
. . and Commands I
VMS Utihnes ook - Volume II
Student Workb

EY-3501E-SB-0002

The information in this docwnent is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

No responsibility is asswned for the use or reliability of software on equipment that is not supplied by
Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASS BUS
PDP
PDT
RSTS
RSX

Second Edition, December 1988

UNIBUS
VAX
VAXcluster
VMS
VT

This document was prepared using VAX DOCUMENT, Version 1.0

CONTENTS

About This Course . xvii

1 HARDWARE AND SOFTWARE OVERVIEW
1.1 INTRODUCTION . 1-3
1.2 OBJECTIVES . 1-3
1.3 THE USER ENVIRONMENT . 1-5
1.4 COIV1PONENTS OF THE HARDWARE ENVIRONMENT 1-6
1.4.1 The Central Processing Unit (CPU) . 1-6
1.4.2 The Console Subsystem . 1-6
1.4.3 Main Memory . 1-7
1.4.4 Input/Output Subsystem . 1-7
1.5 PERIPHERAL DEVICES . 1-8
1.5 .1 Terminals . 1-8
1.5.2 Printers and Printer/Plotters 1-10
1.5 .3 Disk and Tape Drives . 1-12
1.6 SYSTEM CONFIGURATIONS 1-17
1.6.1 Single-Processor Configurations 1-17
1.6.2 Multiple-Processor Configurations . 1-20
1.6.2.1 Tightly Coupled Configurations 1-21
1.6.2.2 Networks 1-22
1.6.2.3 VAX.cluster Systems 1-24
1.7 THE VMS OPERATJNG SYSTEM 1-27
1.7.1 DIGITAL Command Language 1-28
1. 7 .2 Utilities . 1-29
1.7.3 Optional (Layered) Products 1-30
1.8 THE WORKJNG ENVIRONMENT 1-31
1.8.1 The Process 1-31
1.8.2 Process Types 1-32
1.8.3 The System User Authorization File 1-33
1.9 SUMMARY 1-35
1.10 WRITTEN EXERCISE I 1-37
1.11 WRITTEN EXERCISE II 1-38
1.12 WRITTEN EXERCISE III . 1-40
1.13 WRITTEN EXERCISE III (CONT) . 1-41
1.14 WRITTEN EXERCISE IV 1-42
1.15 WRITTEN EXERCISE I-SOLUTIONS 1-43
1.16 WRITTEN EXERCISE II-SOLUTIONS 1-44
1.17 WRITTEN EXERCISE III-SOLUTIONS 1-46

iv Contents

1.18 WRITTEN EXERCISE IV-SOLUTIONS 1-47

2 GETTING STARTED
2.1 INTRODUCTION . 2-3
2.2 OBJECTIVES . 2-4
2.3 RESOURCES . 2-4
2.4 USER NAME AND PASSWORD . 2-5
2.5 BEGINNING AND ENDING A TERMINAL SESSION 2-5
2.6 DCL COMMAND FORMAT . 2-8
2.6.1 Command Line Construction . 2-9
2.6.2 DCL Features 2-14
2.6.3 Editing a DCL Command Line 2-15
2.6.3.1 The RECALL Command 2-19
2.7 GETTING HELP 2-22
2. 7 .1 Documentation Set . 2-22
2.7.2 Online Help Facility 2-22
2.8 DOCUMENTATION KITS 2-24
2.8.1 Base Set Kit 2-24
2.9 CHANGING YOUR PASSWORD 2-26
2.10 INTERPRETING SYSTEM MESSAGES 2-27
2.10.1 Correcting Errors 2-30
2.11 DISPLAYING CHARACTERISTICS OF YOUR TERMINAL, PROCESS,

AND SYSTEM 2-31
2.12 THE SHOW TERMINAL COMMAND 2-32
2.13 THE SET TERMINAL COMMAND 2-32
2.14 SUMMARY 2-35
2.15 WRITTEN EXERCISE I 2-37
2.16 LABORATORY EXERCISE I 2-39
2.17 LABORATORY EXERCISE II . 2-40
2.18 LABORATORY EXERCISE III 2-41
2.19 LABORATORY EXERCISE IV 2-42
2.20 WRITTEN EXERCISE I-SOLUTIONS 2-43
2.21 LABORATORY EXERCISE I-SOLUTIONS 2-44
2.22 LABORATORY EXERCISE II-SOLUTIONS 2-46
2.23 LABORATORY EXERCISE III-SOLUTIONS 2-47
2.24 LABORATORY EXERCISE IV-SOLUTIONS 2-48

3 CREATING AND EDITING TEXT FILES
3.1 INTRODUCTION . 3-3
3.2 OBJECTIVES 3-4
3.3 RESOURCES 3-4
3.4 CHOOSING AN EDITOR . 3-5
3.4.1 EDT Editor Utility . 3-5
3.4.1.1
3.4.1.2

Line Mode . 3-5
Keypad Mode . 3-5

Contents

3A.2
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.6.1
3.6.7
3.6.8
3.6.9
3.7
3.8
3.8.1
3.8.1.1
3.8.1.2
3.8.1.3
3.8.1.4
3.8.2
3.8.2.1
3.8.2.2
3.8.2.3
3.8.2.4
3.8.2.5
3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.9.5
3.9.6
3.9.7
3.9.8
3.9.9
3.9.10

v

The Extensible VAX Editor (EVE) . 3-6
INVOKING THE EDT EDITOR. 3-7

EDT Screen Layout . 3-7
Using EDT Help . 3-9
The EDT Keypad . 3-12
EDT File Recovery . 3-15
Ending an EDT Session . 3-16

INVOKING THE EVE EDITOR 3-17
EVE Screen Layout . 3-18
The EVE Interface . 3-19
Moving the EVE Cursor 3-21
Inserting Text in EVE . 3-23
Erasing Text 3-23
Defining an EDT-Like Keypad 3-24

Canceling an EDT-Like Keypad 3-24
Using EVE Help 3-29
File Recovery . 3-30
Ending an EVE Editing Session . 3-30

SUMMARY 3-31
APPENDIX A-EDT 3-33

Line Mode Editing 3-33
Inserting Text 3-34
Substituting Text 3-35
Moving Text from One Location to Another 3-36
Deleting Text 3-37

Using Buffers in EDT . 3-38
How to Create Buffers 3-38
Copying Text from One Buffer to Another Buffer 3-39
Copying Text from a File into a Buffer 3-39
Copying Text from a Buffer Into a File 3-39
Deleting Buffers 3-39

APPENDIX B-EVE 3-41
Inserting Text 3-41
Moving Text from One Location to Another Location 3-41
Locating Text . 3-42
Marking Locations in Text . 3-42
Replacing Text 3-43
Restoring Text . 3-44
RESTORE CHARACTER 3-44
RESTORE LINE . 3-44
RESTORE WORD 3-44

U sing Buffers in EVE . 3-45

vi

3.9.10.1
3.9.10.2
3.9.10.3
3.9.10.4
3.9.10.5
3.9.10.6
3.9.10.7
3.9.10.8
3.9.10.9
3.9.10.10
3.9.11
3.9.11.1
3.9.11.2
3.10
3.11
3.12
3.13
3.14
3.15
3.16

Contents

Using Multiple Buffers 3-46
Using Multiple Windows . 3-47
DELETE WINDOW 3-48
ENLARGE WINDOW 3-48
NEXT WINDOW 3-48
PREVIOUS WINDOW . 3-48
SHRINK WINDOW 3-49
SPLIT WINDOW . 3-49
Editing One File Using Two Windows 3-50
Editing Two Files Using Two Windows 3-50

Defining Keys . 3-51
Saving Key Definitions . 3-52
Using Key Definitions 3-52

INTRODUCTION TO THE LABORATORY EXERCISES 3-53
LABORATORY EXERCISE I (THE EDT EDITOR) 3-54
LABORATORY EXERCISE II (THE EVE EDITOR) 3-56
LABORATORY EXERCISE III (THE EVE EDITOR) 3-57
LABORATORY EXERCISE I (THE EDT EDITOR)-SOLUTIONS .. 3-59
LABORATORY EXERCISE II (THE EVE EDITOR)-SOLUTIONS . 3-62
LABORATORY EXERCISE III (THE EVE EDITOR)-SOLUTIONS . 3-64

4 COMMUNICATING WITH OTHER USERS
4.1 INTRODUCTION . 4-3
4.2 OBJECTIVES . 4-3
4.3 RESOURCES 4-3
4.4 THE HELP FEATURE OF VMS UTILITIES 4-5
4.5 THE MAIL UTILITY . 4-6
4.5 .1 Organization of Mail Messages . 4-6
4.5.2 Using the Mail Utility . 4-7
4.5.3 Reading a Message. 4-8
4.5.4 Sending a Message 4-10
4.5.5 Displaying a List of Messages 4-12
4.5.6 Deleting a Message 4-13
4.5.7 Getting Help on Mail Utility Commands 4-14
4.5.8 Exiting from the Mail Utility 4-16
4.5.9 Using Folders to Organize Messages 4-16
4.6 THE PHONE UTILITY 4-19
4.6.1 Getting Help on Phone Utility Commands 4-21
4.7 COMMUNICATING WITH OPERATORS 4-23
4.8 SUMMARY 4-25
4.9 LABORATORY EXERCISE I 4-27
4.10 LABORATORY EXERCISE II 4-28
4.11 LABORATORY EXERCISE III . 4-29
4.12 LABORATORY EXERCISE I-SOLUTIONS 4-31

Contents

4.13
4.14

5
5.1
5.2
5.3
5.4
5.4.1
5.4.1.1
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.7
5.7.1
5.8
5.8.1
5.9
5.9.1
5.9.2
5.10
5.10.1
5.10.2
5.10.3
5.11
5.11.1
5.12
5.12.1
5.12.2

vii

LABORATORY EXERCISE II-SOLUTIONS " " " " " " " " " " " " . " " 4-33
LABORATORY EXERCISE III-SOLUTION 4-34

MANAGING FILES
INTRODUCTION . 5-3
OBJECTIVES . 5-3
RESOURCES . 5-3
NAMING A FILE . 5-5

File Specifications . 5-5
Use of Ddimiters in a Local Disk File Specification 5-5

DEVICE SPECIFICATIONS . 5-7
Peripheral Devices . 5-8
Logical Names Used to Represent Device and File Specifications 5-8

DIRECTORY STRUCTURE . 5-9
The User File Directory (UFO) . 5-9
Directory Nam es in the Hierarchy . 5-10

DEFAULTS FOR FILE SPECIFICATIONS 5-12
Using Temporary Default Fields Within a Parameter 5-13

FINDING FILES AND DETERMINING THEIR CHARACTERISTICS. 5-17
Using Wildcards in File Specifications 5-24

ORGANIZING YOUR DIRECTORY STRUCTURE 5-26
Directory Names in the Hierarchy 5-27
Creating a Subdirectory 5-28

MOVING WITHIN A DIRECTORY HIERARCHY 5-30
Using the SET DEFAULT Command 5-31
Using the SHOW DEFAULT Command 5-31
Using the COPY and RENAME Commands 5-33

PROTECTING FILES IN YOUR DIRECTORY HIERARCHY 5-36
How the System Determines Access 5-37

PROTECTION MECHANISMS . 5-40
UIC-Based Protection . 5-40
Access Control Lists . 5-42

5.12.3 Creating or Modifying an Access Control List 5-42
5.12.3.1 Access Control List Entries 5-43
5.13 DETERMINING AND ALTERING FILE PROTECTION 5-45
5.14 DELETING A SUBDIRECTORY 5-49
5.15 SPECIFYING DEVICES 5-52
5.16 PROTECTING DISK AND TAPES 5-56
5.17 SUMMARY 5-57
5.18 APPENDIX A-DEVICE INFORMATION 5-59
5.19 APPENDIX B-NETWORKING INFORMATION 5-65
5.19.1 Managing Files on Another VMS System in Your Network 5-65
5.19.1.1 Methods of File Management in a Network 5-65

viii

5.19.2

5.19.2.1
5.19.3
5.19.3.1
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33

Contents

Using DCL File-Manipulation Commands in a Non-VAXcluster Network
Environment . 5-66

Two Node Specification Formats . 5-66
Using DCL File-Manipulation Commands in a V AXcluster Environment5-70

Two Cluster Device Specification Formats 5-70
WRIITEN EXERCISE I 5-73
WRIITEN EXERCISE II 5-74
WRITTEN EXERCISE III 5-75
WRIITEN EXERCISE IV 5-76
LABORATORY EXERCISE I 5-77
LABORATORY EXERCISE II 5-78
LABORATORY EXERCISE III 5-79
WRIITEN EXERCISE I-SOLUTIONS 5-81
WRITTEN EXERCISE II-SOLUTIONS 5-82
WRITTEN EXERCISE III-SOLUTIONS 5-83
WRIITEN EXERCISE IV-SOLUTIONS 5-84
LABORATORY EXERCISE I-SOLUTIONS 5-86
LABORATORY EXERCISE II-SOLUTIONS 5-87
LABORATORY EXERCISE III-SOLUTIONS 5-88

6 CUSTOMIZING THE USER ENVIRONMENT
6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.4.2.1
6.5
6.5.1
6.6
6.6.1
6.7
6.8
6.9
6.9.1
6.9.2
6.10
6.10.1
6.11
6.11.1
6.11.2
6.11.3
6.12

IN'fRODUCTION . 6--3
OBJECTIVES . 6--3
RESOURCES . 6--3
LOGICAL NAME ASSIGNMENTS . 6--5

Logical Name Tables . 6--6
Common User Operations Dealing with Logical Names 6--8

Adding Logical Names . 6--9
USING LOGICAL NAMES 6--10

Logical Name Translation . 6--10
RECURSIVE TRANSLATION . 6--11

Sample Recursive Translation . 6-12
DETERMINING THE EQUIVALENCE OF A LOGICAL NA:rvIB 6--14
DELETING LOGICAL NAMES 6--15
SYSTEM-DEFINED LOGICAL NAMES 6--17

SPECIFYING ACCESS MODES 6-19
OVERRIDING DCL TABLE NAMES 6--20

USING DCL SYMBOLS . 6--23
Deleting Symbol Definitions . 6--26

DEFINING KEYS 6--30
Displaying a Key Definition 6--32
Removing a Key Definition 6-32
Assigning Multiple Definitions to Keys 6--33

SUMMARY 6--35

Contents

6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22

7
7.1
7.2
7.3
7.4
7.4.1
7.4.2
7.5

7.5.1
7.5.2
7.5.3
7.5.4
7.6
7.7
7.7.1
7.8
7.8.1
7.8.2
7.9
7.9.1
7.9.2
7.9.3
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20

ix

WRITTEN EXERCISE I . fr-37
WRITIEN EXERCISE II 6-39
LABORATORY EXERCISE I . 6-40
LABORATORY EXERCISE II 6-41
LABORATORY EXERCISE III . 6-42
WRITTEN EXERCISE I-SOLUTIONS 6-43
WRITTEN EXERCISE II-SOLUTIONS 6-45
LABORATORY EXERCISE I-SOLUTIONS 6-46
LABORATORY EXERCISE II-SOLUTION 6-48
LABORATORY EXERCISE III-SOLUTIONS 6-49

WRITING COMMAND PROCEDURES
INTRODUCTION . 7-3
OBJECTIVES . 7-4
RESOURCES . 7-4
COMMAND PROCEDURES . 7-5

Common Uses 7-5
Developing a Command Procedure . 7-6

COMPONENTS AND CONVENTIONS 7-8
DCL Command Lines . 7-8
Data Lines. 7-8
Comments . 7-8
Labels . 7-8

LOGIN COMMAND PROCEDURE 7-11
TERMINAL INPUT/OUTPUT 7-13

Performing Terminal Input and Output 7-15
DCL SYMBOLS 7-22

Symbol Substitution 7-24
Passing Parameters to Command Procedures 7-27

CONTROLLING PROGRAM FLOW 7-29
The IF Command 7-29
Notes on the IF-THEN-ELSE Command 7-30
The GOTO Command 7-30

LEXICAL FUNCTIONS 7-34
SUMMARY 7-41
WRITTEN EXERCISE I 7-43
INTRODUCTION TO LABORATORY EXERCISES 7-45
LABORATORY EXERCISE I 7-46
LABORATORY EXERCISE II 7-47
LABORATORY EXERCISE III 7-48
LABORATORY EXERCISE IV 7-49
LABORATORY EXERCISE V 7-50
OPTIONAL LABORATORY EXERCISE 7-51
WRITTEN EXERCISE I-SOLUTIONS 7-53

x Contents

7.21 LABORATORY EXERCISE I-SOLUTION 7-55
7.22 LABORATORY EXERCISE II-SOLUTION 7-56
7.23 LABORATORY EXERCISE III-SOLUTION 7-57
7.24 LABORATORY EXERCISE IV-SOLUTION 7-58
7.25 LABORATORY EXERCISE V-SOLUTION 7-59
7.26 OPTIONAL LABORATORY EXERCISE-SOLUTION 7-61

8 USING DISK AND TAPE VOLUMES
8.1 INTRODUCTION . 8-3
8.2 OBJECTIVES . 8-3
8.3 RESOURCES . 8-3
8.4 CREATING AND USING PRIVATE VOLUMES 8-5
8.4.1 The Uses of Private Disk and Tape Volumes 8-5
8.4.1.1 Preserving Files . 8-5
8.4.1.2 Transferring Files . 8-5
8.4.1.3 Providing a Private Environment . 8-6
8.4.2 Creating Private Volumes: The Command Sequence 8-8
8.5 THE BACKUP UTILITY 8-16
8.5.1 Save-Set Specifications 8-17
8.6 USING PRIVATE VOLUMES 8-23
8.7 MAINTAINING, SHARING, AND EXTENDING PRIVATE VOLUMES 8-26
8.7.1 Protecting and Sharing Access to Volumes 8-26
8.7.2 Mounting a Volume with an Unknown Label 8-27
8.8 SUMMARY 8-29
8.9 WRITTEN EXERCISE I 8-31
8.10 WRITTEN EXERCISE II 8-32
8.11 WRITTEN EXERCISE III 8-33
8.12 WRITTEN EXERCISE IV 8-34
8.13 LABORATORY EXERCISE I 8-35
8.14 WRITTEN EXERCISE I-SOLUTIONS 8-37
8.15 WRITTEN EXERCISE II-SOLUTIONS 8-38
8.16 WRITTEN EXERCISE III-SOLUTIONS 8-39
8.17 WRITTEN EXERCISE IV-SOLUTIONS 8-40
8.18 LABORATORY EXERCISE I-SOLUTIONS 8-41

9 SUBMITTING BATCH AND PRINT JOBS
9.1 INTRODUCTION . 9-3
9.2 OBJECTIVES 9-4
9.3 RESOURCES . 9-4
9.4 PRINTING A FILE . 9-5
9.4.1 Using a Particular Printer . 9-6
9.4.2 Specifying the Characteristics of Print Jobs 9-10
9.5 OBTAINING STATUS OF QUEUES 9-12
9.6 MODIFYING A PRINT JOB 9-17
9.6.1 Deleting a Print Job 9-17

Contents

9.7
9.7.1
9.7.2
9.7.3
9.8
9.9
9.10
9.11
9.12
9.13
9.14

10
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

xi

SUBMITTING A BATCH JOB 9-19
How a Batch Job Executes . 9-19
Writing a Batch Command Procedure . 9-22
Using a Particular Batch Queue 9-23

HANDLING BATCH AND PRINT JOBS 9-27
BATCH AND PRINT QUEUES ETIQUETTE 9-29

SUMMARY 9-31
LABORATORY EXERCISE I 9-33
LABORATORY EXERCISE II 9-34
LABORATORY EXERCISE I-SOLUTIONS 9-35
LABORATORY EXERCISE II-SOLUTIONS 9-36

DEVELOPING PROGRAMS
INTRODUCTION 10-3
OBJECTNES 10-4
RESOURCES 10-4
PROGRAM DEVELOPMENT ON A VMS SYS1EM 10-5
THE VMS SYMBOLIC DEBUGGER UTILITY 10-12
A SAMPLE PROGRAM - GRADES 10-14
EXECUTION OF GRADES 10-15
SUMMARY 10-17

EXAMPLES

1-1 Process Parameters of a Sample Interactive Process 1-41

2-1 How to Log In and Log Out . 2-7

3-1 Using the Help Facility Online 3-10
3-2 Recovering a File After a System Interruption 3-15
4-1 Reading a Mail Message . 4-8

4-2 Sending a Mail Message . 4-10

4-3 Listing and Reading Old Messages 4-12
4-4 Deleting a Mail Message . 4-13

4-5 Getting Help for Mail Utility Commands 4-14

4-6 Using the REQUEST/REPLY Command 4-24

4-7 Canceling a REQUEST/REPLY Command 4-24

5-1 Using VMS Commands to Maintain Your Default Directory 5-20

5-2 Comparing Files . 5-22
5-3 A Sample Directory File 5-25

5-4 Using VMS Commands to Create and Maintain a Directory Hierarchy . 5-34
5-5 Modifying an Access Control List . 5-44

5-6 Changing Your Default Protection Code 5-48

5-7 Deleting a Subdirectory from a Directory Hierarchy 5-49

5-8 Removing Subdirectories from a Directory Hierarchy 5-50

xii

6-1

6-2

6-3

6-4

6-5

6-6
6-7

7-1

7-2

7-3

7-4

7-5

7-6
7-7

7-8

7-9
8-1
8-2
8-3
8--4
8-5
9-1
9-2
9-3
9-4
9-5
9-6
10-1

10-2

Contents

Using Logical Names to Abbreviate Device and File Specifications . . . 6-9

Displaying the Contents of the Process, Job, Group, and System Logical Name
Tables 6-13

Determining the Value of a Logical Name 6-14

Assigning, Changing, and Deleting Logical Name Assignments 6-16

Using Logical Names to Alter the Default Output Device of Your Process6-19

Defining, Displaying, and Deleting Symbols . . 6-28

Defining Multiple Definitions for One Key . 6-34

A Sample Command Procedure 7-9
Typical LOGIN.COM File 7-12

An Output Sample from a Command Procedure .

Using Terminal Input and Output

Using Symbol Substitution
Passing Parameters to Commands Procedures . .
Controlling Program Flow in a Command Procedure .

Using Lexical Functions

Using More Detailed Lexical Functions
Preparing and Transferring Files to a Disk Volume

Creating a Save Set on a Tape Volume . . .

Transferring Files to a Tape Volume
Restoring Files from a Tape to a Directory .
Mounting a Disk with an Unknown Label .

Issuing the PRINT Command

Queue Status Display Corresponding to Figure 9-1 .

Full Format Queue Status Display . . .
Issuing the SUBMIT Command

Sample Batch Run of COUNTl .COM

Full Format Queue Status Display ...
GRADES.FOR Source File .

Sample Run of GRADES

. 7-16

. 7-20

. 7-26

. 7-28

. 7-32

. 7-35

. 7-38

. 8-12

. 8-18

. 8-20

. 8-24

. 8-28

. 9-5

. 9-14

. 9-16

. 9-19

. 9-24

. 9-26

10-14
.. 10-15

FIGURES

1

1-1
1-2

1-3
1-4

1-5
1-6

CoUise Map ..

VAX Hardware Subsystems

Sample Hardcopy and Video Terminals .. .

Sample Printers and Printer/Plotter
Examples of Disks

Examples of Disk Drives .

Examples of Tape Media .

• XXXll

1-6

. 1-9

. 1-11

. 1-13

. 1-14

. 1-15

Contents

1-7
1-8

1-9

1-10

1-11

1-12

1-13

2-1

Sam.pie Tape Drives . . .

MicroVAX II Processor .

VAX 8600 Processor . .

A Tightly Coupled System Configuration

A DECnet Network

VAXcluster System Structure ...

Components of a Process

Enter a Valid Name and Password

xiii

. . 1-16

. . 1-18

.. 1-19

.. 1-21

.. 1-23

.... 1-26

. 1-31

. 2-6

2-2 The Elements of a Command Line . 2-8

2-3 The Elements of a System Message. . 2-27

3-1 EDT Screen Layout - Line Mode and Keypad Mode 3-7

3-2 EDT Keypad Definitions 3-12
3-3 EVE Screen Layout . 3-18

3-4 EVE Keypad Definitions (VTlOO-Series Terminals) 3-19

3-5 EVE Keypad Definitions (VT200-Series Terminals) 3-20

3-6 EDT-Like Key Definitions for VT200-Series Terminals 3-25

3-7 EDT-Like Key Definitions for VTlOO-Series Terminals 3-27
4-1

4-2

5-1

5-2

5-3

5-4

5-5

5-6

6-1

6-2

7-1

8-1

9-1

10-1
10-2

The Relationship Between a Mail Message, Folder, and File

Using the Phone Utility

Naming Directories
File Specification in the Directory Hierarchy . . .

Interaction of Access Categories

. 4-17

. 4-20

. 5-11

. 5-29

. 5-38

Elements of a Protection Code: Determines Which Users Have Access to a
File .. 5-38

Device Specifications are Used to Identify the Desired Device for a Given
Operation 5-52

File Access to Disk and Tape Volumes . 5-56

The Relationship Between Your Terminal, the Operating System, and the
Logical Name Tables Associated with Your Processor 6-7

The Relationship Between Your Terminal, the Operating System, and Your
Global Symbol Table . 6-25
Command Procedure Development Process . . 7-7

Volume Manipulation Commands 8-7

Execution and Generic Print Queues 9-8

A Flow Diagram of the Five Major Programming Steps . 10-6

The Four Program Development Commands 10-7

xiv Contents

TABLES

1

2

3
4

2-1

2-2

2-3
2-4

2-5
2-6
2-7

2-8

2-9
2-10
2-11

2-12
2-13
2-14

2-15

2-16

3-1

3-2
3-3

3-4
3-5

3-6

3-7

3-8

3-9
3-10

4--1
4--2

4--3

4-4

5-1

5-2

Subdirectory and Module N runes .
Course Logical Names

Changes to the VAX/VMS Document Set .

Course Conventions

Elements of a DCL Command Line . . .

The Three Types of DCL Qualifiers .
Features of DCL

Moving the Cursor

Deleting Data from the Command Line

Adding Data to the Command Line . . .
Recalling a Previously Issued Command Line .

Recalling a Previous Command Line with the RECALL Command

Controlling the Display of Information at your Terminal

Terminating an Operation
Manuals for Locating Information About Your System

Using the DCL Help Facility
Elements of the System Message

Severity Levels in System Error Message

xxv

xxv
. xxvn

xxxm

. 2-10

. 2-13

. 2-14

. 2-15

. 2-16

. 2-17

. 2-18

. 2-19

. 2-20

. 2-21

. 2-23

. 2-25

. 2-28

. 2-29

Commands for Displaying the Characteristics of Your Terminal, Process, and
System . 2-33

DCL Command Line Elements 2-35

Moving the EDT Cursor

Changing the EDT Cursor Direction
Deleting Text in EDT

Restoring Text in EDT

Moving the Cursor Using Keys

Moving the Cursor Using Commands . . .
Keys for Deleting Text

Responding to REPLACE Prompts

Creating and Manipulating Buffers

Creating and Manipulating Windows . . .

Mail Commands Used to Read a Message .

Mail Utility Commands Used to Send Messages .

Mail Utility Commands Used to Maintain Messages
Commonly Used Phone Utility Commands

Syntax of a Local Disk File Specification
Naining a Device

. 3-13

. 3-13

. 3-14

. 3-14

. 3-21

. 3-22

. 3-23

. 3-43

. 3-45

. 3-47

. 4--9

. 4--11

. 4--18

. 4--22

5-6

. 5-7

Contents

5-3
5-4

5-5

5-6
5-7
5-8

5-9

5-10
5-11

5-12

Direciory Names ·.

File Specification Defaults

Manipulating Files in Your Default Directory

Commands Used to Find and Determine the Characteristics of Files .

Wildcards Used to Specify File Names, Types, and Versions

Using Wildcards to Specify Files

Directory Names .

Characters Used to Specify Directories

Commands to Move Files Within a Directory Hierarchy

Summary of Effects of Access Rights to Files

xv

. 5-10

. 5-12

. 5-14

. 5-18

. 5-24

. 5-25

. 5-27

. 5-30

. 5-33

.. 5-39

5-13 Determining a User's Category by Comparing User's UIC to File Owner's
UIC 5-39

5-14 Commands Used to Determine and Alter File Protection 5-47

5-15 Examples of Using Other Devices 5-54

5-16 Moving a Hierarchical File Structure from one Disk Device to Another 5-55

5-17 Codes for Some Supported Devices on a VMS System 5-59

5-18

5-19

5-20

5-21
5-22

6-1

6-2

6-3

6-4
6-5

6-6

6-7

6-8

6-9
7-1
7-2

7-3

7-4

7-5

7-6
7-7
7-8

Summary of Device Terminology

Generic Specification with the SHOW DEVICE Command

. 5-62

. 5-63

Examples of Specifying Files on Remote Nodes 5--67

DECnet-VAX DCL File-Manipulation Command Summary 5-68

Commands Used to Determine the Nodes and Devices in Your Systems
Environment 5-71

Commands for Displaying the Contents of Logical Name Tables ... 6-12

Commands for Deleting Logical Names

Process Logical Names Defined by the System

Job Logical Names Defined by the System ..

System Logical Names Defined by the System

Commands for Defining Logical Names

Commands for Displaying Logical Names ...
Commands for Defining, Displaying, and Deleting DCL Symbols

Comparison of Logical Names and DCL Symbols

System Logical Names Used with Terminal 1/0 ..

Displaying Information on the Terminal

Getting Information from the User . .

Redirecting Input and Output

Symbol Assignment and Manipulation

Symbol Substitution Techniques
Relational Operators Used in Expressions

Frequently Used Lexical Functions

. 6-15

. 6-17

. 6-18

. 6-18

. 6-21

. 6-22

. 6-27

. 6-29

. 7-14

. 7-15

. 7-18

. 7-19

. 7-23

. 7-25

. 7-31

. 7-37

xvi

8-1

8-2

8-3

9-1
9-2

9-3

9-4
9-5
9-6
9-7
9-8

Contents

Commands for Creating and Accessing Private Disk and Tape Volumes . 8-9

Commands for Displaying Device and Volume Characteristics . . . 8-22

Creating and Accessing Private Volumes

Queuing a Print Job .

Setting the Characteristics of a Print Job
Modifying a Batch or Print Job

Logical Name Definitions for Interactive and Batch Processes

Controlling the Batch Log File

Submitting Batch Jobs .

Displaying Batch Queue Status
Specifying the Characteristics of Batch and Print Jobs .

. 8-29

. 9-7

. 9-11

. 9-18

. 9-20

. 9-21

. 9-23

. 9-25

. 9-28

MANAGING FILES

MANAGING FILES 5-3

5.1 INTRODUCTION

File management on a VMS system involves moving files between devices, directories,
and/or systems; protecting files from undesired manipulation; and maintaining and
organizing collections of files in a directory.

The VMS system provides the following means to help manage files:

Devices that store files.

A file system that organizes, protects, and retrieves files stored on the system.

Commands and utility programs that allow you to communicate with the devices
and the system.

This module shows you how to organize and maintain a collection of files.

5.2 OBJECTIVES

To store and retrieve the many files used during daily operations, and to protect these
files from unauthorized use, a user should be able to:

Locate files in directories

Locate directories in directory trees

Locate directory trees on volumes

Locate volumes on devices

Display contents of files

Add and remove files from a directory

Locate files on tape volumes

Specify devices that do not support files

Protect files from access by unauthorized users

5.3 RESOURCES

Guide to VMS Files and Devices

VMS DCL Dictionary

MANAGING FILES 5-5

5.4 NAMING A FILE

This section describes the necessary terminology for a user to effectively perform daily
tasks on a system. The following sections give a more detailed explanation of devices,
directories, file names, file types, and version numbers.

5.4.1 File Specifications

A file is a logically related collection of records. You name a file on a VMS system
by giving it a file specification. The file specification is broken into five parts. Each
part gives the system a different piece of information it needs to locate the file. The
system distinguishes one part from another by the location of special characters called
delimiters that you place within the file specification.

5.4.1.1 Use of Delimiters in a Local Disk File Specification

DEVICE: [DIRECTORY)FILENAME.TYPE;VERSION-NUMBER
1 2 3 4

1 specifies the end of a device name

2 [and] specifies the beginning and end of a directory name

3 specifies the beginning of a file type and end of a file name

4 specifies the beginning of a version number

5-6 MANAGING FILES

Table 5-1 shows the parts of a file specification and their syntax.

Table 5-1 Syntax of a Local Disk File Specification

DBAO: [SMITH]MYFILE.DAT;7

Part Reference Rules of Naming Example

Device Storage device naIIl.e 1 to 255 characters DBAO:

Directory Catalog of files 1 to 39 characters [SMITH]

NaIIl.e Name of file 0 to 39 characters MYFILE

Type Kind of file 0 to 3 9 characters DAT

Version Unique number used to 1 to 32767 (integer) 7
differentiate files with the
same name and type

The following characters are allowed in directory naIIl.es, file naIIl.es, and file types:

A through Z

0 through 9

Underscore l.)

Dollar sign ($)

Hyphen(-)

The system interprets all alphabetic characters in file names and types as uppercase
letters.

NOTE
DIGITAL systems use the dollar sign ($) in a number of system-wide
variables. Therefore, to minimize confusion, it is recommended not to use
the dollar sign in user-defined file specifications.

MANAGING FILES 5-7

5.5 DEVICE SPECIFICATIONS

A device specification can consist of one of the following: a logical device name, a
physical device name, or a generic device name. A logical device name is a synonym
for a physical device name, usually established by the system manager. A physical
device name refers to a specific physical device on the system. It has the following
components:

A device code indicating the type of device you want to use.

(For reasons internal to VMS, the device code is not always the same as the first
two characters of a device type. See the list of device types in Table 5-17 of
Appendix A of this module.)

A controller character indicating the controller to which the desired device is
attached.

A unit number indicating the relative location of the desired device among the
devices on the particular controller.

Table 5-2 illustrates the components of a physical device name. Table 5-17 of Appendix
A lists the device type and device code for the most commonly used physical devices.

Table 5-2 Naming a Device

Device
Specification

Device type code

Controller character

Unit number

Device
specification
delimiter

NOTE

Function

Identifies device type

Names controller to which
device is attached

Names relative position
on controller of desired
unit

Marks the end of the
device specification

Value

2-13 characters

One or more of the
characters A-Z

Decimal numbers
from 0-65535

(colon)

Default
Value

None

A

0

None

Refer to Appendix A of this module for further information regarding devices.

5-8 MANAGING FILES

5.5.1 Peripheral Devices

A typical VMS system may have a large number of peripheral devices. These devices
are classified as either mass storage devices or record-oriented devices. Disk and tape
drives are examples of mass storage devices, while terminals, printers, and card readers
are examples of record-oriented devices. To use a peripheral device, you must describe
its location to the operating system by giving a device specification. For example,
LPAO: represents a particular line printer on the system.

5 .5 .2 Logical N arnes Used to Represent Device and File Specifications

The VMS system allows you and the system manager to define logical names to be
used in place of part or all of a file specification. For example, in the file specification:

DBAO: [SMITH]MYFILE.DAT;7

you can equate the device name DBAO: to the logical device name DISK_USER, and
then write the file specification as:

DISK_USER: [SMITH]MYFILE.DAT;7

By using the logical device name DISK_USER, the system manager achieves device
independence. When desired, the system manager can move the file structure from the
device named DBAO: to a free device, device DBAl: for example, and equate the
logical device name DISK_USER to the device named DBAl:. Users can continue
to specify files with the logical device name DISK_ USER even after the device has
changed.

This module uses logical names defined by the system manager only. User-defined
logical names are discussed in the Customizing the User Environment module.

MANAGING FILES 5-9

5.6 DIRECTORY STRUCTURE

All files stored on a disk are listed in a directory of some type. Each disk has one
master file directory (MFD) that catalogs all user file directories (UFDs). Your default
directory is one of many UFDs. Each directory has a specific name that can be used
in file specifications. The conventions for naming the MFD and UFDs are shown in
Table 5-3.

5.6.1 The User File Directory (UFD)

Each UFD contains an alphabetical list of file names and pointers to files. It has a
protection code that prevents other users from viewing or accessing its contents. A UFD
is implemented by a disk file and has a file type of DIR.

Files are placed in your UFD in one of the following ways:

You can create files in your UFD by using an editor such as EDT or EVE.

Another user can place files in your directory.

Files can be copied from another source.

Some programs, when executed, can produce files as output

5-10 MANAGING FILES

5.6.2 Directory Names in the Hierarchy

Table 5-3 Directory Names

Directory Type

Master File
Directory (MFD)

User File
Directory (UFD)

Example

[000000]

[SMITH]

Naming Convention

Each disk contains one MFD, named
[000000]. Given by the system.

The owner's user name is the Level 1
directory name in most instances.

Subdirectory (SFD) [SMITII.PAYROLL] You choose the names for the
subdirectories you create.

Figure 5-1 illustrates Master File Directories and User File Directories in the hierarchy.

MANAGING FILES

MFD
LEVEL 0

UFOs
LEVEL 1

[000000]

[USER1]

5-11

•••

[SMITHJ

• • •
SFDs
LEVEL 2 [SMITH.PAYROLL] [SMITH.INVENTORY]

SFDs
LEVEL 3 [SMITH.PAYROLL.MODULES]

• •
•

• • •

[SMITH.PAYROLL.DOCUMENTS]

The names given in the rectangles are directory names.

Figure 5-1 Naming Directories

TTB_X0327_88

5-12 MANAGING FILES

5.7 DEFAULTS FOR FILE SPECIFICATIONS

Each part of a file specification is called a field. The system supplies defaults for each
field. To use the default value for a field, omit the value for the field. To override the
default value for a field, supply a value for the field. Table 5-4 shows the parts of the
file specification and the defaults for each part.

Table 5-4 File Specification Defaults

Part of File
Specification

Device

Directory

Name

Type

Version

Default

Device established at login by the system manager

Directory established at login by the system manager

None

Depends on the DCL command

The highest version number

For example, the following file specification specifies the highest version of the file
named MYFILE.DAT, catalogued in the directory named [SMITH] of the volume
mounted on the disk drive named DBAO:.

DBAO: [SMITH]MYFILE.DAT;7

Note that the node name is not utilized when you access a file on your local node,
and the version number of 7 signifies that the highest version of MYFILE.DAT is
MYFILE.DAT;7.

MANAGING FILES 5-13

5. 7 .1 Using Temporary Default Fields Within a Parameter

DCL establishes temporary file specification default fields within a comnuznd parameter
that has more than one file specification. Each file specification within the parameter
is used to establish temporary field defaults for subsequent file specifications. By
taking these temporary defaults, the VMS system minimizes the typing you have to
do. Temporary defaults are established for the following file specification fields: device
name, directory name, file name, and file type. (Recall that the node name is not utilized
when you access a file on your local node and that the version number always defaults
to the highest version number.)

Because of the temporary defaults established by DCL, the results of the following two
commands will be the same:

$PRINT DBAO: [SMITH]FILEl.LIS,DBAO: [SMITH]FILEl.DAT,DBAO: [SMITH]FILE2.DAT

$ PRINT DBAO: [SMITH]FILEl, .DAT,FILE2

Note that the first PRINT command consists of file specifications that do not utilize
the temporary defaults established by DCL. The second PRINT command utilizes the
following DCL temporary defaults:

1. The file specification DBAO:[SMITH]FILEl takes advantage of the default file
type LIS, which is associated with the PRINT command. (Note that you do not
place the period (.) after the file name FILEl. If you use the period delimiter, the
system assumes the file has a null file type.)

2. The file specification .DAT utilizes the following temporary defaults:

Device name - DBAO:
Directory name - [SMITH]
File name - FILEl

(Note that the file type DAT is used to establish a temporary default.)

3. The file specification FILE2 utilizes the following temporary defaults:

Device name - DBAO:
Directory name - [SMITH]
File type - DAT

Table 5-5 shows examples of operations you can use to manipulate files in your default
directory.

5-14 MANAGING FILES

Table 5-5 Manipulating Files in Your Default Directory

Operation

Copying a file

Changing existing
file name to new
file name

Removing a file

Removing files on
an interactive basis

Comments and Examples

The COPY command creates a new file from an old file.

$COPY DISK: [SMITH]OLD.TXT DISK: [SMITH]NEW.TXT

(or)
$ COPY OLD . TXT NEW. TXT

The RENAME command changes the file name, file type, or
version number of an existing file.

$RENAME DISK: [SMITH]OLD.TXT DISK: [SMITH]NEW.TXT

(or)
$ RENAME OLD . TXT NEW. TXT

The DELETE command removes a file.
A specific version number must be used to remove a file.

$DELETE DISK: [SMITH]MYFILE.TXT;2

(or)
$ DELETE MYF ILE. TXT; 2

The /CONFIRM qualifier initiates a system prompt to confirm
whether or not the file should be deleted.
A "Yes" response deletes the file; a "No" response does not
delete the file.

$DELETE/CONFIRM DISK: [SMITHJMYFILE.TXT;*

(or)
$ DELETE/CONFIRMMYFILE.TXT;*

System prompts:
DISK: [SMITH]MYFILE.TXT;3 delete? [N]:

DISK: [SMITH]MYFILE.TXT;2 delete? [N]:

DISK: [SMITH]MYFILE.TXT;l delete? [N]:

MANAGING FILES 5-15

Tabie 5-5 (Cont.) Manipulating Files in Your Default Directory

Operation

Removing all
versions of all files
except the latest
version

Appending one or
more files to the
end of another file

Searching files for
all occurrences of
the specified search
string(s)

Comparing contents
of two files
and displaying
differences

Controlling the
listing output from
differences

Comments and Examples

The DCL command PURGE removes all but the highest
numbered version of all files.

$ PURGE

The PURGE command used with a file specification removes all
but the highest numbered version of that file.

$ PURGE MYFILE. TXT

The APPEND command adds the contents of one or more files
to the end of the specified output file. In this example, two files
are being appended to the output file.

$APPEND MYFILE.TXT,OLDFILE.TXT NEWFILE.TXT

The SEARCH command searches one or more files for the
specified string(s) and lists all lines containing the specified
string(s). In this example, the search string "March 13" must
be enclosed in quotation marks because it contains a space
character.

$ SEARCH MYFILE. TXT "March 13"

The DIFFERENCES command compares the contents of two
files and creates a listing of the records that do not match.

$DIFFERENCES MYFILE.TXT YOURFILE.TXT

The /OUTPUT qualifier tells the system to send the listing of
differences to a file. The default output is usually the terminal.

$ DIFFERENCES/OUTPUT=DIFF.TXT MYFILE.TXT YOURFILE.TXT

MANAGING FILES

5.8 FINDING F1LES ANu DETERMThl!NG THEIR
CHARACTERISTICS

5-17

As you create files and add them to your directory hierarchy, your collection grows
rapidly in size and complexity. You find yourself increasing the use of files listed in
other directories and stored on other devices. To work in such an environment, you
should be able to locate particular files among the thousands stored on the disks and
tapes of your system.

The operating system includes a powerful utility that helps you locate and display
the characteristics of files. To invoke this utility, enter the DIRECTORY command,
followed by one or more command qualifiers and a file specification. You use the
DIRECTORY command to find files on the peripheral storage devices of your system.
It can also display the contents of directories or the characteristics of files.

This section shows how to use the DIRECTORY command to find a file and determine
its:

Owner UIC

Protection code

Size

Date of creation or modification

Table 5-6 shows the commands used to find and determine the characteristics of files.
Examples 5-1 and 5-2 demonstrate the use of the commands discussed in Tables 5-5
and 5-6.

5-18 MANAGING FILES

Table 5-6 Commands Used to Find and Determine the Characteristics of Files

Operation

Listing all files in
your directory

Checking for a
unique file in your
directory

Obtaining all
information about
a particular file in
your directory

Determining the
size of files in your
directory

Comments and Examples

The DIRECTORY command lists all files and information about
them in your directory.

$DIRECTORY

The file specification must be included to obtain information
concerning a particular file in your directory.

$ DIRECTORY MYFILE. TXT

The /FULL qualifier overrides the default directory display,
which is BRIEF. Omit the file specification to obtain full
information about all files in your directory.

$DIRECTORY/FULL MYFILE.TXT

(or)
$ DIRECTORY/FULL

The /SIZE qualifier lists the size of files in 512-byte blocks used.

The /SIZE=ALL qualifier lists the size of files both in blocks
used and blocks allocated by the system.

$DIRECTORY/SIZE MYFILE.TXT

(or)
$ DIRECTORY/SIZE=ALLMYFILE.TXT

MANAGING FILES

Table 5-6 (Cont.)

Operation

Finding files
created or modified
before or after a
specified time

Determining
the owner and
protection of a file

5-19

Commands Used to Find and Determine the Characteristics of
Files

Comments and Examples

The /BEFORE= qualifier selects those files that are dated before
the specified time.

The /SINCE= qualifier selects those files that are dated after the
specified time.

Both the /BEFORE and /SINCE qualifiers can also use the
keywords YESTERDAY, TODAY, and TOMORROW.

The /CREATED qualifier is the default. It selects files based on
their creation date.

The /MODIFIED qualifier selects files based on the dates they
were modified.

$ DIRECTORY/BEFORE=09:00/CREATED MYFILE.TXT

(or)
$ DIRECTORY/SINCE=YESTERDAY/MODIFIED OLD.RNO

The /OWNER qualifier determines if the owner's UIC will be
displayed.

The /PROTECTION qualifier determines if the protection of the
file is displayed.

$DIRECTORY/OWNER/PROTECTION MYFILE.TXT

5-20 MANAGING FILES

Example 5-1 illustrates some file manipulation commands.

1 $ DIRECTORY

Directory DISK: [SMITH]

CLASS.LIST;4 CLOCK.EXE;l
JOE_EVE.TPU$SECTION;l
MYFILE.TXT;l
TRNG.PLAN;6

Total of 13 files.

2 $ CREATE FILEl.TXT

NOTE.COM
VTlOO.CLR;l

COLOR.COM;4
MYFILE.TXT;3
REMIND . EXE; 1

DEG.EXE;l
MYFILE.TXT;2
REMLOG.EXE;l

From the time when man first began making numerical calculations,
he has been inventing devices to aid him in the handling of
numbers. These devices have been particularly useful where the
calculations have been repetitive. With the advent of the modern
computer, more and more control has been given to the machine
to reduce the repetition and thus the possibility of human error.
CTRL/Z

$ CREATE FILE2.TXT
From the time when man first began making numerical calculations,
he has been inventing devices to aid him in the handling of
numbers. These devices have been particularly helpful when the
calculations have been repetitive. With the advent of the modern
computer, more and more control has been given to the machine
to reduce the repetition and therefore the possibility of human error.
CTRL/Z

3 $ APPEND/LOG MYFILE.TXT TRNG.PLAN
%APPEND-S-APPENDED, DISK: [SMITH]MYFILE.TXT;l appended to
DISK: [SMITH]TRNG.PLAN;6 (6 records)

4 $ PURGE/LOG MYFILE.TXT
%PURGE-I-FILPURG, DISK: [SMITH]MYFILE.TXT;2 deleted (4 blocks)
%PURGE-I-FILPURG, DISK: [SMITH]MYFILE.TXT;l deleted (4 blocks)

S $ DELETE/LOG MYFILE.TXT;3
%DELETE-I-FILDEL, DISK: [SMITH]MYFILE.TXT;3 deleted (3 blocks)

Example 5-1 Using VMS Commands to Maintain Your Default Directory

MANAGING FILES 5-21

Notes on Example 5-1:

In Example 5-1, assume you are the user who issues the commands. Your default
directory is [SMITH].

1 $DIRECTORY

To list the files in your default directory use the DIRECTORY command. The
first line of output displayed at your terminal, directory DISK:[SMITH], reports
the name and location of your default directory. The remaining lines list the names
of the files it catalogs.

2 $ CREATE FILEl. TXT

$ CREATE FILE2. TXT

You can create additional files in your directory at any time. This module only
uses the CREATE command for cataloging text files in your directory file. You
can use the DCL line-editing commands discussed in the Getting Started module
to format each line you enter with the CREATE command. Pressing CTRL/Z
ends file input.

Several text editor utilities are available on the VMS system. Text editors are
discussed in the Creating and Editing Text Files module.

3 $ APPEND /LOG MYFILE. TXT TRNG. PLAN

To concatenate MYFILE.TXT with TRNG.PLAN, enter the APPEND command,
followed by the name of the file you want to append (MYFILE.TXT), followed by
the name of the file you want to append it to (TRNG.PLAN). This operation does
not create any new files. The contents of TRNG.PLAN are modified to include
the file MYFILE. TXT. The contents of MYFILE. TXT are unaffected. To instruct
the system to display a message when it completes the operation, add the /LOG
qualifier to the APPEND command.

4 $ PURGE/LOG MYF ILE. TXT

Since your default directory contains multiple versions of MYFILE.TXT, you can
delete all but the most recent version. To do so, enter the PURGE command. To
display the name of each file the system deletes, append the /LOG qualifier.

5 $ DELETE /LOG MYF ILE • TXT; 3

You decide that you no longer need the contents of MYFILE.TXT. To delete the
remaining MYFILE.TXT from your directory, enter the DELETE command. By
specifying the version number 3, you delete only that version of the file. Any
other versions of the file would remain in your directory.

5-22 MANAGING FILES

Example 5-2 illustrates how to use VMS commands to compare two files and find their
differences. In this example, you compare the files FILEl .TXT and FILE2.TXT that
you created in Example 5-1.

1 $ TYPE FILEl.TXT
From the time when man first began making numerical calculations,
he has been inventing devices to aid him in the handling of
numbers. These devices have been particularly useful where the
calculations have been repetitive. With the advent of the modern
computer, more and more control has been given to the machine
to reduce the repetition and thus the possibility of human error.

$ TYPE FILE2.TXT
From the time when man first began making numerical calculations,
he has been inventing devices to aid him in the handling of
numbers. These devices have been particularly helpful when the
calculations have been repetitive. With the advancement of the modern
computer, greater control has been given to the machine
to reduce the repetition and therefore the possibility of human error.

2 $ DIFFERENCES FILEl.TXT FILE2.TXT/CHANGE_BAR=:

File DISK: [SMITH]FILE2.TXT;l

1 From the time when man first began making numerical calculations,
2 he has been inventing devices to aid him in the handling of
3 numbers. These devices have been particularly helpful when the
4 calculations have been repetitive. With the advancement of the modern
5 computer, greater control has been given to the machine
6 to reduce the repetition and therefore the possibility of human error.

Number of difference sections found: 1
Number of difference records found: 4

DIFFERENCES /IGNORE=()­
DISK: [SMITH]FILEl.TXT;l-
DISK: [SMITH]FILE2.TXT;l/CHANGE_BAR=(":")

Example 5-2 Comparing Files

MANAGING FILES

Notes on Example 5-2:

l $ TYPE FILEl. TXT

$ TYPE FILE2. TXT

5-23

Before comparing FILE 1. TXT with FILE2. TXT, you decide to display the contents
at your terminal. To do so, enter the TYPE command.

2 $ DIFFERENCES FILEl. TXT FILE2. TXT/CHANGE _BAR=:

You want to compare FILEI.TXT with FILE2.TXT to determine how they differ.
You have already displayed the contents of both files. You would like to display
FILE2.TXT with the lines that differ marked in an appropriate way (with a colon,
for example). To do this, enter the DIFFERENCES command followed by the
specifications of the files you want to compare. To generate a marked listing of
FILE2. TXT, specify that file last. Terminate the specification of the file with the
/CHANGE BAR qualifier. Following a heading, the system displays the contents
of the seco;d file at your terminal. A colon precedes each line that differs from
the first file.

5-24 MANAGING FILES

5.8.1 Using Wildcards in File Specifications

At times it is useful to specify a group of files that have parts of a file specification in
conunon. For example, you may want to delete all the files of a given file type in your
default directory. Wildcards allow this. Table 5-7 describes wildcard symbols that you
can use in the name, type, and version fields of a file specification.

Wildcards are also used:

• To abbreviate a file specification

To specifically match one character in file names or file types

In conjunction with each other or separately

Table 5-7 Wildcards Used to Specify File Names, Types, and Versions

Symbol

*Asterisk

% Percent

Meaning

Match 0-39 characters in a file name, file type, or version
number

Match exactly one character in a file name or file type

MANAGING FILES 5-25

Example 5-3 illustrates the directory named [SMITH], which contains eight fiies.
Table 5-8 selectively refers to these files, using wildcard characters.

Directory WORK2: [SMITH]

PAY.FOR;2
PAYOFF.FOR;3

PAY.FOR;l
PROBLEMS.TXT;4

PAYl .FOR; 1
REPORT.MEM;9

PAY2.FOR;l4
REPORT.RN0;6

Total of 8 files.

Example 5-3 A Sample Directory File

Table 5-8 Using Wildcards to Specify Files

Directory
Specification

$ DIRECTORY PAY. FOR;*

$ DIRECTORY *. *; 1

$ DIRECTORY *. *; *

$ DIRECTORY PAY% .FOR;*

$ DIRECTORY PAY*.*;*

Description

All versions of PAY.FOR

All files with a version
number of 1

All files, types, and
versions1

All versions of files with
file types of FOR and
file names beginning with
PAY, followed by exactly
one character

All files whose first three
letters are PAY, including
all file types and all
versions

Corresponding Files

PAY.FOR;2
PAY.FOR;l

PAY.FOR;l
PAYl.FOR;l

All files in the directory

PAYl.FOR;l
PAY2.FOR;l4

PAYl.FOR;l
PAY.FOR;2
PAY.FOR;l
PAYOFF.FOR;3
PAY2.FOR;l4

1 Issuing the DIRECTORY command with no qualifiers or wildcards lists all files, types, a.11.d versions by
default.

5-26 MANAGING FILES

5.9 ORGANIZING YOUR DIRECTORY STRUCTURE

In addition to your master file directory and user file directories, you can also have
subdirectories. Subdirectories are used to better organize the directory structure, to
protect files from accidental modification or loss, and to decrease the time for the system
to find files.

Each UFD can have a maximum of seven levels of subdirectories below it. Each
directory level has a level identifier of 1-39 characters that makes up part of the directory
name.

Files are usually grouped by:

Function (all command files)

Application (all files for a given project)

Type (all FORTRAN files)

Subdirectories can catalog other subdirectories as well as files. Table 5-9 shows the
three levels of directories and conventions for naming them.

MANAGING FILES

5. 9 .1 Directory N runes in the Hierarchy

Table 5-9 Directory Names

Directory Type Example

Master File Directory (MFD) [000000]

User File Directory (UFD) [SMITH]

Subdirectory (SFD) [SMITH.DOC]

5-27

Naming Convention

Each disk contains one MFD,
named [000000], which is given
by the system.

The owner's user name is
usually the Level 1 directory
name.

The subdirectory name includes
the directory name where it is
created. Each subdirectory name
is separated by a period.

The ability to create and maintain a subdirectory structure starting with your UFD is a
powerful tool in organizing your files. To create and maintain a subdirectory hierarchy,
you should be able to perform the following operations:

Create subdirectories

Move around in the directory hierarchy

Display a hierarchy and its contents at your terminal

Determine the name of your current default directory or subdirectory

Move files from one directory to another

Assign a protection code to a subdirectory

Remove a subdirectory from the hierarchy

The following pages show you how to do this. You can also refer to Table 5-5 for more
examples of how to manipulate files in your default directory.

5-28 MANAGING FILES

5.9.2 Creating a Subdirectory

To create a subdirectory, use the CREATE/DIRECTORY command in the format:

$ CREATE/DIRECTORY [directory.subdirectory]

The subdirectory name must be enclosed in brackets

• The subdirectory name includes the directory name where it is created

Separate subdirectory names with a period

The directory or subdirectory itself is a file

Example:

The directory or subdirectory has a file type of DIR

The version number of file type DIR is 1

$ CREATE/DIRECTORY/LOG [SMITH.DOC]

(System response:)
%CREATE-I-CREATED DISK: [SMITH.DOC] created

The directory [SMITH] is a Level 1 directory

The subdirectory [.DOC] is the next level below the directory [SMITH]

The /LOG qualifier displays, at your terminal, the fact that the subdirectory was
created

To create another subdirectory beneath the [.DOC] subdirectory, use the following
command format:

$ CREATE/DIRECTORY [directory.subdirectory.subdirectory]

Example:

$ CREATE/DIRECTORY/LOG [SMITH.DOC.FORTRAN)

%CREATE-I-CREATED DISK: [SMITH.DOC.FORTRAN] created

The subdirectory [.FORTRAN] is now listed under the subdirectory [SMITH.DOC]

Figure 5-2 illustrates four levels of directories in a hierarchy.

MANAGING FILES

DIRECTORY NAME

MASTER FILE DIRECTORY
[000000]

USER FILE DIRECTORY
[SMITHJ

SUBDIRECTORY
[SMITH.PROJ]

SUBDIRECTORY
[SMITH.PROJ.LAB]

5-29

FILES CONTAINED COMMENTS

USER1. DIR

SMITH.DIR

LOGIN.COM

PROJ.DIR

MOD.DIR

LAB.DIR

I MON.TXT

©

8 [000000] SMITH.DIR

© [SMITHJ PROJ.DIR

USER2.DIR

MAIL.MAI

NOTE.TXT

TUE.TXT

THE MASTER FILE DIRECTORY
(MFD) CATALOGS THE FILES
THAT IMPLEMENT THE USER
FILE DIRECTORIES.

THE USER FILE DIRECTORY (UFO)
CATALOGS FILES. NOTE THAT
PROJ.DIR IMPLEMENTS THE
SUBDIRECTORY [SMITH.PROJ).

THE SUB FILE DIRECTORY
(SFD} [SMITH.PROJ]
IS A LEVEL 2 DIRECTORY.

SFD [SMITH.PROJ.LAB]
IS A LEVEL 3 DIRECTORY.
LEVEL 8 IS THE MAXIMUM
DIRECTORY LEVEL.

© [SMITH.PROJ]LAB.DIR

© [SMITH.PROJ.LAB]MON.TXT

TTB_X0328_88

Figure 5-2 File Specification in the Directory Hierarchy

5-30 MANAGING FILES

5.10 MOVING WITHIN A DIRECTORY HIERARCHY

There are three characters used to move within a directory hierarchy. They are:

Hyphen(-)

Period (.)

Ellipsis (...)

The hyphen and period characters are normally used in conjunction with the SET
DEFAULT command to move from your current directory to another directory or
subdirectory.

The ellipsis character can be used with the DIRECTORY command to list files in a
directory and all subdirectories beneath it (see Example 5-4). Table 5-10 describes
these three characters.

Table 5-10 Characters Used to Specify Directories

Symbol

- (hyphen)

. (period)

. .. (ellipsis)

Meaning

Move one level up in directory hierarchy

Move one level down in directory hierarchy (MUST be
followed by a subdirectory name)

Use current directory and all directories below it

MANAGING FILES 5-31

5.10.1 Using the SET DEFAULT Command

The DCL command SET DEFAULT changes the default device and/or the directory
name for your current process.

A physical device name MUST be terminated with a colon (:)

A directory or subdirectory name MUST be enclosed in square brackets

The syntax for the SET DEFAULT command is:

$ SET DEFAULT device-name:[directory-name]
or
$ SET DEFAULT [directory-name.subdirectory-name]

Examples of its use:

$ SET DEFAULT [SMITH.DOC]

$ SET DEFAULT DISK2: [SMITH.FOR]

In the first example, the device name remains the same, and in the second example, the
device name and directory name change.

5.10.2 Using the SHOW DEFAULT Command

The DCL command SHOW DEFAULT displays your current default device and
directory names.

Examples:

$ SHOW DEFAULT

DISK: [SMITH]

$ SET DEFAULT [SMITH.DOC]

$ SHOW DEFAULT

DISK: [SMITH.DOC]

$ SET DEFAULT [-]

$ SHOW DEFAULT

DISK: [SMITH]

MANAGING FILES 5-33

5.10.3 Using the COPY and RENA1\1E Commands

At times you will need to move files from one directory to another. For example, you
may want to catalogue the files in your default directory by job or type. You could
copy all the files with a BAS extension into a subdirectory called BASIC (assuming the
BASIC subdirectory already exists). You would do this by using the COPY command
with the directory and file specifications you want to copy from and to. If your default
directory name is SMITH, the command would look like this:

$COPY [SMITH)*.BAS [SMITH.BASIC]*.*;*

Table 5-11 gives additional examples of moving files from one directory to another.

Table 5-11 Commands to Move Files Within a Directory Hierarchy

Operation

Move files from one
directory or subdirectory
to another

Copy files from one
directory or subdirectory
to another

Comments

Moves the most recent version of all files with the file
type FOR from the directory [SMITH] to the subdirectory
[SMITH.FORTRAN]

$RENAME [SMITH]*.FOR [SMITH.FORTRAN]*.FOR

Copies all versions of files with the file type PAS
from the [SMITH.UTLCOM] subdirectory to the
[SMITH.UTLCOM.PASCAL] subdirectory

$COPY [SMITH.UTLCOM] *.PAS;* -

[SMITH.UTLCOM.PASCAL]*.*;*

5-34 MANAGING FILES

Example 5-4 shows you how to create two levels of subdirectories under the UFD
[SMITH] and how to move files into one of the subdirectories. See the notes to the
example for a detailed explanation.

1 $ SHOW DEFAULT
DISK: [SMITH]

2 $ CREATE/DIRECTORY/LOG (SMITH.COM]
%CREATE-I-CREATED, DISK: [SMITH.COM] created
$ CREATE/DIRECTORY/LOG [SMITH.UTLCOM]
%CREATE-I-CREATED, DISK: [SMITH.UTLCOM] created
$CREATE/DIRECTORY/LOG [.UTLCOM.FIL]
%CREATE-I-CREATED, DISK: [SMITH.UTLCOM.FIL] created
$CREATE/DIRECTORY/LOG [.UTLCOM.EDT]
%CREATE-I-CREATED, DISK: [SMITH.UTLCOM.EDT] created

3 $DIRECTORY[...]

4 Directory DISK:[SMITH]

COM.DIR;l
PRINT.FOR;l

Total of 8 files.

FORCALL.MAR;l
RANDOM.FOR;l

Directory DISK: [SMITH.UTLCOM]

EDT.DIR;l FIL.DIR;l

Total of 2 files.

Grand total of 2 directories, 10 files.

MMUL.FOR;l
STRPROG.TXT;l

5 $.RENAME [SMITH)*.MAR,*.TXT [.UTLCOM.FIL]*.*
$ SET DEFAULT [.UTLCOM.FIL]
$ DIRECTORY

Directory DISK:[SMITH.UTLCOM.FIL]

FORCALL.MAR;l STRPROG.TXT;l

Total of 2 files.

POLA.QUO;l
UTLCOM.DIR;l

Example 5-4 Using VMS Commands to Create and Maintain a Directory Hierarchy

Notes on Example 5-4:

1 $ SHOW DEFAULT

Before creating a subdirectory hierarchy, you need to know the name of your
current default device and directory. To display this information, enter the SHOW
DEFAULT command. Your default device is DISK. Your default directory is
named SMITH.

MANAGING FILES 5-35

2 $ CRE~TEiDIRECTORY/LOG [SMITH. CO!·j]

%CREATE-I-CREATED, DISK: [SMITH.UTLCOM.EDT] created

To create subdirectories, issue the CREATE/DIRECTORY command at your
terminal, followed by a directory name.

By including the /LOG qualifier in each CREATE/DIRECTORY command
string, you instruct the system to display a message at your terminal each time it
successfully creates a subdirectory file.

3 $ DIRECTORY [...]

Once you create a hierarchy of subdirectories, display your work by entering a
DIRECTORY command string. Use an ellipsis (...) in the directory specification
to force a search of all subdirectories associated with your UFD. No UFD name is
required in the directory specification, since your default directory name is equated
to its value.

4 Directory DISK: [SMITH]

The display produced by the DIRECTORY command reveals the skeleton of the
hierarchy you have created. At the top of the structure is your UFD, SMITH,
which now lists two directory files, COM.DIR and UTLCOM.DIR, in addition to
other files.

The target subdirectories named COM and UTLCOM form the next level of your
hierarchy. COM contains no files. UTLCOM, however, lists two directory files,
EDT.DIR and FIL.DIR. These two subdirectories form the third level of your
hierarchy.

5 $RENAME [SMITH]*.MAR,*.TXT, [.UTLCOM.FIL]*.*

$SET DEFAULT [.UTLCOM.FIL]

$DIRECTORY

To change which directory catalogues a file, use the RENAME command. In this
example, you choose to recatalogue all the most recent versions of files in the
directory named [SMITH] with file types MAR and TXT to the directory named
[.UTLCOM.FIL], retaining the same file name, file type, and version number.

Notice that the command that alters which directory catalogues a file is the
RENAME command and not the COPY command. Use the RENAME command
when all the files reside on the same disk structure. To move files from one disk
structure to another, use the COPY command.

To see files that were renamed to the subdirectory FIL, set your default to
[.UTLCOM.FIL] and issue a DIRECTORY command.

5-36 MANAGING FILES

5.11 PROTECTING FILES IN YOUR DIRECTORY HIERARCHY

The VMS system allows you to access other users' files. To create a file in your
directory with the contents of a file that exists in another user's directory, include
the other user's directory name in the file specification when you enter the COPY
command. For example:

$ COPY [MATTHEWS]WANTED.FIL NEW.FIL

The system places a copy of the text found in the file WAN1ED.FIL of the directory
named [MATTHEWS] into your default directory, giving it the name NEW.FIL.

Since it is possible for users to manipulate the files of others, it is necessary to protect
files from unwanted access. To access a disk file, a user must pass the following three
levels of protection:

Volume protection-Controls who can access a particular disk volume

Directory protection--Controls who can access a particular directory

File protection-Controls who can access a particular file

To access a tape volume, a user only needs to pass the volume level of protection,
which controls who can manipulate files on tapes.

MANAGING FILES 5-37

5 .11.1 How t.he System Determines Access

When you attempt to access a file, your UIC is compared to the owner UIC of the
file. Depending on the relationship of the UICs, you will fall into one or more of the
following categories.

SYSTEM-All users who have system privilege (SYSPRV) or low group numbers,
usually from 1 through 10 (octal). ·

OWNER-The user with the same UIC as the owner UIC of the file.

GROUP-All users, including the owner, who have the same group number in
their UICs as the file owner.

WORLD-All users, including those in the first three categories.

The protection code describes the categories of users who have access to a file, and the
type of access they have. For example, the protection code:

SYSTEM:RWED, OWNER:RWED, GROUP:RE, WORLD:RE

specifies that users in the SYSTEM and OWNER categories have READ, WRITE,
EXECUTE, and DELETE access. Users in the GROUP and WORLD categories have
only READ and EXECUTE access.

Figures 5-3 and 5-4 illustrate protection codes. Also, see Tables 5-12 and 5-13 for an
explanation of access rights and user categories.

5-38

WORLD

8
TTB_X0330_88

Figure 5-3 Interaction of Access Categories

PROTECTION CODE

MANAGING FILES

(S:RWED, O:RWED,G:RE,W)

PROTECTION CODE ' I
DELIMITER

USER CATEGORY
SYMBOL (SYSTEM)

USER CATEGORY
DELIMITER

USER CATEGORY
ACCESS CODES (READ, ---~
WRITE, EXECUTE
AND DELETE)

USER CATEGORY ________ __.
SEPARATOR

TTB_X0331_88

Figure 5-4 Elements of a Protection Code: Determines Which Users Have Access to a File

MANAGING FILES 5-39

Table 5-12 Summary of Effects of Access Rights to Files

(R)ead (W)rite (E)xecute (D)elete

Disk Can read list Can modify Can access Can delete the
Directory of files in list explicitly directory

directory (Add files) named files
Read access
also needed

Disk File Can read Can modify Can execute Can delete file(s)
contents of contents of executable files
file(s) file(s)

Tape File Can read list of Can add files Does not apply Does not apply
files on tape on the volume

Table 5-13 Determining a User's Category by Comparing User's UIC to File
Owner's UIC

Category Group Number Member Number

SYSTEM 0-10 (Octal) Does not matter

OWNER Matches group number of file UIC Matches member number of file
UIC

GROUP Matches group number of file. UIC Does not matter

WORLD Does not matter Does not matter

5-40 MANAGING FILES

5.12 PROTECTION MECHANISMS

The VMS system uses the following two protection mechanisms:

Access control lists (an optional protection)

• UIC-based protection

In granting access to a device or file, the VMS system checks the associated access
control list (ACL) followed by the UJC-based protection. If the ACL allows access,
then the UIC-based protection is not checked. If the ACL denies access, the system
checks only the system and owner fields of the UIC-based protection code to determine
whether you have access. If there is no ACL or you are not mentioned in the ACL, then
the UIC-based protection is checked to determine access rights. Therefore, ACLs allow
you to add limitations to the protection already provided by the UIC-based protection.

5.12.1 UIC-Based Protection

The VMS system assigns each file a UIC and a protection code when it is created. The
system uses the UIC and protection code to determine who can:

Read the file

• Modify the file

Execute the file

Delete the file

The format of your UIC is a pair of numbers in brackets, as follows:

[group,mem her]

The group number can range from 0 to 37777 (octal), while there can be from 0 to
177777 (octal) members in each group.

Examples:

Numeric: [100,30]

Alphanumeric: [GROUPl 1,SMITH] or [SMITH]

UICs specify the owners of objects, such as files, for which the VMS system provides
protection. A user attempting to access a file falls into one of four access categories:
System, Owner, Group, or World. The system places the user in a particular category by
comparing the user's UIC to the UIC attribute of the file. The system manager assigns
UICs.

MANAGING FILES 5-41

Suppose a file has the following protection code:

S:R,O:R,G:R, W:RWED

You might expect that the owner would have only read access to the file. However, a
user may be granted access to a file through more than one category. Any user in the
Owner Category is also in the Group and World Categories. Therefore, the owner has
read, write, execute, and delete access. The usual default protection codes supplied by
the system are:

File
Directory
Volume

S:RWED,O:RWED,G:RE,W
S:RWE,O:RWE,G:RE,W
S:RWED,O:RWED,G:RWED,W:RWED

To alter the protection of files, you must have a system UIC, SYSPRV privilege, or own
the file.

5-42 MANAGING FILES

5 .12.2 Access Control Lists

Access control lists are an optional layer of protection normally specified by the system
manager. They are used to obtain more control than UIC-based protection. ACLs are
usually used to provide access for specific users but not all users on the system.

Identifiers are the means of specifying the users in an ACL. There are three types of
identifiers:

1. UIC identifiers that depend on the user identification codes (UICs) that uniquely
identify each user on the system.

2. General identifiers that are defined by the system manager to identify groups of
users (for example, STUDENT or PERSONNEL).

3. System-defined identifiers that describe certain types of users (BATCH, NETWORK,
LOCAL, REMOTE). These identifiers are automatically defined by the system at
installation time.

Users can have one or more identifiers. Files specify the access rights for holders of
various identifiers. Since there may be many identifiers needed to represent different
access needs for each user, you may need to create a list of entries, each of which
defines groups of access rights. This list is the access control list (ACL). Each entry in
this list is called an access control list entry (ACE).

5.12.3 Creating or Modifying an Access Control List

The following commands are used to obtain ACL information:

SHOW ACL file-name

DIRECTORY I ACL file-name

DIRECTORY/FULL file-name

DIRECTORY /SECURITY file-name

MANAGING FILES 5-43

5 = 12.3 = 1 Access Control List Entries

Each ACL consists of one or more ACEs. There is no limit to the number of ACEs
that an ACL can have, or to the number of characters in an ACE. You can add ACEs to
your ACL by using the DCL command EDIT/ ACL file-name, which invokes the ACL
editor.

The format for an ACE is:

(TYPE,[OPTIONS],[ACCESS])

The first field, TYPE, determines the type of access protection. There are three types of
ACEs:

1. Identi.fier--C,ontrols the type of access allowed to a particular user or group of
users

The first field in the identifier ACE consists of the keyword IDENTIFIER followed
by one or more identifiers. An identifier can be:

The user identification code (UIC)

A general identifier established by the system manager

A system-defined identifier

2. Def a ult Protection-Defines the default protection for a directory

3. Security Alarm-Provides a security alarm when an object (such as a file or
directory) is accessed in a particular way

The second field, OPTIONS, indicates options (if any) that apply to the ACE.

The third field, ACCESS, indicates the type of access to be granted to the file, such as
READ, WRITE, EXECUTE, or DELETE.

The exact format of an ACE depends on its type, but all ACEs are enclosed
in parentheses. Example 5-5 shows you how to modify the ACL for the file
MYFILE.TXT.

5--44 MANAGING FILE.5

$ DIRECTORY/FULL MYFILE.TXT

Directory DISK: [SMITHJ

MYFILE.TXT;l File ID: (25168,6,0)
Size: 1/3 Owner: [GROUPll,SMITHJ
Created: 17-DEC-1986 14:18 Revised: 17-DEC-1986 14:24 (3)
Expires: <None specified> Backup: <No backup recorded>
File organization: Sequential
File attributes: Allocation: 3, Extend: O, Global buffer count: O,

Record format:
Record attributes:
Journaling enabled:
File protection:
Access Cntrl List:

No version limit
Variable length, maximum 47 bytes
Carriage return carriage control
None
System:RWED, Owner:RWED, Group:RE, World:
None

Total of 1 file, 1/3 blocks.

$ EDIT/ACL MYFILE.TXT

(IDENTIFIER=VMS,ACCESS=READ+WRITE+EXECUTE+DELETE)
CTRL/Z

$ DIRECTORY/FULL MYFILE.TXT

Directory DISK: [SMITHJ

MYFILE.TXT;l File ID: (25168,6,0)
Size: 1/3 Owner: [GROUPll,SMITH]
Created: 17-DEC-1986 14:18 Revised: 17-DEC-1986 14:45 (4)
Expires: <None specified> Backup: <No backup recorded>
File organization: Sequential
File attributes: Allocation: 3, Extend: O, Global buffer count: O,

Record format:
Record attributes:
Journaling enabled:
File protection:
Access Cntrl List:

No version limit
Variable length, maximum 47 bytes
Carriage return carriage control
None
System:RWED, Owner:RWED, Group:RE, World:
(IDENTIFIER=VMS,ACCESS=READ+WRITE+EXECUTE+DELETE)

Total of 1 file, 1/3 blocks.

Example 5-5 Modifying an Access Control List

MANAGING FILES 5-45

5.13 DETERMINING AND ALTERING FILE PROTECTION

Each file on a disk has its own protection code. You can determine the current default
protection by issuing the SHOW PROTECTION command:

$ SHOW PROTECTION
SYSTEM=RWED, OWNER=RWED, GROUP=RE, WORLD=NO ACCESS

This response is your default protection. To determine the current protection on a specific
file or files, use the /PROTECTION qualifier with the DIRECTORY command. For
example:

$ DIRECTORY/PROTECTION DIRECTORY.LIS

Directory DISK: [SMITH.DOC)

DIRECTORY.LIS;l [100,200) (RWED, RWED I RE,)

You can set the protection when you create a file or change the protection on an
existing file using the SET PROTECTION command. For example, you can specify
the protection for a file you create using the COPY command as follows:

$ COPY DISKl: [SMITH]DIRECTORY.LIS
DIR.LIS/PROTECTION=(SYSTEM:RW,OWNER:RWED,GROUP:RW,WORLD)

This command copies a file from the device DISKl to your default disk directory. The
protection code defines the protection for the new file DIR.LIS as:

Users with system UICs can read and write to the file

You (owner) have all types of access

• Other users in your group can read and write to the file

• All other users (world) have no access

5-46 MANAGING FILES

If you do not define a protection code for a file when you create it, the system applies
a default protection. If a version of the file already exists, protection is taken from the
previous version. For a new file, the protection is determined in one of two ways:

1. If the directory where the file is to be placed has an associated access control list
that specifies the DEFAULT_PROTECTION entry, the specified protection is used.

2. If the directory does not have an associated ACL, the default process protection
is used. The default process protection is established explicitly with the SET
PROTECTION/DEFAULT command, or by default when you log in. See
Table 5-14 and Example 5-6 for more information on setting protections.

NOTE
To protect a file completely, you must protect both the file itself and the
directory in which the file is listed. If you have files that must be protected
against unauthorized access, be sure to specify the proper protection for both
the directories and the files themselves.

MANAGING FILES 5-47

Table 5-14 Commands Used to Determine and Alter File Protection

Operation

Displaying the
default protection
assigned to
new files

Obtaining the
protection code
of a given file

Changing the
default protection
assigned to new
files

Changing the
protection code of
an existing file

NOTE

Comments and Examples

The default protection applies to all newly created files in the
current directory

$ SHOW PROTECTION

Displays the current protection of a particular file

$ DIRECTORY/PROTECTIONMYFILE.TXT

The default protection, once changed, affects all future files
created in this particular directory. Files created before changing
the default protection will retain the previous protection.

$SET PROTECTION=(S:RWED,O:RWED,G:RWE,W:RWE)/DEFAULT

The protection code can be changed to allow more or less access
to a particular file.

$ SET PROTECTION= (S :RWED, O:RWE, G:RW, W:) MYFILE. TXT

If you omit a protection category when you issue the SET PROTECTION
command, the protection for that category remains unchanged.

5-48

$ SET DEFAULT [SMITH.DOC]

$ SHOW PROTECTION
SYSTEM=RWED, OWNER=RWED, GROUP=RE, WORLD=NO ACCESS

$ DIRECTORY/OUTPUT=DIRECTORY.LIS
$ DIRECTORY/OWNER/PROTECTION

Directory DISK: [SMITH.DOC]

DIRECTORY.LIS;l
EDT .DIR; 1

Total of 1 file.

[GROUPll, SMITHJ
[GROUP 11, SMITH]

$ SET PROTECTION=(S:R,G:R)/DEFAULT

$ SHOW PROTECTION

(RWED, RWED I RE I)

(RWE, RWE, RWE, RE)

SYSTEM=R, OWNER=RWED, GROUP=R, WORLD=NO ACCESS

$ DIRECTORY/OUTPUT=DIRECTORY.LIS
$ DIRECTORY/OWNER/PROTECTION

Directory DISK: [SMITH.DOC]

DIRECTORY.LIS;2
DIRECTORY.LIS;l
EDT.DIR;l

Total of 2 files.

[GROUP 11, SMITH]
[GROUPll, SMITHJ
[GROUPll, SMITHJ

(R, RWED, R,)
(RWED' RWED I RE,)
(RWE, RWE, RWE, RE)

Example 5-6 Changing Your Default Protection Code

MANAGING Fll...ES

MANAGING FILES 5-49

5.14 DELETING A SUBDIRECTORY

Before you can delete a subdirectory, you must delete all the files catalogued in that
subdirectory. When all the files have been deleted, set your default to the directory or
subdirectory that contains the subdirectory name to be deleted. The directory protection
on the subdirectory to be deleted must allow the owner DELETE access. If it does not,
you must change the directory protection to reflect this. Example 5-7 shows how to
delete a subdirectory from a directory, and Example 5-8 shows how to delete two levels
of subdirectories.

$ SET DEFAULT [SMITH.DOC]
$ DIRECTORY

Directory DISK: [SMITH.DOC]

CLASS.LIST;4 CLOCK.EXE;l
JOE_EVE.TPU$SECTION;l
REMIND . EXE; 1 REMLOG. EXE; 1

Total of 11 files.

$DELETE *.*;*
$ DIRECTORY

%DIRECT-W-NOFILES, no files found

$ SET DEFAULT [SMITHJ
$ DELETE DOC.DIR;l

COLOR.COM;4
MYFILE.TXT;l
TRNG.PLAN;6

DEG.EXE;l
NOTE.COM;4
VTlOO.CLR;l

%DELETE-W-FILNOTDEL, error deleting DISK: [SMITH]DOC.DIR;l
-RMS-E-PRV, insufficient privilege or file protection violation

$ SET PROTECTION=(O:RWED) DOC.DIR

$ DELETE DOC.DIR;l

$ DIRECTORY DOC.DIR
%DIRECT-W-FILES, no files found

Example 5-7 Deleting a Subdirectory from a Directory Hierarchy

5-50

1 $ SET DEFAULT [SMITH]
2 $DIRECTORY [SMITH ...]

Directory DISK: [SMITH]
DOC.DIR;l MYFILE.TXT;l
Total of 4 files.

Directory DISK: [SMITH.DOC]
FORTRAN.DIR;l MYFILE.TXT;l
YOUR.FILE;l
Total of 5 files.

Directory DISK: [SMITH.DOC.FORTRAN]

MYTEXT.TXT;l

MYTEXT.TXT;l

MYFILE.TXT;l MYTEXT.TXT;l TXT.TXT;l
Total of 4 files.

Grand total of 3 directories, 13 files.
3 $SET PROTECTION=O:RWED [SMITH ...]*.*;*
4 $DELETE [SMITH ...)*.*;*

TXT.TXT;l

TXT.TXT;l

YOUR.FILE;l

%DELETE-W-FILNOTDEL, error deleting DISK: [SMITH]DOC.DIR;l
-RMS-E-MKD, ACP could not mark file for deletion
-SYSTEM-F-DIRNOTEMPTY, directory file is not empty
%DELETE-W-FILNOTDEL, error deleting DISK: [SMITH)FORTRAN.DIR;l
-RMS-E-MKD, ACP could not mark file for deletion
-SYSTEM-F-DIRNOTEMPTY, directory file is not empty

5 $DIRECTORY [SMITH ...]
Directory DISK: [SMITH]
DOC.DIR;l
Total of 1 file.

Directory DISK: [SMITH.DOC]
FORTRAN.DIR;l
Total of 1 file.

Grand total of 2 di~ectories, 2 files.
6 $DELETE [SMITH ...]*.*;*

%DELETE-W-FILNOTDEL, error deleting DISK: [SMITH]DOC.DIR;l
-RMS-E-MKD, ACP could not mark file for deletion
-SYSTEM-F-DIRNOTEMPTY, directory file is not empty

7 $DIRECTORY [SMITH ...]
Directory DISK: [SMITHJ
DOC.DIR;l
Total of 1 file.

8 $DELETE [SMITH ...]*.*;*
$DIRECTORY [SMITH ...]
%DIRECT-W-NOFILES, no files found

Example 5-8 Removing Subdirectories from a Directory Hierarchy

MANAGING Fil..ES

MANAGING FILES 5-51

Notes on Example 5-8:

1 The SET DEFAULT command moves the user to a Level 1 directory.

2 The DIRECTORY command is issued to obtain a listing of all files in the directory
hierarchy.

3 Protection is set to enable the owner to delete all files and all subdirectories.

4 The DELETE command is issued to delete all files and all subdirectories. The
subdirectories (DOC.DIR and FORTRAN .DIR) are not deleted during the first
issuance of the DELETE command. A fatal error message is generated: "directory
file is not empty. 11

s The DIRECTORY command is issued, which establishes that all files have been
deleted except the subdirectories DOC.DIR and FORTRAN.DIR.

6 The DELETE command is re-issued. This deletes the subdirectory [.FORTRAN]
but the subdirectory [.DOC] is not deleted. A fatal error message is generated:
11 directory file is not empty. 11

7 The DIRECTORY command is issued, which establishes that the subdirectory
DOC.DIR has not yet been deleted.

s The DELETE command is issued again and now the subdirectory [.DOC] is
deleted.

NOTE
Issuing the DIRECTORY command is an optional step. In this example, it
is showing the remaining files during each step in the process of deleting
subdirectories.

5-52 MANAGING FILES

5.15 SPECIFYING DEVICES

0
0
0

DEVICE SPECIFICATION

VMS
OPERATING
SYSTEM

VAX DEVICES
TTB_X0332 88 S

Figure 5-5 Device Specifications are Used to Identify the Desired Device for a Given
Operation

MANAGING FILES 5-53

As was previously discussed, you can assign logical names to specific devices on the
system. Using these logical names, you can access files from other devices. If you
specify a file using a logical device name, you can access the file regardless of which
physical device holds the disk or tape containing your file. Your system manager will
ensure that the logical device names are always equated to the correct physical devices.
The device name should precede the directory name and be terminated with a colon(:).

For example:

$ DIRECTORY DRAO: [SMITH]

gives you a listing of the files in the [SMITH] directory on the device DRAO:. You can
also move files from one device to another using the COPY command. See Table 5-15
for some examples of using other devices.

5-54 MANAGING FILES

Table 5-15 Examples of Using Other Devices

Operation

Listing files in
a directory on
another disk

Locating a file
in a directory on
another disk

Copying a file from
another disk to
your default disk
and directory

Listing all files on
a tape device

Finding a file on a
tape device

Copying a file from
tape to a disk

Comments and Examples

Lists all files in the directory [SMITII] located on the disk
DBA2:

$ DIRECTORY DBA2: [SMITHJ

Searches for the file name MYFILE.TXT in the directory
[SMITH] located on the disk DBA2:

$DIRECTORY DBA2: [SMITH]MYFILE.TXT

Copies the latest version of MYFILE.TXT from another disk to
your default disk and directory

$ COPY DBA2: [SMITHJ MYFILE. TXT MYFILE. TXT

Lists all files on a magnetic tape on device MTA2:

$ DIRECTORY MTA2:

Searches for the file MYFILE. TXT on a magnetic tape on device
MTA2:

$ DIRECTORYMTA2:MYFILE.TXT

Copies the file MYFILE.TXT from the tape on MTA2: to your
default disk and directory

$ COPY MTA2 :MYFILE. TXT *. *; *

MANAGING FILES 5-55

You can also move directories from one device to another. Table 5-16 shows you how
to move a hierarchical file structure from device DBAO: to device DRA2:.

Table 5-16 Moving a Hierarchical File Structure from one Disk Device to
Another

Command Comments and Examples

COPY Copies all versions of the files in and below the SFD [SMITH.UTLCOM]
on device DBAO: to the directory [JONES] on device DRA2:, preserving
the hierarchical file structure.

$COPY DBAO: [SMITH.UTLCOM •••]*.*·* DRA2: [JONES •.•]*.*·*

Copies all versions of the files in and below the SFD [SMITII.UTLCOM]
on device DBAO: to the directory [JONES.UTLCOM] on device DRA2:,
preserving the hierarchical file structure. If the file UTLCOM.DIR does
not exist in the directory [JONES], the COPY command fails.

$ COPY DBAO: [SMITH. UTLCOM •••] *. *; * DRA2: [JONES. UTLCOM •••] *. *; *

5-56 MANAGING FILES

5.16 PROTECTING DISK AND TAPES

VOLUME PROTECTION CODE

DIRECTORY PROTECTION CODE

FILE PROTECTION CODE

DISK
FILE

FILE .A.CCESS REQUEST

VMS
COMM.A.NO
LA.NG U.A.G E
INTERPRETER

VMS
FILE
SYSTEM

VOLUME PROTECTION CODE

Q
T.A.PE
FILE

TTB_X0329 88 S

Figure 5-6 File Access to Disk and Tape Volumes

MANAGING FILES

5.17 SUMMARY

Directory Type

Master File
Directory (MFD)

User File
Directory (UFD)

Example

[000000]

[S~

Naming Convention

Each disk contains one :MFD, named
[000000].

Your user name is usually your UFD
name.

Subdirectory (SFD) [SMITH.PAYROLL] You choose the names for the
subdirectories you create.

Use the DIRECTORY command to:

Find files on a peripheral storage device on your system

Display the contents of directories or the characteristics of files

You may want to change file protection to:

Restrict access to your files

Prevent unauthorized moving or deletion of files

Assign a special protection code for all files created in a particular directory

• Delete a subdirectory

There are two means of protecting files:

User Identification Code (DIC-based) protection

Access Control Lists (ACLs)

5-57

MANAGING FILES 5-59

5.18 APPENDIX A-DEVICE INFORMP-ll.TION

Table 5-17 Codes for Some Supported Devices on a VMS System

Code Device Type

CS Console Storage Device

DB RPOS, RP06 Disk

DD TU58 Cassette Tape

DJ RA60 Removable Disk

DL RL02 Cartridge Disk

DM RK06, RK07 Cartridge Disk

DQ R80 Disk

DR RM03, RMOS, RM80, RP07 Disk

DU RA82, RA80, RA81, RC25, RD54, RD53 Disk, RX33, RXSO Floppy
Diskette

DX RXOl Floppy Diskette

DY RX02 Floppy Diskette

LA LPAll-K Laboratory Peripheral Accelerator

LC Line Printer on DMF32

LP Line Printer on LPl 1

LT Interactive Terminal or Terminal Server

MB Mailbox

:MF TU78 :M;agnetic Tape

MS TS 11, TU80 Magnetic Tape

MT TE16, 1U45, TU77 Magnetic Tape

MU TA 78, TKSO, TU81 Magnetic Tape

5-60 MANAGING FJLES

Table 5-17 (Cont.) Codes for Some Supported Devices on a VMS System

Code Device Type

NET Network Communication Logical Device

NL System "Null" Device

OP Operator's Console

RT Remote Terminal

TI Interactive Terminal on DZl 1

TX Interactive Terminal on D:MF32

XA DRll-W General Purpose DMA Interface

XD DMP-11 Synchronous Communications Lines

XE DEUNA Communication Device

XF DR32 Interface Adapter

XG DMF32 Synchronous Communications Lines

XJ DUPll Synchronous Communications Lines

XM DMCll Synchronous Communications Lines

XQ DEQNA Communication Device

MANAGING FILES 5-61

DCL allows you to omit the controller character and the unit number in device
specifications. The effect of leaving out these parts depends on the command you use.
Most DCL commands interpret an incomplete device specification as a physical device
specification, or one that is meant to signify a single physical device. Other commands
interpret an incomplete device specification as a generic device specification, or one that
specifies a group of devices on your system.

The commands that interpret an incomplete device specification as a physical device
name include: INITIALIZE, DISMOUNT, DEALLOCATE and all file manipulation
commands. Physical device specifications always default missing controller characters
to A, and missing unit numbers to 0. For example, the system interprets the incomplete
device specification DB: as DBAO:.

One command that interprets an incomplete device specification as a generic device name
is SHOW DEVICE. Table 5-18 summarizes device terminology, while Table 5-19
demonstrates the syntax you use when specifying devices. For additional information
concerning commands, refer to the VMS DCL Dictionary.

5-62 MANAGING FILES

Table 5-18 Summary of Device Terminology

Term

Peripheral Device

Mass Storage Device

Record-oriented Device

Physical Device Name

Logical Device Name

Generic Device Name

Cluster Device Name

Definition

A unit on the system used for information input,
output, or storage. A device can be classified either
as a mass storage device or as a record-oriented
device.

A device used for storing information on a magnetic
medium. Examples include disks and tapes.

A device used for reading and writing single units
of data. Terminals, printers, and card readers are
examples of these devices.

A specific physical device on the system. Consists
of a device-type code, a controller character, and a
unit number.

A synonym for a physical device name. Often used
to refer to a specific volume, regardless of the device
on which it is mounted. Usually the system manager
sets up logical names.

A group of devices, consisting of a physical device
name that does not specify the controller and the
unit number.

Name of a device on a node in a cluster, consisting
of a cluster node name or allocation class and a
device name separated by a dollar sign.

MANAGING FILES 5-63

Table 5-19 Generic Specification with the SHOW DEVICE Command

Operation

Using Physical Device Names

Specifying a particular device

Using Generic Device Names

Specifying all devices of a given type
except terminals

Specifying all devices of a given type
on a single controller

Specifying all devices of a given
type at the same position on different
controllers

Specifying all terminals

Specifying your assigned terminal

Comments and Examples

Displays full information on the magnetic
tape (MT) unit (0) on controller A

$ SHOW DEVICE/FULL MTAO:

Displays brief characteristics of all RA60
devices (DJ)

$ SHOW DEVICE DJ:

Shows brief characteristics of all MT
magnetic tape devices on controller A

$ SHOW DEVICE MTA:

Displays brief characteristics of all terminals
(TI) with unit number 1 on any controller

$ SHOW DEVICES TTl:

Displays brief characteristics of all system
terminals

$ SHOW DEVICE T:

Displays brief characteristics of your
assigned terminal (TI: is a system-defined
logical name equating to your terminal)

$ SHOW DEVICE TT:

MANAGING FILES

5.19 APPENDIX B-NnTWORKING ThTf'Ofill.1ATION

5.19.1 Managing Files on Another VMS System in Your Network

5.19.1.1 Methods of File Management in a Network

5-65

VMS systems allow you to manage files on devices connected to other systems without
compromising the VMS file security features. You have several choices for managing
files located on devices connected to another system. These choices include:

Using the SET HOST command -

You can use the SET HOST command to connect your terminal (through the
current host processor) to another processor, called the remote processor, and enter
DCL file-manipulation commands. This requires that both processors run DECnet
and that you know a user name and password of an account on the remote system.
The account you use on the remote system supplies values to the remote system
to process your DCL file-manipulation commands.

Using an access-control string in your DCL commands -

You can include an access-control string in the DCL file-manipulation commands
that function across the network. (This section addresses access-:control strings.)
The access-control string includes both the user name and password of an account
on a remote system. The account referenced by the access-control string also
provides default values to the remote system to process your DCL file-manipulation
commands.

Using a proxy account -

You can use the defaults supplied by a proxy account when you use DCL
file-manipulation commands that function across the network. (A proxy account,
if the system manager establishes one for you, associates your user name with an
account on the remote system.) The account on the remote system associated with
your user name provides the default values the remote system needs to process
your DCL file-manipulation commands.

Using the DECnet defaults -

The system manager can establish a default DECnet account. If this account is
created, it will supply default values to DCL file-manipulation commands entered
across the network.

5-66 MANAGING FILES

5.19.2 Using DCL File-Manipulation Commands in a Non-VAXcluster
Network Environment

5.19 .2.1 Two Node Specification Formats

This section first discusses using DCL file-manipulation commands in a network that
does not contain a VAXcluster system. Then it looks at factors concerning managing
files on a V AXcluster system.

When you manage files on a device connected to a remote node, it is necessary to
include the node specification of the remote processor in the file specification of DCL
file-manipulation commands. Two formats for the node specification follow.

1. Nodename::

2. Nodename "access control string"::

When you use the Nodename:: format, the remote system takes the following action:

It processes your file-manipulation request as though your request was issued
from its default DECnet account If there is no default DECnet account, your
file-manipulation request fails.

It uses the UIC of its default DECnet account to determine the file access rights.

It obtains default values from its default DECnet account for fields you omit from
file specifications in your file-manipulation request.

When you include an access-control string, the remote system takes a different action.
The access-control string you provide consists of a user name and password in the
format user-name password. When you use this format, the remote system takes the
following action:

• It processes your file-manipulation request under a process created from the
account specified in the access-control string.

• It uses the UIC of the account specified in the access-control string to determine
file access rights.

• It obtains default values from the account specified in the access-control string for
fields you omit from file specifications in your file-manipulation request.

Table 5-20 shows examples of specifying files on a device connected to a remote node.

MANAGING FILES 5-67

Tabie 5-20 Examples of Specifying Files on Remote Nodes

Examples Comments

$DIRECTORY DIPPER: :DBAl: [SMITH]PAY.FOR;l

Specifies the file PAY.FOR;l in the directory
[SMI1H] on disk DBAl: on remote node DIPPER:.

$DIRECTORY DIPPER"BILL SMITH": :DBAl: [SMITH]PAY.FOR;l

Specifies the same as the preceding example. Access
to the file uses the UIC of user SMITH.

$ DIRECTORY DIPPER"BILL SMITH": :PAY .FOR; 1

Specifies the same as the preceding example. The
process supplies the defaults under the account for
SMITH.

$ DIRECTORY DIPPER"BILL SMITH":: [SMITH.DOC] PAY .DAT

Specifies the file PAY.DAT in the subdirectory
[SMITH.DOC] on the default disk of user SMITH
on node DIPPER:.

The file management commands that work across a network are a subset of the
commands used to manage files on an individual VAX processor. Table 5-21 illustrates
how to use DECnet-VAX file management commands.

5-68 MANAGING FILES

Table 5-21 DECnet-VAX DCL File-Manipulation Command Summary

Function

Adding the contents of
one or more files to the
end of another file (files
may be local or remote)

Copying one or more files
to or from a remote node

Creating a disk file on a
remote node

Displaying information
about a file

Comments and Examples

Appends the contents of file DEMO.DAT in the directory
[JAFFE] on the remote node BOSTON:: to the file
IBST.DAT in your current directory on your local node.

$ APPEND BOSTON" JAFFE ANN" : : DEMO. DAT TEST. DAT

Copies the file DEC12.DAT from your current directory
to the directory [JANES] on the remote node WHYNOT::.
Defaults on the remote node come from the UAF record
specified within quotes. The same file name is retained.

$ COPY DEC12 .DAT WHYNOT"JANES JIL":: *. *

Creates the file IBST.DAT in the directory [MODEL] on
disk DBAl: of remote node TRNTO::.

$ CREATE TRNTO: :DBAl: [MODEL] TEST .DAT

Text is entered into file TEST .DAT

CTRL/Z

Lists the files in the subdirectory [JANES.SUB!] located
on the remote node WHYNOT::.

$ DIRECTORY WHYNOT"JANES JIL":: [JANES. SUBl]

MANAGING FILES 5-69

Table 5-21 (Cont.) DECnet-VAX DCL File-Manipulation Command Summary

Function

Displaying the contents of
a file at a terminal on a
remote node

Deleting one or more files
at a remote terminal

Comments and Examples

Displays the file PAY.DOC;! in the directory [GREEN]
on disk DBAl: located on remote node DIPPER::.

$TYPE DIPPER: :DBAl: [GREEN]PAY.DOC;l

Deletes all versions of the file PAY.FOR in subdirectory
[JONES.SUB I] located on remote node WHYNOT::.

$DELETE WHYNOT"JANES JIL":: [JANES.SUBl]PAY .FOR;*

5-70 MANAGING FILES

5.19.3 Using DCL File-Manipulation Commands in a VAXcluster
Environment

5 .19 .3 .1 Two Cluster Device Specification Formats

You can also manipulate files on a device connected to a system that is in a cluster. To
do this, include a cluster device specification in your DCL file-manipulation commands.
A cluster device specification bas one of the following formats:

1. node-name$device-name

2. $allocation-class$device-name

The first format shows a cluster device specification consisting of the name of the
device, preceded by the name of the node, followed by a dollar sign ($).

A sample cluster device specification of this type follows:

PETER$DUA1:

In the example above, PETER is the name of the node, DUAI is the name of the
physical device, and the dollar sign ($) is a delimiter.

The second format shows the device name of the cluster device specification prefixed
by a number. The prefix nwnber is called an allocation class, and is a number between
1 and 255.

A sample cluster device specification of this type follows:

1DUAO:

Only devices set up in a special way can use an allocation class as part of their
device specifications. The system manager is responsible for setting up the devices and
choosing an allocation class for each node in the cluster.

You may want to check the names of nodes and devices while you are manipulating
your files. To do this, DCL provides the following commands: SHOW NET, SHOW
CLUSTER, and SHOW DEVICES. Table 5-22 lists commands you can use to
obtain information about nodes and devices in your systems environment. For more
information on VAXclusters systems, refer to the VMS VAXcluster Manual.

MANAGING FILES 5-71

Table 5-22 Commands Used to Determine the Nodes and Devices in Your
Systems Environment

Operation

Determine the
names of nodes in
a network

Determine the
names of nodes in
a cluster

Determine the
names of devices
accessible to your
node

Command/Example Comments

$ SHOW NET

$ SHOW CLO STER

$ SHOW DEVICES

Displays a list of nodes in your network.

Displays a list of nodes (HSC and VAX)
in your cluster.

Displays a list of devices accessible to
your node.

MANAGING FILES

5.20 WRITIEN EXERCISE I

Suppose yom default directory contains the following files:

A.DAT;l
B.DAT;3
MAILD22.DAT;2

A.FOR;2
B.FOR;l
MAILF22.DAT;2

AREA.FOR;2
C.DAT;4
MAILIST.COB;l

AREA.FOR;l
C.FOR;l
MAILJ14.DAT;l

5-73

1. List the files that are specified by the following file specifications (using the
DIRECTORY command):

a. *.FOR;2

b. *.FOR

c. A*.*;*

d A%%%.*;*

e. %DAT

f. *.*;*

2. Give a single file specification that describes the following lists of files:

a. ADAT;l, A.FOR;2

b. ADAT;l, BDAT;3, C.DAT;4

c. MAILD22.DAT;2, MAILF22DAT;2, MAILJ14DAT; 1

d ADAT;l, MAILJ14DAT;l

5-74 MANAGING Fll...ES

5.21 WRITTEN EXERCISE II

Next to each file maintenance operation, write the letter that corresponds to the VMS
command best suited to accomplish it. Specify each command at least once.

Commands

a. APPEND
b. COPY
c. DEIBTE
d. DELETE/CONFIRM
e. DIFFERENCES
f. DIRECTORY
g. DIRECTORY/OUTPUT=file-specification
h. PRINT
i. PURGE
j. RENAME
k. TYPE

Operations

1. Display the contents of a file at your terminal.

2. Display the contents of your default directory at your terminal.

3. Remove a specified file from your default directory.

4. Remove all but the most recent version of a specified file from your
default directory.

5. Create an exact duplicate of a file in your default directory.

6. List the contents of a file at the default system printer.

7. Compare the contents of two files.

8. Add the contents of one file to another.

9. Change a directory name to a new directory name.

10. Display the name of each file in your default directory and remove
or retain it by entering a "Y" or an "N" at your terminal.

11. List the contents of your default directory in a file for future reference.

MANAGING FILES 5-75

5.22 w'Rl'i'i'.bN EXERCISE m
Next to each directory maintenance operation, write the letter of the VMS command
best suited to perform the job. You may use some commands more than once; you will
not use others at all.

Commands

a. COPY
b. CREATE
c. CREATE/DIRECTORY
d. DELETE
e. DELETE/DIRECTORY
f. DIRECTORY
g. RENAME
h. SET DEFAULT
i. SET PROTECTION
j. SHOW DEFAULT
k. SHOW PROJECTION

Operations

1.

2.

3.

4.

5.

6.

7.

8.

9.

Display the name of your current default directory.

Display the contents of a directory hierarchy.

Remove a directory from a directory hierarchy.

Add a directory to a directory hierarchy.

Move files from one directory to another.

Change your current default directory.

Change the protection code of a directory file.

Display the name of your current default device.

Change your current default device.

5-76 MANAGING FILES

5.23 WRITTEN EXERCISE IV

Each of the following questions describes an operation a user wants to perform on a
given disk or tape file. Given the UIC of the user, and the owner UIC and protection
code of the file, its directory, or its volume, determine whether the file system will
permit the operation to occur. If the operation is permissible, write the word TRUE in
the space that precedes the question; if it is not, write the word FALSE.

1.

2.

3.

4.

5.

A user with a UIC of [100,200] wants to delete a file on a tape volume.

Volume Owner UIC:
Volume Protection Code:

[100,200)
(S:RWED,O:RWED,G:RWED,W:RE)

A user with a UIC of [363,2] wants to create a file on an RX33 disk
volume.

Volume Owner UIC:
Volume Protection Code:

[363,0)
(S:RE,O:RWED,G:RE,W)

A user with a UIC of [4,4] wants to read a file on an RA60 disk volume.

File Owner UIC:
File Protection Code:

[411,22)
(S,O:RWED,G,W:R)

A user with a UIC of [100,200] wants to update a record in a file on an
RA80 disk volume.

Volume Owner UIC:
Volume Protection Code:
Directory Owner UIC:
Directory Protection Code:
File Owner UIC:
File Protection Code:

[1, 1)
(S:RWED,O;RWED,G:RWED,W:RWED)
(100,210)
(S:RWE,O:RWE,G:RWE,W:RE)
[100, 210)
(S:RE,O:RWED,G:RWE,W:RE)

A user with a UIC of [521,6] wants to read a file on an RA81 disk volume.

Volume Owner UIC:
Volume Protection Code:
Directory Owner UIC:
Directory Protection Code:
File Owner UIC:
File Protection Code:

[1, 1)
(S:RWED,O:RWED,G:RWED,W:RWED)
[521,13)
(S:RWE,O:RWE,G,W)
(521,13)
(S:R,O:RWED,G:R,W:R)

MANAGING FILES 5-77

5.24 LABORATORY EXERCISE I

1. Create a subdirectory called [.SUB 1].

2. Copy some files from your login directory into [.SUBl].

3. Move yourself to that subdirectory.

4. Obtain a directory listing of all files in the subdirectory.

5. Combine two files to create a new file named NEWFil..E.DAT.

6. Create another subdirectory beneath [.SUBl] and name the new subdirectory
[.SUB2].

7. Copy some files from [.SUBl] into [.SUB2].

8. Obtain a directory listing of all files in the subdirectory.

9. Delete both subdirectories.

5-78 MANAGING FILES

5.25 LABORATORY EXERCISE II

1. Create a file in your login directory. What protection code does this newly created
file have and how did it get that protection code?

2. Change the protection code for this file to (S:R,O:R,G;R,W:R). Display the
protection code to verify the change.

3. Delete this file. What happened and why?

4. Change your DEFAULT protection code to (S:R,O:RWED,G:R,W:R). Create a
new file named NEWFILE. TXT. What protection code does this new file have and
why?

5. Change your DEFAULT protection to give all persons in your UIC group RWED
access and all persons in the WORLD category RWE access.

MANAGING FILES 5-79

5.26 LABORATORY EXERCISR ill

1. Choose a file in your directory. Issue a DCL command to obtain Access Control
List information regarding that file.

2. Modify the UIC protection on the above file so that your group has no access.

3. Modify the ACL information to allow Read, Write, and Execute access to the file.

4. Check to see if an ACL was created. Have some of your fellow students try to
access the file.

5. Delete the ACL on the above file.

MANAGING FILES

5.27 WRlT!'RN EXERCISE I-SOLUTIONS

1. List the files that are specified by the following file specifications:

a. *.FOR;2
A.FOR;2, AREA.FOR;2

b. *.FOR
A.FOR;2, AREA.FOR;2, AREA.FOR;l, B.FOR;l, C.FOR;l

c. A*.*;*
A.DAT;l, A.FOR;2, AREA.FOR;2, AREA.FOR;l

d. A%%%.*;*
AREA.FOR; 2, AREA.FOR; 1

e. %.DAT
A.DAT;l, B.DAT;3, C.DAT;4

f. *·*;*
All files

2. Give a single file specification that describes the following lists of files:

a. A.DAT;l, A.FOR;2
A.* or A.*;*

b. A.DAT;l, B.DAT;3, C.DAT;4
%.DAT or %.DAT;*

c. MAILD22.DAT;2, MAILF22.DAT;2, MAILJ14.DAT;l
MAIL* .DAT;* or MAIL%%% .DAT

d. A.DAT;l, MAILJ14.DAT;l
*.DAT;l

5-81

5-82 MANAGING FILES

5.28 WRITTEN EXERCISE II-SOLUTIONS

Commands

a. APPEND
b. COPY
c. DELETE
d. DELETE/CONFIRM
e. DIFFERENCES
f. DIRECTORY
g. DlRECTORY/OUTPUT=file-specification
h. PRINT
i. PURGE
j. RENAME
k. TYPE

Operations

1. k Display the contents of a file at your terminal.

2. f Display the contents of your default directory at your terminal.

3. c Remove a specified file from your default directory.

4. Remove all but the most recent version of a specified file from your
default directory.

5. b Create an exact duplicate of a file in your default directory.

6. h List the contents of a file at the default system printer.

7. e Compare the contents of two files.

8. a Add the contents of one file to another.

9. _j_ Change a directory name to a new directory name.

10. d Display the name of each file in your default directory and remove
or retain it by entering a "Y" or an "N" at your terminal.

11. _g_ List the contents of your default directory in a file for future reference.

MANAGING FILES 5-83

5.29 WRIITEN EXERCISE ill-SOLUTIONS

Commands

a. COPY
b. CREATE
c. CREATE/DIRECTORY
d. DELETE
e. DELETE/DIRECTORY
f. DIRECTORY
g. RENAME
h. SET DEFAULT
i. SET PROTECTION
j. SHOW DEFAULT
k. SHOW PROTECTION

Operations

1. _j_ Display the name of your current default directory.

2. f Display the contents of a directory hierarchy.

3. d Remove a directory from a directory hierarchy.

4. c Add a directory to a directory hierarchy.

5. _g_ Move files from one directory to another.

6. h Change your current default directory.

7. Change the protection code of a directory file.

8. _j_ Display the name of your current default device.

9. h Change your current default device.

5-84 MANAGING FILES

5.30 WRITTEN EXERCISE IV-SOLUTIONS

1. FALSE A user with a UIC of [100,200] wants to delete a file on a tape volume.

Volume Owner UIC:
Volume Protection Code:

[100,200)
(S:RWED,O:RWED,G:RWED,W:RE)

Files on a tape volume cannot be deleted.

2. TRUE A user with a UIC of [363,2] wants to create a file on an RX33 disk
volume.

Volume Owner UIC:
Volume Protection Code:

[363,0J
(S:RE,O:RWED,G:RE,W)

The user is a member of the same group as the owner of the volume. Since group
members have been granted EXECUTE rights, the user can create a new file.

3. TRUE A user with a UIC of [4,4] wants to read a file on an RA60 disk volume.

File Owner UIC:
File Protection Code:

[411,22)
(S,O:RWED,G,W:R)

The user belongs to the SYSTEM user category. System users do not have READ
access rights to the file. However, READ access rights have been granted to
members of the WORLD category; therefore, the user will be able to read the file.

MANAGING FILES 5-85

4. TROE A user with a UIC of [100,200} wants to update a record in a file on an
RA80 disk voiume.

Volume Owner UIC:
Volume Protection Code:
Directory Owner UIC:
Directory Protection Code:
File Owner UIC:
File Protection Code:

[1, 1]
(S:RWED,O;RWED,G:RWED,W:RWED)
[100,210]
(S:RWE,O:RWE,G:RWE,W:RE)
[100,210]
(S:RE,O:RWED,G:RWE,W:RE)

The user can access files on the volume because all access rights to the volume
have been granted to all user categories. The user is a member of the same group
as the owner of the file and the directory in which it is listed. Members of the
GROUP category have been granted WRITE access rights; therefore, the user can
update the file.

5. FALSE A user with a UIC of [521,6] wants to read a file on an RA81 disk
volume.

Volume Owner UIC:
Volume Protection Code:
Directory Owner UIC:
Directory Protection Code:
File Owner UIC:
File Protection Code:

[1, l]
(S:RWED,O:RWED,G:RWED,W:RWED)
[521,13]
(S:RWE,O:RWE,G,W)
[521,13]
(S:R,O:RWED,G:R,W:R)

The user can access files on the volume because all access rights to the volume
have been granted to all user categories. The user is a member of the same group
as the owner of the file and the directory in which it is listed. Members of the
GROUP category, however, cannot read the directory; therefore, the user will be
unable to read the file.

5-86 MANAGING FILES

5.31 LABORATORY EXERCISE I-SOLUTIONS

1. Create a subdirectory called [.SUB 1].

$CREATE/DIRECTORY [.SOBl]

2. Copy some files from your login directory into [.SUBl].

$ COPY/LOG EXISTING-FILE-NAMES [XXX.SOBl]*

3. Move yourself to that subdirectory.

$ SET DEFAULT [XXX.SUBl]

4. Obtain a directory listing of all files in the subdirectory.

$ DIRECTORY

5. Combine two files to create a new file named NEWFILE.DAT.

$ COPY FILE1,FILE2 NEWFILE.DAT

6. Create another subdirectory beneath [.SUB 1] and name the new subdirectory
[.SUB2].

$ CREATE/DIRECTORY [XXX.SOB1.SOB2]
or
$CREATE/DIRECTORY [.SOB2J (Assuming you are in the subdirectory [.SOBl])

7. Copy some files from [.SUBl] into [.SUB2].

$COPY EXISTING-FILE-NAMES [.SOB2]*

8. Obtain a directory listing of all files in the subdirectory [.SUB2].

$DIRECTORY [.SOB2]

9. Delete both subdirectories.

$ DELETE *.*;* (Assuming you are in subdirectory [.SOB2J
$ SET DEFAULT [-.SOBl]
$ SET PROTECTION=(O:RWED) SUB2.DIR
$ DELETE *.*;*
$ SET DEF [-] (Login directory)
$ SET PROTECTION=(O:RWED) SOBl.DIR
$ DELETE SOBl.DIR;l

MANAGING FILES 5-87

5.32 LABORATORY EXERCISE II-SOLUTIONS

1. Create a file in your login directory. What protection code does this newly created
file have and how did it get that protection code?

$ CREATE MYFILE.TXT
Type in text
CTRL/Z

The protection applied to this file is the system default protection the VMS system
puts on newly created files.

2. Change the protection code for this file to (S:R,O:R,G;R,W:R). Display the
protection code to verify the change.

$ SET PROTECTION=(S:R,O:R,G:R,W:R) MYFILE.TXT
$ DIRECTORY/PROTECTION MYFILE.TXT

3. Delete this file. What happened and why?

$ DELETE MYFILE.TXT;*

The system issues a system message informing you that you cannot delete this file,
be.cause you changed the file protection so that the owner does not have DELETE
privilege.

4. Change your DEFAULT protection code to (S:R,O:RWED,G:R,W:R).

$ SET PROTECTION=(S:R,O:RWED,G:R,W:R)/DEFAULT

Create a new file named NEWFILE.TXT. What protection code does this new file
have and why?

$ CREATE NEWFILE.TXT
Type in text
CTRL/Z
$ DIRECTORY/PROTECTION NEWFILE.TXT

By changing your DEFAULT protection, you specify that all files now created will
have this new default protection.

5. Change your DEFAULT protection to give all persons in your UIC group RWED
access and all persons in the WORLD category RWE access.

$ SET PROTECTION=(G:RWED,W:RWE)/DEFAULT

5-88 MANAGING Fll..ES

5.33 LABORATORY EXERCISE ill-SOLUTIONS

1. Choose a file in your directory. Issue a DCL command to obtain Access Control
List information regarding that file.

$ DIRECTORY/SECURITY file-name

2. Modify the UIC protection on the above file so that your group has no access.

$ SET PROTECTION=(G) file-name

3. Modify the ACL information to allow Read, Write, and Execute access to the file.

$ EDIT/ACL file-name
(IDENTIFIER=xxxx,ACCESS=READ+WRITE+EXECUTE)

4. Check to see if an ACL was created. Have some of your fellow students try to
access the file.

$ DIRECTORY/SECURITY file-name

5. Delete the ACL on the above file.

$ SET ACL/DELETE file-name

CUSTOMIZING THE USER
ENVIRONMENT

CUSTOMIZING THE USER ENVIRON1v1ENT 6-3

6.1 INTRODUCTION

Previously, you learned to enter instructions to the operating system and to specify the
locations of devices, directories, and files. The command strings and device and file
specifications that perform these operations are sometimes lengthy. This complexity is
an invitation to typographical and grammatical errors.

This module introduces logical names and demonstrates how to to use them in place of
complicated device and file specifications in command strings. It also explains how to
create and use symbols to tailor the command language.

Finally it describes how to define terminal keys to perform frequently used functions.

6.2 OBJECTIVES

• To make file references device-independent, you should be able to:

Use the logical names the VMS system defines for all users

Create and use logical names for file access

To customize the command language for particular needs, you should be able to:

Create and use symbols as command synonyms

Use symbols as variables in DCL expressions

Use symbols as an integral part of command procedures

Finally, you should be able to define and use terminal keys to speed up execution
of frequently used DCL commands.

6.3 RESOURCES

VMS DCL Dictionary

VMS DCL Concepts Manual

CUSTOMIZING THE USER ENVIROm.IBNT

6.4 LOGICAL NAME ASSIGNt-..IB:l'rrs

A logical name is a name you can use in place of all or part of a file specification.
When you issue DCL commands, you can use logical names in place of the device
name or file specification equated to the logical name. The system translates the logical
name to the corresponding equivalence string(s).

Equivalence strings are usually the name of a device, some portion of a file specification,
or another logical name.

Logical names are also used to pass data among programs, or between a command
procedure and a program.

To create logical name assignments, use either the ASSIGN or DEFINE command.
The format is:

$ DEFINE logical-name equivalence string[, ...]

$ ASSIGN equivalence-name [, •..] logical-name

Logical names and their equivalence strings can each have a maximum of 255 characters,
including alphanumeric characters, the dollar sign (?), and the underscore (_). Any
other characters must be enclosed in quotation marks.

6-6 CUSTOMIZING THE USER ENVIRON1\1ENT

6.4.1 Logical Name Tables

Logical names and their equivalence strings are stored in logical name tables. During a
terminal session, your process has at least four logical name tables associated with it

• Process Logical Name Table (LNM$PROCESS_TABLE)

The contents of your process logical name table is known only to your current
process. It contains process-private logical name assignments.

• Job-Wide Logical Name Table (LNM$JOB_YYYYYYYY, where YYYYYYYY is
the number the system assigns to your job)

The contents of your job-wide logical name table is known to your process tree,
which is your login process and all of its subprocesses. It contains shareable
logical name assignments.

Group Logical Name Table (LNM$GROUP _OOOXXX, where XXX represents your
UIC group number)

The contents of the group logical name table is known to all users whose UIC
group number matches your own. This also contains shareable logical name
assignments. Privilege is needed to add logical names to this table.

System Logical Name Table (LNM$SYSTEM_TABLE)

The contents of the system logical name table is known to all processes on your
system. This also contains shareable logical name assignments. Privilege is needed
to add logical names to this table.

The logical names catalogued in your process logical name table are referred to as
process-private logical names, while the logical names catalogued in the job-wide,
group, and system logical name tables are known as shareable logical names.

Figure 6-1 illustrates the relationship between your terminal, the operating system, and
the logical name tables associated with your process.

CUSTOMIZING THE USER ENVIRONMENT

TERMINAL

$ logical-name command

VMS
COMMAND
LANGUAGE
INTERPRETER

VMS
OPERATING
SYSTEM

PROCESS
LOGICAL
NAME
TABLE

SYSTEM
LOGICAL
NAME
TABLE

JOB-WIDE
LOGICAL
NAME
TABLE

GROUP
LOGICAL
NAME
TABLE

TTB_X0333_88_S

6-7

Figure fr-1 The Relationship Between Your Terminal, the Operating System, and the Logical
Name Tables Associated with Your Processor

6-8 CUSTOMIZING THE USER ENVIRONMENT

6.4.2 Common User Operations Dealing with Logical Names

As a user you may want to:

• Display the contents of logical name tables

• Determine the equivalence name of a logical name

Add or override logical name assignments in your process logical name table

• Remove a logical name from your process logical name table

The following sections describe each of the above steps in detail.

CUSTOMIZING THE USER ENVIRONMENT ~9

6.4.2.1 Adding Logicai Names

To add logical names, you can use either the ASSIGN or the DEFINE command. The
ASSIGN command syntax is:

$ ASSIGN[/table-name][/mode-name]
Device: equivalence-name[, ...]

=Log name: logical-name[:]

Example:

$ ASSIGN DRAO: [SMITH.UANDC] MINE

The DEFINE command syntax is:

$ DEFINE[/table-name][/mode-name]
Log name: logical-name[:]

=Equ name: equivalence-name[, ...]

Example:

$DEFINE MINE DRAO: [SMITH. UANDC]

Both examples above assign the logical name MINE to the disk DRAO, the directory
name [SMITH], and the subdirectory name [.UANDC].

$ CREATE/DIRECTORY/LOG [SMITH.LOG]
%CREATE-I-CREATED, DISK: [SMITH.LOG] created

$ ASSIGN [SMITH.LOG] MY_LOG

$ COPY/LOG [SMITH]MYFILE.TXT MY_LOG
%COPY-S-COPIED, DISK: [SMITH]MYFILE.TXT;l copied to
DISK: [SMITH.LOG]MYFILE.TXT;l (1 block)

$ TYPE MY LOG:MYFILE.TXT
This is a-file for use in displaying the use of logical names
to abbreviate devices and file specifications. This is in
the module entitled "Customizing the User Environment".
$

Example 6-1 Using Logical Names to Abbreviate Device and File Specifications

6-10 CUSTO:MIZING THE USER ENVIRONMENT

6.5 USING LOGICAL NAMES

6.5.1 Logical Name Translation

When the system encounters a file specification or device name in a command string, it
performs logical name translation on it automatically. The following steps are performed
by the system to translate logical names that have single equivalence strings.

If any of the following conditions exist, logical name translation terminates:

Ten translations have already been made (recursively).

The left-most component of the specification is not delimited by a colon, a
space, a comma, or an end of line.

The equivalence string is a logical name that has the Terminal attribute. If a
logical name as the Terminal attribute, the translation is completed after the
first translation.

If the logical name has the Concealed attribute, the translation normally
displays the logical name for the device, rather than the physical name for
the device.

• The system searches the Process, Job, Group, and System logical name tables in
that order for the first logical name match. A logical name match occurs when:

The part of the specification preceding the first delimiter matches an entry in
a logical name table.

The entire specification matches an entry in a logical name table.

• If a match occurs, the equivalence name replaces the logical name and step 1 is
repeated. Otherwise, logical name translation terminates.

Both Terminal and Concealed are translation attributes. They are defined by using
the /TRANSLATION_ ATTRIBUTES= qualifier for either the DEFINE or ASSIGN
commands. Refer to the VMS DCL Dictionary for further details.

CUSTOMIZING THE USER ENVIRONMENT 6-11

6.6 REClJRSIVE TRANSLATION

This section describes the steps that occur when the system does a recursive translation:

The following command is entered:

$ DIRECTORY SYS$LOGIN

The file specification passed to the DIRECTORY command consists of a single
component SYS$LOGIN. The symbol contains no delimiters. When the system searches
your logical name tables, it locates the following definition, which is in the format used
by the SHOW LOGICAL command:

"SYS$LOGIN" = "DISK_USER: [SMITH]" (LNM$JOB_8016DOOO)

Given this assignment, the system substitutes the equivalence string, DISK_
USER:[SMITH], for the original specification SYS$LOGIN. Next, the system
searches your logical name tables in an attempt to translate DISK_ USER, the left-most
portion of the revised specification. This search locates the physical device name
DBAO: with the Terminal attribute and the Concealed attribute, as the equivalence string
assigned to the logical name DISK_USER. The SHOW LOGICAL command displays
this relationship as follows:

"DISK_USER" = "DBAO:" (LNM$SYSTEM_TABLE)

The system now substitutes the equivalence string DBAO: for the logical name
DISK_USER to produce the file specification DBAO:[SMITH].

Since the logical name DISK_ USER has the Terminal attribute assigned, further iterative
translation is prevented. And, since the Concealed attribute is assigned, you are assured
that DBAO: is the physical device name. In this case, the DIRECTORY image looks
for files cataloged in DBAO:[SMITH] but uses DISK_USER:[SMITII] in the heading of
its display. Concealed device names are useful when, as in this case, the logical name
has more meaning to the user than the physical device name.

To complete the processing of the file specification, the system substitutes default values
for fields that remain unspecified. In this example, no file name, file type, or version
number has been specified. Since you have entered the DIRECTORY command, the
system substitutes wildcard characters (*) in the remaining fields of the specification. It
does this on the assumption that you want to list the contents of the directory file named
[SMITH] on the device named DBAO:.

6-12 CUSTOMIZING THE USER ENVIRONMENT

6.6.1 Sample Recursive Translation

• Command

$ DIRECTORY PROJECTS

First table search (Looking for PROJECTS)

"PROJECTS" = "DISKUSER: [ELLEN]" {LNM$PROCESSTABLE}

Se.cond table search (Looking for DISKUSER)

"DISKUSER" = "DBAO:" (LNM$SYSTEMTABLE}

• Result

DBAO: [ELLEN] - Searched

Table 6-1 Commands for Displaying the Contents of Logical Name Tables

Example

$ SHOW LOGICAL

$ SHOW LOGICAL/FULL

$ SHOW LOGICAL/PROCESS

$ SHOW LOGICAL/ JOB

$ SHOW LOGICAL/GROUP

$ SHOW LOGICAL/SYSTEM

Comments

By default, displays logical names from the
process, job-wide, group, and system logical
name tables

Displays all of the attributes of logical names
from the process, job-wide, group, and system
logical name tables

Displays logical names from your process
logical name table

Displays logical names from your job-wide
logical name table

Displays logical names from your group
logical name table

Displays logical names from the system
logical name table

CUSTOMIZING THE USER ENVIRONMENT

$ SHOW LOGICAL/PROCESS

(LNM$PROCESS_TABLE)

"SYS$COMMAND" = II DISK$RTA1:"
"SYS$DISK" = "DISK:"
"SYS$ERROR" = II DISK$RTA1:"
"SYS$INPUT" [super] = "DISK:"
"SYS$INPUT" [exec] = " DISK$RTA1:"
"SYS$0UTPUT" [super] =-" DISK$RTA1:"
"SYS$0UTPUT" [exec] "_DISK$RTA1:"
"TT" = "RTAl:"

$ SHOW LOGICAL/JOB

(LNM$JOB_80392E4E40)

"SYS$LOGIN" ="DISK: [HUBBARD]"
"SYS$LOGIN DEVICE"= "DISK:"
"SYS$REM ID" = "HUBBARD"
"SYS$REM-NODE" = "WHYSO::"
"SYS$SCRATCH" = "DISK: [HUBBARD]"

$ SHOW LOGICAL/GROUP

(LNM$GROUP_000011)

"MY DISK" = "DJAO: II
$ SHOW LOGICAL/SYSTEM

(LNM$SYSTEM_TABLE)

"DBG$INPUT" = "SYS$INPUT:"
"DBG$0UTPUT" = "SYS$0UTPUT:"
"DISK$WHYNOT SYS" = "DISK:"
"SYS$ANNOUNCE" = "Welcome to WHYNOT "
"SYS$COMMON" = "DISK: [SYSO.SYSCOMMON.]"
"SYS$DISK" = "DISK:"
"SYS$ERRORLOG" = "SYS$SYSROOT: [SYSERR]"
"SYS$HELP" = "SYS$SYSROOT:[SYSHLP]"
"SYS$MAINTENANCE" = "SYS$SYSROOT: [SYSMAINT]"
"SYS$MANAGER" = "SYS$SYSROOT: [SYSMGR]"
"SYS$MESSAGE" = "SYS$SYSROOT: [SYSMSG]"
"SYS$NODE" = "WHYNOT::"
"SYS$SYLOGIN" = "SYS$MANAGER:SYLOGIN.COM"
"SYS$SYSDEVICE" = "DISK:"
"SYS$SYSROOT" = "DISK: [SYSO.]"

= "SYS$COMMON:"
"SYS$SYSTEM" "SYS$SYSROOT: [SYSEXE]"
"SYS$UPDATE" = "SYS$SYSROOT: [SYSUPD]"

6-13

Example 6-2 Displaying the Contents of the Process, Job, Group, and System Logical
Name Tables

&-14 CUSTOMIZING THE USER ENVIRONMENT

6.7 DETERMINING THE EQUIVALENCE OF A LOGICAL NAME

There are two commands used to determine the equivalence of a logical name.

The command SHOW LOGICAL logical-name translates iteratively up to 10 levels
until everything is resolved.

The command SHOW TRANSLATION logical-name displays the first equivalence
string and then stops. No iteration is performed.

$ ASSIGN DJAO: DISKl

$ ASSIGN DISKl: MYNAME

$ SHOW TRANSLATION MYNAME
MYNAME = "DISKl:" (LNM$PROCESS_TABLE)

$ SHOW LOGICAL MYNAME
"MYNAME" = "DISKl:" (LNM$PROCESS TABLE)

1 "DISKl" = "DJAO:" (LNM$PROCESS_TABLE)

Example 6-3 Determining the Value of a Logical Name

CUSTOMIZING THE USER ENVIRONMENT 6-15

6.8 DELETING LOGICAL NMJES

The DEASSIGN command deletes logical names from a particular logical name table.
The qualifier I ALL can be used as well, depending upon how many logical names you
want to delete.

The following table lists examples of deleting logical names.

Table 6-2 Commands for Deleting Logical Names

Format/Examples Comments

$ DEASSIGN[/table-name] [logical-name]

$ DEASSIGN MYF ILE

$ DEASSIGN/ALL

$ DEASSIGN/JOB

$ DEASSIGN/GROUP OURFILE

$ DEASSIGN/SYSTEM PAYROLL

Deletes the logical name MYFILE from your
process logical name table.

Deletes all assignments that you have placed
in your process logical name table.

Deletes a logical name in your job table.

Deletes the logical name OURFILE from
your group logical name table. (This
assumes you have GRPNAM privilege.)

Deletes the logical name PAYROLL from the
system logical name table. (This assumes
you have SYSNAM privilege.)

6-16 CUSTO~G THE USER ENVIRONMENT

Example 6-4 illustrates the manipulation of logical names.

$ ASSIGN DJAO: DISKl
$ ASSIGN DISKl: [HUBBARD] LOG
$ SHOW LOGICAL/PROCESS

(LNM$PROCESS_TABLE)

"DISKl II = "DJAO: fl
"LOG" = "DISKl: [HUBBARD]"
"SYS$COMMAND" = " DISK:"
"SYS$DISK" = "DISi:"
"SYS$ERROR" = " DISK$RTA1:"
"SYS$INPUT" [super] = " DISK:"
"SYS$INPUT" [exec] = " DISK$RTA1:"
"SYS$0UTPUT" [super] =-" DISK$RTA1:"
"SYS$0UTPUT" [exec] "_DI SK$RTA1: "
"TT" = "RTAl:"

$ ASSIGN DJAl: DISKl
%DCL-I-SUPERSEDE, previous value of DISKl has been superseded

$ SHOW LOGICAL/PROCESS

(LNM$PROCESS_TABLE)

"DISKl" = "DJAl:"
"LOG" = "DISKl: [HUBBARD]"
"SYS$COMMAND" = II DISK$RTA1:"
"SYS$DISK" = "DISK:"
"SYS$ERROR" = " DISK$RTA1:"
"SYS$INPUT" = "-DISK$RTA1:"
"SYS$00TPUT" [s~per) = " DISK$RTA1:"
"SYS$0UTPUT" [exec] "_DISK$RTA1:"
"TT" = "RTAl:"

$ DEASSIGN/ALL
$ SHOW LOGICAL/PROCESS

(LNM$PROCESS_TABLE)

$

"SYS$COMMAND" = " DISK$RTA1:"
"SYS$DISK" = "DISK:"
"SYS$ERROR" = II DISK$RTA1:"
"SYS$INPUT" = "-DISK$RTA1:"
"SYS$0UTPOT" [s;-per) = " DISK$RTA1:"
"SYS$0UTPUT" [exec] "_DISK$RTA1:"
"TT" = "RTAl:"

Example 6-4 Assigning, Changing, and Deleting Logical Name Assignments

CUSTOMIZING THE USER ENVIRONMENT 6-17

6.9 SYSTEM-DE..FINED LOGICAL NAMES

When you log in, the system defines a number of logical names and stores them in your
process logical name table. The system also creates a job-wide logical name table for
your process and all of its potential subprocesses. A number of other logical names are
defined and stored in the system logical name table at the time your system is initialized.

You can override these permanently or temporarily with the ASSIGN or DEFINE
commands previously discussed.

Table 6-3 lists the logical name definitions you will use most often at your terminal.

Table 6-3 Process Logical Names Defined by the System

Logical Name

SYS$CO:MMAND

SYS$DISK

SYS$ERROR

SYS$0UTPUT

SYS$INPUT

TT

Equivalence Name

Original value of SYS$INPUT, equated to your terminal
for interactive use and command procedures.

Default disk established at login. Can be changed by the
SET DEFAULT command.

Default device to which the system writes messages. For
an interactive user, the system equates SYS$ERROR to
the terminal.

Default output devices. For an interactive user,
SYS$0UTPUT is equated to the terminal.

Default input device. For all interactive use, SYS$INPUT
is equated to the terminal. For command procedures, it is
equated to the command file.

Default device name for your terminal in interactive mode
and for the console in batch mode.

6-18 CUSTOl\flZING THE USER ENVIRONMENT

Table 6-4 Job Logical Names Defined by the System

Logical Name

SYS$LOGIN

SYS$LOGIN_DEVICE

SYS$SCRATCH

Equivalence Name

Default disk and directory established at login time. This
"home" directory is specified in the authorization record.

Default disk established at login. Unlike the logical name
SYS$DISK, SYS$LOGIN_DEVICE is not changed by the
SET DEFAULT command.

Default device and directory to which temporary files
are written. For all use this is equated to your default
directory.

Table 6-S System Logical Names Defined by the System

Logical Name

SYS$SYSTEM

SYS$HELP

SYS$LIBRARY

SYS$MESSAGE

SYS$SHARE

SYS$SYSDEVICE

SYS$NODE

Equivalence Name

Device and directory of operating system programs and
procedures.

Device and directory name of system help files.

Device and directory name of system libraries.

Device and directory name of system message files.

Device and directory name of system shareable images.

VMS system disk, device referred to in the system logical
names listed above.

Current network node name for the local system, if
DECnet is active on the system.

CUSTOMIZING THE USER ENVIRONMENT 6-19

6.9.1 SPECir·yl.NG ACCESS MODES

You can specify a particular access mode by using /USER_ MODE or /SUPERVISOR_
MODE in conjunction with the ASSIGN or DEFINE commands.

User mode assignments last until the next image run in your process completes
execution. (An image is a program in its executable form.)

Supervisor mode (the default mode) assignments are in effect until:

You log out

You assign the particular logical name to a different equivalence string

You remove the logical name assignment by using the DCL command DEASSIGN

Note in Example 6-5 that SYS$0UTPUT, which by default is your terminal, has been
redirected to the file named OUTPUT.LIS. The SHOW PROCESS command is issued,
followed by the command TYPE OUTPUT.LIS to display the file OUTPUT.LIS at
your terminal screen. ·

$ ASSIGN/USER_MODE OUTPUT.LIS SYS$0UTPUT

$ SHOW PROCESS

$ TYPE OUTPUT.LIS
22-0CT-1987 16:20:03.20 RTAl: User: SMITH
Pid: 202001FB Proc. name: SMITH UIC: [GROUPll,SMITH]
Priority: 4 Default file spec: DISK: [SMITH]
Devices allocated: DISK$RTA1:
$

Example 6-5 Using Logical Names to Alter the Default Output Device of Your Process

6-20 CUSTO:MIZING THE USER ENVIRONMENT

6.9.2 OVERRIDING DCL TABLE NAMES

By default, both the ASSIGN and the DEFINE commands direct the system to make
a logical name assignment in your process logical name table. To override this default,
and make a logical name assignment in a table other than your process logical name
table, use one of the following command qualifiers:

• /PROCESS (Default)

• /JOB

/GROUP (requires GRPNAM privilege)

/SYSTEM (requires SYSNAM privilege)

As mentioned earlier, logical name assignments in your process logical name table are
known as process-private logical names. By default, logical name assignments in your
user-defined logical name tables are also process-private logical names. Process-private
logical names are in effect until you log out, unless you explicitly delete them. The
shareable logical name assignments stored in your group and system logical name tables
are not deleted when you log out

CUSTOMIZING TIIB USER ENVIRONMENT 6-21

Tabie 6-6 describes the conunands used for defining logical names.

Table 6-6 Commands for Defining Logical Names

Operation

Add or
modify a
logical name
assignment

Format/Example

$ ASSIGN [/mode-name]
_Device: equivalence-name[, ...]
_log name: logical-name[:]

$ ASSIGN DMAO: DISK

$ DEFINE [/table-name] [/mode-name]
_log name: logical-name[:]
_ equ name: equivalence-name[, ...]

$ DEFINE DISK DMAO:

Comments

Assigns the equivalence string
DMAO: to the logical name
DISK. By default, the system
stores the assignment in your
process logical name table.
(Note that you include the colon
in the equivalence string, since it
is part of the device name.)

Assigns the equivalence string
DMAO: to the logical name
DISK. By default, the system
stores the assignment in your
process logical name table.

6-22 CUSTOMIZlNG TIIE USER ENVIRONMENT

Table 6-7 describes the commands used for displaying logical names.

Table 6-7 Commands for Displaying Logical Names

Operation

Determine
the value
of a logical
name at
command
level

Determine
the value
of a logical
name using a
wildcard

Determine
the value
of a logical
name during
an image
interrupt

Format/Example

$ SHOW LOGICAL logical-name

$ SHOW LOGICAL MYFILE

$ SHOW LOGICAL SYS*

$ SHOW TRANSLATION logical-name

$ SHOW TRANSLATION DISK

Comments

Displays the translations for the
logical name MYFILE found in
the process, job-wide, group, and
and system logical name tables.

Displays the translations for all
all logical names beginning with
SYS in the process, job-wide,
group, and system logical name
tables, because of the use of the
wildcard (*).

Displays the equivalence
string associated with the first
occurrence of DISK in your
tables. (By default, the SHOW
TRANSLATION command
searches process, job-wide,
group, and system tables, in that
order.)

CUSTOMIZING THE USER ENVIRONMENT 6-23

6.10 USING DCL SYl\IBOLS

In addition to supporting logical names (which represent device, directory, and file
specifications) the operating system supports a second facility for creating alternate
names for commands or portions of command strings. Using a special command,
called the assignment statement(=), you can assign values to symbols and store these
assignments in special tables called symbol tables. You can use symbols created in this
way as variables in command procedures and as command synonyms.

The Writing Command Procedures module discusses the use of symbols as variables.
This module covers the use of symbols as command synonyms.

The left side of the assignment statement defines the symbol name. The right side of
the assignment statement contains an expression that can be either an integer value or a
character string.

A symbol name can have a maximum of 255 characters. The symbol name must begin
with a letter (A through Z), an underscore (_), or a dollar sign ($). After the first
character, the name can contain any alphanumeric characters, underscores, and dollar
signs. For example:

$ COUNT = 10
$ RESULT == 100

A command synonym is a name that represents character strings or numeric values. The
portion of a command string equated to a command synonym is called its equivalence
string.

The global symbol table typically stores command synonyms and their equivalence
strings. Each time you log in, the system creates both a global symbol table and a local
symbol table for your process. You define, display, and delete command synonyms by
entering DCL commands at your terminal. Figure 6-2 shows the relationship between
your terminal, the operating system, and the symbol tables associated with your process.
By defining command synonyms, you can create your own command language and
simplify your terminal sessions.

6-24 CUSTOMIZING Tiffi USER ENVIRONMENT

DCL places local symbols in the local symbol table. A local symbol exists as long as
the command level remains active. A local symbol is defined by using a single equal
sign (=) in the assignment statement

$ TEST = "HELLO"

Global symbols are placed in the global symbol table. A global symbol exists for the
duration of the process, unless it is specifically deleted. A global symbol is defined by
using two equal signs (= =) in the assignment statement:

$ RESULT == 50

You can also abbreviate the symbol forms by use of the asterisk(*) as the abbreviation
indicator. For example, to abbreviate a local symbol to invoke the Mail utility:

$ M*AIL = "MAIL"

The Mail utility will be invoked using any of these abbreviations: "M", "MA", "MAI",
and "MAIT.,".

CUSTOMIZING THE USER ENVIRONMENT

$command-synonym command

TERMINAL

VMS
COMMAND
LANGUAGE
INTERPRETER

GLOBAL SYMBOL
TABLE

LOCAL SYMBOL
TABLE

TTB_X0334_88_S

6-25

Figure 6-2 The Relationship Between Your Terminal, the Operating System, and Your Global
Symbol Table

6-26 CUSTOMIZING THE USER ENVIRONMENT

6.10.1 Deleting Symbol Definitions

Symbol definitions are deleted from a symbol table by using the DELETE/SYMBOL
[symbol-name] command. If you do not specify the name of a symbol table the symbol
definition is deleted from the local symbol table.

There are three qualifiers that can be used in conjunction with the DELETE/SYMBOL
command. They are:

• /LOCAL - Specifies that the symbol name is to be deleted from the local symbol
table.

/GLOBAL - Specifies that the symbol name is to be deleted from the global
symbol table.

• I ALL - Specifies that all symbol names in the specified symbol table be deleted.
If neither /LOCAL or /GLOBAL are specified, all symbols defined at the current
command level are deleted.

CUSTOl\flZING THE USER ENVIRONMENT 6-27

Table 6-8 describes the commands used for defining, displaying, and deleting symbols.

Table 6-8 Commands for Defining, Displaying, and Deleting DCL Symbols

Operation Format/Example

Defining a $ symbol-name = = "equiv-string"
DCL Symbol s TO == "SET DEFAULT"

Displaying Symbols

Displaying $ SHOW SYMBOL/GLOBAL symbol-name
a Single $ SHOW SYMBOL/ GLOBAL TO

Symbol

Displaying $ SHOW SYMBOL/ GLOBAL/ ALL

All Symbols

Displaying $ SHOW SYMBOL/GLOBAL S*

All Symbols
Using a
Wildcard

Deleting Symbols

Deleting $ DELETE/SYMBOL/GLOBAL symbol-name
a Single $ DELETE/SYMBOL/GLOBAL TO

Symbol

Deleting All $ DELETE/SYMBOL/GLOBAL/ALL

Symbols

Comments

Assigns the equivalence
string SET DEFAULT
to the symbol TO,
storing the definition
in your global symbol
table

Displays the value of
the symbol TO

Displays the values
of all symbols defined
in your global symbol
table

Displays the values
of all symbols defined
in your global symbol
table beginning with
the letter "s"

Deletes the symbol
TO from your global
symbol table

Deletes all symbols
from your global
symbol table

6-28 CUSTOMIZING THE USER ENVIRONMENT

$ DIRP == "DIRECTORY/OWNER/PROTECTION"
$ TO == "SET DEFAULT"
$ RETURN == "SET DEFAULT SYS$LOGIN"
$ LOCALS == "SHOW SYMBOL/LOCAL/ALL"
$ GLOBALS == "SHOW SYMBOL/GLOBAL/ALL"
$ DEL SL == "DELETE/SYMBOL/LOCAL"
$ DEL=SG == "DELETE/SYMBOL/GLOBAL"
$ GLOBALS

$RESTART == "FALSE"
$SEVERITY = "l"
$STATUS = "%X00030001"
C*LEAR == "RUN SYS$SYSTEM:ERASE"
DEL SG == "DELETE/SYMBOL/GLOBAL"
DEL-SL == "DELETE/SYMBOL/LOCAL"
DIRP == "DIRECTORY/OWNER/PROTECTION"
GLOBALS = "SHOW SYMBOL/GLOBAL/ALL"
LOCALS == "SHOW SYMBOL/LOCAL/ALL"
RETURN == "SET DEFAULT SYS$LOGIN"
TO == "SET DEFAULT"

$ TO SYS$SYSTEM
$ DIRP DCL.EXE
Directory SYS$COMMON: [SYSEXE]

DCL.EXE;l

Total of 1 file.

$ RETURN
$ DEL SG/ALL
$ GLOBALS

[SYSTEM] (RWED,RWED,RWED,RE)

%DCL-W-IVVERB, unrecognized command verb - check validity and spelling
\GLOBALS\

Example 6-6 Defining, Displaying, and Deleting Symbols

CUSTOMIZING THE USER ENVIRONMENT fr-29

Table 6-9 compares various aspects of logical names and symbols.

Table 6-9 Comparison of Logical Names and DCL Symbols

Characteristic

Function

Usage

Storage

Definition

Display

Deletion

Logical Names

Represent device, directory, and
file specifications.

Used in place of any complete
device, directory, or file
specification. Also used in
place of any contiguous group
of left-hand fields in a file
specification. Must occur as part
of a command string parameter
to be passed to the file system
for translation.

Stores assignments in your
process, job, group, or system
logical name table.

Either the ASSIGN or DEFINE
command

Either the SHOW LOGICAL
or SHOW TRANSLATION
command.

The DEASSIGN command.

Symbols

Represent commands or portions of
command strings.

Used in place of any complete
command string. Also used in
place of any left-hand portion of a
command string. Must occur as the
first word in a command string to be
translated by the command language
interpreter.

Stores assignments in your global or
local symbol table.

An assignment statement (=) or
(==).

The SHOW SYMBOL command.

The DELETE/SYMBOL command.

&-30 CUSTOMIZING THE USER ENVIRO:mmNT

6.11 DEFINING KEYS

As you become more familiar with the VMS system, you will find that you are
repeatedly entering certain commands. You can reduce the amount of typing required
to one keystroke. Use the DEFINE/KEY command, which assigns a definition to a
keyboard key. Definitions often contain part or all of a DCL command string.

The types of terminals and their associated definable keys are:

• VT52-series terminals - All definable keys located on the numeric keypad

VTl 00-series terminals - All keys located on the numeric keypad plus the LEFT
and RIGHT ARROW keys

Terminals with LK201 keyboards - All keys on the numeric keypad; keys on the
editing keypad (except the UP and DOWN ARROW keys); keys on the function
key row across the top of the keyboard (except Function keys Fl through FS)

Keys KPO - KP9, PERIOD, COMMA, and MINUS must be enabled for definition
purposes. These keys are enabled by using either of the following commands:

$ SET TERMINAL/APPLICATION_KEYPAD

$ SET TERMINAL/NONUMERIC

Keypad keys PFl - PF4 can also be defined.

The format is:

$ DEFINE/KEY key-name equivalence string /qualifiers

CUSTOMlZING TIIE USER ENVIRONMENT fr31

One or more of the following qualifiers can be used to alter the action of a defined key:

• /TERMINATE - Produces an automatic return

• /NOECHO - Suppresses the display of the command being invoked

• /ERASE - Erases the characters on the current line before displaying and executing
the command invoked by the defined key

• /NOLOG - Suppresses the informational message you receive when you initially
define a key

Example:

$ DEFINE/KEY PF3 "SHOW PROCESS" /TERMINATE

Now that key PF3 has been defined. Each time you press that key, the DCL command
SHOW PROCESS will be executed. Note that the qualifier /TERMINATE is used to
signify that the equivalent string (SHOW PROCESS) will be executed when key PF3
is pressed.

6-32 CUSTOMIZING THE USER ENVIRONMENT

6.11.1 Displaying a Key Definition

To display a key definition, issue the DCL command:

$ SHOW KEY/FOLL key-name

Example:

$ SHOW KEY/FOLL PF3
PF3 = "show process"
(echo,terminate,noerase,nolock)

6.11.2 Removing a Key Definition

To remove a key definition, use the DELETE/KEY command. The following command
removes the definition applied to the PF3 key:

$ DELETE/KEY PF3
%DCL-I-DELKEY, HOME key PF3 has been deleted

You can use the qualifier /ALL to delete all key definitions in the current state. If you
use the qualifier I ALL, do not specify a key name.

$ DELETE/KEY/ALL

If keys PFl through PF4 had been defined in the DEFAULT state, you would get a
message on the terminal screen stating that keys PFl through PF4 had been deleted.

The following section describes how you can add different states to a key definition.

CUSTOMIZ1NG THE USER ENVIRONMENT 6-33

6.11.3 Assigning Muitiple Definitions to Keys

You can assign any number of definitions to a key by assigning each definition to a
different key state. For example:

$ DEFINE/KEY PFl "SHOW " SETSTATE=GOLD/NOTERMINATE/ECHO

$ DEFINE/KEY PFl " PROCESS" /TERMINATE/IF_STATE=GOLD/ECHO

The first time you press the PFl key, the system echoes the string "SHOW " at your
terminal and sets the state of the PFl key to GOLD. The second time you press the PFl
key, the system:

• Tests the key state (GOLD)

• Displays the string "PROCESS" (Appends the string "PROCESS" to the string
"SHOW")

• Passes the entire command to the command language interpreter for processing

NOTE
If a key is defined and the qualifier SET_STATE is not used, then the key
state is DEFAULT.

6-34 CUSTOMIZING THE USER ENVIRONMENT

$ DEFINE/KEY PFl "SHOW " /SET_STATE=GOLD/NOTERMINATE/ECHO

$ DEFINE/KEY PFl " PROCESS" /TERMINATE/IF_STATE=GOLD/ECHO

Example &--7 Defining Multiple Definitions for One Key

Notes on Example 6-7:

1. The qualifier /SET_ STATE=state-name causes the specified state name to be set.
The state name can be any alphanumeric string. In this case, the state name is
GOLD.

2. The qualifier /IF_ STATE=state-name determines whether or not a previously
defined state name is in effect, in order for the key definition to be in effect.

3. The qualifier /NOTERMINATE allows you to create key definitions that insert
text in command lines. In this particular example, using the /TERMINATE
qualifier would have the first key definition echo the word "SHOW", but not the
following word "PROCESS".

4. The qualifier /ECHO determines whether the equivalence string is displayed on
the terminal screen when the key is pressed.

CUSTOMIZING THE USER ENVIRONMENT 6--35

6.12 SUMMARY

A logical name is a name you can use in place of all or part of a file specification

• They are used to:

Achieve device and file independence in programs or procedures

Reduce typing and improve readability (used as replacement for long file
specifications)

Pass data among programs, or between a command procedure and a program

Logical names and their equivalence strings can each have a maximum of 255
characters (including alphanumeric characters, dollar signs and underscores)

• Any other characters must be enclosed in quotation marks

• Stored in logical name tables

System Defined Logical Names

When you log in, the system:

• Defines a number of logical names and stores them in your process logical name
table

• Creates a job-wide logical name table for your process and all of its potential
subprocesses

You may override these permanently or temporarily with the ASSIGN or DEFINE
commands

DCL Symbols

• Symbols are names that represent character strings or numeric values

• Can be used as DCL command synonyms allowing the user to tailor DCL command
format

• Equated to an equivalence string (which is enclosed in" ")

Complete command string

Portion of a command string

• Stored in one of two tables (each process has its own)

LOCAL

GLOBAL

6-36 CUSTOMIZING THE USER ENVIRONMENT

Defining Keys

Definitions often contain part or all of a DCL command string

Reduces typing of lengthy or frequently used DCL commands

Syntax:

$ DEFINE/KEY key-name equivalence string /qualifiers

To display a key definition, issue the DCL command:

SHOW KEY/FULL key-name

To delete a key definition, issue the DCL command:

DELETE/KEY key-name

CUSTOMIZING THE USER ENVIRONMENT 6-37

6.13 \VR.i'l i'EN EXERCISE I

Write the letter of the system-defined logical name that best fits each of the device
and directory descriptions on the following page. Some answers require more than one
letter.

System-Defined Logical Names

a. SYS$COMMAND

b. SYS$DISK

c. SYS$ERROR

d. SYS$HELP

e. SYS$INPUT

f. SYS$LIBRARY

g. SYS$LOGIN

h. SYS$NODE

i. SYS$0UTPUT

j. SYS$SYSDEVICE

k. SYS$SYSTEM

6-38 CUSTO:MIZING THE USER ENVIRONMENT

Device and Directory Descriptions

1. Specifies the default device to which the system writes output during a
terminal session.

2. Specifies the default device to which the system writes messages during a
terminal session.

3. Specifies your default disk.

4. Specifies the directory in which help files are cataloged.

5. Specifies the directory in which system libraries are cataloged.

6. Specifies your default user file directory (UFD).

7. Specifies the device from which the command language interpreter and
utility programs read input during a terminal session.

8. Specifies the directory in which operating system programs and procedures
are cataloged.

9. Specifies your terminal during an interactive process.

10. Specifies the disk on which system programs and routines are stored.

11. Specifies the name of the current network node.

CUSTOMIZING THE USER ENVIROm.IBNT

6.14 \VRI'lTEN RXERCISE II

Write the letter of the symbolic name type that best fits each of the following
characteristics.

Symbolic Name Type

a. Command Synonym

b. Logical Name

Characteristic

1.

2.

3.

4.

5.

6.

7.

8.

9.

Represents device, directory, and file specifications

Translated by the file system

Translated by the command language interpreter

Defined by the direct assignment statement (=)

Deleted by the DEASSIGN command

Displayed by the SHOW SYMBOL command

Defined by the ASSIGN command

Represents commands and command strings

Deleted by the DELETE/SYMBOL command

6-39

6-40 CUSTOMIZING THE USER ENVIRONMENT

6.15 LABORATORY EXERCISE I

Complete each of the following exercises at an interactive terminal. Display only one
logical name table for each exercise.

1. Display at your terminal the contents of the logical name table used by your
process. This particular logical name table contains process-private logical names.

2. Display at your terminal the contents of the logical name table used by your
process and its subprocesses. This particular logical name table contains shareable
logical names.

3. Display at your terminal the contents of the logical name table used by your UIC
group member processes. This particular logical name table contains shareable
logical names.

4. Display at your terminal the contents of the logical name table used by all system
processes. This particular logical name table contains shareable logical names.

5. Create a logical name for your default directory.

a. Check the proper logical name table to make sure your newly created logical
name exists

b. Use the logical name in conjunction with the DIRECTORY command to
view the file names in your default directory

c. Delete your newly created logical name after correctly performing this
exercise.

CUSTOMIZING THE USER ENVIRONMENT 6-41

6.16 LABORATORY EXERCISE II

Complete each of the following laboratory exercises at an interactive terminal.

1. Create a subdirectory

2. Create a logical name for a text file in your default directory

3. Create a logical name for your newly created subdirectory

4. Using only logical names, move the text file into your new subdirectory

5. After completing this exercise, remove the above logical names

6-42 CUSTOMIZING THE USER ENVIRONMENT

6.17 LABORATORY EXERCISE III

Create global symbols to perform the following tasks. You can create these global
symbols interactively or in the file LOGIN .COM.

1. Display a directory and size of all files in your directory

2. Show the time of day

3. Display all global symbols at your terminal

4. Move to another default directory

5. Return to your original default directory

To correct mistakes you may have made when you defined a DCL symbol, use the
DELETE/SYMBOL command to remove the faulty definition, then enter it again.

CUSTOMIZING THE USER ENVIRONMENT 6-43

6.18 WRnTnN EXERCISE I-SOLUTIONS

Write the letter of the system-defined logical name that best fits each of the device
and directory descriptions on the following page. Some answers require more than one
letter.

System-Defined Logical Names

a. SYS$COMMAND

b. SYS$DISK

c. SYS$ERROR

d. SYS$HELP

e. SYS$INPUT

f. SYS$LIBRARY

g. SYS$LOGIN

h. SYS$NODE

1. SYS$0UTPUT

j. SYS$SYSDEVICE

k. SYS$SYSTEM

CUSTOMIZING TiiE USER ENVIRONMENT

Device and Directory Descriptions

1. Specifies the default device to which the system writes output during a
terminal session.

2. c Specifies the default device to which the system writes messages during a
terminal session.

3. b Specifies your default disk.

4. d Specifies the directory in which help files are cataloged.

5. f Specifies the directory in which system libraries are cataloged.

6. _g_ Specifies your default user file directory (UFD).

7. e Specifies the device from which the command language interpreter and
utility programs read input during a terminal session.

8. k Specifies the directory in which operating system programs and procedures
are cataloged.

9. a,c,e,i Specifies your terminal during an interactive process.

10. _j_ Specifies the disk on which system programs and routines are stored.

11. h Specifies the name of the current network node.

CUSTOMIZING THE USER ENVIRONMENT

6.19 WRITIEN EXERCISE Il-SOLUnONS

Write the letter of the symbolic name type that best fits each of the following
characteristics.

Symbolic Name Type

a. Command Synonym

b. Logical Name

Characteristic

1. b Represents device, directory, and file specifications

2. b Translated by the file system

3. a Translated by the command language interpreter --
4. a Defined by the direct assignment statement (=) --
5. b Deleted by the DEASSIGN command

6. a Displayed by the SHOW SYMBOL command

7. b Defined by the ASSIGN command

8. a Represents commands and command strings

9. a Deleted by the DELETE/SYMBOL command

6-45

6-46 CUSTOMIZING THE USER ENVIROm.IBNT

6.20 LABORATORY EXERCISE I-SOLUTIONS

Complete each of the following exercises at an interactive terminal. Display only one
logical name table for each exercise.

1. Display at your terminal the contents of the logical name table used by your
process. This particular logical name table contains process-private logical names.

$ SHOW LOGICAL/PROCESS

2. Display at your terminal the contents of the logical name table used by your
process and its subprocesses. This particular logical name table contains shareable
logical names.

$ SHOW LOGICAL/JOB

3. Display at your terminal the contents of the logical name table used by your UIC
group member processes. This particular logical name table contains shareable
logical names.

$ SHOW LOGICAL/GROUP

(There may not be any logical names defined in this table.)

4. Display at your terminal the contents of the logical name table used by all system
processes. This particular logical name table contains shareable logical names.

$ ~»HOW LOGICAL/SYSTEM

CUSTOMIZING THE USER ENVIRONMENT 6-47

5. Create a logical name for your default directory.

$ ASSIGN WORK2: [SMITH] MYDIR

a. Check the proper logical name table to make sure your newly created logical
name exists

$ SHOW LOGICAL MYDIR
"MYDIR" = "WORK2: [SMITH]" (LNM$PROCESS_TABLE)

b. Use the logical name in conjunction with the DIRECTORY command to
view the file names in your default directory

$ DIRECTORY MYDIR

Directory WORK2:[SMITH]

CALENDAR.EXE;l CLASS.LIST;4
JOE_EVE.TPU$SECTION;l
MAIL.DIR;l PERSONAL.LGP;4
UTL.DIR;l WEEKDAY.EXE;l

Total of 13 files.

CLOCK.EXE;l
KEYS.COM;S
REMLOG.EXE;l

DEG.EXE;l
LOGIN.COM;6
TODO.DAT;l7

c. Delete your newly created logical name after correctly performing this
exercise.

$ DEASSIGN/ALL
or $ DEASSIGN/PROCESS MYDIR

6-48 CUSTOMIZING THE USER ENVIRONMENT

6.21 LABORATORY EXERCISE II-SOLUTION

Compare your results with the following example.

$ CREATE./DIRECTORY/LOG [SMITH. TEXT]
%CREATE-I-CREATED, DISK: [SMITH.TEXT] created

$ ASSIGN [SMITH.TEXT] MY_TEXT
$ ASSIGN MYFILE.TXT;l OUTPUT

$ SHOW LOGICAL/PROCESS

(LNM$PROCESS_TABLE)

"MY TEXT"= "[SMITH.TEXT]"
"OUTPUT" = "MYFILE.TXT;l"
"SYS$COMMAND" = " DISK$RTA1:"
"SYS$DISK" = "DISK:"
"SYS$ERROR" = II DISK$RTA1:"
"SYS$INPUT" = "-DISK$RTA1:"
"SYS$OUTPUT" [super] = " DISK$RTA1:"
"SYS$0UTPUT" [exec] = "_DISK$RTA1:"
"TT" = "RTAl:"

$ COPY/LOG OUTPUT MY_TEXT
%COPY-S-COPIED, DISK: [SMITH]MYFILE.TXT;l copied to
DISK: [SMITH.TEXT]MYFILE.TXT;l (1 block)

$ DEASSIGN OUTPUT
$ DEASSIGN MY TEXT
$

CUSTOMIZING THE USER ENVIRONMENT 6-49

6.22 LA.BORA .. TORY EXERCISE III-SOLUTIONS

Create global symbols to perform the following tasks. You can create these global
symbols interactively or in the file LOGIN .COM.

1. Display a directory and size of all files in your directory

$ DS =="DIRECTORY/SIZE"

2. Show the time of day

$TIME== "SHOW TIME"

3. Display all global symbols at your terminal

$ GLO = = "SHOW SYMBOL/ GLOBAL/ ALL"

4. Move to another default directory

$MOVE== "SET DEFAULT"

5. Return to your original default directory

$ RETURN== "SET DEFAULT SYS$LOGIN"

WRITING COMMAND PROCEDURES

WRITING COMMAND PROCEDURES 7-3

7.1 INTRODUCTION

As you become a more experienced user, you will begin to notice that certain commands
are used repeatedly, in exactly the same order. Typing in these commands at the terminal
can be tedious and time-consuming.

Command procedures provide you with a means to execute these commands
automatically.

Command procedures are files consisting of DCL commands. In addition to the
command verbs, qualifiers and parameters commonly used at the interactive level,
there are several DCL command language features that provide power and flexibility,
including:

• Symbols that can be used as numeric and string variables

• Instructions that allow you to control program flow

• Lexical functions

This module presents the material needed to create, test, and run a command procedure
interactively. The Submitting Batch and Print Jobs module shows you how to run
command procedures independently of your interactive process, as batch jobs.

7-4 WRITING COMMAND PROCEDURES

7.2 OBJECTIVES

To write DCL command procerlures, you should be able to:

Define what a command procedure is and describe why command procedures are
used

• Create a command procedure, using standard DCL command elements

• Control terminal hlput and output in a command procedure by:

Displaying messages on the terminal

Accepting input from the user

Redirecting input or output from the terminal to another location

• Pass data to a command procedure using parameters

• Control the flow of execution within a command procedure using:

The IF command

The GOTO command

• Use the proper lexical function to obtain the information needed in a command
procedure

7.3 RESOURCES

• Guide to Using VMS Command Procedures

VMS DCL Dictionary

WRITING COM:M.AND PROCEDURES 7-5

7.4 CO~D PROCEDlJRES

A command procedure is a file containing DCL command strings. Command strings in
a command procedure are made up of DCL command verbs, command qualifiers, and
parameters.

In addition to DCL commands, command procedures frequently make use of DCL
command language features such as:

• Symbols, which can be used as command synonyms, or as numeric or string
variables

• Control flow statements, similar to branching commands in programming languages

• Lexical fanctions, which provide information about the system, processes, and files

7.4.1 Common Uses

Command procedures have several uses. One use is the repeated execution of a group
of instructions. Instead of entering the commands at the interactive level, you can
execute the commands in a command procedure, saving time and typing. A command
procedure can be used by several people, ensuring consistency of action, and reducing
duplication of effort.

Command procedures are also helpful when you must use long or complicated command
strings. Command procedures help assure that the syntax of these commands is correct.

Finally, command procedures are used when you want to run a job in batch mode. When
you submit a command procedure to be run in batch mode, you free your terminal for
other tasks. The use of batch queues is discussed in the Submitting Batch and Print
Jobs module later in this course.

7-6 WRITING CO:MMAND PROCEDURES

7.4.2 Developing a Command Procedure

The steps to develop a command procedure are similar to steps used to develop a
computer program in any language.

1. Design the command procedure.

Determine what tasks the procedure should perform.

• Decide what results the procedure should produce.

2. Create the command procedure.

Use the text editor of your choice.

• Specify the file type COM for the command procedure.

3. Execute and test the command procedure.

• Use the "at sign" (@) to execute the procedure interactively.

Use the DCL command SET VERIFY to:

Display each line of the procedure as it executes.

Help locate errors if they occur.

4. Modify and retest the command procedure, if necessary.

Repeat steps 2 and 3.

Use the DCL command SET NOVERIFY after the procedure has been
tested and perfected.

5. Add comments to the command procedure so it is easy to read and maintain.
Comments should describe:

The procedure in detail.

Any parameters that are passed to the procedure.

WRITING COMMAND PROCEDURES

DEVELOPMENT STEP

DESIGN PROCEDURE

WRITE PROCEDURE

TEST PROCEDURE

ADD COMMENTS
TO PROCEDURE

MODIFY PROCEDURE

RE-TEST PROCEDURE
USING

$SET VERIFY

Figure 7-1 Command Procedure Development Process

7-7

CORRESPONDING DCL
COMMAND (IF ANY}

NONE

$ EDIT filename.COM

$ @filename.COM

$ EDIT filename.COM

$SET VERIFY
$ @filename.COM

$ EDIT filename.COM

TTB_X0335_88

7-8 WRITING CO:MM~AND PROCEDURES

7.5 CO:MPONENTS AND CONVENTIONS

Consistent format and clear programming style make your command procedures easy to
read, test, and maintain.

7.5.1 DCL Command Lines

Always use full command verbs. Do not use abbreviations. Abbreviated commands
may become ambiguous if a new DCL command verb is added.

Precede each command line with the $ prompt. Although you can change your DCL
prompt at the interactive level, the dollar sign prompt is still used to indicate a command
line within a procedure.

You can continue a line by placing a hyphen at the end of the line. Do NOT begin the
continued line with a dollar sign.

7.5.2 Data Lines

Data lines can be used to include information used by the procedure or by another
utility. When data lines are used, they are placed immediately after the command that
will use them. Do NOT place a dollar sign at the beginning of a data line. Data input
is terminated by the first occurrence of a dollar sign, and control is transferred back to
the command procedure.

7.5.3 Comments

An exclamation point (!) indicates a comment When the system encounters an
exclamation point it immediately goes on to the next line. Everything following the
exclamation point is ignored.

It is recommended that you use blank comment lines ($!) to separate blocks of
instructions.

7 .5 .4 Labels

Labels are the names of locations within the command procedure. Like DCL commands,
labels must be preceded by a$. In addition, labels must be followed by a colon(:). For
better readability, no command should be placed on the same line as the label.

WRITING COMMAND PROCEDURES

$ REPORTl.COM
$
$
$ This corrunand procedure sets your default directory
$ to the REPORTS.MONDAY subdirectory, prints out a report for
$ Monday, returns you to your login device and
$ directory, then exits.
$
$
$ Set your default to the REPORTS.MONDAY subdirectory
$
$ SET DEFAULT DISKl: [REPORTS.MONDAY]
$
$ Print out the report for Monday
$
$ PRINT MONDAY.RPT
$
$ Return to your login device and directory
$
$ SET DEFAULT SYS$LOGIN
$ EXIT

Execution of REPORTl .COM:

$ @REPORTl
DISKl: [REPORTS.MONDAY]
Job MONDAY (queue SYS$PRINT, entry 44) started on WORK$TXAO

Example 7-1 A Sample Command Procedure

7-9

7-10 WRITING CO:M:MAND PROCEDURES

Now try it with VERIFY turned on:

$ SET VERIFY
$
$
$
$

@REPORTl

$
$
$
$
$

$
$
$
$

$
$
$
$
$
Job
$
$
$
$
$

REPORTl. COM

This command procedure sets your default directory
to the REPORTS.MONDAY subdirectory, prints out a report for
Monday, returns you to your login device and
directory, then exits.

Set your default to the REPORTS.MONDAY subdirectory

SET DEFAULT DISKl: [REPORTS.MONDAY]

Print out the report for Monday

PRINT MONDAY.RPT
MONDAY (queue SYS$PRINT entry 46) started on WORK$TXAO

Return to your login device and directory

SET DEFAULT SYS$LOGIN
EXIT

Example 7-1 (Cont.): A Sample Command Procedure

Notes on Example 7-1:

1. This is a very simple command procedure. Its purpose is to display some good
programming practices you can use when you write command procedures.

2. Comment lines, added to your procedure, help you and others to determine the
procedure's function, and to simplify maintenance. Note that comment lines are
indicated by a dollar sign followed by an exclamation point ($!) .

3. Each DCL command in the procedure is fully spelled out. By avoiding
abbreviations, you avoid possible ambiguities when new DCL commands are
added.

WRITING COMJ\.1AND PROCEDURES 7-11

7.6 LOGIN COM"MAND PROCEDlJRE

This is a command procedure that is executed automatically each time you log in. The
name of the file must be LOGIN.COM and be placed in your default login directory.

This file contains logical names, symbols, and other commands you may have defined
to set up your terminal session.

The example on the following page shows a typical LOGIN.COM file.

Notes on Example 7-2:

1. This procedure runs automatically when you log in.

2. The procedure is commented, and similar commands are grouped together. This
helps make the procedure easier to read and maintain.

3. Global symbols are created that can be used as command synonyms to reset the
user's default directory. Instead of using the SET DEFAULT command, the user
can enter these symbols at the DCL prompt.

4. Command synonyms are created for commonly used DCL commands, by assigning
global symbol values to the selected DCL commands.

5. The DEFINE command is used to assign command values to keypad keys.

7-12 WRITING COMMAND PROCEDURES

$ LOGIN.COM
$
$
$
$ Logical names for common files and directories
$
$ ASSIGN SYS$LOGIN DEVICE: [BLOOM.PASCAL] PASCAL
$ ASSIGN SYS$LOGIN-DEVICE: [BLOOM.GAMES] FON
$ ASSIGN SYS$LOGIN=DEVICE: [BLOOM.PROCEDURES]CLEANOP.COM CLEANUP
$
$
$ Commonly used commands
$
$ SED == "SET DEFAOLT"
$ HOME == "SET DEFAULT SYS$LOGIN"
$ CLR = "SET TERMINAL/WIDTH=80"
$ EDT == "EDIT"
$ DS == "DIRECTORY/SIZE=ALL"
$ SD == "SHOW DEFAOLT"
$ M == "MAIL"
$ PO == "PURGE/LOG"
$ XX == "DELETE"
$
$
$ Key definitions
$
$ SET TERMINAL/APPLICATION_KEYPAD
$
$ DEFINE/KEY/NOLOG/TERMINATE PFl "SHOW OSERS"
$ DEFINE/KEY/NOLOG/TERMINATE PF3 "SHOW TIME"
$ DEFINE/KEY/NOLOG/TERMINATE KP9 "SHOW QOEUE/ALL/FULL LPAO"
$ DEFINE/KEY/NOLOG/TERMINATE KPO "LOGOUT"
$
$ EXIT

Example 7-2 Typical LOGIN.COM File

WRITING COM:MAND PROCEDURES 7-13

7.7 TERMINAL INPUT/OUTPUT

Several DCL commands allow you to perform terminal input and output operations
from within a command procedure. Some of these commands allow you to prompt the
user for information that can be used by the procedure. Other commands allow you to
display messages and command output on the terminal screen.

These commands make use of predefined logical names. By redefining these logical
names, you can allow the use of an interactive utility, like an editor, from within the
procedure, or redirect terminal output to a file.

Table 7-1 lists the logical names used with terminal input and output commands. Notice
that these logical names usually point to your terminal.

When you execute a command procedure, one logical name, SYS$INPUT, is
automatically defined to point to the command procedure file, rather than your terminal.
This means that the system looks for its input from the command procedure file, rather
than from the terminal. To allow for input to be entered from the terminal (for example,
to edit a file), you must redirect the logical SYS$INPUT so that it points to the terminal.

Table 7-2 lists commands that display information on your terminal. Table 7-3 lists
commands that prompt the user for information. Table 7-4 lists commands that redirect
terminal input and output

7-14 WRITING COMMAND PROCEDURES

Table 7-1 System Logical Names Used with Terminal 110

Logical Name Description Associated File or Device

(At Login) (During
Execution
of a Procedure)

SYS$COMMAND Initial input stream for Terminal Terminal
your process

SYS$1NPUT Default input stream for Terminal Command
your process Procedure File

SYS$0UTPUT Default output stream for Terminal Terminal
your process

SYS$ERROR Default file to which Terminal Terminal
the system writes error
messages

WRITING COMMAND PROCEDURES 7-15

7. 7 .1 Performing Terminal Input and Output

Table 7-2 Displaying Information on the Terminal

FormatlExample

$ WRITE SYS$0UTPUT string
$ WRITE SYS$0UTPUT "Hello."

$ WRITE SYS$0UTPUT symbol
$ WRITE SYS$0UTPUT P 1

$ TYPE SYS$INPUT
text
text
text
$
$ TYPE SYS$INPUT

Hello

$

Comments

Character strings are enclosed in quotation
marks.

The symbol's value is automatically
substituted.

Information to be displayed follows the TYPE
command. A dollar sign marks the end of the
information.

7-16

$
$
$
$
$
$
$

$
$
$
$

$
$

$
$
$
$
$
$
$
$
$

$
$
$
$
$
$
$

WRITING COMMAND PROCEDURES

REPORT2.COM

This command procedure sets your default directory to the
[REPORTS.MONDAY] subdirectory, prints out a report for Monday,
returns you to your login device and directory, then exits.

WRITE SYS$0UTPUT
WRITE SYS$0UTPUT "Changing your default directory"

Set your default to the correct subdirectory

SET DEFAULT DISKl: [REPORTS.MONDAY]

WRITE SYS$0UTPUT
WRITE SYS$0UTPUT "Printing the Monday report"

Print out the report for Monday

PRINT MONDAY.RPT

Return to your login device and directory

WRITE SYS$0UTPUT
WRITE SYS$0UTPUT "Changing back to your login directory"

SET DEFAULT SYS$LOGIN
EXIT

Execution of REPORT2.COM:

$ @REPORT2

Changing your default directory

Printing the Monday report

Job MONDAY (queue SYS$PRINT, entry 46) started on WORK$TXAO

Changing back to your login directory

Example 7-3 An Output Sample from a Command Procedure

WRITING COMMAND PROCEDURES 7-17

Notes on Example 7-3:

1. The WRITE SYS$0UTPUT commands display the character string you specify
on the terminal screen.

2. The SET DEFAULT DISKl:[REPORTS.MONDAY] command sets your default
to the correct subdirectory.

3. The DCL command PRINT MONDAY.RPT prints the correct report

4. The DCL command SET DEFAULT SYS$LOGIN returns you to your default
device and directory and then you exit from the command procedure.

7-18 WRITING CO:MMAND PROCEDURES

Table 7-3 Getting Information from the User

Format/Example

$ INQUIRE symbol "prompt"
$ INQUIRE NAME "Filename"

$ READIPROMPT=string SYS$COMMAND symbol
$ READ/PROMPT="Filename: " SYS$COMMAND NAME

Comments

The prompt string is
optional. The user's
response is converted to
uppercase. Multiple blanks
and tabs are replaced with a
single space. The response
is then assigned to the local
symbol "Filename." If no
prompt string is supplied,
the symbol name is used as
the prompt

The user's response is not
converted to uppercase,
and multiple spaces are not
removed. The response
is then stored in the local
symbol "Filename."

WRITING COMMAND PROCEDURES

Table 7-4 Redirecting Input and Output

Format/Example

$ DEFINE/USER_MODE SYS$INPUT SYS$COMMAND

or
$ ASSIGN/USER_MODE SYS$COMMAND SYS$INPUT

$ @commandfile-name/ OUTPUT=output-file-name

$ @COMFILE.COM/OUTPUT=COMSTAT.DAT

$ DEFINE/USER_MODE SYS$0UTPUT output-file-name

or
$ ASSIGN/USER_MODE output-file-name SYS$0UTPUT

$ DEFINE/USER_MODE SYS$0UTPUT COM_STAT .DAT

7-19

Comments

The ASSIGN or
DEFINE command
redirects the input stream
from the command
procedure file to the
terminal. The /USER_
MODE qualifier specifies
that the change remains
in effect only while the
next image is executing.

Redirects output to the
file you specify.

Redirects the output
stream to the file you
specify while the next
image is executing.

7-20

$!
$!
$!
$!

WRITING co~ PROCEDURES

NOTICE.COM

$! This command procedure creates a text file containing
$! the message you specify, then mails it to DIST.DIS,
$! a predefined distribution list.
$!
$!
$!
$
$
$
$!

First, display instructions to the user.

WRITE SYS$0UTPOT II "

WRITE SYS$0UTPUT "Enter your message. Press CTRL/Z when done."
WRITE SYS$0UTPOT " "

$! Redirect the logical SYS$INPUT from the command
$! procedure to the terminal.
$!
$ ASSIGN/USER_MODE SYS$COMMAND SYS$INPUT
$!
$! Have the user create the message.
$!
$ EDIT MESSAGE.TXT
$!
$! When the user exits the editor, the command procedure
$! continues.
$!
$!
$! Send the message. The lines following the MAIL
$! command are data lines used by the MAIL utility.
$! The dollar sign indicates the end of the data.
$!
$ MAIL
SEND MESSAGE.TXT
@DIST.DIS
A NOTE FROM YOUR SUPERVISOR
$!
$! Leave the procedure
$!
$ EXIT

Example 7-4 Using Terminal Input and Output

WRITING co~ PROCEDURES 7-21

Notes on Exa.."11ple 7-4:

1. The WRITE SYS$0UTPUT commands display the character string you specify
on the terminal screen.

2. The ASSIGN/USER MODE SYS$COMMAND SYS$INPUT command
redefines the logical name SYS$INPUT to equate to SYS$COMMAND. This
command redirects input from the command procedure file to the terminal. Because
the /USER _MODE qualifier is used, this redirection stays in effect for only one
command. In this example, it is the EDIT command.

3. The EDIT MESSAGE.TXT command creates the file :MESSAGE.TXT. The user's
input on the terminal screen is placed in the file. When the message is completed,
the user ends the command by pressing CTRL/Z. When the user presses CTRL/Z,
control is passed back to the command procedure.

4. The Mail utility is invoked using the Mail command SEND MESSAGE. TXT.
The distribution list (DIST.DIS) should have been created prior to this for the
command procedure to work.

5. The lines following the MAIL command are data lines used by the Mail utility.
Because they are data lines, they are not preceded by a dollar sign. When a
procedure encounters a dollar sign, it automatically terminates the utility.

7-22 WRITING COlv™AND PROCEDURES

7.8 DCL SYMBOLS

Symbols are names to which you can assign a character string or an integer value.
Symbols have two primary purposes. They can be used as command synonyms, or as
variables in command procedures. For example, you can create a symbol HOME that
has the value "SET DEFAULT SYS$LOGIN." HOME is a command synonym because
it can be used synonymously with the command SET DEFAULT SYS$LOGIN. An
example of a symbol as a variable might be assigning the symbol COUNT the integer
value 1.

Symbols are defined using assignment statements. There are two types of symbols
available: local symbols and global symbols. Local symbols remain in effect only while
the command procedure is executing. Global symbols remain in effect until the process
terminates.

Global symbols are often used to define command synonyms in your LOGIN.COM
procedure. Global symbols defined in this way allow you to use synonyms in place of
commands. When defined as global symbols, the definitions remain in effect as long as
you are logged in.

The use of symbols in command procedures provide possibilities not readily available at
the interactive level. Using symbols as numeric and string variables expands the power
and flexibility of DCL commands.

Table 7-5 shows examples of assigning local and global symbol values.

WRITING COM1viAND PROCEDURES

Table 7-5 Symbol Assignment and Manipulation

Operation

Assign an integer value to a
local symbol

Assign an integer value to a
global symbol

Assign a character string to a
local symbol

Operator

=

=

7-23

Example

COUNT= 1

NEWCOUNT = = 100

USER= "SMITH"

7-24 WRITING COMMAND PROCEDURES

7. 8.1 Symbol Substitution

In a command procedure, symbols are frequently used as command synonyms,
parameters, and as numeric and string variables.

To be useful within a command procedure, the system must translate symbols into
their corresponding values. Some DCL commands replace symbols with their values
automatically. Most DCL commands do not perform automatic symbol substitution.

You can tell the system to force symbol substitution. To indicate to the system that a
symbol value should be substituted, enclose the symbol name in apostrophes ('). When
the symbol name is contained in a character string, the symbol name must be preceded
with two apostrophes (") and ended with a single apostrophe (').

Table 7-6 lists those commands and statements that perform automatic symbol
substitution, as well as examples of nonautomatic substitution.

WRITING CO:M:MAND PROCEDURES

Table 7-6 Symbol Substitution Techniques

Symbol Usage

Command synonym
(first i tern after $
prompt)

In the right-hand
side of an= or ==
assignment statement

In an IF or WRITE
command

In a DCL command
that does not perform
automatic symbol
substitution

In a character string

Concatenating two
symbols in a DCL
command that does
not perform automatic
symbol substitution

Substitution
Technique

Automatic

Automatic

Automatic

Surround the symbol
with apostrophes (')

Place two apostrophes
in front of the symbol,
and one apostrophe
after it

Surround each symbol
with apostrophes (do
not leave a space
between the symbols)

Example

$ XX = "DELETE"

$XX FILE.TXT;l

$ COUNT = COUNT + 1

$ FILE SPEC = NAME + " . TXT"

$ IF COUNT .GT. 10 THEN -

$ RUN 'PROGRAM'

$ WRITE SYS$0UTPUT -

"The file ''FILE' exists."

$ PRINT 'NAME I ' TYPE I

7-25

7-26

$
$
$

$
$
$
$

$
$
$
$
$
$
$
$

$
$
$
$

$
$

$
$
$
$
$
$
$
$
$
$
$
$

WRITING CO:MN.f.AND PROCEDURES

REPORT3.COM

This command procedure sets your default directory to the
[REPORTS.'DAY'] subdirectory, prints out a report for the
day of your choice, returns you to your login device and
directory, then exits.

Ask which daily report to print out

INQUIRE DAY "Day to print a report"

WRITE SYS$0UTPUT ""
WRITE SYS$0UTPUT "Changing your default directory"

Set your default to the correct subdirectory

SET DEFAULT DISKl: [REPORTS.'DAY']

WRITE SYS$0UTPUT ""
WRITE SYS$0UTPUT "Printing the ''day' report"

Print out the report for the correct day

PRINT 'DAY' . RPT

Return to your login device and directory

WRITE SYS$0UTPUT ""
WRITE SYS$0UTPUT "Changing back to your login directory"

SET DEFAULT SYS$LOGIN
EXIT

Execution of REPORT3.COM:

$ @REPORT3

Day to print report for: TUESDAY

Changing your default directory

Printing the TUESDAY report

Job TUESDAY (queue SYS$PRINT, entry 47) started on WORK$TXAO

Changing back to your login directory

Example 7-5 Using Symbol Substitution

WRITING CO:MJ\.1AND PROCEDURES 7-27

7.8.2 Passing Para...~eters to Com..111and Procedures

Parameters are the objects of DCL commands. A parameter might be a keyword, file
specification, or an integer or string value. Since command procedures are made up
of DCL commands, they frequently use parameters. You can specify parameters for a
command procedure when you execute the procedure.

The system automatically provides eight local symbols: Pl - P8. You can pass up to
eight numeric or string values to the procedure. If you specify parameters, the system
assigns the values you specify to these symbols at execution time. If you do not specify
a parameter, the default value assigned to the symbol (the null string) remains in effect
The syntax is:

$ @command_procedure.com parameter _1 parameter_ 2 ... parameter_ 8

7-28

$

$
$
$
$
$
$
$
$
$
$
$
$

$
$
$
$
$
$
$
$
$
$
$
$

$
$
$
$

WRITING COMMAND PROCEDURES

REPORT4.COM

This command procedure sets your default directory to the
[REPORTS.'Pl'] subdirectory, prints out a report for the day of
your choice, returns you to your login device and directory,
then exits.

WRITE SYS$0UTPUT
WRITE SYS$0UTPUT "Changing your default directory"

Set your default to the correct subdirectory

SET DEFAULT DISKl: [REPORTS.'Pl']

WRITE SYS$0UTPUT
WRITE SYS$0UTPUT "Printing the ''Pl' report"

Print out the report for the correct day

PRINT 'Pl' .RPT

Return to your login device and directory

WRITE SYS$0UTPUT
WRITE SYS$0UTPUT "Changing back to your login directory"

SET DEFAULT SYS$LOGIN
EXIT

Execution of REPORT4.COM

$ @REPORT4 TUESDAY

Changing your default directory

Printing the TUESDAY report

Job TUESDAY (queue SYS$PRINT, entry 47) started on WORK$TXAO

Changing back to your login directory

Example 7-6 Passing Parameters to Commands Procedures

WRITING COMl\1AND PROCEDURES 7-29

7.9 CON1KOLLING PROGRAt\ti FLOW

The normal order of command execution in a procedure is sequential. That is, the
first line of the procedure executes, then the second, and so on. This sequential order
is sufficient in some procedures, such as a LOGIN .COM file, which usually performs
unconditional tasks.

There are times, however, when you will want to alter the order of execution, depending
on the results of conditional testing within the procedure. For example, you may want
a file to print, but only if it has the proper file type. DCL provides several commands
that allow you to alter the order of execution. These control-flow commands include
the IF command, and the GOTO command.

7.9.1 The IF Command

Syntax:

$ IF conditional expression THEN command

When the command executes, the conditional expression following IF is tested. This
conditional expression may to compare integer values, compare two string expressions,
or test whether or not a logical expression is true or false. Table 7-7 lists the operators
used in conditional expressions.

If the condition is met, the command(s) following THEN are performed.

If the condition following IF is not met, then the next DCL command in sequence
is performed, or an optional ELSE statement can be performed. The optional ELSE
statement provides command(s) to be performed when the IF condition is false.

The command(s) following THEN or ELSE can be:

• Another DCL command(s), or

A GOTO command

The syntax of the IF-THEN-ELSE command is:

$IF conditional expression THEN command ELSE command(s)

7-30 WRITING COMMAND PROCEDURES

7.9.2 Notes on the IF-THEN-ELSE Command

A command block started by a THEN statement must be terminated by an ENDIF
statement

A THEN statement must be the first executable statement following an IF
statement.

THEN, ELSE, and ENDIF statements cannot be abbreviated to fewer than four
characters.

Do NOT specify labels on a THEN or ELSE statement.

• Labels are legal only on an ENDIF statement.

Command procedures may branch within the current command block, but branching
into the middle of another command block is not recommended.

7.9.3 The GOTO Command

Syntax:

$GOTO label

The GOTO command does not perform any conditional testing. Rather, control is
transferred to the label that follows the GOTO command. The DCL command that
follows the label is then performed. This label can occur either before or after the
GOTO command.

WRITING C01\1MAND PROCEDURES 7-31

Table i-7 Relational Operators Used in Expressions

Operator

String Operators

.EQS.

.GES.

.GTS.

.LES.

. LTS.

.NES.

Numeric Operators

. EQ.

.GE.

.GT.

.LE.

.LT.

. NE.

Logical Operators

. NOT.

. AND.

.OR.

Description

Tests if two character strings are equal.

Tests if the first string is greater than or equal to the
second string.

Tests if the first string is greater than the second
string.

Tests if the first string is less than or equal to the
second string.

Tests if the first string is less than the second string .

Tests if the two strings are not equal.

Tests if two numbers are equal .

Tests if the first number is greater than or equal to
the second number.

Tests if the first number is greater than the second
number.

Tests if the first number is less than or equal to the
second number.

Tests if the :first number is less than the second
number.

Tests if two numbers are not equal .

Logically negates a number .

Combines two numbers with a logical AND .

Combines two numbers with a logical OR.

7-32 WRITING CO:Ml\1AND PROCEDURES

$! DEL DIR.COM
$!
$!
$!
$! This command procedure deletes previously emptied
$! directories. It assumes that the directory to be
$! deleted is owned by the procedure's user.
$!
$! Check to see if the user entered the directory name.
$! If yes, skip to the confirmation question.
$! If no, display a message and ask for the directory name
$!
$ IF Pl .NES. "" THEN GOTO CONFIRM
$!
$ WRITE SYS$0UTPUT
$ WRITE SYS$0UTPUT "This procedure deletes an emptied directory"
$ WRITE SYS$0UTPUT "The .DIR file extension is assumed."
$ WRITE SYS$0UTPUT
$ INQUIRE Pl "Directory name"
$!
$ CONFIRM:
$ INQUIRE P2 "Confirm, please (Y/N)"
$!
$! If the user answers 'No', abandon this procedure.
$!
$ IF .NOT. P2 THEN GOTO NODELETE
$!
$! Reset the directory protection so that the owner
$! can delete it, delete the directory and display
$! the system message. Note that the procedure
$! substitutes the directory name for the symbol Pl.
$!
$
$
$
$!

SET PROTECTION=(O:RWED)
DELETE/LOG 'Pl' .DIR;*
GOTO END

$ NODELETE:
$!
$ WRITE SYS$0UTPUT

'Pl'.DIR;*

$ WRITE SYS$0UTPUT "Directory file not deleted."
$!
$ END:
$ EXIT

Example 7-7 Controlling Program Flow in a Command Procedure

WRITING COMMAND PROCEDURES

Execution of DEL_DIR.COM:

$ @DEL DIR TEST
Confi~, please (Y/N) : Y
%DELETE-I-FILDEL, DISK: [DENISE]TEST.DIR;l deleted (3 blocks)
$

Second execution:

$ @DEL_DIR

This procedure deletes an emptied directory
The .DIR file extension is assumed.

Directory name: TEST2
Confirm, please (Y/N) : Y
%DELETE-I-FILDEL, DISK: [DENISE]TEST2.DIR;l deleted (3 blocks)
$

Third execution:

$ @DEL_DIR

This procedure deletes an emptied directory
The .DIR file extension is assumed.

Directory name: TEST3
Confirm, please (Y/N) : N

Directory file not deleted.
$

Example 7-7(Cont.) Controlling Program Flow in a Command Procedure

7-33

7-34 WRITING COMMAND PROCEDURES

7.10 LEXICAL FUNCTIONS

Lexical functions are features of the DCL command language that provide information
similar to that of some DCL commands. The primary difference between DCL
commands and lexical functions is the manner in which the information is provided.

In most instances, the information provided by a DCL command is returned to the
terminal. Although well suited for display, it is not easily manipulated or changed. For
example, the SHOW TIME command displays the current time on the terminal like
this:

$ SHOW TIME
18-JUN-1988 10:10:89
$

There is no simple method to use this information in a command procedure. On the
other hand, information provided by a lexical function is returned as a symbol value.
This symbol and its associated value can be used in a command procedure. For example,
you can assign the current date and time to a symbol, like this:

$ TIME= F$~IME()

You can now use the symbol TIME in subsequent DCL commands within the procedure.

All lexical functions return a value. This value can be an integer or a character string,
depending on the lexical function. For complete information on the syntax, parameters,
and use of lexical functions, refer to the VMS DCL Dictionary.

WRITING CO:M:MAND PROCEDURES

$!
$!
$!

INFO.COM

$! This command procedure allows the user to leave a message
$! on the terminal screen, along with information about the
$! process. The time when the message was left is also displayed.
$!
$!
$!
$!
$
$
$
$!

Use lexical functions to determine the current time
and day of the week
TIME = F$TIME ()
CURR TIME= F$EXTRACT(12,5,TIME)
WEEKDAY= F$CVTIME(TIME,,"WEEKDAY"} ! Returns Monday,Tuesday,etc.

$! Clear the screen using the TYPE/PAGE NL: command
$ TYPE/PAGE NL:
$!
$!
$
$
$
$
$
$!

Display process name, the time, and the day of the week.
NAME= F$PROCESS(}
WRITE SYS$0UTPUT NAME
WRITE SYS$0UTPUT " "
WRITE SYS$0UTPUT "IT rs ''CURR TIME' ON A ''WEEKDAY'"
WRITE SYS$0UTPUT

$! Leave the procedure
$!
$ END:
$ EXIT

Execution of INFO.COM

$ @INFO
DENISE

IT IS 12:23 ON A Monday

Example 7-8 Using Lexical Functions

7-35

7-36 WRITING co~ PROCEDURES

All lexical functions begin with F$, followed by the function name.

WHO= F$PROCESS()

All lexical functions require parentheses, even with null arguments.

Multiple arguments are separated by commas.

Optional arguments, when omitted, are indicated by commas.

Examples of arguments supplied to lexical functions:

• Integer or character strings

WHAT = F$EXTRACT (0, 3, "MAILMAN")

• Symbols

HOWLONG = F$LENGTH (Pl)

Keywords

WHERE = F$ENVIRONMENT ("MESSAGE II)

• Null arguments

WHEN= F$TIME ()

WRITING COMMAND PROCEDURES

Tabie 7-8 Frequentiy Used Lexicai Functions

Lexical Function

F$TIME()

F$PROCESS()

F$MODE()

F$LENG1H(string)

F$LOCATE(substring,string)

F$EXTRACT(offset,number,string)

F$CVTIME([input-time] ,[format], - [field])

F$ENVIRONMENT(item)

F$GETQUI()

F$LOGICAL(logical-name)

7-37

Description

Returns the current date and time
string.

Returns the current process name.

Returns a character string
indicating the mode in
which a process is running
(INTERACTIVE, NETWORK, or
OTHER).

Returns the length of a string.

Locates the substring in the string
and returns the offset position.

Extracts a substring from a
character string expression.

Returns information about
absolute, combination, or delta
time strings.

Returns information about the
DCL command environment.

Returns information regarding
queues and the batch and print
jobs currently in those queues.

Returns the equivalence string
associated with the logical
name. Does not perform iterative
translation automatically.

7-38 WRITING COMMAND PROCEDURES

$ PRINT.COM
$
$ This procedure allows you to print multiple copies
$ of any file you choose. It will ask for the file
$ name and number of copies if the information is
$ not supplied on the command line. The procedure
$ will not let the user print a binary file.
$
$ NAME FILE:
$
$ IF Pl .EQS. "" THEN INQUIRE Pl "File to be printed"
$

1 $ LENGTH=F$LENGTH(Pl)
2 $ IF LENGTH .EQ. 0 THEN GOTO NAME FILE

$
3 $ PERIOD=F$LOCATE (".II I Pl)
4 $ FNAME=F$EXTRACT(O,PERIOD,Pl)

$
$ Check to see if user entered file type. If yes, separate
$ filename from file type. If no, assign .LIS type to the file
$

5 $ IF LENGTH .EQ. PERIOD
$ THEN FTYPE=" .LIS"

6 $ ELSE FTYPE=F$EXTRACT(PERIOD,LENGTH-PERIOD,Pl)
$ ENDIF
$
$ Check to see if user entered a binary file type. If yes, exit.
$ If no, see how many copies they want.
$
$ IF FTYPE .EQS. ".OBJ" .OR. FTYPE .EQS. ".EXE"
$ THEN WRITE SYS$0UTPUT "YOU CANNOT PRINT A ''FTYPE' FILE"
$ EXIT
$ ENDIF
$
$ NUMBER COPIES:
$
$ IF P2 .EQS. "" THEN INQUIRE/NOPUNCTOATION P2 "HOW MANY COPIES DO YOO WANT? "
$
$ IF NUMBER .LE. 0 THEN GOTO NUMBER COPIES
$
$! Print the correct number of copies then exit from the procedure
$
$ PRINT/COPIES='P2' 'FNAME''FTYPE'
$
$ EXIT

Example 7-9 Using More Detailed Lexical Functions

WRITING CO:MldAND PROCEDURES 7-39

Notes on Exam.pie 7-9:

1 $LENGTH= F$LENGTH (Pl)

The F$LENGTH lexical function returns the length of the character string in the
local symbol Pl and assigns this value to the symbol LENGTH.

2 $ IF LENGTH .EQ. 0 THEN GOTO NAME_FILE

If this statement is true, then the command procedure returns to the label
NAMEFILE on the premise that the user did not type in a file name.

3 $ PERIOD= F$LOCATE (II. II, Pl}

The F$LOCATE lexical function locates the period in the local symbol Pl and
returns its offset within the string to the symbol PERIOD.

4 $ FNAME = F$EXTRACT(O,PERIOD,Pl}

The F$EXTRACT lexical function extracts the file name (substring) by starting at
the offset position (0) up to PERIOD in Pl and assigns it to the symbol FNAl\ffi.

The 0 lexical function IF-THEN-ELSE is employed here:

5 $ IF LENGTH • EQ. PERIOD

$ THEN FTYPE = ".LIS"

If the symbol LENGTH and the symbol PERIOD hold the same value, they
automatically assign the symbol FTYPE or .LIS to the file.

6 $ELSE FTYPE = F$EXTRACT (PERIOD, LENGTH-PERIOD, Pl}

If a "." was found in the Pl string, we assume a file type was specified. Extract
the file type from Pl.

WRITING CO:MM:AND PROCEDURES

7.11 SUMMARY

A command procedure is a file containing DCL command strings

These command strings are made up of:

DCL command verbs

Command parameters

Qualifiers

Command procedures frequently make use of:

DCL symbols - command synonyms, numeric and string variables

Control flow commands - IF, GOTO

Lexical functions

• You can perform terminal input and output functions using:

INQUIRE

READ SYS$COMMAND

WRITE SYS$0UTPUT

TYPE SYS$INPUT

• Control flow commands allow you to alter the order of command execution

7-41

IF-THEN or IF-THEN-ELSE - transfers control based on the results of
conditional expressions

GOTO - unconditionally transfers control

• You can pass numeric and string information to the command procedure using the
local symbols Pl - P8 associated with every command procedure

• Lexical functions allow you to gather and use system and process information in
command procedures

WRITING CO:Ml\1AND PROCEDURES

7.12 WRi'i"i'EN EXERCISE I

To complete these exercises, use the following symbol definitions:

COUNT = 2
Pl = "MYFILE.TXT"
P2 = "DATA.DAT"

Part A:

FILE NAME = "PROGRAM"
FILE TYPE= ".FOR"

7-43

Each command below uses a symbol in some way. Indicate whether or not the symbol
is used correctly. If it is used correctly, rewrite the command, replacing the symbol with
its value (see above). If the symbol is used incorrectly, rewrite the command correctly.

Examples:

$TYPE "Pl"

Incorrect: $ TYPE 'Pl'

$EDIT 'P2'

Correct: $ EDIT DATA.DAT

1. $FILE= 'FILE_NAME' + 'FILE_TYPE'

2. $ "tNR_ITE SYS$0UTPUT COUNT" copies of the file"

3. $ IF COUNT .LT. 10 THEN GOTO END

4. $ WRITE SYS$0UTPUT "The file "FILE_NAME"'FILE_TYPE"'

7-44 WRITING COMMAND PROCEDURES

Part B:

For the commands below, replace the underlined text with symbols, using the proper
symbol substitution techniques. Use the same symbol values you used in Part A.

Example:

$PRINT MYFILE.TXT

$PRINT 'Pl'

1. $ WRITE SYS$0UTPUT "The file is MYFILE.TXT"

2. $ TYPE PROGRAM.FOR

3. $ EDIT DATA.DAT

4. $ WRITE SYS$0UTPUT "~ copies of the file DATA.DAT exist."

5. $FILE= "PROGRAM"+ ".FOR"

WRITING C01\1MAND PROCEDURES 7-45

7.13 INTRODUCTION TO LABORATORY EXERCISES

These lab exercises are designed to give you practice in creating, testing, and running
command procedures.

The procedures in these exercises include the commonly used functions of command
procedures, such as:

Terminal input and output

• Symbol assignment and symbol substitution

• Controlling program flow

• Passing data to procedures

• Using simple lexical functions

7-46 WRITING COMJ\.1AND PROCEDURES

7.14 LABORATORY EXERCISE I

LOGIN.COM is one of the most commonly used command procedures. This procedure
is executed automatically each time you log in to a VMS system. It is used to tailor
your working environment on the system to better suit your needs.

Write a LOGIN .COM of your own that performs the following actions:

1. Exits if the process mode is not interactive. Use the lexical function F$MODE()
to test the mode of the process.

2. Defines a logical name that points to one of your subdirectories:

disk_name: [directory_name.subdirectory_name]

where disk_name is your default disk, and directory _name is your top-level
directory.

3. Defines global symbols to be used as command synonyms. The command
synonyms, when defined should perform the following actions:

• Set default

• Show all users currently logged in to the system

Display your current directory

• Set your default to your login disk and directory

4. Displays the following information on your terminal:

The current date and time

The current default directory

WRITING C01\1MAND PROCEDURES 7-47

7.15 LABORATORY EXERCISE II

Write a command procedure that allows you to create files that everyone on your system
can access. The procedure should perform the following tasks:

1. Asks for the file name if it is not provided.

2. Displays a message that indicates the name of the file being edited.

3. Transfers control to the terminal and then allows you to edit the file.

4. Sets the protection on the file so that the WORLD has READ access.

5. Prints a copy of the file for yourself, if you choose.

The name of the file you are creating should be supplied as Pl.

This exercise uses terminal input and output including:

INQUIRE

WRITE SYS$0UTPUT

DEFINE/USER_MODE or ASSIGN/USER_MODE

7-48 WRITING COMMAND PROCEDURES

7.16 LABORATORY EXERCISE III

The sample file ADD.COM, shown below, is intended to request two numbers, add
them together, and display their sum. It doesn't behave as expected.

$ ADD.COM
$ Adds two numbers together and displays their sum.
$ (This corrnnand procedure doesn't work as expected.)
$
$WRITE SYS$0UTPUT "This command procedure will add two numbers together."
$INQUIRE Pl "FIRST VALUE"
$INQUIRE P2 "SECOND VALUE"
$TOT = Pl + P2
$WRITE SYS$0UTPUT "TOTAL IS ", TOT

Invoke ADD.COM, supply the input it requests, and determine what is wrong with it.

WRITING COMMAND PROCEDURES

7.17 LABORATORY EXERCISE IV

The sample file SAVDIR.COM is shown below:

$! SAVDIR.COM
$! Save current default directory, set default to a
$! new directory specified by the user, demonstrate
$! the new default 1 then reset to the original default.
$!
$! This generates errors - can you fix it?
$
$CURDIR==F$DIRECTORY()
$WRITE SYS$0UTPUT "CURRENT DIRECTORY IS ",CURDIR
$INQUIRE NEWDIR "ENTER NEW DIRECTORY SPECIFICATION"
$SET DEFAULT NEWDIR
$DIRECTORY
$SET DEFAULT CURDIR
$DIRECTORY

SAVDIR.COM is intended to do the following:

Determine and display the user's current default directory

Request a new directory specification from the user

Set default to that new directory

Generate a $DIRECTORY listing to demonstrate the new default

Set the default back to the original directory

It generates an error and does not behave as expected.

7-49

Invoke SAVDIR.COM, supply the input it requests, interpret the resulting error message,
and determine what is wrong with the procedure.

7-50 WRITING COM:MAND PROCEDURES

7.18 LABORATORY EXERCISE V

The sample files IF_THEN_l.COM and IF _THEN_2.COM, shown below, are intended
to request a number from the user and determine whether it is odd or even. They do
not work properly.

$! IF-THEN l.COM
$!
$!
$

Decide whether a number is odd or even.
This generates errors - can you fix it?

$ INQUIRE X "TYPE A NUMBER"
$ IF X THEN WRITE SYS$0UTPUT "ODD"
$ ELSE WRITE SYS$0UTPUT "EVEN"
$
$

ENDIF
WRITE SYS$0UTPUT "DONE"

$! IF-THEN 2.COM
$! Decide whether a number is odd or even.
$! This doesn't work when an odd number is given -
$! can you fix it?
$
$ INQUIRE X "TYPE A NUMBER"
$ IF X
$ THEN WRITE SYS$0UTPUT "ODD"
$ ELSE WRITE SYS$0UTPUT "EVEN"
$ WRITE SYS$0UTPUT "DONE"

Invoke each command procedure, supply both odd and even values, and determine what
is wrong with the procedures.

WRITING COMMAND PROCEDURES 7-51

7.19 OPTIONAL LABORATORY EXERCISE

Write a command procedure that displays a message on your terminal screen that states
when you will return. The procedure should perform the following tasks:

1. Asks you for the number of minutes you will be away.

2. Erases the screen and then displays the following message, 12 lines from the top:

"Back in N minutes"

(where N is the number of minutes you supplied in Part 1).

3. It waits, and at one-minute intervals subtracts 1 from the number of minutes,
erases the screen and redisplays the message with the new value.

4. When only one minute is left, it erases the screen and displays the message:

"I'll be right back."

This exercise uses terminal input and output commands, including:

INQUIRE/NOPUNCTUATION

WRITE SYS$0UTPUT

TYPE SYS$INPUT

This procedure also uses the DCL command WAIT. For more information on this
command, refer to the VMS DCL Dictionary.

This procedure does NOT use lexical functions.

WRITING COMMAND PROCEDURES 7-53

7.20 vVR.i'i"i'EN EXERCISE I-SOLUTIONS

Part A:

Each command below uses a symbol in some way. Indicate whether or not the symbol
is used correctly. If it is used correctly, rewrite the command, replacing the symbol with
its value. If the symbol is used incorrectly, rewrite the command correctly.

1. $ FILE = 'FILE NAME' + 'FILE TYPE' - -

Incorrect. Correct command is: $ FILE = FILE_NAME + FILE_ TYPE

Do not use symbol substitution characters on the right-hand side of an = assignment
statement.

2. $WRITE SYS$0UTPUT COUNT" copies of the file"

Incorrect. Correct command is: $WRITE SYS$0UTPUT COUNT," copies of
the file"

Separate the items in the output list with commas. The values will be concatenated.
Note that the symbol COUNT is substituted automatically.

An alternate method: $WRITE SYS$0UTPUT '"'COUNT' copies of the file"

If you place the symbol COUNT within the quoted string, symbol substitution
does not occur automatically. For symbol substitution to occur, precede the symbol
with two apostrophes.

3. $ IF COUNT .LT. 10 THEN GOTO END

Correct. $ IF 2 .LT. 10 THEN GOTO END

DCL automatically performs symbol substitution in an IF command.

4. $WRITE SYS$0UTPUT "The file "FILE_NAME"'FILE_TYPE'"

Correct. $ WRITE SYS$0UTPUT "The file PROGRAM.FOR"

In a character string, a symbol must be preceded by two apostrophes and followed
by one.

7-54 WRITING CO:MM.AND PROCEDURES

Part B:

In the commands below, replace the underlined text with symbols, using the proper
symbol substitution techniques. Use the same symbol values you used in Part A.

1. $ WRITE SYS$0UTPUT "The file is MYFILE.TXT"

$WRITE SYS$0UTPUT "The file is "Pl"'

2. $ TYPE PROGRAM.FOR

$ TYPE 'FILE_NAME"FILE_TYPE'

3. $ EDIT DATA.DAT

$EDIT 'P2'

4. $ WRITE SYS$0UTPUT "£ copies of the file DATA.DAT exist."

$WRITE SYS$0UTPUT '"'COUNT' copies of the file "P2' exist."

5. $FILE= "PROGRAM"+ ".FOR"

$FILE= FILE_NAME + FILE_TYPE

WRITING CO:M:MAND PROCEDURES

7.21 LABORA10RY EXERCISE I-SOLUTION

$! LOGIN.COM
$!
$!
$! Check to see if process is interactive. If not, exit.
$!
$ IF F$MODE() .NES. "INTERACTIVE" THEN EXIT
$!
$! Define a logical name that points to the
$! COMPROC subdirectory.
$!
$ DEFINE COMPROC DISKl: [MANN.COMPROC]
$!
$! Alternately, use ASSIGN DISKl: [MANN.COMPROC] COMPROC

Create global symbols to be used as command synonyms

SED "SET DEFAULT" Resets default
WHO Displays all users

7-55

$!
$!
$!
$
$
$
$

SHD
HOME

"SHOW USERS"
"SHOW DEFAULT"
"SET DEFAULT SYS$LOGIN"

Displays current directory
Resets default to login values

$!
$! Display some "time and place" information on the terminal
$!
$ SHOW TIME
$!
$ SHOW DEFAULT
$!
$! Leave the procedure in an orderly manner.
$!
$ EXIT

7-56 WRITING COM:MAND PROCEDURES

7.22 LABORATORY EXERCISE II-SOLUTION

$! CREATE FILE.COM
$!
$!
$! Expected parameters: Pl = name of file to be edited
$!
$! This command procedure allows you to edit a file, sets the
$! protection on the file so that the World has READ access,
$! then gives you the option of printing a copy of it.
$!
$! Be sure the name of the file is assigned to Pl. If not, ask:
$!
$ IF Pl .EQS. "" THEN INQUIRE Pl "Filename"
$!
$! Display a message that indicates what file is being created:
$!
$ WRITE SYS$0UTPUT II II

$WRITE SYS$0UTPUT "Editing the file ''Pl' ... "
$ WRITE SYS$0UTPUT II "

$!
$! Redirect SYS$INPUT so that it points to the terminal:
$!
$ DEFINE/USER_MODE SYS$INPUT SYS$COMMAND
$!
$! Alternately, ASSIGN/USER_MODE SYS$COMMAND SYS$INPUT
$!
$! Allow the user to edit the file:
$!
$ EDIT 'Pl'
$!
$! Set the required protection for the file:
$!
$ SET PROTECTION=(W:R) 'Pl'
$!
$! Present the option of printing the file:
$!
$ INQUIRE/NOPUNCTUATION ANS "Print a copy of the file?
$ IF ANS THEN PRINT 'Pl'
$ EXIT

II

WRITING C01\1MAND PROCEDURES 7-57

7.23 LABORATORY EXERCISE ill-SOLUTION

$ ADD SOL.COM
$ Corrects the error in ADD.COM
$
$WRITE SYS$0UTPUT "This command procedure will add two numbers together."
$INQUIRE Pl "FIRST VALUE"
$INQUIRE P2 "SECOND VALUE"
$TOT = 0 + Pl + P2 Note the correction here.
$WRITE SYS$0UTPUT "TOTAL IS ", TOT
$
$! Pl and P2 are assumed to be strings, so DCL concatenates them.
$! Force DCL to regard them as numeric symbols by preceding them with a
$! number. Zero makes sense because it won't change the value of the sum.

7-58 WRITING COMJ\1AND PROCEDURES

7.24 LABORATORY EXERCISE IV-SOLUTION

$! SAVDIR SOL.COM
$! This corrects the errors in SAVDIR.COM.
$
$CURDIR==F$DIRECTORY()
$WRITE SYS$0UTPUT "CURRENT DIRECTORY IS ",CURDIR
$INQUIRE NEWDIR "ENTER NEW DIRECTORY SPECIFICATION"
$SET DEFAULT 'NEWDIR' Note correction here
$DIRECTORY
$SET DEFAULT 'CURDIR' and here.
$DIRECTORY
$
$! The original SAVDIR.COM did not have apostrophes around
$! the symbols NEWDIR and CURDIR, so the SET DEFAULT commands
$! assumed that they were logical names.
$! Use apostrophes to force symbol substitution in a situation
$! where symbols are not expected.

WRITING CO:M:MAND PROCEDURES

7 .25 LABORATORY EXERCISE V-SOLUTION

IF-THEN 1 SOL.COM $!
$!
$

This corrects the error in IF THEN l.COM - -
$ INQUIRE X "TYPE A NUMBER"
$ IF X ! Note the correction here.
$ THEN WRITE SYS$0UTPUT "ODD"
$ ELSE WRITE SYS$0UTPUT "EVEN"
$
$
$

ENDIF
WRITE SYS$0UTPUT "DONE"

$! If you use ELSE, THEN should not be on the same line as IF.
$! You are mixing constructs.

7-59

7-60

$!
$!
$!
$!
$

WRITING COMMAND PROCEDURES

IF-THEN 2 SOL.COM
Decide whether a number is odd or even.
This doesn't work when an odd number is given -
can you fix it?

$! INQUIRE X "TYPE A NUMBER"
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$
$
$!
$

IF X
THEN WRITE SYS$0UTPUT "ODD"
ELSE WRITE SYS$0UTPUT "EVEN"
WRITE SYS$0UTPOT "DONE"

This works fine with even input because the ELSE condition is met,
so we skip over the statement(s) associated with THEN and just fall
through.

The trouble comes when odd input is supplied.
Since the THEN condition (truth for the IF test) is met, we execute
the indicated statements and try to skip over the statements for ELSE.
But where do we go when there's no ENDIF to finish up the IF-THEN?

IF_THEN_2_SOL.COM - Corrected procedure

$ INQUIRE X "TYPE A NUMBER"
$ IF X

THEN WRITE SYS$0UTPUT "ODD"
ELSE WRITE SYS$0UTPUT "EVEN"
ENDIF Here is the correction

$
$
$
$ WRITE SYS$00TPUT "DONE"

WRITING CO:M:MAND PROCEDURES 7-61

7.26 OPTIONAL LABORATORY EXERCISE-SOLUTION

$
$
$
$
$
$
$
$

BACK SOON.COM

This command procedure asks the user how many minutes he/she will
be away. It erases the screen and displays the message "Back in
'n' minutes". It waits a minute, recalculates the value of N, and
redisplays the message. When only one minute is left, it displays
"I will be right back".

$ Inquire for the number of minutes the user intends to be away.
$ WHEN:
$ INQUIRE/NOPUNCTUATION BACKSOON "How many minutes? "
$
$
$
$
$
$
$
$
$
$
$
$
$
$

$

! If no answer, ask again.
IF BACKSOON .EQS. "" THEN GOTO WHEN

! Top of time loop
LOOP:
IF BACKSOON .EQ. 1 THEN GOTO RIGHTBACK

! Erase the screen
SET TERMINAL/WIDTH=80

! Use the TYPE SYS$INPUT command to type eleven blank lines on
! the terminal.
TYPE SYS$INPUT

7-62

$
$
$

WRITING CO:MMAND PROCEDURES

Now use the WRITE SYS$00TPOT command to display
the message on the screen.

$ WRITE SYS$00TPOT " Back in ''BACKSOON' minutes"
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

$

! Wait one minute--note that the terminal is
! tied up with this procedure.
WAIT 00:01:00.00

! Subtract 1 from the number of minutes
BACKSOON=BACKSOON - 1

! Loop until only one minute is left.
GOTO LOOP

! The last step
RIGHTBACK:

! Erase the Screen
TYPE/PAGE NL:

! Use the TYPE SYS$INPOT command to type
! the necessary blank lines.
TYPE SYS$INPOT

$ WRITE SYS$00TPOT "
$ END:

I will be right back."

$ EXIT

USING DISK AND TAPE VOLUMES

USING DISK AND TAPE VOLUMES 8-3

8.1 !NTRODUCTION

In addition to your default disk device, which stores the files you and many other users
catalogue in your default directory hierarchies, your system includes a number of tape
devices and smaller disk units. You can use one of these devices whenever you want to
store copies of files on a private volume. Private volumes can be created on a magnetic
tape reel, a floppy disk, or a smaller disk volume, such as an RK07 or RL02 pack. Once
you copy files to such a volume, you can remove it and store it in some other secure
location.

This module introduces the steps and commands required to create, use, and protect a
private volume.

8.2 OBJECTIVES

In order to use private volumes to store private files off-line and transport them from
one system to another, you should be able to perform the following operations:

Allocate, initialize, and mount volumes

• Use the Backup Utility

Dismount and deallocate volumes

8.3 RESOURCES

To complete this module, you should have access to the following documents:

• VMS DCL Dictionary

VMS Mount Utility Manual

• VMS Backup Utility Manual

USING DISK AND TAPE VOLUMES 8-5

8.4 CREAT!NG AND US1NG PRIVATE VOLUMES

8.4.1 The Uses of Private Disk and Tape Volumes

Private disk and tape volumes are volumes that you own exclusively. They have three
major uses:

'To preserve files

'To transfer files from one system to another

'To provide a private environment for your work

8.4.1.1 Preserving Files

Your default disk, which you share with other system users, stores most of your files.
This device is called a public disk.

Although the protection you establish for your files is normally sufficient to guard
them against inadvertent destruction, they are still vulnerable to the activities of more
privileged users and the operating system. For this reason, most users make copies of
their most important material on backup volumes, such as magnetic tape reels or disk
packs. A volwne you own is called a private volume. A private volume has an owner
user identification code (UIC) identical to your own.

8.4.1.2 Transferring Files

You may find it necessary to transfer files between systems not connected by a
communications link. In such circumstances, you must be able to move your files
physically from one location to another. You can conveniently do this by copying your
files to a portable volume, such as a tape reel or disk pack, and then carrying that
volume to the other system.

8-6 USING DISK AND TAPE VOLlThffiS

8.4.1.3 Providing a Private Environment

In certain circumstances, you may want to work on a device to which no one else has
access. By creating a private volume and mounting it on a device assigned exclusively
to your process, you can work without interference from other users.

In creating and using private volumes, you will use a number of VMS commands.
These commands allow you to prepare and gain access to a wide range of peripheral
storage devices, as Figure 8-1 suggests.

USING DISK AND TAPE VOLUJ\.IBS

INTERACTIVE
TERMINAL

0
MAGNETIC
TAPE

$ volume manipulation command

VMS
COMMAND
LANGUAGE
INTERPRETER

VMS
OPERATING
SYSTEM

r
I

[[]
~ FL~PP¥
l~ DISK

DECtape II DISK
PACK

TIB_X0336_88_S

Figure 8-1 Volume Manipulation Commands

8-7

8-8 USING DISK AND TAPE VOLUMES

8.4.2 Creating Private Volumes: The Command Sequence

To create and use a private tape or disk volume, complete the following steps:

1. Allocate a device. This reserves a device for exclusive use by your process until
you deallocate it.

2. Place a volume on the allocated device and load it. (Loading the volume physically
prepares it to be accessed by commands issued to the device.)

3. Initialize the volume if it is new, or if another user has discarded it. The process
of initialization builds an appropriate file structure and establishes the ownership
and protection of the volume.

4. Issue the MOUNT command to make the volume accessible to your process.
You can now create and manipulate files on the volume. You can also access the
volume using a logical name.

5. When you have completed your work with the volume, issue the DISMOUNT
command. The dismount process prohibits further access to the volume until it is
remounted.

6. Unload and remove the volume from the device.

7. Deallocate the device to make it available to other users.

Table 8-1 lists the VMS commands to perform the above operations.

Example 8-1 illustrates the use of these commands to prepare a private disk volume.

USING DISK AND TAPE VOLUMES 8-9

Table 8-1 Commands for Creating and Accessing Private Disk and Tape Volumes

Operation Format/Example Comments

Allocating a Device $ALLOCATE device [logical-name]

$ ALLOCATE DM DISK

Creating a file $ INITIALIZE device label
structure on a tape
or disk

$INITIALIZE DMA2: TESTDISK

$ INITIALIZE MUAO: TSTTAP

Finds the first available
RK.06/RK.07 and assigns it
to your process. The logical
name DISK is placed in
your process logical name
table and is assigned the
name of the allocated device.
Other users are unable to
access the device. When
the ALLOCATE command
is used, the DISMOUNT
command does not free the
device for other users.

Builds the appropriate disk
structure on the volume.
Establishes volume ownership
and protection. Usually used
for new volumes.

The disk volume mounted
on DMA2: is labeled
TESTDISK. You are declared
owner of the disk. All user
groups are allowed all types
of access (RWED). You must
own the disk or possess
VOLPRO privilege.

Builds ANSI level 3 tape
structure on the volume
located on device MUAO:.
The volume receives the label
TSTTAP. By default, you are
declared the owner. All user
groups are allowed all types
of access (RWED).

8-10 USING DISK AND TAPE VOLUMES

Table 8-1 (Cont.) Commands for Creating and Accessing Private Disk and Tape Volumes

Operation Format/Example

Creating a link $MOUNT device label [logical-name]
between the volume
and your process

$ MOUNT DMA2: TESTDISK DISK

Comments

Mounts TESTDISK on the
device DMA2:. The logical
name DISK is assigned the
equivalence name of DMA2.

Creating a link
between your
process and a
tape device, and
specifying the
volume to be
placed on that
device

$ MOUNT device-name volume-label logical-name

$ MOUNT MT: XFILES TAPE Issuing the MOUNT
command with a generic
device disk specification
causes the system to select
an available device of the
specified type for your
process. Once this command
is issued, someone must
mount the volume or you
must issue the CTRL/C
sequence to cancel the
request.

USING DISK AND TAPE VOLUMES 8-11

Table 8-1 (Cont.) Commands for Creating and Accessing Private Disk and Tape Volumes

Operation Format/Example

Breaking the link $ DISMOUNT[/NOUNLOAD] device
between the volume
and your process

Deallocating a
device

$ DISMOUNT DMA2 :

$ DEALLOCATE device
$ DEALLOCATE DMA2:

Comments

If you want to keep the
disk online when you
dismount it, use the qualifier
/NOUNLOAD.

Dismounts and automatically
unloads the volume on
DMA2:. Deletes the logical
name assignment made by the
MOUNT command. Unless
the ALLOCATE command
was used before the MOUNT
command, this makes the
device available to other
users.

Deallocates device DMA2:.
Frees the device for use by
other users. Does not delete a
logical name assigned by the
ALLOCATE command.

8-12

1 $ SHOW DEVICE DM:

Device Device
Name Status
DMAO: Online

2 $ ALLOCATE DM: DISK
%DCL-I-ALLOC, DMAO: allocated

3 $ MOUNT/FOREIGN DISK

USING DISK AND TAPE VOLUMES

Error Volume Free Trans Mnt
Count Label Blocks Count Cnt

0

%MOUNT-I-MOUNTED, mounted on DMAO:
4 $ DISMOUNT/NOUNLOAD DISK
S $ INITIALIZE DISK USER DISK
6 $ MOUNT DISK USER_DISK-

%MOONT-I-MOUNTED, USER DISK mounted on DMAO:
7 $ CREATE/DIRECTORY DISK: [HELP]

$ DIRECTORY DISK: [HELP]
%DIRECT-W-NOFILES, no files found

8 $ COPY SYS$HELP:NOTES.HLB DISK: [HELP]
$ DIRECTORY DISK: [HELP]

Directory DMAO: [HELP]

NOTES.HLB;2

Total of 1 file
9 $ SHOW DEVICE/FULL DISK

Disk DMAO:, device type RK07, is online, allocated, deallocate on
dismount, mounted, error logging enabled.

Error count
Owner process
Owner process ID
Reference count

Volume label
Cluster size
Free blocks
Extend quantity
Mount status

16
"SMITH"

OOOOOOA2
2

"USER DISK"
3

53691
5

File ID cache size
Process

64
0 Quota cache size

Write-thru caching enabled

Operations completed 1940
Owner UIC [VMS,SMITH]
Dev Prot S:RWED,O:RWED,G:RWED,W:RWED
Default buff er size 512

Relative volume no.
Transaction count
Maximum files allowed
Mount count
Cache name
Extent cache size

0
1

6723
1

"_DRAO:XQPCACHE"
64

Volume is subject to mount verification, file high-water marking.

10 $ DISMOUNT DISK
11 $ DEALLOCATE DISK

$

Example 8-1 Preparing and Transferring Files to a Disk Volume

USING DISK AND TAPE VOLillvffiS 8-13

Notes on Example 8-1:

The following comments are keyed to the example.

1 $ SHOW DEVICE DM:

The SHOW DEVICE command displays the status of devices on your system. In
this example, you request a report on the status of all available RK06 and RK07
disk units by specifying the generic name DM as the single command parameter.

2 $ALLOCATE DM: DISK

The ALLOCATE command causes the system to search for a free device of
type DM and allocate it to your process. The message displayed at your terminal
informs you that such a device was found: DMAO:. The system will assign the
device name DMAO: to the logical name DISK and record it in your process
logical name table.

At this point, place a disk in the device and load it

3 $ MOUNT/FOREIGN DISK

The MOUNT/FOREIGN command makes the contents of your volume available
to the system, but makes no assumptions concerning its file structure. DISK is the
logical name assigned to the device name DMAO: by the ALLOCATE command
of the preceding line.

In this case, the disk pack is a new one. Had it been used, you would have
required VOLPRO privilege to mount it, unless its owner UIC matched your own.

4 $ DISMOUNT/NOUNLOAD DISK

Before you can build a file structure on the volume, you must first dismount it by
issuing the DISMOUNT command. The /NOUNLOAD qualifier tells the system
that you want to keep the device and volume in a ready state; without it, you
would be required to load the unit again in the machine room. DISK is the logical
name that you equated with DMAO: when you allocated the device.

8-14

5

USING DISK AND TAPE VOLUMES

$ INITIALIZE DISK USER_DISK

The INITIALIZE command builds a FILES-11 file structure on your new volume.
By default, you are declared its owner (that is, your UIC becomes the owner UIC
of the disk) and all user groups are granted all types of access (READ, WRITE,
EXECUTE, and DELETE). The volume gets the label USER_DISK and DISK is
the logical name of the device on which it is mounted.

6 $MOUNT DISK USER_DISK

The MOUNT command makes the contents of the volume accessible to your
process. The system compares the volume label to the specified label, USER_
DISK; a mismatch results in an error message. DISK is the logical name created
when you allocate the RK07 disk unit (see note 2). Since the device is allocated
to your process, no other user can access the volume. The volume protection
code and the volume owner UIC determine your access to USER_DISK. In this
case, you are the owner of the volume, and the volume protection code allows
you unrestricted access to its contents. The message displayed at your terminal
indicates that the MOUNT command executed successfully.

7 $CREATE/DIRECTORY DISK: [HELP]

$DIRECTORY DISK: [HELP]

Since you own the volume, you have the right to create user file directories. The
CREATE/DIRECTORY command creates a directory named [HELP]. By default,
your UIC becomes the owner UIC of the directory file. The DIRECTORY
command confirms the existence of the new directory. At the moment, the
directory lists no files.

8 $COPY SYS$SYSHELP:NOTES.HLBDISK: [HELP]

$DIRECTORY DISK: [HELP]

The COPY command transfers files from a directory on the system disk to the
private disk you have created and mounted. In this case, you copy a file named
NOTES.HLB in the directory logical name SYS$HELP to your private volume.
The system lists the copied file in your newly created directory and assigns it an
owner UIC and protection code equal to your current UIC and default protection
code. The listing generated at your terminal by the DIRECTORY command
confirms the success of the operation.

USING DISK AND TAPE VOLUMES 8-15

9 $ SHOW DEVICE/FULL DISK

To determine the characteristics of a volume, mount it and issue a SHOW
DEVICE/FULL command, specifying the device that holds the volume as the
target device. In this example, the device is the RK07 disk unit whose logical
name is DISK. The protection code of the device permits anyone to load and
access a volume according to the protection code of the volume. The last block of
information in the display generated by the SHOW DEVICE command is volume
information. Note the following characteristics:

Volume Label: The label of the disk is USER_DISK, the one you specified
in the INITIALIZE command.

Owner UIC: The owner UIC associated with the disk is [VMS,SMITH], the
default UIC of your process.

• MOUNT count: Only one process has mounted the volume (your own).

• Relative Volume Number: The relative volume number is zero, indicating
that this volume is not a member of a series of tapes. When a volume consists
of more than one tape reel, it is referred to as a volume set.

10 $DISMOUNT DISK

The DISMOUNT command closes access to the volume mounted on the device
whose name is associated with DISK. The system automatically unloads the
volume; no one can access the volume without first reloading it by depressing an
appropriate switch on the device. At this point, remove the disk pack from the
unit

11 $ DEALLOCATE DISK

The DEALLOCATE command releases the device from the control of your
process. It does not delete the logical name DISK, however, from your process
logical name table.

8-16 USING DISK AND TAPE VOLUMES

8.5 THE BACKUP UTILITY

The Backup utility provides a means of protection against file or volume corruption. It
does this by creating equivalent backup copies. BACKUP can be used to back up an
entire volume set in a single operation, or to back up selected groups of files from a
volume. Thus, if an original file or volume is lost, deleted, or corrupted, a backup copy
containing the original data will be available to replace it.

When BACKUP saves files, it creates a special file in BACKUP format on the specified
output volume. This special BACKUP file is called a save set. Only BACKUP can
interpret save sets, because they are written in a unique BACKUP format that improves
the efficiency of file transfer and storage.

BACKUP is used to perform the following operations:

Copy files between disks.

• Save disk files to a BACKUP save set.

• Restore files to disk from a BACKUP save set.

The format of the Backup utility is:

$ BACKUP/qualifier input-specifier output-specifier

Files specified are placed in a save set.

• A save set can exist on a tape or disk.

The Backup utility can read the format of information in a save set

Tapes must be mounted using the /FOREIGN qualifier.

• When used with tape volumes, BACKUP can create and gain access to save sets
only.

USING DISK AND TAPE VOLUMES 8-17

8 t::. 1
.J • .l Save=Set Specifications

A save-set specification is a label for a BACKUP save set. The Backup utility creates
and labels a save set and then writes files to the save set. A save-set specification may
include:

• A node name

A device specification

A directory

A save-set name

A period (the mandatory delimiter after the save-set name)

A save-set type (usually BCK or SAV)

8-18 USING DISK AND TAPE VOLUMES

Example 8-2 describes how to create a save set on a tape volume.

l $ SET DEFAULT [SMITH]

2 $ ALLOCATE MUAO:

3 $ INITIALIZE MUAO: SOURCE

4 $ MOONT/FOREIGN MUAO:

5 $ BACKUP/IGNORE=LABEL_ PROCESSING [...] MUAO:MY BACKUP.ECK

6 $ DISMOUNT MUAO:

7 $ DEALLOCATE MUAO:

Example 8-2 Creating a Save Set on a Tape Volume

USING DISK AND TAPE VOLillvfES 8-19

Notes on Example 8-2:

l Sets the default directory to the directory from which the files will be backed up.

2 The ALLOCATE command allocates tape drive MUAO: for your exclusive use.

3 Normally magnetic tapes do not have to be initialized for BACKUP operations.
However, if a blank tape has never been initialized, or you are writing a save set
on a tape that has a non-ANSI label, then the tape should be initialized.

4 The MOUNT command mounts the tape on the drive. It still must be physically
mounted on the drive, either by the user or a system operator. The /FOREIGN
qualifier indicates that the volume is not a file-structured volume.

s The /IGNORE=LABEL _PROCESSING qualifier tells BACKUP not to check
for the tape label. If no label is specified, the name of the save set must match the
tape label. The [...] form of the DIRECTORY command indicates that all of the
files in the default directory and any subdirectories are to be saved. They will be
saved in the save set named MY_BACKUP.BCK.

6 The DISMOUNT command dismounts the tape on MUAO:.

7 The DEALLOCATE command deallocates the tape drive so other users can access
the drive.

8-20 USING DISK AND TAPE VOLUMES

Example 8-3 shows how to transfer files to a tape volume.

$ ALLOCATE MUAO:
%DCL-I-ALLOC, _WHYNOT$MUAO: allocated

$ INITIALIZE MUAO: SOURCE

$ MOUNT/FOREIGN MUAO:
%MOUNT-I-MOUNTED, SOURCE mounted on _WHYNOT$MUAO:

$DIRECTORY [...]
Directory DISK: [SMITH]
EVE.INIT;l FORTRAN.DIR;l
JOE_EVE.TPU$SECTION;l
Total of 6 files.

Directory DISK: [SMITH.FORTRAN]
EXAMPLES.FOR;l FILES.FOR;l
Total of 3 files.

Directory DISK:[SMITH.PASCAL]
EXAMPLES.PAS;l FILES.PAS;l
Total of 3 files.

Grand total of 3 directories, 12

$ SET DEFAULT [.FORTRAN]

$ BACKUP/IGNORE=LABEL_PROCESSING

$ SET DEFAULT [SMITH. PASCAL]

$ BACKUP/IGNORE=LABEL_PROCESSING

$ BACKUP/REWIND/LIST MUAO:PAS.BCK

files.

* *;*

* *;*

INSERT.FYI;6
LOGIN.COM;21

TEXT.FOR;l

TEXT.PAS;l

MUAO:FOR.BCK

MUAO :PAS .BCK

Example 8-3 Transferring Files to a Tape Volume

PASCAL.DIR;l

USING DISK AND TAPE VOLillvffiS

Listing of save set(s)

Save set:
Written by:
UIC:

PAS.BCK
SMITH
[000011, 000051]

8-21

Date:
Command:

25-JAN-1988 13:30:10.59
BACKUP/IGNORE=LABEL_PROCESSING *.*;* MUAO:PAS.BCK

Operating system: BACKUP version: V5.0
CPU ID register: 08000000
Node name: WHYNOT::
Written on: _WHYNOT$MUAO:
Block size: 8192
Group size: 10
Buffer count: 3

[SMITH.PASCAL]EXAMPLES.PAS;l
[SMITH.PASCAL]FILES.PAS;l
[SMITH.PASCAL]TEXT.PAS;l

Total of 3 files, 6 blocks
End of save set

$ BACKUP/REWIND/LIST MOAO:FOR.BCK
Listing of save set(s)

Save set:
Written by:
UIC:
Date:

FOR.BCK
SMITH
[000011, 000051]
25-JAN-1988 13:31:37.89

2 21-JAN-1988 15:17
2 21-JAN-1988 15:18
2 21-JAN-1988 15:17

Command:
Operating system:

BACKUP/IGNORE=LABEL PROCESSING*.*;* MUAO:FOR.BCK
VAX/VMS version XS.O

BACKUP version: V5.0
CPU ID register: 08000000
Node name: WHYNOT::
Written on: _WHYNOT$MUAO:
Block size: 8192
Group size: 10
Buffer count: 3

[SMITH.FORTRAN]EXAMPLES.FOR;l
[SMITH.FORTRAN]FILES.FOR;l
[SMITH.FORTRAN]TEXT.FOR;l

Total of 3 files, 6 blocks
End of save set

$ DISMOUNT MUAO:
$ DEALLOCATE MUAO:

Example 8-3 (Cont.): Transferring Files to a Tape Volume

2 21-JAN-1988 15:16
2 21-JAN-1988 15:16
2 21-JAN-1988 15:16

8-22 USING DISK AND TAPE VOLillvffiS

Table 8-2 shows commands for displaying the characteristics of devices and volumes.

Table 8-2 Commands for Displaying Device and Volume Characteristics

Operation

Displaying the
characteristics of a
device

Displaying the
characteristics of a
volume

Format/Example

$ SHOW DEVICE/FULL device
$ SHOW DEVICE/FULL DMA2:

$ SHOW DEVICE/FULL device
$ SHOW DEVICE/FULL MYDISK

Comments

Displays the
characteristics of
device DMA2:

Displays the
characteristics of
the volume currently
mounted on the device
whose logical name is
MYDISK

USING DISK AND TAPE VOLUMES 8-23

8.6 USING PRIVATE VOLUiv.lbS

When you want to use a volume that you have created and used previously, complete
the following steps to make the volume available to your process:

1. Issue a MOUNT command using a generic device specification. (If you want to
use the same device to mount several successive volumes, you can allocate it first.)

2. Load the volume on the device specified by the VMS system in response to your
MOUNT request

3. Use the volume to perform the needed functions.

4. Issue the DISMOUNT command to break your link with the volume and free the
device for other users.

5. Unload the volume from the disk or tape device.

8-24 USING DISK AND TAPE VOLIDvfES

Example 8-4 describes how to restore files from a tape to a directory.

1 $ MOUNT/FOREIGN MUAO:
%MOUNT-I-MOUNTED, SOURCE mounted on _WHYNOT$MUAO:

2

$ DIRECTORY [SMITH.FORTRAN]
%DIRECT-W-NOFILES, no files found

$ DIRECTORY [SMITH.PASCAL]
%DIRECT-W-NOFILES, no files found

3 $ SET DEFAULT [SMITH.FORTRAN]

4 $ BACKUP/IGNORE=LABEL_PROCESSING MUAO:FOR.BCK *.*;*

5 $ DIRECTORY

Directory DISK: [SMITH.FORTRAN]

EXAMPLES . FOR; 1 FILES.FOR;l TEXT.FOR;l

Total of 3 files.

6 $ SET DEFAULT [SMITH.PASCAL]

7 $ BACKUP/REWIND/IGNORE=LABEL_PROCESSING MUAO:PAS.BCK *.*;*

8 $ DIRECTORY

Directory DISK: [SMITH.PASCAL]

EXAMPLES.PAS;l FILES.PAS;l TEXT .PAS; 1

Total of 3 files.

Example 8-4 Restoring Files from a Tape to a Directory

USING DISK AND TAPE VOLUMES 8-25

Notes on Example 8-4:

Example 8-4 describes the procedure to restore the two save sets named FOR.BCK
and PAS.BCK from a magnetic tape back to two directories on your default disk.
These save sets contain backups of the directories named [SMITH.FORTRAN] and
[SMITH.PASCAL].

The following comments are keyed to the example.

1 MOUNT/FOREIGN MUAO:

The MOUNT command creates a link between a tape device and your process.
The system responds with a message saying the volume is loaded onto the drive.
Some systems inform an operator that you need to have a volume loaded, and
the operator will load the volume. On other systems, you must load the volume
yourself.

2 The two DIRECTORY commands show that both the subdirectories [.FORTRAN]
and [.PASCAL] do not contain any files.

3 The SET DEFAULT [SMITH.FORTRAN] command moves you to the
subdirectory into which the files should be restored.

4 BACKUP/IGNORE=LABEL_PROCESSING MUAO:FOR.BCK *·*;*
tells the system to ignore any tape label checking (via the use of the
/IGNORE=LABEL_PROCESSING qualifier). The device and save-set name
are given (MUAO:FOR.BCK). The wildcard asterisk syntax requests that all file
names, file types, and version numbers in the save set (FOR.BCK) be copied to
the subdirectory [.FORTRAN].

s The DIRECTORY command is issued to confirm that all files were transferred
from the tape device to the subdirectory [.FORTRAN]. In this example, three files
were copied to the subdirectory.

6 The SET DEFAULT [SMITH.PASCAL] command is given to move to the
subdirectory [.PASCAL].

7 The BACKUP command is again issued, the only difference being that the save-set
name is PAS.BCK.

s The DIRECTORY command is issued to confirm that all files were transferred
from the tape device to the subdirectory [.PASCAL]. In this example, three files
were copied to the subdirectory.

8-26 USING DISK AND TAPE VOLUMES

8.7 MAINTAINING, SHARING, AND EXTENDING PRIVATE
VOLUMES

In addition to the basic operations described previously, you can perform a number of
more specialized tasks on disk and tape volumes. This section examines a number of
these, including:

Protecting the contents of a volume

Sharing access to a disk volume

Mounting a volume whose label is unknown

8.7.1 Protecting and Sharing Access to Volumes

You control access to disk and tape volumes by the values you assign to the following
parameters:

The volume owner UIC

The volume protection code

The system sets these parameters when you initialize the volume, and overrides them
when the volume is mounted.

For you to initialize a volume, one of the following conditions must exist:

The volume is blank

The owner UIC matches your own

You have VOLPRO privilege

Note that there are separate owner UICs and protection codes for:

• Volumes (disk and tape)

Directories (disk only)

Files (disk only)

When you want to override the protection or owner UIC set during the initializing phase,
or extend volume access to other users, you can use qualifiers to the MOUNT command.
Values set in the mounting phase stay in effect until the volume is dismounted.

USING DISK AND TAPE VOLUMES 8-27

8.7.2 Mounting a Voiume with an Unknown Label

From time to time, you may forget the name you assigned to a volume. To determine
the label name, mount the volume, using the following command syntax:

$ MOUNT/O VERRIDE=IDENTIFICATION device-name volume-label -
logical-name

The MOUNT/OVERRIDE command allows you to successfully mount a volume
without knowing its label, providing that you own it or have VOLPRO privilege.
Example 8-5 illustrates how to use the MOUNT/OVERRIDE command to mount a
disk whose label is unknown.

8-28 USING DISK AND TAPE VOLUMES

1 $ MOUNT/OVERRIDE=IDENTIFICATION DM: UNKNOWN MYDISK
%MOUNT-I-MOUNTED, MYVOL mounted on DMAO:

2 $ SHOW DEVICE/FULL MYDISK

Disk DMAO:, device type RK07, is online, allocated, deallocate on dismount,
mounted, error logging enabled.

Error count
Owner process
Owner process ID
Reference count

Volume label
Cluster size
Free blocks
Extend quantity
Mount status
File ID cache size

33
"SMITH"

OOOOOOA2
2

"MYVOL"
3

53703
5

Process
64

Quota cache size 0
Write-thru caching enabled

Operations completed 3891
Owner UIC (100,0]
Dev Prot S:RWED,O:RWED,G:RWED,W:RWED
Default buffer size 512

Relative volume no.
Transaction count
Maximum files allowed
Mount count
Cache name
Extent cache size

0
1

6723
1

"DRAO :XQPCACHE"
64

Volume is subject to mount verification, file high-water marking.

Example 8-5 Mounting a Disk with an Unknown Label

Notes on Example 8-5:

The following comments are keyed to the example.

1 $ MOUNT/OVERRIDE=IDENTIFICATION OM: UNKNOWN MYDISK

The MOUNT/OVERRIDE command successfully mounts a disk for which a
label is not specified. UNKNOWN is chosen as the volume label. You can
specify anything for the volume label parameter or you can omit it; the MOUNT
command ignores whatever you enter. MYDISK is the logical name of the device
on which the volume is loaded. The message returned to your terminal reports the
label value.

2 $ SHOW DEVICE/FULL MYDISK

The SHOW DEVICE/FULL command confirms that the label of the volume is
identical to the one reported in the MOUNT message at your terminal.

USING DISK AND TAPE VOLUMES 8-29

8.8 SUM}...A"..ARY

Creating Private Volumes: The Command Sequence

Table 8-3 lists the commands that are used to create and access disk and tape volumes.

Table 8-3 Creating and Accessing Private Volumes

Operation Comments/Format

Allocating a Device Allocates a device for exclusive use.

$ ALLOCATE device [logical-name]

Initializing a tape or disk Establishes volume ownership and protection.

Making the volume
accessible to you

$ INITIALIZE device label

You can access the device as well as manipulating files on
the volume.

$ MOUNT device label [logical-name]

Prohibiting further access Closes all open files. Dismounts and unloads the volume.
to the volume

$DISMOUNT device

Deallocating a device Frees the device for use by other users.

$ DEALLOCATE device

8-30 USING DISK AND TAPE VOLUMES

The Backup Utility

The Backup utility performs he following operations:

• Copies disk files

Saves disk files to a BACKUP save set

Restores files to disk from a BACKUP save set

Format:

$ BACKUP/qualifier input-specifier output-specifier

Tapes must be mounted using the /FOREIGN qualifier to the MOUNT command.

• Files specified are placed in a save set, which can be on tape or disk.

When used with tape volumes, BACKUP can create and gain access to save sets
only.

USING DISK AND TAPE VOLUMES 8-31

8.9 WRITIEN EXERCISE I

The list below contains the major steps that you must complete to create and use a
private volume. Indicate the order of these steps by writing the appropriate number in
the space that precedes each one.

1. Allocate device

2. Deallocate device

3. Dismount volume

4. Initialize volume

5. Load volume

6. Mount volume

7. Unload volume

8-32 USING DISK AND TAPE VOLillvfES

8.10 \VRITTEN EXERCISE II

Choose the VMS command best suited to perform each of the following operations and
write its letter in the preceding space.

VMS Commands

a. ALLOCATE

b. DEALLOCATE

c. DISMOUNT

d. INITIALIZE

e. MOUNT

f. SHOW DEVICE/FULL

Operations

1.

2.

3.

4.

5.

6.

Build a FILES-I I structure on a disk or an ANSI Level 3 structure on
a tape.

Terminate access by your process to the contents of a volume.

Display the owner UIC and protection code of a volume.

Initiate access by your process to the contents of a volume.

Release a device from exclusive use by your process.

Reserve a device for exclusive use by your process.

USING DISK AND TAPE VOLUMES 8-33

8.11 W KITIEN EXERCISE ill

Write a VMS command string to perform each of the following operations.

1. Allocate any available RK.06/RK.07 device to your process and assign the logical
name RL_DISK to it.

2. Dismount the disk volume on RL_DISK without unloading it

3. Allocate any available magnetic tape unit to your process and assign the logical
name TAPE to it.

4. Initialize a tape volume you have loaded on TAPE. Assign the label TAP _BK to
the unit.

5. Mount TAP _BK on the tape device that you have allocated to your process so that
the Backup utility can process it.

6. Back up the most recent version of each file in the hierarchy associated with your
default UFD to a save set on TAP _BK.

7. List the contents of the save set on TAP _BK at your terminal.

8. Terminate access to TAP _BK, allowing the system to automatically unload the
volume.

9. Release the tape device so others on your system can use it

10. Delete the logical name TAPE from the logical name table that stores it

8-34 USING DISK AND TAPE VOLIB\IBS

8.12 WRITIEN EXERCISE IV

Write a VMS command string to perform each of the following operations.

1. Mount a volume whose label is unknown to you on device MTA2:.

2. Initialize a volume located on device DMAl :. Assign it the label MYVOL. Set its
owner UIC to that of your current process. Extend all access rights to members of
the OWNER and SYSTEM categories; deny all access rights to members of the
GROUP and WORLD categories.

3. Mount the volume you created in the preceding example. Set the volume UIC to
[100,200] and allow unrestricted access to members of all user categories.

4. Create a user file directory on MYVOL named PUBLIC, declaring the owner to
have a UIC of [100,200].

5. Copy all files listed in [PUBLIC] on MYVOL to MYTAPE.

6. Another user on your system has mounted a volume on a RL02 device. The
volume is enabled for sharing. The volume label is SHARE_DISK. Mount the
volume so that you can access its contents from your own process. Assign the
logical name RL_DISK to the RL02 device.

7. Dismount the shared disk volume on RL_DISK. ff your process is the last to use
the volume, unload it.

USING DISK AND TAPE VOLillvfES 8-35

8.13 LABORATORY EXERCISE I

Complete the following exercises at an interactive terminal.

1. Allocate the tape.

2. Initialize the tape, giving it a label name of MYTAPE.

3. Mount the tape, so that BACKUP can be used.

4. Obtain a listing of the files in your directory.

5. Transfer all files from your directory to the tape.

6. Confirm that all files transferred successfully to the tape.

7. Dismount the tape.

8. Deallocate the tape.

USING DISK AND TAPE VOLUMES 8-37

8.i4 wKf1 i'EN EXERCISE I-SOLUTIONS

The list below contains the major steps that you must complete to create and use a
private volume. Indicate the order of these steps by writing the appropriate number in
the space that precedes each one.

1. 1 Allocate device

2. 7 Deallocate device

3. 5 Dismount volume

4. 3 Initialize volume

5. 2 Load volume

6. 4 Mount volume

7. 6 Unload volume

8-38 USING DISK AND TAPE VOLUMES

8.15 WRITIEN EXERCISE II-SOLUTIONS

Choose the VMS command best suited to perform each of the following operations and
write its letter in the preceding space.

VMS Commands

a. ALLOCATE

b. DEALLOCATE

c. DISMOUNT

d. INITIALIZE

e. MOUNT

f. SHOW DEVICE/FULL

Operations

1. d Build a FILES-11 structure on a disk or an ANSI Level 3 structure on
a tape.

2. c Terminate access by your process to the contents of a volume.

3. f Display the owner UIC and protection code of a volume.

4. e Initiate access by your process to the contents of a volume.

5. b Release a device from exclusive use by your process.

6. a Reserve a device for exclusive use by your process.

USING DISK AND TAPE VOLUMES 8-39

8.16 WRITTEN EXERCISE III-SOLUTIONS

1. Allocate any available RL02 device to your process and assign the logical name
RL_DISK to it.

$ALLOCATE DL: RL_DISK

2. Dismount the disk volume on RL_DISK without unloading it.

$ DISMOUNT /NO UNLOAD RL _DI SK

3. Allocate any available magnetic tape unit to your process and assign the logical
name TAPE to it.

$ ALLOCATE MT: TAPE

4. Initialize a tape volume that you have loaded on TAPE. Assign the label TAP _BK
to the unit.

$ INITIALIZE TAPE TAP _BK

5. Mount TAP _BK on the tape device that you have allocated to your process so that
the Backup utility can process it.

$MOUNT/FOREIGN TAPE

6. Back up the most recent version of each file in the hierarchy associated with your
default UFD to a save set on TAP _BK.

$ BACKUP /IGNORE=LABELPROCESSING [•••] *. * TAPE: TAP _BK. BCK

This answer assumes that your current default directory is your UFD.

7. List the contents of TAP _BK at your terminal.

$ BACKUP /LI ST TAPE : TAP_ BK. BCK

8. Terminate access to TAP _BK, allowing the system to automatically unload the
volume.

$ DISMOUNT TAPE

9. Release the tape device so others on your system can use it

$ DEALLOCATE TAPE

10. Delete the logical name TAPE from the logical name table that stores it

$ DEASSIGN TAPE

8-40 USING DISK AND TAPE VOLUMES

8.17 WRITTEN EXERCISE IV-SOLUTIONS

I. Mount a volume whose label is unknown to you on device MTA2:

$ MOUNT/OVERRIDE=IDENTIFICATION MTA2:

2. Initialize a volume located on device DMAI:. Assign it the label MYVOL. Set its
owner UIC to that of your current process. Extend all access rights to members of
the OWNER and SYSTEM categories; deny all access rights to members of the
GROUP and WORLD categories.

$ INITIALIZE/NOSHARE DMAl: MYVOL

3. Mount the volume that you created in the preceding example. Set the volume UIC
to [100,200] and allow unrestricted access to members of all user categories.

$ MOUNT/OWNER_UIC=[l00,200]/PROTECTION=(W:RWED) DMAl: MYVOL

4. Create a user file directory on MYVOL named PUBLIC, declaring the owner to
have a UIC of [100,200].

$ CREATE/DIRECTORY/OWNER= (100, 200] DMAl: [PUBLIC]

5. Copy all files listed in [PUBLIC] on MYVOL to MYTAPE.

$ COPY DMAl: [PUBLIC]*.*;* MYTAPE

6. Another user on your system has mounted a volume on an RL02 device. The
volume is enabled for sharing. The volume label is SHARE_DISK. Mount the
volume so that you can access its contents from your own process. Assign the
logical name RL_DISK to the RL02 device.

$MOUNT/SHARE RL: SHARE_DISK RL_DISK

7. Dismount the shared disk volume on RL_DISK. If your process is the last to use
the volume, unload it.

$DISMOUNT RL_DISK

USING DISK AND TAPE VOLUMES 8-41

8.18 LABORATORY EXERCISE !-SOLUTIONS

Complete the following exercises at an interactive terminal. Note that your device
names will differ from the device and directory names given in the solutions.

1. Allocate the tape.

$ ALLOCATE MUAO :

2. Initialize the tape, giving it a label name of MYTAPE.

$ INITIALIZE MUAO: MYTAPE

3. Mount the tape, so that BACKUP can be used.

$ MOUNT/FOREIGN MUAO:

4. Obtain a listing of the files in your directory.

$DIRECTORY

5. Transfer all files from your directory to the tape.

$BACKUP /IGNORE=LABELPROCESSING *. *; * MUAO :JANl .BCK

6. Confirm that all files transferred successfully to the tape.

$BACKUP/REWIND/LIST MUAO :JANl.BCK

7. Dismount the tape.

$ DISMOUNT MUAO :

8. Deallocate the tape.

$ DEALLOCATE MUAO:

SUBMITTING BATCH AND PRINT JOBS

SUB:MITTING BATCH AND PRINT JOBS 9-3

9.1 INTRODUCTION

When you issue the PRINT command to print a file, all the system printers may already
be in use. For this reason, the VMS system maintains a list of all print requests. This
ordered list is called a print queue, and the requests are called print jobs. The position
of an entry in the queue depends on its priority, size, and length of time in the queue,
respectively. When the job moves up to the front of the queue, the VMS system passes
it to the first available printer, which prints the file.

The PRINT command finishes executing as soon as it enters the print job in the
print queue. The system then displays the DCL prompt, so you can issue other DCL
commands. You do not have to wait until the job is printed to continue your work.
Your job is printed when it reaches the front of the queue.

When you execute a command procedure interactively, the VMS system carries out each
DCL command exactly as if you had typed it at your terminal. Because it executes these
commands in the context of your interactive process, you cannot issue any additional
DCL commands until the entire command procedure has completed.

The VMS system creates a separate process to execute your command procedure, called
a batch process. Because a batch process is independent of your interactive process, it
does not prevent you from issuing DCL commands interactively. Each batch process
is, in effect, another user of your system. To specify the command procedure you
want executed in a batch process, you use the SUBMIT command. The VMS system
maintains a batch queue to handle batch jobs. The SUBMIT command places your
request, called a batch job, in the queue. When the batch job moves up to the front of
the queue, a batch process is created to execute the job.

Although batch jobs and print jobs have different functions, batch queues and print
queues have much in common. The system manager customizes these queues for each
VMS system. A queue structure that matches the resources and desired uses of the
system can improve system performance.

9-4 SUB:MITIING BATCH AND PRINT JOBS

9.2 OBJECTIVES

To effectively use facilities for handling batch and print jobs, you should be able to
perform the following operations by entering commands at a terminal:

Print one or more files.

• Submit command procedures to be executed as a batch job.

• Display and modify the status or characteristics of a print or batch job.

• Delay processing of batch or print jobs.

Delete a batch or print job from its queue.

9.3 RESOURCES

VMS DCL Dictionary

Guide to Using VMS

SUBMITTING BATCH AND PRINT JOBS 9-5

9.4 PRINTING A FILE

When you issue the PRINT command, the VMS system assigns a number to your print
job. Your terminal displays this number, as Example 9-1 shows. Job numbers record
the order in which jobs are queued. The PRINT command uses a default file type of
LIS if you do not specify another type.

By default, the system places your job in the standard system print queue, SYS$PRINT.
Jobs on SYS$PRINT are printed on the first available print device. In Example 9-1, the
first available print device was LPAO:.

$ PRINT MYFILE.TXT
Job MYFILE (queue SYS$PRINT, entry 456) started on LPAO
$

Example 9-1 Issuing the PRINT Command

9-6 SUB:MI'ITING BATCH AND PRINT JOBS

9.4.1 Using a Particular Printer

You can use the /QUEUE qualifier of the PRINT command to request that your job
be printed on a particular printer. Each printer in your system has an execution queue
associated with it. If you use the /QUEUE qualifier to specify an execution queue, only
the device associated with that execution queue can print your job.

The name of each execution queue is the same as the name of the associated device,
without the colon. For example, the VMS system associates device LPAO: with
execution queue LPAO.

The standard system print queue, SYS$PRJNT, is called a generic queue. As a device
becomes available, the VMS system takes a job from the front of this generic queue and
places it on the execution queue of the available device. The device then prints the job.

The system manager determines which execution queues receive print jobs from the
generic print queue, and which do not. Execution queues that receive print jobs from
the generic print queue are said to have generic printing enabled. Execution queues on
which generic printing is not enabled cannot receive jobs from SYS$PRINT.

Usually, the system manager enables generic printing on a group of similar printers in
a common location. A printer in a different location, or one loaded with a different
ribbon or type of paper, would not have generic printing enabled. Figure 9-1 represents
a system with three printers, LPAO:, LPBO:, and LPCO:. In the figure, the square to
the right of each printer represents the print job being printed on that printer. All other
squares represent print jobs waiting to be printed.

Table 9-1 shows how to use the PRINT command and the SHOW QUEUE command
to queue print jobs and display status information on them. Later examples demonstrate
the format of this status information.

SUB:MITTING BATCH AND PRINT JOBS

Table 9-1 Queuing a Print Job

Operation

Printing a
single-file
job

Format/Example

$ PRINT file-specification
$ PRINT MYTEXT

Printing a $ PRINT file-specification[, ...]
multifile job $ PRINT MYTEXT, MEMO. TXT

Printing a
job on a
specified
printer

Printing
a job at a
specified
time

$ PRINT/QUEUE=que-name file-spec
$ PRINT/QUEUE=LPAO MEMO. TXT

$ PRINT/AFTER=time file-spec
$ PRINT/ AFTER= 18 : 0 0 MYTEXT • TXT

9-7

Comments

The PRINT command
uses a default file type
of LIS. The file printed
is MYTEXT.LIS in this
example.

The files MYTEXT.LIS
and ~MO.TXT are
printed as a single print
job.

Either the /QUEUE
or /DEVICE qualifier
can be used. They are
equivalent.

The job will be
processed after the
time specified in the
I AFTER= qualifier.

9-8

~~.B ~
L:J~~
--------c(

GENERIC QUEUE SYS$PRINT

I

\

I
I

I

\
\
\
\

SUBMITIING BATCH AND PRINT JOBS

EXECUTION QUEUE LPAO

EXECUTION QUEUE LPBO

r;;;i r;;i
~~

EXECUTION QUEUE LPCO

DEVICE
LPAO:

DEVICE
LPBO:

DEVICE
LPCO:

r;;;i
L:::J

r;;;i
~

r;;;i
~

TTB_X0336 66 S

Figure 9-1 Execution and Generic Print Queues

SUB:MITTING BATCH AND PRINT JOBS 9-9

Notes on Figure 9-1:

1. A printer can print only one job at a time. The job being printed is called the
current job. Job 225 is the current job on queue LPAO. Similarly, job 231 is the
current job on queue LPBO, and job 229 is the current job on queue LPCO.

2. Jobs waiting their turn to be printed are called pending jobs. Jobs 250, 249, and
240 are pending jobs on queue SYS$PRINT. Similarly, jobs 228 and 245 are
pending jobs on queue LPCO.

3. SYS$PRINT is a generic queue.

Because there are no execution printers associated with a generic queue, a generic
queue cannot have a current job. Only execution queues have current jobs.

4. Execution queues LPAO and LPBO have generic printing enabled. Generic queue
SYS$PRINT passes its jobs to LPAO and LPBO to be printed.

Generic queues do not release a job to an execution queue until the associated
device is ready to print it. That is why all pending jobs are on SYS$PRINT, not
on LPAO and LPBO.

In this figure, if the VMS system queued a print job directly to LPAO, it would be
a pending job on queue LPAO. However, this job would not necessarily be printed
before the pending job on SYS$PRINT. The VMS system would base its selection
of a current job for LPAO on the order in which it queued the jobs.

5. Execution queue LPCO does not have generic printing enabled. Jobs 229, 228,
and 245 have been queued directly to this queue. They have not passed through
SYS$PRINT.

9-10 SUB:MIITING BATCH AND PRINT JOBS

9 .4.2 Specifying the Characteristics of Print Jobs

When you queue a print job, you can also control the appearance of the job, by using
the following positional qualifiers to the PRINT command.

/JOB_COUNT

Specifies the number of times your job is printed. A job can be printed from 1 to
255 times. The default is one printing.

/COPIES

Specifies the number of copies to print. The number of copies can be 1 - 255. By
default, the PRINT command prints a single copy of a file.

/[NO]SPACE

Controls whether output is to be double-spaced. The default is /[NO]SPACE,
which results in single-spaced output.

IPAGES=([lowlim,],uplim)

Specifies the number of pages to print. Lowlim is the first page printed and uplim
is the last page printed.

• I AFTER=time

Specifies the time to print. Time can be specified as absolute time, or a combination
of absolute and delta time. The default is the current date and time.

/NOTIFY

Controls whether the system notifies you when the job is completed or aborted.
The default is /[NO]NOTIFY.

Table 9-2 shows how to specify certain characteristics of print jobs.

SUB:MITTING BATCH AND PRINT JOBS 9-11

Table 9-2 Setting the Characteristics of a Print Job

Operation

Printing multiple
copies

Controlling the
spacing between
lines and pages

Specifying number
of pages to print

Comments and Examples

I JOB_ COUNT is a command qualifier that specifies how many
times to duplicate the entire job. This example requests three
printings of the file :MEMO.TXT:

$ PRINT/JOB_ COUNT=number file-specification

$ PRINT/ JOB_ COUNT=3 MEMO. TXT

/COPIES is a command qualifier that can be different for each
file in a job. This example requests that two copies of the file
MEMO.TXT be printed:

$ PRINT/COPIES=number file-specifications

$ PRINT/COPIES=2 MEMO. TXT

This example requests that two copies of the file MEMO.TXT
and three copies of the file MYFILE.TXT be printed:

$PRINT MEMO.TXT/COPIES=2,MYFILE.TXT/COPIES=3

This example requests that the entire job print twice.
/COPIES=3 requests that the second file (FILE2.TXT) prints
three times within each job count, giving a total of six copies for
FILE2.TXT.

$ PRINT/JOB_COUNT=2 FILE1.TXT,FILE2.TXT/COPIES=3

/SPACE is a command qualifier signifying double-spaced output.
The default of /NOSPACE results in single-spaced output.

$ PRINT MEMO. TXT/SPACE

By default, all pages of a job are printed. If the lowlim
parameter is omitted, the job begins printing on the first page.

$ PRINT!PAGES=([lowlim,]uplim) file-specification

In this example, pages 6 through 8 are printed:

$ PRINT/PAGES= (6, 8) MYFILE. TXT

In this example, pages 6 through end of file are printed:

$ PRINT /PAGES= (6' II II) MYF ILE • TXT

9-12 SUB:MTITING BATCH AND PRINT JOBS

9.5 OBTAINING STATUS OF QUEUES

There are several qualifiers you can use with the SHOW QUEUE command to obtain
the status of print jobs at any given time. The format for using these qualifiers is:

$ SHOW QUEUE/qualifiers [queue-name]

where queue-name is the name of the printer.

Some qualifiers also have keywords that can be used to obtain additional information.
The format for using keywords is:

$ SHOW QUEUE/qualifiers[=keyword[, ...]] [queue-name]

To see all the entries on a particular printer, use the I ALL_ ENTRIES qualifier with the
SHOW QUEUE command. For example:

$ SHOW QUEUE/ALL_ENTRIES SYS$PRINT

shows you the status of all the print jobs on the SYS$PRJNT queue:

Terminal queue SYS$PRINT, on WHYNOT::$PRINTER, mounted form DEFAULT
Jobname Username Entry Blocks Status
------- --------
MYFILE SMITH 45 60 Printing
LICENSES SMITH 48 78 Pending
TAGS SMITH 49 88 Pending
OFFICERS SMITH 52 90 Pending

(Example 9-2 gives you a detailed explanation of the information obtained here.)

The BY _JOB_ STATUS qualifier is used with the following keywords.

EXECUTING (Displays executing jobs)

• HOLDING (Displays jobs on hold)

PENDING (Displays pending jobs)

RETAINED (Displays jobs retained in the queue after execution)

TIM:ED _RELEASE (Displays jobs on hold until a specified time)

Example:

$ SHOW QUEUE/BY_JOB_STATUS=TIMED RELEASE SYS$PRINT

Terminal queue SYS$PRINT, on WHYNOT::$PRINTER, mounted form DEFAULT
Jobname Username Entry Blocks Status

MYFILE SMITH 96 1 Holding until 2-DEC-1988 15:00

SUBMITTING BATCH AND PRINT JOBS

The DEVICE qualifier is used with the following keywords.

PRINTER (Displays all print queues)

SERVER (Displays all server queues)

TERMINAL (Displays all terminal queues)

Example:

$ SHOW QUEUE/DEVICE=SERVER

Server queue WHYNOT$NARROW, stopped, on WHYNOT::, mounted form DEFAULT

Jobname Username Entry Blocks Status

9-13

MYFILE SMITH 97 1 Holding until 2-DEC-1988 15:00

Server queue WHYNOT$WIDE, stopped, on WHYNOT::, mounted form DEFAULT

The SHOW ENTRY command gives you the status of a print job by number. This
is the number assigned by the print queue and displayed by the SHOW QUEUE
command. For example:

$ SHOW ENTRY 96

Jobname Username Entry Blocks Status

MYFILE SMITH 96 1 Holding until 2-DEC-1988 15:00
On terminal queue SYS$PRINT

shows you the status of print job number 96.

The /FULL qualifier of the SHOW ENTRY command gives you additional information
about your print job, such as when it was submitted and what the priority is. For
example:

$ SHOW ENTRY 96/FULL

Jobname Username Entry Blocks Status

MYFILE SMITH 96 1 Holding until 2-DEC-1988 15:00
On terminal queue SYS$PRINT
Submitted 2-DEC-1988 09:18 /FORM=DEFAULT /PRIORITY=lOO

_DISK: [SMITH]MYFILE.TXT;l

9-14 SUB:MIITING BATCH AND PRINT JOBS

Example 9-2 shows a queue status list, displayed by the command
SHOW QUEUE/DEVICE/ALL_ENTRIES, that corresponds to Figure 9-1.
The /ALL_ENTRIES qualifier is used because, by default, the SHOW QUEUE
command displays only current jobs and pending jobs owned by the current process.

$ SHOW QUEUE/DEVICE/ALL_ENTRIES

Printer queue LPAO

Jobname Username Entry Blocks Status
------- --------
MYFILE.TXT JONES 225 10 Printing at block 6

Printer queue LPBO

Jobname Username Entry Blocks Status
------- --------
USELESS.MEM JONES 231 233 Printing at block 34

Printer queue LPCO

Jobname Username Entry Blocks Status
------- --------
SCHEDULE SMITH 229 109 Printing at block 88
PAYROLL JONES 228 144 Pending
SPREAD JONES 245 156 Pending

Generic printer queue SYS$PRINT

Jobname Username Entry Blocks Status
------- -------- ------
FILE.LOG SMITH 250 198 Pending
TYPE.COM JONES 249 206 Pending
CHECK ANDERSON 240 220 Pending

Example 9-2 Queue Status Display Corresponding to Figure 9-1

SUBMJTTING BATCH AND PRINT JOBS

Notes on Example 9-2

The following comments describe what is in each column of the display.

1. Jobname - Usually, this is the file name of the first file in the job. Only
information relating to your jobs is displayed.

2. Username - Name of user who queued the job.

9-15

3. Entry - In this example, the entry numbers or job numbers correspond with the
ones in Figure 9-1. Note that the list is kept in order by job size, not by job
number.

4. Blocks - Size of the job in blocks (one block is 512 bytes).

5. Status - A job must have active status to compete in the queue for the printer.
Holding means the job has inactive statusin the queue, while pending means the
job is actively competing in the queue. The string "Printing at block 108" means
the job is the printer's current job.

9-16 SUBMITTING BATCH AND PRINT JOBS

Example 9-3 shows a queue status list, displayed by the command
SHOW QUEUE/DEVICES/FULL/ ALL ENTRIES. Note that, because of the
/FULL qualifier, the list contains more illf ormation than the status list shown in
Example 9-2. Additional lines describing the file to be printed follow each line
describing a holding print job.

$ SHOW QUEUE/DEVICES/FULL/ALL_ENTRIES

Terminal queue COMP, on WHYNOT::WHYNOT$TTA2:, mounted form DEFAULT
/BASE PRIORITY=4 /DEFAULT=(FEED,FORM=DEFAULT) Lowercase
/OWNER=[GROUPl,SYSTEM] /PROTECTION=(S:E,O:D,G:R,W:W)

Printer queue LNOl, on WHYNOT::WHYNOT$LPAO:, mounted form DEFAULT
/BASE PRIORITY=4 /DEFAULT=(FEED,FORM=DEFAULT)
/LIBRARY=SYSDEVCTL LNOl Lowercase /OWNER=[GROUPl,SYSTEM]
/PROTECTION=(S:E,07D,G:R,W:W) /SEPARATE=(FLAG,RESET=(ANSI$RESET))

Server queue NM$QUE01, on WHYNOT::, mounted form DEFAULT
/BASE PRIORITY=4 /DEFAULT=(FEED,FORM=DEFAULT)
/OWNER=[GROUPl,SYSTEM] /PROCESSOR=NM$DAEMON /PROTECTION=(S:E,O:D,G:R,W:R)
/RETAIN= ERROR

Generic printer queue NM$QUEUE
/GENERIC=(NM$QUE01,NM$QUE02) /OWNER=[GROUPl,SYSTEM]
/PROTECTION=(S:E,O:D,G:R,W:R) /RETAIN=ERROR

Jobname User name Entry Blocks Status

NMAIL SMITH 1630 146 Holding until 24-NOV-1988 11:26
Submitted 24-NOV-1988 11:16 /PRIORITY=lOO
_1DUAO: [SYSCOMMON.NMAIL]NMAIL$1988112217065820.WRK;l

Example 9-3 Full Format Queue Status Display

SUB:MITTING BATCH AND PRINT JOBS 9-17

9.6 MODirYING A PRINT JOB

You can change the characteristics of your print job if it is not currently printing.
Table 9-3 shows how to use the SET ENTRY command to modify the characteristics
of a print job.

Consult the documentation on the SET ENTRY command for a list of characteristics
that you can change. This command can also move a job from one queue to another.

9.6.1 Deleting a Print Job

Table 9-3 also shows how to use the DELETE/ENTRY command to delete a job
from a queue. You may need to do this if you accidentally print a file with non-ASCII
characters, such as EXE or OBJ files. You can delete a job even if it is the current job.

9-18 SUB:MIITING BATCH AND PRINT JOBS

Table 9-3 Modifying a Batch or Print Job

Operation

Changing the
characteristics of a
job

Moving a job to
another queue

Comments and Examples

The entry-number (or job number) parameter specifies the
number of the job you want to change. In this example, the
number of copies for entry-number 100 is being changed to five.

$ SET ENTRY entry-number/qualifier

$ SET ENTRY 100/COPIES=S

In this example, the job MYFILE. TXT (entry number 90) is
being moved from a printer using narrow paper to a printer
using wide paper.

$ SET ENTRY entry-number/REQUEUE=queue-name

$ SET ENTRY 90/REQUEUE=WIDE

Deleting a job on a Current jobs on a queue can be deleted as well as all other jobs.
queue If a current job is deleted, its processing stops immediately.

$ DELETE/ENTRY =job-number

$ DELETE/ENTRY=120

SUB:MITTING BATCH AND PRINT JOBS 9-19

9.7 SUBMITTING A BATCH JOB

When you issue the SUBMIT command, the VMS system assigns a number to your
batch job. Your terminal displays this number, as Example 9-4 shows.

By default, your job enters the standard system batch queue, SYS$BATCH. Each job in
this queue consists of a command procedure the system will execute in a batch process.
(The Writing Command Procedures module covers command procedures.)

$ SUBMIT ACTION.COM
Job ACTION (queue SYS$BATCH, entry 136} pending
$

Example 9-4 Issuing the SUBMIT Command

9.7.1 How a Batch Job Executes

Although a batch process runs independently of your interactive process, it is like
your interactive process in many respects. For example, the VMS system uses the
information about you in the system user authorization file to create your batch process.
The batch process has the same UIC, privileges, and quotas that you have when you log
in. Also, the batch process executes your own LOGIN .COM file before executing the
DCL commands in the submitted command procedure.

As it executes the DCL commands in your batch job, the VMS system writes output to
a file called the batch log. This file is created in your login directory. It usually has
the same file name as the batch command file, and a file type of LOG. The log file is
printed and then deleted automatically on completion of your batch job.

The values of four process logical names the system defines for you are different for
batch processes than they are for interactive processes. Table 9-4 shows the standard
definitions. When batch jobs contain nested command procedures, the VMS system
redefines these logical names for each command level.

9-20 SUBMITIING BATCH AND PRINT JOBS

Table 9-4 Logical Name Definitions for Interactive and Batch Processes

Definition When Definition When
Interactive Process Batch Process

Logical Name Begins to Execute Begins to Execute

SYS$INPUT Interactive terminal Batch command file

SYS$0UTPUT Interactive terminal Batch log file

SYS$COMMAND Interactive terminal Batch command file

SYS$ERROR Interactive terminal Batch log file

SUB:MITTING BATCH AND PRINT JOBS 9-21

Table 9-5 shows how to use qualifiers to tl1e Sl.JBMIT command to tell the system how
to handle your batch log file. In particular, you can specify:

The name of the batch log file

Whether or not to print the batch log file if your job completes successfully

Whether or not to delete the batch log file after it is printed

Table 9-5 Controlling the Batch Log File

Operation

Naming the batch
log file

Printing the batch
log file

Saving the batch
log file

Comments and Examples

By default, the log file has the same file name as the command
file, and has the file type WG. In this example, the log file is
named OUTPUT.LOG instead of the default MYFILE.LOG.

$ SUBMIT/LOG _FILE=file-specification

$ SUBMIT/LOG_FILE=OUTPUT MYFILE

By default, the log file is queued to SYS$PRINT when the batch
job completes execution. In this example, the log file is queued
to printer LPBO.

$ SUBMIT/PRINTER=queue-name file-name

$ SUBMIT/PRINTER=LPBO MYFILE

By default, the log file is deleted after being printed. In this
example, the log file is retained in the login directory. The
qualifier /NOPRINTER implies the /KEEP qualifier.

$SUBMIT/KEEP file-specification

$ SUBMIT/KEEP MYFILE

9-22 SUBMITTING BATCH AND PRINT JOBS

9.7.2 Writing a Batch Command Procedure

You can run a command procedure in either of two ways: interactively, or as a batch
job in a batch procedure. Certain differences between these two cases are discussed
below.

• A batch process executes the system manager's login command procedure and
your own LOGIN.COM file before executing the DCL commands in your batch
command file.

You can use the F$MODE() lexical function in your LOGIN.COM file to
determine whether the process is interactive or not. If the process is not interactive,
bypass commands that assume there is an interactive terminal, such as INQUIRE
and SET TERMINAL.

Also, because good programming practice requires you to spell out DCL commands
in command procedures, you can bypass symbol definitions that define command
abbreviations you use interactively.

An error or severe error halts the execution of a batch job. You can use the ON
command in your batch command file to modify the handling of errors.

• When the VMS system creates a batch process, its default directory is the one
specified in the user authorization file. When you refer to files in your batch
command files, make sure you know what your default directory is.

By default, verification is on in batch processes. You can use the SET VERIFY
command and the F$VERIFY lexical function in your batch command files to
change verification.

SUBMITTING BATCH AND PRINT JOBS 9-23

9.7.3 Using a Pa..rtJcular Batch Queue

Table 9-6 shows how to use the SUBMIT command to queue batch jobs, and Table 9-7
shows how to use the SHOW QUEUE command to display status information on these
jobs. Example 9-5 shows the full format of this status information.

When you execute a command procedure interactively, you can include up to eight
parameters on the DCL command line to define the symbols Pl through P8. Note
that you must use the !PARAMETERS qualifier of the SUBMIT command to pass
parameters to a command procedure you submit as a batch job.

Table 9-6 Submitting Batch Jobs

Operation

Submitting a job
with no parameters

Comments and Examples

The SUBMIT command uses a default file type of COM. The
file submitted is ACTION.COM in this example.

$ SUBMIT file-specification

$ SUBMIT ACTION

Submitting a job to By default, the system batch queue SYS$BATCH is used.
a specified queue

Submitting a job
after a specified
time

Submitting a
job that requires
parameters

$ SUBMIT/QUEUE=queue-name file-specification

$ SUBMIT/QUEUE=SLOWBATCHACTION

The file MYFILE.TXT will be held until the specified time
(19:00), after which it will be processed.

$ SUBMIT/ AFTER=time file-specification

$ SUBMIT/AFTER=19: 00 MYFILE. TXT

Up to eight parameters can be specified using symbols (Pl-P8).
The symbols are local to the specified command procedures.

$ SUBMITIPARAMETERS=(Pl,[, ...]) file-specification

$ SUBMIT/PARAMETERS= (3, SUM) MATH

9-24 SUB:MITTING BATCH AND PRINT JOBS

Example 9-5 shows a run of the command procedure COUNTl.COM.

$! COUNTl.COM
$!
$ SHOW TIME
$ SHOW LOGICAL/PROCESS/JOB
$ EXIT

$ SUBMIT COUNTl.COM
Job COUNTl (queue SYS$BATCH, entry 366) started on SYS$BATCH
$

Output from the system's LOGIN procedure:

$! COUNT 1. COM
$!
$ SHOW TIME

13-JAN-1988 09:31:22
$ SHOW LOGICAL/PROCESS/JOB

(LNM$PROCESS_TABLE)

11 EVE$INIT" = 11 SYS$LOGIN:EVE.INIT 11

"SYS$COMMAND" = II WHYNOT$RTA1:"
"SYS$DISK" = 11 WHYNOT$DJAO:"
11 SYS$ERROR" = II WHYNOT$RTAl: 11

"SYS$INPUT" [super] = n_WHYNOT$DJAO:"
"SYS$INPUT 11 [exec] = 11 WHYNOT$RTAl: 11

"SYS$0UTPUT" [super] =-11 WHYNOT$RTA1:"
"SYS$OUTPUT 11 [exec] "_WHYNOT$RTAl: 11

"TT" = "RTAl: II

(LNM$JOB_803E1730)

"SYS$LOGIN" = "WHYNOT$DJAO: [SMITH]"
"SYS$LOGIN DEVICE" = "WHYNOT$DJAO:"
"SYS$REM_ID" = "SMITH"
"SYS$REM NODE"= "WHYSO::"
"SYS$SCRATCH" = "WHYNOT$DJAO: [SMITHJ"

Example 9-5 Sample Batch Run of COUNTl .COM

SUBMJTTING BATCH AND PRINT JOBS 9-25

Table 9-7 Displaying Batch Queue Status

Operation

Displaying a list of batch
jobs

Displaying a list of batch
jobs on a particular queue

Comments and Examples

By default, the only jobs displayed other than your own
are those currently executing. To display all jobs, add
the qualifier /ALL_ENTRIES to the SHOW QUEUE
command. For more job information, add the qualifier
/FULL to either the SHOW QUEUE or SHOW ENTRY
command.

$ SHOW QUEUE/BATCH

$ SHOW QUEUE/BATCH/ALL_ENTRIES

$ SHOW ENTRY/BATCH

$ SHOW ENTRY/BATCH/FULL

In any SHOW QUEUE command, you can specify a
queue name instead of /BATCH. You can also use the
qualifiers /FULL and /ALL....,ENTRIES.

$ SHOW QUEUE queue-name
$ SHOW QUEUE SYS$BATCH

$ SHOW QUEUE/qualifier que-name
$ SHOW QUEUE/ALL_ENTRIES SYS$BATCH

9-26 SUBMITTING BATCH AND PRINT JOBS

Example 9-6 shows a queue status list, displayed by the command SHOW
QUEUE/BATCH/FULL/ ALL_ ENTRIES.

$ SHOW QUEUE/BATCH/FULL/ALL_ENTRIES

Batch queue WHYNOT SYSTEM, on WHYNOT::
/BASE PRIORITY~3 /JOB LIMIT=4 /OWNER=[GROUPl,SYSTEM]
/PROTECTION=(S:W,O:W,G,W)

Jobname Username Entry Status
------- --------
MYFILE SMITH 1388 Holding until 3-DEC-1988

DRAFT SMITH 1425 Holding until 4-DEC-1988

TEST JONES 1352 Holding until 7-DEC-1988

Batch queue WHYNOT_BATCH, on WHYNOT::
/BASE PRIORITY=2 /JOB LIMIT=3 /OWNER=[GROUPl,SYSTEM]
/PROTECTION=(S:E,O:D,G:R,W:W)

Example 9-6 Full Format Queue Status Display

18:00

01:00

00:00

SUBMITTING BATCH AND PRINT JOBS 9-27

9.8 HANDLING BATCH AND PRINT JOBS

The VMS system handles some aspects of batch job and print job processing in exactly
the same way. In these cases, the PRINT and SUBMIT commands use the same
qualifiers.

Table 9-8 shows how to specify certain characteristics common to both batch and print
jobs, including:

• The name used to identify the job

• The node on which the job is processed

Whether the system displays the job number when the job is queued

• Whether the system notifies you when the job completes

• Whether the input file is deleted after the job completes

9-28 SUB:MITI'ING BATCH AND PRINT JOBS

Table 9-8 Specifying the Characteristics of Batch and Print Jobs

Characteristic

Name of job

Notification that job has
been queued

Notification that job
processing has completed

Comments and Examples

By default, the VMS system uses the file name of the first
file in the job. The job name appears on the flag and in
the queue status list as the default file name of the batch
log.

$ SUBMITINAME=job-name
$ SUBMIT/NAME=MYFILE.TXT

$ PRINTINAME=job-name
$ PRINT/NAME=MYFILE.TXT

By default, a message is displayed notifying the user of
the job entry number and the name of the queue in which
the job was entered.

$ PRINT/IDENTIFY job-name
$ PRINT/IDENTIFY MYFILE. TXT

Notifies the user when the job has been completed or
aborted. By default, there is no notification.

$SUBMIT/NOTIFY file-name
$ SUBMIT/NOTIFY MYFILE

SUBMTITING BATCH AND PRINT JOBS 9-29

9.9 BATCH AND PRINT QUEUES ETIQUETIE

The following suggestions are given to insure that system batch and print queues flow
efficiently and smoothly, with no "time lags" or "backups."

Check the size of your print jobs before submitting them.

• If feasible, submit large print or batch jobs after hours.

Set up a file size limit (in blocks) over which a job should be submitted after
hours.

If submitting a large job, verify that the paper supply is sufficient to handle that
job, or have an operator check on the paper supply.

Do not print files that are not compatible for the particular device.

If possible, wait until the queue(s) are empty or handling a minimum of jobs
before submitting your job.

Pick up your completed job promptly. Do not allow your finished jobs to sit in the
printer area endlessly.

SUBMITTING BATCH AND PRINT JOBS

9.10 SUMMARY

Printing a File

The PRINT command uses a default file type of LIS.

Job numbers indicate the order in the queue.

The print queue, named SYS$PRINT, handles print requests by default.

• The first available printer prints the job.

Submitting a Batch Job

9-31

The SUBMIT command uses a default file type COM unless another file type is
specified.

Each job in the queue consists of a command procedure.

Job numbers indicate the order in the queue.

SYS$BATCH is the default system batch queue.

The VMS system creates a batch process to execute the command procedure.

Writing a Batch Command Procedure

There are two ways to run a command procedure.

Interactive

Batch

• By default, severe errors terminate batch job execution.

• The batch process's default directory is the one specified as SYS$LOGIN.

Deleting a Batch or Print Job

Can delete a batch or print job while it is executing or while it is pending in the
queue.

Use the DELETE/ENTRY command.

SUBMITIING BATCH AND PRINT JOBS

9.11 LABORATORY EXERCISE I

NOTE
Several of the laboratory exercises in this module ask you to create command
procedure files.

Complete the following exercises at an interactive terminal.

1. Choose a text file and print it, using the generic print queue SYS$PRINT.

2. Use a single PRINT command to print two copies of the same file.

3. Display a list of all queues on your system and all jobs in the queues.

9-33

4. Select an execution queue from the queue display. (An execution queue will have
the same name as its associated device, without the colon.) Print the same file,
queuing it directly to the execution queue.

5. Choose two text files. Print these two files so that you get two copies of the first
file and three copies of the second file.

6. Send a text file to the printer queue, requesting that the file not be printed until an
hour from now.

7. Display the queue status of the job waiting to be printed. Delete this job from the
queue.

9-34 SUBMITTING BATCH AND PRINT JOBS

9.12 LABORATORY EXERCISE II

1. Display, at your terminal, all of the batch queues on the system.

2. Submit a command procedure to batch that displays the time, displays all processes
on the system, and shows all logical names on the system. Save the log file. You
will need to examine it shortly.

3. Submit the above command procedure to batch so that the log file will not be
printed.

4. Submit the above command procedure to batch so that the log file will not be
created.

5. Examine the log file created in Step 2. Answer the following questions:

a. Find the entry for your batch job from the SHOW SYSTEM command. What
was its process ID?

b. Did your LOGIN .COM file execute? Did the system-wide login procedure
execute?

c. How much CPU time did your batch job use to execute?

d. How much elapsed time did your batch job use to execute?

SUBMITTING BATCH AND PRINT JOBS 9-35

9.13 T.ABORATORY EXERCISE I-SOLUTIONS

1. Choose a text file and print it, using the generic print queue SYS$PRINT.

$ PRINT FILENAME

(Fil..EN~ is the name of your file in all solutions.)

2. Use a single PRINT command to print two copies of the same file.

$ PRINT/COPIES=2 FILENAME·

3. Display a list of all queues on your system and all jobs in the queues.

$ SHOW QUEUE/ALL_ENTRIES

4. Select an execution queue from the queue display. (An execution queue will have
the same name as its associated device, without the colon.)

$ PRINT/QUEUE=LPAO FILENAME

(LPAO may or may not be the name of your execution queue, depending upon how
the system is set up.)

5. Choose two text files. Print these two files so that you get two copies of the first
file and three copies of the second file.

$ PRINT FIRSTFILENAME/COPIES=2,SECONDFILENAME/COPIES=3

6. Send a text file to the printer queue, requesting that the file not be printed until an
hour from now.

$ PRINT/AFTER=TIME FILENAME

7. Display the queue status of the job waiting to be printed. Delete this job from the
queue.

$ SHOW QUEUE SYS$PRINT

$ DELETE/ENTRY=n (where "n" is the entry number)

9-36 SUB:MITTING BATCH AND PRINT JOBS

9.14 LABORATORY EXERCISE II-SOLUTIONS

1. Display, at your terminal, all of the batch queues on the system.

$ SHOW QUEUE/BATCH

2. Submit a command procedure to batch that displays the time, displays all processes
on the system, and shows all logical names on the system. Save the log file. You
will need to examine it shortly.

$! NAME OF .COM FILE
$!
$ SHOW TIME
$ SHOW SYSTEM
$ SHOW LOGICAL
$ EXIT

3. Submit the above command procedure to batch so that the log file will not be
printed.

$ SUBMIT/NOPRINTER FILENAME.COM

4. Submit the above command procedure to batch so that the log file will not be
created.

$ SUBMIT/NOLOG FILENAME.CO

SUBMITTING BATCH AND PRINT JOBS 9-37

5. Examine the log file created in Step 2. Answer the following questions:

a. Find the entry for your batch job from the SHOW SYSTEM command. What
was its process ID?

Your batch name entry should have a name similar to BATCHXXX (XXX
would be the ID number of your job). Also in the right margin of the SHOW
SYS1EM display, you should see the letter B.

b. Did your LOGIN .COM file execute? Did the system-wide login procedure
execute?

The entries marked with a B are batch jobs. Both your WGIN.COM file and
the system-wide login procedure should have executed, assuming they exist.
You may see some of your LOGIN.COM file commands in the log file.

c. How much CPU time did your batch job use to execute?

d. How much elapsed time did your batch job use to execute?

Both the CPU time and elapsed time are in the accounting information in the
last lines of the log file.

DEVELOPING PROGRAMS

DEVELOPING PROGRAMS 10-3

10.1 INTROuUCTION

This module presents a general discussion of the steps in developing a program on a
VAX system as well as an introduction to a sample program.

It does not provide details regarding any of the programming languages, such as
FORTRAN or PASCAL.

A number of tools that significantly decrease the time spent developing VMS programs
include:

Interactive Text Editor (EDT)

Compilers

VAX MACRO Assembler

VMS Linker

• VMS Librarian

VMS Symbolic Debugger

• System supplied routines

The editors, assembler, compilers, and linker are utilities that prepare source programs
for execution. The VMS Symbolic Debugger detects logic errors in executable image
files.

The librarian enables you to store frequently used segments of code, such as procedures
or functions, in specially indexed files called libraries. You can reference procedures or
functions stored in a library with a program. The linker combines the code from the
library with your source code to produce an executable image file.

For the MACRO language, you store macros (definitions) in a different type of library.
The assembler accesses libraries containing these macros to add them to a program.

System libraries contain a large number of predefined routines that user programs (such
as routines that manipulate strings or generate random numbers) can call.

Refer to the Introduction to VMS System Routines manual for more information regarding
system-supplied routines.

10--4 DEVELOPING PROGRAMS

10.2 OBJECTIVES

To use most of the programming languages, you should be familiar with the following
program development steps:

Creating a text file containing the source statements of the program

• Compiling or assembling the text file to create a file containing object code

Linking the object file or files to produce a file containing executable code

• Running the executable image produced from the linker

• Debugging the program to correct errors

10.3 RESOURCES

For more detailed explanations of developing programs, refer to the following
documents:

VMS DCL Dictiona.ry

Guide to VMS Programming Resources

DEVELOPING PROGRAMS 10-5

1 OA PROGRAM DEVELOPMENT ON A VMS SYSTEM

To develop a program written in a VMS language, you must complete the following
steps:

• Create a text file that contains the source statements of your program.

• Compile or assemble the text file to produce a file containing object code.

Link the object file or files to produce an executable image file.

Run the executable code produced by the linker.

• Debug the program to correct errors.

Figure 10-1 illustrates the orderly flow of these five program development steps.

10--6

EDIT

COMPILE
OR

ASSEMBLE

LINK

EXECUTE

END

DEVELOPING PROGRAMS

NO

DEBUG

NO

TTB_X0261_88

Figure 1~1 A Flow Diagram of the Five Major Programming Steps

DEVELOPING PROGRAMS 10--7

EDIT GRADES.FOR

GRADES.FOR

©
FORTRAN[/qualifier] GRADES

GRADES.OBJ

©
LINK[/qualifier] GRADES

GRADES.EXE

. RUN[/qualifier] GRADES

->
TTB_X0339_88

Figure 10-2 The Four Program Development Commands

10-8 DEVELOPING PROGRAMS

Each of the five program development steps is discussed in detail below. As you read
each step, refer to Figures 10--1 and 10--2, which is keyed to the steps being discussed.

1. Create a text file that contains the source statements of your program.

Name the source file using the file type that relates to the source code programming
language. Below are the default file types for the languages covered in this module.

Language File Type

BASIC BAS

c c

COBOL COB

FORTRAN FOR

MACRO MAR

PASCAL PAS

PL/I PLI

DEVELOPING PROGRAMS 10-9

2. Compile or assemble the text file you created with an editor to produce a fiie
containing object code.

The compiler or assembler translates the source statements of each input file into
object code, producing one or more object files of type OBJ.

To compile or assemble the code, you must use the DCL command related to
the language of the source code in the text file. The following are examples of
compile and assemble commands.

Language Compiler/ Assembler Command

BASIC $ BASIC file-specification

c $ CC file-specification

COBOL $COBOL file-specification

FORTRAN $ FORTRAN file-specification

MACRO $MACRO file-specification

PASCAL $PASCAL file-specification

PL/I $ PLI file-specification

10-10 DEVELOPING PROGRAMS

You can list more than one input file as a parameter. The way you list these
parameters determines how many object files the compiler or assembler creates. To
specify your request, use either the comma (,) or the plus sign (+) as a parameter
separator. The results of your choice follow:

If you separate input file specifications by plus signs, the compiler creates
one object file containing the code from all input files.

If you separate them by commas, it creates a separate object file for each
input file.

If the compiler finds syntax errors in the source code, the system displays an
appropriate message at your terminal. You can translate the message by referencing
the appropriate language documentation.

Use an editor to correct the source code, and submit the new version of the text
file to the compiler or assembler for translation.

The DCL Help facility gives you information about qualifiers when you enter the
following command:

HELP language_ name

3. Link the object file or files to produce an executable image.

The linker searches personal and system libraries for external procedures and
functions that it cannot find in the specified input files.

To link the object file(s), invoke the VMS Linker with the DCL command LINK.
You can specify the names of the files to be linked, such as object code files or
modules from libraries, after the command. Separate names with commas. The
linker assumes that the file type of input files is OBJ.

The linker's file output contains executable code assigned the file type of EXE.

The VMS Linker Utility Reference Manual describes linker errors and recommended
solutions.

DEVELOPING PROGRAMS 10-11

4. Invoke the image activator to run the executabie code produced by the iinker.

To execute a program, enter the DCL command RUN followed by the name of a
single executable image file. The RUN command assumes that the file type field
of the input file specification is EXE.

You should not attempt to execute a program without correcting compiler and
linker errors first.

If you have corrected all obvious errors, errors output at run time can indicate
logical errors. A logical error occurs because the statements in the program do
not do the intended job. A logical error could produce error messages, or simply
the wrong result. Check your results carefully. If the program receives input, you
should execute it several times with various types of input to be sure it does the
required job in all given situations.

To correct the program, you must debug it to find out where the error occurs.
When you find the error, you must modify the source program and submit it to the
compiler or assembler and linker again. Then you can execute the new executable
file to see if the error was corrected.

5. Debug the program to correct errors.

To find the cause of a logical error, you must examine the program carefully,
looking at the source code one line at a time. Keep lists of variables and their
contents on paper, as well as comments on loops and output to peripherals. Often,
in larger programs, you can isolate the problem to a particular area of the program,
saving the time of looking at every line.

If you can isolate the problem, or if the program is not very large, it is not difficult
to examine a program using paper; you can easily find errors. As you write larger
programs involving more 1/0, more variables, and more loops, debugging becomes
more complicated, and the contribution the debugger makes increases.

10-12 DEVELOPING PROGRAMS

10.5 THE VMS SYMBOLIC DEBUGGER UTILITY

The VMS Symbolic Debugger simplifies your debugging job. Debug commands
implement many of the same debugging techniques used on paper.

The VMS Symbolic Debugger allows you to observe and manipulate your program
interactively as it executes. By issuing debugger commands at the terminal, you can:

Start, stop, and resume the execution of the program

Trace the execution path of the program

• Monitor selected locations, variables, or events

Examine and modify the contents of variables, or force events to occur

Use breakpoints, tracepoints, and watchpoints in variables

Test the effect of modifications without having to edit the source code, recompile,
and, in some cases, relink

DEVELOPING PROGRAMS 10-13

There are three ways to invoke the debugger:

1. Include the debugger in the executable image.

The debugger is included in the executable image if you enter the /DEBUG
qualifier with the LINK command. When the system subsequently executes your
program, it automatically invokes the debugger, and displays the debug prompt
(DBG>).

Unless you also include the /DEBUG qualifier in the compiler or assembler
command (/ENABLE=DEBUG with the MACRO command), the system will
not include local symbol tables in the object file. The symbol tables contain the
names and addresses of variables used in your program. For example, if you
use the variable named ICOUNT in your FORTRAN program, by including the
/DEBUG qualifier in the compiler command, you instruct the compiler to store
this variable's name and address in the local symbol table it produces. Later, you
can use the debugger to examine the contents of the variable !COUNT and other
variables stored in the local symbol table.

Not all debug commands rely on the existence of local symbol tables. For
example, the debug commands GO, STEP, and SET TRACE work without this
information. But if you intend to examine the contents of variables, be sure to
include the /DEBUG qualifier in your compiler or assembler command.

2. Halt the program and invoke the debugger with the DCL command DEBUG.

You can halt a program by entering CTRL/Y or CTRL/C, then invoke the debugger
by entering the DCL command DEBUG.

Use this method to halt a "hung" program, one that will not run to completion.
The debugger can determine where the program is hung.

This method also works for a program that is already executing in the debugger if
you want to display the debug prompt to input further debugging commands.

3. Run the program with the debugger.

To run a program with the debugger, enter the /DEBUG qualifier with the RUN
command. (Again, if you do not include the /DEBUG qualifier in the compiler or
assembler command, the debugger will not be able to reference address locations
by symbol names.)

The VMS Symbolic Debugger utility has an extensive Help facility. To use this facility,
invoke the symbolic debugger and enter the debug command HELP.

10-14 DEVELOPING PROGRAMS

10.6 A SAMPLE PROGRAM - GRADES

The FORTRAN program GRADES creates a file containing the names of students and
the average of their grades for a particular course. The program obtains the names and
grades from you, computes the average of the grades, and outputs the results to the
terminal and to a designated file, ENGLISH.DAT. Example 10-1 shows the source file
for GRADES.FOR and Example 10-2 shows the execution of GRADES.

PROGRAM GRADES
CHARACTER STUDENT_NAME*30, DONE*4
REAL AVERAGE

OPEN (UNIT=l, FILE='English', STATUS='New')

10 TYPE 20
20 FORMAT (/' Student name? ',$)
ACCEPT 30, STUDENT_NAME
30 FORMAT (1A30)

CALL COMPUTE (AVERAGE)

TYPE 40,STUDENT_NAME,AVERAGE
WRITE (1,40) STUDENT NAME,AVERAGE
40 FORMAT (/' Student: ',A30,'Average: ',FlO.l)

TYPE 50
50 FORMAT (/' Are you done ? (Yes/No) ',$)
ACCEPT 60, DONE
60 FORMAT (1A4)
IF (DONE.NE.'Y' .AND. DONE.NE.'y') GOTO 10

CLOSE (UNIT=l)
END

SUBROUTINE COMPUTE (AVERAGE)

INTEGER ICOUNT
REAL TOTAL, GRADE
ICOUNT = 0
TOTAL 0

10 TYPE 20
20 FORMAT (' Input grade (or 0 to end input): ',$)
ACCEPT 30, GRADE
30 FORMAT (FlO.O)

IF (GRADE.NE.0) THEN
ICOUNT = ICOUNT + 1
TOTAL = TOTAL + GRADE
GO TO 10
ENDIF

40

RETURN
END

IF (ICOUNT.NE.O) AVERAGE TOTAL/ICOUNT

Example 10--1 GRADES.FOR Source File

DEVELOPING PROGRAMS

10=7 EXECUTION OF GRADES

The following example depicts a sample run of the GRADES program, using
FORTRAN.

$ FORTRAN GRADES
$ LINK GRADES
$ RUN GRADES
Student name? JOHN SMITH
Input grade (or 0 to end input): 45
Input grade (or 0 to end input): 80
Input grade (or 0 to end input): 99
Input grade (or 0 to end input): 0

Student: JOHN SMITH Average: 74.7

Are you done ? (Yes/No) N

Student name? MARY HAGERTY
Input grade (or 0 to end input): 82
Input grade (or 0 to end input): 69
Input grade (or 0 to end input): 94
Input grade (or 0 to end input): 0

Student: MARY HAGERTY Average: 81. 7

Are you done ? (Yes/No) N

Student name? HOSIAH HOWER
Input grade (or 0 to end input): 90
Input grade (or 0 to end input): 78
Input grade (or 0 to end input): 81
Input grade (or 0 to end input): 0

Student: HOSIAH HOWER Average: 83.0

Are you done ? (Yes/No) y

$
$
$ TYPE ENGLISH.DAT

Student: JOHN SMITH Average: 74.7

Student: MARY HAGERTY Average: 81. 7

Student: HOSIAH HOWER Average: 83.0
$

Example 10-2 Sample Run of GRADES

10-15

10.8 SUMMARY

Program Development on a VMS System

A user must complete the following steps to develop a program:

Create a text file that contains the source statements of your program.

• Compile or assemble the text file to produce a file containing object code.

• Link the object file or files to produce an executable image file.

Run the executable code produced by the linker.

Debug the program to correct errors.

For more detailed explanations of developing programs, refer to the following
documents:

Guide to VMS Programming Resources

VMS DCL Dictionary

10-17

10--18 DEVELOPING PROGRAMS

There are no Exercises for this module.

