uses pushed PSL and PC 

; that BSBB put on stack 

Each of the major subsystems of the executive uses a set of register conven­
tions in its main routines. That is, the same registers are used to hold the 
same contents from routine to routine. Some of the more common conven­
tions are listed here: 

• R4 usually contains the address of the process control block (PCB) of the 
current process. Nearly all system service procedures and scheduling rou­
tines use this convention. In fact, as illustrated in the examples in Chapter 
9, the change-mode-to-kernel system service dispatcher loads the address of 
the PCB of the caller into R4 before passing control to the service-specific 
procedure. When i.t is necessary to store a process header (PHD) address, RS 
is usually chosen. (Except during the execution of the swapper and certain 
memory management code that execqtes at IPL$_SYNCH, RS contains the 
address of the Pl window to the PHD rather than the system space address 
of the PHD.) 

• The memory management subsystem uses R2 to contain an invalid address 
and R3 to contain the system virtual address of the page taple entry 
(SVAPTE) that maps the page. When a physical page is eventually associ-

831 



Use of Listing and Map Files 

ated with the page, the PFN is stored in RO. 
• The I/O subsystem uses two nearly identical conventions, depending on 

whether it is executing in process context (in the $QIO system service or in 
device driver FDT routines) or in response to an .interrupt. The most com­
mon register contents are the current IRP address stored in R3 and the UCB 
address in RS. In process context, R4 contains the address of the PCB of the 
requesting process. Within interrupt service routines, R4 contains the vir­
tual address that maps one of the CSRs of the interrupting device. A more 
complete list of register usage by device drivers and the 1/0 subsystem can 
be found in the manual Writing a Device Driver for VAX/VMS. 

B.1.5 Elimination of Seldom-Used Code 

B.1.5.1 

832 

There are several different techniques that are used to eliminate code and 
data that are not used very often. For example, none of the programs used 
during the initialization of a VMS system remains after its work is accom­
plished. Process creation is an example of a complex system service that 
executes relatively infrequently during the lifetime of a typical system. The 
VMS executive uses several techniques that allow these routines to do their 
work as efficiently as possible and yet eliminate them after they have done 
their work. 

Eliminating the Bootstrap Programs. The following list illustrates some of 
the techniques used to remove the bootstrap programs from memory after 
they have done their work: 

• Both VMB and SYSBOOT execute in physical pages whose use is not re­
corded anywhere. When module INIT places all physical pages except those 
occupied by the permanently resident executive on the free page list, the 
pages used by VMB and SYSBOOT are included. Their contents are over­
written the first time that each physical page is used. 

• The module INIT is a part of the system image and cannot be eliminated 
quite so easily. Chapter 24 describes how INIT puts the physical pages that 
it occupied on the free page list after its work is done. 

The routine that puts the physical pages on the free page list performs a 
straightforward function. However, the unusual part of this step is that this 
routine was first copied to an unused portion of nonpaged pool, but the pool 
space was not formally allocated. When the routine has accomplished its 
work and returned, the code remains until the portion of pool that it occu­
pied is used later on, eliminating the last traces of INIT from memory. Note 
that this technique assumes that no pool allocation takes place until it is 
done. The fact that IPL remains at 31 while INIT executes ensures that no 
such allocation occurs. 



B.1.5.2 

B.1 Hints in Reading the Executive Listings 

• The system initialization that takes place in process context can be thought 
of as a part of the swapper process because the swapper creates SYSINIT, 
which in tum creates the STARTUP process. Because both SYSINIT and 
STARTUP are separate processes, they disappear after they are deleted 
(when they have completed their work). 

Infrequently Used System Routines. The simplest technique used by the sys­
tem to prevent infrequently used code from permanently occupying memory 
is to put it into the paged portion of the system image. The normal operation 
of system working set replacement eventually forces those pages that are 
referenced only occasionally out of the system working set. 

This technique is used by several system services that are not called very 
often, such as the Set Time ($SETIME) system service, which changes the 
system time. Process creation and deletion are also not used as often as other 
system services. 

Because process creation is spread throughout the system, the following 
techniques are employed to eliminate the code from the system after the 
process is created: 

• The routines in the Create Process ($CREPRC) system service, Delete Pro­
cess ($DELPRC) system service, and the kernel mode asynchronous system 
trap (AST) associated with $DELPRC are located in the paged executive. 
System working set list replacement will result in the reuse of the pages 
they occupied. 

• The swapper has a special subroutine that it calls when it inswaps a newly 
created process from SHELL. This subroutine is located in several of the 
pages that the swapper just read into memory. Because of the way that the 
swapper does its 1/0, these pages are mapped as PO pages in the swapper's 
address space. These pages become the kernel stack of the new process 
(which cannot execute until the swapper changes the process state to com­
putable resident, after it is finished with the special subroutine). The swap­
per has succeeded in executing several pages worth of code (that are only 
used the first time a process is inswapped) without requiring the allocation 
of any additional physical memory. 

• The final steps of process creation take place in the context of the new 
process in routine EXE$PROCSTRT, located in the paged executive. Sys­
tem working set list replacement will result in the reuse of the pages it 
occupied. 

B.1.6 Dynamically Locking Code or Data into Memory 

The frequency of use is not the only criterion that is used to decide whether 
to put a routine into the paged or nonpaged executive. The page fault handler 

833 



Use of Listing and Map Files 

B.1.6.1 

B.1.6.2 

834 

assumes that it will never incur a page fault above IPL 2. (This assumption is 
enforced by issuing a fatal bugcheck if it is violated.) 

Several system services that are not used very often (including $CREPRC 
and $DELPRC) must elevate IPL to IPL$_SYNCH to synchronize access to 
the scheduler's database. There are several different techniques used to mini­
mize the contribution that these routines make to the nonpaged executive. 

Locking Pages in External Images. The simplest technique for locking down 
pages while executing at IPL$_SYNCH is used by privileged utilities that use 
the Change Mode to Kernel ($CMKRNL) system service. These programs can 
use the Lock Pages in Working Set ($LKWSET) system service to lock down 
the code and data pages that are referenced while IPL is elevated above 2. 

Placing Code in the Nonpaged Executive. This technique puts the smallest 
possible block of code into the nonpaged executive and places the rest of the 
routine into the paged executive. A control transfer allows the nonpaged code 
to execute. The following variation on a routine within the Get Job/Process 
Information ($GETJPI) system service illustrates the technique. The reason 
that the entire routine cannot exist in pageable pages is because routine 
EXE$NAMPID returns at IPL$_ SYNCH and thus may not incur a page fault . 

25$: 

. PSECT YEXEPAGED 

.ENABLE LOCAL_BLOCK 

JSB 25$ 

.SAVE_PSECT 

.PSECT AEXENONPAGED 

BSBW EXE$NAMPID 

SETIPL #0 

RSB 

.RESTORE_PSECT 

;Processing begins 

; in paged code 

;This is only 

; nonpaged piece 

;Processing continues 

; in paged code 



B.1.6.3 

B.1 Hints in Reading the Executive Listings 

Dynamic Locking of Pages. The preceding piece of code only contributes 
seven bytes to the nonpaged executive. The $CREPRC and $DELPRC system 
services must execute many more instructions at IPL$_SYNCH. They em­
ploy a technique that dynamically locks one or two pages into memory. (The 
executive cannot use the $LKWSET system service to lock pages into the 
system working set.) 

This technique relies on the assumption that once IPL is elevated to 
IPL$_SYNCH, no events related to page faulting occur, particularly remov­
ing a page from the process or system working set. 

BEGIN_LOCK: 

DSBINT LOCK_IPL 

ENBINT 

BRB END_LOCK 

LOCK_IPL: 

.LONG IPL$_SYNCH 

END_LOCK: 

;Processing begins 

; in paged code 

;No page faults 

; will occur here 

;Page faults 

; can occur again 

ASSUME <END_LOCK-BEGIN_LOCK> LE 513 

The key to this technique is that the DSBINT pseudo instruction cannot 
successfully complete until both the page containing the instruction and the 
page containing the source operand are valid. Once the instruction completes 
(implying that both pages are valid), IPL is set at IPL$_SYNCH, preventing 
further paging activity until the IPL is lowered (with the ENBINT macro). 
The DSBINT macro expands to the following instructions: 

MFPR #PR$_IPL,-(SP) 

MTPR src,#PR$_IPL 

The ASSUME macro is necessary to ensure that the DSBINT macro and 
source operand are not more than one page apart, preventing the possibility of 
an invalid page between the two valid pages, an occurrence that would sub-

835 



Use of Listing and Map Files 

B.2 

vert this technique. It is also necessary to transfer control around the long­
word containing IPL$_SYNCH. 

A natural question at this point is why the first technique, the one used by 
$GETJPI, is necessary at all. It seems that the call site to EXE$NAMPID 
could be locked down using this technique. The answer is that EXE$NAM­
PID cannot be invoked above IPL 2. It accesses the caller's argument list, a 
data reference that could potentially cause a page fault, and page faults are 
not allowed above IPL 2. 

USE OF MAP FILES 

One indispensable tool for reading the executive listings is the map file 
SYS.MAP, found in directory SYS$SYSTEM. This file was produced when the 
system image was linked and contains the system virtual addresses of all 
global symbols in the system image. More importantly from the point of 
view of reading the listings, it contains a cross-reference listing of modules 
that define and reference each global symbol. 

The techniques that are described for using this file are also applicable to 
other map files. Map files for device drivers are necessary for debugging a new 
device driver. Use of the map files for Record Management Services (RMS), 
DCL, and other loadable images is also described, because these images are 
not activated in the usual way but, rather, are mapped into system or process 
virtual address space. 

B.2.1 System Image Map, SYS.MAP 

836 

There are two main uses for the system map file. One of these occurs when 
the system crashes. The addresses that are reported on either the console 
terminal or in the system dump file must be related to actual routines in 
system address space. The portion of the map that lists in ascending order all 
program sections that contribute to the executive is useful here. The address 
in question is compared with each PSECT contribution until the module that 
defines the symbol is found. The base address of this module is subtracted 
from the address that is being examined to produce an offset into the correct 
module. This offset can be used with the assembler listing to locate the in­
struction or data reference that caused the error. 

Such an error situation could arise as a result of a bug in the operating 
system but is more likely a result of some user-written code, such as a device 
driver, customized system service, or simply a procedure that is called 
through the $CMKRNL or the Change Mode to Executive ($CMEXEC) sys­
tem service. 

The only limitation to this use of the map is the resolution of a system 



B.2 Use of Map Files 

virtual address larger than the highest address in the executive image. This 
type of address is most likely found in a routine that is dynamically loaded, 
such as RMS, a device driver, or CPU-dependent routines. Table F-2 lists the 
global pointers that locate each dynamically mapped portion of system ad­
dress space. By examining the contents of these locations, the component 
that contains the offending address can often be determined. 

SYS.MAP is a useful tool for reading most routines in the executive. Be­
cause of the modular construction of VMS, many routines referenced by one 
routine are in some other module. The simplest way to locate these external 
symbols is to look in the alphabetical cross-reference map for the external 
symbol name. The first item of information is the name of the module that 
defines this symbol. All modules that reference this symbol are listed in suc­
ceeding columns. 

B.2.2 RMS.MAP, DCL.MAP, and MPxxx.MAP 

The cross-reference capability mentioned in the description of SYS.MAP is 
useful for any component of the operating system that contains many mod­
ules. A module in DCL, for example, may contain a reference to an external 
subroutine. The module containing that subroutine can be determined with 
the cross-reference listing in the map file [DCL]DCL.MAP. 

The RMS image, loadable asymmetric multiprocessing (MPxxx.EXE) im­
ages, and command language interpreters (CLis) present a second problem to 
anyone attempting to relate code or data in virtual memory to references in 
an assembler listing or a map file. These images are mapped into a virtual 
address range that is not known until the mapping occurs. The maps, mean­
while, contain addresses beginning at zero. 

Despite the fact that RMS and the loadable asymmetric multiprocessing 
code are mapped into system virtual address space and DCL is mapped into 
Pl space, the technique employed in these cases is the same. The technique 
to relate map addresses to virtual memory locations for these images is as 
follows. 

When RMS is mapped by SYSINIT, the base address of the RMS image is 
stored in global location MMG$GL_RMSBASE. (The contents of this loca­
tion are copied to location CTL$GL_RMSBASE in the Pl pointer page by 
EXE$PROCSTRT when a process is created.) The base address of any CLI is 
stored in the first longword at global location CTL$AG_CLIMAGE. Because 
both RMS and DCL are linked with a base address of zero, the contents of 
these two locations can be used as simple offsets to relate an address ex­
tracted from the map to a virtual address in a running system. 

For example, if an error occurred at location X in system space and X was 
larger than the contents of MMG$GL_RMSBASE, denoted by Y, then the 

837 



Use of Listing and Map Files 

relative offset into the RMS image is simply Y - X. Obviously, if this differ­
ence is larger than the size of the RMS image, then address Y is not in RMS. 
The RMS map is file [RMS]RMS.MAP. 

To present an example that goes in the other direction (from a relative 
address on an assembler listing to a virtual memory location), suppose that 
you want to locate a specific instruction in module DCLxyz, part of the DCL 
image. The relative offset in the assembly listing is added to the base address 
of module DCLxyz (taken from [DCL]DCL.MAP) to form the offset into the 
DCL image. This sum is added to the contents of global location 
CTL$AG_CLIMAGE to form the Pl virtual address of the instruction. 

The asymmetric multiprocessing code is described by one of the map files 
[MP]MPxxx.MAP (see Chapter 27). When multiprocessing is turned on, the 
multiprocessing code is loaded into locations starting at the address specified 
in global location EXE$GL_MP. Thus, this address can be used as the base 
address for the multiprocessing image. Note that only part of the multipro­
cessing code is loaded (up to the PSECT named _END, defined in module 
MPLOAD). The remainder of the multiprocessing code is used to interpret . 
the DCL commands START/CPU, STOP/CPU, and SHOW CPU and to load 
the multiprocessing code into nonpaged pool. 

B.2.3 Device Driver Map Files 

Device drivers are loaded into nonpaged pool by SYSGEN. The SHOW 
/DEVICE command to this utility displays among other pieces of information 
the address range into which the driver image is loaded. The address of the 
DDT from the driver map (program section $$$1 IS_DRIVER) gives the base 
address that is used to convert addresses on the assembly listing to system 
virtual addresses. Debugging device drivers is discussed in more detail in the 
manual Writing a Device Driver for VAX/VMS. 

B.2.4 CPU-Dependent Routines 

The base address of the CPU-dependent code (see Chapter 25) is stored in the 
global location MMG$GL_SYSLOA_BASE. The map files for these routines 
have names of the form [SYSLOA]SYSLOAxxx.EXE. Appendix G contains a 
list of the SYSLOA images. 

B.2.5 Other Map Files 

838 

Other map files can also be used for the cross-reference capabilities already 
mentioned. In addition, many other components of the operating system exe­
cute as regular images, so no base addresses have to be used to locate ad­
dresses in virtual address space. The addresses on the map correspond to the 



B.3 

B.3 System Dump Analyzer 

virtual addresses that are used for an executable image. However, the map 
file does not include the base address of nonbased, PIC shareable images; 
their base addresses are determined at image activation time. 

SYSTEM DUMP ANALYZER 

Because some of the routihes and most of the data structures used by the 
VAX/VMS operating system are loaded or constructed dynamically, the map 
file is limited in its ability to relate addresses to data structures or routines. 
In addition, the map file can only supply addresses of static data storage areas 
in the system, and not their contents. The System Dump Analyzer (SDA) 
Utility is a tool that overcomes these limitations of the map files. The use of 
SDA is described in the VAX/VMS System Dump Analyzer Reference 
Manual. This section mentions several of the many SDA commands that are 
especially useful when studying how the operating system works. 

B.3.1 Global Locations 

Many of the dynamic data structures, located in parts of system address space 
that are beyond the last address in the executive image, are located through 
global pointers in the static part of the executive (the part found in the image 
SYS.EXE). These static locations are loaded when the structures in question 
are created or modified, either as a part of system initialization or some other 
loading mechanism. 

One way to display these global pointers is the SDA command SHOW 
SYMBOLS I ALL. It shows not only the addresses but also the contents of all 
global locations. This list, together with the map file SYS.MAP, enables any 
data structure to be located in system address space if the global name of the 
listhead that locates the structure is known. Alternatively, the EXAMINE 
command can be used to determine the contents of particular global pointers. 
Appendix C contains a complete list of the static data locations used by the 
system. 

SDA defines symbols for the base addresses of some of the loadable images 
described in Section B.2 and a number of other loadable images. These sym­
bols include the following: 

• CLUSTRLOA-Base address of VAXcluster support 
• xxDRIVER (xx is a device name)-Base address of device driver 
• FPEMUL-Base address of floating-point emulation code 
• MP-Base address of asymmetric multiprocessing code 
• MSCP-Base address of the mass storage control protocol (MSCP) server 
• RMS-Base address of RMS 
• SCSLOA-Base address of system communications services (SCS) image 

839 



Use of Listing and Map Files 

• SYSLOA-Base address of CPU-specific code 
• VAXEMUL-Base address of string emulation code 

With these symbols it is possible to form simple address expressions to spec­
ify a particular location in any of these modules. For example, the following 
SDA command examines offset 10016 in RMS: 

EXAMINE RMS + 100 

B.3.2 Layout of System Virtual Address Space 

A second useful application of SDA involves creating a picture of system 
address space. As Figure F-2 shows, many of the pieces of system address 
space are constructed at initialization time. The sizes of the various pieces 
are determined by SYSBOOT parameters (see Appendix F). In response to the 
command SHOW PAGE_ TABLE /SYSTEM, SDA lists the contents of the 
entire system page table. This listing, the symbol table described in the previ­
ous section, and the system image map SYS$SYSTEM:SYS.MAP allow an 
accurate picture of system virtual address space to be drawn. 

B.3.3 Layout of Pl Space 

SDA can also be used to obtain the layout of Pl space. Most of the pieces of 
Pl space (see Figure 1-7 and Table F-5) are fixed in size. The Pl page tables 
defined in module SHELL determine the sizes of these pieces of P 1 space. 
Other pieces may not even exist for some processes. In any case, the SDA 
command SHOW PROCESS/PAGE_ TABLES/Pl produces a complete layout 
of Pl space. 

B.4 INTERPRETING SDL FILES 

840 

Most data structures and other systemwide constants used by the executive 
and other system components are defined with a structure definition lan­
guage (SDL). SDL enables data structures to be defined in a language-inde­
pendent way. SDL can generate one or more language-specific versions of a 
structure. 

When a VAX/VMS system is built from source, the SDL preprocessor reads 
and processes system data structure definitions written in SDL. It produces a 
set of macro definitions for use by VAX MACRO and another set for the 
BLISS-32 compiler. 

In particular, there are SDL files that generate the macros defining data 
structures and constants in the VAX MACRO libraries SYS$LIBRARY: 
LIB.MLB and STARLET.MLB and the BLISS-32 files SYS$LIBRARY:LIB.REQ 
and STARLET.REQ. These SDL files are supplied with both the VAX/VMS 



B.4 Interpreting SDL Files 

source kit and microfiche listing kit. The SDL definition of a data structure 
typically includes comments describing the fields of the structure. The SDL 
definition can thus be a source of information about the meaning of system 
data structure fields. These comments are not propagated to LIB.MLB and 
STARLET.MLB, although they do appear in LIB.REQ and STARLET.REQ. 

This section shows how the SDL description of a data structure is related 
to both the resulting VAX MACRO definition and a picture of the structure. 
Its sole purpose is to assist in the interpretation of SDL files supplied with 
VAX/VMS. Note that SDL is an internal DIGITAL tool. Any other use is 
completely unsupported. 

B.4.1 A Sample Structure Definition 

One way to see how a structure is defined is to look at the resultant symbol 
definitions. The SDL definition of a given structure can be compared with the 
resultant VAX MACRO or BLISS-32 symbols. These symbols can be found in 
any listing that uses the structure in question. Alternatively, the command 
procedure listed in Section B.1.1.1 can be used. 

Example B-1 shows the SDL definition of the AST control block (ACB) and 
the comments that accompany each field definition. Figure 7-1 shows the 
layout of an ACB. Table B-1 lists each SDL directive in the ACB definition, its 
meaning, the symbol it creates, and the value of that symbol. Individual SDL 
directives are briefly described in the following subsections. 

B.4.2 Commonly Used SDL Statements 

B.4.2.1 

An SDL statement consists of SDL keywords, user-specified names, and ex­
pressions. An SDL statement is terminated by a semicolon. It can be followed 
by a comment to be included in the output macro. The comment must begin 
with the character pair"/*". 

Valid SDL expressions can contain any of the following: 

• Numeric constants 
• Local symbols 
• The special offset location symbols: period(.), colon (:), and circumflex(') 
• Arithmetic, shift, and logical operators 
• Parentheses to define the order of evaluation 

The next subsections describe the SDL statements commonly used in de­
fining structures used by VAX/VMS. Emphasis is on reading the SDL files 
used to build the system. A complete syntax of each statement is not given. 

MODULE Statement. A MODULE statement groups related symbols and 
data structures. It defines a collection of SDL statements to be processed. 

841 



Use of Listing and Map Files 

Example B-1 SDL Definition of AST Control Block 

module $ACBDEF; 

I*+ 
I* AST CONTROL BLOCK DEFINITIONS 

I* 
I* AST control blocks exist as separate structures and as substructures 

I* within larger control blocks such as I/O request packets and timer 

I* queue entries. 

I* 

I*-

aggregate ACBDEF structure prefix ACB$; 

ASTQFL longword unsigned; 

ASTQBL longword unsigned; 

SIZE word unsigned; 

TYPE byte unsigned; 

RMOD_OVERLAY union fill; 

RMOD byte unsigned; 

RMOD_BITS structure fill; 

/*AST queue forward link 

/*AST queue backward link 

/*Structure size in bytes 

/*Structure type code 

/*Request access mode 

MODE bitfield length 2; /*Mode for final delivery 

FILL_L bitfield length 2 fill prefix ACBDEF tag $$; /*Spare 

PKAST bitfield mask; 

NODELETE bitfield mask; 

QUOTA bitfield mask; 

KAST bitfield mask; 

end RMOD_BITS; 

end RMOD_OVERLAY; 

PID longword unsigned; 

AST longword unsigned; 

ASTPRM longword unsigned; 

KAST longword unsigned; 

constant •LENGTH" equals 

constant •LENGTH• equals 

end ACBDEF; 

end_module $ACBDEF; 

842 

prefix ACB$ tag K; 

prefix ACB$ tag C; 

/*Piggyback 

I* special kernel AST 

/*Don't delete ACB 

I* on deli very 

/*Account for quota 

/*Special kernel AST 

/*Process ID of request 

/*AST routine address 

/*AST parameter 

/*Internal kernel mode 

I* transfer address 

/*Length of block 

/*Length of block 



B.4 Interpreting SDL Files 

Table B-1 SDL Description and Resultant Macro Symbol Definitions for AST Control Block 

Meaning of Resultant Symbol 
SDL Directive Directive Symbol Name Value 

module $ACBDEF Begin $ACBDEF macro 

aggregate ACBDEF structure Begin ACB structure 
prefix ACB$ 

ASTQFL longword unsigned Longword field ACB$L_ASTQFL 0 

ASTQBL longword unsigned Longword field ACB$L_ASTQBL 4 

SIZE word unsigned Word field ACB$W_SIZE 8 

TYPE byte unsigned Byte field ACB$B_TYPE 10 

RMOD_OVERLAY union fill Define beginning of 
overlay structure 

RMOD byte unsigned Byte field ACB$B_RMOD 11 

RMOD..BITS structure fill Begin RMOD..BITS 
structure 

MODE bitfield length 2 Bit field of length 2 ACB$V _MODE 0 
ACB$S__MODE 2 

FILLl bitfield length 2 fill Skip 2 spare bits 
prefix ACBDEF tag$$ 

PKAST bitfield mask Single bit field ACB$V _PKAST 4 
ACB$M__PKAST 1016 

NODELETE bitfield mask Single bit field ACB$V _NODELETE 5 
ACB$M_NODELETE 2016 

QUOTA bitfield mask Single bit field ACB$V_QUOTA 6 
ACB$M__QUOTA 4016 

KAST bitfield mask Single bit field ACB$V-1\AST 7 
ACB$M_KAST 8016 

end RMOD..BITS End RMOD..BITS 
structure 

end RMOD_OVERLAY End the overlay 
structure 

PIO longword unsigned Longword field ACB$LPID 12 

AST longword unsigned Longword field ACB$L_AST 16 

ASTPRM longword unsigned Longword field ACB$L_ASTPRM 20 

KAST longword unsigned Longword field ACB$LKAST 24 

constant "LENGTH" equals . Define a constant ACB$ILLENGTH 28 
prefix ACB$ tag K 

constant "LENGTH" equals . Define a constant ACB$CLENGTH 28 
prefix ACB$ tag C 

end ACBDEF End ACB structure 

encLmodule $ACBDEF End $ACBDEF macro 

843 



Use of Listing and Map Files 

B.4.2.2 

B.4.2.3 

B.4.2.4 

844 

Typically, each VAX/VMS data structure is defined within its own module. 
The name of the module is the name of the generated macro. For example, 
the following statement from Example B-1 defines the beginning of the 
module that defines the ACB data structure: 

module $ACBDEF; 

AGGREGATE Statement. An AGGREGATE declaration defines a single data 
structure within a module. There are two types of AGGREGATE declaration: 

•STRUCTURE 
•UNION 

The fields in a STRUCTURE occupy consecutive storage locations; the fields 
in a UNION reuse the same storage location. 

The period character symbolizes the current byte offset within an AGGRE­
GATE declaration. 

Each VMS data structure definition begins with an AGGREGRATE 
STRUCTURE statement. This statement includes a PREFIX keyword that 
specifies the prefix characters in each symbol definition. For example, the 
following statement from Example B-1 defines the beginning of the ACB 
structure, each of whose symbol definitions begin with the characters ACB$: 

aggregate ACBDEF structure prefix ACB$; 

Data Structure Fields. Each field in a data structure is defined in a statement 
consisting of a name and one or more keywords. A keyword can identify the 
type of data and/or its size. For example, the keywords BYTE, WORD, 
LONGWORD, QUADWORD, and OCTAWORD specify integer fields of 
those sizes. A keyword can specify some attribute of a field. For example, the 
keyword SIGNED specifies that an integer field is signed. The default is un­
signed. Many other keywords are used to define VMS data structures. Exam­
ples are LFLOATING, BITFIELD, and CHARACTER. 

The value of the symbol name is set equal to the current value of an inter­
nal offset counter. In general, as each field definition is processed, the inter­
nal counter value is increased by the size of the field (1, 2, 4, or 8). 

Symbol Names. The naming conventions that apply to VMS symbols defined 
through SOL are listed in Appendix D. In general, a data structure symbol has 
the form structure$type_field-name. Structure identifies its data structure. 
Type identifies the type of data. Field-name names the field. 

A data structure symbol name is formed from a combination of the 
following: 

• PREFIX keyword value 
• Letter indicating type. Data type keywords of BYTE, WORD, LONG-



B.4.2.5 

B.4.2.6 

B.4.2.7 

B.4 Interpreting SDL Files 

WORD, QUADWORD, or OCTAWORD generate characters B, W, L, Q, or 
0. A CONSTANT statement usually specifies a TAG value of C or K. 

• Underscore(_) 
• Field n~e on a data type statement 

Symbol Vitlues. It is possible for the user to assign values directly to a symbol 
defined as part of an SOL structure (for example, with the DEFAULT key­
word). Normally, however, SDL assumes that a symbol will be used as an 
offset from the beginning of its data structure. SOL keeps track of the current 
offset from the start of the structure, and SOL assigns that value to the 
symbol. 

Unions. It is often desirable to give a field multiple names. In addition, sub­
fields within a field often exist. The UNION statement defines the beginning 
of a substructure whose members reuse the same storage locations. The fol­
lowing extract from Example B-1 shows. a UNION substructure: 

RMOD_OVERLAY union fill; 

RMOD byte unsigned; 

RMOD_BITS structure fill; 

end RMOD_BITS; 

end RMOD_OVERLAY; 

This extract defines the symbol ACB$B_RMOD and the structure ACB$R_ 
RMOD_BITS to be the value of the current byte offset. 

The FILL qualifier indicates that no symbol is to be generated in the 
MACRO and BLISS expansion of the structure definition. 

CONSTANT Statement. The CONSTANT statement defines a constant. 
Depending on what TAG argument is supplied, the C directive produces 
symbols of the form xyz$C_name, xyz$K_name, or xyz$_name. 

Table B-1 illustrates one use of the CONSTANT statement. 

constant "LENGTH" equals • prefix ACB$ tag K; 

This statement defines the symbol ACB$K_LENGTH equal to the value of 
the period character, the current byte offset in the ACB structure. 

There are several other examples of constant definitions in both the SYS­
DEF and STARDEF SDL files. The definitions of the DYN$ symbols describe 
dynamically allocated structures. The JPI$ symbols describe an information 
list to the $GETJPI system service. 

845 



Use of Listing and Map Files 

B.4.2.8 

B.4.2.9 

846 

BITFIELD Statement. Bit fields require two numbers to completely describe 
them, a bit position and size. SOL always defines a bit position (indicated by 
a V _ in the symbol name). The bit position is specified by the current bit 
offset. The circumflex character symbolizes the ctirrent bit offset within the 
current subaggregate. 

The size of a field (indicated by Sin the symbol name) is always defined 
when the field size is specified explicitly with the LENGTH keyword. It is 
often useful to define a mask symbol (indicated by type of M in the symbol 
name) that has l's in each bit position defined by the bit field and zeros 
elsewhere. SOL defines such a symbol if the MASK keyword is present in the 
BITFIELD statement. 

Because this section merely tries to show what symbols result from a given 
SOL definition, the simplest way to describe the bit field syntax is with some 
examples. Table B-1 includes SOL BITFIELD statements extracted from the 
definition of the ACB. 

END and END_MODULE Statements. The structure definition is termi­
nated with an END statement. The module is terminated with an 
END_MODULE statement. 



C.I 

Appendix C 

Executive Data Areas 

The writable executive consists of several dynamically allocated tables as 
well as statically allocated data structures that are a part of the system image 
SYS.EXE. This appendix summarizes all of these data areas, with an empha­
sis on the static executive database that is related to other material in this 
book. 

The information presented in this appendix was accumulated by incorpo­
rating data from the system map (SYS.MAP) with the contents of specific 
source modules. Information outside the scope of this book is simply sum­
marized. There is no attempt to include every global symbol in SYS.EXE in 
this appendix. Data blocks (such as unit control blocks or timer queue ele­
ments) are referenced as single entities. Global labels within such structures 
are ignored. Global labels associated with backward link pointers of doubly 
linked lists are also omitted. Names that appear in the "Global Symbol" 
column in lowercase represent local symbols, names that are only used 
within the module in which they are defined. 

STATICALLY ALLOCATED EXECUTIVE DATA 

The cells that contain the data described in this section can be identified 
with specific source modules in the executive. Those cells that can be ad­
dressed directly with a global name are so indicated. Program section names 
(.PSECT names) are included in each section title to allow easy location of a 
given data area. Program sections of zero length declared in module MOAT 
for the purpose of defining global labels that separate major sections of 
SYS.EXE are not included here. They can be found by examining SYS.MAP. 

C.1.1 System Service Vector Area ($$$000) 

The first five pages of system virtual address space contain the system service 
vectors. These pages are read-only. The global label MMG$A_ENDVEC, de­
fined in module MOAT, represents the high address end of the system service 
vector pages. 

C.1.2 File System Performance Monitor Data ($$$000PMS) 

Module PMSDAT defines this area. It consists of a block of 95 longwords 
used to describe the cumulative behavior of the file system. The file system 
consists of the On-Disk Structure Level 1 (ODS-1) ancillary control process 

847 



Executive Data Areas 

(ACP) and the On-Disk Structure Level 2 (ODS-2) Extended QIO Processor 
(XQP). Additional longwords in this area contain information on XQP file 
operations. 

Global Symbol 

PMS$G1-FCP } 
PMS$GL_FCP2 

PMS$G1-TURN 

PMS$G1-SPLIT 

PMS$G1-HIT 

PMS$G1-DIRHIT 

PMS$G1-DIRMISS 

PMS$GL_QUOHIT 

PMS$GL_ QUOMISS 

PMS$G1-FIDHIT 

PMS$G1-FIDMISS 

PMS$G1-EXTHIT 

PMS$G1-EXTMISS 

PMS$GL_FILHDR_HIT 

PMS$GL_FILHDR_MISS 

PMS$G1-DIRDATA_HIT 

PMS$G1-DIRDATA_MISS 

PMS$GL_STORAGMAP _HIT 

PMS$G1-STORAGMAP _MISS 

PMS$G1-0PEN 

PMS$G1-0PENS 

PMS$G1-ERASEIO 

PMS$GL_ VOLLCK 

PMS$GL_ VOLWAIT 

PMS$G1-SYNCHLCK 

PMS$G1-SYNCHWAIT 

PMS$G1-ACCLCK 

PMS$GL_XQPCACHEWAIT 

Size 

70 longwords 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

C.1.3 RMS Writable Area ($$$000RMS} 

Description of Data 

File system statistics 

Number of window turns 

Number of split I/O transfers 

Number of transfers not requiring 
window turns 

Number of directory LRU hits 

Number of directory LRU misses 

Number of quota cache hits 

Number of quota cache misses 

Number of file ID cache hits 

Number of file ID cache misses 

Number of extent cache hits 

Number of extent cache misses 

Number of file header cache hits 

Number of file header cache misses 

Number of directory data block hits 

Number of directory data block misses 

Number of storage bit map cache hits 

Number of storage bit map cache misses 

Number of currently opened files 

Total number of file opens 

Total count of erase $QIOs issued 

Number of XQP volume synchronization locks 

Number of times XQP waited for volume 
synchronization lock 

Number of XQP directory and file 
synchronization locks 

Number of XQP waits for a directory or file 
synchronization lock 

Number of XQP access locks 

Number of XQP waits for cache free space 

This area, defined in module SYSCOMMON, provides RMS with a system­
wide area writable from executive mode. 

Global Symbol 

RMS$GW _GBLBUFQUO 

848 

Size 

Word 

31 words 

Description of Data 

Current global buffer quota remaining 

Reserved for future use 



C.1 Statically Allocated Executive Data 

C.1.4 Process Database ($$$000_STACKS) 

Module POAT defines kernel mode stacks for two system processes: the null 
process and the swapper process. Note that the global symbol for the swap­
per's kernel stack points to the base (high address) of the stack.· 

Global Symbol 

SWP$A_KSTK 

Size 

32 longwords 
160 longwords 

Description of Data 

Kernel mode stack for the null process 
Kernel mode stack for swapper 

C.1.5 Miscellaneous Bugcheck Information ($$$025) 

Module BUGCHECK maintains several longwords about a fatal bugcheck in 
progress. 

Global Symbol 

bugchk_flags 
fataLspsav 

EXE$GL_BUGCHECK 

Size 

Longword 
Longword 

Longword 

Description of Data 

Flags used by bugcheck code 
Fatal bugcheck in progress 

stack pointer 
Saved fatal bugcheck code 

C.1.6 Data Structures for Drivers Linked with the Operating System ($$$100) 

Module DEVICEDAT contains data structures for the devices that are linked 
as a part of the system image SYS.EXE. These devices include the null device, 
several mailboxes, and the console terminal. 

There are unit control blocks (UCBs) for three mailboxes defined in 
DEVICEDAT. The UCB for unit 0 is a skeleton UCB that is copied to create a 
new mailbox. The job controller and OPCOM mailboxes 'use predefined 
UCBs. 

Global Symbol Size Description of Data 

IOC$GL-ADPLIST Longword Listhead of adapter control blocks 
IOC$GLDPTLIST Quadword Listhead of driver prolog tables jDPTs) 
TTY$GLDPT Longword Address of terminal class driver DPT 
NO$GL_DPT Longword Address of asynchronous class driver DPT 
TTY$GLJOBCTLMB Longword Address of job controller mailbox 
SYS$GLUIS Longword Address of loaded UIS code 
UIS$GLUSB Longword ·UIS context block 
SYS$GL_FALLBACK Longword Systemwide terminal/printer 

fallback table 
SCS$GA_LQCALSB 104 bytes Permanent local SCS system block 
• IOC$GL_DEVLIST Listhead of DDBs of all devices jpart of 

system block) 

849 



Executive Data Areas 

C.1.7 

850 

Global Symbol 

SYS$GLBOOTDDB 

SYS$GLBOOTORB 

SYS$GLBOOTUCB 

OPA$GLDDB 

OPA$0RBO 

OPA$UCBO 

OPA$CRB 

OPA$IDB 

MB$GLDDB 

MB$0RBO 

MB$UCBO 

SYS$GLJOBCTLMB 

MB$GLORB1 

SYS$GLOPRMBX 

MB$GLORB2 

NL$GLDDB 

NL$GLORBO 

NL$GLUCBO 

NET$WCB 

sys_crb 

Size 

68 bytes 

88 bytes 

252 bytes 

68 bytes 

88 bytes 

372 bytes 

84 bytes 

32 bytes 

68 bytes 

88 bytes 

144 bytes 

144 bytes 

88 bytes 

144 bytes 

88 bytes 

68 bytes 

88 bytes 

144 bytes 

48 bytes 

72 bytes 

Description of Data 

Device data block IDDB) for system disk 

Object rights block !ORB) for system disk 

UCB for nonshadowed system disk 

DDB for console terminal 

ORB for console terminal 

UCB for console terminal 

Channel request block ICRB) for console 
terminal 

Interrupt dispatch block !IDB) for console 
device 

DDB for mailbox 

ORB for mailbox 

UCB template used in mailbox creation 
(not linked into mailbox DDB's UCB list) 

UCB for job controller's mailbox IMBAl) 

ORB for MBAl 

UCB for operator's mailbox IMBA2) 

ORB for MBA2 

DDB for null device 

ORB for null device 

UCB for null device 

Window control block for network 
pseudo device 

CRB for mailboxes 

Driver Prolog Tables ($$$105_PROLOGUE) 

The driver prolog tables for these drivers are assembled and linked into the 
system image. The contributions to this part of the writable executive come 
from three modules (MBDRIVER, NLDRIVER, and DEVICEDAT) that are 
linked with SYS.EXE. 

Global Symbol 

MB$DPT 

NL$DPT 

OP$DPT 
OPA$VECTOR 

Size Description of Data 

MODULE MBDRIVER 

57 bytes DPT for mailbox driver 

MODULE NLDRIVER 

57 bytes DPT for null device driver 

MODULE DEVICEDAT 

160 bytes 
60 bytes 

DPT for console terminal device driver 
Console port dispatch vector 



C.1 Statically Allocated Executive Data 

C.1.8 Linked Driver Code ($$$115_DRIVER) 

There is a section that contains the driver code for these drivers. This sec­
tion is bounded by the two global labels MMG$AL_BEGDRIVE and 
MMG$AL_ENDDRIVE, defined in module MOAT. 

C.1.9 Memory Management Data ($$$210) 

The memory management data consists mainly of listheads for dynamically 
allocated structures. 

Global Symbol 

PFN$ALHEAD 

pfn$aLtail 

SCH$GLFREECNT 
SCH$GLMFYCNT 
pfn$aLcount + 8 
PFN$GLPHYPGCNT 
SCH$GLFREEREQ 
SCH$GLMFYLIM 
PFN$ALHILIMIT + 8 
SCH$GLFREELIM 

SCH$GLMYFLOLIM 
PFN$ALLOLIMIT + 8 
SCH$GLMFYLIMSV 

SCH$GL_MFYLOSV 

PMS$GL_FAULTS 

MPW$ALPTE 
MPW$AW _PHVINDEX 

MPW$GL_BADPAGTOTAL 

MMG$GLPFNLOCK 

Size Description of Data 

MODULE ALLOCPFN 

3 longwords 

3 longwords 

Longword 
Longword 
Longword 
Longword 

Longword 
Longword 
Longword 
Longword 

Longword 
Longword 
Longword 

Longword 

Pointers to the heads of the free, modified, 
and bad page lists 

Pointers to the tails of the free, modified, 
and bad page lists 

Free page count 
Modified page count 
Bad page count 
Number of available physical pages 

Free pages required by the swapper 
Modified page list high limit 
Bad page list high limit 
Free page list low limit 
Modified page list low limit 
Bad page list low limit 
Saved high-limit threshold of modified 

page list 
Saved low-limit threshold of modified 

page list 

MODULE PAGEFAULT 

16 longwords Page fault statistics for Monitor Utility 

MODULE WRTMFYPAG 

Longword 
Longword 

Longword 

Pointer to modified page writer PTE array 
Pointer to PHD vector index array used by 

the modified page writer 
Number of pages placed on the bad page list 

MODULE SYSLKWSET 

Longword Count-down counter of pages remaining that 
may be locked in memory 

851 



Executive Data Areas 

C.1.10 

852 

Scheduler Data ($$$220) 

The scheduler's database is defined primarily in module SDAT. This module 
contains the queue headers for each of the scheduling states and related 
counters. Several other modules (particularly SWAPPER) also contribute to 
this program section. 

Global Symbol Size Description of Data 

MODULE SDAT 

Quadword Terminates outswap schedul-
ing scan 

SCH$AQ_COMH 32 quadwords Listheads for computable pro-
cesses at all software prior-
ity levels 

SCH$AQ_COMOH 32 quadwords Listheads for computable 
outswapped processes for all 
software priority levels 

SCH$AQ_ WQHDR 132 bytes Wait queue headers for 11 wait 
(132 = 11 • 12) states 

SCH$G1-CURPCB Longword Address of PCB of current 
process 

SCH$G1-COMQS Longword Queue summary longword for 
COM state 

SCH$G1-COMOQS Longword Queue summary longword for 
COMO state 

SCH$GB_SIP Byte Swap flags 
•SCH$V_MPW Bit Modified page writer active 
• SCH$V_SIP Bit Swap in progress 

SCH$GB_RESCAN Byte Queue reordering notification 
• SCH$V _REORD Bit flags 

RELPFN has reordered the 
queue 

MMG$GB_FREWFLGS Byte SWAPPER/FREWSLE commu-
nication flags 

• MMG$V _NOWAIT Bit FREWSLE may not enter re-
source wait for pages from 
the modified list 

• MMG$V _NOLASTUPD Bit FREWSLE may not update 
WSLAST 

SCH$GW _PROCCNT Word Current number of processes 
requiring swap file (does not 
count NULL or SWAPPER) 

SCH$GW _PROCLIM Word Maximum number of pro-
cesses on the system 

SWP$G1-SLOTCNT Longword Number of available swap 
slots 



C.1 Statically Allocated Executive Data 

Global Symbol Size Description of Data 

MODULE SDAT 

SCH$GQ_ CEBHD Quadword Listhead for common event 
blocks 

SCH$GW _ CEBCNT Word Number of common event 
blocks 

SCH$GW _DELPHDCT Word Number of PHDs of already 
deleted processes 

SWP$GLSHELL Longword Shell process swap address 

SWP$GLINPCB Longword PCB address of process being 
swapped into memory 

SWP$GLISPAGCNT Longword Inswap page count 

SWP$GW _IBALSETX Word Balance set slot index for 
inswap process 

SWP$GB_ISWPRI Byte Priority of inswap process 
Byte Spare for alignment 

SWP$GLISWPPAGES Longword Number of inswapped pages 

SWP$GLISWPCNT Longword Number of inswaps performed 

SWP$GLOSWPCNT Longword Number of outswaps per-
formed 

SWP$GL_HOSWPCNT Longword Number of header outswaps 

SWP$GLHISWPCNT Longword Number of header inswaps 

SCH$GLRESMASK Longword Resource wait mask vector 

SCH$GB_PRI Byte Priority of current process 

3 bytes Spare for alignment 

MODULE OSWPSCHED 

SWP$GLSWTIME Longword Earliest time for next exchange 
swap 

saved_r3 Longword Outswap state table 

MODULE PAGEFILE 

MMG$GLNULLPFL 36 bytes Null page file control block 

MMG$GL_PAGSWPVC Longword Pointer to vector of page/swap 
file control blocks 

MMG$GL_MAXPFIDX Longword Maximum page file index cur-
rently in use 

MMG$GW _MINPFIDX l Word Minimum page file index cur-
rently in use 

SGN$GW _SWPFILCT Number of swap file slots 

MODULE POWERFAIL 

EXE$GLPWRDONE Longword End time for power recovery 
interval 

853 



Executive Data Areas 

Global Symbol Size Description of Data 

MODULE POWERFAIL 

EXE$GL_PWRINTVL 

ioroutine 

ioea 

rwsswp 

rsvapte 

rpgcnt 

oswppgs 

oswppcb 

SWP$GW _BALCNT 

SCH$GW _SWPFCNT 

Longword 

MODULE SWAPPER 

Longword 

Longword 

Longword 

Longword 

Word 

Word 

Longword 

Word 

Word 

Allowable recovery interval in 
ten-millisecond units 

Address of read or write build 
packet routine 

I/O end action routine 

Remaining working set swap 
address 

Remaining system virtual 
address of page table 
entries 

Remaining page count 

Outswap page count 

Address of PCB of outswap 
process 

Number of processes in bal­
ance set excluding swapper 
and null processes 

Number of successive outswap 
schedule failures 

C.1.11 Memory Management Data {$$$222) 

This program section contains the data cell contribution of module MDAT to 
the executive. MDAT also defines global labels that separate data areas from 
read-only sections and that separate pageable code from nonpaged routines. 
In addition, MDAT allocates patch areas for the executive. 

Global Symbol Size Description of Data 

PHV$GLPIXBAS Longword Address of process index array 

PHV$GL REFCBAS Longword Address of PHD reference count array 

EXE$GQ_GBLHOOK1 10 quadwords Variables for adding loadable routines between 
major releases 

EXE$GLCPUNODSP Longword Virtual address that maps CPU node private 
space 

EXE$GLCONFREGL Longword Address of nexus device type longword array 

EXE$GLCONFREG Longword Address of nexus device type byte array 
MMG$GL_SBICONF Longword Address of a longword array containing nexus 

slot virtual addresses 

EXE$GLNUMNEXUS Longword Maximum nexus number possible 

MMG$GLRMSBASE Longword Address of RMS image 

854 



C.1 Statically Allocated Executive Data 

Global Symbol Size Description of Data 

MMG$G1-FPEMU1-BASE Longword Base address of floating-point instruction 
emulator 

MMG$GLSYSLQA_BASE Longword 

MMG$GL_ VAXEMULBASE Longword 

Base address of SYSLOAxxx.EXE 

Base address of decimal/string instruction 
emulator 

MMG$G1-GBLSECFND Longword Last global section table entry found when 
deleting page file backing store addresses 

Remaining page file available for global 
sections 

MMG$G1-GBLPAGFIL Longword 

C.1.12 

C.1.13 

Process Data for System Processes ($$$230) 

Two processes exist as a part of the system image. They are the swapper and 
the null process. The module POAT defines their software PCBs and PHDs. 
In addition, it defines a system header containing the system page table (SPT, 
see Chapter 14 and Appendix F), a system PCB to support system paging, and 
some other data. 

Global Symbol Size Description of Data 

nulphd 380 bytes Minimal PHD !fixed portion only) 
for null process 

SCH$G1-NULLPCB 228 bytes PCB for null process 

swpphd 380 bytes Minimal PHD !fixed portion only) 
for swapper process 

SCH$GLSWPPCB 228 bytes PCB for swapper process 

MMG$AL_SYSPCB 228 bytes System PCB 

SCH$G1-PCBVEC Longword Address of PCB vector of longwords 

SCH$G1-SEQVEC Longword Address of sequence vector of words 

SCH$G1-MAXPIX Longword Maximum process index 
for this system 

SCH$G1-PIXLAST Longword Last process index created 

SCH$G1-PIXWIDTH Longword Width of process index field 
determined by MAXPROCESSCNT 
parameter 

SCH$GW _LOCALNODE Word ID for local VAXcluster node 

Word Spare for alignment 

SYSCOMMON-Miscellaneous Executive Data ($$$260) 

Module SYSCOMMON contains most of the miscellaneous listheads, 
counters, semaphores, and other data that is not directly tied to one of the 
major subsystems. Module ERRORLOG also makes a significant contribu­
tion to this program section. 

855 



Executive Data Areas 

Global Symbol Size Description of Data 

EXE$G1-FLAGS Longword System flags longword (see Section C.1.161 
EXE$GL_STATE_FLAGS Longword State of system control flags 

EXE$GQ_ERLMBX Quadword Descriptor of error log mailbox 
•Word Unit number 
•Word Spare for alignment 
•Longword Process ID of assigner 

EXE$GL_VAXEXCVEC Longword Address for intercept VAX CPU exception 
dispatching 

EXE$G1-FPEXCVEC Longword Address for intercept of floating exception 
dispatching 

EXE$GL_ USRCHMK Longword Address of systemwide user-written change 
mode to kernel dispatcher 

EXE$G1-USRCHME Longword Address of systemwide user-written change 
mode to executive dispatcher 

SWI$G1-FQFL 6 quadwords Fork queue listheads for IPLs 6 through 11 (IPL 
7 used only as a place holder! 

EXE$G1-FKWAITFL Quadword Fork and wait work queue listhead 
LNM$A1-HASHTBL 3 longwords Addresses of logical name hash tables 

LNM$A1-DIRTBL 3 longwords Addresses of logical name directory table 

LNM$A1-MUTEX Longwords Mutex for shareable logical database 

LNM$G1-SYSDIRSEQ Longword Sequence number for cache of logical name 
table translations 

EXE$G1- SYSUCB Longword Address of system disk UCB 

FIL$GT _DDDEV 14 bytes Counted ASCII string of default device 
(SYS$SYSDEVICEI 

FIL$GT _ TOPSYS 10 bytes Counted ASCII string of top-level system 
directory on default device 

FIL$GQ_CACHE Quadword File read cache descriptor 
EXE$GQ_BOOTCB_D Quadword Descriptor for boot control block 

EXE$G1-SAVEDUMP Longword Number of page file blocks to release when 
dump is copied from page file 

EXE$G1-ERASEPB Longword Address of an erase pattern buffer (EPBI 
containing zeros 

EXE$G1-ERASEPPT Longword Address of a pseudo page table that maps the 
EPB filled in by INIT 

IOC$G1-PSFL Quadword Listhead for 1/0 postprocessing queue 
IOC$G1-PSBL 

IOC$G1-IRPFL Quadword Listhead for IRP lookaside list 
IOC$G1-IRPBL 

IOC$G1-IRPREM Longword Address of partial IRP 

IOC$G1-IRPCNT Longword Current count of allocated IRPs 

IOC$G1-IRPMIN Longword Minimum request that can be allocated an IRP 

IOC$G1-SRPFL Quadword Listhead for SRP lookaside list 
IOC$G1-SRPBL 

856 



C.1 Statically Allocated Executive Data 

Global Symbol Size Description of Data 

IOC$GL SRPSIZE Longword Size of an SRP 

IOC$GLSRPMIN Longword Minimum request that can be allocated an SRP 
(unused) 

IOC$GL SRPSPLIT Longword Boundary between SRP and IRP lookaside lists 

IOC$GLSRPREM Longword Address of partial SRP 

IOC$GLSRPCNT Longword Current count of allocated SRPs 

IOC$GLLRPFL Quadword Listhead for LRP lookaside list 
IOC$GLLRPBL 

IOC$GLLRPSIZE Longword Size of an LRP 

IOC$GLLRPMIN Longword Minimum request that can be allocated an 
LRP 

IOC$GLLRPSPLIT Longword Boundary between LRP lookaside list and the 
main portion of nonpaged pool 

IOC$GLLRPREM Longword Address of partial LRP 

IOC$GLLRPCNT Longword Number of LRPs currently allocated 

IOC$GLPOOLFKB 6 longwords Fork block for pool expansion 

IOC$GLPFKBINT Longword Fork block interlock (0 = free) 

EXE$GLPQBFL Quadword Listhead for PQB lookaside list 
EXE$GLPQBBL 

IOC$GLAQBLIST Longword ACP queue block listhead 

IOC$GQ_MOUNTLST Quadword Systemwide mounted volume list 

IOC$GQ_BRDCST Quadword Unused 

IOC$GL CRBTMOUT Longword List of CRBs to scan for timeouts 

IOC$GLDU_CDDB Longword Listhead of CDDBs for disk class driver 
connections 

IOC$GL TU_CDDB Longword Listhead of CDDBs for tape class driver 
connections 

IOC$GLHIRT Longword Pointer to host initiated replacement table 
(used by MSCP disks) 

IOC$GLSHDW _ WRK Longword Address of area used for processing shadow set 
generation number comparisons (unused) 

EXE$GLGSDGRPFL Quadword Listhead for group GSD list 
EXE$GLGSDGRPBL 

EXE$GL GSDSYSFL Quadword Listhead for system GSD list 
EXE$GL _ GSDSYSBL 

EXE$GL GSDDELFL Quadword Listhead for GSD block delete pending list 
EXE$GL GSDDELBL 

EXE$GL WCBDELFL Quadword Listhead for WCB delete queue for GSD 
EXE$GL WCBDELBL windows 

EXE$GLSYSWCBFL Quadword Listhead for system WCBs 
EXE$GL SYSWCBBL 

EXE$GQ_RIGHTSLIST Quadword Systemwide rights list descriptor 

857 



Executive Data Areas 

Global Symbol 

PMS$GLKERNEL 

EXE$GLABSTIM 

EXE$GQ_SYSTIME 

EXE$GQ_BQOTTIME 

EXE$GLPFAILTIM 

EXE$GLPFATIM 

EXE$GLTQFL 
EXE$GLTQBL 

devicetim 

EXE$AL TQENOREPT 

IOC$GLMUTEX 
EXE$GL_ CEBMTX 

EXE$GLPGDYNMTX 

EXE$GLGSDMTX 

EXE$GLSHMGSMTX 

EXE$GL_SHMMBMTX 

EXE$GLENQMTX 

EXE$GLACLMTX 
EXE$GLSYSID_LQCK 

EXE$GLKNOWN _FILES 
kfe_lock_name 

EXE$GQ_KFLLCKNAM 

EXE$GLGPT 

SYS$GQ_ VERSION 

SYS$GW _IJOBCNT 

EXE$GW _SCANPIX 

EXE$GLSYSMSG 

EXE$GLUSRUNDWN 

EXE$GLNONPAGED 

858 

Size 

6 longwords 

Longword 
Longword 

Quadword 

Quadword 

Longword 

Longword 

Quadword 

32 bytes 

32 bytes 

2 words 

2 words 

2 words 

2 words 

2 words 

2 words 

2 words 

2 words 

Longword 
Longword 

ASCII 

Quadword 

Longword 

Longword 

Quadword 

3 words 

Word 

Longword 

Longword 

Longword 

Longword 

Longword 

Description of Data 

Timer statistics for time spent in each access 
mode, on the interrupt stack, and in 
compatibility mode 

System absolute time in seconds 
Spare for alignment 

System time in units of 100 nanoseconds 

Base time of last boot 

Contents of time-of-year clock at last power 
failure 

Duration of most recent power failure in ten­
rnillisecond units 

Timer queue listhead 

Timer queue element for system routine 
EXE$TIMEOUT 

Permanent last entry in timer queue 

1/0 database mutex 
Common event block list mutex 

Paged dynamic memory mutex 

Global section descriptor list mutex 

Shared memory global section descriptor list 
mutex 

Shared memory mailbox list mutex 

Enqueue/dequeue tables mutex (unused! 

ACL modification mutex 

System parent lock ID 

Address of hash table for known file entries 

ASCII string of facility name for Install Utility 

String descriptor of KFE lock name 

Address of first free global page table entry 
(GPTEI 

Dummy count of number of GPTEs in listhead 

ASCII string containing system version number 

Current counts of interactivie, network, and 
batch logins ' 

Process index of next process to check for 
priority boost 

Address of systemwide message section 

Address of systemwide user rundown service 
vector 

IPL at which nonpaged pool allocation occurs 

Address of first free block of nonpaged pool 

Dummy size of zero for listhead 



Global Symbol 

EXE$GLSPLITADR 

EXE$GLPAGED 

RMS$GL SFDBASE 

EXE$GLSHBLIST 

EXE$GLRTBITMAP 

MCHK$GLMASK 

MCHK$GLSP 

EXE$GLMCHKERRS 

EXE$GLMEMERRS 
10$GL UBA_INTO 

EXE$GLBLAKHOLE 

10$GLSCB_INTO 

EXE$GL TENUSEC 

EXE$GLUBDELAY 

EXE$GLMP 

EXE$GLSITESPEC 

EXE$GLINTSTKLM 

LCK$GLIDTBL 

LCK$GLNXTID 

LCK$GLMAXID 

LCK$GLHASHTBL 

LCK$GLHTBLCNT 

LCK$GL TIMOUTQ 

LCK$GLDIRVEC 

LCK$GLPRCMAP 
LCK$GQ_BITMAP _EXP 

LCK$GQ_BITMAP _EXPLCL 

LCK$GB_HTBLSHFT 

LCK$GB_MAXDEPTH 

LCK$GB_STALLREQS 

Size 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Quadword 

Longword 

Longword 

Quadword 

Quadword 

Byte 

Byte 

Byte 

C.1 Statically Allocated Executive Data 

Description of Data 

Address of boundary between LRP and IRP 
lookaside lists 

Address of first free block of paged pool 

Dummy size of zero for listhead 

Unused 

Address of shared memory control block list 

Address of real-time SPTE bitmap 

Function mask for current machine check 
recovery block 

Saved stack pointer for return at end of 
recovery 

Number of machine checks since bootstrap 

Number of memory errors since bootstrap 

Number of UBA interrupts through vector 0 

Physical page used to remap addresses of 
adapters that have experienced power failure 

Number of unexpected SCB interrupts 

Number of times loop executed in ten 
microseconds in TIMEDW AIT macro 

Number of times to execute a three-micro­
second loop delay in TIMEDWAIT macro 

Address of loaded multiprocessor code 

Longword available to privileged users for site-
specific purposes 

Top of interrupt stack 

Address of lock ID table 

Address of next lock ID to use 

Maximum lock ID 

Address of resource hash table 

Number of entries in resource hash table 
(expressed as a power of 2) 

Listhead for lock timeout queue (for deadlock 
detection) 

Address of directory vector 

Address of process bitmap 

Process bitmap expiration timestamp (exact 
time) 

Process bitmap expiration timestamp 
(approximate local time) 

Number of entries in hash table (expressed as a 
shift count) 

Maximum number of sublocks allowed 

Stall lock request flag 

859 



Executive Data Areas 

Global Symbol 

LCK$GB_REBLD_STATE 

EXE$GLACMFLAGS 

NSA$GR_JOURNVEC 

NSA$GR_ALARMVEC 

EXE$GLSVAPTE 

XQP$GL SECTIONS 

XQP$GLDZRO 

XQP$GLFILESERVER 

XQP$GLFILESERV _ENTRY 

SYS$GQ_PWD 

CIA$GLMUTEX 

CIA$GQ_INTRUDER 

IOC$GT _NOPOOL TWP 

IOC$GLPOOLEXP _STS 

EXE$GLBADACV _ T 

EXE$GLBADACV _c 

Size 

Byte 

Longword 

40 bytes 

40 bytes 

Longword 

Longword 

Longword 

Longword 

Longword 

Quadword 

2 words 

2 longwords 

48 bytes 

2 words 
•Word 
•Word 

Longword 

Longword 

Description of Data 

Lock rebuild state flag 

Accounting manager control flags 

Security journaling bit vector (unused) 

Security alarms bit vector 

System virtual address of PTE that maps the 
black hole page 

Number of Files-11 XQP global sections 

Size of XQP demand zero section 

PID of CACHE_SERVER process 

AST entry point of CACHE_SERVER process 

Encrypted system password 

Mutex for CIA queues 

Listhead of known and suspected intruders 

Terminal write packet for pool expansion 
failure message 

Status of pool expansions 
Status bits 
Message length 

Time of the last bad access violation 

Number of incorrect access violations 

Module ERRORLOG makes a significant contribution to program section 
$$$260. Most of the space is occupied by two 512-byte error message buffers. 

860 

Global Symbol Size Description of Data 

bufl 512 bytes First error log buffer 

buf2 512 bytes Second error log buffer 

ERL$ALBUFADDR 2 longwords Addresses of two error log buffers 

ERL$GB_BUFIND Byte Current buffer allocation indicator 

ERL$GB_BUFFLAG Byte Buffer status flags 
ERL$GB_BUFPTR Byte Format process (ERRFMT) buffer 

indicator 

ERL$GB_BUFTIM Byte Format process wakeup timer 

ERL$GLERLPID Longword Process ID of error 
format process 

ERL$GLSEQUENCE Longword Systemwide error sequence 
number 

Module SWAPPER makes a contribution to program section $$$260. The 
space is occupied by system logical name tables and translation item lists. 

Global Symbol 

LNM$SYSTEM_DIRECTORY 

Size 

43 bytes 

Description of Data 

System directory logical 
name table body 



Global Symbol 

LNM_SYSTEM_DIR_LNMTH 

LNM_SYSTEM_DIR_ORB 

system_table 

system_ table_lnmth 

system_ table_orb 

sys_disk_arg 

sys_ sysdevice _ arg 

C.1 Statically Allocated Executive Data 

Size 

45 bytes 

104 bytes 

39 bytes 

41 bytes 

41 bytes 

24 bytes 

24 bytes 

Description of Data 

System directory logical 
name table header 

System directory logical 
name table ORB 

System logical name table body 

System logical name table header 

System logical name table ORB 

$CRELNM macro argument list 
for SYS$DISK 

$CRELNM macro argument list 
for SYS$DEVICE 

C.1.14 Statistics Used by Performance Tools ($$$270NP) 

Module PMSDAT contains data that is used by the Monitor Utility and other 
performance tools. 

Global Symbol Size Description of Data 

PMS$GLDIRIO Longword Number of direct 1/0 operations 

PMS$GLBUFIO Longword Number of buffered 1/0 operations 

PMS$GLLOGNAM Longword Number of logical name translations 

PMS$GLMBREADS Longword Number of mailbox read operations 

PMS$GLMBWRITES Longword Number of mailbox write operations 

PMS$GL TREADS Longword Number of terminal read operations 

PMS$GL TWRITES Longword Number of terminal write operations 

PMS$GLIOPFMPDB Longword Address of performance data block 

PMS$GLIOPFMSEQ Longword Master 1/0 packet sequence number 

PMS$GLARRLOCPK Longword Number of local packets arriving 

PMS$GLDEPLOCPK Longword Number of local packets departing 

PMS$GLARRTRAPK Longword Number of arriving packets 

PMS$GL TRCNGLOS Longword Cumulative transit congestion loss 

PMS$GLRCVBUFFL Longword Number of receiver buffer failures 

PMS$GLENQNEW _LOC Longword Number of local new lock requests 

PMS$GLENQNEW _IN Longword Number of incoming new lock requests 

PMS$GLENQNEW _OUT Longword Number of outgoing new lock requests 

PMS$GLENQCVT _LOC Longword Number of local conversion requests 

PMS$GLENQCVT _IN Longword Number of incoming conversion requests 

PMS$GLENQCVT _OUT Longword Number of outgoing conversion requests 

PMS$GLDEQ_LOC Longword Number of local dequeues 
PMS$GLDEQ_IN Longword Number of incoming dequeues 
PMS$GLDEQ_ OUT Longword Number of outgoing dequeues 

PMS$GLENQWAIT Longword Number of $ENQ requests waiting 

PMS$GL_ENQNOTQD Longword Number of $ENQ requests not queued 

861 



Executive Data Areas 

Global Symbol 

PMS$GLBLK_LQC 

PMS$GLBLK_IN 

PMS$GLBLK_OUT 

PMS$GLDIR_IN 

PMS$GLDIR_OUT 

PMS$GLDLCKMSGS_IN 

PMS$GLDLCKMSGS_QUT 

PMS$GLDLCKSRCH 

PMS$GLDLCKFND 

P.(\1.S$GLCHMK 

PMS$GLCHME 

PMS$GLPAGES 

PMS$GW _BATCH 

PMS$GW _INTJOBS 

PMS$AL_READTBL 

PMS$AL_ WRITETBL 

PMS$GLREADCNT 

PMS$GL_ WRTCNT 

PMS$GLPASSALL 

PMS$GLRWP 

PMS$GLLRGRWP 

PMS$GLRWPSUM 

PMS$GL_NQSTDTRM 

PMS$GL_RWPNOSTD 

PMS$GL TTY _CODEl 

PMS$GL_ TTY _CODE2 

PMS$GLLDPCTX 

PMS$GLSWITCH 

862 

Size 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

22 longwords 

Longword 

Longword 

Longword 

Word 

Word 

11 longwords 

11 longwords 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Description of Data 

Number of local blocking ASTs queued 

Number of incoming blocking ASTs 
queued 

Number of outgoing blocking ASTs 
queued 

Number of incoming directory operations 

Number of outgoing directory operations 

Number of incoming deadlock detection 
messages 

Number of outgoing deadlock detection 
messages 

Number of deadlock searches performed 

Number of deadlocks found 

Spare for expansion of monitoring during 
Version 4 

Number of CHMK exceptions 

Number of CHME exceptions 

Number of physical pages of memory in 
configuration 

Number of current batch jobs 

Number of interactive users 

Histogram to count number of characters 
per terminal read operation 

Histogram to count number of characters 
per terminal write operation 

· Total number of terminal characters read 
since bootstrap 

Total number of terminal characters 
written since bootstrap 

Number of reads in PASSALL mode 

Number of read-with-prompt reads 

Number of read-with-prompt reads of 
more than 12 characters 

Total number of characters read in prompt 
mode 

Number of reads not using standard 
terminals 

Number of read-with-prompt reads not 
using standard terminals 

Performance code vector 1 

Performance code vector 2 

Number of LDPCTX instructions 

Number of switches from the current 
process 



Global Symbol 

PMS$GB_PROMPT 

PMS$GLDOSTATS 

Size 

4 bytes 

Byte 

3 bytes 

C.1 Statically Allocated Executive Data 

Description of Data 

RTE input prompt 

Flag to turn statistics code on and off 

Spare for alignment 

C.1.15 Entry Points for CPU-Dependent Routines ($$$500) 

Module SYSLOAVEC contains entry points for each CPU-dependent routine. 
Module SCSVEC contains entry points for the loadable SCS code. (SCS is 
described in Chapter 19.) Each entry point is a JMP instruction (with absolute 
addressing). The destination of each JMP is changed to a routine in the CPU­
dependent image SYSLOAxxx.EXE loaded into nonpaged pool during system 
initialization. See Chapter 25 for further information. 

There are two types of routine here. Those routines that are entered 
through the SCB must have their entry point longwords aligned. Each of 
these routines has two spare bytes to preserve longword alignment. Other 
routines can have the six-byte JMP instructions packed together. 

This program section also has contributions from other modules, including 
CLUSTRVEC, which describes the entry points for the connection manager 
and distributed lock manager. 

Global Symbol 

EXE$ALLOAVEC } 
EXE$MCHK 

EXE$INT54 

EXE$INT58 

EXE$INTSC 

EXE$INT60 

UBA$INTO 

UBA$UNEXINT 

ECC$REENABLE 

EXE$INIBOOTADP 

EXE$DUMPCPUREG 

EXE$REGRESTOR 

EXE$REGSAVE 

EXE$INIPROCREG 

EXE$TEST _CSR 

IOC$PURGDATAP 

INI$MPMADP 

EXE$STARTUPADP 

Siz;e Description of Data 

MODULE SYSLOAVEC 

8 bytes 

8 bytes 

8 bytes 

& bytes 

8 bytes 

8 bytes 

6 bytes 

6 bytes 

6 bytes 
6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

Address of start of vectors 
Machine check exception service routine 

Interrupt service routine for SCB vector 54 

Interrupt service routine for SCB vector 58 

Interrupt service routine for SCB vector SC 

Interrupt service routine for SCB vector 60 

Interrupt service routi:qe for }JNIBUS vector 0 

Interrupt service routine for unexpected 
UNIBUS interrupts 

Reenable memory error timers 

Initialize boot device adapter 

Write CPU-specific registers in error log buffer 

Restore CPU-specific registers on power 
recovery 

Save CPU-specific registers at power failure 

Initialize processor registers 

Test UNIBUS CSR for existence 

Purge UNIBUS buffered data path 

Initialize multiport MA780 memory 

Start up any adapters 

863 



Executive Data Areas 

Global Symbol Size Description of Data 

MODULE SYSLOAVEC 

EXE$SHUTDWNADP 6 bytes Shut down any (all) adapters 

MA$RAVAIL 6 bytes Multiport MA780 memory resource available 

MA$REQUEST 6 bytes Multiport MA780 memory request 

MA$INITIAL 6 bytes Multiport memory MA780 initialization 

CON$STARTIO 6 bytes Console start 1/0 

CON$SET _LINE 6 bytes Set console line 

CON$05-SET 6 bytes Console data set 

CON$XON 6 bytes XON to console 

CON$XOFF 6 bytes XOFF to console 

CON$STOP 6 bytes Stop console output 

CON$STOP2 6 bytes Stop console output for two seconds 

CON$ABORT 6 bytes Abort console I/O 

CON$RESUME 6 bytes Resume console output 

CON$SET _MODEM 6 bytes Set console modem 

CON$NULL 6 bytes Null routine 

CON$DISCONNECT 6 bytes Console disconnect routine 

CON$INITIAL 6 bytes Initialize console controller 

CON$INITLINE 6 bytes Initialize console line 

CON$INTINP 6 bytes Console input interrupt 

CON$INTOUT 6 bytes Console output interrupt 

CON$SENDCONSCMD 6 bytes Send CPU-dependent command to console 

SYS$CLRSBIA 6 bytes Clear SBIA error bits 

CON$0WNCTY 6 bytes Set up to talk directly to console 

CON$RELEASECTY 6 bytes Restore normal console interface 

CON$GETCHAR 6 bytes Get a character from the console 

CON$PUTCHAR 6 bytes Put a character out to the console 

CON$INIT _CTY 6 bytes Initialization routine for the console 
EXE$READ_ TOOR 6 bytes Read time-of-year clock 

EXE$WRITL TOOR 6 bytes Write time-of-year clock 

EXE$INIT _TOOR 6 bytes Initialize system time-of-year clock 

INI$CONSOLE 6 bytes Initialize console device data structures 

EXE$INI _ TIMWAIT 6 bytes Initialize TIMEDWAIT macro loop data cells 

EXE$READP _TOOR 6 bytes Read physical time-of-year register 

EXE$WRITEP _TOOR 6 bytes Write physical time-of-year register 

EXE$MOUNTVER 6 bytes Mount verification main entry point 

EXE$MNTVERSIO 6 bytes Mount verification start I/O request 

EXE$MNTVERSHDOL 6 bytes Mount verification online shadow unit 

EXE$CLUTRANIO 6 bytes Mount verification VAXcluster state transition 
block 1/0 

864 



Global Symbol 

EXE$UPDGNERNUM 

EXE$MNTVER_DVI_ASSIST 

EXE$MNTVERSP1 

EXE$MNTVERSP2 

EXE$GL_MVMSLBAS 

EXE$EXTRA6 

EXE$EXTRA7 

EXE$EXTRA8 

EXE$EXTRA9 

EXE$EXTRA10 

EXE$MCHK_ERRCNT 

EXE$LOAD_ERROR 

SCS$GQ_ CQNFIG 

SCS$GQ_DIRECT 

SCS$GQ_POLL 

SCS$GLBDT 

SCS$GLCDL 

SCS$GLRDT 

SCS$GLMCLEN 

SCS$GLMCADR 

SCS$GLMSCP 

SCS$GLPDT 

SCS$GA_DFLTMSK 

SCS$GW _NEXTBIT 

SCS$GA_EXISTS 

SCS$ALLOAVEC} 
SCS$ACCEPT 

C.1 Statically Allocated Executive Data 

Size Description of Data 

MODULE SYSLOAVEC 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

6 bytes 

Longword 

Byte 

Mount verification update shadow set 
generation number 

Mount verification $GETDVI escape 

Mount verification spare transfer vector 

Mount verification spare transfer vector 

Mount verification message list base address 

Extra jump vector; currently targeted to halt in 
ERRSUB 

Extra jump vector; currently targeted to halt in 
ERRSUB 

Extra jump vector; currently targeted to halt in 
ERRSUB 

Extra jump vector; currently targeted to halt in 
ERRSUB 

Extra jump vector; currently targeted to halt in 
ERRSUB 

Pointer to error counters in machine check 
routine 

HALT instruction (initial destination of JMP 

instructions in vectors) 

MODULE SCSVEC 

Quadword 

Quadword 

Quadword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

6 bytes 

Listhead for system descriptor blocks 

Listhead for directory of processes in 
VAXcluster System 

Listhead of SCA poller process blocks (SPPBs) 
giving process names 

Buffer descriptor table for SCS block 
transmissions 

Connection descriptor table pointing to list of 
SCS connections 

Response descriptor table 

Unused 

Pointer to CI port microcode in nonpaged pool 

Start of MSCP server process 

Listhead of PDTs 

Mask of processes to enable when new systems 
appear 

Next bit available for assignment 

Flag to indicate presence of SCS 

Address of start of vectors 

Perform SCS accept 

865 



Executive Data Areas 

Global Symbol Size Description of Data 

MODULE SCSVEC 

SCS$ALLOC_CDT 6 bytes Allocate connection descriptor table 
SCS$ALLOC_RSPID 6 bytes Allocate response ID 
SCS$CONFIG_PTH 6 bytes Configure with path to remote system 
SCS$CONFIG_SYS 6 bytes Configure with system ID 
SCS$CONNECT 6 bytes Perform SCS connect 
SCS$DEALLCDT 6 bytes Deallocate connection descriptor table 
SCS$DEALLRSPID 6 bytes Deallocate response ID 
SCS$DISCONNECT 6 bytes Perform SCS disconnect 
SCS$ENTER 6 bytes Insert an entry in SCS directory 
SCS$LISTEN 6 bytes Perform an SCS listen operation 
SCS$LOCLOOKUP 6 bytes Look up a path block 

SCS$REMOVE 6 bytes Remove an entry in SCS directory 
SCS$RESUMEWAITR 6 bytes Resume when CRB is dequeued 
SCS$UNSTALLUCB 6 bytes Resume when UCB is dequeued 
SCS$LKP _RDTCDRP 6 bytes Search a response descriptor table for a CDRP 
SCS$LKP _RDTWAIT 6 bytes Search a response ID wait queue for a CDRP 
SCS$RECYLRSPID 6 bytes Recycle a response ID 
SCS$FIND _RDTE 6 bytes Locate and validate the RDTE for a given 

response ID 
SCS$LKP _MSGWAIT 6 bytes Send credit wait queues for CDRP with given 

CDT 

SCS$DIR-LOOKUP 6 bytes Search for processes on remote node 
SCS$NEW_SB 6 bytes Called when a system block is created or 

reused 
SCS$POLLPROC 6 bytes Declare a process name to the poller 
SCS$POLLMODE 6 bytes Enable/disable polling of a process 
SCS$POLLMBX 6 bytes Declare a mailbox to receive poll notifications 
SCS$CANCELMBX 6 bytes Cancel notifications to a mailbox 
SCS$SHUTDOWN 6 bytes Shut down all SCS virtual circuits 

C.1.16 Table of Adjustable SYSBOOT Parameters ($$$917) 

866 

As described in Chapter 25, the system image contains a copy of the work­
ing value of each SYSBOOT parameter. This table of values is written into 
the memory image of the executive by SYSBOOT. Global label 
MMG$A_SYSPARAM, defined in module MOAT, locates the beginning of 
the parameter area. Global label EXE$A_SYSPARAM, defined in module 
SYSPARAM, has the same value. In the following list, the name of each pa­
rameter is included as a part of its description. 



C.1 Statically Allocated Executive Data 

Global Symbol Size Description of Data 

EXE$GQ_ TODCBASE Quadword Base value in time-of-day clock in system 
time format (not a parameter) 

EXE$GL_ TODR Longword Base value in time-of-year clock (not a 
parameter) 

SGN$GW _DFPFC Word Default page fault cluster size 
(PFCDEFAULT) 

SGN$GB_PGTBPFC Byte Default page table page fault cluster size 
(PAGTBLPFC) 

SGN$GB _ SYSPFC Byte Page fault cluster factor for system paging 
(SYS PFC) 

SGN$GB_KFILSTCT Byte Number of known file lists (KFILSTCNT) 
Byte Spare for alignment 

SGN$GW _GBLSECNT Word Global section count (GBLSECTIONS) 

SGN$GL_MAXGPGCT Longword Global page count (GBLPAGES) 

SGN$GLGBLPAGFIL Longword Global page file page limit (GBLPAGFIL) 

SGN$GW _MAXPRCCT Word Maximum process count 
(MAXPROCESSCNT) 

SGN$GW _PIXSCAN Word Maximum number of processes to scan for 
priority boosting (PIXSCAN) 

SGN$GW _MAXPSTCT Word Process section count (PROCSECTCNT) 

SGN$GW _MINWSCNT Word Minimum working set size (MINWSCNT) 

SGN$GW _PAGFILCT Word Number of page files (PAGFILCNT) 

SGN$GW _SWPFILES Word Number of swap files (SWPFILCNT) 

SGN$GW _SYSDWSCT Word Size of system working set count 
(SYSMWCNT) 

SGN$GW _ISPPGCT Word Size in pages of interrupt stack 
(INTSTKPAGES) 

LCK$GLEXTRASTK Longword Amount of interrupt stack that must 
remain free when performing deadlock 
searches (DLCKEXTRASTK) 

SGN$GLBALSETCT Longword Balance set count (BALSETCNT) 

SGN$GLIRPCNT Longword Number of preallocated I/O request 
packets (IRPCOUNT) 

SGN$GLIRPCNTV Longword Maximum number of IRPs (IRPCOUNTV) 

SGN$GLMAXWSCNT Longword Maximum process working set size 
(WSMAX) 

SGN$GL_NPAGEDYN Longword Number of bytes of nonpaged pool 
(NPAGEDYN) (truncated to page 
boundary by SYSBOOT) 

SGN$GL_NPAGEVIR Longword Maximum size of nonpaged pool 
(NPAGEVIR) 

SGN$GLPAGEDYN Longword Number of bytes of paged pool 
(PAGEDYN) (truncated to page boundary 
by SYSBOOT) 

867 



Executive Data Areas 

Global Symbol Size Description of Data 

SGN$GLMAXVPGCT Longword Maximum virtual page count 
(VIRTUALPAGECNT) 

SGN$GLSPTREQ Longword Number of additional SPTEs to allocate 
(SPTREQ) 

SGN$GLEXUSRSTK Longword Extra user stack space (in bytes) allocated 
by image activator (EXUSRSTK) 

SGN$GLLRPCNT Longword Initial number of packets in the LRP 
lookaside list (LRPCOUNT) 

SGN$GLLRPCNTV Longword Maximum number of LRPs allowed on the 
LRP lookaside list (LRPCOUNTV) 

SGN$GLLRPSIZE Longword Size of an LRP (LRPSIZE) 

SGN$GLLRPMIN Longword Minimum request that can be allocated an 
LRP (LRPMIN) 

SGN$GLSRPCNT Longword Initial number of packets in the SRP 
lookaside list (SRPCOUNT) 

SGN$GLSRPCNTV Longword Maximum number of SRPs (SRPCOUNTV) 

SGN$GL SRPSIZE Longword Size of an SRP (SRPSIZE) 

SGN$GLSRPMIN Longword Minimum request that can be allocated an 
SRP (SRPMIN) 

SGN$GW _PCHANCNT Word Permanent 110 channel count 
(CHANNELCNT) 

SGN$GW _PIOPAGES Word Number of pages of process I/O address 
space for EXE$PROCSTRT to create 
(PIOPAGES) 

SGN$GW _CTLPAGES Word Number of pages of process allocation 
region space for EXE$PROCSTRT to 
create (CTLPAGES) 

SGN$GW _CTLIMGLIM Word Limit on use of the process allocation 
region by image requests (CTLIMGLIM) 

SGN$GW _IMGIOCNT Word Default number of pages mapped for image 
I/O segment (IMGIOCNT) 

SCH$GW _QUAN Word Length in ten-millisecond units of 
quantum (QUANTUM) 

MPW$GW _MPWPFC Word Modified page writer cluster factor 
(MPW _ WRTCLUSTER) 

MPW$GW _HILIM Word High-limit threshold of modified page list 
(MPW _HILIM) 

MPW$GW _LOLIM Word Low-limit threshold of modified page list 
(MPW _LOLIM) 

MPW$GB_PRIO Byte Priority at which modified page writes are 
queued (MPW_PRIO) 

SWP$GB_PRIO Byte Priority at which swapper I/O requests are 
queued (SWP_PRIO) 

MPW$GL_ THRESH Longword Limit below which modified page writer 
does not reclaim pages (MPW _THRESH) 

868 



C.1 Statically Allocated Executive Data 

Global Symbol Size Description of Data 

MPW$GL WAITLIM Longword Limit above which processes creating 
modified pages must wait until pages 
have been released from modified page 
list (MPW _ WAITLIMIT) 

SGN$GW _ WSLMXSKP Word Number of working set list entries to skip 
in modified scan of WSL (TBSKIPWSL) 

MMG$GLPHYPGCNT Longword Maximum number of physical pages to use 
(PHYSICALPAGES) 

SCH$GLPFRATL Longword Low-limit page fault rate threshold 
(PFRATL) 

SCH$GLPFRATH Longword High-limit page fault rate threshold 
(PFRATH) 

SCH$GLPFRATS Longword Page fault rate threshold for system paging 
(PFRATS) 

SCH$GL WSINC Longword Working set increment (WSINC) 

SCH$GL WSDEC Longword Working set decrement (WSDEC) 

SCH$GW _AWSMIN Word Minimum value of automatic working set 
adjustment (AWSMIN) 

SCH$GLAWSTIME Longword Working set measurement interval (in ten-
millisecond units) (AWSTIME) 

SCH$GLSWPRATE Longword Swap rate for compute-bound jobs 
(SWPRATE) 

SWP$GLSWPPGCNT Longword Target number of pages for a working set 
about to be outswapped 
(SWPOUTPGCNT) 

SWP$GLSWPINC Longword Swap file allocation increment value 
(SWPALLOCINC) 

SCH$GW _IOTA Word Amount of time in ten-millisecond units 
charged against quantum when process 
goes into wait state (IOTA) 

SCH$GW _LONGWAIT Word Amount of elapsed time for a LEF or HIB 
process to be scheduled as a longwait 
process (LONGWAIT) 

SCH$GW _DORMANTWAIT Word Number of seconds to wait before marking 
COM process dormant 
(DORMANTWAIT) 

SCH$GW _SWPFAIL Word Number of outswap failures to happen 
before modifying selection algorithm 
(SWPFAIL) 

SGN$GL VMSDl Longword DIGITAL-reserved parameter (VMSDl) 

SGN$GL VMSD2 Longword DIGITAL-reserved parameter (VMSD2) 

SGN$GL VMSD3 Longword DIGITAL-reserved parameter (VMSD3) 

SGN$GL VMSD4 Longword DIGITAL-reserved parameter (VMSD4) 

SGN$GL_ VMSS Longword DIGITAL-reserved parameter (VMSS) 

SGN$GL VMS6 Longword DIGITAL-reserved parameter (VMS6) 

869 



Executive Data Areas 

Global Symbol Size Description of Data 

SGN$GL VMS7 Longword DIGITAL-reserved parameter (VMS7) 

SGN$GL VMS8 Longword DIGITAL-reserved parameter (VMS8) 
SGN$GL _ USERD 1 Longword Parameter reserved for users (USERD l) 

SGN$GL USERD2 Longword Parameter reserved for users (USERD2) 

SGN$GL USER3 Longword Parameter reserved for users (USER3) 

SGN$GL USER4 Longword Parameter reserved for users (USER4) 

SGN$GLEXTRACPU Longword Extra CPU time after CPU time expiration 
(EXTRA CPU) 

EXE$GL SYSUIC Longword Maximum group code for system UIC 
(MAXSYSGROUP) 

IOC$GW _MVTIMEOUT Word Time before abandoning mount 
verification attempt (MVTIMEOUT) 

IOC$GW _MAXBUF Word Maximum buffered 1/0 request size 
(MAXBUF) 

IOC$GW _MBXBFQUO Word Default buffer quota for mailbox creation 
(DEFMBXBUFQUO) 

IOC$GW _MBXMXMSG Word Default maximum message size for 
mailbox creation (DEFMBXMXMSG) 

IOC$GW _MBXNMMSG Word Default number of messages for mailbox 
creation (DEFMBXNUMMSG) 

SGN$GLFREELIM Longword Low-limit threshold of free page list 
(FREELIM) 

SGN$GLFREEGOAL Longword Target number of pages to free when the 
size of the free list is less than FREELIM 
(FREEGOAL) 

SCH$GLGROWLIM Longword Minimum number of pages on the free list 
for a proq:ss to expand its working set 
above WSQUOTA (GROWLIM) 

SCH$GLBORROWLIM Longword Minimum number of pages on the free list 
for a process to extend its working set 
list above WSQUOTA (BORROWLIM) 

EXE$GL_LOCKRTRY Longword Number of retries allowed to lock a 
multiprocessor data structure 
(LOCKRETRY) 

IOC$GW _XFMXRATE Word Maximum DR780 data rate (XFMAXRATE) 

IOC$GW _LAMAPREG Word Number of UNIBUS map registers to 
preallocate for LPAll (LAMAPREGS) 

EXE$GLRTIMESPT Longword Number of preallocated SPTEs for connect 
to interrupt driver (REALTIME_SPTS) 

EXE$GL_ CLITABL Longword Number of pages for CLI symbol table 
(CLISYMTBL) 

LCK$GLIDTBLSIZ Longword Size of the lock ID table (LOCKIDTBL) 

LCK$GLIDTBLMAX Longword Maximum size of lock ID table 
(LOCKIDTBLMAX) 

870 



C.1 Statically Allocated Executive Data 

Global Symbol Size Description of Data 

LCK$GLHTBLSIZ Longword Size of the resource hash table 
(RESHASHTBL) 

LCK$GL_ WAITTIME Longword Deadlock detection timeout period 
(DEADLOCK_ WAIT) 

SCS$GW _BDTCNT Word Number of buffer descriptor table entries 
allocated for SCS (SCSBUFFCNT) 

SCS$GW _CDTCNT Word Number of connection descriptor table 
entries allocated for SCS 
(SCSCONNCNT) 

SCS$GW _RDTCNT Word Number of response descriptor table 
entries allocated for SCS (SCSRESPCNT) 

SCS$GW _MAXDG Word Maximum SCS datagram size 
(SCSMAXDG) 

SCS$GW _MAXMSG Word Maximum SCSrsequenced message size 
(SCSMAXMSG) 

SCS$GW _FLOWCUSH Word SCS flow control cushion 
(SCSFLOWCUSH) 

SCS$GB_SYSTEMID Quadword SCS system ID (SCSSYSTEMID and 
SCS$GB_SYSTEMIDH SCSSYSTEMIDH) 

SCS$GB_NODENAME Quadword SCS system node name (SCSNODE) 

SCS$GW _PRCPOLINT Word SCA process poller-polling interval 
(PRCPOLINTERVAL) 

SCS$GW _PASTMOUT Word Wakeup interval for CI port driver 
(PASTIMOUT) 

SCS$GW _PAPPDDG Word Number of datagram buffers to queue for 
START (PASTDGBUF) 

SCS$GB_PANPOLL Byte Number of CI ports to poll each interval 
(PANUMPOLL) 

SCS$GB_PAMXPORT Byte Maximum port number to poll each 
interval (PAMAXPORT) 

SCS$GW _PAPOLINT Word Time between polls (PAPOLLINTERVAL) 

SCS$GW _PAPOOLIN Word Time between checks for SCS applications 
waiting for pool (PAPOOLINTERVAL) 

SCS$GB_PASANITY Byte CI port flags including sanity timer enable/ 
disable (PASANITY) 

SCS$GB_PANOPOLL Byte CI remote port polling enable/disable flags 
(PANOPOLL) 

SGN$GLPE1 Longword Enable/disable discarding of datagrams by 
PEDRIVER (PEI) 

SGN$GLPE2 Longword Reserved for PEDRIVER (PE2) 

SGN$GLPE3 Longword Reserved for PEDRIVER (PE3) 
SGN$GLPE4 Longword Enable/disable PEDRIVER breakpoints 

(PE4) 

SGN$GLPE5 Longword PEDRIVER port services parameter (PES) 

871 



Executive Data Areas 

Global Symbol Size Description of Data 

SGN$GLPE6 Longword PEDRIVER-CI port group code (PE6) 

SGN$GW _ TPWAIT Word Amount of time to wait for the time of 
day to be entered when booting 
(TIMEPROMPTWAIT) 

SCS$GB_ UDABURST Byte Maximum number of longwords that the 
host is willing to accept per transfer 
(UDABURSTRATE) 

LNM$GLHTBLSIZS Longword Size of shareable logical name hash table 
(LNMSHASHTBL) 

LNM$GLHTBLSIZP Longword Size of process logical name hash table 
(LNMPHASHTBL) 

EXE$GLDEFFLAGS Longword System flags longword (not a parameter 
itself) 

• EXE$V _BUGREBOOT Bit Automatic reboot on bugcheck 
(BUG REBOOT) 

• EXE$V _CRDENABL Bit CRD error enable (CRDENABLE) 

• EXE$V _BUGDUMP Bit Write system dump on bugcheck 
(DUMPBUG) 

• EXE$V _FATALBUG Bit Make all bugchecks fatal 
(BUGCHECKFATAL) 

• EXE$V _MULTACP Bit Create separate ACP for each volume 
(ACP_MULTIPLE) 

• EXE$V _NOAUTOCNF Bit Inhibit autoconfiguration of I/O devices 
(NOAUTOCONFIG) 

• EXE$V _NOCLOCK Bit Do not start interval timer (NOCLOCK) 

• EXE$V _NOCLUSTER Bit Inhibit page read clustering (NOCLUSTER) 

• EXE$V _PQOLPGING Bit Enable paging of paged pool 
(POOLPAGING) 

• EXE$V _REINITQUE Bit Create a new JBCSYSQUEUE.EXE 
(REINITQUE) 

• EXE$V _ SBIERR Bit Enable detection of SBI errors 
(SBIERRENABLE) 

• EXE$V _SETTIME Bit Prompt for system time in SYSBOOT 
(SETTIME) 

• EXE$V _SHRFllACP Bit Enable sharing of file ACP (ACP _SHARE) 

• EXE$V _SAVEDUMP Bit Save dump from page file (SAVEDUMP) 

• EXE$V _SSINHIBIT Bit Inhibit system services on a per-process 
basis (SSINHIBIT) 

• EXE$V _SYSPAGING Bit Enable paging of pageable system code 
(SYSPAGING) 

•EXE$V_SYSUAFALT Bit Select alternate authorization file 
(UAFALTERNATE) 

• EXE$V _SYSWRTABL Bit Leave system image in memory writable 
(WRITABLESYS) 

872 



Global Symbol 

• EXE$V _RESALLOC 

• EXE$V _JOBQUEUES 

• EXE$V _CONCEALED 

• EXE$V _CJFLOAD 

• EXE$V _CJFSYSRUJ 

EXE$GL_DYNAMIC_FLAGS 

• EXE$V _CLASS_PROT 

• EXE$V _ WRITESYSPARAMS 

• EXE$V _BRK_ TERM 

• EXE$V _BRK_DISUSER 

EXE$GLMSGFLAGS 

• EXE$V _DISMOUMSG 

• EXE$V _MQUNTMSG 

SGN$GLLOADFLAGS 

• SGN$V _LQADERAPAT 

• SGN$V _LOADCHKPRT 

• SGN$V _LQADMTACCESS 

TTY$GLDELTA 

TTY$GB_DIALTYP 

TTY$GB_DEFSPEED 

C.1 Statically Allocated Executive Data 

Size 

Bit 

Bit 

Bit 

Bit 

Bit 

Longword 

Bit 

Bit 

Bit 

Bit 

Longword 

Bit 

Bit 

Longword 

Bit 

Bit 

Bit 

Longword 

Byte 

•Bit 

•Bit 

•Bit 

Byte 

Description of Data 

Enable resource allocation checking 
(RESALLOC) 

Enable job controller queues jJOBQUEUES) 

Enable use of concealed devices 
(CONCEALDEVICES) 

Unused 

Unused 

Dynamic system flags (not a parameter 
itself) 

Perform nondiscretionary classification 
checks (CLASS_PROT) 

Set by SYSBOOT if a USE DEFAULT, USE 
"file," or a SET command is executed 
(WRITESYSPARAMS) 

Use the terminal name in the association 
string used in LOGIN's break-in 
detection (LGLBRK_ TERM) 

If enabled, set the DISUSER flag in the 
user's UAF record if a break-in attempt 
is detected (LGLBRK-DISUSER) 

Mount message flags (not a parameter 
itself) 

Inform operator console of dismounts 
(DISMOUMSG) 

Inform operator console of mounts 
(MOUNTMSG) 

SYSGEN load flags (not a parameter itself) 

If set, load alternate erase pattern 
generator (LOADERAPT) 

If set, load alternate protection check 
routine (LOADCHKPRT) 

Control loading of installation-specific 
accessibility routine (LOADMTACCESS) 

Delta time for dialup line timer scan 
(TTY _SCANDELTA) 

Dialup flag bits (TTY _DIALTYPE) 

0 = Bell standard protocol 
1 = CCITT standard protocol 

0 = disable use of RING signal 
1 = require RING signal before setting 

DTR 

0 = enable 30-second timeout for DTR 
1 = disable timeout 

Default speed for terminals (TTY _SPEED) 

873 



Executive Data Areas 

Global Symbol Size Description of Data 

TTY$GB_RSPEED Byte Default receive speed (TTY _RSPEED) 

TTY$GB_PARITY Byte Default parity (TTY _PARITY) 

TTY$GW _DEFBUF Word Default terminal line width (TTY _BUF) 

TTY$GLDEFCHAR Longword Default terminal characteristics 
(TTY _DEFCHAR) 

TTY$GLDEFCHAR2 Longword Default terminal characteristics (second 
longword) (TTY _DEFCHAR2) 

TTY$GW _ TYPAHDSZ Word Size of type-ahead buffer 
(TTY_ TYPAHDSZ) 

TTY$GW _ALTYPAHD Word Alternate type-ahead buffer size 
(TTY _ALTYPAHD) 

TTY$GW _ALTALARM Word Alternate type-ahead buffer alarm size 
(TTY _ALTALARM) 

TTY$GW _DMASIZE Word DMA size (TTY _DMASIZE) 

TTY$GW _PROT Word Default terminal allocation protection 
(TTY_PROT) 

TTY$GLOWNUIC Longword Default terminal owner UIC 
(TTY _OWNER) 

TTY$GW _CLASSNAM Word Default terminal class driver name prefix 
(TTY _CLASSNAME) 

TTY$GB_SILOTIME Byte Default silo timeout value for DMF-32 
(TTY _SILOTIME) 

TTY$GL TIMEOUT Longword Default disconnected terminal timeout 
value (TTY_ TIMEOUT) 

TTY$GB_AUTOCHAR Byte Autobaud rate recognition character 
(TTY _AUTOCHAR) 

TTY$GLDEFPORT Longword Default port characteristics 
(TTY _DEFPORT) 

SYS$GB_DFMBC Byte Default multiblock count (RM5-DFMBC) 

SYS$GB-DFMBFSDK Byte Default multibuffer count for sequential 
disk I/O (RMS_DFMBFSDK) 

SYS$GB_DFMBFSMT Byte Unused (RM5-DFMBFSMT) 

SYS$GB_DFMBFSUR Byte Unused (RM5-DFMBFSUR) 

SYS$GB-DFMBFREL Byte Unused (RMS_DFMBFREL) 

SYS$GB-DFMBFIDX Byte Unused (RM5-DFMBFIDX) 

SYS$GB_DFMBFHSH Byte Unused (RMS_DFMBFHSH) 

SYS$GB_RMSPROLOG Byte Default RMS prolog value 
(RMS_PROLOGUE) 

SYS$GW _RMSEXTEND Word Default file extend size 
(RM5-EXTEND_SIZE) 

SYS$GW _FILEPROT Word Unused (RMS_FILEPROT) 

SYS$GW _GBLBUFQUO Word Maximum number of global buffers that 
may be in concurrent use 
(RMS_GBLBUFQUO) 

874 



C.1 Statically Allocated Executive Data 

Global Symbol Size Description of Data 

SYS$GB_DFNBC Byte Number of blocks for RMS DAP network 
record-mode transfers; defines maximum 
netword record size (RMS_DFNBC) 

PQL$ALDEFAULT + 4 12 longwords Table of process quota list default values 
(see Table 20-3) 

PQL$ALMIN + 4 12 longwords Table of process quota list minimum 
values (see Table 20-3) 

PQL$AB_FLAG + 1 12 bytes Table of process quota flags 

ACP$GW _MAPCACHE Word Number of blocks in bitmap cache 
(ACP _MAPCACHE) 

ACP$GW _HDRCACHE Word Number of blocks in file header cache 
(ACP _HDRCACHE) 

ACP$GW _DIRCACHE Word Number of blocks in file directory cache 
(ACP _DIRCACHE) 

ACP$GW _DINDXCACHE Word Number of pages in file system directory 
index cache (ACP _DINDXCACHE) 

ACP$GW _ WORKSET Word ACP working set size (ACP _ WORKSET) 

ACP$GW _flDCACHE Word Number of cached index file slots 
(ACP _FIDCACHE) 

ACP$GW _EXTCACHE Word Number of cached disk extents 
(ACP _EXTCACHE) 

ACP$GW _EXTLIMIT Word Fraction of disk to cache 
(ACP _EXTLIMIT) 

ACP$GW _QUOCACHE Word Number of quota file entries to cache 
(ACP _QUOCACHE) 

ACP$GW _SYSACC Word Default access for system volumes 
(ACP _SYSACC) 

ACP$GB_MAXREAD Byte Maximum number of blocks to read at 
once for directories (ACP _MAXREAD) 

ACP$GB_ WINDOW Byte Default window size for system volumes 
(ACP _WINDOW) 

ACP$GB_ WRITBACK Byte Enable deferred cache write back 
(ACP _ WRITEBACK) 

ACP$GB_DATACHK Byte ACP data check enable flags 
(ACP _DATACHECK) 

• ACP$V _READCHK Bit Do data check on reads 
• ACP$V _ WRITECHK Bit Do data check on writes 

ACP$GB_BASEPRIO Byte ACP base software priority 
(ACP _BASEPRIO) 

ACP$GB_SWAPFLGS Byte ACP swap flags (ACP_SWAPFLGS) 

• ACP$V _SWAPSYS Bit Swap ACPs for /SYSTEM volumes 

• ACP$V _SWAPGRP Bit Swap ACPs for /GROUP volumes 

• ACP$V _SWAPPRV Bit Swap ACPs for private volumes 

• ACP$V _SWAPMAG Bit Swap magnetic tape ACPs 

875 



Executive Data Areas 

Global Symbol Size Description of Data 

EXE$GLSTATIC_FLAGS Longword XQP control flags (not a parameter itself) 

• EXE$V _XQP _RESIDENT Bit XQP memory resident (ACP _XQP _RES) 

•EXE$V_REBLDSYSD Bit System disk rebuild flag 
(ACP _REBLDSYSD) 

SYS$GB_DEFPRI Byte Default priority for job initiations; upper 
limit on "cruncher" process priority 
(DEFPRI) 

SYS$GW _IJOBLIM Word Limit for interactive jobs (IJOBLIM) 

SYS$GW _BJOBLIM Word Limit for batch jobs (BJOBLIM) 

SYS$GW _NJOBLIM Word Limit for network jobs (NJOBLIM) 

SYS$GW _RJOBLIM Word Limit for remote terminal jobs (RJOBLIM) 

SYS$GB_DEFQUEPRI Byte Default queue priority (DEFQUEPRI) 

SYS$GB_MAXQUEPRI Byte Maximum queue priority (MAXQUEPRI) 

SYS$GB_PWD_ TMO Byte Number of seconds that a dialup user has 
to enter system password before 
LOGINOUT exits (LGLPWD_ TMO) 

SYS$GB_RETRY _LIM Byte Number of retries an interactive user has 
before the process goes away 
(LGLRETRY _LIM) 

SYS$GB_RETRY _ TMO Byte Number of seconds user has to attempt 
another login before process is deleted 
(LGLRETRY _ TMO) 

SYS$GB_BRK_LIM Byte Number of consecutive login failures 
before LOGINOUT begins evasive action 
(LGLBRK_LIM) 

SYS$GLBRK_ TMO Byte Number of seconds that a suspect must be 
free of login failures before it is taken 
off the suspect list (LGLBRK_ TMO) 

SYS$GLHID_ TIM Byte Number of seconds that LOGINOUT 
should practice evasive action on an 
intruder (LGLHID_ TIM) 

CLU$GB_VAXCLUSTER Byte Controls loading of VAXcluster code 
• 0 = never load 
• 1 = load if SCSLOA is being loaded 
• 2 = always load and also load SCSLOA 

CLU$GW _QUORUM Word Quorum for an operable VAXcluster 
System (QUORUM) 

CLU$GW _VOTES Word Number of votes this system contributes 
to quorum (VOTES) 

CLU$GW _RECNXINT Word Interval during which to attempt 
reconnection to a VAXcluster member 
(RECNXINTERVAL) 

CLU$GB_QDISK Byte VAXcluster quorum disk name 
(DISK_ QUORUM) 

876 



Global Symbol 

CLU$GW _QDSKVOTES 

CLU$GW _QDSKINTERVAL 

CLU$G1-ALLOCLS 

CLU$GW _LCKDIRWT 

SGN$GB_ TAILORED 

EXE$G1-WSFLAGS 

• EXE$V _OPAO 

SGN$GB_STARTUP _Pl 

SGN$GB_STARTUP_P2 

SGN$GB_STARTUP _P3 

SGN$GB_STARTUP_P4 

SGN$GB_STARTUP _PS 

SGN$GB_STARTUP _P6 

SGN$GB_STARTUP_P7 

SGN$GB_STARTUP _P8 

C.1 Statically Allocated Executive Data 

Size 

Word 

Word 

Longword 

Word 

Byte 

Longword 

Bit 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Longword 

Description of Data 

Number of votes contributed by quorum 
disk (QDSKVOTES) 

Disk quorum interval (QDSKINTERVAL) 

Device allocation class for system. Used to 
derive common lock resource name for 
multiple access paths to same device 
(ALLOCLASS) 

Determines portion of lock manager 
directory entries that will be handled by 
this system (LOCKDIRWT) 

Indicates if system is tailored 
(TAILORED) 

Workstation SYSGEN flags (not a 
parameter itself) 

If set, reserve the first 23 scan lines for an 
OPAO window (WS_OPAO) 

Used to pass information to the system 
startup procedure (STARTUP _Pl) 

Used to pass information to the system 
startup procedure (STARTUP _P2) 

Used to pass information to the system 
startup procedure (STARTUP _P3) 

Used to pass information to the system 
startup procedure (STARTUP _P4) 

Used to pass information to the system 
startup procedure (STARTUP _PS) 

Used to pass information to the system 
startup procedure (STARTUP _P6) 

Used to pass information to the system 
startup procedure (STARTUP _P7) 

Used to pass information to the system 
startup procedure (STARTUP ,-PS) 

The rest of module SYSPARAM consists of other systemwide parameters, 
the values of which are not directly adjustable with SYSBOOT or SYSGEN. 
Rather, their values depend directly on the values of one or more adjustable 
parameters. 

Global Symbol 

SWP$G1-SHELLSIZ 

SWP$GW _BAKPTE 

SWP$GW _EMPTPTE 

Size 

Longword 

Word 

Word 

Description of Data 

Pages required for shell process 

Number of PHD pages for 
process header page arrays 

Number of empty PHD pages 
for working set list 
expansion 

877 



Executive Data Areas 

Global Symbol Size Description of Data 

SWP$GW _ WSLPTE Word Number of PHD pages for 
fixed area, working set list, 
and process section table 

SWP$GB_SHLP1PT Byte Number of Pl page table pages 
required for SHELL 

Byte Spare for alignment 

SWP$GLBSLOTSZ Longword Size (in pages) of balance slot 

SWP$GLMAP Longword Address of swapper's 1/0 page 
table 

SWP$GLPHDBASVA Longword Base address of PHD window 

SGN$GLPHDAPCNT LongWord Number of SHELL header 
pages 

SGN$GL_PHDLWCNT Longword Number of longwords in PHD 

SGN$GLP1LWCNT Longword Number of longwords to end 
of P 1 page table 

SGN$GL_PHDPAGCT Longword Number of all PHD pages ex-
eluding page table pages 

SGN$GL_PTPAGCNT Longword Number of page table pages 

MMG$GLCTLBASVA Longword Initial low address end of Pl 
space 

EXE$ALSTACKS 2 longwords Array of kernel mode system 
space stacks 

•Longword Address of swapper's kernel 
stack 

• EXE$GLINTSTK •Longword Address of interrupt stack 

MMG$GLGPTBASE Longword Base address of global page 
table 

MMG$GLGPTE Longword Address of first GPTE at end 
of SPT 

MMG$GLMAXGPTE Longword Highest GPTE address 

MMG$GLMAXSYSVA} Longword Highest system virtual address 
MMG$GLFRESVA (plus 1) 

MMG$GLSPTBASE Longword Base virtual address of SPT 

MMG$GLSPTLEN Longword Length of SPT 

MMG$GLSYSPHD Longword Virtual address of system 
header 

MMG$GLSYSPHDLN Longword Size (in bytes) of system 
header 

SWP$GLBALBASE Longword Base virtual address of balance 
set slots 

SWP$GLBALSPT Longword Base virtual address in SPT for 
mapping balance slots 

MMG$GLSBR Longword Physical address of SPT (dupli-
cates contents of PR$_SBR) 

878 



C.1 Statically Allocated Executive Data 

Global Symbol Size Description of Data 

MMG$GLNPAGEDYN Longword Virtual address of beginning of 
nonpaged pool 

MMG$GLNPAGNEXT Longword Next virtual address for 
nonpaged pool extension 

MMG$GLIRPNEXT Longword Next virtual address for IRP 
list extension 

MMG$GLLRPNEXT Longword Next virtual address for LRP 
list extension 

MMG$GLSRPNEXT Longword Next virtual address for SRP 
list extension 

MMG$GL_PAGEDYN Longword Virtual address of beginning of 
paged pool 

MMG$GL_MAXPFN Longword Maximum PFN accounted for in 
PFN database 

MMG$GLMINPFN Longword Minimum PFN in PFN database 

MMG$GL_MAXMEM Longword Highest PFN mapped by SYS-
BOOT (includes pages not in 
PFN database) 

EXE$GLRPB Longword Virtual address of restart 
parameter block 

B00$GL SPTFREL Longword Virtual page number of lower 
end of pool of unused SPTEs 

B00$GL SPTFREH Longword Virtual page number of upper 
end of pool of unused SPTEs 

EXE$GLSCB Longword Virtual address of system 
control block 

EXE$GLARCHFLAG Longword Architectural flags (bits 
defined by $ARCDEF) 

EXE$GB_CPUDATA 16 bytes System-specific information 

EXE$GB_ CPUTYPE Byte CPU type read from PR$_SID 

PFN$GB_LENGTH Byte Number of bytes per page in 
PFN database 

MMG$GW _BIGPFN Word Flag to indicate size of PFN 
FLINK, BLINK 

EXE$GW _PGFLFID 3 words File ID of PAGEFILE.SYS 

PFN$A_BASE 8 longwords Addresses of eight PFN data-
base arrays 

• PFN$ALPTE Longword Address of PTE array 

• PFN$ALBAK Longword Address of backing store 
address array 

• PFN$AW _REFCNT Longword Address of reference count 
array of words 

• PFN$AX_FLINK } Longword Address of combined forward 
• PFN$AX_SHRCNT link/global share count array 

of words 

879 



Executive Data Areas 

880 

Global Symbol 

• PFN$AX_BLINK} 
• PFN$AX_ WSLX 

• PFN$AW _SWPVBN 

•PFN$AB_STATE 

• PFN$AB_ TYPE 

EXE$GT _STARTUP 

Size 

Longword 

Longword 

Longword 

Longword 

33 bytes 

Description of Data 

Address of combined backward 
link/working set list index 
array of words 

Address of swap image virtual 
block number array of words 

Address of STATE array of 
bytes 

Address of TYPE array of bytes 

Counted ASCII string of name 
of startup command 
procedure file 

The following table lists the SYSBOOT parameters alphabetically and indi­
cates the names of the cells where each parameter is stored. 

SYSBOOT Parameter 

ACP _BASEPRIO 

ACP _DATACHECK 

ACP _DINDXCACHE 

ACP _DIR CACHE 

ACP _EXTCACHE 

ACP _EXTLIMIT 

ACP _FIDCACHE 

ACP_HDRCACHE 

ACP _MAPCACHE 

ACP _MAXREAD 

ACP _MULTIPLE 

ACP _QUOCACHE 

ACP _REBLDSYSD 

ACP_SHARE 

ACP _SWAPFLGS 

ACP_SYSACC 

ACP_WINDOW 

ACP _ WORKSET 

ACP _ WRITEBACK 

ACP _XQP _RES 

ALLOCLASS 

AWSMIN 

AWSTIME 

BALSETCNT 

BJOBLIM 

BORROWLIM 

BUGCHECKFATAL 

Cell Name 

ACP$GB_BASEPRIO 

ACP$GB_DATACHK 

ACP$GW _DINDXCACHE 

ACP$GW _DIRCACHE 

ACP$GW _EXTCACHE 

ACP$GW _EXTLIMIT 

ACP$GW _FIDCACHE 

ACP$GW _HDRCACHE 

ACP$GW _MAPCACHE 

ACP$GB_MAXREAD 

EXE$V _MULTACP (EXE$GLDEFFLAGSJ 

ACP$GW _QUOCACHE 

EXE$V _REBLDSYSD (EXE$GLSTATIC_FLAGSJ 

EXE$V _SHRFl lACP (EXE$GLDEFFLAGSJ 

ACP$GB_SWAPFLGS 

ACP$GW _SYSACC 

ACP$GB_ WINDOW 

ACP$GW _ WORKSET 

ACP$GB_ WRITBACK 

EXE$V _XQP _RESIDENT (EXE$GLSTATIC_FLAGSJ 

CLU$GLALLOCLS 

SCH$GW _AWSMIN 

SCH$GLAWSTIME 

SGN$GLBALSETCT 

SYS$GW _BJOBLIM 

SCH$GLBORROWLIM 

EXE$V _FATALBUG (EXE$GLDEFFLAGSJ 



SYSBOOT Parameter 

BUG REBOOT 

CHANNELCNT 

CJFLOAD 

CJFSYSRUJ 

CLAS5-PROT 

CLISYMTBL 

CONCEAL_DEVICES 

CRDENABLE 

CTLIMGLIM 

CTLPAGES 

DEADLOCK_ WAIT 

DEFMBXBUFQUO 

DEFMBXMXMSG 

DEFMBXNUMMSG 

DEFPRI 

DEFQUEPRI 

DISK_ QUORUM 

DISMOUMSG 

DLCKEXTRASTK 

DORMANTWAIT 

DUMPBUG 

EXTRA CPU 

EXUSRSTK 

FREEGOAL 

FREE LIM 

GBLPAGES 

GBLPAGFIL 

GBLSECTIONS 

GROWLIM 

IJOBLIM 

IMGIOCNT 

INTSTKPAGES 

IOTA 

IRPCOUNT 

IRPCOUNTV 

KFILSTCNT 

LAMAPREGS 

LGLBRK-DISUSER 

LGLBRK_LIM 

LGLBRK_ TERM 

LGLBRK_TMO 

C.1 Statically Allocated Executive Data 

Cell Name 

EXE$V _BUGREBOOT (EXE$GLDEFFLAGS) 

SGN$GW _PCHANCNT 

EXE$V "'"'.CJFLOAD (EXE$GLDEFFLAGS) 

EXE$V _CJFSYSRUJ (EXE$GLDEFFLAGS) 

EXE$V _CLASS_PROT (EXE$GLDYNAMJC_FLAGS) 

EXE$GLCLITABL 

EXE$V _CONCEALED (EXE$GLDEFFLAGS) 

EXE$V _CRDENABL (EXE$GLDEFFLAGS) 

· SGN$GW _CTLIMGLIM 

SGN$GW _CTLPAGES 

LCK$GL WAITTIME 

IOC$GW _MBXBFQUO 

IOC$GW _MBXMXMSG 

IOC$GW _MBXNMMSG 

SYS$GB_DEFPRI 

EXE$GB_DEFQUEPRI 

CLU$GB_QDISK 

EXE$V _DISMOUMSG (EXE$GLMSGFLAGS) 

LCK$GL_EXTRASTK 

SCH$GW _DORMANTWAIT 

EXE$V _BUGDUMP (EXE$GLDEFFLAGSJ 

SGN$GL_EXTRACPU 

SGN$GLEXUSRSTK 

SGN$G1-FREEGOAL 

SGN$GLFREELIM 

SGN$GLMAXGPGCT 

SGN$GLGBLPAGFIL 

SGN$GW _GBLSECNT 

SCH$GLGROWLIM 

SYS$GW _JJOBLIM 

SGN$GW _JMGIOCNT 

SGN$GW _JSPPGCT 

SCH$GW _IOTA 

SGN$GL_JRPCNT 

SGN$G1-IRPCNTV 

SGN$GB_KFILSTCT 

IOC$GW _LAMAPREG 

EXE$V _BRK_DISUSER (EXE$GL_DYNAMJC_FLAGS) 

SYS$GB_BRK_LIM 

EXE$V _BRK_ TERM (EXE$GLDYNAMIC_FLAGS) 

SYS$GLBRK_ TMO 

881 



Executive Data Areas 

882 

SYSBOOT Parameter 

LGLHID_TIM 

LGLPWD_TMO 

LGLRETRY _LIM 

LGLRETRY _ TMO 

LNMPHASHTBL 

LNMSHASHTBL 

LOADCHKPRT 

LOADERAPT 

LOADMTACCESS 

LOCKDIRWT 

LOCKIDTBL 

LOCKIDTBL_MAX 

LOCKRETRY 

LONGWAIT 

LRPCOUNT 

LRPCOUNTV 

LRPMIN 

LRPSIZE 

MAXBUF 

MAXPROCESSCNT 

MAXQUEPRI 

MAXSYSGROUP 

MINWSCNT 

MOUNTMSG 

MPW _HILIMIT 

MPW _LQLIMIT 

MPW_PRIO 

MPW_THRESH 

MPW _ WAITLIMIT 

MPW _ WRTCLUSTER 

MVTIMEOUT 

NJOBLIM 

NOAUTOCONFIG 

NO CLOCK 

NOCLUSTER 

NPAGEDYN 

NPAGEVIR 

PAGEDYN 

PAGFILCNT 

PAGTBLPFC 

Cell Name 

SYS$GLHID _TIM 

SYS$GB_PWD_ TMO 

SYS$GB_RETRY _LIM 

SYS$GB_RETRY _ TMO 

LNM$GLHTBLSIZP 

LNM$GLHTBLSIZS 

SGN$V _LQADCHKPRT (SGN$GLLOADFLAGS) 

SGN$V _LOADERAPAT (SGN$GLLOADFLAGS) 

SGN$V _LQADMTACCESS (SGN$GLLOADFLAGS) 

CLU$GW _LCKDIRWT 

LCK$GLIDTBLSIZ 

LCK$GLIDTBLMAX 

EXE$GLLOCKRTRY 

SCH$GW _LONGWAIT 

SGN$GLLRPCNT 

SGN$GLLRPCNTV 

SGN$GLLRPMIN 

SGN$GLLRPSIZE 

IOC$GW _MAXBUF 

SGN$GW _MAXPRCCT 

SYS$GB_MAXQUEPRI 

EXE$GLSYSUIC 

SGN$GW _MINWSCNT 

EXE$V _MOUNTMSG (EXE$GLMSGFLAGS) 

MPW$GW _HILIM 

MPW$GW _LOLIM 

MPW$GB_PRIO 

MPW$GL THRESH 

MPW$GL_ WAITLIM 

MPW$GW _MPWPFC 

IOC$GW _MVTIMEOUT 

SYS$GW _NJOBLIM 

EXE$V _NQAUTOCNF (EXE$GLDEFFLAGS) 

EXE$V _NQCLOCK (EXE$GLDEFFLAGS) 

EXE$V _NQCLUSTER (EXE$GLDEFFLAGS) 

SGN$GLNPAGEDYN 

SGN$GLNPAGEVIR 

SGN$GLPAGEDYN 

SGN$GW _PAGFILCT 

SGN$GB_PGTBPFC 



SYSBOOT Parameter 

PAMAXPORT 

PANO POLL 

PANUMPOLL 

PAPOLLINTERVAL 

PAPOOLINTERVAL 

PASANITY 

PASTDGBUF 

PASTIMOUT 

PEI 

PE2 

PE3 

PE4 

PES 

PE6 

PFCDEFAULT 

PFRATH 

PFRATL 

PFRATS 

PHYSICALPAGES 

PIO PAGES 

PIXSCAN 

POOLPAGING 

PQLDASTLM 

PQLDBIOLM 

PQLDBYTLM 

PQLDCPULM 

PQLDDIOLM 

PQLDENQLM 

PQLDFILLM 

PQLDJTQUOTA 

PQLDPGFLQUOTA 

PQLDPRCLM 

PQLDTQELM 

PQLDWSDEFAULT 

PQLDWSEXTENT 

PQLDWSQUOTA 

PQLMASTLM 

PQLMBIOLM 

PQLMBYTLM 

PQLMCPULM 

PQLMDIOLM 

C.1 Statically Allocated Executive Data 

Cell Name 

SCS$GB_PAMXPORT 

SCS$GB_PANOPOLL 

SCS$GB_PANPOLL 

SCS$GW _PAPOLINT 

SCS$GW _PAPOOLIN 

SCS$GB_PASANITY 

SCS$GW _PAPPDDG 

SCS$GW _PASTMOUT 

SGN$GLPE1 

SGN$GLPE2 

SGN$GLPE3 

SGN$GL_PE4 

SGN$GLPE5 

SGN$GL_PE6 

SGN$GW _DFPFC 

SCH$GLPFRATH 

SCH$GLPFRATL 

SCH$GL_ PFRATS 

MMG$GL_PHYPGCNT 

SGN$GW _PIOPAGES 

SGN$GW _PIXSCAN 

EXE$V _pQQLPGING (EXE$GLDEFFLAGS) 

PQL$GDASTLM 

PQL$GDBIOLM 

PQL$GDBYTLM 

PQL$GDCPULM 

PQL$GDDIOLM 

PQL$GDENQLM 

PQL$GDFILLM 

PQL$GDJTQUOTA 

PQL$GDPGFLQUOTA 

PQL$GDPRCLM 

PQL$GDTQELM 

PQL$GDWSDEFAULT 

PQL$GDWSEXTENT 

PQL$GDWSQUOTA 

PQL$GMASTLM 

PQL$GMBIOLM 

PQL$GMBYTLM 

PQL$GMCPULM 

PQL$GMDIOLM 

883 



Executive Data Areas 

884 

SYSBOOT Parameter 

PQLMENQLM 

PQL_MFILLM 

PQLMJTQUOTA 

PQLMPGFLQUOTA 

PQLMPRCLM 

PQLMTQELM 

PQLMWSDEFAULT 

PQLMWSEXTENT 

PQLMWSQUOTA 

PRCPOLINTERVAL 

PROCSECTCNT 

QDSKINTERVAL 

QDSKVOTES 

QUANTUM 

QUORUM 

REALTIMLSPTS 

RECNXINTERVAL 

REINITQUE 

RESALLOC 

RESHASHTBL 

RJOBLIM 

RMS_DFMBC 

RMS_DFMBFHSH 

RM5-DFMBFIDX 

RM5-DFMBFREL 

RMS_DFMBFSDK 

RMS_DFMBFSMT 

RMS_DFMBFSUR 

RM5-DFNBC 

RM5-EXTEND_SIZE 

RMS_FILEPROT 

RMS_GBLBUFQUO 

RM5-PROLOGUE 

SAVEDUMP 

SBIERRENABLE 

SCSBUFFCNT 

SCSCONNCNT 

SCSFLOWCUSH 

SCSMAXDG 

SCSMAXMSG 

SCSNODE 

Cell Name 

PQL$GMENQLM 

PQL$GMFILLM 

PQL$GMJTQUOTA 

PQL$GMPGFLQUOTA 

PQL$GMPRCLM 

PQL$GMTQELM 

PQL$GMWSDEFAULT 

PQL$GMWSEXTENT 

PQL$GMWSQUOTA 

SCS$GW _PRCPOLINT 

SGN$GW _MAXPSTCT 

CLU$GW _QDSKINTERVAL 

CLU$GW _QDSKVOTES 

SCH$GW _QUAN 

CLU$GW _QUORUM 

EXE$GLRTIMESPT 

CLU$GW _RECNXINT 

EXE$V _REINITQUE (EXE$GLDEFFLAGS) 

EXE$V _RESALLOC (EXE$GLDEFFLAGS) 

LCK$GLHTBLSIZ 

SYS$GW _RJOBLIM 

SYS$GB_DFMBC 

SYS$GB_DFMBFHSH 

SYS$GB_DFMBFIDX 

SYS$GB_DFMBFREL 

SYS$GB_DFMBFSDK 

SYS$GB_DFMBFSMT 

SYS$GB_DFMBFSUR 

SYS$GB_DFNBC 

SYS$GW _RMSEXTEND 

SYS$GW _FILEPROT 

SYS$GW _GBLBUFQUO 

SYS$GB_RMSPROLOG 

EXE$V _SAVEDUMP (EXE$GLDEFFLAGS) 

EXE$V _SBIERR (EXE$GLDEFFLAGS) 

SCS$GW _BDTCNT 

SCS$GW _CDTCNT 

SCS$GW _FLOWCUSH 

SCS$GW _MAXDG 

SCS$GW _MAXMSG 

SCS$GB_NODENAME 



SYSBOOT Parameter 

SCSRESPCNT 

SCSSYSTEMID 

SCSSYSTEMIDH 

SETTIME 

SPTREQ 

SRPCOUNT 

SRPCOUNTV 

SRPMIN 

SRPSIZE 

SSINHIBIT 

STARTUP_Pl 

STARTUP_P2 

STARTUP_P3 

STARTUP_P4 

STARTUP_PS 

STARTUP_P6 

STARTUP_P7 

STARTUP_P8 

SWPALLOCINC 

SWPFAIL 

SWPFILCNT 

SWPOUTPGCNT 

SWPRATE 

SWP_PRIO 

SYSMWCNT 

SYSPAGING 

SYSPFC 

TAILORED 

TBSKIPWSL 

TIMEPROMPTWAIT 

TTY _ALTALARM 

TTY _ALTYPAHD 

TTY_AUTOCHAR 

TTY_BUF 

TTY_ CLASSNAME 

TTY _DEFCHAR 

TTY _DEFCHAR2 

TTY _DEFPORT 

TTY_DIALTYPE 

TTY _DMASIZE 

TTY_OWNER 

C.1 Statically Allocated Executive Data 

Cell Name 

SCS$GW _RDTCNT 

SCS$GB_SYSTEMID 

SCS$GB_SYSTEMIDH 

EXE$V _SETTIME (EXE$GLDEFFLAGS) 

SGN$GLSPTREQ 

SGN$GLSRPCNT 

SGN$GLSRPCNTV 

SGN$GLSRPMIN 

SGN$GLSRPSIZE 

EXE$V _SSINHIBIT (EXE$GLDEFFLAGS) 

SGN$GB_STARTUP _Pl 

SGN$GB_STARTUP _P2 

SGN$GB_STARTUP _P3 

SGN$GB_STARTUP _P4 

SGN$GB_STARTUP _PS 

SGN$GB_STARTUP _P6 

SGN$GB_STARTUP _P7 

SGN$GB_STARTUP _P8 

SWP$GW _SWPINC 

SCH$GW _SWPFAIL 

SGN$GW _SWPFILES 

SWP$GLSWPPGCNT 

SCH$GLSWPRATE 

SWP$GB_PRIO 

SGN$GW _SYSDWSCT 

EXE$V _SYSPAGING (EXE$GLDEFFLAGS) 

SGN$GB_SYSPFC 

SGN$GB_ TAILORED 

SGN$GW _ WSLMXSKP 

SGN$GW _ TPWAIT 

TTY$GW _ALTALARM 

TTY$GW _ALTYPAHD 

TTY$GB_AUTOCHAR 

TTY$GW _DEFBUF 

TTY$GW _CLASSNAM 

TTY$GLDEFCHAR 

TTY$GLDEFCHAR2 

TTY$GL_DEFPORT 

TTY$GB_DIALTYP 

TTY$GW _DMASIZE 

TTY$GLOWNUIC 

885 



Executive Data Areas 

C.1.17 

886 

SYSBOOT Parameter 

TTY_PARITY 

TTY_PROT 

TTY_RSPEED 

TTY _SCANDELTA 

TTY _SILOTIME 

TTY_SPEED 

TTY_ TIMEOUT 

TTY_ TYPAHDSZ 

UAFALTERNATE 

UDABURSTRATE 

USER3 

USER4 

USERDl 

USERD2 

VAXCLUSTER 

VIRTUALPAGECNT 

VMSS 

VMS6 

VMS? 

VMS8 

VMSDl 

VMSD2 

VMSD3 

VMSD4 

VOTES 

WRITABLESYS 

WRITESYSPARAMS 

WSDEC 

WSINC 

WSMAX 

WS-OPAO 

XFMAXRATE 

Cell Name 

TTY$GB_PARITY 

TTY$GW _PROT 

TTY$GB_RSPEED 

TTY$GLDELTA 

TTY$GB_SILOTIME 

TTY$GB_DEFSPEED 

TTY$GL TIMEOUT 
TTY$GW_ TYPAHDSZ 

EXE$V _SYSUAFALT (EXE$GLDEFFLAGS) 

SCS$GB_ UDABURST 

SGN$GL_ USER3 

SGN$GL USER4 

SGN$GL USERDl 

SGN$GL USERD2 

CLU$GB_VAXCLUSTER 

SGN$GLMAXVPGCT 

SGN$GLVMSS 

SGN$GLVMS6 

SGN$GLVMS7 

SGN$GLVMS8 

SGN$GL VMSDl 

SGN$GL VMSD2 

SGN$GL VMSD3 

SGN$GL_ VMSD4 

CLU$GW _VOTES 

EXE$V _SYSWRTABL (EXE$GLDEFFLAGS) 

EXE$V _ WRITESYSPARAMS 
(EXE$GL_DYNAMIC_FLAGS) 

SCH$GL WSDEC 

SCH$GL WSINC 

SGN$GL_MAXWSCNT 

EXE$V _OPAO (EXE$GL WSFLAGS) 

IOC$GW _XFMXRATE 

Remainder of System Image 

The rest of the system image consists of read-only code areas, read-only ta~ 
hies, and patch space. All other data areas are dynamically created as a part of 
system initialization. 

Global label MMG$FRSTRONLY, defined in module MOAT, locates the 
beginning of the nonpaged executive routines. The paged executive is delim-



C.2 

C.2 Dynamically Allocated Executive Data 

ited by the labels MMG$AL_PGDCOD and MMG$AL_PGDCODEN, also 
defined in MOAT. 

DYNAMICALLY ALLOCATED EXECUTIVE DATA 

Many of the data structures and areas of system address space are not a part of 
the executive image but instead are constructed when the system is initial­
ized. The sizes of some of these areas depend on the values of SYSBOOT 
parameters. Other areas depend on the particular physical configuration. 

C.2.1 Restart Parameter Block 

C.2.2 

C.2.3 

C.2.4 

The restart parameter block (RPB) is filled in at initialization time with 
bootstrap parameters. The power failure interrupt service routine loads the 
volatile machine state into the RPB before the system halts. During power 
recovery, the RPB allows the console logic to determine whether memory 
contents survived the power outage. The use of the RPB is discussed in Chap­
ters 24 and 26. 

PFN Database 

The PFN database consists of several arrays, the contents of which describe 
the state of each page in physical memory. (To save memory, pages that con­
tain the permanently resident executive are not accounted for in the PFN 
database.) The PFN arrays are described in Chapter 14. Their use during page 
fault resolution is discussed in Chapter 15. PFN array manipulation during 
swapper operations is discussed in Chapter 17. 

Paged Dynamic Memory 

Paged dynamic memory contains all systemwide dynamically allocated 
structures that do not have to be permanently resident. Typical structures 
allocated from paged dynamic memory are listed in Chapter 3. 

Nonpaged Dynamic Memory 

Nonpaged pool contains all dynamically allocated structures that must be 
resident at all times. These structures may contain either code or data. There 
are actually two pool areas here. The normal nonpaged pool uses the same 
allocation routine as is used for paged pool. This pool area can have blocks of 
any size allocated from it. A second pool area of nonpaged pool contains three 

887 



Executive Data Areas 

lists of fixed-size blocks linked together so that a block can be inserted or 
removed with the INSQUE and REMQUE instructions. The contents of this sec­
ond area are often called the lookaside lists. The use of nonpaged pool is 
described in Chapter 3. 

C.2.5 Interrupt Stack 

The interrupt stack is used to service all hardware interrupts and all software 
interrupts except AST delivery. 

C.2.6 System Control Block 

The SCB is, strictly speaking, not a writable data structure, although entries 
are sometimes modified by the executive debugger XDELTA, the DCL com­
mands START/CPU and STOP/CPU, and SYSGEN code used to connect 
multiport MA780 memory. 

C.2.7 Balance Set Slot Area 

The balance set slot area is devoted exclusively to PHDs. Any resident pro­
cess has its PHD in one of the balance set slots. Balance set slots are described 
in Chapter 14. Their use by the swapper is discussed in Chapter 17. 

C.2.8 System Header 

The system header is a system analog to PHDs. It allows system code to be 
pageable. The structures within the system header that are often altered are 
the system WSL and the system section table that contains GSTEs. 

C.2.9 System Page Table 

C.2.10 

888 

The portion of the SPT that undergoes the most change is the part that maps 
the balance slot area. Other operations can cause other areas of the SPT to 
change. 

Global Page Table 

The global page table is a pseudo extension of the SPT that allows GPTEs to 
be accessed with system virtual page numbers (SVPNs). The global page table 
is altered when gfobal sections are created and deleted. In addition, GPTEs 
can change as a result of page faults. 



C.3 Process-Specific Executive Data 

C.3 PROCESS-SPECIFIC EXECUTIVE DATA 

Some process-specific data is stored in the PHD. That data is accessible (sub­
ject to synchronization considerations) whenever the process is resident. 
Most of the process-specific data is found in Pl space. Pl space is only addres­
sable when the process is the current process. The executive uses ASTs that 
execute in process context when it is necessary to acquire or modify such 
data from some other process. 

C.3.1 Pl Pointer Page 

The Pl pointer page is a permanent member of the process working set and is 
defined in executive module SHELL. 

Global Symbol 

CTL$GW _NMIOCH 

CTL$GW _CHINDX 

CTL$GLLNMHASH 

CTL$GLLNMDIRECT 

CTL$ALSTACK 

CTL$GQ_LNMTBLCACHE 

CTL$GL CMSUPR 

CTL$GL_ CMUSER 

CTL$GLCMHANDLR 

CTL$AQ_EXCVEC 

CTL$GL THEXEC 

CTL$GL THSUPR 

CTL$GL THUSER 

CTL$GQ_COMMON 

CTL$GLGETMSG 

CTL$ALSTACKLIM 

CTL$GLCTLBASVA 

CTL$GLIMGHDRBF 

CTL$GLIMGLSTPTR 

Size 

Word 

Word 

Longword 

Longword 

Longword 

4 longwords 
•Longword 
•Longword 
•Longword 
•Longword 

2 longwords 

Longword 

Longword 

Longword 

8 longwords 

Longword 

Longword 

Longword 

Quadword 

Longword 

4 longwords 

Longword 

Longword 

Longword 

Description of Data 

Number of I/O channels 

Maximum channel index 

Process logical name hash table pointer 

Process logical name directory pointer 

Maximum extent (low address limit) of 
kernel stack 

Array of stack pointer values 
Initial value of kernel stack pointer 
Initial value of executive stack pointer 
Initial value of supervisor stack pointer 
Initial value of user stack pointer 

Listhead for logical name translation cache 

Address of change mode to supervisor handler 

Address of change mode to user handler 

Address of compatibility mode handler 

Addresses of primary and secondary exception 
handlers for each of the four access modes 

Executive mode termination handler 

Supervisor mode termination handler 

User mode termination handler 

Descriptor (size and address) of per-process 
common area 

Address of per-process message dispatcher 

Lowest stack value for each access mode 

Low-address end of permanent part of Pl 
space 

Address of image activator's image header 
buffer 

Address of ICB list (for debugger) 

889 



Executive Data Areas 

Global Symbol Size Description of Data 

CTL$GL_PHD Longword Address of Pl window that double maps the 
PHD pages that are not page table pages 

CTL$GQ_ALLOCREG Quadword Listhead for the process allocation region 

CTL$GQ_MOUNTLST Quadword Listhead for the process-private mounted 
volume list 

CTL$T _ USERNAME 12 bytes User name for process (blank-filled ASCII 
string) 

CTL$T _ACCOUNT 8 bytes Account name for process (blank-filled ASCII 
string) 

CTL$GQ_LOGIN Quadword System time at process creation 

CTL$G1-FINALSTS Longword Exit status of latest image to execute 

CTL$G1-WSPEAK Longword Peak working set size for process 

CTL$G1-VIRTPEAK Longword Peak page file used 

CTL$G1-VOLUMES Longword Number of mounted volumes 

CTL$GQ_ISTART Quadword Image activation time 

CTL$G1-ICPUTIM Longword Initial image CPU time 

CTL$G1-IFAULTS Longword Initial image fault count 

CTL$G1-IFAULTIO Longword Initial image fault 1/0 count 

CTL$G1-IWSPEAK Longword Image working set peak 

CTL$G1-IPAGEFL Longword Image page file peak usage 

CTL$G1-IDIOCNT Longword Initial image direct 1/0 count 

CTL$G1-IBIOCNT Longword Initial image buffered 1/0 count 

CTL$G1-IVOLUMES Longword Initial image volume mount count 

CTL$T _NODEADDR 7 bytes Remote node address 

CTL$T _NODENAME 7 bytes Remote node name (counted ASCII) 

CTL$T _REMOTEID 17 bytes Remote node ID 
Byte Spare for alignment 

CTL$GQ_PROCPRIV Quadword Permanent process privilege mask 

CTL$G1-USRCHMK Longword Address of per-process change mode to 
kernel dispatcher 

CTL$GL_ USRCHME Longword Address of per-process change mode to 
executive dispatcher 

CTL$GL_POWERAST Longword Address of power recovery AST for process 

CTL$GB_PWRMODE Byte Access mode for power recovery AST 

CTL$GB_SSFILTER Byte System services inhibit filter mask 
2 bytes Spare for alignment 

CTL$AL_FJNALEXC 4 longwords Address of last chance exception handlers for 
each of the four access modes 

CTL$GL_ CCBBASE Longword Address of base of I/O channel area 

CTL$GQ_DBGAREA Quadword Descriptor (size and address) of debug symbol 
table 

CTL$G1- RMSBASE Longword Pointer to base of RMS image 

890 



Global Symbol 

CTL$GLPPMSG 

CTL$GB_MSGMASK 
CTL$GB_DEFLANG 

CTL$GW -PPMSGCHN 

CTL$GL USRUNDWN 
CTL$GLPCB 
CTL$GLRUF 
CTL$GL SITESPEC 
CTL$GLKNOWNFIL 
CTL$ALIPASTVEC 
CTL$GL_CMCNTX 

CTL$GLIAFLNKPTR 
CTL$GLF1 lBXQP 
CTL$GQ_PQALLOC 

CTL$GLPRCALLCNT 

CTL$GLRDIPTR 
CTL$GLLNMDIRSEQ 

CTL$GQ_HELPFLAGS 
CTL$GQ_ TERMCHAR 

CTL$GLKRPFL 
CTL$GLKRPBL 
CTL$GL_CREPRC_FLAGS 

CTL$GL THCOUNT 

Size 

2 longwords 

Byte 
Byte 

Word 

Longword 

Longword 
Longword 
Longword 

Longword 
8 longwords 
Longword 
Longword 

Longword 
Quadword 

Longword 

Longword 

Longword 

Quadword 
Quadword 
Quadword 

Longword 
3 longwords 

C.3.2 Other Pl Space Data Areas 

C.3 Process-Specific Executive Data 

Description of Data 

Address 'of process-permanent message 
section 

Default message display flags 
Default message language 

Channel to process-permanent message 
section 

Per-process vector to user rundown service 
Address of process control block 
Pointer to recovery unit process block 
Site-specific per-process cell 
Process known file list pointer 
Vector for IPAST addresses 
Address of the AME context page 
Address of IAF list (used by the debugger) 
Address of XQP queue and dispatch vectors 

Header of PO extension to process allocation 
region 

Number of bytes of process allocation, region 
usable by image requests 

Pointer to rights database identifier 
Sequence number for cache of logical name 

table translations 
Help flags 

Terminal characteristics (unused) 
Listhead for KRP lookaside list 

$CREPRC flags used to create this process 

Number of termination handlers for 
executive, supervisor, and user modes 

The layout of Pl space is pictured in Chapter 1 and detailed in Appendix F. 
Table F-5 lists the global labels that delimit each area in Pl space. The re­
mainder of Appendix C summarizes data locations in specific P 1 areas that 
are defined in module SHELL. The areas are presented in order of decreasing 
Pl virtual addresses. That is, the CLI data pages, presented first, occupy the 
highest Pl address range. The RMS data area, listed last, occupies the lowest 
Pl address range of the areas presented here. 

C.3.2.1 Data Pages for Command Language Interpreter. Module SHELL, sets aside an 
area for the generic CLI data pages. 

891 



Executive Data Areas 

C.3.2.2 

C.3.2.3 

C.3.2.4 

892 

Global Symbol 

CTL$AL_ CLICALBK 

CTL$AG_ CLIMAGE 

CTL$GLCLITABLE 

CTL$GL UAF _FLAGS 

CTL$GT _CLINAME 

CTL$GT _ TABLENAME 

CTL$GT _SPAWNCLI 

CTL$GT _SPAWNTABLE 

CTL$AG_CLIDATA 

Size 

2 longwords 

2 longwords 

2 longwords 

Longword 

Counted string 

Counted string 

Counted string 

Counted string 

Description of Data 

Call back vector for CLI 

Virtual address range of CLI 

Virtual address range of CLI 
command table 

Flags from authorization record 

CLI name (file name only) 

CLI table name (full file 
specification) 

Spawn CLI name 

(file name only) 

Spawn CLI table name 
(full file specification) 

Rest of CLI data area 

Process Allocation Region. The process allocation area is a per-process pool 
area constructed exactly like paged and nonpaged dynamic memory. See 
Chapter 3 for further information. 

Global Symbol 

CTL$GQ_ALLOCREG 

Size 

•Longword 
•Longword 

Description of Data 

Initial forward link (contains zero) 
Initial size of region 

Compatibility Mode Context Page. Another Pl data area for which module 
SHELL defines symbols is the page used by the compatibility mode exception 
service routine. 

Global Symbol 

CTL$ALCMCNTX 

Size 

10 longwords 

• 7 longwords 

• 1 longword 

• 2 longwords 

Rest of page 

Description of Data 

General register contents stored by 
exception service routine 

Saved RO through R6 

Saved compatibility mode 
exception code 

Saved exception PC and PSL 

Used by compatibility mode 
emulator 

RMS Data Area. This area contains the RMS context that exists for the life of 
the process. This includes impure areas to describe process-permanent and 
image 1/0 files. 



C.3 Process-Specific Executive Data 

Global Symbol Size Description of Data 

PIO$GLFMLH 2 longwords Free memory listhead for 
process 1/0 segment 

PIO$GLIIOFSPLH 2 longwords Free memory listhead for 
image 1/0 segment 

PI0$GW _STATUS Word RMS overall status 

PI0$GT _ENDSTR 16 bytes End of data string 

Pl0$GW _DFPROT Word Default file protection 
PIO$GB_DFMBC Byte Default multiblock count 

(RMs_DFMBC) 

PIO$GB_DFMBFSDK Byte Default multibuffer count for 
sequential disk 1/0 
(RMs_DFMBFSDK) 

PIO$GB_DFMBFSMT Byte Default multibuffer count for 
magnetic tape 1/0 

PIO$GB_DFMBFSUR Byte Default multibuffer count for 
unit record devices 

PIO$GB_DFMBFREL Byte Default multibuffer count for 
relative files 

PI0$GB_DFMBFIDX Byte Default multibuffer count for 
indexed files 

PIO$GB_DFMBFHSH Byte Default multibuffer count 
hashed 

PIO$GB_DFNBC Byte Network block transfer size 

PIO$GB_RMSPROLOG Byte Structure level for RMS files 

PI0$GW _RMSEXTEND Word Extend quantity for RMS files 

Byte Spare for alignment 

PIO$GLDIRCACHE 2 longwords Directory cache listhead 

PIO$GLDIRCFRLH Longword Free list for directory cache 
nodes (singly linked) 

PIO$GLRULOCK Longword List of locks held for recovery 
units 

PI0$GLNXTIRBSEQ Longword Next sequence number for 
IRB$LIDENT 

4 bytes Spare for alignment 

PIO$GW _PIOIMPA 9 longwords Impure area descriptor for 
process 1/0 segment 

4 bytes Spare for alignment 

PI0$GW _IIOIMPA 41 longwords Impure area descriptor for 
image 1/0 segment 

PIO$AL RMSEXH 4 longwords RMS termination handler 
control block 

PIO$GQ_IIODEFAULT Quadword Default image 1/0 area 

PIO$GT _DDSTRING 256 bytes Default directory string 

893 





D.1 

Appendix D 

Naming Conventions 

The conventions described in this appendix were adopted to aid implemen­
tors in producing meaningful public names. Public names are all names that 
are global (known to the linker) or that appear in parameter or macro defini­
tion files. 

Public names follow these conventions for the following reasons: 

• Using reserved names ensures that customer-written software will not 
be invalidated by subsequent releases of DIGITAL products that add new 
symbols. 

• Using definite patterns for different uses tells someone reading the source 
code what type of object is being referenced. For example, the form of a 
macro name is different from that of an offset, which is different from that 
of a status code. 

• Using length codes within a pattern associates the size of an object with its 
name, increasing the likelihood that reference to this object will use the 
correct instructions. 

• Using a facility code in symbol definitions gives the reader an indication of 
where the symbol is defined. Separate groups of implementors choose facil­
ity code names that will not conflict with one another. 

To fully conform with these standards, local synonyms should never be 
defined for public symbols. The full public symbol should be used in every 
reference to give maximum clarity to the reader. 

PUBLIC SYMBOL PATTERNS 

All DIGITAL symbols contain a dollar sign. Thus, customers and applica­
tions developers are strongly advised to use underscores instead of dollar 
signs to avoid future conflicts. 

Public symbols should be constructed to convey as much information as 
possible about the entities they name. Frequently, private names follow a 
similar convention. The private name convention is then the same as the 
public one, with the underscore replacing the dollar sign in symbol names. 
Private names are used both within a module and globally between modules 
of a facility that is never in a library. All names that might ever be bound into 
a user's program must follow the rules for public names. In the case of inter-

895 



Naming Conventions 

896 

nal names, a double dollar sign convention can be used, as shown in item 4 
in the following list of formats: 

1. System service and RMS service macro names are of the form 

$service-name 

' 
In a system service macro name, a trailing _s or _G distinguishes the 
stack form from the separate argument list form. Details about the 
names of system service macros can be found in the VAX/VMS System 
Routines Reference Volume. 

These names appear in the system macro library SYS$LIBRARY: 
STARLET.MLB and represent a call to one of the VAX/VMS system ser­
vices or RMS services. The following examples show this form of symbol 
name: 

$ASCEFC_S 

$CLOSE 
$TRNLNM_G 

Associate common event flag cluster 
Close a file 
Translate logical name 

2. Facility-specific public macro names are of the form 

$facility_macro-name 

The executive does not use any symbol names of this form. 
3. System macros using local symbols or macros always use names of the 

form 

$facility$macro-name 

This is the form to be used both for symbols generated by a macro and 
included in calls to it, and for internal macros that are not documented. 
The executive does not use any symbol names of this form. 

4. Global entry point names are of the form 

facility$entry-name 

The following examples show this form of symbol name: 

EXE$ALOPAGED 
IOC$WFIKPCH 
MMG$PAGEFAULT 

Allocate paged dynamic memory 
Wait for interrupt and keep channel 

Page fault exception handler 

Global entry point names that are intended for use only within a set of 
related procedures but not by any calling programs outside the set are of 
the form 

facility$$entry-name 

The executive contains few symbol names of this form. However, the 



D.1 Public Symbol Patterns 

Run-Time Library contains several examples of symbol names that fol­
low this convention, for example: 

BAS$$NUM_INIT 

FOR$$SIGNALSTO 

OTS$$GET _LUN 

Initialize the BASIC NUM function 

Signal a FORTRAN error and call LIB$STOP 

Get logical unit number 

5. Global entry point names that have nonstandard calls (JSB entry point 
names) are of the following form, where _Rn indicates that RO through 
Rn are not preserved by the routine: 

facility$entry-name_Rn 

Note that the caller of such an entry point must include at least registers 
R2 through Rn in its own entry mask so that a stack unwind will restore 
all registers properly. 

The executive does not use this convention for its JSB entry points, but 
the Run-Time Library contains several examples of its use, for example: 

COB$CVTFP _R9 

MTH$SIN_R4 

STR$COPY _DX_R8 

Convert floating to packed 

Single precision sine function 

JSB entry to general string copying routine 

6. Status codes and condition values are of the form 

facility$_status 

The following examples show this form of symbol name: 

RMS$_FNF 

SS$_ILLEFC 

SS$_WASCLR 

File not found 

Illegal event flag cluster 

Flag was previously clear 

7. Global variable names are of the form 

facility$Gt_variable-name 

The letter G indicates a global variable. The letter t represents the type of 
variable as defined in Section D.2. The following examples show this 
form of symbol name: 

CTL$GQ_PROCPRIV 

EXE$GL_NONPAGED 

SCH$GLCURPCB 

Process privilege mask 

First free block in nonpaged pool 

Address of PCB of current process 

8. Addressable global arrays use the letter A (instead of the letter G) and are 
of the form 

facility$At_array-name 

The letter A indicates a global array. The letter t indicates the type of 

897 



Naming Conventions 

898 

array element as defined in Section D.2. The following examples show 
this form of symbol name: 

CTL$AQ_EXCVEC 

PFN$AX_FLINK 

Array of primary and secondary exception vectors 

Array of forward links for PFN lists 

9. Public structure definition macro names are of the form 

$facility_structureDEF 

Invoking this macro defines all symbols of the form structure$xxxxxx. 
Most of the public structure definitions used by VAX/VMS do not in­

clude the string 11facility_" in the macros that define structure offsets. 
Rather, macros of the following form are used to define structure$xxxxxx 
symbols: 

$structureDEF 

The following examples show the $structureDEF form of the macro: 

$ACBDEF 

$PCBDEF 

$PHDDEF 

Offsets into AST control block 

Offsets into software process control block 

Offsets into process header 

Many of the macros of this form are contained in the macro libraries 
SYS$LIBRARY:LIB.MLB or STARLET.MLB. These macros are il'litially 
defined in a language-independent structure definition language, as de­
scribed in Appendix B. 

10. VAX MACRO public structure offset names are of the form 

structure$t_f ield-name 

The letter t indicates the data type of the field as defined in Section D.2. 
The value of the public symbol is the byte offset to the start of the data 
element in the structure. The following examples show this form of sym­
bol name: 

CEB$L_EFC 

GSD$W_GSTX 

PCB$B_PRI 

Event flag cluster (in common event block) 

Global section table index (in global section descriptor) 

Current process priority (in software PCB) 

11. VAX MACRO public structure bit field offsets and single bit names are of 
the form 

structure$V_field-name 

The value of the public symbol is the bit offset from the start of the field 
that contains the datum (and not from the start of the control block). The 
following examples show this form of symbol name: 

ACB$V _QUOTA Charge AST to process AST quota 



D.1 Public Symbol Patterns 

PSL$V _ CURMOD 

UCB$V _CANCEL 

Current access mode 

Cancel I/0 on this unit 

12. VAX MACRO public structure bit field size names are of the form 

structure$S_field-name 

The value of the public symbol is the number of bits in the field. The 
following examples show this form of symbol name: 

ACB$S_MODE 

PSL$5-CURMOD 

PTE$5-PROT 

Access mode of requestor (2 bits) 

Current access mode (2 bits) 

Memory protection on page (4 bits) 

13. For BLISS, the functions of the symbols in the previous three items are 
combined into a single name used to reference an arbitrary datum. 
Names are of the following form, where xis the same as t for standard­
sized data (B, W, L, and Q) and x stands for V for arbitrary and bit fields: 

structure$x_field-name 

The macro includes the offset, position, size, and sign extension suitable 
for use in a BLISS field selector. Most typically, this name is defined by 
the following BLISS statement: 

MACRO 

structure$V_field-narne= 

structure$t_field-narne, 

structure$V_field-narne, 

structure$S_field-name, 

<sign extension> %; 

VAX MACRO V 

bit field definition 

14. Public structure mask names are of the form 

structure$M_field-narne 

The value of the public symbol is a mask with bits set for each bit in the 
field. This mask is not right-justified. Rather, it has structure$V _field­
name zero bits on the right. The following examples show this form of 
symbol name: 

CEB$M_ VALID 

PSL$M_CURMOD 

PTE$M_PROT 

Shared memory master CEB is valid 

Current access mode 

Memory protection on page 

15. Public structure constant names are of the form 

structure$K_constant-name 

The following examples show this form of symbol name: 

899 



Naming Conventions 

900 

PCB$K_LENGTH 
SRM$K_FLT _QVF_F 

STS$K_SEVERE 

Length (in bytes) of software PCB 

Code for floating overflow fault 

Fatal error code 

For historical reasons, many of the constants used by the executive 
have the letter C instead of K to indicate that the object data type is a 
constant. Examples of this form of symbol name are 

DYN$C_PCB 

EXE$C_CMSTKSZ 
PTE$C_URKW 

Structure type is software PCB 
Size of stack space added by change mode handler 

Protection code of user read, kernel write 

16 .. PSECT names are of the form 

facility$mnemonic 

When these names are put into a library, they have the form 

_facility$mnemonic 

The following examples show symbols of the form facility$mnemonic: 

COPY$COPY _FILE 

DCL$ZCODE 

JBC$MSGOUT 

File copying main routine program section 

Program section that contains most code for 
the DCL command language interpreter 

Program section containing the job 
controller's message output routine 

This convention is not adhered to as strictly as the other naming con­
ventions because .PSECT names control the way that the linker allocates 
virtual address space. Names will often be chosen to affect the relative 
locations of routines and the data that they reference. 

Some sample .PSECT names from the Run-Time Library show exam­
ples of the form _facility$mnemonic: 

_LIB$CODE 

_MTH$DATA 
_QTS$CODE 

General library (read-only) code section 

Data section in mathematics library 
Code portion of language-independent support library 

The executive does not use this convention when forming its .PSECT 
names. Rather, it uses names that cause the desired sections to be placed 
in the correct parts of system space. For example, .PSECT names control 
those pieces of the executive that are pageable. In. addition, .PSECT 
names allow data areas and code that references that data to be placed 
within 64K bytes so that word displacement addressing (rather than long­
word displacement) can be used to reference the data. The following ex­
amples show .PSECT names that are used in the executive: 

$$$220 

$AEXENONPAGED 
YEXEPAGED 

One of the first data program sections 
in the executive 

Nonpaged executive code 
Pageable executive routines 



D.2 

D.2 Ob;ect Data Types 

OBJECT DATA TYPES 

Table D-1 shows some of the letters that are used for the various data types or 
are reserved for various purposes. N, P, and T strings are typically variable 
length. In structures or 1/0 records, they frequently contain a byte-sized digit 
or character count preceding the string. If so, the location or offset is to the 
count. Counted strings cannot be passed in procedure calls. Instead, a string 
descriptor must be generated. 

Table D-1 Letters and the Data Types They Indicate 

Letter 

A 

B 

c 
D 

E 

F 

G 

H 

K 

L 

M 

N 

0 

p 

Q 
R 

s 
T 

u 
v 

w 
x 
y 

z 

Data Type or Usage 

Address 

Byte integer 

Character' 

Double precision floating 

Reserved to DIGITAL 

Single precision floating 

G_floating-point values 

H_floating-point values 

Reserved for integer extensions 

Reserved to customers for escape 
to other codes 

Constant 

Longword integer 

Field mask 

Numeric string (all byte forms) 

Reserved to DIGITAL as an escape 
to other codes 

Packed string 

Quadword integer 

Reserved for records (structure) 

Field size 

Text (character) string 

Smallest unit of addressable storage 

Field position (VAX MACRO) 
Field reference (BLISS) 

Word integer 

Context-dependent (generic) 

Context-dependent (generic) 

Unspecified or nonstandard 

1In many of the symbols used by VAX/VMS, C is used as a synonym for K. Although K is 
the preferred indicator for constants, many constants used by VMS are indicated by a C in 
their name. Some constants, such as lengths of data structures, have both a C form and a K 
form. 

901 



Naming Conventions 

D.3 FACILITY PREFIX TABLE 

902 

Table D-2 lists some of the facility prefixes used by DIGITAL-supplied soft­
ware. This list is not inclusive and is intended to show examples of several 
facility prefixes. Each facility name has a unique facility code. 

Note that bit <27>, the customer facility bit, is clear in all of the facility 
codes listed here. Customers are free to use any of the facility codes listed 
here, provided that they set bit <27>. The default action of the message 
compiler is to set this bit. 

The location of the facility code within a status code and the meaning of 
the other fields in the status code are described in the VAX/VMS Utility 
Routines Reference Manual. 

Individual products such as compilers also have unique facility codes 
formed from the product name. 

TableD-2 Facility Names and Their Prefixes 

Condition 
Prefix Facility Description <27:16> 

EXECUTIVE AND SYSTEM PROCESSES 

SS System service status codes 0 
CLI Command language interpreters 3 

JBC Job controller 4 

OPC Operator communication s 
ERF Error logger format process 8 

RUN-TIME LIBRARY COMPONENTS 

SMG Screen management routines 18 

LIB General Purpose Library 21 

MTH Mathematics Library 22 

OTS Language-independent obje~t time system 23 

FOR VAX FORTRAN Run-Time Library 24 

SORT VAX SORT 28 

STR String manipulation procedures 36 

UTILITIES AND COMPILERS 

DBG Symbolic 4ebugger 2 
LIN VAX.linker 100 
DIF File Differences Utility 108 

PAT VAX Image File Patch Utility 109 

LAT Local area terminal 374 



D.3 Facility Prefix Table 

Structure name prefixes are typically local to a facility. Refer to the indi­
vidual facility documentation for its structure name prefixes. Individual fa­
cility structure names do not cause problems, because these names are not 
global and are therefore not known to the linker. They become known at 
assembly or compile time only by explicitly invoking the macro defining the 
facility structure. 

For example, the macro $FORDEF defines all of the status codes that can 
be returned from the VAX FORTRAN support library. The facility code of 24 
is included in the upper 16 bits of each of the status codes defined with this 
macro. 

Please note that DIGITAL does not provide a registration service for the 
customer facility codes. 

903 



E.1 

E.2 

904 

Appendix E 

Data Structure Definitions 

This book has described VAX/VMS in term,s of the data structures used by 
various components of the executive. This appendix summarizes those data 
structures. 

LOCATION OF DATA STRUCTURE DEFINITIONS 

The data structures used by VMS are defined in a language called SDL (see 
Appendix B). Two sets of four files contain most SDL definitions. 

Four files contain most structure and constant definitions used inter­
nally by the VMS executive. These files have names of the form 
[SYS]SYSDEFxx.SDL, where xx represents the letters AE, FL, MP, or QZ. 
The two letters indicate the range of initial letters of all the data structures 
contained in that file. The VAX MACRO definitions based on these files"' 
are stored in the file SYS$LIBRARY:LIB.MLB. The BLISS-32 definitions 
based on these files are stored in the file SYS$LIBRARY:LIB.REQ. Many 
components of VMS are built with these files. They are also available to 
users for special applications such as user-written device drivers and 
system services. 

Four files named [VMSLIB]STARDEFxx.SDL contain all structure and con­
stant definitions available for general applications (such as system service 
calls). Again, xx represents the letters AE, FL, MP, or QZ. The definitions 
based on these files are stored in the files SYS$LIBRARY:STARLET.MLB and 
STARLET.REQ. 

The distinction between the files in SYSDEFxx.SDL and STARDEFxx.SDL 
is that a structure or constant defined in STARDEF is considered an external 
interface and usually does not change from release to release. A structure or 
constant defined in SYSDEF is considered an internal interface and is subject 
to change. Consequently, VAX MACRO programs that use LIB.MLB or 
BLISS-32 programs that use LIB.REQ (or LIB.132) must be reassembled and 
relinked with each major release of VAX/VMS. 

OVERVIEW 

Table E-1 lists the data structures and constants summarized in this appen­
dix. The majority of them are defined in the SYSDEFxx modules. The follow-



E.3 

Table E-1 Summary of Data Structures in Appendix E 

SYSTEMWIDE DATA STRUCTURES 

ACB ACL 1 ARB 

FKB GSD ISD 

KFD KFE KFPB 

LKB LNMB LNMC 

LNMTH LNMX MBX 

ORB PCB PHD 

RPB RSB SHB 

TQE 

CEB 

JIB 
KFRH 

LNMHSH 

MTX 

PQB 

SHD 

STRUCTURES USED BY THE l/O AND FILE SUBSYSTEMS 

ADP 

CDRP 

DPT 

TAST 

BTD 

IPL 

BRK CCB 

CRB DDB 

FCB IDB 

UCB WCB 

SYMBOLIC CONSTANTS 

CA DYN 

NDT PR 

CDDB 

DDT 

IRP 

IOxxx 

1This structure or constant is defined in module STARDEFxx. 

ing classes of structures are in the table: 

E.2 Overview 

• Data structures used by memory management, the scheduler, and other 
components of the system image. There is at least one figure or table in this 
book that describes each of these structures. 

• Data structures used by the 1/0 and file subsystems. This includes device 
drivers and utilities such as MOUNT and INIT. 

• Constants such as data structure types, IPLs, and processor register defini­
tions. 

EXECUTIVE DATA STRUCTURES 

This section contains a brief summary of most of the data structures de­
scribed in this book. Three data structures, the software process control 
block (PCB), the process header (PHD), and the job information block (JIB) are 
partly described in several places throughout the book. They are illustrated 
here in their entirety, with references to other partial descriptions. 

905 



Data Structure Definitions 

E.3.1 ACB-Asynchronous System Trap Control Block 

Purpose: 

Usual Location: 

Allocated from: 

Reference: 

Special Notes: 

Describes a pending AST for a process. 

AST queue with listhead in software PCB. 

Nonpaged pool. 

Figure 7-1. 

ACBs are usually a part of a larger structure, such as an 
1/0 request packet (IRP) or timer queue element 
(TQE). 

E.3.2 ACL-Access Control List 

Purpose: 

Usual Location: 

Allocated from: 

Reference: 

Special Notes: 

List of entries that grant or deny access to a particular 
system resource. 

ACL queue with listhead in resource's object rights 
block (ORB$L_ACLFL). 

Paged pool. 

Figure E-1. 

An ACL contains access control entries (ACEs) 
beginning at offset ACL$L_LIST. 

E.3.3 ADP-Adapter Control Block 

Purpose: 

Location: 

Allocated from: 

Reference: 

Defines characteristics and current state of an 1/0 
adapter. 

Pointed to by CRB (CRB$L_INTD + VEC$L_ADP). 

Nonpaged pool. 

Figure E-2. 

E.3.4 ARB-Access Rights Block 

906 

The ARB is currently a part of the software PCB. The ARB pointer 
(PCB$L_ARB) points to this overlaid data structure. Figure E-14 shows an 
ARB within a software PCB. Program references that use the ARB pointer in 
the software PCB to locate the ARB or any fields within the ARB (such as the 
privilege mask) will continue to work without modification should the ARB 
become an independent data structure in a future release of VAX/VMS. 

Purpose: 

Location: 

References: 

Defines process access rights and privileges. 

Currently a part of the software PCB. 

Table 21-2, Figures E-3, E-14. 



E.3 Executive Data Structures 

ACL$L_FLINK 

ACL$L_BLINK 

unused I ACL$B_ TYPE I ACL$W_SIZE 

ACL$L_LIST 

Figure E·l Layout of an Access Control List 

ADP$L_CSR 

AOP$L_LINK 

ADP$B_NUMBER 1 AOP$B_TYPE AOP$W_SIZE 

* 
)...-

I ;.. 

~ 

ADP$W_AOPTYTPE ADP$W_TR 

ADP$L_VECTOR /AOP$LCRB 

ADP$LDPQFL/ADP$LMBASCB/AOP$L_PRQQFL 

ADP$L_OPQBL /ADP$L_MBASPTE/ADP$L_PROQBL 

ADP$LAVECTOR 

ADP$LBl_ONLY 
(16 bytes) 

ADP$L_MRQFL/ ADP$L_SHB 

ADP$LMROBL /AOP$B_PORT 

AOP$L_INTO 
(12 bytes) 

ADP$L_UBASCB 
(16 bytes) 

ADP$L_UBASPTE 

ADP$LMRACTMDRS 

ADP$W_MRNFENCE I ADP$W_OPBITMAP 

ADP$W_MRNREGARY 
(248 bytes) 

AOP$W_MRFFENCE 

ADP$W_MRFREGARY (248 bytes) 

ADP$W_UMR_OIS 

Figure E-2 Layout of an Adapter Control Block 

~ 

..... 

I ,., 

)...-

907 



Data Structure Definitions 

ARB$Q_PRIV 

unused 

I 
ARB$R_CLASS v 

(20 bytes) 

I ARB$L_RIGHTSLIST 
;., (16 bytes) 

ARB$R_RfGHTSDESC 
(8 bytes) 

ARB$L_UIC 

t (remainder of local rights list) 1 (60 bytes) 

Figure E·3 Layout of an Access Rights Block 

E.3.5 BRK-Breakthrough Message Descriptor Block 

Purpose: 

Allocated from: 

Reference: 

Used to send asynchronous messages to one or more 
terminals. 

N onpaged pool. 

Figure 18·6. 

E.3.6 CCB-Channel Control Block 

Purpose: 

Location: 

Reference: 

Des.cribes the logical path between the process and the 
UCB of the specific device. 

Within per-process space table, pointed to by 
CTL$GL_ CCBBASE. 

Figure 18-2. 

E.3.7 CDDB-Class Driver Data Block 

Purpose: 

Usual Location: 

Allocated from: 

Reference: 

Special Notes: 

908 

Auxiliary data structure for each SCS connection 
between a disk or tape class driver and a remote 
MSCP server. 

Pointed to by CRB$L_AUXSTRUC. 

Nonpaged pool. 

Figure E-4. 

There is one CDDB per MSCP controller. 



E.3.8 

E.3 Executive Data Structures 

CDDB$L_CDRPOFL 

CDDB$L_CDRPQBL 

CDDB$B_SUBTYPE l CDDB$B_ TYPE l CDDB$W_SIZE 

CDDB$B_SYSTEMID (6 bytes) 

CDDB$W_STATUS l 
CDDB$L_PDT 

CDDB$L_CRB 

CDDB$L_DDB 

CDDB$Q_CNTRLID 

CDDB$W_CNTRLTMO l CDDB$W_CNTRLFLGS 

CDDB$L_OLDRSPID 

CDDB$L_OLDCMDSTS 

CDDB$L_RSTRTCDRP 

CDDB$W_RSTRTCNT l CDDB$B_DAPCOUNT l CDDB$B_RETRYCNT 

CDDB$L_RSTRTQFL 

CDDB$L_RSTRTQBL 

CDDB$L_SAVED_PC 

CDDB$L_UCBCHAIN 

CDDB$L_ORIGUCB 

CDDB$L_ALLOCLS 

CDDB$L_DAPCDRP 

CDDB$L_CDDBLINK 

CDDB$W_WTUCBCTR l CDDB$B_RSVDB j CDDB$B_FOVER_CTR 

l CDDB$B_CSVRSN CDDB$W_CPYSEONUM l CDDB$B_CHVRSN 

CDDB$L_MAXBCNT 

CDDB$L_RSVD3 

CDDB$L_RSVD4 

CDDB$L_PERMCDRP 

Figure E-4 Layout of a Class Driver Data Block 

CD RP-Class Driver Request Packet 

Purpose: Data structure used to communicate between SCS and 

Usual Location: 

Allocated from: 

Reference: 

Special Notes: 

a class driver. 

Linked into CDDB listhead (CDDB$L_CDRPQFL). 

Nonpaged pool. 

Figure 19-2. 

Contains within it, at negative offsets, a full IRP. 

909 



Data Structure Definitions 

E.3.9 CEB-Common Event Block 

E.3.10 

E.3.11 

E.3.12 

E.3.13 

910 

Purpose: 

Location: 

Allocated from: 

References: 

Contains description and wait queue for common event 
flag cluster. 

In list whose head is at SCH$GQ_CEBHD. (Master 
CEBs are located in shared memory and pointed to by 
a field in the slave CEB located in the CEB list on 
each processor.) 

Nonpaged pool. (Master CEBs are allocated from a CEB 
table located in shared memory.) 

Figures 12-2, 12-3, 12-4, 12-5. 

CRB-Channel Request Block 

Purpose: 

Location: 

Allocated from: 

Reference: 

There is one CRB for each set of devices whose access 
to a controller must be synchronized. 

Pointed to by UCB (UCB$L_CRB). 

Nonpaged pool. 

Figure E-5. 

DDB-Device Data Block 

Purpose: 

Location: 

Allocated from: 

Reference: 

There is one DDB for each controller in a system. 

Linked into device listhead (IOC$GL_DEVLIST). 

Nonpaged pool. 

Figure E-6. 

DDT-Driver Dispatch Table 

Purpose: 

Location: 

Allocated from: 

Reference: 

Specifies the driver entry points for various 1/0 
functions. 

Pointed to by DDB$L_DDT and UCB$L_DDT. 

N onpaged pool. 

Figure E-7. 

DPT-Driver Prolog Table 

Purpose: Defines the identity and the size of the driver to the 
system routine that loads the driver into virtual 
memory. 



E.3 Executive Data Structures 

CRB$B_TT_TYPE 

CRB$B_UNIT _BRK 

V: 

CRB$L_WQFL 

CRB$L_WQBL 

CRB$B_TYPE 

CRB$B_MASK 

CRB$L_AUXSTRUC 

CRB$L_ TIMELINK 

CRB$L_DUETIME 

CRB$L_ TOUTROUT 

CRB$L_LINK 

CRB$L_INTD 
(36 bytes) 

CRB$L_INTD2 
(36 bytes) 

Figure E-5 Layout of a Channel Request Block 

DDB$L_LINK 

DDB$L_UCB 

unused 1 DDB$8_ TYPE l DDB$W_SIZE 

DDB$l_DDT 

DDB$L_ACPD 

i...: DDB$T_NAME 

I (16 bytes) 

DDB$T _DRVNAME 
/ (16 bytes) 

DDB$L_SB 

DDB$L_CONLINK 

DDB$L_ALLOCLS 

DDB$L_2P _UCB 

Figure E-6 Layout of a Device Data Block 

CRB$W_SIZE 

CRB$W_REFC 

I-: 

1 
/' 

Location: 

Allocated from: 

Beginning of the driver image. 

Nonpaged pool. 

Reference: Figure E-8. 

"' 

Special Notes: The size of the DPT is the size of the entire driver, 
including the DPT itself. 

911 



Data Structure Definitions 

DDT$L_START 

DDT$L_UNSOLINT 

DDT$L_FDT 

DDT$L_CANCEL 

DDT$L_REGDUMP 

DDT$W_ERRORBUF I DDT$W_DIAGBUF 

DDT$L_UNITINIT 

DDT$L_ALTSTART 

DDT$L_MNTVER 

DDT$L_CLONEDUCB 

unused 1 DDT$W_FDTSIZE 

DDT$L_MNTV_SSSC 

DDT$L_MNTV_FOR 

DDT$L_MNTV_SQD 

Figure E-7 Layout of a Driver Dispatch Table 

OPT$L_FLINK 

DPT$L_BLINK 

DPT$B_REFC I DPT$B_TYPE DPT$W_SIZE 

DPT$W_UCBSIZE DPT$B_FLAGS I DPT$B_ADPTYPE 

DPT$W_REINITTAB DPT$W_INITTAB 

DPT$W_MAXUNITS DPT$W_UNLOAD 

OPT$W_DEFUNITS DPT$W_VERSION 

DPT$W_VECTOR DPT$W_DELIVER 

~ 1 
DPT$T_NAME :-P (12 bytes) 

DPT$Q_LINKTIME 

DPT$L_ECOLEVEL 

Figure E-8 Layout of a Driver Prolog Table 

912 



E.3.14 

E.3.15 

E.3.16 

E.3.17 

E.3 Executive Data Structures 

FCB-File Control Block 

Purpose: 

Usual Location: 

Allocated from: 

Reference: 

FKB-Fork Block 

Purpose: 

Usual Location: 

Allocated from: 

Reference: 

Describes a uniquely accessed file on a volume; 
provides a means for controlling shared access to a 
file. 

Linked into the volume control block listhead 
(VCB$L_FCBFL). 

Nonpaged pool. 

Figure E-9. 

Stores minimum context for a fork process. 

First six longwords of UCB. 

Nonpaged pool. 

Figure 6-2. 

GSD-Global Section Descriptor 

Purpose: 

Location: 

Allocated from: 

References: 

Special Notes: 

Contains identifying information about a global 
section. 

Group or system GSD list. (Shared memory GSDs are 
located in shared memory.) 

Paged pool. (Shared memory GSDs are allocated from 
pages in shared memory set aside for shared memory 
GSDs.) 

Figures 14-14, 14-27. 

There are three different forms of GSD: 

• NormalGSD 
• Descriptor for PFN-mapped section 
• Descriptor for section that resides in 

shared memory 

IDB-Interrupt Dispatch Block 

Purpose: 

Location: 

Allocated from: 

Reference: 

Provides the information for a controller-specific 
interrupt dispatcher to dispatch an interrupt to the 
appropriate driver for that device unit. 

Pointed to by CRB$L_INTD + VEC$L_IDB. 

Nonpaged pool. 

Figure E-10. 

913 



Data Structure Definitions 

FCB$L_FCBFL 

FCB$L_FCBBL 

FCB$B_ACCLKMODE l FCB$B_TYPE FCB$W_SIZE 

FCB$L_EXFCB 

FCB$L_WLFL 

FCB$L_WLBL 

FCB$W_ACNT FCB$W_REFCNT 

FCB$W_LCNT FCB$W_WCNT 

FCB$W_STATUS FCB$W_TCNT 

FCB$W_FIO_SEQ FCB$W_FID /FCB$W_FID_NUM 

FCB$W_SEGN 

FCB$W_DIRSEQ 

k 

FCB$L_STVBN 

FCB$L_STLBN 

FCB$L_HDLBN 

FCB$L_FILESIZE 

FCB$L_EFBLK 

FCB$L_HIGHWATER 

FCB$L_ACCLKID 

FCB$L_LOCKBASIS 

FCB$L_ TRUNCVBN 

FCB$L_CACHELKID 

FCB$L_FILEOWNER 

FCB$Q_ACMODE 

FCB$L_SYS_PROT 

FCB$L_OWN_PROT 

FCB$L_GRP _PROT 

FCB$L_WOR_PROT 

FCB$L_ACLFL 

FCB$L_ACLBL 

unused 
(20 bytes) 

unused 
(20 bytes) 

FCB$L_DIRINDX 

Figure E-9 Layout of a File Control Block 

914 

FCB$W_RVN 

FCB$W_VERSIONS 

I-: 

This part of the FCB 
is structured like an 
ORB (see Figure E-13). 



E.3 Executive Data Structures 

IDB$L_CSR 

IDB$L_OWNER 

108$8_ VECTOR IDB$B_TYPE IDB$W_SIZE 

IDB$B_COMBO_CSR_OFFSET 108$8_ TT _ENABLE IDB$W_UNITS 

IDB$W_SPARE1 IDB$B_FLAGS 1 IDB$B_COMBO_VECTOR_OFFSET 

IDB$L_ADP 

~ IDB$L_UCBLST ~ 
(32 bytes) 

Figure E·IO Layout of an Interrupt Dispatch Block 

IRP$L_IOQFL 

IRP$L_IOQBL 

IRP$B_RMOD l IRP$B_TYPE ] IRP$W_SIZE 

IRP$L_PID 

IRP$L_AST 

IRP$L_ASTPRM 

IRP$L_WIND 

IRP$L_UCB 

IRP$B_PRI l IRP$B_EFN l IRP$W_FUNC 

IRP$L_IOSB 

IRP$W_STS l IRP$W_CHAN 

IRP$L_SVAPTE 

IRP$L_BCNT/IRP$W_BCNT 

J 
IRP$W_BOFF 

unused IRP$L_BCNT [high-order word] ! 
IRP$L_IOST1 /IRP$L_MEDIA 

IRP$L_IOST2/IRP$L_ TT_ TERM/IRP$B_CARCON 

IRP$L_ABCNT / IRP$W_ABCNT / IRP$Q_NT _PRVMSK / IRP$0_ TT _STATE 

IRP$L_OBCNT /IRP$W_OBCNT 

IRP$L_SEGVBN 

IRP$L_DIAGBUF/ IRP$W_ TT _PRMPT 

IRP$L_SEQNUM 

IRP$L_EXTEND 

IRP$L_ARB 

IRP$L_KEYDESC 

k 

T 
CORP J..-: 

J 
See Figure 19-2 

Figure E·ll Layout of an 1/0 Request Packet 

915 



Data Structure Definitions 

E.3.18 

E.3.19 

E.3.20 

E.3.21 

916 

IRP-1/0 Request Packet 

Purpose: 

Usual Location: 

Allocated from: 

References: 

Constructed by the Queue 110 Request ($QIO) system 
service to describe an 1/0 function to be performed 
on a device unit. 

All IRPs pending for a particular device unit are linked 
together, typically at UCB$L_IOQFL. 

N onpaged pool. 

Figures E-11, 19-2. 

ISD-Image Section Descriptor 

Purpose: 

Location: 

Reference: 

Describes virtual address range and corresponding 
information (virtual block range, global section 
name) to the image activator. 

Image header. 

Figure 21-2. 

JIB-Job Information Block 

The JIB appears in several figures in this book. Figure E-12 shows all of the 
fields currently defined in this structure. 

Purpose: 

Location: 

Allocated from: 

Reference: 

Contains quotas pooled by all processes in the same 
job. 

Pointed to by PCB$L_JIB field of all PCBs in the same 
job. 

Nonpaged pool. 

Figure E-12. 

KFD-Known File Device and Directory Block 

Purpose: 

Location: 

Allocated from: 

Reference: 

Contains the file device and directory names associated 
with an image. Multiple known images share the 
sameKFD. 

Pointed to by the known file pointer block 
(KFPB$L_KFDLST). 

Paged pool. 

Figure 21-5. 



E.3.22 

E.3 Executive Data Structures 

JIB$L_MTLFL 

JIB$L_MTLBL 

JIB$B_DAYTYPES l JIB$B_TYPE JIB$W_SIZE 

* 
JIB$T _USERNAME 

* (12 bytes) 

JIB$T _ACCOUNT 
(8 bytes) 

JIB$L_BYTCNT 

JIB$L_BYTLM 

JIB$L_PBYTCNT 

JIB$L_PBYTLIM 

JIB$W_FILLM JIB$W_FILCNT 

JIB$W_TQLM JIB$W_TQCNT 

JIB$L_PGFLQUOTA 

JIB$L_PGFLCNT 

JIB$L_CPULIM 

JIB$W_PRCLIM JIB$W_PRCCNT 

JIB$W_SHRFLIM JIB$W_SHRFCNT 

JIB$W_ENQLM JIB$W_ENQCNT 

JIB$W_MAXDETACH JIB$W_MAXJOBS 

JIB$L_MPID 

JIB$L_JLNAMFL 

JIB$L_JLNAMBL 

JIB$L_PDAYHOURS 

JIB$L_ODAYHOURS 

unused l JIB$B_JOBTYPE 

JIB$L_ORG_BYTLM 

JIB$L_ORG_PBYTLM 

Figure E-12 Layout of a Job Information Block 

KFE-Known File Entry Block 

Purpose: 

Location: 

Allocated from: 

References: 

Identifies the file name of the image and its properties. 

Pointed to by the KFPE hash table, whose address is 
contained in the known file pointer block 
(KFPB$L_KFEHSHTAB). 

Paged pool. 

Figures 21-4, 21-6. 

917 



Data Structure Definitions 

E.3.23 

E.3.24 

E.3.25 

E.3.26 

E.3.27 

918 

KFPB-Known File Pointer Block 

Purpose: 

Location: 

Allocated from: 

Reference: 

Contains address of KFE hash table and the listhead for 
theKFDs. 

Pointed to by EXE$GL_KNOWN _FILES. 

Paged pool. 

Figure 21-8. 

KFRH-Known File Resident Image Header 

Purpose: 

Location: 

Allocated from: 

Reference: 

LKB-Lock Block 

Purpose: 

Allocated from: 

Reference: 

Exists for each known image installed 
/HEADER_ RESIDENT. 

Immediately precedes the IHD and specifies its size and 
version number. 

Paged pool. 

Figure 21-7. 

Contains information about a request to the Enqueue 
Lock ($ENQ) system service. 

Nonpaged pool. 

Figure 13-3. 

LNMB-Logical Name Block 

Purpose: 

Location: 

Allocated from: 

References: 

Contains the logical name string, its access mode, and 
attributes. 

Chained from the shared logical name hash table or a 
process-private hash table. 

Paged pool for shared logical names or process 
allocation region for process logical names. 

Figures 28-1, 28-4. 

LNMC-Logical Name Table Name Cache Block 

Purpose: 

Location: 

Allocated from: 

Reference: 

Facilitates logical name translation. 

Doubly iinked from a Pl space listhead 
(CTL$GQ_LNMTBLCACHE). 

Process allocation region. 

Figure 28-5. 



E.3.28 

E.3.29 

E.3.30 

E.3.31 

E.3.32 

E.3.33 

E.3 Executive Data Structures 

LNMHSH-Logical Name Hash Table 

Purpose: 

Location: 

Allocated from: 

Reference: 

Locates all logical names. 

Indirectly pointed to by the array of addresses at 
LNM$AL_HASHTBL. 

Paged pool and process allocation region. 

Figure 28-4. 

LNMTH-Logical Name Table Header 

Purpose: 

Allocated from: 

Reference: 

Describes a logical name table. 

Paged pool for the shared table or process allocation 
region for process tables. 

Figure 28-2. 

LNMX-Logical Name Translation Block 

Purpose: 

Location: 

Allocated from: 

Reference: 

Describes an equivalence name for a logical name. 

Follows an LNMB. 

Paged pool for shared names or process allocation 
region for process names. 

Figure 28-1. 

MBX-Shared Memory Mailbox Control Block 

Purpose: 

Location: 

References: 

Describes each mailbox that exists in shared memory. 

Pages in shared memory dedicated to mailbox control 
blocks. 

Figures 18-4, 18-5. 

MTX-Mutex (Mutual Exclusion Semaphore) 

Purpose: 

Usual Location: 

Reference: 

Controls process access to protected data structures. 

Statically allocated longwords in system space. 

Figure 2-1. 

ORB-Object Rights Block 

Purpose: Defines the protection information for various objects 
within the system. 

919 



Data Structure Definitions 

E.3.34 

E.3.34.1 

920 

ORB$W_UICGROUP I ORB$W_UICMEMBER 

ORB$L_ACL_MUTEX 

ORB$B_FLAGS 1 ORB$B_TYPE ORB$W_SIZE 

ORB$W_REFCOUNT 1 unused 

),:: 

ORB$L_MODE_PROTL I ORB$B_MODE 

ORB$L_MODE_PROTH 

ORB$L_SYS_PROT/ORB$W_PROT 

ORB$L_OWN_PROT 

ORB$L_GRP _PROT 

ORB$L_WOR_PROT 

ORB$L_ACLFL /ORB$L_ACL_COUNT 

ORB$L_ACLBL I ORB$L_ACL_OESC 

ORB$R_MIN_CLASS 
(20 bytes) 

ORB$R_MAX_CLASS 
(20 bytes) 

v 

Figure E-13 Layout of an Object Rights Block 

Usual Location: 

Allocated from: 

Reference: 

Linked to a data structure, such as a UCB, via offset 
xxx$L_QRB. 

Paged pool. 

Figure E-13. 

PCB-Process Control Block 

The term "process control block" can refer to two different structures in the 
VAX literature. All software documentation, including this book, refers to 
the software process control block as simply PCB and always prefixes the 
hardware process control block with "hardware." 

Software Process Control Block 

Purpose: 

Location: 

Allocated from: 

Reference: 

Contains the permanently resident information about a 
process. 

Linked into a scheduling state queue; also pointed to by 
one of the PCB vector elements. 

N onpaged pool. 

Figure E-14. 



E.3.34.2 

E.3.35 

E.3.36 

E.3.37 

E.3.38 

E.3 Executive Data Structures 

Hardware Process Control Block 

Purpose: 

Location: 

Reference: 

Contains hardware context of a process while it is not 
executing. 

Part of the fixed portion of the process header. 

Figure 10-7. 

PHD-Process Header 

Purpose: 

Location: 

References: 

Contains process context data that must reside in 
system space but can be outswapped. 

Balance slot area in system space. (PHD pages that are 
not page table pages are double mapped by a range of 
Pl space addresses.) 

Figures E-15, 14-1, 14-2, 14-4, 14-6, 14-8. 

PQB-Process Quota Block 

Purpose: 

Location: 

Allocated from: 

Reference: 

Used during process creation to store new process 
parameters that are copied to the PHD and Pl space 
after those areas are accessible. 

Pointed to by PCB$L_EFWM. 

Paged pool. 

Figure E-16. 

RPB-Restart Parameter Block 

Purpose: 

Usual Location: 

Reference: 

Contains volatile processor state during power failure; 
locates the bootstrap 1/0 driver and associated 
subroutines. 

Physical page zero on system with no bad memory in 
the first 64K bytes. 

Table 24-16. 

RSB-Resource Block 

Purpose: 

Usual Location: 
Allocated from: 

References: 

Contains information about a resource defined to the 
lock management system services. 

Resource hash table pointed to by LCK$GL_HASHTBL. 
Nonpaged pool. 

Figures 13-1, 13-2. 

921 



Data Structure Definitions 

E.3.39 

E.3.40 

922 

PCB$L_SQFL 

PCB$L_SQBL 

PCB$B_PRI 1 PCB$B_TYPE PCB$W_SIZE 

PCB$W_MTXCNT PCB$B_ASTEN l ACB$B_ASTACT 

PCB$L_ASTQFL 

PCB$L_ASTQBL 

PCB$L_PHYPCB 

PCB$L_OWNER 

PCB$L_WSSWP 

PCB$L_STS 

PCB$L_WTIME 

PCB$B_PRIB J PCB$B_WEFC PCB$W_STATE 

PCB$W_TMBU PCB$W_APTCNT 

PCB$W_PPGCNT PCB$W_GPGCNT 

PCB$W_BIOCNT PCB$W_ASTCNT 

PCB$W_DIOCNT PCB$W_BIOLM 

PCB$W_PRCCNT PCB$W_DIOLM 

PCB$T _TERMINAL 
(8 bytes) 

PCB$L_PQB 

PCB$L_EFCS 

PCB$L_EFCU 

unused ] PCB$B_PGFLINDEX PCB$W_PGFLCHAR 

PCB$L_SWAPSIZE 

PCB$L_EFC2P 

Figure E-14 Layout of a Software Process Control Block 

SHB-Shared Memory Control Block 

Purpose: 

Location: 

Allocated from: 

Reference: 

Describes shared memory connected to specific 
processor. 

In list at EXE$GL_SHBLIST in processor local memory. 

Nonpaged pool. 

Figure 14-26. 

SHD-Shared Memory Data Page 

Purpose: Initial description of VMS usage of a specific shared 
memory controller. 



PCB$L_EFC3P 

PCB$L_PID 

PCB$L_EPID 

PCB$L_EOWNER 

PCB$L_PHD 

* 
PCB$T_LNAME 

(16 bytes) 

PCB$L_JIB 

PCB$0_PRIV 

PCB$L_ARB 

J."'. 

;;.. (60 bytes) 

(44 bytes) 

I PCB$L_UIC 

PCB$L_ACLFL 

PCB$L_ACLBL 

PCB$L_LOCKOFL 

PCB$L_LOCKQBL 

PCB$L_DLCKPRI 

PCB$L_IPAST 

PCB$L_DEFPROT 

PCB$L_WAITIME 

PCB$L_PMB 

E.3 Executive Data Structures 

}: 

1-

~ 

I ,, 

This part of 
the PCB is an ARB 
(see Figure E-3). 

Figure E-14 Layout of a Software Process Control Block (continued) 

E.3.41 

Location: 

Reference: 

Last physical pages of shared memory. 

Table 14-4. 

TAST-Terminal AST Block 

Purpose: 

Usual Location: 

Allocated from: 

Reference: 

Contains information for delivery of out-of-band 
character ASTs. 

Queued to the terminal UCB via TAST$L_LINK. 

N onpaged pool. 

Figure 7-5. 

923 



Data Structure Definitions 

PHD$Q_PRIVMSK 

PHD$W_WSAUTH PHD$W_WSLIST 

PHD$W_WSDYN PHD$W_WSLOCK 

PHD$W_WSLAST PHD$W_WSNEXT 

PHD$W_WSEXTENT PHD$W_WSAUTHEXT 

PHD$W_DFWSCNT PHD$W_WSOUOTA 

PHD$L_PAGFIL 

PHD$L_PSTBASOFF 

PHD$W_PSTFREE PHD$W_PSTLAST 

PHD$L_FREPOVA 

PHD$L_FREPTECNT 

PHD$L_FREP1 VA 

PHD$W_FLAGS PHD$B_PGTBPFC l PHD$B_DFPFC 

PHD$L_CPUTIM 

PHD$W_PRCLM PHD$W_QUANT 

PHD$W_PHVINDEX PHD$W_ASTLM 

PHD$L_BAK 

PHD$L_WSLX 

PHD$L_PAGEFLTS 

PHD$W_SWAPSIZE PHD$W_WSSIZE 

PHD$L_DIOCNT 

PHD$L_BIOCNT 

PHD$L_CPULIM 

unused PHD$B_AWSMODE I PHD$B_CPUMODE 

PHD$L_PTWSLELCK 

PHD$L_PTWSLEVAL 

PHD$W_PTCNTVAL PHD$W_PTCNTLCK 

PHD$W_PTCNTMAX PHD$W_PTCNTACT 

PHD$W_EXTDYNWS PHD$W_WSFLUID 

PHD$L_PCB 

PHD$L_ESP 

PHD$L_SSP 

PHD$L_USP 

PHD$L_RO 

PHD$L_R1 
-"-

PHD$L_R2 

PHD$L_R3 

>" )-

Figure E·IS Layout of a Process Header 

924 



E.3 Executive Data Structures 

PHD$L_R4 

PHD$L_R5 

PHD$L_R6 

PHD$L_R7 

PHD$L_R8 

PHD$L_R9 

PHD$L_R10 

PHD$L_R11 

PHD$L_R12 

PHD$L_R13 

PHD$L_PC 

PHD$L_PSL 

PHD$L_POBR 

PHD$L_POLRASTL 

PHD$L_P1BR 

PHD$L_P1LR 

PHD$W_RESPGCNT PHD$W_EMPTPG 

PHD$W_CWSLX PHD$W_REQPGCNT 

PHD$Q_AUTHPRIV 

PHD$Q_IMAGPRIV 

PHD$LRESLSTH 

PHD$L_IMGCNT 

PHD$L_PFLTRATE 

PHD$L_PFLREF 

PHD$L_ TIMREF 

PHD$L_MPINHIBIT 

PHD$L_PGFLTIO 

unused unused I PHD$B_AUTHPRI 

PHD$L_EXTRACPU 

v PHD$R_MIN_CLASS J.... 

,, (20 bytes) / 

PHD$L_SPARE 

unused (60 bytes) 

PHD$L_WSL 

Figure E-15 Layout of a Process Header (continued) 

925 



Data Structure Definitions 

E.3.42 

E.3.43 

926 

PQB$B_STS l 

unused I 

v 

PQB$Q_PRVMSK 

POB$B_TYPE l 
PQB$L_ASTLM 

PQB$L_BIOLM 

POB$L_BYTLM 

POB$L_CPULM 

POB$L_DIOLM 

PQB$L_FILLM 

POB$L_PGFLQUOTA 

PQB$L_PRCLM 

PQB$L_ TOELM 

POB$L_WSQUOTA 

POB$L_WSDEFAULT 

PQB$L_ENOLM 

PQB$L_WSEXTENT 

PQB$L_JTOUOTA 

PQB$B_MSGMASK l 
PQB$L_UAF _FLAGS 

POB$L_CREPRC_FLAGS 

PQB$R_MIN_CLASS 
(20 bytes) 

PQB$R_MAX_CLASS 
(20 bytes) 

POB$W_SIZE 

POB$W_FLAGS 

v 

Figure E-16 Layout of a Process Quota Block 

TQE-Timer Queue Element 

Purpose: 

Location: 

Allocated from: 

Reference: 

Describes pending timer or scheduled wakeup request. 

Linked to the timer queue at EXE$GL_ TQFL. 

Nonpaged pool. 

Figure 11-1. 

UCB-Unit Control Block 

Purpose: 

Location: 

Allocated from: 

Describes the status, characteristics, and current state 
of a device unit. 

Linked from DDB$L_UCB. 

Nonpaged pool. 



E.3.44 

,,(' 

"' 

E.3 Executive Data Structures 

POB$L_INPUT _ATT 

PQB$L_OUTPUT _ATT 

PQB$L_ERROR_ATT 

PQB$L_OISK_ATT 

PQB$T_CLI_ NAME 
(32 bytes) 

PQB$T _CLI_ TABLE 
(256 bytes) 

POB$T _SPAWN_CLI 
(32 bytes) 

POB$T _SPAWN_ TABLE 
(256 bytes) 

PQB$T _INPUT 
(256 bytes) 

POB$T _OUTPUT 
(256 bytes) 

POB$T _ERROR 
(256 bytes) 

POB$T_OISK 
(256 bytes) 

PQB$T _DDSTRING 
(256 bytes) 

POB$T _IMAGE 
(256 bytes) 

- ----- -~~--.---· 

;' 

~ 

Figure E-16 Layout of a Process Quota Block (continued) 

Reference: 

Special Notes: 

Figure E-17. 

Figure E-17 shows the part of the UCB common to all 
device units. See the manual Writing a Device Driver 
for VAX/VMS for information on extensions to the 
common part of the UCB. 

WCB-Window Control Block 

Purpose: 

Location: 

Allocated from: 

Reference: 

Describes the virtual to logical correspondence for the 
blocks of a file. 

Contained in FCB list at FCB$L_ WLFL. 

Nonpaged pool. 

Figure E-18. 

927 



Data Structure Definitions 

UCB$L_FQFL 

UCB$L_FQBL 

UCB$B_FIPL I UCB$B_TYPE I UCB$W_SIZE 

UCB$L_FPC 

UCB$L_FR3 

UCB$L_FR4 

UCB$W_INIQUO I UCB$W_BUFQUO 

UCB$L_ORB 

UCB$L_L.OCKID 

UCB$L_CRB 

UCB$L_DDB 

UCB$L_PID 

UCB$L_LINK 

UCB$L_VCB 

UCB$Q_DEVCHAR 

UCB$W_DEVBUFSIZ l UCB$B_DEVTYPE l UCB$B_DEVCLASS 

UCB$Q_DEVDEPEND 

UCB$L_IOQFL 

UCB$L_IOQBL 

UCB$W_CHARGE l UCB$W_UNIT 

UCB$L_IRP 

UCB$B_AMOD l UCB$B_DIPL l UCB$W_REFC 

UCB$L_AMB 

UCB$L_STS 

UCB$W_QLEN l UCB$W_DEVSTS 

UCB$L_DUETIM 

UCB$L_OPCNT 

UCB$L_SVPN 

UCB$L_SVAPTE 

UCB$W_BCNT J UCB$W_BOFF 

UCB$W_ERRCNT I UCB$B_ERTMAX I UCB$B_ERTCNT 

UCB$L_PDT 

UCB$L_DDT 

UCB$L_MEDIA._ID 

Figure E-17 Layout of a Unit Control Block 

928 



E.4 

E.4 Symbolic Constants 

SYMBOLIC CONSTANTS 

The files [SYS]SYSDEFxx.SDL and [VMSLIB]STARDEFxx.SDL define many 
systemwide symbolic codes that identify structures, resources, quotas, priori­
ties, and so on. Many of these constants are listed in the VAX/VMS System 
Services Reference Manual and the VAX/VMS 110 Reference Volume. Those 
that are most closely tied to the material in this book but that are not listed 
in those manuals are listed here. 

E.4.1 BTD-Bootstrap Device Codes 

The bootstrap device codes (see Table E-2) are used to interpret the contents 
of RO to VMB, the primary bootstrap program. (Note that these do not apply 
to VMB on a Micro VAX I or Micro VAX II.) 

E.4.2 CA-Conditional Assembly Parameters 

Tqe conditional assembly parameters (see Table E-3) control whether certain 
code is included when components of VMS are assembled. The first parame­
ter was important during the initial development of VMS but is no longer 
used. All measurement code (used by the Monitor Utility) is always included. 

WCB$L_WLFL 

WCB$L_WLBL 

WCB$B_ACCESS 1 WCB$B_ TYPE 1 WCB$W_SIZE 

WCB$L_PID 

WCB$L_ORGUCB 

WCB$W_NMAP 1 WCB$W_ACON 

WCB$L_FCB 

WCB$L_RVT 

WCB$L_LINK 

WCB$L_READS 

WCB$L_WRITES 

WCB$L_STVBN 

WCB$L_P1_LBN I WCB$W_P1_COUNT 

WCB$W_P2_COUNT l WCB$L_P1_LBN 
I 
I 
I 

WCB$L_P2_LBN 

Figure E-18 Layout of a Window Control Block 

929 



Data Structure Definitions 

Table E-2 Bootstrap Device Codes 

Symbolic Name Code 

BTD$K_MB 0 
BTD$K_DM 1 
BTD$K_DL 2 
BTD$K_DQ 3 

BTD$K_UDA 17 

BTD$K_TKSO 18 
BTD$K_HSCCI 32 
BTD$K_CQNSOLE 64 

BTD$K_QNA 96 

BTD$K_UNA 97 

Device 

MASSBUS device 

RK06/7 

RL02 

RB02/RB80 

UDA 

TKSO 

HSConaCI 

Console block storage device 

DEQNA 

DE UNA 

Table E-3 Conditional Assembly Parameters 

Symbolic Name 

CA$_SIMULATOR 

CA$_MEASURE 

CA$_MEASURE_IOT 

Code 

1 

2 

4 

Feature 

VMS running on simulator 

Accumulate statistics for Monitor Utility 

Accumulate 1/0 statistics for Monitor Utility 

E.4.3 DYN-Data Structure Type Definitions 

All structures allocated from nonpaged and paged pool have a unique code in 
the type field, at offsetxxx$B_ TYPE (see Table E-4). SDA uses the contents of 
this field when formatting dumps of pool and in automatic formatting of a 
data structure with the FORMAT command. 

E.4.4 IOxxx-I/O Address Space Definitions 

The SYS$LIBRARY:LIB.MLB $10xxxDEF macros define the layout of 1/0 
space for each CPU. See Appendix G for the values of xxx. 

E.4.5 IPL-Interrupt Priority Level Definitions 

930 

IPLs that are used by VMS for synchronization and other purposes are given 
the symbolic names listed in Table E-5. 



E.4 Symbolic Constants 

Table E-4 Data Structure Type Definitions 

Symbolic Name Code Structure Type 

DYN$C_ADP Adapter control block 

DYN$C_ACB 2 AST control block 

DYN$C_AQB 3 ACP queue block 

DYN$C_CEB 4 Common event block 

DYN$C_CRB 5 Channel request block 

DYN$C_DDB 6 Device data block 

DYN$C_FCB 7 File control block 

DYN$C_FRK 8 Fork block 

DYN$C_IDB 9 Interrupt dispatch block 

DYN$C_IRP 10 I/O request packet 
DYN$C_LOG 11 Logical name block 

DYN$C_PCB 12 Software process control block 

DYN$C_PQB 13 Process quota block 

DYN$C_RVT 14 Relative volume table 

DYN$C_TQE 15 Timer queue element 

DYN$C_UCB 16 Unit control block 

DYN$C_VCB 17 Volume control block 

DYN$C_WCB 18 Window control block 

DYN$C_BUFIO 19 Buffered I/O buffer 

DYN$C_ TYPAHD 20 Terminal type-ahead buffer 

DYN$C_GSD 21 Global section descriptor 

DYN$C_MVL 22 Magnetic tape volume list 

DYN$C_NET 23 Network message block 

DYN$C_KFE 24 Known file entry 

DYN$C_MTL 25 Mounted volume list entry 

DYN$C_BRDCST 26 Broadcast message block 

DYN$C_CXB 27 Complex chained buffer 

DYN$C_NDB 28 Network node descriptor block 

DYN$C_SSB 29 Logical link subchannel status block 

DYN$C_DPT 30 Driver prolog table 

DYN$C_JPB 31 Job parameter block 

DYN$C_PBH 32 Performance buffer header 

DYN$C_PDB 33 Performance data block 

DYN$C_PJB 34 Performance information block 

DYN$C_PFL 35 Page file control block 

DYN$C_PTR 37 Pointer control block 

DYN$C_KFRH 38 Known file image header 

(continued) 

931 



Data Structure Definitions 

Table E-4 Data Structure Type Definitions (continued) 

Symbolic Name Code Structure Type 

DYN$C_DCCB 39 Data cache control block 

DYN$C_EXTGSD 40 Extended global section descriptor 

DYN$C_SHMGSD 41 Shared memory global section descriptor 

DYN$C_SHB 42 Shared memory control block 

DYN$C_MBX 43 Mailbox control block 

DYN$C_IRPE 44 Extended 1/0 request packet 

DYN$C_SLAVCEB 45 Slave common event block 

DYN$C_SHMCEB 46 Shared memory master common event block 

DYN$C-TIB 47 Toh information block 

DYN$C_TWP 48 Terminal driver write packet ($TTYDEFI 
DYN$C_RBM 49 Real-time SPTE bitmap 

DYN$C_VCA 50 Disk volume cache block 
DYN$C_CDB 51 X25 LES channel data block 
DYN$C_LPD 52 X25 LES process descriptor 

DYN$C_LKB 53 Lock block 

DYN$C_RSB 54 Resource block 
DYN$C_LKID 55 Lock ID table 
DYN$C_RSHT 56 Resource hash table 

DYN$C_CDRP 57 Class driver request packet 

DYN$C_ERP 58 Error log packet 

DYN$C_CIDG 59 CI datagram buffer 

DYN$C_CIMSG 60 CI message buffer 

DYN$C_XWB 61 DECnet logical link context block 
DYN$C_WQE 62 DECnet work queue block 

DYN$C_ACL 63 Access control list queue entry 
DYN$C_LNM 64 Logical name block 

DYN$C_FLK 65 Fork lock request block 

DYN$C_RIGHTSLIST 66 Rights list 

DYN$C_KFD 67 Known file device directory block 

DYN$C_KFPB 68 Known file list pointer block 

DYN$C_CIA 69 Compound intrusion analysis block 

DYN$C_PMB 70 Page fault monitor control block 

DYN$C_PFB 71 Page fault monitor buffer 

DYN$C_CHIP 72 Internal check protection block 

DYN$C_ORB 73 Object rights block 

DYN$C_QVAST 74 QVSS AST block 

DYN$C_scs 96 SCS control block 

DYN$C_CI 97 CI port structure 

932 



E.4 Symbolic Constants 

Table E-4 Data Structure Type Definitions (continued) 

Symbolic Name Code Structure Type 

DYN$C_LOADCODE 98 Loadable code 
DYN$C_INIT 99 Structure set up by INIT 
PYN$C_CLASSDRV 100 Class driver structure 

DYN$C_CLU 101 Cluster structure 
DYN$C_PGD 102 Paged pool structure 
DYN$C_UIS 103 UIS structure 
DYN$C_DSRV 105 Disk server structure 
DYN$C_MP 106 ASMP structure 

DYN$C_SPECIAL 128 Code that defines beginning of special codes 
DYN$C_SHRBUFIO 128 Shared memory buffered I/O buffer 

Table E-5 IPL Symbols 

Symbolic Name Code Function 

IPL$_ AS TD EL 2 AST delivery interrupt 

IPL$_SCHED 3 Rescheduling interrupt 

IPL$_IOPOST 4 I/O postprocessing interrupt 

IPL$_QUEUEAST 6 Fork level used for AST queuing 

IPL$_ TIMERFORK 7 IPL for software timer fork routine 

IPL$_ TIMER 8 IPL for software timer routine 

IPL$_SCS 8 SCS synchronization IPL 

IPL$_ SYNCH 8 Systemwide synchronization level 

IPL$_ MAILBOX 11 Fork IPL for mailbox driver 

IPL$_PERFMON 15 Performance monitor synchronization 

IPL$_HWCLK 24 Hardware clock interrupt 

IPL$_ POWER 31 Block powerfail interrupt 

E.4.6 NDT-Nexus (Adapter) Device Type 

Each external adapter has an associated code that is used by VMB, INIT, and 
the power recovery routine to determine which adapter-specific action 
should be taken to (re)initialize each adapter (see Table E-6). 

933 



Data Structure Definitions 

E.4.7 PR-Processor Register Definitions 

934 

The macro $PRDEF, in SYS$LIBRARY:LIB.MLB, defines symbolic names for 
the processor registers that are common to all types of VAX. For each CPU 
type a second LIB.MLB macro, $PRxxxDEF, defines symbolic names for the 
CPU's additional processor registers. See Appendix G for the values of xxx. 

Table E-6 Nexus (Adapter) Device Types 

Symbolic Name Code Adapter 

NDT$_MEM4NI 8 Memory, 4K, not interleaved 

NDT$_MEM41 9 Memory, 4K, interleaved 
NDT$_MEM16NI 16 Memory, 16K, not interleaved 

NDT$_MEM16 17 Memory, 16K, interleaved 

NDT$_MEM 1664NI 18 Memory, 16K and 64K mixed 

NDT$_MB 32 MBAO, l, 2, or3 
NDT$_UBO 40 UNIBUS adapter or interconnect 0 
NDT$_UB1 41 UNIBUS adapter 1 

NDT$_UB2 42 UNIBUS adapter 2 

NDT$_UB3 43 UNIBUS adapter 3 
NDT$_DR32 48 DR32 
NDT$_CI 56 CI750, CI780 

NDT$_MPMO 64 Multiport memory 0 

NDT$_MPM1 65 Multiport memory 1 
NDT$_MPM2 66 Multiport memory 2 

NDT$_MPM3 67 Multiport memory 3 

NDT$_MEM64NIL 104 64K memory, not interleaved, 
lower controller 

NDT$_MEM64EIL 105 64K memory, externally interleaved, 
lower controller 

NDT$_MEM64NIU 106 64K memory, not interleaved, 
upper controller 

NDT$_MEM64EIU 107 64K memory, externally interleaved, 
upper controller 

NDT$_MEM641 108 64K memory, internally interleaved 

NDT$_MEM256NIL 112 256K memory, not interleaved, 
lower controller 

NDT$_MEM256EIL 113 256K memory, externally interleaved, 
lower controller 

NDT$_MEM256NIU 114 256K memory, not interleaved, 
upper controller 



E.4 Symbolic Constants 

Table E-6 Nexus (Adapter) Device Types (continued) 

Symbolic Name Code Adapter 

NDT$_MEM256EIU 115 256K memory, externally interleaved, 
upper controller 

NDT$_MEM256I 116 256K memory, internally interleaved 

NDT$_SCORMEM 8000000116 VAX 8200 memory 

NDT$_BIMFA 8000010116 DRB32 
NDT$_BUA 8000010216 VAXBI UNIBUS adapter 

NDT$_BLA 8000010316 KLESI-B 

NDT$_NBI 8000010616 VAX 8800 VAXBI adapter 

NDT$_BCA 8000010816 CIBCA 

NDT$_BICOMBO 8000010916 DMB32 
NDT$_BCI750 8000010B16 CIBCI 

NDT$_BDA 8000010E16 VAXBI disk adapter 

NDT$_AIE 8000410F16 DEBNT 

935 



F.1 

936 

Appendix F 

Size of System and 
Pl Virtual Address Spaces 

The system image SYS$SYSTEM:SYS.EXE contains the operating system 
code for the VMS system but very little of the data. Many of the data struc­
tures that VMS uses are not created until the system is bootstrapped, so that 
the structure sizes can be determined from the appropriate SYSBOOT param­
eters. This appendix describes the relationships between these SYSBOOT 
parameters and the portions of the address spaces whose sizes they deter­
mine. 

In the equations that appear in this appendix, two common features domi­
nate. One feature is division by 512, the number of bytes in a page. This 
division is done whenever the input parameter is a number of bytes, such as 
the NPAGEDYN SYSBOOT parameter or an expression for the number of 
bytes in a process header. If 511 is added to an expression for a number of 
bytes before the integer division takes place, this represents a rounding up to 
the next highest page boundary. 

The second feature is the number 128 that appears in expressions that 
count the number of pages for which system page table entries (SPTEs) are 
needed. The significance of the number 128 is that a page table entry (PTE) is 
four bytes long, so that a page of PTEs maps 128 pages. In this case, the 
rounding factor that is added is 127. 

SIZE OF PROCESS HEADER 

Before the various portions of address space are calculated, the size of the 
process header (PHD) is related to the SYSBOOT parameters that affect its 
size. Table F-1 lists each portion of the PHD, the SYSBOOT parameters that 
affect its size, and the global location where the size of that portion is stored. 
The table also introduces the notation used in the first set of equations to 
describe each piece of the PHD. Figure F-1 shows the actual layout of the 
PHD and the relationship of the parts described in Table F-1. 

The following global locations contain sums of the sizes of several of the 
pieces listed in Table F-1: 

SGN$GLPHDAPCNT = PHD(wsLpst) + PHD(bak) 



F.1 Size of Process Header 

Table F-1 Discrete Portions of the Process Header 

Symbolic Name 
for Equations 

Items Stored in 
This Portion 

Factors Affecting 
Size of This 
Portion 

Global Location 
Where Size of This 
Portion Is Stored 

PHD(wsLpst) 

PHD(empty) 

PHD(bak) 

Fixed portion, 
PST, 
WSL 

No access pages 
for WSL 
expansion 

PHD page arrays, 
Page table page 

arrays 

PHD$K-LENGTH, 
PROCSECTCNT, 
WSMAX, 
PQLDWSDEFAULT 
WSMAX, 
PQLDWSDEFAULT 

Size of the PHD 

SWP$GW _ WSLPTE 

SWP$GW _EMPTPTE 

SWP$GW _BAKPTE 

PHD(page_ tables) PO and P 1 page 
tables 

VIRTUALPAGECNT SGN$GL_PTPAGCNT 

SGN$GLPHDPAGCT = PHD(wsLpst) + PHD(empty) + PHD(bak) 

SWP$GLBSLOTSZ = PHD(wsLpst) + PHD(empty) + PHD(bak) 
+ PHD(page_tables) 

F.1.1 Process Page Tables 

Most of the PHO is taken up by the PO and Pl page tables. The total num­
ber of pages allocated for the process page tables depends on the parameter 
VIRTUALPAGECNT: 

PHD( bl ) _ VIRTUALPAGECNT + 127 page_ta es - 128 (F.l) 

F.1.2 Working Set List and Process Section Table 

The working set list (WSL) and process section table (PST) are located at 
the low address end of the PHD immediately after the fixed size area and 
grow toward each other. The size of the PST depends on the parameter 
PROCSECTCNT. On first approach, one would assume that the WSL size 
depends on the parameter WSMAX. In most systems, many processes have 
working sets that are much smaller than the allowed maximum. The initial 
WSL size is calculated to take this into account. It is assumed that most 
processes have working sets that are approximately equal to the 
parameter PQL_DWSDEFAULT. 

937 



Size of System and Pl Virtual Address Spaces 

SYSBOOT Parameters Affecting 
Size of This Portion 

PHD$K_LENGTH 
(not a SYSBOOT parameter) 

PQL_DWSDEFAUL T 

PROCSECTCNT 

WSMAX,PQL_DWSDEFAUL T 

Size in bytes of 
entire process header 

VIRTUALPAGECNT ~ 

Process Header (PHO) 

Fixed Portion of Process Header 

Working Set List 

~ 
0 

Process Section Table 

Empty Pages 

Arrays for Process Header Pages 

PO Page Table 

~ 
{: 

0 
P1 Page Table 

Figure F-1 Process Header and SYSBOOT Parameters 

Where Size of This 
Portion Is Stored 

SWP$GW_WSLPTE Pages 

SWP$GW_EMPTPTE Pages 

SWP$GW_BAKPTE Pages 

SGN$GL_PTPAGCNT Pages 

Equation F.2 calculates the maximum number of pages required for the 
fixed portion of the PHD, WSL, and PST. The extra space reserved for WSL 
expansion is calculated in Equation F.3. The difference between these two 
numbers (Equation F.4) is the number of pages initially available for the fixed 
portion, WSL, and PST. The significance of the numbers 4 and 32 in Equation 
F.2 is that a working set list entry (WSLE) is four bytes and a process section 
table entry (PSTE) is 32 bytes. 

(PHD$K_LENGTH + (4 x WSMAX)) 
PHD( ) = + (32 x PROCSECTCNT) + 511) 

temp 512 
(F.2) 

PHD( ) - WSMAX - PQLDWSDEFAULT 
empty - 128 (F.3) 

PHD(wsLpst) = PHD(temp) - PHD(empty) (F.4) 

F.1.3 Process Header Page Arrays 

938 

The PHD page arrays include two arrays that describe each page in the PHD. 
These arrays are used by the swapper to store information about PHD pages 



F.2 

F.2 System Virtual Address Space 

while the header is outswapped. There are also two arrays of bytes in this 
portion of the PHD that describe each page table page. To simplify the calcu­
lation of the size of this portion of the PHD, space is allocated as if the last 
two arrays contained an element for each PHD page. Because the page tables 
constitute approximately 90 percent of the PHD in a typical system, this 
algorithm results in a very good approximation. Because the result is rounded 
up to the next page boundary, there is no difference in size for almost all 
combinations of SYSBOOT parameters. 

The PHD page arrays are located in the PHD, so the space allocated for this 
area depends on its own size. The calculation of this portion of the PHD 
proceeds iteratively. An approximate size of the area is determined, based on 
the sizes of the other three areas. The estimates are then refined until two 
successive calculations reach the same result. 

Define the following: 

PHD(the_rest) = PHD(wsLpst) 
+ PHD(empty) 
+ PHD(page_tables) 

PHD(bak,O) = 0 

(F.5) 

Perform the calculation shown in Equation F. 7 until the following equality 
exists: 

PHD(bak,N) = PHD(bak,N - 1) 

(8 x [PHD(the_rest) + PHD(bak,N - 1 )]) 
+ 511 

PHD(bak,N) = 512 

Call the result of this calculation PHD(bak): 

PHD(bak) = PHD(bak,N) 

(F.6) 

(F.7) 

(F.8) 

The sum of the four pieces of the PHD yields its size in pages. The result of 
this calculation is stored in global location SWP$GL_BSLOTSZ. 

PHD(total) = PHD(wsLpst) 
+ PHD(empty) 
+ PHD(bak) 
+ PHD(page_tables) 

SYSTEM VIRTUAL ADDRESS SPACE 

(F.9) 

Once the size of the PHD has been calculated, the size of system address 
space can be computed. System space is made up of a fixed part and pieces of 
variable size. 

939 



Size of System and Pl Virtual Address Spaces 

SVAS(sptskeQ 

SVAS(sptreq) 

SVAS(rpb) 

SVAS{pfn) 

SVAS(pagecLpooQ 

SVAS(nonpagecLpool) 

SVAS{inLstack) 

SVAS(scb) 

SVAS{balance_slols) 

SVAS(sysphd) 

SVAS(spt) 

SVAS(gpt) 

~ 

* 

System Service Vectors 

Nonpllg8d Executive Data 

Linked Driver Code and Data Structures 

Nonpaged Executive Data 

Nonpaged Executive Code 

Pageable Executive Routines 

XDELTA (usually unmapped), INIT 

System Virtual Pages 
Mapped to l/O Addresses 

RMS Image 
(RMS.EXE) 

System Message Fiie 
(SYSMSG.EXE) 

Pool of Unmapped System Pages ~ 

Restart Parameter Block 

PFN Database 

Paged Pool 

Nonpaged Pool 

Interrupt Stack 

System Control Block 

Balance Slots ~ 

System Header 

System Page Table 

Global Page Table 

Figure F-2 Layout of System Virtual Address Space 

80000000 

SVAS (nonpagecLexec) 
(No PFN Data) 

Static Portion (SYS.EXE) 

(Dynamically mapped at 
Initialization time by 
SYSBOOT) 

(No PFN Data) 

(No PFN Data for Equation F.15) 

(No PFN Data) 

(No PFN Data) 

(No PFN Data) 

(No PFN Data) 

Figure F-2 pictures the fixed part of system address space and the nomen­
clature used to designate each piece. Table F-2 lists each piece, the global 
location of the pointer to each piece, and its size. It also shows the protection 
and pageability of each piece. It does not show page owner mode, because all 
system space pages are owned by kernel access mode. 

F.2.1 System Virtual Address Space and SYSBOOT Parameters 

940 

Many of the pieces of system address space vary, depending on one or more 
SYSBOOT parameters. Table F-3 lists each piece of variable system space, the 



F.2 System Virtual Address Space 

Table F-2 Detailed Layout of Fixed System Virtual Address Space 

Size in 
Item 1 Global Location2 Pages3 Protection Pageable 

System service vectors 80000000 5 UR No 

Nonpaged executive MMG$A_ENDVEC 
data 

• File system PMS$GLFCP 0.9 UREW4 Ne 
performance data 

• Null and swapper 1.5 URKW No 
process stacks 

• Linked driver data EXE$GLBUGCHECK 5.5 URKW No 
Linked driver code MMG$AL_BEGDRIVE 2.6 URKW No 

Nonpaged executive MMG$AL_ENDDRIVE 16.6 . URKW No 
data 

Nonpaged executive MMG$FRSTRONLY 88 UR No 
code 

Extendable patch space @MMG$GL_PGDCOD5 5 UR Yes 

Pageable executive data EXE$UPCASLDAT UR Yes 

Pageable executive code EXE$EXCPTNE - OD 142 UR Yes 

Shell process SWP$GLSHELLBAS 7 UR Yes 

Usually unmapped pages MMG$ALPGDCODEN 

• XDELTA6 18 URKW No 

• INIT 12 No access 

• BUGCHECK 24 No access 

End of fixed sized MMG$A_SYS_END 
portion of system 
virtual address 
space 

1The pieces of the executive listed in this table originate in the system image file SYS$SYSTEM:SYS.EXE 
and are mapped by SYSBOOT. The addresses of each of these pieces remain unchanged until a new major 
release of the operating system. 

2Numbers in address expressions are hexadecimal. If a global location is not preceded by the symbol@:, its 
value is the address of the area in question. If a global location is preceded by the symbol (<i, its value is an 
address that contains the address of the area in question. 

3 Sizes are expressed in decimal numbers. A size that is not an integral number of pages is approximate. 
Consult the system map for precise numbers. 

4The protection granularity defined by the VAX architecture is a page. For this reason, the first page in this 
area is set to UREW protection. The remaining pages are set to URKW. 

5The cell MMG$GL_PGDCOD points to the second page of the patch area that lies between the nonpaged 
and paged executive. The end of the executive is established dynamically. If another patch page is required, 
the symbol is changed to point to the next page. 

6The pages containing XDELTA only remain mapped if the RS flag requesting the executive debugger is set 
at system initialization. 

941 



Size of System and Pl Virtual Address Spaces 

942 

global location of the pointer to each piece, and the SYSBOOT parameter that 
affects its size. It also shows the protection and pageability of each piece. It 
does not show page owner access mode, because all system space pages are 
owned by kernel access mode. 

The sizes of most of the pieces of system address space listed in Table F-3 
are simply related to orie or two SYSBOOT parameters. Their sizes are com­
puted in a straightforward manner by SYSBOOT. The sizes of the system 
page table (SPT) and the PFN database are a little more complicated. A dis­
cussion of their sizes appears in the next section. 

When SYSBOOT calculates the size of the SPT, it forms a sum of the sizes 
of the pieces of system virtual address space and allocates an SPTE for each 
page. The calculation presented here considers each piece of system space in 
the order of increasing virtual address rather than in the order that SYSBOOT 
performs the calculation. 

1. The first pages of system address space, containing the system service 
vectors and file system performance statistics blocks, have their size ac­
counted for in the assembly-time parameter MMG$C_SPTSKEL, defined 
in module SPTSKEL: 

SVAS(sptskel) = 6 (F.10) 

The file system performance statistics data area is less than one page 
long. However, access protection is on a per-page basis. Part of the first 
page of the area reserved for the null process and swapper kernel mode 
stacks falls into the remaining part of this area and thus has a protection 
of UREW (the protection applied to the statistics area). The remainder of 
the stacks area is URKW. 

2. The area that contains the SYS.EXE image, the RMS image, and the sys­
tem message file has its size determined by the SYSBOOT parameter 
SPTREQ. There must be enough extra pages in this area to map the 1/0 
adapters, to reserve a system virtual page for each device unit whose 
driver requests one, and to map the mass storage control protocol (MSCP) 
server on a VAXcluster System with local disks served to VAXcluster 
members. Other uses of this area include a buffer for mount verification 
and a buffer for the pattern to be written to a disk file, which must be 
erased when it is deleted. 

If there are any SPTEs required for mapping by PFN for real-time de­
vices, the requested number (SYSBOOT parameter REALTIME_SPTS) is 
added to system virtual address requirements: 

SVAS(sptreq) = SPTREQ + REALTIMLSPTS (F.11) 

After the size of the SPT is calculated and rounded up to the next page 
boundary, any extra pages acquired are added to the pool of available 
SPTEs. 



Table F-3 Detailed Layout of Variable System Virtual Address Space 

Item 1 

Mapping for 1/0 adapters 

Connect to interrupt pages 

System disk driver page 

Mount verification buffer 

Erase pattern buffer 

Erase pattern page table 

Global Location2 

Factors That 
Affect Size3 

MAPPED TOWARD INCREASING VIRTUAL ADDRESSES BY EXE$INIT 

@(@MMG$GLSBICONF)4 External adapters 

RBM$L_SPTFRELin REALTIMLSPTS 
real-time SPT bitmap5 

UCB$L_SVPN in .system 1 page 
disk UCB5 

1 page 

@EXE$GLERASEPB 1 page 

@EXE$GLERASEPPT 1 page 

Protection 

KW 
No access6 

KW 

KW 
KW 
KW 

MAPPED TOWARD INCREASING VIRTUAL ADDRESSES BY THE STACONFIG PROCESS7 

Other driver pages 

RMS image 

System message file 

UCB$LSVPN in UCBs5 Number of units KW 

MAPPED TOWARD INCREASING VIRTUAL ADDRESSES BY THE SYSINIT PROCESS 

@MMG$GLRMSBASE 

@EXE$GLSYSMSG 

Size of RMS image 

Size of file 

UR 

UR 

Pageable 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

MAPPED TOWARD INCREASING VIRTUAL ADDRESSES BY STARTUP AND SYSTARTUP COMMAND PROCEDURES 

Other driver pages 
MSCP server data 

MSCP server 

Pool of available 
system pages 

(continued) 

UCB$LSVPN in UCBs5 

@SCS$GLMSCP - 200 

@SCS$GL_MSCP 

Number of units 
1 page 

Size of image 

UNMAPPED SYSTEM VIRTUAL ADDRESS SPACE 

@B00$GLSPTFREL5 

@B00$GLSPTFREH5 

SPTREQ 

KW 
KW 
EW 

No access 

No 
No 

No 



'O V:l 
.i:::. ...... 

N 
.i:::. ~ 

Q.. 
V:l 

'a ,.... 

Table F-3 Detailed Layout of Variable System Virtual Address Space (continued) 
a 
s:::. 
1:1 

Factors That i:::i... 

ltem 1 Global Location2 Affect Size3 Protection Pageable "i:I ....... 

MAPPED TOWARD DECREASING VIRTUAL ADDRESSES BY SYSBOOT $ 
i-;· ,.... 

Restart parameter @EXE$GLRPB · 1 page URKW No 
i:: 
~ 

block ;:t.. 
PFN database @PFN$A_BASE Everything ERKW No i:::i... 

~ Paged pool @MMG$GLPAGEDYN PAGEDYN ERKW Yes ~ 
C'l 

Nonpaged pool @MMG$GL_NPAGEDYN NPAGEVIR ERKW No C'l 

LRP lookaside list @IOC$GLLRPSPLIT LRPCOUNTV, ERKW No ~ 
s:::. 

LRPSIZE (") 
~ 

IRP lookaside list -@EXE$GLSPLITADR IRPCOUNTV ERKW No C'l 

SRP lookaside list @IOC$GLSRPSPLIT SRPCOUNTV, ERKW No 
SRPSIZE 

No access guard page 1 page No access 

Interrupt stack @EXE$GLINTSTKLM INTSTKPAGES ERKW No 

No access guard page @EXE$GLINTSTK 1 page No access 

System control block @EXE$GL_SCB CPU configuration ERKW No 

Balance slot area @SWP$GLBALBASE BALSETCNT, ERKW Yes, no8 

Size of PHD 

System header @MMG$GLSYSPHD SYSMWCNT, ERKW No 
GBLSECTIONS 



Table F-3 Detailed Layout of Variable System Virtual Address Space (continued) 

ltem 1 

System page table 

Global page table 

End of system space 

Global Location2 

Factors That 
Affect Size3 

MAPPED TOWARD DECREASING VIRTUAL ADDRESSES BY SYSBOOT 

@MMG$GL_SPTBASE 

@MMG$GL-GPTE 

@MMG$GLMAXSYSVA 

Everything 

GBLPAGES. 

Protection 

ERKW 

URKW 

Pageable 

No 

Yes9 

1The sizes of the pieces of system space listed in this table depend on the values of specific SYSBOOT parameters or on the 
particular. device and memory configuration. Their starting addresses are stored in global locations. 

2Numbers in address expressions are hexadecimal. If a global location is not preceded by the symbol <fi, its value is the address of 
the area in question. If a global location is preceded by the symbol@, its value is an address that contains the address of the area in 
question. 

3Sizes are expressed in decimal numbers: 
4MMG$GL_SBICONF is the address of an array of longwords. Each array element contains the system virtual address of the first 

page that maps 1/0 addresses for that adapter. The number of elements in the array is contained in the global EXE$GL_NUM­
NEXUS. 

5This location does not contain a system virtual address. Rather, it contains a system virtual page number. 
6The pages set aside for connect to interrupt drivers are mapped "no access" as part of initialization. When one of these SPTEs is 

allocated in response to specific requests, its protection is altered. 
70n a member of a VAXcluster System, SYSINIT creates the STACONFIG process. The STACONFIG process autoconfigures 

local disks and SCS port devices. 
8The PHDs that reside in the balance slot area are a part of the process working set to which they are associated. Although 

portions of the PHD do not page, the physical pages locked down in this manner are accounted for in process working sets and do 
not count toward the executive's use of memory. 

9Global page tables are pageable. However, if a global page table page contains at least one valid global PTE, then that page is 
locked into the system working set. 



Size of System and P1 Virtual Address Spaces 

946 

3. The restart parameter block (RPB) is always one page long. In the nota­
tion of Figure F-2, this is expressed by the following equation: 

SVAS(rpb) = 1 (F.12) 

The single page required for the RPB is not counted when determining 
the initial size of the SPT. It is assumed that page rounding or one of the 
approximations will add the single SPTE required to map the RPB. 

4. The number of pages in the PFN database is discussed in Section F.2.2. 
5. The space reserved for paged pool depends on the SYSBOOT parameter 

PAGEDYN. The parameter expresses the pool size in bytes and is trun­
cated to the next smallest page boundary to give the pool size in pages. 
SYSBOOT modifies the parameter so that the next bootstrap operation 
will reflect the truncated pool size. 

PAGEDYN 
SVAS(paged_pool) = 512 (F.13) 

6. The space reserved for nonpaged pool is the sum of the size of the 
nonpaged variable length list and the sizes of the lookaside lists. The 
SYSBOOT parameter NPAGEVIR determines the maximum size of the 
variable length list. The size of each lookaside list is determined by the 
size of its request packets and the maximum number of packets in each 
list. The size of each request packet is rounded up to a 16-byte boundary, 
the granularity of pool allocation. For simplicity, this rounding is not 
shown in the two equations that follow. The constant IRP$C_LENGTH, 
rounded, is 208. 

NPAGEVIR 
SVAS(nonpaged_pool) = 512 

(SRPSIZE x SRPCOUNTV) + 511 
+ 512 

(IRP$C_LENGTH x IRPCOUNTV) + 511 
+ 512 

(F.14) 

[(LRPSIZE + 76) x LRPCOUNTV] + 511 
+ 512 

Note that the size of the nonpaged variable length list is truncated to the 
next smallest page boundary; the size of each lookaside list is rounded up 
to the next page boundary. 

Enough virtual address space must be reserved for the maximum sizes 
of each list. The following equation represents the sum of the initial sizes 
of the lists. During system operations, each list can be expanded up to its 
maximum size. 



F.2 System Virtual Address Space 

NPAGEDYN 
PHYS(nonpaged_pool) = 512 

(SRPSIZE x SRPCOUNT) + 511 
+ 512 

(F.15) 

(IRP$C_LENGTH x IRPCOUNT) + 511 
+ 512 

[(LRPSIZE + 76) x LRPCOUNT] + 511 
+ 512 

7. The SYSBOOT parameter INTSTKPAGES is the size of the interrupt 
stack in pages: 

SVAS(inLstack) = INTSTKPAGES (F.16) 

In calculating the total size of the SPT, the guard pages (protection set to 
no access) at either end of the interrupt stack are not counted. These 
pages cause access violation exceptions (actually an interrupt stack not 
valid processor halt) on either stack overflow or stack underflow. 

8. The size of the system control block (SCB) is CPU-dependent. All proces­
sors have, at a minimum, the one-page architecturally defined SCB (see 
Figures 4-1 and 5-2): 

-The VAX-11/780, VAX-11/782, and VAX-111785 have only the one 
page of architecturally defined SCB. 

-The VAX-111730, Micro VAX I, and Micro VAX II have a second page for 
dispatching UNIBUS or Q-bus interrupts. 

-The VAX-11/750 has one additional page for each UNIBUS interface on 
the system. This results in either a two-page or three-page SCB. 

-The VAX 8200 and VAX 8300 have an additional page for each VAXBI 
UNIBUS adapter. 

-The VAX 8500, VAX 8550, VAX 8700, and VAX 8800 have a 32-page 
SCB to support the theoretical maximum number of directly vectored 
adapters. 

-The VAX 8600 and VAX 8650 have a four-page SCB to support the 
maximum configuration of four synchronous backplane interface (SBI) 
adapters. 

SVAS(scb) =a number between 1 and 32 (F.17) 

9. The area devoted to balance slots constitutes more than half of system 
virtual address space in typical configurations. Its size depends on the 
SYSBOOT parameter BALSETCNT and the size of a PHD in pages, calcu­
lated in Section F. l. The constant size of balance slots makes this a triv­
ial calculation: 

SVAS(balance_slots) = BALSETCNT x PHD(pages) (F.18) 

947 



Size of System and Pl Virtual Address Spaces 

The motivation behind constant size balance slots is explained in Chap­
ter 14. 

10. The system header involves a calculation similar to the size of the PHD, 
described in the previous section. However, there is no optimization 
technique for empty pages, because there is no large variation in working 
set sizes. There is also no need for the analog to PHD page arrays because 
the system header does not describe an object that swaps. The size of the 
SPT, the system analog to process page tables, is calculated separately 
from the rest of the system header, which has a simple dependence on 
two SYSBOOT parameters. 

The only system header components are the system equivalent to the 
WSL and the PST in the PHD. The system equivalents are the system 
WSL and the global section table. The SYSBOOT parameters that control 
their sizes are SYSMWCNT and GBLSECTIONS. 

(PHD$K_LENGTH + (4 x SYSMWCNT)) 

SVAS(sysphd) = + (32 x GBLS:~TIONS) + 511 (F.19) 

The system section table contains section table entries not only for all 
global sections but also for three system sections: the system image it­
self, the RMS image, and the system message file. 

11. The size of the SPT depends on the sizes of the other pieces of system 
address space. The calculation of its size is discussed in Section F.2.2. 

12. The last simple calculation of a portion of system virtual address space 
involves the size of the global page table, governed by the SYSBOOT 
parameter GBLPAGES: 

SVAS( ) = GBLPAGES + 127 
gpt 128 (F.20) 

F.2.2 System Page Table and the PFN Database 

948 

The PFN database contains a description of each page of physical memory. 
However, it does not contain information about the nonpaged portions of 
system space. Because the PFN database is a nonpaged part of system space, 
its size depends on itself. However, the situation is more complicated. The 
SPT, also nonpaged, maps the PFN database. Thus, the size of the PFN data­
base depends on its own size in two different ways. 

Chapter 14 describes the PFN database. Depending on the amount of physi­
cal memory present on the system, the PFN database contains either 18 or 22 
bytes of information for each page of physical memory it describes. If the 
global variable MMG$GW _BIGPFN contains the value zero, there are 18 
bytes of information; if it contains the value 1, there are 22 bytes of informa­
tion. (Chapter 14 describes how this number is determined.) The value 



F.2 System Virtual Address Space 

PFN _SIZE in the following equation represents either 18 or 22: 

SVAS(pfn) = PFN_SIZE x (PHYSICA~;2 NO_PFN_DATA) + 511 (F.2l) 

The value PHYSICAL represents the size of physical memory: 

PHYSICAL= minimum (size of physical memory, PHYSICALPAGES) 

(F.22) 

NO_PfN_DATA represents the nonpaged portions of system space that are 
not accounted for in the PFN database: 

NO_PFN_DATA = SVAS(nonpaged_exec) 
+ SVAS(pfn) 
+ PHYS(nonpaged_pool) 
+ SVAS(inLstack) 
+ SVAS(scb) 
+ SVAS(sysphd) 
+ SVAS(spt) 

(F.23) 

The nonpaged portion of the SYS.EXE image, SVAS(nonpaged_exec), is a sub­
set of SVAS(sptreq). Its size is variable, depending on the size of the paged 
portion of SYS.EXE: 

SVAS(nonpaged_exec) = @MMG$GL_PGDCOD 
- MMG$A_ENDVEC 

(F.24) 

Notice that the PFN database depends on its own size explicitly (through the 
NO_PFN _DATA term) and also implicitly through the size of the SPT 
(Equation F.25). 

In a similar fashion, the size of the SPT depends on its own size explicitly 
and implicitly through the size of the PFN database: 

SVAS( ) = THLREST + SVAS(spt) + SVAS(pfn) + 127 
spt 128 (F.25) 

THE_REST represents all contributions to system address space except for 
the SPT and the PFN database. 

THLREST = SVAS(sptskel) 
+ SVAS(sptreq) 
+ SVAS(rpb) 
+ SVAS(paged_pool) 
+ SVAS(nonpaged_pool) 
+ SVAS(inLstack) 
+ SVAS(scb) 
+ SVAS(balance_slots) 
+ SVAS(sysphd) 
+ SVAS(gpt) 

949 



Size of System and Pl Virtual Address Spaces 

F.2.3 Approximation Used by SYSBOOT 

For some large values of either VIRTUALPAGECNT or physical memory 
size, an iterative calculation for the sizes of these two quantities does not 
converge but rather oscillates about a stable solution. 

To avoid this problem, a simplification in the calculation is made. The 
number of SPTEs set aside for the PFN database does not take into account 
the fact that the pages occupied by the nonpaged executive are not accounted 
for in the PFN database: 

SYAS( f ) = (PFN_SIZE x PHYSICAL)+ 511 
p n 512 (F.26) 

This relation replaces Equation F.21 in the calculation of the size of the SPT. 
It also greatly simplifies Equation F.25, because the SVAS(pfn) term no longer 
depends on SVAS(spt). Instead, SVAS(pfn) is a constant. 

Because Equation F.26 errs on the high side in allocating SPTEs for the PFN 
database, the number of SPTEs set aside for the SPT does not use Equation 
F.27 iteratively. Instead, there is a single pass on calculating the size of the 
SPT: 

SYAS(spt,O) = THLRES~2~ SYAS(pfn) (F.27) 

SYAS( ) = THLREST + SVAS(pfn) + SYAS(spt,O) + 127 
~t l~ (F.28) 

Because physical pages are not allocated for the PFN database until the SPT 
size has been calculated, there is no large waste of physical memory. The 
only effect of these two approximations might be one more physical page 
allocated for the SPT than is absolutely necessary. The allocation of an extra 
page only occurs on systems with very large amounts of memory in the first 
place, so the loss is practically unnoticed. 

F.2.4 Renormalization of SPTREQ 

950 

The rounding of the size of the SPT to the next highest page boundary can add 
extra SPTEs to those required to map the entire system. After SYSBOOT has 
calculated the result of Equation F.28, it maps SYS.EXE beginning at the low 
address end of system address space (80000000). It maps the dynamic portion 
of system space beginning at the high address end. 

Any pages left over after this mapping are put into the pool of SPTEs lo­
cated by B00$GL_SPTFREL and BOO$GL_SPTFREH. As SPTEs are needed 
for further mapping (for example, by SYSINIT to map RMS and the system 
message file or by SYSGEN when loading drivers that require a system vir­
tual page number), these pages are taken from the pool. Once the entire sys­
tem is mapped, any extra pages (as a result of rounding or an overestimate of 
the SPTREQ parameter) remain in the pool of SPTEs. 



F.3 

F.3 Physical Memory Requirements of VAX/VMS 

PHYSICAL MEMORY REQUIREMENTS OF VAX/VMS 

Once the sizes of the various pieces of system address space have been calcu­
lated, it is possible to list the total physical memory requirements of the 
executive, that is, the number of pages that are not available for user 
processes. 

F.3.1 Physical Memory Used by the Executive 

Table F-4 lists each piece of the nonpaged executive and either its size in 
pages or the number of the equation that describes how its size is computed. 
This initial sum is the total memory requirement of the nonpaged executive 
code and data tables. Note that Equation F.15 only accounts for the initial 
sizes of the nonpaged pool lists. As pools expand, this number increases, with 
Equation F.14 as its upper limit. The paged executive (see Table F-4) also 
requires physical memory. However, it is reasonable to assume that the sys­
tem working set is full at all times, so that the physical memory require­
ments of the paged executive are simply SYSMWCNT pages. 

NONPAGED = SVAS(nonpaged_exec) 
+ SVAS(rpb) 
+ SVAS(pfn) 
+ PHYS(nonpaged_pool) 
+ SVAS(inLstack) 
+ SVAS(scb) 
+ SVAS(sysphd) 
+ SVAS(spt) 

(F.29) 

Two other items must be taken into account when calculating the number 
of physical pages used by the executive. The SYSBOOT parameters FREELIM 
and MPW _LOLIM set low-limit thresholds on the number of pages on the 
free and modified page lists. These parameters should be included when cal­
culating the number of available physical pages: 

MEMORY= NONPAGED 
+ SYSMWCNT 
+ FREELIM 
+ MPW_LOLIM 

AVAILABLE= PHYSICAL - MEMORY 

(F.30) 

(F.31) 

An additional item to be considered is the Files-11 XQP. This image is 
shared in the Pl space of each process. If the SYSBOOT parameter 
ACP _XQP _RES is 1 (its default value), the XQP is mapped as a resident 
global section, which means that all its shareable pages are permanently resi­
dent. For VAX/VMS Version 4.4, a resident XQP contributes approximately 
120 pages to the total memory requirements. 

951 



Size of System and P1 Virtual Address Spaces 

952 

Table F-4 Division of System Virtual Address Space into Nonpaged and Paged Pieces 

Item Size1 

The following portions of system address space are permanently mapped by 
SYSBOOT. The physical pages that they occupy are not accounted for in the 
PFN database. 

Nonpaged portion 
of executive image 

PFN database 

Nonpaged pool 

Interrupt stack 

System control block 

System header 

System page table 

@MMG$GLPGDCOD 
- MMG$A_ENDVEC 

Equation F.26 

Equation F.15 

Equation F.16 

Equation F. l 7 

Equation F.19 

Equation F.28 

The following portions of system address space are permanently mapped. 

Mount verification buffer 

Erase pattern buffer 

Erase pattern page table 

MSCP server 

1 page 

1 page 

1 page 

Size of MSCP image, @(@SCS$GLMSCP) 

The following are the pageable portions of the executive. Their total memory 
cost can never exceed SYSMWCNT. 

Paged executive data 

Paged executive routines 

RMS image 

System message file 

Paged pool 

Global page table pages 

1 page 

MMG$AL_PGDCODEN 
- @MMG$GLPGDCOD 

Size of RMS image (205 pages) 

Size of system message file (284 pages) 

Equation F.13 

Equation F.20 

The following portions of system address space do not require physical memory 
accounted for in Equation F.28. 

XDELTA, INIT, and BUGCHECK 
1/0 space mapping 

SVPNs for disk drivers 

Balance slot area 

Usually not mapped 
110 addresses 

1/0 addresses or double mapping 

PHO pages and page table pages are charged 
to process working sets 

1If a global location is not preceded by the symbol@, its value is the address of the area in 
question. If a global location is preceded by the symbol @, its value is an address that 
contains the address of the area in question. 



F.3 Physical Memory Requirements of VAX/VMS 

By working back from Equation F.31, it is possible to obtain the number of 
available physical pages in terms of the contents of a SYSGEN parameter file 
and one more input parameter, the size of physical memory. 

F.3.2 System Processes 

When attempting to assess the total memory required by the system, one 
more factor must be taken into account. All memory resident system pro­
cesses require a number of pages equal to their respective working set sizes. 
The following processes are considered to be system processes: 

• Job controller 
• Print symbionts, if any 
• Error logger format process (ERRFMT) 
• Operator communication process (OPCOM) 
• Magnetic tape ACPs, if any 
• Network ACP (NETACP), if present 
• Remote terminal ACP (REMACP), if present 

In addition, on a node that is a member of a VAXcluster System, there are 
several other system processes: 

• Cluster cache server process 
• Cluster server process 
• Cluster device configuration process 

The amount of memory required by these processes cannot be calculated in 
closed form, as the executive's memory requirements are, for several reasons: 

• The memory consumed by a process is its working set size. Automatic 
working set size adjustment causes this process attribute to vary over time 
(assuming, of course, that the process in question reaches its working set 
limit, a reasonable assumption for system processes). The working set of 
any process in the system is readily available from the Monitor Utility. 

• Sharing confuses the issue. However, the DCL command SHOW SYSTEM 
lists the physical memory used by each process in the system. 

• System processes can be outswapped, temporarily reducing the physical 
memory requirements of those processes to zero. 

Because physical memory requirements of system processes vary over time 
and can be easily obtained from a utility such as MONITOR or with the 
SHOW SYSTEM command, they are not included in any equations in this 
appendix. However, their requirements should be taken into account when 
any type of configuration calculation is made. This appendix is provided as a 
tool for calculating the memory requirements of the executive, a number 
that is not readily available. 

953 



Size of System and P1 Virtual Address Spaces 

F.4 

954 

SIZE OF Pl SPACE 

Many of the pieces of Pl space have predetermined sizes, based on the con­
tents of module SHELL in the executive. This module includes a skeleton Pl 
page table that is used to set up an initial Pl page table when a process is 
created. 

Some pieces of Pl space are dynamically configured, with sizes that are 
determined by a variety of techniques. Table F-5 lists the pieces of Pl space 
and how the size of each is determined. The following list includes details 
about each dynamic portion of Pl space. Like Pl space itself, the list moves 
toward lower virtual addresses. 

1. All of the pieces of Pl space from the VAX DEBUG dynamic memory to 
the RMS data pages have their sizes determined by assembly-time pa­
rameters in module SHELL. These pieces are implicitly mapped by the 
swapper when the skeleton Pl page tables are copied from the shell pro­
cess at the time that the process is created. 

2. The Pl window to the PHO includes all of the PHO, except for page table 
pages (see Table F-1). The empty pages are included in the Pl window. 
Section F.l relates the size of the PHO to the relevant SYSBOOT para­
meters. 

3. There are SYSBOOT parameter CHANNELCNT elements in the chan­
nel control block (CCB) table. Each CCB is 16 bytes. The global location 
CTL$GL_CCBBASE points to the high address end of the table. A partic­
ular CCB is identified by its negative byte displacement from the con­
tents of CTL$GL_CCBBASE. 

4. The process allocation region is a Pl space dynamic memory pool (see 
Chapter 3). Its size in pages is determined by the SYSBOOT parameter 
CTLPAGES. 

5. The process I/O segment contains RMS data structures describing "pro­
cess permanent" files, those which can and usually do remain open 
across image activations. Its size is determined by the SYSBOOT parame­
ter PIOPAGES. 

6. The SYSBOOT parameter IMGIOCNT determines the default number of 
pages that are created by EXE$PROCSTRT for the image 1/0 segment, 
the RMS impure area for files opened during the execution of a specific 
image. 

The default number of image 1/0 segment pages can be overridden for a 
specific image by including the following line as a part of the link time 
option file: 

IOSEGMENT = n 

If the IOSEGMENT option specifies more pages than the IMGIOCNT 
parameter, the image activator allocates an alternate image I/O segment 
the size specified by the IOSEGMENT. 



Table F-5 Detailed Layout of Pl Space 

Factors That 
Item Global Location1 Affect Size2 Protection Owner Pageable 

MAPPED BY TIIE IMAGE ACTIVATOR 

Low address end of @(@CTL$GLPHD 
Pl space + PHD$1-FREP1VA) 

User stack STACK link uw u Yes 

option 

Extra user stack pages 2 pages uw u Yes 

Extra image I/O IOSEGMENT UREW E Yes 
segment link option 

Boundary between @CTL$GLCTLBASVA3 

process-permanent 
and image-specific 
Pl space 

MAPPED BY THE DCL COMMAND SET MESSAGE 

Per-process message @CTL$GLPPMSG Size of UR E Yes ~ 

section section -1:::. 

MAPPED BY LOGINOUT Vi 
t::;· 
(1) 

CLI symbol table @(CTL$AG_CLIDATA + 10) CLISYMTBL SW s Yes 0 -CLI command tables @CTL$AG_CLITABLE Image size UR s Yes '"" ..... 
CLI image @CTL$AG_CLIMAGE Image size UR s Yes 

~ 
\() !::> 
(Jo (") 

(Jo (continued) (1) 



'O VJ 
CJ-i ~· 
°' ~ 

Q., 
VJ 

~ ..... 

Table F-5 Detailed Layout of Pl Space (continued) 
s 
$::) 

Factors That 
t:::s 
1::1... 

Item Global Location1 Affect Size2 Protection Owner Pageable "i:1 ..... 
MAPPED BY EXE$PROCSTRT s >; • 

..... 
Files-11 XQP data and @(@CTL$GLF1 lBXQP + 18) KW K Yes, no4 s:: 

$::) 

stack ..... 
Files-11 XQP image @(@CTL$GLF1 lBXQP + 10) Image size ER E Yes, no4 

~ 
1::1... 

Image 1/0 segment @(PIO$GQ_IIODEFAULT + 4) IMGIOCNT UREW K Yes ~ 
~ 

Process 1/0 segment PIOPAGES UREW K Yes 
Cl) 
Cl) 

Process allocation CTLPAGES UREW K Yes ~ 
region $::) 

(") 

Channel control block @CTL$GLCCBBASE5 CHANNELCNT UREW K Yes ~ 
Cl) 

table 
Initial end of Pl space @MMG$GLCTLBASVA6 

for each process in 
this system 

FIXED SIZE PORTION-DEFINED IN SHELL 

Pl window to PHD @CTL$GLPHD Size of the URKW, K No 
PHD ERKW 

RMS data areas PIO$GLFMLH 6 pages UREW E Yes 
Per-process common CTL$A_COMMON - 800 4 pages uw K Yes 

for users 
Per-process common CTL$A_COMMON 4 pages uw K Yes 

for DIGITAL 



Table F-5 Detailed Layout of Pl Space (continued) 

Factors That 
Item Global Location1 Affect Size2 Protection Owner !'_ageable 

FIXED SIZE PORTION-DEFINED IN SHELL 

Compatibility mode CTL$AG_CMEDATA 2 pages uw K Yes 
data pages 

VMS user-mode data CTL$GL_DCLPRSOWN I page uw K Yes 
page 

Not currently used 2 pages No access K 

Security audit data NSA$T_IDT 3 pages KW K Yes 
pages 

Image activator context CTL$GLIAFLINK l page UREW E Yes 
page 

Generic CLI data pages CTL$AL CLICALBK 12 pages URSW s Yes 

Image activator scratch IAC$ALIMGACTBUF 8 pages UREW E Yes 
pages 

Debugger context pages 4 pages uw u Yes 

Vectors for user- CTL$A_DISPVEC 2 pages UREW K Yes 
written system 
services and ~ 

.i:::. 
messages 

Image header buffer MMG$IMGHDRBUF I page URSW E Yes V:l ....... 

KRP lookaside list CTL$GLKRP 8 pages· URKW K Yes 
N 
(';) 

No access guard page I page No access K 0 -Kernel stack expansion 4 pages No access K "" ...... 
pages 

~ 
'-0 ::::. 
Ch (") 

'-I (continued) (';) 



\Q 
(Ji 
Oo Table F-5 Detailed Layout of Pl Space (continued) 

Factors That 
Item Global Location 1 Affect Size2 Protection Owner Pageable 

FIXED SIZE PORTION-DEFINED IN SHELL 

Kernel stack CTL$GLKSTKBAS 3 pages SRKW K No 

Executive stack CTL$GL_KSPINI 16 pages SREW E Yes 

Supervisor stack @(CTL$ALSTACK + 4)7 32 pages URSW s Yes 

System service vectors PlSYSVECTORS 5 pages UR K No 

Reserved for system 11 pages No access K 
service vector 
expansion 

Pl pointer page CTL$GL_ VECTORS 1 page URKW K No 

VAX DEBUG dynamic @(CTL$GQ_DBGAREA + 4) 128 pages uw u Yes 
memory 

1Numbers in address expressions are hexadecimal. If a global location is not preceded by the symbol@, its value is the address of the 
area in question. If a global location is preceded by the symbol@, its value is an address that contains the address of the area in question. 

2Sizes are expressed in decimal numbers. 
3Global location CTL$GL_CTLBASVA contains the address of the boundary between the image-specific portion of Pl space (deleted at 

image exit by routine MGM$IMGRESET) and the process-permanent portion of Pl space. 
4The Files-11 XQP stack and some of its data are not pageable. Those pages are locked into the process's working set list. If the Files-11 

XQP is mapped as a resident global section, none of it pages. Otherwise, most of it pages, but those pages that are accessed at elevated IPLs 
are locked into the working set list. 

5CTL$GL_CCBBASE points to the high address end of the channel control block table. 
6Global location MMG$GL_CTLBASVA contains the lowest address in Pl space at system initialization, when EXE$PROCSTRT runs. 

As a CLI and other dynamic portions of Pl space, such as a process-permanent message section, are added, location CTL$GL_ CTLBASVA 
is updated to reflect the changes. 

7Global location CTL$AL_STACK is the address of a four-longword array whose elements contain the initial values of the four 
per-process stack pointers. An array element is indexed by access mode. 



F.4 Size of Pl Space 

7. In VAX/VMS Version 4, the file system is implemented as procedure­
based code that runs in process context. The size of the space required 
is determined partly by Fl lBXQP.EXE, the size of the image. 
EXE$PROCSTRT maps the Files-11 Extended QIO Processor (XQP) into 
the Pl space of each process. It then calls initialization code within the 
XQP. The initialization code creates additional Pl space for use as an 
impure area and a private kernel stack. ' 

8. The LOGINOUT image maps the selected command language inter­
preter (CLI) into Pl space for interactive and batch jobs. (A merged image 
activation accomplishes this mapping.) The size of the CLI image deter­
mines how much space is taken up by the CLI. 

9. The SYSBOOT parameter CLISYMTBL determines the number of de­
mand zero pages that are created by LOGINOUT for the CLI symbol 
ta bk 

10. Two extra pages are allocated for the user stack by the image activator. 
These pages are not used for the user stack. Instead, they are at a higher 
virtual address than the initial value of the user stack pointer. 

These pages allow the operating system to recover if the user stack is 
corrupted. 

11 .. The size of the user stack is determined by the following option in an 
options file at link time: 

STACK = n 

The default user stack size is 20 pages. 
Because the stack is automatically expanded by the system's access 

violation handler when the user stack overflows, there is little need for 
using this option. One possible use might be for an image that requires a 
large amount of stack space but cannot afford the overhead required for 
automatic stack expansion at run time. 

959 



960 

Appendix G 

VAX CPU Designations 

Most parts of VAX/VMS are independent of CPU type. There are, however, 
certain CPU-specific components. These components have names that con­
tain CPU designations in the positions shown as xxx or yyy. They include the 
following: 

• The set of macros $PRyyyDEF 
• The set of macros $10yyyDEF 
• The loadable images SYSLOAxxx.EXE 

The macro $PRDEF, in SYS$LIBRARY:LIB.MLB, defines symbolic names 
for the processor registers that are common to all types of VAX processors. 
For each CPU type, a second LIB.MLB macro, $PRyyyDEF, defines symbolic 
names for the CPU's additional processor registers. 

The SYS$LIBRARY:LIB.MLB $10yyyDEF macros define the layout of 1/0 
space for each CPU. Table G-1 shows the CPU designation for each CPU 
type. 

Table G-1 VAX CPU Designations 

yyy SYSLOAxxx System Types 

UVl SYSLOAUVl .EXE MicroVAX I 

UVl SYSLOAWS l.EXE VAXstation I 

UV2 SYSLOAUV2.EXE MicroVAX II 

UV2 SYSLOAWS2.EXE VAXstation II 

UV2 SYSLOAWSD.EXE VAXstation 11/GPX 

410 SYSLOA4 l 0.EXE MicroVAX 2000 

410 SYSLOA41W.EXE VAXstation 2000 

730 SYSLOA 730.EXE VAX-11/730, VAX-11/725 

750 SYSLOA750.EXE VAX-11/750 

780 SYSLOA 780.EXE VAX-11/780, VAX-11/782, VAX-11/785 

790 SYSLOA790.EXE VAX 8600, VAX 8650 

SSS SYSLOA8SS.EXE VAX 8200, VAX 8300 

8NN SYSLOA8NN.EXE VAX 8500, VAX 8550, VAX 8700, VAX 8800 



VAX CPU Designations 

The loadable SYSLOA images contain support for CPU-specific implemen­
tation details, such as machine check exceptions, memory and bus error in­
terrupts, 1/0 adapter initialization, and console terminal support. The 
SYSLOA image names and the names of their CPU-specific source 
modules contain a CPU designation. Certain VAX processors (such as the 
MicroVAX II) support sufficiently different console terminals that a differ­
ent SYSLOA image is required for each type of console terminal. Table G-1 
lists the names of the SYSLOA images. 

961 





Index 

$ADJSTK system service, 407 
$ADJWSL system service, 41S, 418 
$ALLOC system service, 467, 468 
$ASCEFC system service, 271 
$ASCTIM system service, 814 
$ASSIGN system service, 472 
$BINTIM system service, 814 
$BRDCST system service, SlS 
$BRKTHRU system service, 27S, SOS, SlS 
$CANCEL system service, 496 
$CHKPRO system service, 787 
$CLRAST system service, 1S9, 7S7 
$CLREF system service, 276 
$CMEXEC system service, lOS, 213 
$CMKRNL system service, 213 
$CNTREG system service, 409 
$CRELNM system service, 788 
$CRELNT system service, 790 
$CRELOG system service, 794 
$CREMBX system service, 291, 499 
$CREPRC system service, S49, 624 
$CRETVA system service, 406 
$CRMPSC system service, 410 
$DALLOC system service, 467, 469 
$DASSGN system service, 230, 478 
$DCLCMH system service, 82 
$DCLEXH system service, 604 
$DELLNM system service, 792 
$DELLOG system service, 792 
$DELMBX system service, S04 
$DELPRC system service, 16S, 614 
$DELTVA system service, 409 
$DEQ system service, 30S 
$DERLMB system service, 182 
$DGBLSC system service, 413 
$ENQ system service, S6, 293, 302 
$ENQW system service, 227 
$EXIT system service, 164, 281, 603, 60S 
$EXPREG system service, 407 
$FAO system service, 814 
$FAOL system service, 814 
$FORCEX system service, 164, 281 
$GETDVI system service, 27S 
$GETJPI system service, 162, 27S, 808 

special kernel mode AST, 810 
wildcard support, 811 

$GETLKI system service, 27S, 308 
$GETMSG system service, 804 
$GETQUI system service, 27S, 800 
$GETSYI system service, 27S 

operation of, 812 
wildcard support, 813 

$GETTIM system service, 2S l 
$HIBER system service, 228, 279 
$IMGACT system service, S82 
$IMGFIX system service, S97, S99 
$LCKPAG system service, 329, 423 
$LKWSET system service, 329, 422 
$MGBLSC system service, 413 
$NUMTIM system service, 814 

$PURGWS system service, 422 
$PUTMSG system service, 806 
$QIO system service, 116, 168, 230, 286, 

480, 48S 
$QIOW system service, 227 
$READEF system service, 276 
$RESUME system service, 228, 281 
$RUNDWN system service, 607 
$SCHDWK system service, 251, 261, 267, 

280 
$SETEF system service, 27S 
$SETIME system service, 2Sl, 2S6, 2S8 
$SETIMR system service, 180, 2Sl, 261 
$SETPRA system service, 728 
$SETPRI system service, 282 
$SETPRN system service, 283 
$SETPRT system service, 424 
$SETPRV system service, 613 
$SETRWM system service, 230, 283 
$SETSFM system service, 213 
$SETSSF system service, 214 
$SNDACC system service, 801 
$SNDERR system service, 803 
$SNDJBC system service, 27S, 798, 800, 801 
$SNDSMB system service, 802 
$SUSPND system service, 16S, 228, 279, 280 
$SYNCH system service, 227 
$TRNLNM system service, 287, 773, 774, 

782, 788 
$TRNLOG system service, 602, 794 
$ULWSET system service, 424 
$UNWIND system service, 94 
$UPDSEC system service, 27S, 400, 414 
$WAITFR system service, 227, 758 
$WAKE system service, 280 
$WFLAND system service, 227, 274 
$WFLOR system service, 227, 274" 

Abnormal image termination, 641 
ACB !AST control block), 906 

contents of, 150 
Access control list See ACL 
Access modes 

handlers used by, 105 
and memory management, 18 

Access rights block See ARB 
Accounting manager 

send message to, 801 
ACL !Access control list), 906 

layout of, 907 
ACP !Ancillary control process), 467 
Adapter 

device type, 933, 934, 935 
I/O initialization, 701 
support for powerfail, 733 

Adapter configuration, 110 
Adapter control block See ADP 
Adapter power 

external failure of, 732 
.ADDRESS 

963 



Index 

964 

relocation fixups, 597, 599 
Address Relocation Fixup system service, 

597, 599 
Address space, 5, 23 

creation of, 405 
deletion of, 408 

Addressing mode 
unusual instruction and, 828 
and VAX instruction set, 826 

Adjust Stack system service, 407 
Adjust Working Set Limit system service, 

415, 418 
ADP (Adapter control block), 466, 906 

layout of, 907 
AGGREGATE statement, 844 
Allocate Device system service, 467, 468 
Allocation 

devices, 467, 468 
of dynamic memory, 23 
of fixed length pool, 50 
of nonpaged pool, 55 
of paged pool, 48 
of variable length pool, 48 

AME (Application Migration Executive), 574 
ARB (Access rights block), 906 

layout of, 908 
Arithmetic exceptions, 81 
ASCII character strings 

conversion support, 813 
ASCII output string, 814 
ASMP See Asymmetric multiprocessing 
Assign 1/0 Channel system service, 472, 499 
ASSUME macro, 824 
AST (Asynchronous system trap) 

argument list, 158 
attention, 166, 167, 168 
control block, 150, 906 
creating an, 151 
data structures, 149 
delivering an, 153 
delivery interrupt, 144, 155 
delivery of power recovery, 729 
exit path, 159 
hardware components, 147 
1/0 completion, 515 
1/0 completion special kernel mode, 495 
mailbox driver, 169 
notification of mailbox requests, 535 
out-of-band, 166, 169, 170 
piggyback special kernel mode, 163 
power recovery, 163 
process control block fields, 149 
process deletion, 614, 616 
processor register, 148 
queuing to a process, 152 
REI instruction, 14 7 
special kernel mode, 160 
system use of normal, 163 
TAST, 169 
unwinding, 102 

AST control block See ACB 
ASTEXIT system service, 159 
Asymmetric multiprocessing (ASMP) 

attached processor states, 743 
design goals, 735 

hardware configurations, 736 
hooks in, 740, 741 
initialization, 7 44 
scheduling, 751 
software components, 739 
VAX-11/782, 736 
VAX 8300, 738 
VAX 8800, 738 

Asynchronous system trap See AST 
ATTACH (DCL command), 631 
Attached processor 

$CLRAST system service, 757 
$WAITFR system service, 758 
executing a process, 755 
kernel mode system services, 756 
quantum end, 759 
removing a process, 760 
selecting a process, 753 
states, 743 
timeout of, 750 
transition to kernel mode, 756 

Attention AST, 166 
deli very of, 16 7 
flushing list, 168 
mailbox driver, 169 
terminal driver, 168, 169 

Automatic working set list adjustment, 419 

Backing store addresses 
modified pages, 396 

Bad page list, 341 
BAK array 

in PFN database, 339 
Balance set slot area, 888 
Balance slots, 351 

arrays, 352 
equal size of, 353 

Batch jobs, 622 
LOGINOUT, 630 
unsolicited card reader input, 625 

BITFIELD statement, 846 
BLINK array 

in PFN database, 342 
BLISS, 899 
Boot block programs, 654 
BOOT58, 654 
Bootstrap 

command files, 651 
commands to boot VAX processors, 652 
control flags, 677, 678 
debugger, 602 
device driver, 676 
file operations, 678 
1/0 subroutines, 676 
of MicroVAX I, 658 
of MicroVAX II, 660 
processor-independent, 670, 671 
processor-specific initialization, 648 
system initialization, 64 7 
of VAX-11/730, 649 
of VAX-111750, 652 
of VAX-11/780, 655 
of VAX-11/785, 655 
of VAX 8300 family, 662 
of VAX 86x0 family, 664 



Bootstrap (continued) 
of VAX 8800 family, 666 

Bootstrap device codes See BTD 
Bootstrap programs 

elimination of, 832 
motivation for two, 669 
primary, 668, 672 
secondary, 679, 683, 684, 712, 713 

Breakthrough message 
completion action, 514 
completion checks, 515 
finding a terminal, 5ll, 512 
initial processing, 506 
performing, 513 
writing, 5ll 

Breakthrough message descriptor block See 
BRK 

Breakthrough system service, 275, 505 
BRK (Breakthrough message descriptor 

block), 908 
Broadcast system service, 515 
BTD (Bootstrap device codes), 929, 930 
Buffer pages 

double mapping of, 545 
Buffered 110, 488, 495 
BUG_CHECK (macro), 182 
BUGCHECK (software bugcheck routines) 

data areas described by, 849 
Bugchecks, 182 

from executive and kernel modes, 184 
mechanism for, 182 
miscellaneous information, 849 
from user and supervisor modes, 183 

Cache blocks 
logical name table name, 781 

Call frame condition handlers, 85, 88 
Call stack 

unwinding, 93 
Cancel 1/0 on Channel system service, 496 
Card reader 

1.1I1solicited input to start batch jobs, 625 
Catch-all condition handler, 104, 571, 807 
Cathedral window, 354 
CCB (Channel control block), 471, 908 
CDDB (Class driver data block), 908 

layout of, 909 
CDRP (Class driver request packet), 909 
CEB (Common event block), 910 

description of, 270 
master and slave, 290 

Change mode 
dispatching, 198, 199 
instructions, 195 
system services, 213 
-to-executive dispatcher, 204 
-to-kernel dispatcher, 204 

Change-Mode to Executive system service, 
213 

Change Mode to Kernel system service, 213 
Channel control block See CCB 
Channel request block See CRB 
Channels 

assigning and deassigning, 471, 4:78 
processing last, 479 

Index 

and terminal controllers, 530 
Check Access Protection system service, 787 
CI (Computer interconnect), 519 

interrupt service routine, 124 
port driver (PADRIVER), 523 

Class driver data block See CDDB 
Class driver request packet See .CDRP 
Clear AST system service, 75 7 
Clear Event Flag system service, 276 
CLI (Command language interpreter) 

commands handled by, 638, 639 
condition handlers, 106 
data pages for, 891 
image activation, 597 
and image initialization, 634, 635, 637 
image termination, 640 
merged image activation, 575 

Clocks 
hardware, 251 
interrupt service routines, 263 
interval, 252, 759 
time-of-year, 254 

COLPG wait state, 233, 402 
COM scheduling state, 225 . 
Command language interpreter See CLI 
Command processing loop, 635 
Common event block See CEB 
Common event flags, 270, 277 

clusters in shared memory, 288 
in shared memory, 366 

Communication 
event flags, 286 
global sections, 287 
interprocess, 283 
interprocessor interrupt, 760 
lock management system services, 286 
logical names, 287 
mailboxes, 286 
master and slave CEBs, 290 
operator, 802 
and process control, 269 
with system processes, 797 

COMO scheduling state, 224, 225 
Compatibility mode 

context page, 892 
image activation, 596 

Condition handlers 
action of, 93 
call frame, 85, 88 
catch-all, 104, 571, 807 
CLI, 106 
common call site, 90 
default, 104 
establishing, 86 
last chance, 88 
search for, 87 
used by DCL or MCR, 106 

Condition handling, 69 
LIB$SIGNAL, 84 
LIB$STOP, 84 

Condition values, 897 
CONINTERR (Connect-to-interrupt driver), 

129 
Connect-to-interrupt mechanism, 129 
Console block storage device 

965 



Index 

966 

I/O, 544 
Console devices 

data transfer between VAX CPU and, 543 
Console subsystems, 539, 540, 541, 542, 718 

MicroVAX I, 541 
MicroVAX II, 541 
power recovery, 718 
VAX-ll/730, 540 
VAX-ll/750, 541 
VAX-ll/780, 541 
VAX-ll/785, 541 
VAX 8300 family, 542 
VAX 86x0, 542 
VAX 8800 family, 542 

Console terminal 
interrupt dispatching, 543 

CONSTANT statement, 845 
Constants 

symbolic, 929 
Context 

hardware, 3 
software, 3, 4, 5 

CONTINUE IDCL command), 642 
Contract Region system service, 409 
Control C processing See CTRL/C 
Control Y processing See CTRL/Y 
Control region, 24 
Conventions 

naming, 895 
use of registers, 83 l 

Copy-on-reference 
global, 377 
page faults, 371, 375 

CPU-dependent code, 838 
entry points for, 863 
initialization, 648 
types of, 699 

CPU designations, 960, 961 
CRB (Channel request block), 910 

layout of, 911 
Create and Map Section system service, 365, 

410 
Create Logical Name system service, 794 
Create Mailbox system service, 291, 499 
Create Process system service, 549, 624 

control flow of, 550 
Create Virtual Address Space system service, 

377, 406 
Creation 

of address space, 377, 405, 406 
of fork process, 13 7 
of global sections, 410, 411 
of logical names, 788 
of logical name table, 790 
of mailboxes, 499 
of mailboxes in local memory, 500 
of mailboxes in shared memory, 502 
of private section, 410 
of processes, 549 

CTRL/C 
notification, 168 
processing, 166, 16 7 

CTRL/Y 
notification, 168 
processing, 166, 16 7, 64 l 

CUR scheduling state, 224 

Data management 
concepts of, 9 

Data structure definitions 
location of, 904 
overview of, 904 

Data structure type definitions See DYN 
Data structures 

AST, 149 
for drivers linked with operating system, 

849 
dynamic, 43, 52 
error log, l 78 
executive, 905 
fields, 844 
fork process, 136 
global pages, 345 
for images, 576 
I/O, 464 
known file resident image header, 581 
for known images, 578 
lock manager, 292 
logical name, 77 4 
memory management, 321 
page file, 353 
PFN, 337 
scheduler, 852 
shared memory, 361 
swap files, 353, 441 
swapping, 35 l 

Date 
initialization of, 255 
maintaining, 257 

DCL (DIGITAL command language) 
CLI initialization, 635 
command processing loop, 635 
condition handler, 106 

DDB (Device data block), 910 
layout of, 911 

DDT (Driver dispatch table), 463, 910 
layout of, 912 

Deadlocks 
conversion of, 31 l 
detection of, 311 
handling, 309 
initiating a search for, 310 
multiple resource, 311, 315 
unsuspected, 314 

Deallocate Device system service, 467, 469 
Deallocation 

devices, 467, 469 
of fixed length pool, 5 7 
of nonpaged pool, 57 
of paged pool, 50 
of variable length pool, 50 

Deassign I/O Channel system service, 230, 
478 

DEBUG IDCL command), 104, 642 
Debugger 

in image activation, 602 
Declare Error Log Mailbox system service, 

182 
Declare Exit Handler system service, 604 
DEC/Shell, 634 



DELETE 
AST procedure, 616 
kernel mode AST, 616 

Delete Global Section system service, 413 
Delete Logical Name system service, 794 
Delete Mailbox system service, 504 
Delete Process system service, 614 
Delete Virtual Address Space system service, 

409 
Deletion 

of address space, 408 
of bootstrap programs, 832 
of logical name, 792 
of mailboxes, 504 
page, 408 
of processes, 614 

Delivery 
of attention ASTs, 167 
of AST interrupt, 155 
of ASTs, 153 
of out-of-band ASTs, 171 

Demand zero pages, 32 7 
page faults, 377 

Device data block See DOB 
Device drivers 

bootstrap, 676 
class, 523, 524 
components, 463 
errors, 177 
VO, 462 
mailbox driver, 534 
map files, 838 
network, 531 
notification of powerfail, 727 
null, 531 
port, 523 
powerfail action, 731 
pseudo, 531 
remote, 531, 532 
routines, 463 
tables, 463 
terminal, 525 

Device-independent· preprocessing, 481 
DEVICEDAT (Executive device data) 

data areas described by, 849, 850 
Devices 

allocation and deallocation, 46 7 
console, 543 
informational services for, 517 
nontemplate, 473 
notification of powerfail, 72 7 
remote, 476 
template, 473, 474 

Digital Storage Architecture IDSA), 519 
Direct 1/0 

in memory management, 359 
and scatter/gather, 359 
and swapper, 444 

DIRPOST 
common completion, 495 

Disk drivers 
class, 525 
dynamic bad block handling, 521 
ECC error recovery, 519 
offset recovery, 521 

Dispatchers 
change mode, 198, 199 
change-mode-to-executive, 204 
change-mode-to-kernel, 204 
hardware interrupt, 107 
per-process system service, 210 
RMS, 204 
system service, 192 
user-written, 213 

Double mapping 
of EXE$INIT by SYSBOOT, 690 

DPT !Driver prolog table), 463, 850, 910 
layout of, 912 

DR32 interrupt service routine, 126 
Driver dispatch table See DDT 
Driver prolog table See DPT 
Drivers See Device drivers, Disk drivers 
DYN !Data structure type definitions), 930, 

931, 932, 933 
Dynamic data structures, 52 

and storage areas, 43 
Dynamic memory, 43 

allocation, 23 
nonpaged, 53, 887 
paged, 887 

ECC error recovery 
disk drivers, 519 

END statement, 846 
END-MODULE statements, 846 
Enqueue Lock Request system service, 56 
Equivalence name string, 765 
ERRFMT process 

overview of, 180 
waking, 180 

Error log . 
data structures, 178 
mailbox, 182 

Error logger, 176, 178, 803 
ERRORLOG module, 860 
Errors 

detected by EXE$QIO, 485 
detected by RMS, 207 
device driver, 177 

Event flags 
clusters in shared memory, 366 
common, 270, 271, 272, 277 
in communication, 286 
local, 270 
reading and clearing, 276 
setting, 2 7 5 
shared memory, 288 
system services, 269 
waiting, 273, 274 

Event reporting, 236 
Exceptions 

arithmetic, 81 
dispatching, 80 
handler for traceback, 603 
hardware, 72 
and interrupts, 18, 19 
in kernel or executive mode, 105 
service routines, 76 
vectored handlers, 87 

EXE$ASCEFC, 271 

Index 

967 



Index 

968 

EXE$ASSIGN, 472 
EXE$ASTRET, 159 
Executive 

initialization of, 689, 692 
physical memory used by, 688, 951 
placing code in nonpaged, 834 

Executive data 
dynamically allocated, 887 
processor-specific, 889 
statically allocated, 84 7 
structures, 905 
SYSCOMMON, 855 
writable area, 848 

Executive mode 
bugchecks, 184 
exceptions, 105 

EXE$CRELNM, 788 
EXE$CRELNT, 790 
EXE$CREPRC, 549 
EXE$DELLNM, 792 
EXE$DELPRC, 614 
EXE$DEQ, 305 
EXE$ENQ, 302 
EXE$EXCMSG procedure, 807 
EXE$EXIT, 605, 606 
EXE$FORK, 137 
EXE$GL_ABSTIM, 255 
EXE$GLPAGEDYN, 62 
EXE$GL TODR, 255 
EXE$GQ_SYSTIME, 255, 257 
EXE$GQ_TODCBASE, 255 
EXE$HWCLKINT, 263 
EXE$IMGFIX, 600 
EXE$IMGSTA, 602 
EXE$INIT, 689 

double mapping by SYSBOOT, 690 
EXE$NAMPID, 278 
EXE$POWERFAIL, 717 
EXE$PROCSTRT, 566 
EXE$RESTART, 726 
EXE$RUNDWN, 60 
EXE$SCHDWK, 262 
EXE$SETPRI, 282 
EXE$SNDJBC, 799 
EXE$SUSPND, 280 
EXE$SWTIMINT, 264 
EXE$TRNLNM, 788 
EXIT (DCL command), 642 
Exit handlers, 604, 606 

declaration, 604 
image termination, 640 
list processing, 606 

Exit system service, 164, 281, 603, 605 
Expand Region system service, 377, 407 
External adapters 

MicroVAX I, 113 
MicroVAX II, 113 
VAX-11/730, 111 
VAX-111750, 111 
VAX-11/780, 112 
VAX-11/782, 112 
VAX-11/785, 112 
VAX 8300 family, 114 
VAX 86x0 family, 115 
VAX 8800 family, 114 

Facility names, 902 
Facility prefix table, 902 
FCB (File control block), 913 

layout of, 914 
FDT (Function decision table), 463 

110, 491 
read processing, 537 
routines, 484 
virtual 110, 492 
$QIO completion by FDT routine, 485, 486 

File control block See FCB 
File operations 

bootstrap, 678 
File system 

performance monitor data, 847 
Fixups 

address relocation, 597, 599 
FKB (Fork block), 913 
FLINK array 

in PFN database, 342 
Force Exit system service, 164, 281 
Fork 

creation of, 13 7 
data structures, 136 
dispatching, 137 
IPL, 34, 139 
processing, 36, 135 
stalling, 138 

Fork block See FKB 
Formatted ASCII Output system service, 814 
FPG scheduling state, 229, 233, 401 
Free page list, 341 
FREEGOAL (SYSBOOT parameter), 429 
Function decision table See FDT 

G" (Addressing mode) 
address relocation fixups, 597, 599 

Get Device/Volume Information system 
service, 2 75 

Get Job/Process Information system service, 
275, 808 

Get Lock Information system service, 275 
Get Message system service, 804 
Get Queue Information system service, 275, 

800 
Get Systemwide Information system service, 

275, 811, 812 
Get Time system service, 251 
Global entry point names, 896, 897 
Global locations 

examining with SDA, 839 
Global page table, 348, 888 
Global page table entry See GPTE 
Global page table index, 327 
Global pages 

data structures, 345 
-file sections, 412 
and outswap, 444 . 
page fault for copy-on-reference page, 377, 

383 
page fault for global read-only page, 3 79, 

453 
page fault for read/write page, 382 
page fault for page-file section page, 384 
page faults, 3 79 



Global pages (continued) 
process PTEs for, 350 

Global section descriptor See GSD 
Global section table entry See GSTE 
Global section table index See GSTX 
Global sections 

in communication, 287 
creation of, 410, 411 
ISD and page table entries for, 588 
shared memory, 291, 363, 412 

Global variable names, 897 
GPTE (Global page table entry), 347 
GSD (Global section descriptor), 345, 913 
GSTE (Global section table entry), 346 
GSTX (Global section table index), 379 

Hardware 
ASMP, 736 
interrupts, 107 
process control block, 20 
protection, 21 

Hardware context 
definition of, 3 
process control block, 921 
in rescheduling, 242 

Hashing 
logical name algorithm, 780 

Hibernate system service, 228, 279 

ICB (Image control block), 578 
initialization order, 594 

IDB (Interrupt dispatch block), 913 
layout of, 915 

nID (Image header), 576 
Image activation, 573, 574 

of command language interpreter, 597 
of compatibility mode image, 596 
debugger, 602 
end processing, 591 
example of, 595 
implementation of, 582 
Install Utility, 578 
known images, 578, 596 
merged, 575 
overview, 575 
privileged shareable images, 575 
/SHARE qualifier, 579 
shareable images, 589 
simple main image, 582 
at system initialization time, 574 

Image Activator system service, 582, 584, 
585 

Image control block (ICB), 578 
initialization order, 594 

Image dump facility, 572 
Image header (IHD), 576 
Image initialization 

and command language interpreters, 634, 
635, 637 

proper order of, 593 
Image section descriptor See ISD 
Image startup 

traceback handler, 104 
transfer vector array, 601 

Image Startup system service, 602 

Images 
activation of known, 596 
data structures for, 5 76 
definition of, 6 
exit, 603 
initialization, 573 
interrupted, 642 
known, 578 
linked with SYS$SYSTEM: SYS.STB, 821 
PO-only, 575 
p-ause capability, 641 
privileged, 9, 10, 819, 820 
privileged shareable, 575 
protection of, 821 
rundown of, 607, 608, 609 
shareable, 589, 599 
simple main, 582 
termination, 640, 641 

Indirect message sections, 806 
Initialization 
. of asymmetric multiprocessing, 744 

of date and time, 255 
of the executive, 692 
image, 573 
of nonpaged pool regions, 53 
of operating system, 689 
in process context, 701 
processor-specific, 648 
system bootstrap, 647 

Input symbiont, 625 
Install Utility, 5 79 

in image activation, 578 
Instruction set, 826 

and addressing modes, 826 
techniques for increasing speed, 826 

Inswap 
candidate selection, 450 
example of operation, 454 
final processing, 45 7 
operation, 450 
process header, 450 
selection of, 431 

Interactive jobs, 622 
LOGINOUT, 626 

Interprocessor communication, 283 
with the MA780, 288 

Interprocessor interrupt, 760 
Interrupt dispatch block See IDB 
Interrupt priority level See IPL 
Interrupt stack, 888 
Interrupts 

AST, 144 
AST delivery, 155 
CI, 124 
connect-to-interrupt mechanism, 129 
console terminal, 543 
dispatching, 108 
DR32, 126 
and exceptions, 18, 19 
hardware, 107 
interprocessor interrupt communication, 

760 
interval clock, 263, 759 
IPL 3, 752 
IPL 5, 751 

Index 

969 



Index 

970 

MA780, 126, 128 
MASSBUS, 120 
multiprocessing, 751, 752 
nested powerfail, 730 
rescheduling, 142, 241, 246 
restrictions, 115 
service routines, 16, 115, 134 
software See Software interrupts 
software timer, 264, 759 
UNIBUS and Q22 Bus, 116 
VAXBI, 122 
vectors, 111 

Interval clock, 252 
interrupt service routine, 263, 759 

I/O 
aborting the request, 486 
adapter initialization, 701 
asymmetric multiprocessing, 735 
bootstrap, 676 
buffered, 495 
cancel, 496 
completing the request, 486 
console block storage device, 544 
database, 464 
device drivers, 462 
direct, 359 
FDT processing, 491 
logical name translation, 461 
logical request, 491 
pager supports, 389 
performing the breakthrough message, 513 
postprocessing, 37, 142, 161, 487, 488 
processing, 525 
queuing, 48 7 
read request processing, 538 
request packets, 467 
subsystem components, 462 
swapper, 359 
swapper data structures, 440 
synchronizing access, 46 
system services, 461 
virtual request, 491 

I/O completion 
AST, 515 
buffered, 487, 488 
direct, 489 
normal, 488 
in process context, 161 
special kernel mode AST, 495 
system, 488 

I/O request packet See IRP 
I/O subsystems 

concepts, 8 
requests, 10 

IOxxx jl/O address space definitions), 930 
IOC$IOPOST 

final steps in, 49.0 
processing, 494 

IPL !Interrupt priority level) 
definitions, 930 
device, 34 
elevated, 31 
fork, 34, 139 
used for synchronization, 33 

IPL 2, 35 

interrupt service routine, 155 
IPL 3 

interrupt service routine, 246 
ASMP interrupt service routine, 752 

IPL 4 
interrupt service routine, 488 

IPL 5 
interrupts, 144 
ASMP interrupt service routine, 751 

IPL 6 jIPL$_QUEUEAST), 35, 139 
IPL 8 jIPL$_SYNCH), 32, 139 
IPL 11, 139 
IPL 12 

interrupt service routine, 145 
IPL 15 

interrupts, 144 
IPL 24 jlPL$JiWCLK), 34 
IPL 31 jIPL$_PQWER), 33 
IRP jI/O request packet), 467, 916 

layout of, 915 
ISD !Image section descriptor), 586, 916 

JIB IJob information block), 916 
layout of, 917 

Job controller 
process creation, 622 
services supported by, 797 

Job information block See JIB 

Kernel mode 
ASTs, 160 
bugchecks, 184 
exceptions, 105 
system services on the attached processor, 

756 
transitions from, 753 
transitions to the attached processor, 756 

KFD jKnown file directory), 579, 916 
layout of, 580 

KFE (Known file entry), 579, 917 
layout of, 580 

KFPB jKnown file pointer block), 582, 918 
layout of, 583 

KFRH jKnown file resident image header), 
581, 918 

Known file device and directory block See 
KFD 

Known file entry block See KFE 
Known file pointer block See KFPB 
Known file resident image header See KFRH 
Known images 

activation of, 596 
data structures for, 5 78 

Last chance condition handler, 88 
LDPCTX instruction, 245 
LEF scheduling state, 228, 233, 274, 275 
LEPO scheduling state, 228, 233, 274, 275 
LIB$ESTABLISH, 87 
LIB$REVERT, 87 
LIB$SIGNAL, 84 
LIB$STOP, 84 
Listing files, 822 
LKB jLock block), 296, 918 
LNM$ALMUTEX, 782 



LNMB (Logical name block), 775, 779, 918 
LNMC (Logical name table name cache 

block), 918 
LNMHSH (Logical name hash table), 777, 

779, 919 
LNMSUB module, 787 
LNMTH (Logical name table header), 776, 

919 
LNMX (Logical name translation block), 775, 

919 
Loadable routines, 699 
Local device 

assignment, 473 
Local event flags, 2 70 
Local memory 

creation of mailboxes in, 500 
Lock block See LKB 
Lock conversions, 304 
Lock database 

accessing, 299 
VAXcluster System, 300 

Lock ID table, 297 
Locking 

code into memory, 833 
pages into memory, 423 
pages into external images, 834 
pages into working set, 422 

Lock management, 42 
accessing lock database, 299 
in communication, 286 
data structures, 292 
granting locks, 306 
handling deadlocks, 309 
lock blocks, 296 
lock conversions, 304 
lock ID table, 297 
resource hash table, 294 
system-owned locks, 308 
system services, 302 
victim selection, 316 

Lock Pages in Memory system service, 329, 
423 

Lock Pages in Working Set system service, 
329 

Logical I/O request, 491 
Logical name block See LNMB 
Logical name database 

synchronization of access to, 782 
Logical name hash table See LNMHSH 
Logical name table header See LNMTH 
Logical name table name cache block See 

LNMC 
Logical name tables 

characteristics of, 7 68 
creation of, 790 
default, 770 
name cache blocks, 781 
name resolution, 785 
relationship with directory table, 778 

Logical name translation, 461 
characteristics of, 772 
dimensions of, 773, 774 

Logical name translation block See LNMX 
Logical names, 23, 765 

characteristics of, 7 66 

in communication, 287 
creation of, 788 
data structures, 77 4 
deletion of, 792 
hashing algorithm, 780 
searching for, 782 
superseded system services, 794 

LOGINOUT 
batch jobs, 630 
image, 626 
interactive jobs, 626 
and SUBMIT command, 623, 625 

LOGOUT operation, 643 
LONGWAIT interval, 436 
Lookaside list 

allocation from, 50, 56 
description of, 61 
IRP, 46, 47 
KRP, 65 
LRP, 46, 47 
PQB, 46, 47, 63 
SRP, 46, 47 

MA780 
ASMP hardware configurations, 736 
global sections in shared memory, 412 
interprocessor communication, 288, 361 
interrupts, 126 
interrupts on VAX-11/782, 128 

Machine check 
mechanism, 188 
recovery blocks, 190 

Macros, 895, 896, 898 
ASSUME, 824 
BUG_CHECK, 182 
facility-specific public names, 896 
level of, 824 
$PRDEF, 934, 960 
RELCHAN, 530 
REQCHAN, 530 
REQCOM, 487 
RPTEVT, 236 
system, 896 
system service and RMS service, 896 
$xyzDEF, 822 

Magnetic tape drivers, 522 
Mailbox driver (MBDRIVERJ, 534 

attention ASTs, 169 
set mode requests, 534 

Mailboxes 
in communication, 286 
creation of, 499 
deletion of, 504 
error log, 182 
in local memory, 500 
read request, 535, 537 
in shared memory, 291, 366, 502 
specifying access protection, 535 
termination in process deletion, 618 
write requests, 535, 536 

Main image, 574, 582 
Map files 

device driver, 838 
other, 838 
use of, 836 

Index 

971 



Index 

972 

Map Global Section system service, 413 
MAS SB US 

adapter interrupt service routine, 120 
interrupt service routine, 120 

MBA$INT, 122 
MBDRIVER (Mailbox driver), 534, 850 
MBX (Shared memory mailbox control 

block), 366, 919 
MCR (Monitor console routine), 634 

condition handler, 106 
Memory management 

and access modes, 18 
concepts of, 6, 7, 8 
data areas, 851, 854 
data structures, 321 
direct I/O, 359 
I/O requests, 392, 393 
modified page writer page table arrays, 358 
process header, 321 
protection, 21 
requests, 10 
scatter/gather, 359 
swapper, 358, 439 
swapping data structures, 351 
turning on, 689, 691 
wait states, 228, 233 

Message files 
finding, 804 
system services, 804 

Message sections, 575 
indirect, 806 
searching a located, 805 

MicroVAX I 
console subsystem, 541 
external adapters, 113 
initial bootstrap operation, 658 
power recovery, 722 
register input to, 659 
VMB.EXE, 659 

MicroVAX II 
console subsystem, 541 
external adapters, 113 
initial bootstrap operation, 660 
power recovery, 723 
register input to, 661 
VMB.EXE, 662 

Modified page writer, 438 
clustering, 395 
completion, 399 
example of, 399 
operation of, 395 
PTE array, 360, 361 

Modified pages 
backing store addresses, 396 
list, 341 

MODULE statement, 841 
MPS$LOAD, 747 
MPS$SCHSCND, 753 
MTX (Mutex), 919 
Multiple active signals, 90 

unwinding, 97 
Multiple power failures, 729 
Multiple resource deadlocks, 311, 315 
Multiprocessing 

asymmetric, 735 

hooks in, 740, 741 
initialization, 7 44 
interrupt service routine, 751, 752 
turning off, 750 
turning on, 7 4 7 

Mutexes 
description of, 3 7 
locking for read access, 39 
locking for write access, 39 
unlocking, 40 
wait state, 40 

Mutual exclusion semaphore See MTX 
MWAIT scheduling state, 229 

Naming conventions, 895 
NOT (Nexus adapter device type), 933, 934, 

935 
Network device drivers, 531 
Nexus (adapter) device type See NOT 
Nonpaged dynamic memory See Nonpaged 

pool 
Nonpaged executive 

placing code in, 834 
Nonpaged pool, 887 

allocation of, 55 
arrays, 701 
deallocation of, 5 7 
expansion of, 58 
initialization of, 53 
synchronization, 59 
use of by EXE$INIT, 693 
uses of, 53, 61 

Null device driver (NLDRIVER), 531, 850 
Null process, 17, 702 

Object data types 
naming conventions, 901 

Object rights block See ORB 
Offset recovery 

disk drivers, 521 
Operator communications, 802 
ORB (Object rights block), 919 

layout of, 920 
OSWPSCHED 

passes through, 437 
table, 434 

Out-of-band AST, 166, 169, 170 
delivery of, 171 
flushing list, 173 

Outswap, 434 
candidate selection, 442 
example of process body, 445 
global pages, 444 
operation, 442 
pages with I/O in progress, 452 
partial, 448 
process body, 442 
process header, 448, 449 
scanning during outswap, 442 

PO address space, 27 
allocation of, 26 
page tables, 322 

Pl address space, 24, 936 
data areas, 891 



Pl address space (continued) 
layout of, 25, 840 
page tables, 322 
pointer page, 889 
size of, 954 
window to the process header, 451 

Page arrays 
process header, 440 

Page deletion 
and process waits, 408 

Page fault service routine 
initial action, 369 
VO support, 389 
operation, 368 
page read completion, 594 
page reads and clustering, 390, 391 
releasing a dead page table page, 338 
skipping working set list entries, 388 
working set replacement, 386 

Page faults 
copy-on-reference page, 375 
demand zero pages, 3 77 
for global copy-on-reference pages, 383 
for global copy-on-reference section pages, 

377 
for global page-file section pages, 384 
for global pages, 3 79 
for global read-only pages, 379 
for global read/write pages, 382 
hardware action, 368 
not copy-on-reference, 371 
out of transition states, 374 
for page-file section pages, 3 77 
page location, 379 
for process-private pages, 3 70 
wait state, 401 

Page file control blocks (PFL), 353 
Page files 

backing store addresses, 396 
data structures, 353 
example of modified page write, 399 
page location, 3 79 
space allocation, 398 
use of, 358 
vectors, 354 
virtual block number, 326 

Page protection 
altering, 4 24 

Page selection 
backing store addresses, 400 

Page table entry See PTE 
Page tables 

global, 348 
global page table index, 32 7 
matching conditions, 391 
PFN database and system, 948 
process, 323, 937 
rebuilding by the swapper, 452 
releasing a dead page, 388 
system, 348 

Paged dynamic memory See Paged pool 
Paged pool, 44, 47, 48, 50, 62, 887 
Pages 

for CLI, 891 
compatibility mode context, 892 

Index 

demand zero, 327 
with direct I/O in progress, 444 
double mapping of, 545 
dynamic locking of, 835 
global copy-on-reference, 383 
global page-file section pages, 384 
located in section file, 370 
locking and unlocking, 422 
locking in memory, 423 
page location, 379 
private, 371 
process header, 938 
in transition, 32 7 
unlocking from working set, 424 

Paging 
compared with swapping, 426 
dynamics, 368 
and scheduling, 401 

Parameter files 
use by SYSBOOT, 712 
use by SYSGEN, 714 

PARAMETER module, 710 
Parameters 

conditional assembly, 929, 930 
SYSBOOT, 866, 880 
system virtual address space and 

SYSBOOT, 940 
Patch space, 886 
Pause capability 

COBOL or FORTRAN, 641 
PCB (Process of control block), 920 

layout of, 922, 923 
scheduling, 8, 219 
vector in process creation, 558 

PDAT (System process data), 849 
Performance tools 

statistics used by, 861 
Periodic system routines, 265 
PFN database, 337, 887 

BAK array, 339 
BLINK array, 341, 342 
FLINK array, 341, 342 
PTE array, 337 
REFCNT array, 342 
SHRCNT array, 343 
STATE array, 340 
SWPVBM array, 344 
and system page table, 948 
TYPE array, 341 
WSLX array, 344 

PFW scheduling state, 229, 233, 401 
PHD (Process header), 921 

configuration of, 563 
inswap, 450 
layout of, 924, 925 
outswap, 448, 449 
Pl window, 451 
page arrays, 334, 440, 938 
rebuilding by swapper, 451 
size of, 936 
swapper, 439 
unusual characteristics of, 335 
used by memory management subsystem, 321 

Physical memory 
requirements, 951 

973 



Index 

974 

used by the executive, 951 
Piggyback ASTs, 163 
PMSDAT module, 861 
Pool 

allocation of variable length, 48 
Cleallocation of variable length, 50 
dynamiC, 43, 44 
fixed length allocation, 50 
global listheads for, 46, 4 7 
nonpaged See Nonpaged pool 
paged See Paged pool 

Postprocessing See I/O postprocessing 
Powerfail 

CPU-specific registers saved at, 719 
device driver action, 731 
device notification, 72 7 
interrupt service routine, 717 
multiple, 729 
nested interrupts, 730 
process notification, 728 
sequence, 717 
support for, 733 
UNIBUS, 733 

Power recovery 
AST, 163 
console subsystem, 718 
delivering ASTs, 729 
initial step in, 719 
MicroVAX I, 722 
MicroVAX II, 723 
VAX-11/730, 720 
VAX-11/750, 721 
VAX-11/780, 721 
VAX-11/785, 721 
VAX 8300 family, 723 
VAX 86x0 family, 724 
VAX 8800 family, 724 

PQB !Process quota block), 63, 921 
contents of, 551 
layout of, 926, 927 

PR$_ASTLVL !Mode of current deliverable 
AST), 148 

Priority 
adjustment, 223 
boosts and mutex, 39 
boosts and system events, 239 
normal, 222 
real-time, 222 
scheduling, 220 

Privilege 
checks, 278, 787 
process, 21, 611, 612 

Privileged images 
introduction to, 9, 10 
and system processes, 819, 820 

Privileged shareable images, 208, 210, 575 
Process 

for attached processor, 753 
attribute changes, 282 
-based routines, 16 
communication with system, 797 
fabrication of ID, 558 
null, 702 
page tables, 440 
powerfail recovery, 728 

process ,\illta for system, 855 
removing from attached processor, 760 
rescheduling, 232 
rundown of, 607 
state change, 224 
swapper, 702 
swapper and null, 17 
system, 953 

Process allocation region, 63, 892 
Process context, 4 

initialization in, 701 
I/O postprocessing in, 161 
moving SHELL into, 562 

Process control block See PCB 
Process creation, 279, 549, 550 

context of new process, 566 
establishing quotas for, 55 7 
job controller, 622 
operation of, 550 
process ID fabrication, 558 
SHELL process, 562 

Process deletion, 279, 614 
in context of deleting process, 615 
kernel mode AST, 616 
special kernel mode AST, 165 
with subprocesses, 619, 620 
termination mailbox message, 618 

Process header See PHO 
Process priority See Priority 
Process quota block See PQB 
Process section table See PST 
Process structure, 20 
Process suspensions, 280 

kernel mode AST, 165 
Process waits 

and page deletion, 408 
Processor register definitions, 934 
Processor-dependent programs 

used to bootstrap MicroVAX I, 658 
used to bootstrap MicroVAX II, 661 
used to bootstrap VAX-11/730, 650 
used to bootstrap VAX-11/750, 653 
used to bootstrap VAX-11/780, VAX-11/ 

782, VAX-11/785, 656 
used to bootstrap VAX 8300 family, 663 
used to bootstrap VAX 86x0 family, 665 
used to bootstrap VAX 8800 family, 667 

Processor-independent bootstrap files, 670, 
671 

Process-private pages 
page faults for, 3 70 

Process-private section 
ISO and page table entries for, 587 

Process-specific executive data, 889 
Program region, 2 7 
Program section names, 847 
Protection checks, 787 
PR$_SIRR (Software interrupt request 

register), 131 
PR$_SISR !Software interrupt summary 

register), 131 
.PSECT, 847, 900 
Pseudo device drivers, 531 
PST (Process section table), 322, 325, 331, 

937 



PSTE (Process section table entry), 325, 331 
PTE (Page table entry) 

description of, 323 
process for global pages, 350 

PTE array 
modified page writer, 360, 361 
in PFN database, 337 

Public names, 895 
Public structure, 899 

constant names, 899 
definition macro names, 898 
mask names, 899 

Public symbol patterns, 895 
Purge Working Set system service, 422 
Put Message system service, 806 

Q22 Bus interrupt servicing, 116 
QUANTUM (SYSBOOT parameter), 234 
Quantum end, 234 

on the attached processor, 759 
working set adjustment, 420 

Queue I/O system service, 480, 485 
Queuing AST to a process, 152 
Quotas 

establishing for new process, 55 7 
and limits, 21 
storage areas for process, 559 
working set list, 416, 417 

Read Event Flag system service, 276 
Read-only code areas, 886 
Read-only tables, 886 
Real-time priority range, 222 
Record Management Services See RMS 
REFCNT array 

in PFN database, 342 
Register conventions, 831 
REI instruction 

in ASTs, 147 
introduction to, 18, 20 
use of, 830 

RELCHAN macro, 530 
Remote devices 

assigning a channel to, 476 
Remote terminals, 532 

RTTDRIVER, 532 
REQCHAN macro, 530 
REQCOM macro, 487 
Rescheduling 

events, 231 . 
hardware context, 242 
interrupts, 142, 241 
interrupt service routine, 246 

Resignaling 
in condition handlers, 93 

Resource block See RSB 
Resources 

control of, 20 
hash table (lock manager), 294 
wait state, 41 

Restart parameter block See RPB 
Restart routine 

operation of, 725 
prevention of infinite loops, 731 

Resume Process system service, 280, 281 

Index 

Return path 
for RMS services, 206 
for synchronous services, 207 
for system services, 204 

RMS (Record Management Services), 196, 
197, 766 

data area, 892 
dispatching, 204 
error detection, 207 
macros, 896 
return path for, 206 
wait state, 206 
writable area, 848 

Routine body, 823 
RPB (Restart parameter block), 887, 921 

contents of, 680, 681, 682 
in powerfail sequence, 717 

RPTEVT (macro), 236 
RSB (Resource block), 293, 921 
RT (Remote terminal device), 531 
RTTDRIVER (Remote terminal driver), 532 
Rundown system service, 607 
RWAST resource wait, 230 
RWMPB resource wait, 402 
RWMPE resource wait, 402 
RWSWP resource wait, 403 

Scatter/gather 
in memory management, 359 

SCB (System control block), 73, 888 
hardware interrupts, 110' 
interrupt dispatching, 110 

SCH$ASTDEL, 147 
Schedule Wakeup system service, 251, 261, 

267, 280 
Scheduling, 219 

asymmetric multiprocessing, 751 
CUR state, 224 
data, 852 
and paging, 401 
and process control, 8 
process priority, 220 
process states, 224 
requests, 11 

SCH$LOCKR, 39 
SCH$LOCKW, 39 
SCH$QAST, 152 
SCH$QEND, 235 
SCH$RESCHED, 246 
SCH$RSE, 236 
SCH$RWAIT, 41 
SCH$SWPWAKE, 238 
SCH$UNLOCK, 40 
SCH$WAIT, 232 
SDA (System Dump Analyzer Utility), 186, 839 
SDL (Structure definition language) 

commonly used statements, 841 
definitions, 904 
interpreting files, 840 
sample, 841 

Secondary bootstrap program See SYSBOOT 
Section file 

pages located in, 370 
Semaphores 

mutual exclusion, 37 

975 



Index 

976 

Send Message to Accounting Manager system 
service, 801 

Send Message to Error Logger system service, 
803 

Send Message to Job Controller system 
service, 275, 798, 800 

Send Message to Symbiont Manager system 
service, 802 

Set AST Enable system service, 283 
Set Event Flag system service, 2 75 
Set Power Recovery AST system service, 728 
Set Priority system service, 282 
Set Privilege system service, 613 
Set Process Name system service, 283 
Set Protection on Pages system service, 424 
Set Resource Wait Mode system service, 230, 

283 
Set Swap Mode system service, 283 
Set System Service Failure Exception Mode 

system service, 213, 283 
Set System Service Filter system service, 214 
Set Time system service, 251, 258 
Set Timer system service, 180, 251, 261 
SET WORKING_SET IDCL command), 418 
/SHARE qualifier, 579 
Shareable image list entry ISHL), 599 
Shareable images 

activation of, 589 
image activation, 575 
list, 599 
privileged, 208, 210 

Shareable logical name table 
UIC-based protection, 769 

Shared memory 
common data page, 363 
common event flag clusters, 288, 366 
control structures, 362 
creation of mailboxes in, 502 
data structures used with, 361 
global sections, 291, 363 
global sections in MA780, 412 
mailboxes, 291, 366 
physical layout of, 362 

Shared memory control block See SHB 
Shared memory data page See SHD 
Shared memory mailbox control block See 

MBX 
SHB !Shared memory control block), 922 
SHD !Shared memory data page), 922 
SHELL module 

data pages for CLI, 891 
Pl pointer page, 889 

Shell process, 562 
process header, 563 

SHL !Shareable image list entry), 599 
SHRCNT array 

in PFN database, 343 
Shrink process working set, 434 
SOFTINT macro, 132 
Software interrupts, 131 

hardware mechanisms, 131 
service routines, 134 
software mechanisms, 133 

Software process control block See PCB 
Software timer, 141 

interrupt service routine, 264, 759 
SPAWN IDCL command), 631 
Special kernel mode AST, 160 

$GETJPI system service, 162, 810 
$GETQUI system service, 800 
I/O postprocessing, 161, 488, 489 
piggyback, 163 
power recovery, 163 
$SNDJBC system service, 800 

SPT !System page table), 348, 689, 888 
double use of, 690 
and PFN database, 948 

SS$_ASTFLT, 81 
SS$_DEBUG, 82, 104 
SS$_PAGRDERR, 81 
SS$_SSFAIL, 81 
START/CPU IDCL command), 747 
STARTUP !System startup process), 705, 708 

initialization, 708 
site-specific, 709 

STARTUP.COM, 708 
STATE array 

in PFN database, 340 
States 

attached processor, 7 43 
computable, 225 
current, 224 
process scheduling, 224 
transition diagram, 237 
wait, 226 

Status codes, 897 
STOP IDCL command), 643 
STOP/CPU IDCL command), 750 
Structure definition language See SDL 
Structure definition sample, 841 
SUBMIT IDCL command), 623, 625 
Subprocesses 

process deletion, 619, 620 
Superseded system services, 801 
Suspend Process system service, 279, 280 
SVPCTX instruction, 242 
Swap files 

data structures, 353, 441 
use of, 356 
vectors, 354 
working set list, 439 

Swap mode 
process, 424 

Swapper 
implementation, 428 
I/O, 359 
I/O data structures, 440 
I/O paging supports, 389 
main loop, 429 
and modified page writer page table arrays, 

358 
modified page writing, 394 
outswap process, 434 
process, 17, 702 
process header, 439 
process page tables, 440 
rebuilding process he;ider, 451 
rebuilding process page tables, 452 
rebuilding the process body, 452 
rebuilding working set list, 452 



Swapper (continued) 
resolution of global read-only pages, 453 
responsibilities, 426 
selection of inswap process, 431 
shrink process, 434 
triggering events, 428 
use of memory management data 

structure, 439 
SWAPPER module, 860 
Swapping 

compared with paging, 426 
data structures, 351 

SWP$SHELINIT, 563 
SWPVBN array 

in PFN database, 344 
Symbiont manager 

send message to, 802 
Symbols 

constants, 929 
names, 844 
naming conventions, 895 
public, 895 

Synchronization, 22, 28 
error log allocation buffer, 178 
IPLs used for, 33 
nonpaged pool, 59 
paged pool, 63 

Synchronous system services 
return path for, 207 

SYSBOOT (Secondary bootstrap program) 
approximation used by, 950 
comparison with SYSGEN, 711 
detailed operation of, 684 
double mapping of EXE$INIT, 690 
functions of, 679 
information passed to INIT, 683 
movement of parameter data, 713 
parameters and virtual address space, 940 
use of parameter files by, 712 

SYSCOMMON 
miscellaneous executive data, 855 

SYSGEN (System Generation Utility), 710 
comparison with SYSBOOT, 711 
movement of parameter data, 715 
use of parameter files by, 714 

SYSINIT (System initialization process), 703 
detailed operation of, 704 
movement of parameter data, 713 
pool usage by, 704 
STARTUP process, 708 

SYSLOAVEC, 699 
SYS.MAP (system image map), 836 
SYS.STB (System symbol table), 10 

images linked with, 821 
System address space, 939 

introduction to, 23 
layout of, 840 
and SYSBOOT parameters, 940 

System control block See SCB 
System crashes, 182 
System dump file, 188 
System events 

and priority boosts, 239 
reporting, 236 

System Generation Utility See SYSGEN 

System header, 888 
and global section table entry, 346 

System initialization 
image activation, 574 
overview of, 64 7 
process, 703 
process phase of, 70 l 
STARTUP process, 708 
VAX-11/782, 744 
VAX 8300, 746 
VAX 8800, 746 

System page table See SPT 
System processes, 953 

and privileged images, 819, 820 
process data for, 855 

System services 
dispatchers, 192, 210 
event flag, 269 
filtering, 214 
formatting support, 813 
uo, 461 
lock management, 302 
logical name, 787 
macros, 896 
memory management, 404 
miscellaneous, 797 
privilegei;l shareable images, 208, 210 
process information, 808 
return path for, 204 
superseded, 801 
superseded logical name, 794 
system information, 811 
time conversion, 814 
vectors, 192, 193, 847 
wait states, 233 

System size, 936 
System UIC, 821 
Systems communication architecture (SCA), 

523 

TAST (Terminal AST block), 169, 923 
Template devices, 473, 474 
Terminal AST block See TAST 
Terminal controllers 

and channels, 530 
Terminal driver, 525 

attention ASTs, 168, 169 
full-duplex operation, 528 
type-ahead driver, 530 

Terminals 
unsolicited input, 624 

Termination 
of images, 640, 641 
mailbox message in process deletion, 618 

Time 
conversion system services, 814 
current, 255 
initialization of, 255 
maintaining, 25 7 
recalibration requests, 258 
support, 251 

Time-of-year 
clock, 254 
$SETIME readjustment requests, 259 

Timer, 141 

Index 

977 



Index 

978 

expiration, 515 
Timer queue element See TQE 
TQE (Timer queue element), 260, 265, 926 

time-related requests, 813 
timer request servicing, 265 

Traceback handler, 104 
in image activation, 603 

Transfers 
between VAX CPU and console devices, 

543 
greater than 64K bytes, 494 

Transfer vector array 
image startup, 601 

Transition states 
page faults for, 3 7 4 

Translate Logical Name system service, 287, 
461, 602, 773, 774, 788, 794 

TU58 cartridge tape drives, 649, 654 
TYPE array 

in PFN database, 341 

UCB (Unit control block), 926 
layout of, 928 

UNIBUS 
interrupt servicing, 116 
power failure, 733 

Unit control block See UCB 
Unlocking pages from working set, 424 
Update Section File on Disk system service, 

275 
Update Section system service, 400, 414 
User interface, 9 
User stack 

automatic expansion, 407 
User-written system service dispatchers, 213 

Variable length pool 
allocation of, 48 
deallocation of, 50 

VAX architecture, 12 
VAX CPU designations, 960, 961 
VAX instruction set, 13 
VAX-11/730 

bootstrap command files, 651 
console subsystem, 540 
external adapters, 111 
initial. bootstrap operation, 649 
power recovery, 720 

VAX-11/750 
BOOT58, 654 
console subsystem, 541 
external adapters, 111 
initial bootstrap operation, 652 
power recovery, 721 

VAX-11/780 
console subsystem, 541 
external adapters, 112 
initial bootstrap operation, 655 
interprocessor communication, 288, 361 
power recovery, 721 

VAX-11/782 
ASMP hardware, 736 
external adapters, 112 
interprocessor communication, 361 
interrupts, 128 

system initialization, 744 
VAX-111785 

console subsystem, 541 
external adapters, 112 
initial bootstrap operation, 655 
interprocessor communication, 288, 361 
power recovery, 721 

VAX 8300 family 
ASMP system initialization, 746 
asymmetric multiprocessing, 738 
console subsystem, 542 
external adapters, 114 
initial bootstrap operation, 662 
power recovery, 723 
processor-dependent programs used to 

bootstrap, 665 
VAX 86x0 family 

console subsystem, 542 
external adapters, 115 
initial bootstrap operation, 664 
power recovery, 724 
processor-depending programs used to 

bootstrap, 665 
VAX 8800 family 

ASMP system initialization, 746 
asymmetric multiprocessing, 738 
console subsystem, 542 
external adapters, 114 
initial bootstrap operation, 666 
power recovery, 724 

V Ax.cluster System 
lock database, 300 

Virtual address space 
creation of, 405 
definition of, 5 
deletion of, 405, 408 
introduction to, 23 
limits on space creation, 406 
Pl, 936 
system, 939 
system layout, 840 

Virtual devices, 531 
Virtual I/O 

FDT processing, 492 
request, 491 

Virtual memory 
controlled allocation of, 410 

VMB (Primary bootstrap program), 668 
control flags, 677, 678 
MicroVAX I, 659 
MicroVAX II, 662 
operation of, 672 
physical memory layouts, 673 
register input to, 675, 676 

Wait for Event Flag system services, 273, 
274, 758 

Wait states, 226 
collided page, 402 
event flag, 273 
free page, 40 l 
memory management, 228, 233 
miscellaneous, 229 
mutexes, 40 
page fault, 401 



Wait states (continued) 
placing a process in, 232 
resource, 41, 402 
special cases, 233 
system service, 233 
voluntary, 227 
with RMS requests, 206 

Wake Process system service, 279, 280 
WCB (Window control block), 927 

description of, 354 
layout of, 929 

Window control block See WCB 
Working set 

adjustment, 415 
automatic size adjustment, 419 
locking pages in, 422 
replacement, 386 
unlocking pages from, 424 

Working set list See WSL 

Working set list entry See WSLE 
WSL (Working set list), 322, 327, 937 

division of, 329 
limits and quotas, 416, 417 
rebuilding by swapper, 452 
scanning during outswap, 442 
scan of, 386 
swap file, 439 
using an empty entry, 387 

WSLE (Working set list entry) 
reusing, 388 
skipping, 388 
using an empty entry, 387 

WSLX array 
in PFN database, 344 

XDELTA 
interrupts, 144 

$xyzDEF macros, 822 

Index 

979 




	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821
	822
	823
	824
	825
	826
	827
	828
	829
	830
	831
	832
	833
	834
	835
	836
	837
	838
	839
	840
	841
	842
	843
	844
	845
	846
	847
	848
	849
	850
	851
	852
	853
	854
	855
	856
	857
	858
	859
	860
	861
	862
	863
	864
	865
	866
	867
	868
	869
	870
	871
	872
	873
	874
	875
	876
	877
	878
	879
	880
	881
	882
	883
	884
	885
	886
	887
	888
	889
	890
	891
	892
	893
	894
	895
	896
	897
	898
	899
	900
	901
	902
	903
	904
	905
	906
	907
	908
	909
	910
	911
	912
	913
	914
	915
	916
	917
	918
	919
	920
	921
	922
	923
	924
	925
	926
	927
	928
	929
	930
	931
	932
	933
	934
	935
	936
	937
	938
	939
	940
	941
	942
	943
	944
	945
	946
	947
	948
	949
	950
	951
	952
	953
	954
	955
	956
	957
	958
	959
	960
	961
	962
	963
	964
	965
	966
	967
	968
	969
	970
	971
	972
	973
	974
	975
	976
	977
	978
	979
	xBack

